Fe-functionalized paramagnetic sporopollenin from pollen grains: one-pot synthesis using ionic liquids

C. Chiappe1,8, M. J. Rodriguez-Douton1, M. C. Mozzati2, D. Prete3, A. Griesi5,4, L. Guazzelli3, M. Gemmi4, S. Caporali6,7, N. Calisi6,7, C. S. Pomelli1,2 & F. Rossella3

The preparation of Fe-decorated sporopollenins was achieved using pollen grains and an ionic liquid as solvent and functionalizing agent. The integrity of the organic capsules was ascertained through scanning electron microscopy studies. The presence of Fe in the capsule was investigated using FT-IR, X-ray photoemission spectroscopy and energy-dispersive X-ray spectroscopy. Electron paramagnetic resonance and magnetization measurements allowed us to demonstrate the paramagnetic behavior of our Fe-functionalized sporopollenin. A few potential applications of pollen-based systems functionalized with magnetic metal ions via ionic liquids are discussed.

Highly organized and complex 3D microstructures hold great promise for manifold applications across nanotechnologies as carriers, scavengers or catalysts, to name a few possible functional uses1–4. Driven by these exciting prospects, great efforts have been devoted in the last few years to the preparation of polymeric microcapsules through different routes, including template-assisted methods, self-assembly of block copolymer processes, and interfacial mini-emulsion polymerization methods5–8. However, the synthesis of such structures is generally costly and difficult, especially when obtaining microcapsule of uniform size distribution and large inner cavity is crucial. In this context, innovative strategies are progressively moving beyond artificial material synthesis and looking to nature for inspiration. In particular, scientists have started to appreciate the myriad of unique, widely available biological systems and their microscale and nanoscale architectures that might be useful for the design and fabrication of functional materials. For instance, viruses, large globular proteins like ferritin, chromatids are nanoscale structures; Larger—still microscale—structures are pollen grains.

In this scenario, pollen grains represent a very promising source of 3D microstructures with desirable morphologies: they can indeed be easily sourced in large amounts from plants and can provide, through cost-effective approaches, polymeric microcapsules with a wide variety of shape and size. These features, and most importantly their consistency which is guaranteed by the species specificity, are crucial and difficult to obtain with purely synthetic materials9–11. In pollen grains, the male partner in the reproductive process, the genetic material is protected by a double-layered wall, which consists of an inner layer (intine) and an outer layer (exine). The former is constituted mainly of cellulose, hemicellulose and pectin, whereas the latter, known as sporopollenin (SP) is composed largely of a biopolymer, whose chemical structure is still unclear, containing only carbon, hydrogen and oxygen atoms. This polymer is characterized by remarkable strength and elasticity. Furthermore, it shows an extraordinary resistance to chemical degradation or dissolution while being at the same time readily amenable to derivatization due to the presence of a network of functional groups (carboxyl, carbonyl, alcoholic and ether functions).

To exploit the 3D microstructures of SP as scaffolds or templates, the polymer must be isolated through accurate purification processes that usually consist in the use of aggressive and/or corrosive chemical agents, as...
and proteins (1,630 cm\(^{-1}\), amide I; 1,530 cm\(^{-1}\), amide II) are found, i.e. the prepared through chemical precipitation of iron oxide magnetic particles (Fe\(_3\)O\(_4\)) on the sporopollenin surface can be further improved by introducing suitable functional groups. Recently, a novel Fe-modified sporopollenin has been shown. The practical application of such material was the removal of Pb\(^{2+}\) in an aqueous environment\(^\text{22}\).

The capability to achieve polymer isolation and at the same time to control the functionalization of these complex organic systems by giving them special properties, represent the key ingredient for future applications. This approach is not necessarily limited to their use as carriers, but can be extended to other uses as well. Sporopollenin has indeed attracted great attention as an agent able to remove heavy metals from water: this is due to its excellent chemical and physical resistance and to the fact that it features many organic groups able to interact with metal ions or to be easily functionalized\(^\text{20,21}\). Nonetheless, their intrinsic adsorptive characteristics can be further improved by introducing suitable functional groups. Recently, a novel Fe-modified sporopollenin prepared through chemical precipitation of iron oxide magnetic particles (Fe\(_3\)O\(_4\)) on the sporopollenin surface has been shown. The practical application of such material was the removal of Pb\(^{2+}\) in an aqueous environment\(^\text{22}\).

Here, we use an environmentally friendly chemical route to a Fe-modified sporopollenin based on a hydrophobic IL, 1-butyl-3-methylimidazolium tetrachloroferrate, [bmim][FeCl\(_4\)]. This material was used both to purify and further to functionalize sporopollenins (SP) with Fe-ions. The presence of the metal in the SP microcapsules as well as their morphology was investigated using FT-IR spectroscopy, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). The accurate magnetic study based on electron paramagnetic resonance (EPR) and superconducting quantum interference device (SQUID) measurements reveals near perfect paramagnetism in the Fe-decorated sample. Our work experimentally demonstrates that the decoration of SP with Fe-ions using ionic liquids provides a formidable—green, facile and low cost—chemical route to a novel class of organic-based paramagnetic systems at the micro-scale.

Results and discussion

Fe-decorated SPs: FT-IR study. The dark-brown sporopollenin microcapsules arising from the treatment of Populus deltoides pollen grains with [bmim][FeCl\(_4\)] were analyzed by ATR FT-IR. As previously observed using other ILs, the FT-IR spectrum of the recovered material is significantly modified with respect to the pristine pollen grains, with a number of peaks reduced in size or altogether missing. In particular, after IL treatment the strong absorption bands at 1,035 cm\(^{-1}\) (C–O) and 3,280 cm\(^{-1}\) (O–H) attributable to carbohydrates and cellulose (Fig. 1a) practically disappear, and the stretching modes of the aliphatic C–H bonds undergo to a drastic reduction (Fig. 1b). The weak absorption at 3,204 cm\(^{-1}\) is probably due to the presence of water. Furthermore, significant modifications can be observed in the region between 1,750 and 1,200 cm\(^{-1}\), where usually the vibrational modes of lipids (1739 cm\(^{-1}\), C=O stretching; 1,413 cm\(^{-1}\), CH\(_2\) deformation; 1,236 cm\(^{-1}\), C–O stretching and proteins (1,630 cm\(^{-1}\), amide I; 1,530 cm\(^{-1}\), amide II) are found, i.e. the intine components of pollen grains, and the vibrations of the sporopollenin (1,712–1,650 cm\(^{-1}\), C=C aromatic rings). IL treatment removes or reduces peaks related to lipids and proteins, hence the aromatic peaks around 1,610 cm\(^{-1}\) emerge as well as the absorption band around 1,700 cm\(^{-1}\), attributable to a conjugated C=O functional group\(^\text{23,24}\). Finally, it is worth to note that the absorption bands at 1634 and 1,520 cm\(^{-1}\) are still present, which could suggest an incomplete removal of the proteic component. However, the possible complexation of the IL iron to sporopollenin carboxyl groups (see below) could produce strong absorption bands in the same region (1,665–1,470 cm\(^{-1}\)) due to v\(_{as}\)(CO), v\(_{s}\)(CO) and δ(CO).

Fe-decorated SPs: chemical and morphological analysis. Wide scan overview and high-resolution XPS spectra of characteristic Fe 2p core transition of the IL-treated pollen grains, are depicted in Fig. 2a and b, respectively. The surface of the IL-treated pollen grains, as determined by XPS, is dominated by the elements constituting the organic capsule, mainly carbon (1s transition at 284.8 eV) and oxygen (1s transition at 531 eV) (see Fig. 2a)\(^\text{25}\). The smaller peaks observable in the spectrum were attributed to iron (2p3/2 transition at 710 eV and 3p transition at 53 eV), nitrogen (1s transition at 400 eV) and chlorine (2p3/2 transition at 198 eV)\(^\text{26}\). Silicon was also recognized (2s transition at 152 eV and 2p transition at 101 eV) probably due to silicon trace used to
grease flask’s neck. High-resolution spectra of iron 2p doublet are depicted in Fig. 2b. The spectra is composed by the Fe 2p doublet (2p3/2 and 2p1/2), spin–orbit splitting 13.1 eV27 and a satellite peak (blue component in Fig. 2b)28 which is characteristic of the presence of high spin iron species. The energy of the 2p3/2 core transition of iron resulted 711.3 eV and it is reasonably attributed to pristine Fe^{3+} chloride present in the IL29.

It is worth to note that also chlorine is detected at the surface of the IL-treated pollen grains and its high-resolution spectrum of the 2p core transition is reported in Fig. 3. In this case the peak requires two components to be fitted (named Cl\textsubscript{1} at 198.0 eV and Cl\textsubscript{2} at 200.0). At this moment, these components cannot be unambiguously attributed.

In Table 1 the experimental and theoretical relative amount of iron and chlorine are reported. The experimental amount of each element was obtained by applying literature atomic sensitivity factors26 to the area of XPS peaks. The only source for these elements is the IL. In the pure IL the ratio between Fe and Cl is 1:4 but in the surface of IL-treated pollen grains this ratio decreases to 1:2. That can be reasonably attributed to the partial substitution of chlorine by some other groups (mainly oxyls and hydroxyls) present in the pollen.

The shape and morphology of Fe-decorated individual pollen grains have been addressed using scanning electron microscopy (SEM). In Fig. 4a–c and e–g we report SEM micrographs at increasing magnification from a pristine and Fe-functionalized sporopollen grain, respectively. The images allow to appreciate the morphological

Component	Position (eV)	Experimental relative amount (%)	Theoretical relative amount (IL) (%)
Fe	711.3	34	20
Cl\textsubscript{1}	198.0	66	80

Figure 2. (a) wide, low-resolution spectrum and (b) high-resolution spectrum of Fe 2p core transition collected on the IL-treated pollen grains.

Figure 3. XPS peak relative to chlorine 2p core transition.

Table 1. Surface elemental composition as determined by XPS and expected theoretical amount of iron and chlorine.
features of both samples down to the sub-micron scale: the latter is characteristic of the corrugations and of the roughness displayed by the surface of the pollen grain. Noticeably, the Fe-functionalization preserves the overall spherical 3D structure typical of individual grains of the pristine (not functionalized) pollen, as well as their morphology and dimensions. The unchanged morphological features are particularly evident from the very high magnification images (Fig. 4c, g), displaying the sawtooth-like nanotexturing already reported for pristine pollen grains. Here it is worth noting that, in general, the accurate SEM investigation of organic samples presents various challenges and limitations. In fact, the high-energy electrons from the scanned beam may undergo unwanted interactions with atoms and electrons at the surface of the organic material, and may also be trapped and accumulated locally on the surface. This electrical charging of the sample eventually induces spurious effects in the generation of the secondary electrons whose detection is at the base of the image generation. Overall, this process can detrimentally affect the lower threshold for spatial resolution, which will exceed several tens of nanometers or even more. Moreover, the microscopic events leading to image distortion occur on their own space and time scale so that the image can on occasion get dynamically worse until basically a black background containing no information is returned. While we had to face these issues during SEM investigation of pristine pollens, we experienced instead a very good focusing of the electron beam during the entire duration of each session of imaging: no charging and no dynamical distortion of the image, even exploring a wide range of applied voltage in the operation of the SEM (5 kV to 20 kV). We tentatively ascribe this experimental evidence to the incorporation of iron in the SP that very likely improves the electrical transport properties of the pollen grain and eventually promotes the isotropic redistribution of the electrical charge on the surface of the grain. For what regards any possible changes involving the dimensions of grains upon Fe functionalization, in Fig. 4d, h statistical studies of diameter distributions for pristine grains as well as Fe-decorated sporopollenins are reported. The histogram in Fig. 4d (yellow color) reports the diameter distribution for 100 pristine pollen grains and the

Figure 4. Comparison between pristine pollen grains and Fe-decorated sporopollenins. (a–c) report scanning electron micrographs of pristine pollen grains at different length scales: particles are highlighted in yellow in the false-color micrograph in panel (a), while panel (b, c) allow to appreciate the porous surface of non-treated pollen grains. Panel (d) reports the diameter distribution of the particles under observation (100 grains were considered in order to retrieve the reported distribution) along with a gaussian fit resulting in \(\mu = 21.62 \mu m \) and \(\sigma = 2.64 \mu m \) values for the mean and standard deviation respectively. (e–h) report the corresponding scanning electron micrograph and statistical analysis for Fe-decorated sporopollenins. In this latter case, the gaussian fit (obtained taking into account measurements of the diameter for 100 treated particles) returns values \(\mu = 20.42 \mu m \) and \(\sigma = 2.45 \mu m \) for the mean and standard deviation of the distribution of diameters. A direct comparison between the reported panels allow to appreciate that no morphological nor dimension-wise changes are induced by the Fe decoration of sporopollenins from non-treated pristine pollen grains.
red dashed line represents a gaussian fit performed on these data. The best fit resulted in a distribution having \(\mu = 21.62 \, \mu m \) as the mean value and \(\sigma = 2.64 \, \mu m \) as standard deviation. Similarly, Fig. 4h reports corresponding data for Fe-decorated sporopollenins. In this case, the resulting values for the mean value and standard deviation of normal distribution describing the measured diameter values are \(\mu = 20.42 \, \mu m \) and \(\sigma = 2.45 \, \mu m \), meaning that there is no statistically relevant deviations between the diameter distribution of pristine pollen grains and Fe-decorated sporopollenins.

Along with SEM morphological and dimension-wise analysis, compositional analysis via energy-dispersive X-ray spectroscopy (EDX) has been performed both on pristine pollen grains as well as Fe-decorated sporopollenins: in particular, four pristine grains and four functionalized samples have been analyzed, resulting in fully coherent measurement outcomes. The results are reported in Fig. 5, while more technical details about the technique and setup are reported in the “Experimental section”. As visible in the elemental composition maps reported in Fig. 5, panels from a to l, sulfur, potassium, oxygen and phosphorus are found in both pristine and functionalized samples. Concerning Fe-decorated sporopollenins, the presence of Fe and Cl is evident as shown in Fig. 5, panels f, k and l. Furthermore, no trace of iron nor chlorine is found in pristine pollen grains. In order to more quantitatively describe the elemental composition of the analyzed samples, compositional spectra are reported in panels m and n of Fig. 5. Here, is it possible to notice the absence of peaks relative of Fe and Cl in the pristine sample, and their presence in the compositional spectrum of Fe-decorated sporopollenins. It is worth noticing two features of the measured spectra: first, in the Fe-decorated sporopollenins spectra the peak relative to K at \(\sim 3.314 \, keV \) is absent, probably due to the reduced presence of K in the functionalized samples; second, in the measured spectra the peaks relative to carbon seem to be not resolved due to the presence of other elements having peaks with similar energies, but carbon is found in the quantitative analysis of the measured spectra, reported in Table 2.

Investigation of the magnetic properties of Fe-decorated SPs using superconducting quantum interference device (SQUID) magnetometry and electron paramagnetic resonance (EPR). In Fig. 6, top-left panel, the field cooling (FC) magnetic susceptibility curves per unit mass, measured at 1 kOe, are shown for both samples: pristine (red curve) and IL-treated pollen grains (black curve). A markedly different behavior is evident at the lowest investigated temperatures, with \(\chi \)-values two order of magnitude higher for the IL-treated pollen grain, indicating that iron atoms are actually incorporated in this sample. The curve obtained by subtracting the pristine contribution to IL-treated pollen grains one is also shown in the same figure (blue curve). In the inset, the \(\chi \)-curve for pristine is highlighted and reveals, at about 50 K, the typical paramagnetic contribution of the liquid phase of the residual oxygen present in the sample, superimposed to a weak paramag-
Radicals present in the SP, such as carotene and phenols, actually contain oxygen and could account for this contribution. Magnetic susceptibility of the IL-treated sample measured at $H = 20$ Oe in ZFC and FC regime is reported in Fig. 6, top-right panel. The ZFC and FC curves are practically indistinguishable and a comparison between the FC curves at 1kOe and at 20 Oe (inset of Fig. 6, top-right panel) shows that they very nicely overlap, too. These measurements highlight the typical Curie-like paramagnetic behavior of the sample.

In Fig. 6, the bottom-left panel illustrates the magnetization measurements as a function of the magnetic field at $T = 300$ K for pristine sample. In the Inset an enlargement of the respective curve is reported in the low field region.

Element	Series	Pristine (wt%)	Pristine (norm. wt%)	Pristine (norm. at.%)	Fe-decorated (wt%)	Fe-decorated (norm. wt%)	Fe-decorated (norm. at.%)
Potassium	K-series	3.58	6.91	2.77	0.10	0.27	0.11
Sulfur	K-series	0.57	1.11	0.54	0.48	1.33	0.69
Oxygen	K-series	33.20	64.03	62.72	12.39	34.39	35.87
Phosphorus	K-series	1.629	3.14	1.59	1.96	5.44	2.93
Carbon	K-series	12.87	24.81	32.38	13.48	37.44	52.01
Chlorine	K-series	–	–	–	4.33	12.02	5.66
Iron	K-series	–	–	–	3.28	9.11	2.72
Sum		51.86	100.00	100.00	36.02	100.00	100.00

Table 2. Quantitative analysis of acquired compositional spectrum measured for one of the analyzed samples of pristine pollen grains and Fe-decorated sporopollenin.

Figure 6. (Top-left) Temperature dependence of mass magnetic susceptibility at 1kOe for pristine (red curve) and IL-treated (black curve) samples. Blue curve represents the IL-treated curve after subtraction of pristine contribution. The Inset shows pristine χ-curve in an enlarged scale. (Top-right) ZFC and FC magnetic susceptibility for IL-treated sample at 20 Oe. In the Inset FC magnetic susceptibility at 20 Oe (green curve) and at 1 kOe (black curve) are compared. (Bottom) Magnetization as function of H measured at room temperature (bottom-left) and at 5 K (bottom-right) In the Insets an enlargement of the respective curve is reported in the low field region.
to the dominant paramagnetic contribution of Fe in the sample. However, the amount of the phase giving rise to this saturated magnetic contribution can be considered almost negligible. For example, in the case of metallic Fe (M ≈ 222 emu/g, Tc ≈ 770 °C), its amount would be lower than 0.003% of the sample. Hysteresis cycle measured at 5 K and reported in Fig. 6, bottom-right panel, displays a clear linear trend consistent with the dominant paramagnetic contribution of iron in the sample. The linear trend is well evident also in the low field region, as shown in the Inset.

From the analysis of magnetic results, we can tentatively outline a few possible microscopic mechanisms related to the Fe insertion in the IL-treated sample. The Curie constant value assessed from susceptibility curves allowed us to estimate the amount of the magnetic ions per unit volume of this sample, for which a density of ≈ 0.5 g/cm³ has been empirically evaluated. By assuming g = 2 and S = 2 or S = 5/2 (typical values for Fe²⁺ and Fe³⁺ ions in high spin (HS) configuration, respectively) we got approximately N = (1.1 ± 0.3) × 10²⁰ Fe ions/cm³. Concerning this estimate, we should keep in mind that the N value increases if the density is larger than 0.5 g/cm³ and for lower spin values. A negligible value was obtained for the Weiss constant, confirming our sample is not far away from a pure paramagnetic system.

The room temperature EPR spectra from pristine (red curve) and IL-treated (dark curve) samples, collected in the same experimental conditions and normalized to the sample mass, are directly compared in Fig. 7, left panel. The spectrum from IL-treated sample consists of two main contributions: a wide signal (∆B ≈ 680 G) centered at g ≈ 2.03, attributable to Fe⁺³ paramagnetic ions in sample regions with a high Fe concentration, and a narrow signal (∆B ≈ 98 G) centered at g ≈ 4.26, typical of Fe³⁺ ions in structurally disordered systems, e.g. coming from Fe²⁺ ions in low symmetric, tetrahedrically or octahedrically coordinated, isolated sites in glass-like systems. Besides, a very narrow signal (∆B ≈ 8 G) at g = 2.003 is recorded, as shown in the figure’s enlargement. An EPR line at g = 2.003 is recorded from pristine sample, too, with very low intensity. We can tentatively ascribe this signal to traces of paramagnetic radicals present in the compound. Other resonances are recorded from pristine sample, with g values ranging between 2.2 and 2.8, with negligible intensities with respect to the features observed for the IL-treated sample. These signals are attributable to traces of unknown paramagnetic species.

It is worth mentioning that the IL-treated sample was prepared in two distinct batches, here labeled Fe-SP1 and Fe-SP2, in order to test the reproducibility of the magnetic properties induced by the functionalization of SP with ionic liquids. The EPR spectra measured for the two batches, normalized for the same experimental conditions and sample mass, overlap very well as highlighted in Fig. 7, right panel. A weak difference can be observed at high magnetic fields, which is due to an experimental drift more evident for sample Fe-SP1 due to its lower mass in the EPR cavity (mass of Fe-SP1 was ≈ 0.1 times the mass of sample Fe-SP2), which is corroborated by the trend of the signal-to-noise ratio. From the double integration of the derivative spectrum, the area of the IL-treated sample can be evaluated from empirical calculations, obtaining ≈ 10¹⁷–10¹⁸ centers for 1 g of sample, depending on the spin value. Finally, the order of magnitude of paramagnetic centers contributing to the narrowest signal centered at g = 2.003 for the IL-treated sample can be evaluated from empirical calculations, obtaining ≈ 10¹⁷–10¹⁸ centers for 1 g of sample, depending on the spin value. Following the same empirical calculations, about 10¹⁷ Fe⁺³ ions (S = 5/2) can be estimated to be responsible for the signal centered at g = 4.26. Concerning the estimation of Fe amount (N-value) in the IL-treated sample, a good agreement is found between the N values independently obtained by the two magnetic techniques. It has to be observed that, in principle, both Fe²⁺ and Fe³⁺ would contribute to the χ and M curves while, at the investigated temperature, the EPR technique is only sensitive to Fe³⁺. The good consistence between magnetization and EPR results then suggests that Fe entered the IL-treated sample mainly as Fe³⁺.

In conclusion, starting from pollen grains and using ionic liquids, we obtained Fe-decorated sporopollenins, preserving the integrity and morphology of the organic capsules, as demonstrated with scanning electron
microscopy investigations. FT-IR suggested the presence of Fe in the capsule, which was confirmed by X-ray photoemission spectroscopy as well as EDX studies. The paramagnetic behavior of our Fe-functionalized sporopollenin was demonstrated thanks to electron paramagnetic resonance and magnetization measurements. The present strategy of combining ionic liquids’ chemical properties, which allow for sporopollenin isolation from pollen grain, together with the modification of magnetic properties is of interest in view of the simultaneous functionalization and field effect control of semiconductor-based nanodevices. Besides, while nanoscale architectures based on inorganic systems functionalized with metals represent a solid playground for advanced studies across magnetism, electronics and photonics at large, the Fe-functionalized organic microparticles investigated in the present work bear great potential for applications in biotechnology, biomedicine and micro-robotic. Proof of concept and/or possible application of chemical modified pollen grains has been reported in literature and recently reviewed. Our Fe-decorated microparticles, characterized by a remarkably narrow size dispersion, are expected to be compatible with human blood vessels for drug delivery of highly localized pharmaceutical agents in difficult-to-access regions. On top of this, they can be used as magnetically-driven microtribology performing the cleaning and grinding of channels, spanning from blood vessels to pipelines. Finally, more possible applications can be envisioned in the context of magneto-hydrodynamic fractionation devices used for immunomagnetic affinity-based sorting of multiple biological substances.

Experimental section

Materials and methods. Tree/shrub pollens from Populus deltoides (eastern cottonwood) were purchased from Sigma-Aldrich. All reagents and solvents employed were of analytical grade and were used without further purification. 1-Butyl-3-methylimidazolium tetrachloroferrate, [bmim][FeCl4], was prepared following a previously reported procedure.

To 200 mg of Populus deltoides pollen grains, 2.0 g of [bmim][FeCl4] were added and the mixture was heated at 160 °C for 1.5 h. Sporopollenin microcapsule were collected by filtration using a glass filter funnel and filter paper. For microscopic investigations, FT-IR suggested the presence of Fe in the capsule, which was confirmed by X-ray photoemission spectroscopy as well as EDX studies. The paramagnetic behavior of our Fe-functionalized sporopollenin was demonstrated thanks to electron paramagnetic resonance and magnetization measurements. The present strategy of combining ionic liquids’ chemical properties, which allow for sporopollenin isolation from pollen grain, together with the modification of magnetic properties is of interest in view of the simultaneous functionalization and field effect control of semiconductor-based nanodevices. Besides, while nanoscale architectures based on inorganic systems functionalized with metals represent a solid playground for advanced studies across magnetism, electronics and photonics at large, the Fe-functionalized organic microparticles investigated in the present work bear great potential for applications in biotechnology, biomedicine and micro-robotic. Proof of concept and/or possible application of chemical modified pollen grains has been reported in literature and recently reviewed. Our Fe-decorated microparticles, characterized by a remarkably narrow size dispersion, are expected to be compatible with human blood vessels for drug delivery of highly localized pharmaceutical agents in difficult-to-access regions. On top of this, they can be used as magnetically-driven microtribology performing the cleaning and grinding of channels, spanning from blood vessels to pipelines. Finally, more possible applications can be envisioned in the context of magneto-hydrodynamic fractionation devices used for immunomagnetic affinity-based sorting of multiple biological substances.

Experimental section

Materials and methods. Tree/shrub pollens from Populus deltoides (eastern cottonwood) were purchased from Sigma-Aldrich. All reagents and solvents employed were of analytical grade and were used without further purification. 1-Butyl-3-methylimidazolium tetrachloroferrate, [bmim][FeCl4], was prepared following a previously reported procedure.

To 200 mg of Populus deltoides pollen grains, 2.0 g of [bmim][FeCl4] were added and the mixture was heated at 160 °C for 1.5 h. Sporopollenin microcapsule were collected by filtration using a glass filter funnel and filter paper. For microscopic investigations, FT-IR suggested the presence of Fe in the capsule, which was confirmed by X-ray photoemission spectroscopy as well as EDX studies. The paramagnetic behavior of our Fe-functionalized sporopollenin was demonstrated thanks to electron paramagnetic resonance and magnetization measurements. The present strategy of combining ionic liquids’ chemical properties, which allow for sporopollenin isolation from pollen grain, together with the modification of magnetic properties is of interest in view of the simultaneous functionalization and field effect control of semiconductor-based nanodevices. Besides, while nanoscale architectures based on inorganic systems functionalized with metals represent a solid playground for advanced studies across magnetism, electronics and photonics at large, the Fe-functionalized organic microparticles investigated in the present work bear great potential for applications in biotechnology, biomedicine and micro-robotic. Proof of concept and/or possible application of chemical modified pollen grains has been reported in literature and recently reviewed. Our Fe-decorated microparticles, characterized by a remarkably narrow size dispersion, are expected to be compatible with human blood vessels for drug delivery of highly localized pharmaceutical agents in difficult-to-access regions. On top of this, they can be used as magnetically-driven microtribology performing the cleaning and grinding of channels, spanning from blood vessels to pipelines. Finally, more possible applications can be envisioned in the context of magneto-hydrodynamic fractionation devices used for immunomagnetic affinity-based sorting of multiple biological substances.

References

1. Choi, S., Gopal, A. I., Ryu, J. & Lee, K. P. Hollow spherical nanocapsules of poly(pyrrrole) as a promising support for Pt/Ru nanoparticles based catalyst. Mater. Chem. Phys. 120, 18–22. https://doi.org/10.1016/j.matchemphys.2009.11.035 (2010).
2. Abbaspourrad, A., Carroll, N. J., Kim, S. H. & Weitz, D. A. Polymer microcapsules with programmable active release. J. Am. Chem. Soc. 135, 7744–7750. https://doi.org/10.1021/ja401960f (2013).
3. Zhang, S., Zhou, Y., Nie, W., Song, L. & Zhang, T. Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion(II) and chromium ion(III). Ind. Eng. Chem. Res. 51, 14099–14106. https://doi.org/10.1021/ie301942j (2012).
4. Ali, S. I., Heuts, J. P. A. & Herk, A. M. Vesicle-templated pH-responsive polymeric nanocapsules. Soft Matter 7, 5382–5390. https://doi.org/10.1039/C1SM05266C (2011).
5. Haladjova, E., Rangelov, S., Tsvetanov, C. & Simon, P. Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. Polymer 55, 1621–1627. https://doi.org/10.1016/j.polym er.2014.02.026 (2014).
6. Wu, D. et al. Nanoporous polystyrene and carbon materials with core shell nanosphere-interconnected network structure. Macromolecules 44, 5846–5849. https://doi.org/10.1021/ma1320707 (2011).
Acknowledgement

This work is dedicated to the beloved memory of Prof. Cinzia Chiappe. The authors would like to thank Professor Alessandro Lascialfari for the help in the magnetization measurements and for constructive criticism of the manuscript.
Author contributions
C.C., C.S.P., M.J.R.-D. and F.R. conceived the study. M.J.R.-D., D.P, A.G., M.G., N.C., M.C.M. and F.R. performed the experiments. F.R., L.G., M.J.R.-D., M.C.M., S.C. and C.S.P. wrote the main text. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.S.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020