On the recovering of acoustic attenuation in 2D acoustic tomography

M A Shishlenin1,2, N S Novikov1,2 and D V Klyuchinskiy1,2

1 Institute of Computational Mathematics and Mathematical Geophysics, Ac. Lavrentiev, 6, Novosibirsk, 630090, Russia;
2 Novosibirsk State University, Pirogov str., 1, Novosibirsk, 630090, Russia

E-mail: mshishlenin@ngs.ru, novikov-1989@yandex.ru, dmitriy.klyuchinskiy@mail.ru

Abstract. The inverse problem of recovering the acoustic attenuation in the inclusions inside the human tissue is considered. The coefficient inverse problem is formulated for the first-order system of PDE. We reduce the inverse problem to the optimization of the cost functional by gradient method. The gradient of the functional is determined by solving a direct and conjugate problem. Numerical results are presented.

Introduction

In this paper the problem of detecting inclusions in human soft tissues using ultrasound tomography is considered [19, 20, 25, 31, 33, 34, 36].

The system of hyperbolic equations of the first order is considered as the mathematical model of the acoustic tomography, because these equations are obtained directly from the conservation laws of continuum mechanics. This allows us to control the basic invariants when solving direct [1] and inverse [26] problems. This is important for solving unstable problems, since the conservation laws of basic invariants are the only criterion for the well-posedness of the solution. Some considerations on the choice of such a mathematical model based on a first-order system and a method for solving such a system can be found in [32, 35, 37, 38].

Numerical methods based on the Godunov scheme are widely used, and there are a huge number of their variants and implementations[18, 29].

For the solution of the coefficient inverse problems gradient methods [9, 12, 17, 23, 27] and global-convergence [14, 15, 16, 21, 24] are applied. A family of Newton-type methods should also be mentioned. However, their disadvantage is the solution of an additional linear inverse problem, which must be solved at each iteration. When considering multidimensional problems, this need to deal with this additional linear inverse problem usually becomes too complicated.

Inverse problems for hyperbolic systems were investigated theoretically in [6].

The modelling of radiation pattern of acoustic sources was developed in [39]. The problem is formulated as a control problem.
1. Inverse Problem

Let us consider the direct problem of acoustic wave propagation through the 2D medium in the domain \(\Omega = (x, y) \in [0, L] \times [0, L] \):

\[
\frac{\partial u}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0, \quad \frac{\partial v}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial y} = 0, \quad (x, y) \in \Omega, \quad 0 < t \leq T, \tag{1}
\]

\[
\frac{\partial p}{\partial t} + \sigma p + \rho c^2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \theta_\Omega(x, y) I(t), \quad (x, y) \in \Omega, \tag{2}
\]

\[
u, v \big|_{(x,y) \in \partial \Omega} = 0, \tag{3}
\]

\[
u, v \big|_{t=0} = 0. \tag{4}
\]

Here \(u = u(x,y,t) \) is the velocity vector with respect to \(x \), \(v = v(x,y,t) \) is the velocity vector with respect to \(y \), \(p = p(x,y,t) \) is the exceeded pressure, \(c = c(x,y) \) is the wave speed, \(\rho = \rho(x,y) \) is the density of the medium, \(\sigma = \sigma(x,y) \) is the acoustic attenuation. \(\theta_\Omega(x,y) \) is the characteristic function of the source location, \(I(t) \) is the time pulse.

In the inverse problem it is required to find \(\sigma(x,y) \) by known the following additional information:

\[
p(x,y,t) = f_k(x,y,t), \quad (x, y) \in \Omega_k, \quad k = 1, \ldots, N. \tag{5}
\]

This means that the data of the inverse problem is the pressure that is measured in the receivers located in \(\Omega_k, k = 1, \ldots, N \).

Let us reformulate inverse problem (1)—(4), (5) in operator form

\[
A(\sigma) = f, \quad \sigma(x,y) \to f_k(x,y,t), \quad k = 1, \ldots, N. \tag{6}
\]

We reduce the inverse problem (1)—(4), (5) to minimization of the following cost functional:

\[
J(\sigma) = \sum_{k=1}^{N} \int_{0}^{T} \int_{\Omega_k} \left[p(x,y,t;\sigma) - f_k(x,y,t) \right]^2 dx dy dt \to \min_{\sigma} \tag{7}
\]

by gradient method

\[
\sigma^{(n+1)} = \sigma^{(n)} - \alpha_n J'(\sigma^{(n)}). \tag{8}
\]

Here \(\sigma^{(0)} \) is initial guess, \(\alpha_n > 0 \) is descent parameter, \(J'(\sigma) \) is the gradient of the functional, which can be calculated by the formula [36]

\[
J'(\sigma)(x,y) = \int_{0}^{T} \frac{p(x,y,t) \Psi_3(x,y,t)}{\rho(x,y)c^2(x,y)} dt. \tag{9}
\]

Here function \(\Psi_3(x,y,t) \) is the solution of the conjugate problem [13, 37]:

\[
\frac{\partial \Psi_1}{\partial t} + \frac{1}{\rho} \frac{\partial \Psi_3}{\partial x} = 0; \tag{10}
\]

\[
\frac{\partial \Psi_2}{\partial t} + \frac{1}{\rho} \frac{\partial \Psi_3}{\partial y} = 0; \tag{11}
\]

\[
\frac{\partial \Psi_3}{\partial t} - \sigma \Psi_3 + \rho c^2 \left(\frac{\partial \Psi_1}{\partial x} + \frac{\partial \Psi_2}{\partial y} \right) = 2\rho c^2 \sum_{k=1}^{N} \theta_{\Omega_k}(x,y) \left[p(x,y,t) - f_k(x,y,t) \right]; \tag{12}
\]

\[
\Psi_i(x,y,T) = 0, \quad i = 1, 2, 3; \tag{13}
\]

\[
\Psi_i|_{(x,y) \in \partial \Omega} = 0, \quad i = 1, 2, 3. \tag{14}
\]
The inverse problem of recovering conductivity using the gradient method was considered in [23] and recovering attenuation in acoustic [30].

At each iteration of the gradient method we solve the direct and conjugate problems. In [40] it was presented an approach to save twice memory on the stage of adjoint problem and gradient calculation and compare it with usual approach in memory and CPU time cost. Convergence of gradient methods for hyperbolic equations was investigated in [9, 12]. It was shown [13] that if we add a priori information about the solution of the inverse problem to the gradient method, the number of iterations will decrease significantly. Work [28] presented a stopping criterion the the gradient method, consistent with the accumulation of machine round-off errors.

2. The numerical results

The acoustic parameters of human body are taken from [2, 11, 22].

Let us consider how acoustic attenuation influences the inverse problem data. On the 1 we solve the direct problem using different σ and find the pressure that we measure in the receiver. Numerical calculations have shown that an increase σ in the leads to a decrease in the amplitude of the pressure wave (see figure 1).

We apply the MUSCL scheme [4, 5, 7, 8, 10] for solving direct and conjugate problems.

![Figure 1](image1.png)

Figure 1. Test — influence of acoustic attenuation on the inverse problem data.

We solve the inverse problems of recovering acoustic attenuation with known the wave speed $c(x, y)$ and the density $\rho(x, y)$ of the medium. We consider the uniform mesh 100×100 for each space variable and two systems of 8 and 16 transducers, and use Pusyrev wavelet with frequency $\nu_0 = 100$ KHz. True model of acoustic attenuation is presented on figure 2.

On figure 3 the numerical solution of inverse problem of recovering $\sigma(x, y)$ is presented. Left it is shown the inverse problem solution for 8 and 1000 iteration, Right — for 16 transducers and 1000 iteration. Recovering the acoustic attenuation for 16 transducers is much better, the discrepancy is less by an order of magnitude then for 8 transducers.
Conclusion
In this paper, we considered the inverse problem of recovering acoustic attenuation for 2D hyperbolic system of equations of the first order. An algorithm for solving a direct problem is implemented using MUSCL-Hancock scheme [3] taking into account acoustic attenuation. A gradient method for solving a two-dimensional coefficient inverse problem of determining the acoustic attenuation in the medium is developed and implemented. The results of numerical calculations are presented.

Acknowledgments
The work was supported by RSCF, project 19-11-00154 “Developing of new mathematical models of acoustic tomography in medicine. Numerical methods, HPC and software”.

References
[1] Godunov S K 1959 Differential method for numerical computation of noncontinuous solutions of hydrodynamics equations Matematicheskiy Sbornik (47) 271–306 (In Russian)
[2] Goss S A, Johnston R L and Dunn F 1978 Comprehensive compilation of empirical ultrasonic properties of mammalian tissues J Acoust Soc Am. 64(2) 423–457
[3] van Leer B 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method J. Comp. Phys. 32 101–136.
[4] van Leer B 1984 On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe SIAM J Sci Statist Comput 5(1) 1–20
[5] Nessyahu H and Tadmor E 1990 Nonoscillatory central differencing for hyperbolic conservation laws J Comput Phys 87(2) 408–463
[6] Romanov V G and Kabanikhin S I Inverse Problems for Maxwell’s Equations (Utrecht, The Netherlands: VSP)
[7] Khobalatte B and Perthame B 1994 Maximum principle on the entropy and second-order kinetic schemes Math of Comput 62(205) 119–131
[8] Perthame B and Qiu Y 1994 A variant of Van Leer’s method for multidimensional systems of conservation laws J Comput Phys 112(2) 370–381
[9] He S and Kabanikhin S I 1995 An optimization approach to a three-dimensional acoustic inverse problem in the time domain J. Math. Phys. 36 4028–4043
[10] Toro E F 1999 Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 2nd edn. (Berlin Heidelberg New York: Springer)
[11] Douglas T 2000 Mast. Empirical relationships between acoustic parameters in human soft tissues Acoustics Research Letters Online 1 37
[12] Kabanikhin S I, Scherzer O and Shishlenin M A 2011 Iteration methods for solving a two-dimensional inverse problem for a hyperbolic equation J. Inverse Ill-Posed Probl. (11) 87–109
[13] Kabanikhin S I and Shishlenin M A 2008 Quasi-solution in inverse coefficient problems J. Inverse Ill-Posed Probl. 16 705–713
[14] Beilina L and Klibanov M V 2010 Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D J. Inverse Ill-Posed Probl. (18) 85–132
[15] Beilina L and Klibanov M V 2010 A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem Inverse Probl. 26 045012
[16] Xin J, Beilina L and Klibanov M 2010 Globally convergent numerical methods for some coefficient inverse problems Comput. Sci. Eng. (12) 64–76
[17] Beilina L 2011 Adaptive Finite Element Method for a coefficient inverse problem for the Maxwell’s system Appl. Anal. (90) 1461–1479
[18] van Leer B 2011 A historical oversight: Vladimir P. Kolgan and his high-resolution scheme J. Comp. Phys. 230(7) 2378–2383
[19] Duric N, Littrup P, Li C, Roy O, Schmidt S, Janer R, Cheng X, Goll J, Rama O, Bey-Knight L and Greenway W 2012 Breast ultrasound tomography: Bridging the gap to clinical practice Proc. SPIE (8320) 83200O
[20] Jirik R, Peterlik I, Ruiter N, Fousek J, Dapp R, Zapf M and Jan J 2012 Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography IEEE Trans. Ultrason. Ferroelectr. Freq. Control (59) 254–264
[21] Klibanov M V 2013 Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems J. Inverse Ill-Posed Probl. (21) 477–560
[22] Reis S F 2013 Characterisation of biological tissue: measurement of acoustic properties for Ultrasound Therapy Dissertaciaio Mestrado Integrado em Engenharia Biomedica e Biofisica Perl de Sinais e Imagens Medicas
[23] Kabanikhin S I, Nurseitov D B, Shishlenin M A and Sholpanbaev B B 2013 Inverse problems for the ground penetrating radar Journal of Inverse and Ill-Posed Problems 21(6) 885–892
[24] Beilina L and Klibanov M V 2015 Globally strongly convex cost functional for a coefficient inverse problem Nonlinear Anal. Real World Appl. (22) 272–288
[25] Burov V A, Zotov D I and Runyansteva O D 2015 Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data Acoust. Phys. (61) 231–248
[26] Kulikov I M, Novikov N S and Shishlenin M A 2015 Mathematical modeling of propagation of ultrasonic waves in the medium: direct and inverse problem Siberian Electronic Mathematical Reports (12) C219–C228
[27] Beilina L and Hosseinzadegan S 2016 An adaptive finite element method in reconstruction of coefficients in Maxwell’s equations from limited observations Appl. Math. (61) 253–286
[28] Wang Y, Lukyanenko D V and Yagola A G 2016 Regularized Inversion of Full Tensor Magnetic Gradient Data Numerical Methods and Programming (Vychislitel’nye Metody i Programirovanie) (17) 13–20
[29] Rodionov A V 2016 Correlation between the discontinuous Galerkin method and MUSCL type schemes Math Models Comput Simul. 8(3) 285–300
[30] Goncharsky A V and Romanov S Y 2017 Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation Inverse Problems 33(2) 025003
[31] Wiskin J, Malik B, Natesan R and Lenox M 2019 Quantitative assessment of breast density using transmission ultrasound tomography Med. Phys. (46) 2610–2620
[32] Kabanikhin S I, Klychinskiy D V, Kulikov I M, Novikov N S and Shishlenin M A 2020 Direct and Inverse
Problems for Conservation Laws

Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy
Demidenko G, Romenski E, Toro E and Dumbser M Eds (Cham, Switzerland: Springer) 217–222

[33] Klibanov M V 2019 Travel time tomography with formally determined incomplete data in 3D Inverse Probl. Imaging (13) 1367–1393

[34] Klibanov M V 2019 On the travel time tomography problem in 3D J. Inverse Ill-Posed Probl. (27) 591–607

[35] Kabanihin S I, Kulikov I M and Shishlenin M A 2020 An Algorithm for Recovering the Characteristics of the Initial State of Supernova Comp. Math. and Math. Phys. (60) 1008–1016

[36] Kabanihin S I, Klyuchinskiy D V, Novikov N S and Shishlenin M A 2020 Numerics of acoustical 2D tomography based on the conservation laws J. Inverse Ill-Posed Probl. (28) 287–297

[37] Klyuchinskiy D, Novikov N and Shishlenin M 2020 A Modification of Gradient Descent Method for Solving Coefficient Inverse Problem for Acoustics Equations Computation 8 73

[38] Klyuchinskiy D, Novikov N and Shishlenin M 2021 Recovering Density and Speed of Sound Coefficients in the 2D Hyperbolic System of Acoustic Equations of the First Order by a Finite Number of Observations Mathematics 9 199

[39] Kabanihin S I, Klyuchinskiy D V, Novikov N S and Shishlenin M A 2021 On the problem of modeling the acoustic radiation pattern of source for the 2D first-order system of hyperbolic equations Journal of Physics: Conference Series 1715(1) 012038

[40] Klyuchinskiy D V, Novikov N S and Shishlenin M A 2021 CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach Journal of Computational Physics 439 110374