COMPETITIVE BALANCE ANALYSIS OF EUROPEAN FOOTBALL
(EXAMPLE OF 2018-2019 SEASON)

Levent GÖRÜN
Assistant Professor, Duzce University, Turkey, leventgorun@duzce.edu.tr
ORCID: 0000-0003-1142-3167

Emre AKSOY
Physical education teacher, İsmet Pasay Secondary School, Turkey, emreaksoy1985@gmail.com
ORCID: 0000-0003-1543-762X

ABSTRACT

When competitive equilibrium is defined as the power of teams to fight against each other, determining the power equilibrium of teams in any league is important for the quality and popularity of that league. Football is one of the most popular sports branches. The continuation of the attraction of football and its increasing visibility is directly related to the uncertainty of the match results. This study aims to determine the competitive balance equilibrium level of the leading leagues of European football leagues. These are the Sport Toto Super League (Turkey), Bundesliga (Germany), La Liga (Spain), Ligue 1 (France) Premier League (England), Eredivisie (Netherlands), Premier League (Portugal) and Seria A (Italy). The data required to achieve this goal and measure the competitive balance level of the leagues were obtained by using the scanning model and document analysis method. The data were taken from the mackolik site, which includes many branches of world sports and especially the statistical information of many international leagues in football. This study has a descriptive research model. In order to measure the competitive equilibrium level of these leagues, scanning model was used and document analysis method was used. In the document analysis, CS index, Lorenz Curve and Gini Coefficient were used to measure competitive equilibrium by using the 2018-2019 seasonal tables. As a result of the research, the league closest to the competitive equilibrium according to CS index and Gini values is the Sport Toto Super League (Turkey) (0.31) among the leagues with 18 teams, followed by Bundesliga (Germany) (0.45), Eredivisie (Netherlands) (0.46), and Premier League (Portugal) (0.48). In the leagues with 20 teams, the most competitive league was La Liga (Spain) (0.34), Ligue 1 (France) (0.35), Seria A (Italy) (0.36) and Premier League (England) (0.38). According to these results, a course away from competitive equilibrium has emerged in the biggest leagues of Europe.

Keywords: Lorenz curve, gini coefficient, competitive balance, European Football
INTRODUCTION

Competitive equilibrium refers to the balance between teams’ abilities to do sports. The more you balance the competitive power of the teams that make up a league, the more uncertain the outcome of each match. Similarly, balanced teams make the outcome of the championship race more uncertain. In a perfectly balanced league, teams have an equal chance of winning the matches, and teams should become champions and become equal. (Cairns, 1987). Competitive balance refers to the achievement of equitable and equal earnings by individuals or institutions of equal level. (Ongan & Demiröz, 2010). There must be competition to watch football and to increase the number of spectators. Because being certain of the outcome of a match from the beginning can reduce the interest in that match. The power imbalance between the teams started to increase due to the increase in revenues as a result of industrialization. This situation created unfair competition in favor of big clubs. This situation is negatively affected the competitive balance structure of the leagues. (Akşar, 2013). The increase in power imbalance should be make the match results uncertain. This situation may overshadow the attractiveness and excitement of football. The first study on balance in sports is the work of Rottenberg (1956). Rottenberg claimed that if the number of teams likely to become champions increases, the competition and the number of spectators will also increase. Jennett (1984) concluded that when some teams dominate a professional league, the number of spectators in that league decreases. We know that one of the most important emotions that lead people to something is mystery and uncertainty. The fact that the mystery of football is not lost, which team will be the champion is not known in advance, and the team that will win a match cannot be predicted at the beginning of the match will increase the interest in football.

Competitive equilibrium points to the expectation of the fans as to who will win. In a state of perfect balance, the fans believe that all outcomes are possible and so there is complete uncertainty regarding the outcomes. This is seen as the most important factor that will increase the demand for football, that is, the number of spectators (Buzzacchi, Szymanski & Valletti, 2010). As a matter of fact, in order to attract the attention of the audience, it should be ensured that the sports league teams are neither too strong nor too weak relative to the other, thus preserving the uncertainty of the result (Koning, 1999). Competitiveness will contribute to development and innovation in clubs as well as in companies. Efficiency will increase where there is innovation and development. In this respect, the existence of competitive equilibrium in leagues is important.

It is stated in the literature that there are many factors affecting competitive equilibrium. When we examine the literature, the factors affecting competitive equilibrium are as follows:

Market size and participation: Buraimo and Simmons (2009) revealed that teams established in regions with large markets in the English Premier League earn more box office revenues than other regions. A study of the audience in British clubs revealed a correlation between the number of spectators and the size of the metropolis. (Hart et al., 1975). The market will also be large in regions that have become a trade center due to the geographical location and where economic activities are at the highest level. The economic resources of the clubs in this market will be higher than the clubs in other regions. These two different situations may distort the
competition in favor of teams located in regions with a greater market size. On a country basis, in countries with high gross national product and good economic power, the money allocated to football will also increase, and the teams in these countries will become stronger against the teams in smaller countries. This situation may lead to an imbalance in competition.

2. Number of fans: If there is a large difference in audience between teams, this will affect the competitive balance of the league (Szymanski, 2001). It cannot be expected that the crowd of fans of small provincial teams and teams located in big cities with a history full of great successes will be the same. It is known that even the supporters of small city teams are the supporters of teams in other big cities. For example, a person living in any small province in Turkey can follow one of the 3 big teams while supporting the team of his/her own province. Fans are an important source of income for clubs. From this point of view, they cause great differences between teams in terms of matchday revenues, jersey revenues and sponsor revenues. Therefore, fan density affects the competitive equilibrium. According to the Deloitte (2020) Money League report, it is seen that the matchday revenues make up almost half of the revenues of the top 20 teams in the European money league. For example, Barcelona is in the 1st position in the Money League and earned 46% of its total revenue (383.5 million Euros) from matchday revenues. Manchester United team ranked 3rd in the same report, earning 45% of its total revenue (317.2 million Euros) from matchday revenues, while Napoli ranked 20th in the Money league generated 8% (15.9 million Euros) of their total revenues. As can be seen, the matchday revenues of the teams with more fans are much higher than the other teams. Accordingly, it is stated in the same report that large economic incomes were obtained as a result of the fan density and social media use.

3. Revenue sharing and competitive equilibrium: Marburger (1997) concluded that increasing revenue sharing increased the competitive balance. Atkinson et al. (1988) stated that revenue sharing contributed to the inclusion of talented players in many teams. Each country federation establishes a system for the sharing of broadcasting revenues to the teams in their own leagues. While these revenues are distributed under the name of the pool system in many countries in Europe and our country, in Spain, each club makes its own agreement with the broadcaster. In the pool system models established by the federations, they usually create a system in favor of the teams that were champions in the leagues and have a say in that country's football. This causes injustice in the distribution of money between teams and causes an imbalance of power between teams. For example, according to the Italian pool system, 40% of the total income is distributed equally, 25% according to the number of fans of the teams (more fans bring in more money), 15% according to their performance in the league rankings of the last 5 seasons, 10% according to their historical success, % 5 according to the success of the previous season and 5% according to the population of the place where the teams are located. Turkey also evenly distributes 35% of total revenue equally, 45% according to the score performance, 11% according to the number of championships they have obtained in the past years and 9% for the first 6 teams in the previous season as season-end bonuses. Models similar to these examples are also used in other European leagues (Akşar, 2011). This system can lead to injustices in sharing the money generated in the league. This will negatively affect the level of competition between teams.
4. **Difference in wealth and competitive equilibrium between clubs:** Rich teams can put the league under pressure and this negatively affects the quality of the league. Akşar (2017) stated that 43.2% of the money produced in the super league is the top 5 teams and the remaining share is shared by the other teams. It is a fact that rich clubs dominate the leagues by getting better players at higher spending. Teams with good revenues in industrial football stand out in competition against other teams. For example, it is not possible for a team with an annual income of 350 million Euros and a team with an annual income of 80 million Euros to have a sustainable competition.

5. **Spectator fan engagement and competitive equilibrium:** Janssens and Késenne (1987) demonstrating that the number of spectators will increase in leagues where the match outcome is uncertain and according to Szymanski and Kesenne (2010), who stated that the unfair distribution of money and the unfair distribution of money will disrupt the balance of power between the teams and this will negatively affect the audience numbers, these two factors are very important for the competition level of the league. In highly competitive competitions, the uncertainty of the game outcome affects the participation in the match. However, even if the competition has a high level of competitiveness, the economic conditions of the spectators and the ticket prices may also affect the attendance. Clubs should be able to price tickets according to the socio-economic levels of their region.

Another study on the factors affecting the participation of the audience and the fans in the match revealed that the location of the home and away teams, the budget of the host team, and the score they received in the last game increased the number of attendance of the host teams (Falter & Perignon, 2000).

The match results will become uncertain in the league where there is competition. This will increase the popularity of the league. Audience numbers will increase, clubs will earn more income. Clubs will build better teams and compete better. From this point of view, this study aims to develop recommendations based on the competitive equilibrium by measuring the competitive equilibrium levels of Spor Toto Super League (Turkey), Bundesliga (Germany), La Liga (Spain), the League 1 (France), Premier League (England), Eredivisie (Netherlands), Premier League (Portugal) and Seria A (Italy) in the 2018-2019 season.

METHOD

In this study, scanning model was used and document analysis method was used to measure the competitive equilibrium level of European Football. The data used in the research were obtained from the site of mackolik. The Mackolik site is a website that contains statistics of many sports leagues at national and international level in its database and where scientifically reliable information is shared, especially in football. End-league rankings of the analyzed leagues at the end of the 2018-2019 season were obtained from the Mackolik site, and the data obtained were analyzed with the C5 index, Gini coefficient and Lorenz Curve used in the economic indexes. With these indices, the 2018-2019 season includes Sport Toto Super League (Turkey), Bundesliga (Germany), La Liga (Spain), Ligue 1 (France), Premier League (England), Eredivisie (Netherlands), Premier League (Portugal) and Seria A (Italy). The competitive equilibrium levels of the leagues have been calculated. The most watched and strongest
leagues in Europe were preferred in the selection of samples. The characteristics of the leagues and the importance of the league rankings are indicated in the table below.

Table 1. Leagues and Features

Leagues	Country	Teams to go to the Champions League	Teams to go to the European League	Teams to be Relegated
Sport Toto Super League (Turkey)	Turkey	Top 2 teams	3rd, 4th team	Teams ranked last 3 in the end of the season ranking
Premier League (England)	England	Top 4 teams	Team 5	Teams ranked last 3 in the end of the season ranking
Bundesliga (Germany)	Germany	Top 4 teams	Teams 5 and 6	16th in the ranking plays play off. The last two teams are directly relegated
Seria A	Italy	Top 4 teams	Teams 5 and 6	16th in the ranking plays play off. The last two teams are directly relegated
Ligue 1	France	Top 2 teams	3rd, 4th team	16th in the ranking plays play off. The last two teams are directly relegated
La Liga	Spain	Top 4 teams	Teams 5 and 6	Teams ranked last 3 in the end of the season ranking
Eredivisie	Netherlands	Top 2 teams	3rd, 4th and 5th team	16th in the ranking The team that is relegated from the league plays the play off. The last two teams are directly relegated
Premier League	Portugal	Top 2 teams	3rd, 4th team	Teams ranked last 2 in the season end ranking

The Lorenz Curve created with the the Gini Coefficient, C5 index and the Gini Coefficient were used to determine the competition between the teams that have been in these leagues for many years and generally finish their seasons at the top and the teams that have recently joined the league. Each calculation type is described separately below.

C5 Index

\[
C5 = \frac{\text{Points by top 5 teams}}{\text{Points by all the teams}}
\]

(Michie & Oughton, 2004).

C5 ratio is a function of the number of teams that make up the league and the imbalance between the top five clubs and other clubs. An increase in the C5 ratio indicates that the competitive equilibrium has decreased and the top five clubs dominate the league.

Gini Coefficient and Lorenz Curve

The simple arithmetic mean of the differences between the scores of each team and the scores of individual other teams gives us the GINI coefficient. The greater the inequality, the greater the GINI coefficient. Values close
to 0 indicate that it is a league close to competitive equilibrium, and values closer to 1 indicate that competitive equilibrium is moving away (Ongan & Demiröz, 2010).

To find the Gini value;

\[
GINI = \left[\frac{1}{2\sum_{i}p_{i}\sum_{j}p_{j}}\right] \times \sum_{i} \sum_{j} |p_{i} - p_{j}|; \ldots \ldots \ldots (11)
\]

formula is used.

\[p_{i}\]: points of the team ranked \(i^{th}\) at the end of the season

\[p_{j}\]: points of the team ranked \(j^{th}\) at the end of the season

\[p_{avg}\]: average points of the league

\[n\]: number of teams

\[i, j = 1, 2, 3 \ldots, (n - 1), n; i \neq j.\]

Lorenz Curve

The Lorenz curve is a method used to measure the inequality in income distribution. If there is equality in income distribution, the "Line of perfect equality" and the 'Lorenz Curve' coincide with a 45 degree diagonal to express that everyone gets an equal share of income. In cases of inequality in income sharing, the Lorenz Curve moves away from the line of perfect equality and takes a more curved shape (Ongan & Demiröz, 2010).

![Lorenz Curve](chart1.png)

Chart 1. Lorenz Curve

Source: Akşar & Merih 2006

Team score / total league score \(\times 100\) formula was used and the percentage share of all teams from the total score was calculated \((= \text{B2}/\text{B5*B20}*100)\). Then the effect of the percentage points of each team was ranked in ascending order. The formula \((= 1/18 \times 100)\) was used to calculate the effect of each team on the total number.
of teams in the league. In order to obtain the values to be used in the graph, the values from 0 to 100 have been reached by summing the total points obtained by the teams as a percentage from the lowest value to the highest value (= E1 + D2). This gave us the cumulative results of the percentages of points achieved by all teams in the league. In order to obtain the percentage distribution of 18 teams on the horizontal axis, a horizontal axis of up to 100 was obtained by summing up the % shares showing the league’s effects (= F1 + C2). In order to obtain the absolute equality line, the values of the league effect of the teams on both horizontal and vertical axes, which were calculated by summing up from small to large, were used as %. In order to draw the Lorenz curve, the cumulative sum of the ratios of the teams to the total number of teams on the horizontal axis, and the cumulative values of the percentage points of the teams on the vertical axis were selected (Akşar & Merih, 2006).

The same formula is used for 20-team leagues. Team score / total league score * 100 formula was used and the percentage share of all teams from the total score was calculated (=B2/B$2*100). Then the effect of the percentage points of each team was ranked in ascending order. The formula (= 1/20 * 100) was used to calculate the effect of each team on the total number of teams in the league. In order to obtain the values to be used in the graph, the values from 0 to 100 have been reached by summing the total points obtained by the teams as a percentage from the lowest value to the highest value (= E1 + D2). This gave us the cumulative results of the percentages of points achieved by all teams in the league. In order to obtain the percentage distribution of 20 teams on the horizontal axis, a horizontal axis of up to 100 was obtained by summing up the % shares showing the league’s effects (= F1 + C2). In order to obtain the absolute equality line, the values of the league effect of the teams on both horizontal and vertical axes, which were calculated by summing up from small to large, were used as %. In order to draw the Lorenz curve, the cumulative sum of the ratios of the teams to the total number of teams on the horizontal axis, and the cumulative values of the percentage points of the teams on the vertical axis were selected (Akşar & Merih, 2006).

FINDINGS
In the study, the competitive balance levels of the leagues in table 2 in the 2018-2019 season were obtained using indices. The competitive balance levels of the leagues were found as a result of the analysis made based on the 2018-2019 season rankings of each league.mackolik

CS values of the leagues are given in the table below.

Leagues	Country	Number of Teams	C5 Value
Sport Toto Super League	Turkey	18	0.31
Bundesliga (Germany)	Germany	18	0.45
Eredivisie	Netherlands	18	0.46
Premier Lig	Portugal	18	0.48
C5 value is a function of the number of teams that make up the league and the imbalance between the top five clubs and other clubs. An increase in the C5 ratio indicates that the competitive balance has decreased and the top five clubs dominate the league. Values close to 0 mean approaching competitive balance. When table 2 is examined, while the C5 values of the leagues with 18 teams are respectively Sport Toto Super League (Turkey) (0.31), Bundesliga (Germany) (0.45), Eredivisie (Netherlands) (0.46), Premier League (Portugal) (0.48), the C5 values of the leagues with 20 teams are La Liga (Spain) (0.34), Premier League (England) (0.38), Ligue 1 (France) (0.35) and Seria A (Italy) (0.36). According to the C5 value of research findings, 18 most approached the league competitive balance in a team league with 0.31 value Sport Toto Super League (Turkey), while the Premier League with the farthest league competitive balance 0.48 value (Portugal). In the leagues with 20 teams, the league closest to competitive equilibrium is La Liga (Spain) with a value of 0.34, while the league the furthest from competitive equilibrium is Seria A (Italy) with a value of 0.36.

The Gini Value of the leagues is given in the table below.

Leagues	Country	Number of Teams	C5 Value
Sport Toto Super League	Turkey	18	0.13
Bundesliga	Germany	18	0.19
Eredivisie	Netherlands	18	0.18
Premier League	Portugal	18	0.20
La Liga	Spain	20	0.15
Premier League	England	20	0.21
Ligue 1	France	20	0.18
Seria A	Italy	20	0.20

When table 3 is examined, the Gini values of the leagues with 18 teams are respectively Sport Toto Super League (0.13), Bundesliga (0.19), Eredivisie (0.18), Premier League (Portugal) (0.20), while the Gini value of the leagues with 20 teams are La Liga (0.15), Premier League (England) (0.21), Ligue 1 (0.18) and Seria A (0.20). As the Gini approaches 0, competitive equilibrium can be emerging. Gini value is important in terms of showing the share of the teams from the total points produced in the league. The closer the Gini value is to 0, the share of the teams from the total points generated in the league will be close to each other. As a result of this data, the Lorenz curve...
will draw a curve close to the absolute equality line. According to the findings 18 according to day of the value in-team league with the closest league 0.13 worth of competitive balance in Sport Toto Super League (Turkey) Premier League while the farthest league competitive balance with 0.20 D value (Portugal). In the leagues with 20 teams, the league closest to the competitive balance according to the Gini value is La Liga (Spain) with a value of 0.15, while the league the furthest to competitive balance is Seria A (Italy) with a value of 0.20.

Lorenz curves of leagues with 18 teams

Lorenz curve is a curve created with gini values. It is important in terms of showing the shares of the teams that make up the league from the total score. The better the competition balance in the league, the closer the Gini value will be to 0, so the Lorenz curve will follow a course close to the absolute equality line. When the League of the Lorenz curve are the result of the gun examined the value curve closest to absolute equality rather Sport Toto Super League (Turkey).

![Chart 2. Sport Toto Super League (Turkey)](image)

Since the Lorenz Curve approaches the absolute equality line in graphic 2, a result close to competitive balance has emerged. Sports Toto Super League (Turkey) is the most competitive leagues in eight league by the Lorenz curve.
Chart 3. Bundesliga (Germany)

When graph 3 is analyzed, the Lorenz Curve has moved away from the absolute equality line. According to this result, it can be said that Bundesliga (Germany) is a league far from competitive balance. Bundesliga (Germany) showed a course away from competitive balance in Gini value and C5 value. According to the data of the end of the 2018-2019 season, there is 59 points difference between the team that won the championship and the team that finished the league in the last place in the Bundesliga, while there is 23 points difference between the team that finished the league as the champion and the team that finished the league in the 5th place. These data reveal the unbalanced competition in the league.

Chart 4. Eredivisie (Netherlands)

Eredivisie is one of Europe's leading leagues. Especially raising players from the infrastructure is a football brand where young players shine and gained significant success in world football for a while. When the 2018-2019 end-of-league rankings are examined, it is seen that the difference between the teams that finished the league in the top 5 and the other teams is very high. The unfair competition environment in European football shows itself in Eredivisie. When graph 4 is examined, the Lorenz curve moves away from the absolute equality line. Looking at the Gini values, it is seen that there is a departure from competitive equilibrium with a value of 0.18.
The Portuguese Premier League is the league that has moved away from competitive balance among the 18-team leagues. In the league with a Gini value of 0.20, there is a 20-point difference between the champion team and the 4th ranked team that will go to the European Cup. This situation shows us that there is not enough competition even among the teams that finished the league in the top 5. Also, there are big differences between the teams that finished the league in the last 3 places and the scores of the teams that finished the league between 5th and 15th places. In a competitive league, it is essential that there is not much difference in points between teams. As can be seen, the Lorenz curve also supports this.

Lorenz curves of 20 team leagues

Among the 20-team leagues, La Liga (Spain) is the league closest to competitive balance. The share of the teams from the total points produced in the league is higher than the other leagues with 20 teams. This situation also
shows itself in the lorenz curve. Looking at the Gini values, La Liga (Spain) is the league that comes closest to competitive balance among the leagues with 20 teams with a value of 0.15.

![2018-2019 Season Lorenz Curve - Premier League](image1)

Chart 7. Premier League (England)

Located in England, Premier League is one of the most watched leagues in the world. Clubs earn much higher revenues than other leagues in terms of broadcasting revenues and sponsorship revenues. However, the 4 teams in the Premier League that dominate the league stand out in the competition by earning much higher revenues. Among the leagues with 20 teams, the league with the highest Gini value is the Premier League. When the 2018-2019 league end ranking is examined, it is seen that the difference in points between the teams that finished the league in the top 5 and the other teams is very high. Looking at the Gini value, it is the Premier League with a value of 0.21, which is the most distant from the competitive balance among the 20-team leagues. When graph 7 is examined, lorenz curve has moved away from the absolute equality line. According to these findings, it can be said that a course away from competitive balance emerged in the Premier League in the 2018-2019 season.

![2018-2019 Season Lorenz Curve - Ligue 1](image2)

Chart 8. Ligue 1 (France)

When graph 8 is examined, it is seen that the Lorenz curve moves away from the absolute equality line. According to the Gini values (0.18), there is an unfair competition in the Ligue 1 (France) league. However, when the 2018-
2019 season end-league rankings are examined, the gap between the scores achieved by the teams is not as much as the Premier League. Although the competition is not at the desired level, Ligue 1 is the second league that is closest to competitive balance among the 20-team leagues.

Europe’s hardest football league is Seria A (Italy). When the 2018-2019 season end rankings are examined, the Seria A champion has 90 points, while the team that is out of the league has only 17 points, which is a proof of how much the scissors gap is. Seria A (Italy) is the third in the competitive balance ranking in European football with 20 teams. The Seria A League C5 index value was 0.36, and the gini value was 0.20. Lorenz curve has also moved away from the absolute equality line. These findings show that competitive balance is not at the desired level in Seria A.

CONCLUSION and DISCUSSION

According to the results obtained in the study, of the leagues with 18 teams, Sport Toto Super League (Turkey) with a C5 value of 0.31 is closest to competitive equilibrium, while other leagues respectively Bundesliga (Germany) 0.45, Eredivisie (Netherlands) 0.46 and Premier League (Portugal) is 0.48. Of the leagues with 20 teams, the leagues closest to the competitive equilibrium according to C5 value and Gini values are La Liga (Spain) (0.34), Premier League (England) (0.38), Ligue 1 (France) (0.35) and Seria A (Italy) (0.36), respectively. Furthermore, in the leagues with 18 teams, Sport Toto Super League (Turkey) is closest to competitive equilibrium according to the Gini value with a value of 0.13 value and it is followed respectively by Bundesliga (Germany) (0.19), Eredivisie Netherlands) (0.18), Premier League (Portugal) (0.20). The Gini value of the 20-team leagues are La Liga (Spain) (0.15), Premier League (England) (0.21), Ligue 1 (France) (0.18) and Seria A (Italy) (0.20). As Gini approaches 0, it means getting closer to competitive balance. The C5 value is important in terms of showing the shares of the teams that finished the league in the top 5 from the total points produced in the league. Sport Toto Super League (Turkey) is the closest league to competitive equilibrium with a value of 0.31.
The reason for this is that due to the economic problems, the big teams in Turkey cannot form strong teams and also they have management problems. Moreover, as the teams in the league can have 14 foreign players in their squads, small teams can find cheap and talented players and they can compete better with the bigger teams. With the values of Bundesliga (Germany) (0.45), Eredivisie (Netherlands) (0.46), Premier League (Portugal) (0.48), they seem to follow a course away from competitive equilibrium. The strongest teams that took the top 5 places in these leagues in the 2018-2019 season dominated the league and took most of the points collected in the league and reduced the competitive equilibrium level of the league. Naghshbandi et al. (2011) used the C5 index and found the closest leagues to competitive balance as Iran Professional League, German Bundesliga, France 1st League, Italy Seria A, English Premier League and Spain La Liga, respectively. As a result, while the Iranian League is the league with the highest competition, the Spanish League has emerged as the league with the lowest competition. While the Bundesliga C5 value in our study was (0.45), this value was found to be (0.37) in the study of Naghshbandi et al. The competitive equilibrium in the Bundesliga has gradually deteriorated. The reason for this is that big teams increase their economic income and cause power imbalance in the league. Furthermore Cretton (2015) revealed in his study that while the incomes of large teams increased at a high level, the revenues of small budget teams increased slightly, and therefore a power imbalance occurred. In European football, especially the income generated by strong teams causes negative effects on the competitive balance. According to the Deloitte 2019 report, significant increases were seen in the revenues of the top 20 teams in the European Money Leagues in the 2018-2019 season. For example, in the 2018-2019 season, Real Madrid's (Spain) annual revenue is 750.9 Million Euro, Manchester United (England) 666 Million Euro, Bayern Munich (Germany) 629.2 Million Euro, Paris Saint-Germain (France) 541.7 Million Euro, Juventus (Italy) 394.9. While they are in the top 20, these teams, which have 3 times more budget than the budgets of other teams in their leagues, may negatively affect the competitive equilibrium by dominating the leagues (Deloitte, 2019: 5). Additionally, in their study, Curran, Jennings and Sedgwick (2009) concluded that between 1948 and 2008, the competitive equilibrium in English football gradually decreased and good football faced with danger. In another study showing that the competitive equilibrium is gradually decreasing; Cristiano Diniz da Silva et al., who measured the competitive equilibriums of the Brazil, Germany, France, Spain, England, Italy and Portugal leagues for the 2003-2016 seasons found that there was a serious decrease in competitive equilibrium levels in all leagues between these years. While C5 values in the German and Brazilian leagues are more competitive than other leagues, they have revealed that the Brazilian league is the most competitive league. They have demonstrated that the gradually decreasing competitive equilibrium in all leagues can reduce the success and attractiveness of leagues. As a matter of fact, Janssens and Késenne (1987) concluded that the decrease in the predictability of the competitions will contribute to the demand of the spectators to watch the match. Again, under all circumstances, the effect of the fans watching the match and the fans coming to the match according to the quality of the match will not be the same on the competition. The gap in the audience numbers between teams will affect the competition level of the league. (Szymanski, 2001: 70). In this respect, establishing competitive balance is important for the future of football.
As a result, a course away from competitive balance seems to exist in the leading leagues of Europe. According to C5 and Gini values, Turkey Super League is the closest one to the competitive balance among leagues with 18 teams and for the 20-team leagues, La Liga (Spain) is closest to the competitive balance. More competitive leagues need to be created in order to maintain the number of spectators in football and maintain the popularity of football. While it has been revealed in the studies that the uncertainty of the match results increases the audience number, determining the competitive balances of the leagues will form the basis for the formation of more competitive leagues. In this respect, it is important to determine the competitive balance level of European football, which includes the world's most watched leagues.

RECOMMENDATIONS

In order to achieve competitive balance, a wage limit model can be adopted throughout Europe. Furthermore, with a model similar to the NBA draft system, contributions can be made to the teams remaining in the lower ranks to form a team that can compete in the league. In addition, although there are pool revenue distribution models, this model can be arranged not in favor of large teams, but in a way that contributes to a fairer sharing.

Ethical Text

“In this article, the journal's writing rules, publication principles, research and publication ethics, and journal ethical rules were followed. The responsibility belongs to the author (s) for any violations that may arise regarding the article”

REFERENCES

Akşar, T. & Merih, K. (2006). Futbol ekonomisi. Literatür Yayncılık. 470-471.
Akşar, T. (2011). Şampiyonluğu Kazanan Milyonları da Kazanıyor. Futbol Ekonomisi ve Endüstriyel Futbol. http://www.futbolekonomi.com/index.php/haberler-makaleler/mali/110-tugrul-aksar/1532-super-lig-parasal-odul-dagitimi.html
Akşar, T. (2013). Krizdeki futbol. Baskı, Literatür Yayınları, İstanbul, 59-60.
Akşar, T. (2017). Süper Lig sportif performans ve sportif rekabetçi dengede iyi yolda! Dünyal. https://www.dunya.com/kose-yazisi/super-lig-sportifperformans-ve-sportif-rekabetci-dengede-iyi-yolda/370717.
Atkinson, S. E., Stanley, L. R. & Tschirhart, J. (1988). Revenue sharing as an incentive in an agency problem: An example from the National Football League. The Rand journal of economics, 27-43.
Buraimo, B. & Simmons, R. (2009). Market size and attendance in English Premier League football. International Journal of Sport Management and Marketing, 6(2), 200-214.
Buzzacchi, L., Szymanski, S. & Valletti, T. M. (2010). Equality of opportunity and equality of outcome: open leagues, closed leagues and competitive balance. In The comparative economics of sport (pp. 174-197). Springer.
Cairns, J. A. (1987). Evaluating changes in league structure: the reorganization of the Scottish Football League. *Applied Economics, 19*(2), 259-275.

Cretton, E. (2015). *Increase competitive balance in European football* Haute école de gestion de Genève.

Curran, J., Jennings, I. & Sedgwick, J. (2009). ‘Competitive Balance’ in the Top Level of English Football, 1948–2008: An Absent Principle and a Forgotten Ideal. *The International Journal of the History of Sport, 26*(11), 1735-1747.

Deloitte. (2019). Bullseye, Football Money League. *Deloitte Sports Business Group, January 2019.*

Deloitte. (2020). Eye On The Prize, Football Money League. *Deloitte Sports Business Group, January 2020.*

Falter, J.-M. & Pérignon, C. (2000). Demand for football and intramatch winning probability: an essay on the glorious uncertainty of sports. *Applied Economics, 32*(13), 1757-1765.

Hart, R. A., Hutton, J. & Sharot, T. (1975). A statistical analysis of association football attendances. *Journal of the Royal Statistical Society: Series C (Applied Statistics), 24*(1), 17-27.

https://www.mackolik.com/. (2019).

Janssens, P. & Késenne, S. (1987). Belgium football attendances. *Tijdschrift voor Economie en Management, 32*(3), 305-315.

Jennett, N. (1984). Attendances, uncertainty of outcome and policy in Scottish league football. *Scottish Journal of Political Economy, 31*(2), 176-198.

Koning, R. H. (1999). *Competitive balance in Dutch soccer*. Citeseer.

Marburger, D. R. (1997). Gate revenue sharing and luxury taxes in professional sports. *Contemporary Economic Policy, 15*(2), 114-123.

Michie, J. & Oughton, C. (2004). *Competitive balance in football: Trends and effects.* The sportsnexus London.

Naghshbandi, S., Yousefi, B., Etemad, Z. & Moradi, M. (2011). The comparison of competitive balance in Football Premier Leagues of England, Germany, Spain, France, Italy and Iran: a case study from 2009-2010 Season.

Ongan, T. H. & Demiröz, D. M. (2010). *Akademik futbol: futbolda rekabet başarı ilişkisi* (Vol. 14). Hiperlink eğit. ilet. yay. san. tic. ve ltd. sti.

Rottenberg, S. (1956). The baseball players' labor market. *Journal of political economy, 64*(3), 242-258.

Silva, C. D. d., Abad, C. C. C., Macedo, P. A. P., Fortes, G. O. I. & Nascimento, W. W. G. d. (2018). Competitive balance in football: A comparative study between Brazil and the main European leagues (2003-2016). *Journal of Physical Education, 29.*

Szymanski, S. (2001). Income inequality, competitive balance and the attractiveness of team sports: Some evidence and a natural experiment from English soccer. *The Economic Journal, 111*(469), F69-F84.

Szymanski, S. & Késenne, S. (2010). Competitive balance and gate revenue sharing in team sports. In *The Comparative Economics of Sport* (pp. 229-243). Springer.
AVRUPA FUTBOLÜNUN REKABETÇİ DENGE ANALİZİ
(2018-2019 SEZONU ÖRNEĞİ)

ÖZ

Rekabetçi denge takımların birbirlerine karşı mücadele etme gücü olarak tanımlandığında, liglerde yer alan takımların güç dengelerinin belirlenmesi o ligin kalitesi ve izlenirliği açısından önem arz etmektedir. Futbol en çok izlenen spor branşlarının başında gelmektedir. Futbolun cazibesinin devamı ve izlenirliğinin artması rekabetçi denge düzeyini ölçmeyi amaçlamaktadır. Bu amaç gerçekleştirmek ve liglerin rekabetçi denge düzeyini ölçmek için gerekli olan veriler tarama modeli kullanılarak ve doküman analizi yöntemiyle elde edilmiştir. Veriler dünya sporunun birçok branşını içine barındıran ve özellikle futbolda uluslararası birçoğurunun birlikte barındırılan birçok ligin istatistiksel bilgilerini barındırır.

Doküman analizinde 2018-2019 sezon sonu tabloları kullanılarak rekabetçi dengenin ölçülmesi için C5 endeksi, Lorenz Eğrisi ve Gini Katsayısı kullanılmıştır. Araştırma sonucunda C5 endeksi ve Gini değerlerine göre rekabetçi dengeye en yakın lig 18 takımlı liglerde liglerde Spor Toto Süper Lig (Türkiye)(0,31) iken onu sırasıyla Bundesliga (0,45), Eredivisie (0,46), Premier Lig (0,48) takip etmiştir. 20 takımlı liglerde de en rekabetçi lig La Liga (0,34), Ligue 1 (0,35), Seria A (0,36) ve Premier Lig (0,38) çıkmıştır. Bu sonuçlara göre Avrupa’nın en büyük liglerinde rekabetçi dengeden uzak bir seyir ortaya çıkmıştır.

Anahtar Kelimeler: Lorenz eğrisi, gini katsayısı, rekabetçi denge, Avrupa Futbolu
Rekabetçi denge, takımların mücadele etme yetenekleri arasındaki dengeli ifade eder. Bir ligi oluşturan takımların rekabet gücünü ne kadar dengede tutarsanız, her maç sonucunu belirsizleştirebilirsiniz. Benzer şekilde, dengeli ekpler, şampiyon yarışlarının sonucunu daha belirsiz hale getirir. İyi dengelenmiş bir ligde takımların maçları kazanma şansı eşit olur ve takımların şampiyon olma olasılığı da eşit derece gerçekleşebilir. (Cairns, 1987). Rekabetçi denge esit düzeydeki birey ya da kurumların eşit kurallar altında adil ve eşit kazanç elde etmeleri ifade eder. (Ongan ve Demiröz, 2010). Futbolun izlenmesi ve seyirci saylarının artması için rekabetin olması gerekiyor. Çünkü bir maçın sonucunun başlangıçta belirsiz olması o maçta olan ilgiyi azaltabilir. Endüstrileşme sonucunda gelirlerdeki artış, büyük kulüplerin lehine haksız rekabeti oluşturmaktadır. Bu durum büyük kulüplerin lehine haksız rekabeti oluşturmaktadır. Bu durumda liglerin rekabetçi denge yapısını olumsuz etkilemiştir (Akşar, 2013). Bu durum ise futbolun çekiciliğine, hayecanına gölge düşürebilir. Sporda rekabetçi denge überine ilk çalışma Rottenberg’in (1956) çalışmasıdır. Rottenberg’е göre bir lig de ne kadar fazla takımın şampiyon olma ihtimali olsunsa, o ligin seyircisi sayısi ve rekabet düzeyi da artacaktır. Yine Jennett (1984), profesyonel bir ligi bazı takımların domino etmesi, o ligdeki seyirci sayısını azaltır sonucuna ulaşmıştır. İnsanlar bir şeye yönelten en önemli duygulardan birinin gizem ve bilinmezlik olduğunu bilmekteyiz. Futbolun gizeminin kaybolmasının, hangi takımın şampiyon olacağını önceden bilinmemesi, bir maç kazanan takımın daha hızlı başlangıçta tahmin edilemeyecek olması, futbola olan ilgiyi azaltacaktır.

Rekabetçi denge; kimin kazanacağına yönelik olarak taraftar beklentisini işaret etmektedir. Mü kemmel denge durumunda taraftarlar tüm sonuçların mümkün olduğuna inanırlar ve dolayısıyla sonuçla ilgili tam bir belirsizlik vardır. Bu durum futbola olan talebi, yanı seyirci sayısını arttıracak en önemli unsurlar olarak görülmektedir (Buzzacchi ve ark, 2003). Nitelik seyircisinin ilgisini çekebilmek için spor ligi takımlarının nispi olarak biri diğerine göre ne çok güçlü ne de çok zayıf olması sağlanmalı ve böylece sonucun belirsizliği korunmalıdır (Koning, 1999). Rekabet edebilme gücü, şirketlerde olduğu gibi kulüplerde de gelişime ve yenilgiye katkı sağlayacaktır. Yenilik ve gelişimin olduğu yerde de verimlilik artacaktır. Bu açıdan liglerde rekabetçi denge'nin varlığı önem arz etmektedir.

Literatürde rekabetçi dengeyi etkileyen birçok faktör olduğu ifade edilmektedir. Literatür incelediğinde rekabetçi dengeyi etkileyen faktörler şöyledir:

Pazar büyüklüğü ve işitk: Buraimo ve Simmons (2009) İngiltere Premier liginde büyük piyasaya sahip bölgelerde kuluran takımın diğer bölgelere göre daha çok geliri elde ettigiğini ortaya koymuştur. Ingiliz kulüplerindeki seyirci sayısını karşılaştırmadan, seyirci sayısı ile metropolün büyüklüğü arasında bir korelasyon olduğu ortaya çıkmıştır (Hart ve ark., 1975). Coğrafi konumdan dolayı ticaret merkezi haline gelen ve ekonomik faaliyetlerin üst seviyede olduğu bölgelerde piyasa da büyük olacaktır. Bu piyasada efsaneyle yer alan kulüplerin de ekonomik kaynakları diğer bölgelere göre daha fazla olacaktır. Bu iki farklı durum, rekabeti piyasaya büyük birlikte sahip bölgelerde yer alan takımın lehine bozabilir. Ülkede bazı bakımdan, gayri safi milli hasıla yüksek ve ekonomik gücü yine o ülkelerde, futbola ayrılan para da çokalacak,

Koruma
bu ülkelerde yer alan takımlar ise ekonomisi daha küçük ülkelerde yer alan takımlar karşısında güçlü hale gelecektir. Bu durum ise rekabet dengesizliği yol açabilir.

2. Taraftar yoğunluğu: Takımlar arasında seyirci farkı çok olursa bu ligin rekabet dengesini etkileyecektir. (Szymanski, 2001). Geçmiş büyük başarılarla dolu, büyük şehirlerde yer alan takımlarla, küçük il takımlarının taraftar yoğunluğunun aynı olması beklenemeyiz. Hatta küçük şehir takımlarını tutan taraftarların da, başka büyük şehirlerde yer alan takımların taraftarı olduğu bilinmektedir. Örneğin ülkemizde herhangi bir küçük ilde yaşayan bir kişi, kendi ilinin takımı tutarken aynı zaman da 3 büyük takımın birini tutabilmektedir. Taraftar yoğunluğu aynı zaman da küllipler için bir gelir kapısıdır. Bu açıdan bakıldığında özellikle, maç günü gelirleri, forma gelirleri, sponsor gelirleri kalemlerinde takımlar arasında büyük farklıların oluşmasına sebep olmaktadır. Bu yüzden taraftar yoğunluğu, rekabetçi denge üzerinde etki etmektedir. Deloitte (2020) money lig raporuna göre Avrupa para liginde ilk 20'ye giren takımların gelirlerinin %46’sını (383.5 milyon Euro) maç günü gelirlerinden elde etmiştir. Ayrıca raporda 3. sıradaki takımı tutan Manchester United takımı, toplam gelirinin %45’ini (317.2 milyon Euro) maç günü gelirlerinden elde ederken, Money lig’in 20. konumunda olan Napoli takımı, toplam gelirlerinin %8’ini (15.9 milyon Euro) elde etmiştir. Görüldüğü gibi taraftarın fazla olan takımların maç günü gelirleri diğer takımlara göre çok daha fazladır. Bununla birlikte taraftar yoğunluğu ve sosyal medya kullanımı sonucu büyük ekonomik gelirler elde edildiği aynı raporda belirtilmiştir.

3. Hasılat paylaşımı ve yarışmacı denge: Marburger (1997) artan gelir paylaşımının rekabetçi dengeyi arttırdığını ifade etmiştir. Atkinson ve ark. (1988) ise gelir paylaşımının yetenekli oyuncuların birçok takımda yer almamasına katkı sağladığı iddia etmiştir. Her ülke federasyonu kendi liglerindeki takımlarla, yayın gelirlerinin paylaşılması için bir sistem kurmaktadır. Avrupa ve ülkemizde birçok ülkede bu gelirler havuz sistemi adı altında dağıtılırken, İspanyada ise her kulüp鹱anyı kuruluşla kendi anlaşması yapmaktadır. Federasyonların kurduğu havuz sistemi modellerinde, genellikle liglerde daha önce şampiyon olan ve o ülke futbolundan söz sahibi olan takımların lehine bir sistem oluşturulmaktadır. Bu ise takımlar arasında paranın dağıtılmasında hakseverliği yol açmakta ve takımlar arasındaki güç dengesizliğine sebep olmaktadır. Örneğin İtalya havuz sistemine göre toplam gelirin %40 e eşit olarak dağıtılmış, %25’si takımların taraftar sayısını göre (fazla taraftarı olan fazla para alıyor), %15’i son 5 sezonluk lig sıralamasındaki performansına göre, %10 tarihi başıralarına göre, %5 bir önceki sezon ki başırsına göre ve %5 takımların bulunduğu yerin nüfusuna göre dağıtılmaktadır. Türkiye’de de toplam gelirin %35 i tüm takımlar arasında eşit olarak dağıtılırken, %45’i puan performansına göre, %11’i geçmiş yıllarda elde ettiğimiz şampiyonluk sayılarına göre ve %9’u ise ligi ilk 6 da bitiren takımlara sezon sonu primi olarak dağıtılmaktadır. Diğer Avrupa liglerinde de bu örneklerle benzer modeller kullanılmaktadır (Akşar, 2011). Bu sistem ligde üretilen paranın paylaşılmasında adaletsizlikler yol açabilir. Bu da takımlar arasındaki rekabet seviyesini olumsuz yönde etkileyecektir.

4. Takımların varlık farklı ve rekabetçi denge: Zengin takımlar ligi baskı altına alabilir ve bu durum ligin kalitesini olumsuz yönde etkiler. Akşar (2017)’de, Spor Toto Süper Ligde (Türkiye) üretilen paranın %43.2’sinin ligi ilk 5
sırada takımların aldığını, geriye kalan payı ise diğer takımların paylaştırılmış ifade etmiştir. Zengin kulüplerin daha yüksek harcamalarla daha iyi oyuncular alarak ligleri domine ettiğini bir gerçekdir. Endüstriyel futborda gelirleri iyi olan takımlar, diğer takımlarla karşı rekabette öne çıkmaktadır. Örneğin yıllık geliri 350 Milyon Euro olan bir takımla yıllık geliri 80 Milyon Euro olan takımın sürdürülmesi şekilde rekabet etmesi mümkün değildir.

5. İzleyici ve taraftar katılımı ve rekabetçi denge: Maç sonucunun belirsiz olduğu liglerde seyirci sayısının artacağıını ortaya koyan Janssens ve Késenne (1987) ve paranın adaletsiz dağılmının, takımlar arasındaki güç dengesini bozacağını ve bu durumun ise seyirci sayısını olumsuz yönde etkileyeceğini ortaya koyan Szymanski ve Kesenne (2010)’e göre, ligin rekabet seviyesi için bu iki faktör çok önemlidir. Rekabet gücü yüksek müsabakalarda oyun sonucunun belirlilikli, maçarı olan takımı etkilemektedir. Bununla birlikte rekabet düzeyi yüksek müsabaka olsa bile seyircilerin ekonomik koşulları, bilet fiyatları da seyirci katılımlarını etkileyebilir. Kulüpler bulundukları bölgelerin sosyo ekonomik seviyelerine göre bilet fiyatlandırması yapabilme yeteneği de vardır.

Seyirci ve taraftarın maç katılımı etkileyen faktörler üzerine yapılan bir başka çalışmada, ev sahibi ve deplasman takımların yerlerinin, ev sahibi takımın bütçesinin, son maçta aldığı skorun ev sahibi takımın seyirci sayısında artış sağladığı ortaya koymuştur (Falter ve Perignon, 2000).

Bu çalışmada, Avrupa futbolunun rekabetçi denge düzeyini ölçmek için taraflar modelinden yararlanılmış ve sonuçları Analiz'de özetlemiştir. Araştırmada kullanılan veriler mackolik sitesinden elde edilmiştir. Mackolik sitesi ulusal ve uluslararası düzeyde birçok spor branşı liglerinin istatistiğini veri tabanında barındırır ve özellikle futborda bilimsel anlamda güvendiği bilgilerin paylaşıldığı bir internet sitesidir. Mackolik sitesinden 2018-2019 sezonu sonunda çalışmadan analiz yapılan liglerin lig sonu sıralamaları elde edilmiştir, elde edilen veriler iktisat indekslerinde kullanılan C5 endeksi, Gini katsayısı ve Lorenz Eğrisi ile çözümlenmiştir. Bu indeksler ile 2018-2019 sezonu Son Spor Toto Süper Lig (Türkiye), Bundesliga (Almanya), La Liga (İspanya), 1. Lig (Fransa), Premier Lig (İngiltere), Eredivisie (Hollanda), Premier Lig (Portekiz) ve Serie A (İtalya)’nın rekabetçi denge düzeyini ölçerek ortaya çıkan rekabetçi denge düzeyine göre öneriler geliştirilmiştir.

Seyirci ve taraftarın maç katılımı etkileyen faktörler üzerinde yapılan bir başka çalışmada, ev sahibi ve deplasman takımların yerlerinin, ev sahibi takımın bütçesinin, son maçta aldığı skorun ev sahibi takımın seyirci sayısında artış sağladığı ortaya koymuştur (Falter ve Perignon, 2000).

REKABETİN OLDUĞU LIG DE MAÇ SONUCUNUN BELIRLSIZ HALE GELİSIR. BUNLARLA BİRLEŞTİRİLMELİ.
Tablo 1. Ligler ve Özellikleri

Ligler	Ülke	Şampiyonlar Ligine Gidecek Takımlar	Avrupa Ligine Gidecek Takımları	Bir Alt Lige Düşecek Takımlar
Spor Toto Süper Lig	Türkiye	İlk 2 takım gidiyor	3. ve 4. Takım gidiyor	Sezon sonu sıralamasında son 3 sırada olan takımlar
Premier Lig	İngiltere	İlk 4 takım gidiyor	5. takım gidiyor	Sezon sonu sıralamasında son 3 sırada olan takımlar
Bundesliga	Almanya	İlk 4 takım gidiyor	5. ve 6. Takımlar gidiyor	Sezon sonu sıralamasında 16. Olan takım ligden düşme play off oynuyor. Son iki takım ise direk bir alt lige düşüyor
Serie A	İtalya	İlk 4 takım gidiyor	5. ve 6. Takımlar gidiyor	Sezon sonu sıralamasında son 3 sırada olan takımlar
Ligue 1	Fransa	İlk 2 takım gidiyor	3. ve 4. Takım gidiyor	Sezon sonu sıralamasında 16. Olan takım ligden düşme play off oynuyor. Son iki takım ise direk bir alt lige düşüyor
La Liga	İspanya	İlk 4 takım gidiyor	5. ve 6. Takımlar gidiyor	Sezon sonu sıralamasında son 3 sırada olan takımlar
Eredivisie	Hollanda	İlk 2 takım gidiyor	3., 4. Ve 5. Takım gidiyor	Sezon sonu sıralamasında 16. Olan takım ligden düşme play off oynuyor. Son iki takım ise direk bir alt lige düşüyor
Premier Lig	Portekiz	İlk 2 takım gidiyor	3. ve 4. Takım gidiyor	Sezon sonu sıralamasında son 2 sırada olan takımlar

(https://www.mackolik.com/)

Uzun yıllardır bu liglere yer alan ve genellikle sezonlar üst sıralarda bitiren takımların ve lige yeni katılan takımlar arasındaki rekabetin belirlenmesi için C5 İndexi, Gini Katsayısı ve Gini Katsayısı ile oluşturulan Lorenz Eğrisi kullanılmıştır. Aşağıda her bir hesaplama türü ayrı ayrı açıklanmıştır.

C5 İndexi

\[C5 = \frac{\text{En Üstteki 5 Kulüp Tarafından Toplanan Puan}}{\text{Bütün Kulüplerce Toplanan Puanların Toplamı}} \]

(Michie ve Oughton, 2004).

C5 oranı; ligi oluşturan takım sayıları ve ilk beş kulüp ile diğer kulüpler arasındaki dengesizliğin fonksiyonudur. C5 oranındaki artış, rekabet dengesinin azaldığını ve ilk beş kulübün lige hüküm olduğunu gösterir.

Gini Katsayısı ve Lorenz Eğrisi

Her bir takımın puanı ile tek tek diğer takımların puanları arasındaki farkların basit aritmetik ortalama bize GINI katsayısını verir. Eşitsizlik ne kadar büyükse GINI katsayısı da o kadar büyütür. O değerine yakın değerler rekabetçi dengeye yakın bir lig olduğunu, 1 e doğru yaklaştıran değerler ise rekabetçi dengeden uzaklaştığını göstermektedir (Ongan ve Demiröz, 2010).

Gini değerini bulmak için;
Formülü kullanılmıştır.

\[GINI = \left[1/(2xp_{ort} xn^2)\right] \times \sum_{i} \sum_{j} |p_i - p_j| \]

Lorenz Eğrisi

Lorenz eğrisi, gelir dağılımındaki eşitsizliği ölçmek için kullanılan bir yöntemdir. Gelir dağılımda eşit bir pay aldığını ifade etmek için "Mutlak Eşitlik Doğrusu" ve 'Lorenz Eğrisi' çakışarak 45 derecelik bir diyagonal biçimini alır. Gelir paylaşımında, eşitsizlik olduğu durumlarda ise Lorenz Eğrisi, mutlak eşitlik doğrusundan uzaklaşarak daha bombeli bir sekil alır (Ongan ve Demiröz, 2010).

\[p_i : i. \text{inci takımın lig sonu puanı} \quad p_j : j. \text{inci takımın lig sonu puanı} \]

\[p_{ort} : \text{ligin puan ortalaması} \quad n : \text{takım sayısı} \]

\[i, j = 1, 2, 3 \ldots, (n - 1), n; i \neq j. \]

Grafik 1: Lorenz Eğrisi

Kaynak: Akşar ve Merih, 2006

Takım puanı/toplam lig puanı*100 formülünü kullanılmış ve bütün takımların toplam puanlarından aldıkları %’lik pay hesaplanmıştır (=B2/B20*100) . Daha sonra her bir takımın yüzdeılı puanının etkisini küçüktüne büyüğe göre sıralanmıştır. Her bir takımın ligdeki toplam takım sayısına etkisini hesaplamak için (=1/18*100) formülü kullanılmıştır. Grafikte kullanılan değerleri elde etmek için takımların yüzdeılı olarak elde ettikleri puanların toplamlarını en küçük değerde en büyük değerle kadar sırayla toplayarak (=E1+D2) 0 dan 100’e kadar ki değerleri ulaşmıştır. Bu sonuç ligde tüm takımın elde ettikleri puanların yüzdeılıklerinin kümulatif sonuçlarını vermiştir. Yatay eksende 18 takımın yüzde dağılımını elde etmek için, lige etkilerini ortaya koyan % lik paylarıynchron küçükten büyüğe toplayarak 100’e kadar bir yatay eksen elde edilmiştir (=F1+C2) . Mutlak eşitlik doğrusunu elde etmek için hem yatay hem de dikey eksende takımın lige etkisinin %’lik olarak küçüktüne büyüğe doğru
toplanan hesaplanan değerleri kullanılmıştır. Lorenz eğrisini çizmek için yetay eksende takımların toplam takım sayısına oranlarının kümulatif toplamı, dikey eksene ise takımın % puanının kümulatif olarak değerleri seçilmiştir. (Akşar ve Merih, 2006).

Aynı formül 20 takımlı ligler için de kullanılmıştır. Takım puanı/toplam puanı *100 formülü kullanılmış ve bütün takımların toplam puanından aldıkları %’lık payı hesaplanmıştır (=B2/B20*100). Daha sonra her bir takımın yüzde payını puanının etkisini küçüktene büyüğe göre sıralanmıştır. Her bir takımın ligdeki toplam takım sayısına etkisini hesaplamak için (=1/20*100) formülü kullanılmıştır. Grafikte kullanılacak değerleri elde etmek için takımın yüzde olarak elde ettikleri puanların toplamlarını en küçük değerden en büyük değere kadar sırayla toplayarak (=E1+D2) 0 dan 100’e kadar değerlerle ulaşmıştır. Grafikte kullanılacak değerleri elde etmek için takımın yüzde olarak elde ettikleri puanların toplamlarını en küçük değerden en büyük değere kadar sırayla toplayarak (=E1+D2) 0 dan 100’e kadar değerlerle ulaşmıştır. Bu sonuç ligde tüm takımların elde ettikleri puanların yüzde paylarının kümulatif sonuçlarını vermiştir. Yetay eksende 20 takımın yüzde dağılımını elde etmek için, lige etkilerini ortaya koyan %’lık payları puanının %’lik payını küçüktene büyüğe toplayarak 100’e kadar bir yetay eksen elde edilmiştir (=F1+C2) . Mutlak eşitlik doğrusunu elde etmek için hem yetay hem de dikey eksende takımların lige etkisini %’lık olarak küçüktene büyüğe doğru toplanarak hesaplanan değerleri kullanılmıştır. Lorenz eğrisini çizmek için yetay eksende takımın toplam takım sayısına oranlarının kümulatif toplamı, dikey eksene ise takiının % puanlarının kümulatif olarak değerleri seçilmiştir. (Akşar ve Merih, 2006).

BULGULAR

Araştırmada 2018-2019 sezonunda tablo 2 yer alan liglerin rekabetçi denge düzeyleri endeksler kullanılarak elde edilmiştir. Her bir ligin 2018-2019 sezon sonu sıralamaları esas alınarak analizde, lig sonu sıralamalarına yer verildiğinden ve lig sıralamaları çok uzun olacağınından çalışmaya eklenmemiş, araştırmada kullanılan veriler mackolik.com sitesinden elde edilmiştir.

Liglerin C5 değerleri aşağıdaki tabloda verilmiştir.

Ligler	Ülke	Takım Sayısı	C5 Değeri
Spor Toto Süper Lig	Türkiye	18	0,31
Bundesliga (Almanya)	Almanya	18	0,45
Eredivisie	Hollanda	18	0,46
Premier Lig	Portekiz	18	0,48
La Liga	İspanya	20	0,34
Premier Lig	İngiltere	20	0,38
Ligue 1	Fransa	20	0,35
Seria A	İtalya	20	0,36
C5 değeri; ligi oluşturan takım sayıları ve ilk beş kulüp ile diğer kulüpler arasındaki dengesizliğin fonksiyonudur. C5 oranındaki artış, rekabet dengesinin azaldığını ve ilk beş külbünün lige hüküm olduğunu gösterir. O'a yakın değerler rekabetçi dengeye yaklaşmak anlamına gelmektedir. Tablo 2 incelendiğinde 18 takımlı liglerin C5 değeri sırasıyla Spor Toto Süper Lig (Türkiye) (0,31), Bundesliga (Almanya) (0,45), Eredivisie (Hollanda) (0,46), Premier Lig (Portekiz) 20 takımlı liglerin C5 değeri ise La Liga (İspanya) (0,34), Premier Lig (İngiltere) (0,38), Ligue 1 (Fransa) (0,35) ve Serie A (İtalya) (0,36)'dır. Araştırmada bulgularında C5 değeri göre 18 takımlı liglerde rekabetçi dengeye en yaklaşan lig 0,31 değeri ile Spor Toto Süper Lig (Türkiye) iken rekabetçi dengeye en uzak lig ise 0,48 değeri ile Premier Lig (Portekiz)'dir. 20 takımlı liglerde ise rekabetçi dengeye en yakın lig 0,34 değeri ile La Liga (İspanya) iken rekabetçi dengedeki en uzak lig ise 0,36 değeri ile Serie A (İtalya)'dır.

Liglerin Gini Değişini aşağıdaki tabloda verilmistir.

Ligler	Ülke	Takım Sayısı	Gini Değeri
Spor Toto Süper Lig	Türkiye	18	0,13
Bundesliga	Almanya	18	0,19
Eredivisie	Hollanda	18	0,18
Premier Lig	Portekiz	18	0,20
La Liga	İspanya	20	0,15
Premier Lig	İngiltere	20	0,21
Ligue 1	Fransa	20	0,18
Serie A	İtalya	20	0,20

Tablo 3 incelendiğinde 18 takım liglerin Gini değeri sırasıyla Spor Toto Süper Lig (Türkiye) (0,13), Bundesliga (Almanya) (0,19), Eredivisie (Hollanda) (0,18), Premier Lig (Portekiz) (0,20) iken 20 takım liglerin Gini değeri ise La Liga (İspanya) (0,15), Premier Lig (İngiltere) (0,21), Ligue 1 (Fransa) (0,18) ve Serie A (İtalya) (0,20)'dır. Bu değer ligde üretilen toplam puandan takımların aldıkları payı göstermesi bakımından önem arz etmektedir. Gini değeri 0 değerine ne kadar yaklaştırı takımların ligde üretilen toplam puandan aldıkları payda birbirine yakın olacaktır. Bu veri sonucunda ise Lorenz eğrisi mutlak eşitlik doğrusuına yakın bir eğri çizicektir. Araştırmada bulgularına göre 18 takım liglerde Gini değerlerine göre rekabetçi dengeye en yakın lig 0,13 değeri ile Spor Toto Süper Lig (Türkiye) iken rekabetçi dengeye en uzak lig ise 0,20 G değeri ile Premier Lig (Portekiz)'dir. 20 takım liglerde ise Gini değerine göre rekabetçi dengeye en yakın lig 0,15 değeri ile La Liga (İspanya) iken rekabetçi dengeye en uzak lig ise 0,20 değeri ile Serie A (İtalya)'dır.
18 Takımlı liglerin Lorenz Eğrileri

Lorenz eğrisi gini değerleriyle oluşturulan bir eğridir. Ligi oluşturan takımların toplam puandan aldıkları payları göstermesi bakımından önem arz etmektedir. Lig de rekabet dengesi ne kadar iyi ise Gini değeri 0 a o kadar yakın olacaktır dolayısıyla Lorenz eğrisi de mutlak eşitlik doğrusanın yakın bir seyir izleyecaktır. Liglerin gini değerlerinin sonucunda ortaya çıkan Lorenz eğrileri incelediğinde mutlak eşitlik doğrusanın en yakın eğri Spor Toto Süper Lig (Türkiye)'dir.

Grafik 2. Spor Toto Süper Lig (Türkiye)

Grafik 2'de Lorenz Eğrisi mutlak eşitlik doğrusanın yaklaştığından dolayı rekabetçi dengeye yakın bir sonuç ortaya çıkmıştır. Spor Toto Süper Lig (Türkiye) Lorenz eğrisine göre 8 lig içerisinde en rekabetçi ligdir.

Grafik 3. Bundesliga (Almanya)

Grafik 3 incelendiğinde Lorenz Eğrisi mutlak eşitlik doğrusanın yaklaştığından dolayı rekabetçi dengenin uzak olduğu söylenebilir. Bundesliga (Almanya) Gini değeri ve C5 değerinde de rekabetçi dengeden uzak bir seyir ortaya koymuştur. 2018-2019 sezon sonu verilerine göre Bundesliga'da şampiyonu takım ile ligi son sıralarda bitiren takım arasında 59 puan fark varken, yine ligi şampiyon
olarak bitiren takım ile ligi 5. sırada bitiren takım arasında 23 puan fark vardır. Bu veriler ligdeki dengesiz rekabeti ortaya koymaktadır.

Grafik 4. Eredivisie (Hollanda)

Eredivisie Avrupa’nın önde gelen liglerindendir. Özellikle alt yapidan oyuncu yetiştirme, genç oyuncuların parladığı ve bir dönem dünya futbolunda önemli başarılar kazanan bir futbol markasıdır. 2018-2019 lig sonu sıralamaları incelendiğinde ligi ilk 5 sırada bitiren takımlarla diğer takımlar arasındaki puan farkının çok yüksek olduğu görülmektedir. Avrupa futbolunda yaşanan haksız rekabet ortamı Eredivisie’de kendini göstermektedir. **Grafik 4** incelendiğinde Lorenz eğrisi mutlak eşitlik doğrusundan uzaklaşmaktadır. Gini değerlerine bakıldığında da 0,18 lik değer ile rekabetçi dengeden uzaklaşıldığı görülmektedir.

Grafik 5. Premier Lig (Portekiz)

Portekiz Premier Ligi 18 takımlı ligler arasında rekabetçi dengeden en çok uzaklaşan lig durumundadır. Gini değeri 0,20 olan ligde, şampiyon olan takım ile Avrupa Kupasına gidecek 4. Sıradaki takım ile Avrupa Kupasına gidecek 4. Sıradaki takım arasında 20 puanlık bir farkın olması, ayrıca yine küme ligi son 3 sırada bitiren takım ile ligi 5. ve 15. Sıralar arasında bitiren takımların...
topladıkları puanlar arasında da büyük farklar bulunmaktadır. Görüldüğü gibi Lorenz eğrisi de bunu destekler niteliktedir.

20 Takımlı liglerin Lorenz Eğrileri

![Lorenz Eğrisi - La Liga](image)

Grafik 6. La Liga (İspanya)

20 takımlı ligler arasında rekabetçi dengeye en çok yaklaşan lig La Liga (İspanya)'dır. Lig de üretilen toplam puandan takımların aldığı pay, 20 takımlı diğer liglere göre daha yüksektir. Bu durum lorenz eğrisinde de kendisini göstermektedir. Gini değerlerine de bakıldığında 0,15 lik değer ile 20 takımlı ligler arasında rekabetçi dengeye en çok yaklaşan lig La Liga'dır.

![Lorenz Eğrisi - Premier Lig](image)

Grafik 7. Premier Lig (İngiltere)

İngiltere’ de yer alan Premier Lig dünyada en çok seyredilen liglerin başında gelir. Kulüpler yayın gelirleri ve sponsorluk gelirleri bakımından diğer liglere göre daha yüksek gelir elde ederler. Ancak bununla birlikte Premier Ligde yer alan ve ligi domino eden 4 takım, çok daha yüksek gelirler elde ederek rekabette ön plana çıkmaktadırlar. 20 takımlı ligler arasında gini değeri en yüksek olan lig Premier Lig'dir. 2018-2019 lig sonu sıralaması incelendiğinde ligi ilk 5 sırada bitiren takımlarla diğer takımlar arasındaki puan farkının çok yüksek
olduğu görülmektedir. Gini değerine bakıldığında 0,21 değeri ile 20 takımlı ligler arasında rekabetçi dengeden en çok uzaklaşan lig Premier Lig'dir. Grafik 7 incelendiğinde lorenz eğrisi mutlak eşitlik doğrusundan uzaklaşmıştır. Bu bulgulara göre Premier Lig'de 2018-2019 sezonunda rekabetçi dengeye uzak bir seyir ortaya çıktığı söylenebilir.

Grafik 8. Ligue 1 (Fransa)

Grafik 8 incelendiğinde Lorenz eğrisinin mutlak eşitlik doğrusundan uzaklaştırıldığı görülmektedir. Gini değerlerine göre (0,18) Ligue 1 (Fransa) liginde haksız rekabet ortamı bulunmaktadır. Bununla 2018-2019 sezonu lig sonu sıralamaları incelendiğinde, takımların elde ettikleri puanlar arasındaki uçurum Premier Lig kadar değildir. Rekabet istenilen düzeyde değişse de 20 takımlı ligler arasında rekabetçi dengeye en çok yaklaşan ikinci lig Ligue 1'dir.

Grafik 9. Seria A (İtalya)
Avrupa’nın en sert futbol oynanan ligi Seria A’dır (İtalya). 2018-2019 sezon sonu sıralamaları incelendiğinde Seria A şampiyonunun 90 puanı varken ligden düşen takımin ise sadece 17 puanının olması, aradaki maksar aralığının ne kadar fazla olduğunu bir kanıtdır. Avrupa futbolunda 20 takımlı liglerde rekabetçi denge sıralamasında 3. olan lig Seria A’dır (İtalya). Seria A C5 endeks değeri 0,36 çıkmış, gini değeri ise 0,20 çıkmıştır. Lorenz eğrisi de yine mutlak eşitlik doğrusuuzda uzaklaşmıştır. Bu bulgular Seria A’da rekabetçi dengenin istenilen seviyede olmadığını göstermektedir.

TARTIŞMA ve SONUÇ

Araştırmada elde edilen sonuçlara göre 2018-2019 futbol sezonunda liglerin rekabetçi denge düzeyleri 18 takımlı liglerde C5 değerlerine göre rekabetçi dengeye en yakın lig 0,31 değeryle Spor Toto Süper Lig (Türkiye) olurken, diğer ligler sırasıyla Bundesliga (Almanya) 0,45, Eredivisie (Hollanda) 0,46, Premier Lig (Portekiz) 0,48 dir. 20 takımlı liglerde ise C5 değeri ve Gini değerlerine göre rekabetçi dengeye en yakın ligler sırasıyla La Liga (0,34), Premier Lig (İngiltere) (0,38), Ligue 1 (0,35) ve Seria A (0,36)’dır. Yine 18 takımlı liglerin Gini değerlerine göre rekabetçi dengeye en yakın lig (0,13) değeryle Spor Toto Süper Lig (Türkiye) iken onu sırasıyla Bundesliga (Almanya) (0,19), Eredivisie (Hollanda) (0,18), Premier Lig (Portekiz) (0,20) ‘dur. 20 takımlı liglerin Gini değeri ise La Liga (İspanya) (0,15), Premier Lig (İngiltere) (0,21), Ligue 1 (Fransa) (0,18) ve Seria A (İtalya) (0,20)’dir. Gini O’ yaklaştıkça rekabetçi dengeye yaklaşıma anlamı taşımaktadır (ÜLKE İSİMLERİ EKLENDİ) C5 değeri ligde üretilen toplam puandan ligi ilk 5 sırada bitiren takımların aldıkları payı göstermesi bakımından önemlidir. Spor Toto Süper Lig 0.31 değeriyle rekabetçi dengeye en yakın lig konumdadır. Bunun sebebi olarak Türkiye’deki büyük takımların ekonomik sorunlara bağlı olarak güçlü kadrolar kuramaması, yönetim sorunları, yabancı sınırlamasının 14 oyuncu olmasından dolayı ucuz ve kaliteli oyuncuları alan Anadolu takımlarının güçlü takımlar karşısında mücadele etme güçünün artması, yönetim sorunları, yabancı sınırlamasının 14 oyuncu olmasından dolayı ucuz ve kaliteli oyuncuları alan Anadolu takımlarının güçlü takımlar karşısında mücadele etme güçünün artması gösterebilir. Bundesliga (Almanya) (0,45), Eredivisie (Hollanda) (0,46), Premier Lig (Portekiz) (0,48) değerleri ile rekabetçi dengeden uzak bir seyir izlemektedir. Bu liglerde 2018-2019 sezonunda ilk 5 sırayı alan güçlü takımlar ligi domino ederek ligde toplanan puanların çoğununu almışlar ve ligin rekabetçi denge düzeyini düşürmüştür. Naghshbandi ve ark. (2011) yılında yaptıkları bir çalışmada C5 endeksi kullanılmış ve rekabetçi dengeye en yakın ligler sırasıyla İran Profesyonel Ligi, Alman Bundesliga, Fransa 1. Ligi, İtalya Seria A, İngiltere Premier Lig ve İspanya La Liga olarak bulunulmuştur. Sonuç olarak, İran Ligi rekabetin en yüksek olduğu lig olurlken İspanya Ligi ise rekabetin en düşük olduğu lig olarak ortaya çıkmıştır. Çalışmamızdaki Bundesliga C5 değer (0,45) iken Naghshbandi ve arkadaşlarının çalışmasında bu değer (0,37) olarak çıkmıştır. Bundesliga’dad rekabetçi denge giderek bozulmuştur. Bunun sebebi olarak büyük takımların ekonomik gelirlerini arttırmak ligdeki güç dengesizliği sebebi olarak gösterilebilir. Yine Cretton (2015) yaptığı çalışmada büyük ekiplerin gelirleri yüksek düzeyde artarken, küçük bütçeli takımların gelirleri ise az bir artış olduğunu, bundan dolayı güç dengesizliği oluştuğunu ortaya çıkarmıştır. Avrupa futbolunda özellikle güçlü takımların elde ettiği gelir rekabetçi denge üzerinde olumsuz etkileri sebebi olarak okunmaktadır. Deloitte 2019 raporuna göre 2018-2019 sezonunda Avrupa Para Liglerinde ilk 20 ye giren takımların gelirlerinde büyük artışlar görülmüştür. Örneğin 2018-2019
sezonunda Real Madrid (İspanya) yıllık geliri 750.9 Milyon Euro, Manchester Uniter (İngiltere) 666 Milyon Euro, Bayern Münih (Almanya) 629.2 Milyon Euro, Paris Saint- Germain (Fransa) 541.7 Milyon Euro, Juventus (İtalya) 394.9 Milyon Euro ile ilk 20 de yer alırken, bu liglerde yer alan diğer takımların bütçelerinden 3 kat fazla bütçeye sahip olan bu takımlar, ligleri domino ederek rekabetçi dengeyi olumsuz etkiliyor olabilir (Deloitte, 2019:5). Yine Curran, Jennings and Sedgwick (2009) çalışmasında, 1948-2008 yılları arasında İngiltere futbolunda rekabetçi dengenin giderek düştüğünü ve güzel futbolun tehlike ile karşı karşıya olduğu sonucuna ulaşmışlardır. Rekabetçi dengenin giderek azaldığı gösteren bir diğer çalışmada; 2003-2016 yılları sezonları için Brezilya, Almanya, Fransa, İspanya, İngiltere, İtalya ve Portekiz liglerinin rekabetçi dengesini ölçen Cristiano Diniz da Silva ve ark. bu yıllar arasında bütün liglerde rekabetçi dengenin ciddi düşüş olduğunu bulgulamışlardır. Almanya ve Brezilya liglerindeki C5 değerleri diğer liglere göre daha rekabetçi iken, Brezilya liginin en rekabetçi lig olduğunu ortaya koymuştur. Tüm liglerde giderek azalan rekabetçi dengenin liglerin başarı ve çekiciliğini azaltabileceği ortaya koyulmuştur.

Avrupa’nın önde gelen liglerinde rekabetçi dengenin azalması, futbolun geleceği ve Avrupa’daki futbola olan ilgiyi azaltabilir. Maçların sonuclarının önceden tahmin edilebilmesi ve kimi şampiyon olacağını, ilk 5 e girecek takımların sezon başında belli olması futbola olan ilgiyi azaltabilir. Nitekim Janssens ve Késenne (1987) müsabakaların tahmin edilebilirliğinin azalmasının seyircilerin maç seyretme talebine katkı sağlayacağını sonucuna varmıştır. Yine her koşuda maç seyreden taraftarlar ile maçın kalitesine göre maçın gelen taraftarların rekabete etkisi aynı oranda olmaya çalışılır. Takımlar arası seyirci sayısındaki uçurum, ligin rekabet seviyesini etkileyecektir. (Szymanski, 2001:70). Bu açıdan rekabetçi dengenin tesisi futbolun geleceği açısından önem arz etmektedir.

Sonuç olarak Avrupa’nın önde gelen liglerinde rekabetçi dengeden uzak bir seyir ortaya çıkmıştır. C5 ve Gini değerlerine göre rekabetçi dengeye en yakın lig 18 takımlı ligler için Spor Toto Süper Lig (Türkiye) ve 20 takım ligler için ise rekabetçi dengeye en yakın lig La Liga (İspanya)’dır. Futbolda seyirci sayısının korunması ve futbolun popülaritesinin devamı için daha rekabetçi liglerin oluşturulması önem arz edmektedir. Yapılan çalışmalarında maç sonuçlarının belirlileyerek seyirci sayısını arttırdığı ortaya çıkmışken, liglerin rekabetçi dengelerinin belirlenmesi daha rekabetçi liglerin oluşturulması için temel oluşturacakdır. Bu açıdan dünyanın en çok seyredilen liglerini içinde barındıran Avrupa futbolunun rekabetçi denge düzeyini belirlemek önem arz etmektedir.

ÖNERİLER

Rekabetçi dengenin sağlanması için tüm Avrupa’da ücret tavani modeline geçilebilir. Yine NBA draft sistemine benzer bir model ile ligde alt sirlarda kalan takımların ligde rekabet edebilecek bir takım kurmalarına katkı sağlanabilir. Ayrıca her ne kadar havuz gelirleri dağıtım modelleri olsa da bu model büyük takımın lehine değil, daha adil bir paylaşımı katkı sağlayacak şekilde düzenlenibilir.
ETİK METNI

“Bu makalede dergi yazım kurallarına, yayın ilkelerine, araştırma ve yayın etiği kurallarına uyulmuştur. Makale ile ilgili doğabilecek her türlü ihlallerde sorumluluğuna aittir.”

KAYNAKÇA

Akşar, T. ve Merih, K. (2006). Futbol ekonomisi. Literatür Yayıncılık. 470-471.

Akşar, T. (2011). Şampiyonluğu Kazanan Milyonları da Kazanıyor. Futbol Ekonomisi ve Endüstriyel Futbol. http://www.futbolekonomi.com/index.php/haberler-makaleler/mali/110-tugrul-aksar/1532-super-lig-parasal-odul-dagitimi.html

Akşar, T. (2013). Krizdeki futbol. Baskı, Literatür Yayınları, İstanbul, 59-60.

Akşar, T. (2017). Süper Lig sportif performans ve sportif rekabetçi dengede iyi yolda! Dünya. https://www.dunya.com/kose-yazisi/super-lig-sportifperformans-ve-sportif-rekabetci-dengede-iyi-yolda/370717.

Atkinson, S. E., Stanley, L. R. ve Tschirhart, J. (1988). Revenue sharing as an incentive in an agency problem: An example from the National Football League. The Rand journal of economics, 27-43.

Buraimo, B. ve Simmons, R. (2009). Market size and attendance in English Premier League football. International Journal of Sport Management and Marketing, 6(2), 200-214.

Buzzacchi, L., Szymanski, S. ve Valletti, T. M. (2010). Equality of opportunity and equality of outcome: open leagues, closed leagues and competitive balance. In The comparative economics of sport (pp. 174-197). Springer.

Cairns, J. A. (1987). Evaluating changes in league structure: the reorganization of the Scottish Football League. Applied Economics, 19(2), 259-275.

Cretton, E. (2015). Increase competitive balance in European football Haute école de gestion de Genève].

Curran, J., Jennings, I. ve Sedgwick, J. (2009). ‘Competitive Balance’in the Top Level of English Football, 1948–2008: An Absent Principle and a Forgotten Ideal. The International Journal of the History of Sport, 26(11), 1735-1747.

Deloitte. (2019). Bullseye, Football Money League. Deloitte Sports Business Group, January 2019.

Deloitte. (2020). Eye On The Prize, Football Money League. Deloitte Sports Business Group, January 2020.

Falter, J.-M. ve Pérignon, C. (2000). Demand for football and intramatch winning probability: an essay on the glorious uncertainty of sports. Applied Economics, 32(13), 1757-1765.

Hart, R. A., Hutton, J. ve Sharot, T. (1975). A statistical analysis of association football attendances. Journal of the Royal Statistical Society: Series C (Applied Statistics), 24(1), 17-27.

https://www.mackolik.com/. (2019).

Janssens, P. ve Késenne, S. (1987). Belgium football attendances. Tijdschrift voor Economie en Management, 32(3), 305-315.
Jennett, N. (1984). Attendances, uncertainty of outcome and policy in Scottish league football. *Scottish Journal of Political Economy, 31*(2), 176-198.

Koning, R. H. (1999). *Competitive balance in Dutch soccer*. Citeseer.

Marburger, D. R. (1997). Gate revenue sharing and luxury taxes in professional sports. *Contemporary Economic Policy, 15*(2), 114-123.

Michie, J. ve Oughton, C. (2004). *Competitive balance in football: Trends and effects*. The sportsnexus London.

Naghshbandi, S., Yousefi, B., Etemad, Z. ve Moradi, M. (2011). The comparison of competitive balance in Football Premier Leagues of England, Germany, Spain, France, Italy and Iran: a case study from 2009-2010 Season.

Ongan, T. H. ve Demiröz, D. M. (2010). *Akademik futbol: futbolda rekabet başarı ilişkisi* (Vol. 14). Hiperlink eğitim. ilet. yay. san. tic. ve ltd. sti.

Rottenberg, S. (1956). The baseball players’ labor market. *Journal of political economy, 64*(3), 242-258.

Silva, C. D. d., Abad, C. C. C., Macedo, P. A. P., Fortes, G. O. I. ve Nascimento, W. W. G. d. (2018). Competitive balance in football: A comparative study between Brazil and the main European leagues (2003-2016). *Journal of Physical Education, 29*.

Szymanski, S. (2001). Income inequality, competitive balance and the attractiveness of team sports: Some evidence and a natural experiment from English soccer. *The Economic Journal, 111*(469), F69-F84.

Szymanski, S. ve Kéenne, S. (2010). Competitive balance and gate revenue sharing in team sports. In *The Comparative Economics of Sport* (pp. 229-243). Springer.