An excluded minor theorem for the Wagner graph plus an edge

Yuqi Xu, Weihua Yang*

Department of Mathematics, Taiyuan University of Technology,
Taiyuan Shanxi-030024, China

Abstract: Let $V_8 + e$ denote the unique graph obtained from the Wagner graph, also known as V_8, by adding an edge between two vertices of distance 3 on the Hamilton cycle, which is exactly a split of a minor of the Petersen graph. A complete characterization of all internally 4-connected graphs with no V_8 minor is given in [J. Maharry and N. Robertson, The structure of graphs not topologically containing the Wagner graph, J. Combin. Theory Ser. B 121 (2016) 398-420]. In this paper we characterize all internally 4-connected graphs with no $V_8 + e$ minor.

Keywords: Excluded-minor ; Wagner graph ; Internally 4-connected

1 Introduction

All graphs in this article are simple. Let G and H be two graphs. H is called a minor of G if H is obtained from G by deleting edges or contracting edges, denoted by $H \preceq G$. G is H-minor-free if no minor of G is isomorphic to H. For a given graph H, H-minor-free graphs play an important role in graph theory. Determining K_6-minor-free graphs and Petersen-minor-free graphs are the two most famous problems in this area.

*Corresponding author. E-mail: ywh222@163.com, yangweihua@tyut.edu.cn
Let k be a non-negative integer. A k-separation of a graph G is an unordered pair $\{G_1, G_2\}$ of induced subgraphs of G such that $V(G_1) \cup V(G_2) = V(G)$, $E(G_1) \cup E(G_2) = E(G)$, $V(G_1) - V(G_2) \neq \emptyset$, $V(G_2) - V(G_1) \neq \emptyset$, and $|V(G_1) \cap V(G_2)| = k$. If G has a k-separation, then there is $X \subseteq V(G)$ such that $|X| = k$ and $G \setminus X$ has at least two components. A 3-connected graph G on at least five vertices is said to be quasi 4-connected if for every 3-separation $\{G_1, G_2\}$ of G, one of G_1 or G_2 contains exactly 4 vertices. We define G to be internally 4-connected if for every 3-separation $\{G_1, G_2\}$ where $G_1 \cap G_2 = \{x, y, z\}$, and there are no edges among x, y and z.

Let $G \setminus e$ denote the graph obtained from G by deleting an edge e. The reverse operation of deleting an edge is adding an edge, that is G obtained from $G \setminus e$ by adding edge e. We use G/e denote the graph obtained from G by first contracting an edge e then deleting all but one edge from each parallel family. The reverse operation of contracting an edge is splitting a vertex. To be precise, suppose v is a vertex with degree at least four in a graph G. Let $N_G(v)$ denote the set of neighbors of v, which are vertices adjacent to v. Let $X, Y \subseteq N_G(v)$ such that $X \cup Y = N_G(v)$ and $|X|, |Y| \geq 2$. The splitting v results in the new graph G' obtained from $G \setminus v$ by adding two new adjacent vertices x, y then joining x to all vertices in X and y to all vertices in Y. We call G' a split of G. Tutte [11] stated that every 3-connected graph can be obtained from a wheel by repeatedly adding edges and splitting vertices, this result is known as Tutte’s Wheel Theorem.

For each 3-connected graph H with at most 11 edges, H-free graphs are characterized [3]. There are three classical results for 3-connected graph with 12 edges: Maharry [6] characterized Cube-minor-free graphs, Ding [2] characterized Oct-minor-free graphs, and Robertson [8] characterized V_8-minor-free graphs.

To state the theorem we need to define a few classes of graphs. For any graph G, the line graph of G, denoted by $L(G)$, is a graph such that each vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common end vertex in G. For each integer $n \geq 3$, a double-wheel, $DW_n(n \geq 3)$, is a graph on $n + 2$ vertices obtained from a cycle C_n by adding two nonadjacent vertices u, v and joining them to all vertices on the cycle. An alternating double-wheel AW_{2n} is a subgraph of $DW_{2n}(n \geq 3)$ such that u and v are alternately adjacent to every vertex in C_{2n}. Notice that AW_6 is a cube,
see Figure 1. For each integer \(n \geq 3 \), let \(DW_n^+ \) and \(AW_{2n}^+ \) be graphs obtained from \(DW_n \) and \(AW_{2n} \), respectively, by joining \(u \) and \(v \). Let \(D^+ = \{ DW_n^+ : n \geq 3 \} \cup \{ AW_{2n}^+ : n \geq 3 \} \). Then every graph in \(D^+ \) is nonplanar.

The \(n \)-rung ladder, \(L_n \), has vertices \(v_1, v_2, ..., v_n \) and \(u_1, u_2, ..., u_n \), where \(v_1, v_2, ..., v_n \) and \(u_1, u_2, ..., u_n \) form paths and each \(u_i \) is adjacent to \(v_i \) for \(i = 1, 2, ..., n \). The \(n \)-rung Möbius ladder, \(M_n \), is obtained from \(L_n \) by adding edges joining \(v_1 \) to \(u_n \) and \(v_n \) to \(u_1 \). The graph \(SM_n \) is obtained from \(DW_n \) by adding some number of triads to triangles of \(DW_n \) such that every triad is adjacent to at least two \(r_i \) and no two triads are adjacent to the same pair of \(r_i \). Let \(\mathbb{K}_{4,n} \) be the collection of all \(q \)-4-c minors of any \(K_{4,n} \). Let \(\mathbb{M}_n \) be the collection of all \(q \)-4-c minors of \(M_n \), and let \(\mathbb{SM}_n \) be the collection of all \(q \)-4-c minors of \(SM_n \).

Theorem 1.1 ([8]). Every internally 4-connected \(V_8 \)-minor-free graph \(G \) satisfies one of the following conditions:

(i) \(G \) is planar,

(ii) \(|G| \leq 7 \),

(iii) \(G \cong L(K_{3,3}) \),

(iv) \(G \setminus \{ w, x, y, z \} \) has no edges for some \(w, x, y, z \in V(G) \),

(v) \(G \in D^+ \).

Our main tool is a chain theorem of Chun, Mayhew and Oxley [1], which will be useful in creating a process that generates all internally 4-connected graphs. To explain this result we need a few definitions. For each integer \(n \geq 5 \), let \(C_n^2 \) be a graph obtained from a cycle \(C_n \) by joining all pairs of vertices of distance two on the cycle. Notice that \(C_5^2 = DW_3^+ = K_5 \), see Figure [1]. Let **terrahawk** be the graph shown in Figure 1, which can be obtained from a cube by adding a new vertex and joining it to four vertices in the same \(C_4 \).

Theorem 1.2 ([1]). Let \(G \) be an internally 4-connected graph such that \(G \) is not \(K_{3,3} \), **terrahawk**, \(C_n^2 \) (\(n \geq 5 \)), or \(AW_{2n} \) (\(n \geq 3 \)). Then \(G \) has an internally 4-connected minor \(H \) with \(1 \leq ||G|| - ||H|| \leq 3 \).

Equivalently, this theorem says that, for every internally 4-connected graph \(G \), there exists a sequence of internally 4-connected graphs \(H_0, H_1, H_2, ..., H_k \) such that
Let G be an internally 4-connected graph. It is not difficult to show that: if $G + e$ is not internally 4-connected, then the two ends of e are neighbors of a cubic vertex; if splitting a vertex of G results in a graph G' that is not internally 4-connected, then one of the new vertices is cubic and is contained in a triangle. For above two cases, we mainly generate all internally 4-connected graphs by adding an edge, reducing the cubic vertices to new ones of degree 4, or splitting the neighbors of the cubic vertices.

The class of graphs with no minor isomorphic to Petersen, we will denote by P_0, has been widely studied. But there is no known exact structural characterization. However, the problem becomes a bit more manageable from the other direction, specifically, when we consider the graphs that are minors of P_0. Naturally, if a graph G were a minor of P_0, and a third graph H did not contain G as a minor, we could safely say that H does not contain P_0 either. Using the Splitter Theorem [10], we may grow K_5 to P_0 creating the sequence of graphs in Figure 2.

For 3-connected graph with 13 edges, only $Oct + e$ and $V_8 + f$, isomorphic to P_2, are characterized.

Theorem 1.3 (7). Every 4-connected graph that does not contain a minor isomorphic to Oct^+ is either planar or the square of an odd cycle.

Theorem 1.4 (5). For every integer $n \geq 6$, there exists a number N such that every non-planar q-4-c graph G of order at least N contains a P_2 minor, unless G is a member of $K_{4,n}$, M_n, or SM_n.

Figure 1: DW_6, AW_6, C_5^2 and terrahawk

(i) $H_k \cong G$ and H_0 is $K_{3,3}$, terrahawk, C_n^2 ($n \geq 5$), or AW_{2n} ($n \geq 3$), and

(ii) $H_i(i = 2, ..., k)$ is obtained from H_{i-1} by adding edges or splitting vertices at most three times.
In this paper, we characterize another graph obtained by joining two vertices of distance 3 on the cycle from V_8, denoted by $V_8 + e$ and shown in Figure 2. Note that it has 13 edges and it is exactly a split of P_3.

Let $\mathcal{E}(AW_6^+)$ denote the set of graphs obtained from AW_6^+ by adding edges not construct an X (show in Figure 4). The following is the main theorem of this article.

Theorem 1.5. Every internally 4-connected $V_8 + e$-minor-free graph G satisfies one of the following conditions:

(i) G is planar,

(ii) $|G| \leq 7$,

(iii) $G \in \mathcal{E}(V_8 + f) \cup \mathcal{E}(AW_6^+)$,

(iv) G is a minor of Γ and Γ_2 in the Figure 3 or $G \in \{AW_2^+ : n \geq 4\}$.

We mainly construct the graphs based on AW_2n $(n \geq 3)$, terrahawk, $K_{3,3}$, and C_n^2 $(n \geq 5)$ in Sections 2, 3 and 4 respectively, from which the Theorem 1.5 follows.
In this section, we shall characterize the internally 4-connected $V_8 + e$-minor-free graphs which are obtained from AW_{2n} by repeatedly adding edges or splitting vertices. Note that we always suppose that the new vertices reduced in a split have degree 3, since the other splits contain such a split as a minor, so does latter in this article.

Lemma 2.1. Let $G \succeq AW_{2n}$ be an internally 4-connected graph. Then G is $V_8 + e$-minor-free if and only if $G \in \mathcal{E}(V_8^+ \cup \{AW_{2n}^+ : n \geq 4\})$.

Proof. Observe that AW_{2n} is planar, thus is $V_8 + e$-minor-free. Since every graph in AW_{2n} contains AW_6 as a minor, suppose that $H_0 \cong AW_6$. And AW_6 contains no vertex of degree 4, we first suppose that H_1 is obtained from AW_6 by adding edges. The unique non-planar graph generated is AW_6^+. To continue constructing other graphs, we first state the following result.

Claim 1. Let P be a 3-path with vertex set \{a_1, a_2, a_3, a_4\} in a ladder (see Figure 4). Then adding an X to corners a_1, a_2, a_3, a_4 will reduce to a $V_8 + e$-minor.

It can be seen from Figure 5 that adding an X to any such path, say path $P_{1,2,6}$ in AW_6 results in a $V_8 + e$-minor. Let $\mathcal{F}(G) = \{e : G + e \succeq V_8 + e\}$, which is the set of forbidden edges. Then
by symmetry, we have \(\{ \{15, 6u\}, \{1v, 26\}, \{13, 2u\}, \{24, 3v\}, \{35, 4u\}, \{46, 5v\} \} \subseteq \mathcal{F}(AW_6) \). Therefore, any non-planar graph, with an exception \(AW_6^+ \), is not \(V_8 + e \)-minor-free.

Thus suppose that \(H_1 \cong AW_6^+ \). Then by Theorem 1.1, \(AW_6^+ \) is \(V_8 + e \)-minor-free. And clearly \(\mathcal{F}(AW_6) \subseteq \mathcal{F}(AW_6^+) \). Similar to the analysis above, we also state that the edge pairs \(\{ \{15, 26\}, \{15, 46\}, \{13, 26\}, \{13, 24\}, \{24, 35\}, \{35, 46\} \} \subseteq \mathcal{F}(AW_6^+) \) (see Figure 5).

Now we show that only such an addition results a \(V_8 + e \)-minor. It equals that any other addition resulting a \(V_8 + e \)-minor contains such an addition \(X \). Let \(M \) be a \(V_8 + e \)-minor-free graph obtained from \(AW_6^+ \) by repeatedly adding edges with \(|E(M)| \) maximal. The followings are the properties of \(M \).

P1. \(M \) must contain some vertex of degree 7.

Let \(N_1 \) be a maximal \(V_8 + e \)-minor-free graph, and each vertex of \(N_1 \) has degree as large as possible. However, \(N_1 \) with an additional edge \(2u \) is still \(V_8 + e \)-minor-free, contradicting the maximality of \(N_1 \).

P2. There are no two adjacent vertices of degree 7 in \(M \), except for the two vertices \(u \) and \(v \).

It is obviously that if two successive vertices are both of degree 7, say 4 and 5 (see \(N_2 \) in Figure 6), then vertices 4, 5 and their neighbors will reduce a required path \(P_{3456} \). So dose \(N_3 \) with \(d(v) = d(4) = 7 \). This result deduces that \(M \) could not contain more than 5 vertices of degree 7.
From above two properties, we can suppose that M contains at most 4 vertices of degree 7. Now we characterize all graphs M.

If M contains 4 vertices of degree 7, then by symmetry, we have $d(v) = d(1) = d(3) = d(5) = 7$, generating the graph M_1.

If M contains 3 vertices of degree 7, then by symmetry, we have $d(v) = d(1) = d(3) = 7$ or $d(1) = d(3) = d(5) = 7$, both of which require another vertex of degree 7, isomorphic to M_1.

If M contains 2 vertices of degree 7, then we obtain the graph M_2 with $d(u) = d(v) = 7$, the graph M_3 with $d(v) = d(1) = 7$ and generate a graph isomorphic to M_1 with $d(1) = d(3) = 7$.

If M contains one vertices of degree 7, then we obtain the graph M_4 with $d(v) = 7$, and generate a graph isomorphic to M_1 with $d(1) = 7$.

Observe that any graph M_i with an additional edge contains such an addition X as a minor (see Figure 6). Thus the statement of claim is true.

Let $\mathcal{E}(AW_6^+)$ denote the set of graphs obtained by adding edges (not in $\mathcal{F}(AW_6^+)$) to AW_6^+. Then any graph $G \in \mathcal{E}(AW_6^+)$ is V_8+e-minor-free.

Next we consider the split of graphs in $\mathcal{E}(AW_6^+)$. Firstly the unique split of AW_6^+ (up to symmetry) contains a V_8+e-minor. Secondly by symmetry we obtain three not internally 4-connected (i-4-c) graphs F_1 (obtained by adding 26), F_2 (obtained by adding 36) and F_3.

Figure 6: The maximal graphs M_i
(obtained by adding 2u) from AW$^+_6$. For F_1, splitting vertex 2 results in two graphs with $V_8 + e$ minors and a not i-4-c graph F^1_1. Since F^1_1 contains two cubic vertices in a triangle, no addition is possible, and splitting vertex 6 generates two graphs with $V_8 + e$ minors and a not i-4-c graph F^2_1, with 3 cubic vertices in a triangle, thus the process terminates, and we denote the process based on F_1 by P_1. For F_2, any split of it contains the split of AW^+_6 as a minor, thus contains a $V_8 + e$-minor. For F_3, splitting vertex 2 generates two not i-4-c graphs F^1_3 and F^2_3, then any split of F^1_3 and F^2_3 contains the split of AW^+_6 as a minor. On the other hand, no addition to F^3_3 is possible, since F^3_3 has two cubic vertices in a triangle. And we can deduce by symmetry that any addition to F^2_3 gives rise to a $V_8 + e$-minor, we denote the process based on F_3 by P_2. Note that the additions of F_i are in $\mathcal{E}(AW^+_6)$, and their splits contain the splits of F_i as minors, thus the process ends (see Figure 7).

Finally, for $AW_{2n}(n \geq 4)$, it is easy to verify (by induction) that both of AW_{2n} with an additional edge of distance 3 on the cycle and and split of AW_{2n} contain $V_8 + e$ minors. And
AW_{2n} with additional edges of distance 2 either is planar or contains a $V_8 + e$-minor. Thus let $H_1 \cong AW_{2n}^+$, and C_{2n} be a cycle with vertex set $\{v_1, v_2, ..., v_{2n}\}$ in AW_{2n}^+. Then we state the following result, which completes the proof of Lemma 2.1.

Claim 2. No addition to AW_{2n}^+, $n \geq 4$ is possible.

Up to symmetry, we can join two vertices of distance 3 on the cycle C_{2n}, denoted by type-I, and two vertices of distance 2 (uv_j, vv_i or $v_i v_{i+2}$), such that every two edges construct an X (reduce the graph with size 8 by contracting edges on C_{2n}, but not in X), denoted by type-II, and any two edges do not construct an X, denoted by type-III. It is easy to verify that AW_{2n}^+ with additional edges of type-I and type-II give rise to a $V_8 + e$-minor. Therefore we assume that only edges of type-III is possible.

Case 1. Adding an edge uv_j or vv_i to AW_{2n}^+, say uv_j, generates a cubic vertex v_{j-1} (or v_{j+1}) in a triangle, thus not i-4-c. We first split its neighbors u (contains the split of AW_6^+ as a minor) and v_j (contains P_2 as a minor) respectively, thus the process ends. Secondly we have to add an edge $v_{j-1} v_{j-3}$ (or $v_{j+1} v_{j+3}$), making the cubic vertex v_{j-2} (or v_{j+2}) in a triangle, and its split contains P_1 as a minor, so does as adding an edge vv_j (or vv_{j+1}), then the process ends.

Case 2. Adding an edge $v_i v_{i+2}$ makes the cubic vertex v_{i+1} in a triangle, then no addition is possible and the split of v_i contains P_1 as a minor, thus the process ends.

Therefore no addition to AW_{2n}^+ is possible. \qed

3 Extension of Terrahawk

In this section, we shall characterize the internally 4-connected $V_8 + e$-minor-free graphs which are obtained from terrahawk by repeatedly adding edges or splitting vertices.

Lemma 3.1. Let $G \geq$ terrahawk be an internally 4-connected graph. Then G is $V_8 + e$-minor-free if and only if G is planar.

Proof. To simplify our notation, we denote the terrahawk by Ter, then Ter is clearly $V_8 + e$-minor-free. Thus let $H_0 \cong Ter$. Now we analyze graphs obtained from Ter by splitting vertices or adding edges.
By symmetry, there are two new non-planar graphs by splitting vertex 1 and 2, respectively, both of which have a $V_8 + e$-minor. What’s more, any non-planar addition of Ter contains $V_8 + e$ as a minor (as shown in Figure 8). Similar to the analysis of Lemma 2.1, Ter with an additional X also contains a $V_8 + e$-minor. Thus both H_1 and H_2 contain a $V_8 + e$-minor, so does any H_i ($i \geq 3$). Therefore, there is no internally 4-connected, non-planar $V_8 + e$-minor-free graph generated from Ter.

\[
\square
\]

4 Extension of C_n^2 and $K_{3,3}$

In this section, we shall characterize the internally 4-connected $V_8 + e$-minor-free graphs which are obtained from C_n^2 and $K_{3,3}$ by repeatedly adding edges or splitting vertices.

Let (X_1, X_2) be a partition of the vertex set of $K_{3,3}$ such that each vertex of X_1 is adjacent
to each vertex of X_2. Define $K_{3,3}^{i,j}$, $i, j = 0, 1, 2, 3$, to be the graph obtained by adding i edges between vertices of X_1 and j edges between vertices of X_2. As every vertex of $K_{3,3}$ is symmetric to each other, this process is well-defined. We note a new few things about this notation. First, $K_{3,3}^{i,j}$ is isomorphic to $K_{3,3}^{j,i}$, and second, $K_{3,3}^{3,3}$ is K_6. Together, we call these 10 graphs $\mathbb{K}_{3,3}$ (as shown in Figure 9).

Figure 9: $\mathbb{K}_{3,3}$

Lemma 4.1. Let $G \succeq C_n^2$ be an internally 4-connected graph. Then G is $V_8 + e$-minor-free if and only if $|G| \leq 7$ or $G \in \{\text{internally 4-connected minors of } \Gamma\} \cup E(\text{AW}_6^+) \cup E(V_8 + f)$.

Proof. We distinguish between two cases depend on the planarity of C_n^2.

Case 1. H_0 is planar, that is $H_0 \in C_{2n}^2 (n \geq 3)$.

If $|H_0| \geq 8$, since each C_{2n}^2 contains C_8^2 as a minor, let $H_0 \cong C_8^2$. Now we generate internally 4-connected $V_8 + e$-minor-free graphs from C_8^2.

We claim that every non-planar graph generated from C_8^2 contains $V_8 + e$ as a minor. Let H_1 be an i-4-c $V_8 + e$-minor-free graph. First suppose that H_1 is a split of C_8^2. By symmetry, we just consider the non-planar split of vertex 1, which gives rise to a $V_8 + e$-minor. Next suppose that H_1 is an addition of C_8^2. Then $\{14, 16, 27, 25, 36, 38, 47, 58\} \subseteq F(C_8^2)$, which means that
only the planar graphs in this process available (as shown in Figure 10).

If $|H_0| < 8$, it is clear that H_0 is $V_8 + e$-minor-free, then we construct the non-planar $V_8 + e$-
minor-free graphs based on C_6^2.

We first obtain three i-4-c $V_8 + e$-minor-free graphs by adding edges, which are exactly
isomorphic to $K_{3,3}^{2,2}, K_{3,3}^{2,3}$ and K_6, and a split of C_6^2, denoted by H_1 (see Figure 11).

Firstly, by symmetry of H_1, we can continue splitting vertices 1 and 2, generating the graphs
$H_2^j(1 \leq j \leq 3)$. Obviously, $H_2^1 \in \mathcal{E}(AW_0^+)$, thus we construct graphs based on H_2^2 and H_2^3.
Since both H_2^2 and H_2^3 contain $V_8 + f$ as a minor, we denote the i-4-c $V_8 + e$-minor-free graphs
with $|V(G)| = 8$ obtained from them by $\mathcal{E}(V_8 + f)$ (see Figure 12). Then we split vertices of
them. Note that the split of H_1 with additional edges always contains H_2^j as a minor, thus we
would not analyze any more, and we will not explicitly explain every time.

case 1a. Splits of H_2^2.
By symmetry of H_2^2, we split the vertex 8, generating 3 graphs with a $V_8 + e$-minor (see Figure 13).

Case 1b. Splits of H_3^2.

By symmetry of H_3^2, we split the vertex 1 and 2, generating graphs with a $V_8 + e$-minor, with an exception Γ (see Figure 14).

Then we characterize graphs from Γ by splitting vertices or adding edges. Clearly, any splits of Γ contains a graph generated from H_3^2 by splitting vertex 1 as a minor, thus contains a $V_8 + e$-minor. Then we claim that adding any edge to H_3 gives rise to a $V_8 + e$-minor. Actually by symmetry, we can add edges $\{16, 2'6, 2'7, 2'4, 2'5, 2'7, 35, 36, 46, 47, 57, 58, 68\}$. Since $\{14, 16, 25, 27, 36, 38, 47, 58\} \subseteq \mathcal{F}(H_3^2) \subseteq \mathcal{F}(\Gamma)$, only edges $2'6, 2'4, 35, 46, 57, 68$ is possible, to which also generates a $V_8 + e$-minor the Γ adding (see Figure 15 for an illustration). Therefore the process terminates at Γ.

Secondly since $K_{3,3}^{2,2} \leq K_{3,3}^{2,3} \leq K_6$, let $H_1 \cong K_{3,3}^{2,2}$.

Now we consider the graphs obtained from $K_{3,3}^{2,2}$ by splitting vertices. By symmetry, we can
Figure 14: Splits of H^3_2

Figure 15: Additions of Γ and their $V_8 + e$-minors
split the vertices 1 and 2.

Case 1.1. Split the vertex 1.

Note that the splitting of 1 gives rise to two graphs F_1 and F_2, both of which are not i-4-c. We first make them i-4-c by splitting the neighbors of the cubic vertex. Observe that, by symmetry of F_1, splitting vertex 6 generating 3 new not i-4-c graphs with at least 2 cubic vertices in different triangles. However, there is just one time to construct H_1 from these 3 graphs, and there is no i-4-c graph obtained from them. In addition, splitting vertex 5 generating either graphs contain $V_8 + e$ minors or graphs with 2 cubic vertices in distinct triangles, thus the process ends.

By symmetry of F_2, we split vertex 2, generating graphs with $V_8 + e$ minors, H_2^1-minor or H_2^3-minor (in Figure 19), and a not i-4-c graph F_2^1. We further split vertex 5 of F_2^1, since F_2^1 contains 2 cubic vertices in a triangle, generating either graphs contain $V_8 + e$-minor or graphs with 2 cubic vertices in different triangles, similar to the discussion above, the process ends.

Next we make F_1 and F_2 i-4-c by adding some edges, generating three i-4-c graphs $\{H_1^1, H_2^2, H_2^3\} = C$ (see Figure 16).

Now we construct graph H_3 from graphs in C. Observe that $|V(H_2^1)| = 7$, and we would not give the additions of them in detail. Therefore, we suppose that H_3 is a split of H_2^1.

case 1.1a. Splits of H_2^1.

By symmetry, we can split the vertices 1', 2, 3, 4 of H_2^1, respectively. We states that any split of H_2^1 contains $V_8 + e$ as a minor (see Figure 17 for an illustration).

case 1.1b. Splits of H_2^2.

By symmetry, we can split the vertices 1', 2, 3, 4 of H_2^2, generating graphs with $V_8 + e$ minors, or isomorphic to graphs in $\mathcal{E}(AW_6^+)$ (shown in Figure 18).

case 1.1c. Splits of H_2^3.

By symmetry, we can split the vertices 1', 2, 4 of H_2^3, generating graphs with $V_8 + e$ minors, or graphs with H_2^1 and H_2^2 (in Figure 11) minors (shown in Figure 19).

Case 1.2. Split the vertex 2.
Figure 16: Splits of 1 (set C)
Figure 17: Splits of H^1_2 and their $V_8 + e$-minors
Figure 18: Splits of H_2^2
Figure 19: Splits of H_2^3

Note that the splitting of vertex 2 gives rise to an i-4-c graph H_2^4, and two not i-4-c graphs F_3 and F_4. Splitting H_2^4 generates two graphs in $\mathcal{E}(AW_6^+)$ (up to symmetry). Similar to the Case 1.1, we first consider the split of them. By symmetry of F_3, we split vertex 1, generating 2 graphs with V_8+e minors and a not i-4-c graph F_2^1 with 2 cubic vertices in different triangles, thus the process ends. Then for F_4, splitting vertex 1 generates a graph with a V_8+e-minor and a graph isomorphic to F_2^1. Splitting vertex 3, generates 4 graphs V_8+e minors, one in $\mathcal{E}(AW_6^+)$, one with a H_2^2-minor (in Figure 11), and two not i-4-c graphs F_4^1 and F_4^2. Since F_4^1 contains two cubic vertices in a triangle, we split their common neighbor, vertex 1, containing the split of vertex 1 of F_4 as a minor. And F_4^2 contains 2 cubic vertices in different triangles, thus the process ends.

Next, we adding edges to F_3 and F_4, generating three i-4-c graphs H_2^5, H_2^6 and H_2^7 (see Figure 20).

Similar to the Case 1.1, we just consider the splits of these graphs. The proof for splits of these graphs is of the same flavor for set C, see Figure 21, 22, 23. Note that the split of H_2^6 gives rise to two not i-4-c graphs F_5 and F_6, similar to the Case 1.1, we stop the process.
Figure 20: Splits of 2
Figure 21: Splits of H_2^5

Then for graphs in $\mathcal{E}(AW_6^+)$ and contain H_2^i minors (in Figure 11), have been analyzed in section 2, we stop the process. Therefore, if an internally 4-connected graph G is $V_8 + e$-minor-free, then either $|G| \leq 7$ or $G \in \mathcal{E}(AW_6^+) \cup \Gamma$.

Case 2. H_0 is non-planar, that is $H_0 \in C_{2n+1}^2 (n \geq 2)$.

If $|H_0| \geq 8$, it is suffice to consider graph C_{9}^2, which contains a $V_8 + e$-minor. Thus suppose that $|H_0| < 8$.

If $H_0 \cong C_7^2$, then any split of C_7^2 produces a $V_8 + e$-minor, and every addition of C_7^2 is internally 4-connected $V_8 + e$-minor-free, and any split of them contains the split of C_7^2 as minor, thus contains a $V_8 + e$-minor.

If $H_0 \cong C_5^2$, since C_5^2 is complete, let H be a graph generating from C_5^2 by splitting a vertex, which is isomorphic to $K_{3,3}^{1,1}$. However, the internally 4-connected graphs H_1^i, generating from $K_{3,3}^{1,1}$ by adding edges, is isomorphic to $K_{3,3}^{2,2}, K_{3,3}^{2,3}$ and K_6, same as Case 1. Note that any split of $K_{3,3}^{1,1}$ contains 2 vertices in distinct triangles, thus the process ends.

Lemma 4.2. Let $G \succeq K_{3,3}$. Then G is $V_8 + e$-minor-free if and only if $G \in \{\text{internally 4-connected graphs on } \leq 7 \text{ vertices}\} \cup \{\text{internally 4-connected minors of } \Gamma_2\}$, where Γ_2 is shown in Figure 24.
Figure 22: Splits of H_2^6
Proof. Since $K_{3,3}$ is clearly $V_8 + e$-minor-free, let $H_0 \cong K_{3,3}$. Then no vertex of $K_{3,3}$ can be split, thus we analyze the additions of $K_{3,3}$.

Let $F_1 \cong K_{3,3}^{1,0}$. Since it is not i-4-c, we continue adding edges or splitting vertices. By symmetry, we obtain additions $K_{3,3}^{1,1}$ and $K_{3,3}^{2,0}$ and a split of F_1, namely F_1^1, both of which are not i-4-c. Continuing the process based on F_1^1 gives rise to an unique i-4-c graph H_1, which is isomorphic to V_8, and $\{14, 25, 36, 47, 58, 61, 72, 83\} \subseteq \mathcal{F}(V_8)$. Since V_8 contains no vertex of degree 4, we obtain the graph $V_8 + f$. We first consider the addition of $V_8 + f$, then by symmetry, we obtain a not i-4-c graph V_1, H_2^3 in Figure 11 and others in the set $\mathcal{E}(V_8 + f)$. For V_1, the addition of it is also in the set $\mathcal{E}(V_8 + f)$, so we just able to split the vertex 8, since it contains two cubic vertices with a common neighbor, generating a graph with a $V_8 + e$ minor and 5 not i-4-c graphs, thus the process ends (see Figure 24).

Next we consider the split of $V_8 + f$, generating two graphs with $V_8 + e$ minors, and an i-4-c $V_8 + e$-minor-free graph Γ_1. Then further splitting vertex and adding edge to Γ_1. By symmetry, $\{63, 68, 16, 2' 6, 2'' 5, 2' 7, 2'' 7, 2'' 1, 2' 8\} \subseteq \mathcal{F}(\Gamma_1)$, then only edge $2'' 4, 2'' 3$ or 17 is possible, generating two graphs with $V_8 + e$ minors and a graph isomorphic to Γ. Splitting vertex 8 gives rise to a graph with a $V_8 + e$-minor, and an i-4-c $V_8 + e$-minor-graph Γ_2. Finally, since $\mathcal{F}(\Gamma_1) \subseteq \mathcal{F}(\Gamma_2)$, we deduce by symmetry that no addition to Γ_2 is $V_8 + e$-minor-free. On the other hand, Γ_2 is cubic so no split is possible either, therefore the process terminates at Γ_2.

Figure 23: Splits of H_2^7
Figure 24: Extensions of graphs in $K_{3,3}$
Note that splitting any vertex of $K_{3,3}^{1,1}$ remains a cubic vertex in a triangle, so does as splitting vertex 1 of $K_{3,3}^{2,0}$, and split vertex 2 of $K_{3,3}^{2,0}$ is exactly an addition of H_1, thus not internally 4-connected. Then the process terminates.

Proof of Theorem 1.5. From Lemmas 2.1, 3.1, 4.1 and 4.2, we obtain a characterization of all internally 4-connected $V_8 + e$-minor-free graphs.

References

[1] C. Chun, D. Mayhew and J. Oxley, Constructing internally 4-connected binary matroids, Advances in Applied Mathematics 50 (2013) 16-45.

[2] G. Ding, A charaterization of graphs with no octahedron minor, Journal of Graph Theory. 74(2) (2013) 143-162.

[3] G. Ding, and C. Liu, Excluding a small minor, Discrete Applied Mathematics. 161(3) (2013) 355-368.

[4] G. Ding, C. Lewchalermvongs, and J. Maharry, Graphs with no P_7-minor, The Electronic Journal of Combinatorics 23(2) (2016) P2.12.

[5] A.B. Ferguson, Excluding two minors of the Petersen graph. Ph.D. Thesis, LUS Doctoral Dissertations, (2015).

[6] J. Maharry, A characterization of graphs with no cube minor, Journal of Combinatorial Theory Series B. 80 (2008) 179–201.

[7] J. Maharry, An excluded minor theorem for the octahedron plus an edge, Journal of Graph Theory. 57(2) (2008) 124–130.

[8] J. Maharry, and N. Robertson, The structure of graphs not topologically containing the Wagner graph, Journal of Combinatorial Theory Series B. 121 (2016) 398–420.
[9] N. Martinov, Uncontractible 4-connected graphs, Journal of Graph Theory 6 (1982) 343–344.

[10] P. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory Series B. 28 (1980) 305–359.

[11] W.T. Tutte, A theory of 3-connected graphs, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series A. 64 (1961) 441–455.

[12] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1) (1937) 570–590.
