INTRODUCTION

The late accreted mass required to account for Mars’ highly siderophile element (HSE) abundances may have been supplied by a very small number of large projectiles. In the standard assumption that all of a projectile’s HSE were retained in the martian mantle, a single bulk chondritic projectile with $D \approx 10^3$ km could suffice, assuming a projectile density of 3000 kg/m3 (Materials and Methods) (1–3). At least one impact of this scale is needed to account for Mars’ largest putative preserved crater, the 10,600 × 8500 km Borealis basin (4, 5).

Large projectiles ($D > 500$ km) are likely to have been differentiated (6), with most of their siderophile elements sequestered in their metallic cores. A large projectile’s core may not be efficiently dispersed within the target’s mantle during a collision (6, 7). Hence, large projectiles may lead to a nonchondritic and initially nonuniform distribution of HSE in the martian mantle. The presence of 182W and 142Nd isotopic heterogeneities in martian meteorites (8) indicates that convection did not homogenize the early martian mantle, which is consistent with interior models (9–11). Thus, chemical and isotopic heterogeneities in the martian mantle created during late collisions may have been preserved and be reflected in the siderophile abundances and 182W isotopic compositions of the shergottite-nakhliite-chassigny (SNC) meteorites (12, 13).

RESULTS

To investigate mixing of material from late, large projectiles into Mars, we performed smoothed particle hydrodynamics (SPHs) simulations with 0.5×10^6 to 1.2×10^6 particles for two projectile masses, $M = 0.003$ and $0.03 M_m$ (where M_m is Mars’ mass), with impact angles $\beta = 0^\circ$, 30°, 45°, and 60°, and impact velocities (v) of $v/v_e = 1.5$, 2, and 2.5 (where v_e is the mutual escape velocity). These mass and velocity ranges encompass those inferred for the Borealis basin (4, 5) and predicted by dynamical models of late accretion (14). Our projectiles have metallic cores comprising 30% of their mass and are resolved by 10^3 to 10^4 SPH particles. Our simulations neglect material strength. This is a good approximation for early Mars because its mantle temperature would have been near the solidus (10), and overburden pressure due to gravity would have exceeded shear strength in its warm mantle (Materials and Methods). Furthermore, at impact velocities we consider (7 to 12 km/s), projectile material is melted by the impact, and so, strength can also be neglected in modeling its evolution (Materials and Methods).

In a large collision, substantial portions of the projectile’s core merge with Mars’ core, and only part is retained within Mars’ mantle (Fig. 1; Materials and Methods), in keeping with previous results for large terrestrial impacts (6). For $M = 0.003 M_m (=1.9 \times 10^{21}$ kg; $D \approx 1000$ km) and a typical impact speed $v/v_e = 2$ (10), we estimate that $\approx 20\%$ of a projectile’s core is retained in the martian mantle when averaging over impact angles (Materials and Methods), with this percentage varying from 0 to 45% across all β and v/v_e. The angle-averaged value implies that about four such projectiles with a total mass of $\approx 7 \times 10^{21}$ to 8×10^{21} kg would be required to deliver the mantle HSE budget of Mars. For $M = 0.03 M_m (=19 \times 10^{21}$ kg, $D \approx 2100$ km), the maximum retention is 17% across all β and v/v_e. Thus, a single $0.03 M_m$ projectile could deliver all the martian mantle HSE. A projectile diameter $D \approx 700$ to 2700 km is thought responsible for Borealis (4, 5). Smaller projectiles are estimated for Mars’ next largest Utopia and Hellas basins ($D \approx 300$ to 800 km) (15), and these may account for less than 10% of Mars’ HSE (2). If supplied by a single oblique collision, Mars’ spin implies a $\approx 0.03 M_m$ mass projectile ($D \approx 2000$ km) (16). Together, the above estimates suggest that Borealis could be due to one of the largest late accretion projectiles, with up to about three unpreserved, comparably or larger sized events occurring before its formation.

To explore the effects of heterogeneous projectile mixing during late accretion, we compute the ratio of projectile material to martian mantle material within conic domains with a semi-aperture angle of 30°, each corresponding to about 7 volume % of the mantle. With this choice, a single domain typically contains the predominant effects of each collision (Materials and Methods). We then calculate the effects such additions would have on the initial mantle concentrations of Pt, W, and Hf/W in these domains. Platinum is typically not strongly fractionated between mantle sources and basaltic crust [e.g., (12)], so while SNC meteorites sample martian crust, their Pt concentrations can serve as a general proxy for HSE concentrations in the mantle sources of these rocks.
For a 0.03\(M_m \) collision, the projectile core to martian mantle ratio varies from 0 to 0.008 in the conic domains around the whole planet, resulting in \(\text{Pt} \) concentrations that range from 0 (exclusively the \(\text{Pt} \) in the projectile core) to 25 parts per billion (ppb) resulting in \(\text{Pt} \) concentrations that range from 0 to 0.008 in the conic domains around the whole planet, variations from 0 to 0.008 in the conic domains around the whole planet, and subsequent mixing 20 to 25 Ma after solar system formation (13), 20). The general positive correlation between \(\varepsilon^{182}\text{W} \) and \(\varepsilon^{142}\text{Nd} \) suggests the involvement of early magma ocean silicate fractionation processes in the establishment of heterogeneity of short-lived radiogenic isotope systems. However, there is considerable variation about the linear trend that would not be expected to result from single-stage magma ocean crystallization. Delivery of mantle/core material by sizable impactors would have been associated with substantial but nonglobal melting of the mantle (fig. S1). One or more such impacts may have provided the venue for the proposed large-scale silicate-silicate fractionation (13, 20) to account for the \(\varepsilon^{182}\text{W} \) and \(\varepsilon^{142}\text{Nd} \) correlation observed in data for SNC meteorites. The broad positive correlation is consistent with a fractionation event and subsequent mixing 20 to 25 Ma after solar system formation (13). The correlation is characterized by much less scatter than the \(\varepsilon^{182}\text{W} \) and \(\varepsilon^{142}\text{Nd} \) trend, consistent with additional processes, such as late accretion, creating \(\varepsilon^{182}\text{W} \) isotopic variations that were unrelated to silicate-silicate fractionation. Here, we propose that the uneven delivery of mantle and core materials to the melted domains could have led to the superimposition of these effects on top of the effects resulting from silicate-silicate fractionation.

Heterogeneous delivery of projectile material to the martian mantle can result in localized positive or negative \(\varepsilon^{182}\text{W} \) anomalies, depending on the proportion of projectile mantle (with high \(\text{Hf/W} \) and high \(\varepsilon^{182}\text{W} \) due to earlier core formation within the smaller projectile) versus core (with low \(\text{Hf/W} \) and low \(\varepsilon^{182}\text{W} \) added to the domain.

Fig. 1. Heterogeneous projectile mixing in martian mantle. End state of two representative high-resolution SPH simulations (1.2 \(\times \) 10^6 particles). (A) \(M/M_m = 0.003, \righttriangleleft M/M_m = 0.003, \righttriangleleft M/M_m = 0.03, \righttriangleleft M/M_m = 0.03, \righttriangleleft M/M_m = 0.03 \). In both cases, martian particles are not shown for clarity, while red and gray half-spheres schematically indicate martian core and mantle, respectively. Projectile’s core and mantle particles are indicated by brown and green spheres, respectively. The arrows indicate local concentration of projectile mantle (A) and core (B) materials. Preimpact SPH particles have a characteristic smoothing length of \(\approx 50 \) to 60 km. The orientation vectors are shown at the bottom left corner of each panel: x axis (red), y axis (blue), and z axis (green).
To quantify this, we track the combined evolution of HSE (using Pt as a proxy) and Hf-W concentrations, as well as ε^{182}W values, in Martian mantle domains resulting from a small number of collisions. Projectiles and Mars are assumed to have bulk chondritic HSE and ε^{182}W compositions (present-day ε^{182}W = −1.9) and to have single-stage core formations (instantaneous differentiation into core and mantle) at 2 and 3.5 Ma, respectively. We implement a Monte Carlo approach to track the time evolution of ε^{182}W in conic domains randomly located on the planet in 400 simulations in which collisions occur randomly throughout a 10- to 15-Ma to 100-Ma timeframe (Materials and Methods).

Figure 2A shows the results for a late accretion involving three collisions (see Materials and Methods for additional examples). For simplicity, we assume that only one collision in each timeline delivers a significant projectile core material to the Martian mantle. For this collision, we randomly select the mass ratio of projectile core to Mars mantle from 0.0004 to 0.008, the latter being the maximum concentration inferred from our SPH simulations in a conic domain. The other two collisions deliver projectile mantle to the same conic domain with a random mixing ratio from 0 to 0.7, as bound by our SPH simulations (Materials and Methods). With these assumptions, the final Pt concentrations range from ≈1 to 20 ppb, broadly compatible with meteorite observations. Hf-W models track 182W growth until 182Hf extinction. The final ε^{182}W values in our simulations range from +0.60 to +6.00 (Fig. 2A). For comparison, SNC meteorites exhibit variations in ε^{182}W values in pyroxenites from ≈+0.09 (orthopyroxene-rich martian meteorite ALH 84001) to +3.35 (nakhlite NWA 998) (Fig. 2A) (8, 13, 20). Shergottites are only slightly less heterogeneous, with values ranging from +0.29 (intermediate shergottite EETA 79001 lithology B) to +1.80 (depleted shergottite NWA 7635) (13). By comparison, the total reported range in ε^{182}W for terrestrial rocks is substantially smaller, ≈−0.20 to +0.49 (21–24). Late accretion, as envisioned here, has the potential to strongly modify 182W isotopic heterogeneity originally produced by silicate fractionation. We note that the results of our model do not strongly depend on the assumed input parameters, such as the cone semi-aperture angle. Last, the assumed mixing of either projectile’s core or mantle material from different collisions is quantitatively similar to mixing of both components in every collision; thus, other mixing scenarios are also possible.

For completeness, we also investigate final ε^{182}W and Pt values for representative Monte Carlo mixing calculations based on a three-collision scenario (as in Fig. 2B). We find that ε^{182}W is largely decoupled from the final concentration of Pt. The delivery of projectile core in one collision (as we have assumed in our simulations) largely sets the final Pt content, while variable amounts of added projectile mantle by the two other collisions can produce large variations in the final ε^{182}W, with only a minor effect on Pt (Materials and Methods). We discuss the effect of heterogeneous projectile accretion on other isotopic systems, such as oxygen, in Materials and Methods.

An inferred single-stage core Hf-W formation age of 3.5 Ma for Mars is based on an estimated value of ε^{182}W = +0.37, approximately the average for shergottite meteorites, coupled with an average 180Hf/184W of 4.0 extrapolated from Th/W ratios for shergottites (19). An alternative model based on continuous accretion estimates that Mars reached 44% of its mass in ≈1.8 Ma (25). These calculations assume that shergottites are representative of the bulk silicate Mars. However, these estimated core formation ages would be incorrect if the ε^{182}W value for pre-late accretion bulk silicate Mars (ε^{182}W(pre)) is either higher or lower than previously assumed due to incomplete projectile mixing effects. Higher ε^{182}W values, as might be indicated by some nakhlites and shergottite values >+1.0, would imply an even earlier formation age. Alternatively, if ALH 84001 (ε^{182}W = +0.09)
is more representative of the bulk silicate Mars, then the model differentiation age would be considerably later.

To illustrate the effect of e^{182}W$_{pre}$ on the formation age, we use a Monte Carlo code that randomly selects combinations of relevant parameters, including their uncertainties (Materials and Methods). The error analysis shows that a single-stage core formation age between 5 and 15 Ma requires e^{182}W$_{pre}$ ranging from +0.1 to −1.2, respectively (Fig. 3). To investigate whether a much lower e^{182}W$_{pre}$ value than previously assumed is compatible with SNC meteorites, we repeated the analysis with an extreme e^{182}W$_{pre} = −1.2$. We find that the three-collision model can produce the observed range of HSE and e^{182}W values (Fig. 2B; Materials and Methods). Thus, our model shows that a formation age in excess of 5 Ma and as late as ≈ 15 Ma post-CAI (calcium-aluminum-rich inclusions) is possible. In this case, a solution with three projectiles is required to span the full range of observed SNC e^{182}W values.

DISCUSSION

The accretion history and formation time scale of Mars continue to be debated [e.g., (26)]. Recent terrestrial accretion models find that forming a fully grown Mars requires ≈ 10 Ma [e.g., (27)], consistent with constraints that require Mars’ crust to have formed within the first 20 Ma of solar system history (13, 28). Alternatively, formation models based on pebble accretion can grow Mars in a few million years (29); however, accretion histories in excess of 10 Ma are also commonly observed in those models. One way to reconcile a longer formation time scale with Hf-W constraints is to consider that Mars accreted via giant impacts (i.e., by bodies containing 10% or more of its mass) whose cores did not efficiently equilibrate with its mantle [e.g., (30)]. However, Mars’ small mass and its slow rotation rate seem to imply that it is a leftover planetary embryo that formed primarily through accretion of smaller bodies. Our heterogeneous mixing model shows that late accretion by just a few projectiles of mass $10^{-3}M_{m}$ to $10^{-2}M_{m}$ provides a way to reconcile Mars’ formation as an embryo with the protracted growth time scale predicted by some accretion models. The time scale for the dispersal of the solar protoplanetary disk is estimated to be ≈ 4 to 5 Ma, based on paleomagnetic measurements in angrite meteorites (31) and Pb-Pb ages of chondrules in a CB meteorite (32). Late formation would imply that Mars completed its growth in a gas-poor/gas-free environment, in contrast to previous estimates that suggest that Mars formed while the Sun’s full gaseous protoplanetary disk was still present (25), with implications for the mode of Mars’ growth, its post-accretion thermal state, and the acquisition of its early atmosphere.

MATERIALS AND METHODS

Projectile mixing and late accreted mass

We use our SPH impact simulations to track the fate of the projectile core and define three end states: merges with Mars’ core, remains suspended in the martian mantle, or ejected from the system (fig. S2). In doing this analysis, we follow the approach developed for the Earth (6).

Our martian simulations show that large, well-resolved clumps (>100 particles) of projectile’s core typically reach the base of the core-mantle boundary (CMB) within 2 hours after impact. This rapid merger is driven by the direct excavation of the martian mantle by the projectile and deposition of projectile’s core material at depth in the mantle (fig. S3). From this deposition location, projectile’s core material descents to the CMB. The final descent through the mantle of these large core clumps is not likely to result in significant turbulent erosion because the vertical scale of the descent is comparable with the size of the clumps (6, 7). Thus, this projectile’s core material is not likely to isotopically or chemically equilibrate with the martian mantle. This rapid core descent is observed whenever a large clump of the projectile’s core remains coherent. In collisions with high impact angles (≥45°), a part of the projectile’s core is efficiently disrupted and is dispersed in the mantle or into the near surface (Fig. 1B and fig. S3B). The shearing associated with these oblique collisions results in a portion of the core being disrupted to single particles or small clumps. We assume that this material is retained in the mantle following the logic of Kendall and Melosh (33). This process is facilitated by the impact melting of significant volumes of the martian mantle, which would enhance turbulent erosion. In addition, note that our SPH technique may overestimate the final size of core particles that experience extreme shear conditions, which are typically achieved by stranded single particles (34). This facilitates equilibration, as smaller particles are prone to a more efficient turbulent erosion.

Notice that, in the study of Marchi et al. (6), we conducted a resolution test for 45° collisions in which the number of SPH particles in the projectile was varied by a factor of 25 across three simulations (from 2×10^{4} to 6×10^{4}). The three runs yielded broadly similar large clump masses and a similar fraction of the impactor core that descends to the CMB. Here, we performed a similar test finding consistent results.

We investigate the post-collision concentration of projectile material in conic mantle domains located across the planet that have semi-apertures of 30°. With this definition, a single mantle domain often contains most of the localized effects of a collision. The choice of the semi-aperture angle does not significantly alter the overall...
results. Over the assumed range of projectile masses and velocities and for an average impact angle of 45°, we find that the ratio of projectile core to Mars’ mantle varies from 0 to 0.008 (see the main text and Fig. 1B), depending on the domain location with respect to the impact geometry. For impact angles less than 30° (not shown in fig. S2 for clarity), the projectiles’ core and mantle effectively separate: The core merges with the martian core, while the impactor mantle is mostly deposited close to the martian surface (Fig. 1A). For the domain with the greatest concentration of projectile mantle material, we find that in a 200-km-thick surface spherical cap with a semi-aperture of 30°, the ratio of projectile mantle to Mars’ mantle ranges from 0 to 0.7 across the investigated range of projectile masses and velocities, similar to that found for impacts into Earth (6). These mixing ratios are used in our Monte Carlo mixing simulation to track Pt and Hf-W evolutions (Fig. 2).

Our SPH simulations neglect material strength. This is a good approximation for large targets when the overburden pressure due to gravity, \(\rho gh \) (where \(\rho \) is the density, \(g \) is the gravitational acceleration, and \(h \) is the depth), exceeds the shear strength (35). The largest shear strength for dunite or basalt occurs for high pressures and low temperatures, and is \(\approx 3.5 \) GPa (36). The overburden pressure within Mars exceeds this value for depths greater than about 270 km (37), increasing to about 20 GPa at the CMB. Thus, for low temperatures, strength can be neglected in the inner martian mantle but could be important in outer mantle regions. Recent SPH impact simulations (38) that incorporate a strength model (35) found that strength had a significant effect on the distribution of projectile mixing within a martian mantle whose CMB temperature was \(T_{\text{CMB}} = 1500 \) K. This is a “low-temperature” Mars in the sense that it is much cooler that the solidus temperature, which at the CMB is \(T_{s, \text{CMB}} \approx 2500 \) K (39).

However, at the time of late accretion, early Mars’ interior was likely substantially hotter and closer to the solidus, with \(T_{\text{CMB}} \approx 2200 \) to 2400 K estimated from interior models ([10]; their figure 3A). As temperatures approach the liquidus, materials soften and weaken, which reduces strength by an approximate factor \(\tanh(1.2(T/\text{solidus} - 1)) \) (where \(T_1 \) is the local liquidus temperature and \(T \) is the material temperature), with strength effectively vanishing once \(T = T_1 \) (35, 38, 40). For temperatures expected during late accretion (i.e., \(T_{\text{CMB}} \approx 2200 \) to 2400 K), this temperature-dependent softening would reduce strength by a factor of several to >10 in the martian mantle relative to that considered by Emsenhuber et al. (38), who assumed a cooler profile with \(T_{\text{CMB}} = 1500 \) K. For shear strengths \(\leq 1 \) GPa, overburden pressure would exceed strength for depths greater than \(10^2 \) km. Thus, all depths within an early warm Mars that are resolved by our computations, we assumed a starting bulk chondritic composition (18) with \(X_{\text{Hf}} = 222 \) ppb, \(W = 63.25 \) ppb, and \(Pt = 0.1 \) ppb), resulting in a final \(e^{182}\text{W} \) value of 0.864477, and \(Pt \approx 4 \) ppb (see the main text), the late accreted mass is \(\approx 4 \times 4.3 \times 10^{23}/1100 = 1.6 \times 10^{21} \) kg.

Differentiated projectiles are assumed to derive from chondritic objects that instantaneously differentiated at 2 Ma. The precise timing of differentiation does not significantly affect our results. We assume the following concentrations for the projectile mantle: \(X_{\text{Hf}} = 230 \) ppb, \(W = 397 \) ppb, and \(Pt = 3300 \) ppb. These values are consistent with the assumption of a chondritic bulk composition and a core with 33% of the total mass, which formed via metal-silicate equilibrium at low pressure (<1 GPa) and moderately low oxygen fugacity ([IW-1], in which tungsten is moderately siderophile (\(D \approx 30 \)) (43). With these assumptions, the mantle and core acquire a final \(e^{182}\text{W} \) values of \(+42.3 \) and \(-3.26 \), respectively. We stress that the overall picture of our work is largely insensitive to the actual numerical values adopted above.

For a Mars assumed to have instantaneous differentiation at 3.5 Ma, we adopt a martian mantle with \(X_{\text{Hf}} = 222 \) ppb, \(W = 63.25 \) ppb, and \(Pt = 0.1 \) ppb. With these assumptions, we obtain a final \(e^{182}\text{W} \) value of +0.60 (Fig. 2A and fig. S4A). In our Monte Carlo mixing calculations, we also consider a later Mars differentiation time of 10 Ma (with \(X_{\text{Hf}} = 222 \) ppb, \(W = 85 \) ppb, and \(Pt = 0.1 \) ppb) and 15 Ma (with \(X_{\text{Hf}} = 222 \) ppb, \(W = 81 \) ppb, and \(Pt = 0.1 \) ppb), resulting in a final \(e^{182}\text{W} \) values of \(-1.00 \) and \(-1.20 \), respectively (Fig. 2B and fig. S4B). Details on the final \(e^{182}\text{W} \) and Pt values for our mixing model are reported in fig. S5.

Oxygen isotope mixing

Oxygen isotopes are often used to assess the composition of planets in relation to their building blocks, and they can also be useful to constraint the composition of late accreted materials. Here, we provide two examples. In the first case, we consider projectile’s core mixing with the martian mantle. We used \(\Delta^{17}\text{O}_{\text{p}} = 1.1 \) and \(-0.7 \) for IVA and IAB iron meteorites, respectively. The \(\Delta^{17}\text{O}_{\text{mix}} \) of the mix is

\[
\Delta^{17}\text{O}_{\text{mix}} = X_{\text{p}} \times \Delta^{17}\text{O}_{\text{p}} + X_{\text{mars}} \times \Delta^{17}\text{O}_{\text{mars}}
\]

where \(X_{\text{p}} \) and \(X_{\text{mars}} \) are the fraction of both components in a mantle domain \((X_{\text{p}} + X_{\text{mars}} = 1) \). From our SPH simulations, \(X_{\text{p}} = 0.008 \) at
most. We also take $\Delta^{17}\text{O}_\text{mars} = 0.3$ and obtain $\Delta^{17}\text{O}_\text{mix} = 0.306$ and 0.292 for IVA and IAB, respectively. Thus, core mixing has negligible effects on martian oxygen isotopes.

We now repeat the computation for projectile’s silicate mixing with the martian mantle. For reference, we consider $\Delta^{17}\text{O}_\text{proj} = -0.3$ typical of howardite-eucrite-diogenite meteorites. From our SPH simulations, X_g is up to 0.4 (notice that this is equivalent to the mass ratio of 0.7 discussed in the main text). Assuming $\Delta^{17}\text{O}_\text{proj} = 0.3$, we obtain $\Delta^{17}\text{O}_\text{mix} = 0.06$, which would be easily resolvable. We also compute that for a mass ratio $X_p/X_\text{mars} < 15\%$, the effect of projectile mantle mixing on oxygen isotopes is negligible. However, our model does not consider or depend on the genetic characteristics of materials (which include oxygen isotopic compositions), and so, there is no a priori requirement that the late accreted materials would have substantially different oxygen isotopic compositions. Note that to some extent the uniformity of oxygen isotopic compositions in martian meteorites could be a self-fulfilling conclusion because oxygen isotopic compositions are a primary means of identifying martian meteorites.

The number of 1000-km versus smaller projectiles

The bombardment history of Mars has been the subject of two recent works. One model (2) argues that the Borealis impact happened very early in Mars history [≈4.5 billion years (Ga)] and that the observed number of large craters and basins is close to the actual number of collisions experienced by Mars since 4.5 Ga. An alternative model (44) envisions a much later formation for Borealis basin (≈4.3 Ga), associated with a global era of preexisting craters. The two models present very different collisional evolutions: few large collisions on Mars in the former versus many more large collisions in the latter. In model (2), most HSE are delivered by a Borealis-type impact, while in model (44), the large number of smaller projectiles could also contribute HSE. To test this possibility, we generated 500 Monte Carlo simulations with an input impactor size-frequency distribution (SFD) from Marchi et al. (45), with projectile sizes ranging from 12 to 4000 km. We selected simulations that gave one impactor ≥ 1000 km (one Borealis-scale event), as in model (44). Then, we integrated the impactor SFD to obtain the total mass colliding with Mars, excluding the largest Borealis impactor. This provides an estimate of the total mass delivered by sub--1000-km impactors. The mean total mass in 12- to 1000-km bodies was 5×10^{20} kg, assuming 100% accretion. This is significantly lower than the 1.6×10^{21} kg needed to explain Mars’ mantle HSE in the limit that all projectile HSEs are retained in the martian mantle. Thus, even the most intense envisioned bombardment would not deliver Mars’ HSE in only sub--1000-km projectiles. This is consistent with the idea that the HSE abundances in the martian mantle were primarily delivered by large (≥ 1000 km) projectiles.

Mars formation age

Under the simplified assumption of a single-stage differentiation and instantaneous Hf/W fractionation, the core formation age is given by

$$ t = \frac{1}{(1/\lambda) \ln (Q_{we}/(e^{182}\text{W}_{\text{pre}} - e^{182}\text{W}_{\text{chon}}))} $$

where $f = (^{180}\text{Hf}/^{184}\text{W})_{\text{pre}}/(^{180}\text{Hf}/^{184}\text{W})_{\text{chon}} - 1$. The assumed average values and 1-σ uncertainties are as follows: $\lambda = 0.078 \pm 0.002$, $(^{180}\text{Hf}/^{184}\text{W})_{\text{pre}} = 3.51 \pm 0.45$, $(^{180}\text{Hf}/^{184}\text{W})_{\text{chon}} = 1.35 \pm 0.11$, $e^{182}\text{W}_{\text{chon}} = -1.9 \pm 0.1$, and $Q_{we} = 1.59$ is the difference between $e^{182}\text{W}_{\text{chon}}$ and $e^{182}\text{W}$ for the initial solar system (19, 25). With these values, $e^{182}\text{W}_{\text{pre}} = +0.45$ yields $t \approx 1$ Ma. This is comparable with a previous estimate ($t \approx 1.8$ Ma) based on a continuous accretion model (25). For reference, the same approach yields a formation age of ≈ 34 Ma for Earth (19).

As noted above, in our model, we have a pre-late accretion $^{182}\text{W}_{\text{pre}} \approx +0.6$ (Fig. 2A). However, as discussed in the main text, heterogeneous projectile mixing can result in a strong nonchondritic ^{182}W addition to mantle domains. To investigate the effect of $^{182}\text{W}_{\text{pre}}$ on the formation age, we run a Monte Carlo code that randomly selects 2×10^5 combinations of the individual parameters each chosen from a Gaussian distribution with the specified average and 1-σ values. The error analysis shows that a formation age between 5 and 15 Ma would require $^{182}\text{W}_{\text{pre}}$ ranging from +0.1 to --1.2, respectively. The results are shown in Fig. 3.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/7/eaya2338/DC1

Fig. S1. Localized impact melting in the martian mantle.
Fig. S2. Fate of projectile material after colliding with Mars.
Fig. S3. Details of the fate of large projectile’s core clumps.
Fig. S4. Additional Hf-W isotopic evolution of early Mars.
Fig. S5. Final $e^{182}\text{W}$ and Pt values.

REFERENCES AND NOTES

1. J. M. D. Day, A. D. Brandon, R. J. Walker, Highly siderophile elements in Earth, Mars, the Moon, and Asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016).
2. W. F. Bottke, J. C. Andrews-Hanna, A post-accretionary lull in large impacts on early Mars. Nat. Geosci. 10, 344–348 (2017).
3. R. Brasser, S. Majossy, A colossal impact enriched Mars’ mantle with noble metals. Geophys. Res. Lett. 44, 5978–5985 (2017).
4. F. Nimmo, S. D. Hart, D. G. Korycansky, C. B. Agnor, Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).
5. M. M. Marinova, O. Aharonson, E. Ashaug, Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211, 960–985 (2011).
6. S. Marchi, R. M. Canup, R. J. Walker, Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).
7. T. W. Dahl, D. I. Stevenson, Turbulent mixing of metal and silicate during planet accretion—And interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010).
8. D.-C. Lee, A. N. Halliday, Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997).
9. C. C. Reese, V. S. Solomatov, J. R. Baumgardner, Survival of impact-induced thermal anomalies in the martian mantle. J. Geophys. Res. Planets 107, 5082 (2002).
10. S. Zhang, C. O’Neill, The early geodynamic evolution of Mars-type planets. Icarus 265, 187–208 (2016).
11. W. S. Kiefer, Melt in the martian mantle: Shergottite formation and implications for present-day mantle convection on Mars. Meteor. Planet. Sci. 38, 1815–1832 (2003).
12. A. D. Brandon, L. S. Puchtel, R. J. Walker, J. M. D. Day, A. J. Irving, L. A. Taylor, Evolution of the martian mantle inferred from the 166Re–187Os isotope and highly siderophile element abundances systems of shergottite meteorites. Geochim. Cosmochim. Acta 76, 206–235 (2012).
13. T. S. Krieger, T. Kleine, L. E. Borg, G. A. Brennecka, A. J. Irving, A. Bischoff, C. B. Agee, The early differentiation of Mars inferred from Hf–W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017).
14. S. N. Raymond, H. E. Schlichting, F. Hersant, F. Selis, Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).
15. J. C. Andrews-Hanna, M. T. Zuber, Elliptical craters and basins on the terrestrial planets, in Large Meteorite Impacts and Planetary Evolution IV, R. L. Gibson, W. W. Reinbold, Eds. (Special Paper 465, Geological Society of America, 2010), pp. 1–13.
16. R. M. Canup, J. Salmon, On an origin of phobos-deimos by giant impact, in Proceedings of the 47th Lunar and Planetary Science Conference, Woodlands, TX, 21 to 25 March 2016, p. 2598.
17. A. Ody, F. Poulet, C. Quantin, J.-P. Bibring, J. L. Bishop, M. D. Dyar, Candidates source regions of martian meteorites as identified by OMEGA/MEx. Icarus 258, 366–383 (2015).
18. T. Spohn, M. H. Acuña, D. Breuer, M. Golombek, R. Greeley, A. Halliday, E. Hauber, R. Jaumann, F. Sohl, Geophysical constraints on the evolution of Mars. Space Sci. Rev. 96, 231–262 (2001).
19. T. Kleine, R. J. Walker, Tungsten isotopes in Planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017).
20. C. N. Foley, M. Wadhwa, L. E. Boyce, P. L. Janney, R. Hines, T. L. Grove, The early differentiation history of Mars from 182W–142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005).
21. M. Willbold, T. Elliott, S. Moorbaugh, The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).
22. H. Rizo, R. J. Walker, R. W. Carlson, M. Touboul, M. F. Horan, L. Puchtel, M. Boyet, M. T. Rosing. Early Earth differentiation investigated through 182W, 184W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim. Cosmochim. Acta 175, 319–336 (2016).
23. H. Rizo, R. J. Walker, R. W. Carlson, M. F. Horan, S. Mukhopadhyay, V. Manthos, D. Francis, M. G. Jackson, Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 328, 809–812 (2010).
24. A. Mundl, M. Touboul, M. G. Jackson, J. M. D. Day, M. D. Kurz, V. Lekic, R. T. Helz, R. J. Walker, Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).
25. N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).
26. R. Morishima, G. J. Golabek, H. Samuel, N-body simulations of oligarchic growth of Mars: Implications for Hf-W chronology. Earth Planet. Sci. Lett. 366, 6–16 (2013).
27. M. S. Clement, N. A. Kaib, S. N. Raymond, K. J. Walsh, Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).
28. L. C. Bouvier, M. M. Costa, J. N. Connolly, N. K. Jensen, D. Wielandt, M. Storey, A. A. Nemchin, M. J. Whitehouse, J. F. Snape, J. J. Bellucci, F. Moynier, A. Agranier, B. Gueguen, M. Schönbecher, M. Bizzarro, Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 58–589 (2018).
29. H. F. Levison, K. A. Kietke, K. J. Walsh, W. F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci. U.S.A. 112, 14180–14185 (2015).
30. K. Mezger, V. Debaillie, T. Kleine, Core formation and mantle differentiation on Mars. Space Sci. Rev. 174, 27–48 (2013).
31. H. Wang, B. P. Weiss, X.-N. Bai, B. G. Downey, J. Wang, J. Wang, C. Suavet, R. R. Fu, M. E. Zucoloto, Lifetime of the solar nebula constrained by meteorite palaeomagnetism. Science 355, 623–627 (2017).
32. J. Bollard, J. N. Connolly, M. Bizzarro, Pb-Pb dating of individual chondrules from the CB chondrite Guiba: Assessment of the impact plume formation model. Meteorit. Planet. Sci. 50, 1197–1216 (2015).
33. J. D. Kendall, H. J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016).
34. H. Genda, R. Brasser, S. J. Mojzsis, The terrestrial late veneer from core disruption of a lunarsized impactor. Earth Planet. Sci. Lett. 480, 25–32 (2017).
35. M. Jutzi, SPH calculations of asteroidal disruptions: The role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).
36. E. L. Serft, S. T. Stewart, Dynamic fault weakening and the formation of large impact craters. Earth Planet. Sci. Lett. 287, 471–482 (2009).
37. S. E. Smrekar, P. Lognonné, T. Spohn, W. B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, W. Folkner, N. Fuji, R. F. Garcia, D. Giardini, M. Golombek, M. Grot, T. Gudkova, C. Johnson, A. Khan, B. Langlais, A. Mittelholz, A. Mocquet, R. Myhill, M. Panning, C. Perrin, T. Pike, A.-C. Plesa, A. Rovoldini, H. Samuel, S. C. Stähler, M. van Oriel, T. Van Hoolst, O. Verhoeven, R. Weber, M. Wieczorek, Pre-mission InSights on the interior of Mars. Space Sci. Rev. 215, 3 (2019).
38. A. Emshuber, M. Jutzi, W. Benz, SPH calculations of Mars-scale collisions: The role of the equation of state, material rheologies, and numerical effects. Icarus 301, 247–257 (2018).
39. B. A. Ivanov, H. J. Melosh, E. Pierazzo, Basin-forming impacts: Reconnaissance modeling, in Large Meteorite Impacts and Planetary Evolution IV, R. L. Gibson, W. U. Reimold, Eds. (Geological Society of America, 2010), vol. 465.
40. G. S. Collins, H. J. Melosh, B. A. Ivanov, Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).
41. H. J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).
42. N. L. Chabot, H. Haack, Evolution of Asteroidal Cores, D. S. Lauretta, H. Y. McSween, Eds. (University of Arizona Press, 2006), pp. 747–771.
43. E. Cottrell, M. J. Walter, D. Walker, Metal-silicate partitioning of tungsten at high pressure and temperature: Implications for equilibrium core formation in Earth. Earth Planet. Sci. Lett. 281, 275–287 (2009).
44. A. Morbidelli, D. Nesvorny, V. Laurenn, S. Marchi, D. C. Rubie, L. Elkins-Tanton, M. Wieczorek, S. Jacobson, The timeline of the lunar bombardment: Revisited. Icarus 305, 262–276 (2018).
45. S. Marchi, W. F. Bottke, L. T. Elkins-Tanton, M. Bierhaus, K. Wuebbenmann, A. Morbidelli, D. A. King, Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).
46. R. G. Kraus, S. Root, R. W. Lemke, S. T. Stewart, S. B. Jacobsen, T. R. Mattsson, Impact vaporization of planetesimal cores in the late stages of planet formation. Nat. Geosci. 8, 269–272 (2015).
47. J. M. Y. Woo, H. Genda, R. Brasser, S. J. Mojzsis, Mars in the aftermath of a colossal impact. Icarus 333, 87–95 (2019).

Acknowledgments: We thank M. Jutzi, P. Michel, and E. Asphaug for useful discussions about SPH methods. We also thank K. Pahlevan and T. Kleine for constructive comments. Funding: This study was supported by NASA Habitable Worlds grant NNX16AR87G and NASA SSERVI grant NNA14AB07A. Author contributions: S.M. conceived the work and carried out analysis of SPH simulation outputs and isotopic mixing calculations. R.J.W. guided the execution of isotopic calculations, and R.M.C. executed the SPH simulations. All participated in the writing of the manuscript and discussion of the results. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Materials. Selected SPH and isotopic mixing outputs are available upon request.

Submitted 31 May 2019
Accepted 26 November 2019
Published 12 February 2020
10.1126/sciadv.aay2338

Citation: S. Marchi, R. J. Walker, R. M. Canup, A compositionally heterogeneous martian mantle due to late accretion. Sci. Adv. 6, eaay2338 (2020).
A compositionally heterogeneous martian mantle due to late accretion
Simone Marchi, Richard J. Walker and Robin M. Canup

Sci Adv 6 (7), eaay2338.
DOI: 10.1126/sciadv.aay2338

ARTICLE TOOLS http://advances.sciencemag.org/content/6/7/eaay2338
SUPPLEMENTARY MATERIALS http://advances.sciencemag.org/content/suppl/2020/02/10/6.7.eaay2338.DC1
REFERENCES This article cites 42 articles, 5 of which you can access for free http://advances.sciencemag.org/content/6/7/eaay2338#BIBL
PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service