A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion

Liang Wu1,4, Qian Wang2,4, Tao-Tao Zhuang1, Guo-Zhen Zhang2, Yi Li1, Hui-Hui Li1, Feng-Jia Fan3 & Shu-Hong Yu1

Designing polytypic homojunction is an efficient way to regulate photogenerated electrons and holes, thereafter bringing desired physical and chemical properties and being attractive photocatalysts for solar-to-hydrogen conversion. However, the high-yield and controllable synthesis of well-defined polytypes especially for multinary chalcogenide - the fundamental factor favoring highly efficient solar-to-hydrogen conversion - has yet to be achieved. Here, we report a general colloidal method to construct a library of polytypic copper-based quaternary sulfide nanocrystals, including Cu2ZnSnS4, Cu2CdSnS4, Cu2CoSnS4, Cu2MnSnS4, Cu2FeSnS4, Cu3InSnS5 and Cu3GaSnS5, which can be synthesized by selective epitaxial growth of kesterite phase on wurtzite structure. Besides, this colloidal method allows the precise controlling of the homojunction number corresponding to the photocatalytic performance. The single-homojunction and double-homojunction polytypic Cu2ZnSnS4 nanocrystal photocatalysts show 2.8-fold and 3.9-fold improvement in photocatalytic hydrogen evolution rates relative to the kesterite nanocrystals, respectively. This homojunction existed in the polytypic structure opens another way to engineer photocatalysts.

Semiconductor nanomaterials that can effectively serve as photocatalysts for solar-to-hydrogen production and degradation of non-biodegradable dyes have been drawn enough interests over the past decades1–5. In developing a special nanostructured photocatalyst, it is important to choose a semiconductor material that has a wide absorption spectral range and is environmentally sustainable and low-cost. Copper-based quaternary sulfide (CQS) semiconductors, which consist of earth-abundance elemental components and possess suitable bandgaps favoring big chance to get broad solar irradiation and high light absorbance coefficients, are the most promising photocatalytic materials6–17.

However, the fast recombination rate of photogenerated electrons and holes in a single CQS nanocrystal impedes solar-derived photocatalytic hydrogen evolution. Constructing heterojunction with type-II bandgap alignment is an efficient way to promote the photogenerated carrier separation in semiconductors18–20, while the heterojunction with poor lattice match usually introduces defects at the interface which further traps charge carriers. Inspired by the homo-
junction in twined nanorods which exhibit enhanced photocatalytic performances21–24, the homojunction in polytypes consists of chemically identical but structurally different materials, which match well at their interfaces, and can avoid the common problems associated with compositional changes and strain control at the interfaces, realizing efficient photogenerated carrier separation25–29. Recently, polytypes have been widely built in IV, III–V and II–VI semiconductors via vapor-liquid-solid growth and hydrothermal method28,30–32. Whereas, these methods are not suitable for synthesizing multinary chalcogenide nanocrystals. Colloidal synthesis method provides access to produce well-defined copper-based quaternary chalcogenide nanocrystals. Up to now, several polytypic copper-based ternary and quaternary chalcogenide nanocrystals have been prepared via colloidal method33–38. However, a general and facile method for the synthesis of polytypic CQS nanocrystals with exactly controlling the homojunction number has not been demonstrated so far, and the homojunction related photocatalytic performances need to be further explored.

Here, we report a general colloidal method which realizes the epitaxial growth of kesterite (KS) structure on the wurtzite (WZ) structure toward a library of polytypic CQS nanocrystals, including Cu₂ZnSnS₄ (CZTS), Cu₂CdSnS₄ (CCdTS), Cu₂CoSnS₄ (CCoTS), Cu₂MnSnS₄ (CMnTS), Cu₂FeSnS₄ (CFeTS), Cu₂InSnS₄ (CInTS) and Cu₃GaSnS₅ (CGaTS). Taking polytypic CZTS nanocrystals as an example, we can exactly control the homojunction number to prepare bullet-shaped single-homojunction polytypes (SHP, WZ-KS) and rugby-shaped double-homojunction polytypes (DHP, KS-WZ-KS). Moreover, the photocatalytic hydrogen evolution performances of polytypic CZTS nanocrystals were further examined. As a result, polytypic CZTS nanocrystals exhibit higher photocatalytic activities than that of phase-pure CZTS nanocrystals with the same composition (270 μmol h⁻¹ g⁻¹ for SHP, 381 μmol h⁻¹ g⁻¹ for DHP, 145 μmol h⁻¹ g⁻¹ for WZ, 98 μmol h⁻¹ g⁻¹ for KS). Density functional theory (DFT) calculation studies further reveal that the polytypic homojunction has a type-II bandgap alignment, which is benefit for photogenerated carrier separation, resulting enhanced photocatalytic performance. The solar-to-hydrogen performances of other prepared polytypic CQS nanocrystals are further examined, and thus demonstrating our concept that polytypic homojunction can enhance the photocatalytic hydrogen evolution performances of semiconductors.

Results

Colloidal synthesis and characterization of polytypic CZTS nanocrystals

CZTS derived from ZnS, which inherits the atomic arrangement, has WZ and KS phases (Supplementary Fig. 1)39,40. The polytypic structures for CZTS are constructed with hexagonal stacking WZ in the [0001] direction and tetragonal stacking KS in the [112] direction. Thus, polytypic CZTS nanocrystals can be synthesized through colloidal epitaxial growth of KS phase on the [0001] facets of WZ CZTS at appropriate reaction conditions, respectively (Supplementary Figs. 5–14).

Figure 1a, b show the morpholoy of the synthesized single-homojunction polytypic CZTS nanocrystals characterized by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The insets of Figure 1a and b show the high-magnification HAADF-STEM images of single-homojunction polytypic CZTS nanocrystals. Figure 1c shows a representative aberration-corrected high-resolution HAADF-STEM image. Bragg-filtered images are derived using the (100)WZ (d), (001)WZ/(112)KS (e), (100)KS (f) and (–1–12)KS (g) reflections by inverse FFT in selected area in c, respectively. Figure 1h shows an enlarged high-resolution HAADF-STEM image in the selected area in c. Figure 1i shows EDX element mapping of one randomly selected single-homojunction polytypic CZTS nanocrystal. XRD pattern. For reference, the KS and simulated WZ XRD patterns of CZTS are showed below. Scale bars are 50 nm for a, 20 nm for b and i, and 5 nm for c, respectively.

![Fig. 1](https://example.com/fig1.png)

Fig. 1 | Characterization of the single-homojunction polytypic CZTS nanocrystals. Low-magnification HAADF-STEM (a) and high-magnification HAADF-STEM (b) images. c A representative aberration-corrected high-resolution HAADF-STEM image. Bragg-filtered images are derived using the (100)WZ (d), (001)WZ/(112)KS (e), (100)KS (f) and (–1–12)KS (g) reflections by inverse FFT in selected area in c, respectively. h Enlarged high-resolution HAADF-STEM image in the selected area in c. i EDX element mapping of one randomly selected single-homojunction polytypic CZTS nanocrystal. J XRD pattern. For reference, the KS and simulated WZ XRD patterns of CZTS are showed below. Scale bars are 50 nm for a, 20 nm for b and i, and 5 nm for c, respectively.
(HAADF-STEM), demonstrating that all the nanocrystals display a bullet-like shape. The representative aberration-corrected high-resolution HAADF-STEM was used to investigate the atomic stackings of a free-standing and individual single-homojunction polytypic CZTS nanocrystal. As shown in Fig. 1c, the interplane distances between the lattice fringes in the rectangle area are 6.47 and 3.53 Å, corresponding to the (001) and (100) planes of WZ CZTS nanocrystals, respectively. Furthermore, the lattice fringes of 3.22, 3.27 and 5.47 Å in the cusp are in consistency with the (112), (-1-12) and (100) planes of KS CZTS nanocrystals, respectively. Figure 1d, e shows the Bragg-filtered images from the (100) and (001) reflections of WZ CZTS, respectively. Figure 1f-g shows Bragg-filtered images from the (112), (100) and (-1-12) reflections of KS CZTS, respectively. The aforementioned results prove that the polytypic CZTS nanocrystals consist of WZ and KS structures. The enlarged high-resolution HAADF-STEM image in Fig. 1h clearly presents two different atom stacking forms separated by one homojunction, such as the A-B-A WZ atom stacking in the rectangle area and the A-B-C KS atom stacking in the cusp. Energy dispersive spectrometer (EDS) element mapping was used to characterize the element distribution in one randomly selected single-homojunction polytypic CZTS nanocrystals. Figure 1i shows that Cu, Zn, Sn and S elements homogeneously distribute in the polytypic nanocrystal, revealing that the homojunction is not due to the element heterogeneous distribution. The powder X-ray diffraction (PXRD) pattern (Fig. 1j) of the single-homojunction polytypic CZTS nanocrystals exhibits a typical WZ ZnS like diffraction pattern with enhanced (002), (110) and (112) peaks and an individual (200)KS peak, demonstrating the existence of WZ and KS structures and indirectly proving the polytypic structure of the obtained CZTS nanocrystals.

In addition, the CZTS derives from ZnS through substitution of Zn atom with Cu and Sn atoms. We further demonstrated the influence of zinc content on the polytypic structure of single-homojunction CZTS nanocrystals and found that—with controlled dosage of Zn(AC)_2—the ratio of WZ phase can be modulated controllably. The WZ part in the obtained single-homojunction polytypic CZTS nanocrystals increased with zinc content until to a pure WZ structure with no exist of ZnS (Supplementary Figs. 15–20 and Supplementary Table 1). Interestingly, polytypic Cu_Sn_S nanocrystals could be obtained (Supplementary Figs. 15–17) without Zn(AC)_2. Besides, more than 3 g of single-homojunction CZTS nanocrystals could be synthesized after one single reaction (Supplementary Fig. 21).

Decreasing the dosage of 1-DDT to 0.5 ml, double-homojunction polytypic CZTS nanocrystals would be produced. The HAADF-STEM images in Fig. 2a, b show that the synthesized double-homojunction polytypic CZTS nanocrystals have a high purity of rugby shape. The representative aberration-corrected high-resolution HAADF-STEM image in Fig. 2c presents the detail atomic stackings of one randomly selected double-homojunction polytypic CZTS nanocrystal. The rugby-shaped polytypic nanocrystal consists of two KS cusps and one WZ part separated by two homojunctions. The interplane distances between lattice fringes shown in the rectangle area and one cusp are indexed to (001) and (100) planes of WZ and (112), (-1-12) and (100) planes of KS CZTS nanocrystals, respectively. These fringes agree with those in single-homojunction polytypic CZTS nanocrystals.

Selected-area fast Fourier transform (FFT) patterns (Fig. 2d–f) from the two ends and middle of the rugby-shaped nanocrystal match well with the typical [-1 0 0]_KS-zone axis diffraction pattern of KS phase and the typical [1 -2 0]_WZ-zone axis diffraction pattern of WZ phase, respectively, certifying the polytypic structure of the obtained CZTS nanocrystals. Based on the said results, an atomic model of the KS-WZ-KS double-homojunction nanocrystal is schematically illustrated in Fig. 2g. PXRD was used to further detect the structure of the double-homojunction polytypic CZTS nanocrystals. As shown in Fig. 2h, a typical WZ structure PXRD pattern with enhanced (002), (110) and (112) peaks and an individual (200)KS peak clarifies the existence of two phases, indirectly proving the polytypic nanostructure of the obtained
ligand-capped polytypic CZTS could undergo ligand exchange with energy (hυ) for solar energy conversion by photovoltaics but also for photocatalytic hydrogen evolution8,12,43 for visible-light absorption.

The synthesized nanocrystals. The bandgaps of double-homojunction and single-homojunction polytypic CZTS nanocrystals (Fig.2i) illustrate the existence of homojunctions. The Raman spectra of synthesized polytypic CZTS nanocrystals demonstrate that there are no binary and ternary byproducts (Supplementary Fig. 22), indirectly proving the phase-pure CZTS nanocrystals at room temperature under visible light (λ > 420 nm). Cycles running of the polytypic CZTS nanocrystals for photocatalytic hydrogen evolution. After every 4 h, the produced hydrogen is evacuated.

Optical properties and photocatalytic performances of polytypic CZTS nanocrystals

The light harvesting ability is necessary for photocatalytic performance. To investigate the harvesting capability of sunlight, the absorption spectra of the synthesized polytypic and phase-pure CZTS nanocrystals are characterized by ultraviolet-vis-near infrared (UV-Vis-IR) absorption spectroscopy. Figure 3a depicts the UV-Vis-IR spectra of the single-homojunction, double-homojunction, WZ and KS CZTS nanocrystals. Explicatively, the WZ and KS CZTS nanocrystals with the same composition have been synthesized for reference (Supplementary Figs. 22–25 and Supplementary Table 2). Both of their spectra show a strong absorption in visible region, and the absorption regions of polytypic nanocrystals is between WZ and KS nanocrystals. The insert in Fig. 3a shows the linear extrapolation of (ahu)2 versus photon energy (hυ) spectra, which are used to evaluate the bandgaps of the synthesized nanocrystals. The bandgaps of double-homojunction and single-homojunction polytypic CZTS nanocrystals are 1.47 and 1.51 eV, which is between the bandgap of KS (1.44 eV) and WZ (1.55 eV) CZTS nanocrystals (Supplementary Table 2). Therefore, the band gaps of the prepared polytypic nanocrystals are suitable for visible-light absorption.

CZTS nanocrystals. EDS element mapping of three randomly selected double-homojunction polytypic CZTS nanocrystals (Fig. 2b) illustrates that the homojunction does not owe to the heterogenous distribution of Cu, Zn, Sn, and S elements. The Raman spectra of synthesized polytypic CZTS nanocrystals demonstrate that there are no binary and ternary byproducts (Supplementary Fig. 22), indirectly proving the existence of homojunctions.
the KS structure and the (002) surface of the WZ structure after proper rebuilding the crystal of WZ phase (Supplementary Figs. 1 and 32 and Supplementary Table 4). The calculation details are shown in the experimental method. The offset of band gaps disclosed by the Density of States (DOS) of separated bulk KS and WZ phases (Fig. 3d) suggests the possibility of type II band alignment as KS and WZ form a mixture properly. We expect that, when KS and WZ phases form a homojunction along [112]KS/[002]WZ direction, as observed in experiment, a type II band alignment (Fig. 3e) in which both valence band maximum and conduction band minimum of KS (1.56 eV) and WZ (1.66 eV). Therefore, photogenerated (1.60 eV) of the homojunction (Supplementary Fig. 34) is well between CZTS (Supplementary Figs. 32 and 33). The computed band gap have built a homojunction consisting of KS(112) and WZ(001) phases of their counterparts of WZ(001) can be made. To verify this idea, we maximum and conduction band minimum of KS(112) are lower than CZTS (Supplementary Figs. 38–40 and Supplementary Table 7). The obtained polytypic Cu-based multinary nanocrystals. TEM (f) and HRTEM (g) images of polytypic CFeTS nanocrystals. TEM (k) and HRTEM (l) images of polytypic CInTS nanocrystals. TEM (m) and HRTEM (n) images of polytypic CGaTS nanocrystals. Scale bars are 50 nm for c, e, g, i, k, and m, 5 nm for d, f, h, j, l, and n, respectively.

Synthesis and photocatalytic applications of other polytypic CQS nanocrystals

Ut supra, the homojunction in polytypic CZTS is benefit for photocatalytic hydrogen evolution. So, designing a photocatalyst with polytypic nanostructure is an effectively way to enhance its performance. It is necessary to promote the synthetic method to prepare a library of polytypic CQS nanocrystals. Fortunately, our synthesis method based on DDT and OLA is widely applicable. We illustrate the generality of such synthetic method by showcasing another six single-homojunction polytypic CQS nanocrystals (Fig. 4a, b). For example, when cadmium acetate dihydrate (Cd(AC)2·2H2O) is used to instead of zinc acetate dihydrate (Zn(AC)2·2H2O) in a solution containing 1 ml of DDT and 8 ml of OLA, single-homojunction polytypic CdCts nanocrystals were synthesized (Fig. 4c, d and Supplementary Table 5). Similarly, when cobalt (II) acetate tetrahydrate (Co(AC)2·4H2O), managanose acetate (Mn(AC)2), ferrous acetate (Fe(AC)2), indium (III) acetylacetonate (In(acac)3) and gallium (III) acetylacetonate (Ga(acac)3) were used to replace of Zn(AC)2·2H2O, single-homojunction polytypic CoCts, MnCts, FeCts, InCts and GaCts nanocrystals would also be synthesized, respectively (Fig. 4e–n and Supplementary Table 5). The HRTEM images in Fig. 4 show that all the synthesized polytypic nanocrystals are formed from a rectangle WZ part and a KS/ZB cusp separated with a homojunction. Besides, the PXRD results directly proved that the obtained polytypic nanocrystals consisted of two different crystal structures—WZ and KS/ZB structures (Supplementary Fig. 35 and Supplementary Table 6). The EDS element mappings and EDS spectra (Supplementary Figs. 36 and 37) show the existence and homogenous distribution of the contained elements in the polytypic nanocrystals, revealing the homojunction is not formed from the element uneven distribution.

Most importantly, this colloidal method is an universal approach which has been successfully used to synthesize more complex copper-based multinary sulfide polytypic nanocrystals, such as single-homojunction polytypic Cu2(Zn,Cd)SnS4, Cu2(Zn,Co)SnS4 and Cu2(Zn,Co,Cd)SnS4 nanocrystals (Supplementary Figs. 38–40 and Supplementary Table 7). The obtained polytypic Cu-based multinary
sulfide nanocrystals (CMS) have the same morphology and structure to the polytypic CQS nanocrystals (Supplementary Fig. 38). Besides, the results of X-ray photoelectron spectroscopy (XPS) analysis (Supplementary Fig. 41) indicate that the phase and composition cannot influence the element oxidation state of the obtained nanocrystals.

Among the family of copper-based chalcogenide semiconductors, expect for CZTS, Cu$_2$MnS$_4$ (M = Cd, Co, Mn, Fe) and Cu$_2$MnS$_5$ (M = In, Ga) are also photo-sensitive with suitable band gaps which makes these proper materials in energy-harvesting applications. Since the polytypic homojunction existed in CZTS nanocrystals leads to enhanced photocatalytic performance, we have also investigated the photocatalytic performance of the obtained single-homojunction polytypic Cu$_2$MnS$_4$ and Cu$_2$MnS$_5$ nanocrystals which have suitable bandgaps for solar harvesting (Supplementary Fig. 42). As shown in Fig. 5, the polytypic nanocrystals exhibited good photocatalytic properties, and the photocatalytic hydrogen evolution rate of polytypic CCdTS, CFeTS, CCoS, CMnTS, CnTS and CGaTS nanocrystals are 1669, 2198, 2063, 1313, 2288, and 2546 μmol g$^{-1}$ h$^{-1}$, respectively. After 8 h of visible-light irradiation, the amounts of hydrogen produced by polytypic CCoTS, CFeTS, CCoTS, CMnTS, CnTS and CGaTS nanocrystals are 214, 281, 259, 167, 289 and 321 μmol g$^{-1}$ h$^{-1}$, respectively. After 8 h of visible-light irradiation, the amounts of hydrogen produced by polytypic CCoTS, CFeTS, CCoTS, CMnTS, CnTS and CGaTS nanocrystals are 1669, 2198, 2063, 1313, 2288, and 2546 μmol g$^{-1}$, respectively. (Supplementary Fig. 43). No significant decrease for hydrogen evolution rate is observed during the 8 h irradiation under visible light, revealing the good photocatalytic stability. In addition, the other phase-pure CQS nanocrystals with the same composition have been synthesized for references (Supplementary Figs. 44 and 45 and Supplementary Tables 8 and 9). All the other phase pure CQS nanocrystals exhibit lower photocatalytic hydrogen production rates than that of the related polytypic CQS nanocrystals (Supplementary Fig. 46), revealing that polytypic homojunction can enhance the photocatalytic hydrogen evolution performances of semiconductors.

Discussion

In conclusion, we develop a general colloidal method to construct a library of polytypic copper-based multinary sulfide nanocrystals, which offers exactly controlling over conventional approaches for the synthesis of polytypic nanocrystals. The type-II homojunction formed in polytypic CZTS nanocrystals enables highly efficient solar-to-hydrogen conversion, wherein the photocatalytic activity scales with the homojunction number. Furthermore, the photocatalytic performances of other synthesized polytypic CQS nanocrystals are examined, which show good photocatalytic hydrogen evolution properties, and thus demonstrating that polytypic homojunction can enhance the photocatalytic hydrogen evolution performances of semiconductors. This family of homojunction-based polytypic nanostructures offers a valid and feasible strategy to further enhance and optimize the photocatalytic performances of noble metal free earth-abundance photocatalysts.

Methods

Synthesis of polytypic CZTS nanocrystals

In a typical synthesis of single-homojunction polytypic CZTS nanocrystals, CuCl (0.28 mmol), Zn(AC)$_2$·2H$_2$O (0.21 mmol) and SnCl$_2$·2H$_2$O (0.14 mmol) were dissolved in a mix solution with 10 ml of OLA and 1.5 ml of I-DDT in a 25 ml three-neck flask in air and then heated up to 280 °C at a heating rate of 10 °C/min and kept at 280 °C for 60 min. Then, the flask was removed from the heating mantle and naturally cooled down. The reaction solution was centrifuged at 3522 × g for 5 min and the single-homojunction polytypic CZTS nanocrystals were obtained through discarding the upper clear solution. Then hexane was added to disperse the nanocrystals. To collect the nanocrystals again, ethanol was added into the dispersion and the formed slurry were centrifuged again at 3522 g for 5 min. The nanocrystals were washed through repeating the above dispersing and depositing process for two times. The double-homojunction polytypic CZTS nanocrystals were synthesized by using 0.5 ml of I-DDT in the same reaction conditions. The detail amounts of the precursors were listed in Supplementary Table 2. The CZTS nanocrystals with different Zn content were synthesized with the increasing amount of Zn(AC)$_2$·2H$_2$O (The detail amounts of the precursors were listed in Supplementary Table 1).

Synthesis of other polytypic CQS nanocrystals

The synthesis method is the same as that for CZTS polytypic nanocrystals with the replacement of Zn(AC)$_2$·2H$_2$O with Cd(AC)$_2$·2H$_2$O, Co(AC)$_2$·2H$_2$O, Mn(AC)$_2$·2H$_2$O, Fe(AC)$_2$·2H$_2$O, In(aca)$_3$ and Ga(aca)$_3$. The detail amounts of the precursors were listed in Supplementary Table 5.

Synthesis of copper-based multinary polytypic nanocrystals

The synthesis method is the same as that for CZTS polytypic nanocrystals expect for the added precursors. The detail amounts of the precursors were listed in Supplementary Table 7.

Characterization

Nanocrystals dispersed in hexane were dropped on Mo grid for TEM, HRTEM and HAADF investigation, which were performed on JEM-2100F and JEM-ARM200F with an acceleration voltage of 200 kV. EDS was carried out on Inca Oxford equipped on JEOL-2010F. The specimens prepared by drop-casting on a Si substrate was characterized by PXRD, using a Philips XPERT PRO SUPER X-ray diffractometer equipped with graphite monochromatized Cu Kα radiation (λ = 1.54056 Å). The operation voltage and current were kept at 40 kV and 400 mA, respectively. The simulate WZ powder XRD pattern were obtained from Diamond 3.2. Raman spectra were recorded with a Renishaw System 2000 spectrometer using the 514 nm line of semiconductor lasers for excitation. UV-Vis-NIR spectroscopy of the polytypic nanocrystals dispersed in tetrachloroethylene were measured at room temperature using a DUV—3700 UV-vis-NIR spectrometer (Shimadzu). XPS was performed on an ESCA Lab MKII XPS using Mg Kα radiation exciting source.

Ligand exchange

The synthesized nanocrystals (30 mg) with hydrophobic ligands were dissolved in 5 ml chloroform (solution A). In total, 0.5 g KOH was added to 15 ml methanol with 0.5 ml MPA (solution B). Then, the solution A was swiftly added to the solution B. The mixing solution was stirred at room temperature for 5 h. The nanocrystals were collected by centrifugation and washed with water and methanol for twice. The final product was dispersed in water and stored in glovebox.

Photocatalytic hydrogen evolution test

The photocatalytic hydrogen evolution experiments were performed in a Pyrex reaction cell connected to a closed gas circulation with vacuum. Typically, 30 mg of obtained photocatalyst powder was...
suspended in 100 ml of aqueous solution containing 0.25 M Na₂SO₄ and 0.35 M NaN₃ as sacrificial agents, and subsequently sonicated for 30 min. The reaction solution was evacuated several times to remove air completely prior to irradiation under a 300 W Xe lamp equipped with a 420 nm cut-off filter. The temperature of the reactant solution was maintained at room temperature by a flow of cooling water during the reaction. The amount of hydrogen produced from the photocatalytic reaction was determined using a gas chromatograph (Agilent 7890 A).

DFT calculation
All spin-polarized DFT calculations have been performed with the Vienna Ab initio Simulation Package. The WZ crystallographic unit cell was a hexagonal structure while the KS was tetragonal. The homojunction of KS(112)-WZ(001) has been built using the following steps. We first rebuild a tetragonal supercell of WZ phase from its hexagonal supercell to make sure both sections of KS(112) and WZ(001) are rectangles with very close side lengths (Supplementary Table 4). Since the lattice mismatch is small (less than 1%), we then place KS(112) and WZ(001) in a proper bonding distance to form the homojunction. The supercell of KS-WZ interface (Supplementary Fig. 33) consists of 4 layers of KS (112) and 3 layers of WZ (001). The Perdew–Burke–Ernzerhofer functional in combination with PAW pseudopotentials and a 500 eV plane-wave kinetic energy cutoff is used for geometry optimization of bulk phases of KS and WZ and their homojunction. A $7 \times 7 \times 3$ Gamma k-point sampling was adopted to calculate the integral in the first Brillouin zone. The convergence criteria for total energy and force were 10^{-7} eV and 0.02 eV/Å, respectively. As the total magnetic moment is found to be 0, we then turn off the spin-polarization in the rest of single point calculations. For the calculation of band gaps of all systems, we employ the range-separated hybrid functional, the HSE06 (Heyd Scuseria Ernzerhofer) functional.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available on request from the corresponding author (S.H.Y.). Source data are provided with this paper.

References
1. Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
2. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).
3. Hoffmann, M. R., Martin, S. T., Choi, W. Y. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).
4. Qiu, B., Cai, L., Zhang, N., Tao, X. & Chai, Y. A Ternary dumbbell structure with spatially separated catalytic sites for photocatalytic overall water splitting. Adv. Sci. 7, 1903568 (2020).
5. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).
6. Regulacio, M. D. & Han, M. Y. Multinary I-III-V₂ and I₂-II-IV-V₄ semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 49, 511–519 (2016).
7. Li, J. B., Chawla, V. & Clemens, B. M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720–723 (2012).
8. Yu, X. et al. Cu₂ZnSnS₄-Pt and Cu₂ZnSnS₄-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 136, 9236–9239 (2014).
9. Tsuji, I., Kato, H., Kobayashi, H. & Kudo, A. Photocatalytic H₂ evolution under visible-light irradiation over band-structure-controlled (CuIn)₂ZnSnS₄ solid solutions. J. Phys. Chem. B 109, 7323–7329 (2005).
10. Colombo, D. et al. Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers. Nat. Commun. 9, 826 (2018).
11. Bermudez, V. & Perez-Rodriguez, A. Understanding the cell-to-module efficiency gap in Cu(In,Ga)Se₂ photovoltaics scale-up. Nat. Energy 3, 466–475 (2018).
12. Yan, C. et al. Cu₂ZnSnS₄ solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764–772 (2018).
13. Chirilă, A. et al. Highly efficient Cu(In,Ga)Se₂ solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011).
14. Chirilă, A. et al. Potassium-induced surface modification of Cu(In,Ga)Se₂ thin films for high-efficiency solar cells. Nat. Mater. 12, 1107–1111 (2013).
15. Chen, S. et al. Surface modifications of (ZnSe)₀.₃₃(CuGa₂.₅Se₄.₃₇)₂₅ to promote photocatalytic Z-scheme overall water splitting. J. Am. Chem. Soc. 143, 10633–10641 (2021).
16. Deng, H. et al. Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nat. Commun. 12, 3107 (2021).
17. Zhou, S. et al. Accelerating electron-transfer and tuning product selectivity through surfacial vacancy engineering on CZTS/CdS for photoelectrochemical CO₂ reduction. Small 17, e2100496 (2021).
18. Yuan, M. et al. Cu₂ZnSnS₄–CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catal. Sci. Technol. 7, 3980–3984 (2017).
19. Li, Y. L. et al. Significant enhancement of hydrogen production in MoS₂/Cu₂ZnSnS₄ nanoparticles. Part. Part. Syst. Char. 35, 1700472 (2018).
20. Huang, D. et al. 3.17% efficient Cu₂ZnSnS₄–BiVO₄ integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 14, 1480–1489 (2021).
21. Liu, M., Jing, D., Zhou, Z. & Guo, L. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 4, 2278 (2013).
22. Bai, Y. et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting. ACS Catal. 9, 3242–3252 (2019).
23. Du, H. et al. Bare Cd₁₋ₓZnₓS ZB/WZ heterophase nanjunctions for visible light photocatalytic hydrogen production with high efficiency. ACS Appl. Mater. Interfaces 8, 24550–24558 (2016).
24. Shen, Q. et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Appl. Catal., B 282, 119552 (2021).
25. Li, L. et al. Polarization-induced charge distribution at homogeneous zincblende/wurtzite heterostructural junctions in ZnSe nanobelts. Adv. Mater. 24, 1328–1332 (2012).
26. Akopian, N., Patriarche, G., Liu, L., Harmand, J. C. & Zwiller, V. Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010).
27. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).
28. Caroff, P. et al. Controlled polystyptic and twin-plane superlattices in iii-v nanowires. Nat. Nanotechnol. 4, 50–55 (2009).
29. Spirkoska, D. et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009).
30. Park, C., Cheong, B.-H., Lee, K.-H. & Chang, K.-J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485 (1994).
31. Kim, Y. et al. Bent polytypic ZnSe and CdSe nanowires probed by photoluminescence. Small 13, 1603695 (2017).
32. Barth, S., Seifner, M. S. & Maldonado, S. Metastable group IV allotropes and solid solutions: nanoparticles and nanowires. Chem. Mater. 32, 2703–2741 (2020).
33. Fan, F.-J. et al. Linearly arranged polytypic CZTSSe nanocrystals. Sci. Rep. 2, 952 (2012).
34. Zamani, R. R. et al. Polarity-driven polytypic branching in cu-based quaternary chalcogenide nanostructures. ACS Nano 8, 2290–2301 (2014).
35. Wu, L., Fan, F.-J., Gong, M., Ge, J. & Yu, S.-H. Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1–x,Sex)2 nanocrystals. Nanoscale 6, 3418–3422 (2014).
36. Wu, L. et al. Polytypic nanocrystals of Cu-based ternary chalcogenides: colloidal synthesis and photoelectrochemical properties. J. Am. Chem. Soc. 138, 5576–5584 (2016).
37. Wang, J. J. et al. Colloidal synthesis of Cu2SnSe3 tetrapod nanocrystals. J. Am. Chem. Soc. 135, 7835–7838 (2013).
38. Wang, J. J., Liu, P., Seager, C. C. & Ryan, K. M. Complete colloidal synthesis of Cu2SnSe3 nanocrystals with crystal phase and shape control. J. Am. Chem. Soc. 136, 7954–7960 (2014).
39. Fan, F.-J., Wu, L. & Yu, S.-H. Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7, 190–208 (2013).
40. Coughlan, C. et al. Compound copper chalcogenide nanocrystals. Chem. Rev. 117, 10656–10690 (2017).
41. Singh, A., Geaney, H., Laffir, F. & Ryan, K. M. Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J. Am. Chem. Soc. 134, 2910–2913 (2012).
42. Tan, J. M. et al. Understanding the synthetic pathway of a single-phase quaternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanocrystals. J. Am. Chem. Soc. 136, 6684–6692 (2014).
43. Xin, X., He, M., Han, W., Jung, J. & Lin, Z. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 11739–11742 (2011).
44. Guo, Q., Hillhouse, H. W. & Agrawal, R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc. 131, 11672–11673 (2009).
45. Ha, E. et al. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostucture. Adv. Mater. 26, 3496–3500 (2014).
46. Sitt, A., Hadar, I. & Banin, U. Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today 8, 494–513 (2013).
47. Chen, S. et al. Band structure engineering of multinary chalcogenide topological insulators. Phys. Rev. B 83, 245202 (2011).
48. Chen, S. Y. et al. Wurtzite-derived polytypes of kesterite and staninite quaternary chalcogenide semiconductors. Phys. Rev. B 82, 195203 (2010).
49. Zhao, Z. et al. Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4. Phys. Lett. A 377, 417–422 (2013).
50. Liu, Q., Cai, Z., Han, D. & Chen, S. Natural intermediate band in I2–II–IV–VI4 quaternary chalcogenide semiconductors. Sci. Rep. 8, 1604 (2018).
51. Ozel, F., Aslan, E., Istanbulbullu, B., Akay, O. & Hatay Patir, I. Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals. Appl. Catal. B 198, 67–73 (2016).
52. Ozel, F. et al. Earth-abundant Cu2CoSnS4 nanofibers for highly efficient H2 evolution at soft interfaces. ChemNanoMat 1, 477–481 (2015).
53. Gonce, M. K., Aslan, E., Ozel, F. & Hatay Patir, I. Dye-sensitized Cu2XSnSe3 (X=Zn, Ni, Fe, Co, and Mn) nanofibers for efficient photocatalytic hydrogen evolution. ChemSusChem 9, 600–605 (2016).

Acknowledgements
This work was supported by the National Key Research and Development Program of China (Grants 2021YFA0715700, 2018YFE0202201 and 2018YFA0208702), the National Natural Science Foundation of China (Grants 15732011, U1932213, 21771170, 22101271), the University Synergy Innovation Program of Anhui Province (Grant OXXT-2019-028), Science and Technology Major Project of Anhui Province (201903a0502003). L.W. acknowledges the funding support from the China Postdoctoral Science Foundation (2017M622206 and 2017LH006). The Supercomputing Center of University of Science and Technology of China is acknowledged for numerical calculations.

Author contributions
L.W., T.T.Z., F.J.F. and S.H.Y. conceived the idea. L.W. carried out the experiments, analyzed the results, and wrote the paper. T.T.Z. and H.H.L. revised the paper. Y.L. helped with the photocatalysis experiments. Q.W. and G.Z.Z. performed the DFT calculation, analyze the data and write the computational portion. All authors discussed the results and assisted during manuscript preparation.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33065-7.

Correspondence and requests for materials should be addressed to Shu-Hong Yu.

Peer review information Nature Communications thanks Petr Lazar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022