Contribution of spring and summer hydrodynamic conditions in the eutrophication process at Lake Taihu, China

Qhtan Asmaa¹, Yiping Li¹*, Jin Wei¹, Abdul Jalil³, Minsheng Bu¹, Xiaomeng Gao², Wei Du⁴, Wencai Wang⁵ and Jianwei Wang⁶

¹Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
²Zhejiang Keepsoft Information and Technology Corp., Ltd, Hangzhou, 310051, China.
³Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
⁴Nanjing Institute of Environmental Science, the Ministry of Environment Protection of PRC, Nanjing, 210042, China.
⁵South China Institute of Environmental Sciences, the Ministry of Environment Protection of PRC, Guangzhou, 510655, China.
⁶HydroChina Huadong Engineering Corporation, Hangzhou, 310014, China.

Received 28 January, 2020; Accepted 2 March, 2020

Contribution of different hydrodynamic conditions caused nutrients released and algal blooms growth and deteriorates water quality. Important factors related to climate variation, such as water temperature, precipitation, wind, solar radiation, and human activities can influence trophic conditions in the water column. A field survey was conducted at Meiliang Bay during spring and summer seasons and in diverse hydrodynamic conditions. The study aimed to investigate the variation of wave shear stress generated by strong wind and vessels. The measurement results showed that the shear stress increased in direction with increasing wind speed and significant wave heights. Wave shear stress τ has a maximum value $= 0.2 \text{ Nm}^2$ during weak wind $1.5-2.5 \text{ m/s}$ and significant wave height $= 0.20 \text{ m}$ while, it has a maximum value $= 0.8 \text{ Nm}^2$ with strong wind range from 4.5 to 10 m/s corresponding with the significant wave height which has maximum value $= 0.65 \text{ m}$ in 2014. Also, wave shear stress τ has maximum value $= 0.25 \text{ Nm}^2$ with maximum significant wave height $= 0.6 \text{ m}$ during passages vessels in 2016. It ranges from 0.8 to 0.8 Nm^2 with maximum wave amplitude value $U = 0.4 \text{ m/s}$ passages heavy ship in 2018. The results indicated that the bottom layer has a major impact, with strong winds and vessels' induced waves. Furthermore, the shear stress generated by those forces impacted directly on the boundary of the lake and caused sediment resuspension leading to release nitrogen. The outcomes of this paper give a clear idea about the processes happening in the lake.

Key words: Vessels, hydrodynamic, waves, shear stress, Meiliang Bay, Lake Taihu.

INTRODUCTION

Climate change can cause increasing temperatures and evaporation while decreasing water obtainability. In addition, climate change can increase surface runoff causing floods, and may also result in deteriorated water quality. Sensitive factors for climate variation, for example, water temperature, precipitation, wind, solar radiation and human
activities can also influence trophic conditions in water pole (Nazari-Sharabian et al., 2018). Differences in hydrodynamics among lakes have been related with variances in morphological geometries and the neighbouring topographies in addition to hydro-meteorological and geochemical influences (Sharip et al., 2018). Shallow lakes are characterised by intermittent resuspension of sediments which happens when the bottom shear stress exceeds the critical shear stress (Li et al., 2017b). Li et al. (2017a) studied the impact of wind field-induced flow velocity at the Eastern Bay of Lake Taihu and found that wind field is a significant factor causing resuspension of sediments and nutrients. Waves and currents generated shear stresses are the active forces at the deep water that influence sediment distribution, micro-topography, and habitat. Bottom shear stresses and its forcing processes mobility events were different spatially and temporally in the Middle Atlantic (Dalyander et al., 2013). Chao et al. (2008) developed a three-dimensional numerical model for simulating cohesive sediment transport in water bodies where wind-induced currents and waves are important and the results showed that the sediment is resuspended by the actions of wind waves and by shear stress generated and transported by wind-driven flow. Linares et al. (2018) indicated that the oscillations on bottom shear stress in freshwater estuaries in the Great Lakes are induced meteorologically and can increase it by an order of magnitude in comparison with river-dominated flow conditions. Pang et al. (2006) showed that lake current had relatively significant effects on the sediment solids concentrations (SSC) at littoral zone of Lake Taihu, while SSCs at the central area of the Lake was mainly influenced by waves. Waves are the most important factor for controlling sediment resuspension processes. Their effects are more noticeable in the shoreline zone than the middle zone due to the waves interacting directly with the shoreline (Qin, 2004; Gabel et al., 2017). The wave’s interactions affect sediment surface, biota, cause resuspension, erosion, transport of particles, the release of nutrients, methane reallocation and stress on zoobenthos affecting their diversity, abrasion of biofilms from stones, and the spread of aquatic macrophytes (Luetich et al., 1990; Hawley, 2000, Eriksson et al., 2004; Bussmann, 2005; Peters, 2005; Scheifthacken, 2006). Pollution of Lake Taihu is resulting from anthropogenic development in the Lake Taihu Basin. Lake Taihu has knowledgeable several ecological problems meanwhile the 1960s, mainly eutrophication and cyanobacterial blooms (Qin et al., 2007; Paerl et al., 2011; Jiang et al., 2018). Anthropogenic nutrient over-enrichment, coupled with rising temperatures and an increasing frequency of extreme hydrologic events are accelerating eutrophication and encouraging algal blooms. These consequently affect water supplies, fisheries, recreation, tourism, and property values (Paerl et al., 2011; Ma et al., 2019). The watershed nutrient management struggles to control algae blooms in huge quantities and cover the lake by reducing P inputs. But the N loading has also increased, supporting blooms of non-N2 fixers, and changing lake nutrient resources and cycling characteristics (Qin, 2004; Qin et al., 2007; Paerl et al., 2011). Water quality parameters associated with limitation factors change according to the real state and sensitivities of water parameters (Jiang et al., 2018). Trophic level index (TLI) and water quality index (WQI) methods are used in the lake to determine the eutrophication levels and the status of water quality (Wang et al., 2019). Anthropogenic activities affect the ecological stability of Lake. Studying water quality parameters is very important for solving the problems in the ecosystem. Nutrients and pollutants are transmitted and accumulate in Meiliang Bay. The objectives of this study are therefore to: 1) to study the variation of wave shear stress according to the inducer, and 2) to assess the water quality by hierarchical cluster in spring and summer seasons.

MATERIALS AND METHODS

Description of study site

Field observations were recorded in Meiliang Bay, which is located at (31°25.41′N, 120°12′46.90′E; Figure 1) in three periods (April, 2014; May, 2016, and July, 2018) in the summer seasons with different hydrodynamic conditions. Meiliang Bay is a semi-enclosed bay with a surface area of 129.3 km², 1.9 m average depth and is located northern part of Lake Taihu (Liu et al., 2014; Gao et al. 2017; Li et al. 2017b). It is extremely eutrophic, as indicated by cyanobacteria blooms during summer leading to severe water quality problems (Gao et al. 2017; Li et al. 2017b). Meiliang Bay has average annual wind speed 4.5 m/s, with dominant summer wind from the southeast and dominant winter wind from the northwest (Wu et al., 2013; Gao et al., 2017; Li et al., 2017b).

Field observation pattern instruments

The instrument’s patterns were used in three field observations as shown in Table 1. According to the Chinese standard methodology for lake eutrophication surveys (Jin, 1990). This method is corresponding to the American standard methods (APHA, 1998), for water quality parameters (James et al., 2009).

Water quality sampling

Water quality samples were transported to Taihu Laboratory Lake Ecosystem Research, Chinese Academy of Sciences (TLLER) for filtration to obtain suspended particulate matter (SPM) substance by

*Corresponding author. E-mail: liyiping@hhu.edu.cn.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
Figure 1. Location of Study area with descriptions of sampling sites of Lake Taihu.

Table 1. Instruments pattern were used in Meiliang Bay.

Detailed parameters of A. Meteorological data	Instruments	Position of instruments
A.1 wind field Wind speed	PH-Handheld weather stations 5 min	5 m above the water surface
Wind direction	TLLER weather stations, 1 h	20 m above the sea level
Wave (wave height H, period T)	TLLER weather stations, 1 h	20 m above the sea level
	RBRduo T.D wave, 5 min	1.77 m above the bottom
The concentration of suspended sediment (SS)	OBS-3A, 3 min	0.95 m below the water surface; 2.65 m under the water surface
B.2 Conventional physical and chemical indicators	Water temperature (WT) Dissolved oxygen (DO) mg/L pH; conductivity	YSI 6600, YSI ProPlus10 min
	TN; NH₃-N; NO₃⁻N; NO₂⁻N; DTN; TP; PO₄³⁻; DTP& Chl-a B.4 Algae concentration.	2.3, 0.5 m below the water surface
		20cm below the water surface; 10cm above the bottom

filtering only 250 ml of water through cellulose acetate membranes (0.45 μm), then the analyses including total nitrogen (TN), total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN; ammonium (NH₄⁺) + (NO₃⁻) + (NO₂⁻)), total phosphorus (TP), total dissolved phosphorus (TDP) and Phosphate (PO₄³⁻) were performed. Other parameters, including pH, water temperature (T), dissolved oxygen (DO), total dissolved solids (TDS) and electrical conductivity (EC) were obtained by using a multi-parameter instrument EXO2 sonde Yellow Springs Instrument (YSI) 6600 and YSI ProPlus. As well as, Synchronous, high-frequency measurements of wind, currents, waves, and Sediment resuspension concentrations (SSCs) were carried out in this study.
The observation tools included an RBR duo T.D wave tide gauge, PH-II Handheld weather stations, a PHWD wind direction sensor, and a bottom-mounted holder equipped with an Acoustic Doppler current profiler (ADP Argonaut-XR), Acoustic Doppler Velocimeter (ADV Ocean, Son Tek Inc.), and Optical Backscatter Sensor (OBS) turbidity meter. The wind parameters were measured using PH-II Handheld weather stations and a PHWD wind direction sensor fixed above the surface of the lake.

Wave data collection

Wave parameters were analysed following the general wave data Equation 1:

\[W_s = \left(\frac{dH^2}{2\pi} \right) \tan h \frac{2\pi h}{W_s} \]

(1)

Wave parameters were analysed following the general wave data equation (1):

\[W_s \] is a reference to the significant wavelength, \(H \) is the significant wave period, and \(h \) is the depth points we observed. The maximum orbital velocity of a wave near the bottom layer \(u_w \) (m/s) can be expressed as Equation 2 following the method by Madsen (1976) and Whitehouse (2000)

\[O_w = \frac{\pi E_s}{L_s \sin \left(\frac{2\pi e}{P_s} \right)} \]

(2)

Where \(E_s \) means the effective wave height (meters), \(L_s \) the wavelength (m), \(P_s \) is wave period, and \(e \) is the depth points in the meter.

Shear stress collection

Shear stress created by waves was calculated by the following Equation 3 (Grant and Madsen 1979):

\[\tau_w = 0.5 \rho f_w O_w^2 \]

(3)

The abbreviation \(\tau_w \) is shear stress (N/m²), \(\rho \) indicated to the density of water (kg/m³), \(O_w \) the maximum wave orbital velocity near the bed (calculated by Equation 2), and the wave \(f_w \) friction coefficient related to the lake bottom roughness and Reynolds number. The \(f_w \) calculated as follows (Jiang et al., 2000; Li et al., 2017b; Shih et al., 2017).

General hydrophysiology

The spatial and temporal variation of the water surface quality was evaluated by using a Multivariable method during different hydrodynamic effects. The Multivariate hierarchical cluster analysis (HCA) agreements the use of a mathematical explanation of the relationship to group several measures into the same section or between the diverse sections. Considering the temporal and spatial variations in Lake water quality and determining the factors that affect water quality can assist researchers in establishing significance for sustainable water management (Chen and Lu, 2014). Samples categorised according to their parameters. All the selected variables Temperature (Temp)°C, Dissolved oxygen (DO)mg/L, Salinity (SAL), pH, Chlorophyll-a (Chl-a) µg/L, Turbidity (Turbid) NTU were utilised in this statistical analysis. The results of all samples were statistically analysed by software Origin pro-2018.

RESULTS AND DISCUSSION

In Lake Taihu, It is known that the wave height increased when the wave period is increased. While wave shear stress has no significant by the wave period (Ding et al., 2018). Data from near bottom of the lake by using high-frequency instruments expose that the shear stress has different critical means values in spring and summer seasons in the same site according to the inducers of waves. The measurement results showed that the shear stress increased in direction with increasing wind speed (m/s) and significant wave height (m) (Figure 2). Also, the data analysis shows that different hydrodynamic results express the influence that happened during generated wave shear stress by different forces in the eutrophic shallow Lake in China. Wave shear stress \(\tau \) has maximum value = 0.2 (Nm²) during weak wind 1.5-2.5 m/s and significant wave height \(H_w \) = 0.20 (m) while wave shear stress \(\tau \) has maximum value = 0.8(Nm²) with strong wind range between 4.5 to 11 (m/s) corresponding with the significant wave height which has maximum value = 0.65 (m) in 2014. Also, wave shear stress \(\tau \) has maximum value = 0.25 (Nm²) with maximum significant wave height = 0.6 (m) during passages high-speed vessels in 2016. Wave shear stress \(\tau \) has a maximum value range from -0.8 to 0.8 Nm² with maximum wave amplitude value \(U \) = 0.4 m/s during blowing water by heavy ship in 2018 (Figure 3).

Waves under strong wind forcing have action on the boundary of water and stimulated sediment resuspension, while the critical shear stresses caused by waves and currents have the same degree with weak wind forcing (Qin, 2004; Wei et al., 2019). Zheng et al. (2015) explore the variations of the current speed, wave parameters and sediment resuspension under different wind speeds in Lake Taihu and found that there were exponential distributions between the mean wind speed and wave parameters and between the mean wind speed and current speed.

The scholars found that with increasing surface wind, a consistent increase in the concentration and particle size of the Suspended Particulate Matter (SPM) in the water column. The disturbance of the water column can lead to sediment disturbance and nutrients released larger than steady conditions. The resuspension process has a significant correlation with the release of nutrients from sediment. Waves are the main reason for sediment resuspension generated by shear stresses in the central part of the shallow lake and Meiliang bay (Asmaa, 2019).

For a few days field observation, by using Yellow Springs Instrument (YSI), (Table 2) shows that the comparisons of means physical parameters were confirmed the trophic state in Lake Taihu during three
Figure 2. Different hydrodynamic conditions showing wind speed (m/s); significant wave height (m); wave shear stress (N/m²) in April 2014; May 2016 and July, 2018.

summer seasons under different hydrodynamic conditions. The means of Total dissolved solids (TDS), Dissolved Oxygen (DO)/mg/L, Salinity (SAL), Chlorophyll-a (Chl-a) ug/L, Turbidity (NTU) and Blue-green algae BGA-PC 1 (µg/L) are gathered with Multivariate analysis. From the table, the means comparisons of physical parameters show that the highest mean values were in 2014 and the lowest mean values were in 2018.

Euclidean distance was used in this analysis and categorize the water samples. Euclidean distance estimates if the samples can be grouped into statistically different hydrochemical groups that could be important in the physical background. The figure shows the groups, which were categorized in the water samples in the seasons.

In the diagram of Hierarchical Cluster Analysis, there was only one cluster appear in the three field observations and the most representative observation and the Least representative Observation was summarized in Table 3. The dendrogram tree of water quality parameters for 40 samples selected for analysis has descriptive in Table 4. In April, 2014, the means of water quality parameters were of the temperatur was 16°C the dissolved oxygen was 23.01 mg/dL, salinity was 0.33 PPT, pH was 9.15, Turbidity was 60.545(NTU), and Chlorophyll was 4.95 µg/L. While, in May, 2016 the means of water quality parameters were of temperature (°C) was 19.6, the dissolved oxygen was 7.65 mg/dL, Salinity was 0.25 PPT, pH was 8.5, Turbidity was 37.32 NTU, and Chlorophyll was 5.68 µg/L. Also, in July, 2018 the means of water quality parameters were of temperature (°C) was 33.56, the dissolved oxygen was 10.55 mg/dL, Salinity was 0.24 PPT, pH was 10.26, Turbidity was 19.96 NTU, and Chlorophyll was 3.81 µg/L.

Figure 4 shows that the means of nutrients: total phosphorus (TP), total dissolved nitrogen and phosphatase have similar values while total Nitrogen (TN), total dissolved nitrogen (TDN), Ammonia (NH₃) and Phosphate (PO₄) have the maximum means values and more sensitive for resuspension in the water with the
Figure 3. Diagram of hierarchical cluster analysis for water quality physical parameters during spring and summer seasons.

Table 2. Descriptive statistics of physical parameters of water quality in the spring and summer seasons.

Parameter	N.analysis	Mean	SD	Sum	Minimum	Medium	Maximum
TDS1/2014	4	0.46	1.29	1.85	0.457	0.465	0.47
TDS2/2016	4	0.34	0.006	1.37	0.340	0.34	0.34
TDS2/2018	Na	Na	Na	Na	Na	Na	Na
DO1/2014	4	8.76	0.91	35.07	8.676	8.75	8.89
DO2/2016	4	8.05	1.96	32.22	5.247	8.58	9.79
DO3/2018	4	10.21	0.005	40.86	10.21	10.215	10.22
Sal1/2014	4	0.35	0.005	1.40	0.35	0.35	0.36
Sal2/2016	4	0.25	0.004	1.02	0.25	0.25	0.26
Sal3/2018	4	0.24	0	0.96	0.24	0.24	0.24
Chlo-a1/2014	4	13.33	2.25	53.34	11.27	12.93	16.21
Chlo-a 2/2016	4	5.067	0.78	20.27	3.96	5.25	5.79
Chlo-a 3/2018	4	4.05	0.08	16.22	4	4.02	4.18
Turbidity 1	4	120.8	32.10	483.49	93.93	111.04	167.48
Turbidity 2	4	32.64	4.17	130.58	28.29	32.1	38.09
Turbidity 3	4	16.05	1.61	64.21	14.64	15.73	18.12
BGA-PC 1 µg/L	4	3961.8	1801.1	15847.4	1837.05	3905.10	6200.2
BGA-PC 2 µg/L	4	8126.3	7207.4	32505.4	2034.63	5972.8	18525.049
BGA-PC 3 µg/L	4	0.46	1.290	1.85963	0.457	0.465	0.47
strong wind and vessels conditions. Eutrophication changed in the equilibrium of the aquatic ecosystem and lead to the damage of the water ecosystem and the steady decline of its functions. Consequently, the impact on water quality characteristics appears worse in the transparency of the water. Therefore, the sunlight penetrates the water body and photosynthesis plants under the water layers will be decreasing totally. Water eutrophication caused the supersaturation of nutrients which means lack of dissolved oxygen in the water and this is very dangerous to aquatic animals. Also, Algae produces toxins and increases organic matter; the organic matter in the water produces harmful gases, which are toxic for the fish and seashell (Qin et al. 2007, Yang et al. 2008, Qin 2009, Wang and Wang 2009). Scholar’s investigations found that the algae produced toxins, such as Cyanotoxins, were detected in the Yangtze River, in addition to many reservoirs and lakes of Yellow River valleys, apart from Dianchi Lake, Lake Taihu and Lake Chaohu (Ye et al. 2007, Yang et al. 2008).

The major influencing factors on water eutrophication include nutrient enrichment, hydrodynamics, environmental factors such as temperature, salinity, carbon dioxide, element balance, etc., and microbial and biodiversity. Waves and currents play an important role in sediment resuspension and internal nutrient release in large, shallow lakes. The turbidity started to increase at wind speeds of approximately 4 m/s and significantly increased when wind speeds exceeded 6 m/s. Wave-generated shear stress contributed more than 95% to sediment resuspension and that only in weak wind conditions (<4 m/s) and the shear stresses generated by currents and waves contributed equally. Other scholars found similar results by Ding et al. (2018), Jalil et al. (2019), and Asmaa.
Most of the previous sediment dynamics observations have been done in rivers and open channels where sediment resuspension is mainly caused by current-induced shear stress (Wang et al., 2014). However, it has been shown that wind-induced wave contributes significantly to the sediment resuspension process in shallow lakes, ponds, and nearshore of the lakes. Wave-generated shear stress contributed more than 70% to sediment resuspension in shallow lakes (Sheng, 1979; Wang et al., 2014). Understanding the mechanisms of water eutrophication is important and will help with the prevention of water eutrophication. Water eutrophication in lakes, reservoirs, estuaries, and rivers is prevalent around the world, specifically in developing countries such as China (Yang et al., 2008; Qin, 2009).

The results of the compressions method evaluate the spatial and temporal variation of the water surface quality of Meiliang Bay. The statistical analysis of all the selected variables Temperature (Temp) °C, Dissolved oxygen (DO)/mg/L, Salinity (SAL), pH, Chlorophyll-a (Chl-a) µg/L and Turbidity (Turbid) NTU are confirmed the trophic state (Table 2) and categorises statistically two different hydrochemical groups that could be important in the physical background. The compressions method provided similar results that corresponded with the lake’s real trophic cases. Strong evidence that the regression relationship between chlorophyll-a, dissolved oxygen with P-value = 0.00, and pH levels in Meiliang bay are significantly time-dependent and correlated when algal growth increased the dissolved oxygen decreased in the seasons. Hypoxia is the result of low Dissolved oxygen content (≤2 mg/L) in shallow lakes and it lies at the variable depth of water profile causing eutrophication in shallow lakes (Zhou et al., 2013). This Bay is facing severe water quality and algal bloom problems (Zhu et al., 2013; Liu et al., 2014) which is directly related to the wind-induced vertical mixing of nutrients and reduced amount of dissolved oxygen causing increased hypoxia. Our finding is similar to the study found by Khan and Ansari (2005) which demonstrated that the pH and dissolved oxygen affecting water eutrophication and both factors are very important.

Also, increased the maximum means values of total Nitrogen (TN), total dissolved nitrogen (TDN), Ammonia (NH₄) and Phosphate (PO₄) with strong wind and vessels this indicated that during different hydrodynamic conditions the most nutrient released from the bottom layer in the lake by those forces is nitrogen and sensitive for resuspension in the water. Furthermore, the results revealed that nitrogen is the critical limiting factor to algal growth and eutrophication in Lake Taihu, this finding corresponds to the studies found by Alongi et al. (2003), Paerl et al. (2011). Moreover, Cheng and Li (2006) shown that the eutrophication or red tide happens when N concentration in water reaches 300 µg/L and P concentration reaches 20 µg/L. The trophic mean state in Meiliang Bay in the three summer seasons nearby the same but in 2014 is the strongest than 2016 and a noticeable decline in 2018. This result may be because of
climate changed or the heavy rain during the field observation period.

Conclusion

The present study studied the compressions between different hydrodynamics conditions. Field observations were in summer seasons at various hydrodynamic forces in Meiliang Bay Lake Taihu. The results indicated that the bottom layer has a significant impact on strong winds and vessel waves. Furthermore, when the shear stress generated by those forces, it impacted directly on the boundary of the lake and caused sediment resuspension leading to release nitrogen. The worst water quality was in summer season in 2014 and 2016, and then entirely decline in 2018. These results may be due to Typhoon or heavy rain during the collection of data. The new method of hierarchical cluster analyses and variance was used to assess the water quality in different hydrodynamic conditions. The outcomes of this paper give a clear idea about the processes happening in the lake and which force is more effective on the boundary and released nutrients that encourage algal blooms in these seasons.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

American Public Health Association (APHA). (1998). Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington, DC.
Alongi DM, Chong VC, Dixon P, Sasekumar A, Tirendi F (2003). The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia. Marine Environmental Research 55:315-333.
Asmaa Q (2019). Waves-waves collide induced by different wind directions caused high exchanged in the water level at the open area Shallow Lake, China African Journal of Environmental Science and Technology 13(2);91-103.
Bussmann I (2005). Methane release through resuspension of littoral sediment. Biogeochemistry 74:283-302.
Chao X, Jia Y, Shields FD, Wang SSY, Cooper CM (2008). Three-dimensional numerical modeling of cohesive sediment transport and wind wave impact in a shallow oxbow lake. Advances in water resources 31:1004-1014.
Chen J, Lu J (2014). Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china. PloS one 9:e102714-e102714.
Cheng X, Li S (2006). An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Chinese Science Bulletin 51:1603-1613.
Dalyander PS, Butman B, Sherwood CR, Signell RP, Wilkin JL (2013). Characterizing wave- and current- induced bottom sheat stress: U.S. middle Atlantic continental shelf. Continental Shelf Research 52:73-86.
Ding Y, Sun L, Qin B, Wu T, Shen X, Wang Y (2018). Characteristics of sediment resuspension in Lake Taihu, China: A wave flume study. Journal of Hydrology 561:702-710.
Eriksson BK, Sandström A, Isaeus M, Schreiber H, Karås P (2004). Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine, Coastal and Shelf Science 61:339-349.
Gabel F, Lorenz S, Stoll S (2017). Effects of ship-induced waves on aquatic ecosystems. Science of The Total Environment 601-602:926-939.
Gao X, Li Y, Tang C, Acharya K, Du W, Wang J, Luo L, Li H, Dai S, Yu Z (2017). Using ADV for suspended sediment concentration and settling velocity measurements in large shallow lakes. Environmental Science and Pollution Research 24:2675-2684.
Grant WD, Madsen OS (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans 84:1797-1808.
Hawley N (2000). Sediment resuspension near the Keweenaw Peninsula, Lake Superior during the fall and winter 1990-1991. Journal of Great Lakes Research 26:495-505.
Jaila A, Li YP, Zhang K, Gao XM, Wang WC, Khan HOS, Pan BZ, Ali S, Acien K (2019). Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. International Journal of Sediment Research 34:205-215.
James RT, HK, Zhu GW, Qin BO (2009). Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, PR China and Lake Okeechobee, USA). Hydrobiologia 527:211-231.
Jiang L, Li Y, Zhao X, Tillotson MR, Wang W, Zhang S, Sarpong L, Asmaa Q, Pan B (2018). Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China. Ecological Modelling 375:1-12.
Jiang W, Pohmann T, Sündermann J, Feng S (2000). A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems 24:175-200.
Jin QTQ (editors) (1990). The standard methods for observation and analysis in lake eutrophication. 2nd ed. Beijing (China). Chinese Environmental Science Press 240 p. Chinese.
Khan F, Ansari A (2005). Eutrophication: An Ecological Vision. Botanical Review 71:449-482.
Li Y, Jaila A, Du W, Gao X, Wang J, Luo L, Li H, Dai S, Hashim S, Yu Z, Acharya K (2017a). Wind induced reverse flow and vertical profile characteristics in a semi-enclosed bay of large shallow Lake Taihu, China. Ecological Engineering 102:224-234.
Li Y, Tang C, Wang J, Acharya K, Du W, Gao X, Luo L, Li H, Dai S, Mercy J, Yu Z, Pan B (2017b). Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China. Environmental Science and Pollution Research 24:4029-4039.
Linare S, Wu CH, Anderson EJ, Chu PY (2018). Role of Meteorologically Induced Water Level Oscillations on Bottom Shear Stress in Freshwater Estuaries in the Great Lakes. Journal of Geophysical Research-Oceans 123:4970-4987.
Liu J, Wang P, Wang C, Qian J, Hon J, Hu B (2014). The macrobenthic community and its relationship to the contents of heavy metals in the surface sediments of Taihu Lake, China. Fresenius Environmental Bulletin 23:1697-1707.
Luettich RA, Harleman DR, Somlyody L (1990). Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35:1050-1067.
Ma J, Wang P, Ren L, Wang X, Paerl HW (2019). Using alkaline phosphatase activity as a supplemental index to optimize predicting algal blooms in phosphorus-deficient lakes: A case study of Lake Taihu, China. Ecological Indicators 103:698-712.
Madsen O (1976). Wave climate of the continental margin: elements of its mathematical description. Marine Sediment Transport in Environmental Management pp. 65-87.
Nazar-Sharabian M, Ahmad S, Karakouzian M (2018). Climate Change and Eutrophication: A Short Review. Engineering, Technology and Applied Science Research 8:3668-3672.
Paerl HW, Xu H, McCarthy MJ, ZHU G, Qin B, Li Y, Gardner WS (2011). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Research 45:1973-1983.
Pang Y, Li Y, Luo L (2006). Study on the simulation of transparency of Lake Taihu under different hydrodynamic conditions. Science in China
Series D 49:162-175.
Peters L (2005). Periphyton as a Habitat for Meiobrana: a case of a neglected community.
Qin B (2009). Lake eutrophication: Control countermeasures and recycling exploitation. Ecological Engineering 35:1569-1573.
Qin B, Xu P, Wu Q, Luo L, Zhang Y (2007). Environmental issues of Lake Taihu, China. Hydrobiologia 194:3-14.
Qin BHW, GAO G, LUO L, ZHANG J (2004). Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Science Bulletin 49: 54-64.
Schelthoffen N (2006). Life at turbulent sites: benthic communities in lake littorals interacting with abiotic and biotic constraints; field and mesocosm investigations.
Sharip Z, Shah SA, Jamin A, Jusoh J (2018). Assessing the Hydrodynamic Pattern in Different Lakes of Malaysia. Applications in Water Systems Management and Modeling, Daniela Malcangio, IntechOpen.
Sheng YP, Lick W (1979). The transport and resuspension of sediments in a shallow lake. Journal of Geophysical Research 84 (C4) 1809.
Shih W, Diplas P, Celik AO, Dancey C (2017). Accounting for the role of turbulent flow on particle dislodgement via a coupled quadrant analysis of velocity and pressure sequences. Advances in water resources 101:37-48.
Wang A, Ye X, Du X, Zheng B (2014). Observations of cohesive sediment behaviors in the muddy area of the northern Taiwan Strait, China. Continental Shelf Research 90:60-69.
Wang H, Wang H (2009). Mitigation of lake eutrophication: Loosen nitrogen control and focus on phosphorus abatement. Progress in Natural Science 19:1445-1451.
Wang J, Fu Z, Qiao H, Liu F (2019). Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Science of The Total Environment 650:1392-1402.
Wei J, Li YP, Weng SL, Huang DJ, Du W, M X, Gao WC, Wang JW, Wang SS, Zhang M, Jepkirui A, Nwankwegu S, Norgbey E, Asmaa Q (2019). Determination of threshold parameter in quadrant splitting for identifying coherent motions in Lake Taihu, China. Journal of Soils and Sediments 19:1017-1028.
Whitehouse R (2000). Dynamics of Estuarine Muds: A Manual for Practical Applications. Thomas Telford.
Wu T-F, Qin B-Q, Zhu G-W, Zhu M-Y, Wei L, Luan C-M (2013). Modeling of turbidity dynamics caused by wind-induced waves and current in the Taihu Lake. International Journal of Sediment Research 28:139-148.
Yang X-E, Wu X, Hao H-I, He Z-I (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B 9:197-209.
Ye C, Xu Q, Kong H, Shen Z, Yan C (2007). Eutrophication conditions and ecological status in typical bays of Lake Taihu in China. Environmental Monitoring and Assessment 135:217-225.
Zheng S-S, Wang P-F, Wang C, Hou J (2015). Sediment resuspension under action of wind in Taihu Lake, China. International Journal of Sediment Research 30:48-62.
Zhou Y, Obenour DR, Scavia D, Johengen TH, Michalak AM (2013). Spatial and temporal trends in Lake Erie hypoxia, 1987–2007. Environmental science & technology 47:899-905.
Zhu M, Zhu G, Li W, Zhang Y, Zhao L, Gu Z (2013). Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environmental pollution 173:216-223.