Multioctave Interference Detectors With Sub-Microsecond Response

Mohammad Abu Khater®, Senior Member, IEEE, and Dimitrios Peroulis®, Fellow, IEEE

Abstract—High-power interferers are one of the main hurdles in wideband communication channels. To that end, this article presents a wideband interferer detection method. The presented technique operates by sampling the incoming signal as an input, and produces the frequency and the power readings of the detected interferer. The detection method relies on driving an open circuit stub, where the voltage is proportional to the power of the interferer, and the standing wave pattern is an indicator of its frequency. This approach is feasible over multioctave bandwidth with a wide power dynamic range. The concept is analyzed for design and optimization, and a prototype is built for a proof-of-concept. The measured results demonstrate the ability to detect an interferer within the 1–16 GHz frequency range, with a power dynamic range between −20 and 20 dBm. The detection concept is also fit with different types of tunable bandstop filters (BSFs) for automatic detection and suppression of the interferer if its power exceeds a programmable threshold. With a measured response time of 500 ns, the presented method is a technology enabler for wideband receivers.

Index Terms—Adaptive front-ends, frequency-selective limiters, interference detection, wideband radios.

I. INTRODUCTION

WIDE BAND receivers are essential for numerous applications such as opportunistic radios and high-throughput, multichannel links. Exposing receiver circuits to a very wide spectrum, however, makes them vulnerable to strong interferers. This can result in desensitization, deteriorated linearity performance, and possibly damaging the receiver. Consequently, a diverse amount of technologies and techniques are researched to detect and suppress interferers in wideband systems.

Signal processing techniques, analog and digital, have been implemented to detect and suppress interferers for various wideband applications such as ultra-wideband (UWB) [1], [2], [3], [4]. Such techniques benefit from the agility of digital systems, or the speed of analog circuits. To operate properly, however, those techniques rely on the linearity, and the power reliability, of the RF front-end, which could be a limitation if a high-power interferer exists. The operating bandwidth is also typically limited.

RF power limiters have shown a relatively fast response (nanoseconds in [5]) while protecting the rest of the RF chain. This is favorable in pulsed interferers, where it is necessary to attenuate a short high-energy pulse. Wideband attenuators are available in various technologies such as plasma [5], microelectromechanical systems (MEMS) [6], or solid state [7], [8]. The use of wideband attenuators results in an adverse suppression of the whole operating band, suppressing the signal of interest. Alternatively, widely tunable narrowband limiters [5] can single out the interferer in the attenuation. This, however, still requires prior knowledge of the interfering signal, and limits the instantaneous operating bandwidth of the RF chain. Furthermore, limiters frequently suffer from limited linearity, and recovery times of up to 10–40 ms [8].

Another set of technologies to combat interferers in wideband systems is frequency-selective limiters. They typically protect the receiver circuits, while leaving the rest of the channel intact. The innovations in this area include adaptive power limit and tunable frequency. For example, the work in [9] utilizes an intelligent self-actuation of MEMS switches, where a dc bias controls the actuation power level. This provides a frequency-dependent power limiting, which is implemented with a tunable filter. The limited response time of MEMS switches can be resolved with the use of diode-based nonlinear filters [10], [11], [12], [13]. Such power-dependent responses typically have limited power dynamic range (10–20 dB). A wider dynamic range can be achieved with active coupling techniques [14], which, similar to [9] and [10], requires prior knowledge of the interfering signal frequency. Spectrum scanning methods in [15] and [16] are effective in locating the interferer in the band of interest, at the cost of extended response time.

The interference detection method presented in this article is capable of operating over a multiple octaves, while maintaining sub-μs response time. The detection method is based on weakly coupling into the incoming signal, and measuring the standing wave pattern of the resulting waveform. The initial concept is presented by Abu Khater and Peroulis [17]. This work significantly expands on the previous work by analyzing the design and optimizing the tradeoffs. In addition, several new concepts and methods are introduced that result in: 1) increasing the instantaneous operating bandwidth by two octaves (from 2–8 GHz to 1–16 GHz); 2) increasing the detected power dynamic range by 20 dB (from 20 to 40 dB);
3) halving the response time (from 1 to 0.5 μs); and 4) demonstrating the ability to detect and suppress multiple interferers. The interference detection method is implemented and fitted with different types of tunable bandstop filters (BSFs) to demonstrate its versatility. The unmatched measured results represent a feasible solution for wideband receivers operating over multioctave bands simultaneously.

II. DETECTION THEORY OF OPERATION

The initial detection concept is briefly summarized in [17]. Some parts below are repeated for completeness.

A. Detection Concept

In the presence of multiple signals in a channel, the waveform is dominated by that of the highest power signal. As a result, the frequency and power of the incoming signal are monitored and used to determine whether the strongest signal is an interferer that should be suppressed. The concept of monitoring the power and frequency of an incoming signal is summarized in Fig. 1.

A weak resistive coupling into the received signal path produces a replica of the signal into the monitoring part. A resistor, as opposed to reactive components, is preferred since it results in a frequency-independent coupling. In addition, reactive coupling typically suffers from self-resonance when operating over multioctave bandwidth. The coupled signal then goes through a programmable attenuator, which maintains the signal within a manageable level for subsequent stages. This also serves in increasing the power dynamic range of the signal monitoring part. The level of the attenuator is automatically set by the controller. The signal is then amplified to a detectable level.

While, from a noise perspective, the amplifier is expected to be placed before the attenuator, the attenuator is placed first since it typically cannot handle the high power from the amplifier in the case of a strong interferer. This also helps in maintaining a linear gain from the amplifier.

The signal from the amplifier then drives an open circuit stub. The magnitude of the voltage at the open end is

$$V_{OC} = \sqrt{8P_{STUB}Z_{0S}} = \sqrt{8CL_{AI}G_{PA}P_{in}Z_{0S}}$$

(1)

where P_{STUB} is the power incident on the open stub, Z_{0S} is its characteristic impedance, C is the power coupling from the coupling resistor R_C, L_{AI} is the loss from the attenuator, G_{PA} is the amplifier gain, and P_{in} is the RF input power. The analysis of the circuit model of the resistive coupling (shown in Fig. 1) reveals that the coupling C is

$$C(dB) = 20 \log \left(\frac{2Z_0}{2RC + 3Z_0} \right)$$

(2)

where Z_0 is the system impedance (50 Ω here). From (1) and (2), a smaller coupling resistance provides stronger coupling and larger voltage to detect in the monitoring part of the design. This, however, can deteriorate the insertion loss ($S21$) and the matching condition ($S11$). These conditions are described by

$$S11(dB) = 20 \log \left(\frac{Z_0}{2RC + 3Z_0} \right)$$

(3a)

$$S21(dB) = 20 \log \left(\frac{2RC + 2Z_0}{2RC + 3Z_0} \right).$$

(3b)

To properly choose the coupling resistor value, the insertion loss condition is used here since the matching is less sensitive to R_C. For example, for a 0.8-dB insertion loss condition, $R_C = 210$ Ω, the coupling $C = -15$ dB, and the matching $S11 = -21$ dB.

The relationship between V_{OC} and P_{in} in (1) presents a power monitoring method. This is used in a comparison with a programmable power threshold in order to decide whether to take action against the interferer or not. The minimum and maximum powers are generally dictated by the power detector limits.

To monitor the frequency, the standing wave pattern is used. The normalized magnitude of the standing wave pattern is

$$\left| \frac{V(l)}{V_{OC}} \right| = \cos \left(\frac{\pi f}{2 f_{MAX}} \right)$$

(4)
where l is the length from the open end of the stub, f is the frequency of the strongest signal in the path (potentially the interferer), and f_{MAX} is the maximum operating frequency ($c/4l$) where the length l is a quarter wavelength ($\lambda/4$). Beyond this frequency, the relationship between $V(l)$ and the frequency is no longer bijective, and the ratio no longer indicates a unique frequency.

The relationship in (4) dictates the maximum detectable frequency. The minimum detectable frequency, however, is dictated by the resolution of the monitoring system (details in Section II-B).

To widen the frequency detection range, a second monitoring node is used at a further distance from the open end (l_2 in Fig. 1). The further monitoring node is used to measure lower frequencies up to its maximum, then the nearer one is used (l_1). Switching the decision between monitoring l_1 or l_2 is based on the value of l_1 reaching the minimum detectable frequency.

The relationship in (4) works as the frequency monitoring method. Combined with (1), a two-dimensional calibration table is now formed to identify the frequency and power of the strongest signal in the RF path, which is potentially an interferer as depicted in Fig. 1.

B. Resolution Analysis

The ratio in (4) shows small variations at lower frequencies. For example, at $f = 0.1 f_{\text{MAX}}$ and $f = 0.2 f_{\text{MAX}}$, the values are 0.987 and 0.951, respectively (a difference of 3.7%). While the ratios at $f = 0.8 f_{\text{MAX}}$ and $f = 0.9 f_{\text{MAX}}$ are 0.31 and 0.156, respectively (a difference of 15%). In other words, at low frequencies, the monitoring system reaches a point where the ratio no longer indicates frequencies accurately. As a result, it is essential to analyze the resolution of the system to be able to know where to place the secondary sensor, and to quantify the minimum detectable frequency as a specification of the system.

For the analysis below, V_{OC} is assumed to be held constant at the maximum voltage of the analog to digital converter (ADC). This assumption can be validated by using the programmable attenuator as can be inferred from (1). Furthermore, the equations take into consideration that the employed detectors shown in Fig. 1 are logarithmic power detectors, to cover a wide sensing dynamic range.

Using the assumptions above, (4) becomes

$$\log(V(l_1, 2)) - \log(V_{\text{OC}}) = \log\left(\cos\left(\frac{\pi f}{2 f_{\text{MAX}}}\right)\right).$$

Then, (7) is differentiated versus frequency, leading to

$$\frac{\partial V_{\text{DET}}}{\partial f} = -\frac{A\pi}{2\ln(10) f_{\text{MAX}}} \tan\left(\frac{\pi f}{2 f_{\text{MAX}}}\right).$$

To find the frequency resolution $|\Delta f_{\text{min}}|$, (8) is rearranged, and the derivative is approximated as a finite step division, or

$$|\Delta f_{\text{min}}| = \frac{\Delta V_{\text{min}}}{2\ln(10) f_{\text{MAX}}} \tan\left(\frac{\pi f}{2 f_{\text{MAX}}}\right).$$

where ΔV_{min} is the minimum change in V_{DET} that is detectable by the ADC. As predicted earlier in this section, it is clear from (9) that the frequency resolution worsens at low frequencies. As a result, once the minimum detectable frequency change is decided, the detector at l_2 is placed such that its maximum detectable frequency coincides with that of the minimum acceptable frequency from the detector at l_1. These conclusions are illustrated in Fig. 2.

For example, in Fig. 2, if the maximum frequency for l_1 is 16 GHz, and the maximum accepted Δf is 0.25%, then the sensing node l_2 is placed such that its maximum frequency is at 8 GHz (for 12-bit ADC). Following the 12-bit curve for l_2 results in a minimum frequency of approximately 3.8 GHz. More sensing nodes can be added to detect even lower frequencies. This, however, increases the length of the sensing stub.

The minimum detectable frequency (Δf) in (9) is predicted to be infinitesimally small at f_{MAX}. This, however, assumes that the power detector has an unlimited power detection dynamic range. As a result, a finite value of Δf is expected in practice.

While a higher number of bits in an ADC can result in a finer frequency resolution, it typically comes at the cost of increased power consumption and increased hardware complexity.
of slower operation and higher power consumption. In other words, the response time has to be taken into consideration when deciding the acceptable resolution.

III. DESIGN CONSIDERATION

A. Power Limitations

The applications of the detection method include suppressing high-power incoming signals. As a result, a few power limitations are studied below.

The coupling resistor dissipates part of the incoming power. The value of this resistor is typically dictated by the monitoring design as discussed in Section II-A. As a result, the maximum allowable dissipated power by R_C is dictated by its technology and package. Fig. 3 demonstrated the input power effect on the power dissipated in R_C along with typical power limitations of various packages. This plot can be used to determine the necessary package of R_C for a particular application.

High input power can also saturate the power detector, leading to an erroneous frequency read. This can be concluded from (4), where a saturated power detector leads to V_{OC} remaining nearly constant, while V_I is increasing with power. The programmable attenuator can mitigate this issue by keeping the signal within the linear regime of the detector.

B. Directional Coupler

Resistive coupling provides a wideband, compact solution for the detection method. In the presence of a highly reflective filter after it, however, there is a chance that the operation of the detector and the filter becomes unstable. This instability, demonstrated in Fig. 4(a), can be summarized as follows.

1) An interferer reaches the receiver and is detected by the circuits.
2) The highly reflective filter is then tuned to the detected frequency, creating a standing wave pattern.
3) If the detection resistor is at a minimum of the standing wave pattern, the circuits will sense that the interferer is no longer present.
4) The filter is disengaged, causing the interferer to be detected by the circuits again (back to 1).

This instability can be resolved with various methods including reflectionless filters [14], [18], [19] and isolators [20], [21]. The bandwidth of these technologies, however, is typically limited to one octave. As a result, a directional coupler is also demonstrated in lieu of R_C in case a highly reflective filter is used. The applied concept is shown in Fig. 4(b).

To minimize the size of the directional coupler, an asymmetric five-section coupled line design is used [22]. A picture of the directional coupler is shown in Fig. 4(c). The utilized striplines are sandwiched between two substrates to minimize the mismatch between the even and odd mode propagations in the coupled lines [23]. The radial stub enhances the termination at high frequencies.

The coupler is fabricated on a 25-mil RO3006 substrate with $\varepsilon_r = 6.15$. While higher dielectric constants can shrink the overall size, it makes the stripline widths smaller and more sensitive to fabrication tolerances. On the other hand, lower dielectric constants dictate smaller gaps between the coupled lines, which can also be sensitive to tolerances. As a result, an intermediate dielectric constant is used to maintain...
TABLE I
LIST OF COMPONENTS IN THE INTERFERENCE DETECTION PROTOTYPE

R_C	$220 \ \Omega$	R_D	$180 \ \Omega$
Amplifier	HMC460LC5	Power detector	HMC1094LP8
Attenuator	RFSA2113	ADC	LTC2315C1T8

the widths and gaps reasonably large to be more immune to variations.

The simulated and measured results show approximately 15 dB of coupling, and better than 1.6 dB insertion loss up to 14 GHz as shown in Fig. 4(d). The directivity is above 6 dB throughout its operating band, which is sufficient for normal operation of the detector. Since the demonstrated directional coupler is designed up to 14 GHz, this represents the maximum frequency of operation, compared to 16 GHz using the resistive coupling.

IV. IMPLEMENTATION AND MEASUREMENTS

A. Designed Structure

The interference detection method in Fig. 1 is prototyped with both coupling methods, resistive and using the directional coupler. The rest of the circuits are similar. The implemented PCBs are shown in Fig. 5 along with relevant dimensions. Table I summarizes the components used in this design. The 12-bit ADC is running at 5 MSPS.

The presented prototype consumes 280 mA from a 3.3-V power supply, and 68 mA from an 8-V power supply for the amplifier. Since the power detectors and ADCs are electronic circuits, further power reduction can be achieved with an integrated implementation.

The detector is designed such that the maximum operating frequency is 16 GHz for the first detector (at l_1), and 5 GHz for the second detector (at l_2). The dimensions l_1 and l_2 deviate slightly from the theoretical values ($\lambda_g/4$) primarily due to the loading effect from the finite resistors R_D. The final values are optimized in simulations. This configuration results in a minimum detectable frequency of 1 GHz. In the prototype with the directional coupler, however, the maximum frequency is limited to 14 GHz as shown in Fig. 4(d). The results from either coupling method are otherwise identical.

B. Characterization

To quantify the performance of the interference detection method, first, its effect on the insertion loss is studied. Since the results from the directional coupler prototype are discussed in Section III-B, the resistive coupling is discussed below.

Fig. 6(a) shows the S-parameters from RF IN to RF OUT with and without the inclusion of the coupling resistor R_C. As expected from (3a) and (3b), a small attenuation in S_{21} appears as a result of the coupling, while S_{11} is nearly unaffected. Fig. 6(b) compares the achieved attenuation with (3b). The minor deviation is attributed to the finite reflection of the programmable attenuator, and the frequency-dependent value of the resistors due to package parasitics.

The readouts from the ADCs are then investigated versus the input power and frequency (as an interferer). Fig. 7(a) shows the RF input power versus the reading of the ADC at the open end of the stub. To avoid saturating the power detectors, the attenuator is activated at relatively high input power. The power dynamic range is limited by the linear range of the power detectors. The linear (in logarithmic scale) relationship
Fig. 7. (a) Readings from the ADC at the open end of the stub. The voltage is proportional to the input power and is used for power monitoring. The programmable attenuator is activated around 0 dBm to maintain the linear region of the power detector. (b) Analytical and measured values of V_{DET} in (6) at the low frequency point l_2 and high frequency point l_1. This represents the frequency monitoring capability. (c) and (d) Frequency resolution of the measured monitoring data in (b) in GHz and in percentage of operating frequency, respectively. All the measurements above are taken from -20 to 20 dBm.

is consistent with the (1). The frequency-dependent response of the detector does not compromise the frequency/power detection. This is because the detection method also relies on the frequency reading. In other words, the system picks the proper curve in Fig. 7(a) when determining the power.

For the frequency detection, Fig. 7(b) shows the normalized power detector readings at l_1 and l_2, along with the theoretically predicted values in (7). It is clear that at lower frequencies, the readings from l_1 show no significant changes. As a result, the readings from l_2 are used since they are more accurate. At higher frequencies, on the other hand, readings from l_2 are no longer bijective as discussed in Sections II-A, which means they can only be detected from l_1 readings.

The analytical values in Fig. 7(b) reach a theoretical negative infinite value. This is naturally not achievable in practice since the power detectors remain at a fixed minimum at low input powers.

Fig. 7(a) and (b) forms the calibration lookup table shown in Fig. 1.

The resolution of the presented prototype is shown in Fig. 7(c), in GHz, and Fig. 7(d), in percentage, as derived from the results in Fig. 7(b). The theoretical value in (9) is also plotted with the 12-bit ADC used in this implementation. Deviations from the theoretical values are contributed to factors such as modeling accuracy and the frequency-dependent response of the components. The results also show that the minimum detectable frequency is below 3% for most of the frequency range, which is within the capabilities of numerous filter technologies [24], [25], [26], [27], [28], [29].

Interferers typically have a finite bandwidth due to modulation. Fig. 8 shows the reading from the interference detection with continuous wave (CW) signals, in addition to modulated signals with various bandwidths (using 16QAM modulation). The shown measurements are a combination of l_1 and l_2, as shown in Fig. 7(b). The resulting frequency reading shows a weak dependence on the modulation bandwidth, with most of the band being within 2% error and a maximum deviation of less than 5%. As a result, the detection method is showing a reasonable immunity against interferer bandwidth. While many other combinations of modulation types and bandwidths can be tested, this is beyond the scope of this article.

C. Application Measurements

The response time for interference detection is a critical measure to ensure the input energy into a receiver is maintained below the damage level. Furthermore, it is a measure of the downtime of a jammed channel. Fig. 9 shows the measurement setup for the response time of the implemented prototype. In summary, an RF pulse is injected into the interference detector, and the output is measured with a wideband envelope detector (ADL6012). The controller in the interference detector also generates a signal indicating the presence of the interferer when it is above a predetermined threshold. The two signals are then measured with an oscilloscope.
As shown in the plots in Fig. 9, the response time of the interference detector is lagging the RF pulse by 500 ns on average. The delay is primarily due to the ADC (1–2 sample times) and the controller (1 clock time). Faster ADCs can mitigate that if sacrificing the resolution or high power consumption is acceptable.

To test the response time in a more realistic fashion, the interference detector is fit with a tunable BSF as shown in the block diagram in Fig. 10(a). The filter is designed with evanescent-mode resonators to achieve a wide tuning range [26], [30], [31]. The tuning is achieved with PIN diodes, resulting in a tuning time of tens of nanoseconds. The schematic and the photograph of the implemented filter are also shown in Fig. 10(a).

The envelope of the output signal is shown in Fig. 10(b). Compared to the case when the BSF is disabled, the signal is suppressed after the 500 ns delay. When the pulse ends, the filter remains at the pulse frequency for an additional 500 ns before it tunes away from the pulse frequency. The progression of the output spectrum is shown in Fig. 10(c)–(f).

The interferer detection method can be employed in an automated and programmable power limiter, where it tunes a BSF to the frequency of the interferer. The setup is similar to the one shown in Fig. 10(a). The measurement in Fig. 11(a) is the result using an evanescent-mode-based filter and Fig. 11(b) a commercial yttrium iron garnet (YIG)-based filter (MLFR-0220 from Micro Lambda Wireless), respectively. This demonstrates the agility of the presented work versus the filtering technique. The results also demonstrate the ability to program the threshold power between −20 and 20 dBm regardless of the operating frequency. The suppression of the evanescent-mode filter weakens at higher powers due to the PIN diodes being no longer in the OFF state. This can be mitigated with higher reverse bias.

In the presence of multiple strong interferers, the presented method can detect them sequentially when cascaded. In such a setup, as shown in Fig. 12(a), the first detector/filter combination suppresses the highest power interferer, and subsequent stages follow the power order. This is demonstrated with two interferers as shown in Fig. 12(b)–(c) with various combinations.
response time of 500 ns. The frequency range and resolution of the system are analytically derived for a general implementation. The detection method has the flexibility to interface with a variety of tunable BSFs. This detection method is an enabling technology for wideband receivers, where high-power interferers are a limiting factor.

V. CONCLUSION

This article presented an interference detection method with a state-of-the-art four-octave frequency detection range, and a

REFERENCES

[1] A. E. Fawal and J.-Y. Le Boudec, “A robust signal-detection method for ultra-wideband networks with uncontrolled interference,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1769–1781, Jun. 2006.
[2] J. Querol, R. Ornubia, D. Pascual, H. Park, and A. Camps, “A radio-frequency interference detector for GNSS navigation and GNSS-reflectometry applications,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017, pp. 1266–1269.
[3] J. Bechter, M. Rameez, and C. Waldschmidt, “Analytical and experimental investigations on mitigation of interference in a DBF MIMO radar,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1727–1734, May 2017.
[4] T.-L. Hsieh, P. Kinget, and R. Gharpurey, “An approach to interference detection for ultra wideband radio systems,” in Proc. IEEE Dallas/CAS Workshop Design, Appl., Integ. Softw., Oct. 2006, pp. 91–94.
[5] A. Semmani, S. O. Macheret, and D. Peroulis, “A high-power widely tunable limiter utilizing an evanescent-mode cavity resonator loaded with a gas discharge tube,” IEEE Trans. Plasma Sci., vol. 44, no. 12, pp. 3271–3280, Dec. 2016.
[6] R. Malmqvist et al., “Self-actuation tests of ohmic contact and capacitive RFMEMS switches for wideband RF power limiter circuits,” in Proc. Int. Semicond. Conf., vol. 1, 2012, pp. 217–220.
[7] T. Boles, J. Bukowski, and J. Brogle, “Monolithic high power 300 watt, S-band, HMIC PIN diode limiter,” in Proc. IEEE Int. Conf. Microw., Antennas, Commun. Electron. Syst. (COMCAS), Nov. 2019, pp. 1–5.
[8] X. Yagbasan and A. Aktug, “Robust X-band GaN LNA with integrated active limiter,” in Proc. 13th Eur. Microw. Int. Circuits Conf. (EuMIC), Sep. 2018, pp. 1205–1208.
[9] D. Shojaeiaslanjan and R. R. Mansour, “Tunable RF MEMS-based frequency-dependent power limiter,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4473–4481, Dec. 2016.
[10] P. Phudpong and J. C. Hunter, “Frequency-selective limiters using nonlinear bandstop filters,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 1, pp. 157–164, Jan. 2009.
[11] A. C. Guyette, E. J. Naglich, and S. Shin, “RF-power-activated and signal-tracking tunable bandstop filters,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 5, pp. 1534–1544, May 2017.
[12] E. J. Naglich and A. C. Guyette, “Frequency-selective limiters utilizing contiguous-channel double multiplexer topology,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 9, pp. 2871–2882, Sep. 2016.
[13] A. Hueltes et al., “Three-port frequency-selective absorptive limiter,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 479–481, May 2017.
[14] W. Yang, M. A. Khater, J. E. Naglich, D. Psychogiou, and D. Peroulis, “Frequency-selective limiters using triple-mode filters,” IEEE Access, vol. 8, pp. 114854–114863, 2020.
[15] M. A. Khater, Y. Wu, and D. Peroulis, “Tunable cavity-based diplexer with spectrum-aware automatic tuning,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 3, pp. 934–944, Mar. 2017.
[16] M. A. Khater and D. Peroulis, “Spectrum-aware jammer suppression using evanescent-mode cavity filters,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2015, pp. 1–4.
[17] M. A. Khater and D. Peroulis, “2–8 GHz interference detector with 1.1 μs response,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 756–759, Jun. 2022.
[18] A. C. Guyette, E. J. Naglich, and S. Shin, “Switched allpass-to-bandstop absorptive filters with constant group delay,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 8, pp. 2590–2595, Aug. 2016.
[19] M. A. Khater and D. Peroulis, “Dual-band dual-mode filter-enhanced linearity measurement,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 9, pp. 1083–1085, Sep. 2021.
[20] V. Laur, J. P. Gouavogui, and B. Balde, “C-band hybrid 3-D-printed microwave isolator,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 3, pp. 1579–1585, Mar. 2021.
[21] T. Kodera, “A multi-state isolator using ferrite edge-mode,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1899–1902.
[22] R. Levy, “Tables for asymmetric multi-element coupled-transmission-line directional couplers,” IEEE Trans. Microw. Theory Techn., vol. MTT-12, no. 3, pp. 275–279, May 1964.

[23] M. A. Khater, “High-speed printed circuit boards: A tutorial,” IEEE Circuits Syst. Mag., vol. 20, no. 3, pp. 34–45, 3rd Quart., 2020.

[24] M. A. Khater, M. Abdelfattah, M. D. Sinanis, and D. Peroulis, “Monitoring and control of MEMS tunable filters using inductive proximity sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5605–5613, Dec. 2018.

[25] S. Marín, J. D. Martínez, C. I. Valero, and V. E. Boria, “Microstrip filters with enhanced stopband based on lumped bisected Pi-sections with parasitics,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 1, pp. 19–21, Jan. 2017.

[26] M. A. Khater and D. Peroulis, “Vibration mitigation for evanescent-mode cavity filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4.

[27] M. A. Khater and D. Peroulis, “Pulse injection for real-time monitoring of tunable high-Q filters,” Microw. Opt. Technol. Lett., vol. 56, no. 3, pp. 761–764, Mar. 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.28187

[28] M. A. Khater, K. Mouthing, and Y. T. Soon, “Wideband bandpass filters with saw-filter-like selectivity using chip SAW resonators,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 1, pp. 26–36, Jan. 2014.

[29] M. A. Khater, K. Zeng, and D. Peroulis, “Temperature-compensated lumped element tunable bandpass filter,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2016, pp. 1–4.

[30] M. A. Khater, M. Awajan, and D. Peroulis, “A K-band resonant impedance tuner with a solid-state hybrid tuning,” in Proc. IEEE 22nd Annu. Wireless Microw. Technol. Conf. (WAMICON), Apr. 2022, pp. 1–4.

[31] A. Anand, Y. Liu, and X. Liu, “Substrate-integrated octave-tunable combine bandstop filter with surface mount varactors,” in Proc. IEEE Int. Wireless Symp. (IWS), Mar. 2014, pp. 1–4.

Mohammad Abu Khater (Senior Member, IEEE) received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, IN, USA, in 2015. He held several academic and industrial positions, and currently he is a Research Scientist at Purdue University. His research focus is primarily on adaptive and reconfigurable RF/Microwave/mmWave frontends. This includes filters, impedance tuners, PAs, and interference detectors. Dr. Khater research work received multiple recognitions including WAMICON-2022 Best Paper Award, and the MWCL’s most significant contribution in 2019. He is a Fulbright alumnus and received the excellence in teaching award from the College of Engineering, Purdue University, in 2012.

Dimitrios Peroulis (Fellow, IEEE) received the Ph.D. degree in electrical engineering from the University of Michigan at Ann Arbor, Ann Arbor, MI, USA, in 2003. He is a Reilly Professor and Michael and Katherine Birck, the Head of the Elmore Family at the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA. He also serves as a special adviser for the Dean of Engineering on online learning. He has been a key contributor in developing high quality widely-tunable filters and novel filter architectures based on miniaturized high-Q cavity-based resonators in the 1–100 GHz range. He is currently a Leading Research Efforts in high-power multifunctional RF electronics based on cold-plasma technologies. He is an IEEE Fellow and has coauthored over 450 journals and conference papers. His research interests are focused on the areas of reconfigurable systems, cold-plasma RF electronics, and wireless sensors.

Dr. Peroulis received the National Science Foundation CAREER award in 2008. In 2019, he received the “Tatsuo Itoh” Award and in 2014, he received the Outstanding Young Engineer Award both from the IEEE Microwave Theory and Techniques Society (MTT-S). In 2012, he received the Outstanding Paper Award from the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (Ferroelectrics section). His students have received numerous student paper awards and other student research-based scholarships. He has been a Purdue University Faculty Scholar and has also received 11 teaching awards including the 2010 HKN C. Holmes MacDonald Outstanding Teaching Award and the 2010 Charles B. Murphy award, which is Purdue University’s highest undergraduate teaching honor.