A NOTE ON FC-NILPOTENCY

NADJA HEMPEL AND DANIEL PALACÍN

Abstract. The notion of bounded FC-nilpotent group is introduced and it is shown that any such group is nilpotent-by-finite, generalizing a result of Neumann on bounded FC-groups.

1. Introduction

A group in which every element has only finitely many conjugates is called a finite conjugacy group, FC-group for short. Of course, in particular all abelian groups and also all finite groups are FC-groups but there are many more non-trivial examples. The study of this class of groups was initiated by Baer [1] and Neumann [6], and its general theory was strongly developed during the second half of the last century, see [8].

Numerous variations of the notion of FC-group have been considered to study structural properties of infinite groups with some finiteness condition. As a strengthening, Neumann considered FC-groups with a uniform bound on the size of the conjugacy classes, known as bounded FC-groups, and showed that these are finite-by-abelian [6]. On the other hand, Haimo [3] and later Duguid and McLain [2] analyzed FC-nilpotent and FC-solvable groups, which are natural generalizations of nilpotent and solvable groups respectively to the FC context. For instance, a group is FC-solvable of length n if it admits a finite chain of length n of normal subgroups whose factors are FC-groups. Similarly, one can define the notion of FC-nilpotent, see Definition 2.6 for a precise definition. Furthermore, Hickin and Wenzel have shown in [4] that, like for normal nilpotent groups, the product of two normal FC-nilpotent subgroups is normal and again FC-nilpotent.

In this paper we aim to study a suitable version of bounded FC-nilpotency, see again Definition 2.6 and to show that these groups are exactly the nilpotent-by-finite ones. This result generalizes the one of Neumann on bounded FC-groups and another of Duguid and McLain asserting that finitely generated FC-nilpotent groups are nilpotent-by-finite. Furthermore, bounded FC-nilpotent groups appear naturally in the study of groups in model theory such as in \aleph_0-categorical groups and groups definable in simple (or even

2000 Mathematics Subject Classification. 20F19, 20F24.

Key words and phrases. nilpotent-by-finite; FC-nilpotent; bounded FC-group.

The second author was partially supported by the project MTM2014-59178-P.
wider families of) first-order theories. For instance, in these cases every definable FC-nilpotent group is indeed bounded. However, such groups are typically not finitely generated and therefore, the aforementioned result of Duguid and McLain cannot a priori be applied to deduce that these groups are nilpotent-by-finite.

The result presented here generalizes some previous cases due to Wagner [9, Proposition 4.4.10] for groups in simple theories, as well as in [5] for groups satisfying a uniform chain condition on centralizers up to bounded index. Our proof involves some machinery on FC-centralizers recently obtained by the first author in [5] using techniques from model theory. Finally, concerning the FC-solvable case note that the situation is more straightforward and an easy argument is given at the end of the paper.

2. Bounded FC-nilpotent groups

Given a group G and a subset X of G, we denote by $C_G(X)$ the elements of G that commute with every element in X. Moreover, considering a normal subgroup N of G, we denote by $C_G(g/N)$ the elements of G in the preimage of $C_{G/N}(gN)$ under the usual projection.

We recall the definition of an FC-centralizer due to Haimo [3] and related notions, which play an essential role along the paper.

Definition 2.1. A subgroup H of G is contained up to finite index in another subgroup K if $H \cap K$ has finite index in H. We denote this by $H \lesssim K$. Then H and K are commensurable, denoted by $H \sim K$, if $H \lesssim K$ and $K \lesssim H$.

Observe that \lesssim is a transitive relation among subgroups of G, and that \sim is an equivalence relation.

Definition 2.2. Let G be a group and let K, H, N be subgroups of G with N normalized by H. The FC-centralizer of H modulo N in K is defined as

$$FC_K(H/N) = \{ k \in N_K(N) : H \sim C_H(k/N) \}.$$

If N is trivial it is omitted.

In other words, the group $FC_K(H/N)$ consists of the elements k in $N_K(N)$ such that $[H : C_H(k/N)]$ is finite, i.e. k^H/N is finite. Moreover, observe that G is an FC-group if $G = FC_G(G)$. As pointed out in the introduction a priori an FC-group may have arbitrarily large conjugacy classes. Those FC-groups in which there is a natural number bounding the size of any conjugacy class are called bounded FC-groups, and are precisely finite-by-abelian groups [6, Theorem 5.1].

The following definition generalizes the notion of bounded FC-group to arbitrary FC-centralizers.
Definition 2.3. Let G be a group and let H, K, N be subgroups of G with K normalized by H. We say that $\text{FC}_K(H/N)$ is bounded if there exists a natural number n such that

$$\text{FC}_K(H/N) = \{g \in N_K(N) : |H/C_H(g/N)| \leq n\}.$$

FC-centralizers for definable groups and bounded FC-centralizers have been studied by the first author in [5] who has shown that some behaviors of the ordinary centralizers can be generalized to FC-centralizers. This is exemplified in the following two lemmata which can be found as [5, Theorem 2.10] and [5, Theorem 2.18]. For the former we give a proof which is a simple adaptation of the non-definable version to the bounded case.

Fact 2.4 (Symmetry). Let H and K be two subgroups of a group G and N be a subgroup of G that is normalized by H and K. Assume further that the FC-centralizer of $\text{FC}_H(K/N)$ is bounded. If $H \preccurlyeq \text{FC}_G(K/N)$, then $K \preccurlyeq \text{FC}_G(H/N)$.

Proof. Assume that H and $\text{FC}_H(K/N)$ be commensurable and let d be the natural number such that for any element h in $\text{FC}_H(K/N)$ we have that

$$|H/C_H(h/N)| \leq d \quad (*) .$$

Now suppose that K and $\text{FC}_K(H/N)$ are not commensurable. In this case, we can choose elements k_0, \ldots, k_d in different cosets of $\text{FC}_K(H/N)$ in K. Thus, the index $[H : C_H(k_ik_j^{-1}/N)]$ is infinite. Since no group can be covered by finitely many cosets of subgroups of infinite index by a well-known theorem of Neumann [7], there are infinitely many elements $\{h_i\}_{i \in \mathbb{N}}$ in H such that for all natural numbers $s \neq t$ and $i \neq j \leq d$, we have that $[h_s, h_t^{-1}, k_ik_j^{-1}] \notin N$. Thus, the elements k_0, \ldots, k_d witness that $[K : C_H(h_sh_t^{-1}/N)] > d$. Hence, by $(*)$ none of the elements $h_ish_t^{-1}$ can belong to $\text{FC}_H(K/N)$, and whence H and $\text{FC}_H(K/N)$ are not commensurable, contradicting our initial assumptions. \hfill \square

Fact 2.5. Let G be a group and let H and K be two subgroups of G such that H is normalized by K. If $H = \text{FC}_H(K)$, $K = \text{FC}_K(H)$, and $\text{FC}_K(H)$ is bounded, then the commutator subgroup $[H, K]$ is finite.

Notice that the latter generalizes the aforementioned result due to Neumann on bounded FC-groups.

Definition 2.6. A group H is FC-nilpotent of class n if there exists a finite chain of normal subgroups

$$\{1\} \leq H_1 \leq H_2 \leq \cdots \leq H_n = H$$

such that H_{i+1} is contained in $\text{FC}_H(H/H_i)$. We say that H is bounded FC-nilpotent if additionally each $\text{FC}_{H_{i+1}}(H/H_i)$ is bounded.
FC-nilpotent groups were introduced by Haimo [3], who studied their basic properties. Duguid and McLain [2] Corollary 1] proved that finitely generated FC-nilpotent groups of class n are (nilpotent of class n)-by-finite.

Remark 2.7. A nilpotent-by-finite group is bounded FC-nilpotent.

Proof. Let H be a nilpotent-by-finite group and choose N a normal nilpotent finite index subgroup of H. Let n be the nilpotency class of N and k be the index of N in H. It is clear that $Z_{i+1}(N)$ is contained in $FC_H(H/Z_i(N))$ and that

$$[H : C_H(x/Z_i(N))] \leq k$$

for any $x \in Z_{i+1}(N)$. Then

$$\{1\} \leq Z(N) \leq \cdots \leq Z_n(N) \leq H$$

witnesses that H is a bounded FC-nilpotent group. \hfill \Box

The following result yields the equivalence between bounded FC-nilpotent groups and nilpotent-by-finite ones.

Theorem 2.8. Any bounded FC-nilpotent group of class n is (nilpotent of class $2n$)-by-finite.

Proof. Let N be a bounded FC-nilpotent group of class n, and let

$$\{1\} = N_0 \leq N_1 \leq \cdots \leq N_n = N$$

be a series witnessing this. Now, we find recursively on $i \leq n$ a subgroup F_i of finite index in N and a finite chain

$$\{1\} = H^i_0 \leq H^i_1 \leq \cdots \leq H^i_{2i}$$

of normal subgroups of F_i such that H^i_{j+1}/H^i_j is central in F_i/H^i_j for $j < 2i$ and $F_i \cap N_i$ is contained in H^i_{2i}. Once this process is concluded, the subgroup F_n is nilpotent of class at most $2n$ and has finite index in N.

We start the construction by setting $H^i_0 = \{1\}$ and $F_0 = N$. To continue, let $i > 0$ and assume that we have already defined $H^{i-1}_0, \ldots, H^{i-1}_{2(i-1)}$ and F_{i-1}. Now, we work in the quotient $\tilde{N} = F_{i-1}/H^{i-1}_{2(i-1)}$ and consider the subgroup $\tilde{N}_i = N_i \cap F_{i-1}/H^{i-1}_{2(i-1)}$. As $N_{i-1} \cap F_{i-1}$ is contained in $H^{i-1}_{2(i-1)}$ and $N_i = FC_{N_i}(N_i)$ is bounded, we have that $\tilde{N}_i = FC_{\tilde{N}_i}(\tilde{N})$ and that it is bounded. Thus Fact 2.4 yields that $\tilde{N} \sim FC_{\tilde{N}}(\tilde{N}_i)$.

Let \tilde{N}^* be equal to $FC_{\tilde{N}}(\tilde{N}_i)$, a subgroup of finite index in \tilde{N}, and let \tilde{N}^*_i be equal to $\tilde{N}_i \cap \tilde{N}^*$. Now, as \tilde{N}^*_i has also finite index in \tilde{N}_i, we clearly have that $\tilde{N}^* = FC_{\tilde{N}^*_i}(\tilde{N}^*_i)$ and moreover

$$\tilde{N}^*_i = FC_{\tilde{N}_i}(\tilde{N}) \cap \tilde{N}^* = FC_{\tilde{N}^*_i}(\tilde{N}^*)$$

As the latter remains bounded, Fact 2.5 yields that the group X defined as $[\tilde{N}^*, \tilde{N}^*_i]$ is finite. Note that all considered groups are normal in the ambient
A NOTE ON FC-NILPOTENCY

Hence X is contained in $N^*_i = FC_{N^*_i}(N^*)$ and whence $C_{N^*_i}(X)$ has finite index in N^*_i.

Finally, set F_i to be the preimage of $C_{N^*_i}(X)$ in N, which as well has finite index in N, the group H_{2i-1}^i to be the preimage of $X \cap C_{N^*_i}(X)$ in N, and H_{2i}^i to be the preimage of $N^*_i \cap C_{N^*_i}(X)$ in N. Moreover, for $j < 2i - 1$, we let H_j^i be $H_{j-1}^i \cap F_i$. Note that by construction, the subgroups H_j^i for $j \leq 2i$ are contained in F_i. Then the sequence

$$\{1\} = H_0^i \leq H_1^i \leq \cdots \leq H_{2i}^i$$

together with F_i is as desired. □

Remark 2.9. Observe that our proof yields that each quotient H_{2i+1}^i modulo H_{2i}^i is finite. Thus, the group N has a finite index nilpotent subgroup of class $2n$, which admits a series of length n where each factor is (finite central)-by-central.

3. Bounded FC-solvability

We say that a group is *bounded FC-solvable* of length n if it is an FC-solvable group of length n in which each factor witnessing the FC-solvability is a bounded FC-group. Thus, by Neumann’s Theorem each of these factors is finite-by-abelian. Moreover, for any finite-by-abelian group H, the characteristic subgroup $C_H(H')$ is nilpotent of class two and has finite index. Thus, such a group is nilpotent-by-finite. Using this, we can easily show by induction on the FC-solvability length that a bounded FC-solvable group is solvable-by-finite:

More precisely, let

$$\{1\} = G_0 \lhd G_1 \lhd \cdots \lhd G_{n-1} \lhd \cdots \lhd G_n = G$$

be a series that witnesses that G is a bounded FC-solvable group. Then, the group G_{n-1} is FC-solvable of smaller length and hence solvable-by-finite. Thus G is a solvable-by-finite-by-abelian group. So, as any finite-by-abelian group is a nilpotent-by-finite group, we can conclude that G is solvable-by-finite.

References

[1] R. Baer. *Finiteness properties of groups*, Duke Math. J. Vol 15 (1948), pp. 1021–1032.
[2] A. M. Duguid and D. H. McLain. *FC-nilpotent and FC-soluble groups*, Math. Proc. of the Cambridge Philosophical Society, Vol. 52 (1956) no. 3, pp. 391–398.
[3] F. Haimo. *The FC-chain of a group*, Canadian Journal of Mathematics, Vol. 5 (1953), pp. 498–511.
[4] K. K. Hickin and J. A. Wenzel. *On the normal product of FC-nilpotent and FC-hypercentral groups*, Acta Math. Acad. Sci. Hungar., Vol. 22 (1971/72), pp. 355–358.
[5] N. Hempel. *Almost group theory*, preprint (2016), hal.archives-ouvertes.fr/hal-01206954v3
[6] B. H. Neumann. *Groups with finite classes of conjugate elements*, Proc. London Math. Soc., Vol. 1 (1951), pp. 178–187.
[7] B. H. Neumann. *Groups covered by finitely many cosets*, Publ. Math. Debrecen, Vol. 3 (1954), pp. 227–242.
[8] M. J. Tomkinson. *FC-groups*. Research Notes in Mathematics, 96. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[9] Frank O. Wagner. *Simple Theories*. Mathematics and Its Applications 503. Kluwer Academic Publishers, Dordrecht, NL, 2000.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA LOS ANGELES, LOS ANGELES, CA 90095-1555, USA

E-mail address: nadja@math.ucla.edu

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, 9190401, ISRAEL

E-mail address: daniel_palacin@mail.huji.ac.il