Compactness of $H(i)$, $U(i)$, $R(i)$ spaces via filters

Terrence A. Edwardsa, James E. Josephb,c, Myung H. Kwackd,e, Bhamini M. P. Nayar$^f, *$

aDepartment of Mathematics, University of the District of Columbia, Washington, DC 20008, USA.
bRetired, Department of Mathematics, Howard University, Washington, DC 20059, USA.
c35 E Street NW #709, Washington, DC 20001, USA.
dRetired, Department of Mathematics, Howard University, Washington, DC 20059, USA.
e782 Tiffany Pl., Concord, CA 94518, USA.
fDepartment of Mathematics, Morgan State University, Baltimore, MD 21251, USA.

Abstract

Recently, filters were applied to give affirmative answers to two long-standing questions [1]. It was proved that a topological space is compact if and only if each closed subset is Hausdorff-closed (Urysohn-closed) [regular-closed]. As an improvement, it was established that a Hausdorff-closed (Urysohn-closed) [regular-closed] space is compact if and only if each closed subset is an H-set (a U-set) [an R-set] [2] (See AMS Mathematical Reviews MR 3191275, MR 3112925). Stone, in 1937 [3], using Boolean rings and transfinite induction, proved that a Hausdorff space X is compact if and only if each closed subset of X is Hausdorff-closed. In 1940, Katětov [4] gave a topological proof. Topological methods are used in this paper to generalize these results to non-Hausdorff (non-Urysohn) [non-regular] spaces. Stephenson (Scarboorouh and Stone) established in [5] ([6]) that a countable minimal Urysohn (minimal regular) space is compact. It is shown here that every countable Urysohn-closed (regular-closed) space is compact. It is shown in [7] that a Hausdorff-closed (Urysohn-closed) [regular-closed] space is compact if and only if each closed subset is paracompact (metacompact). It is proved here that a Hausdorff-closed (Urysohn-closed) [regular-closed] space is compact if and only if it is Lindelöf (countably compact) [normal], and filters are utilized to generalize all of these results to $H(i)$ ($U(i)$ [$R(i)$] spaces.

Keywords: Filters; compact, $H(i)$, $U(i)$, $R(i)$.

2010 MSC: 54D25, 54A05, 54A20.

*Corresponding author

Email addresses: tedwards@udc.edu (Terrence A. Edwards), jjoseph@howard.edu (James E. Joseph), mkwack@yahoo.com (Myung H. Kwack), Bhamini.Nayar@morgan.edu (Bhamini M. P. Nayar)
1. Introduction and Preliminaries

All spaces are topological. If X is a space and $A \subset X$, let clA be the closure of A. If A is a subset of a space X, denote by $\sum A$ the collection of open V such that $A \subset V$. A Hausdorff-closed (Urysohn-closed) [regular-closed] space is one which is a closed subset of any Hausdorff (Urysohn) [regular] space in which it is embedded. In [8], Herrington called a family $\mathcal{G}x$ of open sets about x, a shrinkable family of open sets about x if for each $V \in \mathcal{G}x$ there exists $U \in \mathcal{G}x$ such that $cl(U) \subset V$.

Theorem 1.1. If \mathcal{B} is a filter base on a space X and $C = \{C$ open in $X : B \subset C$ for some $B \in \mathcal{B}\}$, then C is an open ultrafilter on X.

Proof. Order the collection of C by inclusion and let \mathcal{D} be the union of the elements of this collection. Then \mathcal{D} is an upper bound for this collection. So, by Zorn, the proof is complete.

The following theorem is found in [2]. The proof is included here for completeness.

Theorem 1.2. If \mathcal{U} is an ultrafilter on a space X and $O = \{\text{Open in } X : U \subset O$ for some $U \in \mathcal{U}\}$, O is an open ultrafilter, $O \subset \mathcal{U}$, $adh_0\mathcal{U} = adh_0O(adh_0\mathcal{U} = adh_0O)[adh_0\mathcal{U} = adh_0O]$.

Proof. It is clear that O is an open ultrafilter on X from Theorem 1.1 and that $O \subset \mathcal{U}$ from the property of ultrafilters; $O \subset \mathcal{U}$, so that $adh_0\mathcal{U} \subset adh_0O(adh_0\mathcal{U} \subset adh_0O)[adh_0\mathcal{U} \subset adh_0O]$.

For the reverse inclusion, if $x \notin adh_0\mathcal{U}(x \notin adh_0\mathcal{U})[x \notin adh_0\mathcal{U}], then x \notin cl_0\mathcal{U}(x \notin cl_0\mathcal{U}[x \notin cl_0\mathcal{U}] for some $U \in \mathcal{U}$. Therefore, there exist $U \in \mathcal{U}$ and $V \in \sum [x]$ such that $cl_0\mathcal{U} \cap cl_0\mathcal{U} \cap cl_0\mathcal{U} \cap cl_0\mathcal{U} = \emptyset$. Therefore, $U \subset X - cl_0\mathcal{U}(U \subset X - cl_0\mathcal{U})[U \subset X - cl_0\mathcal{U}]. Hence, $X - cl_0\mathcal{U}(X - cl_0\mathcal{U})[X - cl_0\mathcal{U}] \in \mathcal{O}$, and $cl_0\mathcal{U} \cap (X - cl_0\mathcal{U})(cl_0\mathcal{U} \cap (X - cl_0\mathcal{U})[cl_0\mathcal{U} \cap (X - cl_0\mathcal{U}) = \emptyset$. So $x \notin adh_0O(x \notin adh_0O)[x \notin adh_0O]$.

Corollary 1.3. If \mathcal{U} is an ultrafilter on an $H(i)$ (a $U(i)$) [an $R(i)$] space X, then $adh_0\mathcal{U}(adh_0\mathcal{U})(adh_0\mathcal{U})[adh_0\mathcal{U}] = cl_0\mathcal{U}(cl_0\mathcal{U})(cl_0\mathcal{U})(cl_0\mathcal{U})[cl_0\mathcal{U}]$ for some $x \in X$.

Proof. If O is an open ultrafilter, then $adh_0O = cl_0\mathcal{U}[adh_0O = cl_0\mathcal{U}][adh_0O = cl_0\mathcal{U}$, for some $x \in X$.

The proof of the next theorem is omitted. It will be used often in the sequel.

Theorem 1.4. If X is a space and $\emptyset \neq A \subset X$, an ultrafilter \mathcal{U} converges to $A(\mathcal{U} \to A)$ if and only if $\sum A \subset \mathcal{U}$ (If $A = \{x\}$, use the notation $\mathcal{U} \to x$).

Definition 1.5. In a space X, $A \subset X$ is called an $H(i)$-set (a $U(i)$-set) $[R(i)$-set] if $A \neq \emptyset$ or each filter base Ω on X satisfies $A \cap adh_0\Omega \neq \emptyset(A \cap adh_0\Omega \neq \emptyset)[A \cap adh_0\Omega \neq \emptyset]$. An $H(i)$-set (A $U(i)$-set) $[R(i)$-set] in a Hausdorff (Urysohn) [regular] space is called an H-set (a U-set) [an R-set].

If X is a space and $A \subset X$, bdA will represent the boundary of A in X.

Definition 1.6. A space X is called rim $H(i)$ (rim $U(i)$) [rim $R(i)$] if each point has a base of open sets with $H(i)$-set (U(i)-set) [R(i)-set] boundaries.
Definition 1.7. A space X is called rim H-set (rim U-set) [rim R-set] if each point has a base of open sets with H-set (U-set) [R-set] boundaries.

Definition 1.8. A space X is called rim Hausdorff-closed (rim Urysohn-closed) [rim regular-closed] if each point has a base of open sets with Hausdorff-closed (Urysohn-closed) [regular-closed] boundaries.

Definition 1.9. A space is called rim θ-closed (rim u-closed) [rim s-closed] if each point has a base of open sets with θ-closed (u-closed) [s-closed] boundaries.

2. Main results

Theorem 2.1. If X is a space, $\emptyset \neq A$ is compact and Ω is a filter on X such that $A \cap F \neq \emptyset$ for every $F \in \Omega$, there exists $x \in A$ such that $F \cap V \neq \emptyset$, $F \in \Omega$, $V \in \sum \{x\}$.

Proof. Suppose that for each $x \in A, F_x \cap V_x = \emptyset, F_x \in \Omega, V_x \in \sum \{x\}$. Then, there exists finite $B \subset A$ such that $A \subset \bigcup B V_x = V, F = \bigcap B F_x \in \Omega, V \in \sum A, F \cap V = \emptyset$. Therefore, there exists $x \in A$ such that $F \cap V \neq \emptyset, F \in \Omega, V \in \sum \{x\}$.

Corollary 2.2. If X is a space, $\emptyset \neq A$ is a compact subset of X and \mathcal{U} is an ultrafilter on X such that $A \cap \mathcal{U} \neq \emptyset$ for every $\mathcal{U} \in \mathcal{U}$ there exists $x \in A$ such that $\mathcal{U} \rightarrow x$.

It has been shown in [11] ([12]) ([7]) that a Hausdorff (Urysohn) [regular] space is Hausdorff-closed (Urysohn-closed) [regular-closed] if and only if each filter base with at most one θ-adherent (u-adherent) [s-adherent] is θconvergent (uconvergent) [sconvergent].

Theorem 2.3. A space is $H(i)$ ($U(i)$) [$R(i)$] if and only if each filter base with at most one θ-adherent (u-adherent) [s-adherent] is θconvergent (uconvergent) [sconvergent].

Proof. If each filter base Ω has $\text{adh}_\theta \Omega \text{adh}_u \Omega \subset \{x\}$, then $\Omega \rightarrow x (\Omega \rightarrow u x) [\Omega \rightarrow s x]$ and thus $\text{adh}_\theta \Omega [\text{adh}_u \Omega] [\text{adh}_s \Omega] \neq \emptyset$. So X is $H(i)$ ($U(i)$) [$R(i)$]. For the converse, let Ω be a filter base on an $H(i)$ ($U(i)$) [$R(i)$] space X and let $x \in X, \text{adh}_\theta \Omega \cap (X - \{x\}) = \emptyset, \text{adh}_u \Omega \cap (X - \{x\}) = \emptyset$). Then $x \in \text{adh}_\theta \Omega [\text{adh}_u \Omega]$ and hence $\Omega \rightarrow x (\Omega \rightarrow u x) [\Omega \rightarrow s x]$.

Recall that a Hausdorff (Urysohn) [regular] space is minimal Hausdorff (minimal Urysohn) [minimal regular] if and only if each open (Urysohn) [regular] filter base with at most one adherent point is convergent [1]. Herrington and Long [13] have shown that a Hausdorff space X is minimal Hausdorff if and only if each filter on X with at most one θ-adherent point is convergent. It may be shown that a (Urysohn space) [regular space] X is (minimal Urysohn) [minimal regular] if and only if each filter on X with at most one (u-adherent) [s-adherent] point is convergent. This suggests the following definition which is used to offer different proofs of several theorems in [1], as is shown below.

Definition 2.4. A space X is minimal $H(i)$ (minimal $U(i)$) [minimal $R(i)$] if and only if each filter on X with at most one θ-adherent (u-adherent) [s-adherent] point is convergent.

Theorem 2.5. A minimal Hausdorff Urysohn space X is compact.

Proof. Let \mathcal{U} be an ultrafilter on X. Then $\mathcal{U} \rightarrow\theta$ to a single point because the space is Urysohn. Thus \mathcal{U} is convergent.

Theorem 2.6. A minimal Urysohn Hausdorff-closed space X is compact.

Proof. Let \mathcal{U} be an ultrafilter on X. Then $\mathcal{U} \rightarrow u$ to a single point because the space is Urysohn. Thus \mathcal{U} is convergent.
Theorem 2.7. A minimal regular Urysohn-closed space is compact.

Proof. Let \(\mathcal{U} \) be an ultrafilter on \(X \). Then \(\mathcal{U} \to_n \) to a single point because the space is regular. Thus \(\mathcal{U} \) is convergent.

Theorem 2.8. A minimal Urysohn regular space is compact.

Proof. Let \(\mathcal{U} \) be an ultrafilter on \(X \). Then \(\mathcal{U} \to_n \) to a single point because the space is regular. Thus \(\mathcal{U} \) is convergent.

The next theorem is immediate.

Theorem 2.9. Each minimal \(H(i) \) (minimal \(U(i) \)) [minimal \(R(i) \)] is \(H(i) \) (\(U(i) \)) [\(R(i) \)].

The next result characterizes compactness of \(H(i) \) (\(U(i) \)) [\(R(i) \)] spaces.

Theorem 2.10. The following statements are equivalent for an \(H(i) \) (\(U(i) \)) [\(R(i) \)] space \(X \):

1. \(X \) is compact.
2. Each closed \(A \subset X \) is \(H(i) \) (\(U(i) \)) [\(R(i) \)] and \(A \cap \text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) is compact for each ultrafilter \(\mathcal{U} \) on \(X \).
3. Each closed \(A \subset X \) is \(H(i) \) (\(U(i) \)) [\(R(i) \)] and \(\text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) is compact for each ultrafilter \(\mathcal{U} \) on \(X \).
4. Each closed \(A \subset X \) is minimal \(H(i) \) (minimal \(U(i) \)) [minimal \(R(i) \)] and \(\text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) is compact for each ultrafilter \(\mathcal{U} \) on \(X \).
5. The boundary \(bdV \) is an \(H(i) \)-set (a \(U(i) \)-set) [an \(R(i) \)-set] for each open \(V \) and \(\text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) is compact for each ultrafilter \(\mathcal{U} \) on \(X \).
6. \(X \) is rim\(H(i) \) (rim\(U(i) \)) [rim\(R(i) \)] and \(\text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) is compact for each ultrafilter \(\mathcal{U} \) on \(X \).
7. \(X \) is rim\(H(i) \) (rim\(U(i) \)) [rim\(R(i) \)] and \(cl_\theta[x](cl_u[x])[cl_s[x]] \) is compact for each \(x \in X \), and ultrafilter \(\mathcal{U} \) on \(X \).

Proof. (1)\(\Rightarrow \)(2): Obvious, since \(A \) and \(\text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) are closed.

(2)\(\Rightarrow \)(3): Obvious.

(3)\(\Rightarrow \)(4): The boundary \(bdV \) is closed.

(4)\(\Rightarrow \)(5): Definition.

(5)\(\Rightarrow \)(1): Let \(\mathcal{U} \) be an ultrafilter on \(X \). By Theorem 2.1, there is an \(x \in \text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}] \) such that \(F \cap V \neq \emptyset \) for all \(F \in \mathcal{U}, V \in \sum [x] \); for such \(x \), there exists \(F \in \mathcal{U}, V \in \sum [x] \) with \(F \cap bdV = \emptyset \). If not, \(V, bdV \in \mathcal{U} \) for some \(x \in \text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}], V \in \sum [x] \). Thus, for some \(x \in \text{adh}_0 \mathcal{U}(\text{adh}_u \mathcal{U})[\text{adh}_s \mathcal{U}], \sum [x] \subset \mathcal{U}, \mathcal{U} \to x \).

(5)\(\Rightarrow \)(6)\(\iff \)(7): Theorem 1.2, Corollary 1.3 and the fact that \(cl_\theta[x](cl_u[x])[cl_s[x]] \) is closed in any topological space.

Theorem 2.11. The following statements hold:

1. An \(H(i) \) (\(U(i) \)) [\(R(i) \)] space \(X \) is compact if each closed subset \(A \) is \(\theta \)-closed (\(u \)-closed) [\(s \)-closed].
2. In any compact space space \(X \), each closed subset \(A \) satisfies \(A \cap cl_\theta[x](A \cap cl_u[x])[A \cap cl_s[x]] \neq \emptyset \) for every \(x \in cl_\theta A(x \in cl_u A)[x \in cl_s A] \).

Proof. (1) If \(\Omega \) is a filter base on \(X \), then

\[
\emptyset \neq \text{adh}_0 \Omega(\text{adh}_u \Omega)\text{adh}_s \Omega \subset \text{adh}_0 \Omega \cap \text{clF}(\text{adh}_u \Omega)\text{adh}_s \Omega \cap \text{clF} = \text{adh} \Omega.
\]

So if each closed subset is \(\theta \)-closed (\(u \)-closed) [\(s \)-closed], the space is compact.

(2) If \(X \) is compact and \(A \subset X \) is closed, \(A \) is compact, \(x \in cl_\theta A(x \in cl_u A)[x \in cl_s A], A \cap \bigcap_{V \in \sum [x]} cl_\theta V(A \cap \bigcap_{V \in \sum [x]} cl_u V) \neq \emptyset \). So \(A \cap cl_\theta[x] \neq \emptyset(A \cap cl_u[x] \neq \emptyset)[A \cap cl_s[x] \neq \emptyset] \).
Corollary 2.12. A Hausdorff-closed (A Urysohn-closed) [A regular-closed] space X is compact if and only if each closed subset A is θ-closed (u-closed) [s-closed].

Proof. In a Hausdorff space (Urysohn space) [regular space] $cl_\theta(x) = \{x\}(cl_u(x) = \{x\})[cl_s(x) = \{x\}]$ for each $x \in X$.

Corollary 2.13. Let X be a Hausdorff-closed (Urysohn-closed) [regular-closed] space. The following are equivalent [2, 7]:

1. X is compact.
2. Each closed subset of X is Hausdorff-closed (Urysohn-closed) [regular-closed].
3. Each nonempty closed subset of X is an H-set (a U-set) [an R-set].
4. The boundary bdV is an H-set (a U-set) [an R-set] for each open V with bdV nonempty.
5. The boundary bdV is Hausdorff-closed (Urysohn-closed) [regular-closed] for each open subset V of X.
6. X is rim H-set (rim U-set) [rim R-set].
7. Each closed subset of X is θ-closed (u-closed) [s-closed].
8. The boundary bdV is θ-closed (u-closed) [s-closed].
9. Each H-set (U-set) [R-set] in X is θ-closed (u-closed) [s-closed].
10. X is rim Hausdorff-closed (rim Urysohn-closed) [rim regular-closed].

Proof. In a Hausdorff-closed (Urysohn-closed) [regular-closed] space, $adh_\theta U(adh_u U)[adh_s U]$ is a singleton for an ultrafilter U.

The following theorem gives a proof of compactness for $H(i) (U(i))[R(i)]$ spaces.

Theorem 2.14. An $H(i)$ (U(i) [An R(i)]) space X is compact if and only if $adh_\theta U(adh_u U)[adh_s U]$ is compact and each closed subset is an $H(i)$ set (a U(i)-set) [R(i)-set].

Proof. One direction is clear. For the other direction, choose an ultrafilter U on $X; adh_\theta U(adh_u U)[adh_s U] = cl_\theta(x)(cl_u(x))cl_s(x)$, for some $x \in X$. Show first, for such an x, that $\mathcal{U} \rightarrow cl_\theta(x)(cl_u(x))cl_s(x)$. Let $\mathcal{V} \in \sum cl_\theta(x)(\sum cl_u(x))cl_s(x)$. Then $F - V = \emptyset$ for some $F \in \mathcal{U}$ since $adh_\theta U(adh_u U)[adh_s U] \cap (X - V) = \emptyset$, because $X - V$ is an $H(i)$-set (a U(i)-set) [R(i)-set] $\mathcal{U} \rightarrow cl_\theta(x)(cl_u(x))cl_s(x)$. Now, since $cl_\theta(x)(cl_u(x))cl_s(x)$ is closed and hence compact, from Theorem 2.1, $\mathcal{U} \rightarrow z \in cl_\theta(x)(cl_u(x))cl_s(x)$.

The next corollary is readily obtained for Hausdorff-closed spaces, Urysohn-closed spaces, and regular-closed spaces, H-sets, U-sets, and R-sets.

Corollary 2.15. X is compact if and only if each closed subset is Hausdorff-closed (Urysohn-closed) [regular-closed] (an H set (a U set) [an R set]).

Proof. X is an $H(i)$ (U(i)) [an R(i)] space and $adh_\theta U(adh_u U)[adh_s U]$ is a singleton for each ultrafilter U on X.

Definition 2.16. A space is called locally $H(i)$ (LH(i)) (locally $U(i)$ (LU(i))) [locally $R(i)$ (LR(i)))] if each point has a $H(i)$ (U(i)) [R(i)] neighborhood.

The next theorem is clear.

Theorem 2.17. An $H(i)$ (A U(i) [An R(i)]) space is LH(i) (LU(i)) [LR(i)].

Theorem 2.18. The following are equivalent for a space X:

1. X is compact.
2. X is LH(i) (LU(i)) [LR(i)] and $adh_\theta U(adh_u U)[adh_s U]$ is compact for each ultrafilter U on X.
(3) X is $H(i)$ ($U(i)$) [R(i)] and $\text{adh}_\theta U(\text{adh}_\theta U)[\text{adh}_s U]$ is compact for each ultrafilter U on X.

Proof. (1)\Rightarrow (2): A compact space is an $H(i)$ (a $U(i)$) [an $R(i)$] space and $\text{adh}_\theta U(\text{adh}_\theta U)[\text{adh}_s U]$ is closed for each ultrafilter U.

(2)\Rightarrow (3): There is an $x \in \text{adh}_\theta U(\text{adh}_\theta U)[\text{adh}_s U]$ such that all $F \in U$ satisfy $F \cap \text{cl}_\theta V(\text{cl}_\theta V)[\text{cl}_s V] \neq \emptyset$, $V \in \sum$, so $F - \text{cl}_\theta V(F - \text{cl}_\theta V)[F - \text{cl}_\theta V] = \emptyset$ for some $V \in \sum$. If not, $\text{cl}_\theta V(\text{cl}_\theta V)[\text{cl}_s V], X - \text{cl}_\theta V(X - \text{cl}_\theta V)[X - \text{cl}_s V] \in U$. Hence, $U \rightarrow_\theta x_U \rightarrow_\theta x \rightarrow_\theta x$ and X is $H(i)$ ($U(i)$) [R(i)].

(3)\Rightarrow (1): From (2)\Rightarrow (3), $U \rightarrow \text{cl}_\theta x(\text{cl}_\theta x)[\text{cl}_s x]$. Since $\text{cl}_\theta x(\text{cl}_\theta x)[\text{cl}_s x]$ is compact, there is, from Theorem 4, a $z \in \text{cl}_\theta x(\text{cl}_\theta x)[\text{cl}_s x]$ such that $U \rightarrow z$.

Definition 2.19. A space is called locally Hausdorff-closed [4] (LHC) (locally Urysohn-closed (LUC) [locally regular-closed (LRC)] if each point has a Hausdorff-closed (Urysohn-closed) [regular-closed] neighborhood.

Corollary 2.20. A LHC (LUC) [LRC] space X is compact if and only if each closed set is θ-closed (u-closed) [s-closed].

Theorem 2.21. A Lindelöf space is compact if and only if each countable open filter base Ω on each closed subset satisfies $\text{adh}_\theta \Omega(\text{adh}_\theta \Omega)[\text{adh}_s \Omega] \neq \emptyset$ and $\text{adh}_\theta U(\text{adh}_\theta U)[\text{adh}_s U]$ is compact for each ultrafilter U.

Proof. The necessity is clear. For the sufficiency, let U be an ultra filter on X. Every closed subset is $H(i)$ ($U(i)$) [R(i)] and thus the space is compact.

Theorem 2.22. A Lindelöf space is $H(i)$ ($U(i)$) [R(i)] if and only if each countable open filter base has nonempty adherence (u-adherence) [s-adherence].

Proof. Every open filter base Ω has nonempty θ-adherence (u-adherence) [s-adherence].

Corollary 2.23. A Lindelöf space is compact if and only if each countable open filter base has nonempty adherence (u-adherence) [s-adherence] and each closed set is $H(i)$ ($U(i)$) [R(i)].

Corollary 2.24. A Lindelöf space is compact if and only if each countable open filter base has nonempty adherence (u-adherence) [s-adherence] and each closed set is Hausdorff-closed (Urysohn-closed) [regular-closed].

Proof. The set $\text{adh}_\theta U(\text{adh}_\theta U)[\text{adh}_s U]$ is a singleton, for each ultrafilter U on X. Each closed subset of a Lindelöf (normal) [countably compact] space is Lindelöf (normal) [countably compact]. So the converse holds.

Stephenson [5] proved that a countable minimal Urysohn space is compact. A generalization of this result is offered next.

Theorem 2.25. If a Urysohn space X has a dense set of isolated points, X is compact.

Proof. Let $A \subset X$ be closed and let $D \subset X$ the dense set, $y \in X - A$. Then, since X is Urysohn, there is an open set $V, y \in V \subset cl_V \subset cl_V \subset X - A, D \cap V \neq \emptyset, y \notin X - cl_\theta A$. So each closed set is θ-closed and hence the space is compact [15].

Corollary 2.26. A countable Urysohn-closed (regular-closed) space is compact.

Proof. The space has a dense collection of isolated points [1].

Corollary 2.27. (Stephenson [5] (Scaborough and Stone [6]) A countable minimal-Urysohn (minimal-regular) space is compact.
The following is well known.

Corollary 2.28. (Stephenson [5]) A countable Urysohn-closed space is absolutely closed.

Definition 2.29. A filter base Ω on a set is point dominating (p.d.) [12] if each point is a member of all but finitely many elements of Ω; a filter base Ω on a space is neighborhood dominating (n.d.) [16] if each point has a neighborhood contained in all but finitely many elements of Ω. A filter Ω is called an M-filter (P-filter) if each p.d. (n.d.) subcollection of Ω has nonempty adherence.

The concepts of (p.d.) and (n.d.) families were used to give the following characterizations. A space X is Lindelöf [12] (paracompact [16]) if each M-filter (P-filter) on X has nonempty adherence. The proof of the next result is left to the reader.

Theorem 2.30. If X is a space and Ω is an M-filter (P-filter) on X, and $\emptyset \subset \Omega \subset X$, then $\{F \cap \Omega : F \in \Omega\}$ is an M-filter (P-filter) on Ω.

Theorem 2.31. An $H(i)$ (A $U(i)$) [An $R(i)$] space is compact if and only if each closed subset is metacompact (paracompact), and $\text{adh}_0 \mathcal{U}(\text{adh}_0 \mathcal{U}) \cap \mathcal{U}$ is compact for each ultrafilter \mathcal{U} on X.

Proof. One direction is clear. For the other direction, let \mathcal{U} be an ultrafilter on X. Choose

$$V \in \sum_{x \in X} \text{cl}_0(x)(\sum_{u \in X} \text{cl}_u(x))[\sum_{s \in X} \text{cl}_s(x)], x \in X.$$

There is an $F \in \mathcal{U}$, $F \cap X - V = \emptyset$. Otherwise, $\{F \cap (X - V) : F \in \mathcal{U}\}$ is an ultrafilter on $X - V$ and then $V, X - V \notin \mathcal{U}$, a contradiction. Thus, $\mathcal{U} \rightarrow \text{cl}_0(x)(\text{cl}_u(x))[\text{cl}_s(x)]$. Hence by Theorem 2.1, there exists $z \in \text{cl}_0(x)(\text{cl}_u(x))[\text{cl}_s(x)]$ such that $\mathcal{U} \rightarrow z$.

Corollary 2.32. A Hausdorff-closed (Urysohn-closed) (regular-closed) space X is compact if and only if X is metacompact (paracompact).

Proof. The set $\text{adh}_0 \mathcal{U}(\text{adh}_0 \mathcal{U}) \cap \mathcal{U}$ is a singleton. For the converse, every closed subset of a metacompact (paracompact) is metacompact (paracompact).

Theorem 2.33. An $H(i)$ (A $U(i)$) [An $R(i)$] space is compact if and only if each closed subset is Lindelöf (countably compact) [normal], and $\text{adh}_0 \mathcal{U}(\text{adh}_0 \mathcal{U}) \cap \mathcal{U}$ is compact for each ultrafilter \mathcal{U} on X.

Proof. One direction is clear. For the other direction, let \mathcal{U} be an ultrafilter on X. Choose

$$V \in \sum_{x \in X} \text{cl}_0(x)(\sum_{u \in X} \text{cl}_u(x))[\sum_{s \in X} \text{cl}_s(x)].$$

Then there is an $F \in \mathcal{U}$, $F \cap (X - V) = \emptyset$, and $\{F \cap (X - V) : F \in \mathcal{U}\}$ is not a filter on $X - V$, since both $V, X - V \notin \mathcal{U}$. Thus, $\mathcal{U} \rightarrow \text{cl}_0(x)(\text{cl}_u(x))[\text{cl}_s(x)]$, by Theorem 2.1, $z \in \text{cl}_0(x)(\text{cl}_u(x))[\text{cl}_s(x)]$ such that $\mathcal{U} \rightarrow z$.

Corollary 2.34. A Hausdorff-closed (Urysohn-closed) (regular-closed) space X is compact if and only if X is Lindelöf (countably compact) [normal].

References

[1] M. P. Berri, J. R. Porter and R. M. Stephenson. A survey of minimal topological spaces, General Topology and its Relations to Modern Analysis and Algebra, Proc. Conf. Kanpur (1968) (Academia Prague (1971)), 93-114.

[2] T. A. Edwards, J. E. Joseph, M. H. Kwack and B. M. P. Nayar. Compact spaces via p-closed subsets, Journal of Advanced Studies in Topology, 5(2) (2014), 8-12.

[3] M. H. Stone. Applications of the theory of Boolean rings to General Topology, Trans. Amer. Math. Soc. 41(3) (1937), 375-481.

[4] Katětov. Über H-bgechlossene und bikompakte, Casopis Pest. Mat. 69 (1940), 36-49 (German).

[5] R. M. Stephenson. A countable minimal Urysohn space is compact, Proc. Amer. Math. Soc. 22 (1969), 625-626.

[6] C. T. Scarborough and A. H. Stone. Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131-147.
[7] T. A. Edwards, J. E Joseph, M. H. Kwack and B. M. P. Nayar. Compactness via adherence dominators, Journal of Advanced Studies in Topology, 5(4) (2014), 8-15.
[8] L. L. Herrington. Characterizations of regular-closed spaces, Math. Chronicle, 5 (1977), 168 -178.
[9] N. V. Veličko. H-closed topological spaces, Mat. Sb., 70 (112) (1966), 98 - 112.
[10] L. L. Herrington. Characterizations of Urysohn-closed spaces, Proc. Amer. Math. Soc., 53 (1976), 435-439.
[11] J. Joseph. More characterizations of H-closed spaces, Proc. Amer. Math. Soc., 63(1)(1977), 160-164.
[12] J. E. Joseph, M. H. Kwack and B. M. P. Nayar. A characterization of metacompactness in terms of filters, Missouri Journal of Mathematical Sciences, 14 (1) (2002), 11-14.
[13] L. L. Herrington and P. E Long. Characterizations of C-compact spaces, Proc. Amer. Math. Soc., 52 (1975), 417-426.
[14] M. Girou. Properties of locally H-closed spaces, Proc. Amer. Math. Soc., 113(1)(1991), 287-295.
[15] T. A. Edwards, J. E. Joseph, M. H. Kwack and B. M. P. Nayar. Compact spaces via θ-closed and θ-rigid subsets, Journal of Advanced Studies in Topology, 5(3) (2014), 28-34.
[16] B. M. P. Nayar. A characterization of paracompactness in terms of filterbases, Missouri Journal of Mathematical Sciences, 15 (3) (2003), 186-188.