Determinants in Ca\textsubscript{v}1 Channels That Regulate the Ca2+ Sensitivity of Bound Calmodulin*5

D. Brent Halling†, Dimitra K. Georgiou‡, D. J. Black§, Guojun Yang∥, Jennifer L. Fallon‡¶, Florante A. Quiocio‡¶, Steen E. Pedersen‡, and Susan L. Hamilton†¶

From the †Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, the ‡Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, Missouri 64110, and the ¶Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030

Calmodulin binds to IQ motifs in the α\textsubscript{1} subunit of Ca\textsubscript{v}1.1 and Ca\textsubscript{v}1.2, but the affinities of calmodulin for the motif and for Ca2+ are higher when bound to Ca\textsubscript{v}1.2 IQ. The Ca\textsubscript{v}1.1 IQ and Ca\textsubscript{v}1.2 IQ sequences differ by four amino acids. We determined the structure of calmodulin bound to Ca\textsubscript{v}1.1 IQ and compared it with that of calmodulin bound to Ca\textsubscript{v}1.2 IQ. Four methionines in Ca2+-bound calmodulin form a hydrophobic binding pocket for the peptide, but only one of the four nonconserved amino acids (His-1532 of Ca\textsubscript{v}1.1 and Tyr-1675 of Ca\textsubscript{v}1.2) contacts this calmodulin pocket. However, Tyr-1675 in Ca\textsubscript{v}1.2 contributes only modestly to the higher affinity of this peptide for calmodulin; the other three amino acids in Ca\textsubscript{v}1.2 contribute significantly to the difference in the Ca2+ affinity of the bound calmodulin despite having no direct contact with calmodulin. Those residues appear to allow an interaction with calmodulin with one lobe Ca2+-bound and one lobe Ca2+-free. Our data also provide evidence for lobe-lobe interactions in calmodulin bound to Ca\textsubscript{v}1.2.

The complexity of eukaryotic Ca2+ signaling arises from the ability of cells to respond differently to Ca2+ signals that vary in amplitude, duration, and location. A variety of mechanisms decode these signals to drive the appropriate physiological responses. The Ca2+ sensor for many of these physiological responses is the Ca2+-binding protein calmodulin (CaM).2 The primary sequence of CaM is tightly conserved in all eukaryotes, yet it binds and regulates a broad set of target proteins in response to Ca2+ binding. CaM has two domains that bind Ca2+ as follows: an amino-terminal domain (N-lobe) and a carboxy-terminal domain (C-lobe) joined via a flexible α-helix. Each lobe of CaM binds two Ca2+ ions, and binding within each lobe is highly cooperative. The two lobes of CaM, however, have distinct Ca2+ binding properties; the C-lobe has higher Ca2+ affinity because of a slower rate of dissociation, whereas the N-lobe has weaker Ca2+ affinity and faster kinetics (1). CaM can also bind to some target proteins in both the presence and absence of Ca2+, and the preassociation of CaM in low Ca2+ modulates the apparent Ca2+ affinity of both the amino-terminal and carboxy-terminal lobes. Differences in the Ca2+-binding properties of the lobes and in the interaction sites of the amino- and carboxy-terminal lobes enable CaM to decode local versus global Ca2+ signals (2).

Even though CaM is highly conserved, CaM target (or recognition) sites are quite heterogeneous. The ability of CaM to bind to very different targets is at least partially due to its flexibility, which allows it to assume different conformations when bound to different targets. CaM also binds to various targets in distinct Ca2+ saturation states as follows: Ca2+-free (3), Ca2+-bound to only one of the two lobes, or fully Ca2+-bound (4–7). In addition, CaM may bind with both lobes bound to a target (5, 6) or with only a single lobe engaged (8). If a target site can bind multiple conformers of CaM, CaM may undergo several transitions that depend on Ca2+ concentration, thereby tuning the functional response. Identification of stable intermediate states of CaM bound to individual targets will help to elucidate the steps involved in this fine-tuned control.

Both Ca\textsubscript{v}1.1 and Ca\textsubscript{v}1.2 belong to the L-type family of voltage-dependent Ca2+ channels, which bind apoCaM and Ca2+ -CaM at carboxy-terminal recognition sites in their α\textsubscript{1} subunits (9–14). Ca2+ binding to CaM, bound to Ca\textsubscript{v}1.2 produces Ca2+-dependent facilitation (CDF) (14). Whether Ca\textsubscript{v}1.1 undergoes CDF is not known. However, both Ca\textsubscript{v}1.2 and Ca\textsubscript{v}1.1 undergo Ca2+ and CaM-dependent inactivation (CDI) (14, 15). Ca\textsubscript{v}1.1 CDI is slower and more sensitive to buffering by 1,2-bis(α-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid than Ca\textsubscript{v}1.2 CDI (15). Ca2+ buffers are thought to influence CDI and/or calmodulin labeled with donor and acceptor; CaM3, calmodulin labeled with donor only.
Calmodulin and Ca$_v$1 IQ Peptides

CDF in voltage-dependent Ca$^{2+}$ channels by competing with CaM for Ca$^{2+}$ (16).

The conformation of the carboxyl terminus of the α_1 subunit is critical for channel function and has been proposed to regulate the gating machinery of the channel (17, 18). Several interactions of this region include intramolecular contacts with the pore inactivation machinery and intermolecular contacts with CaM kinase II and ryanodine receptors (17, 19–22). Ca$^{2+}$ regulation of CaV1.2 may involve several motifs within this highly conserved region, including an EF hand motif and three contiguous CaM-binding sequences (10, 12). ApoCaM and CaM$^{2+}$-CaM-binding sites appear to overlap at the site designated as the “IQ motif” (9, 12, 13), which are critical for channel function at the molecular and cellular level (14, 23).

Differences in the rate at which 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca$^{2+}$ binding to CaM. We find the structures of Ca$^{2+}$-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca$^{2+}$-saturated form of CaM.

EXPERIMENTAL PROCEDURES

Materials—All peptides used were either synthesized in the core facility at the Baylor College of Medicine under the direction of Dr. Richard Cook or by GenScript Corp. (Piscataway, NJ). CaV1.1 IQB and CaV1.2 IQB peptides had a six-carbon biotin linker attached via an additional modified lysine at the carboxyl terminus of the peptide (CPC Scientific Inc., San Jose, CA). Calibrated Ca$^{2+}$ buffers were prepared as described previously (1, 24). Constructs for the mammalian Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Preparation of Recombinant CaMs—Recombinant mammalian CaM protein (CaM wild type, F19W, F92W, and T34C/T110C) was purified for fluorescence analysis as described previously (26), except dithiothreitol (20 mM) and EGTA (2 mM) were included in lysis buffer for cysteine mutants, and 5 mM dithiothreitol was kept throughout purification steps. Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Structure Determination—The complex of CaM-CaV1.1 IQ peptide complex was purified following the procedure described for the CaM-CaV1.2 IQ peptide complex (28). The complex was concentrated to 10 mg/ml in a buffer containing 20 mM MOPS, pH 7.4, 150 mM NaCl, and 10 mM CaCl$_2$. Crystals were grown by vapor diffusion by mixing 2 μl of complex into a 4-μl drop of a milieu from the well containing 32% polyethylene glycol 3500, 50 mM Tris, 50 mM MgCl$_2$. Large football-shaped crystals grew to full size in 2 weeks in a Torrey Pines Scientific incubator (San Marcos, CA) at 20 °C. Data were collected at the Center for Advanced Microstructures and Devices Gulf Coast Protein Crystallography Consortium beamline at the Louisiana State University Center for Advanced Microstructures and Devices (Baton Rouge, LA). The HKL2000 software package was used for data set reduction (29). The structure of CaM/CaV1.1 IQ was determined by the molecular replacement method (30) using the CaM/CaV1.2 IQ structure (PDB code 2f3y) (28) as the search model. The parameters used for solving the crystal structure are presented in Table 1. Structure refinement and analyses were performed using CNS (31) and the CHAIN graphics program (32). The structure was deposited to the Protein Data Bank (PDB) with the PDB code 2f3y.

Preparation of Recombinant Calmodulins—Recombinant -N,N,N',N'$-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca$^{2+}$ binding to CaM. We find the structures of Ca$^{2+}$-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca$^{2+}$-saturated form of CaM.

EXPERIMENTAL PROCEDURES

Materials—All peptides used were either synthesized in the core facility at the Baylor College of Medicine under the direction of Dr. Richard Cook or by GenScript Corp. (Piscataway, NJ). CaV1.1 IQB and CaV1.2 IQB peptides had a six-carbon biotin linker attached via an additional modified lysine at the carboxyl terminus of the peptide (CPC Scientific Inc., San Jose, CA). Calibrated Ca$^{2+}$ buffers were prepared as described previously (1, 24). Constructs for the mammalian Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Preparation of Recombinant CaMs—Recombinant mammalian CaM protein (CaM wild type, F19W, F92W, and T34C/T110C) was purified for fluorescence analysis as described previously (26), except dithiothreitol (20 mM) and EGTA (2 mM) were included in lysis buffer for cysteine mutants, and 5 mM dithiothreitol was kept throughout purification steps. Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Structure Determination—The complex of CaM-CaV1.1 IQ peptide complex was purified following the procedure described for the CaM-CaV1.2 IQ peptide complex (28). The complex was concentrated to 10 mg/ml in a buffer containing 20 mM MOPS, pH 7.4, 150 mM NaCl, and 10 mM CaCl$_2$. Crystals were grown by vapor diffusion by mixing 2 μl of complex into a 4-μl drop of a milieu from the well containing 32% polyethylene glycol 3500, 50 mM Tris, 50 mM MgCl$_2$. Large football-shaped crystals grew to full size in 2 weeks in a Torrey Pines Scientific incubator (San Marcos, CA) at 20 °C. Data were collected at the Center for Advanced Microstructures and Devices Gulf Coast Protein Crystallography Consortium beamline at the Louisiana State University Center for Advanced Microstructures and Devices (Baton Rouge, LA). The HKL2000 software package was used for data set reduction (29). The structure of CaM/CaV1.1 IQ was determined by the molecular replacement method (30) using the CaM/CaV1.2 IQ structure (PDB code 2f3y) (28) as the search model. The parameters used for solving the crystal structure are presented in Table 1. Structure refinement and analyses were performed using CNS (31) and the CHAIN graphics program (32). The structure was deposited to the Protein Data Bank (PDB) with the PDB code 2f3y.

Preparation of Recombinant Calmodulins—Recombinant -N,N,N',N'$-tetraacetic acid affects CDI of CaV1.1 and CaV1.2 could reflect differences in their interactions with CaM. In this study we describe the differences in CaM interactions with the IQ motifs of the CaV1.1 and the CaV1.2 channels in terms of crystal structure, CaM affinity, and Ca$^{2+}$ binding to CaM. We find the structures of Ca$^{2+}$-CaM-IQ complexes are similar except for a single amino acid change in the peptide that contributes to its affinity for CaM. We also find that the other three amino acids that differ in CaV1.2 and CaV1.1 contribute to the ability of CaV1.2 to bind a partially Ca$^{2+}$-saturated form of CaM.

EXPERIMENTAL PROCEDURES

Materials—All peptides used were either synthesized in the core facility at the Baylor College of Medicine under the direction of Dr. Richard Cook or by GenScript Corp. (Piscataway, NJ). CaV1.1 IQB and CaV1.2 IQB peptides had a six-carbon biotin linker attached via an additional modified lysine at the carboxyl terminus of the peptide (CPC Scientific Inc., San Jose, CA). Calibrated Ca$^{2+}$ buffers were prepared as described previously (1, 24). Constructs for the mammalian Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Preparation of Recombinant CaMs—Recombinant mammalian CaM protein (CaM wild type, F19W, F92W, and T34C/T110C) was purified for fluorescence analysis as described previously (26), except dithiothreitol (20 mM) and EGTA (2 mM) were included in lysis buffer for cysteine mutants, and 5 mM dithiothreitol was kept throughout purification steps. Ca$^{2+}$-binding mutants of CaM (T34C/T110C/E34Q and F19W/E34Q) were purified using a modified protocol from Rodney et al. (27).

Structure Determination—The complex of CaM-CaV1.1 IQ peptide complex was purified following the procedure described for the CaM-CaV1.2 IQ peptide complex (28). The complex was concentrated to 10 mg/ml in a buffer containing 20 mM MOPS, pH 7.4, 150 mM NaCl, and 10 mM CaCl$_2$. Crystals were grown by vapor diffusion by mixing 2 μl of complex into a 4-μl drop of a milieu from the well containing 32% polyethylene glycol 3500, 50 mM Tris, 50 mM MgCl$_2$. Large football-shaped crystals grew to full size in 2 weeks in a Torrey Pines Scientific incubator (San Marcos, CA) at 20 °C. Data were collected at the Center for Advanced Microstructures and Devices Gulf Coast Protein Crystallography Consortium beamline at the Louisiana State University Center for Advanced Microstructures and Devices (Baton Rouge, LA). The HKL2000 software package was used for data set reduction (29). The structure of CaM/CaV1.1 IQ was determined by the molecular replacement method (30) using the CaM/CaV1.2 IQ structure (PDB code 2f3y) (28) as the search model. The parameters used for solving the crystal structure are presented in Table 1. Structure refinement and analyses were performed using CNS (31) and the CHAIN graphics program (32). The structure was deposited to the Protein Data Bank (PDB) with the PDB code 2f3y.
peptide in running buffer containing 3 mM CaCl2, 30 mM MOPS, 100 mM KCl, 0.1 mg/ml BSA, 0.005% Tween 20, 0.02% Na3P, pH 7.5, at a flow rate of 30 µl/min. Biotin (5–10 µl of 300 nm) alone was immobilized to control flow cells on the chip and used to subtract bulk movement of CaM, the analyte, to the chip during binding. Peptide immobilization was preceded and followed by a system desorb. CaM, E12QCaM, and E34QCaM were injected at a flow rate of 30 µl/min. All experiments were performed in triplicate; each sensorgram representing an independent dilution. Kd values were determined by fitting the amplitudes of the plateau phase as a function of CaM concentration using a one- or two-site saturation model.

Determination of Apparent Ca2+ Affinity of CaM Mutants with a Tryptophan Substitution—The procedure used was described by Black et al. (1). Data were fit by nonlinear regression analyses with either a standard dose-response curve or, if appropriate, a biphasic dose-response curve as modeled previously (1, 33).

Fluorescence Resonance Energy Transfer (FRET) of Labeled CaM—CaM with cysteine mutations at threonines 34 and 110 was purified and labeled with 5-((2-iodoacetyl)amino)ethylamine)naphthalene-1-sulfonic acid (1,5-IAEDANS) and N-(4-dimethylamino-3,5-dinitrophenyl) maleimide (DDPM), according to Xiong et al. (25). Only CaMs labeled with both 1AEDANS and DDPM demonstrate FRET (25).

For FRET measurements, 200 nM labeled CaM was incubated with 1 µM peptide for 1 h at room temperature in a 20 µM Ca2+ buffer from Molecular Probes (Ca2+ calibration buffer kit 3). Fluorescence was measured at 400–625 nm with an SLM8000 spectrophotometer with 350 nm excitation. Settings included 8-nm bandpass excitation and emission slits, 309 nm cut-on excitation filter, 395 nm cut-off emission filter, and 1-s integration times. All spectra had the same spectral maximum near 493 nm, and bar graphs reflect the observations at this wavelength.

Ca2+ Dissociation Kinetics—Stopped-flow experiments were performed as described (1, 24) using an Applied Photophysics instrument (model SX.18MV; Leatherhead, UK) to measure rates of Ca2+ dissociation (kdiss) at 22 °C. Instrument parameters are the same as described (1). Represented data were averages of 5–8 individual traces fit with either a single or double exponential curve after premixing reached equilibrium. Tryptophan fluorescence was measured after rapidly mixing equal volumes (50 µl each) of solution A, F19WCaM or F92WCaM (4 µM), peptide (20 µM), and Ca2+ (200 µM) in 10 mM MOPS, 90 mM KCl, pH 7.0, with solution B, EGTA (10 mM). All traces were fit with the exponential Equation 1,

\[f = A_1 e^{-k_1 t} + A_2 e^{-k_2 t} + C \]

(Eq. 1)

where A is the amplitude of the fluorescence change, and k is the rate at which the change is occurring.

Ca2+ dissociation rates (1) were also determined with Quin-2. Solution A (CaM (8 µM), IQ peptide (40 µM), Ca2+ (15 µM) in 10 mM MOPS, and 90 mM KCl, pH 7.0) was rapidly mixed with an equal volume of solution B, Quin-2 (150 µM). The reaction was monitored by exciting fluorescence at 330 nm and measuring light emission with 510-nm broad bandpass filter (Oriel) in place. Quin-2 fluorescence traces required fits with the double exponential Equation 2,

\[f = A_1 e^{-k_1 t} + A_2 e^{-k_2 t} + C \]

(Eq. 2)

where A1 and A2 are component amplitudes of the fluorescence change, and k1 and k2 are the corresponding rates of change. The double exponential reflects the Ca2+ dissociation rates from both the N-lobe (fast) and the C-lobe (slow). The molar quantity of Ca2+ dissociating from CaM was calculated by monitoring the increase in Quin-2 fluorescence with increasing concentrations of Ca2+ standards (10, 20, 40, and 80 µM) (34).

RESULTS

Identification of IQ Residues That Interact Directly with Ca2+-CaM—To define the determinants for interaction of Ca2+-CaM, we obtained crystals of Ca2+-CaM bound to the Ca,1.1 IQ peptide and determined the structure to 1.94 Å resolution (Table 1). The crystals are isomorphous to those formed with Ca,1.2 IQ, and the crystal properties (Table 1) are very similar to those of the complex with Ca,1.2 IQ peptide, but the CaM/ Ca,1.2 structure was determined at a higher resolution of 1.45 Å (34).

The N-lobe of CaM binds the amino terminus of the Ca,1.1 IQ peptide, and the C-lobe binds the carboxyl terminus of Ca,1.1 IQ in a parallel arrangement similar to that seen with Ca,1.2 IQ (Fig. 1, A and D) and other IQ peptides (28, 35, 36). As expected from the identity of the amino-terminal portions of the Ca,1.1 IQ and Ca,1.2 IQ peptides, the N-lobe of CaM binds the amino-terminal peptide sequences in nearly identical
Calmodulin and CaV1 IQ Peptides

FIGURE 1. Structure of CaM bound to CaV1.1 IQ (PDB code 2vay) is represented in A–C. Structure of previously solved CaM bound to CaV1.2 IQ was obtained from the PDB with accession number 2f3y (D–F). Ribbon schematics represent CaM bound to CaV1.1 IQ in A or to CaV1.2 IQ in D. Peptides are represented as green ribbons. Ca2+ ions are represented as yellow spheres. The amino terminus (N) of the peptide contacts the N-lobe (pink ribbon) of CaM. C-lobe of CaM is blue. Linker ribbons that join the lobes of CaM are light gray. Residues of CaV1.1 IQ motif that are different from CaV1.2 IQ are represented as sticks on peptide ribbon, except for the residues not observed in the structure. B and E depict peptide stick residues contacting molecular surface of the N-lobe. C and F show peptide residue side chains (shown as sticks) in the vicinity of the C-lobe hydrophobic pocket formed by methionines (shown as molecular surface). B, C, E, and F; N-lobe carbons are pink, and carbon atoms in the linker between N- and C-lobes of CaM are light gray; C-lobe carbons are light blue (teal); peptide carbons are green; oxygen atoms are red; sulfur atoms are orange; nitrogen atoms are dark blue; waters are marine spheres; speculated chloride is green sphere. The 2Fo − Fc maps representing electron density are blue meshes. For best visibility, the 2vay 2Fo − Fc map at 1.0 Å threshold and 2f3y map is at presented 0.5 Å. Conformations (Fig. 1, B and E). The root mean square deviation (r.m.s.d.) for the backbone atoms of the superimposed N-lobes is 0.34 Å. This value is about 2-fold smaller than the r.m.s.d. of 0.75 Å for the superimposed C-lobes, both of which are smaller than the overall backbone r.m.s.d. of 0.88 Å for the superimposed structures of the two CaM-peptide complexes. This indicates a difference in the relative orientation between the two lobes in the two structures.

Other differences are detected in the C-lobe interactions. There is a salt bridge between Arg-1539 on the CaV1.1 IQ peptide and Glu-127 of CaM that was not observed in our CaV1.2 IQ-CaM structure (28), but it was seen in the structure by Van Petegem et al. (36). Of the four nonconserved residues, only His-1532 on CaV1.1 IQ (Fig. 1, A and C) and Tyr-1675 in CaV1.2 IQ (Fig. 1, D and F) contact Ca2+-CaM. In Ca2+-CaM/CaV1.2 IQ, a water molecule forms hydrogen bonds both with the hydroxyl group side chain of the Tyr-1675 and with the carbonyl oxygen of the Met-124 main chain (28). A hydrophobic pocket formed by four C-lobe methionine side chains is more collapsed around His-1532 (Fig. 1C). This Ca2+-CaM methionine pocket expands around the bulkier Tyr-1675 on the CaV1.2 IQ peptide (Fig. 1F). Although the methionine side chains are slightly farther away from Tyr-1675, the α-carbon atoms are actually drawn inward toward the tyrosine. When comparing structures, the main chain α-carbon atoms of residues of Met-109, Met-124, Met-144, and Met-145 are displaced by 0.54, 0.18, 0.52, and 0.38 Å, respectively. The α-carbon to α-carbon distance from Met-109 to Met-145 is 0.41 Å closer in the presence of CaV1.2 IQ than in the presence of CaV1.1 IQ. The α-carbons are 0.12 Å closer from Met-124 to Met-144. The difference in α-carbon positions correlates with small perturbations in backbone structure. As mentioned above, the r.m.s.d. of the C-lobes from both complexes is 0.75 Å, but it is influenced mainly by the difference in the relative positions of the α6–α7 loops; the r.m.s.d. measured without the α6–α7 loop drops to 0.63 Å. Because 0.63 Å is still considerably larger than the r.m.s.d. of the N-lobes, it likely reflects variations in the C-lobe conformations caused by the different peptides.

Because the pH of the crystallization solution is 8.3, His-1532 of CaV1.1 IQ is likely in the neutral or nonprotonated form. A charged residue in this position is predicted to be unfavorable. To assess this, we created peptides with an H1532D replacement in CaV1.1 IQ. This peptide does not bind Ca2+-CaM (data not shown), suggesting that the residue in this position (His-1532 of CaV1.1 IQ or Tyr-1675 of CaV1.2 IQ) is important for the interactions within the methionine pocket. A useful side note is that the H1532D mutation in CaV1.1 IQ can be used to abolish CaM binding.

How Nonconserved Amino Acids in IQ Motif Regulate the Affinity for Ca2+-CaM—To address the question of how the four nonconserved amino acids affect the affinity of the IQ peptides for Ca2+-CaM, we synthesized the peptides shown in Table 2 and assessed their affinity using SPR. CaV1.1 IQ, CaV1.2 IQ, CaV1.1 Y1675H, CaV1.1 H1532Y, and four CaV1.1 mutant peptides with the H1532Y substitution and one or more amino acid changes were tested. Briefly, we assessed the affinity of the biotinylated wild type and mutant IQ peptides listed in Table 2 for Ca2+-CaM in saturating Ca2+ concentrations. We also performed competition experiments for CaM binding to immobilized biotinylated peptides using increasing concentrations of the nonbiotinylated peptides listed in Table 2 (see Supporting Information). Binding data reflecting the interaction of Ca2+-CaM with the biotinylated peptides are shown in Fig. 2. The interactions are adequately modeled with a simple bimolecular interaction for the concentration range shown in Fig. 2, with a K_d of 7.9 nM for the CaV1.1 IQB, 2.5 nM for the CaV1.2 IQB, 4 nM for the CaV1.1 H1532Y-IQB, and 2.9 nM for the CaV1.2 Y1675H-IQB. This finding suggests that at low concentrations (<50 nM approximately) CaM assumes one binding conformation to the IQ peptides. As concentration increases, the data are fitted better to the two site saturation model (data not shown), suggesting that at higher concentrations CaM binds in two or more different conformations to the IQ peptides. For simplicity, we have chosen to compare only the high affinity interac-
Amino Acids in the IQ Motif That Regulate the Ca\(^{2+}\) Affinity of CaM—The primary function of CaM is to transduce a Ca\(^{2+}\) signal into a protein response. The apparent affinity of CaM for Ca\(^{2+}\) in the presence of a target peptide is coupled to the affinity of CaM for the peptide. In addition, an interaction of apoCaM (Ca\(^{2+}\)-free CaM) with an IQ peptide can increase the apparent Ca\(^{2+}\) affinity of CaM by altering the conformation of the Ca\(^{2+}\)-binding sites. Tryptophan mutants of CaM have been used to assess apparent Ca\(^{2+}\) affinity of CaM complexed to peptides (24). The apparent Ca\(^{2+}\) affinity of CaM, referred to here as \(K_{\text{app}}\), is determined from the Ca\(^{2+}\) titration of the tryptophan fluorescence. F19W is a CaM mutant that indirectly measures Ca\(^{2+}\) binding to the N-lobe, and the interaction of Ca\(_{1.2}\) IQ with F19W increases its Ca\(^{2+}\) affinity (1). The apparent Ca\(^{2+}\) affinity of the N-lobe of F19W complexed to Ca\(_{1.1}\) IQ (254 nM) is less than that of the N-lobe of F19W bound to Ca\(_{1.2}\) IQ (49 nM) (Fig. 3A and Table 3) (1). We used F92WCaM to assess Ca\(^{2+}\) binding to the C-lobe. The Ca\(^{2+}\) titration of the fluorescence of the C-lobe of F92W was fit with a single component for Ca\(_{1.1}\) but was distinctly biphasic with Ca\(_{1.2}\) (1), as characterized by a Ca\(^{2+}\)-dependent increase followed by a decrease in fluorescence. The decrease in fluorescence with F92W/Ca\(_{1.2}\) IQ at higher Ca\(^{2+}\) concentrations is likely to be due to the N-lobe quenching the fluorescence of the C-lobe upon binding Ca\(^{2+}\). The discrepancy between the N-lobe Ca\(^{2+}\) affinity determined with Ca\(_{1.2}\) and F19W (49 nM) and that estimated from the quenching (198 nM) is likely to be due to the difficulty in fitting this complex biphasic curve. In these experiments the peptide is present in a 5-fold molar excess over CaM, and therefore, two CaMs binding to a single peptide is not likely. Overall, the Ca\(^{2+}\) affinity of the C-lobe of F92W complexed to Ca\(_{1.2}\) IQ is about 5-fold higher than that of the C-lobe of F92W bound to Ca\(_{1.1}\) IQ, a factor that is similar to the change observed at the N-lobe (Fig. 3B and Table 3).

Identification of the Amino Acids Responsible for the Higher Ca\(^{2+}\) Affinity of CaM Bound to Ca\(_{1.2}\)—As mentioned previously, of the four nonconserved amino acids, only His-1532 in Ca\(_{1.1}\) IQ and Tyr-1675 in Ca\(_{1.2}\) actually contact Ca\(^{2+}\)-CaM in the crystal structures (Fig. 1). If the residue at this position in the IQ motifs is responsible for the difference in Ca\(^{2+}\) affinity of CaM bound to Ca\(_{1.2}\) versus Ca\(_{1.1}\), it should be possible to lower the Ca\(^{2+}\) affinity of Ca\(_{1.2}\) IQ by converting Tyr-1675 to a His and to increase the Ca\(^{2+}\) affinity of Ca\(_{1.1}\) IQ by converting His-1532 to a Tyr. The peptides with amino acids substitutions used in this study are listed in Table 2. The apparent N-lobe Ca\(^{2+}\) affinity of F19W bound to Ca\(_{1.1}\) H1532Y is only slightly different from that of F19W bound to Ca\(_{1.1}\) IQ, suggesting that this residue alone is not responsible for the higher Ca\(^{2+}\) affinity of the N-lobe of F19W bound to Ca\(_{1.2}\) IQ (Fig. 3C). The apparent N-lobe Ca\(^{2+}\) affinity of F19W bound to Ca\(_{1.2}\) Y1675H is less than that of F19W bound to Ca\(_{1.2}\) IQ, but it is still higher than that of F19W bound to Ca\(_{1.1}\) IQ. With F92W to monitor Ca\(^{2+}\) affinity of the C-lobe, the first obvious difference using Ca\(_{1.2}\) Y1675H is the absence of the fluorescence quenching seen at higher Ca\(^{2+}\) concentrations with Ca\(_{1.2}\) IQ and F92W (Fig. 3D). This suggests that the lobes may not be in close enough proximity when bound to the Ca\(_{1.2}\) Y1675H peptide to cause quenching. The Y1675H substitution does not increase the Ca\(^{2+}\) affinity of the C-lobe of the F92W (Fig. 3B, C, and D, and Table 3). These data suggest that the amino acids at this position influence the Ca\(^{2+}\) affinities of both lobes of CaM but cannot alone account for the difference in Ca\(^{2+}\) affinities of CaM bound to Ca\(_{1.1}\) IQ and Ca\(_{1.2}\) IQ. The other nonconserved amino acids, despite their lack of contact with Ca\(^{2+}\)-CaM in the crystal structure, must be contributing to these observed differences.

Lys-1680, Lys-1683, and Gln-1685 provide Ca\(_{1.2}\) IQ with a +3 net charge compared with Ca\(_{1.1}\) IQ. Four peptides, each containing the H1532Y substitution in Ca\(_{1.1}\) and one or more of the above amino acid changes (Table 2), were tested for effects on the Ca\(^{2+}\) affinity of bound F19WCaM and F92WCaM. All of these peptides increased the apparent Ca\(^{2+}\) affinity of both F19W and F92W relative to these CaMs complexed to either Ca\(_{1.1}\) IQ or Ca\(_{1.1}\) H1532Y (highest \(p\) value = 0.0017) (Fig. 3, E and F, and Table 3). The most dramatic changes were seen with Ca\(_{1.1}.1/.H1532Y/M1537K and Ca\(_{1.1}.1/.H1532Y/M1537K/Q1540K. These data suggest that all of the nonconserved residues modulate the Ca\(^{2+}\) affinity of both lobes of CaM.

Partially Ca\(^{2+}\)-saturated CaM Binds with Both Lobes to Ca\(_{1.2}\) IQ—One explanation of the observation that amino acids that do not interact with Ca\(^{2+}\)-CaM in the crystal increase Ca\(^{2+}\) affinity is that these amino acids are involved in the binding of CaM in a Ca\(^{2+}\)-free or a partially Ca\(^{2+}\)-saturated state.

Calmodulin and Ca\(_{1.1}\) IQ Peptides

FIGURE 2. Affinity of CaM for biotinylated wild type and mutant IQ peptides. CaM binding to peptides Ca\(_{1.1}\) IQB, Ca\(_{1.2}\) IQB, Ca\(_{1.1}\) H1532Y-IQB, and Ca\(_{1.2}\) Y1675H-IQB is shown. The solid lines represent the fits to one site saturation model. The \(K_d\) values are 7.9 ± 1.1 nM for Ca\(_{1.1}\) IQ, 2.5 ± 0.1 nM for Ca\(_{1.2}\) IQ, 4.0 ± 0.4 nM for Ca\(_{1.1}\) H1532Y-IQB, and 2.9 ± 0.2 nM for Ca\(_{1.2}\) Y1675H-IQB. Each data point represents the mean ± S.E. for three independent experiments.
Calmodulin and Ca\textsubscript{v}1 IQ Peptides

![Graphs A, B, C, D, E, F](image)

FIGURE 3. Effect Ca\textsubscript{v}1.1 IQ peptides on Ca2+ affinity of CaM mutants with tryptophan reporters. Normalized relative fluorescence units (RFU) from 1 \(\mu M\) tryptophan mutant CaM and 5 \(\mu M\) peptide are plotted as the mean ± S.D. from three independent trials. A, C, and E contain normalized fluorescence data for F19W; and B, D, and F contain data for F92W. In all panels, data describing Ca2+ binding to tryptophan mutant CaM complexed with Ca\textsubscript{v}1.2 IQ peptide were presented before in Black et al. (1), but the fits from F19W/Ca\textsubscript{v}1.2 IQ are represented by a dashed line in A, C, and E; or the fit from F92W/Ca\textsubscript{v}1.2 IQ are represented by a dashed line in B, D, and F. A and B, CaM/Ca\textsubscript{v}1.1 IQ, closed diamonds. C and D, closed star, CaM/Ca\textsubscript{v}1.2 Y1675H; and open circles, CaM/Ca\textsubscript{v}1.1 H1532Y. Dash-dot-dot trace represents the curve fitted CaM/Ca\textsubscript{v}1.1 IQ in A and B for F19W and F92W, respectively. Data for F92W/Ca\textsubscript{v}1.2 Y1675H were fit with a biphasic sigmoid curve. E and F, open diamond, Ca\textsubscript{v}1.1/H1532Y/M1537K; closed triangle, Ca\textsubscript{v}1.1/H1532Y/Q1540K; open star, Ca\textsubscript{v}1.1/H1532Y/E1542Q; and closed circle, Ca\textsubscript{v}1.1/H1532Y/M1537K/Q1540K. Dash-dot-dot traces for E and F are the same as in C and D, respectively.

TABLE 3

CaM \(K_{D,app}\) for Ca2+ in presence of peptides determined from analyses of fluorescence from CaM containing tryptophan substitutions

Peptide	\(K_{D,app}\) S.D.	Hill coefficient	\(K_{D,app}\) S.D.	Hill coefficient	
No peptide	4840 ± 700	3.0 ± 0.9	1,400 ± 153	1.8 ± 0.1	
Ca\textsubscript{v}1.1 IQ	254 ± 12	3.1 ± 0.3	540 ± 33	1.9 ± 0.2	
Ca\textsubscript{v}1.2 IQ	49 ± 3	2.4 ± 0.2	104 ± 9	1.8 ± 0.2	
Ca\textsubscript{v}1.1 H1532Y	3213 ± 11	2.6 ± 0.3	400 ± 40	3.3 ± 0.4	
Ca\textsubscript{v}1.2 Y1675H	104 ± 7	2.6 ± 0.4	250 ± 20	1.7 ± 0.4	
Ca\textsubscript{v}1.1/H1532Y/M1537K	82 ± 1	2.1 ± 0.1	84 ± 10	2.2 ± 0.4	
Ca\textsubscript{v}1.1/H1532Y/Q1540K	102 ± 5	1.8 ± 0.1	135 ± 22	1.5 ± 0.4	
Ca\textsubscript{v}1.1/H1532Y/E1542Q	115 ± 2	2.4 ± 0.1	193 ± 26	1.6 ± 0.1	
Ca\textsubscript{v}1.1/H1532Y/M1537K/Q1540K	60 ± 1	1.9 ± 0.1	50 ± 2	2.6 ± 0.7	
\(p\) value for 1–2, 2–4, 1–4	<0.0003	\(p\) value for 1–2	0.0003	\(p\) value for 1–3, 1–4	0.0001

This type of interaction could increase the apparent Ca2+ affinity of the sites by altering the conformation of the Ca2+-free sites. We used Ca2+-binding site mutants of CaM, FRET analysis, and measurement of Ca2+ dissociation rates to determine whether Ca\textsubscript{v}1.2 and Ca\textsubscript{v}1.1 have different abilities to bind CaM with one lobe Ca2+-bound and one lobe Ca2+-free.

To assess the effects of Ca2+ binding at one lobe of CaM on the Ca2+ binding properties of the second lobe, we created a series of CaM mutants (F19W/E34Q, F92W/E12Q, F19W/E12Q, and F92W/E34Q) that combined the tryptophan substitutions with mutations in either the N- or C-lobe Ca2+-binding sites. As shown previously with *Drosophila* CaM, the E12Q mutation (glutamates in the \(-z\) positions of EF hands 1 and 2 are mutated to glutamates) abolishes Ca2+ binding to the N-lobe, and the E34Q mutation (glutamates in the \(-z\) positions of EF hands 3 and 4 are mutated to glutamines) abolishes Ca2+ binding to the C-lobe (37). The F19W/E34Q and F92W/E12Q mutants are used to detect Ca2+ binding to the N- and C-lobes, respectively. Mutations in the Ca2+-binding sites in the C-lobe decreased the apparent Ca2+ affinity of the N-lobe, whereas mutations in the N-lobe had lesser effects on the apparent Ca2+ affinity of the C-lobe bound to Ca\textsubscript{v}1.2 (Fig. 4A and Table 4). The apparent Ca2+ affinity of F19W/E34Q when bound to Ca\textsubscript{v}1.2 IQ (\(K_{D,app} \text{ for Ca}^{2+} = 208 \text{ nM}\)) is greater than when bound to Ca\textsubscript{v}1.1 IQ (\(K_{D,app} \text{ for Ca}^{2+} = 690 \text{ nM}\)) (Fig. 4A and Table 4). These values demonstrate lower affinities than obtained with F19W/CaM complexed to Ca\textsubscript{v}1.2 IQ (50 nM) and Ca\textsubscript{v}1.1 IQ (190 nM) and are likely to reflect both the contributions of the other lobe and the decreased affinity of the Ca2+-binding site mutants of CaM for the peptide.
Ca2+ titration of the tryptophan fluorescence of F92W/E12Q CaM-Ca\textsubscript{v1.2} IQ is monophasic with increasing Ca2+ concentrations with a \(K_{D,\text{app}}\) of 135 nM (Table 4) (1). F92W/E12Q complexed to Ca\textsubscript{v1.1} displays a \(K_{D,\text{app}}\) for Ca2+ of 790 nM (Fig. 4B and Table 4).

We used two additional mutants as follows: the F19W/E12Q to detect alterations in Ca2+ free N-lobe arising from Ca2+ binding to the C-lobe, and F92W/E34Q to detect alterations in Ca2+-free C-lobe arising from Ca2+ binding to the N-lobe. We were unable to detect Ca2+-dependent fluorescence changes with F19W/E12Q and F92W/E34Q either in the absence of peptide or with Ca\textsubscript{v1.1} IQ. However, we were able to detect Ca2+-dependent changes in fluorescence of both F19W/E12Q and F92W/E34Q in complex with Ca\textsubscript{v1.2} IQ. The \(K_{D,\text{app}}\) for Ca2+ for F19W/E12QCaM-Ca\textsubscript{v1.2} IQ was 21 nM, whereas that of F19W/E12QCaM-Ca\textsubscript{v1.2} IQ was 120 nM. These findings suggest that Ca2+ binding to either the N- or C-lobe of CaM changes the environment of the tryptophan in the Ca2+-free lobe, suggesting an interaction between lobes when CaM is bound to Ca\textsubscript{v1.2}. In both cases the apparent affinity was higher when the tryptophan was in the Ca2+-free lobe suggesting that a tryptophan in the Ca2+-free lobe either facilitates the interaction between the lobes or increases the affinity of the Ca2+-free lobe for Ca\textsubscript{v1.2}. Either explanation would support a lobe-lobe interaction when CaM is bound to Ca\textsubscript{v1.2}.

To further support the interaction of partially saturated CaM with Ca\textsubscript{v1.2}, we used stopped-flow fluorescence measurements and the F19W and F92W mutants to measure the rate of Ca2+ dissociation from each lobe of CaM in the presence of the peptides. The tryptophan mutations in F19W and F92W have only small effects on Ca2+ dissociation rates compared with unmodified CaM (1). Similar experiments have previously shown that Ca2+ dissociates from the N-lobe faster than from the C-lobe of CaM and that the binding of CaM to peptides slows the rate of Ca2+ dissociation from both lobes (1). The interaction with Ca\textsubscript{v1.1} also slows Ca2+ dissociation from F19W and F92WCaM (Fig. 5). Using F19W we found that the rate of dissociation from the N-lobe was similar when F19W was bound to Ca\textsubscript{v1.1} IQ (6.3 s-1) and Ca\textsubscript{v1.2} IQ (6.4 s-1) (Fig. 5A and Table 5). Initial Ca2+ dissociation is modestly faster from the C-lobe (F92W) when bound to Ca\textsubscript{v1.1} IQ (\(k_d = 1.3\) s-1) compared with Ca\textsubscript{v1.2} IQ (0.8 s-1) (Fig. 5B and Table 5). However, F92W complexed to Ca\textsubscript{v1.2} IQ (but not Ca\textsubscript{v1.1} IQ) displays a two component dissociation (1). The fluorescence first increases and then decreases. These data demonstrate that the tryptophan in the F92WCaM-Ca\textsubscript{v1.2} IQ complex can detect a conformational change in the N-lobe as it releases Ca2+ and that a stable intermediate with CaM with its N-lobe Ca2+ free can be detected kinetically. It is possible that CaM also binds Ca\textsubscript{v1.1} IQ with one lobe Ca2+-free, but the biphasic dissociation is too fast to detect in these experiments.

We also measured Ca2+ dissociation rates using stopped-flow kinetics and the fluorescent Ca2+ chelator Quin-2. With Quin-2, fluorescence increases when it binds Ca2+. In the absence of peptide, the rate of increase in Quin-2 fluorescence can be fit with a single exponential because the N-lobe Ca2+ dissociation is too fast to be resolved by Quin-2 (represented as a dotted line in Fig. 5C from data presented in Ref. 1). In the presence of Ca\textsubscript{v1.2} IQ peptide, however, a double exponential dissociation is detected (represented as dashed line in Fig. 5C as performed in Ref. 1). The kinetic constants are similar to those obtained with F19W and F92W (1). We measured the rate of Ca2+ dissociation from CaM in the presence of the Ca\textsubscript{v1.1} IQ.
As expected from the tryptophan fluorescence studies, Ca\(^{2+}/H11001\) dissociates faster from CaM when bound to CaV1.1 IQ than when bound to CaV1.2 IQ (Fig. 5C and Table 5). The Quin-2 data also support the existence of a stable intermediate with partially saturated CaM in complex with CaV1.2.

Peptide Binding Affinity of Partially Ca\(^{2+}/H11001\)-saturated CaM

The lobe-lobe interactions of CaM bound to CaV1.2 raise the issue of Ca\(^{2+}/H11001\) binding affinities of CaM lobes. We address this issue by assessing the affinity of the biotinylated wild type IQ peptides for E12QCaM and E34QCaM in saturating Ca\(^{2+}/H11001\) concentrations using SPR (Fig. 6). The interactions of E12QCaM and E34QCaM with the CaV1.1 IQB peptide are fit to a one-site saturation model with a \(K_D\) of 6950 and 4695 nM, respectively, whereas the interactions with CaV1.2 IQB are fit to a two-site saturation model with \(K_D\) values of 4366 and 197 nM for interaction with E12QCaM and \(K_D\) values of 5745 and 138 nM for the interaction with the E34QCaM. The drastically reduced affinity of CaV1 peptides for E12QCaM and E34QCaM indicates reduced Ca\(^{2+}/H11001\) binding affinity of each lobe of CaM.

Condensed Versus Extended Conformations of CaM Bound to Peptides—We next used FRET to evaluate proximity of the lobes of CaM to each other when bound to the peptides. We mutated CaM, E12QCaM, and E34QCaM at positions 34 and 110 to place cysteines for labeling with FRET reagents, IAEDNS, and DDPM. DDPM is a nonfluorescent energy-trans-
TABLE 6

Magnitude of fluorescence quenched by peptide relative to CaM molecule labeled with donor and acceptor without peptide

Values in parentheses are (σ-numbers).	CaM³⁺	CaM⁰⁻	E12Q³⁺	E12Q⁰⁻	E34Q³⁺	E34Q⁰⁻
No peptide	1.00 ± 0.02 (8)	1.00 ± 0.09 (9)	1.00 ± 0.03 (9)	1.00 ± 0.07 (7)	1.00 ± 0.04 (9)	1.00 ± 0.05 (9)
CaV1.1 IQ	0.58 ± 0.02 (6)	1.46 ± 0.07 (6)	0.90 ± 0.06 (8)	0.91 ± 0.02 (7)	0.90 ± 0.06 (8)	
CaV1.1 IQ/H1532Y	0.59 ± 0.03 (6)	1.53 ± 0.06 (6)	0.91 ± 0.03 (7)	0.92 ± 0.03 (7)	0.91 ± 0.03 (7)	
CaV1.1 IQ/H1532Y/M1537K	0.57 ± 0.04 (6)	1.46 ± 0.07 (6)	0.90 ± 0.04 (8)	0.91 ± 0.03 (7)	0.90 ± 0.04 (8)	
CaV1.1 IQ/H1532Y/Q1540K	0.58 ± 0.04 (3)	1.50 ± 0.06 (3)	0.90 ± 0.03 (8)	0.91 ± 0.03 (7)	0.90 ± 0.03 (8)	
CaV1.1 IQ/H1532Y/E1543Q	0.60 ± 0.04 (3)	2.50 ± 0.08 (3)	0.92 ± 0.07 (7)	0.93 ± 0.07 (7)	0.94 ± 0.07 (7)	
CaV1.1 IQ/H1532Y/M1537K/Q1540K	0.58 ± 0.07 (8)	1.44 ± 0.08 (8)	0.98 ± 0.06 (8)	1.01 ± 0.07 (8)	0.98 ± 0.06 (8)	
CaV1.2 IQ	0.58 ± 0.05 (6)	1.45 ± 0.06 (6)	0.93 ± 0.04 (8)	0.94 ± 0.04 (8)	0.94 ± 0.04 (8)	
CaV1.2 IQ/Y1675H	0.59 ± 0.06 (6)	1.42 ± 0.06 (6)	1.00 ± 0.06 (6)	0.91 ± 0.06 (6)	0.83 ± 0.06 (6)	

* p value < 0.01 by Student’s t test compares CaM with peptide to CaM with no peptide.

DISCUSSION

One mechanism that would allow CaM to regulate the response of different target proteins to different Ca²⁺ signals is the binding sites themselves to regulate the Ca²⁺ affinity of the bound CaM. We provide evidence for this mechanism by demonstrating that subtle differences in CaM-binding sites of CaV1.1 and CaV1.2 lead to differences in the Ca²⁺ binding properties of the lobes of CaM. Assuming these findings accurately reflect Ca²⁺ sensing by CaM bound to L-type Ca²⁺ channels, then calmodulin modulation of CaV1.2 channels would be expected to be more sensitive to Ca²⁺ than that of CaV1.1 channels. In CaV1.2, the tyrosine at residue 1675 has contact with methionines in the C-lobe of CaM and also interacts through a hydrogen bond involving a water molecule and the C-lobe backbone. This difference in conformation compared with CaM in complex with CaV1.1 is likely to contribute to the higher affinity of CaV1.2 IQ for CaM. In CaV1.1 the histidine (His-1532) in place of the tyrosine is likely to increase the flexibility of the 3–4 loop of CaM and Phe-1533 of CaV1.1 IQ, resulting in fewer stabilizing interactions and lower affinity. The amino acid in this position (Tyr-1674 in CaV1.2 and His-1532 in CaV1.1) is obviously important for affinity of CaM for the peptide, but it does not fully account for differences in the Ca²⁺ affinity of CaM bound to peptides. Our data suggest that the other three amino acids that differ between these two peptides and do not directly contact CaM when CaM is fully Ca²⁺ saturated participate in the binding of CaM that has one or both lobes Ca²⁺-free. This argues that different conformations of CaM bind to CaV1.2. Although several studies from other laboratories have shown that the Ca²⁺ affinity of CaM is influenced by binding to different targets (34, 38–41), we elucidated the contributions of the nonconserved amino acids within the IQ-binding site responsible for this effect on Ca²⁺ affinity, and we demonstrated that these amino acids play a role in regulating the apparent Ca²⁺ affinity by modulating the interactions with CaM with at least one lobe Ca²⁺-free. Additional contri-
Calmodulin and CaV1 IQ Peptides

In the CaV1 IQ CaM/CaV1 structure, Lys-1680 contacts the C-lobe through a water molecule. A question arising from the differences in affinity of CaV1.1 and CaV1.2 for CaV1 CaM is whether the CaV1 IQ CaM is an acidic protein with a net negative charge (−16e) and a calculated pI of 4.15 (44). The peptide CaV1.2 IQ has a +3 greater net charge over CaV1.1 IQ, having theoretical pI values of 10.12 and 9.52, respectively. The salinity of the solvent and the positive charges on the peptides may stabilize the compact conformation of the CaM allowing its negatively charged lobes to be close together (45).

Although the parallel arrangement of the N- and C-lobes of CaM bound to CaV1.1 IQ peptide presented here is in agreement with the arrangement seen with the CaV1.2 IQ and other peptides (28, 35, 36), it is opposite to the structure of three CaV1 IQ-CaV1 CaM complexes reported by Kim et al. (46). In these structures CaM is bound in an anti-parallel arrangement, with the N-lobe of CaM binding the carboxyl terminus of the CaV1.2 IQ peptide and the C-lobe binding the amino terminus of CaV1.2 IQ.

Our data suggest that CaM has the ability to bind to CaV1.2 IQ, in both a fully and a partially CaV1.2-saturated state with higher affinity than to CaV1.1. Recently Sauerman and Bers (47) suggested that the affinity of proteins for CaM determines their response to local CaV1 signals. In the case of the CaV1 channels discussed here, the different affinities of skeletal and cardiac isoforms for fully or partially CaV1-saturated CaM could indicate selective modulation and fine-tuning of local CaV1-dependent pathways or more specifically their CDI and CDF.

In the case of the CaV1.2 channel, it has been suggested that the CaV1.2-C-lobe CaM interaction is important for CDI (11), whereas the CaV1-N-lobe interaction participates in the CDF (35, 36). Given the similarity in the structural arrangement of CaV1.1 IQ and CaV1.2 IQ complexes with CaM, similar responses are expected for CaV1.1. Furthermore, because the nonconserved amino acids between CaV1.1 IQ and CaV1.2 IQ domains are involved in the interactions with CaM C-lobe, both CaV1.1 IQ and CaV1.2 IQ domains are expected to have similar response to CDF, which is modulated by the CaM N-lobe.

The CaV1 titration of the fluorescence of F92WCaM in complex with CaV1.2 shows evidence of two components (increase followed by a decrease in fluorescence with increasing CaV1). Substitution of any of the amino acids in CaV1.2 for those in CaV1.1 eliminates the second phase fluorescence quenching, suggesting that all of these amino acids contribute to this second CaV1-dependent event. The biphasic CaV1 response of F92WCaM bound to CaV1.2 IQ is best explained by the binding of CaV1 at the C-lobe at CaV1 concentrations less than 100 nM followed by a change in the environment of the tryptophan at amino acid 92 (reflected by a quenching of the fluorescence) when CaV1 binds to the N-lobe. The ability of the Trp-92 to sense CaV1 binding to both lobes may reflect its location in the linker helix that connects the lobes. The tryptophan at position 19 in the N-lobe is less likely to sense CaV1 binding at the C-lobe because it is not directly connected to the linker helix. A two-phase CaV1 equilibrium curve is not apparent when F92W binds to CaV1.1 IQ.

Indirect CaV1 dissociation data with F92W also reveal a stable CaV1 intermediate state for CaM binding to CaV1.2 IQ that is not seen with CaV1.1 IQ. During CaV1 dissociation, the fluorescence of F92W first increases then decreases (1), suggesting that CaV1 dissociates first from the N-lobe relieving the fluorescence quenching and then dissociates more slowly from the C-lobe. These data again support the existence of a stable intermediate state of CaM with the C-lobe CaV1-bound and the N-lobe CaV1-free. This state is likely to exist in a cell when the CaV1 concentration is declining after a transient. The question becomes what is the functional role of this intermediate state? A CaV1-binding site mutant that cannot bind CaV1 at the N-lobe still supports CaV1-dependent inactivation of this channel, and hence the role of this intermediate form may be to help to close or inactivate the channel. The FRET data suggest that CaM can also interact with CaV1.2 in a compact conformation with the C-lobe CaV1-free and the N-lobe CaV1-bound. This would be expected to be the first change in CaM bound to the channel when CaV1 begins to rise in a cell at the start of the CaV1 transient. Yue and co-workers (2) suggested that CaV1 binding to the N-lobe drives CaV1-dependent facilitation. We conclude that CaM with intermediate saturation states can assume very different conformations depending on whether the N- or C-lobe is CaV1-bound and in doing so may produce very different functional outcomes.

The IQ motif is likely to be at least part of the binding site for apoCaM (CaV1-free CaM) (1, 9, 13, 25), but the amino acid residues involved in the binding of apoCaM have not yet been identified. Our data suggest that at least with the partially CaV1-saturated states the apo-N-lobe and the apo-C-lobe can bind within the IQ sequence of CaV1.2, and the residues at positions Tyr-1675, Lys-1680, Lys-1683, and Gln-1685 contribute to the interaction. A more detailed analysis of CaM interactions with larger regions of the C-tail is needed to determine how CaM can move within its binding pocket upon binding CaV1. In addition other parts of the channel itself may interact near or with the IQ motif. A recent report by Dick et al. (48) suggests that the N-lobe of a single CaM molecule switches to an amino-terminal site on the CaV1 channels. CaM binding could either promote or inhibit protein–protein interactions.

Our previous studies and those of Van Petegem et al. (36) suggest that CaM is most likely binding with both lobes CaV1 saturated to determinants within the IQ motif during CDF rather than CDI (28, 36). The data presented here provide the tools needed to test this hypothesis by providing a means to alter the CaV1 sensitivity of CaM. Our studies also provide details of how the binding site itself regulates the affinity of EF.
hands of CaM for Ca$$^{2+}$$ and identifies new interactions that contribute to CaM binding to the IQ motif.

Acknowledgments—We thank Drs. Henry Bellamy and David Neau for their services at the Center for Advanced Microstructures and Devices Gulf Coast Protein Crystallography Consortium beamline. We also thank Dr. Timothy Palzkill for access to the Biacore3000.

REFERENCES

1. Black, D. J., Halling, D. B., Mandich, D. V., Pedersen, S. E., Altschuld, R. A., and Hamilton, S. L. (2003) J. Biol. Chem. 278, C669–676
2. Tadross, M. R., Dick, I. E., and Yue, D. T. (2008) Cell 133, 1228–1240
3. Houdusse, A., Gaucher, J. F., Krementsova, E., Mui, S., Trybus, K. M., and Cohen, C. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 19326–19331
4. Drum, C. L., Yan, S. Z., Bard, J., Shen, Y. Q., Lu, D., Soelaiman, S., Grabarek, Z., Bohn, A., and Tang, W. J. (2002) Nature 415, 396–402
5. Meador, W. E., Means, A. R., and Yue, D. T. (1992) Science 257, 1251–1255
6. Meador, W. E., Means, A. R., and Yue, D. T. (1993) Science 262, 1718–1721
7. Schumacher, M. A., Rivard, A. F., Baechinger, H. P., and Adelman, J. P. (2001) Nature 410, 1120–1124
8. Elshorbt, B., Hennig, M., Försterling, H., Diener, A., Maurer, M., Schulte, P., Schwalte, H., Griesinger, C., Krebs, J., Schmid, H., Vorherr, T., and Carafoli, E. (1999) Biochemistry 38, 12320–12332
9. Erickson, M. G., Liang, H., Mori, M. X., and Yue, D. T. (2003) Neuron 39, 97–107
10. Pate, P., Mochca-Morales, J., Wu, Y., Zhang, J. Z., Rodney, G. G., Serysheva, I. I., Williams, B. Y., Anderson, M. E., and Hamilton, S. L. (2000) J. Biol. Chem. 275, 39786–39792
11. Peterson, B. Z., DeMaria, C. D., Adelman, J. P., and Yue, D. T. (1999) Neuron 22, 549–558
12. Pitt, G. S., Zühkle, R. D., Hudmon, A., Schulman, H., Reuter, H., and Tsien, R. W. (2001) J. Biol. Chem. 276, 30794–30802
13. Tang, W., Halling, D. B., Black, D. J., Pate, P., Zhang, J. Z., Pedersen, S., Altschuld, R. A., and Hamilton, S. L. (2003) Biochemistry 42, 1538–1547
14. Zühkle, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W., and Reuter, H. (1999) Nature 399, 159–162
15. Stroffekova, K. (2008) Pfluegers Archiv. 455, 873–884
16. Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., and Yue, D. T. (2003) Neuron 39, 951–960
17. Kim, J., Ghosh, S., Nunziato, D. A., and Pitt, G. S. (2004) Neuron 41, 745–754
18. Kobrinsky, E., Schwartz, E., Abernethy, D. R., and Soldatov, N. M. (2003) J. Biol. Chem. 278, 5021–5028
19. Hudmon, A., Schulman, H., Kim, J., Maltez, J. M., Tsien, R. W., and Pitt, G. S. (2005) J. Cell Biol. 171, 537–547
20. Mouton, J., Ronjat, M., Jona, I., Villaz, M., Feltz, A., and Mauel, Y. (2001) FEBS Lett. 505, 441–444
21. Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z., and Hamilton, S. L. (2001) J. Biol. Chem. 276, 38237–38241
22. Xiong, L., Zhang, J. Z., He, R., and Hamilton, S. L. (2006) Biophys. J. 90, 173–182
23. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M., and Greenberg, M. E. (2001) Science 294, 333–339
24. Black, D. J., Tikunova, S. B., Johnson, J. D., and Davis, J. P. (2000) Biochemistry 39, 13831–13837
25. Xiong, L., Kleerekoper, Q. K., He, R., Putkey, J. A., and Hamilton, S. L. (2005) J. Biol. Chem. 280, 7070–7079
26. Xiong, L. W., Newman, R. A., Rodney, G. G., Thomas, O., Zhang, J. Z., Persechini, A., Shea, M. A., and Hamilton, S. L. (2002) J. Biol. Chem. 277, 40862–40870
27. Rodney, G. G., Williams, B. Y., Strasburg, G. M., Beckingham, K., and Hamilton, S. L. (2000) Biochemistry 39, 7807–7812
28. Fallon, J. L., Halling, D. B., Hamilton, S. L., and Quiocio, F. A. (2005) Structure 13, 1881–1886
29. Orwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326
30. Rossmann, M. G. (1972) The Molecular Replacement Method, (Rossman, M. G., ed) Gordon and Breach Science Publishers, Inc., New York
31. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, S. J., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. D Biol. Crystallogr. 54, 905–921
32. Sack, J. S., and Quiocio, F. A. (1997) Methods Enzymol. 277, 158–173
33. Rovati, G. E., and Nicosia, S. (1994) Trends Pharmacol. Sci. 15, 140–144
34. Johnson, I. D., Snyder, C., Walsh, M., and Flynn, M. (1996) J. Biol. Chem. 271, 761–767
35. Mori, M. X., Vander Kooi, C. W., Leahy, D. J., and Yue, D. T. (2008) Structure 16, 607–620
36. Van Petegem, F., Chatelain, F. C., and Minor, D. L., Jr. (2005) Nat. Struct. Mol. Biol. 12, 1108–1115
37. Mukherjea, P., Maune, J. F., and Beckingham, K. (1996) Protein Sci. 5, 468–477
38. Bayley, P. M., Findlay, W. A., and Martin, S. R. (1996) Protein Sci. 5, 1215–1228
39. Gaertner, T. R., Putkey, J. A., and Waxham, M. N. (2004) J. Biol. Chem. 279, 39374–39382
40. Olwin, B. B., and Storm, D. R. (1985) Biochemistry 24, 8081–8086
41. Peersen, O. B., Madsen, T. S., and Falke, J. J. (2007) Protein Sci. 6, 794–807
42. Fallon, J. L., Baker, M. R., Xiong, L., Loy, R. E., Yang, G., Dirksen, R. T., Hamilton, S. L., and Quiocio, F. A. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 5135–5140
43. Ohrtman, J., Ritter, B., Polster, A., Beam, K. G., and Papadopoulos, S. (2008) J. Biol. Chem. 283, 29301–29311
44. Walker, S. W., Wark, J. D., MacNeill, S., Mellersh, H., Brown, B. L., and Tomlinson, S. (1984) Biochem. J. 217, 827–832
45. André, I., Kevsatera, T., Jonsson, B., and Linse, S. (2006) Biophys. J. 90, 2903–2910
46. Kim, E. Y., Rumpf, C. H., Fujiwara, Y., Cooley, E. S., Van Petegem, F., and Minor, D. L., Jr. (2008) Structure 16, 1455–1467
47. Saucerman, J. J., and Bers, D. M. (2008) Biophys. J. 95, 4597–4612
48. Dick, I. E., Tadross, M. R., Liang, H., Tay, L. H., Yang, W., and Yue, D. T. (2008) Nature 451, 830–834