Abstract

Learning a powerful representation for a class with few labeled samples is a challenging problem. Although some state-of-the-art few-shot learning algorithms perform well based on meta-learning, they only focus on novel network architecture and fail to take advantage of the knowledge of every classification task. In this paper, to accomplish this goal, it proposes to combine the channel attention and spatial attention module (C-SAM), the C-SAM can mine deeply more effective information using samples of different classes that exist in different tasks. The residual network is used to alleviate the loss of the underlying semantic information when the network is deeper. Finally, a relation network including a C-SAM is applied to act as a classifier, which avoids learning more redundant information and compares the relation between difference samples. The experiment was carried out using the proposed method on six datasets, such as miniimagenet, Omniglot, Caltech-UCSD Birds, describable textures dataset, Stanford Dogs and Stanford Cars. The experimental results show that the C-SAM outperforms many state-of-the-art few-shot classification methods.

Introduction

Background

Recently, many state-of-the-art deep learning algorithms with different classification problem have been proposed [1, 2]. These algorithms have achieved better performance when a large amount of data is available. In the real world, enough labeled samples of many classes are hard to obtain. For example, newly discovered birds, newly designed cars etc. If these categories with a few samples are classified with traditional deep learning algorithms, the results maybe overfit and the model cannot directly transfer to other new classification tasks. Conversely, humans can find a similar image effortlessly when one or several images are shown to them, because humans have largely learned prior knowledge from experience [3]. When the model has enough meta-knowledge, it will solve many different tasks without a large number of labeled samples.

Motivated by the performance of human, some state-of-the-art one- or few-shot algorithms based on meta-learning have been proposed [4, 5], where the meta-learning aims to learn a distribution for a new task from many past different tasks, instead of learning the representation of the classes. For example, the Model-Agnostic Meta-Learning for Fast Adaptation of
Deep Networks [6] (MAML) trained a meta-learner by gradually changing the gradient to converge on many tasks, so that the meta-learner has good initial parameters to adapt quickly to the new task, but it takes some time to update a few steps before it can perform well on testing set. Metric-based algorithm [7, 8] is another key method that attempts to compute distance in the embedding space. In this direction, Snell et al. [9] applied convolutional neural network to extract features of samples, and applied the Euclidean distance to compute the similarity of the features of different samples. Although the above methods perform well, these results of the methods can be further improved. The core problem of few-shot classification is to solve empirical risk minimization [10]. This reason is that we only get several training samples, this makes the empirical risk deviates from the optimal result. To solve it, few-shot classification methods mainly are divided into two strategies: data augmentation and prior knowledge. Data augmentation aims to augment the number of training samples, but this method causes the robustness of the few-shot classification model is poor when the training samples are less. Such as data rotation, data crop and so on. Prior knowledge aims to transfer related knowledge to target task from a series of available tasks. In other word, few-shot classification need consider that whether similar tasks are always sufficient. Moreover, it is challenge for few-shot classification to transfer knowledge for target task from the same task but different domains. To this end, this paper aims to further dig related information existing in different datasets based on prior knowledge.

In recent years, the attention mechanism [11] has attracted widely interest for extracting abundant features in computer vision systems. Humans can quickly recognize objects by focusing on certain areas of the object when the object is seen, because the human visual system can pay attention to salient parts. There are two types of attention mechanism: channel attention and spatial attention. The channel attention focuses on global features given some feature maps, while the spatial attention focuses on local features given a feature map. The channel attention mechanism [12] produces one dimension (1D) tensor for given feature maps, which is activated by the sigmoid function. In a few channel axes of feature maps, some activation values of the 1D tensor are expected to higher over the corresponding feature maps of interest and some activation values are expected to lower to reduce the redundant feature maps. The spatial attention mechanism [13] is vital to focus on salient parts, which produces a feature mask that has the same size as same as the given feature maps, but the channel attention mask has not the same size as same as the given feature maps. In a network, the spatial mask is expected to automatically adjust activation values, some corresponding parts of interest are focused over feature maps when the activation values are higher.

In fact, the different classes existing in different tasks contain a large number of related features in few-shot classification, and further knowledge of which can be transferred to new classes. This paper combines the two types of attention mechanisms to extract abundant features of the image across many historical tasks. The reasons as follows: firstly, this channel attention focuses on feature maps of interest, there are a lot of information is ignored in the feature maps when lower activation values are multiplied by the corresponding feature map. Secondly, the spatial attention focuses on some parts of interest over the feature maps. When the channel attention weaken the information existing in some feature maps, the spatial attention can emphasize a great deal of useful parts of every feature map with the attention mask in another branch. Finally, the output feature maps of two attention mechanisms are fused by addition operation. These features of interest are richer and those redundant features are cut in fused feature maps. Some state-of-the-art methods perform surprisingly using the relation module [14, 15] instead of the distance metric, because the relation module with the learning parameter can avoid irrelevant information. Therefore, this paper also uses a relation module.

The main contributions of this paper are as follows:
1. This paper combines the spatial attention and the channel attention. In particular, they are placed in different convolution layers to mine discriminative information from multi-scale feature maps.

2. A residual network is applied to aggregate the output feature maps of the C-SAM and the input feature maps of the C-SAM. The residual network can avoid the loss of underlying semantic information. The underlying semantic information is the feature information given image in first few convolution layers, and the feature maps still contain abundant information when the network is shallow.

3. This paper combines a relation module with C-SAM as a classifier. The module can measure the similarity between unlabeled and labeled images.

4. To enhance the performance of the network, this paper also chooses different customized loss functions. These loss functions are evaluated on different components of the network. Moreover, this paper also discusses the generalization on other datasets using the same trained model.

5. This proposed method and some state-of-the-art algorithms are evaluated on miniImageNet, Omniglot, Caltech-UCSD Birds, Stanford Dogs, Stanford Cars and describable textures dataset. The effects of different components are analyzed as well on these datasets. Experimental results show this proposed method achieves good performance from a new classification task with few labeled data.

Related work

Few-shot classification. The meta-learning algorithm [16–19] is important to solve few-shot classification, because a large amount of labeled data is expensive and insufficient, which makes the generalization of many deep learning models is weak in few-shot classification. The meta-learning aims to learn a lot of meta-knowledge from a set of auxiliary tasks, which helps those models to solve novel classification tasks. Concretely, as shown in Fig 1, where $S = \{X_1, X_2, X_3, \ldots, X_s\}$ represents the auxiliary dataset, s is the number of classes in auxiliary dataset. X_i is a class. $Y_1 = \{y_1, y_2, y_3, \ldots, y_s\}$ is the corresponding label space and y_i is the label corresponding class X_i in S. $T = \{W_1, W_2, W_3, \ldots, W_t\}$ is the target dataset, t is the number of classes and the W_i is the unseen class. $Y_2 = \{y'_1, y'_2, y'_3, \ldots, y'_t\}$ is the corresponding label space and y'_i is the label corresponding class W_i in T. There are two stages: meta-training and meta-testing. In the meta-training stage, the task (an episode) v_i is defined as follows: N classes are randomly selected in S and each of the N classes contains K (K denotes the number of samples) samples as the training samples, the rest samples of the N classes as testing samples. Therefore, the model M is trained on a large number of tasks. In the meta-testing stage, given the new task v_{unseen} in T in the same manner, the model M can obtain a good generalization ability.

In this direction, some state-of-the-art few-shot learning algorithms [7–9, 14, 20] have been proposed. Compared with the MAML algorithm, metric-based few-shot learning algorithms need less time, such as the Matching networks for one shot learning [8] (Matching nets) and the Prototypical networks for few-shot learning [9] (Prototypical nets). In Matching nets, the training samples and the testing samples are fed to two separate networks, an LSTM module was used to optimize the embedding function, which aims to select important information for testing samples and training samples. The similarity then is measured between the training samples and the query sample by a special metric function. The label of the query is estimated by attention mechanism over the label of the training samples. In addition, the Prototypical
nets applies the Euclidean distance, which can minimize the distance between the mean of each class and the query samples. Especially, the mean of training samples of each class represents powerfully the class. Thus, the embedding network is trained to make closer a given query sample and similar labeled samples while pushing it away from unrelated labeled samples. Koch et al. [7] proposed two separate neural networks. The input pairs are inputted into the separate network simultaneously and the metric function computes the similarity between features of different samples. Above algorithms are simpler, because they only used several convolution layers. However, metric-based algorithms cannot improve a lot. The reason is that the Euclidean distance is artificially designed, and the images may be misclassified due to the redundant features. To solve this, some distance metrics need to be further improved, Boris N et al. [20] asserted that the scaled metric was important to improve the performance of few-shot classification. Because the learnable parameter on distance expression can scale distance metric, but the parameters are not easily learned when the number of training epochs is unable to determine. Moreover, Sung et al. [14] (relation net) designed a relation module as a classifier. The output of the network fed by query and the output of the same network fed by all
labeled samples are cascaded. The relation module is trained to compare the relation between the labeled and the query samples. If the output is 1, it represents that two images belong to the same class, otherwise, the two images do not belong to the same class.

Attention mechanism. Recently, several attention mechanisms [21–23] have been used extensively in few-shot classification tasks. The attention mechanism is divided into two major styles: soft attention and hard attention. Soft attention can be considered as normalizing the weight on a neural unit, but hard attention is viewed as visible attention, which chooses an obvious region for the input images. Especially, the soft attention is used well, due to the soft attention mechanism can pay more attention to detailed information on spatial and temporal aspects. To transfer more detailed information for the new task, Qin et al. [24] added a channel attention mechanism which highlights the need to find the desired one in many feature maps. Wang et al. [25] applied a spatial attention concentrating on finding some representative receptive field in a feature map. However, many studies have only been concerned on the separate attention mechanism and two mechanisms have seldom been combined in few-shot classification. For example, matching nets [8] applied the soft attention over the labels of the training samples. This makes the label of the unseen sample is the linear combination of the labels of the seen samples.

Mathematical problem setting. A traditional deep neural network that requires many batch labeled images from every class. However, a large number of labeled samples cannot be easily obtained and the performance of the trained classifier is undoubtedly poor. This paper applies meta-learning to learn meta-knowledge from a support set, and the meta-knowledge can be transferred to testing set, so that the model can classify the new task with a few training samples. The support set is the training set and shares disjoint label space with testing set. Many tasks that mimic a few-shot learning setting are constructed on the training set and the testing set in the same manner. During each training procedure, the task (episode) [14] is formed as shown in Fig 2, the episode is one training data, which includes training samples and testing samples.

During training or testing, N classes (N-way) are randomly selected in the training set or testing set, and K labeled samples (K-shot) are randomly selected in each selected class as the training samples. P samples are randomly selected from the remaining samples as the query samples that need to be recognized. Thus, an episode (N-way-K-shot) is created, and H is the number of the episodes. The testing samples of an episodic data are packed into a batch, which is inputted into the network when the network starts training.

In order to compare efficiently the similarity between a few labeled and unlabeled samples, we compute the mean of a few labeled samples to represent a class in a feature space learned by a neural network. This is expressed as Eq (1), where $Q^N = \{QN_1, QN_2, \ldots, QN_k\}$ is a class, each QN_k represents training samples belonging to the class Q^N and k is the number of the training samples.

$$Q^N = \frac{1}{k} \sum_{QN}^{k} F_{sl}(QN; \theta_{cnn})$$ (1)

Methods

Network architecture

As shown in Fig 3, the model has two components: the feature extraction network $F_{sl}(x; \theta_{cnn})$ (surrounded by the dashed line) and relation network $F_{T}(\theta_{cnn})$. In the feature extraction stage, if the number of parameters of the network are large, these parameters cannot be trained well, due to the lacked of samples. Finally, the network is easy to overfit. Therefore, there are
Fig 2. A episodic data forming.

Fig 3. The channel-spatial attention network (C-SAM network) for 5 way-1 shot problem.
four convolutional blocks and two C-SAM modules. In order to capture a large number of related information existing in different classes, the network is expected that the filter has small receptive field. Each block includes a 2D convolutional layer with a 3\times3 kernel and the filter size of 64, a batch normalization layer and an activation layer. In particular, the batch normalization layer prevents gradient vanishing and speeds up the convergence. The activation layer improves the ability of the network generalization. At the same time, the two C-SAM modules are important structures of the feature extraction network, and the C-SAM are placed separately in different layers, which can further extract more detail information of each sample. In the relation network stage, there are three fully connected layers and a C-SAM module. Training sample and testing sample share the same $F_{M}(\theta_{cnn})$, while the whole flow is shown:

$$R = F_{M}(x_i; \theta_{cnn})$$

$$r_{ij} = \text{sigmoid}(F_{T}(\text{concat}(R, R'); \theta_{cnn'}))$$

Where θ_{cnn} is the weight of $F_{M}(\cdot)$, and $\theta_{cnn'}$ is the weight of $F_{T}(\cdot)$. $x_i \in \mathbb{R}^{C \times H \times W}$ is the input images and χ is dimension space. R is the final feature map of training image and R' is the feature map of testing image, and r_{ij} is the relation score.

C-SAM module

Combining the spatial attention and the channel attention have been proposed in [11–13]. Park et al. [13] proposed bottleneck attention module. Firstly, two attention masks from two separate branches are summed to form fused attention mask, the fused attention mask then multiplied by the input feature maps of the module. However, our method used two separate attention branches, and each branch gets the corresponding attention mask. Each attention mask is multiplied by the input feature maps to obtain the final output separately. Finally, the final outputs of two branches are summed by addition operation.

As shown in Fig 4, given an intermediate feature map $Q \in \mathbb{R}^{C \times W \times H}$, C is the number of the feature map, W and H are the width and height of the feature map respectively. After the Q passes the C-SAM, inferring feature map $Q' \in \mathbb{R}^{C \times W \times H}$ from channel attention branch and a spatial attention mask $att \in \mathbb{R}^{1 \times H \times W}$. Fused feature maps as:

$$Q_1 = Q \otimes att \oplus Q'$$

![Fig 4. Overall architecture of the C-SAM module.](https://doi.org/10.1371/journal.pone.0225426.g004)
In feature extraction layer, the residual network [11–13, 26] is used. Because some information of the images maybe lose when the network is deeper, which causes powerful representation of the images is difficult to be obtained, the model finally may be overfit. There are different levels of feature information existing in different layers. Thus we make the input Q of the C-SAM module and the output Q_1 of the C-SAM module added to form the final feature map, following a max-pooling layer to reduce the size of the feature map. The final output Q_2 is:

$$Q_2 = \max\text{pooling}(Q \oplus Q_1) \quad (5)$$

Channel attention branch

As shown in Fig 4, the channel attention branch[10, 26] (CAB) can generate the channel attention mask, namely $\alpha \in \mathcal{X}^{C \times 1 \times 1}$, where each value of the α can highlight important feature maps and weaken non-essential feature maps. The α is obtained by Eq (6). S_g represents the sigmoid function [27], which can avoid excessive attenuation of useful features. The φ_1 and φ_2 are fully connected layers, γ is an optional parameter and the appropriate γ [28] can reduce the number of parameters of the model learning. Here the γ is set to 4. The model output is described in the following Eq (7).

$$\alpha = S_g(\varphi_2(\varphi_1(Avepool(Q); \theta_1))); \theta_2) \quad (6)$$

$$Q' = \alpha \otimes Q \quad (7)$$

θ_1, θ_2 are parameters of φ_1, φ_2 respectively. The size of φ_1, φ_2 can be changed by adjusting γ.

Spatial attention branch

In the previous introduction, the channel attention emphasizes which feature maps are the main ones, while the spatial attention branch [12, 13, 29] (SAB) with the dashed line in Fig 4 selects the important receptive field of the object on each feature map. Therefore, the spatial attention emphasizes a great deal of useful parts of every feature map with the attention mask in another branch when the channel attention weaken the information existing in some feature maps. The convolution layer with a 1×1 kernel namely W_i, which produces the original spatial attention mask $f_{\theta} \in \mathcal{X}^{1 \times H \times W}$ as follows:

$$f = W_i(Q; \theta) \quad (8)$$

The S_g is used to normalize the original spatial attention mask, and $f_{i, j}$ is the element of original attention mask. The att is computed by the following Eq (9). \otimes: represents the corresponding element of two matrixes added together, \otimes: represents the corresponding element of two matrixes multiplied together.

$$att = sigmoid(f) = \frac{1}{1 + e^{-f_{i, j}}} \quad (9)$$

Relation network

The relation module is proposed by the relation network [14], compared with the relation network, this paper adds a C-SAM branch and the fully connected layer. Firstly, the extracted feature maps of unlabeled images are concatenated with the extracted feature maps of labeled images. Then they are inputted to $F_T(\theta_{cnn})$ to learn the relationship between two samples. The module structure is shown as Fig 5. The module uses three fully connected layers of size 64, 8 and 1 respectively, and the C-SAM is placed before the fully connected layers.
The loss function is the mean squared loss function (MSE) which is expressed as Eq (10). In the formula, \(r_{ij} \) represents the relationship value of the two images. When \(r_{ij} = 1 \), it represents that the two images belong to the same class, otherwise, the two images do not belong to the same class. In particular, the one-hot encoding represents the corresponding label.

\[
[\theta_{can}, \theta_{can}'] = \arg \min_{\theta_{can}} \sum_{i=1}^{m} \sum_{j=1}^{n} (r_{ij} - 1(y_i = y_j))^2
\]

(10)

Experiment

Experimental details

In this part, we firstly evaluate our model on three popular public datasets. These datasets are miniImageNet, Omniglot, and the Caltech-UCSD Birds 200 [30] (CUB-200). These datasets are used commonly in few-shot classification. We then evaluate our model on three novel datasets. These datasets are describable textures dataset, Stanford Dogs and Stanford Cars.

Public datasets in few-shot classification. The miniImageNet is composed of 100 categories from the ImageNet dataset, and each class contains 600 images. In this experiment, the dataset is divided into 64, 16 and 20 for training, validation and testing. The validation set aims to show visually the generalization ability of the model. At the 5 way-5 shot stage, each class has 5 labeled samples, and each class has 10 query images, and there are a total of \(5 \times 5 + 5 \times 10 = 75 \) images in each episodic training. At the 5 way-1 shot stage, there is 1 labeled image of each class, while each class has 15 query images, and there are a total of \(5 \times 1 + 5 \times 15 = 80 \) images in each episodic training. All input images are resized to \(84 \times 84 \). The Omniglot is made up of 50 different alphabets with a total of 1623 characters. 1200 classes are selected as the training set, and the remaining 423 classes are the testing set. All input images are resized to \(28 \times 28 \). At the 5 way-1 shot stage, each episodic training contains \(5 \times 1 + 5 \times 19 = 100 \) images, while at the 5 way-5 shot stage, each episodic training contains \(5 \times 5 + 5 \times 15 = 100 \) images. The CUB-200 is fine-grained dataset that contains 200 different species of birds with a total of 11788 images. The dataset is randomly divided into 100, 50 and 50 for the training, validation and testing respectively, and follows the same episodic training principal as miniImageNet. The optimization uses Adam with an initial learning rate of 0.001, annealed by half for every \(10^5 \) episodes. Fine-tuning indicates whether the test images are used in the training process, where \(N \) means no fine-tuning with the testing set, otherwise it is \(Y \). In the experiment, all samples of Omniglot are augmented by rotating through 90°, 180° and 270°.

In order to prove the effectiveness of the proposed method, several state-of-the-art models are chose to compare with proposed method. As shown in Table 1, although the MAML model [6] constructed a simple network with neural network and the Optimization as a model for few-shot learning [5] (LSTM) constructed a simple network with LSTM, both methods have an interesting training strategy. The gradient descent algorithm is used to compute the gradient step by step and hyper-parameters are updated with the loss on the testing set. However, this proposed method can perform well without updating parameters over several steps.
on new tasks. From Table 1, the result is 3.17% better than the MAML on 5 way-1 shot, while it also improved by 3.90% on 5 way-5 shot. Other baseline methods also perform poorly, such as Prototypical nets [9] and Matching nets [8]. These methods seem to learn an embedding space, and the distance between points is computed by artificial metrics. Both methods need high-quality representation for classes. In particular, the relation net [14] designed a classifier with hyper-parameters instead of artificial metrics, which avoided learning more redundant information. The results are shown in Fig 6, the C-SAM network improved 1.43% and 1.69% than relation net separately on 5 way-1 shot and 5 way-5 shot. The proposed method outperforms the selected methods except the A Simple Neural Attentive Meta-Learner [21] (SNAIL) on 5 way-5 shot. The accuracies of all models are averaged over 600 test episodes. We also visual different attention maps of different layers of this network on miniImageNet, as shown as Fig 7. The attention module pays more attention to detail features on the input images when the network is deeper.

As aforementioned in the analysis of the selected state-of-the-art models, we compare the C-SAM network with these state-of-the-art methods on Omniglot. The C-SAM network reaches 99.63% and 99.68% for both 5 way-1 shot and 20 way-1 shot separately, which is the best result of all listed models that are shown in Table 2, such as the Meta-learning with memory-augmented neural networks [31] (MANN), where the classification result reaches 82.8% and 94.9% for 5 way-1 shot and 5 way-5 shot. Although the MANN model stores new information with an external memory module using a number of read and write heads, it is unlikely to have enough memory to keep new information which is rapidly encoded. For 20 way-1 shot experiments, the C-SAM network outperforms the relation net and SNAIL from Fig 8.

Table 1. Average test set classification accuracy on miniImageNet.

Model	Fine-tuning	5 way-1 shot	5 way-5 shot
MAML [6]	Y	48.70%	63.11%
Matching nets [8]	N	43.56%	55.31%
Prototypical nets [9]	N	49.42%	68.20%
Relation net [14]	N	50.44%	65.32%
SNAIL [21]	N	55.71%	68.88%
Meta Networks [16]	N	49.21%	-
LSTM [5]	N	52.04%	66.16%
SAB network	N	51.84%	66.30%
CAB network	N	51.87%	67.01%
C-SAM network	N	51.87%	67.01%

![Fig 6. Accuracies sorted in descending order of each model on miniImageNet.](https://doi.org/10.1371/journal.pone.0225426.g006)
Although there are subtle differences existing in fine-grained samples, the C-SAM network can extract distinction without a complex network structure. It can be seen from Table 3, for 1-shot experiments, the C-SAM network achieves 59.82%, which is 3% higher than relation net. For 5-shot experiments, this approach achieves about 2.45% higher than the relation net. From Table 3, the different attention components of the C-SAM module are used separately. However, for the 1-shot experiments and 5-shot experiments, the CAB network outperforms the C-SAM network. It shows that the channel attention can mine more fine-grained global information.

Other novel datasets. This paper also makes some experiments on other datasets, those datasets are described as follows:

1. **Describable textures dataset (DTD)**. The DTD is a texture database [32], which includes 47 classes and each class contains 400 textural images in the wild. There are a total of 5640 images.
2. **Stanford Dogs.** The Stanford Dogs [33] contains images of 120 breeds of dogs from around the world. Each class contains a different number of images, but each class has more than 100 images.

3. **Stanford Cars.** The Stanford Cars [34] includes 196 classes of cars, there are a total of 16185 images.

All datasets are divided into the training set and the testing set. We randomly select 10 classes in the DTD dataset as the testing set and 37 classes as the training set. We randomly select 20 classes in other two datasets as the testing set and the rest as the training set. We conduct experiments on 5 way-1 shot and 5 way-5 shot respectively, the experimental results are shown as Table 4. Accuracies of all models are averaged over 300 test episodes. For 5-shot experiments on DTD, the C-SAM network achieves 56.12%, but the LSTM network achieves the best result, because texture features are more complicated and the forget gate determine optimal values to remember, while the C-SAM network loses temporal information.

Analysis of loss function and model generalization

Performance of different loss function.
To improve the performance of the network, this paper also chooses two loss functions and evaluates them on miniImageNet. This dataset is used commonly in few-shot classification, and this proposed method also performs well on this dataset. For 5 way-5 shot experiments, we evaluate the SmoothL1Loss and BCELoss respectively. The SmoothL1Loss is less sensitive to abnormal feature, while the BCELoss can speed up the convergence of the network. The experimental results are shown as Table 5, the MSELoss performs well. The reason is that other loss functions require different features to meet some conditions, and this makes the important feature cannot be computed by the corresponding loss function.

Model generalization.
To evaluate the capability of the model generalization. This paper conducts some experiments on other datasets that are mentioned in this paper using the

![Fig 8. Accuracies sorted in descending order of each model for 20-way experiments on Omniglot.](https://doi.org/10.1371/journal.pone.0225426.g008)

Model	5 way-1 shot	5 way-5 shot
MAML[6]	52.6%	66.5%
LSTM[5]	45.13%	63.92%
Relation net[14]	56.57%	68.88%
SAB network	57.83%	70.49%
CAB network	61.29%	72.66%
C-SAM network	59.82%	71.33%

https://doi.org/10.1371/journal.pone.0225426.t003
trained model that is trained on minimagenet, the experimental results are shown as Table 6. For both 5 way-5 shot and 5 way-1 shot experiments, the network achieves 54.99% and 39.78% on CUB-200 respectively. However, the accuracies on other datasets are lower than the accuracies on CUB-200. This reason is that there are most different animal categories on minimagenet, so that most related feature information is transferred to different categories existing in CUB-200. This indicated that prior knowledge is vital to classifier the new task.

Results and discussion

In the above experiments, the proposed method outperforms most state-of-the-art few-shot learning algorithms. For example, from the Table 1, although the SNAIL outperforms the C-SAM network on minimagenet, the result is 0.56% and 0.04%lower than the result of this paper on the 5 way-1 shot and 20 way-1 shot experiments on Omniglot, because the SNAIL cannot obtain a great deal of information from the past sequence of the one labeled letters. Difference attention components of the proposed model are evaluated on different datasets, as shown as Fig 9. The separate attention network achieved well than listed state-of-the-art models, and there are different performances among those attention components on different datasets. For 1-shot experiments on CUB-200 and novel datasets, the C-SAM network is worse than the CAB network, because there are only one training image with complex background, which contains few feature information. The spatial attention focuses on more redundant local information, while the channel attention focuses on global information that includes some detail information. If we combine spatial attention and the channel attention, the representation of the images of different tasks will contain more redundant information. On the
contrary, the background of the images existing in tasks is simpler, the proposed model performs well. For example, the C-SAM network outperforms the SAB network and the CAB network on the Omniglot. For 5-shot experiments on novel datasets, the C-SAM network outperforms other branch networks, because the C-SAM network can obtain more powerful feature representation from several images instead of an image.

Conclusion

In this paper, two popular attention mechanisms have been combined in the basic network. The channel attention mechanism focuses on which channel axis is important, and the spatial attention network finds that some important objects in each feature map. Both different types of attention mechanisms complement each other effectively to obtain more detailed information. Finally, the relation module is applied to compare the similarity between different samples. However, the proposed method has a shortcoming, which focuses only on extracting the detailed information and the temporal information is ignored. This makes that there are no relation between the training samples and training samples or testing samples. Therefore, the network can add LSTM to treat the entire task as a whole, so that each class is not independent.
In addition, the samples existing in auxiliary tasks should have similar feature distribution as the samples existing in target tasks in feature space, which can generalize well on target task.

Author Contributions
Conceptualization: Min Fang.
Methodology: Yan Zhang.
Resources: Nian Wang.
Writing – review & editing: Min Fang.

References
1. Li Jun, Lin Daoyu, Wang Yang, Xu Guangluan, Ding Chibiao. Deep Discriminative Representation Learning with Attention Map for Scene Classification. 2019. Preprint. Available from: arXiv: 1902.07967.
2. Meng Dong, Xuhui Huang, Bo Xu. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network. Plos One. 2018; 13(11): e0204596. https://doi.org/10.1371/journal.pone.0204596 PMID: 30496179
3. Spyros Gidaris, Nikos Komodakis. Dynamic few-shot visual learning without Forgetting. Conference on Computer Vision and Pattern Recognition, 2018; 4367–4375.
4. Y. Lee, S. Choi. Gradient-based meta-learning with learned layerwise metric and subspace. In Proceedings of the 35th International Conference on Machine Learning, 2018; 2933–2942.
5. S. Ravi, H. Larochelle. Optimization as a model for few-shot learning. 5th International Conference on Learning Representations. 2017; Available from: https://openreview.net/pdf?id=rJYO-KcI.
6. C. Finn, P. Abbeel, S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. 34th International Conference on Machine Learning, 2017; 3:1856–1868.
7. G. Koch, R. Zemel, R. Salakhutdinov. Siamese neural networks for one-shot image recognition. In Proceedings of International Conference on Machine Learning, 2016; 1–8.
8. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching networks for one shot learning. 30th Conference on Neural Information Processing Systems. 2016; 3630–3638.
9. J. Snell, K. Swersky, R. S. Zemel. Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems. 2017; 4080–4090.
10. Wang Yaqing, Yao Quanming, James Kwork, Ni Lionel M. Generalizing from a Few Examples: A Survey on Few-Shot Learning.2019.Preprint. Available from: arXiv:1904.05046.
11. Wang Fei, Jiang Mengqing, Qian Chen, Yang Shuo, Li Cheng, Zhang Honggang, et al. Residual Attention Network for Image Classification. IEEE Conference on Computer Vision and Pattern Recognition. 2017; 3165–3164.
12. Woo Sanghyun, Park Jongchan, Lee Joon-Young. In So Kweon. CBAM: Convolutional Block Attention Module. 15th European Conference on Computer Vision. 2018; 11211: 3–19.
13. Park Jongchan, Woo Sanghyun, Lee Joon-Young. In So Kweon. BAM: Bottleneck Attention Module. 2018. Preprint. Available from: arXiv: 1807.06514.
14. Flood Sung, Yang Yong xin Zhang Li, Tao Xiang, et al. Learning to Compare: Relation Network for Few-Shot Learning. Computer Vision and Pattern Recognition 2018; 1199–1208.
15. N.Hilliard, L.Phillips, S.Howland, et al. Few-Shot Learning with Metric-Agnostic Conditional Embeddings. 2018. Preprint. Available from: arXiv: 1802.04376.
16. Tsendsuren Munkhdalai, Yu Hong. Meta Networks. 34th International Conference on Machine Learning (ICML). 2017; 5:3933–3943.
17. Thrun S. and Pratt L. Learning to learn: Introduction and overview. Learning to learn; 1998. 3–17.
18. Wei Ying, Zhang Yu, Huang Junzhou, Yang Qiang, Transfer Learning via Learning to Transfer, Proceedings of the 35th International Conference on Machine Learning. 2018; 80:5085–5094.
19. Andrychowicz M., Denil M., S. G. Hoffman M. W., Pfau D., et al. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems. 29. 2016; 3981–3989.
20. Boris N. Oreshkin, Pau Rodriguez, Alexandre Lacoste. TADAM: Task dependent adaptive metric for improved few-shot learning. 2018. Preprint. Available from: arXiv: 1805.10123.
21. N. Mishra, M. Rohaninejad, X. Chen, P. Abbeel. A Simple Neural Attentive Meta-Larner. In International Conference on Learning Representations; 2018. Available from: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-32.html.

22. H. Fukui, T. Hirakawa, T. Yamashita, H. Fujiyoshi. Attention Branch Network: Learning of Attention Mechanism for Visual Explanation. 2018. Preprint. Available from: arXiv: 1812.10025.

23. L. Shuglishvili, D. Soselia, S. Amashukeli, I. Koberidze. Reproduction Report on "Learn to Pay Attention". 2018. Preprint. Available from: arXiv: 1812.04650.

24. Qin Yunxiao, Zhao Chenxu, Wang Zezheng, et al. Representation based and Attention augmented Meta learning. 2018. Preprint. Available from: arXiv: 1811.07545.

25. Wang Peng, Liu Lingqiao, Shen Chunhua. Multi-Attention Network for One Shot Learning. IEEE Conference on Computer Vision and Pattern Recognition. 2017; 1:6212–6220.

26. He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2016; 770–778.

27. Nursultan Kaiyrbekov, Olga Krestinskaya, Alex Pappachen James. Variability analysis of Memristor-based Sigmoid Function. 2018. Preprint. Available from: arXiv: 1805.07879.

28. Zhang Y, Li K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. The European Conference on Computer Vision. 2018; 286–301.

29. Zhu Xizhou, Cheng Dazhi, Zhang Zheng, et al. An Empirical Study of Spatial Attention Mechanisms in Deep Networks. 2019. Preprint. Available from: arXiv: 1904.05873.

30. C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

31. Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew, et al. Meta-learning with memory-augmented neural networks. In Proceedings of The 33rd International Conference on Machine Learning, 2016; 1842–1850.

32. Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, Andrea Vedaldi. Describing Textures in the Wild. IEEE Conference on Computer Vision and Pattern Recognition. 2014; 3606–3613.

33. A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC). IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2011. Available from: http://pdfs.semanticscholar.org/b5e3/beb791cc17cda1f131d5cc5cabeb796226d832.pdf.

34. J. Krause, M. Stark, J. Deng, L. Fei-Fei. 3d object representations for fine-grained category- zation. IEEE International Conference on Computer Vision Workshops. 2013; 554–561.