The complete chloroplast genome of *Carex laevissima* Nakai (Cyperaceae)

Wei Ren*, Ya-ru Wangb, Han-dong Zhaoe, Ying-zhe Wangf and Zhi-feng Wangg

Jilin Academy of Agricultural Sciences, Changchun, China

**ABSTRACT**

*Carex laevissima* Nakai 1914 (Cyperaceae) is vital for ecological conservation and land virenesce, and has high ornamental value. Here the chloroplast genome of *Carex laevissima* was assembled and systematically analyzed for further genetic research of *Carex* plants. The chloroplast sequence of *Carex laevis-

The genus *Carex* is important because of its sand stabilization, ornamental value, medicinal properties and animal feeding, and belongs to the Cyperaceae family. It is widely distributed in China, New Zealand, Germany and North America, with more than 2000 species around the world. The genetic characteristics of 79 *Carex* germplasms have been investigated using SSR markers (Liu et al. 2021). However, there was no mention of *Carex laevissima* Nakai 1914 being widely distributed in Northeast China, which has deeper roots, more tillers, and stronger cold and drought resistance. Chloroplast genomes are widely used for germplasm identification, genetic studies, phylogenetic analysis, and evolutionary relationships. In this study, chloroplast genome sequence of *C. laevissima* is first reported. In addition, the phylogenetic analysis is useful for further genetic diversity analysis and scientific research on *Carex* plants.

Young fresh leaves of *C. laevissima* were collected from Baicheng City, Jilin Province, China (45°49'4.3"N, 123°9'1.0"E). This study complied with National Wild Plant Protective Regulations and we were allowed by the Jilin Academy of Agricultural Sciences to collect the required samples of plant material. A specimen was deposited at the Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (contact Wei Ren, renwei@cjaas.com) under voucher number JAAS-TC-17-5. Total genomic DNA was extracted using a modified CTAB method. The libraries were constructed with an average length of 350 bp using the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA). Library sequencing was performed by Huitong-Biotechnology (Shenzhen, China) using the Illumina NovaSeq 6000 platform. Raw sequence reads were edited using the NGS QC Tool kit (Patel and Jain 2012). A total of 4.59 Gb clean data were de novo assembled by SPAdesv.3.11.0 software (Bankevich, et al. 2012). Then, the assembled chloroplast genome was annotated via PGA using the chloroplast genome of *Carex agglomerate* C. B. Clarke 1903 (MT795185) as the reference. Finally, the complete chloroplast genome sequences and annotations of *C. laevis-

The length of the *C. laevissima* chloroplast genome sequence is 188,029 bp with a typical quadripartite structure. It contains two inverted repeat (IR) regions of 36,699 bp each, which are separated by a large single-copy (LSC) region of 106,171 bp and a small single-copy region (SSC) of 8460 bp. The overall GC content is 34.0%. It contains 133 genes, including 89 protein-coding, 36 tRNA, and eight rRNA genes. Phylogenetic analysis showed that *Carex laevissima* is most closely related to *Carex neurocarpa*.

**CONTACT**

Zhi-feng Wang wzf1223@163.com Jilin Academy of Agricultural Sciences, Changchun, Jilin, China

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Katoh and Standley (2013). Then, the maximum-likelihood (ML) tree was constructed via IQ-TREE v1.6.12 (Nguyen, et al. 2015) under the HIVb+F+R3 model with 1000 bootstrap replicates. The results showed that C. laevissima was in a clade with Carex neurocarpa, Carex gibba and Carex kokanica. Meanwhile, C. laevissima was most closely related to C. neurocarpa. Chloroplasts, as the semiautonomous organelles, are vital for plant cell metabolism (Yu et al. 2014) and photosynthesis (Stern et al. 1997). These data are beneficial for future research on chloroplast genome evolutionary relationships and variety breeding in Carex plants (Figure 1).

**Author contributions**

Zhi-feng Wang designed the experiments. Wei Ren prepared the sample, completed the drafting of the paper. Ya-ru Wang performed the experiments. Han-dong Zhao analyzed the data. Ying-zhe Wang performed the software, data acquisition and revised the manuscript. All authors approve the final version to be published and agree to be accountable for all aspects of the work.

**Disclosure statement**

No potential conflict of interest was reported by the author(s).

**Funding**

This work was supported by the Basic Research Funds of JAAS under Grant [KYJF2021ZR004]; the National Key Research and Development Program of China under Grant [2019YFC0507601]; and China Agriculture Research System of MOF and MARA under Grant [CARS-34].

**Data availability statement**

The genome sequence data that obtained at this study are openly available in GenBank of NCBI (https://www.ncbi.nlm.nih.gov/) under the accession number of MZ846224. The associated BioProject, Bio-Sample and SRA numbers are PRJNA755795, SAMN20841307 and SRR15506181, respectively.

**References**

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pjesivac-Grbovic L, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Liu L, Fan X, Tan P, Wu J, Zhang H, Han C, Chen C, Xun L, Guo W, Chang Z, et al. 2021. The development of SSR markers based on RNA-sequencing and its validation between and within Carex L. species. BMC Plant Biol. 21(1):17.
Mohanta TK, Mishra AK, Khan A, Hashem A, Allah EF, Harrasi A. 2020. Gene loss and evolution of the plastome. Genes. 11(10): 1133.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 7(2):e30619.

Stern DS, Higgs DC, Yang J. 1997. Transcription and translation in chloroplasts. Trends Plant Sci. 2(8):308–315.

Xun LL, Ding FB, Chen C, Liu PL, Lu Y, Zhou YF, Zhang YW, Li SF. 2021. The complete chloroplast genome of Carexagglomerata C. B. Clarke (Cyperaceae), an endemic species from China. Mitochondrial DNA B Resour. 6(11):3117–3118.

Yu QB, Huang C, Yang ZN. 2014. Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. Front Plant Sci. 5:316.