Substructure Substitution: Structured Data Augmentation for NLP

Haoyue Shi Karen Livescu Kevin Gimpel
Toyota Technological Institute at Chicago, IL, USA, 60637
{freda,klivescu,kgimpel}@ttic.edu

Abstract

We study a family of data augmentation methods, substructure substitution (SUB²), for natural language processing (NLP) tasks. SUB² generates new examples by substituting substructures (e.g., subtrees or subsequences) with ones with the same label, which can be applied to many structured NLP tasks such as part-of-speech tagging and parsing. For more general tasks (e.g., text classification) which do not have explicitly annotated substructures, we present variations of SUB² based on constituency parse trees, introducing structure-aware data augmentation methods to general NLP tasks. For most cases, training with the augmented dataset by SUB² achieves better performance than training with the original training set. Further experiments show that SUB² has more consistent performance than other investigated augmentation methods, across different tasks and sizes of the seed dataset.

1 Introduction

Data augmentation has been shown effective for various natural language processing (NLP) tasks, such as machine translation (Fadaee et al., 2017; Gao et al., 2019; Xia et al., 2019, inter alia), text classification (Wei and Zou, 2019; Quteineh et al., 2020), semantic role labeling (Fürstenau and Lapata, 2009) and dialogue understanding (Hou et al., 2018; Niu and Bansal, 2019). Such methods enhance the diversity of the training set by generating examples based on existing ones and simple heuristics, and make the training process more consistent (Xie et al., 2019). Most existing work focuses on word-level manipulation (Kobayashi, 2018; Wei and Zou, 2019; Dai and Adel, 2020, inter alia) or global sequence-to-sequence style generation (Sennrich et al., 2016).

In this work, we study a family of general data augmentation methods, substructure substitution (SUB²), which generates new examples by same-label substructure substitution (Figure 1). SUB² naturally fits structured prediction tasks such as part-of-speech tagging and parsing, where substructures exist in the annotations of the tasks. For more general NLP tasks such as text classification, we present a variation of SUB² which (1) performs constituency parsing on existing examples, and (2) generates new examples by subtree substitution based on the parses.

Different from other investigated methods which sometimes hurt the performance of models, we show through intensive experiments that SUB² helps models achieve competitive or better performance than training on the original dataset across tasks and original dataset sizes. When combined with pretrained language models (Conneau et al., 2019), SUB² establishes new state of the art results for low-resource part-of-speech tagging and sentiment analysis.

The question of whether explicit parse trees can help neural network–based approaches on downstream tasks has been raised by recent work (Shi et al., 2018b; Havrylov et al., 2019) in which non-linguistic balanced trees have been shown to rival the performance of those from syntactic parsers. Our work shows that constituency parse trees are more effective than balanced trees as backbones for SUB² on text classification, especially when only few examples are available, introducing more potential applications for constituency parse trees in the neural network era.

2 Related Work

Data augmentation aims to generate new examples based on available ones, without actually collecting new data. Such methods reduce the cost of dataset collection, and usually boost the model performance on desired tasks. Most existing data augmentation methods for NLP tasks can be classified into the following categories:
Token-level manipulation. Token-level manipulation has been widely studied in recent years. An intuitive way is to create new examples by substituting (word) tokens with ones with the same desired features, such as synonym substitution (Zhang et al., 2015; Wang and Yang, 2015; Fadaee et al., 2017; Kobayashi, 2018) or substitution with words having the same morphological features (Silfverberg et al., 2017). Such methods have been applied to generate adversarial or negative examples which help improve the robustness of neural network-based NLP models (Belinkov and Bisk, 2018; Shi et al., 2018a; Alzantot et al., 2018; Zhang et al., 2019; Min et al., 2020, *inter alia*), or to generate counterfactual examples which mitigate bias in natural language (Zmigrod et al., 2019; Lu et al., 2020).

Other token-level manipulation methods introduce extra noise such as random token shuffling and deletion (Wang et al., 2018; Wei and Zou, 2019). Models trained on the augmented dataset are expected to be more robust to the considered noise.

Label-conditioned text generation. Recent work has explored generating new examples by training a conditional text generation model (Bergmanis et al., 2017; Liu et al., 2020a; Ding et al., 2020; Liu et al., 2020b, *inter alia*), or applying post-processing on the examples generated by pretrained models (Yang et al., 2020; Wan et al., 2020; Yoo et al., 2020). In the data augmentation stage, given labels in the original dataset as conditions, such models generate associated text accordingly. The generated examples, together with the original datasets, are used to further train models for the primary tasks. A representative among them is back-translation (Sennrich et al., 2016), which has been demonstrated effective on not only machine translation, but also style-transfer (Prabhumoye et al., 2018; Zhang et al., 2020a), conditional text generation (Sobrevilla Cabezudo et al., 2019), and grammatical error correction (Xie et al., 2018).

Another group of work on example generation is to generate new examples based on predefined templates (Kafle et al., 2017; Asai and Hajishirzi, 2020), where the templates are designed following heuristic, and usually task-specific, rules.

Soft data augmentation. In addition to explicit generation of concrete examples, soft augmentation, which directly represents generated examples in a continuous vector space, has been proposed: Gao et al. (2019) propose to perform soft word substitution for machine translation; recent work has adapted the mix-up method (Zhang et al., 2018), which augments the original dataset by
linearly interpolating the vector representations of text and labels, to text classification (Guo et al., 2019; Sun et al., 2020), named entity recognition (Chen et al., 2020) and compositional generalization (Guo et al., 2020).

Structure-aware data augmentation. Existing work has also sought potential gain from structures associated with natural language: Xu et al. (2016) improve word relation classification by dependency path–based augmentation. Şahin and Steedman (2018) show that subtree cropping and rotation based on dependency parse trees can help part-of-speech tagging for low-resource languages, while Vania et al. (2019) has demonstrated that such methods also help dependency parsing when very limited training data is available.

\textsc{Sub}^2 also falls into this category. The idea of same-label substructure substitution has improved over baselines on structured prediction tasks such as semantic parsing (Jia and Liang, 2016), constituency parsing (Shi et al., 2020), dependency parsing (Dehouck and Gómez-Rodríguez, 2020), named entity recognition (Dai and Adel, 2020), meaning representation–based text generation (Kedzie and McKeown, 2020), and compositional generalization (Andreas, 2020). To the best of our knowledge, however, \textsc{Sub}^2 has not been systematically studied as a general data augmentation method for NLP tasks. In this work, we not only extend \textsc{Sub}^2 to part-of-speech tagging and structured sentiment classification, but also present a variation that allows a broader range of NLP tasks (e.g., text classification) to benefit from syntactic parse trees. We evaluate \textsc{Sub}^2 and several representative general data augmentation methods, which can be widely applied to various NLP tasks.

When constituency parse trees are used, there is a connection between \textsc{Sub}^2 and tree substitution grammars (TSGs; Schabes, 1990), where the approach can be viewed as (1) estimating a TSG using the given corpus and (2) drawing new sentences from the estimated TSG.

3 Method

We introduce the general framework we investigate in Section 3.1, and describe the variations of \textsc{Sub}^2 which can be extended to text classification and other NLP applications.

3.1 Substructure Substitution (\textsc{Sub}^2)

As shown in Figure 1, given the original training set D, \textsc{Sub}^2 generates new examples using same-label substructure substitution, and repeats the process until the training set reaches the desired size. The general \textsc{Sub}^2 procedure is presented in Algorithm 1.

3.2 Variations of \textsc{Sub}^2 for Text Classification

Text classification examples do not typically contain explicit substructures. However, we can obtain them by viewing all text spans as substructures (Figure 1a); for constituency parsing, we use subtrees as the substructures, with phrase labels as the substructure labels (Figure 1b); for dependency parsing, we also use subtrees as substructures, and let the label of dependency arc, which links the head of the subtree to its parent, be the substructure labels.

For part-of-speech (POS) tagging, we let text spans be substructures and use the corresponding POS tag sequence as substructure labels (Figure 1a); for constituency parsing, we use subtrees as the substructures, with phrase labels as the substructure labels (Figure 1b); for dependency parsing, we also use subtrees as substructures, and let the label of dependency arc, which links the head of the subtree to its parent, be the substructure labels.
considered spans do not necessarily need to be phrases.

- **Phrase label** (\texttt{SUB^2+L}): this constraint is only applicable when also using \texttt{SUB^2+P}. When considering this constraint, we can only perform substitution between phrases with the same phrase label (from constituency parse trees).

- **Text classification label** (\texttt{SUB^2+T}): when considering this constraint, we can only substitute a span with another span that comes from text annotated with the same class label as the original one; otherwise we can choose the alternative from any example text in the training corpus.

We also investigate combinations of the above constraints, where we require all the involved substructures to be the same to perform \texttt{SUB^2}. For example, \texttt{SUB^2+T+N} (Figure 1d) requires the original and the alternative span to have the same text label and the same number of words.

4 Experiments

We evaluate \texttt{SUB^2} and other data augmentation baselines (Section 4.2) on four tasks: part-of-speech tagging, dependency parsing, constituency parsing, and text classification.

4.1 Setup

For part-of-speech tagging and text classification, we add a two-layer perceptron on top of XLM-R (Conneau et al., 2019) embeddings, where we calculate contextualized token embeddings by a learnable weighted average across layers. We use endpoint concatenation (i.e., the concatenation of the first and last token representation) to obtain fixed-dimensional span or sentence features, and keep the pretrained model frozen during training.\footnote{We did not observe any significant improvement by fine-tuning the large pretrained language model, and for most cases, the performance is much worse than the current scheme we apply.}

For dependency parsing, we use the SuPar implementation of Dozat and Manning (2017).\footnote{https://github.com/yhchangcs/parser}

For constituency parsing, we use Benepar (Kitaev and Klein, 2018).\footnote{https://github.com/nikitakit/self-attentive-parser}

For all data augmentation methods, including the baselines (Section 4.2), we only augment the training set, and use the original development set. If not specified, we introduce 20 times more examples than the original training set when applying an augmentation method. When introducing \(k\times\) new examples, we also replicate the original training set \(k\) times to ensure that the model can access sufficient examples from the original distribution.

All models are initialized with the XLM-R base model (Conneau et al., 2019) if not specified. We train models for 20 epochs when applying the high-resource setting (i.e., high-resource part-of-speech tagging, sentiment classification trained on the full training set) or when applying data augmentation methods, and for 400 epochs in the low-resource settings without augmentation; we select the one with the highest accuracy or \(F_1\) score on the development set. All models are optimized using Adam (Kingma and Ba, 2015), where we try learning rates in \(\{5 \times 10^{-4}, 5 \times 10^{-5}\}\). For hidden size (i.e., the hidden size of the perceptron for part-of-speech tagging and text classification, the dimensionality of span representation and scoring multi-layer perceptron for constituency parsing, and the dimensionality of token representation and scoring multi-layer perceptron for dependency parsing), we vary between 128 and 512. We apply a 0.2 dropout ratio to the contextualized embeddings in the training stage. All other hyperparameters are the same as the default settings in the released codebases.

4.2 Baselines

We compare \texttt{SUB^2} to the following baselines:

- **No augmentation** (NoAUG), where the original training and development set are used.

- **Contextualized substitution** (CtxSUB), where we apply contextualized augmentation (Kobayashi, 2018), masking out a random word token from the existing dataset, and use multilingual-BERT (mBERT; Devlin et al., 2019) to generate a different word.

- **Random shuffle** (RAND), where we randomly shuffle all the words in the original sentence, while keeping the original structured or non-structured labels. It is worth noting that for dependency parsing, we shuffle the words, while maintaining the dependency arcs between individual words; for constituency parsing, we shuffle the terminal nodes, and insert them back into the tree structure. Our
We conduct our experiments using the Univer-
larger when using XLM-R, which is trained on
by Heinzerling and Strube (2019); the gains grow
competitive or better results than those reported
able layer weight parameters, we are able to obtain
framework with frozen mBERT and extra learn-
put to the classifier, and fine-tune the pretrained
puting (BPE; Gage, 1994)–based LSTM hidden
Strube (2019) take the token-wise concatenation
lines are strong enough (Table 1). Heinzerling and
erling and Strube, 2019) to ensure that our base-
the previous state-of-the-art performance (Heinz-

For non-structured text classification tasks, we also
introduce the following baselines:

• **Random word substitution (RANDWORD),**
 where we substitute a random word in an orig-
 inal example with another random word. This
can be viewed as a less restricted version of
 CTxSUB.

• **Binary balanced tree–based SUB\(^2\)**
 (SUB\(^2\)+P, balanced tree). Shi et al. (2018b)
argue that binary balanced trees are better
backbones for recursive neural networks
(Zhu et al., 2015; Tai et al., 2015) on text
classification. In this work, we present
binary balanced tree as the backbone for
SUB\(^2\): we (1) generate balanced trees by
recursively splitting a span of \(n \) words into
two consecutive groups, which consist of
\(\lfloor \frac{n}{2} \rfloor \) and \(\lceil \frac{n}{2} \rceil \) words respectively, and (2) treat
each nonterminal in the balanced tree as a
substructure to perform SUB\(^2\).

All of the data augmentation baselines are ex-
licit augmentations where concrete new examples
are generated and used. The methods above are
generally applicable to a wide range of NLP tasks.

4.3 Part-of-Speech Tagging

We conduct our experiments using the Universal
Dependencies (UD; Nivre et al., 2016, 2020)\(^4\)
dataset.

First, we compare both NOAUG and SUB\(^2\) to
the previous state-of-the-art performance (Heinz-
erling and Strube, 2019) to ensure that our base-
lines are strong enough (Table 1). Heinzerling and
Strube (2019) take the token-wise concatenation
of mBERT last-layer representations, byte-pair en-
coding (BPE; Gage, 1994)–based LSTM hidden
states and character-LSTM hidden states as the in-
put to the classifier, and fine-tune the pretrained
mBERT during training. We find that with our
framework with frozen mBERT and extra learn-
able layer weight parameters, we are able to obtain
competitive or better results than those reported
by Heinzerling and Strube (2019); the gains grow
larger when using XLM-R, which is trained on

\(^4\)http://universaldependencies.org/

Lang.	SOTA	mBERT NOAUG	XLM-R NOAUG	XLM-R SUB\(^2\)
avg.	96.9	97.1	97.7	97.7
bg	98.7	98.9	**99.4**	99.4
cs	99.0	99.0	**99.2**	99.2
da	97.2	97.8	98.7	98.5
de	94.4	94.6	95.3	95.1
en	96.1	96.5	97.5	97.3
es	96.8	96.9	**97.5**	**97.5**
eu	96.1	95.7	96.6	**96.8**
fa	97.5	96.6	98.6	98.5
fi	95.8	96.9	98.3	98.3
fr	96.6	96.7	96.9	**96.9**
he	97.4	96.9	97.9	97.8
hi	97.4	96.9	97.9	97.8
hr	96.8	97.6	97.9	**98.0**
id	94.0	93.7	93.8	93.7
it	98.1	98.6	**98.7**	**98.7**
nl	93.8	92.9	**94.0**	93.6
no	98.5	98.6	**99.0**	98.9
pl	97.7	98.5	98.8	**98.9**
pt	98.2	98.3	**98.6**	**98.6**
sl	98.1	98.7	**99.2**	**99.2**
sv	97.4	98.2	98.9	**98.9**

Table 1: Part-of-speech tagging accuracy (\(\times 100 \)) on
the standard test set of UD 1.2 high-resource (top) and
low-resource (bottom) languages, across different pre-
trained models and augmentation methods. The best
numbers in each row are bolded. SOTA: the best test ac-
curacy for each language among all methods reported
by Heinzerling and Strube (2019). Note that XLM-R is
the same setting as NOAUG in Table 2.

larger corpora than mBERT. In addition, by aug-
menting the training set with SUB\(^2\), we obtain
competitive performance on all languages, and achieve
better average accuracy on low-resource languages.

We further test the part-of-speech tagging ac-
curacy on 5 selected low-resource treebanks in the
UD 2.6 dataset (Table 2), following the official
splits of the dataset. For four among the five inves-
tigated treebanks, SUB\(^2\) achieves the best per-
formance among all methods, while also maintaining
a competitive performance on te (mtg). In contrast,
other augmentation methods (CTXSUB and RAND)
are harmful compared to NOAUG on all treebanks,
indicating that the examples generated by SUB\(^2\)
may be closer to the original data distribution.
We evaluate the performance of models using the standard test set of selected UD 2.6 low-resource treebanks. The best number in each row is bolded.

Table 2: Labeled attachment scores (LAS) on the PTB test set. Models are trained with the full PTB training set, †: the previously best result using any kind of annotation (e.g., constituency parse trees); ‡: the previously best result using only dependency annotations. BiAffine: the bi-affine dependency parsing model proposed by Dozat and Manning (2017).

Model	UAS	LAS
Zhang et al. (2020b)†	96.1	94.5
BiAffine+XLM-R	96.7	95.2
BiAffine+XLM-R+Sub²	96.6	95.2

4.4 Dependency Parsing

We evaluate the performance of models using the standard Penn Treebank dataset (PTB; Marcus et al., 1993), converted by Stanford dependency converter v3.0, following the standard splits.

We first compare the performance of Sub² and baselines in the low-resource setting (Table 3). All methods, though not always, may help achieve better performance than NoAUG. CTXSub helps achieve the best LAS when there is only an extremely small training set (e.g., 10 examples) available; however, when the size of the original training set becomes larger, Sub² begins to dominate, while CTXSub and RAND start to sometimes hurt the performance. In addition, a larger augmented

†https://nlp.stanford.edu/software/standford-dependencies.shtml

4.5 Constituency Parsing

We evaluate Sub² and baseline methods on few-shot constituency parsing, using the Foreebank (Fbank; Kaljahi et al., 2015) and NXT-Switchboard (SWBD: Calhoun et al., 2010) datasets. Foreebank consists of 1,000 English and 1,000 French sentences; for either language, we randomly select 50 sentences for training, 50 for development, and 250 for testing. We follow the standard splits of NXT-Switchboard, and randomly select 50 sentences from the training set and 50 from the development set for training and development respectively.

We compare different data augmentation methods using the setup of few-shot parsing from scratch (Table 5). Among all settings we tested, Sub² achieves the best performance, while all augmentation methods we investigated improve over training only on the original dataset (NoAUG). Surprisingly, we find that the seemingly meaningless RAND, which random shuffles the sentence and inserts the shuffled words back into the original parse tree structure as the nonterminals, also consistently helps few-shot parsing by a nontrivial margin.

⁶An additional finding here is that a simple biaffine dependency parsing model (Dozat and Manning, 2017) with XLM-R initialization is able to set a new state of the art for dependency parsing with only in-domain annotation.

⁷We leave the other 650 sentences for future use.

⁸This trend may be explained by benefits in learn-
We evaluate the methods introduced in Section 3.2 (SST; Socher et al., 2013) and AG News (Zhang et al., 2018b). Following Shi et al. (2018b), we further use SUB\(^2\) with phrase labels (+P) to augment the full SST training set, since it is the best augmentation method for few-shot sentiment classification. In addition to sentences, we also add phrases (i.e., subtrees) as training examples, following most of existing work (Socher et al., 2013; Kim, 2014; Brahma, 2018, inter alia),\(^{10}\) to boost performance. In this setting, we find that SUB\(^2\) helps set a new state of the art on the SST dataset (Table 8).

\(^{10}\)That is, different from Table 7, we apply the same settings as conventional work to produce numbers in Table 8.

For domain adaptation (Table 6), we first train Benepar (Kitaev and Klein, 2018) on the Penn Treebank dataset, and use the pretrained model as the initialization. While compared to few-shot parsing trained from scratch, the gain by data augmentation generally becomes smaller, SUB\(^2\) still works the best across datasets.

4.6 Text Classification

We evaluate the methods introduced in Section 3.2 and baselines on two text classification datasets: (SST; Socher et al., 2013) and AG News (Zhang et al., 2015) sentence (Table 7), in the low-resource setting.\(^{9}\) We obtain the constituency parse trees using Benepar (Kitaev and Klein, 2018) trained on the standard PTB dataset. Since the SST dataset provides sentiment labels of phrases, it is also natural to apply such phrase sentiment labels as substructure labels, where the substructures are phrases (SUB\(^2\)+P+SEN). Across the two investigated settings, data augmentation is usually helpful to improve over NOAUG, and most variations of SUB\(^2\) with the phrase-or-not (+P) substructure label are among the best-performing methods on each task (except SUB\(^2\)+P for SST-10%). Additionally, constituency

Method	Fbank (en)	Fbank (fr)	SWBD
NOAUG	33.1	27.3	29.1
CTXSUB	64.8	59.9	51.1
RAND	55.9	48.8	37.0
SUB\(^2\)	71.8	70.8	64.6

Table 5: Labeled F\(_1\) scores (×100) on the test set of each constituency treebank, in the setting of few-shot parsing. The best number in each column is bolded.

Method	Fbank (en)	Fbank (fr)	SWBD
PTB \(\rightarrow\) NOAUG	82.3	30.8	74.3
(PTB \(\rightarrow\)) CTXSUB	83.1	70.1	77.2
(PTB \(\rightarrow\)) RAND	84.0	71.1	78.2
(PTB \(\rightarrow\)) SUB\(^2\)	**84.6**	**72.6**	**78.3**

Table 6: Labeled F\(_1\) scores (×100) on the test set of each constituency treebank, in the setting of domain adaptation. PTB: directly testing the model trained on the Penn Treebank. The best number in each column is bolded.

Table 7: Accuracy (×100) on the AG News sentence test set and SST standard test set. The best numbers in each section are bolded.

Method	Accuracy			
SST-10% \(\mathcal{D}_{\text{train}}	= 0.8k, \mathcal{D}_{\text{dev}}	= 0.1k\)	
NOAUG	25.4			
CTXSUB	31.9			
RAND	24.7			
RANDWORD	30.2			
SUB\(^2\)+P+L	43.1			
SUB\(^2\)+P+L+N	44.3			
SUB\(^2\)+P+L+N+T	43.4			
SUB\(^2\)+P+L+T	44.1			
SUB\(^2\)+P+T	45.0			
SUB\(^2\)+P+N+T	44.3			
SUB\(^2\)+P+N	43.7			
SUB\(^2\)+N+T	34.6			
SUB\(^2\)+T	24.7			

AG News-1% \(\mathcal{D}_{\text{train}}	= 0.6k, \mathcal{D}_{\text{dev}}	= 0.06k\)	
NOAUG	40.6			
CTXSUB	86.2			
RAND	80.8			
RANDWORD	82.1			
SUB\(^2\)+P (balanced tree)	85.9			
SUB\(^2\)+P	85.7			
SUB\(^2\)+P+L	85.4			
SUB\(^2\)+P+L+N	86.1			
SUB\(^2\)+P+L+N+T	86.1			
SUB\(^2\)+P+L+T	86.7			
SUB\(^2\)+P+T	**86.8**			
SUB\(^2\)+P+N+T	**86.8**			
SUB\(^2\)+P+N	86.8			
SUB\(^2\)+N+T	86.4			
SUB\(^2\)+T	82.4			

\(^{9}\)We only keep the single-sentence instances among all examples in each split of the original AG News dataset, following Shi et al. (2018b).

\(^{10}\)That is, different from Table 7, we apply the same settings as conventional work to produce numbers in Table 8.
We investigate substructure substitution (\textsc{sub}^2), a family of data augmentation methods that generates new examples by same-label substructure substitution. Such methods help achieve competitive or better performance on the tasks of part-of-speech tagging, few-shot dependency parsing, few-shot constituency parsing, and text classification. While other data augmentation methods (e.g., \textsc{ctxsub} and \textsc{rand}) sometimes improve the performance, \textsc{sub}^2 is the only one that consistently helps low-resource NLP across tasks.

While existing work has shown that explicit constituent parse trees may not necessarily help improve recursive neural networks for text classification and other NLP tasks (Shi et al., 2018b), our work shows that such parse trees can be robust backbones for \textsc{sub}^2-style data augmentation, introducing more potential ways to help neural networks take advantages from explicit syntactic annotations.

There is an open question remaining to be addressed: it is still unclear that why \textsc{rand} helps improve few-shot constituency parsing, as the training process requires the model to output the correct parse tree of a sentence while only accessing shuffled words. We leave the above question, as well as applications of \textsc{sub}^2 to more NLP tasks, for future work.

Method	Dev. Acc.	Test Acc.
XLM-R (\textsc{noua})	56.1	55.7
XLM-R (\textsc{sub}^2)	56.6	56.6
Brahma (2018)	N/A	56.2

Table 8: Accuracy (\times100) on the SST standard development and test set.

5 Discussion

We investigate substructure substitution (\textsc{sub}^2), a family of data augmentation methods that generates new examples by same-label substructure substitution. Such methods help achieve competitive or better performance on the tasks of part-of-speech tagging, few-shot dependency parsing, few-shot constituency parsing, and text classification. While other data augmentation methods (e.g., \textsc{ctxsub} and \textsc{rand}) sometimes improve the performance, \textsc{sub}^2 is the only one that consistently helps low-resource NLP across tasks.

While existing work has shown that explicit constituent parse trees may not necessarily help improve recursive neural networks for text classification and other NLP tasks (Shi et al., 2018b), our work shows that such parse trees can be robust backbones for \textsc{sub}^2-style data augmentation, introducing more potential ways to help neural networks take advantages from explicit syntactic annotations.

There is an open question remaining to be addressed: it is still unclear that why \textsc{rand} helps improve few-shot constituency parsing, as the training process requires the model to output the correct parse tree of a sentence while only accessing shuffled words. We leave the above question, as well as applications of \textsc{sub}^2 to more NLP tasks, for future work.

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang. 2018. Generating natural language adversarial examples. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2890–2896, Brussels, Belgium. Association for Computational Linguistics.

Jacob Andreas. 2020. Good-enough compositional data augmentation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7556–7566, Online. Association for Computational Linguistics.

Akari Asai and Hannaneh Hajishirzi. 2020. Logic-guided data augmentation and regularization for consistent question answering. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5642–5650, Online. Association for Computational Linguistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic and natural noise both break neural machine translation. In International Conference on Learning Representations.

Toms Bergmanis, Katharina Kann, Hinrich Schütze, and Sharon Goldwater. 2017. Training data augmentation for low-resource morphological inflection. In Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 31–39, Vancouver. Association for Computational Linguistics.

Siddhartha Brahma. 2018. Improved sentence modeling using suffix bidirectional lstm. arXiv preprint arXiv:1805.07340.

Sasha Calhoun, Jean Carletta, Jason M Brenier, Neil Mayo, Dan Jurafsky, Mark Steedman, and David Beaver. 2010. The nxt-format switchboard corpus: a rich resource for investigating the syntax, semantics, pragmatics and prosody of dialogue. Language resources and evaluation, 44(4):387–419.

Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang, and Diyi Yang. 2020. Local additivity based data augmentation for semi-supervised NER. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1241–1251, Online. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.

Xiang Dai and Heike Adel. 2020. An analysis of simple data augmentation for named entity recognition. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3861–3867, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Mathieu Desouзе and Carlos Gómez-Rodríguez. 2020. Data augmentation via subtree swapping for dependency parsing of low-resource languages. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3818–3830, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kruengkrai, Thien Hai Nguyen, Shaqi Joty, Luo Si, and Chunyan Miao. 2020. DAGA: Data augmentation with a generation approach for low-resource tagging tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6045–6057, Online. Association for Computational Linguistics.

Timothy Dozat and Christopher D Manning. 2017. Deep biaffine attention for neural dependency parsing. In Proc. of ICLR.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz. 2017. Data augmentation for low-resource neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 567–573, Vancouver, Canada. Association for Computational Linguistics.

Hagen Fürstenau and Mirella Lapata. 2009. Semi-supervised semantic role labeling. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 220–228, Athens, Greece. Association for Computational Linguistics.

Philip Gage. 1994. A new algorithm for data compression. C Users Journal, 12(2):23–38.

Fei Gao, Jinhua Zhu, Lijun Wu, Yingce Xia, Tao Qin, Xueqi Cheng, Wengang Zhou, and Tie-Yan Liu. 2019. Soft contextual data augmentation for neural machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5539–5544, Florence, Italy. Association for Computational Linguistics.

Demi Guo, Yoon Kim, and Alexander Rush. 2020. Sequence-level mixed sample data augmentation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5547–5552, Online. Association for Computational Linguistics.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. Augmenting data with mixup for sentence classification: An empirical study. arXiv preprint arXiv:1905.08941.

Serhiy Havrylov, Germán Kruszewski, and Armand Joulin. 2019. Cooperative learning of disjoint syntax and semantics. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1118–1128, Minneapolis, Minnesota. Association for Computational Linguistics.

Benjamin Heinzerling and Michael Strube. 2019. Sequence tagging with contextual and non-contextual subword representations: A multilingual evaluation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 273–291, Florence, Italy. Association for Computational Linguistics.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu. 2018. Sequence-to-sequence data augmentation for dialogue language understanding. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1234–1245, Santa Fe, New Mexico, USA. Association for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12–22, Berlin, Germany. Association for Computational Linguistics.

Kushal Kalfe, Mohammed Yousefhussien, and Christopher Kanan. 2017. Data augmentation for visual question answering. In Proceedings of the 10th International Conference on Natural Language Generation, pages 198–202, Santiago de Compostela, Spain. Association for Computational Linguistics.

Rasoul Kaljahi, Jennifer Foster, Johann Roturier, Corentin Ribeyre, Teresa Lynn, and Joseph Le Roux. 2015. Foreebank: Syntactic analysis of customer support forums. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1341–1347, Lisbon, Portugal. Association for Computational Linguistics.

Chris Kedzie and Kathleen McKeown. 2020. Controllable meaning representation to text generation: Linearization and data augmentation strategies. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5160–5185, Online. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proc. of ICLR.

Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive encoder. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2676–2686, Melbourne, Australia. Association for Computational Linguistics.
Sosuke Kobayashi. 2018. Contextual augmentation: Data augmentation by words with paradigmatic relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 452–457, New Orleans, Louisiana. Association for Computational Linguistics.

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng Chen, Jiancheng Lv, Nan Duan, and Ming Zhou. 2020a. Tell me how to ask again: Question data augmentation with controllable rewriting in continuous space. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5798–5810, Online. Association for Computational Linguistics.

Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng Ma, Lili Wang, and Sorouch Vosoughi. 2020b. Data boost: Text data augmentation through reinforcement learning guided conditional generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9031–9041, Online. Association for Computational Linguistics.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Amarnarha, and Anupam Datta. 2020. Gender bias in neural natural language processing. In Logic, Language, and Security, pages 189–202. Springer.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Junghyun Min, R. Thomas McCoy, Dipanjan Das, Emily Piter, and Tal Linzen. 2020. Syntactic data augmentation increases robustness to inference heuristics. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2339–2352, Online. Association for Computational Linguistics.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran, Trung Bui, Walter Chang, and Ndapa Nakashole. 2020. Rethinking self-attention: Towards interpretability in neural parsing. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 731–742, Online. Association for Computational Linguistics.

Tong Niu and Mohit Bansal. 2019. Automatically learning data augmentation policies for dialogue tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1317–1323, Hong Kong, China. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1: A multilingual treebank collection. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 1659–1666, Portorož, Slovenia. European Language Resources Association (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajic, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing multilingual treebank collection. In Proceedings of the 12th Conference on Natural Language Resources and Evaluation Conference, pages 4034–4043, Marseille, France. European Language Resources Association.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, and Alan W Black. 2018. Style transfer through back-translation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 866–876, Melbourne, Australia. Association for Computational Linguistics.

Husam Quteineh, Spyridon Samothrakis, and Richard Sutcliffe. 2020. Textual data augmentation for efficient active learning on tiny datasets. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7400–7410, Online. Association for Computational Linguistics.

Gözde Gül Şahin and Mark Steedman. 2018. Data augmentation via dependency tree morphing for low-resource languages. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 5004–5009, Brussels, Belgium. Association for Computational Linguistics.

Yves Schabes. 1990. Mathematical and computational aspects of lexicalized grammars. PhD. thesis.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin, Germany. Association for Computational Linguistics.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020. On the role of supervision in unsupervised constituency parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7611–7621, Online. Association for Computational Linguistics.

Haoyue Shi, Jiayuan Mao, Tete Xiao, Yuning Jiang, and Jian Sun. 2018a. Learning visually-grounded semantics from contrastive adversarial samples. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3715–3727, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018b. On tree-based neural sentence modeling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4631–4641, Brussels, Belgium. Association for Computational Linguistics.

Miikka Silfverberg, Adam Wiemerslage, Ling Liu, and Lingshuang Jack Mao. 2017. Data augmentation for morphological reinflection. In Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 90–99, Vancouver. Association for Computational Linguistics.

Marco Antonio Sobrevilla Cabezudo, Simon Mille, and Thiago Pardo. 2019. Back-translation as strategy to tackle the lack of corpus in natural language generation from semantic representations. In Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019), pages 94–103, Hong Kong, China. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip Yu, and Lifang He. 2020. Mixuptransformer: Dynamic data augmentation for NLP tasks. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3436–3440, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1556–1566, Beijing, China. Association for Computational Linguistics.

Clara Vania, Yova Kementchedjhieva, Anders Søgaard, and Adam Lopez. 2019. A systematic comparison of methods for low-resource dependency parsing on genuinely low-resource languages. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1105–1116, Hong Kong, China. Association for Computational Linguistics.

Zhaozhong Wan, Xiaojun Wan, and Wenguang Wang. 2020. Improving grammatical error correction with data augmentation by editing latent representation. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2202–2212, Barcelona, Spain (Online). International Committee on Computational Linguistics.

William Yang Wang and Diyi Yang. 2015. That’s so annoying!!!: A lexical and frame-semantic embedding based data augmentation approach to automatic categorization of annoying behaviors using #petpeeve tweets. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2557–2563, Lisbon, Portugal. Association for Computational Linguistics.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neubig. 2018. SwitchOut: an efficient data augmentation algorithm for neural machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 856–861, Brussels, Belgium. Association for Computational Linguistics.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmentation techniques for boosting performance on text classification tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6382–6388, Hong Kong, China. Association for Computational Linguistics.

Mengzhou Xia, Xiang Kong, Antonios Anastasopoulos, and Graham Neubig. 2019. Generalized data augmentation for low-resource translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5786–5796, Florence, Italy. Association for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. 2019. Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Ng, and Dan Jurafsky. 2018. Noising and denoising natural language: Diverse backtranslation for grammar correction. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 619–628, New Orleans, Louisiana. Association for Computational Linguistics.

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2016. Improved relation classification by deep recurrent neural networks with data augmentation. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1461–1470, Osaka, Japan. The COLING 2016 Organizing Committee.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey. 2020. Generative data augmentation for
commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1008–1025, Online. Association for Computational Linguistics.

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt, Trung Bui, Walter Chang, and Sang-goo Lee. 2020. Variational hierarchical dialog autoencoder for dialog state tracking data augmentation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3406–3425, Online. Association for Computational Linguistics.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2018. mixup: Beyond empirical risk minimization. In International Conference on Learning Representations.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. 2019. Generating fluent adversarial examples for natural languages. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5564–5569, Florence, Italy. Association for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. Advances in neural information processing systems, 28:649–657.

Yi Zhang, Tao Ge, and Xu Sun. 2020a. Parallel data augmentation for formality style transfer. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3221–3228, Online. Association for Computational Linguistics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Efficient second-order TreeCRF for neural dependency parsing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3295–3305, Online. Association for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory over recursive structures. In International Conference on Machine Learning, pages 1604–1612.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1651–1661, Florence, Italy. Association for Computational Linguistics.