Commentary: Three-dimensional–printed, customized airway prosthesis—is it justified to walk the extra mile?

Thomas Schweiger, MD, PhD, Francesco Moscato, PhD, and Konrad Hoetzenecker, MD, PhD

Tracheal agenesis is a rare and, in most cases, fatal congenital anomaly. Possible treatment attempts aiming to restore the airway and the gastrointestinal tract are described anecdotally in the medical literature.1 Tsai and colleagues2 need to be congratulated to their excellent case report “Tracheal Agenesis: Esophageal Airway Support with a 3D-Printed Bioreorbable Splint.” A custom-made, 3-dimensional (3D)-printed external splint was designed to support the neotracea formed by an esophageal conduit in a patient with Floyd type I tracheal agenesis. The surgical repair resulted in a fully restored airway with a follow-up of more than 3 years after the surgical procedure. Together with the case published in 2017 by Densmore and colleagues,3 to the best of our knowledge, only 2 survivors with this condition are documented in the United States. This underscores the outstanding medical and surgical expertise of the authors, confronted with this extraordinary, clinical problem.

3D printing and additive manufacturing (AM) technologies are increasingly used to design customized medical devices. Although AM seemingly adds an infinite number of types and shapes of airway prosthesis and thus allows a perfect fit to the individual anatomical situation, a word of caution is warranted. These customized AM devices are often implanted under the regulatory framework of “compassionate use,” especially in the case of airway prosthesis. This means that less-stringent rules are applied by the authorities to facilitate ultima ratio treatment attempts. As a consequence, industry and regulators delegate the final responsibility to the hospitals and the implanting surgeons. Thus, the indication for such customized devices has to be set critically. Are there ready-made implants with appropriate safety data available that can be used off-label? In another, previously reported case of tracheal agenesis, an off-the-shelf polytetrafluoroethylene graft led to a successful stabilization of the esophagocarinooplasty. Therefore, the need for a more experimental treatment with an AM implant can be questioned. Correspondingly, in pediatric patients with airway collapse, both tailoring of readily available bioresorbable plates as well as 3D-printed external splints have been published.4,5 Although a similar number of patients were included, both series can hardly be compared because of the heterogeneity of these highly selected and complex cases. However, both techniques resulted in a reasonably good overall success rate. Thus, the decision to use a (tailored) purchased product or to design an AM product has to be made for each individual case with a certain sense for pragmatism yet without making concessions regarding the optimal clinical outcome.

When the indication for an AM device is set, the workflow of the production process should be carried out at the greatest possible standard and documented accordingly. This includes a risk analysis, quality control measures, material stress tests, and hygienic clearance of the specific final implant.6,7 Especially in airway pathologies, the acquisition of permission and conduction of these tests might be challenging, as the implants often have to be provided in a semiurgent manner. Noteworthy, the time from indication to

From the 1Department of Thoracic Surgery and 2Center for Medical Physics and Biomedical Engineering, Medical University of Vienna; 3Ludwig Boltzmann Institute for Cardiovascular Research; and 4Austrian Cluster for Tissue Regeneration, Vienna, Austria.

Disclosures: The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

Received for publication Sept 9, 2021; revisions received Sept 9, 2021; accepted for publication Sept 10, 2021; available ahead of print Sept 16, 2021.

Address for reprints: Konrad Hoetzenecker, MD, PhD, Wachinger Guertel 18-20, 1090 Vienna, Austria (E-mail: konrad.hoetzenecker@meduniwien.ac.at).

JTCVS Techniques 2021;10:569-70
2666-2507
Copyright © 2021 The Author(s). Published by Elsevier Inc. on behalf of The American Association for Thoracic Surgery. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
https://doi.org/10.1016/j.xjtc.2021.09.025
implantation can be shortened substantially for subsequent cases, once a workflow has been established. For some more frequent indications, outsourcing of the production process to AM companies or university spin-offs might be a valid option.

Finally, applying these cutting-edge technologies should be reserved to dedicated teams with substantial experience in the management of patients with airway pathologies. The report by Tsai and colleagues illustrates what can be achieved by combining surgical excellence, an experienced, multidisciplinary team, and advanced technologies. If AM implants are beneficial for the patient, it is absolutely worth walking the extra mile.

References
1. Floyd J, Campbell DC Jr, Dominy DE. Agenesis of the trachea. Am Rev Respir Dis. 1962;86:557-60.
2. Tsai AY, Moroi MK, Les AS, Hollister SJ, Green GE, Cilley RE, et al. Tracheal agenesis: esophageal airway support with a 3-dimensional–printed bioresorbable splint. J Thorac Cardiovasc Surg. 2021;10:563-8.
3. Densmore JC, Oldham KT, Dominguez KM, Berdan ER, McCormick ME, Beste DJ, et al. Neonatal esophageal trachealization and esophagocarinoplasty in the treatment of flow-limited Floyd II tracheal agenesis. J Thorac Cardiovasc Surg. 2017;153:e121-5.
4. Les AS, Ohye RG, Filbrun AG, Ghadimi Mahani M, Flanagan CL, Daniels RC, et al. 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope. 2019;129:1763-71.
5. Kamran A, Smithers CJ, Baird CW, Jennings RW. Experience with bioresorbable splints for treatment of airway collapse in a pediatric population. J Thorac Cardiovasc Surg. 2021;8:160-9.
6. Technical Considerations for Additive Manufactured Medical Devices. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices. Accessed September 6, 2021.
7. Königshofer M, Unger E, Stoiber M, Lang G, Schweiger T, Moscato F. Design and manufacturing workflow of a patient specific 3-dimensionally engineered tracheo-bronchial stent. Trans Additive Manufacturing Meets Med. 2021;3:568.
8. Willemsen K, Nizak R, Noordmans HJ, Castelein RM, Weinans H, Kruyt MC. Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series. Lancet Digit Health. 2019;1:e163-71.
9. Schweiger T, Gildea TW, Prosch H, Lang G, Klepetko W, Hoetzenecker K. Patient-specific, 3-dimensionally engineered silicone Y-stents in tracheobronchomalacia: clinical experience with a novel type of airway stent. J Thorac Cardiovasc Surg. 2018;156:2019-21.