Remarks on Wolff’s inequality for hypersurfaces

BY SHAOMING GUO
Department of Mathematics, Indiana University,
831 East 3rd St., Bloomington IN 47405, U.S.A.
e-mail: shaoguo@iu.edu

AND CHANGKEUN OH
Department of Mathematics, Pohang University of Science and Technology,
Pohang 790-784, Republic of Korea.
e-mail: ock9082@postech.ac.kr

(Received 19 April 2017; revised 11 June 2018)

Abstract

We run an iteration argument due to Pramanik and Seeger, to provide a proof of sharp decoupling inequalities for conical surfaces and for k-cones. These are extensions of results of Łaba and Pramanik to sharp exponents.

1. Statements of the results

For $n \geq 2$, let $L_0 \subset \mathbb{R}^{n+1}$ be an affine subspace of dimension n that does not pass through the origin. Let $S_0 \subset L_0$ be a smooth compact surface (possibly with boundary) of dimension $n-1$ whose Gaussian curvature does not vanish at every point. The surface S given by

$$S = \{tx \in \mathbb{R}^{n+1} : x \in S_0; t \in [C_1, C_2]\}$$

for some $0 < C_1 < C_2$ is called a conical surface induced by S_0. For each $a \in S$, there exists a unique $b \in S_0$ such that $a = tb$ for some $t \in [C_1, C_2]$. We denote by $\eta(a)$ the convex hull $[C_1b, C_2b]$ in \mathbb{R}^{n+1}, and call $\eta(a)$ the 1-plane at a.

Now we follow the approach of Łaba and Pramanik [5] to introduce the notion of conical surfaces of higher co-dimensions.

Let L_0 be an n-dimensional linear subspace of \mathbb{R}^{n+k}. Let v_1, v_2, \ldots, v_k be linearly independent vectors such that

$$\{x + c_1v_1 + c_2v_2 + \cdots + c_kv_k \in \mathbb{R}^{n+k} : x \in L_0, (c_1, c_2, \ldots, c_k) \in \mathbb{R}^k\} = \mathbb{R}^{n+k}.$$

For simplicity, let $v_0 = 0 \in \mathbb{R}^{n+k}$. For each $i = 0, 1, 2, \ldots, k$, denote

$$L_i = L_0 + v_i.$$

For each L_i, we fix a bounded and convex solid F_i such that $E_i := \partial F_i$ is a C^∞ surface and has non-vanishing Gaussian curvature at every point on it. We fix some rotation R satisfying $R(L_i) = \mathbb{R}^{n} \times c_i$ for some $c_i \in \mathbb{R}^k$ for all i. By discarding the last k coordinates we can identify L_i with \mathbb{R}^{n}. Thus for each unit normal vector $x \in S^{n-1}$ in \mathbb{R}^{n}, each E_i contains exactly one point a_i such that x is the outward normal vector to $E_i \subset L_i$ at a_i. We say that
a $(k + 1)$-tuple of points (x_0, \ldots, x_k) is *good* if $x_i \in E_i$ for every $0 \leq i \leq k$, and if the outward unit normal vectors to E_i at x_i are the same. The *k-cone* S in \mathbb{R}^{n+k} induced by the collection $\{E_i\}_{i=0}^k$ is defined by

$$S = \bigcup_{(x_0, \ldots, x_k) \text{ good}} \eta(x_0, \ldots, x_k),$$

where $\eta(x_0, \ldots, x_k)$ denotes the convex hull generated by x_0, \ldots, x_k in \mathbb{R}^{n+k}. By the discussion of [5, section 7], S is a smooth surface of co-dimension 1 in \mathbb{R}^{n+k}. Also, each $a \in S$ belongs to $\eta(x_0, \ldots, x_k)$ for exactly one good $(k + 1)$-tuple (x_0, \ldots, x_k). We will call $\eta(x_0, \ldots, x_k)$ the k-plane at a, and denote it by $\eta(a)$.

Let S be a conical surface induced by S_0 or a k-cone induced by $\{E_i\}_{i=0}^k$. For each $a \in S$, denote by n_a the unit normal vector to S at a. For a small number $\delta > 0$, we denote by \mathcal{M}_δ a $\delta^{1/2}$-separated subset of S_0 (resp. E_0) when S is a conical surface (resp. a k-cone). Moreover, denote by $N_\delta S$ the δ-neighborhood of S. Throughout the paper, we are interested in a covering of $N_\delta S$ satisfying the following assumption.

Assumption (A) For each small $\delta > 0$ and each $a \in S$, let $\Pi_{a,\delta}$ be a rectangular box centered at a, of dimensions $C\delta \times C\delta^\frac{1}{2} \times \cdots \times C\delta^\frac{1}{2} \times C \times \cdots \times C$, where the short direction is normal to S at a, the long directions are parallel to the k-plane $\eta(a)$ at a, and the mid-length directions are tangent to S at a but perpendicular to the k-plane $\eta(a)$. Then:

A_1: $C_1 \Pi_{a,\delta} \subset N_\delta S \cap \{x \in \mathbb{R}^{n+k} : (x - a) \cdot n_a \leq \delta\}$ for some small constant $C_1 > 0$;

A_2: $\{\Pi_{a,\delta}\}_{a \in \mathcal{M}_\delta}$ forms a finitely overlapping covering of $N_\delta S$;

A_3: for every $a \in \mathcal{M}_\delta$, there are at most $O(1)$ distinct $b \in \mathcal{M}_\delta$ such that $|n_a - n_b| \leq C_2 \delta^{1/2}$;

A_4: if $0 < \delta \leq \sigma$ and if $\Pi_{a,\delta} \cap \Pi_{b,\sigma} \neq \emptyset$ for some $a, b \in S$, then $\Pi_{a,\delta} \subset C_3 \Pi_{b,\sigma}$.

This group of assumptions is identical to that in [5]. The constants C, C_1, C_2, C_3 are independent of the parameter δ and the choice of \mathcal{M}_δ.

Let Ξ_a be a smooth function in \mathbb{R}^{n+k} with $c \leq \|\Xi_a\|_{L^1(\mathbb{R}^{n+k})} \leq c^{-1}$ for some small c such that $\text{supp}(\Xi_a) \subset \Pi_{a,\delta}$ and $\{\Xi_a\}_{a \in \mathcal{M}_\delta}$ forms a smooth partition of unity of $N_\delta S$. We can always take such partition of unity (depending on δ). We first take functions Ξ_a satisfying $\Xi_a \sim 1$ on $c\Pi_{a,\delta}$ and $\text{supp}(\Xi_a) \subset \Pi_{a,\delta}$ for some small constant $c > 0$. We then modify them to be a partition of unity. The L^1 estimate follows from the integration by parts.

Our first result is the following:

Theorem 1.1. Let $n \geq 2$ and $k \geq 1$. Let S be a k-cone in \mathbb{R}^{n+k}. Under Assumption (A), if $\text{supp}(\hat{f}) \subset N_\delta S$, then for $p \geq 2 + 4/(n - 1)$, we have

$$\|f\|_{L^p(\mathbb{R}^{n+k})} \leq C_{p,\epsilon} \delta^{-\frac{n-1}{4} + \frac{n+1}{2p} - \epsilon} \left(\sum_{a \in \mathcal{M}_\delta} \|\Xi_a \ast f\|_{L^p(\mathbb{R}^{n+k})}^2\right)^{\frac{1}{2}},$$

for every $\epsilon > 0$.

By a standard interpolation, the above estimate (1.1) further implies
\[\|f\|_{L^p} \leq C_{p, \epsilon} \delta^{-\epsilon} \left(\sum_{a \in \mathcal{M}_\delta} \| \Xi_a \ast f \|_{L^p}^2 \right)^{1/2} \] (1.2)
for every \(2 \leq p \leq 2 + 4/(n - 1) \) and every \(\epsilon > 0 \). Up to the arbitrarily small factor \(\epsilon > 0 \), both (1.1) and (1.2) are sharp. For the sharpness we refer to the discussion in the introduction of the paper [5].

Theorem 1.1 involves \(k \)-cones. Recall that \(k \)-cones are generated by the boundaries \(E_i \) of bounded and strictly convex bodies \(F_i \subset L_i \) with \(0 \leq i \leq k \), whose Gaussian curvature does not vanish at every point. That means, for each \(i \), if \(L_i \) is identified with \(\mathbb{R}^n \) in a canonical manner, then at every point on \(E_i \), all the principle curvatures are positive. However, in the definition of a conical surface \(S \) induced by \(S_0 \), we only assumed \(S_0 \) to have non-vanishing Gaussian curvatures. That means principle curvatures might have different signs. Therefore, the \(l^2 \) decoupling for conical surfaces does not necessarily imply the \(l^p \) decoupling for conical surfaces. We refer to [2] for more discussion. For conical surfaces, we prove

Theorem 1.2. Let \(n \geq 2 \). Let \(S \) be a conical surface in \(\mathbb{R}^{n+1} \). Under Assumption (A), if \(\text{supp}(\hat{f}) \subset \mathcal{N}_\delta S \), then for \(p \geq 2 + 4/(n - 1) \), we have
\[\|f\|_{L^p(\mathbb{R}^{n+1})} \leq C_{p, \epsilon} \delta^{-\frac{n-1}{2}} \left(\sum_{a \in \mathcal{M}_\delta} \| \Xi_a \ast f \|_{L^p(\mathbb{R}^{n+1})}^p \right)^{\frac{1}{p}} , \]
for every \(\epsilon > 0 \).

Theorem 1.1 and Theorem 1.2 are extensions of results in Łaba and Pramanik [5] to sharp exponents. Our proof relies on an iteration argument and on results of Bourgain and Demeter [1, 2]. This iteration argument was first used by Pramanik and Seeger [7], and was later used by Bourgain and Demeter [1] to obtain sharp decoupling estimates for the cone. For the prior developments on Wolff’s inequalities, we refer to Wolff [8], Łaba and Wolff [6], Garrigós and Seeger [3, 4].

For some examples of \(k \)-cones and conical surfaces and applications of the decouplings for those surfaces, we refer to the introduction of the paper [5].

For \((\zeta_1, \ldots, \zeta_n) \in \mathbb{R}^n \), we use the notation \(\zeta = (\zeta_1, \ldots, \zeta_n) \) and \(\zeta' = (\zeta_1, \ldots, \zeta_{n-1}) \). Throughout the paper, we write \(A \lesssim B \) if \(A \leq cB \) for some constant \(c > 0 \), and \(A \sim B \) if \(c^{-1}A \leq B \leq cB \). The constant \(c \) will in general depend on fixed parameters such as \(p, n \) and sometimes on the variable parameter \(\epsilon \) but not the parameter \(\delta \).

2. Proof of Theorem 1.1

A truncated hyperbolic paraboloid \(H_{\nu}^{n-1} \) in \(\mathbb{R}^n \) is defined for \(\nu = (v_1, \ldots, v_{n-1}) \in (\mathbb{R} \setminus \{0\})^{n-1} \) as
\[H_{\nu}^{n-1} = \{ (\zeta_1, \ldots, \zeta_{n-1}, v_1\zeta_1^2 + \cdots + v_{n-1}\zeta_{n-1}^2) : |\zeta_i| \leq 1 \} . \]
When \(v_i = 1 \) for all \(i \), we use \(P^{n-1} \) instead of \(H_{\nu}^{n-1} \). We denote by \(\mathcal{N}_\delta H_{\nu}^{n-1} \) the \(\delta \)-neighbourhood of \(H_{\nu}^{n-1} \). Let \(\mathcal{P}_\delta \) be a finitely overlapping cover of \(\mathcal{N}_\delta H_{\nu}^{n-1} \) with \(\delta \times \delta^{1/2} \times \cdots \times \delta^{1/2} \) rectangular boxes \(\Pi_{a, \delta} \) centered at \(a \). Moreover, denote \(\mathcal{M}_\delta = \{ a : \Pi_{a, \delta} \in \mathcal{P}_\delta \} \). For each \(a \in \mathcal{M}_\delta \), let \(\Psi_a \) be a smooth function in \(\mathbb{R}^n \) with \(\| \Psi_a \|_{L^1(\mathbb{R}^n)} \sim 1 \) and \(\text{supp}(\Psi_a) \subset \Pi_{a, \delta} \) such that \(\{ \Psi_a \}_{a \in \mathcal{M}_\delta} \) forms a smooth partition of unity of \(\mathcal{N}_\delta H_{\nu}^{n-1} \).

To prove Theorem 1.1, we will use the following theorem due to Bourgain and Demeter.
THEOREM 2.1 ([I, theorem 1.1]). Denote \(p_0 = 2(n+1)/(n-1) \). If \(\text{supp}(\hat{f}) \subset N_\delta P^{n-1} \), then

\[
\|f\|_{L^p(\mathbb{R}^n)} \lesssim_\delta \delta^{-\varepsilon} \left(\sum_{a \in M_\delta} \|\hat{\Psi}_a \ast f\|_{L^p(\mathbb{R}^n)}^2 \right)^{\frac{1}{2}},
\]

for every \(\varepsilon > 0 \).

In the forthcoming proof of Theorem 1.1, we consider only the endpoint \(p_0 = 2(n+1)/(n-1) \). The estimate for the general range follows from the interpolation with the trivial estimate at \(p = \infty \).

2.1. In the first step of the proof, we will slice our surface into small pieces so that we can exploit local properties of a \(k \)-cone. Let \(\{e_i\}_{i=1}^{n+k} \) be a collection of standard orthonormal bases in \(\mathbb{R}^{n+k} \). By a linear transformation, we may assume that \(L_0 = \text{span}(e_1, \ldots, e_n) \) and \(L_i = L_0 + e_{n+i} \) for each \(1 \leq i \leq k \).

Fix a small parameter \(\varepsilon > 0 \). This \(\varepsilon \) is essentially the same as the one in the statement of Theorem 1.1. We may also assume that \(\varepsilon^{-1} \) is a natural number. We define a sliced surface \(\tilde{S} \) by

\[
\tilde{S} = S \cap (\mathbb{R}^n \times \{(\tau_1, \ldots, \tau_k) : c_i \leq \tau_i \leq c_i + 4\delta^{k/2}\}),
\]

for some \(c_i \) with \(1 \leq i \leq k \). We will prove the decoupling for the sliced surface \(\tilde{S} \) first.

PROPOSITION 2.2. If \(\text{supp}(\hat{f}) \subset N_\delta \tilde{S} \), then

\[
\|f\|_{L^p(\mathbb{R}^{n+i})} \lesssim_\delta \delta^{-\varepsilon} \left(\sum_{a \in M_\delta} \|\hat{\Psi}_a \ast f\|_{L^p(\mathbb{R}^{n+i})}^2 \right)^{\frac{1}{2}}.
\]

The desired decoupling inequalities for the surface \(S \) can be deduced from Proposition 2.2. To see this, let \(\{\hat{\psi}_j\}_{j \in \mathbb{Z}} \) be a partition of unity of \(\mathbb{R} \) such that

\[
\|\hat{\psi}_j\|_{L^1(\mathbb{R})} \sim 1 \quad \text{and} \quad \text{supp}(\hat{\psi}_j) \subset [(j-2)\delta^{k/2}, (j+2)\delta^{k/2}].
\]

For each \(J = (j_1, \ldots, j_k) \in \mathbb{Z}^k \), we define

\[
f_J(x,t) = \int_{\mathbb{R}^n \times \mathbb{R}^2} \prod_{i=1}^k \hat{\psi}_{j_i}(\tau_i) \hat{f}(\xi,\tau) e^{2\pi i (x \cdot \xi + t \cdot \tau)} \, d\xi \, d\tau.
\]

Here \(\tau = (\tau_1, \ldots, \tau_k) \). Note that \(|\{J \in \mathbb{Z}^k : f_J \not= 0\}| = O(\delta^{-k/2}) \). Hence, by the triangle inequality

\[
\|f\|_{L^p(\mathbb{R}^{n+i})} \lesssim_\delta \delta^{-k/2} \max_{J \in \mathbb{Z}^k} \|f_J\|_{L^p(\mathbb{R}^{n+i})}.
\]

By Proposition 2.2 and Young’s inequality, the last expression can be further bounded by

\[
\delta^{-2k} \max_{J \in \mathbb{Z}^k} \left(\sum_{a \in M_\delta} \|\hat{\Psi}_a \ast f\|_{L^p(\mathbb{R}^{n+i})}^2 \right)^{\frac{1}{2}} \lesssim_\delta \delta^{-2k} \left(\sum_{a \in M_\delta} \|\hat{\Psi}_a \ast f\|_{L^p(\mathbb{R}^{n+i})}^2 \right)^{\frac{1}{2}}.
\]

Hence, what remains is to show Proposition 2.2.

2.2. Our argument relies on an iteration. This iteration argument first appeared in Pramanik and Seeger [7]. We will deduce Proposition 2.2 from the following proposition.
Remark on Wolff’s inequality for hypersurfaces

Proposition 2.3. Fix μ such that $2\mu + \epsilon/2 \leq 1$ and $\mu \geq \epsilon/2$. Let $a \in \mathcal{M}_{\beta^+}$. If $\text{supp}(\hat{f}) \subset N_0\delta$, then

$$\|\Xi_a \ast f\|_{L^{p_0}(\mathbb{R}^{n+1})} \lesssim \delta^{-\epsilon^3} \left(\sum_{b \in \mathcal{M}_{\beta^+}} \|\Xi_a \ast \Xi_b \ast f\|_{L^{p_0}(\mathbb{R}^{n+1})}^2 \right)^{\frac{1}{2}}.$$

We postpone the proof of Proposition 2.3 to the next subsection, and continue by

Proof of Proposition 2.2. First of all, by the triangle inequality and Hölder’s inequality, we obtain

$$\|f\|_{p_0} \lesssim \delta^{-C\epsilon} \left(\sum_{a \in \mathcal{M}_{\beta^+}} \|\Xi_a \ast f\|_{p_0}^2 \right)^{\frac{1}{2}},$$

for some large constant $C > 0$. Next, by applying Proposition 2.3 with $\mu = \epsilon/2$, the last expression can be further bounded by

$$\delta^{-\epsilon^3 - C\epsilon} \left(\sum_{a \in \mathcal{M}_{\beta^+}} \sum_{b \in \mathcal{M}_{\beta^+}} \|\Xi_a \ast \Xi_b \ast f\|_{p_0}^2 \right)^{\frac{1}{2}} \lesssim \epsilon \delta^{-\epsilon^3 - C\epsilon} \left(\sum_{b \in \mathcal{M}_{\beta^+}} \|\Xi_b \ast f\|_{p_0}^2 \right)^{\frac{1}{2}}.$$

The last inequality follows from

$$\|a \in \mathcal{M}_{\beta^+} : \Pi_{a,\beta^+} \cap \Pi_{b,\beta^+} \cap N_0\delta \neq \emptyset\| = O(1),$$

which further follows from Assumption A_3 and Assumption A_4. Repeatedly apply Proposition 2.3 with $\mu = \mu_l = \epsilon/4$ starting with $l = 3$ until $l = 2/\epsilon - 1$. In the end we have

$$\|f\|_{p_0} \lesssim \epsilon \delta^{-2C\epsilon} \left(\sum_{a \in \mathcal{M}_{\beta^+}} \|\Xi_a \ast f\|_{p_0}^2 \right)^{\frac{1}{2}}.$$

This finishes the proof of Proposition 2.2.

2.3. In this subsection, we will prove Proposition 2.3 by using Theorem 2.1. Let $B \subset \mathbb{R}^{n+k}$ be a ball of radius $r_B := \delta^{-2(\mu+\frac{1}{2})}$, centered at c_B. Let C be a large constant. Define a weight ω_B associated with the ball B by $(1 + \cdots - C_B/r_B)^{-C}$. To prove Proposition 2.3, by a simple localisation argument, it suffices to prove

$$\|\Xi_a \ast f\|_{L^{p_0}(\omega_B)} \lesssim \delta^{-\epsilon^3} \left(\sum_{b \in \mathcal{M}_{\beta^+}} \|\Xi_a \ast \Xi_b \ast f\|_{L^{p_0}(\omega_B)}^2 \right)^{\frac{1}{2}}.$$

Let $a \in \eta(y_0, \ldots, y_k)$ for some good $(k + 1)$-tuple (y_0, \ldots, y_k). Under certain affine transformations, we may assume that y_0 lies in the origin and

$$y_i = (0, \ldots, 0, 0, \ldots, 0, 1, 0, \ldots, 0) \text{ for each } 1 \leq i \leq k.$$

Moreover, we assume that the normal vector to the surface S at the point y_i is given by e_n for every $0 \leq i \leq k$. By using a partition of unity, we may assume, that each E_i, viewed as a hypersurface in L_i, can be represented as the graph of a smooth function $G_i : (-\epsilon_0, \epsilon_0)^{n-1} \rightarrow \mathbb{R}$ for some fixed small constant $\epsilon_0 > 0$. Under these assumptions,
we observe that $\nabla G_i(0) = (0, \ldots, 0) \in \mathbb{R}^{n-1}$ for each i. Moreover, for those points that are different from the origin, we have

Claim 2.1. For each $1 \leq i \leq k$, there exists a smooth function $h_i : (-\epsilon_0, \epsilon_0)^{n-1} \to \mathbb{R}^{n-1}$ such that

$$\nabla G_i(h_i(\xi')) = \nabla G_0(\xi') \text{ for all } \xi' \in (-\epsilon_0, \epsilon_0)^{n-1}.$$
Moreover, $h_i(\xi') = J_i \cdot \xi' + O(|\xi'|^2)$ for some positive definite matrix J_i.

Proof. For each ξ', let us consider the level set $\{\eta' \in \mathbb{R}^{n-1} : \nabla G_i(\eta') = \nabla G_0(\xi')\}$. Note that this set is not empty. Recall that G_i is a strictly convex smooth function. Hence the existence and smoothness of h_i can be guaranteed by the implicit function theorem.

To obtain an asymptotic of the function h_i near the origin, we differentiate both sides of the equation $\nabla G_i(h_i(\xi')) = \nabla G_0(\xi')$, and obtain $(HG_i)(\nabla h_i) = HG_0$. Here HG_i is the Hessian matrix of the function G_i. Since E_i is strictly convex, HG_i is a positive definite matrix. Thus, ∇h_i is also a positive definite matrix. The identity $h_i(\xi') = J_i \cdot \xi' + O(|\xi'|^2)$, with some positive definite matrix J_i, immediately follows from Taylor’s theorem. This completes the proof of the claim.

Denote $h_0(\xi') = \xi'$. By Claim 2.1, if ϵ_0 is chosen small enough, then a good $(k+1)$-tuple containing $(\xi', G_0(\xi'), 0, \ldots, 0) := P_0(\xi')$ also contains

$$(h_1(\xi'), G_1(h_1(\xi'))), 0, \ldots, 0, 1, 0, \ldots, 0) := P_i(\xi').$$

for each $1 \leq i \leq k$. Hence, w.l.o.g. we may assume that the k-cone $\tilde{S} \cap \Pi_{a,\delta^\alpha}$ is given by

$$\left\{ \left(1 - \sum_{j=1}^{k} \theta_j \right) P_0(\xi') + \sum_{j=1}^{k} \theta_j P_j(\xi') : |\xi'| \lesssim \delta^\alpha, \ 0 \leq \theta_j \leq \delta^{\beta/2} \right\}. \tag{2.2}$$

We claim that the k-cone given by (2.2) is contained in the $\delta^{2\mu + \xi}$ neighbourhood of a cylinder. To be precise, we will use the cylinder

$$\left\{ P_0(\xi') + \sum_{j=1}^{k} \theta_j e_{n+j} : |\xi'| \lesssim \delta^\mu, \ 0 \leq \theta_j \leq \delta^{\beta/2} \right\}. \tag{2.3}$$

That is, we will show that, given an arbitrary point on the k-cone (2.2), its distance with the cylinder (2.3) is smaller than $O(\delta^{2\mu + \delta^\xi})$. Given a point in (2.2), we write it as

$$\left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi'), \left(1 - \sum_{j=1}^{k} \theta_j \right) G_0(\xi') + \sum_{j=1}^{k} \theta_j G_j(h_j(\xi')), \theta_1, \ldots, \theta_k \right).$$

We calculate its distance with the point

$$\left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi'), G_0 \left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi'), \theta_1, \ldots, \theta_k \right)$$.

However, this is not a natural text representation. It appears to be a mathematical expression that requires further context or clarification to be understood naturally.
from the cylinder \((2 \cdot 3)\). This amounts to proving

\[
\left| G_0 \left(\left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi') \right) - \left(1 - \sum_{j=1}^{k} \theta_j \right) G_0(\xi') \right| + \sum_{j=1}^{k} \theta_j G_j(h_j(\xi')) \lesssim \delta^{2\mu + \frac{\epsilon}{2}}.
\]

By the triangle inequality, it suffices to show

\[
\left| G_0 \left(\left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi') \right) - G_0(\xi') \right| \lesssim \delta^{2\mu + \frac{\epsilon}{2}}
\]

and

\[
|G_0(\xi') - G_j(h_j(\xi'))| \lesssim \delta^{2\mu}.
\]

The latter follows directly from Taylor’s formula. To prove the former estimate, we write

\[
G_0(\xi') = (\xi')^T [HG_0(0)](\xi') + O(|\xi'|^3) \text{ with } HG_0(0) \text{ the Hessian matrix of the function } G_0 \text{ at the origin. Moreover, we know that } HG_0(0) \text{ is positive definite. Using this formula, we just need to show that}
\]

\[
\left| \left(1 - \sum_{j=1}^{k} \theta_j \right) \xi' + \sum_{j=1}^{k} \theta_j h_j(\xi') - \xi' \right| \lesssim \delta^{\mu + \frac{\epsilon}{2}},
\]

which follows via a direct calculation.

So far we have verified that the \(k\)-cones \((2 \cdot 2)\) lies in a \(\delta^{2\mu + \frac{\epsilon}{2}}\)-neighbourhood of the cylinder \((2 \cdot 3)\). Hence to prove the localised decoupling inequality \((2 \cdot 1)\), by the uncertainly principle, it is the same as proving a corresponding decoupling inequality associated with the cylinder \((2 \cdot 3)\), which further follows from Theorem 2-1 and Fubini’s theorem. This finishes the proof of Proposition 2-3.

3. Proof of Theorem 1-2

In this section, we use the notations defined at the beginning of Section 2. The proof of Theorem 1-2 essentially follows via the same argument as that of Theorem 1-1.

Let \(H_0^{n-1} \approx \) be the hyperbolic paraboloid defined in the beginning of Section 2. To prove Theorem 1-2, we will use the following theorem due to Bourgain and Demeter.

Theorem 3-1 ([2, theorem 1-1]). Denote \(p_0 = 2(n + 1)/(n - 1)\). Fix \(\nu \in (\mathbb{R} \setminus \{0\})^{n-1}\).

If \(\text{supp}(\hat{f}) \subset N_\delta H_0^{n-1}\), then

\[
\|f\|_{L^p(\mathbb{R}^n)} \lesssim \epsilon \delta^{\frac{n}{m} - \frac{n-1}{m} - \epsilon} \left(\sum_{a \in \mathcal{M}_a} \|\Psi_a \ast f\|_{L^{p_0}(\mathbb{R}^n)} \right)^{\frac{1}{m}},
\]

for every \(\epsilon > 0\).

The role of Theorem 3-1 in the proof of Theorem 1-2 is similar to that of Theorem 2-1 in the proof of Theorem 1-1. However, in contrast with the proof of Theorem 1-1, we need a rescaled version of Theorem 3-1. This is because the exponent of \(\delta\) in (3-1) is not arbitrarily small, which requires us to carefully deal with the exponent of \(\delta\) there.
By performing simple rescaling argument to Theorem 3-1, we have the following proposition.

Proposition 3-2. Denote $p_0 = 2(n + 1)/(n - 1)$. Fix $v \in (\mathbb{R} \setminus 0)^n$ and $a, \alpha > 0$. If $\text{supp}(\hat{f}) \subset \mathcal{N}_{a^2 + a} H_v^{n-1} \cap \{ (\xi_1, \ldots, \xi_n) : |\xi_i| \leq \delta^\alpha \times \mathbb{R} \}$, then

$$
\| f \|_{L^{p_0}(\mathbb{R}^n)} \lesssim \epsilon^{\frac{1}{p_0}} \delta_a(\frac{1}{p_0} - \frac{n}{2})^{-\epsilon} \left(\sum_{a \in \mathcal{M}_{a^2 + a}} \| \Psi_a * f \|_{L^{p_0}(\mathbb{R}^n)} \right)^{\frac{1}{p_0}},
$$

for every $\epsilon > 0$.

Proof. We define the linear transform L by

$$
L(\xi_1, \ldots, \xi_{n-1}, \xi_n) = (\delta^\alpha \xi_1, \ldots, \delta^\alpha \xi_{n-1}, \delta^{2\alpha} \xi_n).
$$

Applying Theorem 3-1 to a function g satisfying $\hat{g} = \hat{f} \circ L$ gives

$$
\| g \|_{L^{p_0}(\mathbb{R}^n)} \lesssim \epsilon^{\frac{1}{p_0}} \delta_a(\frac{1}{p_0} - \frac{n}{2})^{-\epsilon} \left(\sum_{a \in \mathcal{M}_{a^2 + a}} \| \Psi_a * g \|_{L^{p_0}(\mathbb{R}^n)} \right)^{\frac{1}{p_0}}.
$$

Changing back to the original variables completes the proof.

The forthcoming proof of Theorem 1-2 is similar to the one in Section 2. As we did in Section 2, by interpolation, it suffices to consider only the endpoint $p_0 = 2(n + 1)/(n - 1)$.

3-1. In the first step of the proof, we will slice our surface into small pieces so that we can exploit local properties of the conical surface. By a linear transformation, we may assume that $L_0 = \mathbb{R}^d \times \{1\}$ and $C_1 = 1$.

Fix a small parameter $\epsilon > 0$. This ϵ is essentially the same as the one in the statement of Theorem 1-2. We may also assume that ϵ^{-1} is a natural number. We define a sliced surface \tilde{S} by

$$
\tilde{S} = S \cap (\mathbb{R}^n \times \{ \tau_1 : d \leq \tau_1 \leq d + 4\delta^{\epsilon/2} \})
$$

for some d. We will prove the decoupling for the sliced surface \tilde{S} first.

Proposition 3-3. If $\text{supp}(\hat{f}) \subset \mathcal{N}_{a} \tilde{S}$, then

$$
\| f \|_{L^{p_0}(\mathbb{R}^{n+1})} \lesssim \epsilon^{\frac{1}{p_0}} \delta_a^{\frac{2}{p_0} - \frac{n}{2} - \epsilon} \left(\sum_{a \in \mathcal{M}_{a}} \| \Psi_a * f \|_{L^{p_0}(\mathbb{R}^{n+1})} \right)^{\frac{1}{p_0}}.
$$

The desired decoupling inequalities for the surface S can be deduced from Proposition 3-3. This can be shown by using arguments in Subsection 2-1. This is very similar to the argument in Subsection 2-1. As before, let $\{ \hat{\psi}_j \}_{j \in \mathbb{Z}}$ be a partition of unity of \mathbb{R} such that

$$
\| \psi_j \|_{L^1(\mathbb{R})} \sim 1 \text{ and supp}(\hat{\psi}_j) \subset [(j - 2)\delta^{\epsilon/2}, (j + 2)\delta^{\epsilon/2}].
$$

For each $j_1 \in \mathbb{Z}$, we define

$$
f_{j_1}(x, t) = \int_{\mathbb{R}^n \times \mathbb{R}} \hat{\psi}_{j_1}(\tau_1) \hat{f}(\zeta, \tau_1) e^{2\pi i (x \cdot \xi + t \tau_1)} d\xi d\tau_1.
$$

Since $|\{j_1 \in \mathbb{Z} : f_{j_1} \neq 0\}| = O(\delta^{-\epsilon/2})$. Hence, by the triangle inequality

$$
\| f \|_{L^{p_0}(\mathbb{R}^{n+1})} \lesssim \delta^{\epsilon/2} \max_{j_1 \in \mathbb{Z}} \| f_{j_1} \|_{L^{p_0}(\mathbb{R}^{n+1})}.
$$
By Proposition 3-3 and Young’s inequality, the last expression can be further bounded by

$$
\delta^{-2\epsilon} \max_{j_1 \in \mathbb{R}} \left(\sum_{a \in \mathcal{M}_3} \| \Xi_a \ast f j_1 \|_{L^p_0(\mathbb{R}^{n+1})}^2 \right)^{\frac{1}{4}} \lesssim \delta^{-2\epsilon} \left(\sum_{a \in \mathcal{M}_3} \| \Xi_a \ast f \|_{L^p_0(\mathbb{R}^{n+1})}^2 \right)^{\frac{1}{4}}.
$$

Hence, what remains is to show Proposition 3-3.

3.2. We will deduce Proposition 3-3 from the following proposition.

Proposition 3-4. Fix $\mu > 0$ such that $2\mu + \epsilon/2 \leq 1$ and $\mu \geq \epsilon/2$. Let $a \in \mathcal{M}_{\delta^p}$. If $\text{supp}(\hat{f}) \subset \mathcal{N}_0S$, then

$$
\| \Xi_a \ast f \|_{L^p_0(\mathbb{R}^{n+1})} \lesssim_{\epsilon} \delta^{\frac{\mu}{\mu_0} - \frac{\mu_1}{2} - \epsilon} \left(\sum_{b \in \mathcal{M}_{2\mu + \epsilon/2}} \| \Xi_b \ast f \|_{L^p_0(\mathbb{R}^{n+1})}^2 \right)^{\frac{1}{2}}.
$$

Proposition 3-3 can be deduced from Proposition 3-4 by arguments in Subsection 2.2. As we pointed out before, this argument traces back to Pramanik and Seeger [7]. We postpone the proof of Proposition 3-4 to the next subsection, and continue by

Proof of Proposition 3-3. To apply Proposition 3-4, we slice the frequency part by Hölder’s inequality:

$$
\| f \|_{p_0} \lesssim \delta^{-C\epsilon} \left(\sum_{a \in \mathcal{M}_{\delta^p}} \| \Xi_a \ast f \|_{p_0}^2 \right)^{\frac{1}{2}},
$$

for some large constant $C > 0$. Next, by applying Proposition 3-4 with $\mu = \epsilon/2$, the last expression can be further bounded by

$$
\delta^{-C\epsilon} \delta^{\frac{\mu}{\mu_0} - \frac{\mu_1}{2} - \epsilon} \left(\sum_{a \in \mathcal{M}_{\delta^p}} \sum_{b \in \mathcal{M}_{\delta^p/2}} \| \Xi_a \ast \Xi_b \ast f \|_{p_0}^2 \right)^{\frac{1}{2}} \lesssim \delta^{-C\epsilon} \delta^{\frac{\mu}{\mu_0} - \frac{\mu_1}{2} - \epsilon} \left(\sum_{b \in \mathcal{M}_{\delta^p/2}} \| \Xi_b \ast f \|_{p_0}^2 \right)^{\frac{1}{2}}.
$$

The last inequality follows from

$$
|\{a \in \mathcal{M}_{\delta^p} : \Pi_{a,\delta^p} \cap \Pi_{\delta^p/2} \cap \mathcal{N}_0S \neq \emptyset\}| = O(1),
$$

which further follows from Assumption A_3 and Assumption A_4. Repeatedly apply Proposition 3-4 with $\mu = \mu_l = \epsilon/4$ starting with $l = 3$ until $l = 2/\epsilon - 1$. In the end we have

$$
\| f \|_{p_0} \lesssim_{\epsilon} \delta^{-C\epsilon} \delta^{\frac{\mu}{\mu_0} - \frac{\mu_1}{2} - \epsilon} \left(\sum_{a \in \mathcal{M}_{\delta^p}} \| \Xi_a \ast f \|_{p_0}^2 \right)^{\frac{1}{2}}.
$$

This finishes the proof of Proposition 3-3.

3.3. In this subsection, we will deduce Proposition 3-4 from Proposition 3-2. To do this, we will just follow the arguments used in Subsection 2.3. Let $B \subset \mathbb{R}^{n+1}$ be a ball of radius...
\(r_B := \delta^{-(2\mu+\frac{1}{2})} \), centered at \(c_B \). Let \(C \) be a large constant. Define a weight \(w_B \) associated with the ball \(B \) by \((1 + \cdots - c_B/r_B)^{-C} \). To prove Proposition 3.4, by a simple localisation argument, it suffices to prove

\[
\| \Xi_a * f \|_{L^p_0(w_B)} \lesssim \epsilon \delta^{-\frac{2\mu}{p_0} + \frac{\epsilon}{2}} \left(\sum_{b \in M_{\rho \delta^{p_0} + \epsilon/2}} \| \Xi_a * \Xi_b * f \|_{L^p_0(w_B)} \right)^{\frac{1}{p_0}}. \tag{3.2}
\]

Under certain linear transformation, we may assume that \(a = (0, \ldots, 0, 1) \) and \(S_0 \) is represented as the graph of a smooth function \(G \) with \(G(0) = 0 \) and \(\nabla G(0) = (0, \ldots, 0) \in \mathbb{R}^{n-1} \). Hence, w.l.o.g. we may assume that the conical surface \(\tilde{S} \cap \Pi_{a, \rho} \) is given by

\[
\{(1 + \theta)(\xi', G(\xi'), 1) \in \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R} : |\xi'| \lesssim \delta^{\mu}, 0 \leq \theta \leq \delta^{\frac{\epsilon}{2}} \}. \tag{3.3}
\]

We claim that this surface is contained in the \(\delta^{2\mu+\epsilon/2} \)-neighbourhood of the following cylinder

\[
\{(\xi', G(\xi')) : |\xi'| \lesssim \delta^\mu \} \times \mathbb{R}. \tag{3.4}
\]

To see this, we take any point in (3.3), and we write it as

\[
((1 + \theta) \xi', (1 + \theta) G(\xi'), 1 + \theta).
\]

We calculate its distance with the point from the cylinder (3.4). This amounts to proving

\[
|(1 + \theta) G(\xi') - G((1 + \theta) \xi')| \lesssim \delta^{2\mu+\frac{\epsilon}{2}},
\]

which follows directly from Taylor’s formula.

So far we have verified that the conical surfaces (3.3) lies in a \(\delta^{2\mu+\epsilon/2} \)-neighbourhood of the cylinder (3.4). Hence to prove the localised decoupling inequality (3.2), by the uncertainty principle, it is the same as proving a corresponding decoupling inequality associated with the cylinder (3.4), which further follows from Proposition 3.2 and Fubini’s theorem. This finishes the proof of Proposition 3.4.

Acknowledgments. The first author would like to thank Ciprian Demeter for helpful discussions. The second author would like to thank his advisor, Jong–Guk Bak, for suggesting this research topic and for many valuable discussions.

REFERENCES

[1] J. BOURGAIN and C. DEMETER. The proof of the \(l^2 \) decoupling conjecture. Ann. of Math. 182 (2015), no. 1, 351–389.
[2] J. BOURGAIN and C. DEMETER. Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math. 133(1) (2017), 279–311.
[3] G. GARRIGÓS and A. SEEGER. On plate decompositions of cone multipliers. Proc. Edinb. Math. Soc. 52 (2009), no. 3, 631–651.
[4] G. GARRIGÓS and A. SEEGER. A mixed norm variant of Wolff’s inequality for paraboloids. Harmonic analysis and partial differential equations. Contemp. Math. 505 (Amer. Math. Soc., Providence, RI, 2010), 179–197.
[5] I. ŁABA and M. PRAMANIK. Wolff’s inequality for hypersurfaces. Collect. Math. Extra(Vol. Extra) (2006), 293–326.
[6] I. Łaba and T. Wolff. A local smoothing estimate in higher dimensions. *J. Anal. Math.* 88 (2002), 149–171.

[7] M. Pramanik and A. Seeger. L^p regularity of averages over curves and bounds for associated maximal operators. *Amer. J. Math.* 129 (2007), no. 1, 61–103.

[8] T. Wolff. Local smoothing type estimates on L^p for large p. *Geom. Funct. Anal.* 10 (2000), no. 5, 1237–1288.