Note on Generalized Symmetries, Gapless Excitations, Generalized Symmetry Protected Topological states, and Anomaly

Chao-Ming Jian1 and Cenke Xu2

1Department of Physics, Cornell University, Ithaca, New York 14853, USA
2Department of Physics, University of California, Santa Barbara, CA 93106, USA

We consider quantum many-body systems with generalized symmetries, such as the higher form symmetries introduced recently, and the “tensor symmetry”. We consider a general form of lattice Hamiltonians which allow a certain level of nonlocality. Based on the assumption of dual generalized symmetries, we explicitly construct low energy excited states. We also derive the ’t Hooft anomaly for the general Hamiltonians after “gauging” the dual generalized symmetries. A 3d system with dual anomalous 1-form symmetries can be viewed as the boundary of a 4d generalized symmetry protected topological (SPT) state with 1-form symmetries. We also present a prototype example of 4d SPT state with mixed 1-form and 0-form symmetry topological response theory as well as its physical construction. The boundary of this SPT state can be a 3d anomalous QED state, or an anomalous 1-form symmetry enriched topological order. Insights are gained by dimensional compatification/reduction. After dimensional compactification, the 3d system with \(N \) pairs of dual 1-form symmetries reduces to a 1d system with 2\(N \) pairs of dual U(1) global symmetries, which is the boundary of an ordinary 2d SPT state; while the 3d system with the tensor symmetry reduces to a 1d Lifshitz theory, which is protected by the center of mass conservation of the system.

PACS numbers:

I. INTRODUCTION

Various lattice models with different emergent gauge invariance were constructed in the context of quantum many-body condensed matter systems, including models with emergent U(1) gauge invariance13–12, and models with more exotic tensor like gauge transformations11–3. The most well-known example is the quantum spin ice system with emergent electromagnetism and photon like excitations at low energy, as well as Dirac monopoles12. The analysis of these lattice models usually relies on the “spin-wave” expansion, meaning expanding the theory at certain presumed semiclassical mean field minimum of the Hamiltonian, or saddle point of the action in path integral. A low energy field theory is derived from this procedure (for example the Maxwell theory), then it is expected that this field theory captures the infrared physics of the lattice model at long scale. The stability of the state of interests described by the low energy field theory usually needs to be studied case-by-case for each particular example. The general procedure of such analysis is that, one treats the deviation from the field theory as perturbations, and demonstrate that these perturbations are irrelevant under renormalization group flow at the desired state described by the field theory. But for a general form of lattice Hamiltonian, it is unclear whether such a mean-field minimum (and its corresponding field theory) really exists, or whether the perturbative renormalization group argument is reliable because the deviation from the desired state can be too strong to be treated perturbatively. For example, it is known that the lattice model for the emergent photon phase can be tuned into states very different from the ordinary Maxwell theory, such as the confined phase with various spin or valence bond solid orders, and the Rokhsar-Kivelson (RK) point with nonrelativistic dispersion21,12.

Sometimes the argument for the stability of the desired low energy state can also be translated to certain physical pictures, for example the behavior of topological defects such as the Dirac monopoles; namely depending on whether the Dirac monopoles are gapped or condensed, the lattice gauge theory is in its deconfined or confined phases. But this argument relies heavily on the specific form of the theory, since the physical picture and the theory describing the condensation of topological defects can vary significantly between lattice theories with different generalized gauge transformations2.

Recently new tools and languages such as generalized higher-form symmetries were introduced to analyze gauge fields13–21, and various features of gauge fields such as the physical consequence of a topological term can be clearly studied following this language22. In the current manuscript, the most fundamental assumption we make about the systems under study is that, though our system is defined on a lattice, at least at the long scale there exists a U(1)9 symmetry. U(1)9 is a generalized U(1) symmetry such as the higher-form symmetry or a “tensor symmetry”, whose definition will be spelled out later in the manuscript. The U(1) nature of the symmetry means that the charges of the generalized symmetry take arbitrary discrete integer eigenvalues, and charges with different supports in space all commute with each other. U(1)9 can be an actual symmetry on the lattice scale (UV scale), it can also be of emergent nature, meaning it only exists at long scale.
Depending on the dimensionality, there exists a topological soliton associated with this presumed $U(1)^g$ symmetry. The topological soliton is defined in space but not space-time, and it has a smooth spatial energy distribution without singularity (for example, a Dirac monopole is considered as a defect, instead of soliton). We then further assume that at long scale the topologically quantized soliton number is conserved, which means that the system also has an emergent $U(1)^{g_{\text{dual}}}$ symmetry. Hence at the long scale, there exists a dual structure with an enlarged $U(1)^g \times U(1)^{g_{\text{dual}}}$ symmetry where the two $U(1)^g$ and $U(1)^{g_{\text{dual}}}$ symmetries act on two sets of degrees of freedom that are related to each other in a non-local way. In this work, we will discuss the physical implications of the presumed infrared $U(1)^g \times U(1)^{g_{\text{dual}}}$ symmetry of general lattice Hamiltonians, without relying on expansion at classical saddle point.

This manuscript is arranged as follows: in section II, we start with the assumption of the dual generalized symmetries in the infrared, then demonstrate the ‘t Hooft anomaly and a stable gapless phase on general grounds, without assuming any space-time symmetry or semiclassical treatment of the lattice model; in section III, we identify the gapless phases discussed in section II as the boundary of higher dimensional symmetry protected topological (SPT) states with 1-form symmetries, and make connection to ordinary SPT states after dimensional compactification/reduction; section IV introduces a prototype example of 4d SPT state with both 1-form and 0-form symmetries, whose boundary is a prototype example of anomalous 1-form symmetry enriched topological states (1-form SET) with fractionalization of 1-form symmetry; in section V we generalize the discussions in previous section to the case with “tensor gauge transformation”, meaning we derive the ‘t Hooft anomaly of a pair of dual tensor symmetries, and demonstrate the gaplessness of the spectrum based on the assumption of dual tensor symmetries; we also show that after dimensional compactification the system with a pair of dual tensor symmetries reduces to a 1d Lifshitz theory.

II. 3D SYSTEMS WITH $U(1)$ 1-FORM SYMMETRY

A. Consequences of 1-form symmetries

For our purpose, we do not take a specific example of state of matter, and show that this example has a 1-form symmetry. Instead, we start with the assumption that at least at the long scale, our 3d system has a $U(1)^g$ symmetry, where $U(1)^g$ is a 1-form symmetry. We will explore what consequences this general assumption can lead to. Here 3d means 3 spatial dimensions.

There is a 1-form charge density associated with this presumed $U(1)^g$ symmetry: $Q_A = \int_A d\vec{S} \cdot \vec{\rho}$. The integral is over a two dimensional surface A. The conservation of the charge density means that the 1-form charge cannot be created or annihilated, but it can “leak” through the boundary of A through a 1-form symmetry current. But if A is a closed surface without any boundary, Q_A must be a constant, namely

$$Q_A = \int_{\partial A = \emptyset} d\vec{S} \cdot \vec{\rho} = \int_{\partial V = A} d^3x \ \vec{\nabla} \cdot \vec{\rho} = \text{const.} \quad (1)$$

Since this must be valid for any closed surface, it implies that $\vec{\nabla} \cdot \vec{\rho}$ is a time-independent constant everywhere in the entire space at long scale. Hence $\vec{\rho}$ can be viewed as an electric field \vec{e} which satisfies the Gauss law constraint. The equation of motion of the ordinary electromagnetic field, i.e. the Maxwell equations, can be viewed as the continuity equation of the 1-form symmetries:

$$\partial_\mu J_\mu^{(e)} = \frac{\partial \epsilon_i}{\partial t} - \partial_j \epsilon_{ijk} b_k = 0,$$

$$\partial_\mu J_\mu^{(m)} = \frac{\partial b_i}{\partial t} + \partial_j \epsilon_{ijk} e_k = 0. \quad (2)$$

This means that for the ordinary Maxwell theory, the currents of the two 1-form symmetries are:

$$J^{(e)} = (\rho^{(e)}_i, J^{(e)}_{ij}) = (\epsilon_i, \epsilon_{ijk} b_k),$$

$$J^{(m)} = (\rho^{(m)}_i, J^{(m)}_{ij}) = (b_i, -\epsilon_{ijk} e_k). \quad (3)$$

This is analogous to the more familiar fact that, the equation of motion of a superfluid is also the continuity equation of its super-current. Note that the conserved current $J^{(e)}$ is associated with the aforementioned 1-form $U(1)^g$ symmetry. The conserved current $J^{(m)}$ will be associated with a different 1-form symmetry, denoted as $U(1)^{g_{\text{dual}}}$, whose physical meaning and definition will be explained later in the section.

Let us denote the operator of the electric field as $\hat{\vec{e}}$. When a quantized electric field is realized in condensed matter systems, it usually only takes discrete integer eigenvalues, because the physical meaning of the electric field...
operators such as \(\hat{\text{e}} \) system must have a U(1) gauge invariance. Hence a local Hamiltonian of the system will only involve gauge invariant

\[
\delta \hat{\text{e}} = 0 \quad \text{for a large enough closed surface}
\]

This means that a \(2\pi \) flux has no physical effect if it is only inserted through a single plaquette of the lattice. The flux only affects physics when it is spread out in space, hence there are nontrivial fluxes through plaquettes which are not multiple of \(2\pi \). We do not assume any space-time symmetry in \(H \), hence \(\mathcal{H} \) can involve mixture terms such as \(\hat{\text{e}}(\mathbf{x})^2 \sin(\hat{\text{a}}(\mathbf{x}))^m + H.c. \). \(\mathcal{H} \) also does not need to be translationally invariant, i.e. it can have disorder. Here, we mainly focus on the local Hamiltonian of the form \(\mathcal{H} \). But our analysis on the local Hamiltonian Eq. \(\mathcal{H} \) can be extended to systems with certain degree of non-locality.

Now we are ready to define the dual U(1)\(^g\)_dual symmetry. Since \(\hat{\text{b}} = \nabla \times \hat{\text{a}} \), it appears that the magnetic charge density vanishes \(\nabla \cdot \hat{\text{b}} = 0 \). But just like the existence of vortices in superfluid, there exists singular defects like Dirac monopoles which complicate the scenario. We assume that \(\nabla \cdot \hat{\text{b}} = 0 \) holds at low energy or long scale, hence \(\int_{\partial A=0} \hat{\text{b}} \cdot d\hat{\text{S}} = 0 \) for a large enough closed surface \(A \) (unless \(A \) has nontrivial winding over the entire space), i.e. there is a U(1)\(^g\)_dual 1-form symmetry at long scale. This is similar to the physical picture that the Dirac monopole defect has a large energy gap, hence positive and negative monopole pairs must be tightly bound at low energy. For the ordinary Maxwell theory, the current associated to the U(1)\(^g\)_dual symmetry is given by the second line of Eq. \(\mathcal{H} \). In the following, we will discuss the consequence of the U(1)\(^g\)_dual \(\times \) U(1)\(^g\)_dual symmetry in the general Hamiltonian Eq. \(\mathcal{H} \) of which the ordinary Maxwell theory is only a special case.

For a general Hamiltonian given in Eq. \(\mathcal{H} \) using the Heisenberg equation, we can derive the 1-form currents for both the electric and magnetic 1-form symmetries:

\[
\frac{\partial \hat{\text{e}}_i(x)}{\partial t} = i[H, \hat{\text{e}}_i(x)] = \int dy i \frac{\partial \mathcal{H}}{\partial \hat{\text{b}}_k(y)} \epsilon_{ijk} \partial x_j \hat{\text{a}}_i(y), \quad \frac{\partial \hat{\text{b}}_i(x)}{\partial t} = i[H, \hat{\text{b}}_i(x)] = \int dy i \frac{\partial \mathcal{H}}{\partial \hat{\text{e}}_k(y)} \epsilon_{ijk} \partial x_j \hat{\text{e}}_i(y),
\]

which can be viewed as the generalized 1-form electric and 1-form magnetic current conservation equations. The charges associated to 1-form electric and 1-form magnetic symmetries are still identified as \(\hat{\text{e}} \) and \(\hat{\text{b}} \). The 1-form symmetry currents for a general Hamiltonian are

\[
J^{(e)}_{ij}(x) = \epsilon_{ijk} \frac{\partial \mathcal{H}}{\partial \hat{\text{b}}^k(x)}, \quad J^{(m)}_{ij}(x) = -\epsilon_{ijk} \frac{\partial \mathcal{H}}{\partial \hat{\text{e}}^k(x)}
\]

respectively.

The U(1)\(^g\)_dual dual 1-form symmetries have the 't Hooft anomaly. For the ordinary Maxwell theory, this anomaly can be seen by the form of the 1-form currents Eq. \(\mathcal{H} \) the current of U(1)\(^g\) symmetry is the charge density of the U(1)\(^g\)_dual symmetry, and vice versa. This means that the process of generating a current associated to one symmetry, necessarily violates the conservation of the charge of the other symmetry. Hence there must be a mixed
anomaly between these two symmetries. The mixed $U(1)^9 \times U(1)^9_{\text{dual}}$ anomaly of the ordinary $(3+1)d$ Maxwell theory was derived in previous literatures such as Ref. 24.

In the following, we derive the ’t Hooft anomaly for systems described by the general Hamiltonian Eq. 4 which has the $U(1)^9 \times U(1)^9_{\text{dual}}$ 1-form symmetries. To demonstrate the anomaly, we start by gauging the 1-form symmetries, i.e. by coupling $J^{(c)}$ and $J^{(m)}$ to external gauge fields $A^{(c)}$ and $A^{(m)}$, both of which are rank-2 tensor (2-form) gauge fields. $A^{(c)}$ and $A^{(m)}$ carry with them the following gauge transformations:

$$
A^{(c,m)}_{i,j} \rightarrow A^{(c,m)}_{i,j} + \partial_i f^{(c,m)}_j - \partial_j f^{(c,m)}_i.
$$

These tensor gauge fields are antisymmetric: $A^{(c,m)}_{i,j} = -A^{(c,m)}_{j,i}$.

To explain how the rank-2 tensor gauge fields $A^{(c,m)}$ couple to the system described in Eq. 4 we need to switch to a Lagrangian formalism of the problem. Before turning on the gauge fields,

$$
\mathcal{L} = \sum_x e_i(x) \frac{\delta H}{\delta e_i(x)} - \mathcal{H}(\vec{e}(x), \vec{b}(x)),
$$

where $\vec{e}(x)$ and $\vec{b}(x)$ should be viewed as fields (instead of as operators). In the Legendre transformation, $\dot{a}_i(x) = -\delta H/\delta e_i(x)$, which allows us to express $\vec{e}(x)$ as a function of $\vec{a}(x)$ and $\vec{b}(x)$, and further, to write the Lagrangian as a function of $\vec{a}(x)$ and $\vec{b}(x)$, namely $\mathcal{L}[\vec{a}(x), \vec{b}(x)]$. Under the electric 2-form gauge transformation (whose action on $A^{(c)}$ are given in Eq. 7), the degrees of freedom in the Lagrangian $\mathcal{L}[\vec{a}(x), \vec{b}(x)]$ transform as

$$
\begin{align*}
\dot{a}_i &\rightarrow a_i - f^{(c)}_i, \\
\dot{a}_i &\rightarrow a_i - \partial_i f^{(c)}_i, \\
b_i &\rightarrow b_i - \epsilon_{ijk} \partial_j f^{(c)}_k.
\end{align*}
$$

When the system is coupled to the background two-form gauge fields $A^{(c,m)}$, it can be described by the Lagrangian

$$
\mathcal{L}_g = \mathcal{L} \left[\dot{a}_i + A^{(c)}_{i,j}, b_i - \frac{1}{2} \epsilon_{ijk} A^{(c)}_{jk} \right] \\
+ \sum_x \frac{1}{2\pi} \left(A^{(m)}_{ij} (x) J^{(m)}_{ij} (x) + A^{(m)}_{i,j} (x) b_i (x) \right)
$$

$$
= \mathcal{L} \left[\dot{a}_i + A^{(c)}_{i,j}, b_i - \frac{1}{2} \epsilon_{ijk} A^{(c)}_{jk} \right] \\
+ \sum_x \frac{1}{2\pi} \left(-A^{(m)}_{ij} (x) \epsilon_{ijk} \dot{a}_k (x) + A^{(m)}_{i,j} (x) b_i (x) \right)
$$

One can easily check that, when $A^{(m)} = 0$, the Lagrangian \mathcal{L}_g is invariant under the electric 2-form gauge transformations given by Eq. 4 and Eq. 9. The coupling to the magnetic 2-form gauge field $A^{(m)}$ is introduced in \mathcal{L}_g in the form of minimal coupling. Here, we have made use of the general definition of $J^{(m)}_{ij}$ given in Eq. 6 as well as the fact that $\dot{a}_i(x) = -\delta H/\delta e_i(x)$.

It turns out that, when $A^{(m)} \neq 0$, the Lagrangian \mathcal{L}_g is no longer invariant under the electric 2-form gauge transformation:

$$
\mathcal{L}_g \rightarrow \mathcal{L}_g + \sum_x \frac{1}{2\pi} \left(A^{(m)}_{ij} \epsilon_{ijk} \partial_j f^{(c)}_k - A^{(m)}_{i,j} \epsilon_{ijk} \partial_j f^{(c)}_k \right),
$$

which indicates a mixed ’t Hooft anomaly of the $U(1)^9 \times U(1)^9_{\text{dual}}$ symmetry in the system. In fact, this anomaly matches that of the boundary theory of a $(4+1)d$ symmetry-protected topological (SPT) state that has the 1-form $U(1)^9 \times U(1)^9_{\text{dual}}$ symmetry and a topological response given by

$$
\mathcal{S}_{\text{CS}} = \int d\tau d^4 x \frac{1}{2\pi} A^{(c)} \wedge dA^{(m)}.
$$

Hence if the $U(1)^9 \times U(1)^9_{\text{dual}}$ symmetries are microscopic symmetries, the 3d state described by the Hamiltonian Eq. 4 must be a boundary state of a 4d SPT state with 1-form symmetries. Here, $A^{(c)}$ and $A^{(m)}$ are treated as two-form fields in $(4+1)d$.
B. Gapless excitations of systems with dual 1-form symmetries

Common wisdom says that a mixed ’t Hooft anomaly of the dual $U(1)^g \times U(1)^g_{\text{dual}}$ symmetry implies that the spectrum of the 3d system cannot be trivially gapped, namely the Hamiltonian H cannot have a unique ground state and gapped spectrum in the thermodynamics limit. We explicitly construct an excited state of the general Hamiltonian Eq. (4) with vanishing energy in the thermodynamics limit. We define our system on a three dimensional cubic lattice which forms torus with size L^3, and we assume there is a unique ground state of H denoted by $|\Omega\rangle$. We consider the following state $|\Psi\rangle$:

$$|\Psi\rangle = \hat{O}_q |\Omega\rangle, \quad \hat{O}_q = \exp \left(ig \sum_x \frac{2\pi \hat{e}_y(x)}{L^2} \right), \quad (13)$$

where \hat{O}_q is a function of \hat{c} only, and it creates a magnetic flux quantum $2\pi q$ with size L^2 along the \hat{z} direction. \hat{O}_q shifts \hat{a}_y by $\hat{a}_y \to \hat{a}_y + 2\pi x/L^2$. Hence the gauge invariant Wilson loop $W_q = \exp(i \oint dy \hat{a}_y)$ still has a periodic boundary condition after the shift, i.e. $W_q(x=0) = W_q(x=L)$ for integer q. Notice that since \hat{O}_q is a function of \hat{c}, \hat{O}_q must commute with any composite operator of \hat{c}. This operator inserts flux $2\pi q/L^2$ on every plaquette in the XY plane. Using the language in Ref. 23. The state $|\Psi\rangle$ carries a different 1-form $U(1)_{\text{dual}}$ symmetry charge compared with the ground state. To be more precise, this symmetry charge here is $\int dxdy \hat{b}_x$ (with the integration over the XY-plane).

Since we made a powerful assumption that there is an emergent magnetic 1-form symmetry $U(1)^g_{\text{dual}}$ at long scale, the assumption of $|\Omega\rangle$ being the unique ground state implies that it is also an eigenstate of the 1-form $U(1)^g_{\text{dual}}$ charges. $|\Psi\rangle$ must be orthogonal to $|\Omega\rangle$ when the size of the created soliton is large compared with the lattice constant, because these two states carry different charges under $U(1)^g_{\text{dual}}$. Though $|\Psi\rangle$ is not necessarily the eigenstate of the Hamiltonian, the energy of $|\Psi\rangle$ is evaluated as

$$E_\Psi = \langle \Psi | H | \Psi \rangle = \langle \Omega | \hat{O}_q^\dagger H \hat{O}_q | \Omega \rangle$$

$$= \sum_x \langle \Omega | \hat{H} (\hat{c}(x), \hat{b}(x)) + \frac{2\pi q}{L^2} \hat{z} | \Omega \rangle$$

$$= E_\Omega + \sum_x \sum_{m=1}^\infty \frac{1}{m!} \langle \Omega | \partial_{b_x}^m \hat{H} (\hat{c}(x), \hat{b}(x)) | \Omega \rangle \left(\frac{2\pi q}{L^2} \right)^m, \quad (14)$$

where \hat{z} is the unit vector along the z direction. We have expanded the energy as a polynomial of $1/L^2$. For our purpose we only need to worry about the leading order expansion of $1/L^2$, because all the other terms will vanish under the limit $L \to \infty$.

The leading order expansion of E_Ψ involves the following terms:

$$\sum_x \langle \Omega | \partial_{b_x} \hat{H} (\hat{c}(x), \hat{b}(x)) | \Omega \rangle \frac{2\pi q}{L^2}. \quad (15)$$

For a general state this expectation value does not vanish. However, since $|\Omega\rangle$ is the ground state, $\langle \Omega | \sum_x \partial_{b_x} \hat{H} (\hat{c}(x), \hat{b}(x)) | \Omega \rangle$ must vanish because otherwise one can always choose the sign of q to make the energy of $|\Psi\rangle$ lower than $|\Omega\rangle$ for large enough L, which violates the assumption that $|\Omega\rangle$ is the ground state.

Let us review our logic here: we do not first take the ordinary Maxwell theory and demonstrate that there is a 1-form symmetry; instead we start with the assumption that there exists one 1-form symmetry $U(1)^g$ at long scale, then demonstrated that there must be a gauge invariance as a consequence of the 1-form symmetry. And the gauge invariance allows us to define the dual 1-form symmetry $U(1)^g_{\text{dual}}$. Then by further assuming $U(1)^g \times U(1)^g_{\text{dual}}$ at long scale, we constructed a state that is orthogonal to the ground state, with energy approaching the ground state in the thermodynamics limit. The construction also does not rely on the semiclassical “spin-wave” expansion used often in literature of lattice quantum spin or boson models. Similar “soliton insertion” argument was used in the original Lieb-Shultz-Matthis theorem, and the Luttinger theorem.

The argument above can go through even with a certain degree of non-locality in the Hamiltonian. For example, if there is a term in the Hamiltonian

$$H' = \sum_{x,x'} f(|x-x'|) F(\hat{b}(x)) F(\hat{b}(x')),$$

one can show that as long as $f(|x|)$ falls off faster than $1/|x|^2$ at the long distance, the state $|\Psi\rangle$ constructed above still has vanishing energy with $L \to \infty$.

III. GENERALIZED SPT STATES AND DIMENSIONAL REDUCTION

Helpful further insights can be gained through compactifying the system discussed in the previous section to one dimension. The mixed ’t Hooft anomaly between the two dual 1-form symmetries will reduce to a mixed anomaly of two ordinary (0-form) U(1) symmetries. The 4d bulk will reduce to a 2d bosonic SPT state with ordinary (0-form) symmetries.

We compactify the YZ plane to a 2d torus with a small size. Since the 1d system is along the \hat{x} direction, a 2d surface A wrapping around the 1d line could be either in the XY plane, or the XZ plane. In the 3d systems with the $U(1)^g \times U(1)^g_{\text{dual}}$ 1-form symmetry, there is a 1-form charge associated with the compactified XZ plane:

$$\int_{x\in XZ} d^2x \, \hat{c}_y(x) \sim \int dx \, \hat{n}(x).$$

(17)

Since the system is highly compact in the Y and Z directions, we ignore the modes with finite discrete momenta in these directions. In other words, all the fields are constants in these two directions. Then, we can define a 1d particle density $\hat{n}(x) \sim \hat{c}_y(x)$ in this compactified system. After proper normalization, we can also define the canonical conjugate variable of $\hat{n}(x)$, i.e. the phase angle operator $\hat{\theta}(x)$ as

$$\int_{x\in XY} d^2x \, \hat{b}_y(x) \sim \int dx \, \nabla_x \hat{\theta}(x),$$

(18)

$\hat{\theta}(x) \sim \hat{a}_y(x)$. $\hat{\theta}(x)$ and $\hat{n}(x)$ obey the standard commutation relation: $[\hat{\theta}(x), \hat{n}(x')] = -i\delta_{x,x'}$. The 1-form symmetries discussed in previous examples becomes the ordinary global symmetries (0-form symmetries) in 1d.

The $U(1)^g_{\text{dual}}$ charge now becomes the topological soliton number in this 1d system:

$$N_T = \frac{1}{2\pi} \int_0^L dx \, \nabla_x \hat{\theta}(x).$$

(19)

The general Hamiltonian we considered in Eq. 4 becomes a 1d Hamiltonian with an ordinary U(1) symmetry

$$H = \sum_x \mathcal{H}[\hat{n}(x), \nabla_x \hat{\theta}(x)].$$

(20)

All the analysis in Sec. II has counterparts in the compactified system. We assume that at long scales both the particle number $\int dx \, \hat{n}(x)$ and the topological soliton number N_T are conserved, namely there is a $U(1) \times U(1)_{\text{dual}}$ symmetry at long scale. We denote the ground state of the Hamiltonian described above as $|\Omega\rangle$, and then consider the following state $|\Psi\rangle$:

$$|\Psi\rangle = \hat{O}_q |\Omega\rangle = \exp\left(i q \sum_x \frac{2\pi \hat{n}(x)}{L} x \right) |\Omega\rangle.$$

(21)

The operator \hat{O}_q is the analogue of the operator \hat{O}_1 in Eq. 14 compactified to 1d. With $q = 1$, $|\Psi\rangle$ contains one extra soliton N_T compared with the ground state $|\Omega\rangle$: \hat{O}_1 creates one extra winding of $\hat{\theta}$ in the 1d system. Since we’ve assumed that the $U(1)_{\text{dual}}$ is an emergent symmetry at long scale, $|\Psi\rangle$ must be orthogonal to the ground state. The evaluation of the energy of $|\Psi\rangle$ is similar to the discussion in Sec. III. We can show that the energy of $|\Psi\rangle$ approaches the energy of $|\Omega\rangle$ as $L \to \infty$.

When the system is reduced to 1d, its $U(1) \times U(1)_{\text{dual}}$ symmetry has an ordinary ’t Hooft anomaly. In fact, the action of the $U(1) \times U(1)_{\text{dual}}$ in the reduced 1d system mimics the spin and charge U(1) symmetry action on the boundary of a 2d quantum spin Hall insulator. It is known that the boundary of the quantum spin Hall insulator with both charge and spin U(1) symmetries has a mixed perturbative ’t Hooft anomaly. To show this anomaly formally, one can couple the charge U(1) current to a $U(1)^{(c)}$ background gauge field $A^{(c)}$, and couple the spin U(1) (or the $U(1)_{\text{dual}}$) current to another background $U(1)^{(m)}$ gauge field $A^{(m)}$. This mixed anomaly is identical to the boundary of a $(2+1)d$ bulk Chern-Simons theory

$$S = \int d\tau d^2x \frac{1}{2\pi} A^{(c)} \wedge dA^{(m)}.$$

(22)

Physically, this anomaly simply means that the current of one U(1) symmetry is the charge density of the other U(1) symmetry, hence a process of creating the current of one U(1) symmetry would necessarily violate the conservation of the charge of the other U(1) symmetry.
There is another pair of dual U(1) symmetries in the 1d system after compactification, which originates from the 3d dual U(1) 1-form symmetries: the U(1) symmetry generated by \(\int_{X \times Z} d^2x \, \hat{b}_y(x) \), and the U(1)_{\text{dual}} symmetry associated to the conservation of \(\int_{X \times Z} d^2x \, \hat{a}_y(x) \). There is also a mixed ’t Hooft anomaly between these two dual U(1) symmetries. Hence one pair of dual 1-form symmetries in 3d will reduce to two pairs of ordinary dual symmetries in 1d. In general, if we start with \(N \) pairs of dual U(1) \(\times \) U(1)_{\text{dual}} 1-form symmetries in 3d, after compactification to 1d there will be \(2N \) pairs of dual U(1) \(\times \) U(1)_{\text{dual}} symmetries in 1d. The 4d bulk system for the 3d system with a series of 1-form symmetries can have a Chern-Simons response theory

\[
S = \int d\tau d^4x \frac{1}{4\pi} K_{IJ} C^I \wedge dC^J ,
\]

where \(C^I \) is a two form gauge field, and \(K_{IJ} \) is an antisymmetric matrix. Then after dimensional reduction as discussed in this section, the corresponding 2d bulk theory for the 1d system should have a CS response theory

\[
S = \int d\tau d^2x \frac{1}{4\pi} K'_{IJ} C^I \wedge dC^J , \quad K' = K \otimes \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} .
\]

In the \((2+1)d \) system \(C^I \) is a 1-form gauge field, and \(K' \) is a symmetric matrix. Hence the 4d generalized SPT state can be studied and understood as its 2d counterpart with ordinary symmetries after dimensional reduction.

IV. A PROTOTYPE SPT STATE WITH MIXED 0-FORM AND 1-FORM SYMMETRIES, 1-FORM SYMMETRY ENRICHED TOPOLOGICAL ORDER

Eq. 12 is a \((4+1)d \) topological response theory involving only 1-form symmetries. In general, if there is an extra ordinary (0-form) symmetry \(G \) in the system, one can also consider the mixed topological response theory between the 0-form symmetry \(G \) and the 1-form symmetries. For example, we can consider a \((4+1)d \) bulk system which has a topological response

\[
S_{\text{topo}} = \pi \int d\tau d^4x \, w_2[A^{SO(3)}] \cup \frac{dA^{(e)}}{2\pi}.
\]

Here, \(A^{SO(3)} \) is the background (1-form) gauge field associate to the 0-form symmetry \(G = SO(3) \) and \(w_2 \) is the second Stiefel-Whitney class.

A candidate system with this response theory can be constructed as follows: we start with a \((4+1)d \) QED with a microscopic electric U(1) \(\times \) 1-form symmetry. We will denote the \((4+1)d \) bulk dynamical gauge field as \(a_\mu \). There is no microscopic magnetic higher-form symmetry, hence there are defects with their own dynamics analogous to the Dirac monopole. The Dirac monopole defect in \((4+1)d \) is a one dimensional line/loop. It was shown that the “decorated defect” construction is a very powerful physical picture of constructing SPT states with 0-form symmetries\(^{28,29}\), i.e. higher dimensional SPT states can be constructed by decorating the topological defects of order parameters with lower dimensional SPT states. Here we also follow the recipe of decorated defects: we attach the Dirac monopole line in \((4+1)d \) bulk with a one dimensional ordinary SPT phase with \(G = SO(3) \) symmetry, i.e. the Haldane phase, and proliferate the Dirac monopole line. The \((4+1)d \) bulk will be driven into a gapped and confined phase, while the most natural \((3+1)d \) boundary state of the system will be a QED whose Dirac monopole carries a spin-1/2 under the 0-form SO(3) symmetry, while there is no electric charge. A theory which describes this boundary state is the \((3+1)d \) CP\(^1\) model:

\[
S_{\text{boundary}} = \int d\tau d^3x \sum_{\alpha=1}^2 |(\partial - i\tilde{a})z_\alpha|^2 + \cdots
\]

where \(z_\alpha \) represents a spin-1/2 representation of the SO(3) 0-form symmetry carried by the boundary termination of the Dirac monopole line in the \((4+1)d \) bulk, while \(\tilde{a}_\mu \) is the “dual” gauge field of \(a_\mu \) at the \((3+1)d \) boundary whose gauge charge is the Dirac monopole of \(a_\mu \). As we can see from its topological response \(S_{\text{topo}} \), this \((4+1)d \) bulk is an SPT state protected by the electric 1-form U(1) symmetry and the 0-form symmetry \(G \). Its boundary state cannot be gapped with a unique ground state without breaking the symmetries. One way to understand it is to consider the compactification of 3 spatial dimensions to a 3-dimensional sphere \(S^3 \) with a non-trivial flux \(\int_{S^3} dA^{(e)} = 2\pi \). The effective \((1+1)d \) system after the dimensional compactification/reduction has a topological response identical to the SO(3) symmetric Haldane phase in \((1+1)d \) which is a \((1+1)d \) SPT whose boundary does not admit a unique fully symmetric ground state.
This “decorated monopole line” construction can be generalized to many other SPT states with mixed 1-form and 0-form symmetries. One just need to decorate the Dirac monopole line in the 4d space with a nontrivial 1d bosonic SPT state with ordinary 0-form symmetry, for example the 1d Haldane phase with pSU(N) symmetry with a SU(N) fundamental at the boundary. Then the 3d boundary could be described by a CP\(^{N-1}\) model with N flavors of the bosonic field \(z_n\) coupled with the dual U(1) gauge field in Eq. (26).

The system with a 0-form SO(3) symmetry and a U(1)\(^g\) 1-form symmetry can also support other 3d boundary state. For example, one can condense the bound state of a pair of the Dirac monopoles, which can be a singlet of SO(3) 0-form symmetry. Then the system enters a “monopole superconductor”, which is a Z\(_2\) topological order with both point and loop excitations. The point excitation is a spin-1/2 of the SO(3) 0-form symmetry. This fractionalization of 1-form symmetry is identical to the simple fact that in an ordinary superconductor, the vortex line carries half magnetic flux quantum. Due to the fractionalization of the 1-form symmetry, the loop excitation must couple to a gauge field, which is precisely the 2-form gauge field dual to the condensed Dirac monopole pair.

The 3d topological order constructed here is a 1-form symmetry enriched topological (SET) states. Both the point excitation, and the line excitation of the topological order carry nontrivial quantum numbers, and the line excitations carry 1-form symmetry charge. Moreover, this SET state is anomalous, in the sense that it cannot be driven to a trivially gapped phase without breaking either the U(1) 1-form symmetry, or the SO(3) 0-form symmetry. The reason is that, in order to drive the 3d topological order to a trivial phase, we need to either condense the point particle, or the line excitation. However, condensing the line excitation would lead to spontaneous breaking of the U(1) 1-form symmetry, while condensation of the point particle would leads to spontaneous breaking of the SO(3) symmetry.

This Z\(_2\) topological order with fractionalized 1-form symmetry is the 3d analogue of a 2d Z\(_2\) topological order whose mutual semionic anyon excitations (the so called e and m excitations) carry half charge and spin-1/2 representation of 0-form U(1) and SO(3) symmetries respectively. This 2d Z\(_2\) topological order is the boundary of a 3d ordinary SPT state\(^{28}\).

The example of SET state discussed here is a prototype, namely many 1-form SET states can be constructed in a similar way. For example, if the 1d SPT state decorated in the Dirac monopole line in the 4d bulk is the pSU(N) Haldane phase, the 3d boundary can be driven into a Z\(_N\) topological order by condensing a N-body bound state of the Dirac monopole, which can be a SU(N) singlet. The point particle of the Z\(_N\) topological order carries fractionalized quantum number of pSU(N), and the line excitation carries fractionalized 1-form symmetry. We leave the full discussion of higher symmetry enriched SET states to future exploration.

V. 3D SYSTEM WITH TENSOR SYMMETRIES

Now we system with a generalized tensor 1-form symmetry, whose lattice realization was discussed in Ref. 4-6. Connection between this system as well as similar tensor gauge theories\(^{7-9}\) and the fracton states was pointed out in recent literature (for instance Ref. 30\(^\text{-}\)32). The fracton states are a series of novel gapped states of matter, which can be obtained by partially breaking the gauge invariance in the generalized tensor gauge theories. In our current note we will still focus on the gapless phase with the tensor symmetry, instead of the gapped phase. This tensor 1-form symmetry is to certain extent similar to three 1-form U(1)\(^g\) symmetries discussed in the previous sections, meaning that with a given closed surface \(A\), there are three U(1) charges: \(Q^a = \int_{\partial A} d^3 \bar{S} \cdot \bar{\rho}^a = \int_A d^3 x \nabla \cdot \bar{\rho}^a\). These charges are individual constants. We further demand that \(\rho^{\alpha a}\) is a symmetric tensor: \(\rho^{ij} = \rho^{ji}\). Then \(\rho^{ij}\) can be viewed as the generalized symmetric tensor electric field introduced in Ref. 4\(^-\)6, \(E^{ij}\), which is subjected to the constraints: \(\partial_i E^{ij} = \partial_j E^{ij} = 0\).

Now we promote \(E^{ij}\) to an operator \(\hat{E}^{ij}\), whose eigenvalues are again integers. We can define the following operator \(\hat{G}(f^i(x))\) parameterized by an arbitrary vector function \(f^i(x)\):

\[
\hat{G}(f^i) = \exp \left(\int d^3 x \, i 2 f^i \partial_j \hat{E}^{ij} \right)
= \exp \left(\int d^3 x \, i f^i \partial_j \hat{E}^{ij} + i f^j \partial_i \hat{E}^{ij} \right)
= \exp \left(- \int d^3 x \, i (\partial_j f^i + \partial_i f^j) \hat{E}^{ij} \right).
\tag{27}
\]

Let us denote \(\hat{A}^{ij}\) as the canonical conjugate operator of \(\hat{E}^{ij}\) (\(\hat{A}^{ij}\) is again periodically defined). More precisely, we impose the commutation relations \([\hat{E}^{ij}(x), \hat{A}^{i'j'}(x')] = i(\delta_{ij'} \delta_{j'j} + \delta_{ij} \delta_{j'j'})\delta(x - x')\). The \(\hat{G}(f^i)\) operator will generate
a gauge transformation on \hat{A}^{ij}:

$$\hat{G}^{-1}(f^i)\hat{A}^{ij}(x)\hat{G}(f^i) = \hat{A}^{ij}(x) + 2\partial_i f^j + 2\partial_j f^i,$$

(28)

However, because of the constraint on \hat{E}^{ij}, $\hat{G}(f^i)$ is actually an identity operator, which must commute with any Hamiltonian of \hat{E}^{ij} and \hat{A}^{ij}. It means that the Hamiltonian of the system must be invariant under the gauge transformation Eq. 28. The derivation of gauge invariance in this paragraph applies to other systems with local constraints, such as systems with generalized gauge transformations.

Then the Hamiltonian must be a function of \hat{E}^{ij} and the gauge invariant operator $\hat{B}^{ij} = \epsilon_{iab}\epsilon_{jcd}\partial_a\partial_c\hat{A}^{bd}$. A general local Hamiltonian should take the form:

$$H = \sum_x \mathcal{H}[\hat{E}^{ij}(x), \hat{B}^{ij}(x)],$$

(29)

and again \mathcal{H} is a periodic function of \hat{B}^{ij}. \hat{B} is completely dual to \hat{E}. Besides the more exotic gauge invariance, these Hamiltonians all have an extra center of mass conservation: H is invariant under transformation $\hat{A}^{ij} \to \hat{A}^{ij} + \hat{F}^{ij}[x]$, where $\hat{F}^{ij}[x]$ is a linear function of space coordinate. This extra conservation law in the series of tensor models was noticed in Ref. 30, and it was realized that this center of mass conservation is a key feature of the fracton states of matter.

We can define a dual tensor 1-form symmetry $U(1)_{\text{dual}}$, whose charge corresponds to the generalized tensor magnetic flux through a surface A: $Q_A^a = \int dS^i \cdot \hat{B}^{ia}$. We assume that the generalized tensor magnetic 1-form charge density $\partial_i \hat{B}^{ij} = \partial_j \hat{B}^{ij} = 0$ remains zero at low energy, meaning there is an emergent dual tensor symmetry $U(1)_{\text{dual}}$ at long scale. Then again one can insert magnetic flux through the system through (for example) the following operator:

$$\hat{O}_q = \exp \left(iq \sum_x \frac{2\pi x^2}{L^2} \hat{E}^{zz}(x) \right).$$

(31)

This operator is still compatible with the periodic boundary condition, and it will shift \hat{A}^{zz} by

$$\hat{O}_q^{-1} \hat{A}^{zz} \hat{O}_q = \hat{A}^{zz}(x) + \frac{4\pi q x^2}{L^2}.$$

(32)

If we denote the ground state of the system as $|\Omega\rangle$, then $|\Psi\rangle$ has nonzero extra quantized flux of \hat{B}^{yy} through any XZ plane compared with the ground state, and the extra flux density is $\hat{B}^{yy} \sim 1/L^2$. Or we can create a configuration of $\hat{A}^{yy}(x)$ as $\hat{A}^{yy}(x) = 2\pi z^2/L^2$. Then there is a nonzero flux of \hat{B}^{yy}, again with flux density $\sim 1/L^2$.

Again we will demonstrate that the ground state of the system cannot be trivially gapped, if we assume the emergent $U(1)^9\times U(1)_{\text{dual}}^g$ symmetry at long scale. Suppose there is a unique ground state $|\Omega\rangle$ of the system, then $|\Psi\rangle = \hat{O}_q|\Omega\rangle$ must be orthogonal to $|\Omega\rangle$ for large enough L, because $|\Omega\rangle$ must be an eigenstate of the tensor 1-form charge, and $|\Psi\rangle$ carries a different tensor 1-form charge from $|\Omega\rangle$. And by going through the same argument as section II, we can demonstrate that when $L \to \infty$, the energy of $|\Psi\rangle$ must also approach the energy of $|\Omega\rangle$. This statement still holds with disorder, and also when there is a long range interaction that falls off more rapidly than $1/|x|^2$.

We have argued that an emergent $U(1)^9\times U(1)_{\text{dual}}^g$ tensor symmetry rules out a trivial gapped ground state. This result can be equivalently stated as that the $U(1)^9\times U(1)_{\text{dual}}^g$ tensor symmetry is anomalous. Again, the equation of motion of \hat{E}^{ij} and \hat{B}^{ij} can be viewed as the continuity equation of the currents of the tensor symmetries. For the simplest semiclassical limit of the theory, the Hamiltonian of the system is approximately

$$\mathcal{H} \sim \frac{1}{2} \sum_x \sum_{ij} \left[(\hat{E}^{ij}(x))^2 + (\hat{B}^{ij}(x))^2 \right],$$

(33)

then the equation of motion reads

$$\frac{\partial \hat{E}^{ij}}{\partial t} - \partial_a (\epsilon_{iab}\partial_c\hat{E}^{cd}) = 0,$$

$$\frac{\partial \hat{B}^{ij}}{\partial t} - \partial_a (\epsilon_{iab}\partial_c\hat{E}^{cd}) = 0.$$

(34)
This means that the currents of the tensor symmetries are:

\[J^{(e)} = (\rho^{(e)}_{ij}, J^{(e)}_{ij,k}) = \left(\mathcal{E}^{ij}, \frac{1}{2} \epsilon_{iab} \epsilon_{jcd} \partial_a \mathcal{B}^{bd} + i \leftrightarrow j \right), \]

\[J^{(m)} = (\rho^{(m)}_{ij}, J^{(m)}_{ij,k}) = \left(\mathcal{B}^{ij}, \frac{1}{2} \epsilon_{iab} \epsilon_{jcd} \partial_a \mathcal{E}^{bd} + i \leftrightarrow j \right). \]

Again in a process that creates a nonzero current of one of the U(1) tensor symmetries, the charge conservation of the other U(1) tensor symmetry must be violated, hence there is a 't Hooft anomaly of the two U(1) tensor symmetries.

Formally we can still discuss the anomalies in a Lagrangian formalism. The Lagrangian is given by

\[\mathcal{L}[\hat{A}^{ij}, B^{ij}] = \frac{1}{4} \sum \sum_{ij} \left[\left(\hat{A}^{ij} (x) \right)^2 - \left(B^{ij} (x) \right)^2 \right], \]

where \(\hat{A}^{ij} \equiv \delta H / \delta \mathcal{E}^{ij} = \mathcal{E}^{ij} \) is introduced through the Legendre transformation \(\mathcal{L} = \left(\sum_x \sum_{ij} \mathcal{E}^{ij} \frac{\delta H}{\delta \mathcal{E}^{ij}} \right) - H \). The electric U(1)\(_{\mathcal{E}}\) tensor symmetry is defined by the symmetry transformation

\[\hat{A}^{ij} \rightarrow A^{ij} + \Lambda^{(e)}_{ij}, \]

where \(\Lambda^{(e)}_{ij} \) is a constant symmetric tensor, namely \(\Lambda^{(e)}_{ij} = \Lambda^{(e)}_{ji} \). In the following, we will use the terms U(1)\(_{\mathcal{E}}\) tensor symmetry and electric tensor symmetry interchangeably. We can gauge the electric tensor symmetry by promoting \(\Lambda^{(e)}_{ij} \) to a space-time function, and introducing the electric tensor gauge fields \(G^{(e)}_{ij,0} \) and \(G^{(e)}_{ij,k} \) which are symmetric under the exchange of the first two indices, namely \(G^{(e)}_{ij,0} = G^{(e)}_{ji,0} \) and \(G^{(e)}_{ij,k} = G^{(e)}_{ji,k} \). Under the electric tensor gauge transformation, we have

\[\hat{A}^{ij} \rightarrow A^{ij} + \Lambda^{(e)}_{ij}, \]

\[\hat{A}^{ij} \rightarrow A^{ij} + \partial_i \Lambda^{(e)}_{ij}, \]

\[\mathcal{E}^{ij} \rightarrow \mathcal{E}^{ij} + \epsilon_{iab} \epsilon_{jcd} \partial_a \partial_b \Lambda^{(e)}_{cd}, \]

\[G^{(e)}_{ij,0} \rightarrow G^{(e)}_{ij,0} + \partial_i \Lambda^{(e)}_{ij}, \]

\[G^{(e)}_{ij,k} \rightarrow G^{(e)}_{ij,k} + \partial_k \Lambda^{(e)}_{ij}. \]

When the electric tensor background gauge field is turned on, the system is described by the Lagrangian

\[\mathcal{L} \left[\hat{A}^{ij} - G^{(e)}_{ij,0}, B^{ij} \right] - \frac{1}{2} \left(\epsilon_{iab} \epsilon_{jcd} + \epsilon_{iab} \epsilon_{jda} \right) \partial_i G^{(e)}_{bd,c} \]

\[= \mathcal{L}[\hat{A}^{ij}, B^{ij}] - \sum_{ijk} \sum_x \left(G^{(e)}_{ij,0} \rho^{(e)}_{ij} + G^{(e)}_{ij,k} J^{(e)}_{ij,k} \right) + ..., \]

which is explicitly gauge invariant under the gauge transformation given by Eq. 38. The “...” part contains higher order terms in \(\hat{A}^{ij} \) and \(B^{ij} \). As a sanity check, we notice that the Lagrangian above effectively introduces the minimal coupling between the electric tensor gauge fields \(\left(G^{(e)}_{ij,0}, G^{(e)}_{ij,k} \right) \) and the current \(J^{(e)} \) introduced in Eq. 35.

Similarly, we can introduce the magnetic tensor gauge fields \(G^{(m)}_{ij,0} \) and \(G^{(m)}_{ij,k} \) which are also symmetric under the exchange of the first two indices, namely \(G^{(m)}_{ij,0} = G^{(m)}_{ji,0} \) and \(G^{(m)}_{ij,k} = G^{(m)}_{ji,k} \). The magnetic tensor gauge fields are associated to the emergent U(1)\(_{\mathcal{B}}\) tensor symmetry. They transform under the magnetic tensor gauge transformation as

\[G^{(m)}_{ij,0} \rightarrow G^{(m)}_{ij,0} + \partial_i \Lambda^{(m)}_{ij}, \]

\[G^{(m)}_{ij,k} \rightarrow G^{(m)}_{ij,k} + \partial_k \Lambda^{(m)}_{ij}. \]

We can introduce the minimal coupling between the magnetic tensor gauge fields and the current \(J^{(m)} \) introduced in
constant B is topological Θ^- not fractionalize. Hence it is sufficient to view the $1d$ system as the boundary of a $2d$ SPT state, instead of a $2d$ system after dimensional compactification. Then we extended all these discussions to the tensor gauge theories. Further studies can be pursued following the questions raised in this work. We have shown that, for N pairs of dual 1-form symmetries in $3d$, there will be $2N$ pairs of dual 0-form symmetries after compactification to $1d$. If we break the dual 1-form symmetries to certain combination of these two 1-form symmetries, a bound state of electric and magnetic charges (a dyon) is allowed and has its own dynamics. The $3d$ system can be driven to a gapped phase after compactification. Hence after compactification, the $2d$ bulk of the system should be an exotic SPT state with a special center of mass conservation, whose nature deserves further studies.

VI. DISCUSSION

In this note we explored the consequences of the assumption of a pair of dual generalized symmetries. We discussed the implication of the dual symmetries on low energy excitations, 't Hooft anomaly, their bulk description, and corresponding state after dimensional compactification. Then we extended all these discussions to the tensor gauge theories.

The $3d$ system with tensor symmetry can also be compactified to $1d$. After compactification, one can still define several ordinary $1d$ global U(1) symmetries. One of the U(1) symmetries has the following charge:

$$\int_{x \in XY} d^2x \hat{E}_{zz}(x) \sim \int dx \hat{n}(x).$$

The conjugate variable of $\hat{n}(x)$, i.e. the phase angle $\theta(x)$ is defined as

$$\int_{x \in XZ} d^2x \hat{B}_{yy}(x) \sim \int dx \nabla^2 \hat{\theta}(x),$$

and $\hat{\theta}(x) \sim \hat{A}_{zz}(x).$ The $3d$ Hamiltonian then reduces to a $1d$ Lifshitz theory: $H = \sum_x \mathcal{H}[\hat{n}(x), \nabla^2 \hat{\theta}(x)]$. The $1d$ Hamiltonian H inherits the center of mass conservation Eq. 35 which in $1d$ becomes $\theta \to \theta + Bx$ with constant B. This center of mass conservation prohibits terms like $\cos(\nabla_x \theta)$ after compactification. Hence after compactification, the $2d$ bulk of the system should be an exotic SPT state with a special center of mass conservation, whose nature deserves further studies.

The fact that \mathcal{L}_g is no longer gauge invariant once the magnetic tensor gauge field $(G^{(m)}_{ij,0}, G^{(m)}_{ij,k})$ is turned on indicates a 't Hooft anomaly of the emergent $U(1)^g \times U(1)^d_{\text{dual}}$ tensor symmetry.

When the magnetic tensor gauge field $(G^{(m)}_{ij,0}, G^{(m)}_{ij,k})$ is turned on, the Lagrangian \mathcal{L}_g is no longer invariant under the electric tensor gauge transformation Eq. 38.

$$\mathcal{L}_g \to \mathcal{L}_g - \sum_{ijk} \left(G^{(m)}_{ij,0} \epsilon_{ijb} \epsilon_{jcd} \partial_a \partial_c A^{(c)}_{bd}
ight) + \frac{1}{2} G^{(m)}_{ij,k} \left(\epsilon_{ijk} \epsilon_{jcd} + \epsilon_{jkb} \epsilon_{iec} \right) \partial_c \partial_l A^{(c)}_{bd}.$$

The conjugate variable of $\hat{n}(x)$, i.e. the phase angle $\theta(x)$ is defined as

$$\int_{x \in XY} d^2x \hat{E}_{zz}(x) \sim \int dx \hat{n}(x).$$

The conjugate variable of $\hat{n}(x)$, i.e. the phase angle $\theta(x)$ is defined as

$$\int_{x \in XZ} d^2x \hat{B}_{yy}(x) \sim \int dx \nabla^2 \hat{\theta}(x),$$

and $\hat{\theta}(x) \sim \hat{A}_{zz}(x).$ The $3d$ Hamiltonian then reduces to a $1d$ Lifshitz theory: $H = \sum_x \mathcal{H}[\hat{n}(x), \nabla^2 \hat{\theta}(x)]$.
topological order with fractionalization. The 4d bulk of the 3d system is also a generalized SPT state with 1-form symmetries, rather than a topological order. But a topological order with fractionalized 1-form symmetries would be an interesting direction to explore. In section IV we presented one prototype of such topological order. A more general and systematic discussion of fractionalization of higher form symmetry is worth studying in the future.

Besides the higher-form symmetries and tensor like symmetries, many other generalized concepts of symmetries have been discussed in the past (for early examples please see Refs. [51] [54]). Much of the topics discussed in this paper, such as the SPT states and anomalies involving these generalized symmetries are also interesting future directions.

This work is supported by NSF Grant No. DMR-1920494, the David and Lucile Packard Foundation, and the Simons Foundation.

1. X.-G. Wen, Phys. Rev. B 68, 115413 (2003), URL https://link.aps.org/doi/10.1103/PhysRevB.68.115413
2. R. Moessner and S. L. Sondhi, Phys. Rev. B 68, 184512 (2003), URL https://link.aps.org/doi/10.1103/PhysRevB.68.184512
3. M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004), URL https://link.aps.org/doi/10.1103/PhysRevB.69.064404
4. C. Xu, Novel algebraic boson liquid phase with soft graviton excitations (2006), cond-mat/0602443.
5. D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988), URL http://dx.doi.org/10.1103/PhysRevLett.61.2376
6. E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L. Sondhi, Physical Review B 69 (2004), ISSN 1550-235X, URL http://dx.doi.org/10.1103/PhysRevB.69.224415
7. A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016 (2013).
8. M. Pretko, Physical Review B 95 (2017), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.95.115139
9. K. Slagle and Y. B. Kim, Physical Review B 96 (2017), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.96.165106
10. X.-G. Wen, Phys. Rev. B 68, 115413 (2003), URL https://link.aps.org/doi/10.1103/PhysRevB.68.115413
11. R. Moessner and S. L. Sondhi, Phys. Rev. B 68, 184512 (2003), URL https://link.aps.org/doi/10.1103/PhysRevB.68.184512
12. M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004), URL https://link.aps.org/doi/10.1103/PhysRevB.69.064404
13. C. Xu, Novel algebraic boson liquid phase with soft graviton excitations (2006), cond-mat/0602443.
14. D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988), URL http://dx.doi.org/10.1103/PhysRevLett.61.2376
15. E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L. Sondhi, Physical Review B 69 (2004), ISSN 1550-235X, URL http://dx.doi.org/10.1103/PhysRevB.69.224415
16. A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016 (2013).
17. M. Pretko, Physical Review B 95 (2017), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.95.115139
18. K. Slagle and Y. B. Kim, Physical Review B 96 (2017), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.96.165106
13

34. D. Bulmash and M. Barkeshli, Physical Review B 97 (2018), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.97.235112

35. S. Pai and M. Pretko, Physical Review B 97 (2018), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.97.235102

36. J. Wang, K. Xu, and S.-T. Yau, Higher-rank non-abelian tensor field theory: Higher-moment or subdimensional polynomial global symmetry, algebraic variety, noether’s theorem, and gauge (2019), 1911.01804.

37. J. Wang and S.-T. Yau, Non-abelian gauged fractonic matter field theory: New sigma models, superfluids and vortices (2019), 1912.13485.

38. L. Radzihovsky and M. Hermele, Physical Review Letters 124 (2020), ISSN 1079-7114, URL http://dx.doi.org/10.1103/PhysRevLett.124.050402

39. V. B. Shenoy and R. Moessner, Physical Review B 101 (2020), ISSN 2469-9969, URL http://dx.doi.org/10.1103/PhysRevB.101.085106

40. N. Seiberg and S.-H. Shao, Exotic u(1) symmetries, duality, and fractons in 2+1-dimensional quantum field theory (2020), 2003.10466.

41. N. Seiberg and S.-H. Shao, Fracton hydrodynamics (2020), 2003.10466.

42. N. Seiberg and S.-H. Shao, Exotic u(1) symmetries, duality, and fractons in 3+1-dimensional quantum field theory (2020), 2004.00015.

43. N. Seiberg and S.-H. Shao, Exotic u(1) symmetries, duality, and fractons in 3+1-dimensional quantum field theory (2020), 2004.00015.

44. W. B. Fontana, P. R. S. Gomes, and C. Chamon, Lattice clifford fractons and their chern-simons-like theory (2020), 2006.10071.

45. D. X. Nguyen, A. Gromov, and S. Moroz, Fracton-elasticity duality of two-dimensional superfluid vortex crystals: defect interactions and quantum melting (2020), 2005.12317.

46. A. Gromov, Phys. Rev. X 9, 031035 (2019), URL https://link.aps.org/doi/10.1103/PhysRevX.9.031035

47. A. Gromov, Phys. Rev. Lett. 122, 076403 (2019), URL https://link.aps.org/doi/10.1103/PhysRevLett.122.076403

48. A. Gromov, A. Lucas, and R. M. Nandkishore, Fracton hydrodynamics (2020), 2003.09429.

49. A. Gromov and P. Surowka, SciPost Phys. 8, 65 (2020), URL https://scipost.org/10.21468/SciPostPhys.8.4.065

50. J. L. Cardy and E. Rabinovici, Nuclear Physics B 205, 1 (1982), ISSN 0550-3213, volume B205 [FS5] No. 2 to follow in approximately one month, URL http://www.sciencedirect.com/science/article/pii/0550321382904631

51. J. L. Cardy, Nuclear Physics B 205, 17 (1982), ISSN 0550-3213, volume B205 [FS5] No. 2 to follow in approximately one month, URL http://www.sciencedirect.com/science/article/pii/0550321382904643

52. A. Paramekanti, L. Balents, and M. P. A. Fisher, Physical Review B 66 (2002), ISSN 1095-3795, URL http://dx.doi.org/10.1103/PhysRevB.66.054526

53. C. Xu and M. P. A. Fisher, Physical Review B 75 (2007), ISSN 1550-235X, URL http://dx.doi.org/10.1103/PhysRevB.75.104428

54. Z. Nussinov and G. Ortiz, Proceedings of the National Academy of Sciences 106, 16944 (2009), ISSN 0027-8424, https://www.pnas.org/content/106/40/16944.full.pdf, URL https://www.pnas.org/content/106/40/16944.