Impact of Early-Life Exposures to Infections, Antibiotics, and Vaccines on Perinatal and Long-term Health and Disease

Steven L. Raymond1, Jaimar C. Rincon1, James L. Wynn2, Lyle L. Moldawer1 and Shawn D. Larson1*

1Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States, 2Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States

Essentially, all neonates are exposed to infections, antibiotics, or vaccines early in their lives. This is especially true for those neonates born underweight or premature. In contrast to septic adults and children who are at an increased risk for subsequent infections, exposure to infection during the neonatal period is not associated with an increased risk of subsequent infection and may be paradoxically associated with reductions in late-onset sepsis (LOS) in the most premature infants. Perinatal inflammation is also associated with a decreased incidence of asthma and atopy later in life. Conversely, septic neonates are at increased risk of impaired long-term neurodevelopment. While the positive effects of antibiotics in the setting of infection are irrefutable, prolonged administration of broad-spectrum, empiric antibiotics in neonates without documented infection is associated with increased risk of LOS, necrotizing enterocolitis, or death. Vaccines provide a unique opportunity to prevent infection-associated disease; unfortunately, vaccinations have been largely unsuccessful when administered in the first month of life with the exception of vaccines against hepatitis B and tuberculosis. Future vaccines will require the use of novel adjuvants to overcome this challenge. This review describes the influence of infections, antibiotics, and vaccines during the first days of life, as well as the influence on future health and disease. We will also discuss potential immunomodulating therapies, which may serve to train the preterm immune system and reduce subsequent infectious burden without subjecting neonates to the risks accompanied by virulent pathogens.

Keywords: innate immunity, inflammation, infectious disease, sepsis, vaccination, immune agonists

INTRODUCTION

Neonates, especially those born preterm (<37 weeks gestation), are prone to infections and sepsis given their diminished adaptive and innate immunity, decreased pro-inflammatory response, and attenuated antigen presentation and signaling (1). This unique immunological profile is possibly a result of the intrauterine fetal environment in which there is a need for immune tolerance to maternal antigens (2); however, this lack of a substantial immune response places the neonate at significant risk to microbes in the extrauterine environment. In the United States, early-onset sepsis (EOS; defined as sepsis occurring in the first 72 h of life) occurs at approximately 0.76–1 case per 1,000 live births with an increased incidence among very low birth weight (VLWB; <1,500 g) and preterm neonates (3–6). Due to concerns for infectious complications among preterm neonates, empiric antibiotics are
almost universally administered shortly after birth (7). Meanwhile, healthy term neonates are administered hepatitis B vaccination in the first month of life, generally during the birth hospitalization or first clinic visit. How the presence of infections as well as the use of antibiotics and vaccines in the early neonatal period influences future health and disease remains an extremely complex and expanding topic. Herein, we review the impact of early life immune system exposures and discuss the use of immunomodulatory therapies to positively augment host protective immunity.

EARLY-LIFE EXPOSURES

Infections

Early-onset sepsis is generally acquired via maternal ascending vaginal infection (8) (Table 1). Untreated genital tract colonization with group B streptococcus (GBS), prolonged rupture of membranes, and chorioamnionitis are known risk factors for the development of EOS (9–12). Importantly, two large, retrospective studies of very low birth weight (VLBW) neonates failed to identify an association between the development of EOS and the risk for subsequent or late-onset sepsis (LOS; defined as sepsis occurring after 72 h of life) (13, 14). Interestingly, neonates who were born at <25 weeks gestation and survived EOS showed a significant reduction in risk of LOS or death by 120 days (14). Extremely preterm neonates that are able to survive EOS may simply have a more robust immune response and thus, have a bias to equally fair well with subsequent infections. An alternative explanation offered by the authors is that the early immune stimulus may transform the preterm neonatal immune system from a relative state of tolerance to a level of competence that is better suited to defend against pathogens in the extrauterine environment (14).

Chorioamnionitis likewise has been shown to be associated with reductions in respiratory distress syndrome, chronic lung disease, and mortality in preterm neonates (16–19) (Figure 1). The mechanism by which chorioamnionitis decreases the incidence of pulmonary disease in preterm neonates is likely via increased levels of interleukin (IL)-1 and IL-6, which stimulate pulmonary surfactant production and promote fetal lung maturation (20–23). Meanwhile, the observed difference in mortality among neonates born to mothers with chorioamnionitis may be explained in part by the fact that these neonates develop significantly fewer cases of LOS, which has been associated with prolonged hospital stays and death (15, 24).

The presence of early exposure to inflammation, bacteria, and infections may have lasting beneficial effects. Sepsis among preterm neonates appears protective to the development of childhood asthma (25). Birth cohort studies investigating the impact of endotoxin [bacterial lipopolysaccharide (LPS)] exposure during infancy on the risk of later wheezing, atopy, and asthma have had largely mixed results (26–32). More recently, Lynch et al. demonstrated that children who had reduced bacterial exposure in the first year of life were more likely to develop atopy at age 3 years (33). In the September 2015 issue of Science, Schuijs et al. published their results utilizing a murine model of asthma to investigate the impact of chronic exposure to low-dose endotoxin and concluded that endotoxin protects mice from asthma development by increasing the synthesis of the enzyme A20 (a nuclear factor-κB attenuator) in airway epithelial cells (34).

Early exposure to inflammation and infection is not without harmful and devastating effects. VLBW neonates with EOS are about threefold more likely to die than those without EOS with an overall mortality of 35–37% by 120 days (3, 35). Moreover, a meta-analysis of 17 studies demonstrated that sepsis was associated with poor long-term neurodevelopment among VLBW neonates including cerebral palsy (36). Likewise, chorioamnionitis appears to be associated with cystic periventricular leukomalacia in preterm neonates, encephalopathy in term neonates, and cerebral palsy in both preterm and term neonates (37–41). Injury to the preterm brain is believed to result from a multi-hit mechanism in which the neonate is first exposed to inflammation and cytokine release in utero, leading to increased susceptibility to subsequent perinatal and postnatal insults (42). This model is supported by the work of Korzeniewski et al. who demonstrated the cumulative contributions of chronic placental inflammation,

TABLE 1	Early-onset sepsis (EOS) and late-onset sepsis (LOS) characteristics.	
EOS	**LOS**	
Age	<72 h	>72 h
Source	Maternal genital tract	Nosocomial
Pathogen	*Escherichia coli*	Coagulase-negative staphylococcus
Risk factors	Maternal infections, prolonged rupture of membranes, chorioamnionitis	Prolonged mechanical ventilation and intravascular access
Incidence	1.7% among VLBW neonates	21% among VLBW neonates

GBS, group B streptococcus; ROM, rupture of membranes; VLBW, very low birth weight.

Incidence for EOS and LOS adapted from Ref. (3, 15), respectively.

FIGURE 1 Impact of early-life exposures.
acute fetal inflammation, and postnatal inflammatory events on neonatal white matter injury (43). Microglial activation has a central role in this process via excitotoxic, inflammatory, and free radical injury to the developing central nervous system (44). The aforementioned hypothesis has been further validated in rat models of the generation of neuroinflammation in which rat pups subjected to both endotoxin and hypoxic ischemia demonstrated white water injury but sham and endotoxin alone groups did not (45). The group that received both endotoxin and hypoxic ischemia notably had an increase in activated microglia and tumor necrosis factor (TNF)-alpha expression compared to the other groups. The investigation of potential therapies to treat these prenatal insults by targeting activated microglia and astrocytes is ongoing and includes the administration of dendrimer-based N-acetyll-cysteine treatment in the postnatal period, which has been shown to suppress neuroinflammation and improve motor function in newborn rabbits with cerebral palsy (46).

Antibiotics

The first exposure to antibiotics often occurs prior to birth in the form of intrapartum antibiotic prophylaxis against GBS, treatment of suspected chorioamnionitis, or antibiotic prophylaxis for women undergoing elective or emergency Cesarean sections. The use of intrapartum antibiotics is steadily increasing; for example, Van Dyke et al. demonstrated that the percentage of pregnant women receiving intrapartum increased from 26.8% in 1998–1999 to 31.7% in 2003–2004 (47). In an era of widespread prophylactic treatment of GBS for colonized pregnant women, the incidence of invasive early-onset GBS disease has decreased by more than 80%; however, the incidence of late-onset invasive GBS disease has remained unchanged (48). The use of maternal antibiotic prophylaxis is not without risks including the emergence of antimicrobial resistance invasive GBS and other neonatal pathogens. Between 1996 and 2003, clindamycin and erythromycin resistance has significantly increased in invasive GBS isolates (49). The incidence of early-onset *Escherichia coli* sepsis has also significantly increased in VLBW neonates with 64–85% of recent cases having resistance to ampicillin (35, 50). Not unexpectedly, neonates with ampicillin-resistant *E. coli* infections were more likely to be born from mothers who received intrapartum ampicillin (35, 50–52). Moreover, a multicenter case–control study during 1995–1996 demonstrated that cases of resistance *E. coli* infection were more often preterm (91 vs 20%, *p < 0.001*) and had significantly greater mortality (40.9 vs 0%, *p = 0.017*), compared to cases of susceptible *E. coli* infections (51).

Among underweight and preterm neonates, the use of empiric antibiotics has essentially become standard of practice with antibiotics being the most prescribed medications in the neonatal intensive care unit (53). This phenomenon is largely due to the difficulty of accurately diagnosing neonatal sepsis in symptomatic neonates with developmental immaturity. A retrospective cohort analysis of 5,693 extremely low birth weight (ELBW; < 1,000 g) neonates demonstrated that 98% of neonates received antibiotic treatment in the first three postnatal days, while < 2% of neonates had positive blood cultures and clinical symptoms of EOS (7). The majority of neonates in the cohort received > 5 days of empiric antibiotics despite having negative cultures; each additional day of empiric treatment was associated with a 4% increase in the odds of necrotizing enterocolitis (NEC) and a 16% increase in the odds of death (7). Similarly, Kuppala et al. demonstrated prolonged administration of empirical antibiotics was associated with increased LOS and the composite outcome of LOS, NEC, or death (54). These short-term deleterious outcomes, as well as an increased incidence of invasive candidiasis, may be the result of intestinal microbiome modification, including decreased microbial diversity, which is associated with broad-spectrum antibiotic use in ELBW and preterm neonates (55–57). The disruption of the microbiome may lead to long-term health consequences including decreased absorption of nutrients and vitamin production, as well as increased risk of infections, asthma, diabetes, and obesity. Further discussion on the effect of antibiotics on the microbiome and the role of dysbiosis in pediatric disease is beyond the scope of this mini review, but the interested reader is directed to a number of outstanding recent reviews (58–60).

Vaccines

Vaccines provide a unique opportunity to prevent infection-associated disease. Hepatitis B vaccine is the only vaccine currently recommended in the first month of life by the United States Department of Health and Human Services, Centers for Disease Control and Prevention and is often administered during the birth hospitalization for healthy, term neonates (61, 62). Essentiality, all infants administrated hepatitis B vaccine respond with hepatitis B surface antigen-specific humoral and cell-mediated immunity following completion of the primary vaccine series (63). Although antibody titers decrease over time, immunological memory persists with vaccinated responders mounting a rapid anti-hepatitis B surface antibody response to a vaccine challenge (63). This immunological memory has had a dramatic impact on reducing hepatitis B infection and disease worldwide. After the implementation of universal hepatitis B vaccination program in Taiwan, the seroprevalence rate of hepatitis B surface antigen in children decreased from 10 to 0.7% (64). Likewise, universal vaccination significantly reduced the incidence of pediatric fulminant hepatitis and hepatocellular carcinoma (64). In addition to its clear beneficial effects, early vaccination for hepatitis B remains remarkably safe. Over one billion doses of hepatitis B vaccine have been administered worldwide with few true adverse reactions, and no evidence of an association with sudden infant death syndrome, multiple sclerosis, or chronic fatigue syndrome (65).

Contrasting with the success of the hepatitis B vaccine, the use of other vaccines early in life has been more challenging and frequently less successful. The administration of vaccines against influenza, measles, and mumps during infancy has been unsuccessful given the poor generation of host antibodies (66, 67). Likewise, infants demonstrate decreased cell proliferation and IFN-γ production in response to the polio vaccine, compared to adults (68). This relative resistance to the development of life-long adaptive immunity early in life has impeded the use of many current vaccines in neonates. Generally, this has been attributed to the absence of a strong type 1 T helper cell response to the antigen. The use of immune adjuvants appears to be one of the best methods to elicit a stronger immune response and overcome this limitation.
Currently, aluminum salts, oil-in-water emulsions (MF59, AS03, AF03), virosomes, and AS04 [monophosphoryl lipid A (MPLA) preparation with aluminum salt] are being used as adjuvants in vaccines approved for use in the United States and/or Europe (69).

IMPLICATIONS FOR FUTUERE THERAPIES

The first step in being able to combat invading pathogens relies on their proper recognition by host cellular populations. This occurs via complement in blood and pattern recognition receptors including toll-like receptors (TLRs), C-type lectin receptors, nucleotide-binding oligomerization domain (NOD)-like receptors, beta integrins, and others on cells responsible for immune surveillance (70). Specifically, TLRs are located on and within numerous cell populations, including immune, epithelial, and endothelial cell populations. TLRs continuously survey the environment to recognize microbial components and intracellular signals of infection and/or cellular damage. Activation leads to downstream signaling, transcriptional changes, and the eventual secretion of inflammatory cytokines, type I IFN, chemokines, and antimicrobial peptides, which together function to target, localize, and kill the invading pathogen (70). In neonatal murine models, CpG oligodeoxynucleotides (TLR 9 agonist) have shown promise in improving survival to *Listeria monocytogenes*, *Cryptosporidium parvum*, and neurotropic Tacaribe arenavirus infections (71–73). In addition, LPS (TLR 4 agonist) and resiquimod (TLR 7/8 agonist) were shown to augment innate immunity, reduce bacteremia, and improve survival to polymicrobial sepsis (74); nevertheless, LPS is highly toxic and thus not suitable for clinical use. In *ex vivo* human newborn cord blood studies, novel agonists VTX-294 (TLR 8 agonist) and Hybrid-2 (TLR 7/8 agonist) demonstrated a greater cytokine-inducing potency compared to resiquimod (75, 76). Moreover, VTX-294 acted in synergy with MPLA (TLR 4 agonist) to induce an even greater production of TNF and IL-1β (75). Finally, Dowling et al. recently demonstrated that the TLR 7/8 agonist 3M-052 synergistically enhances type 1 immunity from newborn leukocytes when combined with pneumococcal conjugate vaccine (PCV13) *in vitro* and accelerates neonatal serotype-specific antibody response and pneumococcal opsonophagocytic killing (77).

In addition to increasing the immune responsiveness to the targeted pathogen, the use of TLR agonists in vaccines may provide additional non-specific immune benefits. As a particular example, the bacillus Calmette–Guerin (BCG) vaccine against tuberculosis is the most commonly administered vaccine worldwide and possesses inherent TLR 2/4/8 activity (78). In under-resourced areas of the world, BCG vaccinations are frequently given to neonates on the day of birth due to the absence of consistent postnatal care. Neonatal BCG vaccination has been shown to induce an adult-like immune response characterized by a predominant production of IFN-γ by CD4+ T lymphocytes (79). Administration of BCG vaccine at birth in Guinea-Bissau led to a 41% reduction in all-cause mortality at 12 months among VLBW neonates (80). This reduction was attributed not to reduced tuberculosis but to fewer cases of neonatal sepsis and respiratory infections. It is likely that the success of this vaccine in early life is due to the induction of a strong immune response by the engagement of multiple TLRs simultaneously by products of the *Bacillus* (81). These findings require further investigation and may lead to the development of novel immune agonists that can augment the host immune response early in life with an associated reduction in the infectious burden in neonates. The human adult literature on the use of TLR agonists as modulators of the innate immune response and as therapeutic strategies for the management of sepsis is vast and beyond the scope of this mini review, but there are several recent outstanding reviews (82–84).

The basal expression of TLRs, accessory proteins, and adaptor proteins on neonatal mononuclear cells is similar to adults; nevertheless, the early gene activation secondary to ligation of these receptors appears to be reduced in neonates due to impaired MyD88 and p38 signaling (85, 86). Understanding TLR biology is important for developing new compounds and ligands, which can activate these receptors and their signaling pathways. Alternative approaches using activators of the inflammasome in combination with TLR agonists may be considered. Future TLR ligands must be able to induce a sufficient immune response while remaining safe in newborns. This balance has made the development of innate immune agonists a difficult task. Therapeutic use of immunotherapies with agonists, which result in the development of antimicrobial resistance, holds great promise to be used prophylactically in the most susceptible population (i.e., VLBW and preterm neonates), in combination with live attenuated organisms to foster development of long-lasting antigen-specific immunity. As mentioned previously, engagement of multiple TLRs at the same time brings greater proliferation and higher cytokine production; however, the clinical applications of TLRs agonists have been limited to local delivery to minimize immune response-related toxicity (87). New vaccine strategies taking advantage of the inclusion of TLR and NOD agonists are currently being investigated to activate dendritic cells, enhance antigen presentation, and improve the host protective immune response (88–93). These novel vaccines require further investigations particularly in the neonatal population to prevent and treat infectious diseases among our most vulnerable patients.

CONCLUSION

The impact of infections, antibiotics, and vaccines during the early neonatal period, and their influence on future health and disease remains an important and evolving area of research. A better understanding of the immediate and long-term effects of these exposures may lead to novel therapeutics with the ability to drastically reduce infectious complications and mortality in the neonatal period as well as promote longstanding health.

AUTHOR CONTRIBUTIONS

SR, JR, JW, LM, and SL drafted and revised the manuscript.

FUNDING

This work was supported by grants awarded by the National Institute of General Medical Sciences (K08 GM106143, R01 GM097531, and P50 GM111152).
REFERENCES

1. Raymond SL, Stortz JA, Mira JC, Larson SD, Wynn JL, Moldawer LL. Immunological defects in neonatal sepsis and potential therapeutic approaches. Front Pediatr (2017) 5:14. doi:10.3389/fped.2017.00014

2. Cuenca AG, Weston EJ, Moldawer LL, Levy O. Role of innate immunity in neonatal infection. J Perinatol (2013) 33(5):1006–15. doi:10.1016/j.jperi.2012.0541

3. Stoll BJ, Hansen NI, Higgins RD, Fanaroff AA, Duara S, Goldberg R, et al. Very low birth weight preterm infants with early onset neonatal sepsis: the predominance of gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002–2003. Pediatr Infect Dis J (2005) 24(7):635–9. doi:10.1097/01INF.0000168749.82105.64

4. Cohen-Wolkowiez M, Moran C, Benjamin DK, Cotten CM, Clark RH, et al. Very low birth weight neonates who survive early-onset sepsis. J Perinatol (2004) 24(6):327–32. doi:10.1016/j.jperi.2004.03.003

5. Koenig JM, Keenan WJ. Group B Streptococcus and early-onset sepsis in the United States, 2005–2008. Pediatr Infect Dis J (2011) 30(11):937–41. doi:10.1097/INF.0b013e318232bad2

6. Weston EJ, Pondo T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr Infect Dis J (2011) 30(11):937–41. doi:10.1097/INF.0b013e318232bad2

7. Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, et al. Very low birth weight preterm newborns who survive early-onset sepsis do not have an increased risk of developing late-onset sepsis. Early Hum Dev (2012) 88(11):905–9. doi:10.1016/j.earlhumdev.2012.07.008

8. Weston EJ, Pondo T, Lewis MM, Martell-Cleary P, Morin C, Jewell B, et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr Infect Dis J (2011) 30(11):937–41. doi:10.1097/INF.0b013e318232bad2

9. Korbage de Araujo MC, Schultz R, do Rosario Dias de Oliveira L, Ramos JL, Vaz FA. A risk factor for early-onset infection in premature newborns: involvement of chorioamnionitic tissues by leukocytes. Early Hum Dev (1999) 58(1):1–15. doi:10.1016/S0378-3782(99)00027-4

10. Koenig JM, Keenan WJ. Group B Streptococcus and early-onset sepsis in the era of maternal prophylaxis. Pediatr Clin North Am (2013) 60(2):367–89. doi:10.1016/j.pcl.2012.12.003

11. Botet F, Figueras J, Carbonell-Estrany X, Arca G; The Castrillo Study Group. Effect of maternal clinical chorioamnionitis on neonatal morbidity in very-low birthweight infants. Arch Dis Child Fetal Neonatal Ed (2009) 94(1):F13–6. doi:10.1136/adc.2007.135889

12. Lahra MM, Beeby PJ, Jeffery HE. Fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol (2004) 190(1):94–5. doi:10.1016/j.ajog.2003.07.012

13. Dempsey E, Chen MF, Kokotissa T, Vallerand D, Usher R. Outcome of neonates less than 30 weeks gestation with histologic chorioamnionitis. Am J Perinatol (2005) 22(3):155–9. doi:10.1055/s-2005-865020

14. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics (2009) 123(5):1314–9. doi:10.1542/peds.2008-0656

15. Lahra MM, Beeby PJ, Jeffery HE. Maternal versus fetal inflammation and respiratory distress syndrome in a 10-year hospital cohort study. Arch Dis Child Fetal Neonatal Ed (2009) 94(1):F13–6. doi:10.1136/adc.2007.135889

16. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics (2009) 123(5):1314–9. doi:10.1542/peds.2008-0656

17. Lahra MM, Beeby PJ, Jeffery HE. Maternal versus fetal inflammation and respiratory distress syndrome: a 10-year hospital cohort study. Arch Dis Child Fetal Neonatal Ed (2009) 94(1):F13–6. doi:10.1136/adc.2007.135889

18. Lahra MM, Beeby PJ, Jeffery HE. Intrauterine inflammation, neonatal sepsis, and chronic lung disease: a 13-year hospital cohort study. Pediatrics (2009) 123(5):1314–9. doi:10.1542/peds.2008-0656
59. Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol (2015) 6:1543. doi:10.3389/fmicb.2015.01543.

60. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med (2016) 8(1):39. doi:10.1186/s13073-016-0294-z.

61. CDC. Vaccine Information Statement Hepatitis B Vaccine. U.S. Department of Health and Human Services Centers for Disease Control and Prevention (2016). Available from: https://www.cdc.gov/vaccines/hcp/vis/vis-statements/hep-b.pdf.

62. CDC. 2017 Recommended Immunization for Children from Birth through 6 Years Old. U.S. Department of Health and Human Services Center for Disease Control and Prevention (2017). Available from: https://www.cdc.gov/vaccines/policies/vis-statements/vis-statements.html.

63. Fitzsimmons D, Francois G, Hall A, McMahon B, Meheus A, Zanetti A, et al. Long-term efficacy of hepatitis B vaccine, booster policy, and impact of hepatitis B virus mutants. Vaccine (2005) 23(32):4158–66. doi:10.1016/j.vaccine.2005.03.017.

64. Chang MH. Impact of hepatitis B vaccination on hepatitis B disease and nucleic acid testing in high-prevalence populations. J Clin Virol (2006) 36(Suppl 1):S45–50. doi:10.1016/S1386-6532(06)80008-9.

65. Zuckerman AJ. Safety of hepatitis B vaccines. Travel Med Infect Dis (2004) 2(2):81–4. doi:10.1016/j.tmaid.2004.03.009.

66. Gans H, DeHovitz R, Forghani B, Beskow L, Maldonado Y, Arvin AM. Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine (2003) 21(24):3398–405. doi:10.1016/S0264-410X(03)00341-4.

67. Halasa NB, Gerber MA, Chen Q, Wright PF, Edwards KM. Safety and immunogenicity of trivalent inactivated influenza vaccine in infants. J Infect Dis (2008) 197(10):1448–54. doi:10.1086/597643.

68. Vekemans J, Ota MO, Wang EC, Siddiqui LW, Whittle H, et al. T cell responses to vaccines in infants: defective IFNγ production after oral polio vaccination. Clin Exp Immunol (2002) 127(3):495–8. doi:10.1046/j.1365-2249.2002.02178.x.

69. Reed SG, Orr MT, Fox CR. Key roles of adjuvants in modern vaccines. Nat Med (2013) 19(2):1597–608. doi:10.1038/nm.3409.

70. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, et al. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta (2017). doi:10.1016/j.bbadis.2017.01.013.

71. Ito S, Ishii KJ, Gursel M, Shiratori H, Iliata A, Kliman DM. CpG oligodeoxynucleotides enhance neonatal resistance to Listeria infection. J Immunol (2005) 174(2):772–8. doi:10.4049/jimmunol.174.2.777.

72. Barrier M, Lacroy-Lamande S, Mancassola R, Auray G, Bernardet N, Chasse AM, et al. Oral and intraperitoneal administration of phosphorothioate oligodeoxynucleotides leads to control of Cryptosporidium parvum infection in neonatal mice. J Infect Dis (2006) 193(10):1400–7. doi:10.1086/503748.

73. Pedras-Vasconcelos JA, Goucher D, Puig M, Tonelli LH, Wang V, Is O, et al. CpG oligodeoxynucleotides protect newborn mice from a lethal challenge with the neurotropic Tacaribe arenavirus. J Immunol (2006) 176(8):4940–9. doi:10.4049/jimmunol.176.8.4940.

74. Wynn JL, Scumpta PO, Winfield RD, Delano MJ, Kelly-Summa K, Barker T, et al. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood (2008) 112(5):1750–8. doi:10.1182/blood-2008-01-130508.

75. Dowling DJ, Tan Z, Prokopowicz ZM, Palmer CD, Matthews MA, Dietsch GN, et al. The ultra-potent and selective TLR8 agonist VTX-294 activates human newborn and adult leukocytes. PLoS One (2013) 8(3):e58164. doi:10.1371/journal.pone.0058164.

76. Ganapathi L, Van Haren S, Dowling DJ, Bergelson I, Shukla NM, Malladi SS, et al. The imidazoquinoline toll-like receptor-7/8 agonist hybrid-2 potently induces cytokine production by human newborn and adult leukocytes. PLoS One (2015) 10(8):e0134640. doi:10.1371/journal.pone.0134640.

77. Dowling DJ, van Haren SD, Scheid A, Bergelson I, Kim D, Mancuso CJ, et al. TLR7/8 agonist overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth. JCI Insight (2017) 2(6):e91020. doi:10.1172/jci.insight.91020.

78. Sanchez-Schmitz G, Levy O. Development of newborn and infant vaccines. Sci Transl Med (2011) 3(90):9027. doi:10.1126/scitranslmed.3001880.
Vekemans J, Amedei A, Ota MO, D’Elios MM, Goetghebuer T, Ismaili J, et al. Neonatal bacillus Calmette-Guerin vaccination induces adult-like IFN-gamma production by CD4+ T lymphocytes. *Eur J Immunol* (2001) 31(5):1531–5. doi:10.1002/1521-4141(200105)31:5<1531::AID-IMMU1531>3.0.CO;2-1

Aaby P, Roth A, Ravh N, Napirna BM, Rodrigues A, Lisse IM, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? *J Infect Dis* (2011) 204(2):245–52. doi:10.1093/infdis/jir240

Talat Iqbal N, Hussain R. Non-specific immunity of BCG vaccine: a perspective of BCG immunotherapy. *Trials Vaccinol* (2014) 3:143–9. doi:10.1016/j.trivac.2014.08.002

Hennessy EJ, Parker AE, O’Neill LA. Targeting toll-like receptors: emerging therapeutics? *Nat Rev Drug Discov* (2010) 9(4):293–307. doi:10.1038/nrd3203

Savva A, Roger T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. *Front Immunol* (2013) 4:387. doi:10.3389/fimmu.2013.00387

Mifsud EJ, Tan AC, Jackson DC. TLR agonists as modulators of the innate immune response and their potential as agents against infectious disease. *Front Immunol* (2014) 5:79. doi:10.3389/fimmu.2014.00079

Yan SR, Qing G, Byers DM, Stadnyk AW, Al-Hertani W, Bortolussi R. Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. *Infect Immun* (2004) 72(3):1223–9. doi:10.1128/IAI.72.3.1223-1229.2004

Al-Hertani W, Yan SR, Byers DM, Bortolussi R. Human newborn polymorphonuclear neutrophils exhibit decreased levels of MyD88 and attenuated p38 phosphorylation in response to lipopolysaccharide. *Clin Invest Med* (2007) 30(2):E44–53. doi:10.25011/cim.v30i2.979

Wu TY. Strategies for designing synthetic immune agonists. *Immunology* (2016) 148(4):315–25. doi:10.1111/imm.12622

Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreux D, Caroff M, et al. Synergistic stimulation of human monocytes and dendritic cells by toll-like receptor 4 and NOD1- and NOD2-activating agonists. *Eur J Immunol* (2005) 35(8):2459–70. doi:10.1002/eji.200526286

Khan S, Bijker MS, Weterings JJ, Tanke HJ, Adema GJ, van Hall T, et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. *J Biol Chem* (2007) 282(29):21145–59. doi:10.1074/jbc.M701705200

Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. *Vaccine* (2008) 26(13):1626–37. doi:10.1016/j.vaccine.2008.01.030

Conflicts of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Raymond, Rincon, Wynn, Moldawer and Larson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.