Real power loss reduction by dolphin swarm algorithm

Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

Article Info

Article history:
Received Apr 29, 2019
Revised Aug 20, 2019
Accepted Nov 2, 2019

Keywords:
Optimal reactive power
Transmission loss
Spinner dolphin

ABSTRACT

In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. Dolphins have numerous remarkable natural distinctiveness and living behavior such as echolocation, information interactions, collaboration, and partition of labor. Merging these natural distinctiveness and living behavior with swarm intelligence has been modeled to solve the reactive power problem. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Kanagasabai Lenin,
Department of EEE,
Prasad V. Potluri Siddhartha Institute of Technology,
Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007, India.
Email: gklenin@gmail.com

1. INTRODUCTION

Reactive power problem plays a key role in secure and economic operations of power system. Optimal reactive power problem has been solved by variety of types of methods [1-6]. Nevertheless, numerous scientific difficulties are found while solving problem due to an assortment of constraints. Evolutionary techniques [7-16] are applied to solve the reactive power problem, but the main problem is many algorithms get stuck in local optimal solution & failed to balance the Exploration & Exploitation during the search of global solution. In this work Spinner Dolphin Swarm Algorithm (SDSA) has been applied to solve the optimal reactive power problem. The whole process of dolphin’s predation consists of three stages. In the primary phase, every dolphin separately takes benefit of sounds to explore for close by preys and to assess the nearby environment using echoes. In the second phase, dolphins swap their information. When dolphins received information then it moves towards the prey and it has been surrounded by other dolphins. In the final phase, the prey is encircled by the dolphins to consume the food; it indicates that predation is accomplished. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

2. PROBLEM FORMULATION

Objective of the problem is to reduce the true power loss

\[F = P_L = \sum_{k=\text{Nbr}} g_k (V_i^2 + V_j^2 - 2V_iV_j\cos\theta_{ij}) \] \hspace{1cm} (1)

Voltage deviation given as follows

Journal homepage: http://iaescore.com/online/index.php/IJAAS
\[F = P_L + \omega \times \text{Voltage Deviation} \quad (2) \]

Voltage deviation given by

\[\text{Voltage Deviation} = \sum_{i=1}^{N_q} |V_i - 1| \quad (3) \]

Constraint (Equality)

\[P_G = P_D + P_L \quad (4) \]

Constraints (Inequality)

\[P_{\text{min}} \leq P_{\text{g slack}} \leq P_{\text{max}} \quad (5) \]

\[Q_{\text{gl}} \leq Q_{\text{g}} \leq Q_{\text{gl}}^{\text{max}}, \quad i \in N_g \quad (6) \]

\[V_i \leq V_\text{max}, \quad i \in N \quad (7) \]

\[T_i \leq T_\text{max}, \quad i \in N_T \quad (8) \]

\[Q_c \leq Q_c^{\text{max}}, \quad i \in N_C \quad (9) \]

3. SPINNER DOLPHIN SWARM ALGORITHM

Spinner Dolphin Swarm Algorithm (SDSA) is employed primarily by replicating the natural features and living behaviour by a dolphin. In this work \(\text{DOLPHIN}_i = [x_1, x_2, \ldots, x_D]^T i = (1, 2, \ldots, N) \), where \(N \) is the number of dolphins and \(x_j(j = 1, 2, \ldots, D) \) component to be optimized [17].

Individual optimal solution (indicated as L) and neighbourhood optimal solution (indicated as K) are two variables connected with the dolphin. For each \(\text{DOI}_i \) (\(i = 1, 2, \ldots, N \)), there are two corresponding variables \(L_i \) and \(K_i \), where \(L_i \) symbolize the optimal solution that \(\text{DOI}_i \) finds in a distinct time and \(K_i \) the optimal solution of what \(\text{DOI}_i \) locate by itself.

In the proposed algorithm, there are three types of distances are utilized as in sum. The primary is the distance between \(\text{DOI}_i \) and \(\text{DOI}_j \) named \(DD_{i,j} \), which is designed as follows

\[DD_{i,j} = \| \text{DOI}_i - \text{DOI}_j \| \quad i, j = 1, 2, \ldots, N, \ i \neq j \quad (10) \]

\[DK_i = \| \text{DOI}_i - K_i \| \quad i = 1, 2, \ldots, N \quad (11) \]

\[DKL_i = \| L_i - K_i \| \quad i = 1, 2, \ldots, N \quad (12) \]

In exploration phase, every dolphin explores its close proximity area by creation of sounds towards \(M \) arbitrary directions

\[X_{ijt} = \text{DOI}_i + V_j t \quad (13) \]

Fitness value is computed as follows,

\[E_{ijt} = \text{Fitness value (xjt)} \quad (14) \]

When,

\[E_{iab} = \text{Minimum}_{j=1,2,\ldots;M; t=1,2,\ldots,T} E_{ijt} \]

\[= \text{Minimum}_{j=1,2,\ldots;M; t=1,2,\ldots,T} \text{Fitness value (xjt)} \quad (15) \]

Individual solution is determined by

\[L_i = X_{iab} \quad (16) \]
Transmission time matrix TS will be modernized as follows

\[TS_{ij} > \frac{DD_{ij}}{A_{speed}} \]

Modernized by

\[TS_{ij} = \frac{DD_{ij}}{A_{speed}} \]

Search radius is represented by

\[R_1 = T_1 \times \text{speed} \]
\[DK_i \leq R_1 \]

Encircling radius can be computed by

\[R_2 = \left(1 - \frac{2}{e}\right)DK_i, e > 2 \]

\[\text{New DOI}_i = K_i + \frac{DOI_i - K_i}{DK_i} R_2 \]

Updated value known by

\[DK_i > R_1 \]
\[DK_i \geq DK_i \]

The encircling radius \(R_2 \) can be computed as follows

\[R_2 = \left[1 - \frac{DK_i}{\text{Fitness value (K)}} \right] \frac{DK_i - DK_i}{eDK_i \text{Fitness value (K)}} \]

\[R_2 = \left[1 - \frac{DK_i}{\text{Fitness value (K)}} \right] \frac{DK_i - DK_i}{eDK_i \text{Fitness value (K)}} \]

New-fangled positions of \(\text{New DOI}_i \) after obtaining the encircling radius,

\[\text{New DOI}_i = K_i + \frac{\text{random}}{||\text{random}||} R_2 \]
\[DK_i < DK_i \]

For new position the fitness value can be calculated by,

\[\text{Fitness value (new DOI)}_i < \text{Fitness value } K_i \]

Step 1: initialize arbitrarily and consistently engender the preliminary of dolphin swarm \(\text{Dol} = \{\text{Dol}_1, \text{Dol}_2, \ldots, \text{Dol}_N\} \) in the D-dimensional space. Compute the fitness value for every dolphin, and acquire Fitness value, \(\{\text{Fitness value } k_1, \text{Fitness value } k_2, \ldots, \text{Fitness value } k_N\} \).

Step 2: commencement of loop
While the stop condition is not satisfied do

\[\text{Real power loss reduction by dolphin swarm algorithm (K. Lenin)} \]
Step 2.1: exploration phase

\[E_{ijt} = f\text{itness value} (DOI_i + V_j t) \]

Fitness value \(L = \{ \min \{ E_{ib} \}, \min \{ E_{2b} \}, \ldots, \min \{ E_{Nb} \} \} \)

\[\text{Fitness value}_{K,i} = \begin{cases} \\text{Fitness value}_{L,i} \text{ if fitness value }_{L,i} < \text{fitness value }_{K,i} \\\text{Fitness value }_{K,i} \text{ otherwise} \end{cases} \]

Step 2.2: call phase

\[TS_{i,j} = \begin{cases} \frac{DD_{i,j}}{A\text{.speed}} \text{ if fitness value}_{K,j} < \text{fitness value}_{K,i} \text{ and } TS_{i,j} > \frac{DD_{i,j}}{A\text{.speed}} \\TS_{i,j} \text{ otherwise} \end{cases} \]

Step 2.3: reaction phase \(TS_{i,j} \) reduce one unit time

\[\text{Fitness value}_{K,i} = \begin{cases} \\text{Fitness value}_{K,i} \text{ if } TS_{i,j} = 0 \text{ and fitness value}_{K,j} < \text{fitness value}_{K,i} \\\text{Fitness value }_{K,i} \text{ otherwise} \end{cases} \]

Step 2.4: predation phase

Compute \(DK_i \) and \(DKL_i \) if \(DK_i \leq R_i \)

\[R_2 = (1 - \frac{2}{e}) DK_i, e > 2 \]

Else if \(DK_i \geq DKL_i \)

\[R_2 = \begin{cases} 1 - \frac{DK_i}{\text{Fitness value } (K_i)} & \text{Fitness value } (K_i) \text{ otherwise} \\
& e.DK_i(\text{Fitness value } (K_i)) \end{cases} \]

Else,

\[R_2 = \begin{cases} 1 - \frac{DK_i}{\text{Fitness value } (K_i)} & \text{Fitness value } (K_i) \text{ otherwise} \\
& e.DK_i(\text{Fitness value } (K_i)) \end{cases} \]

End if

\(DOI_i \) gets a new-fangled position, compute its fitness value, and modernize Fitness value_{K,i}

End While

Output the most excellent one of \(K_i \) \((i=1, 2, \ldots, N) \)

4. SIMULATION RESULTS

At first in standard IEEE 14 bus system the validity of the proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested & comparison results are presented in Table 1.

Control variables	ABCO [18]	IABCO [18]	SDSA
\(V1 \)	1.06	1.05	1.05
\(V2 \)	1.03	1.05	1.02
\(V3 \)	0.98	1.03	1.00
\(V6 \)	1.05	1.05	1.03
\(V8 \)	1.00	1.04	0.90
\(Q9 \)	0.139	0.132	0.100
\(T56 \)	0.979	0.960	0.900
\(T47 \)	0.950	0.950	0.900
\(T49 \)	1.014	1.007	1.000

\(P\text{loss (MW)} \)

5.92892 5.50031 4.0192

Table 1. Comparison results of the proposed spinner dolphin swarm algorithm
Then IEEE 300 bus system [19] is used as test system to validate the performance of the Spinner Dolphin Swarm Algorithm (SDSA). Table 2 shows the comparison of real power loss obtained after optimization.

Parameter	Method EGA [20]	Method EEA [20]	Method CSA [21]	SDSA
PLOSS (MW)	646.2998	650.6027	635.8942	613.1010

5. CONCLUSION

In this work Spinner Dolphin Swarm Algorithm (SDSA) has been successfully solved the optimal reactive power problem. The biological characteristics of spinner dolphin and its living behaviour have been imitated to model the algorithm; which are explore phase, call phase, reaction phase, and predation phase. Proposed Spinner Dolphin Swarm Algorithm (SDSA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss extensively.

REFERENCES

[1] K. Y. Lee, "Fuel-cost minimisation for both real and reactive-power dispatches," Proceedings Generation, Transmission and Distribution Conference, vol. 13(3), pp. 85-93, 1984.
[2] N. I. Deeb, "An efficient technique for reactive power dispatch using a revised linear programming approach," Electric Power System Research, vol. 15(2), pp. 121-134, 1998.
[3] M. R. Bjelogrlic, M. S. Calovic, and B. S. Babic, "Application of Newton’s optimal power flow in voltage/reactive power control," IEEE Trans Power System, vol. 5(4), pp. 1447-1454, 1990.
[4] S. Granville, "Optimal reactive dispatch through interior point methods," IEEE Transactions on Power System, vol. 9(1), pp. 136-146, 1994.
[5] N. Grudinin, "Reactive power optimization using successive quadratic programming method," IEEE Transactions on Power System, vol. 13(4), pp. 1219-1225, 1998.
[6] W. Yan, J. Yu, D. C. Yu, and K. Bhattachar, "A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method," IEEE Trans. Pwr. Syst., vol. 21(1), pp. 61-67, 2006.
[7] Aparajita Mukherjee and Vivekananda Mukherjee, "Solution of optimal reactive power dispatch by chaotic krill herd algorithm," IET Gener. Transm. Distrib., vol. 9(15), pp. 2351-2362, 2015.
[8] Z. Hu, X. Wang, and Taylor, "Stochastic optimal reactive power dispatch: Formulation and solution method," Electr. Power Energy Syst., vol. 32, pp. 615-621, 2010.
[9] M. A/P Morgan, N. Hasma Abdullah, M. Sulaiman, M. Mustafa, and R. Samad, "Multi-Objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Operator (AMO) Applied for Optimal Reactive Power Dispatch," ARPN Journal of Engineering and Applied Sciences, vol. 11(14), 2016.
[10] K. Pandiarajan and C. K. Babulal, "Fuzzy harmony search algorithm based optimal power flow for power system security enhancement," International Journal Electric Power Energy Syst., vol. 78, pp. 72-79, 2016.
[11] Mahaletechumi Morgan, et al., "Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Operator (AMO) and Polynomial Mutation Operator (PMO)," Journal of Electrical Systems, pp. 12-1, 2016.
[12] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, and Zuriani Mustaffa, "Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution," Journal of Electrical Systems, Special Issue AMPE2015, pp. 68-74, 2016.
[13] A. Gagliano and F. Nocera, "Analysis of the performances of electric energy storage in residential applications," International Journal of Heat and Technology, vol. 35(1), pp. S41-S48, 2017.
[14] M. Caldera, P. Ungaro, G. Cammarata, and G. Puglisi, "Survey-based analysis of the electrical energy demand in Italian households," Mathematical Modelling of Engineering Problems, vol. 5(3), pp. 217-224, 2018.
[15] A. Puris, R. Bello, D. Molina, and F. Herrera, Variable mesh optimization for continuous optimization problems. Soft, 2011.
[16] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization. Springer, 2006.
[17] A. Kaveh and N. Farhoudi, "A new optimization method: Dolphin echolocation," Advances in Engineering Software, vol. 59, pp. 53-70, 2013.
[18] Chandragupta Sivalingam, Subramanian Ramachandran, and Purvimma Rajamani, "Reactive power optimization in a power system Comput.," vol. 16, pp. 511-525.
[19] IEEE, "The IEEE-test systems," 1993. [Online] Available: http://www.ce.washington.edu/trsearch/pstca/
[20] S. S. Reddy, et al., "Faster evolutionary algorithm based optimal power flow using incremental variables," Electrical Power and Energy Systems, vol. 54, pp. 198-210, 2014.
[21] S. Surender Reddy, "Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm," International Journal of Electrical and Computer Engineering, vol. 7(5), pp. 2349-2356, 2017.