Genus 1 Curves in Severi–Brauer Surfaces

David J. Saltman
Center for Communications Research
805 Bunn Drive
Princeton, NJ 08540

May 13, 2021

Abstract

In a talk at the Banff International Research Station in 2015 Asher Auel asked questions about genus one curves in Severi-Brauer varieties $SB(A)$. More specifically he asked about the smooth cubic curves in Severi-Brauer surfaces, that is in $SB(D)$ where D/F is a degree three division algebra. Even more specifically, he asked about the Jacobian, E, of these curves. In this paper we give a version of an answer to both these questions, describing the surprising connection between these curves and properties of the algebra A. Let F contain ρ, a primitive third root of one. Since D/F is cyclic, it is generated over F by x, y such that $xy = \rho yx$ and we call x, y a skew commuting pairs. The connection mentioned above is between the Galois structure of the three torsion points $E[3]$ and the Galois structure of skew commuting pairs in extensions $D \otimes_F K$. Given a description of which E arise, we then describe, via Galois cohomology, which C arise.
1 Introduction

In algebraic geometry, perhaps the simplest object is projective space. The next simplest object might be a Severi–Brauer variety, which is only interesting when the ground field \(F \) is not algebraically closed. Severi–Brauer varieties are defined by a central simple algebra \(A/F \). In fact, the Severi–Brauer variety, \(SB(A) \), is defined as the variety of minimal right ideals of \(A \). More precisely, if \(A/F \) has degree \(n \) (i.e. dimension \(n^2 \) over \(F \)), then \(SB(A) \) is a closed subvariety of the Grassmann variety \(G_n(A) \) consisting of the \(n \) dimensional subspaces of \(A \) which are right ideals. It follows that \(SB(A) \) has a rational point if and only if \(A \cong M_n(F) \), or in words, if \(A \) is split. If \(A = \text{End}_F(V) \) is split, then \(SB(A) \) is isomorphic to the projective space \(\mathbb{P}^{n-1} \), since any such right ideal \(I \) can be identified with the line \(L \subset V \) which is the range of all nonzero elements of \(I \).

This explains why we view \(SB(A) \) as “almost” projective space. After a finite extension of \(F \), \(SB(A) \) is projective space. That is, \(SB(A) \) is a form of projective space.

If \(A/F \) has degree two, that is, \(A/F \) is a quaternion algebra, then \(SB(A) \) is a curve and a form of the projective line. Quite a bit is known about these curves, since they are just the smooth conics in \(\mathbb{P}^2 \).

Thus, perhaps, it pays to consider the case of next highest dimension, the Severi–Brauer variety of a degree-three division algebra \(D/F \). Note that the division algebra case is the interesting one. If \(A/F \) is degree three and not a division algebra, then \(A \) is split and \(SB(A) \) is \(\mathbb{P}^2 \).

Of course \(SB(D) \) is a form of \(\mathbb{P}^2 \), and to understand it one might want to understand the curves in \(SB(D) \). To start with, suppose \(L \subset SB(D) \) is a line, by which we mean it becomes a line when we split \(D \). If we extend scalars to the separable closure \(\overline{F} \), then
$D \otimes_F \bar{F} = \text{End}_F(V)$ and the line L is identified with a subspace $W \subset V$ of dimension 2. To such a W we can associate the ideal, J, of all elements with range in W, which is of dimension 6 over \bar{F}. If L is defined over F, then J is Galois invariant and so yields an ideal of D of dimension 6. This implies D is split, the case we are avoiding.

Suppose, then, that $C \subset SB(D)$ is an absolutely irreducible smooth degree two curve or a conic. (The other cases are easy.) It follows that C is smooth. C has no rational point, so C is of the form $SB(D')$ for D'/F a quaternion division algebra. That is, there is a stalk $R = \mathcal{O}_C$ of the sheaf of regular functions on $SB(D)$ such that R/M is the field of fractions, K', of $SB(D')$.

Almost by definition, $SB(D)$ splits D. Since R is a stalk, R splits D. By the functionality of the Brauer group, K' splits D. But the kernel of $\text{Br}(F) \to \text{Br}(K')$ is generated by D', implying that D is trivial or Brauer equivalent to D', and both are a contradiction. Thus $SB(D)$ does not contain any absolutely irreducible conics.

There is a better way to view the above result. Let F be the separable closure of F, so $SB(D) \times_F \bar{F} = \mathbb{P}^2_F$. The Picard group of \mathbb{P}^2_F consists of the standard line bundles $\mathcal{O}(n)$ for $n \in \mathbb{Z}$. Artin ([2] p. 203) observed that the Picard group of $SB(D)$ is generated by L, the unique line bundle that pulls back to $\mathcal{O}(3)$ on \mathbb{P}^2_F. Viewing the Picard group as the divisor class group, we have that all curves on $SB(D)$ have degree a multiple of three.

If C is an irreducible curve of degree 3, then since no lines are Galois invariant it must be a union a three distinct lines which do not all intersect. That is, C is a triangle determined by three distinct but Galois conjugate points. This means that $SB(D)$ has plenty of triangles, namely, one for each maximal subfield. If C is an absolutely irreducible but not smooth curve, then C has one or two singular points which must be Galois conjugate and so D is split by a degree
one or two extension, which is impossible.

Thus we can turn to the situation we are really interested in, where $C \subset SB(D)$ is a cubic smooth absolutely irreducible curve, which is a curve of genus one. All this discussion motivates the question asked by Asher Auel, namely, to characterize the genus one curves in $SB(D)$.

It is not hard to see from basic considerations that the j invariants that appear form a dense set in \mathbb{P}_F^1. Using the techniques of [9], Várilly-Alvarado and Viray have given an explicit subset of such j invariants which appear. Asher himself observed in unpublished work that cubic curves with $j = 0$ appear. The techniques developed here can distinguish between curves of the same j invariant, which are not isomorphic. Instead of j invariants, what is important for our main result is the group of three torsion points as a Galois module. Given that the elliptic curve E appears as the Jacobian of a curve C, we describe which C arise via Galois cohomology. Note the connection between these results and the result of [5] p. 331 which, for fixed E, gives the connection between cohomology and maps from genus one curves to Severi-Brauer varieties. The author would like to thank Asher Auel for the original question but most importantly for his detailed responses to earlier versions of this paper.

2 Preliminaries

Let A/F be a central simple algebra of degree three. Set \bar{F} to be the separable closure of F, and \bar{G} the Galois group of \bar{F}/F. Define $SB(A)$ to be the Severi–Brauer variety of the central simple algebra A. Recall that $SB(A)$ is the variety of right ideals of A of dimension 3 over F. For simplicity we assume the characteristic of F is not two or three.

We know that $SB(A)$ is a form of \mathbb{P}^2 and that the line bundle $\mathcal{O}(3)$ is defined on $SB(A)$, which is also clear because this is the anticanonical bundle. We want to be more concrete, however. The tensor power
$A^3 = A \otimes_F A \otimes_F A$ has an action of the symmetric group S_3 and we consider B, the algebra of S_3 fixed elements. By [7], this action of S_3 is induced by conjugation by a group $S_3 \subset (A^3)^*$. That is, B is the centralizer of $F[S_3] \subset A^3$. But $F[S_3]$ is the direct sum $F \oplus F \oplus M_2(F)$ where the first F corresponds to the trivial representation. If $e \in F[S_3]$ is the associated idempotent to this first summand, we set $S_3(A) = eBe$. Note that if we extend scalars to \bar{F}, so $A \otimes_F \bar{F} = \text{End}_{\bar{F}}(\bar{V})$, then $S_3(A \otimes_F \bar{F}) = \text{End}_{\bar{F}}(S^3(\bar{V}))$, where $S^3(\bar{V})$ is the symmetric power of the vector space \bar{V}. For this reason we call $S^3(A)$ the symmetric power of A. Note that this implies that $S^3(A)$ has degree 10. Also note that as $A^3 = M_{27}(F)$ is split, $S^3(A)$ is also split and so $S^3(A) = M_{10}(F)$.

In particular, $SB(S^3(A)) = \mathbb{P}^9$ is the nine dimensional projective space. There is an embedding $SB(A) \to SB(S^3(A))$ defined by $I \to e(I \otimes I \otimes I)^{S_3}e \subset S^3(A)$. Extending scalars to to \bar{F} again, this is just the Segre embedding $\mathbb{P}^2(\bar{F}) \to \mathbb{P}^9(\bar{F})$. Finally, the line bundle $\mathcal{O}(1)_{\mathbb{P}^9}$ is defined on $\mathbb{P}^9 = SB(S^3(A))$. If L is the restriction of this bundle to $SB(A)$, then after extending scalars to \bar{F}, L becomes $\mathcal{O}(3)_{\mathbb{P}^2}$ which shows this bundle is defined over $SB(A)$.

Lemma 1. There is a line bundle L on $SB(A)$ which becomes $\mathcal{O}(3)_{\mathbb{P}^2}$ after scalar extension to \bar{F} and is the restriction of $\mathcal{O}(1)_{\mathbb{P}^9}$ on $SB(S^3(A))$.

The bundle $\mathcal{O}_{\mathbb{P}^2}(3)$ has a ten dimensional space, \bar{W}, of global sections which are the cubic forms in three variables. That is, if $s \in \bar{W}$, then the zeroes of s are a cubic curve in \mathbb{P}^2, and for all s in a Zariski open set this is a smooth cubic curve of genus one. Now L has a space of global sections of dimension 10, W, over F and so a $s \in W$ defines a cubic curve C in $SB(A)$. Once again, for a Zariski open set of s this C is smooth and of genus one. Of course, except in the trivial case A is split, $SB(A)$ has no rational points and so C has no rational points. However, we can define $E(C)$ as the Jacobian of C and $E(C)$ is an elliptic curve. The question we attack in this paper is the question of
which $E(C)$ appear for a given A, and given $E(C)$ which C appear.

Of course the group $\text{PGL}_3(\overline{F})$ acts on $\mathbb{P}^2(\overline{F})$ and this action extends to an action on $\mathbb{P}^9(\overline{F})$. Viewing this as an action of $\text{GL}_3(\overline{F})$, this induces an action on the global sections of $\mathcal{O}(3)$ which is just the change of variables action on the cubic forms.

We need to descend this group action to F. Let \overline{G} be the Galois group of \overline{F}/F. Of course $A \otimes_F \overline{F} = M_3(\overline{F})$ so there is a Galois action of \overline{G} on $\text{GL}_3(\overline{F})$ such that the \overline{G} fixed elements are A^*. Hilbert’s Theorem 90 shows that G fixed elements of $\text{PGL}_3(\overline{F})$ lift to \overline{G} fixed elements of $\text{GL}_3(\overline{F})$, so A^*/F^* is the group of \overline{G} fixed elements of $\text{PGL}_3(\overline{F})$. Moreover, A^*/F^* is the group of F automorphisms of A and hence A^*/F^* acts on $\text{SB}(A)$ and $\text{SB}(S^3(A))$. Of course, after extending scalars to \overline{F}, this is just the action of $\text{PGL}_3(\overline{F})$ on \mathbb{P}^2 and \mathbb{P}^9.

3 Classical Invariant Theory

Let us review the classical invariant theory of cubic curves over \overline{F}. This material is very far from new, but it is useful to review so we can treat the non-algebraically closed case. As a general reference we suggest [3, Chapter 3].

Let \overline{T} be the projective space of \overline{W}, that is, $\overline{T} = \mathbb{P}^9$. Then \overline{T} can be viewed as the space of cubic curves. We begin by recalling some basic facts about a smooth cubic curve. Any line in \mathbb{P}^2 intersects \overline{C} in three points, counting multiplicity. Recall that a point P on \overline{C} is called an inflection point if the tangent line to \overline{C} at P has an intersection with \overline{C} that is at least multiplicity 3 (any tangent line has multiplicity 2). For the moment fix one inflection point $[0]$ on \overline{C}. Looking at all the intersections of lines with \overline{C}, we see that the embedding $\overline{C} \to \mathbb{P}^2$ is defined by the line bundle $\mathcal{L}(3[0])$.

The Jacobian $E(\overline{C})$ of \overline{C} is the group of degree 0 divisors modulo
principal divisors. In particular, $E(\overline{C})$ is an abelian group. If we fix $[0]$ as above, then $\overline{C} \cong E(\overline{C})$ via $[P] \rightarrow [P] - [0]$. Moreover, there is a natural action $E(\overline{C}) \times \overline{C} \rightarrow \overline{C}$ in which, for example, it is true that $[P] - [0]$ acting on $[0]$ is $[P]$. Thus $E(\overline{C})$ is a subgroup of the automorphism group of \overline{C} which we call the translations and $E(\overline{C})$ acts transitively on \overline{C}.

Since $\overline{C} \cong E(\overline{C})$ a choice of $[0]$ imparts an additive group structure on \overline{C}. It will be useful to recall the classical construction of this structure. If P, Q, R are three points on \overline{C} then we say these points ”sum to zero” if they are colinear and hence the intersection points of some line with \overline{C}. To make a group with zero $[0]$, for any point $[P]$, one defines $[-P]$ by the condition that $[P]$, $[-P]$, and $[0]$ are colinear. Then $[P] + [Q] = [R]$ if $[P]$, $[Q]$, and $[-R]$ are colinear. Thus ”summing to zero” is independent of the choice of $[0]$.

The automorphisms of \overline{C} have the form $T \times G$ where $T = E(\overline{C})$ is the group of translations and G is the group of automorphisms that fix $[0]$. Thus if \overline{C} and \overline{C}' are two isomorphic smooth cubic curves in \mathbb{P}^2, there is an isomorphism between them that preserves the embedding implying that there is an isomorphism between them that extends to \mathbb{P}^2. That is, \overline{C} and \overline{C}' are in the same $PGL_3(\overline{F})$ orbit in \mathbb{P}^9. The quotient $\mathbb{P}^9/PGL_3(\overline{F})$ is birationally \mathbb{P}^1 and we will later remind the reader that there is an induced map map to the j line which is generically 12 to 1. The action of $PGL_3(\overline{F})$ on cubic curves will be key to our argument.

Let $S^+ \subset PGL_3(\overline{F})$ be the stabilizer of some \overline{C}. Then S^+ consists of the automorphisms of \overline{C} which preserve the embedding in \mathbb{P}^2. All the elements of G preserve the embedding, but only the elements of T of order 3 preserve the embedding. It follows that $S^+ = S \times G$ where S is isomorphic to $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ and is the group of translations by three torsion elements of $E(\overline{C})$. If the j invariant of \overline{C} is not 0 or
1728, then $G = S^+/S = \mathbb{Z}/2\mathbb{Z}$ and G is generated by the -1 map on C viewed as an elliptic curve with $[0]$ as the zero element. If $j = 0$ then $S^+/S = C_6$ the cyclic group of order 6, and if $j = 1728$ then $S^+/S = C_4$.

Given \bar{C}, we let I be the set of its nine inflection points. In the following discussion we have two goals. First, we observe that we can define a nine point ”Jacobian”, $E(I)$, for I that does not involve \bar{C}. We accomplish this by restricting the argument reviewed above for all of \bar{C}. Second, we want to relate this $E(I)$ to the stabilizer of \bar{C} in $\text{PGL}_3(\bar{F})$ and, in particular, to the group of translations. What we will show is that if we pick one point in I to be the identity, then the other 8 points correspond to points on the elliptic curve $E(\bar{C})$ of order 3. The next result describes some properties of I where we assume some \bar{C} exists but not anything specific about it.

Lemma 2. Suppose $P, Q \in I$ are distinct. Then there is exactly one third point $R \in I$ such that P, Q, R are colinear in \mathbb{P}^2 and R is distinct from both P and Q.

Proof. We identify \bar{C} with $E(\bar{C})$ via a choice of $[0]$. A line in \mathbb{P}^2 meets any \bar{C} in three points. Thus, $R \in \bar{C}$ is well defined. Moreover, $P + Q + R$ is zero in \bar{C}, and so R must also be a three torsion point and hence an inflection point and hence in I. If, say, $R = Q$ then $P + 2Q = 0$ in \bar{C} which implies $P = Q = R$.

Because of the above we say three points of I are colinear if they are distinct and colinear in \mathbb{P}^2, or are all the same.

We can form a group from this relationship on I, by repeating for I the construction of $E(\bar{C})$ but restricted to these nine points. Let $E(I)$ be the set of equivalences classes of all pairs (P, Q), $P, Q \in I$, where we say $(P, Q) \sim (R, S)$ if there is a single $T \in I$ such that P, S, T and R, Q, T are colinear. Note that all pairs (P, P) are equivalent. We let $\{(P, Q)\}$ be the equivalence class containing (P, Q).

8
Lemma 3. (a) If \((P, Q) \sim (R, S)\) then \((P, R) \sim (Q, S)\).

(b) If \((P, Q) \sim (R, Q)\) then \(P = R\).

(c) For any \(P, Q, R \in I\) there are unique \(S, S' \in I\) such that \((P, Q) \sim (R, S) \sim (S', R)\).

(d) If \((P, Q) \sim (Q, P)\) then \(P = Q\).

(e) If we fix \(Q\) then the map \(P \rightarrow \{(P, Q)\}\) is a bijection between \(I\) and \(E(I)\).

Proof. Part a) is direct from the definition. For b), we have \(P, Q, T\) and \(R, Q, T\) colinear and so \(P = R\). Turning to c), we have \(R, Q, T\) colinear for a unique \(T\) and define \(S\) by taking \(P, T, S\) colinear (defining \(S'\) is similar). For d), only \(P\) is colinear with \(P\) and \(P\) (\(P\) is an inflection point). Part e) follows from a) and b).

We can now proceed to define the group structure on \(E(I)\). We say \(\{(P, Q)\} + \{(R, S)\} = \{(P, U)\}\) if \((R, S) \sim (Q, U)\). One can check this is well defined with identity the class of \((P, P)\). Also \(\{(P, Q)\} + \{(Q, R)\} = \{(P, R)\}\) so \(\{P, Q\} + \{Q, P\} = \{P, P\}\). Since colinearity is a symmetric relationship this defines an abelian group. Finally, and importantly, there is a natural action of \(E(I)\) on \(I\) defined by \(P + \{(Q, P)\} = Q\).

Lemma 4. (a) If \(\alpha \in E(I)\) then \(3\alpha = 0\).

(b) If \(\alpha \in E(I)\) then \((P, Q) \sim (P + \alpha, Q + \alpha)\).

(c) \(P, Q, R\) are colinear if and only if for any (hence all) \(S\), \(\{(P, S)\} + \{(Q, S)\} + \{(R, S)\} = 0\). In particular, \(P, Q, R\) are colinear if and only if \((Q, P) \sim (P, R)\).

(d) If \(P, Q, R\) are colinear then so is \(P + \alpha, Q + \alpha, R + \alpha\) for any \(\alpha \in E(I)\).
(e) If $P \in I$ and $\alpha \in E(I)$, then P, $P + \alpha$ and $P + 2\alpha$ are colinear.

Proof. To begin with a), if P, Q, R are colinear then $(P, Q) \sim (Q, R) \sim (R, P)$ and $3\{(P, Q)\} = \{(P, Q)\} + \{(Q, R)\} + \{(R, P)\} = \{P, P\}$. As for b), if α contains (S, P) and (T, Q) then $(S, P) \sim (T, Q)$ so $(P, Q) \sim (S, T)$. Turning to c), the independence from the choice of S is clear from adding $3\{(S', S)\}$ to both sides. Thus we need only consider $\{(P, P)\} + \{(Q, P)\} + \{(R, P)\} = 0$ or $\{(Q, P)\} + \{(R, P)\} = 0$ or $(Q, P) \sim (P, R)$ which means the line through Q and R also goes through P. Part d) is now clear. As for 3), let $\alpha = \{(Q, P)\} = \{(R, Q)\}$ so P, Q, R are colinear. Then $P + \alpha = Q$ and $2\alpha = \{(Q, P)\} + \{(R, Q)\} = \{(R, P)\}$ so $P + 2\alpha = R$. \qed

Let us, briefly, assume F is not necessarily equal to \bar{F}. Suppose $C \supset I$ is a cubic curve defined over F with Jacobian E and I are the inflection points. Then $E \times C \cong C \times C$ via the morphism $(\alpha, P) \rightarrow (P + \alpha, P)$. Thus there is a projection $C \times C \rightarrow E$ that maps $(P, Q) \rightarrow [P] - [Q]$ where $[P] - [Q]$ is the degree-zero divisor on C. The diagram:

$$
\begin{array}{ccc}
I \times I & \subset & C \times C \\
\downarrow & & \downarrow \\
E(I) & \subset & E(C)
\end{array}
$$

commutes. All of this makes sense over \bar{F} where $I \times I$ is a zero dimensional reduced variety. Of course, $I \times I$ is defined over any field where I is defined. The above diagram imparts to $E(I)$ a variety structure defined over any field F where C and hence I are defined, though of course when $F \neq \bar{F}$, then $K_1 = \text{Spec}(E(I))$ and $K_2 = \text{Spec}(I \times I)$ are direct sums of fields, perhaps strictly containing F. If I is defined over F but C is not, we can proceed as follows. The \bar{F} points of $I \times I$ are morphisms $\phi_{P,Q} : K_2 \rightarrow \bar{F}$ and there is one for each P, Q. Then we can define K_1 to be $\{f \in K_2|\phi_{P,Q}(f) =$
$\phi_{R,S}(f)$ whenever $(P,Q) \sim (R,S)}$. Since this is an linear condition on f this is compatible with the definition of K_1 over F’s where C is not defined. All of which is saying:

Lemma 5. $I \times I \rightarrow E(I)$ is a morphism of zero dimensional varieties whenever I is defined.

Corollary 1. Suppose \bar{C}' also contains I. Then I forms the set of inflection points of \bar{C}' also. $E(I)$ can be identified with the three torsion points of both the Jacobians of \bar{C} and \bar{C}'.

We know classically that the action of $E(I)$ on I extends first to an action on \bar{C}, namely translation by three torsion points, and further therefore to an action on \mathbb{P}^2. Thus $E(I)$ corresponds to a subgroup $S \subset \text{PGL}_3(\bar{F})$. We can give more detail about S, and this is well known (see [4] p. 131). Let F_3 be the field of three elements. From the definition S is generated by x, y each of order three which commute in $\text{PGL}_3(\bar{F})$ and represent a choice of basis, α, β over $F_3 = \mathbb{Z}/3\mathbb{Z}$ of $E(I)$. Let $\tilde{x}, \tilde{y} \in \text{GL}_3(\bar{F})$ be preimages of x, y where we can assume (over \bar{F}), that $\tilde{x}^3 = \tilde{y}^3 = 1$. Up to conjugation, there are two possibilities. Either \tilde{x} and \tilde{y} commute or $\tilde{x}\tilde{y} = \rho \tilde{y}\tilde{x}$ for a nontrivial 3 root of one ρ. We will argue the that later holds, a classical fact related to the existence of the Weil pairing.

Fix $P \in I$. Then $P, P+\alpha, P+2\alpha$ are colinear; as are $P+\beta, P+\beta+\alpha$, and $P+\beta+2\alpha$ as well as $P+2\beta, P+2\beta+\alpha, P+2\beta+2\alpha$. All of these lines are left invariant by α. Note that these are three distinct lines because any line contains at most three points of I. Lifting to $\text{GL}_3(\bar{F})$ acting on \mathbb{A}^3, there are three distinct two-dimensional subspaces preserved by \tilde{x}. But \tilde{x} has three distinct eigenvalues and so these are precisely all the two-dimensional subspaces preserved by \tilde{x}. We can make the same argument for \tilde{y} and conclude that \tilde{y} preserves the spaces associated to the lines $P, P+\beta, P+2\beta$, as well as $P+\alpha, P+\alpha+\beta, P+\alpha+2\beta$ and $P+2\alpha, P+2\alpha+\beta, P+2\alpha+2\beta$. Note that the spaces preserved
by \(\tilde{x} \) and \(\tilde{y} \) are independent of the choice of \(\tilde{x}, \tilde{y} \) and only depend on \(x \) and \(y \).

Lemma 6. Fix a third root of unity \(\rho \). After perhaps changing \(y \) to \(y^2 \), we have \(\tilde{x}\tilde{y} = \rho \tilde{y}\tilde{x} \). The action of \(\tilde{y} \) permutes the eigenspaces of \(x \) and vice versa. If \(V_1, V_2, V_3 \) are the two-dimensional spaces preserved by \(\tilde{x} \) and \(W_1, W_2, W_3 \) the same for \(\tilde{y} \), then points of \(I \) correspond to the nine intersections \(V_i \cap W_j \). \(S \) acts transitively on \(I \).

Proof. This is well known and appears in [4] p. 131. We include a proof because the details of the proof will be useful. If \(\tilde{x}, \tilde{y} \) commuted they would have the same eigenspaces and hence the same preserved two-dimensional subspaces. This proves the first statement. The second is now clear and the third statement just says, as observed above, that each of the lines preserved by \(x \) and \(y \) share one point of \(I \). It is immediate that \(S \) acts transitively. \(\square \)

Thus associated to \(I \) is a subgroup \(S \subset PGL_3(\overline{F}) \) where \(S \) is the image of \(\tilde{S} \subset GL_3(\overline{F}) \) and \(\tilde{S} \) is generated by \(\tilde{x}, \tilde{y} \) with \(\tilde{x}^3 = 1, \tilde{y}^3 = 1 \), and \(\tilde{x}\tilde{y} = \rho \tilde{y}\tilde{x} \). All such \(\tilde{S} \) are conjugate in \(GL_3(\overline{F}) \), and so all such \(S \) are conjugate in \(PGL_3(\overline{F}) \).

The first consequence of Lemma 6 is that \(S \) has a pairing

\[
S \times S \rightarrow < \rho >
\]

defined by the map \((x, y) \rightarrow \rho^i \) where \(x, y \) lift to \(\tilde{x}, \tilde{y} \in GL_3(\overline{F}) \) and \(\tilde{x}\tilde{y} = \rho^i\tilde{y}\tilde{x} \). It follows that the preimage of \(S \) in \(GL_3(\overline{F}) \) contains the Heisenberg group of order 27. That is, if we choose \(\tilde{S} \) to be generated by preimages \(\tilde{x}, \tilde{y} \) with \(1 = \tilde{x}^3 = \tilde{y}^3 \), then \(\tilde{S} \) is the Heisenberg group.

The identification of \(S \) with \(E(I) \) via their action on \(I \) therefore amounts to an isomorphism \(\psi : S \rightarrow E(I) \) where \(\psi(s) \) is the equivalence class containing \((s(P), P)\). We have:

Lemma 7. \(\psi \) is well defined and is a group isomorphism. Moreover, as a subset of \(PGL_3 \), \(S \) induces the trivial action on \(E(I) \).
A consequence of Lemma 7 is that $E(I)$ has a pairing inherited from S. We quote a result from [3, Chapter 3].

Theorem 1. The stabilizer of I in $\text{PGL}_3(\overline{F})$ has the form

$$ S \times S\text{L}_2(F_3). $$

To understand the above theorem set $\text{Aff}(I)$ to be the group of bijections of I which preserve colinearity, and we view $E(I) \subset \text{Aff}(I)$ via the action of $E(I)$ on I, which preserves colinearity by Lemma 4.

Lemma 8. There is an exact sequence

$$ 0 \to E(I) \to \text{Aff}(I) \to GL_2(F_3) \to 0 $$

where $\text{Aff}(I) \to GL_2(F_3)$ is induced by taking the action on $E(I)$.

Proof. Let $\phi : I \to I$ be a bijection that preserves the colinearity relationship. Then ϕ induces an automorphism (i.e., element of $GL_2(F_3)$) of $E(I)$. This defines the morphism above. If ϕ is the identity on $E(I)$, then $(P, Q) \sim (\phi(P), \phi(Q))$ for all P, Q so $(\phi(P), P) \sim (\phi(Q), Q)$ and there is an $\alpha \in E(I)$ containing all $(\phi(P), P)$. Thus $\phi(P) = P + \alpha$. Finally, if $A \in GL_2(F_3)$ and $P \in I$ we define $A_P : I \to I$ by letting $A_P(Q)$ be the element of I such that $(A_P(Q), P) \in A(\{(Q, P)\})$. By the lemma above A_P preserves colinearity and shows that there is a splitting $GL_2(F_3) \to \text{Aff}(I)$ for every choice of P. In particular the map is onto. As we saw in Lemma 4, the action of $E(I)$ on I induces the trivial action on $E(I)$. \hfill \Box

Soon we will also need to consider $S\text{Aff}(I) \subset \text{Aff}(I)$ which is the preimage of $S\text{L}_2(F_3)$.

It will be useful to notice that the action of $\text{Aff}(I)$ on I induces a canonical element of $\gamma \in H^1(\text{Aff}(I), E(I))$. Define $d : \text{Aff}(I) \to E(I)$ by setting $d(g) = \{(g(P), P)\}$ for a choice of P. Then for $g, h \in \text{Aff}(I)$, $d(gh) = \{(gh(P), P)\} = \{(gh(P), g(P))\} + \{(g(P), P)\} = \{(gh(P), g(P))\} + \{(g(P), P)\} =$
\[
g(\{(h(P), P)\}) + \{(g(P), P)\} = g(d(h)) + d(g) \text{ and thus } d \text{ is a } 1 \text{ cocycle.}
\]

If we define \(d'(g) = \{(g(Q), Q)\}\) then \(d(g) - d'(g) = g(\{(P, Q)\}) - \{(P, Q)\}\) and \(d\) and \(d'\) are cohomologous and any choice of \(P\) yields the same cohomology class we call \(\gamma\). If we restrict \(d\) to \(E(I)\) then \(d\) is the identity, viewed as an element of \(\text{Hom}(E(I), E(I)) = H^1(E(I), E(I))\). Of course if \(\gamma_S\) is the restriction of \(\gamma\) to \(\text{SAff}(I)\), then \(\gamma_S\) also restricts to the identity on \(E(I)\).

Proposition 1. \(\gamma \in H^1(\text{Aff}(I), E(I))\) is the unique element which restricts to the identity of \(H^1(E(I), E(I)) = \text{Hom}(E(I), E(I))\). The same holds for \(\gamma_S \in H^1(\text{SAff}(I), E(I))\).

Proof. Let \(G = SL_2(F_3)\) or \(SL_2(F_3)\) and \(H = \text{Aff}(I)\) or \(\text{SAff}(I)\) so \(H \rightarrow G\) has kernel \(E(I)\). The Hochschild-Serre spectral sequence shows that there is an exact sequence \(H^1(G, E(I)) \rightarrow H^1(H, E(I)) \rightarrow H^1(E(I), E(I))\) and so it suffices to show that \(H^1(G, E(I)) = H^1(G, F_3 \oplus F_3) = 0\). Since \(SL_2(F_3)\) has index 2 in \(GL_2(F_3)\), it suffices to show \(H^1(SL_2(F_3), E(I)) = 0\). As a finite group, one can calculate that \(SL_2(F_3) = Q \times F_3^+\) where \(Q\) is the quaternion group of order 8. Since \(H^1(Q, F_3 \oplus F_3) = 0\) and \((F_3 \oplus F_3)^0 = 0\), we are done by another use of Hochschild-Serre.

Now let \(H \subset \text{PGL}_3(\bar{F})\) be the stabilizer of \(I\). We have a homomorphism \(\eta : H \rightarrow \text{Aff}(I)\). Furthermore, any \(\phi \in \text{PGL}_3(\bar{F})\) which is the identity on \(I\) must be trivial. Thus \(\eta\) is an injection. \(S \subset H\) acts trivially on \(I\) and hence \(\eta(S) = E(I)\). We saw above that \(E(I)\) has a pairing which must be preserved by \(H\) and so \(\eta(H) \subset \text{SAff}(I)\). The above theorem amounts to saying that \(\eta(H) = \text{SAff}(I)\).

If \(S^+\) is the stabilizer of \(\bar{C}\), then it must stabilize \(I\) and hence \(S^+ \subset H\) while \(S \subset S^+\) is precisely the kernel of the action of \(S^+\) on \(E(I)\).

Let \(I\) be the set of nine point subsets of \(\mathbb{P}^2\) which are the inflections points of smooth cubic \(\bar{C}\). Let \(S\) be the set of nine element subgroups
of $PGL_3(\bar{F})$ where any $S \in \mathcal{S}$ is the image of $\tilde{S} \subset GL_3(\bar{F})$ and \tilde{S} is generated by \tilde{x}, \tilde{y} with $\tilde{x}^3 = 1$, $\tilde{y}^3 = 1$, and $\tilde{x}\tilde{y} = \rho\tilde{y}\tilde{x}$.

Theorem 2. Th above discussion yields a one to one correspondence between \mathcal{I} and \mathcal{S}.

Proof. We saw above that S determines I, once we observe that the description there is independent of the basis of S chosen. Since all the elements of \mathcal{S} are conjugate, the subset \mathcal{I} must be the inflection points of some smooth cubic \bar{C}. For the converse, I determines its stabilizer H, and S is the kernel of the action of H on $E(I)$. \[\Box\]

Note that if \bar{G} is the Galois group of \bar{F}/F, then the above correspondence clearly commutes with the action of \bar{G}.

If follows from Theorem 2 that if $\phi \in PGL_3(\bar{F})$, then $\phi S \phi^{-1} = S$ if and only if $\phi(I) = I$. We have

Theorem 3. H is the normalizer of S in $PGL_3(\bar{F})$.

We can add to our understanding of Theorem 1 as follows. We saw above that if ϕ normalizes S then $\phi(I) = I$ and so ϕ maps to $SAff(I)$. Conversely suppose if $a, b, c, d \in F_3$ are such that $ad - bc = 1$. Write $x_1 = \tilde{x}^a\tilde{y}^b$, $y_1 = \tilde{x}^c\tilde{y}^d$ and note that $\tilde{x}_1^3 = \tilde{y}_1^3 = 1$ and $\tilde{x}_1\tilde{y}_1 = \rho\tilde{y}_1\tilde{x}_1$. Thus setting $\tilde{x} \to \tilde{x}_1$ and $\tilde{y} \to \tilde{y}_1$ defines an automorphism of $M_3(\bar{F})$ and ϕ exists by Noether-Skolem. Thus H maps onto $SAff(I)$.

For a given I, we can look at all the curves \bar{C} which contain I. It is classically known that this forms a line L_I in \mathbb{P}^9 and all j invariants appear somewhere on a point of this line. It is instructive to outline how we know this. First of all, let $\tilde{N} \subset GL_3(\bar{F})$ be the preimage of $H = N(S)$. Let $S = \langle x \rangle \oplus \langle y \rangle$ and let $x', y' \in \tilde{N}$ be preimages with $x'^3 = 1 = y'^3$. If $\tilde{S} \subset \tilde{N}$ is the group generated by x', y' then \tilde{S} is the Heisenberg group and $\tilde{S}\bar{F}^*$ is the full preimage of S. Thus $\tilde{N}/\tilde{S}\bar{F}^* = N(S)/S = SL_2(F_3)$. Let $M \subset \tilde{H}$ be the abelian group generated by x' and ρ. 15
Of course, \bar{F}^3 is a module over \bar{N}. Obviously one could describe this module but we do not need this. It suffices to note that as a \bar{S} module it is $\text{Ind}_M^S L$ where M acts on $L = \bar{F}^1 v$ by setting $x'(v) = \rho v = \rho(v)$. That is, $V = \bar{F}^3$ has a basis $\{v_0, v_1, v_2\}$ where $\bar{F}v_i$ is an x' eigenspace with eigenvalue ρ^i and y permutes the v_i. Let V^* be the dual of V with dual basis v_0^*, v_1^*, v_2^*. Of course $S^3(V^*)$ is spanned by the degree-three monomials in the v_i^*. Moreover, the inverse image of I in V are the nine lines L_{ij} where L_{ij} is the simultaneous zero of v_i^* and $w_j^* = v_0^* + \rho^j v_1^* + \rho^{2j} v_2^*$ which is the eigenvector for y.

Of course ρ acts trivially on $S^3(V^*)$, and the \bar{S} fixed subspace is spanned by $v_0^* v_1^* v_2^*$ and $(v_0^*)^3 + (v_1^*)^3 + (v_2^*)^3$. Thus the projective space of C’s fixed by \bar{S} is a projective line. This is the classical Hessian pencil and associated Hessian normal form.

Having made this computation, we are ready to prove:

Theorem 4. Suppose $S \subset \text{PGL}_3(\bar{F})$ is associated with $I \subset \mathbb{P}^2$. Then a cubic curve \bar{C} contains I if and only if S fixes \bar{C} or equivalently that \bar{S} fixes \bar{C}, where \bar{S} is the Heisenberg group in the preimage of S in $\text{GL}_3(\bar{F})$.

Proof. If \bar{S} fixes \bar{C}, then \bar{C} is in the span of $v_0^* v_1^* v_2^*$ and $(v_0^*)^3 + (v_1^*)^3 + (v_2^*)^3$. We need to show that any such \bar{C} is in the ideal (v_i^*, w_j^*) for any i and j. This implies that $I \subset \bar{C}$. We compute that $w_0^* w_1^* w_2^* = (v_0^*)^3 + (v_1^*)^3 + (v_2^*)^3 + (-3)(v_0^* v_1^* v_2^*)$ and this direction is obvious.

Conversely, suppose $I \subset \bar{C}$. We need to show that \bar{S} fixes \bar{C}. Note that any zero set of an f contains I if and only if $f \in \cap_{i,j} (v_i^*, w_j^*) = J$. Clearly J and hence $J \cap S^3(V^*)$ is preserved by \bar{H}. It thus suffices to show that no eigenvector for \bar{H}, with nontrivial eigenvalue, is in J. We can check this one by one. $(v_0^*)^3 + \rho (v_1^*)^3 + \rho^2 (v_2^*)^3$ is clearly not in (v_0^*, w_0^*) and the same holds for $(v_0^*)^3 + \rho^2 (v_1^*)^3 + \rho (v_2^*)^3$. The \bar{H} span of $(v_1^*)^3 v_2^*$ has basis this vector and $(v_2^*)^2 v_0$, $(v_0^*)^2 v_1$. Any eigenvector has a nonzero $(v_1^*)^3 v_2^*$ term and since $(v_1^*)^3 v_2^* \notin (v_0^*, w_0^*)$ it follows that
this eigenvector is not in I. The same argument works for the \tilde{S} span of $(v_1^*)^2 v_0^*$.

We defined L_I to the line of \tilde{C}’s which contain I or equivalently which are fixed by S. It follows that the normalizer, $N(S)$, of S in $PGL_3(\bar{F})$ acts on $L(I)$. Since all the S’s and I’s are conjugate, any $PGL_3(\bar{F})$ orbit intersects L_I. If $\tilde{C}, \tilde{C}' \in L_I \cap O$ and $\tilde{C} = g(\tilde{C})$ then both these cubics have stabilizer containing S. It follows that the normalizer, $N(S)$, of S in $PGL_3(\bar{F})$ acts on $L(I)$. Since all the S’s and I’s are conjugate, any $PGL_3(\bar{F})$ orbit intersects L_I. If $\tilde{C}, \tilde{C}' \in L_I \cap O$ and $\tilde{C}' = g(\tilde{C})$ then both these cubics have stabilizer containing S. Thus $g \in N(S)$. The quotient of L_I by $N(S)$ is a \mathbb{P}^1, and the associated map $L_I \to \mathbb{P}^1$ can be viewed as taking any curve \tilde{C} to its j invariant. A generic element of L_I, specifically one with $j \neq 0, 1728$, as stabilizer S^+ where S^+/S has order 2. Thus $L_I \to \mathbb{P}^1$ is generically a Galois cover with group $N(S)/S^+ \cong SL_2(F_3)/\pm 1$ which has order 12. However we need to be more careful. Assume first that \tilde{C} has $j \neq 0, 1728$. While there are 12 cubic curves $\tilde{C} \supset I$, there are 24 associated maps $\iota: I \to \tilde{C}$ and $b: \tilde{C} \to \mathbb{P}^2(\bar{F})$, because if $s \in S^+$, we can replace ι by $s \iota$ and b by bs^{-1}, preserving $b\iota$ which is the fixed embedding of I. Of course when $j = 0$ there are 4 curves \tilde{C} and when $j = 1728$ there are 6 such curves \tilde{C}, but there are always 24 embeddings and 24 maps $\iota: I \to \tilde{C}$. Thus with fixed embedding $I \to \mathbb{P}^2$, choosing an embedding $\tilde{C} \to \mathbb{P}^2$ is also specifying an embedding $\iota: I \to \tilde{C}$.

We defined $\psi: S \to E(I)$ above. Fix an embedding $I \subset \mathbb{P}^2_F$. Assume $\tilde{C} \supset I$. We want to extend ψ to an identification of S and $E(I)$ with the three torsion points of $E(\tilde{C}) = E$, the Jacobian of the genus one curve \tilde{C}. Given $\iota: I \to \tilde{C}$, there is an induced $E(\iota): E(I) \to E$ given by $(P, Q) \to P - Q$. If $S^+ \subset PGL_3(\bar{F})$ is the stabilizer of \tilde{C} we remarked above that S^+/S was the automorphism group of $E(\tilde{C})$ because the translation action of S on \tilde{C} becomes trivial on $E(\tilde{C})$. Given a fixed ι, we define $\phi_C: S \to E(\tilde{C})$ as $E(\iota) \circ \psi$. That is, $\phi_C(s) = s(P) - P$ for any choice of P in I. Let $\eta: S^+/S \cong \text{Aut}(E(\tilde{C}))$ be the isomorphism mentioned above.
Lemma 9. Assume $\tilde{C} \subset \mathbb{P}^2_F$. Then there is an induced injective group homomorphism $\phi_C = E(\iota) \circ \psi : S \to E(I) \to E(\tilde{C}) = E$. If $t \in S^+$, then $\phi_C(tst^{-1}) = \eta(t)(\phi_C(s))$. All choices of ϕ_C have the form $\phi'_C(s) = \phi_C(tst^{-1})$. In particular, if $j \neq 0, 1728$, only ϕ_C and $-\phi_C$ arise.

Proof. All we have to show is that ϕ_C is an injective homomorphism. If $\phi_C(s)$ is the identity then $s(P) = P$ for one and hence all P. We compute that $\phi_C(st) = st(P) - P = st(P) - t(P) + t(P) - P = \phi_C(s) + \phi_C(t)$.

If $g \in N(S)$, then $g(\tilde{C}) = \tilde{C}'$ is isomorphic to \tilde{C} (via g) and thus $E(C')$ and $E(C)$ can be identified using g. We have the commuting diagram:

$$
\begin{array}{ccc}
I & \rightarrow & \tilde{C} \\
g \downarrow & & \downarrow g \\
I & \rightarrow & g(\tilde{C}).
\end{array}
$$

Given such a g, let $\bar{g} \in N(S)/S = SL_2(F_3)$ be the image, which defines the action of g on $E(I)$ and the action of g on S by conjugation. If $b : \tilde{C} \to \mathbb{P}^2(\bar{F})$ is an embedding, then g defines an embedding $bg^{-1} : \tilde{C}' = g(\tilde{C}) \to \mathbb{P}^2(\bar{F})$ and $g \circ \iota$ is the associated embedding $I \to \tilde{C}'$.

Proposition 2. (a) $\bar{g} \circ \psi = \psi \circ \bar{g}$.

(b) There is a choice of $\phi_{g(\tilde{C})}$ such that $\phi_{g(\tilde{C})} = \phi_C \circ \bar{g}$.

(c) Suppose \tilde{C} and \tilde{C}' are curves with isomorphic Jacobians which we identify via this isomorphism. Let $\phi_{\tilde{C}'}$ and $\phi_{\tilde{C}}$ be choices of maps, as above, $S \to E(\tilde{C}) = E(\tilde{C}')$. If $\phi_{\tilde{C}} = s\phi_{\tilde{C}}$ for s in the automorphism group of $E(\tilde{C})$ then $\tilde{C}' = \tilde{C}$ as subvarieties of \mathbb{P}^2.

(d) $\phi_C : S \to E[3]$ preserves the pairing (where $E[3]$ has the Weil pairing).
Proof. $(\psi \circ \bar{g})(s) = \{(gsg^{-1}(P), P)\} = \{(gsg^{-1}(g(P)), g(P)) = g(\{(s(P), P)\})$ which proves a). As for b), we use the embedding $g \circ \iota : I \to \bar{C}'$ to define $\phi_{\bar{C}'}$. We have $\phi_{\bar{C}'}(s) = E(g \circ \iota)(\psi(s)) = E(g \circ \iota)(s(g^{-1}P), g^{-1}P) = E(g)(s(g^{-1}P) - g^{-1}P) = gsg^{-1}P - P = \phi_{\bar{C}}(gsg^{-1})$.

If $E(\bar{C})$ and $E(\bar{C}')$ are isomorphic then $C \cong \bar{C}'$. Thus there is a $g \in N(S)$ such that $g(\bar{C}) = \bar{C}'$. Since \bar{g} acts linearly on S and $E(\bar{C})$ we have $\phi_{\bar{C}} \circ \bar{g} = \bar{g} \circ \phi_{\bar{C}}$. Part c) follows because if \bar{g} maps to S^+ / S then $g \in S^+$ which stabilizes \bar{C}. Part d) follows from the description of the Weil pairing in § p. 98. \hfill \Box

4 General F

Now assume F is a general field of characteristic not 2 or 3. Let \bar{F} be the separable closure and \bar{G} the Galois group of \bar{F}/F. it will be useful to consider fields $F \subset K \subset \bar{F}$ where K/F is Galois with group G. If, say, C is a structure defined over F we let C_K mean the extension of scalars. If $C \subset SB(A)$ (and hence defined over F) then so is $E = E(C)$ and $I \subset SB(A)$, but E maybe defined over fields where C is not. It is equally true that $I \subset SB(A)$ may be defined over F and $C_K \supset I_K$ but C not defined over F. Let C above have stabilizer S^+, and distinguished $S \subset S^+$. G acts on $K \times_F SB(A)$ and $K \times_F SB(S^3(A)) = \bar{P}^g_K$, as well as on A^*_K and A^*_K / K^*. If $K = \bar{F}$ we can identify A_K with $M_3(\bar{F})$ and A^*_K / K^* with $PGL_3(\bar{F})$ and so $M_3(\bar{F})$ $PGL_3(\bar{F})$ has induced \bar{G} actions but not the obvious ones, but rather actions where $M_3(\bar{F})^\bar{G} = A$ and $(PGL_3(\bar{F}))^\bar{G} = A^*/F^*$. Similarly \bar{G} acts on $\mathbb{P}^2(\bar{F})$ with quotient $SB(A)$. If $\sigma \in \bar{G}$ and $g \in PGL_3(\bar{F})$ and $P \in \mathbb{P}^2(\bar{F})$ then $\sigma(g)(\sigma(P)) = \sigma(g(P))$. Recall the line bundle $\mathcal{O}(1)_{\mathbb{P}^3}$ descended to a line bundle L on $SB(A)$ and \bar{L} on $\mathbb{P}^2(\bar{F})$. Of course, the global sections of \bar{L} have a \bar{G} action whose invariants are the global sections of L. The curves we are studying are exactly the
zeroes of global sections of L.

If $C \subset SB(A)$, then G preserves I as a set. That is, I is a zero
dimensional reduced subvariety of $SB(A)$. Moreover, \bar{G} preserves I
as a set if and only if it preserves the associated $S \subset PGL_3(\bar{F})$ as
a set (not elementwise). Since \bar{G} preserves C, it preserves S^+, but
may act nontrivially on S^+/S because \bar{G} may act nontrivially on the
automorphism group of $E(C)$. Of course, if $j \neq 0, 1728$ then $S^+/S = C_2$ and \bar{G} acts trivally on this.

We fix the embedding $I \subset SB(A)$ and call it a. If a is also the
induced embedding $\bar{I} \subset P^2(\bar{F})$, and $\sigma \in \bar{G}$, then $\sigma \circ a = a \circ \sigma$. Since
the set of lines in P^2 are preserved by G, G preserves colinearity and
there is an induced map $G \to \text{Aff}(I)$. If $S \subset PGL_3(\bar{F})$ is preserved
by \bar{G}, then G also preserves the pairing $S \times S \to <\rho>$ where \bar{G} might
act nontrivially on $<\rho>$.

We want to use ϕ_C to understand how G or \bar{G} acts on the set of C_K. If \bar{G} preserves I, then it permutes the set of \bar{C}'s containing I. Then
\bar{G} also acts on $E(I)$ and we have defined $\psi : S \to E(I)$ independent
of any \bar{C}. However, if $E(C)$ is defined over F, then G acts on $E(C)$. We prove:

Proposition 3. Assume $I \subset SB(A)$ is such that $\bar{I} \subset P^2(\bar{F})$ is a set
of inflection points for a smooth degree 3 curve $\bar{C} \subset P^2(\bar{F})$.

(a) $\psi \circ \sigma = \sigma \circ \psi$

(b) If $C \subset SB(A)$ contains I then $\sigma \phi_C \sigma^{-1} = \phi_C$

(c) Suppose that for all $\sigma \in \bar{G}$, $\sigma \phi_C \sigma^{-1} = \phi_C \circ t$ for some
t $\in S^+/S$ as set maps. Then \bar{C} is \bar{G} invariant and
defines $C \subset SB(A)$.

Proof. $\psi \circ \sigma(s) = (\sigma \circ s \sigma^{-1}(\sigma(P), \sigma(P))) = \sigma((s(P), P)) = \sigma \circ \psi(s)$ which
proves a). As for b), the assumptions imply that $\iota : I \to \bar{C}$ is preserved
by \bar{G} and b) follows from a).
Turning to c), $\sigma i \sigma^{-1} = i'$ defines an embedding $I \to \bar{C}'$ where $\bar{C}' = \sigma(\bar{C})$. If $b : \bar{C} \to \mathbb{P}^2(\bar{F})$ is this embedding, then $a = b = (\sigma b \sigma^{-1}) \circ (\sigma i \sigma^{-1})$ and $\sigma b \sigma^{-1}$ is an embedding for C'. Moreover, $\sigma \phi_{C'} \sigma^{-1} = E(\sigma i \sigma^{-1}) \circ \psi$ and so $\sigma \phi_{C'} \sigma^{-1} = t \phi_{C'}$ for some $t \in S^+/S$. Thus $C' = C$. That is, \bar{G} preserves \bar{C} as a set. If $q \in \bar{L}$ has zeroes the set \bar{C}, then \bar{G} preserves $\bar{F}q$ and hence, by Hilbert 90, there is a $q \in L$ whose zeroes $C \subset SB(A)$ define \bar{C} over F.

We can now state and prove our main theorem.

Theorem 5. Let E be an elliptic curve over F. Let A/F be a degree-three algebra. Let K/F be the Galois extension with group G obtained by adjoining all the three torsion points $E[3]$ to F. There is a $C \subset SB(A)$ with $E(C) = E$ if and only if there is a subgroup $S \subset (A \otimes_F K)^*/K^*$ such that S is preserved by G, S is generated by x, y with preimage x', y' such that $x'y' = \rho y' x'$, and S is isomorphic to $E(C)[3]$ as \bar{G} modules with pairing.

Proof. We restrict ourselves to the $PGL_3(\bar{F})$ orbit associated with E. If C is as given, then C defines $I \subset SB(A)$ and so an associated $S \subset PGL_3(\bar{F})$. By Lemma 3, $\phi_C : S \to E[3]$ is a G morphism. Note that, in particular, the elements of S are fixed by the Galois group of \bar{F}/K and so $S \subset (A \otimes_F K)^*/K^*$.

Conversely, suppose $\phi : S \to E[3]$ is a G isomorphism preserving the pairing. Let S define I and let $\bar{C} \supset I$. We would like to prove there is a $g \in N(S)$ such that $g(\bar{C})$ comes from a curve in $SB(A)$. Let $\bar{g} = \phi_C^{-1} \circ \phi \in SL_2(F_3)$ and lift \bar{g} to $g \in N(S)$. Note that \bar{g} has determinant one because ϕ preserves the pairing. Now $\phi = \phi_C \circ g = \phi_{g(C)}$ preserves the \bar{G} action so we are done by Proposition 3.

Assume I is defined over F. It is clear that the elements of \bar{G} act as affine transformations of I and so there is a homomorphism $\bar{G} \to \text{Aff}(I)$. Let us consider the possible images of \bar{G} in $\text{Aff}(I)$. Set
G_0 to be the image of \bar{G} in $GL_2(F_3)$. If $I \subset \mathcal{C}$ and \mathcal{C} is defined over F then G_0 is the Galois group of K/F where K is the field defined by adjoining all the three torsion points of $E(\mathcal{C})$ and so if \bar{H} is the kernel of $\bar{G} \to G_0$, then \bar{H} is the Galois group of \bar{F}/K.

If the primitive third root ρ is in F, then $G_0 \subset SL_2(F_3)$. Otherwise, the image of $G_0 \to GL_3(F_3) \to F_3^*$, the second map being the determinant, is the Galois group of $F(\rho)/F$. Other than this, we cannot restrict G_0 in any way.

Of course \bar{H} maps to $S \cong E(I)$ with image we call H_0. If \bar{J} is the kernel of $\bar{H} \to H_0$, then $\bar{F}^{\bar{J}}$ is $K(I)$, obtained by adjoining the inflection points themselves to K. Note that since S acts by translation, adjoining one point of I over K is equivalent to adjoining them all.

Suppose I corresponds to $S \subset A_K^*/K^*$. Let $x, y \in S$ be a basis and lift to \tilde{x}, \tilde{y}. Then I consists of $L_x \cap L_y$ where $L_x \subset \bar{F}^3$ is a two dimensional space preserved by \tilde{x}, and similarly for L_y. Summing over the L_y, we have that all L_x (and L_y) are defined over $K(I)$. That is \tilde{x} and \tilde{y} have degree three equations which split. We will say, in this case, that x (and y) splits.

We can say this another way. Taking cubes defines an injective morphism $S/K^* \to K^*/(K^*)^3$. If $T \subset K^*/(K^*)^3$ is the image, we can form the field $K(T^{1/3})$ of all cube roots and let $T^{1/3} \subset K(T^{1/3})$ be the cube roots of all elements in T. By Kummer theory the Galois group of $K(T^{1/3})/K$ is $\text{Hom}(T^{1/3}/K^*, \mu_3)$. The cube and cuberoot maps compose to form a well defined homomorphism $S \to T^{1/3}/K^*$. Using the pairing on S and duality we get a homomorphism $\text{Hom}(T^{1/3}/K^*, \mu_3) \to S$ and the composition $\bar{H} \to \text{Hom}(T^{1/3}/K^*, \mu_3) \to S$ can be easily seen to be the map above.

Lemma 10. $K(I) = K(T^{1/3})$. The Galois group of $K(I)/K$ has degree 1, 3, or 9 and if it is not 9 then $A_K \cong M_3(K)$. If $K(I)/K$ has degree 3 then no point of I is rational over K none the less.
Proof. Over $K(T^{1/3})$ both x and y split and so I is defined over this field. Conversely, $K(T^{1/3})$ is clearly the smallest field where x splits for any $x \in S$. The Galois group of $K(I)/K$ is a subgroup of S. If $K(T^{1/3})/K$ has degree 1 or 3, then for some nontrivial $\tilde{z} = \tilde{x}^a\tilde{y}^b$ we have \tilde{z}^3 is a cube which forces the splitting of A_K. \hfill \Box

Let G_1 be the image of \bar{G} in $\text{Aff}(I)$, so we have an exact sequence $1 \to H_0 \to G_1 \to G_0 \to 1$ which is induced by the split exact sequence $1 \to E(I) \to \text{Aff}(I) \to GL_2(F_3) \to 1$. In fact the first sequence also splits which is almost but not quite immediate. If H_0 is trivial there is nothing to prove, and if $H_0 \cong E(I)$ the splitting is immediate. If H_0 has order three then this extension defines an $\alpha \in H^2(G_0, H_0)$ and it also is the case that $\alpha = 0$ as follows. If nontrivial, C_3 is the 3 - Sylow subgroup of G_0 and it suffices to observe that α restricts to 0 in $H^2(C_3, H_0)$. This follows because one can check that $\text{Aff}(I)$ has no elements of order 9.

We further investigate the possibilities. In general we know that G_0 can be any subgroup of $GL_2(F_3)$, and if $H_0 = 1$ or $H_0 \cong E(I)$ there is nothing more to say. When H_0 has order 3 we can restrict G_0 further. Then \tilde{S} is generated by \tilde{s} and \tilde{y} where \tilde{y} is split and \tilde{x} is not. Clearly A_K is split. G_0 acts on H_0 via conjugation and clearly G_0 preserves the cyclic subgroup generated by y. If $\rho \in F$, this implies that $G_0 = 1$, G_0 is a subgroup of the cyclic group C_6. If $\rho \notin F$, then G_0 is a subgroup of $G_0 = S_3 \oplus C_2$ containing the central subgroup C_2.

We want to use Theorem 5 to describe the C that appear for a $E(C)$ given by that theorem. Recall that any such C is a principal homogeneous space over $E(C)$, and all such spaces are classified by the Galois cohomology group $H^1(\bar{G}, E(\bar{C}))$. Note that this is the correct cohomology group because $E(\bar{C})$ is the group of automorphisms of \bar{C} as a principal homogeneous space over $E(\bar{C})$.

More precisely, let \bar{C} be such a space and let P be a point on \bar{C}.
Define $e : \tilde{G} \to E(\tilde{C})$ by setting $e(\sigma) = \sigma(P) - P \in E(\tilde{C})$. It is easy to check that e is a one cocycle. Note that if we pick another point Q on \tilde{C} and use that to define $e' : \tilde{G} \to E(\tilde{C})$, then $e(\sigma) - e'(\sigma) = \sigma(\alpha) - \alpha$ for $\alpha = P - Q$ the element of $E(\tilde{C})[3]$. Thus \tilde{C} defines a class in $\gamma' \in H^1(\tilde{G}, E(\tilde{C}))$.

In our situation it makes sense to define the cycle using an inflection point $P \in I \subset \tilde{C}$. Furthermore let $\phi : S \to E(\tilde{C})[3]$ be the Galois preserving isomorphism. Note that ϕ is a ϕ_C from the previous section, so there is an embedding $I \subset \tilde{C}$ such that $\phi(s) = s(P) - P$ for any choice of P. It is clear that any $\sigma \in \tilde{G}$ defines an affine map on I, so we have a homomorphism $\Phi : \tilde{G} \to \text{Aff}(I)$.

The composition $\tilde{G} \to \text{Aff}(I) \to GL_2(F_3)$ defines the action of \tilde{G} on $E(I)$ and hence $E(\tilde{C})[3]$ and hence on S. Let $\gamma \in H^1(\text{Aff}(I), E(I))$ be the canonical class defined in Proposition 1 that it is clear from the above description of γ.

Theorem 6. $\Phi^*(\gamma) \in H^1(\tilde{G}, E(\tilde{C})[3])$ maps to $\gamma' \in H^1(\tilde{G}, E(\tilde{C}))$ and γ' defines \tilde{C} as a principal homogeneous space over $E(C)$.

The connection between \tilde{C} and the algebra A is stated in [5] and briefly recalled next. Since $S \subset PGL_3(\tilde{F})$ we have a composition $\eta : H^1(\text{Aff}(I), E(I)) \to H^1(\tilde{G}, E(\tilde{C})[3]) \to H^1(\tilde{G}, PGL_3(\tilde{F})) \to H^2(\tilde{G}, \tilde{F}^*)$ where, we recall, the last map is not a homomorphism because $H^1(\tilde{G}, PGL_3(\tilde{F}))$ is not a group.

Proposition 4. $\eta(\gamma) \in H^2(\tilde{G}, F^*)$ defines the Brauer class of A/F. Thus if $C \subset \text{SB}(A)$ then C is defined by the image of a $\gamma' \in H^1(\tilde{G}, E(\tilde{C})[3])$ which maps to the Brauer class of A/F.

Proof. We have a given action of \tilde{G} on $M_3(\tilde{F})$ such that the invariant ring is A and such that the quotient of the action on $\mathbb{P}^2(\tilde{F})$ is $\text{SB}(A)$. If $C \subset \text{SB}(A)$ and $P \in I \subset \tilde{C}$, then P defines the cocycle $e(\sigma) : \tilde{G} \to E(\tilde{C})[3])$. Then $e(\sigma)^{-1}\sigma$ defines a new action on $\mathbb{P}^2(\tilde{F})$ which
fixes P and hence has quotient variety $\mathbb{P}^2(F)$, so new invariant ring $M_3(F)$.

5 Examples

Now we start giving examples, including examples where a $E(C)$ does not appear. We start with the easiest corollary of Theorem 5. Let E be an elliptic curve defined of F and $K \supset F$ be the field gotten by adjoining all the three torsion points of E. Assume $K = F$ or $K = F(\rho)$ where ρ is a third root of one. The next result is proven in [5] and [6] for the $K = F$ case and in the preprint [1] for the $K = F(\rho)$ case, by different means.

Corollary 2. If E/F is an elliptic curve where all three torsion points are defined over $F(\rho)$, and A/F is a degree-three central simple algebra, then there is a $C \subset \text{SB}(A)$ such that $E(C) = E$.

Proof. When $K = F$ this is immediate because A/F is cyclic. When $K = F(\rho)$ we note the following. First, if σ generates the Galois group of K/F then E has a three torsion point P such that $\sigma(P) = P$ and a three torsion point Q such that $\sigma(Q) = -Q$. If $L \supset K$ is such that L/F is dihedral, then $L = L' \otimes_F K$ where $L' = F(a^{1/3})$ and σ fixes $a^{1/3}$. If M'/F is cyclic of degree 3 and $M = M' \otimes K$ then $M = K(b^{1/3})$ where $\sigma(b^{1/3}) \in b^{-1/3}F^*$. Again, E is the Jacobian of some $C \subset \text{SB}(A)$ by [5] and the fact that A/F is cyclic.

Let K still be the extension field of F obtained by adjoining all the three torsion points of $E(C)$. To begin with, assume K/F is cyclic of degree three. If C exists, there is an $S \subset (A \otimes_F K)^*/K^*$ generated by images of $x', y' \in A \otimes_F K$ such that $x'y' = \rho y' x'$ and S is preserved by $G = < \sigma >$. It follows that we can choose x', y' such that $\sigma(y') \in y'K^*$ and $\sigma(x') \in x'y'K^*$. Suppose $\sigma(y') = y'z$. Since σ has order three
on $A \otimes_F K$, we have $z\sigma(z)\sigma^2(z) = 1$ and so $z = \sigma(u)/u$ for $u \in K^*$. Replacing y' by $y'u^{-1}$ we may assume $\sigma(y') = y'$ or $y' \in A$. Now write $\sigma(x') = x'y'w$ for $w \in K^*$. Again using that σ has order three, we have $x' = \sigma^3(x') = \sigma^2(x'y'w) = \sigma(x'y'wy'\sigma(w)) = x'y'wy'\sigma(w)y'\sigma^2(w)$ or $1 = y'^3w\sigma(w)\sigma^2(w)$. That is, A has the form (a, b) where $(a, K/F)$ is trivial. Said another way, A is split by an $F(a^{1/3})$ such that $(a, K/F)$ is split.

The above condition is actually necessary and sufficient.

Proposition 5. Let A/F, E and K/F be as above. Then there is a $C \subset \text{SB}(A)$ with Jacobian E if and only if A is split by $F(a^{1/3})$ where $(a, K/F)$ is trivial.

Proof. We saw one direction above. Suppose A is split by $F(a^{1/3})$ and $a = N_{K/F}(w)$. Then $N_{K/F}(a/w^3) = a^3/N_{K/F}(w)^3 = 1$. Thus there is a $b' \in K$ with $\sigma(b')/b' = a/w^3$. Let B'/K be the degree-three cyclic algebra generated by x', y' where $x'^3 = a$, $y'^3 = b'$, and $x'y' = \rho y'x'$. The action of σ on K extends to B' by setting $\sigma(x') = x'$ and $\sigma(y') = y'x'w^{-1}$. Then as above $\sigma^3(y') = \sigma^2(y'x'w^{-1}) = \sigma(y'x'w^{-1}x'\sigma(w^{-1})) = y'x'w^{-1}x'\sigma(w^{-1})x'\sigma^2(w^{-1}) = y'aN_{K/F}(w^{-1}) = y'$. It follows that this extension of σ has order 3 on B' and thus the invariant algebra B is central simple of degree three over F. Since B contains x' it is split by $F(a^{1/3})$. Consider $B^\circ \otimes A$ which is also split by $F(a^{1/3})$ and hence is represented by an algebra $A' = (a, c)$ over F. Then $A \otimes_F K$ is similar to $D = B' \otimes_K (a, c) = (a, b')_K \otimes (a, c)_K \sim (a, b'c)_K$. More precisely, let $e \in F(a^{1/3}) \otimes_F F(a^{1/3})$ be the separating idempotent. Then e can be viewed as an element of D, $A_K = eDe$, and e is σ fixed. Let $x'', y'' \in (a, c)$ be the elements with $x''^3 = a$, $y''^3 = c$, and $x''y'' = \rho y''x''$. Set $\alpha = e(x' \otimes 1)e$, $\beta = e(y' \otimes y'')e$, both elements in $eDe = A_K$ (but remember e is the identity there). Clearly $\alpha^3 = a$ because e commutes with x'. For the same reason, $\alpha\beta = \rho \beta\alpha$. Also, $\sigma(\beta) = e(\sigma(y') \otimes \sigma(y''))e = e(y'x'w^{-1} \otimes y'')e = (e(y' \otimes y'')(x'w^{-1} \otimes
\[e = e(y' \otimes y')ee(x'w^{-1} \otimes 1)e = \beta \alpha w^{-1} \]. If \(S \) is the image of \(\alpha, \beta \) in \((A \otimes_F K)^*/K^*\) we are done.

As a route to a counter example (that is a case where \(E(C) \) does not appear), let \(F \) be a field complete with respect to a discrete valuation ring with prime \(\pi \). Suppose \(K/F \) ramifies at a prime \(\pi \) and \(A/F \) is a division algebra unramified at \(\pi \). Then any norm of \(K/F \) has the form \(u^3 \pi^r \) and if \(r \) is prime to 3, \(F(\pi^{r/3}) \) cannot be a subfield of the unramified \(A \). Thus if \(K/F \), and \(E \) are as in Proposition 5, \(E \) cannot appear as an \(E(C) \) for \(C \subset SB(A) \). More generally, if \(F \) is a discrete valued field with prime \(\pi \) and the above hold over the completion \(F_{\pi} \), then again \(E \) does not appear. For a specific example, according to Bruce Jordan, let \(E \) be the elliptic curve \(y^2 + y = x^3 - x^2 - 10x - 20 \). This is \(X(11) \), If \(K/\mathbb{Q} \) is obtained by adjoining the three torsion points, then \(K/\mathbb{Q} \) ramifies over \(\mathbb{Q} \) only at 3, and 11 and with ramification index 3 or 6. Thus there is an \(F \supset \mathbb{Q} \) such that \(K/F \) is cyclic of degree three and ramifies at a prime \(p \) extending 11. Note that \(F \) must contain \(\rho \). Furthermore over \(K_p/F_p \) is ramified and obtained by adjoining the three torsion points of \(E \) to \(F_p \). Now the \(p \)-adic fields have no unramified division algebras but if we adjoin an indeterminate we can create one. The degree-three algebra \(A = (K_p(t)/F_p(t), t) \) over \(F_p(t) \) is unramified and unsplit at \(p \). It follows that \(E \) does not appear as \(E(C) \) for a \(C \subset SB(A) \).

One might hope that when \(K/F \) is more general, there might be a result similar to Proposition 17, that is a criterion with a cohomological flavor. The next result makes clear there can be an obstruction of a more arithmetic nature, involving the non-appearance of the dihedral group of order 6 as a Galois group.

Corollary 3. Suppose \(E/F \) is an elliptic curve and \(K/F \) is the field obtained by adjoining all the three torsion points of \(E \). Assume \(K/F \) is cyclic of order 2 and \(F \) contains \(\rho \). Let \(D/F \) be a division algebra
of degree three. Then there is a $C \subset \text{SB}(D)$ with $E(C) = E$ if and only if there is a field L/K splitting D such that L/F is Galois with group S_3, the dihedral group of order 6.

\textbf{Proof.} Let σ generate the Galois group of K/F. Assume $S \subset (D \otimes K)^* / K^*$ exists as in Theorem 5. Then σ acts as -1 on S. If L/K is any of the cyclic field extensions coming from S, then L/F is dihedral Galois.

Conversely, suppose such an L/K exists. Then $D \otimes_F K = (a, b)_K$ where $\sigma(a) = a^{-1}z^3$ for $z \in K^*$. Since D is fixed by σ, $\sigma(b) = b^{-1}N(u)$ where $u \in L^*$ and $N : L^* \to K^*$ is the norm map. There is a surjection $K^*/(K^*)^3 \to K^*/N(L^*)$ which is a morphism of modules over the group ring $F_3[< \sigma >]$. Let $\bar{b} \in K^*/N(L^*)$ be the image of b. Since this group ring is semisimple, there is a preimage $\tilde{b} \in K^*/(K^*)^2$ such that \tilde{b} maps to \bar{b} and $\sigma(\tilde{b}) = (\bar{b})^{-1}$. That is, there is a $b' \in K^*$ such that b' maps to \tilde{b} which maps to \bar{b}. That is, $b' = bN(u')$ for some $u' \in L^*$ and $\sigma(b') = b'^{-1}w^3$ for some $w \in K^*$. We can write $D \otimes_F K = (a, b')_K$ and so $D \otimes_F K$ contains x, y with $x^3 = a$, $y^3 = b$, $\sigma(x) = x^{-1}z$, $\sigma(y) = y^{-1}w$ and $xy = \rho yx$. If $S \subset (D \otimes_F K)^*/K^*$ is generated by the image of x and y, then S is as needed.

The above result can be used in two ways to get interesting examples. Let K be a finite extension of some \mathbb{Q}_p and E an elliptic curve over K with the following properties. First, suppose p is prime to three and K contains a primitive third root of one. In addition, assume all the three torsion points of E are rational over K. It follows that there is no L/K an extension of fields such that the Galois group is S_3. Let K'/K be a quadratic extension of fields and E'/K the corresponding quadratic twist. Then $\text{Gal}(K'/K)$ acts on the three torsion points as -1. Let D/K be either of the degree-three division algebras. $D \otimes_K K'$ cannot have the required S because of the following. Suppose S existed, and let L/K' be a cyclic extension defined by
a rank one subgroup of S. Then L/K would have Galois group S_3, a contradiction. Thus E' does not appear as an $E(C)$ for $C \subset \text{SB}(D)$ but E does.

The above is an example where there are two elliptic curves with the same j invariant where only one of the them appears as an $E(C)$ for $C \subset \text{SB}(D)$. For a different kind of example, assume F is a number field containing ρ and E/F is an elliptic curve such that the field, K, formed by adjoining all the three torsion is such that K/F is cyclic Galois of degree four with $<\sigma>$ as Galois group. Note that this property is also true for all the quadratic twists of E over F. By density, there are infinitely many primes p of F such that $K_p = K \otimes_F F_p$ is a field where F_p is the completion. For all but finitely many of these primes p, for all finite $K' \supset F_p$ there is no Galois extension of fields L/K' with Galois group S_3. Assume $D \otimes_F F_p$ is a division algebra for one of these primes p and K'_p is such that $F_p \subset K'_p \subset K_p$ and K_p/K'_p has Galois group $<\sigma^2>$. If $S \subset D^*/F^*$ existed as in Theorem 16, the same would be true for $(D \otimes_F K_p)^*/K_p^*$. Since σ^2 acts on S as -1, this is a contradiction. Hence for such D and E, there are no $C \subset \text{SB}(D)$ such that $E(C)$ has the same j invariant as E.

References

[1] Antieau, Benjamin and Auel, Asher “Explicit Descent on Elliptic Curves and Splitting Brauer Classes”, preprint

[2] Artin, Michael “Brauer–Severi Varieties” in Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Mathematics 917, Springer Berlin-New York 1982

[3] Dolgachev, Igor Classical Algebraic Geometry, Cambridge University Press, 20212

29
[4] O’Neil, Catherine ”Jacobians of Genus One Curves”, Mathematical Research Letters 8 (2001), 125-140

[5] O’Neil, Catherine ”The Period-Index Obstruction for Elliptic Curves”, J of Number Theory 95, (2002) p. 329-39

[6] O’Neil, Catherine Erratum to: ”The period-index obstruction for elliptic curves”, J. Number Theory 109 (2004), no. 2, 390.

[7] Saltman, David J Lectures on Division Algebras, CBMS conference series 94, 1999 p. 33

[8] Silverman, Joseph H. The Artihmetic of Elliptic Curves, 2nd Ed., Springer-Verlag Dordrecht Heidelberg London NewYork 2009

[9] Várilly-Alvarado, Anthony and Viray, Bianca ”Smooth Compactifications of Certain Nomic Bundles”, Eurpoean Journal of Math. (2015) 1 p. 250-259