Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains

Célia Caillet-Saguy1, Angelo Toto2, Raphael Guerois3, Pierre Maisonneuve2, Eva di Silvio2, Kristi Sawyer1, Stefano Gianni2 & Nicolas Wolff1

Human protein tyrosine phosphatase non-receptor type 4 (PTPN4) has been shown to prevent cell death. The active form of human PTPN4 consists of two globular domains, a PDZ (PSD-95/Dlg/ZO-1) domain and a phosphatase domain, tethered by a flexible linker. Targeting its PDZ domain abrogates this protection and triggers apoptosis. We previously demonstrated that the PDZ domain inhibits the phosphatase activity of PTPN4 and that the mere binding of a PDZ ligand is sufficient to release the catalytic inhibition. We demonstrate here that the linker connecting the PDZ domain and the phosphatase domain is involved in the regulation of the phosphatase activity in both PDZ-related inhibition and PDZ ligand-related activation events. We combined bioinformatics and kinetic studies to decipher the role of the linker in the PTPN4 activity. By comparing orthologous sequences, we identified a conserved patch of hydrophobic residues in the linker. We showed that mutations in this patch affect the regulation of the PTPN4 bidomain indicating that the PDZ-PDZ ligand regulation of PTPN4 is a linker-mediated mechanism. However, the mutations do not alter the binding of the PDZ ligand. This study strengthens the notion that inter-domain linker can be of functional importance in enzyme regulation of large multi-domain proteins.

Protein-tyrosine phosphatases (PTPs) represent the largest family of human phosphatases. These enzymes are critical in regulating signal transduction and their impairment has been previously associated with human diseases1. PTPN4 is a non-receptor tyrosine phosphatase whose multiple functions have been linked to T-cell signaling, learning, spatial memory and cerebellar synaptic plasticity2-4. Its overexpression reduces cell proliferation in COS-7 (CV-1 (simian) in Origin and carrying the SV40 genetic material) cells and suppresses CrkI-mediated cell growth and mobility in HEK293T (Human embryonic kidney) cells5,6. Recently, PTPN4 has been identified as a specific inhibitor of the TIR-domain-containing adapter-inducing interferon-β-dependent toll-like receptor 4 pathway7.

From a structural perspective, PTPN4 (UniProt P29074) is a large modular protein containing a N-terminal FERM (Band 4.1, Ezrin, Radixin, and Moesin) domain, a PDZ (PSD-95/Dig/ZO-1) domain and a C-terminal catalytic tyrosine phosphatase domain (Fig. 1). PTPN4 is localized in the cytoplasm and at the plasma membrane. After suppression of the FERM domain, the phosphatase is exclusively cytoplasmic8. PTPN4 is proteolysed in the cell by calpain in response to physiological stimuli, leading to enzyme activation9. In vitro, PTPN4 is cleaved and activated by both trypsin and calpain9. The active form of PTPN4 consists of the PDZ and PTP domains (Fig. 1).

We previously showed that PTPN4 prevents the induction of cell death in glioblastoma cell lines in a PDZ-PDZ ligand (or PDZ binding motif called PBM) dependent manner10. Targeting PTPN4-PDZ domain was shown to abrogate this protection and to trigger apoptosis. We recently identified the mitogen-activated protein kinase pathway3.

Received: 23 March 2017
Accepted: 5 July 2017
Published online: 11 August 2017

1Institut Pasteur - CNRS, Unité de Résonance Magnétique Nucléaire des Biomolécules - UMR 3528, Département de Biochimie Structurale et Chimie, Institut Pasteur, Paris, F-75724, France. 2Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy. 3Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, 91198, France. Correspondence and requests for materials should be addressed to C.C.-S. (email: celia.caillet-saguy@pasteur.fr) or S.G. (email: stefano.gianni@uniroma1.it)
kinase (MAPK) p38\(^\gamma\) (also known as MAPK12) as a cellular partner of PTPN4. The PBM of p38\(^\gamma\) has the highest affinity of all PBM from endogenous partners of PTPN4 and has a similar affinity to the optimized pro-death 13-amino acids peptide Cyto8-RETEV. Both peptides are efficient inducers of cell death after their intracellular delivery\(^{11,12}\). Furthermore, we showed that the PDZ domain of PTPN4 inhibits the phosphatase activity, while a PBM bound to the PDZ domain abrogates the auto-inhibition of the catalytic activity of PTPN4\(^{11,13}\).

While it is clear that the PDZ domain regulates the activity of PTPN4, the mechanism of crosstalk between the PDZ and PTP domains remains poorly understood and appears to be rather complex. In particular, previously published NMR (nuclear magnetic resonance) data indicated that the transition from the auto-inhibited state to the active state of PTPN4 is mediated by a modification of the global dynamic behaviour of the PDZ domain when going from the unbound to the bound state\(^{13}\). Of particular interest is the observation that, in order to communicate, the PDZ and PTP domains must be covalently linked as shown by the absence of inhibition when PTPN4-PDZ is added in trans to the linker-PTP construct\(^{13}\). These observations suggest that the linker has a crucial functional role in the communication between the two domains. Yet, the inter-domain linker of PTPN4 is flexible and unstructured, and does not display any direct detectable interactions by NMR with either the PDZ or the PTP domains\(^{13}\).

In this study, we investigate the role of the disordered linker connecting the PDZ and PTP domains in the active PDZ-PTP bidomain construct of PTPN4 (Fig. 1). To that end, the mechanism of regulation of PTPN4 activity was tackled both by bioinformatics and steady state kinetic experiments. We highlight a hydrophobic patch in the linker conserved among the PTPN4 orthologous sequences. Mutations in this conserved hydrophobic patch modify both the inhibition of the phosphatase activity of PTPN4 by the PDZ domain and the abrogation of the inhibition by the PBM binding. Our results shed light on the mechanism of PDZ-PBM mediated regulation of PTPN4 that is, at least in part, affected by the sequence of the linker.

Results

Structural and dynamics features of the linker. Bioinformatics analysis and structural features of the linker. PTPN4 PDZ-PTP active bidomain comprises two well-structured domains linked by an inter-domain sequence corresponding to residues 605 to 637 (Fig. 1). We previously stated that the linker was disordered by NMR but we also hypothesized that transient interactions operate in the bidomain. To access the structural features of the linker, the sequence of the linker was analysed using a panel of protein sequence analysis programs accessible from the NPS (network protein sequence) website for secondary structure predictions (https://npsa-prabi.ibcp.fr). Figure 2a shows the results obtained from different approaches – DSC\(^{14}\), MLRC\(^{15}\), PHD\(^{16}\) – and the consensus secondary structure prediction. Common features to all results are that a helix is predicted downstream of the PDZ domain (residues 605–614) and that the linker after residue 615 does not adopt any regular secondary structure. We have previously reported the resonance assignments of the linker (residue 605 to 637) for the PDZ-linker and the bidomain constructs (Fig. 1). Using the TALOS-N approach\(^{17}\) based on the resonance frequencies, the stretch of residues 605–614 is predicted as a \(\beta\)-strand with a low probability (<0.6) below the significant threshold (Fig. 2b). Thus, the linker is predominantly disordered in solution.

In addition, we used IUPred program from IUPred web server (http://iupred.enzim.hu)\(^{18}\) to determine the ordered or disordered characteristics of the linker in the PTPN4 PDZ-PTP. Interestingly, IUPred predicts a disorder tendency in the linker (residues 621 to 633) (Fig. 2c). Thus, in agreement with NMR results, bioinformatics predictors are consistent with an overall disordered conformation of the linker.

Protection of the linker from limited proteolysis and dynamic behaviour. To complement our results, we characterized PTPN4 PDZ-PTP by limited proteolysis with trypsin, chymotrypsin, and the non-specific subtilisin and papain proteases. Indeed, we identified three high specificity chymotrypsin cleavage sites and two trypsin cleavage sites in the linker from sequence analysis (Fig. 3a). The PDZ-PTP construct was subjected to limited proteolysis with different protein/protease ratio (100, 1000 and 10000) and different incubation times (0, 10, 60 min and overnight after addition of the protease) and at two different temperatures (18°C and 37°C). The limited
proteolysis with a ratio 100 for chymotrypsin and trypsin and a ratio 1000 for subtilisin and papain after 60 min at 37 °C shown in Fig. 3b is representative of pattern also obtained with the other limited proteolysis conditions. The bands corresponding to the major proteolysis products were identified by mass spectrometry. Surprisingly, chymotrypsin, trypsin and subtilisin cleave only in the PDZ or PTP domains, while the linker is only cleaved by the non-specific papain in its C-terminal part. The observation that the linker is rather resistant to the proteolysis, suggests that the accessibility of this region is sufficiently low to protect it from the hydrolysis of peptide bonds. The linker-PTP construct is also rather resistant to the proteolysis (data not shown).

We previously collected dynamical parameters in solution of the bidomain PDZ-PTP C/S (inactive enzyme by mutation of the catalytic cysteine) and of the PDZ-linker constructs both in the absence of PBM (unliganded) and with a PBM bound (liganded) to the PDZ domain. We reported that the transverse relaxation R_2 and the longitudinal relaxation R_1 values showed that the PDZ domain in the PDZ-PTP construct reorients more freely in solution when liganded with dynamic characteristics of the isolated PDZ domain13. We also collected dynamical parameters of the linker. R_2 values are shown in Fig. 3c. The linker is flexible in the fast timescale (ps - ns) in both constructs. Interestingly, the linker (R_2 of 6.5 s$^{-1}$) is more flexible in the liganded bidomain form (PDZ-PTPCS than in the unliganded bidomain form (PDZ-PTPCS with a R_2 value of 13.0 s$^{-1}$), with R_2 values that tend toward the values observed in the PBM-ligated PDZ-linker isolated domain (R_2 of 5.1 s$^{-1}$). However, the linker flexibility in the liganded PDZ-PTP construct does not reach that of the isolated domain. Although we did not identify a stable surface of interaction between PDZ and PTP domains by NMR, from this dynamic behavior, we conclude that the transient intramolecular interactions that restrain the PDZ and the linker mobility in unliganded PDZ-PTP are destabilized in the PBM-ligated PDZ-PTP.

Figure 2. Secondary structure and unstructured region predictions of PTPN4 bidomain. (a) Linker sequence between the PDZ and PTP domains of PTPN4 (residues 605–637). Secondary structure predictions are shown below the sequence. For the different softwares used: h is the prediction of α-helix, e of β-strand and c to unstructured (http://npsa-pbil.ibcp.fr). (b) Secondary structure prediction of PDZ-linker construct of PTPN4 using Talos-N. Probability for the target residue to adopt secondary structure type α-helix or β-strand are shown in blue and red, respectively. (c) Unstructured region prediction of PDZ-PTP bidomain construct of PTPN4 using IUPred. Inter-domain linker (residues 605–635 of the linker) is indicated. Unstructured regions of the linker are shown in black on the sequence. Disorder tendency is shown below with the residue position.
To define a potential region of the linker involved in the PTPN4 regulation, the sequence of the linker of PTPN4 was aligned with orthologous sequences using the InterEvolAlign tool (http://biodev.cea.fr/interevol) that allows us to broaden the selection to homologous sequences and avoid paralogous sequences. We used a more divergent alignment with all proteins that have a PDZ-linker-PTP organization (Fig. 4).

We noticed two conserved stretches of hydrophobic residues in the linker. One, -NAVY-, is located at the N-terminus of the linker (residues 604–607) in the region predicted helical by secondary structure predictions programs (Fig. 4). We observed that in a sequence from lice (XP_002422670.1, Pediculus humanus) which presents the shortest linker (only 21 residues vs 35 residues in humans), this stretch becomes very short (two residues) (Fig. 4). Most interestingly, a more conserved and apolar motif – FQYI – is found in the central
unstructured part of the linker (residues 620–623) (Fig. 4). We presumed that these highly conserved residues could be involved in the regulation of PTPN4 activity by interfacing with the PTP domain. We separately mutated the four positions by producing four site-directed glycine variants, namely F620G, Q621G, Y622G and I623G, which were analysed by stopped-flow kinetics. We also produced and analysed the mutant ΔFQYI with the deletion of the entire motif FQYI.

Mutations in the inter-domain linker affect the phosphatase kinetics. In order to test the effect of sequence composition in the linker on the communication between the PDZ and PTP domains of PTPN4, we compared the steady-state kinetics of the bidomain wild-type PDZ-PTP construct (PDZ-PTPWT) to that of the F620G, Q621G, Y622G and ΔFQYI variants. First, we ensured that we obtained similar k_{cat} and K_M values for the linker-PTP that includes the inter-domain linker and the phosphatase domain, and the PTP construct that contains only the PTP domain (Fig. 1)(Table 1). This result indicates that the linker by itself had no effect on the PTP domain. Then, the linker-PTP construct was used both as the positive control for maximum activity and as the negative control for the regulation by the PDZ domain since no effect of PBM binding was observed on the k_{cat} and K_M values of the linker-PTP construct as previously reported for the k_{cat}

Table 1. Kinetic parameters of the hydrolysis of pNPP by PTPN4 constructs. The experimental errors are derived from a bootstrap analysis except those with an asterisk that come from three independent experiments as described previously13.

PTPN4 constructs	K_M μM	k_{cat} s$^{-1}$	k_{cat}/K_M s$^{-1}$.M$^{-1}$
PTP	840 ± 60*	5.9 ± 0.2*	7000 ± 550*
linker-PTP	840 ± 130*	5.6 ± 0.5*	6700 ± 1200*
PDZ-PTPWT	230 ± 60	2.0 ± 0.3	8700 ± 1400
PDZ-PTPQ621G	400 ± 100	1.3 ± 0.2	3300 ± 1000
PDZ-PTPQ622G	400 ± 100	1.8 ± 0.2	4500 ± 1500
PDZ-PTPQ622G	210 ± 40	1.0 ± 0.3	4800 ± 700
PDZ-PTPQ622G	210 ± 40	1.5 ± 0.2	7100 ± 1000
PDZ-PTPQ622G	70 ± 20	1.8 ± 0.4	25700 ± 10500
Linker-PTP	780 ± 100*	6.0 ± 0.4*	7700 ± 1100*
PDZ-PTPQ621G+Cyt8-RETev	450 ± 70	2.9 ± 0.3	6500 ± 800
PDZ-PTPQ622G+Cyt8-RETev	350 ± 90	2.0 ± 0.5	5700 ± 1800
PDZ-PTPQ622G+Cyt8-RETev	320 ± 60	2.5 ± 0.4	7800 ± 1400
PDZ-PTPQ622G+Cyt8-RETev	410 ± 80	1.5 ± 0.3	3500 ± 950
PDZ-PTPQ622G+Cyt8-RETev	330 ± 70	1.9 ± 0.4	5800 ± 1400
PDZ-PTPΔFQYI+Cyt8-RETev	290 ± 80	3.7 ± 0.9	12800 ± 4700

unstructured part of the linker (residues 620–623) (Fig. 4). We presumed that these highly conserved residues could be involved in the regulation of PTPN4 activity by interfacing with the PTP domain. We separately mutated the four positions by producing four site-directed glycine variants, namely F620G, Q621G, Y622G and I623G, which were analysed by stopped-flow kinetics. We also produced and analysed the mutant ΔFQYI with the deletion of the entire motif FQYI.

Mutations in the inter-domain linker affect the phosphatase kinetics. In order to test the effect of sequence composition in the linker on the communication between the PDZ and PTP domains of PTPN4, we compared the steady-state kinetics of the bidomain wild-type PDZ-PTP construct (PDZ-PTPWT) to that of the F620G, Q621G, Y622G and ΔFQYI variants. First, we ensured that we obtained similar k_{cat} and K_M values for the linker–PTP that includes the inter-domain linker and the phosphatase domain, and the PTP construct that contains only the PTP domain (Fig. 1)(Table 1). This result indicates that the linker by itself had no effect on the PTP domain. Then, the linker–PTP construct was used both as the positive control for maximum activity and as the negative control for the regulation by the PDZ domain since no effect of PBM binding was observed on the k_{cat} and K_M values of the linker–PTP construct as previously reported for the k_{cat}

Table 1. Kinetic parameters of the hydrolysis of pNPP by PTPN4 constructs. The experimental errors are derived from a bootstrap analysis except those with an asterisk that come from three independent experiments as described previously13.

PTPN4 constructs	K_M μM	k_{cat} s$^{-1}$	k_{cat}/K_M s$^{-1}$.M$^{-1}$
PTP	840 ± 60*	5.9 ± 0.2*	7000 ± 550*
linker-PTP	840 ± 130*	5.6 ± 0.5*	6700 ± 1200*
PDZ-PTPWT	230 ± 60	2.0 ± 0.3	8700 ± 1400
PDZ-PTPQ621G	400 ± 100	1.3 ± 0.2	3300 ± 1000
PDZ-PTPQ622G	400 ± 100	1.8 ± 0.2	4500 ± 1500
PDZ-PTPQ622G	210 ± 40	1.0 ± 0.3	4800 ± 700
PDZ-PTPQ622G	210 ± 40	1.5 ± 0.2	7100 ± 1000
PDZ-PTPQ622G	70 ± 20	1.8 ± 0.4	25700 ± 10500
Linker-PTP	780 ± 100*	6.0 ± 0.4*	7700 ± 1100*
PDZ-PTPQ621G+Cyt8-RETev	450 ± 70	2.9 ± 0.3	6500 ± 800
PDZ-PTPQ622G+Cyt8-RETev	350 ± 90	2.0 ± 0.5	5700 ± 1800
PDZ-PTPQ622G+Cyt8-RETev	320 ± 60	2.5 ± 0.4	7800 ± 1400
PDZ-PTPQ622G+Cyt8-RETev	410 ± 80	1.5 ± 0.3	3500 ± 950
PDZ-PTPQ622G+Cyt8-RETev	330 ± 70	1.9 ± 0.4	5800 ± 1400
PDZ-PTPΔFQYI+Cyt8-RETev	290 ± 80	3.7 ± 0.9	12800 ± 4700
PDZ-PTP mutants dephosphorylate the pNPP substrate following Michaelis-Menten kinetics as previously reported for the PDZ-PTP WT and linker-PTP (Fig. 5a). In all cases, we observed a clear substrate inhibition effect and, therefore, we employed a corrected Michaelis-Menten equation taking into account this effect. The Michaelis constant (KM) and the turnover number (kcat) values obtained by fitting the experimental data are listed in Table 1. The kcat and KM values decrease when comparing linker-PTP with PDZ-PTP WT as previously reported13. KM values of Y622G and I623G mutants are similar to the one of the PDZ-PTP WT while those of F620G and Q621G are significantly higher by 1.7 fold, with intermediate values between those of PDZ-PTP WT and linker-PTP (Table 1). All kcat values are lower than PDZ-PTP WT except for Q621G, which has a value similar to the wild-type. Y622G is strongly affected with a kcat value divided by a factor 2 whereas F620G and I623G kcat values decreased by 1.5 and 1.3 fold, respectively. Hence, it appears that, despite the fact that all the mutations are not involved directly in the function of the phosphatase domain, we could observe in all cases a significant effect in either the affinity of PTP substrate and/or the catalytic activity of the enzyme. Interestingly, the mutant ΔFQYI is strongly affected in the PTP-substrate affinity with a KM value of 70 μM, divided by a factor 3.3 compared to the PDZ-PTP WT whereas the kcat value is similar to the PDZ-PTP WT. The catalysis efficiency (kcat/KM ratio) of ΔFQYI is thus strongly increased.

Figure 5. Phosphatase activity of PTPN4 bidomain constructs mutated in the linker. (a) Michaelis-Menten plots of initial rates of pNPP hydrolysis by different PTPN4 proteins at 600 nM without PDZ ligand; (b) Michaelis-Menten plots of initial rates of pNPP hydrolysis by different PTPN4 proteins at 600 nM in the presence of a saturated concentration of PDZ ligand (70–100 μM of Cyto8-RETEV); linker-PTP; PDZ-PTP WT; F620G; Q621G; Y622G; I623G. The solid lines are nonlinear least-squares fits of the data to the Michaelis-Menten equation. (c) kcat of PTPN4 constructs in the absence of PDZ ligand (light grey) and in the presence of PDZ ligand (Cyto8-RETEV) (dark grey). (d) KM of PTPN4 constructs in the absence of PDZ ligand (light grey) and in the presence of PDZ ligand (Cyto8-RETEV) (dark grey).
Mutations of the linker disturb PBM-mediated abrogation of catalytic inhibition. Kinetic experiments of PTPN4 PDZ-PTP constructs with increasing concentrations of PTPN4-optimized PBM Cyto8-RETEV peptide were performed to determine catalytic parameters of the bidomain mutants in their “activated” state (Fig. 5b).

Both k_{cat} and K_M values of PDZ-PTP WT significantly increase, by a factor of 1.5 and 2, respectively, upon addition of PBM Cyto8-RETEV whereas the k_{cat} and K_M of the linker-PTP are unaffected (Table 1) (Fig. 5c). All k_{cat} values of PBM-ligated mutants are higher than those of non-ligated mutants (1.3 to 1.5 fold higher depending on single mutants) indicating that PBM abrogates inhibition for all mutants, but those values are lower than that of PBM-ligated PDZ-PTP WT except for the PBM-ligated ΔFQYI mutant that presents a k_{cat} 2 fold higher. Thus, all mutants are affected in the PBM-mediated release of inhibition (Fig. 5c). However, all PDZ-PTP mutants bind Cyto8-RETEV with the same affinity as previously reported for PDZ-PTP WT (Kd between 1 and 5 μM deduced from the fit of Vm as a function of Cyto8-RETEV concentration). Interestingly, K_M of F620G and Q621G are unchanged upon the addition of Cyto8-RETEV whereas K_M of Y622G and I623G increase (1.9 and 1.5 fold, respectively) as observed with the K_M of the wild-type (Fig. 5d). As previously observed for the PDZ-PTP WT, both the k_{cat} and K_M values significantly increase in the presence of Cyto8-RETEV for Y622G and I623G, showing that the release of the inhibition operates with a partial compensation of the effect on the two rate constants (Table 1) providing catalysis efficiencies (k_{cat}/K_M ratios) that are not strongly changed in the presence or absence of the effector peptide.

Hence, all PDZ-PTP mutants are affected in the PBM-mediated regulation of PTPN4 activity either in the modulation of the affinity for the PTP substrate or in the catalytic activity of the enzyme. This modulation of the PDZ-mediated inhibition and PBM-mediated release of inhibition of the PTPN4 bidomain suggests that the linker has a function in the inter-domain PDZ-PTP communication driving the regulation of the activity of the phosphatase PTPN4.

Discussion

Previous structural investigation of PTPN4 revealed that this enzyme is regulated by a mechanism of auto-inhibition which is, at least in part, mediated by an intramolecular communication between the PDZ and PTP domains13. Remarkably, the linker region connecting the PDZ and PTP domains is required for such a crosstalk, as the regulation is abolished when the two domains are not covalently linked. However, the 33-residue linker is flexible and unstructured, and no detectable interaction could be observed by NMR with either the PDZ or the PTP domains. These findings prompted us to perform additional investigations, in order to characterize more directly the role of the linker in the regulation of PTPN4.

It is interesting to observe that, whilst the linker is largely disordered13, it is not fully solvent accessible, displaying resistance to proteolysis in both PDZ-PTP and linker-PTP constructs and that NMR dynamics parameters (R_t and R_s) do not reach the values of the truncated PDZ-linker construct. This suggest a potential interaction between the linker and the PTP domain. We previously proposed that the transient intramolecular interactions which constrain the PDZ and the linker mobility in unliganded PTPN4 are destabilized in the presence of the PBM. Based on multiple sequence alignment, we identified a conserved hydrophobic region in the linker that may be involved in the regulation of PTPN4, being universally conserved in PTPN4 from different species.

We showed that mutations in this hydrophobic patch –FQYI–, highly conserved among the PTPN4 orthologous sequences, affects the phosphatase kinetics with effects on k_{cat} and/or K_M. Both the inhibition of the phosphatase activity by the PDZ domain and the abrogation of the inhibition by the PBM binding are affected, indicating that the PDZ-PBM regulation of PTPN4 is a linker-mediated mechanism.

We reported that the PDZ domain inhibits the adjacent catalytic PTP domain through a mixed inhibition mechanism, affecting the K_M and k_{cat} of the enzyme with opposite effects. The PBM binding to the PDZ domain abolishes this auto-inhibition and restores the catalytic properties of PTPN4, most probably affecting the active site via a distal interaction occurring through a protein interface. So, the PDZ domain of PTPN4 is not only directly involved in discriminating its PBM-containing targets but also allosterically regulates the enzymatic activity of the phosphatase through the PDZ-PTP linker. Thus, both the linker sequence and PDZ domain are required for the regulation of the enzymatic activity of PTPN4 (Fig. 6). Interestingly, such dynamic inter-domain regulation has been observed for the peptidyl-prolyl cis-trans isomerase Pin1. Substrate binding to Pin1 WW domain changes the intra/inter domain mobility, thereby altering substrate activity in the distal peptidyl-prolyl isomerase catalytic site with evidence of dynamic allostery19.

We propose that the linker participate together with the PDZ domain to the allosteric control of the catalytic activity by modulating the kinetic properties of the conserved WPD loop motif closure. Indeed, substrate binding is accompanied by a rotation of the WPD loop from an open to a closed position around the phosphotyrosine residue of the substrate that provides residues that are essential for the catalytic cycle21. Moreover, an allosteric regulation of the WPD loop closure was recently detailed in PTP1B showing a modulation of the activity with a likely enhancement of the phosphate release step in the PTP1B catalytic cycle22. This type of modulation of the WPD loop closure was recently detailed in PTP1B showing a modulation of the activity with a likely mechanism, affecting the K_M and k_{cat} of the linker-PTP are unaffected (Table 1) (Fig. 5c). All k_{cat} values of PBM-ligated mutants are higher than those of non-ligated mutants (1.3 to 1.5 fold higher depending on single mutants) indicating that PBM abrogates inhibition for all mutants, but those values are lower than that of PBM-ligated PDZ-PTP WT except for the PBM-ligated ΔFQYI mutant that presents a k_{cat} 2 fold higher. Thus, all mutants are affected in the PBM-mediated release of inhibition (Fig. 5c). However, all PDZ-PTP mutants bind Cyto8-RETEV with the same affinity as previously reported for PDZ-PTP WT (Kd between 1 and 5 μM deduced from the fit of Vm as a function of Cyto8-RETEV concentration). Interestingly, K_M of F620G and Q621G are unchanged upon the addition of Cyto8-RETEV whereas K_M of Y622G and I623G increase (1.9 and 1.5 fold, respectively) as observed with the K_M of the wild-type (Fig. 5d). As previously observed for the PDZ-PTP WT, both the k_{cat} and K_M values significantly increase in the presence of Cyto8-RETEV for Y622G and I623G, showing that the release of the inhibition operates with a partial compensation of the effect on the two rate constants (Table 1) providing catalysis efficiencies (k_{cat}/K_M ratios) that are not strongly changed in the presence or absence of the effector peptide.

Hence, all PDZ-PTP mutants are affected in the PBM-mediated regulation of PTPN4 activity either in the modulation of the affinity for the PTP substrate or in the catalytic activity of the enzyme. This modulation of the PDZ-mediated inhibition and PBM-mediated release of inhibition of the PTPN4 bidomain suggests that the linker has a function in the inter-domain PDZ-PTP communication driving the regulation of the activity of the phosphatase PTPN4.

Methods

Site-directed mutagenesis and protein purification. The variants of PTPN4 named F620G, Q621G, Y52G, I623G and ΔFQYI were obtained by using the Quik-Change Mutagenesis kit (Stratagene) according to the manufacturer’s instructions, and the substitutions were confirmed by DNA sequencing. Template DNA used for PTPN4 mutants was the PDZ-PTP WT construct cloned in a pET15b expression plasmid. The PTP construct
was obtained by using the Pwo polymerase (Roche) according to the manufacturer’s instructions, and the insertion was confirmed by DNA sequencing. Template DNA used for the PTP construct was a synthetic construct comprising the PTP domain cloned in a pGEX-6P1 expression plasmid. Expression and purification of linker-PTP and PTP construct were performed as described previously. Bidomain PDZ-PTP variants were expressed and purified as previously described without TEV cleavage. Briefly, clarified supernatants were loaded on Ni²⁺ column (HiTrap Chelating HP, GE), washed and eluted with an imidazole gradient from 40 mM to 1 M. The eluted fractions containing the protein were pooled and loaded on a gel filtration column (HiLoad Superdex 75 pg, GE). Proteins were concentrated using centrifugal filter devices (Vivaspin, Sartorius). Protein concentration was estimated from its absorbance at 280 nm. The peptide Cyto8-RETEV (SAESHKSGRETEV) was synthesized in solid phase using a Fmoc strategy (JPT).

Limited proteolysis. Limited proteolysis was carried out in 50 mM Tris pH 7.5, 150 mM NaCl and 0.5 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride) using a ratio (w:w) of 1:100 for papain:PDZ-PTP WT and subtilisin:PDZ-PTP WT, and 1:100 for trypsin:PDZ-PTP WT and chymotrypsin:PDZ-PTP WT at 37 °C for 0, 10, 60 min and overnight. Reaction mixtures at each time interval were stopped by mixing with SDS loading buffer and heating at 95°C for 5 min. Protein fragments were resolved by SDS-PAGE through a 12% polyacrylamide gel and visualized by Coomassie staining. The bands corresponding of the major proteolysis products were then identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS).

Sequence alignment. Sequence of PTPN4 (accession number NP_002821.1) was used as query on the InterEvolAlign server to retrieve one single homolog per species assessed as probable ortholog through a reciprocal blast search procedure against the non-redundant database. Retrieved full-length sequences were re-aligned using MAFFT and displayed using Jalview.

Enzymatic assays. Kinetics experiments were carried out on a single-mixing SX-18 stopped-flow instrument (Applied PhotoPhysics). Absorbances values were measured continuously at 410 nm at 25°C. Experiments were performed by mixing a constant concentration of each of the PTPN4 variants, 0.6 μM in the presence of increasing concentrations of Cyto8-RETEV peptide, ranging between 0 μM and 100 μM versus increasing concentrations of pNPP ranging from 19 μM to 10 mM. The buffer was 50 mM Tris-HCl, pH 7.5, 1 mM MgCl₂, 150 mM NaCl, 0.5 mM TCEP. Initial linear reaction rates were calculated during a 20 s reaction. The Kₘ and kₗ constants were deduced from fitting the Michaelis–Menten equation with the prism software. The equation takes into account excess substrate inhibition.

References
1. Hendriks, W. J. A. J. et al. Protein tyrosine phosphatases in health and disease. FEBS J. 280, 708–730 (2013).
2. Kina, S. et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur. J. Neurosci. 26, 2269–2278 (2007).
3. Kohda, K. et al. The δ glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc. Natl. Acad. Sci. USA 110, E948–957 (2013).
4. Young, J. A. et al. Protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol. Immunol. 45, 3756–3766 (2008).
5. Gu, M., Meng, K. & Majerus, P. W. The effect of overexpression of the protein tyrosine phosphatase PTPMEG on cell growth and on colony formation in soft agar in COS-7 cells. Proc. Natl. Acad. Sci. USA 93, 12980–12985 (1996).
6. Zhou, J. et al. PTPN4 negatively regulates Crkl in human cell lines. Cell. Mol. Biol. Lett. 18, 297–314 (2013).
7. Huai, W. et al. Phosphatase PTPN4 preferentially inhibits TRIF-dependent TRLR4 pathway by dephosphorylating TRAM. J. Immunol. 184, 4458–4465 (2015).
8. Gjörloff-Wingren, A. et al. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur. J. Immunol. 30, 2412–2421 (2000).
9. Gu, M. & Majerus, P. W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem. 271, 27751–27759 (1996).
10. Préhaud, C. et al. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci. Signal. 3, ra5 (2010).
11. Maisonneuve, P. et al. Molecular Basis of The Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-Activated Protein Kinase p38α. J. Biol. Chem.. doi:10.1074/jbc.M115.707208 (2016).
12. Babault, N. et al. Peptides targeting the PDZ domain of PTPN4 are efficient inducers of glioblastoma cell death. Struct. Lond. Engl. 1993(19), 1518–1524 (2011).
13. Maisonneuve, P. et al. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. FEBS J. 281, 4852–4865 (2014).
14. King, R. D. & Sternberg, M. J. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. Publ. Protein Soc. 5, 2298–2310 (1996).
15. Guermeur, Y., Geourjon, C., Gallinari, P. & Deléage, G. Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinforma. Oxf. Engl. 15, 413–421 (1999).
16. Rost, B., Sander, C. & Schneider, R. PHD–an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. CABIOS 10, 53–60 (1994).
17. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).
18. Dosztányi, Z., Czizmók, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinforma. Oxf. Engl. 21, 3433–3434 (2005).
19. Faure, G., Andreani, J. & Gueris, R. InterEvol database: exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res. 40, D847–856 (2012).
20. Peng, J. W. Investigating Dynamic Interdomain Allostery in Pin1. Biophys. Rev. 7, 239–249 (2015).
21. Tonks, N. K. Protein tyrosine phosphatases–from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280, 346–378 (2013).
22. Choy, M. S. et al. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery. Mol. Cell 65, 644–658 (2017) e5.
23. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
24. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinforma. Oxf. Engl. 25, 1189–1191 (2009).

Acknowledgements
We thank Pascal Lenormand (Structural Mass Spectrometry and Proteomics Unit) for its technical expertise. PM was supported by grants from the Ministère de l’Enseignement Supérieur et de la Recherche and the Fondation pour la Recherche Médicale [FDT20130927999]. KS was a recipient of Erasmus + grant. Work was partly supported by grants from the Italian Ministero dell’Istruzione dell’Università e della Ricerca (Progetto di Interesse ‘Invecchiamento’ to S.G.) and Sapienza University of Rome (C26A155S48 and B52F16003410005 to S.G) and the international division of Institut Pasteur.

Author Contributions
C.C.S., P.M., S.G., and N.W. planned the experiments. C.C.S., A.T., E.S., P.M., R.G., K.S. performed the experiments. C.C.S., P.M., S.G., R.G. and N.W. analyzed the data. C.C.S., S.G. and N.W. wrote the manuscript. C.C.S., P.M., R.G. prepared figures. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017