An A-Stable Block Integrator Scheme for the Solution of First Order System of IVP of Ordinary Differential Equations

Muhammad Abdullahi*a, Shamsuddeen Suleiman a, Abdu Masanawa Sagir a and Bashir Sule a

aDepartment of Mathematical Sciences, Federal University Dutse, Katsina State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2022/v16i430407

Received 02 January 2022
Accepted 04 March 2022
Published 14 March 2022

Abstract

In this article, we present an A-stable block integrator scheme for the solution of first order system of IVP of ordinary differential equations. The block scheme at a single integration step produces four approximate solution values of \(y_{n+1}, y_{n+2}, y_{n+3} \) and \(y_{n+4} \) at point \(x_{n+1}, x_{n+2}, x_{n+3} \) and \(x_{n+4} \) respectively. The order and stability property of the scheme are checked, the method is zero stable, A-stable and of order 6. Some test problems are solved with the proposed scheme and the result are compared with some existing method. The proposed method found to have advantages in terms of accuracy, minimum errors and less computational time. Hence, the method is recommended for solving first order system of IVP of ordinary differential equations.

Keywords: Zero stable; A-stable; IVPs; order; ordinary differential equation.

1 Introduction

A number of real life issues that we encounter, especially in the field of engineering, sciences both physical, social and life sciences can be modeled in Mathematics as differential equations. Considering the vast application of differential equations, analytical and numerical methods are being developed to find solutions.

*Corresponding author: Email: maunwala@gmail.com;
This study considers a method for solving systems of first order initial value problems of ordinary differential equation of the form:

\[y'(x) = f(x, y), \quad y(a) = y_0, \quad a \leq x \leq b \] \hspace{1cm} (1)

\[\tilde{y} = (y_1, y_2, y_3, \ldots, y_n), \quad \tilde{\eta} = (\eta_1, \eta_2, \eta_3, \ldots, \eta_n) \]

Ordinary differential equations can be solved by analytical and numerical methods. The solutions generated by the analytical method are generally exact values, whereas with the numerical method an approximation is given as a solution approaching the real value [1]. Implicit numerical schemes proved to be more efficient in solving problems than explicit ones. Most common implicit algorithms are based on Backward Differentiation Formula (BDF). The BDF first appeared in the work of [2]. Researchers continued to improve on the BDF methods. Such improvements include the Extended Backward Differential Formula by [3], modified extended backward differential formula by [4], 2 point diagonally implicit super class of backward differentiation formula [5], an order five implicit 3-step block method for solving ordinary differential equation [6], Implicit r-point block backward differentiation formula for solving first-order stiff ODEs [7], a new variable step size block backward differentiation formula for solving stiff initial value problems [8], a new fifth order implicit block method for solving first order stiff ordinary differential equations by [9], an accurate computation of block hybrid method for solving stiff ODEs [10], One-leg Multistep Method for first Order Differential Equations [11], Sagir [12], Numerical Treatment of Block Method for the Solution of Ordinary Differential equations. Order and Convergence of Enhanced 3 point fully implicit super class of block backward differentiation formula for solving first order stiff initial value problems [13]. All the schemes mentioned above developed by different scholars possess various sorts of accuracy, minimum error and less computation time at one step or the other. However, there is need of developing a numerical algorithm that will solve system of ODEs with minimal computational time and converge faster, hence the motivation for this research.

2 Preliminaries

The following are definitions of the basic terms used in this research.

2.1 Definition 1 (Ordinary Differential Equation)
A differential equation involving derivatives with respect to a single independent variable is called an ordinary differential equation.

2.2 Definition 2 (Order of the Differential Equation)
The order of a differential equation is the order of the highest differential coefficient present in the equation. A differential equation that has the second derivatives as the highest derivatives is said to be of second order.

2.3 Definition 3 (Solution of ODEs)
An equation containing dependent variable \(y \) and independent variable \(x \) and free from the derivative, which satisfies the differential equation is called the solution (primitive) of the differential equation.

2.4 Definition 4 (Initial Value problems)
A differential equation along with initial conditions on the unknown function and its derivatives, all given at the same value of the independent variable, constitutes an initial-value problem.

2.5 Definition 5 (Linear multi-step method)
A general linear multi-step method (LMM) has the following form:

\[\sum_{j=0}^{k} \alpha_j y_{n+j} = h \sum_{j=0}^{k} \beta_j f_{n+j} \]
Where σ, β are constants and $\alpha_k \neq 0$. α_0 and β_0 cannot both be zero at the same time, for any linear k-step method, α_k is normalized to 1.

2.6 Definition 6 (Explicit and Implicit method)

The general linearmulti-step method is said to be Explicit if $\beta_k = 0$, otherwise it is Implicit (i.e. $\beta_k \neq 0$).

2.7 Definition 7 (Linear Difference Operator L)

The linear difference operator L associated with the linear multi-step method is defined by:

$$L(y(x), h) = \sum_{j=0}^{k} [\sigma_j y(x + jh) - h\beta_j y'(x + jh)].$$

Where $y(x)$ is an arbitrary test function and it is continuously differential on $[a, b]$. Expanding $y(x + jh)$ and $y'(x + jh)$ as a Taylor’s series about x, and expanding the common terms yields:

$$L(y(x), h) = c_0 y(x_n) + c_1 y'(x_n) + c_2 y''(x_n) + \cdots + c_q h^q y^{(q)}(x_n) +$$

Where c_q are common constants given by:

$$c_0 = \alpha_0 + \alpha_1 + \alpha_2 + \cdots + \alpha_k$$

$$c_1 = \alpha_1 + 2\alpha_2 + \cdots + k\alpha_k - (\beta_0 + \beta_1 + \beta_2 + \cdots + \beta_k)$$

$$c_q = \frac{1}{q!} (\alpha_1 + 2^q \alpha_2 + \cdots + k^q \alpha_q) - \frac{1}{(q-1)!} (\beta_1 + 2^{q-1} \beta_2 + \cdots + k^{q-1} \beta_k)$$

$q = 2, 3, \ldots, \ldots$

2.8 Definition 8 (Zero stability)

A linear multi-step method (2) is said to be zero stable if all the roots of first characteristics polynomial have modulus less than or equal to unity and those roots with modulus unity are simple.

2.9 Definition 9 (A-stability)

A linear multi-step method (2) is said to be A-stable if the stability region covers the entire negative half plane.

2.10 Definition 10 (Block method)

A method is called Block if it computes more than one solution values at different points per step concurrently. Let Y_m and F_m be vectors defined by:

$$Y_m = [y_n, y_{n+1}, y_{n+2}, \ldots, y_{n+r-1}]^T.$$

$$F_m = [f_n, f_{n+1}, f_{n+2}, \ldots, f_{n+r-1}]^T.$$

Then a general k-block, r-point method is a matrix of finite difference equation of the form:

$$Y_m = \sum_{i=0}^{k} A_i Y_{m-i} + \sum_{i=0}^{k} B_i F_{m-i}$$

A_i and B_i are $r \times r$ coefficient matrices.
3 Analysis of the Proposed Method

3.1 Formulation of the Method

Consider the general k-step linear multistep method in definition (5)

\[\sum_{j=0}^{k} a_j y_{n+j} = h \beta_k y_{n+k} \]

(2)

This study consider adding a future point in (2), with three step backward, to came-up with the formula of the form:

\[\sum_{j=0}^{7} a_j y_{n+j-3} = h \beta_k y_{n+k-3} \quad k = 1, 2, 3, 4 \]

(3)

The implicit four point method (3) is constructed using a linear operator \(L_i \). To derive the four point, define the linear operator \(L_i \) associated with (3) as:

\[L_i[y(x_i), h] = \alpha_0 y_{n-1} + \alpha_1 y_{n-2} + \alpha_2 y_{n-3} + \alpha_3 y_{n-4} + \alpha_4 y_{n+1} + \alpha_5 y_{n+2} + \alpha_6 y_{n+3} + \alpha_7 y_{n+4} - \frac{h \beta_k y_{n+k-3}}{k = 1, 2, 3, 4} \]

(4)

To derive the first, second, third, and fourth points as \(y_{n+1}, y_{n+2}, y_{n+3}, \) and \(y_{n+4} \) respectively Using Taylor series expansion in (4) and normalizing \(\alpha_3 = 1, \alpha_4 = 1, \alpha_5 = 1 \) and \(\beta_6 = 1 \) as coefficient’s of the four points, \(k = 1, k = 2, k = 3 \) and \(k = 4 \) respectively. To obtain

\[y_{n+1} = -1298881 \times 341643939 y_{n-3} + 3461643939 y_{n-2} - 127003623 y_{n-1} + 426060731 y_{n+1} + 2774637 y_{n+2} - 141999876 y_{n+3} + 141999876 y_{n+4} \]

(5)

3.2 Order of the Method

In this section, we derive the order of the methods (5). It can be transform to a general matrix form as follows:

\[\sum_{j=0}^{1} C_j y_{m+j-1} = h \sum_{j=0}^{1} D_j y_{m+j-1} \]

Let \(C_0, C_1, D_0 \) and \(D_1 \) be block matrices defined by:

\[C_0 = [C_0, C_1, C_2, C_3], C_1 = [C_4, C_5, C_6, C_7], D_0 = [D_0, D_1, D_2, D_3], D_1 = [D_4, D_5, D_6, D_7] \]

Where \(C_0, C_1, D_0 \) and \(D_1 \) are square matrices and \(Y_{m-1}, Y_m, F_{m-1} \) and \(F_m \) are column vectors defined by

\[Y_m = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ y_{n+3} \\ y_{n+4} \end{bmatrix}, Y_{m-1} = \begin{bmatrix} y_{n-3} \\ y_{n-2} \\ y_{n-1} \\ y_n \end{bmatrix}, F_{m-1} = \begin{bmatrix} f_{n-3} \\ f_{n-2} \\ f_{n-1} \end{bmatrix}, F_m = \begin{bmatrix} f_{n+1} \\ f_{n+2} \\ f_{n+3} \end{bmatrix} \]
Thus, equations (5) can be rewritten as

\[
F_m = \begin{bmatrix}
 f_{n+1} \\
 f_{n+2} \\
 f_{n+3} \\
 f_{n+4}
\end{bmatrix} = \begin{bmatrix}
 f_{3m+1} \\
 f_{3m+2} \\
 f_{3m+3} \\
 f_{3m+4}
\end{bmatrix}
\]

From the (6) we have

\[
\begin{bmatrix}
 y_{n-3} \\
 y_{n-2} \\
 y_{n-1} \\
 y_n
\end{bmatrix} = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix} + h \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 f_{n-3} \\
 f_{n-2} \\
 f_{n-1} \\
 f_n
\end{bmatrix}
\]

From the (6) we have

\[
C_0^* = \begin{bmatrix}
 1298881 & 341643939 & -72003623 & 426060731 \\
 341643939 & 569406565 & -113881313 & 341643939 \\
 -79696 & 41929759 & -68414023 & 189894686 \\
 -845265 & 9861425 & -3944570 & 5916855 \\
 70450 & 1295843 & 5593225 & 676840 \\
 1797393 & -1198262 & 926014617 & 105729 \\
 338687 & 353855969 & -2326014617 & 49388481 \\
 348237 & 77076456 & 19269114 & -115614684 \\
 1 & -6274637 & 143998979 & 9603792 \\
 7210474 & 16268759 & 1708219695 & 113881313 \\
 394457 & -5916855 & 1972285 & 42690 \\
 11495780 & -6496015 & 1 & 599131 \\
 599131 & 1198262 & 495749336 & 1 \\
 1117145237 & 1129625017 & 28903671 & 1
\end{bmatrix}
\]

\[
C_1^* = \begin{bmatrix}
 1 & -6274637 & 143998979 & 9603792 \\
 7210474 & 16268759 & 1708219695 & 113881313 \\
 394457 & -5916855 & 1972285 & 42690 \\
 11495780 & -6496015 & 1 & 599131 \\
 599131 & 1198262 & 495749336 & 1 \\
 1117145237 & 1129625017 & 28903671 & 1
\end{bmatrix}
\]
\[
D_5 = \begin{bmatrix}
0 & \frac{9603792}{113881313} & 0 & 0 & 0 \\
0 & 0 & \frac{19789614}{1972285} & 0 & 0 \\
0 & 0 & 0 & \frac{845710}{46087} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
D_2 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Where

\[
C_0 = \begin{bmatrix}
1298881 \\
341643939 \\
845265 \\
1797393 \\
348237
\end{bmatrix}, \quad C_1 = \begin{bmatrix}
341643939 \\
569406565 \\
9861425 \\
1198262 \\
348237
\end{bmatrix}, \quad C_2 = \begin{bmatrix}
72003623 \\
113881313 \\
1295843 \\
19269114 \\
348237
\end{bmatrix}, \quad C_3 = \begin{bmatrix}
426060731 \\
341643939 \\
599131 \\
113881313 \\
1972285
\end{bmatrix}
\]

\[
C_4 = \begin{bmatrix}
1 \\
7210474 \\
394457 \\
1198262 \\
19269114
\end{bmatrix}, \quad C_5 = \begin{bmatrix}
6274637 \\
16268759 \\
6496015 \\
11296250177 \\
77076456
\end{bmatrix}, \quad C_6 = \begin{bmatrix}
1439989797 \\
1708219695 \\
59168550 \\
495749336 \\
28903671
\end{bmatrix}, \quad C_7 = \begin{bmatrix}
9603792 \\
113881313 \\
14016 \\
113881313 \\
1972285
\end{bmatrix}
\]

From definition the order of the block method (5) and its associated linear operator are given by:

\[
L[y(x); h] = \sum_{j=0}^{7} [C_jy(x + jh)] - h \sum_{j=0}^{7} [D_jy'(x + jh)]
\]

Where \(p\) is unique integer such that

\[E_q = 0, \quad q = 0, 1, \ldots, p \quad \text{and} \quad E_{p+1} \neq 0, \text{where the } E_q \text{ are constant Matrix.} \]
With
\[
E_0 = \sum_{j=0}^7 C_j = 0, E_1 = \sum_{j=0}^7 [jC_j - 2D_j] = 0, E_2 = \sum_{j=0}^7 \left[\frac{1}{2!} j^2 C_j - 2 j D_j \right] = 0, \quad E_3 = \sum_{j=0}^7 \left[\frac{1}{3!} j^3 C_j - 21D_j / 2D = 0. \right.
\]
\[
E_4 = \sum_{j=0}^7 \left[\frac{1}{4!} j^4 C_j - 2 \frac{1}{3!} j^3 D_j \right] = 0, E_5 = \sum_{j=0}^7 \left[\frac{1}{5!} j^5 C_j - 2 \frac{1}{4!} j^4 D_j \right] = 0, E_6 = \sum_{j=0}^7 \left[\frac{1}{6!} j^6 C_j - 215D_j / 5D = 0E7 = j = 0717 / 7Cj - 216 / 6D \neq 0. \right.
\]

Therefore, the method is of order 6, with error constant as:

\[
E_7 = \begin{bmatrix}
210 \\
8293585 \\
324 \\
3184255 \\
981 \\
6926402 \\
563 \\
5947583
\end{bmatrix}
\]

(7)

3.3 Zero Stability of the Method

The method (5) is converted into matrix form as:

\[
\begin{bmatrix}
1 & -6274637 & 143998979 & -9603792 \\
7210474 & -16268759 & 1708219695 & -113881313 \\
394457 & 1 & -59168550 & 1972285 \\
11495780 & -6496015 & 1 & -42690 \\
599131 & 1198262 & 495749336 & -599131 \\
1117145237 & 11296250177 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
y_{n+1} \\
y_{n+2} \\
y_{n+3} \\
y_{n+4}
\end{bmatrix}
= h
\]

\[
\begin{bmatrix}
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{bmatrix}
+ h
\]

The equation above can be written in matrix form as:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
f_{n-3} \\
f_{n-2} \\
f_{n-1} \\
f_n
\end{bmatrix}
+ h
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(8)
\[A_0 Y_m = A_1 Y_{m-1} + h(B_0 F_{m-1} + B_1 F_m) \]

Where

\[
A_0 = \begin{bmatrix}
1 & -6274637 & 143998979 & -9603792 \\
7210474 & 16268759 & 1708219695 & 21582821 & 113881313 & 14016 \\
394457 & 1 & -59168550 & -1972285 & -42690 & -59131 \\
11495780 & -6496015 & 1 & 77076456 & -599131 \\
599131 & 1198262 & 1129625017 & 19269114 & 1117145237 \\
1117145237 & 1129625017 & 495749336 & 1 & 1 \\
19269114 & 77076456 & 28903671 & 128903671 & 495749336 & 77076456 & 71129625017 & 1129625017 & 19269114 & 1117145237 \\
\end{bmatrix},
\]

\[
A_1 = \begin{bmatrix}
1298881 & -341643939 & 72003623 & -426060731 \\
341643939 & 569406565 & 113881313 & 341643939 \\
79696 & 41929759 & 68414023 & 189894868 \\
845265 & 9861425 & 3944570 & 5916855 \\
70450 & 1295843 & 5593225 & 676840 \\
1797393 & 1198262 & 599131 & 105729 \\
338687 & 353855969 & 2326014617 & 49388481 \\
348237 & 77076456 & 19269114 & 115614684 \\
\end{bmatrix}
\]

\[
B_0 = \begin{bmatrix}
0 & 9603792 & 0 & 0 \\
0 & 113881313 & 0 & 0 \\
0 & 0 & 19789614 & 0 \\
0 & 0 & 1972285 & 46087 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad B_1 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[Y_{m-1}, Y_m, F_{m-1} \text{ and } F_m \text{ are column vectors defined by}
\]

\[
Y_m = \begin{bmatrix}
y_{n+1} \\
y_{n+2} \\
y_{n+3} \\
y_{n+4} \\
\end{bmatrix}, \quad Y_{m-1} = \begin{bmatrix}
y_{n-1} \\
y_{n-2} \\
y_{n-3} \\
y_{n-4} \\
\end{bmatrix}, \quad Y_{n-3} = \begin{bmatrix}
y_{n-3} \\
y_{n-4} \\
y_{n-5} \\
y_{n-6} \\
\end{bmatrix}, \quad Y_{3(m-1)+1} = \begin{bmatrix}
y_{3(m-1)+1} \\
y_{3(m-1)+2} \\
y_{3(m-1)+3} \\
y_{3(m-1)+4} \\
\end{bmatrix}
\]

\[
F_m = \begin{bmatrix}
f_{n+1} \\
f_{n+2} \\
f_{n+3} \\
f_{n+4} \\
\end{bmatrix}, \quad F_{m-1} = \begin{bmatrix}
f_{n-1} \\
f_{n-2} \\
f_{n-3} \\
f_{n-4} \\
\end{bmatrix}, \quad F_{3(m-1)+1} = \begin{bmatrix}
f_{3(m-1)+1} \\
f_{3(m-1)+2} \\
f_{3(m-1)+3} \\
f_{3(m-1)+4} \\
\end{bmatrix}
\]

Substituting scalar test equation \(y' = \lambda y \) (\(\lambda < 0, \lambda \text{ complex} \)) into (9) and using \(\lambda h = \bar{h} \) gives:

\[A_0 Y_m = A_1 Y_{m-1} + \bar{h}(B_0 Y_{m-1} + B_1 Y_m) \]

(10)

The stability polynomial of (5) is obtained by evaluating

\[
\text{det}[A_0 - \bar{h}B_1]t - (A_1 + \bar{h}B_0) = 0
\]
By putting $\bar{h} = 0$ in (11), we obtain the first characteristic polynomial as

$$R(\bar{h}, t) = \frac{996090316807547559435103304^4}{1320753239763668203573654609} \times \frac{19573318495604949376200^4}{2560186942430681261642609} \times \frac{664876629681834101786723}{63817166368971096642244097621} \times \frac{106380267494904356265392369}{567630008250718660657235153941} \times \frac{398925257789010461072096380}{636761357124782350323834144} \times \frac{1}{5114435612937185398836021} \times \frac{3059571243351831086667155247}{53190130374567281429461840} \times \frac{446737796802968675844731429}{106380267494904356265392369} \times \frac{153560628739855687511705383}{8350980539874554834320} \times t^4 - t^3 h - 664876629681834101786723 + \frac{19946298090453023536048190}{1567643838863926834777839112886} \times t^3 h + \frac{33243831484091705089341365}{28312643087512266327961051136} \times t^2 h^2 + \frac{23812643087512266327961051136}{5114435612937185398836021} \times t^3 \quad (11)$$

By putting $\bar{h} = 0$ in (11), we obtain the first characteristic polynomial as

$$R(0, t) = \frac{446737796802968675844731429}{106380267494904356265392369} \times \frac{153560628739855687511705383}{8350980539874554834320} \times t^4 - t^3 h - \frac{60664876629681834101786723}{5114435612937185398836021} \times t^3 \quad (12)$$

Since, the roots of (12) are $t_1 = 1$ and $t_2, t_3, t_4 \leq 0$

Therefore, the method (5) is zero Stable by definition (8).
\[y'_2 = y_1y_2(0) = 1 \quad 0 \leq x \leq 100 \]

Exact Solution
\[y_1(x) = e^x \]
\[y_2(x) = e^x \]
Source: [14]

Problem 2: \[y'_1 = 198y_1 + 199y_1y_1(0) = 1 \]

\[0 \leq x \leq 10 \]
\[y'_2 = -398y_1 - 399y_2 \quad y_2(0) = -1 \]

Exact solution
\[y_1(x) = e^{-x} \]
\[y_2(x) = -e^{-x} \]
Eigen values \(-1\) and \(-200\)
Source: [7];

Problem 3: \[y'_1 = y_2, y_1(0) = 0 \]

\[0 \leq x \leq 20 \]
\[y'_2 = -y_1y_2(0) = 1 \]

Exact solution
\[y_1(x) = \sin x \]
\[y_2(x) = \cos x \]
Source: [15]

Problem 4: \[y'_1 = y_2y_1(0) = 0 \]

\[y'_2 = -2y_2y_2(0) = 0 \quad 0 \leq x \leq 4\pi \]
\[y'_3 = y_2 + 2y_3y_3(0) = 1 \]

Exact Solution
\[y_1(x) = 2\cos x + 6\sin x - 6x - 2 \]
\[y_2(x) = -2\sin x + 6\cos x - 6 \]
\[y_3(x) = 2\sin x - 2\cos x + 3 \]
Source: (Sulaiman, 1989)

4.2 Numerical Results

The problems sampled in this research are solved using the developed scheme. The results are tabulated, compared; and the graphs highlighting the performance of these methods are plotted. The acronyms below are used in the tables.

\[h = \text{step-size}; \]

MAXE = Maximum Error;
T=Time in second;
3ESBBDF = 3 Point enhanced fully implicit Super Class of Block Backward Differentiation
F_{3}3ESBBDF = Family of block 3 Super class of Block Backward Differentiation
ABISBDF = A-stable block integrator scheme of Backward Differentiation Formula for solving Stiff IVPs.

Similarly, to highlight the performance of the proposed methods, ABISBDF in relation to the other methods, 3ESBSBDF and \(F_{3}3SBBDF \). The graphs of \(\log_{10}(\text{MAXE}) \) against the step size, \(h \) for the 4 problems are plotted accordingly as shown below.

4.3 Discussion of the results

From the numerical problems solved in the Table 1 (comprising problem 1&2), it has been shown that the proposed scheme, ABISBDF outperformed both the 3ESBSDF and \(F_{3}3SBBDF \) in terms of minimum error and
Table 1. Comparison of errors between proposed method and other methods for problem 1 & 2

h	Method	MAXE	TIME	h	Method	MAXE	TIME
10^{-2}	F_1SBBD	3.30736e-002	4.23434e-1	10^{-2}	F_1SBBD	3.23032e-002	3.77590e-002
	3ESBSBD	3.51456e-002	3.52416e-4		3ESBSBD	3.98707e-002	2.63337e-002
	ABISBDF	5.82117e-004	4.23441e-4		ABISBDF	5.83217e-003	5.68676e-002
10^{-3}	F_1SBBD	5.41853e-003	1.81850e-3	10^{-3}	F_1SBBD	4.76165e-003	5.66636e-001
	3ESBSBD	5.20191e-003	2.50367e-3		3ESBSBD	4.40956e-003	2.60816e-001
	ABISBDF	6.95338e-005	4.65467e-4		ABISBDF	6.05338e-005	5.64515e-001
10^{-4}	F_1SBBD	5.44701e-005	1.71443e-2	10^{-4}	F_1SBBD	4.66516e-004	5.64385e-001
	3ESBSBD	5.20417e-005	2.56918e-2		3ESBSBD	5.08942e-005	2.60725e-001
	ABISBDF	6.95692e-007	4.84833e-3		4ESBSBD	6.26692e-007	5.68143e+000
10^{-5}	F_1SBBD	5.44971e-007	1.70042e-1	10^{-5}	F_1SBBD	4.68707e+005	5.63788e+000
	3ESBSBD	5.25030e-007	2.34880e-1		3ESBSBD	5.21534e+007	2.60597e+000
	ABISBDF	6.95974e-009	4.8687e-2		ABISBDF	6.32740e-009	5.59821e+001
10^{-6}	F_1SBBD	5.44998e-009	1.70308e-00	10^{-6}	F_1SBBD	4.69123e-006	5.65356e+001
	3ESBSBD	5.25648e-009	2.35791e-00		3ESBSBD	5.89872e-009	2.60700e+001
	ABISBDF	7.18636e-011	4.23434e-1		ABISBDF	6.33362e-011	5.53567e+002

Table 2. Comparison of Errors between Proposed Method and other Methods for Problem 3 & 4

h	Method	MAXE	TIME	h	Method	MAXE	TIME
10^{-2}	F_1SBBD	2.07208e-002	1.37500e-2	10^{-2}	F_1SBBD	2.83032e-002	3.67590e-002
	3ESBSBD	2.53437e-002	1.20934e-3		3ESBSBD	2.48705e-002	2.63337e-002
	ABISBDF	2.83117e-004	7.36289e-2		ABISBDF	3.83217e-003	5.88676e-002
10^{-3}	F_1SBBD	3.20160e-004	2.72200e-2	10^{-3}	F_1SBBD	3.76163e-003	8.56636e-002
	3ESBSBD	3.02893e-004	1.25972e-2		3ESBSBD	3.40956e-003	2.60816e-001
	ABISBDF	4.05338e-006	5.81512e-2		ABISBDF	4.05338e-005	5.54515e-001
10^{-4}	F_1SBBD	3.20233e-006	2.02700e-01	10^{-4}	F_1SBBD	3.76154e-005	8.54385e-001
	3ESBSBD	3.08956e-006	1.25148e-1		3ESBSBD	3.48942e-005	2.60725e+000
	ABISBDF	4.26592e-008	5.81491e-1		ABISBDF	4.26690e-007	5.58143e-001
10^{-5}	F_1SBBD	3.20261e-008	1.92600e-0	10^{-5}	F_1SBBD	3.70705e-005	8.53788e+000
	3ESBSBD	3.10157e-008	1.25471e-0		3ESBSBD	3.58532e-005	2.60597e+001
	ABISBDF	4.32640e-010	5.81122e-0		ABISBDF	4.32740e-009	5.49821e+000
10^{-6}	F_1SBBD	3.20263e-010	1.91700e-0	10^{-6}	F_1SBBD	3.71121e-007	8.53356e+001
	3ESBSBD	3.41129e-010	1.24892e-0		3ESBSBD	3.69872e-007	2.60700e+002
	ABISBDF	4.33262e-012	5.79887e-1		ABISBDF	4.3335e-009	5.43567e+001
Fig. 2. Graph of $\log_{10}(MAXE)$ against h for problem 1
Fig. 3. Graph of $\log_{10}(MAXE)$ against h for problem 2
Fig. 4. Graph of $\log_{10}(MAXE)$ against h for problem 3
Fig. 5. Graph of $\log_{10}(MAXE)$ against h for problem 4
less computational time. Also, from table 2 (comprising problem 2&3) the proposed scheme have good advantage in terms of scale error over the two methods compared. But, F3SBBDF has advantages over the new method ABISBDF in execution time. To visibly highlight the performance of the proposed method, ABISBDF in relation to the other methods, 3ESBSBDF and F3SBBDF. The graphs of Log10(MAXE) against the step size, h for the 1-4 problems are plotted accordingly in figure (2,3,4,5), the method has minimum scaled error in the entire problems considered. The proposed scheme is recommended for solving first order system of initial value problems of ordinary differential equation.

5. Conclusion

An A stable block integrator scheme is proposed. The order and stability properties of the method are investigated, the scheme found to be zero stable, A-stable and of order 6. The developed method is implicit methods, can computes four solution values at a time per step, concurrently. The results from the tested problems shows that the new method has advantages in terms of accuracy of the scaled error and computational time when compared with the 3ESBSBDF and also has advantages in terms of accuracy of the scaled error over F3SBBDF method. The proposed scheme can be used in solving a system of first order initial value problem of ordinary differential equations.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Fatokun J, Onumanyi P, Sirisena UW. Solution of Ordinary System of Ordinary Differential Equations by Continuous Finite Difference Methods with Arbitrary Basis Functions. J. Nig. Math. Society. 2005; 24:31 –36.

[2] Curtiss CF, Hirschfelder JO. Integration of Stiff Equations. Proceedings of the national academy of sciences. 1952;38:235-243.

[3] Cash JR. On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numerische Mathematik. 1980;34:235-246.

[4] Cash JR. Modified extended backward differentiation formula for the numerical solution of stoff IVPs in ODE and DAEs.” Computational and Applied Mathematics. 2000;125: 117-130.

[5] Musa H, Bature B, Ibrahim LK. Diagonally implicit super class of block backward differentiation formula for solving Stiff IVPs. Journal of the Nigerian Association of Mathematical Physics. 2016;36:73 – 80.

[6] Yahaya YA, Sagir AM. An order five implicit 3-step block method for solving system of ODEs. Pacific journal of science and Technology. 2013;14(1): 176-181.

[7] Ibrahim ZB, Othman K, Suleiman MB. Implicit r-point block backward differentiation formula for solving first- order stiff ODEs. Applied Mathematics and Computation. 2007;186:558-565.

[8] Suleiman MB. Solving Higher Order ODEs Directly by the Direct Integration Method. Applied Mathematics and Computation. 1989;33:197-219.

[9] Musa H, Suleiman MB, Ismail F, Senu N, Majid ZA, Ibrahim ZB. A new fifth order implicit block method for solving first order stiff ordinary differential equations. Malaysian Journal of Mathematicam Sciences. 2014;8(5):45-59.
[10] Sagir. An accurate computation of block hybrid method for solving stiff ODEs IOSR Journal of Mathematic (IOSR-JM). 2012;4(4):18-21.

[11] Fatunla SO. One-leg Multistep Method for first Order Differential Equations. Computer and Mathematics with Applications. 1984;10:1-4.

[12] Sagir. Numerical treatment of block method for the solution of ordinary differential equations. International Journal of Mathematical, Computational Science and Engineering. 2014;8(2):16-20.

[13] Abdullahi M, Musa H. Enhanced 3 point fully implicit super class of block backward differentiation formula for solving first order stiff initial value problems. Fudma journal of science (FJS). 2021;5(2): 120-127.

[14] Bronson R. Modern Introductory Differential Equation: Schaum’s Outline Series. USA, McGraw-Hill Book Company; 1973.

[15] Shampine LF, Gordon MK. Computer solution of ordinary differential equations. The Initial Value Problem, W. H. Freeman and company, San Francisco; 1975.

© 2022 Abdullahi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle5.com/review-history/84158