pH Dependence of Tryptophan Synthase Catalytic Mechanism

I. THE FIRST STAGE, THE β-ELIMINATION REACTION*

Received for publication, February 20, 2004, and in revised form, April 15, 2004 Published, JBC Papers in Press, April 26, 2004, DOI 10.1074/jbc.M401895200

Francesca Schiaretti‡, Stefano Bettati§, Cristiano Viappiani‡, and Andrea Mozzarelli‡‡

From the ‡Department of Biochemistry and Molecular Biology, the §Department of Public Health, the ‡‡Department of Physics, †National Institute for the Physics of Matter, University of Parma, 43100 Parma, Italy

The pyridoxal 5'-phosphate-dependent β-subunit of the tryptophan synthase α2β2 complex catalyzes the condensation of L-serine with indole to form L-tryptophan. The first stage of the reaction is a β-elimination that involves a very fast interconversion of the internal aldime in a highly fluorescent L-serine external aldime that decays, via the α-carbon proton removal and the β-hydroxyl group release, to the α-aminoacrylate Schiff base. This reaction is influenced by protons, monovalent cations, and α-subunit ligands that modulate the distribution between open and closed conformations. In order to identify the ionizable residues that might assist catalysis, we have investigated the pH dependence of the rate of the external aldime decay by rapid scanning UV-visible absorption and single wavelength fluorescence stopped flow. In the pH range 6–9, the reaction was found to be biphasic with the first phase (rate constants k1) accounting for more than 70% of the signal change. In the absence of monovalent cations or in the presence of sodium and potassium ions, the pH dependence of k1 exhibits a bell shaped profile characterized by a pKa1 of about 6 and a pKα2 of about 9, whereas in the presence of cesium ions, the pH dependence exhibits a saturation profile characterized by a single pKa2 of 9. The presence of the allosteric effector indole acetylglucose increases the rate of reaction without altering the pH profile and pKa values. By combining structural information for the internal aldime, the external aldime, and the α-aminoacrylate with kinetic data on the wild type enzyme and β-active site mutants, we have tentatively assigned pKα1 to βAsp-305 and pKα2 to βLys-87. The loss of pKα1 in the presence of cesium ions might be due to a shift to lower values, caused by the selective stabilization of a closed form of the β-subunit.

Structural, dynamic, functional, and regulatory properties of the pyridoxal 5'-phosphate (PLP)-dependent tryptophan synthase (TS) have been thoroughly investigated for more than 4 decades (1–6). The enzyme has been serving as the prototype of allosteric regulation, achieved via ligand-linked stabilization of alternative open-closed tertiary structures of the α- and β-active sites (7–14). Open conformations are endowed with low activity, and closed conformations are endowed with high activity. Tryptophan synthase is a bienzyme that catalyzes the last two steps of L-tryptophan biosynthesis. It is a tetrameric molecule composed of two α- and two β-subunits, forming a linear αβαβ complex (15). The β-subunit contains a pyridoxal 5'-phosphate molecule bound via a Schiff base to βLys-87. The overall reaction is shown in Reaction 1,

\[
\text{indole-3-glycerolphosphate} + \text{L-serine} \rightarrow \text{L-tryptophan} + \text{D-glyceraldehyde-3-phosphate} + \text{H}_2\text{O}
\]

** Two distinct reactions take place in the α- and β-active sites that are physically separated but connected by an intramolecular channel (15) as shown in Reactions 2 and 3,

- Reaction 2
 \[
 \text{α site indole-3-glycerolphosphate} \rightarrow \text{indole} + \text{D-glyceraldehyde-3-phosphate}
 \]

- Reaction 3
 \[
 \text{β site indole} + \text{L-serine} \rightarrow \text{L-tryptophan} + \text{H}_2\text{O}
 \]

The α-reaction is a concerted catalytic event involving residues Glu-49 and Asp-60, as determined by kinetic and structural studies carried out on the wild type enzyme as well as on several mutants (2). The β-reaction is a more complex process (Scheme 1), requiring the combined action of PLP and several catalytic residues. The mechanism has been inferred by exploiting the distinct spectral properties of transiently accumulating PLP intermediates (1). The internal aldime absorbs at 412 nm with a minor band at 340 nm. These bands have been attributed to the ketoenamine and enolimine tautomers, respectively (16). The substrate L-serine binds forming a gem-diamine complex, characterized by an absorption spectrum centered at 320–330 nm that rapidly converts to a metastable external aldime. This species absorbs at 420 nm and is the only significantly fluorescent catalytic intermediate (17–21). The removal of the α-proton leads to the formation of a quinonoid species absorbing around 460 nm. This intermediate is particularly labile, and the experimental evidence of its formation is indirect (22). The release of the hydroxyl moiety on the β-carbon completes the first catalytic stage, i.e. the β-elimination reaction, with the formation of the α-aminoacrylate. This key catalytic intermediate predominantly absorbs at 350–360 nm extending with broad bands at 470 nm. These bands have been attributed to either the enolimine and ketoenamine tautomer.
tomers, respectively (23), or to an unprotonated and protonated aminoacrylate Schiff base, respectively (24). In tyrosine phenol-lyase and tryptophan indole-lyase, the predominant form of the α-aminoacrylate absorbs at 350 nm (25), whereas in O-acetylserine sulphydrylase, the predominant form absorbs at 470 nm (26). In the second stage of the catalytic reaction, indole, channeled from the α-active site, reacts with the α-aminoacrylate double bond forming a quinonoid species that absorbs at about 470 nm. By accepting a proton, the quinonoid species interconverts to the external aldimine of L-tryptophan, absorbing at about 425 nm and devoid of fluorescent properties (27). The release of L-tryptophan completes the catalytic cycle regenerating the internal aldimine.

Several catalytic properties of TS were found to be influenced by pH as follows. (i) The accumulation of the quinonoid species formed in the second stage of the β-reaction increases with pH (28, 29). (ii) The rate-limiting step of the catalytic reaction, carried out by *Escherichia coli* enzyme, varies as a function of

Scheme 1. Mechanism of the reaction catalyzed by the β-subunit of tryptophan synthase.
pH, being the Ca proton removal at pH 6.5 and l-trypohphan release at pH 7.6 (18, 30). (iii) The steady-state parameters of Salmonella typhimurium wild type TS are pH-dependent, indicating the presence of at least three ionizable residues with pH_{k_{a1}} = 6.5, pH_{k_{a2}} = 7.25, and pH_{k_{a3}} = 8.2–9 (31). (iv) The pH dependence of β-replacement and β-elimination activity was found to be significantly altered in the βHis-86 → Leu mutant (32). (v) The external aldime accumulation is favored at high pH both in solution and in the crystalline state, whereas the α-aminocarlylate is stabilized at low pH (32–34). (vi) The conversion of the external aldime to the aminoacrylate is accompanied by the release of a proton originating from the Schiff base nitrogen (24). Surprisingly, no studies have addressed the pH dependence of the catalytic rates on the S. typhimurium enzyme, the form for which the three-dimensional structure of the internal aldime (12, 15, 35), the external aldime (35, 36), and the α-aminocarlylate (12) has been determined. Recently, it was also found that monovalent cations and α-subunit ligands affect the distribution of intermediates as well as the catalytic properties of TS, triggering regulatory signals and stabilizing alternative open and closed conformations of the α- and β-subunits (23, 27, 37–41). We have investigated the pH dependence of the catalytic rates in the absence and presence of monovalent cations and indole acetaldehyde glycine (IAG), a recently discovered α-subunit ligand (13, 42). Here we describe our results on the first stage of the catalytic reaction, the β-elimination, using both rapid scanning UV-visible spectroscopy and single wavelength fluorescence stopped-flow methods. The second stage, the β-addition that completes the β-replacement reaction catalyzed by TS, will be described in a subsequent paper.

MATERIALS AND METHODS

Chemicals and Buffers—Bistris propane, Bicine, l-serine, sodium chloride, potassium chloride, cesium chloride, and IAG were purchased from Sigma. Reagents were of the highest quality commercially available and were used without further purification. Experiments were carried out in solutions containing 25 mM Bistris propane, a metal-free buffer. pH measurements were carried out with a Radiometer pHM83 pH meter, equipped with an Ingold-Mettler LF406-M3 microelectrode, calibrated with three standard buffers. To obtain the desired pH, HCl was added to solutions.

Enzyme Preparation—The tryptophan synthase αβ complex from S. typhimurium was purified as described previously (49). The enzyme was stored in 50 mM Bicine buffer, 20% v/v PLP, pH 7.5, at −80 °C. Prior to use, the enzyme was extensively dialyzed against 25 mM Bistris propane, pH 7.8.

Kinetic Measurements—Single wavelength kinetic experiments were carried out with a temperature-controlled stopped-flow apparatus, manufactured by Applied Photophysics, using a 75-watt xenon lamp as a light source and a photomultiplier as a detector. The instrumental dead time was 1.5 ms. Rapid spectral scanning stopped-flow measurements were carried out with the same apparatus, using a 150-watt xenon lamp, coupled to a MS 125TM 1/8-m spectrophotograph and an Insta-spec II photodiode array, manufactured by Lot-Oriel. One syringe contained 2.5 mg/ml TS in 25 mM Bistris propane, in the absence and presence of either 250 mM NaCl, 100 mM KCl, or 100 mM CHCl3, at the appropriate pH. The second syringe contained 25 mM Bistris propane, 100 mM l-serine, and either no salt or an equal concentration of salt, with or without 2 mM IAG, at the same pH of the first syringe. The pH of the mixed solution was always determined at the end of the experiment. Control experiments carried out with monovalent cations in only one syringe showed the same rate constants and amplitudes. Experiments were carried out over the pH range 6–9 and at 20 °C to ensure enzyme stability. The formation and decay of the external aldime of l-serine were followed by monitoring fluorescence emission, upon excitation at 420 nm. Kinetic traces at single wavelength were recorded by collecting 1000 data points on a logarithmic scale in 10 s. The photodiode array system collects spectra every 0.0084 s with a 16-s8 readout time per pixel. In a typical experiment, background and reference spectra are first collected and stored. In a kinetic series, up to 150 spectra were collected between 335 and 470 nm, in about 1 s.

Data Analysis—Time courses were fitted with Equation 1 describing a biphasic decay,

\[y = y_a + ae^{-k_1t} + be^{-k_2t} \]

(Eq. 1)

where \(y_a \) is the floating end point value of the spectroscopic signal; \(a \) and \(b \) are the amplitudes of the two phases, and \(k_1 \) and \(k_2 \) are the corresponding rate constants. The pH dependence of the rate constants was fitted with Equations 2 and 3 for two residues or a single ionizable residue (44),

\[k = k_{\text{max}}/(1 + 10^{(pH-pK_a)10}) \]

(Eq. 2)

\[k = k_{\text{max}}/(1 + 10^{(pK_a-pH)10}) \]

(Eq. 3)

where \(k_{\text{max}} \) represents the maximum value of the rate, and \(pK_a \) is the \(pK_a \) value of the ionizable groups. The program Sigma Plot 2000 (SPSS Science) was used to fit the data.

HINT Analysis—The HINT software quantitatively estimates every atom–atom interaction through the equation

\[b_i = a_i S_i S_j T_{ij} R_{ij} + r_{ij} \]

where \(b_i \) represents the score value of interacting atoms \(i \) and \(j \); \(a_i \) represents the hydrophobic atom constant (45–47), calculated with an adaptation of the fragment constant methods of Abraham and Leo (48); \(S_i \) represents the solvent (water)-accessible surface area; \(T_{ij} \) represents a logic function assuming a + 1/−1 value depending on the character of interacting polar atoms; \(R_{ij} \) represents the exponential function \(e^{-G} \); and \(r_{ij} \) represents an implementation of the Lennard-Jones potential. Favorable interactions are positively scored \((b_i > 0)\), whereas unfavorable ones are negatively scored \((b_i < 0).\) The total score that evaluates the strength of the binding process is \(\Sigma b_i = \Sigma (a_i S_i S_j T_{ij} R_{ij} + r_{ij}) \). Because each atom–atom interaction \(b_i \) is related to a partial free energy variation \((\delta G) \), the total score \((\Sigma b) \) is automatically correlated to the sum of each \(\delta G \) and, therefore, to global interaction free energy \((\Delta G_{\text{interaction}}))\ (49–52). The entropic contribution given by the release of water to bulk, which follows molecular association, is implicitly incorporated in the hydrophobic atom constants derived from partition measurements (53). The HINT procedure consists of two steps as follows: the model building and the hydrophatic analysis, as described previously (49). Three-dimensional coordinates of TS derivatives were retrieved from Protein Data Bank and imported into Sybyl (version 6.9, www.tripos.com). The structures were properly modeled, checking atom and bond types and adding hydrogen atoms, using Sybyl tools. The automatic algorithms do not account for intermolecular and intramolecular steric clashes; thus hydrogens were energy-minimized by using Powell algorithm with a gradient of 0.5 kcal (mol Å−1) for 1500 cycles. The ionizable groups of interacting residues at the binding site were carefully analyzed, and different possible protonation states were considered and computed. The hydrophatic analysis was performed with HINT (version 2.0.35, www.tripos.com). LogP_{\text{value}} was calculated for each interacting component using the “All” option. The “Neutral” option was chosen for the solvent condition when the ionization state of residues was not changed, whereas “inferred” was the option adopted for the partition procedure when the ionization state was modified. The HINT score was finally calculated for each couple of interacting residues at the active site.

RESULTS

The reaction of TS with l-serine at different pH values, in the absence (Fig. 1, a–c) and presence of sodium (Fig. 1, d–f), potassium (Fig. 1, g–i), and cesium ions (Fig. 1, j–l), was first monitored by rapid scanning stopped flow to detect simultaneously all forming and decaying catalytic intermediates. Such an informative approach was pioneered by Dunn and co-workers (22, 54). The external aldime with l-serine, absorbing at 422 nm, is formed in 20–30 ms (Fig. 1, spectrum 1, 33 ms) and rapidly decays to accumulate the α-aminocarlylate Schiff base, predominantly absorbing at 350 nm (Fig. 1, spectrum 5, −1 s). The amount of transiently formed external aldime, as well as the relative amount of external aldime and α-aminocarlylate Schiff base at the end of the reaction, are strongly dependent on pH and monovalent cations. The same reaction was monitored by single wavelength stopped flow by recording the fluorescence emission of the external aldime, upon excitation at 420 nm, in the absence (Fig. 2a) and presence of 250 mM NaCl (Fig. 2b), 100 mM KCl (Fig. 2c), and 100 mM CsCl (Fig. 2d) at pH values between 6 and 8.8. The kinetics were well fitted to a
biexponential process (Table I), as reported previously (22, 54). Actually, there is a third very slow phase, characterized by a small amplitude, that we neglected, considering it to be catalytically irrelevant, in agreement with other studies (19, 22, 30). The rate constants determined at pH 7.8 in the absence and presence of sodium or potassium ions are in good agreement with those observed previously (27, 37, 39). The amplitude of the first phase \(A_1 \) generally accounted for over 70% of the fluorescence change (Table I) and did not show any pH dependence. In contrast, the corresponding rate \(k_1 \) (Table I) exhibits either a bell-shaped profile, as in the absence and presence of potassium and sodium ions (Fig. 3a), or a saturating profile, as in the presence of cesium ions (Fig. 3b), indicating that the formation of \(\alpha\)-aminoacrylate is controlled by either two or only a single ionizable residue, respectively. The \(pK_a \) values, determined according to Equations 2 and 3 (see "Materials and Methods"), are reported in Table II. The \(pK_{a1} \) exhibits a value ranging from 5.8 or 5.9, in the presence of sodium and potassium ions, respectively, to 6.4 in the absence of monovalent cations. The \(pK_{a2} \) exhibits values close to 9 for all experimental conditions. An analysis of the pH profile in the presence of cesium ions by using two \(pK_a \) values leads to a \(pK_a \) of 5.20 and \(pK_{a2} \) of 9.02 with an \(R^2 \) of 0.83, a value only slightly higher than that (0.78) obtained with the analysis assuming a single \(pK_a \) (Table II). Both the very small improvement of the quality of the fitting and a value of \(pK_a \) clearly out of the pH range of experimental data make very questionable the presence of two \(pK_a \) values in the presence of cesium ions. The maximal rate of reaction follows the order: \(\text{Cs}^+ > \text{K}^+ > \text{Na}^+ \). An analysis based on the pH dependence of \(\log k \) shows very similar \(pK_a \) values and a slope close to unity, indicating that single ionizable residues are responsible for each \(pK_a \) (data not shown). Furthermore, the dependence on pH of the rate \(k_2 \) exhibits a bell shape only in the presence of sodium ions (Table I).

To investigate the effect of \(\alpha \)-subunit ligands on the pH dependence of the \(\alpha \)-aminoacrylate formation, the reaction of TS with L-serine was carried out in the presence of the allosteric effector IAG (42, 55), with and without monovalent cations. IAG was preferred to glycerol 3-phosphate because it is commercially available free of ions. Representative time courses at different pH values in the absence (Fig. 4a) and presence of sodium (Fig. 4b), potassium (Fig. 4c), and cesium ions (Fig. 4d) are shown. Independently of experimental conditions, the rate of reaction in the presence of IAG was found to be 1.2–1.8-fold higher than in its absence. A 3–4-fold increase of the rate was observed previously for this reaction at pH 7.8 in the presence of \(\alpha\)-glycerol 3-phosphate (7, 8). The kinetics was fitted to a biexponential decay with the first phase accounting for most of the amplitude (Table III). The pH dependence of \(k_1 \), reported in Fig. 5, exhibits the same profile as observed previously in the absence of IAG. The calculated \(pK_{a1} \) and \(pK_{a2} \) values (Table IV) are very close to those found in the absence of IAG. Also in this case, an analysis of the pH profile in the presence of cesium ions using two \(pK_a \) values leads to a negligible improvement of the quality of the fitting and to an
Tryptophan Synthase pH-dependent Catalysis

Fig. 2. Time courses for the reaction of TS with l-serine. The kinetics was recorded by monitoring the fluorescence intensity upon excitation at 420 nm, in the absence of monovalent ions (a), and in the presence of 250 mM NaCl (b), 100 mM KCl (c), 100 mM CaCl (d), at the indicated pH values. The conditions after mixing are as follows: 50 mM l-serine, 10 μM αβ, TS, 25 mM Bis-Tris propane. The solid line through data points represents the fitting to a biexponential decay process.

The dependence on the pH of the amount of the external aldimine, as determined from the emission intensity after 10 s of reaction (condition of quasi-equilibrium) in the presence of sodium ions (Fig. 6), was found to closely match the equilibrium distribution of the external aldimine and α-aminoacylrate determined previously (33, 34). High pH stabilizes the external aldmine, and low pH stabilizes the α-aminoacylate. In the presence of potassium ions, in the absence of monovalent cations, and in the presence of cesium ions the amount of external aldmine at quasi-equilibrium becomes progressively lower, exhibiting a weaker dependence on pH. This behavior is even more marked when IAG is bound to the α-subunits (data not shown).

DISCUSSION

In the first stage of the reaction catalyzed by TS, there are at least three steps that may require the presence of a proton donor/acceptor residue (Scheme 1). The same holds for the second stage. B1 deprotonates the incoming α-amino of l-serine to obtain a nucleophilic group that attacks the carbon of the Schiff base to form the gem-diamine. This deprotonation might not be required at physiological pH because the pKₐ of the α-amino for a free amino acid is close to 8.3. B2 removes the α-proton of l-serine external aldmine to generate a quinonoid species. A₁H donates a proton to the β-hydroxyl group to facilitate its release as a water molecule, with the concomitant formation of the α-aminoacylrate Schiff base. In the second half of the reaction, upon indole attack to the α-aminoacylrate species, B₂ accepts a proton from the indolenine derivative; A₂H donates a proton to the α-carbon of the quinonoid species to form the external aldmine of L-tryptophan, and finally, A₁H donates a proton to the amine of l-serine to release it as a zwitterion. It is obvious that basic residues that accept a proton

pH	k₁	k₂	A₁
	s⁻¹	s⁻¹	%
6.05	5.65 ± 0.75	0.73 ± 0.35	57 ± 8
6.27	7.62 ± 0.40	0.91 ± 0.10	74 ± 3
6.46	10.64 ± 0.48	1.24 ± 0.15	84 ± 2
6.68	12.56 ± 0.56	0.82 ± 0.10	79 ± 4
6.90	13.70 ± 0.57	0.69 ± 0.06	74 ± 2
7.07	16.14 ± 0.46	0.77 ± 0.19	95 ± 1
7.24	16.23 ± 0.42	0.81 ± 0.16	90 ± 1
7.46	16.95 ± 0.43	0.78 ± 0.19	94 ± 1
7.63	16.00 ± 0.39	0.97 ± 0.13	87 ± 1
7.87	15.80 ± 0.48	0.63 ± 0.09	85 ± 1
8.06	14.90 ± 0.44	0.64 ± 0.13	90 ± 1
8.25	13.65 ± 0.48	0.54 ± 0.11	80 ± 1
8.47	11.20 ± 0.50	0.55 ± 0.04	79 ± 1

pH	k₁	k₂	A₁
6.05	11.33 ± 0.30	0.90 ± 0.02	56 ± 1
6.27	12.48 ± 0.27	0.89 ± 0.02	64 ± 1
6.46	12.86 ± 0.24	1.01 ± 0.03	67 ± 1
6.68	13.95 ± 0.30	1.13 ± 0.05	77 ± 1
6.90	14.58 ± 0.32	1.38 ± 0.09	77 ± 1
7.07	15.62 ± 0.39	1.57 ± 0.13	84 ± 1
7.24	15.99 ± 0.42	1.47 ± 0.18	84 ± 1
7.46	16.19 ± 0.48	1.56 ± 0.16	84 ± 1
7.63	15.24 ± 0.49	2.27 ± 0.19	81 ± 2
7.87	15.67 ± 0.62	2.48 ± 0.18	75 ± 2
8.06	15.53 ± 0.64	2.48 ± 0.21	75 ± 2
8.30	14.26 ± 0.69	3.19 ± 0.82	74 ± 1
8.60	11.53 ± 0.22	1.07 ± 0.02	67 ± 2
8.73	12.24 ± 1.52	1.12 ± 0.02	66 ± 1

pH	k₁	k₂	A₁
6.05	11.97 ± 0.33	1.08 ± 0.08	69 ± 2
6.27	14.30 ± 0.26	1.25 ± 0.07	82 ± 1
6.46	16.71 ± 0.23	1.65 ± 0.08	82 ± 1
6.68	17.70 ± 0.17	1.09 ± 0.06	87 ± 1
6.90	18.04 ± 0.22	0.88 ± 0.08	90 ± 1
7.24	19.72 ± 0.31	0.74 ± 0.20	72 ± 1
7.46	20.37 ± 0.31	0.62 ± 0.12	92 ± 1
7.63	19.97 ± 0.32	1.15 ± 0.15	89 ± 1
7.87	18.49 ± 0.41	0.62 ± 0.15	96 ± 1
8.06	17.04 ± 0.20	0.83 ± 0.07	89 ± 1
8.25	14.91 ± 0.28	1.72 ± 0.24	91 ± 1
8.47	13.45 ± 0.29	1.34 ± 0.16	89 ± 1
8.65	11.64 ± 0.79	1.78 ± 0.24	88 ± 1
8.73	11.68 ± 0.69	0.54 ± 0.18	62 ± 1

pH	k₁	k₂	A₁
6.19	24.51 ± 0.30	0.58 ± 0.03	87 ± 1
6.20	23.51 ± 0.33	0.56 ± 0.12	93 ± 1
6.40	22.54 ± 0.32	0.75 ± 0.07	92 ± 1
6.46	22.71 ± 0.29	0.93 ± 0.05	83 ± 1
6.73	24.22 ± 0.95	0.60 ± 0.03	87 ± 1
7.02	23.29 ± 0.20	1.23 ± 0.05	85 ± 1
7.05	24.42 ± 0.42	1.66 ± 0.08	80 ± 1
7.22	25.63 ± 0.48	1.45 ± 0.20	90 ± 1
7.60	25.66 ± 0.21	0.96 ± 0.03	85 ± 1
7.80	25.17 ± 0.24	1.19 ± 0.12	97 ± 1
8.06	22.32 ± 0.28	1.10 ± 0.17	77 ± 1
8.45	21.00 ± 0.15	0.92 ± 0.04	89 ± 1
8.65	18.59 ± 0.64	1.35 ± 0.04	74 ± 1
8.70	15.30 ± 0.28	1.34 ± 0.05	70 ± 1
Fig. 3. pH dependence of the first rate constant, k_1, calculated from the fluorescence intensity decay of the external aldimine of L-serine, (a) in the absence of metal ions (closed circles), in the presence of 250 mM NaCl (open circles), 100 mM KCl (closed inverted triangles), and (b) 100 mM CsCl (closed diamonds). The solid lines represent the regression curve to either Equation 2 or 3.

Table II

Metal ion	pK_{a1}	pK_{a2}	R^2
Na$^+$	6.37 ± 0.04	8.91 ± 0.05	0.98
K$^+$	5.78 ± 0.05	9.11 ± 0.06	0.93
Cs$^+$	5.94 ± 0.05	8.73 ± 0.04	0.97
Ca$^{2+}$	5.20 ± 0.23	9.02 ± 0.08	0.83
Cs$^{+}$	9.10 ± 0.08		0.78

Equation 2 was used to fit the data in the absence and presence of NaCl and KCl, and either Equation 2 or 3 was used for data in the presence of CsCl.

may coincide with acidic residues donating a proton in a later step and vice versa. In the present work, we addressed the following: (i) whether the pH dependence of the catalytic rates is consistent with Scheme 1; (ii) whether the open-closed conformational equilibrium affects the pH dependence; and (iii) whether it is possible to identify the ionizable residues that are responsible for the observed pH dependence. It is important to point out that we have measured time courses directly related to the interconversion of enzyme-substrate complexes, and therefore, the corresponding pH profiles of the rate constants reflect ionization properties of the enzyme-substrate complexes (56).

The first part of the time course of the reaction between TS and L-serine, monitored by absorbance at 420 nm and fluorescence emission upon excitation at the same wavelength, indicates a very fast formation of the external aldimine that is completed in 20–30 ms. In this part of the kinetics, the relatively noisy data preclude a detailed analysis of the pH dependence. Therefore, we do not have information on the residue that might deprotonate L-serine, and we cannot determine whether this first deprotonation event takes place. The second part of the time course is a fluorescence decrease, associated with the disappearance of the external aldimine with the concomitant accumulation of the α-aminoacylate. This step is strongly pH-dependent and is affected by the presence of monovalent cations and α-subunit ligands (Figs. 4 and 6). The rate constants, determined at pH 7.8, are in good agreement with previous studies carried out at the same pH (27, 37, 39, 57), showing that the decay of the external aldimine is slower in the presence of sodium ions with respect to a monovalent cation-free solution and is faster in the presence of potassium and cesium ions (Table I). On the basis of data collected at pH 7.8, it was proposed that in the absence of monovalent cations both the external aldimine and the α-aminoacylate form are in the less active open conformation; in the presence of sodium ions the external aldimine is in a partially open conformation and the aminoacylate is in a closed conformation, and in the presence of cesium ions the aminoacylate is in the more active closed state (23, 27, 37, 39). However, within a defined conformation cations are clearly able to modulate differently the reactivity of the β-subunit and its pH dependence. Unfortunately, the structural basis of this fine effect cannot be fully understood because no three-dimensional structure of TS free of ions is available either in the absence or presence of L-serine. By fluorescence spectroscopy, it was observed that the compactness of the enzyme increases in the presence of monovalent ions (23). Finally, on the basis of the comparison of the pH profile in the absence and presence of monovalent ions, it seems that the role
of cations is essentially conserved over the entire pH range we have explored.

The more striking difference in the effect of monovalent cations on the pH dependence of the catalytic rate is the change in pH profile, bell-shaped both in the absence and presence of sodium and potassium ions and pH-independent below 8.0 in the presence of cesium ions. This behavior indicates that, in the absence and presence of sodium and potassium ions, two ionizable residues are responsible for the pH dependence of the catalytic rate in the disappearance of the external aldimine and

pH	k_1	k_2	A_1
6.05	15.32 ± 0.13	0.62 ± 0.03	85 ± 1
6.15	17.32 ± 0.21	0.55 ± 0.06	88 ± 1
6.31	19.95 ± 0.21	0.50 ± 0.04	88 ± 1
6.40	22.45 ± 0.20	0.44 ± 0.03	88 ± 1
6.50	25.44 ± 0.32	0.73 ± 0.03	89 ± 1
6.60	28.34 ± 0.35	0.99 ± 0.03	89 ± 1
6.70	31.84 ± 0.23	1.06 ± 0.04	89 ± 1
6.80	34.33 ± 0.31	0.67 ± 0.07	92 ± 1
6.90	37.91 ± 0.30	0.65 ± 0.07	93 ± 1
7.00	41.49 ± 0.35	0.75 ± 0.06	94 ± 1
7.10	45.07 ± 0.30	0.71 ± 0.06	94 ± 1
7.20	48.65 ± 0.29	0.69 ± 0.05	94 ± 1
7.30	52.23 ± 0.30	0.65 ± 0.05	94 ± 1
7.40	55.81 ± 0.25	0.70 ± 0.06	94 ± 1
7.50	59.39 ± 0.25	0.65 ± 0.05	94 ± 1
7.60	62.97 ± 0.35	0.70 ± 0.06	94 ± 1
7.70	66.55 ± 0.30	0.65 ± 0.05	94 ± 1
7.80	69.03 ± 0.35	0.70 ± 0.06	94 ± 1
7.90	72.51 ± 0.30	0.65 ± 0.05	94 ± 1
8.00	75.99 ± 0.25	0.70 ± 0.06	94 ± 1

The pH dependence of the first rate constant, k_1, calculated from the fluorescence intensity decay of the external aldimine of l-serine with 1 mm IAG, (a) in the absence of metal ions (closed circles), in the presence of 250 mM NaCl (open circles), 100 mM KCl (closed inverted triangles), and (b) 100 mM CsCl (closed diamonds). The solid lines represent the regression curve to either Equation 2 or 3.

TABLE IV

Metal ion	Ligand	pK_{a1}	pK_{a2}	R^2
Na⁺	IAG	6.10 ± 0.03	8.79 ± 0.03	0.98
K⁺	IAG	5.87 ± 0.08	8.94 ± 0.06	0.92
Cs⁺	IAG	4.85 ± 0.44	9.05 ± 0.06	0.92

Equation 2 was used to fit the data in the absence and presence of NaCl and KCl, and either Equation 2 or 3 was used for data in the presence of CsCl.
accumulation of α-aminoacylate, whereas only a single ionizable residue controls the reaction rate in the presence of cesium ions, at least in the pH range 6–9. Under all experimental conditions, pK_a is close to 6, and pK_{a2} is close to 9 (Table II). The absence of pK_{a1} when cesium ions are bound to the enzyme can have two distinct explanations. The first explanation is that pK_{a1} is shifted to lower values and cannot be observed because of the limited enzyme stability below pH 6. The second explanation is that in the closed conformation the ionizable residue responsible for pK_{a1} is no more relevant in the transformation of the external aldime than into the α-aminoacylate. It is interesting to note that the same pattern with similar pK_a values holds when IAG, an allosteric effector bound to the α-subunit, is present both in the absence and presence of ions (Table IV). All rates are higher in the presence of IAG in keeping with the role of the allosteric effectors to stabilize the closed conformation in the presence of monovalent cations (27, 37, 39). On the basis of these data it seems more plausible that pK_{a1} is shifted to lower values due to specific effects of cesium ions on the ionizable residue either via direct or indirect interactions. It should be made clear that a single pK_a does not necessarily correspond to an individual group because pK_a is a group function (58). The pK_{a1} and pK_{a2} values closely correspond to the pK_{a1} and pK_{a3} values determined by investigating the pH dependence of the steady-state parameters (31). On the other hand, we do not observe the intermediate pK_{a2} of 7.25 that these authors detected. This finding is not surprising because we have presently investigated the first stage of the reaction, whereas steady-state parameters reflect the overall β-replacement reaction. Indeed, we have observed a pK_a of about 7.5 that controls the rate of formation of the quinonoid species that originates in the reaction between indole and L-tryptophan during the catalytic cycle (28, 33, 34).

In order to identify the ionizable residues responsible for the control of the chemical transformation from the external aldime to α-aminoacylate, there are two sources of information, the three-dimensional structures of the native enzyme and catalytic intermediates and the kinetic data obtained for the wild type enzyme and mutants. The more relevant available structures are as follows: (i) the internal aldime in the presence of either sodium (12, 15, 35, 40); potassium, or cesium ions (40), also with bound α-subunit ligands (12, 55); (ii) the external aldime of the wild type enzyme in the presence of sodium ions (35); and (iii) the α-aminoacylate Schiff base in the presence of sodium ions and 5-fluorouracil propanol phosphate, an α-subunit ligand (12). Other structures of the internal and external aldime, determined on mutant enzymes (35, 36, 41, 59, 60), should be considered with caution, because mutation might have small but critical consequences on the location and local environment of ionizable residues. Furthermore, as pointed out earlier, no structure is available in the absence of monovalent cations at any stage of the catalytic cycle.

On the basis of the three-dimensional structures of the internal aldime (12, 15, 35), the external aldime (35), and the aminoacylate (12), there are several ionizable residues within the β-active site that, to some extent, could assist the reaction with an acid-base catalysis: βHis-86, βLys-87, βGlu-109, βHis-115, βLys-167, and βAsp-305 (Fig. 7). However, βHis-86 was proposed to be involved in the interaction with the PLP phosphate group and, possibly, in the lowering of the pK_a of βLys-87 (32). There are also ionizable groups on PLP, but spectral evidence indicates a pH independence for their ionization state during the catalytic cycle (28, 33, 34).

βLys-87 is bound to PLP in the internal aldime (Fig. 7a). In the external aldime, βLys-87 appears to interact with the phosphate moiety of PLP (Fig. 7b). The distance between the Ne and the phosphate oxygen atoms varies between 3.22 and 5.26 Å. An evaluation of the strength of this interaction using HINT software (46, 47, 49) indicates that, assuming either a protonated or neutral amine, the HINT score is about 2000 and 400, respectively. It was found that about 500 HINT score units correspond to a binding free energy of 1 kcal/mol (49). From structural data it is not possible to determine whether the Ne group is protonated because x-ray data at 2.3 Å resolution cannot reveal hydrogen atoms. It was proposed (35) that a rotation of βLys-87 side chain would take the amine group at 2.8 Å from the Ca atom of serine external aldime, a favorable distance for a neutral amine to extract a proton. However, careful inspection suggests that βLys-87 side chain is not free to move because the amine is taken in check by the carbonyl group of βGly-189. In the α-aminoacylate structure (Fig. 7c), βLys-87 occupies almost the same position as in the external aldime with a distance of the Ne to phosphate oxygen of 3.64–5.60 Å and an interaction strength of 1500 and 300 HINT score units, assuming a protonated and neutral amine, respectively. This finding is somewhat surprising if, as generally assumed, βLys-87 is the residue that extracts the serine Ca proton. Protonation of βLys-87 should lead to a structural reorganization of the surrounding groups. A possibility might be that βLys-87 abstracts the proton and donates it to the β-hydroxyl of L-serine or to some other basic residue. βLys-87 was proposed previously to act as the base that abstracts the α-carbon proton on the basis of kinetic (61, 62) and structural studies on the mutant βLys-87 → Thr (36). The reaction between l-serine and the mutant βLys-87 → Thr proceeds only to the formation of the external aldime. However, the presence of ammonium chloride allows us to recover the activity, thus suggesting that a base is required for the removal of the α-carbon proton (61). Furthermore, βLys-87 seems to assist the transaldimination and product release to favor the β-hydroxyl removal and to donate a proton to the quinonoid of L-tryptophan (62). The latter role should imply that the e-amine is neutral at the stage of the external aldime and protonated at the stage of the α-aminoacylate intermediate. It was also found that in the mutant βLys-87 → Thr the substrate analog β-chloroalanine is slowly converted to the α-aminoacylate (62), likely because it possesses a good leaving group and does not require assistance by the enzyme catalytic machinery.

In the internal aldime βGlu-109 is located at about 11 Å from C-4’ of PLP and does not interact with any PLP atoms (Fig. 7a). The distance of the carboxylate oxygens from the nitrogen atoms of βHis-115 imidazole ring is 4.35–6.00 Å, suggesting a weak interaction. This distance remains almost the same in the external aldime (Fig. 7b) and in the aminoacylate species (Fig. 7c). The carboxylate oxygens of βGlu-109 are also at about 6.5 Å from the carboxylate oxygens of l-serine, weakly anchoring the substrate in the active site. Furthermore, the distance between the carboxylate oxygens and the β-hydroxyl group is about 8.5 Å, making it very unlikely that βGlu-109 plays a catalytic role assisting in β-hydroxyl elimination (63). βGlu-109 was proposed to activate the incoming indole to facilitate its reaction with aminoacylate (36, 64). The pH dependence of the catalytic rates of the first stage does not exhibit a pK_a of 7.25, detected instead in the overall β-reaction (31). This finding clearly indicates that this pK_a pertains to an ionizable residue that is relevant in the second stage of the reaction.

βHis-115 is located in the active site with the imidazole ring pointing away from the PLP both in the internal aldime (Fig. 7a)}
FIG. 7. Stereoview of the active site of the internal aldimine (a), external aldimine (b), and α-aminoacrylate (c). The internal aldimine structure was generated from Protein Data Bank code 1kfk (35), the external aldimine from code 1kfd (35), and the aminoacrylate from code 1a5s (12). PLP is displayed in yellow with the phosphate group colored by atom type. βLys-87 is white; βGlu-109 is red; βHis-115 is green; βArg-141 is blue; βLys-167 is orange; βAsp-305 is pink; sodium ion is a violet sphere. b and c, L-serine is colored by atom type. Figure was prepared using Sybyl (www.Tripos.com).
In the external aldimine the protonated imidazole ring nitrogen \(N_{\text{pro}} \) is at 9.26 and 7.66 Å from the \(\beta \)-hydroxyl and the Ca of serine, respectively, whereas the unprotonated imidazole ring nitrogen \(N_{\text{sole}} \) is at 8.59 and 6.65 Å from the \(\beta \)-hydroxyl and the Ca of serine, respectively. The position of \(\beta \text{His-115} \) does not change appreciably in the three PLP derivatives. Since no mutant of this residue has been prepared so far, functional data of the enzyme lacking \(\beta \text{His-115} \) are not available. However, the structural data seem to exclude \(\beta \text{His-115} \) for any involvement in the catalytic cycle.

\(\beta \text{Lys-167} \) is at the periphery of the active site (Fig. 7a) and makes a salt bridge with Asp-56 (not shown) only in the closed state (12, 36). This interaction and the salt bridge between \(\beta \text{Asp-305} \) and Arg-141 were proposed to be relevant for the transmission of allosteric signals between \(\alpha \)- and \(\beta \)-active sites (11). The \(pK_{a}^{\alpha} \), determined in the pH dependence of steady-state parameters, was tentatively assigned to \(\beta \text{Lys-167} \) (31), and its different state of protonation was possibly associated with the conformational transition between closed and open states (31).

In the internal aldimine, \(\beta \text{Asp-305} \) does not appear to interact with any residue (Fig. 7a), whereas in the external aldimine (Fig. 7b) the carboxyl group points in the direction of the \(\beta \)-hydroxyl of serine with a distance of 2.76 Å, thus forming a relatively good hydrogen bond (HINT score of 700) only when it is assumed to be deprotonated (the HINT score is 161, assuming a protonated carboxylate). This interaction might stabilize the external aldimine. Furthermore, the carboxylate oxygens are at 4.65–5.97 Å from the \(\alpha \)-carbon of L-serine. \(\beta \text{Asp-305} \) is also at 6–9.5 Å from Arg-141, making a very weak interaction (HINT score of 38). Remarkably, in the presence of monovalent cations, the structure of the aminoacyl group intermediate shows that the side chain of \(\beta \text{Asp-305} \) points away from the active site (Fig. 7c), being the only residue that significantly changes its position during the \(\beta \)-elimination reaction. In this new position \(\beta \text{Asp-305} \) was suggested to form a salt bridge with Arg-141 (Fig. 7c). This new interaction stabilizes the closed form of the aminoacyl species with respect to the open form of the external aldimine, thus favoring \(\beta \)-elimination. As mentioned earlier, this bond was proposed to be part of the network transmitting intersubunit signals (11). Given this flexibility, a transient position of the carboxyl group closer to the \(\alpha \)-carbon of serine cannot be excluded. Furthermore, it should also be reminded that on the basis of the crystallographic data the ionization state of a residue cannot be usually defined except when the distance between residues strongly suggests the formation of a salt bridge or a hydrogen bond. It is also possible to envision that the change in location of the \(\beta \text{Asp-305} \) side chain is associated with a change in the ionization state of the carboxyl group passing from the external aldimine to the aminoacyl. The \(pK_{a}^{\alpha} \) of 6.5, detected by measuring the pH dependence of the steady-state parameters (31), was previously assigned to \(\beta \text{Asp-305} \). Its role was proposed to be the deprotonation of the \(\alpha \)-amine of the incoming L-serine and, subsequently, the protonation of the \(\beta \)-hydroxyl group of L-serine (31). The \(pK_{a}^{\alpha} \) of Asp-305 might be higher in the open form of the external aldimine where the carboxylate/carboxylic moiety does not form any interaction and lower in the closed form of the aminoacyl, in the presence of cesium ions, whereas the carboxylate moiety interacts with Arg-141. Recent studies of the \(\beta \text{Asp-305} \rightarrow \text{Ala} \) mutant suggest that \(\beta \text{Asp-305} \) plays a role in the formation of L-serine external aldimine and in the external aldimine-aminoacyl interconversion (57). However, its key role was proposed to be in the regulation of the conformational equilibrium between open and closed states of the \(\beta \)-subunit (11, 57). In passing from the external aldimine to the aminoacyl, the interaction with the \(\beta \)-hydroxyl group is lost, and \(\beta \text{Asp-305} \) can swing out to form the salt bridge with Arg-141, stabilizing the closed state (11, 57). The following points were found with \(\beta \text{Asp-305} \rightarrow \text{Ala} \). (i) The relative stability of the external aldimine and aminoacyl is altered in favor of the former species. (ii) The \(\beta \)-reaction is 2–14-fold slower depending on the absence or presence of different monovalent ions, with cesium ions partially restoring a wild-type steady-state kinetic behavior. (iii) The rate of the \(\beta \)-reaction was slightly faster in the mutant with respect to the wild type, in the presence of the \(\alpha \)-subunit ligand glycerol 3-phosphate. (iv) The rate constants for the disappearance of the external aldimine are about 10-fold lower in the mutant with respect to the wild type, both in the absence and presence of cesium and ammonium ions (57).

By combining this wealth of structural and functional data with the pH dependence of the rate constants that were determined in the present work, we propose that the deprotonation of \(\beta \text{Asp-305} \) is associated with \(pK_{a}^{\alpha} \), in agreement with Miles and co-workers (31). However, the role of \(\beta \text{Asp-305} \) might be that of abstracting the proton from the \(\alpha \)-carbon. Its location within the active site is compatible with this function. The loss of \(pK_{a}^{\alpha} \) in the presence of cesium ions, with and without allosteric effectors, suggests that these ligands stabilize a conformation in which \(pK_{a}^{\alpha} \) is shifted to lower values and is therefore undetectable due to protein instability at low pH. The presence of low \(\beta \)-activity in the \(\beta \text{Asp-305} \rightarrow \text{Ala} \) mutant does not contradict this hypothesis because the kinetics of disappearance of the external aldimine is biphasic, thus suggesting that the enzyme possesses two alternative routes of catalysis. Indeed, in the wild type enzyme \(k_{2}^\text{w} \) was found to account for about 10% of the interconversion to aminoacyl, with rates that are about 20-fold lower than \(k_{1} \). This route is essentially unaffected by pH values, monovalent cations, and allosteric effectors (Tables I–II), and might represent a “survival” strategy for TS function. The biphasic decay of the external aldimine to aminoacyl was also explained to be due to two parallel processes associated with the open and closed states (37). The catalytic role of \(\beta \text{Asp-305} \) is not in contrast with its relevance in the allosteric communication because it further strengthens the coupling between catalysis and regulation. Finally, the \(pK_{a}^{\alpha} \) of about 9 that we have detected is lower than the presence of monovalent cations and \(\alpha \)-subunit ligands, and previously observed in the pH dependence of the steady-state parameters of the \(\beta \)-reaction, might be attributed to \(\beta \text{Lys-87} \), instead of \(\beta \text{Lys-167} \) (31). Only when \(\beta \text{Lys-87} \) is charged it can assist the release of the \(\beta \)-hydroxyl group by donating a proton. \(\beta \text{Lys-87} \) possesses a location within the active site that is compatible with this catalytic role, and it is a group well suited to exhibit a \(pK_{a}^{\alpha} \) close to 9.

Acknowledgments—We thank Dr. Michael Dunn for helpful advice in setting up the rapid scanning stopped-flow apparatus, Dr. Edith Miles for providing us the E. coli strain containing the plasmid encoding S. typhimurium tryptophan synthase, and Dr. Francesca Sypriakis for the preparation of Fig. 7 and HINT analysis.

REFERENCES

1. Miles, E. W. (1979) *Adv. Enzymol. Relat. Areas Mol. Biol.* 49, 127–186
2. Miles, E. W. (1991) *Adv. Enzymol. Relat. Areas Mol. Biol.* 64, 93–172
3. Miles, E. W. (1995) *Subcell. Biochem.* 24, 207–254
4. Boyer, P. D. (1979) *Trends Biochem. Sci.* 2, 22–27
5. Crawford, I. P. (1966) *Biochim. Biophys. Acta* 45, 405–407
6. Yanesky, C. and Crawford, I. P. (1972) in *The Enzymes* (Boyer, P. D., ed) Vol. 7, 3rd Ed., pp. 1–31, Academic Press, New York
7. Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben, K. F., Leja, C. A., and Roy, M. (1990) *Biochemistry* 29, 8598–8607
8. Brzovic, P. S., Sawaya, Y., Hyde, C. C., Miles, E. W., and Dunn, M. F. (1992) *J. Biol. Chem.* 267, 13028–13038
9. Brzovic, P. S., Ngo, K., and Dunn, M. F. (1992) *Biochemistry* 31, 3831–3839
10. Brzovic, P. S., Hyde, C. C., Miles, E. W., and Dunn, M. F. (1993) *Biochemistry* 32, 1669–1676
11. Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben, K. F., Leja, C. A., and Roy, M. (1990) *Biochemistry* 29, 8598–8607
12. Dunn, M. F., Aguilar, V., Brzovic, P., Drewe, W. F., Jr., Houben, K. F., Leja, C. A., and Roy, M. (1990) *Biochemistry* 29, 8598–8607
