Quantitative, noninvasive, *in vivo* longitudinal monitoring of gene expression in the brain by co-AAV transduction with a PET reporter gene

Sea Young Yoon, Carlos Gay-Antaki, Datta E Ponde, Harish Poptani, Charles H Vite and John H Wolfe

In vivo imaging of vector transgene expression would be particularly valuable for repetitive monitoring of therapy in the brain, where invasive tissue sampling is contraindicated. We evaluated adeno-associated virus vector expression of a dopamine-2 receptor (D2R) mutant (D2R80A) by positron emission tomography in the brains of mice and cats. D2R80A is inactivated for intracellular signaling and binds subphysiologic amounts of the radioactive $^{[18}F$]-fallypride analog of dopamine. The $^{[18}F$]-fallypride signal bound to D2R80A in the injection site was normalized to the signal from endogenous D2R in the striatum and showed stable levels of expression within individual animals. A separate adeno-associated virus type 1 vector with identical gene expression control elements, expressing green fluorescent protein or a therapeutic gene, was coinjected with the D2R80A vector at equal doses into specific sites. Both transgenes had similar levels of gene expression by immunohistochemistry, in situ hybridization, and quantitative PCR assays, demonstrating that D2R80A is a faithful surrogate measure for expression of a gene of interest. This dual vector approach allows the D2R80A gene to be used with any therapeutic gene and to be injected into a single site for monitoring while the therapeutic gene can be distributed more widely as needed in each disease.

INTRODUCTION

A number of imaging technologies are available for studying gene expression in living subjects. Approaches using optical imaging of reporter genes such as green fluorescent protein (GFP) and luciferase are widely used in rodents but are limited to small animals due to attenuation of visible light photons especially in deep tissues. Magnetic resonance imaging and positron emission tomography (PET) imaging allow visualization of tissues at greater depths and are thus applicable to larger animals and humans. With repetitive imaging, both modalities can provide data on persistence of the vector. Some magnetic resonance imaging and PET imaging reporter genes may be extended directly into clinical human applications as many clinically approved reagents are in use. Magnetic resonance imaging can provide high-resolution tomographic imaging of gene expression but has relatively low sensitivity, whereas PET has very high sensitivity, making it potentially useful for detecting the relatively low levels of gene expression after vector transfer. PET imaging can also be quantitative, enabling measurement of intensity and regional distribution of the expressed gene.

Several PET reporter gene systems have been developed. They involve the binding of a reporter gene with a specific radiolabeled probe, thus the level of measured radioactivity reflects the expression level of the reporter gene. PET reporter genes used to image gene expression include herpes simplex virus type 1 thymidine kinase (HSV1-tk), dopamine-2 receptor (D2R), D2R mutant, type 2 cannabinoid receptor mutant, sodium iodide symporter, and the somatostatin receptor 2. The D2R80A receptor is a D2R mutant that has been used to image gene transfer after viral vector gene delivery in mouse liver and rat heart using the PET ligand $^{[18}F$]-spiperone and in human glioma cells in mouse subcutaneous xenografts using $^{[11}C$]-raclopride. The D2R80A receptor has a number of desirable features for use as a reporter gene in the brain: (i) it is a mammalian protein and thus nonimmunogenic in clinical application; (ii) it has been inactivated for downstream intracellular signaling, with the mutation in the cytoplasmic domain and thus is biologically inert in cells that do not normally express the D2R gene; (iii) the radiolabeled ligands for this receptor cross the blood–brain barrier; and (iv) radiolabeled ligand binding is detectable at subphysiological concentrations, which avoids triggering undesirable activity in cells that normally express the D2R gene.
Despite its several desirable features, the potential of D2R80A as a PET reporter gene in the brain has not been investigated. In this study, the D2R80A PET-based receptor–ligand binding system was evaluated to monitor the distribution, magnitude, and duration of adeno-associated virus (AAV)-mediated expression. We used the $^{[18F]}$-fallypride ligand, which has a higher binding affinity to D2R than $^{[18F]}$-spiperone. Expression levels of both vectors were similar quantitatively, indicating that the PET reporter would be a faithful surrogate for a therapeutic gene, feline α-mannosidase (FMANB), an enzyme deficient in the lysosomal storage disorder, α-mannosidosis. Expression levels of both vectors were similar quantitatively, indicating that the PET reporter would be a faithful surrogate for a therapeutic gene.

RESULTS

$^{[18F]}$-Fallypride binding in the brain following intraventricular injection of AAV1.D2R80A in neonatal mice

Intraventricular injection of neonatal mice with AAV1 results in widespread transduction of cells in the neocortex, the entorhinal cortex, and the hippocampus. Four weeks following neonatal injection with AAV1.D2R80A into the cerebral lateral ventricles, mice ($n = 5$) were imaged by PET with $^{[18F]}$-fallypride to examine the binding pattern in the brain. PET imaging revealed $^{[18F]}$-fallypride accumulation in the striatum where endogenous D2R is expressed, and throughout the cortical regions of the mouse brains (Figure 1a), indicating expression of D2R80A. In the transverse view, portions of the striatum and the cortex are superimposed, thus the $^{[18F]}$-fallypride signal appears to overlap, but separation of the two regions is apparent in the coronal view.

No evidence of adverse reaction was observed following vector or probe injection in mice. Iba1 (microglia marker) and GFAP (astrocytic marker) immunostaining were done on the brain sections as described previously, which showed that no inflammatory reaction or reactive gliosis were present at the time of euthanasia (Supplementary Figure S1b,d). Mean radioactivity was measured from an ellipsoid region of interest from the cortex of each hemisphere relative to $^{[18F]}$-fallypride binding. PET imaging indicated $^{[18F]}$-fallypride accumulation in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulate tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection, in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection, in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection, in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection, in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.

PET imaging of the second group of mice showed $^{[18F]}$-fallypride activity in the hippocampus and thalamus of the left hemisphere and the cerebellum of the right hemisphere (Figure 2b). D2R80A expression in the injected regions was measured by quantifying $^{[18F]}$-fallypride binding monthly, for 3 months postinjection, in both groups (Figure 2c–e). Higher levels of radioactivity were detected in the same animals to assess persistence of gene expression and detection by $^{[18F]}$-fallypride binding. In the first group of mice, imaging indicated $^{[18F]}$-fallypride accumulation in the cerebellum in the injected hemisphere, whereas $^{[18F]}$-fallypride binding was only detected in the striatum of the uninjected mouse brain (Figure 2a). The sagittal view of the image also shows radioactivity in the harderian glands (located in the orbital cavity), which accumulates tracers nonspecifically. Radiotracer accumulates nonspecifically outside the brain in the harderian glands, salivary glands, nasal cavity, and orbital cavity as well as the spinal column.
PET reporter gene imaging in brain
SY Yoon et al.

the second group of animals (Figure 2d,e), which were injected with higher titer vectors. No significant decrease in signal was observed over the 3-month period indicating continued D2R80A expression and suggesting that no adverse immune response against the reporter gene had occurred. IbaI (microglia marker) and GFAP (astrocytic marker) immunostaining were done on the brain sections, which showed that no inflammatory reaction or reactive gliosis had occurred (Supplementary Figure S1b,d).

Correlation of reporter PET signal with the reporter gene expression in mouse brains
Following PET imaging at the last time point, the mice were perfused and the brains were analyzed by in situ hybridization using D2R80A-specific probes and immunofluorescence using anti-D2R antibody. D2R80A expression seen by [18F]-fallypride binding in PET imaging correlated well with D2R80A mRNA and protein expression in all animals. Specific D2R80A expression was observed in the hippocampus and thalamus of the injected hemisphere, and the GFP-positive areas seen by in situ hybridization and fluorescence also correlated well with the PET imaging results (Figure 3a). Mice injected into the cerebellum showed exclusive D2R80A mRNA and protein expression in the injected hemisphere of the cerebellum, and this also correlated well with the GFP expression (Figure 3b).

The brains were analyzed by real-time quantitative PCR for quantification of viral vector genome copies. D2R80A vector genome copies were measured in triplicate gDNA samples, and the results were normalized to the levels of GAPDH in each sample in order to correct variations in nucleic acid quality and quantity. The PET signal correlated well with the vector genome copy numbers in the brain of animals that received a single unilateral cerebellar vector injection. The brains of mice injected into the cerebellum showed exclusive D2R80A mRNA and protein expression in the injected hemisphere, and this also correlated well with the GFP expression (Figure 3b).

The brains were analyzed by real-time quantitative PCR for quantification of viral vector genome copies. D2R80A vector genome copies were measured in triplicate gDNA samples, and the results were normalized to the levels of GAPDH in each sample in order to correct variations in nucleic acid quality and quantity. The PET signal correlated well with the vector genome copy numbers in the brain of animals that received a single unilateral cerebellar vector injection. The brains of mice injected into the cerebellum showed exclusive D2R80A mRNA and protein expression in the injected hemisphere, and this also correlated well with the GFP expression (Figure 3b).
injection (Figure 4a, $R^2 = 0.80, P < 0.05$) as well as those injected into the thalamus, hippocampus, and cerebellum (Figure 4b, $R^2 = 0.92, P < 0.001$). Increasing PET signal was observed with increasing levels of viral vector genome copy number in the brains, suggesting $[^{18}F]$-fallypride binding as a good indicator of the vector delivery and reporter gene expression.

In vivo PET imaging of vector-mediated D2R80A expression in the cat brain

To assess D2R80A as a surrogate marker for a therapeutic gene in the significantly larger cat brain, two separate AAV1 vectors, one to express D2R80A and the other to express feline MANB, were constructed under the control of the human GUSB gene promoter. Both vectors were coinjected into cats ($n = 3$) along two injection tracks (at 1.9×10^{10} GC for each vector at each injection point in the column), unilaterally into the cortex, hippocampus, and thalamus. In vivo PET imaging was performed at 9, 16, and 24 weeks postinjection. $[^{18}F]$-fallypride accumulation was observed in the two discrete injection tracts posterior to the striatum on the injected side of the brain (Figure 5a). The $[^{18}F]$-fallypride signal from the vector-mediated D2R80A expression was clearly distinguishable, by location, from the endogenous D2R expression in the striatum. The $[^{18}F]$-fallypride bound exclusively to the endogenous D2R in the striatum in the uninjected side of the brain (with nonspecific signal visible in the periorbital sinus near the eye).

Mean radioactivity in the injected brain regions was quantified at each time point. The data showed continuous expression and detection by $[^{18}F]$-fallypride binding of the vector-mediated reporter gene for up to 6 months postinjection, when the cats were euthanized. Mean radioactivity in the brain varied from 27.5 to 45.3% relative to activity in the striatum (Figure 5b). Positive signals were seen at all time points and in all animals, indicating continued D2R80A expression. As in the mice, no evidence of adverse reaction was observed following vector or probe injection in cats. IbaI (microglia marker) and GFAP (astrocytic marker) immunostaining were done on the cat brain sections, which showed that no inflammatory reaction or reactive gliosis had occurred (Supplementary Figure S1e,f).

Postmortem correlation of PET images and vector distribution in the cat brain

The vector genome copies present in the cat brain were determined by real-time quantitative PCR on the genomic DNA isolated from transverse sections of the cat brains and compared to the PET images at each corresponding level. To quantify the accumulation of $[^{18}F]$-fallypride at each level, the mean radioactivity in the injected brain regions were calculated from a series of 5-mm-thick reconstructed transverse images (Figure 6a,b) for each cat. The calculations were based on the actual mean counts of radioactivity per voxel recorded in the regions of interest, whereas the intensity of the signal in the PET images (Figure 6a) was thresholded for each image to highlight where the signal was present. The mean radioactivity in the injected region for each transverse brain block was
In situ hybridization results showed a good correlation around the injection tracks of the cat brain (Figure 7a). Quantitative [18F]-fallypride binding was detected by PET imaging (Figure 7a). The vector genome copies of the fMANB vector also correlated well with the fold change in D2R80A vector genome copies (Figure 7c, R² = 0.80, P < 0.001), indicating that D2R80A was a faithful surrogate for measuring therapeutic gene delivery.

DISCUSSION
This study evaluated the ability of D2R80A to measure gene expression in the living brain, in the presence of endogenous D2 receptors, using the D2R-specific PET ligand [18F]-fallypride. The experiments show that the system allows noninvasive, repetitive monitoring of vector transfered gene expression in the brain in vivo. Furthermore, the data show that when injected into the same structure, the PET reporter is a faithful surrogate for the relative level of expression of another gene.

The advantage of using separate vectors, one to express the reporter gene and the other to express a therapeutic gene, is that the reporter gene activity is independent of the therapeutic gene and thus allows the D2R80A gene to be used with any therapeutic gene in other genetic diseases. The same promoter and vector elements used for both the reporter and therapeutic vector constructs provide the greatest likelihood that they will be coexpressed in specific cells and brain regions. The current study proves the feasibility of using two separate vectors by confirming correlation of the PET reporter gene with two different vectors, a reporter gene expressing GFP as well as a candidate therapeutic gene, feline MANB. IRES-based bicistronic vector can be used for expression of both the reporter and therapeutic gene in the same construct, but expression of the downstream gene is often reduced. The dual vector approach also allows the D2R80A gene to be injected into a single site for monitoring while the therapeutic gene can be distributed more widely as needed in each disease.

The PET ligand [18F]-fallypride is widely used in animals and humans due to its high affinity for dopamine D2/D3 receptors. Most importantly, it crosses the blood–brain barrier after intravenous injection, making it suitable for imaging the brain of patients. It is more sensitive than [11C]-raclopride, with a detection threshold in the pM range compared with the nM range for the latter. Fallypride is also specific for dopamine receptors, whereas spiperone ([18F]-FESP), another D2R ligand used for imaging D2R80A in noncentral nervous system organs, binds to serotonin as well as to dopamine receptors in the brain. Fallypride has the desirable characteristics of short half-life and rapid clearance from non-target tissues. It also is injected at subphysiological concentrations to avoid undesirable activation of D2 pathway in cells expressing the native receptor. It is approved for human use, which would facilitate future clinical usage of D2R80A as a reporter gene.

Correlation between reporter and therapeutic gene expression in the cat brain
The in situ hybridization-positive regions for D2R80A mRNA were present in the vector-injected regions and were located where [18F]-fallypride binding was detected by PET imaging (Figure 7a). In situ hybridization for expression of the coinjected vector expressing fMANB were also positive in the same areas as the PET vector around the injection tracks of the cat brain (Figure 7a). Quantitative analysis of in situ hybridization results showed a good correlation between D2R80A and the fMANB therapeutic gene expression levels in the cat brain (Figure 7b, R² = 0.93, P < 0.001). The number of...
affected by the amount of the [18F]-fallypride actually being injected and getting into the brain due to variations with tail vein injection, which may result from either extravasation or adherence of tracer to the syringe. In future studies, [18F]-fallypride imaging will be performed in each subject prior to vector injection to measure baseline levels of endogenous D2R/D3R in the brain. The endogenous level of D2R/D3R will then be used as a baseline to quantify relative levels of D2R80A expression in the injected brain region.

Other PET reporter genes have been developed for imaging gene expression in the brain, but each has disadvantages compared with D2R80A. A type 2 cannabinoid receptor (CB2) mutant was tested in rat striatum following transduction with bicistronic AAV vectors.17

Figure 6 Correlation between [18F]-fallypride accumulation in the cat brain with the vector genome copy numbers. (a) Transverse positron emission tomography (PET) images with a thickness of 0.5 mm were reconstructed at 5-mm intervals from [18F]-fallypride imaging of cats at 24 weeks post injection. Example images from cat #1 are shown. (b) Images shown in a correspond to the transverse brain blocks (A–E) shown. (c) The mean radioactivity (as % of striatum) was measured in each cat by quantifying the accumulation of [18F]-fallypride in the injected regions in each transverse brain block. PET signal in each brain block was calculated as a percentage of the activity in the whole striatum. Calculations are based on the actual mean counts of radioactivity per voxel recorded in the regions of interest and not based on the intensity of the signal in thresholded images shown in a. (d) PET signal in the injected brain regions were correlated with the D2R80A vector genome copies in the brain, quantified by real-time quantitative PCR, and normalized to GAPDH expression. Each data point represents each transverse block of the cat brain.

Figure 7 Coexpression of D2R80A and feline α-mannosidase (fMANB) vectors in the cat brain. Following positron emission tomography imaging, cats were euthanized and in situ hybridization was performed to detect D2R80A mRNA and fMANB mRNA on adjacent 20-µm cryosections from the transverse brain slices. (a) Examples of D2R80A mRNA- and fMANB mRNA-positive areas in the cat brain are shown. Bar (top) = 2 mm, (bottom) = 600 µm. (b) fMANB and D2R80A in situ-positive cells were quantified and correlated in each transverse brain section. (c) fMANB and D2R80A vector genome copy numbers were quantified by real-time quantitative PCR in each transverse brain section.
CB₂ has low basal expression in the brain and it is normally expressed in the cerebellum andpons. However, its expression can be upregulated in inflammatory conditions by activated microglia, which is a common feature in many neurodegenerative diseases and would interfere with the CB₂ receptor system. The HSV1-tk reporter gene system has been used to image gene expression in mouse models ofhuman glioma in brain. However, this system is limited to imaging the reporter gene in tumors as, currently, there are no probes available for the reporter protein that can cross the blood–brain barrier, and incorporation of ganciclovir depends on cell division and thus is not applicable to most neurogenetic disease analyses. In addition, HSV1-tk is a foreign gene and may be immunogenic. Tk is also an intracellular reporter gene as opposed to membrane-bound reporter genes, which requires probes that can cross the cell membrane. Prior to the development of D2R80A mutant, adenoviral-mediated D2R overexpression in rat striatum was imaged using ¹¹C-labeled ligands. This system could potentially be used for monitoring D2R expression in neurodegenerative diseases involving D2R replacement therapy in the striatum. However, ectopically expressed D2R could provoke adverse biological effects on transduced cells especially when long-term expression of the target gene is desired.

The D2R80A vectors can also be used to evaluate alternative routes of vector administration or different serotypes of AAV to improve biodistribution within the brain and used in combination with therapeutic vectors. Specific anatomical regions of [¹⁸F]-fallypride accumulation could be determined by combining PET imaging with magnetic resonance imaging. The dopamine receptor is relatively conserved in mammals and we did not find any evidence of an immune response to the rat D2R80A protein in mice or cats. Although a human D2R80A sequence would be used in human clinical trials, PET imaging is highly sensitive and the ligands are already approved for clinical use. This study shows that D2R80A imaging of vector gene expression is a faithful reporter for the expression of a therapeutic gene and thus should be a valuable surrogate for monitoring gene therapy of neurogenetic and other brain diseases.

MATERIALS AND METHODS

Experimental animals

Normal C3H mice (postnatal day 1 and 6–8 weeks old) produced in our breeding colony were used for experiments. All care and procedures were in accordance with the Institutional Animal Care and Use Committee at the University of Pennsylvania’s animal facilities.

Normal cats (7–8 weeks old) produced in the breeding colony of the veterinary school of the University of Pennsylvania were used for cat experiments. All care and procedures were in accordance with the Institutional Animal Care and Use Committee at the University of Pennsylvania.

Plasmids and AAV production

Rat D2R80A gene was obtained in Eco RI and Hind III restriction sites of pcDNA 3.1 (+) backbone (Invitrogen) as a gift from S. Gambhir, Stanford University. The D2R80A gene was then cutout with Spe I and Apa I enzymes and recloned into the AAV packaging plasmid pZac2.1, provided by the Vector Core of the University of Pennsylvania. The vector genome contained AAV2 terminal repeats, a human GUSB promoter, simian virus 40 splice donor/acceptor signal, and bovine growth hormone polyadenylation signal. GFP and ImanB were also subcloned individually into pZac2.1 under the control of the human GUSB promoter. Recombinant AAV vectors were packaged by the University of Pennsylvania Vector Core following triple transfection of HEK293 cells by AAV cis-plasmid encoding the gene of interest, AAV trans-plasmid containing AAV rep and cap genes and adenovirus helper plasmid. Vectors were purified using iodixanol gradient ultracentrifugation, and the titers were determined by real-time PCR. The infectivity of the packaged AAV vectors was verified by transduction of HEK293 cells and the specific protein expression was confirmed using immunocytochemistry in vitro (data not shown).

Vector injections

Intraventricular injection of neonatal mice. Neonatal C3H mice were cryoanesthetized and injected bilaterally into the lateral ventricles with equivalent titers (9 × 10⁹ GJ in 2 µl total injection volume) of AAV1 vectors expressing rat D2R80A and GFP vectors (1.5–2 × 10¹⁰ GJ) per site through burr holes made in the skull into the cerebellum alone or the cerebellum, thalamus, and hippocampus. The following injection coordinates were used: cerebellum (rostral-caudal: −6.64 mm, mediolateral: ±2 mm, dorsoventral: −0.8 mm); thalamus (rostral-caudal: −2 mm, mediolateral: ±1.5 mm, dorsoventral: −3.25 mm); and hippocampus (rostral-caudal: −2 mm, mediolateral: ±1.5 mm, dorsoventral: −1.62 mm) from Bregma.5,53

Stereotactic injections into adult mice. Adult C3H mice (6–8 weeks) were anesthetized, placed in a stereotactic frame (David Kopf Instruments, Tujunga, CA) and injected unilaterally with 2–3 µl, equivalent titers of AAV1.D2R80A and GFF vectors (1.5–2 × 10¹⁰ GJ) per site through burr holes made in the skull into the cerebellum alone or the cerebellum, thalamus, and hippocampus. In addition, HSV1-tk is a foreign gene and may be immunogenic. Tk is also an intracellular reporter gene as opposed to membrane-bound reporter genes, which requires probes that can cross the cell membrane. Prior to the development of D2R80A mutant, adenoviral-mediated D2R overexpression in rat striatum was imaged using ¹¹C-labeled ligands. This system could potentially be used for monitoring D2R expression in neurodegenerative diseases involving D2R replacement therapy in the striatum. However, ectopically expressed D2R could provoke adverse biological effects on transduced cells especially when long-term expression of the target gene is desired.

The D2R80A vectors can also be used to evaluate alternative routes of vector administration or different serotypes of AAV to improve biodistribution within the brain and used in combination with therapeutic vectors. Specific anatomical regions of [¹⁸F]-fallypride accumulation could be determined by combining PET imaging with magnetic resonance imaging. The dopamine receptor is relatively conserved in mammals and we did not find any evidence of an immune response to the rat D2R80A protein in mice or cats. Although a human D2R80A sequence would be used in human clinical trials, PET imaging is highly sensitive and the ligands are already approved for clinical use. This study shows that D2R80A imaging of vector gene expression is a faithful reporter for the expression of a therapeutic gene and thus should be a valuable surrogate for monitoring gene therapy of neurogenetic and other brain diseases.

PET imaging

Imaging was performed using the Philips Mosaic HP Animal PET imaging system in the small animal imaging facility at the University of Pennsylvania. Mice were injected with 100–200 µCi of [¹⁸F]-fallypride, produced by the University of Pennsylvania’s cyclotron facility, via the tail vein and anesthetized with 2–3% isoflurane in 1 l/minute of oxygen. After tracer uptake for 45 minutes, the mice were transferred to and scanned for 15 minutes on the animal bed of the small animal PET scanner (A-PET). Data reconstruction was performed using a 3D-RAMLA protocol with decay correction turned on and normalization set for efficiency. The A-PET scanner produced images with a slice thickness of 0.5 mm, transverse imaging field of view at 12.8 cm and the approximate in-plane resolution of 2 mm. The imaging aperture of the A-PET scanner system is 20 cm and the axial length is 12 cm. Images were analyzed using AMIDE (http://amide.sourceforge.net) on reconstructed images. 3D regions of interest were manually drawn over the injected brain regions to calculate the mean radioactivity using a calibration constant obtained from scanning a cylinder phantom in the scanner. These values were then converted to percentage of the radioactive activity in the stratum, which serves as an internal positive binding control in the brain.

Tissue collection

Following PET imaging at the last time point, mice were euthanized and transcardially perfused with 4% paraformaldehyde. Cats were euthanized,
transcardially perfused with phosphate-buffered saline, and the brains were drop-fixed in 4% paraformaldehyde. Brains were then cryoprotected in 30% sucrose, embedded in optimal cutting temperature solution (Sakura, Torrance, CA), and then cryosectioned at 20 µm thickness using a cryostat (Leica Microsystems, Wetzlar, Germany). Mouse brains were cut coronally. Cat brains were sectioned (4–5 mm in thickness) in a dorsal plane as shown in Figure 6b and then further cryosectioned at 100 µm thickness for isolation of genomic DNA and 20 µm for in situ hybridization and immunofluorescence analysis. The sections were mounted on slides that were kept at −20 °C until processing.

Immunofluorescence

Sections were rinsed three times with phosphate buffer (0.1 mol/L, pH 7.4), incubated for 30 minutes at 80 °C in sodium citrate buffer (10 mol/L, pH 8.8), and retained in the solution to cool to room temperature. The slides were then incubated overnight at 4 °C with the antidopamine D2 rabbit polyclonal antibody (AB5084P; Millipore, Temecula, CA) diluted at 1:100 in blocking solution. After four washes in Tris-buffered saline with 0.2% Triton X-100, the secondary antibody in blocking solution (1:250 dilution) was added for 1 hour before being washed four times in Tris-buffered saline. Slides were dried and coverslipped with VECTASHIELD Mounting Medium (Vector Laboratories, Burlingame, CA).

In situ hybridization

Sense and antisense DNA templates for RNA transcription were synthesized by PCR using D2R80A and fMANB sequence in the pZac2.1 plasmid, respectively, as the template with primers containing T7 or T3 RNA polymerase promoters upstream. Digoxigenin (DIG)-labeled RNA probes were produced using the DNA templates with the DIG RNA labeling kit (Roche Applied Science, Indianapolis, IN). The integrity and size of the labeled RNA probes were verified on a nondenaturing agarose gel and compared with the expected size. DIG-labeled riboprobes specific for vector D2R80A or fMANB sequence, and digoxigenin-labeled RNAs were hybridized in solution (1:250 dilution) for 1 hour before being washed four times in Tris-buffered saline. The slides were then incubated with antidigoxigenin alkaline phosphatase antibody (Roche) followed by NBT-BCIP substrate (Roche) for colorimetric detection of alkaline phosphatase. Whole slides were scanned using the Aperio scanscope (Aperio, Vista, CA). Images were converted to grayscale and the identical threshold was applied. The number of cells in the sections over the set threshold was counted by particle analysis using ImageJ software (NIH, Bethesda, MD).

Real-time PCR

Quantitative real-time PCR was used to determine the viral genome copies present in the brains. Every sixth coronal section was pooled from each mouse brain and the genomic DNA was extracted. For cat brains, genomic DNA was extracted from the 100-µm section of each transverse block and the vector genome copies quantified separately at each transverse level. Copies of D2R80A and fMANB vector genome were quantified using LightCycler FastStart DNA Master SYBR Green I mix (Roche) on a StepOne Real-Time PCR System (Applied Biosystems, Carlsbad, CA) and normalized to the GAPDH gene. For each gene assayed, triplicate samples derived from each DNA pool were used for quantification in mouse brains. Duplicate samples at each transverse level of the cat brains were used for quantification. For D2R80A vector genome quantification, the forward primer was designed to bind the GUS promoter and the reverse primer bound to the D2R80A gene sequence. The primer sequences were as follows: forward: 5′-ACC TCC CGC GTT TTT CTT AG-3′, reverse: 5′-GCT CCA CTT GTG CCT CTC CA-3′. For fMANB vector genome quantification, the primer sequences were as follows: forward: 5′-GCC CAT GGA AAT CCG TAC CT-3′, reverse: 5′-TGC GAT GCA ATT TCC TCA TTT-3′.

Statistical analysis

Linear regression analysis was performed to assess the linear relationship between two variables. Pearson correlation coefficient (R²) and P values were calculated to measure confidence and statistical significance of positive linear correlations shown, respectively. A P value of <0.05 was considered as statistically significant.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Erilinda Cabacungan and Aracelis Polesky for expert technical assistance; Trena Clarke, Jessica Bagel, and Patricia O’Donnell for expert care of animals; Eric Blankemeyer for A-PET imaging assistance; and Paul Acton for expert advice. This work was supported by the NIH grants R01-DK063373, P30-DK07757, and P40-OD001093.

REFERENCES

1. Hoffman, RM and Yang, M (2006). Whole-body imaging with fluorescent proteins. Nat Protoc 1: 1429–1438.

2. Gross, S and Piwnica-Worms, D (2005). Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7: 5–15.

3. Ilagan, MX, Lim, S, Fulbright, M, Piwnica-Worms, D and Kopan, R (2011). Real-time imaging of notch activation with a luciferase complementation-based reporter. Sci Signal 4: r17.

4. Rehmtulla, A, Stegman, LD, Cardozo, SJ, Gupta, S, Hall, DE, Contag, CH et al. (2000). Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2: 491–495.

5. Contag, PR, Olomu, IN, Stevenson, DK and Contag, CH (1998). Bioluminescent indicators in living mammals. Nat Med 4: 245–247.

6. Gilad, AA, Winnard, PT Jr, van Zijl, PC and Bulthe, JW (2007). Developing MR reporter genes: promises and pitfalls. NMR Biomed 20: 275–290.

7. Pepelius, I, Mazzolini, G, Boán, JF, Sangro, B, Marti-Climent, J, Ruiz, M et al. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128: 1787–1795.

8. Jacobs, AH, Winkler, A, Castro, MG and Lowenstein, P (2005). Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 32 (suppl. 2): S538–S538.

9. Liang, Q, Satyamurthy, N, Barrio, JR, Toyokuni, T, Phelps, ME, Gambrick, SS et al. (2001). Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8: 1490–1498.

10. Waezeggers, Y, Monfared, F, hello, T, Winkeler, A, Voges, J and Jacobs, AH (2009). Methods to measure gene therapy with molecular imaging. Methods 48: 146–160.

11. Wolfe, JH, Acton, PD, Poptani, H and Vite, CH (2006). Molecular imaging of gene therapy for neurogenetic diseases. In: Kaplitt, M and During, M (eds). Gene Therapy in the Central Nervous System: From Bench to Bedside. Academic Press: San Diego, CA, pp. 335–350.

12. Gambhir, SS, Bauer, E, Black, ME, Liang, Q, Kokoris, MS, Barrio, JR et al. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97: 2785–2790.

13. Tjusjøve, JG, Avril, N, Oku, T, Sasajima, T, Miyagawa, T, Yoshi, R et al. (1998). Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58: 4333–4341.

14. Bay, P, Bauers, E, Iyer, M, Barrio, JR, Satyamurthy, N, Phelps, ME et al. (2001). Monitoring gene therapy with reporter gene expression. Semin Nucl Med 31: 312–320.

15. Hospers, GA, Calogero, A, van Waarde, A, Doze, P, Vaillburg, W, Mulder, NH et al. (2000). Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography. Cancer Res 60: 1488–1491.

16. MacLaren, DC, Gambhir, SS, Satyamurthy, N, Barrio, JR, Sharifstein, S, Toyokuni, T et al. (1999). Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6: 785–791.

17. Vandeputte, C, Evans, N, Toelen, J, Deroose, CM, Bosier, B, Ibrahimi, A et al. (2011). A PET brain reporter gene system based on type 2 cannabinoid receptors. J Nucl Med 52: 1102–1109.

18. Groot-Wassink, T, Aboagye, EO, Wang, Y, Lemoine, NR, Reader, AJ and Vassaux, G (2004). Rapid tumour growth and metastasis monitoring in living animals with a somatostatin receptor-based reporter gene and (94m) Tc-Demotate 1. Mol Ther 10 (suppl. 2): S358–S383.

19. Kundra, V, Mannting, F, Jones, AG and Kassis, AI (2002). Noninvasive monitoring of somatostatin receptor type 2 chimeric gene transfer. J Nucl Med 43: 406–412.

20. Rogers, BE, Parry, JJ, Andrews, R, Cordopatis, P, Nock, BA and Maina, T (2005). MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and (94m) Ic-Demotate 1. J Nucl Med 46: 1889–1897.

21. Singh, SP, Yang, D, Ravoo, M, Han, L and Kundra, V (2009). In vivo functional and anatomic imaging of in vivo gene transfer. Radiology 252: 763–771.

22. Zinn, KR, Buchsbaum, DJ, Chauhudi, TR, Mountz, JM, Grizzle, WE and Rogers, BE (2000). Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med 41: 887–895.

23. Zinn, KR and Chauhudi, TR (2002). The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 29: 388–399.
PET reporter gene imaging in brain
SY Yoon et al.

24 Cotugno, G, Aurilio, M, Annunziata, P, Capalbo, A, Faella, A, Rinaldi, V et al. (2011). Noninvasive repetitive imaging of somatostatin receptor 2 gene transfer with positron emission tomography. *Hum Gene Ther* 22: 189–196.

25 Chen, IY, Wu, JC, Min, JJ, Sundaresan, G, Lewis, X, Liang, Q et al. (2004). Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adeno-associated viral-mediated gene delivery. *Circulation* 109: 1415–1420.

26 Kummer, C, Winkeler, A, Dittmar, C, Bauer, B, Rueger, MA, Rueckriem, B et al. (2007). Multitracer positron emission tomographic imaging of exogenous gene expression mediated by a universal herpes simplex virus 1 ampiclon vector. *Mol Imaging* 6: 181–192.

27 Vandehey, NT, Moirano, JM, Converse, AK, Holden, JE, Mukherjee, J, Murali, D et al. (2010). High-affinity dopamine D2/D3 PET radioligands {18}F-fallypride and 11C-FLB457: a comparison of kinetics in extrastriatal regions using a multiple-injection protocol. *J Cereb Blood Flow Metab* 30: 994–1007.

28 Mukherjee, J, Christian, BT, Narayanan, TK, Shi, B and Collins, D et al. (2005). Measurement of d-amphetamine-induced effects on the binding of dopamine D2/D3 receptor radioligand, {18}F-fallypride in extrastriatal brain regions in non-human primates using PET. *Brain Res* 1032: 77–84.

29 Mukherjee, J, Yang, ZY, Das, MK and Brown, T (1995). Fluorinated benzamide neurooletics-III. Development of S-N-(1-allyl-2-pyrrrolidinyl)methyl-S-(3-{18}F) fluoropropioly-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. *Nucl Med Biol* 22: 283–296.

30 Narendran, R, Franklin, WG, Mason, NS, Rabiner, EA, Gunn, RN, Searle, GE et al. (2005). Imaging of d-amphetamine-induced effects on the binding of dopamine D2/D3 receptor radioligand, {18}F-fallypride in extrastriatal brain regions in non-human primates using PET. *Brain Res* 1032: 77–84.

31 Vite, CH, McGowan, JC, Niogi, SN, Passini, MA, Drobatz, KJ, Haskins, ME et al. (2005). Effective gene therapy for an inherited CNS disease in a large animal model. *Ann Neurol* 57: 355–364.

32 Passini, MA, Watson, DJ, Vite, CH, Landsburg, DJ, Feigenbaum, AL and Wolfe, JH (2003). Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. *J Viral* 77: 7034–7040.

33 Haddacek, P, Eberling, JL, Piviotto, P, Bringas, J, Forsayeth, J and Bankiewicz, KS (2010). Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. *J Viral* 77: 7034–7040.

34 Fukuyama, H, Hayashi, T, Katsumi, Y, Tsukada, H and Shibasaki, H (1998). Evaluation of glucose metabolism changes in the brain of rats in vivo by using PET: the effect of hardener labelling agents on the cortical activity of glucose metabolism. *Brain Res* 81: 99–102.

35 Hume, SP, Lammertsma, AA, Myers, T, Rajeswaran, S, Bloomfield, PM, Ashworth, S et al. (1996). The potential of high-resolution positron emission tomography to monitor striatal dopamine neuroendocrine function in rat models of disease. *J Neurosci Methods* 67: 103–112.

36 Kuge, Y, Minematsu, K, Hasegawa, Y, Yamaguchi, T, Mori, H, Matsuura, H et al. (1997). Positron emission tomography for quantitative determination of glucose metabolism in normal and ischemic brains in rats: an insoluble problem by the Harderian glands. *J Cereb Blood Flow Metab* 17: 116–120.

37 Lock, M, Alvira, M, Vandenbergh, LH, Samanta, A, Toelen, J, Debyser, Z et al. (2010). Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. *Hum Gene Ther* 21: 1225–1234.

38 Ogawa, O, Umezaki, H, Ishiwaki, K, Asai, Y, Ikari, H, Oda, K et al. (2000). In vivo imaging of adenovirus-mediated over-expression of dopamine D2 receptors in rat striatum by positron emission tomography. *Neuroreport* 11: 743–748.

39 Maresz, K, Carrier, EJ, Ponomarev, ED, Hillard, CJ and Dittel, BN (2005). Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. *J Neurochem* 95: 437–445.

40 Slifstein, M, Kegeles, LS, Xu, X, Thompson, JL, Urban, N, Castrillon, J et al. (2010). Striatal and extrastriatal dopamine release measured with PET and {18}F-fallypride. *Synapse* 64: 350–362.

41 Mukherjee, J, Yang, ZY, Lew, R, Brown, T, Krommal, S, Cooper, MD et al. (1997). Evaluation of d-amphetamine effects on the binding of dopamine D-2 receptor radioligand, {18}F-fallypride in nonhuman primates using positron emission tomography. *Synapse* 27: 1–13.

42 Leung, K (2005). 3-N-[2-{18}F]fluoroethyl)spiperone. *Molecular Imaging and Contrast Agent Database (MICAD) [Internet]: 2004–2013. National Center for Biotechnology Information: Bethesda, MD.

43 Mukherjee, J, Christian, BT, Dunigan, KA, Shi, B, Narayanan, TK, Satter, M et al. (2002). Brain imaging of {18}F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. *Synapse* 46: 170–188.

44 Mukherjee, J, Yang, ZY, Brown, T, Lew, R, Werneck, M, Ouyang, X et al. (1999). Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {18}F-fallypride. *Nucl Med Biol* 26: 519–527.

45 Yaghoubi, SS, Jensen, MC, Satyamurthy, N, Budhiraja, S, Paik, D, Czernin, J et al. (2009). Noninvasive detection of therapeutic cytolytic T cells with {18}F-FHBG PET in a patient with glioma. *Nat Clin Pract Oncol* 6: 53–58.

46 Nagano-Saito, A, Dagher, A, Booli, L, Gravel, P, Welfeld, K, Casey, KF et al. (2013). Stress-induced dopamine release in human medial prefrontal cortex—{18}F-fallypride/PET study in healthy volunteers. *Synapse* 67: 821–830.

47 Miresz, K, Carrier, EJ, Ponomarev, ED, Hillard, CJ and Dittel, BN (2005). Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. *J Neurochem* 95: 437–445.

48 Vucic, M, Ilijaev, T, Euler, J, Maximow, A, Baczek, P, Bankiewicz, KS et al. (2004). Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. *J Viral* 77: 7034–7040.

49 Ogawa, O, Umezaki, H, Ishiwaki, K, Asai, Y, Ikari, H, Oda, K et al. (2000). In vivo imaging of adenovirus-mediated over-expression of dopamine D2 receptors in rat striatum by positron emission tomography. *Neuroreport* 11: 743–748.

50 Lock, M, Alvira, M, Vandenbergh, LH, Samanta, A, Toelen, J, Debyser, Z et al. (2010). Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. *Hum Gene Ther* 21: 1225–1271.

51 Passini, MA and Wolfe, JH (2001). Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. *J Viral* 75: 12382–12392.

52 Cearley, CN, Vandenbergh, LH, Parente, MK, Carnish, ER, Wilson, JM and Wolfe, JH (2008). Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. *Mol Ther* 16: 1710–1718.

53 Cearley, CN and Wolfe, JH (2007). A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. *J Neurosci* 27: 9928–9940.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Supplementary Information accompanies this paper on the Molecular Therapy—Methods & Clinical Development website (http://www.nature.com/mtd)