Advances in understanding the pathogenesis of hereditary macrothrombocytopenia

Janine Collins,1,2,3 William J. Astle,2,4 Karyn Megy,1,2,5 Andrew D. Mumford6 and Dragana Vuckovic7,8,9

1Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Cambridge, 2National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, 3Department of Haematology, Barts Health NHS Trust, London, 4MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, 5NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, 6School of Cellular and Molecular Medicine, University of Bristol, Bristol, 7Department of Biostatistics and Epidemiology, Faculty of Medicine, Imperial College London, London, 8Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, and 9National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK

Summary

Low platelet count, or thrombocytopenia, is a common haematological abnormality, with a wide differential diagnosis, which may represent a clinically significant underlying pathology. Macrothrombocytopenia, the presence of large platelets in combination with thrombocytopenia, can be acquired or hereditary and indicative of a complex disorder. In this review, we discuss the interpretation of platelet count and volume measured by automated haematology analysers and highlight some important technical considerations relevant to the analysis of blood samples with macrothrombocytopenia. We review how large cohorts, such as the UK Biobank and INTERVAL studies, have enabled an accurate description of the distribution and co-variation of platelet parameters in adult populations. We discuss how genome-wide association studies have identified hundreds of genetic associations with platelet count and mean platelet volume, which in aggregate can explain large fractions of phenotypic variance, consistent with a complex genetic architecture and polygenic inheritance. Finally, we describe the large genetic diagnostic and discovery programmes, which, simultaneously to genome-wide association studies, have expanded the repertoire of genes and variants associated with extreme platelet phenotypes. These have advanced our understanding of the pathogenesis of hereditary macrothrombocytopenia and support a future clinical diagnostic strategy that utilises genotype alongside clinical and laboratory phenotype data.

Keywords: platelets, macrothrombocytopenia, megakaryopoiesis, genomics, polygenic.

Healthy adults produce and clear approximately 1×10^{11} platelets daily to maintain a stable platelet mass under steady state conditions.1 Tight autoregulation of platelet mass is important to prevent bleeding and thrombotic complications from platelet counts that are too low or too high respectively. Platelet production is primarily dependent on thrombopoietin (TPO), a glycoprotein produced by the liver, kidneys and bone marrow.1 The uptake of TPO by high-affinity TPO receptors (encoded by the MPL gene), drives the proliferation and differentiation of the haematopoietic stem cell (HSC) towards megakaryocytes (MKs) and supports the survival, proliferation and differentiation of MKs.1,2 Simultaneously, the TPO receptors of platelets act as a sink, creating a negative feedback loop regulating platelet production in response to the level of free TPO.1 The expression of TPO mRNA is itself regulated by the removal of platelets, which become desialylated at the end of their circulatory lifespan.2 These desialylated senile platelets are bound by the Ashwell-Morell (asialoglycoprotein) receptor on the hepatocyte surface, which mediates platelet clearance from the circulation. Binding to the Ashwell-Morell receptor also induces hepatocyte signalling through the JAK2-STAT3 pathway, leading to upregulated TPO gene expression and secretion, thereby stimulating new platelet production by MKs.2

The variation in platelet count (PLT) and mean platelet volume (MPV) between individuals is partly explained by individual-specific environmental exposures, but also by DNA sequence variations in the genes that regulate the platelet life cycle, including the fate decisions of HSCs. Disruption to the tight regulation of platelet mass can result in thrombocytopenia (low platelet count) or thrombocytosis (high platelet count). Macrothrombocytopenia, the frequent combination of enlarged platelets with thrombocytopenia, has many acquired causes, for example sepsis3 and immune thrombocytopenia (ITP)4, however, in this review we will focus on the pathogenesis of hereditary macrothrombocytopenia. We will first look at the technologies used for the
clinical measurement of PLT and MPV. We will then consider how large-scale population cohorts, such as UK Biobank (UKB) and INTERVAL studies, can help delineate PLT and MPV reference intervals. We will discuss the results of recent genome-wide association studies (GWAS), showing that the aggregate additive effect of genetic variation at hundreds of independent loci can explain 19% and 27% of the variation in normalised representations of PLT and MPV respectively. These percentages are greater than those of most other published genetic scores for quantitative traits, for example those for weight and low-density lipoprotein concentration (both 8%).

We will illustrate how the hundreds of GWAS associated genetic variants, many with small effects on PLT and MPV, modify the risk of macrothrombocytopenia conferred by variants, implicated in hereditary macrothrombocytopenia disorders. Finally, we will focus on the rare hereditary macrothrombocytopenia disorders and address some of the clinical implications of an accurate molecular diagnosis.

The measurement of platelet count and volume

The standard clinical reference range for PLT in healthy adults is 150–400 × 10^9/L. The historical reference method for measuring PLT required manual counting of platelets using phase contrast microscopy. This was superseded by an immunological flow cytometry method that uses fluorescently tagged antibodies to the platelet-specific glycoproteins GPIIb (CD41) and GPIIIa (CD61). This is recommended by the International Council for Standardization in Haematology (ICSH) and the International Society of Laboratory Haematology (ISLH) for validation and standardisation of new methods of cell counting. For clinical purposes, automated haematology analysers measure PLT as part of a full blood count (FBC). At present, the models of haematology analyser most frequently registered in the UK are the Sysmex XN-series, the Sysmex PocH-100i (Sysmex UK Ltd, Milton Keynes, UK), and the Siemens Advia (Siemens, Erlangen, Germany) (collectively 62%; National External Quality Assessment Service (NEQAS) exercise December 2019, unpublished data). Different analysers use different technologies to detect blood cells and to distinguish platelets, which has important implications for the interpretation of PLT (and MPV) because the method used can influence the accuracy and precision of measurements, particularly in macrothrombocytopenic samples. The impedance method (or ‘Coulter principle’) relies on the reduction in electrical conductivity caused by the displacement of electrolytes as cells pass through a sensing aperture or channel. The increase in impedance is proportional to the volume of the traversing cell. Consequently, platelets are distinguishable from larger blood cell types, but not from similarly sized cells such as microcytic red blood cells (RBCs) or fragments. If such cells/fragments are numerous, PLT can be underestimated. Conversely, if unusually large platelets are present, these cannot be reliably distinguished from RBCs, and PLT can be underestimated. Modern analysers often employ optical detection methods, in which the intensities of diffracted light scattered by a cell at different angles from an afferent light source are measured, sometimes together with the intensity of light fluoresced by the cell. These have improved ability to discriminate platelets, particularly in thrombocytopenic samples.

Optical counters classify cells according to the intensity of forward-scattered (FSC), side-scattered (SSC) and side-fluorescence (SFL) light. FSC measures cell volume, SSC provides information about cell complexity, including granularity, and SFL quantifies the RNA/DNA content of the cell. A division of the space of possible measured intensities into regions (‘gates’) corresponding to cell types is used to identify particular cell groups, for example, platelets. More than one type of counting instrument can be incorporated in the same analyser, with an automated algorithm that detects interference, for example from fragments in the impedance channel, or detects an abnormal optical platelet distribution (e.g. in the presence of white cell fragments in acute leukaemia or following chemotherapy). If one counting method is deemed unreliable, the count from the alternative is reported. Improvements to some optical counters allow them to detect platelets using monoclonal CD61 antibodies (e.g. Abbott Cell-Dyn Sapphire; Abbott Diagnostics, Santa Clara, CA, USA) or cell-specific fluorescent dyes. The current Sysmex XN-series analysers (Sysmex, Kobe, Japan) have a dedicated channel for platelet analysis, PLT-F, which uses oxazine, a platelet-specific fluorescent dye that binds nucleic acids present in ribosomes and mitochondria. The PLT-F method also incorporates an extended counting volume and time, to reduce the variance in measurement of PLT. PLT-F correlates well with the ICSH/ISLH immunological reference method, even in markedly thrombocytopenic samples, which is critical to guiding platelet transfusions.

The volume of an individual platelet is measurable from the magnitude of the change in impedance it induces or from its optical scatter properties. The distribution of platelet volumes within a blood sample is usually summarised by two quantities: the mean average volume (i.e. MPV) and the platelet distribution width (PDW), a measure of the variability of platelet volume within the sample. MPV is derived from the platelet crit (PCT; the percentage of blood volume occupied by platelets, calculated from the sum of the measured volumes of platelets in a fixed volume of blood) and PLT according to the formula MPV = PCT/PLT/100%. Unlike for PLT, there is no agreed standard clinical reference range for MPV, and this parameter is not currently included in the UK NEQAS haematology exercises. A large epidemiological study reported a reference range of 7.2–11.7 fl in healthy European ancestry individuals. FBC samples were analysed within 6 h of venepuncture on a Cell-Dyn 3700 SL analyser (Abbott Diagnostics), which used impedance to derive MPV. The comparability of MPV measurements against a standard reference range is, however, affected by...
pre-analytical variability and differences between analyser methodologies for platelet detection and for calculation of PCT (and subsequent derivation of MPV). Sources of pre-analytical variability include the choice of anticoagulant and the extent to which platelets swell between venepuncture and analysis; in EDTA, the majority of the increase in MPV occurs in the first 6 h, with an overall increase in MPV of 13-4% at 24 h. The aggregate technical variation in MPV is such that measurements may vary by up to 25% between parallel analyses of the same sample by different instruments. In macrothrombocytopenic samples, MPV derived by impedance can be systematically underestimated because the threshold used to discriminate platelets from other blood cell types excludes large platelets. Most analysers will flag samples for which the platelet size distribution is not demarcated and overlaps with that of other cell types. In such cases, MPV may be omitted from the analyser report, or it may be reported with a downward bias. Some instruments adopt a liberal platelet detection window to avoid this problem. For example, the Siemens Advia 2120 analyser, which uses optical detection, can detect platelets up to a volume of 60 fl and report an MPV up to 28 fl. However, a liberal window risks upward bias in estimates of PLT and MPV, in the presence of microcytic RBCs. A further practical approach to detect large platelets from the output of automated haematology analysers is by manual inspection of the platelet size distribution histogram. Macrothrombocytopenia typically manifests as a right shift or skew in the distribution, which is a helpful adjunct to considering the MPV and PDW and interpretation of the blood film.

The reference method for assessment of platelet size is morphological examination of platelets on a May-Grünwald-Giemsa stained blood film by a trained cytologist. MPV cannot be measured directly from a blood smear image, but mean platelet diameter (MPD) and platelet diameter distribution width can be calculated by software assisted image analysis. MPD correlates with MPV, and offers the advantage of standardisation between laboratories. Blood microscopy is already part of the diagnostic pathway for thrombocytopenia in clinical diagnostic laboratories, to detect platelet clumping, indicating pseudothrombocytopenia, or to identify features such as leucocyte inclusions and agranular platelets respectively to diagnose MYH9-related disorders (MYH9-RD) and gray platelet syndrome (GPS). In principle, automated MPD measurement could be included in this evaluation.

Variation in PLT and MPV in representative populations

Our understanding of the distribution of platelet traits in the general population has improved because of data from large biomedical cohorts, specifically the measurement of participant FBCs at centralised laboratories using standardised protocols. These include the UKB, comprising 468 000 participants recruited through UK primary care registers, who were aged between 40 and 69 years at baseline (2006–2010), and the INTERVAL study of 45 000 British blood donors aged 18 years or older at baseline (2012–2014). FBC data for the participants in UKB study were generated by Beckman Coulter LH 700 analysers (Beckman Coulter, CA, USA), which determined PLT and MPV by impedance. FBC data for participants in the INTERVAL study were generated by Sysmex XN-1000 analysers, which determined PLT optically by flow cytometry and derived MPV through PCT by impedance. Analysers are not calibrated as strictly or frequently for research as for clinical practice. Therefore, we present here technically adjusted data to remove variation explained by machine drift over time, the time of day of the measurement and the time between venepuncture and analysis. The median PLT is similar across the two cohorts within both sex strata; however, PLT is approximately 30 × 10⁹/l greater in females than males within both cohorts (Mann-Whitney test P-value < 10⁻¹⁵) (Table 1; Fig 1). The median MPV differs by less than 0.1 fl between sexes within each cohort, indicating that, on average, women have a greater circulating platelet mass than men. MPV is, in median, 2.1 fl higher in the INTERVAL cohort than the UKB cohort, which is not explained by the different age distributions of participants in these studies. It is possible that differences in the measuring technology used by the two analyser models are responsible, for example, the manufacturer-specific reagents used to prepare blood samples for analysis, which may cause differential swelling of platelets. Irrespective of the differences between these studies, both illustrate the variation of PLT and MPV within large UK populations. The data highlight that PLT should perhaps be considered against sex-stratified reference ranges, and MPV needs to be considered against reference ranges specific to the model of analyser.

The large UKB collection illustrates the negative correlation between PLT and MPV (Fig 2) with similar correlation coefficients for males (r = −0.47) and females (r = −0.48).

Platelet parameter	INTERVAL (Sysmex XN-1000)	UK Biobank (Beckman Coulter LH 700)
PLT (×10⁹/l)		
M	Median: 232	Median: 234
	95% interval: 155–348	95% interval: 145–356
F	Median: 263	Median: 261
	95% interval: 172–398	95% interval: 164–393
MPV (fl)		
M	Median: 11.2	Median: 9.1
	95% interval: 9.7–13.3	95% interval: 7.6–11.7
F	Median: 11.3	Median: 9.2
	95% interval: 9.7–13.3	95% interval: 7.6–11.8
Interestingly, variance weighted log-linear regression of PLT on log(MPV), adjusting for sex and menopause and their interactions with age, indicates an exceptionally good fit to an inverse proportional dependence of mean PLT on MPV in a maximal unrelated subset of European ancestry UKB participants. The exponent of MPV is estimated as -0.998 (with standard error 0.003). This is consistent with biological control of the total percentage of blood volume occupied by platelets (i.e., PCT) around a common population average. When all UKB participants with at least one of PLT or MPV outside of their respective 95% reference intervals are considered, participants with both low PLT and high MPV are substantially more prevalent than expected, if PLT and MPV were distributed independently (0.524% males, 0.272% females; expected frequency 0.0625%; Fisher’s exact test P-value <2.2 × 10$^{-16}$). This suggests that on a population scale, low PLT and high MPV together (macrothrombocytopenia) may be a composite trait representing one extreme of a range.

Hereditary macrothrombocytopenia

The hereditary thrombocytopenia (HT) disorders are a heterogeneous group of rare diseases with an estimated

Fig 1. Sex-stratified distributions of platelet parameters in the INTERVAL and UK Biobank (UKB) cohorts. The histograms show the distributions of baseline measurements of platelet count (PLT) and mean platelet volume on participants in the INTERVAL ($n = 45,000$) and UKB ($n = 468,000$) cohorts, adjusted for technical artefacts. The horizontal dashed lines in each plot indicate the median, 2.5th and 97.5th percentiles of the distributions. More than 99.5% of participants had a PLT between 50 and $500 \times 10^9/l$ in both studies; PLT values $>500 \times 10^9/l$ are not displayed. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig 2. Relationship between platelet count and mean platelet volume in males and females. The plots show the bivariate distribution of baseline measurements of platelet count (PLT; X-axis) and mean platelet volume (MPV; Y-axis) in UKB, adjusted for technical artefact and stratified by sex. The depth of the blue colouring corresponds to a kernel density estimate. PLT and MPV are negatively correlated in both males ($r = -0.47$) and females ($r = -0.48$). [Colour figure can be viewed at wileyonlinelibrary.com]
combined incidence of 270 cases per million live births.33
Initial genetic sub-classification of HT was achieved by candidate gene studies of groups of patients with distinctive common clinical or laboratory phenotypes, using Sanger sequencing to resolve their genotype. In 2004, only nine genes were known to carry aetiological mutations for HT disorders (\textit{MYH9, GP1BA, GP1BB, FLI1, GATA1, RUNX1, HOXA11, MPL} and \textit{WAS}).34 The development of high-throughput sequencing (HTS) technology has enabled large-scale testing using diagnostic gene panels for HT33,35–37 and parallel research studies using whole exome sequencing (WES)38 and whole genome sequencing (WGS)39 have substantially increased the repertoire of HT genes and the characterisation of pathogenic variants within these genes. The Scientific and Standardisation Committee on Genomics in Thrombosis and Haemostasis of the International Society on Thrombosis and Haemostasis (ISTH) have curated an evidence-based catalogue of diagnostic-grade (TIER1) genes that are causally implicated in bleeding, thrombotic and platelet disorders (BPD),40 hereafter referred to as BPD genes. This assignment is based on specific criteria, including the number of reported independent pedigrees, the availability of functional experimental data and the existence of animal models. Presently, there are 40 TIER1 genes, in which mutations cause hereditary thrombocytopenia (HT; grey) and hereditary macrothrombocytopenia (HMT; bold) disorders are indicated, grouped into categories by pathogenesis. Adapted with permission from Lentaigne \textit{et al.}78 [Colour figure can be viewed at wileyonlinelibrary.com]

Fig 3. Genes associated with hereditary thrombocytopenia disorders. The genes names are shown beneath a schematic representation of the stages of differentiation from haematopoietic stem cells (HSC) to proplatelet forming megakaryocytes (MK). The genes in which rare pathogenic variants cause hereditary thrombocytopenia (HT; grey) and hereditary macrothrombocytopenia (HMT; bold) disorders are indicated, grouped into categories by pathogenesis. Adapted with permission from Lentaigne \textit{et al.}78 [Colour figure can be viewed at wileyonlinelibrary.com]
Disorder name (OMIM ID)*	Gene symbol (HGNC)	Location	Platelet size classification	Inheritance	Case frequency	Bleeding phenotype	Additional features
Early megakaryopoiesis: THPO/MPL signalling							
Thrombocytopenia progressing to		3q27-1	Normal/slightly increased‡	AR	0 0	Mild	Possible progression to bone marrow aplasia
megakaryocyte failure							
THPO–related thrombocytopenia		3q27-1	Normal/slightly increased‡	AD	2 0	Absent	
Early megakaryopoiesis: transcription regulation							
Autosomal dominant	ANKRD26	10p12-1	Normal/slightly increased†	AD	22 19	Absent – mild	Development myeloid malignancy (8%). Dysmegakaryopoiesis. Some patients have raised haemoglobin/white cell count.
thrombocytopenia 2 (188000)							
Thrombocytopenia and		12p13-2	Normal/slightly increased‡	AD	8 6	Absent – moderate	Development Acute lymphoblastic leukaemia and other haematological malignancies (25%).
susceptibility to cancer (616216)							
Platelet-type bleeding disorder 2	FLI1	11q24-3	Large‡	AD; AR	3 1	Mild – moderate	None
(617443)							
Paris–Trousseau		11q23 deletion (including FLI1)	Normal/slightly increased†	AD	4 1	Moderate – severe	Developmental delay, skeletal abnormalities, congenital cardiac defects and CNS, gastrointestinal and renal malformations
thrombocytopenia (188025); Jacobsen syndrome (147791)							
X-linked thrombocytopenia with		Xp11-23	Normal/slightly increased†	XLR	5 2	Moderate - severe	Splenomegaly, haemolytic anaemia resembling beta-thalassaemia, dyserythropoietic anaemia
dyserythropoiesis (314050; 300367)							
Platelet-type bleeding disorder 17	GFI1B	9q34-13	Large‡	AD; AR	3 2	Moderate - severe	Red cell aniso- and polikilocytosis
(187900)							
Amegakaryocytic		7p15-2	Normal/slightly increased†	AD	0 0	Moderate - severe	Bilateral radio-ulnar synostosis, other skeletal abnormalities. Possible progression to bone marrow aplasia
thrombocytopenia with							
radioulnar synostosis (605432)	HOXA11						
Amegakaryocytic		3q26-2	Normal/slightly increased‡	AD	1 0	Moderate - severe	Bilateral radio-ulnar synostosis, other skeletal abnormalities. Possible progression to bone marrow aplasia
thrombocytopenia with							
radioulnar synostosis 2 (616738)	MECOM						

Table 2. The hereditary macrothrombocytopenia (HMT) disorders, organised by mechanism of pathogenesis.
Disorder name (OMIM ID)*	Gene symbol (HGNC)	Location	Platelet size classification	Inheritance	Case frequency	Bleeding phenotype	Additional features	Reference(s)
Familial platelet disorder with predisposition to AML (601399)	RUNX1	21q22-12	Normal/slightly increased†	AD	20	18	Absent - moderate	Acute myeloid leukaemia or myelodysplastic syndromes (>40%). Increased risk of T acute lymphoblastic leukaemia.
Late megakaryopoiesis: granule biogenesis and trafficking Gray Platelet Syndrome (139090)	NBEAL2	3p21-31	Large†	AR	33	3	Mild - severe	Myelofibrosis, splenomegaly, raised B12
Sitosterolemia with macrothrombocytopenia (210250)	ABCG5	2p21	Large	AR	4	1	Mild	Xanthomas, accelerated atherosclerosis, premature coronary artery disease, arthritis
Sitosterolemia with macrothrombocytopenia (210250)	ABCG8	2p21	Large	AR	2	0	Mild	Xanthomas, accelerated atherosclerosis, premature coronary artery disease, arthritis
Myopathy associated with thrombocytopenia	GNE	9p13-3	Large	AR	2	1	Mild - severe	Myopathy (some cases)
Thrombocytopenia, anaemia and myelofibrosis (617441)	MPK6B	6p21-33	Large	AR	0	1	Mild - moderate	Anaemia; myelofibrosis in childhood
Platelet-type bleeding disorder 20 (616913)	SLFN14	17q12	Large‡	AD	1	4	Mild - severe	None
Thrombocytopenia 6 (616937)	SRC	20q11-23	Large‡	AD	1	2	Moderate - severe	Congenital facial dysmorphism, juvenile myelofibrosis and splenomegaly, severe osteoporosis, premature loss of teeth
Late megakaryopoiesis and proplatelet formation: cytoskeleton regulation Baraitser-Winter syndrome 1 with macrothrombocytopenia	ACTB	7p22-1	Large	AD	0	4	Mild	Mild microcephaly, developmental delay and intellectual disability
Macrothrombocytopenia (615193)	ACTN1	14q24-1	Large†	AD	33	39	Absent - mild	None
Disorder name (OMIM ID)*	Gene symbol (HGNC)	Location	Platelet size classification	Inheritance	Case frequency	Bleeding phenotype	Additional features	Reference(s)
--------------------------	-------------------	----------	-------------------------------	-------------	---------------	-------------------	-------------------	-------------
Takenouchi-Kosaki syndrome with thrombocytopenia (616737)	CDC42	1p36-12	Large	AD	0 0	None	Group I variants (based on residue position in protein) associated with macrothrombocytopenia and additional features of variable growth dysregulation, facial dysmorphism, cardiac malformations, neurodevelopmental and immunological abnormalities	45
Macrothrombocytopenia and sensorineural hearing loss (124900)	DIAPH1	5q31-3	Large‡	AD	1 3	Absent	Sensorineural hearing impairment, neutropenia	116,117
Syndrome with macrothrombocytopenia	FLNA	Xq28	Large‡	XLD; XLR	3 0	Mild - moderate	Periventricular nodular heterotopia (OMIM 300049), otopalatodigital syndrome; nonsyndromic macrothrombocytopenia also described	94,95,138
MYH9-related disorders (155100)	MYH9	22q12-3	Giant†	AD	57 26	Absent - mild	Nephropathy, sensorineural hearing impairment, cataract, elevated liver enzymes (without liver dysfunction)	26,87,88,89,90
Late megakaryopoiesis and proplatelet formation: glycoprotein signalling	TUBBI	20q13-32	Large‡	AD	29 11	Absent - moderate	None	91,92
Bernard-Soulier syndrome (231200)	GP1BA	17p13-2	Giant†	AR	3 0	Severe	None	99
Mild macrothrombocytopenia (153670)	GP1BA	17p13-2	Large†	AD	14 0	Absent - mild	None	100,101
Platelet-type von Willebrand disease (177820)	GP1BA	17p13-2	Normal/slightly increased†	AD	5 0	Absent - mild	None	104,105,106,107
Bernard-Soulier syndrome (231200)	GP1BB	22q11-21	Giant†	AR	3 0	Severe	None	99
Mild macrothrombocytopenia	GP1BB	22q11-21	Large	AD	23 12	Absent - mild	None	102
Disorder name (OMIM ID)*	Gene symbol (HGNC)	Location	Platelet size classification	Inheritance	Case frequency (TG, WGS/WES)	Bleeding phenotype	Additional features	Reference(s)
--------------------------	--------------------	----------	-------------------------------	-------------	-----------------------------	-------------------	-------------------	--------------
DiGeorge syndrome (188400); Velocardiofacial Syndrome (192430)	22q11.2 deletion (including GP1BB)	-	Large	AD	1 1	Moderate - severe	Velopharyngeal dysfunction, craniofacial defects, congenital cardiac defects, hypotonia, immune deficiency	103
Bernard-Soulier syndrome (231200)	GP9	3q21.3	Giant†	AR	11 2	Severe	None	99
Platelet-type bleeding disorder 16 (187800)	ITGA2B	17q21.31	Large†	AD	11 1	Absent - mild	None	111
Platelet-type bleeding disorder 16 (187800)	ITGB3	17q21.32	Large†	AD	6 1	Absent - mild	None	112,113
Von Willebrand disease, type 2B (613554)	VWF	12p13-31	Normal/ slightly increased†	AD	17 0	Moderate	None	108,109
Molecular basis unknown	Unknown	-	Giant	AR	NA NA	Severe	None	55,56
Medich giant platelet syndrome (Orphanet ID 370127)	Unknown	-	Slightly increased	AD	NA NA	Mild - moderate	None	53,54

AML, acute myeloid leukaemia; AD, autosomal dominant; AR, autosomal recessive; NA, not applicable; XLD, X-linked dominant; XLR, X-linked recessive.

*Disorder name as per ISTH (Megy et al.40), OMIM number in brackets where available.
†size classification as per Noris et al.24
‡size classification as per Noris and Pecci; if no label, classified as per information in individual reference. Case frequency shown in ThromboGenomics high-throughput sequencing gene panel test (TG) and by whole genome (WGS) or whole exome (WES) sequence analysis of 480 cases enrolled into the bleeding, thrombotic and platelet disorders (BPD) sub-study of the NIHR-BioResource rare diseases. In nine cases, variants were reported in two hereditary macrothrombocytopenia genes.
of the 480 cases, 95% of the reported variants were single nucleotide variants or small insertion/deletions in HMT genes. In 23 cases (5%), a copy number variant (CNV) was identified. Deletions were reported in \textit{ABCG5} (1), \textit{DIAPH1} (1), \textit{ETV6} (1), \textit{FLI1} (5), \textit{GP1BB} (3), \textit{GP9} (1), \textit{ITGB3} (1) and \textit{RUNX1} (10). In one case, an inversion in \textit{RUNX1}, explained the patient’s macrothrombocytopenia. CNV calling by HTS has improved significantly, specifically for deletions; however, identification of duplications and more complex structural rearrangements remains challenging (e.g. the \textit{F8} inversion is not detectable by HTS). Nonetheless, analysis of structural variants is essential to perform an exhaustive molecular diagnostic, especially where a clear phenotype is present and no causative variant has been identified (or only one variant has been identified in a suspected autosomal recessive (AR) disorder)37,39,52. The relative frequencies of HMT disorders in the case collection are representative of those expected amongst presentations at a tertiary referral haemostasis clinic, with one qualification. Patients carrying variants in \textit{NBEAL2}, the aetiological gene for GPS, are over-represented in this study because of the proactive efforts by NIHR researchers to collate an international cohort of patients to investigate the specific pathology of this disease28. No causative variants were identified in 41% of patients with macrothrombocytopenia referred to TG,37 a proportion similar to those of the 480 cases, 95% of the reported variants were single nucleotide variants or small insertion/deletions in HMT genes. In 23 cases (5%), a copy number variant (CNV) was identified. Deletions were reported in \textit{ABCG5} (1), \textit{DIAPH1} (1), \textit{ETV6} (1), \textit{FLI1} (5), \textit{GP1BB} (3), \textit{GP9} (1), \textit{ITGB3} (1) and \textit{RUNX1} (10). In one case, an inversion in \textit{RUNX1}, explained the patient’s macrothrombocytopenia. CNV calling by HTS has improved significantly, specifically for deletions; however, identification of duplications and more complex structural rearrangements remains challenging (e.g. the \textit{F8} inversion is not detectable by HTS). Nonetheless, analysis of structural variants is essential to perform an exhaustive molecular diagnostic, especially where a clear phenotype is present and no causative variant has been identified (or only one variant has been identified in a suspected autosomal recessive (AR) disorder)37,39,52. The relative frequencies of HMT disorders in the case collection are representative of those expected amongst presentations at a tertiary referral haemostasis clinic, with one qualification. Patients carrying variants in \textit{NBEAL2}, the aetiological gene for GPS, are over-represented in this study because of the proactive efforts by NIHR researchers to collate an international cohort of patients to investigate the specific pathology of this disease28. No causative variants were identified in 41% of patients with macrothrombocytopenia referred to TG,37 a proportion similar to those of
other research programmes using HTS.33,36 This illustrates the extent to which the genetic architecture of HMT remains incompletely understood. Indeed, there are two phenotypically distinct HMT disorders, White Platelet Syndrome53,54 and Medich Platelet Syndrome,55,56 for which no causal genes have yet been identified. New genes causing Mendelian forms of HMT are likely to be identified by ongoing research of large, rare disease cohorts. It is also possible that some HMT cases can be explained completely or partially by the non-Mendelian inheritance of an extreme polygenic load of low PLT predisposing alleles. Because of the potential diagnostic impact, in the following sections we will first address the recent advances in detecting common genetic variants regulating PLT and MPV, and then focus on the pathogenesis of the HMT disorders. Finally, we will cover the clinical implications of correctly identifying the cause of macrothrombocytopenia.

The genetic architecture of PLT and MPV in healthy populations

Quantitative blood cell traits have heritable components of variation.37,58 Common genetic variation is estimated to generate 5–30% of the total variability in FBC traits measured in the European ancestry population.32 Over the past decade, increasingly large GWAS analyses of FBC phenotypes have been performed to identify genetic variants perturbing haematopoiesis or blood cell clearance mechanisms.32,59–62 The largest and most recent studies are by the Blood Cell Consortium (BCX), synthesising evidence from the UKB, INTERVAL and several other cohorts, in European ancestry and trans-ethnic meta-analyses.63,64 Typically, each participant contributing to these studies had genotypes measured at a few hundred thousand variants, most of which were common, spread more or less uniformly across the genome. Subsequently, the genotypes for millions of variants not measured in the study participants were imputed computationally. Unmeasured genotypes can be imputed by matching measured genotypes to the haplotype structure observed in the panels of thousands of independent individuals with publicly available genotypes measured by WGS.65–67 The BCX European ancestry GWAS had a sample size (\(n = 563\,085\)) quadruple that of the largest preceding study and tested more than 41 million single nucleotide polymorphisms for association with each of 29 FBC phenotypes, including PLT and MPV.62,63 The analysis identified 16,900 variant-trait association signals across the 29 FBC phenotypes.63 These were assigned to at least 7,122 genomic tags, each either a distinct causal variant itself or strongly correlated (i.e., in strong linkage disequilibrium) to a distinct causal variant. Of these tags, 1,227 were associated with PLT and/or MPV. Of these, 117 (9.6%) were low frequency variants (minor allele frequency, (MAF) 1–5%) and 77 (6.3%) were rare variants63 (MAF < 1%) (Fig 5A). In keeping with evolutionary theory, there is an inverse relationship between MAF and the maximum absolute effect size of a variant tolerated by natural selection (Fig 5A). Only variants with small effect sizes (<0.4 standard deviations (SD) per allele) have been able to attain a MAF of > 1%.63 Conversely, rare variants, which on average have arisen more recently in evolution, exhibited absolute effect sizes as large as 0.86 SD per allele.63 Interestingly, amongst the variants with genome-wide significant associations with one of PLT or MPV, there is a tendency for alleles associated with greater MPV to be associated with lower PLT and vice-versa (Fig 5B).63 The annotation of variants by their computationally predicted transcriptional consequences, recapitulated observations from earlier GWAS that approximately 90% of variants associated with FBC phenotypes are located outside exons, in the non-coding regions of the genome and are, therefore, likely to exert a phenotypic effect by altering gene regulation.32,63,68–71 Indeed, FBC associated variants were significantly enriched in open chromatin regions [(measured by assay for transposase-accessible chromatin using sequencing (ATAC-seq))] of 18 human haematopoietic progenitor cell types.63 Variants associated with platelet phenotypes specifically were enriched in the open chromatin regions of MKs and in certain other myeloid precursor cell types.63 However, platelet associations with coding and non-coding variants in, or physically adjacent to, BPD genes were enriched only in MKs. This suggests that the regulators of genes implicated in BPD act more specifically in MKs.63 Common and low frequency variants associated with PLT or MPV are overwhelmingly (85%) intergenic or intronic.63 By comparison, 60% of rare variants associated with PLT or MPV fall into these categories63 and rare variants are much more likely than common variants to alter the amino acid sequence of a protein. There is a statistically significant overlap of 16 genes between the set of 29 HMT genes, and the set of 1185 genes in loci containing genetic associations with PLT or MPV (Fig 6). This illustrates that the same biological mechanism can be disturbed by multiple variants with effect sizes on a continuum. Variants with large effects on MPV or PLT are almost always rare and are more likely than variants with small effects to alter the structure of a protein rather than just disrupt the level of gene expression; variants with extreme effect sizes can disrupt biological function to such a degree that they cause disease. Consequently, genes with no known functions in MK or platelet biology, but in loci containing variants with large effects on PLT or MPV (e.g. \textit{CKAP2L, PLEK} and \textit{TNFRSF13B}),63 are credible candidates to explain molecularly undiagnosed cases of HMT.

The polygenic risk of macrothrombocytopenia

Genome-wide association studies, such as the BCX studies, are now so large they can provide precise estimates of the effects on quantitative traits of single allele copies of rare variants known to cause AR disorders in homozygosity. Such studies have shown, in particular, that the population distributions of PLT and MPV in heterozygous carriers of alleles...
known to cause recessive BPDs can differ dramatically from the corresponding distributions in non-carriers. Variation in PLT and MPV between individuals, due to background measurement and environmental and genetic factors, may explain why it has not been possible previously to demonstrate co-segregation of heterozygote effects within individual pedigrees, despite their relatively large population effect sizes. One example of this phenomenon is the \textit{THPO} gene, which encodes TPO. AR inheritance of two loss-of-function (LoF) variants in \textit{THPO} causes severe thrombocytopenia and, sometimes, tri-lineage bone marrow failure, whereas monoallelic LoF variants in \textit{THPO} cause a mild macrothrombocytopenia only.74,75 Another example from the BCX GWAS, relates to the \textit{GP9} variant rs5030764, which changes asparagine to serine at residue 61 of glycoprotein IX (GPIX), one of the proteins of the GPIb/IX/V platelet receptor for von Willebrand factor (VWF). In homozygosity or in compound heterozygosity with another pathogenic allele, the minor allele of rs5030764 causes Bernard-Soulier syndrome (BSS).37 However, the allele also affects heterozygote carriers, for whom thrombocytopenia is three times more prevalent than usual in the UKB baseline FBC data.63 The observation that heterozygote effects can be strong motivates the question, what is the consequence of inheriting AR alleles in heterozygosity in two different genes, and could this lead to a BPD phenotype, such as HMT? More generally, it can be hypothesised that some molecularly unexplained cases of HMT are due to the aggregate genome-wide polygenic effect of multiple alleles, each of which simultaneously predisposes the carrier to a lower PLT and greater MPV, perhaps compounded by pathogenic, or likely pathogenic, AR variants or by environmental exposures. This hypothesis is supported by recent studies of polygenic scores (PGS) for FBC traits.63 A PGS is a numerical predictor of a quantitative trait or of a disease liability, constructed as a weighted sum of allele counts from numerous variants associated with the outcome of interest. The weights are usually chosen to be proportional to the marginal or joint effect of the variant on the trait of interest, estimated by regression. The effect of a one SD decrease in the PGS for PLT, developed by Vuckovic \textit{et al.}, was comparable to the effect of a pathogenic rare variant in heterozygosity.63 One way of presenting differences in

Fig 5. Phenotypic effect size of variants associated with platelet traits in the UKB genome-wide association studies (GWAS). (A) The scatterplots show the minor allele frequencies (MAF) of variants associated with platelet count (PLT) (left panel) and mean platelet volume (MPV) (right panel) in the UKB study on the X-axis. The effect size of each variant is shown on the Y-axis, expressed as the per allele effect of the variant on the mean of each parameter distribution expressed in standard deviations (SDs) of the respective distribution. (B) The inverse relationship between effect sizes for PLT and MPV. The colour gradient of the dots indicates the logit transformed MAF. Effect sizes are expressed as described above. [Colour figure can be viewed at wileyonlinelibrary.com]
polygenic risk is to make comparisons between groups with a high or low PGS, defined by quantiles of the population distribution. The distributions of PLT in the subsets of UKB participants forming the lowest and greatest deciles of the PGS for PLT constructed by Vuckovic et al. are shifted left and right respectively, relative to the distribution of PLT in all participants (Fig 7A). Combined inheritance of a heterozygous pathogenic variant in $GP9$ and a low PGS may, by an additive effect on PLT, manifest as macrothrombocytopenia. Conversely, inheritance of a high PGS may mitigate the increase in disease risk due to the pathogenic allele, resulting in a PLT within the normal range (Fig 7B). Risk modifying environmental and genetic variation, including that captured by PGS, can make pathogenicity assignment challenging. This is illustrated by the variant rs41303899 in $TUBB1$ (Fig 7C), the minor allele of which is strongly associated with lower PLT (on average $33 \times 10^9/\mu l$), and which when inherited in addition to a low PGS can have a joint effect on PLT sufficient to result in macrothrombocytopenia. However, many carriers, in particular those with a high PGS, have a PLT within the normal range, suggesting that this variant would be better classified as risk-associated rather than pathogenic. These examples illustrate how polygenic variation can modify the penetrance of rare variants with large effect sizes in the pathogenesis of HMT. In the future, it may be possible to diagnose a proportion of molecularly uncharacterised HMT cases, as caused by a very extreme PGS, perhaps in combination with a heterozygous pathogenic rare variant, although it is likely these patients will represent a small fraction of all cases.

The hereditary macrothrombocytopenia disorders

The characterisation of causal genetic variants in HMT has improved our understanding of the normal regulation of platelet production. Considering all HMT disorders, there are examples that result in dysfunction of several major steps in megakaryopoiesis and platelet formation, including MK differentiation, MK maturation and proplatelet formation (Fig 3). The clinical and genetic characterisations of HT and HMT disorders have recently been reviewed. We will primarily focus on the pathogenesis of a subgroup of HMT disorders distinguishable by the presence of ‘very large’ platelets, in which there is preservation and exaggeration of the inverse relationship between PLT and MPV that is observed in healthy populations. In a diagnostic classification proposed by Noris et al., based on a large study of 376 patients with 19 different
HT disorders, 'large' and 'giant' platelet disorders were those in which the MPD was greater than 3.2 μM [with a platelet diameter large cell ratio, (PDLCR) >20%] and 4.0 μM (with PDLCR >50%) respectively24 (Fig 8; Table 2). Strikingly, the 11 genes, in which rare pathogenic variants lead to the HMT disorders in this subgroup24 all have functional roles in pro-platelet formation. Nine genes have critical roles in cytoskeleton regulation (ACTN1, FLNA, MYH9 and TUBB1) and expression of surface membrane glycoproteins at the later stages of MK differentiation (GP1BA, GP1BB, GP9 encoding proteins GPlbx, GP1bβ, GPIX, ITGA2B, ITGB3 encoding integrin αIIb and β3)79,80 (Figs 3 and 8; Table 2). The remaining two genes, GFI1B and NBEAL2, also have functional roles in cytoskeletal reorganisation.81,82 In contrast, five genes associated with platelets that were ‘normal/slightly increased’ in size (ANKRD26, FLI1, GATA1, HOXA11 and RUNX1)24 have roles in transcription regulation in early megakaryopoiesis79,80 (Figs 3 and 8).
The cytoskeleton is composed of tubulin microtubules, actin filaments and intermediate filaments constructed from different subunit proteins, which in combination provide shape and organisation to the MK and enable the cytoplasm to be packaged into multiple long protrusions called proplatelets. Current models of platelet production suggest that platelets develop at the proplatelet tips and receive their granule contents through active cytoskeleton-mediated transport. Subsequent fission events enable the release of platelets into the circulation. Rare variants in critical genes that disrupt cytoskeletal rearrangement and proplatelet formation appear to impair the release of mature platelets, and instead preferentially release immature, abnormally large platelets, resulting in macrothrombocytopenia.

MYH9 is the most frequently implicated gene in patients with HMT, and underlies five historically recognised clinical disorders, May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, Sebastian syndrome and Alport syndrome with HMT, and underlies five historically recognised clinical features (Table 2). Following the discovery of pathway A and B involving platelet production and release. Biallelic LoF variants in either ITGA2B or ITGB3 cause Glanzmann thrombasthenia, in which patients typically have severe mucocutaneous bleeding due to absent surface expression of the integrin αIIbβ3, resulting in defective aggregation and outside-in platelet signalling, but PLT is typically within the normal range.

Genes involved in extracellular signalling to the cytoskeleton via membrane-bound receptors are also crucial to the regulation of platelet formation and release. Biallelic LoF variants in GP1BA, GP1BB and GP9 disrupt proplatelet formation by reducing or altering VWF binding to the GP Ib/IX/V receptor and cause BSS, an AR disorder associated with severe mucocutaneous bleeding. Platelets in BSS are historically described as ‘giant’, because, as in the MYH9-RDs, some platelets appear larger than RBCs on microscopy (Fig 8). Monoallelic LoF variants in GP1BA or GP1BB result in a less severe phenotype, termed mild macrothrombocytopenia.

Deletion of a region of the long arm of chromosome 22 (22q11.2), which includes GP1BA, occurs in approximately 1:2000–6000 live births and leads to the disorders DiGeorge syndrome or Velocardiofacial syndrome. Affected patients have macrothrombocytopenia, moderate-severe bleeding and a broad range of other clinical features (Table 2). Gain-of-function (GoF) variants in GP1BA or VWF, which cause platelet-type von Willebrand disease and Type 2B von Willebrand disease respectively, result in enhanced receptor-ligand interaction and disrupted megakaryopoiesis. Platelets in these conditions are normal or only slightly increased in size and likely to be related to increased platelet clearance; patients do not have any additional clinical features.

Biallelic LoF variants in either ITGA2B or ITGB3 cause Glanzmann thrombasthenia, in which patients typically have severe mucocutaneous bleeding due to absent surface expression of the integrin αIIbβ3, resulting in defective aggregation and outside-in platelet signalling, but PLT is typically within the normal range. ITGAB2 and ITGB3 may also harbour rare monoallelic GoF missense variants, in which the main manifestation is macrothrombocytopenia, sometimes causing bleeding. These GoF variants are thought to lead to constitutive activation of αIIbβ3, which impacts actin cytoskeleton reorganisation and results in defective proplatelet and subsequent platelet formation.

Three more recently discovered HMT genes further support the importance of cytoskeletal dysfunction in the HMT phenotype: DIAP1, ACTB and CDC42. Patients with rare causative variants in DIAP1 have moderate macrothrombocytopenia without bleeding complications, but severe sensorineural deafness and often mild neutropenia.

DIAP1 encodes a member of the formin protein family, which controls GTase dependent assembly of actin and microtubule regulation during cytoskeletal remodelling. The variants underlying DIAP1-associated macrothrombocytopenia lead to constitutive activation of the DIAP1 protein, which disrupts cytoskeletal and microtubule function and impairs proplatelet formation. Rare variants in ACTB were only very recently discovered as causative of HMT,
resulting in platelets with an MPD in the ‘large platelet’ disorder range.24,44 \textit{ACTB} encodes \(\beta\)-cytoplasmic actin and pathogenic variants in the 3' region disrupts microtubule organisation in MKs.44 Finally, \textit{CDC42}, which encodes a member of the Rho family of small GTPases, has a major role in cytoskeletal remodelling and intracellular signalling.45 A subgroup of monoallelic missense variants in \textit{CDC42} lead to macrothrombocytopenia and a variety of developmental and multisystem features, but no apparent haemostatic abnormality.45 (Table 2).

There are a number of additional HMT genes that are understood to play a role in late megakaryopoiesis but with incompletely defined pathways. For example, monoallelic variants in \textit{SRC} and \textit{SLFN14} disrupt MK maturation and result in reduced proplatelet formation, causing macrothrombocytopenia with variable bleeding phenotypes.80,118,119 In the case of \textit{SRC} variants, there are myriad other clinical features including bone marrow fibrosis118 (Table 2).112 The recent discoveries of variants in \textit{MPIG6B} and \textit{GNE}, as causes of AR HMT disorders, provide new insights into the pathogenesis of proplatelet formation. \textit{MPIG6B} is located in the major histocompatibility complex locus and encodes a transmembrane receptor of the immunoglobulin superfamily.50,51 \textit{GNE} encodes an enzyme (glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase), involved in the sialic acid biosynthesis pathway that is expressed in all haematopoietic cells.46,47 Biallelic LoF variants in \textit{GNE} reduce sialic acid biosynthesis, impairing platelet formation and increasing platelet clearance.46,47

Clinical implications

It is critical to distinguish between acquired and hereditary macrothrombocytopenia, to enable appropriate management. This includes the avoidance of treatments that are not indicated and potentially harmful in patients with HMT disorders. The most common example is the use of immunosuppressants following a misdiagnosis of ITP.34 Additionally, patients have been inappropriately treated with 5-azacytidine for myelodysplastic syndrome, following the observation of dysmegakaryopoiesis on bone marrow biopsy, and prior to receiving a genetic diagnosis of AD thrombocytopenia 2 due to \textit{ANKRD26} mutations.120

Accurate molecular diagnosis in HMT is crucial to provide patients and clinicians with an accurate diagnosis and prognosis. There is an association between some HMT disorders and the development of malignancy, for example those caused by variants in \textit{ANKRD26}, \textit{ETV6},121 and \textit{RUNX1}.123 Patients with these disorders can present with only mild macrothrombocytopenia, and absent or mild bleeding symptoms, therefore, a high index of clinical suspicion is required to resolve the diagnosis. Of 29 patients with a working diagnosis of ‘ITP refractory to treatment’, referred to TG, seven were diagnosed with HMT disorders, including \textit{ANKRD26} and \textit{ETV6} mutations.122 Monitoring of patients with a ‘pre-malignant’ genetic profile for the emergence of detrimental somatic mutations also has potential to improve survival.124

Many HMT genes are expressed in other blood cells and tissues, explaining the additional clinical features displayed in a number of HMT disorders, which may have a greater impact on a patient’s health than bleeding complications (Table 2). In a number of HMT disorders, which may have a greater impact on a patient’s health than bleeding complications. For example, approximately 30% of patients with MYH9-RDs are at risk of end stage renal failure (ESRF) secondary to glomerulonephritis, 60% acquire a sensorineural hearing defect and 16% develop pre-senile cataracts.125 There is genotype–phenotype correlation between the molecular defect and these disease manifestations; variants modifying arginine at position 702 of the protein, located in the head of myosin IIA, lead to glomerulonephritis, whereas variants affecting the non-helical portion of the tail almost never associate with this phenotype.125 Early pharmacological intervention with angiotensin-converting enzyme inhibitors and/or angiotensin receptor blockers can prevent deterioration to ESRF.125 Therefore, a precise molecular diagnosis assists in best management of this condition.

Treatment of HMT disorders currently focuses on prophylaxis prior to high-risk procedures and treatment of acute bleeding. For example, for patients with BSS, the mainstay of prophylactic treatments are tranexamic acid and transfusions of HLA class I matched platelets.126 There is little evidence for the effectiveness of desmopressin and recombinant human activated factor VII for bleeding, which is licensed for patients with Glanzmann thrombasthenia but not BSS.126 Patients with both MYH9-RDs and macrothrombocytopenia with sensorineural hearing loss due to \textit{DIAPH1} mutations have responded to treatment with the TPO receptor agonist (TPO-RA) eltrombopag.117,127 In a recent prospective phase II clinical trial, 24 patients with five different HT disorders were treated with eltrombopag.128 The average increase in PLT from baseline was 64.5 \(\times\) 10\(^9\)/l, with more than 90% of the patients responding to treatment, and patients with MYH9-RD and BSS achieving the greatest response. These results are encouraging for the use of TPO-RAs to prepare patients with HMT disorders for elective procedures, without the need for platelet transfusion, although further clinical data is needed.128 Currently, HSC transplantation is the only curative treatment for severe HMT disorders, including BSS and amegakaryocytic thrombocytopenia with radioulnar synostosis.125 As our knowledge of the molecular pathways regulating megakaryopoiesis and platelet formation advances, we pave the way for identification of new therapeutic targets. It is also conceivable that gene therapy may become an option in the future for HMT disorders associated with severe pathologies.

The effect of polygenic variation on PLT has aetiological relevance for HMT and might have diagnostic implications. In the previous \textit{TUBB1} example, we demonstrated that a person who inherits a rare monogenic variant in an HMT gene may also, by chance, inherit a high PGS for PLT,
resulting in aggregate to a typical risk of macrothrombocytopenia, i.e., the polygenetic variation masks or compensates for the rare monogenic variant. This phenomenon is unlikely to have harmful clinical consequences in the case of TUBB1 because, other than mild macrothrombocytopenia, rare variants have no known phenotypic consequences. However, if we consider genes in which rare pathogenic variants cause thrombocytopenia and also confer a risk of malignancy, in theory, an extreme polygenic compensation that makes thrombocytopenia less likely to be detected and investigated could potentially have clinical implications. In addition, a low PGS for PLT combined with an environmental trigger, such as a viral infection or pregnancy, could have clinical consequences, for example, by increasing the likelihood of PLT dropping to below safe thresholds for invasive procedures. On the other hand, a high PGS for PLT may lead to an individual being extensively investigated for a reactive or genetic cause of thrombocytosis. Therefore, in the clinical setting, understanding an individual’s PGS could potentially influence the management of patients presenting with both low and high PLT.

Conclusion

The majority of HT cases are accompanied by enlarged platelets, that is, macrothrombocytopenia. In some cases, platelets are only subtly increased in size, including in HMT disorders caused by variants in transcription factor genes (e.g. ANKRD26). More frequently, macrothrombocytopenia is pronounced and a common causative mechanism is dysregulation of proplatelet formation. These HMT disorders lie at one extreme of the PLT and MPV variation, which is negatively correlated at a population level. There are technical challenges in measuring PLT and MPV, particularly relevant in macrothrombocytopenic blood samples. However, accurate and precise measurements are fundamental to the work-up of thrombocytopenia, to identify the underlying pathology. This is to help to distinguish between acquired and hereditary causes and because platelet volume/size measurements, which provide a well-defined clinical phenotype alongside other haematological, morphological and organ system abnormalities, enable the MDT to assign pathogenicity to variants identified by HTS-based testing. On the TG platform, the diagnostic yield for patients with macrothrombocytopenia was 59%, compared to 40% for patients with thrombocytopenia (where either MPV was normal or a value not provided) and 37% across all patients with a BPD.57

Huge advances in the availability and diagnostic capacity of HTS platforms, such as TG,35,37 the UK Genotyping and Phenotyping of Platelets study,33 and the Spanish HTS platform for the diagnosis of hereditary platelet disorders,36 make early incorporation of genetic testing appropriate and feasible. Where targeted HTS panels cannot identify a causative gene, enrolment into a WGS project, such as the follow up to the 100 000 Genomes Project, is important for identification of new causative genes to expand our knowledge of the pathogenesis of HMT disorders.39 In England, these new NHS-based diagnostic services are being made available through a network of seven NHS Genomic Laboratory Hubs. The contribution of the polygenic predisposition to macrothrombocytopenia may explain a proportion of patients without a molecular diagnosis. However, further research is needed in patient cohorts in order to confirm the effects detected in healthy populations.

Acknowledgements

JC is supported by an MRC Clinical Research Training Fellowship (MR/P02002X/1). AM is supported by the Bristol National Institute for Health Research (NIHR) Biomedical Research Centre. The authors would like to thank Dr Kate Downes for her specialist input on the ThromboGenomics platform, Dr Barbara De la Salle for providing data on the haematology analysers registered with UK NEQAS, Professor Kathleen Freson for her expertise in hereditary platelet disorders, and Professor Willem H Ouwehand for his critical review of the manuscript. We thank the NIHR BioResource and its volunteers for their participation, and gratefully acknowledge NIHR BioResource centres, NHS Trusts and staff for their contribution. We thank the National Institute for Health Research Cambridge Biomedical Research Centre and NHS Blood and Transplant. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. We thank all contributors to the INTERVAL study, with full recognition of this work in the included references. This review used the UK Biobank Resource under Application Number 13745.

Author contributions

Janine Collins performed the literature search and wrote the manuscript draft. Janine Collins, William Astle, Karyn Megy and Dragana Vuckovic performed data analysis. Janine Collins, William Astle and Dragana Vuckovic generated the figures. William Astle, Karyn Megy, Andrew Mumford and Dragana Vuckovic provided expert input to critically review and edit the manuscript. All authors read and approved the final manuscript.

Conflict of interest

AM has received speaker fees, research funding or consultancy fees from Shire, Sanoﬁ-Genzyme, Novo Nordisk and AstraZeneca. All other authors declare no conflicts of interest.

References

1. Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339–47.
Review

2. Grozovský R, Begonja AJ, Liu K, Visner G, Hartwig JH, Felet H, et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT5 signaling. *Nat Med*. 2015;21(1):47–54.

3. Kim CH, Kim SJ, Lee MJ, Kwon YE, Kim YL, Park KS, et al. An increase in mean platelet volume from baseline is associated with mortality in patients with severe sepsis or septic shock. *PLoS One*. 2015;10(3):e0139437.

4. Schmoller D, Picarello MM, Paz Munhoz T, Poli de Figueiredo CE, Staub HL. Mean platelet volume and immature platelet fraction in autoimmune disorders. *Front Med*. 2017;4:146.

5. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. *Cell*. 2019;177(3):587–96.e9.

6. Oetjens MT, Kelly MA, Sturm AC, Martin CL, Ledbetter DH. Quantifying the polygenetic contribution to variable expressivity in eleven rare genetic disorders. *Nat Commun*. 2019;10(1):4897.

7. Lello L, Avery SG, Tellier L, Vazquez AI, de Los CG, Hsu SDH. Accurate counting in the XN-Series Automated Hematology Analyzers. *J Thromb Haemost*. 2009;7(12):2131–6.

8. Harrison P, Briggs C, Machin SJ. Platelet Counting. In: Gibbins JM, editors. Platelets and Megakaryocytes: Volume 1: Functional Assays. Totowa, NJ: Humana Press; 2004; p. 29–46.

9. Harrison P, Ault KA, Chapman S, Charie L, Davis B, Fujimoto K, et al. An interlaboratory study of a candidate reference method for platelet counting. *Am J Clin Pathol*. 2001;115(3):448–59.

10. Counting IC for S in HEP on CIS of LHTF on P. Platelet counting by optical or impedance? *PLoS One* (10):e0141311.

11. Segal HC, Briggs C, Kunaka S, Casbard A, Harrison P, Machin SJ, et al. Accuracy of platelet counting haematology analysers in severe thrombocytopenia and potential impact on platelet transfusion. *Br J Haematol*. 2005;128(4):520–5.

12. Briggs C, Harrison P, Machin SJ. Continuing developments with the automated platelet count. *Int J Lab Hematol*. 2007;29(2):77–91.

13. Briggs C, Kunaka S, Machin SJ. The most accurate platelet count on the Sysmex XE-2100. Optical or impedance? *Clin Lab Haematol*. 2004;26(2):157–8.

14. Roshal M, Reyes GM. Measurement of Platelet Count, Mean Platelet Volume, and Reticulated Platelets. In: Shaz B, Hillyer C, Gil M, editors. Transfusion Medicine and Haemostasis. 3rd ed. Amsterdam, Netherlands: Elsevier; 2019; p. 811–3.

15. Schoof M, Schoof M, Oomes J, Van Pelt J. New fluorescent method (PLT-F) on Sysmex XN2000 hematology analyzer achieved higher accuracy in low platelet counting. *Am J Clin Pathol*. 2013;140(4):495–9.

16. Wada A, Takagi Y, Kono M, Morikawa T. Accuracy of a New Platelet Count System (PLT-F) Depends on the Staining Property of Its Reagents. *PLoS One*. 2015;10(10):e0143111.

17. Tanaka Y, Tanaka Y, Gondo K, Maruki Y, Kondo T, Asai S, et al. Performance Evaluation of Platelet Counting by Novel Fluorescent Dye Staining in the XN-Series Automated Hematology Analyzers. *J Clin Lab Anal*. 2014;28(5):341–8.

18. Hummel K, Sache M, Hoffmann JMJ, van Dun LPJM. Comparative evaluation of platelet counts in two hematology analysers and potential effects on prophylactic platelet transfusion decisions. *Transfusion*. 2018;58(10):2301–8.

19. Demirin H, Orhan H, Ucgun T, Celer A, Bulur S, Cil H, et al. Normal range of mean platelet volume in healthy subjects: insight from a large epidemiologic study. *Thromb Res*. 2011;128(4):358–60.

20. Ninama N, Shah N. Impedance platelet count in severe microcytosis: Study of 161 patients. *NHS J Med Sci*. 2014;3:32–6.

21. Machin SJ, Briggs C. Mean platelet volume: a quick, easy determinant of thrombotic risk? *J Thromb Haemost*. 2010;8(1):146–7.

22. Hoffmann JJ. Reference range of mean platelet volume. *Thromb Res*. 2012;129(4):534–5.

23. Latger-Cannard V, Hoarau M, Salignac S, Baumgart D, Norden P, Lecompte T. Mean platelet volume: comparison of three analysers towards standardization of platelet morphological phenotype. *Int J Lab Haematol*. 2012;34(3):300–10.

24. Noris P, Biino G, Pecci A, Civacchi S, Savoia A, Seri M, et al. Platelet diameters in inherited thrombocytopenias: analysis of 376 patients with all known disorders. *Blood*. 2014;124(6):e4–10.

25. Noris P, Klersy C, Zecca M, Arcaini L, Pecci A, Melazzini F, et al. Platelet size distinguishes between inherited macrothrombocytopenias and immune thrombocytopenia. *J Thromb Haemost*. 2009;7(12):2131–6.

26. Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Hegglin/Fechtner Syndrome Consortium. *Nat Genet*. 2000;26(1):103–5.

27. Albers CA, Cevjac A, Favier R, Bouwmans EE, Alesci MC, Bertone P, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. *Nat Genet*. 2011;43(8):735–7.

28. Sims MC, Mayer L, Collins JH, Barjana TK, Megy K, Lavenu-Bombled C, et al. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome. *Blood*. 2020;136(17):1956–67.

29. Sudlow C, Gallagher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med*. 2015;12(3):e1001779.

30. Albers CA, Cevjac A, Favier R, Bouwmans EE, Alesci MC, Bertone P, et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. *Nat Med*. 2019;25(1):47–56.

31. Johnson B, Lowe GC, Futterer J, Lordkipanidzé M, Macdonald D, Simpson MA, et al. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. *Haematologica*. 2016;101(10):1170–9.

32. Drachman JG. Inherited thrombocytopenia: when a low platelet count does not mean ITP. *Blood*. 2004;103(2):390–8.

33. Simeoni I, Stephens J, Huf F, Deveel SVV, Megy K, Barjana TK, et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. *Blood*. 2016;127(23):2791–803.

34. Bastida JM, Loisano ML, Benito R, Janusz K, Palma-Barquero V, Del Rey M, et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. *Haematologica*. 2018;103(1):148–62.

35. Downes K, Megy K, Duarte D, Vries M, Gebhart J, Hofer S, et al. Performance Evaluation of Platelet Counting by Novel Fluorescent Dye Staining in the XN-Series Automated Hematology Analyzers. *J Clin Lab Anal*. 2014;28(5):341–8.

36. Westbury SK, Turro E, Greene D, Lentainghe C, Kelly AM, Barjana TK, et al. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. *Genome Med*. 2015;7(1):16.

37. Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, et al. Whole-genome sequencing of patients with rare diseases in a national health system. *Nature*. 2020;583(7814):96–102.

38. Megy K, Downes K, Simeoni I, Bury L, Morales J, Mapeta R, et al. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: communication from the SSC of the ISTH. *J Thromb Haemost*. 2019;17(9):2135–60.

39. Manchev VT, Hilpert M, Berrero M, Elaib Z, Aouba A, Boukour S, et al. A novel form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. *Blood*. 2014;124(16):2554–63.

40. Pleines I, Woods J, Chappaz S, Kew V, Foad N, Ballester-Beltrán J, et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. *J Clin Invest*. 2017;127(3):814–29.
43. Stritt S, Norden P, Favier R, Favier M, Ferioli S, Gotru SK, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11997.

44. Latham SL, Ehmkre N, Reinke PYA, Taft MH, Eicke D, Reindl T, et al. Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun. 2018;9(1):4250.

45. Martinelli S, Krumbach OFH, Pantaleoni F, Coppola S, Amin E, Pannone L, et al. Functional dysregulation of CICDA2 causes diverse developmental phenotypes. Am J Hum Genet. 2018;102(2):309–20.

46. Futterer J, Dalby A, Lowe GC, Johnson B, Simpson MA, Motwani J, et al. Mutation in GNE is associated with severe congenital thrombocyto-

47. van der Harst P, Zhang W, Mateo Leach I, Rendon A, Verweij N, Sehmi J, et al. Novel G6B gene variant causes familial autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood. 2018;132(17):1851–4.

48. Nisitori T, Ouchi-Uchiyama M, Sasahara Y, Kano T, Hashi Y, Irie M, et al. Mutations in MECOM, encoding oncprotein ETV1, cause radiou-

49. Germeshausen M, Ancliff P, Estrada J, Metzler M, Poonstingl E, Rüetsch H, et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood. 2018;12(6):586–96.

50. Melhem M, Abu-Farha M, Antony D, Al Madhoun A, Bacchelli C, Alka-

51. Hofmann I, Geer MJ, Veithenschlager M, Mertens K, Wirth T, et al. Structural abnormalities. Blood. 2011;117(18):4775–81.

52. Evans D, Frazer I, Martin N. Genetic and environmental causes of varia-

53. White J, Key N, King R, Vercellotti G. A "touch" of White platelet syn-

54. White J, Key N, King R, Vercellotti G. The White platelet syndrome: a novel, autosomal recessive macrothrombocytopenia disorder. Platelets. 2004;15(5):173–84.

55. White J, Key N, King R, Vercellotti G. A "touch" of White platelet syn-

56. Sanchis-Juan A, Stephens J, French CE, Gledall N, Mégy K, Penkett C, et al. Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequenc-

57. Evans D, Frazer I, Martin N. Genetic and environmental causes of varia-

58. Biino G, Balduini CL, Casula L, Cavallo P, Vaccargiu S, Parracciani D, et al. Analysis of 12,517 inhabitants of a sardinian geographic isolate reveals that predispositions to thrombocytopenia and thrombocytosis are inherited traits.

59. Petersen R, Lambourne JJ, Jouve J, Loffredo G, Loffredo D, et al. Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nat Commun. 2017;8:16058.

60. Ulirsch JC, Laereau CA, Bao EL, Ludvig LS, Guo MH, Benner C, et al. Interrogation of hematopoietic compartmental cell and single-cell variant resolution. Nat Genet. 2019;51(4):683–93.

61. Sea A, Ben-Harosh M, Sirin M, Stein J, Ogany A, Kapulniksh J, et al. Bone marrow failure unresponsive to bone marrow transplant is caused by mutations in thrombopoietin. Blood. 2017;130(7):875–80.

62. Noris P, Marconi C, De Rocco D, Melazzini F, Pippucci T, Loffredo G, et al. A new form of inherited thrombocytopenia due to monoallelic loss of function mutation in the thrombopoietin gene. Br J Haematol. 2018;181(3):698–701.

63. Cornish N, Aungraheeta MR, FitzGibbon L, Alibhai D, Collins T, et al. Complex structural and functional variations cause familial macrothrombocytopenia. Blood. 2018;12(15):2504–13.

64. Chen M-H, Raffield LM, Mousa A, Sakaue S, Hufman JE, Moscati A, et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell. 2020;182(5):1124–31.e11.

65. Buckovc D, Bao EL, Akhari P, Lareau CA, Mousas A, Jiang T, et al. The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell. 2020;182(5):1214–31.e11.
Review

85. Poulter NS, Thomas SG. Cytoskeletal regulation of platelet formation: Coordination of β-actin and microtubules. Int J Biochem Cell Biol. 2013;45:66–74.

86. Ferreira FB, Colella MP, Medina SS, Costa-Lima C, Fiusa MML, Costa LNG, et al. Evaluation of the immature platelet fraction contribute to the differential diagnosis of hereditary, immune and other acquired thrombocytopenias. Sci Rep. 2017;7(1):3355.

87. Kelley MJ, Javlien W, Oetel TL, Korczak JF. Mutation of MYH9, encoding non-muscle myosin heavy chain A. May-Hegglin anomaly. Nat Genet. 2000;26(1):106–8.

88. Heath KE, Campos-Barros A, Toren A, Rozenfeld-Granot G, Carlsson LE, Savage J, et al. Nonmuscle Myosin Heavy Chain IA Mutations Define a Spectrum of Autosomal Dominant Macrotrombocytopenias: May-Hegglin Anomaly and Fechtner, Sebastian, Epstein, and Alport-Like Syndromes. Am J Hum Genet. 2001;69(5):1033–45.

89. Seri M, Pecci A, Di Bari F, Casano R, Savino M, Panza E, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore). 2003;82(3):203–15.

90. Savoia A, De Rocco D, Pecci A. MYH9 gene mutations associated with bleeding. Platelets. 2017;28(3):312–5.

91. Kunishima N, Kobayashi R, Ishi T, Hamaguchi M, Saito H. Mutation of the β1-tubulin gene associated with congenital macrotrombocytopenia affecting microtubule assembly. Blood. 2009;113(2):458–61.

92. Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H, TURB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrotrombocytopenia. Eur J Haematol. 2014;92(4):276–82.

93. Kunishima S, Okuno Y, Yoshida K, Shiraiishi Y, Sanada M, Muramatsu H, et al. ACTN1 mutations cause congenital macrotrombocytopenia. Am J Hum Genet. 2013;92(3):431–8.

94. Nurden P, Deblin N, Coupry I, Bryckaert I, Yelouyoun-Marifak I, Sole G, et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood. 2011;118(22):5928–37.

95. Berrou E, Adam F, Lebret M, Fergelot P, Kauskot A, Coupry I, et al. Heterogeneity of platelet functional alterations in patients with Filamin A mutations. Arterioscler Thromb Vasc Biol. 2013;33(1):e1–e8.

96. Ferreira CR, Chen D, Abraham SM, Adams DR, Simon KL, Malicdan MV, et al. Combined alpha-delta platelet storage pool deficiency is associated with mutations in GFI1B. Mol Genet Metab. 2012;108(3):288–94.

97. van Oorschot R, Marneth AE, Bergevoet SM, van Bergen MGJM, Peerlikk K, Lentaigne CE, et al. Inherited missense variants that affect GFI1B function do not necessarily cause bleeding diatheses. Haematologica. 2019;104(6):e260–e264.

98. Kahr WHA, Pluthero FG, El Kadri A, Warner N, Drobuc M, Chen CH, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun. 2017;8:14816.

99. Savoia A, Kunishima S, De Rocco D, Zieger B, Rand M, Pujol-Moix N, et al. Spectrum of the mutations in Bernard-Soulier Syndrome. Hum Mutat. 2014;35(9):1035–45.

100. Miller JL, Lye VA, Cunningham D. Mutation of leucine-57 to phenylalnine in a platelet glycoprotein Ib alpha leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. Blood. 1992;79(2):439–46.

101. Noris P, Perrotta S, Bottega R, Pecci A, Melazzini F, Civischi E, et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monomorphic Ala156Val mutation of GPIb (Bolzano mutation). Haematologica. 2012;97(1):82–8.

102. Sivapalaratnam S, Westbury SK, Stephens JC, Greene D, Downes K, Kelly AM, et al. Rare variants in GPIBP1 are responsible for autosomal dominant macrotrombocytopenia. Blood. 2017;129(4):520–4.

103. Rosa R, Rosa R, Dos Santos P, Zen P, Paskulin G. Hematological abnormalities and 22q11.2 deletion syndrome. Rev Bras Hematol Hemoter. 2011;33(2):151–4.
122. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germ line ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47(2):180–5.

123. Latger-Cannard V, Philippe C, Bouquet A, Baccini V, Alessi M, Ankri A, et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis. 2016;11:49.

124. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Nienmeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559(7714):400–4.

125. Noris P, Balduni C. Inherited thrombocytopenias in the era of personalised medicine. Haematologica. 2015;100(2):145–8.

126. Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol. 2018;182(5):621–32.

127. Pecci A, Gresele P, Klery C, Savoia A, Noris P, Fierro T, et al. Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood. 2010;116(26):5832–7.

128. Zaninetti C, Gresele P, Bertomoro A, Klery C, de Candia E, Veneri D, et al. Eltrombopag for the treatment of inherited thrombocytopenias: a phase II clinical trial. Haematologica. 2020;105(3):820–8.

129. Stockley J, Morgan NV, Bem D, Lowe GC, Loredikpanidé M, Dawood B, et al. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects on behalf of the UK Genotyping and Phenotyping of Platelets Study Group. Blood. 2013;122(25):4090–3.

130. Stevenson WS, Rabolliini DJ, Beutler L, Chen Q, Gabrielli S, Mackay JP, et al. Paris-Trousseau thrombocytopenia is phenocopied by the autosomal recessive inheritance of a DNA-binding domain mutation in FLI1. Blood. 2015;126(17):2927–30.

131. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tonnacliffe A, et al. FLI1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13(2):167–77.

132. Falef H. Singling out FLI1 in Paris Troussseau syndrome. Blood. 2017;129(26):3399–401.

133. Favier R, Akshoomoff N, Mattson S, Grossfeld P, Jacobsen syndrome: advances in our knowledge of phenotype and genotype. Am J Med Genet Part C Semin Med Genet. 2015;169(3):239–50.

134. Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets. 2017;28(7):731–4.

135. Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet. 2000;26(4):397–8.

136. Rees DC, Islacon A, Carella M, O’Marcaigh AS, Kendra JR, Jowitt SN, et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol. 2008;140(2):297–309.

137. Wang Z, Cao L, Su Y, Wang G, Wang R, Yu Z, et al. Specific macrothrombocytopenia/hemolytic anemia associated with sitosterolemia. Am J Hematol. 2014;89(3):320–4.

138. Ieda D, Horii I, Nakamura Y, Oshita H, Negishi Y, Shinozaka T, et al. A novel truncating mutation in FLNA causes periventricular nodular heterotopia. Ehlers-Danlos-like collagenopathy and macrothrombocytopenia. Brain Dev. 2018;40(6):489–92.