ABOUT JARNÍK’S-TYPE RELATION IN HIGHER DIMENSION

by Antoine MARNAT (*)

Abstract. — Using the Parametric Geometry of Numbers introduced recently by W. M. Schmidt and L. Summerer and results by D. Roy, we show that German’s transference inequalities between the two most classicalexponentsofuniformDiophantineapproximationareoptimal. Further, we establish that the n uniform exponents of Diophantine approximation in dimension n are algebraically independent. Thus, no Jarník’s-type relation holds between them.

Résumé. — En utilisant la géométrie paramétrique des nombres introduite récemment par W. M. Schmidt et L. Summerer et des résultats de D. Roy, nous montrons que les inégalités de transfert entre les deux exposants uniformes d’approximation diophantienne les plus classiques, établies par O. German, sont optimales. De plus, nous établissons que les n exposants d’approximation uniforme en dimension n sont algébriquement indépendants. Ainsi en dimension supérieure à 2, ils ne sont pas reliés par une relation de dépendance analogue à l’identité de Jarník.

1. Introduction

Throughout this paper, the integer $n \geq 1$ denotes the dimension of the ambient space, $\theta = (\theta_1, \ldots, \theta_n)$ denotes an n-tuple of real numbers such that $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q}-linearly independent.

Let d be an integer with $0 \leq d \leq n - 1$. We define the exponent $\omega_d(\theta)$ (resp. the uniform exponent $\hat{\omega}_d(\theta)$) as the supremum of the real numbers ω for which there exist rational affine subspaces $L \subset \mathbb{R}^n$ such that

\[\dim(L) = d, \quad H(L) \leq H \quad \text{and} \quad H(L)d(\theta, L) \leq H^{-\omega} \]

Keywords: Parametric geometry of numbers, Uniform exponents of Diophantine approximation, Transference inequalities.

2010 Mathematics Subject Classification: 11H06, 11J13.

(*) supported by the Austrian Science Fund (FWF), Project F5510-N26, which is a part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”, and FWF START project Y-901.
for arbitrarily large real numbers H (resp. for every sufficiently large real number H). Here $H(L)$ denotes the height of L (see [15] for more details), and $d(\theta, L) = \min_{P \in L} d(\theta, P)$ is the minimal distance between θ and a point of L.

These exponents were introduced originally by M. Laurent [11]. They interpolate between the classical exponents $\omega(\theta) = \omega_{n-1}(\theta)$ and $\lambda(\theta) = \omega_0(\theta)$ (resp. $\hat{\omega}(\theta) = \hat{\omega}_{n-1}(\theta)$ and $\hat{\lambda}(\theta) = \hat{\omega}_0(\theta)$) that were introduced by A. Khinchin [7, 8], V. Jarník [6] and Y. Bugeaud and M. Laurent [1, 2].

We have the relations

$$\omega_0(\theta) \leq \omega_1(\theta) \leq \cdots \leq \omega_{n-1}(\theta),$$

$$\hat{\omega}_0(\theta) \leq \hat{\omega}_1(\theta) \leq \cdots \leq \hat{\omega}_{n-1}(\theta),$$

and Minkowski’s First Convex Body Theorem [12] and Mahler’s compound convex bodies theory provide the lower bounds

$$\omega_d(\theta) \geq \hat{\omega}_d(\theta) \geq \frac{d+1}{n-d}, \quad \text{for } 0 \leq d \leq n - 1.$$

These exponents happen to be related, as was first noticed by Khinchin with his transference theorem [8]. The study of these transferences has two aspects. First, establishing transference inequalities valid for every suitable point θ. Then, there is the reverse problem, that consists in constructing points θ to show that these inequalities are sharp. For this, one can prove that there exists points θ whose exponents satisfy the equality in the transference inequalities. In this case, we say that the inequalities are best possible. A stronger result is to prove that given k exponents e_1, \ldots, e_k, the transference inequalities between these k exponents define a subset of \mathbb{R}^k that is exactly the set of all k-uples $(e_1(\theta), \ldots, e_k(\theta))$ as θ runs through all points $\theta = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n$ such that $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q}-linearly independent. The latter set is called the spectrum of the exponents (e_1, \ldots, e_k).

When the dimension is $n = 1$, we have the equality $\hat{\omega}_0(\theta) = \hat{\omega}(\theta) = \hat{\lambda}(\theta) = 1$. In [6], V. Jarník showed that in dimension $n = 2$, we have the following algebraic relation between $\hat{\omega}_1(\theta)$ and $\hat{\omega}_0(\theta)$:

$$(*) \quad \hat{\omega}_0(\theta) + \frac{1}{\hat{\omega}_1(\theta)} = 1.$$

Furthermore, V. Jarník noted that, in higher dimension $n \geq 3$, no algebraic relation holds anymore. He proved [6, Satz 3] that for $n \geq 2$, there exist two n-tuples of real numbers $\theta = (\theta_1, \ldots, \theta_n)$ and $\nu = (\nu_1, \ldots, \nu_n)$ such that

$$\hat{\omega}_{n-1}(\theta) = \hat{\omega}_{n-1}(\nu) = +\infty, \quad \hat{\omega}_0(\theta) = 1 \quad \text{and} \quad \hat{\omega}_0(\nu) = \frac{1}{n-1}.$$
V. Jarník also proved the following transference theorem:

Theorem 1.1 (Jarník [6]). — Let \(n \geq 2 \). For any \(n \)-tuples of real number \(\theta = (\theta_1, \ldots, \theta_n) \) such that \(1, \theta_1, \ldots, \theta_n \) are \(\mathbb{Q} \)-linearly independent, we have

\[
\frac{\hat{\omega}_{n-1}(\theta)}{(n-1)\hat{\omega}_{n-1}(\theta) + n} \leq \hat{\omega}_0(\theta) \leq \frac{\hat{\omega}_{n-1}(\theta) - n + 1}{n}.
\]

If \(\hat{\omega}_{n-1}(\theta) = n \), the interval reduces to the single point \(\hat{\omega}_0(\theta) = \frac{1}{n} \).

Remark 1.2. — O. German [5] and A. Khinchin [9] claim that V. Jarník [6] proved the existence of \(n \)-tuples \(\theta = (\theta_1, \ldots, \theta_n) \) with \(\hat{\omega}_{n-1}(\theta) = +\infty \) and \(\hat{\omega}_0(\theta) \) anywhere in the interval \([1/(n-1), 1]\). It appears to the author that this is not written explicitly in [6].

Recently, O. German [5] improved Theorem 1.1:

Theorem 1.3 (German [5]). — With the notation of Theorem 1.1, we have

\[
(\ast\ast) \quad \frac{\hat{\omega}_{n-1}(\theta) - 1}{(n-1)\hat{\omega}_{n-1}(\theta)} \leq \hat{\omega}_0(\theta) \leq \frac{\hat{\omega}_{n-1}(\theta) - (n-1)}{\hat{\omega}_{n-1}(\theta)}.
\]

Note that the interval reduces to a single point if \(n = 2 \), and that in this case we recover Jarník’s relation (\(\ast \)).

The first goal of this paper is to prove that German’s inequalities describe the spectrum of the two exponents \((\hat{\omega}_0, \hat{\omega}_{n-1})\).

Theorem 1.4. — Let \(n \geq 2 \) be an integer, let \(\hat{\omega} \in [n, +\infty] \) and let

\[
\hat{\lambda} \in \left[\frac{\hat{\omega} - 1}{(n-1)\hat{\omega}}, \frac{\hat{\omega} - n + 1}{\hat{\omega}} \right],
\]

where we understand that the interval for \(\hat{\lambda} \) is \([1/(n-1), 1]\) when \(\hat{\omega} = +\infty \). Then there exist uncountably many \(n \)-tuples of real numbers \(\theta = (\theta_1, \ldots, \theta_n) \), with \(1, \theta_1, \ldots, \theta_n \) \(\mathbb{Q} \)-linearly independent, such that \(\hat{\omega}_{n-1}(\theta) = \hat{\omega} \) and \(\hat{\omega}_0(\theta) = \hat{\lambda} \).

In [19], W. Schmidt and L. Summerer obtained independently a similar result, proving that the inequalities (\(\ast\ast \)) of German are best possible.

One can wonder if in higher dimension \((n \geq 3) \), there exists a Jarník’s-type relation between the \(n \) uniform exponents \(\hat{\omega}_0, \ldots, \hat{\omega}_{n-1} \). The next theorem states that no such algebraic relation holds.

Theorem 1.5. — For every integer \(n \geq 3 \), the \(n \) uniform exponents \(\hat{\omega}_0, \ldots, \hat{\omega}_{n-1} \) are algebraically independent.
Thus, the spectrum of the n uniform exponents $\hat{\omega}_0, \ldots, \hat{\omega}_{n-1}$ is a subset of \mathbb{R}^n with nonempty interior.

We also know the spectrum of other families of exponents. M. Laurent [10] described the spectrum of the four exponents $\omega_0, \hat{\omega}_0, \omega_{n-1}, \hat{\omega}_{n-1}$ in dimension $n = 2$. In his PhD thesis, the author gives an alternative proof of this result. However, for $n \geq 3$ this spectrum is still unknown.

D. Roy showed in [14] that the going-up and going-down transference inequalities of M. Laurent [11] describe the spectrum of the n exponents $\omega_0, \ldots, \omega_{n-1}$.

In Section 2, we introduce Parametric Geometry of Numbers, which is the main tool to prove Theorem 1.4 (Section 3) and Theorem 1.5 (Section 5), and to give an alternative proof of Theorem 1.3 (Section 4).

2. Parametric Geometry of Numbers

The Parametric Geometry of Numbers answers a question of W. M. Schmidt [16]. Given a convex body and a lattice, we deform either of them with a one parameter diagonal map. We study the behavior of the successive minima in terms of this parameter. It was developed by W. M. Schmidt and L. Summerer [17, 18], and further by D. Roy [13, 14]. Independently, Y. Cheung [3, 4] also developed a similar theory.

In this paper, we use the notation introduced by D. Roy in [13, 14] which is essentially dual to the one of W. M. Schmidt and L. Summerer [17, 18]. We refer the reader to these papers for further details. Here $\langle x, y \rangle = x_1y_1 + \cdots + x_ny_n$ is the usual scalar product of vectors x and y, and $\|x\|_2 = \sqrt{x \cdot x}$ is the usual Euclidean norm.

Let $u = (u_0, \ldots, u_n)$ be a vector in \mathbb{R}^{n+1}, with Euclidean norm $\|u\|_2 = 1$. For a real parameter $Q \geq 1$ we consider the convex body

$$C_u(Q) = \{x \in \mathbb{R}^{n+1} \mid \|x\|_2 \leq 1, |x \cdot u| \leq Q^{-1}\}.$$

For $1 \leq d \leq n + 1$ we denote by $\lambda_d(C_u(Q))$ the d-th minimum of $C_u(Q)$ relatively to the lattice \mathbb{Z}^{n+1}. For $q \geq 0$ and $1 \leq d \leq n + 1$ we set

$$L_{u,d}(q) = \log \lambda_d(C_u(e^q)).$$

Finally, we define the following map associated with u:

$$L_u : [0, \infty) \to \mathbb{R}^{n+1}$$

$$q \mapsto (L_{u,1}(q), \ldots, L_{u,n+1}(q)).$$
The lattice \mathbb{Z}^{n+1} is invariant under permutation of coordinates. Hence, L_u remains the same if we permute the coordinates in u. Since $\|u\|_2 = 1$ we can thus assume that $u_0 \neq 0$.

The following proposition links the exponents of Diophantine approximation associated with $\theta = (\frac{u_1}{u_0}, \ldots, \frac{u_n}{u_0})$ to the behavior of the map L_u, assuming $u_0 \neq 0$. It was first stated by W. M. Schmidt and L. Summerer in [17, Theorem 1.4]. It also appears as Relations (1.8) and (1.9) in [18]. In the notation of D. Roy [14, Proposition 3.1], it reads as follows.

Proposition 2.1 (Schmidt–Summerer [17]). — Let $u = (u_0, \ldots, u_n) \in \mathbb{R}^{n+1}$, with Euclidean norm $\|u\|_2 = 1$ and $u_0 \neq 0$. Set $\theta = (\frac{u_1}{u_0}, \ldots, \frac{u_n}{u_0})$. For $1 \leq k \leq n$, we have the following relations:

\[
\lim\inf_{q \to +\infty} \frac{L_{u,1}(q) + \cdots + L_{u,k}(q)}{q} = \frac{1}{1 + \omega_{n-k}(\theta)},
\]

\[
\lim\sup_{q \to +\infty} \frac{L_{u,1}(q) + \cdots + L_{u,k}(q)}{q} = \frac{1}{1 + \omega_{n-k}(\theta)}.
\]

Thus, if we know an explicit map $P = (P_1, \ldots, P_{n+1}): [0, \infty) \to \mathbb{R}^{n+1}$, such that $L_u - P$ is bounded, then we can compute the $2n$ exponents $\hat{\omega}_0(\theta), \ldots, \hat{\omega}_{n-1}(\theta), \tilde{\omega}_0(\theta), \ldots, \tilde{\omega}_{n-1}(\theta)$ for the above point θ upon replacing $L_{u,i}$ by P_i in the above formulas for $1 \leq i \leq n$.

For this purpose, we consider the following family of maps, introduced by D. Roy in [14].

Definition 2.2 (Roy [14]). — Let I be a subinterval of $[0, \infty)$ with non-empty interior. A generalized $(n+1)$-system on I is a continuous piecewise linear map $P = (P_1, \ldots, P_{n+1}): I \to \mathbb{R}^{n+1}$ with the following three properties.

(S1) For each $q \in I$, we have $0 \leq P_1(q) \leq \cdots \leq P_{n+1}(q)$ and $P_1(q) + \cdots + P_{n+1}(q) = q$.

(S2) If H is a non-empty open subinterval of I on which P is differentiable, then there are integers $\underline{r}, \overline{r}$ with $1 \leq \underline{r} \leq \overline{r} \leq n + 1$ such that $P_{\underline{r}}, P_{\overline{r}+1}, \ldots, P_{\overline{r}}$ coincide on the whole interval H and have slope $1/(\overline{r} - \underline{r} + 1)$ while any other component P_k of P is constant on H.

(S3) If q is an interior point of I at which P is not differentiable, if $\underline{r}, \overline{r}, \underline{s}, \overline{s}$ are the integers for which

$P_k'(q^-) = \frac{1}{\overline{r} - \underline{r} + 1} \quad (\underline{r} \leq k \leq \overline{r}) \quad$ and $\quad P_k'(q^+) = \frac{1}{\overline{s} - \underline{s} + 1} \quad (\underline{s} \leq k \leq \overline{s}),$

and if $\underline{r} < \underline{s}$, then we have $P_{\underline{r}}(q) = P_{\overline{r}+1}(q) = \cdots = P_{\overline{s}}(q)$.
Here $P'_k(q^-)$ (resp. $P'_k(q^+)$) denotes the left (resp. right) derivative of P_k at q. The next result combines Theorem 4.2 and Corollary 4.7 of [14].

Theorem 2.3 (Roy [14]). — For each non-zero point $u \in \mathbb{R}^{n+1}$, there exists $q_0 \geq 0$ and a generalized $(n+1)$-system P on $[q_0, \infty)$ such that $\{L_u - P\}$ is bounded on $[q_0, \infty)$. Conversely, for each generalized $(n+1)$-system P on an interval $[q_0, \infty)$ with $q_0 \geq 0$, there exists a non-zero point $u \in \mathbb{R}^{n+1}$ such that $\{L_u - P\}$ is bounded on $[q_0, \infty)$.

In view of the remark following Proposition 2.1, this result reduces the determination of the joint spectrum of Diophantine approximation exponents to a combinatorial study of generalized $(n+1)$-systems.

Although the definition of a generalized $(n+1)$-system $P = (P_1, \ldots, P_{n+1})$ may look complicated, it is easy to understand in terms of the combined graph of P, that is the union of the graphs of P_1, \ldots, P_{n+1} over the interval of definition I of P. We explain this below.

A division point of P is an endpoint of I contained in I or an interior point of I at which P is not differentiable. Such points form a discrete subset of I. Between two consecutive division points $q^* < q$ of I, the graph of each component of P is a line segment. All these line segments have slope 0 except for one line segment of positive slope $1/t$ where t is the number of components of P whose graph over $[q^*, q]$ is that line segment.

In view of the condition $P_1 \leq P_2 \leq \cdots \leq P_{n+1}$, there must be consecutive components $P_{\bar{r}}, \ldots, P_{\bar{s}}$ of P with $\bar{r} - \bar{r} + 1 = t$. If q is also an interior point of I and if $P_{\bar{r}}, \ldots, P_{\bar{s}}$ are the components of P whose graph has positive slope $\frac{1}{s-\bar{r}+1}$ to the right of q, then there are two cases.

1. If $\bar{r} < \bar{s}$, we say that q is an ordinary division point. In this case, we have $P_\bar{r}(q) = \cdots = P_{\bar{s}}(q)$ according to (S3). This implies that $\bar{r} \leq \bar{s}$ and $\bar{r} \leq \bar{s}$. Among $P_{\bar{r}}, \ldots, P_{\bar{s}}$, the components P_j with $\bar{r} \leq j \leq \bar{s}$ (if any) change slope from $\frac{1}{\bar{r} - \bar{r} + 1}$ to $\frac{1}{s-\bar{s}+1}$. Those with $j \leq \min(\bar{r}, \bar{s}-1)$ change slope from $\frac{1}{\bar{r} - \bar{r} + 1}$ to 0. The remaining components P_j with $\bar{r} + 1 \leq j \leq \bar{s} - 1$ (if any) have constant slope 0 in a neighborhood of q. The reader is invited to draw a picture for himself or to look at those in [14, §4].

2. Otherwise, we have $\bar{r} > \bar{s}$ because it cannot happen that $\bar{r} = \bar{s}$ (or P is differentiable at q). Then, we say that q is a switch point. In this case, we have $P_\bar{r}(q) = \cdots = P_{\bar{s}}(q) > P_{\bar{s}}(q) = \cdots = P_{\bar{s}}(q)$ which mean that the end point of the line segment of slope $\frac{1}{r-\bar{r}+1}$ at the left of q lies above the initial point of the line segment of slope $\frac{1}{s-\bar{s}+1}$ at the right of q.

It can be shown that the combined graph of a generalized \((n+1)\)-system \(P\) uniquely determines the map \(P\) provided that we know the value of \(P\) at one point of its interval of definition. An example of this is shown in [14, §4]. We will see two other examples in the Sections 3 and 5.

In [17, 18] W. M. Schmidt and L. Summerer introduce the following exponents for an integer \(1 \leq d \leq n+1\):

\[
\varphi_d = \liminf_{q \to \infty} \frac{L_{u,d}(q)}{q}, \\
\bar{\varphi}_d = \limsup_{q \to \infty} \frac{L_{u,d}(q)}{q}.
\]

For these exponents, we have the following analogue of Theorem 1.5:

Theorem 2.4. — For every integer \(n \geq 3\), the exponents \(\bar{\varphi}_1, \ldots, \bar{\varphi}_n\) are algebraically independent.

3. Proof of Theorem 1.4

In this section, we construct a family of generalized \((n+1)\)-systems. Then, via Theorem 2.3, we get a family of \(n\)-tuples having the requested properties stated in Theorem 1.4. We first treat the case where \(\hat{\omega}_{n-1}\) is finite and \(n \geq 3\). We will explain later how to adapt the construction if \(n = 2\) or \(\hat{\omega}_{n-1}\) is infinite.

First, note that a generalized \((n+1)\)-system with all components equal to \(q/(n+1)\) provides via Theorem 2.3 a point \(\theta\) with \(\hat{\omega}_{n-1}(\theta) = n\) and \(\hat{\omega}_0(\theta) = 1/n\). Thus, we can exclude this case in the next construction.

Let \(q_0\) be a positive real number, fix a real number \(\hat{\omega} > n\) \(\geq 2\) and set a parameter \(a\) with \(1/(n-1) \leq a \leq 1\). We define the sequence \((q_{6m})_{m \geq 0}\) by:

\[
q_{6m} = (1 + a(\hat{\omega} - n))q_{6(m-1)}, \quad \text{for} \quad m \geq 1.
\]

Since \(\hat{\omega} > n\), the term \(q_{6m}\) goes to infinity as \(m\) does.

We construct a generalized \((n+1)\)-system \(P\) whose graph is invariant under the dilation of factor \((1+a(\hat{\omega}-n)) > 1\) on the interval \([q_0, +\infty)\). Thus, we only need to define \(P\) on a generic interval \([q_{6m}, q_{6(m+1)}]\). Figure 3.1 shows the pattern of the combined graph of \(P\).
For every integer $m \geq 0$, we define P at q_{6m} as follows:

\[P_1(q_{6m}) = P_2(q_{6m}) = \frac{q_{6m}}{\hat{\omega} + 1}, \]
\[P_3(q_{6m}) = \cdots = P_n(q_{6m}) = \frac{1 + \frac{1-a}{n-2}(\hat{\omega} - n)}{\hat{\omega} + 1} q_{6m}, \]
\[P_{n+1}(q_{6m}) = \frac{1 + a(\hat{\omega} - n)}{\hat{\omega} + 1} q_{6m}. \]

Here the parameter a says how large P_{n+1} is at each point q_{6m}. The condition $a \geq 1/(n-1)$ imposes the condition $P_{n+1}(q_{6m}) \geq P_n(q_{6m})$, and the condition $a \leq 1$ imposes that $P_3(q_{6m}) \geq P_2(q_{6m})$. We have the dilation condition $P(q_{6(m+1)}) = P((1 + a(\hat{\omega} - n))q_{6m}) = (1 + a(\hat{\omega} - n))P(q_{6m})$ by the definition of the sequence $(q_{6m})_{m \geq 0}$.

For $k = 0, \ldots, 5$ the graph has only one line segment of positive slope on the interval $[q_{6m+k}, q_{6m+k+1}]$. The graph is clearly the combined graph of a generalized $(n + 1)$-system with seven division points q_{6m}, \ldots, q_{6m+6}. The points q_{6m+3} and q_{6m+5} are switch points while the others are ordinary division points. Furthermore it is uniquely defined since we know the value of P at the point q_{6m}, where as requested

\[P_1(q_{6m}) + \cdots + P_{n+1}(q_{6m}) = q_{6m}. \]
Easy computation gives

\[
\begin{align*}
q_{6m} &= (1 + a(\hat{\omega} - n))q_{6(m-1)}, \\
q_{6m+1} &= \frac{(n - 2)(\hat{\omega} + 1) + (1 - a)(\hat{\omega} - n)}{(n - 2)(\hat{\omega} + 1)} q_{6m}, \\
q_{6m+2} &= \frac{(n + 1) + (1 + a)(\hat{\omega} - n)}{\hat{\omega} + 1} q_{6m}, \\
q_{6m+3} &= \frac{\hat{\omega} + (1 + a(\hat{\omega} - n))^2}{\hat{\omega} + 1} q_{6m}, \\
q_{6m+4} &= \frac{1 + (1 + a(\hat{\omega} - n))(n + a(\hat{\omega} - n))}{\hat{\omega} + 1} q_{6m}, \\
q_{6m+5} &= \frac{1 + 2a(\hat{\omega} - n) + \hat{\omega}(1 + a(\hat{\omega} - n))}{\hat{\omega} + 1} q_{6m}.
\end{align*}
\]

We now compute its associated exponents with Proposition 2.1. One can notice that the local extrema of the functions \(q \rightarrow q^{-1}P_k(q), 1 \leq k \leq n + 1\) are located at division points where \(P_k\) changes slope.

Since \(P\) is invariant under dilation of factor \(C = (1 + a(\hat{\omega} - n))\) we have for every \(m \geq 0\), every \(1 \leq k \leq n + 1\), and every \(q\) in \([q_{6m}, q_{6m+6})\) the relation

\[q^{-1}P_k(q) = q^{-1}C^mP_k(qC^{-m}),\]

where \(C^{-m}q\) lies in the fundamental interval \([q_0, q_6]\).

Thus,

\[
\begin{align*}
\limsup_{q \to +\infty} \frac{P_1(q)}{q} &= \max_{q_0 \leq q \leq q_6} \frac{P_1(q)}{q} = \frac{P_1(q_0)}{q_0} = \frac{1}{\hat{\omega} + 1}, \\
\liminf_{q \to +\infty} \frac{P_{n+1}(q)}{q} &= \min_{q_0 \leq q \leq q_6} \frac{P_{n+1}(q)}{q} = \frac{P_{n+1}(q_2)}{q_2} = \frac{1 + a(\hat{\omega} - n)}{n + 1 + (1 + a)(\hat{\omega} - n)},
\end{align*}
\]

because the component \(P_{n+1}\) changes slope from zero to some positive value only at \(q_{6m+2}\).

Then, according to Proposition 2.1, Theorem 2.3 provides an \(n\)-tuple \(\theta = (\theta_1, \ldots, \theta_n)\) such that

\[
\begin{align*}
\frac{1}{\hat{\omega}_{n-1}(\theta)} + 1 &= \limsup_{q \to +\infty} \frac{P_1(q)}{q} = \frac{1}{\hat{\omega} + 1}, \\
\frac{\hat{\omega}_0(\theta)}{\hat{\omega}_{0}(\theta)} + 1 &= \liminf_{q \to +\infty} \frac{P_{n+1}(q)}{q} = \frac{1 + a(\hat{\omega} - n)}{n + 1 + (1 + a)(\hat{\omega} - n)}.
\end{align*}
\]

Thus, this \(\theta\) satisfies

\[
\hat{\omega}_{n-1}(\theta) = \hat{\omega} \quad \text{and} \quad \hat{\omega}_0(\theta) = \frac{1 + a(\hat{\omega} - n)}{\hat{\omega}}.
\]
When a runs through the interval $[1/(n - 1), 1]$, then $\hat{\omega}_0(\theta)$ runs through the interval
$$\left[\frac{\hat{\omega} - 1}{(n - 1)\hat{\omega}}, \frac{\hat{\omega} - (n - 1)}{\hat{\omega}} \right].$$

If $n = 2$, we remove the line $P_3 = \cdots = P_n$ and the interval $[q_{6m+3}, q_{6m+5}]$ from the generic graph on the interval $[q_{6m}, q_{6(m+1)}]$, the parameter a is then forced to be equal to 1. Thus, we construct θ with
$$\hat{\omega}_1(\theta) = \hat{\omega} \quad \text{and} \quad \hat{\omega}_0(\theta) = 1 - \frac{1}{\hat{\omega}},$$
which agrees with Jarník’s relation (\ast).

If $\hat{\omega}$ is infinite, we replace $\hat{\omega}$ by $m + n + 1$ in our construction. For a given real number q_0 we consider the sequence $(q_{6m})_{m \geq 1}$ defined by
$$q_{6m} = (m + 1)q_{6(m-1)}.$$

Figure 3.1 still represents the combined graph from P on a generic interval $[q_{6m}, q_{6(m+6)}]$, with the following settings at q_{6m}:
$$P_1(q_{6m}) = P_2(q_{6m}) = \frac{q_{6m}}{m + n + 2},$$
$$P_3(q_{6m}) = \cdots = P_n(q_{6m}) = \frac{1 + \frac{1-a}{n-2}(m+1)}{m + n + 2} q_{6m},$$
$$P_{n+1}(q_{6m}) = \frac{1 + a(m+1)}{m + n + 2} q_{6m}.$$

Note that the combined graph is not invariant under dilation anymore. We have
$$\limsup_{q \to +\infty} \frac{P_1(q)}{q} = \limsup_{m \to +\infty} \max_{q_{6m} \leq q \leq q_{6(m+1)}} \frac{P_1(q)}{q} = \limsup_{m \to +\infty} \frac{P_1(q_{6m})}{q_{6m}} = \limsup_{m \to +\infty} \frac{1}{m + n + 2} = 0,$$
$$\liminf_{q \to +\infty} \frac{P_{n+1}(q)}{q} = \liminf_{m \to +\infty} \min_{q_{6m} \leq q \leq q_{6(m+1)}} \frac{P_{n+1}(q)}{q} = \liminf_{m \to +\infty} \frac{P_{n+1}(q_{6m+2})}{q_{6m+2}} = \liminf_{m \to +\infty} \frac{1 + a(m+1)}{n + 1 + (1 + a)(m+1)} = \frac{a}{a + 1}.$$

Again, Theorem 2.3 provides us with an n-tuple $\theta = (\theta_1, \ldots, \theta_n)$ such that
$$\hat{\omega}_{n-1}(\theta) = +\infty \quad \text{and} \quad \hat{\omega}_0(\theta) = a,$$
where a runs through the interval $[1/(n - 1), 1]$.

Note that if $1, \theta_1, \ldots, \theta_n$ are \mathbb{Q}-linearly dependent, then there exists an integer point $x \in \mathbb{Z}^n$ such that $|x \cdot u| = 0$. This implies that $L_{u,1}(q)$ is
bounded above by \(\log(\|x\|_2) \). In our construction by dilatation \(P_1 \) is not bounded, hence the independence by contradiction.

To complete the proof of Theorem 1.4, we have to check that we can construct uncountably many \(n \)-tuples with given exponents. Let \(\hat{\omega} \) and \(\hat{\lambda} \) as in Theorem 1.4, and \(a \) the parameter such that Theorem 2.3 provides an \(n \)-tuple \(\theta \) whose exponents satisfy

\[
\hat{\omega}_{n-1}(\theta) = \hat{\omega} \quad \text{and} \quad \hat{\omega}_0(\theta) = \hat{\lambda} = \frac{1 + a(\hat{\omega} - n)}{\hat{\omega}}.
\]

Fix \(q_0 \) a real number to start the construction from \(P \) as above with parameter \(a \). For every \(\rho_1 \) and \(\rho_2 \) such that \(q_0 \leq \rho_1 < \rho_2 \leq q_5 \), we denote by \(P_{\rho_1} \) and \(P_{\rho_2} \) the \((n+1)\)-generalized system with parameter \(a \) starting in \(\rho_1 \) and \(\rho_2 \). We have \(P_{\rho_1}(q_6) \neq P_{\rho_2}(q_6) \) and

\[
\|P_{\rho_1}(q_{6m}) - P_{\rho_2}(q_{6m})\|_\infty = \frac{q_{6m}}{q_6} \|P_{\rho_1}(q_6) - P_{\rho_2}(q_6)\|_\infty \rightarrow n \rightarrow \infty \infty,
\]

where \(\|(x_1, \ldots, x_n)\|_\infty = \max_{1 \leq k \leq n} |x_k| \).

Thus, their difference is unbounded, and they cannot correspond to the same \(\theta \) via Theorem 2.3. \(\square \)

4. An alternative proof of Theorem 1.3

In this section, we give an alternative proof of Theorem 1.3 using arguments from Parametric Geometry of Numbers. As in previous section, we reduce the study of Diophantine properties of a \(n \)-tuples of real numbers \(\theta \) to the study of generalized \((n+1)\)-systems. If \(\theta = (\theta_1, \ldots, \theta_n) \in \mathbb{R}^n \) is such that \(1, \theta_1, \ldots, \theta_n \) are linearly independent over \(\mathbb{Q} \), by Theorem 2.3 there exist \(q_0 > 0 \) and a generalized \((n+1)\)-system \(P = (P_1, \ldots, P_{n+1}) \) on \([q_0, \infty)\) such that \(P - L_u \) is bounded where \(u = (1, \theta_1, \ldots, \theta_n) \). Since \(u \) has linearly independent coordinates, the first component \(P_1 \) of \(P \) is unbounded. For simplicity, we set \(\hat{\omega} = \hat{\omega}_{n-1}(\theta) \) and \(\hat{\lambda} = \hat{\omega}_0(\theta) \). Then according to Proposition 2.1, we have

\[
\limsup_{q \rightarrow +\infty} \frac{P_1(q)}{q} = \frac{1}{\hat{\omega} + 1} \quad \text{and} \quad \liminf_{q \rightarrow +\infty} \frac{P_{n+1}(q)}{q} = \frac{\hat{\lambda}}{\hat{\lambda} + 1},
\]

where we understand that, if \(\hat{\omega} = +\infty \), then the limsup is zero.

One can notice that the extremal values of the components of \(P \) are reached at the division points. The condition (S3) translates into the fact that for every division point \(q \), the right endpoint of the segment with non-zero slope ending at \(q \) lies above the left endpoint of the one starting at
q. A first consequence is that when P_1 is non constant, it increases until reaching $P_2(q)$. A second consequence is the following proposition.

Proposition 4.1. — For every $1 \leq k < m \leq n + 1$, if p_0 is a point such that $P'_k(p_0^+) > 0$, then for every $p > p_0$

\[P_m(p) \leq \max(P_m(p_0), P_k(p_0) + p - p_0). \]

In particular, P_m is constant on the interval $[p_0, p_0 + P_m(p_0) - P_k(p_0)]$.

The reason is that, if p_1 is the largest real number such that P_m is constant on $[p_0, p_1]$, then the combined graph of P contains a polygonal line joining the points $(p_0, P_k(p_0))$ and $(p_1, P_m(p_1))$. Since the line segments composing such a polygonal line have slope in $[0, 1]$, we must have $p_1 \geq p_0 + P_m(p_0) - P_k(p_0)$. The conclusion follows since $P_m(p) \leq \max\{P_m(p_0), P_m(p_0) + p - p_1\}$ for any $p \geq p_0$. This is illustrated on the picture below.

![Polygonal Line](image)

Upper bound. — Suppose first that $\hat{\omega}$ is finite. Let $\varepsilon > 0$. By (4.1), there exist arbitrarily large division points p_0 where $q^{-1}P_1(q)$ has a local maximum and

\[\frac{1 - \varepsilon}{\hat{\omega} + 1} \leq \frac{P_1(p_0)}{p_0} \leq \frac{1 + \varepsilon}{\hat{\omega} + 1}. \]

Since p_0 is a local maximum, we have $P_1(p_0) = P_2(p_0)$. Furthermore, $P_1(q) \leq P_2(q) \leq \cdots \leq P_{n+1}(q)$ and $P_1(q) + \cdots + P_{n+1}(q) = q$ provide

\[P_{n+1}(p_0) \leq p_0 - nP_1(p_0) \leq \frac{\hat{\omega} + 1 - n - n\varepsilon}{\hat{\omega} + 1}p_0. \]

At the point $p = p_0 + \frac{\hat{\omega} - n - n\varepsilon}{\hat{\omega} + 1}p_0$, according to Proposition 4.1, we have the upper bound

\[P_{n+1}(p) \leq \max(P_{n+1}(p_0), P_1(p_0) + p - p_0) \leq \frac{1 + \varepsilon + \hat{\omega} - n - n\varepsilon}{\hat{\omega} + 1}p_0. \]
Note that equality case corresponds to P with a polygonal line of maximal slope 1 joining the points $(p_0, P_1(p_0))$ and $(p, P_{n+1}(p))$. We deduce that

$$\frac{P_{n+1}(p)}{p} \leq \frac{\hat{\omega} + 1 - n - (n-1)\varepsilon}{2\hat{\omega} - n + 1 - n\varepsilon}.$$

Since p can be made arbitrarily large, we conclude that

$$\frac{\lambda}{\lambda + 1} = \liminf_{q \to +\infty} \frac{P_{n+1}(q)}{q} \leq \frac{\hat{\omega} + 1 - n}{2\hat{\omega} - n + 1},$$

giving that

$$\hat{\lambda} \leq \frac{\hat{\omega} - (n-1)}{\hat{\omega}}.$$

Suppose now that $\hat{\omega}$ is infinite. Let $\varepsilon > 0$. Since P_1 is unbounded, there are arbitrarily large values of p_0 at which $P_1(p_0) = P_2(p_0)$. At such a point, we have $P_2'(p_0) > 0$. If p_0 is large enough, by (4.1) we also have

$$0 \leq \frac{P_1(p_0)}{p_0} \leq \varepsilon.$$

Then, Proposition 4.1 applied at the point $p = (2 - n\varepsilon)p_0$ provides

$$P_{n+1}(p) \leq p_0(1 - (n-1)\varepsilon).$$

Thus, we get the upper bound

$$\frac{P_{n+1}(p)}{p} \leq \frac{p_0(1 - (n-1)\varepsilon)}{p_0(2 - n\varepsilon)}.$$

Since p can be made arbitrarily large, we conclude that

$$\hat{\lambda} \leq 1.$$

Hence, we have proved the upper bound in Theorem 1.3.

Lower bound. — If $P_1(q) = P_{n+1}(q)$ for arbitrarily large q, then $\hat{\omega} = n$ and $\hat{\lambda} = 1/n$, and the inequalities of Theorem 1.4 are satisfied. So, we may assume that $P_1(q) < P_{n+1}(q)$ for any sufficiently large q.

Suppose first that $\hat{\omega}$ is finite. Let $\varepsilon_1 > 0$. By (4.1), there exists a real number q_0 such that $q \geq q_0$ implies

$$\frac{P_1(q)}{q} \leq \frac{1 + \varepsilon_1}{\hat{\omega} + 1} \quad \text{and} \quad P_1(q) \neq P_{n+1}(q).$$

Let $\varepsilon_2 > 0$. There exist arbitrarily large division points $p \geq q_0$ where $q^{-1}P_{n-1}(q)$ has a local minimum and

$$\left| \frac{P_{n+1}(p)}{p} - \frac{\hat{\lambda}}{\hat{\lambda} + 1} \right| \leq \varepsilon_2.$$
Let $p_0 = \max\{q \leq p \mid P_1(q) = P_2(q)\}$. At the point p_0 we have
\[P_1(p_0) = P_2(p_0) \leq \frac{1 + \varepsilon_1}{\hat{\omega} + 1} p_0 \quad \text{and} \quad P_{n+1}(p_0) \geq \frac{p_0 - 2P_1(p_0)}{n - 1}, \]
since $p_0 = P_1(p_0) + \cdots + P_{n+1}(p_0) \leq 2P_1(p_0) + (n - 1)P_{n+1}(p_0)$.

We first show that $q \to P_1(q)$ is constant on the interval $[p_0, p]$. If not, there exists a real number $p_0 < p_1 < p$ where P_1 has slope > 0. Since p is a local minimum from $q^{-1}P_{n+1}(q)$, then P_{n+1} changes slope at p. Then, $P_1(p) \neq P_{n+1}(p)$ and condition (S3) imply that $P_1'(p^+) = 0$. Thus, there exists a point in the interval (p_1, p) where P_1 changes slope from > 0 to 0. At this point $P_1 = P_2$, which contradicts the definition of p_0. Thus,
\[P_1(p_0) = P_1(p). \]

We can write
\[p = \sum_{k=1}^{n+1} P_k(p) \leq nP_{n+1}(p) + P_1(p_0). \]
Note that equality provides that all components except P_1 are equal. In this case, we have a polygonal line joining $(p_0, P_1(p_0))$ and $(p, P_{n+1}(p))$ growing as slowly as possible.

We deduce the lower bound
\[\frac{P_{n+1}(p)}{p} \geq \frac{P_{n+1}(p)}{nP_{n+1}(p) + P_1(p_0)}, \]
where the right hand side is an increasing function of $P_{n+1}(p)$. Since
\[P_{n+1}(p) \geq P_{n+1}(p_0) \geq \frac{p_0 - 2P_1(p_0)}{n - 1}, \]
we have
\[\frac{P_{n+1}(p)}{p} \geq \frac{p_0 - 2P_1(p_0)}{np_0 - (n + 1)P_1(p_0)}, \]
where the right hand side is a decreasing function of $P_1(p_0)$. Since
\[P_1(p_0) \leq \frac{1 + \varepsilon_1}{\hat{\omega} + 1} p_0, \]
we have
\[\frac{P_{n+1}(p)}{p} \geq \frac{\hat{\omega} - 1 - 2\varepsilon_1}{n\hat{\omega} - 1 - (n + 1)\varepsilon_1}. \]
Finally,
\[\frac{\hat{\lambda}}{\hat{\lambda} + 1} \geq \frac{\hat{\omega} - 1 - 2\varepsilon_1}{n\hat{\omega} - 1 - (n + 1)\varepsilon_1} - \varepsilon_2. \]
This gives the expected bound
\[\hat{\lambda} \geq \frac{\hat{\omega} - 1}{(n - 1)\hat{\omega}}. \]
Suppose now that \(\hat{\omega} \) is infinite. Choose \(q_0 \) so that \(q \geq q_0 \) implies

\[
0 \leq \frac{P_1(q)}{q} \leq \varepsilon_1 \quad \text{and} \quad P_1(q) \neq P_{n+1}(q).
\]

Following the same steps as in the finite case, with the same choice of \(p \) we obtain:

\[
\frac{P_{n+1}(p)}{p} \geq \frac{1 - 2\varepsilon_1}{n - (n + 1)\varepsilon_1}.
\]

Thus, we get

\[
\frac{\lambda}{\lambda + 1} \geq \frac{1 - 2\varepsilon_1}{n - (n + 1)\varepsilon_1} - \varepsilon_2.
\]

This gives the expected lower bound

\[
\hat{\lambda} \geq \frac{1}{n - 1}. \quad \square
\]

5. Proof of Theorems 1.5 and 2.4

In this section, we construct a family of generalized \((n + 1)\)-systems depending on \(n \) parameters which via Theorem 2.3 provides us with a family of \(n \)-tuples \(\theta \) whose uniform exponents are expressed as a function of these \(n \) parameters. Then, we show that these functions are algebraically independent.

Fix the dimension \(n \geq 3 \). Choose \(n + 2 \) parameters \(A_1, A_2, \ldots, A_{n+1}, C \) satisfying

\[
0 < A_1 = A_2 < A_3 < A_4 < \cdots < A_{n+1},
\]

\[
1 = A_1 + A_2 + \cdots + A_{n+1},
\]

\[
\frac{A_{k+1}}{A_k} < C < \frac{A_{k+2}}{A_k} \quad \text{for} \quad 2 \leq k \leq n - 1,
\]

\[
1 < \frac{A_{n+1}}{A_n} < C.
\]

We consider the generalized \((n+1)\)-system \(P \) on the interval \([1, C]\) whose combined graph is given by Figure 5.1, where

\[
P_k(1) = A_k \quad \text{and} \quad P_k(C) = CA_k \quad \text{for} \quad 1 \leq k \leq n + 1.
\]

On each interval between two consecutive division points, there is only one line segment with nonzero slope. This line segment has slope 1 on the intervals \([1, \delta_{2,1}], [\delta_{n+1,1}, C]\) and \([\delta_{k-1,2}, \delta_{k,1}]\) for \(3 \leq k \leq n + 1 \), and has slope 1/2 on the interval \([\delta_{k,1}, \delta_{k,2}]\), for \(3 \leq k \leq n \), where the two components \(P_k \) and \(P_{k+1} \) coincide. We have \(2n + 1 \) division points 1, \(C \),
\[A_1 = A_2 \]

\[\delta_{k,1} \text{ and } \delta_{l,2} \text{ for } 2 \leq k \leq n+1 \text{ and } 2 \leq l \leq n. \] They are all ordinary division points except \(\delta_{n+1,1} \) which is a switch point. Note that the conditions (0) are consistent with the graph. The points which will be most relevant for the proofs are labeled with black dots.

We extend \(P \) to the interval \([1, \infty)\) by self-similarity, that is \(P(q) = C^m P(qC^{-m}) \) for every positive integer \(m \). In view of the value of \(P \) and its derivative at 1 and \(C \), one sees that this extension provides a generalized \((n + 1)\)-system on \([1, \infty)\).

Proposition 2.1 suggests to define quantities \(\hat{W}_{n-1}, \ldots, \hat{W}_0 \) by

\[\frac{1}{1 + \hat{W}_{n-k}} := \limsup_{q \to +\infty} \frac{P_1(q) + \cdots + P_k(q)}{q}, \quad 1 \leq k \leq n. \] (5.1)

Since \(P \) is invariant under dilation of factor \(C \), we can replace \(\limsup_{q \to +\infty} \) by \(\max_{[1,C]} \) in the above formulae.

We observe that for \(1 \leq k \leq n \), the function \(P_1 + \cdots + P_k \) has slope 1 on the intervals \([1, \delta_{k,1}]\) and \([\delta_{n+1,1}, C]\), slope 1/2 on the interval \([\delta_{k,1}, \delta_{k,2}]\) and is constant on the interval \([\delta_{k,2}, \delta_{n+1,1}]\). Thus the maximum on \([1, C]\) of the function \(q \to q^{-1}(P_1(q) + \cdots + P_k(q)) \) is reached either at \(\delta_{k,1} \) or at \(\delta_{k,2} \), when slope changes from 1 to 1/2 or from 1/2 to 0. Namely, the

Figure 5.1. Pattern of the combined graph of \(P \) on the fundamental interval \([1, C]\).
maximum is reached at $\delta_{k,1}$ if
\begin{equation}
\frac{P_1(\delta_{k,1}) + \cdots + P_k(\delta_{k,1})}{\delta_{k,1}} \geq \frac{1}{2}
\end{equation}
and at $\delta_{k,2}$ if the lefthand side is $\leq 1/2$. We deduce that for $1 \leq k \leq n$,
\begin{equation}
\hat{W}_{n-k} = \frac{P_{k+1}(q) + \cdots + P_{n+1}(q)}{P_1(q) + \cdots + P_k(q)}
\end{equation}
where $q = \begin{cases} \delta_{k,1} & \text{if } (5.2) \text{ is satisfied} \\ \delta_{k,2} & \text{otherwise} \end{cases}$.

For $2 \leq k \leq n+1$, we have the following values at $\delta_{k,1}$ and $\delta_{k,2}$:
\begin{align*}
P_i(\delta_{k,1}) &= \begin{cases} A_1 & \text{if } i = 1 \\ CA_i & \text{if } 2 \leq i \leq k-1 \\ A_{k+1} & \text{if } i = k \\ A_i & \text{if } k+1 \leq i \leq n+1, \end{cases} \\
P_i(\delta_{k,2}) &= \begin{cases} A_1 & \text{if } i = 1 \\ CA_i & \text{if } 2 \leq i \leq k \\ CA_k & \text{if } i = k+1 \\ A_i & \text{if } k+2 \leq i \leq n+1. \end{cases}
\end{align*}

It is easy to check that the parameters
\begin{equation}
C = 3, \quad A_1 = A_2 = 2^{-n}, \quad A_k = 2^{-n+k-2} \quad \text{for } 3 \leq k \leq n+1
\end{equation}
satisfy the conditions (0). For this choice of parameters, the lefthand side of inequality (5.2) is $> 1/2$ for $1 \leq k \leq n-1$ and $< 1/2$ for $k = n$. This property remains true for (C, A_2, \ldots, A_n) in an open neighborhood of $(3, 2^{-n}, \ldots, 2^{-2})$ provided that we set $A_1 = A_2$ and $A_{n+1} = 1 - (A_1 + \cdots + A_n)$. In this neighborhood, the quantities $\hat{W}_0, \ldots, \hat{W}_{n-1}$ are given by the following rational fractions in $\mathbb{Q}(C, A_2, A_3, \ldots, A_n)$:
\begin{align*}
\hat{W}_{n-1} &= \frac{1}{A_2} - 1, \\
\hat{W}_{n-k} &= \frac{1 - (2A_2 + A_3 + A_4 + \cdots + A_{k+1}) + CA_k}{A_2 + C(A_2 + \cdots + A_k)}, \quad 2 \leq k \leq n-1 \\
\hat{W}_0 &= \frac{1 - (2A_2 + A_3 + A_4 + \cdots + A_n)}{A_2 + C(A_2 + \cdots + A_{n-1})}
\end{align*}
Since $\hat{W}_0, \ldots, \hat{W}_{n-1}$ come from a generalized $(n+1)$-system P, Theorem 2.3 provides a point θ in \mathbb{R}^n such that $\hat{\omega}_k(\theta) = \hat{W}_k$ for every $0 \leq k \leq n-1$. Thus, to prove Theorem 1.5, it is sufficient to show that the rational fractions $\hat{W}_0, \ldots, \hat{W}_{n-1} \in \mathbb{Q}(C, A_2, A_3, \ldots, A_n)$ are algebraically independent.
Suppose on the contrary that there exists an irreducible polynomial $R \in \mathbb{Q}(X_1, \ldots, X_n)$ such that

$$R(\hat{W}_0, \hat{W}_1, \ldots, \hat{W}_{n-1}) = 0.$$

Specializing C in 0, we obtain

$$R\left(\frac{1 - A_2 - A_2 - \cdots - A_n}{A_2}, \frac{1 - A_2 - A_2 - \cdots - A_n}{A_2}, \ldots, \frac{1 - A_2 - A_2 - A_3}{A_2}, \frac{1 - A_2}{A_2}\right) = 0.$$

Here, the first two rational fractions are the same, and the last $n - 1$ rational fractions generate the field $\mathbb{Q}(A_2, A_3, \ldots, A_n)$. Therefore the latter are algebraically independent, and $R = \alpha(X_2 - X_1)$ for a nonzero constant $\alpha \in \mathbb{Q}$. This is impossible since $\hat{W}_0 \neq \hat{W}_1$. \hfill \square

Proof of Theorem 2.4. — We consider the same generalized $(n + 1)$-system as above. Notice that for $1 \leq k \leq n$ we have $P_k \leq P_{n+1}$ and therefore

$$0 \leq \frac{P_k(q)}{q} \leq 1/2.$$

Since all nonzero slopes of the combined graph are at least $1/2$, the maxima of the functions $q \mapsto q^{-1}P_k(q)$ are reached at points where P_k changes slope from 1 or $1/2$ to 0. It happens that for each component there is only one such point on the interval $[1, C[$. The definition of the exponents $\bar{\varphi}_k$ leads to define quantities F_k by

$$F_k := \limsup_{q \to \infty} \frac{P_k(q)}{q} = \max_{[1,C]} \frac{P_k(q)}{q} = \frac{P_k(p)}{p}$$

where $p = \begin{cases} 1 & \text{if } k = 1, \\ \delta_{k,2} & \text{if } 2 \leq k \leq n. \end{cases}$

We express the quantities F_1, \ldots, F_n as rational fractions in $\mathbb{Q}(C, A_2, \ldots, A_n)$, using the relations $A_1 = A_2$ and $A_{n+1} = 1 - A_1 - A_2 - \cdots - A_n$:

$$F_1 = A_1,$$

$$F_k = \frac{CA_k}{A_1 + C(A_2 + \cdots + A_k) + CA_k + 1 - (2A_2 + A_3 + \cdots + A_{k+1})}.$$

Since F_1, \ldots, F_n come from a generalized $(n + 1)$-system \mathbf{P}, by Theorem 2.3 there exists a point θ in \mathbb{R}^n such that $\bar{\varphi}_k(\theta) = F_k$ for every $1 \leq k \leq n$. To prove Theorem 2.4 it is sufficient to show that the rational fractions $F_1, \ldots, F_n \in \mathbb{Q}(C, A_2, A_3, \ldots, A_n)$ are algebraically independent.
Suppose that there exists an irreducible polynomial \(R \in \mathbb{Q}(X_1, \ldots, X_n) \) such that
\[
R(F_1, \ldots, F_n) = 0.
\]
Specializing \(C \) in infinity, we obtain
\[
R \left(\frac{1}{2}, \frac{A_3}{A_2 + A_3}, \ldots, \frac{A_n}{A_2 + \ldots + A_n} \right) = 0
\]
where all coordinates except \(1/2 \) are algebraically independent. Thus, \(R \) is a constant multiple of \(2X_2 - 1 \), which contradicts \(F_2 \neq 1/2 \). \(\square \)

We are not able to prove Theorem 2.4 for the \(n+1 \) exponents \(\varphi_1, \ldots, \varphi_{n+1} \) with this construction. However with some extra work, we can show that the theorem holds for any \(n \) exponents among them.

\textbf{Acknowledgements.} The author would like to thank the referee and Damien Roy for careful reading and useful remarks to simplify and shorten the proofs.

\textbf{BIBLIOGRAPHY}

[1] Y. Bugeaud & M. Laurent, “On exponents of homogeneous and inhomogeneous diophantine approximation”, Mosc. Math. J. 5 (2005), p. 747-766.

[2] ———, “Exponents of Diophantine approximation”, in Diophantine Geometry Proceedings, Centro di Ricerca Matematica Ennio De Giorgi, vol. 4, Edizioni della Normale, 2007, p. 101-121.

[3] Y. Cheung, “Special divergent trajectories for a homogeneous flow”, Seminar of Geometry, Chicago University, http://www.math.uchicago.edu/~geometry/gt_seminar.F2008.html, 2008.

[4] ———, “Prescriptions for a diagonal flow on the space of lattices.”, Diophantine Approximation and Related Topics, Aarhus, http://mjcnt.phystech.edu/conference/aarhus/abstracts/Cheung.pdf, 2015.

[5] O. N. German, “On Diophantine exponents and Khintchine’s transference principle”, Mosc. J. Comb. Number Theory 2 (2012), no. 2, p. 22-51.

[6] V. Jarník, “Zum Khintchineschen Überraschungenatz”, Trav. Inst. Math. Tbilissi 3 (1938), p. 193-212.

[7] A. Ya. Khinchin, „Über eine Klasse linearer diophantischer Approximationen“, Rend. Circ. Mat. Palermo 50 (1926), p. 170-195.

[8] ———, „Zur metrischen Theorie der diophantischen Approximationen“, Math.Z. 24 (1926), p. 706-714.

[9] ———, “On some applications of the method of the additional variable”, Am. Math. Soc., Transl. 1950 (1950), no. 18, p. 14.

[10] M. Laurent, “Exponents of Diophantine Approximation in Dimension Two”, Canad. J. Math. 61 (2009), p. 165-189.

[11] ———, “On transfer inequalities in Diophantine approximation”, in Analytic number theory, Cambridge University Press, 2009, p. 306-314.

[12] H. Minkowski, Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, Band 40, Johnson Reprint Corp., New York-London, 1968, vii+256 pages.
[13] D. Roy, “On Schmidt and Summerer parametric geometry of numbers”, Ann. Math. 182 (2015), p. 739-786.

[14] ———, “Spectrum of the exponents of best rational approximation”, Math. Z. 283 (2016), p. 143-155.

[15] W. M. Schmidt, “On heights of algebraic subspaces and diophantine approximations”, Ann. Math. 85 (1967), p. 430-472.

[16] ———, “Open problems in Diophantine approximation”, in Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., vol. 31, Birkhäuser Boston, Boston, MA, 1983, p. 271-287.

[17] W. M. Schmidt & L. Summerer, “Parametric geometry of numbers and applications”, Acta Arithmetica 140 (2009), no. 1, p. 67-91.

[18] ———, “Diophantine approximation and parametric geometry of numbers”, Monatsch. Math. 169 (2013), no. 1, p. 51-104.

[19] ———, “The generalization of Jarnik’s identity”, Acta Arithmetica 175 (2016), p. 119-136.

Manuscrit reçu le 11 juin 2015, révisé le 22 septembre 2016, accepté le 26 juin 2017.

Antoine MARNAT
Department of Mathematics
University of York
York YO10 5DD (UK)
antoine.marnat@york.ac.uk