Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review

By Solikhah Solikhah
Abstract

Introduction: Currently, the Breast Cancer Risk Assessment Tool (BCRAT), also known as the Gail model (GM) has been widely recognized and adapted for to study disparity in racial and ethnic groups in America including Asian and Pacific Islander American females. However, its applicability outside America remains uncertain due to diversity in epidemiology and risk factors of breast cancer in populations especially in Asian females. We sought to evaluate the performance of the GM to predict breast cancer risk in Asian countries.

Material and methods: This study identified articles published from 2010 by searching PubMed, MEDLINE, Scopus, Web of Science, Google Scholar and grey literature. The initial search terms were breast cancer, mammary, carcinoma, tumor, prophylaxis, risk assessment tool, BCRAT, breast cancer prediction, Gail model, Asia, and Asian.

Results: The search yielded 20 articles, with 7 articles addressing the AUC and/or the expected (E) to observed (O) ratio of predicted breast cancer risk, representing the accuracy of the GM in the Asian population. One publication reported the sensitivity and specificity but no AUC. None of the studies were accepted as the standard for reporting prognostic models. Several studies reported good prognostic testing and likely developed a new model modifying the items in the instrument.

Conclusion: The results are not strong enough to predict breast cancer risk in the setting of Asian countries. Involving the breast cancer risk of the Asian population in developing a prognostic model with good statistical understanding is particularly important and can reduce flawed or biased models. Identifying the best methods to achieve well-suited prognostic models in the Asian population should be a priority.

1. Introduction

Breast cancer is the second most common cancer worldwide and is the highest leading cause of cancer-associated death among women worldwide. Both the incidence and mortality of breast cancer vary among populations throughout the world. It is estimated that over a half of new cancer cases diagnosed among women are in developing countries. In 2018, according to GLOBOCAN, newly diagnosed cases and breast cancer-associated deaths accounted for approximately 11.6% and 6.6% of all cancer types, respectively [1]. This trend has been growing even in Asian developing countries in recent years [2, 3, 4]. The increased incidence of breast cancer is especially seen in middle-income countries due to lifestyle changes, including urbanization, changes in reproductive and dietary patterns, obesity, smoking, drinking alcohol, and reduced exercise [5, 6]. In addition, the mortality of breast cancer in these countries is generally higher than that in Western countries due to the limitations of health care settings and resources for breast cancer screening, especially in Asian countries [7, 8, 9]. Although high-income Asian countries such as Israel, Kuwait, Qatar, the Republic of Korea, Singapore and the United Arab Emirates have adequate health care services, most people living in many low-income Asian countries have limited health services and a substantial burden of cancer compared with other diseases. Therefore, increasing awareness and identifying risk factors are crucial for the prevention of breast cancer and for screening programs that aim to reduce the incidence of breast cancer. Women who have increased awareness of the early symptoms of breast cancer (if there is a change in their breasts) will immediately conduct an early health check. The early diagnosis of breast cancer is one of the best approaches to prevent this disease [10]. Insufficient knowledge about the risk factors and early symptoms of cancer is significantly associated with the majority of breast cancer patients diagnosed at an advanced stage, especially in developing countries, including Asia [11].
The Breast Cancer Risk Assessment Tool (BCRAT), also known as the Gail model (GM) (available at http://www.cancer.gov/berktool/), is the most commonly used to predict breast cancer risk and was originally developed for use in white females to estimate breast cancer risk [12]. This model was originally developed for use in the US [13, 14, 15, 16]. To date, the GM has been widely recognized and adapted for specific ethnic populations in the US such as White-Americans [17, 18], Asian and Pacific Islander populations [19], and African-American [20, 21] populations, representing a wide range of study populations, health care settings, and sampling designs. However, the GM actually mentions the prediction of breast cancer risk in Americans among its items, reducing its usefulness outside the US setting. Indeed, a comparison of these studies suggests differences in the relative importance of the individual breast cancer risk, and these differences may result from disparities in the various racial and ethnic groups, considering diversity in epidemiology and the risk factors of breast cancer in populations such as Asian females [22, 23]. Consequently, the application of the GM has varied across studies, as evidenced by the different numbers and natures of the risk factors generated [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Although many studies have examined and applied the GM, its use has been questionable particularly in Asian females. Based on the main concern about the effectiveness of the application of the risk assessment tool for developing breast cancer, especially in the Asian context, a systematic review to summarize all available evidence from the study population among Asian females is needed, particularly in middle-income countries, where racial, ethnic, religious and inadequate health care settings contribute to the risk of breast cancer is needed. Adequate knowledge about breast cancer risk factors in Asian populations is expected to reduce breast cancer mortality, especially in Asian countries.

2. Material and methods

As shown in Figure 1, this three-step study was designed to evaluate the outcomes of the risk of breast cancer using the GM or BCRAT in an Asian population. We followed the PICO/PITQ (P – Population, I – Issues, O/C – Outcome/Comparison, T – Type of study) framework to answer the research question. The PICO/PITQ model is a tool used to organize and focus database queries to help identify terms and concepts in the literature search [44]. The researcher modified the model as a guide for answering the research questions, as illustrated in Table 1.

The first step involves formulating the research question, thereby conducting a systematic literature search within the Asian context. The following PICT question has been developed for this current study: What are the views of performance for GM to predict breast cancer risk in Asian countries? The last step consists of making recommendations for breast cancer instruments using the GM for Asian populations.

2.1. Search strategy in databases about instrument-risk breast cancer

Comprehensive keyword searches in databases such as PubMed, MEDLINE, Scopus, Web of Science (Science Citation Index (SCI)) and Social Science Citation Index (SSCI), and Google Scholar as well as grey literature sources were considered to identify breast cancer risk using the GM applied in the Asian population. The last electronic search was conducted on June 19, 2019. The main keywords were entered by a combination of Medical Subject Heading (MeSH) terms and text words, including “breast cancer” OR “mammary” OR “carcinoma” OR “tumor” OR “neoplasm” AND “risk assessment tool” OR “BCRAT” OR “breast cancer prediction”, “Gail model”, and “Asia” OR “Asian”. Any publication of every design (observational studies, cross-sectional, cohort, case studies, case series, clinical trials, etc.) were identified and searched from January and May 2019. Studies that met the following inclusion criteria were included: published in English; accessible in full-text; assessed breast cancer risk instruments using the GM applied in Asian populations; and provided sufficient data. Sufficient data assessed by the method of all articles involving in this study addressed the area under the curve (AUC) or the expected (E) to observed (O) ratio of predicting breast cancer risk or measuring a 5-years breast cancer risk and lifetime breast cancer risk. The exclusion criteria were articles that were not published in English, including proceedings, case reports, scientific conference articles, article reviews, publications that were not in the databases above, and studies that did not report sufficient data.

3. Results

In total, 120,263 English language articles were retrieved starting from 2010 which was the year that the GM or BCRAT in the Asian population was available for testing, to 2018. There were 77 references found after a detailed screening of the titles and abstracts based on data related to the application of the breast cancer GM. Then, after full-text reviews and the removal of duplicated articles, as many as 25 articles were screened that further met the eligibility criteria. Five studies were discarded due to no available full-text report. Ultimately, only twenty relevant articles were used in this literature review (Figure 2).

Twenty articles were yielded from the initial search [19, 22, 23, 25, 29, 32, 38, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. Of these, seven articles specifically addressed the area under curve (AUC) and/or the expected (E) to observed (O) ratio of predicting breast cancer risk, which represented the accuracy of the GM in the Asian population [19, 29, 32, 38, 48, 54, 57]. One publication reported the sensitivity and specificity; however, an AUC was not yielded [45]. Twelve articles addressed the primary outcome, which was the follow-up of patients after a diagnosis of breast cancer [22, 23, 25, 46, 47, 49, 50, 51, 52, 53, 55, 56].

Of the publications that employed the GM in Asian populations, one was a longitudinal cohort study, two were retrospectively designed, two had prospective longitudinal formats, and five were observational case-control studies. In this systematic review, we included ten cross-sectional studies, one cohort study, one case control study and one prospective study because they focused on the follow-up of invasive breast cancer from the instrument application used. Based on the GM, those articles reported that the mean breast cancer risk at the five years and over a lifetime were uncertain. The characteristics of each article are summarised in Table 2 and 3.

4. Discussion

This review highlights the scarcity of studies that have investigated the prediction of breast cancer risk using instruments such as the GM, especially focusing on Asian populations, with a detailed appraisal of the
characteristics of model performance, such as calibration, discrimination and accuracy. In particular, 6 studies provided an evaluation of how successful their prognostic models were, while most studies had no validation at all. However, none of the instruments in our literature review that have been validated were reported to be unsuitable with the standard of prediction models.

Instruments that have good calibration show a good discriminative capacity of the model to separate patients who experience events from those who do not [58, 59, 60, 61]. The standard of the discrimination test can be presented by a Kaplan-Meier graph from a survival analysis with different risk groups of breast cancer. Several tests of discrimination are provided by the R square value or the goodness of fit model [60]. D statistic [62], c-index [60], the net reclassification improvement (NRI) [63, 64], the integrated discrimination improvement (IDI) [63], decision curve analysis [65], separation (SEP) and the prognostic separation index (PSPI) [66, 67]. Categorical variables in predictive models can be examined by a comparison of the risk groups for breast cancer (for example, log rank and NRI), while continuous variables can be applied by only one of the tools, such as the c-index or D statistic. In this article, we found that none of the studies had an accepted standard of reporting for prognostic models, particularly in addressing Asian populations [68, 69]. However, several items in this instrument reported good prognostic testing, and it is likely that these items were conducted as a new model that was developed in some studies.

A good performance was mostly reported for the GM as a prognostic model among Western populations, such as American [70], Canadian [71], British [72], and Swedish populations [73, 74, 75, 76]. In our study, two publications applied the GM in Asian populations, such as Turkish [45] and Singaporean populations [32]; however, they had uncertain results in predicting invasive breast cancer, particularly among Asian populations. In addition, when the 5-year risk of 1.67% was employed as the cut-off point for the definition of high risk, several studies revealed that the current GM is inadequate for predicting individualized breast cancer risk among Asian women [22, 23, 25, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56]. The primary reason for the inadequate prediction of breast cancer risk using the GM is multifactorial, including varied ethnicity among breast cancer groups, patient characteristics, lifestyle changes and population aging.

Table 2. Notable publications in detail.

Study type	Total number of studies	Publication details
Cohort study	1	Park et al. [50]
Prospective study	2	Chaiyarat et al. [52], Zhao et al. [54]
Case-control study	5	Matsuura et al. [19], Gao et al. [29], Challa et al. [38], Min et al. [43], Uluoy et al. [46]
Retrospective study	2	Thomas et al. [25], Zhang et al. [57]
Cross-sectional study	10	Yilmaz et al. [46], Seyedmoaimi et al. [47], Cohler et al. [41], Erbil et al. [51], Mohammadi et al. [52], Khamseh-Pool et al. [32], Hene et al. [23], Mirghafourvand et al. [33], Ewail and Al-Aswaid [58], Al-Ombl [56]
Table 3. Summary table of reviewed articles.

Reference	Country	Year of publication	Design	Cases	Age, years	Study population	Sensitivity, specificity, AUC/C	5-year breast cancer risk	Lifetime breast cancer risk	The expected (95%) ratio for predicted breast cancer risk
Gallet et al. [42]	USA	1989	Case-control study	4496	>50	White females in the Breast Cancer Detection Demonstration Project (BCDDP)	Sensitivity = 13.3%, Specificity = 92%, AUC = 1.02	1.02	11.21	-
Uner et al. [46]	Turkey	2010	Case-control study	650	>35	Turkish females	Sensitivity = 11.3%, Specificity = 92%, AUC = 1.67	1.67	7.70	-
Tilmaz et al. [41]	Turkey	2011	Cross-sectional	415	>20	Turkish population	-	1.7%	15%	-
Seydoussmi et al. [47]	Iraq	2012	Cross-sectional	314	>35	Iranian Women	AUC = 0.86 (SD ± 1)	0.86	9.0 (SD ± 3.6)	-
Motamma et al. [49]	Egypt	2008	Case-control study	514	20-55	Asian-Americans in the Women's Health Initiative	AUC = 0.614, 95% CI: 0.567, 0.640	-	1.17, 95% CI: 0.99, 1.28	-
Clay et al. [52]	Singapore	2012	Prospective study	28,104	50 to 64	The Singapore Breast Cancer Screening Project (SBCCSP)	-	-	2.51 95% CI: 2.14, 2.96	-
Gao et al. [50]	Singapore	2013	Nested case-control study	28,883	≥45	The Singapore Breast Screening Program	AUC = 0.6098, 95% CI: 0.57, 0.65	-	-	1.00 95% CI: 0.88, 1.14
Challa et al. [48]	India	2013	Case-control study	200	>35	Indian population	Sensitivity = 51.9%, Specificity = 64%, AUC = 0.543	-	-	-
Cebor et al. [49]	Turkey	2013	Cross-sectional	4,815	≥50	Turkish females	-	17.6%	0.2%	-
Park et al. [51]	Korea	2013	Cohort	3,789	49.0-94.7 years	Seoul Breast Cancer Study	AUC = 0.875. 95% CI: 0.845, 0.902	-	-	2.96 95% CI: 2.10, 2.86
Min et al. [54]	Korea	2014	Case-control study	40,229		The Korean Breast Cancer Registration Program	AUC = 0.547, 95% CI: 0.500, 0.594	-	-	2.79 95% CI: 2.01, 3.56
Erdil et al. [51]	Turkey	2015	Cross-sectional	231	>35	Turkish women	-	0.88 ± 0.91	9.3 ± 3.2%	-
Mohammadbeigi et al. [52]	Iraq	2015	Cross-sectional	296	>54, 47.8 ± 8.8	Iranian females	-	0.37 ± 0.18	4.48 ± 0.92	-
Emam-Pool et al. [23]	Iran	2016	Cross-sectional	3,847	>35	Iranian women	-	11.71 ± 3.91	-	-
Becker et al. [23]	Qatar	2017	Cross-sectional	1488	≥35	Arabic women	-	1.12 ± 0.32	10.57 ± 3.1	-
Thomas et al. [35]	India	2016	Retrospective study	222	>20	Indian population	-	92%	86%	-
Mighlakourovand et al. [53]	Iran	2016	Cross-sectional	560	≥35	Iranian population	-	0.6% (SD = 0.2%)	8.9% (SD = 2.5%)	-
Zhou et al. [54]	China	2017	Prospective study	3030	45-70	Chinese females	Sensitivity = 5%, Specificity = 97.1%, AUC = 0.842, 95% CI: 0.826, 0.858	-	-	-
Eswail and Al-Azzawi [55]	Iraq	2016	Cross-sectional	250	>35	Iraqi population	-	11.39 ± 4.5%	-	-
Al Onabi [56]	Saudi Arabia	2017	Cross-sectional	180	≥35, 41 ± 7.2	Saudi females	-	9.5 ± 5.4	-	-
Zhang et al. [57]	China	2018	Retrospective study	280	35-69	Chinese population	Sensitivity = 53.33%, Specificity = 77.69%, AUC = 0.665, 95% CI: 0.629, 0.701	-	-	-
Some limitations should also be acknowledged. First, several studies evaluated in this current study did not utilize the standard tools for assessing the methodological quality of the studies conducting prognostic testing. This is because a limited number of studies in Asian women and published in English have employed predicting breast cancer risk using the GM model. Second, some randomized trials followed up patients with invasive breast cancer, whereas prospective studies involved in this literature review were rare. However, our literature review had some strengths. First, a total of 20 published studies were not limited to publications with cross-tab data but extended to studies with AUCs and 95% CIs, the expected (E) to observed (O) ratio or the lifetime or 5-year follow-up of breast cancer risk. Second, the sample size conducted in the literature review was sufficient to estimate the reliability and enhance the statistical power of the data analysis. Third, the included studies were conducted in different countries, which made the results more generalizable. Therefore, we concluded that the conclusions based on the current evidence are relatively convincing.

5. Conclusions

In general, the current study has provided evidence that the application of the GM in predicting breast cancer risk among the Asian population is uncertain. The results are not strong enough to develop breast cancer risk in the setting of Asian countries. At present, there is a paucity of adequate performance of the GM in Asian countries for the model to be applicable across cultures or even outside the health care setting in which such instruments were developed. Involving the breast cancer risk of the Asian population in the development of a prognostic model with good statistical understanding is particularly important and can reduce flawed or biased models. Further research is necessary to identify the best methods to achieve well-suited prognostic models in the Asian population and should be a priority.

2. Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This work was supported by Kemenristek Dikti (Ministry of Research, Technology and Higher Education of Republic Indonesia) No PD-016/SK/PP/IJ/LPM/2019.

1. Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] J. Bray, J. Ferlay, L. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 68 (2018) 301–338.
[2] J. Bray, A. Jemal, N. Grey, J. Ferlay, D. Forman, Global cancer transitions according to the Human Development Index (2008–2010): a population-based study, Lancet Oncol. 14 (8) (2012) 790–801.
[3] J. Ferlay, L. Soerjomataram, R. Dikshit, et al., Cancer incidence and mortality worldwide, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136 (5) (2015) E359–E386.
[4] M. Ghanizadeh, Z. Fournier, A. Hafshejani, Incidence and mortality and epidemiology of breast cancer in the world, Asian Pac. J. Cancer Prev. APJCP 17 (50) (2016) 43–48.
[5] S.H. Hashemi, S. Karimi, B. Mahoobi, Lifestyle changes for prevention of breast cancer, Eleetron. Physiol. 6 (3) (2014) 894–905.
[6] J. Hamer, E. Werner, Lifestyle modifications for patients with breast cancer to improve prognosis and optimize overall health, Can. Med. Assoc. J. 189 (7) (2017) E80–E87.
[7] R. Sokharsenoyana, K. Komada, Y. Qiao, Managing the changing burden of cancer in Asia, BMC Med. 12 (2014) 3.
[8] J. Li, Z. Zhao, Mammography screening in less developed countries, SpringerPlus 4 (2015) 1–21.
[9] R.A. Da Costa Viola, G. Biler, G. Uemura, C.A. Ruiz, M.P. Caruso. Breast cancer screening in developing countries, Clinica 72 (4) (2017) 246–258.
[10] R. Kajian Tikun, S. Sutikno, Awareness, attitude, and practice of breast cancer screening women, and the associated socio-demographic characteristics, in northern Iran, Iran. J. Cancer Prev. 8 (4) (2015) e3429.
[11] M.H. Gill, L.A. Brzotin, D.P. Byar, et al., Projecting individualized probabilities of developing breast cancer for older women who are being annually examined, JNCI J Natl Cancer Inst 84 (24) (1990) 1879–1886.
[12] J.P. Costantino, M.H. Gill, D. Pee, et al., Validation studies for models projecting the risk of invasive and total breast cancer incidence, JNCI J Natl Cancer Inst 91 (18) (1999) 1541–1545.
[13] B. Fisher, J.P. Costantino, D.L. Wickerham, et al., Tamoxifen for the prevention of breast cancer: current status of the national surgical adjuvant breast and bowel project P-1 study, JNCI J Natl Cancer Inst 97 (23) (2005) 1652–1662.
[14] T.V. Glimelius, W. Gu, K.L. Kimmig, et al., Breast cancer risk prediction in women aged 25–50 years: impact of sex hormone concentration in the full model, Breast Cancer Res. 21 (2019).
[15] C. Nielsen, P. Procopio, L.S. Velentzis, et al., Prospective validation of the NCI breast cancer risk assessment tool (Gail model) on 60,000 Australian women, Breast Cancer Res. 20 (1) (2018) 15X.
[16] J.M. Guillaum, E. Fries, D. McClish, E.M. deFrance, J. Bedruch, Breast cancer risk assessment and risk perception in J. Behav. Med. 27 (2) (2004) 205–214.
[17] J. Livestock-Roman, L.S. Norren, J.A. Tore, et al., Impact of a primary care based intervention on breast cancer knowledge, risk perception and concern in a randomized, controlled trial, Breast Feat. 24 (4) (2015) 735–746.
[18] R.K. Matsuno, J.P. Costantino, H.G. Ziegler, et al., Projecting individualized absolute invasive breast cancer risk in asian and pacific islander American women, JNCI J Natl Cancer Inst 103 (12) (2011) 855–861.
[19] M.H. Gill, J.P. Costantino, D. Pee, et al., Projecting individualized absolute invasive breast cancer risk in asian American women, JNCI J Natl Cancer Inst 99 (22) (2007) 1762–1769.
[20] N.R. AtulRastam, H. Herberbhemer, Breast cancer risk assessment in indigen women at a public hospital, Gynecol. Oncol. 81 (2) (2001) 287–290.
[21] M. Khamrin-Pool, F. Majlesi, S. Nedjai, A. Montazeri, L. Fazaeli, Assessing breast cancer risk among iranian women using the gail model, Asian Pac. J. Cancer Prev. APMCP 17 (6) (2016) 3759–3762.
[22] A. Barou, P. Ghasi, H.R. El Ayoubi, A. Azzu, W.H. Dahan, Assessing breast cancer risk estimates based on the gail model and its predictors in qatar women, J. Prim Care Community Health 3 (3) (2017) 180–187.
[23] L.L. Adams-Campbell, R.H. Malamud, W.A.I. Frederick, M. Gaskin, R.L. Devore, W. McCannell-Bevery, Breast cancer risk assessments comparing Gail and CARE models in African-American women, Breast J. 15 (1) (2009) 572–578.
[24] S. Thomas, G. Beale, G.P. Pethesis, et al., Clinico-epidemiological profile of breast cancer patients and the retrospective application of Gail model 2: an indian perspective, Breast Dis. 36 (1) (2016) 15–22.
[25] P.L. Pieter Clement, M.M. Members-Vanveld, A. Llorens-Gonzalez, J.F. Magnussen GL. [Application of the Gail model of calculating risk in the population of Valencia], Clin Transl Oncol Off Publ. Red Spain Oncol Soc Nat Cancer Inst MEX 7 (8) (2005) 336–342.
[26] J. Novotny, L. Pecka, L. Petruskova, et al., Breast cancer risk assessment in the Czech female population—an adjustment of the original Gail model, Breast Care. Res. Text. 9 (5) (2009) 29–35.
[27] A. Czerwiak, G. D’Austa, M. De Marco, et al., Breast cancer risk factors: impact of an extended family history for breast cancer, Breast J. 14 (3) (2008) 221–227.
[28] F. Gao, D. Machan, K.V. Chance, et al., Assessing risk of breast cancer in an ethnically South-East Asia population (results of a multiple ethnic groups study), BMC Cancer 12 (S29) (2012) 1–14.
[29] S. Bonney, A. Gluck, B. Ramsay-Goldman, et al., Hormonal exposure and breast cancer in a sample of women with systemic lupus erythematosus, Rheumatology 43 (6) (2004) 670–671.
[30] Y. Tsuchida, L.C. Hartmann, M.H. Frost, S.E. Maloney, R.A. Viorkait, V.S. Pinkhas, Performance of the Gail model in individual women with hereditary breast disease, J. Clin. Oncol. 29 (15) (2011), 1525–1527.
[31] N.V. Chau, W. Ong, P.H. Tan, et al., Validation of the Gail model for predicting individual breast cancer risk in a prospective nationwide study of 28,104 Singapore women, Breast Cancer Res. 14 (12) (2012) R19.
[32] J. Ansie, A.S. Whitemore, T. Shiever, A. Streb, M.B. Terry, Breast cancer risk assessment across the risk continua: genetic and nongenetic risk factors contributing to differential model performance, Breast Cancer Res. 16 (4) (2012) R14.
[33] A. Baren, M. Verme, M. Romens, et al., Can the Gail model increase the predictive value of a positive mammogram in an European population screening setting? Results from a Spanish cohort, Breast Dis. 22 (1) (2013) 83–88.
[34] B.A. Rimer, G.A. Goldie, S.E. Hamillson, J. Sullivan-Huley, J.V. Loey, L. Bemstein, Validation of Bonner-Goldie breast cancer incidence model using an
independent data set, the California Tendence Study, Breast Can. Res. Treat. 142 (1) (2013) 187–202.

[36] R. Pastore-Driessen, N. Arsenie, M. Ekkra, et al., Recalibration of the Gail model for predicting invasive breast cancer risk in Spanish women: a population-based cohort study, Breast Can. Res. Treat. 138 (1) (2013) 249–259.

[37] G.S. Ure, M. Mahamoudi, A. Biesterfuss, et al., Using SNP prototypes to improve the discrimination of a simple breast cancer risk prediction model, Breast Can. Res. Treat. 139 (3) (2013) 867–896.

[38] J.W. Min, M.-C. Chang, R.R. Lee, et al., Validation of risk assessment models for predicting the incidence of breast cancer in Korean women, J. Breast Can. Res. Treat. 139 (3) (2013) 236–239.

[39] M. Powell, F. Jemiai, K. Choyne, J. Nitcholm, L. Perlis, I. Eremin, Assessing breast cancer risk models in Maori Country, a population with high rates of delayed childfree, Clin. Breast Can. 14 (3) (2014) 213–220, e1.

[40] A.M. McCarthy, B. Schiller, D. Kantor, et al., The use of the Gail model, body mass index and SNPs to predict breast cancer among women with abnormal (BI-RADS 4) mammograms, Breast Can. Res. Treat. 17 (11) (2015).

[41] J. Darcis, E. Gough, J. Holtmar, et al., A comparison between different prediction models for invasive breast cancer occurrence in the French E3N cohort, Breast Can. Res. Treat. 150 (2) (2015) 415–426.

[42] A.B. Bereswill, F. Firth, A.M. Astley, et al., Mamographic density adds accuracy to both the Tyrr-Carlini and Gail breast cancer risk models in a prospective UK screening cohort, Breast Cancer Res. 17 (2) (2015).

[43] M.P. Benecke, E.M. Johns, M.L. Heitrey, et al., Projecting individualized absolute invasive breast cancer risk in US hispanic women, J. Natl. Cancer Inst. 109 (2) (2016) 1–6.

[44] M.B. Eriksen, T.F. Funch-Jensen, The impact of patient, intervention, comparison, outcome (PICCO) as a search strategy on literature search quality: a systematic review, J. Med. Lit. Rev. 106 (4) (2018) 420–431.

[45] C. Ulloa, I. Koperweis, K. Kosa, S. Akhtar, R. Cramer, Applicability of the Gail model for breast cancer risk assessment in Turkish female population and evaluation of breastfeeding as a risk factor, Breast Can. Res. Treat. 120 (2) (2010) 419–424.

[46] M. Yilmaz, G. Guler, M. Becker, N. Guler, Risk of breast cancer, health beliefs and screening behavior among Turkish academic women and housewives, Asian Pac. J. Cancer Prev. APJCP 12 (10) (2011) 3657–3662.

[47] T. Seyedmoos, S. Fakher-shirzi, Z. Rezaian, Risk of developing breast cancer by utilizing Gail model, Women Health 52 (4) (2012) 391–402.

[48] V.R. Challia, K. Swamydula, N. Shetty, Assessment of the clinical utility of the Gail model in estimating the risk of breast cancer in women from the Indian population, Cancermedicinc 7 (363) (2012) 1–7.

[49] E. Ozer, G. Memer, F. Oktar, et al., Breast cancer risk and early diagnosis applications in Turkish women aged 50 and over, Asian Pac. J. Cancer Prev. APJCP 14 (10) (2013) 5877–5882.

[50] B. Park, S.H. Ma, A. Shin, et al., Korean risk assessment model for breast cancer risk prediction, PloS One 8 (10) (2013), e70736.

[51] N. Ishii, N. Dondar, C. Iman, N. Bokuhash, Breast cancer risk assessment using the Gail model: a Turkish study, Asian Pac. J. Cancer Prev. APJCP 14 (1) (2013) 303–306.

[52] A. Mohammadbeigi, N. Mohammadbeigi, R. Vallandiez, Z. Montazem, M. Mohammadi, R. Amari, Lifetime and 5 years risk of breast cancer and attributable risk factor according to Gail model in Iranian women, J. Pharm. BioAllied Sci. 7 (3) (2015) 207–211.

[53] M. Mithapoorzad, S. Mohammad-akbarzadeh-Ghadamia, A. Ahmadvand, M. Rahi, Breast cancer risk based on the Gail model and its predictors in Iranian women, Asian Pac. J. Cancer Prev. APJCP 17 (8) (2016) 3741–3745.

[54] J. Zhuo, X. Sheng, L. Peng, H. Wang, L. Xiao, J. Dong, Evaluation of risk assessment tools for breast cancer screening in Chinese population, Int. J. Clin. Exp. Med. 10 (2) (2017) 3892–3897.

[55] S.H. Eissa, L.H.A. Al-Azzawi, Breast cancer risk assessment by Gail model in women of Baghdad, Alex J Med 53 (2) (2017) 163–166.

[56] H.H. Al-Dhali, Breast cancer risk assessment using the Gail model and its predictors in Saudi women, Asian Pac. J. Cancer Prev. APJCP 18 (11) (2017) 2971–2975.

[57] F. Zhang, J. Liu, S. Xu, Liu. Zhang, X. Gao, Use of receiver operating characteristic (ROC) curve analysis for tyrosinase and Gail in breast cancer screening in Jiangxi province, China, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 24 (2016) 5528–5532.

[58] M. Mehta, S. Elg路d, J. Cozzari, C. Serru, M. Mehta, A. Mattutti, A. Mattutti, Breast cancer screening in men and women: a systematic review and meta-analysis, Breast Cancer Res. Treat. 156 (1) (2016) 101–108.

[59] S. Haseeb, L.A. Al-Azzawi, Breast cancer risk assessment by Gail model in women of Baghdad, Alex J Med 53 (2) (2017) 163–166.

[60] H.H. Al-Dhali, Breast cancer risk assessment using the Gail model and its predictors in Saudi women, Asian Pac. J. Cancer Prev. APJCP 18 (11) (2017) 2971–2975.

[61] L. Zhang, J. Liu, S. Xu, Liu. Zhang, X. Gao, Use of receiver operating characteristic (ROC) curve analysis for tyrosinase and Gail in breast cancer screening in Jiangxi province, China, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 24 (2016) 5528–5532.

[62] K. Mehta, S. Elg路d, J. Cozzari, C. Serru, M. Mehta, A. Mattutti, A. Mattutti, Breast cancer screening in men and women: a systematic review and meta-analysis, Breast Cancer Res. Treat. 156 (1) (2016) 101–108.

[63] S. Haseeb, L.A. Al-Azzawi, Breast cancer risk assessment by Gail model in women of Baghdad, Alex J Med 53 (2) (2017) 163–166.

[64] H.H. Al-Dhali, Breast cancer risk assessment using the Gail model and its predictors in Saudi women, Asian Pac. J. Cancer Prev. APJCP 18 (11) (2017) 2971–2975.

[65] L. Zhang, J. Liu, S. Xu, Liu. Zhang, X. Gao, Use of receiver operating characteristic (ROC) curve analysis for tyrosinase and Gail in breast cancer screening in Jiangxi province, China, Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 24 (2016) 5528–5532.

[66] K. Mehta, S. Elg路d, J. Cozzari, C. Serru, M. Mehta, A. Mattutti, A. Mattutti, Breast cancer screening in men and women: a systematic review and meta-analysis, Breast Cancer Res. Treat. 156 (1) (2016) 101–108.

[67] S. Haseeb, L.A. Al-Azzawi, Breast cancer risk assessment by Gail model in women of Baghdad, Alex J Med 53 (2) (2017) 163–166.

[68] H.H. Al-Dhali, Breast cancer risk assessment using the Gail model and its predictors in Saudi women, Asian Pac. J. Cancer Prev. APJCP 18 (11) (2017) 2971–2975.
Assessment of the risk of developing breast cancer using the Gail model in Asian females: A systematic review

PRIMARY SOURCES

1. shura.shu.ac.uk
 Internet
 67 words — 2%

2. Prasenjit Chakraborty, Tanusri Karmakar, Neeraj Arora, Geetashree Mukherjee. "Immune and genomic signatures in oral (head and neck) cancer", Heliyon, 2018
 Crossref
 27 words — 1%

EXCLUDE QUOTES: ON
EXCLUDE BIBLIOGRAPHY: ON
EXCLUDE MATCHES: < 1%