Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Human challenge trials in vaccine development

Amrita Sekhar, Gagandeep Kang *

Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India

ARTICLE INFO

Keywords:
Human challenge studies
Human infection studies
Vaccines
Controlled human infection models

ABSTRACT

The increasing recent interest in human challenge studies or controlled human infection model studies for accelerating vaccine development has been driven by the recognition of the unique ability of these studies to contribute to the understanding of response to infection and the performance of vaccines. With streamlining of ethical processes, conduct and supervision and the availability of new investigative tools from immunophenotyping to glycobiology, the potential to derive valuable data to inform vaccine testing and development has never been greater. However, issues of availability and standardization of challenge strains, conduct of studies in disease endemic locations and the iteration between clinical and laboratory studies still need to be addressed to gain maximal value for vaccine development.

1. Introduction

The use of human challenge studies or controlled human infection model (CHIM) studies for accelerating vaccine development in the context of the ongoing COVID-19 pandemic has been the subject of much global debate and discussion. There is hope that these studies might provide an alternative and shorter route to testing new vaccines under development for COVID-19 [1] and help select those candidates most likely to succeed, but there are issues of uncertain risk. Conversely, there is also considerable interest to volunteer in such studies [2].

Human challenge studies involve the intentional infection of a healthy, adult, consenting volunteers with an infectious agent. The disease agent is well characterized, frequently attenuated, and manufactured under current Good Manufacturing Practice (cGMP) or GMP like conditions [3]. As a research method, human challenge studies are not new. The first widely documented CHIM study was done by Edward Jenner in 1796, who proved the concept of vaccination by challenging James Phipps with smallpox material six weeks after inoculation with cowpox [4].

With improvements in conduct and supervision, CHIM studies are increasingly contributing to better understanding of the biology of disease, identifying host immune response, correlates of protection, microbial pathogenicity and virulence factors and in vaccine and therapeutic development.

2. History and current status

While valuable insights were provided by early challenge experiments, especially malaria, cholera and smallpox, this methodology was misused in studies which intentionally infected vulnerable populations, prisoners, sex-workers, institutionalized patients and others [5,6]. This led to a distrust in the methodology and many began to regard intentional infection as an unethical practice. However, with the development of robust ethical frameworks and guidance over the last few decades, and close monitoring and regulatory oversight of clinical research, CHIM has seen a resurgence, proving the methodology as an invaluable tool in infectious disease research.

Over the last 7–8 decades, CHIM studies have been carried out for over 20 different infectious disease pathogens and over 45,000 volunteers have participated in these studies [7,8]. Over 200 CHIM trials have been registered on clinicaltrials.gov and the number continues to increase. These studies have an excellent safety record. For example, in the last 30 years of work by the Walter Reed Army Institute of Research on Controlled Human Malaria Infection (CHMI), not one person has been hospitalized due to adverse events related to the study.

While a majority of these studies have been conducted in high-income countries, over the last decade there has been an increasing interest in the conduct of these studies in low- and middle-income countries (LMICs) particularly for endemic diseases, where prior exposure may influence response to subsequent infection or vaccination.

* Corresponding author at: Gagandeep Kang, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004, India.
E-mail address: gkang@cmcvellore.ac.in (G. Kang).

https://doi.org/10.1016/j.smim.2020.101429
Received 21 September 2020; Received in revised form 25 October 2020; Accepted 16 November 2020
Available online 29 November 2020
1044-5323/© 2020 Elsevier Ltd. All rights reserved.
3. Ethics of human challenge studies

The ethics of human challenge have been widely debated, with particular emphasis on the informed consent process and the understanding of risks and benefit [9,10]. Further important aspects are the scientific and social value of these studies, the risk beyond individual participants, environmental risks posed by the challenge agent, risk minimization strategies, compensation and reimbursement, facilities and clinical expertise needed for such studies, rigorous review by institutional ethics committees, safety monitoring and follow up, continuous oversight and the regulatory framework for such studies [11]. Robust public and community engagement are also important especially in LMICs where this methodology is relatively new and research awareness remains low.

In most countries with experience in conducting CHIM studies, there was no or limited normative or ethical guidance for CHIM studies, possibly since they resemble Phase I studies. However, given the increase in the interest in studies in endemic settings, some countries, such as Kenya, have released specific guidance [12]. In addition, the World Health Organisation (WHO) is also working on ethical guidance for human challenge studies which is likely to be released later this year [13], following on recently issued guidance for ethical considerations for those planning human infection studies for SARS-CoV2 [14,15].

4. CHIM studies and their use in vaccine development

Vaccines are amongst the most effective public health interventions against infectious diseases, but the time to develop a new vaccine is usually long and the probability of success is low, with an estimated development time of 10.71 years and a market entry probability of 6% [16]. The time taken and the costs associated with the development of new vaccines through the phases of safety, immunogenicity and clinical efficacy are often prohibitive. Well-designed and carefully conducted CHIM studies can provide insights into host-pathogen interactions, determine host factors that contribute to infection, identify immune correlates of protection against infection/disease, and, accelerate the development and testing of vaccines and diagnostics for infectious diseases. CHIM studies can provide information on vaccine efficacy, protection against specific pathogen strains, and resistance in a small number of volunteers [17]. They can therefore facilitate down-selection, with the identification of the most promising vaccine candidates in development which can then be validated for their effectiveness in large scale Phase 3 trials. This reduces both the time and the costs involved in vaccine development and reduces the risk of the vaccine development process. Further, CHIMs have value for diseases where animal models are poor predictors of the disease in humans or when the disease is sporadic, and a phase 3 clinical trial is not feasible. Additional conditions where Phase 3 trials are not suitable include where there is a vaccine but endpoints such as protection from infection, rather than disease, cannot be measured.

Fig. 1 describes how human challenge studies gather information on vaccine efficacy. Volunteers are first rigorously screened based on predefined inclusion and exclusion criteria and enrolled after an informed consent process which frequently includes a test of understanding. The study participants are randomized to receive either the test vaccine or a comparator, and later challenged with the infective pathogen. Careful monitoring throughout the study period, vital signs, and other clinical and laboratory parameters are monitored. Depending on the pathogen, participants may be treated at a defined time (or earlier) based on the development of symptoms.

CHIM studies are conducted at a limited number of mainly academic centres, and a few commercial enterprises, but all such studies require clinical research infrastructure, well trained scientists and protocols with well-defined inclusion and exclusion criteria, rigorous informed consent processes and careful monitoring and governance [17].

CHIM studies have advanced vaccine development for several diseases. Some representative examples are discussed below.

4.1. CHIM studies in malaria vaccine development

Controlled Human Malaria Infection (CHMI) studies have used since the 1900s. They were initially used to determine mechanisms of immunity to the malarial parasite and subsequently to determine the efficacy of vaccine and drug candidates [18,19]. In CHMI models, infection is induced either through the use of sporozoites inoculated via direct injection or through bites from infected mosquitoes or plasmodium infected blood [20]. The challenge depends on the stage of infection required by the study objective. For example, sporozoites are used for assessment of the efficacy of pre-erythrocytic vaccine candidates, with the detection of blood stage infection by microscopy and the analysis of parasitemia by qPCR as the end point [21]. For blood stage candidates, on the other hand, infected blood is used and the parasite multiplication rate (PMR) is used to determine vaccine efficacy.

Since 2009, standardization of CHMI models have been emphasized by the WHO and other international organizations such as PATH [22]. Standardized designs for conduct of CHMIs and microscopic methods to
determine endpoints have been developed to support comparison of studies at multiple sites. In the past decade, CHMI models have also benefited from the development of aseptic cryopreserved purified *Plasmodium falciparum* sporozoites which can be injected to cause infection and are manufactured in accordance with regulatory standards [20]. This has allowed the CHMI models to be more widely used, including in endemic regions in Africa [23]. Conducting CHMI studies in endemic settings can help understand the effects of pre-exposure and immunity which is not feasible in non-endemic settings [24].

CHMI studies have been used to down-select malarial vaccine candidates and are now an integral part of the malaria vaccine development cycle [19]. For RTS,S/AS01, a pre-erythrocytic *P. falciparum* vaccine, which is the only licensed malarial vaccine currently being piloted in Africa, volunteers who had been given three doses of the vaccine were challenged 2–3 weeks after the third dose [25]. The vaccine efficacy in the CHMI study was found to be 50%. This was followed by Phase 3 field trials conducted in over 15,000 infants and young children in Africa [26], resulting in an efficacy in young children (5–17 months of age) of 39% reduced disease incidence and a 31.5% reduced incidence of severe disease. Based on the phase 3 vaccine efficacy of RTS,S/AS01, the vaccine was licensed and in 2019 a pilot program supported by WHO has been initiated in Ghana, Kenya and Malawi to vaccinate 360,000 children per year in selected areas in these countries.

Another promising *P. falciparum* vaccine candidate PISPZ, a live attenuated whole-parasite malaria vaccine has shown the most promising results to date in CHMIs against challenge with both homologous and heterologous strains [27]. The vaccine is currently being tested in larger field trials (Phase 3 studies) in Africa [28].

In addition to *P. falciparum* CHMIs, human challenge models for both sporozoite and blood stage infections have also been developed for *P. vivax* [29,30]. However, these have been more challenging to develop as parasites isolated from *P. vivax* affected individuals are difficult to culture in vitro [30]. Two candidate vaccines have been studied using CHMI studies; a radiation attenuated *P. vivax* sporozoites and VMP001/AS01B [31,32]. The radiation attenuated sporozoite model demonstrated a vaccine efficacy of 42% with seven immunizations against the end point of parasitemia as measured through thick blood smear microscopy, while the VPM001/AS01B was not found to be protective, demonstrating the value of CHMIs in reducing population exposure to ineffective vaccines.

4.2. Use of typhoid human challenge studies to support the WHO prequalification of a typhoid vaccine

A killed whole cell vaccine was first developed for typhoid fever in 1896. Since then Vi capsular polysaccharide vaccines, an oral live attenuated vaccine (Ty21a) and typhoid conjugate vaccines have been developed and licensed [33,34]. While all these vaccines with the exception of the killed whole cell vaccine are currently in use, both Ty21a and Vi polysaccharide vaccines were poorly immunogenic in young children and need repeat dosing.

In the past decade, typhoid conjugate vaccines were developed and found to be safe and immunogenic in infants, children and adults. Typhar-TCV, a typhoid conjugate vaccine made in India, was licensed for use based on immunogenicity higher than induced by the Vi-polysaccharide vaccine [35]. No clinical efficacy data was generated pre-licensure. In 2016, the vaccine was tested for efficacy by the Oxford vaccine group in an outpatient human challenge model of typhoid, which built on a similar model previously developed and used by the Center for Vaccine Development at the University of Maryland [36]. In the phase 2b study, healthy adult typhoid naïve volunteers were vaccinated with a single dose of either Typhar TCV, the Vi-polysaccharide vaccine or a control [37]. One month after vaccination, the participants were challenged through oral ingestion of *Salmonella* Typhi Quiles strain and followed up in an out-patient clinic with daily blood cultures for 2 weeks. The end point for typhoid diagnosis was a temperature ≥ 38 °C sustained for ≥ 12 h and/or blood culture confirmed *S. Typhi* bacteraemia. The vaccine efficacy of Typhar-TCV was found to be 54.6% (95% CI 26.8–71.8) for the per-protocol analysis, with 100% seroconversion and > 80% efficacy with a clinically relevant definition [35]. Based on results from both earlier immunogenicity studies and the data on efficacy from the human challenge study, Typhar-TCV was pre-qualified by WHO in 2017 and recommended for use in endemic areas. Subsequently, this vaccine has been tested in field trials where the initial analysis has revealed a vaccine efficacy of 81.6% [38].

4.3. Use of cholera human challenge studies to support the licensure of an oral cholera vaccine

Human challenge studies in cholera biology have been in use since 1969. The human challenge model for cholera was standardized in 1998 and very well-characterized GMP compliant challenge strain lots are available which give consistent attack rates in challenged volunteers [39]. Several studies using cholera human challenge were conducted in the US over many decades and in Thailand in the 1990s.

In 2013, a human challenge study to determine the vaccine efficacy of Vaxchora (CVD 103-HgR); a live attenuated oral cholera vaccine with diarrhoea as the primary endpoint was initiated at the University of Maryland [40]. The regulators agreed that large field studies were not possible owing to the low disease incidence in the US. Therefore, 197 healthy adult human volunteers ingested the oral cholera vaccine and were challenged with *V. cholerae* O1 El Tor Inaba strain N16961 10 days or 3 months post vaccination. Vaccine efficacy was 90.3% and 79.5% at 10 days and 3 months post vaccination. Based on the findings of this efficacy study combined with immunogenicity and safety data, the vaccine was approved for use by the FDA [41].

In general, human challenge studies in vaccine development provide the initial proof of efficacy. Vaccine candidates found to be effective are further evaluated for their effectiveness in real-world situations. The efficacy predicted in these studies may be an overestimate (RTS,S/AS01) or an underestimate of the efficacy seen in field studies (Typhar-TCV) owing to multiple factors including participant selection, clinical end points and others.

5. Newer challenge models

The examples above discuss infectious diseases for which challenge models have been established and validated over the years. Additionally, there are also many diseases for which challenge models have been more recently established and standardized. These include pathogens such as *Group A Streptococcus* (GAS) which causes scarlet fever, *Streptococcus pneumoniae* or *Leishmania* which causes leishmaniasis. Additionally, CHMIs have also been developed for colonization studies using *Bordetella pertussis* and *Streptococcus pneumoniae* etc. Similarly, there have been extensive discussions around human challenge studies for Zika virus [42] and more recently for SARS-CoV-2 [1].

GAS causes a significant burden of disease globally [43]. In 1969, in a study where a vaccine developed for GAS was administered to 21 children, two definitive and one probable case of acute rheumatic fever was seen [44]. This unexpected adverse event resulted in very stringent regulations and practically halted the field of GAS vaccine development. In recent years, there has been a resurgence in the vaccine development and a growing recognition of the importance and value of a human challenge model of GAS to test potential vaccine candidates [45]. Very recently, studies to establish a GAS pharyngitis CHIM with an emm 75 (M75) GAS strain have [46,47] been undertaken. Once the safety and reliability of the challenge model is established it can be used further to test the efficacy of vaccine candidates and downselect the most effective candidates.

Similarly, studies are currently being planned in Africa [48,49] to
use a human challenge model for schistosomiasis which has been
developed in the Netherlands [50]. Novel vaccines for schistosomiasis
are needed as there is currently only one drug for disease control. Re-
searchers have standardized processes to produce male S. mansoni
cercaria for human use that meet current regulatory standards. In a
recent dose ranging study, to identify a suitable dose for infection), a
challenge dose of 20 S. mansoni cercariae was found to induce infection
in the majority of the volunteers and the safety profile with this dose was
acceptable [51]. The model also provided insights into disease biology,
with the observation that eggs are not necessary to produce the
Katayama syndrome, a syndrome that has symptoms similar to an acute
inflammatory response and occurs weeks after infection. This challenge
model can now be used to evaluate and downselect effective vaccine
candidates in development.

More recently, vials containing the Leishmania parasite have been
prepared and these are awaiting quality inspection before they can be
used in a challenge study which can then be used to advance thera-
peutics for Leishmaniasis. Similarly, a challenge model using 10^6 CFUs
of Bordetella pertussis has been established which results in asymptom-
atic colonization of the upper respiratory tract and provides insights into
the lifecycle and transmission of B. pertussis [52]. Advancements have
also been made in understanding pneumococcal colonization in adults
aged over 50 years by the expansion of the experimental human pneu-
 mococcal colonization model in this age group [53].

There has also considerable discussion on the use of the human
challenge methodology to support vaccine development for new and
emerging infectious diseases (EIDs). At the time of the Zika epidemic, a
panel of experts was constituted to provide advice to the National In-
stitutes of Health on the use of Zika human challenge studies to advance
the development of interventions and to better understand the disease
[54,55]. The panel recommended that while ethically Zika challenge
studies could be justified they were premature to conduct especially
given third party risks, since duration of infectivity was unknown at that
time. Additionally, since the disease was actively circulating the
requirement of challenge studies to accelerate the development of vac-
cines given the unknown and uncertain risks was not considered ben-
ficial. However, since then, the understanding of Zika biology has
evolved and transmission of the disease reduced. Hence, under the
current circumstances a Zika human challenge would have considerable
value provided all ethical and regulatory concerns are met [42,54]. The
risk-benefit analysis and risk management strategies (along with third
party) risks require special attention while considering challenge models
for emerging infectious diseases.

There has been much deliberation around the use of human chal-
lenge studies in young healthy adults, who based on available data
represent a low risk group, to fast track the development of COVID-19
vaccine candidates, and, preferentially downselect the more effica-
cious ones to prioritize their further clinical development. In accordance
with these discussions, WHO has released guidance on the ethical as-
pects of the use of CHIMs for studying SARS-CoV-2 as well as a draft
report on the feasibility, value and limitations of COVID-19 CHIMs [56,
57].

The key criteria identified for COVID-19 challenge studies include
a strong scientific justification, a favourable risk-benefit analysis, con-
sultations and engagement, coordination of research, appropriate site
and participant selection, informed consent, expert review, monitoring
and oversight. For sites without prior experience, a feasibility report by
external experts is useful for planning.

Given the scale of the pandemic, solutions are urgently needed.
Currently, there are efforts ongoing to develop a suitable challenge
strain which can then further be considered for use in human challenge
model, and, a wide interest from a potential volunteer pool [2]. Once a
suitable strain has been developed, dose-escalation studies will need to
be conducted, and, a suitable end point defined (such as such as virus
replication in the nose, or development of mild symptoms etc) before
these studies can be used either to understand disease biology and
evaluate vaccines. The view on the need for this methodology however,
remains divided. While, many feel that a well-characterized, safe and
effective challenge model of SARS-CoV-2 can greatly enhance our basic
understanding of several aspects of the disease such as immune re-
sponses, correlates of protection, reinfection, transmission, sterilizing
versus protective immunity as well as vaccine responses, there are others
who feel that given our limited understanding of the disease, the lack of
appropriate rescue therapy and the uncertain long-term consequences;
that such an undertaking is premature. Similar to the discussions around
the Zika human challenge, it is very likely that as our understanding of
COVID-19 evolves; a human challenge model with appropriate checks
and balances will be a valuable tool in our efforts to develop vaccines
and other interventions.

6. Global guidance on human challenge studies

With the increase in the human challenge study methodology and
with many studies being conducted there have been several global dis-
cussions around the need for standardization of methodologies, clinical
end points, sharing of reagents, guidance both regulatory and ethical for
the use of these studies towards both understanding pathogenesis as well
as for their use in the vaccine development pathway.

WHO has published generalized guidance on the use of human chal-
lenge studies in vaccine development [58]. Similarly, the US FDA has
guidance on the regulatory considerations for use of human chal-
lenge studies in vaccine licensure, including a recent guidance on their
use in the development of COVID-19 vaccines [59,60].

The International Alliance for Biological Standardization (IABS) has
organised consultations regularly since 2014 on aspects of human
challenge studies, including two consultations focused specifically on
their use in vaccine development [61-64]. The consultations bring
together ethicists, researchers, regulators and various other stakeholders
with an interest in this methodology to discuss opportunities, pathways
and challenges to the use of CHIM studies. Similarly, there have been
discussions on having guidance for manufacture of challenge agents so
that they adhere to the highest standards of quality, safety, consistency
and reproducibility. To facilitate the development of such guidance by
regulatory bodies, a manufacturing guidance for challenge agents is
currently under preparation with support from the Wellcome Trust and
HIC-Vac and is expected to be ready in 2021[13].

Arisings from all the regulatory discussions is a consensus that care-
fully designed CHIM studies are a valuable tool in the vaccine devel-
opment pathway and provide early proof of efficacy. They are intended
to complement, and support information provided to regulatory au-
thorities and are not a replacement for larger field studies.

7. Conclusions

As with all research methodologies, human challenge studies are not
without their limitations. These studies are a model of infection and
hence like all models they are limited in generalizability. Challenge
studies have strict inclusion and exclusion criteria and enrol young
healthy adults and therefore may not be representative of the population
at risk. For instance, in malaria, the primary targets for malarial vaccines
are children and young infants whereas CHMI studies are carried out in
healthy adults. Similarly, historically most challenge studies, have
enrolled participants who have no prior history of exposure to challenge
agent, however that is changing with more such studies being carried
out in endemic regions and allowing for selection of participants who
have had pre-exposure [24]. The route of infection, the dose of the
challenge agent use might not appropriately mimic the natural course
of infection and hence this might affect the interpretations drawn from
such studies [8]. Further the challenge strain itself is chosen for its
stability.

However, despite these limitations, human challenge trials play a
very important and supportive role in both out understanding of disease
and the development and testing of potential vaccine candidates. Animal models for many diseases are a poor approximation of disease pathogenesis especially for human host restricted diseases. Properly designed and ethically conducted CHIM studies have tremendous potential to improve our understanding of pathogenesis, help design better vaccine candidates, assess the safety and efficacy of vaccine candidates and help select the most promising ones, reduce the costs and timelines of vaccine development.

There is interest from researchers and funders for supporting such studies and harmonization of methodologies, reagents and standards will greatly aid the impact of this methodology. Similarly, consensus amongst regulators and ethicists on various aspects of these studies such as study designs, challenge agent requirements and manufacturing, participant selection, compensation etc. will ensure that these studies can provide valuable information and be a safe and effective method to design better vaccines in a more cost-effective manner.

References

[1] N. Eyal, M. Lipitch, P.G. Smith, Human challenge studies to accelerate coronavirus vaccine licensure, J. Infect. Dis. 221 (11) (2020) 1752–1756.
[2] Day Sooner, COVID-19 Human Challenge Trials 2020 (cited 2020 22 July).
[3] Available from: https://daysooner.com.2020
[4] T.C. Darton, C.J. Blohmke, V.S. Moorthy, D.M. Altmann, F.G. Hayden, E.A. Clutterbuck, et al., Design, recruitment, and microbiological considerations in human challenge studies, Lancet Infect. Dis. 15 (7) (2015) 840–851.
[5] S. Bield, Edward Jenner and the history of smallpox and vaccination, Proc. (Bayl. Univ. Med. Cent). 18 (1) (2005) 21–25.
[6] R.H. Glew, P.E. Brisch, W.A. Krotoski, P.G. Contactos, F.A. Neva, Multidrug-resistant strain of Plasmodium falciparum from eastern Colombia, J. Infect. Dis. 129 (4) (1994) 385–396.
[7] D.J. Rothman, Were Tuekke & Wilkbrook’s studies in nature? Hastings Cent. Rep. 12 (2) (1982) 5–7.
[8] J.A. Kalli, S.A. Halperin, J.M. Langley, Human challenge studies: a review of adequacy of reporting methods and results, Future Microbiol. 7 (4) (2012) 481–495.
[9] M. Roestenberg, M.A. Hoogerwerf, D.M. Ferreira, B. Mordmüller, M. Yazdanbakhsh, Experimental infection of human volunteers, Lancet Infect. Dis. 18 (10) (2018) e312–e322.
[10] B. Bambery, M. Selgelid, C. Weijer, J. Savulescu, A.J. Pollard, Ethical criteria for human challenge studies in infectious diseases, Public Health Ethics 9 (1) (2016) 92–103.
[11] T. Hope, J. McMillan, Challenge studies of human volunteers: ethical issues, J. Med. Ethics 30 (1) (2004) 110–116.
[12] M.J. Selgelid, E. Jamrozik, Ethical challenges posed by human infection challenge studies in endemic settings, Indian J. Med. Ethics 3 (4) (2016) 263–266.
[13] Pharmacy and Poisons Board MoH. Guidelines for the Conduct of Clinical Trials in Kenya, 2020.
[14] A.J. Pollard, R. Sauerwein, M. Baay, P. Neels, chairs Haas. Third human challenge trial conference, Oxford, United Kingdom, February 6–7, 2020, a meeting report, Clinical Microbiol. 66 (2020) 41–52.
[15] E. Jamrozik, M.J. Selgelid, COVID-19 human challenge studies: ethical issues, Lancet Infect. Dis. 20 (8) (2020) e198–e203.
[16] B. Watson, J. E.L. Livney, Severe acute respiratory syndrome coronavirus 2 human challenge trials: too risky, too soon, J. Infect. Dis. 222 (3) (2020) 514–516.
[17] S. Plotkin, J.M. Robinson, G. Cunningham, R. Iqbal, S. Larsen, The complexity and cost of vaccine manufacturing – an overview, Vaccine 35 (33) (2017) 4064–4071.
[18] S.B. Gordon, J. Rylance, A. Luck, K. Jambo, D.M. Ferreira, L. Manda-Taylor, et al., A framework for controlled human infection model (CHIM) studies in Malawi: report of a well-kept trust workshop on CHIM in low income countries held in Blantyre, Malawi, Wellcome Open Res. 2 (2017) 70.
[19] M. Roestenberg, S.J. de Vlas, A.E. Nieman, R.W. Sauerwein, C.C. Hermsen, Efficacy of pneumococcal vaccine CMV001 in malaria-naïve adults, safety, immunogenicity, and efficacy, PLoS Negl. Trop. Dis. 10 (3) (2016) e0004423.
[20] M. Arzello-Herrera, L. Ruiz-Cuevas, J. Lopez-Jimenez, M. Lopez-Perez, A.F. Vallejo, A. Bampo-Amaravadi, N. Cespedes, et al., Protective efficacy of plasmodium vivax radiation-attenuated sporozoites in colombian volunteers: a randomized controlled trial, PLoS Negl. Trop. Dis. 10 (10) (2016) e0007004.
[21] S. Karabudak, et al., Review of the typhus conjunctive vaccine pipeline: current status and future plans, Clin. Infect. Dis. 68 (Suppl 1) (2019) S22–S26.
[22] M.M. Levine, C. Ferreccio, R.E. Black, C.O. Tacket, R. Germanier, Progress in vaccines against typhoid fever, Rev. Infect. Dis. 11 (Suppl 3) (1989) S552–S67.
[23] V.K. Mohan, V. Varanasi, A. Singh, M.F. Pasetti, M.M. Levine, R. Venkatesan, et al., Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typhvax-TCV) in healthy infants, children, and adults in typhoid endemic areas: a multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 study, Clin. Infect. Dis. 61 (3) (2015) 393–402.
[24] C.S. Waddington, T.C. Darton, C. Jones, K. Haworth, A. Peters, T. John, et al., An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella typhi challenge delivered in sodium bicarbonate solution, Clin. Infect. Dis. 58 (9) (2014) 1220–1240.
[25] C. Jin, M.M. Gibani, M. Moore, H.B. Juel, E. Jones, J. Meiring, et al., Efficacy and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typhvax-TCV) in healthy infants, children, and adults in typhoid endemic areas: a multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 trial, Clin. Infect. Dis. 61 (3) (2015) 393–402.
[26] D.A. Sack, C.O. Tacket, M.B. Cohen, R.B. Sack, G.A. Losonsky, J. Shimko, et al., Validation of a volunteer model of cholera with frozen bacteria as the challenge, Infect. Immun. 66 (5) (1998) 1968–1972.
[27] W.J. Shen, M.B. Cohen, R.B. Sack, R.C. Brady, D. Galloway, M. Gurwitz, et al., Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with Vibrio cholerae O1 El Tor, Clin. Infect. Dis. 62 (11) (2011) 1329–1335.
[28] J.F. Mosley, S.L. Brantley, D. Locke, M. Como, Vaxchora: The First FDA- Approved Cholera Vaccination in the United States. P T., 42, 2017, pp. 638–640.
[29] J.R. Carapetis, A.C. Steer, E.K. Mulholland, M. Weber, The global burden of group A streptococcal diseases, Lancet Infect. Dis. 5 (11) (2005) 685–694.
[30] B.F. Massel, L.H. Honkam, J. Amezua, Rheumatic fever following streptococcal infection, Report of three cases, Am. J. Med. Sci. 207 (6) (1939) 1115–1119.
[31] J. Yekem, F. Gouvea-Reis, J.H. Kim, J.L. Exler, P.R. Sneeles, K.L. O’Brien, et al., The path to group a streptococcus vaccines: world health organization research and development technology roadmap and preferred product characteristics, Clin. Infect. Dis. 69 (5) (2019) 877–889.
[32] J. Osowicki, K.I. Azizpour, L. McIntyre, T. Rivera-Hernandez, C.Y. Ong, C. Baker, et al., A controlled human infection model of group a, mSBE 4 (1) (2019).
[33] J. Osowicki, K.I. Azizpour, C. Baker, C.S. Waddington, M. Pandey, T. Schuster, et al., Controlled human infections for vaccine studies against streptococcus pyogenes (CHIVAS): establishing a group a streptococcus pharyngitis human infection study, Vaccine 37 (26) (2019) 3485–3494.
[34] A. Koopman, M. Egesa, A. Wajja, M. Adriko, J. Nassuuna, G. Nkurunungi, et al., Risk assessment for the implementation of controlled human infection model for schistosomiasis in Uganda: report of a stakeholders’ meeting held in Entebbe, AAS Open Res. 1 (2018) 2.
[50] J.J. Janse, M.C.C. Langenberg, J. Kos-Van Oosterhoud, A. Ozir-Fazalalikhan, E.A. T. Brienen, B.M.F. Winkel, et al., Establishing the production of male Schistosoma mansoni cercariae for a controlled human infection model, J. Infect. Dis. 218 (7) (2018) 1142–1146.

[51] M.C.C. Langenberg, M.A. Hoogerwerf, J.P.R. Koopman, J.J. Janse, J. Kos-van Oosterhoud, C. Feijt, et al., A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics, Nat. Med. 26 (3) (2020) 326–332.

[52] H. de Graaf, M. Ibrahim, A.R. Hill, D. Gbesemete, A.T. Vaughan, A. Gorringe, et al., Controlled human infection with Bordetella pertussis induces asymptomatic, immunizing colonization, Clin. Infect. Dis. 71 (2) (2020) 403–411.

[53] H. Adler, E.L. German, E. Mitsi, E. Nikolaou, S. Pojar, C. Hales, et al., Experimental human pneumococcal colonization in older adults is feasible and safe, not immunogenic, Am. J. Respir. Crit. Care Med. (2020).

[54] R. Palacios, S.K. Shah, When could human challenge trials be deployed to combat emerging infectious diseases? Lessons from the case of a Zika virus human challenge trial, Trials. 20 (Suppl 2) (2019) 702.

[55] NIAID, Ethical Considerations for Zika Virus Human Challenge Trials, Report and Recommendations, 2017.

[56] World Health Organization, Key Criteria for the Ethical Acceptability of COVID-19 Human Challenge Studies, 2020.

[57] World Health Organization, Feasibility, Potential Value and Limitations of Establishing a Closely Monitored Challenge Model of Experimental COVID-19 Infection and Illness in Healthy Young Adult Volunteers, 2020.

[58] Organization WH, WHO-Annex 10 Human Challenge Trials for Vaccine Development: Regulatory Considerations. WHO Technical Report Series, 2017.

[59] U.S. Food, in: Research CBEa (Ed.), Drug Administration. Development and Licensure of Vaccines to Prevent COVID-19, 2020.

[60] R. Ramanathan, S. Stibitz, D. Pratt, J. Roberts, Use of controlled human infection models (CHIMs) to support vaccine development: US regulatory considerations, Vaccine 37 (31) (2019) 4256–4261.

[61] R.L. Sheets, B. Fritzell, M.T. Aguado de Ros, Human challenge trials in vaccine development: Strasbourg, September 29 - October 1, 2014, Biologicals 44 (1) (2016) 37–50.

[62] M.F.D. Baay, T.L. Richie, P. Neels, meeting ScatsHCT. Human challenge trials in vaccine development, Rockville, MD, USA, September 28-30, 2017, Biologicals (61) (2019) 85–94.

[63] World Health Organization. https://www.who.int/biologicals/expert_committee/WHO_TRS_1004_web_Annex_10.pdf.

[64] World Health Organization. https://www.who.int/biologicals/expert_committee/WHO_TRS_1004_web_Annex_9.pdf.