GEOMETRIC SCHUR DUALITY OF TWO PARAMETER QUANTUM GROUP OF TYPE A

HAITAO MA, ZONGZHU LIN, AND ZHU-JUN ZHENG

Abstract. In this paper, we give an geometric description of the Schur-Weyl duality for two-parameter quantum algebras $U_{v,t}(gl_n)$, where $U_{v,t}(gl_n)$ is the deformation of $U_v(I,\cdot)$, the classic Shur-Weyl duality $(U_{r,s}(gl_n),V^\otimes d,H_d(r,s))$ can be seen as a corollary of the Shur-Weyl duality $(U_{v,t}(gl_n),V^\otimes d,H_d(v,t))$ by using the galois descend approach. We also establish the Shur-Weyl duality between the algebras $\widehat{U_{v,t}(gl_N)}^m$, $\widehat{U_{v,t}(gl_N)}^m$ and Hecke algebra $H_k(v,t)$.

1. Introduction

Schur-Weyl duality is a classical method to construct irreducible modules of simple Lie groups out of the fundamental representations [W46]. The quantum version for the quantum enveloping algebra $U_q(sl_n)$ and the Hecke algebra $H_q(S_m)$ has been one of the pioneering examples [13] in the fervent development of quantum groups. Two-parameter general linear and special linear quantum groups [21, 8, 4] are certain generalization of the one-parameter Drinfeld-Jimbo quantum groups [7, 12]. The two-parameter quantum groups also had their origin in the quantum inverse scattering method [20] as well as other approaches [14, 6]. So far, lots of mathematicians had studied the quantum groups and two parameter quantum group. For example, geometric Shur-Jimbo duality of type A was studied by Beilinson, Lusztig and Mcpherson [BLM90]. And the Shur-like duality of type B/C and D were discovered by Bao-Wang [BKLW14] and Fan-Li [FL14].

Especially, Fan and Li had found another version of two parameter quantum group by the way of perverse sheaves [FL13]. But the question how the two parameter quantum group $U_{v,t}(gl_n)$ can be seen as the deformation of $U_v(gl_n)$ didn’t solve in their work. So it is necessary for us to give the new graded structure on $U_v(gl_n)$ such that $U_{v,t}(gl_n)$ can be seen as the deformation of $U_v(gl_n)$.

Fan and Li found two new quantum group U and U^m, and gave the Shur-Weyl duality between them and the Iwahori-hecke algebra of type D_d[FL14]. In our following paper, similar to the Fan and Li’s work, we will give two new two parameter quantum group $U_{v,t}$ and $U^m_{v,t}$. We can also give the Shur-Weyl duality between them and the two parameter Iwahori-hecke algebra of type D_d through the geometric way. In order to give the comultiplication of the two new two parameter quantum group $U_{v,t}$, $U^m_{v,t}$ and use the comultiplication structure to give the Shur-Weyl duality algebraically. That is,

$$\Delta : U \rightarrow U_{v,t}(gl_N)^m \otimes U,$$
\[\Delta : U^m \to U_{v,t}(gl_N)^m \otimes U^m. \]

So it is reasonable for us to give structure of the new quantum group \(U_{v,t}(gl_N)^m \) and the Shur-Weyl duality between them and \(H_{v,t}(d) \).

In this work, at first, we give a new version of two parameter quantum group \(U_{v,t}(gl_n) \), which is the deformation of \(U_v(gl_n) \) similar to the approach appear in [FL13]. Second, we would like to give the geometric realization of three quantum groups \(U_{v,t}(gl_n) \), \(\tilde{U}_{v,t}(gl_N)^m \), \(\hat{U}_{v,t}(gl_N)^m \). At the same time, we also give the Shur-Weyl duality between algebras \(U_{v,t}(gl_n) \), \(\tilde{U}_{v,t}(gl_N)^m \), \(\hat{U}_{v,t}(gl_N)^m \) and the Hecke algebra \(H_{v,t}(d) \). Since the classical two parameter quantum group \(U_{r,s}(gl_n) \) is the subalgebra of the new version \(U_{v,t}(gl_n) \), we would like to use the Galois descend approach to understand the two different versions of two parameter quantum groups. The classical Shur-Weyl duality \((U_{r,s}(gl_n), V \otimes d, H_d(r,s)) \) can be seen as a corollary of the Shur-Weyl duality \((U_{v,t}(gl_n), V \otimes d, H_d(v,t)) \) by using the galois descend theory. That is, there exist a Galois group \(G \) such that \((U_{v,t}(gl_n)_G, V \otimes d_G, H_d(v,t)_G) \) is also Shur-Weyl duality, and \(U_{v,t}(gl_n)_G \cong (U_{r,s}(gl_n), H_d(v,t)_G \cong H_d(r,s)). \)

2. Deformation

2.1. The algebra \(U_{v,t}(gl_n) \)

Let \(\Omega = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix} \) is associated to the cartan matrix of type \(A_n \). Let \(I = \{1, 2, \cdots, n\} \). To \(\Omega \), we associate the following three bilinear forms on \(\mathbb{Z}^I \).

\[
\begin{align*}
(1) & \quad \langle i, j \rangle = \Omega_{ij}, \quad \forall i, j \in I. \\
(2) & \quad \left[i, j \right] = 2 \delta_{ij} \Omega_{ii} - \Omega_{ij}, \quad \forall i, j \in I. \\
(3) & \quad i \cdot j = \langle i, j \rangle + \langle j, i \rangle, \quad \forall i, j \in I.
\end{align*}
\]

Definition 2.1.1. The two-parameter quantum algebra \(U_{v,t}(gl_n) \) associated to \(A_{n-1} \) is an associative \(\mathbb{Q}(v, t) \)-algebra with 1 generated by symbols \(E_i, F_i, \forall i \in I, A_j^{\pm 1}, B_j^{\pm 1}, \forall i \in I' = \ldots \).
where $I \cup \{n\}$ and subject to the following relations.

(R1) \[
A_i^{\pm 1}A_j^{\pm 1} = A_j^{\pm 1}A_i^{\pm 1}, \quad B_i^{\pm 1}B_j^{\pm 1} = B_j^{\pm 1}B_i^{\pm 1},
\]
\[
A_i^{\pm 1}B_j^{\pm 1} = B_j^{\pm 1}A_i^{\pm 1}, \quad A_i^{\pm 1}A_i^{\pm 1} = 1 = B_i^{\pm 1}B_i^{\pm 1}.
\]

(R2) \[
A_iE_jA_i^{-1} = v^{(i,j)}t^{(i,j)}E_j, \quad B_iE_jB_i^{-1} = v^{-(i,j)}t^{(i,j)}E_j,
\]
\[
A_iF_jA_i^{-1} = v^{-(i,j)}t^{-(j,i)}F_j, \quad B_iF_jB_i^{-1} = v^{(i,j)}t^{-(j,i)}F_j.
\]

(R3) \[
E_iF_j - F_jE_i = \delta_{ij} \frac{A_iB_{i+1} - B_iA_{i+1}}{v - v^{-1}}.
\]

(R4) \[
\sum_{p+p' = 1 - 2\pi} (-1)^{pt - p(p' - 2\pi)}E_i^{(p)}E_j^{(p')} = 0, \quad \text{if } i \neq j,
\]
\[
\sum_{p+p' = 1 - 2\pi} (-1)^{pt - p(p' - 2\pi)}F_i^{(p)}F_j^{(p')} = 0, \quad \text{if } i \neq j,
\]
where $E_i^{(p)} = \frac{p}{p|_{v_i^{-1}i}}, \langle j, n \rangle = 0, \langle n, j \rangle = \begin{cases} -1 & \text{if } j = n - 1; \\ 0 & \text{else} \end{cases}, j \in I.$

The algebra $U_{v,t}(gl_n)$ has a Hopf algebra structure with the comultiplication Δ, the counit ε and the antipode S given as follows.

\[
\Delta(A_i^{\pm 1}) = A_i^{\pm 1} \otimes A_i^{\pm 1}, \quad \Delta(B_i^{\pm 1}) = B_i^{\pm 1} \otimes B_i^{\pm 1},
\]
\[
\Delta(E_i) = E_i \otimes A_iB_{i+1} + 1 \otimes E_i, \quad \Delta(F_i) = F_i \otimes 1 + B_iA_{i+1} \otimes F_i,
\]
\[
\varepsilon(A_i^{\pm 1}) = \varepsilon(B_i^{\pm 1}) = 1, \quad \varepsilon(E_i) = \varepsilon(F_i) = 0,
\]
\[
S(A_i^{\pm 1}) = A_i^{\mp 1}, \quad S(B_i^{\pm 1}) = B_i^{\mp 1},
\]
\[
S(E_i) = -E_iB_iA_{i+1}, \quad S(F_i) = -A_iB_{i+1}F_i.
\]

The algebra $U_{v,t}(gl_n)$ admits a $\mathbb{Z}' \times \mathbb{Z}'$-grading by defining the degrees of generators as follows.

\[
deg(E_i) = (i, 0), \quad \deg(F_i) = (0, i),
\]
\[
deg(A_j) = deg(B_j) = \begin{cases} \left(\sum_{k=j}^n (-1)^k k, \sum_{k=j}^n (-1)^k k\right) & \text{if } j \text{ is even}, \\ \left(\sum_{k=j}^n (-1)^{k+1} k, \sum_{k=j}^n (-1)^{k+1} k\right) & \text{if } j \text{ is odd}.
\end{cases}
\]

We can define a bilinear form on $\mathbb{Z}' \times \mathbb{Z}'$ by

\[
[\gamma, \eta]' = [\gamma_2, \eta_2] - [\gamma_1, \eta_1]
\]
for any $\gamma = (\gamma_1, \gamma_2), \eta = (\eta_1, \eta_2) \in \mathbb{Z}' \times \mathbb{Z}'$. Then on $U_{v,t}(gl_n)$, we can define a new multiplication $'' * ''$ by

\[
x \ast y = t^{-||x||, |y||'} xy,
\]
for any homogenous elements $x, y \in U_{v,t}(gl_n)$. Since $[\cdot, \cdot]'$ is a bilinear form, $(U_{v,t}(gl_n), *)$ is an associative algebra over $\mathbb{Q}(v,t)$. We define a multiplication, denoted by $'' * '',$ on
\(U_{v,t}(gl_n) \otimes U_{v,t}(gl_n) \) by
\[(x \otimes y) \cdot (x' \otimes y') = x \cdot x' \otimes y \cdot y'.\]

This gives a new algebra structure on \(U_{v,t}(gl_n) \otimes U_{v,t}(gl_n) \). \((U_{v,t}(gl_n), \ast)\) has a Hopf algebra structure with the comultiplication \(\Delta^* \), the counit \(\varepsilon^* \) and the antipode \(S^* \). The image of generators \(E_i, F_i, A_i \) and \(B_i^{-1} \) under the map \(\Delta^* \) (resp. \(\varepsilon^* \) and \(S^* \)) are the same as the ones under the map \(\Delta \) (resp. \(\varepsilon \) and \(S \)) defined above.

Lemma 2.1.2. Under the new multiplication \(" \ast \)\", the defining relations of \(U_{v,t}(gl_n) \) can be rewritten as follows.

(R1) \[A^\pm_1 \ast A^\pm_1 = A^\pm_1 \ast A^\pm_1, \quad B^\pm_1 \ast B^\pm_1 = B^\pm_1 \ast B^\pm_1, \]
A^\pm_1 \ast B^\pm_1 = B^\pm_1 \ast A^\pm_1, \quad A^\pm_1 \ast A^\mp_1 = 1 = B^\pm_1 \ast B^\mp_1.

(R2) \[A_i \ast E_j \ast A_i^{-1} = v^{(i,j)} E_j, \quad B_i \ast E_j \ast B_i^{-1} = v^{-(i,j)} E_j, \]
A_i \ast F_j \ast A_i^{-1} = v^{-(i,j)} F_j, \quad B_i \ast F_j \ast B_i^{-1} = v^{(i,j)} F_j.

(R3) \[E_i \ast F_j - F_j \ast E_i = \delta_{ij} \frac{A_i \ast B_{i+1} - B_i \ast A_{i+1}}{v - v^{-1}}, \quad \forall i,j \in I. \]

(R4) \[
\sum_{p+p' = 1 - a_{ij}} (-1)^p \left[\frac{1 - a_{ij}}{p} \right] E_i^{p} \ast E_j \ast E_i^{p'} = 0, \quad \text{if } i \neq j, \\
\sum_{p+p' = 1 - a_{ij}} (-1)^p \left[\frac{1 - a_{ij}}{p} \right] F_i^{p} \ast F_j \ast F_i^{p'} = 0 \quad \text{if } i \neq j,
\]

where \(a_{ij} = 2^{i+j} \) and \(E_i^{p} = E_i \ast E_i \ast \cdots \ast E_i \) for \(p \) copies. We notice that these relations are the specialization of (R1)-(R4) at \(t = 1 \).

Proof. The relation R3, R4 agrees with the one in [FL13 4. 2], whose proof is also the same as the one for type A case. Next we show R*2.

\[A_i \ast E_j = t^{-||A_i||} \langle E_j \rangle A_i E_j = t^{-||A_i||} \langle E_j \rangle t^{(i,j)} E_j A_i = t^{||E_j|| - ||A_i||} \langle E_j \rangle t^{(i,j)} E_j A_i \]
and
\[||E_j|| - ||A_i|| = 0 = \langle j, i \rangle - \langle i, j \rangle - \langle j, i+1 \rangle - \langle i+1, j \rangle + \cdots + (-1)^{n-i} \langle j, n \rangle - \langle n, j \rangle. \]

Therefore,
\[A_i \ast E_j = v^{(i,j)} E_i \ast A_i. \]

All other identity in R2 can be shown similarly. \(\square\)
The one-parameter quantum algebra $U_v(I, \cdot)$ associated to (I, \cdot) is defined as the associative $\mathbb{Q}(v)$-algebra with 1 generated by symbols $E_i, F_i, A_i^{\pm1}, B_i^{\pm1}, \forall i \in I$ and subject to relations (R*1)-(R*4). $U_v(I, \cdot)$ has a Hopf algebra structure with the comultiplication Δ_1, the counit ε_1 and the antipode S_1. The image of generators E_i, F_i, A_i, B_i under the map Δ_1 (resp. ε_1 and S_1) are the same as the ones under the map Δ (resp. ε and S) defined above.

Let $U_{v,t}(I, \cdot) := U_v(I, \cdot) \otimes_{\mathbb{Q}(v)} \mathbb{Q}(v, t)$. The Hopf algebra structure on $U_v(I, \cdot)$ can be naturally extended to $U_{v,t}(I, \cdot)$. From the above analysis, we have the following theorem.

Theorem 2.1.3. If (I, \cdot) is the Cartan datum associated to Ω_n, then there is a Hopf-algebra isomorphism

$$(U_{v,t}(gl_n), *, \Delta^*, \varepsilon^*, S^*) \simeq (U_{v,t}(I, \cdot), *, \Delta_1, \varepsilon_1, S_1),$$

sending the generators in $U_{v,t}$ to the respective generators in $U_{v,t}(I, \cdot)$.

3. A geometric setting

3.1. Preliminary. Let \mathbb{F}_q be a finite field of q elements and of odd characteristic. d is a fixed positive integer, n is a positive integer. We fix a vector space \mathbb{F}_q^d. Consider the following sets.

- The set \mathcal{X} of n-step flags $V = (V_i)_{0 \leq i \leq n}$ in \mathbb{F}_q^d such that $V_0 = 0, V_i \subseteq V_{i+1}$.
- The set \mathcal{Y} of complete flags $F = (F_i)_{0 \leq i \leq d}$ in \mathbb{F}_q^d such that $F_i \subset F_{i+1}$, $|F_i| = i$.

where we write $|F_i|$ for the dimension of F_i.

Let $G = GL(V)$. Then G acts naturally on sets \mathcal{X} and \mathcal{Y}. Moreover, G acts transitively on \mathcal{Y}. Let G act diagonally on the product $\mathcal{X} \times \mathcal{X}$ (resp. $\mathcal{X} \times \mathcal{Y}$ and $\mathcal{Y} \times \mathcal{Y}$). Set

$$(6) \quad \mathcal{A} = \mathbb{Z}[v^{\pm1}, t^{\pm1}].$$

Let

$$(7) \quad S_{\mathcal{X}} = \mathcal{A}_G(\mathcal{X} \times \mathcal{X})$$

be the set of all \mathcal{A}-valued G-invariant functions on $\mathcal{X} \times \mathcal{X}$. Clearly, the set $S_{\mathcal{X}}$ is a free \mathcal{A}-module. Moreover, $S_{\mathcal{X}}$ admits an associative \mathcal{A}-algebra structure ‘$*$’ under a standard convolution product as discussed in [BKLW14, 2.3]. In particular, when v is specialized to \sqrt{q}, we have

$$(8) \quad f * g(V, V') = \sum_{V'' \in \mathcal{X}} f(V, V'')g(V'', V'), \quad \forall V, V' \in \mathcal{X}.$$

Similarly, we define the free \mathcal{A}-modules

$$(9) \quad \mathcal{V} = \mathcal{A}_G(\mathcal{X} \times \mathcal{Y}) \quad \text{and} \quad \mathcal{H}_\mathcal{Y} = \mathcal{A}_G(\mathcal{Y} \times \mathcal{Y}).$$

A similar convolution product gives an associative algebra structure on $\mathcal{H}_\mathcal{Y}$ and a left $S_{\mathcal{X}}$-action and a right $\mathcal{H}_\mathcal{Y}$-action on \mathcal{V}. Moreover, these two actions commute and hence we have the following \mathcal{A}-algebra homomorphisms.

$$S_{\mathcal{X}} \rightarrow \text{End}_{\mathcal{H}_\mathcal{Y}}(\mathcal{V}) \quad \text{and} \quad \mathcal{H}_\mathcal{Y} \rightarrow \text{End}_{S_{\mathcal{X}}}(\mathcal{V}).$$

Similar to [P09, Theorem 2.1], we have the following double centralizer property.

Lemma 3.1.1. $\text{End}_{\mathcal{H}_\mathcal{Y}}(\mathcal{V}) \simeq S_{\mathcal{X}}$ and $\text{End}_{S_{\mathcal{X}}}(\mathcal{V}) \simeq \mathcal{H}_\mathcal{Y}$, if $n \geq d$.
We note that the result in [P09, Theorem 2.1] is obtained over the field \(\mathbb{C} \) of complex numbers, but the proof can be adapted to our setting over the ring \(\mathcal{A} \).

We shall give a description of the \(G \)-orbits on \(X \times X \), \(X \times Y \), and \(Y \times Y \). We start by introducing the following notations associated to a matrix \(M = (m_{ij})_{1 \leq i,j \leq c} \).

\[
\text{ro}(M) = \left(\sum_{j=1}^{c} m_{ij} \right)_{1 \leq i \leq c},
\]
\[
\text{co}(M) = \left(\sum_{i=1}^{c} m_{ij} \right)_{1 \leq j \leq c}.
\]

We also write \(\text{ro}(M)_i \) and \(\text{co}(M)_j \) for the \(i \)-th and \(j \)-th component of the row vectors of \(\text{ro}(M) \) and \(\text{co}(M) \), respectively.

For any pair \((V, V')\) of flags in \(X \), we can assign an \(n \times n \) matrix whose \((i, j)\)-entry equals

\[
\dim_{\mathbb{C}} V_i - 1 + \dim_{\mathbb{C}} V_i \cap V'_j - 1.
\]

\[
G \setminus X \times X \cong \Theta_d,
\]

where \(\Theta_d \) is the set of all matrices \(\Theta_d \) in \(\text{Mat}_{n \times n}(\mathbb{N}) \) such that \(\sum_{i,j}(\Theta_d)_{i,j} = d \).

A similar assignment yields two bijection

\[
G \setminus X \times Y \cong \Pi,
\]
\[
G \setminus Y \times Y \cong \Sigma,
\]

where the set \(\Pi \) consists of all matrices \(B = (b_{ij}) \) in \(\text{Mat}_{n \times d}(\mathbb{N}) \) subject to

\[
\text{co}(B)_j = 1, \quad \forall j \in [1, d].
\]

and \(\Sigma \) is the set of all matrices \(\sigma \equiv (\sigma_{ij}) \) in \(\text{Mat}_{d \times d}(\mathbb{N}) \) such that

\[
\text{ro}(\sigma)_i = 1, \quad \text{ro}(\sigma)_j = 1.
\]

Moreover, we have

\[
\#\Sigma = d! \quad \text{and} \quad \#\Pi = n^d.
\]

4. Calculus of the algebra \(S \) and \(H_Y \)

Recall from the previous section that \(S_X \) is the convolution algebra on \(X \times X \) defined in (7). For simplicity, we shall denote \(S \) instead of \(S_X \). In this section, we determine the generators for \(S \) and the associated multiplication formula. We also will \(H_Y \) action on \(Y \).
4.1. Defining relations of \(S \). For any \(i \in [1, n-1] \), \(a \in [1, n] \), set

\[
E_i(V, V') = \begin{cases}
 v^{-|V'_i/V'_i|} t^{-|V_i/V_{i-1}|}, & \text{if } V_i \supset V'_i, V_j = V_j', \forall j \in [1, n] \setminus \{i\}; \\
 0, & \text{otherwise.}
\end{cases}
\]

\[
F_i(V, V') = \begin{cases}
 v^{-|V_{i+1}/V'_i|} t^{|V_i'/V'_i|}, & \text{if } V_i \subset V'_i, V_j = V_j', \forall j \in [1, n] \setminus \{i\}; \\
 0, & \text{otherwise.}
\end{cases}
\]

\[
A^\pm_a(V, V') = \begin{cases}
 v^\pm |V'_a/V'_a| t^\pm |V_a/V_a' - 1|, & \text{if } V = V'; \\
 0, & \text{otherwise.}
\end{cases}
\]

\[
B^\pm_a(V, V') = \begin{cases}
 v^\pm |V'_a/V'_a| t^\pm |V_a/V_a' - 1|, & \text{if } V = V'; \\
 0, & \text{otherwise.}
\end{cases}
\]

(15)

It is clear that these functions are elements in \(S \).

Proposition 4.1.1. The functions \(E_i, F_i, A^\pm_a, \) and \(B^\pm_a \) in \(S \), for any \(i \in [1, n-1] \), \(a \in [1, n] \), satisfy the following relations.

\[
\begin{align*}
(R1) \quad & A^\pm_i A^\pm_j = A^\pm_j A^\pm_i, \quad B^\pm_i B^\pm_j = B^\pm_j B^\pm_i, \\
& A^\pm_i B^\pm_j = B^\pm_j A^\pm_i, \quad A^\pm_i A^\mp_i = 1 = B^\mp_i B^\pm_i. \\
(R2) \quad & A_i E_j A^{-1}_i = v^{(i,j)} t^{(i,j)} E_j, \quad B_i E_j B^{-1}_i = v^{-(i,j)} t^{(i,j)} E_j, \\
& A_i F_j A^{-1}_i = v^{-(i,j)} t^{-(i,j)} F_j, \quad B_i F_j B^{-1}_i = v^{(i,j)} t^{-(i,j)} F_j. \\
(R3) \quad & E_i F_j - F_j E_i = \delta_{ij} \frac{A_i B_{i+1} - B_i A_{i+1}}{v - v^{-1}}. \\
(R4) \quad & \sum_{p+p'=1-2\frac{d}{d+1}} (-1)^p t^{-p(p'-2\frac{d}{d+1}) + p(p'-2\frac{d}{d+1})} E_i^{(p')} E_j^{(p)} = 0, \quad \text{if } i \neq j, \\
& \sum_{p+p'=1-2\frac{d}{d+1}} (-1)^p t^{-p(p'-2\frac{d}{d+1}) + p(p'-2\frac{d}{d+1})} F_i^{(p)} F_j^{(p')} = 0, \quad \text{if } i \neq j, \\
(R5) \quad & \prod_{i=1}^n A_i = v^d t^d, \quad \prod_{i=1}^n B_i = v^{-d} t^d, \\
(R6) \quad & \prod_{l=0}^d (A_j - v^l t^l) = 0, \quad \prod_{l=0}^d (B_j - v^{-l} t^l) = 0 \forall j \in [1, n]. \\
(R7) \quad & E_i^{d+1} = 0, F_i^{d+1} = 0.
\end{align*}
\]
Proof. The proofs of the identities of R1, R7 are straightforward. Let \(\lambda_i' = |V_i'/V_{i-1}'| \). We show the first identity in R2. we have

\[
(A_i E_j)(V, V') = \begin{cases}
 v^{\lambda_i'-\lambda_j'_{-1} t_{\lambda_i'} + \lambda_j'} & \text{if } V_j' \supset V_j' \text{ and } i = j + 1, \\
v^{\lambda_i'-\lambda_j'_{+1} + 2} & \text{if } V_j' \supset V_j' \text{ and } i = j, \\
v^{\lambda_i'-\lambda_j'_{+1} + 1} & \text{if } V_j' \supset V_j' \text{ and } i \neq j, j + 1, \\
0 & \text{otherwise}.
\end{cases}
\]

That is, \(A_i E_j A_j^{-1}(V, V') = v^{(i,j) t(i,j)} E_j(V, V') \). All other identities can be shown similarly.

we show the identity in R3. By a direct calculation. We have

\[
(E_i F_j - F_j E_i)(V, V') = \begin{cases}
 v^{\lambda_i'-\lambda_j'_{+1} t_{\lambda_i'} + \lambda_j'} & \text{if } V = V' \text{ and } i = j, \\
0 & \text{otherwise}.
\end{cases}
\]

It is easy to check that the right hand side is equal to \(\delta_{ij} A_i B_i^{-1}(V, V') \).

At last, We now show the first identity in R4. By a direct calculation, we have

\[
E_i^2 E_{i+1}(V, V') = \begin{cases}
 (v^2 + 1)v^{-2\lambda_i'-\lambda_{i+1}'_{-1} t_{2\lambda_i'} + \lambda_{i+1}'} & \text{if } V_i' \supset V_i' \text{ and } V_{i+1} \supset V_{i+1}' \text{ and } V_i \supset V_i', \\
0 & \text{otherwise}.
\end{cases}
\]

The first identity in R4 follows. By the same way, the other three identities can be shown directly.

Let’s prove the first identity in R5, we have

\[
\prod_{i=1}^{n} A_i(V, V') = \begin{cases}
 v^{\lambda_1'+\cdots+\lambda_n'} t^{\lambda_1'+\cdots+\lambda_n'} & \text{if } V = V', \\
0, & \text{otherwise}.
\end{cases}
\]

Since \(\lambda_1' + \cdots + \lambda_n' = d \), the first identities follows. The other identities can be shown similarly.

At last, let’s prove the first identity in R6, we have

\[
\prod_{l=0}^{d} (A_j - v^l t^l)(V, V') = \begin{cases}
 (v^{\lambda_j'} t^{\lambda_j'} - 1)(v^{\lambda_j'} t^{\lambda_j'} - vt) \cdots (v^{\lambda_j'} t^{\lambda_j'} - v^d t^d) & \text{if } V = V', \\
0, & \text{otherwise}.
\end{cases}
\]

Since \(0 \leq \lambda_j' \leq d \), the first identities follows. The other identities can be shown similarly. □
4.2. Multiplication formulas in S. For any $n \in \mathbb{Z}, k \in \mathbb{N}$, set

$$ (n)_v = \frac{v^{2n} - 1}{v^2 - 1}, \quad \text{and} \quad \binom{n}{k}_v = \frac{k \prod_{i=1}^{k} (n + 1 - i)_v}{(i)_v}. $$

Let E_{ij} is the $n \times n$ matrix whose (i,j)-entry is 1 and all other entries are 0. Let e_a be the characteristic function of the G-orbit corresponding to $a \in \theta_d$. It is clear that the set $\{e_a | a \in \theta_d\}$ forms a basis of S.

We assume that the ground field is an algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q when we talk about the dimension of a G-orbit or its stabilizer. Set $d(a) = \dim \mathcal{O}_a$ and $r(a) = \dim \mathcal{O}_b$, \forall $a \in \theta_d$ or Π,

where $b = (b_{ij})$ is the diagonal matrix such that $b_{ii} = \sum k a_{ik}$. Denote by $C_G(V,V')$ the stabilizer of (V,V') in G.

Lemma 4.2.1. If $a \in \Pi$, We have

$$ \dim C_G(V,V') = \sum_{i \geq k, j \geq l} a_{ij} a_{kl}, \quad \text{if} \ (V,V') \in \mathcal{O}_a, $$

$$ \dim \mathcal{O}_a = \sum_{i < k \text{ or } j < l} a_{ij} a_{kl}, $$

$$ d(a) - r(a) = \sum_{i \geq k, j < l} a_{ij} a_{kl}. $$

Proof. The proof is similar with [BLM90], The only difference we consider is that $a \in \Pi$ should be the $n \times d$ matrix. We can find the subspace Z_{ij} of V such that $V_a = \bigoplus_{i \leq a;j} Z_{ij}$ for all a, $V'_b = \bigoplus_{i \leq b;j} Z_{ij}$ for all b. $V = \bigoplus_{i \leq a;j} Z_{ij}$. Consider $T \in \text{End}(V)$, T is determined by a family of linear maps $T_{ijkl}: Z_{ij} \rightarrow Z_{kl}$. If $T|_{V_a} = V_a, T|_{V'_b} = V'_b$, one can obtain that if $T_{ijkl} \neq 0$, then $i \geq k, j \geq l$. So we have $\dim C_G(V,V') = \sum a_{ij} a_{kl}$, $\dim \mathcal{O}_a = \dim GL(V) - \dim C_G(V,V') = \sum a_{ij} a_{kl}$. Since $r(a) = \dim (V,V)$, we have $d(a) - r(a) = \sum a_{ij} a_{kl} - \sum a_{ij} a_{kl} = \sum a_{ij} a_{kl}$. \hfill \blacksquare

For any $a \in \theta_d, \Pi$, let

$$ \{a\} = v^{-(d(a) - r(a))} t^{(d(a) - r(a))} e_a. $$

We define a bar involution $\overline{}$ on \mathcal{A} by $\overline{\nu} = v^{-1}$.

Proposition 4.2.2. Suppose that $a, b, c \in \Theta_d$, $h \in [1, n - 1]$ and $r \in \mathbb{N}$.
(a) If \(\text{co}(b) = \text{ro}(a) \), and \(b - rE_{h,h+1} \) is diagonal, then we have

\[
\{b\} \ast \{a\} = \sum_{t \sum_{u=1}^{n} t_u = r} v^{\beta(t)}_t t^{\alpha(t)}_t \prod_{u=1}^{n} \left(\frac{a_{hu} + t_u}{t_u} \right)^v \{a_t\}, \text{ where }
\]

\[
\alpha(t) = \sum_{j \geq l} a_{hj} t_l + \sum_{j > l} a_{h+1,j} t_l - \sum_{j < l} t_j t_l,
\]

\[
\beta(t) = \sum_{j \geq l} a_{hj} t_l - \sum_{j > l} a_{h+1,j} t_l + \sum_{j < l} t_j t_l,
\]

\[
a_t = A + \sum_{u=1}^{n} t_u (E_{hu} - E_{h+1,u}) \in \theta_d.
\]

(b) If \(\text{co}(c) = \text{ro}(a) \) and \(c - rE_{h+1,h} \) is diagonal, then

\[
\{c\} \ast \{a\} = \sum_{t \sum_{u=1}^{n} t_u = r} v^{\beta'(t)}_t t^{\alpha'(t)}_t \prod_{u=1}^{n} \left(\frac{a_{h+1,u} + t_u}{t_u} \right)^v \{a(h,t)\}, \text{ where }
\]

\[
\alpha'(t) = \sum_{j \leq l} a_{h+1,j} t_l + \sum_{j < l} a_{hj} t_l - \sum_{j > l} t_j t_l,
\]

\[
\beta'(t) = \sum_{j \leq l} a_{h+1,j} t_l - \sum_{j < l} a_{hj} t_l + \sum_{j > l} t_j t_l,
\]

\[
a(h,t) = A - \sum_{u=1}^{n} t_u (E_{hu} - E_{h+1,u}) \in \theta_d.
\]

Proof. In order to give the proof of (a), We only need to proof the formula \(a(t) \). By the direct computation,

\[
d(b) - r(b) = \sum_{j,u} a_{hj} t_u,
\]

\[
d(a) - r(a) = \sum_{i \geq k, j < l} a_{ij} a_{kl},
\]

\[
d(a_t) - r(a_t) = \sum_{i \geq k, j < l} a_{ij} a_{kl} + \sum_{j < u} a_{hj} t_u - \sum_{t > u} a_{h+1,t} t_u + \sum_{u < u'} t_u t_{u'}.
\]

Then,

\[
\alpha(t) = d(b) - r(b) + d(a) - r(a) - (d(a_t) - r(a_t)) = \sum_{j \geq l} a_{hj} t_l + \sum_{j > l} a_{h+1,j} t_l - \sum_{j < l} t_j t_l.
\]

Similarly, we can obtain the proposition of (b). \(\square \)

4.3. \(S \)-action on \(V \). A degenerate version of Proposition 4.2.2 gives us an explicit description of the \(S \)-action on \(V = A_G(\mathcal{X} \times \mathcal{Y}) \) as follows. For any \(r_j \in [1, n] \), we denote \(\tilde{r}_j = r_j + 1 \) and \(\hat{r}_j = r_j - 1 \).
Corollary 4.3.1. For any $1 \leq i \leq n-1, 1 \leq a \leq n-1$, we have

$$E_i \cdot \{e_{r_1 \ldots r_d}\} = v^{\sum_{j<p} \delta_{a,r_j} - \delta_{a+1,r_j}} t^{1+\sum_{j<p} \delta_{a,r_j} + \delta_{a+1,r_j}} \{e_{r_1 \ldots r_{p-1}r_{p+1} \ldots r_d}\},$$

$$F_i \cdot \{e_{r_1 \ldots r_d}\} = \sum_{1 \leq p \leq d : r_p = i} v^{\sum_{j<p} \delta_{a,r_j} - \delta_{a+1,r_j}} t^{\sum_{j<p} \delta_{a,r_j} + \delta_{a+1,r_j}} \{e_{r_1 \ldots r_{p-1}r_{p+1} \ldots r_d}\},$$

$$A^\pm_a \cdot \{e_{r_1 \ldots r_d}\} = v^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} t^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} \{e_{r_1 \ldots r_d}\} \quad \text{and}$$

$$B^\pm_a \cdot \{e_{r_1 \ldots r_d}\} = v^{+\sum_{1 \leq j \leq d} \delta_{a,r_j}} t^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} \{e_{r_1 \ldots r_d}\} \quad \text{and}$$

\[\begin{align*}
A^\pm_a \cdot \{e_{r_1 \ldots r_d}\} &= v^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} t^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} \{e_{r_1 \ldots r_d}\} \\
B^\pm_a \cdot \{e_{r_1 \ldots r_d}\} &= v^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} t^{\sum_{1 \leq j \leq d} \delta_{a,r_j}} \{e_{r_1 \ldots r_d}\}
\end{align*}\]

Proof. The first two identities follow directly from Proposition 4.2.2. The last two identities are straightforward.

4.4. \mathcal{H}_Y-action on \mathcal{V}.

Definition 4.4.1. The two parameter Iwahori-Hecke algebra $\mathcal{H}_d(v,t)$ of type A_d is a unital associative algebra over $\mathbb{Q}(v,t)$ generated by T_i for $i \in [1, d-1]$ and subject to the following relations.

$$T_i^2 = (vt - v^{-1}t)T_i + t^2, \quad 1 \leq i \leq d-1,$$

$$T_i T_{j+1} T_j = T_{j+1} T_j T_{j+1}, \quad 1 \leq j \leq d-2,$$

$$T_i T_j = T_j T_i, \quad |i - j| > 1.$$

We shall provide an explicit description of the action of \mathcal{H}_Y on \mathcal{V}. For any $1 \leq j \leq d-1$, we define a function T_j in \mathcal{H}_Y by

$$T_j(F, F') = \begin{cases} v^{-1}t, & \text{if } F_i = F'_i \forall i \in [1, d] \setminus \{j\}, F_j \neq F'_j; \\
0, & \text{otherwise}. \end{cases}$$

Lemma 4.4.2. The assignment of sending the functions T_j, for $1 \leq j \leq d-1$, in the algebra \mathcal{H}_Y to the generators of \mathcal{H}_d in the same notations is an isomorphism.

Given $B = (b_{ij}) \in \Pi$, let r_c be the unique number in $[1, n]$ such that $b_{rc} = 1$ for each $c \in [1, d]$. The correspondence $B \mapsto \tilde{B} = (r_1, \ldots, r_d)$ defines a bijection between Π and the set of all sequences (r_1, \ldots, r_d). Denote by $e_{r_1 \ldots r_d}$ the characteristic function of the G-orbit corresponding to the matrix B in \mathcal{V}. It is clear that the collection of these characteristic functions provides a basis for \mathcal{V}.

Lemma 4.4.3. The action of \mathcal{H}_Y on \mathcal{V} is described as follows. For $1 \leq j \leq d-1$, we have

\[\{e_{r_1 \ldots r_d}\} T_j = \begin{cases} \{e_{r_1 \ldots r_j-1 r_{j+1} \ldots r_d}\}, & r_j < r_{j+1}; \\
vt \{e_{r_1 \ldots r_d}\}, & r_j = r_{j+1}; \\
(vt - v^{-1}t) \{e_{r_1 \ldots r_d}\} + t^2 \{e_{r_1 \ldots r_j-1 r_{j+1} \ldots r_d}\}, & r_j > r_{j+1}. \end{cases}\]

Proof. Formula (18) similar with the one in [GL92, 1. 12], whose proof is also almost the same as one parameter of type-A case.
4.5. Generators of S. Define a partial order "\preceq" on Θ_d by $a \preceq b$ if $\mathcal{O}_a \subset \mathcal{O}_b$. For any $a = (a_{ij})$ and $b = (b_{ij})$ in Ξ_d, we say that $a \preceq b$ if and only if the following two conditions hold.

\begin{align}
\sum_{r \leq i, s \geq j} a_{rs} &\leq \sum_{r \leq i, s \geq j} b_{rs}, \quad \forall i < j. \\
\sum_{r \geq i, s \leq j} a_{rs} &\leq \sum_{r \geq i, s \leq j} b_{rs}, \quad \forall i > j.
\end{align}

The relation "\preceq" defines a second partial order on Θ_d. We say that $a < b$ if $a \preceq b$ and at least one of the inequalities in (19) is strict. We shall denote by "$\{m\} + \text{lower terms}$" an element in S which is equal to $\{m\}$ plus a linear combination of $\{m'\}$ with $m' < m$. By Proposition (4.2.2), we have

Corollary 4.5.1. Assume that $1 \leq h < n$, $1 \leq h \leq n$, $M = (m_{ij}) \in \Theta_d$.

(a) Assume that $m_{h,j} = 0, \forall j > k, m_{h+1,j} = 0, \forall j \geq k$. Let $r = m_{h,k}, a = (a_{ij}) \in \Xi_d$ satisfies the following two conditions: $a_{h,k} = 0, a_{i,k} = r, a_{i,j} = m_{i,j}$ for all other i, j. If b is subject to $b - re_{h,h+1}$ is diagonal, $\text{co}(b) = \text{ro}(a)$, then

\[\{b\} \ast \{a\} = \{M\} + \text{lower terms}. \]

(b) Assume that $m_{h,j} = 0, \forall j \leq k, m_{h+1,j} = 0, \forall j < k$. Let $r = m_{h+1,k}, a = (a_{ij}) \in \Theta_d$ satisfies the following two conditions: $a_{h,k} = r, a_{i,k} = 0, a_{i,j} = m_{i,j}$ for all other i, j. If c is subject to $c - re_{h,h+1}$ is diagonal, $\text{co}(c) = \text{ro}(a)$, then

\[\{c\} \ast \{a\} = \{M\} + \text{lower terms}. \]

Proof. In case (a), from the proof of the [BLM90] 3.8, we have that $\{M\}$ is correspondence to $t = (0, \cdots, 0, R, 0, \cdots, 0)$, where R is in the k place. Therefore, $\alpha(t) = \sum_{j \geq k} a_{h,j}t_k + \sum_{j > k} a_{h+1,j}t_k - \sum_{j < l} t_j t_l = 0$. Then (a) follows.

In case (b), we have that $\{M\}$ is correspondence to $t = (0, \cdots, 0, R, 0, \cdots, 0)$, where R is in the k place. Therefore, $\alpha'(t) = \sum_{j \leq l} a_{h+1,j}t_l + \sum_{j < l} a_{h,j}t_l - \sum_{j < l} t_j t_l = 0$. Then (b) follows. \[\square \]

Theorem 4.5.2. For any $a = (a_{ij}) \in \Theta_d$. The following identity holds in S

\[\prod_{1 \leq i \leq h < j \leq n} \{D_{i,j} + a_{ij}E_{h,h+1}\} \ast \prod_{1 \leq j \leq h < i \leq n} \{D_{i,j} + a_{ij}E_{h+1,h}\} = \{a\} + \text{lower terms}, \]

where the product is taken in the following order. The factors in the first product are taken in the following order: (i, h, j) comes before (i', h', j') if either $j > j'$ or $j = j'$, $h - i < h' - i'$, or $j = j', h - i = h' - i', i' > i$. The factors in the second product are taken in the following order: (i, h, j) comes before (i', h', j') if either $i < i'$ or $i = i', h - j > h' - j'$, or $i = i', h - j = h' - j', j' < j$. The matrices $D_{i,j}$ are diagonal with entries in \mathbb{N}. Which are uniquely determined.

Proof. The proof of this theorem is similar to the [BLM90] 3.9. \[\square \]

We have immediately

Corollary 4.5.3. The products $m_a = \prod_{1 \leq i \leq h < j \leq n} \{D_{i,j} + a_{ij}E_{h,h+1}\} \ast \prod_{1 \leq j \leq h < i \leq n} \{D_{i,j} + a_{ij}E_{h+1,h}\}$ for any $a \in \Theta_d$ in Theorem 4.5.2 form a basis for S.\[\square \]
Corollary 4.5.4. The algebra \mathcal{S} (resp. $\mathcal{Q}(v) \otimes_{A} \mathcal{S}$) is generated by the elements $[\epsilon]$ such that $\epsilon - RE_{i,i+1}$ (resp. either ϵ or $\epsilon - RE_{i,i+1}$) is diagonal for some $R \in \mathbb{N}$ and $i \in [1,n-1]$.

Observe that $E_{i} = \sum t(\{b\}, F_{i} = \sum \{a\}, A_{a}^{\pm 1} = \sum v^{\pm da_{t} \pm da} \{d\}, B_{a}^{\pm 1} = \sum v^{\pm da_{t} \pm da} \{d\}, \forall i \in [1,n-1], a \in [1,n]$, where b, c and d run over all matrices in Θ_{d} such that $b - E_{i,i+1}$, $c - E_{i+1,i}$ and d are diagonal, respectively, and d_{a} is the (a,a)-entry of the matrix in d. We have the following corollary by Corollary 4.5.4.

Corollary 4.5.5. The algebra $\mathcal{Q}(v, t) \otimes_{A} \mathcal{S}$ is generated by the functions $E_{i}, F_{i}, A_{a}^{\pm 1}, B_{a}^{\pm 1}$ for any $i \in [1,n-1], a \in [1,n]$.

5. The limit algebra \mathcal{K}

5.1. Stabilization. Let I be the identity matrix. We set $pA = A + pI$. Let $\bar{\Theta}$ be the set of all $n \times n$ matrices with integer entries such that the entries off diagonal are ≥ 0.

Let

$$\mathcal{K} = \text{span}_{A}\{\{a\} \mid a \in \bar{\Theta}\},$$

where the notation $\{a\}$ is a formal symbol. Let v', t' be a independent indeterminates, and we denote by \mathfrak{K} the ring $\mathcal{Q}(v, t)[v', t']$.

Proposition 5.1.1. Suppose that $a_{1}, a_{2}, \ldots, a_{r}$ ($r \geq 2$) are matrices in $\bar{\Theta}$ such that $\text{co}(a_{i}) = \text{ro}(a_{i+1})$ for $1 \leq i \leq r - 1$. There exist $\tilde{\beta}_{1}, \ldots, \tilde{\beta}_{m} \in \bar{\Theta}$, $G_{j}(v, v', t, t') \in \mathfrak{K}$ and $p_{0} \in \mathbb{N}$ such that in \mathcal{S}_{d} for some d, we have

$$[p_{0}a_{1}] * [p_{0}a_{2}] * \cdots * [p_{0}a_{r}] = \sum_{j=1}^{m} G_{j}(v, v^{-p}, t, t') [p_{0}\tilde{\beta}_{j}], \quad \forall p \geq p_{0}.$$

Proof. The proof is essentially the same as the one for Proposition 4.2 in [BLM90] by using Corollary 4.2.2 and Theorem 4.5.5. The main difference is that we should give how the twists $\alpha(t)$ and $\alpha'(t)$ change when a is replaced by $p_{0}a$.

If $r = 2$ and a_{1} is chosen such that $a_{1} - RE_{h,h+1}$ is a diagonal with $R \in \mathbb{N}$, the structure constant $G_{t}(v, v', t, t')$ is defined by

$$G_{t}(v, v', t, t') = v^{\beta(t)} \prod_{1 \leq h \leq n} \left(a_{h,u} + t_{u} \right) \prod_{1 \leq h \leq t} \left(v^{2(a_{h,u} + t_{u})} - 1 \right) t^{\sum_{h<ht} u_{h}}.$$

Similarly, if $r = 2$ and a_{1} is chosen such that $a_{1} - RE_{h+1,h}$ is diagonal with $R \in \mathbb{N}$, the structure constant $G_{t}(v, v', t, t')$ is defined by

$$G_{t}(v, v', t, t') = v^{\beta'(t)} \prod_{1 \leq u \leq n, u \neq h+1} \left(a_{h+1,u} + t_{u} \right) \prod_{1 \leq h \leq t} \left(v^{2(a_{h+1,u} + t_{u})} - 1 \right) t^{\sum_{h<ht} u_{h}},$$

Keep in mind the above modifications, the rest of the proof for Proposition 4.2 in [BLM90] can be repeated here. \qed
By specialization v', t' at $v' = 1, t' = 1$, there is a unique associative A-algebra structure on K, without unit, where the product is given by

$$\{a_1\} \cdot \{a_2\} \cdot \cdots \cdot \{a_r\} = \sum_{j=1}^{m} G_j(v, 1, 1) [\hat{a}_j]$$

if a_1, \ldots, a_r are as in Proposition 5.1.1.

Let a and b be elements of $\hat{\Theta}$ so that $b - rE_{h,h+1}$ is diagonal for some $1 \leq h < n, r \in \mathbb{N}$ satisfying $co(b) = ro(a)$. Then we have

$$\{b\} \cdot \{a\} = \sum_t v^{\beta(t)} t^{\alpha(t)} \prod_{u=1}^{N} \left(\frac{a_{hu} + t_u}{t_u} \right) \{a_t\},$$

where the sum is taken over all $t = (t_u) \in \mathbb{N}^N$ such that $\sum_{u=1}^{n} t_u = r$ and $t_u \leq a_{h,u}u$ for all $u \neq h + 1, \alpha(t), \beta(t), a_u \in \hat{\Theta}$ are defined in (16).

Similarly, if $a, c \in \hat{\Theta}$ are chosen such that $c - rE_{h+1,h}$ is diagonal for some $1 \leq h < n, r \in \mathbb{N}$ satisfying $co(c) = ro(a)$, then we have

$$\{c\} \cdot \{a\} = \sum_t v^{\beta(t)} t^{\alpha(t)} \prod_{u=1}^{N} \left(\frac{a_{hu+1} + t_u}{t_u} \right) \{a(h, t)\},$$

where the sum is taken over all $t = (t_u) \in \mathbb{N}^N$ such that $\sum_{u=1}^{n} t_u = r$ and $t_u \leq a_{h,u}$ for all $u \neq h, \alpha(t), \beta(t), (a, h, t) \in \hat{\Theta}$ are defined in (17).

5.2. The algebra U. In this section, we shall define a new algebra U in the completion of K similar to [BLM90] Section 5.

Let \hat{K} be the $\mathbb{Q}(v, t)$-vector space of all formal sum $\sum_{a \in \hat{\Theta}} \xi_a \{a\}$ with $\xi_a \in \mathbb{Q}(v, t)$ and a locally finite property, i.e., for any $t \in \mathbb{Z}^n$, the sets $\{a \in \hat{\Theta} | ro(a) = t, \xi_a \neq 0\}$ and $\{a \in \hat{\Theta} | co(a) = t, \xi_a \neq 0\}$ are finite. The space \hat{K} becomes an associative algebra over $\mathbb{Q}(v, t)$ when equipped with the following multiplication:

$$\sum_{a \in \Xi_D} \xi_a \{a\} \cdot \sum_{b \in \Xi_D} \xi_b \{b\} = \sum_{a,b} \xi_a \xi_b \{a \cdot b\},$$

where the product $\{a\} \cdot \{b\}$ is taken in K.

Observe that the algebra \hat{K} has a unit element $\sum \{\emptyset\}$, the summation of all diagonal matrices.

We define the following elements in \hat{K}. For any nonzero matrix $a \in \hat{\Theta}$, let \hat{a} be the matrix obtained by replacing diagonal entries of a by zeroes. We set

$$\Theta^0 = \{\hat{a} | a \in \hat{\Theta}\}.$$

For any \hat{a} in Θ^0 and $j = (j_1, \ldots, j_n) \in \mathbb{Z}^n$, we define

$$\hat{a}(j) = \sum_{\lambda} v^{\lambda_1 j_1 + \cdots + \lambda_n j_n} t^{\lambda_1 |j_1| + \cdots + \lambda_n |j_n|} \{\hat{a} + D_\lambda\}$$

where the sum runs through all $\lambda = (\lambda_i) \in \mathbb{Z}^n$ such that $\hat{a} + D_\lambda \in \hat{\Theta}$, where D_λ is the diagonal matrices with diagonal entries(λ_i).
For $i \in [1, n-1]$, let
\[
E_i = E_{i,i+1}(0) \quad \text{and} \quad F_i = E_{i+1,i}(0).
\]

Let \mathcal{U} be the subalgebra of $\hat{\mathcal{K}}$ generated by $E_i, F_i, 0(j)$ for all $i \in [1, n-1]$ and $j \in \mathbb{Z}^n$.

Proposition 5.2.1. The following relations hold in \mathcal{U}.

\[
\begin{align*}
(24) & \quad 0(j)0(j') = 0(j')0(j), \\
(25) & \quad 0(j)E_h = v^{j_h - j_{h+1}} t^{j_h} E_h 0(j), \quad 0(j)F_h = v^{-j_h + j_{h+1}} t^{-j_h} E_h 0(j), \\
(26) & \quad t(E_h F_h - F_h E_h) = (v - v^{-1})^{-1}(0(h - h + 1) - 0(h + 1 - h)), \\
(27) & \quad E_i^2 E_{i+1} - (vt + v^{-1}) E_i E_{i+1} + t^2 E_{i+1} E_i^2 = 0, \\
(28) & \quad t^2 E_i^2 E_{i+1} - (vt + v^{-1}) E_i E_{i+1} + E_i E_{i+1} E_i = 0, \\
(29) & \quad F_i^2 F_{i+1} - (vt - v^{-1}) F_i F_{i+1} + t F_{i+1} F_i^2 = 0, \\
(30) & \quad t^{-2} F_i^2 F_{i+1} - (vt - v^{-1}) F_{i+1} F_i + F_i F_{i+1}^2 = 0.
\end{align*}
\]

where $j, j' \in \mathbb{Z}^n$, $h, i, j \in [1, n]$ and $\mathbf{1} \in \mathbb{N}^N$ is the vector whose i-th entry is 1 and 0 elsewhere.

Proof. We show (25).
\[
0(j)E_h = \sum_{\lambda} v^{\sum \lambda_k j_k} t^{\sum \lambda_k j_k ^{}} \{ D_\lambda \} \sum_{\lambda'} \{ E_{h,h+1} + D_{\lambda'} \} = \sum_{\lambda} v^{\sum \lambda_k j_k + j_h} t^{\sum \lambda_k j_k ^{}} \{ E_{h,h+1} + D_{\lambda'} \},
\]

where the sums run through in an obvious range by the definition in (23).
\[
E_h 0(j) = \sum_{\lambda, \lambda'} v^{\sum \lambda_k j_k} t^{\sum \lambda_k j_k ^{}} \{ E_{h,h+1} + D_{\lambda'} \} \{ D_\lambda \} = \sum_{\lambda} v^{\sum \lambda_k j_k + j_h} t^{\sum \lambda_k j_k ^{}} \{ E_{h,h+1} + D_{\lambda'} \}.
\]

So we have the first identity in (25). All other identities in (24) and (25) can be shown similarly.

We show (26). We have
\[
E_h F_h = \sum_{\lambda} \{ E_{h,h+1} + D_{\lambda} \} \{ E_{h+1,h} + D_{\lambda} \} = \sum_{\lambda} \{ E_{h,h+1} + D_{\lambda} \} \{ E_{h+1,h} + D_{\lambda} \}
\]

\[
= \sum_{\lambda} (v^{\lambda_h - \lambda_{h+1}} t^{\lambda_h + \lambda_{h+1}} (\frac{\lambda_{h+1} + 1}{1}) v^{\lambda_{h+1}}) \{ D_\lambda + E_{h,h} \}
\]

\[
+ \{ E_{h+1,h} + E_{h,h+1} + D_\lambda - E_{h+1,h+1} \}).
\]

Similarly,
\[
F_h E_h = \sum_{\lambda} \{ E_{h+1,h} + D_{\lambda} \} \{ E_{h,h+1} + D_{\lambda} \}
\]

\[
= \sum_{\lambda} (v^{\lambda_{h+1} - \lambda_h} t^{\lambda_h + \lambda_{h+1}} (\frac{\lambda_{h+1} + 1}{1}) v^{\lambda_{h+1}}) \{ D_\lambda + E_{h+1,h+1} \}
\]

\[
+ \{ E_{h+1,h} + E_{h,h+1} + D_\lambda - E_{h,h} \}).
\]

Therefore,
\[
t(E_h F_h - F_h E_h) = \sum_{\lambda} \frac{v^{\lambda_h - \lambda_{h+1}} t^{\lambda_h + \lambda_{h+1} + \lambda_h + \lambda_{h+1}} v^{\lambda_{h+1}}}{v - v^{-1}} \{ D_\lambda \}
\]

\[
= (v - v^{-1})^{-1}(0(h - h + 1) - 0(h + 1 - h)).
\]
At last, we show (27).
\[E_h^2 E_{h+1} = \sum_{\lambda} vt(v^{-2} + 1)\{D_\lambda + E_{h,h+1} + E_{h,h+2}\} + \sum_{\lambda} v^{-1} t^3(v^{-2} + 1)\{D_\lambda + E_{h+1,h+2} + 2E_{h,h+1}\}; \]
\[E_h E_{h+1} E_h = \sum_{\lambda} t^2(v^{-2} + 1)\{D_\lambda + 2E_{h,h+1} + E_{h,h+2}\} + \sum_{\lambda} \{D_\lambda + E_{h,h+1} + E_{h,h+2}\}; \]
\[E_{h+1} E_h^2 = \sum_{\lambda} vt(v^{-2} + 1)\{D_\lambda + 2E_{h,h+1} + E_{h+1,h+2}\}. \]

Then the first identity of (27) follows. All other identities can be shown similarly.

The Corollary directly follows.

Corollary 5.2.2. The assignment \(E_i \mapsto tE_i, F_i \mapsto F_i, A_a \mapsto 0(a) \) and \(B_a \mapsto 0(-a) \), for any \(i \in [1, n-1], a \in [1, n] \), defines an algebra isomorphism \(\Upsilon : U_{v,t}(gl_n) \rightarrow \mathcal{U} \).

6. Schur dualities for two parameter case of type \(A_d \)

In this section, we shall formulate algebraically the dualities between algebras \(U_{v,t}(gl_n) \) and the two parameter Iwahori-Hecke algebras \(H_d(v, t) \) of type \(A_d \).

Let \(V \) be a vector space over \(\mathbb{Q}(v, t) \) of dimension \(n \). We fix a basis \((v_i)_{1 \leq i \leq n} \) for \(V \). Let \(V^{\otimes d} \) be the \(d \)-th tensor space of \(V \). Thus we have a basis \((v_{r_1} \otimes \cdots \otimes v_{r_d}) \), where \(r_1, \cdots, r_d \in [1, n] \), for the tensor space \(V^{\otimes d} \).

For a sequence \(r = (r_1, \cdots, r_d) \), we write \(v_r \) for \(v_{r_1} \otimes \cdots \otimes v_{r_d} \).

For a sequence \(r \) and a fixed integer \(p \in [1, d] \), we define the sequence \(r'_p \) and \(r''_p \) by
\[
(r'_p)_j = \begin{cases}
 r_j, & j \neq p, \\
 r_p - 1, & j = p
\end{cases} \quad \text{and} \quad (r''_p)_j = \begin{cases}
 r_j, & j \neq p, \\
 r_p + 1, & j = p
\end{cases}
\]

Lemma 6.0.3. There has a left \(U_{v,t}(gl_n) \)-action on \(V^{\otimes d} \) defined by, for any \(i \in [1, n-1], a \in [1, n] \),
\[
E_i \cdot v_r = \sum_{1 \leq p \leq d; r_p = i+1} v^{\sum_{j \leq p} \delta_{i,j} - \delta_{i+1,j} + \sum_{j > p} \delta_{i,j} + \delta_{i+1,j}} v_{r'_p},
\]
\[
F_i \cdot v_r = \sum_{1 \leq p \leq d; r_p = i} v^{\sum_{j < p} \delta_{i+1,j} - \delta_{i,j} + \sum_{j > p} \delta_{i,j} + \delta_{i+1,j}} v_{r''_p},
\]
\[
A_a^{\pm 1} \cdot v_r = v^{\pm \sum_{1 \leq j \leq d} \delta_{a,j} r_j} v^{\pm \sum_{1 \leq j \leq d} \delta_{a,j}} v_r,
\]
\[
B_a^{\pm 1} \cdot v_r = v^{\pm \sum_{1 \leq j \leq d} \delta_{a,j} r_j} v^{\pm \sum_{1 \leq j \leq d} \delta_{a,j}} v_r.
\]

The lemma follows Proposition 4.1.1 and Corollary 4.3.1.
Lemma 6.0.4. There has a right H_d-action on $V^\otimes d$ given by, for $1 \leq j \leq d - 1$,

\[
 v_{r_1 \ldots r_d}^{\sigma} \cdot T_j = \begin{cases}
 v_{r_1 \ldots r_j - 1 r_{j+1} r_{j+2} \ldots r_d}, & r_j < r_{j+1}; \\
 v^{\sigma} v_{r_1 \ldots r_d}, & r_j = r_{j+1}; \\
 (vt - v^{-1}t)v_{r_1 \ldots r_d} + t^2 v_{r_1 \ldots r_j - 1 r_{j+1} r_{j+2} \ldots r_d}, & r_j > r_{j+1}.
\end{cases}
\]

This lemma follows Lemmas 4.4.2 and 4.4.3.

We now can state the duality.

Proposition 6.0.5. The left $U_{v,t}(gl_n)$-action in Lemma 6.0.3 and the right H_d-action in Lemma 4.4.3 on $V^\otimes d$ are commuting. They form a double centralizer for $n \geq d$, i.e.,

$$H_d \simeq \text{End}_U(V^\otimes d) \text{ and } U_{v,t}(gl_n) \to \text{End}_{H_d}(V^\otimes d) \text{ is surjective.}$$

The proposition follows from the previous two lemmas, Lemma 3.1.1 Proposition 4.1.1 and Corollary 4.5.5.

6.1. Galois descend approach. Let $G = \text{Gal}(\mathbb{Q}(v,t)/\mathbb{Q}(r,s))$, $r = vt, s = v^{-1}t$. It is easy to know $G \cong S_2$ which is generated by σ. G act on $U_{v,t}(gl_n)$ given by a Q algebra homomorphism $\sigma : U_{v,t}(gl_n) \to U_{v,t}(gl_n)$; \(E_i \mapsto -E_i, F_i \mapsto F_i, K_i \mapsto K_i, K'_i \mapsto K'_i, v \mapsto -v, t \mapsto -t\). G can be also act on $V^\otimes k$ which is given by $\sigma : V^\otimes k \to V^\otimes k; v_i \otimes \cdots \otimes v_k \mapsto -v_i \otimes \cdots \otimes v_k, v \mapsto -v, t \mapsto -t$. By the directly compute we have the following lemma.

Lemma 6.1.1. The G-actions on $(U_{v,t}(gl_n), V^\otimes k)$ is compatible. That is $\sigma(av) = \sigma(a)\sigma(v)$, $\forall a \in U_{v,t}(gl_n), v \in V$.

Proof. We only need to check the identities $\sigma(av) = \sigma(a)\sigma(v)$ on the generators. By the lemma 6.0.3, the result is obvious.

Though the above lemma we know there is a G-action on $H_k(v,t)$ which is given by $\sigma : H_k(v,t) \mapsto H_k(v,t); T_i \mapsto T_i, v \mapsto -v, t \mapsto -t$.

Theorem 6.1.2. $(U_{v,t}(gl_n)^G, V^\otimes k^G, H_k(v,t)^G)$ is a shur-weyl tripple. and $U_{v,t}(gl_n)^G \cong U_{r,s}(gl_n), V^\otimes k^G$ is a n^k dimension vector space over $\mathbb{Q}(r,s)$, $H_k(v,t)^G \cong H_k(r,s)$.

Proof.

Remark 6.1.3. $H_k(r,s)$ is a unital associate algebra over $\mathbb{Q}(r,s)$ with generators \widetilde{T}_i, $1 \leq i < k$ subject to the following relations:

1. $\widetilde{T}_i \widetilde{T}_{i+1} \widetilde{T}_i = \widetilde{T}_{i+1} \widetilde{T}_i \widetilde{T}_{i+1}, 1 \leq i < k$.
2. $\widetilde{T}_i \widetilde{T}_j = \widetilde{T}_j \widetilde{T}_i, \text{if} |i - j| \geq 2$.
3. $(\widetilde{T}_i - r)(\widetilde{T}_i + s) = 0, \forall i$.

$U_{r,s}(gl_n)$ is a $\mathbb{Q}(r,s)$ algebra generated by $\widetilde{E}_i, \widetilde{F}_i, \widetilde{K}_i, \widetilde{K}'_i$.

GEOMETRIC SCHUR DUALITY OF TWO PARAMETER QUANTUM GROUP OF TYPE A 17
7. Two New Quantum Group $U_{v,t}(gl_n)^m$ and $U_{v,t}(gl_n)^m$

In order to give the comultiplication in the two parameter case of two new quantum group appeared in [FL14], we give two new quantum group $U_{v,t}(gl_n)^m$ and $U_{v,t}(gl_n)^m$ in this section. For any $i \in [1, n-1]$, $a \in [1, n]$, $m \in [1, n-1]$, we define the function $E_i, F_i, A_i^{\pm 1}, B_i^{\pm 1}$ to be the same function in S . we further define

$$J_{\pm}(V, V') = \begin{cases} 1, & \text{if } V = V' \text{ and } |V_m| = d \mod 2; \\ 0, & \text{otherwise.} \end{cases}$$

(32)

$$J_{-}(V, V') = \begin{cases} 1, & \text{if } V = V' \text{ and } |V_m| = d - 1 \mod 2; \\ 0, & \text{otherwise.} \end{cases}$$

All these functions are elements in S.

Proposition 7.0.4. The functions $E_i, F_i, A_i^{\pm 1}, B_i^{\pm 1}$ and J_{\pm} in S, for any $i \in [1, n-1]$, $a \in [1, n]$, satisfy the relations in 7.1 together with the following relations.

(R1) $J_{\pm} + J_{-} = 1$, $J_\alpha J_\beta = \delta_{\alpha\beta} J_\alpha$, $J_\pm A_a = A_a J_\pm$, $J_\pm A_a = A_a J_\pm$, $J_\pm E_i = E_i J_{\pm}$, $J_\pm F_i = F_i J_{\pm}, i \neq m$; $J_\pm E_m = E_m J_{\mp}, J_\pm F_m = F_m J_{\mp};$

Corollary 7.0.5. The algebra $Q(v, t) \otimes_\A S$ is generated by the functions $E_i, F_i, A_i^{\pm 1}, B_i^{\pm 1}$, and J_{\pm} in S, for any $i \in [1, n-1]$, $a \in [1, n]$.

7.1. Another limit algebra \K'. We set $pA = A + 2pI$. Let

$$\K' = \text{span}_A \{a| a \in \Theta\},$$

where the notation $\{a\}$ is a formal symbol. Let v', t' be a independent indeterminates, and we denote by \mathfrak{R} the ring $Q(v, t)[v', t']$.

Proposition 7.1.1. Suppose that $a_1, a_2, \ldots, a_r (r \geq 2)$ are matrices in Θ such that $\text{co}(a_i) = \text{ro}(a_{i+1})$ for $1 \leq i \leq r - 1$. There exist $\bar{a}_1, \ldots, \bar{a}_m \in \Theta$, $G_j^r(v, v', t', t') \in \mathfrak{R}$ and $p_0 \in \mathbb{N}$ such that in S_d for some d, we have

$$\{p a_1\} \ast \{p a_2\} \ast \cdots \ast \{p a_r\} = \sum_{j=1}^m G_j^r(v, v^{-p}, t, t')\{p \bar{a}_j\}, \quad \forall p \geq p_0.$$

By specialization v', t' at $v' = 1, t' = 1$, there is a unique associative \A-algebra structure on \K, without unit, where the product is given by

$$\{a_1\} \cdot \{a_2\} \cdot \cdots \cdot \{a_r\} = \sum_{j=1}^m G_j^r(v, 1, t, 1)\{a_j\}$$

if a_1, \ldots , a_r are as in Proposition 7.1.1.

Let a and $b \in \Theta$ be chosen such that $b - rE_{m, m+1}$ is diagonal for some $r \in \mathbb{N}$ satisfying $\text{co}(b) = \text{ro}(a)$. Then we have

$$\{b\} \cdot \{a\} = \sum_t v^\beta(t) t^\alpha(t) \prod_{u=1}^N \frac{(a_{hu} + t_u)}{t_u} \{a_t\},$$

(33)

$$\{b\} \cdot \{a\} = \sum_t v^\beta(t) t^\alpha(t) \prod_{u=1}^N \frac{(a_{hu} + t_u)}{t_u} \{a_t\},$$
where the sum is taken over all \(t = (t_u) \in \mathbb{N}^n \) such that \(\sum_{u=1}^n t_u = r \) and \(t_u \leq a_{m+1,u} \), \(\alpha(t), \beta(t), a_t \in \tilde{\Theta} \) are defined in (19).

Similarly, if \(a, c \in \tilde{\Theta} \) are chosen such that \(c - rE_{m+2,m+1} \) is diagonal for some \(1 \leq h < n, r \in \mathbb{N} \) satisfying \(\text{co}(c) = \text{ro}(a) \), then we have

\[
(35) \quad \{ c \} \cdot \{ a \} = \sum_t \nu^{\alpha'(t)} t^{\alpha(t)} \prod_{u=1}^N \left(\frac{a_{h+1,u} + t_u}{t_u} \right) \{ a(h,t) \},
\]

where the sum is taken over all \(t = (t_u) \in \mathbb{N}^n \) such that \(\sum_{u=1}^n t_u = r \) and \(t_u \leq a_{m+1,u} \), \(\alpha'(t), \beta'(t) \) \(a(t), a(t) \in \tilde{\Theta} \) are defined in (17).

7.2. The algebra \(\mathcal{U}' \)

In this section, we shall define a new algebra \(\mathcal{U} \) in the completion of \(\mathcal{K} \) similar to [BLM90] Section 5.

Let \(\hat{\mathcal{K}} \) be the \(\mathbb{Q}(v,t) \)-vector space of all formal sum \(\sum_{a \in \tilde{\Theta}} \xi_a \{ a \} \) with \(\xi_a \in \mathbb{Q}(v,t) \) and a locally finite property, i.e., for any \(t \in \mathbb{Z}^n \), the sets \(\{ a \in \tilde{\Theta} | \text{ro}(a) = t, \xi_a \neq 0 \} \) and \(\{ a \in \tilde{\Theta} | \text{co}(a) = t, \xi_a \neq 0 \} \) are finite. The space \(\hat{\mathcal{K}} \) becomes an associative algebra over \(\mathbb{Q}(v,t) \) when equipped with the following multiplication:

\[
\sum_{a \in \tilde{\Theta}} \xi_a \{ a \} \cdot \sum_{b \in \tilde{\Theta}} \xi_b \{ b \} = \sum_{a,b} \xi_a \xi_b \{ a \} \cdot \{ b \},
\]

where the product \(\{ a \} \cdot \{ b \} \) is taken in \(\mathcal{K} \). This is shown in exactly the same as [BLM90] Section 5.

Observe that the algebra \(\hat{\mathcal{K}} \) has a unit element \(\sum \{ a \} \), the summation of all diagonal matrices.

We define the following elements in \(\hat{\mathcal{K}} \). For any nonzero matrix \(a \in \tilde{\Theta} \), let \(\hat{a} \) be the matrix obtained by replacing diagonal entries of \(a \) by zeroes. We set \(\Theta^0 = \{ \hat{a} | a \in \tilde{\Theta} \} \).

For any \(\hat{a} \in \Theta^0 \) and \(j = (j_1, \ldots, j_n) \in \mathbb{Z}^n \), we define

\[
(36) \quad \hat{a}(j) = \sum_{\lambda} \nu^{\lambda_1 j_1 + \cdots + \lambda_n j_n} t^{\lambda_1 j_1 + \cdots + \lambda_n j_n} \{ \hat{a} + D_\lambda \}
\]

where the sum runs through all \(\lambda = (\lambda_i) \in \mathbb{Z}^n \) such that \(\hat{a} + D_\lambda, \in \tilde{\Theta} \), where \(D_\lambda \) is the diagonal matrices with diagonal entries \((\lambda_i) \).

And we also define

\[
J_+ = \sum_{\lambda \in S_0} \{ D_\lambda \}, \quad J_- = \sum_{\lambda \in S_1} \{ D_\lambda \},
\]

Where \(S_0 = \{ \lambda | \sum_{i=1}^m \lambda_i \equiv 0 \mod 2 \}, S_1 = \{ \lambda | \sum_{i=1}^m \lambda_i \equiv \sum_{i=1}^n \lambda_i - 1 \mod 2 \} \)

For \(i \in [1, n-1] \), let

\[
E_i = E_{i, i+1}(0) \quad \text{and} \quad F_i = E_{i+1, i}(0).
\]

Let \(\mathcal{U}' \) be the subalgebra of \(\hat{\mathcal{K}} \) generated by \(E_i, F_i, 0(j) \), \(J_\pm \) for all \(i \in [1, n-1] \) and \(j \in \mathbb{Z}^n \).

Proposition 7.2.1.

The following relations hold in \(\mathcal{U}' \).

\[
(37) \quad \begin{align*}
J_+ E_i &= E_i J_+, \quad J_+ F_i = F_i J_+, \quad i \neq m; \\
J_\pm E_m &= E_m J_\pm, \quad J_\pm F_m = F_m J_\pm;
\end{align*}
\]

\[
(38) \quad 0(j) 0(j') = 0(j') 0(j).
\]
The algebra E. A_i.

Definition 7.3.1. $\mathcal{U}_{v,t}(gl_n)^m.$

$U_{v,t}(gl_n)^m$ is an associative $\mathbb{Q}(v,t)$-algebra with 1 generated by symbols E_i, F_i, A_a, B_a, J_a for all $i \in [1, n - 1], a \in [1, n]$ and $\alpha \in \{+, -\}$ and subject to the following relations.

$$
\begin{align*}
J_+ + J_- &= 1, \quad J_+ J_\beta = \delta_{\alpha,\beta} J_\alpha, \quad J_\pm A_a = A_a J_\pm, \quad J_\pm B_a = B_a J_\pm, \\
J_\pm E_i &= E_i J_\pm, \quad J_\pm F_i = F_i J_\pm, i \neq m, \quad J_\pm E_m = E_m J_\pm, J_\pm F_m = F_m J_\pm; \\
A_i^{+1} A_i^{-1} &= A_i^{-1} A_i^{+1}, \quad B_i^{+1} B_i^{-1} = B_i^{-1} B_i^{+1}, \\
A_i^{+1} B_i^{-1} &= B_i^{+1} A_i^{-1}, \quad A_i^{-1} A_i^{+1} = 1 = B_i^{+1} B_i^{-1}, \\
A_i E_j A_i^{-1} &= v^{(i,j)} t^{(i,j)} E_j, \quad B_i E_j B_i^{-1} = v^{-(i,j)} t^{-(i,j)} E_j, \\
A_i F_j A_i^{-1} &= v^{(i,j)} t^{-(i,j)} F_j, \quad B_i F_j B_i^{-1} = v^{(i,j)} t^{(i,j)} F_j, \\
E_i F_j - F_j E_i &= \delta_{ij} \frac{A_i B_{i+1} - B_i A_{i+1}}{t v - t v^{-1}}.
\end{align*}
$$

$$
\begin{align*}
E_i^2 E_{i+1} - (v + v^{-1}) E_i E_{i+1} E_i + t^2 E_{i+1} E_i^2 &= 0, \\
t^2 E_{i+1}^2 E_i - (v + v^{-1}) E_{i+1} E_i E_{i+1} + E_i^2 E_{i+1}^2 &= 0, \\
F_i^2 F_{i+1} - (v + v^{-1}) F_i F_{i+1} F_i + t F_{i+1} F_i^2 &= 0, \\
t^{-2} F_{i+1}^2 F_i - (v + v^{-1}) F_{i+1} F_i F_{i+1} + F_i F_{i+1}^2 &= 0.
\end{align*}
$$

Proposition 7.3.2. The assignment $E_i \mapsto E_i, F_i \mapsto F_i, A_a \mapsto 0(a), B_a \mapsto 0(-a), and J_\alpha \mapsto J_\alpha$ for any $i \in [1, n - 1], a \in [1, n]$ and $\alpha \in \{+, -\}$ defines a algebra isomorphism $\Upsilon : \mathcal{U}_{v,t}(gl_n)^m \rightarrow \mathcal{U}'$.

7.4. Defining relations of S. For any $i \in [1, n - 1], a \in [1, n], m \in [1, n - 1]$ we define the function $E_i, F_i, A_a^{+1}, B_a^{+1}$ to be the same function in S. we further define

$$
\begin{align*}
J_+(V, V') &= \begin{cases} 1, & \text{if } V_m = V_{m+1}, |V_m| \equiv d \mod 2; \\
0, & \text{otherwise.}
\end{cases} \\
J_-(V, V') &= \begin{cases} 1, & \text{if } V_m = V_{m+1}, |V_m| \equiv d - 1 \mod 2; \\
0, & \text{otherwise.}
\end{cases}
\end{align*}
$$

$J_0 = 1 - J_+ - J_-$.

where $j, j' \in \mathbb{Z}^n, h, i, j \in [1, n]$ and $i \in \mathbb{N}^N$ is the vector whose i-th entry is 1 and 0 elsewhere.
Proposition 7.4.1. The functions $E_i, F_i, A_a^{\pm 1}, B_a^{\pm 1}, \text{and} J_\alpha$ in S, for any $i \in [1, n - 1], \alpha \in [1, n], \alpha \in \{+,-,0\}$, satisfy the relations in Proposition 4.17 and the following relations.

(57) \[J_+ + J_0 + J_- = 1, J_\alpha J_\beta = \delta_{\alpha,\beta} J_\alpha, J_\alpha A_a = A_a J_\alpha, J_\alpha B_a = A_a B_a; \]

(58) \[E_i J_\pm = (1 - \delta_{i,m}) J_\pm E_i, J_\pm E_i = (1 - \delta_{i,m+1}) E_i J_\pm; \]

(59) \[F_i J_\pm = (1 - \delta_{i,m+1}) J_\pm F_i, J_\pm F_i = (1 - \delta_{i,m}) F_i J_\pm; \]

(60) \[J_\pm E_m E_{m+1} = E_m E_{m+1} J_\mp; \]

(61) \[J_\pm F_{m+1} F_m = F_{m+1} F_m J_\mp; \]

(62) \[J_\pm E_m F_m - E_m F_m J_\mp = \frac{A_m B_{m+1} - B_m A_{m+1}}{v - v^{-1}} (J_\pm - J_\mp); \]

(63) \[J_\pm F_{m+1} E_{m+1} - F_{m+1} E_{m+1} J_\mp = \frac{B_{m+1} A_{m+2} - A_{m+1} B_{m+2}}{v - v^{-1}} (J_\pm - J_\mp). \]

Proof. The first identity in the first three rows of the relations in the proposition are straightforward. Let $\lambda'_i = |V_i'/V_{i-1}'|$. We show the identity (61) by a direct calculation. We have

$$ F_{m+1} F_m (V, V') = \begin{cases} v^{-\lambda'_{m+2}-\lambda'_m} t^{\lambda'_{m+2}+\lambda'_m}, & \text{if } V_m \subseteq V'_m \text{ and } V_{m+1} \subseteq V'_{m+1}, \\ 0, & \text{otherwise.} \end{cases} $$

$$ J_+ F_{m+1} F_m (V, V') = \begin{cases} v^{-\lambda'_{m+2}-\lambda'_m} t^{\lambda'_{m+2}+\lambda'_m}, & \text{if } V_m \subseteq V'_m, \ V_{m+1} \subseteq V'_{m+1}, \ V_m = V_{m+1} \\ 0, & \text{if } |V_m| \equiv d \mod 2, \text{ and otherwise.} \end{cases} $$

$$ F_{m+1} F_m J_- (V, V') = \begin{cases} v^{-\lambda'_{m+2}-\lambda'_m} t^{\lambda'_{m+2}+\lambda'_m}, & \text{if } V_m \subseteq V'_m, \ V_{m+1} \subseteq V'_{m+1}, \ V_m = V_{m+1} \\ 0, & \text{if } |V_m| \equiv d \mod 2, \text{ and otherwise.} \end{cases} $$

The first part of the identity (61) follows, all other identities in (61) and (60) can be shown similarly.

Then, We show the identity (63) By a direct calculation, we have

$$ F_{m+1} E_{m+1} (V, V') = \begin{cases} v^{\lambda'_{m+2}} - v^{-\lambda'_{m+2}+\lambda'_m+1} t^{\lambda'_{m+2}+\lambda'_m+1}, & \text{if } V = V' \\ 0, & \text{otherwise.} \end{cases} $$

$$ (J_+ F_{m+1} E_{m+1} - F_{m+1} E_{m+1} J_-)(V, V') = \begin{cases} v^{\lambda'_{m+2} t^{\lambda'_m+2} - \lambda'_m+1} v^{-\lambda'_{m+2} t^{\lambda'_m} + \lambda'_m+1}, & \text{if } V = V', \ V_m = V_{m+1}, \ V_m \subseteq V_{m+1} \text{ and } |V_m| \equiv d \mod 2, \\ v^{-\lambda'_{m+2} t^{\lambda'_m+2} - \lambda'_m+1} v^{\lambda'_{m+2} t^{\lambda'_m} + \lambda'_m+1}, & \text{if } V = V', \ V_m = V_{m+1}, \ V_m \subseteq d - 1 \mod 2, \text{ and otherwise.} \end{cases} $$
\[\frac{B_{m+1}A_{m+2} - A_{m+1}B_{m+2}}{v - v^{-1}} (J_\pm - J_\mp) (V, V') = \begin{cases} \\ v^{m+2}\lambda^{m+2} t^{m+2} - v^{-}\lambda^{m+2} t^{m+2}, & \text{if } V = V', V_m = V_{m+1}, \\
& \text{and } |V_m| \equiv d \mod 2, \\
0, & \text{otherwise.} \end{cases} \]

The first part of the identity follows, all other identities in \[63\] and \[62\] can be shown similarly.

\[\square \]

Corollary 7.4.2. The algebra \(Q(v, t) \otimes_\mathcal{A} \mathcal{S} \) is generated by the functions \(E_i, F_i, A_a^{\pm 1}, B_b^{\pm 1}, \) and \(J_\alpha \) in \(\mathcal{S} \), for any \(i \in [1, n-1], a \in [1, n], \alpha \in \{+, -, 0\} \).

7.5. Limit algebra \(\mathcal{K}'' \). Let \(I' = I - E_{m+1, m+1} \) be the identity matrix. We set \(pA = A + 2pI' \)

Let \(\widetilde{\Theta}' = \{ M | M \in \widetilde{\Theta}, M_{m+1,m+1} \geq 0 \} \).

Let

\[\mathcal{K}'' = \text{span}_\mathcal{A}\{ \{a\} | a \in \widetilde{\Theta}' \} \],

where the notation \(\{a\} \) is a formal symbol bearing no geometric meaning. Let \(v', t' \) be an independent indeterminates, and we denote by \(\mathfrak{R} \) the ring \(Q(v, t)[v', t'] \).

Proposition 7.5.1. Suppose that \(a_1, a_2, \ldots, a_r \) \((r \geq 2) \) are matrices in \(\widetilde{\Theta}' \) such that \(\text{co}(a_i) = \text{ro}(a_{i+1}) \) for \(1 \leq i \leq r - 1 \). There exist \(\delta_1, \ldots, \delta_m \in \widetilde{\Theta}' \), \(G_j'(v, v', t, t') \in \mathfrak{R} \) and \(p_0 \in \mathbb{N} \) such that in \(\mathcal{S}_d \) for some \(d \), we have

\[\{p_1a_1\} \ast \{p_2a_2\} \ast \cdots \ast \{p_r a_r\} = \sum_{j=1}^{m} G_j'(v, v^{-p}, t, t') \{p_3 j\}, \quad \forall p \geq p_0. \]

By specialization \(v', t' \) at \(v' = 1, t' = 1 \), there is a unique associative \(\mathcal{A} \)-algebra structure on \(\mathcal{K} \), without unit, where the product is given by

\[\{a_1\} \cdot \{a_2\} \cdots \cdot \{a_r\} = \sum_{j=1}^{m} G_j'(v, 1, 1, 1) \{j\} \]

if \(a_1, \ldots, a_r \) are as in Proposition 7.5.1.

Let \(a \) and \(b \in \widetilde{\Theta} \) be chosen such that \(b - rE_{m,m+1} \) is diagonal for some \(r \in \mathbb{N} \) satisfying \(\text{co}(b) = \text{ro}(a) \). Then we have

\[\{b\} \cdot \{a\} = \sum_t v^{\beta(t)} t^\alpha(t) \prod_{u=1}^{N} \frac{a_{hu} + t_u}{t_u} \{a_t\}, \]

where the sum is taken over all \(t = (t_u) \in \mathbb{N}^n \) such that \(\sum_{u=1}^{n} t_u = r \) and \(t_u \leq a_{m+1,u} \), \(\alpha(t), \beta(t), a_t \in \widetilde{\Theta}' \) are defined in \([16] \).

Similarly, if \(a, c \in \widetilde{\Theta} \) are chosen such that \(c - rE_{m+2,m+1} \) is diagonal for some \(1 \leq h < n, r \in \mathbb{N} \) satisfying \(\text{co}(c) = \text{ro}(a) \), then we have

\[\{c\} \cdot \{a\} = \sum_t v^{\beta'(t)} t^{\alpha'(t)} \prod_{u=1}^{N} \frac{a_{h+1,u} + t_u}{t_u} \{a(h, t)\}, \]

if
where the sum is taken over all \(t = (t_u) \in \mathbb{N}^n \) such that \(\sum_{u=1}^n t_u = r \) and \(t_u \leq a_{m+1,u} \), \(,o'(t),\beta'(t) a(h, t) \in \hat{\Theta}' \) are defined in [17].

7.6. The algebra \(\mathcal{U}' \). In this section, we shall define a new algebra \(\mathcal{U}' \) in the completion of \(\mathcal{K}' \) similar to [BLM90, Section 5].

Let \(\hat{\mathcal{K}}' \) be the \(\mathbb{Q}(v,t) \)-vector space of all formal sum \(\sum_{a \in \hat{\Theta}'} \xi_a \{ a \} \) with \(\xi_a \in \mathbb{Q}(v,t) \) and a locally finite property, i.e., for any \(t \in \mathbb{Z}^n \), the sets \(\{ a \in \hat{\Theta}'|\text{ro}(a) = t, \xi_a \neq 0 \} \) and \(\{ a \in \hat{\Theta}'|\text{co}(a) = t, \xi_a \neq 0 \} \) are finite. The space \(\mathcal{K}' \) becomes an associative algebra over \(\mathbb{Q}(v,t) \) when equipped with the following multiplication:

\[
\sum_{a \in \hat{\Theta}'} \xi_a \{ a \} \cdot \sum_{b \in \hat{\Theta}'} \xi_b \{ b \} = \sum_{a, b} \xi_a \xi_b \{ a \} \cdot \{ b \},
\]

where the product \(\{ a \} \cdot \{ b \} \) is taken in \(\mathcal{K}' \). This is shown in exactly the same as [BLM90, Section 5].

Observe that the algebra \(\hat{\mathcal{K}}' \) has a unit element \(\sum \{ a \} \), the summation of all diagonal matrices.

We define the following elements in \(\hat{\mathcal{K}}' \). For any nonzero matrix \(a \in \hat{\Theta}' \), let \(\hat{a} \) be the matrix obtained by replacing diagonal entries of \(a \) by zeroes. We set

\[
\Theta^0 = \{ \hat{a} | a \in \hat{\Theta}' \}.
\]

For any \(\hat{a} \) in \(\Theta^0 \) and \(j = (j_1, \cdots, j_n) \in \mathbb{Z}^n \), we define

\[
\hat{a}(j) = \sum_{\lambda} v^{\lambda_j j_1 + \cdots + \lambda_n j_n} t^{\lambda_j j_1 + \cdots + \lambda_n j_n} \{ \hat{a} + D_{\lambda} \}
\]

where the sum runs through all \(\lambda = (\lambda_i) \in \mathbb{Z}^n \) such that \(\hat{a} + D_{\lambda}, \in \hat{\Theta}' \), where \(D_{\lambda} \) is the diagonal matrices with diagonal entries \((\lambda_i) \).

And we also define

\[
J_+ = \sum_{\lambda \in S_0} \{ D_{\lambda} \},
\]

\[
J_- = \sum_{\lambda \in S_1} \{ D_{\lambda} \},
\]

\[
J_0 = 1 - J_+ - J_-
\]

Where \(S_0 = \{ \lambda | \lambda_{m+1} = 0, \sum_{i=1}^n \lambda_i \equiv \sum_{i=1}^n \lambda_i \mod 2 \} \), \(S_1 = \{ \lambda | \lambda_{m+1} = 0, \sum_{i=1}^n \lambda_i \equiv \sum_{i=1}^n \lambda_i - 1 \mod 2 \} \).

For \(i \in [1, n-1] \), let

\[
E_i = E_{i;i+1}(0) \quad \text{and} \quad F_i = E_{i+1;i}(0).
\]

Let \(\mathcal{U} \) be the subalgebra of \(\hat{\mathcal{K}} \) generated by \(E_i, F_i, 0(j), J_\alpha \) for all \(i \in [1, n-1], j \in \mathbb{Z}^n \) and \(\alpha \in \{ +, -, 0 \} \).

Proposition 7.6.1. The following relations hold in \(\mathcal{U}' \).

\[
J_+ + J_0 + J_- = 1, J_\alpha J_\beta = \delta_{\alpha,\beta} J_\alpha, J_\alpha A_\alpha = A_\alpha J_\alpha, J_\alpha B_\alpha = B_\alpha J_\alpha;
\]

\[
E_i J_+ = (1 - \delta_{i,m}) J_+ E_i, J_- E_i = (1 - \delta_{i,m+1}) E_i J_+;
\]

\[
F_i J_+ = (1 - \delta_{i,m}) J_+ F_i, J_- F_i = (1 - \delta_{i,m}) F_i J_+;
\]
(73) \[J_+ E_m E_{m+1} = E_m E_{m+1} J_+; \]
(74) \[J_+ F_{m+1} F_m = F_{m+1} F_m J_+; \]
(75) \[J_\pm E_m F_m - E_m F_m J_\mp = \frac{A_m B_{m+1} - B_m A_{m+1}}{v - v^{-1}} (J_\pm - J_\mp); \]
(76) \[J_\pm F_{m+1} E_{m+1} - F_{m+1} E_{m+1} J_\mp = \frac{B_{m+1} A_{m+2} - A_{m+1} B_{m+2}}{v - v^{-1}} (J_\pm - J_\mp). \]
(77) \[0(j)0(j') = 0(j')0(j), \]
(78) \[0(j)E_h = v^{j_h-j_{h+1}} t^{j_h-j_{h+1}} E_h 0(j), \]
(79) \[t(E_i F_h - F_h E_i) = (v - v^{-1})^{-1} (0(j_h - h + 1) - 0(h + 1 - j_h)), h \neq m + 1; \]
(80) \[E_i^2 = (v^2 - 1) E_i + t^2 E_i^2 = 0; \]
(81) \[t^2 E_i^2 - (v^2 - 1) E_i E_i + t^2 E_i^2 E_i = 0, \]
(82) \[F_i^2 = (v^2 - 1) F_i F_i + t^2 F_i^2 F_i = 0; \]
(83) \[t^{-2} F_i^2 F_i - (v^{-2} - 1) F_i F_i F_i + t^{-2} F_i F_i F_i = 0; \]
where \(j, j' \in \mathbb{Z}^n, h, i, j \in [1, n] \) and \(\mathbf{1} \in \mathbb{N}^n \) is the vector whose \(i \)-th entry is 1 and 0 elsewhere.

7.7. The algebra \(\widehat{U_{v,t}(gl_n)} \).

Definition 7.7.1. \(\widehat{U_{v,t}(gl_n)} \) is an associative \(\mathbb{Q}(v, t) \)-algebra with 1 generated by symbols \(E_i, F_i, J_\alpha, A_\alpha, B_\alpha \) for all \(i \in [1, n - 1], \alpha \in [1, n] \) and \(\alpha \in \{+, -, 0\} \) subject to the following relations.

(84) \[J_+ + J_0 + J_- = 1, \]
(85) \[E_i J_+ = (1 - \delta_{i,m}) J_\pm E_i, J_\pm E_i = (1 - \delta_{i,m+1}) E_i J_\pm; \]
(86) \[F_i J_\pm = (1 - \delta_{i,m+1}) J_\pm F_i, J_\pm F_i = (1 - \delta_{i,m}) F_i J_\pm; \]
(87) \[J_\pm E_i E_{m+1} = E_i E_{m+1} J_\pm; \]
(88) \[J_\pm F_{m+1} F_m = F_{m+1} F_m J_\pm; \]
(89) \[J_\pm E_m F_m - E_m F_m J_\mp = \frac{A_m B_{m+1} - B_m A_{m+1}}{v - v^{-1}} (J_\pm - J_\mp); \]
(90) \[J_\pm F_{m+1} E_{m+1} - F_{m+1} E_{m+1} J_\mp = \frac{B_{m+1} A_{m+2} - A_{m+1} B_{m+2}}{v - v^{-1}} (J_\pm - J_\mp). \]
References

[BKLW14] H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical type, with Appendix A by H. Bao, Y. Li, and W. Wang, arXiv:1404.4000.

[BW13] H. Bao, W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103.

[BBD82] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).

[BLM90] A. Beilinson, G. Lusztig, R. McPherson, A geometric setting for the quantum deformation of GL_n, Duke Math. J., 61 (1990), 655-677.

[BB05] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231. Springer, 2005.

[D02] S. Doty, A. Giaquinto, Presenting Schur algebras, International Mathematics Research Notices, 36, 1907-1944 (2002).

[ES13a] M. Ehrig, C. Stroppel, Diagrams for perverse sheaves on isotropic Grassmannians and the supergroup SOSP(n|2n), arXiv:1306.4043.

[ES13b] M. Ehrig, C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, arXiv:1310.1972.

[FL13] Z. Fan, Y. Li, Two-parameter quantum algebras, canonical bases and categorifications, arXiv:1303.2429v2.

[FL14] Z. Fan, Y. Li, Geometry Shur duality of classical type, II, arXiv:1408.6740v1.

[Fu12] Q. Fu, BLM realization for U_{\h}(\hat{\mathfrak{gl}}_n), arXiv:1204.3142.

[GV93] V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type A_n, Internat. Math. Res. Notices 3 (1993), 67–85.

[G97] R. Green, Hyperoctahedral Schur algebras, J. Algebra 192, (1997) 418-438.

[GL92] I. Grojnowski, G. Lusztig, On bases of irreducible representations of quantum GL_n, in Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), 167-174, Contemp. Math., 139, Amer. Math. Soc., Providence, RI, 1992.

[KL79] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165-184.

[KhLa10] M. Khovanov, A. Lauda, A diagrammatic approach to categorification of quantum groups III, Quantum Topology, Vol 1, Issue 1, 2010, pp. 1-92.

[La10] A. Lauda, A categorification of quantum sl(2), Adv. in Math., Volume 225, Issue 6, 2010, 3327-3424.

[Le02] G. Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras (Cambridge), MSRI publications, vol. 43, Cambridge Univ. Press, 2002, pp. 117–166.

[Lu99] G. Lusztig, Introduction to Quantum groups, Modern Birkhäuser Classics, Reprint of the 1993 Edition, Birkhäuser, Boston, 2010.

[Lu00] G. Lusztig, Transfer maps for quantum affine sl_n, in Representations and quantizations (Shanghai, 1998), 341-356, China High. Educ. Press, Beijing, 2000.

[M10] K. McGerty, On the geometric realization of the inner product and canonical basis for quantum affine sl_n, Algebra Number Theory 6 (2012), no. 6, 1097-1131.

[P09] G. Pouchin, A geometric Schur-Weyl duality for quotients of affine Hecke algebras, J. Algebra 321 (2009), no. 1, 230-247.

[SV00] O. Schiffmann and E. Vasserot, Geometric construction of the global base of the quantum modified algebra of \hat{\mathfrak{gl}}_n, Transform. Groups 5 (2000), 351–360.

[W46] H. Weyl, The classical groups; their invariants and representations. Princeton Univ. Press, Princeton, 1946.

[W93] Z. Wan, Geometry of classical groups over finite fields. Studentlitteratur, 1993.
Acknowledgements: This work is supported by NSFC 11571119 and NSFC 11475178.

1. Department of Mathematics, South China University of Technology, Guangzhou, China 510641
 E-mail address: Zhengzj@scut.edu.cn

2. Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
 E-mail address: zlin@math.ksu.edu