Towards genetically encoded sensors for nitric oxide bioimaging in planta

Vajiheh Safavi-Rizi 1,*†

1 Department of Plant Physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487 Greifswald, Germany
*Author for communication: vajiheh.safavi-Rizi@uni-greifswald.de
†Senior author.

V.S.R. conceived and wrote the manuscript.

Dear Editor,

Nitric oxide (NO) is a multitasking signaling molecule that is functional in a wide range of organisms such as humans, animals, plants, fungi, and bacteria (Lindermayr and Durner, 2018). In plants, NO plays a role in diverse morphological and physiological events such as seed germination, root emergence, hormone response, fruit ripening, and senescence as well as response to biotic and abiotic stresses (Simontacchi et al., 2015; Safavi-Rizi et al., 2020). Although our understanding of the role of NO in animal and plant cells is progressing rapidly, the advancement for spatio-temporal quantification of NO in vivo, particularly in plant cells, has been lagging.

The restrictions of the current methods of NO detection lay in their limited specificity and/or sensitivity and their lack of the suitability to give insight on the spatio-temporal NO dynamics inside living cells as they require sample processing (Ren and Ai, 2013). Another major obstacle is the simultaneous detection of NO in multiple compartments (Bryan and Grisham, 2007). This is particularly important considering the low half-life of NO and its high reactivity and complexity of its biosynthesis (Figure 1) in planta (Lindermayr and Durner, 2018). It is crucial to study the real-time dynamics of NO synthesis and signaling during development as well as stress response. Moreover, it is necessary to understand to what extent NO signaling patterns are specific to the type and duration of various stresses. Hence, developing genetically encoded NO sensor proteins can provide a promising tool for spatio-temporal NO detection in living single cells at the subcellular level under control and stress conditions, which is not possible with the current detection methods in plant cells.

Several genetically encoded fluorescent protein (FP) sensors have been developed for in vivo detection of NO in animals (Table 1). However, the adaptation and implementation of such sensors in plants remain limited.

Development of genetically encoded NO probes (geNOps) provides a recent advancement in NO-biosensing by an FP sensor. GeNOps has been established for in vivo NO bioimaging in animal cells but has similar potential for in planta NO bioimaging. GeNOps may enable a multifaceted approach for the detection of NO formation, diffusion, and degradation with the option of NO detection with subcellular resolution (Eroglu et al., 2016; Eroglu et al., 2017; Eroglu et al., 2018). GeNOps structure is based on GAF (cyclic GMP, adenylyl cyclase, FhlA), a NO binding domain originated from bacteria fused to FP variant (cyan, green, or orange FP; Eroglu et al., 2016). The GAF domain belongs to NorR (Anaerobic NO reductase transcription regulator), a NO-responsive transcription factor in Escherichia coli (D’Autreaux et al., 2005). In the presence of NO, it binds to the iron(II) of GAF giving rise to a NorR–[Fe(NO)]7...
complex that shows decreased fluorescence intensity (D’Autreaux et al., 2005; Figure 1). Since this system is reversible, NO decrease recovers the fluorescence intensity (Eroglu et al., 2016; Eroglu et al., 2017; Eroglu et al., 2018).

Long-standing questions in plants that could be addressed through the implementation of genetically encoded NO biosensors, such as geNOps, include

(1) To what extent does organelle-generated NO reach the nucleus to modulate gene expression under stress conditions? Cytosolic and mitochondrial-targeted geNOps would open the door to understanding subcellular NO dynamics from different sources such as cytosolic nitrate reductase (NR) or the mitochondrial electron transport chain. Probing for NO diffusion to the nucleus would allow deep insights into the role of NO in induction of hypoxia-responsive gene expression.

(2) What is the impact of stress intensity and duration on NO dynamics and signaling in the cell and what is the consequence on the stress response? Using a biosensor such as geNOps may facilitate monitoring spatio-temporal dynamics of NO in the early versus later stress stages as well as mild versus severe stresses.

(3) What is the spatio-temporal choreography of differential NO production between different regions of an organ, either during development or in response to stress? NO biosensing may allow a detailed insight into the organ-specific spatio-temporal distribution of NO.

(4) What is the organelle-specific NO dynamic during symbiosis? What are the respective contributions from different sources such as cytosolic NR, peroxisomal enzymes such as xanthine dehydrogenase (XDH), and the mitochondrial electron transport chain? Biosensing approaches may be able to map out patterns of organelle-specific NO dynamics during symbiosis.

However, geNOps has several limitations that need to be considered for developing its application particularly in planta (Eroglu et al., 2017): (1) geNOps function depends on heme which might impact measurements depending on the availability of endogenous heme inside the specific cellular location. (2) geNOps is pH sensitive. Acidic conditions cause decreased fluorescence of cyan and green geNOps. This is an important consideration as the cellular compartments vary in their pH particularly upon stress conditions such as hypoxia which decreases the cytosolic pH. Therefore, it is crucial to use a NO-insensitive control probe, geNOpsmut, for a meaningful interpretation of probe responses. (3) The intensional nature of the sensor makes it dependent on the expression level, and its fusion with a non-responsive normalizer fluorophore, such as mCherry, is recommended (Hung et al., 2011).

In conclusion, geNOps is a potential candidate for developing NO biosensing in planta. Future investigation should focus not only on finding the most suitable sensors for NO detection in plant cells but also on finding suitable fluorophores and tags for monitoring the subcellular localization (e.g., mitochondria, cytoplasm, plasma membrane, peroxi-some, plastid) of NO. Subcellular-targeted geNOps would

Figure 1 Different NO sources in plant cells and the basic structure of geNOps as potential FP sensors for plant NO bioimaging. Cytosolic NR, the key enzyme involved in nitrate assimilation which converts nitrate to nitrite, is the most famous enzyme documented to catalyze the conversion of nitrite to NO (Yamamoto-Katou et al., 2006). Besides NR, another MOCO enzyme, xanthine oxidoreductase (XOR) or XDH in plants, involved in purine catabolism in the peroxisome, synthesizes NO from nitrite in vitro (Godber et al., 2000). Moreover, cytochrome c oxidase, part of the electron transport chain (ETC) located in the inner membrane of mitochondria, is involved in NO synthesis from nitrite (Planchet et al., 2005). Under low oxygen condition, nitrite:NO reductase (NiNOR) activity, which has been discovered in the root plasma membrane (PM), uses the nitrite provided by PM bound NR as substrate (Stöhr et al., 2001). Under low pH, non-enzymatic conversion of nitrite to NO can occur in the apoplast and plastids (Bethke et al., 2004; Gas et al., 2009). The geNOps fluorescence decreases upon binding of NO to the Fe^2+ center, and this reaction is reversible in the absence or reduced level of NO (Eroglu et al., 2016).

Table 1 Available genetically encoded FP sensors for NO detection

Genetically encoded Probe name	Mechanism of function (based on NO or its derivatives)	Studied organism	Detection method	Reference
FRET-MT	Metallothionein-based NO reporter	Animal	Fluorescence technology	Pearce et al. (2000)
NOA1	cGMP-based	Animal	Fluorescence technology	Sato et al. (2005)
pnGFP	Peroxy nitrite (ONOO^{-})-based	Animal	Fluorescence technology	Chen et al. (2013)
sNOOPy	Nitrate and nitrite-based	Animal	Fluorescence technology	Hidaka et al. (2016)
geNOps	NO-based	Animal	Fluorescence technology	Eroglu et al. (2016)
Lb^{2+} NO	Nitrosyl-plethoglobin-based	Plant	Electron paramagnetic resonance spectroscopy (EPR)	Calvo-Begueria et al. (2018)
enable monitoring NO spatio-temporal dynamics in real-time in planta.

Conflict of interest statement. The author declares no conflict of interest.

References

Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16: 332–341
Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43: 645–657
Calvo-Begueria L, Rubio MC, Martinez JI, Pérez-Rontomé C, Delgado MJ, Bedmar EJ, Becana M (2018) Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes. J Exp Bot 69: 3703–3714
Chen ZJ, Ren W, Wright QE, Ai HW (2013) Genetically encoded fluorescent probe for the selective detection of peroxynitrite. J Am Chem Soc 135: 14940–14943
D’Autreaux B, Tucker NP, Dixon R, Spiro S (2005) A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437: 769–772
Eroglu E, Charoenisin S, Bischof H, Ramadani J, Gottschalk B, Depaoli MR, Waldeck-Weiermair M, Graier WF, Malli R (2018) Genetic biosensors for imaging nitric oxide in single cells. Free Radic Biol Med 128: 50–58
Eroglu E, Gottschalk B, Charoenisin S, Blass S, Bischof H, Rost R, Madreiter-Sokolowski CT, Pelzmann B, Bernhart E, Sattler W, Hallstrom S, et al. (2016) Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun 7: 10623
Eroglu E, Rost R, Bischof H, Blass S, Schreilechner A, Gottschalk B, Depaoli MR, Klec C, Charoenisin S, Madreiter-Sokolowski CT, et al. (2017) Application of genetically encoded fluorescent nitric oxide (NO) probes, the geNOps, for real-time imaging of NO signals in single cells. J Vis Exp 121: 55486
Gas E, Flores-Perez U, Sauret-Gueto S, Rodriguez-Concepcion M (2009) Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell 21: 18–23
Godber BLJ, Doel JJ, Durgan J, Eisenthal R, Harrison R (2000) A new route to peroxynitrite: a role for xanthine oxidoreductase. Febs Lett 475: 93–96
Hidaka M, Gotoh A, Shimizu T, Minamisawa K, Imamura H, Uchida T (2016) Visualization of NO3(−)/NO2(−) dynamics in living cells by fluorescence resonance energy transfer (FRET) imaging employing a rhizobial two-component regulatory system. J Biol Chem 291: 2260–2269
Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14: 545–554
Lindermayr C, Durner J (2018) Nitric oxide sensor proteins with revolutionary potential. J Exp Bot 69: 3507–3510
Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ, McLaughlin MK, Pitt BR, Levitan ES (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent protein. Proc Natl Acad Sci USA 97: 477–482
Planchet E, Gupta KJ, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41: 732–743
Ren W, Ai HW (2013) Genetically encoded fluorescent redox probes. Sensors (Basel) 13: 15422–15433
Safavi-Rizi V, Herde M, Stöhr C (2020) Identification of nitric oxide (NO)-responsive genes under hypoxia in tomato (Solanum lycopersicum L) root. Sci Rep 10: 16509
Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci USA 102: 14515–14520
Simontacchi M, Galatro A, Ramos-Artuso F, Santa-Maria GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6: 977.
Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212: 835–841
Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in nicotiana benthamiana. Plant Cell Physiol 47: 726–735