Supplement of

CAPRAM reduction towards an operational multiphase halogen and dimethyl sulfide chemistry treatment in the chemistry transport model COSMO-MUSCAT(5.04e)

Erik H. Hoffmann et al.

Correspondence to: Hartmut Herrmann (herrmann@tropos.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the summer simulations at 15° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S2 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the winter simulations at 15° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S3 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the summer simulations at 30° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S4 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the winter simulations at 30° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at rel. humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at rel. humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at rel. humidity of 90% and cloud occurrence at noon and midnight.
Figure S5 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the summer simulations at 45° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S6 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the winter simulations at 45° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S7 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the summer simulations at 60° latitude. Red: simulation at relative humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S8 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the winter simulations at 60° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S9 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the summer simulations at 75° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S10 Modelled concentration time-profile of key compounds within the pristine marine boundary layer for the winter simulations at 75° latitude. Red: simulation at rel. humidity of 50% (red). Orange: simulation at relative humidity of 70% and cloud occurrence at early morning and evening of the first model day. Dark green: simulation at relative humidity of 70% and cloud occurrence at noon and midnight. Blue: simulation at relative humidity of 90% and cloud occurrence at noon and midnight.
Figure S11 Modelled formation rate of DMSO in (a) the gas phase and (c) the aqueous phase together with the modelled oxidation rate in (b) the gas phase and (d) the aqueous phase in the ‘stable meteorological condition’ simulation with stratiform clouds after 12 hours of modelling time. The x-axis represents the innermost horizontal grid cells divided by 100. The black contour lines represent the simulated clouds. The black line corresponds to a liquid water content of 0.01 g m$^{-3}$ and the white line to 0.1 g m$^{-3}$. The area framed by the white line includes LWC above 0.1 g m$^{-3}$.

Figure S12 Simulated aqueous-phase concentration of bromide in the ‘stable meteorological condition’ simulation with stratiform clouds after 12 hours of modelling time. The x-axis represents the innermost horizontal grid cells divided by 100. The black contour lines represent the simulated clouds. The black line corresponds to a liquid water content of 0.01 g m$^{-3}$ and the white line to 0.1 g m$^{-3}$. The area framed by the white line includes LWC above 0.1 g m$^{-3}$. The initial background concentration is at about 16 ng m$^{-3}$.
Details on the dry deposition velocities are given in the previous CAPRAM studies Bräuer et al. (2013), Hoffmann et al. (2016) and Hoffmann et al. (2019a). Details on the initial concentrations and emission rates are given in Bräuer et al. (2013) and Hoffmann et al. (2016). In the term of I$_2$ and HOI, emission rates are derived from Prados-Roman et al. (2015). Aerosol initial concentrations are calculated from the SPACCIM simulations and were provided in the previous CAPRAM study Bräuer et al. (2013).

Specie	Dry deposition / s$^{-1}$	Initial concentration / molecules cm$^{-3}$	Emission rates / mol m$^{-2}$ s$^{-1}$	Aerosol initial concentration / mol m$^{-3}$
NH$_3$	$1.0\cdot10^{-2}$	$1.28\cdot10^{9}$	$7.589\cdot10^{-10}$	
NO	$2.0\cdot10^{-4}$	$2.50\cdot10^{8}$	$4.151\cdot10^{-12}$	
NO$_2$	$2.0\cdot10^{-4}$	$5.00\cdot10^{8}$		
NO$_3$	$1.0\cdot10^{-2}$			
N$_2$O$_5$	$1.0\cdot10^{-2}$			
HONO		$2.50\cdot10^{8}$		
HNO$_3$	$7.0\cdot10^{-3}$	$2.00\cdot10^{9}$		
HO$_2$NO$_2$	$5.0\cdot10^{-3}$			
O$_3$	$1.5\cdot10^{-3}$	$7.50\cdot10^{11}$		
CO	$1.0\cdot10^{-3}$	$4.25\cdot10^{12}$	$1.416\cdot10^{9}$	
CO$_2$		$1.02\cdot10^{16}$		
SO$_2$	$8.7\cdot10^{-3}$	$2.55\cdot10^{9}$		
SULF	$1.0\cdot10^{-2}$			
H$_2$		$1.28\cdot10^{13}$		
H$_2$O$_2$	$5.0\cdot10^{-3}$			
CH$_4$	$4.50\cdot10^{-13}$	$2.923\cdot10^{-11}$		
C$_2$H$_6$	$1.28\cdot10^{-10}$			
C$_2$H$_8$	$2.31\cdot10^{-10}$			
C$_3$H$_2$	$2.42\cdot10^{-9}$			
C$_3$H$_4$	$2.55\cdot10^{-9}$			
C$_3$H$_6$	$5.13\cdot10^{3}$	$9.083\cdot10^{11}$		
HYAC		$3.83\cdot10^{8}$		$4.151\cdot10^{-12}$
Specie	Dry deposition / s^{-1}	Initial concentration / molecules cm^{-3}	Emission rates / mol m^{-2} s^{-1}	Aerosol initial concentration / mol m^{-3}
------------	-------------------------	--	-----------------------------------	---
CH_3COCH_3		1.10\cdot 10^{10}		6.320\cdot 10^{-12}
MEK		6.89\cdot 10^{8}		7.124\cdot 10^{-16}
GLYOXAL		2.55\cdot 10^{8}		
CH_3COCHO		2.55\cdot 10^{8}		
CH_3OOH	2.5\cdot 10^{-3}	5.00\cdot 10^{9}		
CH_3CH_2OOH		2.55\cdot 10^{9}		
CH_3COOOH		2.55\cdot 10^{7}		
PAN	1.0\cdot 10^{-4}	2.50\cdot 10^{8}		
CH_3OH	1.0\cdot 10^{-2}	1.40\cdot 10^{10}		9.797\cdot 10^{-16}
CH_3CH_2OH		5.0\cdot 10^{-3}	2.00\cdot 10^{9}	1.015\cdot 10^{-11}
HCOOH	1.0\cdot 10^{-2}		6.25\cdot 10^{6}	
CH_3COOH	1.0\cdot 10^{-2}	5.00\cdot 10^{9}		1.278\cdot 10^{-12}
C_4H_8		1.28\cdot 10^{9}		2.341\cdot 10^{-12}
APIN		4.53\cdot 10^{8}		2.541\cdot 10^{-14}
BPIN		3.02\cdot 10^{8}		
CHBr_3		3.83\cdot 10^{7}		2.225\cdot 10^{-13}
C_6H_7I		1.63\cdot 10^{7}		8.170\cdot 10^{-15}
CH_2I		2.55\cdot 10^{6}		1.876\cdot 10^{-13}
CH_3I		2.04\cdot 10^{7}		2.458\cdot 10^{-13}
CH_2ClI		2.55\cdot 10^{6}		1.524\cdot 10^{-13}
CH_2BrI		8.93\cdot 10^{4}		8.751\cdot 10^{-14}
HCl	2.0\cdot 10^{-2}	2.50\cdot 10^{9}		
HOCl	2.0\cdot 10^{-3}			
ClNO_2	1.0\cdot 10^{-2}			
ClNO_3	1.0\cdot 10^{-2}			
HBr	2.0\cdot 10^{-2}			
HOBr	1.6\cdot 10^{-3}			
BrNO_2	1.0\cdot 10^{-2}			
BrNO_3	5.0\cdot 10^{-3}			
I_2				1.744\cdot 10^{-14}
HOI	1.0\cdot 10^{-2}			3.321\cdot 10^{-13}
Specie	Dry deposition / s⁻¹	Initial concentration / molecules cm⁻³	Emission rates / mol m⁻² s⁻¹	Aerosol initial concentration / mol m⁻³
--------------	----------------------	--	----------------------------	--
INO₃	1.0·10⁻²			
I₂O₂	1.0·10⁻²			
I₂O₃	1.0·10⁻²			
I₂O₄	1.0·10⁻²			
DMS		1.53·10⁹	1.026·10⁻¹⁰	
DMSO	5.0·10⁻³			
DMSO₂	5.0·10⁻³			
MSA	5.0·10⁻³			
SO₄²⁻				1.05·10⁻⁸
NO₃⁻				2.05·10⁻⁹
Cl⁻				9.76·10⁻⁸
Br⁻				2.14·10⁻⁹
NH₄⁺				5.72·10⁻⁹
Mn³⁺				3.93·10⁻¹⁵
Fe³⁺				4.80·10⁻¹⁵
Cu²⁺				1.72·10⁻¹³
H₂C₂O₄⁻				3.94·10⁻¹¹
MSA				3.26·10⁻¹⁰
H⁺				1.00·10⁻¹¹
Nr.	Reaction	Rate constant$^{(a)}$	Reference	
-----	----------	-----------------------	-----------	
D1	DMS + OH \rightarrow CH$_3$SCH$_2$O$_2$ - O$_2$	$k = 1.12 \cdot 10^{-11} \exp(-250/T)$	IUPAC, Atkinson et al. (2004)	
D2	DMS + OH \rightarrow 0.9 DMSO + 0.9 HO$_2$ + 0.1 CH$_3$SOH + 0.1 CH$_3$O$_2$ - O$_2$	$k = 1.90 \cdot 10^{-13} \exp(520/T)$	see description at the table end	
D3	DMS + NO$_1$ \rightarrow CH$_3$SCH$_2$O$_2$ - O$_2$	$k = 5.00 \cdot 10^{-13} \exp(400/T)$	IUPAC, Atkinson et al. (2004)	
D4	DMS + Cl$_2$ \rightarrow 0.82 CH$_3$SCH$_2$O$_2$ + 0.82 HCl + 0.18 DMSO + 0.18 ClO + O$_2$	$k = 1.88 \cdot 10^{-10}$	IUPAC, Urbanski and Wine (1999)	
D5	DMS + ClO \rightarrow 0.73 Cl + 0.73 DMSO + 0.27 HClO + 0.27 CH$_3$SCH$_2$O$_2$ - 0.27 O$_2$	$k = 1.70 \cdot 10^{-15} \exp(340/T)$	IUPAC	
D6	DMS + BrO \rightarrow DMSO + Br	$k = 1.50 \cdot 10^{-14} \exp(1000/T)$	IUPAC	
D7	DMS + Cl$_2$ \rightarrow CH$_3$S\timesCl + HCl	$k = 3.40 \cdot 10^{-14}$	Dyke et al. (2005)	
D8	DMS + IO \rightarrow DMSO + I	$k = 3.30 \cdot 10^{-13} \exp(-925/T)$	IUPAC	
D9	CH$_3$SCH$_2$O$_2$ + HO$_2$ \rightarrow CH$_3$SCH$_2$OOH + O$_2$	$k = 9.00 \times 10^{-13}$	MCMv3.2, Rickard et al. (21.10.2013)	
D10	CH$_3$SCH$_2$O$_2$ + NO \rightarrow CH$_3$S + HCHO + NO$_2$	$k = 4.90 \cdot 10^{-12} \exp(260/T)$	MCMv3.2, Rickard et al. (21.10.2013)	
D11	CH$_3$SCH$_2$O$_2$ + NO$_3$ \rightarrow CH$_3$S + HCHO + NO$_2$ + O$_2$	$k = 2.30 \cdot 10^{-12}$	MCMv3.2, Rickard et al. (21.10.2013)	
D12	CH$_3$SCH$_2$O$_2$ + CH$_2$O$_2$ \rightarrow 0.89 CH$_3$S + 0.89 HCHO + 0.11 CH$_3$SCHO + O$_2$	$k = 5.00 \cdot 10^{-13} \exp(400/T)$	In accordance to MCMv3.2 RO$_2$ reaction	
D13	CH$_3$SCH$_2$Cl + OH \rightarrow CH$_3$SOH + ClCH$_2$O$_2$ - O$_2$	$k = 2.50 \cdot 10^{-12}$	Shallcross et al. (2006)	
D14	CH$_3$SCH$_2$O + OH \rightarrow CH$_3$SCHO + OH + H$_2$O	$k = 7.03 \cdot 10^{-11}$	MCMv3.2, Rickard et al. (21.10.2013)	
D15	CH$_3$SCHO + OH \rightarrow CH$_3$S + CO + H$_2$O	$k = 1.11 \cdot 10^{-11}$	MCMv3.2, Rickard et al. (21.10.2013)	
D16	DMSO + OH \rightarrow MSIA + CH$_3$O$_2$ - O$_2$	$k = 6.10 \cdot 10^{-12} \exp(800/T)$	MCMv3.2, Rickard et al. (21.10.2013)	
D17	DMSO + NO$_3$ \rightarrow DMSO$_2$ + NO$_2$	$k = 2.90 \cdot 10^{-13}$	Sander et al. (2006)	
D18	DMSO + Cl \rightarrow 0.43 DM$_2$SO + 0.43 CIO + 0.57 CH$_3$SO + 0.57 HCHO + 0.57 HCl - 0.43 O$_2$	$k = 1.45 \cdot 10^{-11}$	Falbe-Hansen et al. (2000); Nicovich et al. (2006); Kleissas et al. (2007)	
D19	DMSO + BrO \rightarrow CH$_3$SO\timesCH$_3$ + Br	$k = 1.00 \cdot 10^{-14}$	Ballesteros et al. (2002)	
D20	CH$_3$SOH + OH \rightarrow CH$_3$SO + H$_2$O	$k = 4.00 \cdot 10^{-13}$	Lucas and Prinn (2002a)	
D21	CH$_3$S + O$_3$ \rightarrow CH$_3$SO + O$_2$	$k = 1.15 \cdot 10^{-12} \exp(430/T)$	see description at the table end	
D22	CH$_3$S + O$_2$ \rightarrow CH$_3$O$_2$ + SO$_2$ - O$_2$	$k = 9.00 \cdot 10^{-11}$	see description at the table end	
D23	CH$_3$S + O$_2$ \rightarrow CH$_3$SO	$k = 4.00 \cdot 10^{-13}$	MCMv3.2, Rickard et al. (21.10.2013)	
D24	MSIA + OH \rightarrow CH$_3$O$_2$ + SO$_2$ + H$_2$O - O$_2$	$k = 3.00 \cdot 10^{-13}$	MCMv3.2, Rickard et al. (21.10.2013)	
Table S3 Implemented phase transfers in the CAPRAM-DM1.0red

Species	K_T (298 K)	$\Delta H / R$	Reference	α	Reference	D_g (298 K)	Reference
D33© DMS	0.56	4480	Campolongo et al. (1999)	0.001	Zhu et al. (2006)	1.08·10⁻⁵	Fuller et al. (1966)
D34© DMSO	1.00·10⁷	2580	Campolongo et al. (1999)	0.1	De Bruyn et al. (1994)	1.01·10⁻⁵	Fuller et al. (1966)
D35© DMSO₂	1.00·10⁷	5390	Campolongo et al. (1999)	0.1	De Bruyn et al. (1994)	9.55·10⁻⁶	Fuller et al. (1966)
D36© MSA	1.00·10⁸	1760	between DMSO₂ and MSA	0.1	as for MSAa	1.11·10⁻⁵	Fuller et al. (1966)
D37© MSA	5.09·10¹³	1760	Campolongo et al. (1999)	0.1	De Bruyn et al. (1994)	1.04·10⁻⁵	Fuller et al. (1966)

(a) in M atm⁻¹; (b) in K; (c) in m² s⁻¹
Table S4 Implemented aqueous-phase reactions in the CAPRAM-DM1.0red

Nr.	Reaction	Rate constant(a)	Reference
D38	DMS + O3 → DMSO + O2	k = 8.61·10^{08}\exp(-2600/T)	Gershenzon et al. (2001)
D39	DMSO + OH → MSIA + CH3	k = 6.65·10^{09}\exp(-1270/T)	Zhu et al. (2003a)
D40②	DMSO + SO4^− → MSIA + CH3 + H^+ + SO4^2−	k = 2.97·10^{09}\exp(-1440/T)	Zhu et al. (2003b)
D41②	DMSO + HCl → MSIA + CH3 + H^− + Cl^−	k = 1.60·10^{07}	Zhu (2004)
D42②	MSIA + O3 → MSA + O2	k = 3.50·10^{07}	Herrmann and Zellner (1997)
D43	MSI^− + OH → CH3 + 0.135 SO2 + 0.765 MS^− + 0.765 SO3 - 0.765 MS^− + 0.9 OH^- + 0.1 HSO^-	k = 1.20·10^{−10}	Bardouki et al. (2002)
D44②	MSI^− + Cl2^- → CH3 + 0.15 SO2 + 0.85 MS^− + 0.85 SO3 - 0.85 MS^− + 2 Cl^-	k = 8.00·10^{−08}	Zhu et al. (2005)
D45②	MSI^− + O3 → CH3SO3^- + O2	k = 2.00·10^{−06}	Flyunt et al. (2001)
D46	MS^− + OH → HCHO + SO3^- + H2O - 0.5 O2	k = 1.29·10^{−07}\exp(-2630/T)	Zhu et al. (2003a)
D47②	MS^− + Cl2^- → CH3 + SO3^- + 2 Cl^-	k = 3.89·10^{−03}	Zhu (2004)

(a) k^{2nd} in l^3 mol^{-1} s^{-1}

Table S5 Implemented aqueous-phase equilibria in the CAPRAM-DM1.0red

Equilibrium	K^{(a)}	k_f, 298(b)	E_A/R^{(c)}	k_b, 298(b)	E_A/R^{(c)}	Reference
D48②	MSIA ⇌ MSI^− + H^+	5.0·10^{−03}	2.50·10^{06}	5.00·10^{10}	5.00·10^{10}	Wudl et al. (1967)
D49②	MSA ⇌ MS^− + H^+	73	3.65·10^{13}	5.00·10^{10}	5.00·10^{10}	Clarke and Woodward (1966)

(a) in M^{m-n}, n order of reaction of forward reaction, m order of reaction of backward reaction; (b) k^{2nd} in l^3 mol^{-1} s^{-1}, k^{1st} in s^{-1}; (c) in K

19
Table S6 Implemented gas-phase reactions in the CAPRAM-HM3.0red

Nr.	Reaction	Rate constant(a)	Comment
H1	Cl + O₃ → ClO	k = 2.80·10⁻¹¹ exp(-250/T)	Atkinson et al. (2007)
H2	ClO + HO₂ → HOCl	k = 2.20·10⁻¹² exp(340/T)	Atkinson et al. (2007)
H3	HCl + OH → Cl	k = 1.70·10⁻¹² exp(-230/T)	Atkinson et al. (2007)
H4	ClO + NO → Cl + NO₂	k = 6.20·10⁻¹² exp(295/T)	Atkinson et al. (2007)
H5	Cl + NO₂ → CINO₂	k = [M]*2.75·10⁻⁶ exp(11438/T)	Anderson and Fahey (1990)
H6	ClO + NO₂ → CINO₃	k = 6.60·10⁻¹² exp(-1240/T)	IUPAC, Atkinson et al. (2006)
H7	ClNO₃ → ClO + NO₂	k = 8.30·10⁻¹¹ exp(-100/T)	IUPAC, Atkinson et al. (2006)
H8	Cl + CH₄ → CH₂O₂ + HCl	k = 1.40·10⁻¹⁰	IUPAC, Atkinson et al. (2006)
H9	Cl + C₂H₆ → C₂H₅O₂ + HCl	k = 2.05·10⁻¹⁰	IUPAC, Atkinson et al. (2006)
H10	Cl + BIGALKANE → ALKO₂ + HCl	k = 7.10·10⁻¹¹ exp(-75/T)	IUPAC, Atkinson et al. (2006)
H11	Cl + CH₂OH → HCHO + HO₂ + HCl	k = 6.05·10⁻¹¹ exp(155/T)	IUPAC, Atkinson et al. (2006)
H12	Cl + CH₂OH → HCHO + HO₂ + HCl	k = 5.90·10⁻¹¹	IUPAC, Atkinson et al. (2006)
H13	Cl + C₂H₅OH → 0.92 CH₃CHO + 0.92 HO₂ + 0.08 EO₂ + HCl	k = 7.20·10⁻¹¹ exp(525/T)	IUPAC, Atkinson et al. (2006)
H14	Cl + ALKOH → 1.25 MEK + HO₂ + HCl	k = 1.07·10⁻¹⁰	Wallington et al. (1989)
H15	Cl + CH₃OOH → HCl + 0.6 CH₂O₂ + 0.4 HCHO + 0.4 OH	k = 1.80·10⁻¹¹ exp(-600/T)	Burkholder et al. (2015)
H16	Cl + C₂H₅OOH → HCl + CH₃CHO + OH	k = 8.10·10⁻¹¹ exp(-34/T)	IUPAC, Atkinson et al. (2006)
H17	ClO + CH₂O₂ → Cl + O₂ + HCHO + HO₂	k = 8.00·10⁻¹¹	IUPAC, Atkinson et al. (2006)
H18	CL + CH₃CHO → HCl + CH₃CO₃	k = 1.30·10⁻¹⁰	IUPAC, Atkinson et al. (2006)
H19	Cl + HYAC → HCl + MGLY + HO₂	k = 5.70·10⁻¹¹	Orlando et al. (1999)
H20	Cl + CH₃COHO → HCl + CH₃CO₃ + CO	k = 4.80·10⁻¹¹	Green et al. (1990)
H21	Cl + GLYOX → HCl + 2.0 CO + HO₂	k = 3.80·10⁻¹¹	Niki et al. (1985)
H22	Cl + MEK → HCl + MEKO₂	k = 3.05·10⁻¹¹ exp(80/T)	IUPAC, Atkinson et al. (2006)
H23	Cl + MACR → 0.2 MACRO₂ + 0.8 CC(O)(O)(CCl)C=O + 0.2 HCl	k = 2.55·10⁻¹⁰	Rate constant average Canosa-Mas et al. (2001), Wang et al. (2002), Orlando et al. (2003) & Kaiser et al. (2010),
H24	CC(O)(O)(CCl)C=O + HO₂ → CH₂COC₂H₂Cl + CO + HO₂ + OH	k = 1.00·10⁻¹¹	Hasson et al. (2012)
H25	CC(O)(O)(CCl)C=O + NO → CH₂COC₂H₂Cl + CO + HO₂ + NO₂	k = 1.17·10⁻¹¹	Hsin and Elrod (2007)
Nr.	Reaction	Rate constant^(a)	Comment
-----	----------	-----------------------------	---------
H28	CC(O(O))(CCl)C=O + CH₃O₂ → CH₃COCH₂Cl + CO + HO₂ + HCHO	k = 1.00×10⁻¹²	Hasson et al. (2012)
H29	CC(O(O))(CCl)C=O + CH₃CO₂ → CH₃COCH₂Cl + CO + HO₂ + CH₂O₂	k = 1.00×10⁻¹¹	estimated
H30	OH + CC(OO)(CCl)C=O → CH₃COCH₂Cl + CO + OH	k = 3.77×10⁻¹¹	estimated
H31	Cl + MVK → CC(O(O))CCl	k = 2.10×10⁻¹⁰	Canosa-Mas et al. (2001)
H32	CC(=O)CCl + HO₂ → CC(=O)(OO)CCl	k = 1.82×10⁻¹² exp(1300/T)	MCMv3.2, Rickard et al. (21.10.2013)
H33	CC(=O)CCl + NO → ClCH₂CHO + NO₂ + CH₃CO₂	k = 2.70×10⁻¹² exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H34	CC(=O)CCl + NO₃ → ClCH₂CHO + NO₂ + CH₃CO₂	k = 2.30×10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H35	CC(=O)CCl + CH₂O₂ → ClCH₂CHO + CH₂CO₂ + HCHO	k = 1.00×10⁻¹²	estimated
H36	CC(=O)CCl + CH₂O₂ → ClCH₂CHO + CH₂CO₂ + CH₃O₂	k = 1.00×10⁻¹¹	estimated
H37	OH + CC(O(O))CCl → ClCH₂CHO + CH₂CO₂ + OH	k = 3.95×10⁻¹¹	after MVKOOH in MCMv3.2, Rickard et al. (21.10.2013)
H38	Cl + BIGALD1 → MALO₂ + HO₂ + HCl	k = 1.35×10⁻¹⁰	Martín et al. (2013)
H39	Cl + TOL → HCl + TOLO₂	k = 6.20×10⁻¹¹	Wang et al. (2005)
H40	Cl + XYL → HCl + XYLNO₂	k = 1.40×10⁻¹⁰	Wang et al. (2005)
H41	Cl + BZALD → HCl + ACBZO₂	k = 1.00×10⁻¹⁰	Thiault et al. (2002)
H42	Cl + GLYALD → HCl + HOCH₂CO₂	k = 7.00×10⁻¹¹	Niki et al. (1987)
H43	Cl + CH₂COCH₂ → HCl + CH₂COCH₂O₂	k = 3.20×10⁻¹¹ exp(-815/T)	Atkinson et al. (2006)
H44	Cl + C₂H₂ → 0.26 ClCHO + 0.21 Cl + 0.53 HCl + 0.21 GLYOXAL + 1.32 CO + 0.79 HO₂		TROE
H45	Cl + C₂H₄ → ClCH₂CH₂O₂		TROE
H46	ClCH₂CH₂O₂ + HO₂ → ClCH₂CH₂OOH	k = 3.30×10⁻¹³ exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H47	ClCH₂CH₂O₂ + NO → ClCH₂CHO + HO₂ + NO₂	k = 3.24×10⁻¹² exp(360/T)	Atkinson et al. (2008)
H48	ClCH₂CH₂O₂ + NO₃ → ClCH₂CHO + HO₂ + NO₂	k = 2.30×10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H49	ClCH₂CH₂O₂ + CH₂O₂ → ClCH₂CHO + 0.8 HCHO + 0.2 CH₂OH + 1.4 HO₂	k = 2.00×10⁻¹²	estimated
H50	ClCH₂CHO + NO → ClCH₂CO₂ + HNO₃	k = 1.40×10⁻¹² exp(-1860/T)	MCMv3.2, Rickard et al. (21.10.2013)
H51	ClCH₂CHO + OH → ClCH₂CO₂ + H₂O	k = 2.09×10⁻¹¹	Atkinson et al. (2008)
H52	ClCH₂CO₂ + HO₂ → 0.44 ClCH₂O₂ + 0.44 OH + 0.15 ClCH₂COOH + 0.15 O₃ + 0.41 ClCH₂(OOOH)	k = 5.20×10⁻¹³ exp(980/T)	MCMv3.2, Rickard et al. (21.10.2013)
H53	ClCH₂CO₂ + NO → ClCH₂O₂ + NO₂	k = 7.50×10⁻¹² exp(290/T)	MCMv3.2, Rickard et al. (21.10.2013)
H54	ClCH₂CO₂ + NO₂ → CIPAN	TROE	MCMv3.2, Rickard et al. (21.10.2013)
H55	ClCH₂CO₂ + NO₃ → ClCH₂O₂ + NO₂	k = 4.00×10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
Nr.	Reaction	Rate constant\(^{(a)}\)	Comment
-----	---	---------------------------	---
H56	CH₂CO₃ + CH₃O₂ → 0.7 ClCH₂O₂ + 0.3 ClCH₂COOH + 0.7 HO₂ + HCHO	k = 1.00·10⁻¹¹	estimated
H57	CH₂COOH + OH → ClCH₂O₂	k = 1.90·10⁻¹²exp(190/T)	MCMv3.2, Rickard et al. (21.10.2013)
H58	ClCH₂(O)OOH + OH → ClCH₂O₂	k = 4.29·10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H59	CIPAN + OH → CICH₂OH + CO + NO₂	k = 6.26·10⁻¹³	MCMv3.2, Rickard et al. (21.10.2013)
H60	CIPAN → ClCH₂CO₂ + NO₂	TROE	MCMv3.2, Rickard et al. (21.10.2013)
H61	ClCH₂O₂ + HO₂ → 0.3 ClCH₂OOH + 0.7 ClCHO	k = 3.20·10⁻¹⁵exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H62	ClCH₂O₂ + NO → CICH₂OH + HO₂ + NO₂	k = 4.05·10⁻¹²exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H63	ClCH₂O₂ + NO₁ → CICH₂OH + HO₂ + NO₂	k = 2.30·10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H64	ClCH₂O₂ + CH₃OH → 1.4 HO₂ + ClCHO + 0.8 HCHO + 0.2 CH₃OH	k = 2.50·10⁻¹²	estimated
H65	Cl + C₂H₆ → 0.4 CH₃CH(O)₂CH₂Cl + 0.5 CH₃CH(Cl)CH₂O₂ + 0.1 HYAC	k = 1.43·10⁻¹⁴exp(2886/T)	Atkinson et al. (2006)
H66	CH₃CH(O)₂CH₂Cl + NO → CH₃COCH₂Cl + HO₂ + NO₂	k = 2.70·10⁻¹²exp(360/T)	Atkinson et al. (2008)
H67	CH₃CH(Cl)CH₂O₂ + NO → CH₃CH(Cl)CHO + NO₂ + HO₂	k = 2.70·10⁻¹²exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H68	CH₃CH(O)₂CH₂Cl + CH₃O₂ → CH₃COCH₂Cl + 0.8 HCHO + 0.2 CH₃OH + 1.4 HO₂	k = 4.00·10⁻¹⁴	estimated
H69	CH₃CH(Cl)CH₂O₂ + CH₃OH → CH₃CH(Cl)CHO + 0.8 HCHO + 0.2 CH₃OH + 1.4 HO₂	k = 6.48·10⁻¹³	estimated
H70	CH₃COCH₂Cl + OH → CH₃COCHClO₂	k = 3.68·10⁻¹³	Atkinson et al. (2008)
H71	CH₃COCHClO₂ + HO₂ → CH₃COCHClOOH	k = 3.30·10⁻¹²exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H72	CH₃COCHClO₂ + NO → CICH₂OH + CH₃CO + NO₂	k = 2.70·10⁻¹²exp(360/T)	Atkinson et al. (2008)
H73	CH₃COCHClO₂ + NO₃ → CICH₂OH + CH₃CO + NO₂	k = 2.30·10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H74	CH₃COCHClO₂ + CH₃O₂ → CICH₂OH + CH₃CO + 0.8 HCHO + 0.2 CH₃OH + NO₂	k = 2.00·10⁻¹²	estimated
H75	CH₃COCHClOOH + OH → CH₃COCHClO₂	k = 8.34·10⁻¹²	MCMv3.2, Rickard et al. (21.10.2013)
H76	CICH₂OH + NO₃ → CO + Cl + HNO₃	k = 1.40·10⁻¹²exp(-1860/T)	Atkinson et al. (2008)
H77	CICH₂OH + OH → CO + Cl + H₂O	k = 6.12·10⁻¹²	Atkinson et al. (2008)
H78	CH₃CH(Cl)CHO + OH → CH₃CH(Cl)(C)(O)₂	k = 4.90·10⁻¹²exp(405/T)	MCMv3.2, Rickard et al. (21.10.2013)
H79	CH₃CH(Cl)CHO + NO₃ → CH₃CH(Cl)(C)(O)₂ + HNO₃	k = 3.24·10⁻¹²exp(-1860/T)	MCMv3.2, Rickard et al. (21.10.2013)
H80	CH₃CH(Cl)(C)(O)₂ + HO₂ → 0.15 CH₃CH(Cl)COOH + 0.15 O₃ + 0.41 CH₃CH(Cl)(C)(O)OOH + 0.44 CH₃CH(Cl)₂O₂ + 0.44 OH	k = 5.20·10⁻¹³exp(980/T)	MCMv3.2, Rickard et al. (21.10.2013)
H81	CH₃CH(Cl)(C)(O)₂ + NO → CH₃CH(Cl)₂O₂ + NO₂	k = 7.50·10⁻¹²exp(290/T)	MCMv3.2, Rickard et al. (21.10.2013)
H82	CH₃CH(Cl)CO₃ + NO₂ → CH₃CIPAN	TROE	MCMv3.2, Rickard et al. (21.10.2013)
Nr.	Reaction	Rate constant(a)	Comment
-----	--	---------------------------	--
H83	CH3CIPAN → CH3CH(Cl)CO3 + NO2	TROE	MCMv3.2, Rickard et al. (21.10.2013)
H84	CH3CH(Cl)(O)O2 + NO2 → CH3CH(Cl)O2 + NO2	k = 4.00·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H85	CH3CH(Cl)(C)(O)2 + CH3O2 → 0.3 CH3CH(Cl)COOH + 0.7 CH3CH(Cl)O2 + HCHO + HO2	k = 1.00·10^{-11}	estimated
H86	CC(Cl)(=O)OO + OH → CC(Cl)(=O)O[O]	k = 4.42·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H87	CH3CH(Cl)COOH + OH → CH3CH(Cl)O2	k = 1.20·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H88	CH3CH(Cl)O2 + NO2 → CH3CHO + Cl + NO2	k = 3.30·10^{-13}exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H89	CH3CH(Cl)O2 + NO → CH3CHO + Cl + NO2	k = 4.05·10^{-12}exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H90	CH3CH(Cl)O2 + NO2 → CH3CHO + Cl + NO2	k = 2.30·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H91	CH3CH(Cl)O2 + CH3O2 → 0.6 CH3CHO + 0.6 Cl + 0.4 CH3C(O)Cl + 0.8 HCHO + 0.2 CH3OH + 0.8 HO2	k = 2.65·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H92	CH3CH(Cl)OOH + OH → CH3CH(Cl)O2 + H2O	k = 1.90·10^{-12}exp(190/T)	MCMv3.2, Rickard et al. (21.10.2013)
H93	CH3CH(Cl)OOH + OH → CH3C(O)Cl + OH + H2O	k = 9.95·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H94	CH3C(O)Cl + OH → CICOCH2O2 + H2O	k = 3.88·10^{-14}	MCMv3.2, Rickard et al. (21.10.2013)
H95	CICOCH2O2 + HO2 → CICOCH3OOH	k = 3.30·10^{-13}exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H96	CICOCH2O2 + NO2 → HCHO + Cl + CO + NO2	k = 3.24·10^{-12}exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H97	CICOCH2O2 + NO3 → HCHO + Cl + CO + NO3	k = 2.30·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H98	CICOCH2O2 + CH3O2 → 2 HCHO + Cl + CO + HO2	k = 2.00·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H99	Br + O1 → BrO	k = 1.70·10^{-11}exp(-800/T)	Atkinson et al. (2007)
H100	BrO + HO2 → HOBr	k = 4.50·10^{-12}exp(-500/T)	Atkinson et al. (2007)
H101	BrO + BrO → 1.7 Br + 0.15 Br2	k = 1.60·10^{-12}exp(-210/T)	Atkinson et al. (2007)
H102	Br + NO2 → BrNO2	TROE	Atkinson et al. (2007)
H103	BrO + NO → Br + NO2	k = 8.70·10^{-12}exp(-260/T)	Atkinson et al. (2007)
H104	BrO + NO2 → BrNO3	TROE	Atkinson et al. (2007)
H105	BrNO3 → BrO + NO2	k = 2.79·10^{-3}exp(-12360/T)	Orlando and Tyndall (1996)
H106	Br + BrNO3 → Br2 + NO3	k = 4.90·10^{-11}	Orlando and Tyndall (1996)
H107	BrO + ClO → 0.95 Br + 0.5 OCIO + 0.45 Cl + 0.05 BrCl	k = 7.32·10^{-12}exp(-200/T)	Summation A-Factor Burkholder et al. (2015)
H108	BrO + CH3O2 → 0.25 Br + 0.25 HCHO + 0.25 HO2 + 0.75 HOB + 0.75 HCOOH	k = 4.10·10^{-13}exp(-800/T)	Bräuer et al. (2013)
H109	Br + CH3O2 → 0.17 BrCHO + 0.09 Br + 0.74 HBr + 0.09 GLYOXAL + 1.65 CO + 0.91 HO2	k = 6.35·10^{-15}exp(-440/T)	Atkinson et al. (2006)
Nr.	Reaction	Rate constant$^{(a)}$	Comment
-----	----------	-----------------------	---------
H110	Br + HCHO → HBr + CO + HO2	k = 1.70·10^{-13} exp(-800/T)	Sander et al. (2006)
H111	BrO + HCHO → HOBr + CO + HO2	k = 1.50·10^{-14}	Hansen et al. (1999)
H112	Br + CH₃CHO → HBr + CH₃CO₂	k = 1.80·10^{-11} exp(-460/T)	Atkinson et al. (2006)
H113	Br + C₂H₃CHO → HBr + 1.5 CH₂CO₂	k = 5.75·10^{-11} exp(-610/T)	Ramacher et al. (2000)
H114	Br + C₂H₄ → BrCH₂CH₂O₂	k = 2.25·10^{-12} exp(-277/T)	Atkinson et al. (2006)
H115	BrCH₂CH₂O₂ + NO → BrCH₂CHO + HO₂ + NO₂	k = 9.70·10^{-12}	Atkinson et al. (2008)
H116	BrCH₂CH₂O₂ + CH₃O₂ → BrCH₂CHO + 0.8 HCHO + 0.2 CH₃OH + 1.4 HO₂	k = 2.00·10^{-12}	Bräuer et al. (2013)
H117	BrCH₂CHO + OH → BrCH₂CO₂ + H₂O	k = 2.05·10^{-12}	Atkinson et al. (2008)
H118	BrCH₂CO₂ + HO₂ → 0.15 BrCH₂COOH + 0.15 O₃ + 0.41 BrCH₂C(O)OOH + 0.44 BrCH₂O₂ + 0.44 OH	k = 5.20·10^{-13} exp(980/T)	MCMv3.2, Rickard et al. (21.10.2013)
H119	BrCH₂CO₂ + NO → BrCH₂O₂ + NO₂	k = 7.50·10^{-12} exp(290/T)	MCMv3.2, Rickard et al. (21.10.2013)
H120	BrCH₂CO₂ + CH₃O₂ → 0.7 BrCH₂O₂ + 0.3 BrCH₂COOH + 0.7 HO₂ + HCHO	k = 1.00·10^{-11}	Bräuer et al. (2013)
H121	BrCH₂COOH + H₂O → BrCH₂O₂ + H₂O	k = 1.90·10^{-12} exp(190/T)	MCMv3.2, Rickard et al. (21.10.2013)
H122	BrCH₂C(O)OOH + OH → BrCH₂CO₂ + H₂O	k = 3.79·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H123	BrCH₂O₂ + HO₂ → BrCH₂OOH	k = 4.28·10^{-13} exp(820/T)	MCMv3.2, Rickard et al. (21.10.2013)
H124	BrCH₂O₂ + NO → BrCHO + HO₂ + NO₂	k = 4.05·10^{-12} exp(360/T)	MCMv3.2, Rickard et al. (21.10.2013)
H125	BrCH₂O₂ + NO → BrCHO + HO₂ + NO₂	k = 2.30·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H126	BrCH₂O₂ + CH₃O₂ → 1.4 HO₂ + BrCHO + 0.8 HCHO + 0.2 CH₃OH	k = 2.00·10^{-12}	Bräuer et al. (2013)
H127	BrCH₂OOH + OH → BrCH₂O₂ + H₂O	k = 1.90·10^{-12} exp(190/T)	MCMv3.2, Rickard et al. (21.10.2013)
H128	BrCH₂OOH + OH → BrCHO + OH + H₂O	k = 5.79·10^{-12}	MCMv3.2, Rickard et al. (21.10.2013)
H129	BrCHO + NO₂ → CO + Br + HNO₂	k = 1.40·10^{-12} exp(-1860/T)	Atkinson et al. (2008)
H130	BrCHO + OH → CO + Br + H₂O	k = 1.16·10^{-12}	Atkinson et al. (2008)
H131	Br + C₂H₆ → CH₂CH(OC₂H₃)Br	k = 3.60·10^{-12}	Atkinson et al. (2006)
H132	CH₃CH(OC₂H₅)CH₂Br + NO → CH₃COCH₂Br + HO₂ + NO₂	k = 2.70·10^{-12} exp(360/T)	Atkinson et al. (2008)
H133	CH₃CH(OC₂H₅)CH₂Br + CH₃O₂ → CH₃COCH₂Br + 0.8 HCHO + 0.2 CH₃OH + 1.4 HO₂	k = 4.00·10^{-14}	Bräuer et al. (2013)
H134	CH₃COCH₂Br + OH → CH₃COCH₂BrO₂	k = 8.80·10^{-12} exp(-1320/T)	Atkinson et al. (2008)
H135	CH₃COCH₂BrO₂ + NO → CH₃CO₂ + BrCHO + NO₂	k = 8.00·10^{-12}	Atkinson et al. (2008)
H136	CH₃COCH₂BrO₂ + CH₃O₂ → 0.4 CH₃COC(O)Br + 0.6 CH₃CO₂ + 0.6 BrCHO + 0.8 HO₂ + 0.8 HCHO + 0.2 CH₃OH	k = 2.00·10^{-12}	Bräuer et al. (2013)
Nr.	Reaction	Rate constant*(a)	Comment
-----	----------	-------------------	---------
H137	I + O₃ → IO	k = 2.10·10⁻¹¹ exp(-830/T)	Atkinson et al. (2007)
H138	I₂ + OH → I + HOI	k = 2.10·10⁻¹⁰	Atkinson et al. (2007)
H139	IO + HO₂ → HOI	k = 1.40·10⁻¹¹ exp(540/T)	Atkinson et al. (2007)
H140	IO + IO → 0.38 OIO + 0.46 IO₂ + 0.6 I + 0.05 I₂	k = 5.40·10⁻¹¹ exp(180/T)	Sander et al. (2006)
H141	OIO + OH → HIO₃	k = 2.20·10⁻¹⁰ exp(243/T)	von Glasow et al. (2002)
H142	IO + O₁ → 0.83 I + 0.17 OIO	k = 1.20·10⁻¹⁵	(Larin et al., 1999)
H143	IO + OIO → I₂O₃	k = 1.00·10⁻¹⁰	(Gómez Martin et al., 2007)
H144	I₂O₁ → IO + OIO	k = 2.78·10⁻¹¹	(Kaltsoyannis and Plane, 2008)
H145	OIO + OIO → I₂O₄	k = 1.00·10⁻¹⁰	(Saunders and Plane, 2005)
H146	I₂O₄ → OIO + OIO	k = 1.67·10⁻⁰⁰	(Kaltsoyannis and Plane, 2008)
H147	I₂ + O₁ → IO + I	k = 4.02·10⁻¹⁵ exp(-2050/T)	(Vikis and Macfarlane, 1985)
H148	I₂O₂ → 0.995 OIO + 0.995 I + 0.01 IO	k = 1.00·10⁻⁰¹	(Kaltsoyannis and Plane, 2008)
H149	I₂ + NO₁ → I + INO₃	k = 1.50·10⁻¹²	Atkinson et al. (2007)
H150	IO + NO → I + NO₂	k = 7.15·10⁻¹² exp(300/T)	Atkinson et al. (2007)
H151	IO + NO₂ → INO₂	k = 1.50·10⁻¹¹ exp(510/T)	Atkinson et al. (2007)
H152	INO₃ → IO + NO₂	k = [M]*4.40·10⁻⁰⁵ exp(12060/T)	Atkinson et al. (2007)
H153	IO + CH₂O → I + HO₂ + HCHO	k = 2.00·10⁻¹²	(Dillon et al., 2006)
H154	IO + ClO → 0.8 I + 0.55 OCIIO + 0.25 Cl + 0.2 ICl	k = 4.70·10⁻¹² exp(280/T)	Atkinson et al. (2007)
H155	IO + BrO → 0.8 OIO + Br + 0.2 I	k = 1.50·10⁻¹¹ exp(510/T)	Atkinson et al. (2007)

Photolysis reactions

Nr.	Reaction	Rate constant*(a)	Comment
H156	Cl₂ → Cl + Cl	J = 3.827·10⁰⁺ cos(χ)cos(0.54² cos(0.024 cos(χ)))	Bräuer et al. (2013)
H157	ClO → Cl + O(¹P)	J = 4.755·10⁰⁺ cos(χ)cos(0.588 cos(χ))	Bräuer et al. (2013)
H158	OCIO → ClO + O(³P)	J = 1.332·10⁻¹ cos(χ)exp(-0.244 cos(χ))	Bräuer et al. (2013)
H159	HOCl → Cl + OH	J = 4.615·10⁻⁰⁺ cos(χ)exp(-0.240 cos(χ))	Bräuer et al. (2013)
H160	CINO₂ → Cl + NO₂	J = 6.219·10⁻⁰⁺ cos(χ)exp(-0.255 cos(χ))	Bräuer et al. (2013)
H161	CINO₃ → Cl + NO₃	J = 6.420·10⁻⁰⁺ cos(χ)exp(-0.217 cos(χ))	Bräuer et al. (2013)
H162	CINO₃ → ClO + NO₂	J = 1.393·10⁻⁰⁺ cos(χ)exp(-0.243 cos(χ))	Bräuer et al. (2013)
H163	CC(=O)ClOCCl → CICH₂CHO + CH₂CO₃ + OH	J = 7.649·10⁻⁰⁺ cos(χ)exp(-0.279 cos(χ))	Bräuer et al. (2013)
H164	CICH₂CHO + HO₂ + OH	J = 7.649·10⁻⁰⁺ cos(χ)exp(-0.279 cos(χ))	Bräuer et al. (2013)
H165	CICH₂CHO → CICH₂O₂ + HO₂ + CO	J = 4.642·10⁻⁰⁺ cos(χ)exp(-0.353 cos(χ))	Bräuer et al. (2013)
Nr.	Reaction	Rate constant^(a)	Comment
-----	----------	-----------------------------	---------
H166	CH₂C(O)OOH → CH₂O₂ + OH	J = 7.649·10⁻⁶cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H167	CH₂OOH → CICHO + HO₂ + OH	J = 7.649·10⁻⁶cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H168	CH₃CH(O)CH₂Cl → CH₃O₂ + CHCl₂CO₂⁺	J = 5.804·10⁻⁶cos(χ)⁰·₁₀⁹exp(-0.377/cos(χ))	Bräuer et al. (2013)
H169	CH₃CH(O)CH₂OOH → CICHO + CH₂CO₂⁺ + OH	J = 7.649·10⁻⁶cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H170	CICCHO → HO₂ + CO + Cl	J = 4.642·10⁻⁶cos(χ)⁰·₇₆²exp(-0.353/cos(χ))	Bräuer et al. (2013)
H171	CH₃CH(Cl)CHO → CH₃CH(Cl)O₂ + HO₂ + CO	J = 2.879·10⁻⁶cos(χ)⁰·₁₀⁹exp(-0.358/cos(χ))	Bräuer et al. (2013)
H172	CH₃CH(Cl)OOH → CH₃CHO + Cl + OH	J = 7.649·10⁻⁶cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H173	CH₃C(O)Cl → CH₃CO + Cl	J = 5.804·10⁻⁶cos(χ)⁰·₁₀⁹exp(-0.377/cos(χ))	Bräuer et al. (2013)
H174	CICOCH₂OOH → ClCOCH₂O₂ + OH	J = 7.649·10⁻⁶cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H175	Br₂ → Br + Br	J = 4.773·10⁻⁷cos(χ)⁰·₁⁹⁹exp(-0.213/cos(χ))	Bräuer et al. (2013)
H176	BrO → Br + O(P)	J = 6.368·10⁻⁷cos(χ)⁰·₁⁶⁹exp(-0.269/cos(χ))	Bräuer et al. (2013)
H177	HOBr → Br + OH	J = 3.464·10⁻⁷cos(χ)⁰·₄⁴⁴exp(-0.214/cos(χ))	Bräuer et al. (2013)
H178	BrNO₂ → Br + NO₂	J = 7.443·10⁻⁷cos(χ)⁰·₃⁵⁵exp(-0.236/cos(χ))	Bräuer et al. (2013)
H179	BrNO₂ → 0.29 Br + 0.29 NO₃ + 0.71 BrO + 0.71 NO₂	J = 2.194·10⁻⁷cos(χ)⁰·₄⁹⁹exp(-0.215/cos(χ))	Bräuer et al. (2013)
H180	BrCl → Br + Cl	J = 1.650·10⁻⁷cos(χ)⁰·₂⁹⁷exp(-0.224/cos(χ))	Bräuer et al. (2013)
H181	BrCH₂CHO → BrCH₂O₂ + HO₂ + CO	J = 4.642·10⁻⁷cos(χ)⁰·₇₆²exp(-0.353/cos(χ))	Bräuer et al. (2013)
H182	BrCH₂C(O)OOH → BrCH₂O₂ + OH	J = 7.649·10⁻⁷cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H183	BrCH₂OOH → BrCHO + OH + HO₂	J = 7.649·10⁻⁷cos(χ)⁰·₆₈²exp(-0.279/cos(χ))	Bräuer et al. (2013)
H184	BrCHO → HO₂ + CO + Br	J = 4.642·10⁻⁷cos(χ)⁰·₇₆²exp(-0.353/cos(χ))	Bräuer et al. (2013)
H185	CH₃COCOHBr → 0.7 CO + 0.7 Br + 0.7 CH₃CO₂⁺ + 0.3 BrCH₂CO₂⁺ + 0.3 CH₃O₂⁺	J = 3.523·10⁻⁷cos(χ)⁰·₈₃₈exp(-0.283/cos(χ))	Bräuer et al. (2013)
H186	CH₃COC(O)Br → CO + Br + CH₂CO₂⁺	J = 1.853·10⁻⁷cos(χ)⁰·₅₈⁸exp(-0.225/cos(χ))	Bräuer et al. (2013)
H187	CHBr₃ → 3 Br + CO + HO₂	J = 2.228·10⁻⁷cos(χ)¹·₄⁷¹exp(-0.2³⁰/cos(χ))	Bräuer et al. (2013)
H188	I₂ → I + I	J = 2.165·10⁻⁶cos(χ)⁰·₁²²exp(-0.1₈⁵/cos(χ))	Bräuer et al. (2013)
H189	IO → I⁺ + O(P)	J = 2.640·10⁻⁶cos(χ)⁰·₂⁴⁹exp(-0.2₄⁰/cos(χ))	Bräuer et al. (2013)
H190	OIO → 0.₉₆ I + 0.₀₄ IO + 0.₀₄ O(P)	J = 4.0₅₄·10⁻⁶cos(χ)⁰·₁₁⁹exp(-0.₁₈⁵/cos(χ))	Bräuer et al. (2013)
H191	HOI → I + OH	J = 1.₄₆₉·10⁻⁶cos(χ)⁰·₃₄²exp(-0.₂₃₆/cos(χ))	Bräuer et al. (2013)
H192	INO₂ → 0.₈₅ I + 0.₈₅ NO₂ + 0.₁₅ IO + 0.₁₅ NO₂	J = 6.₉₉₉·10⁻⁶cos(χ)⁰·₅₃₈exp(-0.₂₄₃/cos(χ))	Bräuer et al. (2013)
H193	ICl → I⁺ + Cl	J = 3.₄₀₃·10⁻⁶cos(χ)⁰·₁₇⁷exp(-0.₂₀⁷/cos(χ))	Bräuer et al. (2013)
H194	IBr → I⁺ + Br	J = 1.₀₀₀·10⁻⁶cos(χ)⁰·₁₄⁹exp(-0.₁₉⁷/cos(χ))	Bräuer et al. (2013)
H195	C₃H₂I → 1 + C₃H₂O₂	J = 3.₇₃₁·10⁻⁶cos(χ)¹·₂₉⁸exp(-0.₂₁⁷/cos(χ))	Bräuer et al. (2013)
H196	CH₃I₂ → 2 I + 2 HO₂	J = 1.₄₉₆·10⁻⁶cos(χ)⁰·₈₃⁰exp(-0.₂₆₅/cos(χ))	Bräuer et al. (2013)
Nr.	Reaction	Rate constant\(^{(a)}\)	Comment
-----	----------	--------------------------	---------
H197	CH$_3$I \rightarrow I + CH$_3$O$_2$	\[J = 1.206 \times 10^{0.5} \cos(\chi) \times 1.25 \times \exp(-0.231 / \cos(\chi)) \]	Bräuer et al. (2013)
H198	ClCH$_3$I \rightarrow I + ClCH$_2$O$_2$	\[J = 6.910 \times 10^{0.4} \cos(\chi) \times 1.85 \times \exp(-0.238 / \cos(\chi)) \]	Bräuer et al. (2013)
H199	BrCH$_3$I \rightarrow I + BrCH$_2$O$_2$	\[J = 4.261 \times 10^{0.4} \cos(\chi) \times 0.976 \times \exp(-0.250 / \cos(\chi)) \]	Bräuer et al. (2013)

(a) \(k^{2nd}\) in cm3 molecules$^{-1}$ s$^{-1}$; \(k^{1st}\) in s$^{-1}$; \(J\) in s$^{-1}$

Table S7 Parameters for pressure dependent reactions.

Reaction	TYPE	\(k_0^{(a)}\)	\(k_\infty^{(a)}\)	\(F_c\)	
H5	Cl + NO$_2$ \rightarrow ClNO$_2$	TROE	1.80 \times 10^{-31} \times (T/298)^{2.0}	1.00 \times 10^{-10} \times (T/298)^{1.0}	0.6
H6	ClO + NO$_2$ \rightarrow ClNO$_3$	TROE	1.60 \times 10^{-31} \times (T/298)^{3.4}	7.00 \times 10^{-11}	0.4
H44	Cl + C$_2$H$_2$ \rightarrow 0.26 ClCHO + 0.21 Cl + 0.53 HCl + 0.21 GLYOXAL + 1.32 CO + 0.79 HO$_2$	TROE	6.10 \times 10^{-30} \times (T/298)^{3.0}	2.00 \times 10^{-10}	0.6
H45	Cl + C$_2$H$_4$ \rightarrow ClCH$_2$CH$_2$O$_2$	TROE	1.85 \times 10^{-29} \times (T/298)^{3.3}	6.00 \times 10^{-10}	0.4
H54	ClCH$_2$CO$_2$ + NO$_2$ \rightarrow CIPAN	TROE	2.70 \times 10^{-28} \times (T/298)^{7.1}	1.20 \times 10^{-11} \times (T/298)^{9.9}	0.3
H60	CIPAN \rightarrow ClCH$_2$CO$_3$ + NO$_2$	TROE	4.90 \times 10^{-10} \times \exp(-12100/T)	5.40 \times 10^{-16} \times \exp(-13830/T)	0.3
H82	CH$_2$CH(Chi)CO$_3$ + NO$_2$ \rightarrow CH$_2$CIPAN	TROE	2.70 \times 10^{-28} \times (T/298)^{7.1}	1.20 \times 10^{-11} \times (T/298)^{9.9}	0.3
H83	CH$_2$CIPAN \rightarrow CH$_2$CH(Chi)CO$_3$ + NO$_2$	TROE	4.90 \times 10^{-10} \times \exp(-12100/T)	5.40 \times 10^{-16} \times \exp(-13830/T)	0.3
H102	Br + NO$_2$ \rightarrow BrNO$_2$	TROE	4.20 \times 10^{-31} \times (T/298)^{2.4}	2.70 \times 10^{-11}	0.55
H104	BrO + NO$_2$ \rightarrow BrNO$_3$	TROE	4.70 \times 10^{-31} \times (T/298)^{3.1}	1.80 \times 10^{-11}	0.4
H151	IO + NO$_2$ \rightarrow IO$_3$	TROE	7.70 \times 10^{-31} \times (T/300)^{3.0}	1.60 \times 10^{-11}	0.6

(a) \(k^{2nd}\) in cm3 molecules$^{-1}$ s$^{-1}$; \(k^{1st}\) in s$^{-1}$

Rate constants calculated with TROE formula: \(k(T) = \frac{k_0(T)[M]}{k_\infty(T)[M]} \times F_c \times \left[\frac{1 + \ln(\frac{k_0(T)[M]}{k_\infty(T)[M]})}{1 + \ln(\frac{k_0(T)[M]}{k_\infty(T)[M]})} \right]^{1/10} \)
Species	K_H (298 K)$^\text{[a]}$	$\Delta H/R$	α	D_g (298 K)$^\text{[c]}$	Comment	
H200$^\circledR$ Cl$_2$	$9.15 \cdot 10^{-2}$	2490	0.08	1.28	Bräuer et al. (2013)	
H201	Cl	$2.00 \cdot 10^{-3}$	0.05	1.82	Bräuer et al. (2013)	
H202$^\circledR$ HCl	$1.10 \cdot 10^8$	2020	0.1026	1.89	Bräuer et al. (2013)	
H203$^\circledR$ HOCl	$6.60 \cdot 10^2$	5862	0.5	1.51	Bräuer et al. (2013)	
H204$^\circledR$ CINO$_2$	$2.40 \cdot 10^{-2}$	0.01	1.27	1.27	Bräuer et al. (2013)	
H205$^\circledR$ CINO$_3$	$2.10 \cdot 10^8$	8700	0.1	1.18	Bräuer et al. (2013)	
H206	CICHO	$3.00 \cdot 10^3$	7216	0.02	1.23	Bräuer et al. (2013)
H207$^\circledR$ Br$_2$	$7.60 \cdot 10^{-3}$	4100	0.08	1.00	Bräuer et al. (2013)	
H208	Br	$1.20 \cdot 10^{-3}$	0.05	1.29	Bräuer et al. (2013)	
H209$^\circledR$ HBr	$1.30 \cdot 10^8$	10239	0.0481	1.26	Bräuer et al. (2013)	
H210	HOBr	$9.30 \cdot 10^4$	5862	0.5	1.16	Bräuer et al. (2013)
H211	BrNO$_3$	$2.10 \cdot 10^8$	8700	0.8	1.01	Bräuer et al. (2013)
H212	BrCl	$9.40 \cdot 10^{-3}$	-5600	0.33	1.05	Bräuer et al. (2013)
H213	BrCH$_2$CO$_2$	$6.69 \cdot 10^2$	5893	0.019	0.84	Bräuer et al. (2013)
H214$^\circledR$ BrCH$_2$COOH	$1.52 \cdot 10^3$	9300	0.0322	0.84	Bräuer et al. (2013); Sander (2015)	
H215	BrCHO	$7.40 \cdot 10^3$	0.02	1.02	Bräuer et al. (2013)	
H216	I$_2$	$3.00 \cdot 10^8$	4431	0.0126	0.86	Bräuer et al. (2013)
H217$^\circledR$ HI	$4.50 \cdot 10^2$	5862	0.5	1.08	Bräuer et al. (2013)	
H218	HIO$_3$	$2.10 \cdot 10^8$	8700	0.0126	0.98	Bräuer et al. (2013)
H219$^\circledR$ INO$_3$	$2.10 \cdot 10^8$	8700	0.123	0.96	Bräuer et al. (2013)	
H220$^\circledR$ I$_2$O$_2$	$1.00 \cdot 10^8$	0.123	1.20	0.80	Bräuer et al. (2013); Sander (2015)	
H221$^\circledR$ ICl	$1.10 \cdot 10^2$	5600	0.0126	0.98	Bräuer et al. (2013)	
H222$^\circledR$ IBr	$2.40 \cdot 10^4$	5600	0.0126	0.88	Bräuer et al. (2013)	

(a) in M \text{atm}^{-1}; (b) in K; (c) in m2 s$^{-1}$
Table S9 Implemented aqueous-phase reactions in the CAPRAM-HM3.0red

Reaction	Reaction	k_{298}	E_A/R	Comment
H223 ̈	Cl\(^{+}\) + H\(_2\)O\(_2\) \rightarrow 2 Cl\(^+\) + H\(^+\) + HO\(_2\)	6.20 \times 10^5	3340	Jacobi et al. (1999)
H224 ̈	Cl\(^{+}\) + H\(_2\)O \rightarrow H\(^+\) + Cl\(^+\) + ClOH\(^-\)	2.34 \times 10^4		Buxton et al. (1998)
H225 ̈	HOC\(_1\) + HO\(_2\) \rightarrow Cl\(^+\) + H\(_2\)O + O\(_2\)	7.50 \times 10^6		Bräuer et al. (2013)
H226 ̈	HOCl + OH \rightarrow ClO + H\(_2\)O	2.00 \times 10^9		Bräuer et al. (2013)
H227 ̈	Cl\(^{+}\) + HSO\(_3\) \rightarrow 2 Cl\(^+\) + H\(^+\) + SO\(_3\)	1.70 \times 10^8	400	Jacobi (1996)
H228 ̈	HOCl + HSO\(_3\) \rightarrow Cl\(^+\) + H\(^+\) + SO\(_3\)	7.60 \times 10^6		Herrmann (2003)
H229 ̈	Cl\(^+\) + HSO\(_3\) \rightarrow HOCl + SO\(_2\)\(^2\)\(^-\)	1.80 \times 10^7	7352	Fortnum et al. (1960)
H230 ̈	Cl\(^{+}\) + Fe\(_2\)\(^+\) \rightarrow 2 Cl\(^+\) + Fe\(_2\)\(^+\)	1.00 \times 10^7	3030	Thornton and Laurence (1973)
H231 ̈	Cl\(^{+}\) + Fe\(_2\)\(^+\) + Fe\(_2\)\(^+\) + ClOH\(^-\) + OH\(^-\) - H\(_2\)O	1.00 \times 10^7		Jacobsen et al. (1998)
H232 ̈	Cl\(^{+}\) + Mn\(_2\)\(^+\) \rightarrow MnCl\(_2\)	2.00 \times 10^7	4090	Laurence and Thornton (1973)
H233 ̈	MnCl\(_2\) + 0.588 Cl\(^{+}\) + 0.588 Mn\(_2\)\(^+\) + 0.824 Cl\(^{+}\) + 0.412 Mn\(_2\)\(^+\)	5.10 \times 10^3		Deguillaume et al. (2010); Laurence and Thornton (1973)
H234 ̈	2 ClO \rightarrow Cl\(^+\) + ClO\(_2\) + 2 H\(^+\)	2.50 \times 10^9		Klanning and Wolff (1985)
H235 ̈	OH + ClO\(_2\) \rightarrow ClO + O\(_2\) + OH\(^-\)	1.00 \times 10^6		Buxton and Subhani (1972)
H236 ̈	Cl\(_2\) + H\(_2\)O \rightarrow 2 H\(^+\) + 2 Cl\(^+\) + O\(_2\)	1.83 \times 10^7	5387	Connick (1947)
H237 ̈	Cl\(_2\) + SO\(_3\) \rightarrow HOC\(_1\) + Cl\(_2\)O\(_3\)	1.62 \times 10^6	2800	Shi et al. (2001)
H238 ̈	Cl\(_2\) + HC\(_2\)O\(_2\) \rightarrow 2 Cl\(^+\) + H\(^+\) + C\(_2\)O\(_4\)	1.30 \times 10^6		Bräuer et al. (2013)
H239 ̈	Cl\(_2\) + C\(_2\)O\(_2\) \rightarrow 2 Cl\(^+\) + C\(_2\)O\(_4\)	4.00 \times 10^6		Bräuer et al. (2013)
H240 ̈	ClCHO \rightarrow CO + H\(^+\) + Cl\(^-\)	1.00 \times 10^4		Prager et al. (2001)
H241 ̈	Br + H\(_2\)O \rightarrow H\(^+\) + Br\(^-\) + HO\(_2\)	4.00 \times 10^6		Sutton et al. (1965)
H242 ̈	Br\(_2\) + HO\(_2\) \rightarrow Br\(^+\) + Br\(^-\) + 0.5 Br\(_2\) + 0.5 H\(_2\)O\(_2\) + 0.5 O\(_2\)	8.80 \times 10^4		Sutton and Downes (1972)
H243 ̈	BrO + BrO \rightarrow BrO\(_2\) + HOB\(_r\) + H\(^+\)	2.80 \times 10^6		Klanning and Wolff (1985)
H244 ̈	HOB\(_r\) + OH \rightarrow BrO + H\(_2\)O	2.00 \times 10^6		Klanning and Wolff (1985)
H245 ̈	HOB\(_r\) + HO\(_2\) \rightarrow Br + H\(_2\)O + O\(_2\)	1.00 \times 10^6		Bräuer et al. (2013)
H246 ̈	HOB\(_r\) + H\(_2\)O \rightarrow H\(^+\) + Br\(^-\) + H\(_2\)O + O\(_2\)	3.50 \times 10^6		Young (1950)
H247 ̈	HOB\(_r\) + HSO\(_3\) \rightarrow H\(^+\) + Br\(^-\) + HSO\(_3\)	5.00 \times 10^6		Bräuer et al. (2013)
H248 ̈	Br + HSO\(_3\) \rightarrow HOB\(_r\) + SO\(_2\)\(^2\)\(^-\)	1.00 \times 10^6	5338	Fortnum et al. (1960)
Reaction	$k_{298}^{(a)}$	$E_a/R^{(b)}$	Comment	
----------	----------------	---------------	---------	
H249	Br' + NO₃ → Br + NO₂⁻	3.80×10⁹	Zellner et al. (1996)	
H250	Br⁺ + Fe²⁺ → 2 Br⁺ + Fe³⁺	3.60×10⁶	3330 Thornton and Laurence (1973)	
H251	Br⁺ + Mn²⁺ → MnBr₂⁺	6.30×10⁶	4330 Thornton and Laurence (1973)	
H252	MnBr₂⁺ → 0.577 Br₂⁻ + 0.577 Mn²⁺ + 0.846 Br⁺ + 0.423 Mn³⁺	5.20×10⁶	Thornton and Laurence (1973); Deguillaume et al. (2010)	
H253	BrO₂⁻ + SO₄²⁻ → BrO + O₂ + SO₄²⁻	1.40×10⁶	Zuo and Katsumura (1998)	
H254	Br + O₁ → BrO + O₂	1.50×10⁸	Von Gunten and Oliveras (1998)	
H255	BrO⁻ + HSO₃⁻ → BrO₂⁻ + SO₂⁻ + H⁺	2.70×10⁻²	Szirovicz and Boga (1998)	
H256	BrO⁻ + OH → BrO + O₂ + OH⁻	5.00×10⁶	Amichai et al. (1969)	
H257	BrNO₁ → HOBr + HNO₂	1.00×10⁹	Hanson et al. (1996)	
H258	BrO₂⁻ + HC₂O₄⁻ → BrO₂⁻ + 2 CO₂ + H₂O	7.47×10⁻⁴	Pelle et al. (2004)	
H259	BrCHO → CO + H⁺ + Br⁻	1.00×10⁴	Bräuer et al. (2013)	
H260	CH₂BrCO₂⁻ + H₂O → CH₂BrCOOH + HO₂	3.55×10⁵	Bräuer et al. (2013)	
H261	Br⁻ + HCOO⁻ → 2 Br⁻ + COOH	4.90×10³	Jacobi et al. (1996)	
H262	Br⁻ + HOCl → BrCl + H₂O – H⁺	1.30×10⁶	Kumar and Margerum (1987)	
H263	BrO₂⁻ + HOCl → 0.85 ClO₂⁻ + 0.93 HOBr + 0.08 ClO⁻ + 0.07 BrO₃⁻ + 0.92 Cl⁻ + 0.92 H⁺ - 0.85 HOC₁	1.60×10⁵	Nicson et al. (2003)	
H264	I⁻ + O₁ → HOI + O₂	2.17×10⁹	8790 Magi et al. (1997)	
H265	IO + IO → HOI + HIO + H⁺ - H₂O - H₂O₂	1.50×10⁹	Buxton et al. (1986)	
H266	HOI + HSO₄⁻ → H⁺ + I⁻ + HSO₄⁻	5.00×10⁹	Pechtl and von Glasow (2007)	
H267	HOI + OH → IO + H₂O	7.00×10⁹	Buxton and Mulazzani (2007)	
H268	INO₁ → HOI + HNO₂	1.62×10⁶	2800 Hoffmann et al. (2019b)	
H269	IO₂ + H⁺ → HIO₂ + HOI + H⁺	3.20×10⁴	Valkai and Horvath (2016)	
H270	IO⁻ + OH → IO + O₂ + OH⁻	1.08×10⁵	Mezyk (1996)	

(a) k_{298}^{2nd} in l¹ mol⁻¹ s⁻¹; k_{298}^{1st} in s⁻¹; (b) in K
Table S10 Implemented aqueous-phase equilibrium reactions in the CAPRAM-HM3.0red

- reactions that run in the cloud mode ‘sub#1’, ○ reactions that run in the aerosol mode ‘sub#2’, ● already included in CAPRAM3.0red

Reaction	K(a)	k_o,298(b)	E_A/R(c)	k_o,298(b)	E_A/R(c)	References	
H271○•	Cl + Cl‘ ⇌ Cl^−	1.4×10^4	8.5×10^9	6.0×10^4	6.0×10^4	Buxton et al. (1998)	
H272○•	Cl_2 + H_2O ⇌ H^+ + Cl^− + HOC1	1.9×10^0^e^−4500/T	4.0×10^4	8000	2.1×10^4	3500	Wang and Margerum (1994)
H273○•	HCl ⇌ H^+ + Cl^−	1.72×10^0^e^−6900/T	5.0×10^11	-6890	2.9×10^4	Marsh and McElroy (1985); Graedel and Weschler (1981)	
H274○•	Cl^− + OH ⇌ ClOH	7.0×10^4	4.3×10^9	6.1×10^9	6.1×10^9	Jayson et al. (1973)	
H275○•	Cl + OH' ⇌ ClOH'	7.8×10^4	1.8×10^10	2.3×10^10	2.3×10^10	Klining and Wolff (1985)	
H276○•	ClOH' + H' ⇌ Cl + H_2O	5.1×10^4	2.1×10^10	4.1×10^10	4.1×10^10	Jayson et al. (1973)	
H277○•	ClOH' + Cl' ⇌ Cl^− + OH'	2.2×10^4	1.0×10^4	4.5×10^7	4.5×10^7	Grigor'ev et al. (1987)	
H278○•	Cl^− + SO_4^2− ⇌ Cl + SO_4^2−	1.2×10^6	2.5×10^8	2.1×10^8	2.1×10^8	Buxton et al. (1999b)	
H279○•	Cl^− + NO_3^− ⇌ Cl + NO_3^−	3.4×10^0^e^−4300/T	3.4×10^8	4300	1.0×10^8	Buxton et al. (1999a)	
H280	HOCl + NO_2 ⇌ ClNO_2 + OH'	3.9×10^4	1.9×10^7	5.0×10^7	5.0×10^7	Lahoutifard et al. (2002)	
H281○•	Cl^− + SO_4^2− ⇌ Cl^− + HOC1 + HSO_4^−	1.1×10^4	3.2×10^10	2.8×10^10	2.8×10^10	Wang and Margerum (1994)	
H282○•	Cl^− + NO_3^− ⇌ ClO_2 + NO_2	1.4×10^4	3.9×10^10	2.7×10^10	2.7×10^10	Behnke et al. (1997)	
H283○•	Br + Br' ⇌ Br_2^{-}	6.3×10^5	1.2×10^10	1.9×10^10	1.9×10^10	Merenyi and Lind (1994)	
H284○•	Br_2 + H_2O ⇌ H^+ + Br + HBr	1.0×10^4^e^−7500/T	1.7×10^9	7500	1.6×10^10	Beckwith et al. (1996)	
H285○•	HBr + H' ⇌ Br' + Br	1.0×10^5	5.0×10^11	5.0×10^11	5.0×10^11	Lax (1969)	
H286○•	Br + OH ⇌ BrOH'	3.3×10^2	1.1×10^10	3.3×10^10	3.3×10^10	Zehavi and Rabani (1972)	
H287○•	Br + OH' ⇌ BrOH'	3.1×10^3	1.3×10^10	4.2×10^6	4.2×10^6	Zehavi and Rabani (1972); Klining and Wolff (1985)	
H288○•	BrOH' + H' ⇌ Br + H_2O	1.8×10^12	4.4×10^10	2.4×10^12	2.4×10^12	Zehavi and Rabani (1972); Klining and Wolff (1985)	
H289○•	BrOH' + Br ⇌ Br_2^{-} + OH'	7.0×10^4	1.9×10^8	2.7×10^6	2.7×10^6	Zehavi and Rabani (1972); de Violet (1981)	
H290	HBr + HOBr ⇌ H^+ + Br + BrO_2^{-}	6.7×10^12	2.0×10^5	3.0×10^6	3.0×10^6	Field and Foersterling (1986)	
H291	HBr + BrO_2^{-} ⇌ H^+ + Br + BrO_3^{-}	1.7×10^9	3.2×10^0	2.0×10^0	2.0×10^0	Field and Foersterling (1986)	
H292○•	CH_3BrCOOH ⇌ CH_3BrCOO^- + H^+	1.75×10^5^e^6/T	8.75×10^5	-46	5.0×10^10	Bräuer et al. (2013)	
H293○•	Br_2 + SO_4^2- + H_2O ⇌ HBr + Br + HSO_4^-	6.15×10^6	2.28×10^4	3.7×10^4	3.7×10^4	Beckwith et al. (1996)	
H294○•	BrCl ⇌ HOBr + H^+ + Cl^- - H_2O	1.8×10^5	1.0×10^5	5.6×10^9	5.6×10^9	Wang et al. (1994)	
H295○•	BrCl‘ ⇌ Br’ + Cl^-	1.6×10^7	1.9×10^3	1.2×10^10	1.2×10^10	Donati (2002)	
Reaction	K(a)	$k_{298}^{(b)}$	$E_A/R^{(c)}$	$k_{298}^{(b)}$	$E_A/R^{(c)}$	References	
----------	------	----------------	----------------	----------------	----------------	------------	
H296◎	BrCl \rightleftharpoons Br + Cl$^-$	$6.10 \cdot 10^4$	$6.10 \cdot 10^4$	$1.00 \cdot 10^8$	Donati (2002)		
H297◎	BrCl$^+$ + Br \rightleftharpoons Br$_2$ + Cl$^-$	$1.86 \cdot 10^9$	$8.00 \cdot 10^9$	$4.30 \cdot 10^6$	Ershov (2004)		
H298◎	BrCl$^+$ + Cl$^-$ \rightleftharpoons Br$^+$ + Cl$_2$	$2.75 \cdot 10^8$	$1.10 \cdot 10^2$	$4.00 \cdot 10^6$	Ershov (2004)		
H299◎	Br$_2$Cl \rightleftharpoons BrCl + Br$^-$	$5.60 \cdot 10^5$	$4.30 \cdot 10^5$	$7.70 \cdot 10^6$	Wang et al. (1994)		
H300◎	BrCl$^+$ \rightleftharpoons Br$_2$ + Cl$^-$	$7.60 \cdot 10^4$	$3.80 \cdot 10^4$	$5.00 \cdot 10^4$	Wang et al. (1994); Matthew and Anastasio (2006)		
H301◎	BrCl$_2$ \rightleftharpoons BrCl + Cl$^-$	$1.70 \cdot 10^4$	$1.70 \cdot 10^5$	$1.00 \cdot 10^4$	Ershov (2004)		
H302◎	BrCl$^+$ \rightleftharpoons Br$^+$ + Cl$_2$	$1.50 \cdot 10^4$	$9.00 \cdot 10^4$	$6.00 \cdot 10^9$	Ershov (2004)		
H303	I$_2$ + OH$^-$ \rightleftharpoons I$_2$OH$^-$	$5.00 \cdot 10^8$	$1.00 \cdot 10^4$	$2.00 \cdot 10^9$	Buxton and Mulazzani (2007)		
H304	I$_2$OH$^-$ \rightleftharpoons HOI + I$^-$	$8.30 \cdot 10^6$	$2.49 \cdot 10^9$	$3.00 \cdot 10^8$	Buxton and Mulazzani (2007)		
H305	HOI + H$^+$ + I$^-$ \rightleftharpoons I$_2$ + H$_2$O	$1.47 \cdot 10^{12}$	$4.40 \cdot 10^{12}$	$3.00 \cdot 10^8$	Eigen and Kustin (1962)		
H306◎	HIO$_3$ \rightleftharpoons H$^+$ + IO$_4^-$	$1.70 \cdot 10^4$	$8.50 \cdot 10^9$	$5.00 \cdot 10^4$	Lide et al. (1995)		
H307◎	HOI + H$^+$ + Cl$^-$ \rightleftharpoons ICl	$1.20 \cdot 10^4$	$2.90 \cdot 10^{10}$	$2.40 \cdot 10^6$	Wang et al. (1989)		
H308◎	HOI + H$^+$ + Br$^-$ \rightleftharpoons IBr	$5.10 \cdot 10^9$	$4.10 \cdot 10^{12}$	$8.00 \cdot 10^9$	De Barros Faria et al. (1993)		
H309◎	ICl + Br$^-$ \rightleftharpoons IBr + Cl$^-$	$3.30 \cdot 10^4$	$1.65 \cdot 10^{14}$	$5.00 \cdot 10^4$	Wagman et al. (1982)		

(a) in M^{m-n}, n order of reaction of forward reaction, m order of reaction of backward reaction; (b) k_{298}^{2nd} in l^1 mol$^{-1}$ s$^{-1}$, k_{298}^{1st} in s$^{-1}$; (c) in K
HCl	BrO*	Location	Comment	Reference
daily average: 133 – 675 ppt				Keene and Savoie (1999)
range: 30–250 ppt				Pszenny et al. (2004)
median: 351 ppt				Keene et al. (2007)
daily median: 82–682 ppt				Keene et al. (2009)
median: 206 ppt				
max. 1–3.6 ppt				Sander et al. (2013)
average 2.3 ppt				Leser et al. (2003)
average max. 2.5 ± 1.1 ppt				Saiz-Lopez et al. (2004)
< 0.5 ppt				Read et al. (2008)
0.03 ± 0.26 ppt				Volkamer et al. (2015)
0.17–1.64 ppt				Chen et al. (2016)
DL – Detection Limit; * for a more detailed overview on measurements before 2003 see Sander et al. (2003)				

Table S11 Measured values of HCl and BrO in marine environments.
References

Amichai, O., Czapski, G., and Treinin, A.: Flash Photolysis of Oxybromine Anions, Israel J. Chem., 7, 351-359, https://doi.org/10.1002/ijch.196900046, 1969.

Anderson, L. C., and Fahey, D. W.: Studies with nitryl hypochlorite: thermal dissociation rate and catalytic conversion to nitric oxide using an NO/O3 chemiluminescence detector, J. Phys. Chem., 94, 644-652, https://doi.org/10.1021/j100365a027, 1990.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of O₃, HOₓ, NOₓ, and SOₓ species, Atmos. Chem. Phys., 4, 1461-1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981-1191, https://doi.org/10.5194/acp-7-981-2007, 2007.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141-4496, https://doi.org/10.5194/acp-8-4141-2008, 2008.

Ballesteros, B., Jensen, N. R., and Hjorth, J.: FT-IR study of the kinetics and products of the reactions of dimethylsulphide, dimethylsulphoxide and dimethylsulphone with Br and BrO, J. Atmos. Chem., 43, 135-150, https://doi.org/10.1023/A:1019922224137, 2002.

Bardouki, H., da Rosa, M. B., Mihalopoulos, N., Palm, W. U., and Zetzsch, C.: Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI) by OH radicals in aqueous medium, Atmos. Environ., 36, 4627-4634, https://doi.org/10.1016/S1352-2310(02)00460-0, 2002.

Beckwith, R. C., Wang, T. X., and Margerum, D. W.: Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35, 995-1000, https://doi.org/10.1021/ic950909w, 1996.

Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of CINO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res.-Atmos., 102, 3795-3804, https://doi.org/10.1029/96jd03057, 1997.

Bräuer, P., Tilgner, A., Wolke, R., and Herrmann, H.: Mechanism development and modelling of tropospheric multiphase halogen chemistry: The CAPRAM Halogen Module 2.0 (HM2), J. Atmos. Chem., 70, 19-52, https://doi.org/10.1007/s10874-013-9249-6, 2013.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, Jet Propulsion Laboratory, Pasadena, 2015.

Buxton, G. V., Arthur Salmon, G., and Wang, J.: The equilibrium NO$_3^-$ + Cl$^-$ ⇌ NO$_3^-$ + Cl*; A laser flash photolysis and pulse radiolysis study of the reactivity of NO$_3^-$ with chloride ion in aqueous solution, Phys. Chem. Chem. Phys., 1, 3589-3593, https://doi.org/10.1039/A903286J, 1999a.

Buxton, G. V., Bydder, M., and Arthur Salmon, G.: The reactivity of chloride atoms in aqueous solution Part II. The equilibrium SO$_4^{2-}$ + Cl$^-$ ⇌ Cl* + SO$_4^{2-}$, Phys. Chem. Chem. Phys., 1, 269-273, https://doi.org/10.1039/A807808D, 1999b.

Buxton, G. V., and Subhani, M. S.: Radiation-Chemistry and Photochemistry of Oxychlorine Ions .1. Radiolysis of Aqueous-Solutions of Hypochlorite and Chlorite Ions, J. Chem. Soc. Farad. Trans. 1, 68, 947-957, https://doi.org/10.1039/f19726800947, 1972.

Buxton, G. V., Kilner, C., and Sellers, R. M.: Pulse radiolysis of HOI and IO$^-$ in aqueous solution, formation and characterization of I0, 6th Symposium on Radiation Chemistry, 1986, 155-159.

Buxton, G. V., Bydder, M., and Arthur Salmon, G.: Reactivity of chlorine atoms in aqueous solution Part I. The equilibrium Cl*+Cl$^-$ ⇌ Cl$_2^*$, 94, 653-657, https://doi.org/10.1039/A707377A, 1998.

Buxton, G. V., and Mulazzani, Q. G.: On the hydrolysis of iodine in alkaline solution: A radiation chemical study, Rad. Phys. Chem., 76, 932-940, https://doi.org/10.1016/j.radphyschem.2006.06.009, 2007.

Campolongo, F., Saltelli, A., Jensen, N. R., Wilson, J., and Hjorth, J.: The role of multiphase chemistry in the oxidation of dimethylsulphide (DMS). A latitude dependent analysis, J. Atmos. Chem., 32, 327-356, https://doi.org/10.1023/A:1006154618511, 1999.

Canosa-Mas, C. E., Cotter, E. S. N., Duffy, J., Thompson, K. C., and Wayne, R. P.: The reactions of atomic chlorine with acrolein, methacrolein and vinyl ketone, Phys. Chem. Chem. Phys., 3, 3075-3084, https://doi.org/10.1039/b101434j, 2001.

Chen, D., Huey, L. G., Tanner, D. J., Salawitch, R. J., Anderson, D. C., Wales, P. A., Pan, L. L., Atlas, E. L., Hornbrook, R. S., Apel, E. C., Blake, N. J., Campos, T. L., Donets, V., Flocke, F. M., Hall, S. R., Hanisco, T. F., Hills, A. J., Honomichl, S. B., Jensen, J. B., Kaser, L., Montzka, D. D., Nicely, J. M., Reeves, J. M., Riemer, D. D., Schauffler, S. M., Ullmann, K., Weinheimer, A. J., and Wolfe, G. M.: Airborne measurements of BrO and the sum of HOBr and Br$_2$ over the Tropical West Pacific from 1 to 15 km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment, J. Geophys. Res.-Atmos., 121, 12560-12578, https://doi.org/10.1002/2016JD025561, 2016.

Clarke, J. H. R., and Woodward, L. A.: Raman spectrophotometric determination of degrees of dissociation of methanesulphonic acid in aqueous solution at 25°C, Trans. Faraday Soc., 62, 2226-2233, https://doi.org/10.1039/Tf9666202226, 1966.

Connick, R. E.: The Interaction of Hydrogen Peroxide and Hypochlorous Acid in Acidic Solutions Containing Chloride Ion, J. Am. Chem. Soc., 69, 1509-1514, https://doi.org/10.1021/ja01198a074, 1947.

De Barros Faria, R., Lengyel, I., Epstein, I. R., and Kustin, K.: Systematic design of chemical oscillators. 86. Combined mechanism explaining nonlinear dynamics in bromine(III) and bromine(V) oxidations of iodide ion, J. Phys. Chem., 97, 1164-1171, https://doi.org/10.1021/j100108a011, 1993.
De Bruyn, W. J., Shorter, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: Uptake of gas-phase sulfur species methanesulfonic-acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces, J. Geophys. Res.-Atmos., 99, 16927-16932, https://doi.org/10.1029/94jd00684, 1994.

de Violet, P. F.: Polyhalide radical anions as intermediates in chemistry, Rev. Chem. Intern., 4, 121-169, https://doi.org/10.1007/BF03052414, 1981.

Deguillaume, L., Tilgner, A., Schrödner, R., Wolke, R., Chaumerliac, N., and Herrmann, H.: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model, J. Atmos. Chem., 64, 1-35, https://doi.org/10.1007/s10874-010-9168-8, 2010.

Dillon, T. J., Tucceri, M. E., and Crowley, J. N.: Laser induced fluorescence studies of iodine oxide chemistry Part II. The reactions of IO with CH$_3$O$_2$, CF$_3$O$_2$ and O$_3$, Phys. Chem. Chem. Phys., 8, 5185-5198, https://doi.org/10.1039/B611116E, 2006.

Donati, A.: Spectroscopic and kinetic investigations of halogen-containing radicals in the tropospheric aqueous phase, University of Leipzig, Leipzig, Germany, 2002.

Dyke, J. M., Ghosh, M. V., Kinnison, D. J., Levita, G., Morris, A., and Shallcross, D. E.: A kinetics and mechanistic study of the atmospherically relevant reaction between molecular chlorine and dimethyl sulfide (DMS), Phys. Chem. Chem. Phys., 7, 866, https://doi.org/10.1039/B415566a, 2005.

Eigen, M., and Kustin, K.: The Kinetics of Halogen Hydrolysis, J. Am. Chem. Soc., 84, 1355-1361, https://doi.org/10.1021/ja00867a005, 1962.

Ershov, B. G.: Kinetics, mechanism and intermediates of some radiation-induced reactions in aqueous solutions, Rus. Chem. Rev., 73, 101-113, https://doi.org/10.1070/rc2004v073n01abeh000865, 2004.

Falbe-Hansen, H., Sorensen, S., Jensen, N. R., Pedersen, T., and Hjorth, J.: Atmospheric gas-phase reactions of dimethylsulphoxide and dimethylsulphone with OH and NO$_3$ radicals, Cl atoms and ozone, Atmos. Environ., 34, 1543-1551, https://doi.org/10.1016/S1352-2310(99)00407-0, 2000.

Field, R. J., and Foersterling, H. D.: On the oxybromine chemistry rate constants with cerium ions in the Field-Koerends-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO$_2$ + BrO$_3$- + H$^+$ ⇌ 2 BrO$_2$- + H$_2$O, J. Phys. Chem., 90, 5400-5407, https://doi.org/10.1021/j100412a101, 1986.

Flyunt, R., Makogon, O., Schuchmann, M. N., Asmus, K.-D., and von Sonntag, C.: OH-Radical-induced oxidation of methanesulfonic acid. The reactions of the methanesulfonyl radical in the absence and presence of dioxygen, J. Chem. Soc. Perkin. Trans. 2, 787-792, https://doi.org/10.1039/b009631h, 2001.

Fortnum, D. H., Battaglia, C. J., Cohen, S. R., and Edwards, J. O.: The Kinetics of the Oxidation of Halide Ions by Monosubstituted Peroxides, J. Am. Chem. Soc., 82, 778-782, https://doi.org/10.1021/ja01489a004, 1960.

Fuller, E. N., Schettle.Pd, and Giddings, J. C.: A new method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem., 58, 19-27, https://doi.org/10.1021/ie50677a007, 1966.
Gershenzon, M., Davidovits, P., Jayne, J. T., Kolb, C. E., and Worsnop, D. R.: Simultaneous uptake of DMS and ozone on water, J. Phys. Chem. A, 105, 7031-7036, https://doi.org/10.1021/jp010696y, 2001.

Gómez Martín, J. C., Spietz, P., and Burrows, J. P.: Kinetic and mechanistic studies of the I\textsubscript{2}/O\textsubscript{3} photochemistry, J. Phys. Chem. A, 111, 306-320, https://doi.org/10.1021/jp061186c, 2007.

Graedel, T. E., and Weschler, C. J.: Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys., 19, 505-539, https://doi.org/10.1029/RG019i004p00505, 1981.

Green, M., Yarwood, G., and Niki, H.: FTIR study of the Cl-atom initiated oxidation of methylglyoxal, Int. J. Chem. Kin., 22, 689-699, https://doi.org/10.1002/kin.550220705, 1990.

Grigor'ev, A. E., Makarov, I. E., and Pikaev, A. K.: Formation of Cl\textsubscript{2} in the bulk of solution during radiolysis of concentrated aqueous solutions of chlorides, High Energy Chem., 21, 123-126, 1987.

Hansen, J. C., Li, Y., Francisco, J. S., and Li, Z.: On the Mechanism of the BrO + CH\textsubscript{2}O Reaction, J. Phys. Chem. A, 103, 8543-8546, https://doi.org/10.1021/jp991757j, 1999.

Hanson, D. R., Ravishankara, A. R., and Lovejoy, E. R.: Reaction of BrONO\textsubscript{2} with H\textsubscript{2}O on submicron sulfuric acid aerosol and the implications for the lower stratosphere, J. Geophys. Res.-Atmos., 101, 9063-9069, https://doi.org/10.1029/96jd00347, 1996.

Hasson, A. S., Tyndall, G. S., Orlando, J. J., Singh, S., Hernandez, S. Q., Campbell, S., and Ibarra, Y.: Branching Ratios for the Reaction of Selected Carbonyl-Containing Peroxy Radicals with Hydroperoxy Radicals, J. Phys. Chem. A, 116, 6264-6281, https://doi.org/10.1021/jp211799c, 2012.

Herrmann, H., and Zellner, R.: Removal and interconversions of oxidants in the atmospheric aqueous phase, Part 2 (RINOXA 2), Universität Essen, Essen, Deutschland, 1997.

Herrmann, H.: Kinetics of aqueous phase reactions relevant for atmospheric chemistry, Chem. Rev., 103, 4691-4716, https://doi.org/10.1021/cr020658q, 2003.

Hoffmann, E. H., Tilgner, A., Schrodner, R., Brauer, P., Wolke, R., and Herrmann, H.: An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry, Proc. Natl. Acad. Sci. USA, 113, 11776-11781, https://doi.org/10.1073/pnas.1606320113, 2016.

Hoffmann, E. H., Tilgner, A., Vogelsberg, U., Wolke, R., and Herrmann, H.: Near-explicit multiphase modeling of halogen chemistry in a mixed urban and maritime coastal area, ACS Earth Space Chem., 3, 2452-2471, https://doi.org/10.1021/acsearthspacechem.9b00184, 2019a.

Hoffmann, E. H., Tilgner, A., Wolke, R., and Herrmann, H.: Enhanced chlorine and bromine atom activation by hydrolysis of halogen nitrates from marine aerosols at polluted coastal areas, Environ. Sci. Technol., 53, 771-778, https://doi.org/10.1021/acs.est.8b05165, 2019b.

Hsin, H. Y., and Elrod, M. J.: Overall rate constant measurements of the reaction of hydroxy- and chloroalkylperoxy radicals derived from methacrolein and methyl vinyl ketone with nitric oxide, J. Phys. Chem. A, 111, 613-619, https://doi.org/10.1021/jp0665574, 2007.
Jacobi, H.-W., Herrmann, H., and Zellner, R.: Kinetic investigation of the Cl$_2$ radical in the aqueous phase, in: Air Pollution Research Report, 57(Homogenous and heterogenous chemical Processes in the Troposphere), edited by: Mirabel, P., Office for official Publications of the European Communities, Luxembourg, 172-176, 1996.

Jacobi, H. W.: Kinetische Untersuchungen und Modellrechnungen zur troposphärischen Chemie von Radikalanionen und Ozon in wässriger Phase, Universität-GH-Essen, Essen, Germany, 1996.

Jacobi, H. W., Wicktor, F., Herrmann, H., and Zellner, R.: A laser flash photolysis kinetic study of reactions of the Cl$_2$ radical anion with oxygenated hydrocarbons in aqueous solution, Int. J. Chem. Kinet., 31, 169-181, https://doi.org/10.1002/(SICI)1097-4601(1999)31:3<169::AID-Kin2>3.0.CO;2-K, 1999.

Jacobsen, F., Holcman, J., and Sehested, K.: Reactions of the ferryl ion with some compounds found in cloud water, Int. J. Chem. Kin., 30, 215-221, https://doi.org/10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V, 1998.

Jayson, G. G., Parsons, B. J., and Swallow, A. J.: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter, J. Chem. Soc., Faraday Trans., 69, 1597-1607, https://doi.org/10.1039/F19736901597, 1973.

Kaiser, E. W., Wallington, T. J., and Hurley, M. D.: Products and Mechanism of the Reaction of Chlorine Atoms with 3-Pentanone in 700-950 Torr of N$_2$/O$_2$ Diluent at 297-515 K, J. Phys. Chem. A, 114, 343-354, https://doi.org/10.1021/jp9083663, 2010.

Kaltsoyannis, N., and Plane, J. M. C.: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO$_3$, (IO)$_2$, I$_2$O$_3$, I$_2$O$_4$ and I$_2$O$_5$) of importance in the atmosphere, Phys. Chem. Chem. Phys., 10, 1723-1733, https://doi.org/10.1039/b715687c, 2008.

Keene, W. C., and Savoie, D. L.: Correction to “The pH of deliquesced sea-salt aerosol in polluted marine air”, Geophys. Res. Lett., 26, 1315-1316, https://doi.org/10.1029/1999gl900221, 1999.

Keene, W. C., Stutz, J., Pszenny, A. A. P., Maben, J. R., Fischer, E. V., Smith, A. M., von Glasow, R., Pechtl, S., Sive, B. C., and Varner, R. K.: Inorganic chlorine and bromine in coastal New England air during summer, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006jd007689, 2007.

Keene, W. C., Long, M. S., Pszenny, A. A. P., Sander, R., Maben, J. R., Wall, A. J., O’Halloran, T. L., Kerkweg, A., Fischer, E. V., and Schrems, O.: Latitudinal variation in the multiphase chemical processing of inorganic halogens and related species over the eastern North and South Atlantic Oceans, Atmos. Chem. Phys., 9, 7361-7385, https://doi.org/10.5194/acp-9-7361-2009, 2009.

Klaning, U. K., and Wolff, T.: Laser Flash-Photolysis of HClO, ClO, HBrO, and BrO in Aqueous-Solution - Reactions of Cl-Atoms and Br-Atoms, Ber. Bunsen Phys. Chem., 89, 243-245, https://doi.org/10.1002/bbpc.19850890309, 1985.

Kleissas, K. M., Nicovich, J. M., and Wine, P. H.: Spectroscopy and kinetics of the gas phase addition complex of atomic chlorine with dimethyl sulfoxide, J. Photoch. Photobio. A, 187, 1-9, https://doi.org/10.1016/j.photocchem.2006.08.020, 2007.
Kumar, K., and Margerum, D. W.: Kinetics and Mechanism of General-Acid-Assisted Oxidation of Bromide by Hypochlorite and Hypochlorous Acid, Inorg. Chem., 26, 2706-2711, https://doi.org/10.1021/ic00263a030, 1987.
Lahoutifard, N., Lagrange, P., Lagrange, J., and Scott, S. L.: Kinetics and mechanism of nitrite oxidation by HOBr/BrO⁻ in atmospheric water and comparison with oxidation by HOCl/ClO⁻, J. Phys. Chem. A, 106, 11891-11896, https://doi.org/10.1021/jp021185u, 2002.
Larin, I. K., Nevozhai, D. V., Spasskii, A. I., Trofimova, E. M., and Turkin, L. E.: Measurement of rate constants for the reaction of iodine monoxide with ozone, Kinet. Catal., 40, 435-442, 1999.
Laurence, G. S., and Thornton, A. T.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part III. The oxidation of manganese(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc., Dalton Trans., 1637-1644, https://doi.org/10.1039/DT9730001637, 1973.
Lax, E.: Taschenbuch für Chemiker und Physiker, Springer Verlag, Berlin, Germany, 1969.
Le Breton, M., Bannan, T. J., Shallcross, D. E., Khan, M. A., Evans, M. J., Lee, J., Lidster, R., Andrews, S., Carpenter, L. J., Schmidt, J., Jacob, D., Harris, N. R. P., Bauguitte, S., Gallagher, M., Bacak, A., Leather, K. E., and Percival, C. J.: Enhanced ozone loss by active inorganic bromine chemistry in the tropical troposphere, Atmos. Environ., 155, 21-28, https://doi.org/10.1016/j.atmosenv.2017.02.003, 2017.
Leser, H., Höninger, G., and Platt, U.: MAX-DOAS measurements of BrO and NO₂ in the marine boundary layer, Geophys. Res. Lett., 30, 1537, https://doi.org/10.1029/2002gl015811, 2003.
Lide, D. R., Frederickse, H. P. R., Bass, M., Brewer, L., DiSalvo, F. J., Donnelly, R. J., Karger, B. L., Lineberger, W. C., Palmer, D. A., Seyferth, D., and Westbrook, J. H.: CRC Handbook of Chemistry and Physics, CRC Press, 1995.
Lucas, D. D., and Prinn, R. G.: Mechanistic studies of dimethylsulfide oxidation products using an observationally constrained model, J. Geophys. Res.-Atmos., 107, https://doi.org/10.1029/2001jd000843, 2002a.
Lucas, D. D., and Prinn, R. G.: Mechanistic studies of dimethylsulfide oxidation products using an observationally constrained model, J. Geophys. Res.-Atmos., 107, ACH 12-11-ACH 12-26, https://doi.org/10.1029/2001JD000843, 2002b.
Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation of the Uptake Rate of Ozone and Methyl Hydroperoxide by Water Surfaces, J. Phys. Chem. A, 101, 4943-4949, https://doi.org/10.1021/jp970646m, 1997.
Marsh, A. R. W., and McElroy, W. J.: The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ., 19, 1075-1080, https://doi.org/10.1016/0004-6981(85)90192-1, 1985.
Martín, P., Cabañas, B., Colmenar, I., Salgado, M. S., Villanueva, F., and Tapia, A.: Reactivity of e-butenedial with the major atmospheric oxidants, Atmos. Environ., 70, 351-360, https://doi.org/10.1016/j.atmosenv.2013.01.041, 2013.
Matthew, B. M., and Anastasio, C.: A chemical probe technique for the determination of reactive halogen species in aqueous solution: Part 1 - bromide solutions, Atmos. Chem. Phys., 6, 2423-2437, https://doi.org/10.5194/acp-6-2423-2006, 2006.
Merenyi, G., and Lind, J.: Reaction Mechanism of Hydrogen Abstraction by the Bromine Atom in Water, J. Am. Chem. Soc., 116, 7872-7876, https://doi.org/10.1021/ja00096a050, 1994.
Mezyk, S. P.: Arrhenius parameter determination for the reaction of the oxide radical, hydrated electron and hydroxyl radical with iodate in aqueous solution, J. Chem. Soc. Faraday Trans., 92, 2251-2254, https://doi.org/10.1039/fl9969202251, 1996.
Nicoson, J. S., Perrone, T. F., Hartz, K. E. H., Wang, L., and Margerum, D. W.: Kinetics and mechanisms of the reactions of hypochlorous acid, chlorine, and chlorine monoxide with bromite ion, Inorg. Chem., 42, 5818-5824, https://doi.org/10.1021/ic0301223, 2003.
Nicovich, J. M., Parthasarathy, S., Pope, F. D., Pegus, A. T., McKee, M. L., and Wine, P. H.: Kinetics, mechanism, and thermochemistry of the gas phase reaction of atomic chlorine with dimethyl sulfoxide, J. Phys. Chem. A, 110, 6874-6885, https://doi.org/10.1021/jp0567467, 2006.
Niki, H., Maker, P. D., Savage, C. M., and Breitenbach, L. P.: An FTIR study of the Cl-atom-initiated reaction of glyoxal, Int. J. Chem. Kin., 17, 547-558, https://doi.org/10.1002/kin.550170507, 1985.
Niki, H., Maker, P. D., Savage, C. M., and Hurley, M. D.: Fourier transform infrared study of the kinetics and mechanisms for the chlorine-atom- and hydroxyl-radical-initiated oxidation of glycolaldehyde, J. Phys. Chem., 91, 2174-2178, https://doi.org/10.1021/j100292a038, 1987.
Orlando, J. J., and Tyndall, G. S.: Rate Coefficients for the Thermal Decomposition of BrONO₂ and the Heat of Formation of BrONO₂, J. Phys. Chem., 100, 19398-19405, https://doi.org/10.1021/jp9620274, 1996.
Orlando, J. J., Tyndall, G. S., Fracheboud, J.-M., Estupiñan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621-1629, https://doi.org/10.1016/S1352-2310(98)00386-0, 1999.
Orlando, J. J., Tyndall, G. S., Apel, E. C., Riemer, D. D., and Paulson, S. E.: Rate coefficients and mechanisms of the reaction of Cl-atoms with a series of unsaturated hydrocarbons under atmospheric conditions, Int. J. Chem. Kinet., 35, 334-353, https://doi.org/10.1002/kin.10135, 2003.
Pechtl, S., and von Glasow, R.: Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007gl029761, 2007.
Pelle, K., Wittmann, M., Lovrics, K., Noszticzius, Z., Liveri, M. L. T., and Lombardo, R.: Mechanistic investigations of the BZ reaction with oxalic acid substrate. I. The oscillatory parameter region and rate constants measured for the reactions of HOB₃, HBrO₂, and acidic BrO⁻ with oxalic acid, J. Phys. Chem. A, 108, 5377-5385, https://doi.org/10.1021/jp048817s, 2004.
Prados-Roman, C., Cuevas, C. A., Fernandez, R. P., Kinnison, D. E., Lamarque, J. F., and Saiz-Lopez, A.: A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine, Atmos. Chem. Phys., 15, 2215-2224, https://doi.org/10.5194/acp-15-2215-2015, 2015.
Prager, L., Dowideit, P., Langguth, H., Schuchmann, H.-P., and von Sonntag, C.: Hydrolytic removal of the chlorinated products from the oxidative free-radical-induced degradation of chloroethylenes: acid chlorides and chlorinated acetic acids, J. Chem. Soc., Perkin Trans. 2, 1641-1647, https://doi.org/10.1039/B101687N, 2001.
Pszenny, A. A. P., Moldanov, J., Keene, W. C., Sander, R., Maben, J. R., Martinez, M., Crutzen, P. J., Perner, D., and Prinn, R. G.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer, Atmos. Chem. Phys., 4, 147-168, https://doi.org/10.5194/acp-4-147-2004, 2004.
Ramacher, B., Orlando, J. J., and Tyndall, G. S.: Temperature-dependent rate coefficient measurements for the reaction of bromine atoms with a series of aldehydes, Int. J. Chem. Kinet., 32, 460-465, https://doi.org/10.1002/1097-4601(2000)32:8<460::Aid-Kin2>3.0.Co;2-P, 2000.
Read, K. A., Majahan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M.: Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 1232-1235, https://doi.org/10.1038/nature07035, 2008.

The chemical mechanistic information was taken from the Master Chemical Mechanism, MCM v3.2 (reference), URL: http://mcm.leeds.ac.uk/MCM, 21.10.2013.

Saiz-Lopez, A., Plane, J. M. C., and Shillito, J. A.: Bromine oxide in the mid-latitude marine boundary layer, Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL018956, 2004.
Sander, R., Keene, W. C., Pszenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E., Caine, J. M., Crutzen, P. J., Duce, R. A., Höhninger, G., Huebert, B. J., Maenhaut, W., Mihalopoulos, N., Turekian, V. C., and Van Dingenen, R.: Inorganic bromine in the marine boundary layer: a critical review, Atmos. Chem. Phys., 3, 1301-1336, https://doi.org/10.5194/acp-3-1301-2003, 2003.

Sander, R., Pszenny, A. A. P., Keene, W. C., Crete, E., Deegan, B., Long, M. S., Maben, J. R., and Young, A. H.: Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period, Earth Syst. Sci. Data, 5, 385-392, https://doi.org/10.5194/essd-5-385-2013, 2013.

Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399-4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 15, Jet Propulsion Laboratory, Pasadena, 2006.
Saunders, R. W., and Plane, J. M. C.: Formation Pathways and Composition of Iodine Oxide Ultra-Fine Particles, Environ. Chem., 2, 299-303, https://doi.org/10.1071/en05079, 2005.

Saiz-Lopez, A., Plane, J. M. C., and Shillito, J. A.: Bromine oxide in the mid-latitude marine boundary layer, Geophys. Res. Lett., 31, https://doi.org/10.1029/2003GL018956, 2004.
Sutton, H. C., and Downes, M. T.: Reactions of the HO$_2$ radical in aqueous solution with bromine and related compounds, J. Chem. Soc., Faraday Trans. 1, 68, 1498-1507, https://doi.org/10.1039/F19726801498, 1972.
Sutton, H. E., Adams, G. E., Boag, J. W., and Michael, B. D.: Radical yields and kinetics in the pulse radiolysis of potassium bromide solutions, in: International Symposium on Pulse Radiolysis, edited by: Ebert, M., Keene, J. P., and Swallow, A. J., Academic Press, Manchester, England, 61-81, 1965.
Szírovicsa, L., and Boga, E.: The kinetics of the bromate-sulfite reaction system, Int. J. Chem. Kinet., 30, 869-874, https://doi.org/10.1002/(SICI)1097-4601(1998)30:12<869::AID-Kin1>3.0.CO;2-0, 1998.
Thiault, G., Mellouki, A., and Le Bras, G.: Kinetics of gas phase reactions of OH and Cl with aromatic aldehydes, Phys. Chem. Chem. Phys., 4, 2194-2199, https://doi.org/10.1039/b200609j, 2002.
Thornton, A. T., and Laurence, G. S.: Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis, J. Chem. Soc, Dalton Trans., 804-813, https://doi.org/10.1039/DT730000804, 1973.
Turnipseed, A. A., Barone, S. B., and Ravishankara, A. R.: Reactions of CH$_3$S and CH$_3$SOO with O$_3$, NO$_2$, and NO, J. Phys. Chem., 97, 5926-5934, https://doi.org/10.1021/j100124a025, 1993.
Urbanski, S. P., and Wine, P. H.: Spectroscopic and kinetic study of the Cl-S(CH$_3$)$_2$ adduct, J. Phys. Chem. A, 103, 10935-10944, https://doi.org/10.1021/Jp992682m, 1999.
Valkai, L., and Horvath, A. K.: Compatible Mechanism for a Simultaneous Description of the Roebuck, Dushman, and Iodate-Arsenous Acid Reactions in an Acidic Medium, Inorg. Chem., 55, 1595-1603, https://doi.org/10.1021/acs.inorgchem.5b02513, 2016.
Vikis, A. C., and Macfarlane, R.: Reaction of Iodine with Ozone in the Gas-Phase, J. Phys. Chem., 89, 812-815, https://doi.org/10.1021/j100251a019, 1985.
Volkamer, R., Baidar, S., Campos, T. L., Coburn, S., DiGangi, J. P., Dix, B., Eloranta, E. W., Koenig, T. K., Morley, B., Ortega, I., Pierce, B. R., Reeves, M., Sinreich, R., Wang, S., Zondlo, M. A., and Romashkin, P. A.: Aircraft measurements of BrO, IO, glyoxal, NO$_2$, H$_2$O, O$_2$–O$_2$ and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements, Atmos. Meas. Tech., 8, 2121-2148, https://doi.org/10.5194/amt-8-2121-2015, 2015.
von Glasow, R., Sander, R., Bott, A., and Crutzen, P.: Modeling halogen chemistry in the marine boundary layer - 1. Cloud-free MBL, J. Geophys. Res.-Atmos., 107, https://doi.org/10.1029/2001JD000942, 2002.
Von Gunten, U., and Oliveras, Y.: Advanced oxidation of bromide-containing waters: Bromate formation mechanisms, Environ. Sci. Technol., 32, 64-70, https://doi.org/10.1021/es970477j, 1998.
Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L.: The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C$_1$ and C$_2$ organic substances in SI units, J. Phys. Chem. Ref. Data, 11, 1982.
Wallington, T. J., Gierczak, C. A., Ball, J. C., and Japar, S. M.: Fourier-Transform Infrared Study of the Self Reaction of C$_2$H$_5$O$_2$ Radicals in Air at 295 K, Int. J. Chem. Kinet., 21, 1077-1089, https://doi.org/10.1002/kin.550211109, 1989.
Wang, L., Arey, J., and Atkinson, R.: Reactions of chlorine atoms with a series of aromatic hydrocarbons, Environ. Sci. Technol., 39, 5302-5310, https://doi.org/10.1021/es0479437, 2005.
Wang, T. X., Kelley, M. D., Cooper, J. N., Beckwith, R. C., and Margerum, D. W.: Equilibrium, Kinetic, and UV-Spectral Characteristics of Aqueous Bromine Chloride, Bromine, and Chlorine Species, Inorg. Chem., 33, 5872-5878, https://doi.org/10.1021/ic00103a040, 1994.
Wang, T. X., and Margerum, D. W.: Kinetics of Reversible Chlorine Hydrolysis - Temperature-Dependence and General Acid Base-Assisted Mechanisms, Inorg. Chem., 33, 1050-1055, https://doi.org/10.1021/ic00084a014, 1994.
Wang, W., Ezell, M. J., Ezell, A. A., Soskin, G., and Finlayson-Pitts, B. J.: Rate constants for the reactions of chlorine atoms with a series of unsaturated aldehydes and ketones at 298 K: structure and reactivity, Phys. Chem. Chem. Phys., 4, 1824-1831, https://doi.org/10.1039/b111557j, 2002.
Wang, Y. L., Nagy, J. C., and Margerum, D. W.: Kinetics of Hydrolysis of Iodine Monochloride Measured by the Pulsed-Accelerated-Flow Method, J. Am. Chem. Soc., 111, 7838-7844, https://doi.org/10.1021/ja0202a026, 1989.
Wudl, F., Lightner, D. A., and Cram, D. J.: Methanesulfinic acid and its properties, J. Am. Chem. Soc., 89, 4099-4101, https://doi.org/10.1021/ja00992a026, 1967.
Young, H. A.: The Reduction of Bromic Acid by Hydrobromic Acid in the Presence of Hydrogen Peroxide, J. Am. Chem. Soc., 72, 3310-3312, https://doi.org/10.1021/ja01163a542, 1950.
Zehavi, D., and Rabani, J.: Oxidation of aqueous bromide ions by hydroxyl radicals. Pulse radiolytic investigation, J. Phys. Chem., 76, 312-319, https://doi.org/10.1021/j100647a006, 1972.
Zellner, R., Herrmann, H., Exner, M., Jacobi, H.-W., Raabe, G., and Reese, A.: Formation and Reactions of Oxidants in the Aqueous Phase, in: Heterogeneous and Liquid Phase Processes, edited by: Warneck, P., Springer Verlag, Berlin, Germany, 146-152, 1996.
Zhu, L., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of aqueous phase reactions of hydroxyl radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate, Aquat. Sci., 65, 425-435, https://doi.org/10.1007/s00027-003-0673-6, 2003a.
Zhu, L., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of aqueous phase reactions of SO$_4^-$ radicals with dimethylsulfoxide, dimethylsulfone, and methanesulfonate, J. Photochem. Photobiol. A: Chem., 157, 311-319, https://doi.org/10.1016/s1010-6030(03)00064-9, 2003b.
Zhu, L.: Aquatic phase reaction kinetics of organic sulfur compounds of atmospheric interest, Dissertation, Georgia Institute of Technology, 2004.
Zhu, L., Nicovich, J. M., and Wine, P. H.: Kinetics studies of aqueous phase reactions of Cl atoms and Cl$_2^-$ radicals with organic sulfur compounds of atmospheric interest, J. Phys. Chem. A, 109, 3903-3911, https://doi.org/10.1021/jp044306u, 2005.
Zhu, L., Nenes, A., Wine, P. H., and Nicovich, J. M.: Effects of aqueous organosulfur chemistry on particulate methanesulfonate to non–sea salt sulfate ratios in the marine atmosphere, J. Geophys. Res., 111, https://doi.org/10.1029/2005jd006326, 2006.

Zuo, Z. H., and Katsumura, Y.: Formation of hydrated electron and BrO₃ radical from laser photolysis of BrO₃⁻ aqueous solution, J. Chem. Soc. Faraday Trans., 94, 3577-3580, https://doi.org/10.1039/a806861e, 1998.