No association between the Ser9Gly polymorphism of the dopamine receptor D3 gene and schizophrenia: a meta-analysis of family-based association studies

Xiao-na Li
China Medical University

Ji-long Zheng
Criminal Investigation Police University of China

Xiao-han Wei
China Medical University

Bao-jie Wang
China Medical University

Jun Yao (✉ yaojun198717@163.com)
China Medical University https://orcid.org/0000-0003-0781-5694

Research article

Keywords: Dopamine receptor D3, Schizophrenia, Meta-analysis, Family study

Posted Date: January 24th, 2020

DOI: https://doi.org/10.21203/rs.2.12020/v4

License: © ☑ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at BMC Medical Genetics on April 21st, 2020. See the published version at https://doi.org/10.1186/s12881-020-01018-w.
Abstract

Background: Ser9Gly (rs6280) is a functional single nucleotide polymorphism (SNP) in the human dopamine receptor D3 gene (DRD3) that may be involved in the occurrence of schizophrenia. We performed a meta-analysis of family-based studies to explore the role of Ser9Gly in the etiology of schizophrenia.

Methods: The published family-based association studies were retrieved from the relevant literature databases according to the established inclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the strength of the relationship between Ser9Gly SNP and the occurrence of schizophrenia.

Results: We finally pooled up 13 family-based association studies between Ser9Gly SNP and schizophrenia. It contained 11 transmission disequilibrium test (TDT) studies with 1219 informative meiosis and 5 haplotype-based haplotype relative risk (HHRR) studies. There was no statistical significance for the heterogeneity in TDT and HHRR studies. Therefore, the fixed effect model was used to measure the pooled effect size. The results showed that neither of the associations between Ser9Gly and the risk of schizophrenia were observed in TDT (1219 samples, OR=1.005, 95% CI = 0.898-1.125, Z-value = 0.086, p = 0.932) and HHRR studies (1704 samples, OR=0.869, 95% CI = 0.713-1.059, Z-value = -1.395, p = 0.163), except for the significantly preferential transmission of DRD3 Ser9 allele in East Asian in TDT studies (204 samples, OR=0.744, 95% CI = 0.564-0.980, Z-value = -2.104, p = 0.035).

Conclusions: Our meta-analysis found no association between DRD3 gene Ser9Gly polymorphism and the risk of schizophrenia. These data provide possible avenues for future family-based studies related to schizophrenia.

1. Introduction

Schizophrenia is a complex mental disorder and affects approximately 1% of the population all over the world, which is caused by synergic effects of multiple genetic and environmental factors.[1] Heritability up to 80% has been reported for schizophrenia.[2] Despite the extensive efforts for many years, the precise etiology of this disease is still unclear.[3, 4] Presently, the dysregulated dopaminergic neurotransmission has been found to play a role in the pathogenesis of schizophrenia.[5-8] The genes related to the dopaminergic pathways are considered as the candidate susceptible genes of the disease.

As an endogenous neurotransmitter, dopamine plays a regulatory function by binding to the dopamine receptors. Its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. Presently, the known subtypes of dopamine receptors include the D1-like receptors, such as D1 and D5 receptors; and the D2-like receptors, such as D2, D3 and D4 receptors.[9] Dopamine receptor D3 (DRD3) is a candidate susceptible gene for the risk of schizophrenia. DRD3 is located on the chromosome 3q13.3 and has 52% global homology with the D2 receptor band. It is primarily expressed in limbic areas of the human brain[10] and contributes emotional, cognitive, as well as endocrine functions.[11]

Ser9Gly variant (rs6280) is a functional polymorphic site in the first exon, which corresponds to a serine to glycine amino acid substitution at position 9 in the extracellular N-terminal domain of DRD3. Ser9Gly SNP has been involved in the alternation of dopamine binding affinity.[12] The substituted glycine allele is thought to yield D3 autoreceptors owning a higher affinity for dopamine and more robust intracellular signaling.[13] Presently, Ser9Gly polymorphisms are reported to be associated with acute pain in sickle cell disease, bipolar disorder, Parkinson's disease, and suicidical behaviors.[14-17] Recently, a number of molecular epidemiologic studies have addressed the association between Ser9Gly and schizophrenia risk. However, some reporters suggested that Ser9Gly was associated with the disease,[18, 19] whereas the others found no association.[20-22] These contradictory results may be due to small sample size, inclusion of various genetic backgrounds, and other potential confounding bias.[23]

Meta-analyses are proven to be the powerful tool for ascertaining associations of gene polymorphisms with disease.[24, 25] Since 1998, the meta-analysis have been performed to assess the association between Ser9Gly SNP and schizophrenia risk.[26-32] However, all of the pooled results were based on the case-control studies, but not the family-based studies. The family-based studies are more powerful to detect risk factors of schizophrenia, considering that the ability to exploit the cosegregation of variants with schizophrenia within families helps distinguish causal from noncausal factors.[33] Therefore, we perform a meta-analysis of family-based association studies to better evaluate the relationship between DRD3 Ser9Gly SNP and the risk of schizophrenia.

2. Materials And Methods

2.1. Literature search
To identify studies eligible for this meta-analysis, the computerized search was conducted on three online electronic English databases (Medline, Embase, and Web of Science) and one online Chinese CNKI database using the following key words: “DRD3”, “dopamine receptor 3”, “dopamine D3 receptor”, “dopamine receptor D3”, “schizophrenia”, and “Ser9Gly”. We also screened the reference lists of the accessed articles and of potentially relevant review articles to identify additional studies.

2.2. Inclusion criteria

Only the studies examining Ser9Gly SNP were included in the present meta-analysis. Moreover, the studies needed to meet the following inclusion criteria: (1) family-based design (transmission disequilibrium test (TDT) or haplotype-based haplotype relative risk (HHRR)); (2) original data, or available data to calculate an effect; (3) independent from other studies (i.e., studies reported by the same authors contained the same or overlapping data, the latest literature was selected). Using this approach, a total of 13 articles were identified and included in our meta-analysis. The flow diagram of the literature search process was showed in Fig. 1.

2.3 Data extraction

According to the inclusion criteria listed above, two authors extracted information from all eligible publications independently. Any disagreement was resolved through discussion until the two authors reached a consensus. The following details of each article were recorded: the first author’s last name, publication year, location, ethnicity, diagnostic criteria, and numbers of transmissions.

2.4. Meta-analytic methods

The meta-analysis of the family-based association studies was divided into two parts: TDT and HHRR. For the TDT study, each study provided the two-by-two transmission disequilibrium table, which classifies heterozygous parental alleles (informative meioses) by transmission status (Ser9 allele transmitted to the schizophrenic offspring) and data type (the number of observed transmission vs. the number of theoretic transmission).[34] For one informative meiosis, the expected transmitted number that the allele is transmitted from heterozygous parents to the proband is 0.5 and the expected untransmitted number that the allele is not transmitted from heterozygous parents to proband is also 0.5. For the HHRR studies, each study provided the two-by-two HHRR table, which classifies parental alleles by type of allele (Ser9 or Gly9) and transmission status (transmitted to the schizophrenic offspring or not).[34]

The degree of heterogeneity between studies was determined by means of the Q statistic.[35, 36] Specifically, $P > 0.05$ by the Q test indicated the absence of heterogeneity, and $P < 0.05$ indicated heterogeneity. I^2 was defined as the proportion of observed variance in effect sizes attributable to true differences among studies. Conventional interpretations of I^2 include limits for low (<25%), moderate (approximately 50%), and high (>75%) heterogeneity.[37] A random effect model was used when heterogeneity was present ($P<0.05$ and/or $I^2 >50$); otherwise, a fixed effect model was applied[35] and the fixed effect model used the method of Mantel and Haenszel.[38]

For the pooled analysis, odds ratios (ORs) with accompanying 95% confidence intervals (CIs) were used to assess the strength of the association in the two-by-two tables. $P > 0.05$ indicated the absence of statistical significance, and $P < 0.05$ indicated statistical significance. When $P < 0.05$, OR < 1 meant the variation as a protective factor, and OR > 1 meant the variation as a risk factor. Pooled calculations of ORs were obtained and compared with the controls (observed transmission vs. expected transmission for TDT study or transmitted vs. untransmitted for HHRR study) using test statistic z and 95% CIs. Subgroup analysis was carried out by ethnicity (i.e., East Asian, Caucasian, and other populations).

Publication bias was assessed by the funnel plot (the standard normal deviate of the OR is regressed on the precision of the OR). When there is no publication bias, the regression line should pass through the origin, and the expected value of intercept will be zero.[34]

All the calculations of the meta-analysis were conducted by Comprehensive Meta Analysis V2 software (Biostat, Englewood, NJ, USA).

3. Results

A total of 13 articles were identified by database searches, which included 16 studies.[26, 39-50] Among them, 11 studies were for TDT and 5 studies were for HHRR.

Table 1 showed the pooled ORs and 95% CIs for the 11 TDT studies with 1219 samples. There was no statistical significance for the heterogeneity ($I^2=28.3%$) and the fixed effect model was selected. The pooled results indicated that there were no association between Ser9Gly SNP and schizophrenia (1219 samples, OR=1.005, 95% CI = 0.898-1.125, Z-value = 0.086, $p = 0.932$). The forest plot was showed in Fig. 2. Furthermore, we performed the subgroup analysis to further explore the association of Ser9Gly in Caucasian and East Asian populations, respectively. The results indicated the significantly preferential transmission of DRD3 Ser9 allele in East Asian (204 samples, OR=0.744, 95% CI = 0.564-0.980, Z-value = -2.104, $p = 0.035$), but not in Caucasian (885 samples, OR=1.053, 95% CI = 0.923-1.202, Z-value = 0.771, $p = 0.441$).
The studies distribution of the funnel plot was substantially symmetrical for the pooled effect size (Fig. 3). Thus, there was not enough evidence for publication bias for TDT studies.

Table 2 showed the pooled ORs and 95% CIs for the 5 HHRR studies with 1704 samples. There was no statistical significance for the heterogeneity ($I^2=30.372\%$) and the fixed effect model was selected. The pooled results indicated that there were no association between Ser9Gly SNP and schizophrenia (1704 samples, OR=0.869, 95% CI = 0.713-1.059, Z-value = -1.395, $p = 0.163$). The forest plot was showed in Fig. 4. Furthermore, we performed the subgroup analysis to further explore the association of Ser9Gly in Caucasian population. The results indicated no significantly preferential transmission of DRD3 Ser9 allele in Caucasian (OR=0.871, 95% CI = 0.604-1.254, Z-value = -0.744, $p = 0.457$) (Table 3).

The studies distribution of the funnel plot was slightly asymmetrical for the pooled effect size (Fig. 5). A small but significant effect of publication bias for HHRR studies was detected.

4. Discussion

We conducted a meta-analysis of family-based association studies (11 for TDT and 5 for HHRR) to investigate the putative association of the Ser9Gly SNP in DRD3 with the risk of schizophrenia. Our overall results suggest that no association exists, except for the significantly preferential transmission of DRD3 Ser9 allele in East Asian in TDT studies.

Several previous meta-analyses have assessed the potential association of DRD3 Ser9Gly with the risk of schizophrenia in case-control studies.[27, 28, 30-32, 51] The latest meta-analysis, which included seventy-three studies comprising 10,634 patients with schizophrenia (cases) and 11,258 controls, suggested that the Ser9Gly SNP is not associated with schizophrenia.[32] Its finding was consistent with our study. Although the subgroup analysis of TDT meta-analysis observed the significant association between Ser9Gly and schizophrenia in East Asian population, it only included two studies with the limited sample size (204 meiosis).[44, 45] Moreover, one study of HHRR in East Asian also found the significant association, but its sample size was still small (404 samples).[44] Thus, the positive results need to be interpreted cautiously and more work is required to validate the association in East Asian population. Additionally, it is reasonable that the genetic heterogeneity can lead to the differences in the subgroup analysis of Caucasian and East Asian. Actually, the genetic heterogeneity will complicate the etiology of schizophrenia because the allele distributions of DRD3 Ser9Gly vary in different ethnicity population. Gly9 allele frequencies vary almost as much in the Japanese control populations (22%–34%) as they do in northern and western Caucasian control populations (30%–44%).[28, 32] Therefore, in order to reduce the genetic heterogeneity, it is necessary to study the homogeneous populations.

Presently, numerous candidate genes are involved in the susceptibility of the complex disease, such as schizophrenia. Family-based association studies can provide an informative way to investigate the putative susceptible genes. Unlike population-based tests for association, the family-based tests for transmission disequilibrium are protected against population stratification and the results can avoid the effects of genetic background heterogeneity effectively.[52] Compared with the case-control study with the same sample size, the family-based study is less prone to confounding. Methodologically, it uses a more rigorous approach than the population-based study.[53] Thus, although our previous meta-analysis of case-control studies did not find the significant association of Ser9Gly locus with the risk of schizophrenia, it was still necessary to perform the meta-analysis of family based association.

There were two limitations in our current meta-analysis. Initially, we detected a slight but significant publication bias in the HHRR studies. This bias might be due to only English- and Chinese-language studies included. Subordinately, we just evaluated the role of Ser9Gly SNP in the risk of schizophrenia. Nevertheless, only one variation just plays a minute role in the overall genetic susceptibility of the disease. Regrettably, the gene-gene interactions and epigenetics were not assessed without the sufficient information.

5. Conclusions

In conclusion, our meta-analysis of family-based association studies found no association between DRD3 Ser9Gly SNP and the risk of schizophrenia. The large sample homogeneous population studies will be necessary to further explore the role of DRD3 in the etiology of schizophrenia.

Abbreviations

SNP: single nucleotide polymorphism; DRD3: dopamine receptor D3; TDT: transmission disequilibrium test; HHRR: haplotype-based haplotype relative risk; ORs: Odds ratios; CIs: confidence interval.

Declarations
Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This study was supported by National Natural Science Foundation of China (No.81601653) and Foundation of China Medical University (YQ20170005) for Dr. Jun Yao.

Competing interests

The authors declare that they have no competing interests.

Author Contributions

XNL, JLZ and XHW conceived and designed the experiments. XNL and BJW searched the literature, extracted and analyzed the data. JY wrote the paper.

Acknowledgements

Not applicable

References

1. Hoenders R, Bartels-Velthuis A, Vollbehr N, Bruggeman R, Knechtering R, de Jong J: Natural medicines in schizophrenia: a systematic review. Journal of alternative and complementary medicine 2014, 20(5):A79.

2. Sullivan PF, Kendler KS, Neale MC: Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of general psychiatry 2003, 60(12):1187-1192.

3. Mueser KT, McGurk SR: Schizophrenia. Lancet 2004, 363(9426):2063-2072.

4. Heron EA, Cormican P, Donohoe G, O’Neill FA, Kendler KS, Riley BP, Wellcome Trust Case Control C, Gill M, Corvin AP, Morris DW: No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophrenia research 2014, 154(1-3):79-82.

5. Abi-Dargham A, Moore H: Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 2003, 9(5):404-416.

6. Fan H, Zhang F, Xu Y, Huang X, Sun G, Song Y, Long H, Liu P: An association study of DRD2 gene polymorphisms with schizophrenia in a Chinese Han population. Neuroscience letters 2010, 477(2):53-56.

7. Howes OD, Kapur S: The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia bulletin 2009, 35(3):549-562.

8. Davis J, Moylan S, Harvey BH, Maes M, Berk M: Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. The Australian and New Zealand journal of psychiatry 2014.

9. Yamamoto K, Fontaine R, Pasqualini C, Vernier P: Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes. Brain, behavior and evolution 2015, 86(3-4):164-175.

10. Sokoloff P, Giros B, Martres MP, Andrieux M, Besancon R, Pilon C, Bouthenet ML, Souil E, Schwartz JC: Localization and function of the D3 dopamine receptor. Arzneimittel-Forschung 1992, 42(2A):224-230.

11. Yang B, Niu W, Chen S, Xu F, Li X, Wu X, Cao Y, Zhang R, Yang F, Wang L et al: Association study of dopamine receptor genes polymorphisms with the risk of schizophrenia in the Han Chinese population. Psychiatry research 2016, 245:361-364.

12. Utsunomiya K, Shinkai T, Sakata S, Yamada K, Chen HL, De Luca V, Hwang R, Ohmori Q, Nakamura J: Genetic association between the dopamine D3 receptor gene polymorphism (Ser9Gly) and tardive dyskinesia in patients with schizophrenia: a reevaluation in East Asian populations. Neuroscience letters 2012, 507(1):52-56.
13. Savitz J, Hodgkinson CA, Martin-Soolch C, Shen PH, Szczepanik J, Nugent A, Herscovitch P, Grace AA, Goldman D, Drevets WC: The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement. PloS one 2013, 8(1):e54108.

14. Jhun E, He Y, Yao Y, Molokie RE, Wilkie DJ, Wang ZJ: Dopamine D3 receptor Ser9Gly and catechol-o-methyltransferase Val158Met polymorphisms and acute pain in sickle cell disease. Anesthesia and analgesia 2014, 119(5):1201-1207.

15. Chang TT, Chen SL, Chang YH, Chen PS, Chu CH, Chen SH, Huang SY, Tzeng NS, Wang LJ, Wang TY et al: The DRD3 Ser9Gly Polymorphism Predicted Metabolic Change in Drug-Naive Patients With Bipolar II Disorder. Medicine 2016, 95(24):e3488.

16. Xu S, Liu J, Yang X, Qian Y, Xiao Q: Association of the DRD2 Can-STR and DRD3 Ser9Gly polymorphisms with Parkinson's disease and response to dopamine agonists. Journal of the neurological sciences 2017, 372:433-438.

17. Zai CC, Manchia M, Sonderby IE, Yilmaz Z, De Luca V, Tiwari AK, Squassina A, Zai GC, Shaik SA, Strauss J et al: Investigation of the genetic interaction between BDNF and DRD3 genes in suicidal behaviour in psychiatric disorders. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 2015, 16(3):171-179.

18. Crocq MA, Mant R, Asherson P, Williams J, Hode Y, Mayerova A, Collier D, Lannfelt L, Sokoloff P, Schwartz JC et al: Association between schizophrenia and homoygosity at the dopamine D3 receptor gene. Journal of medical genetics 1992, 29(12):858-860.

19. Nimgaonkar VL, Sanders AR, Ganguli R, Zhang XR, Brar J, Hogge W, Fann WE, Patel PI, Chakravarti A: Association study of schizophrenia and the dopamine D3 receptor gene locus in two independent samples. American journal of medical genetics 1996, 67(6):505-514.

20. Ayoub N, Jeyasekharan AD, Bemal JA, Venkitaraman AR: HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 2008, 453(7195):682-686.

21. Chen CH, Liu MY, Wei FC, Koong FJ, Hwu HG, Hsiao KJ: Further evidence of no association between Ser9Gly polymorphism of dopamine D3 receptor gene and schizophrenia. American journal of medical genetics 1997, 74(1):40-43.

22. Barlas IO, Cetin M, Erdal ME, Semiz UB, Basoglu C, Ay ME, Herken H, Uzun O: Lack of association between DRD3 gene polymorphism and response to clozapine in Turkish schizophrenia patients. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2009, 150B(1):56-60.

23. Yao J, Pan YQ, Ding M, Pang H, Wang BJ: Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: a meta-analysis. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2015, 168B(1):1-13.

24. Lanara Z, Giannopoulou E, Fullen M, Kostantinopoulos E, Nebel JC, Kalofonos HP, Patrinos GP, Pavlidis C: Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. Human genomics 2013, 7:14.

25. Barendrecht JJ, Doi SA, Lee YY, Norman RE, Vos T: Meta-analysis of prevalence. Journal of epidemiology and community health 2013, 67(11):974-978.

26. Williams J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L, Cardno A, Asherson P, Blackwood D, Muir W et al: A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Molecular psychiatry 1998, 3(2):141-149.

27. Dubetret C, Gowland P, Ades J, Feingold J, Schwartz JC, Sokoloff P: Meta-analysis of DRD3 gene and schizophrenia: ethnic heterogeneity and significant association in Caucasians. American journal of medical genetics 1998, 81(4):318-322.

28. Jonsson EG, Flyckt L, Burgert E, Crocq MA, Forslund K, Mattila-Evenden M, Rylander G, Asberg M, Nimgaonkar VL, Edman G et al: Dopamine D3 receptor gene Ser9Gly variant and schizophrenia: association study and meta-analysis. Psychiatric genetics 2003, 13(1):1-12.

29. Jonsson EG, Kaisar R, Brockmoller J, Nimmoaekar VL, Crocq MA: Meta-analysis of the dopamine D3 receptor gene (DRD3) Ser9Gly variant and schizophrenia. Psychiatric genetics 2004, 14(1):9-12.

30. Utsunomiya K, Shinkai T, De Luca V, Hwang R, Sakata S, Fukunaka Y, Chen HI, Ohmori O, Nakamura J: Genetic association between the dopamine D3 gene polymorphism (Ser9Gly) and schizophrenia in Japanese populations: evidence from a case-control study and meta-analysis. Neuroscience letters 2008, 444(2):161-165.

31. Nunokawa A, Watanabe Y, Kaneko N, Sugai T, Yazaki S, Arinami T, Ujike H, Inada T, Iwata N, Kunugi H et al: The dopamine D3 receptor (DRD3) gene and risk of schizophrenia: case-control studies and an updated meta-analysis. Schizophrenia research 2010, 116(1):61-67.

32. Qi XL, Xuan JF, Xing JX, Wang BJ, Yao J: No association between dopamine D3 receptor gene Ser9Gly polymorphism (rs6280) and risk of schizophrenia: an updated meta-analysis. Neuropsychiatric disease and treatment 2017, 13:2855-2865.

33. Yang Z, Thomas DC: Two-stage family-based designs for sequencing studies. BMC proceedings 2014, 8(Suppl 1):S32.

34. Yang B, Chan RC, Jing J, Li T, Sham P, Chen RY: A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3'-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics 2007, 144B(4):541-550.
Table 1. Meta-analysis of TDT studies of the association between DRD3 Ser9Gly and schizophrenia.
| Author | Year | Location | Ethnicity | Diagnostic criteria | Number of transmissions | Ser9 allele | Expected distribution | OR | 95% CI | Z-value | P-value |
|--------|------|----------|-----------|--------------------|------------------------|------------|----------------------|-----|--------|----------|---------|
| lhotra | 1998 | USA | Caucasian | DSM-III-R | 108 | 57 51 | 54 54 | 1.118 | 0.766-1.630 | 0.577 | 0.564 |
| Kalsi | 1998 | USA | Caucasian | DSM-III-R | 149 | 74 75 | 75 75 | 0.987 | 0.716-1.360 | -0.082 | 0.935 |
| Williams | 1998 | USA | Caucasian | DSM-III-R | 78 | 33 45 | 39 39 | 0.733 | 0.469-1.146 | -1.361 | 0.173 |
| lliams | 1998 | Italy | Caucasian | DSM-III-R | 160 | 64 76 | 80 80 | 1.105 | 0.811-1.507 | 0.633 | 0.527 |
| Kowski | 1999 | India | Indians | DSM-IV | 264 | 67 65 | 62 70 | 1.164 | 0.718-1.886 | 0.615 | 0.538 |
| Kowskii | 2000 | Palestine | Arabian | DSM-IV | 516 | 173 85 | 172 86 | 1.018 | 0.705-1.468 | 0.094 | 0.925 |
| Kowskii | 2004 | Portugal | Caucasian | DSM-IV | 360 | 122 58 | 126 54 | 0.901 | 0.577-1.409 | -0.455 | 0.649 |
| Li | 2005 | China | East Asian | CCMD-III | 404 | 94 108 | 120 82 | 0.595 | 0.401-0.882 | -2.584 | 0.010 |
| Liwe | 2010 | Poland | Caucasian | DSM-IV, ICD-10 | 120 | 57 63 | 60 60 | 0.905 | 0.632-1.294 | -0.548 | 0.584 |
| | | | East Asian | | 204 | 87 117 | 102 102 | 0.744 | 0.564-0.980 | -2.104 | 0.441 |

Note: T, transmitted (number of times the allele is transmitted from heterozygous parents to the proband); NT, not transmitted.

Table 2. Meta-analysis of HHRR studies of the association between DRD3 Ser9Gly and schizophrenia.

Year	Location	Ethnicity	Diagnostic criteria	Sample size	Transmitted Ser9	Untransmitted Ser9	OR	95% CI	Z-value	P-value
17	1999	India	Indians	DSM-IV	264	67 65 62 70	1.164	0.718-1.886	0.615	0.538
48	2000	Palestinian	Arabian	DSM-IV	516	173 85 172 86	1.018	0.705-1.468	0.094	0.925
342	2004	Portugal	Caucasian	DSM-IV	360	122 58 126 54	0.901	0.577-1.409	-0.455	0.649
	2005	China	East Asian	CCMD-III	404	94 108 120 82	0.595	0.401-0.882	-2.584	0.010
	2010	Canada	Caucasian	DSM-IV	120	57 63 60 60	0.905	0.632-1.294	-0.548	0.584
			East Asian		204	87 117 102 102	0.744	0.564-0.980	-2.104	0.441
					1704	502 350 530 322	0.869	0.713-1.059	-1.395	0.163

Table 3. Subgroup analysis of the association between DRD3 Ser9Gly and schizophrenia in HHRR studies.
Year	Location	Ethnicity	Diagnostic criteria	Transmitted	Untransmitted	OR (95% CI)	Z-value	P-value		
2004	Portugal	Caucasian	DSM-IV	Ser9 122	Gly9 58	126 54	0.901	0.577-1.409	-0.455	0.649
2010	Canada	Caucasian	DSM-IV	Ser9 46	Gly9 34	50 30	0.812	0.431-1.530	-0.645	0.519

Figures

Figure 1

The search flow diagram.
Figure 2

Forest plot for TDT studies.

Figure 3

Funnel plot of study precision by log odds ratio for TDT studies.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMAflowdiagram.doc
- Tables.pdf
- PRISMAIPDchecklist.pdf