Abstract

In this paper we show that a substantial Riemannian submersion of S^{15} with 7-dimensional fibres is congruent to the standard Hopf fibration. As a consequence we prove a slightly weak form of the Diameter Rigidity theorem for the Cayley plane which is considerably stronger than the very recent Radius Rigidity Theorem of Wilhelm.

1 Introduction

The study of Riemannian foliations of Euclidean spheres with no restrictions on the geometry of leaves was initiated in [8] and a complete classification was obtained for all the foliations having leaves of dimensions less than or equal to three. Earlier, the classification under the very strong hypothesis of the leaves being totally geodesic was accomplished in [1], [3] and [9]. A remarkable discovery in [8] was the fact that for substantial or highly nonflat (see [8] for definition) Riemannian foliations of S^n, the horizontal holonomy group reduces to a compact Lie group. The low dimensional Riemannian foliations could then be shown to be the orbits of this group. Thus proving substantiality was a crucial step and it was carried out for the leaves of dimensions less than or equal to three. As a result it is known in particular that if $\pi : S^n \to M$ is a Riemannian submersion with connected fibres, then either it is congruent to a Hopf fibration or we have $\pi : S^{15} \to M^8$. Now the reduction to a compact Lie group is valid for substantial foliations without restrictions on leaf dimension. Hence it is natural to ask the following question:

AMS subject classification: 53C20, 53C22, 53C35
If the Riemannian submersion $\pi : S^{15} \to M^8$ is substantial along every leaf, is it congruent to the Hopf fibration?

Since the question is algebraic in nature, this author was under the impression that it must have been settled by now. However, looking at a recent preprint [14] it was realised that such was not the case. In [14] the following lemma occurs:

Let $\pi : S^{15}(1) \to V$ be a Riemannian submersion with connected 7-dimensional fibres, and let G be the set of points $v \in V$ so that $\pi^{-1}(v)$ is totally geodesic. Then either G is discrete or G is totally geodesic and an isometrically embedded copy of $S^l(1/2)$ for some $1 \leq l \leq 8$.

Now in [8] itself it is implicit that if $G \neq \phi$, then π will be substantial along every leaf and it should be the case that G is all of V. This would simplify much of the subsequent work in [14]. Therefore, it definitely seems worthwhile to set the record straight in this matter. In this paper we prove the following:

Theorem 1.1 If $\pi : S^{15} \to M^8$ is a Riemannian submersion with connected fibres which is substantial along each leaf, then it is congruent to the Hopf fibration.

As a corollary we also prove:

Theorem 1.2 (Weak Diameter Rigidity for CaP2) Let M have sectional curvatures ≥ 1, $\text{diam}(M) = \pi/2$. Moreover, let M admit an equilateral triangle of sides $\pi/2$ and have the integral cohomology ring same as that of Cayley plane. Then M is isometric to the standard CaP2 with $1 \leq K \leq 4$.

This almost ties up the loose end in [8] and both the Radius Rigidity Theorem in [14] and the corollary II in [8] are considerably improved.

Acknowledgement: The methods in this paper are direct generalisations of those developed in [8] and the author acknowledges this without hesitation. Also the author would like to thank K. Ramachandran for bringing Wilhelm’s paper [14] to his notice and Prof. A.K. Pani who spent valuable time to help me typeset the manuscript on LATEX.

2 The Group of the Submersion

In this section we determine the Lie group which could possibly occur as the structure group (holonomy group) of the Riemannian submersion $\pi : S^{15} \to M^8$ when we assume it to be substantial.
Theorem 2.3 If $\pi : S^{15} \to M^8$ is a Riemannian submersion which is substantial along each leaf, then the holonomy group G of π is such that $\text{Lie}G = \text{so}(8)$. Hence G is either $\text{SO}(8)$ or $\text{Spin}(8)$.

Proof: By [8], the holonomy group G of π is a compact Lie group of dimension ≤ 28 and it acts transitively on the fibres. The fibres of π are well known to be homotopy 7-spheres (see [3]). We conclude therefore that G can only be one of the following:

$$SO(8), \text{Spin}(8), \text{Spin}(7), SU(4), U(4), \text{and } Sp(2)$$

(see [1], p. 195).

Now by the long exact sequence of homotopy of π (or directly from [3]) M^8 is a homotopy 8-sphere and by the Thom-Gysin sequence of π, the Euler class of this 7-sphere fibration is the generator of $H^8(M, \mathbb{Z}) \approx \mathbb{Z}$. This enables us to rule out $\text{Spin}(7)$, since the Euler class of a $\text{Spin}(7)$ bundle must be torsion (this is because $H^*(B\text{Spin}(7), \mathbb{Q}) = \mathbb{Q}[p_1, p_2, p_3]$ is generated by Pontrjagin classes only). Since $Sp(2) \subset SU(4) \subset U(4)$, if we rule out $U(4)$ then the other two will be ruled out automatically. Now $H^*(BU(4), \mathbb{Z}) = \mathbb{Z}[c_1, c_2, c_3, c_4]$ is generated by Chern classes and c_4 also represents the Euler class χ. Since M is a homotopy sphere of dimension 8, by Bott’s Integrality Theorem (see [1], p. 279) c_4 is divisible by 3! in $H^8(M, \mathbb{Z})$. But then χ can not be a generator - a contradiction! Therefore, we conclude that $G = \text{Spin}(8)$ or $\text{SO}(8)$.

q.e.d.

REMARK: Since there are no Whitney classes w_1 and w_2 we can fix the group to be $\text{Spin}(8)$ which we do from now on.

Corollary 2.1 Let $\mathcal{X}(N)$ denote the Lie algebra of smooth vector fields on a smooth manifold N. For $b \in M$, the map

$$A : \bigwedge^2(T_bM) \to \mathcal{X}(\pi^{-1}(b))$$

given by $A(x \wedge y) = A_x y$ is injective and its image is a Lie subalgebra isomorphic to $\text{so}(8)$.

proof: See [8].

3 The associated principal bundle

Having found the holonomy group $\pi : S^{15} \to M^8$ we cannot apply the methods of [8] directly at this stage. In fact the standard Hopf fibration $S^{15} \to S^8(1/2)$
does not occur via orbits of any Lie group action on S^{15}. We therefore adopt the strategy of looking at the associated principal $Spin(8)$ bundle

$$\tilde{\pi} : E \to M$$

and study the induced connection on it. To construct the associated principal bundle we first note that the holonomy Lie algebra $so(8) \subset \mathcal{X}(\pi^{-1}(b))$ for each $b \in M$ gives an additional geometric structure on the fibres which is preserved under the horizontal holonomy displacement ([8], lemma 2.12, and prop.2.13). Moreover, the fibres being homogeneous under $Spin(8)$ action (though not via isometries \\ \textit{apriori}) become diffeomorphic to $S^7(1)$. Now $Spin(8)$ can act transitively on S^7 in three ways: via ρ, σ_+, and σ_-, where ρ is the natural double cover representation in \mathbb{R}^8 and the other two are the two spin representations of $Spin(8)$. However, from the geometrical point of view, the three are equivalent as all three are two-sheeted covers of $SO(8)$ and one can pass from one to any other using covering transformations. These are naturally outer automorphisms of $Spin(8)$. To construct the principal bundle we take any one of these representations, say ρ. The resulting $Spin(8)$ action on S^7 gives rise to a copy of $so(8)$ inside $\mathcal{X}(S^7(1))$. Let for each $b \in M$, F_b denote the fibre $\pi^{-1}(b)$ and define E_b to be the set of all diffeomorphisms $\phi : S^7(1) \to F_b$ which send this copy of $so(8)$ onto the holonomy Lie algebra sitting in $\mathcal{X}(F_b)$ isomorphically. Clearly E_b is a copy of the group $Aut(so(8))$ whose identity component is just $PSO(8)$. We now let E to be the disjoint union of these E_b as b runs through the set M. The set E has a natural smooth structure and an obvious smooth projection $\tilde{\pi}$ onto M with fibre over any point b being exactly E_b.

The group $Aut(so(8))$ acts on E from the right freely and the orbits are the fibres E_b. We now do two things for the sake of definiteness: (i) reduce the group to the identity component $PSO(8)$, this is possible due to simple connectivity of M and (ii) \textit{reduce} the group further to $Spin(8)$. This is possible due to the absence of the first two Whitney classes. We continue to denote the reduced space by E only. Thus E is now the associated principal $Spin(8)$ bundle we were looking for. If $Spin(7)$ is the isotropy group at some chosen base point of our model sphere $S^7(1)$, then $E/Spin(7)$ is our S^{15} that we started with and we have a tower of smooth fibrations

$$E \to S^{15} \to M$$

The composite is the map $\tilde{\pi}$.

4 The Riemannian structure on E

In this section we describe a metric on E which comes naturally due to the geometric considerations and which makes the above tower, a tower of Riemannian submersions. This is done in several stages.
First we note that for each $\phi \in E$, there is a decomposition of the tangent space into two complementary subspaces. The first of these is the tangent space to the orbit of Spin(8) through ϕ and the other is the space generated by the holonomy of π. To elaborate this, let $\phi \in E_b$ and γ a path starting from b. Then we get a one parameter family of diffeomorphisms $\tau_{\gamma(t)}$ from F_b to $F_{\gamma(t)}$ generated by the holonomy displacement along γ. This gives a path $\tau_{\gamma(t)}\circ \phi$ in E. Its derivative at $t = 0$ gives a member of the second complementary subspace. As γ varies the full subspace is obtained. We naturally declare the break-up as orthogonal and metrize the second part by the inner product on T_bM to which it projects isomorphically under $\tilde{\pi}_*$. Henceforth we will denote the second subspace \mathcal{H}_ϕ and call it the horizontal space (relative to $\tilde{\pi}$). We remark that this collection of horizontal spaces gives exactly the connection on the principal bundle which is associated to the connection given by the horizontal spaces in S^{15}. We also denote the space complementary to \mathcal{H}_ϕ by \mathcal{V}_ϕ. It remains to define a metric on this vertical part. This is more delicate. We proceed as follows: We already have a copy of $so(7)$ inside $so(8)$ as the isotropy Lie algebra of a chosen base point in our model S^7. This naturally breaks $so(8)$ in a unique manner as

$$so(7) \oplus \mathbb{R}^7$$

each part being an irreducible $so(7)$ module. This is also the Cartan decomposition (see \cite{10}). Corresponding to each $X \in so(8)$, we have a vertical vector field \bar{X} on E (see \cite{2}, p.39). Thus we also have a decomposition

$$\mathcal{V}_\phi = \mathcal{V}_\phi' \oplus \mathcal{V}_\phi''$$

This too we declare to be orthogonal. On the first part we put the metric coming from the bi-invariant innerproduct of $so(7)$ and on the second part the metric pulled back from S^{15} to which it goes injectively under $\tilde{\pi}_*$. Note that its image is precisely the vertical space at $\tilde{\pi}(\phi)$ in S^{15}. This completes the description of the Riemannian structure on E. With this metric on E, we have a tower of Riemannian submersions

$$E \to S^{15} \to M^8$$

The first one is a $Spin(7)$ principal bundle with totally geodesic fibres, each isometric to $Spin(7)$ with the Cartan-Killing metric while the composite is the principal $Spin(8)$ bundle whose fibres apriori have varying metrics. The decomposition

$$TE = \mathcal{V} \oplus \mathcal{H}$$
is preserved under the $Spin(8)$ action while the finer decomposition

$$TE = \mathcal{V}' \oplus \mathcal{V}'' \oplus \mathcal{H}$$
is preserved under the $Spin(7)$ action. Moreover, the $Spin(7)$ action is evidently via isometries.
5 The Metric on the Fibres of $\tilde{\pi}$

In this section we will see that though the metric on the fibres $E_b, b \in M$ could be different, the variation is very limited in nature. More precisely we have the following:

Theorem 5.4 The fibres $E_b, b \in M$ of $\tilde{\pi}$ are isometric to $Spin(8)$ furnished with a left invariant metric which is also right invariant under $Spin(7)$ action.

To prove this result we need to analyse the integrability tensor of $\tilde{\pi}$. So let \tilde{A} denote the integrability tensor of $\tilde{\pi}$ and \bar{A} that of $\bar{\pi}$.

Lemma 5.1 Let $x, y \in T_b M$. The vertical field $\tilde{A}_x y$ along the fibre E_b is \bar{Z}, for some $Z \in so(8)$. Further, if $Z = Z_1 + Z_2$ corresponding to $so(8) = so(7) + IR^7$, then $\bar{Z}_1 = \tilde{A}_x y$ and $\bar{Z}_2 = A_x y$.

Proof $\tilde{A}_x y = 1/2[X, Y]^v$ is just the curvature of the connection on the $Spin(8)$ principal bundle alluded to earlier and hence clearly comes from a suitable element of its Lie algebra. Also $[X, Y]^v = [X, Y]^v + [X, Y]^{v''} = 2(\tilde{A}_x y + A_x y)$ is also $2(\bar{Z}_1 + \bar{Z}_2)$. By uniqueness of decomposition into components, the result follows. q.e.d.

Corollary 5.2 For $x, y \in T_b M, \tilde{A}_x y$ is of constant length along E_b.

Proof: \bar{Z}_1 is of constant length since it comes from an $so(7)$ element and $\bar{Z}_2 = A_x y$ is of constant norm since it is the basic lift of the corresponding field along $F_b \subset S^{15}$. That it is of constant norm there is well known (see [8]). Since the two components are also mutually orthogonal everywhere the corollary follows. q.e.d.

Lemma 5.2 There is an orthonormal framing of E_b which is generated by a basis of $so(8)$.

Proof: Choose a basis $\{x_i : 0 \leq i \leq 7\}$ of $T_b M$ so that $\{A_{x_0} x_i : 1 \leq i \leq 7\}$ forms an orthonormal framing of F_b. Set $v_i = A_{x_0} x_i$, and consider the fields

$$\{v_i : 1 \leq i \leq 7\} \cup \{\tilde{A}_{v_j} v_k : 1 \leq j < k \leq 7\}$$

That the first set of 7 vector fields is an orthonormal frame along E_b is obvious. That it is generated by $so(8)$ elements is one of the contentions of the lemma 5.1 above. As for the second set of 21 fields we note that if $v_i = \tilde{X}_i$ for suitable X_i in
the \mathbb{R}^7 component of $so(8)$ then $\tilde{A}_e v_k$ is generated by $[X_j, X_k]$. There is no need to project to the $so(7)$ part since it is already there. (This is a well known property of Cartan decomposition). That these have pairwise constant inner-products now follows from the very way the metric was defined on the V'' part of TE. The two sets are clear mutually orthogonal. We also note that $\{[X_i, X_j], 1 \leq i < j \leq 7\}$ is a basis of $so(7)$. An application of Gram-Schmidt orthonormalisation on the second set now gives the required framing.
\textbf{q.e.d.}

\textbf{proof of the theorem:} E_b can be identified with $Spin(8)$ after choosing some base point on it. The left invariant vector fields of $Spin(8)$ are mapped to the \mathbb{R}-span of the above mentioned basis. Left invariance of the metric of E_b now follows exactly as in [8]. Right invariance under $Spin(7)$ is from construction.
\textbf{q.e.d.}

\textbf{Caution:} Left and right in our situation are opposite to those in [8].

\textbf{Corollary 5.3} Each fibre F_b of π is a sphere of constant sectional curvature.

\textbf{proof:} Each F_b is isometric to the quotient of E_b under the group $Spin(7)$ of isometries of E_b acting from the right. Hence $Spin(8)$ acts on F_b via isometries from the left making it a homogeneous Riemannian space. Since the isotropy group $Spin(7)$ acts transitively on tangent two-planes the sectional curvatures are constant pointwise. It follows they are the same constant everywhere (see [12]).
\textbf{q.e.d.}

\section{Left invariant Metrics on $Spin(8)$ invariant under $AdSpin(7)$}

Let
\[so(8) = so(7) \oplus \mathbb{R}^7 \]
be the Cartan decomposition which we note is also an $so(7)$-module decomposition into its \textit{isotypical} components. With this notation we have the following:

\textbf{Theorem 6.5} Let g denote the Cartan Killing metric on $so(8)$. Then $g = g_1 \oplus g_2$ corresponding to the Cartan decomposition and any $AdSpin(7)$ invariant metric is of the type
\[g = g_1 \oplus cg_2 \]
(upto an overall scalar multiple).

\textbf{proof} The first claim is well known (see [10]). The second claim follows since under an $AdSpin(7)$-invariant metric, $so(7)^\perp$ must be an $so(7)$ module. This forces the above decomposition to be orthogonal. Further any $Spin(7)$ invariant metric on the natural module \mathbb{R}^7 is a scalar multiple of the standard Euclidean metric.
\textbf{q.e.d.}
Corollary 6.4 There is a smooth positive real valued function c on M such that E_b is isometric to $\text{Spin}(8)$ with the left invariant metric $g_b = g_1 \oplus c(b)g_2$.

proof: Just observe that there is no change of scale in the V' part of the tangent space of E_b as the orbits of the subgroup $\text{Spin}(7)$ are all isometric to each other.

q.e.d.

Corollary 6.5 For any smooth path in M the holonomy displacement of fibres in E preserves the $V = V' \oplus V''$ decomposition. Moreover, it is an isometry on the first part and a dilatation on the second part.

proof Let γ be a smooth path in M starting from b_1 and ending at b_2. Let $\phi_1 \in E_{b_1}$ and $\phi_2 = \tau(\phi_1)$ be in E_{b_2}. On identifying these fibres with $\text{Spin}(8)$, it is clear that the holonomy diffeomorphism gets identified with L_g for a suitable $g \in \text{Spin}(8)$. Since g_{b_2}, the metric on E_{b_2} pulls back under L_g to a left invariant metric which is also right invariant under $\text{Spin}(7)$, so it must be of the form $g_1 \oplus \frac{c(b_2)}{c(b_1)} \cdot g_2$ (see corollary 6.4 for notation).

q.e.d.

7 Proof of the Main Theorem

In this section we complete the proof of Theorem 1.1 stated in the introduction. We observe that a consequence of the last corollary is that the holonomy displacement in S^{15} is via isometries up to scalings factor. This forces all the operators T^x on vertical vectors arising out of the second fundamental form of the fibres to be scalar multiples of identity. This in turn forces the largest and the smallest fibres to be great spheres due to isoparametricity. Hence all the fibres are great spheres. Appealing now to the classification of parallel great sphere fibrations as in [13] or [3] we conclude that π is a Hopf fibration.

q.e.d.

Corollary 7.6 (Generalized Wilhelm’s Lemma): Let

$$\pi : S^{15}(1) \rightarrow M^8$$

be a Riemannian submersion with connected 7-dimensional fibres and let

$$G = \{ b \in M : \pi^{-1}(b) \text{ is a great sphere} \}$$

then either G is empty or all of M.

8
proof: If G is nonempty let $b \in G$. For any $p \in F_b$ and any $x \in \mathcal{H}_p$, the linear map

$$A_x : \mathcal{H}_p \to \mathcal{V}_p$$

is surjective (see lemma 4.2, [8]). It follows that $A_{c_x'(t)}$ is surjective for all t, where c_x denotes the geodesic with initial vector $x \in \mathcal{H}_p$ (see the statement preceding the corollary 2.9 in [8]). Hence π is substantial along every fibre. q.e.d.

8 Weak Diameter Rigidity for CaP^2

proof: Let x, y, z be mutually distance $\pi/2$ apart. In this situation y and z both are in the dual set $\{x\}'$ of x. (See [7] and [14] for more details about dual sets.) From [7] we know that there is a Riemannian submersion

$$exp_x : S_x \to \{x\}'$$

and similarly for y and z. As argued in [14] this forces at least one fibre to be totally geodesic in each case. But then exp_p is congruent to the Hopf fibration and this makes the space isometric to the standard CaP^2 as proved in [7] and [14]. q.e.d.

Remark: This rigidity is clearly stronger than even corollary II of [4] where each pair of points seperated by a distance of $\pi/2$ is required to be completed into an equilateral triangle.

It is clearly an interesting problem to find reasonable conditions which will force substantiality. One such as we saw is total geodeity of a single fibre. The author proposes to discuss this elsewhere.

References

[1] A. L. Besse, *Manifolds All of Whose Geodesics are Closed*, Ergebnisse der Math. und ihrer Grenzgebiete, Vol. 93, Springer Verlag (1978).

[2] R. L. Bishop and R. J. Crittenden, *Geometry of Manifolds*, Academic Press, New York and London (1964).

[3] W. Browder, Higher Torsion in H-spaces, *Trans. Amer. Math. Soc.* Vol. 108 (1978) pp 353-375.

[4] O. Durumeric, A Generalization of Berger’s Theorem on Almost 1/4-Pinched Manifolds II, *J. Diff. Geom.*, Vol. 26 (1987), pp 101-139.
[5] R. H. Escobales, Jr., Riemannian Submersions with Totally Geodesic Fibres, *J. Diff. Geom.*, Vol. 10 (1975), pp 253-276.

[6] D. Gromoll and K. Grove, One-dimensional Metric Foliations in Constant Curvature Spaces, *Differential Geometry and Complex Analysis: H. E. Rauch Memorial Volume*, Springer Verlag (1985), pp 165-167.

[7] D. Gromoll and K. Grove, A Generalization of Berger’s Rigidity Theorem for Positively Curved Manifolds, *Ann. Sci. École Norm. Sup.*, 4 série, t. 20 (1987), pp 227-239.

[8] D. Gromoll and K. Grove, The Low Dimensional Metric Foliations of Euclidean Spheres, *J. Diff. Geom.*, Vol. 28 (1988), pp 143-156.

[9] H. Gluck, F. Warner, and W. Ziller, Fibrations of Spheres by Parallel Great Spheres and Berger’s Rigidity Theorem, *Ann. Global Anal. Geom.*, Vol. 5 (1987) pp 53-82.

[10] S. Helgason, *Differential Geometry, Lie Groups, and Symmetric Spaces*, Academic Press Inc. (1978).

[11] D. Husemoller, *Fibre Bundles*, GTM Vol. 20, Springer Verlag (1975), 2nd Edition

[12] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. I, Interscience, New York (1963).

[13] A. Ranjan, Riemannian Submersions of Spheres with Totally Geodesic Fibres, *Osaka J. Math.*, Vol. 22 (1985) pp 243-260.

[14] F. Wilhelm, The Radius Rigidity Theorem for Manifolds of Positive Curvature, Preprint January 1995.

Department of Mathematics
Indian Institute of Technology, Bombay
Powai, Bombay - 400 076, INDIA.
email: aranj@ganit.math.iitb.ernet.in