HOMOSCEDASTICITY TESTS FOR BOTH LOW AND HIGH-DIMENSIONAL FIXED DESIGN REGRESSIONS

ZHIDONG BAI

KLASMOE and School of Mathematics and Statistics, Northeast Normal University, Changchun, P.R.C., 130024.

GUANGMING PAN

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371

YANQING YIN

KLASMOE and School of Mathematics and Statistics, Northeast Normal University, Changchun, P.R.C., 130024.

Abstract. This paper is to prove the asymptotic normality of a statistic for detecting the existence of heteroscedasticity for linear regression models without assuming randomness of covariates when the sample size n tends to infinity and the number of covariates p is either fixed or tends to infinity. Moreover our approach indicates that its asymptotic normality holds even without homoscedasticity.

1. Introduction

1.1. A brief review of homoscedasticity test. Consider the classical multivariate linear regression model of p covariates

\begin{equation}
 y_i = x_i \beta + \varepsilon_i, \quad i = 1, 2, \ldots, n,
\end{equation}

where y_i is the response variable, $x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,p})$ is the p-dimensional covariates, $\beta = (\beta_1, \beta_2, \ldots, \beta_p)'$ is the p dimensional regression coefficient vector and ε_i is the independent random errors obey the same distribution with zero mean and variance σ_i^2. In most
applications of the linear regression models the homoscedasticity is a very important assumption. Without it, the loss in efficiency in using ordinary least squares (OLS) may be substantial and even worse, the biases in estimated standard errors may lead to invalid inferences. Thus, it is very important to examine the homoscedasticity. Formally, we need to test the hypothesis

$$H_0 : \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_n^2 = \sigma^2,$$

where σ^2 is a positive constant.

In the literature there are a lot of work considering this hypothesis test when the dimension p is fixed. Indeed, many popular tests have been proposed. For example Breusch and Pagan [3] and White [12] proposed statistics to investigate the relationship between the estimated errors and the covariates in economics. While in statistics, Dette and Munk [6], Glejser [7], Harrison and McCabe [8], Cook and Weisberg [4], Azzalini and Bowman [1] proposed nonparametric statistics to conduct the hypothesis. One may refer to Li and Yao [10] for more details in this regard.

The development of computer science makes it possible for people to collect and deal with high-dimensional data. As a consequence, high-dimensional linear regression problems are becoming more and more common due to widely available covariates. Note that the above mentioned tests are all developed under the low-dimensional framework when the dimension p is fixed and the sample size n tends to infinity.

In Li and Yao’s paper, they proposed two test statistics in the high dimensional setting by using the regression residuals. The first statistic uses the idea of likelihood ratio and the second one uses the idea that “the departure of a sequence of numbers from a constant can be efficiently assessed by its coefficient of variation”, which is closely related to John’s idea [9]. By assuming that the distribution of the covariates is $N(0, I_p)$ and that the error obey the normal distribution, the “coefficient of variation” statistic turns out to be a function of residuals. But its asymptotic distribution missed some part as indicated from the proof of Lemma 1 in [10] even in the random design.

The aim of this paper is to establish central limit theorem for the “coefficient of variation” statistic without assuming randomness of the covariates by using the information in the projection matrix (the hat matrix). This ensures that the test works when the design matrix is both fixed and random. More importantly we prove that the asymptotic normality of this statistics holds even without homoscedasticity. That assures a high power of this test.

The structure of this paper is as follows. Section 2 is to give our main theorem and some simulation results, as well as two real data analysis. Some calculations and the proof of the asymptotic normality are presented in Section 3.

2. Main Theorem, Simulation Results and Real Data Analysis

2.1. The Main Theorem. Suppose that the parameter vector β is estimated by the OLS estimator

$$\hat{\beta} = (X'X)^{-1} X'Y.$$

Denote the residuals by

$$\hat{\varepsilon} = (\hat{\varepsilon}_1, \hat{\varepsilon}_2, \cdots, \hat{\varepsilon}_n)' = Y - X\hat{\beta} = P\varepsilon,$$

with $P = (p_{ij})_{n \times n} = I_n - X(X'X)^{-1}X'$ and $\varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)'$. Let D be an $n \times n$ diagonal matrix with its i-th diagonal entry being σ_i, set $A = (a_{ij})_{n \times n} = PD$ and let $\xi = (\xi_1, \xi_2, \cdots, \xi_n)'$ stand for a standard n dimensional random vector whose entries obey
the same distribution with ε. It follows that the distribution of $\hat{\varepsilon}$ is the same as that of $A\xi$. In the following, we use $\text{Diag}(B) = (b_{1,1}, b_{2,2}, \ldots, b_{n,n})^t$ to stand for the vector formed by the diagonal entries of B and $\text{Diag}'(B)$ as its transpose, use D_B stand for the diagonal matrix of B, and use 1 stand for the vector $(1, 1, \cdots, 1)^t$.

Consider the following statistic

$$
T = \frac{\sum_{i=1}^n (\hat{\varepsilon}_i^2 - \frac{1}{n} \sum_{i=1}^n \hat{\varepsilon}_i^2)^2}{\frac{1}{n} (\sum_{i=1}^n \hat{\varepsilon}_i^2)^2}.
$$

We below use $A \circ B$ to denote the Hadamard product of two matrices A and B and use $A^{\circ k}$ to denote the Hadamard product of k A.

Theorem 2.1. Under the condition that the distribution of ε_1 is symmetric, $E|\varepsilon_1|^8 \leq \infty$ and $p/n \to y \in [0, 1)$ as $n \to \infty$, we have

$$
\frac{T - a}{\sqrt{b}} \xrightarrow{d} N(0, 1)
$$

where a, b are determined by n, p and A. Under H_0, we further have

$$
a = \left(\frac{n (3 \text{tr}(P \circ P) + \nu_4 \text{tr}(P \circ P)^2)}{((n-p)^2 + 2(n-p) + \nu_4 \text{tr}(P \circ P))} - 1 \right), \quad b = \Delta' \Theta \Delta,
$$

where

$$
\Delta' = \left(\frac{n}{((n-p)^2 + 2(n-p) + \nu_4 \text{tr}(P \circ P))}, -\frac{n^2 (3 \text{tr}(P \circ P) + \nu_4 \text{tr}(P \circ P)^2)}{((n-p)^2 + 2(n-p) + \nu_4 \text{tr}(P \circ P))^2} \right)
$$

and

$$
\Theta = \begin{pmatrix}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{pmatrix},
$$

where

$$
\Theta_{11} = 72 \text{Diag}'(P) (P \circ P) \text{Diag}(P) + 24 \text{tr}(P \circ P)^2 + \nu_4 \left(96 \text{tr}(P \circ P)^3 + 72 \text{tr}(P \circ P)^3 \text{Diag}'(P) (P \circ P)^3 \text{Diag}(P) \right)
$$

$$
+ \nu_4^2 \left(18 \text{tr}(P \circ P)^4 + 16 \text{tr}(P \circ P)^2 \text{Diag}'(P) (P \circ P)^2 \text{Diag}(P) \right)
$$

$$
+ \nu_6 \left(12 \text{tr}((P \circ P) \circ (P \circ P)^2) + 16 \text{tr}(P \circ P)^3 \text{Diag}'(P) (P \circ P)^3 \text{Diag}(P) \right)
$$

$$
+ \nu_8 \left(\text{Diag}'(P) (P \circ P) \text{Diag}(P) \right),
$$

$$
\Theta_{12} = \Theta_{21} = \left(\frac{(n - p)}{2} \text{tr}(P \circ P) + 16 \nu_4 \text{tr}(P \circ P)^2 + 12 \nu_4 \text{tr}((P \circ P) \circ P) + 2 \nu_6 \text{Diag}(P) \right),
$$

$$
\nu_4 = M_4 - 3, \quad \nu_6 = M_6 - 15 M_4 + 30 \quad \text{and} \quad \nu_8 = M_8 - 28 M_6 - 35 M_4^2 - 420 M_4 - 630
$$

are the corresponding cumulants of random variable ε_1.

Remark 2.2. The existence of the 8-th moment is necessary because it determines the asymptotic variance of the statistic.

Remark 2.3. The explicit expressions of a and b are given in Theorem 2.1 under H_0. However the explicit expressions of a and b are quite complicated under H_1. Nevertheless one may obtain them from (3.10)-(3.39) and (3.12)-(3.37) below.

Remark 2.4. In Li and Yao’s paper, under the condition that the distribution of ε is normal, they also did some simulations when the design matrices are non-Gaussian. Specifically speaking, they also investigated the test when the entries of design matrices are drawn from gamma distribution $G(2, 2)$ and uniform distribution $U(0, 1)$ respectively. There is no significant difference in terms of size and power between these two non-normal designs and the normal design. This seems that the proposed test is robust against the form of the distribution of the design matrix. But according to our main theorem, it is not always the case. In our main theorem, one can find that when the error ε obey the normal distribution, under H_0 and given p and n, the expectation of the statistics is only determined by $\text{tr}(P \circ P)$. We conduct some simulations to investigate the influence of the distribution of the design matrix on this term when $n = 1000$ and $p = 200$. The simulation results are presented in Table 1. It suggests that even if the entries of the design matrix are drawn from some common distribution, the expectation of the statistics may deviate far from that of the normal case. This will cause a wrong test result. Moreover, even in the normal case, our result is more accurate since we do not use any approximate value in the mean of the statistic T.

Remark 2.5. Let’s take an example to explain why this test works. For convenient, suppose that ε_1 obey the normal distribution. From the calculation in Section 3.2 we know that the expectation of the statistic T defined in (2.1) can be represented as

$$E(T) = \frac{3n \sum_{i=1}^{n} p_i^2 \sigma_i^4}{(\sum_{i=1}^{n} p_i^2 \sigma_i^2)^2} - 1 + o(1).$$

Now assume that $p_{ii} = \frac{n-2}{n}$ for all $i = 1, \cdots, n$. Moreover, without loss of generality, suppose that $\sigma_1 = \cdots = \sigma_n = 1$ under H_0 so that we get $E(T) \to 2$ as $n \to \infty$. However, when $\sigma_1 = \cdots = \sigma_{[n/2]} = 1$ and $\sigma_{[n/2]+1} = \cdots = \sigma_n = 2$, one may obtain $E(T) \to 3.08$ as $n \to \infty$. Since $\text{Var}(T) = O(n^{-1})$ this ensures a high power as long as n is large enough.

2.2. Some simulation results. We next conduct some simulation results to investigate the performance of our test statistics. Firstly, we consider the condition when the random error obey the normal distribution. Table 2 shows the empirical size compared with Li and Yao’s result in [10] under four different design distributions. We use “CVT” and “FCVT” to represent their test and our test respectively. The entries of design matrices are i.i.d random samples generated from $N(0, 1)$, $t(1)$ (t distribution with freedom degree 1), $F(3, 2)$ (F distribution with parameters 3 and 2) and logarithmic normal distribution respectively. The sample size n is 512 and the dimension of covariates varies from 4 to 384. We also follow [5] and consider the following two models:
Model 1: \(y_i = x_i^\beta + \varepsilon_i (1 + x_i h), \quad i = 1, 2, \cdots, n, \)
where \(h = (1, 0(p-1)) \).

Model 2: \(y_i = x_i^\beta + \varepsilon_i (1 + x_i h), \quad i = 1, 2, \cdots, n \)
where \(h = (1(p/2), 0(p/2)) \).

Tables 3 and 4 show the empirical power compared with Li and Yao’s results under four different regressors distributions mentioned above.

Then, we consider the condition that the random error obey the two-point distribution. Specifically speaking, we suppose \(P(\varepsilon_1 = -1) = P(\varepsilon_1 = 1) = 1/2 \). Since Li and Yao’s result is unapplicable in this situation, Table 5 just shows the empirical size and empirical power under Model 2 of our test under four different regressors distributions mentioned above.

According to the simulation result, it is showed that when \(p/n \to [0, 1) \) as \(n \to \infty \), our test always has good size and power under all regressors distributions.

\(p \)	\(N(0,1) \)	\(t(1) \)	\(F(3,2) \)	\(e^{N(5,3)} \)				
4	0.0582	0.0531	0.0600	0.0603	0.0594	0.0597	0.0590	0.0594
16	0.0621	0.0567	0.0585	0.0805	0.0585	0.0824	0.0595	0.0803
64	0.0574	0.0515	0.0605	0.2245	0.0586	0.2312	0.0578	0.2348
128	0.0597	0.0551	0.0597	0.5586	0.0568	0.5779	0.0590	0.5934
256	0.0551	0.0515	0.0620	0.9868	0.0576	0.9908	0.0595	0.9933
384	0.0580	0.0556	0.0595	1.0000	0.0600	1.0000	0.0600	1.0000

Table 2. empirical size under different distributions

\(p \)	\(N(0,1) \)	\(t(1) \)	\(F(3,2) \)	\(e^{N(5,3)} \)				
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
64	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
128	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
256	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
384	0.8113	0.8072	0.9875	1.0000	0.9876	1.0000	0.9905	1.0000

Table 3. empirical power under model 1

2.3. Two Real Rata Analysis.

2.3.1. The Death Rate Data Set. In [11], the authors fitted a multiple linear regression of the total age adjusted mortality rate on 15 other variables (the average annual precipitation, the average January temperature, the average July temperature, the size of the population older than 65, the number of members per household, the number of years of schooling for persons over 22, the number of households with fully equipped kitchens, the population per square mile, the size of the nonwhite population, the number of office workers, the number of families with an income less than $3000, the hydrocarbon pollution index, the nitric oxide pollution index, the sulfur dioxide pollution index and the degree of atmospheric moisture). The number of observations is 60. To investigate whether the homoscedasticity assumption in this models
is justified, we applied our test and got a p-value of 0.4994, which strongly supported the assumption of constant variability in this model since we use the one side test. The data set is available at http://people.sc.fsu.edu/~jburkardt/datasets/regression/regression.html.

2.3.2. The 30-Year Conventional Mortgage Rate Data Set. The 30-Year Conventional Mortgage Rate data [13] contains the economic data information of USA from 01/04/1980 to 02/04/2000 on a weekly basis (1049 samples). The goal is to predict the 30-Year Conventional Mortgage Rate by other 15 features. We used a multiple linear regression to fit this data set and got a good result. The adjusted R-squared is 0.9986, the P value of the overall F-test is 0. Our homoscedasticity test reported a p-value 0.4439.

3. Proof Of The Main Theorem

This section is to prove the main theorem. The first step is to establish the asymptotic normality of T_1, T_2 and $\alpha T_1 + \beta T_2$ with $\alpha^2 + \beta^2 \neq 0$ by the moment convergence theorem. Next we will calculate the expectations, variances and covariance of the statistics $T_1 = \sum_{i=1}^{n} \hat{\epsilon}_i^4$ and $T_2 = \frac{1}{n} \left(\sum_{i=1}^{n} \hat{\epsilon}_i^2 \right)^2$. The main theorem then follows by the delta method. Note that without loss of generality, under H_0, we can assume that $\sigma = 1$.

3.1. The asymptotic normality of the statistics. We start by giving a definition in Graph Theory.

Definition 3.1. A graph $G = (V, E, F)$ is called two-edge connected, if removing any one edge from G, the resulting subgraph is still connected.

The next lemma is a fundamental theorem for Graph-Associated Multiple Matrices without the proof. For the details of this theorem, one can refer to the section A.4.2 in [2].

	$N(0,1)$	$t(1)$	$F(3, 2)$	$e^{(N(5,3))}$
p	FCVT	CVT	FCVT	CVT
4	1.0000	1.0000	1.0000	1.0000
16	1.0000	1.0000	1.0000	1.0000
64	1.0000	1.0000	1.0000	1.0000
128	1.0000	1.0000	1.0000	1.0000
256	1.0000	1.0000	1.0000	1.0000
384	0.9066	0.9034	0.9799	1.0000

Table 4. empirical power under model 2

	$N(0,1)$	$t(1)$	$F(3, 2)$	$e^{(N(5,3))}$
p	Size	Power	Size	Power
4	0.0695	1.0000	0.0726	1.0000
16	0.0695	1.0000	0.0638	1.0000
64	0.0646	1.0000	0.0649	1.0000
128	0.0617	1.0000	0.0597	1.0000
256	0.0684	1.0000	0.0608	1.0000
384	0.0610	0.8529	0.0748	1.0000
Lemma 3.2. Suppose that $G = (V, E, F)$ is a two-edge connected graph with t vertices and k edges. Each vertex i corresponds to an integer $m_i \geq 2$ and each edge e_j corresponds to a matrix $T^{(j)} = \left(t_{o, \beta}^{(j)} \right)$, $j = 1, \cdots, k$, with consistent dimensions, that is, if $F(e_j) = (f_i(e_j), f_e(e_j)) = (g, h)$, then the matrix $T^{(j)}$ has dimensions $m_g \times m_h$. Define $v = (v_1, v_2, \cdots, v_t)$ and

$$T' = \sum_{v} \prod_{j=1}^{k} t_{v_i(e_j), v_{f(e_j)}}^{(j)},$$

where the summation \sum_v is taken for $v_i = 1, 2, \cdots, m_i$, $i = 1, 2, \cdots, t$. Then for any $i \leq t$, we have

$$|T'| \leq m_i \prod_{j=1}^{k} \|T^{(j)}\|.$$

Let $T = (T^{(1)}, \cdots, T^{(k)})$ and define $G(T) = (G, T)$ as a Graph-Associated Multiple Matrices. Write $T' = \text{sum}(G(T))$, which is referred to as the summation of the corresponding Graph-Associated Multiple Matrices.

We also need the following truncation lemma

Lemma 3.3. Suppose that $\xi_n = (\xi_1, \cdots, \xi_n)$ is an i.i.d sequence with $E|\xi_1|^r \leq \infty$, then there exists a sequence of positive numbers (η_1, \cdots, η_n) satisfy that as $n \to \infty$, $\eta_n \to 0$ and

$$P(\xi_n \neq \xi_n, \text{ i.o.}) = 0,$$

where $\xi_n = (\xi_1 I(|\xi_1| \leq \eta_1 n^{1/r}), \cdots, \xi_n I(|\xi_n| \leq \eta_n n^{1/r}))$. And the convergence rate of η_n can be slower than any preassigned rate.

Proof. $E|\xi_1|^r \leq \infty$ indicated that for any $\epsilon > 0$, we have

$$\sum_{m=1}^{\infty} 2^{2m} P(|\xi_1| \geq \epsilon 2^{2m/r}) \leq \infty.$$

Then there exists a sequence of positive numbers $\epsilon = (\epsilon_1, \cdots, \epsilon_m)$ such that

$$\sum_{m=1}^{\infty} 2^{2m} P(|\xi_1| \geq \epsilon_m 2^{2m/r}) \leq \infty,$$

and $\epsilon_m \to 0$ as $m \to 0$. And the convergence rate of ϵ_m can be slower than any preassigned rate.

Now, define $\delta_n = 2^{1/r} \epsilon_m$ for $2^{2m-1} \leq n \leq 2^{2m}$, we have as $n \to \infty$

$$P(\xi_n \neq \xi_n, \text{ i.o.}) \leq \lim_{k \to \infty} \sum_{m=k}^{\infty} \sum_{2^{2m-1} \leq n \leq 2^{2m}} P\left(\bigcup_{i=1}^{n} (|\xi_i| \geq \eta_n n^{1/r}) \right)$$

$$\leq \lim_{k \to \infty} \sum_{m=k}^{\infty} \sum_{2^{2m-1} \leq n \leq 2^{2m}} P\left(\bigcup_{i=1}^{2^{2m}} (|\xi_i| \geq \epsilon_m 2^{1/r} 2^{(2m-1)/r}) \right)$$

$$\leq \lim_{k \to \infty} \sum_{m=k}^{\infty} \sum_{2^{2m-1} \leq n \leq 2^{2m}} P\left(\bigcup_{i=1}^{2^{2m}} (|\xi_i| \geq \epsilon_m 2^{2m/r}) \right)$$
Homoscedasticity test for both low and high-dimensional regressions

We next construct two types of graphs for the last two sums. Let's take a look at the random variable ξ_i. Note that by Lemma 3.3, we can assume that ξ_i is truncated at $\eta_n n^{1/8}$. Then we have for large enough n and $l > 4$, $M_{2l} \leq \eta_n M_8 \sqrt{n}^{2l/4-1}$.

Let's take a look at the random variable

\begin{equation}
\alpha T_1 + \beta T_2 = \alpha \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} \xi_j \right)^4 + (n^{-1}) \beta \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} \xi_j \right)^2 \right)^2
\end{equation}

We next construct two types of graphs for the last two sums. For given integers $i, j_1, j_2, j_3, j_4 \in [1, n]$, draw a graph as follows: draw two parallel lines, called the I-line and the J-line respectively; plot i on the I-line and j_1, j_2, j_3, j_4 on the J-line; finally, we draw four edges from i to j_t, $t = 1, 2, 3, 4$ marked with \bigcirc. Each edge (i, j_t) represents the random variable $a_{ij_t} \xi_{jt}$ and the graph $G_1(i, j_t)$ represents $\prod_{t=1}^{4} a_{ij_t} \xi_{jt}$. For any given integer k_1, we draw k_1 such graphs between the I-line and the J-line denoted by $G_1(\tau) = G_1(\tau, j_t)$, and write $G_{1,k_1} = \bigcup_{\tau} G_1(\tau)$.

For given integers $u_1, u_2, v_1, v_2, v_3, v_4 \in [1, n]$, draw a graph as follows: plot u_1 and u_2 on the I-line and v_1, v_2, v_3 and v_4 on the J-line; then, we draw two edges from u_1 to v_1 and v_2 marked with \bigcirc, draw two edges from u_2 to v_3 and v_4 marked with \bigcirc. Each edge (u_t, v_t) represents the random variable $a_{u_t,v_t} \xi_{vt}$ and the graph $G_2(u, v)$ represents $a_{u_1, v_1} a_{u_2, v_2} a_{u_3, v_3} a_{u_4, v_4}$. For any given integer k_2, we draw k_2 such graphs between the I-line and the J-line denoted by $G_2(\psi) = G_2(u, \psi)$, and write $G_{2,k_2} = \bigcup_{\psi} G_2(\psi)$, $G_k = G_{1,k_1} \cup G_{2,k_2}$. Then the k-th order moment of T_0 is

$M_k' = \sum_{k_1 + k_2 = k} \binom{k}{k_1} \alpha^{k_1} \beta^{k_2} \sum_{\{i_1, j_1, \ldots, i_{k_1}, j_{k_1}\} \in \{u_1, v_1, \ldots, u_{k_2}, v_{k_2}\}} \alpha^{i_1} \beta^{j_1} \cdots \alpha^{i_{k_1}} \beta^{j_{k_1}}$
\[n^{-k_2}E\left[\prod_{\tau=1}^{k_1}[G_1(i_\tau,j_\tau) - E(G_1(i_\tau,j_\tau))] \prod_{\phi=1}^{k_2}[G_2(u_\phi,v_\phi) - E(G_2(u_\phi,v_\phi))] \right]. \]

We first consider a graph \(G_k \) for the given set of integers \(k_1, k_2, i_1, j_1, \ldots, i_{k_1}, j_{k_1} \) and \(u_1, v_1, \ldots, u_{k_2}, v_{k_2} \). We have the following simple observations: Firstly, if \(G_k \) contains a \(j \) vertex of odd degree, then the term is zero because odd-ordered moments of random variable \(\xi_j \) are 0. Secondly, if there is a subgraph \(G_1(\tau) \) or \(G_2(\psi) \) that does not have an \(j \) vertex coinciding with any \(j \) vertices of other subgraphs, the term is also 0 because \(G_1(\tau) \) or \(G_2(\psi) \) is independent of the remainder subgraphs.

Then, upon these two observations, we split the summation of non-zero terms in \(M'_k \) into a sum of partial sums in accordance of isomorphic classes (two graphs are called isomorphic if one can be obtained from the other by a permutation of \((1,2,\ldots,n) \), and all the graphs are classified into isomorphic classes. For convenience, we shall choose one graph from an isomorphic class as the canonical graph of that class). That is, we may write

\[M'_k = S^{-k} \sum_{k_1+k_2=k} \binom{k}{k_1} \alpha^{k_1} \beta^{k_2} n^{-k_2} \sum_{G'_k} M_{G'_k}. \]

where

\[M_{G'_k} = \sum_{G_k \in G'_k} E G_k. \]

Here \(G'_k \) is a canonical graph and \(\sum_{G_k \in G'_k} \) denotes the summation for all graphs \(G_k \) isomorphic to \(G'_k \).

In that follows, we need the fact that the variances of \(T_1 \) and \(T_2 \) and their covariance are all of order \(n \). This will be proved in Section 3.3.

Since all of the vertices in the non-zero canonical graphs have even degrees, every connected component of them is a circle, of course a two-edge connected graph. For a given isomorphic class with canonical graph \(G'_k \), denote by \(c_{G'_k} \) the number of connected components of the canonical graph \(G'_k \). For every connected component \(G_0 \) that has \(l \) non-coincident \(J \)-vertices with degrees \(d_1, \ldots, d_l \), let \(d' = \max\{d_1-8, \ldots, d_l-8, 0\} \), denote \(\mathcal{T} = (\mathbf{A}, \ldots, \mathbf{A}) \) and define \(G_0(\mathcal{T}) = (G_0, \mathcal{T}) \) as a Graph-Associated Multiple Matrices. By Lemma 3.2 we then conclude that the contribution of this canonical class is at most \(\left(\prod_{t=1}^{l} M_{d_t} \right) \sum(G(\mathcal{T})) \).

Notice that \(\eta_n \to 0 \), if \(c_{G'_k} \) is less than \(k/2 + k_2 \), then the contribution of this canonical class is negligible because \(S^k \geq n^{k/2} \) and \(M_{G'_k} \) in \(M'_k \) has a factor of \(n^{-k_2} \). However one can see that \(c_{G'_k} \) is at most \(|k/2| + k_2 \) for every \(G'_k \) by the argument above and noticing that every \(G_2(\bullet) \) has two \(i \) vertices. Therefore, \(M'_k \to 0 \) if \(k \) is odd.

Now we consider the limit of \(M'_k \) when \(k = 2s \). We shall say that the given set of integers \(i_1, j_1, \ldots, i_{k_1}, j_{k_1} \) and \(u_1, v_1, \ldots, u_{k_2}, v_{k_2} \) (or equivalent the graph \(G_k \)) satisfies the condition \(c(s_1, s_2, s_3) \) if in the graph \(G_k \) plotted by this set of integers there are \(2s_1 \) \(G_1(\bullet) \) connected pairwisely, \(2s_2 \) \(G_2(\bullet) \) connected pairwisely and \(s_3 \) \(G_1(\bullet) \) connected with \(s_3 \) \(G_2(\bullet) \), where \(2s_1 + s_3 = k_1, 2s_2 + s_3 = k_2 \) and \(s_1 + s_2 + s_3 = s \), say \(G_1(2\tau - 1) \) connects \(G_1(2\tau) \), \(\tau = 1, 2, \ldots, s_1, G_2(2\psi - 1) \) connects \(G_1(2\psi) \), \(\psi = 1, 2, \ldots, s_2 \) and \(G_1(2s_1 + \varphi) \) connects \(G_2(2s_2 + \varphi) \), \(\varphi = 1, 2, \ldots, s_3 \), and there are no other connections between subgraphs. Then,
for any G_k satisfying $c(s_1, s_2, s_3)$, we have
\begin{equation}
(3.4) \quad EG_k = \prod_{\tau=1}^{s_1} E[(G_1(2\tau - 1) - E(G_1(2\tau - 1)))(G_1(2\tau) - E(G_1(2\tau)))] \times \\
\prod_{\psi=1}^{s_2} E[(G_2(2\psi - 1) - E(G_2(2\psi - 1)))(G_2(2\psi) - E(G_2(2\psi)))] \times \\
\prod_{\varphi=1}^{s_3} E[(G_1(2s_1 + \varphi) - E(G_1(2s_1 + \varphi)))(G_2(2s_2 + \varphi) - E(G_2(2s_2 + \varphi))]].
\end{equation}

Now, we compare
\begin{equation}
(3.5) \quad n^{-k_2} \sum_{G_k \in c(s_1, s_2, s_3)} EG_k \\
= n^{-k_2} \sum_{G_k \in c(s_1, s_2, s_3)} \prod_{\tau=1}^{s_1} E[(G_1(2\tau - 1) - E(G_1(2\tau - 1)))(G_1(2\tau) - E(G_1(2\tau)))] \times \\
\prod_{\psi=1}^{s_2} E[(G_2(2\psi - 1) - E(G_2(2\psi - 1)))(G_2(2\psi) - E(G_2(2\psi)))] \times \\
\prod_{\varphi=1}^{s_3} E[(G_1(2s_1 + \varphi) - E(G_1(2s_1 + \varphi)))(G_2(2s_2 + \varphi) - E(G_2(2s_2 + \varphi))]],
\end{equation}
with
\begin{equation}
(3.6) \quad (E(T_1 - \mu_1)^2)^{s_1} (E(T_2 - \mu_2)^2)^{s_2} (E(T_1 - \mu_1)(T_2 - \mu_2))^{s_3} \\
= n^{-k_2} \sum_{G_k} \prod_{\tau=1}^{s_1} E[(G_1(2\tau - 1) - E(G_1(2\tau - 1)))(G_1(2\tau) - E(G_1(2\tau)))] \times \\
\prod_{\psi=1}^{s_2} E[(G_2(2\psi - 1) - E(G_2(2\psi - 1)))(G_2(2\psi) - E(G_2(2\psi)))] \times \\
\prod_{\varphi=1}^{s_3} E[(G_1(2s_1 + \varphi) - E(G_1(2s_1 + \varphi)))(G_2(2s_2 + \varphi) - E(G_2(2s_2 + \varphi))]],
\end{equation}
where $\sum_{G_k \in c(s_1, s_2, s_3)}$ stands for the summation running over all graph G_k satisfying the condition $c(s_1, s_2, s_3)$.

If G_k satisfies the two observations mentioned before, then $EG_k = 0$, which does not appear in both expressions; if G_k satisfies the condition $c(s_1, s_2, s_3)$, then the two expressions both contain EG_k. Therefore, the second expression contains more terms that G_k have more connections among subgraphs than the condition $c(s_1, s_2, s_3)$. Therefore, by Lemma 3.2
\begin{equation}
(3.7) \quad (E(T_1 - \mu_1)^2)^{s_1} (E(T_2 - \mu_2)^2)^{s_2} (E(T_1 - \mu_1)(T_2 - \mu_2))^{s_3} = n^{-k_2} \sum_{G_k \in c(s_1, s_2, s_3)} EG_k + o(S^k).
\end{equation}

If $G_k \in G'_k$ with $cG'_k = s + k_2$, for any nonnegative integers s_1, s_2, s_3 satisfying $k_1 = 2s_1 + s_3$, $k_2 = 2s_2 + s_3$ and $s_1 + s_2 + s_3 = s$, we have $\binom{k_1}{s_1} \binom{k_2}{s_3} (2s_1 - 1)!!(2s_2 - 1)!!s_3!$ ways to pairing
the subgraphs satisfying the condition \(c(s_1, s_2, s_3)\). By (3.7), we then have

\[
\sum_{c_G' = s + k_2} n^{-k_2} EG_k + o(S^k)
\]

\[
= \sum_{2s_1 + s_2 + s_3 = s} \binom{k_1}{k_3}(k_2)(s_3)(2s_1 - 1)!(2s_2 - 1)!s_3!(Var(T_1))^{s_1}(Var(T_2))^{s_2}(Cov(T_1, T_2))^{s_3}
\]

It follows that

\[
M_k' = S^{-k} \sum_{k_1 + k_2 = k} \binom{k}{k_1} \alpha^{k_1} \beta^{k_2} n^{-k_2} \sum_{c_G' = s + k_2} EG_k + o(1)
\]

\[
= (S^{-2s} \sum_{k_1 + k_2 = k} \binom{2s}{k_1} \binom{k_2}{s_3}(2s_1 + s_3)(2s_2 + s_3)(2s_1 - 1)!(2s_2 - 1)!s_3!
\]

\[
(\alpha^2 Var(T_1))^{s_1}(\beta^2 Var(T_2))^{s_2}(\alpha \beta Cov(T_1, T_2))^{s_3} + o(1)
\]

\[
= (S^{-2s} \sum_{s_1 + s_2 + s_3 = s} \binom{2s}{s_1 + s_3}(2s_1 + s_3)!(2s_2 + s_3)!(2s_1 - 1)!(2s_2 - 1)!s_3!
\]

\[
(\alpha^2 Var(T_1))^{s_1}(\beta^2 Var(T_2))^{s_2}(\alpha \beta Cov(T_1, T_2))^{s_3} + o(1)
\]

\[
= (S^{-2s} \sum_{s_1 + s_2 + s_3 = s} \binom{2s - 1}{s_1} \frac{s!}{s_1!s_2!s_3!}
\]

\[
(\alpha^2 Var(T_1))^{s_1}(\beta^2 Var(T_2))^{s_2}(2\alpha \beta Cov(T_1, T_2))^{s_3} + o(1)
\]

which implies that

\[
M_k' \to (2s - 1)!!.
\]

Combining the arguments above and the moment convergence theorem we conclude that

\[
\frac{T_1 - ET_1}{\sqrt{Var(T_1)}} \overset{d}{\to} N(0, 1), \quad \frac{T_2 - ET_2}{\sqrt{Var(T_2)}} \overset{d}{\to} N(0, 1), \quad (\alpha T_1 + \beta T_2) - E(\alpha T_1 + \beta T_2) \overset{d}{\to} N(0, 1), \quad \frac{\sqrt{Var(\alpha T_1 + \beta T_2)}}{\sqrt{Var(\alpha T_1 + \beta T_2)}}
\]

where \(\alpha^2 + \beta^2 \neq 0\). Let

\[
\Sigma = \begin{pmatrix}
Var(T_1) & Cov(T_1, T_2) \\
Cov(T_1, T_2) & Var(T_2)
\end{pmatrix}.
\]

We conclude that \(\Sigma^{-1/2}(T_1 - ET_1, T_2 - ET_2)'\) is asymptotic two dimensional gaussian vector.
3.2. The expectation. In the following let $B = AA'$. Recall that

$$T_1 = \sum_{i=1}^{n} \xi_i^4 = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} \xi_j \right)^4 = \sum_{i=1}^{n} \sum_{j_1,j_2,j_3,j_4} a_{i,j_1} a_{i,j_2} a_{i,j_3} a_{i,j_4} \xi_{j_1} \xi_{j_2} \xi_{j_3} \xi_{j_4},$$

$$T_2 = n^{-1} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i,j} \xi_j \right)^2 \right)^2 = n^{-1} \sum_{i_1,i_2,j_1,j_2,j_3,j_4} a_{i_1,j_1} a_{i_2,j_2} a_{i_2,j_3} a_{i_2,j_4} \xi_{j_1} \xi_{j_2} \xi_{j_3} \xi_{j_4}. $$

Since all odd moments of ξ_1, \ldots, ξ_n are 0, we know that ET_1 and ET_2 are only affected by terms whose multiplicities of distinct values in the sequence (j_1, \ldots, j_4) are all even.

We need to evaluate the mixed moment $E \left(T_1^s T_2^t \right)$. For simplifying notations particularly in Section 3.3 we introduce the following notations

$$\Omega_{\{\omega_1, \omega_2, \ldots, \omega_s\}}^{(\gamma_1,\gamma_2,\ldots,\gamma_t)} \left[(\phi_{1,1}, \ldots, \phi_{1,s}), (\phi_{2,1}, \ldots, \phi_{2,s}), \ldots, (\phi_{t,1}, \ldots, \phi_{t,s}) \right]_0$$

for t groups

where i_1, \ldots, i_t and j_1, \ldots, j_s run over $1, \ldots, n$ and are subject to the restrictions that j_1, \ldots, j_s are distinct; $\sum_{t=1}^{t} \gamma_t = \sum_{s=1}^{s} \omega_t = \theta$, and for any $k = 1, \ldots, s$, $\sum_{t=1}^{t} \phi_t.k = \theta$. Intuitively, t is the number of distinct i-indices and s that of distinct j’s; γ_t is the multiplicity of the index i_t and $\omega_s = \sum_{t=1}^{t} \phi_t.l$ that of j_s; $\phi_{t,s} = \phi_{t,s}$, the multiplicity of the factor a_{i_t,j_s}; and $\theta = 4(\gamma + \omega)$.

Define

$$\Omega_{\{\omega_1, \omega_2, \ldots, \omega_s\}}^{(\gamma_1,\gamma_2,\ldots,\gamma_t)} \left[(\phi_{1,1}, \ldots, \phi_{1,s}), (\phi_{2,1}, \ldots, \phi_{2,s}), \ldots, (\phi_{t,1}, \ldots, \phi_{t,s}) \right]$$

for t groups

without the restriction that the indices j_1, \ldots, j_s are distinct from each other. To help understand these notations we demonstrate some examples as follows.

$$\Omega_{\{2,2,2,2\}}^{(4,4)} \left[(2, 2, 0, 0), (0, 0, 2, 2) \right] = \sum_{i_1,i_2,j_1,\ldots,j_4} a_{i_1,j_1}^2 a_{i_1,j_2}^2 a_{i_2,j_3}^2 a_{i_2,j_4}^2,$$

$$\Omega_{\{2,2,2,2\}}^{(4,4)} \left[(2, 1, 1, 0), (0, 1, 1, 2) \right] = \sum_{i_1,i_2,j_1,\ldots,j_4} a_{i_1,j_1}^2 a_{i_1,j_2} a_{i_1,j_3} a_{i_2,j_4} a_{i_2,j_3} a_{i_2,j_4}^2,$$

$$\Omega_{\{2,2,2,2\}}^{(4,4)} \left[(2, 2, 0, 0), (0, 0, 2, 2) \right]_0 = \sum_{i_1,i_2,j_1,\ldots,j_4} a_{i_1,j_1}^2 a_{i_1,j_2}^2 a_{i_2,j_3}^2 a_{i_2,j_4}^2,$$

$$\Omega_{\{2,2,2,2\}}^{(4,4)} \left[(2, 1, 1, 0), (0, 1, 1, 2) \right]_0 = \sum_{i_1,i_2,j_1,\ldots,j_4} a_{i_1,j_1}^2 a_{i_1,j_2}^2 a_{i_1,j_3} a_{i_2,j_4}^2 a_{i_2,j_3}^2 a_{i_2,j_4}^2.$$
We further use M_k to denote the k-th order moment of the error random variable. We also use C_n^k to denote the combinatorial number \(\binom{n}{k} \). We then obtain

\[
(3.10) \quad E T_1 = E \sum_{i=1}^{n} \sum_{j_1,j_2,j_3,j_4} a_{i,j_1} a_{i,j_2} a_{i,j_3} a_{i,j_4} \xi_{i,j_1} \xi_{i,j_2} \xi_{i,j_3} \xi_{i,j_4}
\]

\[
= M_4 \Omega^{(4)}_{\{4\}} + M_2^2 \Omega^{(2,2)}_{\{2,2\}0} = M_4 \Omega^{(4)}_{\{4\}} + \frac{C_4^2}{2!} \Omega^{(4)}_{\{2,2\}1} (2,0,0,2) 0 \\
= M_4 \Omega^{(4)}_{\{4\}} + \frac{C_4^2}{2!} \left((2,0,0,2) 0 - \Omega^{(4)}_{\{4\}} \right) \\
= \frac{C_4^2}{2!} \Omega^{(4)}_{\{2,2\}1} (2,0,0,2) + \nu_4 \Omega^{(4)}_{\{4\}} = \sum_i \left(\sum_j a_{i,j}^2 \right)^2 + \nu_4 \sum_{ij} a_{ij}^4 \\
= 3 \sum_i b_{i,i}^2 + \nu_4 \sum_{ij} a_{ij}^4 = 3 \text{tr} (B \circ B) + \nu_4 \text{tr} (A \circ A)' (A \circ A),
\]

where $\nu_4 = M_4 - 3$ and

\[
(3.11) \quad E T_2 = n^{-1} E \sum_{i_1,i_2,j_1,j_2,j_3,j_4} a_{i_1,j_1} a_{i_2,j_2} a_{i_2,j_3} a_{i_2,j_4} \xi_{i_1,j_1} \xi_{i_2,j_2} \xi_{i_2,j_3} \xi_{i_2,j_4}
\]

\[
= n^{-1} \left(M_4 \Omega^{(2,2)}_{\{4\}} + M_2^2 \Omega^{(2,2)}_{\{2,2\}0} \right) \\
= n^{-1} \left(M_4 \Omega^{(2,2)}_{\{4\}} + \left(\Omega^{(2,2)}_{\{2,2\}1} (2,0,0,2) 0 + 2 \Omega^{(2,2)}_{\{2,2\}1} (1,1,0,1) 0 \right) \right) \\
= n^{-1} \left(M_4 \Omega^{(2,2)}_{\{4\}} + \left(\Omega^{(2,2)}_{\{2,2\}1} (2,0,0,2) + 2 \Omega^{(2,2)}_{\{2,2\}1} (1,1,0,1) \right) - 3 \Omega^{(2,2)}_{\{4\}} \right) \\
= n^{-1} \left(\sum_{i_1,i_2,j_1,j_2} a_{i_1,j_1}^2 a_{i_2,j_2}^2 + 2 \sum_{i_1,i_2,j_1,j_2} a_{i_1,j_1} a_{i_2,j_2} a_{i_2,j_1} a_{i_2,j_2} + \nu_4 \sum_{i_1,i_2,j_1,j_2} a_{i_1,j_1}^2 a_{i_2,j_2}^2 \right) \\
= n^{-1} \left(\left(\sum_{i,j} a_{i,j}^2 \right)^2 + 2 \sum_{i_1,i_2} \left(\sum_j a_{i_1,j} a_{i_2,j} \right)^2 + \nu_4 \sum_{i_1,i_2,j_1,j_2} a_{i_1,j_1}^2 a_{i_2,j_2}^2 \right) \\
= n^{-1} \left(\left(\sum_{i,j} a_{i,j}^2 \right)^2 + 2 \sum_{i_1,i_2} b_{i_1,i_2}^2 + \nu_4 \sum_{j=1}^{n} b_{j,j}^2 \right) \\
= n^{-1} \left((\text{tr}B)^2 + 2\text{tr}B^2 + \nu_4 \text{tr}(B \circ B) \right).
\]

3.3. The variances and covariance. We are now in the position to calculate the variances of T_1, T_2 and their covariance.

First, we have

\[
(3.12) \quad \text{Var}(T_1) = E \left(\sum_i \xi_i^4 - E \left(\sum_i \xi_i^4 \right) \right)^2 \\
= \sum_{i_1,i_2,j_1,\ldots,j_8} E G(i_1,j_1) G(i_2,j_2) - E G(i_1,j_1) E G(i_2,j_2)
\]
\[
\begin{align*}
\Omega^{(4,4)}_{(2,2,2,2)} &= \left[\Omega^{(4,4)}_{\{8\}} + \Omega^{(4,4)}_{(2,6)} + \Omega^{(4,4)}_{(4,4)} + \Omega^{(4,4)}_{(2,2,4)} + \Omega^{(4,4)}_{(2,2,2,2)} \right],
\end{align*}
\]

where the first term comes from the graphs in which the 8 \(J\)-vertices coincide together; the second term comes from the graphs in which there are 6 \(J\)-vertices coincident and another two coincident and so on.

Because \(G(i_1, j_1)\) and \(G(i_2, j_2)\) have to connected each other, thus, we have

(3.13)

\[
\Omega^{(4,4)}_{(2,2,2,2)} = \left[\frac{C_2^2 C_2^0 C_2^1 C_2^2}{2!} \right] \left[(2, 1, 1, 0), (0, 1, 1, 2) \right]_0 + \left[C_4^1 C_2^1 C_2^2 \right] \left[(1, 1, 1, 0), (1, 1, 1, 1) \right]_0
\]

\[
= 72 \left[\Omega^{(4,4)}_{(2,2,2,2)} \left[(2, 1, 1, 0), (0, 1, 1, 2) \right] - 4 \Omega^{(4,4)}_{(2,2,4)} \left[(2, 1, 1), (0, 1, 3) \right] - \Omega^{(4,4)}_{(2,2,4)} \left[(2, 0, 2), (0, 2, 2) \right] \right]
\]

\[
- \Omega^{(4,4)}_{(2,4)} \left[(1, 1, 2), (1, 1, 2) \right]_0 + 2 \Omega^{(4,4)}_{(4,4)} \left[(3, 1), (1, 3) \right]_0 + \Omega^{(4,4)}_{(4,4)} \left[(2, 2), (2, 2) \right]_0
\]

\[
+ 2 \Omega^{(4,4)}_{(4,4)} \left[(0, 1, 3), (1, 3) \right]_0 - 2 \Omega^{(4,4)}_{(4,4)} \left[(0, 4), (1, 3) \right]_0 - \Omega^{(4,4)}_{(4,4)} \left[(0, 4) \right]_0
\]

\[
+ 24 \left[\Omega^{(4,4)}_{(2,2,2,2)} \left[(1, 1, 1, 1), (1, 1, 1, 1) \right] - 6 \Omega^{(4,4)}_{(2,2,4)} \left[(1, 1, 2), (1, 1, 2) \right] - 3 \Omega^{(4,4)}_{(4,4)} \left[(2, 2), (2, 2) \right]_0
\]

\[
- 4 \Omega^{(4,4)}_{(2,6)} \left[(0, 4), (1, 3) \right]_0 - \Omega^{(4,4)}_{(4,4)} \left[(0, 4) \right]_0
\]

Likewise we have

(3.14)

\[
\Omega^{(4,4)}_{(2,2,4)} = \left[\frac{C_2^2 C_2^0 C_2^1 C_2^2}{2!} \right] \left[(2, 1, 1, 0), (0, 1, 1, 2) \right]_0 + \left[C_4^1 C_2^1 C_2^2 \right] \left[(1, 1, 1, 0), (1, 1, 1, 1) \right]_0
\]
\begin{align*}
M_2 C_2 C_1 C_3 M_4 \Omega_{(2,2,4)}^{(4,4)} [(1, 2, 1), (1, 0, 3)]_0 \\
+ \frac{C_2^4 C_1^2 C_3^2}{2} M_4 \Omega_{(2,2,4)}^{(4,4)} [(1, 1, 2), (1, 1, 2)]_0 + C_4^2 C_1^2 (M_4 - 1) \Omega_{(2,2,4)}^{(4,4)} [(2, 0, 2), (0, 2, 2)]_0 \\
= 96 M_4 \Omega_{(2,2,4)}^{(4,4)} [(1, 2, 1), (1, 0, 3)]_0 \\
+ 72 M_4 \Omega_{(2,2,4)}^{(4,4)} [(1, 1, 2), (1, 1, 2)]_0 + 36 (M_4 - 1) \Omega_{(2,2,4)}^{(4,4)} [(2, 0, 2), (0, 2, 2)]_0,
\end{align*}

\begin{align*}
\Omega_{(4,4)}^{(4,4)}_0 &= C_1^4 C_1^4 C_3 M_4^2 \Omega_{(4,4)}^{(4,4)} [(3, 1), (1, 3)]_0 + \frac{C_4^2 C_1^2}{2!} (M_4^2 - 1) \Omega_{(4,4)}^{(4,4)} [(2, 2), (2, 2)]_0 \\
= 16 M_4^2 \Omega_{(4,4)}^{(4,4)} [(3, 1), (1, 3)] + 18 (M_4^2 - 1) \Omega_{(4,4)}^{(4,4)} [(2, 2), (2, 2)] \\
&- (34 M_4^2 - 18) \Omega_{(4,4)}^{(4,4)}.
\end{align*}

\begin{align*}
\Omega_{(2,2,4)}^{(4,4)}_0 &= C_2^4 C_2^4 (M_6 - M_4) \Omega_{(2,2,4)}^{(4,4)} [(2, 2), (0, 4)]_0 + C_4^4 C_1^4 M_6 \Omega_{(2,2,4)}^{(4,4)} [(1, 3), (1, 3)]_0 \\
= 12 (M_6 - M_4) \Omega_{(2,2,4)}^{(4,4)} [(2, 2), (0, 4)] + 16 M_6 \Omega_{(2,2,4)}^{(4,4)} [(1, 3), (1, 3)] \\
&- (28 M_6 - 12 M_4) \Omega_{(4,4)}^{(4,4)}.
\end{align*}

and

\begin{align*}
\Omega_{(4,4)}^{(4,4)}_0 &= (M_8 - M_4^2) \Omega_{(4,4)}^{(4,4)} [(4, 4)].
\end{align*}

Combining (3.12), (3.13), (3.14), (3.15), (3.16) and (3.17), we obtain

\begin{align*}
\text{Var}(T_1) &= 72 \Omega_{(2,2,2,2)}^{(4,4)} [(2, 1, 1, 0), (0, 1, 1, 2)] + 24 \Omega_{(2,2,2,2)}^{(4,4)} [(1, 1, 1, 1), (1, 1, 1, 1)] \\
&+ 96 (M_4 - 3) \Omega_{(2,2,2,2)}^{(4,4)} [(2, 1, 1), (0, 1, 3)] + 36 (M_4 - 3) \Omega_{(2,2,2,4)}^{(4,4)} [(2, 0, 2), (0, 2, 2)] \\
&+ 72 (M_4 - 3) \Omega_{(2,2,4)}^{(4,4)} [(1, 1, 2), (1, 1, 2)] + 16 (M_4^2 - 6 M_4 + 9) \Omega_{(4,4)}^{(4,4)} [(3, 1), (1, 3)] \\
&+ 18 (M_4^2 - 6 M_4 + 9) \Omega_{(4,4)}^{(4,4)} [(2, 2), (2, 2)] + 16 (M_6 - 15 M_4 + 30) \Omega_{(2,2,6)}^{(4,4)} [(1, 3), (1, 3)] \\
&+ 12 (M_6 - 15 M_4 + 30) \Omega_{(2,2,6)}^{(4,4)} [(2, 2), (0, 4)] + (M_8 - 28 M_6 - 35 M_4^2 + 420 M_4 - 630) \Omega_{(4,4)}^{(4,4)} [(4, 4)].
\end{align*}
where

\[(3.19) \quad \Omega_{(2,2,2,2)}^{(4,4)}[(2, 1, 1, 0), (0, 1, 1, 2)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^2 a_{i_1, j_2} a_{i_1, j_3}^2 a_{i_2, j_2} a_{i_2, j_3}^2 a_{i_2, j_4}^2 \]
\[\quad = \text{Diag}'(B) (B \circ B) \text{Diag}(B),\]

\[(3.20) \quad \Omega_{(2,2,2,2)}^{(4,4)}[(1, 1, 1, 1), (1, 1, 1, 1)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1} a_{i_1, j_2} a_{i_1, j_3} a_{i_2, j_2} a_{i_2, j_3} a_{i_2, j_4} \]
\[\quad = \text{tr} (B \circ B)^2,\]

\[(3.21) \quad \Omega_{(2,2,4,2)}^{(4,4)}[(2, 1, 1), (0, 1, 3)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^2 a_{i_1, j_2} a_{i_1, j_3} a_{i_2, j_2} a_{i_2, j_3} a_{i_2, j_4}^3 = \text{tr} BD_B A A^{\circ 3},\]

\[(3.22) \quad \Omega_{(2,2,4,2)}^{(4,4)}[(2, 0, 2), (0, 2, 2)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^2 a_{i_1, j_2}^2 a_{i_1, j_3}^2 a_{i_2, j_2}^2 a_{i_2, j_3}^2 \]
\[\quad = \text{Diag}'(B) (A \circ A) (A \circ A)' \text{Diag}(B),\]

\[(3.23) \quad \Omega_{(2,2,4,2)}^{(4,4)}[(1, 1, 2), (1, 1, 2)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1} a_{i_1, j_2} a_{i_1, j_3} a_{i_2, j_2} a_{i_2, j_3} a_{i_2, j_4}^2 \]
\[\quad = \text{tr} ((B \circ B) (A \circ A) (A \circ A)') ,\]

\[(3.24) \quad \Omega_{(4,4,4,4)}^{(4,4)}[(3, 1), (1, 3)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^3 a_{i_1, j_2} a_{i_2, j_1} a_{i_2, j_2} a_{i_3, j_3} a_{i_3, j_4} a_{i_4, j_1} a_{i_4, j_2} a_{i_4, j_3} a_{i_4, j_4} \]
\[\quad = \text{tr} (A^a A') (A^a A') ',\]

\[(3.25) \quad \Omega_{(4,4,4,4)}^{(4,4)}[(2, 2), (2, 2)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^2 a_{i_1, j_2}^2 a_{i_1, j_3}^2 a_{i_2, j_2} a_{i_2, j_3}^2 a_{i_2, j_4}^2 \]
\[\quad = \text{tr} ((A \circ A) (A \circ A)') ^2 ,\]

\[(3.26) \quad \Omega_{(2,6,4,2)}^{(4,4)}[(1, 3), (1, 3)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1} a_{i_1, j_2} a_{i_2, j_1}^3 a_{i_2, j_2} a_{i_2, j_3} a_{i_2, j_4} \]
\[\quad = \text{tr} (BA^a A^a) ,\]

\[(3.27) \quad \Omega_{(2,6,4,2)}^{(4,4)}[(2, 2), (0, 4)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1} a_{i_1, j_2} a_{i_2, j_2}^4 a_{i_2, j_3} a_{i_2, j_4} \]
\[\quad = \text{tr} ((A' D_B A) (A^a A^a)) ,\]

and

\[(3.28) \quad \Omega_{(8,4,4,4)}^{(4,4)}[(4, 4)] = \sum_{i_1, \ldots, j_2, j_1, \ldots, j_4} a_{i_1, j_1}^4 a_{i_1, j_2} a_{i_2, j_2}^4 = \text{tr} (A^a A^a) = 1\]

Using the same procedure, we have

\[(3.29) \quad \text{Var}(T_2) = n^{-2} \left(E \left(\sum_i \bar{z}_i^2 \right) ^4 - E^2 \left(\sum_i \bar{z}_i^2 \right) ^2 \right) \]
From now on, in order to simplify the above formulas we assume

\begin{equation}
H(3.39)
\end{equation}

Similarly, we have

\begin{equation}
P_{2,1} = C_2^1 C_2^1 C_2^1 \sum_{i_1, \cdots, i_4, j_1, \cdots, j_4} a_{i_1, j_1}^2 a_{i_2, j_2} a_{i_3, j_3} a_{i_4, j_4}^2 = 8 (\text{tr}B)^2 \text{tr}B^2,
\end{equation}

\begin{equation}
P_{2,2} = \nu_4 C_2^1 C_2^1 \sum_{i_1, \cdots, i_4, j_1, j_2, j_3} a_{i_1, j_1}^2 a_{i_2, j_2}^2 a_{i_3, j_3}^2 a_{i_4, j_4}^2 = 4\nu_4 (\text{tr}(B' \circ B') (\text{tr}B)^2),
\end{equation}

Similarly, we have

\begin{equation}
\text{Cov}(T_1, T_2) = n^{-1} \left(E \left(\sum_i \xi_i^2 \right)^2 \sum_i \xi_i^4 - E \left(\sum_i \xi_i^2 \right)^2 \sum_i \xi_i^4 \right)
\end{equation}

\begin{equation}
= n^{-1} \left(P_{3,1} + P_{3,2} + P_{3,3} + P_{3,4} \right) + O(1),
\end{equation}

where

\begin{equation}
P_{3,1} = C_4^2 C_2^1 C_2^1 \sum_{i_1, \cdots, i_4, j_1, \cdots, j_4} a_{i_1, j_1}^2 a_{i_2, j_2} a_{i_3, j_3} a_{i_4, j_4}^2 = 24 \text{tr}(B^2 \circ B) \text{tr}B,
\end{equation}

\begin{equation}
P_{3,2} = \nu_4 C_4^2 C_2^1 C_2^1 \sum_{i_1, \cdots, i_4, j_1, j_2, j_3} a_{i_1, j_1}^2 a_{i_2, j_2} a_{i_3, j_3} a_{i_4, j_4}^2 = 16\nu_4 (\text{tr}(BAA^0))^3 \text{tr}B,
\end{equation}

\begin{equation}
P_{3,3} = \nu_4 C_4^2 C_2^1 \sum_{i_1, \cdots, i_4, j_1, j_2, j_3} a_{i_1, j_1}^2 a_{i_2, j_2} a_{i_3, j_3}^2 a_{i_4, j_4}^2 = 12\nu_4 ((A'D_B A) \circ (A'A)) \text{tr}B,
\end{equation}

\begin{equation}
P_{3,3} = \nu_6 C_4^1 \sum_{i_1, i_2, i_3, j_1, j_2} a_{i_1, j_1}^2 a_{i_2, j_2} a_{i_3, j_3}^2 = 2\nu_6 [\text{Diag}(A'A') (A')^4] \text{tr}B,
\end{equation}

We would like to point out that we do not need the assumption that H_0 holds up to now. From now on, in order to simplify the above formulas we assume H_0 holds.

Summarizing the calculations above, we obtain under H_0

\begin{equation}
ET_1 = 3 \sum_i b_{i, i}^2 + \nu_4 \sum_{i, j} a_{i, j}^4 = 3\text{tr}(P \circ P) + \nu_4 \text{tr}(P \circ P)^2,
\end{equation}

\begin{equation}
ET_2 = n^{-1} \left((n - p)^2 + 2(n - p) + \nu_4 \text{tr}(P \circ P) \right),
\end{equation}
\[
\text{(3.40)} \quad \text{Var} T_1 = 72 \text{Diag}'(P) \text{Diag}(P) + 24 \text{tr}(P \circ P)^2 \\
+ \nu_4 \left(96 \text{tr}DP P^{\circ 3} + 72 \text{tr}(P \circ P)^3 + 36 \text{Diag}'(P) (P \circ P)^2 \text{Diag}(P) \right) \\
+ \nu_4^2 \left(18 \text{tr}(P \circ P)^4 + 16 \text{tr}(P^{\circ 2}P) \right) \\
+ \nu_6 \left(12 \text{tr} \left((PD_P) \circ (P^{\circ 2}P^{\circ 2}) \right) + 16 \text{tr}PP^{\circ 3}P^{\circ 3} \right) + \nu_8 1'(P^{\circ 4}P^{\circ 4}) 1,
\]

\[
\text{(3.41)} \quad \text{Var}(T_2) = \frac{8(n - p)^3 + 4\nu_4 (n - p)^2 \text{tr}(P \circ P)}{n^2} + O(1),
\]

and

\[
\text{(3.42)} \quad \text{Cov}(T_1, T_2) = \frac{(n - p)}{n} \left(24 \text{tr}(P \circ P) + 16\nu_4 \text{tr}(PP^{\circ 3}) + 12\nu_4 \text{tr}((PD_P) \circ P) + 2\nu_6 [\text{Diag}(P)'(P^{\circ 4}) 1] \right).
\]

3.4. The proof of the main theorem. Define a function \(f(x, y) = \frac{x}{y} - 1 \). One may verify that \(f_x(x, y) = \frac{1}{y} \), \(f_y(x, y) = -\frac{x}{y^2} \), where \(f_x(x, y) \) and \(f_y(x, y) \) are the first order partial derivative. Since \(T = \frac{T_1}{T_2} - 1 \), using the delta method, we have under \(H_0 \),

\[
\text{ET} = f(ET_1, ET_2) = \left(\frac{3n\text{tr}(P \circ P)}{n^2 (n - p)^2 + 2(n - p)} - 1 \right),
\]

\[
\text{(3.43)} \quad \text{Var} T = (f_x(ET_1, ET_2), f_y(ET_1, ET_2)) \Sigma(f_x(ET_1, ET_2), f_y(ET_1, ET_2))'.
\]

The proof of the main theorem is complete.

References

[1] Adelchi Azzalini and Adrian Bowman. On the use of nonparametric regression for checking linear relationships. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 549–557, 1993.

[2] Zhidong Bai and Jack W Silverstein. *Spectral analysis of large dimensional random matrices*, volume 20. Springer, 2010.

[3] Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity and random coefficient variation. *Econometrica: Journal of the Econometric Society*, pages 1287–1294, 1979.

[4] R Dennis Cook and Sanford Weisberg. Diagnostics for heteroscedasticity in regression. *Biometrika*, 70(1):1–10, 1983.

[5] Holger Dette and Axel Munk. Testing heteroscedasticity in nonparametric regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 60(4):693–708, 1998.

[6] Holger Dette, Axel Munk, and Thorsten Wagner. Estimating the variance in nonparametric regression—what is a reasonable choice? *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 60(4):751–764, 1998.

[7] Herbert Glejser. A new test for heteroskedasticity. *Journal of the American Statistical Association*, 64(325):316–323, 1969.

[8] Michael J Harrison and Brendan PM McCabe. A test for heteroscedasticity based on ordinary least squares residuals. *Journal of the American Statistical Association*, 74(366a):494–499, 1979.

[9] S John. Some optimal multivariate tests. *Biometrika*, 58(1):123–127, 1971.

[10] Zhaoyuan Li and Jianfeng Yao. Homoscedasticity tests valid in both low and high-dimensional regressions. *arXiv preprint arXiv:1510.00097*, 2015.

[11] Gary C McDonald and Richard C Schwing. Instabilities of regression estimates relating air pollution to mortality. *Technometrics*, 15(3):463–481, 1973.
[12] Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica: Journal of the Econometric Society*, pages 817–838, 1980.

[13] H. Altay Guvenir and I. Uysal. Bilkent University Function Approximation Repository. http://funapp.cs.bilkent.edu.tr, 2000.