Spatial and temporal patterns of surface-atmosphere energy exchange in a dense urban environment using scintillometry

Crawford, B., Grimmond, C. S. B. ORCID: https://orcid.org/0000-0002-3166-9415, Ward, H. C., Morrison, W. and Kotthaus, S. (2017) Spatial and temporal patterns of surface-atmosphere energy exchange in a dense urban environment using scintillometry. Quarterly Journal of the Royal Meteorological Society, 143 (703). pp. 817-833. ISSN 1477-870X doi: https://doi.org/10.1002/qj.2967 Available at https://centaur.reading.ac.uk/68154/

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1002/qj.2967

Publisher: Royal Meteorological Society
CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Spatial and temporal patterns of surface–atmosphere energy exchange in a dense urban environment using scintillometry

B. Crawford,* C. S. B. Grimmond, H. C. Ward, W. Morrison and S. Kotthaus
Department of Meteorology, University of Reading, UK

*Correspondence to: B. Crawford, Department of Meteorology University of Reading, Earley Gate, PO Box 243, Reading, RG6 6BB, UK. E-mail: b.crawford@reading.ac.uk

Spatially integrated measurements of the surface energy balance (SEB) are needed in urban areas to evaluate urban climate models and satellite observations. Scintillometers allow observations of sensible heat flux \((Q_H) \) over much larger areas than techniques such as eddy covariance (EC), however methods are needed to partition between remaining unmeasured SEB terms. This is the first study to use observed spatial and temporal patterns of \(Q_H \) from a scintillometer network to constrain estimates of remaining SEB terms in a dense, heterogeneous urban environment. Results show that \(Q_H \) dominates the surface energy balance in central London throughout the year, with expected diurnal courses and seasonal trends in \(Q_H \) magnitude related to solar radiation input. Measurements also reveal a clear anthropogenic component of \(Q_H \) with winter (summer) weekday \(Q_H \) values 11.7% (5.1%) higher than weekends. Spatially, \(Q_H \) magnitude is correlated with vegetation and building landcover fraction in the measurement source areas. Spatial analysis provides additional evidence of anthropogenic influence with highest weekday/weekend ratios (1.55) from the City of London. Spatial differences are used to estimate horizontal advection and a novel method to estimate monthly latent heat flux is developed based on observed landcover and wet–dry surface variations in normalized \(Q_H \). Annual anthropogenic heat emissions are estimated to be 46.3 W m\(^{-2}\) using an energy balance residual approach. The methods presented here have potential to significantly enhance understanding of urban areas, particularly in areas with tall buildings where there are few observational data.

Key Words: urban energy balance; surface heterogeneity; scintillometry

Received 7 June 2016; Revised 3 October 2016; Accepted 8 November 2016; Published online in Wiley Online Library

1. Introduction

Urban areas are growing rapidly and contain the majority of the world’s population. Urbanization physically modifies thermal and radiative properties of the surface and drastically alters surface–atmosphere energy exchanges in cities. Intense human activity in urban areas also creates anthropogenic heat emissions which can be an important energy source to the surface energy balance. The partitioning of surface–atmosphere energy exchange is a fundamental control on urban climate processes and is required for many applications such as predicting urban air temperatures, simulating urban boundary-layer dynamics, and modelling air pollutant transport and dispersion. To improve understanding of urban energy balance processes, there is a need for spatially integrated measurements to test urban climate models and compare with satellite observations.

1.1. Urban surface energy balance

The surface energy balance for an urban area can be expressed as:

\[
Q_* + Q_E = Q_H + Q_E + \Delta Q_S - \Delta Q_A, \tag{1}
\]

where \(Q_* \) is net all-wave radiation, \(Q_E \) is anthropogenic heat input, \(Q_H \) is turbulent sensible heat flux, \(Q_E \) is turbulent latent heat flux, \(\Delta Q_S \) is net heat storage in the three-dimensional urban surface, and \(\Delta Q_A \) is net heat advection. Here, we use sign convention where positive \(Q_* \) and \(\Delta Q_S \) represent downward fluxes (i.e. surface energy gain), and positive \(Q_E \) and \(Q_H \) are upward fluxes (i.e. surface energy loss). Positive \(Q_E \) is an energy input and positive (negative) \(\Delta Q_A \) represents a net energy gain (loss) to the system. Units are W m\(^{-2}\).
The ΔQ_H term is typically assumed to be negligible if there is sufficiently homogenous upwind fetch. However, in coastal cities ΔQ_H can be important due to land–sea thermal circulations (i.e. sea breezes) with values exceeding 100 W m$^{-2}$ and decreasing with the distance inshore (Pigeon et al., 2007).

The storage term, ΔQ_S, is important on hourly to weekly time-scales, but tends to zero over annual time-scales (e.g. Offerle et al., 2005). On daily scales, buildings and pavement in the city typically warm throughout the day and act as a storage reservoir of thermal energy. This energy is either lost via long-wave radiative cooling or acts to warm the air (where it is measured primarily as Q_H). This heat release can persist overnight and drive unstable night-time boundary layers (Grimmond and Oke, 1999b). Buildings can also act as a storage buffer for Q_S and increase time between heat emissions inside a building and subsequent release to the atmosphere (Bohnenstengel et al., 2014).

Anthropogenic heat emissions (Q_F) are a unique feature of urban environments and result from energy consumption (fuel combustion, air conditioning/heating, electrical appliances/lighting) and human metabolism (Sailor, 2011). Q_F varies on diurnal, weekly, and seasonal time-scales according to human activity patterns (e.g. commuter traffic cycles) and energy demands. Q_F is difficult to measure directly on neighborhood to city scales and there are several approaches that have been used to quantify its magnitude. The residual approach observes all other terms of the urban energy balance and since Q_S is measured as part of the other terms (including Q_F via long-wave radiation losses), the difference between the sum of all terms and Q_S is taken to be Q_F (Offerle et al., 2005). Other approaches include inventory-based methods that rely on fuel and electricity consumption statistics or modelling approaches such as up-scaling building energy model outputs (Heiple and Sailor, 2008).

Another notable feature of the urban energy balance is modified energy partitioning towards higher Q_H and lower Q_S (i.e. higher Bowen ratio), compared to more natural surroundings (Oke, 1988). This is largely due to relative lack of surface moisture and vegetation transpiration in cities and has implications for urban boundary-layer heights and thermal turbulence production. Q_H is also influenced by Q_S. Iamarino et al. (2012) found the majority of Q_S in London is expressed as Q_H (80.7%), with smaller portions going into Q_F (7.3%) and wastewater (12.0%). Modelling work by Bohnenstengel et al. (2014) indicates that about two-thirds of Q_F goes into Q_H with the remaining one-third serving to warm the surface and increase outgoing long-wave radiation losses.

1.2. Scintillometer measurements in urban areas

The focus of this article is on observations of Q_H given its importance to the surface energy balance and role in urban boundary-layer dynamics. Observations of Q_H using scintillometers have advantages over other measurement techniques, such as eddy covariance (EC), because measurements are integrated over a path length of several kilometres instead of the sensor being located at a single point. As a result, scintillometer measurement sources are much larger than those of EC measurements.

Scintillometer measurement campaigns in urban areas have used several approaches. First, small-aperture scintillometers were used in Tokyo (Kanda et al., 2002), Basel (Roth et al., 2006), and London (Pauscher et al., 2010). More extensively, large aperture scintillometers (LASS) have been used which allow path lengths of several kilometres. LASS measurements have been conducted in Marseille, France (Lagouarde et al., 2006); Łódź, Poland (Zielinski et al., 2013); Helsinki, Finland (Wood et al., 2013); Swindon, UK (Ward et al., 2014); Gongiu, South Korea (Lee et al., 2016); and the Yangtze Delta, China (Zhang and Zhang, 2015). Finally, a dual-wavelength approach to derive both sensible and latent heat fluxes was used in Swindon by Ward et al. (2015a).

Most studies have compared scintillometers with EC results and found generally good agreement between the two techniques, especially during daytime unstable conditions. Several sites have reported scintillometer fluxes which tend to slightly overestimate EC fluxes, in particular for low values (i.e. overnight) (e.g. Lagouarde et al., 2006; Zielinski et al., 2013). During night-time and day–night transition periods (stable, near neutral), there is generally more scatter in EC–scintillometer comparisons because measurements may be above the surface layer (SL) and Monin–Obukhov similarity theory (MOST) assumptions begin to break down (Ward et al., 2015a).

In Gongiu, Lee et al. (2015) compared scintillometer-derived sensible heat and momentum fluxes to outputs from a high-resolution (200 m) numerical model configured for their heterogeneous urban setting. Results showed good agreement between the model and scintillometer methods with estimated uncertainty in scintillometer Q_H of 20–30%.

In general, urban scintillometer studies report a smoother temporal signal than EC, attributed to larger spatial integration of observations. Magnitudes of Q_H have all been within expected ranges based on values reported in the urban energy balance literature from EC observations. In Łódź and Swindon, monthly variations in Q_H (lower magnitudes in winter, higher in summer) are observed based on variations in short-wave and net radiation. In Swindon, Q_H values are linked to vegetation landcover fraction (negative correlation) through source area modelling. This study also reported reductions in Q_H following rain events by analyzing high-resolution (10 min average) temporal signals.

The majority of these sites have been relatively densely built (e.g. built fraction = 61% in Tokyo, 58% in Marseille). Exceptions are the suburban residential areas of Swindon (vegetated fraction = 53%) and Helsinki. The latter two sites are notable both for the distribution of surface types integrated by observations and the distribution of observed atmospheric stability. There is a greater frequency of near-neutral and stable conditions relative to the more densely built sites (attributable to reduced storage heat releases and anthropogenic heating overnight) which affects Q_H magnitude and choices related to flux calculations (section 2.3).

When deriving Q_H from scintillometer measurements, stability can be used to determine whether use of specific free convection assumptions is appropriate. Comparison between the ‘free convection’ and ‘mixed convection’ solutions to similarity theory functions to calculate Q_H indicate good agreement during unstable conditions (Lagouarde et al., 2006; Zielinski et al., 2013). Overall, the free convection solution tends to underestimate relative to the full solution during near-neutral conditions due to neglect of mechanical turbulence (section 2.3). However, an advantage of the free convection solution is that it relies on fewer meteorological variables and associated uncertainties (Lagouarde et al., 2006).

Together, these studies have demonstrated the feasibility of using scintillometers to measure Q_H in cities, however there remain challenges in interpreting results over heterogeneous urban surfaces. In particular, there is a need to develop methods to constrain estimates of partitioning between the remaining unmeasured energy balance terms in Eq. (1). There is also need to explicitly account for spatial variations during data analysis and to develop methods to exploit this variability when possible. The broad objective of this research is to investigate the spatial and temporal patterns of urban Q_H using a unique scintillometer network configuration in central London. Findings are then used to develop new methods to partition between energy balance terms on monthly and annual time-scales.

2. Methods

2.1. Site description

A network of three scintillometers has been established to measure area-averaged Q_H in central London, UK (Figure 1). Analysis of data from 1 December 2014 to 30 November 2015
Figure 1. Scintillometer configuration in central London. Shaded contours are annual average combined source area weightings for all three scintillometers and for the eddy-covariance (EC) system. The scintillometer source areas are aggregated as the equal-weighted average of source area weights for each pixel. Grid reference is m (easting, northing) UTM zone 31N. Land cover dataset is from Lindberg and Grimmond (2011).

Figure 2. Source area weighted (a) landcover fractions and (b) mean building heights, both in 20° wind sectors for P2 (see also Figure 1 and Table 2). Source area calculations are described in section 2.5. P2 is used as exemplary for all paths.

provides complete annual coverage with continuous winter data (December–February).

Average monthly mean air temperature during the 12 month study period observed at London Heathrow Airport was 11.63 °C (average daily maximum = 16.05 °C, average daily minimum = 8.24 °C), average annual precipitation was 561.2 mm, and average hours of sunshine totalled 1485.2 h (17.0%) (UKMO, 2016). The mean temperature for the study period is in the 79th percentile and total precipitation is in the 35th percentile of all continuous 12 month periods since measurements began in 1948. Total sunshine hours are in the 36th percentile of all 12 month periods since measurements began in 1958.

Physically, buildings and impervious surfaces (concrete and asphalt roads, pavement, etc.) dominate the central London study area and combined they account for nearly 80% of plan area landcover fraction (section 2.5, Figure 2). Mean building height is around 15 m (section 2.5, Figure 2) and building stock is diverse with 37% of Inner London buildings constructed before 1900 and 11.5% built after 2000 (GLA, 2016). Buildings house nearly 30 000 m² of commercial, retail, and office floorspace in...
Inner London, which is 23.5% of all office floorspace in England (GLA, 2016). There are also several large vegetated parks in the region (Hyde Park/Kensington Gardens ~4 km²; Regent’s Park ~2 km²; Green Park/ St. James’s Park/Buckingham Palace Gardens ~1 km²; Figure 1). The study area is also intensely modified by daily and weekly cycles of anthropogenic activity. In 2014, the population of Inner London was 3.4 million, with 233,292 residents in the City of Westminster and 8072 in the City of London (GLA, 2016). These two boroughs are highlighted because they make up a significant portion of the scintillometer source area (along with Islington) and are generally representative of central London in terms of anthropogenic activity (Figure 1). Though the residential population of these two areas is less than 10% of total Inner London population, 1.16 million people pass into central London of anthropogenic activity (Figure 1). Though the residential population of these two areas is less than 10% of total Inner London population, 1.16 million people pass into central London in the morning rush hours between 06:00 and 09:00 on an average weekday (Monday–Friday) (Björkegren et al., 2013). There are also large vegetated parks in the region (Hyde Park/Kensington Gardens ~4 km²; Regent’s Park ~2 km²; Green Park/ St. James’s Park/Buckingham Palace Gardens ~1 km²; Figure 1). The scintillometer network is composed of two LASs (LASMkII, © 2016 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. Q. J. R. Meteorol. Soc. (2017)

Table 1. Scintillometer network configuration in central London.

Path	P1	P2	P3
Sensor type	BLS	LAS	LAS
Transmitter location	IMU, 91/67	BTT, 180/153	BCT, 145/124
Receiver location and height (m asl/ragl)	BTT, 180/153	BCT, 145/124	IMU, 91/67
Path length (m)	2358	3197	1097
Effective beam height (m agl)	111.6	140.7	98.7
Orientation (°, from north)	260	94	307
Azimuth (°, from vertical)	2.2	−0.7	−2.8

Table 2. Long-term source area-weighted surface landcover and morphological properties for scintillometer paths P1–P3 and the eddy-covariance (EC) method.

P1	P2	P3	EC	
Total φ (%)	82.5	77.3	85.1	94.7
Building (f_b)	38.6	37.5	38.9	39.2
Impervious (f_p)	40.3	40.1	41.6	40.3
Water (f_w)	1.9	3.7	3.2	12.1
Grass (f_c)	16.5	16.2	15.2	6.8
Deciduous (f_d)	2.1	1.9	0.7	0.9
Evergreen (f_n)	0.5	0.5	0.3	0.5
Bare soil, shrub (f_s)	<0.1	<0.1	<0.1	<0.1
Building height (z_b) (m)	14.2	14.6	14.7	17.5
Roughness length (z_l) (m)	1.42	1.46	1.47	1.75
Displacement height (z_d) (m)	9.95	10.21	10.29	12.2
Effective measurement height (z_e) (m agl)	100.90	129.55	87.76	37.73

The sensors are oriented so that their beams form a triangle (Figure 1, Table 1). Path 1 (P1) is between Islington Michael Cliffe House (IMU) and the BT Tower (BTT) (BLS sensor); Path 2 (P2) is between BTT and Barbican Cromwell Tower (BCT) (LAS sensor); and Path 3 (P3) is between BCT and IMU (LAS sensor). Mounting heights are 91 m a.s.l. (above sea level) at IMU, 180 m a.s.l at BTT, and 145 m a.s.l at BCT. These heights are used to ensure that observations are above the blending height of surface roughness elements (2–3 times mean building height in urban areas) and are within the atmospheric surface layer (usually defined as the lowest 10% of the boundary-layer height, z_l) so that application of surface-layer similarity theory to determine Q_h is valid. Cemometer measurements in central London show boundary-layer heights regularly grow to 2000 m during mid-day in summer and usually exceed 500 m even in winter, which indicates scintillometer measurements are within the surface layer during these times. An additional advantage of elevated measurements is that signal saturation is reduced because the temperature structure parameter decreases with height.

The effective beam height (z_b) of each scintillometer path length (L_p) is determined by using the average height of the beam above the ground surface weighted by the scintillometer path weight function at 1 m horizontal resolution (along the beam (Hartogensis et al., 2003). Surface elevations are from a LiDAR digital elevation dataset flown during 2008 (Lindberg and Grimmond, 2011). The L_p calculation also takes into account vertical displacement between transmitter and receiver. The effective measurement height (z_e) is calculated as z_e = z_b − z_d where z_d is wind direction-dependent source area weighted displacement length (section 2.5).

Prior to the scintillometer deployment in the current configuration, instruments were run simultaneously along a single path length at a different location in London (L_p = 1290 m, z_r = 51 m) (Mustchin et al., 2013). Results from this intercomparison show that 1 min structure parameter (C_n) values from the two LAS sensors are in good agreement during a representative summer 24 h period (P2 LAS versus P3 LAS: slope = 0.91, R^2 = 0.97). During a second 24 h period, a single LAS sensor (P3 LAS) was compared against the BLS and 1 min C_n values are also in good agreement (P3 LAS versus P1 BLS: slope = 0.89, R^2 = 0.98).

Auxiliary meteorological data from the London Urban Meteorological Observatory (LUMO, 2016) are measured at BCT and IMU using automated weather stations (Vantage Pro2 Weather Station, Davis Instruments, Hayward, CA, USA). The weather stations are mounted within 3 m horizontally of the scintillometers at 91 m (IMU) and 145 m (BCT) a.s.l. Measurements of air temperature (T), wind speed, wind direction and pressure are used in this study and variables are sampled at 1 Hz and 1 min means and statistics are recorded.

An eddy-covariance (EC) measurement station (KSSW) was running concurrently during the scintillometer measurements at King’s College London (KCL) Strand Campus to measure Q_h, Q_e, and net carbon dioxide flux (F_{CO2}). The EC instrumentation consists of a CSAT3 (Campbell Scientific, Logan, UT, USA) sonic anemometer and Li-7500 (Li-Cor, Lincoln, NE, USA) open-path gas analyzer mounted at 60.9 m a.s.l. Three-dimensional wind...
velocities, virtual acoustic air temperature, and water vapour and carbon dioxide mixing ratios were recorded at 10 Hz and flux processing was performed in 30 min intervals. Detailed descriptions of the EC site and data processing are given in Kotthaus and Grimmond (2012, 2014a,b). Additional details and analysis of F\textsubscript{C\textsubscript{3}}\textsubscript{3} observations are given in Ward et al. (2015b) and Björkergen et al. (2015).

Incoming (K↓) and outgoing (K↑) solar radiation, and incoming (L↓) and outgoing (L↑) long-wave radiation are also measured at KCL at a height of 60.9 m asl (CNR4, Kipp & Zonen) and allow for calculation of Q\textsubscript{s} (Q\textsubscript{s} = [K↓ − K↑] + [L↓ − L↑]).

For precipitation, a spatial radar rainfall dataset from the UK Met Office available for 1 km × 1 km grid cells at 5 min resolution is used (UKMO, 2003). Nine grid cells (3 km × 3 km total area) centred on the scintillometer configuration were selected as representative of rainfall within the scintillometer source areas. The radar datasets are verified against rain-gauge data by the Met Office to minimize error and comparisons of accumulated totals indicate the radar product tends to overestimate precipitation because the infrared beam wavelength is primarily sensitive to surface based on EC energy balance measurements at KCL with a similarity theory.

This section describes the calculations and assumptions to determine Q\textsubscript{H} from raw scintillometer measurements of beam intensity (I). The general steps are: (i) calculate path-averaged structure parameter (C\textsubscript{n}2) using I according to wave propagation theory, (ii) calculate the temperature structure parameter (C\textsubscript{T}2) using C\textsubscript{n}2 and (iii) derive Q\textsubscript{H} from C\textsubscript{T}2 using surface-layer similarity theory.

At the receiver, I varies in time due to perturbations in the scintillometer beam resulting from air density variations across the path length. The density variations are spatially integrated resulting in path-averaged C\textsubscript{n}2, calculated for a 1 min averaging period (Wang et al., 1978):

\[C_n^2 = \alpha A D \bar{\rho}^{-1/3} L_p^{-3}, \quad (2) \]

where the instrument-specific coefficient \(\alpha = 1.12 \), A is the variance of the natural logarithm of I fluctuations (\(\sigma_n^2 \)) during the 1 min averaging period, \(D \) is the LAS aperture diameter, and \(L_p \) is the scintillometer path length between the transmitter and receiver. The \(C_n^2 \) values can be defined in terms of individual structure parameters for temperature (\(C_T^2 \)), humidity (\(C_q^2 \)), and the covariant term (\(C_Tq^2 \)) (Hill et al., 1980):

\[C_n^2 = \frac{A_T^2}{T} C_T^2 + \frac{2 A_T A_q}{T \bar{q}} C_T q + \frac{A_q^2}{\bar{q}} C_q^2 \quad (3) \]

where \(A_T \) and \(A_q \) are structure parameter functions (Andreas, 1988), \(T \) is mean air temperature, and \(\bar{q} \) is mean humidity. This formulation neglects pressure fluctuations as they occur over time-scales longer than the 1 min averaging time and on spatial scales greater than \(L_p \). Further simplifications can be introduced because the infrared beam wavelength is primarily sensitive to temperature fluctuations, so moisture-related fluctuations are neglected. An additional assumption is that of a generally dry surface based on EC energy balance measurements at KCL with a mean Bowen ratio of 5.1 during the 12 month study period. This assumption makes the correction to account for the influence of water vapour fluctuations negligible. Therefore, when surface conditions are dry, \(C_T^2 \) is proportional to \(C_q^2 \):

\[C_T^2 = \frac{T^2}{A_T^2} C_q^2. \quad (4) \]

Q\textsubscript{H} is then calculated from \(C_T^2 \) MOST using similarity functions for unstable conditions:

\[f_{MO}(\zeta) = c_1 (1 - c_2 \zeta)^{-2/3} \quad (5) \]

and stable conditions:

\[f_{MO}(\zeta) = c_1 (1 + c_5 \zeta^{2/3}). \quad (6) \]

Although there are several similarity functions in the literature, those of Wyngaard et al. (1971) are selected here given their frequent use in scintillometer literature and that they meet MOST theoretical requirements of a neutral limit and \(-2/3 \) scaling (Kooijmans and Hartogensis, 2016).

Two sets of \(c_{\text{1...3}} \) coefficients are compared in this article to assess Q\textsubscript{H} uncertainty: those of Andreas (1988) (An; \(c_1 = 4.9, c_2 = 6.1, \) and \(c_3 = 2.2) \) and De Bruin et al. (1993) (Db; \(c_1 = 4.9, c_2 = 9.0, \) and \(c_3 = 0). These coefficients are chosen because they are routinely applied in urban scintillometer studies (e.g. Lagouarde et al., 2006; Zielinski et al., 2013; Ward et al., 2014) so provide a means to assess uncertainty in our results. However, several sets of coefficients are found in the literature (e.g. Li et al., 2012). Recently, Kooijmans and Hartogensis (2016) explored MOST parameters using data from 11 scintillometer sites and covering a range of stability conditions, and recommend \(c_1 = 5.6 \) and \(c_2 = 6.5 \) during unstable conditions. Unfortunately, this very useful study contains no urban datasets. Research into MOST parameters in urban areas is an active area of research and urban-specific coefficients have been developed for use in the roughness sub-layer using small-aperture scintillometers by Kanda et al. (2002) and Roth et al. (2006). Ward et al. (2015a) examined six sets of MOST coefficients in Swindon, UK and opted for those of Andreas (1988). It is beyond the scope of the current study to explore these important research questions concerning MOST coefficients in urban areas in depth; we merely aim to quantify uncertainty at this site related to choice of MOST coefficients and maintain compatibility with other urban sites by using the An and Db coefficients.

The stability parameter, \(\zeta \), is defined as \((z_0 - z_d)/L \), where \(z_d \) varies by 10° wind direction sectors (section 2.5) and \(L \) is the Obukhov length:

\[L = \frac{u_*^2 T}{g k T_*}, \quad (7) \]

where \(u_* \) is friction velocity, \(g \) is gravitational acceleration, and \(k \) is von Kármán’s constant (0.4). The temperature scaling variable, \(T_* \), is calculated as:

\[T_* = \left[\frac{C_T^2 (z_d - z_d)^{2/3}}{f_{MO}(\zeta)} \right]^{1/2}. \quad (8) \]

Friction velocity is estimated using a stability-adjusted logarithmic profile and dynamic roughness length \(z_0 \) varies based on 10° wind direction sectors, section 2.5). Measured wind speed at the scintillometer transceiver is also adjusted to \(z_0 \) using the logarithmic wind profile. The wind profile is then solved iteratively with Eqs (5)–(8) and the sensible heat flux is calculated as:

\[Q_H = -\rho c_p u_* T_* \quad (9) \]

where \(\rho \) is air density and \(c_p \) is specific heat capacity of air.
During unstable free convection conditions when $\zeta \to -\infty$, a simplified MOST solution for Q_{HI} is (De Bruin et al., 1995):

$$Q_{HI} = \rho c_p b z_i \left(\frac{g}{T} \right)^{1/2} \left(C_{T}^2 \right)_i^{3/4}, \quad (10)$$

where $b = 0.57 \left(b = c_{3/4}^{1/2} k_{2}^{1/2} \right)$. This solution is advantageous because it depends on fewer meteorological inputs (and associated uncertainties) compared to the full solution (MX) and explicit choice of Q_{HI} sign is not required during day–night stability transitions because Q_{HI} is assumed always positive. However, the free convection solution (FC) takes into account only buoyancy-generated turbulence and ignores mechanical production and thus underestimates Q_{HI} when free convection conditions are not met (De Bruin et al., 1995).

2.3.2. BLS

The BLS instrument includes pre-processing corrections (Scintec, 2016) that are not applied to LAS data. During conditions of high turbulence, strong scattering of the scintillometer beam results in a saturation effect where further increases in turbulence are not captured by I measurements. The BLS uses a numerical look-up table based on Clifford et al. (1974) to correct for saturation effects. Mean saturation correction for the BLS is $< 1\%$ and data during periods when the saturation correction is greater than 5% are excluded from further analysis.

A second correction is applied to account for absorption fluctuations. These fluctuations are caused by processes other than turbulent mixing, such as fog or dust, which occur on spatial length-scales on the order of the instrument path length. The BLS is able to correct for these fluctuations because of the dual-beam configuration and path separation of the instrument (Scintec, 2016). The annual mean absorption fluctuation correction is -3.1%.

Both corrections are applied during calculation of the σ_{HI} signal. The remainder of flux processing then follows Eqs (2)–(10), where in Eq. (2) $\alpha = 4.629$ and

$$A = \frac{1}{4} \ln \left(1 + \frac{\sigma_{HI}}{I} \right), \quad (11)$$

where σ_{HI} is the variance of I and \bar{I} is the mean of I (Scintec, 2016).

2.4. Quality control

Several quality control filters are implemented, both on raw measurements and processed fluxes (Figure 3(a)). First, to remove spurious datapoints in I, logical thresholds (min = 0, max = $3 \times$ daily maximum) are applied and data are withheld during instrument maintenance periods. Next, data are withheld during rain events (measured by a tipping-bucket rain gauge at BCT) because the sensor cannot measure I properly when there is precipitation in the scintillometer path. Similarly, fog occludes the signal and datapoints where I is less than 0.5 times the daily maximum value are used to indicate fog conditions and are withheld (Ward et al., 2014). This step also removes rainy periods when the rain gauges fail to register due to spatial and temporal resolution limitations of the mechanical gauges.

Saturation is a recognized issue that affects scintillometer measurements during certain atmospheric conditions and instrument configurations (Kohsie et al., 2006). This occurs when the level of scintillation surpasses a structure parameter (C_{T}^2) threshold (S_{th}) and further increases in scintillation become de-coupled from observed changes in I. The S_{th} is a function of L_p, aperture diameter D, and instrument wavelength (λ) (Kleissl et al., 2010):

$$S_{th} = 0.074 D^{5/3} \lambda^{1/3} L_{p}^{-8/3} \quad (12)$$

When the S_{th} value is exceeded, LAS C_{T}^2 values are withheld from further processing. This step is not applied to the BLS data because there is onboard saturation correction software (section 2.3.2).
Observations during stable atmospheric conditions are also deemed unreliable because the scintillometer beams are likely above the atmospheric surface layer (i.e. lowest 10% of the boundary-layer height z_b) and assumptions to calculate fluxes using similarity theory begin to fail. Specifically, (i) the observation height is higher than 0.1 z_b, and measurements are de-coupled from the surface; (ii) flux and (ii) vertical divergence of Q_H within the surface layer can be high from entrainment during periods of boundary-layer growth (Braam et al., 2012). To filter these periods, data when air temperatures measured at two height levels ($T_m_1 = 154$ m asl, $T_m_2 = 21$ m asl) at BCT indicate stable conditions ($T_m_1 - T_m_2 > 0$ K) are withheld. A second step uses a night-time ($K < 1$ W m$^{-2}$) maximum Q_H threshold of 2.5 times the observed daily minimum. Values above this threshold are presumed unrealistic at night and indicate atmospheric conditions are not conducive for measurements. This step is designed to filter stable conditions at larger spatial scales which may not be registered by the urban micro- and local-scale temperature profile measurements.

In total, 57.2% of data are available for P1, 54.0% for P2, and 59.1% for P3 (Figure 3(a)). Highest data recovery rates are during summer daytime ($P_1 = 93.7\%$, $P_2 = 92.1\%$, $P_3 = 96.0\%$) and lowest recovery is during winter nights ($P_1 = 17.1\%$, $P_2 = 26.9\%$, $P_3 = 39.1\%$) (Figure 3(b)). For P1, there is a data gap from 19 January to 20 March due to instrument maintenance.

2.5. Source area calculation

Flux source areas are calculated using the Kormann and Meixner (2001) source area model calculated on a 14.4 x 14.4 km domain at 4 x 4 m resolution. A statistical look-up table approach is used based on observed frequency of atmospheric conditions (instead of calculating a source area for every time step) to minimize computational expense. In all, 644 source areas were calculated at the centre point of each scintillometer beam using various combinations of binned input parameters.

The binned input parameters are wind direction, L, u_a, and standard deviation of horizontal wind velocity (σ_v). Source areas are calculated for every 10$^\circ$ using combinations of L, u_a, and σ_v. Sensitivity tests of these inputs on the size of the 50% cumulative source area weighting extent were used to determine appropriate bin size. Three L inputs are used to represent stable ($L = 10$ m), unstable ($L = -10$ m), and near-neutral ($L = 1000$ m) stability regimes. Source area dimensions are not overly sensitive to L explicitly, but are sensitive to u_a and σ_v, which vary with stability. The u_a is binned in increments of 0.25 m s$^{-1}$ from 0.25 to 1.50 m s$^{-1}$. The σ_v and u_a are dependent variables, so for each u_a value a σ_v value is calculated from a linear relationship between u_a and σ_v determined from sonic anemometer observations at KCL during the study period (slope = 1.7, ϕ intercept = 0.17). Additional σ_v values ±0.3 m s$^{-1}$ from the central value determined from linear regression are also used (in total three σ_v values for each u_a value).

The z_b and z_d inputs to the source area model are determined using an iterative procedure. First, an initial estimate is performed based on average building height (z_b) within the source area model domain. Source areas are modelled using these inputs and new z_b and z_d values are determined based on source area-weighted z_b, where $z_b = 0.12 z_0 + 0.72 z_g$ (Grimmond and Oke, 1999a). This iteration is performed three times before source area-weighted mean z_0 and z_d values for 10$^\circ$ wind direction bins are used as input for Q_H calculations (section 2.3).

So far, this procedure produces source areas calculated at the L_c centre-point at the effective beam height. To determine the source area influencing the entire L_c, the centre-point source area is replicated along the pathlength of the scintillometer beam horizontally every 50 m and multiplied by the scintillometer path-weighting at that point. This procedure introduces uncertainty because the height of the beam and z_0 and z_d of the upwind area influencing each point along the beam vary. The uncertainty is mitigated by the path-weighting function which is most heavily weighted towards the beam centre-point.

The annual cumulative source area is determined as the weighted mean of the 644 individual source areas (Figure 1). Source area weights are determined by the observed frequency at the KCL sonic anemometer of wind direction and atmospheric conditions (cumulative frequency is 90%). This procedure assumes identical conditions at the sonic anemometer (60.9 m asl) and across the scintillometer L_c. This is justified theoretically because measurements from EC and the scintillometers are usually situated in the constant-flux layer above the roughness sublayer.

This same procedure is used to calculate the annual cumulative source area for the KCL EC station (Figure 1) and differs from methods used in previous studies for that site (e.g. Kotthaus and Grimmmond, 2014b).

Source area-weighted landcover fraction (f_j) is determined by multiplying annual source area weights (ϕ) for each 4 x 4 m grid cell (x, y) by the plan-area landcover of the modelling domain. The resulting matrix is then summed for each landcover classification (i) (road, building, soil, water, deciduous vegetation, coniferous vegetation, grass):

$$ f_j = \sum_{x=0km}^{4km} \sum_{y=0km}^{4km} \phi(x, y)f_j(x, y). \quad (13) $$

On average, less than 100% of the source area falls within the modelling domain (Table 2). For the area outside the domain, landcover proportions are assumed to be the average of the portion within the domain.

To test sensitivity of landcover fraction to the source area calculation method, the path-integrated source area for each path was calculated using two methods: (i) the method described previously using the centre-point calculated source area replicated at 50 m increments along the path length, and (ii) individual source areas using point-specific z_b, z_d, and z_d at 50 m increments along the path length.

Identical source area model meteorological inputs representative of convective conditions ($u_a = 1.25$ m s$^{-1}$, $\sigma_v = 2.3$ m s$^{-1}$) from the primary wind direction (230–240$^\circ$) are used for each method for all paths. These conditions are chosen because unstable conditions have generally smaller source areas than stable conditions and thus landcover fractions are expected to be more sensitive to source area uncertainties.

Next, landcover fractions (f_j) for each path are calculated using Eq. (13) for both methods. For all landcover classes, differences in f_j between methods are $\pm 1\%$ for all paths. For P1 and P2, method (i) produces a slightly larger source area (1.75 versus 3.38 km2 and 1.42 versus 2.70 km2 cumulative 50% weighted area). For P3, method (ii) produces a larger path-integrated source area than that of method (i) (1.27 versus 1.56 km2 cumulative 50% weighted area).

3. Results and discussion

3.1. Q_H intercomparisons and sensitivity

This section describes a set of three comparisons to assess the scintillometer measurement and data processing techniques: (i) scintillometer measurements are compared directly against simultaneous EC measurements, (ii) Q_H calculation techniques are compared, and (iii) flux calculations are compared for each path. Finally, the sensitivity of flux processing to input variables is tested. For these comparisons, summer (JJA) data are used because this season has highest data recovery rates.
3.1.1. Comparing eddy covariance and scintillometers

First, scintillometer measurements are directly compared to EC measurements from KCL to check if scintillometer values are reasonable. Perfect agreement is not expected because scintillometers and EC sample different source areas (Figure 1). For this analysis, 1 min scintillometer measurements are averaged to 30 min intervals to match temporal resolution of EC measurements. Then Q_H data are sorted by K_b into day ($K_b \geq 1 \text{ W m}^{-2}$) and night periods ($K_b < 1 \text{ W m}^{-2}$).

During daytime, overall agreement between 30 min scintillometer and EC Q_H is moderate (Figure 4(a)). At lower values ($Q_H < 200 \text{ W m}^{-2}$), the scintillometer tends to measure higher Q_H than EC, though measurements converge at larger values ($Q_H \gtrsim 400 \text{ W m}^{-2}$). There is significant scatter between measurement techniques (mean $R^2 = 0.50$), though this is to be expected because of differences in measurement source areas.

Overnight, agreement between 30 min scintillometry and EC is not as good as during daytime (Figure 4(a)). This is not unexpected given the theoretical limitations of both measurement techniques during night-time operation (e.g., vertical flux divergence in urban canopy layer as the atmosphere approaches near-neutral or stable conditions) and is consistent with other comparisons in the urban scintillometry literature (e.g., Ward et al., 2014). For all sites and solutions, the scintillometers measure higher Q_H relative to EC when EC measurements are low ($Q_S < 100 \text{ W m}^{-2}$), and lower Q_H relative to EC when EC measurements are high ($Q_S > 100 \text{ W m}^{-2}$) (mean slope = 0.13). Nocturnal Q_S in central London is maintained by Q_S and ΔQ_S releases and $Q_H > 100 \text{ W m}^{-2}$ is not unusual.

A portion of the EC–scintillometer difference may be explained by the proportion of water present in the measurement source area. The EC tower is located near the River Thames and the long-term EC turbulent flux source area contains 12.1% water surface cover, compared to 1.9–3.2% in the scintillometer source areas (Figures 1 and 2). The river’s surface temperature is affected by tidal flow patterns, but is expected to be cooler than the overlying air during summer daytime, on average, and thus act as a local heat sink (negative Q_H). There is also expected to be greater energy partitioning toward Q_S from the river (i.e., lower β). Previous EC studies at KCL have found the river’s influence to be greatest when winds are aligned parallel with the river upwind of the EC sensors and that channelling flow above the receded riverbed (approximately by 5–10 m) is likely to result in local-scale advection (Kothaus and Grimmond, 2014b).

During summer (JJA), ensemble hourly median Q_H from scintillometers (EC solution) are 26.1% higher than EC throughout the 24 h diurnal period, though agreement overnight between ensemble means for all sensors is good (Figure 5). To investigate if this difference can be explained by the river’s presence, observed Q_H for all sensors is scaled to the non-water surface of the respective flux source area. This assumes $Q_H = 0 \text{ W m}^{-2}$ over the river on average, though overnight the river is likely warmer than the overlying air and thus would support positive Q_H and local instability. After this scaling, the difference between EC and scintillometers is reduced to 18.5% (relative to scintillometers) throughout the day on average. This correction may be slightly overestimated (if Q_H over the river is positive overnight), yet still is not enough to explain a large portion of the EC–scintillometer difference.

Another likely reason for EC underestimation of Q_H relative to scintillometers is due to lack of energy balance closure for EC systems. EC typically underestimates turbulent heat fluxes on the order of 20% in forest and other natural ecosystems due to several causes, including undersampling of high-frequency turbulent eddies, insufficient flux averaging periods, and advection (Wilson et al., 2002). Large-eddy simulation studies have suggested secondary circulations caused by heterogeneous landscape interactions with the flow are a primary cause of energy balance non-closure (Kanda et al., 2004; Inagaki et al., 2006). Scintillometers appear to improve energy balance closure due to their ability to spatially average over larger areas and measure energy transport by secondary circulations that EC measurements at a single point cannot resolve (Foken et al., 2010; Liu et al., 2011).

As a first-order estimate to investigate if EB closure can explain the EC–scintillometer differences (after scaling to take into account the river’s influence), a typical 20% energy balance closure residual is assumed for the EC system (e.g., Wilson et al., 2002) and the scintillometer is assumed to measure Q_H perfectly (for now, this sets aside scintillometer errors). If the residual is added proportionally to the EC-measured Q_S, scintillometer–EC Q_H difference is reduced to 10.4%, on average.

3.1.2. Comparing scintillometer Q_H calculations

Next, the MX and FC flux calculation solutions are compared for each sensor path (Figure 4(b)). During daytime, agreement between the free convection solution (FC) and mixed convection (MX) with de Bruin coefficients (Db) is very good at all sites. This is to be expected as the b coefficient in the FC solution is based on the Db coefficients ($b = c_i^3/(4k c_i^2)$). The MX equation with Andreas (An) coefficients tends to underestimate FC and MX-Db by 9 to 15%. At night, FC and MX-Db are in very good agreement at P2, whereas MX-An underestimates both FC and MX-Db. At P3 and P1, both MX-An and FC are in agreement and tend to underestimate MX-Db. Note that stable periods have been removed during quality control (section 2.4).

Good comparison results between MX and FC solution are achieved because free convection conditions are often met. This is primarily due to the frequent occurrence of small L values and to a lesser extent the high effective measurement height of the scintillometers. To assess the impact of measurement height on distribution of the stability function ζ, ξ is determined using the KCL measurement height of 50.3 m agl and L calculated from measurements at the KCL EC tower. From this, 10.8% of available 30 min periods are classified as near-neutral or stable ($\zeta > -0.01$). Next, ξ is calculated using the effective beam height of the scintillometers (98.7, 111.6, 140.7 m agl, Table 1) with identical L from KCL. Using these heights, the proportion of near-neutral ζ is reduced to 8.0% for P1, 7.6% for P2, and 8.3% for P3.

In summary, FC and MX-Db flux calculation solutions agree very well and MX-An tends to give lowest fluxes during the day (−9 to −15%). In general, at night there is more scatter in all comparisons.

3.1.3. Comparing scintillometer paths

The third comparison is between scintillometer paths, for each flux calculation solution (Figure 4(c)). During daytime, agreement between sites is generally very good for all solutions, particularly between P1 and P3. However, P2 has a constant offset of 28.5 W m$^{-2}$ relative to P1 and 42.2 W m$^{-2}$ relative to P3. At night, the same pattern is observed with P2 higher relative to P1 and P3. Given the nearly constant nature of this offset (Figure 4(c)), a systematic bias resulting from uncertainties in z_L and L seems the most likely explanation (Figure 6); however, differences between sensors should be somewhat mitigated because all path pairs share an endpoint in the sensor configuration (section 2.4, Figure 1).

There are several additional factors that contribute to uncertainty in comparisons between sensors. Flux divergence below measurement height is likely a factor when comparing measurements at different heights. Source area differences between paths are another source of uncertainty and it is possible that the P2 source area includes a higher proportion of the central business district with higher Q_S and Q_H. Observed
path differences are also likely caused by differences between instruments, though this source of uncertainty is expected to be minor (section 2.2).

3.1.4. \(Q_H\) sensitivity to input variables

Next, the sensitivity of \(Q_H\) calculations to meteorological and surface morphometry input variables is assessed (Figure 6). This analysis was conducted for P3 during a midday period representative of summertime midweek, convective conditions \((n = 240)\). Input variables tested are: \(z_0\), \(z_d\), \(z_f\), wind speed, air temperature, pressure, and \(L_p\). Data for this period were processed using Db coefficients with a single input variable perturbed and compared to a baseline using unperturbed input variables. It should be noted that \(z_0\), \(z_d\), \(z_f\) are not independent because in this study building height determines \(z_0\) and \(z_d\), which in turn affects \(z_f\).

For both solutions (MX and FC), \(Q_H\) is most sensitive to \(z_f\) with a change of \(\pm 5\) m resulting in change of fluxes of \(\pm 6.3\)–\(6.5\)% (Figure 6). The MX solution is also sensitive to wind speed \(\pm 3.5\%\) with \(\pm 1\) m s\(^{-1}\) change), however the FC solution does not use wind speed as an input. This is consistent with results of a similar sensitivity analysis by Hartogensis et al. (2003).

An additional source of uncertainty is the choice of empirical calculation coefficients. Choosing the An instead of Db coefficients in the mixed convection solution alters \(Q_H\) by \(-13\%\) and use of Kohsiek (Ko) (Kohsiek, 1982) coefficients instead of Db changes results by \(-5\%\) for the FC solution. This is also illustrated in the linear comparison between Mx-Db and Mx-An, where regression slopes range from 0.85 to 0.90 (Figure 4(b)).
Section 2.3 the additional details of the sensitivity analysis and definition of variables, and axis lists input variables and the amounts they are perturbed. Section 3.1 gives individual scintillometer path hourly median fluxes. The median hourly radiation and eddy-covariance (EC) Q_H measurement height inputs for free and mixed convection methods. The periods (Δt) and sonic anemometer measurements indicate there are very few neutral periods. Fortunately, independent temperature profile the FC assumption will be analyzed in the remainder of the analysis are UTC) values of Q_H are positive on average (50 W m$^{-2}$ for all paths), indicating an unstable atmosphere. Net radiation at KCL is negative for these hours (mean = -50 W m$^{-2}$), implying ΔQ_H and Q_E emissions maintain Q_H.

Although there is uncertainty with both solutions, results using the FC assumption will be analyzed in the remainder of the article. This is not intended to be applicable during stable or neutral periods. Fortunately, independent temperature profile and sonic anemometer measurements indicate there are very few periods (<4%) with stable conditions and these periods have been removed from analysis during quality control (section 2.4, Figure 3). Sonic anemometer measurements at KCL indicate near-neutral conditions are also infrequent ($|\xi| < 0.01 \approx 4\%$). Additionally, the FC solution requires fewer input variables (and associated uncertainties) because it does not rely on the logarithmic wind profile.

In summary, scintillometer measurements tend to measure higher Q_H than EC measurements at this site, especially during daytime. This is consistent with observations at other urban sites in Marseille (Lagouarde et al., 2006) and Lodz (Zieliński et al., 2013). If all techniques and assumptions for MOST scintillometry and EC are met perfectly, scintillometer–EC differences would be due entirely to source area differences. In reality, differences are due to a combination of factors, including: (i) uncertainties regarding similarity theory coefficients and meteorological variables used for scintillometer Q_H calculations, (ii) uncertainties determining instrument measurement height and corresponding flux divergence below measurement height, (iii) source area differences between sensors (in particular the influence of the River Thames), and (iv) relative lack of EC energy balance closure. Scintillometer sites agree well with each other during the day, though P2 has a constant positive offset compared to P1 (28.5 W m$^{-2}$) and P3 (42.2 W m$^{-2}$), likely from uncertainties in determining ξ and flux divergence below measurement height.

3.2. Q_H temporal patterns

Diurnal patterns of Q_H follow an expected pattern based on incoming solar radiation and net radiation (Figure 5). During summer, median hourly overnight (2300–0500 h) (all times in the remainder of the analysis are UTC) values of Q_H are positive on average (50 W m$^{-2}$ for all paths), indicating an unstable atmosphere. Net radiation at KCL is negative for these hours (mean = -50 W m$^{-2}$), implying ΔQ_H and Q_E emissions maintain Q_H.

After sunrise, Q_H rises steadily and peaks at 1300 h, 1 h after K_\uparrow and Q_\uparrow peak. Throughout the afternoon and early evening (1400–2000 h), a portion of storage heat releases and anthropogenic heat emissions are manifested as Q_H, resulting in an asymmetric decline of Q_H relative to the morning rise. This hysteresis pattern between Q_E and Q_H is consistent with other observations in the literature (e.g. Ward et al., 2014).

The mean midday (1000–1400 h) ratio of Q_H/Q_E for all scintillometers during JJA is 0.70. This Q_H/Q_E ratio is higher than
observed in other European cities such as Basel (0.66 during SON and 0.46–0.49 during JJA 1100–1500 h) and Łódź (0.34–0.56 during Aug–Sep daytime). These urban areas had slightly more vegetation landcover (0.16–0.31 in Basel and 0.24–0.78 in Łódź) than the present site (0.16–0.19), which acts to decrease the Q_H/Q_s ratio. A source of uncertainty in the ratio calculated in this study is the spatial discrepancy between the radiometer source area and scintillometer source area. Additionally, use of the Db MOST coefficients tends to overestimate Q_H relative to An and Ko coefficients (section 3.1).

Scintillometer-measured Q_H magnitude varies seasonally relative to the annual mean for all paths through the 24 h day (Figure 7). The annual mean is determined as the equally weighted mean of the ensemble diurnal course from all four seasons. During spring (MAM) and summer (JJA) overnight hours (2300–0500 h), Q_H is 0–25% higher for all paths than the annual average. During midday (1000–1800 h), spring and summer measurements are 25–70% times higher than the annual average. (SON) and winter (DJF) Q_H are below the annual mean throughout the 24 h diurnal course. Overnight, Q_H is 0–50% below the annual mean, throughout the day Q_H is 50% below average, and greatest departure (30–75%) below average occurs during 1700–1900 h. Greatest departures from the annual mean (both positive and negative) occur during afternoon and early evening (1300–2000) which suggests Q_H release from the urban surface regulates Q_H at these times of day.

There are also differences between Q_H measured during weekdays (1800 h Sunday–1800 h Friday) and weekends (1800 h Friday–1800 h Sunday and public holidays, i.e. non-working days) (Figure 8). These cut-off times were selected because Friday and Saturday evenings are ‘weekend’ nights and Sunday evening is functionally a ‘weekday’ night for many people in London. For this analysis, individual weekdays and weekend days were selected with similar amounts of incoming short-wave radiation (daily cumulative totals within 25%) to control for Q_s differences from solar energy input. Weekday–weekend differences are expressed as ratios for each sensor individually to avoid biases caused by systematic differences between sensors (section 3.1).

During summer, weekday Q_H at 0900 h is 18.0% higher than on weekends and at 1600 h is 23.0% higher. This two-peaked curve resembles the diurnal pattern of weekday commuter vehicle traffic and associated heat emissions found in many cities (e.g. Sailor and Lu, 2004). In central London, vehicle traffic generally remains high throughout the day with no obvious secondary peak (Ward et al., 2015b), however scintillometer source areas are likely influenced by areas outside the city core with traffic patterns more representative of suburban regions (Figure 1). Early evening (2000–2200 h) weekday Q_H is higher than weekends, but overnight (2300–0300 h) weekday Q_H is on average less (−15.9%) than weekend Q_H, likely due to shifts in anthropogenic activity and traffic patterns. Daily total weekday Q_H is 3.1% greater than weekend daily totals during summer.

In winter, the diurnal course of the weekday:weekend Q_H ratio differs from that in summer. Overnight values are similar to summer (−20% relative to weekends), but a large increase (44.8%) is observed relative to weekends at 1000 h. Weekday daytime values remain above weekend values until 2100 h. The likely explanation for weekday–weekend differences is Q_s emissions from indoor space heating during the working week. Earlier sunset and later sunrise during winter also means more energy is consumed and heat released for indoor and outdoor lighting. For winter, daily total weekday Q_H is 11.7% greater than at the weekend.

3.3. Q_H spatial patterns

The distribution of scintillometer-measured Q_H magnitude over central London is influenced by the distribution of wind directions and atmospheric stability via modification of turbulent flux source area orientation and shape. Over a homogeneous surface (i.e. length-scale of surface variations≪length-scale of measurements), changes in source area shape and orientation would be irrelevant because the surface composition of heat sources and sinks remain the same. However, in urban environments surface variations of landcover, heat sources, and sinks can be of the same order of magnitude as length-scales of measurements, so variable source areas must be taken into account.

For this site, mean source area weighted vegetation landcover fraction (f_V) is highest (25.1%) in the northwest quadrant (270–360°) and northeast quadrant (25.7%) (0–90°) for all sensor paths (Figure 2(a)). Lowest f_V (11.3%) is found in the southeast quadrant (90–180°). Building landcover fraction (f_B) follows the inverse pattern with highest f_B in the southeast and southwest (41.8 and 43.5%, respectively) and lowest in the northwest and northeast (32.0 and 31.3%). Water landcover (f_W) is a minor component (mean = 2.9%) and is largest when winds are from the south (up to 9.2% for 180–190°) and source areas include a portion of the River Thames. Impervious fraction (f_I) is generally constant in all wind directions (mean = 41.1%).

Mean building height (z_B) is 14.3 m and is highest in the southeast (17.4 m) and southwest (16.4 m) and lowest in northeast (11.1 m) and northwest (12.1 m) (Figure 2(a)). The z_B and z_I also follow the same spatial pattern as z_B because they are directly scaled to z_B. In this study ($z_B = 0.12 z_s$ and $z_I = 0.72 z_s$; section 2.5).

To analyze spatial variability, Q_H is binned by wind direction (20° increments) and Q_H magnitude (100 W m$^{-2}$ bins) during summer (JJA) (Figure 9(a)). The most frequently observed wind direction at BCT when Q_H data are available is between 220° and 240° (21.1%). Wind directions with highest proportion (30.9%) of $Q_H > 300$ W m$^{-2}$ are from 140° to 160°. In contrast, wind directions with highest proportion (91.8%) of $Q_H < 300$ W m$^{-2}$ are from 0° to 20°.

To isolate spatial differences in Q_H, both anthropogenic influences and synoptic conditions (e.g. rain, variations in K_L) must be controlled for. To do this, Q_H is conditionally sampled during warm-month (May–September) working days (non-holiday Monday–Friday) when 200 $< < K_L < 400$ W m$^{-2}$ and it has been at least 15 h since the most recent rain event as measured by radar. (Here, a rain event is defined as precipitation in any of the nine 1×1 km2 radar grid cells; section 2.2). The 15 h threshold is based on findings from EC measurements at KCL showing the Bowen ratio is reduced up to 12 h after a rain event (Kotthaus and Grimmond, 2014a). These controls are meant to ensure that comparison between wind directions are from times with a dry surface, similar solar radiation input, similar levels of anthropogenic activity, and that sufficient number of data points are retained for analysis ($n > 10$ for each wind direction sector).

The selected data are then binned in 20° sectors (w) and binned median values ($\langle Q_H \rangle_w$) are normalized ($\langle Q_H \rangle_w$) as the ratio of individual bin medians ($\langle Q_H \rangle_i$) to the equally weighted mean of binned medians ($\langle \langle Q_H \rangle \rangle$) from all wind direction sectors:

$$\langle Q_H \rangle_w = \frac{\langle Q_H \rangle_i}{\langle \langle Q_H \rangle \rangle}. \quad (14)$$

This procedure expresses spatial differences as ratios for each sensor individually to avoid biases from systematic differences between sensors (section 3.1).

On average, highest weekday Q_H, from all sensors is measured when winds are from the south (100°–260°). Q_H is 14% higher on average than $\langle Q_H \rangle$ when winds are from 100° to 270° and are 11% lower than $\langle Q_H \rangle$ when winds are from the north (280° to 80°). Highest mean Q_H, from all sensors occurs when winds are from 180° to 200° (19.5% higher). Flux source areas with
southerly winds generally include high density areas of buildings, traffic, and anthropogenic activity.

When winds are from the northwest (280°–360°), \dot{Q}_{H} is 12% below average (Figure 9(b)), likely due to the increased presence of vegetation and moisture in Regent’s Park (Figures 1 and 2(a)). When winds are from the northeast (0°–80°), \dot{Q}_{H} is 10% below $\langle \tilde{\dot{Q}}_{H} \rangle$ on average due to nearly equal amounts of f_V and f_B from 10° to 50° (Figure 2(a)).

An anthropogenic signal is seen in the wind direction analysis as well (Figure 9(c)). For this analysis, weekday (working day) observations are compared with weekend (non-working day) observations. All other environmental controls (K_\downarrow, dry surface, warm weather months) are identical to those in Figure 9(b). On average for all wind direction sectors and sensors, weekday fluxes are 22.6% higher than at the weekend. Mean weekend–weekday differences are smallest (−3%) in the
northwest sector (260°–360°). Weekend—weekday differences are highest when winds are from 80° to 120° (55% above the average) and 160°–220° (51% above average). When winds are from 80° to 180°, source areas include the City of London, a predominantly commercial and financial centre with a high proportion of office buildings (Figure 1). During the working week, daytime population in this area grows to 553 103; nearly 70 times greater than the weekend/overnight residential population of 8072 (GLA, 2016).

When source area-weighted landcover fractions are plotted against $Q_{H\ast}$ in 20° bins (Figure 10) during dry surface conditions (identical controls as in Figures 9(b) and (c)). Both vegetation and building landcover fraction is linearly correlated with $Q_{H\ast}$. As the landcover fraction of vegetation increases (and buildings decrease), $Q_{H\ast}$ also decreases due to greater partitioning of net available energy toward evapotranspiration and reduced contributions from Q_{E} and Q_{H}. This relation is consistent with results in the urban energy balance literature from other cities (e.g. Grimmond and Oke, 2002; Christen and Vogt, 2004; Lordan and Grimmond, 2012).

It is then possible to analyze $Q_{H\ast}$ immediately following precipitation when the surface is wet (i.e. <3 h since the most recent rain event with precipitation in all nine 1 × 1 km2 radar grid cells) (Figure 10). $Q_{H\ast}$ for wet periods is defined relative to $[Q_{H\ast}]$ for dry periods, as in Eq. (14). All other controls remain identical to those used in Figures 9(b) and (c). The 3 h threshold is somewhat arbitrary, though findings from EC measurements at KCL show the Bowen ratio is reduced up to 12 h after a rain event (Kotthaus and Grimmond, 2014a). Although the surface is ‘wet’, the Bowen ratio measured by EC remains high (median $\beta = 3.1$ during JJA from 1000 to 1800 h and since rain <3 h, compared to $\beta = 5.3$ during the same period when time since rain >15 h) so that scintillometer flux calculation assumptions that neglect humidity remain valid (section 2.3). The Bowen ratio remains high after rain (though reduced compared to dry surface state) due to anthropogenic heat releases, efficient channelling and drainage of water from the surface before it can be evaporated, and often significant areas of wall that remain dry from rain shadow effects.

On average, $Q_{H\ast}$ magnitude is reduced by 27% for all wind direction sectors when the surface is wet (Figure 10). Somewhat surprisingly, vegetation (building) fraction and $Q_{H\ast}$ remain negatively (positively) correlated for both wet and dry periods when $Q_{H\ast}$ for wet surface conditions is normalized by the wet $Q_{H\ast}$. It was hypothesized that rain would act to reduce horizontal thermal variations between landcover types and that $Q_{H\ast}$ would be more spatially homogenous during wet periods (i.e. the linear slope would be reduced). This effect was demonstrated in a modelling study by Ramamurthy and Bou-Zeid (2014). A possible explanation for the observed pattern is that the correlation between landcover fraction and $Q_{H\ast}$ is maintained by the presence of vertical walls that remain dry and greater mechanically generated turbulence from areas with high building landcover.

3.4. Advection of vertical sensible heat flux

Horizontal gradients in Q_{H} (Figure 9(b)) in the presence of mean flow signifies horizontal advection (ΔQ_{H}) of vertical Q_{H}. A first-order estimate of intra-urban ΔQ_{H} values at this site is determined using observed horizontal Q_{H} differences (ΔQ_{H}) between wind direction sectors in Figure 9(b) along with mean mixed-layer wind speeds (U) and horizontal length-scale of scintillometer source areas (Δx) for a time step (t):

$$\Delta Q_{H} = t \frac{U \Delta Q_{H}}{\Delta x}$$

(15)

This approach is conceptually a single-layer box-model with two adjacent, well-mixed columns of equal mixed-layer height but differing vertical Q_{H}.

For this analysis, t is set to 1800 s (typical 30 min flux averaging period), U is set to a representative mixed-layer velocity of 5 m s$^{-1}$ (based on observations at KCL and BCT), and Δx is set to 5000 m as a typical horizontal distance of the scintillometer source area 80% cumulative weighting area (Figure 1). The weekday ΔQ_{H} values are determined for each wind sector in Figure 9(b) as $Q_{H\ast}$ is the centre-point (\ast) of the wind sector bin and $Q_{H\ast}$ is the mean of all sensors. In this scenario, daytime weekday values of ΔQ_{H} are up to ± 134.4 W m$^{-2}$ when winds are along a southwest–northwest axis ($\Delta Q_{H} = \pm 74.7$ W m$^{-2}$). Here, ΔQ_{H} is positive when flow is from relatively high Q_{H} to low Q_{H} (from southwest to northwest) and negative when flow is from low to high (from northwest to southwest) (Figure 9(b)). Smallest ΔQ_{H} values (± 20.8 W m$^{-2}$ occur when flow is down an east–west axis where $\Delta Q_{H} = \pm 11.6$ W m$^{-2}$). These values of ΔQ_{H} are in line with those calculated in Marseille using observations of horizontal air temperature gradient (Pigeon et al., 2007).

This analysis applies only to daytime advection of vertical Q_{H} within the long-term flux source area, however, and does not consider larger-scale processes such as thermal (e.g. sea breeze, urban-rural breeze) or synoptic circulations. Similarly, energy advection associated with horizontal gradients in moisture is unaccounted for.

3.5. Latent heat flux

Latent heat flux in an urban setting is composed of evaporation (E), transpiration (T), and anthropogenic contributions (Q_{FE})
from sources such as fossil fuel combustion, respiration, and releases from air conditioning:

\[Q_E = E + T + Q_{IE} = \frac{Q_H}{\beta} \] \hfill (16)

Here, we estimate monthly cumulative \(Q_E \) using measured \(Q_H \) and a modified Bowen ratio approach. Monthly \(Q_E \) is modelled using precipitation data and relations between measured \(Q_H \) and landcover developed in section 3.3. In this approach ('landcover method'), \(T, E, \) and \(Q_{IE} \) are considered separately:

\[Q_E = Q_H (ED + FD + EW + FW + t_f) + Q_{IE}. \] \hfill (17)

where \(ED \) and \(EW \) represent bulk evaporation during times when the surface is dry and wet, \(FD \) and \(FW \) are dry and wet surface fractions at monthly time-scales, \(\tau \) is a coefficient representing vegetation and soil evapotranspiration, and \(f_v \) is vegetation landcover fraction.

Collectively, the bracketed terms in Eq. (17) are approximately \(1/\beta \), but this excludes the \(Q_{IE} \) term. Although the \(ED \) and \(EW \) terms are conceptually similar to \(\beta \) terms for wet and dry conditions, they only account for evaporation, not transpiration. In this equation, \(Q_H \) is the cumulative total of hourly ensemble median \(Q_H \) for each month (Figure 11). Overall, \(Q_{IE} \) is expected to be a minor contribution to \(Q_E \). Modelling work in London calculates this to be 7.3% of total \(Q_H \), or approximately 1–10 W m\(^{-2}\) on average in greater London (Iamarino et al., 2012). Since this term is minor compared to measured vertical fluxes and their uncertainties, we neglect \(Q_{IE} \) in this analysis.

First, evapotranspiration from vegetated surfaces is calculated using \(\tau \) derived from the slope of the linear relation (\(\tau = 1.22 \)) between vegetation fraction and normalized \(Q_H \) during dry surface conditions (Figure 10). Using this slope and the source area weighted \(f_v \) (9.6%) from the southwest primary wind direction quadrant (180°–270°), \(T \) is set to 0.117 \(Q_H \). This makes the simplifying assumptions that linear relations developed during warm-weather daytime periods apply also to daily energy exchange totals throughout the year. During leaf-off months (roughly October–April), this introduces uncertainty because grass and coniferous trees transpire at a reduced rate relative to summer, and deciduous trees are largely inactive primarily due to reductions in photosynthetically active radiation (Kramer and Boyer, 1995). Additional biological and environmental processes driving plant transpiration such as vapour pressure deficit, wind speed, vegetation type and health, and stomatal resistance are obviously also not included in this method. This estimate also includes an evaporation contribution from soil beneath above-ground vegetation. These uncertainties are somewhat mitigated by the overall small fraction of vegetation in the source area and thus presumably small contribution of transpiration to \(Q_E \) (Table 2).

Next, the evaporation coefficient \(\beta \) is calculated from observed differences in \(Q_H \) when the surface is wet compared to dry (Figure 10). On average for all sensors and all wind directions, \(Q_H \) is reduced by 27% when the surface is wet (Figure 10) and this procedure assumes this fraction of energy is partitioned entirely towards evaporation. Thus, \(EW \) is set to 0.27 and \(ED \) is set to 0, which assumes minimal evaporation from exposed water sources when the surface is dry. Again, this is conceptually similar to a Bowen ratio approach because we assume energy is partitioned towards the evaporation component of \(Q_E \) when the surface is wet. This method introduces uncertainty through use of a binary wet or dry surface, when in reality \(Q_H \) changes continuously after a rainfall event as surface water evaporates. EC measurements at KCL indicate \(Q_H \) is reduced for up to 12 h after precipitation (Kotthaus and Grimmond, 2014a).

The \(FD \) and \(FW \) fractions are estimated using radar precipitation data collected for nine 1 × 1 km\(^2\) grid cells (section 2.2). For each month, \(FW \) is calculated as the number of days where the radar records precipitation in all nine cells divided by the total number of days in the month (NDays\(_{rain}^{-1}\)/NDays\(_{total}\)). All other terms are classified as dry (\(FD = 1 - FW \)).

For comparison, independent \(Q_E \) measurements from the KCL EC station are also used and a third estimate of \(Q_E \) is made using the Bowen ratio (Eq. (16)) for each month measured by the KCL EC system (Figure 11). The EC Bowen ratio for each month is calculated as the 24 h sum of median EC \(Q_E \) divided by the 24 h sum of median EC \(Q_E \). \(Q_E \) for each month is then calculated using the monthly 24 h sum of hourly scintillometer \(Q_H \) and \(1/\beta \) (Eq. (16)). These methods are not expected to agree exactly, given the source area differences between EC and scintillometer measurements, however the comparison provides a useful reference.

Using the landcover method, monthly \(Q_E \) ranges from 7.6 W m\(^{-2}\) (mean daily total 0.66 MJ m\(^{-2}\) day\(^{-1}\)) in November to 27.2 W m\(^{-2}\) (mean daily total 2.35 MJ m\(^{-2}\) day\(^{-1}\)) in July (Figure 11). Mean monthly \(\beta \) for the entire year using the landcover method is 5.2, with values ranging from 4.3 in December to 6.2 in October. The annual course of monthly \(Q_E \) totals agrees well with independent EC measurements and annual cumulative \(Q_E \) is 1.3% lower than the EC measurements (Figure 11). The monthly courses of the Bowen ratio and landcover method are also in good agreement, though annual cumulative \(\beta \) \(Q_E \) overestimates the landcover method by 13.4%.

An advantage of the landcover method is that \(Q_E \) is scaled to \(Q_H \) and can be implemented with easily available precipitation data and landcover information. This technique would be useful for estimating energy balance partitioning in situations where \(Q_H \) is already available, for example if \(Q_H \) is calculated from remotely sensed surface temperatures. However, given the uncertainties involved, it is only recommended for low-vegetation landcover environments where \(Q_E \) is a relatively minor component of the surface energy balance.

3.6. Residual, storage, and anthropogenic heat

Observed \(Q_H \) and modelled \(Q_E \) are used to constrain the amount of energy available for \(Q_H \) and \(Q_S \), using an energy balance residual approach (Figure 11). For each month, hourly ensemble medians of \(Q_H \) measured by the P3 scintillometer, \(Q_E \) modelled using the landcover method, and \(Q_S \) measured at KCL are calculated. The P3 scintillometer data are used because it has the highest data recovery rate for all months (Figure 3). Hourly medians are summed across the 24 h diurnal cycle and residual flux (\(Q_R \)) is calculated as

\[Q_R = \sum_{i=1}^{24} \{Q_{H,i} + Q_{E,i}\} - Q_{si} = Q_E - \Delta Q_S. \] \hfill (18)

The \(Q_R \) values also include the portion of \(Q_E \) expressed as outgoing long-wave radiation loss due to warming of the 3D urban surface (which acts to reduce \(Q_E \)). This is expected to be approximately one-third of total \(Q_E \) based on model results by Bohnenstengel et al. (2014). The method does not account for \(Q_E \) that is transported out of the study area via wastewater, which has been modelled to be approximately 10% of total \(Q_E \) in London (Iamarino et al., 2012). In general, there is uncertainty with any residual approach because all measurement and modelling errors are accumulated in \(Q_S \), therefore \(Q_S \) is very sensitive to small errors in the other flux terms. Additional uncertainty arises because the radiative flux source area of the radiometer does not match the turbulent flux source area of the scintillometers, though the radiative source area is assumed to be representative of the larger turbulent flux source area.

\(Q_S \) follows an annual cycle with highest \(Q_S \) value during February (61.3 W m\(^{-2}\), daily total 5.3 MJ m\(^{-2}\) day\(^{-1}\)) and lowest during June (30.1 W m\(^{-2}\), daily total 2.6 MJ m\(^{-2}\) day\(^{-1}\)). Monthly \(Q_S \) is linearly correlated with monthly total heating degree days
Urban–Atmosphere Energy Exchange using Scintillometry

Building fraction (f_B) Vegetation fraction (f_V)

Q_H^*

(a) (b)

0.10 0.30

0.4 0.6 0.8 1.0 1.2

0.30

0.25 0.20 0.15

0.15 0.10

0.05

0.00

0.50

0.45

0.40

0.35

0.30

0.20

0.15

0.10

0.05

0.00

Figure 10. Normalized Q_H (Eq. (14)) and source area landcover fraction of 20° wind sector bins for (a) vegetation and (b) building for wet (white symbols) and dry (coloured symbols) surface conditions. Data points and linear statistics ($a =$ slope, $b =$ offset) are for wind sectors with n samples > 10. Section 3.3 gives definitions of ‘wet’ and ‘dry’ surfaces and additional details on conditional sampling criteria to control for season, day of week, and solar radiation input.

Figure 11. Monthly totals of Q_H, Q^*, Q_E, and Q_R (Eq. (18)) and annual mean Q_R. Q_H is measured at P3, Q^* is measured at KCL and inner-decile ranges are shown as shaded regions. Three values of Q_E are shown: (i) ‘Q_E landcover’ is modelled using the landcover method described in section 3.5, (ii) ‘Q_E EC’ measured at KCL by EC, and (iii) ‘Q_E θ’ is estimated using the EC Bowen ratio and P3 Q_H (section 3.5). The Q_R shaded region is the range across all three values for each month. Q_R is determined from Eq. (17) and the Q_R shaded region represents the Q_R range using the maximum and minimum of values of the shaded Q_H, Q^*, and Q_E regions. Section 3.6 gives an explanation of annual mean Q_R.

(HDD) (Figure 12). HDD are calculated using the difference between observed daily mean canopy layer air temperature within the scintillometer source area at 3 m agl near the P3 receiver location and a UK-specific reference temperature of 15.5 °C (Day, 2006).

Q_R is also linearly correlated with net carbon dioxide emissions (F_{CO2}) measured at KCL (Figure 12). Q_R and F_{CO2} are closely linked because heat and CO2 emissions are generated primarily from fossil fuel combustion and released by human metabolic activity. This suggests that Q_R at this location is dominated by Q_E which tends to be driven largely by natural gas combustion for indoor space heating (e.g. Iamarino et al., 2012). Uncertainty with this comparison is from heat sources that do not generate local CO2 emissions (e.g. waste heat from electrical appliances and lighting), CO2 emissions from soil and vegetation respiration, CO2 sequestration by vegetation, and ΔQ_S.

There is a hysteresis evident in both the HDD Q_R and F_{CO2} Q_R relations likely due to ΔQ_S. The residuals between Q_R and the linear models range from −8.8 to 8.9 W m$^{-2}$ (−0.76 to 0.77 MJ m$^{-2}$ day$^{-1}$). These numbers are reasonable bounds of monthly ΔQ_S and consistent with results in central European cities. Based on observations in Basel (Christen and Vogt, 2004) and Łódź (Offerle et al., 2005), monthly ΔQ_S is expected to be within ±23.1 W m$^{-2}$ (±2 MJ m$^{-2}$ day$^{-1}$) with net positive ΔQ_S (i.e. energy uptake by the surface so that $Q_R < Q_E$) from January to June and net negative ΔQ_S.
Section 3.6 gives details on calculation of HDD and Q and in Basel annual mean summer Chicago and Philadelphia, city-scale inventories determined peak than weekend December.

Observations about surface–atmosphere energy exchange processes from simultaneous independent eddy covariance measurements in the City of London as around 140 W m$^{-2}$ for 2005–2008. In Chicago and Philadelphia, city-scale inventories determined peak summer Q values range from 30 to 60 W m$^{-2}$ and from 70 to 75 W m$^{-2}$ during winter (Sailor and Lu, 2004). In Łódź, Q averaged 32 W m$^{-2}$ from October to March (Offerle et al., 2005) and in Basel annual mean Q was 20 W m$^{-2}$ using an energy balance residual approach.

4. Summary and conclusions

This work presents a unique dataset from a network of three scintillometers in central London for a full year (December 2014–November 2015). It is the first study to use observed temporal and spatial patterns of Q to estimate partitioning between remaining energy balance terms QH, ∆QH, and annual Q. The novel methods developed here offer significant new potential for extracting additional information about surface–atmosphere energy exchange processes from observations.

Temporally, QH exhibits expected diurnal and seasonal cycles related to solar insolation. There is also a strong anthropogenic signal in measured QH. Winter weekday cumulative QH is 11.7% higher than weekends from building energy occupancy and in summer, weekday cumulative totals are 5.1% higher than weekends. A diurnal commuter traffic signal is detectable in both winter and summer.

Observed QH also varies spatially according to wind direction when conditional sampling is used to control for anthropogenic and synoptic factors. Normalized QH varies with vegetation and building landcover fraction in the scintillometer measurement source area. Weekday QH is also found to be up to 55% higher than weekend QH when wind directions are from the central business district (the City of London). Spatial differences are then used to estimate the magnitude of horizontal advection of QH at this site, which is found to be significant for certain wind directions (up to ±134 W m$^{-2}$).

QH from periods when the surface is dry is compared to QH immediately after precipitation and measurements show that QH is reduced by 27% when the surface is wet. This, along with observed relations between QH and vegetation landcover fraction and spatial precipitation data, is used to estimate QE. This new technique to model QE results in an annual total within 1.4% of simultaneous independent eddy covariance measurements in the scintillometer source area. Modelled QH and observed QH and QE are then used to determine monthly energy balance residual QR.

The QR is found to vary linearly with FC02 and HDD. Annual QH is calculated from the annual cumulative QH and mean Q for this location is 4.0 MJ m$^{-2}$ day$^{-1}$, or 46.3 W m$^{-2}$. These figures are in line with other reported values of QH in the literature. Results from this work advance understanding of how spatial and temporal patterns of surface–atmosphere energy exchange are influenced by heterogeneous landcover, anthropogenic activity, and surface conditions (e.g. moisture availability) at 103 to 104 km length-scales. This information has potential to improve air pollution dispersion and transport models and enhance risk assessment for exposure to extreme temperatures in cities. Methodologically, spatial analysis techniques developed here represent a new path forward for eliciting additional information from spatial flux datasets in heterogeneous environments. Scintillometers are also shown to be a valuable tool for observing spatially integrated fluxes in urban areas at neighbourhood to city scales.

This will enable a broader range of urban morphologies to be explored through measurements. In particular, observations are needed of areas with tall buildings. Worldwide, such areas are increasing in spatial extent but are minimally understood from a local-scale energy balance perspective. From this, we may start to address how models should incorporate relevant physical processes related to surface–atmosphere energy exchange.

Acknowledgements

This work is funded by European Union Horizon 2020 UrbanFluxes project, with additional funding from NERC (ClearFlO and TRUC projects). We are also extremely grateful to BT, Islington Council, and Barbican for site access. Kjell zum Berge, Andy Gabey, Christoph Kent and Bing Sun of the Meteorology Department at University of Reading also made valuable contributions to this work with fieldwork, discussion, meteorological data processing, and assistance with source area modelling. Earlier efforts by John Mustchin, Lukas Pauscher and Mariana Gouvea were important to this work, as were insightful comments by manuscript reviewers.

References

Andreas EL. 1988. Estimating over snow and sea ice from meteorological data. J. Opt. Soc. Am. A 8: 481–495.
Bjorkengen A, Grimmond CSB, Kotthaus S, Malamud B. 2015. CO2 emission estimation in the urban environment: measurement of the CO2 storage term. Atmos. Environ. 122: 775–790.
Bohnenstengel S, Hamilton I, Davies M, Belcher S. 2014. Impact of anthropogenic heat emissions on London’s temperatures. Q. J. R. Meteorol. Soc. 140: 687–698.
Braam M, Bosveld FC, Moene AF. 2012. On monin-obukhov scaling in and above the atmospheric surface layer: The complexities of elevated scintillometer measurements. Boundary-Layer Meteorol. 144: 157–177.
Christen A, Vogt R. 2004. Energy and radiation balance of a central European city. Int. J. Climatol. 24: 1395–1421.
Clifford S, Ochs G, Lawrence R. 1974. Saturation of optical scintillation by strong turbulence. J. Opt. Soc. Am. 64: 148 – 154.

Davies T, 2004. ‘Micro-Climate Theory and Applications’ CIBSE: London, http://www.degreedaysforfree.co.uk/pdf/TM41.pdf (accessed 8 December 2016).

De Bruijn H, Kohsie W, Van den Hurk B. 1993. A verification of some methods to determine the fluxes of momentum, sensible heat, and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol. 76: 245 – 257.

De Bruijn H, Van den Hurk H, Kohsie W. 1995. The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol. 76: 149 – 160.

Foken T, Fradat M, Liebelt G, Wimmer F, Beyrich F, Leps JP, Raasch S, DeBruin HA, Meijninger WM, Bange J. 2010. Energy balance closure for the litfass-2003 experiment. Theor. Appl. Climatol. 101: 792–918.

Harrison D, Drissell S, Kitchen M. 2000. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol. Appl. 7: 133–144.

Hartogensis O, Watts C, Rodriguez J, De Bruijn H. 2000. Derivation of an effective height for scintillometers: La Pozza experiment in Northwest Mexico. J. Hydrometeorol. 4: 915–928.

Hielpie S, Sailor DJ, 2008. Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy Build. 40: 1426–1436.

Hill R, Clifford S, Lawrence R. 1980. Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations. J. Opt. Soc. Am. 70: 1192–1205.

Inagaki A, Letzel MO, Raasch S, Kanda M. 2006. Impact of surface heterogeneity on energy balance: A study using LES. J. Meteorol. Soc. Jpn. 84: 187–198.

Kanda M, Moriwaki R, Roth M, Oke T. 2002. Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Boundary-Layer Meteorol. 107: 175–193.

Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T. 2004. LES study of turbulent fluxes in the surface roughness sublayer: The role of scintillometry. Boundary-Layer Meteorol. 121: 351–375.

Kleissl J, Hartogensis O, Gomez J. 2010. Test of scintillometer saturation correction methods using field experimental data. Boundary-Layer Meteorol. 136: 493–507.

Kohsie W. 1982. Measuring C_T, C_H, and C_D in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol. 24: 89–107.

Kohsie W, Meijninger W, DeBruin H, Beyrich F. 2006. Saturation of the large-aperture scintillometer. Boundary-Layer Meteorol. 121: 111–126.

Koohmans LM, Hartogensis O. 2012. Surface-layer similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol. 145: 45–67.

Li D, Bou-Zeid E, De Bruin HA. 2012. Monin-Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol. 145: 1029–1037.

Lindberg F, Grimmond CSB. 2011. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and remote radiant temperature patterns. Boundary-Layer Meteorol. 140: 613–634.

Liu S, Xu Z, Wang W, Jia Z, Zhu M, Bai J, Wang J. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydro. Earth Syst. Sci. 15: 1303–1306.

Loridon T, Grimmond CSB. 2012. Characterization of energy flux partitioning in urban environments: Links with surface seasonal properties. J. Appl. Meteor. Climatol. 51: 219–241.

LUUMO. 2016. London Urban Meteorological Observatory. Department of Meteorology, University of Reading: Reading, UK. http://www.met.reading.ac.uk/micromet/LUUMO/ (accessed 8 December 2016).

Mustich J, Pauscher L, Ward H, Kotthaus S, Gouvea O, Morrison W, Grimmond CSB. 2013. ‘Comparison of three large-aperture scintillometers over London’. In Atmospheric Physics Symposium ‘Scintillometers and Applications’, 7–9 October 2013, Tübingen, Germany.

Offerle B, Grimmond CSB, Fortunia K. 2005. Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int. J. Climatol. 25: 1405–1419.

Oke T. 1988. The urban energy balance. Prog. Phys. Geogr. 12: 471–508.

Pauscher L, Salmond J, Grimmond CSB, Foken T. 2010. ‘Scintillometer measurements above the urban area of London’. In EGU General Assembly Conference Abstracts, 2–7 May 2010, Vienna, Austria. Vol. 12, p. 4484.

Pigeon G, Lemosus A, Grimmond CSB, Durand P, Thouron O, Masson V. 2007. ‘Divergence of turbulent fluxes in the surface layer: Case of a coastal city’. Boundary-Layer Meteorol. 124: 269–290.

Ramanurthy P, Bou-zaïd E. 2014. Contribution of imperious surfaces to urban evaporation. Water Resour. Res. 50: 2889–2902.

Roth M, Salmond J, Satyanarayana A. 2006. Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: The role of scintillometry. Boundary-Layer Meteorol. 121: 351–375.

Sailor DJ. 2011. A review of methods for estimating anthropogenic heat emissions and meteorological impacts of climate change in the urban environment. Int. J. Climatol. 31: 189–199.

Sailor DJ, Lu L. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 38: 2737–2748.

Scintec. 2016. Boundary-Layer Scintillometer Hardware Manual. Scintec AG: Rottweil, Germany. http://www.scintec.de/dam/jcr/9c272082-f723-49a1-9f8d-656cf4d44ef6/Scintec_Boundary_Layer_Scintillometer_Hardware_Manual.pdf.

TFL. 2016. Public and Stakeholder Consultation on a Variation Order to Modify the Congestion Charging Scheme; Impact Assessment. Transport for London; London. https://consultations.tfl.gov.uk/roads/cc-changes-march-2014/user-uploads/cc-impact-assessment.pdf (accessed 8 December 2016).

UKMO. 2003. 1 km Resolution UK Composite Rainfall Data from the Met Office NIMROD System. NCAS British Atmospheric Data Centre: Didcot, UK. http://catalogue.ceda.ac.uk/uuid/82adec88196a661e9112d98c11744999 (accessed 8 December 2016).

UKMO. 2016. UK Climate – Historic Station Data. Met Office: Exeter, UK. http://www.metoffice.gov.uk/public/weather/climate-historic/#?tab=climateHistoric (accessed 8 December 2016).

Wang Ti, Ochs G, Clifford S. 1978. A saturation-resistant optical scintillometer to measure J. Opt. Soc. Am. 68: 334–338.

Ward H, Evans J, Grimmond CSB. 2014. Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance. Boundary-Layer Meteorol. 152: 65–89.

Ward H, Evans J, Grimmond CSB. 2015a. Infrared and millimetre-wave scintillometry in the suburban environment-Part 2: Large-area sensible and latent heat fluxes. Atmos. Meas. Tech. 8: 1407–1424.

Ward H, Kotthaus S, Grimmond CSB, Bjorekren A, Wilkinson M, Morrison W, Evans J, Morrison J, Iamarino M. 2015b. Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England. Environ. Pollut. 186: 186–200.

Wilson R, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Granier A, Grifoll T, Grelle A, Hall W, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S. 2002. Energy balance closure at FLUXNET sites. Boundary-Layer Meteorol. 112: 233–243.

Wood C, Kouznetsov R, Gierens R, Nordbo A, Jarvi L, Kallistratova M, Kukkonen J. 2013. On the temperature structure parameter and sensible heat flux over Helsinki from sonic anemometry and scintillometry. J. Atmos. Oceanic Technol. 30: 1604–1615.

Wyngaard J, Izumi Y, Collins SA. 1971. Behavior of the refractive-index structure parameter near the ground. J. Opt. Soc. Am. 61: 1466–1460.

Zhang H, Zhang H. 2015. Comparison of turbulent sensible heat flux determined by large-aperture scintillometer and eddy covariance over urban and suburban areas. Boundary-Layer Meteorol. 154: 119–136.

Zielinski M, Fortunia K, Pawlak W, Siedlecki M. 2013. Turbulent sensible heat flux in Lodz, Central Poland, obtained from scintillometer and eddy covariance measurements. Meteorol. Z. 22: 603–613.