In vivo hippocampal subfield volumes in bipolar disorder—a megaanalysis from The Enhancing Neuro Imaging Genetics through MetaAnalysis Bipolar Disorder Working Group

Citation for published version:
ENIGMA Bipolar Disorder Working Group 2020, 'In vivo hippocampal subfield volumes in bipolar disorder—A megaanalysis from The Enhancing Neuro Imaging Genetics through MetaAnalysis Bipolar Disorder Working Group', Human Brain Mapping. https://doi.org/10.1002/hbm.25249

Digital Object Identifier (DOI):
10.1002/hbm.25249

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Human Brain Mapping

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

Unn K. Haukvik1,2 | Tiril P. Gurholt2,3,4 | Stener Nerland3,4 | Torbjørn Elvsåshagen2,5,6 | Theophilus N. Akudjedu7,8 | Martin Alda9,10 | Dag Alnæs3,2 | Silvia Alonso-Lana11 | Jochen Bauer12 | Bernhard T. Baune13,14,15 | Francesco Benedetti16,17 | Michael Berk18,19 | Francesco Bettella2 | Erlend Bøen20 | Caterina M. Bonnín21 | Paolo Brambilla22,23 | Erick J. Canales-Rodríguez11 | Dara M. Cannon7 | Xavier Caseras24 | Orwa Dandash25,26 | Udo Dannlowski13 | Giuseppe Delvecchio23 | Ana M. Díaz-Zuluaga27 | Theo G. M. van Erp28,29 | Mar Fatjó-Vilas11 | Sonya F. Foley30 | Katharina Förster13 | Janice M. Fullerton31,32 | José M. Goikolea21 | Dominik Grotegerd13 | Oliver Gruber33 | Bartholomeus C. M. Haarman34 | Beathe Haatveit3,2 | Tomas Hajek9,10 | Brian Hallahan7 | Mathew Harris35 | Emma L. Hawkins35 | Fleur M. Howells36,37 | Carina Hülsmann13 | Neda Jahanshad38 | Kjetil N. Jørgensen4,3 | Tilo Kircher39,40 | Bernd Krämer33 | Axel Krug39,40,41 | Rayus Kuplicki42 | Trine V. Lagerberg2 | Thomas M. Lancaster30,43 | Ulrik F. Malt6 | Colm McDonald7 | Andrew M. McIntosh35 | Genevieve McPhilemy7 | Dennis van der Meer3,47 | Ingrid Melle3,2 | Elisa M. T. Mellon16,17 | Philip B. Mitchell44,48 | Leila Nabulsi7 | Igor Nenadic39,40 | Viola Oertel49 | Lucio Oldani22 | Nils Opei13 | Maria C. G. Otaduy50 | Bronwyn J. Overs31 | Julian A. Pineda-Zapata51,27 | Edith Pomarol-Clotet11 | Joaquim Radua52,53,54 | Lisa Rauer33 | Ronny Redlich13 | Jonathan Repple13 | Maria M. Rive55 | Gloria Roberts44,48 | Henricus G. Ruhe56,55,57 | Lauren E. Salminen38 | Raymond Salvador11 | Salvador Sarró11 | Jonathan Savitz42,58 | Aart H. Schene57,56 | Kang Sim59,60,61 | Marcio G. Soeiro-de-Souza62 | Michael Stäblein49 | Dan J. Stein36,37,63 | Frederique Stein39,40 | Christian K. Tamnes2,4,3,64 | Henk S. Temmingh36,65

Unn K. Haukvik and Tiril P. Gurholt should be considered joint first authors.
Sophia I. Thomopoulos

Dick J. Veltman

Eduard Vieta

Lars T. Westlye

Heather C. Whalley

Philipp G. Sämann

Paul M. Thompson

Christopher R. K. Ching

Ole A. Andreassen

Ingrid Agartz

ENIGMA Bipolar Disorder Working Group

1Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
2Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
3Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
4Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
5Department of Neurology, Oslo University Hospital, Oslo, Norway
6Institute of Clinical Medicine, University of Oslo, Norway
7Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
8Institute of Medical Imaging & Visualisation, Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK
9Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
10National Institute of Mental Health, Kecany, Czech Republic
11FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Spain
12Institute of Clinical Radiology, University of Münster, Münster, Germany
13Department of Psychiatry, University of Münster, Münster, Germany
14Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
15The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
16Psychiatry and Clinical Psychobiology, Scientific Institute Ospedale San Raffaele, Milan, Italy
17University Vita-Salute San Raffaele, Milan, Italy
18Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia
19Orygen, The National Centre of Excellence in Youth Mental Health and Centre for Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
20Psychosomatic and CL Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
21Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona IDIBAPS, CIBERSAM, Barcelona, Spain
22Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
23Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
24MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
25Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
26Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
27Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Antioquia, Colombia
28Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
29Center for the Neurobiology of Learning, University of California Irvine and Memory, Irvine, California
30Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
31Neuroscience Research Australia, Randwick, New South Wales, Australia
32School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
33Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
34Division of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
35Division of Psychiatry, University of Edinburgh, Edinburgh, UK
36Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, Western Cape, South Africa
37Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
38Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, California
39Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
40Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
Abstract

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder working group, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's $d = -0.20$), cornu ammonis (CA)1 ($d = -0.18$), CA2/3 ($d = -0.11$), CA4 ($d = -0.19$), molecular layer ($d = -0.21$), granule cell layer of dentate gyrus ($d = -0.21$), hippocampal tail ($d = -0.10$), subiculum ($d = -0.15$), presubiculum ($d = -0.18$), and hippocampal amygdala transition area ($d = -0.17$) compared to...
HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.

KEYWORDS
bipolar disorder subtype, hippocampus, large-scale, lithium, psychosis, structural brain MRI

1 | INTRODUCTION

Bipolar disorders (BD) affect over 1% of the population worldwide (Grande, Berk, Birmaher, & Vieta, 2016). Clinical characteristics and severity of the disorder vary; while some patients are disabled, others live normal lives between mood episodes; some experience psychotic episodes whereas others do not, and medication regimes and responses differ widely. This clinical heterogeneity may hamper the search for consistent underlying pathophysiological disease mechanisms that remain elusive despite widespread research efforts.

Smaller hippocampal volumes have been reported in BD compared to healthy controls (HC) in magnetic resonance imaging (MRI) studies (Haukvik et al., 2015; Hibar et al., 2016). The hippocampus is a key structure in the limbic system and is involved in multiple cognitive functions including pattern separation/completion processes that contribute to learning and episodic memory (Squire & Wixted, 2011),
emotion, as well as visuospatial orientation (Fanselow & Dong, 2010). Of specific interest in BD, disrupted pattern separation and completion processes are hypothesized to underlie the formation of delusional thought content (Tamminga, Stan, & Wagner, 2010). Importantly, the hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of the disorder. Post mortem neuropathological investigations of individuals with BD show lower nonpyramidal somal volume in the cornu ammonis (CA) 2/3 region (Konradi et al., 2011) and fewer interneurons in the parasubiculum (Wang et al., 2011) region. Furthermore, individuals with BD show greater neuronal counts in the CA1 and subiculum and higher CA1 oligodendrocyte counts compared to HC (Malchow et al., 2015). Other postmortem studies have reported negative findings (Harrison, Colbourne, & Harrison, 2020), which highlights a lack of consensus and need for more precise interrogation.

MRI studies of hippocampal subfield volumetry in BD have been inconsistent (Haukvik, Tamnes, Soderman, & Agartz, 2018). Among the two largest studies to date (each comprising approximately 200 individuals with BD and 300 HC), one study reported smaller volumes in the CA2/3, CA4/dentate gyrus (DG), presubiculum, and subiculum (Mathew et al., 2014), and the other reported smaller CA2/3, CA4/DG, subiculum, and CA1, but no detectable abnormalities in presubicular volume (Haukvik et al., 2015) in BD compared to HC, respectively. Furthermore, subfield volume reductions in the left CA4, granular cell layer of the DG, molecular layer, and bilateral tail volumes were reported more pronounced in BD1 than BD2 participants (Cao et al., 2017). Although limited, such evidence suggests that differentiation in subfield hippocampal volumetry may depend on BD subtypes. Hippocampal subfield volumes may also be affected by medication use. Lithium treatment has been associated with less pronounced volume deficiencies in CA2/3, CA4/DG and subiculum (Haukvik et al., 2015; Mathew et al., 2014), and CA1 (Hartberg et al., 2015). Stem cell research has shown that lithium increases progenitor cell proliferation in the DG, lending support to the possible neuroprotective and neurotrophic effects of lithium inferred from other MRI studies (Ferenzszajn-Rochowiak & Rybakowski, 2016). Increased angiogenesis and neurogenesis in the DG have been associated with the use of antidepressant medications (selective serotonin reuptake inhibitors) in individuals with major depressive disorder (Boldrini et al., 2012). Antipsychotic medication use has been linked to elevated hippocampal neurogenesis (olanzapine) and increased cell-proliferation (clozapine) (Balu & Lucki, 2009), but the results on hippocampal volume from human MRI (Bodnar et al., 2016) and animal (Crum et al., 2016; Schmitt, Weber, Jatzko, Braus, & Henn, 2004) studies are inconclusive.

Given the small size of the hippocampal subfields, it is challenging to obtain valid and reliable hippocampal subfield volume estimates from automated MRI-based processing tools. Recently, by combining cyto- and chemo-architectural features with macroscopic landmarks, segmentation of the hippocampal subfields from MR-images has improved, and high-resolution ex-vivo data have been used to develop detailed hippocampal subfield atlases (Iglesias et al., 2015), which have proven stable across scanners and time points (Brown et al., 2020). Despite such advances and the refinement of automated segmentation protocols (Iglesias et al., 2015; Pipitone et al., 2014; Yushkevich et al., 2010; Yushkevich et al., 2015) it remains challenging to reproduce findings across studies (Haukvik et al., 2018). This discrepancy could reflect differences in clinical characteristics, but also methodological differences between segmentation algorithms (e.g., discrepancies in subfield delineation which may yield different volume estimates), field strength differences (1.5T, 3T, or higher) and the use of T1 and/or T2 weighted images (Mueller et al., 2018).

The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder (ENIGMA BD) Working Group has brought BD researchers together from around the world to address the limitations of previous smaller scale MRI studies. More recently, ENIGMA groups have moved beyond cohort level meta-analyses to pooled, or "mega"-analyses, where anonymized and unidentifiable individual-level data are aggregated in a central location, allowing more flexible statistical design (Boedhoe et al., 2018). By applying publicly available, harmonized protocols across retrospective samples, mega-analyses become feasible, offering benefits over meta-analyses of studies based on different processing/analysis methodologies (Boedhoe et al., 2018). We previously reported on smaller whole hippocampal volumes in BD compared to HC (Hibar et al., 2016), and in other psychiatric disorders including major depressive disorder (Schmaal et al., 2016), and schizophrenia (van Erp et al., 2016). Moreover, prior studies (Cao et al., 2017; Haukvik et al., 2015; Mathew et al., 2014) of hippocampal subfield volumes in BD used a previous version of the FreeSurfer segmentation algorithm (Van Leemput et al., 2009), and a subsequent meta-analysis (Haukvik et al., 2018) did not allow for analyses of individual medication effects. Here we extend previous studies by using an individual mega-analytic approach and a newer more anatomically robust hippocampal subfield FreeSurfer segmentation algorithm to determine whether alterations in specific hippocampal subfields can explain the previously reported lower overall hippocampal volume in BD. By this, we also address the need for replication of neuroimaging studies in clinical samples (Open Science Collaboration, 2015; Thompson et al., 2020). We include secondary analyses of the effects of diagnostic subtype, medication use, and clinical characteristics on hippocampal subfield volumes. In the largest study to date—with pooled data from over 4,600 participants—we hypothesized a robust pattern of lower hippocampal subfield volumes in individuals with BD compared to HC. These deficits were expected to be more severe in BD1 than in BD2. We also expected to find evidence for neuroprotective effects of lithium. Determining the specific pattern of subfield volume reduction in BD may provide further insights into the pathophysiological mechanisms of the disorder.

2 METHODS AND MATERIALS

2.1 Subject samples

The ENIGMA BD hippocampal subfields project included MRI data and clinical characterization of 4,698 subjects (57% female) from 23 sites worldwide (27 scanners), with n = 1,472 individuals with BD (60% female) and n = 3,226 HC (56% female). BD diagnoses were assessed
according to the Diagnostic and Statistical Manual of Mental Disorders, fourth version (DSM-IV) or the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). The sample was split into BD1 ($n = 1,079, 58\%$ female) or BD2 ($n = 353, 65\%$ female) for DSM-IV classified patients. The age range was 18–70 years. Current psychotic symptoms were assessed with the Positive and Negative Symptoms Scale (PANSS). Lifetime psychosis was obtained as a yes/no variable across sites. Clinical and demographic information, as well as estimated current medications are presented in Table 1, whereas site-specific information is shown in Table S1.

All subjects provided written informed consent and all participating sites obtained prior approval from their local ethics committees and institutional review boards, including approval to share anonymized data. The study was conducted in accordance with the Helsinki declaration.

2.2 | Image processing and analysis

Structural T1-weighted brain MRI scans were obtained at 23 sites following locally optimized scanner protocols. The majority of scans were acquired on 3T scanners ($n = 21$ scanners/3,766 scans) and the remaining were scanned at 1.5T ($n = 6$ scanners/932 scans), with all diagnostic groups represented across field strengths. Image acquisition parameters for each site are provided in Table S2. Images were processed locally with the automated and validated FreeSurfer software (http://www.freesurfer.net) following standardized ENIGMA protocols for harmonization and quality control across multiple sites (http://enigma.ini.usc.edu; Note S1). Subfield volumes were obtained using the hippocampal subfield segmentation algorithm in FreeSurfer v 6.0.0 (Iglesias et al., 2015) based on information from manual delineations of ultrahigh resolution (~0.1 mm isotropic) ex vivo MRI data. We obtained volumes for 12 subfield regions (CA1, CA2/3, CA4, molecular layer, granule cell layer of the dentate gyrus (GC ML DG; FreeSurfer naming convention), hippocampal tail, subiculum, presubiculum, parasubiculum, fimbria, hippocampal fissure, and the hippocampal amygdala transition area (HATA)), the whole hippocampus, and estimated intracranial volume (ICV). The segmented volumes were assessed for outliers at each site following standardized ENIGMA protocols. Any outlier volumes were visually inspected and removed if the segmentation quality was judged to be inadequate (Note S1).

Table 1 Demographic and clinical information

	Cases ($N = 1,472$)	Controls ($N = 3,226$)	χ^2/Wilcoxon rank-sum test	p-Value
Females (%)	884	1,793	8.1	.0045
Age (years)a	37.9	33.3	4.6	<.001
AOO (years)b	23.2	33.3	9.3	.36
DOI (years)b	15.1	15.1	10.8	.32
PANSS positivec	9.1	9.1	3.1	.64
PANSS negatived	9.4	9.4	3.3	.64
Lifetime psychosise	403/369/700	1,079/353/36		
BD1/BD2/BD-NOSf	1,079/353/36	1,079/353/36		
Medication				
Lithiume	363/749/360	363/749/360		
Antipsychoticse	549/614/309	549/614/309		
Antiepilepticse	363/495/614	363/495/614		
Antidepressantse	278/580/614	278/580/614		

Abbreviations: AAO, age at onset; DOI, duration of illness; BD, bipolar disorder; HC, healthy controls; NOS, not otherwise specified; PANSS, Positive and Negative Syndrome Scale.

aNot normal—applied two-sided Wilcoxon rank sum test.

bTwo hundred and nineteen patients with missing AAO/DOI.

cNine hundred and sixty-two patients missing PANSS positive score.

dNine hundred and sixty-four patients missing PANSS negative score.

eYes/no/missing.

fFour patients missing diagnostic category (BD1, BD2, BD-NOS).
2.3 | Statistical analyses

All statistical analyses were performed in R (version 3.5.2; http://R-project.org). Group differences in demographic and clinical variables were assessed with chi-squared tests for categorical data and t-tests/Wilcoxon rank-sum tests (Note S2) for normally/non-normally distributed continuous data, respectively. To assess the normality of distributions, we used the Shapiro–Wilk normality test. We also evaluated the distribution of the participants’ whole hippocampus and hippocampal subfield volumes for normality (Figures S1 and S2).

Individual tabular data from all sites were pooled on a secure server at the University of Oslo for centralized analysis. For the main case–control analysis, a linear mixed-effects (LME) model was used to assess diagnostic differences in the whole hippocampus and hippocampal subfields volumes, with sex, age, age², sex*age, sex*age², and ICV as fixed-effects variables, and with scanner nested in field strength as random-effects variables. We included the age² term because the hippocampus shows a nonlinear age-related trajectory with accelerating atrophy at more advanced age (Fjell et al., 2013). We used the lme-function from the nlme-package to fit the LME models. Because the left and right hemisphere subfield volumes were highly correlated, and we did not have an a priori hypothesis on laterality, the left and right hemisphere volumes of each subfield were combined (summed) in order to reduce the number of tests and increase statistical power. For completeness, we investigated the model for each hemisphere separately. We also performed analyses with field strength added as a fixed factor to address possible confounding effects of field strength on the volume results.

Follow-up analyses of BD1 versus BD2 subgroup differences were performed using similar LME models that included sex, age, age², sex*age, sex*age², and ICV as fixed-effects variables, and scanner nested in fields strength as random-effects variables. Firstly, we compared BD1 and BD2 to each other, and then secondly, we compared each BD subtype to HC in separate analyses, unless otherwise stated. We used this approach to determine the effects of lifetime psychosis (i.e., the occurrence of any episode of psychosis during mood episodes throughout life), which cuts across the BD1/BD2 categorization. In separate analyses, we analyzed associations between current positive or negative psychotic symptoms, duration of illness, age at illness onset and subfield volumes among patients only, while adjusting for BD1/BD2 categorization. Finally, within individuals with BD1, we analyzed the effects of current medication use for each group of medication (i.e., lithium, antipsychotics, antidepressants, or antiepileptics), and performed a joint examination of the effects of all medication groups. Current medication use was stratified into users/non-users based on the available medication data from each site and for each group of medication. In the first set of medication analyses, we directly compared medication users with non-users. In the second set of medication analyses, users and non-users were separately compared to HC. We limited the joint examination of all medication groups to patients only. Medication analyses were restricted to the BD1 group to avoid potential confounding effects of the different medication regimes, clinical characteristics, and hippocampal volumetry associated with BD1 and BD2. We did not perform separate medication analyses in the BD2 group, as it was smaller and had limited information on medication.

We computed Cohen’s d effect size estimates from the t-statistics from the LME models (Nakagawa & Cuthill, 2007). To adjust for multiple comparisons, Bonferroni correction for N tests with α = .05 was applied, where N is the number of tests for the combined right and left hemisphere subfields (and whole hippocampus) which gives a significance threshold at p = .0038 (13 tests). We used forest plots to visualize possible site differences (Note S3).

3 | RESULTS

3.1 | Demographic variables

The BD group was significantly older (Δ = 4.6/p < .001) and included more women (χ² = 10.8/p = .0045) than the HC group. Demographic and medication information are listed in Table 1 and shown in Figure S3 (for site-specific information see Table S1).

Among the individuals with BD1 included in the medication analyses, 165 received antipsychotics, 151 received lithium, 42 received antiepileptics, and 28 received antidepressants. In addition, 168 received lithium in combination with antipsychotics, antiepileptics, antidepressants, or a combination of the three, and 196 received antipsychotics, antiepileptics and/or antidepressants in different combinations (Figure S4 for details). Demographic variables for the BD1 group are listed in Table S3.

3.2 | Bipolar disorder versus healthy control differences in hippocampus subfield volumes

In the main LME analysis, individuals with BD showed significantly smaller whole hippocampus volume (Cohen’s d = −0.20, p = 3.1e−10) compared to HC (Figure 1a, Table S4). Smaller volumes were present across most subfields, including the hippocampal tail, subiculum, presubiculum, CA1, CA2/3, CA4, molecular layer, GC ML DG, and HATA, with the largest effect sizes for the molecular layer (d = −0.21) and GC ML DG (d = −0.21). Split hemisphere analyses showed a similar pattern of subfield volume reductions in the left and right hippocampus (Figure S5a). Forest plots illustrate the patterns of subfield volume reductions across sites (Figure S6). The introduction of a fixed term for field strength resulted in no significant effect for the latter and did not alter the group analysis results from the main model (data not shown).

3.3 | Bipolar disorder subtype and clinical characteristics effects on subfield volume

Follow-up analyses of BD-subtypes showed no significant volumetric differences between BD1 and BD2 for the whole hippocampus or any
of the subfields (Table S5). Smaller whole hippocampus volume was found in BD1 (Cohen’s $d = -0.22$, $p = 8.9 \times 10^{-11}$) but not BD2 ($d = -0.11$, nominally significant) compared to HC (Figure 1b; Table S6a). In BD1, volumes were smaller across most subfields, including the hippocampal tail, subiculum, presubiculum, CA1, CA2/3, CA4, molecular layer, GC ML DG, and HATA. The effect sizes were slightly larger than in the main analysis (including all BD subtypes), with the largest effects for the GC ML DG ($d = -0.23$) and molecular layer ($d = -0.23$). In BD2, there were nominally significant findings for CA1, CA4, GC ML DG, and molecular layer volumes when compared to HC. Split hemisphere analyses showed a similar pattern of subfield volume alterations for both hemispheres (Figure S5b; Table S6b,c). Forest plots of BD1 and BD2 subfield volumes when compared to HC also showed differences across sites (Figures S7 and S8).

In follow-up analyses of the whole BD group, patients with and without a history of lifetime psychosis (available in 403 patients versus 369 without) both showed similar effect patterns compared to HC across subfield volumes (Figures 2 and S9; Table S7). Current psychosis symptoms, age at onset, and illness duration were not associated with any of the hippocampal subfield volumes (Tables S8–S11).

3.4 Medication effects

Individuals with BD1 taking lithium at the time of scan ($n = 319$) showed significantly larger volumes for the whole hippocampus ($d = 0.22$, $p = .0028$), molecular layer ($d = 0.23$), GC ML DG ($d = 0.22$), and smaller hippocampal fissure ($d = -0.24$), compared to those not taking lithium ($n = 464$) after applying Bonferroni correction (Table S12). Individuals with BD1 and taking lithium did not show significant volume differences in any subfield or for the whole hippocampus compared to HC. Conversely, individuals with BD1 who were not on lithium showed significant volume reductions compared to HC. Importantly, the effect sizes from the BD1-nonlithium versus the HC analysis were greater than the effect sizes from the main analysis comparing all BD subjects with HC, with largest effect sizes for the molecular layer ($d = -0.32$), GC ML DG ($d = -0.30$), CA1 ($d = -0.27$), CA4 ($d = -0.27$), presubiculum ($d = -0.28$), and whole hippocampus ($d = -0.31$) (Figure 3; Table S13). These effects were similar bilaterally (Figure S10).

Among individuals with BD1, antipsychotics users ($n = 472$) showed significantly smaller presubiculum volume than antipsychotics non-users ($n = 385$) ($d = -0.24$, $p = 7e^{-04}$) (Table S14). Significant

FIGURE 1 Hippocampal subfield volume differences between patients with bipolar disorder and healthy controls. Notes: (a) all bipolar disorder patients compared to healthy controls, (b) patients with bipolar 1 ($n = 1,079$) and bipolar 2 ($n = 353$) compared to healthy controls. Significant differences indicated by *. CA3 implies CA2/3. CA, cornu ammonis; GC ML DG, granule cell layer of dentate gyrus; HATA, hippocampal amygdala transition area; HP, hippocampus.
volume reductions were found across subfields in individuals with BD1 who used antipsychotics relative to HC, with largest effects in presubiculum ($d = -0.3$), molecular layer ($d = -0.28$), GC ML DG ($d = -0.27$), and CA4 ($d = -0.24$) (Figure S11a; Table S15) and these effects were bilateral (Figure S12a). Individuals with BD1 who did not use antipsychotics had smaller volumes of the GC ML DG ($d = -0.16$) and CA4 ($d = -0.15$) compared to HC. The effect sizes for the volume reductions were larger in individuals with BD1 who used antipsychotics than in non-users, when compared to HC.

Individuals with BD1 who used antiepileptics ($n = 256$) had significantly smaller hippocampal tail ($d = -0.25$) volumes compared to individuals with BD1 who did not use antiepileptics ($n = 309$) (Table S16). Compared to HC, both individuals with BD1 who used and who did not use antiepileptics showed volume alterations similar to those detected with the main model (All BD versus HC)—with larger effect sizes among individuals with BD1 who used antiepileptics (Figures S11b and S12b; Table S17).

Antidepressant use was not associated with specific subfield volume differences among individuals with BD1 (Table S18), and both antidepressant users ($n = 155$) and nonusers ($n = 410$) showed a similar pattern of smaller subfield volumes compared to HC (Figures S11c and S12c; Table S19).

Finally, to better understand the potential medication effects in individuals on more than one medication at the time of scan, a model in which all medications were included as fixed covariates was used to determine the potential effect of each medication while controlling for all other medications. We had complete medication information for a subset of individuals with BD1 ($n = 565$), of which $n = 53$ were unmedicated at the time of scanning. Of the medicated patients ($n = 512$), there were $n = 181$ lithium users, $n = 343$ antipsychotics users, $n = 155$ antiepileptics users, and $n = 256$ antidepressant users in different combinations (see Figure S13 for details). Antipsychotics users showed significantly smaller presubiculum volume ($d = -0.28$) compared to non-users when adjusting for lithium, antiepileptics, and antidepressant use. No other medication showed a significant volume effect when simultaneously adjusting for all other medications (Table S20).
This largest study of hippocampal subfield volumes in BD to date, had five key findings: (a) individuals with BD had smaller volumes across most subfields compared to HC, (b) individuals with the BD1 subtype showed largest effect sizes when compared to HC, (c) volumes in lithium users did not differ from HC, (d) antipsychotics and antiepiletics users showed smaller volumes compared to non-users, and (e) altered volumes were not associated with other clinical characteristics. By pooling data sets to include over 4,600 participants, these results confirm and extend our current knowledge of hippocampal structure in BD.

The main finding of smaller subfield volumes across the hippocampal subfields in BD is partly in line with the results from prior studies (Cao et al., 2017; Haukvik et al., 2015; Mathew et al., 2014) and one meta-analysis (Haukvik et al., 2018). In accordance with previous heterogeneous results, the forest plots demonstrate a high degree of heterogeneity across the included sites, which may help explain the disparate findings across prior studies. We found largest effect sizes for volume differences between BD and HC for the molecular layer, presubiculum, GC ML DG, CA4, and CA1, in line with previous findings (Haukvik et al., 2018). The molecular layer was not delineated as an independent structure in the earlier version of the FreeSurfer hippocampal subfield segmentation algorithm (Van Leemput et al., 2009), which was used in most prior studies. However, Cao et al. found smaller molecular layer volumes in BD with the same subfield segmentation as used in the present study (Cao et al., 2017). The molecular layer stretches as a dark band from the DG along the CA subfields to the subiculum. It is relatively cell free (Iglesias et al., 2015) but contains dendrites from DG neurons (Amaral, Scharfman, & Lavenex, 2007). We may speculate that the smaller molecular layer could reflect loss of dendritic connections or DG neurons of which hyperexcitability has been linked to successful lithium treatment in BD (Mertens et al., 2015; Stern et al., 2018). Some (Mathew et al., 2014), but not all (Cao et al., 2017; Haukvik et al., 2015), prior studies have reported smaller presubiculum volumes in BD. The presubiculum is part of the outflow region of the hippocampus— together with the parasubiculum and the more well-defined subiculum subfields—and is involved in visuospatial processing and orientation (Dalton & Maguire, 2017; Simonnet et al., 2017). As expected from prior findings, individuals with BD also showed lower volumes in the CA4, CA1, GC ML DG, and in the subiculum (Haukvik et al., 2018). Finally, we found significantly lower CA2/3 volume in BD, as hypothesized on the basis of previous studies (Cao et al., 2017; Haukvik et al., 2015; Mathew et al., 2014) and the presumed role of this subfield in the pattern completion thought to underlie the formation of psychotic thought content (Tamminga et al., 2010).

We found that the effect sizes for the case-control volume differences across the hippocampus were larger in BD1 than BD2. This is in line with the results from Cao et al. (2017), and may suggest a stronger hippocampus related neurobiological component in BD1 than in BD2. However, given the lack of significant differences in the direct BD1 versus BD2 comparison, it could also reflect the smaller number of individuals with BD2. The BD2 results may also be confounded by the greater clinical heterogeneity that is displayed by the BD2 compared to the BD1 subtype (Phillips & Kupfer, 2013).

Medication use, in particular the use of lithium, was associated with the subfield volumes across the hippocampus, which confirms and extends results from prior studies (Bearden et al., 2008; Hartberg et al., 2015; Simonetti et al., 2016). Lithium users did not show significant volume deficiencies compared to healthy controls, whereas the nonusers did. These results may reflect a neuroprotective effect of lithium on hippocampal subfield volumes, which is in line with previous whole brain MRI volumetric studies (Berk et al., 2017). In accordance with this understanding are also animal studies showing enhanced neural proliferation (Zanni et al., 2017), stem cell studies showing increased progenitor cell proliferation (Ferenzsztajn-Rochowiak & Rybakowski, 2016), the increased numbers of neurons and glia in the DG (Rajkowska et al., 2016) following lithium use shown in postmortem studies. Furthermore, we observed that antipsychotic or antiepileptic medication use was associated with smaller subfield volumes, and the effects of antipsychotic use on the presubiculum volume remained significant after controlling for all other psychopharmacological use. The smaller volumes are consistent with previous BD studies showing a negative association between antipsychotics or antiepileptics and neurostructural measures (Fusar-Poli et al., 2013; Hibar et al., 2016). Antipsychotics have been shown to increase hippocampal neurogenesis and cell proliferation (Balu & Lucki, 2009), but the effects on hippocampal volumes from human MRI (Bodnar et al., 2016) and animal (Crum et al., 2016; Schmitt et al., 2004) studies have been mixed. Our results, taken together with the lack of an association between duration of illness, current or lifetime psychosis, or age at illness onset on any of the subfield volumes, may suggest that putative neurogenic and cell-proliferative effects of antipsychotic medication were not large enough to affect hippocampal subfield volumes. We did not observe any association between subfield volumes and anti-depressant medication, despite previous reports of subfield-volume enlargement in patients with major depressive disorder after selective serotonin reuptake inhibitor or serotonin-nor-adrenalin reuptake inhibitor treatment (Katsuki et al., 2020; Maller et al., 2018). This could be due to confounding by other medication use or symptom pathophysiology or severity characteristics within our sample.

Certain limitations of our study should be noted. We were not able to control for possible confounding factors such as alcohol or substance abuse, IQ, number of depressive or manic episodes, or current mood state, as these variables were only available for some subsets of the participants and were not directly comparable as they were obtained with different cognitive- and psychometric tests. We could not control for socioeconomic status or childhood trauma, or other comorbid brain disorders, which may also influence hippocampal volume (Aas et al., 2014; Teicher, Anderson, & Polcari, 2012). Medication effects were studied in current users versus current non-users since information on treatment duration or dosages was not available. Information on current medication status was only available in a subsample, which reduced the power to detect differences among BD1
patients when stratified on medication group. The multisite MRI acquisition invariably includes the use of different scanners and scanning parameters, as well as different field strengths (1.5T and 3T). We only had available T1-weighted MRI data, and a combination of T1- and T2-weighted MRI data has been reported to increase segmentation accuracy (Iglesias et al., 2015). All participating sites included both BD patients and HC (except for the Medellin, one of the Deakin sites, and both Milan sites, which lacked HC). We controlled for scanners and magnetic field strengths by including them as random-effects in the model, which may not fully account for differences across sites. While standardized processing pipelines have been shown to reduce cross-site variability, true cross-site harmonization is only possible through coordinated prospective data collection.

Major strengths of this study include the large sample size, the use of ENIGMA-standardized processing pipelines to derive hippocampal subfield volumes across sites, and the mega-analysis of pooled data. This study design helps to overcome some of the key limitations of classic, literature-based meta-analyses (e.g., the combination of effect sizes from studies that may differ widely with respect to processing and analysis methodology) and previous smaller-scale studies with limited statistical power (Paulus & Thompson, 2019; Westlye, Alnaes, van der Meer, Kaufmann, & Andreassen, 2019). By pooling standardized brain measures across a diverse set of BD neuroimaging studies, we have created a more ecologically valid cohort, which may provide a more replicable picture of hippocampal subfield alterations in BD as the illness presents around the world.

In conclusion, lower overall hippocampal volumes in BD were traced to smaller volumes across the majority of the hippocampal subfields. The effects were largest in the BD1 group, not specific to current or lifetime psychosis, and influenced by medication use. The lack of detectable group differences between lithium users and HC supports the notion of a possible neuroprotective role of lithium in BD. These results demonstrate the power of large-scale multisite efforts to disentangle clinical and methodological heterogeneity and address the need for replication studies. Given the overlapping findings of lower whole hippocampal volumes in the largest neuroimaging ENIGMA studies of BD (Hibar et al., 2016), major depression (Schmaal et al., 2016), and schizophrenia (van Erp et al., 2016), further studies of hippocampal subfields may allow for neurobiological differentiation across major mental illnesses.

ACKNOWLEDGMENTS

ENIGMA Core: NIH grant U54 EB020403 from the Big Data to Knowledge (BD2K) Program; R01MH117601, R01AG059874; T32AG058507; 5T32MH073526. TOP: The Research Council of Norway (grant numbers 223273, 213700, 250358, 288083); KG Jebsen Stiftelsen; South-Eastern Norway Regional Health Authority (grant number 2017097; 2017112). NUI Galway: Funded by the Health Research Board (HRA-POR-324) awarded to Dana M. Cannon, PhD. Dalhousie: The Halifax studies were supported by funding from the Canadian Institutes of Health Research (103703, 106469, and 142255), Nova Scotia Health Research Foundation, Dalhousie Clinical Research Scholarship to T. Hajek, Brain & Behavior Research Foundation (formerly NARSAD); 2007 Young Investigator and 2015 Independent Investigator Awards to T. Hajek. Deakin University: Supported by an unrestricted grant from AstraZeneca. MB is supported by a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellowship (1059660 and APP1156072). FIDMAG: Generalitat de Catalunya: 2017SGR1271; Instituto de Salud Carlos III (co-funded by the European Regional Development Fund/European Social Fund): MSII16/00018, CD16/00264, CD18/00291, P118/00810, and P118/00877. Milan: PB was partially supported by a grant from the Italian Ministry of Health (RF-2016-02364582). Cardiff: Recruitment was supported by the National Centre for Mental Health (NCMH) funded by the Health and Care Research Wales and the Bipolar Disorder Research Network (BDRN), and funded through seedcorn funding from Cardiff University and a NARSAD Young Investigator Award to XC (ref. 17319). MNC: Funded by the German Research Foundation (SFB-TR58, Project C09 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the Medical Faculty of Münster (grant Dan3/012/17 to UD and grant SEED11/18 to NO). Muenster: Funded by the German Research Foundation (DFG), Udo Dannlowski (co-speaker FOR2107; DA 1151/5-1, DA 1151/5-2). Marburg: Funded by the German Research Foundation (DFG), Tilo Kircher (speaker FOR2107; DFG grant numbers KI 588/14-1, KI 588/14-2), Axel Krug (KR 3822/5-1, KR 3822/7-2). Igor Nenadic (NE 2254/1-2), Carsten Konrad (KO 4291/3-1). Medellin/GPSi: Supported by PRISMA UT—Colciencias and Convocatoria Programática Ciencias de la Salud 2014-2015 by CODI-Universidad de Antioquia U de A. OUS: The Research Council of Norway; South-Eastern Norwegian Regional Health Authority (2014097); Oslo University Hospital—Rikshospitalet; the Ebbe Fræland Foundation; a research grant from Mrs. Throne-Holst. Sydney/UNSW: Supported by the Australian National Medical and Health Research Council (Program Grant 1037196; Project Grants 1066177 and 1063960), and the Lansdowne Foundation. We also acknowledge the Janette Mary O’Neil Research Fellowship (to JMF). CLING/HMS: The CiLiNG study sample was partially supported by the Deutsche Forschungsgemeinschaft (DFG) via the Clinical Research Group 241 “Genotype-phenotype relationships and neurobiology of the longitudinal course of psychosis,” TP2 (PI Gruber; http://www.kfo241.de/GR 1950/5-1). Groningen: Funded by EU-FP7-HEALTH-222963 “MOODINFLAME” and EU-FP7-PEOPLE-286334 “PSY-CHAID”. BFS: Supported by IMAGE-MEND, which received funding from the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement no. 602450. This article reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein. Also supported by a Wellcome Trust Strategic Award 104036/2/Z/14/ Z. Cape Town: Supported by the National Research Foundation, South Africa and University Research Committee, University of Cape Town. LIBR: Supported by the William K Warren Foundation, the NIMH: R21MH113871, and the NIGMS: P20GM121312. Frankfurt: Received no specific grant from any funding agency, commercial or not-for-profit sectors. Amsterdam: Netherlands Organization for Health Research and Development (ZonMw), Program Mental Health,
Education of Investigators in Mental Health (OOG; #100-002-034). NWO/ZonMW VENI-Grant #016.126.059. Singapore: Funded by the Singapore Bioimaging Consortium (RP C-009/2006) research grant awarded to Kang Sim. USP 3T: FAPESP. Hospital Clinic: FIS, PERIS, ISCIII. PERIS grant from Departament de Salut de la Generalitat de Catalunya (SLT002/16/00331). Miguel Servet II Research Contract (CPI19/00009) and Research Project (PI19/00394) from Instituto de Salud Carlos III, FEDER Funds/European Regional Development Fund—a way to build Europe. Hippocampal Subfield Protocol Development Team: Dr. van Erp reports funding by U54EB020403 and R01MH116147. Milan-2: Italian Ministry of Health grant RF-2011-02350980.

This work was performed on Services for sensitive data (TSD), IT-department (USIT), University of Oslo, Norway, with resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway.

DISCLOSURE OF INTERESTS
UKH, TPG, SN, TNA, TH, MA, DA, DMC, SA, JB, BTB, FB, FB, CMB, PB, EJC, XC, OD, UD, GD, AMD, MF, SFF, KK, JMF, JMG, DG, OG, BCH, BH, BH, MAH, ELH, FMH, CH, KNJ, TK, BK, AK, RK, TVL, TML, RKL, VL, CLJ, CM, EMTM, GM, IM, PBM, LN, IN, VO, LO, NO, MCO, BJO, JAP, EP, JR, LR, RR, JR, MMR, GR, HGR, LES, RS, SS, JS, AHS, KS, MGS, MS, FS, CKT, HST, SIT, DvdM, DJV, TGMvE, EV, LW, LTW, HCW, PGS, and IA declare no conflicts of interest.

MB: was supported by an unrestricted grant from AstraZeneca; TE, UFM, EB: has received speaker’s fees from Lundbeck AS, and Janssen Cilag; NJ, PMT: MPI of a research grant from Biogen, Inc. for work unrelated to the contents of this manuscript; CRKC: is partially funded by a Biogen Grant (to NJ and PMT) for research unrelated to the contents of this manuscript. DJS: has received research grants and/or honoraria from Lundbeck and Sun; OAA: has received speaker’s honorarium from Lundbeck, and is a consultant to Health-Performance Computing and Data Storage in Norway.

DATA AVAILABILITY STATEMENT
The datasets from this study will not be made publicly available as we do not have approvals for sharing clinical data.

ORCID
Unn K. Haukvik Ⓡ https://orcid.org/0000-0002-0363-4127
Tiril P. Gurholt https://orcid.org/0000-0002-1272-7616
Bernd Krämer https://orcid.org/0000-0002-1145-9103
Thomas M. Lancaster https://orcid.org/0000-0003-1322-2449
Igor Nenadić https://orcid.org/0000-0002-0749-7473
Joaquim Radua https://orcid.org/0000-0003-1240-5438
Ronny Redlich https://orcid.org/0000-0002-7018-4525
Jonathan Repple https://orcid.org/0000-0003-1379-9491
Raymond Salvador https://orcid.org/0000-0001-5557-1562
Sophia I. Thomopoulos https://orcid.org/0000-0002-0046-4070
Lars T. Westlye https://orcid.org/0000-0001-8644-956X
Philipp G. Sämann https://orcid.org/0000-0001-8523-3628

REFERENCES
Aas, M., Haukvik, U. K., Djurovic, S., Tesli, M., Athanasu, L., Bjella, T., ... Melle, I. (2014). Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. *Journal of Psychiatric Research*, 59, 14–21. https://doi.org/10.1016/j.jpsychires.2014.08.011
Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). *Progress in Brain Research*, 163, 3–22. https://doi.org/10.1016/s0079-6123(07)60001-5
Balu, D. T., & Lucki, I. (2009). Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology. *Neuroscience and Biobehavioral Reviews*, 33(3), 232–252. https://doi.org/10.1016/j.neubiorev.2008.08.007
Bearden, C. E., Thompson, P. M., Dutton, R. A., Frey, B. N., Peluso, M. A., Nicoletti, M., ... Soares, J. C. (2008). Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. *Neuropsychopharmacology*, 33(6), 1229–1238. https://doi.org/10.1038/sj.npp.1301507
Berk, M., Dandash, O., Daglas, R., Cotton, S. M., Allott, K., Fornito, A., ... Yucel, M. (2017). Neuroprotection after a first episode of mania: A randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume. *Translational Psychiatry*, 7(11), e1011. https://doi.org/10.1038/tp.2016.281
Bodnar, M., Malla, A. K., Makowski, C., Chakravarty, M. M., Joobr, R., & Lepage, M. (2016). The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: Longitudinal study. *BJPsych Open*, 2(5), 139–146. https://doi.org/10.1192/bjpo.bp.115.002444
Boedhoe, P. S. W., Heymans, M. W., Schmaal, L., Abe, Y., Alonso, P., Amels, S. H., ... Twisk, J. W. R. (2018). An empirical comparison of meta- and mega-analyses with data from the ENIGMA obsessive-compulsive disorder working group. Frontiers in Neuroinformatics, 12, 102. https://doi.org/10.3389/fninf.2018.00102
Boldszni, M., Hen, R., Underwood, M. D., Rosoklija, G. G., Dwork, A. J., Mann, J. J., & Arango, V. (2012). Hippocampal angiogenesis and...
progenitor cell proliferation are increased with antidepressant use in major depression. Biological Psychiatry, 72(7), 562–571. https://doi.org/10.1016/j.biopsych.2012.04.024

Brown, E. M., Pierce, M. E., Clark, D. C., Fischl, B. R., Iglesias, J. E., Milberg, W. P., ... Salat, D. H. (2020). Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. Neuroimage, 210, 116563. https://doi.org/10.1016/j.neuroimage.2020.116563

Cao, B., Passos, I. C., Mwangi, B., Amaral-Silva, H., Tannous, J., Wu, M. J., ... Soares, J. C. (2017). Hippocampal subfield volumes in mood disorders. Molecular Psychiatry, 22(9), 1352–1358. https://doi.org/10.1038/mp.2016.262

Crum, W. R., Danckaers, F., Huysmans, T., Cotel, M. C., Natesan, S., Modo, M. M., ... Vernon, A. C. (2016). Chronic exposure to haloperidol and olanzapine leads to common and divergent shape changes in the rat hippocampus in the absence of grey-matter volume loss. Psychological Medicine, 46(15), 3081–3093. https://doi.org/10.1017/s0033291716001768

Dalton, M. A., & Maguire, E. A. (2017). The pre/postsubiculum: A hippocampal hub for scene-based cognition? Current Opinion in Behavioral Sciences, 17, 34–40. https://doi.org/10.1016/j.cobeha.2017.06.001

Fannself, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. https://doi.org/10.1016/j.neuron.2009.11.031

Ferensztajn-Rochowiak, E., & Rybakowski, J. K. (2016). The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacological Reports, 68(2), 224–230. https://doi.org/10.1016/j.pharep.2015.09.005

Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., ... Walhovd, K. B. (2013). Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiology of Aging, 34 (10), 2239–2247. https://doi.org/10.1016/j.neurobiolaging.2013.04.006

Fusar-Poli, P., Smieskova, R., Kempton, M. J., Ho, B. C., Andreasen, N. C., & Borgwardt, S. (2013). Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neuroscience and Biobehavioral Reviews, 37 (8), 1680–1691. https://doi.org/10.1016/j.neubiorev.2013.06.001

Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. Molecular Psychiatry, 21(8), 831–851. https://doi.org/10.1038/mp.2015.69

Hargreaves, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., ... Alzheimer’s Disease Neuroimaging Initiative. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042

Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., ... Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 1710–1716. https://doi.org/10.1038/mp.2015.227

Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., ... Alzheimer’s Disease Neuroimaging Initiative. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042

Katsuki, A., Watanabe, K., Nguyen, L., Otsuka, Y., Igata, R., Ikenouchi, A., ... Yoshimura, R. (2020). Structural changes in Hippocampal Subfields in patients with continuous remission of drug-naïve major depressive disorder. International Journal of Molecular Sciences, 21(9). https://doi.org/10.3390/ijms21093032

Kato, N. (2016). Major depression. Molecular Psychiatry, 21(8), 831–851. https://doi.org/10.1038/mp.2015.69

Konradi, C., Zimmerman, E. I., Yang, C. K., Lohmann, K. M., Gresh, P., Pantazopoulos, H., ... Heckers, S. (2011). Hippocampal interneurons in bipolar disorder. Archives of General Psychiatry, 68(4), 340–350. https://doi.org/10.1001/archgenpsychiatry.2010.175

Malchow, B., Stroka, S., Frank, F., Bernstein, H. G., Steiner, J., Schneider-Axmann, T., ... Schmitt, A. (2015). Stereological investigation of the posterior hippocampus in affective disorders. Journal of Neural Transmission (Vienna), 122(7), 1019–1033. https://doi.org/10.1007/s00702-014-1316-x

Maller, J. J., Broadhouse, K., Rush, A. J., Gordon, E., Koslow, S., & Grieve, S. M. (2018). Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Molecular Psychiatry, 23(8), 1737–1744. https://doi.org/10.1038/mp.2017.224

Mathew, I., Gardin, T. M., Tandon, N., Eack, S., Francis, A. N., Seidman, L. J., ... Keshavan, M. S. (2014). Medial temporal lobe structures and hippocampal subfields in psychotic disorders: Findings from the bipolar-schizophrenia network on intermediate phenotypes (BSNIP) study. JAMA Psychiatry, 71(7), 769–777. https://doi.org/10.1001/jamapsychiatry.2014.453

Mertens, J., Wang, Q. W., Kim, Y., Yu, D. X., Pham, S., Yang, B., ... Yao, J. (2015). Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527(7576), 95–99. https://doi.org/10.1038/nature15526

Mueller, S. G., Yushkevich, P. A., Das, S., Wang, L., Van Leemput, K., Iglesias, J. E., ... Weiner, M. W. (2018). Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage: Clinical, 17, 1006–1018. https://doi.org/10.1016/j.nicl.2017.12.036

Nagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 82(4), 591–605. https://doi.org/10.1111/j.1469-185X.2007.00275.x

Oates, J. A., White, R. A., Bathelt, J., White, D. P., & O’Donnell, T. M. (2015). The interplay of small effects: The new Normal in academic psychiatry. Molecular Psychiatry, 20(10), 1001/jamapsychiatry.2014.453

Pauk, M. P., & Thompson, W. K. (2019). The challenges and opportunities of small effects: The New Normal in academic psychiatry. JAMA Psychiatry, 76(4), 353–354. https://doi.org/10.1001/jamapsychiatry.2018.4540

Phillips, M. L., & Kupfer, D. J. (2013). Bipolar disorder diagnosis: Challenges and future directions. Lancet, 381(9878), 1663–1671. https://doi.org/10.1016/s0140-6736(13)60989-7

Piperite, J., Park, T. M., Winterburn, J., Utt, T. A., Lerch, J. P., Pruessner, J. C., ... Alzheimer’s Disease Neuroimaging Initiative. (2014). Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage, 99, 549–563. https://doi.org/10.1016/j.neuroimage.2014.04.054

Jakowska, G., Clarke, G., Mahajan, G., Licht, C. M., Van De Werd, H. J., Yuan, P., ... Yulings, H. B. (2016). Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: A stereological study. Bipolar Disorders, 18(1), 41–51. https://doi.org/10.1111/bipd.12364

Schmaal, L., Veltman, D. J., van Erp, T. G., Samann, P. G., Frodl, T., Jahanshad, N., ... Hibar, D. P. (2016). Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 21(6), 806–812. https://doi.org/10.1038/mp.2015.69
Squire, L. R., & Wixted, J. T. (2011). The cognitive neuroscience of human memory. Annual Review of Neuroscience, 34, 259–288. https://doi.org/10.1146/annurev-neuro-061010-113720

Simonetti, A., Sanz, G., Dacquino, C., Piras, F., De Rossi, P., Caltagirone, C., ... Spalletta, G. (2016). Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder. Bipolar Disorders, 18(4), 352–362. https://doi.org/10.1111/bdi.12394

Simonnet, J., Nassar, M., Stella, F., Cohen, I., Mathon, B., Boccara, C. N., ... Fricker, D. (2017). Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nature Communications, 8, 16032. https://doi.org/10.1038/ncomms16032

Squire, L. R., & Wixted, J. T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288. https://doi.org/10.1146/annurev-neuro-061010-113720

Stern, S., Santos, R., Marchetto, M. C., Mendes, A. P. D., Rouleau, G. A., Biesmans, S., ... Gage, F. H. (2018). Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Molecular Psychiatry, 23(6), 1453–1465. https://doi.org/10.1038/mp.2016.260

Tammenga, T. C., San, A. D., & Wagner, A. D. (2010). The hippocampal formation in schizophrenia. The American Journal of Psychiatry, 167(10), 1178–1193. https://doi.org/10.1176/appi.ajp.2010.09081187

Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the United States of America, 109(9), E563–E572. https://doi.org/10.1073/pnas.1115396109

Thompson, P. M., Ching, C. R. K., Dennis, E. L., Salminen, L. E., Turner, J. A., Van Erp, T. G. M., & Jahanshad, N. (2020). Big data initiatives in psychiatry: Global Neuroimaging studies. In M. Kubicki & M. E. Shenton (Eds.), Neuroimaging in Schizophrenia (pp. 411–426). Cham: Springer International Publishing.

van Erp, T. G., Hibr, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., ... Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547–553. https://doi.org/10.1038/mp.2015.63

Van Leemput, K., Bakkour, A., Benner, T., Wiggins, G., Wald, L. L., Augustinack, J., ... Fischl, B. (2009). Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus, 19(6), 549–557. https://doi.org/10.1002/hipo.20615

Wang, A. Y., Lohmann, K. M., Yang, C. K., Zimmerman, E. I., Pantazopoulos, H., Herring, N., ... Konradi, C. (2011). Bipolar disorder type I and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. Acta Neuropathologica, 122(5), 615–626. https://doi.org/10.1007/s00401-011-0881-4

Westlye, L. T., Alnaes, D., van der Meer, D., Kaufmann, T., & Andreassen, O. A. (2019). Population-based mapping of polygenic risk for schizophrenia on the human brain: New opportunities to capture the dimensional aspects of severe mental disorders. Biological Psychiatry, 86(7), 499–501. https://doi.org/10.1016/j.biopsych.2019.08.001

Yushkevich, P. A., Amaral, R. S., Augustinack, J. C., Bender, A. R., Bernstein, J. D., Boccardi, M., ... Hippocampal Subfields, G. (2015). Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. Neurimage, 111, 526–541. https://doi.org/10.1016/j.neuroimage.2015.01.004

Yushkevich, P. A., Wang, H., Pluta, J., Das, S. R., Craig, C., Avants, B. B., ... Mueller, S. (2010). Nearly automatic segmentation of hippocampal subfields in in vivo foci T2-weighted MRI. Neurimage, 53(4), 1208–1224. https://doi.org/10.1016/j.neuroimage.2010.06.040

Zanni, G., Michno, W., Di Martino, E., Tjarnlund-Wolf, A., Pettersson, J., Mason, C. E., ... Hanrieder, J. (2017). Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Scientific Reports, 7, 40726. https://doi.org/10.1038/srep40726

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Haukvik UK, Gurholt TP, Nerland S, et al. In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group. Hum Brain Mapp. 2020;1–14. https://doi.org/10.1002/hbm.25249