ON COMPACTNESS AND L^p-REGULARITY IN THE $\bar{\partial}$-NEUMANN PROBLEM

SÖNMEZ ŞAHUTOĞLU AND YUNUS E. ZEYTUNCU

ABSTRACT. Let Ω be a C^4-smooth bounded pseudoconvex domain in \mathbb{C}^2. We show that if the $\bar{\partial}$-Neumann operator N_1 is compact on $L^2_{(0,1)}(\Omega)$ then the embedding operator $\mathcal{J} : \text{Dom}(\bar{\partial}) \cap \text{Dom}(\bar{\partial}^*) \to L^2_{(0,1)}(\Omega)$ is L^p-regular for all $2 \leq p < \infty$.

1. INTRODUCTION

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, $1 \leq q \leq n$, and let $\text{Dom}^2(\bar{\partial})$ and $\text{Dom}^2(\bar{\partial}^*)$ denote the domains of the densely defined operators $\bar{\partial}$ and $\bar{\partial}^*$ in $L^2_{(0,q)}(\Omega)$, respectively. On bounded pseudoconvex domains, Hörmander in [Hör65] proved the following basic estimate,

$$\|f\|_{L^2} \lesssim \|\bar{\partial}f\|_{L^2} + \|\bar{\partial}^*f\|_{L^2}$$

for all $(0,q)$-forms $f \in \text{Dom}^2(\bar{\partial}) \cap \text{Dom}^2(\bar{\partial}^*) \subset L^2_{(0,q)}(\Omega)$. The sum on the right hand side is called the L^2-graph norm of the $(0,q)$-form f. In other words, the embedding operator

$$\mathcal{J} : \text{Dom}^2(\bar{\partial}) \cap \text{Dom}^2(\bar{\partial}^*) \to L^2_{(0,q)}(\Omega)$$

is bounded, where the space on the left hand side is endowed with the graph norm.

Let $1 < p, \tilde{p} < \infty$ such that $p^{-1} + \tilde{p}^{-1} = 1$. We define $\text{Dom}^p(\bar{\partial}) = \{f \in L^p_{(0,q)}(\Omega) : \bar{\partial}f \in L^p_{(0,q+1)}(\Omega)\}$. We define $\text{Dom}^p(\bar{\partial}^*)$ as follows: we say $f \in \text{Dom}^p(\bar{\partial}^*)$ if $f \in L^p_{(0,q)}(\Omega)$ and there exists $C > 0$ such that

$$|\langle f, \bar{\partial}g \rangle| \leq C\|g\|_{L^{\tilde{p}}_{(0,q)}}$$

for all $g \in L^{\tilde{p}}_{(0,q-1)}(\Omega)$ with $\bar{\partial}g \in L^{\tilde{p}}_{(0,q)}(\Omega)$. Finally, we define the space

$$D^p_{(0,q)}(\Omega) = \text{Dom}^p(\bar{\partial}) \cap \text{Dom}^p(\bar{\partial}^*) \subset L^p_{(0,q)}(\Omega)$$

and endow it with the L^p-graph norm $\|\cdot\|_{G^p}$ defined as

$$\|f\|_{G^p} = \|\bar{\partial}f\|_{L^p} + \|\bar{\partial}^*f\|_{L^p}$$

for $f \in D^p_{(0,q)}(\Omega)$. We note that on bounded pseudoconvex domains, $\|\cdot\|_{G^p}$ is a norm because $\bar{\partial}f = 0$ and $\bar{\partial}^*f = 0$ imply that $f = 0$ for $1 \leq q \leq n$ (see, for example, [CS01, (4.4.2) in section 4.4]).

2010 Mathematics Subject Classification. Primary 32W05; Secondary 46E30.

Key words and phrases. $\bar{\partial}$-Neumann problem, pseudoconvex domains, compactness, L^p-regularity.

The work of the second author is partially supported by a grant from the Simons Foundation (#353525).
Definition 1. We say that the operator \mathcal{J} is L^p-regular on $D^p_{(0,q)}(\Omega)$ if there exists $C > 0$ such that
\[
\|\mathcal{J} f\|_{L^p} = \|f\|_{L^p} \leq C \|f\|_{G^p} = C \left(\|\overline{\partial} f\|_{L^p} + \|\overline{\partial}^* f\|_{L^p} \right)
\]
for all $f \in D^p_{(0,q)}(\Omega)$.

That is, whenever $\mathcal{J} : D^p_{(0,q)}(\Omega) \to L^p_{(0,q)}(\Omega)$ is a bounded embedding we say that it is L^p-regular. In particular, by Hörmander’s basic estimate above, \mathcal{J} is L^2-regular on bounded pseudoconvex domains. We note that $D^p_{(0,q)}(\Omega)$ is a Banach space (for $1 \leq q \leq n$ with the graph norm $\|\cdot\|_{G^p}$) when \mathcal{J} is L^p-regular.

The operator \mathcal{J} is related to the $\overline{\partial}$-Neumann operator N, the bounded inverse of the complex Laplacian $\overline{\partial} \overline{\partial} + \partial \partial^*$ on $L^2_{(0,q)}(\Omega)$, as $N = \mathcal{J} \mathcal{J}^*$ (see, for example, [Str10, Proof of Theorem 2.9]). Hence, N is compact if and only if \mathcal{J} is compact. In this note, we show that compactness of N implies L^p-regularity of \mathcal{J} for $2 \leq p < \infty$. We also note that it is not yet clear if \mathcal{J} is L^p-regular for $1 < p < 2$ under the compactness assumption. We further note that the question of whether the $\overline{\partial}$-Neumann operator or the Bergman projection are bounded in L^p-norm whenever \mathcal{J} is compact is open as well.

Although the mapping properties of the canonical operators relate well in the L^2-Sobolev setting, similar equivalences in the L^p setting are less clear. In [BS91], Bonami and Sibony obtained L^p estimates for the solutions of $\overline{\partial}$-problem under some Sobolev estimates. In [HZ19] Harrington and Zeytuncu obtained some L^p estimates on the canonical operators under the assumption of the existence of good weight functions. Both assumptions are more stringent than the compactness of N and hence the L^p estimates are more general. Also, recently, Haslinger in [Has16, Theorem 2.2] showed that if \mathcal{J} gains regularity in the L^p scale then N is compact. In this paper, we observe a property that is less general than the ones in [BS91, HZ19] under a weaker assumption, and that is in the converse direction of the result in [Has16]. Namely, in Theorem 1 below, we show that compactness of N_1 (at the L^2 level) induces L^p-regularity of \mathcal{J} for $2 \leq p < \infty$.

Theorem 1. Let Ω be a C^4-smooth bounded pseudoconvex domain in \mathbb{C}^2. Assume that N_1 is compact on $L^2_{(0,1)}(\Omega)$ (or, equivalently, \mathcal{J} is compact on $D^2_{(0,1)}(\Omega)$). Then \mathcal{J} is L^p-regular on $D^p_{(0,1)}(\Omega)$ for all $2 \leq p < \infty$.

We note that the L^p boundedness is not an automatic consequence of compactness on L^2; as we demonstrate with Example 1, in which we present an operator that is compact on the L^2 space but unbounded on any L^p spaces for $p \neq 2$.

In the rest of the paper, we use the symbol $x \lesssim y$ to mean that there exists $C > 0$ such that $x \leq Cy$. Furthermore, when we write a family of inequalities depending on a parameter ε
\[
x \lesssim \varepsilon y,
\]
we mean that there exists $C > 0$ that is independent of ε such that $x \leq C\varepsilon y$.

2. Proof of Theorem 1

One can prove the following density lemma similarly as in [CS01, Lemma 4.3.2] (see also [Str10, Proposition 2.3]) using an L^p version of Friedrichs Lemma (see, for instance, [BLD01, Lemma 3.1]).

Lemma 1. Let Ω be a C^{k+1}-smooth bounded domain in \mathbb{C}^n, $1 \leq q \leq n$, and $1 < p < \infty$. Then $C^k(\partial \Omega) \cap \text{Dom}(\overline{\partial}^*)$ is dense in $D^p_0(\Omega)$ in the graph norm $f \to \|f\|_{L^p} + \|\overline{\partial} f\|_{L^p} + \|\overline{\partial}^* f\|_{L^p}$. The statement also holds with k and $k + 1$ replaced with ∞.

We will need the following lemma which is a corollary of [JK95, Theorem 1.1].

Lemma 2 (Jerison-Kenig). Let Ω be a C^1-smooth bounded domain in \mathbb{R}^n and $1 < p < \infty$. Then there exists $C > 0$ such that

\[(1) \quad \|u\|_{W^{1,p}} \leq C\|\Delta u\|_{W^{-1,p}}\]

for all $u \in W^{1,p}_0(\Omega)$.

Using the lemmas above together with the proof of [Str10, Lemma 2.12] one can prove the following estimate on the normal component of forms. We note that, in the lemma below, f_{norm} denotes the normal component of f (see (2.86) in [Str10]).

Lemma 3. Let Ω be a C^4-smooth bounded pseudoconvex domain in \mathbb{C}^n, $1 \leq q \leq n$, and $1 < p < \infty$. There exists $C > 0$ such that if $f \in D^p_0(\Omega)$ then $f_{\text{norm}} \in W^{1,p}_{0,\Omega}(\Omega)$ and

\[
\|f_{\text{norm}}\|_{W^{1,p}} \leq C \left(\|\overline{\partial} f\|_{L^p} + \|\overline{\partial}^* f\|_{L^p} + \|f\|_{L^p}\right).
\]

We will use Lemma 2 to also prove the following L^p version of [CS01, Proposition 5.1.1].

Proposition 1. Let Ω be a C^2-smooth bounded domain in \mathbb{C}^n, $1 < p < \infty$, $1 \leq q \leq n$, and $\phi \in C^1(\overline{\Omega})$ such that $\phi = 0$ on $\partial \Omega$. Then there exists $C > 0$ such that

\[
\|\phi f\|_{W^{1,p}} \leq C \left(\|\overline{\partial} f\|_{L^p} + \|\overline{\partial}^* f\|_{L^p} + \|f\|_{L^p}\right)
\]

for $f \in D^p_0(\Omega)$.

Proof. First we assume that $g \in D^p_0(\Omega)$ with coefficient functions in $W^{1,p}_0(\Omega)$. Then we have

\[
\|g\|_{W^{1,p}} \leq \|\Delta g\|_{W^{-1,p}} \leq \|\overline{\partial} g\|_{L^p} + \|\overline{\partial}^* g\|_{L^p}.
\]

Then we substitute $g = \phi f$ for $f \in C^1(\overline{\Omega}) \cap \text{Dom}(\overline{\partial}^*)$ in the inequality above

\[
\|\phi f\|_{W^{1,p}} \leq \|\overline{\partial}(\phi f)\|_{L^p} + \|\overline{\partial}^*(\phi f)\|_{L^p} \leq \|\overline{\partial} f\|_{L^p} + \|\overline{\partial}^* f\|_{L^p} + \|f\|_{L^p}.
\]
Then we use Lemma 1 to conclude the proof.

The interpolation inequality for Sobolev spaces together with Proposition 1 imply the following corollary.

Corollary 1. Let \(\Omega \) be a \(C^2 \)-smooth bounded domain in \(\mathbb{C}^n \), \(1 < p < \infty \), \(1 \leq q \leq n \), and \(\phi \in C(\overline{\Omega}) \) such that \(\phi = 0 \) on \(b\Omega \). Then the multiplication operator \(M_{\phi} : D^{p}_{(0,q)}(\Omega) \rightarrow L^p_{(0,q)}(\Omega) \) is compact.

In other words, in the terminology of [CS09], continuous functions on \(\overline{\Omega} \) that vanish on the boundary are compactness multipliers.

We note that even though [Str10, Lemma 4.3] is stated for Hilbert spaces the proof works for Banach spaces as well. In the proof of i) of Lemma 4 below one uses the facts that on reflective Banach spaces bounded sequences have weakly convergent subsequences (see [Yos95, Theorem 1 on pg 126]) as well as compact operators map weakly convergent sequences to convergent sequences. Therefore, proof of [Str10, Lemma 4.3] (see also exercise 6.13 in [Bre11]) implies the following lemma.

Lemma 4. Let \(T : X \rightarrow Y \) be a bounded linear map where \(X \) is a normed linear space and \(Y \) is a Banach space.

1. Assume that for all \(\epsilon > 0 \) there exist a Banach space \(Z_\epsilon \) and a compact linear map \(K_\epsilon : X \rightarrow Z_\epsilon \) such that

\[
\|Tx\|_Y \leq \epsilon \|x\|_X + \|K_\epsilon x\|_{Z_\epsilon}
\]

for all \(x \in X \). Then \(T \) is compact.

2. Assume that \(X \) is reflexive Banach space, \(T \) is compact and \(K : X \rightarrow Z \) is an injective bounded linear map. Then for any \(\epsilon > 0 \) there exists \(C_\epsilon > 0 \) such that

\[
\|Tx\|_Y \leq \epsilon \|x\|_X + C_\epsilon \|Kx\|_Z
\]

for all \(x \in X \).

Proof of Theorem 1. We define \(K : D^p_{(0,1)}(\Omega) \rightarrow L^p_{(0,1)}(\Omega) \) as \(Kf = \rho f \) where \(\rho(z) = dist(z, b\Omega) \) is the distance of \(z \) to the boundary of \(\Omega \). Then Corollary 1 implies that \(K \) is compact for all \(1 < p < \infty \). We note that \(K \) is an injection as well.

Since \(\Omega \) is a bounded pseudoconvex domain, \(D^2_{(0,1)}(\Omega) \) is a Hilbert space. Then we use ii. in Lemma 4 to get the following estimates: for any \(\epsilon > 0 \) there exists \(C_\epsilon > 0 \) such that

\[
\|f\|_{L^2} \leq \epsilon (\|\overline{\partial} f\|_{L^2} + \|\overline{\partial}^* f\|_{L^2}) + C_\epsilon \|Kf\|_{L^2}
\]

for all \(f \in D^2_{(0,1)}(\Omega) \).

First we show how to get \(L^4 \)-regularity. Let \(F = f_1 \overline{w}_1 + f_2 \overline{w}_2 \) be in \(D^4_{(0,1)}(\Omega) \subset L^4_{(0,1)}(\Omega) \) such that \(f_2 \) is the normal component. Because of Lemma 1, without loss of generality, we may assume that \(f_1 \) and \(f_2 \) are \(C^3 \)-smooth on \(\overline{\Omega} \). We denote \(F_2 = f_1^2 \overline{w}_1 + f_2^2 \overline{w}_2 \). Since \(f_2 \) vanishes
on the boundary we have $F_2 \in D^2_{(0,1)}(\Omega)$. Then $\|F\|_{L^4}^2 \approx \|F_2\|_{L^2}^2 < \infty$ and

$$\|F_2\|_{L^2} \lesssim \varepsilon (\|\overline{\partial}F_2\|_{L^2} + \|\overline{\partial}^* F_2\|_{L^2}) + C_\varepsilon \|K F_2\|_{L^2}$$

$$\lesssim \varepsilon (\|f_1 \overline{L}_2 f_1 - f_2 \overline{L}_1 f_2\|_{L^2} + \|f_1 L_1 f_1 + f_2 L_2 f_2\|_{L^2} + \|f_2\|_{L^2})$$

$$+ C_\varepsilon \|K F_2\|_{L^2}$$

$$\lesssim \varepsilon (\|f_1 \overline{L}_2 f_1 - f_1 \overline{L}_1 f_2 + f_2 \overline{L}_1 f_2\|_{L^2})$$

$$+ \varepsilon (\|f_1 L_1 f_1 + f_1 L_2 f_2\|_{L^2} + \|f_1 L_2 f_2 - f_2 L_2 f_2\|_{L^2} + \|f_2\|_{L^2})$$

$$+ C_\varepsilon \|K F_2\|_{L^2}$$

By absorbing the terms that are multiple of $\|F_2\|_{L^2}$ into the left hand side we get

$$\|F_2\|_{L^2} \lesssim \varepsilon \left(\|f_1 \overline{\partial}F\|_{L^2} + \|f_1 - f_2\|\overline{\partial}_1 f_2\|_{L^2} + \|f_1 \overline{\partial}^* F\|_{L^2} + \|(f_1 - f_2) L_2 f_2\|_{L^2}\right)$$

$$+ C_\varepsilon \|K F_2\|_{L^2}.$$

Using the facts that $\|F_2\|_{L^2} \approx \|F\|_{L^4}^2 < \infty$, $K F_2 = \rho F_2$, and the Cauchy-Schwarz inequality we get

$$\|F\|_{L^4}^2 \lesssim \|\overline{\partial}F\|_{L^4}^2 + \|\overline{\partial}^* F\|_{L^4}^2 + \|f_2\|_{W^{1,4}}^2 + \|f_2\|_{W^{1,4}}^2 + C_\varepsilon \|\rho F\|_{L^4}^2.$$

Using the inequality $2|xy| \leq |x|^2 + |y|^2$ on right hand side we can absorb $\|F\|_{L^4}$ into the left hand side and get (C_\varepsilon below is different from its previous values, but it still depends on \varepsilon only)

$$\|F\|_{L^4}^2 \lesssim \varepsilon \left(\|f_1 \overline{\partial}F\|_{L^2}^2 + \|\overline{\partial}^* F\|_{L^4}^2 + \|f_2\|_{W^{1,4}}^2\right) + C_\varepsilon \|\rho F\|_{L^4}^2.$$

Now we will concentrate on $\|f_2\|_{W^{1,4}}$. Using Lemma 2 and Lemma 3 we get

$$\|f_2\|_{W^{1,4}}^2 \lesssim \|\overline{\partial}F\|_{L^4}^2 + \|\overline{\partial}^* F\|_{L^4}^2 + \|F\|_{L^4}^2.$$

Then the inequality (3) turns into

$$\|F\|_{L^4}^2 \lesssim \varepsilon \left(\|\overline{\partial}F\|_{L^2}^2 + \|\overline{\partial}^* F\|_{L^4}^2\right) + C_\varepsilon \|\rho F\|_{L^4}^2.$$

That is, we showed that for \varepsilon > 0 given there exists C_\varepsilon > 0 such that

$$\|\mathcal{J} F\|_{L^4} \leq \varepsilon \left(\|\overline{\partial}F\|_{L^4}^4 + \|\overline{\partial}^* F\|_{L^4}^4\right) + C_\varepsilon \|K F\|_{L^4}$$

for $F \in D^2_{(0,1)}(\Omega)$. Therefore, $\mathcal{J} : D^2_{(0,1)}(\Omega) \to L^4_{(0,1)}(\Omega)$ is a compact operator. Furthermore, since \mathcal{J} is L^4-regular, one can show that $D^2_{(0,1)}(\Omega)$ is a Banach space.
In a similar fashion, we use estimates (4) to show that for every \(\varepsilon > 0 \) there exists \(C_\varepsilon > 0 \) such that
\[
\| JF \|_{L^8} \leq \varepsilon \left(\| \bar{\partial}F \|_{L^8} + \| \bar{\partial}^+F \|_{L^8} \right) + C_\varepsilon \| KF \|_{L^8}
\]
for \(F \in D^8_\Omega \). That is, \(J : D^8_\Omega \to L^8_\Omega \) is a compact linear map (by Lemma 4) and \(D^8_\Omega \) is a Banach space. Inductively, we show that \(J : D^{2^p}_\Omega \to L^{2^p}_\Omega \) is a compact linear map and \(D^{2^p}_\Omega \) is a Banach space for \(p \in \mathbb{Z}^+ \).

Note that for any \(p \in \mathbb{Z}^+ \), we have \(D^{2^p}_\Omega \cap D^{2^{p+1}}_\Omega = D^{2^{p+1}}_\Omega \) and \(D^{2^p}_\Omega + D^{2^{p+1}}_\Omega \subset D^{2^{p+1}}_\Omega \). In other words, for \(2^p < q < 2^{p+1} \) we get
\[
D^{2^p}_\Omega \subset D^{q}_\Omega \subset D^{2^{p+1}}_\Omega
\]
and since the graph norm is the sum of \(L^p \) norms we conclude that \(D^q_\Omega \) is an intermediate space ([BL76, Definition 2.4.1]) for two Banach spaces \(D^{2^p}_\Omega \) and \(D^{2^{p+1}}_\Omega \). Now, by the complex interpolation theorem ([BL76, Chapter 4]) we conclude that \(J : D^{p}_\Omega \to L^{p}_\Omega \) is \(L^p \)-regular and \(D^p_\Omega \) is a Banach space for all \(2 \leq p < \infty \). \(\square \)

Remark 1. The proof of Theorem 1 shows that we have the same result for \((p, n - 1)\)-forms on \(C^4\)-smooth bounded pseudoconvex domains in \(\mathbb{C}^n \).

We note that \(\text{Ker}(\bar{\partial}) \) and \(A^2(\Omega) \perp \) denote the set of \(\bar{\partial} \)-closed forms and the orthogonal complement of the Bergman space \(A^2(\Omega) \subset L^2(\Omega) \), respectively.

Proposition 2. Let \(\Omega \) be a bounded pseudoconvex domain in \(\mathbb{C}^n, n \geq 2 \), and \(1 < p \leq 2 \). Assume that \(J \) is \(L^p \)-regular on \(D^p_\Omega \). Then the following operators are bounded
\[
\begin{align*}
&\text{i. } \bar{\partial}N_2 : L^p_{\Omega,2}(\Omega) \cap L^2_{\Omega,2}(\Omega) \cap \text{Ker}(\bar{\partial}) \to L^p_{\Omega,1}(\Omega), \\
&\text{ii. } \bar{\partial}N_0 : L^p(\Omega) \cap L^2(\Omega) \cap A^2(\Omega) \perp \to L^p_{\Omega,1}(\Omega).
\end{align*}
\]

Proof. Since \(J \) is \(L^p \)-regular and there exists \(C > 0 \) such that
\[
\| f \|_{L^p} \leq C \left(\| \bar{\partial}f \|_{L^p} + \| \bar{\partial}^+f \|_{L^p} \right)
\]
for \(f \in D^p_\Omega \). Note that \(\bar{\partial}N_0g \in \text{Dom}^\perp(\bar{\partial}^+) \subset \text{Dom}^\perp(\bar{\partial}^+) \) for \(g \in L^p(\Omega) \cap L^2(\Omega) \cap A^2(\Omega) \perp \) and \(p \leq 2 \). Then applying the estimate (5) to \(\bar{\partial}N_0g \) we get
\[
\| \bar{\partial}N_0g \|_{L^p} \leq C \| \bar{\partial}^+ \bar{\partial}N_0g \|_{L^p} = C \| g \|_{L^p}
\]
for \(g \in L^2(\Omega) \cap A^2(\Omega) \perp \).

Similarly, if we apply (5) to \(\bar{\partial}^+N_2h \) with \(h \in L^p_{\Omega,2}(\Omega) \cap L^2_{\Omega,2}(\Omega) \cap \text{Ker}(\bar{\partial}) \) we get
\[
\| \bar{\partial}^+N_2h \|_{L^p} \leq C \| \bar{\partial}^+ \bar{\partial}^+N_2h \|_{L^p} = C \| h \|_{L^p}.
\]
Hence the proof of the proposition is complete. \[\square\]

The following example shows that the L^p boundedness of an operator T is not an automatic consequence of the compactness of T on L^2.

Example 1. Set

$$\phi(z) = \exp \left(\frac{-1}{1 - |z|} \right)$$

and consider the weighted Bergman space $A^2(\mathbb{D}, \phi)$ on the unit disc. The weighted Bergman projection B_ϕ is studied in [Dos04, Dos07, Zey13], and it was noted that B_ϕ is unbounded on $L^p(\mathbb{D}, \phi)$ for any $p \neq 2$.

We define an operator T on $L^2(\mathbb{D}, \phi)$ by

$$T : L^2(\mathbb{D}, \phi) \to L^2(\mathbb{D}, \phi)$$

$$Tf(z) = B_\phi(f)(z)(1 - |z|^2)^2.$$

The operator T is bounded, linear and self-adjoint. Furthermore, we show that T is compact on $L^2(\mathbb{D}, \phi)$ yet it is unbounded on $L^p(\mathbb{D}, \phi)$ for any $p \neq 2$.

First we show that T is compact. For $\varepsilon > 0$ there exists a compact set $K_\varepsilon \subset \mathbb{D}$ such that $(1 - |z|^2)^2 < \varepsilon$ on $\mathbb{D} \setminus K$. We define $S_\varepsilon f = \chi_{K_\varepsilon} Tf$ where χ_{K_ε} is the characteristic function of K_ε. Montel’s theorem implies that S_ε is compact.

$$\|Tf\|^2 = \|Tf\|^2_{L^2(\mathbb{D}\setminus K_\varepsilon, \phi)} + \|Tf\|^2_{L^2(K_\varepsilon, \phi)} \leq \varepsilon \|B_\phi f\|^2 + \|S_\varepsilon f\|^2 \leq \varepsilon \|f\|^2 + \|S_\varepsilon f\|^2.$$

That is, T satisfies compactness estimates and by Lemma 4 it is a compact operator on $L^2(\mathbb{D}, \phi)$ (see also [D’A02, Proposition V.2.3] or [Str10, Lemma 4.3]).

Next we show that T is unbounded on $L^p(\mathbb{D}, \phi)$ for any $p \neq 2$. Let $0 < p < 2$ and

$$f_n(z) = z^{kn}$$

where k is a positive integer to be determined later. Then one can compute that

$$Tf_n(z) = a_n z^{kn-n} (1 - |z|^2)^2$$

where

$$a_n = \frac{\int_{\mathbb{D}} |z|^{2kn} \phi(z) dA(z)}{\int_{\mathbb{D}} |z|^{2(k-1)n} \phi(z) dA(z)}.$$

Furthermore,

$$\|Tf_n\|^p_p \leq \left(\frac{\int_{\mathbb{D}} |z|^{2kn} \phi(z) dA(z)}{\int_{\mathbb{D}} |z|^{2(k-1)n} \phi(z) dA(z)} \right)^p \frac{\int_{\mathbb{D}} |z|^{pkn-pn} (1 - |z|^2)^2 \phi(z) dA(z)}{\int_{\mathbb{D}} |z|^{pkn+pn} \phi(z) dA(z)}.$$

We need the following asymptotic [Dos07, Lemma 1]

$$\int_{\mathbb{D}} |z|^t (1 - |z|^2)^{2s} \phi(z) dA(z) \sim (t + 1)^{-\frac{4s-3}{4}} \exp(-2\sqrt{t+1})$$
as $t \to \infty$.

We have the following asymptotic computations

$$
\frac{\|Tf_n\|_p^p}{\|f_n\|_p^p} = \left(\frac{\int_D |z|^{p_k n} \phi(z) dA(z)}{\int_D |z|^{2(p_k - 1)} \phi(z) dA(z)} \right)^p \frac{\int_D |z|^{|p_k n - p_n| (1 - |z|^2)^{2p} \phi(z) dA(z)}}{\int_D |z|^{|p_k n + p_n| \phi(z) dA(z)}}
$$

$$
\sim \frac{(2kn + 1)^{-3p/4} \exp(-2p\sqrt{2kn + 1})}{(2kn - 2n + 1)^{-3p/4} \exp(-2p\sqrt{2kn - 2n + 1})}
\times \frac{(pkn - pn + 1)^{-4p/3} \exp(-2\sqrt{pkn - pn + 1})}{(pkn + pn + 1)^{-3/4} \exp(-2\sqrt{pkn + pn + 1})}.
$$

$$
\sim C_{k, p} n^{-p} \exp(2D_{k, p, n})
$$

as $n \to \infty$ where

$$
C_{k, p} = \frac{(k + 1)^{3/4}}{p^p k^{3p/4} (k - 1)^{(3 + p)/4}}
$$

and

$$
D_{k, p, n} = -p\sqrt{2kn + 1} + p\sqrt{2kn - 2n + 1} - \sqrt{pkn - pn + 1} + \sqrt{pkn + pn + 1}
$$

$$
= \frac{-2pn}{\sqrt{2kn + 1} + \sqrt{2kn - 2n + 1}} + \frac{2pn}{\sqrt{pkn - pn + 1} + \sqrt{pkn + pn + 1}}
$$

$$
\geq \frac{pn}{\sqrt{pkn + pn + 1}} - \frac{pn}{\sqrt{2kn - 2n + 1}}
$$

$$
\geq p\sqrt{n} \left(\frac{1}{\sqrt{p} + 1} - \frac{1}{\sqrt{2k - 2}} \right).
$$

Then one can show that for large k we have

$$
\frac{1}{\sqrt{p} + 1} - \frac{1}{\sqrt{2k - 2}} \geq \frac{1}{2} \left(\frac{1}{\sqrt{p}} - \frac{1}{\sqrt{2}} \right) > 0.
$$

Therefore, for large k we have

$$
D_{k, p, n} \geq \frac{\sqrt{np}}{2} \left(\frac{1}{\sqrt{p}} - \frac{1}{\sqrt{2}} \right).
$$

Therefore, for k large enough we have $C_{k, p} n^{-p} \exp(2D_{k, p, n}) \to \infty$ as $n \to \infty$. Then we conclude that $\frac{\|Tf_n\|_p}{\|f_n\|_p} \to \infty$ as $n \to \infty$. Hence T is not bounded on $L^p(D, \phi)$ for any $p < 2$. Furthermore, the fact that T is self-adjoint implies that T is unbounded on $L^p(D, \phi)$ for any $p \neq 2$.

3. Acknowledgment

We would like to thank Emil Straube for reading a previous version of the manuscript and providing valuable feedback. We would like to thank the anonymous referees for constructive remarks in an earlier version of this paper.
ON COMPACTNESS AND L^p-REGULARITY IN THE $\overline{\partial}$-NEUMANN PROBLEM

REFERENCES

[BL76] Jörjan Bergh and Jörgen Lőfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.

[BLD01] Adel Blouza and Hervé Le Dret, An up-to-the-boundary version of Friedrichs’s lemma and applications to the linear Koiter shell model, SIAM J. Math. Anal. 33 (2001), no. 4, 877–895.

[BS91] Aline Bonami and Nessim Sibony, Sobolev embedding in C^n and the $\overline{\partial}$-equation, J. Geom. Anal. 1 (1991), no. 4, 307-327.

[Bre11] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011.

[ÇS09] Mehmet Çelik and Emil J. Straube, Observations regarding compactness in the $\overline{\partial}$-Neumann problem, Complex Var. Elliptic Equ. 54 (2009), no. 3-4, 173–186.

[CS01] So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.

[D’A02] John P. D’Angelo, Inequalities from complex analysis, Carus Mathematical Monographs, vol. 28, Mathematical Association of America, Washington, DC, 2002.

[Dos04] Milutin R. Dostanić, Unboundedness of the Bergman projections on L^p spaces with exponential weights, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 1, 111–117.

[Dos07] ———, Integration operators on Bergman spaces with exponential weight, Rev. Mat. Iberoam. 23 (2007), no. 2, 421–436.

[Has16] Friedrich Haslinger, Sobolev inequalities and the $\overline{\partial}$-Neumann operator, J. Geom. Anal. 26 (2016), no. 1, 287–293.

[Hör65] Lars Hörmander, L^2 estimates and existence theorems for the $\overline{\partial}$ operator, Acta Math. 113 (1965), 89–152.

[HZ19] Phillip S. Harrington and Yunus E. Zeytuncu, L^p mapping properties for the Cauchy-Riemann equations on Lipschitz domains admitting subelliptic estimates, Complex Var. Elliptic Equ. 64 (2019), no. 3, 369–385.

[JK95] David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219.

[Str10] Emil J. Straube, Lectures on the L^2-Sobolev theory of the $\overline{\partial}$-Neumann problem, ESI Lectures in Mathematics and Physics, vol. 7, European Mathematical Society (EMS), Zürich, 2010.

[Yos95] Köşakû Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the sixth (1980) edition.

[Zey13] Yunus E. Zeytuncu, L^p regularity of weighted Bergman projections, Trans. Amer. Math. Soc. 365 (2013), no. 6, 2959–2976.

(Uinion Sähutoglu) UNIVERSITY OF TOLEDO, DEPARTMENT OF MATHEMATICS & STATISTICS, TOLEDO, OH 43606, USA

Email address: Sonmez.Sahutoglu@utoledo.edu

(Yunus E. Zeytuncu) UNIVERSITY OF MICHIGAN–DEARBORN, DEPARTMENT OF MATHEMATICS & STATISTICS, DEARBORN, MI 48128, USA

Email address: zeytuncu@umich.edu