Stent thrombosis and adverse cardiovascular outcomes observed between six months and five years with sirolimus-eluting stents and other drug-eluting stents in patients with Type 2 diabetes mellitus complicated by coronary artery disease

A systematic review and meta-analysis

Pravesh Kumar Bundhun (MD)a, M. Zafooruddin Sani Soogund (MBBS)b, Manish Pursun (MBBS)b, Meng-Hua Chen (PhD)a,*

Abstract

This study aimed to compare 6 months to 5 years stent thrombosis (ST) and adverse cardiovascular outcomes associated with sirolimus-eluting stents (SES) and other drug-eluting stents (DES) in patients with type 2 diabetes mellitus (T2DM).

Electronic databases were searched for studies comparing SES with other DES in patients with T2DM. Total ST, definite ST, probable ST, and other adverse cardiovascular outcomes reported between 6 months and 5 years were considered as the clinical end points in this study. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for categorical variables and the pooled analyses were performed with RevMan 5.3 software.

Twenty-nine studies involving a total number of 25,729 patients with diabetes were included in this meta-analysis. SES were not associated with significantly higher total, definite, and probable STs with OR: 0.95, 95% CI: 0.77–1.17, P = 0.62; OR: 0.94, 95% CI: 0.65–1.37, P = 0.76; and OR: 1.05, 95% CI: 0.77–1.45, P = 0.74, respectively. SES were also noninferior to the other non-sirolimus drug eluting stents (non-SE DES) in terms of all-cause mortality, cardiac death, myocardial infarction, and stroke with OR: 0.92, 95% CI: 0.82–1.03, P = 0.16; OR: 1.09, 95% CI: 0.88–1.35, P = 0.44; OR: 0.92, 95% CI: 0.80–1.06, P = 0.26; and OR: 0.79, 95% CI: 0.49–1.28, P = 0.43, respectively. Target vessel revascularization, target lesion revascularization, and major adverse cardiac events were also similarly reported between SES and non-SE DES with OR: 1.04, 95% CI: 0.83–1.31, P = 0.72; OR: 1.25, 95% CI: 0.95–1.64, P = 0.11; and OR: 1.06, 95% CI: 0.90–1.25, P = 0.49, respectively.

During this particular follow-up period, SES were not associated with any increase in ST among these patients with T2DM. Mortality and other adverse cardiovascular outcomes were also not significantly different between these 2 groups. Hence, SES should be considered neither superior nor inferior to other DES. They are expected to be equally effective and safe to use in patients with T2DM.

Abbreviations: DES = drug-eluting stent, EES = everolimus-eluting stent, PES = paclitaxel-eluting stent, SES = sirolimus-eluting stent, T2DM = type 2 diabetes mellitus, ZES = zotarolimus-eluting stent.

Keywords: adverse cardiovascular outcomes, coronary artery diseases, drug-eluting stents, sirolimus-eluting stents, stent thrombosis, type 2 diabetes mellitus

1. Introduction

Percutaneous coronary intervention with drug-eluting stents (DES) is becoming more demanding year by year, especially among patients with diabetes with coronary artery diseases.\(^1\) Even if the revascularization rate has significantly decreased in patients with diabetes treated by DES,\(^2\) stent thrombosis (ST) is still a major concern in these patients.\(^3\) Recently, controversies were observed when different types of individual DES were compared. In patients with type 2 diabetes mellitus (T2DM), several studies showed sirolimus-eluting stents (SES) to be more effective compared to paclitaxel-eluting stents (PES).\(^4\) However, other studies showed SES and PES to be comparable.\(^5\) When SES were compared to everolimus-eluting stents (EES), EES were associated with better outcomes in patients with T2DM.\(^6\) However, in other studies EES were noninferior to SES.\(^7\) It is believed that different follow-up periods reported in several
cohorts could indirectly have contributed to these controversies. Therefore, this study aimed to compare 6 months to 5 years ST and other adverse cardiovascular outcomes associated with SES and other DES, referred in this study as “non-SE DES,” using a larger number of patients with diabetes.

2. Methods

2.1. Data sources and search strategies
PubMed, Medline, EMBASE, and the Cochrane library were searched for randomized controlled trials and observational studies comparing SES with other DES in patients with diabetes by tying the words or phrase “sirolimus eluting stents and drug eluting stents and diabetes mellitus.” The word “drug eluting stents” was later replaced by the specific names of other DES such as “paclitaxel eluting stents, everolimus eluting stents and zotarolimus eluting stents.” To further enhance this search, abbreviations of the above-mentioned words such as “SES, DES, PES, EES, ZES” were also used. Reference lists of most suitable articles were also checked for relevant studies. This search was restricted only to articles published in English.

2.2. Inclusion and exclusion criteria
Studies were included if:
(a) They were randomized controlled trials or observational studies.
(b) They compared SES with non-SE DES in patients with T2DM.
(c) They reported ST and/or other adverse cardiovascular outcomes observed between SES and non-SE DES.
(d) They had a follow-up period between 6 months and 5 years.

Studies were excluded if:
(a) They were meta-analyses, case studies, or letters to editors.
(b) They did not compare SES with non-SE DES in patients with T2DM.
(c) They did not report ST and/or other adverse cardiovascular outcomes observed between SES and other DES.
(d) They had a follow-up period of <6 months.
(e) They were associated with the same trial or they were duplicates.

2.3. Outcomes and follow-ups
This study assessed 6 months to 5 years ST and other cardiovascular outcomes in patients with diabetes treated by SES and non-SE DES. The end points analyzed in this study included:
(a) ST that was defined according to the Academic Research Consortium[8] and involved:
(i) Total ST
(ii) Definite ST
(iii) Probable ST
(b) All-cause mortality
(c) Cardiac mortality
(d) Myocardial infarction (MI)
(e) Target vessel revascularization (TVR)
(f) Target lesion revascularization (TLR)
(g) Stroke

Major adverse cardiac events (MACEs) that consisted of death, MI, and revascularization (composite end point, which consisted of death, MI, and ST, was reported in only 1 study and was therefore considered in the same category as MACEs).

Patients were followed for a period ranging from 6 months to 5 years. However, ST was also analyzed during a follow-up period ranging from 6 months to 2 years and a follow-up period of >2 years. The outcomes reported in each study along with their follow-up periods have been summarized in Table 1.

According to Table 1, ST was reported in >20 studies, whereas all-cause mortality was reported in 26 studies. When ST was further subdivided, definite ST was reported in 12 studies, whereas only 9 studies reported probable ST. MI was reported in 25 studies and MACEs were reported in 24 studies. TVR and TLR were reported in 22 studies each and stroke was reported in only 3 studies.

2.4. Data extraction and review
Three authors (PKB, MZSS, and MP) independently reviewed the studies that were selected for this meta-analysis and then assessed whether these articles were fully eligible. The type of study reported, data concerning the total number of patients with T2DM treated by SES and the other DES, respectively, the different types of DES involved, data concerning the baseline features of the patients included, the reported outcomes, as well as the corresponding follow-up periods were carefully extracted. This was not an easy task for the authors; therefore, any disagreement or confusion about including certain studies or data was carefully discussed in order to finally reach a decision. However, if a final decision could not be reached, the fourth
author (MHC) was contacted to solve this issue. The bias risk was assessed using the 6 main components recommended by the Cochrane Collaboration.\(^9\)

2.5. Statistical analysis

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were considered in this study.\(^{10}\) Assessment of heterogeneity during the subgroup analysis was performed using the following:

a. Cochrane Q-statistic test, whereby a “P value” ≤0.05 was considered statistically significant and a “P value” >0.05 was considered statistically insignificant.

b. Cochrane I\(^2\)-statistic test, whereby an I\(^2\) value of 0% indicated no heterogeneity, and an increased heterogeneity was represented by a larger value (an I\(^2\) value of <25% indicated a low heterogeneity, an I\(^2\) value ranging from 25% to 50% represented a moderate heterogeneity, and an I\(^2\) value of >50% indicated a higher heterogeneity).

If I\(^2\) was ≤50%, a fixed effect model was used during the statistical analysis. However, if I\(^2\) was >50%, a random effect model was used.

Funnel plots were assessed for publication bias. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for categorical variables. The pooled analyses were performed with RevMan 5.3 software.

Ethical approval was not necessary for this type of study that involved data obtained from randomized trials and observational cohorts.

3. Results

3.1. Search results

A total number of 577 articles were obtained from PubMed, Medline, EMBASE, the Cochrane library, and the reference lists of suitable articles. A total of 496 articles were eliminated after a careful assessment of the titles and abstracts because they were not related to the topic of this research. Another 41 articles were

Figure 1. Flow diagram representing the study selection.
eliminated because they were duplicates. Forty full-text articles were assessed for eligibility. Eleven articles were further eliminated because 2 articles were meta-analyses, 4 articles were case studies or letters addressed to editors, 1 study reported a follow-up period of <6 months, and 4 studies were associated with the same trials. Finally, 29 articles were selected and included in this meta-analysis. Fig. 1 represents the flow diagram for the study selection.

3.2. General features of the studies included

Twenty-nine studies (12 trials and 17 observational studies) involving a total number of 25,729 patients with T2DM (10,520 patients were treated by SES and 15,209 patients were treated by non-SS DES) were included in this meta-analysis. SES were compared with PES, EES, and zotarolimus-eluting stents (ZES). Twenty-three studies compared SES with PES. Nine studies compared SES with EES, whereas only 4 studies compared SES with ZES in these patients with T2DM. Study Kedhi2012 involved the largest number of patients treated by SES and non-SS DES. The general features of the studies included in this meta-analysis have been summarized in Table 2.

3.3. Baseline features of the studies included

The baseline characteristics of the studies included in this meta-analysis have been summarized in Table 3. Studies not included in Table 3 did not report any baseline feature in their original manuscript and were therefore ignored. A mean age ranging from 57.4 to 72.7 years was reported among the patients. More details concerning the percentage of males in each study and groups, patients with hypertension, dyslipidemia, and the percentage of patients who smoke have all been listed in Table 3. According to Table 3, there was no significant difference in the baseline features among patients treated by SES and patients treated by non-SE DES.

Table 4 lists the percentage of patients on insulin therapy. Studies not included in Table 4 did not report the number of patients on insulin therapy and they have therefore been ignored. According to Table 4, study Buch2008 involved 100% of patients with insulin-treated T2DM in the SES and non-SE DES groups, whereas study Kedhi2012 reported 45% of patients in the SES group who were on insulin therapy and 42% patients in the non-SE DES group treated by insulin therapy. Details involving insulin treatment have been given in Table 4.

3.4. Stent thrombosis associated with SES and non-SE DES

Table 5 summarizes the results of this meta-analysis. Between 6 months and 5 years, SES were not associated with significantly higher total, definite, and probable STs with OR: 0.95, 95% CI: 0.77–1.17, P = 0.62; OR: 0.94, 95% CI: 0.65–1.37, P = 0.76; and OR: 1.03, 95% CI: 0.77–1.45, P = 0.74, respectively, compared to non-SE DES. SES were non-inferior to non-SE DES in these patients with T2DM. Results comparing 6 months to 5 years ST have been represented in Fig. 2.
Six months to 2 years ST and ST \geq2-year follow-up were also analyzed. From 6 months to 2 years, total ST was noninferior between these 2 groups with OR: 1.04, 95% CI: 0.76–1.42, $P = 0.81$. Definite and probable STs were also similarly reported with OR: 1.51, 95% CI: 0.82–2.78, $P = 0.19$ and OR: 1.55, 95% CI: 0.84–2.85, $P = 0.16$, respectively, in these patients with T2DM. These results have been represented in Fig. 3.

After 2 years, total, definite, and probable STs were not significantly different in these patients with diabetes with OR: 0.88, 95% CI: 0.67–1.16, $P = 0.31$; OR: 0.69, 95% CI: 0.42–1.12, $P = 0.13$; and OR: 0.90, 95% CI: 0.62–1.32, $P = 0.59$, respectively. These results have been illustrated in Fig. 4.

Table 3
Baseline features of the studies included in this meta-analysis.

Studies	Mean age, y	Males, %	SES/DES	HT, %	Di, %	Cs, %
Billig2008	60.6/63.4	60.4/72.0	79.6/81.7	65.7/55.9	23/21.2	
Briguori2011	63.8/64.5	57.0/75.7	72.5/75.3	61.8/62.0	17/19.0	
Buch2008	63.8/62.5	49.7/51.9	91.9/00.0	90/4.81	17/0.130	
Chong2010	60.0/59.7	68.4/68.9	75.9/75.4	82.3/76.5	26/26.7	
Costa2015	62.1/61.7	80.5/69.8	85.4/87.7	69/86.8	57/5.80	
Desch2011	67.0/67.3	69.0/86.0	98/0/97.0	—	23/0.270	
Franzone2015	68.6/67.1	77.0/75.5	86.0/82.5	73.5/75.1	21/2.251	
Jesen2012	63.3/63.9	73.5/75.3	75.8/78.0	82.5/89.0	27/7.243	
Kesh2012	65.9/67.1	88.0/79.0	78.8/77.4	61/61.3	27/7.243	
Kim2008	62.3/64.7	59.8/64.6	68.5/68.0	37.4/35.0	26/4.316	
Kim2011	63.5/63.2	65.6/62.3	72.8/66.5	35/1.46	27/2.080	
Kuchukatli2006	64.3/65.8	57.0/64.0	89.0/89.0	90/8.70	16/0.160	
Lee2011	61.1/60.7	61.0/55.0	57/62.0	27/3.51	27/0.285	
Maeng2009	66.0/65.0	84.7/74.0	63/67.5	60/91.0	38/0.230	
Maeng2015	62.5/63.0	—	71/4/76.8	82/791.0	23/7.227	
Nakamura2016	69.0/68.7	71.3/73.6	70.8/82.7	67/768.9	18/9.207	
Simek2013	64.1/65.6	70.4/67.8	74.7/68.6	62/96.8	39/9.282	
Starkovic2006	65.0/63.0	84/42.3	71/4/70.8	67/36.3	53/7.478	
Wolff2010	63.0/64.3	61.9/61.3	86/9/33	84/79.0	31/6.310	
Chu2009	62.6/63.2	68.3/68.5	36/43.6	—	—	
Dammert2007	62.6/63.8	66/67.0	69/67.0	70/83.0	20/0.190	
Jang2013	63.2/62.7	59.9/61.4	71.3/72.7	60/94/87	23/3.253	
Sato2012	67.5/68.8	72.170.4	62/63.0	60.5/61.1	27/9.240	
Balducelli2010	67.0/65.9	68.0/72.9	70/3/68.1	47/96.1	28/4.292	
Buja2012	72.7/72.5	66.7/65.6	83/3/86.0	67/36.6	16/4.176	
Jeong2013	66.8/66.8	62/62.0	72/72.0	—	42/4.424	
Kim m2008	62.9/61.5	71.876.2	63/57.28	30.6/31.0	20/0.262	

$Cs =$ current smoker, $DES =$ drug-eluting stent, $Di =$ dyslipidemia, $HT =$ hypertension, $SES =$ sirolimus-eluting stent.

Table 4
Patients on insulin therapy.

Studies	Patients from the SES group, %	Patients from the other DES group, %
Briguori2011	30.0	25.0
Buch2008	100	100
Desch2011	45.0	42.0
Franzone2015	54.6	31.0
Kesh2012	49.5	49.8
Kim2008	8.90	9.70
Kim2011	12.6	18.1
Lee2011	16.0	16.5
Maeng2009	41.0	38.0
Simek2013	24.0	24.5
Starkovic2006	29.3	34.5
Wolff2010	33.4	29.6
Dammert2007	31.0	28.0
Balducelli2010	31.2	26.3
Buja2012	31.0	35.8
Kim m2008	18.8	13.1

$DES =$ drug-eluting stent, $SES =$ sirolimus-eluting stent.
3.5. Adverse cardiovascular outcomes associated with SES and non-SE DES

Six months to 5 years adverse cardiovascular outcomes associated with SES and non-SE DES were also compared in these patients with T2DM. SES were noninferior to the other non-SE DES in terms of all-cause mortality, cardiac death, MI, and stroke with OR: 0.92, 95% CI: 0.82–1.03, P = 0.16; OR: 1.09, 95% CI: 0.88–1.35, P = 0.44; OR: 0.92, 95% CI: 0.80–1.06, P = 0.26; and OR: 0.79, 95% CI: 0.49–1.28, P = 0.43, respectively. These results have been shown in Fig. 5.
TVR, TLR, and MACEs were also similarly reported with SES and non-SS DES, with OR: 1.04, 95% CI: 0.83–1.31, P = 0.72; OR: 1.25, 95% CI: 0.95–1.64, P = 0.11; and OR: 1.06, 95% CI: 0.90–1.25, P = 0.49, respectively. These results have been illustrated in Fig. 6.

3.6. Sensitivity analysis

After visually assessing the funnel plots (Fig. 7A–D), a low or moderate publication bias was observed among several subgroups analyzing ST in these patients with T2DM. However, when analyzing the other cardiovascular outcomes, an increased risk of bias was observed in certain but not all of the subgroups.

4. Discussion

Controversies have been observed when comparing SES with other DES such as PES, EES, or ZES in patients with T2DM. This analysis showed that SES were neither inferior nor superior to non-SE DES in patients with T2DM. Between 6 months and 5 years, total, definite, and probable STs were not significantly different in these 2 groups. Other adverse cardiovascular outcomes such as mortality, cardiac death, MI, stroke, TVR, TLR, and MACEs were also similarly manifested among patients treated with SES and non-SE DES.

Similarly, the meta-analysis involving 11,000 patients with T2DM showed no significant difference in MACEs reported
between SES and PES. Moreover, another meta-analysis involving 7370 patients obtained from 5 randomized trials showed no significant difference between EES and SES in terms of safety and clinical efficacy. The results were consistent with the current analysis, even though PES, EES, and ZES were combined together.

In contrast, Bundhun et al recently showed EES to be associated with significantly better adverse clinical outcomes in patients with diabetes when compared with non-EE DES. However, a 1-year follow-up period might not be sufficient to analyze ST and other cardiovascular outcomes if a long-term follow-up was to be considered. Another meta-analysis that compared SES and PES in patients with diabetes with coronary artery diseases showed SES to be associated with a significantly reduced TLR compared to PES. However, the risks of MI, ST, and death were similar. Furthermore, the analysis comparing SES with PES in patients with diabetes again showed SES to be superior compared to SES in terms of TLR and restenosis; however, SES were noninferior to SES in terms of ST, cardiac death, and MI. The meta-analysis published by Yan et al comparing second-generation DES (EES) with first-generation DES showed the former to be highly effective in reducing the risk of MACEs in patients with T2DM. However, their study compared EES with SES separately, which was different when compared to the current study, whereby SES were compared with the other DES combined together (non-SE DES).

In the mixed treatment comparison analysis including 22,844 patients with diabetes obtained from randomized trials, all DES were effective when compared to bare metal stents. Moreover, when SES were compared with PES, they were superior in lowering late lumen loss. However, the current study did not analyze lumen loss. Also, when EES were compared to other DES, EES were associated with better outcomes in these patients with T2DM. In this analysis PES were dominating. Therefore, other DES such as EES that could most probably be more effective than SES could not efficiently show their effectiveness. Lee et al also compared SES with PES in patients with T2DM. Their results showed SES to be superior compared to PES in improving clinical outcomes. However, their study had a follow-up period of only 9 months, whereas the current analysis involved a follow-up period ranging from 6 months to 5 years. Moreover, even if the SORT OUT III substudy showed SES to be associated with better

Study or Subgroup	non-SE DES	SES	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI	
Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI
Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI
1.2.1 Total stent thrombosis					
Briquoir2011	3 75	1 76	0.5%	3.13 [0.32, 30.74]	
Kim2009	17 206	26 428	7.7%	1.39 [0.74, 2.63]	
Lee2011	3 200	8 200	3.9%	0.37 [0.10, 1.40]	
Maeng2015	3 105	3 105	1.0%	1.65 [0.39, 7.09]	
Nakamura2016	3 179	2 159	1.0%	1.34 [0.22, 8.11]	
Olsen2014	1 169	2 168	1.0%	0.49 [0.04, 5.50]	
Slimex2013	105 1351	60 612	37.7%	0.78 [0.56, 1.08]	
Subtotal (95% CI)	2288 1748	53.2%	0.88 [0.67, 1.16]		
Total events	137	102			
Heterogeneity: Ch² = 6.52, df = 6 (P = 0.37); P = 8%					
Test for overall effect: Z = 0.88 (P = 0.38)					

| 1.2.2 Definite stent thrombosis |
Kim2009	4 206	3 428	0.9%	2.81 [0.62, 12.65]
Maeng2015	0 108	2 105	1.2%	0.19 [0.01, 4.02]
Nakamura2016	3 179	1 159	0.5%	2.69 [0.28, 26.16]
Olsen2014	1 169	2 168	1.0%	0.49 [0.04, 5.50]
Slimex2013	28 1351	23 612	15.4%	0.54 [0.31, 0.95]
Subtotal (95% CI)	2813 1472	19.1%	0.69 [0.42, 1.12]	
Total events	36	31		
Heterogeneity: Ch² = 6.18, df = 4 (P = 0.19); P = 35%				
Test for overall effect: Z = 1.52 (P = 0.13)				

| 1.2.3 Probable stent thrombosis |
Kim2008	3 206	9 428	2.9%	0.69 [0.18, 2.57]
Maeng2015	1 108	0 105	0.2%	2.94 [0.12, 73.09]
Nakamura2016	0 179	1 159	0.8%	0.29 [0.01, 7.28]
Slimex2013	76 1351	37 612	23.8%	0.93 [0.62, 1.39]
Subtotal (95% CI)	1844 1304	27.7%	0.90 [0.62, 1.32]	
Total events	80	47		
Heterogeneity: Ch² = 1.17, df = 3 (P = 0.76); P = 0%				
Test for overall effect: Z = 0.54 (P = 0.59)				

| Total (95% CI) | 6145 | 4524 | 100.0% | 0.85 [0.70, 1.04] |
| Total events | 253 | 180 |
| Heterogeneity: Ch² = 14.87, df = 15 (P = 0.46); P = 0% |
| Test for overall effect: Z = 1.56 (P = 0.12) |
| Test for subgroup differences: Ch² = 0.91, df = 2 (P = 0.63); P = 0% |

Figure 4. Comparing stent thrombosis between SES and non-SE DES during a follow-up period of >2 years. CI = confidence interval, DES = drug-eluting stent, df = degree of freedom, SES = sirolimus-eluting stent.
clinical outcomes compared to ZES,\(^{[45]}\) only a follow-up period of 18 months was considered.

4.1. Novelty

This study is new in several ways. First of all, it is among the first meta-analyses comparing SES with other DES using a large number of patients with diabetes among whom ST is expected to be more prominent after coronary angioplasty. Therefore, this research represents a new idea in clinical medicine. Second, previous meta-analyses comparing different types of DES mainly included patients only from randomized trials. However, this analysis involved a mixture of patients obtained from randomized trials and observational studies.

Figure 5. Comparing the adverse cardiovascular outcomes (part 1). CI = confidence interval, DES = drug-eluting stent, df = degree of freedom, SES = sirolimus-eluting stent.
observational studies representing another new feature. In addition, this meta-analysis compared ST and the other adverse cardiovascular outcomes between 6 months and 5 years follow-up. Total, definite, and probable STs were also analyzed during a follow-up period ranging from 6 months to 2 years, and a long-term follow-up >2 years showing another new feature in this study.

4.2. Limitations

This study also has several limitations. First of all, the inclusion of data from observational studies is believed to be associated with a high risk of bias. Therefore, an increased level of heterogeneity was observed when analyzing several subgroups of adverse cardiovascular outcomes. This could also have been due to the

Figure 6. Comparing the adverse cardiovascular outcomes (part 2). CI = confidence interval, DES = drug-eluting stent, df = degree of freedom, SES = sirolimus-eluting stent.

Study or Subgroup	Events	SEB	Total	Odds Ratio M-H, Random, 95% CI
1.1. Major Adverse cardiac Events (MACE)				
Bundhun2010	86	339	425	1.05 (0.97, 1.14)
Buser2009	24	93	117	2.00 (1.06, 3.81)
Buser2011	20	150	170	2.40 (1.53, 3.72)
Buser2013	25	189	214	0.69 (0.54, 0.88)
Buser2012	26	192	218	0.89 (0.76, 1.05)
Cheng2015	23	160	183	1.77 (0.73, 4.25)
Cheng2015	42	213	255	2.40 (1.49, 3.89)
Dering2013	39	200	239	0.68 (0.43, 1.02)
Desai2015	29	240	269	0.76 (0.46, 1.28)
Desai2013	74	519	593	2.02 (1.19, 3.45)
Desai2013	26	285	311	0.54 (0.37, 0.80)
Desai2013	20	194	214	0.61 (0.34, 1.12)
Desai2015	20	205	225	1.10 (0.73, 1.65)
Desai2015	3	149	152	0.37 (0.10, 1.41)
Desai2015	27	221	248	0.88 (0.55, 1.42)
Desai2014	15	76	91	1.08 (0.50, 2.32)
Desai2012	32	200	232	1.54 (0.94, 2.56)
Desai2011	11	77	88	1.34 (0.88, 2.03)
Desai2011	35	204	239	0.63 (0.43, 0.92)
Desai2011	22	192	214	0.89 (0.54, 1.47)
Desai2011	13	54	67	1.36 (0.63, 2.95)
Desai2011	248	1915	2163	0.75 (0.57, 1.01)
Desai2011	22	113	135	0.67 (0.49, 0.92)
Desai2011	49	239	288	2.82 (1.97, 3.97)
Desai2011	353	680	733	1.84 (1.58, 2.13)

Study or Subgroup	Events	SEB	Total	Odds Ratio M-H, Random, 95% CI
1.2. Target Vein Revascularization (TVR)				
Buser2009	48	339	487	0.97 (0.36, 2.68)
Buser2011	17	93	110	2.10 (0.95, 4.58)
Buser2009	13	158	171	1.58 (0.66, 3.63)
Buser2009	14	189	203	1.08 (0.56, 2.10)
Cheng2012	20	205	225	1.89 (0.50, 7.23)
Desai2013	12	229	241	0.68 (0.31, 1.53)
Desai2013	13	194	207	0.60 (0.26, 1.35)
Desai2013	6	84	90	0.74 (0.25, 2.23)
Desai2013	14	205	229	1.18 (0.60, 2.31)
Desai2013	1	149	150	0.19 (0.02, 1.37)
Desai2013	11	222	233	1.69 (0.62, 4.61)
Desai2013	28	300	328	1.05 (0.54, 2.08)
Desai2013	13	108	121	0.73 (0.32, 1.64)
Desai2013	96	859	955	1.54 (1.00, 2.34)
Desai2013	15	169	184	1.13 (0.44, 2.81)
Desai2013	151	1351	1502	0.59 (0.40, 0.87)
Desai2013	21	113	134	1.78 (1.01, 3.14)
Desai2013	46	528	574	2.22 (1.37, 3.51)
Desai2013	6233	6064	6697	1.04 (0.85, 1.27)

Total events: 950

Heterogeneity: Tau² = 0.17; CI = 0.02 to 0.32; d.f. = 21 (p = 0.00001); p = 68%

Test for overall effect: Z = 5.31 (p < 0.001)
comparison of SES with different types of DES (non-SE DES) combined together. Moreover, PES that were dominating among the non-SE DES could also represent a major limitation in this study.

5. Conclusions

During this particular follow-up period, SES were not associated with any increase in ST among these patients with T2DM. Mortality and other adverse cardiovascular outcomes were also not significantly different between these 2 groups. Hence, SES should be considered neither superior nor inferior to other DES. They are expected to be equally effective and safe to use in patients with T2DM.

References

[1] Wei CC, Shyu KG, Cheng JJ, et al. Diabetes and Adverse Cardiovascular Outcomes in Patients with Acute Coronary Syndrome - Data from Taiwan’s Acute Coronary Syndrome Full Spectrum Data Registry. Zhonghua Min guo Xin Zang Xue Hui Za Zhi 2016;32:31–8.
[2] Iijima R, Byrne RA, Dibra A, et al. Drug-eluting stents versus bare-metal stents in diabetic patients with ST-segment elevation acute myocardial infarction: a pooled analysis of individual patient data from seven randomized trials. Rev Esp Cardiol 2009;62:354–64.
[3] De Luca G, Dirksen MT, Spaulding C, et al. for the DESERT cooperation. Impact of diabetes on long-term outcome after primary angioplasty: insights from the DESERT cooperation. Diabetes Care 2013;36:1020–3.
[4] Lee SW, Park SW, Kim YH, et al. A randomized comparison of sirolimus-versus paclitaxel-eluting stent implantation in patients with diabetes mellitus. J Am Coll Cardiol 2008;52:727–33.
[5] Ong AT, Aoki J, van Mieghem CA, et al. Comparison of short- (one month) and long- (twelve months) term outcomes of sirolimus- versus paclitaxel-eluting stents in 293 consecutive patients with diabetes mellitus (from the RESEARCH and T-SEARCH registries). Am J Cardiol 2005;96:358–62.
[6] Bundhun PK, Pursun M, Teeluck AR, et al. Are everolimus-eluting stents associated with better clinical outcomes compared to other drug-eluting stents in patients with type 2 diabetes mellitus?: A systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e3276.
[7] de Waha A, Dibra A, Byrne RA, et al. Everolimus-eluting versus sirolimus-eluting stents: a meta-analysis of randomized trials. Circ Cardiovasc Interv 2011;4:371–7.
[8] Cutlip DE, Windecker S, Mehran R, et al. Academic Research Consortium. End points in coronary stent trials: a case for standardized definitions. Circulation 2007;115:2344–51.
[9] Wiley, Higgins JPT, Altman DG. Higgins JPT, Green S. Assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions 2008;187–241.
[10] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
[11] Billinger M, Beutler J, Taghchian KR, et al. Two-year clinical outcome after implantation of sirolimus-eluting and paclitaxel-eluting stents in diabetic patients. Eur Heart J 2008;29:718–25.
[12] Briguori C, Airoldi F, Visconti G, et al. Novel approaches for preventing or limiting events in diabetic patients (Naples-diabetes) trial: a randomized comparison of 3 drug-eluting stents in diabetic patients. Circ Cardiovasc Interv 2011;4:121–9.
Bundhun et al. Medicine (2016) 95:27

Chong E, Poh KK, Liang S, et al. Eighteen-month clinical safety and efficacy outcomes of sirolimus-, paclitaxel- and zotarolimus-drug eluting stents in diabetic patients undergoing percutaneous coronary intervention for complex coronary artery stenosis. Ann Acad Med Singapore 2010;39:381–4.

Costa JR Jr, Sousa A, Moreira AC, et al. Drug-eluting stents in the elderly: long-term (>one year) clinical outcomes of octogenarians in the DESIRE (Drug-Eluting Stents In The Real world) registry. J Invasive Cardiol 2008;20:404–10.

Desch S, Schlomá D, Möibus-Winkler S, et al. Randomized comparison of a polymer-free sirolimus-eluting stent versus a polymer-based paclitaxel-eluting stent in patients with diabetes mellitus: the LIPIMA Yukon trial. JACC Cardiovasc Interv 2011;4:452–9.

Franzone A, Pilgrim T, Heg D, et al. Clinical outcomes according to diabetic status in patients treated with biodegradable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: prespecified subgroup analysis of the BIOSCIENCE trial. Circ Cardiovasc Interv 2015;8:8.

Jensen LO, Thayssen P, Junker A, et al. Comparison of outcomes in patients with diabetes mellitus: insights from a nationwide coronary intervention register. JACC Cardiovasc Interv 2012;5:1141–9.

Kim JS, Lee BH, Ko YG, et al. Korean Multicenter Angioplasty Team (KOMATE) Investigators. Comparison of sirolimus-eluting stent and paclitaxel-eluting stent for long-term cardiac adverse events in diabetic patients: the Korean Multicenter Angioplasty Team (KOMATE) Registry. Catheter Cardiovasc Interv 2008;72:601–7.

Kim WJ, Lee SW, Park SW, et al. ESSENCE-DIABETES Study Investigators. Randomized comparison of everolimus-eluting stent versus sirolimus-eluting stent implantation for de novo coronary artery disease in patients with diabetes mellitus (ESSENCE-DIABETES): results from the ESSENCE-DIABETES trial. Circulation 2011;124:886–92.

Kuchulakanti PK, Chu WW, Torguson R, et al. Sirolimus-eluting versus paclitaxel-eluting coronary stents in patients with diabetes mellitus (the ISAR-DESIRE 2) Investigators: Angiographic Results: Drug Eluting Stents for In-Stent Restenosis 2 (ISAR-DESIRE 2). JACC Cardiovasc Interv 2015;8:1161–7.

Lee SW, Park SW, Kim YH, et al. A randomized comparison of sirolimus- versus paclitaxel-eluting stent implantation in patients with diabetes mellitus: 4-year clinical outcomes of DES-DIABETES (drug-eluting stent in patients with DIABETES mellitus) trial. JACC Cardiovasc Interv 2011;4:310–6.

Maeng M, Jensen LO, Galloe AM, et al. Comparison of the sirolimus-eluting versus paclitaxel-eluting coronary stent in patients with diabetes mellitus: the diabetes and drug-eluting stent (DiabeDES) randomized angiography trial. Am J Cardiol 2009;103:345–9.

Maeng M, Baranaukas A, Christensen EH, et al. A 10-month angiographic and 4-year clinical outcome of everolimus-eluting versus sirolimus-eluting coronary stents in patients with diabetes mellitus (the DiabeDES IV randomized angiography trial). Catheter Cardiovasc Interv 2015;86:1616–71.

Nakamura M, Muramatsu T, Yokos H, et al. J-DESERT Investigators. Three-year follow-up outcomes of SES and PES in a randomized controlled study stratified by the presence of diabetes mellitus: J-DESERT trial. Int J Cardiol 2016;208:4–12.

Olesen KK, Tilsted HH, Jensen LO, et al. Long-term outcome of sirolimus-eluting and zotarolimus-eluting coronary stent implantation in patients with and without diabetes mellitus (a Danish organization for randomized trials on clinical outcome III substudy). Am J Cardiol 2015;115:298–302.

Simsek C, Raber L, Magro M, et al. Long-term outcome of the unrestricted use of everolimus-eluting stents compared to sirolimus-eluting stents and paclitaxel-eluting stents in diabetic patients: the Bern-Rotterdam diabetes cohort study. Int J Cardiol 2013;170:36–42.

Stankovic G, Cougrave J, Chieffo A, et al. Impact of sirolimus-eluting and paclitaxel-eluting stents on outcome in patients with diabetes mellitus and stenting in more than one coronary artery. Am J Cardiol 2006;98:362–6.

Wolf WM, Vlachos HA, Marroquin OC, et al. Paclitaxel-eluting versus sirolimus-eluting stents in diabetes mellitus: a report from the National Heart, Lung, and Blood Institute Dynamic Registry. Circ Cardiovasc Interv 2010;3:42–9.

Chiu M, Ko DT, Austin PC, et al. Paclitaxel versus sirolimus stents in diabetic and nondiabetic patients. Circ Cardiovasc Qual Outcomes 2009;2:96–107.

Daemen J, García-García HM, Kukreja N, et al. The long-term value of sirolimus- and paclitaxel-eluting stents over bare metal stents in patients with diabetes mellitus. Eur Heart J 2007;28:26–32.

Jeong SJ, Park DW, Kim WJ, et al. Differential long-term outcomes of zotarolimus-eluting stents compared with sirolimus-eluting and paclitaxel-eluting stents in diabetic and nondiabetic patients: two-year subgroup analysis of the ZEST randomized trial. Catheter Cardiovasc Interv 2013;81:1106–14.

Sato T, Ono T, Morimoto Y, et al. Differences in clinical and angiographic outcomes with different drug-eluting stents in Japanese patients with and without diabetes mellitus. J Cardiol 2012;60:361–6.

Balduzzi M, Orlolani P, Marzaroli P, et al. Comparison of 2-year clinical outcomes with sirolimus and paclitaxel-eluting stents for patients with diabetes: results of the Registro Regionale Angioplastiche Emilia-Romagna Registry. Catheter Cardiovasc Interv 2010;75:327–34.

Roja P, Facchin M, Musumeci G, et al. Paclitaxel- and sirolimus-eluting stents in older patients with diabetes mellitus: results of a real-life multicenter registry. Catheter Cardiovasc Interv 2013;81:1117–24.

Jiang SJ, Park DW, Kim WJ, et al. Different long-term outcomes of zotarolimus-eluting stents compared with sirolimus-eluting and paclitaxel-eluting stents in diabetic and nondiabetic patients: a Danish organization for randomized trials on clinical outcome III substudy. Am J Cardiol 2010;105:64–8.