Surprise Maximization:
A Dynamic Programming Approach

Ali Eshragh*

Abstract

Borwein et al. [1] solved a “surprise maximization” problem by applying results from convex analysis and mathematical programming. Although, their proof is elegant, it requires advanced knowledge from both areas to understand it. Here, we provide another approach to derive an optimal solution of the problem by utilizing dynamic programming.

1 Introduction

Borwein et al. [1] introduced an optimization problem on maximizing the expected value of the surprise function. More precisely, they exploited results from convex analysis and mathematical programming to find an optimal solution of the following non-linear programming model, called SM1:

$$\text{maximize } S_m(p_1, \ldots, p_m) = \sum_{j=1}^{m} p_j \log \frac{p_j}{m \sum_{i=j}^{m} p_i} - \sum_{j=1}^{m} p_j$$

subject to

$$\sum_{j=1}^{m} p_j = 1,$$

and

$$p_j \geq 0 \text{ for } j = 1, \ldots, m.$$

Here, a dynamic programming approach is utilized to find an optimal solution of the SM1 model. First of all, we simplify the objective function $S_m(p_1, \ldots, p_m)$ as follows:

$$S_m(p_1, \ldots, p_m) = \sum_{j=1}^{m} p_j \left(\log p_j - \log \left(\sum_{i=j}^{m} p_i \right) \right) + \log m - 1$$

Without loss of generality, we can disregard the constant term $\log m - 1$ and carry out our optimisation over terms involving the variables p_j. Thus, we focus on the following

*School of Mathematical and Physical Sciences, University of Newcastle, NSW, Australia, and International Computer Science Institute, Berkeley, CA, USA. Email: ali.eshragh@newcastle.edu.au
optimisation model, called SM2:

\[
\text{maximize } \tilde{S}_m(p_1, \ldots, p_m) := \sum_{j=1}^{m} p_j \left(\log p_j - \log \left(\sum_{i=j}^{m} p_i \right) \right) \\
\text{subject to } \sum_{j=1}^{m} p_j = 1, \\
\text{and } p_j \geq 0 \text{ for } j = 1, \ldots, m.
\]

Now consider the following counterpart investment problem: Suppose that we are given 1 unit of money to invest in \(m \) consecutive days. If we spend \(p_1, \ldots, p_m \) units of money in days 1, \ldots, \(m \), then the total return of this investment will be given by \(\tilde{S}_m(p_1, \ldots, p_m) \). We want to find an optimal investment policy such that the total return over \(m \) days is maximised. Clearly, SM2 solves this optimal investment problem (This problem is called optimal resource allocation problem in the literature).

2 Dynamic Programming

We apply a dynamic programming approach to solve SM2. In this model, the stage is each investment opportunity (i.e., day) and the state of the system is the remained amount of money to invest in the subsequent stages. Let \(V_j(r) \) denote the maximum total return over days \(j, \ldots, m \) while \(r \) units of money remained (i.e., \(1-r \) units have been already spent in days \(1, \ldots, j-1 \)). The Bellman optimality equation is given as follows:

\[
\begin{cases}
V_j(r) = \max_{0 \leq x \leq r} \{ x \log x - x \log r + V_{j+1}(r-x) \} & \text{for } j = 1, \ldots, m-1, \\
V_m(r) = 0.
\end{cases}
\]

(1)

Let \(p^*_j(r) \) denote an optimal investment policy in day \(j \) when the stage of the system is \(r \). Obviously, we have \(p^*_m(r) = r \). So, the optimity equation (1) for \(j = m-1 \) is solved as follows.

\[
V_{m-1}(r) = \max_{0 \leq x \leq r} \{ x \log x - x \log r + V_m(r-x) \} = \max_{0 \leq x \leq r} \{ x \log x - x \log r \}.
\]

Since the function \(h(x) := x \log x - x \log r \) is a convex function over interval \([0, r]\), its maximum coincides with its extremum. Thus,

\[
p^*_{m-1}(r) = re^{-1} \tag{2}
\]

\[
V_{m-1}(r) = -p^*_{m-1}(r) = -re^{-1}. \tag{3}
\]

Solving the optimality equation (1) for \(j = m - 2 \) gives a trend in the optimal investment policy, summarized in following theorem.
Theorem 1. For the optimality equation (1),

\[p_j^*(r) = re^{-\gamma_j}, \]

where

\[
\begin{align*}
\gamma_{j-1} &= \gamma_j + e^{-\gamma_j} \quad \text{for } j = 1, \ldots, m-1, \\
\gamma_m &= 0,
\end{align*}
\]

is an optimal investment policy. Moreover, the optimal value is given by

\[V_j(r) = -\sum_{i=j}^{m-1} p_i^*(r). \]

Proof. We prove this theorem by induction. It is readily seen that (2) and (3) satisfies (4) and (6) for \(j = m-1\), respectively. Now, assume that the latter optimal policy and optimal value are correct for \(j \geq k \) and we show that they hold for \(j = k-1 \), as well. By considering the induction assumption, we have

\[
V_{k-1}(r) = \max_{0 \leq x \leq r} \{ x \log x - x \log r + V_k(r-x) \}
\]

\[= \max_{0 \leq x \leq r} \{ x \log x - x \log r - \sum_{i=k}^{m-1} p_i^*(r-x) \}
\]

\[= \max_{0 \leq x \leq r} \{ x \log x - x \log r - \sum_{i=k}^{m-1} (r-x)e^{-\gamma_i} \}
\]

\[= \max_{0 \leq x \leq r} \{ x \log x - x \log r - (r-x)(\gamma_{k-1} - 1) \},
\]

where the last equality is derived by summing up both sides of (5) over \(j = k, \ldots, m-1 \). One can see that the latter univariate optimization problem achieves its maximum at \(x^* = re^{-\gamma_{k-1}} \), and the corresponding optimal value \(V_{k-1}(r) \) equals to \(-\sum_{i=k-1}^{m-1} p_i^*(r)\). This completes the proof.

Corollary 1. An optimal solution of the model \(SM2 \) is given by:

\[
p_j^* = \begin{cases}
p_1^*(1) & \text{for } j = 1, \\
p_j^*(1 - \sum_{i=1}^{j-1} p_i^*) & \text{for } j = 2, \ldots, m.
\end{cases}
\]

References

[1] Borwein D., Borwein J.M., Marechal P. Surprise Maximization. The American Mathematical Monthly. 107(6):517–527, 2000.
[2] F. Iravani, S. Alizamir, A. Eshragh and K. Bandara, An Interpretable Machine Learning Approach to Predicting Customer Behavior on JD.Com, Under Review (Available at SSRN).

[3] V. Dewanto, G. Dunn, A. Eshragh, M. Gallagher and F. Roosta, Average-reward Model-free Reinforcement Learning: A Systematic Review and Literature Mapping, (arXiv preprint arXiv:2010.08920).

[4] A. Eshragh, F. Roosta, A. Nazari and M. Mahoney, LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data, Under Review (arXiv preprint arXiv:1911.12321).

[5] A.S. Altamiranda, H. Charkhgard, I. Dayarianb, A. Eshragh and S. Javadia, Learning to Project in Multi-objective Binary Linear Programming, Under Review (arXiv preprint arXiv:1901.10868).

[6] A. Eshragh, B. Ganim, T. Perkins, and K. Bandara, The Importance of Environmental Factors in Forecasting Australian Power Demand, Under Review (arXiv preprint arXiv:1911.00817).

[7] M. Abolghasemi, A. Eshragh, J. Hurley, and B. Fahimnia, Demand Forecasting in the Presence of Systematic Events: Cases in Capturing Sales Promotions, To Appear in International Journal of Production Economics.

[8] A. Eshragh, S. Alizamir, P. Howley and E. Stojanovski, Modeling the Dynamics of the COVID-19 Population in Australia: A Probabilistic Analysis, PLOS-One, 15(10):e0240153, 2020.

[9] A. Eshragh, R. Esmaeilbeigi and R. Middleton, An Analytical Bound on the Fleet Size in Vehicle Routing Problems: A Dynamic Programming Approach, Operations Research Letters, 48(3):350-355, 2020.

[10] A. Eshragh, J. Filar, T. Kalinowski and S. Mohammadian, Hamiltonian Cycles and Subsets of Discounted Occupational Measures, Mathematics of Operations Research, 45(2):403-795, 2020.

[11] H. Charkhgard and A. Eshragh, A New Approach to Select the Best Subset of Predictors in Linear Regression Modeling: Bi-Objective Mixed Integer Liner Programming, ANZIAM Journal, 62(1):64-75, 2019.

[12] B. Fahimnia, H. Davarzani and A. Eshragh, Performance Comparison of Three Meta-Heuristic Algorithms for Planning of a Complex Supply Chain, Computers and Operations Research, 89:241-252, 2018.

[13] R. Esmaeilbeigi, A. Eshragh, R. Garcia-Flores and M. Heydar, Whey Reverse Logistics Network Design: A Stochastic Hierarchical Facility Location Model, Proceedings of the 22nd International Congress on Modeling and Simulation, Hobart, Australia, December 2017.
[14] K. Avrachenkov, A. Eshragh and J. Filar, On Transition Matrices of Markov Chains Corresponding to Hamiltonian Cycles, *Annals of Operations Research*, 243(1):19-35, 2016.

[15] N.G. Bean, A. Eshragh and J.V. Ross, Fisher Information for a Partially-Observable Simple Birth Process, *Communications in Statistics: Theory and Methods*, 45(24):7161-7183, 2016.

[16] N.G. Bean, R. Elliott, A. Eshragh and J.V. Ross, On Binomial Observation of Continuous-Time Markovian Population Models, *Journal of Applied Probability*, 52:457-472, 2015.

[17] B. Fahimnia, J. Sarkis, A. Choudhary and A. Eshragh, Tactical Supply Chain Planning Under a Carbon Tax Policy Scheme: A Case Study, *International Journal of Production Economics*, 164:206-215, 2015.

[18] B. Fahimnia, J. Sarkis and A. Eshragh, A Trade-off Model for Green Supply Chain Planning: A Leanness-Versus-Greenness Analysis, *OMEGA*, 54:173-190, 2015.

[19] A. Eshragh, Fisher Information, Stochastic Processes and Generating Functions, *Proceedings of the 21st International Congress on Modeling and Simulation*, Gold Coast, Australia, December 2015.

[20] A. Eshragh and J. Filar, Hamiltonian Cycles, Random Walks and the Geometry of the Space of Discounted Occupational Measures, *Mathematics of Operations Research*, 36(2):258-270, 2011.

[21] A. Eshragh, J. Filar and M. Haythorpe, A Hybrid Simulation-Optimization Algorithm for the Hamiltonian Cycle Problem, *Annals of Operations Research*, 189:103-125, 2011.

[22] K. Avrachenkov, A. Eshragh and J. Filar, Markov Chains and Hamiltonian Transition Matrices, *Proceedings of the 5th International ICST Conference on Performance Evaluation Methodologies and Tools*, Paris, France, 2011.

[23] A. Eshragh, J. Filar and A. Nazari, A Projection-Adapted Cross Entropy (PACE) Method for Transmission Network Planning, *Energy Systems*, 2(2):189-208, 2011.

[24] A. Eshragh and M. Modarres, A New Approach to Distribution Fitting: Decision on Beliefs, *Journal of Industrial and Systems Engineering*, 3(1):56-71, 2009.

[25] H. Mahlooji, A. Eshragh, H. Abouee Mehrizi and N. Izady, Uniform Fractional Part: A Simple Fast Method for Generating Continuous Random Variates, *Scientia Iranica*, 15(5):613-622, 2008.