Assessment of the Cost–Benefit Literature on Early Childhood Education for Vulnerable Children: What the Findings Mean for Policy

Kim M. Dalziel¹, Dale Halliday², and Leonie Segal²

Abstract
Given international interest in evidence-informed early education policy, we sought to interpret what is often a confusing literature on the performance of early childhood education programs. We explore whether they represent a good return on investment and the factors affecting their transferability. A systematic review was conducted to identify all cost–benefit (C-B) studies of center-based programs enrolling disadvantaged children prior to age 5 compared with a matched group. From a search across all pertinent databases in 2013, 13 economic evaluations relating to six distinct programs were identified that met the inclusion criteria. Of the six programs, half were reported as producing a substantial net benefit (benefits considerably greater than cost) representing a good investment, while for the other half, costs were greater than benefits. We explore possible reasons for the considerable divergence in economic outcomes. The primary driver was the divergent effectiveness of the programs reported in the original outcome studies, and to a lesser extent the scope of benefits included in the economic evaluation and period of follow-up. The context in which programs were delivered and program intensity differed markedly. The two oldest (1960s and 1970s) small randomized control trials of high intensity produced far better outcomes and return on investment than more recent large-scale service delivery. This collection of C-B studies challenges the expectation of good returns on investment from the rollout of early childhood programs. A checklist is provided to assist policy makers with the interpretation of C-B studies.

Keywords
early intervention (education), cost–benefit analysis, economic evaluation, systematic review, policy

Introduction
Early childhood education programs have been delivered since the early 20th century. Formal evaluations of these programs have been conducted at least since the 1960s (Howard & Plant, 1968). Programs such as Head Start in the United States were introduced with the aim of providing a preschool program for low-income children to meet their health, social, and psychological needs (Zigler & Styfco, 1993). There have been numerous studies of the effectiveness of early childhood development programs (Burger, 2010; Currie, 2001; Karoly & Bigelow, 2005; Reynolds, Wang, & Walberg, 2003). These studies provide evidence that early childhood education programs can have a positive impact on cognitive skills, school achievement, social and emotional development, educational achievement, employment, and crime (Reynolds & Temple, 2008), especially for children from disadvantaged backgrounds.

The early years in a child’s life are known to be important determinants of subsequent development and provide a crucial foundation for health, education, and general well-being (Mustard, 2010). Recent research is pointing to the importance of brain development, particularly in the initial years of a child’s life (Shonkoff, 2003; Shonkoff, Richter, van der Gaag, & Bhutta, 2012). Early childhood programs aim to support all aspects of a child’s development and have been identified as particularly beneficial for children with known disadvantages such as low income, ethnic minority, risk of maltreatment; (Heckman, 2006, 2012; Melhuish, 2011; Melhuish, Belsky, Leyland, Barnes, & The National Evaluation of Sure Start Research Team, 2008).

Findings have been disseminated to policy makers who have increased investment in preschool and kindergarten services through direct provision and/or subsidies to families.

¹The University of Melbourne, Melbourne, Victoria, Australia
²University of South Australia, Adelaide, South Australia, Australia

Corresponding Author:
Leonie Segal, Chair, Health Economics & Social Policy, School of Population Health, University of South Australia, G.P.O. Box 2471, CWE-48, Adelaide, South Australia, Australia.
Email: Leonie.Segal@unisa.edu.au

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm).
Of particular interest to policy makers and governments are arguments that early investments in children produce the largest returns on investment, compared with investments made at later ages (Heckman, 2006). That investment in early childhood education will generate high returns for society is widely accepted. But does the evidence consistently support this view?

Proposed major expansions in access to early childhood education services are costly; an important consideration given ongoing pressures on government budgets. Our updated cost estimates (2011 US$) of six of the most widely cited early childhood programs identified a cost per child of between US$6,000 and US$45,000, depending on program intensity (see Tables 1 and 3). This is high compared with other government-funded programs. For example, in 2011-2012, Australia’s mean annual health cost per person was AUD6,230 (AUD4,345 government spending), while in the United States, just under US$5,5000 per head was spent by governments on health care in 2011.

Because a population-wide rollout of early childhood programs would be very costly even if targeted to disadvantaged communities, it is imperative that policy makers determine whether these programs represent a good return on investment. Policy decisions require information on both outcomes and costs. Benefit–cost analyses compare benefits with costs and assess the return on investment, reported either as a benefit–cost ratio (which can also be expressed as $x return for each $ invested), net present value benefit (see Figure 1), or internal rate of return. Break-even is reached where either the present value of benefits is equal to the present value of costs of the initial investment (incorporating the mean expected rate of return), the benefit–cost ratio is one, or where the internal rate of return is equal to the expected rate. Benefit–cost analyses can also report on other aspects of program performance such as the time to recoup the initial expenditure and program types and subpopulations that offer the best (and poorest) returns. An advantage of benefit–cost analysis is its ability to capture a wide range of impacts such as health, welfare dependency, crime, or education in a single monetary metric. This means, benefits can be summed across various types of impacts (and impacts occurring at differing time points) and compared directly with costs. This is particularly valuable in assessing the potentially wide-ranging impacts of early childhood education. The commonly reported outcome metric of “effect size,” while providing some insight into program effect on selected outcome measures, is highly challenging for policy makers to interpret in the context of competing demands for funds. Benefit–cost analysis is ideal for informing cross-portfolio or “whole of government” decision making, and is increasingly accepted as necessary for positive social change and lasting improvements for children at disadvantage.

While a small number of reviews have been published of the benefit–cost literature, these have covered only three early childhood education programs (Barnett & Escobar, 1989; Currie, 2001; Karoly, Kilburn, Bigelow, Caulkins, & Cannon, 2001; Reynolds & Temple, 2008). Two of the programs, Perry Preschool and Abecedarian were small (~60 children in the experimental group), single site, randomized control trials (RCTs), and delivered decades ago (in 1962-1967 and 1972-1977, respectively). The Chicago Child-Parent Centers (CCPC; delivered in 1983-1985) has been operational at some 24 sites, and is continuing to be rolled out across the United States.

A number of more recent benefit–cost studies are now available of early childhood education programs that have been “taken to scale” and delivered in the community, rather than the research trial setting. A review incorporating these more recent cost–benefit (C-B) studies is critical to an understanding of the performance of early childhood education programs in the current context and the community setting.

The aim of this review was to fill this gap, through a systematic literature review of benefit–cost studies of center-based early childhood education programs for disadvantaged children. We aimed to assess their economic performance, and to determine if the economic benefits from the early trials were realized in the larger nation-wide rollouts. We also sought to provide guidance for the interpretation of C-B studies to assist policy makers.

Method
Identification and Selection of Benefit–Cost studies
The databases Medline, Embase, A+Education, Family Databases, Proquest Education journals, Proquest Psychology journals, Education Research Complete, ERIC, EconLit, PsychINFO, and PsychArticles were searched on April 5, 2013, using key words for child care, day care, kindergarten, preschool, and nursery combined with subject headings and key words for early intervention education and benefit–cost. In addition, Internet searching of key websites (including the Washington State Institute for Public Policy [WSIPP] and the RAND Corporation) was performed, along with key author searches and bibliographic searching.

The full text articles were independently assessed for inclusion by two reviewers (K.M.D. and D.H.) and discrepancies were resolved through discussion. The inclusion criteria were as follows:

- An original economic evaluation including both costs and benefits
- The primary effectiveness study included a control group
- A center-based educational intervention
- Children prior to school age (i.e., less than 5 years)
- Disadvantaged children (e.g., area of low socioeconomic status, low income, racial minority, teenage parents)
Table 1. Description of Program Participants and Components.

Characteristics	High-Scope Perry Preschool	Carolina Abecedarian	Chicago Child-Parent Center Program	Even Start Family Literacy Program	Early Head Start	Sure Start
Years of operation	1962-1967	1972-1977	1983-1985	1989 Throughout USA	1995a	1999-2003
City/region	Ypsilanti, Michigan, USA	Chapel Hill, North Carolina, USA	Chicago, Illinois, USA			
Location of early childhood center	Elementary School	University	Elementary school	Mixed. Center or home based. Encouraged to build on existing services such as adult education programs or Head Start	Mixed. Can be center or home based or both	Mixed and locally determined
n sites and n participants	1 site, 123 participants (I = 58, C = 65)	1 site, 111 participants (I = 57, C = 54)	24 sites, 1,539 participants (I = 989, C = 550)	18 evaluation projects (463 families) from >1,000 sites serving 40,000 families	17 research programs (3,001 families, I = 1,513, C = 1,488) from >700 sites	524 sites, 19,112 participants (I = 16,502, C = 2,610)
Participant attributes	Low SES, Low IQ, African American	Low SES, high risk, low IQ, predominantly African American	Low SES, high risk area, Hispanic (7%) or African American (93%)	Poor, undereducated, underemployed	Income below poverty level. 10% reserved for children with disabilities	Families living in disadvantaged areas
Age at program start	3 or 4 years	6-12 weeks	3-4 years	0-8 years	≤1 year	Up to 4 years
Mean duration	21.6 months	Mean not reported (Max 60 months)	19.2 months	10 months	22 months	Not reported (variable)
Length of day	2.5 hr/day	Up to 10 hr/day	3 hr/day	14 hr/week	Not reported	Not reported (variable)
Days per week	5 days	5 days	5 days	Not reported	Not reported	Not reported (variable)
Child–staff ratio	5:1	6:1 (children) 3:1 (infants)	8:1 (preschool)			
Emphasis	Cognitive development	Language and social development	Cognitive and social development, family support	Improving academic achievement of low-income young children and parents (especially reading)	Enhancing child development while strengthening families	Early education, child care, health services
Other components	1.5 hr/week home visit	Medical and nutrition services for intervention and control group, free transport to center	Home outreach to engage most vulnerable families Biweekly home visits (1-1.5 hr): Child health and nutrition services, parent program	Builds on community resources. Provides referrals for a number of other social services	Home visits, child care, case management, parenting education, health care and referrals, and family support	Outreach and home visiting, community health care, family support programs, support for parents employment

Note. I = intervention group participants; C = control group participants; SES = socioeconomic status.

aThe Early Head Start program was initiated by Congress in 1994 specifically for infants/children aged 0-3 years, it sits within the “Head Start” group of programs which commenced in 1965 specifically for preschoolers.

bProgram commenced with a preschool program but also extended to kindergarten and school programs for some children up to age 6 years. For the purpose of this assessment, the kindergarten and school programs are not included.

c91% of children were ≤ 5 years or less when program commenced.
Quality Assessment

The quality of the economic evaluations was assessed using standard economic evaluation appraisal criteria from Drummond, Schulpfer, Torrance, O’Brien & Stoddard (2005). The categories assessed covered the design of the benefit–cost study and of the study from which evidence of impact was drawn, the rigor of cost identification and measurement, reporting of costs and benefits for the early childhood program relative to the control group (i.e., as incremental costs and benefits), validity of the modeling techniques, and the conduct of sensitivity analysis.

Data Extraction

Data extraction was performed by one researcher (D.H.) into predetermined forms and checked independently by a second researcher (K.M.D.). Details such as study design, characteristics of participants, details of each intervention, items included in cost measurement, and length of follow-up were all recorded. The measures of performance were net present value benefit and benefit–cost ratio (see Figure 1 for definitions). Synthesis via meta-analysis was deemed inappropriate as a stated aim was to examine the content of each benefit–cost analysis, to contrast styles of analysis, and to draw conclusions regarding their relative usefulness for policy and understand why results might differ. All costs and benefits were translated into 2011 US$ using published exchange rates.

Results

The search strategy (see the appendix) yielded 7,590 hits, many of which were duplicates or obviously irrelevant. A total of 147 full text articles were examined of which 13 met the inclusion criteria and were included in the systematic review (see Figure 2).

Study Characteristics

The 13 benefit–cost studies meeting the inclusion criteria related to six distinct early childhood programs (Table 1). The programs covered in total just over 24,000 participants, with the vast majority drawn from the one study covering

Figure 1. Schematic representation of cost–benefit analysis for early childhood programs.
524 Sure Start sites. Five of the six programs were based in the United States with one (Sure Start) based in the United Kingdom (see Table 1).

Program Description

Key characteristics of the included programs are described in Table 1. The intensity of programs has been described in terms of mean months/years of attendance, hours per day and days per week that the program was offered, and child-staff ratio. Programs were mostly offered to 3- and 4-year-old children, with mean duration of attendance between 1 and 2 years. In terms of hours, Perry Preschool (Barnett, 1985b) and CCPC (Reynolds, Temple, Robertson, & Mann, 2002) offered 2.5 hr a day 5 days per week. The Carolina Abecedarian child care program (Masse & Barnett, 2002) was the most intensive, functioning for 10 hr a day, 5 days per week, and available to children from 6 weeks to 5 years of age.

Many of the programs included components in addition to the center-based learning such as home visiting (Perry Preschool, CCPC, Early Head Start, and Sure Start programs), parenting groups or programs (Perry Preschool, CCPC, Early Head Start, and Sure Start), health and nutrition services (Abecedarian, Early Head Start, CCPC, and Sure Start programs), and referrals for social services (Even Start, Early Head Start programs).

While Sure Start had a common goal of promoting physical, intellectual, and social development, each Sure Start program could include a unique mix of services (across education, child care, health and family support) and delivery methods, based on an assessment of local needs and consultation with parents. Sure Start could involve additional services and also greater co-ordination of existing services. The program was targeted geographically at disadvantaged areas only and operates in a system where early childhood education for 3- and 4-year-olds is already free and available. The service mix and delivery differed across the 524 Sure Start locations (Meadows, 2011). Program emphasis was predominantly cognitive, educational, and social development. The Perry Preschool and Abecedarian programs were administered as small randomized trials (n = 121 and 105, respectively). In contrast, the CCPC, Early Head Start, Even Start, and Sure Start benefit–cost analyses were of larger scale community-wide programs within disadvantaged communities. The benefit–cost analysis of Sure Start sought to assess the effect at the population level, covering all children within “Sure Start” and “comparison” regions, not just children enrolled in the program.

Participants

Core characteristics of the program participants are described in Table 2. All participants in the programs included in this review were under school age (although Even Start had an extension program through to age 8 for some families). All programs were targeted at low socioeconomic groups/families living in poverty/in disadvantaged areas. The five U.S. programs had large enrollment of African American families...
Table 2. Difference Between Intervention and Control Groups Core Education Outcome.

Program	Number of participants	Study design (key reference)	Control group	Program outcome	Comments on quality of original trial
Percentage high school completion rates (by age 27, 21, and 25, respectively)					
1. High-Scope Perry Preschool	123	RCT (Schweinhart, Barnes, & Weikart, 1993)	Did not receive preschool	Intervention: 71% Control: 54% Difference: 17%	Trial commenced 1960s. Randomization via alternating enrollees with some participants reassigned. Baseline characteristics of intervention and control group not reported. 94% follow-up for high school completion. Small, protocol-driven program delivered through one university site.
2. Carolina Abecedarian	111	RCT (F. A. Campbell, Ramey, Pungello, Sparling, & Miller-Johnson, 2002)	Iron-fortified formula to 15 months, free disposable nappies, social work services as needed	Intervention: 70% Control: 67% Difference: 3%	Trial commenced 1970s. Quality uncertain: Randomization method unclear, baseline characteristics of intervention and control groups not reported. 93% retention at age 21 follow-up. Small protocol-driven program delivered at one site.
3. Chicago Parent Child Center Program	1,539	Non-randomized matched-group cohort (Reynolds, Temple, White, Ou, & Robertson, 2011)	Children in other early childhood program (preschool low-income children). M years C = 1.0 cf. I = 1.6	Intervention: 80% Control: 73% Difference: 7%	Evaluation across 25 sites in Chicago. Reasonable quality study design. Groups well matched at baseline, intervention group higher level of poverty (statistically sign. diff), 85% retention at age 21 follow-up. Used data from Chicago longitudinal study to map outcomes.
M Peabody Picture Vocabulary Test Score					
4. Even Start, USA 463 families					
5. Early Head Start, USA 3,001 families					
6. Sure Start, UK 19,112 families					

Note: I = intervention group participants; C = control group participants; C-B = cost–benefit; RCT = randomised control trial; M = change in Foundation Profile Score
(up to 93% in the CCPC). Low parental education was specifically reported to be common among the participants in the Perry Preschool, Abecedarian, and Even Start programs. The populations appear to be significantly more vulnerable than the general population, with 10% Early Head Start places reserved for children with disabilities. The relative level of disadvantage across programs is difficult to establish.

Cost–Benefit (C-B) Analyses

Method. All C-B analyses used standard methodology, whereby incremental benefits and costs are identified and valued in dollars. Actual trial/study data to the final point of follow-up (which ranged from 3 years to 40 years) informed the analysis. Most C-B analyses modeled to age 65 or full life expectancy, drawing on evidence of the relationship between observed outcomes and downstream end points. Analyses did vary in terms of range of impacts included, the model structure, parameter values used in modeling downstream consequences, and whether or how uncertainty in the primary evidence are incorporated.

The C-B analyses for two programs, Even Start and Early Head Start, have been taken from the work by Aos and colleagues (Aos et al., 2011; Aos, Lieb, Mayfield, Miller, & Pennucci, 2004) at the WSIPP which thus has employed a consistent approach. One feature of the WSIPP model is a downward adjustment to effectiveness to reflect the commonly observed reduction in effect from the trial setting to community rollout.

Quality assessment. The C-B analyses were found to be well conducted across most criteria, except that sensitivity analyses were not always conducted and where conducted mainly focused on the discount rate. This does not capture the major sources of uncertainty, which primarily arise from the effectiveness data and the assumptions underpinning the downstream modeling. The exceptions were the Reynolds, Temple, White, Ou, and Robertson (2011) analysis of the CCPC program and the Heckman, Moon, Pinto, Savelyeva, and Yavitza (2010) evaluation of Perry Preschool which both conducted extensive sensitivity analyses, including Monte Carlo simulations. Both these evaluations also include an assessment of “deadweight losses” the cost of financing these programs through public taxation, which involves additional welfare costs to society. The lack of sensitivity analysis is a weakness of the other studies, given concerns with the underlying effectiveness data (see also Table 2).

Program costs. The costs of delivering the early childhood program per family or per enrolled child (translated into 2011 US$) varied considerably, reflecting the diversity in program composition and program intensity. The less expensive programs were Even Start US$5,980 per family, Sure Start US$7,870 per family, and the CCPC program US$9,280 per family. The most expensive program was the Abecedarian program at US$45,190 per family, reflecting high intensity in terms of hours per day and years of possible attendance. The Perry Preschool program was also high cost at US$29,836 per family, which included a home visiting component and the Early Head Start program at US$25,796 per family, which included case management, specific parenting programs, and home visiting. Program costs are reported in Table 3.

Downstream impacts beyond program. All benefits were measured post program completion. The value of these downstream impacts was dependent on (a) scope of impacts (reflecting primarily length of follow-up and program objectives) and (b) measurement methods (reflecting data collection instruments used, model structure, age to which modeling taken, source of evidence to inform parameter values).

The scope of impacts included in each C-B analysis is reported in Table 4, categorized into education-related, health-related, employment and earnings, and crime and social welfare. For five of the six programs, education outcomes are reported, covering typically additional costs such as remedial education and grade repetition and impact on educational attainment. The exception is the Sure Start evaluation (Meadows, 2011). Three programs considered impact on crime. Perry Preschool (Barnett, 1985a, 1985b, 1993; Heckman, Moon, Pinto, Savelyeva, & Yavitza, 2009, 2010; Nores, Belfield, Barnett, & Schweinhart, 2005) and CCPC (Lee, Aos, & Miller, 2008; Reynolds et al., 2005, 2007; Temple & Reynolds, 2007) identify reduction in crime as a significant contributor to estimated benefits, while no impact was identified for Abecedarian. The Abecedarian analysis was the only C-B analysis to include impact on smoking (Barnett & Masse, 2007; Masse & Barnett, 2002). Reynolds and colleagues’ (2011) C-B analysis of the CCPC study incorporated the largest number of impacts, including a number of educational outcomes, criminal justice and child protection outcomes, and effect on mental health and substance abuse (based on follow-up at age 21). The Sure Start (Meadows, 2011) and Abecedarian (Masse & Barnett, 2002) C-B analyses included the impact on parental earnings, which reflect the child care aspects of the programs. In the case of Abecedarian, increased parental earning accounted for the majority of benefits (Masse & Barnett, 2002). The C-B studies that included the least number of potential benefit categories were Even Start (St. Pierre, Ricciuti, & Rimdzius, 2005), which only included education and increased earnings, and Sure Start. For Sure Start, outcome data were collected on a number of attributes. However, a statistically significant effect was found only for parental earnings, which is thus the only contributor to the benefit stream (Meadows, 2011).
Program Performance

The costs and benefits and C-B result for each program are reported in Table 3. The Perry Preschool and CCPC programs have multiple C-B results reported in several studies, based on observations of participants at different ages and lengths of follow-up.

Programs show mixed C-B results. The three earliest programs, two of which were small single site trials, report high positive returns on investment as follows: Perry Preschool, up to US$16.1 per US$1 invested; Abecedarian, up to US$3.8 per US$1; and the CCPC program, up to US$10.8 per US$1 invested.

Name of program/author	Number of participants	Incremental program cost	Incremental benefit	Cost–benefit result	NPV (net present value = (ΣB − ΣC)2011 US$c)	Age of follow-up AD, M (discount rate)	
Perry Preschool							
Barnett (1985a)	123	US$9,027 (2-year program, 1981)	US$18,389	$23,468	2.04	AD to age 19, M beyond (5%)	
Barnett (1985b)	123	US$9,289 (2-year program, 1981)	US$32,966	$58,956	3.55	AD to age 19, M welfare to age 82, M earnings to age 70 (3%)	
Barnett (1993)	123	US$12,356 (2-year program, 1992)	US$108,002	$153,990	8.74	AD to age 28, M to age 65: Earnings, crime and welfare (3%)	
Nores, Belfield, Barnett, and Schweinhart (2005) and Belfield, Nores, Barnett, and Schweinhart (2006) both have same data	123	US$15,166 (2-year program, 2000)	US$244,811	$300,835	16.14	AD to age 40, M to age 65 (3%)	
Abecedarian							
Masse and Barnett (2002) and Barnett and Masse (2007)	104	US$35,864 (5 years, 2002)	US$135,546	$125,599	3.78	AD to age 21, M to age 60 (3%)	
Chicago Child-Parent Center Program							
Reynolds, Temple, Robertson, and Mann (2002)	1,539	US$6,692 (1.6-year program, 1998)	US$74,981	$85,170	10.15	AD to age 21, M crime to age 44 (3%)	
Temple and Reynolds (2007)	1,539	US$7,384 (1.6-year program, 2002)	US$94,767	$133,829	4.82	AD to age 21, M other to lifetime (3%)	
Lee, Aos, and Miller (2008)	1,539	US$8,124 (1.6-year program, 2007)	US$92,220	$91,242	10.83	AD to age 27, M to age 65 (3%)	
Reynolds, Temple, White, Ou, and Robertson (2011)	1,473	US$6,512 (1.6-year program, 2007)	US$100,520	$125,599	3.78	AD to age 21, M to age 60 (3%)	
Even Start							
Aos, Lieb, Mayfield, Miller, and Pennucci (2004)	463	US$4,863 (2003)	US$5,981	$0	0.00	−$5,981	AD 3 years, M to lifetime (3.5%)
Early Head Start							
Aos et al. (2004)	3,001	US$20,972 (2003)	US$4,768	$19,930	0.23	AD 3 years, M to lifetime (3.5%)	
Sure Start							
Meadows (2011)	19,112	UK£4,860 (2009-2010)	UK£279 to £557	−£7,421 to −£6,971	0.057-0.115	AD 5 years, M not modeled	

Note. Green shade indicates best quality estimate for each type of program where multiple evaluations are provided (based on longest follow-up and most rigorous identification and assessment of cost saving. AD = actual data; M = modeled data.

| aInflated to 2011 US$ using the CPI http://www.bls.gov/data/inflation_calculator.htm |
| bHigh comparative cost of program as deadweight cost (50%) included in calculations. |
| cTwo sets of program costs are reported in original article, one with program administered through school and another with program administered through a child development center, we have chosen to use the latter figure. |
| dRepresents total cost of intervention not incremental cost relative to program received by control group. |
| eThis analysis is based on the Reynolds, Temple, Robertson, and Mann’s (2002) results with the addition of intangible crime victim benefits. |
| fMeta-analysis (at 3 years from start of intervention recruitment) based on 1 evaluation (of 18 Even Start Programs). |
| gMeta-analysis at (at 3 years from start of intervention recruitment) based on 1 evaluation (of 17 Early Head Start Programs). |
Table 4. Most common classes of impacts included as potential benefits by program and C-B analysis.

Program reference	Education related	Health related	Employment and earnings related	Crime and social welfare related	Total NPV 2011 US$
High-Scope Perry Preschool					
Barnett, (1985a)					23,468
Barnett, (1985b)					58,956
Barnett, (1993)					153,990
Nores, Belfield, Barnett, Schweinhart (2005); Belfield, Nores, Barnett, Schweinhart (2006)					300,835
Heckman Moon, Pinto, Savelyeva, and Yavitza, (2010)					155,024
Carolina Abecedarian					
Masse and Barnett(2002) & Barnett and Masse (2007)					119,451
Chicago Child-Parent Centre Program					
Reynolds Temple, Robertson, and Mann (2002)					57,083
Temple and Reynolds(2007)					85,170
Lee, Aos and Miller (2008)					33,829
Reynolds, Temple, White, Ou, Robertson (2011)					91,242
Even Start					
Aos, Lieb, Mayfield, Miller and Pennuci (2004)					5,981
Early Head Start					
Aos, Lieb, Mayfield, Miller and Pennuci (2004)					19,930
Sure Start					
Meadows, (2011)					-7,421 to -6971

Legend: # = Included, # = Partially included, # = Not included
The three more recent programs that involved wider national rollout—Even Start, Early Head Start, and Sure Start programs—report C-B ratios of less than 1; that is, the value of measured benefits was less than program cost.

Discussion

Overview

The C-B results of the six center-based early childhood education programs targeted at disadvantaged groups included in this review would suggest investment in early childhood educational programs is equivocal in terms of potential for return to society. These studies suggest that while the theory behind early childhood programs for disadvantaged populations looks sound, the economic success of the early trials has not often been replicated. Only the CCPC program combined quality evidence, an intervention of large scale, and a program cost that might be considered affordable with a high return. The poor returns for Even Start (St. Pierre et al., 2005) and Early Head Start (Love et al., 2005) and Sure Start (Meadows, 2011) reflect the failure to achieve large changes in educational outcomes (with relatively small, or no, change in short-term educational outcomes), not high cost.

There has been considerable discussion concerning the lack of success of Sure Start. Explanations generally focus on implementation failure, suggesting that the community-driven model, while maximizing local community engagement, has failed to ensure fidelity with core model components. It also may reflect access to preschool by control children which was little different to that offered under the study programs. These are not always well defined. Furthermore, the Sure Start C-B analysis was based on outcome data for children at 5 years of age, when the large impacts from other studies such as effect on crime, employment, or educational attainment are not yet observable.

Limitations. This analysis was limited to programs for which C-B studies have been completed. And the programs included had differing years of follow-up and measured different sets of impacts, which will have affected reported C-B ratios. A number of important early childhood programs, such as Head Start, KidsMatter PATHS, and Incredible Years, are not included in this work. It will be important to include these as economic analyses become available. The existing evidence base is predominantly for the United States, and generalizability to other settings is unknown.

Policy Implications and Interpretation of C-B Studies

These C-B studies highlight the challenge for policy makers in interpreting the results of complex social policy initiatives.

As the ultimate purpose of economic evaluation is to inform policy, we provide guidance on the interpretation of C-B results. Economic evaluation by its nature adds uncertainty, particularly when modeling to longer term outcomes. It is essential to have a thorough understanding of the effectiveness results and quality of the original study to understand what is driving the C-B results. We note the design of the initial Trial is important in considering likely generalizability of study results. For example, the Abecedarian program used a matched pair randomization method and the recruitment method is not well defined, leaving some uncertainty around possibility for selection bias and representativeness of the wider eligible population. Although F. Campbell and colleagues (2014) using new statistical techniques to re-analyze the Abecedarian study (taking into account issues with randomization, sample size and retention), still find positive results. Baseline equivalence between groups for studies is not always clear. The Even Start program evaluation had study groups with some baseline differences, unclear blinding, significant dropout, and a failure to perform intention to treat analysis.

The Perry Preschool program used an “alternate” randomization process with some parents reassigned following group allocation. However, a reanalysis by Heckman and colleagues concluded that the allocation process did not affect the results. Other adjustments to the analysis by Heckman (e.g., in estimating the costs of crime) did however result in a reduction in the estimated internal rate of return from 16%-17% to 6%-10% (Heckman et al., 2010). We also note strong retention at follow-up for the Perry Preschool, Abecedarian, and CCPC programs.

The Sure Start evaluation is the only C-B analysis to measure the community-level effects of the program rather than the effects just for program participants, which will always show a smaller impact (but also lower costs). While all children in the “Sure Start” regions were eligible for the program, with no Sure Start Program available in comparison regions, not all children will have attended, and rates of participation and attendance will have affected the result. But this is reflective of “real world rollout” of an early childhood education program. While study populations were not randomized and participants in the control regions were significantly more disadvantaged, this has been controlled for in the analysis. As noted, because Sure Start was evaluated when children were only 5 years of age, the ability to express outcomes was limited. The team lead by Meadows (2011) note a number of small effects which may (or may not) translate into measurable downstream benefits.

Core effectiveness results from the primary intervention studies are reported in Table 2, with a focus on high school completion rates where reported (limited by years of follow-up) or school test scores. Perry Preschool, Abecedarian, and CCPC report high school completion rates that were respectively, 17%, 3%, and 7% higher than control populations. Early
Head Start had a statistically significant effect on the Peabody Picture Vocabulary Test scores and the Even Start program showed no effect. The Sure Start evaluation reported on the Foundation Profile Score as their key education measure (part of the U.K. government statutory framework standards for early years providers) but did not find a statistically significant difference between intervention and control sites.

A broader scope of included benefits and longer follow-up would generally result in a more favorable C-B ratio if the programs were successful, with additional benefits being accrued but not costs (see Figure 3). This is best observed for the Perry Preschool C-B studies, with successive studies incorporating longer follow-up (up to age 40), reporting successful higher C-B ratios (Barnett, 1993; Barnett & Escobar, 1990; Belfield, Nares, Barnett, & Schweinhart, 2008).

The services accessed by the comparison group also affect the results, and is important in considering transferability of results if the service system and population characteristics where a program is to be implemented differ from the trial site. This is also the case when considering outcomes such as criminal justice or child protection—where background rates vary hugely across time and space. Randomized control trials while offering high internal validity tend to have poor external validity, which means results are unlikely to be replicated in population rollout. This is a critical issue for policy. On the contrary, community evaluations (such as Sure Start) provide an accurate picture of what a scaled up program would look like, but they often suffer from internal validity constraints in demonstrating effectiveness.

We are now at a point in the evaluation of early childhood education programs that longer term follow-up of older studies is less useful, given their small size and concerns with transferability. What is more useful is research that explores in depth recent results and issues related to translation. Particularly of interest is research on wider community rollout of programs. The evidence of generalizability of beneficial long-term effect is still uncertain, especially for programs delivered at the population level, and it is critical that high-quality evaluations accompany new program delivery. Issues to be considered in interpreting C-B studies are summarized in Table 5.

Conclusion

This is the most comprehensive review to date of C-B studies of early childhood education. It not only offers a more complete insight into the likely return on investment but also highlights challenges in interpreting these studies and provides guidance to policy makers in this regard.

A consideration of all the published C-B studies of early childhood education programs challenges the view widely held by policy makers, that investing in early childhood education will always represent an excellent return on investment for society. The early promise of two small RCTs of questionable generalizability is yet to be realized in large population-wide program delivery. As a body of evidence, the existing C-B studies do not yet provide an ideal guide to investment decisions relating to early childhood education. Greater attention to the underlying program effectiveness and the context in which programs have been delivered, their fidelity, and the benefits for specific subpopulations will assist policy makers with decisions regarding investment in early childhood programs. The same guidance would help those conducting such analyses to provide results that are transparent, comparable, and able to inform policy.
Table 5. Framework to Guide Interpreting Early Childhood Education Cost–Benefit (C-B) Evaluations.

Things to consider when interpreting C-B results and assessing applicability	Questions to ask
1. Program effectiveness	• Have I reviewed the primary effectiveness data—this is what the economic evaluation builds on. Is it a robust source of evidence?
• Consider in particular:	
• How effective was the program compared with the control group? Are results consistent across domains?	
• How confident are you that these results are true? (Consider potentials for bias.)	
2. Program costs	• What is the immediate budget impact—What would it cost to implement in your setting? What is the up-front program cost per child and across the eligible population (additional to a current service delivery model)?
3. Measurement and timing of savings associated with benefits	• What was the scope of the included savings/what categories are included?
• Over what time period were the benefits (savings) accrued and how long until a positive return on investment is projected?	
4. Context and generalizability	• How likely is it that these results would be replicated in my setting? Consider scope of trial, similarity of participants, context, setting, delivery system, characteristics of control group.
• What assumptions underpin the projected downstream savings? Are these likely to be valid in your policy context? How similar is the wider human service system and population characteristics that describe risk profile (e.g., likelihood of incarceration)?
• In relation to research trials, what is the expected loss of fidelity and effectiveness in large-scale rollout?
• What are the impacts by subpopulations—Are there some groups for whom benefits are not realized that suggest targeting is critical? What is the likely access/use by the eligible population and particularly those with greatest capacity to benefit? |

Appendix

Search Strategy

Medline and Embase: April 05, 2013

1. Child care.mp
2. Child care/
3. Kindergarten.mp
4. Day care.mp
5. Nursery.mp
6. Preschool.mp
7. Early Intervention Education/
8. Or 1-7
9. Cost$.mp
10. Cost benefit analysis/
11. Cost and cost analysis/
12. OR 9-11
13. Child/
14. Vaccination
15. ((8 AND 12 AND 13) NOT 14)

Hits 4,015.

Database	Number of hits	Selected to examine in full text
Medline and Embase	4,015	83
Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research and/or authorship of this article.

References
Aos, S., Lee, S., Drake, E., Pennucci, A., Klima, T., Miller, M., . . . Burnley, M. (2011). Return on investment: Evidence-based options to improve statewide outcomes. Olympia: Washington State Institute for Public Policy. Retrieved from http://www.fttinc.com/resources/latest%20WSIPP%20report%20with%2018.98.pdf
Aos, S., Lieb, R., Mayfield, J., Miller, M., & Pennucci, A. (2004). Benefits and costs of prevention and early intervention programs for youth. Olympia: Washington State Institute for Public Policy. Retrieved from http://www.wsipp.wa.gov/ReportFile/881/WSIPP_Benefits-and-Costs-of-Prevention-and-Early-Intervention-Programs-for-Youth_Summary-Report.pdf
Barnett, W. S. (1985a). Benefit-cost analysis of the Perry Preschool Program and its policy implications. Educational Evaluation and Policy Analysis, 7, 333-342.
Barnett, W. S. (1985b). The Perry Preschool Program and its long-term effects: A benefit cost analysis. Ypsilanti, MI: HighScope Educational Research Foundation.
Barnett, W. S. (1993). Benefit-cost analysis of preschool education: Findings from a 25-year follow-up. American Journal of Orthopsychiatry, 63, 500-508. doi:10.1037/h0079481
Barnett, W. S., & Escobar, C. M. (1989). Research on the cost effectiveness of early educational intervention: Implications for research and policy. American Journal of Community Psychology, 17, 677-704. doi:10.1007/bf00922734
Barnett, W. S., & Escobar, C. M. (1990). Economic costs and benefits of early intervention. In S. J. Meisels & J. P. Shonkoff (Eds.), Handbook of early childhood intervention (pp. 560-582). New York, NY: Cambridge University Press.
Barnett, W. S., & Masse, L. N. (2007). Comparative benefit-cost analysis of the Abecedarian program and its policy implications. Economics of Education Review, 26, 113-125. doi:10.1016/j.econedurev.2005.10.007
Belfield, C. R., Noreus, M., Barnett, S., & Schweinhart, L. (2006). The High/Scope Perry Preschool Program: Cost-benefit analysis using data from the Age-40 follow-up. The Journal of Human Resources, 41(1), 162-190.
Boardman, A., Greenberg, D., Vining, A., & Weimar, D. (2010). Cost-benefit analysis (4th ed.). NJ: Prentice Hall.
Burger, K. (2010). How does early childhood care and education affect cognitive development? An international review of the effects of early interventions for children from different social backgrounds. Early Childhood Research Quarterly, 25, 140-165. doi:10.1016/j.ecresq.2009.11.001
Campbell, F., Conti, G., Heckman, J. J., Moon, S. H., Pinto, R., Pungello, E., & Pan, Y. (2014). Early childhood investments substantially boost adult health. Science, 343, 1478-1485. doi:10.1126/science.1248429
Campbell, F. A., Ramey, C. T., Pungello, E., Sparling, J., & Miller-Johnson, S. (2002). Early childhood education: Young adult outcomes from the Abecedarian Project. Applied Developmental Science, 6(1), 42-57. doi:10.1207/S1532480XADS0601_05
Currie, J. (2001). Early childhood education programs. Journal of Economic Perspectives, 15, 213-238. doi:10.1257/jep.15.2.213
Drummond, M. F., Sculpher, M. J., Torrance, G. W., O’Brien, B. J., & Stoddart, G. L. (2005). Methods for the economic evaluation of health care programmes (3rd ed.). Oxford, UK: Oxford University Press.
Heckman, J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science, 312, 1900-1902. doi:10.1126/science.1128898
Heckman, J. J. (2012). The developmental origins of health. Health Economics, 21(1), 24-29. doi:10.1002/hec.1802
Heckman, J. J., Moon, S. H., Pinto, R., Savelyeva, P. A., & Yavitz, A. Q. (2009). A reanalysis of the HighScope Perry Preschool Program. Retrieved from http://home.sogang.ac.kr/sites/econdept/ SiteCollectionDocuments/fall2009_SeongHyeokMoon.pdf
Heckman, J. J., Moon, S. H., Pinto, R., Savelyeva, P. A., & Yavitz, A. Q. (2010). The rate of return to the HighScope Perry Preschool Program. Journal of Public Economics, 94, 114-128. doi:10.1016/j.jpubeco.2009.11.001
Howard, J. L., & Plant, W. T. (1968). Psychometric evaluation of an Operation Headstart program. The Journal of Genetic Psychology, 112, 281-288. doi:10.1080/00221325.1968.10533788
Karoly, L. A., & Bigelow, J. H. (2005). The economics of investing in universal preschool education in California. Santa Monica, CA: RAND. Retrieved from http://ezlibproxy.unisa.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED489465&site=ehost-live
Karoly, L. A., Kilburn, M. R., Bigelow, J. H., Caulkins, J. P., & Cannon, J. S. (2001). Assessing costs and benefits of early childhood intervention programs: Overview and applications to the starting early starting smart program [with] executive summary. Santa Monica, CA: RAND. Retrieved from http://ezlibproxy.unisa.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED462148&site=ehost-live
Lee, S., Aos, S., & Miller, M. (2008, July). Evidence-based programs to prevent children from entering and remaining in the child welfare system: Benefits and costs for Washington. Olympia: Washington State Institute for Public Policy. Retrieved from www.wsipp.wa.gov/ReportFile/1020

Love, J. M., Kisker, E. E., Ross, C., Raikes, H., Constantine, J., Boller, K., . . . Vogel, C. (2005). The effectiveness of early head start for 3-year-old children and their parents: Lessons for policy and programs. Developmental Psychology, 41, 885-901. doi:10.1037/0012-1649.41.6.885

Masse, L. N., & Barnett, W. S. (2002). A benefit cost analysis of the Abecedarian early childhood intervention. New Brunswick, NJ: National Institute for Early Education Research.

Meadows, P. (2011). National evaluation of Sure Start local programmes: An economic perspective. Department for Education. Retrieved from https://www.gov.uk/government/publications/national-evaluation-of-sure-start-local-programmes-an-economic-perspective

Melhuish, E. (2011). Preschool matters. Science, 333, 299-300. doi:10.1126/science.1209459

Melhuish, E., Belsky, J., Leyland, A. H., Barnes, J., & The National Evaluation of Sure Start Research Team. (2008). Effects of fully-established Sure Start Local Programmes on 3-year-old children and their families living in England: A quasi-experimental observational study. The Lancet, 372, 1641-1647. doi:10.1016/S0140-6736(08)61687-6

Mustard, J. F. (2010). Early brain development and human development. In R. E. Tremblay, M. Boivin, & R. D. Peters (Eds.), Encyclopedia on early childhood development. Retrieved from http://www.child-encyclopedia.com/Pages/PDF/MustardANGxp.pdf

Noreis, M., Belfield, C. R., Barnett, W. S., & Schweinhart, L. (2005). Updating the economic impacts of the High/Scope Perry Preschool Program. Educational Evaluation and Policy Analysis, 27, 245-261. doi:10.3102/01623737027003245

Reynolds, A. J., & Temple, J. A. (2008). Cost-effective early childhood development programs from preschool to third grade. Annual Review of Clinical Psychology, 4, 109-139. doi:10.1146/annurev.clinpsy.3.022806.091411

Reynolds, A. J., Temple, J. A., Robertson, D. L., & Mann, E. A. (2002). Age 21 cost-benefit analysis of the Title I Chicago Child-Parent Centers. Educational Evaluation and Policy Analysis, 24, 267-303. doi:10.2307/3594119

Reynolds, A. J., Temple, J. A., White, B. A. B., Ou, S.-R., & Robertson, D.L. (2011). Age 26 cost-benefit analysis of the child-parent center early education program. Child Development, 82, 379-404. doi:10.1111/j.1467-8624.2010.01563.x

Reynolds, A. J., Wang, M. C., & Walberg, H. J. (Eds.). (2003). Early childhood programs for a new century. Washington, DC: CWLA Press.

Schweinhart, L. J., Barnes, H. V., & Weikart, D. P. (1993). Significant benefits: The High/Scope Perry Preschool Study through age 27. Ypsilanti, MI: High/Scope Press.

Shonkoff, J. P. (2003). From neurons to neighborhoods: Old and new challenges for developmental and behavioral pediatrics. Journal of Developmental & Behavioral Pediatrics, 24(1), 70-76.

Shonkoff, J. P., Richter, L., van der Gaag, J., & Bhutta, Z. A. (2012). An integrated scientific framework for child survival and early childhood development. Pediatrics, 129(2), e460-e472. doi:10.1542/peds.2011-0366

St. Pierre, R. G., Ricciuti, A. E., & Rimdzius, T. A. (2005). Effects of a family literacy program on low-literate children and their parents: Findings from an evaluation of the Even Start Family Literacy Program. Developmental Psychology, 41, 953-970. doi:10.1037/0012-1649.41.6.953

Temple, J. A., & Reynolds, A. J. (2007). Benefits and costs of investments in preschool education: Evidence from the child–parent centers and related programs. Economics of Education Review, 26, 126-144. doi:10.1016/j.econedurev.2005.11.004

Zigler, E., & Styfco, S. J. (Eds.). (1993). Head Start and beyond: A national plan for extended childhood intervention. New Haven, CT: Yale University Press.

Author Biographies

Dr Kim Dalziel holds a Masters and PhD in Health Economics and is a Senior Research Fellow and McKenzie Fellow at The University of Melbourne. Her research interests and expertise include economic evaluation and modelling particularly in child health.

Dale Halliday’s research experience includes focusing on Indigenous primary health care with the Health Economics & Social Policy Group at University of South Australia, as well as maternal primary health care in developing countries at University of Adelaide. Dale has worked in public health roles with Adelaide based NGO, Hepatitis SA, and with the East Kalimantan Provincial Health Department, Indonesia. Currently, Dale works at the Sydney-based independent think tank, Policy Cures, focusing on research and development for neglected diseases.

Professor Leonie Segal is the Foundation Chair of Health Economics and Social Policy at the University of South Australia, after 7 years as Deputy Director at the Centre for Health Economics at Monash University. Her research is focused on using economics to improve outcomes for vulnerable populations.