Potential benefits of a block-space GPU approach for discrete tetrahedral domains

Cristóbal A. Navarro
Instituto de Informática
Universidad Austral de Chile
Valdivia, Chile

Benjamín Bustos
Departamento de Ciencias de la Computación
Universidad de Chile
Santiago, Chile

Nancy Hitschfeld
Departamento de Ciencias de la Computación
Universidad de Chile
Santiago, Chile

Abstract—The study of data-parallel domain re-organization and thread-mapping techniques are relevant topics as they can increase the efficiency of GPU computations when working on spatial discrete domains with non-box-shaped geometry. In this work we study the potential benefits of applying a succinct data re-organization of a tetrahedral data-parallel domain of size \(O(n^3)\) combined with an efficient block-space GPU map of the form \(g(\lambda) : N \rightarrow \mathbb{N}^3\). Results from the analysis suggest that in theory the combination of these two optimizations produce significant performance improvement as block-based data re-organization allows a coalesced one-to-one correspondence at local thread-space while \(g(\lambda)\) produces an efficient block-space spatial correspondence between groups of data and groups of threads, reducing the number of unnecessary threads from \(O(n^3)\) to \(O(n^3 \rho^3)\) where \(\rho\) is the linear block-size and typically \(\rho^3 \ll n\). From the analysis, we obtained that a block based succinct data re-organization can provide up to \(2 \times\) improved performance over a linear data organization while the map can be up to \(6 \times\) more efficient than a bounding box approach. The results from this work can serve as a useful guide for a more efficient GPU computation on tetrahedral domains found in spin lattice, finite element and special n-body problems, among others.

I. INTRODUCTION

GPU computing has proven to be both a practical tool and a well established research area for computer science [6], [7], mostly because there are several parallel computing issues that get magnified when handling thousands of processors in parallel and become critical for achieving high efficiency. One of these problems is related to how memory can be accessed in parallel as it is no longer possible to assume an exclusive data path for each processor, but instead one must assume that one memory access can provide several consecutive words of data to a group of threads. A more recent problematic is related to the challenge of given a data-parallel problem, find a thread map that uses a space of computation that is close to the optimal one, where optimal is defined as the space of computation that achieves maximum parallelism with all threads doing useful work. This problem typically arises when handling fine grained data-parallel problems defined on a complex spatial domain, i.e., one that is different from the box-shape for the corresponding spatial dimensions of the problem.

Since the introduction of general purpose GPU programming tools such as CUDA [8] and OpenCL [4], the problems recently described have gained mayor importance as they indeed appear in the programming model and have an impact on the performance of the GPU. Although these problems exist in all complex spatial domains, in this work we are particularly interested in studying the potential benefits on 3D discrete triangular domains as they are found in important applications such as special all-with-all problems, computational physics on spin lattices, special n-body problems and cellular automata under special boundary conditions.

In the CUDA GPU programming model there is a hierarchy of three constructs [4] that are defined for the execution of a highly parallel algorithm; (1) thread, (2) block and (3) grid. Threads are the smallest elements and they are in charge of executing the instructions of a GPU kernel. A block is an intermediate structure that contains a set of threads organized in an Euclidean space. Blocks provide fast shared memory access as well as synchronization for all of its threads. The grid is the largest construct of the GPU and it is in charge of keeping all blocks spatially organized. These three constructs play an important role when mapping the execution resources to the problem domain as well as for the memory accesses.

The problems already mentioned can be described in more detail for the case of a discrete 3D triangular domain, where elements have a spatial organization:

1) A typical linear memory organization of data elements in a 3D discrete pyramid in a major depth-row order, i.e., \(z \rightarrow y \rightarrow x\), leads to a non-linear pattern of linear distances between nearest neighbors. This aspect produces a negative impact on performance as coalesced memory accesses become less frequent.

2) There is a stage in the GPU computing pipeline where the space of computation is mapped to the problem domain. This map can be defined as a function \(f(x) : \mathbb{N}^k \rightarrow \mathbb{N}^q\) that transforms each \(k\)-dimensional point \(x = (x_1, x_2, ..., x_k)\) of the grid to a unique \(q\)-dimensional point of the problem domain. When the problem domain is simple in shape, e.g., a box, the canonical GPU map \(f(x) = x\) becomes the optimal and simplest one. For the case of 3D discrete triangular domains, up to \(O(n^3)\) threads may become unnecessary with this approach, therefore it is of interest to find a more efficient approach that can map threads according to a 3D triangular distribution.

In this work we analyze the potential performance benefits of applying a fast re-organization of the problem domain combined with a block-space map that preserves thread locality.

1OpenCL chooses different names for these constructs; (1) work-element, (2) work-group and (3) work-space, respectively.
Prior works on this subject are considered and cited in the next Section.

II. RELATED WORK

Wu et al. proved that the problem of data re-organization for parallel computing is \textit{NP-Complete} in its general form \cite{11}, nonetheless the authors describe efficient approaches based on data replication, padding and sharing and indicate which ones fit better for certain problem categories. Chen et al. propose a general optimization technique for data-parallel problems with indirect memory accesses \cite{1}, by viewing the problem as a sparse matrix computation. Yavors’kii and Weigel identified that tiled computations, such as the ones found in spin systems, are greatly improved by re-organizing the memory in blocks \cite{12}.

Regarding thread mapping techniques, Jung et al. \cite{3} proposed packed data structures for representing triangular and symmetric matrices with applications to LU and Cholesky decomposition \cite{2}. The strategy is based on building a rectangular box strategy for accessing and storing a triangular matrix (upper or lower). Ries et al. contributed with a parallel GPU method for the triangular matrix inversion \cite{10}. The authors identify that the space of computation indeed can be improved by using a recursive partition of the grid, based on a divide and conquer strategy. Navarro and Hitchfield studied the benefits of block-space thread mapping for 2D triangular domains \cite{5} and found approximately 20\% of improvement for 2D triangular problems such as collision detection and the Euclidean distance Matrix.

The study of discrete 3D triangular structures is an interesting category of problem with a variety of applications, from spin lattice simulation, special triplet collision and 3D Euclidean distance matrices. For such applications, a data reorganization technique and block-space thread mapping can provide a substantial performance improvement.

III. ANALYSIS OF THE BLOCK-SPACE APPROACH

We consider the 3D pyramid case that is defined by \(n \) triangular structures stacked and aligned at their middle corner, where the \(n \)-th triangle contains \(T_n^{2D} = n(n+1)/2 \) elements. The total number of elements for the full structure is

\[
T_n = \sum_{i=1}^{n} \frac{i(i+1)}{2} \quad (1)
\]

The sequence corresponds to the tetrahedral numbers, which are defined by

\[
T_n = \binom{n+2}{3} = \frac{n(n+1)(n+2)}{6} \quad (2)
\]

The following analysis combines a simple yet effective succinct data re-organization scheme with a map of the form \(g(\lambda) : \mathbb{N} \rightarrow \mathbb{N}^{3} \), both working in block-space.

A. Succinct block re-organization scheme

Data layout for GPU computing typically follows a linear memory approach as it is often a copy of the data layout found in the host side. For spatial nearest neighbor GPU computations on a 3D triangular domain, a succinct block-based re-organization of data becomes an attractive optimization to be considered as it provides clean coalesced memory access for all threads.

Let \(M \) be the memory space, \(A_k \) an alignment of length \(k \) measured in bytes and \(\omega \) the size of a warp of threads (typically \(\omega = 32 \)). An analysis on the access patterns of a warp is sufficient to model, in great part, the efficiency of GPU memory accesses on the 3D triangular structure. A warp may access memory with an offset of \(\Delta \) from the alignment and a stride of \(s \) bytes. When a warp’s memory access is aligned to \(A_k \) and the stride is \(s = 0 \), the number of memory accesses required corresponds to \(\omega b/k \) bytes where \(b \) is the number of bytes accessed by each thread. Typically, the number of consecutive bytes read by a warp matches the \(k \)-bytes transaction, making the operation cost just one memory access for the whole warp.

A linear organization of the pyramid in \(M \) produces a non-linear pattern for the distances among data elements. That is, for any data element \(d_{x,y,z} \) with linear memory coordinate \(\lambda_d \), the linear memory distances to its top and bottom nearest neighbors, \(\delta(d_{x,y,z}, d_{x,y+1,z}) \) and \(\delta(d_{x,y,z}, d_{x,y-1,z}) \), vary for each different variation of the coordinates \(y,z \) in the pyramid, producing at least one extra memory access for each misaligned warp. In order to count the number of misaligned warps in a pyramid, we consider the case of a single triangular layer of size \(T_n^{2D} = n(n+1)/2 \) elements and then extend the result to the 3D pyramid.

Given an alignment \(A_k \), the number of rows aligned to \(k \)-bytes is

\[
R_{k,n} = \left\lfloor \frac{n}{k} + 1 \mod 2 \right\rfloor \quad (3)
\]

Since alignments use even values of \(k \), \(R_{k,n} \) becomes

\[
R_{k,n} = \left\lfloor \frac{n}{2k} \right\rfloor \quad (4)
\]

where the total number of warps aligned in one 2D triangular layer of side \(n \) is defined and upper bounded as

\[
W_{k,n} = \sum_{i=1}^{R_k} 2i = R_k(R_k + 1) \leq n^2/4k^2 + n/2k. \quad (5)
\]

The number of aligned warps \(W_k \) decreases considerably as \(k \) increases. Moreover, the fraction of aligned warps can be no greater than

\[
F_{Ak,n} = \frac{W_k}{T_n^{2D}/k} = \frac{W_k}{n(n+1)/k} \leq \frac{1}{2k} + \frac{1}{n} \quad (6)
\]

For an alignment of \(k = 128 \) bytes, which is a common case where each one of the 32 threads of a warp accesses a single float of 4 bytes with \(s = 0 \), the total percentage of aligned warps would be no greater than \(F_{A128} \leq 0.399\%/1/n \). Considering that the pyramid corresponds to stacked layers of size \(1, 2, \ldots, n \) where all present the same behavior, if not more complex, we expect the total cost for accessing all data once to be at least

\[
C(\alpha, k, n) = \frac{T_n}{k} \left(F_{Ak,i} + \alpha \right) \quad (7)
\]
where α is a cost defined for an unaligned memory access. In the best possible scenario, the cost of an uncoalesced access would incur in at least one extra operation, i.e., $\alpha = 2$, which would lead to a cost of

$$C(\alpha, k, n) = \frac{T_n}{k} \left(2 - F_{Ak,i} \right)$$ \hspace{1cm} (8)

A succinct blocked re-organization of the pyramid can produce a different cost function with full alignment of warps with data. At a coarse level, the structure can be represented by blocks of data linearly organized in M. At a fine-grained level, each block has constant size $\Theta(\rho^3)$ with a local linear organization and with $\rho = k$ to match the alignment. For the elements of the diagonal region, blocks are padded to preserve memory alignment for the rest of the structure. This design leads to a succinct blocked structure of asymptotic size $O(n^3) + o(n^3)$ with $F_{Ak} = 1$, which leads to a cost of

$$C'(\alpha, k, n) = \frac{T_n}{k} + n^2 \rho^3$$ \hspace{1cm} (9)

where typically $\rho^3 \ll n$. For large n and $\alpha = 2$, the potential improvement factor for data re-organization becomes

$$C(2, k, n) = 2T_n - T_n F_{Ak} \approx 2 - F_{Ak} \leq 2$$ \hspace{1cm} (10)

Based on the possibilities of improvement and considering that in practice F_{Ak} is a low value for the pyramid case, it is highly convenient to re-organize the data of a pyramid, from a linear scheme to a succinct block-based one.

B. Block-based thread map

The use of a box-shaped grid to map threads on a 3D domain is a standard approach used in GPU computing and the natural one provided by the computing model since it is effective and efficient for many data-parallel problems. However the strategy presents a strong inefficiency when dealing with non box-shaped domains such as the pyramid as the number of unnecessary threads is in the order of $O(n^3)$. A more efficient approach can be used by considering how indices are organized in a pyramid.

It is possible to use a map of the form $g(\lambda) : \mathbb{N} \rightarrow \mathbb{N}^3$ that uses reduced set of blocks that are mapped directly to the pyramidal structure without loss of parallelism. The approach takes advantage of the fact that when using a linear enumeration of blocks on the pyramid, the linear index λ of the first element of a 2D triangular layer corresponds to a tetrahedral number T_n. Based on this fact, the rest of the data elements that reside in the same layer must follow the property:

$$\sum_{k+1}^v k(k + 1) / 2 < \lambda < \sum_{k=1}^v k(k + 1) / 2 < \sum_{k=1}^{v+1} k(k + 1) / 2$$ \hspace{1cm} (11)

Considering the expression for the tetrahedral numbers, we have that

$$\lambda = \sum_{k=1}^v k(k + 1) / 2 = \frac{v(v + 1)(v + 2)}{6}$$ \hspace{1cm} (12)

therefore, given the linear location λ of a block, one can obtain its z coordinate in the pyramid by solving the equation:

$$v^3 + 3v^2 + 2v - 6\lambda = 0$$ \hspace{1cm} (13)

and extracting the integer part of the root

$$v = \sqrt[3]{\sqrt[3]{279}\lambda^2 - 3 + 27\lambda} + \frac{1}{\sqrt[3]{3}\sqrt[3]{279}\lambda - 3 + 27\lambda} - 1$$ \hspace{1cm} (14)

Once the value $z = \lfloor v \rfloor$ is computed, one can obtain the two-dimensional λ' linear coordinate

$$\lambda' = \lambda - T_z$$ \hspace{1cm} (15)

where $T_z = z(z + 1)(z + 2)/6$ is the tetrahedral number for the recently computed z value. With λ' already computed, one can obtain the x and y values of the block by using the triangular map proposed by Navarro and Hitschfeld [5] for 2D triangular domains. Combining all three computations, map $g(\lambda)$ becomes

$$g(\lambda) \rightarrow (x, y, z) = \left(\lambda' - T_y^{2D}, \left\lfloor \sqrt{\frac{1}{3} + 2\lambda' - \frac{1}{3}}, \lfloor v \rfloor \right\rfloor \right)$$ \hspace{1cm} (16)

where T_y^{2D} is the triangular number for y.

The block linear size is defined as $\rho = k$ to match the data re-organization scheme. For practical purposes, the blocks can be organized on a cubic grid of $\sqrt[3]{T_n}$ in order to balance the number of elements on each dimension, producing $n^2 \rho^3$ unnecessary threads which correspond to the succint data. For the thread mapping stage, where the cost of an unnecessary thread is comparable as to a worker thread, one can write the potential improvement factor of the pyramidal with respect to the box strategy as

$$I = \frac{\beta n^3 / \rho^3}{\tau T_n / \rho^3} = \frac{6\beta n^3}{\tau (n^3 + 3n^2 + 2n)}$$ \hspace{1cm} (17)

where β is the cost of computing the block coordinate using the box approach, while τ is the cost mapping blocks in the pyramidal map. In the infinite limit of n, the potential improvement becomes

$$I_{n \rightarrow \infty} \sim \frac{6\beta}{\tau}$$ \hspace{1cm} (18)

and tells that in theory the pyramidal map could be up to $6\times$ faster than the box approach. However, the improvement observed in experimentation will depend on how efficient is τ compared to β, i.e., how efficient are the cubic and square root computations performed.

IV. Conclusions

The optimization techniques analyzed in this work can offer significant potential improvement that are worth considering for future GPU computations on special spin systems, cellular automata, n-body problems and any other problem for which is useful to consider the pyramidal domain. In theory, it is possible to extract up to $2\times$ more performance from a simple succinct data re-organization and be up to $6\times$ more efficient by using an specialized pyramidal map. However, the effective improvement observed in practice will strongly depend on how much overhead is necessarily introduced when re-organizing data as well as how expensive will the cubic and square root computations become in practice. As a future work, it will be interesting to consider technical optimizations for the GPU architecture in order to obtain an experimental performance that represents the theoretical results obtained.
REFERENCES

[1] Linchuan Chen, Peng Jiang, and Gagan Agrawal. Exploiting recent simd architectural advances for irregular applications. In Proceedings of the 2016 International Symposium on Code Generation and Optimization, CGO 2016, pages 47–58, New York, NY, USA, 2016. ACM.

[2] Fred Gustavson. New generalized data structures for matrices lead to a variety of high performance algorithms. In Roman Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy Wasniewski, editors, Parallel Processing and Applied Mathematics, volume 2328 of Lecture Notes in Computer Science, pages 418–436. Springer Berlin / Heidelberg, 2006.

[3] Jin Hyuk Jung and Dianne P. OLeary. Exploiting structure of symmetric or triangular matrices on a gpu. Technical report, University of Maryland, 2008.

[4] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 December 2008.

[5] Cristobal A. Navarro and Nancy Hitschfeld. GPU maps for the space of computation in triangular domain problems. In 2014 IEEE International Conference on High Performance Computing and Communications, 6th IEEE International Symposium on Cyberspace Safety and Security, 11th IEEE International Conference on Embedded Software and Systems, HPCC/CSS/ICESS 2014, Paris, France, August 20-22, 2014, pages 375–382, 2014.

[6] Cristobal A. Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. A survey on parallel computing and its applications in data-parallel problems using GPU architectures. Commun. Comput. Phys., 15:285–329, 2014.

[7] John Nickolls and William J. Dally. The gpu computing era. IEEE Micro, 30(2):56–69, March 2010.

[8] Nvidia-Corporation. Nvidia CUDA C Programming Guide, 2016.

[9] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

[10] Florian Ries, Tommaso De Marco, Matteo Zivieri, and Roberto Guerreri. Triangular matrix inversion on graphics processing unit. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pages 9:1–9:10, New York, NY, USA, 2009. ACM.

[11] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. Complexity analysis and algorithm design for reorganizing data to minimize non-coalesced memory accesses on gpu. SIGPLAN Not., 48(8):57–68, February 2013.

[12] T. Yavors’kii and M. Weigel. Optimized gpu simulation of continuous-spin glass models. The European Physical Journal Special Topics, 210(1):159–173, 2012.