Titanium (Ti) is considered a beneficial element for plant growth. Ti applied via roots or leaves at low concentrations has been documented to improve crop performance through stimulating the activity of certain enzymes, enhancing chlorophyll content and photosynthesis, promoting nutrient uptake, strengthening stress tolerance, and improving crop yield and quality. Commercial fertilizers containing Ti, such as Tytanit and Mg-Titanit, have been used as biostimulants for improving crop production; however, mechanisms underlying the beneficial effects still remain unclear. In this article, we propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements primarily iron (Fe). Fe and Ti have synergistic and antagonistic relationships. When plants experience Fe deficiency, Ti helps induce the expression of genes related to Fe acquisition, thereby enhancing Fe uptake and utilization and subsequently improving plant growth. Plants may have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, Ti competes with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As a result, the beneficial effects of Ti become more pronounced during the time when plants experience low or deficient Fe supply.

Keywords: beneficial elements, ferric chelate reductase, ferritins, iron, metal transporter, nano-TiO$_2$ particles (TiO$_2$NPs), titanium

INTRODUCTION

Titanium (Ti), which has an atomic number 22 and atomic weight 47.88, is a transition element belonging to Group 4 (IVB) in the middle of the Periodical Table. It is the ninth most abundant element in the earth's crust and makes up about 0.25% by moles and 0.57% by weight of the crust (Buettner and Valentine, 2012). Ti is the second most abundant transition metal, after iron (Fe), and the elemental abundance of Ti is about 5 times less than Fe and 100 times greater than copper (Cu). Ti exhibits oxidation states of Ti$^{2+}$, Ti$^{3+}$ (titanous), and Ti$^{4+}$ (titanic), of which Ti$^{2+}$ and Ti$^{3+}$ are unstable, while Ti$^{4+}$ is the most stable ion. The most important compound is TiO$_2$, which is mainly used in paints. TiCl$_4$ is water soluble but is highly volatile and forms spectacular opaque clouds upon contact with humid air. Ti ascorbate is a synthesized compound which is soluble in water and stable up to pH 8.0.

The mineral sources of Ti include anatase, rutile, and brookite, each encompassing about 95% TiO$_2$ as well as ilmenite (FeTiO$_3$) comprising 40–65% TiO$_2$ and leucoxene (Fe$_2$O$_3$ nTiO$_3$).
containing more than 65% TiO₂ (Zhang et al., 2011). These minerals are generally not soluble; thus Ti has been conventionally considered to be inert in the environment. Increasing evidence in the literature, however, suggests that Ti is mobile in rocks under weathering conditions (Kaup and Carter, 1987; Du et al., 2012). Ti may be mobile at the centimeter scale as well as at the profile scale under strong tropical weathering conditions (Cornu et al., 1999). Higher Ti contents occur in tropical soils, particularly in lateritic soils and laterites, such as 15% in Hawaii soils (Sherman, 1952); 15% in Norfolk Island soils (Hutton and Stephens, 1956), and 3.4% in Australian soils (Stace et al., 1968). Ti in surface soils worldwide ranges from 0.02 to 2.4% with a mean of 0.33%; Ti in soil solutions is about 30 mg L⁻¹ (Kabata-Pendias and Mukherjee, 2007). Ti in river waters ranges from 0.02 to 2.3 µg L⁻¹, and the worldwide average is estimated to be 0.49 µg L⁻¹ (Kabata-Pendias and Pendias, 2001). Drinking waters in the US contain Ti from 0.5 to 15 µg L⁻¹ (Anke and Seifert, 2004). Ti also exists in the atmosphere with global median values of 7 ng m⁻³ in the remote regions (away from anthropogenic releases) and 85 ng m⁻³ in polluted zones. Ti concentrations in the air of the US vary from 10 to 100 ng m⁻³ and can increase up to ≤1,000 ng m⁻³ in industrial regions (Kabata-Pendias and Mukherjee, 2007).

Titanium dioxide nanoparticles (TiO₂NPs) are another form of Ti in the environment. TiO₂NPs are produced worldwide at an estimated 88,000 t per year (Keller et al., 2013) and are utilized widely in the cosmetic, food, painting, and plastic industries. Due to their photoprotective and photocatalytic roles, TiO₂NPs are also used for plant protection and environmental remediation. It is estimated that the concentrations of TiO₂NPs in soils could reach 0.13 µg kg⁻¹ yr⁻¹ in Europe, and TiO₂NPs in soils amended with sewage could be much higher up to 1,200 µg kg⁻¹ yr⁻¹ (Sun et al., 2014). With the increased exploration of nanomaterials for novel commercial applications, TiO₂NPs in soils could increase from 3 to more than 5,000 µg kg⁻¹ yr⁻¹ (Gogos et al., 2012; Kah et al., 2013).

TI IN HIGHER PLANTS

The earth contains 92 elements, of which 82 can be found in plants (Reimann et al., 2001). Ti contents in plants range from 1 to 578 mg kg⁻¹ with a mean of 33.4 mg kg⁻¹ across the listed species (Table 1) excluding two Ti accumulators: horsetail (Equisetum spp.) and beach morning glory [Ipomoea pes-caprae (L.) R. Br.]. There are several factors affecting plant absorption of Ti: (1) Plant species differ in Ti uptake. Ti concentrations vary from 20 mg kg⁻¹ in red cabbage (Brassica oleracea var. capitata f. rubra) to 1,900 mg kg⁻¹ in the wood of pedunculate oak (Quercus robur L.) (Duman and Ernst, 1988). Ti in horsetail ranged from 42 to 14,000 mg kg⁻¹ when grown in soils rich in lead and zinc (Cannon et al., 1968). (2) Plants respond to Ti addition regardless of soil application or hydroponic culture. Increased Ti application elevates Ti concentrations in crops, such as cabbage (Hara et al., 1976), common bean (Phaseolus vulgaris L.) (Ram et al., 1983), corn (Zea mays L.) (Pais, 1983), and pepper (Capsicum annuum L.) (Giménez et al., 1990). Plant roots accumulate more Ti with a small amount transported to shoots (Kelemen et al., 1993). (3) Soil pH significantly affects the absorption of Ti in plants. Acid sandy soil (pH 3.1) increased Ti solubility resulting in Ti concentrations in leaves of gray hair grass (Corynephorus canescens P. Beauv.) and Sheep’s sorrel (Rumex acetosella L.) up to 142 and 207 mg kg⁻¹, respectively; however, leaf Ti concentrations of the same species were only 2.4 and 4.8 mg kg⁻¹, respectively when grown in a soil with nearly identical total Ti concentrations but a pH at 4.9 (Ernst, 1985). Ti concentration in beach morning glory ranged from 310 to 480 mg kg⁻¹ when grown in the ilmenite soil with a pH range of 7.8–7.9, whereas Ti concentration was 910 to 1,300 mg kg⁻¹ in a pH range from 7.3 to 7.4 (Ramakrishna et al., 1989). (4) Foliar application is more effective for Ti absorption. Ti content in leaves and stems increased with Ti sprays but the increase was limited in soil application (Wojcik and Wojcik, 2001). Tapertip hawkbeard (Crepis acuminata Nutt.) is a dust-indicator plant, and seedlings of this species showed an 11-fold increase in Ti after being exposed to contaminated soil dusts (Cook et al., 2009). (5) Ti deficiency symptoms have not been described in plants. Ti supplied at low concentrations has been shown to positively affect plant growth (Figure 1) but causes phytotoxicity at high concentrations (Wallace et al., 1977).

TI IMPROVES PLANT PERFORMANCE

The biological role of Ti in plants has been studied for more than 100 years. Pellet and Fribourg (1905) were the first to study Ti in soils and sugar cane (Saccharum spp.) and sugar beets (Beta vulgaris L.). Traetta-Mosca (1913) observed that Ti enhanced the growth of tobacco (Nicotiana tabacum L.) leaves and believed that Ti was an inherent constituent of the ash from all plants. They proposed that Ti might participate in plant metabolism as a redox catalyst. Geilmann (1920) found that Ti mainly accumulated in assimilation organs. A systematic study of plant responses to different concentrations of Ti by Némec and Káš (1923) showed that optimal levels of Ti caused increased plant growth and development and increased the intensity of green color (higher chlorophyll content) of mustard (Brassica arvensis L.), pea (Pisum sativum L.), and alfalfa (Medicago sativa L.). Subsequently, a great deal of attention from the 1920s to early 1970s has been focused on the analysis of Ti contents in wild and cultivated plants (Duman and Ernst, 1988). Pais et al. (1977) synthesized a Ti compound called Ti-ascorbate with a trade name of Titavit. It was produced by chelating TiCl₄ with ascorbic acid in the presence of gaseous HCl. Ti-ascorbate is water soluble, stable up to pH 8, and also not toxic to animals. Since then, Ti-ascorbate has been widely used for Ti-related plant experiments (Pais, 1983; Carvajal and Alcaraz, 1998; Hrubý et al., 2002; Cigler et al., 2010). A commercial product called Tytitanit® containing 5% MgO, 10% SO₃, and 0.85% other titanium complex was developed and used in central and eastern European countries for improving crop production. Ti has also been used as a beneficial element in China for crop production (Li et al., 2011).

Effects of Ti Compounds

Chelated Ti compounds applied to soils or onto leaves have been shown to increase plant biomass or crop yield (Table 2). Foliar
TABLE 1 | Concentration of titanium in plants grown in soils where titanium was not applied via roots or leaves.

Species	Common name	Tissue	Mean concentrations (mg kg⁻¹ DW)	References
Acer rubrum L.	Red maple	Leaves	175	Guha and Mitchell, 1966
		Stem	90	
Acer pseudoplatanus L.	Sycamore	Leaves	53	Guha and Mitchell, 1966
		Inflorescence	19	
		Petiole	7	
Aesculus hippocastanum L.	Horse chestnut	Leaves	32	Guha and Mitchell, 1966
Alliaria concolor Schum.	Cordiera concolor	Leaves	15	Ceccantini et al., 1997
Allium cepa L.	Bulb onion	Bulb	41	Connor and Shacklette, 1975
Asparagus officinalis L.	Garden asparagus	Stem	180	Connor and Shacklette, 1975
Bauhinia rufa Steud.	Bauhnia	Leaves	5	Ceccantini et al., 1997
Beta vulgaris L.	Red beet	Beetroot	27	Markert and Haderlie, 1996
Betula pendula Roth (Betula alba)	Silver birch or Warty birth	Leaves	6	Markert and Haderlie, 1996
Blepharocalyx salicifolius Berg	Maria-Black color or Murtinha	Leaves	6	Ceccantini et al., 1997
Brassica oleracea L.	Headed cabbage	Leaves	120	Connor and Shacklette, 1975
Capsicum annum L.	Sweet pepper	Fruit	110	Markert and Haderlie, 1996
Corynecephorus canescens (L.) P. Beauv.	Gray hair-grass	Leaves	2	Markert and Haderlie, 1996
Citrus L.	Species name was not given	Leaves	17	Markert and Haderlie, 1996
Crepis acuminata Nutt.	Tapertip hawksbeard	Leaves	40	Cook et al., 2009
Cucumis sativus L.	Cucumber	Fruit	19	Connor and Shacklette, 1975
Dalbergia miscolobium Benth.	Rosewood	Leaves	7	Ceccantini et al., 1997
Daucus carota subsp. sativus	Carrot	Roots	28	Connor and Shacklette, 1975
Deschampsia flexuosa (L.) Trin.	Wavy hair-grass	Above ground part	2	Markert and Haderlie, 1996
Diandrostachia chrysothrix	Diandrostachia	Leaves	5	Ceccantini et al., 1997
Equisetum spp.	Horesetial	Above ground part	460	Cannon et al., 1968
Erythroxylon spp.	Coca plant	Leaves	1	Ceccantini et al., 1997
Fagopyrum tataricum L.	Beach	Leaves	15	Guha and Mitchell, 1966
Galium aparine L.	Cleavers or Goosegrass	Above ground part	6	Markert and Haderlie, 1996
Gochnia polystachya Cabrera	Candieia or Cambara	Leaves	27	Ceccantini et al., 1997
Hylocomium splendens	Moss	Leaves	53	Berg and Steinnes, 1997
Ipomoea pes-caprae (L.) R. Br.	Beach morning glory	Leaves	578	Ramakrishna et al., 1989
Lamanonia ternata Vell.	False pigu	Leaves	32	Ceccantini et al., 1997
Leandra aurea Cogn.	Leandra	Leaves	4	Ceccantini et al., 1997
Lolium L.	Ryegrass	Leaves	11	Markert and Haderlie, 1996
Molinia caerulea (L.) Moench	Purple moor-grass	Above ground part	3	Markert and Haderlie, 1996
Orychophragmus violaceus	Chinese violet cress	Leaves	43	Cao et al., 2014
		Inflorescence	15	
Phaseolus vulgaris L.	Snap bean	Green pods	72	Connor and Shacklette, 1975
Pinus L.	Pine	Needless	8	Markert and Haderlie, 1996
Pinus sylvestris	Scots pine	Needless	5	Markert and Haderlie, 1996
Polytrichum formosum Hedw.	Polytrichum moss	Above ground part	6	Markert and Haderlie, 1996
Prunus serotina Ehrh.	Black cherry	Leaves	155	Connor and Shacklette, 1975
		Stem	120	
Pteridium aquilinum (L.) Kuhn	Brake or Eagle fern	Leaves	20	Ceccantini et al., 1997
Qualea grandiflora Mart.	Brazilian savanna	Leaves	20	Ceccantini et al., 1997
Qualea robusta L.	Pedunculate oak	Wood	1,900	Dumon and Ernst, 1988
Rumex acetosa L.	Sheep’s sorrel or Red sorrel	Leaves	5	Markert and Haderlie, 1996
Sphagnum L.	Peat moss	Above ground part	10	Markert and Haderlie, 1996
Stryphnodendron adstringens Coville	Barbatimao	Leaves	12	Ceccantini et al., 1997
Vaccinium angustifolium Att.	Lowbush blueberry	Leaves	4	Sheppard and Evenden, 1990

(Continued)
TABLE 1 | Continued

Species	Common name	Tissue	Mean concentrations (mg kg\(^{-1}\) DW)\(^a\)	References
Vaccinium vitisidaea L.	Lingonberry or Cowberry	Leaves	5	Markert and Haderlie, 1996
Vaccinium angustifolium Ait.	Lowbush blueberry	Leaves	4	Sheppard and Evenden, 1990
Vaccinium vitisidaea L.	Lingonberry or Cowberry	Leaves	5	Markert and Haderlie, 1996

\(^a\) Dry weight (DW).

Figure 1 | A schematic illustration of Ti effects on crop performance.

- Enhance chlorophyll content and photosynthesis
- Stimulate enzyme activities
- Strengthen stress tolerance
- Improve fruit quality
- Increase biomass or crop yield
- Improve seed germination
- Promote nutrient uptake

Spray of water-soluble Ti at 1 mg L\(^{-1}\) led to a 20% increase of dry matter of common bean (Ram et al., 1983). Application of 0.04% Ti increased total yield of sandalwood (Sparaxis tricolor Ker. Gawl.) by 20% and commercial yield by 7% (Marcinek and Hetman, 2008). Kleiber and Markiewicz (2013) investigated Ti effects on tomato plants (*Solanum lycopersicum* L.) and reported that soil addition of 960 g Ti ha\(^{-1}\) for 1 year increased the yield of fruits, but had no significant effects on dry matter and sugars in fruits. Ti addition increased height of some annual bedding plants (Whitted-Haag et al., 2014). Different tissue dry weights of apple trees (*Malus pumila* Mill.) grown in the Brzenza region of Poland increased after Ti fertilization (Wojcik and Wojcik, 2001). Pais (1983) summarized Ti experiments conducted from 1974 to 1983 in Hungary and found that more than 90% of the described experiments showed yield increase ranging from 10 to 20% in different crops.

Plant biomass or crop yield increase has been attributed to Ti-enhanced chlorophyll biosynthesis and enzymatic activities and increased photosynthesis and nutrient uptake (Dumon and Ernst, 1988; Cigler et al., 2010). Ti application increased the concentration of chlorophyll a and b as well as total chlorophyll in common bean (Ram et al., 1983), wheat (*Triticum aestivum* L.) (Kovacik et al., 2014), and other plant species (Traetta-Mosca, 1913; Bottini, 1964; Pais et al., 1969, 1977). Ti enhanced photosynthetic oxygen evolution and generated a three-fold increase of fructose-1,6-biphosphatase in blue green algae (*Anacystis nidulans* Drouet and Daily) (Kiss et al., 1985).

Application of Ti can also improve crop quality. Spice red pepper (*Capsicum annuum* L.) treated with Ti-ascorbate showed a significant increase of Fe and Ti concentrations (Carvajal et al., 1995). Foliar spray of Ti increased vitamin C biosynthesis in fruits of peppers (Martinez-Sanchez et al., 1993). Ti application also increased vitamin C contents in six cultivars of strawberries (*Fragaria x ananassa* Duch.) and anthocyanin contents in three...
TABLE 2 | Effects of titanium compounds applied via roots or leaves on plant performance.

Plant species	Ti application	Beneficial effects	References
Anacystis nidulans Drouet and Daily (Blue-green algae)	Treated with 10^{-8} M Ti-ascorbate	Increased biomass production, enhanced photosynthetic oxygen evolution and fructose-1,6-bisphosphatease activity	Kiss et al., 1985
Antirrhinum majus L. (Snapdragon)	Foliar application of 0–100 mg L$^{-1}$ Ti-ascorbate	Increased plant height and leaf number	Whitted-Haag et al., 2014
Avena sativa L. (Oats)	Ti-ascorbate used in a hydroponic experiment with Ti in 0–18 mg L$^{-1}$	Increased tissue Fe and Mg contents, stimulated nitrate reductase activity, and enhanced chlorophyll a and b contents	Hrubý et al., 2002
Brassica oleracea L. (Cabbage)	Foliar spray of a chelated-Ti solution at 2 mg L$^{-1}$	Increased yield by an average of 15.7%	Pais, 1983
Capsicum annuum L. (Pepper)	Foliar spray of a 2 mg Ti L$^{-1}$ solution at 35 ml per plant	Increased biomass production	Lopez-Moreno et al., 1995
Capsicum annuum L.	Foliar application of 0.042 mM Ti-ascorbate	Enhanced the activity of Fe-dependent enzymes	Carvajal et al., 1994
Capsicum annuum L.	Foliar application of 2 mg L$^{-1}$ Ti-ascorbate	Increased fruit quality	Martinez-Sanchez et al., 1993
Capsicum annuum L.	Foliar application of 0.042 mM Ti-ascorbate	Improved N uptake	Frutos et al., 1996
Capsicum annuum L. (Paprika pepper)	Foliar spray of chelated-Ti solutions 3 and 6 mg L$^{-1}$ three times	Yield increased from 32 to 95.3%	Pais, 1983
Fragaria x ananassa Duchesne (Strawberry)	Foliar application of 0.02% Tytanit	Increased total anthocyanin content	Skupień and Oszmiański, 2007
Malus pumila Mill. (Apple)	Foliar application of 2 g Ti ha$^{-1}$	Improved plant growth vigor	Wojcik, 2002
Malus domestica L. (Jonathan-apple)	Foliar spray of a chelated-Ti solution at 3 mg L$^{-1}$ three times	Increased yield by 16.6%	Pais, 1983
Malus domestica L.	Foliar application of Ti-ascorbate	Increased crop yield	István et al., 1991
Malus pumila Mill.	Foliar spray of 0.5 mg Ti (TiCl$_4$) per plant	Increased biomass and the uptake of P, Fe, Mn, and Zn, and enhanced chlorophyll biosynthesis	Wojcik and Wojcik, 2001
Pelargonium x hortorum (Geranium)	Foliar application of 0–100 mg L$^{-1}$ Ti-ascorbate	Increased plant growth and quality	Whitted-Haag et al., 2014
Petroselinum crispum Fuss (Parsley)	Foliar spray of a chelated-Ti solution at 5 mg L$^{-1}$	Increased yield by 18.3%, and reduced P deficiency	Pais, 1983
Phaseolus vulgaris L. (Bean)	Foliar application of Ti (TiCl$_4$) at 0–1 mg L$^{-1}$	Increased chlorophyll contents and crop yield	Ram et al., 1983
Phleum pratense L. (Timothy grass)	Foliar application of 0.2–0.8 L of Tytanit per hectare	Increased seed yield, thousand grain weight, and seed germination	Radkowski et al., 2015
Pisum sativum L. (Green-pea)	Foliar application of Ti-ascorbate	Increased the uptake of essential elements and crop yield	István et al., 1991
Prunus domestica L. (Plum)	Foliar spray of 0.042 mM Ti-ascorbate at 5 L per tree	Improved plant growth and increased Ca, Fe, Cu, and Zn concentrations in peel and flesh	Alcaraz-Lopez et al., 2003
Prunus persica var. nectarine (Nectarine)	Foliar application of 0.042 mM Ti$^{4+}$	Extended the storability of fruits	Serrano et al., 2004
Prunus persica (L.) Batsch (Peach)	Foliar spray of a chelated-Ti solution at 1 mg L$^{-1}$	Increased yield by 22.1%	Pais, 1983
Prunus persica L.	Foliar application of 0.042 mM Ti$^{4+}$	Extended the storability of fruits	Serrano et al., 2004
Rábes uva-crispa L. (Gooseberry)	Foliar spray of a chelated-Ti solution at 1 mg L$^{-1}$	Increased yield by 19.8%	Pais, 1983
Rubus idaeus L. (Raspberry)	Foliar application of 0.04–0.1% Tytanit	Increased yield and fruits quality	Grajkowski and Ochmian, 2007
Solanum lycopersicum L. (Tomato)	Foliar spray of a chelated-Ti solution at 5 mg L$^{-1}$	Fruit weight increased from 11% to 25%	Pais, 1983
Solanum lycopersicum L.	Foliar spray of a chelated-Ti solution at 5 mg L$^{-1}$	Fruit weight increased from 11% to 25%	Pais, 1983
Solanum lycopersicum L.	Tytanit dissolved in nutrient solutions with Ti equivalent to 0–960 g Ti ha$^{-1}$ yr$^{-1}$	Increased yield, improved fruits quality including vitamin C content, and promoted macronutrient uptake	Kleiber and Markiewicz, 2013

(Continued)
TABLE 2 | Continued

Plant species	Ti application	Beneficial effects	References
Solanum lycopersicum L.	A hydroponic culture containing 1–2 mg L\(^{-1}\) Ti	Improved plant growth when N in nutrient solutions was low	Haghighi et al., 2012
Solanum lycopersicum L.	Treatment of plants with Ti concentrations from 0 to 80 \(\times\) 10\(^{-5}\)M	Increased the activity of lipoygenase	Daood et al., 1988
Solanum lycopersicum L.	Tytanit dissolved in nutrient solutions with Ti equivalent to 0–960 g Ti ha\(^{-1}\) yr\(^{-1}\)	Increased Fe, Mn, and Zn uptake and lycopene content.	Markiewicz and Kleiber, 2014
Solanum tuberosum L. (Potato)	Foliar spray of a 2 mg L\(^{-1}\) chelated Ti solution	Increased yield by 10.2%	Ram et al., 1983
Sparaxis tricolor Ker Gawl. (Wandflower)	Foliar application of 0.02–0.08% Tytania	Increased yield and essential element uptake	Marcinek and Hetman, 2008
Triticum aestivum L. (Wheat)	Foliar application of Ti-ascorbate	Increased yield and essential element uptake	István et al., 1991
Triticum aestivum L.	Ti-ascorbate (5 mg L\(^{-1}\)) in hydroponic solutions	Reduced heavy metal damage	Leskö et al., 2002
Triticum aestivum L.	Foliar application of Mg–Titanit	Increased chlorophyll content and crop yield	Kovačić et al., 2014

Effects of TiO\(_2\)NPs

There has been an increasing amount of attention in the literature regarding effects of TiO\(_2\)NPs on plant performance (Tables 3, 4). TiO\(_2\)NPs have been studied for influence on seed germination. Seeds treated with TiO\(_2\)NPs suspensions exhibited increased germination rates, enhanced root lengths or improved seedling growth of *Arabidopsis thaliana* (L.) Heynh. (Szymanska et al., 2016), cabbage (Andersen et al., 2016), oilseed rape or canola (*Brassica napus* L.) (Mahmoodzadeh et al., 2013), corn (Andersen et al., 2016), cucumber (*Cucumis sativus* L.) (Servin et al., 2012), fennel (*Foeniculum vulgare* Mill.) (Feizi et al., 2013), lettuce (*Lactuca sativa* L.) (Andersen et al., 2016), oat (*Avena sativa* L.) (Andersen et al., 2016), onion (*Allium cepa* L.) (Haghighi and Teixeira da Silva, 2014), parsley (*Petroselinum crispum* Mill.) (Dehkordi and Mosavi, 2013), red clover (*Trifolium pretense* L.) (Gogos et al., 2016), soybean (*Glycine max* Merr.) (Rezaei et al., 2015), spinach (*Spinacia oleracea* L.) (Zheng et al., 2005), tomato (Haghighi and Teixeira da Silva, 2014), and wheat (Feizi et al., 2012; Mahmoodzadeh and Aghili, 2014; Gogos et al., 2016). Application of TiO\(_2\)NPs increased plant tolerance to abiotic and biotic stresses, including cold stress in chickpea (*Cicer arietinum* L.) (Mohammadi et al., 2013, 2014), heat stress in tomato (Qi et al., 2013), drought in wheat (Jaberdzadeh et al., 2013) and flax (*Linum usitatissimum* L.) (Aghdam et al., 2016), cadmium toxicity in green algae (*Chlamydomonas reinhardtii* P.A. Dang) and soybean (Yang et al., 2012; Singh and Lee, 2016), and bacterial spot disease caused by *Xanthomonas perforans* in tomato (Paret et al., 2013). Foliar spray of TiO\(_2\)NPs increased chlorophyll content in tomato (Raliya et al., 2015a) and oilseed rape (Li et al., 2015), enhanced the activity of Rubisco (*Ribulose-1,5-bisphosphate carboxylase/oxygenase*), and promoted net photosynthesis in *Arabidopsis* (Ze et al., 2011), spinach (Hong et al., 2005a,b; Lei et al., 2007, 2008), tomato (Qi et al., 2013), and basil (*Ocimum basilicum* L.) (Kiapour et al., 2015). TiO\(_2\)NPs treatments significantly increased crop yield or biomass of barley (Moaveni et al., 2011), corn (Moaveni and Kheiri, 2011; Morteza et al., 2013), mung bean (*Vigna radiate* L.), snail clover (*Medicago scutellata* Mil.), tomato (Raliya et al., 2015a,b), and wheat (Rafique et al., 2015).

Application of TiO\(_2\)NPs may not produce positive results. As presented in Table 4, some effects were neutral or negative. Less positive results could be attributed to several factors including differences in plant species, physiological status of plants at the time being evaluated, seed quality, TiO\(_2\)NPs sizes and their uniformity, and experimental objectives and methods. For example, some experiments used TiO\(_2\)NPs at concentrations up to 5,000 \(\mu\)g mL\(^{-1}\); such high concentrations may not occur naturally in the environment, and results from the studies may not provide complete information about the roles of TiO\(_2\)NPs in plants. However, attention does need to be given to the fate and consequence of applied TiO\(_2\)NPs within the environment and food chain (Cox et al., 2016; Tripathi et al., 2017); more thorough research in this regard should be pursued.

Ti as a Beneficial Element to Crop Production

Results from the literature in general suggest that Ti has positive effects on plant growth and crop quality. Ti, however, is not an essential element for plant nutrition based on the criteria for essentiality (Arnon and Stout, 1939). Plants can complete their life cycle without Ti; there is no reported Ti deficiency in plants;
TABLE 3 | Beneficial effects of titanium dioxide nanoparticles (TiO$_2$NPs) on seed germination and plant growth.

Plant species	Application method	Beneficial effects	References
Allium cepa L. (Onion)	Seeds treated with nanoparticle solutions (0, 100, 200, and 400 mg L$^{-1}$)	Promoted seed germination	Haghighi and Teixeira da Silva, 2014
Allium cepa L.	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Increased seedling root growth	Andersen et al., 2016
Alyssum honocarpum Fisch. Et Mey.	Seeds soaked with nanoparticle solutions (0, 10, 20, 40, and 80 mg L$^{-1}$)	Enhanced seed germination	Hatami et al., 2014
Arabidopsis thaliana (L.) Heynh.	Seeds were immersed in 100, 250, 500, and 1,000 mg L$^{-1}$ nanoparticle solutions	Enhanced root growth	Szymanska et al., 2016
Avena sativa L. (Oats)	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seed germination and seedling root growth	Andersen et al., 2016
Brassica napus L. (Canola)	Seeds treated with nanoparticle solutions (0, 10, 100, 1,000, 1,200, 1,500, 1,700, and 2,000 mg L$^{-1}$)	Promoted seed germination and seedling growth	Mahmoodzadeh et al., 2013
Brassica oleracea L. (Cabbage)	Seeds soaked with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seed germination and root growth	Andersen et al., 2016
Chlamydomonas reinhardii P.A. Dang	Alga treated with nanoparticle solutions (0, 1, 3, 10, 30, and 100 mg L$^{-1}$)	Reduced Cd toxicity	Yang et al., 2012
Cicer arietinum L. (Chickpea)	Foliar spray of nanoparticle (0, 2, 5, and 10 mg L$^{-1}$)	Increased cold tolerance	Mohammadi et al., 2013
Cicer arietinum L.	Foliar spray of nanoparticle (0, 2, 5, and 10 mg L$^{-1}$)	Increased cold tolerance	Mohammadi et al., 2014
Cucumis sativus L. (Cucumber)	Seeds treated with nanoparticle solutions (0–4,000 mg L$^{-1}$)	Increased root length	Senv et al., 2012
Cucumis sativus L.	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seed germination and seedling root growth	Andersen et al., 2016
Foeniculum vulgare Mill. (Fennel)	Seeds treated with nanoparticle solutions (0, 5, 20, 40, 60, and 80 mg L$^{-1}$)	Enhanced seed germination and seedling growth	Feizi et al., 2013
Glycine max Merr. (Soybean)	Foliar spray of nanoparticle (0, 0.01, 0.03, and 0.05%)	Increased crop seed yield and oil content	Rezaei et al., 2015
Glycine max Merr.	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seed germination	Andersen et al., 2016
Glycine max Merr.	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seed germination	Andersen et al., 2016
Glycine max Merr.	Seeds treated with nanoparticle solutions (0–300 mg kg$^{-1}$)	Increased Cd uptake and minimized Cd stress	Singh and Lee, 2016
Hordeum vulgare L. (Barley)	Nanoparticle added to MS medium (0, 10, 30, and 60 mg L$^{-1}$)	Increased calllogenesis and the size of calli.	Mandeh et al., 2012
Hordeum Vulgare L.	Foliar spray of nanoparticle (0, 0.01, 0.02, and 0.03%)	Increased crop yield	Moaveni et al., 2011
Lactuca sativa L. (Lettuce)	Nanoparticle solutions (0, 25, 50, 75, and 100 mg kg$^{-1}$) applied to a sandy loam soil	Increased P uptake and plant growth	Hanif et al., 2015
Lactuca sativa L.	Seeds treated with nanoparticle solution (0, 250, 500, and 1,000 µg mL$^{-1}$)	Promoted seedling root growth	Andersen et al., 2016
Linum usitatissimum L. (Flax)	Foliar spray of nanoparticle solutions (0, 10, 100, and 500 mg L$^{-1}$)	Increased drought tolerance	Aghdam et al., 2016
Medicago Scutellata L. (Snail medic)	Foliar spray of nanoparticle (0, 0.01, 0.02, 0.03, 0.04, and 0.06% g L$^{-1}$)	Increased crop yield	Dolatabadi et al., 2015
Mentha x piperita L. (Peppermint)	Seeds treated with nanoparticle solutions (0, 100, 200, and 300 mg L$^{-1}$)	Increased root length	Samadi et al., 2014
Nigella sativa L. (Black cumin)	Seeds soaked with nanoparticle solution (0, 10, 20, 40, and 80 mg L$^{-1}$)	Promoted seed germination	Hatami et al., 2014
Ocimum basilicum L. (Basil)	Foliar spray of nanoparticle solution (0, 0.01, and 0.03%)	Increased tolerance of drought stress	Kiapour et al., 2015
Petroselinum crispum (Mill.) Fuss (Parsley)	Nanoparticle added to MS medium (10, 20, 30, and 40 mg mL$^{-1}$)	Promoted seed germination and seedling growth	Dehkoudi and Mosavi, 2013
Raphanus sativus L. (Radish)	Seeds treated with nanoparticle solutions (0, 100, 200, and 400 mg L$^{-1}$)	Promoted seed germination	Haghighi and Teixeira da Silva, 2014

(Continued)
and mechanisms of Ti action are still uncertain. As a result, Ti is considered a beneficial element proposed by Pais (1992) because it improves plant health status at low concentrations but has toxic effects at high concentrations. As far as is known, critical tissue concentrations for Ti that are considered to be appropriate for enhancing plant growth or potentially toxic to plants have not been well determined (Huang et al., 1993; Kuzel et al., 2007). Ceccantini et al. (1997) and Tlustoš

Plant species	Application method	Beneficial effects	References
Salvia mirzayanii (Salvia)	Seeds soaked with nanoparticle solutions (0, 10, 20, 40, and 80 mg L⁻¹)	Increased seed germination	Hatami et al., 2014
Sinapis alba (White mustard)	Seeds soaked with nanoparticle solutions (0, 10, 20, 40, and 80 mg L⁻¹)	Enhanced seed germination	Hatami et al., 2014
Solanum lycopersicum (Tomato)	Soil or foliar application of nanoparticle solutions (0–1,000 mg kg⁻¹)	Improved plant growth	Raliya et al., 2015b
Solanum lycopersicum L.	Nanoscale TiO₂ doped applied with zinc (500–800 mg kg⁻¹)	Reduced disease	Paret et al., 2013
Solanum lycopersicum L.	Foliar spray of nanoparticle solutions (0, 0.05, 0.1, and 0.2 g L⁻¹)	Improved photosynthesis under mild heat stress	Qi et al., 2013
Solanum lycopersicum L.	Seeds treated with nanoparticle solutions (0, 100, 200, and 400 mg L⁻¹)	Promoted seed germination	Haghighi and Teixeira da Silva, 2014
Spínacia oleracea (Spinach)	Seeds soaked with a 0.25% nanoparticle solution, plants sprayed with a 0.25% nanoparticle solution	Enhanced the expression of Rubisco mRNA and activity of Rubisco	Xuming et al., 2008
Spínacia oleracea L.	Seeds soaked with a 0.25% nanoparticle solution, and plants sprayed with the same solution	Enhanced photosynthesis and improved plant growth	Le et al., 2007
Spínacia oleracea L.	Seeds soaked with a 0.25% nanoparticle solution, and plants sprayed with the same solution	Decreased oxidative stress to chloroplast caused by UV-B radiation	Le et al., 2008
Spínacia oleracea L.	Seeds soaked with a 0.03% nanoparticle solution, and plants sprayed with the same solution	Increased activity of Rubisco activase	Gao et al., 2008
Spínacia oleracea L.	Seeds soaked with a 0.25% nanoparticle solution	Promoted seed germination and seedling growth	Zheng et al., 2005
Spínacia oleracea L.	Seeds soaked with a 0.25% nanoparticle solution, and plants sprayed with the same solution	Ti bound to the PS α reaction center complex and intensify the function of the PS α electron donor	Hong et al., 2005a
Spínacia oleracea L.	Seeds soaked with 0–0.6% nanoparticle solutions	Enhanced photosynthesis	Hong et al., 2005b
Triticum aestivum L. (Wheat)	Seeds soaked with nanoparticle solutions (0, 1, 2, 10, 100, and 500 mg L⁻¹)	Promoted seed germination and seedling growth	Feizi et al., 2012
Triticum aestivum L.	Foliar spray of nanoparticle solutions (0.01, 0.02, and 0.03%)	Increased crop yield under drought stress	Jaberzadeh et al., 2013
Triticum aestivum L.	Seeds soaked with 0–1,200 mg L⁻¹ nanoparticle solutions	Promoted seed germination	Mahmoodzadeh and Aghili, 2014
Triticum aestivum L.	Soil application of nanoparticle (0, 20, 40, 60, 80, 100 mg kg⁻¹)	Improved plant growth	Rafique et al., 2015
Triticum aestivum L.	Seeds treated with nanoparticle solutions (0–1,000 mg L⁻¹)	Promoted seedling growth	Gogos et al., 2016
Trifolium pratense L. (Red clover)	Seeds treated with nanoparticle solutions (0–1,000 mg L⁻¹)	Promoted seedling growth	Gogos et al., 2016
Vigna radiata L. (Mung bean)	Foliar spray of a nanoparticle at 10 mg L⁻¹	Improved crop growth	Raliya et al., 2015a
Zea mays L. (Maize)	Foliar spray of nanoparticle solutions (0, 0.01, and 0.03%)	Increased crop yield	Morteza et al., 2013
Zea mays L.	Foliar spray of nanoparticle solutions (0, 0.01, 0.02, and 0.03%)	Increased crop yield	Moaveni and Kheiri, 2011
Zea mays L.	Seeds treated with nanoparticle solutions (0, 250, 500, and 1,000 µg mL⁻¹)	Promoted root growth of germinated seedling	Andersen et al., 2016
et al. (2005) stated that Ti content in plants usually varies from 0.1 to 12.0 mg kg\(^{-1}\) of dry matter. The growth of bush bean plants was not significantly different when leaf Ti contents varied from 1.2 to 11.7 mg kg\(^{-1}\) (Wallace et al., 1977). Table grape (Vitis vinifera L.) plants were healthy with a mean Ti content of 17.8 mg kg\(^{-1}\) in leaves (Alcaraz-Lopez et al., 2005). Oilseed

Plant species	Ti nanoparticle application	Effects	References
Allium cepa L. (Onion)	Roots treated with nanoparticle solution (0, 2, 4, 6, 8, and 10 mM)	Caused DNA damages	Ghosh et al., 2010
Arabidopsis thaliana (L.) Heynh. (Mouseear cress)	Seedlings grown in medium containing nanoparticles	Caused the reorganization and elimination of microtubules	Wang et al., 2011
Arabidopsis thaliana	Roots immersed in a 100 mg L\(^{-1}\) nanoparticle solution	No significant effects on seed germination and root elongation	Larue et al., 2011
Brassica campestris L. (Field mustard)	Seeds soaked with nanoparticle solutions (0, 100, 500, 1,000, 2,500, and 5,000 mg L\(^{-1}\))	No effect on seed germination	Song et al., 2013b
Brassica napus L. (Oilseed rape)	Roots immersed in a 100 mg L\(^{-1}\) nanoparticle solution	No significant effects on seed germination and root growth	Larue et al., 2011
Daucus carota subsp. Sativus (Carrot)	Seeds soaked with nanoparticle solutions (0, 250, 500, and 1,000 μg L\(^{-1}\))	No effects on seed germination	Andersen et al., 2016
Glycine max L. (Soybean)	Plants grown in a soil mixed with nanoparticle at 0, 100 or 200 mg kg\(^{-1}\)	Decreased plant growth	Burke et al., 2015
Hordeum vulgare L. (Barley)	Caryopses exposed to nanoparticle solutions (0, 500, 1,000, and 2,000 mg L\(^{-1}\))	No significant effects on seed germination and root elongation	Mattiello et al., 2015
Hordeum vulgare L.	Nanoparticles applied in a hydroponic culture (0, 100, 200, 400, 600, and 1,000 mg L\(^{-1}\))	No significant effects on plant growth	Kolenkova et al., 2017
Lactuca sativa L. (Lettuce)	Seeds soaked with nanoparticle solutions (0, 100, 500, 1,000, 2,500, and 5,000 mg L\(^{-1}\))	No effect on seed germination	Song et al., 2013b
Lemma minor L. (Common duckweed)	Plant growth media treated with nanoparticle (0, 10, 50, 100, 200, 1,000, and 2,000 mg L\(^{-1}\))	Inhibited plant growth	Song et al., 2012
Lemma paucicostata Hegelm. (Duckweed)	Nanoparticles applied to plant growth media (31, 50, and 100 mg L\(^{-1}\))	Caused growth inhibition	Kim et al., 2011
Linum usitatissimum L. (Flax)	Seeds treated with nanoparticle solutions (0.01–100 mg L\(^{-1}\))	High concentration inhibited seed germination, root lengths, and seedling growth	Clement et al., 2013
Nicotiana tabacum L. (Tobacco)	Roots treated with nanoparticle solutions (0, 2, 4, 6, 8, and 10 mM)	Caused DNA damages	Ghosh et al., 2010
Nicotiana tabacum L.	Seeds treated with nanoparticle solutions (0.1, 1.2, 2.5, and 5 %)	Decreased germination rate, root length, and seedling growth	Frazier et al., 2014
Oryza sativa L. (Rice)	Seeds soaked with nanoparticle solutions (100, 500, and 1,000 mg L\(^{-1}\))	No significant effects on seed germination	Boonyantipong et al., 2011
Solanum esculentum L. (Tomato)	Seeds soaked with nanoparticle solutions (0, 50, 100, 1,000, 2,500, and 5,000 mg L\(^{-1}\))	Reduced seed germination and seedling growth	Song et al., 2013a
Trifolium pratense var. Merula (Red clover)	Nanoparticles applied in a hydroponic solution	Decreased plant growth	Moll et al., 2016
Triticum aestivum L. (Wheat)	Plants grown in a soil mixed with nanoparticle (10 g nanoparticle mixed with 110 kg soil)	Reduced plant growth	Du et al., 2011
Triticum aestivum L.	Nanoparticles applied into sand medium at 100 mg L\(^{-1}\)	No significant effects on plant growth	Larue et al., 2011
Triticum aestivum L.	Seedlings treated with a nanoparticle solution at 100 mg L\(^{-1}\)	Not significantly	Larue et al., 2012a
Ulmus elongate L.K. Fuś C.S. Ding (Long raceme elm)	Foliar application of 0.1, 0.2, and 0.4% nanoparticle solutions	Reduced photosynthetic rate	Gao et al., 2013
Vicia narbonensis L. (Narbon vetch)	Seeds treated with nanoparticle solutions (0.02, 0.1, 0.2, and 0.4 %)	Reduced seed germination, root lengths, and seedling biomass	Ruffini Castiglione et al., 2010
Zea mays L. (Maize)	Roots immersed in nanoparticle solutions at 0.3 or 1.0 g L\(^{-1}\)	Interfered with water transport	Asli and Neumann, 2009
Zea mays L.	Seeds treated with nanoparticle solutions (0.02, 0.1, 0.2, and 0.4 %)	Reduced seed germination, root lengths, and seedling biomass	Ruffini Castiglione et al., 2010
Several explanations have been proposed concerning the actions of Ti as a beneficial element to plants, including (1) participation in N fixation in the nodules of legumes (Konishi and Tsuge, 1936); (2) influence on plant metabolism by increasing absorption of other nutrient elements, such as Fe and Mg (Dumon and Ernst, 1988; Simon et al., 1988); (3) involvement in redox system reactions (Ti$^{4+}$/Ti$^{3+}$ with Fe$^{3+}$/Fe$^{2+}$) thus improving the Fe activity in plant tissues (Carvajal et al., 1995) or interaction with Fe in electron transport chain and decrease of the photosystem II efficiency at a high Ti concentration (Cigler et al., 2010); (4) stimulation of enzymatic activities and photosynthesis (Carvajal and Alcaraz, 1998); and (5) hormesis (Hrubý et al., 2002; Kuzel et al., 2003). Among these claims, Ti participation in N fixation has not been documented thereafter the initial report (Konishi and Tsuge, 1936); as a result, this claim may not be valid. Hormesis is a term used by toxicologists to refer to a biphasic dose response to an environmental agent characterized by low dose stimulation or beneficial effects and a high dose inhibitory or toxic effect (Mattson, 2008). It is a biological phenomenon for almost any chemical element or drug in living things, and it cannot be considered a specific mechanism for Ti actions in plants. The other explanations are mainly focused on the physiological roles of Ti in plants and have not explored any cellular or molecular mechanisms underpinning its actions.

A common characteristic of beneficial elements is their ability to positively interact with one or more essential elements, primarily by partial substitution of essential elements: such as sodium (Na) with potassium (K), selenium (Se) with sulfur (S), cobalt (Co) with nickel (Ni), and silicon (Si) with boron (B), manganese (Mn), and phosphorus (P). Such interactions could be synergistic at a concentration range but may become antagonistic when the concentration is too high. For example, when K supply becomes limited in soils, Na can partially substitute for K in osmoregulation (Marschner, 2011). Both elements are alkali metals in the Group 1 column of the Periodic Table and have similar physical and chemical properties. Like K, Na can enter plant cells through K channels (Demidchik et al., 2002). Se and S are both Group VIA elements in the Periodic Table and share similar chemical properties. Se is absorbed by plants in the form of selenate through sulfate transporters (Cabannes et al., 2011). S uptake is enhanced by rhizosphere selenate; however, Se toxicity occurs if Se and S compete for a biochemical process (White et al., 2004). Co and Ni are both transition metals and are generally found together in nature. Co is synergistically related to Ni, and reports showed that toxic Co levels of 10–20 mg kg$^{-1}$ dry mater were associated with excess Ni (Anderson et al., 1973). This is because Co and Ni share the same plasma membrane carriers (Pilon-Smits et al., 2009).

We here propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements, primarily Fe. This proposal is not new and has been postulated by Simon et al. (1988), Carvajal and Alcaraz (1998), and Cigler et al. (2010). More specifically, we hypothesize that Ti and Fe have synergistic and antagonistic relationships. When plants encounter Fe deficiency, Ti could induce the expression of genes related to Fe acquisition, enhancing Fe uptake and utilization and subsequently improving plant growth. Plants could have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, it may compete with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As such, the beneficial effects of Ti could be particularly visible or measurable during the time when plants are near to or are experiencing Fe deficiency. This hypothesis relies on the beneficial effects of Ti that have been reviewed above and will be elaborated further in subsequent sections of this review.

Ti and Fe have similar physical and chemical properties. Both Ti and Fe are transition metals. The ionic radius and Pauling electronegativity of Ti are 0.7 Å and 1.54; the same parameters for Fe are 0.9 to 0.7 Å and 1.83. Ti and Fe occur together in nature. During magmatic processes, Ti follows Fe in magmatic crystallization. Ti$^{4+}$ is predominantly partitioned into Fe-Ti or Fe oxides, such as ilmenite (FeTiO$_3$) and magnetite (Fe$_3$O$_4$), or into one or more of the TiO$_2$ phases, rutile (TiO$_2$), and anatase (TiO$_2$). The Ti-Fe-oxides and their relationships have been illustrated by triangular FeO-TiO$_2$-Fe$_2$O$_3$ diagrams (Bowles et al., 2011). Ilmenite (FeTiO$_3$) is the most widespread form of TiO$_2$-bearing mineral around the world, and it provides 90% of the total world Ti. Ti has been shown to be mobile in rocks under weathering conditions and also in soils (Cornu et al., 1999). It could be possible that adaptation of plants to soils containing heavy mineral sands (derived from the weathering of ilmenite) might enable roots to absorb both Fe and Ti. Due to the abundance of Fe in soil relative to Ti and its biological functionality, more Fe is absorbed by and translocated in plants. As a result, Fe has been fulfilling much more important roles in plants. Fe is thus considered an essential element to plants, while Ti plays a complementary role, i.e., it is often found along with Fe and plays both synergistic and antagonistic roles depending on Fe concentrations in plant cells.

Ti UPTAKE BY PLANTS

Plant uptake of ions through roots or leaves involves both passive absorption and active transport. Passive absorption
is facilitated by concentration gradients of an ion, while active transport is driven by the electrochemical gradient generated by H\(^+\)-ATPase to allow selective ions to move across the plasma membrane through specific carriers or transporters.

Root Uptake

There has been no report about how Ti in bulk form is absorbed by roots. Plant uptake of Fe, however, has been well studied. Plant roots use two strategies for acquisition of Fe from soils: the reduction-based strategy I in non-graminaceous plants and the chelation-based strategy II in graminaceous plants (Takagi, 1976; Römheld and Marschner, 1986). In non-graminaceous plants, Fe deficiency induces the activity of ferric reduction oxidase 2 (FRO2), which results in the reduction of Fe\(^{3+}\) to Fe\(^{2+}\), and Fe\(^{2+}\) is then transported inside the root cells by an iron-regulated transporter (IRT1) located at the plasmalemma of root epidermal cells. The IRT1/FRO2 system is subjected to complex transcriptional and post-transcriptional regulations, involving Fe itself as a local inducer, and also uncharacterized systemic signals (Kobayashi and Nishizawa, 2012). In graminaceous plants, such as maize, Fe deficiency induces root secretion of deoxymugineic acid (DMA), which is synthesized from nicotianamine, a secondary amino-acid derived from methionine. DMA has a strong affinity for Fe\(^{3+}\), and the Fe\(^{3+}\)-DMA chelate is transported inside the root cells by a specific transporter YS1 (yellow stripe 1). As we proposed above, the roles Ti plays in plants lie in its interaction with Fe. We hypothesize that root uptake of Ti could occur as follows: In roots of non-graminaceous plants, the applied Ti (Ti-ascorbate) could be reduced by FRO or not be reduced and could enter plant cells through the IRT1. In roots of graminaceous plants, since Ti is often applied as Ti-ascorbate, it may not be chelated with phytosiderophore, and Ti-ascorbate could directly enter cells via YS1.

Root uptake of TiO\(_2\) NPs appears to be size selective (Tripathi et al., 2017). Larue et al. (2012a,b) proposed that threshold diameters for movement of TiO\(_2\) NPs through root epidermis of wheat plants should be smaller than 140 nm; thresholds for transferring through parenchyma are 36 nm or less; and for passing through the Casparian band (CB), particle diameters should be strictly smaller than 36 nm. The authors further observed that TiO\(_2\) NPs smaller than 36 nm could be transported to the stelae in two ways: direct penetration of CB, this was based on the transmission electron microscopy observation that 14 nm TiO\(_2\) NPs were inside thick CB walls of wheat roots, implying the TiO\(_2\) NPs had crossed the CB. The other pathway is through plasmodesmata (Larue et al., 2012a,b). Additionally, TiO\(_2\) NPs may enter plant cells through endocytosis as NPs have been shown to activate membrane receptors and induce endocytosis (Iversen et al., 2011). So far, there are no reports regarding active transport of TiO\(_2\) NPs through either carriers or transporters as mentioned for bulk materials. Root absorption of an ultrasmall TiO\(_2\) NP (<5 nm) was reported to be complexed with Alizarin red S nanoconjugate in Arabidopsis (Kurepa et al., 2010). Whether or not such a complex was absorbed through transporters or carriers is unclear.

Leaf Absorption

Ti in both bulk and nanoparticles has been applied as liquid form to above-ground plant parts, commonly known as foliar spray or foliar application (Tables 2–4). Leaf absorption initially is a nonselective and passive process driven by concentration gradients between the outside and inside of the leaf surface (Eichert and Fernandez, 2012; Fallahi and Eichert, 2013). Since foliar applied Ti is chelated with either ascorbate or citrate, it could be likely that Ti may enter the leaf apoplast through the same routes as Fe, i.e., stomata, cuticular cracks (cracks on the cuticular surface), ectodesmata, lenticels or aqueous pores (Pandey et al., 2013). After arriving in the apoplast, Ti could be transported to symplast through the active process. The mechanism by which Ti crosses cell membranes is unknown; we assume that it could be similar to root absorption of Ti through Fe transporters.

Leaf absorption of TiO\(_2\) NPs to apoplast could be via the same paths as the bulk materials. Due to the size effects, however, small-diameter TiO\(_2\) NPs may gain access to symplast through direct penetration. In an experiment with TiO\(_2\) NPs, Fe\(_2\)O\(_3\) NPs, and MgONPs, Wang et al. (2013) found that NPs entered leaf symplast of watermelon (Citrullus lanatus Matsum. & Nakai) via stomata. Raliya et al. (2015a,b) studied effects of TiO\(_2\) NPs and ZnO\(_2\) NPs on tomato plants and reported that foliar-applied TiO\(_2\) NPs and ZnO\(_2\) NPs may enter leaf cells through stomata, cuticle wounds, and direct penetration.

Seed Absorption

TiO\(_2\) NPs have been used for seed treatment. Seeds soaked in TiO\(_2\) NPs solutions exhibited higher germination rates, increased root elongation, and improved seedling growth (Table 3). It is generally agreed that nanoparticles are able to penetrate the seed coat, resulting in increased water/nutrient absorption and improved seed germination (Hatami et al., 2014; Zhang et al., 2015; Cox et al., 2016). However, negative effects, mainly phytotoxicities, have been reported (Table 4). The negative effects could be due in part to the penetration-resultant injury. TiO\(_2\) NPs randomly penetrate seeds. If the penetration damaged cell membranes or embryos, seed germination and subsequent growth could be adversely affected. It is worth mentioning that physiochemical properties of TiO\(_2\) NPs rely on the NP size, morphology, and surface area (Dietz and Herth, 2011); these properties along with TiO\(_2\) NPs concentrations are critically important for evaluation of biological materials. Some of the reported evaluations used TiO\(_2\) NPs with variable particle sizes, and others used concentrations much higher than those commonly encountered in the environment or normally used for evaluating other nutrient elements. These may contribute to the negative effects of TiO\(_2\) NPs on seed germination.

Ti TRANSLOCATION IN PLANTS

Ti absorbed via roots or leaves is translocated to the other organs. Like most transition elements, root-absorbed Ti is largely accumulated in the roots with a small amount...
transported to shoots through xylem stream (Kelemen et al., 1993). Ti absorbed by leaves is translocated via phloem flow.

Ti Distribution in Plants

Nautsch-Laufer (1974) was first to report the cellular distribution of Ti in plants. When corn plants were grown in a nutrient solution containing 144 mg L\(^{-1}\) Ti, 65% of cellular Ti was found in the cell wall, 27.7% in leaf cell vacuoles, and 5.1% in root cell vacuoles. Later, Kelemen et al. (1993) studied the distribution and intracellular location of Ti in wheat plants. Foliar-applied Ti was found to be unidirectionally translocated from shoots to roots, and the majority of Ti in treated cells was in a diffusible form except for those bound firmly with nuclei. Since then, there has been no report concerning the cellular distribution of bulk Ti compounds in plants.

Recently, several studies documented the distribution of TiO\(_2\) NPs in plants. Larue et al. (2012a,b) reported that root-absorbed TiO\(_2\) NPs with a diameter of 14 nm were translocated to entire wheat plants without modification of crystal phase. Aerosolized TiO\(_2\) NPs with particle diameter less than 100 nm could enter leaf cells through stomata and then be distributed to stem and roots of watermelon (Wang et al., 2013). The contents of TiO\(_2\) in leaves, shoots, and roots of watermelon were 61.25, 33.3, and 5.45%, respectively. When TiO\(_2\) NPs consisting of 82% anatase and 18% rutile were used for hydroponic production of cucumber, root-absorbed TiO\(_2\) NPs were translocated to shoots (Servin et al., 2012, 2013). Ti was found in dermal cells, mesophyll, vascular systems, and trichomes of leaves as well as cucumber fruit. Ti in rutile phase was observed mainly in aerial tissues, but anatase remained in root tissues due to the size difference. Ralija et al. (2015a,b) reported that foliar applied TiO\(_2\) NPs were transported in a bidirectional manner, and the concentration of Ti in tomato plant tissues was in an order of stem > roots > leaves > fruits.

The distribution of Ti has been documented, but how it is translocated in plants is unclear. Fe is translocated from roots to leaves by chelating with citrate through xylem vessels. Small organic molecules and various transporters, such as NRAMPs (natural resistance-associated macrophage protein) and VIT1 (vacuolar iron transporter 1), are then responsible for Fe distribution among various organs and among various subcellular compartments (Kobayashi and Nishizawa, 2012). We assume that root-absorbed Ti-ascorbate could be directly transported to leaves through xylem vessels and the transporters that facilitate Fe distribution might also be able to translocate Ti to different organs and various subcellular locations.

Ti Binding Proteins

The most stable oxidation state of Ti in an aqueous oxygenated environment is Ti\(^{4+}\), which shares the ionic radius of Fe\(^{3+}\). Ti and Fe also share a thermodynamic preference for similar binding sites, though Ti\(^{4+}\) is more strongly Lewis acidic (Zierden and Valentine, 2016). In animal cells, Ti\(^{4+}\) has been shown to bind tightly to universal iron-carrier proteins (transferrins) which carried them into the tumor cell (Guo et al., 2000). Typical animal transferrins are about 80-kDa soluble proteins involved in binding, mobilizing, and delivering Fe. Tinoco and Valentine (2005) also found that in vitro Ti\(^{4+}\) binds more tightly than Fe\(^{3+}\) to human transferrins. A novel transferrin-like protein was identified in unicellular green alga (*Dunalieilla salina* Teodor) (Fisher et al., 1997, 1998). However, such types of proteins have not yet been identified in higher plants.

The roles Ti exhibits in plants are similar to those of rare earth elements (REEs). REEs have been widely used in agriculture as plant growth stimulants (Hu et al., 2004; Tyler, 2004). Research on the roles of REEs identified a REE-binding protein in corn (Yuan et al., 2001), two from coral fern (*Dictyophyllum dichotoma* (Thunb.) Dernh.) (Guo et al., 1996), and a REE-binding peptide also from coral fern (Wang et al., 2003). Recent studies showed that REEs lanthanum and terbium can activate plant endocytosis and their entrance to cells by endocytosis (Wang et al., 2014, 2016; Yang et al., 2016). REEs in soil solutions and their contents in plant tissues are much lower than Ti (Tyler, 2004). It is possible that plants may also have proteins that interact with Ti.

We hypothesize that Ti binding proteins occur in plants. Some of them could specifically bind with Ti while others may bind not only with Ti but also with Fe. Like other ions, Ti\(^{4+}\) inclines to hydrolysis and hydrolytic precipitation (Buettnner and Valentine, 2012). Binding to biomolecules that are either small or large will significantly increase its solubility. As indicated by Zierden and Valentine (2016), Ti\(^{4+}\) complexes can kinetically display a wide range of ligand exchange rates. Hydroxyl and water ligands are very labile and exchange with rate constants on the order of thousands per second (Comba and Merbach, 1987); whereas the rates for exchange with small bioligands such as ascorbate or citrate, or with transferrin-like proteins transfers are over minutes to hours (Tinoco and Valentine, 2005; Buettnner et al., 2012). As such, Ti may bind with some organic acids, such as citric acid and ascorbic acid to allow the chelated Ti to be easily translocated in plants. Additionally, Fe storage protein ferritins can biomineralize Ti (Klem et al., 2008; Amos et al., 2013). Furthermore, Ti may interact with other proteins. TiO\(_2\) NPs have been shown to bind to the PSII reaction center complex and enhance the role of the PSII electron donor (Hong et al., 2005a). A recent microarray analysis of TiO\(_2\) NPs treated *Arabidopsis* has shown that a series of genes, particularly those associated with photosynthesis were highly upregulated (Tumburu et al., 2015), which provides some fundamental information for further investigation of Ti effects on plants. Nevertheless, we believe that Ti binding proteins could be identified with the advances in omics technologies, and the identification should provide theoretical explanations for the roles Ti plays and its phytotoxicity in plants.

CONTRIBUTIONS TO Fe HOMEOSTASIS

Plant cells contain numerous iron-containing proteins which can be mainly classified into three groups: iron-sulfur cluster proteins, hemeproteins, and non-heme/non-Fe-S proteins (Zhang, 2015). These proteins use Fe as a cofactor and perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved
sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, electron transport chain of photosynthesis and respiration in chloroplasts and mitochondria, respectively (Kobayashi and Nishizawa, 2012). Fe is also essential for reactive oxygen species (ROS) detoxification, chlorophyll biosynthesis, period length control of circadian rhythm, and activity of numerous metal-dependent enzymes (Alscher et al., 2002; Moseley et al., 2002; Chen et al., 2013). Most of the Fe in leaves is found within the chloroplasts where photosynthesis takes place to assimilate C and produce O₂. In addition to the general mitochondrial Fe-S cluster synthesis pathway, chloroplasts are autonomous for their Fe-S cluster synthesis (Zhang, 2015). It is within this plant specific subcellular compartment that ferritins store and buffer Fe, thereby participating in remediating oxidative stress. Ferritins are plastid proteins whose abundance is strictly controlled at a transcriptional level by the Fe status of the cells (Kobayashi and Nishizawa, 2012; Zhang, 2015).

In the case of Fe and Ti interactions, Ti effects could become more pronounced when plants had deficient supply of Fe. Under such conditions, application of Ti could induce the expression of IRT in nongraminaceous tobacco plants and YSI in graminaceous corn plants. The expression of ferritin genes could also be enhanced by Ti application. The induced expression of these genes under limited Fe supply might suggest that some roles Ti would play could be the maintenance of Fe homeostasis at the cellular level, thus improving plant growth. Carvajal and Alcaraz (1995) demonstrated that foliar application of Ti-ascorbate resulted in an increase of Fe concentrations in leaves, fruits, chloroplasts, and chromoplasts of red pepper plants. Foliar application of Ti resulted in 39% and 35.7% increase of Fe in peel and flesh of peach fruit (Alcaraz-Lopez et al., 2004a, b). Leaves of paprika pepper sprayed with Ti-ascorbate increased Fe uptake by 50% in a greenhouse experiment and close to 100% in a field experiment, and leaf peroxidase and catalase activities also significantly increased due to the Ti-ascorbate application (Carvajal et al., 1995). These results provide further evidence supporting our hypothesis that the synergetic roles Ti plays become more noticeable when plants encounter low Fe supply. Under a limited Fe supply, application of an appropriate concentration of Ti would induce IRT or YSI expression, thus enhancing Fe uptake. Increased Fe uptake would increase chlorophyll biosynthesis, subsequently increasing net photosynthesis. Increased photosynthesis directly couples with NO₃ assimilation in chloroplasts, which is known as nitrate photoassimilation (Searles and Bloom, 2003). The increased photosynthesis would enhance the expression of nitrate transporter genes, consequently increasing N uptake. The increased uptake of NO₃ could improve plant growth and in turn enhance absorption of other ions. For example, a 7-fold increase in N uptake by rhododendron (Rhododendron spp. cv. P.J.M. Compact) was associated with a 3 to 4-fold increase in the uptake rate of phosphorus, potassium, and sulfur, and ~2-fold increase in the uptake rate of magnesium and calcium (Scagel et al., 2008). Additionally, IRT1 belongs to the ZRT/IRT-like protein (ZIP) gene family, which plays a major role in Fe/Zn (zinc) uptake (Guerinot, 2000). IRT1 can also transport Zn, Co, Mn, and cadmium (Cd) (Eide et al., 1996; Connolly et al., 2002; Varotto et al., 2002; Vert et al., 2002). YSI functions as a proton-coupled symporter for various DMA-bound metals, including Fe³⁺, Zn²⁺, Cu²⁺, and Ni²⁺ (Kakei et al., 2012). This may explain why the application of Ti also increases plant uptake of other nutrient elements.

Ti may act antagonistically with Fe resulting in Ti toxicity in plants. If Ti concentration is too high, it could interfere with biological roles of Fe, resulting in Ti toxicity. Cigler et al. (2010) measured chlorophyll fluorescence of spinach plants after treatment by a combination of Fe and Ti. They found that Ti at a high level affects Fe-containing proteins in electron transport, primarily the PSI, slowing down the PSII efficiency. If Ti and Fe were equally present in the medium, the Ti impact on the PSI was lowered, probably due to competition for binding sites.

PHOTOCATALYSIS AND ANTIMICROBIAL ROLES

Ti in both bulk and nanoparticle forms has been used for suppressing crop diseases (Paret et al., 2013; Servin et al., 2015). Chao and Choi (2005) reported that severity and incidence of curvularia leaf spot [Curvularia lunata (Wakker) Boedijn] and bacterial leaf blight (Xanthomonas oryzae pv. oryzae) in cereal crops were reduced with TiO₂ application. Similar results were observed on field-grown cowpea (Vigna unguiculata Walp.) where cercospora leaf spots caused by Cercospora rosicola Pass. and brown blotch caused by Mycosphaerella cruenta Sacc. were significantly suppressed by application of TiO₂ (Owolade and Ogunleti, 2008). TiO₂ has been shown to control bacterial leaf spot (Xanthomonas hortorum pv. pelargonii) on geranium (Pelargonium x hortorum L.H. Barley) and (Xanthomonas axonopodis pv. poinsetticola) on poinsettia (Euphorbia pulcherrima Willd. Ex klotschz.) (Norman and Chen, 2011). Additionally, the use of TiO₂ in recycled irrigation water was shown to eliminate both fungal and bacterial pathogens (Yao et al., 2007).

The antimicrobial roles of TiO₂ are related to the oxidation processes even though the role of Ti-uptake resultant biological activities could not be ruled out. Recently, the photocatalytic process by UV/TiO₂ is receiving increased attention due to the low cost and relatively high chemical stability of TiO₂, especially in aqueous environments. It generates singlet oxygen and superoxide anion which both cause damaging cellular oxidation. Therefore, TiO₂ has been used for controlling some bacterial and fungal pathogens in crop production (Yao et al., 2007; Owolade and Ogunleti, 2008; Norman and Chen, 2011) and also for decontaminating toxic organic pollutants in water treatment (Lazar et al., 2012). TiO₂ NPs have been shown to degrade organic pesticides and herbicides in soils via redox reactions, photocatalysis, and thermal destruction under irradiation (Mir et al., 2014; Li et al., 2016). Photocatalytic TiO₂ has been used to kill cancer cells in human (Thevend et al., 2008), and biomedical applications of TiO₂ NPs are promising and could play important
roles for improving health care, especially cancer treatment (Yin et al., 2013).

CONCLUSION

Evidence accumulated over the last 100 years suggests that Ti is relatively mobile in soils, occurs in soil solution, and is available to plants. Plants are able to absorb Ti through either roots or leaves, and Ti concentrations in plant tissues are either equal to or higher than some essential nutrient elements. Ti has been shown to improve plant performance at low concentrations. In the present article, we propose Ti and Fe have synergistic and antagonistic relationships. Ti may induce the expression of genes related to Fe acquisition, enhancing Fe uptake and utilization when plants encounter Fe deficiency. The interaction of plants with Ti as well as with Fe may result in the occurrence of Ti binding proteins in plants that either specifically bind with Ti or nonspecifically share with Fe or other elements. When Ti levels are high in plants, Ti may cause phytotoxicity. This hypothesis is not new but is updated based on the current available information. With the advances in omics technologies, we anticipate that this hypothesis will be tested and improved.

AUTHOR CONTRIBUTIONS

All authors contributed to the acquisition and interpretation of available literature and the conception of the work. JC, SL, and XYW wrote the manuscript, and all authors revised the manuscript and approved this final version.

ACKNOWLEDGMENTS

The authors would like to thank the Fujian Science and Technology Key Projects (2013NZY0002-1B), Construction of High-level University Program of Fujian Agriculture and Forestry University: “Construction of High-level Horticulture Science Discipline” (612014007), and Scientific Research Foundation of Graduate School at the Fujian Agriculture and Forestry University 609 University (324-1122YB026) for supporting this study.

REFERENCES

Aghdam, M. T. B., Mohammedi, H., and Ghorbanpour, M. (2016). Effects of nanoparticle anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz. J. Bot. 39, 139–146. doi: 10.1007/s40415-015-0227-x

Alcaraz-Lopez, C., Botia, M., Alcaraz, C. F., and Riquelme, F. (2003). Effects of foliar sprays containing calcium, magnesium and titanium on plum (Prunus domestica L.) fruit quality. J. Plant Physiol. 160, 1441–1446. doi: 10.1016/S0176-1617-00999

Alcaraz-Lopez, C., Botia, M., Alcaraz, C. F., and Riquelme, F. (2004a). Effect of the in-season combined use of calcium, magnesium and titanium on peach (Prunus persica L.). J. Sci. Food Agric. 84, 949–954.

Alcaraz-Lopez, C., Botia, M., Alcaraz, C. F., and Riquelme, F. (2004b). “Effects of titanium-containing foliar sprays on calcium assimilation in nectarine fruits,” in Nutriçao Mineral: Causas e Consequências da Dependencia da Fertilização, eds M. A. Martin-Luço and C. Cruz (Faculdade de Ciencias da Universidade de Lisboa), 66–72.

Alcaraz-Lopez, C., Botia, M., Alcaraz, C. F., and Riquelme, F. (2005). Induction of fruit calcium assimilation and its influence on the quality of tabel grapes. Span. J. Agr. Res. 3, 335–343. doi: 10.5424/sjar/2005033-156

Alschinger, R. G., Erturk, N., and Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1311–1314. doi: 10.1093/jxb/53.372.1331

Amos, F. F., Cole, K. E., Mesenrode, R. L., Gaffney, J. P., and Valentine, A. M. (2013). Titanium mineralization in ferritin: a room temperature nonphotocatalytic preparation and biophysical characterization. J. Biol. Inorg. Chem. 18, 145–152. doi: 10.1007/s00775-012-0959-z

Andersen, C. P., King, G., Plocher, M., Storm, M., Pokhrel, L. R., Johnson, M. G., et al. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ. Sci. Technol. 50, 2223–2229. doi: 10.1021/acs.est.5b02374

Anderson, A. J., Mayer, D. R., and Mayer, F. K. (1973). Heavy metal toxicity: levels of nickel, cobalt, and chromium in the soil and plants associated with visual symptoms and variations in the growth of an oat crop. Aust. J. Agri. Res. 24, 557–571. doi: 10.1071/AR970357

Anke, M., and Seifert, M. (2004). “Titanium,” in Elements and Their Compounds in the Environment, 2nd Edn., eds E. Merian, M. Anke, M. Ihnat, and M. Stoeppeler (Weinheim: Wiley-VCH), 1125–1140. doi: 10.1002/9783527619634.ch45

Arnon, D. I., and Stout, P. R. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14, 371–375. doi: 10.1104/pp.14.2.371

Asli, S., and Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 32, 577–584. doi: 10.1111/j.1365-3040.2009.01952.x

Berg, T., and Steiness, E. (1997). Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci. Total Environ. 208, 197–206. doi: 10.1016/S0048-9697(97)00253-2

Biacs, P. A., Daoed, H. G., and Keresztes, A. (1997). “Biochemical aspect on the effect of Titavit treatment on carotenoids, lipds and antioxidants in spice red pepper,” in Physiology, Biochemistry and Molecular Biology of Plant Lipids, eds J. P. Williams, M. U. Khan, and N. W. Lem (Dordrecht: Springer Science + Business Media), 215–217.

Boonyanitpong, P., Kositup, B., Kumar, P., Barua, S., and Dutta, J. (2011). Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int. J. Biosci. Biochem. Bioinform. 1.282. doi: 10.7763/IJBBB.2011.V1.53

Bottini, E. (1964). Effect of trace elements on plant growth. Annu. Sper. Agric. 18, 609–639.

Bowles, F. M., Howie, R. A., Vaughan, D. J., and Zassman, J. (2011). Rock-Forming Minerals. vol. 5. Non-silicates Oxides, Hydroxides and Sulphides. 2nd Edn. Bath: The Geological Society Publishing House.

Buettner, K. M., Collins, J. M., and Valentine, A. M. (2012). Titanium (IV) and vitamin C: aqueous complexes of a bioactive form of Ti (IV). Inorg. Chem. 51, 11030–11039. doi: 10.1021/ic301545m

Buettner, K. M., and Valentine, A. M. (2012). Bioinorganic chemistry of titanium. Chem. Rev. 112, 1863–1881. doi: 10.1021/cr1002886

Burke, D. J., Pietrasiak, N., Situ, S. F., Abenjoar, E. C., Porche, M., Kraj, P., et al. (2015). Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int. J. Mol. Sci. 16, 23630–23650. doi: 10.3390/ijms161023630

Cabaness, E., Buchner, P., Broadley, M. R., and Hawkesford, M. J. (2011). A comparison of sulfate and selenate accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol. 187, 2227–2239. doi: 10.1104/pp.111.183897

Cannon, H. L., Shacklette, H. T., and Bastron, H. (1968). Metal Absorption by Equisetum (Horsetail). Geological Survey Bulletin 1278-A. Washington, DC: United State Government Printing Office.
Cao, W., Rui, Y., and Li, X. (2014). Determination of forty six elements in different organs of *Orychophragmus violaceus* in agricultural farm. *Asian J. Chem.* 26, 1038–1040. doi: 10.14233/ajchem.2014.15837

Carvalhal, M., and Alcaraz, C. F. (1995). Effect of Ti (IV) on Fe activity in *Capsicum annuum*. *Physiochemistry 39*, 977–980. doi: 10.1016/0031-9422(95)00695-O

Carvalhal, M., and Alcaraz, C. F. (1998). Why titanium is a beneficial element for plants. *J. Plant Nutr.* 21, 655–664. doi: 10.1080/01904169809365433

Carvalhal, M., Martinez-Sanchez, F., and Alcaraz, C. F. (1994). Effect of titanium (IV) application on some enzymatic activities in several developing stages of red pepper plants. *J. Plant Nutr.* 17, 243–253. doi: 10.1080/01904169409364724

Carvalhal, M., Martinez-Sanchez, F., Pastor, J. J., and Alcaraz, C. F. (1995). “Leaf spray with Ti(IV) ascorbate improves the iron uptake and iron activity in *Capsicum annuum* L. plants”, in *Iron Nutrition in Soils and Plants*, ed J. Abadia (Dordrecht: Kluwer Academic Publishers), 1–5.

doi: 10.1007/987-94-011-0503-3.1

Ceccantini, G., Figuieredo, A. M. G., Sondag, F., and Soubies, F. (1997). “The titanyl question revisited.” *Compta Rendue* *Societe Chimique de France* 324C, 1675–1679.

doi: 10.1016/S0241-9736(97)80255-6

Cook, L. L., McGonigle, T. P., and Inouye, R. S. (2009). Titanium as an ameliorant for phosphorus deficiencies in agricultural soils. *J. Environ. Qual.* 38, 1888–1899. doi: 10.2134/jeq2007.0334

Dumon, J. C., and Ernst, W. H. O. (1988). Titanium in plants. *J. Plant Physiol.* 133, 203–209. doi: 10.1016/S0176-1617(88)80138-X

Eichert, T., and Fernandez, V. (2012). “Uptake and release of elements by leaves and other aerial plant parts,” in *Marschner’s Mineral Nutrition of Higher Plants*, ed P. Marschner (Oxford: Academic Press), 71–84. doi: 10.1016/B978-0-12-384905-2.00004-2

Eide, D., Broderius, M., Fett, J., and Guerinot, M. L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. *Proc. Natl. Acad. Sci. U.S.A.* 93, 5624–5628. doi: 10.1073/pnas.93.11.5624

Ernst, W. H. O. (1985). “Evidence of a burdened trace mineral metallothionein in plants: a potential control for trace element toxicity.” *Ann. Rev. Plant Physiol.* 36, 135–158.

doi: 10.1146/annurev.pp.36.090185.000825

Fallahi, E., and Eichert, T. (2013). “Principles and practices of foliar nutrients with an emphasis on nitrogen and calcium sprays in apple.” *Horttechnology* 23, 542–547.

Feizi, H., Kamali, M., Jafari, L., and Rezvani Moghaddam, P. (2013). “Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (*Foeniculum vulgare Mill*).” *Chemosphere* 91, 506–511. doi: 10.1016/j.chemosphere.2012.12.012

Feizi, H., Rezvani Moghaddam, P., Shahtahmasebi, S., and Fotovat, A. (2012). “Impact of bulk and nanosized titanium dioxide (*TiO2*) on wheat seed germination and seedling growth.” *Biolo. Trace. Elem. Res.* 146, 101–106. doi: 10.1007/s10521-011-9227-7

Fisher, M., Gokhan, I., Pick, U., and Zamir, A. (1997). “A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga *Dunaliella salina* grown in high salinities.” *J. Biol. Chem.* 272, 1565–1570. doi: 10.1016/bi.2012.3.1565

Fisher, M., Zamir, A., and Pick, U. (1998). “Iron uptake by the halotolerant alga *Dunaliella* is mediated by a plasma membrane transferrin.” *J. Biol. Chem.* 273, 17553–17558. doi: 10.1016/jjbc.2008.17553

Frazier, T. P., Burkle, C. E., and Zhang, B. (2014). “Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (*Nicotiana tabacum*).” *Func. Integr. Genomics* 14, 75–83. doi: 10.1007/s10728-012-9341-4

Frutos, M. J., Pastor, J. J., Martinez-Sanchez, F., and Alcaraz, C. F. (1996). “Improvement of the nitrogen uptake induced by titanium (IV) leaf supply in nitrogen-stressed pepper plants.” *J. Plant Nutr.* 19, 771–783. doi: 10.1080/01904169609365159

Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., et al. (2008). “Spinach growth by nano-TiO2: treatment related to the changes of Rubisco activity.” *Biometals* 21, 211–217. doi: 10.1007/s10534-007-9110-y

Gao, J., Xu, G., Qian, H., Liu, P., Zhao, P., and Hu, Y. (2013). “Effects of nano-TiO2 on photosynthetic characteristics of *Ulmus elongata* seedlings.” *Environ. Pollut.* 176, 63–70. doi: 10.1016/j.envpol.2013.01.027

Geilmann, W. (1920). “Uber die Verbreitung des Titans in Boden und Pflanzen.” *J. Landwirtsch.* 87, 108–124.

Ghosh, M., Bandypadhyay, M., and Mukherjee, A. (2010). Genotoxicity of titanium dioxide (*TiO2*) nanoparticles at two trophic levels: plant and human lymphocytes. *Chemosphere* 81, 1253–1262. doi: 10.1016/j.chemosphere.2010.09.022

Giménez, J. L., Martinez-Sanchez, F., Moreno, J. L., Fuentes, J. L., and Alcaraz, C. F. (2012). “Uptake and release of elements by leaves and other aerial plant parts.” in *Marschner’s Mineral Nutrition of Higher Plants*, ed J. Abadia (Dordrecht: Springer). 71–84.

doi: 10.1007/987-94-011-0503-3.1

Gogos, A., Moll, J., Klingenfuss, F., van der Heijden, M., Irin, F., Green, M. J., et al. (2016). “Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment.” *J. Nanobiotechnol.* 14:40. doi: 10.1186/s12951-016-0191-z

Grajewski, J., and Ochmian, I. (2007). “Influence of three biostimulants on yielding and fruit quality of three primocane raspberry cultivars.” *Acta. Sci. Pol. Hortorum Cult.* 6, 29–36.

Dietz, K. J., and Herth, S. (2011). Plant nanotoxicology. *Trends Plant Sci.* 16, 582–589. doi: 10.1016/j.tplants.2011.08.003

Dolatabadi, A., Sani, B., and Moaveni, P. (2015). “Impact of nano-sized titanium dioxide on geographical and physiological characteristics of annual medicinal (*Medicago scutellata L*).” *Ceretori Agronomicie Moldova* 48, 53–61. doi: 10.1515/cercc-2015-0041

Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., and Guo, H. (2011). “TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.” *J. Environ. Monit.* 13, 822–828. doi: 10.1039/c0em0061d

Du, X., Rate, A. W., and Gee, M. A. M. (2012). “Redistribution and mobilization of titanium, zirconium and thorium in an intensively weathered lateritic profile in Western Australia.” *Chem. Geol.* 330, 101–115. doi: 10.1016/j.chemgeo.2012.08.030

Dumon, J. C., and Ernst, W. H. O. (1988). Titanium in plants. *J. Plant Physiol.* 133, 203–209. doi: 10.1016/S0176-1617(88)80138-X

Lyu et al. Titanium as a Beneficial Element to Plants
chloroplasts under UV-B radiation. *Biol. Trace Elem. Res.* 121, 69–79. doi: 10.1007/s12117-007-8028-0

Leskó, K., Stefanovits-Bányai, É., Pais, L., and Simon-Sarkadi, I. (2002). Effect of cadmium and titanium-ascorbate stress on biological active compounds in wheat seedlings. *J. Plant Nutr.* 25, 2571–2581. doi: 10.1081-JPN-120014714

Li, L., Norman, M. S., Wang, X., Liu, L., Chen, C., Ma, N., et al. (2015). Nano-TiO₂ is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. *PLoS ONE* 10:e0134885. doi: 10.1371/journal.pone.0134885

Li, Q., Chen, X., Zhuang, J., and Chen, X. (2016). Decontaminating soil organic pollutants with manufactured nanoparticles. *Environ. Sci. Pollut. Res.* 23, 11533–11548. doi: 10.1007/s11356-016-5255-7

Li, W., Tang, H., Xiao, A., Xie, T., Sun, Y., Liao, Y., et al. (2011). Effects of applying titanium contained trace-element fertilizer to several grain crops in Hunan. *Hunan Agric. Sci.* 21, 55–58.

Lopez-Moreno, J. L., Giménez, J. L., Moreno, A., Fuentes, J. L., and Alcaraz, C. F. (1995). Plant biomass and fruit yield induction by Ti(IV) in P-stressed pepper crops. *Fert. Res.* 34, 131–136. doi: 10.1007/BF00746792

Mahlomoodzadeh, H., and Aghili, R. (2014). Effect on germination and early growth characteristics in wheat plants (*Triticum aestivum L.*) seeds exposed to TiO₂ nanoparticles. *J. Chem. Health Risk* 4, 467–472.

Mahlomoodzadeh, H., Nabavi, M., and Kashi8, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (*Brassica napus*). *J. Ornamental Hort. Plants* 3, 25–32.

Mandeh, M., Omidi, M., and Rahaie, M. (2012). *Mechanistic evaluation of translocation and physiological impact of titanium dioxide nanoparticles on chickpea response to cold stress.* *Russian J. Plant Physiol.* 61, 768–775. doi: 10.1134/S0122444314050124

Moll, J., Okupnik, A., Gogos, A., Knauer, K., Bucheli, T. D., van der Heijden, M. G., et al. (2016). Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. *PLoS ONE* 11:e0155111. doi: 10.1371/journal.pone.0155111

Mortezaz, E., Mozavi, P., Farahani, H. A., and Kiymy, M. (2013). Study of photosynthetic pigments changes of maize (*Zea mays L.*) under nano TiO₂ spraying at various growth stages. *SpringerPlus* 2:247. doi: 10.1186/2193-1801-2-247

Moseley, J. L., Page, M. D., Alder, N. P., Eriksson, M., Quinn, J., Soto, F., et al. (2002). Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. *Plant Cell* 14, 673–688. doi: 10.1105/tpc.010420

Nautsch-Lauer, C. (1974). *Die Wirkung von Titan auf den Stoffwechsel von Phaseolus vulgaris und Zea mays.* Dissertation University of Münster.

Némec, A., and Káš, V. (1923). Studien über die physiologische Bedeutung des titanium Pflanzenorganismus. *Biochem. Z.* 140, 583–590.

Norman, D. J., and Chen, J. (2011). Effect of foliar application of titanium dioxide on bacterial blight of geranium and *Xanthomonas* leaf spot of poinsettia. *Hortscience* 46, 426–428.

Owolade, O. F., and Ogunleti, D. O. (2008). Effects of titanium dioxide on the diseases, development and yield of edible cowpea. *J. Plant Protect. Res.* 48, 329–335. doi: 10.2478/v10045-008-0042-5

Pais, I. (1983). The biological importance of titanium. *J. Plant Nutr.* 6, 3–131. doi: 10.1080/01904169309366732

Pais, I. (1992). Criteria of essentiality, beneficality and toxicity of chemical elements. *Acta Aliment.* 121, 145–152.

Pais, I., Feber, M., Parkas, E., Szabo, Z., and Comides, I. (1977). Titanium as a new trace element. *Comm. Soil Sci. Plant Anal.* 8, 407–410. doi: 10.1080/00103627709366732

Pais, I., Somos, A., Duda, G., Tarjanyi, F., and Nagymihaly, F. (1969). Trace-element experiments with tomato and paprika. *Kberletegyi Kozelem* 62, 25–401.

Pandey, R., Krishnapriya, V., and Bindraban, P. S. (2013). Biochemical Nutrient Pathway in Plants Applied as Foliar Spray: Phosphorus and Iron. Washington, DC: VFRC (Virtual Fertilizer Research Center) report 2013/1.

Paret, M. L., Vallad, G. E., Averett, D. R., Jones, J. B., and Olson, S. M. (2013). Photocatalysis: effect of light-activated nanoscale formuations of TiO₂ on *Xanthomonas perforans* and control of bacterial spot of tomato. *Phytopathology* 103, 228–236. doi: 10.1094/PHYTO-08-12-0183-R

Pellet, H., and Fribourg, C. (1905). *Titanium. Ann. Sci. Agron.* Ser. 10, 20–84.

Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M., and Schiavon, M. (2009). Physiological functions of beneficial elements. *Carr. Optim. Plant Biol.* 12, 267–274. doi: 10.1016/j.pbi.2009.04.009

Qi, M., Liu, Y., and Li, T. (2013). Nano-TiO₂ improve the photosynthesis of tomato leaves under mild heat stress. *Biol. Trace Element Res.* 156, 323–328. doi: 10.1007/s12117-013-9833-2

Radkowska, I., Radkowski, A., and Lemek, T. (2015). Effects of foliar application of titanium on seed yield in timothy (*Phleum pratense L.*) *Ecol. Chem. Eng. 22*, 691–701. doi: 10.1515/ceces-2015-0042

Rafique, R., Arshad, M., Khokhar, M., Qazi, I., Hamza, A., and Virk, N. (2015). Growth response of wheat to titanium nanoparticles application. *NUST J. Eng.* 7, 42–46.

Raliya, R., Biswas, P., and Tarafdar, J. C. (2015a). TiO₂ nanoparticle biosynthesis and its physiological effect on mung bean (*Vigna radiata*). *Biotecnol. Rep.* 5, 22–26. doi: 10.1016/j.btre.2014.10.009

Raliya, R., Nair, R., Chavaliman, S., Wang, W. N., and Biswas, P. (2015b). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (*Solanum lycopersicum L.*) *plant. Metallomials* 7, 1584–1594. doi: 10.1039/C5MT00168D

Ram, N., Verloo, M., and Cottenie, A. (1983). Response of bean to foliar spray of titanium. *Plant Soil* 73, 285–290. doi: 10.1007/BF02197724

Ramakrishna, R. S., Paul, A. A., and Fonseka, J. P. R. (1989). Uptake of titanium and iron by Ipomoea biloba from titaniferrous sands. *Environ. Exp. Bot.* 29, 239–300. doi: 10.1006/exbot.1998.0472

Reimann, C., Köllner, F., Frengstad, B., Kashulina, G., Niskavaara, H., and Engelmaier, P. (2001). Comparison of the element compositin in several plant species and their substrate from a 1555000 km² area in northern Europe. *Sci. Total Environ.* 278, 87–112. doi: 10.1016/S0048-9697(00)00890-1

Rezaei, F., Moaveni, P., and Mozafari, H. (2015). Effect of different concentrations and time of nano TiO₂ spraying on quantitative and qualitative yield of soybean (*Glycine max L.*) at Shahr-e-Qods, Iran”. *Biol. Forum* 7, 957–964.
Song, U., Marschner, H. (1986). Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiol. 80, 175–180. doi: 10.1104/pp.80.1.175

Ruffini Castiglione, M., Giorgetti, L., Geri, C., and Cremonini, R. (2010). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res. 13, 2443–2449. doi: 10.1007/s11051-010-1355-8

Samadi, N., Yahyabadi, S., and Rezayatmand, Z. (2014). Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot Length and photosynthetic pigments of Mentha piperita. Int. J. Plant Soil Sci. 3, 408–418. doi: 10.9734/IPPS/2014/7641

Scagel, C., Bi, G., Fuchigami, I. H., and Regan, R. P. (2008). Nitrogen availability alters mineral nutrient uptake and demand in container-grown deciduous and evergreen rhododendron. J. Environ. Hort. 26, 177–187.

Seo, S. P., and Bloom, A. J. (2003). Nitrate photo-assimilation in tomato leaves under short-term exposure to elevated carbon dioxide and low oxygen. Plant Cell Environ. 26, 1247–1255. doi: 10.1046/j.1365-3040.2003.01047.x

Silan, M., Martinez-Romero, D., Castillo, S., Guillin, F., and Valero, D. (2004). Effect of preharvest sprays containing calcium, magnesium and titanium on the quality of peaches and nectarines at harvest and during postharvest storage. J. Sci. Food Agric. 84, 1270–1276. doi: 10.1002/jsfa.1753

Serrin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., Díaz, B. C., Peralta-Videea, J. R., and Geada-Torresdey, J. L. (2012). Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 46, 7637–7643. doi: 10.1021/es300955b

Servin, A. D., Morales, M. L., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., et al. (2013). Synchrotron verification of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47, 11592–11598. doi: 10.1021/es403368x

Servin, A., Elmer, W., Mukherjee, A., Torre-Roche, R. D., Hamdi, H., White, J. C., et al. (2015). A review of the used of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17:92. doi: 10.1007/s11051-015-2907-7

Sheppard, S. C., and Evenden, W. G. (1990). Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements. J. Environ. Radiat. 11, 15–36. doi: 10.1016/0921-8261(90)90041-S

Sherman, G. D. (1952). The titanium content of Hawaiian soils and its significance. Soil Sci. Soc. Am. Proc. 16, 15–18. doi: 10.2136/sssaj1952.03615995001600010006x

Simon, I., Balogh, A., Hajdu, F., and Páis, I. (1988). “Effect of titanium on growth and photosynthetic pigment composition of Chlorella pyrenoidosa (Green Alga). II. Effect of titanium ascorbate on pigment content and chlorophyll metabolism of Chlorella,” in New Results in the Research of Hardly Known Trace Elements and Their Role in the Food Chain, ed I. Pás (Budapest: University of Horticultural and Food Science), 87–101.

Singh, J., and Lee, B. K. (2016). Influence of nano-TiO2 nanoparticles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manage. 170, 88–96. doi: 10.1016/j.jenvman.2016.01.015

Skupien, K., and Ozsmanias, J. (2007). Influence of titanium treatment on antioxidants content and antioxidant activity of strawberries. Acta Sci. Pol. Technol. Aliment. 6, 83–93.

Song, G., Gao, Y., Wu, H., Hou, W., Zhang, C., and Ma, H. (2012). Physiological effect of anatase TiO2 nanoparticles on Lenna minor. Environ. Toxicol. Chem. 31, 2147–2152. doi: 10.1002/etc.1933

Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., et al. (2013a). Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecototoxicol. Environ. Saf. 93, 60–67. doi: 10.1016/j.ecoenv.2013.03.033

Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., and Lee, E. J. (2013b). Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol. Trace Elem. Res. 155, 93–103. doi: 10.1007/s12071-013-9765-x

Stace, H. C. T., Hubble, G. D., Brewer, R., Northcote, K. H., Slemman, J. R., and Mulcahy, M. J., et al. (1968). A Handbook of Australian Soils. Glandsie, PA: Rellim Technical Publications.

Sun, T. Y., Gottschalk, F., Hungerbühler, K., and Nowack, B. (2014). Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185, 69–76. doi: 10.1016/j.envpol.2013.10.004
Xuming, W., Fengqing, G., Linglan, M., Jie, L., Sitao, Ping, Y., et al. (2008). Effects of nano-anatase on ribulose-1, 5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. *Biol. Trace Elem. Res.* 126, 280–289. doi: 10.1007/s12011-008-8203-y

Yang, Q., Wang, L., He, J., Li, X., Tong, W., Yang, Z., et al. (2016). Vitronectin-like protein is a first line of defense against lanthanum (III) stress in *Arabidopsis* leaf cells. *Environ. Exp. Bot.* 130, 86–94. doi: 10.1016/j.envexpbot.2016.05.011

Yang, W. W., Miao, A. J., and Yang, L. Y. (2012). *Cd*^{2+} Toxicity to a green algae *Chlamydomonas reinhardtii* as influenced by its adsorption on TiO_{2} engineered nanoparticles. *PLoS ONE* 7:e32300. doi: 10.1371/journal.pone.0032300

Yao, K. S., Wang, D. Y., Ho, W. Y., Yan, J. J., and Tseng, K. C. (2007). Photocatalytic bactericidal effect of TiO_{2} thin film on plant pathogens. *Surf. Coat. Technol.* 201, 6886–6888. doi: 10.1016/j.surfcoat.2006.09.068

Yin, Z. F., Wu, L., Yang, H. G., and Su, Y. H. (2013). Recent progress in biomedical applications of titanium dioxide. *Phys. Chem. Chem. Phys.* 15:4844. doi: 10.1039/c3cp43938k

Yuan, D. A., Shan, X. Q., Wen, B., and Huai, Q. (2001). Isolation and characterization of rare earth element-binding protein in roots of maize. *Biol. Trace Elem. Res.* 79, 183–194. doi: 10.1385/BTER:79:2:185

Ze, Y., Liu, C., Wang, L., Hong, M., and Hong, F. (2011). The regulation of TiO_{2} nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of *Arabidopsis thaliana*. *Biol. Trace Elem. Res.* 143, 1131–1141. doi: 10.1007/s12011-010-8901-0

Zhang, C. (2015). Involvement of iron-containing proteins in genome integrity in *Arabidopsis thaliana*. *Genome Integr.* 6:2. doi: 10.4103/2041-9414.155953

Zhang, M., Gao, B., Chen, J., and Li, Y. (2015). Effects of graphene on seed germination and seedling growth. *J. Nanopart. Res.* 17:78. doi: 10.1007/s11051-015-2885-9

Zhang, W., Zhu, Z., and Cheng, C. Y. (2011). A literature review of titanium metallurgical process. *Hydrometallurgy* 108, 177–188. doi: 10.1016/j.hydromet.2011.04.005

Zheng, L., Hong, F., Lu, S., and Liu, C. (2005). Effect of nano-TiO_{2} on strength of naturally aged seeds and growth of spinach. *Bio. Trace Element Res.* 104, 83–91. doi: 10.1385/BTER:104:1:083

Zierden, M. R., and Valentine, A. M. (2016). Contemplating a role for titanium in organisms. *Metalomics* 8, 9–16. doi: 10.1039/C5MT00231A

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.