On grounded L-graphs and their relatives

Vít Jelínek*
Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia
jelinek@iuuk.mff.cuni.cz

Martin Töpfer†
Institute of Science and Technology, Klosterneuburg, Austria
mtopfer@gmail.com

November 16, 2018

Abstract

We consider the graph classes Grounded-L and Grounded-\{L, J\} corresponding to graphs that admit an intersection representation by L-shaped curves (or L-shaped and J-shaped curves, respectively), where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns.

We also compare these classes to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.

*Supported by the project 16-01602Y of the Czech Science Foundation and by project Neuron Impuls of the Neuron Fund for Support of Science.
†This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.
1 Introduction

An intersection representation of a graph \(G = (V, E) \) is a map that assigns to every vertex \(x \in V \) a set \(s_x \) in such a way that two vertices \(x \) and \(y \) are adjacent if and only if the two corresponding sets \(s_x \) and \(s_y \) intersect. The graph \(G \) is then the intersection graph of the set system \(\{ s_x; x \in V \} \). Many natural graph classes can be defined as intersection graphs of sets of a special type.

One of the most general classes of this type is the class of string graphs, denoted STRING. A string graph is an intersection graph of strings, which are bounded continuous curves in the plane. All the graph classes we consider in this paper are subclasses of string graphs.

A natural way of restricting a string representation is to impose geometric restrictions on the strings we consider. This leads, for instance, to segment graphs, which are intersection graphs of straight line segments, or to \(L \)-graphs, which are intersection graphs of \(L \)-shapes, where an \(L \)-shape is a union of a vertical segment and a horizontal segment, in which the bottom endpoint of the vertical segment coincides with the left endpoint of the horizontal one. Apart from \(L \)-shapes, we shall also consider \(J \)-shapes, which are obtained by reflecting an \(L \)-shape along a vertical axis.

Apart from restricting the geometry of the strings, one may also restrict a string representation by imposing conditions on the placement of their endpoints. Following the terminology of Cardinal et al. [5], we will say that a representation is grounded if all the strings have one endpoint on a common line (called grounding line) and the remaining points of the strings are confined to a single open halfplane with respect to the grounding line. We will usually assume that the grounding line is the \(x \)-axis, and the strings extend below the line. The endpoint belonging to the grounding line is the anchor of the string.

Similarly, a string representation is an outer representation, if all the strings are confined to a disk, and each string has one endpoint on the boundary of the disk. The endpoint on the boundary is again called the anchor of the string. One may easily see that a graph admits a grounded string representation if and only if it admits an outer-string representation. Such graphs are known as outer-string graphs, and we denote their class OUTER-STRING.

Our first main result, Theorem 2.1 in Section 2, is a characterisation of the class of grounded \(L \)-graphs by vertex orderings avoiding a pair of forbidden patterns. Our next main result, presented in Section 3, is a collection of
We will see in Section 3 that there are no other inclusions among these classes apart from those implied by the depicted arrows. In particular, the classes are all distinct.

Let us now formally introduce the graph classes we are interested in, and briefly review some relevant previously known results.

1-string graphs are the graphs that admit a string representation in which any two distinct strings intersect at most once. The class of 1-string graphs is denoted 1-STRING.

Outer-1-string graphs (denoted OUTER-1-STRING) are the graphs that have a string intersection representation which is simultaneously a 1-string representation and an outer-string representation. Note that not every graph from 1-STRING ∩ OUTER-STRING is necessarily in OUTER-1-STRING, as we
shall see in Section 3.

L-graphs (L) are the intersection graphs of L-shapes. This type of representation has received significant amount of interest lately. A notable recent result is a theorem of Gonçalves, Isenmann and Pennarun [10] showing that every planar graph is an L-graph. Since it is known that L-graphs are a subclass of segment graphs [13], this result strengthens an earlier result of Chalopin and Gonçalves [7] showing that all planar graphs are segment graphs.

Max point-tolerance graphs (Mpt), also known as monotone L-graphs, are the graphs with an L-representation in which all the bends of the L-shapes belong to a common downward-sloping line. This class was independently introduced by Soto and Thraves Caro [15], by Catanzaro et al. [6] and by Ahmed et al. [1]. Apart from the above intersection representation by L-shapes, it admits several other equivalent characterisations. Notably, Mpt graphs can be characterised as graphs that admit a vertex ordering that avoids a certain forbidden pattern [1, 6, 15]. This graph class is known to be a superclass of several important graph classes, such as outerplanar graphs and interval graphs, among others [1, 6, 15].

Grounded segment graphs (GROUNDED-SEG) are the intersection graphs admitting a grounded segment representation. Cardinal et al. [5] proved that these are also precisely the intersection graphs of downward rays in the plane. Note that any grounded segment graph also admits an outer-segment representation, but the converse does not hold, as shown by Cardinal et al. [5]. Cardinal et al. also showed that outer-segment graphs are a proper subclass of outer-1-string graphs. This strengthens an earlier result of Cabello and Jejčič [3], who showed that outer-segment graphs are a proper subclass of outer-string graphs.

Grounded L-graphs (GROUNDED-L) are the intersection graphs of grounded L-shapes, that is, L-shapes with top endpoint on the x-axis. This class of graphs has been first considered by McGuiness [12], who represented them as intersections of upward-infinite L-shapes. These graphs can also equivalently be represented as intersections of L-shapes inside a disk, with the top endpoint of each L-shape anchored to the boundary of the disk. McGuiness has shown that this class is \(\chi \)-bounded, i.e., these graphs have chromatic number bounded from above by a function of their clique number. The \(\chi \)-boundedness result has been later generalized to all outer-string graphs by Rok and Walczak [14].

Grounded \(\{L, J\} \)-graphs (GROUNDED-\(\{L, J\} \)) are analogous to grounded
L-graphs, but their representation may use both L-shapes and J-shapes. An argument of Middendorf and Pfeiffer [13] shows that \textsc{Grounded-\{L, J\}} is a subclass of \textsc{Grounded-Seg}.

Circle graphs (\textsc{Circle}) are the intersection graphs of chords inside a circle, or equivalently, the intersection graphs of L-shapes drawn inside a circle, so that both endpoints of each L-shape touch the circle. Circle graphs include all outerplanar graphs [16].

Interval graphs (\textsc{Int}) are the intersection graphs of intervals on the real line. Equivalently, we may easily observe that these are exactly the graphs with an intersection representation which is simultaneously an Mpt-representation and a \textsc{Grounded-L} representation. But note that not every graph from the intersection of Mpt and \textsc{Grounded-L} is an interval graph, as witnessed, e.g., by any cycle \(C_n\) of length \(n \geq 4\).

Permutation graphs (\textsc{Per}) are the intersection graphs of segments between a pair of parallel lines, with each segment having one endpoint on each of the two lines. Equivalently, we may observe that these are exactly the graphs admitting an L-representation in which the top endpoints of all the L-shapes are on a common horizontal line and the right endpoints are on a common vertical line.

We will always assume implicitly that the intersection representations we deal with satisfy certain non-degeneracy assumptions. In particular, we will assume that the strings have no self-intersections, that any two strings intersect in at most finitely many points (except for interval representations), and that any intersection of two strings is a proper crossing. In particular, an endpoint of a string does not belong to another string. Moreover, we will assume that every segment in a segment representation is non-degenerate, i.e., it has distinct endpoints. This also applies to horizontal and vertical segments forming an L-shape or J-shape. These assumptions imply, in particular, that in any \{L, J\}-representation, each intersection is realized as a crossing of a horizontal segment with a vertical one.

Note that in any grounded representation with a horizontal grounding line, the left-to-right ordering of the anchors on the grounding line defines a linear order on the vertex set of the represented graph. We say that this linear order is \textit{induced} by the representation. Similarly, for an Mpt representation, we can define the induced order by following the top-left to bottom-right order of the bends along their common supporting line. Induced vertex orders play an important part both in characterising graphs in a given class and in separating different classes.
2 Vertex orders with forbidden patterns

Our main result is a characterisation of grounded L-graphs as graphs that admit vertex orderings avoiding a pair of four-vertex patterns. Let us begin by formalising the key notions.

An **ordered graph** is a pair $(G, <)$, where $G = (V, E)$ is a graph and $<$ is a linear order on V. A **pattern of order** k is a triple $P = (W, C, F)$ where W is the set $\{1, 2, \ldots, k\}$ while C and F are two disjoint subsets of $\binom{W}{2}$. The set W is the *vertex set* of the pattern P, C is the set of *compulsory edges* of P, and F is the set of *forbidden edges*.

For an ordered graph $(G, <)$ with $G = (V, E)$, we say that $(G, <)$ contains a pattern $P = (W, C, F)$ of order k if G contains k distinct vertices $x_1 < x_2 < \ldots < x_k$ such that for every $\{i, j\} \in C$ the vertices x_i and x_j are adjacent in G, while for every $\{i, j\} \in F$, x_i and x_j are non-adjacent in G. If $(G, <)$ does not contain P, we say that it avoids P. For simplicity, we will often write an edge $\{i, j\}$ as ij.

Many important graph classes can be characterised in terms of vertex orderings with forbidden patterns, that is, for a class \mathcal{C} there is a pattern $P_\mathcal{C}$ such that a graph $G = (V, E)$ is in \mathcal{C} if and only if it admits a linear order $<$ such that $(G, <)$ avoids $P_\mathcal{C}$; see Figure 2 for examples of classes with their forbidden patterns. The forbidden pattern characterisation of MPT was found independently by at least three groups of authors [1, 6, 15].

As our first main result, we show that GROUNDED-L is characterised by a pair of forbidden patterns.
Theorem 2.1. Consider the patterns $P_1 = (\{1, 2, 3, 4\}, \{13, 24\}, \{12, 23\})$ and $P_2 = (\{1, 2, 3, 4\}, \{12, 14, 23\}, \{13\})$; see Figure 3. A graph $G = (V, E)$ is a grounded L-graph if and only if it has a vertex ordering that avoids both P_1 and P_2. In fact, a linear order $<_V$ on V avoids the two patterns P_1 and P_2 if and only if G has a grounded L-representation which induces the linear order $<_V$.

Proof. Suppose first that G has a grounded L-representation. Let $\ell_1, \ell_2, \ldots, \ell_n$ be the L-shapes used in the representation, ordered left to right according to the positions of their anchors. Let h_i and v_i denote, respectively, the horizontal and vertical segment of ℓ_i. Let x_i be the vertex represented by ℓ_i. We will show that the vertex ordering $x_1 < x_2 < \cdots < x_n$ avoids the two patterns P_1 and P_2.

Assume that $(G, <)$ contains P_1, and let $x_p < x_q < x_r < x_s$ be the four vertices forming a copy of P_1. Since x_qx_s is an edge, the two L-shapes ℓ_q and ℓ_s intersect. Let R be the rectangle whose vertices are the anchors of ℓ_q and ℓ_s, the bend of ℓ_q and the intersection of ℓ_q and ℓ_s. Since neither x_p nor x_r is adjacent to x_q, we see that ℓ_p is completely outside of R, while v_r is inside R. It follows that ℓ_p and ℓ_r are disjoint, and fail to represent the compulsory edge 13 of P_1.

Suppose now that $(G, <)$ contains P_2, and let $x_p < x_q < x_r < x_s$ now be the four vertices forming a copy P_2. Since $x_p x_s$ is an edge, the segment h_p intersects v_s. Moreover, v_q intersects h_p, while v_r does not intersect h_p, and in particular, ℓ_q and ℓ_r fail to represent the compulsory edge 23 of P_2. We conclude that any grounded L-representation of G induces a vertex order that avoids P_1 and P_2.

To prove the converse, assume that G is a graph with a vertex ordering $x_1 < x_2 < \cdots < x_n$ which avoids both P_1 and P_2. We will construct a grounded L-representation $\ell_1, \ell_2, \ldots, \ell_n$ of G inducing the order $<_V$, with ℓ_i being the L-shape representing the vertex x_i.

We fix the anchor of ℓ_i to be the point $(i, 0)$ on the horizontal axis. Next, we process the vertices left to right, and for a vertex x_i we define the representing shape ℓ_i, assuming $\ell_1, \ell_2, \ldots, \ell_{i-1}$ have already been defined, and assuming further that for any $j < i$ such that x_jx_i is an edge of G, the horizontal segment h_j of ℓ_j reaches to the right of the point $(i, 0)$.

To define ℓ_i, we first describe its vertical segment v_i. Let N_i^- be the set of vertices x_j such that $j < i$ and $x_jx_i \in E$. If N_i^- is empty, choose the vertical segment v_i to be shorter than any of v_1, \ldots, v_{i-1}. In particular, v_i
will not intersect any of the L-shapes constructed in previous steps. If N_i^- is nonempty, let x_p be a vertex from N_i^- chosen so that v_p is as long as possible (and therefore h_p is as low as possible). Then define v_i to be slightly longer than v_p, so that v_i intersects h_p (recall that h_p reaches to the right of $(i,0)$) but does not intersect any L-shape whose horizontal segment is below h_p. This choice of v_i guarantees that v_i intersects h_j for any $x_j \in N_i^-$. It remains to define the segment h_i. Let j be the largest index such that $j > i$ and $x_ix_j \in E$. If no such j exists, set $j = i$. The horizontal segment h_i then has length $j - i + \frac{1}{2}$, and in particular, its right endpoint has horizontal coordinate $j + \frac{1}{2}$.

Having defined the L-shapes ℓ_1, \ldots, ℓ_n as above, let us verify that their intersection graph is G. If x_jx_i is an edge of G with $j < i$, then the definition of v_i guarantees that v_i intersects h_j, and therefore the two L-shapes ℓ_j and ℓ_i intersect.

To prove the converse, suppose for contradiction that for some $j < i$ the two L-shapes ℓ_j and ℓ_i intersect while x_jx_i is not an edge of G. Choose such a pair i,j so that i is the smallest possible. There must be an index $k > i$ such that x_jx_k is an edge of G, otherwise h_j would be too short to intersect v_i. Similarly, there must be an index $m < i$ such that x_mx_i is an edge of G, and v_m is longer than v_j, otherwise v_i would not be long enough to intersect h_j.

We now distinguish two cases depending on the relative position of m and j. If $m < j$, then ℓ_m and ℓ_j are disjoint (recall that v_m is longer than v_j) and hence x_mx_j is not an edge of G. It follows that the four vertices $x_m < x_j < x_i < x_k$ form the pattern P_1, a contradiction. Suppose now that $j < m$. It follows that ℓ_j intersects ℓ_m, and therefore x_jx_m is an edge of G, by the minimality of i. Thus, the four vertices $x_j < x_m < x_i < x_k$ form the pattern P_2, which is again a contradiction. □

3 Separations between classes

Consider again the classes in Figure 1. The inclusions indicated by arrows are either easy to observe or follow from known results that we have pointed out in the introduction. Our goal now is to argue that there are no other inclusions among these classes except those that follow by transitivity from the depicted arrows. In particular, the classes are all distinct.

As our main tool, we will use a lemma which is a slight modification of the ‘Cycle Lemma’ of Cardinal et al. [5]. The lemma allows to prescribe the
cyclic order of a subset of vertices in an outer-1-string representation of a graph. Let $G = (V_G, E_G)$ be a graph on n vertices x_1, x_2, \ldots, x_n, and let $<$ be the linear order $x_1 < x_2 < \cdots < x_n$. The cyclic shift of $<$ is the linear order $<_s$ defined as $x_n <_s x_1 <_s x_2 <_s \cdots <_s x_{n-1}$. The reversal of $<$, denoted $<_r$, is defined as with $x_n <_r x_{n-1} <_r \cdots <_r x_1$. We say that two linear orders of V are equivalent if one can be obtained from the other by a sequence of cyclic shifts and reversals.

A cycle extension of the ordered graph $(G, <)$ is an (unordered) graph $H = (V_H, E_H)$ with these properties (see Figure 4):

- V_H is the disjoint union of the sets $V_G = \{x_1, \ldots, x_n\}$ and $V_C = \{y_1, \ldots, y_{5n}\}$. The vertices V_G induce the graph G (in particular, $E_G \subseteq E_H$), and V_C induce a cycle of length $5n$ with edges $y_1y_2, y_2y_3, \ldots, y_{5n-1}y_{5n}, y_{5n}y_1$.

- For each vertex $x_i \in V_G$, either x_i is adjacent to y_{5i} and has no other neighbors in V_C, or x_i is adjacent to y_{5i-1} and y_{5i} and has no other neighbors in V_C.

For the classes of graphs we consider, an intersection representation of a graph G inducing an order $<$ can always be extended into a representation of a cycle extension of G, without modifying the curves representing G. This is formalised by the next lemma.

Lemma 3.1. Given a graph class $C \in \{\text{Grounded-L}, \text{Grounded-\{L, J\}}, \text{Mpt}, \text{Grounded-seg}, \text{Outer-1-string}\}$, for every C-representation of a
Figure 5: Extending the representation of \(G \) into a representation of a cycle extension for grounded L-representations (left) and MPT representations (right).

\[G \text{ inducing an order } < \text{ on } V_G \text{ there is a cycle extension } H \text{ of } (G, <) \text{ such that a } C \text{-representation of } H \text{ can be constructed by adding into the given } C \text{-representation of } G \text{ the curves representing the vertices of } V_H \setminus V_G. \]

Proof. Suppose we are given a \(C \)-representation of \(G \). It is easy to see that we can add the curves representing the cycle \(V_C \) close enough to the grounding line; see Figure 5. Note that for MPT-representations, each original L-shape may have to be intersected by two consecutive L-shapes from the added cycle. In all the other types of representations, each vertex \(x_i \) of \(G \) will have a unique neighbor \(y_{5i} \) among the \(V_C \).

Recall that two linear orders are equivalent if one can be obtained from the other by a sequence of cyclic shifts and reversals. The key property of cycle extensions of \((G, <) \) is that they restrict the possible vertex orders of the \(G \)-part to an order equivalent to \(< \), as shown by the next lemma.

Lemma 3.2. If \((G, <) \) is an ordered graph with a cycle extension \(H \), then in every grounded 1-string representation of \(H \), the order of the vertices of \(G \) induced by the representation is equivalent to the order \(< \).

Proof. The proof follows the same ideas as the proof of the Cycle Lemma of Cardinal et al. [4, Lemma 6].

Suppose \((G, <) \) is an ordered graph with vertices \(V_G = \{ x_1 < x_2 < \cdots < x_n \} \) and edge-set \(E_G \), and \(H \) is its cycle extension, with vertices \(V_H = V_G \cup V_C \) as in the definition of cycle extension and \(V_C = \{ y_1, \ldots, y_{5n} \} \). When working with the indices of the vertices in \(V_C \), we will assume that arithmetic operations are performed modulo \(5n \), so \(5n + 1 = 1 \), etc.

Suppose that \(H \) has a grounded 1-string representation. We may transform this representation into an outer-1-string representation, while preserving the induced vertex order up to equivalence. Suppose then that an outer-1-string representation of \(H \) is given, inside a disk whose boundary is a
circle B. Let c_j be the string representing y_j, and let $p_{j,j+1}$ be the intersection point of c_j and c_{j+1}. The subcurve of c_j between the two intersection points $p_{j-1,j}$ and $p_{j,j+1}$ is the central part of c_j, denoted center(j). The part of c_j between the anchor and the first point of center(j) is the initial part of c_j, denoted start(j). Let p_j be the common endpoint of start(j) and center(j). Note that p_j is equal to $p_{j-1,j}$ or to $p_{j,j+1}$. The sequence of curves center(1), center(2), ..., center$(5n)$ forms a closed Jordan curve, denoted by C. Note that C contains all the points \(\{p_{k,k+1}; k = 1, \ldots, 5n\} \). Let R_C be the interior region of C.

Consider now a vertex x_i, represented by a string s_i. Note that s_i can only intersect the curve C in a point of center$(5i)$ or possibly center$(5i-1)$. Let R_i be the planar region bounded by the union of the following four curves: start$(5i-3)$, start$(5i+2)$, the arc of C between p_{5i-3} and p_{5i+2} that contains center$(5i-1) \cup$ center$(5i)$, and the arc of B between the anchors of c_{5i-3} and c_{5i+2} that contains the anchors of c_{5i-1} and c_{5i}.

Note that s_i is the only string among the strings representing V_G that can intersect the boundary of R_i. Note also that the string c_{5i} cannot intersect the boundary of R_k for $k \neq i$, and therefore c_{5i} is contained in $R_i \cup R_C$. Since s_i intersects c_{5i}, and since s_i also cannot cross the boundary of R_k for $k \neq i$, it follows that s_i is also contained in $R_C \cup R_i$, and in particular, the anchor of s_i is in $R_i \cap B$. Therefore, the anchors of s_1, \ldots, s_n appear on B in the order which, up to equivalence, corresponds to the order $<$ on V_G. \hfill \Box

We will now use Lemmas 3.1 and 3.2 to construct graphs that have no representation in a given intersection class. Our goal is to show that there are no inclusions missing in Figure 1. The classes INT, CIRCLE, OUTERPLANAR and PER are well studied [2], and simple examples show that there are no inclusions among them other than those depicted in Figure 1.

Catanzaro et al. [6, Observation 6.9] observed that the graph $K_{2,2,2}$ (the octahedron) is a permutation graph not in MPT, and therefore neither PER nor any superclass of PER is contained in MPT. Cardinal et al. [5] showed that GROUNDED-SEG is a proper subclass of OUTER-1-STRING. To complete the hierarchy, we only need the following separations.

Theorem 3.3. The following properties hold.

(i) The class GROUNDED-$\{L, J\}$ is not a subclass of GROUNDED-L.

(ii) The class GROUNDED-SEG is not a subclass of GROUNDED-$\{L, J\}$.

11
Figure 6: The three intersection representations used to prove Theorem 3.3. In each case, a representation cannot be replaced by a representation from a smaller class while preserving the induced vertex order. Left: a GROUND\textdaggerbracebox{d}\{-L, J\} representation which cannot be replaced by a GROUND\textdaggerbracebox{d}-L one. Middle: a GROUND\textdaggerbracebox{d}-seg representation which cannot be replaced by a GROUND\textdaggerbracebox{d}\{-L, J\} one. Right: an Mpt representation which cannot be replaced by an OUTER-1-STRING one.

(iii) The class Mpt is not a subclass of OUTER-1-STRING.

Proof. We first prove part (i) of the theorem. Consider the graph $G = (V, E)$ with $V = \{x_1, x_2, x_3, x_4\}$ and $E = \{x_1x_2, x_2x_3, x_1x_4\}$. Figure 6 (left) shows a grounded $\{L, L\}$-representation of G which induces the order $<$ defined as $x_1 < x_2 < x_3 < x_4$ on V. Note that there is no grounded L-representation of G that would induce the vertex order $<$, because $(G, <)$ contains the pattern P_2 of Theorem 2.1.

Let $(G', <')$ be the ordered graph obtained by putting $(G, <)$ and the mirror image of $(G, <)$ side by side. Formally, $(G', <')$ has vertex set $V' = \{x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4\}$, edge set $E' = \{x_1x_2, x_2x_3, x_1x_4, y_1y_2, y_2y_3, y_1y_4\}$ and vertex order $x_1 <' x_2 <' x_3 <' x_4 <' y_4 <' y_3 <' y_2 <' y_1$. Finally, let $(G'', <'')$ be the ordered graph obtained by placing two disjoint copies of $(G', <')$ side by side. Clearly G'' has a grounded $\{L, J\}$-representation which induces the vertex order $<''$. However, G'' has no grounded L-representation inducing a vertex order equivalent with $<''$, since in any vertex order equivalent with $<''$ there are four consecutive vertices forming a copy of P_2.

By Lemma 3.1, the ordered graph $(G'', <'')$ has a cycle extension H that admits a grounded $\{L, J\}$-representation. By Lemma 3.2, any grounded 1-string representation (and therefore any grounded L-representation) of H induces on V'' an order which is equivalent with $<''$. It follows that H has no grounded L-representation, and therefore GROUND\textdaggerbracebox{d}-\{L, J\} is not a subclass
of \textsc{Grounded-L}, as claimed.

For the other two parts of the theorem, the argument is analogous, the main difference is in the choice of the initial ordered graph \((G, <)\). To prove part (ii), consider the graph \(G\) on six vertices whose \textsc{Grounded-seg} representation is in the middle of Figure 6, and let \(<\) be the vertex order induced by the depicted representation.

Let us argue that \(G\) has no grounded \(\{L, J\}\)-representation inducing the vertex order \(<\). For contradiction, suppose that such a representation exists, and let \(\ell_i\) denote the L-shape or J-shape representing \(x_i\) in this representation. Let \(v_i\) be the horizontal and vertical segment of \(\ell_i\), respectively. Suppose, without loss of generality, that \(v_1\) is longer than \(v_6\). Since \(\ell_1\) and \(\ell_6\) intersect, \(h_6\) must intersect \(v_1\), and \(\ell_6\) is a J-shape. Since \(\ell_2\) intersects both \(\ell_1\) and \(\ell_6\), \(v_2\) must be longer than \(v_6\), and \(v_2\) intersects \(h_6\). But this means that \(\ell_3\) must intersect either \(\ell_2\) or \(\ell_6\) in order to intersect \(\ell_1\), a contradiction.

Note that the graph \((G, <)\) is isomorphic to its reversal. Consider the ordered graph \((G', <')\) obtained by placing two copies of \((G, <)\) side by side: note that in any vertex order equivalent to \(<'\), \(G'\) contains a copy of \((G, <-)\), and therefore there is no grounded \(\{L, J\}\)-representation of \(G'\) inducing a vertex order equivalent to \(<'\). We apply Lemmas 3.1 and 3.2 to \((G', <')\) and obtain its cycle extension \(H\), which is in \textsc{Grounded-seg} but not in \textsc{Grounded-\{L, J\}}.

To prove part (iii), consider the graph \(G\) whose MPT-representation is depicted in the right part of Figure 6, and let \(<\) be the vertex order induced by the representation. We claim that there is no grounded 1-string representation of \(G\) inducing the order \(<\). For contradiction, suppose that such a representation exists, and let \(s_i\) be the string representing the vertex \(x_i\). Additionally, let \(a_i\) denote the anchor of \(s_i\), and for a pair of intersecting strings \(s_i, s_j\) let \(p_{ij}\) denote their intersection.

Suppose, without loss of generality, that when we follow \(s_4\) starting in \(a_4\), we encounter \(p_{24}\) before we encounter \(p_{46}\). Let \(C\) be the closed Jordan curve obtained as the union of the subcurve of \(s_1\) between \(a_1\) and \(p_{17}\), the subcurve of \(s_7\) between \(p_{17}\) and \(p_{37}\), the subcurve of \(s_3\) between \(p_{37}\) and \(a_3\), and the segment \(a_1a_3\) of the grounding line. Note that \(s_2\) is inside \(C\) (except \(a_2\), which lies on \(C\)), and both \(a_4\) and \(s_6\) are outside \(C\). Therefore, \(s_4\) must intersect \(C\) at least twice: once between \(a_4\) and \(p_{24}\), and once between \(p_{24}\) and \(p_{46}\). However, \(s_4\) can only intersect \(C\) in the point \(p_{34}\), a contradiction.

To complete the proof, we first observe that \(G\) has no grounded 1-string representation inducing a vertex order equivalent with \(<\), since such a rep-
representation could be trivially transformed into a grounded 1-string representation inducing <. We apply Lemmas 3.1 and 3.2 to \(G \), to obtain a graph \(H \) which is in MPT but not in OUTER-1-STRING.

Note that these results imply that OUTER-STRING is a proper superclass of both MPT and OUTER-1-STRING.

We remark that MPT is clearly a subclass of 1-STRING and of OUTER-STRING, but it is not a subclass of OUTER-1-STRING, as we just saw.

4 Concluding remarks

We have seen that the vertex orders induced by grounded \(L \)-representations can be characterised by a pair of forbidden patterns. Previously, a characterisation by a single forbidden pattern has been found for vertex orders induced by MPT representations [1, 6, 15]. It is an open problem whether such a characterisation can be obtained for other similar grounded intersection classes, such as the class \(\text{GROUNDED-}\{L, J\} \).

Another problem concerns the recognition complexity of the graph classes we considered. Recognition of max point-tolerance graphs is mentioned as a prominent open problem by Ahmed et al. [1], by Catanzaro et al. [6], as well as by Soto and Thraves Caro [15]. For the classes \(\text{GROUNDED-L} \) and \(\text{GROUNDED-}\{L, J\} \), recognition is open as well. On the other hand, the recognition problem for \(\text{GROUNDED-SEG} \) is known to be \(\exists \mathbb{R} \)-complete, as shown by Cardinal et al. [5]. In particular, \(\text{GROUNDED-SEG} \) cannot be characterised by finitely many forbidden vertex order patterns, unless \(\exists \mathbb{R} \) is equal to NP.

The characterisation of \(\text{GROUNDED-L} \) by forbidden vertex order patterns might conceivably be helpful in designing a polynomial recognition algorithm, but note that even a graph class characterised by a forbidden vertex order pattern may have NP-hard recognition [9], although it is known that recognition is polynomial for all classes described by a set of forbidden patterns of order at most three [11].

References

[1] Abu Reyan Ahmed, Felice De Luca, Sabin Devkota, Alon Efrat, Md. Iqbal Hossain, Stephen G. Kobourov, Jixian Li, Sammi Abida
Salma, and Eric Welch. L-graphs and monotone L-graphs. arXiv:1703.01544, 2017.

[2] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[3] Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geometric intersection graphs. Electron. J. Combin., 24(1):Paper 1.33, 19, 2017.

[4] Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber. Intersection graphs of rays and grounded segments. arXiv:1612.03638v1, 2016.

[5] Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber. Intersection graphs of rays and grounded segments. In Graph-theoretic concepts in computer science, volume 10520 of Lecture Notes in Comput. Sci., pages 153–166. Springer, Cham, 2017.

[6] Daniele Catanzaro, Steven Chaplick, Stefan Felsner, Bjarni V. Halldórsson, Magnús M. Halldórsson, Thomas Hixon, and Juraj Stacho. Max point-tolerance graphs. Discrete Appl. Math., 216(part 1):84–97, 2017.

[7] Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of segments in the plane: Extended abstract. In Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages 631–638, New York, NY, USA, 2009. ACM.

[8] P. Damaschke. Forbidden ordered subgraphs. In Topics in combinatorics and graph theory (Oberwolfach, 1990), pages 219–229. Physica, Heidelberg, 1990.

[9] Dwight Duffus, Mark Ginn, and Vojtěch Rödl. On the computational complexity of ordered subgraph recognition. Random Structures Algorithms, 7(3):223–268, 1995.

[10] Daniel Gonçalves, Lucas Isenmann, and Claire Pennarun. Planar graphs as L-intersection or L-contact graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
[11] Pavol Hell, Bojan Mohar, and Arash Rafiey. Ordering without forbidden patterns. In *Algorithms—ESA 2014*, volume 8737 of *Lecture Notes in Comput. Sci.*, pages 554–565. Springer, Heidelberg, 2014.

[12] Sean McGuinness. On bounding the chromatic number of L-graphs. *Discrete Math.*, 154(1-3):179–187, 1996.

[13] M. Middendorf and F. Pfeiffer. The max clique problem in classes of string-graphs. *Discrete Math.*, 108(1-3):365–372, 1992.

[14] Alexandre Rok and Bartosz Walczak. Outerstring graphs are \(\chi \)-bounded. In *Computational geometry (SoCG’14)*, pages 136–143. ACM, New York, 2014.

[15] Mauricio Soto and Christopher Thraves Caro. \(p \)-box: a new graph model. *Discrete Math. Theor. Comput. Sci.*, 17(1):169–186, 2015.

[16] Walter Wessel and Reinhard Pöschel. On circle graphs. In *Graphs, hypergraphs and applications (Eyba, 1984)*, volume 73 of *Teubner-Texte Math.*, pages 207–210. Teubner, Leipzig, 1985.