Plastic-inhabiting fungi in marine environments and PCL degradation activity

Sung Hyun Kim · Jun Won Lee · Ji Seon Kim · Wonjun Lee · Myung Soo Park · Young Woon Lim

Abstract Plastic waste has a negative impact on marine ecosystems and the quantity of this source of anthropogenic pollution continues to increase. Several studies have investigated plastic biodegradation using various microorganisms. In this study, we isolated fungi from polyethylene terephthalate (PET) waste on Korean seacoasts and evaluated their ability to degrade plastic by comparing the diameters of the clear zones they formed on polycaprolactone (PCL) agar. We isolated 262 strains from 47 plastic waste sources and identified 108 fungal species via molecular methods. The PCL agar assay revealed that 87 species presented with varying degrees of PCL degradation capacity. Among them, certain fungal species were strong PCL degraders. The present study demonstrated the possibility that some fungi inhabiting plastic could potentially degrade it in the marine environment. We believe that the discoveries made herein lay theoretical and practical foundations for the development of novel bioremediation systems for marine plastispheres and help mitigate the environmental pollution issues related to plastic wastes.

Keywords Fungal diversity · Marine fungi · Phylogenetic analysis · Plastic degradation · Polycaprolactone

Introduction

Plastic products are extensively and widely used, and the plastic polymer compositions vary depending on the intended applications of the products they are used to fabricate. Common plastics include high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyethylene terephthalate (PET) (Plastics Europe, 2021). As of 2020, approximately 367 million tonnes of plastic products were produced. The plastic production volume has substantially increased since the 1990s (Plastics Europe, 2021). However, only about 9% of all plastic waste is recycled, and as much as 60% of it is buried in a landfill or discarded as litter in terrestrial environments (Geyer et al. 2017). Most marine plastic waste consists of improperly disposed terrestrial plastic waste that has entered the oceans via rivers, wastewater outflows, wind, and tides. In 2010, 4–12 million tonnes of marine plastic waste originated from land (Jambeck et al. 2015).
Additionally, about 1.15–2.41 million tonnes of marine plastic waste originated from river (Lebreton et al. 2017).

Plastic waste accumulation has had a direct and indirect negative impact on marine ecosystems. Plastic pieces are ingested by marine animals and damage their internal organs (Ahrendt et al. 2020; Wright et al. 2013). Furthermore, wave action, weathering, and other processes break down plastic pieces into microplastics which are the plastic wastes that were degraded into smaller fragments and fibers (Thompson et al. 2004), causing other more hazards. Microplastics float on ocean surfaces and contain Persistent Organic Pollutants (POPs), which are endocrine disruptors that hinder the survival rate of marine organisms (Rios et al. 2007). Microplastics also transport microbial pathogens and alien species, hazardous to marine ecosystems in other regions (Arias-Andres et al. 2018; Beloe et al. 2022; Bowley et al. 2021). Thus, plastic in marine ecosystems has become a serious environmental issue. However, there are no policies or solutions in place that effectively mitigate the plastic waste problem. Recent studies have explored chemical degradation, recycling, and biodegradation as potential marine plastic waste remediation measures.

Much research attention has been directed toward plastic waste degradation by microorganisms. Plastic waste has persisted in natural environments for decades. Plastic debris that is inhabited and partially decomposed by the microbial community is now referred to as the “plastisphere” (Zettler et al. 2013) and numerous different microorganisms are found in it (Hirota et al. 2021; Amaral-Zettler et al. 2020). Some of them were reported to degrade plastic by various kinds of tests (Badahit et al. 2018; Sangeetha Devi et al. 2019; Hou et al. 2022; Kumari et al. 2019; Muhonja et al. 2018; Yamada-Onodera et al. 2001): and enzymatic activities involved in plastic degradation have been investigated extensively (Temporiti et al. 2022). Nevertheless, prior research has focused mainly on plastic-decomposing bacteria. Fungi comprise only about 3% of all eukaryotic organisms in the plastisphere, although they play a vital role as decomposers in the environment (Rogers et al., 2020). Numerous plastic-degrading fungi have been detected and identified in the landfill (terrestrial) plastisphere including Aspergillus spp. (Cosgrove et al. 2007; Muhonja et al. 2018; Zahra et al. 2010), Fusarium spp. (Kanelli et al. 2015; Zahra et al. 2010), and Penicillium simplicissimum (Yamada-Onodera et al. 2001). Previous studies on plastic-degrading fungi in marine environments concentrated primarily on several specific taxa such as Aspergillus sp. (Sarkhel et al. 2020) and Zalerion maritimum (Paço et al. 2017).

Previously, we isolated different fungi from various substrates in marine environments such as sailfin eggs (Park et al. 2018) and microalgae (Lee et al. 2019; Park et al. 2016). Many of these fungi had high enzymatic activity (Lee et al., 2019; Park et al. 2015a, 2019). Since these studies detected the fungal ability to degrade complex organic matter, it was expected that plastic-isolated fungi could decompose plastic substrates. A metabarcoding analysis revealed that a wide array of fungi survived on plastics collected from seawater (Lacerda et al. 2020, Davidov et al. 2020) and the sea floor (De Tenger et al. 2017). We hypothesized that different fungi can inhabit plastic waste and most of them actively participate in plastic degradation. In the present study, therefore, we investigated fungal diversity in PET waste collected from seacoasts and used a polycaprolactone (PCL) degradation assay to evaluate their capacity to degrade plastic. PCL is a biopolymer that has been extensively used in biodegradation research as a surrogate for non-degradable polymers. Its usage in fungal incubation varies from film/sheet form (Benedict et al. 1983; Fukushima et al. 2010), or agar from emulsified substance (Lee et al. 2021).

Materials and methods

Sampling

Forty-seven PET wastes such as PET bottles and PET cups were collected from 15 sites along the western and southern sea coast of the Republic of Korea in April, 2018 (Fig. 1). We collected PET bottles and PET cups with intact shape to prevent wrong sample collection. The PET surfaces were cleansed of debris by washing with artificial seawater (ASW). Each PET waste sample was cut with sterilized scissors into 27 pieces each 1 cm² in area. To isolate the fungi, nine pieces per sample were placed in dichloran rose bengal chloramphenicol agar (DRBC; Difco, Sparks, MD, USA), glycerol yeast extract agar (GYA; 1 g L⁻¹ glucose, 0.1 g L⁻¹ yeast extract, 0.5 g L⁻¹...
peptone, and 15 g L$^{-1}$ agar), and potato dextrose agar (PDA; Difco, Sparks, MD, USA) supplemented with ASW (purified from seawater in South Korea; salinity = 32.0%). The plates were incubated at 25 °C for 7–14 d. Pure fungal colonies were then transferred to new PDA + ASW plates. Pure fungal strains were stored in 20% (v/v) glycerol at –80 °C and deposited in the Seoul National University Fungus Collection (SFC).

Molecular identification

The fungal isolates on PDA were grouped according to their morphological characteristics such as texture, color, colony size, and sporulation. At least one strain was selected from each group for molecular identification. Genomic DNA was extracted by a modified cetyltrimethylammonium bromide (CTAB) method (Rogers and Bendich 1994). PCR amplification of the internal transcribed spacer (ITS) region was performed using ITS1F/ITS4 primers (Gardes and Bruns 1993; White et al. 1990) and AccuPower PCR Master Premix (Bioneer Co., Daejeon, Republic of Korea). All representative strains were identified down to the genus level based on their ITS sequences. The strains within certain genera were identified to the species level using various protein-coding gene analyses and different primer sets. Actin (act) was amplified using ACT-512F/ACT-783R (Carbone and Kohn 1999) or ACT1Fd/ACT1Rd (Aveskamp et al. 2009; Groenewald et al. 2013) whilst β-tubulin (BenA) was amplified using Bt2a/Bt2b (Glass and Donaldson 1995). PCR was performed in a C1000 Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA) under previously described conditions (Park et al. 2015b). PCR amplicons were checked with 1% agarose gel and purified with an Expin™ PCR Purification Kit (GeneAll Biotechnology, Seoul, Korea) according to the manufacturer’s instructions. DNA was sequenced at Macrogen (Seoul, Republic of Korea) in an ABI PRISM 3700 Genetic Analyzer (Life Technologies, Gaithersburg, MD, USA).

All sequences were proofread and edited with MEGA7 (Kumar et al. 2016) and deposited in GenBank (Supplementary Table 2). For the phylogenetic analysis, the type sequences of the reference species were retrieved from GenBank (Supplementary Table 3) and aligned with the sample sequences for each locus with MAFFT v. 7 (Katoh and Standley 2013) using the default parameters. Maximum likelihood phylogenetic analyses were performed on each gene (ITS, act, BenA) using RAxML (Stamatakis 2006), the GTRGAMMA evolution model, and 1,000 bootstrap replicates.

Fig. 1 Sampling site of plastic waste along Korean seacoasts and number of fungal strain isolated (A). Example of plastic wastes collected from mudflats and sand (B)
PCL degradation test on agar plate

The PET-degrading ability was determined for one to nine representative strains of each fungal species (Table 1) by measuring the clear zones formed in polycaprolactone (PCL) media. The PCL agar was prepared according to a previously reported method (Lee et al. 2021) and consisted of a 1% (w/v) emulsified PCL suspension (pellet form, 3 mm in diameter; Sigma-Aldrich., St. Louis, MO, USA) in acetone plus distilled water (10% of acetone volume). The PCL suspension was added to an autoclaved medium comprising a 0.8% (w/v) yeast nitrogen base (Difco-Becton Dickinson, Broken Bow, NE, USA), 1.5% (w/v) agar, and distilled water, then poured into 90 mm Petri dishes.

Representative strains of each fungal species identified were inoculated with a 4-mm hole punch at the center of each agar plate. Clear zone formation was evaluated by measuring the distance between the margin of the clear (transparent) zone and that of the colony after 7 d incubation at 25 °C. All clear zones were measured in triplicate and averaged. PCL degradation by each species was determined from the averages of the clear zone lengths of all representative strains of the same species. For species with multiple tested strains, the standard deviations of the average clear zone lengths of all strains within the same species were also calculated.

Results

Identification and diversity analysis

A total of 262 fungal strains were isolated from 47 PET wastes. Multiple strains of the same species derived from a single PET waste were treated as a single strain. One to nineteen fungal strains were isolated per PET. Depending on the isolation medium used (DRBC, GYA, or PDA), different numbers of fungal strains were isolated from the same PET waste (Fig. 1, Supplementary Table S1). All fungal strains were grouped into 108 taxa based on their morphological features and ITS sequencing results (Fig. 2). Forty-seven taxa were identified to the species level based on their protein-coding genes. The actin gene was used to identify Cladosporium species whilst the β-tubulin gene was used to identify Aspergillus, Diaportha, Didymella, Epicoccum, Juxtaphoma, Neodidymeliopsis, Nothophoma, Penicillium, Pestalotiopsis, Remotididymella, and Talaromyces species (Table 1, Supplementary Figure S1). Based on the ITS sequences alone, 47 taxa were confirmed to the species level whilst 14 others were identified to the genus, family, and order levels.

All 108 species detected belonged to the Ascomycota and were classified into 15 orders and 46 genera (Table 1, Fig. 2). Pleosporales was the dominant order and included 44 species. It was followed by Cladosporiales and Eurotiales with 13 species each (Fig. 3A). Cladosporiales only included the genus Cladosporium whereas Eurotiales comprised the genera Penicillium, Aspergillus, and Talaromyces.

The latter two included three and one species, respectively, and nine Penicillium species were identified (Fig. 3B, Table 1). Eleven different species were isolated from at least five PET wastes (Fig. 3C). Alternaria alternata was isolated from 21 different PET waste sources followed by Cladosporium ramotenellum (16 PET wastes) and Paradendryphiella arenariae (14 PET wastes).

Fungal PCL degradation activity

A PCL degradation test was performed on 146 representative strains of 108 species (Supplementary Table S3). The clear zone lengths of the fungal strains were in the range of 0–13.96 mm. Based on the average clear zone lengths, fungal PCL degradation ability was categorized into four levels, namely, no degradation (0 mm: 0), weak (0 < (+) ≤ 5 mm), moderate (5 < (+ +) ≤ 10 mm), and strong (10 < (+ + +) ≤ 15 mm) (Fig. 4). Five species exhibited strong PCL degradation, 18 species showed moderate PCL degradation, 64 species presented with weak PCL degradation, and 21 species did not degrade PCL at all (Table 1). There was also intraspecies variation. The PCL degradation capacities of eight Alternaria alternata strains ranged from 12.88 mm (NP321) to 3.32 mm (NP044). In most cases, however, all tested strains of the same species were similar in terms of their PCL degradation ability.

Phaeophleospora eucalypticola had the strongest PCL degradation ability (clear zone length = 13.96 mm). Four Cladosporium species also showed strong PCL degradation activity. Cladosporium allicinum
Table 1 Fungi isolated from PET wastes and their PCL degradation assay results. Fungal orders are in bold font. Averages and SD of clear zone lengths are presented and categorized into four levels

Species	Total no. strains	PCL tested strains	Clear zone length (mm)	Degradation level*
Amphisphaeriales				
Mornia cf. acaciae	1	1	1.55 (+)	
Neopestalotiopsis sp.	2	1	0	0
Pestalotiopsis cf. anacardiacearum	1	1	0.88 (+)	
Pestalotiopsis cf. australasiae	2	1	0.34 (+)	
Pestalotiopsis sp.	2	1	0.9 (+)	
Pestalotiopsis thailandica	1	1	1.35 (+)	
Botryosphaeriales				
Botryosphaeria dothidea	1	1	0.37 (+)	
Sphaeropsis sapinea	1	1	6.94 (+++)	
Capnodiales				
Neodevriesia cf. metrosideri	1	1	6.08 (+++)	
Cladosporiales				
Cladosporium allicinum	2	1	13.92 (++++	
Cl. anthropophilum	7	1	9.74 (+)	
Cl. cf. halotolerans	2	1	8.6 (+)	
Cl. cf. cladosporioides	1	1	8.22 (+)	
Cl. ficulcous	1	1	1.66 (+)	
Cl. halotolerans	1	1	2.46 (+)	
Cl. perangustum	2	2	6.76 (± 4.19) (+++)	
Cl. pseudocladosporioides	3	2	7.74 (± 6.84) (+++)	
Cl. ramotennellum	16	6	4.85 (± 2.17) (+)	
Cl. rectoides	5	2	10.34 (± 3.28) (++++	
Cl. tenuissimum	7	3	10.21 (± 0.82) (++++	
Cl. xanthochromaticum	2	1	11.37 (+++)	
Cl. xylophilum	4	2	0.57 (± 0.11) (+)	
Diaporthales				
Diaportha cf. arecae	3	2	1.33 (± 0.4) (+)	
Diaportha cf. hungariae	5	2	2.48 (± 0.95) (+)	
Diaportha cf. pseudocauli	1	1	2.18 (+)	
Diaportha cf. sojae	1	1	1.09 (+)	
Cytospora ceratosperma	1	1	6.17 (+++)	
Dothideales				
Aureobasidium melanogenum	1	1	8.28 (+++)	
Au. namibiae	1	1	6.24 (+)	
Au. pullulans	2	1	0.56 (+)	
Eurotiales				
Aspergillus ochraceus	1	1	2.19 (+)	
As. oryzae	1	1	4.8 (+)	
As. tritici	1	1	2.03 (+)	
Penicillium charlesii	2	1	0 (+)	0
Pe. commune	4	2	0 (±0)	0
Pe. crustosum	3	1	0 (+)	0
Pe. echinulatum	1	1	0.37 (+)	
Table 1 (continued)

Species	Total no. strains	PCL tested strains	Clear zone length (mm)	Degradation level*
Pe. expansum	1	1	0	0
Pe. exsudans	1	1	0	0
Pe. javanicum	1	1	0	0
Pe. oxalicum	1	1	0	0
Pe. roqueforti	1	1	0.07	(+)
Talaromyces rugulosus	1	1	3.31	(+)
Glomereellales				
Plectosphaerella cucumerina	1	1	0.39	(+)
Helotiales				
Botrytis cinerea	1	1	1.03	(+)
Hypocreales				
Acremonium cf. fuci	12	3	0 (± 0)	0
Ae. fuci	8	2	0 (± 0)	0
Fusarium equiseti	4	2	0.63 (± 0.21)	(+)
Fusarium fujikuroi	1	1	0.73	(+)
Hypocreales sp.	1	1	2.43	(+)
Parasarocladium cf. gamsii	2	2	3.38 (± 4.08)	(+)
Parengyodontium album	1	1	0	0
Sarocladium strictum	1	1	7.63	(+++)
Trichoderma harzianum	1	1	0.41	(+)
Tr. fomiticola	1	1	0.3	(+)
Mycosphaerellales				
Phaeophleospora eucalyptica	2	1	13.96	(+++)
Pleosporales				
Alternaria alternata	21	8	6.14 (± 3.28)	(+++)
Al. cf. rosae	2	1	5.82	(+++)
Al. chloramydospora	3	1	1.7	(+)
Didymella cf. macrophylla	1	1	1.28	(+)
Didymosphaeriaceae sp. 1	1	1	6.1	(+++)
Didymosphaeriaceae sp. 2	1	1	3.33	(+)
Epicoccum cf. duchesneae	3	1	3.58	(+)
Epicoccum cf. hordei	1	1	0	0
Epicoccum cf. sorghinum	1	1	2.65	(+)
Epicoccum dendrobi	2	1	6.26	(+++)
Epicoccum duchesneae	3	2	0.43 (± 0.61)	(+)
Epicoccum sorghinum	2	1	1.5	(+)
Epicoccum sp.	1	1	0.35	(+)
Epicoccum tritici	2	1	2.34	(+)
Juxtiphoma cf. eupyrena	1	1	0	0
Kalmusia araucariae	1	1	0	0
Neocamarosporium betae	3	1	0	0
Neocamarosporium solicola	2	1	0.55	(+)
Neocamarosporium sp.	3	2	0.86 (± 0.72)	(+)
Neodidymelliosps cf. longicolla	6	3	2.61 (± 3.37)	(+)
Neodidymelliosps longicolla	2	1	0.77	(+)
had the widest clear zone (13.92 mm) followed by
C. xanthochromaticum (11.37 mm), C. rectoides
(10.34 mm), and C. tenuissimum (10.21 mm). Sev-
ten species of moderate PCL-degrading fungi were
classified into ten genera including two Alternaria
spp., two Aureobasidium spp., two Phaeosphaeria
spp., five Cladosporium spp., and each one species of
Cytospora, Epicoccum, Neodevriesia, Nothophoma,
Sarocladium, Sphaeropsis (Table 1). Cladosporium
species showed relatively high PCL degradation
activity among the moderate PCL degraders.

Weak PCL-degrading fungi included 64 spe-
cies. They were classified as 30 genera (Table 1).

Table 1 (continued)

Species	Total no. strains	PCL tested strains	Clear zone length (mm)	Degradation level*
Neosetophoma cf. poaceicola	1	1	2.31 (+)	(+)
Neosetophoma poaceicola	1	1	0.94 (+)	(+)
Neosetophoma rosigena	1	1	0.58 (+)	(+)
Nothophoma quercina	1	1	7.67 (+)	(+)
Paraconiothyrium brasiliense	1	1	0 (+)	0
Paraphoma radicina	1	1	0.77 (+)	(+)
Parathyridaria cf. tyrrenica	2	2	0.73 (± 1.03) (+)	(+)
Phaeosphaeria culmorum	1	1	0 (+)	0
Phaeosphaeria spartinicola	1	1	5.27 (+)	(+)
Phaeosphaeria oryzae	1	1	6.42 (+)	(+)
Pleosporaceae sp. 1	1	1	0.42 (+)	(+)
Pleosporaceae sp. 2	1	1	2.07 (+)	(+)
Pleosporales sp. 1	12	2	0 (±0)	0
Pleosporales sp. 2	3	2	1.33 (±1.15) (+)	(+)
Pleosporales sp. 3	1	1	0.93 (+)	(+)
Pleosporales sp. 4	2	2	3.37 (±1.52) (+)	(+)
Pyrenochaetopsis microspora	2	1	1.24 (+)	(+)
Pyrenochaetopsis paucisetosa	1	1	0.69 (+)	(+)
Remotididymella cf. capsici	3	2	0.51 (±0.72) (+)	(+)
Remotididymella sp.	1	1	2.78 (+)	(+)
Stemphylium lycopersici	1	1	1 (+)	(+)
St. vesicarium	2	2	1.66 (±0.07) (+)	(+)
Sordariaceae				
Chaetomium globosum	1	1	0.93 (+)	(+)
Thel ebolales				
Pseudogymnoascus pannorum	2	1	0.89 (+)	(+)
Xylariales				
Eutypella cf. persica	1	1	0.69 (+)	(+)
Others (incertae sedia)				
Apiospora marii	1	1	0.51 (+)	(+)
Ap. rasikrivandae	1	1	0.85 (+)	(+)
Nigrospora cf. oryzae	2	1	0 (+)	0
Sedecimiella taiwanensis	1	1	0.19 (+)	(+)
Septoriella cf. hubertusii	1	1	0.33 (+)	(+)

*0 mm: (0), 0 < (+) ≤ 5 mm, 5 < (+ +) ≤ 10 mm, 10 < (+ + +) ≤ 15 mm
Figure 2 Phylogenetic tree of fungi isolated from marine plastic waste based on ML analysis of ITS. Bootstrap scores >70 are presented at nodes. Scale bar indicates the number of nucleotide substitutions per site. Representative strains of each taxon based on ITS sequences are shown in bold font.

(Didymellaceae) showed relatively weak PCL degradation as no strain produced a clear zone wider than 5 mm. The species in the Eurotiales exhibited very weak PCL degradation ability. None of the Penicillium strains produced clear zones wider than 1 mm (Fig. 4, Table 1). Aspergillus and Talaromyces showed higher PCL-degrading activity than Penicillium. The lengths of the average clear zones produced by Aspergillus and Talaromyces were 2.30 and 3.31 mm on average, respectively. Most species in the Order Amphisphaeriales were weak PCL degraders (Table 1).

Whereas most fungi could degrade PCL, certain species isolated from 27 PET waste sources failed to form clear zones on PCL agar. Most of them were isolated along with other PCL-degrading fungi (Fig. 5). Weak and moderate PCL-degrading fungi were detected in most samples. Weakly PCL-degrading fungi were particularly abundant in PET samples Nos. 20, 36, 37, 43, and 44. By contrast, strong PCL degrading fungi did not predominate in any PET samples and always co-occurred either with weak or moderate PCL-degrading fungi or with those that did not degrade PCL at all.

Discussion

We isolated fungi from marine PET wastes and tested PCL degradation to discover competent plastic-degrading fungi in the marine plastisphere and determined whether they could degrade PET. Numerous fungi were isolated despite the limited number of PET wastes examined here. They resembled that reported in a previous study on fungal diversity in the marine environment (Jones et al. 2015; Kwon et al. 2021). Acremonium fuci was isolated from seaweed in Europe and North America (Zuccaro et al. 2004), and several Cladosporium species, such as C. perangustum, C. tenuissimum, and C. xanthochromaticum were found in marine sediments (Luo et al., 2020). Paradendryphiella arenariae were reported from various microalgae in Europe (Dela Cruz et al. 2006), and a number of other fungal species including Fusarium equiseti, Nigrospora oryzae, Penicillium oxalicum, and Trichoderma harzianum were found in sea sand, mudflats, and seaweeds (Heo et al. 2019; Park et al. 2019). The fungal species detected in this research were also similar to those in other marine and terrestrial plastisphere. Many species in Pleosporales were detected in plastisphere of the Antarctic Ocean (Lacerda et al. 2020) and the North Sea (De Tender et al. 2017). The Aspergillus, Chaetomium, Epicoccum, Fusarium, and Trichoderma species were identified in the terrestrial plastisphere (Kemona and Piotrowska 2016; Ye et al., 2021).

Several putative plastic-degrading fungi were identified by the PCL agar degradation test. Approximately 81% of all identified species formed clear zones and were, therefore, potential plastic biodegraders. PET degradation-associated enzyme activity was detected in PCL-degrading fungus (Nyyssölä et al. 2013). Hence, the species identified here could conceivably decompose PET and other plastics as well. Cladosporium included 13 PCL-degrading species of which four and nine had strong and moderate PCL-degrading activity, respectively. Prior research confirmed that several Cladosporium strains effectively degraded other substrates, such as polyurethane (Bonhomme et al. 2003; Brunner et al. 2018; Srikanth et al. 2022). Therefore, Cladosporium species could degrade plastic wastes in the marine environment. Aureobasidium pullulans, which displayed relatively good polyurethane degradation were also reported previously (Crabbe et al. 1994). Phaeoaphleospora eucalypticola showed the strongest PCL-degrading activity, but this species has not been given much attention to its degrading abilities. Further research on P. eucalypticola may reveal its full potential for the degradation of plastics. It is reported that various enzymes, such as cutinase, laccase, and esterase from fungi were used in degradation of PET (Anbalagan et al. 2021; Khan et al. 2022), and this may explain the high biodiversity in relatively small number of plastic samples.

In this study, most of the highly abundant species showed low levels of PCL degradation ability. Paradendryphiella arenariae, Pleosporales sp.1, and Acremonium cf. fuci were very abundant but relatively weak PCL degraders. In contrast, the fungi with the strongest degradation ability were far less abundant. Phaeoaphleospora eucalypticola and
C. xanthochromaticum showed strong PCL degradation capacity, but only two strains were isolated from 47 plastic wastes. Each PET waste had many fungal species with low level of PCL degradation but generally possessed only one fungal species that was highly effective. This result allowed us to infer that varying fungal species on plastic waste performed different roles. The abundant weak plastic degraders may grow on plastic wastes to utilize materials primarily degraded by mechanical or biological process. The initial breakdown mechanism of plastics may include polymer oxidation, which increases the hydrophilicity of plastics, weakens their bonds and mechanical structures, and facilitates secondary colonizer access (Oberbeckmann and Labrenz 2020). Microorganisms also gradually degrade other complex molecules such as lignin (Janusz et al. 2017) and anthropogenic (synthetic) polymers (Chen et al. 2020). Hence, the colonizing mechanisms of various microbes strongly influence fungal diversity on plastic wastes. Species with weak or no PCL-degrading ability may have been isolated from the primary colonizers as fungicolous fungi. The inhabitation of fungal species on other plastic-colonizing microorganisms has previously been reported (Webb et al. 2000). Some Hypocreales and Pleosporales species are known to obtain their nutrients either commensally or parasitically from other fungi (Sun et al. 2019). Most species in Hypocreales and Pleosporales showed low PCL degradation ability, proving that they get their nutrients from alternative sources.

In conclusion, the present study showed that numerous fungi inhabit PET wastes in the marine environment. Certain fungal taxa including Phaeophleospora eucalypticola, Alternaria spp., Aureobasidium spp., and Cladosporium spp. have strong PCL degrading activity. Fungi with low level of PCL degrading ability were abundant and co-occurred with one of strong PCL degrader. The wide diversity and ranges of abundance, and plastic-degrading capacity of fungi even on small quantities of PET suggest that the various fungal taxa play different roles in marine plastic waste decomposition. In future research, we will aim to clarify the functions of each of these fungal taxa in order to develop a strategy for effective and efficient plastic waste degradation in the marine environment.

Fig. 3 Proportions of fungi isolated from plastic waste. Order (A), genus (B), and species (C) levels
Fig. 4 Boxplot of PCL-degrading ability of all tested strains with the genera detected in the present study. Boxplot constructed based on average clear zone length of each species. Clear zone lengths are distances between colony margins and transparent areas. Inset: photograph of *Cladosporium rectoides* (SFC2022_NP016) culture.

Fig. 5 Fungal species isolated from collected plastic wastes. Color intensity is commensurate with PCL degradation level.
Author contributions Sung Hyun Kim performed the experiment and overall manuscript writing, Jun Won Lee, Ji Seon Kim, and Wonjun Lee participated in writing the manuscript, Myung Soo Park supported the experiment design, and Young Woon Lim conducted the process and reviewed the manuscript.

Funding This research was supported by the National Marine Biodiversity Institute of Korea (2022M01100).

Declarations

Competing interests The authors declare no competing interests.

Conflict of interests The authors declare that there is no conflict of interest.

Ethical approval This research did not contain any studies with human or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aherndt C, Perez-Venegas DJ, Urbina M et al (2020) Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Mar Pollut Bull 151:110795. https://doi.org/10.1016/j.marpollbul.2019.110795

Amaral-Zettler LA, Zettler ER, Mincer TJ (2020) Ecology of the plastisphere. Nat Rev Microbiol 18:139–151. https://doi.org/10.1038/s41579-019-0308-0

Anbalagan S, Venkatakrishnan HRR, Ravindran J et al (2021) Hydrolytic degradation of polyethylene terephthalate by cutinase enzyme derived from fungal biomass—molecular characterization. Bioresource Res Appl Chem. 12:653–667. https://doi.org/10.33263/BRIAC121.653667

Arias-Andres M, Klüumper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261. https://doi.org/10.1016/j.envpol.2018.02.058

Aveskamp MM, Woudenberg JH, De Gruyter J, Turco E, Groenewald JZ, Crous PW (2009) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10(3):403–414. https://doi.org/10.1111/j.1364-3703.2009.00540.x

Badahit G, Kumar J, Singh A (2018) Screening of plastic degrading Pseudomonas spp. from soil. Int J Sci Eng Res 9:484–489

Beloe CI, Browne MA, Johnston EL (2022) Plastic debris as a vector for bacterial disease: An interdisciplinary systematic review. Environ Sci Technol 56:2950–2958. https://doi.org/10.1021/acs.est.1c05405

Benedict CV, Cook WJ, Jarrett P, Cameron JA, Huang SJ, Bell JP (1983) Fungal degradation of polycaprolactones. J Appl Polym Sci 28:327–334. https://doi.org/10.1002/app.1983070280128

Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad 81:441–452. https://doi.org/10.1016/S0141-3910(03)00129-0

Bowley J, Baker-Austin C, Porter A, Hartnell R, Lewis C (2021) Oceanic hitchhikers—assessing pathogen risks from marine microplastic. Trends Microbiol 29(2):107–116. https://doi.org/10.1016/j.tim.2020.06.011

Brunner I, Fischer M, Rüthi J, Sterli B, Frey B (2018) Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE 13:e0202047. https://doi.org/10.1371/journal.pone.0202047

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.2307/3761358

Chen CC, Dai L, Ma L, Guo RT (2020) Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem 4:114–126. https://doi.org/10.1038/s41570-020-0163-6

Cosgrove L, McGeechan PL, Robson GD, Handley PS (2007) Fungal communities associated with degradation of polyester polyurethane in soil. Appl Environ Microbiol 73:5817–5824. https://doi.org/10.1128/AEM.01083-07

Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeter Biodegrad 33(2):103–113. https://doi.org/10.1016/0964-8305(94)90030-2

Davidon K, Iankelevich-Kounio E, Yakovenko I, Koucherov Y, Rubin-Blum M, Oren M (2020) Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with nanopore MinION. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-74180-z

De Tender C, Devriese LI, Haegeman A, Maes S, Vangeyte M, Cattrijsse A, Dawyndt P, Ruttink T (2017) Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ Sci Technol 51:7350–7360. https://doi.org/10.1021/acs.est.7b00697

Dea Cruz TEE, Schulz BE, Kubicek CP, Druzhinina IS (2006) Polym Degrad 81:441–452. https://doi.org/10.1002/app.1983070280128

Delu Cruz TEE, Schulz BE, Kubicek CP, Druzhinina IS (2006) Identification of plastic-associated species D. arenaria and D. salina. FEMS Microbiol Ecol 58:343–353. https://doi.org/10.1111/j.1574-6941.2006.00184.x

Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly (ε-caprolactone) and nanocomposites. Mater Sci Eng C 30:566–574. https://doi.org/10.1016/j.msec.2010.02.012

Springer
Kemona A, Piotrowska M (2016) Microorganisms potentially useful in the management of polyurethane foam waste. Infrastruct Ecol Rural Area 4:1297–1308. https://doi.org/10.1007/s10924-015-01960-z

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Kumari A, Chaudhary DR, Jha B (2019) Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ Sci Pollut Res Int 26:1507–1516. https://doi.org/10.1007/s11356-018-3465-1

Kwon YM, Bae SS, Choi G, Lim YJ, Jung YH, Chung D (2021) Marine-derived fungi in Korea. Ocean Sci J 56:1–17. https://doi.org/10.1007/s12601-021-00005-3

Lacerda ALDF, Proietti MC, Secchi ER, Taylor JD (2020) Diverse groups of fungi are associated with plastics in the surface waters of the Western South Atlantic and the Antarctic Peninsula. Mol Ecol 29:1903–1918. https://doi.org/10.1111/mec.15444

Lebreton LCM, Van der Zwart J, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Comm 8:1–10. https://doi.org/10.1038/nacomms15611

Lee S, Park MS, Lee H, Kim JJ, Eimes JA, LimYW (2019) Fungal diversity and enzyme activity associated with the macroalgae, Agarum clathratum. Mycobiology 47:50–58. https://doi.org/10.1008/12298093.2019.1580464

Lee SY, Ten LN, Das K, You YH, Jung HY (2021) Biodegradative activities of fungal strains isolated from terrestrial environments in Korea. Mycobiology 49:285–293. https://doi.org/10.1008/12298093.2019.1903131

Luo Y, Xu W, Luo ZH, Pang KL (2020) Diversity and temperature adaptability of cultivable fungi in marine sediments from the Chukchi Sea. Bot Mar 63(2):197–207. https://doi.org/10.1515/bot-2018-0119

Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 13:e0198446. https://doi.org/10.1371/journal.pone.0198446

Nyyssölä A, Pihlajaniemi V, Järvinen R, Kontkanen H, Kruus K, Kallio H, Buchert J (2013) Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88. Enzyme Microb Technol 52:272–278. https://doi.org/10.1016/j.enzmictec.2013.01.005

Oberbeckmann S, Labrenz M (2020) Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu Rev Mar Sci 12:209–232. https://doi.org/10.1146/annurev-marine-010419-010633

Paço A, Duarte K, da Costa JP et al (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalevion maritimum. Sci Total Environ 586:10–15. https://doi.org/10.1016/j.scitotenv.2017.02.017

Park MS, Eom JE, Fong J, LimYW (2015a) New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol 53:219–225. https://doi.org/10.1007/s12275-015-4700-9

Park MS, Fong JH, Oh SY, Houbraken J, Sohn JH, Hong SB, LimYW (2015b) Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island. Korea Mycologica 107:209–216. https://doi.org/10.3852/14-180

Park MS, Lee S, Oh SY, Cho GY, LimYW (2016) Diversity and enzyme activity of Penicillium species associated...
with macroalgae in Jeju Island. J Microbiol 54:646–654.
https://doi.org/10.1007/s12275-016-6324-0

Park MS, Oh SY, Lee S, Eimes JA, Lim YW (2018) Fungal
diversity and enzyme activity associated with sailfin
sandfish egg masses in Korea. Fungal Ecol 34:1–9.
https://doi.org/10.1016/j.funecco.2018.03.004

Park MS, Oh SY, Fong JJ, Houbraken J, Lim YW (2019) The
diversity and ecological roles of Penicillium in inter-
tidal zones. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-49966-5

Plastics Europe (2021) Plastics-the Facts 2021. https://plast-
iceurope.org/knowledge-hub/plastics-the-facts-2021/
Accessed 25 February 2022

Rios LM, Moore C, Jones PR (2007) Persistent organic pol-
lutants carried by synthetic polymers in the ocean envi-
ronment. Mar Pollut Bull 54:1230–1237. https://doi.org/
10.1016/j.marpolbul.2007.03.022

Rogers SO, Bendich AJ (1994) Extraction of total cellular
DNA from plants, algae and fungi. In: Gelvin S, Schilp-
eroot RA (eds) Plant molecular biology manual. Kluwer
Academic Publishers, Dordrecht, pp 1–8

Rogers KL, Carreres-Calabuig JA, Gorokhova E, Posth NR
(2020) Micro-by-micro interactions: How microorganisms
influence the fate of marine microplastics. Limnol Ocean-
gr Lett 5:18–36. https://doi.org/10.1002/lo2.10136

Sangeetha Devi R, Ramya R, Kannan K, Robert Antony A,
Rajesh Kannan V (2019) Investigation of biodegradation
potentials of high-density polyethylene degrading marine
bacteria isolated from the coastal regions of Tamil Nadu,
India. Mar Pollut Bull 138:549–560. https://doi.org/10.
1016/j.marpolbul.2018.12.001

Sarkhel R, Sengupta S, Das P, Bhowal A (2020) Comparative
biodegradation study of polymer from plastic bottle
waste using novel isolated bacteria and fungi from marine
source. J Polym Res 27:1–8. https://doi.org/10.1007/s10965-019-1973-4

Srikanth M, Sandeep TSRS, Sucharitha K, Godi S (2022) Biode-
gradation of plastic polymers by fungi: A brief review.
Bioresour Bioprocess 9:1–10. https://doi.org/10.1186/s40643-022-00532-4

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and
mixed models. Bioinformatics 22:2688–2690. https://doi.org/
10.1093/bioinformatics/btl446

Sun JZ, Liu XZ, McKenzie EH, Jeewon R, Liu ZX, Zhao
Q, Hyde KD (2019) Fungicolous fungi: terminology,
diversity, distribution, evolution, and species check-
list. Fungal Divers 95:337–430. https://doi.org/10.1007/s13225-019-00422-9

Temporiti MEE, Nicola L, Nielsen E, Tosi S (2022) Fungal
enzymes involved in plastics biodegradation. Microorgan-
isms 10(6):1180. https://doi.org/10.3390/microorganisms10
061180

Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea:
where is all the plastic? Science 304(5672):838–838.
https://doi.org/10.1126/science.1094559

Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson
GD, Handley PS (2000) Fungal colonization and bio-
teriolization of plasticized polyvinyl chloride. Appl Envi-
rion Microbiol 66(8):3194–3200. https://doi.org/10.1128/
AEM.66.8.3194-3200.2000

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and
direct sequencing of fungal ribosomal RNA genes for phy-
logenetics. In: Innis MA, Gelfand H, Sninsky JJ, White TJ
(eds) PCR protocols: a guide to methods and applications.
Academic Press, New York, pp 315–322

Wright SL, Rowe D, Thompson RC, Galloway TS (2013)
Microplastic ingestion decreases energy reserves in
marine worms. Curr Biol 23(23):R1031–R1033. https://
doi.org/10.1016/j.cub.2013.10.068

Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A,
Tani Y (2001) Degradation of polyethylene by a fungus,
Penicillium simplicissimum YK. Polym Degrad Stabil
72:323–327. https://doi.org/10.1016/S0141-0229(02)
00650-5

Ye R, Xu S, Wang Q, Fu X, Dai H, Lu W (2021) Fungal diver-
sity and its mechanism of community shaping in the
milieu of sanitary landfill. Front Environ Sci Eng 15:1–11.
https://doi.org/10.1007/s11783-020-1370-6

Zahra S, Abbas SS, Mahsa MT, Mohsen N (2010) Biodegrada-
tion of low-density polyethylene (LDPE) by isolated fungi
in the solid waste medium. Waste Manag 30:396–401.
https://doi.org/10.1016/j.wasman.2009.09.027

Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the
“plastisphere”: microbial communities on plastic marine
debris. ES&T 47(13):7137–7146. https://doi.org/10.1021/
est401288x

Zuccaro A, Summerbell RC, Gams W, Schroers HJ, Mitch-
ell JJ (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct
marine Emericellopsis clade. Stud Mycol 50:283–297

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.