Management of patients with hepatitis B and C before and after liver and kidney transplantation

Chrysoula Pipili, Evangelos Cholongitas

Chrysoula Pipili, Department of Nephrology, Laiki Merimna, 17343 Athens, Greece
Evangelos Cholongitas, 4th Department of Internal Medicine, Medical School of Aristotle University, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece

Author contributions: Pipili C and Cholongitas E both contributed to this paper.

Correspondence to: Evangelos Cholongitas, Assistant Professor, 4th Department of Internal Medicine, Medical School of Aristotle University, Hippokration General Hospital of Thessaloniki, 49, Konstantinopoleos Street, 54642 Thessaloniki, Greece. cholongitas@yahoo.gr
Telephone: +30-23-10892110 Fax: +30-23-10992940
Received: December 3, 2013 Revised: March 10, 2014
Accepted: April 16, 2014
Published online: May 27, 2014

Abstract

New nucleos(t)ide analogues (NAs) with high genetic barrier to hepatitis B virus (HBV) resistance (such as entecavir, tenofovir) have improved the prognosis of patients with HBV decompensated cirrhosis and have prevented HBV recurrence after liver transplantation (LT). NAs are considered the most proper approach for HBV infection in patients under renal replacement therapy but their doses should be adjusted according to the patient’s creatinine clearance. In addition, physicians should be aware of the potential nephrotoxicity. However, patients with chronic hepatitis C and decompensated cirrhosis can receive only one therapeutic option before LT, as well as for Hepatitis C virus (HCV) recurrence after LT, which is the combination of subcutaneous Peg-IFN and ribavirin. Generally, therapy for HCV after renal transplantation should be avoided. Although the optimal antiviral therapy for HCV infection has not been established, attention has turned to a new, oral direct acting antiviral treatment which marks a promising strategy in prognosis and in amelioration of these diseases.

Key words: Liver transplantation; Kidney transplantation; Hepatitis C; Hepatitis B; Recurrence

Core tip: While nucleos(t)ide analogs (NAs) offer a benign course in patients with hepatitis B virus before and after liver and renal transplantation, there is still scope for improvement. The administration of high genetic barrier NAs such as entecavir or tenofovir pre-transplant and the careful patient selection for hepatitis virus immunoglobulin-free regimens post-transplant contribute to improved medical care and facilitate its provision from a practical standpoint. Concordantly, attention has turned to new treatment strategies regarding hepatitis C virus recurrence after liver and renal transplantation. The addition of oral direct acting antivirals to the existing treatment marks a promising strategy for prognosis amelioration of these patients.

INTRODUCTION

The major breakthrough in the field of transplantation for patients with hepatitis B virus (HBV) and hepatitis C virus (HCV) is the application of nucleos(t)ide analogs (NAs) and direct acting antivirals (DAAs). NAs form the mainstay in the treatment of patients with HBV in the non-transplant setting as well as before and after liver and kidney transplantation. The preliminary data regarding the DAAs application favored its use in treatment of HCV recurrence after liver transplantation (LT) and in HCV renal transplant candidates.
In general, the induction of immunosuppressive therapy carries the risk of HBV reactivation, leading to liver graft loss and fatal complications\(^1,2\). NAs have dramatically improved the clinical course of patients with HBV decompensated cirrhosis, reducing the need for LT, and have further improved the prognosis of HBV transplant patients\(^3,4\). At present, due to high rates of resistance\(^3,4\), lamivudine is preferable only when short term immunosuppression is scheduled. Entecavir and tenofovir are the first choice NAs because they have very high efficacy and low resistant rates\(^5,6\). NAs administration implies detailed renal function monitoring. Telbivudine may improve renal function but it has an unfavorable resistance profile\(^7\).

In regards to transplantation in patients with chronic hepatitis C (CHC), improvements in the understanding of the viral cycle have led to development of the first generation DAAAs (telaprevir and boceprevir) which belong to HCV NS3/4 protease inhibitors\(^8,9\). Their addition to the standard of treatment [pegylated interferon (Peg-IFN) and ribavirin (RBV)] has improved the response rates in a small number of liver transplant recipients and in a few cases of renal transplant candidates. When DAAAs are used, calcineurin inhibitors doses should be adjusted\(^10\) and the hemoglobin levels should be regularly monitored. The present review focuses on the current treatment of patients with HBV and HCV before and after liver and kidney transplantation.

MANAGEMENT OF PATIENTS WITH HEPATITIS B AND C BEFORE AND AFTER LT

The management of patients with hepatitis B and C listed for LT contains a three step approach. Targeted therapy should start before transplantation and continue after transplantation, becoming more intensive immediately post-transplant when the immunosuppression is higher. Therapy escalation in an early post-transplant stage is imperative mainly for avoidance of HBV recurrence, while routine prophylactic therapy for HCV recurrence is not recommended\(^11,12\) (Table 1).

HBV positive and HCV positive liver transplant candidates

Before transplantation, treatment aims to eliminate viral load, to keep it undetectable at the time of transplantation in order to lower the risk of HBV recurrence and improve the outcome\(^13,14\). HBV DNA clearance pre-transplant has reduced the rate of HBV recurrence in patients with HBV infection\(^15\). Similarly, HCV RNA eradication pre-transplant resulted in amelioration of fibrosis and long term survival in patients with HCV infection\(^13,15-18\). The suppression of HCV viremia in LT candidates and the undetectable HBV DNA at the time of LT are the most important goals for each particular infection.

The current management of patients with cirrhosis and CHB before LT is based on NAs\(^11,13\) and modification of lifestyle, comorbidities and drug interactions\(^19\). Generally, the institution of NAs has ameliorated the transplant prognostic scores to such a high level that many LT candidates with CHB have delisted\(^20-22\), presenting with great clinical improvement and better survival\(^23-28\). NA administration as monotherapy or in combination are the current guidelines for LT candidates with HBV decompensated cirrhosis\(^26-28\). The high genetic barrier antivirals entecavir and tenofovir are recommended as monotherapy. Entecavir has reduced the HBV DNA in patients with decompensated cirrhosis, has improved their underlying liver function up to 70% and has presented with very low resistant rate\(^22,29-31\). Tenofovir has also been an effective initiation therapy, accounting for high fibrosis resolution over five years administration\(^32-34\) with almost negligible resistance. When administered in patients with decompensated cirrhosis, it led to virological, biochemical and clinical improvement with very good tolerance\(^35\).

Nevertheless, entecavir should not be applied in patients with proven lamivudine-resistance because there are high chances of resistance and treatment failure\(^34\), while tenofovir should be used with caution because of potential tubular injury and osteomalacia\(^34\). However, recent trials have doubted tenofovir nephrotoxicity after ten years of therapy in large groups of HIV infected patients\(^36,37\) or even the nucleotide nephrotoxicity in LT recipients\(^38\).
Furthermore, it has been hypothesized that an antiviral combination might achieve higher virological response rates and lower resistance rates compared to monotherapy. However, emtricitabine plus tenofovir (200 mg and 300 mg daily respectively) have not been found to have superior antiviral potency compared to entecavir and tenofovir monotherapy[18]. In addition, the higher cost of antiviral combination compared to monotherapies limits its use in clinical practice. In conclusion, all patients on NA therapy should be monitored every three months for virological response and possible virological breakthrough with serum HBV-DNA testing[40,49].

Contrary to LT candidates with CHB, patients with CHC and decompensated cirrhosis have only one therapeutic option before LT. This is the combination of subcutaneous Peg-IFN and RBV, leading to reduced cirrhosis-related complications and improving histological changes[41], but in an unsatisfactory percentage of patients (5%-33% in genotype 1 and 14%-100% in genotypes 2/3)[42,43,44]. IFN-based regimens have also been related to poor tolerability and many side effects[42,44], such as anemia, infections and neuropsychiatric disorders[46], which require either erythropoietin and granulocyte colony-stimulating factors or antibiotics to sustain drug regimen optimal doses[47]. The aim is undetectable HCV RNA or SVR at LT to reduce the frequency of HCV recurrence[13].

HBV positive and HCV positive liver transplant recipients

The primary goal in this step is the prevention of HBSAg appearance in a patient with ceased HBV infection (HBV recurrence) and a new HBV DNA finding in a patient with negative HBSAg (virological breakthrough)[48]. The combination of HBV immunoglobulin (HBIG) with high genetic barrier NA (entecavir or tenofovir) for the long term is the most effective prophylactic approach for HBV recurrence prevention[40,50]. However, the high cost of HBIG and the fact that the majority of patients receive a transplant with undetectable or minimal HBV DNA since they have been on NAs before LT led to the use of short term HBIG or HBIG-free regimens in the post-transplant period. In the first case, LT recipients take a combination of HBIG and NA for a short period post-transplant, continuing with NA monotherapy long term[49]. In a group of LT recipients with low risk for HBV recurrence (only 4.5% had detectable HBV DNA at the time of LT), entecavir or tenofovir monoprophylaxis after HBIG discontinuation was similarly effective, with no difference in renal adverse events[46,49].

Regarding the HBIG-free prophylactic regimens, dual NAs such as tenofovir and emtricitabine or tenofovir plus entecavir[51,54] accounted for undetectable HBV DNA after 26 mo treatment post LT, but they did not eliminate cases of recurrence[49,52]. Entecavir and tenofovir should be the first-line options for HBIG-free prophylaxis. It is advisable that entecavir not be used in patients with previous lamivudine resistance who should be preferably treated with tenofovir. Until the optimal HBIG-free prophylactic regimen is determined, the combination of HBIG (at least for a short period) and one high genetic barrier NA appears to be the most reasonable post-transplant approach[40,50].

Physicians should individualize the therapeutic regimen according to the pre-transplant type of liver disease, the patient’s viremic status and the risk of reactivation[56,57]. HBV DNA clearance and HBcAg negativity at the time of LT, fulminant HBV and hepatitis D virus coinfection may allow HBIG reduction or withdrawal strategies[48]. At present, more and more patients maintain HBV DNA undetectable peritransplant so their prognosis has improved[1]. In our clinical setting, we use maintenance therapy with entecavir or tenofovir mono- prophylaxis after a short course with low dose HBIG plus entecavir or tenofovir as antiviral prophylaxis against HBV recurrence after LT. Striking techniques such as covalently closed circular DNA (ccDNA) could detect occult HBV (HBV infection with negative HBsAg test) in hepatic and extrahepatic sites early. Nevertheless, Lenci et al[58] showed that many patients had a recurrence after cessation of any anti-viral prophylaxis despite negative ccDNA.

Regarding HCV positive liver transplant recipients, recurrence of HCV infection occurs in virtually all patients transplanted for HCV-related liver disease after LT. Additionally, three years post-transplant, decompensation developed in 70% of recipients compared with other immunocompetent groups in which the same proportion was less than 10%[59]. Post-transplant prophylaxis (preemptive) against HCV recurrence is not recommended because randomized trials have not confirmed its superiority regarding treatment when there was recurrence and it was associated with high cost and poor tolerability[13,61,66]. Interferon (IFN) use on the basis of high immunosuppression has not been effective and has been related to sepsis and rejection episodes[13,61,64]. Indications for antiviral therapy are fibrosing cholestatic hepatitis and significant fibrosis[56] [META VIR score > F1][65], hepatic venous gradient > 6[66] and liver stiffness > 8.7 kPa[66], but not fibrosis level > 3 because those patients cannot tolerate therapy[19]. Emphasis should be given to prompt diagnosis of histological evidence of HCV recurrence. Patients with female gender, steatosis of the graft, older donor age [65-67], cytomegalovirus and human herpes virus 6 infection[68] require sustained attention with protocol graft biopsies, regardless of normal liver function tests and good clinical condition. Non-invasive diagnostic methods such as elastography, serum and molecular fibrosis markers should also be used simultaneously[47].

The combination of Peg-IFN with RBV is again the standard of care for HCV recurrence after LT. Likewise, the regimen’s efficacy is frustrating because after 72 wk of administration, SVR stabilization was achieved in only 30% of recipients[69,70]. The currently used DAAAs, boceprevir and telaprevir, on the top of the old regimen have shown very promising results for the treatment of HCV reinfection in LT recipients with CHC[81]. Five studies[72-76] have demonstrated that the institution of the triple regimen obtained SVR in 50%-89% of LT
recipients with CHC, mostly with genotype 1, when administered for 12 to 66 wk (Table 2). Serious side effects, fatal events, were recorded in two studies. Although the place of DAAs in the management of LT recipients has not been totally clarified, two reported algorithms may guide therapy. According to them, the triple regimen should be applied in cases of cirrhosis (METAVIR fibrosis stages 3 and 4), cholestatic hepatitis, previous virological failure and in the presence of predictors of poor response. Interestingly, sofosbuvir (NS5B inhibitor) combined only with RBV with or without PEG IFN demonstrated strong antiviral potency and disease improvement of CHC recurrence in LT recipients. These are all very promising data but need to be tested in large multicenter prospective trials to become the standard of care.

In line with reducing severity of HCV recurrence after LT, immunosuppression is one of the major factors that accounts for accelerated HCV recurrence. For example, both steroid boluses as well as their very rapid tapering have been associated with aggressive HCV recurrence and graft loss. Interestingly, the long term maintenance immunosuppression with azathioprine, tacrolimus and prednisolone delayed the appearance of histologically proven severe fibrosis, while the sirolimus therapy led to HCV RNA elimination without antiviral treatment.

MANAGEMENT OF PATIENTS WITH HEPATITIS B AND C BEFORE AND AFTER KIDNEY TRANSPLANTATION

HBV positive and HCV positive renal transplant candidates

Antiviral therapy advances for HBV and HCV infection on renal transplantation (RT) have indicated great benefits in pre-transplantation and post-transplantation management and results. However, antiviral therapy for HCV is hardly tolerated by RT candidates, especially if they have comorbidities and dialysis-related complications. It may not be wise for HCV positive patients with congestive heart failure, uncontrolled diabetes and with short life expectancy to receive antiviral therapy.

HBV and HCV positive candidates for RT should preferably undergo liver biopsy. The transjugular route is preferable since coagulation abnormalities are very common. Fibroscan and other noninvasive techniques are supplementary. The presence of cirrhosis precludes patients from sole RT, while in patients with decompenated cirrhosis combined liver and kidney transplantation is the recommended option.

HBV positive RT candidates should initiate antiviral therapy when HBV DNA > 2000 IU/mL or HBV DNA ≤ 2000 IU/mL two weeks before RT. Therapy should be instituted as long as immunosuppressive therapy lasts whatever the HBV DNA level is or for at least the first 2 years when immunosuppressive therapy is most intense. HCV positive RT candidates should receive therapy when there is active viral replication (HCV RNA positive) and a biopsy proven chronic hepatitis. Before transplantation, the goal is the accomplishment of HBV DNA clearance to prevent post-transplant virological relapse and liver-related complications. The disappearance of viral load is a prerequisite for a HBV or HCV positive patient on hemodialysis to be enrolled in the RT list. Therapy with entecavir, tenofovir or lamivudine on adjusted doses for renal function is included in the current guidelines for prophylaxis of HBV positive RT candidates. The NA optimal regimen has not been pro-

Table 2 Safety and efficacy of the combined regimen, interferon, ribavirin and protease inhibitors to treat hepatitis C after liver transplantation

Bocceprevir (n)	Telaprevir (n)	Complete virological response	Side effects
Coally et al ([73])	18	58% TVR	Anemia 92%
	19	89% BOC	Infections 27%
Pungpapong et al ([74])	31	86% TVR	Anemia 95%
	35	48% BOC	Infections 10%
Werner et al ([75])	-	88.80%	Fatal events 3%
	9		Anemia 75%
Stravitz et al ([76])	50	62%	Renal dysfunction 33%
			Anemia 82%
Ann Brown et al ([77])	-	60%	Renal failure
	46		Fatal events 7%
Forns et al ([78])	Sofosbuvir 115	78%	Anorectal symptoms 41%

BOC: Bocceprevir; TVR: Telaprevir.
posed yet, so prophylaxis may start before or at the time of RT and continue thereafter\(^{[91,92]}\). Entecavir should be the first line option for avoidance of short term resistance and adefovir nephrotoxicity\(^{[93]}\), while tenofovir had better be applied in case of lamivudine resistance.

Guidelines for HCV positive RT candidates recommend treatment with interferon \(\alpha\) (\(\alpha\)-IFN) in adjusted doses for renal function\(^{[93,95]}\), although studies in this population\(^{[96,97]}\) have shown the advantage of IFN and RBV to provide persistent SVR. The very severe anemia and heart failure caused by the combinative regimen avert clinicians from using it in clinical practice\(^{[97]}\). However, the addition of very low doses RBV (200-400 mg three times weekly) under thorough monitoring (weekly measure of hemoglobin, application of high erythropoietin doses and iron supplementation) could result in HCV RNA clearance and allow more patients to get on to the list\(^{[98]}\). The preliminary results for five RT candidates with CHC treated with the triple regimen of IFN, RBV and DAA (four received telaprevir and one boceprevir)\(^{[98,99]}\) are very promising. Telaprevir and boceprevir has not required dose adjustment to renal function so far. After 12 to 48 wk of triple therapy, viral load disappeared in 4/5 patients, while moderate, almost expected side-effects were noted. These were dysgeusia, diarrhea and anemia, leading to the increase of the doses of erythropoietin and the modification of RBV doses.

HBV positive and HCV positive renal transplant recipients

The high doses of immunosuppressants (steroids and anti-CD3 antibody) required to avoid graft rejection post-transplant may be responsible for rapidly progressive liver disease and fibrosing cholestatic hepatitis\(^{[100,101]}\). Initially, HBV positive RT recipients should be under close surveillance and continue the same treatment started before RT. Entecavir is again the therapy of choice. It has been tried in naive, lamivudine or adefovir resistant RT recipients for 33 mo\(^{[102-106]}\), providing excellent results regarding HBV DNA reduction, without aggravation of creatinine clearance, microalbuminuria or allograft rejection. Discontinuation of applied NA is desirable in cases of fibrosing cholestatic hepatitis and resistance, which may occur as hepatic flare and rarely as hepatocellular carcinoma (HCC) and fatal liver decompensation\(^{[101,102]}\). Tenofovir (245 mg daily) adapted to creatinine clearance could be a safe alternative subsequent to resistance\(^{[108]}\) on the condition that tubular injury is of great concern. If renal allograft dysfunction is in progress and the HBV positive RT recipient presents with a low viral load, the inception of telbivudine could potentially lead to renal function recovery\(^{[20,109-111]}\).

Therapy of HCV after RT should only be considered in RT recipients with fibrosing cholestatic hepatitis or de novo glomerulonephritis\(^{[93,112]}\). \(\alpha\)-IFN alone or \(\alpha\)-IFN plus RBV post-transplantation are contraindicated because a high percent of irreversible and steroid resistant acute allograft rejection and low efficacy levels have been recorded\(^{[113,114]}\). In our clinical setting, HBV positive and HCV positive RT recipients are screened for liver enzymes, bilirubin and prothrombin time at each visit. Ultrasonography with triplex of splenorenal axis and/or transient elastography is monitored annually. HBV DNA and HCV RNA as well as a-fetoprotein are tested every year. In patients with cirrhosis, endoscopy for detection or monitoring of varices is performed every 1-2 years. All HBV positive and HCV positive RT recipients should avoid alcohol and hepatotoxic drugs. In the case of fever, effective antibiotics are started immediately. Liver biopsy and modulation of antivirals is considered in patients with abnormal liver function and/or increased viral load.

SELECTION OF PATIENTS WHO NEED CLOSE MONITORING

High HBV viral load pre and peritransplant predispose to closer patient surveillance and stronger prophylactic antiviral regimens. This group of patients is more likely to progress to decompensation and to HCC\(^{[115]}\). It is preferable that they be treated with entecavir or tenofovir and often be monitored for signs of decompensation. In a case of severe decompensation, patients receiving antivirals are at higher risk of lactic acidosis so physicians should be vigilant. LT candidates with HCV compensated cirrhosis are more vulnerable to IFN-related hematological toxicities since the splenomegaly caused by portal hypertension magnifies the risk for cytopenias\(^{[116]}\). Therefore, IFN dose modification and close regular monitoring is recommended. Furthermore, therapy in patients with Child-Turcotte-Pugh (CTP) score C (or MELD score > 18) is challenging and should be carried out in dedicated and experienced centers because IFN may cause sepsis and is associated with a low sustained virological response (SVR) rate\(^{[61]}\). Careful monitoring should also be applied to patients with CTP score B. They need individualization of treatment decisions regarding non-genotype 1, high viral load, treatment naïve or relapse from previous antiviral therapies\(^{[14]}\).

RT recipients with severe liver disease should receive non aggressive immunosuppressive protocols (cannot always be applied in immunologically high risk patients) and a selected immunosuppressive regimen with minimal or preferably no steroid use. All antivirals should be modified continuously regarding current renal function. Additionally, HBsAg-positive RT recipients with cirrhosis are at risk for hepatic decompensation after isolated RT and therefore they require simultaneous liver and kidney transplantation\(^{[86]}\). In conclusion, we should be on the alert for all HCV positive RT recipients which means screening them regularly for HCC\(^{[17]}\), emergence of diabetes, renal thrombotic microangiopathy\(^{[118]}\), glomerulonephritis\(^{[119,120]}\), renal graft nephropathy\(^{[114]}\) and sepsis\(^{[122]}\).

SPECIAL TREATMENT CONSIDERATIONS

Generally, entecavir and tenofovir are the preferable an-
HBV: Hepatitis B virus; NA: Nucleos(t)ide analog; HBIG: Hepatitis virus immunoglobulin.

Table 3 Prophylactic schemes against hepatitis B virus recurrence after liver and renal transplantation when grafts are from hepatitis B virus positive donors

Donor	Recipient	Prophylaxis
Liver transplantation	Anti-HBc positive	HBsAg positive
		HBsAg negative
		Anti-HBc positive
		Anti-HBc negative
		Anti-HBs positive
		Anti-HBs negative
		Anti-HBc positive
		Anti-HBc negative
		HBIG plus NA
		No prophylaxis
Kidney transplantation	HBsAg positive	HBsAg positive
	Anti-HBc positive	HBsAg negative
		Anti-HBc positive
		Anti-HBc negative
		HBIG plus NA
		No prophylaxis
	HBsAg positive	Treatment when HBV DNA increases
	Anti-HBc positive	HBIG plus lamivudine
		Long term lamivudine
	Anti-HBc positive	HBIG plus lamivudine
		Long term lamivudine
	HBsAg positive	HBIG plus lamivudine
	Anti-HBc positive	Long term lamivudine
		(HBV DNA) negative
	HBsAg positive	HBIG plus lamivudine
	Anti-HBc positive	Long term lamivudine
		(HBV DNA) negative

HBV AND HCV POSITIVE DONORS

Many studies have shown that liver grafts from anti-HBc positive donors can be used safely in: (1) HBsAg negative but anti-HBc/anti-HBs positive recipients without antiviral prophylaxis; (2) in HBsAg positive recipients on the condition that dual therapy HBIG and NAs is applied; and (3) anti-HBc and/or anti-HBs negative recipients when receiving long term prophylaxis with lamivudine, dual therapy or no prophylaxis. Heterogeneity of data exists regarding the use of liver grafts from HBsAg positive donors.

Similarly, renal grafts from anti-HBc positive donors can be used in HBsAg negative recipients without prophylaxis. It is acceptable practice for renal grafts from HBsAg positive donors to be used in HBsAg positive or HBsAg negative recipients with subsequent long term NA administration with or without HBIG. In all cases, serial HBV DNA measurements regardless of normal liver biochemistry are required. In particular, in LT or RT recipients who are not on any antiviral prophylaxis, an increase in viral load indicates NA initiation. On the other hand, when immunosuppression is reduced and complete viral clearance has been achieved, NA interruption could be considered (Table 3).

LT candidates with HCV-related cirrhosis can undergo LT from HCV positive donors if they are not HCV RNA positive because early hepatitis C recurrence may occur. Renal grafts from HCV positive donors are acceptable only for HCV positive RT candidates. In this setting, the survival of HCV positive RT recipients increases compared to their survival rates if they remain on hemodialysis. Renal grafts from HCV positive donors should not be distributed to HCV negative recipients because many fatal liver complications have been recorded.

CONCLUSION

Current knowledge on the management of patients with HBV offers effective and safe options for liver or renal transplantation. Individualization and determination of less nephrotoxic and finite duration antiviral treatment will enhance the quality of their treatment and prognosis. Various types of vaccinations (S and pre-S antigen vaccines, DNA vaccination, T cell vaccines) and some monoclonal antibodies (exibivirumab and libivirumab) are promising for preventing HBV recurrence and are being evaluated in clinical trials. Subcutaneous HBIG and hyperimmune anti-HBs plasma may prove to be alternative options with a lower cost and the same efficacy levels. The optimal antiviral therapy has not been established yet for LT or RT candidates with CHC. The DAAs in-
stitution marks a bright new era for treatment approach of these patients. Control randomized studies involving DAAs use in patients with decompensated cirrhosis and in RT candidates and recipients are in high need. Moreover, the optimal use and benefits of granulocyte growth factors and erythropoietin in improving SVR rates should be further researched and become established practice.

REFERENCES

1. Pham PT, Pham PA, Pham PC, Parikh S, Danovitch G. Evaluation of adult kidney transplant candidates. Semin Dial 2010; 23: 595-605 [PMID: 21275834 DOI: 10.1111/j.1525-139X.2010.00809.x]

2. Shibolet O, Ilan Y, Gills S, Hubert A, Shouval D, Safadi R. Lamivudine therapy for prevention of immunosuppressive-induced hepatitis B virus reactivation in hepatitis B surface antigen carriers. Blood 2002; 100: 391-396 [PMID: 12091327 DOI: 10.1182/blood.V100.2.391]

3. Papatheodoridis GV, Cholongitas E, Archimandritis AJ, Burroughs AK. Current management of hepatitis B virus infection before and after liver transplantation. Liver Int 2009; 29: 1294-1305 [PMID: 19619264 DOI: 10.1111/j.1478-3231.2009.02085.x]

4. Samuel D. Management of hepatitis B in liver transplantation patients. Semin Liver Dis 2004; 24 Suppl 1: 55-62 [PMID: 15192802 DOI: 10.1055/s-2004-828679]

5. Heathcote EJ, Marcellin P, Buti M, Gane E, De Man RA, Krastev Z, Germanidis G, Lee SS, Flisiak R, Kaita K, Manns M, Kotzev T, Tchernev K, Buggisch P, Weilert F, Kurdas O0, Shiffman ML, Trinh H, Gurel S, Snow-Lampart A, Borrotos-Esoda K, Mondou E, Anderson J, Sorbel J, Rousseau F. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology 2011; 140: 132-143 [DOI: 10.1053/j.gastro.2010.01.011]

6. Schiff E, Simsek H, Lee WM, Chao YC, Sette H, Janssen HL, Han SH, Goodman Z, Yang J, Brett-Smith H, Tamez R. Efficacy and safety of entecavir in patients with chronic hepatitis B and advanced hepatic fibrosis or cirrhosis. Am J Gastroenterol 2008; 103: 276-278 [DOI: 18721244 DOI: 10.1111/j.1572-4241.2008.0086.x]

7. Papatheodoridis GV, Manolakopoulos S, Dusheiko G, Archimandritis AJ. Therapeutic strategies in the management of patients with chronic hepatitis B virus infection. Lancet Infect Dis 2008; 8: 167-178 [DOI: 10.1016/S1473-3099(07)70246-5]

8. McGovern BH, Abu Dayyeh BK, Chung RT. Averting therapeutic pitfalls: the rational use of specifically targeted agents against hepatitis C infection. Hepatology 2008; 48: 1700-1712 [PMID: 18972443 DOI: 10.1002/hep.22563]

9. Stedman CA. Current prospects for interferon-free treatment of hepatitis C in 2012. J Gastroenterol Hepatol 2013; 28: 38-45 [PMID: 23137126 DOI: 10.1111/j.1440-1640.2012.05281.x]

10. Garg V, van Heeswijk R, Lee JE, Alves K, Nadkarni P, Luo X. Effect of telaprevir on the pharmacokinetics of cyclosporine and tacrolimus. Hepatology 2011; 54: 20-27 [PMID: 21685566 DOI: 10.1002/hep.24443]

11. Verna EC, Brown RS. Hepatitis C virus and liver transplantation. Clin Liver Dis 2006; 10: 919-940 [PMID: 17164125 DOI: 10.1016/j.cld.2006.08.012]

12. Bzowej N, Nelson DR, Terrault NA, EVerson GT, Teng LL, Prabhakar A, Charlton MR. PHOENIX: A randomized controlled trial of peginterferon alfa-2a plus ribavirin as a prophylactic treatment after liver transplantation for hepatitis C virus. Liver Transpl 2011; 17: 528-538 [PMID: 21506241 DOI: 10.1002/lt.22271]

13. Roche B, Samuel D. Hepatitis C virus treatment pre- and post-liver transplantation. Liver Int 2012; 32 Suppl 1: 120-128 [PMID: 22212592 DOI: 10.1111/j.1478-3231.2011.02714.x]
The clinical practice guidelines: Management of chronic hepatitis B virus infection. J Hepatol 2012; 57: 167-185 [PMID: 22438485]

Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45: 507-539 [PMID: 17256718 DOI: 10.1002/hep.21513]

Parshutin NP, Korsakov SG. Comparative analysis of the data of acupuncture electrodiagnosis and hormonal status of women with oligomenorrhea. Akush Ginekol (Mosk) 1990; (6): 26-29

Chalasani N, Manzarettia C, Ferenci P, Vogel W, Fontana RJ, Voigt M, Riely C, Martin P, Teperman L, Jiao J, Lopez-Talavera JC. Peginterferon alfa-2a for hepatitis C after liver transplantation: two randomized, controlled trials. Hepatology 2005; 41: 289-298 [PMID: 15660392 DOI: 10.1002/hep.20560]

Mazzaferrro V, Tagger A, Schiavo M, Regalia E, Pulvirenti Cohen SM. Prevention of hepatitis B recurrence. J Hepatol 2009; 50: 227-242 [PMID: 19054888 DOI: 10.1016/j.jhep.2008.10.001]

Lok AS, McMahon BJ. Chronic hepatitis B update 2009. Hepatol Int 2011; 5: 73-83 [PMID: 21669255 DOI: 10.1007/s12072-008-9080-3]

Kim JS, Mun JI, Koo JH, Kang CJ, Bak JK, Cheong YJ, Cho SW. [Entecavir therapy for patients with hepatitis B virus-related decompensated cirrhosis]. Korean J Gastroenterol 2012; 59: 224-231 [PMID: 22460571 DOI: 10.4166/kig.2012.59.3.224]

Sadler MD, Coffin CS, Lee SS. Entecavir for the treatment of patients with hepatitis B virus-related decompensated cirrhosis. Expert Opin Pharmacother 2013; 14: 1363-1369 [PMID: 23557465 DOI: 10.1517/14656566.2013.786701]

Ye XG, Su QM. Effects of entecavir and lamivudine for hepatitis B decompensated cirrhosis: meta-analysis. World J Gastroenterol 2013; 19: 6665-6678 [PMID: 24151397 DOI: 10.3786/wjg.v19.i39.6665]

Marcellin P, Gane E, Buti M, Aldhal N, Sievert W, Jacobson IM, Washington MK, Germanidis G, Flaherty JF, Schall RA, Bornstein JD, Kiniros KM, Subramanian GM, McHutchison JG, Heathcote EJ. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381: 468-475 [PMID: 23234725 DOI: 10.1016/S0140-6736(12)64154-1]

Marcellin P, Heathcote EJ, Buti M, Gane E, de Man RA, Kraraz V, Germanidis G, Lee SS, Flisiak R, Kaita K, Manns M, Koztev I, Tchernev K, Buggisch P, Weilert F, Kurdas OO, Shiffman ML, Trinh H, Washington MK, Sorbel J, Anderson J, Snow-Lampart A, Monodou E, Quinn J, Rousseau F. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med 2008; 359: 2442-2455 [PMID: 19052126 DOI: 10.1056/NEJMoa0802789]

Wong VW, Chan FK. Regression of cirrhosis with long-term tenofovir treatment. Gastroenterology 2013; 145: 481-482 [PMID: 23579793 DOI: 10.1053/j.gastro.2013.06.019]

Liu YF, Shen IS, Lee CM, Akara US, Papathoidis GV, Suet-Hin F, Chang TF, Hoehn A, Wang C, Kwan P, Buti M, Prieto M, Berg T, Kiniros KM, Peuchel K, Monodou E, Frederick D, Rousseau F, Schiff ER. Tenofovir disoproxil fumarate (TDF), emtricitabine/TDF, and entecavir in patients with decompensated chronic hepatitis B liver disease. Hepatology 2011; 53: 62-72 [PMID: 21254162 DOI: 10.1002/hep.23952]

Izzedine H, Hulo JS, Vittecoq D, Gallant JE, Staszewski S, Bayona-Vazquez A, Cheung A, Duray G. Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naive HIV-1-infected patients. Data from a double-blind randomized active-controlled multicentre study. Nephrol Dial Transplant 2005; 20: 743-746 [PMID: 15741212 DOI: 10.1093/ndt/ggh568]

Laprise C, Baril JG, Dufresne S, Trottier H. Association between tenofovir exposure and reduced kidney function in a cohort of HIV-positive patients: results from 10 years of follow-up. Clin Infect Dis 2013; 56: 567-575 [PMID: 23143096 DOI: 10.1093/cid/cis937]

Cholongitas E, Vasiliadis T, Antoniadis N, Goulis I, Papaniokou A, Avkriadi E. Hepatitis B prophylaxis post liver transplantation with newer nucleos(t)ide analogues after hepatitis B immunoglobulin discontinuation. Transplant Infect Dis 2012; 14: 479-487 [PMID: 22624695 DOI: 10.1111/j.1399-0622.2012.00741.x]

European Association For The Study Of The Liver. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol 2008; 50: 130-149 [PMID: 19054888 DOI: 10.1016/j.jhep.2008.05.001]
Living related liver transplant (LLT) in HBV DNA negative cirrhosis without hepatitis B immune globulin (HBIG). Hepatol Int 2011; 5: 538

55 Cholongitas E, Gouli N, Akrividiadis E, Papatheodoridis GV. Hepatitis B immune globulin and/or nucleos(t)ide analogues for prophylaxis against hepatitis B virus recurrence after liver transplantation: a systematic review. Liver Transpl 2011; 17: 1176-1190 [PMID: 21656655 DOI: 10.1002/lt.22354]

56 Lake JR. Do we really need long-term hepatitis B hyperimmune globulin? What are the alternatives? Liver Transpl 2008; 14 Suppl 2: S23-S26 [PMID: 18825722 DOI: 10.1002/lt.21637]

57 Shouval D, Samuel D. Hepatitis B immune globulin to prevent hepatitis B virus graft reinfecition following liver transplantation: a concise review. Hepatology 2000; 32: 1189-1195 [PMID: 11093723 DOI: 10.1053/jhep.2000.19789]

58 Lenci I, Tisono G, Di Paolo D, Marcuccilli F, Tariotti L, Ciotti M, Sivcher V, Perno CF, Angelico M. Safety of complete and sustained prophylaxis withdrawal in patients liver-transplanted for HBV-related cirrhosis at low risk of HBV recurrence. J Hepatol 2011; 55: 587-593 [PMID: 21251938 DOI: 10.1016/j.jhep.2010.12.036]

59 Berenguer M, Prieto M, Rayón JM, Mora J, Pastor M, Ortiz V, Carrasco D, San Juan F, Burgueno MD, Mir J, Berenguer J. Natural history of clinically compensated hepatitis C virus-related graft cirrhosis after liver transplantation. Hepatology 2003; 32: 852-858 [PMID: 11003634 DOI: 10.1053/jhep.2000.17924]

60 Gurusamy KS, Tschatzis E, Xirochakis E, Burroughs AK, Davidson BR. Antiviral therapy for recurrent liver graft infection with hepatitis C virus. Cochrane Database Syst Rev 2010; (1): CD006803 [PMID: 20091608]

61 Coilly A, Roche B, Samuel D. Current management and perspectives for HCV recurrence after liver transplantation. Liver Int 2013; 33 Suppl 1: 56-62 [PMID: 23286847 DOI: 10.1111/liv.12062]

62 Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The META VIR Cooperative Study Group. Hepatology 1996; 24: 289-293 [PMID: 9569394 DOI: 10.1002/hep.5102402011]

63 Blasco A, Forns X, Carrión JA, García-Pagán JC, Gilabert R, Rimola A, Miquel R, Bruguera M, García-Valdecasas JC, Bosch J, Navasa M. Hepatic venous pressure gradient identifies patients at risk of severe hepatitis C recurrence after liver transplantation. Hepatology 2006; 43: 492-499 [PMID: 16498568 DOI: 10.1002/lt.21090]

64 Carrión JA, Forns X, Crespo G, Miquel R, García-Valdecasas JC, Navasa M, Forns X. Liver stiffness identifies two different patterns of fibrosis progression in patients with hepatitis C virus recurrence after liver transplantation. Hepatology 2010; 51: 23-34 [PMID: 19893063 DOI: 10.1002/hep.23240]

65 Forman LM, Lewis JD, Berlin JA, Feldman HI, Lucey MR. The association between hepatitis C infection and survival after orthotopic liver transplantation. Gastroenterology 2002; 122: 889-896 [PMID: 11910340 DOI: 10.1053/gast.2002.32418]

66 Fukuhara T, Taketomi A, Motomura T, Okano N, Ninomiya A, Abe T, Uchiyama H, Soejima Y, Shirabe K, Matsuura Y, Fukuhara T. Interferon-based combination anti-viral therapy for hepatitis C virus after liver transplantation: a review and quantitative analysis. Am J Transplant 2006; 6: 1586-1599 [PMID: 16827859 DOI: 10.1111/j.1600-6143.2006.01362.x]

67 Xirochakis E, Triantos C, Manousou P, Sigalas A, Calvaruso V, Corbani A, Leandro G, Patch D, Burroughs A. Pegylated-interferon and ribavirin in liver transplant candidates and recipients with HCV cirrhosis: systematic review and meta-analysis of prospective controlled studies. J Viral Hepat 2008; 15: 699-709 [PMID: 18674328 DOI: 10.1111/j.1365-2893.2008.01019.x]

68 Coilly A, Roche B, Dumortier J, Leroy V, Botta-Fridlund D, Radenne S, Pageaux GP, Si-Ahmed SN, Guillaud O, Antonini TM, Ha‘ım-Boukobza S, Roque-Afonso AM, Samuel D, Dulos-Vallée JC. Safety and efficacy of protease inhibitors to treat hepatitis C after liver transplantation: a multicenter experience. Hepatol 2014; 60: 78-86 [PMID: 23934364]

69 Pung pang S, Aqel BA, Koning L, Murphy JL, Henry TM, Ryland KL, Yataco ML, Satyanarayana R, Rossor BG, Vargas HE, Charlton MR, Keaveny AP. Multicenter experience using telaprevir or boceprevir with peginterferon and ribavirin to treat hepatitis C genotype 1 after liver transplantation. Liver Transpl 2013; 19: 690-700 [PMID: 23696372 DOI: 10.1002/lt.23669]

70 Werner CR, Egertemeyr DP, Lauer UM, Nadalin S, Königsrainer A, Malek NP, Berg CP. Telaprevir-based triple therapy in liver transplant patients with hepatitis C virus: a 12-week pilot study providing safety and efficacy data. Liver Transpl 2012; 18: 1464-1470 [PMID: 22941516 DOI: 10.1002/lt.23542]

71 Stravitz T LJ, Dodge J, Saxena V, Burton J, Verna E, O‘Leary J, Parikh N, Everson G, Brown R, Trotter J, Terrault N. Higher Sustained Virologic Response (SVR-12) Achievable in Liver Transplant (LT) Recipients with Hepatitis C (HCV) Treated with Protease Inhibitor (PI) Triple Therapy (TT). Hepatology 2013; 58 (4 suppl)

72 Ann Brown K FR, Russo M, Levitsky J, Yoshida E, Vargas H, Bsharat M, Rubin R, Brown R: Twice -daily Telaprevir in combination with Peginterferon alfa 2a/ribavirin in genotype 1 HCV Liver Transplant recipients: Interim week 16 Safety and Efficacy Results on the Prospective, Multicenter REFRESH Study. Hepatology 2013; 58: AASLD abstracts

73 Forns X FR, Moonka D, McHutchison J, Symonds W, Denning J, McNair L, Chang P, Kivet V, Shiffman M, Charlton M. Initial evaluation of Sofosbuvir compassionate use program for patients with severe recurrent HCV following liver transplantation. Hepatology 2013; 58 (4 suppl): 1084 AASLD abstracts

74 Manousou P, Samonakis D, Cholongitas E, Patch D, O‘Beirne J, Dhillon AP, Rolles K, McCormick A, Hayes P, Burroughs AK. Outcome of recurrent hepatitis C virus after liver transplantation in a randomized trial of telcarcolsin monotherapy versus triple therapy. Liver Transpl 2009; 15: 1783-1791 [PMID: 19938143 DOI: 10.1002/lt.21907]

75 Samonakis DN, Cholongitas E, Triantos CK, Griffiths P, Dhillon AP, Thalheimer U, Patch DW, Burroughs AK. Sustained, spontaneous disappearance of serum HCV-RNA under immunosuppression after liver transplantation for HCV cirrhosis. J Hepatol 2005; 43: 1091-1093 [PMID: 16329045 DOI: 10.1016/j.jhep.2005.08.005]

76 Chan TM, Fang GX, Tang CS, Cheng IK, Lai KN, Ho SK. Preemptive lamivudine therapy based on HBV DNA level in HBsAg-positive kidney allograft recipients. Hepatology 2002; 36: 1246-1252 [PMID: 12395336 DOI: 10.1053/jhep.2002.36156]

77 Maluf DG, Fisher RA, King AL, Gibney EM, Mas VR, Cotterell AH, Shiffman ML, Sterling RK, Behnke M, Posner MP. Hepatitis C virus infection and kidney transplanta-
Liver and kidney transplantation in patients with CHB and CHC

- Baid S, Cosimi AB, Tolkoff-Rubin N, Colvin RB, Williams PW, Pascual M. Renal disease associated with hepatitis C infection after kidney and liver transplantation. *Transplantation* 2000; 70: 255-261 [PMID: 10933433 DOI: 10.1097/00007850-200002790-000011

- Baid S, Tolkoff-Rubin N, Saidman S, Chung R, Williams PW, Avcinlak H, Colvin RB, Delmonico FL, Cosimi AB, Pascual M. Acute humoral rejection in hepatitis C-infected renal transplant recipients receiving antiviral therapy. *Am J Transplant 2003; 3: 74-78 [PMID: 12492714 DOI: 10.1034/j.1600-6143.2003.00113.x]

- Peng CY, Chien RN, Liaw YF. Hepatitis B virus-related decompensated liver cirrhosis: benefits of antiviral therapy. *J Hepatol 2012; 57: 442-450 [PMID: 22504333 DOI: 10.1016/j.jhep.2012.02.033]

- Vezali E, Aghemo A, Colombo M: A review of the treatment of chronic hepatitis C virus infection in cirrhosis. *Clin Ther 2010; 32: 2117-2138 DOI: 10.1016/j.clinthera.2010.02.002]

- Vallet-Pichard A, Poil S. Hepatitis C virus infection in hemodialysis patients. *Clin Res Hepatol Gastroenterol 2013; 37: 340-346

- Fontaine H, Vallet-Pichard A, Equi-Andrade C, Nalpas B, Verkarre V, Chaiq ML, Lebray P, Sobeysy R, Serpaggi J, Kreis H, Poil S. Histopathologic efficacy of ribavirin monotherapy in kidney allograft recipients with chronic hepatitis C. *Transplantation 2004; 78: 853-857 [PMID: 15385804 DOI: 10.1097/01.TP.0000128911.87538.AA]

- Mahmoud IM, Sobh MA, El-Habashi AF, Sally ST, El-Baz M, El-Sawy E, Ghoneim MA. Interferon therapy in hemodialysis patients with chronic hepatitis C: study of tolerance, efficacy and post-transplantation course. *Nephron Clin Pract 2005; 100: c133-c139 [PMID: 15855796 DOI: 10.1159/000085442]

- Ozdemir BH, Ozdemir FN, Sezer S, Colak T, Haberal M. De novo glomerulonephritis in renal allografts with hepatitis C virus infection. *Transplant Proc 2006; 38: 492-495 [PMID: 16549157 DOI: 10.1016/j.transproceed.2005.12.109]

- Recommendations for incorporating human immunodeficiency virus (HIV) prevention into the medical care of persons living with HIV. *Clin Infect Dis 2004; 38: 104-121 [PMID: 14679456 DOI: 10.1086/380131]

- Pipili C, Cholongitas E, Papatheodoris G: Review article: nucleos(t)ide analogues in patients with chronic hepatitis B virus infection and chronic kidney disease. *Aliment Pharmacol Ther 2014; 39: 35-46 [PMID: 24299322 DOI: 10.1111/apt.12538]

- Cholongitas E, Papatheodoris GD, Burroughs AK. Liver grafts from anti-hepatitis B core positive donors: a systematic review. *J Hepatol 2010; 52: 272-279 [PMID: 20034693 DOI: 10.1016/j.jhep.2009.11.009]

- Bortoluzzi I, Gambato M, Albertoni L, Mescoli C, Pacenti M, Cusiniato R, Germani G, Senzolo M, Gambato M, Giuseppe AL, Mescoli C, Pacenti M. Liver transplantation from hepatitis B virus surface antigen positive donors: results from a retrospective Italian study. *Transplantation 2006; 81: 76-80 [PMID: 16421480 DOI: 10.1097/01.TP.0000189930.89031.1b]

- Álvaro E, Abadado M, Fuertes A, Manrique A, Colina F, Alegre C, Calvo J, Garcia M, Garcia-Desma M, Cambra F, Sanabria R, Moreno E, Jimenez C. Liver transplantation from anti-hepatitis C virus-positive donors: our experience. *Transplant Proc 2012; 44: 1475-1478 [PMID: 22841188 DOI: 10.1016/j.transproceed.2012.05.012]

- Ballarin R, Cucchitti A, Spaggiari M, Montaliti R, Di Benedetto F, Nadalin S, Troisi RI, Valmasino M, Longo C, De Ruvo N, Cautero N, Cillo U, Pinna DA, Burra P, Gerunda GE. Long-term follow-up and outcome of liver transplantation from anti-hepatitis C virus-positive donors: a European multicenter case-control study. *Transplantation 2011; 91: 1265-1272 [PMID: 21478815 DOI: 10.1097/TP.0b013e318219e8b8]

- Abbott KC, Lenine KL, Bucci JR, Agooda LY, Peters TG, Schnitzler MA. The impact of transplantation with deceased donor hepatitis C-positive kidneys on survival in wait-listed long-term dialysis patients. *Am J Transplant 2004; 4: 2023-2037 [PMID: 15575906 DOI: 10.1111/j.1600-6143.2004.00606.x]

- Suressh Kumar KK, THI NL, Marcus RJ. Kidney transplantation in hepatitis C-positive recipients: does type of induction influence outcomes? *Transplant Proc 2012; 44: 1262-1264 [PMID: 22665997 DOI: 10.1016/j.transproceed.2012.11.076]

- Flohr TR, Bonatti H, Hranjec T, Keith DS, Lobo PJ, Kumer SC, Schmitt TM, Sawyer RG, Pruett TL, Roberts JP, Brayman KL. Elderly recipients of hepatitis C positive renal allografts can quickly develop liver disease. *J Surg Res 2012; 176: 629-638 [PMID: 22316669 DOI: 10.1016/j.jss.2011.10.028]

- Pereira BJ, Wright TL, Schmid CH, Levey AS. A controlled study of hepatitis C transmission by organ transplantation. *The New England Organ Bank Hepatitis C Study Group* *Liver Transpl* *1995; 345: 484-487 [DOI: 10.1016/S0149-2918(95)09083-9]

P-R: Hilmi IA, Schmimmer P, Saded T
S-Editor: Song XW L-Editor: Roemmle A
E-Editor: Wang CH
