Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic

Hüppe, Lukas; Payton, Laura; Last, Kim; Wilcockson, David; Ershova, Elizaveta; Meyer, Bettina

Published in:
Biology Letters

DOI:
10.1098/rsbl.2020.0257

Publication date:
2020

Citation for published version (APA):
Hüppe, L., Payton, L., Last, K., Wilcockson, D., Ershova, E., & Meyer, B. (2020). Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biology Letters, 16(7). https://doi.org/10.1098/rsbl.2020.0257
Evidence for oscillating circadian clock genes in the copepod \textit{Calanus finmarchicus} during the summer solstice in the high Arctic

Lukas Hüppe1,2,3, Laura Payton1,3, Kim Last4, David Wilcockson5, Elizaveta Ershova6,7 and Bettina Meyer1,2,3

1Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
2Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, 26111 Oldenburg, Germany
3Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
4Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
5Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
6Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9019 Tromsø, Norway
7Shirshov Institute of Oceanology, Russian Academy of Sciences, Russian Federation, 36 Nahkimova Avenue, Moscow 117997, Russia

Abstract

The circadian clock provides a mechanism for anticipating environmental cycles and is synchronized by temporal cues such as daily light/dark cycle orphotoperiod. However, the Arctic environment is characterized by several months of Midnight Sun when the sun is continuously above the horizon and where sea ice further attenuates photoperiod. To test if the oscillations of circadian clock genes remain in synchrony with subtle environmental changes, we sampled the copepod \textit{Calanus finmarchicus}, a key zooplankter in the north Atlantic, to determine in situ daily circadian clock gene expression near the summer solstice at a southern (74.5° N) sea ice-free and a northern (82.5° N) sea ice-covered station. Results revealed significant oscillation of genes at both stations, indicating the persistence of the clock at this time. While copepods from the southern station showed oscillations in the daily range, those from the northern station exhibited an increase in ultradian oscillations. We suggest that in \textit{C. finmarchicus}, even small daily changes of solar altitude seem to be sufficient to entrain the circadian clock and propose that at very high latitudes, in under-ice ecosystems, tidal cues may be used as an additional entrainment cue.

1. Introduction

Biological clocks are ubiquitous, ancient and adaptive mechanisms enabling organisms to track and anticipate environmental cycles and regulate biological processes accordingly. Recent work on \textit{Calanus finmarchicus}, a key pelagic species in the northern Atlantic food web [1], revealed that \textit{C. finmarchicus} possesses a functional circadian clock that might be involved in the timing of both diel vertical migration (DVM) [2] and seasonal events such as diapause [3].

The Arctic is characterized by strong seasonal fluctuations in photoperiod leading to permanent illumination during Midnight Sun and permanent darkness.
2. Material and methods

(a) Study area, sampling and data collection
Sampling was conducted during Cruise JR17006 of the RRS James Clark Ross in summer 2018 at two stations along a latitudinal gradient, from the Nansen Basin (JR85; 82.5° N, 30.85° E, sea ice-covered) to the southern Barents Sea (B13; 74.5° N, 30° E, sea ice-free, figure 1a). Sampling covered a complete 24 h cycle at 4 h intervals, resulting in seven timepoints per station. Sampling at JR85 started 3 days before the summer solstice, on 18th June at 11.00 and ended on 19th June at 11.00 (all times noted in local time (UTC +2). Sampling at B13 started 9 days after the summer solstice, on 30th June at 14.00 and ended on 1st July at 14.00. For each timepoint, the water column was sampled between 200 m depth to the surface with a WP2 plankton net (200 µm mesh size). Net contents were preserved in RNAlater (Ambion, UK) for later analysis post cruise.

Measurements of photosynthetically active radiation (PAR, i.e. the range of wavelengths available to photosynthesis, 400 to 700 nm) were taken by PQS1 PAR sensors (Kipp & Zonen, The Netherlands) from the ship’s meteorological platform. Modelled data of sun altitude were obtained from the United States Naval Observatory (https://aa.usno.navy.mil/data/docs/AltAz.php, USNO, USA) and the keisan.casio website (https://keisan.casio.com/exec/system/1224682331). Information on the tidal dynamics have been drawn from the TPX08 model [14] by using the OTPS package (Tidal Prediction Software, http://www-po.coas.oregonstate.edu/~poa/www-po/research/po/research/tide/index.html), via the mbtobs program (MB-System; [15]). Additional methodological information and physical characteristics of the water column are available in the electronic supplementary material.

(b) Copepod sorting and clock gene expression
For each replicate (n = 3–5 per time point), 15 C. finmarchicus CV stage copepods were sorted from the samples using morphological characteristics. Since there is considerable morphological overlap between congeners C. finmarchicus and C. glacialis, species identification was corroborated molecularly (see electronic supplementary material S1). Copepod total RNA was obtained by a combination of TRIzol-based extraction and the Direct-zol™
Figure 2. Temporal expression profiles of circadian clock and clock-related genes in CV stage *C. finmarchicus* during Midnight Sun in the high Arctic. Relative gene expression is shown in blue for the station JR85 (82.5° N, 18/19.06.2018) and in red for the station B13 (74.5° N, 30.06./01.07.2018). Grey dashed lines indicate the standard errors of the mean (s.e.m.). Significance levels of oscillations detected by RAIN (Benjamini–Hochberg-adjusted p-values) with daily (D, 24 ± 4 h) and ultradian (U, 12 ± 4 h) period ranges are indicated with stars: *p* adjusted- *p* ≤ 0.05, **p** adjusted- *p* < 0.01, ***p*** adjusted- *p* < 0.001. The yellow lines indicate the sun’s altitude above the horizon and the grey lines the tidal height over the course of sampling.

(c) Data treatment and statistical analyses

Gene expression data were normalized according to the 2−ΔΔCt method [16] using the geometric mean of elongation factor 1α and 16 s rRNA as a reference. Profiles of clock genes were checked for rhythmic expression with ultradian (12 h ± 4 h) and daily (24 h ± 4 h) period ranges using the R package 'RAIN' [17]. Period phase estimates were obtained from the RAIN algorithm and the amplitude of oscillation was calculated by taking half the distance between the maximum and minimum expression value of each time series.

3. Results

During the sampling period, the sun remained permanently above the horizon (figure 1b) but still showed diel altitude cycles, reflected by changes in PAR (figure 1c). Daily PAR changes increased at the lower latitude and with time from the summer solstice. Both stations exhibited semi-diurnal tidal cycles. During the time of sampling at station JR85 (18–19/06/2018, 82.5° N, sea ice-covered), daily cycles in solar altitude were lower when compared to the time of sampling several days later at station B13 (30/06/2018–01/07/2018, 74.5° N, sea ice-free, figure 1c). Conversely, tidal height cycles were higher at JR85 when compared to B13 (figure 1d).

The expression profiles of *C. finmarchicus* clock genes and clock-related genes showed significant oscillations at both stations (figure 2 and table 1). Rhythm analysis identified both daily (24 ± 4 h) and ultradian (12 ± 4 h) period ranges in gene expression, but with distinct differences between the stations. At station B13, all clock genes showed oscillations with daily periods, except for cycle (both daily and ultradian) and cryptochrome1 (not significant). At station JR85, all clock genes showed significant oscillations but with an increase in ultradian periods. While clock, period1, timeless and cryptochrome1 showed daily oscillations, cryptochrome2, vrille and doubletime2 exhibited ultradian oscillations. As in B13, cycle showed both daily and ultradian oscillations in gene expression.

4. Discussion

We reveal in situ daily circadian clock gene expression of a key zooplanktonic species, *C. finmarchicus*, at high Arctic latitudes (74.5° N, 82.5° N) during the Midnight Sun, near the time of the summer solstice. While limited studies have shown several Arctic species exhibit 24 h activity rhythms during the Polar Day [18–21], quite how the circadian clock is entrained without overt day/night cycles is unknown and currently under debate [4,5,22].

It is also still unclear what constitutes zooplankton DVM behaviour during this time, with some studies suggesting that synchronized DVM ceases [9–11] and some that it is maintained [12,13]. Copepods, specifically *C. finmarchicus*, are a dominant constituent of the zooplankton community and have been the focus of many DVM studies [2,12,23]. It has been shown that *C. finmarchicus* collected from a high-latitude Fjord (78° N) maintained circadian clock gene rhythmicity even under long photophases at the very end of the Midnight Sun period [24]. Our results go further, showing circadian clock gene oscillations within days of the summer solstice where daily changes in sun’s altitude are at a minimum. At station B13 in the Southern
Barents Sea (74.5° N, sea ice-free), clock gene expression shows pronounced daily oscillations and striking similarities with previous findings from animals at lower latitudes with clock and period1 in antiphase [2]. While it is possible that self-sustained clock gene cycling could exist without synchronization to environmental cycles, the concordance of synchronicity between large numbers of individuals strongly suggests that the populations sampled are synchronized by a common Zeitgeber. Our results therefore strongly suggest that even small fluctuations in light intensity, barely perceptible to the human eye, are sufficient to sustain the circadian clock [22]. This is potentially explained by high irradiance [25] and spectral light sensitivity [26] in these organisms.

In contrast with the daily oscillations found at station B13, *C. finmarchicus* sampled at the northern sea-ice-covered station JR85 (82.5° N) exhibited a significant increase of ultradian oscillations in circadian clock gene expression, with period ranges of 12 ± 4 h. The reduced daily solar altitude at JR85 is associated with previous findings from animals at lower latitudes with clock and period1 in antiphase [2]. While it is possible that self-sustained clock gene cycling could exist without synchronization to environmental cycles, the concordance of synchronicity between large numbers of individuals strongly suggests that the populations sampled are synchronized by a common Zeitgeber. Our results therefore strongly suggest that even small fluctuations in light intensity, barely perceptible to the human eye, are sufficient to sustain the circadian clock [22]. This is potentially explained by high irradiance [25] and spectral light sensitivity [26] in these organisms.

target	JR85	B13			
	ultradian	daily	ultradian	daily	
clock	n.s.	0.01	n.s.	<0.0001	
cycle	0.006	0.005	0.04	<0.0001	
period1	0.04	n.s.	<0.0001		
timeless	n.s.	0.05	n.s.	<0.0001	
cryptochrome2	0.004	n.s.	n.s.	<0.0001	
vrille	0.002	n.s.	n.s.	0.001	
doubletime2	0.0007	n.s.	n.s.	<0.0001	
cryptochrome1	0.0009	n.s.	n.s.		

References

1. Helaouët P, Beaugrand G. 2007 Macroecology of *Calanus finmarchicus* and *C. helgolandicus* in the North Atlantic Ocean and adjacent seas. *Mar. Ecol. Prog. Ser.* 345, 147–165. (doi:10.3354/meps06775)

2. Häfler NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. 2017 Circadian clock involvement in known to entrain organisms [32–35]. In zooplankton, tidal rhythms of vertical migration [36–39] allow populations to maintain position within estuaries [36], while in *Pseudocalanus* sp. cycles of ingestion have been documented under sea ice [39]. Here, the cyclic erosion of ice by tidal currents provided pulses of food for the copepods, with highest ingestion at slack water [39]. Our results reveal that ultradian oscillations of circadian clock genes at JR85 provide some correlation with tidal height cycles, though direct causation is untested (figure 2). Further, many covariables change with the tidal cycles, such as periodic turbulence, agitation or food supply. In the absence of overt photoperiodic cycles during the Midnight Sun period and under sea ice shading, tidal cues could function as an alternative Zeitgeber for the *C. finmarchicus* circadian clock and lead to both circadian and tidal oscillations of the circadian clock machine [40,41]. Ultimately this would increase the adaptive advantages of a functioning clock in high-latitude environments, e.g. by optimizing the food intake and thus energy storage during the summer months. The accumulation of large lipid reserves throughout the spring/early summer is a fundamental process and key to *C. finmarchicus’* seasonal strategy to survive for the rest of the year in diapause and for a winter moult to adults [42]. An endogenous clock with sufficient plasticity to entrain to the extreme conditions at polar latitudes could therefore favour the permanent establishment of a boreal species like *C. finmarchicus* in the high Arctic.

Data accessibility. Data supporting the paper are in the electronic supplementary material.

Authors’ contributions. L.H. designed the study, collected field samples, carried out the molecular laboratory work, the data analysis and drafted the manuscript; L.P. designed the study, coordinated the molecular laboratory work and the data analysis, and contributed to the draft of the manuscript; K.L. and D.W. designed the study, collected field samples and contributed to the manuscript; E.E. identified the copepods species on a genetic level and critically revised the manuscript; B.M. designed the project and contributed to the writing of the manuscript. All authors gave final approval for publication and agree to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by CHASE project, part of the Changing Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council (NERC, project no.: NE/R012733/1) and the German Federal Ministry of Education and Research (BMBF, project no.: 03F0803A). Cruise time was supported by the CAO Arctic PRIZE project (NERC: NE/P006302/1). E.E. was supported by Arctic SIZE, a project co-funded by UIT The Arctic University of Norway and the Tromsø Research Foundation (project no. 01vm/h15), and within the framework of the state assignment of IO RAS (theme no. 0149–2019–0008). Financial support for open-access publication has been given by the Open Access Publication Funds of Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.

Acknowledgement. We thank the NERC PRIZE cruise leader Professor Finlo Cottier (Scottish Association for Marine Science, UK) as well as the Captain and crew of the RRS *James Clark Ross* for their support during the cruise JR17006. We thank Simon Druetzer (Alfred Wegener Institute, Germany) for his help on the tidal data acquisition, Marvin Choquet (Nord University, Norway) for sharing his improved protocol on *Calanus* identification and Professor Jonathan Cohen (University of Delaware, US) for discussion.
15. Caress DW, Chayes DN. 2016 MB-System Version 5.3.2284. Open source software distributed from the MBARI and L-DEO web sites. (See https://wwv3.mbari.org/data/msystem/index.htm).

16. Livak KJ, Schmittgen TD. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods San Diego Calif. 25, 402–408. (doi:10.1016/meth.2001.1262)

17. Thuben PF, Westermarck PO. 2014 Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400. (doi:10.1177/0748730145353092)

18. Williams CT, Barnes BM, Buck CL. 2015 Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiology 30, 86–96. (doi:10.1152/physiol.00045.2014)

19. Stelzer RJ, Chittka L. 2010 Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. BMC Biol. 8, 93. (doi:10.1186/1741-7007-8-93)

20. Tran D, Sow M, Camus L, Ciret P, Berge J, Massabau J-F. 2016 In the darkness of the polar night, scallops keep on a steady rhythm. J. Exp. Biol. 219, 32435. (doi:10.1634/jembs.2015.05148.161.112631)

21. Arnold W, Ruf T, Loe LE, Irvine RJ, Ropstad E, Meyer B. 2018 Circadian rhythmicity of the mole crab Emerita talpoida. J. Exp. Mar. Biol. Ecol. 431, 10–15. (doi:10.1016/j.jembe.2006.10.050)

22. Schmitt FG, Devreker D, Dur G, Souissi S. 2011 Direct evidence of tidally oriented behavior of the copepod Eurytemora affinis in the Seine estuary. Ecol. Res. 26, 773–780. (doi:10.1111/j.1214-0180.2011.10841-4)

23. Petruszevych VY, Dmitrenko IA, Niemi A, Kirillov SA, Kamisla OM, Kuzyk ZZA, Barber DG, Ehn JK. 2019 Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay. Ocean Sci. Discuss. 16, 337–353. (doi:10.5194/os-2019-107)

24. Hafler NS, Chittka L, Hümey C, Meyer B. 2018 Calanus finmarchicus and its influence on right and left whale occurrence. Mar. Ecol. Prog. Ser. 423, 167–184. (doi:10.3354/meps08931)

25. Wallen MI, Cottier FR, BERGE J, Tralger GA, Griffiths C, Brienley AS. 2010 Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice on zooplankton behavior. Limnol. Oceanogr. 55, 831–845. (doi:10.4319/lo.2010.55.2.0831)

26. Cottier FR, Tralger GA, Wold A, Falk-Petersen S. 2006 Un synchronised and synchronised vertical migration of zooplankton in a high Arctic fjord. Limnol. Oceanogr. 51, 2586–2599. (doi:10.4319/lo.2006.51.6.2586)

27. Dale T, Kaartvedt S. 2000 Diel patterns in stage-specific vertical migration of Calanus finmarchicus in habitats with midnight sun. ICES J. Mar. Sci. 57, 1800–1818. (doi:10.1016/j.icesjms.2000.0961)

28. Fortier M, Fortier L, Hattori H, Saito H, Legendre L. 2001 Visual predators and the diel vertical migration of copepods under Arctic sea ice during the midnight sun. J. Plankton Res. 23, 1263–1278. (doi:10.1093/plankt/23.11.1263)

29. Egbert GD, Erofeeva SY. 2002 Efficient inverse modeling of barotropic ocean tides. J. Atmospheric Ocean. Technol. 19, 183–204. (doi:10.1175/1520-0426(2002)019<0183:EMOB2>2.0.CO;2)

30. Colosimo D, Zhang L. 2008 Circadian clocks. Curr. Biol. 18, R753–R755. (doi:10.1016/j.cub.2008.06.041)

31. Plessmar-Raible K, Raible F, Arboleda E. 2011 Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172. (doi:10.1002/bies.201000096)

32. Pollet V, Labonne J. 2008 Individual patterns of rhythmic swimming activity in Anguilla anguilla glass eels synchronised to water current reversal. J. Exp. Mar. Biol. Ecol. 362, 125–130. (doi:10.1016/j.jembe.2008.06.017)

33. Forward RR, Thaler AD, Singer R. 2007 Entrainment of the activity rhythm of the mole crab Emerita talpoida. J. Exp. Mar. Biol. Ecol. 341, 10–15. (doi:10.1016/j.jembe.2006.10.050)

34. Hastings MH. 1981 The entraining effect of turbulence on the circa-tidal activity rhythm and its semi-lunar modulation in Eurydice pulchra. J. Mar. Bio. Assoc. UK 61, 151–160. (doi:10.1017/S0025315400045987)

35. Naylor E. 1996 Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiol. Int. 13, 153–161. (doi:10.1080/07424789.2011.107403)

36. Livak KJ, Schmittgen TD. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods San Diego Calif. 25, 402–408. (doi:10.1016/meth.2001.1262)

37. Schmitt FG, Devreker D, Dur G, Souissi S. 2011 Direct evidence of tidally oriented behavior of the copepod Eurytemora affinis in the Seine estuary. Ecol. Res. 26, 773–780. (doi:10.1111/j.1214-0180.2011.0841-4)

38. Petruszevych VY, Dmitrenko IA, Niemi A, Kirillov SA, Kamisla OM, Kuzyk ZZA, Barber DG, Ehn JK. 2019 Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay. Ocean Sci. Discuss. 16, 337–353. (doi:10.5194/os-2019-107)

39. Hafler NS. 2018 The molecular basis of die and seasonal rhythmicity in the copepod Calanus finmarchicus. Dissertation, University of Oldenburg, Germany.

40. Cunower RJ, Herman AW, Prinsenberijj SJ, Harris LR. 1986 Distribution of and feeding by the copepod Pseudocalanus under fast ice during the Arctic spring. Science 232, 1245–1247. (doi:10.1126/science.232.4755.1245)

41. Enright JT. 1976 Plasticity in an isopod’s clockworks: shaping shapes and affects phase and frequency. J. Comp. Physiol. 107, 13–37. (doi:10.1007/BF01663916)

42. Tran D, Persigault M, Ciret P, Payton L. 2020 Bivalve mollusk circadian clock genes can run at tidal frequency. Proc. R. Soc. B 287, 20192440. (doi:10.1098/rspb.2019.2440)

43. Falk-Petersen S, Mayzaud P, Kattner G, Sargent JR. 2009 Lipids and life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39. (doi:10.1080/17451000802512267)