Intraoperative PaO$_2$ is not related to the development of surgical site infections after major cardiac surgery

Juan Bustamante1,*, Eduardo Tamayo2, Francisco Javier Álvarez3, Israel García-Cuenca4, Santiago Flórez5, Inma Fierro3, José Ignacio Gómez-Herreras4

Abstract

Background: The perioperative use of high inspired oxygen fraction (FIO$_2$) for preventing surgical site infections (SSIs) has demonstrated a reduction in their incidence in some types of surgery however there exist some discrepancies in this respect. The aim of this study was to analyze the relationship between PaO$_2$ values and SSIs in cardiac patients.

Methods: We designed a prospective study in which 1,024 patients undergoing cardiac surgery were analyzed.

Results: SSIs were observed in 5.3% of patients. There was not significant difference in mortality at 30 days between patients with and without SSIs. In the uni and multivariate analysis no differences in function of the inspired oxygen fraction administrated were observed.

Conclusions: We observed that the PaO$_2$ in adult cardiac surgery patients was not related to SSI rate.

Dear Editor,

The potential clinical benefits of the perioperative use of high inspired oxygen fraction (FIO$_2$) for preventing surgical site infections (SSIs) have attracted great interest in recent years. Trials by Greif et al. [1] and Belda et al. [2] demonstrated that SSIs decreased significantly following colon surgery in patients who received 80% oxygen intraoperatively and for the first hours following surgery.

In the sphere of cardiac surgery, SSIs are serious complications associated with extended hospital stay, increased hospital costs, and higher mortality and morbidity rates [3]. Thus, in 2005 our Department of Anesthesiology and Reanimation adopted a clinical strategy of administering 50% oxygen without nitrous oxide during anesthesia and for the first 6 postoperative hours in an effort to decrease SSIs.

In contrast to the findings of Belda et al. [2], clinical trials by Pryor et al. [4] and, more recently, by Meyhoff et al. [5], found no difference in SSI risk when 80% oxygen rather than 30% oxygen was administered during abdominal surgery and for 2 hours postoperatively. Their findings suggested that perioperative hyperoxia was not effective in reducing SSIs. These reports add to the evidence base surrounding the potential role of high FIO$_2$ in SSI prevention.

The rationale for administering high FIO$_2$ to prevent SSIs is to produce a high PaO$_2$ and thereby increase the PsqO$_2$ (tissue oxygen partial pressure), since oxidative killing by neutrophils is the primary defense against surgical pathogens. The risk of infection is thus inversely related to PsqO$_2$ [3]. Our aim in this study was to analyze the relationship between PaO$_2$ values and SSIs.

We designed a prospective study that analyzed the data from 1,024 consecutive patients who underwent cardiac surgery with extracorporeal circulation at our institution from January 30, 2007 to June 30, 2009. Transplant patients were excluded. The patients were categorized according to the presence or absence of SSIs. The study was approved by the hospital’s Research Commission, and all participants provided informed written consent.

© 2011 Bustamante et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Table 1 Characteristics and preoperative, intraoperative, and postoperative data for patients with and without surgical site infections (SSIs)

Characteristics	Patients Without SSI (n = 970)	Patients With SSI (n = 54)	Univariate OR (95% CI)	P value	Adjusted OR (95% CI)b	P value
Preoperative value						
Age, mean (SD), years	68.2 ± 10.1	69.07 ± 10.9	1.009 (0.981 to 1.03)	0.54		
Sex, male/female	591 (60.9)/379 (39.1)	37 (68.5)/17 (31.5)	1.396 (0.77 to 2.51)	0.26		
Underlying conditions, No. (%)						
Diabetes mellitus	285 (29.4)	16 (29.6)	1.01 (0.55 to 1.84)	0.97		
Hypertension	427 (44)	27 (50)	1.27 (0.73 to 2.28)	0.39		
Chronic renal failure	50 (5.2)	2 (3.7)	0.70 (0.16 to 2.98)	0.64		
Chronic obstructive pulmonary disease	202 (20.8)	18 (33.3)	1.90 (1.05 to 3.41)	0.03		
Peripheral vascular diseasea	74 (7.6)	2 (3.7)	0.94 (0.12 to 7.19)	0.95		
Additional drugs, No (%a)						
- β-blockersa	435 (44.9)	21 (38.9)	1.28 (0.72 to 2.27)	0.39		
Statin	373 (38.5)	23 (42.6)	0.84 (0.48 to 1.47)	0.55	1.29 (0.71 to 2.33)	0.39
Corticosteroids	19 (2.0)	1 (1.9)	0.94 (0.12 to 7.19)	0.95		
Intraoperative values						
Antibiotic prophylaxis, No. (%)						
Cefazolin	938 (96.7)	46 (85.2)	0.19 (0.008 to 0.44)	0.001	4.90 (2.07 to 11.61)	0.0001
Teicoplanin	32 (3.3)	8 (14.8)	0.001			
Surgical procedure, No. (%)						
Valve	490 (50.5)	31 (57.4)	1.33 (0.76 to 2.32)	0.32		
CABG	296 (30.5)	14 (25.9)	0.8 (0.42 to 1.49)	0.47		
Valvular + CABG	184 (19.0)	9 (16.7)	0.85 (0.41 to 1.78)	0.67		
Total CPB time, mean (SD), min	92.8 ± 38.2	96.3 ± 35.7	0.90 (0.99 to 1.009)	0.502	1.001 (0.99 to 1.009)	0.77
Aortic cross-clamp time, mean (SD), mina	66.7 ± 29.04	69.5 ± 26.6	1.003 (0.99 to 1.01)	0.48		
Glucose, mean (SD), mg/dLa	180.2 ± 51.4	178.5 ± 48.5	0.99 (0.98 to 1.00)	0.07	1.00 (0.99 to 1.01)	0.95
PaO2, mean (SD), mmHg	148.4 ± 38.4	150.1 ± 34.2	1.001 (0.99 to 1.008)	0.74		
Hematocric during CPB, mean (SD), (%)	26.5 ± 4.4	25.8 ± 3.7	0.001			
Postoperative						
Duration of mechanical ventilation, mean (SD), days	51.4 ± 200.7	44.5 ± 146.3	0.805			
Glucose, mean, mg/dL 1-h ICU admission	166.2 ± 47.5	159.6 ± 52.4	1.001 (0.99 to 1.008)	0.32	0.99 (0.98 to 1.01)	0.19
8-h ICU post-admissiona	169.1 ± 63.02	156.30 ± 40.8	0.996 (0.98 to 1.003)	0.14		
Core temperature, ICU admission, mean°C	36.1 ± 0.7	36.1 ± 0.6	1.152 (0.78 to 1.696)	0.47	1.13 (0.74 to 1.71)	0.56
PaO2, mean (SD), mm Hg 1-h ICU post-admission	134.8 ± 41.3	136.5 ± 39.5	0.77 1.00 (0.99 to 1.01)	0.29		
8-h ICU post-admission	130.1 ± 37.5	124.4 ± 34.02	0.27 0.99 (0.98 to 1.00)	0.22		
Leukocyte, ICU admission, mean (SD), mm³	10934.5 ± 3826.5	11316.4 ± 3611.01	1.00 (1.00 to 1.000)	0.47		
Hematocrit, ICU admission, mean (SD), (%)	30.3 ± 4.7	31.5 ± 4.0	1.06 (0.99 to 1.12)	0.06		
Units red-cell transfusion, mean (SD)	2.02 ± 2.8	2.2 ± 2.5	1.027 (0.94 to 1.21)	0.54		
Mediastinal bleeding, mean (SD), mm³	828.9 ± 554.3	709.9 ± 92.5	0.00 (0.99 to 1.000)	0.03		
Complications, No. (%)						
Cardiac	72 (7.4)	6 (11.1)	1.5 (0.64 to 3.75)	0.32		
Respiratory failure	89 (9.2)	3 (5.7)	0.59 (0.18 to 1.93)	0.38		
Stroke	20 (2.1)	2 (3.7)	1.82 (0.41 to 8.0)	0.42		
Acute renal failure	61 (6.3)	8 (14.8)	2.63 (1.17 to 5.88)	0.01		
critera [6] were used to define SSIs. The SPSS software package (version 15) was used for statistical analysis. A \(p \leq 0.05 \) was considered significant.

To assess risk factors for SSI, we used one-way analysis of variance for univariate continuous variables and the chi-square test for categorical variables. In addition, we conducted Fisher’s exact test whenever the chi-square expected value of at least one cell was less than 5.

We avoided multicollinearity among the explanatory variables by performing collinearity diagnostic analyses. We performed the stepwise selection of variables from the models with the following criteria: Tolerance greater than 0.4 or variance inflation less than 2.5, condition number less than 10, and a variance of two or more variables no greater than 0.5.

SSIs developed after cardiac surgery in 54 (5.3%) patients, 28 (2.8%) superficial or deep incision SSIs and 26 (2.5%) organ/space SSIs. The intraoperative and postoperative \(\text{PaO}_2 \) values were not associated with an increased risk of SSI either by univariate or multivariate analysis (Table 1). The 30-day mortality rate was similar in both groups: patients without SSIs, \(n = 72 \) (7.4%) vs. patients with SSIs, \(n = 4 \) (7.4%); \(p = .11 \). Our results agree with the results of the trials conducted by Pryor et al. [4] and Meyhoff et al. [5] in that perioperative hyperxia was not effective in reducing SSIs. \(\text{PsO}_2 \) is typically lower than the \(\text{PaO}_2 \) level by a factor of two to four. As might be expected, tissue oxygenation improves much less than arterial oxygen in response to supplemental oxygen administration. Ecternal wound oxygenation increased by an average of 4 mm Hg (from 23 to 27 mm Hg) with supplemental oxygen at 50% [3].

The data from prior studies [4,5], as well as the present results, leads us to question our policy to routinely administer a high inspired oxygen fraction to cardiac surgery patients in order to prevent SSIs. In summary, the \(\text{PaO}_2 \) in adult cardiac surgery patients is not related to SSI rate. The strategy of administering supplemental inspired oxygen to reduce the incidence of SSIs does not appear to be clinically useful.

Table 1 Characteristics and preoperative, intraoperative, and postoperative data for patients with and without surgical site infections (SSIs) (Continued)

Length of stay, mean (SD), days	Preoperative	In the ICU stay after surgery	Postoperative	In the hospital
Preoperative	10.4 ± 9.8	12.1 ± 8.8	1.01 (0.99 to 1.03)	0.209
In the ICU stay after surgery	4.4 ± 9.4	4.1 ± 6.6	0.99 (0.96 to 1.03)	0.81
Postoperative	13.8 ± 17.9	35.6 ± 19.5	1.03 (1.02 to 1.04)	0.0001
In the hospital	24.2 ± 20.2	47.8 ± 20.3	1.03 (1.01 to 1.04)	0.0001

Abbreviations: SD, standard deviation; SSIs, surgical site infections; \(\text{PaO}_2 \), partial pressure of oxygen; CI, confidence interval; ICU, intensive care unit; OR, odds ratio; CABG, coronary artery bypass graft; CPB, cardiopulmonary bypass.

Author details

1Department of Cardiovascular Surgery. Hospital Universitario La Princesa. C/Diego de León 62. 28006. Madrid. Spain. 2Department of Anaesthesiology and Reanimation. Hospital Clínico Universitario de Valladolid. Avenida Ramón y Cajal 3. 47005. Valladolid. Spain. 3Department of Pharmacology and Therapeutics. Facultad de Medicina. Universidad de Valladolid. Avenida Ramón y Cajal 3. 47005. Valladolid. Spain. 4Department of Anaesthesiology and Reanimation. Hospital Universitario Rio Hortega. Calle Dulzaina s/n. 47012. Valladolid. Spain. 5Department of Cardiac Surgery. Hospital Clínico Universitario de Valladolid. Avenida Ramón y Cajal 3. 47005. Valladolid. Spain.

Competing interests

The authors declare that they have no competing interests.

References

1. Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Outcomes Research Group: Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med 2000; 342(3):161-167.
2. Belza FJ, Aguilar L, García de la Asunción J, Alberti J, Vicente R, Fernández L, Rodríguez R, Company R, Sessler DI, Aguilar G, Botello SG, Ortí R. Spanish Reducción de la Tasa de Infeccion Quirúrgica Group: Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 2005; 294(16):2035-2042.
3. Baki MH, Naiem H, Sessler DI, Mahboobi R, Dalton J, Akça O, Roselli EE, Insel SR. Transdermal oxygen does not improve sternal wound oxygenation in patients recovering from cardiac surgery. Anesth Analg 2008; 106(6):1619-1626.
4. Pryor KD, Fahey TJ, Lien CA, Goulden PA. Surgical site infection and the routine use of perioperative hyperxia in a general surgical population: a randomized controlled trial. JAMA 2004; 291(1):79-87.
5. Meyhoff CS, Witterslev J, Jorgensen UN. PROXI Trial Group, et al: Effect of high perioperative oxygen fraction on surgical site infection and
pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 2009, 302(14):1543-50.

6. Garner JS, Jarvis WR, Emori TG, et al.: CDC definitions of nosocomial infections. In APIC infection control and applied epidemiology: principles and practice. Edited by: Olmsted RN. Mosby, St. Louis; 1996:A1-A20.

doi:10.1186/1749-8090-6-4
Cite this article as: Bustamante et al.: Intraoperative PaO2 is not related to the development of surgical site infections after major cardiac surgery. Journal of Cardiothoracic Surgery 2011, 6:4.