Nodeless superconductivity in $K_xFe_{2−y}Se_2$ single crystals revealed by low temperature specific heat

Bin Zeng1, Bing Shen1, Gengfu Chen2, Jianbao He2, Duning Wang2, Chunhong Li1, and Hai-Hu Wen1,3

1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
2 Department of Physics, Renmin University of China, Beijing 100872, China
3 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

Low temperature specific heat (SH) has been measured in $K_xFe_{2−y}Se_2$ single crystals with $T_c = 32$ K. The SH anomaly associated with the superconducting transition is moderate and sharp yielding a value of $\Delta C/T |_{T_c} = 11.6 \pm 1.0$ mJ/molK2. The residual SH coefficient $\gamma(0)$ in the superconducting state at $T \to 0$ is very small with a value of about 0.39 mJ/molK2. The magnetic field induced enhancement of the low-T SH exhibits a rough linear feature indicating a nodeless gap. This is further supported by the scaling based on the s-wave approach of the low-T data at different magnetic fields. A rough estimate tells that the normal state SH coefficient γ_n is about 6 \pm 0.5 mJ/molK2 leading to $\Delta C/\gamma_nT |_{T_c} = 1.93$ and placing this new superconductor in the strong coupling region.

PACS numbers: 74.20.Rp, 74.70.Dd, 74.62.Dh, 65.40.Ba

The discovery of high temperature superconductivity in iron pnictides has opened a new era towards the investigation on the novel superconducting mechanism.$^{[1]}$ One of the key issues here is about the superconducting pairing mechanism. Experimentally it was found that the superconductivity is at the vicinity of a long range antiferromagnetic (AF) order$^{[2]}$, the superconducting transition temperature is getting higher when this AF order is suppressed. It was also further proved that the AF spin fluctuation$^{[3]}$ and the multi-band effect$^{[4]}$ are two key factors for driving the system into superconductive. Theoretically several different pairing symmetries are anticipated. It was suggested that the pairing may be established via inter-pocket scattering of electrons between the hole pockets (around Γ point) and electron pockets (around M point), leading to the pairing manner of an isotropic gap on each pocket but with opposite signs between them (the so-called S^\pm).$^{[5, 6]}$ The pairing picture based on the super-exchange of local moment was also proposed, which in principle could also lead to the S^\pm,$^{[7, 8]}$ leaving the others (d-wave or full-gapped S^{++}) as perspectives with low possibility. However, the S^{++} pairing manner is specially winning the vote when the orbital fluctuation plays the important role, as argued by Kotani et al.$^{[9]}$. Clearly multi-orbits, or the naturally formed multi-pockets are highly desirable for the superconductivity of all these pairing models.

Recently a new Fe-based superconducting system $A_xFe_{2−y}Se_2$ ($A =$ alkaline metals, $x$$\leq$1, $y$$\leq$ 0.5) were discovered with the transition temperature above 30 K.$^{[10]}$ The interests to this fascinating system are immediate because of the two major reasons:(1) Both the band structure calculations$^{[12, 13]}$ and the preliminary angle resolved photo-emission spectrum (ARPES) measurements$^{[13, 17]}$ indicate that the band near the Γ-point seems diverging far below the Fermi energy, leading to the absence of the hole pockets which are widely expected for the FeAs-based systems. A consequence of these results is to question the importance of the inter-hole-electron pocket scattering for the superconducting pairing. (2) The superconducting state seems occurring via a transmutation from an insulating ordered state of Fe-vacancies.$^{[18]}$ The question raised here is whether this insulating state originates from the Mottness, like in the cuprate$^{[20]}$, or the band gap due to the reconstruction of the electronic structure when the Fe vacancies are present. Many different kind of pairing symmetries are proposed, such as nodeless d-wave,$^{[21]}$ S^{++} or S^\pm, all are satisfying with the basic structures. The experimental evidences about the superconducting gaps so far are quite rare. The ARPES measurements indicate isotropic gaps on the four electron pockets with a rather large gap value (\sim 8-15 meV). The conclusions drawn from NMR measurements seem controversial.$^{[22, 23]}$ In this paper, we present the first set of data of low temperature specific heat (SH) measurements. Our detailed analysis indicates a nodeless gap with a strong coupling strength in this new superconducting system.

The $K_xFe_{2−y}Se_2$ single crystals were synthesized by the flux-growth method$^{[19]}$. The typical dimension of the samples for specific heat measurements was 2\times2\times0.5 mm3. The SH measurements were done with the thermal relaxation method on the Quantum Design instrument physical property measurement system (PPMS) with the temperature down to 2 K and magnetic field up to 9 T. The magnetic field effect on the bare SH measuring chip (including the four thermal conducting wires) of PPMS from Quantum Design was calibrated prior to the measurements on the samples, in order to remove the pseudomorphism. This becomes very essential since the contribution of the electronic SH is quite small compared to the phonon part in this particular system. The dc magneti-
ization measurements were done with a superconducting quantum interference device (Quantum Design, SQUID).

In Fig. 1, we show the temperature dependence of specific heat and dc magnetization for the sample. The sharp transition in the magnetization and the large magnetic screening signal indicate the good quality of the sample. In the SH data at zero field, one can see a small feature in the low temperature region, while this seems not the case for the present sample. One can see a slight upturn curvature in the low-T SH data C/T vs T^2. This is understood because of the relatively low Debye temperature of the sample, as discussed below.

For the heat capacity of the sample, the phonon contribution should be identical in zero field and in magnetic field. Hence, the parameters β and η should be the same for 0T and 9T. This is a constraint on the fitting process of the data. By fitting the SH data in 0T and 9T using Eq. (1), we obtained $\gamma(0) \approx 0.74$ mJ/mol K2, $\beta \approx 1.018$ mJ/mol K2, $\eta \approx 0.003$ mJ/mol K6. Using the obtained value of β and the relation $\Theta_D = (12\pi^4 k_B N_A Z/5\beta)^{1/3}$, where $N_A = 6.02 \times 10^{23}$ mol$^{-1}$ is the Avogadro constant, $Z = 5$ is the number of atoms in one unit cell, we get the Debye temperature $\Theta_D \approx 212$ K, which is relatively small, compared to other FeAs-based superconductors [24, 25].

Fig. 2 shows the enlarged view of the SH data near the transition temperature plotted as C/T vs T. One can see a clear SH anomaly at T_c in 0T, and when a magnetic field is applied, the SH anomaly was weakened and shifted to lower temperatures. In low temperature region, as discussed below.

The SH anomaly for $K_{2}Fe_{2-y}Se_{2}$ is also smaller than other FeAs-based superconductors. The SH anomaly looks rather sharp (it starts at about 32.9 K and ends at 30.9 K). We must emphasize that to use the data measured at 9 T as the background to deduce the SH anomaly is reasonable. As we address below that a magnetic field of 9 T should have lowered down the transition temperature of about 5-6 K (with the upper critical field $H_{c2}(0) \approx 240$ T), being much larger than the width of the SH anomaly. The rather sharp SH anomaly is very different from that in the underdoped cuprates in which a long-tail of electronic SH was observed far into the normal state. [30] This was interpreted as the fluctuating superconductivity. This may suggest that, although having a low superfluid density and relatively higher anisotropy, [31] the superconducting transition in $K_{2}Fe_{2-y}Se_{2}$ superconductors can still be described quite well by the critical mean field theory without the necessity of categorizing it into the strong critical fluctuation.
In s-wave superconductors, the inner-core conductors with different gap symmetries can be obviously distinct. In s-wave superconductors, the inner-core states dominate the quasiparticle excitations, and consequently a simple scaling law $C_{QP}/T^3 \approx C_{core}/T^3 = (\gamma_n/H_{c2(0)} \times (T/\sqrt{H})^{-2}$ for the fully gapped superconductors is expected, where C_{QP} and C_{core} are the specific heat of the quasiparticles induced by field and that from the vortex cores in the mixed state, respectively. The scaling result of the field-induced term in the mixed state with the s-wave condition is presented in Fig.4(c). One can see that all the data at different magnetic fields can be roughly scaled to the straight blue line, which reflects the theoretical curve $C_{cal-s} = 0.12(T/\sqrt{H})^{-2}$. Generally, this prefactor $\gamma_n/H_{c2(0)} = 0.12 mJ/(molK^2T)$ is consistent with the magnitude of the slope of the line in Fig.4(d). Using the value of $H_{c2(0)} \approx 487T$ [19], we estimate the value of normal-state electron SH coefficient γ_n to be $5.8 mJ/molK^2$, which is a small value compared to other FeAs-based superconductors [23, 29].

As far as we know, reliable calculated values for the normal state DOS and thus the SH coefficient of this new superconductor are still lacking because of the uncertainties of the structures of these Fe-vacancies. The $\gamma_n \approx 6 mJ/molK^2$ found here will give some hint on the band structures as well as understanding the ARPES data. The value $\Delta C/\gamma_n T |_{T_c} = 1.93$ clearly places the system in the strong coupling camp, since the weak coupling BCS theory gives 1.43. Furthermore, the very small residual SH coefficient $\gamma(0)$ \approx 0.39 mJ/molK2 together with the
s-wave scaling excludes the nodal gaps in this system. This is consistent with the ARPES data so far, and in contradicting with the NMR data. The small $\gamma(0)$ detected here excludes also the chemical phase separation picture, since otherwise a much significant value, arising from the non-superconducting normal metallic regions, should be observed. However, if the system is chemically separated into the superconducting regions and the insulating regions which are fully gapped, this is of course acceptable. Our results here is also against with the nodeless d-wave picture since that kind of pairing is certainly suffered sensitively from the impurity scattering which would give rise to a large quasiparticle density of states detectable by specific heat. The sharp SH anomaly found here indicates that the present system does not have a strong critical fluctuation which appears in the underdoped cuprates.

In summary, we measured the low temperature SH of single crystal $K_xFe_{2-y}Se_2$ in various magnetic fields. The SH anomaly is observed at $T_c = 32K$, and the height $\Delta C/T |_{T_c}$ is about 11.6 mJ/molK2. From the low temperature part of the SH data, we obtained the field induced enhancement of the low-T SH, which exhibits a roughly linear field dependence, indicating a nodeless gap. We also analyzed the data with the s-wave scaling law, and found that the data roughly obey this law, indicating again an s-wave gap. These two approaches are self-consistent each other. The Debye temperature and the normal-state electronic SH coefficient were also estimated, both are smaller than that in other FeAs-based superconductors.

We appreciate the useful discussions with Hong Ding, Doug Scalapino, and Tao Xiang. This work is supported by the NSF of China, the Ministry of Science and Technology of China (973 projects: 2011CBA001000), and Chinese Academy of Sciences.

* hhwen@nju.edu.cn

* Electronic address: hhwen@nju.edu.cn

[1] Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).
[2] C. De la Cruz, et al., 2008. Nature 453, 899 (2008).
[3] F. L. Ning, et al., Phys. Rev. Lett. 104, 037001 (2010).
[4] L. Fang et al., Phys. Rev. B 80, 140508(R) (2009).
[5] I. I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008).
[6] K. Kuroki et al., Phys. Rev. Lett. 101, 087004 (2008).
[7] F. Wang et al., Phys. Rev. Lett. 101, 087004 (2008).
[8] Z. J. Yao, J. X. Li, Z. D. Wang, New J. Phys. 11, 025009 (2009).
[9] K. Seo, A. B. Bernevig, J. Hu, Phys. Rev. Lett. 101, 206404 (2008)
[10] Q. Si and E. Abrahams, Phys. Rev. Lett 101, 076401 (2009).
[11] S. Onari and H. Kontani, Phys. Rev. Lett. 103, 177001 (2009).
[12] J. Guo et al., Phys. Rev. B 82, 180520 (R) (2010).
[13] I. A. Nebrasov and M. V. Sadovskii, arXiv:1101.0051 (2011).
[14] X.-W. Yan et al., arXiv:1012.5536 (2011).
[15] Y. Zhang et al., arXiv:1012.5980
[16] T. Qian et al., arXiv:1012.6017 (2011).
[17] D. X. Mou et al., arXiv:1101.4556 (2011).
[18] M. H. Fang et al., arXiv:1012.5256 (2011).
[19] D. M. Wang, J. B. He, T.-L. Xia, and G. F. Chen, arXiv:1101.0789 (2011).
[20] Rong Yu, Jian-Xin Zhu, Qimiao Si, arXiv:1101.3307 (2011).
[21] F. Wang et al., arXiv:1101.4390 (2011).
[22] W. Q. Yu et al., arXiv:1101.1017 (2011).
[23] H. Kotegawa et al., arXiv:1101.4372 (2011).
[24] G. Mu et al., Chin. Phys. Lett. 25, 2221 (2008).
[25] G. Mu et al., Phys. Rev. B 79, 174501 (2009).
[26] S. L. Bud’ko, Ni Ni, P. C. Canfield, Phys. Rev. B 79, 220516 (2009).
[27] K. Gofryk et al., Phys. Rev. B 81, 184518 (2010).
[28] P. Popovich et al., Phys. Rev. Lett. 105, 027003 (2010).
[29] G. Mu et al., Chin. Phys. Lett. 27, 037402 (2010).
[30] H. H. Wen et al., Phys. Rev. Lett. 103, 067002 (2009).
[31] C. H. Li et al., arXiv:1012.5637 (2010).