COMPACT GRADIENT EINSTEIN-TYPE MANIFOLDS WITH BOUNDARY AND CONSTANT SCALAR CURVATURE

XIAOMIN CHEN

ABSTRACT. Inspired by the study of V-static manifold about classification, in this article, we apply the recent results obtained by Freitas and Gomes (Compact gradient Einstein-type manifolds with boundary, 2022) to prove the rigidity results for compact gradient Einstein-type manifolds with nonempty boundary and constant scalar curvature under some suitable pinching conditions. As a special case of gradient Einstein-type manifold, we also give a rigidity result of (m, ρ)-quasi-Einstein manifold with boundary.

1. Introduction

Let (M^n, g), $n \geq 3$, be an n-dimensional compact Riemannian manifold. In the setting of manifolds without boundary, we say that (M^n, g) be a gradient Einstein-type manifold or, equivalently, that (M^n, g) supports an Einstein-type structure if there are a smooth u on M and a real constant $\rho \in \mathbb{R} \setminus \{0\}$ satisfying

\[\alpha R + \beta \nabla^2 u + \mu du \otimes du = (\rho R + \lambda) g, \]

where α, β, μ are constants with $(\alpha, \beta, \mu) \neq 0$, λ is a smooth function and R is the scalar curvature of the metric g. This structure, introduced by Catino et al. [5], unifies various particular cases, such as Ricci solitons, ρ-Einstein solitons and Yamabe solitons. In particular, we remark that if $(\alpha, \beta, \mu, \rho) = (1, 1, -\frac{1}{m}, \rho)$, $\lambda \in \mathbb{R}$, $0 < m \leq \infty$, namely,

\[R + \nabla^2 u - \frac{1}{m} du \otimes du = (\rho R + \lambda) g, \]

then (M^n, g) is called a (m, ρ)-quasi-Einstein manifold (see [9]).

By considering $f = e^{\frac{\mu}{\beta}u}$, Eq.(1.1) is equivalent to

\[\frac{\alpha}{\beta} R + \beta \frac{\mu}{\beta} \nabla^2 f = \Lambda g, \]

where $\Lambda = \frac{1}{\beta}(\rho R + \lambda)$. Nazareno and Gomes [11] proved that a nontrivial, compact, gradient Einstein-type manifold of constant scalar curvature with both β and μ nonzero is isometric to the standard sphere $S^n(r)$. In the insights to Eq.(1.2), recently Freitas and Gomes [8] studied a family of gradient Einstein-type metrics on manifolds with nonempty boundary, namely, there exists a nonconstant smooth function f on M^n satisfying

\[\nabla^2 f = \frac{\mu}{\beta} f (\Lambda g - \frac{\mu}{\beta} R + \gamma g), \]

\[f > 0 \quad \text{in} \quad \text{int}(M^n), \]

\[f = 0 \quad \text{on} \quad \partial M, \]

\[f = 0 \quad \text{on} \quad \partial M, \]

2010 Mathematics Subject Classification. 53C25; 53C20; 53C21.

Key words and phrases. gradient Einstein-type manifold; constant scalar curvature; Einstein manifold; radial Weyl curvature; Yamabe constant.

The author is supported by Science Foundation of China University of Petroleum-Beijing (No.2462020XKJS02, No.2462020YXZ2004).
for some smooth function \(\Lambda \) and constants \(\alpha, \beta, \mu, \gamma \) with \(\beta \neq 0 \). They provided a complete classification for this family of Einstein-type manifolds that are Einstein.

Theorem 1.1. ([8, Theorem 1,Theorem 2]) Let \((M^n, g)\) be a compact gradient Einstein-type manifold with connected boundary \(\partial M\). If \((M^n, g)\) is an Einstein manifold, then it is isometric to a geodesic ball in a simply connected space form for \(\gamma \neq 0 \) or a hemisphere of a round sphere for \(\gamma = 0 \).

For the case of manifolds with constant scalar curvature, they just gave some boundary conditions to prove that \((M^n, g)\) is an Einstein manifold (see [8, Theorem 3, Theorem 4]).

In this paper, we consider a gradient Einstein-type manifold \((M^n, g)\) with nonempty boundary \(\partial M\) such that the metric \(g \) satisfies Eq.\((1.3)\) with constant function \(\Lambda \). For the convenience of calculation, we rewrite the satisfied equation as follow:

\[
\begin{align*}
\delta f \mathring{Ric} + \nabla^2 f &= h g, \\
\text{if } f &> 0 \text{ in int}(M^n), \\
\text{if } f &= 0 \text{ on } \partial M,
\end{align*}
\]

where \(\delta = \frac{\partial}{\partial r} \) and \(h = \theta f + \gamma \) with \(\theta = \frac{4}{n} \Lambda \) being constant.

Observe that Eq.\((1.4)\) is closely related to a \(V \)-static metric (see [10, 6]), thus we first use the zero radial Weyl curvature, i.e. \(W(\cdot, \cdot, \cdot, \nabla f) = 0 \) to classify gradient Einstein-type manifold. Such a condition has been used in \(V \)-static manifold ([1, Corollary 1.5, Corollary 1.6]), quasi-Einstein manifold ([4]) and gradient Ricci soliton ([13]). More precisely, we prove the following theorem.

Theorem 1.2. Let \((M^n, g)\), \(n \geq 4 \), be a compact gradient Einstein-type manifold satisfying \((1.4)\) with constant scalar curvature. For \(-1 < \delta < -\frac{n-4}{n-2}\), suppose that \(M^n \) has zero radial Weyl curvature and

\[
|\mathring{Ric}| \leq \frac{\delta(n-1)-2}{(n-2)\delta - n - 2}\frac{R}{\sqrt{n(n-1)}},
\]

where \(\mathring{Ric} \) is the traceless Ricci tensor. If \(\gamma = 0 \) then \((M^n, g)\) is isometric to a hemisphere of a round sphere.

Next, we adapt two different methods to give an important integral formula.

Theorem 1.3. Let \((M^n, g)\) be a compact gradient Einstein-type manifold satisfying \((1.4)\) with constant scalar curvature. Then the following integral formula holds:

\[
0 = \frac{2n \delta + n - 4}{2n} \int_M f |\mathring{Ric}|^2 \Delta f dV_g - \frac{4 \delta}{n-2} \int_M f^2 \mathring{R}_{ij} \mathring{R}_{ik} \mathring{R}_{jk} dV_g + 2 \delta \int_M f^2 W_{ijkl} \mathring{R}_{ik} \mathring{R}_{jk} dV_g - \delta \int_M f^2 |\nabla \mathring{Ric}|^2 dV_g + \left(\frac{2 \delta(n-1)}{n(n-1)} R - \theta \right) \delta \int_M f^2 |\mathring{Ric}|^2 dV_g - \left(\frac{\delta(n-1)-1}{n^2} R^2 \right) - \frac{\theta}{n+1} R \int_M |\nabla f|^2 dV_g - (1 - \delta) \int_M |\mathring{Ric}(\nabla f)|^2 dV_g + \frac{1}{2} \int_M |\mathring{Ric}|^2 |\nabla f|^2 dV_g,
\]

where \(W \) is the Weyl tensor.

Now, we introduce the definition of Yamabe constant on a Riemannian manifold with nonempty boundary. Given a compact \(n \)-dimensional Riemannian manifold \((M^n, g)\) with boundary \(\partial M\), the Yamabe invariant \(Y(M, \partial M, [g]) \) associated to \((M^n, g)\) is defined by

\[
Y(M, \partial M, [g]) = \inf_{u \in W^{1,2}(M)} \int_M \left(\frac{4(n-1)}{n-2} |\nabla u|^2 + R u^2 \right) dV_g + 2 \mathcal{I}_{\partial M} H u^2 dS_g,
\]

where \(\mathcal{I}_{\partial M} H u^2 dS_g \) is the integral of mean curvature for \(u \) on \(\partial M \).
where \([g]\) is the conformal class of the metric \(g\) and \(H\) is the mean curvature of \(\partial M\). For more details, we refer the readers to [7]. Catino and Baltazar et al. used the Yamabe constant to classify gradient shrinking Ricci soliton and four-dimensional Miao-Tam critical metric, respectively (see [2, 3]). Here we suppose a similar pinching condition with [2, Theorem 2] to obtain the following conclusion.

Theorem 1.4. Let \((\mathbb{M}^n, g)\) be an \(n\)-dimensional \((4 \leq n \leq 6)\) compact gradient Einstein-type manifold satisfying (1.4) with constant scalar curvature. If \(-1 < \delta < 0\) and

\[
\left[\frac{n-1}{8(n-2)} Y(M, \partial M, [g]) - \left(\int_M \left(|W|^2 + \frac{8}{n(n-2)} |\tilde{Ric}|^2 \right)^{\frac{2}{n}} dV_g \right)^{\frac{2}{n}} \right] \Phi(M)
\geq \frac{\delta - 1}{\delta} \sqrt{\frac{(n-1)^3}{4n(n-2)}} \int_M |\tilde{Ric}|^2 |\nabla f|^2 dV_g,
\]

where \(\Phi(M) = \left(\int_M \frac{2}{n} |\tilde{Ric}|^{\frac{n}{2}} dV_g \right)^{\frac{2}{n}},\) then \((\mathbb{M}^n, g)\) is isometric to a geodesic ball in a simply connected space form if \(\gamma > 0\), or a hemisphere of a round sphere if \(\gamma = 0\).

Since a \((m, \rho)\)-quasi-Einstein manifold is a special gradient Einstein-type manifold, from Theorem 1.4 we obtain a rigidity result of \((m, \rho)\)-quasi-Einstein manifolds with nonempty boundary.

Corollary 1.1. Let \((\mathbb{M}^n, g)\) be an \(n\)-dimensional \((4 \leq n \leq 6)\) compact \((m, \rho)\)-quasi-Einstein manifold with nonempty boundary and constant scalar curvature. For \(1 < m < \infty\), if

\[
\left[\frac{n-1}{8(n-2)} Y(M, \partial M, [g]) - \left(\int_M \left(|W|^2 + \frac{8}{n(n-2)} |\tilde{Ric}|^2 \right)^{\frac{2}{n}} dV_g \right)^{\frac{2}{n}} \right] \Phi(M)
\geq (m + 1) \sqrt{\frac{(n-1)^3}{4n(n-2)}} \int_M |\tilde{Ric}|^2 |\nabla f|^2 dV_g,
\]

then \((\mathbb{M}^n, g)\) is isometric to a hemisphere of a round sphere.

In order to prove these conclusions, in Section 2 we need review some classical tensors and give some key lemmas, and in Section 3 we will give the proof of our results.

2. Preliminaries

In this section we shall collect some fundamental identities and results that will be used in the proof of our results. Recall that on an \(n\)-dimensional Riemannian manifold \((\mathbb{M}^n, g)\) for \(n \geq 3\), the Weyl tensor and the Cotton tensor are respectively defined by

\[
W_{ijkl} = R_{ijkl} - \frac{1}{n} R g_{ij} g_{kl} + \frac{R}{(n-1)(n-2)} (g_{ij} g_{kl} - g_{il} g_{jk})
\]

and

\[
C_{ijk} = \nabla_i R_{jk} - \nabla_j R_{ik} - \frac{1}{2(n-1)} (g_{jk} \nabla_i R - g_{ik} \nabla_j R).
\]

Notice that \(C_{ijk}\) is skew-symmetric in the first two indexes and trac-free in any index, i.e.

\[
C_{ijk} = -C_{jik} \quad \text{and} \quad C_{iik} = C_{iij} = 0.
\]
When $n \geq 4$, the Cotton tensor and Weyl tensor satisfy the following relation:
\[C_{ijk} = -\frac{n-2}{n-3} \nabla_l W_{ijkl}. \]

For a tensor T, we denote by $\hat{T} = T - \frac{trT}{n} g$ the traceless part of T.

Lemma 2.1. Let (M^n, g) be a compact gradient Einstein-type manifold satisfying (1.4) with constant scalar curvature. Then we have:
\[\delta f (\nabla_i R_{jk} - \nabla_j R_{ik}) = -R_{ijkl} \nabla_l f - \delta (\nabla_i f R_{jk} - \nabla_j f R_{ik}) + \nabla_i h_{jk} - \nabla_j h_{ik}, \]
\[(1 + \delta) R_{ij} \nabla_i f = \delta \nabla_j f R + (1 - n) \nabla_j h. \]

Proof. Taking the covariant derivative of (1.4), we obtain
\[\delta (\nabla_i f R_{jk} + f \nabla_i R_{jk}) + \nabla_i \nabla_j f = \nabla_i h_{jk}. \]
Using the formula for the commutation of derivatives and Ricci identity
\[\nabla_i \nabla_j \nabla_k f - \nabla_j \nabla_i \nabla_k f = R_{ijkl} \nabla_l f, \]
we get the desired equation (2.4). Moreover, since the scalar curvature R is constant,
\[\nabla_i R_{ij} = \frac{1}{2} \nabla_i R = 0. \]
Thus letting $i = k$ in (2.4) and contracting it will give (2.5). \qed

Lemma 2.2. Let (M^n, g) be a compact gradient Einstein-type manifold satisfying (1.4) with constant scalar curvature. Then for $-1 < \delta < 0$ we have
\[\theta \geq \frac{(n-1)\delta - 1}{n(n-1)} R. \]

In addition, if $\gamma \geq 0$ then $\theta \leq \frac{\delta R}{n}$ and $R > 0$.

Proof. Differentiating covariantly (2.5) gives
\[(1 + \delta) R_{ij} \nabla_i \nabla_j f = \delta \Delta f R + (1 - n) \Delta h. \]
Using (1.4), we have $\Delta f = (-\delta R + n\theta) f + n\gamma$ and $\Delta h = \theta \Delta f$, thus the above formula becomes
\[(1 + \delta) (-\delta |Ric|^2 + \theta R) f + (1 + \delta) \gamma R = (\delta R + (1 - n) \theta) \Delta f \]
\[= (\delta R + (1 - n) \theta) [(-\delta R + n\theta) f + n\gamma], \]
that is,
\[(n-1) \left[(n\theta - \delta R) f + n\gamma \right] \left[\theta - \frac{(n-1)\delta - 1}{n(n-1)} R \right] = \delta (1 + \delta) |\hat{Ric}|^2 f. \]
Here we have used $|Ric|^2 = |\hat{Ric}|^2 + \frac{R^2}{n}$. As f vanishes on the boundary, we have
\[0 = \int_M \text{div}(f \nabla f) dV_g = \int_M f \Delta f dV_g + \int_M |\nabla f|^2 dV_g \]
\[= \int_M f \left[(n\theta - \delta R) f + n\gamma \right] dV_g + \int_M |\nabla f|^2 dV_g, \]
that is,
\[\int_M \left[(n\theta - \delta R) f + n\gamma \right] f dV_g = -\int_M |\nabla f|^2 dV_g. \]
For $-1 < \delta < 0$, integrating (2.7) over M and using (2.8), we have

$$-(n - 1)\left[\theta - \frac{(n - 1)\delta - 1}{n(n - 1)}R\right] \int_M |\nabla f|^2dV_g = \delta(1 + \delta) \int_M |\text{Ric}|^2f^2dV_g \leq 0,$$

which yields (2.6). Furthermore, if $\gamma \geq 0$ then from (2.8) we obtain

$$(n\theta - \delta R) \int_M f^2dV_g = -n\gamma \int_M fdV_g - \int_M |\nabla f|^2dV_g \leq 0,$$

that means that $\frac{(n - 1)\delta - 1}{n(n - 1)}R \leq \theta \leq \frac{\delta R}{n}$. This shows $R > 0$. Therefore we complete the proof. \hfill \square

Lemma 2.3. Let (M^n, g) be a compact gradient Einstein-type manifold satisfying (1.4) with constant scalar curvature. Then we have:

$$\frac{1}{2}\text{div}(f|\nabla|\text{Ric}|^2) = (1 - \delta)|\nabla_i(fC_{ijk}R_{jk}) - \frac{\delta - 1}{2}(\nabla f, |\nabla|\text{Ric}|^2)$$

$$- \frac{1}{n(n - 1)}|\text{Ric}|^2\Delta f - (\delta + 1)f \frac{(n - 2)\delta - n}{n - 2}R_{ij}R_{jk}$$

$$- \frac{1}{2}f|C|^2 + f|\nabla \text{Ric}|^2 - (\delta + 1)f \left[W_{ijkl}R_{ik}R_{jl}\right]$$

$$- \frac{R^3}{n(n - 1)(n - 2)} - n(n - 1)(n - 2)\frac{R|\text{Ric}|^2}{n(n - 1)(n - 2)}$$

$$+ \Delta hR - \nabla_i\nabla_j h R_{ij}.$$

Proof. Since R is constant, by (2.2) and (2.4) we compute

$$\nabla_i(-\delta\nabla_j fR_{ik}R_{jk} + R_{ijkl}\nabla_l fR_{jk})$$

$$= -\delta\nabla_i(\nabla_j fR_{ik}R_{jk}) + \nabla_i \left(-\delta C_{ijk}R_{jk}
ight)$$

$$- \delta(\nabla_i f|\text{Ric}|^2 - \nabla_j fR_{ik}R_{jk}) + \nabla_i h R - \nabla_j h R_{ij} \right)$$

$$= -\delta \nabla_i(fC_{ijk}R_{jk}) - \delta(\nabla f, |\nabla|\text{Ric}|^2) - \delta|\text{Ric}|^2\Delta f + \Delta h R - \nabla_i\nabla_j h R_{ij}.$$

Here we have used $\nabla_i h R_{ij} = \frac{\delta}{n} \nabla_j R = 0$.

At the same time, by (1.4) we also have

$$\nabla_i(-\delta\nabla_j fR_{ik}R_{jk} + R_{ijkl}\nabla_l fR_{jk})$$

$$= -\delta(\nabla_i \nabla_j fR_{ik}R_{jk} + \nabla_j fR_{ik}\nabla_i R_{jk}) + \nabla_i R_{ijkl}\nabla_l fR_{jk}$$

$$+ R_{ijkl}\nabla_i \nabla_l fR_{jk} + R_{ijkl}\nabla_i f\nabla_l R_{jk}$$

$$= -\delta(\nabla f R_{ik}R_{jk} + h|\text{Ric}|^2 + \nabla_j fR_{ik}\nabla_i R_{jk}) + \nabla_i R_{ijkl}\nabla_l fR_{jk}$$

$$- \delta f R_{ijkl} R_{ij} - h|\text{Ric}|^2 + R_{ijkl}\nabla_l f\nabla_i R_{jk}.$$

From (2.1), using (2.3) one can verify

$$\nabla_1 R_{ijkl} = \nabla_i W_{ijkl} + \frac{1}{n - 2}(\nabla_i R_{jl}g_{ik} - \nabla_i R_{jk}g_{il})$$

$$= -\frac{n - 3}{n - 2}C_{ijkl} + \frac{1}{n - 2}(\nabla_k R_{jl} - \nabla_l R_{jk})$$

$$= -C_{ijkl}.$$

and from (2.4) we obtain

\[R_{ijkl} \nabla_i f \nabla_i R_{jk} = \left(-\delta f (\nabla_i R_{jk} - \nabla_j R_{ik}) - \delta (\nabla_i f R_{jk} - \nabla_j f R_{ik}) \right. \]
\[+ \nabla_i h_{jk} - \nabla_j h_{ik} \left\} \nabla_i R_{jk} \right. \]
\[= -\delta f C_{ijk} \nabla_i R_{jk} - \frac{\delta}{2} (\nabla f, \nabla |Ric|^2) + \delta \nabla_j f R_{ik} \nabla_i R_{jk} \]
\[= -\frac{\delta f}{2} |C|^2 - \frac{\delta}{2} (\nabla f, \nabla |Ric|^2) + \delta \nabla_j f R_{ik} \nabla_i R_{jk}. \]

By the skew-symmetric of \(C_{ijk} \), substituting the above two equations into (2.10) implies

\[(2.11) \]
\[\nabla_i (\nabla_j f R_{ik} R_{jk} + R_{ijkl} \nabla_i f R_{jk}) \]
\[= \delta f (\delta R_{ijk} R_{jk} + R_{ijkl} R_{jl}) + C_{ijk} \nabla_j f R_{ik} \]
\[- \frac{\delta f}{2} |C|^2 - \frac{\delta}{2} (\nabla f, \nabla |Ric|^2) - (\delta + 1) h |Ric|^2. \]

On the other hand, making use of Ricci identity and (2.2), a straightforward calculation gives (see [1, Eq.(3-3)])

\[(2.12) \]
\[\frac{1}{2} f |C|^2 = f |\nabla Ric|^2 + C_{ijk} \nabla_j f R_{ik} + \frac{1}{2} (\nabla f, \nabla |Ric|^2) \]
\[+ f (R_{ij} R_{jk} R_{ki} - R_{ijkl} R_{jl}) - \nabla_j (f \nabla_i R_{jk} R_{ik}). \]

Thus inserting (2.12) into (2.11), we conclude

\[(2.13) \]
\[\nabla_i (\nabla_j f R_{ik} R_{jk} + R_{ijkl} \nabla_i f R_{jk}) \]
\[= (\delta + 1) f (\nabla R_{ijkl} R_{jl} + R_{ijkl} R_{jl}) + \frac{1}{2} \frac{\delta}{2} f |C|^2 - f |\nabla Ric|^2 \]
\[- \frac{\delta + 1}{2} (\nabla f, \nabla |Ric|^2) - (\delta + 1) h |Ric|^2 + \nabla_j (f \nabla_i R_{jk} R_{ik}) \]
\[= (\delta + 1) f (\nabla R_{ijkl} R_{jl} + R_{ijkl} R_{jl}) + \frac{1}{2} \frac{\delta}{2} f |C|^2 - f |\nabla Ric|^2 \]
\[- \frac{\delta + 1}{2} (\nabla f, \nabla |Ric|^2) - (\delta + 1) h |Ric|^2 + \nabla_j (f C_{ijk} R_{ik}) + \frac{1}{2} \text{div}(f \nabla |Ric|^2). \]

Now we combine (2.13) and (2.9) to get

\[(2.14) \]
\[\frac{1}{2} \text{div}(f \nabla |Ric|^2) = (1 - \delta) \nabla_i (f C_{ijk} R_{jk}) - \frac{\delta - 1}{2} (\nabla f, \nabla |Ric|^2) - \delta |Ric|^2 \Delta f \]
\[- (\delta + 1) f ((\nabla - 1) R_{ijkl} R_{jk} + R_{ijkl} R_{jl}) \]
\[- \frac{\delta}{2} f |C|^2 + f |\nabla Ric|^2 + (\delta + 1) h |Ric|^2 + \Delta h R - \nabla_j \nabla_j h R_{ij}. \]

Contracting equation (1.4) gives \(h = \frac{1}{n} (\Delta f + \delta f R) \), thus (2.14) becomes

\[\frac{1}{2} \text{div}(f \nabla |Ric|^2) = (1 - \delta) \nabla_i (f C_{ijk} R_{jk}) - \frac{\delta - 1}{2} (\nabla f, \nabla |Ric|^2) - \frac{(n - 1) \delta - 1}{n} |Ric|^2 \Delta f \]
\[- (\delta + 1) f ((\nabla - 1) R_{ijkl} R_{jk} + R_{ijkl} R_{jl}) \]
\[- \frac{\delta}{2} f |C|^2 + f |\nabla Ric|^2 + (\delta + 1) h |Ric|^2 + \Delta h R - \nabla_j \nabla_j h R_{ij}. \]

Finally, taking account (2.1) into the above equation, we get the desired equation. \(\square \)
Next we remember that Baltazar-Ribeiro.JR obtained the following divergent formula for any Riemannian manifold with constant scalar curvature.

Lemma 2.4. ([1, Lemma 3.1]) Let \((M^n, g)\) be a connected Riemannian manifold with constant scalar curvature and \(f : M \to \mathbb{R}\) be a smooth function defined on \(M\). Then we have

\[
div(f|\nabla Ric|^2) = - f|C|^2 + 2f|\nabla Ric|^2 + \langle \nabla f, \nabla |Ric|^2 \rangle + \frac{2n}{n-2}fR_{ij}R_{ik}R_{jk}
\]

\[
- \frac{4n-2}{(n-1)(n-2)}fR|Ric|^2 - \frac{2}{n(n-2)}fR^3
\]

\[
+ 2\nabla_i(fC_{ijk}R_{jk}) + 2C_{ijk}\nabla_j fR_{ik} - 2fW_{ijkl}R_{ik}R_{jl}.
\]

By Lemma 2.3 and Lemma 2.4, we have

\[
div(f|\nabla Ric|^2) = - \frac{\delta}{2}(\nabla_i(fC_{ijk}R_{jk}) + 2C_{ijk}\nabla_j fR_{ik} - 2fW_{ijkl}R_{ik}R_{jl} + \frac{2n}{n-2}fR_{ij}R_{ik}R_{jk})
\]

\[
+ \delta f|\nabla Ric|^2 - \frac{2n(n-1)}{n(n-2)}\delta fR|\nabla Ric|^2 + \Delta hR - \nabla_i\nabla_j hR_{ij}
\]

\[- (1 - \delta)C_{ijk}\nabla_j fR_{ik} - 2\delta fW_{ijkl}R_{ik}R_{jl}.
\]

Proof. Since \(|Ric|^2 = |\hat{Ric}|^2 + \frac{\hat{R}^2}{n}\), combining Lemma 2.3 and Lemma 2.4 to remove the term \(\nabla_i(fC_{ijk}R_{jk})\), we conclude

\[
\delta \text{div}(f|\nabla Ric|^2) = - \frac{2n(n-1)\delta - 2}{n}Ric^2 \Delta f - \frac{2(n-1)(n-2)}{n}R_{ij}R_{ik}R_{jk}
\]

\[
+ \frac{2(\delta + 1)(n-1)(n-2) - 4n(2n-1)}{n(n-2)}\delta fR|Ric|^2 + 2\delta f|\nabla Ric|^2
\]

\[- 2\Delta hR - 2\nabla_i\nabla_j hR_{ij} - 2(1 - \delta)C_{ijk}\nabla_j fR_{ik}
\]

\[- 4\delta fW_{ijkl}R_{ik}R_{jl} + \frac{2(\delta + 1)(n-2) - 4n}{n^2(n-2)}\delta fR^3.
\]

Using \(Ric = \hat{Ric} - \frac{\hat{R}}{n}g\), a direct computation yields

\[
(2.15) \quad \frac{\delta}{2} \text{div}(f|\nabla Ric|^2) = - \frac{2(n-1)\delta - 2}{n}Ric^2 \Delta f - \frac{2(n-1)(n-2) - 4n}{n}R_{ij}R_{ik}R_{jk}
\]

\[
+ \frac{2(\delta + 1)(n-1)(n-2) - 4n(2n-1)}{n(n-2)}\delta fR|Ric|^2 + 2\delta f|\nabla Ric|^2
\]

\[- 2\Delta hR - 2\nabla_i\nabla_j hR_{ij} - 2(1 - \delta)C_{ijk}\nabla_j fR_{ik}
\]

\[- 4\delta fW_{ijkl}R_{ik}R_{jl} + \frac{2(\delta + 1)(n-2) - 4n}{n^2(n-2)}\delta fR^3.
\]

Using \(\nabla_i\nabla_j hR_{ij} = \hat{R}_{ij}R_{ik}R_{jk} + \frac{3}{n}R|Ric|^2 + \frac{\hat{R}^3}{n^2}\),

Substituting (2.16) into the previous equation and a straightforward calculation, we get the desired equation (2.15). \(\square\)

3. Proof of results

3.1. Proof of Theorem 1.2.

Since \(R\) is constant, in view of (2.2), Equation (2.4) may be rewritten as

\[
\delta fC_{ijk} = - R_{ijkl}\nabla_i f - \delta(\nabla_i fR_{jk} - \nabla_j fR_{ik}) + \nabla_i h_{gjk} - \nabla_j h_{gik}.
\]
Making use of (2.1) and (2.5), we thus have

\[
\delta f C_{ijk} = -W_{ijkl} \nabla_l f - \frac{1}{n-2} (R_{ik} \nabla_j f + R_{jl} \nabla_i f g_{jk} - R_{al} \nabla_i f g_{jk} - R_{jk} \nabla_i f) \\
+ \frac{R}{(n-1)(n-2)} (\nabla_j f g_{ik} - \nabla_i f g_{jk}) - \delta (\nabla_i f R_{jk} - \nabla_j f R_{ik}) \\
+ \nabla_i h g_{jk} - \nabla_j h g_{ik} \\
= -W_{ijkl} \nabla_l f - \frac{1}{n-2} (n-2) \delta (R_{ik} \nabla_j f - R_{jk} \nabla_i f) \\
+ \frac{1}{(n-1)(n-2)(1+\delta)} R (\nabla_j f g_{ik} - \nabla_i f g_{jk}) \\
+ \frac{1}{(n-2)(1+\delta)} (\nabla_j h g_{ik} - \nabla_i h g_{jk}).
\]

Hence, by the trace-free in any index of C_{ijk}, we have

\[
\delta f |C|^2 = -W_{ijkl} \nabla_s f C_{bjk} - \frac{2(1-(n-2)\delta)}{n-2} R_{ik} \nabla_j f C_{ijk}.
\]

If (M^n, g) has zero radial Weyl curvature, namely, $W_{ijkl} \nabla_s f = 0$, then

(3.1) \[
\delta f |C|^2 = -\frac{2(1-(n-2)\delta)}{n-2} R_{ik} \nabla_j f C_{ijk}
\]

and it follows from (2.3) that

\[
0 = \nabla_i (W_{ijkl} \nabla_k f R_{jl}) \\
= \nabla_i W_{ijkl} \nabla_k f R_{jl} + W_{ijkl} \nabla_i \nabla_k R_{jl} + W_{ijkl} \nabla_k f \nabla_i R_{jl} \\
= \frac{n-3}{n-2} C_{ijkl} \nabla_k f R_{jl} - \delta f W_{ijkl} R_{ik} R_{jl},
\]

that is,

(3.2) \[
\delta f W_{ijkl} R_{ik} R_{jl} = -\frac{n-3}{n-2} C_{ijkl} \nabla_j f R_{ik}.
\]

If $\gamma = 0$, we obtain $\Delta f = (-\delta R + n\theta) f$ from (1.4). Since $h = \theta f$ with θ being constant, it is easy to see that $\Delta h = \theta \Delta f$ and $\nabla_i \nabla_j h = \theta \nabla_i \nabla_j f = \theta (-\delta f R_{ij} + h g_{ij})$. Therefore, by
integrating (2.15) over \(M \), we apply (3.1) and (3.2) to achieve

\[
0 = \frac{\delta(n-1) - 1}{n} \int_M |\tilde{Ric}|^2 dV_g + \frac{(n-2)\delta - n - 2}{n-2} \delta \int_M f \tilde{R}_{ij} \tilde{R}_{ik} \tilde{R}_{jk} dV_g
- \delta \int_M f |\nabla \tilde{Ric}|^2 dV_g + \frac{2\delta(n-1) - 2}{n(n-1)} \delta \int_M f R |\tilde{Ric}|^2 dV_g
- \left[\theta \frac{n-1}{n} R - \frac{\delta(n-1) - 1}{n^2} R^2 \right] \int_M \Delta f dV_g - \theta \delta \int_M f |\tilde{Ric}|^2 dV_g
- \frac{(n-2)\delta + n - 4}{n - 2} \int_M C_{ijk} \nabla_j f \tilde{R}_{ik} dV_g
= \frac{(n-2)\delta - n - 2}{n - 2} \delta \int_M f \tilde{R}_{ij} \tilde{R}_{ik} \tilde{R}_{jk} dV_g - \delta \int_M f |\nabla \tilde{Ric}|^2 dV_g
+ \left[\left(- \frac{\delta(n-1)(n-3) - (n-3)}{n(n-1)} R + (n-2)\theta \right) \delta - \theta \right] \int_M f |\tilde{Ric}|^2 dV_g
+ \delta \frac{(n-2)\delta + n - 4}{2(1 - (n-2)\delta)} \int_M f |C|^2 dV_g.
\]

Moreover, recall that the classical Okumura’s lemma [12, Lemma 2.1] implies

\[
\tilde{R}_{ij} \tilde{R}_{ik} \tilde{R}_{jk} \geq - \frac{n - 2}{\sqrt{n(n-1)}} |\tilde{Ric}|^3,
\]

and \(\theta \leq \frac{\delta R}{n} \) and \(R > 0 \) when \(\gamma = 0 \) (see Lemma 2.2), thus we have

\[
0 \geq - \frac{(n-2)\delta - n - 2}{\sqrt{n(n-1)}} \delta \int_M f |\tilde{Ric}|^3 dV_g - \delta \int_M f |\nabla \tilde{Ric}|^2 dV_g
+ \frac{\delta(n-1) - 2}{n(n-1)} R \delta \int_M f |\tilde{Ric}|^2 dV_g + \frac{(n-2)\delta + n - 4}{2(1 - (n-2)\delta)} \int_M f |C|^2 dV_g
= \int_M \left[\frac{\delta(n-1) - 2}{n(n-1)} R \delta - \frac{(n-2)\delta - n - 2}{\sqrt{n(n-1)}} |\tilde{Ric}| \delta |\tilde{Ric}| \right] f |\tilde{Ric}|^2 dV_g
- \delta \int_M f |\nabla \tilde{Ric}|^2 + \delta \frac{(n-2)\delta + n - 4}{2(1 - (n-2)\delta)} \int_M f |C|^2 dV_g.
\]

Therefore under the assumption of Theorem 1.2, the above inequality shows \(\tilde{Ric} = 0 \), i.e. \(M \) is Einstein. So it suffices to apply Theorem 1.1 to conclude that \(M \) is isometric to a hemisphere of a round sphere. This complete the proof.

3.2. **Proof of Theorem 1.3.** Here we shall give two methods to prove the theorem. The first method is followed from the idea of [2, Theorem 2].
By Lemma 2.5, we have

\[(3.3) \quad \frac{\delta}{2} \text{div}(f^2 \nabla |\text{Ric}|^2) = \frac{\delta}{2} f \text{div}(f \nabla |\text{Ric}|^2) + \frac{\delta}{2} (f \nabla |\text{Ric}|^2, \nabla f) \]

\[= f - \frac{\delta(n-1) - 1}{n} |\text{Ric}|^2 \Delta f - \frac{\delta(n-2)\delta - n - 2}{n-2} \mathring{R}_{ij} \mathring{R}_{ik} \mathring{R}_{jk} \]

\[+ \delta f |\nabla \text{Ric}|^2 - \frac{2\delta(n-1) - 2}{n(n-1)} \delta f R|\text{Ric}|^2 + \Delta h R - \nabla \nabla h R_{ij} \]

\[- (1-\delta) C_{ijk} \nabla_j f R_{ik} - 2\delta f W_{ijkl} \mathring{R}_{ik} \mathring{R}_{jl} \]

\[+ \frac{\delta}{2} (f \nabla |\text{Ric}|^2, \nabla f). \]

Noticing that \(f \) vanishes on the boundary \(\partial M \) and integrating over \(M \) by part, one has

\[\int_M (f \nabla |\text{Ric}|^2, \nabla f) dV_g = - \int_M f \Delta f |\text{Ric}|^2 dV_g - \int_M |\text{Ric}|^2 |\nabla f|^2 dV_g. \]

Now, integrating (3.3) over \(M \) and using the above relation, we get

\[0 = \frac{\delta(n-1) - 1}{n} \int_M f |\text{Ric}|^2 \Delta f dV_g + \frac{\delta(n-2)\delta - n - 2}{n-2} \int_M f^2 \mathring{R}_{ij} \mathring{R}_{ik} \mathring{R}_{jk} dV_g \]

\[- \delta \int_M f^2 |\nabla \text{Ric}|^2 dV_g + \frac{2\delta(n-1) - 2}{n(n-1)} \delta \int_M f^2 R|\text{Ric}|^2 dV_g \]

\[- \int_M f \Delta h R dV_g + \int_M f \nabla \nabla h R_{ij} dV_g \]

\[+ (1-\delta) \int_M f C_{ijk} \nabla_j f R_{ik} dV_g + 2\delta \int_M f^2 W_{ijkl} \mathring{R}_{ik} \mathring{R}_{jl} dV_g \]

\[+ \frac{\delta}{2} (\int_M f \Delta f |\text{Ric}|^2 dV_g + \int_M |\text{Ric}|^2 |\nabla f|^2 dV_g). \]

For \(h = \theta f + \gamma \), as before we also have that \(\Delta h = \theta \Delta f \) and \(\nabla \nabla h = \theta (-\delta f R_{ij} + h g_{ij}) \). Substituting this into the previous equation yields

\[(3.4) \quad 0 = \frac{\delta(3n-2) - 2}{2n} \int_M f |\text{Ric}|^2 \Delta f dV_g + \left(\frac{(\delta(n-1) - 1}{n^2} R^2 - \theta \frac{n-1}{n} R \right) \int_M f \Delta f dV_g \]

\[+ \frac{\delta(n-2)\delta - n - 2}{n-2} \int_M f^2 \mathring{R}_{ij} \mathring{R}_{ik} \mathring{R}_{jk} dV_g \]

\[- \delta \int_M f^2 |\nabla \text{Ric}|^2 dV_g + \frac{2\delta(n-1) - 2}{n(n-1)} \delta \int_M f^2 R|\text{Ric}|^2 dV_g \]

\[- \delta \theta \int_M f^2 |\text{Ric}|^2 dV_g + (1-\delta) \int_M f C_{ijk} \nabla_j f R_{ik} dV_g \]

\[+ 2\delta \int_M f^2 W_{ijkl} \mathring{R}_{ik} \mathring{R}_{jl} dV_g + \frac{\delta}{2} \int_M |\text{Ric}|^2 |\nabla f|^2 dV_g. \]

Recalling (2.2) and the constancy of \(R \), we compute

\[C_{ijk} \nabla_j f R_{ik} = (\nabla_i R_{jk} - \nabla_j R_{ik}) \nabla_j f R_{ik} \]

\[= R_{ik} \nabla_j f \nabla_i R_{jk} - \frac{1}{2} (\nabla f, \nabla |\text{Ric}|^2) \]

\[= \mathring{R}_{ik} \nabla_j f \nabla_i \mathring{R}_{jk} - \frac{1}{2} (\nabla f, \nabla |\text{Ric}|^2). \]
Integrating this over M by part, we thus have
\[
\int_M fC_{ijk} \nabla_j fR_{ik} dV_g = \int_M f\dot{R}_{ik} \nabla_j f\dot{R}_{jk} dV_g - \int_M \frac{1}{2} f(\nabla f, \nabla |\dot{\text{Ric}}|^2) dV_g
\]
\[
= -\int_M |\dot{\text{Ric}}(\nabla f)|^2 dV_g - \int_M f\dot{R}_{ik} \nabla_i \nabla_j f dV_g
\]
\[
- \int_M \frac{1}{2} f(\nabla f, \nabla |\dot{\text{Ric}}|^2) dV_g
\]
\[
= -\int_M |\dot{\text{Ric}}(\nabla f)|^2 dV_g + \int_M \delta f^2 \dot{R}_{ik} \dot{R}_{jk} dV_g
\]
\[
+ \frac{n-2}{2n} \int_M f\Delta f |\dot{\text{Ric}}|^2 dV_g + \int_M \frac{1}{2} |\nabla f|^2 |\dot{\text{Ric}}|^2 dV_g.
\]

Inserting this into (3.4) and taking account (2.8), we thus achieve
\[
0 = \frac{2n\delta + n - 4}{2n} \int_M f|\dot{\text{Ric}}|^2 \Delta f dV_g + \left[\frac{\delta(n-1) - 1}{n^2} R^2 - \theta \frac{n-1}{n} \right] \int_M f\Delta f
\]
\[
- \frac{4\delta}{n-2} \int_M f^2 \dot{R}_{ik} \dot{R}_{jk} dV_g - \delta \int_M f^2 |\nabla \dot{\text{Ric}}|^2 dV_g
\]
\[
+ \frac{2\delta(n-1)}{n(n-1)} \int_M f^2 |\text{Ric}|^2 dV_g - \theta \delta \int_M f^2 |\dot{\text{Ric}}|^2 dV_g
\]
\[
- (1 - \delta) \int_M |\dot{\text{Ric}}(\nabla f)|^2 dV_g + \frac{1}{2} \int_M |\nabla f|^2 |\dot{\text{Ric}}|^2 dV_g + 2\delta \int_M f^2 W_{ijkl} \dot{R}_{ik} \dot{R}_{jl} dV_g
\]
\[
= \frac{2n\delta + n - 4}{2n} \int_M f|\dot{\text{Ric}}|^2 \Delta f dV_g - \frac{4\delta}{n-2} \int_M f^2 \dot{R}_{ik} \dot{R}_{jk} dV_g
\]
\[
+ \frac{2\delta(n-1)}{n(n-1)} R^2 - \theta \frac{n-1}{n} \int_M |\nabla f|^2 dV_g
\]
\[
- \left[\frac{\delta(n-1) - 1}{n^2} R^2 - \theta \frac{n-1}{n} \right] \int_M |\nabla f|^2 dV_g
\]
\[
- (1 - \delta) \int_M |\dot{\text{Ric}}(\nabla f)|^2 dV_g + \frac{1}{2} \int_M |\dot{\text{Ric}}|^2 |\nabla f|^2 dV_g.
\]

Thus the proof is complete. \qed

Another proof of Theorem 1.3. First we take the covariant derivative of (2.4) to achieve
\[
\delta f(\nabla_i \nabla_j R_{jk} - \nabla_i \nabla_j R_{ik}) = -\delta \nabla_i f(\nabla_j R_{jk} - \nabla_j R_{ik}) - \nabla_i R_{ijkl} \nabla_l f - R_{ijkl} \nabla_i \nabla_l f - R_{ijlk} \nabla_j \nabla_l f - R_{iklj} \nabla_j \nabla_l f - R_{ijlk} \nabla_j \nabla_l f + \nabla_i \nabla_j h_{gjk} - \nabla_i \nabla_j h_{gik}.
\]

Then letting the index $t = i$ and contracting the equation gives
\[
\delta f(\Delta R_{jk} - \nabla_j \nabla_j R_{ik}) = \delta \nabla_i f(\nabla_j R_{jk} - \nabla_j R_{ik}) - R_{ijkl} \nabla_i f - R_{ijlk} \nabla_i \nabla_l f - R_{ijlk} \nabla_i \nabla_l f - R_{iklj} \nabla_j \nabla_l f + \Delta h_{gjk} - \nabla_i \nabla_j h.
\]

From the commutation relations for the second covariant derivative of R_{ik}, we have
\[
\nabla_i \nabla_j R_{ik} = \nabla_j \nabla_i R_{ik} + R_{iks} R_{ij} + R_{iks} R_{ij} = R_{iks} R_{ij} + R_{iks} R_{ij}.
\]
On the other hand, from the second Bianchi identities we have

\[(3.7) \quad \nabla_j R_{ijk} \nabla_l f = \nabla_i R_{ik} \nabla_l f - \nabla_k R_{il} \nabla_l f.\]

Thus substituting (3.6) and (3.7) into (3.5), we conclude

\[
\delta f \Delta R_{jk} = \delta(\nabla_i f \nabla_j R_{ik} + f R_{sk} R_{js} + 2f R_{is} R_{ijk}) \\
+ (\nabla_i R_{jk} - \nabla_k R_{ij}) \nabla_l f + (1 + \delta) h R_{jk} \\
- \delta(\Delta f R_{jk} + 2\nabla_i f \nabla_k R_{jk} + \delta f R_{ij} R_{ik}) + \Delta h_{jk} - \nabla_k \nabla_j h \\
= \delta(\nabla_i f \nabla_j R_{ik} + 2f R_{is} R_{ijk}) + ((1 - 2\delta) \nabla_i R_{jk} - \nabla_k R_{jl}) \nabla_l f \\
+ \Delta h_{jk} - \nabla_k \nabla_j h + (\delta - \delta^2) f R_{ij} R_{ik} + [(1 + \delta) h - \delta \Delta f] R_{jk}.
\]

Since \(R \) is constant, using the above equation, we compute

\[
\frac{1}{2} \delta f |\hat{\Delta} \hat{\text{Ric}}|^2 = \frac{1}{2} \delta f |\text{Ric}|^2 = \delta f \Delta R_{jk} + \delta f |\hat{\text{Ric}}|^2 \\
= \delta(\nabla_i f \nabla_j R_{ik} R_{jk} + 2f R_{sk} R_{js} + 2f R_{is} R_{ijk}) \\
+ ((1 - 2\delta) \nabla_i R_{jk} R_{jl} - \nabla_k R_{ij} R_{jk}) \nabla_l f \\
+ \Delta h_{jk} - \nabla_k \nabla_j h + (\delta^2 + 1) f R_{ij} R_{ik} R_{jk} + [(1 + \delta) h - \delta \Delta f] |\text{Ric}|^2 + \delta f |\hat{\text{Ric}}|^2 \\
= 2\delta f R_{jk} R_{ks} R_{ijks} + \frac{1 - 2\delta}{2} \langle \nabla f, |\text{Ric}|^2 \rangle - (1 - \delta) \nabla_k R_{ij} R_{jk} \nabla_l f \\
+ \Delta h_{jk} - \nabla_k \nabla_j h R_{jk} + (\delta^2 + \frac{n(n + 2)\delta}{n - 2}) f R_{ij} R_{ik} R_{jk} \\
+ [(1 + \delta) h - \delta \Delta f] |\text{Ric}|^2 + \delta f |\hat{\text{Ric}}|^2.
\]

Moreover, recalling (2.1) we obtain

\[(3.8) \quad \frac{1}{2} \delta f |\hat{\Delta} \hat{\text{Ric}}|^2 = 2\delta f \left[W_{ijkl} R_{jk} R_{il} - \frac{2n - 1}{(n - 1)(n - 2)} R |\text{Ric}|^2 + \frac{R^2}{(n - 1)(n - 2)} \right] \\
+ \frac{1 - 2\delta}{2} \langle \nabla f, |\text{Ric}|^2 \rangle - (1 - \delta) \nabla_k R_{ij} R_{jk} \nabla_l f \\
+ \Delta h_{jk} - \nabla_k \nabla_j h R_{jk} + \left(- \delta^2 + \frac{n(n + 2)\delta}{n - 2} \right) f R_{ij} R_{ik} R_{jk} \\
+ [(1 + \delta) h - \delta \Delta f] |\text{Ric}|^2 + \delta f |\hat{\text{Ric}}|^2.
\]

Now, as we known, from Eq.(1.4) one has

\[(3.9) \quad h = \frac{\delta R f + \Delta f}{n} \quad \text{and} \quad \nabla_i \nabla_j h = \theta(-\delta f R_{ij} + h g_{ij}).
\]

Hence, by (2.16) and (3.9), Eq.(3.8) becomes

\[(3.10) \quad \frac{1}{2} \delta f |\hat{\Delta} \hat{\text{Ric}}|^2 = 2\delta f W_{ijkl} \hat{R}_{jk} \hat{R}_{il} - \frac{2(n - 1)\delta^2 - 2\delta}{n(n - 1)} f R |\hat{\text{Ric}}|^2 \\
+ \frac{(1 - 2\delta)}{2} \langle \nabla f, |\hat{\text{Ric}}|^2 \rangle - (1 - \delta) \nabla_k \hat{R}_{ij} \hat{R}_{jk} \nabla_l f \\
+ \theta \frac{n - 1}{n} \Delta f R + \theta \delta f |\hat{\text{Ric}}|^2 + \left(- \delta^2 + \frac{n(n + 2)\delta}{n - 2} \right) f \hat{R}_{ij} \hat{R}_{ik} \hat{R}_{jk} \\
- \frac{(n - 1)\delta - 1}{n} \Delta f |\text{Ric}|^2 + \delta f |\hat{\text{Ric}}|^2.
\]
As \(f \) vanishes on the boundary \(\partial M \), we have

\[
\begin{align*}
(3.11) \quad & \int_M f \langle \nabla f, \nabla |\tilde{\text{Ric}}|^2 \rangle dV_g =
\frac{1}{2} \int_M \text{div}(f^2 \nabla |\tilde{\text{Ric}}|^2) dV_g - \frac{1}{2} \int_M f^2 \Delta |\tilde{\text{Ric}}|^2 dV_g \\
& = - \frac{1}{2} \int_M f^2 \Delta |\tilde{\text{Ric}}|^2 dV_g,
\end{align*}
\]

\[
(3.12) \quad \int_M f \nabla_k \tilde{R}_{ijkl} \nabla_l f dV_g = \int_M \nabla_k (f \tilde{R}_{ij} \tilde{R}_{jk} \nabla_l f) dV_g - \int_M |\tilde{\text{Ric}}(\nabla f)|^2 dV_g \\
& \quad - \int_M f \tilde{R}_{ij} \tilde{R}_{jk} \nabla_k \nabla_l f dV_g \\
& = - \int_M |\tilde{\text{Ric}}(\nabla f)|^2 dV_g - \int_M f \tilde{R}_{ij} \tilde{R}_{jk} \nabla_k \nabla_l f dV_g.
\]

Multiplying (3.10) by \(f \) and applying (3.11) and (3.12), we deduce

\[
- \frac{1}{2} \int_M f \langle \nabla f, \nabla |\tilde{\text{Ric}}|^2 \rangle dV_g = 2\delta \int_M f^2 W_{ijkl} \tilde{R}_{ij} \tilde{R}_{kl} dV_g - \frac{2(n-1)\delta^2 - 2\delta}{n(n-1)} \int_M f^2 R |\tilde{\text{Ric}}|^2 dV_g \\
+ (1 - \delta) \left(\int_M |\tilde{\text{Ric}}(\nabla f)|^2 + \int_M f \tilde{R}_{ij} \tilde{R}_{jk} (\delta R_{ij} + h_{ij}) \right) dV_g \\
+ \theta \frac{n-1}{n} \int_M f \Delta f R dV_g + \theta \delta \int_M f^2 |\tilde{\text{Ric}}|^2 dV_g \\
+ (-\delta^2 + \frac{(n+2)\delta}{n-2}) \int_M f^2 \tilde{R}_{ij} \tilde{R}_{ik} \tilde{R}_{jk} dV_g \\
- \frac{(n-1)\delta^2 - 1}{n} \int_M f \Delta f |\tilde{\text{Ric}}|^2 dV_g + \delta \int_M f^2 |\nabla \tilde{\text{Ric}}|^2 dV_g,
\]

that is,

\[
0 = - 2\delta \int_M f^2 W_{ijkl} \tilde{R}_{ij} \tilde{R}_{kl} dV_g + (1 - \delta) \int_M |\tilde{\text{Ric}}(\nabla f)|^2 dV_g \\
+ \left[\theta \delta - \frac{2(n-1)\delta^2 - 2\delta}{n(n-1)} \int_M f^2 |\tilde{\text{Ric}}|^2 dV_g - \frac{1}{2} \int_M |\tilde{\text{Ric}}(\nabla f)|^2 dV_g \\
+ \frac{4\delta}{n-2} \int_M f^2 \tilde{R}_{ij} \tilde{R}_{ik} \tilde{R}_{jk} dV_g + \frac{4 - n - 2\delta}{2n} \int_M f \Delta f |\tilde{\text{Ric}}|^2 dV_g \\
+ \left[\theta \frac{n-1}{n} R - \frac{(n-1)\delta^2 - 1}{n^2} R^2 \int_M f \Delta f dV_g + \delta \int_M f^2 |\nabla \tilde{\text{Ric}}|^2 dV_g. \right]
\]

Finally, by integrating by part, we also give the desired integral formula. \(\square \)

3.3. Proof of Theorem 1.4.

First from (1.5) we have

\[
(3.13) \quad \frac{n-2}{2(n-1)} Y(M, \partial M, [g]) \left(\int_M |u|^2 dV_g \right)^{\frac{n+2}{n-2}} \leq \int_M |\nabla u|^2 dV_g + \frac{n-2}{4(n-1)} \int_M R u^2 dV_g \\
+ \frac{n-2}{2(n-1)} \int_{\partial M} H u^2 dS_g.
\]
for any \(u \in W^{1,2}(M) \). Using Kato inequality \(|\nabla |\hat{\text{Ric}}|^2| \leq |\nabla \text{Ric}|^2\) and choosing \(u = f|\hat{\text{Ric}}|\) in (3.13), Baltazar et al. proved the following inequality (see [2, Eq.(3.16)]):

\[
(3.14) \quad \int_M f^2|\nabla \hat{\text{Ric}}|^2 dV_g \geq \frac{n-2}{4(n-1)} Y(M, \partial M, [g]) \left(\int_M f^{\frac{2n}{n-2}}|\hat{\text{Ric}}|^\frac{2n}{n-2} dV_g \right)^{\frac{n-2}{n}}
\]

\[- (n-2)R \int_M f^2|\hat{\text{Ric}}|^2 dV_g + \int_M f \Delta f|\hat{\text{Ric}}|^2 dV_g.
\]

Meanwhile, a straightforward computation gives (see [2, Eq.(3.19)])

\[
(3.15) \quad |\hat{\text{Ric}}(\nabla f)|^2 \leq \frac{(n-1)\sqrt{2n}}{2n} |\text{Ric}|^2 |\nabla f|^2.
\]

We remark that on every \(n \)-dimensional Riemannian manifold the following estimate holds (see [3, Proposition 2.1]):

\[
| - W_{ijkl} \hat{R}_{ik} \hat{R}_{jl} + \frac{2}{n} \hat{R}_{ij} \hat{R}_{jk} \hat{R}_{ki} | \leq \sqrt{\frac{n-2}{2(n-1)}} \left(|W|^2 + \frac{8}{n(n-2)} |\hat{Ric}|^2 \right)^{\frac{2}{n}} |\hat{Ric}|^2.
\]

As \(\delta < 0 \), we have

\[
(3.16) \quad - \delta W_{ijkl} \hat{R}_{ik} \hat{R}_{jl} + \frac{2\delta}{n} \hat{R}_{ij} \hat{R}_{jk} \hat{R}_{ki} \geq \delta \sqrt{\frac{n-2}{2(n-1)}} \left(|W|^2 + \frac{8}{n(n-2)} |\hat{Ric}|^2 \right)^{\frac{2}{n}} |\hat{Ric}|^2.
\]

Since \(\Delta f = (-\delta R + n\theta) f + n\gamma \) from (1.4), taking account (3.14), (3.15) and (3.16) into Theorem 1.3 and using H"older inequality, we follow

\[
(3.17) \quad 0 \geq \delta \sqrt{\frac{2(n-2)}{n-1}} \left(\int_M \left(|W|^2 + \frac{8}{n(n-2)} |\hat{Ric}|^2 \right)^{\frac{2}{n}} dV_g \right)^{\frac{n}{2}}
\]

\[- \delta \frac{n-2}{4(n-1)} Y(M, \partial M, [g]) \left(\int_M f^{\frac{2n}{n-2}}|\hat{\text{Ric}}|^\frac{2n}{n-2} dV_g \right)^{\frac{n-2}{n}}
\]

\[+ \left(\frac{8(n-1) - (n-4)^2}{4n(n-1)} R - \theta \right) \delta + \frac{n-4}{2} \theta \int_M f^2|\hat{\text{Ric}}|^2 dV_g
\]

\[+ \frac{n-4}{2} \gamma \int_M f|\hat{\text{Ric}}|^2 dV_g + \left[\theta \frac{n-1}{n} R - \frac{\delta(n-1)-n}{n^2} R^2 \right] \int_M |\nabla f|^2 dV_g
\]

\[+ \left[\frac{1}{2} - (1 - \delta) \frac{(n-1)\sqrt{2n}}{2n} \right] \int_M |\hat{\text{Ric}}|^2 |\nabla f|^2 dV_g.
\]

Now, since \(-1 < \delta < 0\), by (2.6) we have

\[
\left(\frac{8(n-1) - (n-4)^2}{4n(n-1)} R - \theta \right) \delta + \frac{n-4}{2} \theta
\]

\[\geq \left(\frac{8(n-1) - (n-4)^2}{4n(n-1)} - \frac{(n-1)\delta - 1}{n(n-1)} \right) R \delta + \frac{(n-4)((n-1)\delta - 1)}{2n(n-1)} R
\]

\[= \frac{4(n-1)\delta^2 + (n^2 - 2n - 4)\delta + 2(n-4)}{4n(n-1)} R > 0 \quad \text{when} \quad 4 \leq n \leq 6.
\]
and
\[\theta \frac{n - 1}{n} R - \frac{\delta(n - 1) - 1}{n^2} R^2 \geq 0. \]

Hence, under the assumptions of Theorem 1.4, from the inequality (3.17) we have \(\tilde{Ric} \equiv 0 \), i.e. \((M^n, g)\) is an Einstein manifold. Finally, we obtain the desired conclusion in view of Theorem 1.1.

3.4. Proof of Corollary 1.1. For a \((m, \rho)\)-quasi-Einstein manifold, it corresponds to the case where \(\delta = -\frac{1}{m}, \theta = -\frac{\rho R + \lambda}{m}, \) and \(\gamma = 0 \), thus when \(m > 1 \) and \(R \) is constant, we have \(-1 < \delta < 0\) and \(\theta \) is constant. Hence \((M^n, g)\) is isometric to a hemisphere of a round sphere by Theorem 1.4.

ACKNOWLEDGEMENT

The author thanks to China Scholarship Council for supporting him to visit University of Turin as a scholar and expresses his gratitude to Professor Luigi Vezzoni and Department of Mathematics for their hospitality.

REFERENCES

[1] H. Baltazar, E. Ribeiro Jr., Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary. *Pac. J. Math.* **297** (2018), 29–45.

[2] H. Baltazar, R. Diógenes, E. Ribeiro Jr. Volume functional of compact 4-manifolds with a prescribed boundary metric. *J. Geom. Anal.* **31** (2021), 4703–4720.

[3] G. Catino, Integral pinched shrinking Ricci solitons. *Adv. Math.* **303** (2016), 279–294.

[4] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, *Math. Z.* **271**(3-4) (2012), 751–756.

[5] G. Catino, P. Mastrolia, D. Monticelli, M. Rigoli, On the geometry of gradient Einstein-type manifolds, *Pac. J. Math.* **286**(1) (2017), 39–67.

[6] J. Corvino, M. Eichmair, P. Miao, Deformation of scalar curvature and volume. *Math. Ann.* **357** (2013), 551–584.

[7] J. Escobar, The Yamabe problem on manifolds with boundary. *J. Diff. Geom.* **34** (1992), 21–84.

[8] A. Freitas, J. N.V. Gomes, Compact gradient Einstein-type manifolds with boundary, arXiv:2205.07827v1.

[9] G. Huang, Y. Wei, The classification of \((m, \rho)\)-quasi-Einstein manifolds, *Ann. Glob. Anal. Geom.* **44** (2013), 269–282.

[10] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, *Calc. Var. PDE.* **36** (2009), 141–171.

[11] J. Nazareno, V. Gomes, A note on gradient Einstein-type manifolds, *Diff. Geom. App.* **66** (2019), 13–22.

[12] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, *Amer. J. Math.* **96** (1974), 207–213.

[13] P. Petersen, W. Wylie, On the classification of gradient Ricci solitons, *Geom. Topol.* **14**(4) (2010), 2277–2300.

COLLEGE OF SCIENCE, CHINA UNIVERSITY OF PETROLEUM-BEIJING, BEIJING, 102249, CHINA

Email address: xmchen@cup.edu.cn