Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications

Thomas R. Rogers 1*, Paul E. Verweij 2,3†, Mariana Castanheira 4†, Eric Dannaoui 5,6†, P. Lewis White 7† and Maiken Cavling Arendrup 8,9,10 on behalf of the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)‡

1Department of Clinical Microbiology, Trinity College Dublin, St James’s Hospital Campus, Dublin 8, Ireland; 2Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; 3Center of Expertise in Mycology, Radboud umc/CWZ, Nijmegen, The Netherlands; 4JMI Laboratories, North Liberty, IA, USA; 5Unité de parasitologie-mycologie, service de microbiologie, hôpital européen Georges-Pompidou, AP-HP, Paris, France; 6Faculté de médecine, université de Paris, Paris France; 7Public Health Wales Microbiology Cardiff, UHW, Cardiff, UK; 8Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark; 9Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; 10Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

*Corresponding author. E-mail: rogerstr@tcd.ie
†Contributed equally.
‡Members are listed in the Acknowledgements section.

The increasing incidence and changing epidemiology of invasive fungal infections continue to present many challenges to their effective management. The repertoire of antifungal drugs available for treatment is still limited although there are new antifungals on the horizon. Successful treatment of invasive mycoses is dependent on a mix of pathogen-, host- and antifungal drug-related factors. Laboratories need to be adept at detection of fungal pathogens in clinical samples in order to effectively guide treatment by identifying isolates with acquired drug resistance. While there are international guidelines on how to conduct in vitro antifungal susceptibility testing, these are not performed as widely as for bacterial pathogens. Furthermore, fungi generally are recovered in cultures more slowly than bacteria, and often cannot be cultured in the laboratory. Therefore, non-culture-based methods, including molecular tests, to detect fungi in clinical specimens are increasingly important in patient management and are becoming more reliable as technology improves. Molecular methods can also be used for detection of target gene mutations or other mechanisms that predict antifungal drug resistance. This review addresses acquired antifungal drug resistance in the principal human fungal pathogens and describes known resistance mechanisms and what in-house and commercial tools are available for their detection. It is emphasized that this approach should be complementary to culture-based susceptibility testing, given the range of mutations, resistance mechanisms and target genes that may be present in clinical isolates, but may not be included in current molecular assays.

Introduction

Amphotericin B was the first antifungal drug for systemic treatment of invasive fungal infections (IFIs), and has been the ‘gold standard’ of antifungal therapy for nearly 50 years.1 It has activity against a broad range of human pathogenic fungi, that includes those under review, and extremely few develop resistance following exposure to the drug.

The introduction to the clinic of the triazole antifungals itraconazole and fluconazole in the 1980s offered more therapeutic options for treating IFIs. Additionally, azoles present fewer class-related side effects compared with amphotericin B.2

Fluconazole resistance in Candida albicans was first reported in the 1990s in AIDS patients who were receiving prolonged low-dose treatment courses for recurrent mucosal candidiasis.3 Investigations revealed that multiple molecular mechanisms could be involved in acquired resistance in C. albicans.4 Candida krusei species (new taxonomic name: Pichia kudriavzevii) are intrinsically resistant to fluconazole, while Candida glabrata has reduced susceptibility. There are increasing reports of acquired
fluconazole resistance emerging in *Candida tropicalis* and *Candida parapsilosis*. The newly identified *Candida auris*, which has spread widely across the globe, is characterized by frequent acquired resistance to fluconazole, amphotericin B and often multi-antifungal drug resistance.5

Although most clinical isolates of *Cryptococcus neoformans* are susceptible to fluconazole, the emergence of drug-resistant strains has been reported, usually linked to prior drug exposure.6

Subsequent to its introduction for clinical use, acquired resistance to itraconazole emerged in *Aspergillus fumigatus*.7,8 The third-generation triazoles, voriconazole, posaconazole and isavuconazole have greater activity against mould fungi than itraconazole. Voriconazole was licensed for the treatment of invasive aspergillosis (IA) in the early 2000s and soon became the drug of choice for that indication. However, within a few years, reports of multi-triazole resistance impacting these triazoles emerged from the Netherlands and the A. fumigatus isolates involved were found to have novel molecular changes in the gene encoding the target of the azoles, cyp51A.9 Additionally, some triazole-resistant A. fumigatus isolates have cyp51-independent resistance mechanisms.

The echinocandins caspofungin, micafungin and anidulafungin are members of the most recent major class of antifungals to be licensed for clinical use. They are established first-line therapy in patients with candidemia and other forms of invasive candidiasis.10 Since their introduction, reports have appeared of acquired echinocandin resistance in *Candida* spp., most notably in *C. glabrata*.11 By contrast, resistance to echinocandins in *Aspergillus* spp. appears to be uncommon12 but their clinical use as monotherapy in aspergillosis is limited because their in vivo activity is lower, a potential consequence of their *in vitro* antifungal effect on *Aspergillus* spp. being only fungistatic.13

Flucytosine has its main antifungal activity against *Cryptococcus* and *Candida* spp., but because of the rapid development of fungal resistance during flucytosine monotherapy, its use is mainly limited to combination therapy with amphotericin B. Acquired resistance is associated with mutations affecting cellular drug uptake and the target nucleic acid synthetic pathway. Flucytosine is not recommended for the treatment of aspergillosis because of apparent intrinsically drug resistance, but its efficacy is pH dependent and so it could show *in vitro* antifungal activity at anatomical sites of *Aspergillus* infection where there is an acidic environment.14,15

Terbinafine has fungicidal activity and main indication in dermatophyte infections.16 It is also occasionally used in combination with another antifungal agent for the treatment of mould infections. This is because of its potential to act synergistically in drug combination where there is shared inhibitory action on ergosterol biosynthesis. There are recent reports of terbinafine resistance in the dermatophytes *Trichophyton mentagrophytes/Trichophyton interdigitale* complex and *Trichophyton rubrum* particularly from India,17 but this is increasingly being reported in other countries as well.18–21 Recently, the taxonomy for the *T. mentagrophytes/T. interdigitale* complex was revised and a new species, *Trichophyton indotineae*, proposed for the highly terbinafine-resistant Indian isolates.22–24

Trimethoprim/sulfamethoxazole, although principally used as an antibacterial agent, is established as first choice to treat *Pneumocystis jirovecii* pneumonia (PCP). While mutations in target fungal genes are well characterized, their clinical relevance for predicting drug resistance is less clearly established.

The EUCAST sub-committee on Antifungal Susceptibility Testing (as well as the CLSI) has developed susceptibility testing methods for human pathogenic yeasts and moulds, including dermatophytes, with freely available evidence-based breakpoints for categorizing susceptible versus resistant isolates (www.eucast.org/astoffungi) that correlate with clinical outcomes. For less frequent organisms where MICs are available but MIC-outcome data are not, epidemiological cut-off values (ECOFFs) allow detection of isolates with acquired resistance mechanisms. However, susceptibility testing is dependent on culture of the isolate, which is not always possible or available within a reasonable time frame. When cultured samples yield one of the principal fungal pathogens discussed here, this is usually achieved within 48–72 h, whereas dermatophytes require week(s) of incubation, and culture of *P. jirovecii* is not possible in the diagnostic laboratory.

Recognizing the above limitations, molecular tests have been developed and evaluated for rapid fungal detection in body fluids and tissues, and for fungal identification where growth is detected in clinical samples such as blood cultures; these have been extensively and critically reviewed elsewhere.25–26 Non-culture-based molecular tests to detect antifungal drug resistance in fungal pathogens, whether in-house or commercial, are more limited in number and are reviewed here and summarized in Table 1 for *Aspergillus* spp., *Candida* spp., *Trichophyton* spp. and *P. jirovecii*.27–44 This is accompanied by guidance points on their use in clinical practice (Table 2). Of note, in this review, the term ‘mutation’ is used for non-synonymous changes in resistance genes that are confirmed or suspected to be related to resistance because they occur in phenotypically resistant strains. The consequent amino acid changes are referred to as alterations.

Aspergillus spp.

Background

Acquired antifungal drug resistance has been described in different *Aspergillus* spp. and for various antifungals, but research has focused mainly on triazole resistance in *A. fumigatus*. Triazoles are not mutagenic, but genetic variation (including triazole resistance mutations) may arise through spontaneous mutations, mitotic recombination or meiotic recombination.45 When a population of *Aspergillus* conidia is exposed to triazole selection pressure, isolates harbouring a resistance mutation will thrive in comparison with WT isolates and become dominant in the population. This process of resistance selection can take place in a patient who receives prolonged treatment with triazoles (in-host selection) or in the environment where residues of azole fungicides with activity against *A. fumigatus* may provide selection pressure.

Acquired triazole resistance in *A. fumigatus*

Cyp51-mediated triazole resistance

In *A. fumigatus*, triazole resistance mechanisms are mainly associated with alterations in the *cyp51A* gene that encodes the
14α-demethylase, an enzyme responsible for the final step of the ergosterol biosynthesis pathway. Ergosterol is the major sterol component of fungal membranes and is critical for membrane permeability and fluidity, thereby being essential for fungal growth and survival. A. fumigatus carries one Cyp51A and one Cyp51B protein, where Cyp51B is constitutively expressed and Cyp51A expression is inducible. Lanosterol 14α-demethylase point amino acid mutations mainly appear in Cyp51A and can lead to amino acid changes that result in modifications to ligand access channels through which azoles gain access to the enzyme active site and bind to the haem molecule. Hotspots for amino acid substitutions include G54, G138, M220 and G448, which correspond with specific azole resistance phenotypes (Table 3). These single resistance mutations are commonly found in patients with prior exposure to triazole therapy. Non-synonymous substitutions of A. fumigatus Cyp51A protein, such as L98H, Y121F and T289A, are commonly accompanied by tandem repeats (TRs) in the promoter, and TR-mediated resistance mutations are associated with environmental resistance selection, in-host selection of a TR120 resistance mutation, and also an in-host selection of a TR variation TR34/L98H, has been reported. Ultimately, characteristics of

Table 1. In-house and commercial non-culture methods that detect molecular resistance mechanisms in reviewed fungal pathogens

Fungal pathogen (Specimen types)	Antifungal drug	In-house detection of drug resistance mechanism(s)	Commercially available assays for detection of drug resistance mechanism(s)
Aspergillus spp. (Sputum, bronchoalveolar lavage, serum, or plasma)	Triazoles	Real-time PCR studies²⁴⁻³⁰ Pyrosequencing³¹	Aspergenius® multiplex real-time PCR detects Aspergillus TR₃₄/L98H; TR₄₆/T289A; TR₄₆/Y121F gene mutations in cyp51A^{32,33,36-38} Aspergenius® multiplex real-time PCR detects G54 and M220 RUO in cyp51A of A. fumigatus³⁴ MycoGENIE® detects A. fumigatus TR₃₄/L98H gene mutations³⁵⁻³⁸ FungiplexR® Aspergillus Azole-R IVD real-time PCR detects A. fumigatus TR₃₄ and TR₄₆^{24,38}
Candida spp.	Triazoles	No assays forazole resistance due to multiple mechanisms playing in concert	
Echinocandins		PCR assay to detect Glucan synthase (FKS) gene(s) for subsequent sequencing to identify mutations in the hotspots of fks1 and fks2 (C. glabrata only)^{39,40}	
Cryptococcus spp.	Fluconazole	No assays due to variable mechanisms of resistance	
Dermatophytes	Terbinafine	PCR assay to detect squalene epoxidase (SQLE) gene for subsequent sequencing to identify mutations in Trichophyton mentagrophytes/interdigitale and T. rubrum^{37,42}	DermaGenius® Resistance Multiplex real-time PCR kit⁶¹ Detects: T. rubrum/Trichophyton soudanense, T. interdigitale/mentagrophytes, T. mentagrophytes (ITS type IV), T. tonsurans, T. violaceum, Trichophyton quinckeanum/Trichophyton schoenleinii and SQLE alterations: L393F, F397L, L393S, F397I, F397V.
P. jirovecii	Trimethoprim/sulfamethoxazole	Dihydropteroate synthase gene mutations: Detected using RFLP, PCR sequencing, SSCP, MLST, PCR pyrosequencing⁴⁴ Atovaquone mutations: Sequencing of Cytochrome b substitutions in the Qo region T121I, L123F, T100I, I120V, S125A, P239L and L248F (see Table S1)	PneumoGenius® real-time PCR detects mutations at codons 55 and 57 in dihydropteroate synthase (DPHS) gene-encoding sulphonamide resistance⁴⁵
The clinical need for molecular testing for AFDR may be considered:

- In patients who fail a course of appropriate antifungal therapy.
- Where there is a high rate of resistance to a particular a drug in a particular fungal species.
- Where phenotypic testing does not provide a clear result.

General

Table 2. Key points to guide the use of molecular tests for detection of antifungal drug resistance (AFDR)

Pathogen-specific	Molecular tests for AFDR may be considered where:
Aspergillus	Molecular tests have mostly been applied to detect resistance mechanisms in *A. fumigatus*, less data are available for other *Aspergillus* spp.
	Analytical sensitivity of PCR tests for resistance mechanisms in *A. fumigatus* vary.
	Acquired resistance to amphotericin B or echinocandins in *A. fumigatus* is rare.
	Acquired resistance to triazoles in *A. fumigatus* is rare.
	Acquired resistance to amphotericin B or echinocandins is rare.
	Acquired resistance to triazoles is rare.
	Acquired resistance to amphotericin B is considered rare.
	Acquired resistance to triazoles is considered rare.
	Acquired resistance to amphotericin B or echinocandins in *A. fumigatus* is rare.
Candida	For triazoles, and in particular fluconazole, the existence of multiple resistance mechanisms in individual strains of *Candida* spp. (e.g., combined *erg11* target gene mutation + target gene mutation) means that molecular tests to detect AFDR have limited clinical application.
	Non-detection of a particular resistance mechanism does not infer triazole susceptibility.
Cryptococcus	Because fluconazole and fluconazole derivatives can target *Cryptococcus* spp., complex phenotypic testing is preferred over molecular methods.
Dermatophytes	Molecular tests to detect resistance mechanisms for triazoles, in particular terbinafine-resistant *Trichophyton* spp., are more frequently used.
	Molecular tests to detect resistance mechanisms for triazoles, in particular *Trichophyton* spp., are more frequently used.
P. jirovecii	Because of inability to culture *P. jirovecii* in the diagnostic laboratory, there are no correlates between phenotypic sensitivity and putative resistance mutations.
P. jirovecii	The detection of mutations in drug target genes is not always associated with treatment failure, as this is likely also associated with initial disease severity, but mutations may be related to diminished efficacy of trimethoprim/sulfamethoxazole for *PCP* prophylaxis.

Molecular tests may be warranted for clinical decision-making in cases of PCP considered refractory to treatment (no improvement post-7 days treatment).
the fungus and its (azole) environment will determine the supply of mutations and subsequent selection rather than whether resistance was selected in a host or in the environment.86,88

Other triazole resistance mechanisms in A. fumigatus

In 10%–50% of triazole-resistant A. fumigatus isolates, a WT cyp51A gene sequence is found, indicating that other pathways or resistance mutations are likely to be present.54 The hap gene complex member hapE has been shown to be associated with an azole-resistant phenotype.89,90 Another target involves the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase-encoding gene (hmg1), which represents a rate-limiting enzyme in the ergosterol biosynthetic pathway.91 Hmg1 mutations have been proposed as an underlying mechanism in azole-resistant isolates lacking cyp51A mutations.51–94 Other mechanisms include the overexpression of cyp51B95 the overexpression of efflux pumps (e.g. Cdr113 and AtrF),96,97 and mutations in regulators and the transcriptional network (e.g. SrbA).98 The negative cofactor two A and B (NCT) complex was recently identified as a key regulator of triazole resistance by modulating the expression levels of the transcription factors associated with ergosterol biosynthesis and triazole resistance.99

Trends in triazole resistance phenotypes and genotypes in A. fumigatus

SNPs are commonly found in the cyp51A gene of A. fumigatus isolates of which the significance for the resistance phenotype is unknown. In a recent resistance survey involving 640 clinical A. fumigatus isolates, 445 isolates harboured TR34/L98H of which 24 (5%) exhibited one or more additional mutations, including F495I (9 isolates), Q259H (5), S297T (4), D262N (1), N326H (1), P337L (1), Y341H (1), I364V (1), G328A (1) and L399V (1).49 These SNPs might or might not impact on the triazole resistance phenotype. F495I was recently shown to be associated with resistance to imidazole fungicides, such as imazalil and prochloraz, which was confirmed by recombination experiments.58 However, TR34/L98H with F495I showed lower voriconazole MICs compared with TR34/L98H without F495I, indicating an effect of this SNP on the activity of voriconazole.58 Hmg1 gene mutations have been found in isolates harbouring TR34/L98H and TR46/Y121F/T289A and have been suggested to alter the triazole-resistant phenotype.91 However, although hmg1 mutations were found in 24% of A. fumigatus isolates with a triazole-resistant phenotype, 8% of isolates with a WT phenotype also harboured SNPs in this gene.100 The location and type of SNP may determine their significance for the triazole-resistant phenotype, but this requires further studies.

In addition to SNPs, an increased number of TRs have been observed in triazole-resistant A. fumigatus isolates, including three or four copies of TR46.76 However, no specific phenotype change could be demonstrated in these isolates.

Finally, a significant trend towards decreased voriconazole resistance was noted in TR34/L98H isolates in the above-mentioned resistance survey.49 In 2013 96% (44 of 46) of TR34/L98H isolates were classified as voriconazole resistant, while in 2018 only 55% (59 of 108) of TR34/L98H isolates exhibited a voriconazole-resistant phenotype (P = 0.0001).45 However, no underlying mechanism was found that could explain the voriconazole phenotype shift. Through known and unknown resistance mechanisms, an increasing diversity in azole-resistant phenotypes and genotypes is emerging, which is likely to result from the dynamic environments A. fumigatus is exposed to and its ability to adapt to these changes.

Resistance testing of A. fumigatus and clinical implications

Although susceptibility testing remains the cornerstone for guidance of antifungal therapy choices, there are increasing challenges with respect to A. fumigatus resistance. Firstly, many cases of IA are diagnosed in the absence of a positive Aspergillus culture. Mixed triazole-susceptible and triazole-resistant isolates causing infection in patients with IA have been reported and testing of multiple A. fumigatus colonies is therefore recommended.101 As susceptibility testing of multiple colonies is very laborious, an agar-based screening strategy has proven useful to detect resistant colonies.102 Clinical breakpoints are available for triazoles and A. fumigatus, although it remains unclear if susceptible isolates can be safely treated with a triazole if the isolate is resistant for one or more other triazoles.103 In culture-negative patients, commercial resistance PCR assays are available to detect TR34/L98H and/or TR46/Y121F/T289A alterations directly in clinical specimens (Table 1).38,104 As these assays rely on the amplification of specific targets, which are confirmed as the cause of azole resistance, additional/alternative resistance mutations and single resistance mutations are not detected. With increasing variation in resistance phenotypes, and thus of the proportion of resistance due to the mechanisms not targeted by the PCR, the correlation between resistance PCR and resistance phenotype will become less well defined. Furthermore, the analytical sensitivity of resistance PCRs in bronchoalveolar lavage (BAL) (which target the single copy cyp51A gene) is lower than the Aspergillus PCR (where a multi-copy gene is amplified), resulting in the inability to obtain resistance target amplification in 30% of patients despite resistant infection.105 Thus, although resistance PCR positivity documents resistance, and triazole therapy thereby can be avoided if a resistance mutation is detected, PCR negativity does not confirm azole susceptibility, which in some circumstances, such as CNS aspergillosis, is critical. New approaches are warranted to enable detection of a broad range of resistance mutations, such as sequence-based strategies.107

Acquired triazole resistance in other Aspergillus species

Much less is known about the prevalence and underlying mechanisms of acquired triazole resistance in other Aspergillus spp. This is probably in part because they are less often causes of invasive disease, but also because acquired resistance is less frequently researched. Cyp51A alterations have been reported in azole-resistant Aspergillus terreus including M217I and G51A,86 D344N and M217I,106 and M217T and M217V.107 The codons G51 and M217 in A. terreus correspond, respectively, to codons G54 and M220 in A. fumigatus which, as described above, are also linked to triazole resistance. Molecular resistance mechanisms have also been investigated in Aspergillus flavus. P214L has been found in Cyp51A, and S240A and H349R in Cyp51C in triazole-resistant isolates, but not in susceptible counterparts.108,109 Moreover, MDR2, atrf and mfs1 up-regulation.
resulting in efflux were reported in azole-resistant *A. flavus* from South Korea. Thus, as for *A. fumigatus*, target gene sequencing can help detect acquired resistance, but it is not enough to rule out additional mechanisms that cause triazole resistance in these species.

Acquired echinocandin and amphotericin B resistance in *A. fumigatus*

Although echinocandin resistance was successfully promoted in laboratory strains of *A. fumigatus* with *fks* gene mutations as early as in 2005, and this mechanism is common in *Candida*, echinocandin resistance has rarely been reported in *A. fumigatus*. The first example of echinocandin resistance in clinical *A. fumigatus* isolates was reported in 2008 in a clinical isolate displaying overexpression of the *fks1* gene whereas the second involved a point mutation in *fks1* hotspot 1. Recently, it was shown that caspofungin may induce cellular stress, promoting formation of mitochondrial-derived reactive oxygen species and triggering an alteration in the composition of plasma membrane lipids surrounding glucan synthase, rendering it non-susceptible to echinocandins. None of these mechanisms is easily detectable in clinical microbiology laboratories. Finally, we are unaware of any documented clinically relevant acquired amphotericin B resistance mechanisms in *A. fumigatus*.

Candida species

Background

Acquired azole drug resistance rates in *C. albicans* are relatively low worldwide (≤1%). In a 20 year global surveillance study, using CLSI criteria, azole resistance in *C. glabrata* isolates ranged from 5.6% to 10.1%; however, these rates were much higher in North America (10.6%) than in Asia-Pacific (6.8%), Europe (4.9%), or Latin America (2.6%). Resistance rates in *C. parapsilosis* and *C. tropicalis* were as high as 5.4% and 4.9%, respectively.
C. krusei is intrinsically resistant to fluconazole with MIC values usually >32 mg/L. Other species with intrinsically elevated fluconazole MIC values include C. glabrata, Candida inconspicua, Candida lipolecta, Candida norvegensis, Candida rugosa, Candida pelliculosa and Candida guilliermondii. Amino acid substitutions in Erg11 can affect the optimal binding of the azoles to their target. Erg11 amino acid substitutions have been reported in C. albicans to their target. Alterations in erg11 are often preceded by months of therapy. It can be caused by a variety of resistance mechanisms that often work concurrently in clinical isolates and consequently the underlying mechanisms in isolates withazole resistance are rarely dissected. Elevated non-WT fluconazole MICs are most commonly observed in C. glabrata and C. auris.

Acquired azole resistance in Candida spp.

The gene encoding the target enzyme for azoles in Candida is the erg11 (equivalent to the cyp51A gene in Aspergillus). Acquiredazole resistance in Candida spp. is quite uncommon and when found is often preceded by months of therapy. It can be caused by a variety of resistance mechanisms that often work concurrently in clinical isolates and consequently the underlying mechanisms in isolates withazole resistance are rarely dissected. Elevated non-WT fluconazole MICs are most commonly observed in C. glabrata and C. auris.

Alterations in erg11

Amino acid substitutions in Erg11 can affect the optimal binding of the azoles to their target. Erg11 amino acid substitutions have been reported in C. albicans by Morio et al. A study looking at 63 fluconazole-resistant C. albicans clinical isolates observed that 55 carried at least one mutation in erg11. When these mutations are introduced into an azole-susceptible C. albicans strain, an increase in fluconazole MIC values is observed and is most prominent if the mutations are homozygous.

C. tropicalis isolates displaying azole resistance alone, or combined with amphotericin B, carried erg11 mutations, which lead to alterations at G464D and Y132F among isolates displaying fluconazole MIC values >64 mg/L and voriconazole MIC values of >8 mg/L. Beyond the Erg11 alterations, these isolates displayed Erg3 substitutions S258F and S113G. In a study evaluatingazole resistance among 431 C. parapsilosis and 227 C. tropicalis isolates collected worldwide, 38 of 46 C. parapsilosis and 3 of 6 C. tropicalis isolates had the Erg11 alteration Y132F.

In C. auris, a small number of erg11 gene mutations cause azole resistance and these are usually clade specific. Y132F causes high resistance rates to fluconazole and voriconazole with CLSI MIC values of 1 or 2 mg/L, while K143R and F126T increase fluconazole MIC values, but voriconazole values remain below 0.5 mg/L.

Up-regulation of erg11

Up-regulation of erg11 is not commonly noted in clinical isolates and seems to only have a modest effect onazole MIC values.

Alterations in erg3

Missense or nonsense mutations in erg3 have been reported to enable fungal cells to develop resistance to polyenes and azoles but these are uncommon in clinical isolates.

Efflux up-regulation

Up-regulation of efflux systems from the ATP-binding cassette (ABC) transporters and the major facilitator superfamily (MFS) can cause lower intracellular accumulation of the azoles, leading to resistance. The ABC transporters involved inazole resistance in C. albicans are Cdr1 and Cdr2. Functional homologues of these are noted in other Candida spp. The most important MFS transporter in Candida spp. is the Mdr1 pump, previously named BnR. In contrast to Cdr1 and Cdr2, which have all azoles as substrates, Mdr1 only extrudes fluconazole. Their substrate specificity in C. albicans and C. glabrata was confirmed in a study by Sanglard and Coste who evaluated the Cdr1, Cdr2 and CgCdr1 from C. glabrata, as well as Mdr1 and Erg11 alterations. They demonstrated that fluconazole MIC values were affected by all resistance mechanisms, whereas the MIC values of itraconazole, isavuconazole, posaconazole and voriconazole were unchanged when only Mdr1 was overexpressed.

Mutations in various zinc cluster transcription factors (ZCFs) have been identified as being responsible for the up-regulation of the efflux systems in Candida spp. In C. albicans, the promoter Tac1 is known to up-regulate Cdr1 and Cdr2. Mutations in multidrug-resistant regulator (mmr) 2 increasing the expression of Cdr1 have also been described. In C. glabrata, resistance to azoles is mediated by the up-regulation of the ABC multidrug transporter regulated by the ZCF CgPdr1. This regulator is important for fungal–host interactions. Mutations in this transcription factor have been demonstrated to increaseazole resistance in vitro and in vivo.

Overexpression of Mdr1 in C. albicans has been associated with a gain-of-function mutation in the promoter mrr1. C. albicans isolates that became homoygous to mrr1 with a single nucleotide substitution, resulting in P683S and G997V, demonstrated elevated fluconazole MIC values. In a recent global surveillance study, overexpression of Mdr1 was detected in 38 of 46azole-resistant C. parapsilosis isolates exhibiting azole nonsusceptible or non-WT phenotypes.

Combinations of resistance mechanisms

In most Candida spp.azole resistance is the result of a combination of mechanisms. In C. albicans laboratory isolates, resistance usually occurs through the gain-of-function alterations in the transcription factors Mrr1, Tac1 and Upc2, which results in the up-regulation of efflux pumps and ergosterol biosynthesis genes concomitantly. The combination of these mechanisms generated a 500-fold increase in fluconazole MIC values. In addition to up-regulating genes encoding efflux transporters and erg11, clinical isolates had Erg11 amino acid substitutions known to cause resistance.

Molecular detection ofazole resistance in Candida

Due to this plethora of resistance mechanisms that can co-exist, susceptibility testing is a better tool for clinical laboratories to detect resistance toazole agents than genetic methods. Molecular detection of erg11 gene mutations known to causeazole resistance could be used to detect or confirm resistance. However, resistance could not be ruled out in the absence of these alterations.

Echinocandin resistance

The 1,3-β-d-glucan synthase (GS) complex mainly comprises two subunits Fks and Rho, of which Fks1p is the main target of the
Echinocandins. Fks1, Fks2 and Fks3 are encoded by the genes fks1, fks2 and fks3, respectively. Resistance in Candida spp. is caused by mutations in fks1 for most Candida spp. and also in fks2 in C. glabrata. These occur within two specific regions, known as hotspots (HS) 1 and 2 (Figure 1). These regions are highly conserved within each species, but have different amino acid sequences. Intrinsically elevated echinocandin MIC values have been associated with inherent genetic polymorphisms within the fks sequence among certain species, notably including C. parapsilosis. Fks1, Fks2 and Fks3 are encoded by the genes fks1, fks2 and fks3, respectively. Resistance in Candida spp. is caused by mutations in fks1 for most Candida spp. and also in fks2 in C. glabrata. These occur within two specific regions, known as hotspots (HS) 1 and 2 (Figure 1). These regions are highly conserved within each species, but have different amino acid sequences. Intrinsically elevated echinocandin MIC values have been associated with inherent genetic polymorphisms within the fks sequence among certain species, notably including C. parapsilosis.

Echinocandin resistance rates are low for most Candida spp., with the exception of C. glabrata. Results for 20 years of the SENTRY Antifungal Surveillance Program demonstrated that echinocandin resistance did not show dramatic changes for the five most common Candida spp.,115 This is different to the findings of Alexander et al.139 who showed an increase in echinocandin resistance in C. glabrata of 7.3%. However, a large survey performed by the CDC, Atlanta, USA, found that the rate of echinocandin non-susceptible C. glabrata isolates increased from 4.2% to 7.8% between 2008 and 2014. Recent data from a global surveillance study demonstrate a decrease in caspofungin resistance rates among C. glabrata. From 2017 to 2020, only 1.9% of the 1448 C. glabrata collected in 29 countries exhibited caspofungin resistance and 2.7% displayed resistance to any echinocandin tested (M. Castanheira, unpublished). In a nationwide Danish survey of Candida spp. isolates from cases of candidaemia (2004–18), the proportion of Candida spp. susceptible to fluconazole decreased while there was a slight increase in echinocandin resistance and this was associated with a proportional decrease in C. albicans isolates and an increase in C. glabrata isolates.141 In one single-centre survey of Candida spp. isolates, also from candidaemia cases collected between 2002 and 2019, there was an increase in fluconazole resistance (3.5%–6.8%) while echinocandin resistance remained stable at around 3%.142 C. albicans is the second most common Candida sp. to display echinocandin resistance, most likely due to its high prevalence in clinical settings. Heterozygous and homozygous mutations in C. albicans may generate different phenotypes.143

In a study of C. glabrata isolates over a 10 year period, 119 isolates displaying non-WT MIC values for echinocandins were screened for fks gene mutations. A total of 28 had alterations in fks hotspots. The most common alterations were fks2 HS1 S663P or F659S/V/Y, followed by fks1 HS1 S629P. This is also true for the emerging species C. auris, which is a major problem in certain countries.145–147

Candida spp. isolates from recent studies have mostly demonstrated mutations of the corresponding codons in both C. glabrata and C. albicans, and other species, confirming that these are the dominant amino acid alterations (Figure 1).111,114,136

Anidulafungin	Fks1	Fks2			
ECOFF	**Hotspot 1**	**Hotspot 2**	**Hotspot 1**	**Hotspot 2**	
(µg/L)	1st AA no.	AA sequence			
C. albicans	6.03	641	FTLISRDP	1357	DWRRYTL
C. auris	NA	635	FTLISRDP	1350	DWRRYTL
C. dubliniensis	6.03	641	FTLISRDP	1357	DWRRYTL
C. glabrata	0.06	625	FTLISRDP	1340	DWRRYTL
C. kefyr	0.03	651	FTLISRDP	1366	DWRRYTL
C. krusei	0.06	655	FTLISRDP	1364	DWRRYTL
C. lusitaniae	0.06	634	FTLISRDP	1348	DWRRYTL
C. tropicalis	0.06	650	FTLISRDP	1366	DWRRYTL
C. parapsilosis	4	652	FTLISRDA	1369	DWRRYTL
C. metapsilosis	4	194*	FTLISRDA	821*	DWRRYTL
C. orthopsilosis	4	645	FTLISRDA	1362	DWRRYTL
C. guilliermondii	4	632	FTLISRDP	1347	DWRRYTL
C. lypolytica	NA	662	FTLISRDP	1387	DWRRCVL
S. cerevisiae	1	629	FTLISRDP	1353	DWRRYTL

Figure 1. Amino acid (AA) sequences of Fks1 and Fks2 in 10 WT Candida species. Amino acid codons associated with increased MIC are underlined and in bold font. In the online version a colour indication is applied to inform origin (naturally occurring or acquired) and impact on the MIC (strong, weak or silent). Red: strong R mutation, subscript at codons involving a mutation or deletion; superscript at codon involving a mutation or stop codon. Yellow: weak R mutation. Blue: inherent AA difference with proven or possible relation to intrinsic lower susceptibility. Grey: inherent AA difference of unknown importance. Green: inherent AA difference, probably with no effect. *Of note: combination of the following alterations outside the defined hotspots has also been confirmed as cause of echinocandin resistance: Fks1 W508Stop combined with Fks2 E655K. ECOFFs indicated in () are estimated WT upper limits (peak MIC + 2 dilutions) based upon the MICs of Danish blood isolates. *Inaccurate annotation, sequencing of entire gene sequence required. #The micafungin (but not anidulafungin) ECOFF for C. krusei is noticeably higher (0.25 µg/mL) than for C. albicans (0.015 µg/mL) and C. glabrata (0.03 µg/mL). NA, not available. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
Isolates with double mutations have higher MIC values. Lackner et al. demonstrated that *C. albicans* laboratory mutants with homozygous double mutations significantly enhance resistance in an in vivo model when compared with heterozygous single mutations.

Although alterations in Fks2p and Fks3p are deemed unimportant for most *Candida* spp., homozygous deletions of *fks2* and *fks3* in laboratory-engineered strains of *C. albicans* decrease their susceptibility to echinocandins since they result in a compensatory overexpression of Fks1 and increase in cell wall glucan.

Interestingly, the MIC values for isolates with the same *fks* gene mutations are not always the same. This finding suggests the presence of compensatory mutations that could lead to changes that would improve the binding of the echinocandins—although not to the same level as a WT enzyme. Unlike with azoles, drug efflux and biosynthesis pathway modulation of the fungal cell wall does not seem to affect *Candida* spp. susceptibility to echinocandin agents.

Clinical aspects of echinocandin resistance

Candida spp. isolates can develop resistance to echinocandins after short therapy courses or long-term treatment (median ~1 month), and resistance has not been described in drug-naive patients except where it has been acquired nosocomially. This means that echinocandin use is the main driver of mutations and resistance. Thus, isolates from breakthrough infection have elevated MIC values and amino acid substitutions in the Fks hotspots.

In a study evaluating the risk factors for patients having *C. glabrata* candidaemia with an isolate harbouring an *fks* mutation, patients who received 3 or more days of echinocandin therapy were more likely to have isolates that developed echinocandin resistance and to carry *fks* mutations.

Molecular detection of echinocandin resistance in Candida spp.

Molecular methods for detection of echinocandin resistance have been developed. The most commonly used was PCR targeting the hotspot regions for the *fks* sequences, followed by conventional sequencing methods. However, *fks* genes are over 3 kb in length and sequencing the entire gene can be cumbersome. Furthermore, primers for *fks* gene amplification are species specific, and this increases both the need for expertise and added laboratory workload. A pyrosequencing method was described for detecting *fks* mutations and, more recently, next-generation sequencing has been used to evaluate several different traits in fungal isolates, including echinocandin resistance in *Candida* spp.

Amphotericin B and fluconosine resistance

Acquisition of amphotericin B resistance in *Candida* spp. is apparently rare, but current MIC-based methods may fail to detect resistant isolates. Overall, low rates of breakthrough candidemia in patients treated with amphotericin B have been described.

Resistance to fluconosine in *Candida* spp. is primarily related to impaired drug uptake by the cytosine permease encoded by *fcy2*, and alterations in enzymes involved in the conversion of fluconosine to the active compound 5-fluorouracil (Fcy1 and Fur1).

Molecular detection of amphotericin B and fluconosine resistance in Candida

Amphotericin B resistance in *Candida* spp. is mainly due to changes in the ergosterol biosynthesis pathway. In contrast to azole resistance, where *erg11* mutations have been directly associated with a resistance phenotype, there is no clear marker for detection of amphotericin B resistance. Mutations in *fcy2* or *fur1* that are associated with fluconosine resistance can be detected by PCR. However, as fluconosine is rarely used for *Candida* infections knowledge on resistance mutations is still limited and phenotypic testing remains the more attractive method to detect resistance.

Cryptococcus spp.

Background

Cryptococcal meningitis occurs mainly in people living with HIV and represents an important fungal cause of mortality, particularly in sub-Saharan Africa. Recommended treatment for cryptococcal meningitis is an induction regimen comprising amphotericin B combined with fluconosine, followed by a consolidation phase with fluconazole. Regimens may vary depending on drug availability. For maintenance therapy, fluconazole is the treatment of choice. Indeed, amphotericin B, fluconosine and the azoles show good in vitro activity against *Cryptococcus* spp. In contrast, *Cryptococcus* spp. are intrinsically resistant to echinocandins.

Acquired resistance to amphotericin B in *Cryptococcus* spp. seems very uncommon. Resistance rates to fluconazole and fluconosine remained low, at least in Europe and the USA, while higher rates of fluconazole resistance have been reported from other parts of the world such as Cambodia, South Africa and Taiwan. In a comprehensive review of 29 studies published between 1988 and 2017, the mean fluconazole resistance rate was 10.6% for incident isolates, while it rose to 24.1% for relapse isolates. Of note, in Africa specifically, 70% of isolates from cases of relapse were resistant. Exposure to fluconazole during therapy is probably the main driving force for emergence of resistance. However, exposure to fungicides in the environment may also be responsible for fluconazole resistance. Indeed, it has been shown that in vivo exposure to both azole or even non-azole fungicides used in agriculture can select fluconazole cross-resistant isolates of *C. neoformans* and *Cryptococcus gattii*. Although primary fluconosine resistance is rare in *C. neoformans*, acquired resistance is common when the drug is used as monotherapy.

In vitro antifungal susceptibility testing

Although there are reference methods for antifungal susceptibility testing, clinical breakpoints are currently not available for *Cryptococcus* with the exception of 1 mg/L for amphotericin B for EUCAST (www.eucast.org). Nevertheless, the values of >32 and >16 mg/L for fluconazole and fluconosine, respectively, and mainly obtained by the CLSI methodology, are often used as...
breakpoints in the literature. For fluconazole specifically, heteroresistance, where clinical resistance is not related to the MIC (see below), further complicates MIC interpretation. Despite these technical issues, there are many supportive data that correlated the high in vitro MICs to fluconazole, fluconazole, or amphotericin B, with clinical failure both in experimental animal models and in patients.

Acquiredazole resistance

Mechanisms of fluconazole resistance in *Cryptococcus* are varied and include mutations in **erg11** and overexpression of **erg11**, efflux pumps and heteroresistance. Alteration of the target enzyme, 14α-demethylase has been reported in several studies (Table 4). A reduced affinity of the enzyme for azoles, associated with other mechanisms of resistance, was demonstrated in fluconazole-resistant clinical isolates of *C. neoformans*. More recently, several mutations in **erg11** associated with azole resistance have been reported, including G484S (corresponding to G464S in *C. albicans*), G70R and Y145F (equivalent to Y132F in *C. albicans*). A G344S mutation in **erg11** has also been observed in a multi-azole-resistant laboratory mutant.

Overexpression of **erg11** is also a common mechanism ofazole resistance in yeasts. In an early study, it was shown that there was an increased level of 14α-demethylase within fluconazole-resistant *C. neoformans* isolates from AIDS patients. Similarly, overexpression of **erg11** in the presence of fluconazole, associated with overexpression of an efflux pump, was observed in an animal strain of *C. neoformans*.

Several studies demonstrated a decreased intracellular content of fluconazole in fluconazole-resistant isolates of *C. neoformans* supporting the presence of active multi-drug efflux mechanisms. Subsequently, genes encoding multidrug transporters have been demonstrated in *C. neoformans*, and up-regulation of the ABC transporter CnAFR1 was shown to be involved in fluconazole resistance in laboratory mutants, confirmed *in vivo* in a murine model of cryptococcosis and observed (in association with overexpression of **erg11**) in an isolate of *C. neoformans* from a case of feline cryptococcosis. Efflux pumps have been demonstrated in *C. gattii* and shown to confer fluconazole resistance when expressed in *Saccharomyces cerevisiae* although their contributions toazole resistance in clinical strains remain to be confirmed.

Heteroresistance is another mechanism that could be associated with treatment failure in *Cryptococcus* spp. Heteroresistance is defined by the presence, in a single isolate, of different populations with differing susceptibility to a drug. Heteroresistance, first described in 1999 in *C. neoformans*, is a dynamic and heterogenous trait, not related to initial MIC but temperature dependent. It is an intrinsic phenomenon, as it was demonstrated in strains isolated before the discovery and use ofazole drugs. It has been reported both in *C. neoformans* and *C. gattii* and seems to be more frequent in the latter species. Heteroresistance has been linked to chromosome duplication, in particular a disomy of chromosome 1, which carries the genes coding for AFR1 and **erg11**. It is state dependent and more frequent after fluconazole treatment both in an animal model and in patients.

Amphotericin B resistance

Laboratory-generated amphotericin B-resistant mutants have been characterized and showed no alteration in ergosterol content. In contrast, in amphotericin B-resistant clinical isolates, a low content of ergosterol was observed and could be attributed to a defect in the delta 8-7 isomerase, which plays a role in ergosterol synthesis.

Flucytosine resistance

Mechanisms of resistance to flucytosine in *C. neoformans* may be due to mutation in cytosine permease (**fcy2**), cytosine deaminase (**fcy1**), or uracil phosphoribosyltransferase (**fur1**). Flucytosine resistance has also been reported in clinical isolates of *C. gattii*, but with an as yet unknown mechanism(s).
Nevertheless, in vitro experiments showed that defects in DNA mismatch repair (MSH2) promote mutations responsible for flucytosine resistance in Cryptococcus deuterogattii. It should be pointed out that combination therapy with amphotericin B and flucytosine may still be effective even in a case of flucytosine resistance, depending on the mechanism of resistance involved.

Molecular detection of drug resistance in Cryptococcus

Although antifungal drug resistance has been clearly demonstrated in Cryptococcus spp., the mechanisms involved are diverse and not fully understood. There are currently no commercialized or easy diagnostic methods for the detection of the molecular mechanisms of antifungal resistance in Cryptococcus spp. in clinical microbiology laboratories.

Dermatophytes

Background

The majority of dermatophyte infections are caused by three genera: Epidermophyton, Microsporum and Trichophyton. Mild infections are treated topically with terbinafine, azoles (ketoconazole, miconazole, clotrimazole, luliconazole, sertaconazole, eberconazole), amorolfine or ciclopirox. Serious infections, as well as scalp and nail infections are treated systemically with terbinafine, triazoles (itraconazole or fluconazole) or griseofulvin and often in combination with topical treatment. Newer systemic triazoles including voriconazole and posaconazole are increasingly used off label in failing case settings.

Resistance in dermatophytes was first reported shortly after the turn of the millennium and as of today has been found in Trichophyton spp. but not in Epidermophyton. Although drug resistance in dermatophytes is not routinely investigated, resistance in Trichophyton is increasingly reported worldwide. The highest rates are observed in India, i.e. 36% for terbinafine (MIC ≥4 mg/L) and 68% for fluconazole (MIC ≥16 mg/L) and apparently involve the spread of an early diverging clade referred to as T. indotineae and previously reported as T. mentagrophytes/T. interdigitale complex and T. mentagrophytes genotype VIII. Recently, a study carried out under the auspices of the European Academy of Dermatology and Venereology task force of Mycology reported that among 20 European countries, only one country reported no known resistance although susceptibility testing is not a routine test in clinical laboratories.

A total of 126 cases were reported as having either clinical and/or microbiological-confirmed antifungal resistance with infections located in the scalp, body (some very widespread), groin, palm, soles (and co-infection of nails) and genital areas. In Denmark, an increasing number of resistant cases are reported. Finally, terbinafine resistance was also found in two isolates from wild hedgehogs in Poland, illustrating that resistant isolates may be shed in the environment.

In vitro antifungal susceptibility testing

A number of studies have reported terbinafine MICs for Trichophyton by the CLSI M38-A2 method. In these studies, MIC ranges vary from <0.007–0.031 to 0.125–>32 mg/L and 0.004–0.06 to 0.06–0.06 mg/L for T. interdigitale and T. rubrum, respectively, suggesting some interlaboratory variation. Moreover, differential criteria have been adopted for identification of resistant isolates, e.g. >0.25 and >2 mg/L, suggesting a need for standardization. No formal CLSI clinical breakpoints are established but it is stated that most Trichophyton MICs are <0.25 mg/L but some T. rubrum have MICs of >0.5 mg/L. A EUCAST method (E.Def 11.0) has been developed and validated in a multicentre study. This method adopted an objective spectrophotometric endpoint reading to improve reproducibility and facilitates a broader implementation of antifungal susceptibility testing for dermatophytes. Tentative ECOFFs have been established but no breakpoints so far. These, as well as tentative MIC targets and ranges for two Quality Control strains, can be found at the EUCAST website (www.eucast.org).

Terbinafine resistance

Terbinafine resistance has been linked to hotspot mutations in the squaMapolene epoxidase (SQLE) target gene of Trichophyton spp. The corresponding amino acid alterations detected so far are summarized in Table 5. High-level resistance (MIC ≥5 mg/L) is associated with alterations involving L393 or F397 and these two codons are the most common ones involved in terbinafine resistance in both T. mentagrophytes, T. interdigitale, T. indotineae, T. rubrum and Trichophyton tonsurans. Q408L is a novel alteration recently described in highly resistant T. mentagrophytes isolates causing refractory infection in a married couple and L437P has recently been found in a Danish T. rubrum isolate with high-level resistance.

Less prominent MIC elevation (2–3-fold dilution elevation of the modal MIC) has been associated with alterations involving I308, I437, F468, S443P and combined I121M and V237I alterations, I121M combined with I308V is a novel alteration, possibly associated with resistance given both codons are in close proximity to the terbinafine binding site and are also situated in a region that is conserved across several fungal species. Importantly, however, although most terbinafine-resistant Trichophyton isolates harbour SQLE mutations, resistant isolates without such mutations have also been described, suggesting additional mechanisms may play a role. Indeed, ABC transporters and MDR2, in particular, appear to be involved in resistance to terbinafine in Trichophyton and also to other antifungal compounds.

Terbinafine resistance in Microsporum is to our knowledge only described in a single isolate from a feline patient treated unsuccessfully with topical terbinafine for 3 months for severe skin infection. In this isolate, the underlying mechanism involved overexpression of the pdr1, mdr1, mdr2 and mdr4 genes encoding ABC transporter proteins.

Azole resistance

Within the T. rubrum genome, four ATP-binding cassette (ABC) transporters (TruMdr1, TruMdr2, TruMdr3 and TruMdr5) and TruMfs2 transporter belonging to the MFS have been shown to be able to operate as azole efflux pumps. TruMdr3 and TruMfs1 can act with all azole compounds, while TruMdr1 and TruMfs2 only export fluconazole and voriconazole, and TruMdr2 and TruMdr5 are specific for itraconazole. As mentioned above, efflux pumps can also transport terbinafine and can account for azole–terbinafine cross resistance. Similarly,
itraconazole and fluconazole resistance in *Microsporum canis* has been linked to efflux pumps.

Molecular detection of drug resistance in dermatophytes

Molecular detection of recognized resistance mutations provides a possibility for rapid detection of resistance and particularly so when compared with susceptibility testing methods for the slow-growing dermatophytes. It also provides an option to detect resistance when the isolate is not growing sufficiently well in the susceptibility testing medium, and potentially also for direct detection of resistance in clinical material. SQLE target gene amplification and sequencing allow detection of mutations conferring high- and low-level resistance (Table 5 and described above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring alterations above). Moreover, a PCR test for the detection of the two most common alterations T1189C and C1191A conferring.

Table 5. Overview of mutations in the squalene epoxidase (SQLE) target gene of *T. rubrum* and *T. interdigitale* and their implication for terbinafine susceptibility (for references, see text)

	High-level resistance	Low-level resistance	Unknown impact (Direct sequencing, unable to grow in EUCAST AFST)	Unrelated to resistance
T. rubrum	L437P, L393F, L393S, F397L, F397I	I121MV237I, F415S, H440Y/F484Y, S443P	Y414C/L438C, F415V	F484Y, I479V
T. interdigitale	L393F, L393S, S395P, F397L, Q408L, H440T	S443P		L335F, A448T

P. jirovecii

Background

Potentially drug-resistant PcP was first documented in the 1990s, and it continues to be difficult to determine its current scale. Polymorphisms in the genes encoding targets for anti-PcP therapies are recognized as a potential reason for resistant disease. Trimethoprim/sulfamethoxazole is recommended as an agent of first choice for treatment and prophylaxis of PcP. Certain aspects of the disease itself might represent a problem for molecular diagnostic testing. Low fungal burdens in HIV-negative patients can limit the applicability of PCR-based detection. Second, many cases of PcP are caused by multiple co-infecting strains, which include both WT and mutant genotypes. Finally, unlike most fungal diseases, laboratory culture plays no role in the diagnosis and management of PcP.

In vitro antifungal susceptibility testing

The difficulty in culturing *Pneumocystis* has hindered both PcP diagnosis and research and precludes the possibility of in vitro susceptibility testing.

Trimethoprim/sulfamethoxazole and atovaquone resistance

A wide range of mutations have been identified in dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) genes, although even the presence of the most common polymorphisms (DHPS codons T55A and S57P) associated with sulfamethoxazole-based resistance are not necessarily related to treatment failure (Table 51, available as Supplementary data at JAC Online). Mutations in cytochrome B gene have been associated with potential atovaquone resistance, but the impact on patient survival is unclear.

It is very difficult to determine the prognostic impact of PcP caused by a potentially resistant strain, irrespective of the type of anti-PcP therapy, but in patients infected with strains possessing *dhps* gene mutants an increased duration of hospital stay and the need for mechanical ventilation have been noted. The impact of drug-resistant disease in the non-HIV cohort remains difficult to determine, due to the fulminant nature of the infection in this broad population. Some studies describe prior drug exposure as the factor behind resistance, yet others describe resistant disease in sulfamethoxazole-naive patients. This could reflect the nature of the infection, and the need for infection control measures, which are currently not widely applied.

The geographical distribution of mutations potentially associated with PcP resistance is broad, with the studies originating from all continents with the exception of Antarctica (Table 51). The number of documented cases is likely limited by the number of studies investigating this issue, and evidence would suggest that *Pneumocystis* strains with potential resistance to therapy will be widespread. Of the available studies, mutation rates associated with sulfamethoxazole treatment failure vary between 0% and 100% (Table S1), with the higher mutation rates documented in the USA compared with Europe and the lowest rates documented in resource-limited countries.

Various routes of acquisition of resistant PcP have been described, including human-to-human transmission of a resistant strain, *de novo* development of resistance due to use of (possibly sub-optimal) therapy, infection with resistant strains from an environmental source and reactivation of latent disease.
is available, but clinical validation is limited. One of the major drawbacks of molecular testing for PcP is the lack of knowledge regarding which target gene alterations affect drug susceptibility. Indeed, it may be that other molecular mechanisms are involved in combination with the polymorphisms already identified and persistent PcP PCR positivity where Ct values indicate a consistent or increasing burden despite therapy could be associated with treatment failure. Therefore, molecular detection of drug resistance in PcP is yet not ready for clinical use.

Conclusions

Molecular detection of antifungal drug resistance is, from a clinical perspective, still in its infancy, but technically feasible and potentially helpful, at least for the rapid detection ofazole resistance in A. fumigatus. Other important applications include detection of echinocandin resistance in C. glabrata and terbinafine resistance in Trichophyton spp. New technologies, including next-generation and metagenomic sequencing, have the potential to enable screening of pathogens and clinical specimens for the presence of known and yet to be identified resistance mechanisms. However, it is important to be aware that molecular testing alone cannot determine an organism’s antifungal drug susceptibility.

Not all resistance mechanisms are suitable for molecular detection, as diagnostic accuracy may be unknown, and new mechanisms of resistance continue to arise. Moreover, interpretation of the clinical impact of a given mutation requires expertise about the level and spectrum of resistance dependent on the codon involved as well as the specific amino acid substitution.

Acknowledgements

Members of the Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST)

M. C. Arendrup (Chairman, Denmark), S. Arikan-Akdag (Steering Committee, Turkey), F. Barchiesi (Italy), Jochem Buil (the Netherlands), M. Castanheira (USA), E. Chryssanthou (Sweden), N. Friberg (Finland), J. Guiseppe (Scientific Secretary, Spain), P. Harnal (Czech Republic), Ingridur Hilmarsdottir (Iceland), N. Klimko (Russia), O. Kurzai (Germany), K. Lagrou (Belgium), C. Lass-Flor (Austria), T. Matos (Slovenia), J. Meletiadis (Scientific Data Coordinator, Greece), C. Moore (UK), K. Muehlethaler (Steering Committee, Switzerland), T. R. Rogers (Ireland).

Funding

This review was supported by internal funding.

Transparency declarations

T.R.R. has, in the past 5 years, received lecture fees and/or honoraria for advisory board membership from Gilead Sciences, Pfizer Healthcare Ireland, Mundi Pharma, Menarini Pharma and Insmed. P.E.V. reports grants received from Gilead Sciences, MSD, Pfizer, Mundipharma, ThermoFisher and F2G, and non-financial support from OLM and JIMMY, outside the submitted work. All contracts were through Radboudumc, and all payments were invoiced by Radboudumc. M.C. is an employee of JMI Laboratories that has been contracted to perform services in 2018–21 for Achaogen, Inc., Affinity Biosciences, Albany College of Pharmacy and Health Sciences, Alereca Therapeutics, Allergan, Amicore Advanced Biomaterials, Inc., American Proficiency Institute, AmpLphi Biosciences Corp., Amplyx Pharma, Antabio, Arietis Corp., Arixia Pharmaceuticals, Inc., Artugel Therapeutics USA Inc., Astellas Pharma Inc., Athelas, Becton, Basilea Pharmaceutica Ltd, Bayer AG, Becton, Beth Israel Deaconess Medical Center, BIDMC, bioMerieux, Inc., bioMerieux SA, BioVersys Ag, Boston Pharmaceauticals, Bugworks Research Inc., CEM-102 Pharmaceuticals, Cepheid, Cidara Therapeutics, Inc., Cipla, Contrafect, Cormedics Inc., Crestone, Inc., Curtza, CXC7, DePuy Synthes, Destiny Pharma, Dickinson and Company, Discuva Ltd, Dr. Falk Pharma GmbH, Emery Pharma, Entasis Therapeutics, Eurofarma Labortorios SA, Fedora Pharmaceutical, F. Hoffmann-La Roche Ltd, Finbriion Therapeutics, US FDA, Fox Chase Chemical Diversity Center, Inc., Gateway Pharmaceutical LLC, GenePOC Inc., Geom Therapeutics, Inc., GlaxoSmithKline plc, Guardian Therapeutics, Hardy Diagnostics, Harvard University, Helpbery, HiMedia Laboratories, ICON plc, Idorisa Pharmaceuticals Ltd, IHMA, Iterum Therapeutics plc, Janssen Research & Development, Johnson & Johnson, Kaleido Biosciences, KBB Biosciences, Laboratory Specialists, Inc., Luminex, Matriox, Mayo Clinic, Medpace, Meiji Seika Pharma Co., Ltd, Melinta Therapeutics, Inc., Menarini, Merck & Co., Inc., Meridian Bioscience Inc., Micromyx, Microchem Laboratory, MicuRx Pharmaceutics, Inc., Mutabiliis Co., N8 Medical, Nabriva Therapeutics plc, National Institutes of Health, NAEJA-RGM, National University of Singapore, North Bristol NHS Trust, Novartis AG, Novo Line Technologies, Oxoid Ltd, Paratek Pharmaceuticals, Inc., Pfizer, Inc., Pharmaceutical Product Development, LLC, Polyphor Ltd, Prokaroytics Inc., QPEX Biopharma, Inc., Ra Pharmaceuticals, Inc., Rhode Island Hospital, RHML, Roche, Roivant Sciences, Ltd, Safeguard Biosoystms, Salvat, Scynexis, Inc., SeLux Diagnostics, Inc., Shionogi and Co., Ltd, SinSa Labs, Specific Diagnostics, Spero Therapeutics, Summit Pharmaceuticals International Corp., SuperTrans Medical LT, Synlogic, T2 Biosystem, Taisha Pharmaceutical Co., Ltd, TenNor Therapeutics Ltd, Tetraphore Pharmaceuticals, The Medicines Company, The University of Queensland, Theravance Biopharma, Thermo Fisher Scientific, Tufts Medical Center, Unisource de Sherbrooke, University of Colorado, University of Southern California-San Diego, University of Iowa, University of Iowa Hospitals and Clinics, University of North Texas Health Science Center, University of Wisconsin, UNT System College of Pharmacy, URMC, UT Southwestern, VenatoRx, Viosera Therapeutics, Vyome Therapeutics Inc., Wayme State University, Wockhardt, Yukon Pharmaceutics, Inc., Zai Lab and Zavante Therapeutics, Inc. There are no speakers bureaus or stock options to declare. E.D. has, during the past 5 years, received research grants from MSD and Gilead, travel grants from Gilead, MSD, Pfizer and Astellas, and speaker’s fee from Gilead, MSD and Astellas. M.C.A. has, over the past 5 years, received research grants/contract work (paid to the SSI) from Amplyx, Basilea, Cidara, F2G, Gilead, Novabiotics, Scynexis and T2Biosystems, and speaker honoraria (personal fee) from Astellas, Chiesi, Gilead, MSD and SEGES. She is the current chairman of the EUCAST-AFST. P.L.W. performed diagnostic evaluations and received meeting sponsorship from Bruker, Dynamiker and Launch Diagnostics, speakers fees, expert advice fees and meeting sponsorship from Gilead, and speaker and expert advice fees from F2G, and speaker fees from MSD and Pfizer. He is a founding member of the European Aspergillus PCR Initiative.

Supplementary data

Table S1 is available as Supplementary data at JAC Online.
References

1. Anderson TM, Clay MC, Cioffi AG et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 2014; 10: 400–6.

2. Shafiei M, Peyton L, Hashemzadeh M et al. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem 2020; 104: 104240.

3. Law D, Moore CB, Wardle HM et al. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother 1994; 34: 659–68.

4. White TC, Holleman S, Dy F et al. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 2002; 46: 1704–13.

5. Jeffery-Smith A, Taori SK, Schelenz S et al. Candida auris: A review of the literature. Clin Microbiol Rev 2017; 31: e0029-17.

6. Cheong JWS, McCormack J. Fluconazole resistance in cryptococcal disease: Emerging or intrinsic? Med Mycol 2013; 51: 261–9.

7. Denning DW, Venkateswarlu K, Oakley KL et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1997; 41: 1364–8.

8. Dannaoui E, Borel E, Monier MF et al. Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2001; 47: 333–40.

9. Verweij PE, Meillado E, Melchers WJG. Multiple-triazole-resistant aspergillosis. N Engl J Med 2007; 356: 1481–3.

10. Poppas PG, Kauffman CA, Andes DR et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62: e1–50.

11. Singh-Babok SD, Babok T, Diezmann S et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog 2012; 8: e1002718.

12. Jiménez-Ortíz G, Moore C, Denning DW et al. Emergence of echinocandin resistance due to a point mutation in the fks gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob Agents Chemother 2017; 61: e01277-17.

13. Aruanno M, Glampedakis E, Lamoth F. Echinocandins for the treatment of invasive aspergillosis: From laboratory to bedside. Antimicrob Agents Chemother 2019; 63: e00399-19.

14. Verweij PE, Te Dorsthorst DTA, Janssen WHP et al. In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. Antimicrob Agents Chemother 2008; 52: 4483–5.

15. Gsaller F, Furukawa T, Carr PD et al. Mechanistic basis of pH-dependent 5-flucytosine resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62: e02593-17.

16. McClellan KJ, Wiseman LR, Markham A. Terbinafine: an update of its use in superficial mycoses. Drugs 1999; 58: 179–202.

17. Ebert A, Monod M, Salamin K et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses 2020; 63: 717–28.

18. Nenoff P, Verma SB, Ebert A et al. Spread of terbinafine-resistant Trichophyton mentagrophytes type VIII (India) in Germany: “the tip of the iceberg”? J Fungi (Basel) 2020; 6: 207.

19. Sachei R, Harag S, Dehavay F et al. Belgian national survey on Tinea capitis: Epidemiological considerations and highlight of terbinafine-resistant T. mentagrophytes with a mutation on SQLE Gene. J Fungi (Basel) 2020; 6: 195.

20. Siopi M, Efstatiou I, Theodoropoulos K et al. Molecular epidemiology and antifungal susceptibility of Trichophyton isolates in Greece: emergence of terbinafine-resistant Trichophyton mentagrophytes type VIII locally and globally. J Fungi (Basel) 2021; 7: 419.

21. Saunte DML, Pereiro-Ferreiros M, Rodriguez-Cerdeira C et al. Emerging antifungal treatment failure of dermatophytosis in Europe: take care or it may become endemic. J Eur Acad Dermatol Venereol 2021; 35: 1582–6.

22. Kano R, Kimura U, Kakurai M et al. Trichophyton mentagrophytes spp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020; 185: 947–58.

23. Tang C, Kong X, Ahmed SA et al. Taxonomy of the Trichophyton mentagrophytes/T. interdigitale species complex highly virulent, multiresistant genotype T. indotiniae. Mycopathologia 2021; 186: 315–26.

24. Kidd SE, Chen SC-A, Meyer W et al. A new age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol 2020; 10: 2903.

25. Consortium Opathy, Gabaldon T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43: 517–47.

26. White PL. Recent advances and novel approaches in laboratory-based diagnostic mycology. Med Mycol 2019; 57: S259–66.

27. Camp I, Manhart G, Schabereiter-Gurtner C et al. Clinical evaluation of an in-house panfungal real-time PCR assay for the detection of fungal pathogens. Infection 2020; 48: 345–55.

28. Rath P-M, Steinmann J. Overview of commercially available PCR assays for the detection of Aspergillus spp. DNA in patient samples. Front Microbiol 2018; 9: 740.

29. Dukadova A, Speiss B, Tangwattanachuleeporn M et al. Molecular tools for the detection and deduction of azole antifungal drug resistance phenotypes in Aspergillus species. Clin Microbiol Rev 2017; 30: 1065–91.

30. Bui JB, Zoll J, Verweij PE et al. Molecular detection of azole-resistant Aspergillus fumigatus in clinical samples. Front Microbiol 2018; 9: 515.

31. van der Torre MH, Novak-Frazer L, Rautemaa-Richardson R. Detecting azole antifungal resistance in Aspergillus fumigatus by pyrosequencing. J Fungi (Basel) 2020; 6: 12.

32. Chong G-LM, van de Sande WWJ, Dingemans GJH et al. Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus and azole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid. J Clin Microbiol 2015; 53: 868–74.

33. Montesinos I, Argudin MA, Hites M et al. Culture-based methods and molecular tools for azole-resistant Aspergillus fumigatus detection in a Belgian University Hospital. J Clin Microbiol 2017; 55: 2391–9.

34. Singh A, Sharma B, Mahto KK et al. High frequency direct detection of triazole resistance in Aspergillus fumigatus from patients with chronic pulmonary fungal diseases in India. J Fungi (Basel) 2020; 6: 67.

35. Mikulska M, Furfaro E, De Carolis E et al. Use of Aspergillus fumigatus real-time PCR in broncho-alveolar lavage (BAL) samples for diagnosis of invasive aspergillosis, including azole-resistant cases, in high risk haematology patients: the need for a combined use with galactomannan. Med Mycol 2019; 57: 987–96.

36. Guegan H, Chevrier S, Belleguic C et al. Performance of molecular approaches for Aspergillus detection and azole resistance surveillance in cystic fibrosis. Front Microbiol 2018; 9: 531.

37. Dannaoui E, Gabriel F, Gaboyard M et al. Molecular diagnosis of invasive aspergillosis and detection of azole resistance by a newly commercialized PCR kit. J Clin Microbiol 2017; 55: 3210–8.

38. Scharmann U, Kirchhoff L, Hain A et al. Evaluation of three commercial PCR assays for the detection of azole-resistant Aspergillus fumigatus from respiratory samples of immunocompromised patients. J Fungi (Basel) 2021; 7: 132.

39. Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis 2014; 27: 484–92.

40. Kordalewska M, Lee A, Park S et al. Understanding echinocandin resistance in the emerging pathogen Candida auris. Antimicrob Agents Chemother 2018; 62: e00238-18.
Leach L, Russell A, Zhu Y et al. A rapid and automated sample-to-result Candida auris real-time PCR assay for high-throughput testing of surveillance samples with the BD Max Open System. J Clin Microbiol 2019; 57: e00630-19.

Saunte DML, Hare RK, Jørgensen KM et al. Emerging terbinfine resistance in Trichophyton clinical characteristics, squaene epoxidase gene mutations and a reliable EUCAST method for detection. Antimicrob Agents Chemother 2019; 63: e01126-19.

Singh A, Singh P, Dingemans P et al. Evaluation of DermaGenius® resistance real time polymerase reaction for detection of terbinfine-resistant Trichophyton species. Mycoses 2021; 64: 721–6.

De la Horra C, Friaza V, Morilla R et al. Update on dihydropteroate synthase (dhps) mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7: 856.

Montesinos I, Delforge M-L, Ajjaham F et al. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jiroveci pneumonia and identification of dihydropteroate synthase (DHPS) mutations. Diagn Microbiol Infect Dis 2017; 87: 32–6.

Verweij PE, Zhang J, Debets AJM et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis 2016; 16: 251–60.

Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol 2013; 3: 439.

Zhang J, Li L, Lv Q et al. The fungal CYP51s: their functions, structures, related drug resistance, and inhibitors. Front Microbiol 2019; 10: 691.

Lestrade PPA, Buil JB, van der Beek MT et al. Paradoxical trends in azole-resistant Aspergillus fumigatus in a national multicenter surveillance program, 2013–2018. Emerg Infect Dis 2020; 26: 1447–55.

Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E et al. Epidemiological cutoffs and cross resistance toazole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 2008; 52: 2468–72.

Snelders E, van der Lee HA, Kuijpers J et al. Emergence ofazole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 2008; 5: e219.

van der Linden JW, Snelders E, Kampinga GA et al. Mutations and a reliable EUCAST method for detection. Antimicrob Agents Chemother 2019; 63: e01126-19.

Astvad KM, Jensen RH, Hassan TM et al. First detection of TR46/Y121F/T289A and TR46/L98H alterations in Aspergillus fumigatus isolates from azole-naive patients in Denmark despite negative findings in the environment. Antimicrob Agents Chemother 2014; 58: 5096–101.

van Ingen J, van der Lee HA, Rijs TA et al. Azole, polyene and echinocandin MIC distributions for wild-type, TR46/L98H and TR46/Y121F/T289A Aspergillus fumigatus isolates in the Netherlands. J Antimicrob Chemother 2015; 70: 178–81.

Choukri F, Botterel F, Sitterlé E et al. Prospective evaluation of azole resistance in Aspergillus fumigatus clinical isolates in France. Med Mycol 2015; 53: 593–6.

Jensen RH, Hagen F, Astvad KM et al. Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clin Microbiol Infect 2016; 22: 1–9.

Resendiz-Sharpe A, Mercier T, Lestrade PPA et al. Prevalence of voriconazole-resistant invasive aspergillosis and its impact on mortality in haematology patients. J Antimicrob Chemother 2019; 74: 2759–66.

Bui JB, Snelders E, Denardi LB et al. Trends inazole resistance of Aspergillus fumigatus, the Netherlands, 1994-2016. Emerg Infect Dis 2019; 25: 176–8.

Bui JB, Rijs AJMM, Meis JF et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother 2017; 72: 2548–52.

Jeanovaine A, Rocchi S, Reboss G et al. Azole-resistant Aspergillus fumigatus in sawmills of Eastern France. J Appl Microbiol 2017; 123: 72–84.

Lestrade PP, Bentvelsen RG, Schauwvliegie AFAD et al. Voriconazole resistance and mortality in invasive aspergillosis: A multicenter retrospective cohort study. Clin Infect Dis 2019; 68: 1463–71.

Macedo D, Brito Devoto T, Polo S et al. A novel combination of CYP51A mutations confers pan-azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2020; 64: e2501-19.

Chen Y, Lu Z, Zhao J et al. Epidemiology and molecular characterization of azole resistance in clinical and environmental Aspergillus fumigatus isolates from China. Antimicrob Agents Chemother 2016; 60: S578–84.

Lavergne RA, Maria F, Danner-Boucher I et al. One year prospective survey ofazole resistance in Aspergillus fumigatus at a French cystic fibrosis reference centre: prevalence and mechanisms of resistance. J Antimicrob Chemother 2019; 74: 1884–9.

Moore CB, Novak-Frazer L, Muldoon E et al. First isolation of the pan-azole-resistant Aspergillus fumigatus cyp51A TR46/Y121F/T289A mutant in a UK patient. Int J Antimicrob Agents 2017; 49: 512–4.

Pelaez T, Monteiro MC, Garcia-Rubio R et al. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in anazole-naive patient in Spain. New Microbes New Infect 2015; 6: 33–4.

van der Linden JW, Camps SM, Kampinga GA et al. Aspergillus due to Aspergillus fumigatus at a French cystic fibrosis reference centre: prevalence and mechanisms of resistance. J Antimicrob Chemother 2019; 74: 1884–9.

Moore CB, Novak-Frazer L, Muldoon E et al. First isolation of the pan-azole-resistant Aspergillus fumigatus cyp51A TR46/Y121F/T289A mutant in a UK patient. Int J Antimicrob Agents 2017; 49: 512–4.

Pelaez T, Monteiro MC, Garcia-Rubio R et al. First detection of Aspergillus fumigatus azole-resistant strain due to Cyp51A TR46/Y121F/T289A in anazole-naive patient in Spain. New Microbes New Infect 2015; 6: 33–4.

van der Linden JW, Camps SM, Kampinga GA et al. Aspergillus due to Aspergillus fumigatus at a French cystic fibrosis reference centre: prevalence and mechanisms of resistance. J Antimicrob Chemother 2019; 74: 1884–9.
78 Hare RK, Gertsen JB, Astvd KM et al. In vivo selection of a unique tandem repeat mediated azole resistance mechanism (TR1200) in Aspergillus fumigatus cyp51A, Denmark. Emerg Infect Dis 2019; 25: 577–80.
79 Pinto E, Monteiro C, Maia M et al. Aspergillus species and antifungal susceptibility in clinical setting in the north of Portugal: Cryptic species and emerging azoles resistance in A. fumigatus. Front Microbiol 2018; 9: 1656.
80 Howard SJ, Webster I, Moore CB et al. Multi-azole resistance in Aspergillus fumigatus. Int J Antimicrob Agents 2006; 28: 450–3.
81 Albargam AM, Anderson MJ, Howard SJ et al. Interrogation of related clinical pan-azole resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother 2011; 55: 5113–21.
82 Gregson L, Goodwin J, Johnson A et al. In vitro susceptibility of Aspergillus fumigatus to isavuconazole: correlation with itraconazole, voriconazole, and posaconazole. Antimicrob Agents Chemother 2013; 57: 5778–80.
83 Snelders E, Karawajczyk A, Verhoeven RJ et al. The structure-function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance. Fungal Genet Biol 2011; 48: 1062–70.
84 Verweij PE, Snelders E, Kema GH et al. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 2009; 9: 789–95.
85 Snelders E, Camps SM, Karawajczyk A et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 2012; 7: 31801.
86 Bull JB, Hare RK, Zwaan BJ et al. The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus. PLoS Pathog 2019; 15: 1007858.
87 Rismn M, Hare RK, Gertsen JB et al. Azole resistant Aspergillus fumigatus among Danish cystic fibrosis patients: increasing prevalence and dominance of TR34/L98H. Front Microbiol 2020; 11: 1850.
88 Barber AE, Riedel J, Sae-Ong T et al. Effects of agricultural fungicide use on Aspergillus fumigatus abundance, antifungal susceptibility, and population structure. mBio 2020; 11: e02213-20.
89 Camps SM, Dutilh BE, Arendrup MC et al. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One 2012; 7: 50034.
90 Hortschansky P, Misslinger M, Mör J et al. Structural basis of Hap(PBB8L)-linked antifungal triazole resistance in Aspergillus fumigatus. Life Sci Alliance 2020; 3: 202000729.
91 Rybak JM, Ge W, Wiederhold NP et al. Mutations in hmg1, challenging the paradigm of clinical triazole resistance in Aspergillus fumigatus. mBio 2019; 10: 00437–19.
92 Hagiwara D, Arai T, Takahashi H et al. Non-cyp5A azole-resistant Aspergillus fumigatus isolates with mutation in HMG-CoA reductase. Emerg Infect Dis 2018; 24: 1889–97.
93 Liang T, Yang X, Li R et al. Emergence of W272C substitution in Hmg1 in a triazole-resistant isolate of Aspergillus fumigatus from a Chinese patient with chronic cavitary pulmonary aspergillosis. Antimicrob Agents Chemother 2021; 65: e00263-21.
94 Handelman M, Morogovsky A, Liu W et al. Triazole-resistant Aspergillus fumigatus in an Israeli patient with chronic cavitary pulmonary aspergillosis due to a novel E306K substitution in Hmg1. Antimicrob Agents Chemother 2021; 65: e1089-21.
95 Buied A, Moore CB, Denning DW et al. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother 2013; 68: 512–4.
96 Fraczek MG, Bromley M, Buied A et al. The cdr1B efflux transporter is associated with non-cyp51A-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 2013; 68: 1486–96.
97 Slaven JW, Anderson MJ, Sanglard D et al. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, aTRF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol 2002; 36: 199–206.
98 Bloesser SJ, Cramer RA. SREBP-dependent triazole susceptibility in Aspergillus fumigatus is mediated through direct transcriptional regulation of erg11A (cyp51A). Antimicrob Agents Chemother 2012; 56: 248–57.
99 Furukawa T, van Rhijn N, Fraczek M et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun 2020; 11: 427.
100 Resendiz-Sharpe A, Hokken MWJ, Mercier T et al. Hmg1 gene mutation prevalence in triazole-resistant Aspergillus fumigatus clinical isolates. J Fungi (Basel) 2020; 6: 227.
101 Ulmann AJ, Aguado JM, Arikans-Akdagi S et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24: 51–38.
102 Guineau J, Verweij PE, Meletiadis J et al. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). How to: EUCAST recommendations on the screening procedure E.Dof 10.1 for the detection of azole resistance in Aspergillus fumigatus isolates using four-well azole-containing agar plates. Clin Microbiol Infect 2019; 25: 681–7.
103 Arendrup MC, Friberg N, Mares M et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European Committee on antimicrobial susceptibility testing (EUCAST). Clin Microbiol Infect 2020; 26: 1464–72.
104 White PL, Posso RB, Barnes RA. Analytical and clinical evaluation of the PathoNostics AsperGenius assay for detection of invasive aspergillosis and resistance to azole antifungal drugs directly from plasma samples. J Clin Microbiol 2017; 55: 2356–66.
105 Chong CM, van der Beek MT, van dem Borne PA et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay for detection of invasive aspergillosis and resistance to azole antifungal drugs directly from plasma samples. J Antimicrob Chemother 2017; 62: 714–20.
106 Rivero-Menendez O, Sato-Debran JC, Medina N et al. Molecular identification, antifungal susceptibility testing, and mechanisms of azole resistance in Aspergillus species received within a surveillance program on antifungal resistance in Spain. Antimicrob Agents Chemother 2019; 63: e00865-19.
107 Zaran T, Sartori B, Sappi L et al. Azole–resistance in Aspergillus terreus and related species: an emerging problem or a rare phenomenon? Front Microbiol 2018; 9: 516.
108 Lucio J, Gonzalez-Jimenez I, Rivero-Menendez O et al. Point mutations in the 14-α sterol demethylase cyp51A or cyp51C could contribute to azole resistance in Aspergillus flavus. Genes (Basel) 2020; 11: 1217.
109 Liu W, Sun Y, Chen W et al. The T788G mutation in the cyp51C gene confers voriconazole resistance in Aspergillus flavus causing aspergillosis. Antimicrob Agents Chemother 2012; 56: 2598–603.
110 Choi MJ, Won EJ, Joo MY et al. Microsatellite typing and resistance mechanism analysis of voriconazole-resistant Aspergillus flavus isolates in South Korean hospitals. Antimicrob Agents Chemother 2019; 63: e01610-18.
111 Arendrup MC, Perkofer S, Howard SJ et al. Establishing in vitro-in vivo correlations for Aspergillus fumigatus: the challenge of azoles versus echinocandins. Antimicrob Agents Chemother 2008; 52: 3504–11.
112 Satsish S, Jimenez-Ortigoza C, Zhao Y et al. Stress-Induced Changes in the Lipid Microenvironment of β-(1,3)-d-Glucan Synthase Cause
Clinically Important Echinocandin Resistance in Aspergillus fumigatus. mBio 2019; 10: e00779-19.

113 Castanheira M, Deshpande LM, Davis AP et al. Monitoring antifungal resistance: a global collection of invasive yeasts and moulds: Application of CLSI epidemiological cutoff values and whole genome sequencing analysis for detection of azole resistance in Candida albicans. Antimicrob Agents Chemother 2017; 61: e00906-17.

114 Castanheira M, Deshpande LM, Messer SA et al. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents 2020; 55: 105799.

115 Pfaffer MA, Diekema DJ, Turnidge JD et al. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species From 1997–2016. Open Forum Infect Dis 2019; 6: S79–94.

116 Jensen RH, Astvd KM, Silva LV et al. Stepwise emergence of azole, echinocandin, and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Agents Chemother 2015; 70: 2551–5.

117 Jiang C, Dong D, Yu B et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother 2013; 68: 778–85.

118 Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2002; 2: 73–85.

119 Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 2009; 9: 1029–50.

120 Moro F, Loge C, Besse B et al. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diag Microbiol Infect Dis 2010; 66: 373–84.

121 Flowers SA, Colon B, Whaley SG et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 2013; 59: 450–60.

122 Mesquida A, Vincente T, Reigadas E et al. In vitro activity of ibrexafungerp and comparators against Candida albicans genotypes from vaginal samples and blood cultures. Clin Microbiol Infect 2021; 27: 915.e5–e8.

123 Forastiero A, Mesa-Arango AC, Alastruey-Izquierdo A et al. Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob Agents Chemother 2013; 57: 4769–81.

124 Carolus H, Pierson S, Muñoz JF et al. Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. mBio 2021; 12: e03333-20.

125 Lockhart SR, Etienne KA, Vallabhaneni S et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017; 64: 134–40.

126 Martel CM, Parker JE, Bader O et al. Identification and characterization of four azole-resistant erg13 mutants of Candida albicans. Antimicrob Agents Chemother 2010; 54: 4527–33.

127 Sanglard D, Coste AT. Activity of isavuconazole and other azoles against Candida clinical isolates and yeast model systems with known azole resistance mechanisms. Antimicrob Agents Chemother 2016; 60: 229–38.

128 Coste AT, Crétin J, Bauser C et al. Functional analysis of cis- and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot Cell 2009; 8: 1250–67.

129 Liu Z, Myers LC. Mediator tail module is required for Tac1-activated CDR1 expression and azole resistance in Candida albicans. Antimicrob Agents Chemother 2017; 61: e01342–17.

130 Nishimoto AT, Zhang Q, Hazlett B et al. Contribution of clinically derived mutations in the gene encoding the zinc cluster transcription factor Mr2 to fluconazole antifungal resistance and CDR1 expression in Candida albicans. Antimicrob Agents Chemother 2019; 63: e00078-19.

131 Ferrari S, Sanguinetti M, Torelli R et al. Contribution of CqPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 2011; 6: e17589.

132 Morschhauser J, Barker KS, Liu TT et al. The transcription factor Mr1p controls expression of the MDRI efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 2007; 3: e164.

133 Sasse C, Dunkel N, Schafer T et al. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol Microbiol 2012; 86: 539–56.

134 Wang H, Kong F, Sorrell TC et al. Rapid detection of EG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing. BMC Microbiol 2009; 9: 167.

135 Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: The expanding antifungal armamentarium. Clin Infect Dis 2015; 61 Suppl 6: S604–11.

136 Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007; 10: 121–30.

137 Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal Genet Biol 2010; 47: 117–26.

138 Grossman NT, Chiller TM, Lockhart SR. Epidemiology of echinocandin resistance in Candida. Curr Fungal Infect Rep 2014; 8: 243–8.

139 Alexander BD, Johnson MD, Pfeiffer CD et al. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 2013; 56: 1724–32.

140 Zimmer A, Iqbal N, Ahlquist AM et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 2010; 54: 5042–7.

141 Risum M, Astvd K, Johansen HK et al. Update 2016–2018 of the nationwide Danish fungaemia surveillance study: epidemiologic changes in a 15-year perspective. J Fungi (Basel) 2021; 7: 491.

142 Diaz-Garcia J, Mesquida A, Sanchez-Carrillo C et al. Monitoring the epidemiology and antifungal resistance of yeasts causing fungemia in a tertiary care hospital in Madrid, Spain: Any relevant changes in the last 13 years? Antimicrob Agents Chemother 2021; 65: e01827–20.

143 Lackner M, Tscherner M, Schaller M et al. Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment. Antimicrob Agents Chemother 2014; 58: 3626–35.

144 Castanheira M, Woosley LN, Messer SA et al. Frequency of FKS mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob Agents Chemother 2014; 58: 577–80.

145 Helleberg M, Jørgensen KM, Hore RK et al. Rezafungin in vitro activity against contemporary Nordic clinical Candida isolates and Candida auris determined by the EUCAST reference method. Antimicrob Agents Chemother 2020; 64: e02438-19.

146 Biagi MJ, Wiederhold NP, Gibas C et al. Development of high-level echinocandin resistance in a patient with recurrent Candida auris candidemia secondary to chronic candiduria. Open Forum Infect Dis 2019.

147 Hou X, Lee A, Jiménez-Ortigosa C et al. Rapid detection of ERG11-associated azole resistance and FKS-associated echinocandin
resistance in Candida auris. Antimicrob Agents Chemother 2019; 63: e01811-18.

148 Suwunnakorn S, Wakabayashi H, Kordalewska M et al. FKS2 and FKS3 genes of opportunistic human pathogen Candida albicans influence echinocandin susceptibility. Antimicrob Agents Chemother 2018; 62: e02299-17.

149 Feikkar A, Dananou E, Meyer I et al. Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis 2014; 33: 1489–96.

150 Perlin DS. Echinocandin resistance in Candida. Clin Infect Dis 2015; 61 Suppl 6: S612–7.

151 Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Annu N Y Acad Sciences 2015; 1354: 1–11.

152 Beyda ND, John J, Kilic A et al. FKS mutant Candida glabrata: Risk factors and outcomes in patients with candidemia. Clin Infect Dis 2014; 59: 819–25.

153 Pfaller MA, Diekema D, Castanheira M et al. Definitions and epidemiology of Candida species not susceptible to echinocandins. Curr Fungal Infect Rep 2011; 5: 120–7.

154 Shields RK, Nguyen MH, Clancy CJ. Clinical perspectives on echinocandin resistance among Candida species. Curr Opin Infect Dis 2015; 28: 514–22.

155 Perlin DS. Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 2014; 74: 1573–85.

156 Wiederhold NP, Grabinski JL, Garcia-Effron G et al. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother 2008; 52: 4145–8.

157 Garnaud C, Botterel F, Sertour N et al. Next-generation sequencing offers new insights into the resistance of Candida spp. to echinocandins and azoles. J Antimicrob Chemother 2015; 70: 2566–65.

158 Arendsru MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017; 216: S445–51.

159 Kimura M, Arakoa H, Yamamoto H et al. Clinical and microbiological characteristics of breakthrough candidiasis in allogeneic hematopoietic stem cell transplant recipients in a Japanese hospital. Antimicrob Agents Chemother 2017; 61: e01791-16.

160 Costa C, Ponte A, Pais P et al. New mechanisms of flucytosine resistance in C. glabrata unveiled by a chemogenomics analysis in S. cerevisiae. PLoS One 2015; 10: e0135110.

161 Carolus H, Piersson S, Lagrou K et al. Amphotericin B and other polyenes–discovery, clinical use, mode of action and drug resistance. J Fungi (Basel) 2020; 6: 321.

162 Cuencastrella M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 2014; 20: S54–9.

163 Gopinathan S, Janagand AB, Agatha D et al. Detection of FUR1 gene in 5-flucytosine resistant Candida isolates in vaginal candidiasis patients. J Clin Diagn Res 2013; 7: 2452–5.

164 Dodgson AR, Dodgson KJ, Pujol C et al. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother 2004; 48: 2223–7.

165 Rajasingham R, Smith RM, Park BJ et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017; 17: 873–81.

166 Perfect JR, Dismukes WE, Dromer F et al. Clinical practice guidelines for the management of cryptococcal meningitis: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 2010; 50: 291–322.

167 WHO. Guidelines on the diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children: supplement to the 2015 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO 2018. https://apps.who.int/iris/handle/10665/260399.

168 Pfaller MA, Lodge JK, Ghannoum MA. Drug resistance in Cryptococcus: epidemiology and molecular mechanisms. In: Heitman J Kazel T Kwon-Chung K Perfect J and Casadevall A, eds. Cryptococcus. American Society of Microbiology, 2011; 203–16.

169 Maligie MA, Seltenreich KP. Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother 2005; 49: 2851–6.

170 Perfect JR, Cox GM. Drug resistance in Cryptococcus neoformans. Drug Resist Update 1999; 2: 259–69.

171 Sar B, Monchy D, Vann M et al. Increasing in vitro resistance to fluconazole in Cryptococcus neoformans: Cambodian isolates: April 2000 to March 2002. J Antimicrob Chemother 2004; 54: 563–5.

172 Bicanic T, Harrison T, Niepiedlo A et al. Symptomatic relapse of HIV-associated cryptococcal meningitis after initial fluconazole monotherapy: the role of fluconazole resistance and immune reconstitution. Clin Infect Dis 2006; 43: 1069–73.

173 Bangomin F, Olaide RO, Gago S et al. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 2018; 61: 290–7.

174 Bastos RW, Carneiro HCS, Oliveira L VN et al. Environmental triazole induces cross-resistance to clinical drugs and affects morphophysiology and virulence of Cryptococcus gattii and C. neoformans. Antimicrob Agents Chemother 2018; 62: e01179–17.

175 Bastos RW, Freitas GJC, Carneiro HCS et al. From the environment to the host: How non-azole agrochemical exposure affects the antifungal susceptibility and virulence of Cryptococcus gattii. Sci Total Environ 2019; 681: 516–23.

176 Takahashi JPF, Feliciano LM, Santos DCS et al. Could fungicides lead to azole drug resistance in a cross-resistance manner among environmental Cryptococcus strains? Curr Fungal Infect Rep 2020; 14: 9–14.

177 Black ER, Jennings AE, Bennett JE. 5-Fluorocytosine resistance in Cryptococcus neoformans. Antimicrob Agents Chemother 1973; 3: 649–56.

178 Hospenthal DR, Bennett JE. Fluocytosine monotherapy for cryptococcosis. Clin Infect Dis 1998; 27: 260–4.

179 Sanguinetti M, Postarobo R, La Sorda M et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun 2006; 74: 1352–9.

180 Schwarz P, Dromer F, Lortholary O et al. Efficacy of amphotericin B in combination with flucytosine against fluconazole-susceptible or fluconazole-resistant isolates of Cryptococcus neoformans during disseminated murine cryptococcosis. Antimicrob Agents Chemother 2006; 50: 113–20.

181 Velez JD, Allendoerfer R, Luther M et al. Correlation of in vitro azole susceptibility with in vivo response in a murine model of cryptococcal meningitis. J Infect Dis 1993; 168: 508–10.

182 Lamb DC, Conran A, Baldwin BC et al. Resistant P45051A1 activity in azole antifungal tolerant Cryptococcus neoformans from AIDS patients. FEBS Lett 1995; 368: 326–30.

183 Venkateswarlu K, Taylor M, Manning NJ et al. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 41: 748–51.

184 Rodero L, Mellado E, Rodriguez AC et al. G484S amino acid substitution in lanosterol 14-alpha demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother 2003; 47: 3653–6.
185 Sionov E, Chang YC, Garraffo HM et al. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha-demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother 2012; 56: 1162–9.

186 Bosco-Borget ME, Mazza M, Taverna CG et al. Amino acid substitution in Cryptococcus neoformans lanosterol 14-alpha-demethylase involved in fluconazole resistance in clinical isolates. Rev Argent Microbiol 2016; 48: 137–42.

187 Gago S, Serrano C, Alastruey-Izquierdo A et al. Molecular identification, antifungal resistance and virulence of Cryptococcus neoformans and Cryptococcus deneoformans isolated in Seville, Spain. Mycoses 2017; 60: 40–50.

188 Kano R, Okubo M, Hasegawa A et al. Multi-azole-resistant strains of Cryptococcus neoformans var. grubii isolated from a FLZ-resistant strain by culturing in medium containing voriconazole. J Antimicrob Chemother 2015; 70: 877–82.

189 Kano R, Okubo M, Yanai T et al. First isolation of azole-resistant Cryptococcus neoformans from feline cryptococcosis. Mycopathologia 2015; 180: 427–33.

190 Joseph-Horne T, Hollarson D, Loeffler RS et al. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother 1995; 39: 1526–9.

191 Basso LR, Jr, Gast CE, Bruzual I et al. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans. J Antimicrob Chemother 2015; 70: 1396–407.

192 Posteraro B, Sanguinetti M, Sanglard D et al. Molecular identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFLR1, involved in the resistance to fluconazole. Mol Microbiol 2003; 47: 357–71.

193 Mondon P, Petter R, Amalfitano G et al. Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob Agents Chemother 1999; 43: 1856–61.

194 Xu J, Onyewu C, Yoell HJ et al. Dynamic and heterogeneous mutations to fluconazole resistance in Cryptococcus neoformans. Antimicrob Agents Chemother 2001; 45: 420–7.

195 Yamazumi T, Pfaller MA, Messer SA et al. Characterization of heteroresistance to fluconazole among clinical isolates of Cryptococcus neoformans. J Clin Microbiol 2003; 41: 267–72.

196 Sionov E, Chang YC, Garraffo HM et al. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 2009; 53: 2804–15.

197 Sionov E, Lee H, Chang YC et al. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PloS Pathog 2010, 6: e1000848.

198 Sionov E, Chang YC, Kwon-Chung KJ. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob Agents Chemother 2013; 57: 5127–30.

199 Stone NR, Rhodes J, Fisher MC et al. Dynamic ploidy changes drive fluconazole resistance in human cryptococcal meningitis. J Clin Invest 2019; 129: 999–1014.

200 Varma A, Kwon-Chung KJ. Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother 2010; 54: 2303–11.

201 Thornwell SJ, Peery RB, Skatrud PL. Cloning and characterization of CnEMDR1: a Cryptococcus neoformans gene encoding a protein related to multidrug resistance proteins. Gene 1997; 201: 21–9.

202 El-Halfawy OM, Valvona MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev 2015; 28: 191–207.

203 Ferreira GF, Santos DA. Heteroresistance and fungi. Mycoses 2017; 60: 562–8.

204 Kim SJ, Kwon-Chung J, Milne GW et al. Relationship between polyene resistance and sterol compositions in Cryptococcus neoformans. Antimicrob Agents Chemother 1975; 7: 99–106.

205 Kelly SL, Lamb DC, Taylor M et al. Resistance to amphotericin B associated with defective sterol delta 8–7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 1994; 122: 39–42.

206 Vermes A, Guechelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000; 46: 171–9.

207 Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol 1987; 15: 45–56.

208 Yu K, Thompson GR. 3rd, Roe CC et al. Flucytosine resistance in Cryptococcus gattii is indirectly mediated by the FCY2-FCY1-FUR1 pathway. Med Mycol 2018; 56: 857–67.

209 Billmyre RB, Appleen Clancy S, Li LX et al. 5-Flucytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nature Comm 2020; 11: 127.

210 Schwarz P, Janbon G, Dromer F et al. Combination of amphotericin B with flucytosine is active in vitro against flucytosine-resistant isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 2007; 51: 383–5.

211 Liu HB, Liu F, Kong QT et al. Successful treatment of refractory Majocci’s Granuloma with voriconazole and review of published literature. Mycopathologia 2015; 180: 237–43.

212 Rouzaud C, Chasidow O, Brocard A et al. Severe dermatophytosis in solid organ transplant recipients: A French retrospective series and literature review. Transpl Infect Dis 2018; 20: 1–11.

213 Osborne CS, Leitner I, Favre B et al. Amino acid substitution in Trichophyton rubrum squalene epoxidase gene. J Vet Med Sci 2015; 77: 512–7.

214 Yamada T, Maeda M, Alshahni MM et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother 2017; 61: 1–13.

215 Baudraud-Rosselet F, Ruffieux C, Lurati M et al. Onychomycosis insensitive to systemic terbinafine andazole treatments reveals non-dermatophyte moulds as infectious agents. Dermatology 2010; 220: 164–8.

216 Monod M. Antifungal resistance in dermatophytes: Emerging problem and challenge for the medical community. J Med Mycol 2019; 29: 283–4.

217 Hsiao Y-H, Chen C, Hon HS et al. The first report of terbinafine resistance Microsporum canis from a cat. J Vet Med Sci 2018; 80: 898–900.

218 Astvad KMT, Hare RK, Jørgensen KM et al. Increasing terbinafine resistance in Danish Trichophyton isolates 2019–2020. J Fungi (Basel) 2022; 8: 150.

219 Gnat S, Lagowski D, Dylag M et al. European hedgehogs (Erinaceus europaeus L.) as a reservoir of dermatophytes in Poland. Microb Ecol 2021.

220 Barros MEDS, Santos DDA, Hamdan JS. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J Med Microbiol 2007; 56: 514–8.

221 Singh A, Masih A, Khurana A et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India. Harbouring mutations in the squalene epoxidase gene. Mycoses 2018; 61: 477–84.

222 Rezaei-Matehkolaei S, Khodavaisy S, Alshahni MM et al. In Vitro Antifungal Activity of Novel Triazole Efinaconazole and Five
Comparators against Dermatophyte Isolates. Antimicrob Agents Chemother 2018; 62: 1–6.

223 Altınbaş R, Özakas F, Barış A et al. In vitro susceptibility of seven antifungal agents against dermatophytes isolated in Istanbul. Turk J Med Sci 2018; 48: 615–9.

224 Chowdhary A, Kathuria S, Singh PK et al. Molecular characterization and in vitro antifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses 2014; 57: 97–107.

225 Khurana A, Masih A, Chowdhary A et al. Correlation of in vitro susceptibility based on MICs and squaleone epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob Agents Chemother 2018; 62: 1–9.

226 CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard—Second Edition: M38-A2. 2008.

227 Arendrup MC, Jørgensen KM, Guinea J et al. Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. J Antimicrob Chemother 2020; 75: 1807–19.

228 Rudramurthy SM, Shanknarayana SA, Dogra S et al. Mutation in the Squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother 2018; 62: e02522–17.

229 Hsieh A, Quenan S, Riot A et al. A new mutation in the SLE gene of Trichophyton mentagrophytes associated to terbinafine resistance in a couple with disseminated tinea corporis. J Mycol Med 2019; 29: 352–9.

230 Hiruma J, Kitagawa H, Noguchi H et al. Terbinafine-resistant strain of Trichophyton interdigitale strain isolated from a tinea pedis patient. J Dermatol 2019; 46: 351–3.

231 Fachin AL, Ferreira-Nozawa MS, Maccheroni W et al. Role of the ABC transporter TruMRD2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 2006; 55: 1093–9.

232 Martins MP, Franceschini ACC, Jacob TR et al. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol 2016; 65: 605–10.

233 Kano R, Hsiao Y-H, Han HS et al. Resistance mechanism in a terbinafine-resistant strain of Microsporum canis. Mycopathologia 2018; 183: 623–7.

234 Monod M, Feuermann M, Salamin K et al. Trichophyton rubrum Azole Resistance Mediated by a New ABC Transporter, TruMRD3. Antimicrob Agents Chemother 2019; 63: e00863–19.

235 Aneke CI, Rhimi W, Otranto D et al. Synergistic Effects of Efflux Pump Modulators on the Azole Antifungal Susceptibility of Microsporum canis. Mycopathologia 2020; 7: 279–88.

236 Shanknaraanay SA, Shaw D, Sharma A et al. Rapid detection of terbinafine resistance in Trichophyton species by Amplified refractory mutation system-polymerase chain reaction. Sci Rep 2020; 10: 1297.

237 van Dooyeweert DA, Schneider MM, Borleffs JC et al. The influence of PCP prophylaxis on bacteriuria incidence and resistance development to trimethoprim/sulfamethoxazole in HIV-infected patients. Neth J Med 1996; 49: 225–7.

238 Walker DJ, Meshnick SR. Drug resistance in Pneumocystis carinii: an emerging problem. Drug Resist Updat 1998; 1: 201–4.

239 Alanò A, Gits-Muselli M, Guigue N et al. Diversity of Pneumocystis jirovecii across Europe: A multicentre observational study. EBioMedicine 2017; 22: 155–63.

240 Latouche S, Lacube P, Maury E et al. Pneumocystis jirovecii dihydropteroate synthase genotypes in French patients with pneumocystosis: a 1998–2001 prospective study. Med Mycol 2003; 41: 533–7.

241 Cruciani M, Marcati P, Malena M et al. Meta-analysis of diagnostic procedures for Pneumocystis carinii pneumonia in HIV-1-infected patients. Eur J Resp J 2002; 20: 982–9.

242 Stein CR, Poole C, Kazanjian P et al. Sulfadiazine, dapsone, and trimethoprim-sulfamethoxazole in HIV-infected patients with Pneumocystis jiroveci pneumonia. Emerg Infect Dis 2004; 10: 1760–5.

243 Walker DJ, Wakefield AE, Dohn MN et al. Sequence polymorphisms in the Pneumocystis carinii cytochrome b gene and their association with atovaquone prophylaxis failure. J Infect Dis 1998; 178: 1767–75.

244 Kazanjian P, Armstrong W, Hoslier PA et al. Pneumocystis carinii cytochrome b mutations are associated with atovaquone exposure in patients with AIDS. J Infect Dis 2001; 183: 819–22.

245 Ponce CA, Chabé M, George C et al. High Prevalence of Pneumocystis jiroveci Dihydropteroate Synthase Gene Mutations in Patients with a First Episode of Pneumocystis Pneumonia in Santiago, Chile, and Clinical Response to Trimethoprim-Sulfamethoxazole Therapy. Antimicrob Agents Chemother 2017; 61: e01290-16.

246 Hauser PM, Nahimana A, Taffe P et al. Interhuman transmission as a potential key parameter for geographical variation in the prevalence of Pneumocystis jiroveci dihydropteroate synthase mutations. Clin Infect Dis 2010; 51: 28–33.

247 Yiannakis EP, Boswell TC. Systematic review of outbreaks of Pneumocystis jiroveci pneumonia: evidence that P. jiroveci is a transmissible organism and the implications for healthcare infection control. J Hosp Infect 2016; 93: 1–8.

248 Ozkoc S, Erguden C, Bayram Delibas S. Absence of dihydropteroate synthase gene mutations in Pneumocystis jiroveci strains isolated from Aegean region of Turkey. Parasitol Res 2018; 117: 3103–8.

249 Suárez I, Roderus L, van Gumpel E et al. Multicentre validation of an EUCAST method for the antifungal susceptibility testing of mucormycosis. Emerg Infect Dis 2017; 45: 341–7.

250 Rabodonirina M, Vaillant L, Taffe P et al. Pneumocystis jiroveci geno-type associated with increased death rate of HIV-infected patients with pneumonia. Emerg Infect Dis 2013; 19: 21–8.

251 Dimonte S, Berrilli F, D’Orazio C et al. Molecular analysis based on mtLSU-rRNA and DHPS sequences of Pneumocystis jiroveci from immunocompromised and immunocompetent patients in Italy. Infect Genet Evol 2013; 14: 68–72.

252 Friaza V, Morilla R, Respaldiza N et al. Pneumocystis jiroveci dihydropteroate synthase gene mutations among colonized individuals and Pneumocystis pneumonia patients from Spain. Postgrad Med 2010; 122: 24–8.

253 Nahimana A, Rabodonirina M, Helweg-Larsen JSP. Sulfadiazine and dihydropteroate synthase mutants in recurrent Pneumocystis carinii pneumonia. Emerg Infect Dis 2003; 9: 864–7.

254 Visconti E, Ortona E, Mencarini P et al. Mutations in dihydropteroate synthase gene of Pneumocystis carinii in HIV patients with Pneumocystis carinii pneumonia. Int J Antimicrob Agents 2001; 18: 547–51.

255 Helweg-Larsen J, Benfield TL, Eugen-Olsen J et al. Effects of mutation in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia. Lancet 1999; 354: 1347–51.

256 Singh Y, Mirdha BR, Guleria R et al. Novel dihydropteroate synthase gene mutation in Pneumocystis jirovecii among HIV-infected patients in India: Putative association with drug resistance and mortality. J Glob Antimicrob Resist 2019; 17: 236–9.

257 Ahn A, Chang J, Sung H et al. Case of pneumonia caused by Pneumocystis jirovecii resistant to SXT in the absence of previous drug exposure. Lab Med Online 2016; 6: 250–4.

258 Singh Y, Mirdha BR, Guleria R et al. Molecular detection of DHFR gene polymorphisms in Pneumocystis jirovecii isolates from Indian patients. J Infect Dev Ctries 2015; 9: 1250–6.
259 Lee SM, Cho YK, Sung YM et al. A case of pneumonia caused by Pneumocystis jirovecii resistant to trimethoprim-sulfamethoxazole. *Korean J Parasitol* 2015; 53: 321–7.

260 Long Y, Zhang C, Su L et al. *Pneumocystis jirovecii* dihydropteroate synthase gene mutations in a group of HIV-negative immunocompromised patients with *Pneumocystis* pneumonia. *Exp Ther Med* 2014; 8: 1825–30.

261 Tyagi AK, Mirdha BR, Luthra K et al. Dihydropteroate synthase (DHPS) gene mutation study in HIV-Infected Indian patients with *Pneumocystis jirovecii* pneumonia. *J Infect Dev Ctries* 2010; 4: 761–6.

262 van Hal SJ, Gilgado F, Doyle T et al. Clinical significance and phylogenetic relationship of novel Australian *Pneumocystis jirovecii* genotypes. *J Clin Microbiol* 2009; 47: 1818–23.

263 Tyagi AK, Mirdha BR, Guleria R et al. Study of dihydropteroate synthase (DHPS) gene mutations among isolates of *Pneumocystis jirovecii*. *Indian J Med Res* 2008; 128: 734–9.

264 Takahashi T, Hosoya N, Endo T et al. Relationship between mutations in dihydropteroate synthase of *Pneumocystis carinii* f. sp. *hominis* isolates in Japan and resistance to sulfonamide therapy. *J Clin Microbiol* 2000; 38: 3161–4.

265 Yoon C, Subramanian A, Chi A et al. Dihydropteroate synthase mutations in Pneumocystis pneumonia: impact of applying different definitions of prophylaxis, mortality endpoints and mutant in a single cohort. *Med Mycol* 2013; 51: 568–75.

266 Navin TR, Beard CB, Huang L et al. Effect of mutations in *Pneumocystis carinii* dihydropteroate synthase gene on outcome of *P. carinii* pneumonia in patients with HIV-1: a prospective study. *Lancet* 2001; 358: 545–9.

267 Huang L, Beard CB, Creasman J et al. Sulfa or sulfone prophylaxis and geographic region predict mutations in the *Pneumocystis carinii* dihydropteroate synthase gene. *J Infect Dis* 2000; 182: 1192–8.

268 Kazanjian P, Locke AB, Hossler PA et al. *Pneumocystis carinii* mutations associated with sulfa and sulfone prophylaxis failures in AIDS patients. *AIDS* 1998; 12: 873–8.

269 Taylor SM, Meshnick SR, Worodria W et al. International HIV-associated Opportunistic Pneumonias Study. Low prevalence of *Pneumocystis pneumonia* (PCP) but high prevalence of *pneumocystis* dihydropteroate synthase (dhps) gene mutations in HIV-infected persons in Uganda. *PLoS One* 2012; 7: 499.

270 Dini L, du Plessis M, Frean J et al. High prevalence of dihydropteroate synthase mutations in *Pneumocystis jirovecii* isolated from patients with *Pneumocystis pneumonia* in South Africa. *J Clin Microbiol* 2010; 48: 2016–21.

271 Trotter AJ, Ayden A, Strinden MJ et al. Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. *Curr Opin Microbiol* 2019; 51: 39–45.