Outcome of combined autologous chondrocyte implantation and anterior cruciate ligament reconstruction

Baljinder S Dhinsa, Syed Z Nawaz, Kieran R Gallagher, John Skinner, Tim Briggs, George Bentley

ABSTRACT

Background: Instability of the knee joint, after anterior cruciate ligament (ACL) injury, is contraindication to osteochondral defect repair. This prospective study is to investigate the role of combined autologous chondrocyte implantation (ACI) with ACL reconstruction.

Materials and Methods: Three independent groups of patients with previous ACL injuries undergoing ACI were identified and prospectively followed up. The first group had ACI in combination with ACL reconstruction (combined group); the 2nd group consisted of individuals who had an ACI procedure having had a previously successful ACL reconstruction (ACL first group); and the third group included patients who had an ACI procedure to a clinically stable knee with documented nonreconstructed ACL disruption (No ACL group). Their outcomes were assessed using the modified Cincinnati rating system, the Bentley functional (BF) rating system (BF) and a visual analog scale (VAS).

Results: At a mean followup of 64.24 months for the ACL first group, 63 months for combined group and 78.33 months for the No ACL group; 60% of ACL first patients, 72.73% of combined group and 83.33% of the No ACL group felt their outcome was better following surgery. There was no significant difference demonstrated in BF and VAS between the combined and ACL first groups. Results revealed a significant affect of osteochondral defect size on outcome measures.

Conclusion: The study confirms that ACI in combination with ACL reconstruction is a viable option with similar outcomes as those patients who have had the procedures staged.

Key words: Anterior cruciate ligament, autologous chondrocyte, chondrocyte, knee, osteochondral defect

MeSH terms: Anterior cruciate ligament, chondrocytes, autologous, knee

INTRODUCTION

Anterior cruciate ligament (ACL) injuries commonly affect the athletic patient, resulting in instability and impaired function. Articular cartilage injury to the knee may occur with ACL injuries in the acute setting, with incidence of 16–46%, and in chronic ACL deficient knees. The presence of articular cartilage damage can impact on the outcome from ACL reconstruction, with the suggestion that it is a predictor of failure. Inadequately managed osteochondral defects predispose individuals to pain and early onset osteoarthritis of the joint.

Patients with ACL deficient knees have an altered region of load bearing on the articular surface due to a shift in the tibiofemoral biomechanics. The transmitted axial load through the articular cartilage and subchondral bone can culminate in the formation of chondral lesions. At present, instability of the knee joint, after ACL injury, is a contraindication to osteochondral lesion repair.

Areas of articular cartilage damaged will repair without intervention, forming fibrocartilage rather than the original hyaline cartilage, with its inherent inferior mechanical properties. Reported management options for osteochondral defects include physotherapy, fibrocartilage forming (marrow stimulating) techniques such as debridement and curettage; bone drilling; abrasion chondroplasty; and microfracture. Articular cartilage autografting (such as mosaicplasty), and autologous chondrocyte implantation (ACI) are techniques aimed at hyaline cartilage repair. Bentley et al. have reported favorable outcomes of ACI over mosaicplasty for the
repair of osteochondral lesions. Evolution of ACI techniques has led to the use of an inert porcine type I/III collagen membrane sutured to the chondral defect (ACI-C), with the cultured chondrocyte cells injected below the seal.17-21 With matrix assisted autologous chondrocyte implantation (MACI), a porcine type I/III collagen bilayer is seeded with the cultured chondrocyte cells, which is then glued to the chondral defect using a fibrin sealant.22,23

This prospective study is to investigate the effect of correction of instability (ACL injury) on outcome of ACI procedures and to evaluate the results of a combined ACL reconstruction with ACI procedure.

Materials and Methods

Three independent groups of patients with previous ACL injuries who underwent ACI-C or MACI at our institution were identified and prospectively followed up. The first group had ACI in combination with ACL reconstruction (combined group); the 2nd group had an ACI procedure having previously had a successful ACL reconstruction (ACL first group); and the third group included had an ACI procedure for a chondral or osteochondral lesion to a clinically stable knee with documented ACL injury in the past, but had no reconstruction (no ACL group).

Combined group

Twenty two patients (14 male and eight female) who had combined ACL reconstruction with ACI, with an average age at the time of surgery of 32.2 years (range 20–45 years). Hamstring autograft15 or bone-patella tendon-bone autograft (BPB) (seven) was used for the ACL reconstruction and MACI (19) or ACI-C (three) for ACI. Previous surgical procedures to these knees included medial meniscectomy;10 lateral meniscectomy (three); screw fixation for osteochondral fragments (two); drilling of chondral lesions (two); previous ACL reconstruction (two) and osteochondral allograft to a chondral lesion (one). The mean area of defect was 300 mm2 (range 225–600 mm2) involving the medial femoral condyle,16 lateral femoral condyle (three), patella (two) and with one patient having no documentation of site or defect size. Followup was for an average of 63 months (range 8–112 months).

Anterior cruciate ligament first group

Twenty five patients (20 males and 5 females) who had previous ACL reconstruction using hamstring autograft,16 BPB (six) and synthetic graft (three) that underwent ACI for a chondral lesion. The average time from ACL reconstruction to the 2nd stage of ACI was 74.04 months (range 12–156 months). Mean age at time of 2nd stage procedure was 35.94 years (range 27–48 years), with 14 patients undergoing MACI and 11 had ACI-C. One patient had no documentation for the site and size of chondral defect. The average area of defect was 300 mm2 (range 212–465 mm2) involving the medial femoral condyle,15 trochlea (four), patella (three), lateral femoral condyle (one) and multi site defect (one).

Previous surgical procedures in the knees included medial meniscectomy (eight); lateral meniscectomy (three); drilling of chondral defect (three); microfracture (two); ACI (two) and open reduction with internal fixation of medial femoral condyle fracture (one). Followup was an average of 64.24 months (range 11–102 months).

No anterior cruciate ligament group

Twelve patients (10 male and two female) who underwent an ACI procedure to a knee that was felt to be stable, although there had been a previous nonreconstructed ACL injury. Eight of these patients had partial disruption and four of these had no laxity of the ACL. These patients presented with pain however their knee was felt stable on clinical examination and assessed further at first stage arthroscopy.

The Lachman test was utilized to assess the ACL in all 12, with three knees being graded as 0, seven as 1 and two as 2. Previous surgical procedures to these knees included; medial meniscectomy (four); drilling to chondral defect (two); open reduction and internal fixation for proximal tibia and fibula fracture (one); lateral soft tissue release (one) and osteochondral allograft to a chondral lesion (one). The average age at time of 2nd stage procedure was 33.45 years (range 20–47 years), with seven patients undergoing MACI and five having ACI-C. The mean defect size was 225 mm2 (range 150–500 mm2), involving the medial femoral condyle (five), trochlea (three), lateral femoral condyle (two), patella (one) and multi site defects (one). There was one patient for whom we had no documentation for the size of the defect. Followup was for an average of 78.33 months (range 12–139 months).

There was another subset (complete rupture) within this group that was investigated separately; these patients were clinically stable although there was documented evidence of complete ACL rupture. There were four patients (three male and one female) with a mean age of 37.45 years, with two undergoing ACI-C and two having a MACI procedure. Three patients had a Lachman grade of 1+ and one was assessed as grade 2+, with average defect size of 524 mm2 (range 300–660 mm2) and the medial femoral condyle and patella were affected equally.

The diagnosis and treatment plan was formulated following clinical review, plain radiographs, MRI and arthroscopy. The Kellegren–Lawrence grading system was used24 to assess degenerative changes on plain radiographs and the MRI findings were used to confirm this assessment. Prior
to surgery the patients completed the modified Cincinnati (MC) rating system questionnaire, the Meister et al. functional rating (BF) system and a visual analog scale (VAS).

Operative procedure
Each patient underwent a two stage procedure; an initial arthroscopy to assess the chondral lesion for suitability for ACI and if suitable a biopsy of nonweight bearing articular cartilage was harvested from the trochlea margin and sent for cell culturing. All the patients in the ACL first and No ACL group had stable knees on examination under anaesthesia. Postoperative management was routine for arthroscopy.

The 2nd stage was performed 4–6 weeks later, after satisfactory cell culture, in all patients. In patients in the combined group, the ACL reconstruction was performed prior to ACI. The ACI procedure was performed through either a medial or lateral arthrotomy incision, depending on site of lesion and the defect prepared before implantation. With ACI-C a template sized piece of porcine type I/III collagen membrane was sutured (using 6/0 vicryl) to the margins of the defect and a watertight seal ensured with the use of fibrin glue to the margins. This seal was checked by injecting a saline solution below the membrane, looking for leaks, prior to the cultured cells being injected below the membrane, and the final suture and glue applied to the membrane cartilage junction. With MACI the chondrocyte cell seeded type I/III collagen bilayer membrane was cut to size to fit the defect and secured with fibrin glue. The wound was closed in layers using nonabsorbable sutures, with wool and crepe pressure bandaging applied.

Rehabilitation
The patients in the ACL first and No ACL groups were placed in plaster-of-Paris backslab for 24 h, with rest and elevation advice, as well as foot and ankle exercise encouragement. After 24 h full weight bearing was allowed. The knee was placed in a lightweight cylinder cast in full extension at 48 h, which was removed on the 10th day postoperatively. The patients were progressively mobilized with daily physiotherapy for 2 weeks, after which more strenuous, low-impact activities were permitted. For patients undergoing the combined procedures, no range of movement exercises were permitted and the patients were placed in a hinged knee brace at 48 h postoperatively, for up to 4 weeks. From 28 h, they were progressively mobilized with regular physiotherapy to work on strength, core stability, proprioception and mobility. Closed channel active range of movement exercises were commenced after 1-week as symptoms allowed, but no open kinetic quadriceps work was started until 12 weeks. From 6 weeks controlled active range of movement, strengthening of muscles stabilizing the knee and core stability work was started. At 12 weeks, a full range of movement was achieved and exercises progressed from static to dynamic as tolerated. By 9 months patients returned to sport-specific activities, such as low-impact jogging in the gym and swimming and return to normal sports were achieved after 1-year.

Patients were reviewed at 6 weeks, 6 months, 1-year and then annually to assess them clinically. At these times, they were also asked to complete the MC questionnaire, BF and VAS score systems for postoperative evaluation. The patients also graded their outcome as better, same or worse.

RESULTS
Patients in the three groups had varying baseline characteristics and scores for BF, VAS and MC preoperatively [Table 1]. Analysis was adjusted for these known variables.

Table 1: Clinical details of three groups
Variable	Procedure (%)	ACL first	Combined	No ACL
Age at 2nd operation (in years)	35.9±5.3	32.2±6.6	33.5±10.4	
Followup (months)	64.2±29.9	63±31.8	78.3±45.2	
Baseline bentley score	3 (2, 3)	3 (2, 3)	3 (2.5, 3)	
Baseline VAS score	5.2±1.8	5.3±2.2	5.8±2.1	
Baseline cincinnati OA	56.2±13.5	46.2±10.2	44.0±14.0	
Grade 0	9, 36	12, 55	8, 67	
Grade 1	6, 24	4, 19	2, 17	
Grade 2	7, 28	4, 19	2, 17	
Grade 3	3, 12	2, 9	-	
Site				
LFC	1, 4	3, 14	2, 17	
MFC	15, 63	16, 76	5, 42	
Patella	3, 13	2, 10	1, 8	
Trochlea	4, 17	-	3, 25	
Multisite	1, 4	-	1, 8	
Size				
ACI/MACI				
ACI	11, 44	3, 14	5, 42	
MACI	14, 56	19, 86	7, 58	
ACL recon				
Allograft	3, 12	-	-	
BPB	6, 24	7, 32	-	
Hamstring	16, 64	15, 68	-	

ACL=Anterior cruciate ligament, VAS=Visual analogue scale, OA=Osteoarthritis, ACI=Autologous chondrocyte implantation, MACI=Matrix-assisted autologous chondrocyte implantation, BPB=Bone-patella tendon-bone autograft, LFC=Lateral femoral condyle, MFC=Medial femoral condyle
At final followup, 16 (72.73%) patients in the combined group reported their outcome as better, with six patients (27.27%) reporting the symptoms as the same as the preoperative level. All the knees in this group were found to be clinically stable on examination at final followup. In the ACL first group the outcome was better in 15 cases (60%), the same in six cases (24%) and worse in four (16%). The 12 patients in the No ACL group reported the outcome as better in 10 instances (83.33%) and the same in two patients (16.67%). This is in contrast to the complete rupture group; with 2 (50%) reporting a worse outcome and 2 (50%) reporting the outcome to be the same [Table 2].

The mean change in BF from baseline was largest for the No ACL group [Figure 1]. There was a significant association between the procedure and BF ($P = 0.004$) [Table 3]. In comparison to the ACL first group, the No ACL group had significantly lower postoperative BF ($P = 0.001$), while comparison with the combined group was not significantly different ($P = 0.251$). Multiple linear regression analysis of procedure demonstrated similar association [Table 4].

When considering the MC score, the largest change from baseline was observed in the No ACL group, while the least change was in the ACL first group [Figure 2]. A significant association between the procedure and MC score was observed ($P = 0.036$), with the No ACL group having significantly higher postoperative MC scores ($P = 0.018$) compared with the ACL first group [Table 3]. Patients in the combined group also had significantly better MC in comparison with the ACL first group ($P = 0.049$). With multiple linear regression analysis, comparison of the postoperative MC in the combined and ACL first groups were found not to be significant ($P = 0.113$) [Table 5].

Table 2: Functional scores and subjective outcome

Patient	Preoperative scores	Updated 2010 scores	Patient self-rating						
	BF rating	VAS rating	MC rating	system	BF rating	VAS rating	MC rating	system	
Staged group									
1	3	9	46	0	0	96	Better		
2	3	4.5	64	1	1	86	Better		
3	3	2	56	0	0	99	Better		
4	2	5.5	66	1	1	76	Better		
5	3	7	25	3	3	29	Better		
6	3	6	60	3	8	24	Worse		
7	3	6	46	3	8	38	Worse		
8	3	6	46	3	8	38	Worse		
9	2	5	70	4	9	40	Same		
10	3	3	33	2	4	54	Better		
11	2	6	53	3	4	48	Same		
12	2	2	63	2	3	68	Same		
13	1	4	80	1	0	75	Same		
14	3	6	61	1	2	67	Better		
15	3	4	61	2	4	65	Better		
16	3	4	61	2	4	65	Better		
17	2	6	63	0	0	100	Better		
18	2	6	59	1	4	77	Better		
19	3	4	30	1	1	79	Better		
20	3	7	52	2	1.5	66	Better		
21	4	6	48	2	4	68	Better		
22	3	5	53	1	1	84	Better		
23	4	8	61	3	5	70	Same		
24	2	2	78	3	4.5	49	Worse		
25	3	6	70	3	5	76	Same		
Combined group									
26	2	3	41	0	0	100	Better		
27	3	7	54	1	3	76	Better		
28	3	7	44	0	0	100	Better		
29	3	1.5	56	0	0	95	Better		
30	3	4	50	0	0	87	Better		
31	1	1	64	0	0	95	Better		
32	3	4	38	3	6	46	Same		
33	2	4	41	3	3	54	Same		
34	3	7	34	3	2	48	Better		
35	3	6	49	3	4	61	Same		
36	3	6.5	56	3	7	56	Same		
37	3	7	41	3	5	34	Same		
38	2	3	51	1	4	62	Better		
39	3	5.5	64	1	3	96	Better		
40	3	6	26	1	1	89	Better		
41	3	7	35	2	3	78	Better		
42	4	9	50	2	6	83	Better		
43	3	6	52	2	2	58	Better		
44	4	9	32	3	7	71	Better		
45	2	3	56	2	4	77	Same		
46	2	3	38	0	0	98	Better		
47	3	6	45	0	2	85	Better		
ACI only group									
52	3	3	34	0	0	97	Better		
53	3	7	47	1	3	81	Better		

Figure 1: Bar diagram demonstrating mean change in Bentley functional score

Contd...
The ACL first group also demonstrated the smallest mean change in VAS from baseline, with the largest change seen in the No ACL group (Figure 3). The No ACL group had marginally significant lower VAS than the ACL first patients ($P = 0.051$) [Table 3]. Comparing the combined group with the ACL first group failed to show a significant difference in VAS ($P = 0.409$). This was confirmed by multiple linear regression analysis of procedure [Table 6].

In the combined group, there was no significant difference in clinical outcome scores, nor mean change in outcome scores, between individuals treated with ACI-C and those treated with MACI. Multiple linear regression analysis demonstrated that whether ACI-C or MACI had been performed had no significant affect on BF ($P = 0.197$), and neither was the use of hamstring or BPB graft ($P = 0.088$), as well as reporting the significance of OA grade ($P = 0.038$), followup time ($P = 0.025$) and size of defect ($P < 0.001$) in the combined group [Table 7].

The size of defect ($P = 0.004$) and patella site ($P = 0.048$) was found to significantly affect MC [Table 7], and using multiple linear regression analysis, the size of the defect ($P = 0.038$) was found to significantly affect the VAS in the combined group [Table 7].

Table 2: Contd...

Patient	Preoperative scores	Updated 2010 scores	Patient self-rating				
	BF	VAS	MC rating	BF	VAS	MC rating	
55	2	4	62	0	1	94	Better
56	3	6	42	0	0	98	Better
57	3	6	50	1	2	82	Better
58	6	5.5	36	2	6	41	Same
59	4	10	22	3	8	28	Same
60	2	6	71	0	0	84	Better
61	3	4.5	34	1	1	78	Better
62	3	4	56	0	0	72	Better
63	3	5	43	0	0	83	Better

Table 3: Linear regression model

Variable	Coefficient	Robust SE	95% CI	P
Procedure	0.004			
ACL first	0			
Combined	-0.407	0.351	$-1.109-0.295$	0.251
No ACL	-1.246	0.354	$-1.955-0.537$	0.001

Table 4: Multiple linear regression analysis of procedure, with the postoperative Bentley score as the dependent variable

Variable	Multivariate analysis ($n=56$)	P		
Coefficient	Robust SE	95% CI		
Baseline bentley score	0.529	0.238	0.051-1.006	0.031
Followup time	-0.008	0.007	$-0.021-0.005$	0.243
Age	0.002	0.020	$-0.038-0.041$	0.929
Procedure	0.022			
ACL first	0			
Combined	-0.327	0.396	$-1.122-0.468$	0.413
No ACL	-1.239	0.438	$-2.119-0.360$	0.007
ACI/MACI	0			
ACI	0			
MACI	0.131	0.466	$-0.804-1.066$	0.780
Site	0.924			
LFC	0			
MFC	0.310	0.547	$-0.787-1.408$	0.573
Multisite	0.409	1.084	$-1.764-2.583$	0.707
Patella	0.519	0.687	$-0.859-1.896$	0.453
Trochlea	0.545	0.654	$-0.766-1.857$	0.408
Size	0.001	0.001	0.000-0.003	0.062
OA	0.709			
Grade 0	0			
Grade 1	0.180	0.510	$-0.843-1.202$	0.726
Grade 2	0.085	0.563	$-1.044-1.214$	0.880
Grade 3	0.669	0.587	$-0.508-1.845$	0.260

ACI=Autologous chondrocyte implantation, MACI=Matrix-assisted autologous chondrocyte implantation, OA=Osteoarthritis, SE=Standard error, CI=Confidence interval, ACL=Anterior cruciate ligament, LFC=Lateral femoral condyle, MFC=Medial femoral condyle

Figure 2: Bar diagram demonstrating mean change in modified Cincinnati score
In the No ACL group, the baseline characteristics of the twelve patients against the four with documented evidence of complete ACL rupture (complete rupture group) [Table 8]. On average, there was a much bigger change in BF, MC and VAS outcomes for the cases that did not have complete ACL ruptures, in comparison to those who had complete ACL ruptures. Independent t-tests confirmed a significant difference in the mean change in BF ($P = 0.002$), MC ($P = 0.006$) and VAS score ($P = 0.012$) by rupture status.

DISCUSSION

An ACL injury results in functional instability that can lead to osteoarthritis.10,27,28 ACL is contraindicated in those patients with instability from ACL injury, due to potential damage to the repair tissue from shearing forces and damage from abnormal biomechanical stresses across the knee joint.8,29 ACL reconstruction should be performed if ACL rupture is clinically evident to provide stability followed by any osteochondral defect can be addressed.

In our series, the patients who underwent combined ACI with ACL reconstruction reported their outcome to be better in 72.73% and the same in 27.27%. The patients who were ACL deficient, but thought to be clinically stable and underwent ACI only reported the outcome to be worse in 50%. There were four patients in the ACL first group that felt their outcome was worse. This can be multifactorial. An explanation may be the number of previous surgeries performed; as these patients had the most procedures prior to referral to our institution.

Table 5: Multiple linear regression analysis of procedure, with postoperative MC rating score as the dependent variable

Variable	Multivariate analysis ($n=56$)	P
Baseline Cincinnati rating	0.503 0.253 $-0.006\text{-}1.011$ 0.053	
Followup time	0.064 0.102 $-0.141\text{-}0.268$ 0.535	
Age	-0.097 0.349 $-0.797\text{-}0.602$ 0.781	
Procedure	0.087	
ACL first	0 - - -	
Combined	11.446 11.446 $-2.816\text{-}25.709$ 0.113	
No ACL	19.708 8.668 1.921-37.494 0.031	
ACI/MACI		
ACI	0 - - -	
MACI	-2.871 8.606 $-20.132\text{-}14.390$ 0.740	
Site	0.459	
LFC	0 - - -	
MFC	-5.415 9.105 $-23.677\text{-}12.847$ 0.555	
Multisite	-24.060 14.807 $-53.359\text{-}5.239$ 0.105	
Patella	-17.201 11.685 $-40.637\text{-}3.266$ 0.147	
Trochlea	-11.387 12.278 $-36.014\text{-}13.239$ 0.358	
Size	-0.022 0.013 $-0.048\text{-}0.004$ 0.101	
OA	0.950	
Grade 0	0 - - -	
Grade 1	-2.499 9.363 $-21.279\text{-}16.281$ 0.791	
Grade 2	-5.302 10.272 $-25.906\text{-}15.301$ 0.608	
Grade 3	0.443 8.932 $-17.472\text{-}18.357$ 0.961	

ACI=Autologous chondrocyte implantation, MACI=Matrix-assisted autologous chondrocyte implantation, OA=Osteoarthritis, SE=Standard error, CI=Confidence interval, ACL=Anterior cruciate ligament, LFC=Lateral femoral condyle, MFC=Medial femoral condyle, MC=Modified Cincinnati.

Table 6: Multiple linear regression analysis of procedure, with postoperative VAS as the dependent variable

Variable	Multivariate analysis ($n=56$)	P
Baseline VAS score	0.455 0.182 0.089-0.821 0.016	
Followup time	-0.017 0.015 $-0.047\text{-}0.012$ 0.245	
Age	-0.020 0.043 $-0.106\text{-}0.065$ 0.637	
Procedure	0.108	
ACL first	0 - - -	
Combined	-0.411 0.735 $-1.885\text{-}1.064$ 0.579	
No ACL	-2.253 1.052 $-4.363\text{-}0.142$ 0.037	
ACI/MACI		
ACI	0 - - -	
MACI	-0.535 1.080 $-2.702\text{-}1.631$ 0.622	
Site	0.876	
LFC	0 - - -	
MFC	-0.462 1.239 $-2.909\text{-}2.058$ 0.732	
Multisite	0.962 2.385 $-3.821\text{-}5.745$ 0.688	
Patella	-0.330 1.536 $-3.410\text{-}2.750$ 0.831	
Trochlea	0.449 1.607 $-2.775\text{-}3.673$ 0.781	
Size	0.002 0.002 $-0.001\text{-}0.006$ 0.189	
OA	0.776	
Grade 0	0 - - -	
Grade 1	0.168 1.007 $-1.853\text{-}2.188$ 0.869	
Grade 2	0.139 1.250 $-2.368\text{-}2.646$ 0.912	
Grade 3	0.992 1.053 $-1.119\text{-}3.104$ 0.350	

ACI=Autologous chondrocyte implantation, MACI=Matrix-assisted autologous chondrocyte implantation, OA=Osteoarthritis, SE=Standard error, CI=Confidence interval, ACL=Anterior cruciate ligament, LFC=Lateral femoral condyle, MFC=Medial femoral condyle, VAS=Visual analogue scale.

Figure 3: Bar diagram demonstrating mean change in visual analogue scale

In the No ACL group, the baseline characteristics of the twelve patients against the four with documented evidence of complete ACL rupture (complete rupture group) [Table 8]. On average, there was a much bigger change in BF, MC and VAS outcomes for the cases that did not have complete ACL ruptures, in comparison to those who had complete ACL ruptures. Independent t-tests confirmed a significant difference in the mean change in BF ($P = 0.002$), MC ($P = 0.006$) and VAS score ($P = 0.012$) by rupture status.
Table 7: Multiple linear regression analysis was conducted to derive the independent effects of ACI versus MACI and hamstring versus BPB on the outcome scores while additionally controlling for the other measured determinants of outcome in the combined group.

Variable	Coefficient	SE	95% CI	P
Baseline bentley	0.544	0.325	−0.191-1.279	0.128
Baseline bentley	0.031	0.025	−0.026-0.089	0.247
Followup	0.013	0.005	0.002-0.024	0.025
OA	0.038			
Grade 0	0			
Grade 1	0.406	0.581	−0.908-1.271	0.902
Grade 2	1.782	0.543	0.552-3.011	0.010
Grade 3	1.765	0.680	0.227-3.304	0.029
Site	0.131			
LFC				
MFC	1.122	0.666	−0.383-2.628	0.126
Patella	1.527	0.686	−0.024-3.078	0.053
Multisite				
Trochlea				
Size	0.004	0.001	0.003-0.006	<0.001

Table 7: Contd

Variable	Coefficient	SE	95% CI	P
Baseline bentley				
Baseline bentley				
Followup				
OA				
Grade 0				
Grade 1				
Grade 2				
Grade 3				
Site				
LFC				
MFC				
Patella				
Multisite				
Trochlea				
Size				
ACI/MACI				
ACI				
MACI				
ACL recon				
Hamstring				
BPB				

Table 7: Contd

Variable	Coefficient	SE	95% CI	P
Baseline bentley				
Baseline bentley				
Followup				
OA				
Grade 0				
Grade 1				
Grade 2				
Grade 3				
Site				
LFC				
MFC				
Patella				
Multisite				
Trochlea				
Size				
ACI/MACI				
ACI				
MACI				
ACL recon				
Hamstring				
BPB				

Table 8: Baseline summary data table for no ACL group and complete rupture group

Variable	No ACL with incomplete rupture (%	Complete rupture (%)	
Age at 2nd operation (in years)	33.5±10.4	37.5±8.3	
Followup	78.3±45.2	107.3±23.9	
Baseline bentley score	3 (2, 3)	3 (2, 4)	
Baseline VAS score	5.8±2.1	6.8±2.1	
Baseline Cincinnati	44.0±14.0	35.5±28.0	
OA			
Grade 0	8, 67	2, 50	
Grade 1	2, 17	-	
Grade 2	2, 17	2, 50	
Grade 3		-	
Site			
LFC	2, 17	-	
MFC	5, 42	2, 50	
Patella	1, 8	2, 50	
Trochlea	3, 25	-	
Multisite	1, 8	-	
n11			
Size	225 (150, 500)	524 (300, 660)	
ACI/MACI			
ACI	5, 42	2, 50	
MACI	7, 58	2, 50	

The role of combined repair of osteochondral defects and ACL reconstruction has been reported using osteochondral autograft, osteochondral allografts, and autologous periosteum transplantation and ACI. The use of osteochondral transfer and peristopic transplantation for the repair of osteochondral...
defects has raised concern regarding the long term stability of the repair tissue and its integration with surrounding articular cartilage.15,31

The use of ACI in osteochondral defect repair has produced encouraging clinical outcomes,18,20,21,33 however, the use of a periosteum cover is associated with periostal hypertrophy and donor site morbidity among after complications. The use of the MACI technique avoids these complications, as well as providing greater stability,22,34 and reduces operative time, as suturing of the membrane is not usually required. Good outcomes have been reported with the use of the MACI technique for osteochondral defect repair.22,34,35

Peterson et al.21 demonstrated encouraging results with the use of ACI, with a periosteum cover, in combination with ACL reconstruction. Amin et al.,12 reported good to excellent results in eight patients in a nine patient series, using ACI-C or MACI, in combination with ACL reconstruction (both hamstring and bone-patellar tendon-bone autograft).

As separate procedures, ACL reconstruction and ACI are costly to health care providers as well as the patient, as they must undergo a long rehabilitation period with restriction in function.29 Thus the benefit of performing the procedures in combination applies to both the patient and health care provider. Further work is required to determine whether this procedure is effective in preventing osteoarthritis in the joint, as well as to define specific factors that impact on outcome and thus can be used to select ideal patients as well as predict outcome in the future.

Conclusion

The similar outcomes of the combined and ACL first groups suggest that in specific indications the combined procedure will produce good to excellent outcomes with reduced cost and impact on the individuals. The poor outcome in the complete rupture group emphasize that ACL deficient knees, whether clinically stable or not, are a contraindication to osteochondral defect repair. The outcome of the remaining patients in the ACI only group suggest that it is safe to perform ACI in those patients with a clinically stable knee after partial ACL injury. The results have been encouraging in this study and demonstrate that ACI in combination with ACL reconstruction is a possible option in the management of the young and active patient who wishes to return to their preinjury activity level. The role of this procedure in acute ACL rupture requires further investigation.

References

1. Alfredson H, Thorsen K, Lorentzon R. Treatment of tear of the anterior cruciate ligament combined with localised deep cartilage defects in the knee with ligament reconstruction and autologous periosteum transplantation. Knee Surg Sports Traumatol Arthrosco 1999;7:69-74.
2. Brophy RH, Zeltser D, Wright RW, Flanigan D. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: Incidence and treatment. Arthroscopy 2010;26:112-20.
3. Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: A natural history study. J Bone Joint Surg Am 2003;85-A Suppl 2:8-16.
4. Shelbourne KD, Gray T. Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Five-to fifteen-year evaluations. Am J Sports Med 2000;28:446-52.
5. Takeda T, Matsumoto H, Fujikawa K. Influence of secondary damage to menisci and articular cartilage on return to sports after anterior cruciate ligament reconstruction. J Orthop Sci 1997;2:215-21.
6. Jomha NM, Borton DC, Clingeleffer AJ, Pinczewski LA. Long term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin Orthop Relat Res 1999:358:188-93.
7. Kullmer K, Letsch R, Turowski B. Which factors influence the progression of degenerative osteoarthritis after ACL surgery? Knee Surg Sports Traumatol Arthrosco 1994;2:80-4.
8. Nishimori M, Deie M, Adachi N, Nakamae A, Motoyama M, et al. Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosco 2008;16:270-4.
9. Klinger HM, Baums MH, Otte S, Steckel H. Anterior cruciate reconstruction combined with autologous osteochondral transplantation. Knee Surg Sports Traumatol Arthrosco 2003;11:366-71.
10. Murrell GA, Maddali S, Horovitz L, Oakley SP, Warren RF. The effects of time course after anterior cruciate ligament injury in correlation with meniscal and cartilage loss. Am J Sports Med 2001;29:9-14.
11. Speer KP, Spritzer CE, Bassett FH. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 1992;20:382-9.
12. Amin AA, Bartlett W, Gooding CR, Sood M, Skinner JA, Carrington RW, et al. The use of autologous chondrocyte implantation following and combined with anterior cruciate ligament reconstruction. Int Orthop 2006;30:48-53.
13. Czitrom AA, Langer F, McKee N, Gross AE. Bone and cartilage allotransplantation. A review of 14 years of research and clinical studies. Clin Orthop Relat Res 1986;208:141-5.
14. Hangody L, Kish G, Kárpáti Z, Szerb I, Udvarhelyi L. Arthroscopic autogeneous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosco 1997;5:262-7.
15. Hangody L, Ráthonyi GK, Duska Z, Vásárhelyi G, Füles P, Módis L. Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 2004;86-A Suppl 1:65-72.
16. Tomford WW, Springfield DS, Mankin HJ. Fresh and frozen articular cartilage allografts. Orthopedics 1992;15:1183-8.
17. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003;85:223-30.
with autologous chondrocyte transplantation. N Engl J Med 1994;331:889-95.
19. Haddo O, Mahroof S, Higgs D, David L, Pringle J, Bayliss M, et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee 2004;11:51-5.
20. Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: Economics and quality of life. Am J Orthop (Belle Mead NJ) 1998;27:739-44.
21. Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two-to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000;374:212-34.
22. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study. J Bone Joint Surg Br 2005;87:640-5.
23. Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report. J Orthop Surg (Hong Kong) 2003;11:10-5.
24. Kellygren JH, Lawrence JS. Radiological assessment of osteo-arthritis. Ann Rheum Dis 1957;16:494-502.
25. Noyes FR, Mooar LA, Barber SD. The assessment of work-related activities and limitations in knee disorders. Am J Sports Med 1991;19:178-88.
26. Meister K, Cobb A, Bentley G. Treatment of painful articular cartilage defects of the patella by carbon-fibre implants. J Bone Joint Surg Br 1998;80:965-70.
27. Daniel DM, Stone ML, Dobson BE, Fititian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 1994;22:632-44.
28. Hangody L, Karpati Z. A new surgical treatment of localized cartilaginous defects of the knee. Hung J Orthop Traumatol 1994;37:237-42.
29. Levy AS, Meier SW. Approach to cartilage injury in the anterior cruciate ligament-deficient knee. Orthop Clin North Am 2003;34:149-67.
30. Gaweda K, Walawski J, Weglowski R, Patyra M. Rehabilitation after one-stage anterior cruciate reconstruction and osteochondral grafting. Int Orthop 2006;30:185-9.
31. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Nöth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 2007;9:213.
32. Matsusue Y, Yamamuro T, Hama H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993;9:318-21.
33. Peterson L, Vasiladiis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: A long term followup. Am J Sports Med 2010;38:1117-24.
34. Bachmann G, Basad E, Lommel D, Steinmeyer J. MRI in the followup of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture. Radiologe 2004;44:773-82.
35. Ronga M, Grassi FA, Bulgheroni P. Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. Arthroscopy 2004;20:79-84.

How to cite this article: Dhinsa BS, Nawaz SZ, Gallagher KR, Skinner J, Briggs T, Bentley G. Outcome of combined autologous chondrocyte implantation and anterior cruciate ligament reconstruction. Indian J Orthop 2015;49:155-63.

Source of Support: This study was funded by our institution.

Conflict of Interest: None.