Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon

Kanae Masuda¹, Eiji Yamamoto², Kenta Shirasawa², Noriyuki Onoue³, Atsushi Kono³, Koichiro Ushijima¹, Yasutaka Kubo¹, Ryutaro Tao⁴, Isabelle M Henry⁵, and Takashi Akagi¹*

¹Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan, ²Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan, ³Institute of Fruit Tree and Tea Science, NARO, Hiroshima 739-2494, Japan, ⁴Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, and ⁵Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA

*To whom correspondence should be addressed. Tel. +81 86 251 8337. Fax. +81 86 251 8337. Email: takashia@okayama-u.ac.jp

Received 30 March 2020; Editorial decision 11 September 2019; Accepted 10 June 2020

Abstract

Sexuality is one of the fundamental mechanisms that work towards maintaining genetic diversity within a species. In diploid persimmons (Diospyros spp.), separated sexuality, the presence of separate male and female individuals (dioecy), is controlled by the Y chromosome-encoded small-RNA gene, OGI. On the other hand, sexuality in hexaploid Oriental persimmon (Diospyros kaki) is more plastic, with OGI-bearing genetically male individuals, able to produce both male and female flowers (monoecy). This is thought to be linked to the partial inactivation of OGI by a retrotransposon insertion, resulting in DNA methylation of the OGI promoter region. To identify the genetic factors regulating branch sexual conversion, genome-wide correlation/association analyses were conducted using ddRAD-Seq data from an F1 segregating population, and using both quantitative and diploidized genotypes, respectively. We found that allelic ratio at the Y-chromosomal region, including OGI, was correlated with male conversion based on quantitative genotypes, suggesting that OGI can be activated in cis in a dosage-dependent manner. Genome-wide association analysis based on diploidized genotypes, normalized for the effect of OGI allele dosage, detected three fundamental loci associated with male conversion. These loci underlie candidate genes, which could potentially act epigenetically for the activation of OGI expression.

Key words: flexible sexuality, monoecy, polyploid, GWAS

1. Introduction

Sexuality is a fundamental mechanism that acts for the maintenance of genetic diversity within a species. In contrast to animals, hermaphroditism is thought to be ancestral and most common in flowering plants. A minority of species have subsequently, and independently, evolved separated sexuality, with separate male and female individuals (dioecy).¹⁻² These species represent up to 5% of angiosperm species.³⁻⁴ Plant biologists have thrived to understand the evolutionary steps associated with transitions into or out of dioecy since the first findings of genetic sex determination in flowering
plants. Typical transitions out of dioecy have been associated with domestication events in some crops. For example, in papaya or grape, the loss of function of the Y chromosome-encoded female suppressor genes, resulting in hermaphroditism, was artificially selected, presumably for stable cultivation. On the other hand, polyploidization is also thought to be a main key player in the evolution of sexuality, often causing a transition out of dioecy.

In dioecious diploid persimmon species (Diospyros spp.), the Y chromosome-encoded small-RNA gene OGI is responsible for expression of maleness, through the repression of its autosomal counterpart, a gene called MeGI. Importantly, hexaploid cultivated Oriental persimmon (Diospyros kaki) has evolved a more plastic sex determination system from the dioecious system, possibly through epigenetic regulation of OGI and MeGI. In hexaploid Oriental persimmon, genetically male individuals, carrying at least one copy of Y-chromosome (including OGI), exhibit monoeary, where both male and female flowers are produced by the same tree, although they often produce only female flowers. This monocious system is based on the semi-inactivation of OGI by the presence of a highly methylated retrotransposon insertion, named Kali, within the OGI promoter region, and on the variable DNA methylation of the MeGI sequence (Fig. 1A). With the exception of a few genetically female cultivars, which do not carry the OGI sequence but occasionally bear male flowers, this male production is consistent with the change of epigenetic regulation on MeGI. Therefore, the OGI/MeGI system is thought to be conserved as the regulator of sex determination in hexaploid persimmon as in diploid persimmon, despite the fact that expression of OGI in hexaploid persimmon has never been formally observed, possibly because it is extremely restricted both temporally and spatially.

In hexaploid persimmon trees, the morphological difference between male and female developing buds is first visible in June. Typically, all floral buds produced on a branch develop similarly, either into male or female flowers. The first flowering year, all branches bear female flowers. In subsequent years, female branches tend to produce female branches but there is a low frequency of transition from female to male. Once a branch is male, it typically produces male branches in subsequent years, but there is a low frequency of reversal to feminality as well. These observations are consistent with the hypothesis that occasional activation of OGI expression results in the accumulation of small-RNA and -DNA methylation on MeGI, leading to the production of male flowers. Subsequently, maintenance of maleness is dependent on the maintenance of the DNA methylation status of MeGI. According to this hypothesis, the frequency of OGI activation should be directly associated with male conversion. Here, we used segregating sibling plants that carry the OGI gene to investigate the genetic factors that regulate male conversion in hexaploid Oriental persimmon.

Investigating the genetic architecture of traits with multiple alleles and mixed inheritance patterns in polyploid species is challenging. Genotyping in polyploids is complicated by the possibility of more than two alleles at each locus, and the existence of different heterozygous states. For instance, in the case of autohexaploid persimmon with hexasomic inheritance, we can define five heterozygous states; AAAAAa (5:1), AAAAAa (4:2), and AAAaaa (3:3) AAAAAa (2:4) to Aaaa (1:5). Quantitative genotyping of such loci using qPCR is a possible solution, but it is time-consuming. Recent advances in sequencing and genotyping technologies now allow calling high-density single nucleotide polymorphism (SNP), and accurate determination of allele ratio and allele dosage for polyploid genomes. Genome-wide association analysis, using quantitative genotypes, coupled with realistic genetic models, could shed light on the genetic basis of complex traits.

In this study, to examine the genetic factors underlying female-to-male conversion in hexaploid Oriental persimmon, we collected high-density genotype information in a segregating population exhibiting biases in male flower ratio. Considering the nature of polysomic inheritance, we developed genome-wide correlation/association analyses for polyploid persimmon using two different models (Fig. 1B): (i) an additive model using quantitative genotypes in the form of allelic ratio, and (ii) a diploidized additive model using diploidized genotypes. The results led to the identification of genetic regions and candidate genes potentially involved in the regulation of female-to-male conversion, providing novel insights into the genetic basis of flexible sexuality after adaptation to polyploidization or domestication.

2. Materials and methods

2.1. Plant materials and selection of individuals carrying OGI alleles

The segregating F1 population produced from a cross between ‘Yamatogoshō’ (6 A + XXXXX) × ‘Taishu’ (6 A + XXXXY), named the YTF1 population, was developed in 2009, and exhibited variation in the frequency of male production since the first flowering in 2013–14. Flower sexuality from a total of 5,016 non-male (female or no flower) parental branches was assessed for 5 years, from 2014

Figure 1. Approaches used to identify the genetic factors regulating OGI activity. (A) Model of the male flower formation in monocious hexaploidy D. kaki individuals. OGI is inactivated by the presence of a highly methylated SINE-like retrotransposon in the promoter region. OGI is occasionally expressed and triggers small-RNA production by MeGI. The resulting DNA methylation in the promoter region represses MeGI expression to switch to the production of male flowers. After production of the initial male flowers, the fate of flower sexuality depends on maintenance or release of DNA methylation on MeGI. (B) Two genotyping approaches are available for polyploid populations, that tailor to two different models for the effect of genetic inheritance: (i) in the additive model, heterozygous alleles are further characterized based on their copy number; (ii) in the diploidized additive model, only diploidized genotypes are considered (homozygous or heterozygous), irrespective of the ratio of alleles in the heterozygous states.
to 2018. A male conversion branch was defined as a non-male parental branch producing male flowers at least one branch (Fig. 2A). Two phenotypes were recorded each year. ‘Ability of male conversion’, reflects the presence or absence of male flowers on any given branch. In other words, if any branch in a tree had switched to male that year, the tree was scored as 1 for this phenotype. If none of the branches had converted, it was scored as 0. The second phenotype, ‘Male conversion rate’, was calculated by dividing the number of branches that converted to male in a specific year, by the total number of non-male parental branches. Both phenotypes were scored each year. To identify the ge-
to male in a specific year, by the total number of non-male parental
rate’, was calculated by dividing the number of branches that converted,
verted, it was scored as 0. The second phenotype, ‘Male conversion
for at least 50% of the individuals. For detection of transmission ratio
distortion, only the 91 individuals of the YTF1 population with total
coverage > 200 Mb were used, to decrease the possibility of detecting
the false transmission distortion when using low coverage data (Supplementary Table S2). A total of 39,344 loci were selected, with
average coverage between 60 and 200 for each of the 91 individuals,
minimum coverage in the parents > 60, and by using bcftools with the
following options: minor allele frequency > 0.01 and max-missing = 1.
The coverage threshold was used to filter uniquely mapped sequen-
ces. Transmission distortion ratios of alternative alleles were calcu-
lated as the log value of [allele ratio in the YTF1/allele ratio in the
parents]. Here, for the ‘allele ratio in the parents’ values, we calculated
the alternative allelic read coverages in the two parents independently,
and averaged them. Significant transmission distortion was detected
by standardizing the transmission distortion ratios using z-transforma-
tion with the threshold of P-value < 1E-10.

2.2. Genome-wide genotyping
ddRAD-sequencing libraries were prepared according to previous
reports22 using 107 individuals of the YTF1 population and their two
parents ‘Yamagotsubo’ and ‘Taishu’. The libraries were sequenced on
an Illumina HiSeq4000 platform, and generating PE100 reads at the
Vincent J. Coates Genomics Sequencing Laboratory, University of
California Berkeley. The reads were aligned to the reference genome
of Diospyros lotus, a wild relative close to Oriental persimmon (http://
perimmon.kazusa.or.jp/index.html)23 using the Burrows–Wheeler
Aligner with default parameters [version 0.7.12 (https://github.com/
lh3/bwa)].24; Supplementary Table S2. Based on these parameters, it is
impossible that some allelic and potential paralogous polymorphisms
were occasionally derived from non-specific mapping. The resulting
sam files were converted to bam files and subsequently vcf format
using bcftools.25 and Varscan.26 For genome-wide association/cor-
relation analyses, only the 83 individuals carrying the OGI allele were
used (Supplementary Table S2). Individual genotypes were only con-
sidered if coverage > 20. A total of 95,639 heterozygous markers
were selected by using bcftools with the following options: minor al-
lele frequency within the population > 0.05 and data were available
for at least 50% of the individuals. For detection of transmission ratio
distortion, only the 91 individuals of the YTF1 population with total
coverage > 200 Mb were used, to decrease the possibility of detecting
the false transmission distortion when using low coverage data (Supplementary Table S2). A total of 39,344 loci were selected, with
average coverage between 60 and 200 for each of the 91 individuals,
minimum coverage in the parents > 60, and by using bcftools with the
following options: minor allele frequency > 0.01 and max-missing = 1.
The coverage threshold was used to filter uniquely mapped sequen-
ces. Transmission distortion ratios of alternative alleles were calcu-
lated as the log value of [allele ratio in the YTF1/allele ratio in the
parents]. Here, for the ‘allele ratio in the parents’ values, we calculated
the alternative allelic read coverages in the two parents independently,
and averaged them. Significant transmission distortion was detected
by standardizing the transmission distortion ratios using z-transforma-
tion with the threshold of P-value < 1E-10.

2.3. Heritability estimation
Direct calculation of broad-sense heritability was difficult because
our data include many missing values. Alternatively, we used esti-
mated narrow-sense heritability whose genetic effect was approxi-
mated by an additive genetic relationship matrix calculated from
geno-wide diploidized genotype. To estimate narrow-sense herita-
bility (\textit{h}_2^2 \textit{g}), we estimated the genetic and error variance components (\textit{\sigma}_g^2 \textit{and} \textit{\sigma}_e^2) with a restricted maximum likelihood (REML) ap-
proach,27 because the replication of phenotypic observations was in-
sufficient to calculate these components using the standard ANOVA
method. For the REML approach, the phenotypic variance \(\textit{V} \) was de-
efined by the following equation:

\[\text{V} = A \textit{\sigma}_g^2 + \text{I} \textit{\sigma}_e^2, \]

where \(A \) is a genetic relationship matrix between individuals and \(I \) is an \(n \times n \) identity matrix. In the genetic relationship matrix, the
element \(A_{ij} \) was defined as:

\[A_{ij} = \sum_{k=1}^{M} \frac{(x_{ki} - 2p_i)(x_{kj} - 2p_j)}{2p_i(1 - p_i)}, \]

where \(x_{ki} \) (coded as 0, 1, 2) is the number of copies of the reference
allele for the \(r \)th SNP of the \(j \)th individual, \(p_i \) is the minor allele fre-
quency for the \(r \)th SNP, and \(m \) is the total number of markers. The
REML solution of Equation (1) was obtained by using the function
‘mixed.solve’ in the R package \textit{rrBLUP} version 4.4.28 The estimated
variance components were used to calculate heritability with the fol-
lowing equation:

\[\text{b}^2 = \textit{\sigma}_g^2 / (\textit{\sigma}_g^2 + \textit{\sigma}_e^2), \]

2.4. Genome-wide correlation/association analyses
using additive and diploidized additive models
Allele composition (or quantitative genotype) at each SNP locus was esti-
mated from the frequency of alternative alleles in mapped reads.
Genome-wide correlation analysis was conducted using a total

![Figure 2. Phenotypic diversity in the YTF1 population. (A), Schematic representation of flowering branches in hexaploidy persimmon. Male conversion rate was calculated as the numbers non-male parental branches (female or previously non-flowering) producing male flowers, divided by the total number of non-male parental branches. A male conversion branch was defined as a non-male parental branch producing male flowers at least one branch. Distribution of phenotypic values in the 83 individuals that carried at least one copy of the OGI locus: cumulative ability of male conversion (over 5 years) (B) and male conversion rate (C).](https://academic.oup.com/dnaresearch/article/27/3/dsaa012/5858979 by Okayama University user on 28 October 2020)
40,111 of the 95,639 SNPs, in which duplex–pentaplex genotypes were predicted in at least 23/83 YTF1 individuals (<28% individuals with at least one recessive allele). To test if a locus affected male conversion in a dosage-dependent manner, Pearson product moment correlation analysis was conducted between the ratio of alternative alleles at each locus and the phenotype values of each individual. The coefficient values were standardized using z-transformation, to estimate P-values. Significant association loci were detected with the threshold of \(-\log(P-value) > 5.60\), representing a Bonferroni-corrected significance threshold of 0.1.

Diploidized genotype at each locus was defined with the threshold of 5% (and 95%) of alternative alleles in the mapped reads to call heterozygosity. Genome-wide association analysis was conducted using the R package rrBLUP, with a linear mixed model (LMM). The partial correlation, considering male production ability, 'partial correlation' analysis was conducted, or unstable inheritance patterns, as also observed in hexaploid Oriental persimmon. The distribution of the alternative allele ratios per individual of the YTF1 population delineated seven peaks, putatively corresponding to nulliplex to hexaplex genotypes in each individual (Supplementary Fig. S2A). The distribution as a whole and at each SNP loci, exhibited 13 potential haploblocks did not exhibit this distortion (Supplementary Table S3). We assumed that these loci were incorrectly genotyped due to ambiguity in parental genotyping with no replicates. As suggested in previous reports, the frequency of male flowers substantially increased as years went by, during the assessment (average male conversion rate are 0.07, 0.13, and 0.15 during the first 3 years; Supplementary Fig. S1 and Supplementary Table S3). Most of the male parental branches also produced male flowers in subsequent years (Supplementary Table S4), which was hypothetically due to maintenance of epigenetic marks (or DNA methylation) on MeGI in the parental branches. Consistent with these results, the estimated narrow-sense heritability for male conversion rate, across 5 years, was 0.28. Therefore, we assessed the cumulative ability to produce male branches from female branches throughout the 5 years, to compensate for the limited number of replicates, and reflect the effect of environmental inputs.

3. Results and discussion

3.1 Characterization of flower sex expression in the YTF1 population

Within the YTF1 population, 53 of 83 individuals only produced female flowers despite carrying at least one copy of the OGI gene (Fig. 2B and Supplementary Table S3). The monoecious individuals (N = 30) showed a wide range of male conversion rate, i.e. conversion from non-male (female and no flowers) parental branches producing male flowers within the 5 years assessment (Fig. 2A and C). As suggested in previous reports, the frequency of male flowers increased as years went by, during the assessment (average male conversion rate are 0.07, 0.13, and 0.15 during the first 3 years; Supplementary Fig. S1 and Supplementary Table S3). Most of the male parental branches also produced male flowers in subsequent years (Supplementary Table S4), which was hypothetically due to maintenance of epigenetic marks (or DNA methylation) on MeGI in the parental branches. Consistent with these results, the estimated narrow-sense heritability for male conversion rate, across 5 years, was 0.28. Therefore, we assessed the cumulative ability to produce male branches from female branches throughout the 5 years, to compensate for the limited number of replicates, and reflect the effect of environmental inputs.

3.2 No large-scale transmission distortion in the YTF1 population

Plants, which have recently polyploidized, often show unbalanced chromosome/genome compositions, such as frequent aneuploidy or unstable inheritance patterns, as also observed in hexaploid Oriental persimmon. The distribution of the alternative allele ratios per individual of the YTF1 population delineated seven peaks, putatively corresponding to nulliplex to hexaplex genotypes in each individual (Supplementary Fig. S2A). The distribution of mean alternative allele frequency in the YTF1 population as a whole and at each SNP loci, exhibited 13 potential peaks, putatively corresponding to 13 allelic combinations in an hexaploid F1 cross (Supplementary Fig. S2B). We documented transmission ratio distortion throughout the genome, in the YTF1 population, but did not detect any large-scale distortion in allele ratio from the expected values based on the observed parental genotypes (Fig. 3). For example, our observed inheritance of OGI was consistent with mendelian heredity pattern of OGI in the progeny of a cross between a nulliplex and a duplex individual \((P > 0.62) \). Although some SNP loci exhibited significant transmission distortion \((P < 1E-11) \), other loci within the same haploblocks did not exhibit this distortion (Supplementary Table S5). We assumed that these loci were incorrectly genotyped due to ambiguity in parental genotyping with no replicates.

3.3 The Y chromosome contributes to male conversion in a dosage-dependent manner

Genome-wide correlation analyses based on quantitative genotypes using an additive model resulted in several peaks, the strongest of which was located on the sex-chromosome (Chr. 15). This was estimated with quantitative PCR using THUNDERBIRD SYBR Green qPCR Mix (TOYOBO, Osaka, Japan). For six individuals of the YTF1 population, due to the lack of DNA, allele dosage on Chr. 15, the peak of 17,052,751-bp on the sex-chromosome was used as a proxy for OGI allele dosage (around 18.12-MB on Chr. 15).

\[y = \frac{(r_{by} - r_{ay} \times r_{ab})}{\sqrt{1 - r_{ay}^2} \times \sqrt{1 - r_{ab}^2}} \] (4)

where \(r_{by} \) is the correlation coefficient between the quantitative phenotype at the locus and the phenotype; \(r_{ay} \) is the correlation coefficient between OGI allele dosage and the phenotype; and \(r_{ab} \) is the coefficient between OGI allele dosage and the quantitative genotype at the locus. The partial correlation coefficient values were standardized with z-transformation to estimate P-values.

For the diploidized additive model with diploidized genotypes, we assumed the following LMM:

\[y = \beta_0 + Zg + S \tau + \epsilon \] (5)

where \(y \) is a vector of the phenotype; \(\beta_0 \) is a fixed effect for OGI allele dosage \((O) \) and \(Z \) is an incidence matrix relating \(y \) to \(g \). The variable \(g \) models the genetic background of each line as a random effect with Var[\(g \)] = \(K \sigma^2_g \), where \(\sigma^2_g \) is the genetic variance. \(K \) is an additive kinship matrix calculated from the genotype data. \(S \) is a vector of the number of each polymorphic site. The variable \(\tau \) models the additive SNP effect. \(\epsilon \) is a matrix of the residual effects with Var[\(\epsilon \)] = \(I \sigma^2_{\epsilon} \), where \(I \) is an identity matrix and \(\sigma^2_{\epsilon} \) is the residual variance. To solve the mixed model, we used functions in the R package rrBLUP. The additive kinship matrix \(K \) was calculated using the ‘A.mat’ function. The variance components \(\sigma^2_g \) and \(\sigma^2_{\epsilon} \) were estimated using the ‘mixed.solve’ function. P-values for the SNP markers were calculated using the ‘GWAS’ function, which we slightly modified to use quantitative values of OGI allele dosage as a fixed effect.
true both for the ability of male conversion and the male conversion rate traits (Fig. 4A and B). Although the male-specific region of the Y-chromosome (MSY) is not included in the reference pseudomolecule (DLO_r1.0.pseudomolecule), it has been genetically anchored within Chr. 15 (around 18.12 Mb).

Two highly associated peaks flanked the MSY that includes OGI (Fig. 4E and F Supplementary Table S6A and B). Some loci within the sex chromosome commonly showed significant correlation with the ability of male conversion and the male conversion rate (Fig. 4E and F), suggesting that these two traits were regulated by the same allele combinations. When using the diploidized additive model based on diploidized genotypes, the region surrounding the MSY showed a weak association to male conversion rate (Fig. 4C and D and Supplementary Table S6C). The location of the haplblock including MSY, based on diploidized genotypes (Fig. 4G), was consistent with the peaks based on quantitative genotypes (Fig. 4E and F).

OGI allele numbers, as determined by quantitative PCR, were highly correlated with the numbers of alleles in the nearest peak produced using the additive model \(r = 0.63 \), 78.2% of individuals exhibited identical quantitative genotypes, Fig. 4H and Supplementary Table S7, and with male conversion abilities (Fig. 4I; \(P = 0.003 \) for male conversion rate with Student t-test, Supplementary Table S8; \(P = 0.004 \) for ability of male conversion). Multiple regression tests with the loci quantitatively associated with male conversion abilities indicated that, amongst these loci, OGI exhibited the strongest effect \(P < 0.0002 \), Supplementary Table S9). These results supported the idea that the OGI locus significantly contributes to male conversion ability in a dosage-dependent manner, and suggested that cis-elements within or close to OGI can play important roles for the activation of OGI. This concept is similar to the dosage sex-chromosome systems in Rumex and Humulus,\(^{23}\) where dioecious sex determination is dependent on X/autosome balance. In these systems, individuals with intermediate sexuality, bearing hermaphroditic flowers, also appear in association with irregular X/autosome ratios between 0.5 and 1.0.\(^{31}\)

3.4. Identification of candidate loci activating OGI

After compensating for the effect of OGI allele dosage (see Materials and methods, Section 2.5 for the details), the peaks on the sex chromosome, both with quantitative and diploidized genotypes, was significantly reduced (Fig. 5A–D). Although the trends were almost identical to those in the original analysis (Fig. 4A–D), some peaks, especially those associated with the male conversion rate (Fig. 5B and D), became sharper than in the original model. Some of the original putative peaks were also reduced after compensation for the dosage effect, presumably because their genotypes were accidentally similar to those of OGI. Some of the major peaks, especially on Chr. 5, 8, and 9, were common to the two models (Fig. 5A–D). On the other hand, peaks on Chr. 1, 2, and 4 were specific to additive model (Fig. 5A and B). Here, we focussed on the common candidate loci on Chr. 5, 8, and 9. To understand the combination effect of OGI and these three loci, multiplex regression tests were performed between the male conversion rate and the quantitative/diploidized genotypes (Supplementary Table S10), resulting in \(r^2 \) values of 0.611 and 0.548 for the quantitative and diploidized genotypes, respectively. Importantly, the accuracy of the regression was significantly increased in comparison to the test without compensation for the OGI allele dosage (\(r^2 = 0.561 \) and 0.492 for quantitative and diploidized genotypes, respectively, Supplementary Table S9B and C). These results highlight the importance of quantitative genotyping and compensation for allele dosage in GWAS in polyploids.

Both the additive and diploidized additive models showed consistent associations between Chr. 5 and male conversion rate (Supplementary Fig. S3 and Fig. 5E, respectively). The haplblock including the peak summit was maintained over a 3 Mb region (ca 8.6–11.8 Mb), and contained 184 genes (Fig. 5E). For Chr. 8, the peak spanned the region between 3.8 and 8.8 Mb, included 433 genes (Fig. 5F), and was associated with male conversion rate in both the additive and diploidized additive models (Supplementary Fig. S4 and Fig. 5F, respectively). The quantitative genotypes for the peak summit of the Chr. 9 peak observed in the additive model (Chr9:1,287,557, Supplementary Fig. S5A) ranged from nulliplex to duplex (Supplementary Fig. S5C). The peak covered 4 Mb of the sub-telomeric region and contained 262 genes (Fig. 5G).

For all three of these peaks identified from the diploidized additive model analysis, nulliplex individuals showed significantly higher male conversion rate than heterozygous individuals (Fig. 5H–J), suggesting that loss of that particular allele is associated with positive regulation of male conversion. This is consistent with the results from the additive model on Chr. 8, which indicated that fewer copies of the alternative alleles were positively correlated with male conversion rate as well (Supplementary Fig. S5B). The genotypes of the male parent ‘Taishu’ and the YTF1 individuals with high male conversion were consistent (recessive homozygosity) in the highest peak on Chr. 5 (Supplementary Table S11). On the other hand, the peaks of Chr. 8 and Chr. 9 showed inconsistent genotypes between the male parent ‘Taishu’ and the YTF1 individuals with high male conversion rate.
Figure 4. Genome-wide correlation/association analysis for male productivity. Genome-wide correlation analysis using quantitative genotypes for the ability of male conversion (A) and male conversion rate (B) traits. Genome-wide association analysis using diploidized genotypes, for the ability of male conversion (C) and male conversion rate (D) traits. The sex-chromosome (Chr. 15) is highly association with both ability of male conversion and male conversion rates. The blue vertical lines correspond to the MSY, including the OGI locus, which is not included in the reference genome of the wild diploid species (D. lotus). The green lines indicate -log(P-value) > 5.60 for the additive model, and > 5.98 for the diploidized additive model, respectively, representing the Bonferroni-corrected threshold of 0.1. (E-G) Close-up of the association loci on the sex chromosome, including the MSY region, for ability of male conversion (E) and male conversion rate (F) based on quantitative genotypes, and for male conversion rate based on diploidized genotypes (G). For (G), the MSY is contained within the peak locus. (H) Correlation between allele ratio at the peak (17,052,751-bp) on the sex chromosome (Chr. 15, see E and F), and OGI allele dosage, as detected by qPCR. (I) Association between male conversion rate and the OGI allele dosage. The individuals carrying duplex OGI alleles exhibited significantly higher male conversion rates (t-test P-value shown).
Figure 5. Genome-wide correlation/association analysis after normalization for the effect of OGI allele dosage. Genome-wide partial correlation analysis of the ability of male conversion (A) and male conversion rate (B), using quantitative genotypes in the additive model after normalization for the OGI dosage effect. Genome-wide association analysis of the ability of male conversion (C) and male conversion rate (D) after normalization for the OGI dosage effect. The sex-chromosome (Chr. 15) was not associated with either ability of male conversion or male conversion rate. The vertical red and green bars indicate the location of the association peaks. The red bars show the peaks commonly detected in the analyses using the additive and diploidized additive models, for male conversion rate. (E-G) Close-up of the association peaks on Chr. 5 (E), 8 (F), and 9 (G), with LD, using diploidized genotypes. The main haploblocks on Chr. 5, 8, and 9 included 184, 433, and 262 genes, respectively. Genotypes (Homo: homozygous, Het: heterozygous) of the most significant loci on Chr. 5 (H), Chr. 8 (I), and Chr. 9 (J).
These suggested that Chr. 5 might reflect the characteristics of 'Taishu' for male production (or OGI activation), whereas the other two loci might act for OGI activation independently.

Significant LD was maintained over ~2–5 Mb of the peaks on Chr. 5, 8, and 9 ($r^2 > 0.15$; Fig. 5E–G). These regions included 184, 433, and 262 genes, respectively (Fig. 5E–G and Supplementary Table S12). Next, we aimed to detect potential candidate with the genes underlying these peaks that hypothetically regulate the activation of OGI, which is normally silenced via SINE insertion on the promoter and the resultant DNA methylations. Considering that, in all cases, homozygous genotypes act recessively for OGI activation/repression, histone remodelling genes such as Chromatin remodelling 4, SET domain protein 25, and histone deacetylase 19, thought to be involved in jasmonic acid and ethylene signalling in Arabidopsis, are all located under the Chr. 5 peak (Supplementary Table S12, Sheet1). Candidate regulators within the Chr. 8 peak included SWADEE homeodomain homolog 1, histone deacetylase 2, and Jumonji family (Supplementary Table S12, Sheet 2), while the peak of Chr. 9 included the PHD finger protein and SET domain protein 38 (Supplementary Table S12, Sheet3).

Future in-depth sequence analysis of these candidates might help in the identification of candidate polymorphisms potentially involved in OGI activation/repression.

3.5. Examination of GWAS in polyploid genome

Genome-wide analyses in polyploid genomes are often challenging in terms of (i) genotype calling, and (ii) haplotype phasing. For genotyping, we adopted the allele ratio per locus with high coverage for quantitative genotypes, as previously reported in potato and in blueberry. This approach, combined with the Pearson correlation was successful at detecting the effect of Y-chromosome dosage for OGI activation and other potential candidates. Furthermore, the compensation with OGI allele dosage with two approaches, (i) partial correlation (in correlation analysis using quantitative genotypes), and (ii) rrBLUP with the covariate of OGI dosage (in GWAS using diploidized genotypes), improved our ability to detect candidate loci.

On the other hand, issues involving haplotype phasing still remain to be solved, since polyploids have more than two haplotypes per reference region, which are generally difficult to define, not only for conventional binary genotypes but also for quantitative genotypes. For instance, in our hexaploidy samples, the presence of many (>2) homologous haploblocks caused LD inconsistent with the order of the

Figure 6. Hypothetical model for the mechanisms underlying OGI regulation in hexaploid persimmon. (A) Two hypothesis can be proposed for the dosage-dependent cis-regulation of OGI (see Fig. 4I): (i) variation in cis-factors within the OGI promoter sequences modulate the effect of the transcription factors accessing to the OGI promoter, or (ii) variation in the OGI promoter sequence results in variations in epigenetic status. Both of these scenarios can be consistent with varying probability OGI activation, depending on the environmental conditions. (B) Model for the action of candidate genes on Chr. 5, 8, and 9, acting in dosage-dependent manner. Since recessive homozygosity had the highest effect on male conversion (OGI activation) in all three cases (Fig. 5H–J), the model predicts that the dominant (functional) alleles act to suppress OGI. The dosage-dependent effect (Fig. 5B) could originate either from multiple dominant alleles (A' and A'') with slightly different ability, or additive action of a single A allele to suppress OGI expression.
SNPs markers, despite of the F₂ segregation line in which LD decay completely depends on recombinations (Fig. 5E), as observed in autotetraploid blueberry as well. In autohexaploid sweet potato (Ipomoea batatas) with 90 chromosomes (2n = 6x = 90), 96 linkage groups (LGs) were generated, using only double-simplex SNPs showing a Mendelian segregation ratio in an F₂ progeny. Such construction of well-separated LGs would allow QTL analysis with conventional tools, but the targets would be limited to simplex loci and, unless the genomes were significantly different, much of the genomic space would not be included. Here, we were able to include multiplex alleles in our genome-wide association analysis, and our results suggest that a simple GWAS approach can be used to identify polysomic candidates, if sufficient markers are available.

Our results indicated that, in the additive model based on quantitative genotypes, individuals with higher dosages of OGI have a higher probability of male conversion. If we hypothesize that male conversion is associated with OGI activation, we can propose the following two hypotheses for cis-regulation of OGI to maintain OGI silencing (Fig. 6A): (i) multiple trans-acting factors can access the OGI promoter, each with slightly different sequence specificity, or (ii) epigenetic cis-factors of OGI, such as DNA/histone methylation, are modified independently, and thus, more copies of OGI alleles result in higher probability of OGI expression release. On the other hand, in both the additive and the diploidized additive models, all the loci on Chr. 5, 8, and 9 significantly affects male conversion rate (Fig. 5). This suggests that, although recessive alleles at these loci lack the function to maintain OGI suppression, the other alleles also vary in their ability to suppress OGI and/or have additive effects for silencing of OGI (Fig. 6B). Such a complex situation is not uncommon when dealing with polysomic genetic factors, and exemplifies how they can contribute to the acquisition or fine tuning of traits in a way that is not possible in a diploid situation.

Acknowledgements
We thank Dr Akihiko Sato (Institute of Fruit Tree and Tea Science, NARO, Japan) for the development and maintenance of the YTF₁ population.

Funding
Some of this work was performed at the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley supported by National Institutes of Health S10 OD018174 Instrumentation Grant. This work was supported by PRESTO from Japan Science and Technology Agency (JST) [JPMJPR13Q1] to T.A., a Grant-in-Aid for Scientific Research on Innovative Areas from JSPS [19H04862] to T.A., and a Grant-in-Aid for JSPS Fellows for [19J2361] to K.M.

Conflict of interest
None declared.

Accession numbers
The sequence reads are available from the DDBJ Sequence Read Archive (DRA) under the accession number DRA009556.

Supplementary data
Supplementary data are available at DNARES online.

References
1. Charlesworth, D. 2002, Plant sex determination and sex chromosomes, Heredity, 88, 94–101.
2. Ming, R., Bendahmane, A. and Renner, S.S. 2011, Sex chromosomes in land plants, Annu. Rev. Plant Biol., 62, 485–514.
3. Renner, S.S. 2014, The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database, J. Am. Bot., 101, 1588–96.
4. Kafer, J., Marais, G.A. and Pannell, J.R. 2017, On the rarity of dioecy in flowering plants, Mol. Ecol., 26, 1225–41.
5. Correns, C. 1903, Weitere Beiträge zur Kenntnis der dominierenden Merkmale und der Mosaikbildung der Bastarde, Ber. der Deutsch. Bot. Ges., 21, 195–201.
6. VanBuren, R., Zeng, F., Chen, C., et al. 2015, Origin and domestication of papaya Y chromosome, Genome Res., 25, 524–10.
7. Zhou, Y., Massonnet, M., Sanjak, J.S., Cantu, D. and Gaut, B.S. 2017, Evolutionary genomics of grape (Vitis vinifera ssp. sinfliera) domestication, Proc. Natl. Acad. Sci. U. S. A., 114, 11715–20.
8. Goldberg, E.E., Otto, S.P., Vamosi, J.C., et al. 2017, Macroevolutionary synthesis of flowering plant sexual systems, Evolution, 71, 898–912.
9. Comai, L. 2005, The advantages and disadvantages of being polyploid, Nat. Rev. Genet., 6, 836–46.
10. Akagi, T., Henry, I.M., Tao, R. and Comai, L. 2014, A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons, Science., 346, 646–50.
11. Akagi, T., Henry, I.M., Kawai, T., Comai, L. and Tao, R. 2016a, Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon, Plant Cell, 28, 2905–15.
12. Henry, I.M., Akagi, T., Tao, R. and Comai, L. 2018, One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants, Annu. Rev. Plant Biol., 69, 535–73.
13. Akagi, T., Kawai, T. and Tao, R. 2016b, A male determinant gene in diploid dioecious Diospyros is required for male flower production in monococious individuals of Oriental persimmon (D. kaki), Sci. Hort., 213, 243–51.
14. Yakushiji, H. and Nakatsuka, A. 2007, Recent persimmon research in Japan, Inp. J. Plant Sci., 1, 42–62.
15. Masuda, K., Akagi, T., Esumi, T. and Tao, R. 2020, Epigenetic flexibility underlies somaclonal sex conversions in hexaploid persimmon, Plant Cell Physiol., 61, 393–402.
16. Dufresne, F., Stift, M., Vergilino, R. and Mable, B.K. 2014, Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools, Mol. Ecol., 23, 40–69.
17. Akagi, T., Tao, R., Tsujimoto, T., Kono, A. and Yonemori, K. 2012, Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus reveals variable hexasomic inheritance in persimmon (Diospyros kaki Thunb.) cultivars, Tree Genet. Genomes., 8, 195–204.
18. Henry, I.M., Dilkes, B.P. and Comai, L. 2006, Molecular karyotyping and aneuploidy detection in Arabadopsis thaliana using quantitative fluorescent polymerase chain reaction, Plant J., 48, 307–19.
19. Garcia, A.A.F., Mollinari, M., Marconi, T.G., et al. 2013, SNP genotyping allows an in-depth characterization of the genome of sugarcane and other complex autoploids, Sci. Rep., 3, 1–10.
20. Grandke, F., Singh, P., Heuven, H.C.M., Haan, J.R. and Metzler, D. 2016, Advantages of continuous genotype values over genotype classes for GWAS in higher polyploids: a comparative study in hexaploidy chrysanthemum, BMC Genomics., 17, 9.
21. Rosyara, U.M., Jong, W.S., Douches, D.S. and Endelman, J.V. 2016, Software for genome-wide association studies in autoploids and its application to potato, Plant Genome, 9, 1–10.
22. Shirasawa, K., Harakawa, H. and Isobe, S. 2016, Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato, DNA Res., 23, 145–53.
23. Akagi, T., Shirasawa, K., Nagasaki, H., et al. 2020, The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants, PLoS Genet., 16, e1008566.
24. Li, H. and Durbin, R. 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754–60.

25. Danecek, P., Auton, A., Abecasis, G., et al.; 1000 Genomes Project Analysis Group. 2011, The variant call format and VCFools, Bioinformatics, 27, 2156–8.

26. Koboldt, D.C., Zhang, Q., Larson, D.E., et al. 2012, VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing, Genome Res., 22, 568–76.

27. Kang, H.M., Zaitlen, N.A., Wade, C.M., et al. 2008, Efficient control of population structure in model organism association mapping, Genetics, 178, 1709–23.

28. Endelman, J.B. 2011, Ridge regression and other kernels for genomic selection with R package rrBLUP, Plant Genome, 4, 250–5.

29. Yonemori, K., Sugiura, A., Tanaka, K. and Kameda, K. 1993, Floral ontogeny and sex determination in monoecious-type persimmons, J. Am. Soc. Hortic. Sci., 118, 293–7.

30. Henry, I.M., Nagalakshmi, U., Lieberman, M.C., et al. 2014, Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing, Plant Cell, 26, 1382–97.

31. Chester, M., Gallagher, J.P., Symonds, V.V., et al. 2012, Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae), Proc. Natl. Acad. Sci. U. S. A., 109, 1176–81.

32. Tao, R., Yamada, A., Esumi, T., Motosugi, H. and Sugura, A. 2003, Ploidy variations observed in the progeny of hexaploid Japanese persimmon (Diospyros kaki) ‘Fujiwaragosho’, Hort. Res. (Japan), 2, 157–60.

33. Parker, J.S. and Clark, M.S. 1991, Dosage sex-chromosome systems in plants, Plant Sci., 80, 79–92.

34. Shafiq, S., Berr, A. and Shen, W. 2014, Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation, New Phytol., 201, 312–22.

35. Zhou, C., Zhang, L., Duan, J., Miki, B. and Wu, K. 2005, HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis, Plant Cell, 17, 1196–204.

36. Law, J.A., Vashishth, A.A., Wohlschlegel, J.A. and Jacobsen, S.E. 2011, SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV, PLoS Genet., 7, e1002195.

37. Ito, K., Barnes, P. and Adcock, I.M. 2000, Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12, Mol. Cell. Biol., 20, 6891–903.

38. Peña, P., Davrazou, F., Shi, X., et al. 2006, Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2, Nature, 442, 100–3.

39. Hariganeya, N., Kikuchi, A. and Kamada, H. 2009, SET domain-containing protein genes are involved in Arabidopsis thaliana embryogenesis, Plant Biotech., 26, 293–300.

40. Ferrao, L.F.V., Benevenuto, J., Oliveira, I.B., et al. 2018, Insights into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a GWAS context, front. Ecol. Evol., 6, 1–16.

41. Shirasawa, K., Tanaka, M., Takahata, Y., et al. 2017, A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas), Sci. Rep., 7, 1–8.