Tumor Necrosis Factor-α: The Next Marker of Stroke

Yimeng Xue,1,2 Xianwei Zeng,3 Wen-Jun Tu,1,4 and Jizong Zhao1,2,5,6,7

1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
2Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
3Rehabilitation Hospital of the National Research Center for Rehabilitation Technical Aids, Beijing, China
4Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
5Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
6Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
7China National Clinical Research Center for Neurological Diseases, Beijing, China

Correspondence should be addressed to Wen-Jun Tu; tuwenjun@irm-cams.ac.cn and Jizong Zhao; zhaojz205@163.com

Received 14 October 2021; Revised 5 January 2022; Accepted 19 February 2022; Published 27 February 2022

Copyright © 2022 Yimeng Xue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Although there is no shortage of research on the markers for stroke, to our knowledge, there are no clear markers that can meet the needs of clinical prediction and treatment. The inflammatory cascade is a critical process that persists and functions throughout the stroke process, ultimately worsening stroke outcomes and increasing mortality. Numerous inflammatory factors, including tumor necrosis factor (TNF), are involved in this process. These inflammatory factors play a dual role during stroke, and their mechanisms are complex. As one of the representatives, TNF is the primary regulator of the immune system and plays an essential role in the spread of inflammation. In researches done over the last few years, tumor necrosis factor-alpha (TNF-α) has emerged as a potential marker for stroke because of its essential role in stroke. This review summarizes the latest research on TNF-α in stroke and explores its potential as a therapeutic target.

1. Introduction

Stroke is the leading cause of death and long-term disability worldwide, and its incidence is increasing at younger ages [1, 2]. The high mortality and disability rates place a severe burden on society [3, 4]. Thus, the search for biomarkers that can predict disease prognosis or targeted therapy is significant to improve the treatment and reduce the disability rate [5]. However, there are no specific markers that can provide predictive and therapeutic information as far as we know. Previous studies by Simats et al. have summarized the role of inflammatory biomarkers in helping predict outcomes in stroke patients which may even become therapeutic targets [6]. The inflammatory response process runs through the entire stroke course [7]. In this cascade of inflammatory changes, cytokines like interleukin (IL), TNF, and interferon (IFN) act as central mediators in the inflammatory cascade and are considered as a therapeutic target and prognostic biomarker [8]. The researchers observed changes in the concentrations of several types of these cytokines in the cerebrospinal fluid and blood of stroke patients, and these changes were associated with prognosis [9–12]. TNF-α is an emerging molecule that is a kind of pleiotropic cytokine as the primary regulatory factor of the immune system that can be produced by a variety of cell types and is involved in a wide range of pathological processes [13, 14]. It plays a homeostatic and pathophysiological role in the central nervous system. Under pathological conditions, microglia release large amounts of TNF-α, which is a crucial component of the neuroinflammatory response associated with various neurological diseases [15]. Based on several robust pieces of evidence, changes in TNF-α were associated with stroke injury and stroke recovery [16–18]. For example, Tuttolomondo et al. reported that TNF-α expression was elevated after stroke, which stimulated the expression of tissue factors and leukocyte adhesion molecules and inhibited the fibrinolytic system [19]. Although several studies have reported contrary results, the use of TNF-α as a marker of stroke remains...
promising. In addition to the role of TNF-α in stroke, anti-
TNF-α-based antistroke therapies have received increasing
attention from the researchers. In a preclinical study, TNF-
α receptor inhibitors reduce brain damage by reducing
inflammatory responses in a rat model of ischemic stroke
[20]. Therefore, this article reviews the research progress of
TNF-α and its antagonists and discusses its application pros-
ppect in the treatment of stroke.

2. TNF-α Molecule and Its Receptor

TNF-α is produced by various cells, but its primary source is
the cells of the immune system, such as macrophages, lym-
phoid cells, and mast cells [14, 21]. In these cells, TNF-α is
first synthesized into transmembrane protein (tmTNF-α),
which is then cleaved by matrix metalloproteinase (MMP) to
releasing soluble TNF-α (sTNF-α) homotrimer and can bind to two types of recep-
tors, namely, TNF receptor (TNFR) type 1 (TNFR1) and
type 2 (TNFR2) [15, 21–23]. These two receptors are
expressed differently in various cells and differ functionally
[24]. Unlike TNFR1, which is ubiquitously expressed in all
cell types, TNFR2 is expressed by some immune cells and
preferentially by some Treg cells, some endothelial cells,
and nerve tissue cells [13, 25]. The TNF-signaling complex
structure enables TNF-α to induce inflammation and cell
death or to induce tolerance to ischemia after stroke [26].
The main role of TNFR1 is to initiate apoptosis through its
death domain and also to induce cell survival mechanisms
[27]. Activation of the TNFR2 pathway by TNF-α contrib-
utes to immune response and inflammation [28]. It can
affect the activation of many intracellular signaling pathways
and ultimately lead to cell survival, cell migration, apoptosis,
and necrosis (Figure 1) [29–31].

Although TNF-α has a higher affinity for TNFR2 than
for TNFR1, most of the biological activities of TNF-α are ini-
tiated by TNFR1 [32]. The structure of TNFR1 includes a
death domain (DD), which is constitutively expressed in
most cell types and is activated by TNF-α in the form of
membrane binding (mTNF-α) or soluble (sTNF-α) [33].
Activation of TNFR1 leads to trimer formation, which
promotes DD recruitment of TNFR1-associated death domains
(TRADD), and TRADD further recruits serine/threonine-
protein kinase (RIPK) and TNFR-associated factor (TRAF)
2 [34–36]. The specific process can be described as TNFR1
binds to trimer TNF-α to release death domain silencer
(SODD) protein. The TNFR-associated death domain
(TRADD) binds to the TNFR1 death domain (DD) and
recruits adapter protein receptor-interacting protein (RIP),
TNFR-associated factor 2 (TRAF2), and Fas-associated
death domain (FADD). When TNFR1 signals apoptosis,
FADD binds to procaspase-8 and activates it, eventually ini-
tiating the protease cascade reaction. Activation of endonu-
cl ease (such as EndoG) mediates DNA breakage and leads to
apoptosis. When TNFR1 signals survival, TRAF2 is
recruited to the complex, inhibiting apoptosis by cytoplas-
mic apoptotic protein inhibitor (cIAP). Activation of TRAF2
results in activation of cFos/cJun transcription factors
through mitogen-activated protein kinase (MAPK) and cJun
N-terminal kinase (JNK) [37, 38]. The TNFR1 core signaling
complex is thus formed and stabilized by RIPK1 ubiquitina-
tion, which ultimately mediates a cellular response. For
example, cytokine signaling and cell survival are induced by
activation of the NF-κB, JNK, and p38 pathways [39, 40]. The apoptotic pathway would be activated in the
absence of complete ubiquitination of RIPK1, leading to cell
apoptosis or necrosis [41].

TNFR2 has no death domain and is only fully activated
by mTNF-α [42]. TRAF2 forms trimer and directly recruits
TRAF2, TRAF1, or TRAF3 [43]. The nuclear factor kappal-
light chain enhancer (NF-κB), Akt (protein kinase B), and
mitogen-activated protein kinase (MAPK) of B cells are then
activated to initiate their biological function [44, 45]. For
example, it promotes cell activation, migration, and prolifer-
ation; plays a protective role in cells; affects the amplification and function of Treg; and also mediates apoptosis through
its cooperation with TNFR1 [45–47].

3. Physiological Role of TNF-α Molecule in the
Central Nervous System

In the adult brain, TNF is mainly derived from glia, astro-
cyes, and microglia, and its levels are low, but its role in
the central nervous system (CNS) is complex and multipot-
ent [48–50]. First, TNF-α regulates normal neurotransmit-
ter processes in different ways. For example, it not only
can induce a rapid increase in AMPA receptors but also
can decrease AMPAR levels in cortical surface and hippo-
campal neurons (a process achieved in the striatum through
the elimination of Ca2+ permeability inhibition) and
enhance tetrodotoxin insensitive Na+ channel currents in
the plasma membrane of dorsal root ganglion (DRG) neu-
rons. Furthermore, it also regulates the release of glutamate
by astrocytes [51–57]. Second, TNF-α plays a dual role in
neurogenesis through different inductive environments and
receptor subtypes [58]. For example, TNF-α can cause pro-
genitor cell death by abruptly stopping cell division [59]. It
exerts neuroprotective effects when it binds to TNFR2 recep-
tors expressed by human neural stem cells [60]. Third, TNF-
α can affect endothelial cells in CNS. These pathways include
influencing the morphology of endothelial cells, thereby
affecting BBB permeability, enhancing the adhesion between
leukocytes and endothelial cells, thereby facilitating leuko-
cyte migration to the central nervous system and inducing
angiogenic mediators that affect vascular endothelial cells
proliferation [61–63].

4. TNF-α in Stroke

The etiology of vascular lesions is obviously redox reaction
and stress-dependent [64]. In stroke, neurovascular units
can become dysfunctional due to the lack of oxygen and
nutrients [65]. During ischemia, changes in the brain
include the release of glutamate, the production of reactive
oxygen species (ROS) that cause oxidative stress, and activa-
tion of microglia, which can affect the secretion of proin-
flammatory mediators [66, 67]. Oxidative stress and
inflammatory response have bidirectional effects on the
whole stroke process. When blood vessels are occluded or underperfused, the immune response begins near the ischemic parenchyma and then extends to the ischemic zone, eventually spreading throughout the body, and microglia are activated and promote the release of TNF-α [68, 69]. Studies have shown that levels of TNF-α in brain tissue may continue to rise 1 day after ischemic injury and correlate with their severity [70, 71]. TNF-α is a core mediator in the immune processes of infection control, autoimmunity, allergic diseases, and antitumor activity [15]. The mechanism of TNF-α’s influence on vascular endothelium includes stimulating the expression of tissue factors and leukocyte adhesion molecules, activating matrix metalloproteinases, and producing oxidative stress through xanthine oxidase [61, 72]. These actions trigger local segments of blood vessels and lead to local inflammation, thrombosis, and bleeding [73]. Other studies have shown that TNF-α can disrupt the protective barrier between brain circulation. These effects include, first, stimulating the activation and proliferation of astrocytes and microglia and, second, regulating apoptosis factors, such as cysteine. Third, matrix metalloproteinase (MMP) transcription is induction in ischemia and penumbra inflammation. The last induced transcription of cytokines, such as IL-1 and IL-6 [74–77]. In addition, TNF can also induce ischemia tolerance and regulate the signal transduction of cerebral hypoxia and ischemia tolerance [78, 79]. In stroke outcomes, TNF-α is associated with epileptic seizures, movement disorders, spasms, aphasia, pain, depression, and cognitive impairment [80–83]. Zaremba et al. found that the level of TNF-α in cerebrospinal fluid (CSF) was significantly increased in stroke patients, and the increase of CSF and SERUM TNF-α in the first 24 hours of stroke was also significantly associated with the severity of a neurological stroke and the degree of dysfunction according to SSS and BI scores [84]. However, in a clinical study, the researchers found that the level of TNF-α was not associated with functional outcomes after acute stroke [85]. We speculate that this is because of how TNF-α plays

Figure 1: TNF-α binds to receptors and affects intracellular signal transduction. MTNF-α is hydrolyzed and cleaved by TACE to produce STNF-α. STNF-α binds to TNFR1 and TNFR2 through different signaling pathways, ultimately leading to a series of outcomes, including necrosis, apoptosis, survival, and proliferation.
Table 1: Current research reports on use of TNF inhibitors in stroke.

Drug name	Drug type	Research type	Describe	Ref.	Year
R-7050	TNF-α receptor inhibitors	Preclinical	Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activations.	[20]	2021
Adalimumab	TNF-α-neutralizing antibody	Preclinical	Older animals treated with adalimumab show a tendency to reduce poststroke deficits and improve survival in older animals after stroke.	[92]	2021
Infliximab	TNF-α inhibitor	Preclinical	Improving stroke outcomes in a mouse model of rheumatoid arthritis.	[18]	2019
Alpha-lipoic acid	Free radical scavenger/TNF-α inhibitor	Preclinical	By inhibiting peripheral TNF-α and downregulating microglia activation, it has protective effect on ischemic stroke rats.	[99]	2015
Infliximab and etanercept	TNF-α inhibitor	Preclinical	Compared with untreated rats, the volume of cerebral infarction was significantly reduced in the etanercept or infliximab group.	[86]	2015
Etanercept	TNF-α inhibitor	Preclinical	Decreased middle cerebral artery remodeling but increased cerebral ischemia injury in hypertensive rats.	[100]	2014
CNTO5048	TNF-α antibody	Preclinical	In a mouse model of intracerebral hemorrhage, posttraumatic treatment with CNTO5048 reduced neuroinflammation and improved functional outcomes.	[101]	2013
Etanercept	TNF-α inhibitor	Clinical	Perisinal administration of etanercept improves clinical symptoms in patients with chronic neurological dysfunction following stroke and traumatic brain injury.	[102]	2012
CTIRMab-TNFR	Fusion protein	Preclinical	CTIRMab-TNFR fusion protein treatment can reduce hemispheric, cortical, and subcortical stroke volume and neurological deficits and prevent stroke.	[103]	2012

a role in stroke prognosis, which is complex and diverse, and these specific mechanisms need to be further investigated. Doll et al. reviewed several preclinical and clinical studies suggesting that TNF-α has neurotoxic or neuroprotective effects in stroke. There were also conflicting findings when TNF-α was used to predict prognosis. These seem to indicate that the action of TNF-α is complex and bidirectional [26]. Because TNF-α ligand-receptor interactions are involved in almost every aspect of stroke-induced brain injury, it is a promising direction to use TNF-α as an inflammatory marker to predict the outcome of stroke. On the other hand, when TNF-α is used as a potential therapeutic target for stroke, blocking TNF-α can reduce focal ischemic injury and improve clinical outcomes [83, 86].

5. TNF-α Inhibitors

Ischemic stroke is a catastrophic disease. Unfortunately, because of the limited time window for treatment, only a small number of patients receive tissue plasminogen activator (tPA), which is the primary treatment; as a result, most patients receive only supportive care [6, 26]. It is urgent to renew the therapeutic drugs in the clinic. The positive effects of treatment targeting TNF-α in stroke have been demonstrated in preclinical studies over the past few years (Table 1). There are three effective ways to interfere with TNF-α action by blocking receptors, interfering with TNF-α signal transduction, and removing TNF-α protein in effectors [87]. Currently, TNF-α inhibitors, including enanercib, infliximab, adalimumab, pertuzumab, and golimumab, are mainly used to treat autoimmune diseases or inflammatory diseases [87–89]. Intraventricular injection of TNFR1 decoy receptors or anti-TNF-α antibodies, as well as systemic injection of TACE inhibitors, can reduce ischemic brain damage in stroke [90, 91]. After injecting TNF-α receptor inhibitor R-7050 into stroke rats, Lin et al. found that R-7050 reversed neuronal changes, TNF-α receptor/NF-κB inflammatory signaling, and BBB destruction and ultimately reduced the area of cerebral infarction [20]. In another study, in older animals, mice treated with adalimumab (TNF-α-inhibiting antibody) reduced poststroke deficits and improved poststroke survival [92]. When the preclinical experiment is transformed into clinical application, the researchers must overcome the adverse reactions. These include the most worrisome severe infections, malignancies, heart failure, and nerve demyelination, as well as other general side effects, such as headache, rash, anemia, pharyngitis, diarrhea, nausea, and abdominal pain [88, 93, 94]. Finally, the safety of anti-TNF-α agents during pregnancy or lactation needs to be further explored [88]. In the meantime, the researchers are still working to develop other types of inhibitors to improve stroke outcomes. For example, the IL-2/IL-2R antibody complex enhances Treg-induced neuroprotective effects by inhibiting TNF-α induced inflammation [95]. Contreras et al. proposed that the trimer TNF-R2 extracellular domain might be an innovative TNF-α antagonist [96]. Targeting P2X4 receptors improves postcentral stroke pain through the TNF-α/TNFRI/GABAAR pathway [97]. Given the fact that TNF-α inhibitors are less effective at penetrating BBB, the researchers are also looking for new types of inhibitors that can more easily move through BBB and act more effectively in the damaged areas [98].
These emerging studies provide new research ideas for anti-TNF-α treatment of stroke.

6. Conclusion

In conclusion, although some current studies do not support TNF-α as a clear marker of stroke, we still believe that it is desirable to focus on TNF-α in the following studies, considering that TNF-α is involved in the occurrence, development, and prognosis of stroke and has an indicative effect on the disease. Therefore, it is a promising research direction to use TNF-α as a biomarker of stroke development process or prognosis. At the same time, anti-TNF-α therapy can reduce brain damage in stroke, and it is also worth exploring as a therapeutic target. To make TNF-α be a reliable marker of stroke, the specific role and mechanism it plays in stroke, the protective effect and mechanism of anti-TNF-α treatment against brain injury, and how to reduce the side effects of antibodies are the primary issues that need to be further studied and solved by the researchers. There is a reason to believe that the next marker of stroke is on the horizon with the ongoing research.

Data Availability

Please contact the corresponding author (Pro. Tu) for the data request.

Ethical Approval

Ethical approval is not applicable.

Consent

Consent is not applicable.

Conflicts of Interest

The authors have no conflict of interest relevant to this study.

Acknowledgments

This study was supported by grants from the China Postdoctoral Science Foundation (Nos. 2019M660921 and 2020T130436); Science Foundation for Post Doctorate Research of the Beijing (Nos. 2017-ZZ-123 and 2020-ZZ-005); and Natural Science Foundation of Tianjin (No. 19JCYBJC26600).

References

[1] E. J. Benjamin, P. Muntner, A. Alonso et al., “Heart disease, and stroke statistics—2019 update: a report from the American Heart Association,” Circulation, vol. 139, no. 10, pp. e56–e528, 2019.

[2] C. O. Johnson, M. Nguyen, G. A. Roth et al., “Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016,” The Lancet Neurology, vol. 18, no. 5, pp. 439–458, 2019.

[3] M. Tsalta-Mladenov and S. Andonova, “Health-related quality of life after ischemic stroke: impact of sociodemographic and clinical factors,” Neurological Research, vol. 43, no. 7, pp. 553–561, 2021.

[4] W. J. Tu, B. H. Chao, L. Ma et al., “Case-fatality, disability and recurrence rates after first-ever stroke: a study from bigdata observational platform for stroke of China,” Brain Research Bulletin, vol. 175, pp. 130–135, 2021.

[5] S. Dolati, J. Soleymani, S. Kazem Shakouri, and A. Mobed, “The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke,” Clínica Chimica Acta, vol. 514, pp. 107–121, 2021.

[6] A. Simats, T. García-Berrocoso, and J. Montaner, “Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy,” Biochimica et Biophysica Acta, vol. 1862, no. 3, pp. 411–424, 2016.

[7] J. Faura, A. Bustamante, F. Miró-Mur, and J. Montaner, “Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections,” Journal of Neuroinflammation, vol. 18, no. 1, pp. 127–127, 2021.

[8] M. Teymuri Kheravi, S. Nayaebifar, S. M. Aletaha, and S. Sarhadi, “The effect of two types of exercise preconditioning on the expression of TrkB, TNF-α, and MMP2 genes in rats with stroke,” BioMed Research International, vol. 2021, Article ID 5595368, 7 pages, 2021.

[9] E. Tarkowski, L. Rosengren, C. Blomstrand et al., “Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke,” Stroke, vol. 26, 8 pages, 1995.

[10] K. Fassbender, S. Rossol, T. Kammer et al., “Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease,” Journal of the Neurological Sciences, vol. 122, no. 2, pp. 135–139, 1994.

[11] N. Vila, J. Castillo, A. Dávalos, and A. Chamorro, “Proinflammatory cytokines and early neurological worsening in ischemic stroke,” Stroke, vol. 31, no. 10, pp. 2325–2329, 2000.

[12] N. Vila, J. Castillo, A. Dávalos, A. Esteve, A. M. Planas, and A. Chamorro, “Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke,” Stroke, vol. 34, no. 3, pp. 671–675, 2003.

[13] X. Cheng, Y. Shen, and R. Li, “Targeting TNF: a therapeutic strategy for Alzheimer’s disease,” Drug Discovery Today, vol. 19, no. 11, pp. 1822–1827, 2014.

[14] B. B. Aggarwal, “Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB,” Annals of the Rheumatic Diseases, vol. 59, no. 90001, 2000.

[15] G. Olmos and J. Lladó, “Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity,” Mediators of Inflammation, vol. 2014, Article ID 861231, 12 pages, 2014.

[16] R. Fischer and O. Maier, “Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 610813, 18 pages, 2015.

[17] F. C. Barone, B. Arvin, R. F. White et al., “Tumor necrosis factor-α, Stroke, vol. 28, no. 6, pp. 1233–1244, 1997.

[18] N. R. Bonetti, C. Díaz-Cañestro, L. Liberale et al., “Tumour necrosis factor-α inhibition improves stroke outcome in a mouse model of rheumatoid arthritis,” Scientific Reports, vol. 9, no. 1, p. 2173, 2019.
Disease Markers

[19] A. Tuttolomondo, D. di Raimondo, R. di Sciaccia, A. Pinto, and G. Licata, "Inflammatory cytokines in acute ischemic stroke," Current Pharmaceutical Design, vol. 14, no. 33, pp. 3574–3589, 2008.

[20] S.-Y. Lin, Y. Y. Wang, C. Y. Chang et al., "TNF-α receptor inhibitor alleviates metabolic and inflammatory changes in a rat model of ischemic stroke," Antioxidants, vol. 10, no. 6, p. 851, 2021.

[21] G. Epstein Shochet, E. Brook, L. Israeli-Shani, E. Edelstein, and G. Licata, "Inhibitor alleviates metabolic and inflammatory changes in a rat model of ischemic stroke," Antioxidants, vol. 10, no. 6, pp. 790–800, 2003.

[22] G. Epstein Shochet, E. Brook, L. Israeli-Shani, E. Edelstein, and G. Licata, "Inhibitor alleviates metabolic and inflammatory changes in a rat model of ischemic stroke," Antioxidants, vol. 10, no. 6, pp. 790–800, 2003.

[23] C. R. Bates and A. M. Mercurio, "TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease," The American Journal of Pathology, vol. 165, no. 3, pp. 2123–2133, 2004.

[24] B. B. Aggarwal, "Signalling pathways of the TNF superfamily: a double-edged sword," Nature Reviews Immunology, vol. 3, no. 9, pp. 745–756, 2003.

[25] X. Chen, M. Bäumel, D. N. Männel, O. M. Z. Howard, and J. J. Oppenheim, "Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells," Journal of Immunology, vol. 179, no. 1, pp. 154–161, 2007.

[26] D. N. Doll, T. L. Barr, and J. W. Simpkins, "Cytokines: their role in stress and potential use as biomarkers and therapeutic targets," Aging and Disease, vol. 5, no. 5, pp. 294–306, 2014.

[27] R. van Horsen, T. L. Ten Hagen, and A. M. Eggermont, "TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility," The Oncologist, vol. 11, no. 4, pp. 397–408, 2006.

[28] D. Lah, R. Grant, P. Mishra, and N. Nilubol, "The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment," Frontiers in Immunology, vol. 12, article 656908, 2021.

[29] C. F. Ware, "Network communications: lymphotoxins, LIGHT, and TNF," Annual Review of Immunology, vol. 23, no. 1, pp. 787–819, 2005.

[30] M. K. McCoy and M. G. Tansey, "TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease," Journal of Neuroinflammation, vol. 5, no. 1, pp. 45–48, 2008.

[31] S. Harashima, T. Horiiuchi, N. Hatta et al., "Outside-to-inside signal through the membrane TNF-alpha induces E-selectin (CD62E) expression on activated human CD4+ T cells," Journal of Immunology, vol. 166, no. 1, pp. 130–136, 2001.

[32] L. A. Tartaglia and D. V. Goeddel, "Two TNF receptors," Immunology Today, vol. 13, no. 5, pp. 151–153, 1992.

[33] O. A. Diaz Arguello and H. J. Haisma, "Apoptosis-inducing TNF superfamily ligands for cancer therapy," Cancers, vol. 13, no. 7, 2021.

[34] D. W. Banner, A. D’Arcy, W. Janes et al., "Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation," Cell, vol. 73, no. 3, pp. 431–445, 1993.

[35] H. Hsu, H. B. Shu, M. G. Pan, and D. V. Goeddel, "TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways," Cell, vol. 84, no. 2, pp. 299–308, 1996.

[36] H. Hsu, J. Huang, H. B. Shu, V. Baichwal, and D. V. Goeddel, "TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex," Immunity, vol. 4, no. 4, pp. 387–396, 1996.

[37] H. B. Shu, M. Takeuchi, and D. V. Goeddel, "The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex," Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13973–13978, 1996.

[38] J. E. Vinc, D. Pantaki, R. Feltham et al., "TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-(kappa)b and to prevent tnf-induced apoptosis," The Journal of Biological Chemistry, vol. 284, no. 1, pp. 35906–35915, 2009.

[39] C. Dostert, M. Grusdat, E. Letellier, and D. Brenner, "The TNF family of ligands and receptors: communication modules in the immune system and beyond," Physiological Reviews, vol. 99, no. 1, pp. 115–160, 2019.

[40] T. L. Haas, C. H. Emmerich, B. Gerlach et al., "Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction," Molecular Cell, vol. 36, no. 5, pp. 831–844, 2009.

[41] P. Gough and I. A. Myles, "Tumor necrosis factor receptors: pleiotropic signaling complexes and their differential effects," Frontiers in Immunology, vol. 11, article 585880, 2020.

[42] D. Faustman and M. Davis, "TNF receptor 2 pathway: drug target for autoimmune diseases," Nature Reviews. Drug Discovery, vol. 9, no. 6, pp. 482–493, 2010.

[43] Y. Mukai, T. Nakamura, M. Yoshikawa et al., "Solution of the structure of the TNF-TNF2 complex," Science Signaling, vol. 3, no. 148, 2010.

[44] S. Yang, J. Wang, D. D. Brand, and S. G. Zheng, "Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications," Frontiers in Immunology, vol. 9, pp. 784–784, 2018.

[45] Y. Sheng, F. Li, and Z. Qin, "TNF receptor 2 makes tumor necrosis factor a friend of tumors," Frontiers in Immunology, vol. 9, pp. 1170–1170, 2018.

[46] S. Ahmad, N. A. Azid, J. C. Boer et al., "The key role of TNF-TNF2 interactions in the modulation of allergic inflammation: a review," Frontiers in Immunology, vol. 9, pp. 2572–2572, 2018.

[47] J. Medler and H. Wajant, "Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target," Expert Opinion on Therapeutic Targets, vol. 23, no. 4, pp. 295–307, 2019.

[48] L. M. Boulanger, "Immune proteins in brain development and synaptic plasticity," Neuron, vol. 64, no. 1, pp. 93–109, 2009.

[49] J. L. Flynn, M. M. Goldstein, J. Chan et al., "Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice," Immunity, vol. 2, no. 6, pp. 561–572, 1995.

[50] D. Fresegna, S. Bullita, A. Musella et al., "Re-examining the role of TNF in MS pathogenesis and therapy," Cell, vol. 9, no. 10, p. 2290, 2020.
[51] M. Lewis, L. A. Tartaglia, A. Lee et al., “Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 7, pp. 2830–2834, 1991.

[52] D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-α,” Nature, vol. 440, no. 7087, pp. 1054–1059, 2006.

[53] E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNF alpha,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002.

[54] F. Ogoshi, H. Z. Yin, Y. Kuppumbatti, B. Song, S. Amindari, and J. H. Weiss, “Tumor necrosis-factor-alpha (TNF-α) induces rapid insertion of Ca²⁺-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons,” Experimental Neurology, vol. 193, no. 2, pp. 384–393, 2005.

[55] P. He, Q. Liu, J. Wu, and Y. Shen, “Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons,” The FASEB Journal, vol. 26, no. 1, pp. 334–345, 2012.

[56] G. Perea, M. Navarrete, and A. Araque, “Tripartite synapses: astrocytes process and control synaptic information,” Trends in Neurosciences, vol. 32, no. 8, pp. 421–431, 2009.

[57] X. Jin and Gereau RW 4th, “Tumor necrosis factor-alpha (TNF-α) receptors demonstrate one receptor is species specific of cDNAs for two distinct murine tumor necrosis factor-alpha,” Nature, vol. 295, no. 5563, pp. 689–695, 1993.

[58] X. Zhou, F. Yu, X. Feng et al., “Immunity and inflammation predictors for short-term outcome of stroke in young adults,” The International Journal of Neuroscience, vol. 128, no. 7, pp. 634–639, 2018.

[59] B. H. Clausen, M. Degn, N. A. Martin et al., “Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia,” Journal of Neuroinflammation, vol. 11, no. 1, p. 203, 2014.

[60] J. Zaremba and J. Losy, “Early TNF-alpha levels correlate with ischaemic stroke severity,” Acta Neurologica Scandinavica, vol. 104, no. 5, pp. 288–295, 2001.

[61] S. L. Montgomery and W. J. Bowers, “Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells,” The Journal of Pharmacology and Experimental Therapeutics, vol. 297, no. 3, pp. 1051–1058, 2001.

[62] J. M. Hallenbeck, “The many faces of tumor necrosis factor in stroke,” Nature Medicine, vol. 8, no. 12, pp. 1363–1368, 2002.

[63] N. Badiola, C. Malageleda, N. Llecha et al., “Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen-glucose deprived cultured cortical cells,” Neurobiology of Disease, vol. 35, no. 3, pp. 438–447, 2009.

[64] C. C. Hughes, D. K. Male, and P. L. Lantos, “Adhesion of lymphocytes to cerebral microvascular cells: effects of interferon-gamma, tumor necrosis factor and interleukin-1,” Immunology, vol. 64, no. 4, pp. 677–681, 1988.

[65] H. Loppnow and P. Libby, “Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6,” The Journal of Clinical Investigation, vol. 85, no. 3, pp. 731–738, 1990.

[66] V. W. Yong, C. Power, F. Forsyth, and D. R. Edwards, “Metalloproteinases in biology and pathology of the nervous system,” Nature Reviews. Neuroscience, vol. 2, no. 7, pp. 502–511, 2001.

[67] H. Nawashiro, K. Tasaki, C. A. Ruetzler, and J. M. Hallenbeck, “TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 17, no. 5, pp. 483–490, 1997.

[68] B. Cheng, S. Christakos, and M. P. Mattson, “Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis,” Neuron, vol. 12, no. 1, pp. 139–153, 1994.

[69] M. Liang, L. Zhang, and Z. Geng, “Advances in the development of biomarkers for poststroke epilepsy,” BioMed Research International, vol. 2021, Article ID 5567046, 8 pages, 2021.

[70] Y. Chen, J. Pu, Y. Liu et al., “Pro-inflammatory cytokines are associated with the development of post-stroke depression in...”
the acute stage of stroke: a meta-analysis,” Topics in Stroke Rehabilitation, vol. 27, no. 8, pp. 620–629, 2020.

[82] M. A. Grigolashvili and R. M. Mustafina, “The role of the inflammatory process in the development of post-stroke cognitive impairment,” Zh Nevrol Psikhiatr Im S S Korsakova, vol. 121, no. 3, pp. 16–21, 2021.

[83] E. Tobinick, N. M. Kim, G. Reyzin, H. Rodriguez-Romanaace, and V. DePuy, “Selective TNF inhibition for chronic stroke and traumatic brain injury,” CNS Drugs, vol. 26, no. 12, pp. 1051–1070, 2012.

[84] J. Zaremba and J. Losy, “Early TNF-α levels correlate with ischaemic stroke severity,” Acta Neurologica Scandinavica, vol. 104, no. 5, pp. 288–295, 2001.

[85] H. Flores-Cantú, F. Góngora-Rivera, F. Lavalle-González et al., “Tumor necrosis factor alpha, prognosis and stroke subtype etiology,” Medicina Universitaria, vol. 18, no. 73, pp. 194–200, 2016.

[86] C. A. Arango-Dávila, A. Vera, A. C. Londoño et al., “Soluble or soluble/membrane TNF-α inhibitors protect the brain from focal ischemic injury in rats,” The International Journal of Neuroscience, vol. 125, no. 12, pp. 936–940, 2015.

[87] A. K. Frankola, H. N. Greig, W. Luo, and D. Tweedie, “Targeting TNF-Alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases,” CNS & Neurological Disorders Drug Targets, vol. 10, no. 3, pp. 391–403, 2011.

[88] V. Gerraets, P. Bansal, A. Goyal, and K. Khaddour, Tumor necrosis factor inhibitors, StatPearls Publishing LLC., Treasure Island (FL), 2021.

[89] D. H. Present, P. Rutgeerts, S. Targan et al., “Infliximab for the treatment of fistulas in patients with Crohn’s disease,” The New England Journal of Medicine, vol. 340, no. 18, pp. 1398–1405, 1999.

[90] X. Wang, G. Z. Feuerstein, L. Xu et al., “Inhibition of tumor necrosis factor-α-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats,” Molecular Pharmacology, vol. 65, no. 4, pp. 890–896, 2004.

[91] H. Nawashiro, D. Martin, and J. M. Hallenbeck, “Neuroprotective effects of TNF binding protein in focal cerebral ischemia,” Brain Research, vol. 778, no. 2, pp. 265–271, 1997.

[92] L. Liberale, N. R. Bonetti, Y. M. Puspitasari et al., “TNF-α antagonism rescues the effect of ageing on stroke: perspectives for targeting inflamm-ageing,” European Journal of Clinical Investigation, vol. 51, no. 11, article e13600, 2021.

[93] X. Mariette, M. Matucci-Cerinic, K. Pavelka et al., “Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis,” Annals of the Rheumatic Diseases, vol. 70, no. 11, pp. 1895–1904, 2011.

[94] F. Wolfe and K. Michaud, “Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study,” Arthritis and Rheumatism, vol. 56, no. 9, pp. 2886–2895, 2007.

[95] M. C. Borlongan, C. Kingsbury, F. E. Salazar et al., “IL-2/IL-2R antibody complex enhances Treg-induced neuroprotection by dampening TNF-α inflammation in an In Vitro stroke model,” Neuromolecular Medicine, vol. 23, no. 4, pp. 540–548, 2021.

[96] M. A. Contreras, L. Macaya, V. Manrique et al., “A trivalentTNF-R2as a new tumor necrosis factor alpha-blocking molecule,” Proteins, vol. 89, no. 11, pp. 1557–1564, 2021.