Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus

Running title: Intestinal microbes in systemic lupus erythematosus

Yao Li1,2#, Haifang Wang1#, Xin Li1#, Haixia Li1, Qiong Zhang1, Hongwei Zhou3, Yan He3, Pan Li3, Chen Fu1, Xiaohe Zhang1, Yurong Qiu1,4*, Ji-Liang Li2,5,6*

1 Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
2 Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
3 Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China
4 Huayin Medical Laboratory Center Co., Ltd., Guangzhou, Guangdong, 510515, P.R. China
5 Wenzhou Medical University School of Biomedical Engineering and Eye Hospital, Wenzhou Institute of Biomaterials and Engineering, Wenzhou 325035, China
6 Institute of Translational and Stratified Medicine, Plymouth University Faculty of Medicine and Dentistry, Plymouth PL6 8BU, UK.

*Corresponding author, Yurong Qiu, qyr@smu.edu.cn or Ji-Liang Li, Ji-liang.li@plymouth.ac.uk

These authors contributed equally to this work.
Abstract

Intestinal dysbiosis is implicated in Systemic Lupus Erythematosus (SLE). However, the evidence of gut microbiome changes in SLE is limited, and the association of changed gut microbiome with the activity of SLE, as well as its functional relevance with SLE still remains unknown. Here, we sequenced 16S rRNA amplicon on fecal samples from 40 SLE patients (19 active patients, 21 remissive patients), 20 disease controls (Rheumatoid Arthritis patients), and 22 healthy controls, and investigated the association of functional categories with taxonomic composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). We demonstrated SLE patients, particularly those active patients, had significant dysbiosis in gut microbiota with reduced bacterial diversity and biased community constitutions. Among the disordered microbiota, the genera *Streptococcus, Campylobacter, Veillonella*, the species *anginosus* and *dispar*, were positively correlated with lupus activity, while the genus *Bifidobacterium* was negatively associated with disease activity. PICRUSt analysis showed metabolic pathways were different between SLE and healthy controls, and also between active and remissive SLE patients. Moreover, we revealed that a random forest model could distinguish SLE from RA and healthy controls (AUC = 0.792), and another random forest model could well predict the activity of SLE patients (AUC = 0.811). In summary, SLE patients, especially the active patients, show an apparent dysbiosis in gut microbiota and its related metabolic pathways. Among the disordered microflora, 4 genera and 2 species are associated with lupus activity. Furthermore, the random forest models are able to diagnose SLE and predict disease activity.
Keywords: Systemic lupus erythematosus; gut microbiota; disease activity; PICRUSt; Random forest

Introduction

The gut microbe population, known as “gut microbiota” is heterogeneous and complex, and is composed of more than 1000 different bacterial species (1). Intestinal mucosal immunity have clarified the correlation between the gut microbiota and the host immune system (2). Microbial abnormalities, also known as “dysbiosis”, is thought to be correlated with various diseases, including chronic kidney disease, obesity, type 2 diabetes, atherosclerosis and nonalcoholic fatty liver disease (3-6). Systemic Lupus Erythematosus (SLE) is a heterogenic autoimmune disease promoted by a combination of genetic and environmental factors that bring about an intolerance towards self-antigens (7). Although the etiology of SLE remains unclear, hormonal, environmental and genetic factors are thought to be of importance. Recently, dysbiosis of the gut microbial community in the development of SLE has attracted attention.

Multiple evidences has shown a lower *Firmicutes/Bacteroidetes* ratio and decreased abundance of some families in *Firmicutes* phylum may be involved in remissive SLE (8-10) However, such alterations are also discovered in Intestinal Mucositis and Crohn’s disease (11). It was reported that the presence of *Lactobacillus spp.* in gut could attenuate kidney inflammation in lupus-prone mice in a sex hormone-dependent manner (12), suggesting the gut microbiome may be a possible therapeutic target for SLE. The association of the gut microbiome with different diseases has been shown to be diverse due
to many factors such as host’s age, sex, genotype, diet and geography (13-16). Therefore, alterations of gut microbiome associated with SLE should be variable in SLE patients in Guangdong Province, China compared with other locations.

So far, there are limited studies on SLE and gut microbiota. Only a study observed the gut microbiota in active SLE patients, other studies have just focused on SLE patients in remission (8-10)(17). Whether the gut microbiota is associated with the disease activity still remains unclear. In this study, we recruited both active and remissive SLE patients to investigate the characteristic of intestinal microbes that are associated with disease activity. Since Rheumatoid Arthritis (RA) is another common autoimmune disease, we also included RA patients as the disease control to define the specificity of the SLE-associated gut microbiome. We found that the gut microbiota in SLE patients, especially in active SLE patients, had a distinct dysbiosis in microbiota and its related metabolic pathways. Six disordered genera and two species were revealed to be closely associated with SLE activity. Furthermore, the results suggested the gut microbiota were validated to have strong diagnostic potential for SLE, and even predict the disease activity through random forest analysis.

Materials and Methods

Research participants and sample collection

40 SLE patients, 20 RA patients and 22 healthy controls were consecutively recruited from Nanfang Hospital, Southern Medical University during 2017. All SLE and RA patients fulfill the American
College of Rheumatology (ACR) classification criteria for SLE or RA disease (18-20). All patients with acute intercurrent illnesses or infections and those who used probiotics or antibiotics within 1 month before admission were excluded (6). The gender- and age-matched healthy controls (HC) who had no known history of autoimmune diseases were also recruited from the Health Examination Centre of Nanfang Hospital. All the participants were female. Average age of SLE, RA and HC group was 37.46 ± 14.17, 44.00 ± 6.53, and 37.18 ± 14.67 respectively (P = 0.142).

Based on the systemic lupus erythematosus disease activity index (SLEDAI) (21), all the SLE patients were divided into the active SLE patients (A) (SLEDAI ≥ 8) (n = 19) and remissive SLE patients (R) (SLEDAI < 8) (n = 21). Exception of the age and gender distribution, patients in group A showed many significant differences from that of group R, having more severe symptoms, including anemia, hypocomplementemia, impaired renal functions and increased autoantibodies, all of which are consistent with the clinical characteristics of SLE (Table 1).

For all participants, the fresh fecal samples were frozen at -80 °C immediately after collection. Ethics approval was granted by the Ethics Committee of Nanfang Hospital, and all of the methods used were in accordance with the approved guidelines. Written informed consent was required from all patients and healthy volunteers in the study.

Illumina Miseq sequencing of 16S rRNA gene-based amplicons and data processing

Total DNA was extracted from thawed fecal samples using the LONGSEE STOOL DNA KIT (Longsee...
med Bio Medical., LTD., Guangdong, China) following the manufacturer’s instructions. All the individually processed human fecal DNA extractions were amplified by polymerase chain reaction (PCR). The forward primer (5’-ACT CCT ACG GGA GGC AGC AG-3’) and reverse primer (5’-GGA CTA CHV GGG TWT CTA AT-3’) were used to amplify the 16S rRNA gene V3-V4 variable region from the bacteria by polymerase chain reaction (PCR) as described previously (22). Briefly, amplifications were performed using a step cycling protocol consisting of 98 °C for 30 s, 35 cycles of 98 °C for 10 s, 54 °C for 30 s, and 72 °C for 45 s, ended with the final elongation at 72 °C for 10 min. PCR products were purified using an AxyPrep PCR Cleanup Kit (Axygen, California, USA).

For the sequencing of 16S rRNA gene-based amplicons, the amplicon library was prepared using a TruSeq Nano DNA LT Library Prep Kit (Illumina Inc, CA, USA). The sequencing reaction was conducted using Illumina MiSeq platforms and the data were analyzed by the Quantitative Insights Into Microbial Ecology platform (QIIME, www.qiime.org) using the default parameters (23). The raw sequence data for 16S rRNA gene sequencing data sets was available from the Sequence Read Archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra) at accession number PRJNA493726.

Before assembly, sequence reads were first filtered to remove low-quality or ambiguous reads, including reads lacking exact matching with the primer, sequences with mismatch ratio sequences higher than 0.05 in the overlap region and raw reads shorter than 100 bp with Trimmomatic v.0.32 software (24). Paired-end clean reads were merged using FLASH (25) according to the relationship of the overlap between the paired-end reads when at least 10 of the reads overlapped the read generated from the
opposite end of the same DNA fragment, the maximum allowable error ratio of an overlap region of 0.2, and the spliced sequences were called raw tags.

High-quality Sequences with a distance-based similarity of 97% or greater were grouped into operational taxonomic units (OTUs) using the Vsearch algorithm. Representative sequence was then extracted from each OTU. Next, the chimeric sequences were detected and removed. To assign taxonomy information to each clustered feature, extracted representative sequences were subjected to similarity search against Greengenes sequence and taxonomy database using RDP classifier algorithm (ucluster approach with default settings) and the classify-sklearn plugin within QIime software (version 1.9.1). The phylogenetic relationships were determined based on a representative sequence alignment using Fast-Tree (26). Computation of α-diversity metrics and β-diversity metrics were performed on all samples within the feature table with QIime diversity alpha/beta plugin. Rarefaction curve plots the number of individual’s sample versus the number of species, which was done with QIime diversity alpha-rarefaction plugin. Rank abundance curve portray relative abundance and species diversity within a community by plotting relative abundance of species (y-axis) against their rank in abundance (x-axis), which plotted using QIIME v.1.9.1 software.

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) is a bioinformatics software package designed to predict metagenome functional content from marker gene surveys and full genomes. PICRUSt analysis was performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and determine functional categories associated with
Comparisons of relative abundance of taxa between groups were performed using Linear discriminant analysis Effect Size (LEfSe), a non-parametric Mann-Whitney U test applied to detect features with significant differential abundance with respect to the groups compared, followed by a Linear Discriminant Analysis (LDA) to estimate the effect size of each differentially abundant feature in Linux platform (28).

Statistical analyses

We used the mean (±SD) to express measurement data that obeyed a normal distribution, the median (interquartile range) to express measurement data that obeyed a skewed distribution, and a percentage to express enumeration data. Mann-Whitney U test or Student t test was performed to compare the variables of 2 sample groups. Multiple group comparisons were made by the Kruskal-Wallis test or one-way analysis of variance. False discovery rate (FDR) correction for multiple comparisons was employed, and the statistical power was analyzed via power and sample size calculation in R software (29, 30), then the False Discovery Rate q-value was calculated.

The α-diversity determines the species richness and evenness within bacterial populations. The α-diversity metrics include: Observed species and Chao1 (microbial richness), and Shannon index and Simpson index (microbial diversity) (31). The β-diversity determines the shared diversity between bacterial populations. Different distance metrics reveal distinctive views of community structure.
UniFrac distances measure the shared phylogenetic diversity between communities. A smaller UniFrac distance between two samples indicates a higher similarity among the two microbial communities (32). Principal coordinates analysis (PCoA) was plotted using the package in R software (Version 3.4.4). The Wilcoxon rank sum test was used to determine significance in α-diversity and β-diversity.

We used spearman algorithm to analyze the relationship among microbiota, predicted pathways and SLE activity index. The Random Forest models were trained by “randomForest” package with default parameters in R, then the performance of the model was assessed with a ten-fold cross-validation approach and measured by area under the receiver-operating characteristic (ROC) (33). All tests were performed using GraphPad Prism (v6.0) (GraphPad Software, Inc., CA, USA), SPSS Statistics (V.24.0.0.0) (SPSS Inc., Chicago, USA) or R software (Version 3.4.4).

Results

Characteristics of 16S rRNA sequences.

A total of 82 samples were subjected to 16S rRNA sequencing. These samples were composed of three groups including 22 healthy individuals, 20 RA patients and 40 SLE patients. We obtained 2182143 16S rRNA sequencing reads from stool samples of SLE patients, 976140 reads from RA patients and 1277858 reads from HC, which belong to 714 kinds of operational taxonomic unit (OTUs). The parameters, including Chao1 rarefaction curves, Shannon rarefaction curve, and rank abundance of OTUs, were evaluated to confirm the reliability of the sequencing data (Supplementary Figure S1).
Difference of the gut microbiota in SLE patients from those of controls

The α-diversity between two groups was compared using Chao1, Observed species, Shannon index and Simpson diversity indices. Overall, the α-diversity metrics Chao1 and Observed species were significantly higher in healthy controls than in SLE patients (P = 0.038; P = 0.004, respectively), indicating that the gut microbiome in SLE patients exhibited a lower richness than healthy controls (Figure 1A and B and Supplementary Table S1). However, no difference in Shannon and Simpson index (P = 0.089; P = 0.092, respectively) was observed between SLE patients and healthy individuals, suggesting that the evenness of the gut microbiome of the two groups had no significant difference (Supplementary Table S1). There were no associations between α-diversity and drug treatments, such as Hydroxychloroquine, Glucocorticoid, Cyclophosphamide, and Biological agent (Supplementary Figure S2).

To measure the extent of the similarity of fecal microbial communities, β-diversity was calculated using unifrac distances. Principal coordinate analysis (PCoA) based on weighted and unweighted UniFrac distance matrix were used for visualizing sample relationships, and ADONIS analysis was used to test the homogeneity of dispersion among different groups. Our results suggested that there were no associations between β-diversity and medicine treatments, including Hydroxychloroquine, Glucocorticoid, Cyclophosphamide, and Biological agent (Supplementary Table S2 and Figure S3), however, the unweighted UniFrac distance analysis of β-diversity difference demonstrated that the
structure of microbiota of SLE patients differed from healthy controls (ADONIS analysis, $P < 0.001$, $R^2 = 0.054$) (Figure 1C and Supplementary Table S3). Thus, the microbial diversity was significantly different between SLE group and healthy controls.

We then analyzed the phylum-level profiles of feces between SLE patients and healthy controls. The phylum level profiles for gut microbiota of SLE patients and controls were fairly similar, except for reads from the phyla *Fusobacteria* ($P = 0.027$) and *Tenericutes* ($P = 0.002$) (Figure 1D-F). A lower *Firmicutes* / *Bacteroidetes* (F/B) ratio was reported in the feces of remissive SLE patients compared to healthy controls (34). However, we showed the ratio of F/B the feces of SLE had a decreasing trend but no significant difference compared with HC group (Supplementary Table S4).

To further determine the phylogenetic clustering pattern between these two groups, the logarithm linear discriminant analysis (LDA) was performed (Figure 2). The phylum *Tenericutes*, along with *Mollicutes* and *RF39*, were significantly reduced in the intestinal flora of SLE patients compared with healthy controls. In addition, patients with SLE exhibited a significant decrease in the genus *Faecalibacterium* alongside its species *praunstizii*, while the taxonomic clade *Cryptophyta* and genus *Roseburia* were reduced in the gut microbiota of SLE group. On the contrary, the taxonomic clade *Bacilli* from the phylum *Firmicutes* showed clustered differences, while *Streptococcaceae* and *Lactobacillaceae* were expanded in the feces of SLE patients compared with healthy controls. Moreover, the genera *Streptococcus* and *Lactobacillus*, along with their species *Streptococcus. anginosus* and *Lactobacillus. mucosae* were enriched in the intestinal flora of SLE group compared with HC group. In
addition, the feces of SLE patients showed an increase in genus *Megasphaera* (significant taxa \[p<0.005, \text{Kruskal–Wallis test}\] with LDA score >2 were shown). Taken together, sequence profiling of the gut microbiota revealed an apparent dysbiosis of the gut microbiota in SLE patients, which was characterized by reduced bacterial α-diversity and biased community constitutions. These results demonstrated the gut microbiota of patients with SLE differed from those of healthy controls.

To investigate whether the disordered intestinal microbes were specific to SLE patients, we further compared the intestinal microflora distribution between SLE and RA patients. There were no significant difference in α-diversity (Supplementary Table S1) and β-diversity (Supplementary Table S3 and Figure S4C-D) between two groups. LEfSe analysis showed the different microbiota between SLE group and RA group (Supplementary Figure S4). The taxonomic clade *EB1017, Ellin6529*, and *Anaerofilum* were increased in the intestinal flora of RA patients, while the *Lactobacillales* from the *Bacilli*, with its genus *Streptococcus* were enriched in the feces of SLE patients compared with RA patients. In addition, the phylum *Fusobacteria*, along with its taxonomic clade *Fusobacteriia, Fusobacteriales, Fusobacteriaceae, and Fusobacterium* were increased in the feces of SLE patients. The genus *Megasphaera* and *Veillonella*, with its species *Veillonella. dispar*, were also enriched in the feces of SLE group compared with RA group (significant taxa \[p<0.05, \text{Kruskal–Wallis test}\] with LDA score >2.5 were shown).

Collectively, these results demonstrated that the gut microbiota of SLE patients differed from healthy individuals, however, there was no significant difference in gut microflora diversities between SLE and RA patients. The genera *Streptococcus* and *Megasphaera* were specifically increased in the
feces of SLE patients compared with healthy controls and RA patients.

Difference of microbiota profiling in active SLE patients from remissive SLE patients.

Given that the gut microbiota was significantly different between SLE patients and healthy controls, we next investigated whether the gut microbiota was associated with disease activity of SLE. Firstly, we compared 16S rRNA sequences of A group (active SLE patients) with R group (remissive SLE patients). The unweighted UniFrac distance analysis of β-diversity difference demonstrated that the structure of the microbiota of A group differed from R group (ADONIS analysis, P =0.047, R² = 0.039) (Figure 3A and Supplementary Table S3), while no obvious difference was observed in α-diversity (Supplementary Table S1), suggesting that the community constitutions in A group were distinctly different from R group, but no difference was found in microbial diversity.

As shown in Figure 3, LEfSe analysis further demonstrated that *Actinomycetales* and *Bifidobacteriales* from phylum *Actinobacteria* showed clustered differences, and the genus *Bifidobacterium* was increased in the feces of remissive SLE patients compared with active SLE patients. In addition, the species *Ruminococcus. gnavus* was reduced in the feces of active SLE patients, whereas *Lactobacillales* from the Bacilli, along with its genus *Streptococcus* and species *Streptococcus. anginosus*, were enriched in the feces of A group compared with R group. Moreover, the genus *Oribacterium* was increased in the intestinal flora of active SLE patients. Furthermore, active SLE patients exhibited a remarkable enrichment of the taxa *Epsilonproteobacteria* from phylum
Proteobacteria, along with its Campylobacterales and Campylobacter (significant taxa [p<0.005, Kruskal–Wallis test] with LDA score >2 were shown). Finally, the ratio of F/B in remissive SLE patient group had a decreasing trend but no significant difference compared with HC group (Supplementary Table S4). Altogether, these results indicated that the gut microbiota profiling of active SLE patients were markedly different from that of remissive SLE patients.

Aberrant microbiome-associated pathway is correlated with the activity of SLE patients.

Another emphasis of our study was to disclose the functional variation in the SLE gut microbiota community. Therefore, we predicted the microbiota-derived pathways using the PICRUSt algorithm with the KEGG database and compared functional abundances among the SLE, RA, and HC groups. In total, we characterized six different pathway categories between SLE group and HC group (Figure 4). The pathways of Apoptosis and Purine metabolism were significantly increased in SLE patient group compared with HC group (Figure 4A), while four pathways, including Pathways in cancer, Bacterial chemotaxis, Bacterial motility proteins, and Flagellar assembly, were decreased in SLE patients (Figure 4B). In addition, nine different functional pathways were identified between A group and R group (Figure 5). Five were related to Synthesis and degradation of ketone bodies, Apoptosis, Lipid metabolism, Secretion system, and Staphylococcus aureus infection, which were significantly higher in active SLE patients than remissive patients (Figure 5A). Conversely, Alanine aspartate and glutamate
metabolism, Carbohydrate metabolism, Primary bile acid biosynthesis, and Secondary bile acid biosynthesis, were obviously increased in remissive SLE patients compared with active patients (Figure 5B). However, there was no different pathway between SLE and RA group (date not shown).

We further examined correlations among SLE/HC-associated taxa and disordered functional pathway to obtain an overview of how specific taxa act during metabolic dysfunction in patient gut. For SLE patients, we characterized a positive correlation between the enrichment of *Streptococcus* and increased Apoptosis pathway ($r = 0.807$, $P < 0.000$, FDR < 0.000) and a negative correlation between *Streptococcus* and Pathways in cancer ($r = -0.550$, $P < 0.000$, FDR < 0.000) (Figure 6A). Further analysis also revealed the active SLE patient-enriched genus *Streptococcus* was negatively associated with pathways of Alanine aspartate and glutamate metabolism, Primary and secondary bile acid biosynthesis ($r = -0.680$; $r = -0.437$; $r = -0.434$, $P < 0.01$, FDR < 0.05, respectively) (Figure 6B), but positively associated with five increased pathways, including Synthesis and degradation of ketone bodies, Apoptosis, Lipid metabolism, Secretion system, and Staphylococcus aureus infection ($r = 0.574$; $r = 0.829$; $r = 0.406$; $r = 0.486$; $r = 0.903$, $P < 0.01$, FDR < 0.05, respectively) (Figure 6C).

Thus, several aberrant microbiome-associated gut metabolic pathways were associated with SLE using PICRUSt analysis. Interestingly, the SLE-enriched genus *Streptococcus* was positively associated with the pathways of Apoptosis, the metabolism of lipid, amino acid and bile acid, Secretion system, and pathogenic bacteria infection.
Association of disordered microbiota and aberrant microbiome-associated pathway with activity of SLE.

SLEDAI, Complement C3, C reactive protein (CRP), Erythrocyte Sedimentation Rate (ESR) and anti-double stranded DNA (anti-dsDNA) were commonly used to indicate the disease activity of SLE patients (21, 35, 36).

At genus and species levels, *Lactobacillus*, *Streptococcus*, *Megasphaera*, *Fusobacterium*, *Veillonella*, *Lactobacillus. mucosa*, *Streptococcus. anginosus*, and *Veillonella. dispar* were increased in the feces of SLE patients compared with healthy controls or RA patients. Meanwhile, *Streptococcus*, *Oribacterium*, *Campylobacter*, and *Streptococcus. anginosus* were enriched, but *Bifidobacterium* and *Ruminococcus. gnavus* were reduced in the gut microbiota of active SLE patients compared with that of remissive SLE patients. Except *Bifidobacterium*, five changed genera were positively associated with disease activity (Figure 7A-F and Supplementary Table S5). For example, the abundance of *Streptococcus* was positively correlated to SLEDAI ($r = 0.492$, FDR $q = 0.008$), while negatively associated with Complement C3 ($r = -0.502$, FDR $q = 0.008$) (Figure 7A). *Campylobacter* and *Streptococcus. anginosus* also showed a positive correlation with SLEDAI ($r = 0.470$, FDR $q = 0.009$; $r = 0.388$, FDR $q = 0.040$, respectively) (Figure 7). Moreover, the abundance of *Veillonella* and its species *Veillonella. dispar* showed negative correlations with Complement C3 ($r = -0.475$, FDR $q = 0.008$) (Figure 7).

The genus *Streptococcus*, which was specifically associated with the activity of SLE, was related to
eight aberrant microbiome-associated pathways (Figure 6). We further explored whether these eight disordered pathways were also related to the activity of SLE (Supplementary Table S5). Alanine aspartate and glutamate metabolism, Secondary bile acid biosynthesis, and Lipid metabolism were closely associated with SLEDAI (r = -0.376; r = -0.382; r = 0.318, FDR q <0.001, respectively) (Figure 7G-I). As such we hypothesized that the genus *Streptococcus* might play an important role in the disease progression of SLE through these three pathways.

Potentials of gut microbiota for SLE diagnosis or disease activity monitoring

Given that the gut microbiota in SLE patients, especially in active SLE patients, had a distinct dysbiosis in microbiota, we next addressed the potential diagnostic value of the gut microbiota as potential biomarkers for SLE by ROC curve analyses. Due to its non-parametric assumptions, random forest was used to detect linear and nonlinear effects and potential taxon–taxon interactions, to identify taxa that could differentiate SLE subjects from control subjects (healthy controls and RA patients), and to discriminate active SLE patients from remissive patients. We used 10-fold cross-validation approach to evaluate the performance of model, and predictive power was scored in ROC analysis. We first made the mode to differentiate the SLE patients from healthy controls and RA patients based on the genus and species levels. We showed that the area under the curve (AUC) was 0.792 (95% CI: 0.750–0.835) (Supplementary Table S6 and Figure 8A), suggesting that the gut microbiota had the potential to diagnose SLE from healthy and disease controls (RA patients). We observed that in the model, out of the
top 10 genera and species, 8 belonged to the phylum *Firmicutes*, 1 belonged to *Fusobacteria*, and 1 belonged to *Actinobacteria*. Of the 8 genera in the *Firmicutes* phylum, 5 were part of *Clostridia* class, and 3 were *Bacilli* (Supplementary Table S6). Furthermore, among the 10 genera and species, the *mucosa*, *Lactobacillus*, *Megasphaera*, and *Streptococcus* were significantly enriched, while *Faecalibacterium* was decreased in the feces of SLE patients compared with healthy controls. In addition, both *Veillonella* and *Fusobacterium* were increased in the gut microbiota of SLE patients than RA patients (Figure 2; Supplementary Figure S4 and Table S5). Accordingly, most of the genera and species in the model were the disordered genera in the feces of SLE group compared with healthy controls and RA patients.

We further built another model to distinguish active SLE patients from remissive patients based on the genus and species levels. In this model, the AUC was 0.811 (95% CI: 0.754-0.869) (Supplementary Table S7 and Figure 8B), suggesting that the gut microbiota had the potential to monitor the activity of SLE. Anti-dsDNA was reported to be reasonably sensitive and specific in the diagnosis of SLE, and raised titers of anti-dsDNA along with hypocomplementemia were associated with the activity of SLE(37). We showed that the AUC value for combination of Complement C3 and anti-dsDNA was only 0.773 (95% CI: 0.597–0.949) (Supplementary Figure S6). These results indicated that the combination of the gut microbiota might have a better surveillance value for SLE activity than the combination of Complement C3 and anti-dsDNA. Moreover, as shown in the model, out of the top 10 genera and species, 5 belonged to the phylum *Firmicutes*, 4 belonged to *Actinobacteria*, and 1 belonged to *Proteobacteria*.

18
Among the 5 genera in the *Firmicutes* phylum, 3 were from the *Clostridia* class, 1 was *Erysipelotrichi* and 1 was *Bacilli* (Supplementary Table S7). In this case, the *Campylobacter*, *Streptococcus*, and *Oribacterium* were enriched, while the *gnavus* and *Bifidobacterium* were reduced in active SLE patients compared with remissive SLE patients (Figure 3 and Supplementary Table S7). Altogether, a great part of the genera and species in the model were disordered genera in the feces of active SLE patients, suggesting that the disordered intestinal flora might have potential to diagnose SLE, even monitor disease activity.

Discussion

SLE is an autoimmune disease that affects multiple tissues, and causes joint pain, renal disease, muscle pain, fever, poor circulation, inflammation, fatigue, loss of appetite and other symptoms (38). Though the cause of SLE still remains unclear, it is thought to be involved with hormonal, genetic and environmental factors (39). The gut microbiome was believed to be a key factor in influencing predisposition to autoimmunity diseases (40). Recent studies further supported that gut microbiome dysbiosis could act as an important factor in promoting chronic inflammation into autoimmune diseases (2, 41, 42). However, there were only limited works in exploring the potential relationship of gut microbiome with SLE (8-10, 17, 39). In this study, we have provided new evidence about the gut microbiome dysbiosis in female SLE patients by fecal bacteria sequencing. Importantly, we for the first time explored whether the gut disordered microbes were associated with the activity of SLE.
We investigated the profiling of the gut microbiota and showed a distinct dysbiosis of the gut microbiota in SLE patients, which was characterized by reduced bacterial α-diversity and biased community constitutions. Most of the patients in our study were currently on various immunosuppressants and glucocorticoids treatments. Veena Taneja et al. have demonstrated that RA patients using methotrexate (MTX) and hydroxychloroquine exhibited an increase in species richness and diversity (43). However, our results showed no significant relationship between drug treatments and the abundance diversity of gut microbiota in the SLE patients, which might because the most of enrolled patients were treated with steroids or immunosuppressants, while only 4 patients did not use any drugs.

Phyla *Firmicutes* together with *Bacteroidetes* usually account for more than 90% of all phylogenetic species, were involved in host metabolism and immunity (44). In our study, the Phyla *Firmicutes* and *Bacteroidetes* occupied the most abundant microorganism, consistent with the typical human intestinal microbiome structures. It was reported that the *Firmicutes*/*Bacteroidetes* ratio was significantly lower in the feces of SLE patients in remission (8). However, no significant different for our cohort of remissive SLE patients and healthy controls (P > 0.05). Also, there was no significant difference in the *Firmicutes*/*Bacteroidetes* ratio between active SLE and healthy controls (P > 0.05), consistent with the available data (17). The changes of the genera in SLE patients of our study were only partly consistent with previous studies (8, 10, 17, 45), which might partially due to the sample size and geographical locations of patients. It is well known that cohorts with different patient characteristics, including disease stage, geographical locations, diet and status, might exhibit different gut microbiota
profiling (15, 16, 46-48). Therefore, the alterations of gut microbiome associated with SLE should display differences among different geographical locations and disease status.

In this study, we found that the abundance of pathogenic genus *Streptococcus*, with its species *anginosus*, and genus *Megasphaera* were significantly enriched in the feces of SLE patients compared with healthy controls; genus *Streptococcus* and its species *anginosus* were positively correlated to the activity of SLE. In addition, the genus *Veillonella* and its species *dispar* were significantly increased in the gut microbiota of SLE patients compared with RA patients and had a positive association with the activity of SLE. The association of these disordered genera with the activity of SLE was most striking, and to our knowledge, this is the first study to describe such a significant relationship with SLE. The genera *Streptococcus* and *Megasphaera* were reported to be closely related to the intestinal disturbance of autoimmune disorders. For example, *Streptococcus* and *Megasphaera* were enriched in primary biliary cirrhosis (49) and Pediatric Autoimmune Neuropsychiatric Disorders (50). Also, *Streptococcus* was relatively increased in RA patients (43). It was demonstrated that *S. anginosus* rarely caused infections in healthy individuals, but caused infections in the immunodeficient individuals (51). As reported, genera *Streptococcus* and *Veillonella* had pro-inflammatory effects. For example, the combination of *Streptococci* with *Veillonella* appeared to negate IL-12p70 production, while augment IL-8, IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) response (52).

The SLE patients, especially the active patients, had an increased population of oral bacteria, which is an interesting phenomenon that occurred in the intestinal flora of SLE. However, the gut
microbiome of liver cirrhosis, colorectal cancer, RA, and ACVD patients also showed an increase in the abundance of oral bacteria in gut microbiota (53), and only RA and ACVD have been epidemiologically associated with periodontitis. Interestingly, our results suggested that the abundance of genus *Streptococcus* were enriched in active SLE patients, suggesting that the oral microbiota might be overrepresented in the lower gastrointestinal populations of patients with active SLE. Besides, more severe forms of periodontitis were found in SLE subjects that had higher bacterial loads (54), resulting in an increase in oral bacteria entering the intestine.

Furthermore, our data showed that many beneficial commensal microbes, such as *Roseburia*, *Faecalibacterium* and its species *prausnitzii* were depleted in SLE patients. Meanwhile, the genus *Bifidobacterium* was adversely correlated with activity of SLE. These microbes belongs to the phylofunctional core of the intestinal microbiota (55, 56), which can produce short chain fatty acids (SCFAs), especially butyrate-acid, to play multiple critical roles in the maintenance of human health, including producing energy components and intestinal epithelial nutrition (57), reducing the severity of inflammation (58), maintaining intestinal barrier functions (59) and enhancing colon motility functions (60).

Moreover, we observed an increased abundance of beneficial commensal genus *Lactobacillus* and its species *Lactobacillus mucosae* in the feces of SLE cohort compared to healthy controls. Supportive of a role for *Lactobacilli* in the pathogenesis of lupus, taxa in this genus were found to be enriched in female NZB/W F1 mice, the model of systemic lupus. In this study, *Lactobacillus spp.* were
associated with more severe disease, whereas they were reduced as disease is controlled with
dexamethasone (17). As reported (61) Lactobacillus reuteri increased over time in the feces of mice
from both lupus models as their disease progress, in addition, Lactobacillus spp. were increased in a
longitudinal cohort of SLE patients compared with healthy controls. In this study, the
pDC/IFN-promoting properties of L. reuteri in the context of a lupus-prone host suggest a paradigm in
which a bacterium that is normally considered a probiotic may become harmful under certain genetic or
environmental conditions. We also observed that Lactobacillus were enriched in feces of SLE patients,
suggesting a potential role for these taxa in SLE pathogenesis, which need further research in the future.

Our study has demonstrated that some pro-inflammatory bacteria in genera Streptococcus, and
Campylobacter expanded, while some anti-inflammatory bacteria in genera Roseburia, Faecalibacterium, and Bifidobacterium reduced in the feces of SLE patients, especially the active
patients, resulting in the release of inflammatory factors, then aggravating the systemic inflammation
level. Some pro-inflammatory pathogens increased accompanied with the intestinal mucosal barrier
compromised, which lead to more bacterial LPS transferring into lymph nodes and blood to stimulate
the TOLL-like pathway of the host cells, and produce inflammatory cytokine (62). SLE patients
generally used massive immunosuppressive agents and glucocorticoids during the active period, which
could inhibit the immune system and might cause a large increase in opportunistic pathogens (63, 64).
Notwithstanding, it is questionable whether such changes in gut bacterial profile are a cause or
consequence of SLE. However, to posit further on this, is beyond the scope of this study, and we will focus on this in the future research.

In addition, several aberrant microbiome–associated gut metabolic pathways were revealed to be associated with SLE using PICRUSt analysis. We found that SLE patients were enriched in multiple metabolic pathways containing gene functions of Apoptosis, Purine metabolism, and the Apoptosis were positively associated with the genus *Streptococcus* that was highly enriched in SLE patients and especially in active patients. As reported, Apoptosis pathway played an important role in the pathogenesis of SLE (65). Besides, among these altered pathways, the alanine, aspartate and glutamate metabolism, Secondary bile acid biosynthesis, and Lipid metabolism were not only related to the disease activity, but also significantly associated with *Streptococcus*. The alanine, aspartate and glutamate metabolism, which was identified to be increased in remissive SLE patients in our study, had been previously reported to play a pivotal role in resting or activated T cells (66). Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, etc (67). In active SLE patients, the dyslipidemia was more prevalent, suggesting that inflammation may be related to lipid metabolism (68). Thus, *Streptococcus* might play an important role in the pathogenesis of SLE through these pathways.

Due to the heterogeneous presentation of SLE patients and their unpredictable disease course, there is a great need for accurate assessment of disease activity. Several immunologic markers including anti-double stranded DNA (dsDNA) antibody and complement are common used in laboratory
monitoring of disease activity, however, these traditional biomarkers are better related to certain clinical manifestations of the disease, especially nephritis, rather than to the activity of the disease itself (69). Currently, disease activity in SLE can be assessed using composite disease activity indices, such as SLEDAI score and British Isles Lupus Assessment Group (BILAG) score (70). However, the composite disease activity indices depend on differential organ involvement and physical assessments (71, 72). Besides, they could be complex for use in routine clinical practice. Thus, there is a great urgent for the identification of new biomarkers that can quantify disease activity (73, 74).

Moreover, due to the existence of a remarkable difference in microbiota between SLE status, the random forest models were built in this study to examine whether microbiota composition could identify their disease status. Of note, a random forests model was identified for diagnosing SLE from healthy controls and RA patients with a AUC value of 0.792. To be mentioned, another random forest predictive model showed to be a suitable model for the prediction of disease activity of SLE with the AUC of 0.811, which was higher than the combination of Complement C3 and anti-dsDNA (AUC=0.773). Accordingly, our results suggested that the gut microbiota might be potential biomarkers for diagnosis of SLE and even monitoring SLE activity in a non-invasive method. However, the sample size enrolled in our study was relatively small, therefore, more samples are needed to evaluate the performance of the disordered genera in the future.

In summary, these disordered bacteria and related metabolic pathways might provide clues in studying of the SLE pathogenesis, and in searching for suitable biomarkers for the diagnosis SLE or
monitoring SLE activity in a non-invasive method. Specific microbial clades might be viable targets for the therapeutic manipulation by dietary interventions, prebiotics, probiotics and specifically tailored antibiotics. Determining the functions of the microbial clades that expand or contract in SLE will contribute to developing effective strategies to target them. However, the key role of microbiota in SLE pathogenesis and prospective mechanistic studies still need to be further investigated.

Conclusions

In this study, we reveal that intestinal dysbiosis and aberrant metabolism pathways are existed in SLE patients, especially in active SLE patients. Notably, there are 4 disordered genera and 2 species that are associated with the clinical disease activity in our patient cohort. Furthermore, there are two kinds of genera-panels can be the indicators for diagnosing or monitoring disease activity of SLE by random forest algorithm. However, we also recognize the limitations of our study. Since the results are deduced by a single-center study with a relatively small sample size, larger and prospective cohort studies will be required to verify and validate this predictive model.

Declarations of interest

None.
Funding information

This study was supported by grants from the Natural Science Foundation of Guangdong Province of China (grant no. 2016A030313525), Guangzhou Science and Technology Program key projects (grant no. 201604040003), and Science and Technology planning project of Guangzhou (grant no. 201607010015). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have no competing financial interests.

Authors contribution statement

Yao Li, Haifang Wang, Xin Li, Ji-Liang Li, and Yurong Qiu were responsible for the overall design and interpretation of the study; Yurong Qiu and Ji-Liang Li conceived and designed the study; Yao Li, Haifang Wang, Xin Li, Qiong Zhang and Chen Fu performed the experiments; Yao Li, Haifang Wang, Xin Li and Xiaohe Zhang contributed to the experimental data collection and analysis; Hongwei Zhou, Yan He and Pan Li contributed to the bioinformatics analysis; Yao Li, Haifang Wang, Xin Li wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We highly appreciated the Bioinformatics Consulting of the team of prof. Hongwei Zhou in Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University.
We thank Miss Carly Bunston (University of Plymouth Faculty of Medicine and Dentistry, Plymouth, UK) for constructive comments and editing the manuscript.

Reference

1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-30.

2. Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016;375(24):2369-79.

3. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.

4. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.

5. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(12):691-701.

6. Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7(1):1445.

7. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008;358(9):929-39.

8. Hevia A, Milani C, Lopez P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5(5):e01548-14.
9. Rodriguez-Carrio J, Lopez P, Sanchez B, Gonzalez S, Gueimonde M, Margolles A, et al. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Front Immunol. 2017;8.

10. He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016; 8: 64.

11. Ma F, Zhang Y, Xing J, Song X, Huang L, Weng H, et al. Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses. Exp Cell Res. 2017;361(1):135-40.

12. Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73.

13. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-+.

14. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084-8.

15. Xu ZJ, Knight R. Dietary effects on human gut microbiome diversity. Brit J Nutr. 2015;113:S1-S5.

16. He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018.

17. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Appl Environ Microbiol. 2018;84(4).
18. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25(11):1271-7.

19. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64(8):2677-86.

20. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569-81.

21. Romero-Diaz J, Isenberg D, Ramsey-Goldman R. Measures of adult systemic lupus erythematosus: updated version of British Isles Lupus Assessment Group (BILAG 2004), European Consensus Lupus Activity Measurements (ECLAM), Systemic Lupus Activity Measure, Revised (SLAM-R), Systemic Lupus Activity Questionnaire for Population Studies (SLAQ), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). Arthritis Care Res (Hoboken). 2011;63 Suppl 11:S37-46.

22. Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6.
23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335-6.

24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20.

25. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957-63.

26. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641-50.

27. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814-+.

28. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.

29. Sarkar SK. FDR-controlling stepwise procedures and their false negatives rates. J Stat Plan Infer. 2004;125(1-2):119-37.

30. Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67(8):850-7.

31. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59-64.
32. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228-35.

33. Roguet A, Eren AM, Newton RJ, McLellan SL. Fecal source identification using random forest. Microbiome. 2018;6(1):185.

34. Lopez P, Sanchez B, Margolles A, Suarez A. Intestinal dysbiosis in systemic lupus erythematosus: cause or consequence? Curr Opin Rheumatol. 2016;28(5):515-22.

35. Sandhu V, Quan M. SLE and Serum Complement: Causative, Concomitant or Coincidental? Open Rheumatol J. 2017;11:113-22.

36. Stojan G, Fang H, Magder L, Petri M. Erythrocyte sedimentation rate is a predictor of renal and overall SLE disease activity. Lupus. 2013;22(8):827-34.

37. Lloyd W, Schur PH. Immune complexes, complement, and anti-DNA in exacerbations of systemic lupus erythematosus (SLE). Medicine (Baltimore). 1981;60(3):208-17.

38. Furie R, Wang L, Illei G, Drappa J. Systemic Lupus Erythematosus (SLE) Responder Index response is associated with global benefit for patients with SLE. Lupus. 2018;27(6):955-62.

39. Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol. 2017;29(4):374-7.

40. Shamriz O, Mizrahi H, Werbner M, Shoenfeld Y, Avni O, Koren O. Microbiota at the crossroads of autoimmunity. Autoimmun Rev. 2016;15(9):859-69.
41. Proal AD, Albert PJ, Marshall TG. The human microbiome and autoimmunity. Curr Opin Rheumatol. 2013;25(2):234-40.

42. van der Meulen TA, Harmsen HJM, Bootsma H, Spijkervet FKL, Kroese FGM, Vissink A. The microbiome-systemic diseases connection. Oral Dis. 2016;22(8):719-34.

43. Jun Chen1 KW, John M. Davis2. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. 2016.

44. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-23.

45. Katz-Agranov N, Zandman-Goddard G. The microbiome and systemic lupus erythematosus. Immunol Res. 2017;65(2):432-7.

46. Kim MS, Bae JW, Park EJ. Geographic and host-associated variations in bacterial communities on the floret surfaces of field-grown broccoli. Appl Environ Microbiol. 2018.

47. Wang JZ, Du WT, Xu YL, Cheng SZ, Liu ZJ. Gut microbiome-based medical methodologies for early-stage disease prevention. Microb Pathog. 2017;105:122-30.

48. Quigley EMM. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017;14(5):315-20.

49. Lv LX, Fang DQ, Shi D, Chen DY, Yan R, Zhu YX, et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol. 2016;18(7):2272-86.
50. Stagi S, Lepri G, Rigante D, Matucci Cerinic M, Falcini F. Cross-Sectional Evaluation of Plasma Vitamin D Levels in a Large Cohort of Italian Patients with Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections. J Child Adolesc Psychopharmacol. 2018;28(2):124-9.

51. Ganju SA, Gautam N, Sharma G. Pyogenic liver abscess associated with oral flora bacterium, Streptococcus anginosus in a patient with underlying tuberculosis. Indian J Pathol Microbiol. 2017;60(4):587-9.

52. van den Bogert B, Meijerink M, Zoetendal EG, Wells JM, Kleerebezem M. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota. PLoS One. 2014;9(12):e114277.

53. Wang J, Jia HJ. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol. 2016;14(8):508-22.

54. Correa JD, Calderaro DC, Ferreira GA, Mendonca SMS, Fernandes GR, Xiao E, et al. Subgingival microbiota dysbiosis in systemic lupus erythematosus: association with periodontal status. Microbiome. 2017;5.

55. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol. 2000;66(4):1654-61.
56. Tamanai-Shacoori Z, Smida I, Bousarghin L, Loeal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157-70.

57. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research. 2013;54(9):2325-40.

58. Keku TO, Dulal S, Deveaux A, Jovov B, Han X. The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol. 2015;308(5):G351-63.

59. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619-25.

60. Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilan CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7.

61. Daniel F. Zegarra-Ruiz, Asmaa El Beidaq, Alonso J. Iñiguez, Teri M. Greiling, Carina Dehner, Martin A. Kriegel, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host Microbe. 2018. DOI: https://doi.org/10.1016/j.chom.2018.11.009.

62. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301-4.
63. Mok CC, Tse SM, Chan KL, Ho LY. Effect of immunosuppressive therapies on survival of systemic lupus erythematosus: a propensity score analysis of a longitudinal cohort. Lupus. 2018;27(5):722-7.

64. Atisha-Fregoso Y, Lima G, Carrillo-Maravilla E, Posadas-Sanchez R, Perez-Hernandez N, Banos-Pelaez M, et al. C-reactive protein (CRP) polymorphisms and haplotypes are associated with SLE susceptibility and activity but not with serum CRP levels in Mexican population. Clin Rheumatol. 2018;37(7):1817-24.

65. Bouts YM, Wolthuis DF, Dirkx MF, Pieterse E, Simons EM, van Boekel AM, et al. Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity. 2012;45(8):597-601.

66. Yang Z, Matteson EL, Goronzy JJ, Weyand CM. T-cell metabolism in autoimmune disease. Arthritis Res Ther. 2015;17:29.

67. Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci. 2015;16(1):924-49.

68. Szabo MZ, Szodoray P, Kiss E. Dyslipidemia in systemic lupus erythematosus. Immunol Res. 2017;65(2):543-50.

69. Pisetsky DS. Anti-DNA and autoantibodies. Curr Opin Rheumatol. 2000;12(5):364-8.

70. Liang MH, Socher SA, Larson MG, Schur PH. Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus. Arthritis Rheum. 1989;32(9):1107-18.
71. Merrill JT, Erkan D, Buyon JP. Challenges in bringing the bench to bedside in drug development for SLE. Nat Rev Drug Discov. 2004;3(12):1036-46.

72. Petri M. Disease activity assessment in SLE: do we have the right instruments? Ann Rheum Dis. 2007;66:61-4.

73. Suh CH, Kim HA. Cytokines and their receptors as biomarkers of systemic lupus erythematosus. Expert Rev Mol Diagn. 2008;8(2):189-98.

74. Illei GG, Tackey E, Lapteva L, Lipsky PE. Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum. 2004;50(7):2048-65.

Table
Table 1: Characteristics of the active SLE patients and remissive SLE patients.

	A (n = 19)	R (n = 21)	P-value
Age, years	34.05 (13.92)	40.57 (13.63)	0.143
WBC, 10^9/L #	7.40 (5.32-8.53)	6.72 (5.72-8.22)	0.955
RBC, 10^12/L #	4.17 (3.49-4.35)	4.33 (4.00-4.58)	0.0389*
HGB, g/L #	106 (95-117.50)	126 (115-133.25)	< 0.001 ***
PLT, 10^9/L #	205 (152.50-308.00)	235.50 (202.25-272.50)	0.558
C3, g/L	0.68 (0.32)	0.93 (0.23)	0.0013**
CRP, mg/L #	1.68 (0.65-4.66)	1.56 (0.57-4.07)	0.765
ESR, mm/h #	21.50 (11-53.50)	19.00 (5.00-60.00)	0.457
Pyuria, n (%)			
- (negative)	6 (31.58)	17 (80.95)	0.002**
+ (positive)	13 (68.42)	4 (19.05)	
Albuminuria, n (%)			
- (negative)	3 (15.79)	15 (71.43)	0.000***
+ (positive)	16 (84.21)	6 (28.57)	
Hematuria, n (%)			
- (negative)	4 (21.05)	19 (90.48)	0.000***
+ (positive)	15 (78.95)	2 (9.52)	
24-UTP, mg/24h #	0.68 (0.22-2.29)	0.17 (0.11-0.46)	0.048*
Anti-dsDNA, UI/ml #	65.64 (16.24–156.66)	20.07 (2.88–62.20)	0.0186*
Lupus nephritis, n (%)	15 (78.95)	9 (42.86)	0.20
SLEDAI #	12 (9.5-14.0)	4 (1.5-6.0)	< 0.001 ***
Medication use			
Hydroxychloroquine	12	10	0.119
Glucocorticoid	17	16	0.527
Cyclophosphamide	3	3	0.574
Biological agent	5	2	0.894
A, the active SLE patients; R, the remissive SLE patients; WBC, white blood cell; RBC, red blood cell; HGB, haemoglobin; PLT, platelet; C3, Complement component 3; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; 24-UTP, 24-hour urine protein; Anti-dsDNA, anti-double stranded DNA; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index. Data represent the mean (standard deviation), and the data # represents the median (interquartile range). The P values were calculated by Mann-Whitney U test or Chi-square test. *P < 0.05; **P < 0.01; ***P < 0.001.

Figure legend

Figure 1. The different microbial diversity between SLE patient group and healthy controls. A-B. Significantly different richness of α-diversity between the gut microbiota of SLE and HC. C. Principal coordinate analysis illustrating the grouping patterns of SLE and HC group based on the unweighted UniFrac distances. Each closed circle represented a sample. Distances between any pair of samples represented their dissimilarities. D. The average relative abundances of the predominant bacterial taxa at the phylum level in the SLE patients and HC group. E-F. The significantly different phyla in SLE patients compared to healthy controls. HC, healthy controls; SLE, Systemic lupus erythematosus patients.
Figure 2. The differentially abundant taxa between the feces of SLE patients and healthy controls. LEfSe analysis was performed to identify differentially abundant taxa, which are highlighted by the phylogenetic tree in cladogram format (A) and the LDA scores (B). Green color indicates an increase taxa in the feces of SLE compared with HC, while the red color indicates an increase taxa in the feces of HC compared with SLE (significant taxa \(p<0.005 \), Kruskal–Wallis test] with LDA score >2 were shown). SLE, Systemic lupus erythematosus patients; HC, healthy controls.

Figure 3. The different microbial diversity between the feces of active SLE patients and remissive SLE patients. A. Principal coordinate analysis illustrating the grouping patterns of the feces of A group and R group based on the unweighted UniFrac distances. Each closed circle represented a sample. Distances between any pair of samples represented their dissimilarities. B. The significantly different phyla in the feces of A group compared with R group. C-D. LEfSe analysis was performed to identify differentially abundant taxa, which are highlighted by by the phylogenetic tree in cladogram format (C) and the LDA scores (D). Significantly discriminative taxa among the active patients (red), remissive patients (blue) and healthy controls (green) were determined using Linear Discriminant Analysis Effect Size (LEfSe) (significant taxa \(p<0.005 \), Kruskal–Wallis test] with LDA score >2 were shown). A, the active SLE patients; R, the remissive SLE patients.
Figure 4. The significantly different predicted metabolic pathways between SLE patients and healthy controls. A. Significantly two predicted metabolic pathways were increased in SLE compared with healthy controls. B. Four predicted metabolic pathways were decreased in SLE patient group compared with healthy controls. It was analyzed by Kruskal–Wallis, and the False Discovery Rate (FDR) q-value was then calculated, and q-values <0.1 was considered significant. SLE, Systemic lupus erythematosus patients; HC, healthy controls.

Figure 5. The significantly different predicted metabolic pathways between active SLE patients and remissive SLE patients. A. Significantly five predicted metabolic pathways were increased in active SLE compared with remissive SLE patients. B. Four predicted metabolic pathways were enriched in remissive SLE patients compared with active SLE patients. A, the active SLE patient group; R, the remissive SLE patient group. It was analyzed by Kruskal–Wallis, and the False Discovery Rate (FDR) q-value was then calculated, and q-values <0.1 was considered significant.

Figure 6. The associations between the abundance of genus Streptococcus and disordered metabolic pathways. A. The predicted metabolic pathway Apoptosis and Pathways in cancer were correlated with SLE-enriched genus Streptococcus. B. The predicted metabolic pathway of Alanine aspartate and glutamate metabolism, Primary bile acid biosynthesis and Secondary bile acid biosynthesis were
negatively associated with active SLE-enriched genus *Streptococcus*. C. Five pathway categories, which were higher in active SLE patients compared to remissive SLE patient group, were positively associated with active SLE-enriched genus *Streptococcus*. They were analyzed by Spearman ranks tests, and the False Discovery Rate (FDR) was calculated for multiple testing. SLE, Systemic lupus erythematosus patients; FDR, the False Discovery Rate.

Figure 7. Associations among disease activity, disordered genera and predicted pathways in the gut microbiota of SLE patients. A-C. Three genera, *Streptococcus*, *Campylobacter*, and *Veillonella*, were positively correlated with lupus activity. D-E. Two species, *Streptococcus. anginosus*, and *Veillonella. dispar*, were positively correlated with lupus activity. F. The genus *Bifidobacterium* was negatively related to lupus activity. G-I. The aberrant microbiome-associated pathways, Alanine aspartate and glutamate metabolism, Secondary bile acid biosynthesis and Lipid metabolism, had a positive association with the activity of SLE patients. It was analyzed by Spearman ranks tests, and the False Discovery Rate (FDR) q-value was then calculated for multiple testing. SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; C3, Complement component 3.

Figure 8. Receiver operating characteristic (ROC) curves demonstrating the performance of the genus and species in participants. A. Prediction model of the gut microbiota to distinguish the SLE patients
among the healthy controls and RA patients based on the genus/species-level relative abundances using random forests. B. Prediction model of the gut microbiota to differentiate the active SLE patients from remissive SLE patients. AUC, Area under the curves of ROC; CI, Confidence Interval; SLE, Systemic lupus erythematosus patients; RA, Rheumatoid Arthritis patients.

Supplemental materials

Table S1: The comparison of α-diversity among different groups.

SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients; A, the active SLE patients; R, the remissive SLE patients. The Wilcoxon rank sum test was used to determine significance in α-diversity. *P < 0.05; **P < 0.01; ***P < 0.001.

Table S2: The comparisons of β-diversity among different medicine treatments in SLE patients.

SLE, Systemic lupus erythematosus patients; Y= treated with specific drug; N= not treated. The ADONIS analysis was used to determine significance in β-diversity. *P < 0.05; **P < 0.01; ***P < 0.001.

Table S3: The comparisons of β-diversity among different groups.

SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients;
A, the active SLE patients; R, the remissive SLE patients. The ADONIS analysis was used to determine significance in β-diversity. *P < 0.05; **P < 0.01; ***P < 0.001.

Table S4: The comparisons of Firmicutes/Bacteroidetes ratio between different groups.

F/B, Firmicutes/Bacteroidetes ratio; SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients; A, the active SLE patients; R, the remissive SLE patients. The Wilcoxon rank sum test was used to determine significance in α-diversity. *P < 0.05; **P < 0.01; ***P < 0.001.

Table S5: Association of disordered genera and aberrant microbiome-associated pathways with activity of SLE.

SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; C3, Complement component 3; CRP, C-reactive protein; ESR, Erythrocyte Sedimentation Rate; Anti-dsDNA, anti-double stranded DNA. They were analyzed by Spearman ranks tests, and False discovery rate (FDR) correction for multiple comparisons was employed. The FDR q-value was then calculated (r coefficient and FDR q-value were indicated for each parameter). *q < 0.05; **q< 0.01; ***q < 0.001.

Table S6: The importance of Genus and species in the random forests model to distinguish the SLE
patients from healthy controls and RA patients.

Table S7: The importance of Genus and species in the random forests model to distinguish the active SLE patients from remissive SLE patients.

Figure S1. Evaluation of sample preparation and sequencing quality. A. Chao1 dilution curve; B. Shannon dilution curve; C. OTU rank abundance.

Figure S2. The associations among α-diversity and Hydroxychloroquine, Glucocorticoid, Cyclophosphamide and Biological agent in SLE patients. SLE, Systemic lupus erythematosus patients; Y= treated with specific drug; N= not treated.

Figure S3. The Principal coordinate analysis (PCoA) of different medicine treatments. A-B. PCoA illustrating the grouping patterns of the Hydroxychloroquine-treated group (red) and Hydroxychloroquine-not treated group (blue) based on the weighted UniFrac distances (A) and unweighted UniFrac distances (B). C-D. PCoA illustrating the grouping patterns of the Glucocorticoid-treated group (red) and Glucocorticoid-not treated group (blue) based on the weighted UniFrac distances (C) and unweighted UniFrac distances (D). E-F. PCoA illustrating the grouping patterns of the Cyclophosphamide-treated group (red) and Cyclophosphamide-not treated group (blue)
based on the weighted UniFrac distances (E) and unweighted UniFrac distances (F). G-H. PCoA illustrating the grouping patterns of the Biological agent-treated group (red) and Biological agent-not treated group (blue) based on the weighted UniFrac distances (G) and unweighted UniFrac distances (H). SLE, Systemic lupus erythematosus patients; Y= treated with specific drug; N= not treated.

Figure S4. The Principal coordinate analysis (PCoA) of different groups. A-B. PCoA illustrating the grouping patterns of the SLE patients and healthy controls based on the weighted UniFrac distances (A) and unweighted UniFrac distances (B). C-D. PCoA illustrating the grouping patterns of the SLE patients and RA patients based on the weighted UniFrac distances (C) and unweighted UniFrac distances (D). E-F. PCoA illustrating the grouping patterns of the active SLE patients and remissive SLE patients based on the weighted UniFrac distances (E) and unweighted UniFrac distances (F). SLE, Systemic lupus erythematosus patients; HC, the healthy controls; A, the active SLE patients; R, the remissive SLE patients.
Figure S5. The differentially abundant taxa between SLE patient group and RA patient group. LEfSe analysis was performed to identify differentially abundant taxa, which are highlighted on the phylogenetic tree in cladogram format (A) and for which the LDA scores are shown (B). Green color indicates an increase taxa in SLE compared with RA, while the red color indicates an increase taxa in RA compared with SLE. For cladogram format, from the interior to the exterior, each layer represents the phylum, class, order, family, and genus level (significant taxa [p<0.05, Kruskal–Wallis test] with LDA score >2.5 were shown). SLE, Systemic lupus erythematosus patients; RA, Rheumatoid Arthritis patients.

Figure S6. Receiver operating characteristic (ROC) curves demonstrating the performance of the anti-double stranded DNA and complement C3 to monitor the disease activity.
Table S1: The comparison of α-diversity among different groups.

	SLE	HC	P-value
Chao1	325.7	363.4	0.038*
Observed species	269	314.5	0.004**
Shannon index	5.043	5.202	0.089
Simpson index	0.931	0.948	0.092

	SLE	RA	P-value
Chao1	325.7	288.5	0.326
Observed species	269	216	0.324
Shannon index	5.043	4.643	0.493
Simpson index	0.931	0.920	0.629

	A	R	P-value
Chao1	351.7	303.1	0.123
Observed species	300	251	0.092
Shannon index	5.244	4.871	0.359
Simpson index	0.931	0.924	0.663

SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients; A, the active SLE patients; R, the remissive SLE patients. The Wilcoxon rank sum test was used to determine significance in α-diversity. *$P < 0.05$; **$P < 0.01$; ***$P < 0.001$.
Group	F. Modle	R2	P-value
Hydroxychloroquine VS no Hydroxychloroquine weighted UniFrac	1.55	0.039	0.143
Unweighted UniFrac	1.081	0.028	0.317
Glucocorticoid VS no Hydroxychloroquine weighted UniFrac	0.657	0.017	0.647
Unweighted UniFrac	1.3	0.033	0.129
Cyclophosphamide VS no Cyclophosphamide weighted UniFrac	1.315	0.033	0.208
Unweighted UniFrac	0.695	0.018	0.908
Biological agent VS no Biological agent weighted UniFrac	0.155	0.004	0.996
Unweighted UniFrac	0.857	0.022	0.672

SLE, Systemic lupus erythematosus patients. The ADONIS analysis was used to determine significance in β-diversity.
Table S3: The comparison of β-diversity among different groups.

Group	F. Modle	R^2	P-value	
SLE - HC	Unweighted UniFrac	3.406	0.054	0.000***
	Weighted UniFrac	1.705	0.028	0.132
SLE - RA	Unweighted UniFrac	1.271	0.021	0.143
	Weighted UniFrac	0.993	0.017	0.399
A - R	Unweighted UniFrac	1.549	0.039	0.047*
	Weighted UniFrac	2.532	0.062	0.037*

SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients; A, the active SLE patients; R, the remissive SLE patients. The ADONIS analysis was used to determine significance in β-diversity. *P < 0.05; **P < 0.01; ***P < 0.001.
Table S4: The comparison of *Firmicutes/Bacteroidetes* ratio (F/B) between different groups.

F/B	SLE	HC	P-value
2.471	2.661	0.666	
A	HC	P-value	
3.907	2.661	0.549	
R	HC	P-value	
1.341	2.661	0.200	

F/B, *Firmicutes/Bacteroidetes* ratio; SLE, Systemic lupus erythematosus patients; HC, healthy controls; RA, Rheumatoid Arthritis patients; A, the active SLE patients; R, the remissive SLE patients. The Wilcoxon rank sum test was used to determine significance.
Table S5: Association of disordered genera and aberrant microbiome-associated pathway with activity of SLE.

Genus and species levels	CRP r	FDR q-value	SLEDAI r	FDR q-value	ESR r	FDR q-value	C3 r	FDR q-value	dsDNA r	FDR q-value
Lactobacillus	0.089	0.676	0.054	0.810	0.397	0.056	-0.039	0.893	-0.127	0.725
Streptococcus	0.098	0.676	0.492	0.008**	0.370	0.056	-0.502	0.008**	-0.118	0.725
Megasphaera	-0.150	0.676	0.166	0.409	0.052	0.796	-0.123	0.674	0.079	0.838
Fusobacterium	-0.148	0.676	0.076	0.770	-0.042	0.796	0.305	0.168	0.059	0.860
Veillonella	0.088	0.676	0.223	0.250	0.078	0.760	-0.475	0.008**	-0.115	0.725
Oribacterium	0.325	0.492	0.282	0.186	0.102	0.760	-0.137	0.674	0.022	0.893
Campylobacter	0.038	0.818	0.470	0.009**	0.423	0.056	-0.201	0.427	-0.114	0.725
Bifidobacterium	0.121	0.676	-0.511	0.008**	-0.217	0.358	0.009	0.954	-0.038	0.889
mucosae	0.099	0.676	0.001	0.994	0.370	0.056	0.038	0.893	-0.228	0.725
anginosus	0.104	0.676	0.388	0.040*	0.244	0.311	-0.253	0.275	-0.130	0.725
dispar	0.081	0.676	0.237	0.242	0.082	0.760	-0.473	0.008**	-0.122	0.725
gnavus	0.106	0.676	-0.257	0.218	-0.130	0.726	-0.087	0.792	0.117	0.725

Pathway	CRP r	FDR q-value	SLEDAI r	FDR q-value	ESR r	FDR q-value	C3 r	FDR q-value	dsDNA r	FDR q-value
Synthesis and degradation of ketone bodies	-0.003	0.968	0.464	0.655	0.329	0.635	-0.096	0.010*	-0.137	0.670
Alanine aspartate and glutamate metabolism	-0.234	0.511	-0.367	0.000***	-0.253	0.000***	0.195	0.154	0.126	0.670
Apoptosis	0.037	0.724	0.451	0.655	0.414	0.635	-0.236	0.601	-0.117	0.328
Lipid metabolism	-0.076	0.724	0.318	0.001**	0.243	0.001**	-0.175	0.639	0.108	0.818
Primary bile acid	-0.172	0.850	-0.371	0.655	-0.196	0.635	0.137	0.927	0.144	0.670
----------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------			
biosynthesis										
Secondary bile acid	-0.196	0.511	-0.382	0.000***	-0.186	0.000***	0.125	0.269	0.131	0.670
biosynthesis										
Secretion system	0.034	0.450	0.375	0.012*	0.295	0.014*	0.040	0.089	-0.153	0.670
Staphylococcus aureus	0.179	0.724	0.420	0.232	0.360	0.225	-0.462	0.002**	-0.187	0.670

SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; C3, Complement component 3; CRP, C-reactive protein; ESR, Erythrocyte Sedimentation Rate; Anti-dsDNA, anti-double stranded DNA. They were analyzed by Spearman ranks tests; False discovery rate (FDR) correction for multiple comparisons was employed; the False Discovery Rate q-value was then calculated (r coefficient and FDR q-value were indicated for each parameter). *q < 0.05; **q < 0.01; ***q < 0.001.
Table S6: The importance of genus and species in the random forests model to distinguish the SLE patients from healthy controls and RA patients.

Genus and species levels	HC and RA (importance)	SLE (importance)	Model	Field			
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus.mucosae	100	100	rf	group			
NA	NA	NA	rf	group			
Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus	88.8540	88.854	rf	group			
NA.1	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Acidaminococcus	88.6828	88.682	rf	group			
NA.2	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Faecalibacterium	86.9773	86.977	rf	group			
NA.3	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Fusobacterium	84.8349	84.834	rf	group			
NA.4	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.[Ruminococcus].gnavus	71.9087	71.908	rf	group			
NA.5	NA	NA	rf	group			
Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Scardovia	68.4609	68.460	rf	group			
NA.6	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Megasphaera	68.0529	68.052	rf	group			
NA.7	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Veillonella	67.6085	67.608	rf	group			
NA.8	NA	NA	rf	group			
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus	65.9776	65.977	rf	group			
NA.9	NA	NA	rf	group			
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Oscillospira	64.0312	64.031	rf	group			
NA.10	NA	NA	rf	group			
Class	Order	Family	Genus	Accession Numbers	RF	Group	
--------------------	--------------------------------	----------------------	---------------	-------------------	----	-------	
Bacteria	Actinobacteria	Coriobacteriia	Atopobium	63.995	rf	group	
NA.11				4483			
				63.995			
				64483			
Bacteria	Actinobacteria	Actinobacteria	Bifidobacteriales	59.4554	rf	group	
NA.12			Bifidobacterium.adolescentis	59.4556			
				5463			
				45463			
Bacteria	Firmicutes	Bacilli	Lactobacillales	57.4657	rf	group	
NA.13			Streptococcaceae	57.4656			
			Streptococcus.anginosus	57.4656			
				1436			
				71436			
Bacteria	Proteobacteria	Gammaproteobacteria	Alteromonadales	57.2296	rf	group	
NA.14			Shewanellaceae	57.2295			
			Shewanella	9146			
				99146			
Bacteria	Proteobacteria	Gammaproteobacteria	Vibrionales	57.1777	rf	group	
NA.15			Vibrio	57.1771			
				90843			
Bacteria	Firmicutes	Bacilli	Lactobacillales	56.0413	rf	group	
NA.16			Lactobacillaceae	56.0414			
			Lactobacillus.ruminis	56.0414			
				187			
				3187			
Bacteria	Firmicutes	Clostridia	Clostridiales	55.2231	rf	group	
NA.17			Lachnospiraceae	55.2229			
			Epulopiscium	8743			
				78743			
Bacteria	Proteobacteria	Gammaproteobacteria	Pasteurellales	52.8883	rf	group	
NA.18			Pasteurellaceae	52.8882			
			Aggregatibacter	9954			
				39954			
Bacteria	Firmicutes	Clostridia	Clostridiales	52.5463	rf	group	
NA.19			[Mogibacteriaceae]	52.5464			
			Mogibacterium	2762			
				22762			
Bacteria	Firmicutes	Clostridia	Clostridiales	52.2507	rf	group	
NA.20			Lachnospiraceae	52.2508			
			Coprococcus	4908			
				74908			
Bacteria	Firmicutes	Bacilli	Lactobacillales	50.3798	rf	group	
NA.21			Leuconostocacae.Leuconostocae	50.3798			
			Leuconostocae.Leuconostocae	50.3793			
				187			
				8187			
Bacteria	Actinobacteria	Actinobacteria	Bifidobacteriales	49.8081	rf	group	
NA.22			Bifidobacterium.longum	49.8080			
				9378			
				19378			
Bacteria	Proteobacteria	Gammaproteobacteria	Pasteurellales	49.5807	rf	group	
			Pasteurellaece.Haemophilus.parainfluenzae	49.5807			
				9343			
				79343			
NA.23	Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.	47.6555	47.655	rf	group		
	Bacteroides.coprophilus	8031	58031				
NA.24	Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Anaerococcus	46.8295	46.829	rf	group		
		7796	57796				
NA.25	Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Lactococcus.garvieae	45.5228	45.522	rf	group		
		3009	83009				
NA.26	Bacteria.Firmicutes.Bacilli.Lactobacillales.Enterococcaceae.Enterococcus.cecorum	44.3246	44.324	rf	group		
		7961	67961				
NA.27	Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Phascolarctobacterium	43.7456	43.745	rf	group		
		4786	64786				
NA.28	Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Phascolarctobacterium	42.4484	42.448	rf	group		
		5749	45749				
NA.29	Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Mor yella	42.4231	42.423	rf	group		
		8053	18053				
NA.30	Bacteria.Proteobacteria.Gammaproteobacteria.Vibrionales.Vibrio naceae.Photosobacterium	42.2669	42.266	rf	group		
		8874	98874				
NA.31	Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Veillonella.parvula	41.8961	41.896	rf	group		
		9119	19119				
NA.32	Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Mor yella	40.8677	40.867	rf	group		
		1112	71112				
NA.33	Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Lach nospira	40.7941	40.794	rf	group		
		2299	12299				
NA.34	Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Mor yella	40.2141	40.214	rf	group		
		6926	16926				
NA.35	Bacteria.Actinobacteria.Coriobacteria.Coriobacteriales.Coriobacterium	39.8194	39.819	rf	group		
Bacteria, Family, Genus	RF Group	RF Group	RF Group				
-------------------------	----------	----------	----------				
eriaceae.Collinsella	3692	43692					
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellacea.Megamonas	39.8118	39.811	rf group				
	3832	83832					
NA.37	NA	NA	rf group				
Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Micrococaceae.Rothia.mucilaginosa	39.2398	39.239	rf group				
	6869	86869					
NA.38	NA	NA	rf group				
Bacteria.Firmicutes.Bacilli.Lactobacillales.Carnobacteriaceae.Coprococcus.eutactus	38.9446	38.944	rf group				
	691	6691					
NA.39	NA	NA	rf group				
Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.Aggregatibacter.pneumotropica	38.7586	38.758	rf group				
	9962	69962					
NA.40	NA	NA	rf group				
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.[Eubacterium]	38.4991	38.499	rf group				
	6132	16132					
NA.41	NA	NA	rf group				
Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Enterobacter	38.4166	38.416	rf group				
	7038	67038					
NA.42	NA	NA	rf group				
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Coprococcus.eutactus	38.4081	38.408	rf group				
	2124	12124					
NA.43	NA	NA	rf group				
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Pectinatus	38.0030	38.003	rf group				
	853	0853					
NA.44	NA	NA	rf group				
Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Ruminococcus	37.5858	37.585	rf group				
	4095	84095					
NA.45	NA	NA	rf group				
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.[Ruminococcus]	37.3746	37.374	rf group				
	2973	62973					
NA.46	NA	NA	rf group				
Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae.Staphylococcus.sciuri	37.3398	37.339	rf group				
	9497	89497					
NA.47	NA	NA	rf group				
Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium.pseudolongum	37.0794	37.079	rf group				
	9274	49274					
NA.48	NA	NA	rf group				
Kingdom	Phylum	Class	Order	Genus	Sequence Coverage	RF	Group
-----------------------------	-------------------------------	------------------------------	------------------------------------	----------------------------	-------------------	-----	--------
Bacteria	Proteobacteria	Gammaproteobacteria	Pseudomonadales.	Moraxellaceae.Acinetobacter.rhizosphaerae	36.6336 6509 66509	rf	group
NA.49							
Bacteria	Bacteroidetes.	Bacteroidia.	Bacteroidales.	Odoribacteraceae.	36.0353 703 36.035 3703	rf	group
NA.50							
Bacteria	Firmicutes.	Bacilli.	Lactobacillales.	Streptococcaceae. Streptococcus.sobrinus	36.0023 7768 36.002 37768	rf	group
NA.51							
Bacteria	Actinobacteria.	Actinobacteria.	Actinomycetales.	Microccaceae.	35.8898 1106 35.889 81106	rf	group
NA.52							
Bacteria	Firmicutes.	Clostridia.	Clostridiales.	Lachnospiraceae.	35.5545 7379 35.554 57379	rf	group
NA.53							
Bacteria	Firmicutes.	Clostridia.	Clostridiales.	Clostridiaceae.	35.2804 2355 35.280 42355	rf	group
NA.54							
Bacteria	Firmicutes.	Bacilli.	Lactobacillales.	Lactobacillus. zeae	35.2526 0325 35.252 60325	rf	group
NA.55							
Bacteria	Proteobacteria.	Gammaproteobacteria	Pasteurellales.	Pasteurellaceae.	34.9841 941 34.984 1941	rf	group
NA.56							
Bacteria	Firmicutes.	Clostridia.	Clostridiales.	Veillonellaceae.	34.8368 1098 34.836 81098	rf	group
NA.57							
Bacteria	Proteobacteria.	Deltaproteobacteria.	Desulfovibrionales.	Desulfovibrionaceae.	34.3992 1159 34.399 21159	rf	group
NA.58							
Bacteria	Firmicutes.	Erysipelotrichi.	Erysipelotrichiales.	Erysipelotrichaceae.	34.3124 5602 34.312 45602	rf	group
NA.59							
Bacteria	Bacteroidetes.	Bacteroidia.	Bacteroidales. Porphyromonadacae.	Parabacteroides.	33.8313 4522 33.831 34522	rf	group
NA.60							
Bacteria	Proteobacteria.	Gammaproteobacteria.	Enterobacteriales.	Enterobacteriaceae.	33.7498 1453 33.749 81453	rf	group
NA.61	Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Morganella.morganii						
-------	---						
NA.62	Bacteria.Firmicutes.Bacilli.Lactobacillales.Aerococcaceae.Abiotrophia						
NA.63	Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Corynebacteriaceae.Corynebacterium.variabile						
NA.64	Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Prevotella.copri						
NA.65	Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Parvimonas						
NA.66	Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Roseburia.faecis						
NA.67	Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.[Eubacterium].cylindroides						
NA.68	Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Serratia						
NA.69	Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Alcaligenaceae.Sutterella						
NA.70	Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Burkholderiaceae.Lautropia						
NA.71	Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Oxalobacteraceae.Oxalobacter.formigenes						
NA.72	Bacteria.Actinobacteria.Coriobacteriia.Coriobacterales.Coriobacteriaceae.Adlercreutzia						
NA.73	Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonad						
Group	Genus	Species	FASN	FLSN	RF	Group	
--	-------	---------	------	------	----	-------------	
aceae.Porphyromonas			9366	79366			
NA.74	NA	NA	rf			group	
Bacteria.Verrucomicrobia.Verrucomicrobiae.Verrucomicrobiaceae.Akkermansia.muciniphila	29.4384	3701	29.438	43701	rf	group	
NA.75	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridium. Clostridium	29.3992	4741	29.399	24741	rf	group	
NA.76	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Peptoniphilus	29.3058	7477	29.305	87477	rf	group	
NA.77	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridium.SMB53	29.2967	8578	29.296	78578	rf	group	
NA.78	NA	NA	rf			group	
Bacteria.Firmicutes.Bacilli.Turicibacterales.Turicibacteraceae.Turicibacter	29.0686	5286	29.068	65286	rf	group	
NA.79	NA	NA	rf			group	
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.[Paraprevotellaceae].Paraprevotella	29.0013	282	29.001	3282	rf	group	
NA.80	NA	NA	rf			group	
Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Comamonadaceae.Comamonas	28.6042	1255	28.604	21255	rf	group	
NA.81	NA	NA	rf			group	
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.Coprobacillus	28.4411	1353	28.441	11353	rf	group	
NA.82	NA	NA	rf			group	
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae. Bacteroides.acidifaciens	28.3050	7096	28.305	07096	rf	group	
NA.83	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.Peptostreptococcaceae.Peptostreptococcus	27.8394	6022	27.839	46022	rf	group	
NA.84	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Roseburia	26.9286	069	26.928	6069	rf	group	
NA.85	NA	NA	rf			group	
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Oribacterium	26.8789	7591	26.878	97591	rf	group	
NA.86	NA	NA	rf			group	
Taxonomy	RF Value	Group					
--	----------	--------					
Bacteria. Firmicutes. Clostridia. Clostridiales. Veillonellaceae. Minas. hypermegale	26.681	group					
NA.87	NA	rf					
Bacteria. Firmicutes. Clostridia. Clostridiales. Lachnospiraceae. [Ruminococcus]. torques	26.6496	group					
NA.88	NA	rf					
Bacteria. Firmicutes. Clostridia. Clostridiaceae. Clostridium. perfringens	25.7679	group					
NA.89	NA	rf					
Bacteria. Bacteroidetes. Bacteroidia. Bacteroidales. Bacteroidaceae. Bacteroides. caccoe	26.0065	group					
NA.90	NA	rf					
Bacteria. Firmicutes. Clostridia. Clostridiales. Eubacteriaceae. Pseudoramibacter. Eubacterium	26.0064	group					
NA.91	NA	rf					
Bacteria. Actinobacteria. Coriobacteriia. Coriobacteriales. Coriobacteriaceae. Eggerthella. lentia	25.9142	group					
NA.92	NA	rf					
Bacteria. Firmicutes. Erysipelotrichi. Erysipelotrichales. Erysipelotrichaceae. Bulleidia	25.7908	group					
NA.93	NA	rf					
Bacteria. Bacteroidetes. Bacteroidia. Bacteroidales. Bacteroidaceae. Bacteroides. uniformis	25.7679	group					
NA.94	NA	rf					
Bacteria. Firmicutes. Clostridia. Clostridiales. Lachnospiraceae. Anaerostipes	25.3047	group					
NA.95	NA	rf					
Bacteria. Firmicutes. Clostridia. Clostridiales. Lachnospiraceae. Blautia	25.2388	group					
NA.96	NA	rf					
Bacteria. Proteobacteria. Gammaproteobacteria. Pseudomonadales. Pseudomonadaceae. Pseudomonas	25.1646	group					
NA.97	NA	rf					
Bacteria. Bacteroidetes. Bacteroidia. Bacteroidales. Bacteroidaceae. Bacteroides	24.8466	group					
NA.98	NA	rf					
Bacteria. Actinobacteria. Actinobacteria. Actinomycetales. Corynebacteriaceae. Corynebacterium. durum	24.8363	group					
NA.99	Bacteria.Actinobacteria.Coriobacteria.Coriobacteriales.Coriobiaceriaceae.Collinsella.aerofaciens	24.6407	24.640	rf	group		
NA.100	Bacteria.Proteobacteria.Deltaproteobacteria.Desulfovibrioales.Desulfovibrioaceae.Desulfovibrio	24.3825	24.382	rf	group		
NA.101	Bacteria.Firmicutes.Clostridia.Clostridiales.Christensenellaceae.Christensenella	24.1326	24.132	rf	group		
NA.102	Bacteria.Proteobacteria.Epsilonproteobacteria.Campylobacterales.Campylobacteraceae.Campylobacter	24.1198	24.119	rf	group		
NA.103	Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Wal_L_1855D	23.8138	23.813	rf	group		
NA.104	Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.Holdemania	23.6500	23.650	rf	group		
NA.105	Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.cc_115	23.5206	23.520	rf	group		
NA.106	Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Finegoldia	23.2187	23.218	rf	group		
NA.107	Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Microccaceae.Rothia.aer						
NA.108	Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.[Eubacterium].dolichum	22.4583	22.458	rf	group		
NA.109	Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.fragilis	22.1206	22.120	rf	group		
NA.110	Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.ovatus	22.0084	22.008	rf	group		
NA.111	Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinom }						
Group	Species	Phylum	Class	Order	Family	Genus	Species
---	---	---	---	---	---	---	---
NA.112	Actinomyces	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.113	Pyramidobacter.piscolens	Synergistetes	Synergistia	Synergistales	Dethiosulfovibrio	1256	3295
NA.114	Dethiosulfovibrio	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.115	Dethiosulfovibrio	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.116	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.117	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.118	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.119	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.120	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.121	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.122	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.123	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
NA.124	Propionibacterium	Actinobacteria	Actinobacteria	Actinomycetales	Propionibacteriaceae	Propionibacterium	acnes
Bacteria	Group	RF	Group	OTU	ID	OTU	ID
----------	-------	----	-------	-----	----	-----	----
Actinobacteria.Coriobacteria.Coriobacteriales.Coriobacteriaceae.Collinsella.stercoris	17.362	17.362	rf	group	4412	84412	8065
Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bombiscardovia	16.632	16.632	rf	group	3517	43517	16.104
Actinobacteria.Bifidobacteriaceae.Bombiscardovia	12.959	12.959	rf	group	0718	60718	12.511
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	16.704	16.704	rf	group	8065	18065	16.632
Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bombiscardovia	16.704	16.704	rf	group	8065	18065	16.632
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	15.107	15.107	rf	group	81489	18964	15.107
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	16.104	16.104	rf	group	92837	18964	16.704
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.838	11.838	rf	group	76	976	11.837
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.762	11.762	rf	group	11028	11028	11.762
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	14.751	14.751	rf	group	8964	18964	14.751
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	13.332	13.332	rf	group	63207	18964	13.332
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	14.751	14.751	rf	group	18964	18964	14.751
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.762	11.762	rf	group	11028	11028	11.762
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	14.751	14.751	rf	group	18964	18964	14.751
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.838	11.838	rf	group	76	976	11.837
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.762	11.762	rf	group	11028	11028	11.762
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.838	11.838	rf	group	76	976	11.837
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.762	11.762	rf	group	11028	11028	11.762
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.838	11.838	rf	group	76	976	11.837
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.762	11.762	rf	group	11028	11028	11.762
Actinobacteria.Coriobacteriaceae.Collinsella.stercoris	11.442	11.442	rf	group	38598	38598	11.442
----	----	----	----	----			
NA	NA	rf	group				
Bacteria. Proteobacteria. Alphaproteobacteria. Rhodobacterales. Rhodobacteraceae. Paracoccus	10.9670	10.967	rf	group			
	9042	09042					
NA	NA	rf	group				
Bacteria. Firmicutes. Bacilli. Bacillales. Bacillaceae. Bacillus	10.9499	10.949	rf	group			
	5981	95981					
NA	NA	rf	group				
Bacteria. Proteobacteria. Gammaproteobacteria. Pasteurellales. Pasteurellaceae. Actinobacillus. parahaemolyticus	5.84837	5.8483	rf	group			
	1674	71674					
NA	NA	rf	group				
Bacteria. Bacteroidetes. Bacteroidia. Bacteroidales. Porphyromonadaceae. Parabacteroides. gordonii	0	0	rf	group			

SLE, Systemic lupus erythematosus patients; HC, the healthy controls; RA, Rheumatoid Arthritis patients.
Table S7: The importance of genus and species in the random forests model to distinguish the active SLE patients from remissive SLE patients.

The species and genus in the model	A	R	Model	Field		
Bacteria.Proteobacteria.Epsilonproteobacteria.Campylobacteriales.Campylobacterales.Campylobacteraceae.Campylobacter	100	100	rf	group		
NA	NA	NA	rf	group		
Bacteria.Actinobacteria.Coriobacteria.Coriobacteriales.Coriobacteriaceae.Eggerthella.lenta	73.529	73.529	rf	group		
NA.1	NA	NA	rf	group		
Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus	67.683	67.683	rf	group		
NA.2	NA	NA	rf	group		
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.[Ruminococcus].gnavus	63.134	63.134	rf	group		
NA.3	NA	NA	rf	group		
Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium	60.082	60.082	rf	group		
NA.4	NA	NA	rf	group		
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.[Ruminococcus]	57.013	57.013	rf	group		
NA.5	NA	NA	rf	group		
Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium.longum	55.721	55.721	rf	group		
NA.6	NA	NA	rf	group		
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Oribacterium	52.499	52.499	rf	group		
NA.7	NA	NA	rf	group		
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.[Eubacterium].dolichum	51.546	51.546	rf	group		
NA.8	NA	NA	rf	group		
Bacteria	Actinobacteria.Acinobacteria.Acinomycetales.Micrococcae.Rothia.aeria	51.035	51.035	rf	up	group
---	---	---	---	---	---	---
NA.9	NA	NA	rf	gro	up	
Bacteria	Actinobacteria.Acinobacteria.Acinomycetales.Micrococcae.Rothia.mucilaginosa	49.300	49.300	rf	gro	up
NA.10	NA	NA	rf	gro	up	
Bacteria	Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.barnesiae	48.418	48.418	rf	gro	up
NA.11	NA	NA	rf	gro	up	
Bacteria	Bacteroidetes.Bacteroidia.Bacteroidales.Prevoetella.copri	46.432	46.432	rf	gro	up
NA.12	NA	NA	rf	gro	up	
Bacteria	Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.ovatus	43.175	43.175	rf	gro	up
NA.13	NA	NA	rf	gro	up	
Bacteria	Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Parabacteroides.gordonii	40.198	40.198	rf	gro	up
NA.14	NA	NA	rf	gro	up	
Bacteria	Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Parabacteroides.distasonis	38.728	38.728	rf	gro	up
NA.15	NA	NA	rf	gro	up	
Bacteria	Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.Neisseria.subflava	38.453	38.453	rf	gro	up
NA.16	NA	NA	rf	gro	up	
Bacteria	Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Coprococcus.eutactus	38.060	38.060	rf	gro	up
NA.17	NA	NA	rf	gro	up	
Bacteria	Firmicutes.Bacilli.Lactobacillales.Carnobacteriaceae.Granulicatella	36.843	36.843	rf	gro	up
NA.18	NA	NA	rf	group		
--------	----	----	----	-------		
Bacteria.Firmicutes.Bacilli.Lactobacillales.Aerococcaceae.Facklamia	35.791	35.791	rf	group		
NA.19	NA	NA	rf	group		
Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Dialister	35.669	35.669	rf	group		
NA.20	NA	NA	rf	group		
Bacteria.Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.e.Neisseria	35.197	35.197	rf	group		
NA.21	NA	NA	rf	group		
Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Ent erobacteriaceae.Citrobacter	34.496	34.496	rf	group		
NA.22	NA	NA	rf	group		
Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinomyc etaceae.Actinomyces	34.466	34.466	rf	group		
NA.23	NA	NA	rf	group		
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.[Odoribacteraceae] .Butyricimonas	34.323	34.323	rf	group		
NA.24	NA	NA	rf	group		
Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.coprophilus	34.323	34.323	rf	group		
NA.25	NA	NA	rf	group		
Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrich aceae.Clostridium	34.279	34.279	rf	group		
NA.26	NA	NA	rf	group		
Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Lachno bacterium	33.480	33.480	rf	group		
NA.27	NA	NA	rf	group		
Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Comam	33.117	33.117	rf	group		
Categories	ID1	ID2	Status			
--	------	------	--------			
Bacteria, Firmicutes, Clostridia, Mogibacteriaceae, Mogibacterium	32.701	68673	up			
Bacteria, Proteobacteria, Burkholderiales, Comamonadaceae, Acidovorax	31.636	28904	up			
Bacteria, Firmicutes, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus ruminis	31.381	70548	up			
Bacteria, Firmicutes, Clostridia, Veillonellaceae, Veillonella parvula	31.235	66388	up			
Bacteria, Firmicutes, Bacilli, Lactobacillales, Streptococcaceae, Streptococcus luteciae	30.932	3495	up			
Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, Paraprevotellaceae, CF231	30.560	69782	up			
Bacteria, Firmicutes, Clostridia, Lachnospiraceae, Lachnospira	30.338	19745	up			
Bacteria, Actinobacteria, Actinomycetales, Corynebacteriaceae, Corynebacterium	29.941	54974	up			
Bacteria, Proteobacteria, Betaproteobacteria, Burkholderiales, Alcaligenaceae, Sutterella	29.842	49298	up			

Legend
- ID1: Identification Number 1
- ID2: Identification Number 2
- Status: "up" indicates an upregulated status.
| Genus/Species | 29.634 | 29.634 | rf | group | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus.zeae | 42159 | 42159 | | |
| NA.38 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Coriobacteria.Coriobacteriales.Coriobacteriaceae.Collinsella.stercoris | 29.022 | 29.022 | rf | group |
| NA.39 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Parvimonas | 28.887 | 28.887 | rf | group |
| NA.40 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Eubacteriaceae.Anaerostipes | 28.805 | 28.805 | rf | group |
| NA.41 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.plebeius | 28.792 | 28.792 | rf | group |
| NA.42 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Anaerostipes | 28.788 | 28.788 | rf | group |
| NA.43 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Prevotella.stercorea | 28.392 | 28.392 | rf | group |
| NA.44 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bifidobacterium.adolescentis | 28.126 | 28.126 | rf | group |
| NA.45 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Faeclibacterium | 28.1115 | 28.1115 | rf | group |
| NA.46 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Roseburia.faecis | 27.783 | 27.783 | rf | group |
| NA.47 | NA | NA | rf | group |
| Bacteria | Firmicutes.Clostridia.Clostridiales.Clostridiaceae.SMB53 | 27.180 | 27.180 | rf | | group | up |
|----------|--|--------|--------|----|----|--------|----|
| | NA.48 | NA | NA | rf | gro | group | up |
| | Bacteria.Proteobacteria.Alphaproteobacteria.Rhizobiales.Bradyrhizobiaceae.Bradyrhizobium | 26.832 | 26.832 | rf | gro | group | up |
| | Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Enterobacter | 26.832 | 26.832 | rf | gro | group | up |
| | NA.49 | NA | NA | rf | gro | group | up |
| | NA.50 | NA | NA | rf | gro | group | up |
| | Bacteria.Bacteroidetes.Bacteroidia.Bacteroidiales.Bacteroidaceae.Bacteroides | 26.652 | 26.652 | rf | gro | group | up |
| | NA.51 | NA | NA | rf | gro | group | up |
| | Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Blautia | 26.473 | 26.473 | rf | gro | group | up |
| | NA.52 | NA | NA | rf | gro | group | up |
| | Bacteria.Proteobacteria.Alphaproteobacteria.Sphingomonadales.Sphingomonadaceae.Sphingomonas | 25.600 | 25.600 | rf | gro | group | up |
| | NA.53 | NA | NA | rf | gro | group | up |
| | Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Blautia.producta | 25.583 | 25.583 | rf | gro | group | up |
| | NA.54 | NA | NA | rf | gro | group | up |
| | Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.Aggregatibacter.segnis | 25.385 | 25.385 | rf | gro | group | up |
| | NA.55 | NA | NA | rf | gro | group | up |
| | Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Propionibacteriaceae.Propionibacterium.acnes | 25.278 | 25.278 | rf | gro | group | up |
| | NA.56 | NA | NA | rf | gro | group | up |
| | Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Erwinia | 25.217 | 25.217 | rf | gro | group | up |
| NA.57 | Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.Allobaculum | 25.014 | 62599 | rf | group |
| NA.58 | NA | NA | rf | group |
| NA.59 | Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Comamonadaceae.Delftia | 24.862 | 47222 | rf | group |
| NA.60 | Bacteria.Firmicutes.Bacilli.Lactobacillales.Enterococcaceae.Enterococcus | 24.453 | 21906 | rf | group |
| NA.61 | Bacteria.Firmicutes.Clostridia.Clostridiales.Christensenellaceae.Christensenella | 24.237 | 42137 | rf | group |
| NA.62 | Bacteria.Proteobacteria.Deltaproteobacteria.Desulfovibrionales.Desulfovibrionaceae.Desulfovibrio | 24.049 | 06378 | rf | group |
| NA.63 | Bacteria.Firmicutes.Clostridia.Clostridiales.Peptococcaceae.Peptococcus | 23.584 | 04599 | rf | group |
| NA.64 | Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus | 23.461 | 52666 | rf | group |
| NA.65 | Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Dorea.formicigenerans | 23.102 | 78563 | rf | group |
| NA.66 | Bacteria.Proteobacteria.Gammaproteobacteria.Cardiobacteriales.Car | 22.832 | 22.832 | rf | group |
| diobacteriaceae.Cardiobacterium | 39661 | 39661 | up |
|--------------------------------|-------|-------|----|
| NA.67 | NA | NA | rf |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Porphyromonas | 22.748 | 22.748 | rf |
| NA.68 | NA | NA | rf |
| Bacteria.Actinobacteria.Coriobacteriia.Coriobacteriales.Coriobacteriaceae.Slackia | 22.606 | 22.606 | rf |
| NA.69 | NA | NA | rf |
| Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.Coprobacillus | 22.474 | 22.474 | rf |
| NA.70 | NA | NA | rf |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Ruminococcaceae.Oscillospira | 22.222 | 22.222 | rf |
| NA.71 | NA | NA | rf |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.[Odoribacteraceae].Odoribacter | 22.168 | 22.168 | rf |
| NA.72 | NA | NA | rf |
| Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Corynebacteriaceae.Corynebacterium.durum | 21.983 | 21.983 | rf |
| NA.73 | NA | NA | rf |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiaceae.Clostridium.m.neonatale | 21.982 | 21.982 | rf |
| NA.74 | NA | NA | rf |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.eggerthii | 21.791 | 21.791 | rf |
| NA.75 | NA | NA | rf |
| Archaea.Euryarchaeota.Methanobacteria.Methanobacteriales.Methanobacteriaceae.Methanobrevibacter | 21.529 | 21.529 | rf |
| Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Finegolia | 21.529 | 21.529 | rf |
| NA.76 | NA | NA | rf | group |
|-------|----|----|----|-------|
| NA.77 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Dehalobacteriaceae.Dehalobacterium | 21.086 | 32381 | 21.086 | 32381 | rf | group |
| NA.78 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Coriobacteriia.Coriobacteriales.Coriobacteriaceae.Atopobium | 21.077 | 00539 | 21.077 | 00539 | rf | group |
| NA.79 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.[Tissierellaceae].Peptoniphilus | 21.051 | 92188 | 21.051 | 92188 | rf | group |
| NA.80 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Gammaproteobacteria.Pseudomonadales.Moraxellaceae.Enhydrobacter | 20.806 | 61893 | 20.806 | 61893 | rf | group |
| NA.81 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.caccae | 20.670 | 882 | 20.670 | 882 | rf | group |
| NA.82 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Acidaminococcus | 20.655 | 32082 | 20.655 | 32082 | rf | group |
| NA.83 | NA | NA | rf | group |
| Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Lactococcus.garvieae | 19.643 | 70853 | 19.643 | 70853 | rf | group |
| NA.84 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Dorea | 19.554 | 29461 | 19.554 | 29461 | rf | group |
| NA.85 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Peptostreptococcaceae.Peptostreptococcus | 19.490 | 68014 | 19.490 | 68014 | rf | group |
| NA.86 | NA | NA | rf | group |
| Bacteria: Firmicutes, Bacilli, Lactobacillales, Aerococcaceae, Abiotrophia | 19.449 | 19.449 | rf | group up |
| NA.87 | NA | NA | rf | group up |
| Bacteria: Proteobacteria, Gammaproteobacteria, Pasteurellales, Pasteurellaceae, Actinobacillus, parahaemolyticus | 19.237 | 19.237 | rf | group up |
| NA.88 | NA | NA | rf | group up |
| Bacteria: Firmicutes, Bacilli, Bacillales, Staphylococcaceae, Staphylococcus | 19.185 | 19.185 | rf | group up |
| NA.89 | NA | NA | rf | group up |
| Bacteria: Firmicutes, Clostridia, Clostridiales, Veillonellaceae, Phascolarctobacterium | 18.896 | 18.896 | rf | group up |
| NA.90 | NA | NA | rf | group up |
| Bacteria: Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Anaerotruncus | 18.833 | 18.833 | rf | group up |
| NA.91 | NA | NA | rf | group up |
| Bacteria: Firmicutes, Clostridia, Clostridiales, Veillonellaceae, Veillonella | 18.253 | 18.253 | rf | group up |
| NA.92 | NA | NA | rf | group up |
| Bacteria: Proteobacteria, Gammaproteobacteria, Pseudomonadales, Moraxellaceae, Acinetobacter | 17.856 | 17.856 | rf | group up |
| NA.93 | NA | NA | rf | group up |
| Bacteria: Proteobacteria, Gammaproteobacteria, Vibrionales, Vibrionaceae, Vibrio | 17.662 | 17.662 | rf | group up |
| NA.94 | NA | NA | rf | group up |
| Bacteria: Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Ruminococcus | 17.600 | 17.600 | rf | group up |
| NA.95 | NA | NA | rf | group up |
| Bacteria: Proteobacteria, Gammaproteobacteria, Pasteurellales, Pasteurellaceae, Aggregatibacter | 17.395 | 17.395 | rf | group up |
| NA.96 | NA | NA | rf | group |
|---------------------------|----|----|----|-------|
| Bacteria.Synergistetes.Synergistia.Synergistales.Dethiosulfovibrionaceae.Pyramidobacter.piscolens | 17.295 | 17.295 | rf | group |
| | 99524 | 99524 | | |
| NA.97 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Eubacteriaceae.Pseudoramibacter_Eubacterium | 17.229 | 17.229 | rf | group |
| | 92569 | 92569 | | |
| NA.98 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Enterobacteriaceae.Morganella.morganii | 16.806 | 16.806 | rf | group |
| | 09917 | 09917 | | |
| NA.99 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiaceae.Clostridium.perfringens | 16.801 | 16.801 | rf | group |
| | 47762 | 47762 | | |
| NA.100 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Rikenellaceae.AF12 | 16.471 | 16.471 | rf | group |
| | 67993 | 67993 | | |
| NA.101 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Coriobacteriia.Coriobacterales.Coriobacteriaceae.Adlercreutzia | 16.453 | 16.453 | rf | group |
| | 71933 | 71933 | | |
| NA.102 | NA | NA | rf | group |
| Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichiaceae.Holdemania | 16.356 | 16.356 | rf | group |
| | 76276 | 76276 | | |
| NA.103 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Micrococaceae.Rothia.dentocariosa | 16.226 | 16.226 | rf | group |
| | 55915 | 55915 | | |
| NA.104 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.Haemophilus | 16.207 | 16.207 | rf | group |
| | 60864 | 60864 | | |
| NA.105 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Coriobacteriia.Coriobacterales.Coriobacteriaceae | 15.439 | 15.439 | rf | group |
| Genome | x | y | z | w |
|--------|---|---|---|---|
| aceae.Collinsella.aerofaciens | 21086 | 21086 | up |
| NA.106 | NA | NA | rf | group |
| Bacteria.Tenericutes.Mollicutes.Mycoplasmales.Mycoplasmae.Mycoplasma | 14.998 | 14.998 | rf | group |
| NA.107 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Gammaproteobacteria.Alteromonadales.Shewanellaceae.Shewanella.algae | 14.912 | 14.912 | rf | group |
| NA.108 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.[Paraprevotellaceae].[Prevotella].tannerae | 14.858 | 14.858 | rf | group |
| NA.109 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Alphaproteobacteria.Rhizobiales.Methylobacteriaceae.Methylobacterium.organophilum | 14.541 | 14.541 | rf | group |
| NA.110 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.[Paraprevotellaceae].Paraprevotella | 14.417 | 14.417 | rf | group |
| NA.111 | NA | NA | rf | group |
| Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Entercardiaceae.Serratia | 13.760 | 13.760 | rf | group |
| NA.112 | NA | NA | rf | group |
| Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Scardovia | 13.372 | 13.372 | rf | group |
| NA.113 | NA | NA | rf | group |
| Bacteria.Firmicutes.Clostridia.Clostridiales.Clostridiaceae.Clostridium | 13.196 | 13.196 | rf | group |
| NA.114 | NA | NA | rf | group |
| Bacteria.Bacteroidetes.Flavobacteriia.Flavobacteriales.Flavobacteriaceae.Flavobacterium | 13.025 | 13.025 | rf | group |
| NA.115 | NA | NA | rf | group |
| Bacteria | Actinobacteria | Actinobacteria | Actinomycetales | Nocardiaceae | Rhodococcus | 12.411 | 12.411 | rf | group | 73113 | 73113 | 73113 |
|----------|----------------|----------------|-----------------|-------------|-------------|--------|--------|----|-------|--------|--------|--------|
| NA.116 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Proteobacteria | Alphaproteobacteria | Sphingomonadales | Sphingobium | | 12.411 | 12.411 | rf | group | 63161 | 63161 | 63161 |
| NA.117 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Bacteroidetes | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | fragilis | 12.134 | 12.134 | rf | group | 45195 | 45195 | 45195 |
| NA.118 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Proteobacteria | Gammaproteobacteria | Vibrionales | Vibrionaceae | Vibrio | rumoiensis | 12.076 | 12.076 | rf | group | 04882 | 04882 | 04882 |
| NA.119 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus | sobrinus | 12.012 | 12.012 | rf | group | 89651 | 89651 | 89651 |
| NA.120 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Firmicutes | Clostridia | Clostridiales | Veillonellaceae | Megamonas | | 11.868 | 11.868 | rf | group | 28997 | 28997 | 28997 |
| NA.121 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Bacteroidetes | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | uniformis | 11.032 | 11.032 | rf | group | 3025 | 3025 | 3025 |
| NA.122 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Firmicutes | Clostridia | Clostridiales | Ruminococcaceae | Ruminococcus | bromii | 10.923 | 10.923 | rf | group | 45167 | 45167 | 45167 |
| NA.123 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Firmicutes | Bacilli | Bacillales | Staphylococcaceae | Staphylococcus | sciuri | 10.516 | 10.516 | rf | group | 56122 | 56122 | 56122 |
| NA.124 | | | | | | NA | NA | rf | group | | | |
| Bacteria | Proteobacteria | Gammaproteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas | | 10.258 | 10.258 | rf | group | 18194 | 18194 | 18194 |
| NA.125 | | | | | | NA | NA | rf | group | | | |
| Kingdom | Phylum | Class | Order | Family | Genus | OTU | Genus | Taxonomy | OTU | Genus | Taxology of the Bacteria domain.

- **Bacteria.Bacteroidetes/[Saprospirae].[Saprospirales].Chitinophagaceae.Sediminibacterium**
 - OTU: 10.137
 - Genus: NA
 - Numerical data:
 - 2439

- **Bacteria.Firmicutes.Erysipelotrichi.Erysipelotrichales.Erysipelotrichaceae.Bulleidia**
 - OTU: 9.6591
 - Genus: NA
 - Numerical data:
 - 89488

- **Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Pseudonocardia.Bulleidia**
 - OTU: 9.4716
 - Genus: NA
 - Numerical data:
 - 62675

- **Bacteria.Actinobacteria.Actinobacteria.Bifidobacteriales.Bifidobacteriaceae.Bombiscardovia**
 - OTU: 9.2896
 - Genus: NA
 - Numerical data:
 - 09429

- **Bacteria.Proteobacteria.Gammaproteobacteria.Xanthomonadales.Xanthomonadaceae.Stenotrophomonas**
 - OTU: 9.2626
 - Genus: NA
 - Numerical data:
 - 01412

- **Bacteria.Verrucomicrobia.Verrucomicrobiae.Verrucomicrobiales.Verrucomicrobiaceae.Akkermansia.muciniphila**
 - OTU: 9.1251
 - Genus: NA
 - Numerical data:
 - 89649

- **Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Burkholderiaceae.Burkholderia**
 - OTU: 9.0364
 - Genus: NA
 - Numerical data:
 - 12749

- **Bacteria.Proteobacteria.Gammaproteobacteria.Vibrionales.Vibrionaceae.Photobacterium**
 - OTU: 8.9156
 - Genus: NA
 - Numerical data:
 - 01809

- **Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Moryella**
 - OTU: 8.7452
 - Genus: NA
 - Numerical data:
 - 2191

- **Bacteria.Proteobacteria.Betaproteobacteria.Burkholderiales.Oxalobacteraceae.Oxalobacter.formigenes**
 - OTU: 8.6865
 - Genus: NA
 - Numerical data:
 - 73361

- **Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Moryella**
 - OTU: 8.7452
 - Genus: NA
 - Numerical data:
 - 2191
| ID | Group | Bacteria | Phylum | Class | Order | Family | Genus | Species | Log_{10} DNA reads | RF | Group |
|-----|---------------------|--|-------------------------------|--------------------------------|----------------------------|-------------------------|-------------------|------------------|-------------------|------|--------|
| NA.135 | | Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Megasphaera | NA | NA | rf | Group | | | 8.6761 | 9462 | Group |
| NA.136 | | Bacteria.Proteobacteria.Deltaproteobacteria.Desulfovibrionales.Desulfovibrionaceae.Bilophila | NA | NA | rf | Group | | | 8.5509 | 60344| Group |
| NA.137 | | Bacteria.Firmicutes.Bacilli.Lactobacillales.Lactobacillaceae.Lactobacillus.mucosae | NA | NA | rf | Group | | | 8.4448 | 65919| Group |
| NA.138 | | Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Selenomas | NA | NA | rf | Group | | | 8.3328 | 26301| Group |
| NA.139 | | Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Micrococcaceae.Micrococcus | NA | NA | rf | Group | | | 7.7464 | 41536| Group |
| NA.140 | | Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Coprococcus | NA | NA | rf | Group | | | 7.6351 | 27255| Group |
| NA.141 | | Bacteria.Proteobacteria.Gammaproteobacteria.Enterobacteriales.Entrobacteriaceae.Klebsiella | NA | NA | rf | Group | | | 7.3767 | 70496| Group |

A, the active SLE patients; R, the remissive SLE patients.