Brief Report

Zika E glycan loop region and Guillain-Barré Syndrome-related proteins: a possible molecular mimicry to be taken in account for vaccine development

Grégorie Lebeau, Etienne Frumence, Jonathan Turpin, Jean-Jacques Hoarau, Gilles Gadea, Pascale Krejbich, Philippe Desprès and Wildriss Viranaicken*

Processus Infectieux en Milieu Insulaire et Tropical (PIMIT), Université de La Réunion 1, INSERM 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte-Clotilde, La Réunion, France ;
* Correspondence: wildriss.viranaicken@univ-reunion.fr (W.V.)

Abstract: Neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain-Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. Analysis of ZIKV epidemic strains showed that glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Ca\textsubscript{v} 1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS.

Keywords: ZIKV; Guillain-Barré Syndrome; Molecular Mimicry; Calcium Channel Voltage Dependent; Heat Shock Protein; Vaccine

1. Introduction

In the last decades, there has been an increasing number of epidemics associated with mosquito-borne RNA viruses of medical concern such as Dengue Virus (DENV), West Nile Virus (WNV) or Chikungunya Virus [1]. Like DENV and WNV, Zika Virus (ZIKV) belongs to flavivirus genus of the Flaviviridae family [2]. Classically, ZIKV is transmitted by mosquito bite and the preferred vectors for ZIKV spreading are Aedes genus mosquitoes [2,3]. ZIKV was first reported in Uganda in 1947 on a rhesus monkey, however the virus remained silent for years, only provoking sporadic infections until 2007 [2]. The outbreak worldwide spread urged WHO to declare ZIKV as a major public health issue, leading to a global effort to fight against the disease. ZIKV infection causes clinical manifestation in ~18% of cases ranging from mild disease with a dengue-like syndrome, to more severe outcomes such as congenital microcephaly [4–6]. Of note, other neurological disorders have been associated with ZIKV infection including encephalitis, myelitis and finally Guillain-Barré Syndrome (GBS) [5–8]. Moreover, uncommon modes of transmission have been described, including sexual and vertical (mother-to-infant) transmission, increasing the threaten that represent this virus [9–12].

Like other flaviviruses, ZIKV is a positive sense single-stranded RNA virus. The viral genomic RNA encodes a large polyprotein which is processed to generate the structural proteins C, prM and E followed by the non-structural proteins NS1 to NS5. The E protein is involved in virus binding onto host-cell and internalization of viral particles. The E ectodomain is divided into three domains I (EDI),
II (EDI), and III (EDIII). The EDI comprises a glycan loop which is glycosylated on N154. The antibody-mediated virus neutralization depends on the availability of neutralizing epitopes on the E protein.

To date, there are two ZIKV lineages, the African lineage with the historical strain MR766 (1947) as prototype and the Asian lineage, the latter being responsible for the contemporary epidemics in South Pacific and Americas. Critically, the Asian lineage is the only one associated with GBS so far. Comparative analysis between Asian-lineage ZIKV strains PF13 (French Polynesia, 2013) and BeH819015 (Brazil, 2015) with African strain MR766 showed differences in their ability to infect human host cells [13]. The epidemic ZIKV strains differ from African strain MR766-NIID by eight amino-acid substitutions in ZIKV E protein at positions E-152/156/158/169/285/341/343. Interestingly, the residues E-152/156/158 are identified into the glycan loop (GL, residues E-151 to E-165) region of ZIKV. The GL region of Asian-lineage ZIKV strains has a glycan linked to N154 but African strain MR766 does not. We previously reported that GL region influences the availability of neutralizing epitopes on ZIKV [14] and that residues E-152/156/158 play a key role in antigenic reactivity of GL region [14]. In the present study, we proposed that amino-acids at positions E-152/156/158 of ZIKV epidemic strains might exhibit a molecular mimicry with GBS-related proteins. The possibility that E-clusters of residues E-283/285, E-341/343, and E-437/438 could account for a molecular mimicry in relation with human proteins was also investigated.

2. Materials and methods

We conducted a comparative analysis between the E sequences from epidemic Brazilian ZIKV strain BeH-819015 (Genbank access number KU365778) isolated in 2015 and laboratory-adapted African ZIKV strain MR766-NIID lineage isolated in 1947 (Genbank access number LC002520). It is of note that biological properties of viral strains BeH-819015 and MR766-NIID have been extensively studied [13–17].

We attempted to determine potential candidates for Asian lineage ZIKV E protein molecular mimicry using Blastp suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) included in BLAST® NCBI tool.

For this purpose, we entered as query the diverse peptides resulting from substitutions only observed in the epidemic strains of ZIKV, limiting ourselves to the small size peptides (5 amino acids). Then, we searched for protein with these sequences conserved among Human proteins (taxid: 9605) using Reference proteins database (refseq_protein) and protein-protein BLAST algorithm with default search parameters. Selection criteria for in-silico determination of mimicry candidates among sequences that produced significant alignment were defined as following: (i) Primary sequence fully conserved in human candidate protein; (ii) Candidate protein highly expressed in nervous system, both central and peripheric; (iii) Candidate protein near or far associated with neuropathies, in literature.

Additionally, the entire primary amino acid sequence of ZIKV (epidemic strain) envelope protein was assessed using B Cell Epitope Prediction Tools from the Immune Epitope Database (IEDB; http://tools.iedb.org/bcell/). Briefly, ZIKV E sequence was entered in the Antibody Epitope Prediction tool set on Bepipred Linear Epitope Prediction 2.0 in order to determine potential epitopes leading to antibody response in E protein. Subsequently, these results were cross-checked with the query sequence previously used for Blastp analysis.

3. Results

Molecular mimicry was proposed as a mechanism to explain how viral infection can trigger GBS [18,19]. We decided to develop an in-silico approach to determine whether ZIKV E protein shares homology with human proteins (Table 1). So far, GBS has been associated with contemporary epidemic ZIKV strains of Asian lineage. It seems unlikely that African-lineage ZIKV have ability to mediate GBS.

Based on the amino-acid changes observed between the E proteins of viral strains BeH-819015 and MR766-NIID, we identified four clusters of amino-acid substitutions making good candidates to
further explore molecular mimicry hypothesis (Table 1). Into the EDI domain, residues at positions E-152/156/158 may play a key role in antigenic reactivity of ZIKV GL region [14]. The E-GL region of Asian-lineage ZIKV encompasses the sequence IVNDT (residues E-152 to E-156) which includes the sequon NDT where a glycan is linked to N154. African ZIKV strain MR766-NIID includes the pentapeptide TVNDI in place of IVNDT due to the (T, I) permutation at positions E-152/156 leading to a non-glycosylated ZIKV [14]. The amino-acid substitution E-Y158H has been identified between MR766-NIID and epidemic Brazilian strain BeH819015 of Asian lineage. It is of note that two substitutions at positions E-156/158 of the GL region change the pentapeptide DIGYE into DTGHE. Other amino-acid residues in the E protein are candidates for searching a sequence homology with GBS-related proteins. There are the EDII residues E-283/285 with a pentapeptide GKFLS for BeH819015 but GRLSS in MR766-NIID. Also, the EDIII residues E-341/343 compose the pentapeptide VPAQM in BeH819015 but IPVQM in MR766-NIID. Finally, the V437A and F438L permutations lead to a GALNS peptide for BeH819015 compared to GVFNS for MR766-NIID.

Query sequence	Substitutions associated	Output
IVNDT	T152I / I156T	Calcium channel voltage-dependent L type α-1C subunit Heat Shock 70 kDa protein 12A Pecaxen-like protein 2 Cyclin-C Adhesion G-protein coupled receptor V1 Coagulation factor VIII HEAT repeat-containing protein 5B Sodium leak channel non-selective protein Hexokinase-1, -2, -3, HKDC1
DTGHE	I156T / Y158H	Macrophage colony-stimulating factor 1 Collagen and calcium-binding EGF domain-containing protein 1 Transcription factor COE1 Cytoplasmic FMR1-interacting protein 1 A disintegrin and metalloproteinase with thrombospondin motifs 2 Folliculin-interacting protein 1 Ubiquitin-associated protein 2-like Prolyl endopeptidase-like Adapter protein CIKS Dermokine Immunity-related GTPase family M protein Tyrosine-protein kinase ABL2 Zinc finger protein 491 Obscurin Protein prune homolog 2 Otogelin eIF-2-alpha kinase activator GCN1 BAH and coiled-coil domain-containing protein 1 Centrosome-associated protein CEP250 Supervillin Ankyrin-1
GRLSS	K283R / F285S	Pikachurin precursor Hamartin Ankyrin repeat and LEM domain-containing protein 2 Testis-expressed protein 10 GRB2-associated and regulator of MAPK protein 2 Low-density lipoprotein receptor-related protein 3 Ligand of Numb protein X 2 Synaptotagmin-like protein 4 Chromodomain Y-like protein 2
Gene	Mutations	
-----------------------------	------------------	
Oxygen-dependent coproporphyrinogen-III oxidase, mitochondrial precursor	I341V / V343A	
Sodium- and chloride-dependent GABA transporter 2	VPAQM	
Acetyl-CoA acetyltransferase, cytosolic	V437A / F438L	
ER membrane protein complex subunit 10		
Histamine H4 receptor		
Protein GOLM2		
Protein FAM83A		
Uncharacterized protein C9orf163		
Uncharacterized protein C3orf18		
Mucin-16		
Obscurin		
Nesprin-1		
1-acyl-sn-glycerol-3-phosphate acyltransferase gamma		
E3 ubiquitin-protein ligase HERC2		
Histone-lysine N-methyltransferase 2A		
Serine/threonine-protein kinase mTOR		
Myosin light chain kinase, smooth muscle		
Zinc finger protein 646, 292, 831, GLI1		
Galactoside alpha-(1,2)-fucosyltransferase 2		
Tensin-2		
Neurolysin, mitochondrial		
Filamin-A		
Spectrin beta chain, non-erythrocytic 5		
Structure-specific endonuclease subunit SLX4		
Adhesion G protein-coupled receptor L3		
Tau-tubulin kinase 1		
IQ domain-containing protein N		
N-acetylglucosamine-1-phosphotransferase subunits alpha/beta		
FERM domain-containing protein 4A		
RE1-silencing transcription factor		
Protocadherin-8		
Protein transport protein Sec24D		
Adhesion G-protein coupled receptor G2		
Protein FAN		
Kinesin-like protein KIF18B		
A-kinase anchor protein 12		
EMILIN-1 precursor		
DENN domain-containing protein 1C		
Gelsolin		
Tudor domain-containing protein 10		
CXXC-type zinc finger protein 4		
Obscurin		
Microtubule-actin cross-linking factor 1		
Usherin		
Ryanodine receptor 2		
Dynein heavy chain 8, heavy chain 14, heavy chain 7		
Sacsin		
Basement membrane-specific heparan sulfate proteoglycan core protein		
DNA-dependent protein kinase catalytic subunit		
Protein bassoon		
Transformation/transcription domain-associated protein		
Xin actin-binding repeat-containing protein 2		
Protocadherin-16 precursor		
Table 1. Host proteins obtained from query sequence alignment using Blastp. The proteins highlighted in bold are the only ones which fulfill the criteria of selection as candidate for molecular mimicry.

With the aim to understand the underlying mechanism for ZIKV-mediated GBS, in-silico methods were employed to identify potential protein candidates for molecular mimicry. Consequently, protein sequence alignment based on the E proteins of BeH819015 and MR766-NIID was assessed with human proteins, following the criteria described in the Materials and methods section. From all the candidates found using this method (Table 1), Calcium channel voltage-dependent L type, alpha 1C subunit and Heat Shock 70 kDa protein 12A were the only ones to fulfill all the criteria (Figure 1). Indeed, the IVNDT sequence is totally conserved and these proteins are highly expressed in nervous system, both central and peripheric [20–22]. Also, it has been reported, as described below, a correlation between development of neuropathies and autoantibodies directed against both voltage-dependent Ca\(^{2+}\) channel and HSP70. Thus, these proteins are exposed to immune system and therefore to autoantibody response.

![Diagram](image)

Figure 1. Calcium channel voltage-dependent L type \(\alpha-1C\) subunit and Heat Shock 70 kDa protein 12A are potential candidates for molecular mimicry following ZIKV infection. Comparative analysis of Brazilian strain of ZIKV (BeH819015) and laboratory-adapted historical strain of ZIKV (MR766-NIID) revealed that an IVNDT polypeptide, only found in epidemic strain, might be related to ZIKV-related GBS due to Calcium channel voltage-dependent L type \(\alpha-1C\) subunit or Heat Shock 70 kDa protein 12A molecular mimicry.

Moreover, according to antibody epitope prediction using IEDB tools, we determined that among all the predicted epitopes potentially leading to antibody response in ZIKV E sequence, only two peptides relate to regions where amino-change changes were observed in epidemic ZIKV strain
and that served in the previously cited alignment (Table 2). Strikingly, one of them contained the IVNDT sequence. Considering that other predicted antibody epitopes do not include any known amino-acid substitutions between African- and Asian-lineage ZIKV, it is highly unlikely that such E-associated epitopes may play a role in development of ZIKV-mediated GBS. Taken all together, these data form a growing body of evidence for antibody-directed against IVNDT peptide and either Calcium channel voltage-dependent L type, alpha 1C subunit or Heat Shock 70 kDa protein 12A.

Start-End	Peptide
5-9	GVSNR
66-103	SDMASDRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGN
126-133	TGKSIQPE
146-163	SQHSGMIVNDTGHETDEN
193-197	RTGLD
218-240	FHDIPLWHAGADTGTPHWNNE
274-279	EAEMDG
312-322	TFKIAPTEL
349-352	MQTL
368-371	STEN
395-408	KITHWHRSSTIG
428-440	AWDFGSVGGALNS

Table 2. Antibody epitope prediction for epidemical ZIKV (BEH819015) envelope protein. Summary of all antibody predicted epitope using IEDB tools with ZIKV (BEH819015) envelope protein as query. In bold are highlighted the sequences with substitutions in BEH819015 strain compared with MR766-NIID strain.

4. Discussion

Voltage-dependent calcium channels (VDCCs) are key proteins modulating Ca\(^{2+}\) entry into electrically excitable cells, following depolarization. Calcium channel voltage-dependent L type α-1C subunit, also called Ca\(^{2+}\) channel, is part of L-type VDCCs family [20]. This Ca\(^{2+}\) channel participates in hippocampal long-term potentiation, hippocampus-dependent forms of memory, peripheral vascular resistance, cardiac inotropy or insulin secretion [20,23]. Impairment of similar channels by anti-GM1 antibodies was implicated in development of GBS [24,25]. Since, anti-GM1 antibodies are found at low level in ZIKV-induced GBS patient, it is likely that voltage-dependent Ca\(^{2+}\) channel is targeted by different cross-reacting antibodies. Here, we showed the existence of an IVNDT conserved sequence between Ca\(^{2+}\) and ZIKV (BEH819015) envelope protein. Even if, Ca\(^{2+}\) has never been directly implicated into development of GBS, nor other neuropathy, we suggest that the recognition of Ca\(^{2+}\) on neuron by cross-reacting anti-IVNDT antibodies, following ZIKV infection, might lead to initiation of immune response and development of GBS pathophysiology (Figure 2). However, this hypothesis remains to be tested. Since Ca\(^{2+}\) is mainly involved in cardiac and memory functions, the development of symptoms associated with these functions should be expected (e.g. cardiac and psychiatric forms), but to date none was reported.

Heat Shock Proteins (HSP) are divided into subfamilies according to their theoretical molecular weights (27-kDa, 60-kDa, 70-kDa and 90-kDa). They are known for their crucial role in preventing protein misfolding and aggregation, as for their induction in case of cellular stress such as increased temperature radiation, exposure to chemicals, oxidative stress and various physiological and
pathological stimuli [26]. An additional role of HSP is the participation to antigen presentation / cross-presentation [27] and inflammatory signaling [28]. Among this large family, HSP70s (to which belongs Heat Shock 70-kDa protein 12A – HSP70 12A) have been associated with autoimmune neurological disorders and more specifically immune-induced neuropathies like GBS [29]. Indeed, it has been reported an increased prevalence of anti-HSP70 antibodies in GBS patients [26,30]. Here, we showed the existence of an IVNDT conserved sequence between HSP70 12A and ZIKV (BeH819015) envelope protein. As HSP70 12A is mainly expressed in neural cells of the central nervous system (CNS), a such finding might be meaningful for ZIKV-associated GBS pathophysiology insights. Based of our molecular mimicry hypothesis, it is proposed that anti-IVNDT antibodies produced during ZIKV infection cross-react with HSP70 expressed by neurons promoting complement recruitment, membrane attack complex formation and autoimmune reaction initiation (Figure 2).

Our in-silico data allowed to propose a molecular mimicry hypothesis between the Zika E sequence IVNDT and human neuronal proteins (e.g. Ca1.2 and HSP70 12A) within the CNS. The pentapeptide IVNDT which composes the sequon NDT into the EDI domain of Asian-lineage ZIKV is highly conserved among contemporary epidemic viral strains. Different sub-strains of historical African strain MR766 as a ZIKV prototype have been identified as non-glycosylated ZIKV. Thus, MR766 sub-strain NIID (Genbank access number LC002520.1) contains a TVNDI sequence in the glycan loop region whereas M.mulatta-tc/UGA/1947/MR-766 sub-strain (Genbank access number KU955594) bears a 4-aa deletion leading to a lack of VNDI sequence. To our knowledge, non-glycosylated ZIKV strains have never been involved in ZIKV-mediated GBS. It is therefore tempting to propose a link between the pentapeptide IVNDT found in Asian-lineage ZIKV in relation with human proteins Ca1.2 and HSP70 12A and the development of GBS in Zika patients. Our molecular mimicry hypothesis will need to be proven with the detection of anti-IVNDT cross-reacting antibodies in GBS patients diagnosed for ZIKV infection as well as development of animal model for understanding the mechanisms by which IVNDT peptide-related antibodies could trigger GBS.

In conclusion, we propose that Zika IVNDT peptide should be taken in consideration to preclude the risks of adverse neurologic autoimmune diseases such as GBS during the course of ZIKV infection. Our molecular mimicry hypothesis raises the question of vaccine development against ZIKV. Indeed, a possible causal relationship between molecular mimicry and development of autoimmunity in response to ZIKV infection alerts on the need for vaccine candidates exempt from viral antibody epitopes identified as potential GBS triggers. We recently reported the development of a chimeric viral clone called ZIKALIVax, which was designed with viral strain MR766-NIID as backbone and structural protein region of epidemic strain BeH918015 [14]. The replacement of pentapeptide IVNDT into BeH918015 glycan loop region by TVNDI sequence from MR766-NIID resulted in a non-glycosylated envelope protein [14]. ZIKALIVax was proposed as live-attenuated vaccine candidate against ZIKV-related disease [14]. Based on our molecular mimicry hypothesis between ZIKV sequence IVNDT and human proteins Ca1.2 and HSP70 12A, it is presumed that ZIKALIVax cannot trigger GBS upon vaccination reinforcing the attractivity of a such chimeric viral clone as vaccine candidate against Zika.
Figure 2. ZIKV-induced Guillain-Barré Syndrome might be promoted by auto-antibodies directed against Calcium channel voltage-dependent L type α-1C subunit or Heat Shock 70 kDa protein 12A.

Abbreviations

BeH819015 Clinical isolate of ZIKV collected in Brazil in 2015
Ca.1.2 Calcium channel voltage-dependent L-type α-1C subunit
GBS Guillain-Barré Syndrome
HSP70 12A Heat Shock 70 kDa protein 12A
MR766-NIID Laboratory-adapted ZIKV strain isolated in Uganda in 1947
VDCC Voltage-dependent calcium channel
ZIKV Zika Virus

Author Contributions: Conceptualization: GL, EF, PD, WV; methodology: GL, EF, PKT, PD, VW; validation: All authors; investigation: GL, EF, WV; writing—original draft preparation: GL, EF, PKT, PD, WV; writing—review and editing: All authors; supervision: PD and WV, Funding: PD. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from INSERM-transfert (ZIKALIVax program, CoPoC N° MAT-16225-A-02) and POE FEDER 2014-20 of the Conseil Régional de La Réunion (ZIKAalert program, N° SYNERGIE RE00001902). EF received funding from FEDER Région (ZIKALIVax 2.0 program, N° SYNERGIE RE0012406) and La Reunion University.

Patent: Part of this work has been described in the patent entitled “Vaccine compositions comprising an attenuated mutant zika virus” under the number WO2017220748A1 (priority date 2016-06-23)

Acknowledgments: Figures 1 and 2 were created with Biorender.com

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gubler, D.J. The Global Emergence/Resurgence of Arboviral Diseases As Public Health Problems. *Archives of Medical Research* **2002**, *33*, 330–342, doi:10.1016/S0188-4409(02)00378-8.
2. Musso, D.; Gubler, D.J. Zika Virus. *Clinical Microbiology Reviews* **2016**, *29*, 487–524, doi:10.1128/CMR.00072-15.
3. Song, B.-H.; Yun, S.-I.; Woolley, M.; Lee, Y.-M. Zika virus: History, epidemiology, transmission, and clinical presentation. *Journal of Neuroimmunology* **2017**, *308*, 50–64, doi:10.1016/j.jneuroim.2017.03.001.
4. Mlakar, J.; Korva, M.; Tul, N.; Popović, M.; Poljšak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Resman Rus, K.; Vesnaker Vipotnik, T.; Fabjan Vodusek, V.; et al. Zika Virus Associated with Microcephaly. *New England Journal of Medicine* **2016**, *374*, 951–958, doi:10.1056/NEJMoa1600651.
5. Krauer, F.; Riesen, M.; Reveiz, L.; Oladapo, O.T.; Martínez-Vega, R.; Porgo, T.V.; Haefliger, A.; Brouet, N.J.; Low, N.; Group, W.Z.C.W. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review. *PLOS Medicine* **2017**, *14*, e1002203, doi:10.1371/journal.pmed.1002203.
6. Saiz, J.-C.; Vazquez-Calvo, A.; Blazquez, A.B.; Merino-Ramos, T.; Escribano-Romero, E.; Martin-Acebes, M.A. Zika Virus: the Latest Newcomer. *Front. Microbiol.* **2016**, *7*, 496, doi:10.3389/fmicb.2016.00496.
7. Barbi, L.; Coelho, A.V.C.; Alencar, L.C.A. de; Crovella, S. Prevalence of Guillain-Barré syndrome among Zika virus infected cases: a systematic review and meta-analysis. *The Brazilian Journal of Infectious Diseases* **2018**, *22*, 137–141, doi:10.1016/j.bjid.2018.02.005.
8. Munoz, L.S.; Barreras, P.; Pardo, C.A. Zika Virus-Associated Neurological Disease in the Adult: Guillain-Barre Syndrome, Encephalitis, and Myelitis. *Semin. Reprod. Med.* **2016**, *34*, 273–279, doi:10.1055/s-0036-1592066.
9. Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.-M. Potential Sexual Transmission of Zika Virus - Volume 21, Number 2—February 2015 - Emerging Infectious Diseases journal - CDC. 2015, doi:10.3201/eid2102.141363.
10. Oster, A.M. Interim Guidelines for Prevention of Sexual Transmission of Zika Virus — United States, 2016. *MMWR Morb Mortal Wkly Rep* **2016**, *65*, doi:10.15585/mmwr.mm6505e1er.
11. Calvet, G.; Aguia, R.S.; Melo, A.S.O.; Sampaio, S.A.; de Filippis, I.; Fabri, A.; Araujo, E.S.M.; de Sequeira, P.C.; de Mendonça, M.C.L.; de Oliveira, L.; et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. *The Lancet Infectious Diseases* **2016**, *16*, 653–660, doi:10.1016/S1473-3099(16)00095-5.
12. Brasil, P.; Pereira, J.P.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.-A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. *New England Journal of Medicine* **2016**, *375*, 2321–2334, doi:10.1056/NEJMoa1602412.
13. Bos, S.; Viranaicken, W.; Turpin, J.; El-Kalamouni, C.; Roche, M.; Krejlich-Trotot, P.; Després, P.; Gadea, G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. *Virology* **2018**, *516*, 265–273, doi:10.1016/j.virol.2017.12.003.
14. Frumence, E.; Haddad, J.G.; Vanwalscapelle, B.; Andries, J.; Decotter, J.; Viranaicken, W.; Gadea, G.; Després, P. Immune Reactivity of a 20-mer Peptide Representing the Zika E Glycan Loop Involves the Antigenic Determinants E-152/156/158. *Viruses* **2020**, *12*, 1258, doi:10.3390/v12111258.
15. Frumence, E.; Viranaicken, W.; Bos, S.; Alvarez-Martinez, M.-T.; Roche, M.; Arnaud, J.-D.; Gadea, G.; Després, P. A Chimeric Zika Virus between Viral Strains MR766 and BeH819015 Highlights a Role for E-glycan Loop in Antibody-mediated Virus Neutralization. *Vaccines* **2019**, *7*, 55, doi:10.3390/vaccines7020055.
16. Bos, S.; Viranaicken, W.; Frumence, E.; Li, G.; Després, P.; Zhao, R.Y.; Gadea, G. The Envelope Residues E152/156/158 of Zika Virus Influence the Early Stages of Virus Infection in Human Cells. *Cells* **2019**, *8*, 1444, doi:10.3390/cells8111444.
17. Li, G.; Bos, S.; Tsetsarkin, K.A.; Pletnev, A.G.; Després, P.; Gadea, G.; Zhao, R.Y. The Roles of prM-E Proteins in Historical and Epidemic Zika Virus-mediated Infection and Neurocytotoxicity. *Viruses* **2019**, *11*, 157, doi:10.3390/v11020157.

18. Yuki, N. Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes. *The Lancet Infectious Diseases* **2001**, *1*, 29–37, doi:10.1016/S1473-3099(01)00019-6.

19. Wim Ang, C.; Jacobs, B.C.; Laman, J.D. The Guillain–Barré syndrome: a true case of molecular mimicry. *Trends in Immunology* **2004**, *25*, 61–66, doi:10.1016/j.it.2003.12.004.

20. Berger, S.M.; Bartsch, D. The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. *Cell Tissue Res.* **2014**, *357*, 463–476, doi:10.1007/s00441-014-1936-3.

21. Barzan, R.; Pfeiffer, F.; Kukley, M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. *Front. Cell. Neurosci.* **2016**, *10*, doi:10.3389/fncel.2016.00135.

22. Radons, J. The human HSP70 family of chaperones: where do we stand? *Cell Stress and Chaperones* **2016**, *21*, 379–404, doi:10.1007/s12192-016-0676-6.

23. Striessnig, J.; Koschak, A.; Sinnegger-Brauns, M.J.; Hetzenauer, A.; Nguyen, N.K.; Busquet, P.; Pelster, G.; Singewald, N. Role of voltage-gated L-type Ca	extsuperscript{2+} channel isoforms for brain function. *Biochemical Society Transactions* **2006**, *34*, 903–909, doi:10.1042/BST0340903.

24. Nakatani, Y.; Hotta, S.; Utsunomiya, I.; Tanaka, K.; Hoshi, K.; Ariga, T.; Yu, R.K.; Miyatake, T.; Taguchi, K. Cav2.1 Voltage-dependent Ca	extsuperscript{2+} Channel Current is Inhibited by Serum from Select Patients with Guillain-Barré Syndrome. *Neurochem Res.* **2009**, *34*, 149–157, doi:10.1007/s11064-008-9735-4.

25. Hotta, S.; Nakatani, Y.; Kambe, T.; Abe, K.; Masuda, Y.; Utsunomiya, I.; Taguchi, K. Effects of IgG anti-GM1 monoclonal antibodies on neuromuscular transmission and calcium channel binding in rat neuromuscular junctions. *Experimental and Therapeutic Medicine* **2015**, *10*, 535–540, doi:10.3892/etm.2015.2575.

26. Helgeland, G.; Petzold, A.; Hoff, J.M.; Gilhus, N.E.; Plant, G.T.; Romi, F.R. Anti-Heat Shock Protein 70 antibody levels are increased in myasthenia gravis and Guillain-Barré syndrome. *Journal of Neuroimmunology* **2010**, *225*, 180–183, doi:10.1016/j.jneuroim.2010.04.024.

27. Murshid, A.; Gong, J.; Calderwood, S.K. The Role of Heat Shock Proteins in Antigen Cross Presentation. *Front. Immunol.* **2012**, *3*, doi:10.3389/fimmu.2012.00063.

28. Asea, A.; Kraeft, S.-K.; Kurt-Jones, E.A.; Stevenson, M.A.; Chen, L.B.; Finberg, R.W.; Koo, G.C.; Calderwood, S.K. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. *Nature Medicine* **2000**, *6*, 435–442, doi:10.1038/74697.

29. Romi, F.; Helgeland, G.; Gilhus, N.E. Heat-Shock Proteins in Clinical Neurology. *ENE* **2011**, *66*, 65–69, doi:10.1159/000329373.

30. Yonekura, K.; Yokota, S.; Tanaka, S.; Kubota, H.; Fujii, N.; Matsumoto, H.; Chiba, S. Prevalence of anti-heat shock protein antibodies in cerebrospinal fluids of patients with Guillain–Barré syndrome. *Journal of Neuroimmunology* **2004**, *156*, 204–209, doi:10.1016/j.jneuroim.2004.07.017.