Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 mRNA Vaccine in Patients With Lymphoid Malignancy or Anti-CD20 Antibody Therapy: A Systematic Review and Meta-Analysis

Yusuke Ito, 1 Akira Honda, 1 Mineo Kurokawa 1,2

Abstract

Messenger RNA (mRNA) vaccines have been widely used for the prevention of coronavirus disease 2019 (COVID-19). This meta-analysis of 52 articles demonstrated that lymphoid malignancies and anti-CD20 antibody therapy impaired humoral response.

Background: The humoral response to vaccination in individuals with lymphoid malignancies or those undergoing anti-CD20 antibody therapy is impaired, but details of the response to mRNA vaccines to protect against COVID-19 remain unclear. This systematic review and meta-analysis aimed to characterize the response to COVID-19 mRNA vaccines in patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy. Materials and Methods: A literature search retrieved 52 relevant articles, and random-effect models were used to analyze humoral and cellular responses. Results: Lymphoid malignancies and anti-CD20 antibody therapy for non-malignancies were significantly associated with lower seropositivity rates (risk ratio 0.60 [95% CI 0.53-0.69]; risk ratio 0.45 [95% CI 0.39-0.52], respectively). Some subtypes (chronic lymphocytic leukemia, treatment-naïve chronic lymphocytic leukemia, myeloma, and non-Hodgkin's lymphoma) exhibited impaired humoral response. Anti-CD20 antibody therapy within 6 months of vaccination decreased humoral response; moreover, therapy > 12 months before vaccination still impaired the humoral response. However, anti-CD20 antibody therapy in non-malignant patients did not attenuate T cell responses. Conclusion: These data suggest that patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy experience an impaired humoral response, but cellular response can be detected independent of anti-CD20 antibody therapy. Studies with long-term follow-up of vaccine effectiveness are warranted (PROSPERO registration number: CRD42021265780).

Clinical Lymphoma, Myeloma and Leukemia, Vol. 22, No. 8, e691–e707 © 2022 Elsevier Inc. All rights reserved.

Keywords: Cellular response, Humoral response, Seropositivity, CLL, B-cell target therapy

Introduction

Individuals with hematological malignancies are highly susceptible to severe coronavirus disease 2019 (COVID-19). 1,2 The risk for death predominately among the hospitalized adult population has been reported to be as high as 34%. 3 Patients with chronic lymphocytic leukemia (CLL), 4,5 myeloma, 6,7 or lymphoma 8 are likely to develop serious symptoms due to immunological abnormalities caused by the disease itself and the corresponding immunosuppressive therapies. 7,10 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 receptors expressed on oral mucosa epithelial cells and lung alveolar type II cells through the receptor binding domain in its spike protein. 11-13 Messenger RNA (mRNA) vaccines targeting the spike protein have been rapidly developed, 14,15 and two, BNT162b2 16 and mRNA-1273, 17 conferred approximately 95% protection against COVID-19 in clinical trials. However, immunocompromised subjects were excluded from these trials; thus, the efficacy of mRNA vaccines in those with hematological malignancies remains under investigation. Lymphoid malignancies and B cell depletion agents, such as anti-CD20 antibody, have been shown to attenuate conventional vaccine effectiveness. 18,19 Anti-CD20 antibody therapy is efficacious against lymphoma, as well as multiple sclerosis and rheumatic diseases, and some guidelines for rheumatic diseases recommend delaying the administration of vaccines for 5 to 6 months after anti-CD20 therapy to maximize humoral response 20,21; nevertheless, evidence for mRNA vaccines remains insufficient in this regard.

Neutralizing antibodies generated by the humoral response exert immune protection, 22 while the SARS-CoV-2-specific cellular response is also essential for viral elimination and prevention of disease aggravation. 23-25 It remains controversial whether...
A Systematic Review and Meta-Analysis

Figure 1 PRISMA flow diagram of study selection. After the screening of titles and abstracts of 493 articles, 80 articles were considered to be relevant. Among them, 28 articles were excluded due to several reasons, and 52 articles were included for the analysis.

lymphoid malignancies or B cell depletion therapies attenuate cellular responses to the vaccine, and the interaction between T cells and B cells is indispensable for infection control.26-29 Two mRNA vaccines have been approved for use against COVID-19, and real-world data regarding the response to these vaccines in various patient types have accumulated rapidly. The present systematic review and meta-analysis investigated humoral and cellular immune responses to COVID-19 mRNA vaccines in patients with lymphoid malignancies and those who underwent treatment with anti-CD20 antibody.

Materials and Methods

Literature Search Strategy

This study was registered with PROSPERO (CRD42021265780) and performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines.30 The PubMed and World Health Organization (WHO) COVID-19 database were searched for articles published up to October 2, 2021, without language restriction using the following terms: (“lymphoid malignancy” OR “lymphoid neoplasm” OR lymphoma OR myeloma OR MM OR MGUS OR CLL OR anti-CD20 OR CD20 OR rituximab OR obinutuzumab OR ofatumumab OR ocrelizumab OR veltuzumab OR ocraratumumab OR ublituximab OR tositumomab OR ibritumomab) AND vaccin* AND (COVID-19 OR SARS-CoV-2).

Study Selection and Quality Assessment

Two authors (YI and AH) independently assessed the titles and abstracts of all articles retrieved in the electronic literature search. Subsequently, the full texts of potentially eligible articles were screened. Studies that lacked sufficient information needed to evaluate outcomes, those that analyzed data only after the first dose of mRNA vaccines, duplicate publications using overlapping patient cohorts, and case series or cohorts with < 10 patients were excluded. Any discrepancies between the authors were resolved through discussion until consensus was reached. A flow diagram of
Table 1 Characteristics of Studies Included in the Meta-Analysis

Author	Ref	Location	Disease	Total	Pos	Age	Control	Total	Pos	Age	Vaccine	Interval	Antibody	Measurement assay	Cut-off	NOS
Chiarucci M	36	Italy	Lymphoma, Myeloma after auto-HSCT	38	32	60	healthy	45	NR	NR	BNT162b2	30 d	Spike	LIAISON SARS-CoV-2 Trimeric S IgG assay (CLIA)	15 AU/mL	6
Gavriatopoulou M	37	Greece	WM	74	31	73	healthy	212	181	66	BNT162b2, AZD1222	4 wk	NAb	cPASS SARS-CoV-2 Nabs Detection Kit (ELISA)	50%	9
Shapiro LC	48	US	Lymphoid malignancy	86	71	70.5	-				BNT162b2, mRNA-1273, Ad26.COV2.S	> 2 wk	RBD	AdviseDx SARS-CoV-2 IgG II assay (CLIA)	50 AU/mL	6
Peeters M	59	Belgium	Lymphoid malignancy with RTX	29	2	63	healthy	40	40	48	BNT162b2	28 d	RBD	Wantai SARS-CoV-2 IgG (ELISA)	200 IU/mL	8
Bergman P	60	Sweden	CLL	79	50	NR	healthy	78	78	NR	BNT162b2	14 d	RBD	Elecsys Anti-SARS-CoV-2 S	0.80 U/mL	8
Terpos E	61	Greece	Lymphoid malignancy	132	58	64.6	healthy	214	204	69.8	BNT162b2	4 wk	NAb	cPASS SARS-CoV-2 Nabs Detection Kit (ELISA)	50%	9
Lim SH	62	UK	Lymphoma	55	39	69	healthy	65	65	45	BNT162b2	2-4 wk	Spike	Meso Scale Discovery (ECLIA)	0.55 BAU/mL	8
Perry C	63	Israel	B-NHL	149	73	64	healthy	65	64	66	BNT162b2	2-3 wk	RBD	Elecsys Anti-SARS-CoV-2 S	0.80 U/mL	9
Jurgens EM	64	US	Lymphoma, CLL	67	41	71	healthy	35	35	NR	BNT162b2, mRNA-1273	24.5 d	spike	ELISA	10,000	8
Thakkar A	65	US	Lymphoma with anti-CD20 Ab	23	16	67	healthy	26	26	64	BNT162b2, mRNA-1273, Ad26.COV2.S	> 7 d	RBD	AdviseDx SARS-CoV-2 IgG II assay (CLIA)	50 AU/mL	9
Benda M	38	Austria	Lymphoid malignancy	89	57	65.1	-				BNT162b2	4-5 wk	RBD	Elecsys Anti-SARS-CoV-2 S	0.82 BAU/mL	6
Henriquez S	39	France	Myeloma	60	51	69.86	healthy	20	20	NR	BNT162b2	1-2 mo	spike	S-flow SARS-CoV-2 IgG	40%	8

(continued on next page)
Table 1 (continued)

Author	Ref	Location	Disease	Total	Pos	Age	Control	Total	Pos	Age	Vaccine	Interval	Antibody	Measurement assay	Cut-off	NOS
Terpos E	40	Greece	Myeloma	276	158	74	healthy	226	183	NR	BNT162b2, AZD1222	4 wk	NAb	cPASS SARS-CoV-2 Nabs Detection Kit (ELISA)	50%	9
Maneikis K	41	Lithuania	Lymphoid malignancy	163	97	65	healthy	67	67	40	BNT162b2	7-21 d	spike (S1)	Abbott Architect SARS-CoV-2 IgG Quant II (CMIA)	50 AU/mL	8
Parry H	42	UK	CLL	55	39	69	healthy	37	36	NR	BNT162b2, ChAdOx1	18 d	spike	Dried blood spot ELISA	ratio 1	9
Stampfer SD	43	US	Myeloma	103	50	68	healthy	31	29	61	BNT162b2, mRNA-1273	14-21 d	spike	ELISA	250 IU/mL	9
Gurion R	44	Israel	Lymphoma	162	83	65	-	BNT162b2	2-6 wk	spike	Abbott Architect SARS-CoV-2 IgG Quant II (CMIA)	50 AU/mL	6			
Benjamini O	45	Israel	CLL	373	160	70	-	BNT162b2	2-3 wk	spike	Liaison SARS-CoV-2 S1/S2 IgG or Architect AdstebDx SARS-CoV-2 IgG II or RBD-IgG ELISA	15 U/mL or 50 U/mL or 1.1	6			
Avivi I	46	Israel	Myeloma	171	133	70	healthy	64	63	67	BNT162b2	14-21 d	RBD	Elecsys Anti-SARS-CoV-2 S	0.80 U/mL	9
Ghione P	47	US	Lymphoma, Myeloma	86	36	70	healthy	201	197	NR	BNT162b2, mRNA-1273, Ad26.COV2.S	2-8 wk	spike (S1)	KSL chemiluminescence immunoassay (CLIA)	1.0 COI	8
Tzarfati KH	49	Israel	Lymphoid malignancy	194	131	71	healthy	108	107	69	BNT162b2	32 d	spike	Liaison SARS-CoV-2 S1/S2 IgG (CLIA)	12 AU/mL	9
Oekelen OV	50	US	Myeloma	260	219	68	healthy	67	67	NR	BNT162b2, mRNA-1273	> 10 d	spike	Kantrao COVID-SeroKlir IgG Ab kit (ELISA)	5 AU/mL	8
Dietenbach C	51	US	Lymphoma, CLL	18	4	63	healthy	3	3	NR	BNT162b2, mRNA-1273	4-8 wk	RBD	multiplex bead-binding assay	mean +3 x s.d.	8
Pimpinelli F	52	Italy	Myeloma	42	33	73	healthy	36	36	81	BNT162b2	2 wk	spike	Liaison SARS-CoV-2 S1/S2 IgG (CLIA)	15 AU/mL	9

(continued on next page)
Author	Ref	Location	Disease	Total	Pos	Age	Control	Total	Pos	Age	Vaccine	Interval	Antibody	Measurement assay	Cut-off	NOS
Yusuke Ito et al																
Table 1 (continued)																
Roeker LE	53	US	CLL	44	23	71	-				BNT162b2, mRNA-1273	21 d	spike	Liaison SARS-CoV-2 S1/S2 IgG (CLIA)	15 AU/mL	6
Herishanu Y	54	Israel	CLL	167	66	71	healthy	52	52	68	BNT162b2	2-3 wk	RBD	Elecsys Anti-SARS-CoV-2 S	0.80 U/mL	9
Agha M	55	US	Lymphoid malignancy	63	33	71	-				BNT162b2, mRNA-1273	23 d	RBD	semi-quantitative Beckman Coulter SARS-CoV-2 platform	1.0 S/CO	6
Dhakal B	56	US	Lymphoma, Myeloma after auto-HSCT	45	27	65	-				BNT162b2, mRNA-1273, Ad26.COV2.S	>2 wk	spike (S1)	EUOIMMUN (ELISA)	NR	6
Greenberger LM	57	US	Lymphoid malignancy	1311	969	66	-				BNT162b2, mRNA-1273	14 d	RBD	Elecsys Anti-SARS-CoV-2 S	0.8 U/mL	6
Re D	58	France	Lymphoid malignancy	79	45	75.5	-				BNT162b2, mRNA-1273	3-5 wk	spike	anti-spike IgG	-	6
- Non-malignant diseases treated with anti-CD20 Ab -																
Sormani MP	66	Italy	MS	179	83	45.8	untreated MS	87	87	45.8	BNT162b2, mRNA-1273	4 wk	RBD	Elecsys Anti-SARS-CoV-2 S	0.80 U/mL	8
Disanto G	67	Switzerland	MS	56	29	56	untreated MS	13	13	51.8	BNT162b2, mRNA-1273	26 d	RBD	Abbott Architect SARS-CoV-2 IgG Quant II (CMIA)	50 AU/mL	9
Brill L	78	Israel	MS	49	20	47.9	healthy	35	35	45.3	BNT162b2	2-4 wk	RBD	Abbott Architect SARS-CoV-2 IgG Quant II (CMIA)	50 AU/mL	9
Apostolidis SA	81	US	MS	20	10	40	healthy	10	10	35	BNT162b2, mRNA-1273	25-30 d	RBD	ELISA	NR	9
Sabatino JJ	82	US	MS	35	9	46	healthy	13	13	35	BNT162b2, mRNA-1273	2 wk	RBD	Luminex assay	MFI 5.0	8
Novak F	83	Denmark, US	MS	60	22	47	-				BNT162b2	2-4 wk	RBD	Abbott Architect SARS-CoV-2 IgG Quant II (CMIA)	7.1 BAU/mL	6

(continued on next page)
Author	Ref	Location	Disease	Total	Pos	Age	Control	Total	Pos	Age	Vaccine	Interval	Antibody	Measurement assay	Cut-off	NOS
Moor MB	84	Switzerland	Autoimmunity/Cancer/Transplantation	96	47	67	healthy	29	29	54	BNT162b2, mRNA-1273	1.8 mo	spike (S1)	EUROIMMUN (ELISA)	1.1 index	8
Mrak D	85	Austria	Immune-mediated inflammatory disease	74	29	61.7	healthy	10	10	NR	BNT162b2, mRNA-1273	21.9 d	RBD	Elecsys Anti-SARS-CoV-2 S	NR	8
Ali A	86	US	MS, NMO	22	8	43.5	healthy	7	7	41.6	BNT162b2, mRNA-1273	3 wk	RBD	Siemens SARS-CoV-2 spike RBD total antibody assay (CLIA)	index value	9
Benucci M	87	Italy	RA	14	10	58	-				BNT162b2	3 wk	RBD	ThermoFisher (FEIA)	NR	6
Gadani SP	68	US	MS	39	22	47.78	untreated MS	14	14	57.42	BNT162b2, mRNA-1273, Ad26.COV2.S	4-8 wk	spike (S1)	EUROIMMUN (ELISA)	1.24	9
Prendecki M	69	UK	Autoimmune disease	75	40	53.7	healthy	70	70	41.4	BNT162b2, ChAdOx1	21 d	spike	Abbott Architect SARS-CoV-2 IgG Quant II (CMI)	7.1 BAU/mL	8
Connolly CM	70	US	AAV	44	17	69	-				BNT162b2, mRNA-1273, Ad26.COV2.S	NR	spike	Elecsys or Liaison or EUROIMMUN	NR	6
Tallantyre EC	71	UK	MS	134	33	50.2	MS without DMT	92	85	50.2	BNT162b2, ChAdOx1	4.6 wk	RBD	Dried blood spot ELISA	0.56	8
Madelon N	72	Switzerland	MS, RD	37	24	45.6	-									

(continued on next page)
Author	Ref	Location	Disease	Total	Pos	Age	Control	Total	Pos	Age	Vaccine	Interval	Antibody	Measurement assay	Cut-off	NOS
58.0	healthy	22	22	54.5	30	RBD	0.8 IU/mL	9			BNT162b2, mRNA-1273	3-4 wk	EUROIMMUN (ELISA)		NR	9
Stefanski AL	73	Germany	RA, AAV	19	13	58	healthy	30	30	57	BNT162b2, mRNA-1273, ChAdOx1	1 wk	VITROS SARS-CoV-2 total antibody (CLIA)	1 S/CO	6	
Ammitzbøll C	74	Denmark	SLE, RA	17	4	70	healthy	5			BNT162b2	> 2 wk	Abbott/Elecsys		NR	6
Guerrieri S	75	Italy	MS	16	6	43.3	-	53.5	2	2	BNT162b2, mRNA-1273	18 d	Elecsys/Siemens healthineers		NR	
Bigaut K	76	France	MS	11	3	53.5	MS without DMT	2		2	BNT162b2, mRNA-1273	2 wk	Elecsys/Euroimmun (ELISA)		index value	9
Spiera R	77	US	RD	30	10	61.3	healthy	47	46	54.3	BNT162b2	1 mo	ELISA		NR	
Achiron A	79	Israel	MS	44	10	53.2	healthy	53	52	43.4	BNT162b2, mRNA-1273	1-2 wk	ELISA		NR	
Deepak P	80	US	chronic inflammatory disease	10	5	45.5	healthy	53	52	43.4	BNT162b2, mRNA-1273	1 mo	Elecsys/Euroimmun (ELISA)		index value	9

Abbreviations: AAV = ANCA-associated vasculitis; Anti-CD20 Ab = anti-CD20 antibody; auto-HSCT = autologous hematopoietic stem cell transplantation; B-NHL = B-cell non-Hodgkin Lymphoma; CLIA = chemiluminescence immunoassay; CLL = chronic lymphocytic leukemia; CMIA = chemiluminescent microparticle immunoassay; DMT = disease modifying therapy; ECLIA = electrochemiluminescence immunoassay; ELISA = enzyme-linked immunosorbent assay; FEIA = fluorimetric enzyme-linked immunoassay; Interval = interval from second vaccination to antibody test; MS = multiple sclerosis; Nab = neutralizing antibody; NM = neuromyelitis optica; NOS = Newcastle-Ottawa scale; NR = not reported; Pos = positive number; RA = rheumatoid arthritis; RBD = receptor binding domain; RD = rheumatic disease; RTX = rituximab; SLE = systemic lupus erythematosus; Total = total number; UK = United Kingdom; US = United States; WM = Waldenström macroglobulinemia.
the data extraction process is presented in Figure 1. The Newcastle-Ottawa scale was used to assess the quality of non-randomized trials.

Endpoints
The primary outcome in the present review was the risk ratio (RR) of the seropositivity rates of SARS-CoV-2-specific antibody after the second dose of mRNA vaccine. The secondary outcome was the RR of SARS-CoV-2-specific T cell-positive rates after vaccination. Regarding the interval from anti-CD20 antibody therapy to the first vaccine dose, data were extracted from figures whenever possible. The focus was on mRNA vaccines (BNT162b2 and mRNA-1273); however, some articles included adenoviral vaccines: AZD1222 (ChAdOx1 nCoV-19) and Ad26.Cov2.S.32

Statistical Analysis
Data were analyzed using EZR (Easy R) statistical software.33 For each trial, the vaccine response in patients and controls was calculated using RRs. Data were entered into the EZR software for statistical analysis. An RR < 1 indicated an impaired response in the patient group. The random effect model was used in accordance with the method described by Der Simonian-Laird.34 Trial results were assessed using the chi-square test of heterogeneity and the I² measure of inconsistency. Heterogeneity was considered to be statistically significant at P < .10 or an I² statistic > 50%. Publication bias was examined using funnel plots coupled with the Egger’s test. Pooled estimates were calculated using the MetaXL add-in for Excel (Microsoft Corporation, Redmond, WA).35

Results
Study Selection
The literature search of the PubMed and WHO COVID-19 database retrieved 493 articles after removal of duplicates, of which 80 were considered to be relevant through evaluation of titles and abstracts. Among them, 52 studies fulfilled the criteria for the present meta-analysis: 30 investigated lymphoid malignancies42-65; and 22 investigated anti-CD20 antibody therapy for non-malignant diseases, such as multiple sclerosis and rheumatic diseases.66-87 28 articles were excluded with the following reasons: (1) insufficient data of outcomes,88-96 (2) duplicate publications from an overlapping cohort,97-106 and (3) case series or cohorts with < 10 patients.107-115 A flow diagram of the article selection process is shown in Figure 1, and the characteristics of each study are summarized in Table 1.

Humoral Response in Lymphoid Malignancies
Data regarding humoral response in lymphoid malignancies compared with healthy controls were reported in 20 articles37,39,43,46,47,49,52,54,59-65 that included 2203 patients with CLL, myeloma, non-Hodgkin lymphoma (NHL), and Hodgkin lymphoma (HL). Patients with lymphoid malignancies exhibited significantly lower seropositivity rates than healthy controls (RR 0.60 [95% confidence interval (CI) 0.53-0.69]), with high heterogeneity (I² = 94%, P < .01) (Figure 2A). The funnel plot suggested a publication bias (P < .05, Figure 2B).

Humoral Response in Individual Subtypes of Lymphoid Malignancies
Individual subtypes of lymphoid malignancies were analyzed. First, for CLL, a positive humoral response was observed in 52% (95% CI 43%-62%)42,45,49,53-55,57,60,64 (Figure 3A). Data for 356 patients in five articles were eligible for the analysis of RR.42,49,54,60,64 Patients with CLL exhibited significantly lower seropositive rates than healthy controls (RR 0.55 [95% CI 0.43-0.71]) (Figure 3B). Second, for myeloma, a positive humoral response was observed in 78% (95% CI 69%-86%)43,48-50,52,55-58 (Figure 3C). Data regarding
1041 patients from 8 cohorts were eligible for the analysis of RR, and myeloma significantly reduced seropositive rates (RR 0.76 [95% CI 0.69-0.83]) (Figure 3D). Third, for NHL, a positive humoral response was observed in 61% [95% CI 50%-71%] (Figure 3E). Data for 282 patients from 3 articles were eligible for the analysis of RR, which revealed a low seropositivity rate in patients with NHL (RR 0.58 [95% CI 0.48-0.71]) (Figure 3F). When NHL was subdivided into aggressive and indolent NHL, both subgroups exhibited lower seropositivity rates than control (aggressive NHL, RR 0.60 [95% CI 0.42-0.86]; indolent NHL, RR 0.54 [95% CI 0.43-0.67]) (Figures 3G and H). With regard to T-cell NHL, one article reported
that the seropositivity rate was 84.6% (11 out of 13 patients).\(^{37}\)

Fourth, for HL, a positive humoral response was observed in 95% (95% CI 89%-99%)\(^{36,44,48,49,57,64}\) (Figure 3C). Data that could be compared with healthy controls were available from only 2 articles (20 patients),\(^{39,63}\) which revealed no significant difference from control (RR 0.95 [95% CI 0.85-1.07]) (Figure 3J).

Humoral Response in Treatment-Naïve Patients

Low-risk patients with CLL, smoldering multiple myeloma (SMM), and indolent NHL are often offered “watchful waiting” until disease progression, and data regarding treatment-naïve patients can be used to estimate the extent to which lymphoid malignancy itself impairs immune function. First, for CLL, positive humoral response was observed in 77% (95% CI 63%-88%) of treatment-naïve patients,\(^{42,45,53,56,60,64}\) which was significantly lower than control (RR 0.79 [95% CI 0.63-1.00]), \(P = .047\)\(^{42,54,60,64}\) (Figure 4A and 4B). On the other hand, SMM and treatment-naïve indolent NHL did not exhibit a significant difference from healthy controls, although patient numbers were relatively small (SMM, seropositivity rate, 94% [95% CI 76%-100%]\(^{40,43,46,50,57}\); treatment-naïve indolent NHL, seropositivity rate, 84% [95% CI 75%-92%]\(^{34,63,64}\); RR 0.90 [95% CI 0.81-1.01]\(^{65,64}\)) (Figure 4C-4F).

Humoral Response in Lymphoid Malignancies With B-Cell Target Therapy

Next, the impact of B-cell target therapy on humoral response was analyzed, first focusing on anti-CD20 antibody. Patients treated with anti-CD20 antibody exhibited a lower seropositivity rate than healthy controls (RR 0.37 [95% CI 0.24-0.57])\(^{41,47,49,54,59,61,63,65}\) (Figure 5A). When divided according to the interval from the last infusion with anti-CD20 antibody to the first vaccine dose, treatment within the past 6 months was significantly associated with decreased rates of seropositivity compared to treatment > 6 months before vaccination (RR 0.21 [95% CI 0.09-0.46])\(^{41,44,48,63,64}\) (Figure 5B). Treatment within the past 12 months also decreased the rates of seropositivity (RR 0.23 [95% CI 0.10-0.57])\(^{46,47,49,54,58,59,61,63,65}\) (Figure 5C). Moreover, treatment > 12 months before vaccination resulted in a lower seropositivity rate than healthy controls (RR 0.61 [95% CI 0.51-0.73])\(^{41,54,64,65}\) (Figure 5D). With regard to other B-cell target therapies, myeloma patients undergoing anti-CD38 therapy exhibited decreased seropositivity rates compared to patients without anti-CD38 therapy (RR 0.86 [95% CI 0.76-
Humoral response in lymphoid malignancies with B-cell target therapy. (A) Risk ratios (RRs) for seropositivity rates of patients treated with anti-CD20 antibody compared with healthy controls. (B-D) RRs for seropositivity rates of patients with (B) < 6 months from therapy vs. > 6 months from therapy, and (C) < 12 months from therapy vs. > 12 months from therapy, and (D) > 12 months from therapy vs. healthy controls. (E and F) RRs for seropositivity rates of patients (E) with anti-CD38 therapy vs. without anti-CD38 therapy, and (F) with BTK inhibitor vs. without BTK inhibitor. BTK = Bruton’s tyrosine kinase.

Humoral Response in Non-Malignant Diseases With Anti-CD20 Antibody

The impact of anti-CD20 antibody on immune response, including cellular immunity, was further analyzed by focusing on nonmalignant patients treated with anti-CD20 antibody. First, the relationship between humoral response and anti-CD20 antibody was investigated. Data from 16 articles (900 patients) revealed that anti-CD20 antibody treatment significantly decreased seropositivity rates compared with the control group (RR 0.45 [95% CI 0.39-0.52]) (Figure 6A).66-69,71-73,75,78,81,84-86 The funnel plot did not reveal any publication bias (P = .12, Figure 6B). Treatments within the past 6 months,67-70,74-76,83,84,86 9 months,67,68,74,78,87 and 12 months68,77,84,85,86 were all associated with significantly decreased seropositivity rates compared with treatment > 6, 9, and 12 months before vaccination, respectively (within 6 months, RR 0.45 [95% CI 0.35-0.57]; within 9 months, RR 0.54 [95% CI 0.34-0.84]; within 12 months, RR 0.49 [95% CI 0.33-0.73]) (Figure 6C-6E). Patients treated > 12 months before vaccination still had decreased seropositivity rates compared with the control group (RR 0.70 [95% CI 0.55-0.88])65,84,85 (Figure 6F).

Cellular Response Among Individuals Undergoing Anti-CD20 Antibody Treatment

The influence of anti-CD20 antibody therapy on cellular response was investigated. Six studies examined SARS-CoV-2-specific T cell responses using the interferon gamma (IFN-γ) assay,65,69,78,84,85,87 and revealed that 78% of patients treated with anti-CD20 antibody elicited a positive cellular response (95% CI 45%-99%) (Figure 7A) that was comparable with the control group (RR 0.77 [95% CI 0.55-1.08])65,69,78,84,85 (Figure 7B). In addition, four studies examined cellular responses using an activation-induced marker (AIM) assay, two of which revealed no significant difference without available quantitative data.81,82 The meta-analysis of other two articles exhibited no difference between patients treated with anti-CD20 antibody and controls (AIM-positive CD4 cell, RR 0.98 [95% CI 0.82-1.18]; AIM-positive CD8 cell, RR 0.93 [95% CI 0.43-2.04])72,73 (Figure 7C and 7D).

Discussion

Lymphoid malignancies attenuated the humoral response to COVID-19 mRNA vaccines. Moreover, subgroup analysis further
A Systematic Review and Meta-Analysis

Figure 6 Humoral response in non-malignant diseases with anti-CD20 antibody. (A) Risk ratios (RRs) for seropositivity rates of patients treated with anti-CD20 antibody compared with controls, and (B) funnel plot. (C-F) RRs for seropositivity rates of patients with (C) < 6 months from therapy vs. > 6 months from therapy, (D) < 9 months from therapy vs. > 9 months from therapy, (E) < 12 months from therapy vs. > 12 months from therapy, and (F) > 12 months from therapy vs. controls.

revealed that CLL, NHL, and myeloma patients exhibited decreased seropositivity rates. Patients with lymphoid malignancies are immunocompromised due to the disease itself. In particular, treatment-naïve CLL patients exhibited lower seropositivity rates than healthy controls. In CLL patients, the humoral response was also impaired after contracting COVID-19, and the effectiveness of other conventional vaccines was attenuated. These data reflect the substantial immune abnormalities associated with CLL itself. On the other hand, patients with HL and treatment-naïve SMM exhibited high seropositivity rates that were equivalent to healthy controls, suggesting a difference in the influence of disease subtype on the immune system.

With regard to the influence of treatment on humoral response, anti-CD20 antibody, anti-CD38 therapy, and BTK inhibitor significantly decreased seropositivity rates. These agents target B cell function, and many studies have demonstrated a correlation between B cell counts in peripheral blood and seropositivity rates. These agents have also been reported to decrease the effectiveness of several other conventional vaccines. Regarding anti-CD20 antibody therapy, we analyzed vaccine immunogenicity divided by the interval from the last infusion to the first vaccine dose. An interval of < 6 months and 12 months significantly attenuated seropositivity rates. These results were confirmed in a meta-analysis of non-malignant patients treated with anti-CD20 antibody. B cell reconstitution occurs > 6 months after anti-CD20 antibody therapy, and some guidelines for rheumatic diseases recommend delaying administration of the vaccine for 5 to 6 months after anti-CD20 therapy. A recent meta-analysis...
of influenza vaccine also demonstrated that anti-CD20 antibody treatment within at least the past 6 months abrogated the humoral response,19 which is consistent with the results of our meta-analysis. Moreover, some articles reported that recovery of the memory B-cell pool after anti-CD20 antibody therapy in the lymphoma population is delayed compared with normal B-cell ontogeny and remains impaired after 12 months.47,124 Our meta-analysis revealed that anti-CD20 antibody therapy >12 months before vaccination still attenuated the humoral response compared with healthy controls, which suggests a prolonged immunosuppressive state caused by B cell depletion.

Humoral and cellular responses work closely together against viral infection and vaccines125; however, it is controversial whether B cell activity is essential for T cell priming, activation, and expansion.26-29 We analyzed T cell responses against mRNA vaccines under conditions of B-cell depletion caused by anti-CD20 antibody therapy, which demonstrated that mRNA vaccines elicited SARS-CoV-2-specific T cell response without adequate B cell function, and there was no correlation between antibody formation capacity and T cell response. A previous study about influenza vaccine was consistent with our data,127 suggesting that patients treated with anti-CD20 antibody should not avoid vaccination. On the other hand, several large-scale studies have reported that anti-CD20 therapy increases the exacerbation risk from COVID-19 in patients with multiple sclerosis and rheumatic diseases28-132, thus, highlighting the importance of B cell response during infection. Our analysis of T cell response was only from studies performed in vitro; thus, whether immune memory by cellular response can prevent infection and disease aggravation in the absence of immune protection by humoral response15 should be further evaluated in clinical long-term follow-up studies. However, CD8-positive T cells can positively influence recovery;13,134 thus, activation of cellular immunity without humoral response can provide a level of efficacy.

This meta-analysis had several limitations. First, we evaluated antibody formation several weeks after vaccination. In addition to immunogenicity, long-term vaccine effectiveness is an important parameter in evaluating vaccine function. Several studies have shown that antibody titers tend to be lower than in healthy controls, even in seropositive patients with lymphoid malignancies; thus, long-term follow-up is further warranted. Second, the heterogeneity in disease status and treatment history in each study will affect the seroresponse to vaccines. For example, MM patients with a complete response (CR) achieved higher antibody levels than non-CR patients,43 and exposure to >3 novel anti-myeloma drugs were associated with lower response rates.46 Therefore, humoral response in each status should be further analyzed individually. Also, anti-CD20 antibody is often used with cytotoxic agents or other immunosuppressive agents as combination therapy, and these agents will affect the humoral response to vaccines. Third, the measurement method for SARS-CoV-2 antibodies and cutoff values of seropositivity differed among the selected studies as summarized in Table 1. Most studies evaluated antibodies against the receptor binding domain or total spike protein instead of neutralizing antibody using different assays, such as chemiluminescent immunoassay, enzyme-linked immunosorbent assay, and flow-cytometry analysis. The receptor binding domain is poorly conserved among SARS coronaviruses and relatively specific to SARS-CoV-2, whereas the antibody against the entire spike protein can be elevated after other coronavirus infections.135,136 However, the results from most of the assays were correlated with one another,137 and also with neutralizing antibodies.81,138 Fourth, regarding the measurement method for the SARS-CoV-2-specific T cell response, several studies evaluated the response using SARS-CoV-2 spike peptides through IFN-γ production or AIM assay.139 Whether these in vitro data can predict clinical outcomes of COVID-19 remains unknown, and some argue that these available evidences remain insufficient for clear guidance.140 Additionally, all
data used for our meta-analysis were from non-malignant patients, and there is only one study that evaluated the T cell response against patients with lymphoid malignancies to date. 39 This article revealed that T cell response was attenuated in myeloma patients compared with healthy controls, and also showed the discrepancy between T cell response and antibody formation capacity. In comparison with multiple sclerosis, 141 lymphoid malignancies cause a high disorder of lymphoid systems, 9,18; thus, cellular response in these groups should be further analyzed.

Conclusion
This meta-analysis demonstrated that lymphoid malignancies, as well as some subtypes, including CLL, NHL, and myeloma, attenuated humoral response. Treatment-naive CLL and B-cell target therapy including anti-CD20 antibody, anti-CD38 therapy, and BTK inhibitor also demonstrated decreased humoral response. Regarding the interval from last anti-CD20 antibody therapy to the first vaccine dose, an interval < 6 months significantly attenuated seropositivity rates, and anti-CD20 antibody therapy > 12 months before vaccination still impaired humoral response. Cellular response was detected independent of anti-CD20 antibody therapy or antibody formation capacity. Further studies focusing on long-term follow-up and T cell responses in lymphoid malignancies are warranted.

Clinical Practice Points
Patients with hematological malignancies are highly susceptible to severe COVID-19. mRNA vaccines have been widely used against COVID-19.

Patients with lymphoid malignancies or those undergoing anti-CD20 antibody therapy experience an impaired humoral response. Cellular response can be detected independent of anti-CD20 antibody therapy in non-malignant patients.

Authorship Statement
Y.I. conceptualized and designed the research, performed literature search, analyzed data, and wrote the manuscript. A.H. performed literature search and analyzed data. M.K. supervised the research.

Disclosure
Y.I. declares no competing financial interests. A.H. reports honoraria from Janssen Pharmaceutical. M.K. reports honoraria from AstraZeneca, Chugai Pharmaceutical, Janssen Pharmaceutical, Sanofi, and Pfizer, and research funding from Chugai Pharmaceutical and Pfizer.

References
1. Mehta V, Goel S, Kabairiti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York Hospital system. Cancer Discov. 2020;10:935–941.
2. Lee JYW, Cazier JB, Starkey T, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. Lancet Oncol. 2020;21:1309–1316.
3. Vigneti A, Gong Y, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients. Blood. 2020;136:2881–2892.
4. Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136:1134–1143.
5. Scarb I, Charzikostantionou T, Rigolin GM, et al. COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia. 2020;34:2354–2363.
6. Cook G, Ashcroft AJ, Pratt G, et al. Real-world assessment of the clinical impact of symptomatic infection with severe acute respiratory syndrome coronavirus (COVID-19) disease in patients with multiple myeloma receiving systemic anti-cancer therapy. Br J Haematol. 2020;190:833–846.
7. Chari A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: First results from the International Myeloma Society data set. Blood. 2020;136:3033–3040.
8. Duley R, Lamure S, Dolors M, et al. Prolonged in-hospital stay and higher mortality after Covid-19 among patients with non-Hodgkin lymphoma treated with B-cell depleting immunotherapy. Ann Hematol. 2021;96:934–944.
9. Ravandi F, O’Brien S. Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother. 2006;55:197–209.
10. Pratt G, Goodyear O, Most P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138:563–579.
11. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:292–296.
12. Lan J, Ge Y, Ji J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–220.
13. Golob JL, Lugogo N, Laurant AS, Lok AS. SARS-CoV-2 vaccines: a triumph of science and collaboration. JCI Insight. 2021;6.
14. Park JW, Lagartos PN, Liu Y, Yu RH. mRNA vaccines for covid-19: what, why and how. Int J Biol Sci. 2021;17:1446–1460.
15. Polack FP, Thomas SJ, Kirkchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383:2603–2615.
16. Baden LR, Sahey HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–416.
17. Mauro FR, Giannarelli D, Galluzzo CM, et al. Response to the conjugate pneumococcal vaccine (PCV13) in patients with chronic lymphocytic leukemia (CLL). Leukemia. 2021;35:737–746.
18. Vigneti A, Gong J, Bertschel SD, Cheung M, Hicks LK. Vaccine response following anti-CD20 therapy: a systematic review and meta-analysis of 905 patients. Blood Adv. 2021;5:2624–2634.
19. Curtis JR, Johnson SR, Anthony DJ, et al. American college of rheumatology guidance for COVID-19 vaccination in patients with rheumatic and musculo-skeletal diseases: version 1. Arthritis Rheumatol. 2021;73:1093–1107.
20. Furer V, Rondaan C, Heijstek MW, et al. 2019 update of EULAR recommenda- tions for vaccination in adult patients with autoinflammatory rheumatic diseases. Ann Rheum Dis. 2021;79:39–52.
21. Khoury DS, Cromer D, Reynolds A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;17:1295–1211.
22. Berto N, Tan AT, Kunagorak K, et al. SARS-CoV-2 specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584:457–462.
23. Sotte A, Cottry S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184:861–880.
24. Sekine T, Perez-Porti A, Rivera-Ballesteros O, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020;183:158–168 e14.
25. Arano MS, Ahmed R, CD8 T cell memory in B cell-deficient mice. J Exp Med. 1996;183:2165–2174.
26. Sunshine GH, Jimbo BL, Ianelli C, Jarvis L. Strong priming of T cells adoptively transferred into sdd mice. J Exp Med. 1991;174:1653–1656.
27. Baroza LG, Simkins HMA, Barnen BE, et al. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J Immunol. 2014;192:3607–3617.
28. Crawford A, Macleod M, Schumacher T, Corleff L, Gray D. Primary T cell expansion and differentiation in vivo requires antigen presentation by B cells. J Immunol. 2006;176:3498–3506.
29. Moher D, Liberati A, Tetzlaff J, Altman DG, Group PRISMA. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269.
30. Falsy AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine [published online ahead of print 29 September 2020]. N Engl J Med. 2021. doi:10.1056/NEJMoa2102590.
31. Sadik J, Gray G, Vandeboecht S, et al. Safety and efficacy of single-dose Ad5.nCoV2.S vaccine against Covid-19. N Engl J Med. 2021;384:2187–2201.
32. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–458.
33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.
34. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Heal. 2013;67:974–978.
35. Chiarucci M, Panditini S, Iodori A, et al. Immunological response against SARS- COV-2 after BNT162b2 vaccine administration is impaired in allogeneic but not in autologous stem cell transplant recipients. Front Oncol. 2021;11.
Poor neutralizing antibody responses in 106 patients with WM after vaccination against SARS-CoV-2: a prospective study. Blood Adv. 2021;5:4398–4405.

Diefenbach C, Caro J, Reide A, et al. Impaired humoral immunity to SARS-CoV-2 vaccine in non-Hodgkin lymphoma and CLL patients. medRxiv. 2021.06.02.21257804accessed October 2, 2021. doi: 10.1101/2021.06.02.21257804.

Pimpinelli F, Marchesi F, Piaggio G, et al. Fifth-week immunogenicity and safety of the BNT162b2 mRNA vaccine in myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. J Hematol Oncol. 2021;14:81.

Rooer LE, Knorr DA, Thompson MC, et al. COVID-19 vaccine efficacy in patients with chronic lymphocytic leukemia. Leukemia. 2021;35:2703–2705.

Herihanya U, Avivi I, Alharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137:3165–3171.

Agha M, Blake M, Chillo C, Wells A, Haidar G. Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. medRxiv. 2021.04.06.21254949accessed October 2, 2021. doi: 10.1101/2021.04.06.21254949.

Dhakal B, Abedin S, Fenske T, et al. Response to SARS-CoV-2 vaccination in patients after hematopoietic cell transplantation and CAR T-cell therapy. Blood. 2021;138:1278–1281.

Greenberger LM, Salzman LA, Senefeld JW, et al. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell. 2021;39:1031–1033.

Re D, Barrière J, Chamorey E, et al. Low rate of seroconversion after mRNA anti-SARS-CoV-2 vaccination in patients with hematologic malignancies [published online ahead of print 26 July 2021]. Leuk Lymphoma. 2021. doi:10.1080/10428194.2021.1957872.

Petters M, Verbruggen L, Truwen L, et al. Reduced humoral immune response after BNT162b2 coronavirus disease 2019 messenger RNA vaccination in cancer patients under immunosuppressive treatment. ESMO Opes. 2021.1060274.

Bergman P, Blennow O, Hansson L, et al. Safety and efficacy of the mRNA BNT162b2 vaccine against SARS-CoV-2 in five groups of immunocompromised patients and healthy controls in a prospective open-label clinical trial. medRxiv. 2021.09.07.21263206accessed October 2, 2021. doi: 10.1101/2021.09.07.21263206.

61. Terpos E, Gavriatopoulou M, Fountou D, et al. Poor neutralizing antibody responses in 132 patients with CLL, NHL and HL after vaccination against SARS-CoV-2: a prospective study. Cancers (Basel). 2021;13:4840.

62. Bachur SH, Campbell-Nelson A, et al. Antibody responses after SARS-CoV-2 vaccination in patients with lymphoma. Lancet Haematol. 2021;8:e542–e544.

63. Perry C, Lutrwak E, Bablan R, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with B-cell non-Hodgkin lymphoma. Blood Adv. 2021;5:3053–3061.

64. Jurgenson EM, Ketas TJ, Zhao Z, et al. Serologic response to mRNA COVID-19 vaccine in lymphoma patients. Ann J Hematol. 2021;96:E410–E413.

65. Thakkar A, Gonzalez-Lugo JD, Goradia N, et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell. 2021;39:1089–1096 e2.

66. Sormani MP, Inglese M, Schiavetti I, et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. ElBioMedicine. 2021;72:105851.
A Systematic Review and Meta-Analysis

I-depleting therapy (Rituximab): an investigator-initiated, single-centre, open-label study. Lancet Rheumatol. 2021;3:e789–e797.

85. Mrak D, Toubi S, Koblichke M, et al. SARS-CoV-2 vaccination in rituximab-pretreated patients with multiple sclerosis: a randomized, controlled feasibility study. Neurology. 2021;96:e1093–e1116.

86. Benuci M, Damiani A, Infantino M, et al. Presence of specific T cell response after SARS-CoV-2 vaccination in rheumatoid arthritis patients receiving rituximab. Immunol Res. 2021;96:639–646.

87. Fitzalis M, Idda ML, Lodde V, et al. Effect of different disease-modifying therapy on BNT162b2 vaccine in Sardinian multiple sclerosis patients. medRxiv. 2021;doi:10.1101/2021.06.21.21256067.Accepted October 2, 2021.

doi:10.1038/s41561-021-00737-0.

88. Lim-Apostolidis R, Ramasamy A, et al. Characterization of humoral response to COVID-19 mRNA vaccines in multiple sclerosis patients on disease modifying therapies. J Neurol. 2021;358:1643–1648.

89. Ali A, Dwyer D, Wu Q, et al. Characterization of humoral response to COVID-19 mRNA vaccines in multiple sclerosis patients on disease modifying therapies. J Neurol. 2021;358:1643–1648.

90. Gallo A, Capuano R, Donnarumma G, et al. Preliminary evidence of blunted humoral response to SARS-CoV-2 mRNA vaccine in multiple sclerosis patients treated with ocrelizumab. Mult Scler Relat Disord. 2021;52:102983.

91. Bonelli MM, Mrak D, Perkmann T, Haslacher H, Aletaha D. SARS-CoV-2 vaccination in rituximab-treated patients: Evidence for impaired humoral but inducible cellular immune response. Ann Rheum Dis. 2021;80:e162.

92. Scohy A, Lugo Suter-Riniker I, Damiani A, et al. Correspondence on “Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort.” Ann Rheum Dis. 2021;80:e150.

93. Benucci M, Damiani A, Infantino M, et al. Correspondence on “SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response” by Bonelli et al. Ann Rheum Dis. 2021;80:e165.

94. Benucci M, Damiani A, Infantino M, et al. Correspondence on “SARS-CoV-2 vaccination in rituximab-treated patients: evidence for impaired humoral but inducible cellular immune response.” Lancet Rheumatol. 2021;3:e1124–e1127.

95. Deonouli N, Sotchi A, Gilian V, Godefried N, Jadoul M, Morele J. Low rates of humoral response to BNT162b2 SARS-CoV-2 vaccine in patients with immune-mediated kidney diseases treated with rituximab. Clin Kidney J. 2021;14:2132–2133.

96. Bockel L, Steenhuis M, Hoonberg F, et al. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies. Lancet Rheumatol. 2021;3:e778–e788.

97. Chung SH, Wener M, Bays AM, et al. Correspondence on “SARS-CoV-2 vaccine in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies.” Lancet Rheumatol. 2021;3:e778–e788.

98. Osterdahl CR, Ramires SL, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and association with age and disease severity. Cell. 2020;183:966–972.

99. Bange EM, Han NA, Wileyto P, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021;27:1280–1289.
Yusuke Ito et al

135. Premkumar L, Segovia-Chumbez B, Jadi R, et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020;5:eabc8413.

136. Ng KW, Faulkner N, Cornish GH, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020;370:1339-1343.

137. Bradley BT, Bryan A, Fink SL, et al. Anti-SARS-CoV-2 antibody levels measured by the AdviseDx SARS-CoV-2 assay are concordant with previously available serologic assays but are not fully predictive of sterilizing immunity. J Clin Microbiol. 2021;59.

138. Rus KR, Korva M, Knap N, Županc TA, Poljak M. Performance of the rapid high-throughput automated electrochemiluminescence immunoassay targeting total antibodies to the SARS-CoV-2 spike protein receptor binding domain in comparison to the neutralization assay. J Clin Virol. 2021;139:104820.

139. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1489-1501 e15.

140. Ludwig H, San-Miguel J, Munshi N, et al. Covid-19 vaccination in patients with multiple myeloma: focus on immune response. Am J Hematol. 2021;96:896-900.

141. Chaudhry F, Jagoda C, Levy PD, Cieghler M, Lisak RP. Review of the COVID-19 risk in multiple sclerosis. J Cell Immunol. 2021;3:68-77.