Superovulation with a single administration of FSH in aluminum hydroxide gel: a novel superovulation method for cattle

Koji KIMURA1)

1) Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan

Abstract. Superovulation (SOV) is a necessary technique to produce large numbers of embryos for embryo transfer. In the conventional methods, follicular stimulating hormone (FSH) is administered to donor cattle twice daily for 3 to 4 days. As this method is labor intensive and stressful cattle, improving this method has been desired. We previously developed a novel and simple SOV method, in which the intramuscular injection of a single dose of FSH in aluminum hydroxide gel (AH-gel) induced the growth of multiple follicles, ovulation and the production of multiple embryos. Here we show that AH-gel can efficiently adsorb FSH and release it effectively in the presence of BSA, a major interstitial protein. When a single intramuscular administration of the FSH and AH-gel mixture was performed to cattle, multiple follicular growth, ovulation and embryo production were induced. However, the treatments caused indurations at the administration sites in the muscle. To reduce the muscle damage, we investigated alternative administration routes and different amounts of aluminum in the gel. By administering the FSH in AH-gel subcutaneously rather than intramuscularly, the amount of aluminum in the gel could be reduced, thus reducing the size of the induration. Moreover, repeated administrations of FSH with AH-gel did not affect the superovulatory response. These results indicate that a single administration of FSH with AH-gel is an effective, novel and practical method for SOV treatment.

Key words: Aluminum hydroxide gel, Cattle, Embryo, Superovulation

Several decades ago, embryo transfer (ET) methods were established in cattle. Since embryos recovered from females with valuable economical traits can be utilized, this technology facilitates the selection of females. However, cattle produce only a single oocyte per estrous cycle; therefore, the number of embryos that can be recovered from the genetically superior individuals is limited. To solve this problem, superovulation (SOV) methods were developed, which include the stimulation of multiple follicular growth and embryo production through gonadotropin administration.

In the early days of ET, equine chorionic gonadotropin (eCG) was used for SOV [1–3]. In cows, eCG has a half-life of 40 h and persists in the circulation for up to 10 days [4]. This causes prolonged stimulation of the ovaries inducing abnormal endocrine profiles and deterioration of embryo quality [5, 6]. Later, eCG was replaced with follicular stimulating hormone (FSH) because cows were found to respond better to FSH in some respects [7]. As the half-life of FSH is much shorter (approximately 5 h) [8] than that of eCG, current SOV protocols using FSH have consisted of twice daily intramuscular administrations for 3 to 4 days [7, 9–11]. This is labor intensive and causes stress to donor cattle, which results in a decreased superovulatory response [12] and inhibited luteinizing hormone (LH) surge for ovulation [13]. Therefore, there is a need for a simple SOV method. We report here, a novel SOV method that utilizes a single administration of FSH with aluminum hydroxide gel (AH-gel).

SOV of Cattle by a Reduced Number of or a Single FSH Administration

For the SOV of cattle, it is common to administer FSH twice a day for 3 to 4 days in decreasing doses [10, 11, 14], since the half-life of FSH is short in cattle [8].

A single administration of FSH with agents that slow its release may be used in lieu of multiple administrations. For example, it was shown that mixing FSH with polyvinylpyrrolidone (PVP) slowed its release and kept its concentration in the blood high enough to induce the development of multiple follicles [15–17]. However, it is difficult to homogeneously dissolve FSH in PVP solutions due to the high viscosity of PVP.

Hyaluronan, a glycosaminoglycan that is widely distributed in the body, has also been used to slow the release of FSH [18]. Specifically, it was shown that a single administration of FSH diluted in 2% of hyaluronan induced a superovulatory response. However, it is also difficult to mix FSH with 2% hyaluronan because like PVP, hyaluronan has a high viscosity. Using a lower concentration of hyaluronan facilitated the mixing, but the mixture was only able to induce SOV when it was given as two administrations 48 h apart [19].

Received: April 22, 2016
Accepted: June 20, 2016
Published online in J-STAGE: July 11, 2016
©2016 by the Society for Reproduction and Development
Correspondence: K. Kimura (e-mail: kimurak@okayama-u.ac.jp)
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/4.0/>.
Characteristics of AH-gel

Recently, various chemicals that can adsorb macromolecules and achieve a sustained release of different compounds in vitro have been developed [20–23]. AH-gel is widely used as an adjuvant. It is usually prepared by adding an alkali to a solution of aluminum salt, thereby generating aluminum oxyhydroxide (AlO(OH)\(\cdot\)nH\(_2\)O) [24], which is more commonly known simply, albeit incorrectly, as aluminum hydroxide.

AH-gel is opalescent (Fig. 1) and has a low viscosity. AH-gel has a fibrous morphology (Fig. 2) giving it a high surface area and a high ability to adsorb different substances. The principal binding force of AH-gel is electrostatic. Other types of binding interactions include hydrogen-bonding and hydrophobic bonding [25, 26]. The point of zero charge (PZC) is 11.1, resulting in a positively charged surface at neutral pH [27].

Ability of Aluminum Hydroxide Gel (AH-gel) to Adsorb and Release FSH

First, we investigated the ability of AH-gel to adsorb and release FSH. This was done in the presence of bovine serum albumin (BSA), which facilitates the release of FSH (see below). Porcine FSH (pFSH, 30 Armour unit (AU), Antrin-R10, Kawasaki Pharmaceutical, Japan) was mixed with AH-gel (5 ml at a concentration of 3 mg aluminum (Al) /ml in saline, pH 7.4, Koyritsu Pharmaceutical, Japan), and then the supernatant was recovered following centrifugation. The precipitate was resuspended in saline with 1% BSA (pH 7.4) and incubated for 1 h at 37ºC. This suspension was centrifuged again and the supernatant was recovered. The concentrations of pFSH in the supernatants were measured by a radioimmunoassay (RIA). The AH-gel adsorbed almost all of the pFSH (an average of 29.97 mg, 99.9%). Subsequently, 22.24 mg pFSH (74.2% of the adsorbed FSH) was released from the AH-gel in the presence of BSA. These results demonstrated that the AH-gel can effectively adsorb and release pFSH in the presence of BSA.

The manner in which proteins bind to AH-gel is complicated. Some studies have reported that the electrostatic attractive force is important for the adsorption of proteins by AH-gel [26, 27]. As mentioned above, AH-gel has a point of zero charge (PZC) of 11.1 [27, 28] and thus has positive charge at pH 7.4. In contrast, pFSH has an isoelectric point (IEP) of 4.5, giving it a negative charge at pH 7.4 [29]. Therefore, AH-gel may adsorb this protein through the electrostatic force at pH 7.4. Furthermore, it has been reported that adsorbed proteins can be displaced from the gel by interstitial proteins [30]. In our experiment, the adsorbed pFSH was released in the presence of BSA in vitro. BSA is a major protein of bovine interstitial fluid and has an IEP of 5.0 [29]. Accordingly, BSA is also negatively charged at pH 7.4 and thus may be adsorbed to AH-gel. This property of BSA may induce the displacement of the adsorbed pFSH from the AH-gel both in vitro and in vivo (Fig. 3).

SOV with a Single Administration of FSH in AH-gel to Cattle via the Intramuscular Route

To evaluate the effect of a single administration of FSH in AH-gel, a mixture of pFSH (30 AU) and AH-gel (5 ml, containing 3 mg Al/ml) was administered intramuscularly to Japanese Black cows at days 9 to 12 (estrus = day 0). As a control, cows were given multiple administrations of pFSH twice daily for 4 days (5, 5, 4, 3, 2, and 2 AU in saline). The pFSH administration schedules are shown in Fig. 4. At 48 h after the initiation of treatment, the cows were treated with 750 μg of a prostaglandin F2α (PGF\(_{2\alpha}\) analogue (cloprostenol) to induce corpus luteum (CL) regression and estrus. Cows were inseminated with frozen-thawed semen at 12 and 24 h after the detection of estrus. Seven days after artificial insemination, embryos were collected non-surgically, counted and classified to determine the number of transferable embryos (Grade 1 and 2, according to the International Embryo Transfer Society manual [31]). The numbers of CLs and large follicles (> 8 mm) were also estimated by ultrasonography. No significant differences were found between the two FSH administration methods for any
REVIEW: SUPEROVULATION WITH A SINGLE FSH ADMINISTRATION WITH AH-GEL

425 of the measurements (Table 1), indicating that SOV with a single administration of FSH in AH-gel is comparable to the conventional multiple administration method.

The half-life of FSH in the body is relatively short. Since it is important to keep the concentration of FSH high to induce multiple follicular growth for successful SOV, two FSH administrations per day for 3 to 4 days are usually necessary for successful SOV in cattle. Importantly, it was shown that a single administration of FSH dissolved in saline did not induce multiple follicular growth in cattle [17].

After a single intramuscular administration of FSH in AH-gel, FSH was first detected in the blood at 2 h, peaked at 12 h and was still detectable after 3 days (Fig. 5). This result indicates that the AH-gel released FSH gradually in vivo as well as in vitro. Therefore, the ovarian responses and embryo collections from the two FSH treatments were not significantly different (Table 1).

Since AH-gel is an exogenous substance, it is very important to determine whether it is eliminated from or accumulates in the body, and whether it damages tissue at the site of administration. In rabbits, when AH-gel is administered as an adjuvant for vaccines, the gel is rapidly absorbed and eliminated in the urine [32, 33]. However it has been suggested that if AH-gel is not rapidly eliminated from the site of administration, the remaining AH-gel induces lesions such as granulomas, lesional macrophage accumulation, or macrophagic myofasciitis [34–37]. In cows that were administered AH-gel intramuscularly, the site of administration was characterized by the appearance of foreign body granulomas, macrophages, foreign body giant cells and monocytes (Fig. 6).

SOV with a Single Administration of FSH in AH-gel to Cattle via the Subcutaneous Route

As mentioned above, lesions occurred at the site of intramuscular administration of the FSH and AH-gel mixture. Injecting meat cattle with vaccines, antibiotics, and hormones causes lesions that require trimming, devaluation of cuts, and consumer dissatisfaction from tough meet [38, 39], which results in economic losses in meat production [40]. Thus, many attempts have been made to avoid the formation of such lesions including their mitigation by subcutaneous administration [40–42]. Specifically some reports indicate that the subcutaneous administrations of antibiotics, vaccines, hormones, and vitamins effectively mitigates the formation of lesions [40–42]. Therefore, we hypothesized that by subcutaneously administrating

Table 1. Comparison of ovarian responses and embryo production between a conventional multiple administration method and a single intramuscular administration of pFSH in AH-gel given to Japanese black cows

Treatment	No. of Cows treated	CLs Large follicles	Eggs recovered	Transferable embryos
AH-gel	15	11.0 ± 1.4	3.7 ± 0.8	11.1 ± 2.5
Multiple	15	11.7 ± 1.8	4.0 ± 0.3	9.3 ± 1.7

Values are shown as mean ± SEM.
FSH in AH-gel, the amount of AH-gel could be reduced, thereby reducing the size of the lesion.

FSH in AH-gel was administered subcutaneously in a single dose at the base of the neck. The number of recovered transferable embryos was relatively high with Al concentration of 3 and 0.3 mg/ml, but decreased significantly when the Al concentration was 0.15 mg/ml (Table 2). However, all cows developed indurations at the site of injection. The size of induration increased with increasing Al concentration and decreased with time (Table 3). A similar finding was reported for monkeys injected with Al-containing vaccines [36].

We also investigated the effect of various volumes of AH-gel on the superovulatory response and the size of induration at the site of administration, while keeping the total amount of Al constant. The total Al content in a single administration was fixed at 1.5 mg in this experiment. Changing the volume of the gel but keeping the total amount of Al constant at 1.5 mg had little effect on the superovulation responses (number of CLs and recovered eggs), although the number of transferable embryos decreased when 1 ml of the gel was used, though this decrease was not significant (Table 4). The sizes of the indurations are shown in Table 5. The relationship between the days after administration and the volume of the gel was not statistically significant. The sizes of the indurations decreased with time and with decreasing gel volume (Table 5). At 5 days post treatment, when 1 ml of 1.5 mg Al/ml AH-gel was used, the sizes of the indurations were significantly smaller than those that occurred with 5 ml of AH-gel with 0.3 mg Al/ml. Although the sizes of the indurations significantly decreased with time when 5 ml of 0.3 mg Al/ml gel was used, they did not significantly change with time in the other two groups. After subcutaneous administration, a small induration (approximately 15 mm) was detected on the surface of the muscle at the base of neck (Fig. 7), but not inside the muscle as in the case of intramuscular administration (Fig. 6, left photograph). These results suggest that the indurations at the site of administration were located at the surface.

Table 2. Effect of various Al concentrations of AH-gel on superovulatory responses in cattle after a single subcutaneous administration of pFSH

Al conc. (mg/ml)	No. of Cows	No. of CLs	No. of Recovered eggs	No. of Transferrable embryos
3	6	10.7 ± 2.9	7.5 ± 2.9	4.8 ± 1.6 ^a
0.3	6	11.7 ± 3.8	9.3 ± 2.9	4.8 ± 1.6 ^a
0.15	6	9.7 ± 3.7	6.7 ± 2.9	1.2 ± 0.5 ^b

Values with different superscripts within the same column are significantly different (P < 0.05).
of the muscle and their sizes were influenced by the volume of the AH-gel administered.

After subcutaneous administration of FSH in AH-gel, the concentration of FSH in the blood gradually increased and peaked at 8–12 h, and was still detectable at 96 h (Fig. 8). An average of 9.0 ± 3.8 transferable embryos were recovered, whereas no transferable embryos were recovered following intramuscular administration of the same mixture (Table 6). The release of hormones into the circulation is slower by subcutaneous administration than by intramuscular administration [43–45]. Thus, even the lower concentration of AH-gel can retain FSH and release it gradually. On the other hand, in the case of intramuscular administration, the AH-gel with lower aluminum concentration released FSH rapidly.

As an adjuvant, AH-gel was shown to enhance the uptake of antigens by antigen-presenting cells in vitro [46], and had a direct effect on the accessory properties of human monocytes in an interleukin-4-dependent manner [47]. These results raise the possibility that repeated SOVs using AH-gel may eventually induce

![Image of a graph showing changes in plasma FSH concentrations in cows after a single subcutaneous FSH administration with AH-gel. Values are shown as means ± SEM.](Fig. 8)
immune responses against FSH, which could interfere with the desired response to FSH. However, for reasons that are unclear, the SOV responses using AH-gel did not decrease after successive administrations (Table 7), indicating that high-value donors may be used repeatedly. With conventional multiple administrations of pFSH for SOV in cattle, repeated treatments do not affect the number of embryos collected or the ovarian responses [48]. The homology of the amino acid sequence of FSH among species may be important. For example, pFSH is not expected to generate an immune response in cattle as a vehicle than when Freund’s complete adjuvant was used [53]. Additionally, AH-gel does not appear to be an adsorbent for FSH for the SOV in rabbits [58]. We used AH-gel as an adsorbent for FSH for the SOV in rabbits [58]. We could reduce the total amount of Al in the gel, minimizing the damage at the administration site. This method is not only simple and user-friendly, but also can reduce the stress to cattle.

Acknowledgements

We thank Dr Matsuyama and Mrs Suzuki for their exceptional technical supports. We also deeply thank all of the farm staff at the Institute of Livestock and Grassland Science. This research was partially supported by a grant from the Research Project for Utilizing Advanced Technologies of MAFF (04-1676).

References

1. Hafez ES, Sugie T, Gordon L. Superovulation and related phenomena in the beef cow. I. Superovulatory responses following PMS and HCG injections. *J Reprod Fertil* 1963; 5: 359-379. [Medline] [CrossRef]
2. Hafez ES, Sugie T, Hunt WL. Superovulation and related phenomena in the beef cow. II. Effect of oestrogen administration on production of ova. *J Reprod Fertil* 1963; 5: 381-388. [Medline] [CrossRef]
3. Edelman R, Wasserman SS, Bodison SA, Perry JG, O’Donnoghue M, DeTolla LJ. Phase II safety and immunogenicity study of type F botulinum toxoid in adult volunteers. *Vaccine* 2003; 21: 4335-4347. [Medline] [CrossRef]
4. Murphy BD, Martinuk SD. Equine chorionic gonadotropin. *Endocr Rev* 1991; 12: 27-44. [Medline] [CrossRef]
5. Jensen AM, Greve T, Madej A, Edqvist LE. Endocrine profiles and embryo quality in the PMSG-PGF2alpha treated cow. *Theriogenology* 1982; 18: 33-44. [Medline] [CrossRef]
6. Moor RM, Kruip T, Green D. Intraovarian Control of Folliculogenesis - Limits to Superovulation. *Theriogenology* 1984; 21: 103-116. [CrossRef]
7. Moniaux D, Chapin D, Saumande J. Superovulatory Responses of Cattle. *Theriogenology* 1983; 19: 55-81.[CrossRef]
8. Dernouvier MM, Beckers JF, Van Der Zwalm M, Cloost J, Gillard JL, Ectors F. Determination of porcine plasma follitropin levels during superovulation treatment in cows. *Theriogenology* 1988; 30: 379-386. [Medline] [CrossRef]
9. Looney CR, Bondioli KR, Hill KG, Massey JM. Superovulation of Donor Cows with Bovine Follicle-Stimulating-Hormone (Fshh) Produced by Recombinant DNA Technology. *Theriogenology* 1988; 29: 271. [CrossRef]
10. Hasler JF, McAuley AD, Schenmerhorn EC, Foote RH. Superovulatory responses of Holstein cows. *Theriogenology* 1983; 19: 83-99. [CrossRef]
11. Herrler A, Elsaesser F, Pavluzi N, Niemann H. Superovulation of dairy cows with purified FSH supplemented with defined amounts of LH. *Theriogenology* 1991; 35: 633-643. [Medline] [CrossRef]
12. Edwards LM, Rahe CH, Griffin JL, Wolfe DF, Marple DN, Cummins KA, Pitchett JF. Effect of transportation stress on ovarian function in superovulated Hereford heifers. *Theriogenology* 1987; 28: 291-299. [Medline] [CrossRef]
13. Stoebel DP, Moher GP. Repeated acute stress during the follicular phase and luteinizing hormone surge of dairy heifers. *J Dairy Sci* 1982; 65: 92-96. [Medline] [CrossRef]
14. Wubishet A, Graves CN, Spahr SL, Kesler DJ. Continuous subcutaneous infusion of follicle-stimulating hormone as a method of superovulating dairy cows. *Theriogenology* 1986; 25: 809-812. [CrossRef]
15. Smith LE Jr, Sitton GD, Vincent CK. Limited injections of follicle stimulating hormone

Table 6. Superovulatory response of a single administration of FSH in AH-gel by the subcutaneous or intramuscular routes

Administration route	No. of	Cows	CLs	Recovered eggs	Transferable embryos
Subcutaneous	4	17.7 ± 5.2	11.0 ± 4.0 a	9.0 ± 3.8 a	
Intramuscular	4	2.7 ± 2.7	0 b	0 b	

a,b The values with different superscripts within the same column are significantly different (P < 0.05).

Table 7. Effects of repeated single subcutaneous administration of FSH in AH-gel on the superovulatory responses in cattle

SOV period	No. of	CLs	Eggs recovered	Transferable embryos
	1	15.1 ± 2.7	11.2 ± 2.1	6.8 ± 1.9
	2	14.0 ± 1.9	11.4 ± 1.9	5.6 ± 2.1
	3	10.6 ± 1.5	8.1 ± 1.9	4.1 ± 0.9
	4	12.6 ± 1.9	9.6 ± 2.3	6.1 ± 2.5
for multiple births in beef cattle. J Anim Sci 1973; 37: 523–527. [Medline]

16. Yamamoto M, Ose M, Kawaiuchi M, Suzuki T. Superoovulation in the cow with a single intramuscular injection of FSH dissolved in polyvinylpyrrolidone. Theriogenology 1994; 41: 747–755. [Medline] [CrossRef]

17. Takedomi T, Anyagi Y, Konishi M, Kishi H, Taya K, Watanabe G, Sasamoto S. Superoovulation of Holstein heifers by a single subcutaneous injection of FSH dissolved in polyvinylpyrrolidone. Theriogenology 1995; 43: 1259–1268. [Medline] [CrossRef]

18. Tribulio A, Rogan D, Tribulio H, Tribulio R, Alasino RV, Beltramo D, Bianco I, Mapleton RJ, Bó GA. Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V. Anim Reprod Sci 2011; 129: 7–13. [Medline] [CrossRef]

19. Tribulio A, Rogan D, Tribulio H, Tribulio R, Mapleton RJ, Bó GA. Superoovulation of beef cattle with a split-single intramuscular administration of Folltropin-V in two concentrations of utrullurum. Theriogenology 2012; 77: 1679–1685. [Medline] [CrossRef]

20. Manaltheer JW, Nechev KO, Zlabinger GI, Ahmad R, Eibl MM. Modulation of the human immune system by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol 1985; 61: 143–151. [Medline]

21. Peppas NA, Sahlin JJ. Hydrogels as mucosal and bioabsorbable materials: a review. Biomaterials 1996; 17: 1553–1561. [Medline] [CrossRef]

22. Yewey GL, Duyens EN, Cox SM, Dunn RL. Delivery of proteins from a controlled release matrix in the small intestine of the pig, in vivo. J Controlled Release 1997; 48: 83–117. [Medline] [CrossRef]

23. Sharma S, Nijdam AJ, Sinha PM, Walczak RJ, Liu X, Cheng MM, Ferrari M. Controlled-release microcaps. Expert Opin Drug Deliv 2006; 3: 379–394. [Medline] [CrossRef]

24. Shirodkar S, Hutchinson RR, Perry DL, White JL, Hem SL. Aluminum compounds used as adjuvants in vaccines. Pharm Res 1999; 7: 1288–1289. [Medline] [CrossRef]

25. al-Shakhsbire R, Regnier F, White JL, Hem SL. Effect of protein adsorption on the surface charge characteristics of aluminium-containing adjuvants. Vaccine 1994; 12: 472–474. [Medline] [CrossRef]

26. Hem SL, White JL. Structure and properties of aluminium-containing adjuvants. Pharm Biotechnol 1995; 6: 249–276. [Medline] [CrossRef]

27. Bhow AS. Handbook of proteins. Birmingham, Alabama: A&M Publications; 2001.

28. Heilmich JM, Regnier FE, White JL, Hem SL. In vitro displacement of adsorbed model antigens from aluminium-containing adjuvants by interstitial proteins. Vaccine 1999; 17: 2873–2881. [Medline] [CrossRef]

29. Stringfellow DA, Seidel SM. Manual of the International Embryo Transfer Society: a procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures. International Embryo Transfer Society; 1998.

30. Flarend RE, Hem SL, White JL, Elmore D, Suckow MA, Rudy AC, Dandashi EA. In vivo absorption of aluminium-containing vaccine adjuvants using 26Al. Vaccine 1997; 15: 1314–1318. [Medline] [CrossRef]

31. Hem SL. Elimination of aluminium adjuvants. Vaccine 2002; 20(Suppl 3): S40–S43. [Medline] [CrossRef]

32. Gherraldi RK, Coquet M, Cheron P, Belec L, Moretto P, Dreyfus PA, Pellissier JF, Chartier P, Authier EF. Macrophagic myofasiitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain 2001; 124: 1821–1831. [Medline] [CrossRef]

33. Valitutti S, Macchi C, Ballanti P, Cherel Y, Laval A, Theaker JM, Bak M, Ferrerri E, Morvan H. Aluminium hydroxide-induced granulomas in pigs. Vaccine 2005; 23: 4003–4004. [Medline] [CrossRef]

34. Verderi F, Burnett R, Miechel-Habchi C, Moretto P, Fievet-Groyn F, Sauzeat E, Moretto R. Toxicological and histological evaluation of aluminium salts in vaccines. PDA J Pharm Sci Technol 1997; 51: 25–29. [Medline] [CrossRef]

35. al-Shakhsbire R, Regnier F, White JL, Hem SL. Role of the electrostatic attractive force in the adsorption of proteins by aluminium hydroxide adjuvant. PDA J Pharm Sci Technol 1997; 51: 25–29. [Medline] [CrossRef]

36. Cheng MF, White JL, Nall SI, Hem SL. Role of the electrostatic attractive force in the adsorption of proteins by aluminium hydroxide adjuvant. PDA J Pharm Sci Technol 1997; 51: 25–29. [Medline] [CrossRef]

37. Rodrigo-Zas JA. Aluminum salts in vaccines—US perspective. Vaccine 2002; 20(Suppl 3): S18–S23. [Medline] [CrossRef]

38. Ulavona M, Tarkowski A, Hahn-Zoric M, Hanson LA. The Common vaccine adjuvant–aluminium hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect Immun 2001; 69: 1151–1159. [Medline] [CrossRef]

39. Goodwin RG, Monceman CL, Rottmann FM, Nilson JH. Characterization and nucleotide sequence of the gene for the common alpha subunit of the bovine pituitary glycoprotein hormones. Nucleic Acids Res 1983; 11: 6837–6882. [Medline] [CrossRef]

40. Kato Y, Etoh H, Hira T, Tato K. The gene for the common alpha subunit of porcine pituitary glycoprotein hormone. J Mol Endocrinol 1997; 17: 27–34. [Medline] [CrossRef]

41. Maurer RA, Beck A. Isolation and nucleotide sequence analysis of a cloned cDNA encoding the beta-subunit of bovine follicle-stimulating hormone. DNA 1986; 6: 363–369. [Medline] [CrossRef]

42. Kato Y. Cloning and DNA sequence analysis of the cDNA for the precursor of follicle-stimulating hormone (FSH) beta subunit. Mol Cell Endocrinol 1988; 55: 107–112. [Medline] [CrossRef]

43. Westhof FE, Slootstra JW, Puijck WC, Kuperus D, Flinterman JF, Schaaper WM, Oonk HB, Meloen RH. Detection of epitopes on follicle-stimulating hormone and FSH-antiserum-induced suppression of bioactivity of follicle-stimulating hormone and lutetinizing hormone. J Reprod Immunol 1996; 30: 133–149. [Medline] [CrossRef]

44. Treboar AF, Schabach DG, Samsing S, Keller LS. Superoovulation of New Zealand white rabbits by continuous infusion of follicle-stimulating hormone, using a microcospump. Lab Anim Sci 1997; 47: 313–316. [Medline]

45. Kauffman RD, Schmidt PM, Rall WF, Hoge JM. Superoovulatory response of rabbits with FSH alters in vivo development of vitrified morulae. Theriogenology 1998; 50: 1081–1092. [Medline] [CrossRef]

46. Hirabayashi M, Hirao M, Takahashi R, Kimura K, Hirasaawa K, Ueda M, Hachi S. Production of transective rabbits using centrifuged pronucleus zygotes. J Vet Med Sci 2000; 62: 1047–1052. [Medline] [CrossRef]

47. Mekainen GMK, Viudres-de-Castro MP, Vicente JS, Lavara R. In vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology 2006; 65: 1279–1291. [Medline] [CrossRef]

48. Hashimoto S, Kimura K, Kuromochi T, Aoyagi K, Hirako M, Kawaguchi M, Iwata H, Hiroa M, Kitada H, Hirasaawa K, Ueda M. Responsiveness of rabbits to superovulation treatment by a single injection of follicle-stimulating hormone with aluminium hydroxide gel. Mol Reprod Dev 2007; 74: 1208–1212. [Medline] [CrossRef]

49. Steelman SL, Pohley FM. Assay of the follicle stimulating hormone based on the augmentation with human chorionic gonadotropin. Endocrinology 1953; 53: 604–616. [Medline] [CrossRef]

50. Kimura K, Hirako M, Iwata H, Aoki M, Kawaguchi M, Seki S. Successful superovulation of cattle by a single administration of FSH in aluminium hydroxide gel. Theriogenology 2007; 68: 633–639. [Medline] [CrossRef]