The Stem Bark of *Kalopanax pictus* Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-κB Suppression

Soo Young Bang1, Ga-Young Park1, Sun Young Park1, Ji-Hee Kim1, Yun Kyoung Lee1, Sang-Joon Lee2 and YoungHee Kim1*

1Department of Molecular Biology, and 2Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 609-735, Korea

Background: The stem bark of *Kalopanax pictus* (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. **Methods:** We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-κB, Nrf2 and MAPK activation in mouse peritoneal macrophages. **Results:** The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-κB activation, phosphorylation and degradation of IκB-α, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. **Conclusion:** These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-κB suppression and HO-1 induction.

[Immune Network 2010;10(6):212-218]

INTRODUCTION

Kalopanax pictus (KP) NAKAI (Araliaceae) is distributed in Korea, Japan, and China. The stem bark of KP has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus (1). The constituents such as saponins, polyacetylenes, phenylpropanoid glycosides, lignans, and simple phenolic glycosides have been isolated from this plant (2). Kalopanaxsaponin A, the constituent of KP, has been reported to inhibit iNOS, COX-2 expression, and TNF-alpha release *in vitro* (1). However, the underlying mechanism of KP function has remained to be characterized so far.

Nitric oxide (NO) is a free radical with multiple effects on various organ systems. The most prominent physiological actions of NO as a biological mediator include cGMP-dependent vasodilation, neural communication, host defense, inflammation, immune suppression and blood clotting (3). NO is produced in physiological and pathophysiological conditions by NO synthase (NOS), and inducible NOS (iNOS) is induced by inflammatory cytokines and/or bacterial lipopolysaccharide (LPS) in various cell types including macrophages. A large amount of NO, particularly synthesized by iNOS, induces an inflammatory response to inhibit the growth of invading microorganisms and tumor cells. This strong inflammatory response to foreign cells could also cause further damage for the neighboring cells and tissues of the host. Therefore isozyme specific inhibitors of NOS are essential for therapeutic purposes and drugs that specifically inhibit iNOS could be useful in treating diseases mediated by NO overproduction (4). A major transcription factor that regulates iNOS gene expression is NF-κB. In unstimulated cells, NF-κB is present in the cytosol bound to the inhibitory protein I kappa B (IκB). In response to stimulation such as LPS, IκB is rapidly ubiquitinated and degraded by 26S proteasome complex. The
Heme Oxygenase-1 Induction and NF-κB Suppression by Kalopanax pictus
Soo Young Bang, et al.

Preparation of extract
The stem bark of KP was purchased from a local herb store, Kwang Myoung Herb Medicine (Pusan, Korea) in April 2005. The roots were identified and authenticated by Professor W. S. Ko, College of Oriental Medicine, Dongeui University (Pusan, Korea). A voucher specimen (number KP-05-04) has been deposited at the Department of Molecular Biology, Pusan National University, Busan, Korea. The dry roots (300 g) were extracted with distilled water at 100°C for 4 h. The extract was filtered through 0.45 μm filter and freeze-dried (yield, 27 g) and kept at 4°C. The dried extract was dissolved in phosphate buffered saline (PBS) and filtered through 0.22 μm filter before use.

Macrophage culture
C57BL/6 mice purchased from Dae Han Laboratory Animal Center (Korea) were used between 8 to 12 weeks of age (25～30 g). Thioglycollate (TG) broth (Brewer, DIFCO, Detroit, MI)-elicited macrophages were harvested 3 days after intraperitoneal injection of 2.5 ml TG into mice and isolated as reported previously (12). Murine macrophage RAW 264.7 cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with glutamine (1 mM) and 10% FBS.

Measurement of nitrite concentration
NO synthesis in cell cultures was measured by a microplate assay method. To measure nitrite, 100 μl aliquots were removed from conditioned medium and incubated with an equal volume of the Griess reagent (1% sulfanilamide/0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride/2.5% H3PO4) at room temperature for 10 min. Nitrite concentration was determined by measuring the absorbance at 540 nm with a Vmax 96-well microplate spectrophotometer (Molecular Devices, Menlo Park, CA). The sodium nitrite was used as a standard.

Cell viability assay
The cytotoxicity of KP was assessed using the microculture tetrazolium (MTT)-based colorimetric assay. The remaining cells after Griess reaction were used for MTT assay. 5 μl of MTT solution (5 mg/ml) was added to each well (final concentration is 62.5 μg/ml). After incubation for 3 h at 37°C and 5% CO2, the supernatant was removed and the formed formazan crystals in viable cells were solubilized with 150 μl of DMSO. The absorbance of each well was then read at 570 nm using microplate reader.
Preparation of nuclear extract and electrophoretic mobility shift assay

Nuclear extracts were prepared as described previously (12). Electrophoretic mobility shift assay (EMSA) of nuclear extracts was performed according to the manufacturer’s instructions (Promega, Madison, WI) with some modifications. In brief, the probe consisted of a double-stranded oligonucleotide containing the consensus binding sequence for NF-κB (5'-AGTT-GAGGGAGCTTCCAGGC-3', Promega, Madison, WI) was end-labeled with [γ-32P]ATP (3,000 Ci/mmol at 10 μCi/ml) using T4 polynucleotide kinase. Nuclear extracts were incubated with gel shift binding buffer (10 mM HEPES, pH 7.9, 50 mM KCl, 0.2 mM EDTA, 2.5 mM DTT, 10% glycerol, 0.05% NP-40, 0.25 mg/ml poly dI/poly dC, protease inhibitor cocktail) for 10 min at room temperature and then the mixture was incubated with 32P-labeled probe for 20 min at room temperature. The incubation mixture was loaded onto non-denaturating gel and run in 0.25× Tris/borate/EDTA buffer. Gels were dried and exposed to X-ray film at −70°C.

Western blot analysis

The cells were washed with phosphate buffered saline (PBS) three times and scraped off and lysed with lysis buffer (1% Triton X-100, 1% deoxycholate). Protein concentration of lysates was determined and equal amounts of protein were separated electrophoretically using 10% SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), and then the gel was transferred to 0.45 μm nitrocellulose paper. The blot was incubated with anti-iNOS, IκB-α, HO-1, Nrf2, β-tubulin antibody (Santa Cruz Biotechnology), anti-phospho-IκB-α, JNK, phospho-JNK, ERK1/2, phospho-ERK1/2 antibody (Cell Signaling Technology), and secondary antibody and then detected by the enhanced chemiluminescence detection system according to the recommended procedure (Amersham Co.).

Statistical analysis

All results were expressed as means±SE. Each experiment was repeated at least three times. Statistical significances were compared between each treated group and analyzed by the paired Student’s t-test. Data with p<0.05 were considered statistically significant.

RESULTS

KP inhibits NO synthesis and iNOS expression in macrophages

To investigate the anti-inflammatory effect of KP, we examined the effect of KP on NO synthesis. TG-elicited mouse peritoneal macrophages were incubated with KP for 1 hr and stimulated with 0.1 μg/ml LPS for 24 h. The amount of NO released into culture medium was measured by the method of Griess. Whereas LPS-treated cells produced a large amount of NO, KP suppressed NO release into culture supernatant in a dose-dependent manner (Fig. 1A). To determine whether the decreased nitric oxide synthesis is correlated with iNOS expression, we analyzed the amount of iNOS by Western blot analysis. TG-elicited mouse peritoneal macrophages were treated with KP as mentioned above. The level of iNOS was dramatically reduced by KP in a dose-dependent manner (Fig. 1B). On the other hand, cell viability was not affected by KP as measured by MTT assay (Fig. 1C). These results suggest that KP inhibits NO release by affecting the iNOS expression level without affecting cell viability.

KP suppresses NF-κB activity and phosphorylation/degradation of IκB-α in macrophages

Since iNOS promoter contains 2 binding sites for transcription factor NF-κB and NF-κB plays a critical role in LPS-induced iNOS expression, we investigated whether KP suppresses iNOS expression through the regulation of NF-κB activity. TG-elicited mouse peritoneal macrophages were incubated with KP for 1 hr and stimulated with 0.1 μg/ml LPS for 30 minutes. A low level of NF-κB/DNA complex was observed in unstimulated macrophages, while a large quantity of NF-κB/DNA complex was induced by LPS treatment. This increased NF-κB binding affinity was inhibited by KP in a dose-dependent manner (Fig. 2A). These results suggest that KP suppresses iNOS expression though inhibition of NF-κB activity.

To analyze whether KP affect NF-κB signaling pathway, we investigated the effects of KP on upstream signaling pathway of NF-κB, that is, IκB-α degradation. TG-elicited mouse peritoneal macrophages were pretreated with KP for 1 hr and stimulated with LPS (0.1 μg/ml) for 15 min, and then the levels of IκB-α or phospho-IκB-α protein were examined by Western blotting. As shown in Fig. 2B, IκB-α was degraded in response to LPS, but KP suppressed the degradation of IκB-α in a dose-dependent manner. Incubation of macrophages with LPS for 15 min also caused significant degradation of IκB-α.
Heme Oxygenase-1 Induction and NF-κB Suppression by Kalopanax pictus
Soo Young Bang, et al.

Figure 1. Effect of KP on the NO secretion and iNOS expression in TG-elicited mouse peritoneal macrophages. (A) Cells were incubated with various concentrations of KP for 1 h and then stimulated with 0.1 μg/ml LPS for 24 h at 37°C. The amount of nitrite released was measured by the method of Griess. Values are means±S.E. of three independent experiments. *p<0.05 and †p<0.01 vs LPS-treated group. (B) Cells were treated with KP and/or LPS as mentioned above and equal cytosolic extracts were analyzed by Western blotting with anti-iNOS antibody. Western blot detection of β-tubulin was estimated protein-loading control for each lane. (C) Cells were incubated with various concentration of UR in presence of 0.1 μg/ml of LPS for 24 h. Then cell viability was measured by MTT assay as described in Materials and Methods. Data represent the relative viability to control group and are expressed as the means±S.E. of three independent experiments.

Figure 2. Inhibitory effect of KP on NF-κB activity and phosphorylation/degradation of IκB-α. (A) Effect of KP on DNA binding activity of NF-κB. TG-elicited mouse peritoneal macrophages were incubated with various concentrations of KP for 1 h, and then stimulated with LPS (0.1 μg/ml) for 30 min. Nuclear proteins were extracted and assayed for NF-κB DNA binding affinity by EMSA as described in Materials and methods. ns, non-specific band. (B) Effect of KP on LPS-stimulated phosphorylation and degradation of IκB-α. Cells were incubated with various concentrations of KP for 1 hr, and then stimulated with 0.1 μg/ml LPS for 15 min. Cells were harvested and equal cytosolic extracts were analyzed by Western blotting with anti-IκB-α and -phospho-IκB-α. Western blot detection of β-tubulin was estimated protein-loading control for each lane.

phosphorylation of IκB-α, but KP markedly inhibited the phosphorylation of IκB-α. These results indicate that KP blocks NF-κB translocation into nucleus through suppression of IκB-α phosphorylation and degradation,
KP inhibits LPS-induced MAPK activities
To elucidate the molecular target of KP in further upstream signaling pathway, we examined the effect of KP on MAPKs activities which regulate the function of NF-κB (13). Since extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) have been known to be phosphorylated and activated in response to LPS, the activities were monitored by its phosphorylation, TG-elicited mouse peritoneal macrophages were treated with indicated concentrations of KP for 1 h and then stimulated with 0.1 μg/ml LPS for 15 min. KP suppressed LPS-induced activation of ERK1/2 and JNK in a dose-dependent manner (Fig. 3), while the amount of kinases was unaffected by either LPS or KP treatment.

HO-1 expression is induced by KP in macrophages
It is known that by-products of HO-1 have anti-inflammatory effect. To determine whether KP exhibit anti-inflammatory effect through the induction of HO-1, HO-1 expression by KP was examined, TG-elicited mouse peritoneal macrophages were treated with KP for 24 h. KP induced HO-1 expression in a dose-dependent manner (Fig. 4A).

To determine whether KP-induced HO-1 expression is caused by Nrf2 transcription factor, we examined the effect of KP on Nrf2 nuclear translocation, TG-elicited mouse peritoneal macrophages were treated with KP and cytosolic and nuclear extracts were separately harvested. The amount of nuclear Nrf2 was increased by KP in dose-dependent and time-dependent manners, whereas the amount of cytosolic Nrf2 did not showed prominent changes (Fig. 4B).

DISCUSSION
The application of medicinal herbs dates back to the beginning of civilization, and interestingly, medicinal herbs are still routinely used by most of world’s population. Over time, many information has been accumulated by using these herbs in practice, and it is experientially proved that these herbs have the effect of pain alleviation, life extension and disease prevention. Of these, the stem bark of KP has been used for different remedies and expresses specific therapeutic effects.

![Figure 3](image-url) Effect of KP on ERK1/2 and JNK activity in LPS-stimulated macrophages. TG-elicited mouse peritoneal macrophages were treated with indicated concentrations of KP for 1 h and stimulated with 0.1 μg/ml LPS for 15 min. Equal amount of cell extracts was analyzed by western blotting with anti-phospho-ERK1/2 or -phospho-JNK antibody. Western blot detection of non-phosphorylated kinases was estimated protein-loading control for each lane.

![Figure 4](image-url) Effect of KP on HO-1 expression and nuclear translocation of in macrophages. (A) TG-elicited mouse peritoneal macrophages were incubated with indicated concentrations of KP for 24 h. HO-1 protein levels of cytosolic extracts were analyzed by Western blotting. (B) Cells were incubated with indicated concentrations of KP for 3 h and the levels of Nrf2 in nuclear extracts were analyzed by Western blotting. Western blot detection of β-tubulin was estimated protein-loading control for each lane.
in China and Korea. The stem bark of KP is mainly used for treating neuralgia, rheumatic arthritis, lumbago, furuncle, carbuncle, wound, diarrhea and scabies (2). It has been reported that hederagenin monodesmosides and bisdesmosides isolated from the stem bark of KP have antimitogenic and cytotoxic activity (14), Kalopanaxsaponin A and pictoside A from the stem bark of KP reduce vascular permeability (2). The other constituent of KP, α-hederin methyl ester, showed anti-inflammatory activity in rats and antiarthritic activity in rats and mice (15), Kalopanaxsaponin A was reported to have anti-rheumatoidal (16-19), anti-tumor (20), anti-diabetic (21), antifungal (22) activities, Kalopanaxsaponins A inhibits the production of NO, prostaglandin E2 (PGE2) and TNF-α in macrophage cell line RAW 264.7 (1). In this study, KP significantly inhibited LPS-induced NO production and iNOS expression in mouse peritoneal macrophages (Fig. 1), which is consistent with the results of Kim et al. (1). Because KP did not show cytotoxic effects, inhibition of iNOS expression might be specific. Major transcriptional regulators of iNOS gene are the NF-κB family of transcription factors, which are also key regulators of a variety of genes involved in immune and inflammatory responses. Since dysregulation of NF-κB function is associated with inflammation, a development of drug that control NF-κB is one of promising candidates for the therapeutic strategy in the treatment of inflammatory disease. Our study showed that KP significantly inhibited NF-κB DNA binding activity in macrophages. Although it was reported that the combined extracts containing KP and other herb medicine suppress NF-κB DNA binding activity in RAW 264.7 cells (23), the effect of KP on NF-κB activity has remained to be clarified. Moreover, our study showed that KP suppressed not only the LPS-stimulated degradation but also phosphorylation of IκB-α. The phosphorylation of N-terminal regulatory serines on IκB-α and IκB-α is known to be catalyzed by IKK. Thus, KP could regulate the IKK activity. Since MAPKs have been shown to be involved in the LPS-mediated induction of many inflammatory genes including iNOS gene and are important for the activation of NF-κB (13), we investigated the effect of KP on ERK1/2 and JNK activation in LPS-stimulated mouse peritoneal macrophages, KP greatly inhibited the LPS-induced ERK1/2 and JNK after LPS application. These results suggest that KP inhibits LPS-induced NF-κB activation by down-regulating ERK1/2 and JNK.

HO breaks down free heme made from intracellular heme-containing proteins. Two types of isoforms have been identified; HO-1 and 2. Whereas HO-2 is a constitutively expressed form, HO-1 is an inducible form that expressed by either inflammatory or oxidative stress (5). Recently, many reports showed that HO-1 expression is associated with reduced inflammation. HO-1 plays a critical protective role during the development of intestinal inflammation (24,25), HO-1 attenuates metabolic syndrome in obese mice (26), LPS-induced lung injury (27), cardiovascular disease (28) and liver disease (29). HO-1-deficient mice develop increased end-organ damage and have increased mortality after LPS administration (30). Human HO-1 deficiency presents with severe hemolysis, asplenia, inflammation and nephritis (31). In addition, LPS-induced iNOS expression is reduced by HO-1 expression (24). In this study, HO-1 expression was increased by KP, and nuclear translocation of Nrf2, a major transcription factor of HO-1 expression, also induced by KP. These results suggest that KP exhibit anti-inflammatory effect by suppressing NO production via HO-1 induction.

In conclusion, we demonstrated that KP inhibited NO release and iNOS expression in LPS-stimulated macrophages, and that these effects are mediated by inhibition of the activity of IκB/NIκB and induction of HO-1. Our results provide a molecular basis for understanding the inhibitory effects of KP on endotoxin-mediated inflammation. As the effect of KP is mediated via inhibition of NF-κB and HO-1 induction, KP could be developed into potent anti-inflammatory drugs and be used in pathological processes in which NF-κB and HO-1 are involved.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research Foundation Grant funded by Korea Government (MOEHRD, Basic Research Promotion Fund) (KRF-2005-204-C00050).

CONFLICTS OF INTEREST

The author have no financial conflict of interest.

REFERENCES

1. Kim YK, Kim RG, Park SJ, Ha JH, Choi JW, Park HJ, Lee KT: In vitro anti-inflammatory activity of kalopanaxsaponin A isolated from Kalopanax pictus in murine macrophage RAW 264.7 cells, Biol Pharm Bull 25:472-476, 2002
2. Li DW, Lee EB, Kang SS, Hyun JE, Whang WC: Activity-guided isolation of saponins from Kalopanax pictus with
anti-inflammatory activity, Chem Pharm Bull (Tokyo) 50; 900-903, 2002
3. Moncada S, Palmer RM, Higgs EA: Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol Rev 43;109-142, 1991
4. Southan C, Szabó C: Selective pharmacological inhibition of distinct nitric oxide synthase isoforms, Biochem Pharma col 51;383-394, 1996
5. Pae HO, Chung HT: Heme oxygenase-1: its therapeutic roles in inflammatory diseases, Immune Netw 9;12-19, 2009
6. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wyss M, Davis RJ, Flavell RA, Choi AM: Carbon monoxide has anti-inflammatory effects involving the nitric-activated protein kinase pathway, Nat Med 6;422-428, 2000
7. Suh GY, Jin Y, Yi AK, Wang XM, Choi AM: GCAAT/enhancer-binding protein mediates carbon monoxide-induced suppression of cyclooxygenase-2, Am J Respir Cell Mol Biol 35;220-226, 2006
8. Yamashita K, McDaid J, Ollinger R, Tsui TY, Berberat PO, Usheva A, Csizmadia E, Smith RN, Soares MP, Bach FH: Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts, FASEB J 18;765-767, 2004
9. Saradý-Andrews JK, Liu F, Gallo D, Nakao A, Overhaus M, Ollinger R, Choi AM, Otterbein LE: Biliverdin administration protects against endotoxin-induced acute lung injury in rats, Am J Physiol Lung Cell Mol Physiol 289;L1131-L1137, 2005
10. Patine A, Elz-Vesper B, Blaszczyk R, Immenschuh S: Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential, Biochem Pharmacol 80;1895-1903, 2010
11. Kundu JK, Suh YJ: Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis, Pharmac Res 27;999-1013, 2010
12. Kim Y, Moon JS, Lee KS, Park SY, Cheong J, Kang HS, Lee HY, Kim HD: Ca2+/-calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-kappaB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells, Biochem Biophys Res Commun 314;695-703, 2004
13. Bubici C, Papa S, Dean K, Franzoso G: Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance, Oncogene 25;6731-6748, 2006
14. Lee KT, Solin IC, Park HJ, Kim DW, Jung GO, Park KY: Essential moiety for antiinflammatory and cytotoxic activity of hederagenin monodesmosides and bisdesmosides isolated from the stem bark of Kalopanax pictus, Planta Med 66;329-332, 2000
15. Li DW, Hyun JE, Jeong CS, Kim YS, Lee EB: Antinflammato ry activity of alpha-hecin methyl ester from the alkaline hydrolysate of the butanol fraction of Kalopanax pictus bark extract, Biol Pharm Bull 26;429-433, 2003
16. Choi J, Huh K, Kim SH, Lee KT, Kwon SH, Park HJ: Toxicology of Kalopanax pictus extract and hematological effect of the isolated anti-rheumatoidal kalopanaxsaponin A on the Freunds complete adjuvant reagent-treated rat, Arch Pharm Res 24;119-125, 2001
17. Choi J, Huh K, Kim SH, Lee KT, Lee HK, Park HJ: Kalopanaxsaponin A from Kalopanax pictus, a potent anti-oxidant in the rheumatoidal rat treated with Freund's complete adjuvant reagent, J Ethnopharmacol 79;113-118, 2002
18. Choi J, Huh K, Kim SH, Lee KT, Park HJ, Han YN: Antinociceptive and anti-rheumatoidal effects of Kalopanax pictus extract and its saponin components in experimental animals, J Ethnopharmacol 79;159-204, 2002
19. Kim DH, Bae EA, Han MJ, Park HJ, Choi JW: Metabolism of kalopanaxsaponin K by human intestinal bacteria and antirheumatoid arthritis activity of their metabolites, Biol Pharm Bull 25;68-71, 2002
20. Park HJ, Kwon SH, Lee JH, Lee KH, Myamoto K, Lee KT: Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides, Planta Med 67;118-121, 2001
21. Park HJ, Kim DH, Choi JW, Park JH, Han YN: A potent anti-diabetic agent from Kalopanax pictus, Arch Pharm Res 21;24-29, 1998
22. Kim DW, Bang KH, Rhee YH, Lee KT, Park HJ: Growth inhibitory activities of kalopanaxsaponins A and I against human pathogenic fungi, Arch Pharm Res 21;688-691, 1998
23. Kim IT, Park YM, Shin KM, Ha J, Choi J, Jung Hg, Park HJ, Lee KT: Anti-inflammatory and anti-oxicoic effects of the extract from Kalopanax pictus, Pueraria thunbergiana and Rhus verniciflua, J Ethnopharmacol 94;165-173, 2004
24. Vareille M, Rannou F, Thélier N, Glasser AL, de Sablé T, Martin C, Gobert AP: Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes, J Immunol 180;5720-5726, 2008
25. Takagi T, Naito Y, Uchiyama K, Yoshikawa T: The role of heme oxygenase and carbon monoxide in inflammatory bowel disease, Redox Rep 15;193-201, 2010
26. Burgess A, Lee M, Vanella I, Kim DH, Rezzani R, Rodella L, Sodhi K, Carnestraro M, Martasek P, Peterson SJ, Kappas A, Abraham NG: Adipoxyhe heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice, Hypertension 56;1124-1130, 2010
27. Yin H, Li X, Gong Q, Jin X, Gu H, Yuan B, Zhang B, Feng Z, Gong F, Zhu J: Heme oxygenase-1 upregulation improves lipopolysaccharide-induced acute lung injury involving suppression of macrophage migration inhibitory factor, Mol Immunol 47;2443-2449, 2010
28. Wu ML, Ho YC, Yet SF: A central role of heme oxygenase-1 in cardiovascular protection, Antioxid Redox Signal 2010 [Epub ahead of print]
29. Mandal P, Pritchard MT, Nagy LE: Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway, World J Gastroenterol 16;330-1336, 2010
30. Wiesel P, Patel AP, DiFonzo N, Marria PB, Sim CU, Pellacani A, Maemura K, LeBlanc BW, Marino K, Doenschuk CM, Yet SF, Lee ME, Perrelli MA: Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice, Circulation 102;3015-3022, 2000
31. Radhakrishnan N, Yadav SP, Sachdeva A, Pruthi PK, Sawhney S, Pipilani T, Wada T, Yachie A: Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia, J Pediatr Hematol Oncol 33;74-78, 2011