Transcriptional potential determines the adaptability of *Escherichia coli* strains with different fitness backgrounds

Running title: Transcriptional potential determines the adaptability of *Escherichia coli*

Kitae Kim\(^a\), Soon-Kyeong Kwon\(^{a,b}\), Pil Kim\(^c\), Jihyun F. Kim\(^{a,d}\)

\(^a\)Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

\(^b\)Division of Applied Life Science (BK21), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do 52828, Republic of Korea

\(^c\)Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea

\(^d\)Microbiome Initiative, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

Address correspondence to Jihyun F. Kim, jfk1@yonsei.ac.kr, or Soon-Kyeong Kwon, skkwon@gnu.ac.kr.
SUPPLEMENTAL MATERIAL

Supplemental material contains five supplementary tables and seven supplementary figures.

Table S1. Strains and plasmids used in this study.

Table S2. Extended view of the single nucleotide polymorphisms (SNPs), deletions, insertions, and other polymorphisms (DIPs) identified in the evolving populations.

Table S3. DEGs commonly up- or down-regulated in WT or O3 populations.

Table S4. Oligonucleotides used in this study.

Table S5. Summary statistics of DNA and RNA sequencing.

Figure S1. Phenotypic difference between O3 lacZ dadX and O3 lacZ dadX araA.

Figure S2. Experimental design of experimental evolution.

Figure S3. Growth curves of ancestral and evolved populations.

Figure S4. Effect of dominant mutations on fitness.

Figure S5. Position-dependent differentially expressed gene (DEG) cluster analysis.

Figure S6. DNA sequencing read quality after read trimming.

Figure S7. RNA sequencing read quality after read trimming.
SUPPLEMENTAL TABLES

Table S1. Strains and plasmids used in this study.

Strains, plasmids	Relevant characteristics	Source
Strains		
WT	*Escherichia coli* K-12 MG1655 wild type	Laboratory stock
O3 *lacZ dadX*	*E. coli* K-12 MG1655 ΔlacZ::oriC-mioC ΔdadX/cvrA::oriC-mioC	(1)
O3 *lacZ dadX araA*	O3 *lacZ dadX*, REL606 *araA*, ΔyeaJ-yeaV	This study
REL606	Ara'	Laboratory stock
68WT-1	Evolved WT lineage 1 at day 68	This study
68WT-2	Evolved WT lineage 2 at day 68	This study
68WT-3	Evolved WT lineage 3 at day 68	This study
68O3-1	Evolved O3 lineage 1 at day 68	This study
68O3-2	Evolved O3 lineage 2 at day 68	This study
68O3-3	Evolved O3 lineage 3 at day 68	This study
WT *mrdB*	WT *mrdB* (R69H)	This study
Gene Combination	Mutated Genes	References
-------------------------	---------------	---------------
WT *rpoB*	*rpoB* (A1055V)	This study
WT *mrdB* *rpoB*	*rpoB* (A1055V)	This study
WT *rpoB* *pyrE*-rph	*rpoB* (A1055V), *pyrE*-rph (Δ82)	This study
WT *cysE*	*cysE* (S224A)	This study
WT *rpoC*	*rpoC* (R1075C)	This study
WT *cysE* *rpoC*	*cysE* (S224A), *rpoC* (R1075C)	This study
WT *rlmH*	*rlmH* (S121*)	This study
WT *ydhZ/pykF*	*ydhZ/pykF* (intergenic (-284/-273) Δ1)	This study
WT *pykF*	*pykF* (R385L)	This study
WT *gtrB* *rpoB*	*gtrB* (S267L), *rpoB* (I524M)	This study
WT *pyfK* *rpoB*	*pyfK* (R385L), *rpoB* (I524M)	This study
WT *yeiH*	*yeiH* (I137F)	This study
WT *yeiH* *ptsP*	*yeiH* (I137F), *ptsP* (Q340*)	This study
WT *ptsP* *nusA*	*ptsP* (Q340*), *nusA* (coding (1457/1488 nt)+G)	This study
WT *ptsP*	*ptsP* (L111*)	This study
WT *mreB*	*mreB* (A82S)	This study
Strain	Description	Reference
--------	-------------	-----------
WT pyrE-rph	WT pyrE-rph (Δ82)	This study
WT nagA	WT nagA (coding (422/1149 nt) Δ1)	This study
WT cyaA	WT cyaA (R160L)	This study
WT cyaA mreB	WT cyaA (R160L), mreB (A82S)	This study
O3 mrdB	O3 lacZ dadX mrdB (R69H)	This study
O3 pyrE-rph	O3 lacZ dadX pyrE-rph (Δ82)	This study
O3 cysE	O3 lacZ dadX cysE (S224A)	This study
O3 cysE rpoC	O3 lacZ dadX cysE (S224A), rpoC (R1075C)	This study
O3 ydhZ/pykF	O3 lacZ dadX ydhZ/pykF (intergenic (-284/-273)Δ1)	This study
O3 rlmH ydhZ/pykF	O3 lacZ dadX rlmH (S121*) ydhZ/pykF (intergenic (-284/-273)Δ1)	This study
O3 gtrB	O3 lacZ dadX gtrB (S267L)	This study
O3 pykF	O3 lacZ dadX pykF (R385L)	This study
O3 rpoB	O3 lacZ dadX rpoB (I524M)	This study
O3 gtrB rpoB	O3 lacZ dadX gtrB (S267L), rpoB (I524M)	This study
O3 pykF gtrB rpoB	O3 lacZ dadX pykF (R385L), gtrB (S267L), rpoB (I524M)	This study
O3 ptsP	O3 lacZ dadX ptsP (Q340*)	This study
O3 nagA	O3 lacZ dadX nagA (coding (422/1149 nt) Δ1)	This study
-------------------------	--	------------
O3 yeiH	O3 lacZ dadX yeiH (I137F)	This study
O3 cyaA	O3 lacZ dadX cyaA (R160L)	This study

Plasmids

Plasmid	Description	Reference
pKD46	Used for λ-red recombination, bfa, γ, β, exo (Red recombinase), temperature-conditional origin of replication	(2)
pKD3	Template plasmid for chloramphenicol acetyltransferase (CAT)	(2)
pDMS197	Template plasmid for sacB (sucrose counter selection marker)	(3)
pTOP TA V2	TOP cloning plasmid (Enzynomics)	
pTOP TA V2 CAT-sacB	Template plasmid for CAT-sacB selection-counter selection marker	This study
pMA7-SacB	Helper plasmid in transient mutator multiplex automated genome engineering (TM-MAGE) cycling	(4)
Table S2. Extended view of the single nucleotide polymorphisms (SNPs), deletions, insertions, and other polymorphisms (DIPs) identified in the evolving populations.

Lineage / position	Gene	Mutation	Allele frequency	Annotation	Description
WT-1	ispH →	G→C	10.9%	S135T (AGT→ACT)	4-hydroxy-3-methylbut-2-enyl diphosphate reductase, 4Fe-4S protein
	cusA → / → pheP	T→C	10.2%	intergenic (+16/-86)	copper/silver efflux system, membrane component/phenylalanine transporter
	mrdB ←	C→T	100%	R69H (CGC→CAC)	cell wall shape-determining protein
	fabF →	T→G	35.9%	Y268D (TAT→GAT)	3-oxoacyl-[acyl-carrier-protein] synthase II
	yobF ← / ← yebO	IS1 (+) +9 bp	13.9%	intergenic (-45/+617)	DUF2527 family heat-induced protein/putative inner membrane protein
	rrsG ← / ← clpB	A→T	17.0%	intergenic (-300/+143)	16S ribosomal RNA of rrnG operon/protein disaggregation chaperone
	barA →	IS1 (+) +9 bp	12.8%	coding (906-914/2757 nt)	hybrid sensory histidine kinase, in two-component regulatory system with UvrY
	ptsP ←	A→C	17.3%	F490C (TTC→TGC)	PEP-protein phosphotransferase enzyme I; GAF domain containing protein
	pyrE-rph	Δ82 bp	100%		pyrE-rph
Gene	Mutation	Function	Description		
------	----------	----------	-------------		
4,184,408	rpoB → C→T	100%	A1055V (GCG→GTG)		
			RNA polymerase, beta subunit		
WT-2					
696,419	ubiF → / ← glnX	+TTT	13.0%	intergenic (+143/+11)	
			2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol oxygenase/tRNA-Gln		
702,330	nagA ← Δ1 bp	20.7%	coding (422/1149 nt)		
			N-acetylglucosamine-6-phosphate deacetylase		
973,367	elyC ← Δ1 bp	25.7%	coding (35/780 nt)		
			envelope biogenesis factor; DUF218 superfamily protein		
1,019,695	ompA ← C→T	29.2%	G120D (GGC→GAC)		
			outer membrane protein A (3a;II*:G;d)		
1,293,196	hns ← / → tdk	IS5 (+) +4 bp	40%	intergenic (-274/-328)	
			global DNA-binding transcriptional dual regulator H-NS/thymidine kinase/deoxyuridine kinase		
2,311,785	ompC ← +CAACAT	19.0%	coding (965/1104 nt)		
			outer membrane porin protein C		
2,912,408	relA ← A→C	14.7%	V415G (GTG→GGC)		
			(p)ppGpp synthetase I/GTP pyrophosphokinase		
2,913,235	relA ← T→G	11.0%	L139F (TTA→TTG)		
			(p)ppGpp synthetase I/GTP pyrophosphokinase		
3,696,149	yhjR ← C→T	27.9%	A13T (GCG→ACG)		
			DUF2629 family protein		
3,781,893	cysE ← A→C	100%	S224A (TCC→GCC)		
			serine acetyltransferase		
4,188,572	rpoC → C→T	100%	R1075C (CGT→TGT)		
			RNA polymerase, beta prime subunit		
4,627,797	nadR ← IS1 (+) +9 bp	14.2%	coding (483-491/1233 nt)		
			nicotinamide mononucleotide adenyltransferase, ribosynicotinamide kinase, transcriptional repressor		
WT-3					
Microbiology Spectrum

Kim et al.

571,172
ybcL →
IS2 (+) +5 bp
87.9%
coding (280-284/552 nt)
inactive polymorphonuclear leukocyte migration suppressor; DLP12 prophage; UPF0098 family secreted protein

668,354
rlmH ←
G→T
100%
S121* (TCG→TAG)
23S rRNA m(3)Psi1915 pseudouridine methyltransferase, SAM-dependent

1,755,425
ydhZ ← / →
pykF Δ1 bp
100%
intergenic (-284/-273)
uncharacterized protein/pyruvate kinase I

1,915,319
proQ ←
+T
23.8%
coding (216/699 nt)
RNA chaperone, putative ProP translation regulator

O3-1

1,756,482
pykF →
G→T
100%
R385L (CGC→CTC)
pyruvate kinase I

2,459,131
gtrB →
C→T
100%
S267L (TCA→TTA)
CPS-53 (KpLE1) prophage; bactoprenol glucosyl transferase

3,812,557
sprT →
T→G
91.0%
Y14D (TAC→GAC)
bi-functional (p)ppGpp synthetase II/guanosine-3’,5’-bis pyrophosphate 3’-pyrophosphohydrolase

4,172,934
rpoB →
T→G
100%
I524M (ATT→ATG)
RNA polymerase, beta subunit

O3-2

701,363
nagA ←
Δ1 bp
51.6%
coding (422/1149 nt)
N-acetylglucosamine-6-phosphate deacetylase

2,240,243
yeiH →
A→T
100%
I137F (ATC→ITC)
UPF0324 family inner membrane protein

2,957,535
ptsP ←
G→A
100%
Q340* (CAG→TAG)
Pep-protein phosphotransferase enzyme I; GAF domain containing protein

3,306,188
nusA ←
+G
100%
coding (1457/1488 nt)
transcription termination/antitermination L factor
Chromosome Location	Gene Pair	Direction	Length (bp)	Percentage	Description
3,805,919	pyrE ← / ← rph	Δ1 bp	100%	intergenic (-33/+33)	orotate phosphoribosyltransferase/ribonuclease PH (defective); enzyme; Degradation of RNA; RNase PH
O3-3					
1,465,043	ydbA →	IS1 (+) +9 bp	66.7%	pseudogene (21-29/2513 nt)	pseudogene, autotransporter homolog; interrupted by IS2 and IS30
1,499,782	ydcK ←	Δ1 bp	68.9%	coding (299/981 nt)	uncharacterized protein
1,897,746	yof ← / ← yebO	IS2 (+) +5 bp	24.9%	intergenic (-37/+629)	DUF2527 family heat-induced protein/putative inner membrane protein
2,958,221	ptsP ←	A→C	100%	L111* (TTA→TGA)	PEP-protein phosphotransferase enzyme I; GAF domain containing protein
3,307,050	nusA ←	G→A	32.3%	R199C (CGT→TGT)	transcription termination/antitermination L factor
3,390,962	mreB ←	C→A	100%	A82S (GCC→TCC)	cell wall structural complex MreBCD, actin-like component MreB
3,805,977	pyrE-rph	Δ82 bp	100%		pyrE-rph
3,981,749	cyaA →	G→T	64.4%	R160L (CGC→CTC)	adenylate cyclase
4,171,929	rpoB →	T→A	25.8%	D189E (GAT→GAA)	RNA polymerase, beta subunit
4,533,728	fimA ←	Δ1 :: IS186 (−) +6 bp :: Δ1	36.8%	coding (494-499/549 nt)	major type 1 subunit fimbrin (pilin)
Table S3. DEGs that are commonly up- or down-regulated in WT or O3 populations.

Lineage/gene	Function	Average Log2FC	Average q-value
WT			
ydaM	diguanylate cyclase DgcM	-1.68896	0.000818
amn	AMP nucleosidase	-0.80977	0.008372
rnhB	RNase HII	0.709147	0.007159
yqfA	transmembrane homeostasis protein A	-1.50936	0.008587
ibaG	acid stress protein IbaG	0.635081	0.016929
srkA	stress response kinase A	0.741528	1.02E-05
mltA	membrane-bound lytic murein transglycosylase A	0.961929	5.35E-05
ybfA	DUF2517 domain-containing protein YbfA	-1.02759	0.013195
ybgA	DUF1722 domain-containing protein YbgA	-1.93694	0.018844
dnaG	DNA primase	0.815044	0.000232
csgG	curli secretion channel	-1.53791	0.002594
proP	osmolyte:H+ symporter ProP	-1.25239	0.015265
Gene	Description	Fold Change	P-value
------	-------------	-------------	---------
yqgC	protein YqgC	1.006299	0.022184
yaaU	putative transporter YaaU	-1.26135	0.026508
yhjD	putative transporter YhjD	-1.08171	0.022303
dtpD	dipeptide:H+ symporter DtpD	1.187037	0.016882
dnaE	DNA polymerase III subunit α	0.73969	0.007525
cspD	DNA replication inhibitor CspD	-0.94156	0.005748
pbpC	peptidoglycan glycosyltransferase PbpC	0.728647	0.020088
gadC	L-glutamate:4-aminobutyrate antiporter	-1.45671	0.019172
rlmN	23S rRNA m2A2503 methyltransferase/tRNA m2A37 methyltransferase	0.752209	0.004434
ppiA	peptidyl-prolyl cis-trans isomerase A	0.715015	0.023499
glcB	malate synthase G	-0.76428	0.020917
wcaC	colanic acid biosynthesis galactosyltransferase WcaC	-1.55763	0.010894
dkgA	methylglyoxal reductase DkgA	-1.57133	0.015858
dps	stationary phase nucleoid component that sequesters iron and protects DNA from damage	-2.4165	0.01543
gadB	gadB	-1.96865	0.001756
accA	acetyl-CoA carboxyltransferase subunit α	0.688628	0.011405
Gene	Description	Value	P-value
------	---	-------------	----------
wzc	protein-tyrosine kinase Wzc	-1.39008	0.02307
O3			
racR	Rac prophage; DNA-binding transcriptional repressor RacR	-0.79431	0.001077
yffB	putative reductase YffB	0.807003	0.003224
Table S4. Oligonucleotides used in this study.

Oligonucleotides	Sequence (5’ to 3’)
Marker integration	
cat_F	TGTAGGCTGGAGCTGCTTC
cat_BamH1_R	CGGGATCCCATATGAATATCCTCCTAGTTCC
sacB_F	CTG ACA TGG GAA TTC TGA TCC
sacB_BamH1_R	GAA TAC GGT TAG CCA TTT GCC GGA TCC CG
araA_cat-sacB_F	ATGACGATTTTTGATAATTATGAAGTGTGTTGTTCATTGGCAGCCAGCAGAGCACGCTTTAGAGCCTC
araA_cat-sacB_R	TTAGCGACGAACCCCGATAATACACTTCGTCCAGCGACGCGCTCTTTAACATATGAATATCCCTCCTAGTTCC
REL606_araA_F	ATGACGATTTTTGATAATTATGAAG
REL606_araA_R	TTAGCGACGAACCCCGTAAT
araA_conf_F	GCGCTTTGCTTATTCCGGCCCTAC
araA_conf_R	GAGCGCCGAACAACACTATCTTCC
cat_outward	CGGTCTGGTTATAGGTACATTTCC
sacB_outward	CGCAACGCTGGATAGTTAGGCC
Contamination check	
-------------------------------------	----------------
MG1655_F	TTCGCAACACGATGATGAATCG
W3110_F	GCATAGCTCCACCATCTCTG
yjaA_R	AGGCAGCGTCTCCTGACAC
O3_lacZ_conf_F	GGTGTGATGTAGCTGACCACATCGG
O3_lacZ_conf_R	GAAATCCCAGATCTCCTATGGG
27F	AGAGTTTGATCTGACACG
1492R	TACGGYTACCCTGTACCTG

TM-MAGE

WT1_mrbD	GCGCAAAATGCCACTCCACaTGTTTAGAGCTGCTGCCCTATATCTCTATATCGTATTATTGTGGGTGCGGTAGATGCTTTCCGTT
WT1O31O33_rph	CTCATACGTCGGGCTCCCTTTAAAAATCAGTTTCCGACGCGCCCTTCTGCGG TTCCTGCCTCCTTGCACCTCAATAGATGCGGCCGTCCTCCTGGTCATCACACT
WT1_rpoB	TGATCTTAGAATACCCCTTGGTACCCAGACCGCAGCTGCGATCCATCTTGGTTACCGGAGCTGCTTTAACCaCCAGATATACCTTAA
WT2_cysE	GGTGCAGCCACCGGGGCACCTGGGCGGCAATCTTTCCGCGCCGGGCCAACTTCAATTGGGCGGATTTTTCCGCGCCCGCGCGCAATCATAACCATAC
WT2_rpoC	GCATATCGGTACCTGGGAGAACGCTCGGTTACCCCTGAGCATCAACGGTAAAACTTGGTTACCCGGGAGCTGCTTGAGATGCTGCAGCTG
WT3_rlmH	CGACGTGGTCGTCTACTCTGGTGTTGCGGCGCTGGAAGGGTTGTCGCCCTGCTGTAAGCGCGCGCGCTGAGCAGCTGGGTaGCTGTCCTGCCGCTG
WT3_rlmH2	AGGGTTGTCGCGCTGCTTAAAGCGCGCGGCTGAGCAGGATGGTTGTCGCGTACCTCCTCCCTCCCATCGCTGGTTCGGCGGCTG

15
Gene	Sequence
WT3_ydh	ACCTTTTCCCTGGAACGTTAATCTTTTGATAAATATTTATGTCTAACAAGTTGTATATTTTTTTTGAAACGCTGTTTTTTCTTTTTTGG
O31_pykF	GGCGGTAATCTGCTGCAGCAGTACGAATACTTCCGCCGGATGCGACACCACCTCCTGTCGACTGAGACCAACCGAAAAACGGGCTCCTCAGTTGG
O31_grtrB	ATGGGGCGTGGAGGATTATTTAGATACACTACATATTGGAAATGCTGTTAGGGGATATCCTTCACTACTTCTTTGTTGTTGTTAGCAGTTT
O31_spoT	TCGTTAATCAACAAAGCGGGTCGCCCTTTGTATCTGTTTTGAAAGCTGAATCTCAACCTTGACACATTTTTTGGCGAGATTGCTTTTGGT
O31_wecE	ACAAAGTGCGAATTACCCTACGCTCAGTTTGGACGGCGACGATGTTGAAATGCTGTTAGGGGATATCCTTCACTACTTCTTTGTTGTTAGCAGTTT
O31_rpoB	GAACCTCGAAGCTTGCACGTTTCCAGGGGTCAAGACCGCGCTGCTGACTTCCCTGACACGGCACTGACGTTTGGTTGTCGATATTTCAGACAGCGGGTTG
O31_nagA	AGTGGTCCGTTGGAATCTGGAATTAATGAAGACACCAATAATATATCTGTTTGTGCTAAGGAGCGGGCTGCTGATTTCCTGTGTTGAA
O32_yeiH	TTCTGTCTGGCTTGCTTCTGCGCCAGAAAGTGTTTTGGCTGGAATAAGCACAACACCTCGATGTTGCTGCGGCTGTTGCTTTCTGTAAGCAGTTG
O32_ptsP	ACTTTTATACGCTAAGCTGGTTTTTTTTAATACTAAGCGGAAATGGAGGTTGCTCTACCTCTGAGCGGAGCACTGACGTTTGGCTTTTGGTTCAGTTG
O32_nusA	AATCGTACATCTGTCGCTTCTTGCTCTGCTCTGACTAGTTTATGCTCGGCTCAGCCAGACAGCAGAAAAATATACGAGGAGCCATATACGAGT
O32_pyrErph	GCGGAAATTCCAATAATGGGCGTATATGTTTTGCTGCTCTGCTCTACACTTTACTTTCTCTACAAGCAAAAAAGCGAGACTCAATCGT
O33_ydcK	GCTAGGCTACTTATATGACCGCGTTGCTTGTTTTCACTATATCGATGCGGTCACTTCTCCAGACCGACGTTTGGGTATTAGGAAAGGCTGTTG
O33_mreB	CCACCAGTCACCAAGCGCAACTGGGCAAGCTGTTAATATGTGTTACGGCCCTAAACACCGCGGAAACGTCTTTTCTTCTACGGAGGGGATATT
O33_cyaA	CTTTCATTATGCGGAAGAGTTTTCTCCAGGAGAAAGGCTGTACTTCCACCGAGGCGGAGCACGGCAGGCAATATATT
MASC-PCR	Kim et al.
WT1_mrdB_WT_F GGGGCCAGCCTTCATAACGC	
WT1_mrdB_M_F GGGGCCAGCCTTCATAACGT	
WT1_mrdB_R TGGCATGATGGAGCGTAAAATCGGCC	
WT1O31O33_rph_WT_F CCAGCGCCGCTTTCTGCG	
WT1O31O33_rph_M_F CCAGCGCCGCTTTCTGCC	
WT1O31O33_rph_R CCGCAGTTTTCTGTCGAATTGTGAACG	
WT1_rpoB_WT_F GCCGTGCTGAAAGATTGTTAAGGTATATCTGCG	
WT1_rpoB_M_F GCCGTGCTGAAAGATTGTTAAGGTATATCTGGT	
WT1_rpoB_R GACCGATGTTTCATACGAGACGGTACGC	
WT2_cysE_WT_F ACCGTTGCAAGCACCACCGA	
WT2_cysE_M_F CCGGTTCAGCACACCACGC	
WT2_cysE_R CAGCAAAAATTGTCGCGGTATCATGC	
WT2_rpoC_WT_F ACGTACCAGCGTGTTAAGATCTGC	
WT2_rpoC_M_F AGAACGTACCAGCGTGTTAAGATCTGT	
WT2_rpoC_R GAAGGAAACGATACGCTGATTTCAGCCA	
WT3_rlmH_WT_F GAGGGTAAGCGCCGACAGCG	
WT3_rlmH_M_F GGAGGTAAGCAGCGACAGCT	
WT3_rlmH_R AAACTCTGGAGTTAATGCGTGAAGCTGCA	
WT3_ydhZ/pykF_WT_F GTCTAACAAGTGTATATTTTTGAACGAGCGCTGTTTTT	
WT3_ydhZ/pykF_M_F TCTAACAAGTGTATATTTTTGAACGAGCGCTGTTTTG	
WT3_ydhZ/pykF_R AGTTTGTCTCATCAGTTGCGCAGATTC	
O31_pykF_WT_F GCTACTCAGGGCGTAATCTGCTCG	
O31_pykF_M_F TGCTACTCAGGGCGTAATCTGCTCT	
O31_pykF_R CAACTGATGAGGCCGTTTTTCTTTTGGTGG	
O31_spoT_WT_F GTATCTGTTTGAAGCCTGAATCAACTGATTCAACCT	
O31_spoT_M_F CTGTTTGAAGCCTGAATCAACTGATTCAACCG	
O31_spoT_R TATCCTGTTAGGTCGCGGAGTATCTTCA	
O31_wecE_WT_F CCAAGAGAGCGAGCGCCTGCT	
O31_wecE_M_F CAAAGAGAGCGAGCGCCTGCC	
O31_wecE_R TACTGGGCAACGTATTTGTTACACCGGTAAG	
O31_rpoB_WT_F GACCAGAAACACCAGCTGCTGAGATT	
O31_rpoB_M_F ACCAGAAACACCAGCTGCTGAGATG	
O31_rpoB_R GGTCGCGGCTGAACAAGCTGG	
O31_gtrB_WT_F TGAATTCCACCTAAACAGTATTG	
O31_gtrB_M_F CTGAATTCCACCTAAACAGTATTA	
O31_gtrB_R AACTGATGGACGCCTGAAGC	
O31_gtrB_R AACTGATGGACGCCTGAAGC	
O32_nagA_WT_F CTTACGCACAAATTCGGATTATGGGTGCC	
O32_nagA_M_F GCTTACGCACAAATTCGGATTATGGGTGCT	
O32_nagA_R GCCCTGGCTCCTGCTCAGGG	
O32_yeiH_WT_F GTCTGGATAAGCACACCAGCTGGTGA	
O32_yeiH_M_F GTCTGGATAAGCACACCAGCTGGTTGT	
O32_yeiH_R CAGTGCCATCGGAGGTTTTCGC	
O32_ptsP_WT_F AGCATGACTTTTATACGCTACCGCTTTTAACTG	
O32_ptsP_M_F GAGCATGACTTTTATACGCTACCGCTTTTAACTA	
O32_ptsP_R TCTGGAACGCAGACTGACC	
O32_nusA_WT_F CGTCACCGAACCAGCAAATATTACGGGC	
O32_nusA_M_F CGTCACCGAACCAGCAAATATTACGGGG	
O32_nusA_R AGTGCCGAAATCGGCGAAGAAGTGA	
Gene	WT Forward
--------------	------------
O32_pyrE/rph	GGCGACTGATGAGTCGCC
O33_ydcK	CTGTCACCTATATATGCACCCTGGCTGATTTCACTATT
O33_ptsP	CTGGCGACGTTAATAATTGGTGACGCTTA
O33_mreB	GAGCATTTTTTCAGTCAGCAAGAAGTCGGC
O33_cyaA	GGAAGTCAGCTTCTTCCTGATTGAGAAACCG
Table S5. Summary statistics of DNA and RNA sequencing.

DNA sample	Number of reads after trimming	Total nucleotides	Mapping coverage in replication rate analysis
WT	27,408,896	2,751,469,002	591.5
O3	18,485,284	1,849,121,811	398.7
68WT-1	42,885,790	4,304,381,946	927.2
68WT-2	31,031,580	3,113,542,915	670.7
68WT-3	35,851,672	3,596,492,772	774.7
68O3-1	30,502,760	3,060,069,118	660.7
68O3-2	30,277,846	3,037,049,923	655.7
68O3-3	32,031,690	3,214,386,677	694

RNA sample	Number of reads after trimming	Total nucleotides	Mapping coverage in RNA-Seq
WT replicate 1	26,809,176	2,410,164,990	404.4
WT replicate 2	31,968,566	3,135,369,779	503.1
O3 replicate 1	27,879,452	2,758,656,031	458.7
O3 replicate 2	31,298,852	3,009,089,965	486.5
	Microbiology Spectrum	Kim et al.	
----------------	-----------------------	------------	
68WT-1 replicate 1	26,723,722	2,635,340,009	446
68WT-1 replicate 2	33,294,134	3,254,862,968	529.5
68WT-2 replicate 1	27,074,456	2,667,130,885	445.6
68WT-2 replicate 2	38,831,588	3,845,954,857	580.7
68WT-3 replicate 1	30,401,556	2,964,122,954	485.9
68WT-3 replicate 2	27,790,244	2,746,941,128	453.3
68O3-1 replicate 1	30,092,928	2,986,114,490	490.1
68O3-1 replicate 2	29,176,030	2,863,813,890	497.6
68O3-2 replicate 1	29,930,186	2,913,359,163	481.6
68O3-2 replicate 2	30,194,776	2,975,981,498	489.6
68O3-3 replicate 1	27,111,316	2,654,066,683	472.5
68O3-3 replicate 2	33,374,454	3,297,369,466	519.3
Figure S1. Phenotypic difference between O3 lacZ dadX and O3 lacZ dadX araA (A) Growth curves of O3 lacZ dadX and O3 lacZ dadX araA strains. Optical densities were measured every 30 min in 200 μl M9 minimal medium supplemented with 0.4% glucose using a 96-well microplate. (B) Competitive fitness of O3 lacZ dadX araA against O3 lacZ dadX. O3 lacZ dadX, a derivative of E. coli MG1655 with two additional replication origins. O3 lacZ dadX araA, a derivative of E. coli MG1655 with two additional replication origins and arabinose utilization marker.
Figure S2. Experimental design of experimental evolution. During the experimental evolution, cells were transferred into a flask with a fresh M9 medium containing 0.4% glucose; each ancestor underwent evolution in three independent flasks (WT-1, WT-2, WT-3; O3-1, O3-2, O3-3). WT, wild-type *E. coli* MG1655; O3, a derivative of *E. coli* MG1655 with two additional replication origins and arabinose utilization marker.
Figure S3. Growth curves of ancestral and evolved populations. Optical densities were measured every 30 min in 200 μl M9 minimal medium supplemented with 0.4% glucose using a 96-well microplate. WT, wild-type *E. coli* MG1655; O3, a derivative of *E. coli* MG1655 with two additional replication origins and arabinose utilization marker.
Figure S4. Effect of dominant mutations on fitness. Growth rates were measured in M9 minimal medium supplemented with 0.4% glucose. Relative fitness was calculated by dividing the growth rates of mutant strains by ancestral strain. Grey line, the relative growth rate of each recipient strain. WT, wild-type *E. coli* MG1655; O3, a derivative of *E. coli* MG1655 with two additional replication origins.
Figure S5. Position-dependent differentially expressed gene (DEG) cluster analysis. DEG cluster analysis was conducted on the final descendant populations (68WT-1 – 68O3-3). DEGs were calculated using the respective ancestral strains as a control. WT, wild-type *E. coli* MG1655; O3, a derivative of *E. coli* MG1655 with two additional replication origins and arabinose utilization marker.
Figure S6. DNA sequencing read quality after read trimming. (A) Length of sequencing reads. (B) GC-contents of sequencing reads. (C) PHRED score of sequencing reads.
Figure A: Histograms showing the distribution of read lengths for different replicates. The x-axis represents read length, and the y-axis represents the percentage of reads.

Figure B: Histograms illustrating the distribution of GC percent for different replicates. The x-axis represents GC percent, and the y-axis represents the percentage of reads.

Figure C: Histograms depicting the distribution of PHRED scores for different replicates. The x-axis represents PHRED score, and the y-axis represents the percentage of reads.
Figure S7. RNA sequencing read quality after read trimming. (A) Length of sequencing reads. (B) GC-contents of sequencing reads. (C) PHRED score of sequencing reads.
SUPPLEMENTAL REFERENCES

1. Yang HJ, Kim K, Kwon SK, Kim JF. 2022. *Escherichia coli* cell factories with altered chromosomal replication scenarios exhibit accelerated growth and rapid biomass production. Microb Cell Fact 21:125.

2. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-5.

3. Edwards RA, Keller LH, Schifferli DM. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149-57.

4. Lennen RM, Nilsson Wallin AI, Pedersen M, Bonde M, Luo H, Herrgard MJ, Sommer MO. 2016. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects. Nucleic Acids Res 44:e36.