The Applications and Potential Developments of Ultrasound in Oral Cancer Management

Wu-Chia Lo, MD, PhD1,2,3, Chih-Ming Chang, MD, PhD1,4, Ping-Chia Cheng, MD1,3,4,5, Ming-Hsun Wen, MD1, Chi-Te Wang, MD, PhD1,6, Po-Wen Cheng, MD, PhD1, and Li-Jen Liao, MD, PhD1,3,6

Abstract
Oral cancer is endemic and causes a great burden in Southern Asia. It is preferably treated by surgery with or without adjuvant radiotherapy (RT) or chemoradiation therapy, depending on the stage of the disease. Close or positive resection margin and cervical lymph node (LN) metastasis are important prognostic factors that have been presented to be related to undesirable locoregional recurrence and poor survival. Ultrasound (US) is a simple, noninvasive, time-saving, and inexpensive diagnostic modality. It can depict soft tissues very clearly without the risk of radiation exposure. Additionally, it is real-time and continuous image is demonstrated during the exam. Furthermore, the clinician can perform US-guided fine needle aspiration (FNA) or core needle biopsy (CNB) at the same time. US with or without US-guided FNA/CNB is reported to be of value in determining tumor thickness (TT), depth of invasion (DOI), and cervical LN metastasis, and in aiding the staging of oral cancer: DOI has a relevant prognostic value as reported in the eighth edition of the American Joint Committee on Cancer staging of oral cancer. In the present review, we describe the clinical applications of US in oral cancer management in different phases and potential applications in the future. In the pretreatment and surgical phase, US can be used to evaluate TT/DOI and surgical margins of oral cancer in vivo and ex vivo. The prediction of a malignant cervical LN (nodal metastasis) by the US-based prediction model can guide the necessity of FNA/CNB and elective neck dissection in clinical early-stage oral cancer. In the posttreatment surveillance phase, US with or without US-guided FNA or CNB is helpful in the detection of nodal persistence or LN recurrence, and can assess the possibility and extent of carotid artery stenosis after irradiation therapy. Both US elastography and US swallowing assessment are potentially helpful to the management of oral cancer.

Keywords
ultrasound, oral cancer, radiotherapy, chemoradiation therapy, fine needle aspiration, core needle biopsy, lymph node

Abbreviations
CIMT, carotid intimal–medial thickness; CNB, core needle biopsy; CVD, cerebrovascular disease; DOI, depth of invasion; FNA, fine needle aspiration; LN, lymph node; PET/CT, positron emission tomography/computed tomography; RT, radiotherapy; TT, tumor thickness; US, ultrasound; MRI, magnetic resonance imaging; SLNB, sentinel LN biopsy.

Introduction
The worldwide incidence rates (cumulative risk) of oral cancer for men and women are 0.66% and 0.26%, respectively.1 Oral cancer is endemic and causes a great burden in Southern Asia because of habitual betel quid use, cigarette smoking, and chewing tobacco consumption.1,2 Surgical resection of the primary malignancy with or without neck dissection has long been regarded as the best approach. The invasive nature of this disease makes it difficult to determine the margins, especially the deep margin, and the undesirable consequences of close or positive margins are still not uncommon, accounting for 11%-63% close margins and 7%-27% positive margins.3–5

1 Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, Taipei
2 Graduate Institute of Medicine, Yuan Ze University, Taoyuan
3 Head and Neck Cancer Surveillance and Research Study Group, Far Eastern Memorial Hospital, New Taipei City
4 Department of Biomedical Engineering, National Yang-Ming University, Taipei
5 Department of Communication Engineering, Asia Eastern University of Science and Technology, New Taipei City
6 Department of Electrical Engineering, Yuan Ze University, Taoyuan

Corresponding Author:
Li-Jen Liao, MD, PhD, Department of Otolaryngology, Far Eastern Memorial Hospital, 21, Section 2, Nan-Ya South Road, Banqiao, New Taipei 22061.
Email: liaolj@ntu.edu.tw, deniro@mail2000.com.tw

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Neck lymph node (LN) metastasis is also one of the most important prognostic factors in the treatment of patients with oral cancer. Occult LN metastasis is estimated to be present in 23.9%-26.4% of clinical stage I/II oral cancer. Efforts, therefore, are being made to detect indicators that can predict LN metastasis. Tumor thickness (TT), depth of invasion (DOI), and ultrasound (US) with/without US-guided fine needle aspiration (FNA) are parameters that have been studied for the prediction of nodal metastasis and correlate with locoregional recurrence.

US is a simple, noninvasive, time-saving, and low-cost image modality. It illustrates cervical soft tissues very clearly and bears no risk of radiation exposure. Also, it exhibits a real-time and continuous image throughout the assessment. Besides, US-guided FNA or core needle biopsy (CNB) can be achieved in the meantime. One meta-analysis and systemic review show that both FNA and CNB have high sensitivity, specificity, and accuracy (all above 90%) in detecting head and neck malignancies. US with/without US-guided FNA or CNB has been shown to be beneficial in assessing TT, DOI, and nodal metastasis, and in assisting the staging properly in oral cancer patients.

DOI has a relevant prognostic value as reported in the eighth edition of the American Joint Committee on Cancer staging of oral cancer. In the treated neck of oral cancer patients, it is practical in early identifying a persistent nodal disease or cervical LN recurrence and in directing the need for salvage neck dissection. Consequently, US can help the management of oral cancer in different scenarios. In this study, we aim to review the utility of US in oral cancer management in different phases (Table 1).

Table 1. The Applications of Ultrasound in the Assessment of Oral Cancer in Different Phases.

Phase of oral cancer treatment	Ultrasound applications
Pretreatment assessment	Primary tumor TT/DOI assessment
	Neck LN evaluation
	Guidance of the necessity of US-guided FNA/CNB
	Assist in clinical staging
	PET/CT hot spot evaluation and confirmation
During surgery	Real-time TT/DOI measurement
	In vivo and ex vivo resection margin assessment
	Guide cN0 neck dissection
Posttreatment surveillance	Surveillance of neck nodal status
	Guidance of the necessity of US-guided FNA/CNB
	PET/CT hot spot evaluation and confirmation
	Check the risk of CVD and guide management

Abbreviations: TT, tumor thickness; DOI, depth of invasion; FNA, LN, lymph node; fine needle aspiration; CNB, core needle biopsy; PET/CT, positron emission tomography/computed tomography; CVD, cerebrovascular disease.

Pretreatment and Surgical Phase

Intraoral US in Measuring TT and DOI of Oral Cancer

In oral cancer, the mainstay of primary site treatment is complete surgical resection with adequate margins. In the past, the surgeon defines the tumor’s dimensions by vision and manual palpation, and plans for resections allowing a minimal margin distance of ≥5 mm, which is essential for local control and disease-free survival. This technique is often successful in determining the mucosal margins, while the deep margin in particular is often inadequate. In one meta-analysis, margin revision of initially positive margins to clear margins based on frozen section guidance does not significantly improve local control and has a 2.5 times worse 5-year local recurrence-free survival compared to initially negative resection margins. As a result, primary resection to obtain a negative margin (≥5 mm) is critical. There are numerous studies suggested that preoperative or intraoperative US is reliable for the assessment of TT or DOI in oral cancer and can potentially guide the surgeon in the achievement of adequate resection margins, especially the deep margin (Figure 1A and B). The correlation between the US-obtained and histology-obtained TT or DOI is good to strong with Spearman R = 0.760-0.988, and some studies show that US is better than computed tomography (CT) and magnetic resonance imaging (MRI) at determining the deep margins of oral cancer. This technique is reported to be particularly reliable in tongue cancers with TT or DOI under 10 mm. The head and neck surgeon can use real-time intraoperative (in vivo) US to assess the deep margin at the midpoint of the resection and reexamine (ex vivo) the resection specimens immediately after the completion of the resection. Ex vivo examination by using US can be an adjunct to or even replace frozen section analysis and can guide an immediate re-resection, which further prevents local adjuvant treatment.

Assessment of Cervical LN Metastasis and Guidance of US-Guided FNA/CNB and Patient Surveillance

It is important for clinicians to be able to identify US parameters of a LN regarding its likelihood of being benign or malignant. Size, shape, echogenicity, echogenic hilum, internal echo, necrosis, margin, vascular pattern, elastography, and grouping or matting are reported to be US features associated with malignant nodal disease. The accuracy of differentiation between benign and malignant LN varies according to nodal size and the optimal cutoff differs at different neck levels. Shape is usually described in terms of the ratio between the short-axis and long-axis diameters (S/L ratio). Normal LNs are usually elliptical with an S/L ratio < 0.5, whereas malignant cervical nodes are more likely to be round with an S/L ratio ≥ 0.5. Metastatic LNs are typically bigger in size with round shape, hypoechoic in echogenicity, missing of echogenic hilum, heterogeneous in internal echo, having abnormal vascular pattern other than hilar or avascular.
pattern, and they may have intranodal necrosis, irregular margin, or present with groups of nodes. Elastography assesses LN elasticity and malignant nodal lesion tends to be stiffer than the benign LN.17,46 Because there is no single US parameter that can both achieve good sensitivity and favorable specificity in the detection of cervical LN metastases, prediction models using clinical and sonographic features are created to assess malignant nodal disease (Table 2).16,17,43,46,48 Our group have had proposed a predictive scoring model in predicting malignant cervical LN,16 which shows excellent results with c-statistic of 0.90-0.95 in the following internal validations.17,46 This model is also validated externally at Mount Sinai Medical Center and displays good overall accuracy of 90%.44 These data suggest that the prediction models can provide the physician reliable probability guidance for performing US-guided FNA/CNB (Figure 2A and B), and a promising method for initial nodal staging.16,43 The predictive scoring model can also serve as an adjunctive tool in determining how closely a patient’s neck should be surveyed.

US can also be used to assist in the evaluation of hot spots at positron emission tomography (PET)/CT. PET/CT is widely used in tumor staging and the evaluation of treatment response and recurrence.49 However, since the principle of PET/CT is based on the physically 18-F fluorodeoxyglucose uptake, some inflammation may have a higher standardized uptake value and is deemed as malignancy. Yoon et al50 have shown that subsequent US can help to differentiate the false-positive node and can also simultaneously obtain the US-guided FNA for further evaluation.

Guidance of Neck Dissection in Clinically N0 Neck in Early Oral Cancer

The investigation and management of oral cancer patients with clinically N0 disease are controversial. Most medical centers electively treat the neck with surgery or radiotherapy (RT) because the risk of LN occult metastases is over 20%, even

Figure 1. Real-time intraoral US (A) can be used to check oral cancer, it is reliable for the assessment of TT or DOI (B) in oral cancer and can potentially guide the surgeon in the achievement of adequate resection margins, especially the deep margin. Abbreviations: US, ultrasound; TT, tumor thickness; DOI, depth of invasion.
though the majority of patients will encounter unnecessary neck surgery. Yesuratnam et al\(^8\) have shown that intraoral US can be used for the assessment of TT of tongue cancer and can guide prophylactic neck dissection in early-stage disease. If US-measured TT is ≤4 mm, the LN metastases rate is 12.5%, compared to the LN metastases rate of 36.7% if TT is >4 mm obtained by US.\(^8\) Terada et al\(^9\) have studied the cutoff value of DOI for prophylactic neck dissection in clinical early-stage tongue cancer. The final data shows that the occult LN metastasis rate is 11.1% in patients with pathological DOI < 5 mm versus a rate of 42.1% in patients with pathological DOI ≥ 5 mm. It is reported that adding US in clinically N0 (under CT/MRI) oral cancer patients is able to reduce occult LN metastases from 31% to 18%.\(^18\) Our group has performed a meta-analysis comparing different imaging modalities in the evaluation of clinically N0 neck in head and neck cancer patients.\(^51\) The result shows that if the baseline possibility of clinical occult LN metastases is 30%, the negative predictive rate with a negative US result is 84%, which means the LN metastases rate is below 20%. Therefore, in some selected cases, a watchful waiting policy is feasible. There is one prospective study, including 90 clinically T1-3N0 oral cancer patients, using selected sono- graphic criteria to determine the cervical LNs.\(^27\) The final results show that 33.7% of unnecessary elective neck dissection can be reduced in the truly negative neck and the occult LN metastases rate is 5.4% for the untreated neck. However, some studies advocate sentinel LN biopsy (SLNB) to detect occult metastasis to prevent unwanted neck dissection in early oral cancer.\(^52\)–\(^54\) Currently, the 2022 National Comprehensive Cancer Network guideline suggests that SLNB or DOI is the best predictor of neck occult metastasis. For primary tumors with DOI >3 mm, END is suggested as effective management; while for tumors with DOI < 4 mm without suspicious US characteristics of neck LN, close observation can be the feasible management.

Posttreatment Phase

Detection of Nodal Malignancy by US in Treated Oral Cancer

Early detection of regional recurrences is crucial during the follow-up programs for oral cancer patients. Neck US is

Table 2. The Reported Prediction Models in the Assessment of Cervical LN.

Author, year	Prediction model	Sensitivity (%)	Specificity (%)
For cervical LN			
Wu et al\(^48\)	1 × (age) + 2 × (vascularity index) + 3 × (short-axis) + 4 × (vascular pattern) + 4 × (internal echo)	89.2	85.2
Liao et al\(^16\)	0.06 × (age) + 4.76 × (S/L ratio) + 2.15 × (internal echo) + 1.80 × (vascular pattern)	91.3	88.2
Lai et al\(^43\)	2 × (age) + 2 × (S/L ratio) + 3 × (internal matting) + 3 × (vascular pattern)	91.9	88.2
Lo et al\(^46\)	0.04 × (age) + 2.28 × (S/L ratio) + 3.42 × (internal echo) + 2.29 × (elasticity indices)	83.3	88.2
For post-RT node			
Lo et al\(^33\)	1.35 × (L-axis) + 2.03 × (S-axis) + 2.27 × (margin) + 1.48 × (echogenic hilum) + 3.7	85.5	79.4

Abbreviations: LN, lymph node; RT, radiotherapy; S/L, the ratio between the short-axis and long-axis diameters.

Figure 2. (A) Under the real-time guidance of ultrasound (US), FNA can be performed. (B) Large vessels could be visualized and incidental injury could be avoided under the guidance of US. Abbreviations: US, ultrasound; FNA, fine needle aspiration.
reported to be effective in the posttreatment surveillance.34,55 Lin et al32 have displayed a short-axis diameter, S/L ratio (shape), heterogeneous internal echo, and irregular margin are practical US parameters in determining recurrent LNs in the treated neck. Our research group has revealed that RT had an influence on ultrasonographic features in treated oral cancer patients.31 The recurrent cervical LNs in treated oral cancer patients with previous neck irradiation are smaller in size and have more signs of irregular margin and calcification under US than those without previous neck irradiation. As a result, we have then created a real-time predictive scoring model for the prediction of postirradiation malignant cervical LNs (Table 2).33 We recommend proceeding to US-guided tissue sampling for the LN with a predictive score ≥ 6 in clinical use, corresponding to a sensitivity of 97.4\% and a negative predictive value of 95.6\%.

US-guided FNA/CNB has been shown to have good sensitivity and specificity in detecting nodal malignancy in treated head and neck cancer.31–33,35,56,57 In the treated neck of head and neck cancer patients, the reported sensitivity and specificity for US-guide FNA are 71.4\%–97.1\% and 83.3\%–100\%, respectively.31,32,56,57 While in US-guided CNB, the demonstrated sensitivity and specificity is 84.5\% and 100\%, respectively.35 Although CNB has been considered to have a higher diagnostic rate in detecting true malignancy in the total head and neck regions, the sensitivity and specificity do not differ significantly between both methods in diagnosing squamous cell carcinoma.15,58 In a treated neck, Lo et al15 have shown that necrosis and fibrotic change of LNs have a significant adverse effect on the diagnosing performance of CNB with a negative predictive value of 54.7\%. Accordingly, for the highly suspicious node in the treated neck, if FNA or CNB cannot provide a convincing answer, repeated FNA/CNB, PET/CT exam,55 or surgical excision should still be suggested.

Doppler US for Follow-up Survey of Carotid Artery Stenosis After Neck Irradiation

As demonstrated by one meta-analysis, RT to the neck can cause injury and stenosis of the carotid artery.59 In head and neck cancer patients treated by RT, the prevalence of 50\%–70\% and $\geq 70\%$ carotid artery stenosis are 25\%–26\% and 11\%, respectively, and the cumulative incidence continuously increases over time.59,60 One previous study has reported that screening for $\geq 60\%$ carotid artery stenosis is cost-effective when the prevalence is more than 20\%.61 There is also at least a 2-fold risk of cerebrovascular disease (CVD) events in head and neck cancer patients treated by RT compared with a normal population. The diagnosis and screening of carotid artery stenosis mainly depend on high resolution and Doppler ultrasonography. Besides, we can obtain the carotid intimal–medial thickness (CIMT), which is the predictor for cardiovascular and stroke events and can further reflect the response of medical treatment by CIMT change.52,63 Measurement of CIMT using US is useful for assessing CVD risk in oral cancer survivors after neck irradiation (Figure 3) and is promising to improve the CVD risk evaluation.64 Lifestyle intervention and medical management, including antiplatelet, statins, and angiotensin-converting enzyme inhibitors, are indicated for patients who have atheromatous lesions. Carotid endarterectomy and carotid artery stenting are recommended in postirradiated patients with $\geq 70\%$ carotid artery stenosis and should be considered in those with 50\%–70\% symptomatic stenosis.65,66

Potential Application of US in the Assessment of Oral Cancer

US Elastography

We have performed real-time and shear wave elastography in the assessment of malignant cervical LNs and showed slightly better performance of shear wave elastography, corresponding to a sensitivity of 83.3\% and specificity of 64.7\%.17,46 However, if we incorporate real-time or shear wave elastography into our previously proposed predictive scoring model, the diagnostic performance is not significantly increased (Table 2).16,17,46 Thus, we demonstrate that the parameters of a US-based model including grey-scale and Doppler US are basic and good at determining nodal malignancy. Shear wave elastography can be considered as having a complementary role in diagnosing malignant cervical LN beyond conventional US exams.46,67

US in Swallowing Assessment

The presence of speech and swallowing problems in oral cancer patients following surgery or radiation has been well documented in the literature.68,69 US can be used to assess the dynamic change and different phases of swallowing.70 In the oral phase, US can evaluate the tongue muscle movement; in the pharyngeal phase, US can measure the movement of hyoid bone and thyroid cartilage, the constriction of the cricopharyngeus muscle, and can check the vocal fold movement.71,72 Besides
the swallowing phase evaluation, US also shows the potential in assisting swallowing rehabilitation in patients who received partial glossectomy by using US visual feedback during swallowing tasks (Figure 4).73

Conclusions
In the present review, we describe the clinical applications of US in oral cancer management in different phases and potential applications. In the pretreatment and surgical phase, US can be used to evaluate TT/DOI and surgical margins of oral cancer in vivo and ex vivo. The prediction of a cervical LN metastasis by the US-based prediction model can guide the necessity of US-guided FNA/CNB and elective neck dissection in clinical early-stage oral cancer. In the posttreatment surveillance phase, US with/without US-guided FNA or CNB is helpful in the detection of nodal persistence or LN recurrence, and can assess the possibility and extent of carotid artery stenosis after irradiation therapy. Both US elastography and US swallowing assessment are potentially helpful to the management of oral cancer. The clinical application of US in oral cancer should be advocated.

Acknowledgments
We sincerely thank Yu-Hsuan Lin (Head and Neck Cancer Surveillance and Research Group, Far Eastern Memorial Hospital, New Taipei City, Taiwan) for her gracious help in the revision.

Author Contributions
W.C.L., C.M.C., and P.C.C. wrote the manuscript. P.W.C. and L.J.L. reviewed and edited the manuscript. W.C.L. and L.J.L. prepared the tables and figures. All authors reviewed and revised the manuscript.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Far Eastern Memorial Hospital (grant numbers FEMH-2021-C-039 and FEMH-2022-C-064).

ORCID iDs
Wu-Chia Lo https://orcid.org/0000-0002-3393-9001
Li-Jen Liao https://orcid.org/0000-0003-0837-1597

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
2. Xie L, Shang Z. Burden of oral cancer in Asia from 1990 to 2019: estimates from the Global Burden of Disease 2019 study. PLoS One. 2022;17(3):e0265950.
3. Klein Nulent TJW, Noorlag R, Van Cann EM, et al. Intraoral ultrasonography to measure tumor thickness of oral cancer: a systematic review and meta-analysis. Oral Oncol. 2018;77:29-36.
4. Tarabichi O, Bulbul MG, Kanumuri VV, et al. Utility of intraoral ultrasound in managing oral tongue squamous cell carcinoma: systematic review. Laryngoscope. 2019;129(3):662-670.
5. Brouwer de Koning SG, Schaeffers A, Schats W, van den Brekel MWM, Ruers TJM, Karakullukcu MB. Assessment of the deep resection margin during oral cancer surgery: a systematic review. Eur J Surg Oncol. 2021;47(9):2220-2225.
6. Dik EA, Willems SM, Ipenburg NA, Adriaansens SO, Rosenberg AJ, van Es RJ. Resection of early oral squamous cell carcinoma with positive or close margins: relevance of adjuvant treatment in relation to local recurrence: margins of 3 mm as safe as 5 mm. Oral Oncol. 2014;50(6):611-615.
7. Smits RW, Koljenovic S, Hardillo JA, et al. Resection margins in oral cancer surgery: room for improvement. Head Neck. 2016;38(Suppl 1):E2197-E2203.
8. Yesuratnam A, Wiesenfeld D, Tsui A, et al. Preoperative evaluation of oral tongue squamous cell carcinoma with intraoral ultrasound and magnetic resonance imaging-comparison with histopathological tumour thickness and accuracy in guiding patient management. Int J Oral Maxillofac Surg. 2014;43(7):787-794.
9. Terada H, Sasaki E, Suzuki H, Nishikawa D, Beppu S, Hanai N. An examination of the cutoff value of the depth of invasion for prophylactic neck dissection in stage I/II tongue cancer. Acta Otolaryngol. 2020;140(5):422-426.
10. D’Cruz AK, Vaish R, Kapre N, et al. Elective versus therapeutic neck dissection in node-negative oral cancer. N Engl J Med. 2015;373(6):521-529.
11. Sproll KC, Leydag S, Holtmann H, et al. Is the prediction of one or two ipsilateral positive lymph nodes by computerized tomography...
and ultrasound reliable enough to restrict therapeutic neck dissection in oral squamous cell carcinoma (OSCC) patients? J Cancer Res Clin Oncol. 2021;147(8):2421-2433.

12. Faisal M, Abu Bakar M, Sarwar A, et al. Depth of invasion (DOI) as a predictor of cervical nodal metastasis and local recurrence in early stage squamous cell carcinoma of oral tongue (ESCCOT). PLoS One. 2018;13(8):e0202632.

13. Muhammad AY, Dhanani R, Salman S, Shaikh Z, Ghaloo SK, Ikram M. Depth of invasion as a predictor of cervical nodal metastasis of oral tongue squamous cell carcinoma: findings from a tertiary care center in Pakistan. Cureus. 2021;13(10):e18976.

14. van Lanschot CGF, Klazen YP, de Ridder MAJ, et al. Depth of invasion in early stage oral cavity squamous cell carcinoma: the optimal cut-off value for elective neck dissection. Oral Oncol. 2020;111:104940.

15. Novoa E, Gurtler N, Arnoux A, Kraft M. Role of ultrasound-guided core-needle biopsy in the assessment of head and neck lesions: a meta-analysis and systematic review of the literature. Head Neck. 2012;34(10):1497-1503.

16. Liao LJ, Wang CT, Young YH, Cheng PW. Real-time and computerized sonographic scoring system for predicting malignant cervical lymphadenopathy. Head Neck. 2010;32(5):590-598.

17. Lo WC, Cheng PW, Wang CT, Liao LJ. Real-time ultrasound elastography: an assessment of enlarged cervical lymph nodes. Eur Radiol. 2013;23(9):2351-2357.

18. Norling R, Buron BM, Therkildsen MH, Henriksen BM, von Buchwald C, Nielsen MB. Staging of cervical lymph nodes in oral squamous cell carcinoma: adding ultrasound in clinically lymph node negative patients may improve diagnostic work-up. PLoS One. 2014;9(3):e90360.

19. Iida Y, Kamijo T, Kusafuka K, et al. Depth of invasion in superficial oral tongue carcinoma quantified using intraoral ultrasonography. Laryngoscope. 2018;128(12):2778-2782.

20. Tarabichi O, Kanumuri V, Juliano AF, Faquin WC, Cunnane ME, Varvares MA. Intraoperative ultrasound in oral tongue cancer resection: feasibility study and early outcomes. Otolaryngol Head Neck Surg. 2018;158(4):645-648.

21. Brouwer de Koning SG, Karakullukcu MB, Lange CAH, Schreuder WH, Karsmakers LHE, Ruers TJM. Ultrasound aids in intraoperative assessment of deep resection margins of squamous cell carcinoma of the tongue. Br J Oral Maxillofac Surg. 2020;58(3):285-290.

22. Noorlag R, Klein Nulent TJW, Delwel VEJ, et al. Assessment of tumour depth in early tongue cancer: accuracy of MRI and intraoral ultrasound. Oral Oncol. 2020;110:104895.

23. Yoon BC, Bulbul MD, Sadow PM, et al. Comparison of intraoperative sonography and histopathologic evaluation of tumor thickness and depth of invasion in oral tongue cancer: a pilot study. AJNR Am J Neuroradiol. 2020;41(7):1245-1250.

24. Bulbul MG, Tarabichi O, Parikh AS, et al. The utility of intraoral ultrasound in improving deep margin clearance of oral tongue cancer resections. Oral Oncol. 2021;122:105512.

25. Filauro M, Missale F, Marchi F, et al. Intraoral ultrasonography in the assessment of DOI in oral cavity squamous cell carcinoma: a comparison with magnetic resonance and histopathology. Eur Arch Otorhinolaryngol. 2021;278(8):2943-2952.

26. Yoon BC, Buch K, Cunnane ME, Sadow PM, Varvares MA, Juliano AF. Comparison between computed tomography and ultrasound for presurgical evaluation of oral tongue squamous cell carcinoma tumor thickness. Am J Otolaryngol. 2021;42(6):103089.

27. Rollon-Mayordomo A, Creo-Martinez T, Marin-Lapeira Y, Rodriguez-Ruiz JA, Infante-Cossio P. Preoperative ultrasonography for evaluation of clinically N0 neck in oral cavity carcinoma. J Craniomaxillofac Surg. 2017;45(3):420-426.

28. Zanoni DK, Patel SG, Shah JP. Changes in the 8th edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: rationale and implications. Curr Oncol Rep. 2019;21(6):52.

29. Amin MES, Greene FL, Byrd DR, et al. AJCC cancer staging manual. 8th ed. Springer International Publishing, American Joint Commission on Cancer; 2017.

30. Park JI, Emmerling O, Westhoffen M. Role of neck ultrasound during follow-up care of head and neck squamous cell carcinomas. Acta Otolaryngol. 2012;132(2):218-224.

31. Lo WC, Cheng PW, Wang CT, et al. The effect of radiotherapy on ultrasound-guided fine needle aspiration biopsy and the ultrasound characteristics of neck lymph nodes in oral cancer patients after primary treatment. PLoS One. 2016;11(3):e0194346.

32. Lin CM, Wang CP, Chen CN, et al. The application of ultrasound in detecting lymph nodal recurrence in the treated neck of head and neck cancer patients. Sci Rep. 2017;7(1):3958.

33. Lo WC, Cheng PW, Shueng PW, Hsieh CH, Chang YL, Liao LJ. A real-time prediction model for post-irradiation malignant cervical lymph nodes. Clin Otolaryngol. 2018;43(2):477-482.

34. Jiang H, Tan Q, He F, et al. Ultrasound in patients with treated head and neck carcinomas: a retrospective analysis for effectiveness of follow-up care. Medicine (Baltimore). 2021;100(16):e25496.

35. Lo TH, Wang CP, Chen CN, et al. Diagnostic performance of core needle biopsy for nodal recurrences in patients with head and neck squamous cell carcinoma. Sci Rep. 2022;12(1):2048.

36. Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions. J Clin Oncol. 2015;33(29):3269-3276.

37. Bulbul MG, Tarabichi O, Sethi RK, Parikh AS, Varvares MA. Does clearance of positive margins improve local control in oral cavity cancer? A meta-analysis. Otolaryngol Head Neck Surg. 2019;161(2):235-244.

38. de Koning KJ, Koppes SA, de Bree R, et al. Feasibility study of ultrasound-guided resection of tongue cancer with immediate specimen examination to improve margin control—comparison with conventional treatment. Oral Oncol. 2021;116:105249.

39. Lodder WL, Teertstra HJ, Tan IB, et al. Tumour thickness in oral squamous cell carcinoma tumor thickness. J Clin Oncol. 2011;29(18):2370-2376.

40. Shintani S, Yoshihama U, Ueyama Y, et al. The usefulness of intraoral ultrasonography in the evaluation of oral cancer. Int J Oral Maxillofac Surg. 2001;30(2):139-143.

41. Toryiabe Y, Nishimura T, Kita S, Saito Y, Miyokawa N. Differentiation between benign and metastatic cervical lymph nodes with ultrasound. Clin Radiol. 1997;52(12):927-932.

42. Richards PS, Peacock TE. The role of ultrasound in the detection of cervical lymph node metastases in clinically N0 squamous cell
carcinoma of the head and neck. Cancer Imaging. 2007;7(1):167-178.
43. Lai YS, Kuo CY, Chen MK, Chen HC. Three-dimensional Doppler ultrasonography in assessing nodal metastases and staging head and neck cancer. Laryngoscope. 2013;123(12):3037-3042.
44. Wu M, Chen H, Zheng X, Burstein DE. Evaluation of a scoring system for predicting lymph node malignancy in ultrasound-guided fine needle aspiration practice. Diagn Cytopathol. 2013;41(12):1100-1106.
45. Jayapal N, SKM Murthy VS, Basheer SA, Shamsuddin SV, Khan AB. Differentiation between benign and metastatic cervical lymph nodes using ultrasound. J Pharm Bioallied Sci 2019;11(Suppl 2):S338-S346.
46. Lo WC, Hsu WL, Wang CT, Cheng PW, Liao LJ. Incorporation of shear wave elastography into a prediction model in the assessment of cervical lymph nodes. PLoS One. 2019;14(8):e0221062.
47. Stoeckli SJ, Haeerle SK, Strobel K, Haile SR, Hany TF, Schunck B. Initial staging of the neck in head and neck squamous cell carcinoma: a comparison of CT, PET/CT, and ultrasound-guided fine-needle aspiration cytology. Head Neck. 2012;34(4):469-476.
48. Wu CH, Lee MM, Huang KC, Ko JY, Sheen TS, Hsieh FJ. A probability prediction rule for malignant cervical lymphadenopathy using sonography. Head Neck. 2000;22(3):223-228.
49. Tantiwongkosi B, Yu F, Kanard A, Miller FR. Role of (18)F-FDG PET/CT in pre and post treatment evaluation in head and neck carcinoma. World J Radiol. 2014;6(5):177-191.
50. Yoon S, Ryu KH, Baek HJ, et al. Cervical lymph nodes detected by F-18 FDG PET/CT in oncology patients: added value of subsequent ultrasonography for determining nodal metastasis. Medicina (Kaunas). 2019;56(1):16.
51. Liao LJ, Lo WC, Hsu WL, Wang CT, Lai MS. Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta-analysis comparing different imaging modalities. BMC Cancer. 2012;12:236.
52. Chaturvedi P, Datta S, Arya S, et al. Prospective study of ultrasound-guided fine-needle aspiration cytology and sentinel node biopsy in the staging of clinically negative T1 and T2 oral cancer. Head Neck. 2015;37(10):1504-1508.
53. Brennan PA, Subramaniam S, Tsioryannis C, Green B. An update on the latest evidence for managing the clinically negative neck (cN0) in oral squamous cell carcinoma. Oral Dis. 2017;23(3):287-291.
54. Sundaram PS, Subramanyam P. Effectiveness of sentinel lymph node scintigraphy and intraoperative gamma probing with gold standard elective neck dissection in patients with N0 oral squamous cell cancers. Nciel Med Commun. 2019;40(11):1138-1147.
55. Künzel J, Strieth S, Wirth G, Bozzato A. Ultrasound in the re-staging of cervical metastases after chemoradiotherapy for head and neck cancer. Ultraschall Med. 2018;39(6):659-666.
56. Fleischman GM, Thorp BD, Defurio M, Hackman TG. Accuracy of ultrasonography-guided fine-needle aspiration in detecting persistent nodal disease after chemoradiotherapy. JAMA Otolaryngol Head Neck Surg. 2016;142(4):377-382.
57. Nishimura G, Matsuda H, Taguchi T, et al. Treatment evaluation of metastatic lymph nodes after concurrent chemoradiotherapy in patients with head and neck squamous cell carcinoma. Anticancer Res. 2012;32(2):595-600.
58. Kraft M, Laeng H, Schmuziger N, Arnoux A, Gürtler N. Comparison of ultrasound-guided core-needle biopsy and fine-needle aspiration in the assessment of head and neck lesions. Head Neck. 2008;30(11):1457-1463.
59. Lin PY, Cheng PC, Hsu WL, et al. Risk of CVD following radiotherapy for head and neck cancer: an updated systematic review and meta-analysis. Front Oncol. 2022;12:820808.
60. Texakalidis P, Giamopoulos S, Tsouknidas I, et al. Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Head Neck. 2020;42(5):1077-1088.
61. Derdeyn CP, Powers WJ. Cost-effectiveness of screening for asymptomatic carotid atherosclerotic disease. Stroke. 1996;27(11):1944-1950.
62. Kumar P, Sharma R, Misra S, et al. CIMT as a risk factor for stroke subtype: a systematic review. Eur J Clin Invest. 2020;50(11):e13348.
63. Willett P, Tschiderer L, Allara E, et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020;142(7):e621-642.
64. Yeh Y-C, Fang K-M, Hsu W-L, Liao L-J. The effectiveness of high-resolution ultrasound in the assessment of the carotid intima–media thickness for postirradiated neck. Eur Arch Oto-Rhino-Laryngol. 2019;276(4):1167-1173.
65. Messas E, Goudot G, Halliday A, et al. Management of carotid stenosis for primary and secondary prevention of stroke: state-of-the-art 2020: a critical review. Eur Heart J Suppl 2020;22(Suppl M):M35-M42.
66. Bonati LH, Kakkos S, Berkefeld J, et al. European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. European Stroke Journal. 2021;6(2):i–xlvii.
67. Suh CH, Choi YJ, Baek JH, Lee JH. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: a systematic review and meta-analysis. Eur Radiol. 2017;27(1):222-230.
68. Manikantan K, Khode S, Sayed SI, et al. Dysphagia in head and neck cancer. Cancer Treat Rev. 2009;35(8):724-732.
69. Platteaux N, Dirix P, Dejaeger E, Nuyts S. Dysphagia in head and neck cancer: an updated systematic review and meta-analysis. Eur Radiol. 2021;29(2):213-218.
70. Psacharopoulos S, Tsouknidas I, et al. Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Head Neck. 2020;42(5):1077-1088.
71. Hsiao M-Y, Wu C-H, Wang T-G. Emerging role of ultrasound in dysphagia assessment and intervention: a narrative review. Dysphagia. 2010;25(2):139-152.
72. Allen JE, Clunie GM, Slinger C, et al. Ultrasound in the assessment of swallowing and laryngeal function: a rapid review. JAMA Otolaryngol Head Neck Surg. 2020;176(7):708-710.
73. Allen JE, Clunie GM, Winniker K. Ultrasound: an emerging modality for the dysphagia assessment toolkit? Curr Opin Otolaryngol Head Neck Surg. 2021;29(3):213-218.
74. Psacharopoulos S, Tsouknidas I, et al. Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Eur Radiol. 2021;29(3):213-218.
75. Suh CH, Choi YJ, Baek JH, Lee JH. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: a systematic review and meta-analysis. Eur Radiol. 2017;27(1):222-230.
76. Psacharopoulos S, Tsouknidas I, et al. Prevalence of carotid stenosis following radiotherapy for head and neck cancer: a systematic review and meta-analysis. Eur Radiol. 2021;29(3):213-218.