Abstract
Purpose: The aim of this study was to determine whether various patient characteristics and perioperative clinical interventions might be correlated with the incidence of postoperative ileus (POI).
Methods: We prospectively investigated 114 patients who were scheduled to undergo elective colorectal surgery. The associations of patient characteristics and clinical interventions with POI were examined statistically. We also included preoperative stress as a possible predictor of POI. Results: A total of 11 (9.7%) patients developed POI. Univariate analyses showed that an intraoperative remifentanil dose of ≥ 4.0 mg was significantly associated with the occurrence of POI. Although a multivariate analysis showed that only an intraoperative remifentanil dose of ≥ 4.0 mg was statistically correlated with the occurrence of POI ($p=0.0375$), the risk for POI increased significantly with the number of other predictive factors present: a male sex, and an intraoperative remifentanil use, male sex, and the incidence of POI.

Key words: risk factor, postoperative ileus, postoperative complications, colorectal surgery

Introduction
Postoperative ileus (POI) is defined as lengthened bowel dysmotility occurring after surgery and lasting for more than 16 hours until the tolerance of an oral diet and the passage of flatus/stool. With typical abdominal surgery, such as a gastrectomy or a colectomy, bowel recovery requires 72 hours or 3-5 hospital days. If POI develops, the patient may suffer from nausea, vomiting, abdominal distention and pain, resulting in not only an increased risk of pulmonary complications and susceptibility to infection, but also an increased hospital stay and overall medical cost.

In recent years, so-called Enhanced Recovery after Surgery (ERAS) protocols have been developed; these multimodal perioperative management strategies have flourished in the surgical arena, and the widespread use of minimally invasive surgical techniques, such as laparoscopic surgery, has further contributed to a reduction in the incidence of POI. Nevertheless, a certain proportion of patients continue to experience POI. For most elective surgeries, patients receive standardized medical services that provide them with nearly homogeneous procedures and care; however, some patients experience POI, while others do not. Early postoperative bowel obstruction (EPSBO), also known as prolonged POI,
can lead to the development of adhesive small bowel obstruction, requiring multiple operations\(^6\)\(^,\)\(^7\). Despite this situation, few consistent risk factors for POI have been identified, and few studies have investigated specific preoperative patient characteristics that might be associated with an increased risk of POI.

The aim of the present study was to determine whether various patient characteristics and perioperative clinical interventions might be correlated with the incidence of postoperative ileus. We specifically focused on preoperative stress as a possible predictor of POI, since stress is known to be correlated with surgical outcome\(^8\)\(^,\)\(^9\) and to affect both autonomic nervous activity and the immune state throughout the body, including the small and large intestine\(^10\)\(^,\)\(^11\).

Materials and Methods

Patients who were scheduled to undergo elective colorectal surgery during the 18-month period between January 2015 and June 2016 were evaluated for eligibility and registered in the study according to the following inclusion and exclusion criteria.

Inclusion criteria

1) Scheduled to undergo elective colorectal surgery.
2) Age of over 20 years at the time of consent.
3) Able to make medical decisions.

Exclusion criteria

1) Endometritis.
2) Peritonitis.
3) Scheduled to receive chemotherapy/ radiation therapy within two weeks prior to the operation or 1 month after the operation.
4) Hepatic disorder (aspartate transaminase [AST] \(\geq 100\) IU/L or alanine transaminase [ALT] \(\geq 100\) IU/L).
5) Renal disorder (serum creatinine \(\geq 2\) mg/dL or blood urea nitrogen [BUN] \(\geq 25\) mg/dL).
6) Colonic perforation.
7) Stoma.
8) Not expected to achieve a complete cure.
9) Pregnant or lactating.
10) Participation in a clinical trial within 16 weeks before the operation.
11) Judged to be ineligible for any reason other than those listed above.

Colorectal surgeries were defined as any colorectal resection involving both large and small incisions of the peritoneum, including standard colonic resection and standard rectal resection using open, laparoscopic, or converted techniques. Standardization of care was assured by the fact that all the patients were treated by a single group of surgeons according to identical practice standards.

After providing written informed consent to participate in this study, all the patients underwent a stress evaluation at 5 PM on the day before their scheduled operation; their salivary amylase levels were measured using the Saliva Amylase Monitor\(^12\), and their stress level was scored using the State-Trait Anxiety Inventory-Form JYZ (STAI)\(^13\). Preoperative biochemical parameters that had been included in the hospital’s electronic database were also inspected prior to registration to ensure eligibility. Patient characteristics, such as age at the time of surgery, sex, American Society of Anesthesiologists (ASA) grade, and body mass index (BMI), were included in the analysis. Operative variables included the type of procedure, anesthetic duration, operative duration, body temperature at the end of the procedure, and intraoperative narcotic administration. The presence of POI was considered a postoperative variable.

In this study, POI was defined as the absence of the passage of flatus for more than 72 hours and the intolerance of an oral diet from the 2\(^{nd}\) to the 6th postoperative day; consequently, the presence or absence of POI was determined on the 7th postoperative day. In this study, paralytic ileus or functional bowel obstruction, but not mechanical bowel obstruction, was included as POI. The total opiate use was clearly recorded on the intraoperative and postoperative records, and the records revealed that remifentanil was the only narcotic that was routinely and consistently used in all the patients as an analgesic agent intraoperatively. Other opioids were rarely used, and only in very small quantities.

This study was approved by the institutional review board at Shizuoka General Hospital (No. 15-01-60; January 27, 2015) and complied with the provisions of the Declaration of Helsinki. The approval was obtained prior to data collection and prior to accessing the electronic database for the Colorectal Unit at the hospital.
Risk Factors for Postoperative Ileus

Statistical analysis

Continuous variables were summarized as the mean, standard deviation (S.D.), median and ranges, whereas categorical variables were presented as frequencies and proportions. The cutoff values for each factor (age, BMI, duration of anesthesia, duration of surgery, dose of remifentanil) were determined based on receiver operating characteristics (ROC) curve analyses. Categorized values for each stress measure (amylase level, STAI scores) were determined according to the test manufacturers’ recommendations. Risk factors found to have a p-value of <0.06 in a univariate analysis were included in the multivariate analysis. The procedures for colorectal resection were divided into three categories according to the site of resection: proximal to the intestine was categorized as procedures 1, distal to the intestine was categorized as procedures 2, and other parts of the colon were categorized as procedures 3. These categories were then included in the multivariate analysis to assess their effect on the POI. The results of the multivariate analysis were reported as odds ratios (ORs) with 95% confidence intervals (CIs) and p-values. The fit of the logistic models was assessed using the Hosmer-Lemeshow test. The different patient categories were defined according to the number of risk factors identified in this study that were found to be present in each patient. The Cochran-Armitage trend test was used to evaluate the correlation between the number of risk factors and the occurrence of ileus.

All the statistical tests were two-sided, and p-values of <0.05 were considered statistically significant. All the statistical analyses were conducted using SAS software, version 9.4 for Windows (SAS Institute Inc., Cary, NC, USA).

Results

Of the 122 patients who satisfied the study criteria, 118 patients remained eligible; however, 4 patients with open procedures were excluded because patients undergoing open procedures are reportedly more susceptible to POI than patients undergoing laparoscopic procedures. Consequently, the remaining 114 patients were included in the analysis. Sixty-seven patients (58.8%) were male, and 47 (41.2%) were female; the mean age was 67 years. All the surgeries were performed laparoscopically: common procedures included a sigmoidectomy (28.1%), ileocecal resection (22.8%), and low anterior resection (20.2%).

Procedure	
lap-Sigmoidectomy	32
lap-Ileocecal resection	26
lap-Low anterior resection	23
lap-Right hemicolectomy	13
lap-Segmental resection	6
lap-Transverse colectomy	5
lap-Left hemicolectomy	5
lap-Subtotal colectomy	2
lap-Ileoileocolic resection	1
lap-Anterior resection	1

Stress	STAI score	
1	3	2.8
2	29	27.1
3	48	44.9
4	20	18.7
5	7	6.5

Stress	Amylase	
1	55	48.3
2	10	8.8
3	12	10.5
4	37	32.5

Table 1 Patient Characteristics

N=114	n	ratio (%)		
Sex				
Male	67	58.8		
Female	47	41.2		
Age	n	mean±SD	median	range
	108	67 ± 11.9	67.5	25 - 91
BMI	n	mean±SD	median	range
	114	22.63 ± 3.01	22.33	16.69 - 33.95
ASA				
1	27	25.7		
2	67	63.8		
3	11	10.5		
Procedure				
lap-Sigmoidectomy	32	28.1		
lap-Ileocecal resection	26	22.8		
lap-Low anterior resection	23	20.2		
lap-Right hemicolectomy	13	11.4		
lap-Segmental resection	6	5.3		
lap-Transverse colectomy	5	4.4		
lap-Left hemicolectomy	5	4.4		
lap-Subtotal colectomy	2	1.8		
lap-Ileoileocolic resection	1	0.9		
lap-Anterior resection	1	0.9		

lap: Laparoscopic
POI (Table 2), an intraoperative remifentanil dose of ≥4.0 mg was significantly correlated with POI (p=0.0375) when analyzed after adjustments for an intraoperative remifentanil dose of ≥4.0 mg, patient sex, and procedure category as independent variables (Table 3). The Hosmer-Lemeshow test showed a good fit for this model (p=0.5893). Furthermore, the Cochran-Armitage Trend Test for risk factors (male sex, intraoperative remifentanil dose of more than 4.0 mg) showed that the incidence of POI increased significantly with the number of risk factors present (p=0.006), (Table 4).

Discussion
In the present study, we found that 9.7% of the patients in our series developed POI. Previous studies have reported incidences of POI varying from 4.5% to 32.4% for abdominal surgery. One of the reasons for this wide range is the use of different definitions of POI. Among studies stating a specific definition of POI, incidences of between 12.7% and 19.6% have been reported for patients undergoing colorectal surgery. The incidence of POI after laparoscopic surgery is reportedly lower than that after open surgery. Our results seem to agree with these previously reported findings. Considering the definition of POI used in this study and the careful patient selection with specific inclusion and exclusion criteria (i.e., no prior abdominal surgery and a comparatively healthy state) as well as the use of elective laparoscopic surgery for all the patients in our study, a POI incidence of 9.7% seems acceptable.

In our study, an intraoperative remifentanil dose of more than 4.0 mg was found to be a risk factor for POI. Remifentanil is a potent, short-acting synthetic opioid analgesic that has a rapid onset and a rapid recovery time. Remifentanil was administered intravenously as a general anesthetic agent in our cases. Similar to other opioids, such as morphine, remifentanil stimulates mu receptors in the gut; therefore, the routine use of remifentanil for total intravenous anesthesia in this patient series may
Table 2: Predictive factors associated with POI

Factors	N	POI percentage (%)	Univariate analysis	Multivariate analysis		
	(n=114)	(n=11)	OR 95% CI	p value	OR 95% CI	p value
Sex						
Female	47	1(2.1)	1		1	
Male	67	10(14.9)	8.069 (0.996, 65.359)	0.0504	6.044 (0.722, 50.613)	0.0971
Age (years)						
< 67	48	3(6.3)	1		-	-
≥ 67	60	8(13.3)	2.308 (0.577, 9.224)	0.2369	-	-
BMI						
≥ 24.91	30	2(6.7)	1		-	-
< 24.91	84	9(10.7)	1.680 (0.342, 8.259)	0.5231	-	-
ASA						
1	40	3(7.5)	1		-	-
2	61	6(9.8)	1.345 (0.316, 5.720)	0.8692	-	-
3	13	2(15.4)	2.242 (0.332, 15.168)	0.4395	-	-
Stress						
STAI score	107	10	0.988 (0.919, 1.062)	0.7336	-	-
1+2	32	2(6.25)	1		-	-
3	48	6(12.5)	2.143 (0.404, 11.355)	0.3219	-	-
4+5	27	2(7.4)	1.200 (0.158, 9.142)	0.8149	-	-
Amylase						
1	55	6(10.9)	1		-	-
2	10	2(20.0)	2.042 (0.349, 11.943)	0.238	-	-
3+4	49	3(6.1)	0.533 (0.126, 2.255)	0.1864	-	-
Anesthetic duration (minutes)						
< 326.0	84	6(7.1)	1		-	-
≥ 326.0	30	5(16.7)	2.600 (0.731, 9.253)	0.1401	-	-
Operation duration (minutes)						
< 253.0	114	11	1		-	-
≥ 253.0	70	5(7.1)	1		-	-
Body temperature						
< 108	80	0	1		-	-
≥ 108	38	1	1		-	-
Remifentanil (mg)						
< 4.3	38	1	1		-	-
≥ 4.0	106	0	1		-	-
explain why the remifentanil dose was associated with the POI. An association between opioid use for postoperative analgesia and POI has been reported in previous studies\(^\text{26,27}\); however, few studies have reported that the intraoperative dose of opioids might contribute to the occurrence of POI. Our study suggests that remifentanil has possible adverse effects related to POI, and its postoperative effects should be assessed for a longer follow-up period when the total dose exceeds 4.0 mg.

A male sex was not statistically correlated with POI in our study (\(p=0.0971\)). Using a definition of POI and eligibility criteria similar to ours, Millan reported an incidence of POI after colorectal surgery of a 15.9% and found that a male sex was a risk factor for POI\(^\text{32}\). Among the various risk factors of POI, such as a poor patient condition and the presence of co-morbidities, including a prior operational history, an older age, a longer operation time, a larger blood loss, and opiate use\(^\text{29-31}\), a male sex has been reported relatively consistently as a risk factor for POI\(^\text{32}\). An association between a male sex and the risk of POI has been reported not only for abdominal surgeries, but also for plastic surgeries, such as joint arthroplasty and circumferential lumbar fusion\(^\text{33,34}\). These reports suggest that a male sex is a common risk factor for POI and that POI can occur without direct manipulation of the intestine. The cause of POI is thought to be multifactorial, including surgical manipulation of the intestine and peritoneum, neural hypersensitivity, and inflammatory immune responses\(^\text{35,36}\). Still, the cause remains unclear, and few studies have explored why men are more susceptible to POI than women or why remote surgical sites can affect bowel motility.

The present study showed that the three procedure categories were not significantly correlated with the occurrence of POI. This phenomenon may be ex-
Risk Factors for Postoperative Ileus

explained by the function of helper T cells during intestinal inflammation caused by surgical manipulations of the colon and rectum.\(^{37}\)

We also found that the combination of a male sex and an intraoperative remifentanil dose of more than 4.0 mg was more strongly correlated with the occurrence of POI than either individual risk factor alone. This phenomenon should also be investigated in future studies.

The primary objective of the present study was to clarify the correlation between preoperative stress and the occurrence of POI. Acute stress, including subjective emotional stress, is known to activate physiological stress systems. Numerous studies have also shown that physiological stress is correlated with psychological stress. Therefore, it seemed reasonable to hypothesize that a strong emotional experience of stress might affect postoperative outcome\(^{39-41}\), including the incidence of POI. To our surprise, we failed to identify such a correlation. To measure stress, we used the STAI, which is often used as a measure of psychological stress, and the salivary amylase level, which has been recently reported as a biological stress marker based on its correlation with stressful perception\(^{39-41}\). With the use of these measurements in mind, some explanations of the unexpected findings can be postulated. For example, current reviews have revealed that previous studies examining the association between physiological stress and psychological stress were mostly done on an experimental basis and were not based on clinical data\(^{42,43}\). Thus, some background factors might result in a disparity between clinical and experimental experiences of stress. Stress alleviation by mediating factors, such as personality traits and appraisal processes, might be another possible explanation\(^{44}\), since our subjects were all relatively healthy adult patients. In any case, preoperative stress might not have a notable effect on the incidence of POI among patients undergoing elective colorectal surgeries. Once we inferred this fact, we stopped our data sampling, resulting in a relatively small number of subjects; this was a limitation of our study. Further study is needed to clarify the correlation between a male sex, intraoperative remifentanil use, and the incidence of POI.

Conflict of interest: None.

References

1) Wilson JP: Postoperative motility of the large intestine in man. Gut 16: 689-692, 1975
2) Condon RE, Frantzides CT, Cowles VE, et al: Resolution of Postoperative Ileus in Humans. Ann Surg 202: 574-581, 1986
3) Vather R, Trivedi S, Bissett I: Defining postoperative ileus: results of a systematic review and global survey. J Gastrointestinal Surg 17: 962-972, 2013
4) Goldstein J, Matuszewski K, Delaney C, et al: Inpatient economic burden of postoperative ileus associated with abdominal surgery in the United States. Pharmacy and Therapeutics 32: 82-90, 2007
5) Iyer S, Saunders WB, Stemkowski S: Economic burden of postoperative ileus associated with colectomy in the United States. J Manag Care Pharm 15: 485-494, 2009
6) Lee SY, Park KJ, Ryoo SB, et al: Early Postoperative Small Bowel Obstruction is an Independent Risk Factor for Subsequent Adhesive Small Bowel Obstruction in Patients Undergoing Open Colectomy. World J Surg 38: 3007-3014, 2014
7) Ellozy SH, Harris MT, Bauer JJ, et al: Early postoperative small bowel obstruction: a prospective evaluation in 242 consecutive abdominal operations. Dis Colon Rectum 45: 1214-1217, 2002
8) Karlson I, Berglin E, Larsson PA: Sense of coherence: quality of life before and after coronary artery bypass surgery – a longitudinal study. J Adv Nurs 31: 1383-1392, 2000
9) Shelleya M, Pakenham IK, Fraize I: Cortisol changes interact with the effects of a cognitive behavioral psychological preparation for surgery on 12-month outcomes for surgical heart patients. Psychology and Health 24: 1139-1152, 2009
10) Plourde V: Stress-induced changes in the gastrointestinal motor system. Can J Gastroenterol A (Suppl): 26A-31A, 1999
11) Kox M, Stoffers M, Smeekens SP, et al: The influence of concentration/meditation on autonomic nervous system activity and the innate immune response: a case study. Psychosom Med 74: 489-494, 2012
12) Yamaguchi M, Deguchi M, Wakasugi J, et al: Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment. Biosens Bioelectron 15: 1004-1014, 2006
13) Araki N, Iwawaki S, Spielberger CD: Construction and validation of a Japanese adaptation of the test anxiety inventory. Anxiety, stress, and coping: an international journal. 5: 217-224, 1992
14) Hosmer DW Jr, Lemeshow S, Sturdivant RX: Applied Logistic Regression. 3rd ed. Hoboken, John Wiley & Sons, New York, 2013, p121-126
15) Braga M, Vignali A, Gianotti L, et al: Laparoscopic versus open colorectal surgery. A randomized trial on short-term outcome. Ann Surg 236: 759-767, 2002
16) Weeks JC, Nelson H, Gelber S, et al: Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs. open colectomy for colon can-
17) Nakajima J, Sasaki A, Otsuka K, et al.: Risk Factors for Early Postoperative Small Bowel Obstruction After Colectomy for Colorectal Cancer. World J Surg 34:1086–1090, 2010

18) Terai Y, Sasaki H, Tsunetoh S, et al.: Novel para-aortic lymphadenectomy technique for gynecological malignancies prevents postoperative bowel obstruction. The Journal of Obestrics and Gynaecology Research 39:849–854, 2013

19) Huang DD, Zhuang CL, Wang SL, et al.: Prediction of Prolonged Postoperative ileus After Radical Gastrectomy for Gastric Cancer. A Scoring System Obtained From a Prospective Study. Medicine 94:1–9, 2015

20) Moghadamyeghaneh Z, Hwang SG, Hanna HM, et al.: Risk factors for prolonged ileus following colon surgery. Surg Endosc 30:603–609, 2016

21) Chapuis PH, Bokey L, Keshava A, et al.: Risk factors for prolonged ileus after resection of colorectal cancer: an observational study of 2400 consecutive patients. Ann Surg 257:909–915, 2013

22) Murphy MM, Tevis SE, Kennedy GD: Independent risk factors for prolonged postoperative ileus development. J Surg Res 201:279–286, 2016

23) Vather R, Bissett IP: Risk factors for the development of prolonged postoperative ileus following elective colorectal surgery. Int J Colorectal Dis 28:1385–1391, 2013

24) Michelsen LG, Hug CC Jr: The pharmacokinetics of remifentanil. J Clin Anesth 8:679–682, 1996

25) Sanger GJ, Tuladhar BR: The role of endogenous opioids in the control of gastrointestinal motility: predictions from in vitro modelling. Neurogastroenterol Motil 16:38–45, 2004

26) Delaney CP: Clinical perspective on postoperative ileus and the effect of opiates. Neurogastroenterol Motil 16:61–66, 2004

27) Artinyan A, Nunoo-Mensah JW, Balasubramaniam S, et al.: Prolonged Postoperative Ileus-Definition, Risk Factors, and Predictors after Surgery. World J Surg 32:1495–1500, 2008

28) Millan MI, Biondo S, Fracalvieri D, et al.: Risk factors for prolonged postoperative ileus after colorectal cancer surgery. World J Surg 36:179–185, 2012

29) Miedema BW, Johnson JO: Methods for decreasing postoperative gut dysmotility. Lancet Oncology 4:365–372, 2003

30) Schuster TG, Montie JE: Postoperative ileus after abdominal surgery. Urology 59:465–471, 2002

31) Shin JY, Hong KH: Risk Factors for Early Postoperative Small-bowel Obstruction After Colectomy in Colorectal Cancer. World J Surg 32:2287–2292, 2008

32) Damian B, Ahmed ME, Emmanouil P, et al.: Postoperative ileus: Recent developments in pathophysiology and management. Clinical Nutrition 34:367–376, 2015

33) Fineberg SJ, Nandyala SV, Kurd MF, et al.: Incidence and risk factors for postoperative ileus following anterior, posterior, and circumferential lumbar fusion. Spine J 14:1680–1685, 2014

34) Parvizi J, Han SB, Tarity TD, et al.: Postoperative ileus after total joint arthroplasty. J Arthroplasty 23:360–365, 2008

35) Luckey A, Livingston E, Taché Y: Mechanisms and treatment of postoperative ileus. Arch Surg 138:206–214, 2003

36) Carroll JI, Alavi K: Pathogenesis and management of postoperative ileus. Clin Colon Rectal Surg 22:47–50, 2009

37) Daniel RE, Arne K, Sven W, et al.: T helper type 1-memory cells disseminate postoperative ileus over the entire intestinal tract. Nature Medicine 16:1407–1414, 2010

38) Ali A, Akun D, Oguz BH, et al.: The effect of preoperative anxiety on postoperative analgesia and anesthesia recovery in patients undergoing laparoscopic cholecystectomy. J Anesth 28:222–227, 2014

39) Uesato M, Nabea Y, Akai T, et al.: Salivary amylase activity is useful for assessing perioperative stress in response to pain in patients undergoing endoscopic submucosal dissection of gastric tumors under deep sedation. Gastric Cancer 13:84–89, 2010

40) Arai YC, Matsubara T, Shimo K, et al.: Small correlation between salivary alpha-amylase activity and pain intensity in patients with cancer pain. Acta Anaesthesiol Scand 53:408, 2009

41) Wittwer A, Krummenacher P, La Marca R, et al.: Salivary Alpha-Amylase Correlates with Subjective Heat Pain Perception. Pain Med 17:1131–1136, 2016

42) Ashley N, Susana M, Susana R: How age, sex and genotype shape the stress response. Neurobiology of Stress 6:44–56, 2017

43) Jana C, Ulrike E: Acute psychosocial stress: Does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology 37:1111–1134, 2012

44) Richard S, Lazarus, Susan Folkman: Stress, appraisal, and coping. Springer Pub. Co., New York, 1984