I. INTRODUCTION

An exploration of the properties of hot and dense matter - created in heavy-ion collisions (HICs) at relativistic energies - is in the focus of extensive research. It is the primary goal of experimental programs of the LHC (Large-Hadron-Collider) at CERN, the RHIC (Relativistic Heavy Ion Collider) at BNL, the future FAIR (Facility for Antiproton and Ion Research) at GSI, and the NICA (Nuclotron-based Ion Collider Facility) at JINR, which reproduce in the laboratory the extreme conditions of the early stages of our universe by 'tiny bangs'. In the central region of heavy-ion collisions the deconfined QCD (Quantum Chromo Dynamics) matter - a quark-gluon plasma (QGP) - is created which can achieve an approximate local equilibrium and exhibit hydrodynamic flow [1,2]. The hydrodynamic behaviour of the fluid can be characterized by transport coefficients such as shear η, bulk ζ viscosities, and diffusion coefficients κ, which describe the fluid’s dissipative corrections at leading order. The interpretation of the experimental data, and especially the elliptic flow v_2, in terms of the hydrodynamic models showed that the QGP behaves almost as a nearly perfect fluid with a very low shear viscosity to entropy density (s) ratio, η/s, which reflects that its properties correspond to nonperturbative, strongly interacting matter [3,4].

By performing an experimental energy scan of HICs one can explore the different stages of the QCD phase diagram. At ultra-relativistic heavy-ion collisions at LHC and RHIC energies, the QGP is created at very large temperatures T and almost zero or low baryon chemical potential μ_B, where according to lattice QCD (lQCD) results [7,8] the transition from the QGP to the hadronic matter is a crossover. By reducing the collision energy one can also explore the large μ_B region where one might expect the existence of a critical point and a 1st order phase transition. Such conditions are presently under investigation within the RHIC BES (Beam Energy Scan) experiments and in future by the FAIR and NICA facilities.

The theoretical description of the QCD matter at finite μ_B, and especially in the vicinity of the critical point, requires an appropriate description of transport of conserved charges - baryon B, strangeness S and electric Q charges. In order to study the phenomenon of baryon-stopping, the baryon diffusion was recently introduced to various fluid dynamic models [9,11]. Moreover, the baryon diffusion coefficient has been studied in Refs. [12-17].

In the recent past we have addressed the coupling of the conserved baryon number, strangeness and electric charge; the diffusion coefficient matrix ($\kappa_{qq'}$, where $q,q' = B,S,Q$) was introduced and evaluated for a hadron gas and a simple model for quark-gluon plasma (QGP) [14,16]. These investigations were followed by a more extended study in the hadronic phase from kinetic theory in the case of the electric cross-conductivities [18]. Furthermore, a first study on the impact of the coupling of baryon number and strangeness was provided in Ref. [16]. For this the diffusion coefficient matrix of hot and dense nuclear matter has to be investigated thoroughly being important for more accurate hydrodynamic simulations.
It was further motivated that the off-diagonal coefficients may have implications on the chemical-composition of the hadronic phase [13].

The study of the transport of conserved electric charge Q during heavy-ion collisions has been in the focus of intensive research. Due to its importance for the description of soft photon spectra and rates [19–22], as well as for hydrodynamic approaches modeling the generation and evolution of electromagnetic fields [23–26], much attention was paid to the electric conductivity within different theoretical approaches for the evaluation of the properties of the partonic and hadronic matter [13, 14, 16–18, 27–42].

The exploration of the QGP properties at finite (T, μ_B) are of special interest for an understanding of the phase transition. The transport properties of the strongly interacting QGP have been studied using the Dynamical Quasi-Particle Model (DQPM) [43–47] that is matched to the available results from other approaches. Moreover, the DQPM allows to explore the properties of the QGP at finite (T, μ_B), expressed in terms of transport coefficients such as shear η, bulk ζ viscosities, baryon diffusion coefficients κ_B and electric conductivity σ_0 based on the RTA (relaxation time approximation) [17, 37, 39].

We note that an important advantage of a propagator-based approach is that one can formulate a consistent thermodynamics [50] and a causal theory for non-equilibrium dynamics on the basis of Kadanoff–Baym equations [51]. This allows to use the DQPM for the description of the partonic interactions and parton properties in the microscopic Parton–Hadron–String Dynamics (PHSD) transport approach [46–52] and to study the QGP properties out-of-equilibrium as created in HICs as well as in equilibrium by performing box calculations with periodic boundary conditions [53]. Moreover, the (T, μ_B) dependence of partonic properties and interaction cross sections have been explored in a more recent study within PHSD 5.0 [17,49,52,55].

We note that the studies of transport coefficients $(\eta/s, \zeta/s, \kappa_B, \sigma_0)$ within the DQPM (and PHSD) has been based on the relaxation-time approximation (RTA) as incorporated in Refs. [53, 62] as well as on the Kubo formalism [63, 66] for η/s (cf. [49, 50]). In Refs. [14, 16, 39] the evaluation of the diffusion coefficient matrix has been done within the Chapman-Enskog method [67] which allows to explore non-equilibrium corrections for the phase-space distribution function in leading order of the Knudsen numbers.

In the present study we combine the developments of Refs. [14, 16, 17] and evaluate the diffusion coefficient matrix of the strongly interacting non-perturbative QGP at finite (T, μ_B), with properties described by the DQPM model, based on recently explored the Chapman-Enskog method [13, 16, 39]. This allows us to explore the influence of traces of non-equilibrium effects by accounting for the higher modes of the distribution function on the transport properties and compare the results with the often used kinetic RTA approximation. We provide the (T, μ_B) dependence of the diffusion coefficients $\kappa_{qq'}$ for $q, q' = B, S, Q$ charges for baryon chemical potentials $\mu_B \lesssim 0.5$ GeV, where the phase transition is a rapid crossover.

This paper is structured as follows. In Section II we provide a short review of the basic definitions and conventions, followed by a reminder of the basic ideas of the Chapman-Enskog method and its relaxation time approximation, which was used to evaluate the diffusion coefficient matrix in Refs. [14, 16, 39], and a short review of the dynamical quasi-particle model (DQPM) [14, 16–45, 53] in Section II C. In the preface of Section III we explain how to achieve results for the diffusion matrix from the DQPM by using the Chapman-Enskog method, and we demonstrate the differences between various assumptions in Section III A by providing an simple example. Finally, we provide and discuss improved results for all diffusion coefficients and conductivities and compare them to the available results from other approaches.

II. FOUNDATIONS

Let $x \equiv x^\mu$ be the four-coordinate and $k \equiv k^\mu$ the four-momentum. The single-particle distribution function, $f_{i,k} \equiv f_{i}(x,k)$, of a multi-component quasi-particle system obeys the effective Boltzmann equation [65]

$$k^\mu \partial_\mu f_{i,k} + \frac{1}{2} \partial_\mu \left(m_i^2 \right) \frac{\partial}{\partial k_i} f_{i,k} = \sum_{j=1}^{N_{species}} C_{ij}(x,k),$$

where C_{ij} is the collision term and the masses depend on temperature and chemical potentials, i.e. $m_i \equiv m_i(T, \mu_B, \mu_Q, \mu_S)$. The (local) equilibrium state of the system is described by

$$f_{i,k}^{(0)} = \frac{g_i}{\exp (u_i k^\mu / T - \mu_i / T) - a_i},$$

where $\mu_i = B_i \mu_B + Q_i \mu_Q + S_i \mu_S$ is the chemical potential, g_i is the degeneracy of the i-th species and

$$a_i \equiv \begin{cases} +1 & \text{(Bosons)}, \\ -1 & \text{(Fermions)}, \\ 0 & \text{(Classical)}. \end{cases}$$

Further, we define in short hand notation:

$$f_{i,k}^{(0)} \equiv 1 + a_i \frac{f_{i,k}^{(0)}}{g_i} = 1 + \frac{a_i}{\exp (u_i k^\mu / T - \mu_i / T) - a_i}.$$
Furthermore, the isotropic local equilibrium pressure is determined by the temperature and chemical potentials, \(P_0 \equiv P_0(T, \mu_B, \mu_Q, \mu_S)\). In this work, we adapt the isotropic pressure from lattice QCD [69]. From the equation of state the energy density and the net charge densities are defined:

\[
e \equiv e(T, \mu_B, \mu_Q, \mu_S), \quad n_q \equiv n_q(T, \mu_B, \mu_Q, \mu_S), \quad q \in \{ B, Q, S \}.
\] (5)

In kinetic theory the net charge densities are defined as:

\[
n_q = \sum_{i=1}^{N_{\text{species}}} q_i \int dK_i E_{i,k} f_i^{(0)}, \quad q \in \{ B, Q, S \}
\] (6)

where \(q\) is the type of the conserved quantum number, i.e. namely baryon number \(B\), strangeness \(S\) or electric charge \(Q\), and \(q_i\) is the quantum number (of type \(q\)) of the \(i\)-th species. In this work we assume a partonic system with three flavors and thus the following particle species: up- (\(u\)), down- (\(d\)), strange-quark (\(s\)), the gluon (\(g\)), and the corresponding anti-particles. Furthermore, the Landau matching conditions were assumed [71]:

\[
\sum_{i=1}^{N_{\text{species}}} q_i \int dK_i E_{i,k} \left(f_{i,k} - f_i^{(0)} \right) = 0,
\] (7)

using the notation

\[
dK_i \equiv \frac{d^3k_i}{(2\pi)^3} E_{i,k},
\] (8)

with the on-shell energy \(E_{i,k} = \sqrt{m_i^2 + k_i^2}\).

An (unpolarized) interaction is characterized by the invariant matrix-element \(\mathcal{M}_{i_1\ldots i_n \rightarrow j_1\ldots j_m} \equiv \mathcal{M}(k_{i_1}\ldots k_{i_n} \rightarrow p_{j_1}\ldots p_{j_m})\), which is averaged over the ingoing spin-states and is summed over the outgoing spin-states. The differential cross section for a binary interaction is given by:

\[
\sigma_{ij \rightarrow ab}(\sqrt{s}, \Omega) = \int \frac{p_{\text{out}}}{s_{\text{in}}} |\tilde{\mathcal{M}}|^2 d\Omega,
\] (9)

where \(s\) in the Mandelstam variable and \(d\Omega\) is the differential solid angle corresponding to one of the final particles. The momenta of the initial \((p_{\text{in}})\) and final particles \((p_{\text{out}})\) in the CM frame are found to be:

\[
p_i = \sqrt{(s - (m_i + m_j)^2)(s - (m_i - m_j)^2)} / 2\sqrt{s},
\] (10)

where \(i = \text{in/out}\), \(m_i\) and \(m_j\) being the masses of the colliding partons. The total cross section is obtained via:

\[
\sigma_{ij \rightarrow ab}(\sqrt{s}) \equiv 2\pi \gamma_{ij} \int d\cos(\vartheta) \frac{d}{d\Omega} \sigma_{ij \rightarrow ab}(\sqrt{s}, \cos(\vartheta)) = \frac{1}{32\pi s} \frac{p_{\text{out}}}{p_{\text{in}}} \gamma_{ij} \int_{-1}^{1} d\cos(\vartheta) |\tilde{\mathcal{M}}|^2,
\] (11)

where \(\vartheta\) is the final polar angle of one of the final particles in the CM frame, and \(\gamma_{ij} = 1 - \frac{1}{2} \delta_{ij}\) is the symmetry factor.

In this paper we use the short-hand \(\{\mu_q\}\) instead of \(\{\mu_B, \mu_Q, \mu_S\}\) in function arguments, and the \((+, +, +, -)\)-signature for the metric. Greek indices run from 0 to 3 and latin ones run from 1 to 3. Furthermore, we employ natural units, \(\hbar = c = k_B = 1\).

A. First-order Chapman-Enskog approximation

If the perturbations from equilibrium are small, one can expand the single-particle distribution function in orders of the Knudsen number (Kn):

\[
f_{i,k} = f_i^{(0)} + \epsilon f_i^{(1)} + \mathcal{O}(\epsilon^2),
\] (12)

where \(\epsilon\) is an assisting parameter for counting the orders of the gradients (or equivalently, the orders of the Knudsen number), which will be send to 1 afterwards. This approximation is known as the Chapman-Enskog expansion to first order (CE) [67]. Neglecting second-order terms leads to the linearized effective Boltzmann equation:

\[
k_i^0 \partial_{\mu} f_i^{(0)} + \frac{1}{2} \partial_{\mu} \left(m_i^2 \right) \frac{\partial}{\partial k_{i,\mu}} f_i^{(0)} = \sum_{j=1}^{N_{\text{species}}} C_{ij}^{(1)} f_j^{(1)},
\] (13)

with the linearized collision term

\[
\sum_{j=1}^{N_{\text{species}}} C_{ij}^{(1)} f_i^{(1)} = \frac{1}{2} \sum_{j,a,b=1}^{N_{\text{species}}} \int_{\mathbb{R}^3} dP_a \int_{\mathbb{R}^3} dP_b \int_{\mathbb{R}^3} dK_j^f \times W_{jj' \rightarrow pp'} f_{i,k} f_j^{(1)} f_{j',k'}^{(1)} f_{p,p'}^{(1)}
\] (14)

and

\[
W_{jj' \rightarrow pp'} = \frac{(2\pi)^4}{16} g^{(4)} (k_i + k_j - p_a - p_b) \left| \tilde{\mathcal{M}}_{ij \rightarrow ab} \right|^2
\] (15)

for the inelastic binary transition rate. To linear order the diffusion currents are given via:

\[
V_{i,\mu} = \sum_{j=1}^{N_{\text{species}}} q_i \int_{\mathbb{R}^3} dK_i \frac{\epsilon_{ij}}{k_i} f_{i,k}^{(1)},
\] (16)

and therefore the explicit mass-term in Eq. [13] does not affect the currents due to the anti-symmetry of the integrand [10]. Here \(q_i\) is again the quantum number of type \(q \in \{ B, S, Q \}\) of the \(i\)-th particle species.
For further evaluations with the CE method in this study we consider a classical system of on-shell particles, $\alpha_i = 0 \forall i$, and elastic binary collisions only, such that the on-shell transition rate for this case reads:

$$W_{kk'\rightarrow pp'}^{ij,ab} = \gamma_{ij} (\delta_{ia} \delta_{jb} + \delta_{ib} \delta_{ja}) (2\pi)^6 \frac{d}{d\Omega} \sigma_{ij\rightarrow ab}(\sqrt{s}, \Omega) \delta^{(4)} (k_i + k_j - p_a - p_b).$$

Additionally, we assume isotropic scattering processes. (The underlying assumptions will be discussed also in Section III.)

Later we will incorporate total cross sections for elastic binary processes originating from the dynamic quasi-particle model (DQPM) \[17\] which depend on temperature and baryon-chemical potential, $\sigma_{ij\rightarrow ab}^{tot} \equiv \sigma_{ij\rightarrow ab}^{tot}(\sqrt{s}, T, \mu_B)$ (Section II.C).

Following the steps taken in Refs. \[14\] [16] [39], we can express the diffusion coefficient matrix for a classical system under the assumption of elastic isotropic scattering processes as

$$\kappa_{qq} = \frac{1}{3} \sum_{m=0}^{N_{species}} \sum_{j=1}^{M_{species}} \frac{\lambda^{(i)}_{m,q}}{\lambda^{(j)}_{m,q}} \mu_{m,q}$$

where the scalars $\lambda^{(i)}_{m,q}$ are solutions of the linearized Boltzmann equation in the form \[14\] [16] [39]:

$$d K_i E_{\mu,k} (m_i^2 - E_{\mu,k}^2) f_i^{(0)}$$

with the abbreviations

$$A_{nm}^t \equiv \frac{N_{species}}{\ell = 1} \gamma_{ij} \int dK_i dP_i dP_{\ell} (2\pi)^6 \frac{d}{d\Omega} \sigma_{ij\rightarrow i\ell} \delta^{(4)} (k_i + k_{\ell} - p_i - p_{\ell})$$

$$C_{nm}^{ij} \equiv \gamma_{ij} \int dK_i dP_i dP_{\ell} (2\pi)^6 \frac{d}{d\Omega} \sigma_{ij\rightarrow ij} \delta^{(4)} (k_i + k_j - p_i - p_j)$$

$$b_{ij,n} \equiv \int dK_i E_{\mu,k} (m_i^2 - E_{\mu,k}^2) f_i^{(0)}$$

and where we further impose Landau’s definition of the frame \[71\], which leads to the additional constrains:

$$W^\mu = \sum_{i=1}^{N_{species}} \int dK_i E_{\mu,k} b_{i,n}^{(i)} f_i^{(i)} = 0 \Rightarrow$$

$$\sum_{i=1}^{N_{species}} \sum_{m=0}^{M_{species}} \lambda^{(i)}_{m,q} \int dK_i E_{\mu,k}^{i+1} (m_i^2 - E_{\mu,k}^2) f_i^{(0)} = 0.$$

The relaxation time τ_i is related to the scattering rate $\Gamma_i(k_i, T, \{\mu_q\})$. For binary scattering we may write down the momentum dependent on-shell relaxation time \[60\] [74] [75]:

$$\frac{1}{\tau_i(k_i, T, \{\mu_q\})} = \Gamma_i(k_i, T, \{\mu_q\}) =$$

$$\sum_{j=1}^{N_{species}} \frac{1}{2!} \sum_{a,b=1}^{N_{species}} \sum_{m=0}^{M_{species}} \int dK_j dP_a dP_b f_j^{(0)} f_a^{(0)} f_b^{(0)} W_{kk'\rightarrow pp'}^{ij,ab}.$$

From this we can also define the momentum-averaged relaxation time $\tau_{i,0}$ which may be used instead:

$$\frac{1}{\tau_{i,0}(T, \{\mu_q\})} = \Gamma_{i,0}(T, \{\mu_q\}) =$$

$$\frac{1}{N_{species}} \int dK_i E_{\mu,k} \Gamma_i(k_i, T, \{\mu_q\}) f_i^{(0)}$$

I B. Relaxation time approximation

Anderson and Witting proposed an approximation to the collision term by defining a governing relaxation time.
with the on-shell particle density of species i:

$$n_i(T, \{\mu_q\}) \equiv \int_{\mathbb{R}^3} dK_i E_{i,k} f_{i,k}^{(0)}.$$ \hfill (25)

This is also known as the relaxation time approximation (RTA) (cf. \[59\] [92]).

In the classical limit and for the case of elastic, binary processes with constant isotropic cross sections, $\sigma_{ij}^{\text{tot}} \equiv \sigma_{ij} = \text{const.}$, using Eq. (17) we can make the usual approximation (see e.g. \[16\]):

$$\frac{1}{\tau_{i,0}(T, \{\mu_q\})} = \Gamma_{i,0}(T, \{\mu_q\}) \approx \sigma_{ij} \sum_j n_j = \sigma_{\text{tot}} n_{\text{tot}}.$$ \hfill (26)

Following Ref. \[16\], the diffusion coefficient matrix in the RTA can be expressed as:

$$\kappa_{qq'} = \frac{1}{3} \sum_{i=1}^{N_{\text{species}}} q_i \int_{\mathbb{R}^3} dK_i \tau_{i,0}(T, \mu_B) \frac{1}{E_{i,k}} (m_i^2 - E_{i,k}^2) \times \left(\frac{E_{i,k} n_{qq'} }{\epsilon + F_0} - q_i' \right) f_{i,k,j}^{(0)} f_{i,k,j}^{(0)},$$ \hfill (27)

\section{C. Dynamical quasi-particle model for the quark-gluon plasma}

In the dynamical quasi-particle model (DQPM) \[17\] [43] [45] [53] the properties of the QGP are described in terms of strongly interacting dynamical quasi-particles - quarks and gluons - with medium-adjusted properties. Their properties are constructed such that the equation of state (EoS) from lattice Quantum Chromo Dynamics (lQCD) is reproduced above the deconfinement temperature T_c. These quasi-particles are characterized by broad spectral functions ρ_i ($i = q, \bar{q}, g$), which are assumed to have a Lorentzian form \[44\] [46]. They depend on the parton masses m_i and their associated widths γ_i,

$$\rho_i(\omega, \mathbf{p}) = \frac{\gamma_i}{E_{i,p}} \left(\frac{1}{(\omega - E_{i,p})^2 + \gamma_i^2} - \frac{1}{(\omega + E_{i,p})^2 + \gamma_i^2} \right).$$ \hfill (28)

Here, we introduced the off-shell energy $E_{i,p} = \sqrt{\mathbf{p}^2 + M_i^2 - \gamma_i^2}$. In the DQPM the effective (squared) coupling constant g^2 is assumed to depend on temperature T and baryon-chemical potential μ_B \[17\] [70] [78]. At $\mu_B = 0$ its temperature-dependence is parameterized via the entropy density $s(T, \mu_B = 0)$ from lattice QCD from Refs. \[63\] [70] in the following way:

$$g^2(T, \mu_B = 0) = d \left(s(T, 0)/s_{\text{SB}}^{\text{QCD}} \right)^e - 1 \right)^f,$$ \hfill (29)

with the Stefan-Boltzmann entropy density $s_{\text{SB}}^{\text{QCD}} = 19/9 \pi^2 T^3$ and the dimensionless parameters $d = 169.934$, $e = -0.178434$ and $f = 1.14631$. In order to obtain the coupling constant at finite baryon chemical potential μ_B, we use of the 'scaling hypothesis' which assumes that g^2 is a function of the ratio of the effective temperature $T^* = \sqrt{T^2 + \mu_B^2/(9\pi^2)}$ and the μ_B-dependent critical temperature $T_c(\mu_B)$ as \[79\]:

$$g^2(T/T_c, \mu_B = 0) = g^2 \left(\frac{T}{T_c(\mu_B)}, \mu_B = 0 \right),$$ \hfill (30)

with $T_c(\mu_B) = T_c(\mu_B = 0) = 1/10 - \alpha \mu_B^2$, $\alpha = 0.015$ GeV$^{-2}$ and $T_c(\mu_B = 0) \approx 0.115$ GeV. The $T(\mu_B)$ behaviour of the DQPM coupling $g^2/(4\pi)$ is shown in Fig. \[3\] in Appendix \[VA\]. At $\mu_B = 0$ one can see a good agreement between the lQCD evaluation of the QCD running coupling $\alpha_s = g^2/(4\pi)$ for $N_f = 2$ \[51\] and the DQPM running coupling.

With the coupling g^2 fixed from lQCD, one can now specify the dynamical quasi-particle mass (for gluons and quarks) which is assumed to be given by the HTL thermal mass in the asymptotic high-momentum regime by \[46\] [51]

$$m_q^2(T, \mu_B) = g^2(T, \mu_B) \left(\frac{N_c + N_f}{2} \right) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2},$$ \hfill (31)

where $N_c = 3$ the number of colors, while $N_f = 3$ denotes the number of flavors. The strange quark has a larger bare mass which needs to be considered in its dynamical mass. Empirically we find $m_q(T, \mu_B) = m_{u,d}(T, \mu_B) + \Delta m$ and $\Delta m = 30$ MeV. Furthermore, the quasi-particles in the DQPM have finite widths, which are adopted in the form \[21\] [79]

$$\gamma_i(T, \mu_B = 0) = \frac{1}{3} C_i g^2(T, \mu_B) T \ln \left(\frac{2c_m}{g^2(T, \mu_B)} + 1 \right),$$ \hfill (32)

where we use the QCD color factors for quarks, $C_q = C_F = N_c^2-1/2N_c^2 = 4/3$, and gluons, $C_g = C_A = N_c = 3$. Further, we fixed the parameter $c_m = 14.4$, which is related to the magnetic cut-off. We assume that the width of the strange quark is the same as that for the light (u, d) quarks. The evaluated masses and widths in the DQPM are shown in Fig. \[3\] in Appendix \[VA\].

With the quasi-particle properties (or propagators) fixed as described above, one can evaluate the entropy density $s(T, \mu_B)$, the pressure $p_0(T, \mu_B)$ and energy density $e(T, \mu_B)$ in a straightforward manner by starting with the entropy density s^{dip} and number density n^{dip} in the propagator representation from Baym \[52\] [83] and then identifying, $s = s^{\text{dip}}$ and $n_B = n^{\text{dip}}/3$ \[17\]. The isotropic pressure p_0 can then be obtained by using the
Maxwell relation of a grand canonical ensemble:

\[P_0(T, \mu_B) = P_0(T_0, 0) + \int_{T_0}^{T} s(T', 0) \, dT' + \int_0^{\mu_B} n_B(T, \mu') \, d\mu', \] (33)

where the lower bound is chosen between 0.1 < T_0 < 0.15 GeV. The energy density \(\epsilon \) then follows from the Euler relation

\[\epsilon = T s - P + \mu_B n_B. \] (34)

In Ref. [84] we found a good agreement between the entropy density \(s(T) \), pressure \(P_0(T) \), energy density \(\epsilon(T) \) and interaction measure \(I(T) = \epsilon - 3P \) resulting from the DQPM, and results from lQCD obtained by the BMW group [69, 70] at \(\mu_B = 0 \) and \(\mu_B = 400 \) MeV.

From the above parametrizations of the masses, widths and the couplings, cross sections for anisotropic, inelastic binary tree-level QCD interactions with the dressed propagators and dressed couplings, have been evaluated which depend on temperature and baryon-chemical potential [17, 49]. The corresponding total cross sections are shown in Fig. 9 in Appendix VA and are used of in the Chapman-Enskog evaluation described in Section IIIA. Further, we provide new results for the complete diffusion coefficient matrix from the DQPM in the RTA by using Eq. (27) and assuming relaxation times from Eq. (23). In the following the results from both approaches are presented.

III. RESULTS

We provide first results for the diffusion coefficient matrix for the hot quark-gluon plasma at zero and finite baryon chemical potential \(\mu_B \) by applying the Chapman-Enskog method, reviewed in Sec. IIIA and described in detail in Refs. [14, 15, 59], to a strongly interacting QGP system described by the DQPM (see Sec. II C and Ref. [17]). This is meant to be a significant and important improvement to the ‘simplified’ model of a partonic system proposed in Refs. [14, 15]. These results - obtained within the Chapman-Enskog method - are further compared to the results for the diffusion coefficient matrix calculated within RTA approach based on the DQPM as well as to various other models. The fact that the linearized Boltzmann equation is solved in the CE framework implies an improvement compared to approaches using the RTA (also see Ref. [15]) in terms of accounting for high moments of the distribution function. However, the proposed Chapman-Enskog method requires a few approximations for the QGP description, which are not in the spirit of the DQPM, in particular:

1. The system is assumed to obey classical (Maxwell-Boltzmann) statistics (i.e. \(a_i = 0 \) for all particle species in Eq. (2)).
2. All particles are on-shell, therefore only the pole-masses from the DQPM, which depend on temperature and baryon-chemical potential, are assumed but their widths are neglected (for general quasi-particle properties see Appendix VA, Table I and the Fig. 8).
3. Inelastic scattering channels are neglected. That implies that flavor-changing processes are not taken into consideration, i.e. \(q\bar{q} \rightarrow q'\bar{q}' \) are not allowed.
4. All scattering processes are considered to be isotropic. We therefore feed total cross-sections into the CE evaluation which are evaluated from the anisotropic differential cross section from the DQPM via Eq. (11). The dependence on \(\sqrt{s} \), temperature and baryon-chemical potential is taken into account, \(\sigma_{ij}^{q\bar{q}ij} = \sigma_{ij}^{q\bar{q}ij}(\sqrt{s}, T, \mu_B) \) (see Appendix VA, the Table I for an example at \(\mu_B = 0 \)).

We note that the CE method can in principle be improved such that approximations (1) and (3) become unnecessary. In Section IIIA we find indication that approximation (3) might have a non-neglectable impact. Such improvements are left for future work. However, the nature of the method makes further improvement of points (2) and (4) difficult and require further detailed study.

The explicit manifestations of the isotropic pressure, the energy density and the net charge densities in the CE evaluation are fed with the same lattice data to which the DQPM model was fitted (see Section II C) as far as they are available. Since the net strangeness and net electric densities are not available from the assumed lQCD results, we compute their values from kinetic theory (see Eq. (6)).

In the following the results from the RTA approach applied to the original DQPM are denoted as “DQPM RTA” while the results from the Chapman-Enskog method applied to the DQPM under assumptions (1)-(4) (as described above) is denoted as “CE (DQPM)”. We remind here that for constant cross sections the scaled diffusion coefficients behave as \(\kappa_{qq}/T^2 \sim 1/T^2 \), as found in Ref. [10]. Such a decreasing behavior is indeed found in Fig. 4.

A. Model study: constant isotropic cross sections

In order to evaluate the systematic differences between the DQPM RTA and the CE (DQPM) approaches we perform a here ‘model study’ by assuming a (total) geometric cross section of \(\sigma_{tot} = 10 \) mb for all interactions. For this comparison we consider the same assumptions as described in the preface above, but assume all channels to be characterized by the constant cross section.
In Fig. 1 we show results for the scaled baryon coefficient, κ_{BB}/T^2 (left) and the scaled electric conductivity, σ_{el}/T (right) at $\mu_B = 0$ in a temperature range from 160 MeV to 420 MeV. The DQPM RTA calculations are presented for two cases: firstly, where all binary channels, including the inelastic ones, are considered (blue dashed line), and for the case where only the elastic channels are accounted for (red dashed-double-dotted line). For the DQPM RTA results presented in this paper we use Eq. (27) (for a system obeying quantum statistics, i.e. $a_i = \pm 1$ in Eq. (2)). The CE (DQPM) calculations are presented in Fig. 1 also for two cases: in the first case we evaluate the coefficients in RTA with the help of Eq. (27) (for a system obeying classical statistics, i.e. $a_i = 0$ in Eq. (2)) under the assumption of the simplistic relaxation time, $\tau_0 = 1/n_{tot}\bar{\sigma}_T$ (orange solid line), and for the second case we consider the full linearized Boltzmann equation via Eq. (18) (green dashed-dotted line).

This 'model study' shows the influence of the consideration of the linearized Boltzmann equation compared to its relaxation time approximation, and the influence of the inelastic channels compared to its neglect. We find that the consideration of the full linearized collision term effectively reduces the scattering rate of a specific particle species, while in the RTA the scattering rate is overestimated. This is because in the collision term not only the scattering of particles from a specific momentum bin into all other disjoint momentum bins is considered, but also the rescattering into this particular momentum bin is accounted for (gain and loss term). As argued in Ref. 16 such an overestimation of the scattering rate leads to a decrease of the diffusion coefficients from RTA (which are anti-proportional to the rate).

Furthermore, we find that the inelastic channels lead to a further decrease of the diffusion coefficients due to the repeated effective increase of the scattering rate as shown in Fig. 1. Comparing the elastic version of the DQPM RTA evaluation with the CE (DQPM) calculation in the RTA limit (Eq. (27)), we find a good agreement of the results at high temperatures. This is expected since the only difference between both calculations – DQPM RTA and CE (DQPM) in the RTA limit – is the consideration of quantum corrections and the more sophisticated (momentum-dependent) relaxation time in DQPM RTA.

B. Diffusion coefficient matrix of the quark-gluon plasma

In the following we show results for the scaled diffusion coefficient matrix, $\kappa_{qq'}/T^2$, for the partonic phase from the DQPM (RTA) and CE (DQPM) evaluation under the considerations described in the preface of Section III. Additionally we consider two cases:

- We fix all chemical potentials to zero, $\mu_q = 0$ ($q = B, S, Q$), and show the temperature dependence of the coefficients.

- We fix the temperature to $T = 2T_c(\mu_B)$, and show their dependence on the baryon chemical potential.
μB. Here we further set the other chemical potentials to zero, μS = 0 and μQ = 0.

For most coefficients we find a rich μB-dependence. This dependence originates from the fact that all quarks carry baryon number and thus are sensitive to variations in μB. In Ref. [16] the temperature dependence of these transport coefficients was reviewed, and it was found that they roughly scale as κ_qq / T^2 ∼ 1/(σ_{tot} T^2). In the case of the DQPM at fixed chemical potential, the cross sections depend on temperature as σ_{tot} ∼ 1/T^3 or ∼ 1/T^4 (for the considered temperature range). This depends on the combinations of s−t−, u− channels for different parton-parton scatterings: for q−q, q−q̄ and q−g scatterings σ_{tot} ∼ 1/T^3, while for the g−g channel the terms 1/T^3, 1/T^4 have equivalent contribution to the total cross-section σ_{tot} ∼ c_3/T^3 + c_4/T^4, where c_3, c_4 depend on √s, μB (see e.g. Fig. 10 in Appendix [VA]). The temperature dependence of the cross-sections is in accordance with the temperature scaling of the DQPM coupling constant g^2(T, μB) (see e.g. Fig. 9 in Appendix [VA]). This leads to a roughly quadratic dependence in temperature, κ_qq / T^2 ∼ T^2, which is demonstrated in the figures below.

We remind that the diffusion coefficient matrix is symmetric and therefore we may only show six instead of nine coefficients [58, 59]. In the following we subdivide the presentation of the conductivities in three sections: electric conductivities (κQQ, κQS and κQB), strange conductivities (κSS and κSB), and finally the baryon conductivities (κBB). Since diffusion coefficients and conductivities are related to each other via temperature, κ_qq = σ_qq / T, we use their denomination interchangeably.

1. Electric conductivities

The electric conductivity, σ_el / T, was evaluated in various models (cf. Refs. [13, 14, 16, 18, 27, 32, 79]). In Fig. 2 we compare the results from DQPM RTA and CE (DQPM) to a variety of models for both, the partonic [13, 16, 18, 29, 30, 31, 33, 34] and hadronic phase [14, 16, 18, 29, 30, 31, 33, 34], at μ_q = 0 in a temperature range between 0 and 3Tc, where here the deconfinement temperature is Tc = 158 MeV. The Chapman-Enskog and RTA results for the dimensionless ratio of electric conductivity to temperature σ_el / T (later referred to as scaled electric conductivity) for μ_q = 0 are presented in Fig. 2 (left) as solid red and dashed black lines. Results for both
methods have a similar increase with temperature, which is mainly a consequence of the temperature dependence of the cross section (as discussed before) and also of the increasing total electric charge density [16].

We find that the results from DQPM RTA and CE (DQPM) are consistent with results from lattice QCD in the vicinity of the crossover region, $1 \leq T/T_c \leq 1.5$. We again point out the apparent quadratic dependence on temperature which was shortly motivated in the preface of this section above. Due to our discussion from Section III A we suppose that a realistic result for the conductivities may be between the evaluations from DQPM RTA and CE (DQPM).

As follows from Fig. 2 the hadronic models presented
Figure 5. Scaled strange and strange-baryon diffusion coefficients, κ_{SS}/T^2 (left) and κ_{SB}/T^2 (right), as a function of scaled temperature in the range from 0.5 to $3T_c$ at vanishing chemical potentials, $\mu_q = 0$. We compare results from CE (DQPM) (red solid line with circles), DQPM RTA (black dashed-line with cross-shaped points), the CE (HRG) [14, 16] (dark-red dashed line) and from conformal holography [13] (blue dotted line).

Figure 6. Scaled strange and strange-baryon diffusion coefficients, κ_{SS}/T^2 (left) and κ_{SB}/T^2 (right), from the DQPM RTA (black dashed line with cross-shaped points) and the CE (DQPM) evaluation at fixed scaled temperature, $T = 2T_c(\mu_B)$, shown over baryon chemical potential μ_B in range 0 to 0.5 GeV. Further, the other chemical potentials are fixed to zero, $\mu_Q = 0$ and $\mu_S = 0$.

there – the hadronic transport model SMASH [18, 42, 87] (grey short-dashed line with squared points), effective field theory (EFT) [29] (blue dashed-dotted line), and CE tuned to a hadron gas [CE (HRG)] from Refs. [14, 16, 39] (dark-red dashed line) – substantially overestimate the lQCD data in the vicinity of T_c as well as the results from the conformal [13] (blue dotted line) and non-conformal [30] (violet dashed-dotted line) holographic models. The DQPM RTA results are in a good agreement in the vicinity of phase transition with the previous estimations for DQPM from Ref. [79], where non-relativistic formula for estimation the electric conductivity was used, which results in the linear dependence of the σ_{el}/T on temperature while presented DQPM results show the quadratic
dependence on temperature.

Additionally to the electric conductivity, in Fig. 3 we show the cross-electric conductivities, \(\sigma_{BQ} \) and \(\sigma_{QS} \), from the CE (DQPM) and the DQPM RTA calculation together with results achieved within SMASH [18] and the CE (HRG) evaluation from Refs. [14, 16] for the same thermal considerations for the hadronic phase. Comparing the results in both phases, we find a significant disagreement for \(\sigma_{QB} \) around the crossover temperature. Further, we find such discrepancies to a smaller extent in the other electric conductivities and in the coefficients to follow. Such disagreement may hint to a difference in the chemical composition of the adjacent phases [18].

Furthermore, as advertized in the preface, in Figs. 2 (right) and 3 we present the sensitivity of the electric conductivities on \(\mu_B \) at fixed scaled temperature, \(T = 2T_c(\mu_B) \). Compared to the coefficients directly connected to the baryonic sector, we find a rather weak dependence on \(\mu_B \) (see discussion of \(\kappa_{BB} \) and \(\kappa_{SB} \)). Surprisingly also \(\sigma_{QB} \) has such a weak dependence even though it also belongs to the baryonic sector. Further, \(\sigma_{QB} \) is very small - it has the smallest magnitude of all conductivities in the diffusion matrix. One can discuss its plausibility with a symmetry argument: the \(\sigma_{QB} \) coefficient relates the generated electric current to the baryonic gradient which generates it (via the corresponding Navier-Stokes term). Assume a QGP with constant geometric cross section as discussed in Section IIIA. Further, assume that all quarks have the same mass. The down- and strange-quark have the same baryon number and electric charge, \(B = +1/3 \) and \(Q = -1/3e \), while the up-quark has \(B = +1/3 \) and \(Q = +2/3e \), i.e. the same baryon number but an electric charge which is twice the magnitude but has the opposite sign (refer to Table I). Due to the quarks carrying the same baryon number, a baryon gradient generates a baryon current \(V_B^{\mu} \) which is equally composed by a current of up-, down- and strange-quarks \((V_i^{\mu}) \): \(V_B^{\mu} = \sum_i B_i V_i^{\mu} \), with \(V_i^{\mu} = V_{quark}^{\mu} \). With this we can estimate the generated electric current:

\[
V_Q^{\mu} = \sum_i Q_i V_i^{\mu} = V_{quark}^{\mu} \left(-\frac{1}{3} - \frac{1}{3} + \frac{2}{3} \right) = 0. \tag{35}
\]

The same argument can be made additionally accounting for the anti-quarks. The non-equal mass of the quarks and the varying cross sections lead to a non-vanishing \(\sigma_{QB} \). However, the above estimate illustrate the small magnitude of the respected coefficient.

2. Strange conductivities

We continue with the results for the strange sector: \(\kappa_{SS} \) and \(\kappa_{SB} \). The coefficient \(\kappa_{SQ} \), or equivalently \(\sigma_{SO} = \sigma_{QS} \), was already discussed above as part of the electric sector. Fig. 5 shows the \(\kappa_{SS} \) and \(\kappa_{SB} \) as a function of temperature at vanishing chemical potentials. Further, we show their \(\mu_B \)-dependence in Fig. 6 in the range \(\mu_B = 0 \) to 0.5 GeV at fixed scaled temperature, \(T = 2T_c(\mu_B) \) and for vanishing electric and strange chemical potential. We compare results from the DQPM RTA and CE
We find that the baryon-strange diffusion coefficient is negative due to the definition of strangeness carried by the s-quark as has been already advocated in Ref. \cite{ref14}. We obtain an almost quadratic dependence in temperature again, and a rather strong dependency on μ_B. However, the results from DQPM RTA for κ_{SB} in Fig. \ref{fig6} show a slightly different μ_B-behavior than the results from CE (DQPM) for $\mu_B \geq 0.3$ GeV. Furthermore, judging from Fig. \ref{fig5} in the vicinity of the crossover region the results from CE (HRG) for the hadronic phase, and the calculation from the DQPM RTA and CE (DQPM) agree well. As for other diffusion coefficients, the scaled strange diffusion coefficient from holography has a different temperature dependence and smaller values in the vicinity of the crossover phase transition.

3. Baryon conductivities

In order to describe the deconfined QCD medium at the non-zero baryon density one should first consider the baryon diffusion coefficient κ_{BB}. This diffusion coefficient was already evaluated in various models \cite{ref12,ref17}. Fig. \ref{fig7} (left) shows the temperature dependence of the baryon diffusion coefficient for the quark-gluon plasma estimated with the CE (DQPM) (red solid line) and DQPM RTA approaches (black dashed line with crosses). We also show the results from conformal holography \cite{ref13} (blue dotted lines). For temperatures below T_c we again refer to the CE (HRG) calculation from Refs. \cite{ref14,ref16} (dark-red dashed line). The comparison is presented at zero chemical potentials $\mu_q = 0$. Around T_c the results from DQPM RTA, CE (DQPM) and CE (HRG) seem to be rather consistent with each other. Furthermore, we show its dependence on μ_B at fixed scaled temperature $T = 2T_c(\mu_B)$ in Fig. \ref{fig7} (right). The DQPM RTA shows a rather weak μ_B dependence, while κ_{BB} from the CE (DQPM) decreases with μ_B.

IV. CONCLUSION

In this study we have calculated the complete diffusion coefficient matrix $\kappa_{qq'}$ ($q, q' = B, S, Q$) of the strongly interacting quark-gluon plasma by using the Chapman-Enskog method as well as the relaxation time approximation (RTA) from kinetic theory. We have explored the T and μ_B dependencies of the diffusion coefficients by considering microscopical properties of quarks and gluons within the dynamical quasi-particle model (DQPM). The DQPM predictions of thermodynamic quantities for finite μ_B show a good agreement with the available lQCD EoS \cite{ref54}. Moreover, for $\mu_B = 0$ the DQPM estimations of the QGP electric conductivity (σ_{el}/T^2) are in a good agreement with the $N_f = 2 + 1$ lQCD results and in case of the specific shear and bulk viscosities (η/s, ζ/s) the estimations are remarkably close to the predictions from the gluodynamic IQCD calculations \cite{ref17}. We find that the electric conductivities (κ_{QQ}, κ_{QS} and κ_{QB}), strange conductivities (κ_{SS} and κ_{SB}), and finally the baryon conductivity (κ_{BB}) have a similar temperature dependence in the vicinity of the phase transition while the μ_B dependence is rather different among the considered diffusion coefficients. In particular, the diffusion coefficients κ_{BB} and κ_{QB} decrease with μ_B, while other coefficients increase. A suppression of baryon diffusion in a sQGP with finite μ_B has been seen also in the holographic calculations \cite{ref13}.

One of the main endeavors of this paper is to deliver reasonable estimates for the diffusion coefficients of the strongly interacting quark-gluon plasma. Furthermore, we compare the RTA evaluations from recent DQPM publications \cite{ref17} \cite{ref57,ref90} with the Chapman-Enskog method. We demonstrate that once the cross sections and the (thermal) properties (masses, equation of state, etc.) of a system are known, the CE framework at hand is able to deliver consistent results. We show a good agreement for both methods with the available predictions from the literature for the partonic phase, in particular results for the scaled electric conductivity are remarkably close to the lQCD estimates at $\mu_B = 0$, as well as with the estimates for the hadronic phase. However, κ_{QB} non-diagonal diffusion coefficient doesn’t coincide well in the vicinity of the phase transition with the estimates for the hadronic phase, which can be interpreted as an indication of a difference in the chemical composition of the adjacent phases. There are several model calculations of diagonal conductivities (mostly κ_{QQ}) in the literature that are similar to the RTA approach but used numerous restrictive assumptions for the evaluation of the relaxation times or cross-sections. Studying the diffusion coefficients of the QGP should have future benefits when considering hydrodynamical description for the time evolution of the deconfined QCD medium.
Table I. Properties of the particle species considered in the quark-gluon plasma in this work. Here, e denotes the elementary electric charge in natural units.

ACKNOWLEDGMENTS

The authors acknowledge inspiring discussions with H. van Hees, T. Song and J. M. Torres-Rincon. Also the authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the CRC-TR 211 'Strong-interaction matter under extreme conditions’ – project number 315477589 – TRR 211. O.S. and J.A.F. acknowledge support from the Helmholtz Graduate School for Heavy Ion research. Furthermore, we acknowledge support by the Deutsche Forschungsgemeinschaft by the European Union’s Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG-2020) and by the COST Action THOR, CA15213. The computational resources have been provided by the LOEWE-Center for Scientific Computing and the "Green Cube" at GSI, Darmstadt.

[1] J.-Y. Ollitrault, Phys. Rev. D **46**, 229 (1992).
[2] U. W. Heinz and P. F. Kolb, Nucl. Phys. A **702**, 269 (2002), arXiv:hep-ph/0111075.
[3] E. Shuryak, Prog. Part. Nucl. Phys. **62**, 48 (2009), arXiv:0807.3033 [hep-ph].
[4] E. V. Shuryak, Nucl. Phys. A **750**, 64 (2005), arXiv:hep-ph/0405066.
[5] M. Gyulassy and L. McLerran, Nucl. Phys. A **750**, 30 (2005), arXiv:nucl-th/0405013.
[6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. **99**, 172301 (2007), arXiv:0706.1522 [nucl-th].
[7] M. Cheng et al., Phys. Rev. D **77**, 014511 (2008), arXiv:0710.0354 [hep-lat].
[8] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg, and K. K. Szabo, JHEP **06**, 088 (2009), arXiv:0903.4155 [hep-lat].
[9] G. S. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, and C. Shen, Phys. Rev. C **98**, 034916 (2018), arXiv:1804.10557.
[10] M. Li and C. Shen, Phys. Rev. C **98**, 064908 (2018), arXiv:1809.04034.
[11] L. Du and U. Heinz, (2019), 10.1016/j.cpc.2019.107090, arXiv:1906.11181 [nucl-th].
[12] P. B. Arnold, G. D. Moore, and L. G. Yaffe, JHEP **05**, 051 (2003), arXiv:hep-ph/0302165 [hep-ph].
[13] R. Rougemont, J. Noronha, and J. Noronha-Hostler, Phys. Rev. Lett. **115**, 202301 (2015), arXiv:1507.06972.
[14] M. Greif, J. A. Fotakis, G. S. Denicol, and C. Greiner, Phys. Rev. Lett. **120**, 242301 (2018), arXiv:1711.06860.
[15] J. Ghiglieri, G. D. Moore, and D. Teaney, JHEP **03**, 179 (2018), arXiv:1802.09535 [hep-ph].
[16] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and H. Niemi, Phys. Rev. D **101**, 076007 (2020), arXiv:1912.09103 [hep-ph].
[17] O. Soloveva, P. Moreau, and E. Bratkovskaya, Phys. Rev. C **101**, 045203 (2020).
[18] J.-B. Rose, M. Greif, J. Hammelmann, J. A. Fotakis, G. S. Denicol, H. Elfler, and C. Greiner, Phys. Rev. D **101**, 114028 (2020), arXiv:2001.10606 [nucl-th].
Figure 8. The effective quark (left) and gluon (right) pole-masses M (upper row) and their widths γ (lower row) from the actual DQPM as a function of the temperature T and baryon chemical potential μ_B \[90\]. The strange quark mass was assumed to be $m_s = m_q + \Delta m$, with $\Delta m = 30$ MeV, and the width is identical with the widths of the light quarks, $\gamma_s = \gamma_q$. In the calculation of the diffusion matrix with the Chapman-Enskog method partons were assumed to be on-shell and thus the widths vanish.

Figure 9. The running coupling $\alpha_s = g^2/(4\pi)$ from the actual DQPM as a function of the scaled temperature T/T_c at $\mu_B = 0$ a) and for moderate values of baryon chemical potential $\mu_B \leq 0.5$ GeV (b) \[90\]. The lattice results for quenched QCD, $N_f = 0$, (blue circles) are taken from Ref. \[48\] and for $N_f = 2$ (black triangles) are taken from Ref. \[80\].
Figure 10. DQPM total cross sections between different partons for the on-shell case from Eq. (11) evaluated in the center of mass of the collision system as a function of the collision energy \sqrt{s} for a) $\mu_B = 0, T = 0.19$ GeV for the elastic channels, b) for $\mu_B = 0, T = 0.19, 0.316, 0.458$ GeV for both elastic and inelastic channels, and c) $\mu_B = 0.2, 0.5$ GeV for two examples. For the minimal allowed center-of-momentum energy of the colliding partons only their pole-masses are taken into account. In the Chapman-Enskog evaluation of the diffusion matrix, the inelastic channels were neglected for simplicity.
[54] W. Cassing and E. Bratkovskaya, Nucl. Phys. A 831, 215 (2009), arXiv:0907.5331 [nucl-th]

[55] E. Bratkovskaya, W. Cassing, V. Konchakovski, and O. Linnyk, Nucl. Phys. A 856, 162 (2011), arXiv:1101.5793 [nucl-th]

[56] V. Ovzenchuk, O. Linnyk, M. Gorenstein, E. Bratkovskaya, and W. Cassing, Phys. Rev. C 87, 024901 (2013), arXiv:2001.05395 [nucl-th]

[57] O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyev, T. Song, and E. Bratkovskaya, Particles 3, 178 (2020), arXiv:2101.05688 [nucl-th]

[58] P. Moreau, O. Soloveva, I. Grishmanovskii, V. Voronyuk, L. Oliva, T. Song, V. Kireyev, G. Coci, and E. Bratkovskaya, in 9th International Workshop on Astronomy and Relativistic Astrophysics (2021), arXiv:1203.4734 [nucl-th]

[59] A. Hosoya and K. Kajantie, Nucl. Phys. B 250, 666 (1985)

[60] P. Chakraborty and J. Kapusta, Phys. Rev. C 83, 014906 (2011), arXiv:1006.0257 [nucl-th]

[61] M. Albright and J. Kapusta, Phys. Rev. C 93, 014903 (2016), arXiv:1508.02696 [nucl-th]

[62] S. Gavin, Nucl. Phys. A 435, 826 (1985)

[63] R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957)

[64] G. Aarts and J. M. Martinez Resco, JHEP 04, 053 (2002), arXiv:hep-ph/0203177

[65] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. D 73, 045025 (2006), arXiv:hep-ph/0512283

[66] R. Lang, N. Kaiser, and W. Weise, Eur. Phys. J. A 51, 127 (2015), arXiv:1506.02459 [hep-ph]

[67] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (Cambridge University Press, 1970).

[68] P. Romatschke, Phys. Rev. D 85, 065012 (2012), arXiv:1108.5561 [gr-qc]

[69] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP 08, 053 (2012), arXiv:1204.6710 [hep-lat]

[70] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, and K. K. Szabo, Phys. Lett. B730, 99 (2014), arXiv:1309.5258 [hep-lat]

[71] L. D. Landau and E. M. Lifschitz, Course of theoretical physics. vol. 6: Fluid mechanics (London, 1959).

[72] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke, Physical Review D85, 114047 (2012), arXiv:1202.4551

[73] J. Anderson and H. Witting, Physica 74, 466 (1974)

[74] E. Braaten and M. H. Thoma, Phys. Rev. D44, 1298 (1991)

[75] M. H. Thoma, Phys. Rev. D49, 451 (1994), arXiv:hep-ph/9308257 [hep-ph]

[76] H. Berrehrah, E. Bratkovskaya, W. Cassing, P. Gossiaux, J. Aichelin, and M. Bleicher, Phys. Rev. C 89, 054901 (2014), arXiv:1308.5148 [hep-ph]

[77] H. Berrehrah, E. Bratkovskaya, W. Cassing, and R. Marty, J. Phys. Conf. Ser. 612, 012050 (2015), arXiv:1412.1017 [hep-ph]

[78] H. Berrehrah, E. Bratkovskaya, W. Cassing, P. Gossiaux, and J. Aichelin, Phys. Rev. C91, 054902 (2015), arXiv:1502.01700 [hep-ph]

[79] H. Berrehrah, E. Bratkovskaya, T. Steinert, and W. Cassing, International Journal of Modern Physics E 25, 1642003 (2016), https://doi.org/10.1142/S0218301316420039

[80] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005)

[81] M. L. Bellac, Thermal Field Theory Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).

[82] B. Vanderheyden and G. Baym, J. Stat. Phys. (1998), 10.1023/B:JOSS.0000033166.37520.ac [J. Statist. Phys.93,843(1998)], arXiv:hep-ph/9803300 [hep-ph]

[83] J. P. Blaizot, E. Iancu, and A. Rebbah, Phys. Rev. D63, 065003 (2001), arXiv:hep-ph/0005003 [hep-ph]

[84] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, and E. Bratkovskaya, Phys. Rev. C 100, 014911 (2019)

[85] G. Aarts, C. Allton, J. Foley, S. Hands, and S. Kim, Phys. Rev. Lett. 99, 022002 (2007)

[86] N. Astrakhantsev, V. V. Braguta, M. D’Elia, A. Y. Kotov, A. A. Nikolaev, and F. Sanfilippo, Phys. Rev. D 102, 054516 (2020)

[87] J. Weil et al., Phys. Rev. C94, 054905 (2016), arXiv:1606.06642 [nucl-th]

[88] L. Onsager, Phys. Rev. 37, 405 (1931)

[89] L. Onsager, Phys. Rev. 38, 2205 (1931)

[90] O. Soloveva, P. Moreau, L. Oliva, T. Song, W. Cassing, and E. Bratkovskaya, J. Phys. Conf. Ser. 1602, 012012 (2020), arXiv:2005.07028 [nucl-th]