On constant $U_q(sl_2)$–invariant R–matrices

A. G. Bytsko
Steklov Mathematics Institute
Fontanka 27, 191023, St.-Petersburg, Russia

Abstract

The spectral resolution of a $U_q(sl_2)$–invariant solution R of the constant Yang–Baxter equation in the braid group form is considered. It is shown that, if the two highest coefficients in this resolution are not equal, then R is either the Drinfeld R–matrix or its inverse.

§1. Introduction

Recall that the algebra $U_q(sl_2)$ is generated by the generators X^+, X^-, q^H, q^{-H} satisfying the relations

$$[X^+, X^-] = \frac{q^{2H} - q^{-2H}}{q - q^{-1}}, \quad q^H X^\pm = q^{\pm 1} X^\pm q^H, \quad q^{\pm H} q^{\mp H} = 1.$$

(1)

The homomorphism Δ which is defined on the generators as follows

$$\Delta(X^\pm) = X^\pm \otimes q^{-H} + q^H \otimes X^\pm, \quad \Delta(q^\pm H) = q^\pm H \otimes q^\pm H,$$

(2)

turns $U_q(sl_2)$ into a bialgebra (moreover, a Hopf algebra [Sk]).

We will consider the standard finite dimensional representation π_s of the algebra $U_q(sl_2)$ in which the generators act on the basis vectors ω_k of a module V_s ($\dim V_s = (2s+1)$, $2s \in \mathbb{N}$) as follows

$$\pi_s(X^\pm) \omega_k = \sqrt{[s \pm k][s \pm k + 1]} \omega_{k \pm 1}, \quad \pi_s(q^\pm H) \omega_k = q^{\pm k} \omega_k,$$

(3)

where $[t] \equiv (q^t - q^{-t})/(q - q^{-1})$ and $k = -s, -s+1, \ldots, s$.

The universal R–matrices for the algebra (1)–(2) are given by [D1]

$$R^\pm = q^{\pm H \otimes H} \sum_{n=0}^{\infty} q^{\frac{1}{2}(n^2 - n)} \prod_{k=1}^{n} [k]_q (\pm (q - q^{-1}) X^\mp \otimes X^\pm)^n q^{\mp H \otimes H}.$$

(4)

Let \mathbb{P} denote the operator which permutes the tensor components in $U_q(sl_2)^{\otimes 2}$. Then the operator $R \equiv \mathbb{P} R^+ = (R^-)^{-1} \mathbb{P}$ satisfies the Yang–Baxter equation in the braid group form:

$$R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}.
$$

(5)

The spectral resolution of R in the representation π_s is given by [KR1]

$$R \equiv \pi_s^{\otimes 2} (R) = \sum_{k=0}^{2s} \xi_k \mathbb{P}^{2s-k},$$

(6)
Its entries are expressed in terms of the $6–j$ symbols of the algebra $U_q(sl_2)$ as follows:

$$A_{kk'}^{(s,n)} = (-1)^{2s-n} \sqrt{[4s-2k+1]_q [4s-2k'+1]_q} \begin{bmatrix} s & s & 2s-k \\ s & 3s-n & 2s-k' \end{bmatrix}_q.$$
The statement that the Yang–Baxter equation (5) holds when it is reduced onto the subspace $W_n^{(s)}$ is equivalent to the following equality

$$(D_0^{(n)} A^{(s,n)})^3 = (A^{(s,n)} D_0^{(n)})^3.$$ \hspace{1cm} (14)

Actually, however, a stronger statement holds: the r.h.s. and the l.h.s. of (14) are equal up to a multiplicative constant to the identity operator on $W_n^{(s)}$. This follows from the following statement (which is a q–analogue of Lemma 3 in [B2]):

Lemma 1 For all $n = 0, \ldots, |3s|$, the following relation holds:

$$A^{(s,n)} D_0^{(n)} A^{(s,n)} = \theta_n (D_0^{(n)})^{-1} A^{(s,n)} (D_0^{(n)})^{-1},$$ \hspace{1cm} (15)

where $\theta_n \equiv (-1)^n q^{\rho(3s-n)-3\rho(s)}$.

The proof of this and other lemmas is given in the Appendix.

The statement of Lemma 1 can be written in the following form:

$$(R_{12} R_{23} R_{12})|_{W_n^{(s)}} = (R_{23} R_{12} R_{23})|_{W_n^{(s)}} = \theta_n A^{(s,n)}.$$

For $q = 1$ this relation turns into $(P_{13})|_{W_n^{(s)}} = (-1)^n A^{(s,n)}$.

From (16) and (12) it follows that

$$(R_{12} R_{23})^3|_{W_n^{(s)}} = ((R_{23} R_{12})^3)|_{W_n^{(s)}} = q^{2\rho(3s-n)-6\rho(s)}.$$ \hspace{1cm} (17)

Let us note that

$$(R_{12} R_{23} R_{12})^2 = (R_{23} R_{12} R_{23})^2 = (R_{12} R_{23})^3 = (R_{23} R_{12})^3$$

$$= \pi_s^\otimes 3 \left((R_{12} R_{23} R_{12}^{-1} R_{12}^+ R_{12}^3) \right) = \pi_s^\otimes 3 (\chi_1 \chi_2 \chi_3 \Delta(2)(\chi^{-1})), $$

where the element χ is constructed in the following way: write the R–matrix (4) as $R^+ = \sum r_a^{(1)} \otimes r_a^{(2)}$, and let S stand for the antipode operation, then $\chi = q^{2H} (\sum_a S(r_a^{(2)}) r_a^{(1)})$. It is known [D2] that the element χ is central, $\pi_s(\chi) = q^{-2\rho(s)}$, and $\chi_1 \chi_2 \Delta(\chi^{-1}) = (R^{-1})^{-1} R^+$. The last relation allows us to derive the last equality in (19) (and its generalization for $\Delta^{(N)}(\chi^{-1})$, see the proof of Lemma 1 in [B3]). Thus, relation (16) can be regarded as the definition of a certain square root of the operator given by the r.h.s. of (19).

§3. Yang–Baxter equation on $W_n^{(s)}$

We will prove Proposition 1 using the following statement (a q–analogue of Lemma 4 in [B2]).

Lemma 2 Let $0 \leq \overline{m} \leq n \leq 2s$, where $\overline{m} \equiv (2s-m)$. The reductions of the operators P_{12}^m, P_{23}^m, and $R_{12}^{\pm 1}$, $R_{23}^{\pm 1}$ on $W_n^{(s)}$ satisfy the following relations

$$R_l R_{l'} R_l = R_{l'} R_{l'} R_l,$$ \hspace{1cm} (20)

$$P_l^m R_{l'}^m P_l^m = \eta_{\overline{m}, \overline{m}}^2 P_l^m,$$

$$P_{l'}^m R_{l'}^{\pm 1} R_l^m = (\theta m \xi_{\overline{m}}^{2 \pm 1})_{\eta_{\overline{m}, \overline{m}}} P_l^m, \hspace{1cm} R_{l'}^{\pm 1} P_l^m = (\theta m \xi_{\overline{m}}^{-2 \pm 1})_{\eta_{\overline{m}, \overline{m}}} R_{l'}^{\mp 1} P_{l'}^m, \hspace{1cm} (21)$$

$$P_{l'}^m P_l^m R_{l'}^{\pm 1} = (\theta m \xi_{\overline{m}}^{-2 \pm 1})_{\eta_{\overline{m}, \overline{m}}} P_l^m R_{l'}^{\mp 1} P_{l'}^m, \hspace{1cm} R_{l'}^{\pm 1} P_{l'}^m P_l^m = (\theta m \xi_{\overline{m}}^{2 \pm 1})_{\eta_{\overline{m}, \overline{m}}} R_{l'}^{\mp 1} P_{l'}^m.$$ \hspace{1cm} (22)

where $l = \{12\}$, $l' = \{23\}$ or $l = \{23\}$, $l' = \{12\}$, and $\eta_{\overline{m}, \overline{m}} = A^{(s,n)}_{\overline{m}, \overline{m}}$.
Let us remark that not all relations in Lemma 2 are independent. For instance, the second relation in (21) follows from (22); the first relation in (21) and the second relation in (20) can be derived from each other with the help of (22).

Let us remark also that, for \(q = 1 \), the operators \(R^\pm \) coincide with the permutation operator \(P \), and relations (20)–(22) become the relations of the Brauer algebra [Br] (taking into account the additional relation \(P^2 = E \), where \(E \) is the identity operator). For \(q \neq 1 \), the reductions of the operators \(R^\pm \) onto \(W^{(s)}_{1} \) can be represented as linear combinations of \(P^m \) and the identity operator \(E \). As a consequence, relations (20)–(22) for \(n = 1 \) can be derived from the second relation in (20), which is the defining relation for the Temperley–Lieb algebra [TL]. For \(n \geq 2 \), relations (20)–(22) are the relations that hold in the Birman–Wenzl–Murakami algebra [BW, Mu]. However, in this algebra an additional relation must also hold, which in our case holds only for \(n = 2 \) (the operator \(R^{-1} \) being reduced onto \(W^{(s)}_{2} \) can be represented as a linear combination of the operators \(R, P, \) and \(E \)).

Returning to consideration of the spectral resolution (8), let us note that without a loss of generality we can set \(r_0 = \xi_0 \). Then \(R' \) can be represented in the following form:

\[
R' = R + g P^{2s-n} + \ldots ,
\]

where \(n \geq 1 \) and \(\ldots \) stands for the sum involving projectors of ranks smaller than the rank of \(P^{2s-n} \).

Substitute the ansatz (23) in the Yang–Baxter equation and consider its reduction onto \(W^{(s)}_{n} \) for \(n \leq 2s \). With the help of relations of Lemma 2, it can be verified that the Yang–Baxter equation for \(R' \big|_{W^{(s)}_{n}} \) is equivalent to the following matrix equation

\[
g J + (\theta_n^2 \xi_n^2 \eta_{n,n} g^2 + \eta_{n,n}^2 g^3) G + (\theta_n \xi_n^{-1} \eta_{n,n} g^2) H = 0 ,
\]

where

\[
\begin{align*}
G &= (P^{2s-n} - P^{2s-n}^{12}) \big|_{W^{(s)}_{n}} = \pi^{(n)} - A^{(s,n)} \pi^{(n)} A^{(s,n)}, \\
J &= (R_{12} P^{2s-n}^{12} R_{12} - R_{23} P^{2s-n}^{12} R_{23}) \big|_{W^{(s)}_{n}} \\
&= D^{(n)}_0 A^{(s,n)} \pi^{(n)} A^{(s,n)} D^{(n)}_0 - 2 \eta_n^2 (D^{(n)}_0)^{-1} A^{(s,n)} \pi^{(n)} A^{(s,n)} (D^{(n)}_0)^{-1}, \\
H &= (P^{2s-n} R_{23} - P^{2s-n}^{12} R_{23} - P^{2s-n} R_{12} - R_{12} P^{2s-n}^{12}) \big|_{W^{(s)}_{n}} \\
&= \theta_n^{-1} \xi_n (\pi^{(n)} A^{(s,n)} D^{(n)}_0 + D^{(n)}_0 A^{(s,n)} \pi^{(n)}) \\
&- A^{(s,n)} \pi^{(n)} A^{(s,n)} (D^{(n)}_0)^{-1} - (D^{(n)}_0)^{-1} A^{(s,n)} \pi^{(n)} A^{(s,n)}.
\end{align*}
\]

Here \(\pi^{(n)} \) is a matrix such that \((\pi^{(n)})_{kk'} = \delta_{kn} \delta_{k'n} \).

Lemma 3 i) For \(n = 1 \), the following relations hold:

\[
J = (q^2 \xi_0^2 - \xi_0^2 - \xi_0^2) G = (q^{4s(s-1)} - q^{4s^2}) G , \quad H = 2 \xi_0^{-1} G = 2q^{-2s^2} G .
\]

ii) For \(n = 2 \), the matrices \(J \) and \(G \) are linearly independent, and the following relation holds:

\[
\xi_0 \xi_1 H = (\xi_0 + \xi_1) G + (\xi_0 + \xi_1)^{-1} J .
\]

iii) For \(n \geq 3 \), the matrices \(J, G, H \) are linearly independent, and \(J \neq 0 \).
Substituting relations (25) in (24), we infer that, for \(n = 1 \), the coefficient \(g \) must be a root of the following equation:

\[
\eta_{1,1}^2 g^3 + \eta_{1,1} \theta_1 \xi_1^{-1}(\xi_1^{-1} + 2 \xi_0^{-1}) g^2 + (\theta_1^2 \xi_0^{-2} \xi_1^{-2} - \xi_0^2) g = 0.
\]

Hence, taking into account that \(\eta_{1,1} = (q^{2s} + q^{-2s})^{-1} \), we find that, for \(n = 1 \), the coefficient \(g \) can take one of the following values: \(g = 0 \), \(g = q^{2s(s-2)}(1 - q^{8s}) \), \(g = q^{2s(s-2)}(1 - q^{4s}) \). In the first and second cases, the spectral resolution of \(R' \) coincides in the two highest orders with that of \(R \) and \(q^{4s^2}R^{-1} \), respectively. In the third case, we have \(r_1 = r_0 \).

For \(n = 2 \), substitute relations (26) in (24) and eliminate \(H \). It is easy to check that the resulting coefficients at \(J \) and \(G \) vanish if either \(g = 0 \) or

\[
\eta_{1,1} g = -\theta_2 \xi_0^{-1} \xi_1^{-1} \xi_2^{-1} (\xi_0 \xi_1 \xi_2^{-1} + \xi_0 + \xi_1) = -\theta_2^{-1} \xi_0 \xi_1 \xi_2 \xi_0 + \xi_1).
\]

However, the last equality cannot hold because \(\xi_0^2 \xi_1^2 \xi_2^2 = \theta_2^2 \) (see (34)).

For \(n \geq 3 \), the coefficient at \(J \) in (24) vanishes only if \(g = 0 \). Thus, the coefficient \(g \) in (23) must be zero if \(n \geq 2 \). Therefore, if \(R' \) coincides with \(R \) in the two highest orders, then \(R' = R \). An analogous statement can be established if we consider the ansatz (23) with \(R \) being replaced by \(R^{-1} \). Thus, Proposition 1 is proven.

Acknowledgments. The author thanks P. Kulish for useful remarks. This work was supported by the RFBR grants 08–01–00638, 09–01–12150, 09–01–93108.

Appendix

Proof of Lemma 1.

The 6–j symbols of the algebra \(U_q(sl_2) \) satisfy the following \(q \)–analogue of the Racah identity [KR1, No]:

\[
\sum_p \left(\frac{(-1)^p}{2p+1} \right)_q \left(\begin{array}{lll} r_1 & r_2 & l \\ r_3 & r_4 & p \end{array} \right)_q q^{\rho(p) - \rho(r_1) - \rho(r_4) - \rho(r_3)} \left(\begin{array}{ll} r_1 & r_2 \\ r_3 & r_4 \end{array} \right)_q = \left(\frac{(-1)^{l+l'}}{2l' + 1} \right)_q q^{\rho(r_2) - \rho(l')} \left(\begin{array}{ll} r_3 & r_1 \\ r_2 & r_4 \end{array} \right)_q q^{\rho(r_3) - \rho(l')}.
\]

(Note that the identity remains true if we set \(\rho(t) = -t(t+1) \), since the 6–j symbols are self–dual with respect to the replacement \(q \rightarrow q^{-1} \).)

Consider the matrix entry \((kk') \) of equality (15). Using formula (10) and taking into account that \(A^{(s,n)} \) is a symmetric matrix, we obtain:

\[
\sum_m (-1)^m A_{km}^{(s,n)} q^{\rho(2s-m) - 2\rho(s)} A_{k'm}^{(s,n)} = (-1)^{n+k+k'} q^{\rho(3s-n) + \rho(s) - \rho(2s-k) - \rho(2s-k')} A_{kk'}^{(s,n)}.
\]

Now, taking into account formula (13), it is easy to see that relation (28) follows from the identity (27) if we set \(r_1 = r_2 = r_3 = s \), \(r_4 = 3s-n \), \(l = 2s-k \), \(l' = 2s-k' \), \(p = 2s-m \).

Proof of Lemma 2.

We will prove those relations of Lemma 2 that contain \(R \) on the l.h.s. Their counterparts with \(R^{-1} \) on the l.h.s. can be proven similarly.
The second relation in (20):
\[
\pi(\overline{m})\pi(\overline{m})\pi(\overline{m}) = \pi(\overline{m})A^{(s,n)}\pi(\overline{m})A^{(s,n)}\pi(\overline{m}) = (A^{(s,n)})^2\pi(\overline{m}).
\]
Here and below we denote \(\hat{\pi}(\overline{m}) \equiv A^{(s,n)}\pi(\overline{m})A^{(s,n)}\).

Relations (21):
\[
\pi(\overline{m})\hat{D}_0^{(n)}\pi(\overline{m}) = \pi(\overline{m})A^{(s,n)}D_0^{(n)}A^{(s,n)}\pi(\overline{m}) = \theta_n\pi(\overline{m})(D_0^{(n)})^{-1}A^{(s,n)}(D_0^{(n)})^{-1}\pi(\overline{m})
\]
\[
\equiv \theta_n\xi^2\pi(\overline{m})A^{(s,n)}\pi(\overline{m}),
\]
\[
D_0^{(n)}\pi(\overline{m}) = D_0^{(n)}A^{(s,n)}\pi(\overline{m})A^{(s,n)}D_0^{(n)} = \xi^2 D_0^{(n)}A^{(s,n)}D_0^{(n)}A^{(s,n)}D_0^{(n)}
\]
\[
\equiv \theta_n^2\pi(\overline{m})A^{(s,n)}(D_0^{(n)})^{-1}A^{(s,n)}\pi(\overline{m})A^{(s,n)}(D_0^{(n)})^{-1}A^{(s,n)}
\]
\[
= \theta_n^2\pi(\overline{m}A^{(s,n)}\pi(\overline{m})(D_0^{(n)})^{-1}A^{(s,n)}(D_0^{(n)})^{-1}.
\]
The first relation in (22) (the second can be proven similarly):
\[
\pi(\overline{m})\pi(\overline{m})D_0^{(n)} = \pi(\overline{m})A^{(s,n)}\pi(\overline{m})A^{(s,n)}D_0^{(n)} = A^{(s,n)}\pi(\overline{m})A^{(s,n)}D_0^{(n)}(A^{(s,n)})^2
\]
\[
\equiv \theta_n A^{(s,n)}\pi(\overline{m})(D_0^{(n)})^{-1}A^{(s,n)}(D_0^{(n)})^{-1}A^{(s,n)}
\]
\[
= \theta_n\pi(\overline{m}A^{(s,n)}\pi(\overline{m})(D_0^{(n)})^{-1}.
\]

Proof of Lemma 3.
For \(n = 1\), the matrices \(G, H, J\) are of the size \(2 \times 2\) and relations (25) can be verified straightforwardly using the explicit form of the matrix \(A^{(s,1)}\) (see eq. (73) in [B1]).

In order to examine the case \(n \geq 2\), let us write down explicitly the matrix entries of \(G, H,\) and \(J:\)
\[
G_{kk'} = \delta_{kk'} A^{(s,n)}_k A^{(s,n)}_{k'},
\]
\[
H_{kk'} = \theta^{-1} n(\delta_{kn} A^{(s,n)}_{k'} + \delta_{kk'} A^{(s,n)}_k) - (\xi_k^{-1} + \xi_{k'}^{-1}) A^{(s,n)}_k A^{(s,n)}_{k'},
\]
\[
J_{k'k} = (\xi_k A^{(s,n)}_k - \theta^2 n^2 \xi_k A^{(s,n)}_k A^{(s,n)}_k A^{(s,n)}_k).
\]

Recall that \(k, k' = 0, 1, \ldots, n\).

Considering (31) for \(k = 0\) and \(k' = 0, 1\), it is easy to infer that \(J \neq 0\) (since \(\xi_0^2 \neq \xi_1^2\)).

Assume that the following relation holds
\[
\alpha G + \beta J - \gamma H = 0,
\]
where \(\alpha \beta \gamma \neq 0\). Using formulae (29)–(31), write down the matrix entries of (32) for \((k, k') = (0, 0), (0, 1), (1, 1)\) dividing them by \(A^{(s,n)}_k A^{(s,n)}_{k'}\) (note that \(A^{(s,n)}_k \neq 0\) for all \(k\), see eq. (97) in [B1]):
\[
-\alpha + (\xi_0^2 - \theta^2 n^2 \xi_0^2) \beta + 2\xi_0^2 \gamma = 0,
\]
\[
-\alpha + (\xi_0 \xi_1 - \theta^2 n^2 \xi_0 \xi_1) \beta + (\xi_0^2 + \xi_1^2) \gamma = 0,
\]
\[
-\alpha + (\xi_1^2 - \theta^2 n^2 \xi_1^2) \beta + 2\xi_1^2 \gamma = 0.
\]
The determinant of this system of equations is \(d = (\xi_0^2 - \xi_1^2)^3(\theta^2 n^2 \xi_0^2 - \xi_0^2 \xi_1^2)\). Since \(\xi_0 \neq \xi_1\) then the equality \(d = 0\) can be satisfied only if
\[
\theta_n^2 = \xi_0^2 \xi_1^2 \xi_n^2,
\]
which is equivalent to the following condition: $\rho(3s-n) + 3\rho(s) - \rho(2s) - \rho(2s-1) = 2s(2-n) = 0$. Thus, relation (32) cannot hold for $n \geq 3$.

For $n = 2$, a solution of the system (33) is given by: $\alpha = \beta^{-1} = \xi_0 + \xi_1$, $\gamma = \xi_0\xi_1$. A direct check, using the explicit form of the matrix $A^{(s,2)}$ (see eq. (74) in [B1]), shows that relation (32) with such coefficients holds indeed. Since system (33) has no solution for $\gamma = 0$, we conclude that G and J are linearly independent.

References

[BW] J.S. Birman, H. Wenzl: Braids, link polynomials and a new algebra. — Trans. Amer. Math. Soc. 313 (1989), 249–273.

[Br] R. Brauer: On algebras which are connected with the semisimple continuous groups. — Ann. of Math. (2) 38 (1937), 857–872.

[B1] A.G. Bytsko: On higher spin $U_q(sl_2)$–invariant R–matrices. — St. Petersburg Math. J. 17 (2006), 393–408.

[B2] A.G. Bytsko: On an ansatz for sl_2–invariant R–matrices. — J. Math. Sci. 143 (2007), 2754–2764.

[B3] A.G. Bytsko: Non–Hermitian spin chains with inhomogeneous coupling. — arXiv:0911.4476.

[D1] V.G. Drinfeld: Quantum groups. — J. Sov. Math. 41 (1988), 898–915.

[D2] V.G. Drinfeld: Almost cocommutative Hopf algebras. — Leningrad Math. J. 1 (1990), 321–342.

[KR1] A.N. Kirillov, N.Yu. Reshetikhin: Representations of the algebra $U_q(sl(2))$, q–orthogonal polynomials and invariants of links. — In: Adv. Series in Math. Phys., v.7, pp. 285–339 (World Scientific, 1989).

[KR2] P.P. Kulish, N.Yu. Reshetikhin: Quantum linear problem for the Sine–Gordon equation and higher representation. — J. Sov. Math. 23 (1983), 2435–2441.

[Mu] J. Murakami: The Kauffman polynomial of links and representation theory. — Osaka J. of Math. 24 (1987), 745–758.

[No] M. Nomura: Yang–Baxter relation in terms of n–j symbols of $su_q(2)$ algebra. — J. Phys. Soc. Jap. 58 (1989), 2694–2704.

[Sk] E.K. Sklyanin: On an algebra generated by quadratic relations. — Uspekhi Mat. Nauk 40 (1985), no.2, 214 (in Russian).

[TL] H.N.V. Temperley, E.H. Lieb: Relations between the percolation and colouring problem and other graph–theoretical problems associated with regular planar lattices: some exact results for the percolation problem. — Proc. Roy. Soc. London Ser. A 322 (1971), 251–280.