Lower limits for distributions of randomly stopped sums

D. Denisov, S. Foss and D. Korshunov

Eurandom, Heriot-Watt University, and Sobolev Institute of Mathematics

Abstract

We study lower limits for the ratio $F^{*\tau}(x)/F(x)$ of tail distributions where $F^{*\tau}$ is a distribution of a sum of a random size τ of i.i.d. random variables having a common distribution F, and a random variable τ does not depend on summands.

AMS classification: Primary 60E05; secondary 60F10

Keywords: Convolution tail; Random sums of random variables; Lower limit; Heavy- and light-tailed distributions

1. Introduction. Let $\xi, \xi_1, \xi_2, \ldots$ be independent identically distributed random variables. We assume that their common distribution F is unbounded from the right, that is, $F(x) \equiv F(x, \infty) > 0$ for all x. Put $S_0 = 0$ and $S_n = \xi_1 + \ldots + \xi_n$, $n = 1, 2, \ldots$.

Let τ be a counting random variable which does not depend on $\{\xi_n\}_{n \geq 1}$. Denote by $F^{*\tau}$ the distribution of a random sum $S_\tau = \xi_1 + \ldots + \xi_\tau$. In this paper we study lower limits (as $x \to \infty$) for the ratio $F^{*\tau}(x)/F(x)$.

We distinguish two types of distributions, heavy- and light-tailed. A random variable η has a heavy-tailed distribution if $E e^{\varepsilon \eta} = \infty$ for all $\varepsilon > 0$, and light-tailed otherwise.

We consider only non-negative random variables and, in the case of heavy-tailed F, study conditions for

$$\liminf_{x \to \infty} \frac{F^{*\tau}(x)}{F(x)} = E\tau$$

(1)

to hold. This problem has been given a complete solution in [5] for $\tau = 2$, and then in [3] for τ with a light-tailed distribution and for heavy-tailed summands. In the present work, we generalise results of [3] onto classes of distributions of τ which include all light-tailed distributions and also some heavy-tailed distributions. With each heavy-tailed distribution F, we associate a corresponding class of distributions of τ. For earlier studies on lower limits and on a related problem of justifying a constant K in the equivalence $F^{*\tau}(x) \sim K F(x)$, see e.g. [1, 2, 4, 7, 8] and further references therein.

Since the inequality “\geq” in (1) is valid for non-negative $\{\xi_n\}$ without any further assumptions (see, e.g., [2] or [3]), we immediately get the equality if $E\tau = \infty$. Therefore, in the rest of the paper, we consider the case $E\tau < \infty$ only. Our first result is

1 The research of Denisov and Foss was partially supported by the EPSRC Grant EP/E033717/1. The research of Foss and Korshunov was partially supported by the Royal Society International Joint Project Grant 2005/R2-JP. The research of Korshunov was partially supported by Russian Science Support Foundation.

2 Address: School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK. E-mail address: Denisov@ma.hw.ac.uk

3 Address: School of MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK; and Sobolev Institute of Mathematics, 4 Koptyuga Pr., Novosibirsk 630090, Russia. E-mail address: S.Foss@ma.hw.ac.uk

4 Address: Sobolev Institute of Mathematics, 4 Koptyuga pr., Novosibirsk 630090, Russia. E-mail address: Korshunov@math.nsc.ru
Theorem 1. Assume that $\xi \geq 0$ is heavy-tailed and $E\xi < \infty$. Let, for some $c > E\xi$,

$$P\{c\tau > x\} = o(F(x)) \quad \text{as } x \to \infty. \quad (2)$$

Then (1) holds.

The proof of Theorem 1 is based on a study of moments $Ee^{f(\xi)}$ for appropriately chosen concave function f. More precisely, we deduce Theorem 1 from the following general result which explores some ideas from [9, 5, 3].

Theorem 2. Assume that $\xi \geq 0$ is heavy-tailed and $E\xi < \infty$. Let there exists a function $f : R^+ \to R$ such that

$$Ee^{f(\xi)} = \infty, \quad (3)$$

and, for some $c > E\xi$,

$$Ee^{f(c\tau)} < \infty. \quad (4)$$

If $f(x) \geq \ln x$ for all sufficiently large x and if the difference $f(x) - \ln x$ is an eventually concave function, then (1) holds.

In particular, the equality (1) is valid provided $E\xi^k = \infty$ and $E\tau^k < \infty$ for some $k \geq 1$; it is sufficient to consider the function $f(x) = k \ln x$. Earlier this was proved in [3 Theorem 1] by a more simple method.

If we consider instead the function $f(x) = \gamma x$, $\gamma > 0$, then we obtain the equality (1) provided ξ is heavy-tailed but τ is light-tailed. This is Theorem 2 from [3].

Finally, the equality (1) is valid if F is a Weibull distribution with parameter $\beta \in (0, 1)$, $F(x) = e^{-x^\beta}$ and $f(x) = x^\beta$ or, more generally, $f(x) = x^\beta - c \ln x$ for $x \geq 1$ where $c \leq \beta$ is any fixed constant.

The counterpart of Theorem 1 in the light-tailed case is stated next. But first we need some notations. By the Laplace transform of F at the point $\gamma \in R$ we mean

$$\varphi(\gamma) = \int_0^\infty e^{\gamma x} F(dx) \in (0, \infty].$$

Put

$$\hat{\gamma} = \sup\{\gamma : \varphi(\gamma) < \infty\} \in [0, \infty].$$

Note that the function $\varphi(\gamma)$ is monotone continuous in the interval $(-\infty, \hat{\gamma})$, and $\varphi(\hat{\gamma}) = \lim_{\gamma \to \hat{\gamma}} \varphi(\gamma) \in [1, \infty]$.

Theorem 3. Let $\hat{\gamma} \in (0, \infty]$, so that $\varphi(\hat{\gamma}) \in (1, \infty]$. If (2) holds and, for any fixed $y > 0$,

$$\lim inf_{x \to \infty} \frac{F(x - y)}{F(x)} \geq e^{\hat{\gamma}y}, \quad (5)$$

then

$$\lim inf_{x \to \infty} \frac{F(\tau x)}{F(x)} = E\tau e^{\tau-1(\hat{\gamma})}.$$
The paper is organised as follows. In Section 2, we formulate and prove a general result on characterisation of heavy-tailed distributions on the positive half-line. Section 3 is devoted to the estimation of the functional $Eg(S_n)$ for a concave function h. Sections 4 and 5 contain proofs of Theorems 2 and 1 respectively. Section 6 is devoted to the proof in light-tailed case.

2. Characterisation of heavy-tailed distributions. It was proved in [3, Lemma 2] that, for any heavy-tailed random variable $\xi \geq 0$ and for any real $\delta > 0$, there exists an increasing concave function $h : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $E\exp(h(\xi)) \leq 1 + \delta$ and $E\xi \exp(h(\xi)) = \infty$. In the present section, we obtain some generalisation of it.

Lemma 1. Let $\xi \geq 0$ be a random variable with a heavy-tailed distribution. Let $f : \mathbb{R}^+ \rightarrow \mathbb{R}$ be a concave function such that

\[E\exp(f(\xi)) = \infty. \]

Let a function $g : \mathbb{R}^+ \rightarrow \mathbb{R}$ be such that $g(x) \rightarrow \infty$ as $x \rightarrow \infty$. Then there exists a concave function $h : \mathbb{R}^+ \rightarrow \mathbb{R}$ such that $h \leq f$ and

\[E\exp(h(\xi)) < \infty, \quad E\exp(h(\xi) + g(\xi)) = \infty. \]

Proof. Without loss of generality assume $f(0) = 0$. We will construct a function $h(x)$ on the successive intervals. For that we introduce two positive sequences, $x_n \uparrow \infty$ as $n \rightarrow \infty$ and $\varepsilon_n \in (0, 1]$. We put $x_0 = 0, h(0) = f(0) = 0, h'(0) = f'(0)$, and

\[h(x) = h(x_{n-1}) + \varepsilon_n \min(h'(x_{n-1})(x - x_{n-1}), f(x) - f(x_{n-1})) \quad \text{for} \quad x \in (x_{n-1}, x_n]; \]

here h' is the left derivative of the function h. The function h is increasing, since $\varepsilon_n > 0$ and f is increasing. Moreover, this function is concave, due to $\varepsilon_n \leq 1$ and concavity of f. Since $h(x) - h(x_{n-1}) \leq f(x) - f(x_{n-1})$ for $x \in (x_{n-1}, x_n]$, we have $h \leq f$.

Now proceed with the very construction of x_n and ε_n. By conditions $g(x) \rightarrow \infty$ and (6), we can choose x_1 so large that $e^{g(x)} \geq 2^1$ for all $x \geq x_1$ and

\[E\left\{ e^{\min(h'(0)x_1, f(x_1))}; \xi \in (x_0, x_1]\right\} + e^{\min(h'(0)x_1, f(x_1))}F(x_1) > F(x_0) + 1. \]

Choose $\varepsilon_1 \in (0, 1]$ so that

\[E\left\{ e^{\varepsilon_1 \min(h'(0)x_1, f(x_1))}; \xi \in (x_0, x_1]\right\} + e^{\varepsilon_1 \min(h'(0)x_1, f(x_1))}F(x_1) = F(x_0) + 1. \]

Put $h(x) = \varepsilon_1 \min(x, f(x))$ for $x \in (0, x_1]$. Then the latter equality is equivalent to

\[E\left\{ e^{h(\xi)}; \xi \in (x_0, x_1]\right\} + e^{h(x_1)}F(x_1) = e^{h(x_0)}F(x_0) + 1/2, \]

By induction we construct an increasing sequence x_n and a sequence $\varepsilon_n \in (0, 1]$ such that $e^{g(x)} \geq 2^n$ for all $x \geq x_n$, and

\[E\left\{ e^{h(\xi)}; \xi \in (x_{n-1}, x_n]\right\} + e^{h(x_n)}F(x_n) = e^{h(x_{n-1})}F(x_{n-1}) + 1/2^n \]

for any $n \geq 1$. For $n = 1$ this is already done. Make the induction hypothesis for some $n \geq 2$. For any $x > x_n$, denote

\[\delta(x, \varepsilon) \equiv e^{h(x_n)} \left(E\left\{ e^{\varepsilon \min(h'(x_n)(\xi-x_n), f(\xi)-f(x_n))}; \xi \in (x_n, x]\right\} + e^{\varepsilon \min(h'(x_n)(x-x_n), f(x)-f(x_n))}F(x) \right). \]
By the convergence $g(x) \to \infty$, by heavy-tailedness of ξ, and by the condition (6), there exists x_{n+1} so large that $e^{g(x)} \geq 2^{n+1}$ for all $x \geq x_{n+1}$ and
\[
\delta(x_{n+1}, 1) > e^{h(x_n)}F(x_n) + 1.
\]

Note that the function $\delta(x_{n+1}, \varepsilon)$ is continuously decreasing to $e^{h(x_n)}F(x_n)$ as $\varepsilon \downarrow 0$. Therefore, we can choose $\varepsilon_{n+1} \in (0, 1]$ so that
\[
\delta(x_{n+1}, \varepsilon_{n+1}) = e^{h(x_n)}F(x_n) + 1/2^{n+1}.
\]

Then
\[
\mathbb{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1})\} + e^{h(x_{n+1})}F(x_{n+1}) = e^{h(x_n)}F(x_n) + 1/2^{n+1}.
\]

Our induction hypothesis now holds with $n + 1$ in place of n as required.

Next, for any N,
\[
\mathbb{E}\{e^{h(\xi)}; \xi \leq x_{N+1}\} = \sum_{n=0}^{N} \mathbb{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1})\} = \sum_{n=0}^{N} (e^{h(x_n)}F(x_n) - e^{h(x_{n+1})}F(x_{n+1}) + 1/2^{n+1}) \leq e^{h(x_0)}F(x_0) + 1,
\]

so that $\mathbb{E} e^{h(\xi)}$ is finite. On the other hand, since $e^{g(x)} \geq 2^k$ for all $x \geq x_k$,
\[
\mathbb{E}\{e^{h(\xi)} + g(\xi); \xi > x_n\} \geq 2^n \left(\mathbb{E}\{e^{h(\xi)}; \xi \in (x_n, x_{n+1})\} + e^{h(x_{n+1})}F(x_{n+1}) \right) = 2^n \left(e^{h(x_{n+1})}F(x_{n+1}) + 1/2^{n+1} \right).
\]

Then, for any n, $\mathbb{E}\{e^{h(\xi)} + g(\xi); \xi > x_n\} \geq 1/2$, which implies $\mathbb{E} e^{h(\xi) + g(\xi)} = \infty$. The proof is complete.

Lemma 2. Let $\xi \geq 0$ be a random variable with a heavy-tailed distribution. Let $f_1 : \mathbb{R}^+ \to \mathbb{R}$ be any measurable function and $f_2 : \mathbb{R}^+ \to \mathbb{R}$ a concave function such that
\[
\mathbb{E} e^{f_1(\xi)} < \infty \quad \text{and} \quad \mathbb{E} e^{f_1(\xi) + f_2(\xi)} = \infty.
\]

Let a function $g : \mathbb{R}^+ \to \mathbb{R}$ be such that $g(x) \to \infty$ as $x \to \infty$. Then there exists a concave function $h : \mathbb{R}^+ \to \mathbb{R}$ such that $h \leq f_2$ and
\[
\mathbb{E} e^{f_1(\xi) + h(\xi)} < \infty \quad \text{and} \quad \mathbb{E} e^{f_1(\xi) + h(\xi) + g(\xi)} = \infty.
\]

Proof. Consider a new governing probability measure \mathbb{P}^* defined in the following way:
\[
\mathbb{P}^*\{d\omega\} = \frac{e^{f_1(\xi(\omega))} \mathbb{P}\{d\omega\}}{\mathbb{E} e^{f_1(\xi)}}.
\]

Then
\[
\mathbb{E}^* e^{f_2(\xi)} = \frac{\mathbb{E} e^{f_1(\xi) + f_2(\xi)}}{\mathbb{E} e^{f_1(\xi)}} = \infty.
\]
In particular, \(\xi \) is heavy-tailed against the measure \(P^* \). Now it follows from Lemma[1] that there exists a concave function \(h : \mathbb{R}^+ \to \mathbb{R} \) such that \(h \leq f_2, h(x) = o(x), E^* e^{h(\xi)} < \infty, \) and \(E^* e^{h(\xi) + g(\xi)} = \infty. \) Equivalently,

\[
E e^{f_1(\xi) + h(\xi)} = E e^{f_1(\xi)} E^* e^{h(\xi)} < \infty
\]

and

\[
E e^{f_1(\xi) + h(\xi) + g(\xi)} = E e^{f_1(\xi)} E^* e^{h(\xi) + g(\xi)} = \infty.
\]

The proof is complete.

3. Growth rate of sums in terms of generalised moments. According to the Law of Large Numbers, the sum \(S_n \) grows like \(nE \xi \). In the following lemma we provide conditions on a function \(h(x) \), guaranteeing an appropriate rate of growth for the functional \(E e^{h(S_n)} \).

Lemma 3. Let \(\xi \) be a non-negative random variable. Let \(h : \mathbb{R}^+ \to \mathbb{R} \) be a non-decreasing eventually concave function such that \(h(x) = o(x) \) as \(x \to \infty \) and \(h(x) \geq \ln x \) for all sufficiently large \(x \). If \(E e^{h(\xi)} < \infty \), then, for any \(c > E \xi \), there exists a constant \(K(c) \) such that \(E e^{h(S_n)} \leq K(c) e^{h(nc)} \), for all \(n \).

To prove this lemma, we need the following assertion, which generalises the corresponding estimate from [6]:

Lemma 4. Let \(\eta \) be a random variable with \(E \eta < 0 \). Let \(h : \mathbb{R} \to \mathbb{R} \) be a non-decreasing and eventually concave function such that \(h(x) = o(x) \) as \(x \to \infty \) and \(h(x) \geq \ln x \) for all sufficiently large \(x \). If \(E e^{h(\eta)} < \infty \), then there exists \(x_0 \) such that the inequality \(E e^{h(x + \eta)} \leq e^{h(x)} \) holds for all \(x > x_0 \).

Proof. Since \(h \) is increasing, without loss of generality we may assume that \(\eta \) is bounded from below, that is, \(\eta \geq M \) for some \(M \). Also, we may assume that \(h \) is non-negative and concave on the whole half-line \([0, \infty)\).

Since \(h \) is concave, \(h'(x) \) is non-increasing function. With necessity \(h'(x) \to 0 \) as \(x \to \infty \), otherwise the condition \(h(x) = o(x) \) is violated. If ultimately \(h'(x) = 0 \), then \(h \) is ultimately a constant function and the proof of the theorem is obvious.

Consider now the case \(h'(x) \to 0 \) as \(x \to \infty \) but \(h'(x) > 0 \) for all \(x \). Put \(g(x) \equiv 1/h'(x) \), then \(g(x) \uparrow \infty \) as \(x \to \infty \). Since \(E \eta < 0 \), we can choose sufficiently large \(A \) such that

\[
\varepsilon \equiv E \{ \eta; \eta \in [M, A] \} + e E \{ \eta; \eta > A \} < 0.
\]

By concavity of \(h \), for any \(x \) and \(y \in \mathbb{R} \) we have the inequality \(h(x+y) - h(x) \leq h'(y) \). Hence,

\[
E e^{h(x+y)-h(x)} \leq E \{ e^{h'(y)\eta}; \eta \in [M, A] \} + E \{ e^{h'(y)\eta}; \eta \in (A, g(x)] \}
+ E \{ e^{h(x+y)-h(x)}; \eta > g(x) \}
\equiv E_1 + E_2 + E_3.
\]

Since \(h'(x) \to 0 \), the Taylor’s expansion for the exponent up to the linear term implies, as \(x \to \infty \),

\[
E_1 = P \{ \eta \in [M, A] \} + h'(x) E \{ \eta; \eta \in [M, A] \} + o(h'(x)).
\]

On the event \(\eta \in (A, g(x)] \) we have \(h'(x) \eta \leq 1 \) and, thus, \(e^{h'(x)\eta} \leq 1 + eh'(x)\eta \). Then

\[
E_2 \leq P \{ \eta \in (A, g(x)] \} + eh'(x) E \{ \eta; \eta \in (A, g(x)] \}.
\]

5
We have
\[E_3 = \mathbb{E}\{ e^{h(y)} e^{h(x+y)-h(x)-h(y)} ; \eta > g(x) \}. \] (11)

By concavity of \(h \), for \(x > 0 \), the difference \(h(x + y) - h(y) \) is non-increasing in \(y \). Therefore, for any \(y > g(x) \),
\[
\begin{align*}
 h(x + y) - h(x) - h(y) &\leq h(x + g(x)) - h(x) - h(g(x)) \\
 &\leq h'(x)g(x) - h(g(x)) \\
 &= 1 - h(g(x)) \\
 &\leq 1 - \ln g(x),
\end{align*}
\]
due to the condition \(h(x) \geq \ln x \) for all sufficiently large \(x \). This estimate and (11) imply
\[
E_3 \leq \mathbb{E}\{ e^{h(y)} ; \eta > g(x) \} e^{1-\ln g(x)}
= o(1)/g(x) = o(h'(x)) \quad \text{as } x \to \infty,
\] (12)
by the condition \(\mathbb{E}e^{h(\eta)} < \infty \). Substituting (9), (10) and (12) into (8) and taking into account the choice (7) of \(A \), we get
\[
\mathbb{E}e^{h(x+\eta)} = e^{h(x)} \mathbb{E}e^{h(x+\eta)-h(x)} \\
\leq e^{h(x)} (1 + h'(x)\varepsilon + o(h'(x))) \quad \text{as } x \to \infty.
\]

Since \(\varepsilon < 0 \), the latter estimate implies \(\mathbb{E}e^{h(x+\eta)} < e^{h(x)} \) for all sufficiently large \(x \). The proof is complete.

Proof of Lemma 3 Put \(\eta_n = \xi_n - c \). We have \(\mathbb{E}\eta_n < 0 \) and \(\mathbb{E}e^{h(\eta_n)} < \infty \). By Lemma 4, there exists \(x_0 > 0 \) such that \(\mathbb{E}e^{h(x+\eta_n)} \leq \mathbb{E}e^{h(x)} \) for \(x > x_0 \). Then, by monotonicity of \(h(x) \) and by non-negativity of \(S_{n-1} \),
\[
\mathbb{E}e^{h(S_n)} \leq \mathbb{E}e^{h(S_{n+x_0})} = \mathbb{E}e^{h(S_{n-1}+x_0+c+\eta_n)} \leq \mathbb{E}e^{h(S_{n-1}+x_0+c)}.
\]

Now, by the induction arguments, \(\mathbb{E}e^{h(S_n)} \leq e^{h(cn+x_0)} \leq e^{h(cn)} e^{h(x_0)} \). The proof is complete.

4. Proof of Theorem 2 Before starting the proof of Theorem 2, we formulate the following proposition from [3, Corollary 1]:

Proposition 1. Let there exist a concave function \(r : \mathbb{R}^+ \to \mathbb{R} \) such that \(\mathbb{E}e^{r(\xi)} < \infty \) and \(\mathbb{E}e^{r(S_{r-1})} = \infty \). If \(F \) is heavy-tailed and \(\mathbb{E}e^{r(S_{r-1})} < \infty \), then (1) holds.

We also need two auxiliary technical results.

Lemma 5. Let \(\chi \geq 0 \) be any random variable. Then there exists a differentiable concave function \(g : \mathbb{R}^+ \to \mathbb{R}^+ \), \(g(0) = 0 \), such that \(g'(x) \leq 1 \) for all \(x \), \(g(x) \to \infty \) as \(x \to \infty \), and \(\mathbb{E}e^{g(\chi)} < \infty \).

Proof. Consider an increasing sequence \(\{x_n\} \) such that \(x_0 = 0, x_1 = 1, x_{n+1} > x_n \), and \(\mathbb{P}\{ \chi > x_n \} \leq e^{-n} \). Put \(g_1(x_n) = n/2 \) and continuously linear between these points. Then, for any \(x \in (x_n, x_{n+1}) \) and \(y \in (x_{n+1}, x_{n+2}) \) we have
\[
g_1'(x) = \frac{1}{2(x_{n+1} - x_n)} > \frac{1}{2(x_{n+2} - x_{n+1})} = g_1'(y),
\]
where we have
so that \(g_1 \) is concave. By the construction, \(g_1(x) \uparrow \infty \) as \(x \to \infty \) and \(g_1'(x) \leq 1 \) where the derivative exists. Finally,

\[
Ee^{g_1(x)} \leq \sum_{n=0}^{\infty} e^{g_1(x_{n+1})} P\{ \chi > x_n \} \leq \sum_{n=0}^{\infty} e^{(n+1)/2} e^{-n} < \infty.
\]

A procedure of smoothing, say \(g(x) = \int_x^{x+1} g_1(y)dy - \int_0^1 g_1(y)dy \), completes the proof.

Lemma 6. Let \(\chi \geq 0 \) be a random variable such that, for some concave function \(f : \mathbb{R}^+ \to \mathbb{R}^+ \), \(Ee^{f(\chi)} = \infty \). Then there exists a concave function \(f_1 : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(f_1 \leq f \), \(f_1(x) = o(x) \) as \(x \to \infty \), and \(Ee^{f_1(\chi)} = \infty \).

Proof. Take \(x_1 \) so large that \(E\{e^{\min(\chi,f(x))}; \chi \leq x_1 \} \geq 1 \) and put \(f_1(x) = \min(x,f(x)) \) for \(x \in [0,x_1] \). Then by induction, for any \(n \), we can choose \(x_{n+1} \) such that

\[
E\{e^{f_1(x_n)+\min(n^{-1}f_1'(x_n)(\chi-x_n);f(\chi)-f(x_n))}; \chi \in (x_n,x_{n+1}] \} \geq 1.
\]

Let \(f_1(x) = f_1(x_n) + \min(n^{-1}f_1'(x_n)(x-x_n),f(x)-f(x_n)) \) for \(x \in (x_n,x_{n+1}] \). By construction, \(f_1 \) is concave, \(f_1 \leq f \), and \(f_1'(x_{n+1}) \leq f_1'(x_n)/n \to 0 \) as \(n \to \infty \).

Proof of Theorem 2 Without loss of generality, assume that \(f(x) \geq \ln x \) for all \(x \) and that \(f_2(x) \equiv f(x) - \ln x \) is concave on the whole positive half-line. By Lemma 6 and by measure change arguments like in the proof of Lemma 2 we may assume from the very beginning that

\[
f(x) = o(x) \quad \text{as} \quad x \to \infty.
\]

Next we state the existence of a concave function \(g : \mathbb{R}^+ \to \mathbb{R} \) such that \(g(x) \to \infty \) as \(x \to \infty \), \(g(x) \leq \ln x \) for all sufficiently large \(x \), the difference \(\ln x - g(x) \) is a non-decreasing function, and

\[
Ee^{f(\tau)+g(\tau)} < \infty.
\]

Indeed, by Lemma 5 and again measure change technique, there exists a differentiable concave function \(g_1 : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(g_1(0) = 0 \), \(g_1(x) \uparrow \infty \), \(g_1'(x) \leq 1 \), and \(Ee^{f(\tau)+g_1(\tau)} < \infty \). Put \(g(x) = g_1(\ln(x+1)) - 1 \). Then \(g \) is a monotone function increasing to infinity and \(g(x) \leq \ln x \) for all sufficiently large \(x \) in addition,

\[
(\ln x - g(x))' = 1/x - g_1'(\ln(x+1))/(x+1) \geq 0,
\]

so that the difference \(\ln x - g(x) \) is a non-decreasing function as needed.

Since the function \(f_2(x) \) is concave, by Lemma 2 with \(f_1(x) = \ln x \), there exists a concave function \(h \) such that \(h \leq f_2 \), \(h(x) = o(x) \), \(E\xi e^{h(\xi)} < \infty \) and \(E\xi e^{h(\xi)+g(\xi)} = \infty \). Since \(\ln x + h(x)+g(x) \leq f(x)+g(x) \), by (4) and by the choice of \(g \),

\[
E\tau e^{h(\tau)+g(\tau)} < \infty.
\]

(13)

The concave function \(r(x) = h(x) + g(x) \) satisfies all conditions of Proposition 1. Indeed, due to the inequality \(g(x) \leq \ln x \) for all sufficiently large \(x \), we have \(Ee^{r(\xi)} < \infty \) because \(E\xi e^{h(\xi)} < \infty \). It remains to check that \(E\tau e^{r(S_{\tau-1})} < \infty \). Since, by (13),

\[
E\{\tau e^{r(S_{\tau})}; S_{\tau} \leq \tau\} \leq E\tau e^{r(\tau)} < \infty,
\]
it suffices to prove that
\[\mathbb{E}\{\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} < \infty. \]

We proceed in the following way:
\[
\mathbb{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} = \sum_{n=1}^{\infty} \mathbb{P}\{\tau = n\}cn\mathbb{E}\{e^{r(S_n)}; S_n > cn\}
\]
\[
= \sum_{n=1}^{\infty} \mathbb{P}\{\tau = n\}e^{g(cn)+\ln(cn)-g(cn)}\mathbb{E}\{e^{h(S_n)+g(S_n)}; S_n > cn\}.
\]

By the monotonicity of the difference \(\ln x - g(x)\), we obtain the following estimate
\[
\mathbb{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} \leq \sum_{n=1}^{\infty} \mathbb{P}\{\tau = n\}e^{g(cn)}\mathbb{E}\{e^{\ln S_n+h(S_n)}; S_n > cn\},
\]

Since the function \(\ln x + h(x)\) is concave and \(\ln x + h(x) \geq \ln x\), by Lemma 3,
\[
\mathbb{E}e^{\ln S_n+h(S_n)} \leq K(e^{\ln(nc)+h(cn)})
\]
for some \(K(e) < \infty\). Therefore,
\[
\mathbb{E}\{c\tau e^{r(S_{\tau})}; S_{\tau} > c\tau\} \leq K(e)\sum_{n=1}^{\infty} \mathbb{P}\{\tau = n\}e^{g(cn)}e^{\ln(nc)+h(nc)}
\]
\[
= K(e)e^{\tau h(c\tau)+g(c\tau)} < \infty,
\]
from (13). The proof of Theorem 2 is complete.

5. Proof of Theorem 1

Denote by \(G\) the distribution function of \(c\tau\).

We will construct an increasing concave function \(f : \mathbb{R}^+ \rightarrow \mathbb{R}\) such that
\[
\mathbb{E}\xi e^{f(\xi)} = \infty \quad \text{and} \quad \mathbb{E}\tau e^{f(c\tau)} < \infty.
\]

Then the desired relation (14) will follow by applying Theorem 2

If \(G\) is light-tailed then one can take \(f(x) = \lambda x\) for a sufficiently small \(\lambda > 0\). From now on we assume \(G\) to be heavy-tailed.

Consider new random variables \(\xi_*\) and \(\tau_*\) with the following distributions:
\[
\mathbb{P}\{\xi_* \in dx\} = \frac{xF(dx)}{E_{\xi}} \quad \text{and} \quad \mathbb{P}\{\tau_* = n\} = \frac{n\mathbb{P}\{\tau = n\}}{E_{\tau}}.
\]

Denote by \(F_*\) and \(G_*\) the distributions of \(\xi_*\) and \(c\tau_*\) respectively. Then both \(F_*\) and \(G_*\) are heavy-tailed and
\[
\overline{G}_*(x) = o(\overline{F}_*(x)) \quad \text{as} \quad x \to \infty.
\]

The heavy-tailedness of \(G_*\) is equivalent to the following condition: for any \(\varepsilon > 0\),
\[
\int_{1}^{\infty} \overline{G}_*(e^{-1}\ln x)dx \equiv \int_{0}^{\infty} e^{\varepsilon\overline{G}_*(x/\varepsilon)}dx = \infty.
\]

8
In terms of new distributions F_* and G_*, conditions (14) may be reformulated as follows: we need to construct an increasing concave function f such that $\mathbb{E}e^{f(\xi_*)} = \infty$ and $\mathbb{E}e^{f(c\tau_*)} < \infty$, or, equivalently,

$$
\int_1^\infty F_*(f^{-1}(\ln x))dx = \infty \quad \text{and} \quad \int_1^\infty G_*(f^{-1}(\ln x))dx < \infty. \quad (17)
$$

The concavity of f is equivalent to the convexity of its inverse, $h = f^{-1}$. So, conditions (17) may be rewritten as: we have to present an increasing convex function h such that

$$
\int_0^\infty e^x F_*(h(x))dx = \infty \quad \text{and} \quad \int_0^\infty e^x G_*(h(x))dx < \infty. \quad (18)
$$

We will construct $h(x)$ as a piece-wise linear function. For this, we will introduce two increasing sequences, say $x_n \uparrow \infty$ and $a_n \uparrow \infty$, and let

$$
h(x) = h(x_n) + a_n(x - x_n) \quad \text{for } x \in (x_n, x_{n+1}].
$$

Then the convexity of f will follow from the increase of $\{a_n\}$.

Put $x_0 = 0$ and $f(x_0) = 0$. Due to (15) and (16), we can choose x_1 so large that

$$
\frac{F_*(y)}{G_*(y)} \geq 2^1
$$

for all $y > x_1$ and

$$
\int_0^{x_1} e^x G_*(h(x_0) + 1 \cdot (x - x_0))dx \geq 1.
$$

Then there exists a sufficiently large $a_0 \geq 1$ such that

$$
\int_0^{x_1} e^x G_*(h(x_0) + a_0(x - x_0))dx = 1.
$$

Now we use the induction argument to construct increasing sequences $\{x_n\}$ and $\{a_n\}$ such that

$$
\frac{F_*(y)}{G_*(y)} \geq 2^{n+1} \quad (19)
$$

for all $y > x_{n+1}$ and

$$
\int_{x_n}^{x_{n+1}} e^x G_*(h(x))dx = 2^{-n}.
$$

For $n = 0$ this is already done. Make the induction hypothesis for some $n \geq 1$. For any $x > x_{n+1}$, denote

$$
\delta(x, a) \equiv \int_{x_{n+1}}^x e^y G_*(h(x_{n+1} + a(y - x_{n+1})))dy.
$$
Due to (15) and (16), we can choose \(x_{n+2} \) so large that
\[
\frac{F_*(y)}{G_*(y)} \geq 2^{n+2}
\]
for all \(y > x_{n+2} \) and
\[
\delta(x_{n+2}, a_n) \geq 1.
\]
Since the function \(\delta(x_{n+2}, a) \) continuously decreases to 0 as \(a \uparrow \infty \), we can choose \(a_{n+1} > a_n \) such that
\[
\delta(x_{n+2}, a_{n+1}) = 2^{-(n+1)}.
\]
Then
\[
\int_{x_{n+1}}^{x_{n+2}} e^x G_*(h(x)) dx = 2^{-(n+1)}.
\]
Our induction hypothesis now holds with \(n + 1 \) in place of \(n \) as required.

Now the inequalities (18) follow since, from the construction of function \(h \),
\[
\int_0^\infty e^x G_*(h(x)) dx = \sum_{n=0}^{\infty} \int_{x_n}^{x_{n+1}} e^x G_*(h(x)) dx
\]
\[
= \sum_{n=0}^{\infty} 2^{-n} < \infty.
\]
and, by (19),
\[
\int_0^\infty e^x F_*(h(x)) dx = \sum_{n=0}^{\infty} \int_{x_n}^{x_{n+1}} e^x F_*(h(x)) dx \geq \sum_{n=0}^{\infty} 2^n \int_{x_n}^{x_{n+1}} e^x G_*(h(x)) dx
\]
\[
= \sum_{n=0}^{\infty} 2^n 2^{-n} = \infty.
\]
The proof of Theorem 1 is complete.

6. Proof of Theorem 3. We apply the exponential change of measure with parameter \(\hat{\gamma} \) and consider the distribution \(G(du) = e^{\hat{\gamma}u} F(du) / \phi(\hat{\gamma}) \) and the stopping time \(\nu \) with the distribution \(P\{\nu = k\} = \phi^k(\hat{\gamma})P\{\tau = k\} / E\phi^\gamma(\hat{\gamma}) \). Then it was proved in [3, Lemma 3] that
\[
\liminf_{x \to \infty} \frac{G^{su}(x)}{G(x)} \geq \frac{1}{E\phi^{\gamma-1}(\hat{\gamma})} \liminf_{x \to \infty} \frac{F^{w}(x)}{F(x)}.
\]
\[
(20)
\]
From the definition of \(\hat{\gamma} \), the distribution \(G \) is heavy-tailed. Let us prove that
\[
P\{c\nu > x\} = o(G(x)) \text{ as } x \to \infty.
\]
\[
(21)
\]
Indeed, put \(\lambda \equiv \ln \varphi(\hat{\gamma}) > 0 \); then
\[
P\{c\nu > x\} = \frac{1}{E\varphi^\tau(\hat{\gamma})} \sum_{k > x/c} e^{\lambda k} P\{\tau = k\}
\]
\[
\leq \frac{1}{E\varphi^\tau(\hat{\gamma})} \int_{x/c}^{\infty} e^{\lambda y} P\{\tau \in dy\}.
\]
(22)

Integration by parts implies
\[
\int_{x/c}^{\infty} e^{\lambda y} P\{\tau \in dy\} = -e^{\lambda y} P\{\tau > y\} \bigg|_{x/c}^{\infty} + \lambda \int_{x/c}^{\infty} e^{\lambda y} P\{\tau > y\} dy
\]
\[
= e^{\lambda x/c} P\{c\tau > x\} + \frac{\lambda}{c} \int_{x}^{\infty} e^{\lambda y/c} P\{c\tau > y\} dy,
\]
because \(E\varphi^\tau(\hat{\gamma}) < \infty \) and, thus, \(e^{\lambda y} P\{\tau > y\} \to 0 \) as \(y \to \infty \). Now applying the condition (2) we obtain that the latter sum is of order
\[
o\left(e^{\lambda x/c} F(x) + \frac{\lambda}{c} \int_{x}^{\infty} e^{\lambda y/c} F(y) dy \right) = o\left(\int_{x}^{\infty} e^{\lambda y/c} F(dy) \right) \text{ as } x \to \infty.
\]
Together with (22) it implies (21). Therefore, by Theorem 1 we have the equality
\[
\liminf_{x \to \infty} \frac{G^\nu(x)}{G(x)} = E\nu = \frac{E\tau \varphi^\tau(\hat{\gamma})}{E\varphi^\tau(\hat{\gamma})},
\]
and, due to (20),
\[
\liminf_{x \to \infty} \frac{F^\tau(x)}{F(x)} \leq E\tau \varphi^{\tau-1}(\hat{\gamma}).
\]
(23)

The result now follows from Lemma .

References

1. Chover, J., Ney, P. and Wainger, S., 1973. Functions of probability measures. J. Anal. Math. 26, 255–302.
2. Cline, D., 1987. Convolutions of distributions with exponential and subexponential tails. J. Aust. Math. Soc. 43, 347–365.
3. Denisov, D., Foss, S. and Korshunov, D. On lower limits and equivalences for tails of randomly stopped sums. To appear in Bernoulli.
4. Embrechts, P. and Goldie, C. M., 1982. On convolution tails. Stochastic Process. Appl. 13, 263–278.
5. Foss, S. and Korshunov, D., 2007. Lower limits and equivalences for convolution tails. Ann. Probab. 35, 366-383.
6. Foss, S. and Sapozhnikov, A., 2004. On the existence of moments for the busy period in the single-server queue. Math. Oper. Research 29, 592–601.
7. Pakes, A. G., 2004. Convolution equivalence and infinite divisibility. J. Appl. Probab. 41, 407–424.
8. Rogozin, B. A., 2000. On the constant in the definition of subexponential distributions. Theory Probab. Appl. 44, 409–412.
9. Rudin, W., 1973. Limits of ratios of tails of measures. Ann. Probab. 1, 982–994.