Strong and Weak Forms of μ-Kc-Spaces

Nadia A. Nadhim1, Haider J. Ali2, Rasha N. Majeed3

1Department of Mathematics, Faculty of Education for Pure Sciences, University of AL-Anbar, AL-Anbar, Iraq
2Department of Mathematics, College of Science, University of AL-Mustansiriya, Baghdad, Iraq
3Department of Mathematics, Faculty of Education for Pure Sciences Abn AL-Haitham, University of Baghdad, Baghdad, Iraq

Received: 5/5/ 2019 Accepted: 21/9/2019

Abstract

In this paper, we provide some types of μ-Kc-spaces, namely, μ-$K(ac)$- (respectively, μ-$aK(ac)$-) and μ-$\theta K(c)$- spaces for minimal structure spaces which are denoted by (m-spaces). Some properties and examples are given. The relationships between a number of types of μ-Kc-spaces and the other existing types of weaker and stronger forms of m-spaces are investigated. Finally, new types of open (respectively, closed) functions of m-spaces are introduced and some of their properties are studied.

Keywords: Kc-space, minimal structure spaces, μ-Kc-space, α-open, θ-open.

1. Introduction

The concept of Kc-space was introduced by Wilansky [1], that is "A topological space (X,T) is said to be Kc-space if every compact subset of X is closed". Also, many important properties were provided by that study, e.g., "Every Kc-space is T_1-space" and "every T_2-space is Kc-space". In 1996, Maki [2] introduced the minimal structure spaces, shortly m-spaces, that is "A sub collection μ of $P(X)$ is called the minimal structure of X, if $\emptyset \in \mu$ and $X \in \mu$, (X, μ) is said to be m-structure space". The elements of μ are called μ-open sets and their complements are μ-closed sets, which is a generalization of topological spaces. Popa and Noiri [3] studied the m-spaces and defined the notion of continuous functions between them. In 2015, Ali et al. [4] defined the concept of Kc-space with

*Email: na8496292@gmail.com
respect to the \(m \)-space to obtain a new space which they called the \(\mu\)-\(Kc \)-space. A weaker and stronger form of open sets plays an important role in topological spaces. In 1965, Najastad [5] introduced the concept of \(\alpha \)-open sets as a generalization of open sets. That is, let \((X, T)\) be a topological space and a nonempty subset \(\mathcal{A} \) of \(X \) is said to be \(\alpha \)-open set, if \(\mathcal{A} \subseteq \text{Int}(\text{Cl}(\text{Int}(\mathcal{A}))) \). In 2010, Min [6] generalized the concept of \(\alpha \)-open sets to \(m \)-spaces. On the other hand, in 1968, Velicko [7] introduced the concept of \(\theta \)-open sets. That is “Let \((X, T)\) be a topological space, \(N \subseteq X \), a point \(b \in X \) is said to be an \(\theta \mu \)-adherent point for a subset \(N \) of \(X \), if \(N \cap \text{Cl}(G) \neq \emptyset \) for any open set \(G \) of \(X \) and \(b \in N \). The set of \(\theta \)-adherent point is said to be an \(\theta \)-closure of \(N \) which is denoted by \(\theta \text{Cl}(N) \). A subset \(N \) of \(X \) is called \(\theta \)-closed set if every point to \(N \) is an \(\theta \)-adherent point. Also, in 2018, Makki [8] defined \(\theta \)-open sets in \(m \)-space. The aim of the present paper is to introduce and study new type of \(\mu \)-\(Kc \)-spaces, namely, \(\mu\)-\(K(\alpha) \)- (resp. \(\mu\)-\(\alpha\mathcal{K}(c) \)- , \(\mu\)-\(\mathcal{K}(\alpha\mathcal{C}) \)- and \(\mu\)-\(\theta\mathcal{K}(c) \)-) spaces by using the concept of \(\alpha \)-open, respectively \(\theta \)-open sets, with respect to the \(m \)-space. We study the basic properties of each space and give the relationships between them. Also, we introduce new kinds of continuous, open (respectively closed) functions on \(m \)-spaces and investigate their properties.

2. Preliminaries

Let us recall the following definitions, properties and theorems which we need in this work.

Definition 2.1 [3] Let \(X \) be a non-empty set and \(P(X) \) be the power set of \(X \). A sub collection \(\mu \) of \(P(X) \) is called the minimal structure of \(X \), if \(\emptyset \in \mu \) and \(X \in \mu \). \((X, \mu) \) is said to be \(m \)-structure space (shortly, \(m \)-spaces). The elements of \(\mu \) are called \(\mu \)-open sets and their complements are \(\mu \)-closed sets.

For a subset \(\mathcal{B} \) in an \(m \)-space on \((X, \mu) \), the interior (respectively, closure) of \(\mathcal{B} \) denoted by \(\mu\text{Int}(\mathcal{B}) \) (respectively, \(\mu\text{Cl}(\mathcal{B}) \)) is defined as follows:

\[
\mu\text{Int}(\mathcal{B}) = \bigcup \{U : U \subseteq \mathcal{B}, U \in \mu\} \quad \text{and} \quad \mu\text{Cl}(\mathcal{B}) = \bigcap \{F : F \subseteq \mathcal{F}, F^c \in \mu\}.
\]

Remark 2.2 Note that according to a previous study [9], \(\mu\text{Int}(\mathcal{B}) \) (respectively, \(\mu\text{Cl}(\mathcal{B}) \)) is not necessarily \(\mu \)-open (respectively, \(\mu \)-closed), but if \(\mathcal{B} \) is \(\mu \)-open then \(\mathcal{B} = \mu\text{Int}(\mathcal{B}) \), respectively, and if \(\mathcal{B} \) is \(\mu \)-closed, then \(\mathcal{B} = \mu\text{Cl}(\mathcal{B}) \).

Definition 2.3 [10] an \(m \)-space \((X, \mu)\) has a property \(\beta \) (respectively \(\gamma \)) if the union (respectively intersection) of any family (respectively finite subsets) of \(\mu \) also belongs to \(\mu \).

Definition 2.4 [6] A subset \(A \) of an \(m \)-space \((X, \mu)\) is said to be an \(\alpha\mu \)-open, if \(A \subseteq \mu\text{Int}(\mu\text{Cl}(\mu\text{Int}(A))) \). The complement of \(\alpha\mu \)-open set is called \(\alpha\mu \)-closed set or, equivalently, \(\mu\text{Cl}(\mu\text{Int}(\mu\text{Cl}(A))) \subseteq A \).

Definition 2.5 [6] An \(m \)-space \((X, \mu)\) has a property \(\alpha\gamma \), if the intersection of finite \(\alpha\mu \)-open sets is an \(\alpha\mu \)-open set in \(X \).

Remark 2.6 [6] From Definition 2.4, it is clear that every \(\mu \)-open (respectively \(\mu \)-closed) set is an \(\alpha\mu \)-open (respectively \(\alpha\mu \)-closed) set.

Definition 2.7 [10] Let \((X, \mu)\) be an \(m \)-space. A point \(x \in X \) is called an \(\alpha\mu \)-adherent point of a set \(A \subseteq X \) if and only if \(G \cap A \neq \emptyset \) for all \(G \in \mu \) such that \(x \in G \). The set of all \(\alpha\mu \)-adherent points of a set \(A \) is denoted by \(\alpha\text{muCl}(A) \), where \(\alpha\mu\text{Cl}(A) = \bigcap \{F : A \subseteq F, F \in \mu\text{Cl}(F)\} \).

Proposition 2.8 [6] A subset \(F \) of \(m \)-space \(X \) is \(\alpha\mu \)-closed set in \(X \) iff \(F = \alpha\mu\text{Cl}(F) \).

Definition 2.9 [7] Let \((X, \mu)\) be an \(m \)-space, \(\mathcal{A} \subseteq X \). Then \(a \in X \) is said to be \(\alpha\mu \)-interior point to \(\mathcal{A} \) iff \(U \subseteq A \), for some \(\alpha\mu \)-open set \(U \) and \(x \in U \). The \(\alpha\mu \)-interior point of a set \(\mathcal{A} \) is all \(\alpha\mu \)-interior point of \(\mathcal{A} \) and denoted by \(\alpha\text{muInt}(\mathcal{A}) \), where \(\alpha\text{muInt}(\mathcal{A}) = \bigcup \{U : U \subseteq \mathcal{A}, U \in \alpha\mu \text{-open set}\} \).

Proposition 2.10 [6] any subset of \(m \)-space \(X \) is \(\alpha\mu \)-open set iff every point in it is an \(\alpha\mu \)-interior point.

Remark 2.11 [6] If \((X, \mu)\) is an \(m \)-space, then:
1. The union of any family of \(\alpha\mu \)-open sets is an \(\alpha\mu \)-open set.
2. The intersection of any two \(\alpha\mu \)-open sets may be not \(\alpha\mu \)-open set.

Definition 2.12 [12] An \(m \)-space, \((X, \mu)\) is called \(\mu \)-compact if any \(\mu \)-open cover of \(X \) has a finite subcover. A subset \(H \) of an \(m \)-space is said to be \(\mu \)-compact in \(X \), if for any cover by \(\mu \)-open of \(X \), there is a finite subcover of \(H \).

Proposition 2.13 [11] Every \(\mu \)-closed set in \(\mu \)-compact space is an \(\mu \)-compact set.
Definition 2.14 [6] An \(m\)-space \((X, \mu)\) is said to be \(\alpha\mu\)-compact space if any \(\alpha\mu\)-open cover of \(X\) has a finite subcover. A subset \(B\) of \(m\)-space \(X\) is called \(\alpha\mu\)-compact, if any \(\alpha\mu\)-open set of \(X\) which covers \(B\) has a finite subcover of \(B\).

Remark 2.15 Any \(\alpha\mu\)-compact is \(\mu\)-compact set. However the converse is not necessarily true as shown by the following example.

Example 2.16 Let \(\mathcal{R}\) be the set of real numbers and \(X\) be a non-empty set such that \(X=\{x\} \cup \{r: r \in \mathcal{R}\}, \) where \(x \in X\). Also \(\mu=\{\emptyset, X, \{x\}\},\) then \(C=\{\{x, r\}: r \in \mathcal{R}\}\) is an \(\alpha\mu\)-open cover to \(X\). Since \(\{x, r\} \subseteq \mu\text{Int}\left(\mu\text{Cl}(\{x, r\})\right) = X,\) so \(\{x, r\}\) is an \(\alpha\mu\)-open set. Now, \(C\) is an \(\alpha\mu\)-open cover to \(X\), but it has no finite subcover to \(X\), since, if we remove \(\{x, 50\}\) then the reminder is not cover \(X\) (cover all \(X\) except 50), and it is infinite cover. Hence, \(X\) is not \(\alpha\mu\)-compact space and it is clear that \(X\) is \(\mu\)-compact space, since the only \(\mu\)-open cover of \(X\) is \(X\) itself, which is one set, that is, a finite open cover to \(X\).

Definition 2.17 [10] An \(m\)-space is called an \(\mu-T_1\)-space, if for any two points \(a, b\) in \(X, a \neq b\) there is two \(\mu\)-open sets \(N, M\) such that \(a \in N, b \notin N\) and \(b \in M\) but \(a \notin M\).

Proposition 2.18 [4] An \(m\)-space is \(\mu\)-closed space if and only if every singleton set is \(\mu\)-closed set, whenever \(X\) has \(\beta\) property.

Definition 2.19 [10] An \(m\)-space is said to be \(\alpha\mu\)-T1-space, if for every two \(t\) points \(c, d\) in \(X,\) there are two \(\alpha\mu\)-open sets \(\mathcal{K}, \mathcal{H}\) with \(c \in \mathcal{K},\) but \(\mathcal{H} \notin \mathcal{H}\) and \(d \notin \mathcal{H}\) and \(b \notin \mathcal{K}\).

Remark 2.20 [10] Every \(\mu\)-T1-space is \(\alpha\mu\)-T1-space.

Definition 2.21 [10] An \(m\)-space \((X, \mu)\) is called \(\mu\)-T2-space (respectively \(\alpha\mu\)-T2-space), if for any two distinct points \(x, y\) in \(X,\) there are two \(\mu\)-open (respectively \(\alpha\mu\)-open) \(U, V\), such that \(x \in U, y \in V,\) and \(U \cap V = \emptyset\).

Definition 2.22 [4] An \(m\)-space \((X, \mu)\) is said to be \(\mu\)-Kc-space if any \(\mu\)-compact subset of \(X\) is \(\mu\)-closed set.

Example 2.23 Let \(\mathcal{R}\) be the real numbers, \((\mathcal{R}, \mu_{\mathcal{R}})\) is the usual \(\mu\)-space which is \(\mu\)-Kc-space.

Proposition 2.24 [12] Every \(\mu\)-compact set in \(\mu\)-T2-space, that has the property \(\beta\) and \(Y,\) is \(\mu\)-closed set.

Remark 2.25 [4]
1. Every \(\mu\)-Kc space is \(\mu\)-T1-space.
2. Every \(\mu\)-T2-space with the property \(\beta\) and \(Y\) is \(\mu\)-Kc-space.

Definition 2.26 Let \(f: (X, \mu) \rightarrow (Y, \mu')\) be a function. Then \(f\) is called:
1. \(m\)-continuous [15] iff for any \(\mu\)-open \(N\) in \(X,\) the inverse image \(f^{-1}(N)\) is an \(\mu\)-open set in \(X,\)
2. \(\alpha m\)-continuous [6] iff for any \(\mu\)-open set \(M\) in \(Y,\) the inverse image \(f^{-1}(M)\) is an \(\alpha\mu\)-open set in \(X,\)

Proposition 2.27 [14] The \(m\)-continuous image of \(\mu\)-compact is \(\mu\)-compact.

Definition 2.28 [4] A function \(f: (X, \mu) \rightarrow (Y, \mu')\) is said to be \(m\)-homeomorphism, if \(f\) is injective, surjective, continuous and \(f^{-1}\) continuous. If there exists an \(m\)-homeomorphism between \((X, \mu)\) and \((Y, \mu')\) then we say that \((X, \mu)\) \(\text{m-homeomorphic to} (Y, \mu').\)

Definition 2.29 [13] Let \((X, \mu)\) be \(m\)-space, \(F\) be a subset of \(X\) and \(x \in X.\) A point \(x\) is called an \(\theta\mu\)-interior point of \(F\) if there is \(C \subseteq \mu\) such that \(x \in C\) and \(x \in \mu Cl(C) \subseteq F.\) And \(\theta\mu\)-interior set which is denoted by \(\theta\mu\text{Int}(F)\) is the set of all \(\theta\mu\)-interior points. A subset \(F\) of \(X\) is called an \(\theta\mu\)-open set if every point of \(F\) is an \(\theta\mu\)-interior point.

Definition 2.30 [13] Let \((X, \mu)\) be \(m\)-space, \(H \subseteq X,\) a point \(b \in X\) is said to be an \(\theta\mu\)-adherent point for a subset \(H\) of \(X,\) if \(H \cap \mu Cl(G) \neq \emptyset\) for any \(\mu\)-open set \(G\) of \(X\) and \(b \in H.\) The set of \(\theta\mu\)-adherent point is said to be an \(\theta\mu\)-closure of \(H,\) which is denoted by \(\mu Cl(H).\) A subset \(H\) of \(X\) is called \(\theta\mu\)-closed set if every point to \(H\) is an \(\theta\mu\)-adherent point.

Example 2.31 Any subset of a discrete \(m\)-space \((\mathcal{R}, \mu_{\mathcal{R}})\) on a real number \(\mathcal{R}\) is \(\theta\mu\)-closed set and \(\theta\mu\)-open set.

Definition 2.32 [8] An \(m\)-space \((X, \mu)\) is said to have the property \(\theta Y\) (respectively \(\theta B\)) if the intersection (respectively union) of any finite number (respectively family) of \(\theta\mu\)-open sets is an \(\theta\mu\)-open set.

Remark 2.33 [8] If an \(m\)-space \((X, \mu)\) has \(\theta Y\) property, then every \(\theta\mu\)-closed is an \(\mu\)-closed.
Definition 2.34 [8] Let \((X, \mu)\) be a \(m\)-space, \(X\) is said to be \(\theta \mu\)-compact if any \(\theta \mu\)-open cover of \(X\) has a finite subcover. A subset \(A\) of an \(m\)-space \((X, \mu)\) is said to be \(\theta \mu\)-compact if for any \(\theta \mu\)-open cover \(\{V_\alpha : \alpha \in I\}\) of \(X\) and cover \(A\) then there is a finite subset \(\{\alpha_0, \alpha_1, \alpha_2, ..., \alpha_n\}\) such that \(A \subseteq \bigcup_{i=1}^{n} V_{\alpha_i}\).

Example 2.35 Let \((\mathcal{R}, \mu_{in})\) be an \(m\)-space where \(\mu_{in}\) be indiscrete \(m\)-space on a real number \(\mathcal{R}\), so is \(\theta \mu\)-compact.

Remark 2.36 [8] Every \(m\)-compact with the property \(\theta \beta\) is \(\theta \mu\)-compact.

Definition 2.37 [8] An \(m\)-space \((X, \mu)\) is called \(\theta \mu\)-T\(_2\) -space, if for every two points \(a, b\) that belong to \(X\), \(a \neq b\), there is \(\theta \mu\)-open sets \(M\) and \(N\) containing \(a\) and \(b\), respectively, such that \(M \cap N = \emptyset\).

Definition 2.38 [8] Let \((X, \mu)\) and \((Y, \mu')\) be two \(m\)-spaces and \(f: (X, \mu) \to (Y, \mu')\) be a function. Then \(f\) is called:

1. \(\theta m\)-continuous function if for any \(\mu'\)-closed \((\mu'\)-open\) subset \(K\) of \(Y\), the inverse image \(f^{-1}(K)\) is \(\theta \mu\)-closed \((\theta \mu\)-open\) set in \(X\).
2. \(\theta^* m\)-continuous function if for every \(\theta \mu'\)-closed \((\theta \mu'\)-open\) \(M\) subset of \(Y\), the inverse image \(f^{-1}(M)\) is \(\theta \mu\)-closed \((\theta \mu\)-open\) set in \(X\).
3. \(\theta^* m\)-continuous function if for any \(N \theta \mu'\)-closed \((\theta \mu'\)-open\) \(N\) subset of \(Y\), the inverse image \(f^{-1}(N)\) is \(\theta \mu\)-closed \((\theta \mu\)-open\) set in \(X\).
4. \(\theta m\)-closed function if \(f(F)\) is \(\theta \mu'\)-closed set in \(Y\) for each \(\mu\)-closed subset \(F\) of \(X\).
5. \(\theta^* m\)-closed function if \(f(F)\) is \(\mu'\)-closed set in \(Y\) for each \(\theta \mu\)-closed subset \(F\) of \(X\).

Proposition 2.39 [8] The \(\theta^* m\)-continuous image of \(\theta \mu\)-compact is \(\theta \mu'\)-compact.

Proposition 2.40 [8] If \(f: (X, \mu) \to (Y, \mu')\) is an \(m\)-homeomorphism and \(B\) is a \(\theta \mu'\)-compact set in \(Y\) then \(f^{-1}(B)\) is a \(\theta \mu\)-compact set in \(X\), with \(X\) has the property \(\theta \beta\).

3. Strong and weak forms of \(\mu\)-K\(_c\)-spaces

In this section, we provide some weak forms of \(\mu\)-K\(_c\)-space, namely \(\mu\)-K\((ac)\)-space, \(\mu\)-aK\((c)\)-space and \(\mu\)-aK\((ac)\)-space. In addition, we introduce \(\mu\)-\(\theta\)K\((c)\)-space as a strong form of \(\mu\)-K\(_c\)-space.

Definition 3.1 An \(m\)-space \((X, \mu)\) is said to be \(\mu\)-K\((ac)\)-space if every \(\mu\)-compact set in \(X\) is an \(\alpha \mu\)-closed set.

Now, we give some examples to explain the concept of \(\mu\)-K\((ac)\)-space.

Example 3.2 The discrete \(m\)-space \((X, \mu_D)\) is \(\mu\)-K\((ac)\)-space.

Example 3.3 Let \(X = \{1, 2, 3\}\) and let \(\mu = \{\emptyset, X, \{1\}\}\). Then \((X, \mu)\) is not \(\mu\)-K\((ac)\)-space, since \(Y\) exists an \(\mu\)-compact set \(\{1, 2\}\) in \(X\) but it is not \(\alpha \mu\)-closed.

To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no relation between the concepts of \(\mu\)-K\(_c\)-space and \(\alpha \mu\)-closed set.

Example 3.4

1. In the discrete \(m\)-space \((\mathcal{R}, \mu_D)\) where \(\mathcal{R}\) is a real number, \(\mathcal{Q}\) is the rational numbers subset of \(\mathcal{R}\), \(\mathcal{Q}\) is \(\alpha \mu\)-closed but not \(\alpha \mu\)-compact set.
2. In the indiscrete \(m\)-space \((\mathcal{R}, \mu_{ind})\), \(\mathcal{Q}\) is \(\mu\)-compact but not \(\alpha \mu\)-closed set.

Remark 3.5

1. Every \(\mu\)-K\(_c\) space is \(\mu\)-K\((ac)\)-space.
2. In discrete \(m\)-space, the two definitions of \(\mu\)-K\(_c\)-space and \(\mu\)-K\((ac)\)-spaces are satisfied.

The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold.

Example 3.6 Let \((X, \mu)\) be an \(m\)-space, \(X = \{a, b, c\}, \mu = \{\emptyset, X, \{a\}\}\), so \(\{c\}\) is \(\mu\)-compact since \(\{c\}\) is finite set. Also it is \(\alpha \mu\)-closed set since \(\mu Cl(\mu \{\mu \{\mu Cl\{c\}\}\}) = \emptyset \subseteq \{c\}\), so \(X\) is \(\mu\)-K\((ac)\)-space, but not \(\mu\)-K\(_c\) space since \(\{c\}\) is not \(\mu\)-closed set.

Proposition 3.7 An \(\alpha \mu\)-compact subset of \(\alpha \mu\)-T\(_2\)-space is \(\alpha \mu\)-closed, whenever \(X\) has \(\alpha \mu\) property.

Proof: Let \(B\) be \(\alpha \mu\)-compact in \(\alpha \mu\)-T\(_2\)-space. To show that \(B\) is \(\alpha \mu\)-closed, let \(p \in B^c\), since \(X\) is \(\alpha \mu\)-T\(_2\)-space. So for every \(q \in B\), \(p sq\), there exist \(\alpha \mu\)-open sets \(G, H\) with \(p \in H\), \(q \in G\), such that \(G \cap H = \emptyset\). Now the collection \(\{G_q; q \in B, i \in I\}\) is \(\alpha \mu\)-open cover of \(B\). Since \(B\) is \(\alpha \mu\)-compact set, then there is a finite subcover of \(B\), so \(B \subseteq \bigcup_{i=1}^{m} G_{q_i}\). Let \(H^* = \bigcap_{i=1}^{m} H_{q_i}(p)\) and \(G^* = \bigcup_{i=1}^{m} G_{q_i}\), then \(H^*\) is an \(\alpha \mu\)-open set \(p \in H^*\) (since \(X\) has property \(\alpha \mu\)). Claim that \(G^* \cap H^* = \emptyset\), let \(x \in G^*\), then \(x \in G_{q_i}\) for some \(q_i\) and suppose that \(x \in H^*\), \(B \cap H^* \neq \emptyset\). This is a contradiction, then \(p \in H^* \subseteq B^c\), so \(B^c\) is \(\alpha \mu\)-open set in \(X\), hence \(B\) is \(\alpha \mu\)-closed set.

Theorem 3.8 Every \(\alpha \mu\)-closed set in \(\alpha \mu\)-compact space is \(\alpha \mu\)-compact set.

1083
Proof: Let (X, μ) be $\alpha\mu$-compact, A is $\alpha\mu$-closed in X, and $(V_\alpha)_{\alpha \in 1}$ is an $\alpha\mu$-open cover of A, that is, $A \subseteq \bigcup_{\alpha \in 1} V_\alpha$, where V_α is $\alpha\mu$-open in X. For $\alpha \in 1$, since $X = A \cup A^C \subseteq \bigcup_{\alpha \in 1} V_\alpha \cup A^C$, also A^C is $\alpha\mu$-open (since A is $\alpha\mu$-closed in X). So $\bigcup_{\alpha \in 1} V_\alpha \cup A^C$ is $\alpha\mu$-open cover for X which is $\alpha\mu$-compact space, then there exists $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ such that $X \subseteq \bigcup_{i=1}^n V_{\alpha_i} \cup A^C$, so $A \subseteq \bigcup_{i=1}^n V_{\alpha_i}$. Therefore A is $\alpha\mu$-compact set.

Remark 3.9 In the above theorem, if we replace the $\alpha\mu$-compact by μ-compact, the theorem will not be true.

Now, we introduce the weak form of μ-$K(ac)$-space which was introduced in Definition 3.1.

Definition 3.10 A space X is said to be μ-$\alpha K(ac)$-space if any $\alpha\mu$-compact subset of X is $\alpha\mu$-closed set.

Example 3.11 Let (R, μ_D) be a discrete m-space where R is a real number. Let Q is $\alpha\mu$-compact subset of R, then Q is μ-compact in R from Remark 2.15, and Q is $\alpha\mu$-closed by Remark 2.6. Hence (R, μ_D) is μ-$\alpha K(ac)$-space.

Proposition 3.12 Every μ-$\alpha K(c)$-space is μ-$\alpha K(ac)$-space.

Proof: Let (X, μ) be m-space and K be $\alpha\mu$-compact subset of X, which is μ-$\alpha K(c)$-space, so K is μ-closed subset of X and, by Remark 2.6, K is $\alpha\mu$-closed subset. Hence X is μ-$\alpha K(ac)$-space.

Theorem 3.13 (X, μ) is $\alpha\mu-T_1$-space iff $\{x\}$ is $\alpha\mu$-closed subset of X for all $x \in X$.

Proof: Let $\{x\}$ be $\alpha\mu$-closed set $V \subseteq X$. Let $a, d \in X$ with $a \neq d$, and $\{a\}$ and $\{d\}$ are $\alpha\mu$-closed sets, then $\{a\}^C$ is $\alpha\mu$-open subset of X, with $d \in \{a\}^C$ and $a \notin \{a\}^C$. Also $\{d\}^C$ is $\alpha\mu$-open subset of X, with $a \in \{d\}^C$ and $d \notin \{d\}^C$, so X is $\alpha\mu-T_1$-space.

Conversely, we must prove that $\{x\}$ is $\alpha\mu$-closed subset of X, that is $\alpha\mu Cl(\{x\}) = \{x\}$, since $\{x\} \subseteq \alpha\mu Cl(\{x\})$. Let $y \in \alpha\mu Cl(\{x\})$ and $y \notin \{x\}$, so $x \neq y$, but X is μ-$\alpha\mu-T_1$-space, so there exist two $\alpha\mu$-open sets U_x and V_y containing x and y, respectively, with $y \notin U_x$ and $x \notin V_y$. Then V_y containing y, so y is not $\alpha\mu$-adherent point to $\{x\}$, that is $y \notin \alpha\mu Cl(\{x\})$, and this is contradiction. Therefore, $y \notin \{x\}$ and $\alpha\mu Cl(\{x\}) \subseteq \{x\}$, so by (1) and (2) we get $\alpha\mu Cl(\{x\}) = \{x\}$, and by Proposition 2.8, $\{x\}$ is $\alpha\mu$-closed subset of X.

Proposition 3.14 Every μ-$\alpha K(ac)$-space is μ-$\alpha\mu-T_1$-space.

Proof: Let $x \in X$ and $\{x\}$ be $\alpha\mu$-compact set in X, since X is μ-$\alpha K(ac)$-space, hence $\{x\}$ is $\alpha\mu$-closed set, so X is μ-$\alpha\mu-T_1$-space by Theorem 2.18.

The next example shows that the converse of Proposition 3.14 is not true.

Example 3.15 Let (R, μ_{cof}) be a co-finite m-space on a real number R which is μ-$\alpha\mu-T_1$-space, if we take $Q \subseteq R$ as $\alpha\mu$-compact (since there exists one $\alpha\mu$-open cover of Q which is R), but Q is not $\alpha\mu$-closed in R (since $\mu Cl(\mu Int(\mu Cl(\{Q\}))) = R \not\subseteq Q$.

Proposition 3.16 Every $\alpha\mu$-$\alpha\mu$-space is μ-$\alpha K(ac)$-space, whenever X has αY property.

Proof: Let (X, μ) be an m-space and P be an $\alpha\mu$-compact subset in X. Also X is $\alpha\mu$-$\alpha\mu$-space, so P is an $\alpha\mu$-closed set from Proposition 3.7. Therefore, X is μ-$\alpha K(ac)$-space.

The converse of Proposition 3.16 may not be hold. The following example shows that.

Example 3.17 Let (R, μ_{coc}) be a co-countable m-space on a real number R, which is μ-$\alpha K(ac)$-space, but not $\alpha\mu$-$\alpha\mu$-space, since the μ-compact set in it are just the finite set, if we μ-compact set then it is finite, so, it is countable, then it is μ-closed since in μ_{coc} the closed take sets are \emptyset, R and countable sets. Now suppose that it is μ-$\alpha\mu$-$\alpha\mu$-space, $\forall x, y \in R, x \neq y$, there are U_x, V_y as two $\alpha\mu$-open sets such that $x \in U_x, y \in V_y$ and $U_x \cap V_y = \emptyset$, then $U_x = U_x^C, (U_x \cap V_y)^C = \emptyset$, so $(U_x^C \cup (V_y)^C = R$, but this is a contradiction. Since U_x and V_y are countable, the union also countable, but R is not countable so it is not $\alpha\mu$-$\alpha\mu$-space. Therefore (R, μ_{coc}) are μ-Kc-, μ-$K(ac)$- and μ-$\alpha K(ac)$-spaces.

Proposition 3.18 A subset F of an m-space X is $\alpha\mu$-closed set in X if and only if there exists an α-closed set M such that $\mu Cl(\mu Int(M)) \subseteq F \subseteq M$.

Proof: Suppose that F is $\alpha\mu$-closed set in X, so $\mu Cl(\mu Int(\mu Cl(F))) \subseteq F$, by Definition 2.3, and $F \subseteq \mu Cl(F)$, then $\mu Cl(\mu Int(\mu Cl(F))) \subseteq F \subseteq \mu Cl(F)$, put $\mu Cl(F) = M$, so $\mu Cl(\mu Int(M)) \subseteq F \subseteq M$.

1084
Conversely, suppose that $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$. To prove that \mathcal{F} is $\alpha\mu$-closed set whenever M is μ-closed set, $\mu Cl(\mu Cl(\mu Int(M))) \subseteq \mu Cl(\mathcal{F}) \subseteq \mu Cl(M) = M$, then $\mu Cl(\mu Int(M)) \subseteq \mu Cl(\mathcal{F}) \subseteq M$, and $\mu Int(\mu Cl(\mu Int(M))) \subseteq \mu Int(\mu Cl(\mathcal{F})) \subseteq \mu Int(M)$, by hypothesis $\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M$, we get $\mu Cl(\mu Cl(\mathcal{F})) \subseteq \mathcal{F}$. Therefore \mathcal{F} is $\alpha\mu$-closed set.

Definition 3.19 An m-space \mathcal{X} is called μ-$\alpha K(c)$-space if any $\alpha\mu$-compact subset in \mathcal{X} is μ-closed set.

Example 3.20 Let (\mathcal{R}, μ_D) be a discrete m-space on any space \mathcal{X}, it is μ-$\alpha K(c)$-space.

Remark 3.21
1. Every μ-Kc-space is μ-$\alpha K(c)$-space.
2. Every μ-$\alpha K(c)$-space is μ-$\alpha K(\alpha c)$-space.
3. Every μT_2-space is μ-$\alpha K(c)$-space.
4. Every μ-$\alpha K(c)$-space is $\alpha\mu T_1$-space.

Now, we define a strong form of μ-Kc-space which is μ-$\theta K(c)$-space.

Definition 3.22 An m-space (\mathcal{X}, μ) is called μ-$\theta K(c)$-space, if every $\theta\mu$-compact of \mathcal{X} is μ-closed set.

Example 3.23 Let (\mathcal{R}, μ_{cof}) be a co-finite m-space on a real line \mathcal{R}. Then (\mathcal{R}, μ_{cof}) is an $\alpha\mu$-$\theta K(c)$-space.

Proposition 3.24 Every $\theta\mu$-compact subset of $\theta\mu T_2$-space is $\theta\mu$-closed, whenever that space has θY property.

Proof: Let A be a $\theta\mu$-compact set in \mathcal{X}. Let $p \notin A$, so for each $q \in A$ then $p \neq q$. But \mathcal{X} is $\theta\mu T_2$-space, so there exist two $\theta\mu$-open sets U and V containing q and p, respectively, then $A = \bigcup_{a \in \mathcal{I}} \{U_{q_a}\}$. But A is $\theta\mu$-compact, so $A = \bigcup_{i=1}^{n} \{U_{q_{a_i}}\} = U^*$ and $V^* = \bigcap_{i=1}^{n} V_{a_i}(p)$ is $\theta\mu$-open (since \mathcal{X} has θY property). Claim that $U^* \cap V^* = \emptyset$, and suppose that $U^* \cap V^* \neq \emptyset$, since $p \in V^*$, let $p \in U^*$, that is $p \in A$, but this is a contradiction. So $U^* \cap V^* = \emptyset$ and then there exists V^* containing p and $V^* \subseteq A^c$, that is $p \in \mu Int(A^c)$, then A^c is $\theta\mu$-open, by Proposition 2.10, so A is $\theta\mu$-closed.

Proposition 3.25 If an m-space has θY property, then every $\theta\mu T_2$-space is μ-$\theta K(c)$-space.

Proof: Let H be an $\theta\mu$-compact subset of \mathcal{X}. To prove that H is μ-closed set, since \mathcal{X} is $\theta\mu T_2$-space, so by proposition 3.24, we get H is $\theta\mu$-closed set and by Remark 2.33, we get H is μ-closed, hence \mathcal{X} is μ-$\theta K(c)$-space.

Proposition 3.26 If an m-space has $\theta\beta$ property, then every μ-$\theta K(c)$-space is μ-kc-space.

Proof: Let (\mathcal{X}, μ) be m-space, A be μ-compact of \mathcal{X} by Remark 2.36, A is $\theta\mu$-compact and since \mathcal{X} is μ-$\theta K(c)$-space, so \mathcal{X} is μ-closed subset of \mathcal{X}, hence \mathcal{X} is μ-kc-space.

Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms of μ-kc-space.
4-Some types of continuous, open (closed) function on \(m \)-spaces.

Definition 4.1 Let \(f: (X, \mu) \rightarrow (Y, \mu') \) be a function, then \(f \) is called:
1. \(m \)-open (respectively \(m \)-closed) function \([2]\), if \(f(H) \) is an \(\mu' \)-open respectively \(\mu' \)-closed set in \(Y \) for any \(m \)-open (respectively \(m \)-closed) \(H \) in \(X \).
2. \(\alpha m \)-open (respectively \(\alpha m \)-closed) function \([6]\), if \(f(A) \) is an \(\alpha m' \)-open respectively \(\alpha m' \)-closed set in \(Y \) for every \(m \)-open (respectively \(m \)-closed) \(A \) in \(X \).
3. \(\alpha' m \)-open (respectively \(\alpha' m \)-closed) function, if \(f(K) \) is an \(\mu' \)-open (respectively \(\mu' \)-closed) set in \(Y \) for any \(\alpha m \)-open (respectively \(\alpha m \)-closed) subset \(K \) of \(X \).
4. \(\alpha' m \)-open (respectively \(\alpha' m \)-closed) function, if \(f(N) \) is an \(\alpha m' \)-open respectively \(\alpha m' \)-closed subset of \(Y \) for any \(\alpha' m \)-open (respectively \(\alpha' m \)-closed) set \(N \) in \(X \).
5. \(\alpha' m \)-continuous iff for any \(\alpha m' \)-open set \(A \) in \(Y \), the inverse image \(f^{-1}(A) \) is \(m \)-open set in \(X \).
6. \(\alpha' m \)-continuous for every \(\alpha m' \)-open set \(B \) in \(Y \), the inverse image \(f^{-1}(B) \) is \(m \)-open set in \(X \).

Example 4.2 Let \(X = Y = \{a, b, c\} \), \(\mu = \mu' = \{\emptyset, X, \{a\}\} \) and \(f: (X, \mu) \rightarrow (Y, \mu') \) defined by \(f(a) = f(b) = a \) and \(f(c) = c \). Then \(f \) is \(\mu \)-open, \(\alpha m \)-open and \(\alpha' m \)-open but it is not \(\alpha' m \)-open function (where \(\alpha m \)-open in set \(\mu \) and \(\mu' \) are \(\{\emptyset, X, \{a, b\}, \{a, c\}\} \)).

Next, we introduce a proposition about \(\alpha' m \)-closed function. But before that we need to introduce the following proposition:

Proposition 4.3 Let \(f: (X, \mu) \rightarrow (Y, \mu') \) be a function. Then for every subset \(A \) of \(X \):
1. \(f \) is \(m \)-homeomorphism iff \(\mu Cl(f(A)) = f(\mu Cl(A)) \).
2. \(f \) is \(m \)-homeomorphism iff \(\mu Int(f(A)) = f(\mu Int(A)) \).

Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).

Theorem 4.4 If \(f: (X, \mu) \rightarrow (Y, \mu') \) is \(m \)-homeomorphism, then \(f \) is \(\alpha' m \)-closed function.

Proof: Let \(\mathcal{F} \) be \(\alpha m \)-closed subset of \(X \), by Proposition 3.18, there exists \(m \)-closed set \(M \) such that \(\mu Cl(\mu Int(M)) \subseteq \mathcal{F} \subseteq M \). Now, by taking the image, we get \(f(\mu Cl(\mu Int(M))) \subseteq f(\mathcal{F}) \subseteq f(M) \).

But \(f \) is \(m \)-homeomorphism, so

\[
\mu Cl(f(\mu Int(M))) \subseteq f(\mathcal{F}) \subseteq f(M) \quad (1).
\]

Also from Proposition 4.3

\[
f(\mu Int(M)) = \mu Int(f(M)),
\]

hence

\[
\mu Cl(f(\mu Int(M))) = \mu Cl(\mu Int(f(M))) \quad (2).
\]

Now, from (1) and (2) we have,

\[
\mu Cl(\mu Int(f(M))) \subseteq f(\mathcal{F}) \subseteq f(M).
\]

Therefore, \(f(\mathcal{F}) \) is \(\alpha m \)-closed subset of \(Y \).

Corollary 4.5 If \(f: (X, \mu) \rightarrow (Y, \mu') \) is \(m \)-homeomorphism, then \(f \) is \(\alpha' m \)-open function.

Proof: Let \(K \) be an \(\alpha m \)-open set in \(X \). To prove that \(f(K) \) is \(\alpha m \)-open set in \(Y \). Now, \(K^c \) is \(\alpha m \)-closed set in \(X \), and since \(f \) is \(m \)-homeomorphism. From Theorem 4.4, \(f(K^c) \) is \(\alpha m \)-closed set in \(Y \). But \(f \) is surjective, so \(f(K^c) = f(K)^c \), which means that \(f(K) \) is \(\alpha m \)-open set in \(Y \). Hence \(f \) is \(\alpha' m \)-open function.

Theorem 4.6 Let \(f: (X, \mu) \rightarrow (Y, \mu') \) be \(\alpha' m \)-continuous. Then \(f(M) \) is \(\alpha m \)-compact in \(Y \), whenever \(M \) is \(\alpha m \)-compact in \(X \).

Proof: Let \(\mathcal{M} \) be an \(\alpha m \)-compact in \(X \). To prove that \(f(\mathcal{M}) \) is \(\alpha m \)-compact in \(Y \), let \(\{V_a; \alpha \in I\} \) be a family of \(\alpha m \)-open cover of \(f(\mathcal{M}) \). That is \(\{V_a; \alpha \in I\} \subseteq \mathcal{M} \), so \(f^{-1}(V_a) \) is \(\alpha m \)-open cover of \(\mathcal{M} \). Also, since \(\mathcal{M} \) is \(\alpha m \)-compact in \(X \), there exist \(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n \) such that \(V_a = \bigcup_{i=1}^n f^{-1}(V_{\alpha_i}) \). Therefore, \(f(\mathcal{M}) \subseteq \bigcup_{i=1}^n f^{-1}(V_{\alpha_i}) \).

Theorem 4.7 Let \(f: (X, \mu) \rightarrow (Y, \mu') \) be \(\alpha' m \)-continuous function. Then \(f(N) \) is \(\mu \)-compact in \(Y \), whenever \(N \) is \(\alpha m \)-compact in \(X \).

Proof: Let \(\mathcal{N} \) be an \(\alpha m \)-compact in \(X \). To prove that \(f(\mathcal{N}) \) is \(\mu \)-compact in \(Y \), let \(\{V_a; \alpha \in I\} \) be a family of \(\mu \)-open cover of \(f(\mathcal{N}) \). That is \(\{V_a; \alpha \in I\} \subseteq \mathcal{N} \), so \(f^{-1}(V_a) \) is an \(\alpha m \)-open cover of \(\mathcal{N} \). Also, since \(\mathcal{N} \) is \(\alpha m \)-compact in \(X \), then \(\mathcal{N} \subseteq \bigcup_{i=1}^m f^{-1}(V_{\alpha_i}) \). This implies that \(f(\mathcal{N}) \subseteq \bigcup_{i=1}^m f^{-1}(V_{\alpha_i}) \).

Theorem 4.8 Let \(f: (X, \mu) \rightarrow (Y, \mu') \) be \(\alpha' m \)-continuous function. If a space \(X \) is \(\alpha m \)-compact and a space \(Y \) is \(\alpha m \)-compact, then the function \(f \) is \(\alpha' m \)-closed, whenever \(X \) has \(\alpha Y \) property.
Proof: Let H be an $\alpha\mu$-closed set in X. Since X is $\alpha\mu$-compact, then H is $\alpha\mu$-compact in X by Theorem 3.8 and the function f is $\alpha^*\mu$-continuous. Then $f(H)$ is $\alpha\mu'$-compact subset of \mathcal{Y} from Theorem 4.6, and since \mathcal{Y} is $\alpha\mu$-T_2-space, so $f(H)$ is $\alpha\mu'$-closed set of \mathcal{Y} by proposition 3.7. Therefore f is $\alpha^*\mu$-closed function.

Theorem 4.9 Let $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ be a $\alpha^*\mu$-continuous function, from $\alpha\mu$-compact space X into μ-Kc-space \mathcal{Y}, then f is α^*-μ-closed function.

Proof: Let B be an $\alpha\mu$-closed set in X which is $\alpha\mu$-compact, so B is $\alpha\mu$-compact in X from Theorem 3.8. Also, from the hypotheses, f is $\alpha\mu'$-continuous, then $f(B)$ is μ-compact in \mathcal{Y} by Theorem 4.7. But \mathcal{Y} is μ-Kc-space, hence $f(B)$ is μ'-closed set of \mathcal{Y}. Therefore, f is $\alpha\mu'$-closed function.

Proposition 4.10 Let the function $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ be m-continuous. If (X, μ) is μ-compact and (\mathcal{Y}, μ') is μ-Kc-space, then f is $\alpha\mu'$-closed function.

Proof: Let S be an μ-closed set in X, also X is μ-compact, then S is μ-compact subset of X from Proposition 2.13, and f is m-continuous function, then $f(S)$ is μ-compact set in \mathcal{Y} from Proposition 2.27. Also \mathcal{Y} is μ-Kc-space, so $f(S)$ is $\alpha\mu'$-closed in \mathcal{Y}, therefore f is $\alpha\mu'$-closed.

Proposition 4.11 If the function $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ is $\alpha^*\mu$-continuous, (X, μ) is $\alpha\mu$-compact and (\mathcal{Y}, μ') is α-$K(\alpha)c$-space, then f is $\alpha^*\mu$-closed function.

Proof: Let F be an $\alpha\mu$-closed set of X, since X is am-μ-compact, so by Theorem 3.8, F is $\alpha\mu$-compact in X and f is $\alpha^*\mu$-continuous. Then $f(F)$ is $\alpha\mu$-compact in \mathcal{Y}. Also by Theorem 4.6, \mathcal{Y} is α-$K(\alpha)c$-space, hence $f(F)$ is α^*-μ-closed in \mathcal{Y}. Therefore, f is $\alpha^*\mu$-closed.

Theorem 4.12 If $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ is m-closed, $\alpha^*\mu$-open bijective function and (X, μ) is μ-α-$K(\alpha)c$-space, then (\mathcal{Y}, μ') is α-$K(\alpha)c$-space.

Proof: Let K be an $\alpha\mu$-open cover of \mathcal{Y} and $\{V_\alpha : \alpha \in I\}$ be an $\alpha\mu$-open cover of $f^{-1}(K)$ in X, that is $f^{-1}(K) \subseteq \bigcup_{\alpha \in I} V_\alpha$. Since f is $\alpha\mu$-open, so $K = f(f^{-1}(K)) \subseteq \bigcup_{\alpha \in I} f(V_\alpha)$. And f is $\alpha^*\mu$-open function, so $\bigcup_{\alpha \in I} f(V_\alpha)$ is $\alpha\mu'$-open in \mathcal{Y}, for each $\alpha \in I$. Also, K is $\alpha^*\mu$-compact in X, so $K \subseteq \bigcup_{i=1}^n f(V_{\alpha_i})$. This implies that $f^{-1}(K) \subseteq \bigcup_{i=1}^n f^{-1}(f(V_{\alpha_i})) = \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$, so $f^{-1}(K)$ is $\alpha\mu$-compact in X, which is μ-$K(\alpha)$-space, so $f^{-1}(K)$ is μ-closed. Also, since f is m-closed function, therefore $f(f^{-1}(K)) = K$ is μ-closed in \mathcal{Y}. Hence f is μ-$K(\alpha)$-space.

Theorem 4.13 Let the injective function $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ be m-continuous and $\alpha^*\mu$m-continuous. Then (X, μ) is μ-$K(\alpha)c$-space whenever (\mathcal{Y}, μ') is μ-$K(\alpha)c$-space.

Proof: Let A be $\alpha\mu$-compact in X, so $f(A)$ is $\alpha\mu$-compact in \mathcal{Y} by Theorem 4.6. And since \mathcal{Y} is μ-α-$K(\alpha)c$-space, so that $f(A)$ is $\alpha\mu'$-closed subset of \mathcal{Y} and $f^{-1}(f(A)) = A$ (if f is injective), so A is $\alpha\mu'$-closed subset of X since f is $\alpha^*\mu$-continuous function. Therefore, X is μ-$\alpha\mu$-$K(\alpha)c$-space.

Proposition 4.15 If $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ is m-continuous function, X is μ-compact space and \mathcal{Y} is μ-$\theta\kappa(c)$-space, then f is $\theta\mu'$-closed function, whenever X has $\theta\mathcal{Y}$ property.

Proof: Let N be $\theta\mu$-closed subset of X, so that N is μ-closed in X by Remark 2.33. And since X is μ-compact, then N is μ-compact by Proposition 2.13. Also f is m-continuous function, so by Proposition 2.27, $f(N)$ is μ-compact, hence from Remark 2.36, $f(N)$ is $\theta\mu$-compact in \mathcal{Y} which is μ-$\theta\kappa(c)$-space. Therefore $f(N)$ is μ'-closed. That is f is $\theta^*\mu'$-closed function.

Proposition 4.16 Let $f : (X, \mu) \rightarrow (\mathcal{Y}, \mu')$ be m-homeomorphism function. Then (\mathcal{Y}, μ') is μ-$\kappa(c)$-space, whenever (X, μ) is μ-$\kappa(c)$-space which has $\theta\beta$ property.
Proof: Let \mathcal{H} be an $\theta\mu$-compact set in \mathcal{Y}, by Proposition 2.40, $f^{-1}(\mathcal{H})$ is $\theta\mu$-compact in \mathcal{X} which is $\mu-\theta k(c)$-space. So $f^{-1}(\mathcal{H})$ is μ-closed set in \mathcal{X} and $f(f^{-1}(\mathcal{H})) = \mathcal{H}$ is μ'-closed set in \mathcal{Y}. Therefore, (\mathcal{Y}, μ') is $\mu-\theta k(c)$-space.

References
1. Wilansky, A. 1967. T_1 and T_2, Amer, Math Monthly, 74: 261-266.
2. Maki, H. 1996. On generalizing semi-open and preopen sets, Report for Meeting on topological spaces theory and its applications, August, Yaatsus Hiro College of Technology, 13-18.
3. Popa, V. and Noiri, T. 2000. On m-continuous functions, Anal. Univ. Dunarea de Jos Galati. Ser. Mat. Fiz. Mec. Teor. Fasci., 18(23): 31-41.
4. Ali, H. J. and Dahham, M. M. 2017. When m-compact sets are m_x-semi closed. International Journal of Mathematical Archive, 8(4): 116-120.
5. Najasted, O. 1964. On some classes of nearly open sets, Pacific journal of mathematics, 3: 961-970.
6. Won, K. M. 2010. αm-open sets and αm-continuous functions, Commun. Korean Math. Soc. 25 (2): 251-256.
7. Velicko, N. V. 1968. H-closed topological spaces, Trans. Amer.Math. Soc. Transl. 78 (1968): 102-118.
8. Das, P. 1973. Note on some application on semi open set, Progress of Math. 7: 33-44.
9. Ali, H. J and Harith, M. 2014. Some types of m-compact functions. Al Mustansiriyah J. Sci. 25(4): 65-74.
10. Carpintero, C., Rosas, E. and Salas, M. 2007. Minimal structure and separation properties, International Journal of Pure and Applied Mathematics, 34(4): 473-488.
11. Muthana, H. A and Ali, H. J. 2014. Some type of μ-compact functions, Journal of sci. Al Mustansiriyah university, 25(4).
12. Ali, H. J. 2010. Strong and weak form of m-lindelof space, Editorial board of Zenco J. for pure and Apple. Sciences, Salahaddin university, Howler –Iraqi Kurdistan Region, special issue 22: 60-64.
13. Hader, J. A. and Marwa, M. D. 2018. When m-Lindelof sets are m_x-semi closed, Journal of Physics: Conference series.1003012044.
14. Popa, V. and Noiri, T. 2000. On M-continuous functions. Anal. Univ. “Dunarea de Jos” Galati. Ser. Mat. Fiz. Mec. Teor. Fasc. II, 18(23): 31-41.
15. Popa, V. and Noiri, T. 2001. On the definition of some generalized form of continuity under minimal conditions. Men. Fac. Ser. Kochi. Univ. Ser. Math. 22: 9-19.