The Effect of hOGG1 Ser326Cys Polymorphism on Cancer Risk: Evidence from a Meta-Analysis

Bingbing Wei1, You Zhou2, Zhuoqun Xu1, Bo Xi3, Huan Cheng4, Jun Ruan1, Ming Zhu1, Qiang Hu1, Qiang Wang1, Zhirong Wang1, Zhiqiang Yan1, Ke Jin1, Deqi Zhou1, Feng Xuan1, Xing Huang1, Jianfeng Shao1, Peng Lu1

1 Department of Urology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China, 2 Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland, 3 Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China, 4 Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Abstract

Background: Human oxoguanine glycosylase 1 (hOGG1) in base excision repair (BER) pathway plays a vital role in DNA repair. Numerous epidemiological studies have evaluated the association between hOGG1 Ser326Cys polymorphism and the risk of cancer. However, the results of these studies on the association remain conflicting. To derive a more precise estimation of the association, we conducted a meta-analysis.

Methodology/Principal Findings: A comprehensive search was conducted to identify the eligible studies of hOGG1 Ser326Cys polymorphism and cancer risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. We found that the hOGG1 Ser326Cys polymorphism was significantly associated with overall cancer risk (Cys/Cys vs. Ser/Ser: OR = 1.19, 95%CI = 1.09–1.30, P < 0.001; Cys/Cys vs. Cys/Ser+Cys/Ser: OR = 1.16, 95%CI = 1.08–1.26, P < 0.001). Moreover, in subgroup analyses by cancer types, the stronger significant association between hOGG1 Ser326Cys polymorphism and lung cancer risk was found (Cys/Cys vs. Ser/Ser: OR = 1.29, 95%CI = 1.16–1.44, P < 0.001; Cys/Cys vs. Cys/Ser+Cys/Ser: OR = 1.22, 95%CI = 1.12–1.33, P < 0.001). The significant effects of hOGG1 Ser326Cys polymorphism on colorectal, breast, bladder, prostate, esophageal, and gastric cancer were not detected. In addition, in subgroup analyses by ethnicities, we found that the hOGG1 Ser326Cys polymorphism was associated with overall cancer risk in Asians (Cys/Cys vs. Ser/Ser: OR = 1.21, 95%CI = 1.10–1.33, P < 0.001).

Conclusions: This meta-analysis showed that hOGG1 326Cys allele might be a low-penetrant risk factor for lung cancer.

Introduction

DNA damage plays a vital role in carcinogenesis [1], which generally occurs through different mechanisms such as by-product of normal cellular metabolism or the result of exposure to biological and environmental mutagens. DNA damage, if it is not repaired, could lead to apoptosis or mutation, which may cause induction of carcinogenesis [1]. It is suggested that reactive oxygen species (ROS) could induce both base lesions and single strand breaks in DNA [1]. The 8-hydroxy-2-deoxyguanine (8-OH-dG) is a major form of DNA damage, which is produced by reactive free radicals.

The presence of 8-OH-dG in DNA is thought to be a major cause of G:C to T:A transversion, because 8-OH-dG could direct the incorporation of adenine as well as cytosine opposite the lesion [2]. Thus, 8-OH-dG is a highly mutagenic DNA lesion in vivo [3,4] unless it is repaired prior to DNA replication. The DNA repair enzyme human oxoguanine glycosylase 1 (hOGG1) is a DNA glycosylase/AP lyase that has been indicated to play an important role in preventing carcinogenesis by repairing oxidative damage to DNA [5]. Specifically, glycosylase/AP lyase could efficiently catalyze the excision and removal of 8-OH-dG adducts. HOGG1 may play a vital role in maintaining genome integrity and preventing the development of cancer.

Genetic variations in hOGG1 gene are increasingly studied for an elevated cancer risk because of the critical roles in stabilizing genome integrity. The hOGG1 gene has codon 326 polymorphism (Ser326Cys, rs1052133), and Cys326 has lower ability to prevent mutagenesis by 8-OH-dG than Ser326 in human cells in vivo [5]. So far, there were so many reports about the association of hOGG1 Ser326Cys polymorphism with risk of different cancers, including breast [6–18], prostate [19–25], pancreatic [26,27], bladder [28–34], gallbladder [35–38], gastric [39–49], colorectal [50–63], esophageal [64–68], lung [69–85], cervical cancers [86,87], and so on [88–101].

One study showed that the hOGG1 Ser326Cys polymorphism was associated with an increased risk of colorectal cancer (odds ratio: 2.3; 95% confidence interval: 1.1–5.0), the risk being higher in younger individuals [60]. Canbay et al [63] found that hOGG1 Ser326Cys polymorphism might be associated with increased risk...
of colorectal cancer in a Turkish population. However, other studies [53,54,59] did not show the significant association between the Ser326Cys polymorphism and colorectal cancer. Numerous studies and systematic approaches examined the role of the Ser326Cys polymorphism in lung cancer susceptibility. One meta-analysis showed that the overall odds ratio of homozygote for the hOGG1 326Cys allele against those for the hOGG1 326Ser allele was 1.24 [95% confidence interval: 1.01–1.53], suggesting that the locus was involved in susceptibility to lung cancer [83]. In contrast, another meta-analysis reported no significant association [102]. Studies [15,16] indicated that the Ser326Cys polymorphism was not associated with breast cancer. However, Sangrajrang et al [11] found that Thai women with variant allele of hOGG1 were likely to have an increased susceptibility to breast cancer. In addition, Chen et al [24] found that hOGG1 Ser326Cys polymorphism was associated with prostate cancer risk whereas Nock et al [22] did not find the significant association in the total study population.

On the whole, the results about the association between hOGG1 Ser326Cys polymorphism and cancer risk were conflicting and inconclusive. To derive a more precise estimation of the association, we performed a meta-analysis.

Materials and Methods

Identification and eligibility of relevant studies

PubMed (1956 to 30 July 2011) and Embase (1947 to 30 July 2011) database search was performed using following search terms: “oxo- guanidine glycosylase 1, hOGG1 or OGG1”, “polymorphism or variant”, and “cancer, neoplasm or tumor”. Additional studies were identified by a hand search of the references of original studies. In case of the studies with the same or overlapping data, we selected the most recent ones with the largest number of subjects. Studies included in this meta-analysis should meet the following criteria: (a) evaluation the association of hOGG1 Ser326Cys polymorphism and cancer risk published in English language, (b) use a case-control design, (c) contain available genotype frequency, and (d) the distribution of genotypes in the controls was consistent with Hardy-Weinberg equilibrium (HWE).

Data extraction

Two investigators independently extracted the data and reached a consensus on all the items. For each study, the following characteristics were collected: last name of first author, year of publication, country of origin, ethnicity, numbers of genotyped cases and controls. Different ethnic descents were categorized as Caucasians (at least 80% of Caucasians included), Asians, and Africans. If a study did not state the ethnic descend or if it was not possible to separate participants according to such phenotype, the group reported was termed “mixed ethnicity”. In addition, if only one cancer type was included in a study in the meta-analysis, it was combined into the “mixed cancer” group. For study [49] including subjects of different ethnic groups, data were extracted separately for each ethnic group whenever possible. Because the studies [19,31,56,87,103] only provided the information of genotypes as “Cys/Cys+Ser/Cys/Ser” and Ser/Ser without data for other genotypes, we could only calculate the OR for the dominant genetic model.

Statistical analysis

The strength of the association between hOGG1 Ser326Cys polymorphism and cancer risk was measured by odds ratios (ORs) with 95% confidence intervals (CIs). We first estimated the risks of the Cys/Cys and Ser/Cys genotypes on risk of cancer, compared with the wild-type Ser/Ser homozygote, then evaluated the risks of “Cys/Cys+Ser/Cys vs. Ser/Ser” and “Cys/Cys vs. Ser/Cys+Ser/Ser” on risk of cancer, assuming dominant and recessive effects of the variant Cys allele, respectively. Subgroup analysis was also performed based on different ethnicities, cancer types, age, and sex.

Heterogeneity was evaluated with a chi-square-based Q test among the studies (P<0.10 was considered significant) [104,105]. When the heterogeneity was present, the random effects model was used to calculate the pooled OR [106], whereas the fixed effects model was used in its absence [107]. Sensitivity analysis was performed to assess the stability of the results.

For control group of each study, the allelic frequency was calculated, and the observed genotype frequencies of the hOGG1 Ser326Cys polymorphism were assessed for Hardy-Weinberg equilibrium (HWE) by using the Pearson chi-square test; P<0.05 was considered significant. Funnel plots and Egger’s linear regression test were used to provide diagnosis of the potential publication bias [108].

All statistical tests for this meta-analysis were performed with STATA (version 10.0; Stata Corporation, College Station, TX) and SPSS for Windows (version 11.0; SPSS, Inc., Chicago, IL).

Results

Study characteristics

For cancer susceptibility related to hOGG1 Ser326Cys polymorphism, articles were retrieved based on the search criteria. Study selection process was shown in Figure 1. Among them, the distribution of genotypes in the controls was not consistent with HWE in 13 studies, which were excluded in the meta-analysis. 5 additional studies were excluded because of overlapping data. Finally, a total of 91 case-control studies involving 31,297 cancer cases and 39,033 controls were included in the meta-analysis. The characteristics of included studies were summarized in Table S1. There were 42 studies of Caucasian descendants and 35 studies of Asian descendants. Cancers were confirmed histologically or pathologically in most studies. There were 14 studies of colorectal cancer, 19 studies of lung cancer, 12 studies of breast cancer, 6 studies of bladder cancer, 4 studies of prostate cancer, 11 studies of gastric cancer, 5 studies of esophageal cancer, 6 studies of head and neck cancer, 2 studies of gallbladder cancer, and 2 studies of ALL. There were 57 studies, in which the data on age of cancer cases and controls were shown in detail. Among them, the age-matched control subjects were used in 42 studies, which were included in subgroup analyses by age. 19 studies, which specifically reported data according to gender, were eligible for subgroup analyses by sex. In addition, the distribution of genotypes in the controls was consistent with HWE in all studies (P>0.05).

Quantitative synthesis

The 326Cys allele frequencies in controls of different ethnicities were calculated. The frequency of the 326Cys allele was 47.07% (95% CI = 43.39–50.75%) among Asian controls, which was significantly higher than that of Caucasian controls (23.62%; 95% CI = 20.43–26.81%, P<0.001; Figure S1). We carried out a meta-analysis of the hOGG1 Ser326Cys polymorphism overall, and in subgroups according to cancer types and ethnic groups under various genetic models (Table S2). Overall, we found that the hOGG1 Ser326Cys polymorphism was significantly associated with the risk of cancer (Cys/Cys vs. Ser/Ser: OR = 1.19, 95% CI = 1.09–1.30, P<0.001; Cys/Cys vs. Cys/Ser+Ser/Ser: OR = 1.16, 95% CI = 1.06–1.26, P<0.001; Table
The heterogeneity was reckoned between each of the studies using the Q-test. Overall, the significant heterogeneity was found (Cys/Cys vs. Ser/Ser: \(P_{\text{heterogeneity}}<0.001\); Cys/Ser vs. Ser/Ser: \(P_{\text{heterogeneity}}<0.001\); Cys/Cys vs. Cys/Ser+Ser/Ser: \(P_{\text{heterogeneity}}<0.001\); Cys/Cys+Cys/Ser vs. Ser/Ser: \(P_{\text{heterogeneity}}<0.001\)). In stratified analyses by cancer types, we did not find the significant heterogeneity for lung cancer under two genetic models (Cys/Cys vs. Ser/Ser; \(P_{\text{heterogeneity}}=0.40\); Cys/Cys vs. Cys/Ser+Ser/Ser; \(P_{\text{heterogeneity}}=0.40\)).

Sensitivity analysis

In the sensitivity analysis, the influence of each study on the pooled OR was examined by repeating the meta-analysis while omitting each study, one at a time. This procedure confirmed the stability of the overall result (data not shown). However, in the subgroup by ethnicities, sensitivity analyses show that \(P\) value of \(Z\)-test for statistical significance of the summary OR (Cys/Cys vs. Cys/Ser+Ser/Ser) among Caucasians is 0.06 when excluding one study by Ohtulowicz et al.

Publication bias

Begg’s funnel plot and Egger’s test were conducted to assess the publication bias of the literatures. The shape of funnel plots did not reveal any evidence of funnel plot asymmetry. Egger’s test further provided statistical evidence of funnel plot symmetry (Cys/Cys vs. Ser/Ser: \(P=0.28\); Cys/Ser vs. Ser/Ser: \(P=0.57\); Cys/Cys vs. Cys/Ser+Ser/Ser: \(P=0.20\); Cys/Cys+Cys/Ser vs. Ser/Ser: \(P=0.21\)). The results did not show any evidence of publication bias.

Discussion

The hOGG1, which is generally involved in DNA repair, has been studied extensively on its relationship with different types of cancer, such as breast [6–18], prostate [19–25], pancreatic [26,27], bladder [28–34], gallbladder [35–38], gastric [39–49], colorectal [50–63], esophageal [64–68], lung [69–85], cervical cancers [86,87], and so on [88–101]. Previous conclusions of numerous studies on the association between the hOGG1 Ser326Cys polymorphism and cancer risk remain conflicting and contradictory. The conflicting results are possibly because of a small effect of the Ser326Cys polymorphism on cancer risk or the relatively low statistical power of published studies. Hence, this meta-analysis was needed to provide a quantitative approach for combining the different results.

The present meta-analysis, including 31,297 cancer cases and 39,033 controls, explored the relationship between the Ser326Cys polymorphism and overall cancer risk. In the meta-analysis, we found that the hOGG1 Ser326Cys polymorphism was significantly associated with overall cancer risk in Asian population. However, sensitivity analyses suggested that the significant association between the Ser326Cys polymorphism and overall cancer risk among Caucasians lacked convincing evidence.

The hOGG1 encodes a DNA glycosylase that is thought to be involved in base excision repair of oxidatively damaged DNA [110]. The hOGG1 could catalyze the cleavage of the glycosyl bond between the modified base and the sugar moiety, leaving an
abasic apurinic/apyrimidinic site in DNA; the resulting apurinic/*
apyrimidinic site is then incised, and the repair is completed by
successive actions of a phosphodiesterase, a DNA polymerase, and
a DNA ligase [111–113]. With respect to the important roles of
hOGG1 in DNA repair, it is biologically plausible that hOGG1
Ser326Cys polymorphism may modulate the risk of cancer. This
hypothesis was confirmed by our data. In addition, because of the
relatively small sample size on head and neck cancer, the result
about head and neck cancer needed further confirmation.

We did not find that hOGG1 Ser326Cys polymorphism was
significantly associated with cancer risk in Caucasian population
and other cancer types including breast, prostate, pancreatic, bladder, gallbladder, gastric, colorectal, and esophageal cancer, suggesting the influence of the genetic variant may
be masked by the presence of other as-yet unidentified causal
genes involved in carcinogenesis. In addition, we found that the
frequency of the 326Cys allele was 47.07% among Asian
controls, which was significantly higher than that of Caucasian
controls (23.62%, \(P < 0.001 \)), which may also affect the roles of
hOGG1 Ser326Cys polymorphism on cancer risk in Asians and
Caucasians.

Several limitations of the meta-analysis should be addressed. First, limited data restricted our evaluation on potential gene-gene
interaction. Second, there was not enough data on African
population in this meta-analysis. Third, our results were based on
unadjusted evaluation. In order to provide a more precise
estimation on the basis of adjustment for confounders, well-
designed studies are warranted by taking potential confounders
such as alcohol and smoking into account.

In summary, this meta-analysis provided evidence of the
association between hOGG1 Ser326Cys polymorphism and
cancer risk, supporting the hypothesis that hOGG1 Ser326Cys
polymorphism might be a low-penetrant susceptibility marker of
lung cancer. Moreover, sophisticated gene-gene interaction should
be considered in future analysis, which would lead a better,
comprehensive understanding of the association between hOGG1
Ser326Cys polymorphism and cancer risk.

Supporting Information

Figure S1 Frequencies of the variant alleles among controls stratified by ethnicities. The “◦” and “*” represent outlier. (TIF)
Figure S2 Forest plot of overall cancer risk associated with hOGG1 Ser326Cys polymorphism (for Cys/Cys vs. Ser/Ser). The squares and horizontal lines correspond to the study-specific OR and 95% CI. The area of the squares reflects the weight (inverse of the variance). The diamond represents the summary OR and 95% CI. (TIF)

Table S1 Characteristics of studies included in the meta-analysis. (DOC)

Table S2 Stratified analyses of the hOGG1 Ser326Cys polymorphism on cancer risk. (DOC)

References
1. Weiss JM, Goode EL, Ladiges WC, Ulrich CM (2005) Polymorphic variation in hOGG1 and risk of cancer: a review of the functional and epidemiologic literature. Mol Carcinog 42: 127–41.

2. Shibutani S, Takeshita M, Grossman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxoG. Nature 349: 431–4.

3. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J Biol Chem 267: 166–72.

4. Motiya M, Ob C, Bodeuchi V, Johnson F, Takeshita M, et al. (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxoguanosine in E. coli. Mutat Res 254: 231–8.

5. Yamane A, Kohno T, Ito K, Sunaga N, Aoki K, et al. (2004) Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydroxyguanine in human cell in vivo. Carcinogenesis 25: 1689–94.

6. Hsu MS, Yu JC, Wang HW, Chen ST, Hsiung CN, et al. (2009) Synergistic Effects of Polymorphisms in DNA Repair Genes and Endogenous Estrogen Exposure on Female Breast Cancer Risk. Ann Surg Oncol.

7. Sternpor S, Mastellone V, Padua L, Novelli F, Patruno C, et al. (2010) Single-nucleotide polymorphisms in BER and HRR genes, XRCC1 haplotypes and breast cancer risk in Caucasian women. J Cancer Res Clin Oncol 136: 631–6.

8. Sternpor S, Cerretta T, Padua L, Mastellone V, Giammarrino D, et al. (2010) DNA repair capacity and acute radiotherapy adverse effects in Italian breast cancer patients. Mutat Res 648: 43–8.

9. Synowiec E, Stefanska J, Morawiec Z, Blasik J, Wozniak K (2008) Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res 648: 65–72.

10. Romannowicz-Makovska H, Smolarz B, Makowski M, Polac I, Pertynski T (2008) Ser326Cys polymorphism in DNA repair genes hOGG1 in breast cancer women. Pol J Pathol 59: 201–4.

11. Sangrajrang S, Schmezer P, Burkholder I, Waas P, Boffetta P, et al. (2008) Genetic polymorphisms in base-excision repair pathway genes and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 17: 740–6.

12. Romanowicz-Makowska H, Smolarz B, Makowski M, Polac I, Pertynski T (2008) Ser326Cys polymorphism and breast cancer risk in South Australia—results of a pilot study. Urol Oncol. doi:10.1016/j.urowon.2009.08.013.

13. Aguilera I, Kwok EM, Salinas CA, Koopmansens JR, Ostrander EA, et al. (2010) Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 21: 289–300.

Table S3 Stratified analyses of the hOGG1 Ser326Cys polymorphism on cancer risk by age and sex. (DOC)

Author Contributions
Conceived and designed the experiments: ZX BW. Performed the experiments: BW HC. Analyzed the data: ZX BW YZ. Contributed reagents/materials/analysis tools: BW HC. Wrote the paper: BW YZ BX HC JR MZ QH QW ZW ZY KJ DZ FX XH JS.

22. Noak NL, Cicak MS, Li L, Liu X, Rybicki BA, et al. (2006) Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis 27: 1042–8.

23. Nam RK, Zhang WW, Jewett MA, Trachtenberg J, Klotz LH, et al. (2005) The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res 11: 3891–7.

24. Chen L, Elahi A, Pow-Sang J, Lazarus P, Park J (2005) Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer. J Urol 179: 2471–4.

25. Xu J, Zheng SL, Turner A, Isaacs SD, Wiley KE, et al. (2002) Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62: 2253–7.

26. Li D, Suzuki H, Liu B, Morris J, Liu J, et al. (2009) DNA repair gene polymorphisms and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 18: 4920–35.

27. McWilliams RR, Bamlet WR, Cunningham JM, Goode EL, de Andrade M, et al. (2008) Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res 68: 4920–35.

28. Gangwani R, Sharma D, Mandhani A, Mittal RD (2009) Do DNA repair genes OGG1, XRCC3 and XRCC7 have an impact on susceptibility to bladder cancer in the North Indian population? Mutat Res 680: 56–63.

29. Narter KF, Ergen A, Agurban B, Gormus U, Timirci O, et al. (2009) Bladder cancer and polymorphisms of DNA repair genes (XRCC1, XRCC3, XPD, XPG, APE1, hOGG1). Anticancer Res 29: 1309–13.

30. Arizonko K, Osada Y, Kuroda Y (2008) DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Jpn J Clin Oncol 30: 186–91.

31. Huang M, Minney CP, Lin X, Lin J, Grossman HB, et al. (2007) High-order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol Biomarkers Prev 16: 84–91.

32. Karahalil B, Kocabas NA, Ozcok T (2006) DNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population. Anticancer Res 26: 4955–8.

33. Figueiroa JD, Malats N, Real FX, Silverman D, Kogevinas M, et al. (2007) Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 121: 233–42.

34. Kim EJ, Jeong P, Quan C, Kim J, Baek SC, et al. (2005) Genotypes of TNF- alpha, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology 65: 70–5.

35. Srivastava K, Srivastava A, Mittal B (2011) Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of Northern India. Cancer 116: 3160–9.

36. Srivastava K, Srivastava K, Pandey SN, Choudhari G, Mittal B (2009) Single nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in Indian population. Ann Surg Oncol 16: 1695–703.

37. Huang WY, Gao YT, Rashid A, Saksida LC, Deng J, et al. (2008) Selected base excision repair gene polymorphisms and susceptibility to biliary tract cancer and biliary stones: a population-based case-control study in China. Carcinogenesis 29: 100–9.

38. Jiao X, Huang J, Wu S, Lv M, Hu Y, et al. (2007) OGG1 Ser326Cys polymorphism and susceptibility to gallbladder cancer in a Chinese population. Int J Cancer 121: 501–5.

39. Ergin AB, Karahalil B, Ergin A, Karakaya AE (2011) DNA repair enzyme polymorphisms and oxidative stress in a Turkish population with gastric carcinoma. Mol Biol Rep 38: 5379–86.

40. Sun LM, Zhang Y, Zeng YM, Deng YY, Cheng JF (2010) OGG1 polymorphism in atrophic gastritis and gastric cancer after Helicobacter pylori eradication. World J Gastroenterol 16: 4746–82.

41. Pali D, Polidoro S, D’Errico M, Saieva C, Guarrera S, et al. (2005) Genetic variation in hOGG1 and XRCC1 haplotypes and gastric cancer risk in the North Indian population. Jpn J Clin Oncol 35: 186–91.

42. Malik MA, Zargar SA, Mittal B (2010) Lack of influence of DNA repair gene OGG1 codon 326 polymorphisms of gastric cancer risk in the Kashmir valley. Asian Pac J Cancer Prev 11: 4955–8.
67. Xing DY, Gullapalli R, Gleave ME, Ibbotson RS, Brawer KM, et al. (2001) Prostate cancer screening and treatment: a controlled trial of PSA-based screening in a randomized community setting. JAMA 286: 329–35.

66. Schnitzer JE, Friedlander ML, Reddy AS, Schildkraut J, Zheng W, et al. (2000) The role of different polymorphisms in DNA repair genes in prostate cancer risk. Cancer Epidemiol Biomarkers Prev 9: 557–62.

65. Adami HO, Inskip H, Eriksson M, Hagermark O, Boeing H, et al. (2000) Polymorphisms in DNA repair genes and prostate cancer risk: a hospital-based case-control study in Stockholm, Sweden. Cancer Epidemiol Biomarkers Prev 9: 135–41.

64. Marconcini M, Ranco CE, Battistini C, Pagliaro A, Casiglia E, et al. (2000) The association of DNA repair polymorphisms with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 9: 991–5.

63. Watanabe H, Kikuchi A, Onizuka T, Hasegawa T, Kato S, et al. (2000) Association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 1229–32.

62. Pollack JS, Hudson AC, Fearon ER, and co-workers. (2000) Sequence variations of DNA repair genes and prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 9: 1223–8.

61. La Cava A, Moceri V, Krenning EP, and co-workers. (2000) The influence of DNA repair gene polymorphisms on prostate cancer susceptibility in a population-based case-control study. Cancer Epidemiol Biomarkers Prev 9: 1221–2.

60. Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z, et al. (2008) GPX1 Pro(198)Leu polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

59. Takezaki T, Gao CM, Wu JZ, Li ZY, Wang JD, et al. (2002) hOGG1 Ser326Cys polymorphism, interaction with environmental exposures, and gastric cancer risk in Japanese populations. Cancer Sci 93: 977–83.

58. Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, et al. (2008) MUTYH Tyr165Cys, OGG1 Ser326Cys and XPD Lys751Gln polymorphisms in a Turkish population. Int J Cancer 123: 51–5.

57. Stern MC, Conti DV, Siegmund KD, Corral R, Yuan JM, et al. (2007) DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res 638: 146–53.

56. Hansen R, Saebo M, Skjelbred CF, Nexo BA, Hagen PC, et al. (2005) GPX1 Pro(198)Leu polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

55. Hansen RD, Krath BN, Frederiksen K, Tjonneland A, Overvad K, et al. (2005) MUTYH Tyr165Cys, OGG1 Ser326Cys and XPD Lys751Gln polymorphisms in colorectal cancer and their role as modifiers of the effect of diet in colorectal cancer. Carcinogenesis 26: 1271–7.

54. Hansen R, Khatib A, Blomhoff R, Leppert M, and co-workers. (2004) The association of OGG1 Ser326Cys polymorphism with colorectal cancer in case-control studies of Japanese and non-Japanese Brazilians. Cancer Lett 175: 53–61.

53. Brevik A, Joshi AD, Corral R, Onland-Moret NC, Siegmund KD, et al. (2010) Polymorphisms in breast excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat. Cancer Epidemiol Biomarkers Prev 19: 1367–73.

52. Obtulowicz T, Swoboda M, Speina E, Gackowski D, Rozalski R, et al. (2010) Polymorphisms in genes of nucleotide and base excision repair: risk and associations of APE1 polymorphism with susceptibility and HOGG1 gene with risk of lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 31: 78–87.

51. Karahalil B, Emerce E, Kocer B, Han S, Alki N, et al. (2008) The significance of amino acid substitution variants of DNA repair genes in radiosensitivity of cervical cancer patients; a pilot study. Neoplasma 55: 330–7.

50. Gorgens H, Muller A, Kruger S, Kuhlisch E, Koenig R, et al. (2007) Analysis of the base excision repair gene XRCC1 and DNA repair polymorphisms and head and neck cancer susceptibility: a case control study. Mol Biol Rep 34: 1251–61.

49. Zhao QT, Shi Q, Wang LB, Gao F, and co-workers. (2008) Association between hOGG1 Ser326Cys polymorphism and risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 17: 3736–9.

48. Takezaki T, Gao CM, Wu JZ, Li ZY, Wang JD, et al. (2002) hOGG1 Ser326Cys polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

47. Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z, et al. (2008) GPX1 Pro(198)Leu polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

46. Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z, et al. (2008) GPX1 Pro(198)Leu polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

45. Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z, et al. (2008) GPX1 Pro(198)Leu polymorphism and modification by environmental factors of stomach cancer risk in Chinese. Int J Cancer 99: 624–7.

44. Capella G, Pera G, Sola N, Agudo A, Rico F, and co-workers. (2000) DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int J Epidemiol 29: 1136–21.

43. Canbay E, Agarcan R, Gullapalli R, Gleave ME, Ibbotson RS, and co-workers. (2000) Prostate cancer screening and treatment: a controlled trial of PSA-based screening in a randomized community setting. JAMA 286: 329–35.

42. Schnitzer JE, Friedlander ML, Reddy AS, Schildkraut J, Zheng W, et al. (2000) The role of different polymorphisms in DNA repair genes in prostate cancer risk. Cancer Epidemiol Biomarkers Prev 9: 557–62.

41. Marconcini M, Ranco CE, Battistini C, Pagliaro A, Casiglia E, et al. (2000) The association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 135–41.

40. Watanabe H, Kikuchi A, Onizuka T, Hasegawa T, Kato S, et al. (2000) Association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 1229–32.

39. Pollack JS, Hudson AC, Fearon ER, and co-workers. (2000) Sequence variations of DNA repair genes and prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 9: 1223–8.

38. La Cava A, Moceri V, Krenning EP, and co-workers. (2000) The influence of DNA repair gene polymorphisms on prostate cancer susceptibility in a population-based case-control study. Cancer Epidemiol Biomarkers Prev 9: 1221–2.

37. Pollack JS, Hudson AC, Fearon ER, and co-workers. (2000) Sequence variations of DNA repair genes and prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 9: 1223–8.

36. Watanabe H, Kikuchi A, Onizuka T, Hasegawa T, Kato S, et al. (2000) Association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 135–41.

35. Marconcini M, Ranco CE, Battistini C, Pagliaro A, Casiglia E, et al. (2000) The association of DNA repair polymorphisms with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 9: 1229–32.

34. Pollack JS, Hudson AC, Fearon ER, and co-workers. (2000) Sequence variations of DNA repair genes and prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 9: 1223–8.

33. Watanabe H, Kikuchi A, Onizuka T, Hasegawa T, Kato S, et al. (2000) Association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 135–41.

32. Pollack JS, Hudson AC, Fearon ER, and co-workers. (2000) Sequence variations of DNA repair genes and prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 9: 1223–8.

31. Watanabe H, Kikuchi A, Onizuka T, Hasegawa T, Kato S, et al. (2000) Association between DNA repair genes and prostate cancer. Cancer Epidemiol Biomarkers Prev 9: 135–41.

30. Marconcini M, Ranco CE, Battistini C, Pagliaro A, Casiglia E, et al. (2000) The association of DNA repair polymorphisms with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 9: 1229–32.
93. Elahi A, Zheng Z, Park J, Eyring K, McCaffrey T, et al. (2002) The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk. Carcinogenesis 23: 1229–34.

94. Krupa R, Sobczuk A, Poplawski T, Wozniak K, Blasiak J (2013) DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep 38: 1163–70.

95. De Ruyck K, Van Eijkeren M, Claes K, Morthier R, De Paepe A, et al. (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 62: 1140–9.

96. Zhao H, Qin C, Yan F, Wu B, Cao Q, et al. (2011) hOGG1 Ser326Cys Polymorphism and Renal Cell Carcinoma Risk in a Chinese Population. DNA Cell Biol 30: 317–21.

97. Li Q, Huang L, Rong L, Xue Y, Lu Q, et al. (2011) hOGG1 Ser326Cys polymorphism and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Sci 102: 1123–7.

98. Stanczyk M, Sliwinski T, Cuchra M, Zubowska M, Bielecka-Kowalska A, et al. (2011) The association of polymorphisms in DNA base excision repair genes XRCC1, OGG1 and MUTYH with the risk of childhood acute lymphoblastic leukemia. Mol Biol Rep 38: 445–51.

99. Sakamoto T, Higaki Y, Hara M, Ichiha M, Horita M, et al. (2006) hOGG1 Ser326Cys polymorphism and risk of hepatocellular carcinoma among Japanese. J Epidemiol 16: 233–7.

100. Berman NG, Parker RA (2002) Meta-analysis: neither quick nor easy. BMC Med Res Methodol 2: 10.

101. Vogel U, Olken A, Wallin H, Overvad K, Tjønneland A, et al. (2004) No association between OGG1 Ser326Cys and breast cancer risk: evidence from 11 case-control studies. Breast Cancer Res Treat 122: 527–31.