Abstract—This letter reports high-performance β-Ga$_2$O$_3$ thin channel MOSFETs with T-gate and degenerately doped source/drain contacts regrown by MOCVD. Gate length scaling ($L_G=160$-200 nm) leads to a peak drain current ($I_{D,MAX}$) of 285 mA/mm and peak trans-conductance (g_m) of 52 mS/mm at 10 V drain bias with 23.8 Ω mm on resistance (R_{on}). A low metal/n+ contact resistance of 0.078 Ω mm was extracted from TLM measurement. R_{on} is dominated by interface resistance between channel and regrown layer. A gate-to-drain breakdown voltage of 192 V is measured for $L_{GD} = 355$ nm resulting in average breakdown field (E_{AVG}) of 5.4 MV/cm. This E_{AVG} is the highest reported among all sub-micron gate length lateral FETs. RF measurements on 200 nm Silicon Nitride (Si_3N_4) passivated device shows a current gain cut off frequency (f_T) of 11 GHz and record power gain cut off frequency (f_{MAX}) of 48 GHz. The f_T/V_{BR} product is 2.11 THz.V for 192 V breakdown voltage. The switching figure of merit exceeds that of silicon and is comparable to mature wide-band gap devices.

Index Terms—Ga$_2$O$_3$, power gain cut off frequency, switching figure of merit.

I. INTRODUCTION

β-Ga$_2$O$_3$ has attracted intense attention worldwide because of its favourable material properties [1] for power, RF switching and RF applications [1], [2]. Multi-kV drain breakdown voltages have been reported in FETs [3]–[6] and diodes [7]–[9]. Theoretically calculated large electron saturation velocity [10] also makes Ga$_2$O$_3$ a suitable candidate for next generation RF transistors. Mature bulk crystal growth [11] and thin film growth techniques (MOCVD, MBE, HVPE) with controllable doping [12]–[15] have made device fabrication with novel structures possible including both depletion and enhancement mode FETs. [16]–[19]. Modulation doped β-(Al,Ga)$_{1-x}$O$_2$/Ga$_2$O$_3$ Heterostructure FET (HFET) have been demonstrated with record 30/37 GHz f_T/f_{MAX} [20] and high temperature stability of RF performance up to 250°C [21]. Highly doped contact regrowth process using MOCVD and MBE have been reported with very low contact resistance [22], improved g_m and RF performance in MESFETs [23] and AlGaO/GaO HFETs [20], [24]. Thick channel (\geq 200 nm) β-Ga$_2$O$_3$ MOSFET has been demonstrated but poor gate control because of thicker channel degrades high frequency performances [25]–[27].

In this letter, we report a highly scaled T gate β-Ga$_2$O$_3$ thin channel MOSFET for achieving better gate control and improved RF performance. We demonstrate devices with simultaneously high $I_{D,max}$ (>250 mA/mm) with low R_{on} (<25 Ω mm), high average field strength E_{AVG} (>4.5 MV/cm) and f_T/f_{MAX} >10 GHz. The device showed a highest f_{MAX} of 48 GHz among Ga$_2$O$_3$ FETs. We demonstrated high average breakdown field without any field plate technique which could potentially provide cost advantages for high voltage RF applications.

II. DEVICE STRUCTURE AND FABRICATION

The epitaxial structure of the device was grown on (010) Fe-doped semi-insulating Ga$_2$O$_3$ substrate using ozone molecular beam epitaxy (MBE) method following conditions described in ref. [28]. The device stack consists of 200 nm unintentionally (UID) doped buffer layer and 60 nm Si doped (9.2 x 1017 cm$^{-3}$) channel. Device fabrication started with blanket ALD Al$_2$O$_3$, PECVD SiO$_2$ and e-beam evaporated Cr layers. Next, using Cr as a hard mask, SiO$_2$ and Al$_2$O$_3$ layers were removed everywhere except the gate region by reactive ion etching (RIE) and wet etching respectively. The channel was never exposed directly to the RIE. After removal of Cr hard mask using wet etch, a 85 nm thick degenerately doped (1 x 1020 cm$^{-3}$) Ga$_2$O$_3$ layer was grown by MOCVD at 700 °C. After regrowth, sample was dipped in buffered HF to remove SiO$_2$/Al$_2$O$_3$ regrowth mask

Next, device mesa isolation was performed using high power BCl$_3$ based ICP-RIE etch. Ti/Au/Ni metal stack (50 nm/120 nm/40 nm) was deposited in the source/drain (S/D) regions by electron-beam evaporation. A 20 nm SiO$_2$ was deposited using plasma enhanced ALD for gate dielectric followed by a 450 °C 1 minute annealing under N$_2$ atmosphere to improve the gate oxide quality. SiO$_2$ was removed from S/D contact regions using low power ICP-RIE etch. Finally, Ni/Au metal (50 nm/270 nm) was patterned to form T-shaped gates. A trilayer resist stack (MMA/PMGI/MMMA) [29] was used for fabricating 160-200 nm foot length and 500 nm top gate hat. The device layout was designed for GSG probing with 2x20 μm width T-layout.
The sample was passivated with 200 nm thick Si$_3$N$_4$ deposited by PECVD at 250 °C. The Si$_3$N$_4$ was removed from the source-drain pad region using CF$_4$/O$_2$ based ICP-RIE. The cross section schematic of the device is shown in Fig. 1(a) and a FIB cross section image of a fully passivated device is shown in Fig. 1(b).

III. RESULTS AND DISCUSSION

DC characteristics were measured using 4155B semiconductor parameter analyzer. A 175 nm gate length device gave an on resistance (R_{on}) of 23.7 Ω mm at $V_{GS} = 5$ V (Fig. 1(c)). Maximum drain current of $I_{DS,\text{MAX}} = 285$ mA/mm and peak g_m of 52 mS/mm were recorded at gate bias of 10 V (Fig 1(d)). The peak I_{DS} is comparable to the highest reported current density in gallium oxide FETs [17], [23]. The device shows a depletion mode operation with a threshold voltage of $V_{th} = -4$ V. The measured on/off ratio is 1.23×10^5 can be further increasing the mesa isolation etch to the substrate. The channel sheet resistance was measured to be 14.2 kΩ/□. A mobility of 80 cm2/V.s is extracted from the measured sheet resistance and calculated sheet charge density. TLMs on the regrowth layer give a low 0.078 Ω mm lateral metal/n+ contact resistance with 3.9 $\times 10^{-7}$ Ω cm2 specific contact resistance. From TLM measurements, channel sheet resistance data and device dimensions, the n++ regrowth/channel interface resistance was estimated to be a high 7.31 Ω mm, contributing to 34% of total resistance. Atmospheric contaminants at the regrowth interface could be the reason for the high resistance as no pre-treatment was carried out before regrowth. Another plausible reason could be the different growth methods of channel layer (MBE) [28] and n++ regrown layer (MOCVD) [13], [30]. The different methods use different temperature and different growth conditions. Fully MOCVD grown MESFET has been reported with lower interface resistance and contact resistances [5], [22], [31], which shows that lower interface resistances can be achieved.

Three terminal off state Breakdown measurement was performed on the devices using B1505A power device analyzer. We recorded a breakdown voltage of 152 V (Fig. 1(e)) at $V_{GS} = -40$ V bias for $L_{GD} = 355$ nm. It corresponds to gate-drain breakdown voltage (V_{BR}) = 192 V and 5.4 MV/cm average breakdown field. This E_{AVG} is the highest reported among β-Ga$_2$O$_3$ FETs without using any field engineering [32] for sub-micron length devices [33], [34], (Fig. 1(f))

High frequency small-signal performance was carried out from 100 MHz to 19 GHz using Keysight ENA 5071C Vector Network Analyzer (VNA). The VNA was calibrated using SOLT technique on sapphire calibration standard. Parasitic pad capacitance was de-embedded using an isolated open-pad device structure on the same wafer. Figure 2(a) shows short circuit current gain (h_{21}), unilateral current gain (U) and maximum available/stable gains (MAG/MSG) at $V_{DS} = 12$ V and $V_{GS} = 1$ V. We extracted current gain cut-off frequency (f_t) of \sim 11 GHz and power gain cut off frequency (f_{MAX}) of approximately \sim 48 GHz. The peak f_{MAX} value is highest reported in β-Ga$_2$O$_3$ FETs.

The expected f_t was calculated from the measured DC g_m and calculated C_{GS} [35]. For C_{GS} calculation, half the channel thickness was used. The measured f_t is significantly lower than calculated values (\sim 25 GHz) Although the device are passivated and current collapse measured in I_D-V_{DS} was
moderately low (<20%) (not shown). Pulsed I_D-V_G transfer curve shows significant drop of g_m at 200 ns pulse widths (Fig 2 (b)). The source of traps can be attributed to the SiO_2 gate dielectric which is deposited ex-situ without any surface treatment. Piranha treatment has been reported to reduce traps and hysteresis in transfer curve and capacitance-Voltage curve [36]. This is in contrast to our previously reported HFET [20], [21] where AlGaO layer was deposited in-situ during epitaxial device growth.

We developed a simplified small signal analytical model (Fig 2 (c)) of the MOSFET using Advanced Design System (ADS). In the model, we used the value of reduced pulsed g_m and calculated C_GS. The C_GD was calculated from the gate-drain separation and measured R_Ds was used. The R_s was extracted from measured s-parameters at 7 GHz. A good fit is seen between simulated I_D and unilateral gain (U) and measured values further confirming the measured RF figures of merit. A scatter plot of f_T vs f_MAX previous reported β-Ga2O3 devices is shown in (Fig 2 (d)). A f_MAX/f_T ratio of 4.3 is obtained because of the T gate structure and record f_MAX.Similar f_MAX/f_T ratio of 3 to 6 [26], [37], [38] have been reported in literature.

Figure 3 (a) shows the trade off between f_T and maximum operating voltage (V_BK) or breakdown voltage (V_BR). A good match with the reported f_T and V_BR product of 2.11 THz.V, which is comparable to mature GaN devices. This makes our device voltage, we achieved f_T. V_BR product of 2.11 THz.V, which is in future Ga2O3 MOSFETs.

IV. Conclusion

In conclusion, we have demonstrated a highly scaled β-Ga2O3 T-gate MOSFETs, which shows low R_ON and high I_DSMAX and transconductance (g_m) which are comparable to the state-of-art β-Ga2O3 MOSFETs and HFETs. Device shows the highest E_AVG for any sub-μm gate-drain spacing without field plate. We also reported a record f_MAX = 48 GHz among β-Ga2O3 FETs. Device surpasses switching figure of merit of silicon at V_BR > 100 V with low R_ON QG value. RF performance can be further improved using high-k dielectric and better surface treatment at channel-dielectric interface. This process optimization technique with sub-100 nm gate length paves the way for high-power high frequency applications of future Ga2O3 MOSFETs.

References

[1] A. J. Green, J. Speck, G. Xing, P. Moens, F. Allerstam, K. Gumaelius, T. Neyer, A. Arias-Purdue, V. Mehrotra, A. Kuramata et al., “β-gallium oxide power electronic,” APL Materials, vol. 10, no. 2, p. 029201, 2022.
[2] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tefik, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-νm/cm breakthrough strength of movegrown sn-doped β-Ga2O3 mosfets,” IEEE Electron Device Letters, vol. 37, no. 7, pp. 902–905, 2016.
[3] S. Sharma, K. Zeng, S. Saha, and U. Singisetti, “Field-plated lateral Ga2O3 mosfets with polymer passivation and 8.03 kv breakdown voltage,” IEEE Electron Device Letters, vol. 41, no. 6, pp. 836–839, 2020.
[4] K. Zeng, A. Vaidya, and U. Singisetti, “1.85 kv breakdown voltage in lateral field-plated β-Ga2O3,” IEEE Electron Device Letters, vol. 39, no. 9, pp. 1385–1388, 2018.
[5] A. Bhattacharyya, P. Ranga, S. Roy, C. Peterson, F. Alema, G. Seryogin, A. Osinsky, and S. Krishnamoorthy, “Multi-kv class β-Ga2O3 MESFETs with a lateral figure of merit up to 355 mw/cm²,” IEEE Electron Device Letters, vol. 42, no. 9, pp. 1272–1275, 2021.
[6] Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage > 1 kv,” IEEE Electron Device Letters, vol. 39, no. 6, pp. 869–872, 2018.
[7] J. Zhang, P. Dong, K. Dang, Y. Zhang, Q. Yan, H. Xiang, J. Su, Z. Liu, M. Si, J. Gao, M. Kong, H. Zhou, and Y. Hao, “Ultra-wide bandgap semiconductor Ga2O3 power diodes,” Nature communications, vol. 13, no. 1, pp. 1–8, 2022.
[8] E. Farzana, F. Alema, W. Y. Ho, A. Maute, T. Ihlo, A. Osinsky, and J. S. Speck, “Vertical β-Ga2O3 field plate schottky barrier diode from metal-organic chemical vapor deposition,” Applied Physics Letters, vol. 118, no. 16, p. 162109, 2021.
[9] D. H. Muddyngelschel, D. Wang, and H. Fu, “Wide bandgap vertical kv-class β-Ga2O3/GaN heterojunction pn power diodes with mesa edge termination,” IEEE Journal of the Electron Devices Society, vol. 10, pp. 89–97, 2021.
[10] K. Ghosh and U. Singisetti, “Ab initio velocity-field curves in mono-clinic β-Ga2O3,” Journal of Applied Physics, vol. 122, no. 3, p. 035702, 2017.
[11] J. Blevins, K. Stevens, A. Lindsey, G. Foundos, and L. Sande, “Development of large diameter semi-insulating gallium oxide β-Ga2O3 substrates,” IEEE Transactions on Semiconductor Manufacturing, vol. 32, no. 4, pp. 466–472, 2019.
[12] W. Tang, Y. Ma, X. Zhang, X. Zhou, L. Zhang, X. Zhang, T. Chen, X. Wei, W. Lin, D. H. Muddyngelschel, H. Fu, and B. Zhang, “High-quality (001) β-Ga2O3 homoepitaxial growth by metalorganic vapor deposition enabled by in situ indium surfactant,” Applied Physics Letters, vol. 120, no. 21, p. 212103, 2022.
[13] Z. Feng, A. Anhar Uddin Bhiuyai, M. R. Karim, and H. Zhao, “Moccvd homoepitaxy of si-doped (001) β-Ga2O3 thin films with superior transport properties,” Applied Physics Letters, vol. 114, no. 25, p. 250601, 2019.
[14] K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimmura, and D. Jen, “Device-quality Ga2O3 thin film on four-fold symmetry CeO2 (001) substrate for heterogeneous clinic,” Journal of Applied Physics, vol. 118, no. 16, p. 162109, 2021.
[15] X. Wei, W. Lin, D. H. Mudiyanselage, H. Fu, and B. Zhang, “High-quality (001) β-Ga2O3 homoepitaxial growth by metalorganic vapor deposition enabled by in situ indium surfactant,” Applied Physics Letters, vol. 120, no. 21, p. 212103, 2022.
