ON THE L.C.M. OF RANDOM TERMS OF BINARY RECURRENCE SEQUENCES

CARLO SANNA

Abstract. For every positive integer \(n \) and every \(\delta \in [0, 1] \), let \(B(n, \delta) \) denote the probabilistic model in which a random set \(A \subseteq \{1, \ldots, n\} \) is constructed by choosing independently every element of \(\{1, \ldots, n\} \) with probability \(\delta \). Moreover, let \((u_k)_{k \geq 0} \) be an integer sequence satisfying \(u_k = a_1 u_{k-1} + a_2 u_{k-2} \), for every integer \(k \geq 2 \), where \(u_0 = 0, u_1 \neq 0, \) and \(a_1, a_2 \) are fixed nonzero integers; and let \(\alpha \) and \(\beta \), with \(|\alpha| \geq |\beta| \), be the two roots of the polynomial \(X^2 - a_1 X - a_2 \). Also, assume that \(\alpha/\beta \) is not a root of unity.

We prove that, as \(\delta n / \log n \to +\infty \), for every \(A \) in \(B(n, \delta) \) we have

\[
\log \text{lcm}(u_a : a \in A) \sim \delta \frac{\log(1 - \delta)}{1 - \delta} \frac{\log(1/\delta)}{\pi^2} \cdot n^2,
\]

with probability \(1 - o(1) \), where \(\text{lcm} \) denotes the lowest common multiple, \(\log(1 - \delta) \) is the dilogarithm, and the factor involving \(\delta \) is meant to be equal to \(1 \) when \(\delta = 1 \).

This extends previous results of Akiyama, Tropak, Matiyasevich, Guy, Kiss and Mátýás, who studied the deterministic case \(\delta = 1 \), and is motivated by an asymptotic formula for \(\text{lcm}(A) \) due to Cilleruelo, Rué, Šarka, and Zumalacárregui.

1. Introduction

It is well known that the Prime Number Theorem is equivalent to the asymptotic formula

\[
\log \text{lcm}(1, 2, \ldots, n) \sim n,
\]
as \(n \to +\infty \), where \(\text{lcm} \) denotes the lowest common multiple.

For every positive integer \(n \) and every \(\delta \in [0, 1] \), let \(B(n, \delta) \) denote the probabilistic model in which a random set \(A \subseteq \{1, \ldots, n\} \) is constructed by choosing independently every element of \(\{1, \ldots, n\} \) with probability \(\delta \). Motivated by (1), Cilleruelo, Rué, Šarka, and Zumalacárregui [8] proved the following result (see also [5] for a more precise version, and [6, 7] for others results of similar flavor).

Theorem 1.1. Let \(A \) be a random set in \(B(n, \delta) \). Then, as \(\delta n \to +\infty \), we have

\[
\log \text{lcm}(A) \sim \frac{\delta \log(1/\delta)}{1 - \delta} \cdot n,
\]

with probability \(1 - o(1) \), where the factor involving \(\delta \) is meant to be equal to \(1 \) for \(\delta = 1 \).

Let \((u_k)_{k \geq 0} \) be an integer sequence satisfying \(u_k = a_1 u_{k-1} + a_2 u_{k-2} \), for every integer \(k \geq 2 \), where \(u_0 = 0, u_1 \neq 0, \) and \(a_1, a_2 \) are two fixed nonzero integers. Moreover, let \(\alpha \) and \(\beta \), with \(|\alpha| \geq |\beta| \), be the two roots of the polynomial \(X^2 - a_1 X - a_2 \). We assume that \(\alpha/\beta \) is not a root of unity, which is a necessary and sufficient condition to have \(u_k \neq 0 \) for all integers \(k \geq 1 \).

Akiyama [1] and, independently, Tropak [14] proved the following analog of (1) for the sequence \((u_k)_{k \geq 1} \).

Theorem 1.2. We have

\[
\log \text{lcm}(u_1, u_2, \ldots, u_n) \sim \frac{3\log(\sqrt{\frac{a_1^2}{a_2^2}})}{\pi^2} \cdot n^2,
\]

2010 Mathematics Subject Classification. Primary: 11B37, Secondary: 11N37.

Key words and phrases. binary recurrence sequence; lowest common multiple; Lehmer sequence; random sequence.

† C. Sanna is supported by a postdoctoral fellowship of INdAM and is a member of the INdAM group GNSAGA.
as $n \to +\infty$.

Special cases of Theorem 1.2 were previously proved by Matiyasevich, Guy [11], Kiss and Mátyás [10]. Furthermore, Akiyama [2, 3] generalized Theorem 1.2 to sequences having some special divisibility properties, while Akiyama and Luca [4] studied $\text{lcm}(u_{f(1)}, \ldots, u_{f(n)})$ when f is a polynomial, $f = \varphi$ (the Euler’s totient function), $f = \sigma$ (the sum of divisors function), or f is a binary recurrence sequence.

Motivated by Theorem 1.1, we give the following generalization of Theorem 1.2.

Theorem 1.3. Let A be a random set in $B(n, \delta)$. Then, as $\delta n / \log n \to +\infty$, we have

$$\text{lcm}(u_a : a \in A) \sim \frac{\delta \text{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3 \log |\alpha/\sqrt{a_1^2, a_2}|}{\pi^2} \cdot n^2,$$

with probability $1 - o(1)$, where $\text{Li}_2(z) := \sum_{k=1}^{\infty} \frac{z^k}{k^2}$ is the dilogarithm and the factor involving δ is meant to be equal to 1 when $\delta = 1$.

When $\delta = 1/2$ all the subsets $A \subseteq \{1, \ldots, n\}$ are chosen by $B(n, \delta)$ with the same probability. Hence, Theorem 1.3 together with the identity $\text{Li}_2\left(\frac{1}{2}\right) = (\pi^2 - 6(\log 2)^2)/12$ (see, e.g., [15]) give the following result.

Corollary 1.1. As $n \to +\infty$, we have

$$\text{lcm}(u_a : a \in A) \sim \frac{1}{4} \left(1 - \frac{6(\log 2)^2}{\pi^2}\right) \cdot \log \left|\frac{\alpha}{\sqrt{a_1^2, a_2}}\right| \cdot n^2,$$

uniformly for all sets $A \subseteq \{1, \ldots, n\}$, but at most $o(2^n)$ exceptions.

2. **Notation**

We employ the Landau–Bachmann “Big Oh” and “little oh” notations O and o, as well as the associated Vinogradov symbols \ll and \gg, with their usual meanings. Any dependence of the implied constants is explicitly stated or indicated with subscripts. For real random variables X and Y, we say that “$X \sim Y$ with probability $1 - o(1)$” if $P(|X - Y| \geq \varepsilon|Y|) = o_\varepsilon(1)$ for every $\varepsilon > 0$. We write $\text{lcm}(S)$ for the lowest common multiple of the elements of $S \subseteq \mathbb{Z}$, with the convention $\text{lcm}(\emptyset) := 1$. We also let $[a, b]$ and (a, b) denote the lowest common multiple and the greatest common divisor, respectively, of two integers a and b. Throughout, the letters p is reserved for prime numbers, and ν_p denotes the p-adic valuation. As usual, we write $\Lambda(n)$, $\varphi(n)$, $\tau(n)$, and $\mu(n)$, for the von Mangoldt function, the Euler’s totient function, the number of divisors, and the Möbius function of a positive integer n, respectively.

3. **Preliminaries on Lehmer sequences**

Let ζ and η be complex numbers such that $c_1 := (\zeta + \eta)^2$ and $c_2 := \zeta \eta$ are nonzero coprime integers and ζ/η is not a root of unity. Also, assume $|\zeta| \geq |\eta|$. The Lehmer sequence $(\tilde{u}_k)_{k \geq 0}$ associated to ζ and η is defined by

$$\tilde{u}_k := \begin{cases}
(\zeta^k - \eta^k)/(\zeta - \eta) & \text{if } k \text{ is odd}, \\
(\zeta^k - \eta^k)/(\zeta^2 - \eta^2) & \text{if } k \text{ is even},
\end{cases}$$

for every integer $k \geq 0$. It is known that $(\tilde{u}_k)_{k \geq 1}$ is an integer sequence. For every positive integer m coprime with c_2, let $\varrho(m)$ be the rank of appearance of m in the Lehmer sequence $(\tilde{u}_k)_{k \geq 0}$, that is, the smallest positive integer k such that $m \mid \tilde{u}_k$. It is known that $\varrho(m)$ exists. Moreover, for every prime number p not dividing c_2, put $\kappa(p) := \nu_p(\tilde{u}_{\varrho(p)})$.

We need the following properties of the rank of appearance.

Lemma 3.1. We have:

(i) $m \mid \tilde{u}_k$ if and only if $(m, c_2) = 1$ and $\varrho(m) \mid k$, for all integers $m, k \geq 1$.

(ii) $\varrho(p^k) = p^{\max(k - \kappa(p))} \varrho(p)$, for all primes p not dividing $2c_2$ and all integers $k \geq 1$.
(iii) $\varrho(2^k) = 2^{\max(k - v_2(\tilde{u}_h(\varphi)))} \varrho(4)$, for all integers $k \geq 2$.

Proof. (i) We have $(\tilde{u}_k, c_2) = 1$ for all integers $k \geq 1$ [12, Lemma 1]. Also, $(\tilde{u}_k, \tilde{u}_h) = \tilde{u}_{(k,h)}$ for all integers $k, h \geq 1$ [12, Lemma 3]. Hence, on the one hand, if $m \mid \tilde{u}_k$ then $(m, c_2) = 1$ and $m \mid (\tilde{u}_k, \tilde{u}\varphi(m)) = \tilde{u}_{(k,\varphi(m))}$, which in turn implies that $\varrho(m) \mid k$, by the minimality of $\varrho(m)$. On the other hand, if $(c_2, m) = 1$ and $\varrho(m) \mid k$ then $m \mid \tilde{u}_\varphi(m) = \tilde{u}_{(k,\varphi(m))} = (\tilde{u}_k, \tilde{u}\varphi(m))$, so that $m \mid \tilde{u}_k$.

(ii) If $p \mid \tilde{u}_m$, for some positive integer m, then $p \mid \tilde{u}_\varphi(m)$ [12, Lemma 5]. Hence, it follows by induction on h that $\nu_p(\tilde{u}_p^h\varphi(p)) = \kappa(p) + h$, for every integer $h \geq 0$. At this point, the claim follows easily from (i).

(iii) If $4 \mid \tilde{u}_m$, for some positive integer m, then $2 \mid \tilde{u}_\varphi(m)$ [12, Lemma 5]. The proof proceeds similarly to the previous point. \square

Hereafter, in light of Lemma 3.1(i), in subscripts of sums and products the argument of ϱ is always tacitly assumed to be coprime with c_2.

Let us define the cyclotomic numbers $(\phi_k)_{k \geq 1}$ associated to ζ and η by

$$
\phi_k := \prod_{1 \leq h \leq k \atop (h,k) = 1} \left(\zeta - e^{\frac{2\pi i k}{\eta}} \right),
$$

for every integer $k \geq 0$. It can be proved that $\phi_k \in \mathbb{Z}$ for every integer $k \geq 3$. Moreover, from (4) it follows easily that

$$
\zeta^k - \eta^k = \prod_{d \mid k} \phi_d,
$$

which in turn, applying Möbius inversion formula and taking into account (3), gives

$$
\phi_k = \prod_{d \mid k} \left(\zeta^d - \eta^d \right)^{\mu(k/d)} = \prod_{d \mid k} \tilde{u}_d^{\mu(k/d)},
$$

for all integers $k \geq 3$. We need the following result about ϕ_k.

Lemma 3.2. For every integer $k \geq 13$, we have

$$
|\phi_k| = \lambda_k \cdot \prod_{\varphi(p) = k, p \mid k} \varrho(p),
$$

where λ_k is equal to 1 or to the greatest prime factor of $k/(k,3)$.

Proof. Let p be a prime number not dividing c_2. By the definition of $\varrho(p)$, we have that $p \nmid \tilde{u}_h$ for each positive integer $h < \varrho(p)$. Hence, by (5), we obtain that $\nu_p(\tilde{u}_p^h\varphi(p)) = \kappa(p) + h$. In particular, $p \mid \phi_p$. Let $k \geq 3$ be an integer and suppose that p is a prime factor of ϕ_k. On the one hand, if $\varrho(p) = k$ then, by the previous consideration, $\nu_p(\phi_p) = \kappa(p)$. On the other hand, if $\varrho(p) \neq k$ then $p \mid (\phi_p, \phi_k)$. Finally, for $k \geq 13$ and for every integer $h \geq 3$ with $h \neq k$, we have that (ϕ_h, ϕ_k) divides the greatest prime factor of $k/(k,3)$ [12, Lemma 7]. \square

We conclude this section with a formula for a sum involving the von Mangoldt function.

Lemma 3.3. We have

$$
\sum_{\varrho(m) = r} \Lambda(m) = \varphi(r) \log |\zeta| + O_{\zeta, \eta}(\tau(r) \log(r + 1))
$$

and, in particular,

$$
\sum_{\varrho(m) = r} \Lambda(m) \ll_{\zeta, \eta} \varphi(r),
$$

for every positive integer r.

Proof. Clearly, we can assume \(r \geq 13 \). Write \(m = p^k \), where \(p \) is a prime number not dividing \(c_2 \) and \(k \) is a positive integer. First, suppose that \(p > 2 \). By Lemma 3.1(ii), we have that \(\varrho(m) = p^{\max(k-\kappa(p), 0)} \varrho(p) \). Hence, \(\varrho(m) = r \) if and only if \(k \leq \kappa(p) \) and \(\varrho(p) = r \), or \(k > \kappa(p) \) and \(p^{k-\kappa(p)} \varrho(p) = r \). In the first case, the contribution to the sum in (6) is exactly \(\kappa(p) \log p \).

In the second case, \(p \mid r \) and, since \(k \) is determined by \(p \) and \(r \), the contribution to the sum in (6) is \(\log p \). Using Lemma 3.1(iii), the case \(p = 2 \) can be handled similarly. Therefore,

\[
\sum_{\varrho(m) = r} \Lambda(m) = \sum_{\varrho(p) = r} \kappa(p) \log p + O \left(\sum_{p \mid r} \log p \right) = \log |\phi_r| + O(\log r),
\]

where we used Lemma 3.2. Furthermore, from (5) and the identity \(\sum_{d \mid r} \mu(r/d) d = \phi(r) \), it follows that

\[
\log |\phi_r| = \phi(r) \log |\zeta| + O \left(\sum_{d \mid r} \log \left| 1 - \left(\frac{\eta}{\zeta} \right)^d \right| \right).
\]

If \(|\eta/\zeta| < 1 \) then \(\log \left| 1 - \left(\frac{\eta}{\zeta} \right)^d \right| = O_{\zeta, \eta}(1) \). If \(|\eta/\zeta| = 1 \) then, since \(\eta/\zeta \) is an algebraic number that is not a root of unity, it follows from classic bounds on linear forms in logarithms (see, e.g., [9, Lemma 3]) that \(\log \left| 1 - \left(\frac{\eta}{\zeta} \right)^d \right| = O_{\zeta, \eta}(\log(d + 1)) \). Consequently,

\[
\log |\phi_r| = \phi(r) \log |\zeta| + O_{\zeta, \eta}(\tau(r) \log(r + 1)).
\]

Putting together (8) and (9), we get (6). Finally, the upper bound (7) follows since \(\tau(k) \leq k^\varepsilon \) and \(\varphi(k) \geq k^{1-\varepsilon} \), for all \(\varepsilon > 0 \) and every integer \(k \gg \varepsilon \) [13, Ch. I.5, Corollary 1.1 and Eq. 12].

4. Further preliminaries

We need two estimates involving the Euler's totient function. Define

\[
\Phi(x) := \sum_{n \leq x} \varphi(n),
\]

for every \(x \geq 1 \).

Lemma 4.1. We have

\[
\Phi(x) = \frac{3}{\pi^2} x^2 + O(x \log x) \quad \text{and} \quad \sum_{n \leq x} \frac{\varphi(n)}{n} \ll x,
\]

for every \(x \geq 2 \).

Proof. The first formula is well known [13, Ch. I.3, Thm. 4] and implies

\[
\sum_{n \leq x} \frac{\varphi(n)}{n} \leq \sum_{n \leq x/2} 1 + \sum_{x/2 < n \leq x} \frac{\varphi(n)}{x/2} \ll x,
\]

as desired. \(\square \)

The following lemma is an easy inequality that will be useful later.

Lemma 4.2. It holds \(1 - (1 - x)^k \leq kx \), for all \(x \in [0, 1] \) and all integers \(k \geq 0 \).

Proof. The claim is \((1 + (-x))^k \geq 1 + k(-x)\), which follows from Bernoulli's inequality. \(\square \)
5. Proof of Theorem 1.3

Henceforth, all the implied constants may depend by \(a_1\), \(a_2\), and \(u_1\). It is well known that the generalized Binet’s formula

\[
(10) \quad u_k = \frac{\alpha^k - \beta^k}{\alpha - \beta} u_1,
\]

holds for every integer \(k \geq 0\). We put \(\zeta := \alpha/\sqrt{b}\) and \(\eta := \beta/\sqrt{b}\), where \(b := (a_1^2, a_2^2)\). Note that indeed \(c_1 = a_1^2/b\) and \(c_2 = -a_2^2/b\) are nonzero relatively prime integers, \(\zeta/\eta = \alpha/\beta\) is not a root of unity, and \(|\zeta| \geq |\eta|\). Moreover, from (3) and (10), it follows easily that

\[
u_k = \begin{cases}
 b^{(k-1)/2} u_1 \tilde{u}_k & \text{if } k \text{ is odd}, \\
 a_1 b^{k/2-1} u_1 \tilde{u}_k & \text{if } k \text{ is even},
\end{cases}
\]

for every integer \(k \geq 0\). Therefore, for every \(A \subseteq \{1, \ldots, n\}\), we have

\[
\log \lcm(u_a : a \in A) = \log \lcm(\tilde{u}_a : a \in A) + O(n).
\]

Note that \(O(n)\) is a “little oh” of the right-hand side of (2), as \(\delta n/\log n \to +\infty\). Hence, it is enough to prove Theorem 1.3 with \(\log \lcm(\tilde{u}_a : a \in A)\) in place of \(\log \lcm(u_a : a \in A)\), and this will be indeed our strategy.

Hereafter, let \(A\) be a random set in \(B(n, \delta)\), and put \(L := \lcm(\tilde{u}_a : a \in A)\) and \(X := \log L\). For every positive integer \(m\) coprime with \(c_2\), let us define

\[
I_A(m) := \begin{cases}
 1 & \text{if } \varphi(m) \mid a \text{ for some } a \in A, \\
 0 & \text{otherwise}.
\end{cases}
\]

The following lemma gives an expression for \(X\) in terms of \(I_A\) and the von Mangoldt function.

Lemma 5.1. We have

\[
X = \sum_{\varphi(m) \leq n} \Lambda(m) I_A(m).
\]

Proof. For every prime power \(p^k\) with \(p \nmid c_2\), we know from Lemma 3.1(i) that \(p^k \mid L\) if and only if \(\varphi(p^k) \mid a\) for some \(a \in A\) and, in particular, \(\varphi(p^k) \leq n\). Hence,

\[
X = \sum_{p^k \mid L} \log p = \sum_{\varphi(p^k) \leq n} (\log p) I_A(p^k) = \sum_{\varphi(m) \leq n} \Lambda(m) I_A(m),
\]

as claimed.

The next lemma provides two expected values involving \(I_A\) and needed in later arguments.

Lemma 5.2. We have

\[
\mathbb{E}(I_A(m)) = 1 - (1 - \delta)^{\lfloor n/\varphi(m) \rfloor}
\]

and

\[
\mathbb{E}(I_A(m)I_A(\ell)) = 1 - (1 - \delta)^{\lfloor n/\varphi(m) \rfloor} - (1 - \delta)^{\lfloor n/\varphi(\ell) \rfloor}
\]

\[
\quad + (1 - \delta)^{\lfloor n/\varphi(m) \rfloor + \lfloor n/\varphi(\ell) \rfloor - \lfloor n/(\varphi(m)\varphi(\ell)) \rfloor},
\]

for all positive integers \(m\) and \(\ell\) with \((m\ell, c_2) = 1\).

Proof. By the definition of \(I_A\), we have

\[
\mathbb{E}(I_A(m)) = \mathbb{P}(\exists a \in A : \varphi(m) \mid a) = 1 - \mathbb{P} \left(\bigwedge_{t \leq n/\varphi(m)} (\varphi(m)t \notin A) \right) = 1 - (1 - \delta)^{\lfloor n/\varphi(m) \rfloor},
\]

which is the first claim. On the one hand, by linearity of expectation and by (11), we obtain

\[
\mathbb{E}(I_A(m)I_A(\ell)) = \mathbb{E}(I_A(m) + I_A(\ell) - 1 + (1 - I_A(m))(1 - I_A(\ell)))
\]

\[
= \mathbb{E}(I_A(m)) + \mathbb{E}(I_A(\ell)) - 1 + \mathbb{E}((1 - I_A(m))(1 - I_A(\ell)))
\]

as claimed. \(\square\)
\[\begin{align*}
&= 1 - (1 - \delta)^{\lceil n/g(m) \rceil} - (1 - \delta)^{\lceil n/g(\ell) \rceil} + \mathbb{E}((1 - I_A(m))(1 - I_A(\ell))).
\end{align*} \]

On the other hand, by the definition of \(I_A \),
\[\mathbb{E}((1 - I_A(m))(1 - I_A(\ell))) = \mathbb{P}(\forall a \in A : g(m) \nmid a \text{ and } g(\ell) \nmid a) \]
\[= \mathbb{P} \left(\bigwedge_{\substack{k \leq n \\lvert \, g(m) \mid k \text{ or } g(\ell) \mid k}} (k \notin A) \right) = (1 - \delta)^{\lceil n/g(m) \rceil + \lceil n/g(\ell) \rceil - \lfloor n/[g(m), g(\ell)] \rfloor}, \]
and the second claim follows too. \(\square \)

Now we give an asymptotic formula for the expected value of \(X \).

Lemma 5.3. We have
\[\mathbb{E}(X) = \frac{\delta \text{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3 \log |\zeta|}{\pi^2} \cdot n^2 + O(\delta n (\log n)^3), \]
for all integers \(n \geq 2 \). In particular,
\[\mathbb{E}(X) \sim \frac{\delta \text{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3 \log |\zeta|}{\pi^2} \cdot n^2, \]
as \(n \to +\infty \), uniformly for \(\delta \in (0, 1] \).

Proof. From Lemma 5.1 and Lemma 5.2, it follows that
\[\mathbb{E}(X) = \sum_{\phi(m) \leq n} \Lambda(m) \mathbb{E}(I_A(m)) \]
\[= \sum_{\phi(m) \leq n} \Lambda(m) \left(1 - (1 - \delta)^{\lceil n/g(m) \rceil} \right) \]
\[= \sum_{r \leq n} (1 - (1 - \delta)^{\lceil n/r \rceil}) \sum_{\phi(m) = r} \Lambda(m). \]
Consequently, thanks to Lemma 3.3 and Lemma 4.2, we obtain
\[\mathbb{E}(X) = \sum_{r \leq n} \left(1 - (1 - \delta)^{\lceil n/r \rceil} \right) \varphi(r) \log |\zeta| + O \left(\delta n \sum_{r \leq n} \frac{\tau(r) \log (r + 1)}{r} \right) \]
\[= \sum_{r \leq n} (1 - (1 - \delta)^{\lceil n/r \rceil}) \varphi(r) \log |\zeta| + O(\delta n (\log n)^3), \]
where we used the fact that
\[\sum_{r \leq n} \frac{\tau(r)}{r} \leq \left(\sum_{s \leq n} \frac{1}{s} \right)^2 \ll (\log n)^2. \]
Note that \(\lfloor n/r \rfloor = j \) if and only if \(r \in (n/(j + 1), n/j] \). Hence,
\[\sum_{r \leq n} (1 - (1 - \delta)^{\lfloor n/r \rfloor}) \varphi(r) = \sum_{j \leq n} (1 - (1 - \delta)^{j}) \sum_{n/(j+1) \leq r \leq n/j} \varphi(r) \]
\[= \sum_{j \leq n} (1 - (1 - \delta)^{j}) \left(\Phi \left(\frac{n}{j} \right) - \Phi \left(\frac{n}{j + 1} \right) \right) \]
\[= \delta \sum_{j \leq n} (1 - \delta)^{j-1} \Phi \left(\frac{n}{j} \right) \]
\[= \delta \sum_{j \leq n} \frac{(1 - \delta)^{j-1}}{j^2} \cdot \frac{3}{\pi^2} \cdot n^2 + O \left(\delta \sum_{j \leq n} \frac{n}{j} \log \left(\frac{n}{j} \right) \right) \]
where we used Lemma 4.1. Finally, putting together (12) and (13), we get the desired claim. □

The next lemma is an upper bound for the variance of X.

Lemma 5.4. We have
\[\mathbb{V}(X) \ll \delta n^3 \log n, \]
for all integers $n \geq 2$.

Proof. On the one hand, by Lemma 5.1, we have
\[
\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \sum_{g(m), g(\ell) \leq n} \Lambda(m)\Lambda(\ell)(\mathbb{E}(I_A(m)I_A(\ell)) - \mathbb{E}(I_A(m))\mathbb{E}(I_A(\ell))).
\]

On the other hand, from Lemma 5.2 and Lemma 4.2, it follows that
\[
\mathbb{E}(I_A(m)I_A(\ell)) - \mathbb{E}(I_A(m))\mathbb{E}(I_A(\ell)) = (1 - \delta)^{\lfloor n/g(m)\rfloor + \lfloor n/g(\ell)\rfloor - \lfloor n/[g(m), g(\ell)]\rfloor}(1 - (1 - \delta)^{\lfloor n/[g(m), g(\ell)]\rfloor}) \leq \frac{\delta n}{[g(m), g(\ell)]}.
\]

Therefore,
\[
\mathbb{V}(X) \leq \delta n \sum_{g(m), g(\ell) \leq n} \frac{\Lambda(m)\Lambda(\ell)}{[g(m), g(\ell)]} = \delta n \sum_{r,s \leq n} \frac{1}{[r,s]} \sum_{g(m) = r, g(\ell) = s} \Lambda(r) \sum_{g(\ell) = s} \Lambda(\ell) \ll \delta n \sum_{r,s \leq n} \frac{\varphi(r)\varphi(s)}{[r,s]} = \delta n \sum_{r,s \leq n} (r,s) \frac{\varphi(r)\varphi(s)}{rs},
\]
where we used Lemma 3.3 and the identity $[r,s] = rs/(r,s)$. At this point, writing $r = dr'$ and $s = ds'$, where $d := (r,s)$, we obtain
\[
\sum_{r,s \leq n} (r,s) \frac{\varphi(r)\varphi(s)}{rs} = \sum_{d \leq n} d \sum_{r',s' \leq n/d} \varphi(dr')\varphi(ds') \leq \sum_{d \leq n} d \left(\sum_{t \leq n/d} \varphi(t) \right)^2 \ll \sum_{d \leq n} d \left(\frac{n}{d} \right)^2 \ll n^2 \log n,
\]
where we used Lemma 4.1 and the inequality $\varphi(dm) \leq d\varphi(m)$, holding for every integer $m \geq 1$. Finally, putting together (14) and (15), we get the desired claim. □

Proof of Theorem 1.3. By Chebyshev’s inequality, Lemma 5.3, and Lemma 5.4, we have
\[
P\left(|X - \mathbb{E}(X)| \geq \varepsilon \mathbb{E}(X) \right) \leq \frac{\mathbb{V}(X)}{(\varepsilon \mathbb{E}(X))^2} \ll \frac{\log n}{\varepsilon^2 \delta n} = o(1),
\]
as $\delta n/\log n \to +\infty$. Hence, again by Lemma 5.3, we have
\[
X \sim \frac{\delta \text{Li}_2(1 - \delta)}{1 - \delta} \cdot \frac{3\log \zeta}{\pi^2} \cdot n^2,
\]
with probability $1 - o(1)$, as desired. □
References

1. S. Akiyama, *Lehmer numbers and an asymptotic formula for π*, J. Number Theory *36* (1990), no. 3, 328–331.
2. ______, *A new type of inclusion exclusion principle for sequences and asymptotic formulas for ζ(k)*, J. Number Theory *45* (1993), no. 2, 200–214.
3. ______, *A criterion to estimate the least common multiple of sequences and asymptotic formulas for ζ(3) arising from recurrence relation of an elliptic function*, Japan. J. Math. (N.S.) *22* (1996), no. 1, 129–146.
4. S. Akiyama and F. Luca, *On the least common multiple of Lucas subsequences*, Acta Arith. *161* (2013), no. 4, 327–349.
5. G. Alsmeyer, Z. Kabluchko, and A. Marynych, *Limit theorems for the least common multiple of a random set of integers*, Trans. Amer. Math. Soc., Published electronically: July 2, 2019.
6. J. Cilleruelo and J. Guijarro-Ordóñez, *Ratio sets of random sets*, Ramanujan J. *43* (2017), no. 2, 327–345.
7. J. Cilleruelo, D. S. Ramana, and O. Ramaré, *Quotient and product sets of thin subsets of the positive integers*, Proc. Steklov Inst. Math. *296* (2017), no. 1, 52–64.
8. J. Cilleruelo, J. Rué, P. Šarka, and A. Zumalacárregui, *The least common multiple of random sets of positive integers*, J. Number Theory *144* (2014), 92–104.
9. P. Kiss, *Primitive divisors of Lucas numbers*, Applications of Fibonacci numbers (San Jose, CA, 1986), Kluwer Acad. Publ., Dordrecht, 1988, pp. 29–38.
10. P. Kiss and F. Mátayás, *An asymptotic formula for π*, J. Number Theory *31* (1989), no. 3, 255–259.
11. Y. V. Matiyasevich and R. K. Guy, *A new formula for π*, Amer. Math. Monthly *93* (1986), no. 8, 631–635.
12. C. L. Stewart, *On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers*, Proc. London Math. Soc. (3) *35* (1977), no. 3, 425–447.
13. G. Tenenbaum, *Introduction to analytic and probabilistic number theory*, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.
14. B. Tropak, *Some asymptotic properties of Lucas numbers*, Proceedings of the Regional Mathematical Conference (Kalsk, 1988), Pedagog. Univ. Zielona Góra, Zielona Góra, 1990, pp. 49–55.
15. D. Zagier, *The dilogarithm function*, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 3–65.

Università di Genova, Department of Mathematics, Genova, Italy

E-mail address: carlo.sanna.dev@gmail.com