What is the Relationship Between Helicobacter Pylori CagA Genotypes and Gastrointestinal Diseases in the Iranian Population? A Systematic Review and Meta-Analysis

Masoud Keikha
Mashhad University of Medical Sciences

Mohsen Karbalaei (✉ mohsen.karbalaei@jmu.ac.ir)
Jiroft University of Medical Sciences https://orcid.org/0000-0001-9899-2885

Research article

Keywords: Helicobacter pylori, cagA genotypes, gastric cancer, peptic ulcer, Iran

DOI: https://doi.org/10.21203/rs.3.rs-80096/v1

License: ☑️ ☐ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: *Helicobacter pylori* (*H. pylori*) is one of the most well-known risk factors for getting the gastric cancer disease. In recent studies, the relationship between its virulence factors, specially CagA (cytotoxin-associated gene A) toxin and development into the gastrointestinal diseases is taken into consideration. According to review of literature, despite the presence of four motifs A, B, C, and D in CagA toxin, two motifs C and D are more associated with gastrointestinal complications in patients who are infected by *H. pylori*.

Methods: In the present study, we researched about these ambiguities using a comprehensive meta-analysis study. In this study, we assessed the information of 1762 Iranian patients for potential relationship between all genotypes of *cagA* gene and gastrointestinal diseases.

Results: According to statistical analysis, the abundance of *cagA* genotypes AB, ABC, ABCC, ABCCC, and ABD in Iranian population is 5.52%, 80.18%, 22.81%, 2.76%, and 0% respectively. In addition, it was determined that there is a significant relationship between *cagA* genotypes ABCC and ABCCC on the one hand and *cagA* genotype ABCCC on the other hand with susceptibility to chronic gastritis and gastric cancer respectively.

Conclusions: Overall, it can be concluded that the higher number of EPIYA-C copy numbers lead to the higher risk of gastric cancer. According to our results, it seems that the presence of EPIYA-ABCCC motif in strains of *H. pylori* should be considered as an appropriate marker in preventing the gastric cancer among the Iranian population.

1. Background

Helicobacter pylori (*H. pylori*) is a microaerophilic, spiral, and motile gram negative bacterium which is resident in human gastric submucosa (1). Creating a persistent infection is one of the main properties of this microorganism, so that in previous studies, it has been shown that *H. pylori* can survive for decades in the human stomach (1–2). This bacterium is the etiologic agent for gastrointestinal complications including acute gastritis, gastric ulcer, duodenal ulcer, and also gastric adenocarcinoma tumors and mucosa-associated lymphoid tissue (MALT) lymphoma (3). Based on the available evidence, *H. pylori* triggers a range of changes in stomach mucus from an acute inflammation to other problems such chronic gastritis, atrophy, intestinal metaplasia, dysplasia, and gastric adenocarcinoma (2–4). Regarding potency of *H. pylori* in creating gastric cancer, the International Agency for Research on Cancer (GLOBOCAN) introduced this pathogen as the human class I carcinogenic agent in 1994 (5). Gastric cancer is among the four global prevalent cancers, and also is accounted as the third deadliest cancer in the world; annually, approximately 700,000 patients die from this disease (6). The statistics in the developing countries, especially in Iran is more worrisome; the rate of infection by *H. pylori* in the Iranian population is about 90%, so that 22 deaths occur per day associated with gastric cancer in Iran (7). Furthermore, *H. pylori* and administration of nonsteroidal anti-inflammatory drugs (NSAIDs) are accounted as the two main predisposing risk factors for gastric cancer. In this regard, the studies show that more than 60% of patients who are colonized by *H. pylori* are affected to gastric cancer (8–9). While about the half of world population are infected by *H. pylori*, however the diseases associated by this bacterium happen in 15–20% of population. Due to the problems such as high colonization rate, poor prognosis of gastric cancer, re-infection, as well as difficult eradication of bacteria, unfortunately the patients are identified in the advanced stages of the disease and this phenomenon is along with high mortality (10–11). Based on various studies, bacterial strains have a lot of genetic diversity, and so the occurrence of different forms of infection such as gastritis, peptic ulcer, gastric adenocarcinoma, and MALT depend on different factors, especially virulence factors which express by different strains of bacterium (12–13). The encoding gene of CagA toxin (s120-140 kDa), *cagA* gene, is one of the most important genes in the *H. pylori* whole genome, and locates in cag pathogenicity islands (cag-PAIs). The presence and expression of *cagA* gene is related with gastric complications such gastritis, peptic ulcer, gastric polyps, precancerous status, cell survival and gastric adenocarcinoma (14–15). Studies in China, Japan, and South Korea showed that 90% of isolated strains from patients had *cagA* gene in their genome (16–20). Based on genomix studies, there are various genetic diversity of *cagA* gene among the different strains of *H. pylori*. The most difference in their open reading frame (ORF) is related to locus which encodes 1147–1181 amino acids, which in turn is associated to nucleotide sequences in the 3’ terminal of *cagA* gene (21–22). According to recent studies, upon the colonization of bacterium into the host stomach, CagA secreted inside the gastric cells via type IV secretory system. Then, this protein is phosphorylated by c-Src and c-Abl of host cell tyrosine kinases. Phosphorylated CagA binds to host proteins and blocks signaling pathway (21, 23–26). Based on surrounding sequences of the EPIYA motifs, CagA is subdivided to four classes, A, B, C, and D (27). While the most East Asian dominant strains are ABD, in the Western countries ABC is the dominant genotype (28–32). In addition, it has been suggested that the East Asian *cagA* genotype (ABD) is significantly associated with the
increased risk of gastric cancer (33–34). The main goal of this meta-analysis was evaluation of abundance EPIYA motifs, and potential association of prevalent genotypes with gastritis, peptic ulcer, and gastric cancer in Iranian population.

2. Methods

In the present systematic review and meta-analysis, all stages of research including literature search, selection criteria, quality assessment, data extraction, and statistical analysis was done according preferred items in the systematic review and meta-analysis guidelines (35).

2.1. Search strategy

To receive all reports about Iranian population associated EPIYA motifs, conducted studies till August 2020 were collected from PubMed, Scopus, Google Scholar, Magium, IranMedex, and ISC databases. Studies were research without language limitation and also we used some keywords such as Iran, \textit{cagA} gene, EPIYA, and \textit{Helicobacter pylori}.

2.2. Selection criteria

Identification of eligible articles (titles, abstracts, and full text) was done by two authors, separately. According to standards protocols, the inclusion criteria included Iranian patients, collected clinical specimens, original articles (cross-sectional, case-control, and cohort), EPIYA motifs (AB, ABC, ABCC, ABCCC, and ABD), and reliable material and methods. In addition, excluded studies included the articles with insufficient information, letter to editors, review articles, case reports, congress abstracts, repetitive samples, and duplicate articles.

2.3. Quality assessment and data extraction

The quality of studies was evaluated by Newcastle-Ottawa quality assessment scale criteria, and articles which received score \(\geq 5 \) were included in present meta-analysis (data not shown). Then, the process of data extraction from eligible studies was done by two authors, separately (Table 1). Extracted information included titles such as first author, publication year, city, numbers of patients, distribution of age and gender in each study, frequency of EPIYA motifs in each study, and diagnostic methods.
Table 1
Characteristics of included studies

First Author	Year	City	Age	No. patients	cagA genotypes	Diagnostic method	Ref
Shokrzadeh et al.	2010	Tehran	45.4 ± 1	190	3 86 3 0 0	PCR + Sequencing	37
Saberi et al.	2012	Tehran	NR	76	6 31 23 0 0	PCR + Sequencing	38
Ajami et al.	2013	Sari	42.2 ± 3	250	125 39 54 32 0	PCR + Sequencing	39
Vaziri et al.	2013	Tehran	66	71	44 0 30 4 1	PCR + Sequencing	40
Haddadi et al.	2014	Shiraz	45	280	68 0 67 53 0	PCR + Sequencing	41
Honarmand et al.	2015	Tehran	33	168	168 0 157 1 9 0	PCR + Sequencing	42
Yadegar et al.	2015	Tehran	46	61	52 0 39 7 1	PCR + Sequencing	43
Farzi et al.	2018	Tehran	47.9 ± 2	68	58 0 41 7 1	PCR + Sequencing	44
Sarrami et al.	2018	Ardabil	NR	206	22 0 79 7 2	PCR + Sequencing	45
Sheikh et al.	2018	Ahvaz	71	201	134 0 66 2 0	PCR + Sequencing	46
Abdollahi et al.	2019	Kerman	47	191	39 0 46 0 3 0	PCR + Sequencing	47

2.4. Statistical analysis

Available information was analyzed by comprehensive meta-analysis (CMA) version 2.0 software. First, heterogeneity of data was assessed by use of I^2 and Cochrane Q-test indexes, and then as regard to heterogeneity we used of random effects model. As well as, publication bias was evaluated by funnel plot. Finally, considering limitation of studies, potential relationship between each EPIYA motifs by gastritis, peptic ulcer, and gastric cancer was estimated by Odds Ratio (ORs) with 95% Confidence intervals (CIs) (36).

3. Results

In this study, from all 92 articles, 11 articles met the inclusion criteria (Fig. 1).

Among the included articles, ten was in English language, and 1 was Persian. The studies had been conducted from various cities such as Tehran, Ardebil, Sari, Kerman, Shiraz, and Ahvaz. In the present study, we evaluated the comprehensive information of 1762 patients. Approximately 51.2% of patients were men, and 48.8% were women, and also, mean age of them was 49.2 ± 5. Frequency of cagA gene in isolated strains from different areas of Iran was assessed around 71.34%. Based on statistical analysis, it was found that there is a significant relationship between cagA gene and susceptibility to gastrointestinal complications, especially gastric cancer (ORs: 2.77 with 95% CIs) and peptic ulcer (ORs: 1.05 with 95% CIs) diseases (Fig. 2).
In all include studies, EPIYA motifs was identified by PCR and DNA sequencing techniques. Based on studies, so far no reports has been reported of EPIYA motif D and cagA genotype ABD from Iran. However, in present study, the most prevalent EPIYA motifs, A, B, and C, and cagA genotypes, ABC and ABCC, were assessed. Geographical distribution of CagA genotypes in Iran has been noted in Fig. 3.

According to statistical analysis, abundance of cagA genotypes AB, ABC, ABCC, ABCCC, and ABD in Iranian population is 5.52%, 80.18%, 22.81%, 2.76%, and 0% respectively. In addition, it was determined that there is a significant relationship between cagA genotypes ABCC and ABCCC on the one hand and cagA genotype ABCCC on the other hand, with susceptibility to chronic gastritis and gastric cancer respectively (Table 2). Publication bias was not seen in our study (data not shown).

cagA genotypes	Gastrointestinal diseases	Random effects mode ORs (95% CIs)	p-value	Heterogeneity of \(\chi^2 \) square index	Frequency (%) in cagA+ strains
AB	Gastritis	1.69 (0.71–4.1)	0.23	74.7%	5.52%
	Peptic ulcer	0.69 (0.26–1.83)	0.46	53.1%	
	Gastric cancer	1.33 (0.66–2.65)	0.42	68.4%	
ABC	Gastritis	0.66 (0.48–0.89)	0.008	54.3%	80.18%
	Peptic ulcer	0.000	0.39 (0.28–0.55)	34.2%	
	Gastric cancer	0.000	0.33 (0.21-051)	28.3%	
ABCC	Gastritis	0.001	2.23 (1.39–3.55)	32.5%	22.81%
	Peptic ulcer	0.46	1.19 (0.73–1.93)	90.8%	
	Gastric cancer	0.66	1.13 (0.64–1.99)	67.4%	
ABCCC	Gastritis	0.012	1.99 (1.25–3.20)	61.5%	2.76%
	Peptic ulcer	0.42	1.18 (0.7–1.9)	72.6%	
	Gastric cancer	0.02	1.84 (1.1–3.5)	54.8%	

4. Discussion

The cagA gene is one of the most important virulence factors in H. pylori genome, which locates in the end of I region in PAIs. The GC content this gene is 35%, which is less compared to other bacterial genes (40%) of bacterial genome. This gene can be transferred between bacterial strains through horizontal transmission (48–49). The cagA gene encodes a 128–145 kDa protein in different strains, and its frequency has reported between 40–97% (50–51). According to review of literature, H. pylori strains which carry cagA gene are more virulent (more pathogen). Frequency of cagA positive strains in East Asia (regions with high incidence of gastric cancer) is very high (51–52). For example, frequency of this gene in South-East Asian countries such South Korea (97%), Japan (95%), China (90%) is much more compared to Western countries (16, 53). Also, Iran is one of the regions of the world with high prevalence of gastric cancer. Based on GLOBOCAN the incidence of gastric cancer in Iran has been estimated about 62.3 cases per 100000 population. Based on our statistical analysis, frequency of cagA gene in Iranian population was evaluated about 71.34%, which confirmed previous findings. In addition, the presence of cagA has a meaningful relationship with gastrointestinal diseases such as peptic ulcer, gastric atrophy, and gastric cancer (54–55). In our project, also, abundance of cagA positive strains in peptic ulcer and gastric cancer patients was very high, and we also saw a meaningful relationship between the presence of cagA gene and gastric cancer (ORs: 2.277; p-value: 0.00). In recent, molecular studies have shown that upon translocation of CagA toxin into the cytoplasm of gastric epithelial cells, it is phosphorylated by Src kinases family in its Tyrosine residues of EPIYA motifs (56–57). Phosphorylated CagA reacts with about 20
various proteins in host cell, and depending on host epigenetic situations, alternative signaling pathway leads to intracellular events such as to loss polarity and junction, increase of motility due to alternation in cytoskeletal rearrangement, stimulation of cell proliferation, DNA damage and aberrant cell survival, stimulation of pro-inflammatory response via stimulating of NF-kB signaling pathway and induction of hummingbird phenotype, and finally gastric cancer (58–61). Nowadays, based on difference in surrounding amino acids sequences (32–40 residues), the EPIYA motif is subdivided to four classes A, B, C, and D (62). Each of these motifs effect on different signaling pathways. Even, in recent, it has found that nucleotide sequences and their number of repeats are unique in each EPIYA motif, and this situation in turn effects on binding affinity with host proteins, and has determinative role in final outcomes of *H. pylori* infection (63–65). In addition *H. pylori*, in recent researches it has been demonstrated that EPIYA motifs in other human pathogens such as enteropathogenic *Escherichia coli* (T1), *Haemophilus ducreyi* (LspA), and *Anaplasma phagocytophilum* (AnkA) play as PEIYA effectors which can affect signaling pathway in host cell (57, 66). In recent years, evaluation of EPIYA motifs has attracted a lot of attention. For example, despite of high colonization rate with *H. pylori* in Africa, Latin America and some East Asian countries such Thailand and Malaysia, there is a decreased incidence of gastric cancer in those countries, which considering differences in EPIYA motifs, this paradox was justified (34, 67–69). It seems that EPIYA motifs solving the puzzle of being carcinogenic of *cagA* gene, and also, these days the EPIYA motif can be used as a tool for epidemiologic studies and also monitoring of circulating of *H. pylori* strains worldwide (14). Generally, almost all *H. pylori cagA* positive strains in Western countries harboring EPIYA motifs A, B, and one or more repeats of C, while EPIYA motif patterns in East Asian countries are ABD (63, 70). Li et al. (2017) demonstrated that the C and D motifs can induce hummingbird phenotype. In another study, Argent et al. (2004) also showed that these two motifs can phosphorylate SHP-2; hence both are accounted as risk factor for gastric cancer (71–72). In new discoveries, it has demonstrated that EPIYA-D has high affinity to bind to SHP-2 (pY-[V/T]/A[I/S]-X-[L/I/V]-X-[F/W], while EPIYA-C has less affinity for SHP-2 (merely one amino acid in pY + 5th position) compared to EPIYA-D (73–74). However, according to literature, the presence of the higher number of EPI-X repeats is associated with the greater tendency of binding to SHP-2 (75). According to this, in a study on Mexico population, the risk of gastric cancer due to strains containing two and more than two repeats in EPIYA-C was 32 and 51 fold respectively (76). Studies in Brazil and Columbia showed that the possibility of gastric cancer due to strains with 2, 2 or 3, and 3 repeats of EPIYA-C was 5.9, 3.8, and 12 fold respectively (77–78). Also, EPIYA-A and B bind C-terminal Src kinase (Csk) and p85 (subunit of PI3K) complex respectively, but these motifs have been less studied and their effects remain unknown (66). In general, *cagA* genotypes recognized from around the world include AB, ABC, ABCC, ABCCC, and ABD. In studies from Iran, so far there is no any document based on detection of *cagA* genotypes ABCCC and ABD, which is arising from genetic differences between isolated strains of Iranian patients and East Asian's strains (37–46). Nevertheless, according to studies, in Iran, *cagA* genotypes ABCC and ABCCC are more prevalent in peptic ulcer and gastric cancer. However, based on our statistical analysis, only *cagA* genotype ABCCC had a meaningful relationship with gastric cancer. Like our results, studies in South America, North America, and European showed a significant relationship between infection by multiple EPIYA-C strains and gastric cancer in the patients (71, 75). Recently, Gomez et al. (2020) found a meaningful relationship between EPIYA-ABCC and ABCCC with gastric cancer which confirms our study (75). Furthermore, according our results, it seems that infection by strains possessing EPIYA-ABC motif has a preventive role against gastritis, peptic ulcer, and gastric cancer. Regarding less affinity of EPIYA-C motif to binding to SHP-2, hence, it concluded that the presence of one copy of EPIYA-C has less effect in induction of gastric cancer, especially that EPIYA-D is less be able to induce interleukin 8 (IL-8) compared to EPIYA-C (66, 79). Our country, Iran, locates in Middle East, and recent studies have demonstrated that gastric cancer is the most prevalent cancer in Iran. Based on recent studies, the prevalence of gastric cancer in Iran has been estimated about 13.7 per 100000 population. In addition, the recent studies have shown that north provinces, in particular, northeast provinces are dedicated the most gastric cancer patients to themselves, and this is while based on epidemiologic studies these areas have the most abundance of infection by *H. pylori* (80–81, 12). According to this meta-analysis it was demonstrated that infected patients to *H. pylori* are 2.26 fold more exposed to gastric cancer, which has conformity with received results from Iranian population (82). In developing countries such Iran the age of infection with *H. pylori* is low, and based on recent studies, about 80% of children in the first ten years of their lives are affected to this infection. Vic versa, in developed countries infection with *H. pylori* elevate with increasing age. Therefore, the age is accounted as a determinative factor in increasing of the numbers of gastric cancer patients in developing countries, especially in Iran (82–83). Also, various studies have demonstrated that *cagA* positive strains of *H. pylori* are more virulent compared to the *cagA* negative ones, and hence, these strains are directly related to peptic ulcer and gastric cancer (71). In the present study, frequency of *cagA* gene in patient with peptic ulcer and gastric cancer was reported about 71%. Based on our statistical analysis, infection with *H. pylori* has a meaningful relationship with affecting to gastric cancer in Iranian population. According to Ghotaslou et al. (2018) study, the infection with strains possessing *cagA* and *vacA* s1m1 genes causes the increased risk to gastric cancer in Iranian population, which confirms our declarations (84). However, although the rate of gastric cancer in Iran is like East Asian countries such Japan, Korea, and China, but EPIYA motifs pattern in these countries is different of Iran (34, 37, 85). While in East Asian countries, the *cagA*2a (EPIYA-ABD) genotype is common, but so far in Iran
no report has been issued about detection of EPIYA-D, and this is due to geographical differences of circulating strains (34). In addition, in other regions such as Africa, Latin America, or even East Asian countries e.g. Thailand and Malaysia, despite high colonization rate of \textit{H. pylori} but the frequency of gastric cancer is low; one of the most probable reasons for this difference is diversity in \textit{H. pylori} strains. According to estimates, it was determined that circulating \textit{H. pylori} strains in Iran have five different genetic patterns, which three patterns are like to identified patterns from Arabia, Turkey, and Uzbekistan, while two other patterns specifically are belong to Bandar Abbas and Yazd (86). Latifi-Navid et al. (2010), showed that Iranian strains fall in a same clade with European \textit{H. pylori} (hpEurope) strains (Fig. 4).

According to phylogenetic analysis, Iranian patients’ strains fall into a same clade with isolated strains of England, Spain, Finland, Turkey, and Italy (86). The hpEurope strains are formed from combination of both Ancestral Europe1 (AE1) and Ancestral Europe2 (AE2) population. AE1 is more related to Northern Europe, while AE2 is related to isolated strains from Southern Europe regions (87). Available information show that strains of Central Asia are more AE1, whereas North East Africa strains originate from AE2 (12, 86). It seems that circulating strains among Iranian patients originate from hpEurope strains, and have transferred to Iran from some groups such as Arabs in the 7-8th centuries, Uzbeks fight in 16th century, and Ottoman Empire during the 20th century (86). Existence of cagA2a genotype (EPIYA-ABC motifs) in Iran’s studies confirm this hypothesis (37–47). However, why the number of gastric cancer cases in Iran as is high as cases of Japan, South Korea, and China? It seems that the presence of EPIYA-C motif, especially in strains which have more than one repeat of EPIYA-C can be reinforcement of binding to SHP-2 and is accounted a risk factor for gastric cancer (75,88). In our study, the presence of EPIYA-ABCCC was significantly related with gastric cancer in Iranian population. Moreover, life style, ethnicity, and etc. cause to raise the prevalence of gastric cancer in Iran (81). Finally, it should be noted that our study had several limitations such: high degree of heterogeneity in the analyzed studies, limitation in number of studies, Lack of solidarity between cagA genotypes and other virulence factors with gastrointestinal diseases development. In many of studies it has determined that the simultaneous presence of some alleles of cagA and vacA genes cause increase the risk of gastric cancer in different populations of the world (84). Therefore, further studies will be essential to elucidate the dominant role of cagA genotypes for assessment of susceptibility into gastrointestinal diseases.

5. Conclusions

In the present study, we declared the high prevalence of cagA gene in gastrointestinal diseases of Iranian population. We demonstrated that this gene significantly is related to susceptibility of patients to gastric cancer. Notwithstanding EPIYA-ABD motif is related to increase the risk of gastric cancer in East Asian population, so far no evidence has been found based on identification of EPIYA-ABD in Iranian population, and regarding of high prevalence of gastric cancer in Iran, we are faced with a paradox. This question has also been observed in the Thailand and Malaysian population. Sahara et al. (2012) in their study demonstrated that the frequency of EPIYA-D motif is low in these countries, and this reason justifies the decrease of frequency of gastric cancer in Thai and Malaysian population (34). We observed that there was a significant relationship between EPIYA-ABCCC and gastric cancer in Iranian population. Overall, it can be concluded that the higher number of EPIYA-C copy numbers leads to the higher risk of gastric cancer (55, 88). Therefore, according to our results, it seems that the presence of EPIYA-ABCCC strains of \textit{H. pylori} should be considered as an appropriate marker in prevention of gastric cancer in Iranian population.

Abbreviations

\textit{Helicobacter pylori} (\textit{H. pylori})

Mucosa-associated lymphoid tissue (MALT) lymphoma

Nonsteroidal anti-inflammatory drugs (NSAIDs)

Comprehensive meta-analysis (CMA)

Odds Ratio (ORs)

Confidence intervals (CIs)

Ancestral Europe1 (AE1)

Ancestral Europe2 (AE2)
Declarations

Ethics approval and consent to participate
Not applicable (this paper was provided based on researching in global databases)

Consent for publish
Not Applicable

Availability of data and materials
All data generated or analysed during this study are included in this published article and its supplementary information files

Competing interests
There is no any conflict of interest among the all authors.

Funding
We have not received any funding for this research.

Authors' Contributions
1. MK1 have contributed to design of the work and analysis of data
2. MK2 have drafted the work and substantively revised it
All authors read and approved the final manuscript

Acknowledgements
We appreciate from both Mashhad University of Medical Sciences and Jiroft University of Medical Sciences.

References
1. Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. Journal of cellular physiology. 2019 Dec;234(12):21460-70.
2. Yousefi B, Mohammadiou M, Abdollahi M, Salek Farrokhi A, Karbalaei M, Keikha M, Kokhaei P, Valizadeh S, Rezaie Manesh A, Arabkari V, Eslami M. Epigenetic changes in gastric cancer induction by Helicobacter pylori. Journal of cellular physiology. 2019 Dec;234(12):21770-84.
3. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clinical microbiology reviews. 2006 Jul 1;19(3):449-90.
4. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut. 2001 Sep 1;49(3):347-53.
5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, liver flukes and Helicobacter pylori. International Agency for Research on Cancer; 1994.
6. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: a cancer journal for clinicians. 2005 Mar;55(2):74-108.
7. Khademi F, Sahebkar AH, Vaez H, Arzanlou M, Peeridogaheh H. Characterization of clarithromycin-resistant Helicobacter pylori strains in Iran: A systematic review and meta-analysis. Journal of global antimicrobial resistance. 2017 Sep 1;10:171-8.
8. Atherton JC, Cover TL, Papini E, Telford JL. Vacuolating cytotoxin. InHelicobacter pylori: Physiology and Genetics 2001. ASM Press.
9. Huang JQ, Sridhar S, Hunt RH. Role of Helicobacter pylori infection and non-steroidal anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. The Lancet. 2002 Jan 5;359(9300):14-22.
10. Stolte M, Bayerdorffer E, Morgner A, Alpen B, Wündisch T, Thiede C, Neubauer A. Helicobacter and gastric MALT lymphoma. Gut. 2002 May 1;50(suppl 3):iii19-24.
11. Argueta EA, Moss SF. Treatment of Helicobacter pylori. Current opinion in gastroenterology. 2019 Nov 1;35(6):544-50.

12. Bakhti SZ, Latifi-Navid S, Zahri S. Helicobacter pylori virulence genes and microevolution in host and the clinical outcome. Tehran University Medical Journal. 2014 Dec 1;72(9).

13. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proceedings of the national Academy of Sciences. 2000 Dec 19;97(26):14668-73.

14. Yamaoka Y, Kodama T, Kashima K, Graham DY, Sepulveda AR. Variants of the 3' Region of the cagA Gene in Helicobacter pylori Isolates from Patients with Different H. pylori-Associated Diseases. Journal of clinical microbiology. 1998 Aug 1;36(8):2258-63.

15. Sayehmiri F, Kiani F, Sayehmiri K, Soroush S, Asadollahi K, Alikhani MY, Delpisheh A, Emaneini M, Bogdanovic L, Varzi AM, Zarrilli R. Prevalence of cagA and vacA among Helicobacter pylori-infected patients in Iran: a systematic review and meta-analysis. The Journal of Infection in Developing Countries. 2015 Jul 30;9(07):686-96.

16. Maeda S, Ogura K, Yoshida H, Kanai F, Ikenoue T, Kato N, Shiratori Y, Omata M. Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut. 1998 Mar 1;42(3):338-43.

17. Miehlke S, Kibler K, Kim JG, Figura N, Small SM, Graham DY, Go MF. Allelic variation in the cagA gene of Helicobacter pylori obtained from Korea compared to the United States. American Journal of Gastroenterology. 1996 Jul 1;91(7).

18. Pan ZJ, Van der Hulst RW, Feller M, Xiao SD, Tytgat GN, Dankert J, Van der Ende A. Equally high prevalences of infection with cagA-positive Helicobacter pylori in Chinese patients with peptic ulcer disease and those with chronic gastritis-associated dyspepsia. Journal of Clinical Microbiology. 1997 Jun 1;35(6):1344-7.

19. Shimoyama T, Fukuda S, Tanaka M, Mikami T, Saito Y, Munakata A. High prevalence of the CagA-positive Helicobacter pylori strains in Japanese asymptomatic patients and gastric cancer patients. Scandinavian journal of gastroenterology. 1997 Jan 1;32(5):465-8.

20. Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains. Gut. 1997 Oct 1;41(4):442-51.

21. Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proceedings of the National Academy of Sciences. 1993 Jun 15;90(12):5791-5.

22. Tummuru MK, Cover TL, Blaser MJ. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxicity production. Infection and immunity. 1993 May 1;61(5):399-411.

23. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. Journal of Biological Chemistry. 2002 Mar 1;277(9):6775-8.

24. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fanti WJ, Covacci A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular microbiology. 2002 Feb;43(4):971-80.

25. Tammer I, Brandt S, Hartig R, König W, Backert S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology. 2007 Apr 1;132(4):1309-19.

26. Bridge DR, Blum FC, Jang S, Kim J, Cha JH, Merrell DS. Creation and initial characterization of isogenic Helicobacter pylori CagA EPIYA variants reveals differential activation of host cell signaling pathways. Scientific reports. 2017 Sep 8;7(1):1-4.

27. Satomi S, Yamakawa A, Matsunaga S, Masaki R, Inagaki T, Okuda T, Suto H, Ito Y, Yamazaki Y, Kuriyama M, Keida Y. Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. Journal of gastroenterology. 2006 Jun 1;41(7):668-73.

28. Chomvarin C, Phusri K, Sawadpanich K, Mairiang P, Namwat W, Wongkham C, Hahnvajanawong C. Prevalence of cagA EPIYA motifs in Helicobacter pylori among dyspeptic patients in northeast Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 2012 Jan 1;43(1):105.

29. Yamazaki S, Yamakawa A, Okuda T, Ohtani M, Suto H, Ito Y, Yamazaki Y, Keida Y, Hatakeyama M, Azuma T. Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. Journal of clinical microbiology. 2005 Aug 1;43(8):3906-16.

30. Naito M, Yamazaki T, Tsutsui R, Higashi H, Onoe K, Yamazaki S, Azuma T, Hatakeyama M. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology. 2006 Apr
32. Nguyen LT, Uchida T, Murakami K, Fujioka T, Moriyama M. Helicobacter pylori virulence and the diversity of gastric cancer in Asia. Journal of medical microbiology. 2008 Dec 1;57(12):1445-53.

33. Jones KR, Joo YM, Jang S, Yoo YJ, Lee HS, Chung IS, Olsen CH, Whitmire JM, Merrell DS, Cha JH. Polymorphism in the CagA EPIYA motif impacts development of gastric cancer. Journal of clinical microbiology. 2009 Apr 1;47(4):959-68.

34. Sahara S, Sugimoto M, Vilaichone RK, Mahachai V, Miyajima H, Furuta T, Yamaoka Y. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis. BMC infectious diseases. 2012 Dec;12(1):223.

35. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine. 2009 Aug 18;151(4):W-65.

36. Lee J. Odds ratio or relative risk for cross-sectional data?. International Journal of Epidemiology. 1994 Feb 1;23(1):201-3.

37. Shokrzadeh L, Baghaei K, Yamaoka Y, Dabiri H, Jafari F, Sahebekhtiari N, Tahami A, Sugimoto M, Zojaji H, Zali MR. Analysis of 3′-end variable region of the cagA gene in Helicobacter pylori isolated from Iranian population. Journal of gastroenterology and hepatology. 2010 Jan;25(1):172-7.

38. Saberi S, Douraghi M, Azadmanesh K, Shokrgozar MA, Zeraati H, Hosseini ME, Mohagheghi MA, Parsaadian M, Mohammadi M. A potential association between Helicobacter pylori CagA EPIYA and multimerization motifs with cytokeratin 18 cleavage rate during early apoptosis. Helicobacter. 2012 Oct;17(5):350-7.

39. Ajami A, Shadman M, Rafiei A, Hosseini V, TALEBI BA, Alizadeh A, HOSSEINI KZ. Prevalence of EPIYA motifs in Helicobacter pylori strains isolated from patients with dyspeptic disorders in Northern Iran. Research in molecular medicine. 2013;1(1):30-35.

40. Vaziri F, Peerayeh SN, Alebouyeh M, Molaei M, Maghsoudi N, Zali MR. Determination of Helicobacter pylori cagA EPIYA types in Iranian isolates with different gastroduodenal disorders. Infection, Genetics and Evolution. 2013 Jul 1;17:101-5.

41. Haddadi MH, Bazargani A, Khashei R, Lankarani KB, Moini M, Hosseini SM. Different distribution of Helicobacter pylori EPIYA-cagA motifs and dupA genes in the upper gastrointestinal diseases and correlation with clinical outcomes in iranian patients. Gastroenterology and hepatology from bed to bench. 2015;8(Suppl1):S37.

42. Honarmand-Jahromy S, Siavoshi F, Malekzadeh R, Sattari TN, Latifi-Navid S. Multiple repeats of Helicobacter pylori CagA EPIYA-C phosphorylation sites predict risk of gastric ulcer in Iran. Microbial pathogenesis. 2015 Dec 1;89:87-92.

43. Yadegar A, Alebouyeh M, Zali MR. Analysis of the intactness of Helicobacter pylori cag pathogenicity island in Iranian strains by a new PCR-based strategy and its relationship with virulence genotypes and EPIYA motifs. Infection, Genetics and Evolution. 2015 Oct 1;35:19-26.

44. Farzi N, Yadegar A, Aghdaei HA, Yamaoka Y, Zali MR. Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases. Infection, Genetics and Evolution. 2018 Jun 1;60:26-34.

45. Sarrami S, Latifi-Navid S, Zehri S, Abdi E, Yazdanbod A. Multiple Repeats of Helicobacter pylori CagA C-Terminal Motifs Predict the Risk of Gastric Cancer in Iran. GOVARESH. 2018 Oct 7;23(3):146-51.

46. Sheikh AF, Yadyad MJ, Goodarzi H, Hashemi SJ, Aslani S, Assarzadegan MA, Ranjbar R. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microbial pathogenesis. 2018 Sep 1;122:144-50.

47. Abdollahi H, Hashemzadeh M, Khoshnood M, Savari M. Characterization of Helicobacter pylori genotypes from Iranian patients with gastric clinical diseases: Predominance of vacA s1a and cagA EPIYA-ABC genotypes. Gene Reports. 2019 Sep 1;16:100458.

48. Akopyants NS, Fradkov A, Diatchenko L, Hill JE, Siebert PD, Lukyanov SA, Sverdlov ED, Berg DE. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proceedings of the National Academy of Sciences. 1998 Oct 27;95(22):13108-13.

49. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences. 1996 Dec 10;93(25):14648-53.

50. Selbach M, Moese S, Hurwitz R, Hauck CR, Meyer TF, Backert S. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. The EMBO journal. 2003 Feb 3;22(3):515-28.
51. Beltrán-Anaya FO, Poblete TM, Román-Román A, Reyes S, de Sampredo J, Peralta-Zaragoza O, Rodríguez MÁ, del Moral-Hernández O, Illades-Aguir B, Fernández-Tilapa G. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population. BMC gastroenterology. 2014 Dec;14(1):223.

52. Zhang C, Xu S, Xu D. Risk assessment of gastric cancer caused by Helicobacter pylori using CagA sequence markers. PLoS One. 2012;7(5).

53. Kim SY, Woo CW, Lee YM, Son BR, Kim JW, Chae HB, Youn SJ, Park SM. Genotyping CagA, VacA subtype, IceA1, and BabA of Helicobacter pylori isolates from Korean patients, and their association with gastroduodenal diseases. Journal of Korean medical science. 2001 Oct;16(5):579.

54. Kamogawa-Schifter Y, Yamaoka Y, Uchida T, Beer A, Tribl B, Schöniger-Hekele M, Trauner M, Dolak W. Prevalence of Helicobacter pylori and its CagA subtypes in gastric cancer and duodenal ulcer at an Austrian tertiary referral center over 25 years. PLoS one. 2018;13(5).

55. El Khadir M, Boukhris SA, Benajah DA, El Rhazi K, Ibrahim SI, Abkari M, Harmouch T, Nejjar I, Mahmoud M, Bennani B. VacA and CagA status as biomarker of two opposite end outcomes of Helicobacter pylori infection (gastric Cancer and duodenal ulcer) in a Moroccan population. PLoS one. 2013;19(2):69.

56. Safari F, Murata-Kamiya N, Saito Y, Hatakeyama M. Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proceedings of the National Academy of Sciences. 2011 Sep 6;108(36):14938-43.

57. Bridge DR, Blum FC, Jang S, Kim JH, Cha JH, Merrell DS. Creation and initial characterization of isogenic Helicobacter pylori CagA EPIYA variants reveals differential activation of host cell signaling pathways. Scientific reports. 2017 Sep 8;7(1):1-4.

58. Backert S, Tegtmeier N, Selbach M. The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter. 2010 Jun;15(3):163-76.

59. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proceedings of the National Academy of Sciences. 1999 Dec 7;96(25):14559-64.

60. Suzuki N, Murata-Kamiya N, Suda W, Hattori M, Kanda H, Bingo A, Fujii Y, Maeda S, Koike K, Hatakeyama M. Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein. Scientific reports. 2015 May 6;5:10024.

61. Hayashi T, Morohashi H, Hatakeyama M. Bacterial EPIYA effector proteins recognize the EPIYA motif in Helicobacter pylori vacA. 2013 Mar;15(3):377-85.

62. Yamaoka Y, Orito E, Mizokami M, Gutierrez O, Saitou N, Kodama T, Osato MS, Kim JG, Ramirez FC, Mahachai V, Graham DY. Helicobacter pylori in north and south america before columbus. FEBS letters. 2002 Apr 24;517(1-3):180-4.

63. van Doorn LJ, Schneeberger PM, Nouhan N, Plaisier AP, Quint WG, De Boer WA. Importance of Helicobacter pylori cagA and vacA status for the efficacy of antibiotic treatment. Gut. 2000 Mar 1;46(3):321-6.

64. Sugimoto M, Zali MR, Yamaoka Y. The association of vacA genotypes and Helicobacter pylori-related gastroduodenal diseases in the Middle East. European journal of clinical microbiology & infectious diseases. 2009 Oct 1;28(10):1227-36.
70. Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeier N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers. 2019 Aug;11(8):1163.

71. Li Q, Liu J, Gong Y, Yuan Y. Association of CagA EPIYA-D or EPIYA-C phosphorylation sites with peptic ulcer and gastric cancer risks: a meta-analysis. Medicine. 2017 Apr;96(17).

72. Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004 Aug 1;127(2):514-23.

73. Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I, Murata-Kamiya N, Azuma T, Hatakeyama M. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. Journal of Biological Chemistry. 2005 Jun 17;280(24):23130-7.

74. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews Cancer. 2004 Sep;4(9):688.

75. Rodríguez Gómez ER, Otero Regino W, Monterrey PA, Trespalacios Rangel AA. cagA gene EPIYA motif genetic characterization from Colombian Helicobacter pylori isolates: Standardization of a molecular test for rapid clinical laboratory detection. PloS one. 2020 Jan 10;15(1):e0227275.

76. Beltrán-Anaya FO, Poblete TM, Román-Román A, Reyes S, de Sampedro J, Peralta-Zaragoza O, Rodríguez MÁ, del Moral-Hernández O, Illades-Aguiar B, Fernández-Tilapa G. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population. BMC gastroenterology. 2014 Dec;14(1):223.

77. Batista SA, Rocha GA, Rocha AM, Saraiva IE, Cabral MM, Oliveira RC, Queiroz DM. Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer. BMC microbiology. 2011 Dec;11(1):61.

78. Quiroga AJ, Huertas A, Cómbita AL, Bravo MM. Variación en el número de repeticiones EPIYA-C en la proteína CagA de aislamientos colombianos de Helicobacter pylori y su capacidad para inducir fenotipo colibrí en células epiteliales gástricas. Biomédica. 2010;30(2):251-8.

79. Papadakos KS, Sougleri IS, Mentis AF, Hatziloukas E, Sgouras DN. Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PloS one. 2013;8(2).

80. Roshandel G, Ghanbari-Motlagh A, Partovipour E, Salavati F, Hasanpour-Heidari S, Mohammadi G, Khoshaabi M, Sadjadi A, Davanlou M, Tavangar SM, Abadi H. Cancer incidence in Iran in 2014: results of the Iranian National Population-based Cancer Registry. Cancer epidemiology. 2019 Aug 1;61:50-8.

81. Malekzadeh R, Sotoudeh M, Derakhshan MH, Mikaeli J, Yazdanbod A, Merat S, Yoonessi A, Tavangar M, Abedi BA, Sotoudehmanesh R, Pourshams A. Prevalence of gastric precancerous lesions in Ardabil, a high incidence province for gastric adenocarcinoma in the northwest of Iran. Journal of clinical pathology. 2004 Jan 1;57(1):37-42.

82. Abd M, Hakemi-Vala M, Naji T, Nejadeh AH, Tajik A. Seroepidemiology of the Helicobacter pylori infection among people of Pishva city of Varamin. Iranian Journal of Medical Microbiology. 2015 Jan 10;8(4):20-7.

83. Tadataka Y, Alpers L. Textbook of Gastroentrology, 3rd ed. Philadelphia: Lippincott, Williams & Wilkins,2009; 1396-1420.

84. Ghotaslou R, Leylabadlo HE, Nasiri MJ, Dabiri H, Hashemi A. Risk of gastric cancer in association with Helicobacter pylori different virulence factors: A systematic review and meta-analysis. Microbial pathogenesis. 2018 May 1;118:214-9.

85. Chomvarin C, Phusri K, Sawadpanich K, Maiprang P, Namwor W, Wongkham C, Hahnvajanawong C. Prevalence of cagA EPIYA motifs in Helicobacter pylori among dyspeptic patients in northeast Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 2012 Jan 1;43(1):105.

86. Latifi-Navid S, Ghorashi SA, Siavoshi F, Linz B, Massarat S, Khegay T, Salmanian AH, Shayesteh AA, Masoodi M, Ghanani K, Ganji A. Ethnic and geographic differentiation of Helicobacter pylori within Iran. PloS one. 2010;5(3).

87. Devi SM, Ahmed I, Francalacci P, Hussain MA, Akhter Y, Alvi A, Sechi LA, Mégraud F, Ahmed N. Ancestral European roots of Helicobacter pylori in India. BMC genomics. 2007 Dec 1;8(1):184.

88. Schmidt HM, Goh KL, Fock KM, Hilmi I, Dhamodaran S, Forman D, Mitchell H. Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore. Helicobacter. 2009 Aug;14(4):256-63.
Figure 1

Schematic illustration of search strategy process in current meta-analysis.
Figure 2

Forrest plots of the H. pylori cagA gene and its association with gastrointestinal diseases. A) Representative role of cagA gene in susceptibility to gastric cancer; B) representative role of cagA gene in susceptibility to peptic ulcer.
Figure 3

Distribution of cagA genotypes in different regions of Iran. The image taken from https://commons.wikimedia.org/wiki/File:Iran_location_map.svg. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 4

Neighbor-joining analysis of 68 H. pylori strains in Iran to other worldwide which is retrieved from Latifi-Navid et al., 2010 study (86).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMAChecklistBMGE.doc