The modified drive of a metal-cutting machine with the V-belt transmission of increased resource

O Krol¹, V Sokolov¹, P Tsankov²

¹Machinery Engineering and Applied Mechanics Department, Volodymyr Dahl East Ukrainian National University, 59-a Central pr., Severodonetsk, 93400, Ukraine
²Faculty of Technics and Technology, Trakia University, 38 Graf Ignatiev st., Yambol, Bulgaria

e-mail: krolos.snu.edu@gmail.com

Abstract. The process of the design improving of the V-belt transmission for the metal-cutting machine drive according to the criterion of increased resource is considered. A three-dimensional modeling of the main motion drive structure for multi-operation machine was carried out using the applied library computer aided design KOMPAS-3D. A new approach to the parametric representation of the procedure for constructing a unified profile of a V-belt pulley based on the syntax of the APM WinMachine system is proposed. The idea of constructive change of the standard operating V-belt contour with the corresponding analytical apparatus, which provides increased drawbar power of the transmission, is proposed. Experimental researches on typical sections of V-belts, confirming the increase in the operation reliability of the belt drive have been carried out. provided that the cross-sectional area of the belt remains unchanged

1. Introduction

The productivity of metal cutting equipment is limited by many factors, including the rather poor durability of belt-driven drives. V-belt drives are widely used in drilling-milling-boring machines, the research of the structures of which in the direction of increasing their operational reliability is an urgent direction.

The advantages of belt drives include low noise level, smooth operation and smoothing of high overloads in the starting mode. This is especially true for V-belt and poly-V-belts).

The ultimate goals of any frictional belt drive modernization are to increase belt drawbar capacity and durability. One of the reasons for the insufficient durability of V-belts and poly-V-belts belts is the significant bending stress caused by the relatively large thickness of these belts.

In turn, the reliability of functioning is directly related to the level of the stress-strain state of the belt drive elements. This level is estimated using the finite element method used in works on 3D modeling [1–3].

The analysis of works in the field of reliability of mechanical transmissions [4–6] showed the main directions on which the efforts of researchers are focused.

So, in [4], a study of the effect of loads on the intensity of belt wear and parameters reflecting this process was carried out. One of the consequences of wear is a decrease in belt cross-section, which results in increased stress levels and reduced service life. A classification of several factors affecting belt wear is given. The importance of such factors as the design of the belt transmission, the shape and geometric characteristics of its elements are noted. The authors of [4] point out the importance of early
detection of possible damage, which will allow preparing a more accurate schedule of current repairs. This work proposes an effective device for measuring belt thickness and, as a consequence, assessing changes in the transverse and longitudinal profile of the belt.

Along with the control of the belt geometry, it is necessary to record the level of forces occurring in the belt drive. In [5], algorithms were developed for calculating the primary resistance to the movement of the conveyor belt, considering the parameters of the belt, as well as the design and operational parameters of the conveyor. The authors of [5] have developed and implemented an Information Technology (IT) system for collecting complex data (technical, operational, diagnostic), and on this basis, determining energy characteristics.

In [6], the effect of belt lengthening caused by an increase in the pitch of the toothed belt, which occurs during operation and which persists after unloading the belt, is considered. The authors argue that the greatest amount of movement and power is transmitted by the form, and much less by friction. In process of research the mechanisms of this phenomenon were discovered, the main factor of which is the plastic deformation of the belt. It is about 70%.

At the same time, in these works, insufficient attention is paid to improving the design (shape) of the belt and its effect on drawbar characteristics and durability.

Statement of the research task: The purpose of the report is to perform a computer simulation to optimize the profile of the belt drive to stabilize the operation of the metal cutting machine. All studies aimed at increasing the stability of the equipment during metal cutting lead to increased productivity, improved quality of treated surfaces, which justifies the importance of the proposed topic.

2. 3D modelling main motion drive of metal-cutting machine tools

The drive of the main motion occupies a special position in the structure of the metal-cutting machine tools (MT). The main drives must ensure the high-efficient performance of various operations when changing the speed in a wide range. For a wide range of MT, the main drive includes an Alternating Current (AC) motor, a frequency converter and in most cases 2-3 mechanical transmissions, to increase the range of speeds and torque. The main advantages of such drive are relatively low cost compared to alternative solutions and a wide range of technical data, and its final specification can be changed by choosing another motor or a different belt gear ratio. To analyze the design features and assess the stress-strain state of the MT mechanical transmissions [7–9], a three-dimensional model of the drilling-milling-boring machine drive was built in the KOMPAS-3D CAD environment (Figure 1) using the specialized application "Shafts and mechanical transmissions-3D" [10-12].

![Figure 1. 3D models of MT drive: a – general view (transparency); b – kinematics.](image)

Similarly, using the above application, 3D models of V-belt pulleys were built (Figure 2, a) with normalized geometric characteristics (Figure 2, b).
The pulleys used in machine tools in their form in many cases do not differ from pulleys common in other machines. The variety of nomenclature used in pulley drives, on the one hand, and the availability of regulatory documentation governing the shape and size of their structures, makes it promising to use the parameterization mechanism [13–15]

The versatility of the parametric model is provided by considering the various options for implementing the design of the belt drive [16, 17]. The choice of the graphic profile for the formation of the pulley design will depend on the transmitted power, the belt section and the coordinates of the base point of configuration groove symmetry (Table 1). When designing drives for metal-cutting machines, it is not recommended to choose more than 6 belts in one V-belt transmission, which is associated with an increase in the level of vibrations caused by the difference in the lengths of the belts used. Moreover, in production conditions there is a recommendation – no more than 4 belts in one transmission. As a consequence of this limitation, when constructing a parametric model of a pulley, 4 variants of determining the coordinates of the base point of the pulley groove for the command "mirroring" are used (Table 1).

Initial groove profile	Belt section	Transferred power N, kW	Coordinates base point
a	A	N≤1	x = f; y = d_p-h
	A	1<N<1.9	x = f+e/2; y = d_p+b
c	A	1.9<N<2.8	x = f+e;
B		3.6<N<5.3	y = d_p-h
C		7.6<N<9.3	
	A	2.8<N<3.5	x = f+3e/2;
B		5.3<N<7.0	y = d_p+b
C		9.3<N<12.5	
3. Modification of the V-belt transmission profile

Driving V-belts of normal cross-sections, GOST 1284.1-89 (conforms to European standard ISO 1081-90), widely used in modern devices, have insufficient durability. One of the main factors affecting this performance indicator is the high level of bending stresses σ_b in the belt [18–20]. Calculations show that the share σ_b in the total belt tension σ_{max} is (67…73)% [21–23]. And since the durability of V-belts L_d inversely proportional to the value $\frac{\sigma_{\text{max}}}{\sigma_b}$, the task of reduction σ_{max} by reduction σ_b is urgent.

A trapezoid $OABC$ with known parameters S, W, W_p, α, S is given, Figure 3:

$$OA=T; \ AB=W/2; \ P_0P=W_p/2; \ \alpha=40^\circ; \ S,$$

where S – is the area of a full trapezoid; (hereinafter, the value $S_0=S/2$ referring to half of the trapezoid $OABC$ is used.

Figure 3. Construction of a modified section of a V-belt: a – geometrical parameters; b – modified pulley.

It is required to determine the height $OA_1=T_1$ of the modified trapezoid $OA_1B_1C_1$, Figure 3, equal in area of the trapezoid $OABC$, i.e. $S_{01}=S_0$ – this is the first calculation condition T_1.

The sides of the modified trapezoid $OA_1B_1C_1$ are formed by an arc of a circle in such a way that it touches the rectilinear side of the trapezoid $OABC$ at point P [24, 25] (Figure 3 is the second calculation condition T_1). The radius of this circle:

$$R_p = \frac{T_p}{\sin(\alpha/2) - \sin(\alpha/4)},$$

where $T_p = T - 0.5 \cdot (W - W_p) \cdot \text{ctg}(\alpha/2)$ – height from the lower base of a given trapezoid to the line P_0P_0, i.e. a segment OP_0, Figure 3.

4. Discussion

The radius R_p is determined from the condition that the tangent to the arc of the circle at its lowest point C_1 forms an angle $\alpha/4 = 10^\circ$ with the axis of symmetry OY.

The coordinates $[X_0, Y_0]$ of the center of a circle with a radius R_p in the coordinate system $S[X, Y]$ are defined below.

In this case the equation of a circle with a radius R_p in a coordinate system $S_p[X_0, Y_0]:$
\[X_p = R_p \cdot \cos \beta; \]
\[Y_p = R_p \cdot \sin \beta. \]

(1)

Distance between centers \(O_P \) and \(O \) coordinate systems \(S_P\{X_p, Y_p\} \) and \(S\{X, Y\} \), Fig. 1:
\[O_P O_0 = X_0 = 0.5 \cdot W_p + R_p \cdot \cos(\alpha/2); \quad OO_0 = Y_0 = R_p \cdot \sin(\alpha/4). \]

The connection between coordinate systems \(S_P\{X_p, Y_p\} \) and \(S\{X, Y\} \) is established directly from Figure 3:
\[X = X_0 - X_p = X_0 - R_p \cdot \cos \beta; \]
\[Y = Y_p - Y_0 = R_p \cdot \sin \beta - Y_0. \]

(2)

Using relations (2) and (1), we represent the equation of a given circle in the coordinate system \(S\{X, Y\} \) in the form:
\[X = f(Y) = X_0 - \sqrt{R_p^2 - (Y + Y_0)^2}. \]

(3)

The area \(S_{01} \) of the modified trapezoid \(OA_1B_1C_1 \) is limited by three lines – a circular arc (3) and two straight lines: \(Y = T_1 \) and \(Y = 0 \). The calculation \(S_{01} \) is reduced to finding the antiderivative function (3):
\[S_{01} = \int f(Y) \cdot dY = \left[X_0 \cdot dY \right] - \int \sqrt{R_p^2 - (Y + Y_0)^2} \cdot dY \]

(4)

Let us consider separately each term of function (4):
\[J_1 = \int X_0 \cdot dY \quad \text{and} \quad J_2 = \int \sqrt{R_p^2 - (Y + Y_0)^2} \cdot dY. \]

To find the integral function \(J_2 \), we will use trigonometric substitution: \(Y + Y_0 = R_p \cdot \sin t \), [6].

Then \(\sqrt{R_p^2 - (Y + Y_0)^2} = R_p \cdot \cos t \)

From the introduced substitution follows: \(Y = R_p \cdot \sin t - Y_0 \). Then: \(dY = R_p \cdot \cos t \cdot dt \). As a result:
\[J_1 = R_p \cdot X_0 \cdot \left[\cos t \cdot dt \right] = R_p \cdot X_0 \cdot \sin t; \]
\[J_2 = R_p^2 \cdot \left[\cos^2 t \cdot dt \right] = 0.5 \cdot R_p^2 \cdot (t + 0.5 \cdot \sin 2t). \]

Returning to the original variable \(Y \), we find:
\[t = \arcsin \left(\frac{Y + Y_0}{R_p} \right); \quad 0.5 \cdot \sin 2t = \sin t \cdot \cos t = \frac{Y + Y_0}{R_p} \cdot \sqrt{R_p^2 - (Y + Y_0)^2}. \]

After substituting these expressions into the right-hand sides of the functions \(J_1 \) and \(J_2 \) the initial dependence for the calculation \(S_{01} \) takes the form [26–28]:
\[S_{01} = S_{01}(X) = J_1 - J_2 = (Y + Y_0) \cdot \left[X_0 - 0.5 \cdot \sqrt{R_p^2 - (Y + Y_0)^2} \right] - 0.5 \cdot R_p^2 \cdot \arcsin(Y + Y_0)/R_p. \]

Substitute in \(S_{01} \) successively two values of the variable \(Y \), that correspond to the boundary points of the arc \(B_1C_1 \): \(Y = T_1 \) and \(Y = 0 \):
\[S_{01(1)} = S_{01}(Y = T_1); \quad S_{01(2)} = S_{01}(Y = 0). \]

In this case, the area of the trapezoid \(OA_1B_1C_1 \) is determined by the dependence:
\[S_{01} = S_{01(1)} - S_{01(2)}. \]
The condition for the equality of the areas of two trapezoids \(S_0 = S_{01} \):
\[
S_{01} = (T_1 + Y_0) \cdot \left[Y_0 - 0.5 \cdot \sqrt{R_p^2 - (T_1 + Y_0)^2} \right] - Y_0 \cdot \left[X_0 - 0.5 \cdot \sqrt{R_p^2 - Y_0^2} \right] - 0.5 \cdot R_p^2 \cdot \arcsin\left(\frac{T_1 + Y_0}{R_p}\right) + \arcsin\left(\frac{Y_0}{R_p}\right). \tag{5}
\]

From here one unknown quantity \(T_1 \) is determined [29, 30]. Equation (5) was solved by an iterative method, the calculation error was less than 0.1%.

The width of the upper base of the modified section, Figure 1:
\[
W_1 = 2 \cdot A_0 B_1 = 2 \cdot \left[X_0 - \sqrt{R_p^2 - (T_1 + Y_0)^2} \right].
\]

The central angle \(\alpha_i \) of the arc \(B_i C_i \), which outlines the lateral sides of the modified section:
\[
\alpha_i = \arcsin\left(\frac{T_1 + Y_0}{R_p}\right) - \alpha / 4.
\]

The calculation results for 4 standard sections of V-belts \(A, B, C, D \) and the corresponding modified sections with concave lateral sides are presented in Table 2.

Table 2. Comparison of standard and modified V-belts parameters.
Parameters

\(T_i / T \)

7.863/8
\(W_i / W \)
\(\alpha_i^0 \)

In the lines of table 1: \(T_i / T \) and \(W_i / W \) the values in the numerator refer to the modified section, in the denominator – to the standard one.

The decrease in height from \(T \) to \(T_i \) for the belt sections indicated in the table was about 1.7 ... 4.6%.

To assess the change in belt durability in relative units with a specified change in belt height, we represent the maximum stress in a standard belt as:
\[
\sigma_{max} = \sigma + \sigma_b
\tag{6}
\]
where \(\sigma = \sigma_0 + \sigma_v + \sigma_t \) – stresses from pre-tension, from centrifugal forces and external load; (value \(\sigma = const \), since changing the height of the belt section while maintaining the sectional area will not change the values \(\sigma_0, \sigma_v, \sigma_t \).

Let us express \(\sigma_b \) it infractions \(\sigma_{max} : \sigma_b = k \cdot \sigma_{max} \) and the bending stress in the modified section \(\sigma_{b'} \) – infractions \(\sigma_b \) of the standard section: \(\sigma_{b'} = c \cdot \sigma_b \). By analogy with (6) the maximum stress in the modified belt \(\sigma_{max}' = \sigma + \sigma_{b'} \). Let’s find the relation \(\sigma_{max}' / \sigma_{max} \):
\[
\frac{\sigma_{max}'}{\sigma_{max}} = \frac{\sigma + \sigma_{b'}}{\sigma + \sigma_b} = \frac{\sigma + c \cdot \sigma_b}{\sigma + \sigma_b} \cdot \frac{\sigma_{max}}{\sigma_{max}} = \frac{(\sigma / \sigma_{max}) + c \cdot k}{(\sigma / \sigma_{max}) + k} = \frac{1 - k}{1 - k + c} = 1 - k \cdot (1 - c).
\tag{7}
\]

Relation (7) makes it possible to estimate the decrease in the maximum stress in the modified belt in comparison with a standard belt equal in area to it. The numerical values of the coefficient
The determination of these parameters is based on the analysis of the geometrical parameters of \(V_0 \). The coefficient
\[
\frac{\sigma_b}{\sigma_{max}} \approx 0.67...0.73, \quad \text{indicated above are averaged: } \ k \approx 0.7.
\]
The dependence for the coefficient
\[
c = \frac{\sigma_b}{\sigma_{max}} \text{ is transformed using the known dependence for the bending stresses in the belt: } \ \sigma_b = E \cdot T / d
\]
(for a belt with a modified section, respectively:
\[
\sigma'_{b} = E \cdot T' / d
\]
) holds:
\[
c = \frac{\sigma_b}{\sigma_{max}} = \frac{E \cdot T'/d}{E \cdot T/d} = T'/T
\]

Numerical values \(T' \) and \(T \) are taken from table 1. As a result:
\[
c = \frac{T_i}{T} = \begin{cases}
7.863/8 = 0.98 & \text{section A;}
10.49/11 = 0.95 & \text{section B;}
13.386/14 = 0.96 & \text{section C;}
18.622/19 = 0.98 & \text{section D.}
\end{cases}
\]

The parameters \(E \) and \(d \) in the formula (8) denote the elastic modulus of the belt and the calculated pulley diameter, respectively.

Find the ratio of the durability \(L'_h \) of the modified belt to the durability \(L_h \) of the standard belt:
\[
\frac{L'_h}{L_h} = \left(\frac{\sigma_{max}}{\sigma^*_{max}} \right)^8 = \frac{1}{(1-k \cdot (1-c))^8} = \begin{cases}
1/[1-0.7 \cdot (1-0.98)]^8 = 1.12;
1/[1-0.7 \cdot (1-0.95)]^8 = 1.33;
1/[1-0.7 \cdot (1-0.96)]^8 = 1.26;
1/[1-0.7 \cdot (1-0.98)]^8 = 1.12.
\end{cases}
\]

Thus, the increase in the durability of the V-belts by giving its lateral sides a concave shape, outlined by an arc of a circle, ranged from 12% to 33% without changing their cross-sectional area.

5. Conclusion

A 3D model of the main drive with a belt drive has been developed for multioperational drilling-milling-boring machines in the integrated CAD KOMPAS-3D environment. At the same time, effective options of this system were used, associated with the presentation of the structure in a transparent and wireframe form, the formation of kinematic diagrams, which a more complete picture of the design and features of the designed products are created. To increase the productivity of the designer, a special application program "Shafts and mechanical transmissions-3D", with such graphic primitives (involute profile, trapezoidal profile, etc.) that are characteristic of stepped shafts, gear, belt transmissions) was used.

For various nomenclature of belt drive elements, the parameterization toolkit in CAD/CAE “APM WinMachine” is used, which makes it possible to implement an express-procedure for developing the design of individual product elements in a multivariate mode. A new approach to forming the working profile of V-belt transmission pulleys using analytical dependencies in the APM WinMachine syntax ("rectangular array", "mirror reflection") for the range of V-belts (from 1 to 6) is proposed.

The analysis of the geometrical parameters of V-belts of the modified section is carried out. Analytical dependencies are obtained for constructing the contour of such a section: the radius \(R_p \) of the circle arc describing its lateral sides, the coordinates of the center of this circle, the coordinates of the boundary points on the arc with the radius \(R_p \). The determination of these parameters is based on two conditions: 1) equality of cross-sectional areas for standard and modified belts; 2) tangency to the arc with a radius \(R_p \) at a certain point on the rectilinear side of the section for the standard belt.

Analytical calculations have shown that the cross-sectional height of the modified belt is 10...18% less than that of the standard one (with the same cross-sectional area). At the same time, the length of the curved profile in the longitudinal section is 11...19% larger, and as a result, the bending stress for the section \(B \) of the modified type belt decreases by about 5%. A comparative calculation of the durability of 4 V-belts of standard sections (A, B, C, D) and 4 modified sections of the same size has been made, which showed that the latter gives an increase in durability from 12% to 33%.
References

[1] Ganin N B 2012 Three-dimensional Design in KOMPAS-3D [in Russian] (Moscow: DMK Publishing) p 776

[2] Ganin N B 2011 Design and Strain Calculation in KOMPAS-3D System [in Russian] (Moscow: DMK Publishing) p 320

[3] Platonov L 2013 Machine-Building Design in KOMPAS-3D at a New Round of Development [in Russian] CAD and Graphics 10 6

[4] Iže B, Jurdziak L, Kirjanow A and Kozłowski T 2018 A device for measuring conveyor belt thickness and for evaluating the changes in belt transverse and longitudinal profile J. Diagnostyka 18 (4) 97–102

[5] Gładysiewicz L, Kawalec W and Krol R 2016 Selection of carry idlers spacing of belt conveyor taking into account random stream of transported bulk material Eksploatacja i Niezawodnosc – Maintenance and Reliability 18 (1) 32–37 http://dx.doi.org/10.17531/ein.2016.1.5

[6] Stojanović B, Miloradović N, Marjanović N, Blagojević M and Ivanović L 2011 Length Variation of Toothed Belt During Exploitation Strojniški vestnik. Journal of Mechanical Engineering 57 (9): 648–654 https://doi.org/10.5545/sv-jme.2010.062

[7] Krol O and Sokolov V 2019 Parametric modeling of transverse layout for machine tool gearboxes Advances in Manufacturing II LNME 4 122 https://doi.org/10.1007/978-3-030-16943-5_11

[8] Nemtinov V Bolshakov and N Nemtinova Y 2017 Automation of the early stages of plating lines design MATEC WEB CONF 129 01009 https://doi.org/10.1051/matecconf/201712901012

[9] Sokolov V, Krol O and Baturin Y 2019 Dynamics Research and Automatic Control of Technological Equipment with Electrohydraulic Drive International Russian Automation Conference (RusAutoCon) IEEE (2019) https://doi.org/10.1109/RUSAUTOCON.2019.8867652

[10] Krol O and Sokolov V 2019 3D modelling of angular spindle’s head for machining centre J. Phys. Conf. Ser. 1278 012002 https://doi.org/10.1088/1742-6596/1278/1/012002

[11] Brecher C, Fey M and Daniels M 2016 Modeling of Position-, Tool- and Workpiece-Dependent Milling Machine Dynamics J. High Sped Mach. 2 15–25 https://doi.org/10.1515/hsm-2016-0003

[12] Nemtinov V, Nemtinova Y, Borisenko A and Nemtinov K 2014 Construction of concentration fields of elements in 3D in groundwater of an industrial hub using GIS technologies Geochem. Explo. 147 46 https://doi.org/10.1016/j.gexplo.2014.04.007

[13] Magomedov A and Alehin A 2010 Integrated finite element analysis in KOMPAS-3D [in Russian] J. CAD/CAM/CAE observer 8 (60)

[14] Malukh V 2018 We test Artisan Rendering for KOMPAS-3D Isicad 170 10

[15] Krol O and Sokolov V 2018 Modeling Carrier System Dynamics for Metal-Cutting Machines 2018 International Russian Automation Conference (RusAutoCon) IEEE https://doi.org/10.1109/RUSAUTOCON.2018.8501799

[16] Rogovyi A and Khovanskyy A 2017 Application of the similarity theory for vortex chamber superchargers IOP CONF SER-MAT SCI 233 012011

[17] Sokolov V, Porkuian O, Krol O and Baturin Y 2020 Design Calculation of Electrohydraulic Servo Drive for Technological Equipment. Advances in Design, Simulation and Manufacturing III. DSMIE 2020 LNME 1, 75 https://doi.org/10.1007/978-3-030-50794-7_8

[18] Mechanical engineering. Encyclopedia 1995 In 40 volumes vol IV-1, ed D N Reshetov [in Russian] (Moscow: Mechanical engineering) p 864

[19] Pronin B A and Revkov G A 1980 Continuously variable V-belt and friction transmissions (variators) [in Russian] (Moscow: Mechanical engineering) p 320

[20] Anuryev V I 1992 Handbook of the designer-mechanical engineer vol 2 [in Russian] (Moscow: Mechanical engineering) p 784

[21] Orlov P I 1977 Basics of design: Reference and methodological manual vol 3 [in Russian] (Moscow: Mechanical engineering) p 357

[22] Betin A V and Kaminskaya V V 1992 Optimization of Parameters of Bearing Systems of Lathes with Hanging Headstock [in Russian] (Moscow: ENIMS Publishing)
[23] Averyanov O I and Soldatov V F 2008 Fundamentals of Design and Construction [in Russian] (Moscow: MGIU Publishing) p 160
[24] Korn G and Korn T 1970 Handbook of mathematics [in Russian] (Moscow: Nauka) p 720
[25] Sokolov V 2020 Transfer functions for shearing stress in nonstationary fluid friction Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019) LNME vol 1 707 https://doi.org/10.1007/978-3-030-22041-9_76
[26] Ivanov V 2019 Process-oriented approach to fixture design Advances in Design, Simulation and Manufacturing, DSMIE-2018 LNME 42 https://doi.org/10.1007/978-3-319-93587-4_5
[27] Birger I A, Shorr B F and Iosilevich GB 1993 Calculation of the strength of machine parts: Handbook [in Russian] (Moscow: Mechanical engineering) p 640
[28] Pronin B A and Ochinnikova V A 1982 Calculation of V-belt transmissions J Vestnik mashinostroeniya [in Russian] 3 23
[29] Vorobiev I I 1971 Transmission with flexible coupling in machine tool drives [in Russian] (Moscow: Mechanical engineering) p 144
[30] Arbuzov A A 1971 The influence of the step of the pulley teeth on the distribution of the load between the belt teeth J Machine tools and instruments [in Russian] 5 33