Association of maternal sleep before and during pregnancy with sleep and developmental problems in 1-year-old infants

Kazushige Nakahara1,26, Takehiro Michikawa2,26, Seiichi Morokuma3,4, Masanobu Ogawa4, Kiyoko Kato1,4, Masafumi Sanefuji4,5, Eiji Shibata6,7, Mayumi Tsuji6,8, Masayuki Shimono6,9, Toshihiro Kawamoto6, Shouichi Ohga5, Koichi Kusuhara6,9 & the Japan Environment and Children’s Study Group*

This study investigated the association of maternal sleep before and during pregnancy with sleeping and developmental problems in 1-year-old infants. We used data from the Japan Environment and Children's Study, which registered 103,062 pregnancies between 2011 and 2014. Participants were asked about their sleep habits prior to and during pregnancy. Follow-up assessments were conducted to evaluate the sleep habits and developmental progress of their children at the age of 1 year. Development during infancy was evaluated using the Ages and Stages Questionnaire (ASQ). Maternal short sleep and late bedtime before and during pregnancy increased occurrence of offspring's sleeping disturbances. For example, infants whose mothers slept for less than 6 h prior to pregnancy tended to be awake for more than 1 h (risk ratio [RR] = 1.49, 95% confidence interval [CI] 1.34–1.66), sleep less than 8 h during the night (RR = 1.60, 95% CI 1.44–1.79), and fall asleep at 22:00 or later (RR = 1.33, 95% CI 1.26–1.40). Only subjective assessments of maternal sleep quality during pregnancy, such as very deep sleep and feeling very good when waking up, were inversely associated with abnormal ASQ scores in 1-year-old infants.

Sleep duration among the general population in Japan has been reported to be shorter than that in other countries1 and has become even shorter in recent years2. Furthermore, it has been reported that approximately 10% of infants have sleeping problems3. Neurodevelopmental disorders, including autism spectrum disorder (ASD), neurodevelopment abnormalities, and disturbed sleep habits, such as late bedtime and intense night crying, are observed in early infancy4. The incidence of developmental disorders is increasing in developed countries, including Japan5–7. Factors related to developmental disorders include genetic ones and environmental (in utero) ones8,9. Maternal lifestyle such as sleep pattern may affect the offspring's sleep and development.

It has been reported that maternal sleep disorders are associated with developmental progress in the offspring. For example, maternal sleep disordered breathing (SDB) during pregnancy is associated with the offspring's development, manifesting as disrupted social skills and low reading-test scores10,11. Thus, not only maternal sleep habit but also maternal sleep disorders during pregnancy may be related to early infant sleep patterns and

1Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. 2Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan. 3Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan. 4Research Center for Environmental and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan. 5Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. 6Regional Center for Japan Environment and Children’s Study, University of Occupational and Environmental Health, Kitakyushu, Japan. 7Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan. 8Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan. 9Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan. 26These authors contributed equally: Kazushige Nakahara and Takehiro Michikawa. *A list of authors and their affiliations appears at the end of the paper. **email: morokuma@med.kyushu-u.ac.jp
development. However, no large-scale study has examined the potential associations between maternal sleep and the offspring's sleep patterns or development. Additionally, the importance of maternal sleep during various periods of pregnancy and the persistence of the influence remain unclear.

We previously reported that maternal sleep habits, such as short sleep duration and late bedtime, both before and during pregnancy, were associated with the offspring's sleep problems and temperament at 1 month of age. We hypothesize that maternal sleep before and during pregnancy would continue to be associated with the infant's sleep and developmental problems even at 1 year of age.

This study aimed to expand on those findings and investigate the association between maternal sleep habits, before and during pregnancy, with offspring outcomes at 1 year of age.

Results

The baseline characteristics of the participants, along with the available data on sleep duration before pregnancy, are shown in Table 1. The characteristics of participants in the various sleep groups are also shown in Supplemental Table 1. The reported sleep duration was on average between 7 and 8 h, both before and during pregnancy. The participants tended to sleep longer and go to bed earlier during pregnancy than before pregnancy. Significant data points are summarized below and include risk ratios (RR) and 95% confidence intervals (CI) in the multivariable model, adjusted for maternal age at delivery, smoking habits, alcohol consumption, pre-pregnancy body mass index, gestational age at birth, parity, infertility treatment, and infant sex.

Maternal sleep before pregnancy (Table 2)

Short sleep duration less than 6 h before pregnancy was associated with a higher risk of night waking for ≥ 1 h (RR = 1.49, 95% CI 1.34–1.66),

Table 1. Baseline characteristics of the study population stratified by sleep duration before pregnancy.
No. of participants	No. of outcome	Maternal age adjusted model	Multivariable model*			
		%	RR	95% CI	RR	95% CI
> 3 nighttime waking instances						
Sleep duration						
< 6 h	4948	118	2.4	1.04	0.85	1.26
6 < 7	14,661	324	2.2	0.95	0.83	1.09
7 < 8	25,136	584	2.3	Ref	Ref	Ref
8 < 9	18,302	466	2.6	1.10	0.98	1.24
9 < 10	7494	209	2.8	1.23	1.05	1.43
10<	3286	74	2.3	1.06	0.84	1.35
Bedtime						
21 < 24	49,995	1275	2.6	Ref	Ref	Ref
24 < 27	21,825	461	2.1	0.85	0.76	0.94
Other	2007	39	1.9	0.83	0.61	1.14
> 1 waking instances lasting > 1 h						
Sleep duration						
< 6 h	4948	411	8.3	1.54	1.38	1.71
6 < 7	14,661	929	6.3	1.18	1.09	1.28
7 < 8	25,136	1343	5.3	Ref	Ref	Ref
8 < 9	18,302	916	5.0	0.94	0.86	1.02
9 < 10	7494	387	5.2	0.96	0.86	1.07
10<	3286	224	6.8	1.24	1.08	1.42
Bedtime						
21 < 24	49,995	2460	4.9	Ref	Ref	Ref
24 < 27	21,825	1550	7.1	1.44	1.35	1.53
Other	2007	200	10.0	1.99	1.73	2.28
< 8 h of sleep during the night (20:00–7:59)						
Sleep duration						
< 6 h	4948	408	8.3	1.65	1.48	1.84
6 < 7	14,661	872	6.0	1.21	1.11	1.31
7 < 8	25,136	1233	4.9	Ref	Ref	Ref
8 < 9	18,302	804	4.4	0.89	0.82	0.98
9 < 10	7494	319	4.3	0.86	0.77	0.97
10<	3286	207	6.3	1.25	1.08	1.44
Bedtime						
21 < 24	49,995	2284	4.6	Ref	Ref	Ref
24 < 27	21,825	1361	6.2	1.37	1.28	1.46
Other	2007	198	9.9	2.11	1.84	2.43
Falling asleep at 22:00 or later						
Sleep duration						
< 6 h	4948	1363	27.6	1.39	1.32	1.46
6 < 7	14,661	3359	22.9	1.17	1.13	1.22
7 < 8	25,136	4898	19.5	Ref	Ref	Ref
8 < 9	18,302	3348	18.3	0.94	0.90	0.97
9 < 10	7494	1183	15.8	0.80	0.76	0.85
10<	3286	691	21.0	1.02	0.95	1.10
Bedtime						
21 < 24	49,995	8412	16.8	Ref	Ref	Ref
24 < 27	21,825	5935	27.2	1.60	1.55	1.65
Other	2007	495	24.7	1.40	1.29	1.52
Frequency of crying at night (≥ 5 days/week)						
Sleep duration						
< 6 h	4948	395	8.0	1.14	1.03	1.27
6 < 7	14,661	1085	7.4	1.05	0.98	1.13
7 < 8	25,136	1771	7.1	Ref	Ref	Ref
8 < 9	18,302	1345	7.4	1.05	0.98	1.12
9 < 10	7494	548	7.3	1.04	0.95	1.15
Continued						
pregnancy, offspring of mothers who slept after midnight had a higher risk of night waking for > 1 h (RR = 1.38, 95% CI 1.23–1.55), and falling asleep at 22:00 or later (RR = 1.08, 95% CI 1.01–1.15). Compared to offspring of mothers who slept before midnight before pregnancy, offspring of mothers who slept after midnight had a higher risk of night waking for > 1 h (RR = 1.38, 95% CI 1.30–1.47), sleeping for < 8 h at night (RR = 1.31, 95% CI 1.22–1.40), and falling asleep at 22:00 or later (RR = 1.53, 95% CI 1.48–1.58).

In the sub-analysis limited to participants who slept for 7–9 h during pregnancy, we found similar associations between maternal sleep before pregnancy and the offspring's sleep outcome (Supplemental Table 2). Maternal sleep for < 6 h during pregnancy was associated with a higher risk of some sleep outcomes. Infants whose mothers slept for less than 6 h during pregnancy tended to be awake for > 1 h at night (RR = 1.53, 95% CI 1.35–1.72), to sleep for < 8 h during night (RR = 1.66, 95% CI 1.48–1.88), and to sleep at 22:00 or later (RR = 1.39, 95% CI 1.31–1.47), compared to the infants whose mother slept for 7–8 h. On the contrary, compared to the offspring of mothers who slept for 7–8 h, offspring of mothers who slept for more than 10 h during pregnancy were also at a higher risk of night waking for > 1 h (RR = 1.25, 95% CI 1.09–1.44) and sleeping for < 8 h at night (RR = 1.26, 95% CI 1.09–1.46). Compared to offspring of mothers who slept before midnight before pregnancy, offspring of mothers who slept after midnight had a higher risk of night waking for > 1 h (RR = 1.38, 95% CI 1.30–1.47), sleeping for < 8 h at night (RR = 1.31, 95% CI 1.22–1.40), and falling asleep at 22:00 or later (RR = 1.53, 95% CI 1.48–1.58).

Maternal sleep during pregnancy and infant sleep (Table 3). As for the analysis of maternal sleep before pregnancy, short or long sleep duration and sleeping after midnight during pregnancy were associated with a higher risk of some sleep outcomes. Infants whose mothers slept for less than 6 h during pregnancy tended to be awake for > 1 h at night (RR = 1.53, 95% CI 1.35–1.72), to sleep for < 8 h during night (RR = 1.66, 95% CI 1.48–1.88), and to sleep at 22:00 or later (RR = 1.39, 95% CI 1.31–1.47), compared to the infants whose mother slept for 7–8 h. On the contrary, compared to the offspring of mothers who slept for 7–8 h, offspring of mothers who slept for more than 10 h during pregnancy tended to sleep at 22:00 or later (RR = 1.08, 95% CI 1.02–1.15). Maternal bedtime after midnight during pregnancy was also associated with a higher risk of infants night waking for > 1 h (RR = 1.41, 95% CI 1.32–1.51), sleeping for < 8 h at night (RR = 1.41, 95% CI 1.32–1.51), falling asleep at 22:00 or later (RR = 1.58, 95% CI 1.53–1.63), and frequency of crying (RR = 1.08, 95% CI 1.02–1.15), compared to the group of maternal bedtime after midnight.

In the sub-analysis limited to the participants who slept for 7–9 h before pregnancy, we found similar associations between maternal sleep during pregnancy and infants' sleep outcome (Supplemental Table 2). Maternal sleep for less than 6 h and for more than 10 h increased the risk ratio of falling asleep at 22:00 or after. Maternal bedtime after midnight increased the risk ratio of infants awakening > 1 h at night, sleeping < 8 h, and falling asleep at 22:00 or later.

Subjective items of sleep during pregnancy were also associated with the offspring's sleeping problems. For example, maternal “very light” sleep was associated with a higher risk of 3 or more waking instances in a night (RR = 1.74, 95% CI 1.47–2.06), night waking for more than 1 h (RR = 1.24, 95% CI 1.11–1.39), sleeping for less than 8 h at night (RR = 1.38, 95% CI 1.23–1.53), sleeping at 22:00 or later (RR = 1.08, 95% CI 1.02–1.15), crying 5 days or more in a week (RR = 1.52, 95% CI 1.38–1.67), compared to the group of maternal “normal” sleep depth.

Maternal sleep and offspring developmental progress. We used the Japanese version of the Ages and Stages Questionnaire, third edition (J-ASQ-3), to evaluate the offspring's development. There were no associations between sleep duration or bedtime, both before and during pregnancy, and abnormal J-ASQ-3 scores (Table 4). However, “good” and “very good” feelings when waking up during pregnancy were associated with a lower risk of abnormal J-ASQ-3 scores for any one of the five domains in a multivariable model (RR for good vs. normal = 0.86, 95% CI 0.81–0.91; RR for very good feeling vs. normal = 0.81, 95% CI 0.69–0.95) (Table 5), compared to the group of maternal “normal” feelings at waking up. Moreover, for the depth of sleep during pregnancy, “very deep” sleep decreased the risk of abnormal J-ASQ-3 scores (RR for very deep vs. normal = 0.83, 95% CI 0.71–0.98), compared to the group of maternal “normal” sleep depth.

Table 2. Association between sleep before pregnancy and infant sleep, Japan Environment and Children's Study (2011–2014). CI confidence interval, RR risk ratio. Bold fonts showed the items of infant's sleep outcomes. *Adjusted for maternal age at delivery, smoking habits, alcohol consumption, pre-pregnancy body mass index, gestational age at birth, parity, infertility treatment, and infant sex.
No. of participants	Maternal age adjusted model	Multivariable model\(^a\)
	% RR 95% CI	RR 95% CI

> 3 nighttime waking instances

Sleep duration

Nighttime waking instances	<6 h	6-7	7-8	8-9	9-10	10+
No. of participants	3540	11,099	23,050	21,043	10,394	4701
RR 95% CI	2.3	0.97	0.77	1.22	1.00	0.79
RR 95% CI	1.26	0.94	0.81	1.09		

Bedtime

Bedtime	21 < 24	24 < 27	Other
No. of participants	54,403	17,798	1626
RR 95% CI	2.5	Ref	Ref
RR 95% CI	1.40		

Depth of sleep

Depth of sleep	Very light	Light	Normal	Deep	Very deep
No. of participants	5054	30,977	29,459	7007	1330
RR 95% CI	3.4	2.9	2.0	1.7	1.4
RR 95% CI	1.73	1.45	1.05	0.85	0.74

Feeling when waking up in the morning

Feeling when waking up in the morning	Very bad	Bad	Normal	Good	Very good
No. of participants	1112	15,106	45,965	10,314	1330
RR 95% CI	3.4	2.8	2.4	1.8	2.0
RR 95% CI	1.50	1.19	1.10	0.74	0.81

> 1 waking instances lasting > 1 h

Sleep duration

Waking instances lasting > 1 h	<6 h	6-7	7-8	8-9	9-10	10+
No. of participants	3540	11,099	23,050	21,043	10,394	4701
RR 95% CI	2.5	0.93	0.80	1.08	0.94	0.81
RR 95% CI	1.09					

Bedtime

Bedtime	21 < 24	24 < 27	Other
No. of participants	54,403	17,798	1626
RR 95% CI	2.5	Ref	Ref
RR 95% CI	1.40		

Depth of sleep

Depth of sleep	Very light	Light	Normal	Deep	Very deep
No. of participants	5054	30,977	29,459	7007	1330
RR 95% CI	3.4	2.9	2.0	1.7	1.4
RR 95% CI	1.73	1.45	1.05	0.85	0.74

Feeling when waking up in the morning

Feeling when waking up in the morning	Very bad	Bad	Normal	Good	Very good
No. of participants	1112	15,106	45,965	10,314	1330
RR 95% CI	3.4	2.8	2.4	1.8	2.0
RR 95% CI	1.50	1.19	1.10	0.74	0.81

< 8 h of sleep during the night (20:00–7:59)

Sleep duration

Sleep duration	<6 h	6-7	7-8	8-9	9-10
No. of participants	3540	11,099	23,050	21,043	10,394
RR 95% CI	2.5	0.93	0.80	1.08	0.94
RR 95% CI	1.09				

Continued
	No. of participants	No. of outcome	Maternal age adjusted model	Multivariable model					
		%	RR	95% CI	RR	95% CI			
10<	4701	245	5.2	1.00	0.87	1.14	1.01	0.88	1.16
Bedtime									
21<24	54,403	2508	4.6	Ref	Ref				
24<27	17,798	1205	6.8	1.47	1.38	1.57	1.41	1.32	1.51
Other	1626	130	8.0	1.72	1.45	2.03	1.69	1.43	2.01
Depth of sleep									
Very light	5054	349	6.9	1.36	1.22	1.52	1.38	1.23	1.55
Light	30,977	1640	5.3	1.05	0.98	1.13	1.07	1.00	1.14
Normal	29,459	1477	5.0	Ref	Ref				
Deep	7007	516	4.5	0.90	0.80	1.02	0.89	0.79	1.00
Very deep	1330	61	4.6	0.91	0.71	1.17	0.90	0.70	1.15
Feeling when waking up in the morning									
Very bad	1112	92	8.3	1.63	1.34	2.00	1.62	1.33	1.98
Bad	15,106	934	6.2	1.25	1.16	1.34	1.25	1.16	1.34
Normal	45,965	2284	5.0	Ref	Ref				
Good	10,314	477	4.6	0.93	0.85	1.03	0.93	0.84	1.02
Very good	1330	56	4.2	0.84	0.65	1.09	0.83	0.64	1.08
Falling asleep at 22:00 or later									
Sleep duration									
<6h	3540	1029	29.1	1.43	1.35	1.51	1.39	1.31	1.47
6<7	11,099	2682	24.2	1.20	1.15	1.25	1.18	1.13	1.23
7<8	23,050	4617	20.0	Ref	Ref				
8<9	21,043	3720	17.7	0.88	0.85	0.92	0.90	0.87	0.94
9<10	10,394	1740	16.7	0.83	0.79	0.87	0.86	0.82	0.91
10<	4701	1054	22.4	1.07	1.01	1.14	1.08	1.02	1.15
Bedtime									
21<24	54,403	9402	17.3	Ref	Ref				
24<27	17,798	5120	28.8	1.65	1.60	1.70	1.58	1.53	1.63
Other	1626	320	19.7	1.12	1.01	1.24	1.10	0.99	1.21
Depth of sleep									
Very light	5054	1087	21.5	1.07	1.01	1.14	1.08	1.02	1.15
Light	30,977	6213	20.1	1.01	0.98	1.04	1.02	0.99	1.05
Normal	29,459	5882	20.0	Ref	Ref				
Deep	7007	1404	20.0	1.00	0.95	1.06	0.99	0.94	1.04
Very deep	1330	256	19.3	0.95	0.85	1.06	0.93	0.84	1.04
Feeling when waking up in the morning									
Very bad	1112	268	24.1	1.16	1.04	1.29	1.14	1.03	1.27
Bad	15,106	3341	22.1	1.10	1.06	1.14	1.10	1.06	1.14
Normal	45,965	9215	20.1	Ref	Ref				
Good	10,314	1804	17.5	0.88	0.84	0.92	0.88	0.84	0.92
Very good	1330	214	16.1	0.80	0.71	0.91	0.80	0.70	0.90
Frequency of crying at night (≥5 days/week)									
Sleep duration									
<6h	3540	256	7.2	0.99	0.88	1.13	1.01	0.89	1.14
6<7	11,099	848	7.6	1.04	0.96	1.13	1.05	0.97	1.13
7<8	23,050	1695	7.4	Ref	Ref				
8<9	21,043	1480	7.0	0.96	0.89	1.02	0.96	0.90	1.03
9<10	10,394	761	7.3	1.00	0.92	1.09	1.00	0.92	1.09
10<	4701	307	6.5	0.91	0.81	1.02	0.92	0.82	1.04
Bedtime									
21<24	54,403	3881	7.1	Ref	Ref				
24<27	17,798	1351	7.6	1.07	1.01	1.14	1.08	1.02	1.15
Other	1626	115	7.1	1.01	0.85	1.21	1.04	0.87	1.24
Depth of sleep									
Very light	5054	482	9.5	1.50	1.36	1.65	1.52	1.38	1.67
ASQ scores. Subjective light sleep and bad mood upon waking may reflect maternal SDB or depression and infant sleeping problems may be influenced via life rhythm after childbirth. SDB and maternal depression increase inflammatory cytokine levels; maternal inflammation during pregnancy was associated with the offspring’s outcomes. In addition, maternal subjective deep sleep and good mood at waking up during pregnancy were inversely associated with the infants’ sleep problems and the J-ASQ abnormal scores.

In this study, the participants tended to sleep longer and go to bed earlier during pregnancy than they did before pregnancy. In Japan, many women still stop working due to pregnancy or take maternity leave during late pregnancy. For that reason, sleep duration and bedtime might improve during pregnancy.

Sleep cycle develops from the fetal period. Animal studies have shown that the circadian rhythm is affected by maternal life rhythms via endogenous substances such as melatonin. Animal studies have also reported that exposure to sleep deprivation or artificial disappearance of light–dark cycle during pregnancy affects the offspring’s circadian rhythm abnormality and abnormal behavioral pattern. In this study, mother’s short sleep and late bedtime were associated with the offspring’s sleeping problems, in part, because of the influence of maternal life rhythm during the fetal period.

In this study, the participants tended to sleep longer and go to bed earlier during pregnancy than they did before pregnancy. In Japan, many women still stop working due to pregnancy or take maternity leave during late pregnancy. For that reason, sleep duration and bedtime might improve during pregnancy.

In addition, it is considered that postpartum sleep pattern would partly correlate with sleep pattern before or during pregnancy. The study of 18-month-old twin infants reported that the genetic effect on sleep duration was 30.8% and the environmental effect was 64.1%. The association between sleep before or during pregnancy and infant sleeping problems may improve subjective sleep quality and subsequent offspring abnormal scores.

Subjective sleep quality was associated not only with infants’ sleep problem but also with the risk of abnormal ASQ scores. Subjective light sleep and bad mood upon waking may reflect maternal SDB or depression. Furthermore, it has been reported that both of these factors are related to the offspring’s development. One potential factor explaining the association between maternal sleep and the offspring’s outcomes is inflammation. SDB and maternal depression increase inflammatory cytokine levels; maternal inflammation during pregnancy can cause developmental disorders. In addition, maternal SDB may affect the offspring’s development via low birth weight, which has been reported to be associated with neurodevelopment. Interventions in maternal SDB and depression during pregnancy may improve subjective sleep quality and subsequent offspring sleep and development.

We have previously reported that maternal sleep habits, such as short sleep and late bedtime, before and during pregnancy, increased the risk ratio of long sleep duration during the day, bad mood, frequency of crying, for a long time, and intense crying in 1-month-old offspring. We further showed the association between maternal unsuitable sleep habits and the offspring’s non-desirable sleep habits as lasting even 1 year after birth. It is expected that children’s sleep and development will be influenced more by factors after birth than by prenatal ones. Therefore, it is important to clarify how long maternal sleep habits both before and during pregnancy are related to offspring’s sleep and development progression and to verify whether an intervention of maternal sleep, at any time point, improves offspring’s sleep and developmental outcomes.

This study was not without limitations. Because the present study was an observational study, confounding factors, such as parental life rhythm, that were not part of our evaluations might have been present. Moreover, information regarding both maternal sleep habits and infant’s outcomes was collected using a self-reported questionnaire, and thus, it had a risk of bias, such as a recall bias. The questions about maternal and infant sleep have not been previously validated. For example, we used the frequency of infant’s night crying as outcome, but we could not get the intended information about the duration and reason for the infant crying. Thus, there could

Table 3. Association between sleep during pregnancy and infant sleep, Japan Environment and Children’s Study (2011–2014).

Feeling when waking up in the morning	No. of participants	Maternal age adjusted model	Multivariable modela						
	No. of outcome	%	RR	95% CI	RR	95% CI			
Light	30,977	2470	8.0	1.25	1.18	1.32	1.25	1.18	1.32
Normal	29,459	1882	6.4	Ref	Ref	Ref			
Deep	7007	431	6.2	0.96	0.87	1.07	0.96	0.87	1.06
Very deep	1330	82	6.2	0.97	0.78	1.20	0.97	0.79	1.20
Good	10,314	596	5.8	0.81	0.74	0.88	0.80	0.74	0.87
Very good	1330	71	5.3	0.75	0.60	0.94	0.75	0.60	0.95

Feeling when waking up in the morning: Very good, Good, Normal, Light, Deep, Very bad, Bad, Normal, Light.

The present study showed that maternal short or long sleep and bedtime after midnight, both before and during pregnancy, increased the risk ratio of the offspring’s sleeping problems at 1 year of age. The sub-analysis limited to participants with adequate sleep durations showed that maternal sleep pattern both before and during pregnancy was associated with the infants’ sleep outcomes. In addition, maternal subjective deep sleep and good mood at waking up during pregnancy were inversely associated with the infants’ sleep problems and the J-ASQ abnormal scores.

Discussion

This study investigated whether maternal sleep before and during pregnancy was associated with sleeping or developmental problems in 1-year-old infants, using data from a nationwide large-scale cohort study in Japan. The present study showed that maternal short or long sleep and bedtime after midnight, both before and during pregnancy, increased the risk ratio of the offspring’s sleeping problems at 1 year of age. The association between sleep before or during pregnancy and infant sleep, at any time point, improves offspring’s sleep and developmental outcomes.

Bold fonts showed the items of infant’s sleep outcomes. Adjusted for maternal age at delivery, smoking habits, alcohol consumption, pre-pregnancy body mass index, gestational age at birth, parity, infertility treatment, and infant sex.

Feeling when waking up in the morning: Very good, Good, Normal, Light, Deep, Very bad, Bad, Normal, Light.
No. of participants	No. of outcome	Maternal age adjusted model	Multivariable model*			
		%	RR	95% CI	RR	95% CI

Communication

Sleep duration

<6 h	4489	5	0.1	1.19	0.45	3.15	1.15	0.43	3.03
6-7	13,427	18	0.1	1.40	0.75	2.61	1.32	0.71	2.47
7-8	23,058	22	0.1	Ref	Ref				
8-9	16,779	13	0.1	0.82	0.41	1.63	0.90	0.45	1.80
9-10	6863	6	0.1	0.95	0.39	2.35	1.12	0.45	2.82
10+	2975	3	0.1	1.29	0.38	4.31	1.42	0.42	4.78

Bedtime

21-24	45,971	46	0.1	Ref	Ref				
24-27	19,816	19	0.1	1.01	0.59	1.73	0.86	0.49	1.50
Other	1804	2	0.1	1.33	0.32	5.51	1.39	0.33	5.79

Gross motor skills

Sleep duration

<6 h	4489	265	5.9	1.08	0.95	1.23	1.07	0.94	1.22
6-7	13,427	832	6.2	1.12	1.03	1.22	1.11	1.02	1.20
7-8	23,066	1264	5.5	Ref	Ref				
8-9	16,775	902	5.4	0.99	0.91	1.07	1.02	0.93	1.10
9-10	6861	327	4.8	0.89	0.79	1.01	0.94	0.84	1.06
10+	2975	120	4.0	0.82	0.69	0.99	0.86	0.72	1.03

Bedtime

21-24	45,972	2546	5.5	Ref	Ref				
24-27	19,816	1073	5.4	1.01	0.95	1.09	0.97	0.90	1.05
Other	1805	91	5.0	1.01	0.83	1.24	1.06	0.86	1.30

Fine motor skills

Sleep duration

<6 h	4489	252	5.6	1.01	0.88	1.15	1.02	0.90	1.17
6-7	13,415	781	5.8	1.04	0.95	1.13	1.05	0.97	1.15
7-8	23,063	1283	5.6	Ref	Ref				
8-9	16,766	932	5.6	1.01	0.93	1.09	0.99	0.91	1.08
9-10	6859	373	5.4	1.00	0.90	1.12	0.98	0.87	1.09
10+	2974	141	4.7	0.95	0.80	1.12	0.93	0.79	1.10

Bedtime

21-24	45,951	2623	5.7	Ref	Ref				
24-27	19,811	1053	5.3	0.96	0.90	1.03	1.00	0.93	1.07
Other	1804	86	4.8	0.92	0.74	1.13	0.94	0.76	1.16

Problems solving

Sleep duration

<6 h	4482	246	5.5	1.09	0.95	1.25	1.06	0.93	1.21
6-7	13,404	726	5.4	1.08	0.98	1.18	1.04	0.95	1.14
7-8	23,041	1151	5.0	Ref	Ref				
8-9	16,757	831	5.0	1.00	0.92	1.09	1.05	0.96	1.15
9-10	6848	343	5.0	1.03	0.91	1.16	1.12	1.00	1.26
10+	2973	141	4.7	1.04	0.88	1.24	1.10	0.93	1.31

Bedtime

21-24	45,918	2321	5.1	Ref	Ref				
24-27	19,785	1042	5.3	1.08	1.00	1.16	1.00	0.93	1.08
Other	1802	75	4.2	0.89	0.71	1.12	0.90	0.72	1.13

Personal-social characteristics

Sleep duration

<6 h	4480	50	1.1	1.11	0.82	1.51	1.20	0.88	1.62
6-7	13,402	142	1.1	1.05	0.85	1.29	1.12	0.91	1.37
7-8	23,017	231	1.0	Ref	Ref				
8-9	16,731	222	1.3	1.33	1.11	1.60	1.23	1.02	1.48
9-10	6852	99	1.4	1.48	1.17	1.87	1.30	1.03	1.65

Continued
The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about their offspring 1 year after delivery (C-1y). Participants also answered a questionnaire about their offspring 1 year after delivery (C-1y). The data used in this study were obtained from the JECS, an ongoing large-scale cohort study. The JECS elucidated environmental factors that are associated with children's health and development, and was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

Table 4. Association between sleep before pregnancy and infant development, Japan Environment and Children's Study (2011–2014). CI confidence interval, RR risk ratio. Bold fonts showed the items of the Ages and Stages Questionnaire. *Adjusted for maternal age at delivery, smoking habits, alcohol consumption, prepregnancy body mass index, gestational age at birth, parity, infertility treatment, and infant sex.

Sleep duration	No. of participants	Maternal age adjusted model	Multivariable model*
		% RR 95% CI	RR 95% CI
< 6 h	4491	621 13.8 1.01 0.94 1.10 1.01 0.93 1.09	
6 ≤ 7	13,432	1917 14.3 1.04 0.99 1.10 1.05 0.98 1.08	
7 < 8	23,070	3146 13.6 Ref Ref	Ref
8 ≤ 9	16,783	2218 13.2 0.98 0.93 1.03 0.99 0.95 1.05	
9 ≤ 10	6865	874 12.7 0.96 0.89 1.03 0.99 0.92 1.06	
10 ≤ 29	2976	365 12.3 1.00 0.90 1.10 1.02 0.92 1.13	

Methods

Research ethics. The study protocol was approved by the Ministry of Environment’s Institutional Review Board on Epidemiological Studies and by the Ethics Committee of all participating institutions: the National Institute for Environmental Studies that leads the Japan Environment and Children's Study (JECS), the National Center for Child Health and Development, Hokkaido University, Sapporo Medical University, Ashikawa Medical College, Japanese Red Cross Hokkaido College of Nursing, Tohoku University, Fukushima Medical University, Chiba University, Yokohama City University, University of Yamanashi, Shinshu University, University of Toyama, Nagoya City University, Kyoto University, Doshisha University, Osaka University, Osaka Medical Center and Research Institute for Maternal and Child Health, Hyogo College of Medicine, Tottori University, Kochi University, University of Occupational and Environmental Health, Kyushu University, Kumamoto University, University of Miyazaki, and University of Ryukyu. Written informed consent was obtained from all participants. All methods were performed in accordance with the approved guidelines.

Study participants. The data used in this study were obtained from the JECS, an ongoing large-scale cohort study. The JECS elucidated environmental factors that are associated with children's health and development, and was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about lifestyle and behavior twice during pregnancy. The questionnaire answered at recruitment was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about lifestyle and behavior twice during pregnancy. The questionnaire answered at recruitment was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about lifestyle and behavior twice during pregnancy. The questionnaire answered at recruitment was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about lifestyle and behavior twice during pregnancy. The questionnaire answered at recruitment was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.

The baseline profiles of participants of the JECS have been reported previously. Participants answered a questionnaire about lifestyle and behavior twice during pregnancy. The questionnaire answered at recruitment was designed to follow women through their pregnancy until their newborns grow up to be 13 years old. The participants were recruited between 2011 and 2014 from 15 regions throughout Japan, and the follow-up was mainly conducted via a self-administered questionnaire. The detailed protocol has been reported elsewhere.
Communication	No. of participants	No. of outcome	Maternal age adjusted model	Multivariable model^a					
		%	RR	95% CI	RR	95% CI			
Sleep duration									
< 6 h	3186	5	0.2	1.32	0.51	3.43	1.29	0.49	3.35
6 < 7	10,130	12	0.1	0.97	0.49	1.93	0.93	0.47	1.86
7 < 8	21,181	26	0.1	0.55	0.28	1.07	0.60	0.30	1.16
8 < 9	19,275	13	0.1	0.88	0.42	1.83	0.99	0.47	2.08
> 9	4291	1	0.0	0.37	0.03	1.65	0.24	0.03	1.80
Bedtime									
21 < 24	50,034	48	0.1	Ref	Ref				
24 < 27	16,083	18	0.1	1.23	0.72	2.12	1.07	0.61	1.86
Other	1474	1	0.1	0.78	0.11	5.64	0.82	0.11	5.95
Depth of sleep									
Very light	4563	4	0.1	0.81	0.28	2.30	0.82	0.29	2.35
Light	28,285	24	0.1	0.78	0.45	1.33	0.79	0.46	1.35
Normal	27,044	29	0.1	Ref	Ref				
Deep	6465	6	0.1	0.88	0.37	2.12	0.86	0.36	2.06
Very deep	1234	4	0.3	3.16	1.11	8.98	3.01	1.06	8.55
Feeling when waking up in the morning									
Very bad	991	3	0.3	3.41	1.06	10.99	3.38	1.05	10.88
Bad	13,634	15	0.1	1.13	0.63	2.04	1.12	0.62	2.02
Normal	42,197	42	0.1	Ref	Ref				
Good	9530	4	0.0	0.41	0.15	1.16	0.40	0.14	1.11
Very good	1239	3	0.2	2.41	0.75	7.75	2.27	0.70	7.33
Gross motor skills									
Sleep duration									
< 6 h	3186	191	6.0	1.06	0.92	1.23	1.06	0.92	1.23
6 < 7	10,130	613	6.1	1.06	0.97	1.17	1.05	0.95	1.15
7 < 8	21,184	1203	5.7	Ref	Ref				
8 < 9	19,275	1020	5.3	0.94	0.86	1.02	0.96	0.89	1.04
9 < 10	9526	497	5.2	0.94	0.85	1.04	0.99	0.89	1.09
10 <	4292	186	4.3	0.85	0.73	0.99	0.88	0.76	1.03
Bedtime									
21 < 24	50,037	2778	5.6	Ref	Ref				
24 < 27	16,079	842	5.2	0.98	0.91	1.05	0.93	0.86	1.01
Other	1477	90	6.1	1.16	0.95	1.43	1.19	0.97	1.46
Depth of sleep									
Very light	4564	258	5.7	1.00	0.88	1.13	1.02	0.90	1.16
Light	28,288	1521	5.4	0.95	0.89	1.02	0.96	0.89	1.03
Normal	27,045	1512	5.6	Ref	Ref				
Deep	6463	355	5.5	0.99	0.89	1.11	0.99	0.88	1.10
Very deep	1233	64	5.2	0.95	0.75	1.21	0.96	0.75	1.22
Feeling when waking up in the morning									
Very bad	991	48	4.8	0.95	0.72	1.25	0.97	0.73	1.28
Bad	13,636	762	5.6	1.04	0.96	1.13	1.05	0.97	1.13
Normal	42,197	2306	5.5	Ref	Ref				
Good	9531	529	5.6	1.00	0.92	1.10	1.00	0.91	1.09
Very good	1238	65	5.3	0.95	0.75	1.21	0.93	0.73	1.17
Fine motor skills									
Sleep duration									
< 6 h	3184	180	5.7	1.00	0.85	1.16	1.00	0.86	1.16
6 < 7	10,124	587	5.8	1.01	0.92	1.11	1.03	0.93	1.13
7 < 8	21,178	1210	5.7	Ref	Ref				
8 < 9	19,265	1068	5.5	0.97	0.90	1.06	0.96	0.89	1.04
9 < 10	9524	492	5.2	0.93	0.84	1.02	0.90	0.82	1.00
Continued									
	No. of participants	No. of outcome	Maternal age adjusted model	Multivariable model^a					
------------------------	---------------------	----------------	----------------------------	---------------------------------					
		%	RR 95% CI	RR 95% CI					
No. of participants									
10< 4291	225	5.2	1.01 0.88 1.16	1.01 0.88 1.16					
Bedtime									
21 < 24 50,017	2841	5.7	Ref	Ref					
24 < 27 16,674	838	5.2	0.95 0.88 1.02	0.97 0.90 1.05					
Other 1475	83	5.6	1.04 0.84 1.29	1.05 0.85 1.29					
Depth of sleep									
Very light 4558	251	5.5	0.96 0.84 1.09	0.94 0.82 1.06					
Light 28,280	1577	5.6	0.97 0.91 1.04	0.97 0.90 1.04					
Normal 27,035	1532	5.7	Ref	Ref					
Deep 6462	351	5.4	0.97 0.87 1.08	0.98 0.88 1.10					
Very deep 1231	51	4.1	0.75 0.57 0.98	0.76 0.58 1.00					
Feeling when waking up in the morning									
Very bad 990	58	5.9	1.09 0.85 1.41	1.08 0.84 1.39					
Bad 13,635	829	6.1	1.09 1.01 1.17	1.08 1.00 1.17					
Normal 42,175	2396	5.7	Ref	Ref					
Good 9528	425	4.5	0.78 0.70 0.86	0.78 0.71 0.86					
Very good 1238	54	4.4	0.76 0.58 0.99	0.78 0.60 1.01					
Problems solving									
Sleep duration									
<6 h 3182	182	5.7	1.09 0.94 1.27	1.07 0.92 1.25					
6 < 7 10,115	525	5.2	0.99 0.89 1.09	0.96 0.87 1.07					
7 < 8 21,161	1105	5.2	Ref	Ref					
8 < 9 19,253	970	5.0	0.97 0.89 1.05	1.01 0.93 1.10					
9 < 10 9508	438	4.6	0.90 0.81 1.01	0.96 0.86 1.07					
10< 4286	218	5.1	1.07 0.92 1.23	1.12 0.97 1.29					
Bedtime									
21 < 24 49,976	2544	5.1	Ref	Ref					
24 < 27 16,057	817	5.1	1.03 0.96 1.11	0.96 0.89 1.04					
Other 1472	77	5.2	1.08 0.86 1.34	1.09 0.88 1.36					
Depth of sleep									
Very light 4557	211	4.6	0.84 0.73 0.97	0.85 0.74 0.98					
Light 28,256	1406	5.0	0.91 0.85 0.97	0.92 0.86 0.99					
Normal 27,001	1463	5.4	Ref	Ref					
Deep 6458	312	4.8	0.90 0.80 1.02	0.89 0.79 1.01					
Very deep 1233	46	3.7	0.70 0.53 0.94	0.70 0.53 0.93					
Feeling when waking up in the morning									
Very bad 990	63	6.4	1.28 1.01 1.64	1.29 1.01 1.64					
Bad 13,620	737	5.4	1.05 0.97 1.14	1.05 0.97 1.14					
Normal 42,133	2204	5.2	Ref	Ref					
Good 9525	390	4.1	0.77 0.70 0.86	0.77 0.69 0.85					
Very good 1237	44	3.6	0.67 0.50 0.90	0.66 0.50 0.89					
Personal-social characteristics									
Sleep duration									
<6 h 3182	40	1.3	1.27 0.91 1.77	1.33 0.95 1.85					
6 < 7 10,110	105	1.0	1.04 0.82 1.31	1.10 0.87 1.38					
7 < 8 21,141	211	1.0	Ref	Ref					
8 < 9 19,222	259	1.4	1.36 1.13 1.63	1.27 1.06 1.53					
9 < 10 9511	112	1.2	1.21 0.96 1.52	1.08 0.86 1.36					
10< 4287	51	1.2	1.31 0.97 1.78	1.24 0.92 1.69					
Bedtime									
21 < 24 49,936	584	1.2	Ref	Ref					
24 < 27 16,045	173	1.1	0.95 0.80 1.13	1.12 0.94 1.33					
Other 1472	21	1.4	1.29 0.83 1.98	1.29 0.84 1.99					
Depth of sleep									
Very light 4553	57	1.3	1.01 0.76 1.33	0.95 0.72 1.26					

^aRR: Relative Risk; CI: Confidence Interval
factors are thought to be associated with infant development. For women who participated in the JECS study multiple times, data from the second and subsequent participations were excluded (n = 5647). In addition, we excluded cases for which information required for analysis was not available: miscarriage or stillbirth (n = 3676), missing information on maternal age at delivery (n = 7), lack of information about covariates (n = 450), incomplete information on maternal sleep at both M-T1 and M-T2 (n = 3376), missing responses to all questions about children's sleep habits and developmental progress at C-1y (n = 7393).

The remaining 73,827 participants were included in the analysis (Fig. 1). To determine the risk of potential bias due to missing data, we compared the background characteristics between the population analyzed and the population excluded from analysis due to a lack of information about covariates and non-response to any questions about maternal sleep or children's sleep and development (Supplemental Table 3). The group excluded from the analysis had more participants who were less than 25 years old and had smoking habits, lower educational background, and lower household income.

Maternal sleep. The categorization of maternal sleep was done as in our previous research12.

In the M-T1 questionnaire, participants were asked about their awakening time and bedtime before pregnancy. We calculated the sleep duration of participants and divided the participants into six groups according to sleep time: < 6 h, 6–7 h, 7–8 h (reference), 8–9 h, 9–10 h, and > 10 h. Participants were also divided by bedtime:

Table 5. Association between sleep during pregnancy and infant development, Japan Environment and Children’s Study (2011–2014).

CI	confidence interval, RR risk ratio. Bold fonts showed the items of the Ages and Stages Questionnaire. a Adjusted for maternal age at delivery, smoking habits, alcohol consumption, pre-pregnancy body mass index, gestational age at birth, parity, infertility treatment, and infant sex.								
No. of participants	No. of outcome	Maternal age adjusted model	Multivariable modela						
%	RR	95% CI	RR	95% CI					
Light	28,224	318	1.1	0.91	0.78	1.06	0.89	0.76	1.03
Normal	26,991	331	1.2	Ref	Ref				
Deep	6451	59	0.9	0.75	0.57	0.99	0.79	0.60	1.04
Very deep	1234	13	1.1	0.88	0.51	1.53	0.92	0.53	1.60
Feeling when waking up in the morning									
Very bad	991	17	1.7	1.59	0.99	2.57	1.58	0.98	2.55
Bad	13,608	179	1.3	1.17	0.98	1.38	1.16	0.98	1.38
Normal	42,104	482	1.1	Ref	Ref				
Good	9514	82	0.9	0.75	0.59	0.94	0.76	0.60	0.96
Very good	1236	18	1.5	1.26	0.79	2.01	1.32	0.82	2.10
Total (abnormal score for any 1 of the 5 domain)									
Sleep duration									
< 6 h	3187	460	14.4	1.04	0.95	1.14	1.04	0.95	1.13
6 < 7	10,132	1443	14.2	1.02	0.96	1.08	1.01	0.95	1.07
7 < 8	21,191	2957	14.0	Ref	Ref				
8 < 9	19,283	2547	13.2	0.95	0.90	1.00	0.97	0.92	1.02
9 < 10	9531	1217	12.8	0.93	0.88	0.99	0.96	0.90	1.02
10<	4293	517	12.0	0.95	0.87	1.03	0.98	0.89	1.07
Bedtime									
21 < 24	50,054	6822	13.6	Ref	Ref				
24 < 27	16,086	2118	13.2	1.00	0.95	1.04	0.97	0.93	1.02
Other	1477	201	13.6	1.05	0.92	1.20	1.07	0.94	1.22
Depth of sleep									
Very light	4564	601	13.2	0.93	0.86	1.01	0.94	0.87	1.02
Light	28,297	3794	13.4	0.95	0.91	0.99	0.96	0.92	1.00
Normal	27,054	3762	13.9	Ref	Ref				
Deep	6468	845	13.1	0.95	0.89	1.02	0.95	0.88	1.02
Very deep	1234	139	11.3	0.83	0.70	0.97	0.83	0.71	0.98
Feeling when waking up in the morning									
Very bad	991	133	13.4	1.04	0.89	1.22	1.05	0.89	1.23
Bad	13,641	1947	14.3	1.06	1.01	1.11	1.06	1.01	1.11
Normal	42,211	5779	13.7	Ref	Ref				
Good	9535	1143	12.0	0.87	0.82	0.92	0.86	0.81	0.91
Very good	1239	139	11.2	0.81	0.69	0.95	0.81	0.69	0.95
9.00 p.m. to midnight (reference), midnight to 3.00 a.m., and others (sleep before 9.00 p.m. or after 3.00 a.m.). The bedtime for more than 95% of the analyzed subjects was between 21:00 and 27:00. Since the mode of bedtime was between 22:00 and 24:00, we further divided the participants by bedtime 24:00.

In the M-T2 questionnaire, participants were asked about their usual awakening time and bedtime in the last month. The participants were divided into groups as described above for M-T1. Furthermore, the M-T2 questionnaire included two additional questions regarding sleep quality. One was “How would you rate your average depth of sleep during the past month?” The other one was “How would you rate your overall feeling when waking up in the morning, during the past month?” The answers to both questions were scored on a 1–5 scale, representing very light/bad, relatively light/bad, normal (reference), relatively deep/good, and very deep/good, respectively. Both of these questionnaires (M-T1 and M-T2) have not been previously validated.

Outcome 1: offspring’s sleeping problems. One year after delivery, information on infant sleep habits and crying at night was collected via a parent-reported questionnaire (C-1y). The participants answered their infant sleep time in the last 24 h in 30-min increments. They were also asked whether their children cried at night over the last month, and if so, the frequency (“rarely”, “1–3 times in a month”, “1–2 times in a week”, “3–4 times in a week”, “5 times in a week or more”). The questionnaires used for this outcome have not been previously validated. In this analysis, we focused on five points. First, from the responses regarding the infant’s sleep the day before, we determined the number of nocturnal awakenings. A previous study reported that the upper limit of the number of awakenings during the night is 2.5 for 1-year-old infants; as such, we defined ≥ 3 awakenings as too many. Second, we analyzed whether the infants awoke more than once and whether they stayed awake for more than 1 h during the night. Third, we analyzed the duration of nocturnal sleep (from 20:00 to 07:59). We regarded less than 8 h of sleep as unusual. Fourth, we collected information regarding the infants’ bedtime. Based on previous studies, we defined bedtime after 22:00 as too late. Fifth, we analyzed nocturnal crying frequency during the past month. If the mother answered that her infant awoke and cried during the night, and that the frequency of crying at night was more than five times per week, we defined the case as “crying at night”.

Offspring’s development. We used the J-ASQ-3 to evaluate offspring’s development. The C-1y questionnaire included a J-ASQ-3 assessment. J-ASQ-3 captures any developmental delay in five domains: communication, gross motor skills, fine motor skills, problem solving, and personal–social characteristics. The answer to each question is one of the following: “yes”, “sometimes,” or “not yet.” Scores are 10, 5, and 0 points, respectively. Each J-ASQ-3 domain was composed of six questions, and the total score ranged from 0 to 60. Higher scores were defined as more developed, and the cutoff points for every domain in the Japanese version were determined by a previous study. We defined outcomes by whether the score was less than the determined cut-off point of each J-ASQ-3 domain and whether the score was less than the cutoff point of any one of the five J-ASQ-3 domains.

Covariates. Information about maternal age at delivery, smoking habits, alcohol consumption, pre-pregnancy body mass index (BMI), parity, gestational age at birth, infertility treatment, and infant sex, was collected via self-administered questionnaires and/or medical records. These selected covariates were reported as risk factors for developmental disorders.

Statistical analyses. We used a log-binominal regression model to explore the association of maternal sleep with each outcome and to estimate the RRs of each outcome and 95% CIs. We initially adjusted for maternal age at delivery and then further adjusted for smoking habits (never smoked, ex-smokers who quit before pregnancy, smokers during early pregnancy), alcohol consumption (never drinkers, ex-drinkers who quit before pregnancy, smokers during early pregnancy), alcohol consumption (never drinkers, ex-drinkers who quit before pregnancy).
examined the association between maternal sleep during pregnancy and infant’s sleep. We first limited our analysis to the subgroup with 7–9 h of sleep during pregnancy and investigated the association between maternal sleep before pregnancy and infant’s sleep outcome. In the first sub-analysis, we limited it to the participant groups with adequate sleep duration of ≥ 1 h, infertility treatment (no ovulation stimulation/artificial insemination by sperm from husband, assisted reproductive technology), gestational age at birth (37–38, 39–41 weeks), and infant sex (boys, girls). In this study, we did not actively complete any missing data, and all analysis was limited to data from those participants who provided complete information for exposures, outcomes, and covariates. In addition, we performed a sub-analysis twice to evaluate which maternal sleep, the one before or one during pregnancy, impacts the infant’s sleep outcome. In the first sub-analysis, we limited it to the participant groups with adequate sleep duration of 7–9 h during pregnancy and investigated the association between maternal sleep before pregnancy and infant’s sleep. We limited the second analysis to the participant groups with sleep duration of 7–9 h before pregnancy and examined the association between maternal sleep during pregnancy and infant’s sleep.

These statistical analyses were almost the same as those used in our previous study. In this study, we used a fixed dataset “jecs-an-20180131,” which was released in March 2018. Stata version 15 (StataCorp LP, College Station, TX, USA) was used for all analyses.

Received: 16 October 2020; Accepted: 25 May 2021
Published online: 04 June 2021

References

1. Organization for Economic Co-operation and Development (OECD). Special focus: Measuring leisure in OECD countries 19. Chapter 2. Special Focus: Measuring Leisure in OECD Countries. page 28. Figure 2.5. Sleep time on an average day in minutes. https://www.oecd.org/berlin/42675407.pdf (2009).

2. Statistics Bureau, Ministry of Internal Affairs and Communications, Japan. Survey on time use and leisure activities in 2016: Summary of results (Questionnaire A). Time Use. 1. Distribution of daily time use. page 2. Figure 1. Time use for each major kind of activity by sex (1996–2016) – weekly average. https://www.stat.go.jp/english/data/shakai/2016/pdf/timeuse-a2016.pdf (2016).

3. Byars, K. C., Yolton, K., Rausch, J., Lanphear, B. & Beebe, D. W. Prevalence, patterns, and persistence of sleep problems in the first 3 years of life. Pediatrics 129, e276–e284 (2012).

4. Zwaigenbaum, L. et al. Clinical assessment and management of toddlers with suspected autism spectrum disorder: Insights from studies of high-risk infants. Pediatrics 123, 1383–1391 (2009).

5. Ministry of Education, Culture, Sports, Science and Technology, Japan. Number of students taking special classes in 2014. page 1. Figure. Changes in the number of students taking special class from 1993 to 2014 in (Japanese). https://www.mext.go.jp/a_menu/shotou/tokubetu/material/__icsFiles/afieldfile/2015/03/27/1356218.pdf. (2016).

6. Schendel, D. E. & Thorsteinsson, E. Cumulative incidence of autism into adulthood for birth cohorts in Denmark, 1980–2012. JAMA 320, 1811–1813 (2018).

7. Zablotsky, B. et al. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics 144, 2009–2017 (2019).

8. Bertrand, J. et al. Prevalence of autism in a United States population: The Brick Township, New Jersey, investigation. Pediatrics 108, 1155–1161 (2001).

9. Herbert, M. R. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr. Opin. Neurol. 23, 103–110 (2010).

10. Bassan, H. et al. The effect of maternal sleep-disordered breathing on the infant’s neurodevelopment. Am. J. Obstet. Gynecol. 212, e1656.e7 (2015).

11. Sun, Y., Hons, B., Castulli, P. A. & Hons, M. Childhood health and educational outcomes associated with maternal sleep apnea: A population record-linkage study. Sleep https://doi.org/10.1093/sleep/zss158 (2017).

12. Nakahara, K. et al. Association of maternal sleep before and during pregnancy with preterm birth and early infant sleep and temperament. Sci. Rep. 10, 1–14 (2020).

13. Mirmiran, M., Maas, Y. G. H. & Ariagno, R. L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev. 7, 321–334 (2003).

14. Reppert, S. M. & Schwartz, W. J. Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock*. Endocrinology 119, 1763–1767 (1986).

15. Serón-Ferre, M. et al. Impact of chronodisruption during primate pregnancy on the maternal and newborn temperature rhythms. PLoS ONE 8, e57710 (2013).

16. Radhakrishnan, A., Aswathy, B. S., Kumar, V. M. & Gulia, K. K. Sleep deprivation during late pregnancy produces hyperactivity and increased risk-taking behavior in offspring. Brain Res. 1596, 88–98 (2015).

17. Pires, G. N. et al. Effects of sleep modulation during pregnancy in the mother and offspring: Evidences from preclinical research. J. Sleep Res. https://doi.org/10.1111/jsr.13135 (2020).

18. Bresciani, S. et al. Genetic and environmental factors shape infant sleep patterns: A study of 18-month-old twins. Pediatrics 127, e1296–e1302 (2011).

19. Pamidi, S. & Kimoff, R. J. Maternal sleep-disordered breathing. Chest 153, 1052–1066 (2018).

20. Chong, Y.-S. et al. Associations between poor subjective prenatal sleep quality and postnatal depression and anxiety symptoms. J. Affect. Disord. 202, 91–94 (2016).

21. Gentile, S. Prenatal antidepressant exposure and the risk of autism spectrum disorders in children. Are we looking at the fall of Good? J. Affect. Disord. 182, 132–137 (2015).

22. Blair, L. M., Porter, K., Leblebicioglu, B. & Christian, L. M. Poor sleep quality and associated inflammation predict preterm birth: Heightened risk among African Americans. Sleep 38, 1259–1267 (2015).

23. Okun, M. L., Luther, J. F., Wisniewski, S. R. & Wisner, K. L. Disturbed sleep and inflammatory cytokines in depressed and non-depressed pregnant women. Psychosom. Med. 75, 670–681 (2013).

24. Huang, E. et al. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain. Behav. Immun. 73, 470–481 (2018).

25. Schoebel, S. A. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014).

26. Estes, M. L. & McAllister, A. K. Maternal immune activation: Implications for neuropsychiatric disorders. Science 353, 772–777 (2016).

27. Hediger, M. L., Overpeck, M. D., Ruan, W. J. & Troendle, J. F. Birthweight and gestational age effects on motor and social development. Puediatr. Perinat. Epidemiol. 16, 33–46 (2002).

28. Brener, A. et al. Måld maternal sleep-disordered breathing during pregnancy and offspring growth and adiposity in the first 3 years of life. Sci. Rep. 10, 1–9 (2020).
29. Kawamoto, T. et al. Rationale and study design of the Japan environment and children's study (JECS). BMC Public Health 14, 25 (2014).
30. Michikawa, T. et al. Baseline profile of participants in the Japan Environment and Children's Study (JECS). J. Epidemiol. 28, 99–104 (2018).
31. Galland, B. C., Taylor, B. J., Elder, D. E. & Herbison, P. Normal sleep patterns in infants and children: A systematic review of observational studies. Sleep Med. Rev. 16, 213–222 (2012).
32. Nakahara, K. et al. Non-reassuring foetal status and sleep problems in 1-year-old infants in the Japan Environment and Children's Study: A cohort study. Sci. Rep. 10, 1–7 (2020).
33. Kitamura, S. et al. Association between delayed bedtime and sleep-related problems among community-dwelling 2-year-old children in Japan. J. Physiol. Anthropol. 34, 11–14 (2015).
34. Mezawa, H. et al. Psychometric profiles of the Ages and Stages Questionnaires, Japanese translation. Pediatr. Int. https://doi.org/10.1111/ped.13990 (2019).
35. Hua, J. et al. The prenatal, perinatal and neonatal risk factors for children's developmental coordination disorder: A population study in mainland China. Res. Dev. Disabil. 35, 619–625 (2014).
36. van Hoorn, J. E. et al. Risk factors in early life for developmental coordination disorder: A scoping review. Dev. Med. Child Neurol. https://doi.org/10.1111/dmcn.14781 (2020).
37. Wang, C., Geng, H., Liu, W. & Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine. (United States) 96, 1–7 (2017).

Acknowledgements
We would like to express our gratitude to all the participants of this study and all the individuals involved in data collection. The idea of this work was obtained from other works supported by RIKEN Healthcare and Medical Data Platform Project and JSPS KAKENHI (Grant numbers: JP16H01880, JP16K13072, JP18H00994, JP18H03388).

Author contributions
Study conception and design: S.M. Statistical analyses: T.M. Drafting of the manuscript and approval of the initial content: K.N., S.M., and T.M. Critical revision of the manuscript for important intellectual content and manuscript review: K.N., T.M., S.M., M.O., K.K. (Kiyoko Kato), M.S. (Masafumi Sanefuji), E.S., M.T., M.S. (Masayuki Shimono), T.K., S.O., K.K. (Koichi Kusuhara), and JECS Group members.

Funding
The Japan Environment and Children's Study was funded by the Ministry of the Environment, Japan. The findings and conclusions of this article are solely the responsibility of the authors and do not represent the official views of the Ministry of the Environment.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-91271-7.

Correspondence and requests for materials should be addressed to S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

the Japan Environment and Children’s Study Group

Michihiro Kamijima10, Shin Yamazaki11, Yuukihiro Ohya12, Reiko Kishi13, Nobuo Yaegashi14, Koichi Hashimoto15, Chisato Mori16, Shuichi Ito17, Zentaro Yamagata18, Hidekuni Inadera19, Takeo Nakayama20, Hiroyasu Iso21, Masayuki Shima22, Youichi Kurozawa23, Narufumi Suganuma24 & Takahiko Katoh25

10Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan. 11National Institute for...
Environmental Studies, Tsukuba, Japan. 12National Center for Child Health and Development, Tokyo, Japan. 13Hokkaido University, Sapporo, Japan. 14Tohoku University, Sendai, Japan. 15Fukushima Medical University, Fukushima, Japan. 16Chiba University, Chiba, Japan. 17Yokohama City University, Yokohama, Japan. 18University of Yamanashi, Chuo, Japan. 19University of Toyama, Toyama, Japan. 20Kyoto University, Kyoto, Japan. 21Osaka University, Suita, Japan. 22Hyogo College of Medicine, Nishinomiya, Japan. 23Tottori University, Yonago, Japan. 24Kochi University, Nankoku, Japan. 25Kumamoto University, Kumamoto, Japan.