Essential Forward Weak KAM Solution for the Convex Hamilton–Jacobi Equation

Xi Feng SU
Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
E-mail: xfsu@bnu.edu.cn

Jian Lu ZHANG1)
Hua Loo-Keng Key Laboratory of Mathematics & Mathematics Institute, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China
E-mail: jzhang87@amss.ac.cn

Abstract For a convex, coercive continuous Hamiltonian on a closed Riemannian manifold M, we construct a unique forward weak KAM solution of

$$H(x, d_x u) = c(H)$$

by a vanishing discount approach, where $c(H)$ is the Mañé critical value. We also discuss the dynamical significance of such a special solution.

Keywords Hamilton–Jacobi equation, discounted equation, weak KAM solution, Aubry–Mather theory, viscosity solution

MR(2010) Subject Classification 35B40, 37J50, 49L25

1 Introduction

For a compact connected manifold M without boundary, the Hamiltonian is usually mentioned as a continuous function defined on its cotangent bundle T^*M. In [8], the authors firstly proposed the ergodic approximation technique, to consider the existence of so called viscosity solutions to the Hamilton–Jacobi equation

$$H(x, d_x u) = c(H), \quad x \in M \quad (HJ_0)$$

for the Mañé critical value

$$c(H) := \inf \{ c \in \mathbb{R} \mid \exists \omega \in C(M, \mathbb{R}) \text{ such that } H(x, d_x \omega) \leq c, \text{ a.e. } x \in M \}.$$

The Hamiltonian they concerned satisfies

- (Coercivity) $H(x, p)$ is coercive in $p \in T^*_x M$, uniformly w.r.t. $x \in M$.

Received January 28, 2021, revised April 20, 2021, accepted September 15, 2021

The second author is supported by the National Natural Science Foundation of China (Grant No. 11901560); the first author is supported by the National Natural Science Foundation of China (Grant No. 11971060)

1) Corresponding author
(Convexity) $H(x, p)$ is convex in $p \in T^*_x M$ for all $x \in M$.

They perturbed (HJ_0) by the following discounted equation
\[
\lambda u + H(x, d_x u) = c(H), \quad x \in M, \lambda > 0
\] (1.1)
of which the Comparison Principle is allowed. Therefore, the viscosity solution u^λ_- of (1.1) is unique. In [5, 12], they established the convergence of u^λ_- as $\lambda \to 0_+$, to a specified viscosity solution u^λ_0 of (HJ_0) which can be characterized by the combination of subsolutions of (HJ_0), or Peierls barrier
\[
h^\infty : M \times M \to \mathbb{R}
\] w.r.t. the projected Mather measures \mathcal{M} of (HJ_0), see Appendix for the relevant definitions of \mathcal{M}, h^∞, subsolutions etc.

In this paper, we consider a negative limit technique and try to find another specified solution of (HJ_0). Precisely, we consider
\[
-\lambda u + H(x, d_x u) = c(H), \quad x \in M, \lambda > 0
\] (HJ_{λ})
of which a unique forward λ-weak KAM solution u^{+}_{λ} can be found, which is a subsolution of (HJ_{λ}), such that for any $x \in M$, there exists an absolutely continuous curve $\gamma^{+}_{\lambda,x} : [0, +\infty) \to M$ ending with it and satisfying
\[
e^{-\lambda t} u^{+}_{\lambda}(\gamma^{+}_{\lambda,x}(t)) - e^{-\lambda s} u^{+}_{\lambda}(\gamma^{+}_{\lambda,x}(s))
= \int_{s}^{t} e^{-\lambda \tau} (L(\gamma^{+}_{\lambda,x}(\tau), \dot{\gamma}^{+}_{\lambda,x}(\tau)) + c(H)) d\tau, \quad \forall 0 \leq s \leq t
\] (S$^+_\lambda$)
for the Lagrangian defined by
\[
L(x, v) := \max_{p \in T^*_x M} \{\langle p, v \rangle - H(x, p)\}, \quad (x, v) \in TM.
\] (1.2)
As $\lambda \to 0_+$, we get the following conclusion:

Theorem 1.1 Let $H : T^* M \to \mathbb{R}, (x, p) \mapsto H(x, p)$ be a continuous Hamiltonian coercive and convex in p. For $\lambda > 0$, the unique forward λ-weak KAM solution u^{+}_{λ} of (HJ_{λ}) uniformly converges as $\lambda \to 0_+$, to a unique forward 0-weak KAM solution u^{+}_{0} of (HJ_0), which can be interpreted as
\[
u^{+}_{0}(x) = \inf \mathcal{F}_{+}
\] (1.3)
with
\[
\mathcal{F}_{+} := \left\{ w \text{ is a subsolution of } (HJ_0) \left| \int_M w d\mu \geq 0, \forall \mu \in \mathcal{M} \right\}
\] (1.4)
and
\[
u^{+}_{0}(x) = - \inf_{\mu \in \mathcal{M}} \int_M h^\infty(x, y) d\mu(y).
\] (1.5)

Remark 1.2 The novelty of this paper is that we adapt a symmetric Lagrangian skill to our C^0-setting. The lack of regularity invalidates a bunch of important properties of the Mather measures, Peierls barrier etc., so we have to find substitutes in the weak sense.

1) A subsolution of (HJ_0) which satisfies (S^+_{λ}) with $\lambda = 0$, also see Definition 4.6 for an alternative expression.
Besides, we mention that \(-u_0^+(x)\) is a viscosity solution of the symmetric equation
\[
H(x, -d_x u(x)) = c(H).
\]
Comparing to the backward 0-weak KAM solutions, the notion of viscosity solutions is more familiar to PDE specialists, although both are proved to be equivalent in [7].

1.1 Dynamic Interpretation of \(u_0^\pm\)

Now the vanishing discount approach supplies us with a pair of solutions of (HJ\(_0\)):
\[
\begin{cases}
u_0^-(x) = \inf_{\mu \in M} \int_M h^\infty(y, x) d\mu(y), \\
u_0^+(x) = -\inf_{\mu \in M} \int_M h^\infty(x, y) d\mu(y).
\end{cases}
\]
\[(1.6)\]

Definition 1.3 (Conjugated Pair) A backward 0-weak KAM solution \(u^-\) of (HJ\(_0\)) is conjugated to a forward 0-weak KAM solution \(u^+\), if
- \(u^- = u^+\) on the projected Mather set \(M\) (see Definition 4.4).
- \(u^- \geq u^+\) on \(M\).

In [7, 13], the above definition is applied to explore the dynamic behaviors for \(C^2\)-Tonelli Hamiltonians\(^2\)). However, we have no difficulty to reserve this concept to the \(C^0\)-case by the skills in [6]. Moreover, for the following typical Hamiltonians, \((u_0^-, u_0^+)\) indeed forms a conjugated pair:

1) **(Uniquely Ergodic)** Suppose \(M\) consists of a uniquely ergodic projected Mather measure (generic for \(C^2\)-Tonelli Hamiltonians, see [9]), then
\[
d_c(x, y) := h^\infty(x, y) + h^\infty(y, x) \geq 0
\]
for all \(x, y \in M\), and “=” holds for \(x, y \in M\) (due to the definition of the Mather measure in Appendix). So \((u_0^-, u_0^+)\) is a conjugated pair.

2) **(Mechanical System)** For a mechanical Hamiltonian
\[
H(x, p) = \frac{1}{2} \langle p, p \rangle + V(x),
\]
we can easily get \(c(H) = \max_{x \in M} V(x)\), then the associated \(L(x, v) + c(H) \geq 0\) on \(TM\). Consequently, \(h^\infty: M \times M \to \mathbb{R}\) is nonnegative, so \(u_0^- \geq u_0^+\) on \(M\). On the other side, due to the definition of \(M\), all the Mather measures are supported by equilibriums. So \(u_0^- = u_0^+\) on \(M\). In summary \((u_0^-, u_0^+)\) is a conjugated pair.

3) **(Constant Subsolution)** Such a case is also discussed in [5]. If \(H(x, 0) \leq c(H)\) for all \(x \in M\), i.e., constant is a subsolution of (HJ\(_0\)), then due to the Young Inequality we get
\[
L(x, v) + c(H) \geq L(x, v) + H(x, 0) \geq \langle v, 0 \rangle = 0
\]
for all \((x, v) \in TM\). By a similar analysis like the case of mechanical systems \((u_0^-, u_0^+)\) proves to be a conjugated pair.

\(^2\) \(H: (x, p) \in T^* M \to \mathbb{R}\) is called *Tonelli*, if it’s positive definite and superlinear in \(p\).
1.2 Organization of the Article
In Section 2, we prove some variational properties for nonsmooth Lagrangians. In Section 3, we prove the convergence of u^λ as $\lambda \to 0_+$ and give a representative formula for the limit. For the consistency and readability of the article, some preliminary materials are moved to Appendix.

2 Nonsmooth Symmetric Lagrangians

With the same adaption as in [5], without loss of generality we can assume $H(x, p)$ is superlinear in p, i.e.,

- **(Superlinearity)** $\lim_{|p|\to +\infty} H(x, p)/|p| = +\infty$, for any $x \in M$.

In that case, by Fenchel’s formula (see (1.2)), the Hamiltonian has an associated Lagrangian $L : (x, v) \in TM \to \mathbb{R}$ which is superlinear and convex in the fibers of the tangent bundle. Consequently, we can propose a symmetrical Lagrangian $\hat{L}(x, v) := L(x, -v)$, of which the following fundamental facts hold:

Lemma 2.1

(i) The conjugated Hamiltonian $\hat{H} : T^*M \to \mathbb{R}$ of $\hat{L}(x, v)$ satisfies $\hat{H}(x, p) = H(x, -p)$ for all $(x, p) \in T^*M$. Therefore, \hat{H} is also continuous, superlinear and convex.

(ii) $\hat{H}(x, d_x\omega) \leq c \iff H(x, d_x(-\omega)) \leq c$.

(iii) $c(\hat{H}) = c(H)$.

(iv) The projected Mather measure set $\hat{\mathfrak{M}}$ (associated with $\hat{H}(x, p)$) keeps the same with \mathfrak{M}.

(v) The Peierls barrier function associated with $\hat{L}(x, v)$ satisfies $\hat{h}^\infty(y, x) = h^\infty(x, y)$ for any $x, y \in M$.

Proof

(i) Due to (1.2) and the definition of \hat{L}, we have

$$\hat{H}(x, p) = \max_{v \in T_xM} \{\langle p, v \rangle - \hat{L}(x, v)\}$$

$$= \max_{v \in T_xM} \{\langle p, v \rangle - L(x, -v)\}$$

$$= \max_{w \in T_xM} \{-\langle p, w \rangle - L(x, w)\} = H(x, -p),$$

as is desired.

(ii) If ω is a subsolution of $\hat{H}(x, d_x\omega) \leq c$, then for any absolutely continuous $\gamma : [-T, T] \to M$ connecting $x, y \in M$, we get

$$\omega(y) - \omega(x) \leq \int_{-T}^{T} (\hat{L}(\gamma, \dot{\gamma}) + c) dt.$$
with $\tilde{\gamma}(t) := \gamma(-t)$ for all $t \in [-T, T]$. As γ is arbitrarily chosen, so we get $-\omega \prec L + c$ then $H(x, -d_x \omega) \leq c$ for a.e. $x \in M$. Similarly, $\omega \prec L + c$ indicates $-\omega \prec \tilde{L} + c$.

(iii) As $c(\tilde{H}) = \inf\{c \in \mathbb{R} \mid \exists \omega \in C(M, \mathbb{R})$ such that $\omega \prec \tilde{L} + c\}$, then due to (ii), $c(\tilde{H}) = c(H)$.

(iv) Due to Proposition 2-4.3 of [2], for any measure $\tilde{\mu} \in \tilde{\mathcal{M}}$, there exists a sequence of closed measures $\tilde{\mu}_n \in \mathbb{P}_c(TM)$ (defined in Appendix), such that $\tilde{\mu}_n$ weakly converges to $\tilde{\mu}$ and

$$ \lim_{n \to +\infty} \int_{TM} Ld\tilde{\mu}_n = \int_{TM} Ld\tilde{\mu}. $$

Moreover, for each $\tilde{\mu}_n$ there exists an absolutely continuous curve $\gamma_n : t \in [-T_n, T_n] \rightarrow M$ with $T_n \rightarrow +\infty$ as $n \rightarrow +\infty$, such that

$$ \int_{TM} g d\mu_n = \frac{1}{2T_n} \int_{-T_n}^{T_n} g(\gamma_n(t), \dot{\gamma}_n(t))dt, \quad \forall g \in C_c(TM, \mathbb{R}). $$

Therefore, for $\tilde{\gamma}_n(t) := \gamma_n(-t)$, we have

$$ -c(H) = \lim_{n \to +\infty} \frac{1}{2T_n} \int_{-T_n}^{T_n} L(\gamma_n(t), \dot{\gamma}_n(t))dt $$

$$ = \lim_{n \to +\infty} \frac{1}{2T_n} \int_{-T_n}^{T_n} L(\tilde{\gamma}_n(-t), -\dot{\gamma}_n(-t))dt $$

$$ = \lim_{n \to +\infty} \frac{1}{2T_n} \int_{-T_n}^{T_n} \tilde{L}(\tilde{\gamma}_n(-t), \dot{\tilde{\gamma}}_n(-t))dt $$

$$ = \lim_{n \to +\infty} \frac{1}{2T_n} \int_{-T_n}^{T_n} \tilde{L}(\tilde{\gamma}_n(s), \dot{\tilde{\gamma}}_n(s))ds $$

$$ = -c(\tilde{H}). $$

That indicates $S^*\tilde{\mu}$ is a Mather measure for $\tilde{L}(x, v)$, where $S : TM \rightarrow TM$ is a diffeomorphism defined by $S(x, v) = (x, -v)$. Namely, we have

$$ \int_{TM} g(x, v)dS^*\tilde{\mu}(x, v) := \int_{TM} g(x, -v)d\tilde{\mu}(x, v), \quad \forall g \in C_c(TM, \mathbb{R}). $$

Due to (4.3) and $S \circ S = \text{id}$,

$$ \int_M f(x)d\mu(x) = \int_{TM} f \circ \pi(x, v)d\tilde{\mu}(x, v) $$

$$ = \int_{TM} f \circ \pi(x, -v)dS^*\tilde{\mu}(x, v) $$

$$ = \int_M f(x)d\pi^*S^*\tilde{\mu}(x, v) $$

for all $f \in C(M, \mathbb{R})$, then $\pi^*S^*\tilde{\mu} = \mu \in \mathcal{M}$. So $\tilde{\mathcal{M}} = \mathcal{M}$.

(v) Due to the definition of the Peierls barrier function, we calculate

$$ \hat{h}^\infty(y, x) = \lim_{t \to +\infty} \left(\inf_{\xi \in C^{\infty}(\{0, t\}, M)} \int_0^t \tilde{L}(\xi(s), \dot{\xi}(s))ds + c(\tilde{H})t \right) $$

$$ = \lim_{t \to +\infty} \left(\inf_{\gamma \in C^{\infty}(\{0, t\}, M)} \int_0^t \left(\gamma(t - s) - \frac{d\gamma(t - s)}{ds} \right)ds + c(\tilde{H})t \right) $$

3) See Definition 4.5
Due to Appendix 2 of [5],\footnote{Su X. F. and Zhang J. L.} −λ forward (Forward Remark 2.3) Such a curve \(\gamma \) is called a forward calibrated curve of \(\lambda, x \) \footnote{is the viscosity solution of the following symmetrical H-J equation \(\lambda u + \hat{H}(x, \partial_x u) = c(H), \quad \lambda > 0. \) (2.2)}

\[
\gamma_{\lambda, x}^{-} := \inf_{\gamma \in \gamma_{\lambda, x}^{-}} \int_0^t e^{-\lambda t}(L(\gamma(t), \dot{\gamma}(t)) + c(H))dt,
\]

(2.1) For any viscosity solution \(u_{\lambda}^+ \) of \((\text{HJ}_\lambda) \) if it satisfies Items (3) and (4) of Proposition 2.2, such a forward \(\lambda \)-weak KAM solution is unique.

\textit{Remark 2.3} (Forward \(\lambda \)-weak KAM solution) A continuous function \(w : M \to \mathbb{R} \) is called a forward \(\lambda \)-weak KAM solution of \((\text{HJ}_\lambda) \) if it satisfies Property (5) of Proposition 2.2, such a forward \(\lambda \)-weak KAM solution is unique.

\textit{Proof of Proposition 2.2} (5) By a simple transformation, we can see \(-u_{\lambda}^+ \) is a viscosity solution of (2.2), which is unique due to the Comparison Principle.

(1) For any viscosity solution \(u_0(x) \) of \((\text{HJ}_0) \), we get

\[
\underline{u}_0(x) := u_0(x) - \|u_0\| \leq u_0(x) + \|u_0\| := \bar{u}_0(x), \quad \forall x \in M.
\]

Consequently, \(\underline{u}_0 \) (resp., \(\bar{u}_0 \)) is a subsolution (resp. supersolution) of (2.2). Due to the Comparison Principle again, for any \(\lambda > 0 \) and any viscosity solution \(\omega_{\lambda} \) of (2.2) satisfies \(\underline{u}_0 \leq \omega_{\lambda} \leq \bar{u}_0 \). So we get the equi-boundedness of \(\{u_{\lambda}^+\}_{\lambda \in (0, 1]} \).

Let \(\gamma : [0, d(x, y)] \to M \) be the geodesic joining \(y \) to \(x \) parameterized by the arc-length, where \(d : M \times M \to \mathbb{R} \) is the Euclidean distance. For every absolute continuous curve \(\xi : [0, +\infty) \to M \)
with \(\xi(0) = x \), we define a curve

\[
\eta(t) = \begin{cases}
\gamma(t), & t \in [0, d(x, y)], \\
\xi(t - d(x, y)), & t \in [d(x, y), +\infty).
\end{cases}
\] (2.3)

Then we have

\[
-u^+(\lambda)(y) \leq \int_0^{+\infty} e^{-\lambda t}(L(\eta(t), \dot{\eta}(t)) + c(H))dt
\]

\[
\leq \int_0^{d(x,y)} e^{-\lambda t}(L(\gamma(t), \dot{\gamma}(t)) + c(H))dt
+ \int_{d(x,y)}^{+\infty} e^{-\lambda t}(L(\xi(t - d(x, y))), \dot{\xi}(t - d(x, y))) + c(H))dt
\]

\[
\leq \int_0^{d(x,y)} e^{-\lambda t}(L(\gamma(t), \dot{\gamma}(t)) + c(H))dt
+ e^{\lambda d(x,y)} \int_0^{+\infty} e^{-\lambda t}(L(\xi(t)), \dot{\xi}(t)) + c(H))dt.
\]

By minimizing with respect to all \(\xi \in C^{ac}([0, +\infty)) \) with \(\xi(0) = x \), we obtain

\[
-u^+(\lambda)(y) \leq -e^{\lambda d(x,y)} u^+_\lambda(x) + \int_0^{d(x,y)} e^{-\lambda t}(L(\gamma(t), \dot{\gamma}(t)) + c(H))dt.
\]

Therefore, we have

\[
u^+_\lambda(x) - u^+_\lambda(y) \leq (1 - e^{\lambda d(x,y)}) u^+_\lambda(x) + \int_0^{d(x,y)} e^{-\lambda t}(L(\gamma(t), \dot{\gamma}(t)) + c(H))dt
\]

\[
\leq \frac{1 - e^{\lambda d(x,y)}}{\lambda} (|\lambda u^+_\lambda(x)| + C_1) \leq (C + C_1) d(x, y),
\]

where

\[
C := \max \left\{ \left| \max_{x \in M} L(x, 0) + c(H) \right|, \left| \min_{(x, v) \in TM} L(x, v) + c(H) \right| \right\}
\]

and

\[
C_1 := \max \{ L(x, v) : x \in M, \|v\| \leq 1 \}.
\]

By exchanging the role of \(x \) and \(y \), we get the other inequality, which shows that \(u^+_\lambda \) is uniformly Lipschitz and the Lipschitz constant is independent of \(\lambda \).

(2), (3) & (4) By a similar analysis as Propositions 6.2–6.3 in [5], all these three items can be easily proved. \(\square \)

3 Discounted Limit of Forward \(\lambda \)-weak KAM Solutions

Recall that \(\widehat{u}^-_\lambda := -u^+_\lambda \) is the unique viscosity solution of (2.2),

\[
\widehat{u}^-_\lambda(x) = \inf_{\gamma(0) = x} \int_{-\infty}^0 e^{\lambda t}(\widehat{L}(\gamma, \dot{\gamma}) + c(H))dt.
\]

So the following conclusion holds instantly:

Lemma 3.1 ([5]) As \(\lambda \to 0_+ \), \(\widehat{u}^-_\lambda \) converges to a unique function \(\widehat{u}^-_0 \) which is a viscosity solution of the following

\[
\widehat{H}(x, \partial_x u) = c(H)
\] (3.1)
with the following two different interpretations:

- \(\hat{u}_0^- \) is the maximal subsolution \(w : M \to \mathbb{R} \) of (3.1) such that for any projected Mather measure \(\hat{\mu} \in \hat{\mathcal{M}} \), \(\int_M w \cdot d\hat{\mu} \leq 0 \).

- \(\hat{u}_0^- \) is the infimum of functions \(\hat{h}_{\mu}^\infty \) defined by
 \[
 \hat{h}_{\mu}^\infty(x) := \int_M \hat{h}^\infty(y,x)d\hat{\mu}(y), \quad \hat{\mu} \in \hat{\mathcal{M}}.
 \]

Due to Lemmas 2.1 and 3.1, we get

\[
\lim_{\lambda \to 0_+} u_\lambda^+ = - \lim_{\lambda \to 0_+} \hat{u}_\lambda^- = - \hat{u}_0^-,
\]

which is uniquely established and interpreted as the following:

Lemma 3.2 \(u_0^+ \) is a forward 0-weak KAM solution of (HJ\(_0\)).

Proof As \(\hat{u}_0^- \) is the viscosity solution of (3.1), then \(\hat{u}_0^- < \hat{L} + c(H) \) due to Proposition 5.3 of [5]. On the other side, due to

\[
U(x,t) := \inf_{\gamma \in C^\infty([0,t],M)} \left\{ \hat{u}_0^- (\gamma(-t)) + \int_{-t}^0 (\hat{L}(\gamma(\tau),\dot{\gamma}(\tau)) + c(H))d\tau \right\}, \quad \forall t \geq 0
\]

is the unique viscosity solution of the Cauchy problem

\[
\begin{cases}
\partial_t u + \hat{H}(x,d_xu) = c(H) \\
u(x,0) = \hat{u}_0^-(x), & t \geq 0,
\end{cases}
\]

whereas \(\hat{u}_0^- (x) \) is also a viscosity solution of the Cauchy problem. So it follows that \(U(x,t) = \hat{u}_0^-(x) \) for all \(x \in M, t > 0 \). Hence, by the same analysis as in the proof of Proposition 6.2 of [5], for any \(x \in M \), there exists a curve \(\gamma_x^- : (-\infty,0] \to M \) absolutely continuous and ending with \(x \), such that

\[
\hat{u}_0^- (\gamma_x^-(t)) - \hat{u}_0^- (\gamma_x^-(s)) = \int_s^t (\hat{L}(\gamma_x^-(\tau),\dot{\gamma}_x^-(\tau)) + c(H))d\tau
\]

for all \(s \leq t \leq 0 \). After all, \(\hat{u}_0^- \) has to be a backward 0-weak KAM solution of (3.1). Consequently, \(u_0^+ = - \hat{u}_0^- \) has to be a forward 0-weak KAM solution of (HJ\(_0\)).

Proof of Theorem 1.1 It’s a direct corollary from Lemmas 2.1, 3.1 and 3.2.

4 Appendix: Aubry–Mather Theory of Nonsmooth Convex Hamiltonians

As is known, the continuous, superlinear, convex \(H(x,p) \) has a dual Lagrangian

\[
L(x,v) := \max_{p \in \Gamma_x^M} \{ \langle p, v \rangle - H(x,p) \}, \quad (x,v) \in TM
\]

which is also continuous, superlinear and convex in \(v \). Consequently, for any \(x,y \in M \) and \(t > 0 \), the action function

\[
h^t(x,y) := \inf_{\gamma \in C^\infty([0,t],M)} \int_0^t (L(\gamma,\dot{\gamma}) + c(H))d\tau \tag{4.1}
\]

always attains its infimum at an absolutely continuous minimizing curve \(\gamma_{\min} : [0,t] \to M \) due to the *Tonelli Theorem*. In [11], the *Peierls barrier* function

\[
h^\infty(x,y) := \lim_{t \to +\infty} h^t(x,y) \tag{4.2}
\]
is proved to be well-defined and continuous on $M \times M$.

Definition 4.1 ([11]) The projected Aubry set is defined by
\[A := \{ x \in M : h^\infty(x, x) = 0 \} \]

Consider TM (resp., M) as a measurable space and $\mathbb{P}(TM)$ (resp. $\mathbb{P}(M)$) by the set of all Borel probability measures on it. A measure on TM is denoted by $\tilde{\mu}$, and we remove the tilde if we project it to M. We say that a sequence $\{\tilde{\mu}_n\}$ of probability measures weakly converges to a probability measure $\tilde{\mu}$ if
\[
\lim_{n \to +\infty} \int_{TM} f(x,v) d\tilde{\mu}_n(x,v) = \int_{TM} f(x,v) d\tilde{\mu}(x,v)
\]
for any $f \in C_c(TM, \mathbb{R})$. Accordingly, the deduced probability measure μ_n weakly converges to μ, i.e.
\[
\lim_{n \to +\infty} \int_{M} f(x) d\mu_n(x) := \lim_{n \to +\infty} \int_{TM} f(\pi(x,v)) d\tilde{\mu}_n(x,v)
= \int_{TM} f(\pi(x,v)) d\tilde{\mu}(x,v)
= \int_{M} f(x) d\pi^* \tilde{\mu}(x) =: \int_{M} f(x) d\mu(x)
\]
for any $f \in C(M, \mathbb{R})$.

Definition 4.2 A probability measure $\tilde{\mu}$ on TM is closed if it satisfies:
- $\int_{TM} |v| d\tilde{\mu}(x,v) < +\infty$;
- $\int_{TM} \langle \nabla \phi(x), v \rangle d\tilde{\mu}(x,v) = 0$ for every $\phi \in C^1(M, \mathbb{R})$.

Let’s denote by $\mathbb{P}_c(TM)$ the set of all closed measures on TM. Then the following conclusion is proved in [5]:

Theorem 4.3 $\min_{\tilde{\mu} \in \mathbb{P}_c(TM)} \int_{TM} L(x,v) d\tilde{\mu}(x,v) = -c(H)$. Moreover, the minimizer is called a Mather measure and we denote by \mathcal{M} the set of them. Similarly, we can project \mathcal{M} to $M \subset \mathbb{P}(M)$ w.r.t. $\pi : TM \to M$, which contains all the projected Mather measures.

Definition 4.4 ([10]) The Mather set is defined by
\[\tilde{\mathcal{M}} := \bigcup_{\tilde{\mu} \in \mathcal{M}} \text{supp} (\tilde{\mu}) \subset TM \]
and the projected Mather set $\mathcal{M} := \pi(\tilde{\mathcal{M}})$ is accordingly defined.

Definition 4.5 (subsolution) A function $u : M \to \mathbb{R}$ is called a viscosity subsolution, or subsolution for short of
\[H(x, du) = c, \quad x \in M \]
(denoted by $u \prec L + c$), if $u(y) - u(x) \leq h^\epsilon(x,y) + (c - c(H))t$ for all $(x, y) \in M \times M$ and $t \geq 0$.

Definition 4.6 A function $u : M \to \mathbb{R}$ is called a backward (resp., forward) 0-weak KAM solution of (HJ_0) if it satisfies:
• $u < L + c(H)$, i.e., for any two points $(x, y) \in M \times M$ and any absolutely continuous curve $\gamma : [a, b] \to M$ connecting them, we have

$$u(y) - u(x) \leq \int_{a}^{b} (L(\gamma, \dot{\gamma}) + c(H))dt;$$

• for any $x \in M$ there exists a curve $\gamma_{x}^{-} : (-\infty, 0] \to M$ (resp., $\gamma_{x}^{+} : [0, +\infty) \to M$) ending with (resp., starting from) x, such that for any $s < t \leq 0$ (resp., $0 \leq s < t$),

$$u(\gamma_{x}^{-}(t)) - u(\gamma_{x}^{-}(s)) = \int_{s}^{t} (L(\gamma_{x}^{-}, \dot{\gamma}_{x}^{-}) + c(H))dt$$

(resp., $u(\gamma_{x}^{+}(t)) - u(\gamma_{x}^{+}(s)) = \int_{s}^{t} (L(\gamma_{x}^{+}, \dot{\gamma}_{x}^{+}) + c(H))dt$).

References
[1] Crandall, M. G., Evans, L. C., Lions, P. L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc., 282(2), 487–502 (1984)
[2] Contreras, G., Iturriaga, R.: Global minimizers of autonomous Lagrangians, 22° Colóquio Brasileiro de Matemática. In: 22nd Brazilian Mathematics Colloquium, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999
[3] Contreras, G, Paternain, G: Connecting orbits between static classes for generic Lagrangian systems. Topology, 41(4), 645–666 (2002)
[4] Contreras, G, Iturriaga, R, Paternain, G. P., et al.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal., 8(5), 788–809 (1998)
[5] Davini, A, Fathi, A, Iturriaga, R., et al.: Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent. Math, 206(1), 29–55 (2016)
[6] Davini, A., Siconolfi, A.: A generalized dynamical approach to the large time behavior of solutions of Hamilton–Jacobi equations. SIAM J. Math. Anal, 38(2), 478–502 (2006)
[7] Fathi, A.: Weak KAM theorems in Lagrangian dynamics, version 10 unpublished (2008)
[8] Lions, P. L., Papanicolaou, G., Varadhan, S.: Homogenization of Hamilton–Jacobi equation, unpublished preprint (1987)
[9] Mañé, R.: Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 9(2), 273–310 (1996)
[10] Mather, J.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207(2), 169–207 (1991)
[11] Mather, J.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43(5), 1349–1386 (1993)
[12] Wang, Y. N., Yan, J., Zhang, J.: Convergence of viscosity solutions of generalized contact Hamilton–Jacobi equations. Arch. Rational Mech. Anal., 241, 885–902 (2021)
[13] Zhang, J.: Global behaviors of weak KAM solutions for exact symplectic twist maps. J. Differential Equations, 269(7), 5730–5753 (2020)