Is smallholder farmer maintaining biodiversity in rattan agroforest?

Hesti Lestari Tata*
Forest Research & Development Centre, Jalan Gunung Batu 5, Bogor 16610, Indonesia

*Corresponding Email: hl.tata@gmail.com

Abstract. Rattan Agroforestry is usually developed by smallholder farmers in Katingan district, Central Kalimantan. The rattan is planted under woody tree species, mainly rubber. Both rubber and rattan have contributed in the economic development of Central Kalimantan. A vegetation analysis with purposive sampling plot was conducted in two villages in Katingan district to assess flora diversity in the gradient of Agroforestry system (simple to complex Agroforestry) compared with forest. The Agroforestry system consisted of baliang, bahu, complex rubber rattan agroforest, and simple rubber agroforest. Results showed forest has the highest tree diversity ($H’=3.39$), while simple rubber agroforest has the lowest tree diversity ($H’=1.09$). During the survey, 43 rattan species were encountered in the landscape of two villages (Tumbang Malawan and Tumbang Runen). The commonest rattan’s genus was Calamus (consisted of 22 species). Farmers applied an extensive management of rattan-rubber agroforest and they allowed regeneration occurred naturally in the farm. In the rattan agroforests, other trees with economic value, which produce food and fruits were intentionally planted to support food security to their family. Owing to low price, rattan currently is not intensively managed and harvested; nevertheless, the Dayak is still maintaining the rattan agroforest for their domestic and cultural needs.

1. Introduction
Rattan is a climbing palm belongs to Arecaceae family. It usually grows on mineral soil, sandy soil in the riverbanks, and lowland to upland [1]. Rattan is a very well known species in Katingan district, Central Kalimantan. Since many years ago, it has been widely used for indigenous people of Dayak for cash, domestic use and cultural use [2-4]. Rattan is very beneficial, because it has multi-purposes. The shoot of rattan is edible and it can be cooked. The rattan can be used as dye, basketry, joining constructions and tools, handicraft, and medicine [4,5].

The Dayaks Ngaju cultivate some rattan species, such as Calamus caesius (uwei sigi) and Calamus manan (uwei marau) in their farm in agroforestry system [6]. Rattan agroforest is developed in swiddening and shifting cultivation practices. Slash and burning is used for clearing up the forest or secondary forest [2-4,7]. Dry-land paddy is planted for food security in the new farm-land [7]. Rattan management is consisted of collecting seeds, raising seedlings, collecting seedlings, planting and harvested [5]. In practice, Dayaks apply fallow rotation in the rattan management, which allows natural regeneration occurs in the rattan farm. The woody trees that grow along with rattan support rattan to climb. Some trees that are planted as climbing trees, such as meranti (Shorea sp.), halaban (Vitex pubescens), and rubber (Hevea brasiiliensis) [3,8].
Several reports available about rattan agroforests, however, limited information available on the comparison of tree diversity in different type of agroforests and land management. The objective of this study is to investigate diversity in rattan agroforest, and whether farmer is maintaining diversity in rattan agroforest.

2. Methods

2.1. Study site
The study was conducted in the landscape of Katingan district, Central Kalimantan, which covers an area of 17,800 km2. Katingan is known as a rattan district. Katingan also refers to a river’s name. The study sites were located in the upper stream of Katingan river, in Tumbang Malawan (01°04’- 01°05’ S and 112°44’ – 112°45’ E), and in the lower stream of Katingan river in Tumbang Runen (02°16’ – 02°17’ S and 113°26’ E).

Tumbang Malawan positioned at the altitude of 50-500 m above sea level (asl). The geographic condition in Tumbang Malawan is undulating, somewhat steep to very steep. Soil type is dominated by Latisol soil. Tumbang Runen is positioned at 17-50 m asl. The geographic condition in Tumbang Runen is relatively flat, and soil type is consisted of Inceptisol and Latisol soils [9]. The study site is shown in Figure 1.

There were three land use types in Tumbang Malawan, namely forest (himba), secondary forest (baliang), and rattan agroforest (bahu). The land use types were located on Latisols soil. Different land use types were found in Tumbang Runen, e.g. complex rubber-rattan agroforest (KKR) and simple rubber agroforest (KR).

2.2. Sampling plots
Five sampling plots of 20 m x 20 m were established at five land use types in Tumbang Runen and Tumbang Melawan. Total area in five land use types is 1 ha. The plots were laid purposively on a transect of 1 km. The distance between the plots was 200 m. Each plot was divided into nested sub-plots of 10 m x 10 m for poles stratum, and sub-plot of 2 m x 2 m for seedling stratum. All trees with minimum diameter at the breast height (dbh) of 10 cm were counted, enumerated and identified. Trunk with buttress was measured 20 cm above buttress. All species recorded were collected as voucher specimen for scientific identification. The herbarium specimens were identified in the Bogoriense Herbarium, Bogor. All rattan species that were encountered in the plot of 20 m x 20 m were counted and identified.

2.3. Data analysis
The land use type and their structure were analysed using the Important Value Index (IVI) [10].

\[IVI = RD + RF + RBA \]

where relative density (RD) is total individual of a species divided by total number individual of all species; relative frequency (RF) is number of plots in which a species occurs divided by total of number of plots sampled; relative dominance (RBA) is total basal area of a species divided by total basal area of all species. Species with the highest IVI imply the dominant species in each land use type.

For each land use type, species richness (S, total number species per land use type) and species diversity was calculated as the Shanon-Wiener index [11]:

\[H' = \frac{\sum_{i=1}^{p} p_i \ln p_i}{p} \]

(1)

Where p_i is the proportion of the individuals found in the i-th species in each concentric plot or in the whole plot. This index considers species richness (S) and the evenness of their abundance.

The evenness index was calculated using the equation of [12]:

}\]
\[E = \frac{H'}{\ln(S')} \]

(2)

The value of \(H' \) is high if the numbers of species and individuals, and the distribution of individuals of each species are high, and if the distribution of individuals for each species is almost even [13]:

Sorensen index was calculated to measure the similarity of species composition between land use type [14]:

\[IS_{jk} = \frac{2C}{A + B} \times 100\% \]

(3)

where \(IS \) is similarity percentage between sample unit of \(j \) and \(k \); \(A \) is species number of \(j \); \(B \) is species number of \(k \); \(C \) is species number presents in both \(j \) and \(k \).

![Figure 1. Study area in Tumbang Malawan and Tumbang Runen, Katingan district, Central Kalimantan (source: [9])](image)

3. Results

3.1. Diversity, species richness, and evenness of vegetation in rattan agroforests

The vegetation characteristics in the four types of rattan agroforests and forest are shown in Table 1. The four types of rattan and rubber agroforests in Katingan have different characters with forest.
Table 1. Species richness, diversity index and evenness index of five land use type in Katingan district

Stage	Parameter	Forest	Baliang	Bahu	KKR	KR
Tree	Number of woody species	49	55	19	34	13
	Number of rattan species	13	15	9	3	4
	Number of individual	117	108	62	129	108
	Basal area (m² ha⁻¹)	149.92	38.04	49.72	77.50	659.21
	Diversity index (H')	3.39	3.35	1.52	3.31	1.09
	Evenness index (E)	1.46	1.39	0.62	1.57	0.54
Seedling	Number of species	25	22	13	25	22
	Number of individual	87	52	87	85	83
	Diversity index (H')	2.80	2.78	1.54	2.92	2.35
	Evenness index (E)	1.44	1.62	0.79	1.51	1.23

Note: KKR=complex rubber-rattan agroforest, KR=simple rubber agroforest

3.2. Species composition of forest and four types of rattan agroforests
The five most important value of woody tree species in forest and four types of rattan agroforest are shown in Table 2. *Shorea parvifolia* is a dominant tree species in forest, while rubber tree is a dominant tree in the simple rubber agroforest. Only few species is a shared species between the land use types. *Diospyros puncticulosa* was found in forest and *baliang*. *Actinodaphne glabra* was a shared species in KKR and KR.

The five most important values of seedlings at five land use types in Katingan is shown in Table 3. In the forest, *S. parvifolia* is a dominant species at the seedling stage, although it has a lower value than *Shorea laevis*. Seedlings of *S. parvifolia* are found both in forest and *baliang*. Seedlings of *Calamus caesius* (uwei sigi), which is rattan with high economic value, were encountered in three land use types of bahu, KKR, and KR. Uwei sigi is planted by the farmers for food and economic purposes.

Table 2. The five most important value of woody tree species in the five land use types in Katingan

Species	Family	Vernacular name	IVI (%)	Forest	Baliang	Bahu	KKR	KR
Shorea parvifolia	Dipt.	Lentang	54.81					
Dehaasia firma	Laur.	Bawuan	16.50					
Diospyros puncticulosa	Eben.	Mahawai	6.36	10.01				
Xanthophyllum sp.	Polygal.	Bara tahatung	5.97					
Parinari oblongifolia	Ros.	Kayu batu	5.51					
Hydnocarpus sp.	Flacourt.	Sabuhe	10.17					
Milletia sericea	Fabac.	Nyatu bawui	10.07					
Sanitria tomentosa	Anac.	Punggau	9.79					
Diospyros toaposoides	Eben.	Kupang	8.48					
Vitex pinnata	Verben.	Saluwan	50.81					
Geunsia pentandra	Verben.	Nanyut	31.47					
Species	Family	Vernacular name	IVI (%)	Forest	Baliah	Bahu	KKR	KR
----------------------------	---------	-----------------	---------	--------	--------	------	-----	----
Macaranga pruinosa	Euph.	Langkuwu	13.91					
Macaranga triloba	Euph.	Gahung	12.70					
Unident sp.14	Euph.		9.79					
Unident sp.3	-	Kambang sira	24.51					
Ardisia lanceolata	Myrsin.	Tatumbu	19.13					
Actinodaphne glabra	Laur.	Kajunjung	18.77	11.55				
Vatica venulosa	Dipt.	Rasak	17.72					
Elaeocarpus macrophyllus	Elaeoc.	Mangkinang bangamatan	14.46					
Hevea brasiliensis	Euph.	Getah	176.60					
Evodia latifolia	Rut.	Sagagulang	22.02					
Baccaurea javanica	Euph.	Kayu saletik	14.85					
Cananga odorata	Annon.	Kananga	12.75					

Note: KKR = rubber-rattan complex agroforest; KR = simple rubber agroforest

Table 3. The five most important value of seedlings in the five land use types in Katingan
During the survey, 43 rattan species were found in the landscape of Tumbang Malawan and Tumbang Runen (Central Kalimantan district). The local people recognise rattans very well, and have named the rattan species. Rattan species and their utilization are shown in Table 4.

Table 4. Rattan species encountered in the landscape of Tumbang Runen (TR) and Tumbang Malawan (TM), Katingan district

No	Species name	Vernacular name	Utilization*	Presence in
1.	*Calamus blumei*	Uwei kipas kalaweh	Cash, construction, tools, medicine, ritual	TM
2.	*Calamus caesius*	Uwei sigi kabon/uei jelar sigi/uei jelar irit	Construction, tools	TM, TR
3.	*Calamus cf. zonatus*	Uwei paria	Construction, tools	TM (forest)
4.	*Calamus corrugatus*	Uwei anak	Construction, tools	TM (forest)
5.	*Calamus diepenhorstii*	Uwei tunggal	Food, basketry	TM (bahu)
6.	*Calamus hispidulus*	Uwei bulu	Construction, tools	TM (baliang), TR
7.	*Calamus javensis*			TM (baliang)
8.	*Calamus cf. gibbsianus*	Uei irit		TR
9.	*Calamus laevigatus var. mucronatus*	Uwei banang	Food, basketry	TM (forest)
10.	*Calamus manan*	Uwei marau	Cash, food, basketry, construction, tools	TM (baliang)
11.	*Calamus nematospadix*	Uwei sarihit	Food, construction	TM (baliang)
12.	*Calamus nigricans*	Uwei ikuh angkes	Dye, construction, tools	TM
13.	*Calamus paspalanthus*	Uei bujuk		TR
14.	*Calamus rugosus*	Uei naning		TR (peatland)
15.	*Calamus sp. A*	Uei anak janan		TM
16.	*Calamus sp. B*	Uwei pendung asu	Food	TM
17.	*Calamus sp. C*	Uwei satuwu	Food, construction, tool	TM
18.	*Calamus sp. D*	Uwei tantuwu		TR, TM
19.	*Calamus sp. E*	Uwei tahesa		TR
20.	*Calamus sp. F*	Uei katip		TR
21.	*Calamus sp. G*	Uwei munduk	Food, construction, tools	TM
22.	*Calamus sp. H*	Uwei rami		TM (bahu)
23.	*Ceratolobus subanguilatus*	Uwei gumin harimaung	Basketry, construction, tools	TM (forest)
24.	*Daemonorops didymophylla*	Jarenang	Cash, food, dye	TM (forest)
25.	*Daemonorops fissa*	Uwei sarihit babilem		TM (baliang)
26.	*Daemonorops formicarius*	Uei bulu		TR
No	Species name	Vernacular name	Utilization*	Presence in
----	--------------------------------	-----------------	--------------	-------------
27.	*Daemonorops sabut*	Uwei rongkong	Food, basketry, tool, construction, medicine	TM (forest)
28.	*Daemonorops sp. A*	Uwei gitan harijiliwan/ Uei bajungan	Food	TM (forest), TR
29.	*Daemonorops sp. C*	Uwei manta	Construction	TM (forest)
30.	*Daemonorops cf. didymophylla*	Uei tapah		TR
31.	*Daemonorops sp. F*	Jarenang	Dye	TM (baliang)
32.	*Korthalsia cheb*	Uei ahas		TR
33.	*Korthalsia concolor*	Uwei edan	Food, basketry, tools, construction, medicine	TM (himba)
34.	*Korthalsia ferox*	Uwei kalasi	Food, basketry, tools, construction	TM (baliang)
35.	*Korthalsia flagellaris*	Uei dahanen		TR
36.	*Korthalsia hispida*	Uwei ahas	Food, construction, tools, medicine	TM (baliang)
37.	*Korthalsia rigida*	Uei paka	Food, basketry, tools, construction, medicine	TR (peatland)
38.	*Korthalsia cf. rigida*	Uwei edan	Food, basketry, tools, construction	TM (himba)
39.	*Korthalsia echinometra*	Uwei sahar	Food, basketry, tools, construction	TM (himba)
40.	*Korthalsia rostrata*	Uwei potik	Basketry	TM (himba)
41.	*Korthalsia sp.1*	Uwei lemi		TM (baliang)
42.	*Plectocomiopsis mira*	Uwei jela		TM (bahu)
43.	*Plectocomiopsis sp.*	Uwe samare	Basketry, tools, construction	TM (bahu)

*: source [4]

Table 5. Similarity species at tree stage based on Sorensen’s index

IS (Sorensen)	Forest	Baliang	Bahu	KKR	KR
Forest	-	34.85	16.33	9.68	17.02
Baliang	-	24.49	11.54	9.64	17.02
Bahu	-	3.23	0.00		
KKR	-	29.79			
KR	-				

Note: KKR= complex rubber-rattan agroforest, KR= simple rubber agroforest

Table 6. Similarity species at seedling stage based on Sorensen’s index

IS (Sorensen)	FO	BAL	BAU	KKR	KR
Forest	-	25.53	2.30	1.16	2.96
Baliang	-	22.86	4.26	4.55	
Bahu	-	21.05	11.43		
KKR	-	55.32			
KR	-				

Note: KKR= complex rubber-rattan agroforest, KR= simple rubber agroforest

3.3. Similarity index of species at five different land use types

Similarity index between two habitats is determined at the threshold of 25% [14]. At the tree stage, most land use types has low similarity index to another. The vegetations in productive simple rubber...
agroforest (KR) are totally different with tree vegetation in rattan agroforest (bahu), which is IS=0%. Baliah has low similarity index with forest, which is IS=34.85% (Table 5).

At the seedling stage on the other hand, vegetations in KR is almost similar to KKR (IS=55.32%). Other land use types has low similarity index to another (Table 6).

4. Discussion

4.1. The cultivation system of rattan agroforests in Katingan

The indigenous people of Katingan are Dayak Ngaju. Ngaju is a large group of Dayak from Katingan and Kapuas [15]. Dayak Ngaju in the upper stream of Katingan river has different culture and land holding system with the Dayak in the lower stream. It creates different land management and perception on farming systems of both villages [3]. The types of rattan agroforest found in Tumbang Malawan are baliang and bahu. Baliah is an old secondary forest which is a late succession from abandoned bahu after more than 10 years. Bahu is formerly used as a farm (ladang), which is planted with rattan and woody trees, such as rubber and fruit trees [16]. About 13 plant species produce food and fruits that were identified in the rattan agroforests of Tumbang Malawan [17]. Tree species also grew in the rubber-rattan agroforest, owing to limited resources, the land is managed extensively. The low management intensity allows natural regenerations in the Agroforestry system.

The rattan agroforest is developed as a swidden shifting cultivation, and applied slash and burnt as prescribed burning [2,4]. Rattan management in the upper stream of Katingan includes swiddening, collecting seeds, raising seedlings, collecting seedlings or wilding, planting and harvesting. C. caesius (uwei sigi) is the most preferable rattan species planted by farmer, because it has market and higher price compare to other species. This rattan species was dominated the three types rattan agroforests (bahu, KKR, and KR). This shows that C. caesius is widely planted in Katingan.

The people of Dayak Ngaju usually do cultivation on mineral soils and avoid wetland areas (swamp – luwau, and peatswamp – napu) as cultivation land, because it is frequently flooded [16,18]. Rubber, rattan and fruit trees are not cultivated on peatland area. Farmers in Tumbang Runen planted rubber trees in a simple Agroforestry system on mineral soils. The more complex rubber-rattan agroforest was developed unintentionally from abandoned simple rubber agroforest.

4.2. Composition, species richness, diversity and similarity of vegetation

Plant diversity in the five land use types in Katingan was assessed by calculated the index of Shanon-Wiener (H’). It is showed that forest has the highest diversity index (H’≈ 3.39) than the other four land use types. The lowest index diversity was in KR (H’≈1.09). Total species found in baliang, however, higher (55 species) than that found in forest (49 species). It showed that forest as a climax ecosystem has highest tree diversity. Other report about tree diversity in secondary forest in three villages (viz. Tumbang Hiran, Tumbang Kalemei, and Tumbang Liting) in Katingan was ranging from 3.40-2.87 [6].

Baliah as a secondary forest has a slightly lower H’ index (3.35) than that of forest. Baliah has the highest species richness, but it has lower tree density and lower basal area than in forest. Rattan species found in Baliah was 15 species, which was higher than that of in forest (13 species). Baliah plays role as a refugee area for tree species from natural regeneration and dispersal agent.

The complex rattan agroforest (bahu) in Katingan has low tree diversity. Many fast growing tree species, such as G. pentandra, M. triloba, M. pruinosa, were found in bahu. The farmers in Tumbang Malawan planted C. caesius (uwei sigi kabon) in bahu, while farmers in Tumbang Runen planted C. caesius in a complex rubber-rattan agroforest (KKR). Sigi rattan is usually planted in the planting distance of 4-4.5 m x 5 m. In Tumbang Runen, fruits and rubber tree is planted as the climbed tree, while in Tubang Malawan, the climbed trees are not intentionally planted, but it comes from natural regenerations. It is reported there were several trees as climbing trees for rattan, such as benuas (Hopea celebica), jelutung (Dyera costulata), halaban (Vitex pubescens) and others [6].
Simple rubber agroforest (KR) in Tumbang Runen has the highest basal area, but it has the lowest species richness and tree diversity. The most dominant tree in simple rubber agroforest is rubber (*H. brasiliensis*). The rubber agroforest (KR) is currently being less managed but still productive. It is interesting to see diversity in complex rubber-rattan agroforest (KKR), that it has high diversity index ($H' = 3.31$), the highest Evenness index ($E' = 1.57$), and the highest tree density (645 tree/ha). The rattan is planted in the abandoned rubber, since very limited rubber grow on the sites. Number of tree species presence in the KKR was 34 species. At the seedling stage, the similarity index between KKR and KR is high (IS=55.32), which implies many shared species between the two land use types. At tree stage, on the other hand, very few shared species between KKR and KR in Tumbang Runen with three other land use types in Malawan (forest, *baliang* and *bahu*). The distance between the two villages is about 460 km. The distance and different land management by farmers may influence the composition of vegetation in the villages.

The rattan agroforest currently is not being maintained, owing to limited market to sell raw material of rattan; if it can be sell, the rattan price at farmer level is very low. Farmers were not willing to take much effort on rattan harvesting when the price is not competitive [3]. This condition is affected by ban regulation of raw rattan material export without sufficient support for the local communities in improving their capacity to improve added value of rattan. Other stakeholders, such as private and government together need to improve infrastructure of rattan industry, control on illegal rattan trading, and providing financial trading[19,20].

5. Conclusion
Rattan agroforests conserve tree diversity of the landscape. Tree diversity in rattan agroforest was influenced by farm management. The abandoned rattan agroforest (*baliang*) has the highest tree and rattan diversity; whilst the productive rubber agroforest has the lowest tree diversity. Baliang (a secondary forest that was formed by succession from bahu) tends to be a refugee area for some tree species, as it has the highest species richness (both for woody trees and rattan species). Currently, the potency of rattan in Katingan is high, which can be developed for further use and it needs strong support from government as a policy makers.

References
[1] Dransfield J and Manokaran N 1994 *Rattans Plant Resources of Southeast Asia* (Bogor: PROSEA) 6
[2] Jessup TC and Vadya AP 1988 Dayaks and forests of interior Borneo *Expedition Magazine* 30 5-16
[3] Bizard V 2013 *Rattan futures in Katingan: why do smallholders abandon or keep their gardens in Indonesia’s ‘rattan district’?* (Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Regional Program). Working Paper 175 23p. DOI: 10.5716/WP13251.PDF
[4] Scheer V 2016 Learning knowledge about rattan (*Calamoideae, Arecaceae*) and its uses amongst Ngaju Dayak in Indonesian Borneo *J of Ethnobiology* 36 125-146. Doi: http://dx.doi.org/10.2993/0278-0771-36.1.125
[5] Avè W 1988 Small-scale utilization of rattan by a Semai community in West Malaysia. *Economic Botany* 42 105-119
[6] Rotinsulu JM Suprayogo D Guritno B and Hairiah K 2013 Pontential of rubber Agroforestry for rattan (*Calamus sp.*) cultivation in Katingan Regency: Diversity of climbing trees rattan. *Agrivita* 35 277-289
[7] van Noordwijk M Bizard V Wangpakapattanawong P Tata HL Villamor GB and Leimona B 2014 Tree cover transitions and food security in Southeast Asia *Global Food Security* 3 200-208
[8] Arifin YF 2011 *Rattan, Cultivation and Management* (Banjarmasin: Lambung Mangkurat University Press) p 183.
[9] Badan Perencanaan Pembangunan Daerah dan Penanaman Modal [BAPEMDALDA] Katingan 2013 Rencana Tata Ruang Wilayah Kabupaten Katingan. (Kasongan: BAPEMDALDA Katingan)

[10] Curtis JT and McIntosh RP 1951 An upland forest continuum in the prairie-forest border region of Wisconsin Ecology 32 476–496

[11] Ludwig JA and Reynolds JF 1988 Statistical Ecology: A Primer on Methods and Computing. (New York: John Wiley & Sons) 337 p

[12] Magurran AE 1988 Ecological Diversity and its Measurement (New York: Princeton University Press) 192 p.

[13] McDonald G 2003 Biogeography: Space, Time and Life (New York: John Wiley & Sons Inc) 409 p.

[14] Mueller-Dombois D and Ellenberg H 1974 Aims and Methods of Vegetation Ecology (New York: Wiley & Sons)

[15] Riwut T 2007 Kalimantan Membangun Alam dan Kebudayaan (Yogyakarta: NR publishing) 598 p

[16] Ibie BF 2016 Studi Pemanfaatan Kanal di Blok C, Eks Proyek Pengembangan Lahan Gambut Sejuta Hektar pada Bentang Lahan Katingan Kahayan, Provinsi Kalimantan Tengah. (Palangkaraya: USAID Lestari) 119 p

[17] Tata HL and Bizard V 2015 Agroforest rotan dalam mendukung ketahanan pangan masyarakat Tumbang Malawan, Kalimantan Tengah Prosiding Semnas Biodiveristas 14 166-169

[18] Osaki M Setiadi B Takahashi H Evri M 2016 Peatland in Kalimantan Tropical Peatland Ecosystem Osaki M and Tsuji N eds (Tokyo: Springer) pp 91-112

[19] Kementerian Perdagangan RI 2013 Analisis Kebijakan Ekspor: Evaluasi Kebijakan Pelarangan Ekspor Rotan (Jakarta: Badan Pengkajian dan Pengembangan Kebijakan Perdagangan Kemendag) 24 p

[20] Myers R 2014 What the Indonesian rattan export ban means for domestic and international markets, forests, and the livelihoods of rattan collectors. Forest Policy and Economics 50 210-219 http://dx.doi.org/10.1016/j.forpol.2014.07.009

Acknowledgement
This study was financially supported by CGIAR Research Program on Forests Trees and Agroforestry (FTA) of World Agroforestry Centre (ICRAF) Southeast Asia Regional Office. The author would like to thank Prof. Meine van Noordwijk for the initial idea and Dr. Viola Bizard for sharing thought about rattan. The author acknowledges JJ Afriastini for identification of the herbarium specimens.