Node and edge averaged complexities of local graph problems

Alkida Balliu1 · Mohsen Ghaffari2 · Fabian Kuhn3 · Dennis Olivetti1

Received: 15 November 2022 / Accepted: 18 May 2023 / Published online: 5 July 2023
© The Author(s) 2023

Abstract
We continue the recently started line of work on the distributed node-averaged complexity of distributed graph algorithms. The node-averaged complexity of a distributed algorithm running on a graph \(G = (V, E) \) is the average over the times at which the nodes \(V \) of \(G \) finish their computation and commit to their outputs. We study the node-averaged complexity for some of the central distributed symmetry breaking problems and provide the following results (among others). As our main result, we show that the randomized node-averaged complexity of computing a maximal independent set (MIS) in \(n \)-node graphs of maximum degree \(\Delta \) is at least \(\Omega(\min\{\log \frac{\Delta}{\log \log \Delta}, \sqrt{\log n / \log \log n}\}) \). This bound is obtained by a novel adaptation of the well-known lower bound by Kuhn, Moscibroda, and Wattenhofer [JACM’16]. As a side result, we obtain that the worst-case randomized round complexity for computing an MIS in trees is also \(\Omega(\min\{\log \frac{\Delta}{\log \log \Delta}, \sqrt{\log n / \log \log n}\}) \)—this essentially answers open problem 11.15 in the book by Barenboim and Elkin and resolves the complexity of MIS on trees up to an \(O(\sqrt{\log \log n}) \) factor. We also show that, perhaps surprisingly, a minimal relaxation of MIS, which is the same as \((2, 1)\)-ruling set, to the \((2, 2)\)-ruling set problem drops the randomized node-averaged complexity to \(O(1) \). For maximal matching, we show that while the randomized node-averaged complexity is \(\Omega(\min\{\log \frac{\Delta}{\log \log \Delta}, \sqrt{\log n / \log \log n}\}) \), the randomized edge-averaged complexity is \(O(1) \). Further, we show that the deterministic edge-averaged complexity of maximal matching is \(O(\log^2 \Delta + \log^* n) \) and the deterministic node-averaged complexity of maximal matching is \(O(\log^3 \Delta + \log^* n) \). Finally, we consider the problem of computing a sinkless orientation of a graph. The deterministic worst-case complexity of the problem is known to be \(\Theta(\log n) \), even on bounded-degree graphs. We show that the problem can be solved deterministically with node-averaged complexity \(O(\log^* n) \), while keeping the worst-case complexity in \(O(\log n) \).

Keywords Averaged complexity · Local model · Maximal independent set · Maximal matching · Sinkless orientation · Ruling set

1 Introduction

The main focus throughout the past four decades of studying distributed algorithms for graph problems has traditionally been on the worst-case round complexity. That is, the round complexity of the algorithm is defined to be the number of rounds until all nodes in the network terminate. This has proved fruitful in many contexts. For example, it allows to cleanly talk about the locality of a graph problem: e.g., any deterministic \(k \)-round algorithm for a given problem shows that any node’s output can be determined by a function of the topology induced by the \(k \)-hop neighborhood of the node [37, 42]. More recently [12, 15, 20], starting with an initial exploration by Feuilloley [20], there has been interest in going beyond this worst-case measure. As a primary example, this involves asking “what is the average termination time among the nodes?” There are different arguments for why understanding such node-averaged complexities is valuable in different contexts. It is indicative of the run-time of a typical node [20] and it also implies sharper bounds on
the overall energy spent in a network [15]. In this paper, we investigate the node and edge averaged complexity of some of the most prominent problems in the literature on distributed graph algorithms.

1.1 Our contributions

Maximal independent set

The maximal independent set (MIS) problem is one of the central problems in the area of distributed graph algorithms. Feuilloley [20] showed that Linial's $\Omega(n \log n)$ lower bound for computing an MIS on n-node cycles even applies to node-averaged round complexity, as long as we stick to deterministic algorithms. In contrast, even though Linial's $\Omega(n \log n)$ worst-case round complexity [37] even holds for randomized algorithms [40], when switching to node-averaged complexity, randomized algorithms can easily break this barrier. Indeed for any constant degree graph, one can obtain a randomized MIS algorithm with $O(1)$ node-averaged round complexity in a straightforward way: among many others, Luby's algorithm [1, 38] will remove each node with a constant probability in a single phase of the algorithm and it thus has a node-averaged complexity of $O(1)$ on constant degree graphs.

One of the main open questions in the study of distributed node-averaged complexity is whether this $O(1)$ bound is achievable in general graphs—this was for instance recently mentioned explicitly by Chatterjee et al. in [15]. It is however worth noting that this particular question is in some sense much older: Luby's analysis [38] shows that his MIS algorithm removes a constant fraction of the edges per iteration, and it has been open since then whether a distributed MIS algorithm can also remove a constant fraction of the nodes in $O(1)$ rounds.

As one of our main contributions, we refute the possibility of a randomized MIS algorithm with node-averaged complexity $O(1)$. In particular, we give a modification of the KMW lower bound by Kuhn, Moscibroda, and Wattenhofer [34, 35] to show that their bound also applies to the node-averaged complexity of computing an MIS. That is, there is a family of graphs for which the node-averaged complexity of any randomized distributed MIS algorithm is lower bounded by $\Omega\left(\min\left\{\frac{\log \Delta}{\log \log \Delta}, \sqrt{\frac{\log n}{\log \log n}}\right\}\right)$. We also comment that a randomized MIS algorithm from prior work by Bar-Yehuda, Censor-Hillel, Ghaffari, and Schwartzman [13] has a node-averaged complexity of $O\left(\frac{\log \Delta}{\log \log \Delta}\right)$. Hence, at least for graphs of maximum degree $\Delta = 2^{O(\sqrt{\log n \cdot \log \log n})}$, the node-averaged complexity of MIS is now completely resolved. For larger Δ, the problem remains open. This is however also true for the worst-case round complexity and our work closes the gap essentially to where it currently also is for the worst-case complexity of MIS.

As a side result, we also obtain the same lower bound for the worst-case MIS complexity in trees, i.e., any randomized MIS algorithm in trees requires time at least $\Omega\left(\min\left\{\frac{\log \Delta}{\log \log \Delta}, \sqrt{\frac{\log n}{\log \log n}}\right\}\right)$. For $\Delta = \log^o(1) n$, this improves on a recent randomized $\Omega\left(\min\left\{\Delta, \frac{\log \log n}{\log \log \log n}\right\}\right)$ lower bound for the same problem [5]. The lower bound also almost matches the best known randomized MIS algorithm in trees, which has a worst-case complexity of $O\left(\min\left\{\sqrt{\log n}, \log \Delta + \frac{\log \log n}{\log \log \log n}\right\}\right)$ [23], and we thus nearly resolve Open Problem 11.15 in the book by Barenboim and Elkin [6].

Maximal matching

A basic problem that is closely related to MIS is the problem of computing a maximal matching. We show that also for maximal matching, the randomized node-averaged complexity has an $\Omega\left(\min\left\{\frac{\log \Delta}{\log \log \Delta}, \sqrt{\frac{\log n}{\log \log n}}\right\}\right)$ lower bound. In this case, the bound follows almost immediately from the KMW lower bound construction that has been used for the approximate maximum matching problem in [35]. Note, however, that a more apt comparison with MIS would be to consider the edge-averaged complexity of maximal matching. This is because when computing a matching, the output is on the edges rather than on the nodes.

Recall that for a graph $G = (V, E)$, its line graph $H = (E, E')$ is the graph where we put one vertex for each edge of G and we connect two of those vertices of H if their corresponding edges in G share an endpoint. Any maximal matching of a graph G is simply an MIS of the line graph of G. Consequently, the node-averaged complexity of this MIS problem is equal to the edge-averaged complexity of the maximal matching problem. We show that, unlike in the general case, the MIS problem on line graphs has an $O(1)$ node-averaged complexity. Concretely, a close variant of Luby's randomized classic algorithm [1, 29, 38] provides a maximal matching algorithm with edge-averaged complexity $O(1)$.

We also provide results for the deterministic averaged complexity of maximal matching by giving an algorithm that achieves an $O(\log^2 \Delta + \log^* n)$ edge-averaged complexity and an $O(\log^3 \Delta + \log^* n)$ node-averaged complexity. The algorithm is obtained by adapting deterministic matching algorithms developed in [3, 22]. We note that the current best deterministic worst-case complexity of maximal matching is $O(\log^2 \Delta \cdot \log n)$ [22] and any improvement on the edge-averaged complexity would likely also improve the state of the art of the worst-case round complexity. In fact, if we ignore the $\log^* n$ dependency, and we restrict to algorithms that satisfy that any edge that terminates is incident with at least one matched node, we obtain that any algorithm with $o(\log^{2} \Delta)$ edge-averaged complexity can be converted into an algorithm that in $o(\log^{2} \Delta)$ rounds removes a constant fraction of the edges in such a way that it can be recursively
applied for $O(\log n)$ times to solve the maximal matching problem.

Ruling set

Faced with the $\Omega\left(\min\{\frac{\log \Delta}{\log \log \Delta}, \log \Delta n\}\right)$ lower bound on the node-averaged complexity of the MIS problem, it is natural to wonder if any relaxation of the problem admits a better node-averaged complexity. A natural relaxation of MIS that has been studied quite intensively is ruling sets. For positive integers α and β, an (α, β)-ruling set is a set S of nodes such that any two nodes in S are at distance at least α, and for every node not in S, there is a node in S at distance at most β [2]. An MIS is therefore a $(2, 1)$-ruling set. We show that, perhaps surprisingly, even relaxing the MIS problem only slightly to the problem of computing a $(2, 2)$-ruling set completely avoids the lower bound. The $(2, 2)$-ruling set problem (i.e., the problem of computing an independent set S such that any node not in S has a node in S within distance 2) admits a randomized algorithm with a node-averaged complexity of $O(1)$. It is plausible that in many applications of maximal independent sets (e.g., if an MIS algorithm is used as a subroutine in a higher-level algorithm in order to produce a clustering), one could also work with the weaker $(2, 2)$-ruling sets. Doing this might lead to an algorithm that is considerably faster from a node-averaged perspective.

We also study the node-averaged complexity of deterministic ruling set algorithms. We give algorithms with $O(\log^* n)$ node-averaged complexity to compute $(2, O(\log \Delta))$-ruling sets and $(2, O(\log \log n))$-ruling sets. Contrast this with the worst-case deterministic round complexity measure: The best known deterministic algorithm for computing a $(2, \beta)$-ruling set has a round complexity of $O(\beta \Delta^{2/(\beta+1)} + \log^* n)$ [44] and it is known that any deterministic $(2, \beta)$-ruling set algorithm requires at least $\Omega(\min\{\beta \Delta^{1/\beta}, \log \Delta n\})$ rounds [5].

Sinkless orientation

Finally, we investigate the node-averaged complexity of the sinkless orientation problem. While the worst-case time of deterministic algorithms for computing a sinkless orientation is $\Theta(\log n)$ [9, 16, 27], we show that there is a deterministic distributed sinkless orientation algorithm with node-averaged round complexity $O(\log^* n)$.

1.2 Other related work

As discussed, the explicit study of node-averaged complexity was initiated by Feuilloley in [20]. He in particular proved that the deterministic distributed node-averaged complexity of locally checkable labeling (LCL) problems on n-node cycles is asymptotically equal to the worst-case deterministic complexity of the same problems. This implies that the deterministic $\Omega(\log^* n)$-round lower bound for coloring cycles with $O(1)$ colors and for MIS and maximal matching on cycles extends to the node-averaged and to the edge-averaged complexities of those problems. Subsequently, Barenboim and Tzur [12] studied the node-averaged complexity of different variants of the distributed vertex coloring problem. They in particular analyzed the problem as a function of the arboricity of the graph and gave various trade-offs between the achievable number of colors and node-averaged complexity. They are also the first to explicitly observe that the randomized node-averaged complexity of the $(\Delta+1)$-vertex coloring problem is $O(1)$.

One of the practical motivations to look at node-averaged complexity is to optimize the overall energy usage of a distributed system. If we assume that the energy used by a node in a distributed algorithm is proportional to the number of rounds in which the node participates, the node-averaged complexity can be used as a measure for the total energy spent by all nodes (normalized by the total number of nodes). In this context, Chatterjee, Gmyr, and Pandurangan [15] introduced the notion of node-averaged awake complexity. In their setting, nodes are allowed to only participate in a subset of the rounds of an algorithm’s execution and to sleep in the remaining rounds. The awake complexity of the node is then measured by the number of rounds in which the node is participating in the protocol (i.e., sending and/or receiving messages) and the node-averaged awake complexity denotes the average number of rounds in which nodes are awake during an algorithm. The node-averaged complexity can be seen as a special case of the sleeping setting, where all vertices are initially awake, each of them enters the sleeping state at a certain round, and remains in that state until the end of the algorithm. In [15], it is shown that there is a randomized distributed MIS algorithm with node-averaged awake complexity $O(1)$. In [15], it is left as an open question whether it is also possible to obtain a distributed MIS algorithm with (regular) node-averaged complexity $O(1)$. As discussed above, we prove that this is not the case. The study of distributed node awake complexity for local graph problems was continued in a recent paper by Barenboim and Maimon [11]. This paper however studies the worst-case node awake complexity. They show that every decidable problem can be solved by distributed algorithm with node awake complexity $O(\log n)$ and that for a natural family of problems, one can obtain a node awake complexity of $O(\log \Delta + \log^* n)$. Notions that are closely related to the notion of node awake complexity of [11, 15] have also been studied in the context of radio networks (mostly from a worst-case complexity point of view), see e.g., [10, 14, 17, 30, 31, 33, 41].

While there is not a lot of work that explicitly studies the node or edge-averaged complexity of distributed algorithms, many existing distributed algorithms implicitly provide averaged complexity bounds that are stronger than the respective worst-case complexity bounds. This for example leads to the following node-averaged complexities of the $(\Delta+1)$-
2 Model and definitions

We primarily focus on the LOCAL model [37, 42], where a network is modeled as an undirected graph \(G = (V, E) \) and typically, every node \(v \in V \) is equipped with a unique \(O(\log n) \)-bit identifier. Time is divided into synchronous rounds: In every round, every node of \(G \) can send an arbitrary message to each neighbor and receive the messages sent to it by the neighbors. In the closely related CONGEST model [42], messages are required to consist of at most \(O(\log n) \) bits.

We study graph problems in which upon terminating, each node and/or each edge of a graph \(G = (V, E) \) must compute some output. We consider the individual node and edge complexities of a distributed algorithm for a given graph problem. In particular, we are interested in the time required for individual nodes or edges to compute and commit to their outputs. For a node \(v \in V \), we say that \(v \) has completed its computation as soon as \(v \) and all its incident edges have committed to their outputs and we say that an edge \(e = \{u, v\} \in E \) has completed its computation as soon as \(e \) and both its nodes \(u \) and \(v \) have committed to their outputs. For example, in a vertex coloring algorithm, a node \(v \) has completed its computation as soon as \(v \)'s color is fixed and an edge \(e = \{u, v\} \) has completed its computation as soon as the colors of \(u \) and \(v \) are fixed. In an edge coloring algorithm, a node \(v \) has completed its computation as soon as the colors of all incident edges have been determined and an edge \(e \) has completed its computation as soon as the color of \(e \) is fixed. Given a distributed algorithm \(A \) on \(G = (V, E) \) and a node \(v \in V \), we define \(T^G_v(A) \) to be the number of rounds after which \(v \) completes its computation when running the algorithm \(A \). Similarly, for an edge \(e \in E \), we define \(T^G_e(A) \) to be the number of rounds after which \(e \) completes its computation. Note that if \(A \) is a randomized algorithm, then \(T^G_v(A) \) and \(T^G_e(A) \) are random variables. In the following, for convenience, we generally define \(T^G_v(A) \) and \(T^G_e(A) \) as random variables. In the case of a deterministic algorithm \(A \), the variables only take on one specific value (with probability 1). We can now define the node and edge averaged complexities of a distributed algorithm \(A \).

\[\text{Definition 1 (Node and edge averaged complexities)} \]

We define the node-averaged complexity \(\text{AVG}_V(A) \) and the edge-averaged complexity \(\text{AVG}_E(A) \) as follows.

\[\text{AVG}_V(A) := \max_{G \in \mathcal{G}} \frac{1}{|V|} \cdot \mathbb{E} \left[\sum_{v \in V(G)} T^G_v(A) \right] \]

\[= \max_{G \in \mathcal{G}} \frac{1}{|V|} \cdot \sum_{v \in V(G)} \mathbb{E}[T^G_v(A)] \]

1.3 Organization of the paper

In Sect. 2, we formally define the notions of node and edge averaged complexities that we use in this paper. In Sect. 3, we present our upper bounds on the node and edge averaged complexities of maximal matching, (2, 2)-ruling sets, and sinkless orientation. In Sect. 4, we then provide our lower bounds and thus in particular our lower bound on the node-averaged complexity of MIS in general graphs and on the worst-case complexity of MIS in trees. We provide a brief discussion of different complexity notions in Sect. 1.
The respective complexity of a given graph problem is defined as the corresponding complexity, minimized over all algorithms A that solve the given graph problem. We note that there are other complexity notions that are between Definition 1 and the standard worst-case complexity notion. We provide a brief discussion of this in “Appendix A”.

Computation versus termination time

After completing the computation, a node v or edge e might still be involved in communication to help other nodes determine their outputs. We say that a node v has terminated once it has completed its computation and it also does not send any further messages. Similarly, an edge e has terminated once it has completed its computation and no more messages are sent over the edge. Instead of defining $T^G_v(A)$ and $T^G_e(A)$ as the number of rounds until v or e finishes its computation, we could also define it as the number of rounds until v or e terminates. In fact, in the literature about averaged complexity of distributed algorithms, both definitions have been used. The initial work by Feuilloley [20] uses the definition that we use in the present paper. The subsequent work by Barenboim and Tzur [12] uses the stronger definition, where the complexity of a node/edge is defined as its termination time.

From a practical point of view, both notions of averaged complexity seem relevant. On the one hand, once a node has computed its output, it can continue with any further computation that is based on this output, even if the node still has to continue communicating to help other nodes. On the other hand, node-averaged termination time might be more natural especially if we aim to minimize the total energy spent in a distributed system. From a purely combinatorial/graph-theoretic point of view, when using the LOCAL model, the node computation time definition has a particularly clean interpretation: An r-round LOCAL algorithm can always equivalently be seen as an algorithm, where every node first collects its complete r-hop neighborhood and it then computes its output as a function of this information.\footnote{In the case of randomized algorithms, we have to assume that nodes choose all private random bits at the beginning before sending the first message.}

More generally, if the computation time of a node v is r, it means that node v can compute its output as a function of its r-hop neighborhood in the graph and the node-averaged complexity in the LOCAL model is therefore equal to the average radius to which the nodes must know the graph in order to compute their outputs. We note that while for algorithms, a termination time bound is stronger than an equal computation time bound, the opposite is true for lower bounds, and the definition we use therefore makes our lower bounds stronger. Further, although we use computation time in our definition, for all our algorithms, it is not hard to see that they also provide the same bounds if using average termination time instead of average computation time. In all our algorithms, nodes also stop participating in the algorithm at most one round after knowing their outputs.

3 Algorithms

3.1 MIS and ruling set

MIS

It is well-known that Luby’s randomized MIS algorithm removes at least $1/2$ of the edges, in expectation, per iteration [38]. Hence, if we define the MIS problem as a labeling problem, with binary indicator labels for vertices indicating those that are in the selected MIS, and we declare an edge terminated when the label of at least one of its two endpoint nodes is fixed, then Luby’s algorithm has edge-averaged complexity $O(1)$.\footnote{Note however that if we use the edge-averaged complexity as defined in Definition 1 and require both nodes of an edge to be decided, then this is not true. In fact, in this case, we prove a lower bound on the edge-averaged complexity in Theorem 20.} In contrast, the node-averaged complexity of MIS had remained elusive for a number of years, and indeed it was mentioned as an open question throughout the literature whether an $O(1)$ node-averaged complexity is possible, see e.g., [15]. The best known upper bounds are the trivial $O(n \log n)$ that follows from Luby’s worst-case round complexity analysis and a $O(\log \Delta / \log \log \Delta)$ bound that follows from the work by Bar-Yehuda, Censor-Hillel, Ghaffari, and Schwartzman [13]. They give a randomized MIS algorithm for which they show that within this time, each node is removed with at least a constant probability (and indeed a better probability that exceeds $1 - 1/\sqrt{\Delta}$, cf. Theorem 3.1 in [13]).

In Sect. 4, we show that the node-averaged complexity of MIS cannot be $O(1)$, and indeed the above bound is tight for small Δ. Concretely, we prove that in a certain graph family with maximum degree Δ and n nodes, the node-averaged complexity of MIS is $\Omega\left(\min \left\{ \frac{\log \Delta}{\log \log \Delta}, \sqrt{\frac{\log n}{\log \log n}} \right\} \right)$. That is, asymptotically the same bounds as the celebrated worst-case lower bound by Kuhn, Moscibroda, and Wattenhofer [35] also hold for the node-averaged complexity.

Ruling set

Faced with the above strong lower bound for the node-averaged complexity of MIS, it is natural to ask whether
any reasonable relaxation of the problem admits better node-averaged complexity. One of the most standard relaxations of MIS is ruling set. An \((\alpha, \beta)\)-ruling set asks for a set of nodes \(S\) such that any two nodes in \(S\) have distance at least \(\alpha\) and any node not in \(S\) has a node in \(S\) within distance \(\beta\). Thus, MIS is equivalent to a \((2, 1)\)-ruling set. Interestingly, we show that the seemingly minimal relaxation to \((2, 2)\)-ruling set drops the node-averaged complexity to \(O(1)\).

Theorem 2 There is a randomized distributed algorithm in the CONGEST model that computes a \((2, 2)\)-ruling set and has node-averaged complexity \(O(1)\).

Proof The algorithm works as follows. Each node \(v\) independently marks itself with probability \(p_v := 1/(\deg(v) + 1)\). A marked node \(v\) joins the ruling set \(S\) if and only if it has no marked higher priority neighbor \(w\). A neighbor \(w\) of \(v\) is higher priority if \(\deg(w) > \deg(v)\) or if \(\deg(w) = \deg(v)\) and \(\text{ID}(w) > \text{ID}(v)\). Nodes that are within distance \(2\) of nodes in \(S\) are deleted and we recurse on the remaining graph.

Each iteration takes at most \(3\) rounds. To prove the theorem, we show that per iteration, in expectation, a constant fraction of the nodes is deleted. Fix one iteration: We call a node \(v\) good if \(\sum_{u \in N_u^2(v)} p_u \geq 1/2\), where we define \(N_u^2(v) := \{u \in V : d_G(u, v) \leq 2\}\). To show that in expectation a constant fraction of the nodes is deleted, we show that at least \(1/2\) of the nodes are good, and moreover that each good node is deleted with a constant probability.

We next show that at least half of the nodes are good. Let \(B\) be the set of bad nodes (i.e., the set of nodes that are not good). To upper bound \(|B|\), we do the following for each node \(v \in B\). We charge the “badness” of \(v\) to the neighbors of \(v\) by assigning value \(1/\deg(v)\) to each neighbor \(u\) of \(v\). Because \(v\) is bad, we have \(\sum_{u \in N_u(v)} p_u < 1/2\) for each neighbor \(u\) of \(v\). Each node \(u\) therefore gets charged less than \(1/2\) by neighboring bad nodes. Because every bad node distributes a total charge of \(1\), this means that at most half of the nodes can be bad.

To finish the proof, we show that a good node \(v\) is deleted with constant probability. We need to show that with constant probability at least one node in \(N_u^2(v)\) joins the ruling set \(S\). First, note that with constant probability at least one node in \(N_u^2(v)\) is marked. This is simply because \(v\) is good. Now if \(M\) is the set of marked nodes in \(N_u^2(v)\), we let \(M' \subseteq M\) be the set of nodes in \(M\) which have no higher priority neighbor in \(M\). Note that if \(|M| > 0\), then also \(|M'| > 0\). Now, assume that \(|M'| > 0\) and consider some node \(u \in M'\). Node \(u\) enters the ruling set unless a higher priority neighbor \(w\) outside \(N_u^2(v)\) is marked. There are at most \(\deg(u)\) such neighbors and because they must have degree \(\deg(w) \geq \deg(u)\), each of them is marked with probability \(\leq 1/(\deg(u) + 1)\). The probability that none of the higher priority neighbors of \(u\) is marked is thus at least a constant.

So far, we know that per iteration, in expectation, at least a constant (say \(\epsilon\)) fraction of nodes get deleted. We now argue that this implies a constant node-averaged complexity. Define \(T(n)\) as the maximum over all \(n\)-node graphs of the expected summation of the terminations times of the nodes, i.e., \(\mathbb{E} \left[\sum_{v \in V(G)} T_v(A) \right] \). We show by induction that \(T(n) \leq cn\) for some constant \(c > 0\), which shows that the node-averaged complexity is at most \(cn/n = c\), and thus proves the theorem. The base case of \(n = 1\) is trivial by choosing \(c\) large enough. Consider one iteration which takes 3 rounds. Let random variable \(Z\) denote the number of nodes that remain after this iteration. Notice that from above, we know \(\mathbb{E}[Z] \leq (1 - \epsilon)n\). Considering that the randomness in different iterations is independent, we can write \(T(n) \leq 3n + \sum_{n'=1}^{n} T(n') \cdot Pr[n' \text{ nodes remain after this iteration}]\).

Hence, by induction,

\[
T(n) \leq 3n + \sum_{n'=1}^{n} T(n') \cdot Pr[Z = n'] \\
\leq 3n + \sum_{n'=1}^{n} cn' \cdot Pr[Z = n'] \\
= 3n + c \sum_{n'=1}^{n} n' \cdot Pr[Z = n'] \\
= 3n + c \cdot \mathbb{E}[Z] \\
\leq 3n + c(1 - \epsilon)n \\
\leq cn.
\]

The last inequality holds because we chose \(c\) sufficiently large and in particular we have \(c \geq 3/\epsilon\).

Theorem 3 There is a deterministic distributed algorithm in the CONGEST model that computes a \((2, \Omega(\log \Delta))\)-ruling set in any \(n\)-node graph with maximum degree \(\Delta\) and has node-averaged complexity \(O(\log^2 n)\). The algorithm can also be modified to produce a \((2, \Omega(\log \log n))\)-ruling set with the same \(O(\log^2 n)\) node-averaged complexity.

Proof We make use of a known deterministic dominating set algorithm by Kutten and Peleg \[36\] that runs in \(O(\log^2 n)\) rounds and computes a dominating set of size at most \(n/2\). To get a deterministic \((2, \Omega(\log \Delta))\)-ruling set algorithm with average complexity \(O(\log^2 n)\), we do as follows. At the beginning all nodes are active. We then run \(O(\log \Delta)\) phases in which in each phase, we compute a dominating

\[\text{We can also get this result through the following very simple algorithm. First, every node picks one arbitrary outgoing edge. We then get an oriented pseudo-forest that contains all nodes. In this pseudo-forest, we add all the parents of the leaves to the MIS, and remove them along with their neighbors. Then, we augment the MIS by adding to it a maximal independent set of the nodes in the remaining pseudo-forest.}\]
set S of the graph induced by the active nodes such that S
contains at most half of the active nodes. All nodes not in S
point to a neighbor in S. At the end, we have at most n/Δ
active nodes and we can then afford to compute an MIS of the
remaining active nodes in time $O(\Delta + \log^* n)$ using known
algorithms [7].

To compute a $(2, O(\log \log n))$-ruling set in determinis-
tic average complexity $O(\log^* n)$, we stop when we have
n/poly $\log n$ nodes and use the network decomposition based
poly($\log n$) round deterministic MIS algorithm by Rozhon
and Ghaffari [43] to compute an MIS of the remaining nodes.

3.2 Maximal matching

Theorem 4 There is a randomized distributed algorithm in
the CONGEST model that computes a maximal matching,
which has edge-averaged complexity $O(1)$, and a worst-case
round complexity of $O(\log n)$, with high probability.

Proof The result readily follows from a variant of Luby’s
algorithm [38], adapted for maximal matching. Per iteration,
we mark each edge $e = \{u, v\}$ with probability
\[\frac{1}{4(d_u + d_v)} \]
where d_u and d_v denote the degrees of u and v. Then, any
marked edge that is not incident with any other marked edge
is added to the maximal matching, and we remove all nodes
that have a matching edge (and all the edges incident with
any such node). We then continue to the next iteration.

We use some of Luby’s standard terminology and ideas
[38], though our analysis is somewhat different as we show
that the number of edges remaining in the maximal matching
problem shrinks by a constant factor.\(^4\) Let us call a node v
good if at least $d_v/3$ of the neighbors of v have degree at
most d_v. We call an edge good if it is incident with at least
one good node. We can use a standard argument to show that
at least 1/2 of the edges of the graph are good.\(^5\) We next
show that each good edge is removed with a constant
probability.

Consider a good edge $e = \{u, v\}$ and suppose that v is the
(or one of the two) good endpoint(s). Let us examine the set
of at least $d_v/3$ edges of node v that go to neighbors with
degree at most d_v. Each such edge $e' = \{v, w\}$ is marked
with probability at least $\frac{1}{8d_v}$. Moreover, the probability that
any other edge incident with e' is marked is at most $\frac{d_v}{4(d_u + \frac{d_v}{3})} = 1/2$. Hence, with probability at least $1 - \frac{1}{2^{2v}}$, the edge
e' is added to the matching. Since these events are mutually
exclusive for the at least $d_v/3$ edges of v going to lower or
equal degree neighbors, we conclude that with probability at
least $\frac{1}{2} \cdot \frac{1}{2^{2v}} > \frac{1}{100}$, node v gets a matching edge and hence
edge e gets removed.

Hence, per iteration, at least 1/2 of edges are good and
each good edge is removed with probability at least 1/100.
Thus, the edge-averaged complexity of the algorithm is $O(1)$.
Moreover, it is easy to argue that the worst case complexity is
$O(\log n)$ with high probability: per iteration the expected
number of edges shrinks by a constant factor. Thus, if we
repeat the algorithm for $O(\log n)$ iterations, the number of
remaining edges is expected to be below $\frac{1}{2}$. By Markov’s
inequality, this implies that with probability $1 - 1/n^2$ no
edge remains and the algorithm has terminated. \(\square\)

We comment that the above statement is also implicit in
the classical maximal matching result by Israeli and Itai [29].\(^6\)

Theorem 5 There is a deterministic CONGEST algorithm
that computes a maximal matching and has edge-averaged
complexity $O(\log^2 \Delta + \log^* n)$, node-averaged complexity
$O(\log^3 \Delta + \log^* n)$, and worst-case complexity $O(\log^2 \Delta \cdot
\log n)$.

Proof Let us describe one iteration of the algorithm, which
takes $O(\log^2 \Delta + \log^* n)$ rounds and removes a constant frac-
tion of the nodes. Let E be the set of all edges in this iteration
and consider the fractional matching where we assign each
edge $e = \{v, u\} \in E$ the fractional value $f_e = \frac{1}{d_v}$. Notice
that this is indeed a valid fractional matching in the sense
that for each node v we have $\sum_{u \in E : u \neq v} f_e \leq d_v \cdot \frac{1}{d_v} = 1$.
Let us define for each edge $e = \{v, u\}$ a weight $w_e = (d_u + d_v)$. Then, the aforementioned fractional matching
has total weight $\sum_{e \in E} f_e \cdot w_e = \sum_{e \in E} 1 = |E|$. Using
the deterministic rounding algorithm by Ahmadi, Kuhn, and
Oshman [3] for weighted matchings, we can compute an inte-
gral matching in $O(\log^2 \Delta + \log^* n)$ rounds whose weight
is at least a constant factor of the fractional matching that
we start with. That is, we get an integral matching with weight
$|E|/10$. We add all the edges of this matching to our output
maximal matching, and we then remove all the edges incident
to matched nodes, and continue to the next iteration. Notice
that for each edge $e = \{v, u\}$ that gets added to the matching,
we can say it removed the $d_u + d_v - 1 \geq \frac{d_u + d_v}{2} = w_e/2$
edges that share an endpoint with e, and this way each edge
is removed at most twice, once by each endpoint. Hence, for
any integral matching with weight W, removing its matched

\(^4\) Notice that the counterpart statement of number of nodes remaining
in the MIS problem shrinking by a constant factor is not correct, for
Luby’s algorithm, or any other MIS algorithm, as we formally prove in
our lower bound.

\(^5\) To keep the proof self-contained, here is the argument: direct each
edge to the higher degree endpoint (breaking ties arbitrarily). For each
bad node, the number of outgoing edges is greater than twice the number
of incoming edges. Hence, each bad edge, which enters a node v, can
be matched to a distinct set of two edges that exit the node v. Therefore,
the total number of edges is at least 2 times the number of bad edges.

\(^6\) We thank an anonymous PODC’22 reviewer for bringing this to our
attention.
vertices removes at least $W/4$ edges from the graph. Therefore, with our rounding of the fractional matching that had weight $|E|$, we have found an integral matching whose addition removes at least $|E|/40$ edges. Since per iteration we spend $O(\log^2 \Delta)$ rounds and remove a $1/40$ fraction of the edges, we conclude that the edge-averaged complexity is $O(\log^2 \Delta + \log^* n)$.

Note that the $O(\log^* n)$ term is not needed in each repetition and it suffices to have it only in the first repetition. More concretely, in the algorithm of [3], this term changes to an $O(\log^* \Delta)$ term if we are already given a poly(Δ) coloring of the nodes [3] and we can compute that initially before all the repetitions in $O(\log^* n)$ rounds using Linial’s classic algorithm [37]. Hence, after having spent these $O(\log^* n)$ rounds at the start, each repetition takes $O(\log^2 \Delta + \log^* \Delta) = O(\log^2 \Delta)$ rounds and removes $1/40$ fraction of the edges. This directly also shows that after $O(\log^2 \Delta \cdot \log n + \log^* n) = O(\log^2 \Delta \cdot \log n)$ rounds, all the edges are removed and thus the algorithm has terminated.

We next argue about the node-averaged complexity. If we repeat the algorithm for $\Theta(\log \Delta)$ iterations, for a total round complexity of $O(\log^3 \Delta + \log^* n)$, then the total number of edges in the graph is reduced by a factor $(1 - 1/40)^{\Theta(\log \Delta)} \leq 1/(2\Delta)$. Hence, the total number of remaining nodes (which must have degree at least one) is decreased by at least a factor 2. The reason is that if we had n nodes before, we had at most $n\Delta/2$ edges, and after the reduction of edges by a $1/(2\Delta)$ factor, the number of remaining edges is at most $n/4$ and thus we have at most $n/2$ nodes of degree at least 1, i.e., at least $n/2$ nodes have degree 0 and are thus removed. This means that in $O(\log^3 \Delta + \log^* n)$ rounds, the number of nodes reduces by a factor $1/2$ and thus the node-averaged complexity is $O(\log^2 \Delta + \log^* n)$. \hfill \qed

3.3 Sinkless orientation

The randomized sinkless orientation algorithm by Ghaffari and Su [26] already has node-averaged complexity $O(1)$.7 We next show a deterministic algorithm that achieves an $O(\log^* n)$ node-averaged complexity. Note that the worst-case complexity of this problem has an $\Omega(\log n)$ lower bound even in 3-regular graphs [9].

We sketch the high-level idea for the special class of a high-girth graph G of constant maximum degree. For an example see Figs. 1, 2 and 3. As a first step, we compute an MIS S of G^{2r+1} for a sufficiently large constant r and use this set S to cluster the graph, that is, we create a cluster for each node in S, and each other node joins the cluster of the nearest node in S (breaking ties arbitrarily). This produces clusters of diameter $O(r)$ such that the complete r-hop neighborhood of any node $v \in S$ is contained in its cluster. Note that this clustering can be computed in $O(\log^* n)$ rounds. We then build a virtual graph between the cluster centers (i.e., the nodes in S) such that each node is connected to three other cluster centers through disjoint paths, where those paths form the edges of this virtual graph. This is possible if the graph has a minimum degree 3 and the girth is at least $c \cdot r$ for a sufficiently large constant c. If we compute a sinkless orientation of this

7 This statement is directly correct for the algorithm that they provide for graphs with a minimum degree of at least 500. We believe that their extension to graphs with min-degree in $[3, 500]$ can also be adapted to have this $O(1)$ node-averaged complexity, basically by replacing their deterministic ruling set subroutine with a randomized one.
virtual graph, we can obtain a sinkless orientation of G by orienting the paths according to the sinkless orientation on the virtual graph and orienting all other edges in G towards the nodes that participate in the virtual graph. In this way, we essentially reduce the problem of computing a sinkless orientation on G to computing a sinkless orientation on a virtual graph with $|S| \leq n/3^r$ and where communication between neighbors costs $O(r)$ rounds on G. All nodes that are not part of the virtual graph are decided after $O(\log^* n)$ rounds. If the constant r is chosen large enough, $O(r) \ll 3^r$ and we can keep the node-averaged complexity in $O(\log^* n)$.

Theorem 6 There is a deterministic distributed LOCAL model algorithm to compute a sinkless orientation of any n-node graph with minimum degree 3, with node-averaged complexity $O(\log^* n)$ and worst-case complexity $O(\log n)$.

Proof We first describe the process for one iteration, and afterward discuss the repetitions and how they affect the overall (averaged) complexity. Let r be a large enough constant to be fixed later. We call each cycle short if it has length at most $6r$. First, we perform a partial orientation to ensure that any node that has an edge in a short cycle has out-degree at least 1.

Partial orientation, edges in short cycles

For each short cycle C, take the edge e_C with the smallest identifier in C and define the preferred orientation of C as the orientation that goes in e_C from the smaller identifier endpoint of e_C to the other endpoint, and goes through the other edges of C accordingly. We call an edge short if it is in at least one short cycle. We orient each short edge e consistent with the preferred orientation of the smallest ID short cycle that contains e, where the ID of a short cycle is a concatenation of the IDs of its edges (thus any two different cycles have different IDs).

We next argue that with this orientation, each node that has a short edge gets out-degree at least 1. Consider a node v and let C be the smallest ID short cycle that contains one v. Suppose C has edges $e_1 = \{v, u_1\}$ and $e_2 = \{v, u_2\}$ incident with v. Both e_1 and e_2 are oriented according to the preferred orientation of C, as they are oriented according to the smallest ID short cycle that contains them, and that is C by its definition. Hence, either e_1 is oriented as $v \to u_1$, in which case we are done, or e_2 is oriented as $u_1 \to v$ but e_2 is oriented as $v \to u_2$. In either case, node v has out-degree at least 1.

Nodes with no short edge, max-degree reduction

Notice that what remains are nodes that do not have any edge in a short cycle. None of the edges of these nodes is oriented. To continue the work on these, we would like to switch to a graph where the maximum degree is also upper bounded by a constant. For that, let each such node choose 3 of its edges arbitrarily. For any edge $e = \{v, u\}$, if the edge e is chosen by only one endpoint v (either because u already had an outgoing edge or because it chose other edges), then we consider e a self-loop incident with node v. In particular, node u will not rely on this edge e to have an outgoing edge, and node v can safely assume that this edge will be oriented from v to u. We also remove all nodes that had a short edge incident with them, and thus already have an outgoing edge. At this point, we have a graph on the remaining nodes where each node is incident with exactly 3 edges or self-loops, all edges remain unoriented, and there is no cycle of length $6r$ in the graph (with the exception of self-loops).

Clustering of remaining nodes

Let S be the set of nodes that have distance at least $2r + 1$ from any self-loop. Let S' be a maximal $(2r + 1)$-independent subset of S, which can be computed in $O(\log^* n)$ rounds as $r = O(1)$ [37]. Let S'' be the union of S' and the set of nodes that have a self-loop incident with them. We cluster all nodes where each node is clustered with the closest node in S'' (breaking ties by ID). Each node has within its distance $2r + 1$ either a self-loop or a node from S' (as otherwise it would be added to S' and thus S''). Hence the radius of each cluster is at most $2r + 1$. Moreover, any two clusters that include vertices that are adjacent have at most one edge connecting them, as two edges would imply a cycle of length at most $2(2r + 1) + 2 = 4r + 4 \leq 6r$.

For any cluster that is centered on a self-loop, orient all the edges with both endpoints in the cycle toward the self-loop. Any other cluster has radius at least r as all nodes within distance r of the cluster center are in its cluster (this is because nodes of S' are $(2r + 1)$-independent and have distance at least $2r + 1$ from self-loops). For any of these other clusters centered at S'-nodes, let the cluster center choose three of its neighboring clusters arbitrarily: we then keep alive only the nodes on the paths to these three neighboring clusters. For all other nodes of the cluster, we orient the edges toward (the closest) one of these three paths. Hence, we keep alive at most $3(2r + 1) \leq 7r$ nodes in the cluster, while the cluster had at least $3(2r)'$ vertices.

Contraction, and repetitions

To prepare for the next iteration, we now think of a contracted graph where each of these clusters and its three paths are simply one node and its three edges. Notice that since the cluster radius is at most $2r + 1$, the round complexity of running any algorithm on this contracted graph is at most a $4r + 4$ factor higher. However, this cost is only incurred by the alive nodes which are at most a $\frac{2r}{2r}'$ fraction of nodes. Hence, the total round complexity contribution of the next iteration is smaller by a factor of $\frac{2r(12r + 4)}{2r}' \leq \frac{1}{7}$, where the last inequality follows as $r \geq 15$. Hence, per iteration, the total added round complexity (added over all nodes that remain alive) shrinks by a $1/2$ factor. This implies that the total round complexity
summation of all nodes is dominated by the first iteration and is thus $O(\log^* n)$.

Overall analysis, and round complexity improvement

Repeating this algorithm, per iteration, the number of remaining nodes shrinks by a constant factor and thus all nodes would terminate within $O(\log n)$ repetitions. That would make for a total round complexity of $O(n \cdot \log^* n)$. To improve this to $O(\log n)$, after $O(\log \log n)$ iterations, by which time the number of remaining nodes has dropped below $\frac{n}{\log n}$, we switch to the standard $O(\log n)$ algorithm to finish the remaining nodes. Since only $\frac{n}{\log n}$ participate in that $O(\log n)$ round algorithm, the contribution to the node-averaged complexity is $o(1)$ and we can conclude that this modified algorithm still has node-averaged complexity of $O(\log^* n)$ and worst-case round complexity of $O(\log n)$. □

4 Lower bounds

In this section, we prove lower bounds for the MIS problem. More precisely, we show a lower bound on the average complexity of MIS. As a key technical tool, we modify the KMW construction [35] and obtain also a lower bound on the complexity of MIS. As a key technical tool, we modify the algorithms, and then we show that this result also implies a lower bound for MIS on trees, that holds even for randomized algorithms.

4.1 Summary of the KMW lower bound

On a high level, the KMW lower bound is obtained by showing that there exists a family of graphs satisfying that:

- There are two sets of nodes S_0 and S_1 that have the same view up to some distance k;
- Both S_0 and S_1 are independent sets;
- Every node of S_0 has 1 neighbor in S_1, and every node of S_1 has β neighbors in S_0, for some parameter β;
- S_0 is much larger than S_1, and it contains the majority of the nodes of the graph.

In these graphs, since S_0 is an independent set that contains the majority of the nodes, if we want to cover all edges, we could just select all nodes except for the ones of S_0, and obtain a very small solution to the vertex cover problem. But since nodes of S_0 and S_1 have the same view up to distance k, then, they either spend more than k rounds to understand in which set they are, or they must have the same probability of joining the vertex cover. This probability of being selected should be at least 1/2 if we want every edge between S_0 and S_1 to be covered, implying that any algorithm running in at most k rounds fails to produce a small solution, because in expectation $|S_0|/2$ nodes of S_0 get selected.

More in detail, in order to obtain a lower bound for vertex cover approximations, [35] follows this approach:

Define cluster tree skeletons These trees define some properties that each graph in the family should satisfy, and they are parametrized by a value k. In general, given a cluster tree CT_k, there could be many graphs G_k that satisfy the properties required by CT_k. The required properties are the following:

- Each node of a cluster tree CT_k corresponds to an independent set of nodes in the graph G_k.
- Each edge (u_1, u_2) in this tree is labeled with two values, x and y, that dictate that nodes of the sets corresponding to u_1 and u_2 in the graph must be connected with a (x, y)-biregular graph.

Show Isomorphism. Cluster trees are defined in a specific way that allows proving the following. Let CT_k be a cluster tree, and let G_k be a graph derived from CT_k. It is shown that, there are two “special” nodes in CT_k that correspond to two “special” clusters S_0 and S_1 of G_k, such that, if G_k has girth at least $2k + 1$, then nodes of S_0 and S_1 have isomorphic views, up to distance k.

High-girth graphs It is shown that it is indeed possible to build a graph G_k that satisfies the requirements of CT_k and that has girth of at least $2k + 1$. On a high level, this is shown by first constructing a low-girth graph G_k, and then taking a high-girth lift of it.

Obtain lower bounds It is then shown that having the same view up to distance k implies that, for a randomized algorithm running in graphs where IDs are assigned uniformly at random, nodes of S_0 and S_1 must have the same probability of joining a vertex cover, implying that many nodes of S_0 (which is shown to contain the majority of the nodes of G_k) must join the solution, while there exists a very small solution, not containing any node of S_0.

For a more detailed summary of the KMW lower bound, we refer the reader to Section 1.1 of [18]—in this paper, Coupette and Lenzen provide a new and easier proof for the KMW lower bound.
4.2 Our plan

In this work, we define our cluster tree skeletons in a very similar way as in Kuhn, Moscibroda, and Wattenhofer [35], but with a small and essential difference. Also, we slightly change the properties that a graph derived from a cluster tree should satisfy. On a high level, in our construction, every node of CT_k corresponds to a set of nodes of G_k, which, differently from the original construction, is not independent anymore, with the only exception being the “special” set S_0 of nodes, which remains an independent set. We then show that, in each cluster of G_k containing nodes that are neighbors of nodes of S_0, no large independent set exists, and that our construction is such that at least half of the nodes of S_0 must join the independent set in any solution for the MIS problem.

In this way, we obtain that any algorithm running in k rounds, on the one hand, cannot produce a large independent set in S_1, because it simply does not exist, and on the other hand, in order to guarantee the maximality constraint, it must produce a large independent set in S_0. If nodes of S_0 and S_1 have the same view up to distance k, the above is a contradicting requirement, preventing any k-round algorithm to exist.

As already mentioned before, the technical aspect of our proof is heavily based on the simplified version of the proof of the KMW lower bound shown by Coupette and Lenz [18]. In fact, we follow the same approach to prove the isomorphism between nodes of G_k and it is the same view up to distance k, which, therefore, makes the independence requirements, and then we make use of known graph-theoretical results [4] to lift it into a graph that also satisfies the independence requirements, and such that each node has a large probability of not seeing any cycle within distance k. Hence, the obtained graph may not have a high girth, but we prove that this weaker property is sufficient for our purposes.

4.3 Cluster trees

A cluster tree skeleton (CT) is a tree parametrized by an integer k, that we use to compactly describe a family of graphs G_k called cluster tree graphs. We now show how CT_k is defined. We will later present the family of graphs described by a cluster tree skeleton CT_k.

The cluster tree skeleton

Differently from [18], our cluster tree skeletons CT_k contain self-loops, hence they are trees only when ignoring self-loops. In fact, in our definition of CT_k, every node except one, will have a self-loop. We denote with (u, v, x) a directed edge (u, v) labeled with some parameter x. Given a parameter β, the cluster tree skeleton CT_k is defined inductively as follows (see Fig. 4 for an example).

- Base case: $CT_0 = (V_0, E_0)$, where $V_0 = \{c_0, c_1\}$, $E_0 = \{(c_0, c_1, 2\beta^0), (c_1, c_0, \beta^1), (c_1, c_1, \beta^1)\}$. The node c_0 is called internal, while c_1 is a leaf. The node c_0 is the parent of c_1, while c_0 has no parent.
- Inductive step: given CT_{k-1}, we define CT_k as follows. To each internal node v of CT_{k-1}, we connect a leaf ℓ by adding the edges $(v, \ell, 2\beta^k)$ and (ℓ, v, β^{k+1}). Moreover, we add the edge $(\ell, \ell, \beta^{k+1})$. Then, let u be a leaf of CT_{k-1} that is connected to its parent $p(u)$ through the edge $(u, p(u), \beta^1)$. We connect to each such node u a node ℓ_j for each $j \in \{0, \ldots, k\} \setminus \{i\}$ by adding the edges $(u, \ell_j, 2\beta^j)$ and (ℓ_j, u, β^{j+1}). Moreover, we add the edge $(\ell_j, \ell_j, \beta^{j+1})$. Node u is now internal in CT_k, and it is the parent of all the added leaves ℓ_j.

The graph family

Given $CT_k = (V_k, E_k)$, the graphs $G_k \in G_k$ are all the ones satisfying the following:

- For each node $u \in V_k$ there is a set of nodes $S(u)$ in G_k;
- Let $u, v \in V_k$ be two nodes of CT_k, and let $S(u), S(v)$ be two sets of nodes in G_k that represent u and v, respectively. Also, let $(u, v, x) \in E_k$ be the directed edge from u to v labeled with a parameter x. Then, in G_k, all nodes in $S(u)$ must have exactly x neighbors in $S(v)$.
- There are no additional edges in G_k.

Observations on CT_k and G_k

Note that CT_k is defined such that, if two (different) nodes are connected through an edge (u, v, x), then there also exists some edge (v, u, y) for some y. This implies that, by fixing the size of a single set $S(u)$, the size of all the other sets,
and the maximum degree of the graph, are determined by the labels of the edges of CT_k. However, the exact way to connect nodes of different sets is not prescribed by the structure of CT_k, and hence there is freedom in realizing those connections. We will later show that it is possible to construct G_k such that most of the nodes do not see cycles within distance k, while the maximum degree and the total number of nodes is not too large.

We now observe some properties on the structure of CT_k.

Observation 7 (Structure of CT_k) Each node of CT_k is either internal or leaf.

1. Every node $v \neq c_0$ has an edge (v, v, β^i) for some i. We define $\psi(v) = i$, that is, $\psi(v)$ represents the exponent of the self-loop of v.
2. Each node v, except for c_0, has a parent $p(v)$, and has edges $(v, p(v), \beta^i+1)$, $(p(v), v, \beta^j)$, (v, v, β^i+1), for some i that satisfies $0 \leq i \leq k-1$ for internal nodes, and $0 \leq i \leq k$ for leaves.
3. Let $v \neq c_0$ be an internal node, and let $i = \psi(v)$. Node v has children that can be reached with edges $(v, u_j, 2\beta^j)$ for all $j \in \{0, \ldots, k\}$.
4. Node c_0 has $k+1$ children that can be reached with edges $(c_0, u_j, 2\beta^j)$ for all $j \in \{0, \ldots, k\}$.

We denote with $S^{-1}(v)$, for $v \in V(G_k)$, the node $v' \in V_k$ satisfying $v \in S(v')$. We now label the edges (u, v) of G_k, with a label that depends on the label of the edge (u', v') of CT_k from which (u, v) comes from.

Definition 8 (Labeling of the edges of G_k) For every edge (u, v) of G_k, let $u' = S^{-1}(u)$, and $v' = S^{-1}(v)$. Let (u', v', x) be the edge of CT_k connecting u' and v'. We mark the edge (u, v) with β^i if $x = \beta^i$ or $x = 2\beta^i$. Similarly as in the case of CT_k, we may refer to this edge of G_k with (u, v, β^i). If $u' = v'$, we additionally mark each edge with the label self.

Observation 9 (Number of Neighbors with a Specific Label in G_k) Every node of G_k that corresponds to an internal node of CT_k has exactly $2\beta^i$ outgoing edges marked β^i, for all $i \in \{0, \ldots, k\}$. Every node of G_k that corresponds to a leaf of CT_k gets exactly $2\beta^i$ outgoing edges labeled β^i, for exactly one $i \in \{0, \ldots, k+1\}$.

Observation 10 Let v be a node of G_k that corresponds to an internal node of CT_d. Let (v, u, β^i) be an arbitrary edge incident to v. Then u corresponds to a node in CT_d if and only if $i \leq d$.

4.4 Isomorphism assuming no short cycles

We now prove that for all graphs $G_k \in G_k$, for all pairs of nodes $(u, v) \in S(c_0) \times S(c_1)$, if their radius-$k$ neighborhood does not contain any cycle, then u and v have the same radius-k view. In the following, with $G_k^i(v)$ we denote the subgraph induced by nodes at distance at most i from v in G, excluding the edges between nodes at distance exactly i.

Theorem 11 (k-hop Indistinguishability of Nodes Corresponding to c_0 and c_1) Let $G_k \in G_k$ be a cluster tree graph, and consider two nodes $v_0 \in S(c_0)$ and $v_1 \in S(c_1)$ that satisfy that $G_k^1(v_0)$ and $G_k^1(v_1)$ are trees. Then v_0 and v_1 have the same view up to distance k.

We will follow the same approach of [18], that is, we provide an algorithm that defines an isomorphism, and then we prove that the algorithm is correct.

The algorithm

The algorithm used to prove the isomorphism is almost the same as the one used in [18], and it is shown in Algorithm 1. The only difference between our algorithm and the one in [18] lies in the lines 12 and 13, which refer to the labels assigned to the edges of G_k in Definition 8. This will slightly alter the size of the lists $N_v[i]$ used in the algorithm, compared to those produced in the original case of [18], but we will prove that the algorithm still works as expected.

On a high level, the algorithm takes in input two nodes $v_0 \in S(c_0)$ and $v_1 \in S(c_1)$, and does the following. Assume that the views of v_0 and v_1 are tree-like up to distance k, that is, $G_k^1(v_0)$ and $G_k^1(v_1)$ are trees. The algorithm visits these views recursively and builds an isomorphism between nodes in the view of v_0 and nodes in the view of v_1. In order to build such an isomorphism, since the views are tree-like, it is enough to pair nodes such that paired nodes have the same degree. Every time the algorithm recurses on two paired nodes v and w, it groups the neighbors of v (resp. w) into $k+2$ lists $N_v[i]$ (resp. $N_w[i]$), where in $N_v[i]$ (resp. $N_w[i]$) are contained nodes reachable through edges labeled β^i. If for all i, the size of the lists $N_v[i]$ and $N_w[i]$ are the same, then it is trivial to produce an isomorphism, but unfortunately, this is not always the case. However, we will prove that the sizes are almost always the same, and the function MAP takes care of handling the remaining cases.

We follow the same strategy of [18] to prove that the algorithm is correct. We start with defining the history of a node. Informally, the history of a node is the label of the edge (of G_k) connecting the current node to the one that we used to reach it.

Definition 12 (Node history) Let $z \in \{u, v\}$, be a node that is reached by the algorithm through the call of the function $\text{WALK}(u, v, \text{prev}, \text{depth})$ satisfying $\text{prev} \neq \bot$. If $z = u$, let $p = \text{prev}$, otherwise let $p = \phi(\text{prev})$. Let (z, p, β^i) be the edge connecting z to p. The history of z is β^i.

Note that, in general, the history of a node may differ from the label used to reach that node. In fact, if u is reached
Algorithm 1: This is the algorithm presented in [18], that finds an isomorphism $\phi : V(G_k^H(v_0)) \rightarrow V(G_k^H(v_1))$. The only lines that differ are 12 and 13.

```
1 Function FINDISOMORPHISM ($G_k^H$, k, v_0, v_1):
   Input: A CT graph $G_k$ with $k \geq 2k + 1$, $k \in \mathbb{N}$, v_0 ∈ C_0, v_1 ∈ C_1
   Output: Isomorphism $\phi : V(G_k^H(v_0)) \rightarrow V(G_k^H(v_1))$
2 $\phi \leftarrow$ empty map
3 $\phi(v_0) \leftarrow v_1$
4 WALK(v_0, v_1, ⊥, k)
5 return $\phi$

6 Function WALK (v, w, prev, depth):
7   if depth = 0 then
8      return
9 $N_v \leftarrow$ empty list of length $k + 2$
10 $N_w \leftarrow$ empty list of length $k + 2$
11 for $i \leftarrow 0$ to $k + 1$ do
12   // if edge $\beta^i$ does not exist, $N_v[i]$ (resp. $N_w[i]$) is empty
13   $N_v[i] \leftarrow$ list of new nodes $v' \neq$ prev found using edge $\beta^i$ from v, sorted such that all edges labeled self come before the others
14   $N_w[i] \leftarrow$ list of new nodes $w' \neq \phi(prev)$ found using edge $\beta^i$ from w, sorted such that all edges labeled self come before the others
15 MAP($N_v[i]$, $N_w[i]$)
16 for $i \leftarrow 0$ to $k + 1$ do
17   for $v'$ in $N_v[i]$ do
18     WALK($v'$, $\phi(v')$, v, depth - 1)
```

18 Function MAP (N_v, N_w):
19 for $i \leftarrow 0$ to $k + 1$ do
20 // ZIP(., .) yields element tuples until the shorter list ends
21 for v', w' in ZIP($N_v[i]$, $N_w[i]$) do
22 $\phi(v') \leftarrow w'$
23 // len(·) returns the length of a list
24 if $\exists i \in [k + 1] :$ len($N_v[i]$) ≠ len($N_w[i]$) then
25 // we will prove that len($L[i]$) = len($L[w]$) for $i \in [k + 1] \setminus \{i_0, i_0\}$
26 $i_v \leftarrow i \in [k + 1] :$ len($N_v[i]$) = len($N_w[i]$) + 1
27 $i_w \leftarrow i \in [k + 1] :$ len($N_v[i]$) + 1 = len($N_w[i]$)
28 // $L[i]^{-1}$ retrieves the last element from list i in L
29 $\phi(N_v[i_v][i_v]) \leftarrow N_w[i_w][i_w][i_1]$

through the edge (p, u, β^i), and u can reach p through the edge (u, p, β^i), then $i = j$ if and only if p is in the same cluster of v and the edge (p, u) corresponds to a self-loop in CT_k, while otherwise i is either $j + 1$ or $j - 1$.

In the following, we will use the terms internal and leaf when talking about nodes of G_k: a node is internal (resp. leaf) if it corresponds to an internal node (resp. leaf) of CT_k. We prove that the size of the variables $N_v[i]$ and $N_w[i]$ only depends on the position of a node (internal or leaf) and its history.

Lemma 13 (Variables determining node neighborhoods) For every call of MAP(N_v, N_w) it holds that the content of N_v and N_w only depends on the position and the history of v and w. In particular, if v and w have the same position and history, then len($N_v[i]$) = len($N_w[i]$) for all $i \in \{0, \ldots, k + 1\}$. If v and w are both internal, but they have different histories β^x and β^y, then len($N_v[i]$) = len($N_w[i]$) for all $i \in \{0, \ldots, k + 1\} \setminus \{x, y\}$, len($N_v[x]$) = len($N_w[x]$) - 1, and len($N_v[y]$) = len($N_w[y]$) - 1.

Proof By Observation 9, all internal nodes have exactly $2\beta^i$ outgoing edges labeled β^i, for each $i \in \{0, \ldots, k\}$, and 0 edges labeled β^{k+1}. Hence, if two internal nodes have also the same history, then all the lists have the same size. If two internal nodes v and w have different histories β^x and β^y, then $N_v[x]$ contains exactly one less element than $N_w[x]$, because the algorithm excludes only prev from being part of $N_v(x)$. Similarly, $N_w[y]$ contains exactly one less element than $N_v[y]$, because $\phi(prev)$ is not part of the list.

By Observation 9, leaf nodes that have the same history β^x have exactly $2\beta^x$ outgoing edges labeled β^x, and they do not have any other outgoing edge with different labels. Hence, for these nodes, len($N_v[x]$) = len($N_w[x]$) = $2\beta^x - 1$ (where the -1 comes from the fact that prev and $\phi(prev)$ are excluded from the lists of v and w, respectively), and all the other lists have length 0.

\[\square\]
By using a characterization corresponding to the one of Lemma 13, authors in [18] showed that, in order to prove that their version of Algorithm 1 is correct, it is sufficient to prove that similar requirements as in the statement of Corollary 14 are satisfied. We will follow the same proof idea and adapt it to our case.

Corollary 14 (Sufficient Conditions for the Correctness of Algorithm 1) Given a graph G_k and two nodes $v_0 \in S(c_0)$ and $v_1 \in S(c_1)$ that satisfy that $G^k_0(v_0)$ and $G^k_1(v_1)$ are trees, if all pairs of nodes mapped by Algorithm 1 either have the same position and history, or they are both internal, then Algorithm 1 produces an isomorphism between $G^k_0(v_0)$ and $G^k_1(v_1)$.

Proof Since the k-radius neighborhoods of v_0 and v_1 are trees, then the visit produced by Algorithm 1 creates two rooted trees of depth k, and hence it is sufficient to show that, at every step, the degrees of the visited nodes are the same, and that the algorithm produces a bijection between the neighbors of the current nodes.

We first show that $\text{MAP}(N_{v_0}, N_{v_1})$ succeeds. Nodes v_0 and v_1 are both internal, and since $\text{prev} = \bot$, by Observation 9 all lists have the same size, and the claim trivially holds.

For nodes v, w that have the same position and history, Lemma 13 ensures that all lists have the same size, and hence $\text{MAP}(N_v, N_w)$ clearly succeeds.

For nodes v, w that have the same position internal but have different histories β^x and β^y, by Lemma 13, all the lists at position different from x and y have the same size, and hence the function $\text{MAP}(N_v, N_w)$ clearly produces a bijection between nodes in these lists. Also, by Lemma 13, lists at position x and y only differ by 1, and the function $\text{MAP}(N_v, N_w)$ maps the elements of $N_v[x]$ to the first $\text{len}(N_v[x]) - 1$ elements of $N_w[x]$, the elements of $N_w[y]$ to the first $\text{len}(N_v[y]) - 1$ elements of $N_v[y]$, and the last 2 remained unmatched elements of $N_v[x]$ and $N_v[y]$ between each other. Hence, also in this case a bijection is produced.

As in [18], we now prove an invariant satisfied by the algorithm. The invariant is exactly the same as the one proved in [18], while its proof differs. In fact, the additional thing that we need to handle is the case in which the algorithm follows an edge that corresponds to a self-loop of CT_k, which turns out to be an easy case to handle. Recall that V_k are the nodes of CT_k.

Lemma 15 (Main invariant of Algorithm 1) For $0 < d < k$, suppose that v and $w = \phi(v)$ lie at distance d from v_0 and v_1, respectively. Let $v' = S^{-1}(v)$ and $w' = S^{-1}(w)$. Then exactly one of the following holds:

1. $v', w' \in V_d$, and v and w have the same history or both have history $\leq \beta^{d+1}$.

2. There is some i with $d < i \leq k$ such that $v', w' \in V_i \setminus V_{i-1}$, v and w have the same history, and v' and w' are connected to CT_{i-1} with edges $(z, v', 2\beta^j), (v', z, \beta^j+1), (z', w', 2\beta^j), (w', z', \beta^j+1)$, for some z, z' and some $j \in \{0, \ldots, i\}$.

Proof We assume that k is fixed, and we prove the claim by induction on d.

Base case ($d = 1$) Let $v_0 \in S(c_0)$ and $v_1 \in S(c_1)$ be the two nodes on which the FindIsomorphism function is called, and let v be an arbitrary neighbor of v_0 that is matched to w, a neighbor of v_1. That is, $w = \phi(v)$, the distance of v from v_0 is 1, and the distance of w from v_1 is 1.

Since, by Observation 9 and the fact that $\text{prev} = \bot$, for all i, $\text{len}(N_{v_0}[i]) = \text{len}(N_{v_1}[i])$, then only neighbors of v_0 and v_1 that are reachable from edges labeled the same are matched, that is, both (v_0, v) and (v_1, w) are labeled β^j for the same j.

If $j = 0$, then, by the definition of the cluster tree skeleton, and by the labels assigned in Definition 8, v must be in $S(c_1)$, while w must be in $S(\ell)$, where ℓ is the leaf attached to c_1 when constructing $CT_1 = (V_1, E_1)$ (purple edges in Fig. 5). Thus both v' and w' are part of V_1, and moreover, by Observation 7 and Definition 8, v and w have the same history, hence the first case applies.

If $j = 1$, then v must be in $S(\ell)$, where ℓ is the leaf attached to c_0 when constructing CT_1 (green and blue edges that start from v_0 in Fig. 5), while w must either be in $S(c_0)$ (by following an edge of G_k corresponding to (c_1, c_0, β^1); blue edge that starts from v_1 in Fig. 5), or in $S(c_1)$ (by following the self-loop (c_1, c_1, β^1); green edge that starts from v_1 in Fig. 5). In both cases, we always reach nodes of G_k corresponding to nodes of CT_1, and hence v' and w' are both in V_1. Moreover, by the definition of the cluster tree skeleton, all edges of CT_1 have parameter at most $2\beta^2$, which implies that both v and w have histories at most $\beta^2 = \beta^{d+1}$, and hence the first case applies.

If $j > 1$, then v and w both lie in clusters $S(\ell_v)$ and $S(\ell_w)$ corresponding to nodes ℓ_v and ℓ_w that have been added
as leaves when constructing CT_j (orange edges in Fig. 5), which means that both v' and w' are part of $V_j \setminus V_{j-1}$. By Observation 7, this implies the existence of the edges $(c_0, \ell_v, 2\beta j)$, $(\ell_v, c_0, \beta j+1)$, $(c_1, \ell_w, 2\beta j)$, $(\ell_w, c_1, \beta j+1)$ in CT_k, and hence, v and w also have the same history. The existence of the above edges and the fact that these nodes have the same history, implies that the second case applies.

Inductive case

Assume that the claim holds for $0 < d < k - 1$, we prove that the claim holds for $d + 1$. Assume that v and w are such that $w = \psi(v)$, v is at distance $d + 1$ from v_0, and w is at distance $d + 1$ from v_1. Let $p(v)$ (resp. $p(w)$) be the node at distance d from v_0 (resp. v_1) that is a neighbor of v (resp. w), that is, the node that has been used to reach v (resp. w). By applying the inductive hypothesis, we know that the claim holds for $p(v)$ and $p(w)$. Hence, we distinguish between the two possible cases.

- The first case of the invariant holds for $p(v)$ and $p(w)$, that is, $S^{-1}(p(v)), S^{-1}(p(w)) \in V_d$, and $p(v)$ and $p(w)$ have the same history, or both have history $\leq \beta^{d+1}$. We consider two cases separately, either $S^{-1}(v) \in V_{d+1}$, or $S^{-1}(v) \notin V_{d+1}$.

 - $S^{-1}(v) \in V_{d+1}$. Note that, by the definition of the cluster tree skeleton, all edges that start from a node of V_d and reach a node of V_{d+1} are labelled with parameter $2\beta j$ for some $j \leq d + 1$. Hence, by Definition 8, the edge $(p(v), v)$ is labelled with βj for some $j \leq d + 1$, implying that $v \in N_{p(v)}[j]$ for some $j \leq d + 1$. By Lemma 13, node v is then matched either with a node in $N_{p(v)}[j]$, if $p(v)$ and $p(w)$ have the same history, or with a node in $N_{p(w)}[j']$ for $j' \leq d + 1$, if $p(v)$ and $p(w)$ have different history but both $\leq \beta^{d+1}$. Hence, $w \in N_{p(w)}[j']$ for some $j' \leq d + 1$, and since $S^{-1}(p(w))$ is internal in CT_{d+1} because it already exists in CT_d (by assumption), then by Observation 10, $S^{-1}(w) \in V_{d+1}$. Then, since all edges of CT_{d+1} are labelled either βj or $2\beta j$, for $j \leq d + 2$, then v and w have history at most β^{d+2}, and hence the first case applies.

 - $S^{-1}(v) \notin V_{d+1}$. In this case, we have that $S^{-1}(v) \in V_i \setminus V_{i-1}$ for some $i > d + 1$. Since $S^{-1}(p(v))$ is internal in CT_{d+1} (because by assumption it already exists in CT_d), then the edge connecting $S^{-1}(p(v))$ to $S^{-1}(v)$ has been added to CT_k when constructing CT_i and adding $S^{-1}(v)$ as leaf, and hence the edge $(p(v), v)$ is labelled βj, implying that $v \in N_{p(v)}[i]$. By Lemma 13, the length of the lists of $p(v)$ and $p(w)$ can only differ in positions $\leq d + 1$ (because, by assumption, either they have the same history, or they have history $\leq \beta^{d+1}$), and since $i > d + 1$, then v is matched with a node in $N_{p(v)}[i]$, and hence $w \in N_{p(w)}[i]$. Note that $S^{-1}(p(w))$ is internal in CT_{d+1}, in CT_i, and in CT_{i-1}, because it already exists in CT_d and $i - 1 \geq d + 1$. Then by Observation 10, $S^{-1}(w) \in V_i$. Moreover, since $S^{-1}(p(w))$ is internal in CT_{i-1} by following edges labeled βj, by Observation 10, we cannot reach nodes of G_k corresponding to nodes of V_{i-1}, and hence $S^{-1}(w) \notin V_{i-1}$. Hence, $S^{-1}(w) \in V_i \setminus V_{i-1}$, implying that it is a leaf in CT_i. This implies, by Observation 7 and Definition 8, that the edges $(v, p(v))$ and $(w, p(w))$ are both labelled βj, and hence v and w have the same history. Hence, $S^{-1}(v)$ and $S^{-1}(w)$ are both connected as leaves when constructing CT_i, and they are connected with their parents with edges labeled the same. By Observation 7 the edges required by the second case of the invariant are present, for $j = i$. Thus, the second case of the invariant applies.

- The second case of the invariant holds for $p(v)$ and $p(w)$, that is, let $v' = S^{-1}(p(v))$ and $w' = S^{-1}(p(w))$. There is some i with $d < i < k$ such that $v', w' \in V_i \setminus V_{i-1}$, $p(v)$ and $p(w)$ have the same history, and v', w' are connected to CT_{i-1} with edges $(z, v', 2\beta j)$, $(v', z, \beta j+1)$, $(z', w', 2\beta j)$, $(w', z', \beta j+1)$, for some z, z' and some $j \in \{0, \ldots, i\}$. Hence, v' and w' are leaves in CT_i, and thus $p(v)$ and $p(w)$ not only have the same history, but also the same position. Notice that, the connection of v' and w' with CT_{i-1} implies that they satisfy $\psi(v') = \psi(w') = j + 1$, that is, they have the same self-loop. Also, Lemma 13 implies that v and w are contained, respectively, in $N_{p(v)}[j']$ and $N_{p(w)}[j']$ for some j', and that these two lists have the same length. Note that both $p(v)$ and $p(w)$ have edges labeled self in the list at position $j + 1$, and nowhere else. If $j' = j + 1$, then, note that the sorting of the lists $N_v[j']$ and $N_w[j']$ implies that v and w are either both reached through an edge corresponding to a self-loop of a leaf of CT_i, and in this case they both have history $j + 1$, or they are both reached through edges corresponding to $(v', z, \beta j+1)$ and $(w', z', \beta j+1)$, and in this case they both have history j, because the edges (z, v') and (z', w') are both labelled $2\beta j$ by assumption. If $j' \neq j + 1$, then $S^{-1}(v)$ and $S^{-1}(w)$ are children of v' and w', respectively, and hence, by Observation 7, they both have history $j' + 1$, and they satisfy $S^{-1}(v), S^{-1}(w) \in V_i \setminus V_{i-1}$ for some $i' \geq j' + 1$. Hence, in both cases v and w have the same history. If $j' \neq j + 1$, since $i + 1 > d + 1$, then v and w have the same history, $S^{-1}(v)$ and $S^{-1}(w)$ are both in $V_i \setminus V_{i-1}$ for some $i' > d + 1$, and $S^{-1}(v)$ and $S^{-1}(w)$ are connected to $CT_{i'-1}$ with edges $(v', S^{-1}(v), 2\beta j')$, $(S^{-1}(v), v', \beta j'+1)$, $(w', S^{-1}(w), 2\beta j')$, $(S^{-1}(w), w', \beta j'+1)$, for some $j' \leq i'$. Hence, the second case of the invariant applies.
If $j' = j + 1$, then there are two possible cases: either $S^{-1}(v)$ and $S^{-1}(w)$ are both in $V_i \setminus V_{i-1}$, if we reached them by following self-loops, or they both are in the clusters of V_{i-1}.

In the former case, if $d < i - 1$, then the second case applies, while if $d = i - 1$, then the first case applies.

Consider the latter case. The path that we used to reach v (resp. w) must start from a node of CT_0, and since CT_k is a tree, and since v' (resp. w') is a leaf of CT_i, then it means that this path already passed from $S^{-1}(v)$ (resp. $S^{-1}(w)$) previously. Let v^h (resp. w^h) be the node that we used to reach v (resp. w) and that is at distance $d - h$ from v_0 (resp. v_1). Let $h \geq 0$ be the smallest value such that $S^{-1}(v^h) = S^{-1}(v)$ or $S^{-1}(w^h) = S^{-1}(w)$. We get that $h \geq 1$ (since v' and w' are in $V_i \setminus V_{i-1}$ by assumption, and hence not in the clusters of v and w, which are in V_{i-1}). We apply the invariant on v^h and w^h. If the first case of the invariant holds for v^h and w^h, then, by the definition of h, we get that either $S^{-1}(v) \in V_{d-h}$ or $S^{-1}(w) \in V_{d-h}$. W.l.o.g. assume that $S^{-1}(v) \in V_{d-h}$. We prove that $S^{-1}(v) \in V_{i-1}$. In fact, assume that it is not the case. We know that $S^{-1}(w) \in V_{d-h}$, and we also know that $S^{-1}(w^{h-1}) \notin V_{i-1}$ by the definition of h. This implies that $S^{-1}(w^{h-1}) = w'$, and hence that, in order to reach w^h from w^{h-1}, we need to pass from the corresponding edge of CT_i that w' uses to reach $S^{-1}(w)$ (they must both go towards the parent of w'). Hence, $S^{-1}(w^h) = S^{-1}(v) \in V_{i-1}$, which is a contradiction. Hence, both $S^{-1}(v), S^{-1}(w) \in V_{i-1}$ (since $d - h \leq i - 1$), thus the first case of the invariant applies to v and w. Finally, suppose that the second case of the invariant holds for v^h and w^h, and hence that both $S^{-1}(v^h)$ and $S^{-1}(w^h)$ are in $V_i \setminus V_{i-1}$ for some $i' \leq i - 1$. Similarly as above, we get that $S^{-1}(v^h) = S^{-1}(v)$ and $S^{-1}(w^h) = S^{-1}(w)$. If $i' \leq d + 1$, then both $S^{-1}(v)$ and $S^{-1}(w)$ are in V_i, and since they have the same history, then the first case of the invariant applies on v and w. If $i' > d + 1$, then the second case of the invariant applies on v and w. □

We are now ready to prove Theorem 11.

Proof of Theorem 11 Consider two nodes mapped by the algorithm, v and $w = \phi(v)$. Let $v' = S^{-1}(v)$ and $w' = S^{-1}(w)$. Consider the two cases of Lemma 15. In the first case, since $v', w' \in V_d$, and $d < k$, then, by the definition of the cluster tree skeleton, both v' and w' are internal. In the second case, if $i < k$, then v and w are also both internal, while if $i = k$, then they are both leaves, and they also have the same history. Hence, by applying Corollary 14 the claim follows. □

4.5 Lifting

We next show how to obtain a graph $\tilde{G}_k \in \mathcal{G}_k$ such that most nodes in \tilde{G}_k see no short cycles and such that the graph induced by any of the clusters (except cluster $S(c_0)$) has no large independent set. The high-level idea of this construction is as follows. We start from some base graph $G_k \in \mathcal{G}_k$ and then we show that \tilde{G}_k can be computed as a random lift of G_k.

We first introduce the necessary graph-theoretic terminology.

For a graph $G = (V(G), E(G))$ and a graph $H = (V_H, E_H)$, a covering map φ from G to H is a graph homomorphism $\varphi: V(G) \to V(H)$ such that for every node $v \in V(G)$, the neighbors of v are bijectively mapped to the neighbors of $\varphi(v)$. That is, if v has d neighbors u_1, \ldots, u_d in G, then $\varphi(v)$ has d (different) neighbors $\varphi(u_1), \ldots, \varphi(u_d)$ in H. For a graph G, a graph $\tilde{G} = (\tilde{V}, \tilde{E})$ for which a covering map from G to \tilde{G} exists is called a lift of G. We will refer to the set of preimages $\varphi^{-1}(v)$ of a node $v \in V$ as the fiber of v in \tilde{G}.

If \tilde{G} is connected, then all fibers have the same cardinality, i.e., for every $v \in V$, there is the same number of nodes $\tilde{v} \in \tilde{V}$ for which $\varphi(\tilde{v}) = v$. Even if \tilde{G} is not connected, a lift \tilde{G} of G is typically constructed such that all fibers have the same cardinality. If all fibers of a lift \tilde{G} of G have the same cardinality $q \geq 1$, then q is called the order of the lift \tilde{G}.

Note that if we have a graph $G_k \in \mathcal{G}_k$, then any lift \tilde{G}_k of G_k is also a graph in \mathcal{G}_k.

There are different ways to construct lifts with desirable properties for a given base graph. As discussed, our lower bound proof is based on the minimum vertex cover lower bound of [35]. In [35], the lift \tilde{G}_k of a base graph $G_k \in \mathcal{G}_k$ (for the family of graphs used in [35]) is computed in a deterministic way such that \tilde{G}_k has girth at least $2k + 1$ (i.e., such that any k-hop neighborhood is tree-like). We cannot use the same deterministic lift construction because we also need to ensure that the induced graphs of the neighboring clusters of $S(c_0)$ in \tilde{G}_k have no large independent sets. We instead use a random lift construction that was described in [4]. Given a base graph $G = (V, E)$ and an integer $q \geq 1$, we can obtain a random lift $\tilde{G} = (\tilde{V}, \tilde{E})$ of order q of G as follows. For every $v \in V$, \tilde{V} contains q nodes $\tilde{v}_1, \ldots, \tilde{v}_q$ and for every edge $\{u, v\} \in E$, the two fibers $\{\tilde{u}_1, \ldots, \tilde{u}_q\}$ and $\{\tilde{v}_1, \ldots, \tilde{v}_q\}$ are connected by a uniformly random perfect matching (which is chosen independently for different edges). We obtain the following.

Lemma 16 Let $G = (V, E)$ be a base graph with maximum degree $\Delta \geq 2$, let $q \geq 1$ be a positive integer and let $\tilde{G} = (\tilde{V}, \tilde{E})$ be a random lift of order q of G as described above. Then, for every integer $\ell \geq 3$ and every node $\tilde{v} \in \tilde{V}$, the probability that \tilde{v} is contained in a cycle of length at most ℓ is upper bounded by Δ^ℓ / q. Further, for a set of nodes $C \subseteq V$, let $\tilde{C} \subseteq \tilde{V}$ be the set of nodes consisting of the union of all fibers of the nodes in C. If $G[C]$ is a complete graph, then $\tilde{G}[\tilde{C}]$ is also a complete graph.
graph of size $|C| \geq 2$, then for every integer $s \geq 8 \ln |C|$, $\alpha(G[C]) \leq s \cdot q$ with probability at least $1 - e^{-s^2q/8}$, where $\alpha(G)$ is the independence number of the graph G.

Proof We first prove that the probability for a node \tilde{v} to be contained in a cycle of length at most $\ell \geq 3$ is upper bounded by Δ^{ℓ}/q. Let us first look at the probability that \tilde{v} is contained in some cycle of length exactly $\ell' \in \{3, \ldots, \ell\}$. For \tilde{v} to be contained in a cycle of length ℓ' in \tilde{G}, one of the cycles of length ℓ' of v in G (that could pass from the same nodes or edges multiple times) has to be lifted to a cycle of length ℓ' of \tilde{v} in \tilde{G}. Consider such a cycle $v = v_1, v_2, \ldots, v_{\ell'}$ in G. In \tilde{G}, $\tilde{v} = \tilde{v}_1$ is connected to exactly one node \tilde{v}_2 of the fiber of v_2. Further, \tilde{v}_2 is connected to exactly one node \tilde{v}_3 in the fiber of v_3, and so on. There is therefore exactly one path of the form $\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_{\ell'}$, where $\tilde{v}_1 = \tilde{v}$ and where every node \tilde{v}_i is in the fiber of node v_i of G. For this path to extend to a cycle in \tilde{G}, the edge $\{\tilde{v}_{\ell'}, \tilde{v}_1\}$ needs to be present in \tilde{G}.

Because the edges in \tilde{G} between the nodes in the fibers of $v_{\ell'}$ and v_1 are formed by a uniform random perfect matching, the probability for the edge $\{\tilde{v}_{\ell'}, \tilde{v}_1\}$ to be present in \tilde{G} is exactly $1/q$. For every cycle of length ℓ' of v in G, the probability for the cycle to appear as a cycle of \tilde{v} in \tilde{G} is therefore exactly $1/q$. The number of cycles of length exactly ℓ' of nodes v in G can be upper bounded by $\Delta^{\ell-1}$ and by a union bound, the probability for \tilde{v} to be contained in a cycle of length ℓ' in \tilde{G} can consequently be upper bounded by $\Delta^{\ell-1}/q$. The upper bound of Δ^{ℓ}/q on the probability for \tilde{v} to be contained in some cycle of length at most ℓ in \tilde{G} now follows by a union bound over all $\ell' \in \{3, \ldots, \ell\}$.

Consider a set $\tilde{S} \subseteq \tilde{C}$ of size $|\tilde{S}| = s \cdot q$, where s is an integer with $s \geq 8 \ln |C|$. We want to upper bound the probability that the nodes in \tilde{S} form an independent set of \tilde{G}. For this, we partition \tilde{S} according to the different fibers that are contained in \tilde{S}. Assume that $\tilde{S} = \tilde{S}_1, \ldots, \tilde{S}_t$, where for every $i \in \{1, \ldots, t\}$, all nodes in \tilde{S}_i are from the same fiber and for any $i \neq j$, any two nodes in \tilde{S}_i and \tilde{S}_j are from different fibers. Assume further that for all $i \in \{1, \ldots, t\}$, $|\tilde{S}_i| = \sigma_i$. Note that there clearly are no edges between two nodes of the same set \tilde{S}_i (for any i). Further, the edges in \tilde{G} between the different pairs of sets \tilde{S}_i and \tilde{S}_j are chosen independently (because different edges of G lead to independent random perfect matchings between the corresponding fibers in \tilde{G}).

Let us therefore first concentrate on a single pair of sets \tilde{S}_i and \tilde{S}_j for $i \neq j$. Assume that \tilde{S}_i is part of the fiber of some node $v_i \in V$ of G and that \tilde{S}_j is part of the fiber of some other node $v_j \in V$ of G. We enumerate the nodes in \tilde{S}_i as $\tilde{S}_i = \{\tilde{v}_{i,1}, \ldots, \tilde{v}_{i,\sigma_i}\}$. The neighbor of $\tilde{v}_{i,1}$ in the fiber of v_j is a uniformly random node of the q nodes in the fiber. The probability that the neighbor of $\tilde{v}_{i,1}$ is outside \tilde{S}_j is therefore equal to $(q - \sigma_j)/q = 1 - \sigma_j/q$. Conditioning on the event that $\tilde{v}_{i,1}$ is connected to a node in the fiber of v_j, outside \tilde{S}_j, the probability that the neighbor of $\tilde{v}_{i,2}$ is outside \tilde{S}_j is equal to $(q - 1 - \sigma_j)/(q - 1) = 1 - \sigma_j/(q - 1)$ (or equal to 0 if $\sigma_j \geq q - 1$). More generally, the probability that $\tilde{v}_{i,h}$ (for $h \in \{1, \ldots, \sigma_i\}$) is connected to a node outside \tilde{S}_j in the fiber of v_j given that the nodes $\tilde{v}_{i,1}, \ldots, \tilde{v}_{i,h-1}$ are connected to nodes outside \tilde{S}_j is equal to $1 - \min\{1, \sigma_j/(q - h + 1)\}$. Let $P_{i,j}$ be the probability that there is no edge between \tilde{S}_i and \tilde{S}_j in \tilde{G}. We have

\[
P_{i,j} = \prod_{h=1}^{\sigma_i} \left(1 - \min\left\{1, \frac{\sigma_j}{q - h + 1}\right\}\right)
\leq \left(1 - \frac{\sigma_j}{q}\right)^{\sigma_i} < e^{-\sigma_i \sigma_j/q}.
\]

The probability that \tilde{S} is an independent set of \tilde{G} can therefore be upper bounded by

\[
\Pr(\tilde{S} \text{ is indep. set of } \tilde{G}) = \prod_{1 \leq i < j \leq t} P_{i,j} < \exp\left(-\frac{1}{q} \sum_{1 \leq i < j \leq t} \sigma_i \sigma_j \right).
\]

The sum over the $\sigma_i \sigma_j$ for all $1 \leq i < j \leq t$ is equal to the total number of unordered pairs of nodes in \tilde{S} such that the two nodes are in different fibers. Because a fiber only consists of q nodes, for every node $\tilde{u} \in \tilde{S}$, there are at least $|\tilde{S}|q = (s - 1)q$ nodes $\tilde{v} \in \tilde{S}$ such that \tilde{u} and \tilde{v} are in different fibers. The total number of unordered pairs of nodes from different fibers in \tilde{S} is therefore at least $sq \cdot (s - 1)q/2$. Since we assume that $|C| \geq 2$ and $s \geq 8 \ln |C|$, this number is lower bounded by $s^2 q^2/4$. We thus get

\[
\Pr(\tilde{S} \text{ is indep. set of } \tilde{G}) < e^{-s^2q/4}.
\]

By a union bound over all possible sets \tilde{S}, the probability that $G[C]$ contains an independent set of size $s \cdot q$ can then be upper bounded by

\[
\begin{align*}
\left(\frac{|C|}{sq}\right)^{s \cdot q} &\leq \left(\frac{|C|}{s}\right)^{s \cdot q} \cdot e^{-s^2q/4} \\
&\leq e^{(1 + \ln |C| - \ln s - s/4)} \\
&< e^{-s^2q/8}.
\end{align*}
\]

The last inequality follows from $s \geq 8 \ln |C|$. This implies that $\ln |C| - s/4 \leq -s/8$ and it also implies that $1 - \ln s < 0$. \qed
4.6 (Almost) high-girth graphs in G_k

We prove that there are graphs that belong to G_k such that, for each node, the probability that it sees a cycle within distance k is small. We first show how to construct a low-girth graph $G_k \in G_k$, and then we use Lemma 16 to show that we can use it to construct graphs $G' \in G_k$ that satisfy the above.

A base graph

We now construct a family of low-girth graph G_k, parametrized by an even integer β, and we prove that these graphs belong to G_k. The graph G_k, as a function of β, is defined as follows.

- Let $d(v)$ be the hop distance of a node v of CT_k from v_0. Note that $0 \leq d(v) \leq k + 1$. For each $v \neq v_0$, let $i = \psi(v) \leq k + 1$, be the exponent of the label of its self-loop. We define $S(v)$ to be a set of nodes of size $z = 2^{\beta k+1} (\beta/2)^{k+1} - d(v)$ nodes, connected as follows. Start from $t = \lfloor z/\beta \rfloor$ disjoint cliques of size β^i, $\{C_1, \ldots, C_t\}$. Note that t is an even integer. For every $1 \leq j \leq t/2$, add to G_j the edges of a perfect matching between the nodes of C_j and $C_{t/2+j}$. In this way, we obtain that every node in $S(v)$ has exactly β^i neighbors inside $S(v)$, and hence the requirements of the graph family defined in Sect. 4.3 are satisfied for the edge (v, v, β^i).

- $S(v_0)$ contains $z = 2^{\beta k+1} (\beta/2)^{k+1}$ nodes, and they form an independent set.

- Let v be a node at distance j from v_0, and u be a neighbor of v at distance $j + 1$ from v_0. By construction, they are connected to each other with edges $(u, v, 2\beta^i)$ and (v, u, β^{i+1}), for some $0 \leq i \leq k$. Observe that $S(v)$ has size $2^{\beta k+1} (\beta/2)^{k+1} - j$ and $S(u)$ has size $2^{\beta k+1} (\beta/2)^{k+1} - j$. We group the nodes of $S(v)$ into groups of size β^{i+1}, and the nodes of $S(u)$ into groups of size $2\beta^i$. We obtain that $S(v)$ and $S(u)$ are both split into $t = 2^{\beta k+1} (\beta/2)^{k+1} - j/\beta^{i+1} = 2^{\beta k+1} (\beta/2)^{k+1} - j/(2\beta^i)$ groups. Note that t is an integer. We take a perfect matching between the groups, and for each matched pair of groups, we connect its nodes as $K_{\beta^{i+1}, 2\beta^i}$. We obtain that every node in $S(v)$ has $2\beta^i$ neighbors in $S(u)$, and every node in $S(u)$ has β^{i+1} neighbors in $S(v)$, and hence the requirements of the graph family defined in Sect. 4.3 are satisfied for the edges $(u, v, 2\beta^i)$ and (v, u, β^{i+1}).

We summarize our result as follows.

Lemma 17 For all integers k and even integers β satisfying $2(k + 1)/\beta \leq 1/2$, there exists a graph $G_k \in G_k$ satisfying:

- For all $v \neq v_0$, let $i = \psi(v)$. The graph G_k satisfies that $\alpha(G_k[S(v)]) \leq |S(v)|/\beta^i$.
- The total number of nodes is $O(\beta^{2k+2})$ and the maximum degree is at most $2\beta^{k+1}$.

Proof The bound on the independence number comes from the fact that each cluster is composed of disjoint cliques of size β^i, plus additional edges, and from the fact that, for each clique, at most one node can join the independent set.

The bound on the maximum degree comes from the fact that internal nodes have exactly $\sum_{i=0}^{k} 2\beta^i \leq 2\beta^{k+1}$ neighbors, while leaves have exactly $2\beta^{k+1}$ neighbors (by Observation 7).

Let T_i be the set of nodes of CT_k at distance exactly i from v_0. Note that, by construction, $|T_{i+1}| \leq (k + 1)|T_i|$. Consider now clusters of nodes of G_k corresponding to nodes of T_i: they have size $2\beta^{k+1}(\beta/2)^{k+1-i}$. Hence, the clusters at distance $i + 1$ are smaller than the ones at distance i by a factor $\beta/2$. Let $S_i = \bigcup_{v: \text{dist}(v, v_0) = i} S(v)$. We obtain the following:

$$\frac{|S_{i+1}|}{|S_i|} \leq 2(k + 1)/\beta,$$

that is, the ratio between the number of nodes of G_k corresponding to nodes at distance $i + 1$ from v_0, and the ones at distance i, is at most $2(k + 1)/\beta$. Hence, the total number of nodes of G_k is at most:

$$2\beta^{k+1}(\beta/2)^{k+1} \sum_{i=0}^{k} \left(\frac{2(k + 1)}{\beta}\right)^i,$$

and since $2(k + 1)/\beta < 1/2$, then the number of nodes is $O(\beta^{2k+2})$.

Applying the lifting

We apply Lemma 16 to the graph of Lemma 17 to produce an almost high-girth version of it.

Lemma 18 For any integer $q \geq 1$, k and even β satisfying $2(k + 1)/\beta < 1/2$ there is a graph $G_k \in G_k$ satisfying:

- The number of nodes is $O(q\beta^{2k+2})$ and the maximum degree is at most $2\beta^{k+1}$.
- For all v, for all $\ell \geq 3$, the probability that v is contained in a cycle of length at most ℓ is upper bounded by Δ^{ℓ}/q.
- For all $v \in N(v_0)$, let $i = \psi(v)$, and let $t = 2\beta^{k+1}(\beta/2)^k$. The graph G_k satisfies that for every integer $s \geq 8 \ln \beta^i$, $\alpha(G_k[S(v)]) \leq sqt$ with probability at least $1 - e^{-\pi^2q/8\gamma}$.

Proof We apply Lemma 16 on the the graph G_k described in Lemma 17. Recall that each cluster $S(v)$ of G_k corresponding to some node $v \in N(v_0)$ satisfying that $i = \psi(v)$, contains t disjoint cliques of size β^i. Consider an arbitrary such clique C. Lemma 16 guarantees that the graph induced by the set C of nodes corresponding to copies of nodes of C has independence number $\alpha(G_k[C]) \leq sq$ with probability at least
1 – e−s2q/8 for every integer s ≥ 8 ln βi. Hence, the probability that all cliques of S(v) have independence number at most sq is at least (1 − e−s2q/8)i. Since S(v) is a union of these cliques, plus some additional edges, then this value is also a lower bound on the probability that the independence number of S(v) is at most sqt, as desired. □

We now fix the parameters q and β to obtain a friendlier version of Lemma 18.

Corollary 19 Let k be an integer and β ≥ 4 be an even integer satisfying 2(k+1)/β < 1/2. For infinitely many values of n, there is a graph Gk in Gk satisfying the following:

- The number of nodes is n = βO(k2) and the maximum degree is at most Δ = 2βk+1.
- The probability that a node v is contained in a cycle of length at most 2k + 1 is at most 1/β.
- For each v ∈ N(v0) satisfying that i = ψ(v), α(Ĝk[S(v)]) ≤ γ|S(v)|βi for some constant γ > 0.

Proof We apply Lemma 18 with q = βck2, for some large enough constant c ≥ 1. Let v ∈ N(v0) and i = ψ(v). By fixing s = [8 ln βi] we obtain that the probability that a cluster satisfies the independence requirements is at least

\[
1 – e^{−s^2q/8}i \geq 1 – te^{−s^2q/8} \geq 1 – β^{2i+1−s^2q/8} \geq 1 – β^{2i−8q ln^2 β},
\]

where the last inequality holds because i ≥ 1.

Note that for q ≥ k, β2k−8q ln^2 β < 1. The probability that all clusters that are neighbors of S(v0) satisfy the requirements is then at least

\[
1 – β^{2k−8q ln^2 β} \geq 1 – (k+1)β^{2z−8q ln^2 β} \geq 1 – β^{2z+log_β(k+1)−8q ln^2 β} > 0,
\]

where the last inequality holds by the assumption on the value of q. Hence, there is non-zero probability to obtain a graph satisfying the requirements, and hence such a graph exists. We get that this graph satisfies that each cluster S(v) has independence number at most

\[
sqt = 8 ln βi q 2β^{k−i+1}(β/2)^i = |S(v)|8 ln βi / βi,
\]

as required.

For a node v, the probability that it is contained in a cycle of length at most 2k + 1 is at most

\[
\frac{\Delta^{k+1}}{q} = \frac{(2β^{k+1})^2k+1}{β^{ck^2}} \leq 1/β.
\]

for a large enough constant c.

The only thing remaining to be done is to determine the total number of nodes, which is O(q β2k+2) = O(βk+2), as desired. □

4.7 Lower bounds for MIS

In the remainder, we prove the following theorem.

Theorem 20 The randomized node-averaged and edge-averaged complexities of the MIS problem in general graphs and the randomized worst-case complexity of MIS on trees are both $\Omega\left(\frac{\log \Delta}{\log \log \Delta} \cdot \sqrt{\frac{\log n}{\log \log n}}\right)$.

Proof Consider the family of graphs described in Corollary 19, for an arbitrary parameter k, and β = Ω(k2 log k). Let v1, ..., vk+1 be the neighbors of v0, where vi is the one reached with the edge (v0, vi, 2βi−1). Note that $\psi(v_i) = i$. Let $S_i = S(v_i)$. For each S_i it holds that at most $s_i = \gamma |S_i|\beta^i$ nodes can join the independent set, and these nodes can cover at most $s_i 2^i = \gamma |S_i| \log β = 2|S_0| \log β / β$ nodes of S_0, where the last equality holds because the ratio between the sizes of S_i and S_0 is β/2. Hence, in total, nodes in $S_1, ..., S_{k+1}$ cover at most $|S_0|/2$ log β nodes of S_0. For $β = Ω(k^2 log k)$, we obtain that at most $|S_0|/2$ nodes of S_0 are covered. Note that nodes of S_0 cannot cover other nodes of S_0 (since S_0 is an independent set), and hence if a node of S_0 is not covered by any node of $S_1, ..., S_{k+1}$ then it must join the independent set. Hence, at least $|S_0|/2$ nodes of S_0 must join the independent set.

Every node of S_0 has probability at least $1 – 1/β$ to see, in k rounds, a tree-like neighborhood, and in that case, by Theorem 11, they have the same view of those nodes of S_1 that also see a tree-like neighborhood within distance k, and since those nodes must have probability at most $\gamma \log β / β$ of joining the independent set, then we obtain that, in expectation, a fraction $1 – 1/β$ of the nodes of S_0 have probability at most $\gamma \log β / β$ of joining the independent set. Even if all the nodes of S_0 that do not have a tree-like neighborhood join the independent set, we still obtain that, in expectation, at most a fraction $(1/β + γ \log β / β)$ of nodes of S_0 join the independent set, which is < 1/2 (for a large enough β), implying that the obtained independent set is not maximal.

Hence, at least half of the nodes of S_0, which is the majority of the nodes of the graph, cannot decide within their first k rounds, if they join the MIS or not, implying a lower bound of $Ω(k)$ on the node-averaged complexity of the MIS problem.
For the edge-averaged complexity, note that a \((1 - o(1))\)-fraction of the edges are incident to nodes in \(S_0\) and for those edges to be decided, their nodes in \(S_0\) must be decided. The half of \(S_0\) that cannot decide within the first \(k\) rounds covers half of the edges incident to nodes in \(S_0\) and therefore, also the edge-averaged complexity of MIS is \(\Omega(k)\).

Let us now focus on trees, and determine a lower bound on the worst-case randomized complexity of MIS. Let us consider a tree obtained by taking the radius-\(k\) view of a node \(v_0’\) in \(S_0\) that does not see any cycle within distance \(k\), such that all its neighbors do not see any cycle within their distance \(k - 1\). We then add some nodes at distance at least \(k\) from \(v_0’\) to make the total number of nodes the same as in \(G_k\), matching also the maximum degree in \(G_k\). In this way, we obtain a tree, where \(v_0’\) has the same \((k - 1)\)-radius neighborhood of nodes in \(S_0\) of \(G_k\) that do not see any cycle within distance \(k - 1\). Moreover, node \(v_0’\) has \(k + 1\) neighbors \(v_0’, \ldots, v_{k+1}'\) satisfying that \(v_0’\) has the same \((k - 1)\)-radius neighborhood of nodes in \(S_i\) that do not see any cycle within distance \(k - 1\). We claim that, for any randomized algorithm for trees that runs in at most \(k - 1\) rounds, for all \(1 \leq i \leq k + 1\), \(v_0’\) must have probability \(p_i\) of joining the MIS that is at most a factor \(1/(1 - 1/\beta)\) larger than the one of nodes in \(S_i\) that do not see any cycle within distance \(k - 1\). In fact, assume that \(v_0’\) joins the MIS with probability larger than \(p_i\). If we simulate the \((k - 1)\)-rounds algorithm for trees on the nodes of \(G_k\) that do not see any cycle within distance \(k - 1\), which are, in expectation, a fraction \((1 - 1/\beta)\) of the total nodes, then we obtain that the expected number of nodes in \(S_i\) joining the MIS is larger than \(\alpha(G_k[S_i])\), which cannot happen. Also, since \(v_0’\) has the same \((k - 1)\)-radius neighborhood of \(v_0’\), then \(p_0 = p_1\). Hence, the \((k - 1)\)-algorithm for trees, by a union bound, covers \(v_0’\) with probability at most

\[
\sum_{i=0}^{k+1} p_i \leq \frac{1}{1 - 1/\beta} \cdot (k + 2) \frac{\log \beta}{\beta} \leq \frac{1}{k},
\]

where the first inequality holds because nodes in \(S_i\) have probability of joining the MIS at most \(\gamma \log \beta^i/\beta^i\), which is maximized for \(i = 1\), and the last inequality holds because \(\beta = \Omega(k^2 \log k)\). Hence, the algorithm fails to cover the node \(v_0’\) with high probability, implying a lower bound of \(\Omega(k)\) on trees as well.

Finally, we argue that an \(\Omega(k)\) lower bound implies the lower bounds claimed in the theorem. Since the degree is \(\Delta = 2k^{k+1}\), by taking \(\beta = \Theta(k^2 \log k)\), we obtain \(\Delta = \Theta((k^2 \log k)^{k+1}) = k^{\Theta(k)}\), and hence \(\Omega(k) = \Omega(\log \Delta/\log \log \Delta)\). Then, the total number of nodes is \(n = \beta^{O(k^2)} = k^{O(k^2)}\), and we thus get that \(k\) is as large as \(\Omega(\sqrt{\log n/\log \log n})\).

4.8 Lower bound on node-averaged complexity of maximal matching

Theorem 21 The randomized node-averaged complexity of the maximal matching problem in general graphs is

\[
\Omega \left(\min \left\{ \frac{\log \Delta}{\log \log \Delta} \cdot \sqrt{\frac{\log n}{\log \log n}} \right\} \right).
\]

Proof To prove the lower bound on the node-averaged complexity of the maximal matching problem, we use the variant of the KMW graph construction that has been used in [35] for proving a worst-case lower bound on approximating the maximum matching problem. The graph consists of 2 copies of the cluster graph construction as described in Sect.4.3. Both copies contain independent sets \(C_0\) and \(C_1\) such that every node in \(C_0\) has one neighbor in \(C_1\), and every node in \(C_1\) has \(\delta = \omega(1)\) neighbors in \(C_0\). In the following, we use \(C_0\) and \(C_0’\) to refer to the sets in the two copies and we similarly use \(C_1\) and \(C_1’\). In addition, the graph contains a perfect matching between the two copies of the basic cluster graph such that each edge of this perfect matching connects a node in the first copy with a node in the same cluster of the second copy. The graph has the property that every matching that does not contain any of the edges of the perfect matching between the two copies is of size \(o(n)\). Further, the two sets \(C_0\) and \(C_0’\) together contain \((1 - o(1))n\) nodes. Finally, the graph is constructed with no cycles of length less than 2\(k + 1\) and it is shown in [35] that in this case, all edges between clusters \(C_0\), \(C_1\), \(C_0’\), and \(C_1’\) have the same \(k\)-hop views. Consequently, after \(k\) rounds, all those edges need to be added to the matching with the same probability. Because nodes in \(C_1\) and \(C_1’\) are incident to \(\delta = \omega(1)\) such edges, this probability has to be \(o(1)\). Because \((1 - o(1))/2\) of the perfect matching edges are between \(C_0\) and \(C_0’\), this implies that any matching after \(k\) rounds has to be of size \(o(n)\). However at the end, any maximal matching must contain \((1 - o(1))/2\) perfect matching edges between \(C_0\) and \(C_0’\). This implies that after \(k\) rounds, most of the nodes in \(C_0\) and \(C_0’\) (and thus \((1 - o(1))n\) nodes) are all not decided and thus, the node-averaged complexity is at least \(k = \Omega \left(\min \left\{ \frac{\log \Delta}{\log \log \Delta} \cdot \sqrt{\frac{\log n}{\log \log n}} \right\} \right)\). \(\square\)

Funding Open access funding provided by Gran Sasso Science Institute - GSSI within the CRUI-CARE Agreement.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
Appendix A: Other notions of averaged complexity

We now discuss possible stronger notions of node and edge averaged complexity. In some cases, we might want to have stronger guarantees. For example, if we want to use an algorithm with a low node or edge-averaged complexity as a building block in another algorithm, the individual node or edge complexities might be particularly important for some of the nodes or edges and not as important for others. In some cases, we might even need all nodes or edges to have a low complexity “on average”, when averaging over different runs of the algorithm. For this purpose, we also define the weighted node/edge-averaged complexity and the node/edge-expected complexity. Recall that $T_v^G(A)$ and $T_e^G(A)$ are the individual complexities of node v and edge e when running algorithm A on graph G. For the weighted node-averaged complexity, the nodes in V are given positive weights $w : V \rightarrow \mathbb{R}_{>0}$, which are given to an algorithm as input. The weighted node-averaged complexity of an algorithm is then defined as the weighted average node complexities according to the given weights. The weighted edge-averaged complexity is defined accordingly with edge weights. For a given problem P, the weighted node/edge-averaged complexity is defined as the weighted node/edge-averaged complexity of best possible algorithm, but for a worst-case weight distribution.

We want to point out that the concept of weighted node-averaged complexity has (implicitly) proven useful in a recent distributed graph coloring paper by Ghaffari and Kuhn [25]. For given weights on the nodes, they give an efficient algorithm to color a subset of nodes corresponding to a constant fraction of the overall weight and they use this to implement some pipelining, when coloring layered graphs. As a result, they obtained faster deterministic algorithms for computing Δ-colorings of general graphs and for coloring low-arboricity graphs.

The node-expected complexity of an algorithm A on a graph $G = (V, E)$ is defined as $\max_{v \in V} \mathbb{E}[T_v^G(A)]$ and again the edge-expected complexity is defined accordingly. Note that for a deterministic algorithm A, the node/edge-expected complexity is equal to the worst-case complexity. This is however not true for randomized algorithms, where it can be that every node/edge has a small individual complexity in expectation, but that with high probability there are some nodes/edges for which the individual complexity in an actual execution is significantly larger (this is in fact the case for many existing randomized graph algorithms that are based on graph shattering [8, 19, 21, 23, 24, 26, 28]). We note that Feuilloley [20] defines a notion of averaged complexity that is essentially equivalent to the node-expected complexity as defined in this paper. Feuilloley considers the maximal (over the nodes) individual complexity of the best possible deterministic algorithm if the node identifiers are chosen uniformly at random.

In the following, for a graph problem P, let us use $\text{AVG}_V(P)$, $\text{AVG}_V^w(P)$, $\text{EXP}_V(P)$, and $\text{WORST}_V(P)$ to denote the node-averaged complexity of P, the weighted node-averaged complexity of P, the node-expected complexity of P, and the worst-case complexity of P. We have

\[
\text{AVG}_V(P) \leq \text{AVG}_V^w(P) \leq \text{EXP}_V(P) \leq \text{WORST}_V(P).
\]

For deterministic algorithms, the last inequality is an equality. For the edge-based complexity notions, the definitions and relations hold accordingly.

Let us briefly observe what we can say about the weighted averaged and expected complexities of MIS and maximal matching, two of the main problems studied in this paper. For MIS and for maximal matching, we showed that the node-averaged complexity is lower bounded by the KMW bound (i.e., by $\Omega\left(\sum_{v \in V} \log \log n - \frac{\log \log n}{\log \log \log n}\right)$). The same lower bound therefore also holds for the stronger node-averaged complexity notions. For maximal matching, the edge-averaged complexity is $O(1)$. Note however that, as described in the proof of Theorem 21, the KMW lower bound construction that is used for maximum matching in [35] contains a perfect matching such that every maximal matching contains almost all edges of this perfect matching, and within the KMW time bound, only a $o(1)$-fraction of those edges can join the matching. By putting most of the weight on those edges, we can therefore see that the KMW lower bound also holds for the weighted edge-averaged complexity of maximal matching (and thus also for the edge-expected complexity).

We mentioned in Sect. 1 that the node-averaged complexity of MIS is $O\left(\frac{\log \Delta}{\log \log \Delta}\right)$, by using a randomized MIS algorithm of [13]. This algorithm in fact has the stronger property that for every node $v \in V$, the probability that v is undecided after $O\left(\frac{\log \Delta}{\log \log \Delta}\right)$ rounds is $o(1)$. Cfr. Theorem 3.1 in [13]. This implies that the node-expected complexity of MIS and the edge-expected complexity of maximal matching are both $O\left(\frac{\log \Delta}{\log \log \Delta}\right)$. We hope that further investigating the discussed and possibly other notions of node or edge-averaged complexity will prove useful for obtaining a more thorough understanding of the complexities of distributed graph problems.
References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986).
2. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of 30th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 364–369 (1989).
3. Ahmadi, M., Kuhn, F., Oshman, R.: Distributed approximate maximum matching in the congest model. In: Proceedings of the International Symposium on Distributed Computing (DISC). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018).
4. Amit, A., Linial, N., Matousek, J.: Random lifts of graphs: independence and chromatic number. Random Struc. Algorithms 20(1), 1–22 (2002).
5. Balliu, A., Brandt, S., Kuhn, F., Oliveti, D.: Deterministic δ-coloring plays hide-and-seek. In: Proceedings of 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC) (2022).
6. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool Publishers (2013).
7. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Δ + 1)-coloring in linear (in Δ) time. SIAM J. Comput. 43(1), 72–95 (2014).
8. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20 (2016).
9. Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed lovász local lemma. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 479–488 (2016).
10. Bender, M.A., Klopelowitz, T., Pettie, S., Young, M.: Contention resolution with constant throughput and log-logstar channel accesses. SIAM J. Comput. 47(5), 1735–1754 (2018).
11. Barenboim, L., Maimon, T.: Deterministic logarithmic completeness in the distributed sleeping model. In: Proceedings of 35th International Symposium on Distributed Computing (DISC), Volume 209 of LIPIcs, pp. 10:1–10:19 (2021).
12. Barenboim, L., Tzur, Y.: Distributed symmetry-breaking with improved vertex-averaged complexity. In: Proceedings of 20th International Conference on Distributed Computing and Networking (ICDCN), pp. 31–40 (2019).
13. Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., Schwartzman, G.: Distributed approximation of maximum independent set and maximum matching. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 165–174 (2017).
14. Chang, Y.J., Dani, V., Hayes, T.P., Pettie, S.: The energy complexity of bfs in radio networks. In: Proceedings of the 39th Symposium on Principles of Distributed Computing, pp. 273–282 (2020).
15. Chatterjee, S., Gmyr, R., Pandurangan, G.: Sleeping is efficient: Mis in O(1)-rounds node-averaged awake complexity. In: Proceedings of the 39th Symposium on Principles of Distributed Computing, pp. 99–108 (2020).
16. Chang, Y.-J., Klopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the LOCAL model. In: Proceedings of 57th IEEE Symposium on Foundations of Computer Science (FOCS) (2016).
17. Chang, Y.-J., Klopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations in the energy complexity of leader election. ACM Trans. Algorithms 15(4), 1–31 (2019).
18. Coupette, C., Lenzen, C.: A breathing proof of the KMW bound. In: 4th Symposium on Simplicity in Algorithms, SODA 2021, Virtual Conference, January 11–12, 2021, pp. 184–195. SIAM (2021).
19. Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (Δ + 1)-coloring algorithm? In: Proceedings of 50th ACM Symposium on Theory of Computing (STOC) (2018).
20. Feuilloley, L.: How long it takes for an ordinary node with an ordinary id to output? Theoret. Comput. Sci. 811, 42–55 (2020).
21. Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for lovász local lemma, and the complexity hierarchy. arXiv preprint arXiv:1705.04840 (2017).
22. Fischer, M.: Improved deterministic distributed matching via rounding. Distrib. Comput. 33(3), 279–291 (2020).
23. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 270–277 (2016).
24. Ghaffari, M., Harris, D., Kuhn, F.: On derandomizing local distributed algorithms. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp. 662–673 (2018).
25. Ghaffari, M., Kuhn, F.: Deterministic distributed vertex coloring: simpler, faster, and without network decomposition. In: Proceedings of 62nd IEEE Symposium on Foundations of Computer Science (FOCS) (2021).
26. Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2505–2523 (2017).
27. Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2505–2523. Society for Industrial and Applied Mathematics (2017).
28. Harris, D.G., Schneider, J., Su, H.H.: Distributed (δ+1)-coloring in sublogarithmic rounds. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 465–478 (2016).
29. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett. 22(2), 77–80 (1986).
30. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Efficient algorithms for leader election in radio networks. In: Proceedings of the Twenty-First Annual Symposium on Principles of Distributed Computing, pp. 51–57 (2002).
31. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Energy-efficient size approximation of radio networks with no collision detection. In: International Computing and Combinatorics Conference, pp. 279–289. Springer (2002).
32. Johansson, O.: Simple distributed Δ + 1-coloring of graphs. Inf. Process. Lett. 70(5), 229–232 (1999).
33. Kardas, M., Klonowski, M., Pająk, D.: Energy-efficient leader election protocols for single-hop radio networks. In: Proceedings of 42nd International Conference on Parallel Processing (ICPP), pp. 399–408 (2013).
34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 300–309 (2004).
35. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds. J. ACM 63, 2 (2016).
36. Kutyłowski, M., Zatopiański, J.: A processor penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993).
37. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 1036–1053 (1986).
38. Luby, M.: Removing randomness in parallel computation without a processor penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993).
39. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J. Discrete Math. 4(3), 409–412 (1991).
40. Nakano, K., Olariu, S.: Energy-efficient initialization protocols for single-hop radio networks with no collision detection. IEEE Trans. Parallel Distrib. Syst. 11(8), 851–863 (2000).
41. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000).
43. Rozhon, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings of 52nd ACM Symposium on Theory of Computing (STOC)

44. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the chromatic number or the neighborhood growth. Theoret. Comput. Sci. 509, 40–50 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.