Bacterial Flora of the Conjunctiva One Year after Dacryocystorhinostomy

Naser Owji, Alireza Zareifard

Abstract:

PURPOSE: The purpose of this study was to evaluate the changes of conjunctival bacterial flora 1 year after successful dacryocystorhinostomy (DCR).

METHODS: Seventy-two consecutive adult patients with successful DCR were enrolled in this study. We obtained conjunctival cultures from the operated eyes, fellow eyes, and nasal mucosa of the operated side 1 year after the operation. After the period of incubation, further evaluation was performed using standard laboratory techniques.

RESULTS: In the conventional media, positive bacterial growth was detected in 48 (66.7%) of the 72 operated eyes and in 31 of the 72 normal fellow eyes (43.1%). Nasal specimens were positive for bacterial growth in 65 (90.3%) patients. Isolation rate was significantly different between the operated and the fellow (nonoperated) eyes (P = 0.0074). Colony count, type, and frequencies of bacterial isolation from the operated eyes were similar to nonoperated eyes.

CONCLUSION: One year after DCR, conjunctival bacterial isolation rate increased compared with the normal fellow eyes. Remote DCR may be considered as a local risk factor for developing postoperative endophthalmitis.

Keywords: Bacterial flora, conjunctiva, dacryocystorhinostomy

Introduction

Nasolacrimal duct obstruction (NLDO) is a common ophthalmic problem leading to stasis and alterations in bacterial flora of the conjunctiva.[1‑3] Obstructed nasolacrimal duct is treated by making a direct connection of lacrimal sac to the nasal cavity by dacryocystorhinostomy (DCR).

Almost 3–8 weeks is needed for the conjunctival flora to become normal after successful DCR.[1] However, there is a report stating the change of conjunctival flora 1 year after conjunctivodacryocystorhinostomy (CDCR).[4] To the best of our knowledge, there is not any published evidence evaluating conjunctival flora long time after DCR.

The purpose of this study was to determine the possible changes in bacterial flora of the conjunctiva, and whether the patients with previous DCR were more likely to have conjunctival bacteria, which might increase the risk of postoperative endophthalmitis.

Methods

This study was approved by the Ethics Committee of Poostchi Eye Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Eighty consecutive patients who underwent external DCR were reevaluated at least 1 year after the surgery. Seventy-two patients with patent nasolacrimal duct in both operated and nonoperated sides (based on the irrigation test) were included. Six patients were excluded due to secondary NLDO in operated side and two patients were excluded due to positive irrigation test in nonoperated side. No signs of active conjunctival infection and/or inflammation
were detected. The patients did not receive any topical or systemic antibiotics for at least 2 weeks.

Three sterile cotton swabs were used to collect the specimens. One swab was thoroughly rubbed over the lower fornix of the operated eyes from the lateral to the medial side. The other swab was simultaneously used to collect the specimen from the nonoperated eyes as the control group. The third swab was used to obtain a sample from the nasal mucosa of the operated side. Conjunctival sampling was done without topical anesthetic instillation. The specimens were collected and sealed in tubes containing 1 mL thioglycollate medium and were sent to the laboratory immediately after collection to perform bacteriological cultures. After 3 h of incubation, blood agar, chocolate agar, and eosin methylene blue agar plates were inoculated with 0.1 mL transport media for aerobic and anaerobic cultures. Following the incubation period, colonies were differentiated and enumerated by standard bacteriological laboratory techniques.

Chi-square and Fisher’s exact tests were used to analyze the results. \(P < 0.05 \) was considered statistically significant.

Results

The patients’ age ranged from 25 to 65 years (mean age: 44 years). Forty-six (64%) patients were women and 26 (36%) were men.

In the conventional media, positive bacterial growth was detected in 48 (66.7%) of the 72 operated eyes and in 31 (43.1%) of the 72 nonoperated control eyes. Nasal specimens were positive for bacterial growth in 65 (90.3%) patients. The results of bacteriological analyses of conjunctival and nasal specimens are presented in Table 1.

Bacterial isolation rate was significantly different between the operated eyes and the fellow (nonoperated) eyes \((P = 0.0074) \). Types and frequencies of bacterial isolation from the operated eyes did not show any statically significant different with the fellow eyes \((P > 0.05) \).

In 38% of the patients, conjunctiva of the nonoperated side and nasal mucosa had positive growth simultaneously. In 63% of the patients, conjunctiva of the operated side and nasal mucosa had positive growth results simultaneously. The difference in this parameter was statistically significant \((P = 0.0046) \).

The mean colony count in the operated eyes was 2501. In the nonoperated eyes, the mean colony count was 4730 and in nasal specimens there were 12925 colonies. While there was no statistically significant difference among the mean number of colonies between the operated and the nonoperated eyes, the differences between the eyes and the nasal specimens in colony count were statistically significant \((P = 0.001) \).

Discussion

NLDO comprises about 3% of all ophthalmic outpatient visits.[3] Stagnation and pooling lead to acute or chronic dacryocystitis with epiphora and purulent discharge. Few studies report the microbial characteristics of NLDO in adults. Changes in bacterial flora of conjunctiva in both type and quantity of microorganism were reported. The bacterial spectrum of conjunctiva in both dacryocystitis and NLDO were Gram-positive organisms in most studies.[2,3,5-9] Some other studies revealed a dominancy of Gram-negative organisms.[10,11]

Our former study showed both increase in rate of isolation and quantity of conjunctival bacteria in adult patients with NLDO. Gram-positive bacteria were predominant in our patients. Almost 3–8 weeks after successful DCR, conjunctival flora changed to normal status.[1] This can be attributed to the washing out of the abnormal bacteria after bypassing of the obstructed nasolacrimal duct shortly after DCR.

DCR makes a direct connection from the lacrimal sac to the nasal cavity. Positive pressure in the nasal cavity during sneezing or nose blowing may cause retrograde flow. Therefore, spillage of microorganisms from the nasal cavity and contamination of ocular surface is possible after successful DCR, especially in patients with incompetent Rosenmuller valve. Chronic spillage may change the flora of the conjunctiva to the nasal mucosal flora.

Can et al.[4] evaluated the changes of conjunctival flora 1 year after CDCR in twenty patients. They found that operated conjunctival flora became similar to nasal flora. Bacterial growth was detected in 80% of the operated eyes, 55% of the nonoperated eyes, and 100% of nasal mucosa. The frequencies of Gram-positive bacterial
isolation from the operated eyes were different from the nonoperated eyes and were very close to the isolation rate of the nasal specimens.

In our study, positive bacterial growth was detected in 48 (66.7%) of the 72 operated eyes and in 31 (43.1%) of the 72 nonoperated eyes. Nasal specimens were positive in 65 (90.3%) patients. The total isolation rate of bacteria increased in the operated eyes compared with the healthy eyes. However, in contrast to what has been reported after CDCR, types and frequencies of bacterial isolation were not altered significantly in the operated eyes and were similar to nonoperated eyes. Jones tube used during CDCR may lead to more spillage of nasal cavity secretion toward the conjunctiva compared with what occurs after DCR.

Bacteriology of the conjunctiva and its changes in various conditions are important issues in ophthalmology. Many published studies have evaluated the microorganisms of ocular surface. The results showed that variety of normal conjunctival flora was attributed to age, geographical area, climatic condition, and professional background.[12]

The bacterial isolation rate in normal conjunctiva ranged from 15% to 100%. Coagulase-negative staphylococci and diphtheroids are considered commensal organisms and are the main components of the normal conjunctiva. Potential pathogen bacteria such as Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Pseudomonas sp, and Escherichia coli grow with lower frequency.[17-20]

Normal flora of the conjunctiva is known as the main source of contamination after intraocular surgery.[21,22] As previously mentioned, coagulase-negative staphylococci are nonpathogenic bacteria on the ocular surface, but are the main microorganisms recovered in postoperative endophthalmitis. They have been the causes of endophthalmitis in approximately 70% of reported postoperative endophthalmitis.[23] It is not surprising, because these microorganisms are the most frequent bacteria in the conjunctival flora and the reports showed that they grow in up to 78% of conjunctival cultures preoperatively.[24]

Patients with certain local or systemic diseases are at higher risk for developing postoperative endophthalmitis. Such conditions increase the risk by the following four mechanisms: increasing the isolation rate of conjunctival bacterial culture, increasing the colony count of conjunctival bacteria, increasing the pathogenic microorganisms on the ocular surface, and appearance of multi-resistant bacteria on the conjunctiva.

Chronic blepharitis, conjunctivitis, ectropion, and NLDO are considered as local risk factors. Patients with diabetes mellitus, old age, immunodeficiency, skin disorders, asthma, and patients who take immunosuppressant are considered as having systemic risk factors. Corticosteroids use, diabetes mellitus, old age, inadequate immunity, and blepharitis are associated with a higher bacterial isolation rate.[25-35] In NLDO, both isolation rate and colony count of bacteria will increase. In addition, pathogenic microorganisms grow more frequently.[1,5-6] Patients with chronic blepharitis, conjunctivitis, and those with systemic risk factors such as diabetes mellitus, immunodeficiency, or those taking immunosuppressant medications harbor multi-resistant organisms.[36] According to the findings of the present study, remote DCR by increasing the rate of isolation of conjunctival bacteria could be categorized as local risk factor for postoperative endophthalmitis. The surgeons should keep this finding in mind when considering intraocular surgery. More intense antibiotic therapy may be needed before intraocular operation in patients with remote DCR surgery.

According to the results of our previous report[11] and the results of this study, we can describe the changes of conjunctival flora in patients with NLDO as following: Stagnation of the lacrimal flow secondary to NLDO causes contamination of conjunctiva secondary to overgrowth of bacteria and appearance of pathogenic bacteria. DCR leads to direct connection of conjunctival sac to the nose. Shortly after DCR, wash out of the conjunctiva changes the flora toward normal, but with passing time spillage of microorganisms from the nasal cavity toward the conjunctiva may gradually contaminate it.

There are several limitations in the current study that should be noted. We did not evaluate other microorganisms such as fungi. Antibiogram was not performed in our study. Evaluation of drug resistance might reveal possible changes in the population of multiple drug-resistant bacteria in the operated eyes compared with the nonoperated eyes. Small number of samples in bacterial subgroups may preclude a good evaluation in this category. Study with larger samples may enable the evaluation of pathogenic bacteria and possible changes long time after DCR. We did not confirm direct contamination of conjunctiva by nasal mucosa microorganisms. Use of molecular methods such as restriction fragment length polymorphism in future study can provide accurate matching of the isolates from the conjunctiva and nasal flora to confirm the possible contamination of the ocular surface by nasal bacteria. Other limitations are that in this study, we evaluated the conjunctival flora using a cross-sectional study design 1 year after DCR. It does not clear that the changes are permanent effect or alter with time. Further
studies should be conducted to evaluate the changes of conjunctival flora during the months after DCR by serial culture.

Conclusion

One year after successful DCR, isolation rates of conjunctival bacteria were significantly higher than isolation rates of conjunctival bacteria in normal eyes. The higher detection rate of bacteria in such patients could be considered as one of the local risk factors for developing endophthalmitis when intraocular surgery is done. Surgeons are recommended to keep this finding in mind when considering intraocular surgery, even long time after DCR.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Owji N, Khalili MR. Normalization of conjunctival flora after dacryocystorhinostomy. Ophthal Plast Reconstr Surg 2009;25:136-8.
2. Blicker JA, Buffam FV. Lacrimal sac, conjunctival, and nasal culture results in dacryocystorhinostomy patients. Ophthal Plast Reconstr Surg 1993;9:43-6.
3. Hartikainen J, Lehtonen OP, Saari KM. Bacteriology of lacrimal duct obstruction in adults. Br J Ophthalmol 1997;81:37-40.
4. Can I, Arıbal E, Yarangımeli A, Ataoğlu H, Kural G. Changes in the conjunctival flora after conjunctivodacryocystorhinostomy (CDCR): A preliminary report. Eur J Ophthalmol 1998;8:142-7.
5. Mills DM, Bodman MG, Meyer DR, Morton AD 3rd; ASOPRS Dacryocystitis Study Group. The microbiologic spectrum of dacryocystitis: A national study of acute versus chronic infection. Ophthal Plast Reconstr Surg 2007;23:302-6.
6. Razavi ME, Ansari-Astaneh MR, Farzadnia M, Rahmaniyan H, Moghiman T. Bacteriological evaluation of adult dacryocystitis in Iran. Orbit 2010;29:286-90.
7. Chaudhry IA, Shamsi FA, Al-Rashed W. Bacteriology of chronic dacryocystitis in a tertiary eye care center. Ophthal Plast Reconstr Surg 2005;21:207-10.
8. DeAngelis D, Hurwitz J, Mazzulli T. The role of bacteriologic infection in the etiology of nasolacrimal duct obstruction. Can J Ophthalmol 2001;36:134-9.
9. Sun X, Liang Q, Luo S, Wang Z, Li R, Jin X, et al. Microbiological analysis of chronic dacryocystitis. Ophthalmic Physiol Opt 2005;25:261-3.
10. Briscoe D, Rubowitz A, Assia EI. Changing bacterial isolates and antibiotic sensitivities of purulent dacryocystitis. Orbit 2005;24:95-8.
11. Cahill KV, Burns JA. Management of acute dacryocystitis in adults. Ophthal Plast Reconstr Surg 1993;9:38-41.
12. Rubio EF. Climatic influence on conjunctival bacteria of patients undergoing cataract surgery. Eye (Lond) 2004;18:778-84.
13. Smith CH. Bacteriology of the healthy conjunctiva. Br J Ophthalmol 1954;38:719-26.
14. Saleem Q, Arbab TM, Badvi JA. Aerobic flora of normal human conjunctival sac. Med Channel 2009;15:65-7.
15. Puttana ST, D’Souza C, Bhargava MK. Bacterial flora of the eye: A preoperative study. Proc All India Ophthalmol Soc 1958;18:150-7.
16. Saxena H, Goswami P. Bacterial and fungal flora of the normal eye. Indian J Ophthalmol 1971;19:130-5.
17. Hogan MJ, Zimmerman LE. Ophthalmic pathology. In: An Atlas and Text Book of Ophthalmology. 2nd ed. Philadelphia: W.B. Saunders Co.; 1962. p. 235-40.
18. Liu J, Li J, Huo J, Xie H. Identification and quantitation of conjunctival aerobic acterial flora from healthy residents at different ages in Southwest China. Afr J Microbiol Res 2011;5:192-7.
19. Rajvanshi VS, Sahai VB, Mehrotra TN. Distribution and phage types of coagulase positive staphylococci isolated from different sources. Indian J Pathol Bacteriol 1967;10:155-64.
20. Park SH, Lim JA, Choi JS, Kim KA, Joo CK. The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics. Cornea 2009;28:68-72.
21. Sherwood DR, Rich WJ, Jacob JS, Hart RJ, Fairchild YL. Bacterial contamination of intraocular and extraocular fluids during extracapsular cataract extraction. Eye (Lond) 1989;3(Pt 3):308-12.
22. Piest KL, Kincaid MC, Tetz MR, Apple DJ, Roberts WA, Price FW Jr., et al. Localized endophthalmitis: A newly described cause of the so-called toxic lens syndrome. J Cataract Refract Surg 1987;13:498-510.
23. Han DP, Wisniewski SR, Wilson LA, Barza M, Vine AK, Doft BH, et al. Spectrum and susceptibilities of microbiologic isolates in the endophthalmitis vitrectomy study. Am J Ophthalmol 1996;222:1-7.
24. Ta CN, Chang RT, Singh K, Egbert PR, Shriver EM, Blumenkranz MS, et al. MiniTable 1: Antibiotic resistance patterns of ocular bacterial flora: A prospective study of patients undergoing anterior segment surgery. Ophthalmology 2003;110:1946-51.
25. Kattan HM, Flynn HW Jr., Pflugfelder SC, Robertson C, Forster RK. Nosocomial endophthalmitis survey. Current incidence of infection after intraocular surgery. Ophthalmology 1991;98:227-38.
26. Phillips WB 2nd, Tasman WS. Postoperative endophthalmitis in association with diabetes mellitus. Ophthalmology 1994;101:508-18.
27. Kurokawa N, Hayashi K, Konishi M, Yamada M, Noda T, Mashima Y, et al. Increasing oxofoxacin resistance of bacterial flora from conjunctival sac of preoperative ophthalmic patients in Japan. Jpn J Ophthalmol 2002;46:586-9.
28. Miller B, Ellis PP. Conjunctival flora in patients receiving immunosuppressive drugs. Arch Ophthalmol 1977;95:2012-4.
29. Allen HF. Prevention of postoperative endophthalmitis. Ophthalmology 1978;85:386-9.
30. Friedlaender MH, Mas JI, Osumoto M, Smolin G, Ammann AJ. Ocular microbial flora in immunodeficient patients. Arch Ophthalmol 1980;98:1211-3.
31. Montan PG, Koranyi G, Setterquist HE, Stridh A, Philipson BT, Wiklund K, et al. Endophthalmitis after cataract surgery: Risk factors relating to technique and events of the operation and patient history: A retrospective case-control study. Ophthalmology 1998;105:2171-7.
32. Norregaard JC, Thoning H, Bernth-Petersen P, Andersen TF, Taskild L, Sorensen TP, et al. Microbial flora from conjunctival sac of preoperative ophthalmic patients in Denmark. Ophthalmology 1995;102:1749-54.
33. Schmitz S, Dick HB, Krummenauer F, Pfeiffer N. Endophthalmitis in cataract surgery: Results of a German survey. Ophthalmology 1999;106:1869-77.
34. Scott IU, Flynn HW Jr., Feuer W. Endophthalmitis after secondary intraocular lens implantation. A case-report study.
Ophthalmology 1995;102:1925-31.

35. Zell K, Engelmann K, Bialasiewicz AA, Richard G. Endophthalmitis after cataract surgery: Predisposing factors, infectious agents and therapy. Ophthalmologe 2000;97:257-63.

36. Miño de Kaspar H, Shrider EM, Nguyen EV, Egbert PR, Singh K, Blumenkranz MS, et al. Risk factors for antibiotic-resistant conjunctival bacterial flora in patients undergoing intraocular surgery. Graefes Arch Clin Exp Ophthalmol 2003;241:730-3.