SUMO pathway is required for ribosome biogenesis

Hong-Yeoul Ryu1,2,*

1BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566; 2Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea

Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis. [BMB Reports 2022; 55(11): 535-540]
Ulp2 in *S. cerevisiae* have been studied for their functions and localizations in humans, but the recently discovered three SENPs have not been extensively investigated. SUMO conjugation can alter the interaction between its substrate and binding partner proteins, which possess one or more SUMO-interaction motifs (SIMs) for recognizing SUMO-conjugated proteins, maintaining protein stability, or bringing conformational changes in target proteins (21).

SUMO regulates ribosome biogenesis

Ribosomal proteins are general targets of SUMO. Recent advances in molecular techniques and quantitative proteomics have revealed several interesting SUMO target proteins. Pioneering studies have been conducted in *S. cerevisiae* (22-26). Although SUMO substrates have been found in all cellular compartments, amounts of SUMO-conjugated proteins are much higher in the nucleus than in other regions. This finding is consistent with the extremely concentrated SUMO and SUMO pathway enzymes in the nucleus. Interestingly, all yeast studies have revealed proportionally high numbers of ribosomal proteins and assembly factors as SUMO targets, suggesting that SUMO is closely linked to ribosome biogenesis and remodeling. Furthermore, the SUMOylated ribosome itself and its regulators are also observed in proteomic analyses for the detection of targets of all three active SUMO isoforms (SUMO-1 to -3) in human cells or stem cells (27-34). Although factors involved in ribosome biogenesis are major targets of the SUMO pathway, how such SUMO modifications affect ribosome development and the mechanism underlyng the regulation of SUMO conjugation levels of ribosomes are yet unknown.

SUMO promotes expression of ribosomal genes and rRNA. Primary target proteins of SUMO are transcription factors and chromatin-associated proteins in eukaryotes (35, 36). It was initially thought that SUMO mainly would suppress gene transcription because it either blocked the function of transcription activators or facilitated the function of transcription repressors (37). However, recent investigations have uncovered its more diverse roles in co-transcriptional processes, including transcription activation and chromatin remodeling (33). In particular, SUMO is highly enriched in genes encoding ribosomal pro-
SUMO and ribosome
Hong-Yeoul Ryu

Fig. 2. SUMOylation regulates ribosome biogenesis. SUMOylation and deSUMOylation are highly dynamic cellular processes, and their versatile control is essential for ribosome biogenesis. First, several transcription factors, including yeast Rap1, are major substrates of the SUMO pathway. Their SUMOylation regulates the expression of genes encoding ribosomal proteins (RPs) and rRNAs (components of ribosomes) and snoRNAs (required for rRNA maturation). While the association of Net1, Tof2, and Fob1, which are required for rDNA silencing (43). Histone SUMOylation has diverse roles in transcriptional regulation and is highly enriched at ribosomal protein and rDNA loci (44, 45). However, its function in ribosome biogenesis has not been reported yet.

SUMO affects rDNA processing
rRNA processing is essential for ribosome biogenesis. It is mediated by small nucleolar ribonucleoprotein complexes (snoRNPs) composed of snoRNAs and nucleolar proteins (46). snoRNAs are classified into two groups, box C/D snoRNAs responsible for 2'-O-ribose methylation and box H/ACA snoRNAs for mediating pseudouridylation. SUMOylation of the core box C/D snoRNP protein Nop58 is imperative for its association with snoRNAs, nucleolar positioning of snoRNAs, and proper snoRNP assembly, and blockade of SUMO conjugation to Nop58 facili-
SUMO and ribosome
Hong-Yeoul Ryu

SUMO guides ribosome assembly
During ribosome biogenesis, 90S pre-ribosomal particles are established in the nucleolus and then split into 60S and 40S pre-ribosomes. These pre-ribosomal subunits are transported into the cytoplasm for final maturation (52). Human SENP3 is co-purified with PELP1, TEX10, WDR18, and LAS1L. SENP3-mediated control of SUMO conjugation level of PELP1 and LAS1L is essential for the maturation of rRNA and nuclear export of 60S pre-ribosomal particles (53-55). SUMO can negatively affect conjugation of NEDD8, another ubiquitin-like protein, to human Rpl25, and facilitate the translocation of Rpl11 from nucleoli (56). Rps3, a DNA repair endonuclease, is also a substrate of the SUMO pathway that increases the stability of Rps3 protein (57). SUMOylation of Rpl22e is important for nucleoplasmic distribution of Rpl22 in Drosophila meiotic spermatocytes (58). SUMO protease SMiT7-mediated control of SUMO levels on Rpl30 might affect various cellular processes, including cell division in Chlamydomonas reinhardtii (59). In S. cerevisiae, an additional copy of the UBAS gene complements abnormal nucleolar accumulation of the ribosomal 60S subunit Rpl25 in a rix16-1 mutant strain, in which the export of the pre-60S ribosomal subunit is impaired and mutations in ubc9, up1, and smt3 causes export defects of pre-60S particles (60). In particular, Up11 genetically interacts with nuclear export factor Mtr2 in the pre-60S export pathway. However, their exact correlation has not been reported yet. Taken together, these findings indicate that the SUMO pathway ensures the fidelity of pre-ribosomal import into the cytoplasm and routes ribosome maturation via successful assembly of ribosome subsets (Fig. 2).

CONCLUSION
SUMOylation is known to play critical roles in ribosome biogenesis, and regulation of this modification is associated with gene expression, nuclear import, and assembly of ribosomal subunits. However, the ultimate and detailed functions of the SUMO pathway in ribosome establishment have remained unclear until recently. Here, we briefly summarize recent observations of how the SUMO pathway is involved in ribosome biogenesis. Several ribosomal proteins themselves and various factors required for ribosome assembly are substrates of SUMOylation. These SUMO modifications are tightly regulated by SUMO-specific proteases, leading to regulation of gene expression, localization, and function as well as proteolytic control of target proteins during ribosome maturation. Functionally healthy ribosomes are vital for cell survival, and several mutations in ribosomes or ribosome assembly factors have been found to be lethal (61, 62). Especially, specific defects in ribosome biogenesis or function could cause various clinical abnormalities, including skin and bone marrow failure syndromes such as X-linked dyskeratosis congenita and Schwachman-Diamond syndrome (63, 64). Thus, studying SUMO functions in ribosome biogenesis and activities might provide clues to develop new therapies and drug targets for human disorders of ribosome dysfunction.

ACKNOWLEDGEMENTS
This study was supported by a National Research Foundation of Korea (NRF) grant funded by the South Korean government (MSIT) (nos. 2020R1C1C1009367 and 2020R1A4A1018280) and Korean Environment Industry & Technology Institute (KEITI) through Core Technology Development Project for Environmental Diseases Prevention and Management funded by Korean Ministry of Environment (MOE) (no. 2022003310001).

CONFLICTS OF INTEREST
The authors have no conflicting interests.

REFERENCES
1. Thomson E, Ferreira-Cerqua S and Hurt E (2013) Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126, 4815-4821
2. Bassler J and Hurt E (2019) Eukaryotic ribosome assembly. Annu Rev Biochem 88, 281-306
3. Kressler D, Hurt E and Bassler J (2010) Driving ribosome assembly. Biochim Biophys Acta 1803, 673-683
4. Henras AK, Soudet J, Gerus M et al (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65, 2334-2359
5. Diwakarla C, Hannan K, Hein N and Yip D (2017) Advanced pancreatic ductal adenocarcinoma - complexities of treatment and emerging therapeutic options. World J Gastroenterol 23, 2276-2285
6. Nosrati N, Kapoor NR and Kumar V (2014) Combinatorial action of transcription factors orchestrates cell cycle-dependent expression of the ribosomal protein genes and ribosome biogenesis. FEBS J 281, 2339-2352
7. Martin DE, Soulard A and Hall MN (2004) TOR regulates ribosomal protein gene expression via PKA and the fororkhead transcription factor FHL1. Cell 119, 969-979
8. Neumansilberberg FS, Bhattacharya S and Broach JR (1995) Nutrient availability and the ras/cyclic amp path-
way both induce expression of ribosomal-protein genes in
saccharomyces-cerevisiae but by different mechanisms. Mol
Cell Biol 15, 3187-3196

9. Simsek D and Barra M (2017) An emerging role for the
ribosome as a nexus for post-translational modifications.
Curr Opin Cell Biol 45, 92-101

10. Flotho A and Melchior F (2013) Sumoylation: a regulatory
protein modification in health and disease. Annu Rev Bio-
chem 82, 357-385

11. Ryu HY (2021) SUMO: a novel target for anti-coronavirus
therapy. Pathog Glob Health 115, 292-299

12. Ryu HY, Ahn SH and Hochstrasser M (2020) SUMO and
cellular adaptive mechanisms. Exp Mol Med 52, 931-939

13. Chaikam V and Karlson DT (2016) Response and tran-
scriptional regulation of rice SUMOylation system during
development and stress conditions. BMB Rep 43, 103-109

14. Ryu HY, Wilson NR, Mehta S, Hwang SS and Hoch-
strasser M (2016) Loss of the SUMO protease Ulp2 trig-
gers a specific multichromosome aneuploidy. Genes Dev
30, 1881-1894

15. Huang WC, Ko TP, Li SS and Wang AH (2004) Crystal
structures of the human SUMO-2 protein at 1.6 A and 1.2
A resolution: implication on the functional differences of
SUMO proteins. Eur J Biochem 271, 4114-4122

16. Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML and Yang
WM (2016) SUMO5, a novel poly-SUMO isoform, regu-
lates PML nuclear bodies. Sci Rep 6, 26509

17. Muller S, Hoeger C, Pyrowolakis G and Jentsch S (2001)
SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell
Biol 2, 202-210

18. Hickey CM, Wilson NR and Hochstrasser M (2012) Func-
tion and regulation of SUMO proteases. Nat Rev Mol Cell
Biol 13, 755-766

19. Overbach D, McKay EM, Yeh ETH, Gabbay KH and
Bohren KM (2005) A proline-90 residue unique to SUMO-4
prevents maturation and sumoylation. Biochem Biophys Res
Commun 337, 517-520

20. Hendriks IA and Vertegaal AC (2016) A comprehensive
compilation of SUMO proteomics. Nat Rev Mol Cell Biol
17, 581-595

21. Song J, Durrin LK, Wilkinson TA, Krontritis TG and Chen
YA (2004) Identification of a SUMO-binding motif that recog-
nizes SUMO-modified proteins. Proc Natl Acad Sci U S A
101, 14373-14378

22. Wohlschlegel JA, Johnson ES, Reed SI and Yates JR (2004)
Global analysis of protein sumoylation in Saccharomyces
cerevisiae. J Biol Chem 279, 45662-45668

23. Hannich JT, Lewis A, Kroetz MB et al (2005) Defining the
SUMO-modified proteome by multiple approaches in Sac-
ccharomyces cerevisiae. J Biol Chem 280, 4102-4110

24. Zhou WD, Ryan JJ and Zhou HL (2004) Global analyses
of sumoylated proteins in Saccharomyces cerevisiae -
induction of protein sumoylation by cellular stresses. J
Biol Chem 279, 32262-32268

25. Esteras M, Liu IC, Snijders AP, Jarmuz A and Aragon L
(2017) Identification of SUMO conjugation sites in the
budding yeast proteome. Microb Cell 4, 331-341

26. Wykoff DD and O’Shea EK (2005) Identification of sumo-
ylated proteins by systematic immunoprecipitation of the
budding yeast proteome. Mol Cell Proteomics 4, 73-83

27. Mojsa B, Tatham MH, Davidson L, Liczmannska M, Bran-
gan E and Hay RT (2021) Identification of SUMO targets
associated with the pluripotent state in human stem cells.
Mol Cell Proteomics 20, 100164

28. Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M,
Mann M and Vertegaal AC (2014) Uncovering global
SUMOylation signaling networks in a site-specific manner.
Nat Struct Mol Biol 21, 927-936

29. Tammela T, Matic I, Jaffrey EG, Ibrahim AFM, Tatham
MH and Hay RT (2014) Proteome-wide identification of SUMO
modification sites. Sci Signal 7, rs2

30. Xiao Z, Chang JC, Hendriks IA, Sigurethsson JO, Olsen JV
and Vertegaal AC (2015) System-wide analysis of SUMO-
ylation dynamics in response to replication stress reveals
novel small ubiquitin-like modified target proteins and
acceptor lysines relevant for genome stability. Mol Cell
Proteomics 14, 1419-1434

31. Hendriks IA, Trefers LW, Verlaan-de Vries M, Olsen JV
and Vertegaal ACO (2015) SUMO-2 orchestrates chro-
matin modifiers in response to DNA damage. Cell Rep 10,
1778-1785

32. Impens F, Radoshevich L, Cossart P and Ribet D (2014)
Mapping of SUMO sites and analysis of SUMOylation
changes induced by external stimuli. Proc Natl Acad Sci
U S A 111, 12432-12437

33. Lamoliatte F, Caron D, Durette C et al (2014) Large-scale
analysis of lysine SUMOylation by SUMO remnant immuno-
affinity profiling. Nat Commun 5, 5409

34. Hendriks IA, D’Souza RC, Chang JC, Mann M and Verte-
egaal AC (2015) System-wide identification of wild-type
SUMO-2 conjugation sites. Nat Commun 6, 7289

35. Verger A, Perdomo J and Crossley M (2003) Modification
with SUMO: A role in transcriptional regulation. EMBO
Rep 4, 137-142

36. Choi J, Ryoo ZY, Cho DH, Lee HS and Ryu HY (2021)
Trans-tail regulation-mediated suppression of cryptic tran-
scription. Exp Mol Med 53, 1683-1688

37. Ouyang J and Gill G (2009) SUMO engages multiple core-
pressors to regulate chromatin structure and transcription.
Epigenetics 4, 440-444

38. Neyret-Kahn H, Benhamed M, Ye T et al (2013) Sumoyla-
tion at chromatin governs coordinated repression of a
transcriptional program essential for cell growth and
proliferation. Genome Res 23, 1563-1579

39. Peng Y, Wang Z, Wang Z, Yu F, Li J and Wong J (2019)
SUMOylation down-regulates rDNA transcription by
repressing expression of upstream-binding factor and
proto-oncogene c-Myc. J Biol Chem 294, 19155-19166

40. Chymkowitz P, Nguea AP, Aanes H et al (2015) SUMO-
ylation of Rap1 mediates the recruitment of TFID to
promote transcription of ribosomal protein genes. Genome
Res 25, 897-906

41. Ryu HY, Su D, Wilson-Eisele NR, Zhao DJ, Lopez-
Giraldez F and Hochstrasser M (2019) The Ulp2 SUMO
protease promotes transcription elongation through regu-
lation of histone sumoylation. Embo J 38, e102003

42. Ryu HY, Lopez-Giraldez F, Knight J et al (2018) Distinct
adaptive mechanisms drive recovery from aneuploidy
caused by loss of the Ulp2 SUMO protease. Nat Commun
9, 5417
43. Gillies J, Hickey CM, Su D, Wu Z, Peng J and Hochstrasser M (2016) SUMO pathway modulation of regulatory protein binding at the ribosomal DNA locus in Saccharomyces cerevisiae. Genetics 202, 1377-1394
44. Ryu HY and Hochstrasser M (2021) Histone sumoylation and chromatin dynamics. Nucleic Acids Res 49, 6043-6052
45. Ryu HY, Zhao D, Li J, Su D and Hochstrasser M (2020) Histone sumoylation promotes S3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res 48, 12151-12168
46. Watkins NJ and Bohnsack MT (2012) The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 3, 397-414
47. Westman BJ, Verheggen C, Hutten S, Lam YW, Bertrand E and Lamond AI (2010) A proteomic screen for nucleolar SUMO targets shows SUMOylation modulates the function of Nop5/Nop58. Mol Cell 39, 618-631
48. Haindl M, Harasim T, Eick D and Muller S (2008) The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9, 273-279
49. Yun C, Wang Y, Mukhopadhyay D et al (2008) Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol 183, 589-595
50. Ryu H, Sun XX, Chen Y et al (2021) The deubiquitinase USP36 promotes snoKRP group SUMOylation and is essential for ribosome biogenesis. EMBO Rep 22, e50684
51. Knight JR, Bastide A, Peretti D et al (2016) Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis. RNA 22, 623-635
52. Johnson AW, Lund E and Dahlberg J (2002) Nuclear export of ribosomal subunits. Trends Biochem Sci 27, 580-585
53. Finkbeiner E, Haindl M and Muller S (2011) The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J 30, 1067-1078
54. Castle CD, Cassimere EK and Denicourt C (2012) LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol Biol Cell 23, 716-728
55. Finkbeiner E, Haindl M, Raman N and Muller S (2011) SUMO routes ribosome maturation. Nucleus 2, 527-532
56. El Motiam A, Vidal S, de la Cruz-Herrera CF et al (2019) Interplay between SUMOylation and NEDDylation regulates RPL11 localization and function. FASEB J 33, 643-651
57. Jang CY, Shin HS, Kim HD, Kim JW, Choi SY and Kim J (2011) Ribosomal protein S3 is stabilized by sumoylation. Biochem Biophys Res Commun 414, 523-527
58. Keese MG, Ireland JA, Prem SM, Chen AS and Ware VC (2013) Rpl22e, but not Rpl22e-like-PA, is SUMOylated and localizes to the nucleoplasm of Drosophila meiotic spermatocytes. Nucleus 4, 241-258
59. Lin YL, Chung CL, Chen MH, Chen CH and Fang SC (2020) SUMO protease SMT7 modulates ribosomal protein L30 and regulates cell-size checkpoint function. Plant Cell 32, 1285-1307
60. Parse VG, Kessler D, Pauli A et al (2006) Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway. Traffic 7, 1311-1321
61. Venturi G and Montanaro L (2020) How altered ribosome production can cause or contribute to human disease: the spectrum of ribosomopathies. Cells 9, 2300
62. Park J, Park J, Lee J and Lim C (2021) The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Rep 54, 439-450
63. Heiss NS, Knight SW, Vulliamy TJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19, 32-38
64. Boocock GR, Morrison JA, Popovic M et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33, 97-101