Progesterone Receptor-Mediated Regulation of N-Acetylneuraminate Pyruvate Lyase (NPL) in Mouse Uterine Luminal Epithelium and Nonessential Role of NPL in Uterine Function

Shuo Xiao1,2, Rong Li1,2, Honglu Diao1,3, Fei Zhao1,2, Xiaoqin Ye1,2*

1 Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America, 2 Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America, 3 Reproductive Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China

Abstract

N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56-fold from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both periimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl−/− mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl−/− females from mating with WT males. Npl−/−xNpl−/− crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl−/−, indicating no compensatory upregulation in the D3.5 Npl−/− uterine LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development.

Introduction

N-acetylneuraminate pyruvate lyase (NPL), also named sialic acid aldolase or N-acetylneuraminate lyase, was originally purified and characterized in human related pathogenic as well as non-pathogenic bacteria that utilize the carbon sources in the mucous-rich surfaces of the human body, such as Clostridium perfringens and Escherichia coli [1–4]. The human NPL consists of 320 amino acids (33 kDa) and has a crystal structure of tetramer [5,6]. Mammalian NPL proteins have 86 highly conserved amino acids, which are slightly different from the bacterial counterpart [6]. A splice variant of human NPL is highly expressed in human liver, kidney, ovary, and peripheral blood leukocyte [7].

NPL catalyzes the breaking of carbon-carbon bonds of N-acetylneuraminic acid, the predominant sialic acid, into N-acetylmannosamine and pyruvate, thus regulating the cellular concentrations of sialic acid and preventing the recycling of sialic acid for further sialiation with glycoconjugates in the Golgi compartment [8,9]. In both bacteria and mammals, sialic acids such as N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are involved in the sialylation and provide the diversity of sialylated oligosaccharides [10–12]. Sialic acids have been associated with intercellular adhesion, protein recognition, and immune-related mechanisms [13,14].

Limited reports suggest that NPL may have functions in female reproduction but the potential role of NPL in female reproduction has not been previously investigated. For example, serum sialic acid level increases with the progression of pregnancy compared with that in non-pregnant women [15–17]; uterine sialic acid concentration decreases upon ovariectomy in Indian langur monkeys, but increases upon ovarian hormones E2 or E2+E4 treatments [18]. NPL came to our attention from our microarray analysis of mouse periimplantation uterine luminal epithelium (LE) (GEO number: GSE44451). Npl was the most downregulated gene in the postimplantation gestation day 4.5 (D4.5) LE compared with that in the preimplantation D3.5 LE (Xiao et al,
submitted). Further analysis indicated peak expression of \(\text{Npl} \) in the preimplantation D2.5 and D3.5 uterine LE. Since LE is critical for the receptive sensitivity of the uterus [19,20], we hypothesized that NPL might be involved in uterine function, especially uterine preparation for embryo implantation. This hypothesis was tested in \(\text{Npl}^{{-/-}} \) mice.

Materials and Methods

Animals and genotyping

\(\text{Npl}^{+/-} \) mice were generated from the mouse strain B6/129S5-\(\text{Npl}^{+/+}\)B6/129S5-\(\text{Npl}^{+/-}\)B6/129S5-\(\text{Npl}^{-/-}\) (Mmucd (identification number 011743-UCD) and purchased from the Mutant Mouse Regional Resource Center (MMRRC) at UC Davis, a NCRR-NIH funded strain repository. NplGt(IRESBetageo)332Lex (identification number 011743-UCD) and purchased from the Mutant Mouse Regional Resource Center (MMRRC) at UC Davis, a NCRR-NIH funded strain repository.

Hormonal regulation of \text{Npl} mRNA in ovarectomized uterus

Table 1. Summary of the mouse studies.

Experiment	Genotype	Age or gestation day (D)	Treatment	
Uterine \text{Npl} mRNA expression in early pregnancy	Wild type	D0.5, D1.5, D2.5, D3.5, D4.5, D5.5, D7.5	None	
PR-mediated uterine \text{Npl} mRNA upregulation in early pregnancy	Wild type	D2.5	Vehicle	
Hormonal regulation of \text{Npl} mRNA in ovarsectomized uterus	Set A	Wild type	6 weeks old	Vehicle
Hormonal regulation of \text{Npl} mRNA in ovarsectomized uterus	Set B	Wild type	6 weeks old	Vehicle
NPL on embryo implantation	Wild type \(\text{Npl}^{{-/-}} \)	D4.5, D5.5, D7.5	None	
NPL on gestation period and litter size	Wild type \(\text{Npl}^{+/-} \)	2–4 months old	None	
NPL on gene expression in uterus and uterine luminal epithelium	Wild type \(\text{Npl}^{{-/-}} \)	D3.5	None	

Mating and uterine tissue collection

Young virgin females were mated naturally with WT stud males and checked for a vaginal plug the next morning. The day a vaginal plug identified was designated as gestation day 0.5 (D0.5, mating night as D0). Uterine tissues were collected from euthanized females between 11:00 h and 12:00 h on D0.5, D1.5, D2.5, D3.5, D4.5, D5.5, and D7.5, respectively. Uterine horns from D0.5 to D2.5 females were quickly removed and snap-frozen on dry ice. Oviducts from these mice were flushed with 1×PBS for the presence of eggs or fertilized embryos to determine the pregnancy status. About 1/3 of a uterine horn from each euthanized D3.5 female was frozen on dry ice for tissue sectioning. The remaining D3.5 uterine horns were flushed with 1×PBS (to determine the status of pregnancy and to remove the influence of embryos on uterine gene expression) and frozen on dry ice for RNA isolation. On D4.5, D5.5, or D7.5, mice were anesthetized with isoflurane by inhalation and intravenously (i.v.) injected with Evans blue dye to visualize the implantation sites as previously described [21]. At least three pregnant mice were included in each group.

Hormonal treatment

Progesterone (P4), 17β-estradiol (E2), ICI 182780 (ER antagonist), or RU486 (PR antagonist) treatments on ovariectomized WT mice or early pregnant WT mice were done as previously reported [22–24]. Briefly, the ovariectomized 6 weeks old virgin WT females (recovered for 2 weeks after surgery) were s.c. injected with 0.1 ml sesame oil (vehicle group) or 0.1 ml 20 mg/ml P4 three times on 0 h, 24 h and 48 h, respectively. In the E2-treated group, the ovariectomized mice were injected with 0.1 ml oil on 0 h and 24 h, then 0.1 ml 1 μg/ml E2 on 48 h. In the P4+E2 treated group, the ovariectomized mice were treated the same as the P4 treated group except an additional injection of 0.1 ml 1 μg/ml E2 on 48 h. All injected mice were dissected 6 hours after...
Table 2. Primers used for realtime PCR, making probes for in situ hybridization.

Primer	Sequence	Product size (bp)
Npl	F: GACAGGTGGACAGGGTGTC	399
	R: AGAGCCTAGCAGTGGTGA	
Gne	F: GCAGGGATGACAGATGAC	380
	R: CGGAGACGTTCTGTACAG	
Nans	F: TGCGTAAATGCTAGGAGCAG	395
	R: AAGCTGAGGTGGATCTGAG	
Namp	F: TCTTGGACACAGGACACAC	391
	R: CCCTCTGACGTCCTGAC	
Cmas	F: TCCACATGAGAATCAGCAAG	380
	R: CTGATATTTACCTCATGAA	
Cmah	F: CTCACCTAGCAGCAGAGCAGC	399
	R: TCCATTGCAATCTGGACCA	
Slc35a1	F: ACAAGGACAGGGAGGTAAG	382
	R: ATCACTCTTCTTACACCA	
Slc17a5	F: TCTGCTAGCTAGCAGAGCAG	394
	R: TCTGCTGAGACCTGAGCAG	
Slc3ga1	F: TTCTCACCCTTCTGTCCT	384
	R: AAAATCGGACCACTCCTTCT	
Slc3ga4	F: CAAGGACACCTACGTCTCT	380
	R: GTCCATTGCTTCTGTCGAG	
Slbja5	F: GGTCTATCACTGAGACCA	382
	R: GCTAGATTTGGCTAGGAGA	
Prap1	F: AGGAAAAGAAGGAGGAGG	224
	R: GTCAATACATGAGGGTCAT	
Absp1	F: TACCTAAGTAGGATGNGTA	398
	R: TCAGCCATAGAGGTTGCA	
Dtppr	F: GCTCAGATGCCCTGGTAT	230
	R: GTCTCAAGATCTTCTCTG	
Gapdh	F: GCCGAGAATGGGAGGTTGCT	200
	R: TGGTCCACACCTACACAC	
Hprt1	F: GTCGACCTTCTGAGGATTAC	172
	R: CAACTGACAGCTTTCCAGT	

F: forward primer; R: reverse primer. 5′→3′.

doi:10.1371/journal.pone.0065607.t002

the last injection. The total treatment time of P4 and E2 were 54 hours and 6 hours, respectively. Another set of ovariectomized mice were treated with 0.1 ml sesame oil (vehicle group), 0.1 ml 20 mg/ml P4, 0.1 ml 20 mg/ml P4 and 200 μg/ml RU486 (P4+RU486 group), or 0.1 ml 200 μg/ml RU486 (RU486 group), respectively. All mice were dissected 24 hours post injection and the uterine tissues were snap-frozen on dry ice. The third set of treatments was on naturally mated early pregnant mice. They were treated with 0.1 ml sesame oil (vehicle group), 0.1 ml 200 μg/ml ICI 182780 (ICI 182780 group), or 0.1 ml 200 μg/ml RU486 (RU486 group) on D2.5, and dissected on D3.5. The pregnancy status was determined as mentioned above. About 1/3 of a uterine horn from each female was snap-frozen for in situ hybridization. The remaining uterine horns were flushed with 1×PBS and snap-frozen for realtime PCR.

LE isolation

D3.5 uteri from naturally mated WT and Npl−/− mice were processed for LE isolation as previously described using 0.5% dispase enzyme and gentle scraping [22]. The pregnancy status was determined by the presence of blastocyst(s). At least five pregnant mice were included in each group.

Realtime PCR

Total RNA from whole uterine horns or LE sheets were isolated using TRIzol. cDNA was reverse-transcribed from one microgram of total RNA using Superscript III reverse transcriptase with random primers (Invitrogen, Carlsbad, CA, USA). Realtime PCR was performed in 384-well plates using Sybr-Green I intercalating dye on ABI 7900 (Applied Biosystems, Carlsbad, CA, USA) to quantify the mRNA expression levels of Npl and several other sialic acid metabolism related genes, including glucosamine (UDP-N-acetyl)-2-epimerase (Hprt1), N-acetylneuraminic acid synthase (Cmah), N-acetylneuraminic acid phosphatase (Namp), cytidine monophosphate-N-acetylneuraminic acid synthetase (Cmas), cytidine monophospho-N-acetylneuraminic acid hydroxylase (Cmas), solute carrier family 33, member A1 (Slc35a1), sialidase 1 (Neu1), sialidase 3 (Neu3), sialidase carrier family 17, member 5 (Slc17a5), ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (St3gala1), ST3 beta-galactoside alpha-2,3-sialyltransferase 4 (St3gala4), ST8 alpha-N-acetyl-neuraminylidene alpha-2,8-sialyltransferase 5 (St8sia5). The mRNA expression levels were normalized by the expression of Gadph (glyceraldehyde-3-phosphate dehydrogenase). Hprt1 (hypoxanthine phosphoribosyltransferase 1) served as the second house-keeping gene. Primer sequences [Integrated DNA Technology, San Diego, CA, USA] were shown in Table 2.

In situ hybridization

In situ hybridization was performed as previously described [22,25,26]. Sense and antisense probes for Npl, proline-rich acidic protein 1 (Prap1), amiloride binding protein 1 (Absp1), decidual/ tropoblast prolactin-related protein (Dtppr) were synthesized from a cDNA fragment amplified with their respective gene specific primer pairs (Table 2).

Postnatal growth, embryo implantation, gestation period, and litter size

The postnatal body weights of WT, Npl+/−, and Npl−/− pups were recorded weekly. Young virgin WT, Npl+/−, and Npl−/− females (2–4 months old) were mated with WT stud males to determine the effect of Npl-deficiency on female reproduction. The numbers of implantation sites were recorded on D4.5. Gestation periods and litter sizes were recorded as previously described [21]. Another set of Npl+/− and Npl−/− females were mated with Npl−/− males to determine the effect of Npl-deficiency on embryo development. WT and Npl−/− females were mated with Npl−/− males to determine the fertility of Npl−/− males.

Access to online data about Npl

Detail information from the original producer of Npl−/− mice about fertility, blood chemistry, cardiology, immunology and neurology, etc. of Npl−/− mice is available on the following link: http://www.informatics.jax.org/external/ko/lexicon/2492.html.

DOI:10.1371/journal.pone.0065607.t002

F: forward primer; R: reverse primer. 5′→3′.

http://www.informatics.jax.org/external/ko/lexicon/2492.html
Figure 1. Expression and localization of Npl in the periimplantation mouse uterus. A. Expression of Npl in the periimplantation wild type (WT) uterus using real-time PCR. N = 4–6. * p<0.05, compared to gestation day 0.5 (D0.5). # p<0.05, compared to D1.5 and D4.5. Gapdh (glyceraldehyde 3-phosphate dehydrogenase), a housekeeping gene as a loading control; error bars, standard deviation. B–G. Localization of Npl in the periimplantation uterus by in situ hybridization using Npl antisense probe. B. D0.5 WT (+/+). C. D1.5 WT uterus. D. D2.5 WT uterus. E. D3.5 WT uterus. F. D4.5 WT uterus. G. D3.5 Npl^{βT→πT} uterus. Red star, embryo; LE, luminal epithelium; S, stroma; D, decidual zone; scale bar, 50 μm. N = 2–3.

Statistical analyses
Two-tail unequal variance Student’s t-test and one-way ANOVA with Dunnett’s t test were used for various comparisons. The significant level was set at p<0.05.

Results and Discussion
Differential expression of Npl in periimplantation mouse uterus
To determine the spatiotemporal uterine expression of Npl during early pregnancy, the mRNA expression of Npl was examined in the periimplantation uterus by real-time PCR and in situ hybridization. Real-time PCR indicated that Npl was expressed at a very low level in the D0.5 uterus; it increased 4× in the D1.5 uterus and 56× in the D2.5 uterus; its expression level was slightly lower (44×) in the D3.5 uterus compared to that in the D2.5 uterus; upon embryo implantation, Npl expression level in the D4.5 uterus returned to a level comparable to that of D1.5 uterus (Fig. 1A). In situ hybridization didn’t detect any significant Npl signal in the D0.5 and D1.5 uteri (Figs. 1B, 1C). Npl was exclusively detected in the uterine luminal epithelium (LE) on D2.5 and D3.5 with comparable intensity (Figs. 1D, 1E) but undetectable in the postimplantation uterus from D4.5 to D7.5 (Fig. 1F and data not shown). One study indicated that Npl expression is >5× lower in the LE at the implantation site than that in the LE of inter-implantation site on D4.5 [27]. However, in situ hybridization on longitudinal sections of D4.5 uterus did not detect any Npl signal in the inter-implantation site (data not shown). It suggests that the Npl expression levels in the D4.5 LE from implantation site and inter-implantation site are too low to be detected by in situ hybridization, similar as that in the D0.5 and D1.5 uterus (Fig. 1A). The upregulation of Npl in the preimplantation LE was consistent with microarray (GEO number: GSE44451) and real-time PCR results (Fig. 1A).

PR-mediated upregulation of Npl in preimplantation mouse uterus
Uterine gene expression is largely controlled by ovarian hormones P4 and E2, whose functions are mediated via their receptors PR and ER, respectively [28,29]. To determine the molecular mechanism for Npl upregulation in the preimplantation uterus, D2.5 WT females were treated with PR antagonist RU486 or ER antagonist ICI 182780 and Npl expression level was analyzed in the D3.5 uterus by real-time PCR. No significant difference in Npl expression was observed between ICI 182780 and Npl expression level was analyzed in the D3.5 uterus by real-time PCR. No significant difference in Npl expression was observed between ICI 182780-treated and vehicle-treated groups (Fig. 2A). However, dramatically reduced Npl expression was observed in the RU486-treated group (53× compared to vehicle-treated control) (Fig. 2A). The expression of the house-keeping gene Hprt1 was not changed upon ICI 182780 or RU486 treatments (Fig. 2A). These results indicated that PR mediated the upregulation of Npl in the preimplantation uterus.

Hormonal regulation of Npl in ovariectomized mouse uterus
In ovariectomized WT mice, Npl was significantly upregulated (45×) by P4 treatment and downregulated (6×) by E2 treatment in the uterus (Fig. 2B). P4-induced Npl upregulation was greatly reduced by co-administration of E2, although the expression level of Npl was still 3-fold higher than that in the vehicle-treated uterus (Fig. 2B). In situ hybridization revealed that P4-induced upregulation of Npl was also detected in the LE of the ovariectomized uterus (data not shown), similar as that in the preimplantation uterus (Figs. 1D, 1E). To determine the involvement of PR in the regulation of Npl in the ovariectomized uterus, another set of experiment was performed. The results indicated that P4-induced upregulation of Npl in the ovariectomized uterus was completely abolished by co-administration of RU486, whereas RU486 alone did not seem to affect Npl expression (Fig. 2C). The expression of the house-keeping gene Hprt1 was not changed upon different hormonal treatments (Fig. 2). These data demonstrated that P4-PR signaling mediated the upregulation of Npl in the mouse uterus.

The coordinated uterine regulation of Npl by both P4 and E2 could explain the temporal expression of Npl in the early pregant
 uterus (Fig. 1A). After D1.5, P4 secretion from the newly formed corpus luteum increases [30] and correspondingly, Npl expression levels increase in the D2.5 and D3.5 uterus (Fig. 1). On D3.5, superimposed ovarian estrogen secretion, which makes the P4-primed uterus receptive for embryo implantation [30,31], may contribute to the downregulation of Npl (Figs. 1A, 1F, 2B). However, since ER antagonist ICI 182780 does not significantly affect the expression of Npl in the preimplantation uterus and PR antagonist RU486 dramatically suppresses the expression of Npl in the preimplantation uterus (Fig. 2A), it is more likely that the downregulation of Npl in the postimplantation LE (Fig. 1F) is the consequence of the downregulation of PR in the postimplantation LE [26].

Since NPL catalyzes the dominant sialic acid N-acetylleucaminic acid, it is expected that its downregulation could lead to elevated sialic acid in the uterus. The downregulation of Npl expression upon E2 treatment in the ovariectomized mouse uterus (Fig. 2B) seems to agree with the increased uterine sialic acid concentration upon E2 treatment in the ovariectomized Indian langur monkeys [18].

LE is the first cellular layer that an implanting embryo communicates with for implantation. Considering the observations that Npl is the most dramatically differentially expressed gene in the preimplantation LE (Fig. 1) (Xiao S et al, submitted) and Npl is upregulated in the preimplantation uterus via P4-PR signaling (Fig. 2), we hypothesized that Npl might play a role in uterine function, especially uterine preparation for embryo implantation. This hypothesis was tested in the Npl−/− mice and appeared to be supported by the preliminary fertility data on MMRRC website, which indicated that the average litter size from Npl+/− females (mated with WT males) was 1.67±1.53 (N = 3), significantly smaller than that from WT females (mated with Npl−/− males) with an average litter size of 7.67±2.08 (N = 3, P < 0.05) [http://www.informatics.jax.org/external/ko/lexicon/2492.html].

General characterization of Npl−/− mice

Deletion of Npl was confirmed by genotyping and lack of Npl signal in both D2.5 and D3.5 Npl−/− uteri by in situ hybridization (Fig. 1G and data not shown). There was no significant difference in postnatal growth among WT, Npl+/−, and Npl−/− mice of the same genders (data not shown). The percentages of WT, Npl+/−, and Npl−/− offspring from 27 litters (224 pups at weaning) of Npl+/− and Npl−/− crosses were 24.55%, 54.91%, and 20.54%, respectively. Among them, 117 (52.23%) were females and 107 (47.77%) were males. No obvious difference in mating activities was observed between WT and Npl−/− mice in both genders.

Normal embryo implantation and postimplantation pregnancy in Npl−/− females

Embryo implantation initiates around D4.0 in mice [26]. On D4.5, all the pregnant Npl−/− females had implantation sites detected by blue dye injection as seen in the WT females (Figs. 3A, 3B). The intensity and spacing of the blue bands, which indicated the implantation sites, and the average numbers of implantation sites between WT and Npl−/− females were comparable (Figs. 3A-3C). These data indicated no obvious defect in embryo implantation, which was confirmed by the comparable uterine expression of Prnp1 and Aebp1 (Figs. 4D-4G), a uterine LE marker [25] and a decidualization marker [32] upon embryo implantation, respectively. These results also indicated that all the preimplantation events, including oogenesis, ovulation, fertilization, embryo transport, and implantation embryo development, were not impaired. Postimplantation decidualization was also well developed in the D3.5 and D7.5 Npl−/− uteri, demonstrated by the comparable expression of a decidualization marker Dhipp [33] in D3.5 and D7.5 WT and Npl−/− uterus (Figs. 3H-3K). In fact, no obvious defect was detected in the Npl−/− females during the entire pregnancy, revealed by the comparable gestation periods, litter sizes, survival rates, and postnatal growth of offspring from females with different genotypes when they were mated with WT males (Figs. 4A, 4B, and data not shown). These results proved our hypothesis wrong and didn’t support the preliminary fertility data reported in the MMRRC website [http://www.informatics.jax.org/external/ko/lexicon/2492.html].

Non-essential role of Npl in male fertility and embryo development

The WT and Npl−/− males had comparable testis weight, sperm counts from cauda epididymis, and litter sizes when they...
were mated with WT females (data not shown), indicating normal fertility of Npl^{−/−} males.

When Npl^{+/−} or Npl^{−/−} females were mated with Npl^{−/−} males, they produced comparable litter sizes to that from WTxWT crosses (Fig. 4B). These data demonstrated that deletion of Npl did not have an obviously adverse effect on embryo development.

No compensatory mRNA expression of other genes involved sialic acid metabolism in D3.5 Npl^{−/−} uterus

The following genes are known to play roles in sialic acid metabolism: Gne, Nanp, and Nanp, which are important for the sialic acid synthesis from the UDP-N-acetylgalactosamine (UDP-GlcNAc) to Neu5Ac in cytosol; Cinas and Cinah, which catalyze Neu5Ac to CMP-Neu5Ac and then Neu5Gc; Slc35a1, which transports CMP-Neu5Ac and CMP-Neu5Gc to Golgi compartment for further glycosylation; Sl3gal1 and Sl3gal5, which are sialyltransferases controlling the glycosylation of sialic acid with carbohydrates, glycoproteins, and glycolipids; Neu1 and Neu3, which are neuraminidases responsible for the removal of sialic acid residues from glycoconjugates in different intracellular compartments, such as lysosome, plasma membrane, and mitochondria; Sl17a5, which transports free sialic acid back to the cytosol; and Npl, which degrades the free sialic acid to N-acetylmannosamine and pyruvate in the cytosol [7,34].

Since Npl expression peaks in the preimplantation uterine LE (Fig. 1), the mRNA expression levels of the above mentioned genes involved in sialic acid metabolism were examined in the preimplantation D3.5 WT and Npl^{−/−} uteri by realtime RT-PCR. The results showed comparable mRNA expression levels of all these genes between WT and Npl^{−/−} uteri (Fig. 5A). Since Npl is an LE-specific gene (Fig. 1) and LE comprises <10% of the uterine cells [19,20,35], any compensatory mRNA changes of these genes in the LE could potentially be covered in the whole uterine gene expression analysis. Therefore, LE cells from D3.5 WT and Npl^{−/−} uteri were isolated for determining the mRNA expression of these genes. Realtime RT-PCR still failed to detect any significant difference of these genes between D3.5 WT and Npl^{−/−} LE (Fig. 5B). Npl was included in both uterine and LE analyses (Figs. 5A, 5B) to indicate the deletion of Npl in the Npl^{−/−} uterus. Based on the relative expression levels compared to the house-keeping gene Gapdh, Npl was enriched in the LE (Fig. 5), consistent with the in situ data (Fig. 1E). These results indicated no compensatory mRNA expression of these genes involved in sialic acid metabolism in the D3.5 Npl^{−/−} whole uterus (Fig. 5A) and LE (Fig. 5B).

It has been reported that disruption of sialic acid metabolism and transport could have adverse effects. In mice, inactivation of Gne, which is important for sialic acid synthesis in the cytosol, leads to early postnatal lethality [36]. In humans, mutations of Slc17a5, which transports the free sialic acid from lysosome to cytosol for further degradation, could lead to the sialic acid storage disease (SASD) caused by sialic acid accumulation in the lysosome, and developmental delays and growth retardation [37]. In bacterial species, mutations of Npl, which degrades sialic acid in the cytosol, could lead to toxic overexpression of sialic acid [38]. These results indicate that balanced sialic acid metabolism and compartmentalization are critical for normal physiological functions.

Normal embryo implantation in the Npl^{−/−} females (Fig. 3) indicates that NPL is not essential for embryo implantation. However, being the most downregulated gene in the postimplantation LE implies that it might have redundant, although nonessential, roles in uterine preparation for embryo implantation. Our unpublished microarray data demonstrated that Npl expression was significantly decreased in the pregnant mouse uterus

Figure 3. Deletion of Npl on embryo implantation and the expression of implantation and decidualization markers in gestation day 4.5 (D4.5), D5.5 and D7.5 uteri. +/-, wild type (WT); −/−, Npl^{−/−}. A. A representative uterus from D4.5 WT mice. B. A representative uterus from D4.5 Npl^{−/+} mice. Red arrow, implantation site. C. the number of implantation sites on D4.5. N. the number of female mice in each group; error bars, standard deviation. D–G. Expression of implantation markers in D4.5 uterus by in situ hybridization using Prap1 and Abp1 antisense probes, respectively. D. Prap1 in WT uterus. E. Prap1 in Npl^{−/−} uterus. F. Abp1 in WT uterus. G. Abp1 in Npl^{−/−} uterus. H–K. Expression of decidualization marker, Dtppr, in D5.5 and D7.5 uterus by in situ hybridization using Dtppr antisense probes. H. Dtppr in D5.5 WT uterus. I. Dtppr in D5.5 Npl^{−/−} uterus. J. Dtppr in D7.5 WT uterus. K. Dtppr in D7.5 Npl^{−/−} uterus. Red star, embryo; LE, luminal epithelium; D, decidual zone; scale bar, 100 μm (D–G) and 500 μm (H–K). N = 2–3. No signals were detected using Prap1, Abp1, or Dtppr sense probes (data not shown). doi:10.1371/journal.pone.0065607.g003
compared to that in the pseudopregnant mouse uterus at 22:00 h on D3.5 (data not shown), right before embryo attachment to the LE for implantation indicated by blue dye reaction [26], suggesting that downregulation of Npl might contribute to the initiation of embryo attachment. Since NPL degrades sialic acid that is involved in cell adhesion [39], it is possible that...
downregulation of Npl could potentially facilitate embryo attachment to the LE for embryo implantation. On the other hand, sialic acid can block the access of antigenic molecules to the cell surface [40] while NPL from C. peffingens can dramatically increase (25 ×) the capacity of B cell antigen presentation [41]. It is possible that NPL might be involved in modulating the uterine immune response during early stages of embryo implantation [42].

In summary, this study demonstrates PR-mediated spatiotemporal expression of Npl in the periimplantation mouse uterus and the nonessential role of Npl in uterine function and embryo development.

References

1. Aisaka K, Igarashi A, Yamaguchi K, Uwajima T (1991) Purification, crystallization and characterization of N-acetylmuraminidase lyase from Escherichia coli. Biochem J 276: 541–546.
2. Aisaka K, Uwajima T (1986) Cloning and constitutive expression of the N-acetylmuraminidase lyase gene of Escherichia coli. Appl Environ Microbiol 51: 552–553.
3. Ohta Y, Shimosaka M, Murata K, Tsukada Y, Kimura A (1986) Molecular Cloning of the N-Acetylmuraminidase Lyase Gene in Escherichia-Coli K-12. Applied Microbiology and Biotechnology 24: 386–391.
4. Meyssig KC, Demko K, Garber GE (1996) Molecular characterization and expression of a N-Acetylneuraminate lyase gene from Trichomonas vaginalis. Mol Biochem Parasitol 76: 289–292.
5. Sommer U, Traving C, Schauer R (1999) The sialate pyruvate–lyase from pig kidney: purification, properties and genetic relationship. Glycocon J 16: 425–435.
6. Schauer R, Sommer U, Kruger D, van Uden H, Traving C (1999) The terminal enzymes of sialic acid metabolism: acylnuraminic pyruvate–lyases. Biosci Rep 19: 373–383.
7. Wu M, Gu S, Xu J, Zou X, Zheng H, et al. (2005) A novel splice variant of human gene NPL, mainly expressed in human liver, kidney and peripheral blood leucocyte. DNA Seq 16: 137–142.
8. Vinr ER, Trov FA (1985) Regulation of sialid acid metabolism in Escherichia coli: role of N-Acetylmuraminidase pyruvate-lyase. J Bacteriol 164: 854–860.
9. Schauer R (1982) Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 48: 131–234.
10. Severson E, Hood DW, Thomas GH (2001) Sialic acid utilization by bacterial pathogens. Microbiol 153: 2081–2022.
11. Vinr ER, Kalviveda KA, Deazo EL, Sternberg SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68: 132–153.
12. Qiuy B, Sheth OI, Hao S, Trenchard B (2011) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv Nutr 3: 468–472.
13. Varia PA (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446: 1023–1029.
14. Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54: 1300–1349.
15. Crook M, Constable S, Lamb P, Rymer J (1997) Elevated serum sialic acid in pregnancy. J Clin Pathol 50: 494–495.
16. Rengy B, Sheth OI, Rao SS (1983) Sialic acid, sialyltransferase and neuraminidase levels in maternal plasma, urine and lymphocytes during pregnancy and post-partum period–a longitudinal study in women. Eur J Obstet Gynecol Reprod Biol 16: 37–46.
17. Abhi MH, Amer NA, Sumerin I (1988) Serum 5-nucleotidease and serum sialic acid in pregnancy. Obstet Gynecol 72: 171–174.
18. Shanidila LN, Ramaswami LS, Shanidila N (1977) Sialic acid concentration in the reproductive organs, pituitary gland and urine of the Indian langur monkey (Presbytis entellus entellus). J Endocrinol 73: 207–213.
19. Drenker HW (1993) Implantation: a cell biological perspective. J Exp Zool 266: 541–558.
20. Cowell TP (1969) Implantation and development of mouse eggs transferred to the uterus of non-progestational mice. J Reprod Fertil 19: 239–245.
21. Ye X, Hama K, Contos JJ, Anidler B, Inoue A, et al. (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435: 194–198.
22. Ye X, Herr DR, Diao H, Rivera R, Chun J (2011) Unique uterine localization and regulation may differentiate LPA3 from other lysophospholipid receptors for its role in embryo implantation. Fertil Steril 95: 2107–2113 e2104.
23. Brown N, Deb K, Paria BC, Das SK, Reese J (2004) Embryo-uterine interactions via the neuroregulin family of growth factors during implantation in the mouse. Biol Reprod 71: 2003–2011.
24. Diao H, Xiao S, Cui J, Chun J, Xu Y, et al. (2010) Progesterone receptor-mediated up-regulation of transthyretin in preimplantation mouse uterus. Fertil Steril 93: 2750–2753.
25. Diao H, Xiao S, Zhao F, Ye X (2010) Uterine luminal epithelial-specific proline-rich acidic protein 1 (PRAPI) as a marker for successful embryo implantation. Fertil Steril 94: 2081–2081 e2081.
26. Diao H, Paria BC, Xiao S, Ye X (2011) Temporal expression pattern of progesterone receptor in the uterine luminal epithelium suggests its requirement during early events of implantation. Fertil Steril 95: 2087–2093.
27. Chen Y, Ni H, Ma XH, Hu SJ, Laan LM, et al. (2000) Global analysis of differential luminal epithelial gene expression at mouse implantation sites. J Mol Endocrinol 37: 137–131.