A regional exploration of retail visits during the COVID-19 pandemic

Patrick Ballantyne a, Alex Singleton b and Les Dolega c

ABSTRACT

Despite evidence that the COVID-19 pandemic has precipitated significant regional (economic) inequalities, there is a substantial lack of regional insight into the impacts of COVID-19 on the retail sector. In this study, using data from SafeGraph, we adopt a regional approach to explore how visits to retail places changed during the early weeks of the COVID-19 pandemic in the Chicago Metropolitan area. In particular, we highlight that retail visits exhibited interesting spatio-temporal and structural trends.

ARTICLE HISTORY

Received 8 February 2021; Accepted 28 July 2021

KEYWORDS

Retail; COVID-19; visualisation

BACKGROUND

Research is rapidly emerging that seeks to understand the interactions between COVID-19 and retail, specifically quantifying the impacts of reduced mobility on sector economics (Baker et al., 2020; Yilmazkuday, 2020). Many studies have used novel datasets (e.g., Google Mobility), identifying significant shifts in mobility and expenditure between different types of retail. However, despite evidence that the pandemic has precipitated significant regional inequalities between sectors (Bonet-Morón et al., 2020), and that COVID-19 is an inherently regional issue (Torrisi, 2020), there is a substantial lack of (regional) insight into the impacts of COVID-19 on the retail sector. Here we adopt a regional approach, focusing on the Chicago Metropolitan statistical area (MSA), and explore change in total visits to retail ‘places’ during the early weeks of the pandemic, unpacking this further to consider how these trends relate to retail type. This study is important, providing both an insight into the response of a regional retail sector to COVID-19, whilst also demonstrating the utility of mobility datasets and ‘H3’ (Uber, 2018) at conveying trends in mobility, whilst protecting store-level data.

CONTACT

(Corresponding author) P.J.Ballantyne@liverpool.ac.uk

a Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Liverpool, UK.

b Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Liverpool, UK.

c Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Liverpool, UK.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
TRENDS IN REGIONAL RETAIL VISITS

Retail visits followed an uneven spatial distribution (Figure 1). The vast number of visits were concentrated in the central business district (CBD) of Chicago. Other significant but smaller concentrations were found in ‘satellite cities’ such as Joliet, and in established retail developments (e.g. Woodfield Mall). Temporally, there was a clear trend of decreasing retail visits, aligning with the first ‘peak’ of the pandemic (Baker et al., 2020), suggesting that as the pandemic worsened, consumer behaviour altered dramatically. The most significant decrease in visits occurred in the week of the ‘Stay at Home’ order (Pritzker, 2020), the 16th March 2020. Furthermore, an evident spatio-temporal pattern was that suburban/rural Chicago appeared to experience greater contractions in visits when compared with the CBD, prompting a future research agenda to better understand why this might be.

Figure 1. Weekly visits to retail places in the Chicago Metropolitan statistical area (MSA), from the week beginning 2 March to 6 April. Each iteration represents one week of data (e.g., WB 02/03). Source: https://figshare.com/s/ed36c92e136c00925384.
To unpack these trends further, we explored how they related to different types of retail (Figure 2). Convenience retail saw a substantial and sustained increase in visit proportions, from 28% to 35% following the ‘Stay at Home’ order, likely a result of increased demand of ‘essential goods’, characteristic of the early weeks of the pandemic (Nicola et al., 2020). Another interesting trend was the significant and sustained decline in visits to leisure (8%), a component of the retail sector that has faced some of the greatest impacts during the pandemic (Baker et al., 2020).

Further research is required to explain these regional trends, in particular seeking to quantify the role of geographical context (Figure 1) and retail type (Figure 2). Modelling of reductions in retail visits in relation to the offering (e.g., retail type, brands) and geographical context (e.g., urban versus rural, COVID-19 infections) of retail locations would likely yield significant insights into such trends. Although beyond the scope of this study, these insights could have significant merit in retail planning, for example, in identifying underperforming neighbourhoods and/or components of the retail sector that could be targeted with post-pandemic economic recovery strategies, such as the ‘Eat Out to Help Out’ scheme introduced in the UK to support the service sector (Fetzer, 2020).

TECHNICAL DETAILS

SafeGraph provide researchers with access to their datasets, including a register of ‘core places’ where consumers spend money or time (SafeGraph, Inc., 2020b), and corresponding mobility

Figure 2. Weekly visits to retail places disaggregated by retail type. Note: For information about the retail types and their aggregation, see Table 1.
Table 1. Aggregation of ‘core places’ to retail types enabling extraction of ‘retail places’ from the dataset.

Retail type	SafeGraph top category
Comparison	Clothing stores, department stores, furniture stores, automobile dealers, electronics and appliance stores, office supplies, stationery and gift stores
Convenience	Grocery stores, gasoline stations, health and personal care stores, beer wine and liquor stores, general merchandise stores, specialty food stores
Leisure	Drinking places, restaurants and other eating places, motion picture and video industries, gambling industries, traveller accommodation
Service	Automotive repair and maintenance, personal care services, insurance carriers, depository credit intermediation, taxi and limousine services

Note: ‘Comparison’ relates to less frequently purchased, non-food retail (e.g., fashion); ‘convenience’ retail relates to frequently purchased ‘essential goods’ (e.g., food); ‘leisure’ retail incorporates all form of entertainment (e.g., drinking places); and ‘service’ retail covers all services/utilities offered in retail spaces (e.g., insurance).

data (‘weekly patterns’) collected from the GPS data of anonymised phone users (SafeGraph, Inc., 2020a). From the ‘core places’, those places pertaining to retail were extracted by matching the SafeGraph ‘top categories’ to one of four ‘retail types’, and removing all other ‘core places’, as seen in Table 1.

The ‘retail places’ were joined with ‘weekly patterns’ for a six-week period surrounding the first peak of the pandemic (week beginning 2 March–6 April). The places (and patterns) were then joined onto a hexagonal grid for the Chicago MSA, constructed using the ‘h3jsr’ R package (O’Brien, 2020), enabling visualization of the change in weekly visits across Chicago (Figure 1), using the tmap and magick R packages (Ooms, 2021; Tennekes et al., 2021). Figure 2 was constructed by calculating the proportion of total weekly visits occupied by each of the four retail types. For the code used to produce these outputs, see the authors’ GitHub (https://github.com/patrickballantyne/RSRS).

ACKNOWLEDGEMENTS

The authors thank SafeGraph, Inc. for permitting access to various SafeGraph datasets (‘core places’ and ‘weekly patterns’).

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

FUNDING

This paper is part of a PhD project funded by the Economic and Social Research Council (ESRC) and Geolytix, through the Centre for Doctoral Training; Liverpool University Gold Open Access.

ORCID

Patrick Ballantyne ☞ http://orcid.org/0000-0001-8980-2912
Alex Singleton ☞ http://orcid.org/0000-0002-2338-2334
Les Dolega ☞ http://orcid.org/0000-0002-1340-6507
REFERENCES

Baker, S. R., Farrokhnia, R. A., Meyer, S., Pagel, M., & Yannelis, C. (2020). How does household spending respond to an epidemic? Consumption during the 2020 COVID-19 pandemic. *The Review of Asset Pricing Studies, 10*(4), 834–862. https://doi.org/10.1093/rapsru/raaa009

Bonet-Morón, J., Ricciulli-Marin, D., Pérez-Valbuena, G. J., Galvis-Aponte, L. A., Haddad, E. A., Araújo, I. F., & Perobelli, F. S. (2020). Regional economic impact of COVID-19 in Colombia: An input–output approach. *Regional Science Policy & Practice, 12*(6), 1123–1150. https://doi.org/10.1111/rsp3.12320

Fetzer, T. (2020). *Subsidizing the spread of Covid19: Evidence from the UK’s Eat-Out To-Help-Out scheme*. University of Warwick, Department of Economics.

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., & Agha, R. (2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A review. *International Journal of Surgery, 78*, 185–193. https://doi.org/10.1016/j.ijssu.2020.04.018

O’Brien, L. (2020). h3jsr-package: h3jsr: Access Uber’s H3 library. Retrieved 18th May 2021 from https://rdrr.io/github/obrl-soil/h3jsr/man/h3jsr-package.html

Ooms, J. (2021). Magick: Advanced Graphics and Image Processing in R. Retrieved 18th May 2021 from https://cran.r-project.org/web/packages/magick/index.html

Pritzker, J. B. (2020). Executive Order 2020-32 (COVID-19 Executive Order No. 32). Retrieved 18th May 2021 from https://www2.illinois.gov/Pages/Executive-Orders/ExecutiveOrder2020-32.aspx

SafeGraph, Inc. (2020a). SafeGraph COVID-19 Data Consortium. Retrieved 18th May 2021 from https://www.safegraph.com/covid-19-data-consortium

SafeGraph, Inc. (2020b). Places Manual. Retrieved 18th May 2021 from https://docs.safegraph.com/docs/places-manual

Tennekes, M., Nowosad, J., Gombin, J., Jeworutzki, S., Russell, K., Zijideman, R., Clouse, J., Lovelace, R., & Muenchow, J. (2021). tmap: Thematic Maps. Retrieved 18th May 2021 from https://cran.r-project.org/web/packages/tmap/index.html

Torrisi, G. (2020). COVID: Everything is better when everything is worse? A comparative analysis of testing, death rate and life expectancy across Italian regions. *Regional Studies, Regional Science, 7*(1), 463–475. https://doi.org/10.1080/21681376.2020.1832908

Uber. (2018). H3: Uber’s Hexagonal Hierarchical Spatial Index. Retrieved 18th May 2021 from https://eng.uber.com/h3/

Yilmazkuday, H. (2020). Stay-at-home works to fight against COVID-19: International evidence from Google mobility data. *Journal of Human Behavior in the Social Environment, 1–11*. https://doi.org/10.1080/10911359.2020.1845903