Abstract

This paper investigates the linear-quadratic-Gaussian (LQG) mean-field game (MFG) for a class of stochastic delay systems. We consider a large population system in which the dynamics of each player satisfies some forward stochastic differential delay equation (SDDE). The consistency condition or Nash certainty equivalence (NCE) principle is established through an auxiliary mean-field system of anticipated forward-backward stochastic differential equation with delay (AFBSDDE). The wellposedness of such consistency condition system can be further established by some continuation method instead the classical fixed-point analysis. Thus, the consistency condition may be given on arbitrary time horizon. The decentralized strategies are derived which are shown to satisfy the \(\epsilon \)-Nash equilibrium property. Two special cases of our MFG for delayed system are further investigated.

Key words: Anticipated forward-backward stochastic differential equation with delay (AFBSDDE), Continuation method, \(\epsilon \)-Nash equilibrium, Mean-field game, Stochastic differential equation with delay (SDDE).

1 Introduction

Recently, within the context of noncooperative game theory, the dynamic optimization of stochastic large-population system has attracted consistent and intense research attentions through a variety of fields including management science, engineering, mathematical finance and economics, social science, etc. The most special feature of controlled large-population system lies in the existence of considerable insignificant agents whose dynamics and (or) cost functionals are coupled via the state-average across the whole population. To design low-complexity strategies, one efficient methodology is the mean-field game (MFG) theory which enable us to obtain the decentralized control based on the individual own state together with some off-line quantity. The interested readers may refer [10, 17] for the motivation and methodology, and [1, 4–6] for recent progress in mean-field game theory. Besides, some other recent literature include [2, 3, 13–15, 18] for linear-quadratic-Gaussian (LQG) mean-field games of large-population system.

\[^\ast\] N. Li is with the Department of Mathematics, Qilu Normal University, Jinan. N. Li acknowledges the financial support partly by the Project B-Q34X and G-YL04.

\[^\dagger\] S. Wang is with the Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong.
It is remarkable that all agents in above literature are comparably negligible in that they are not able to affect the whole population in separable manner. By contrast, their impacts are imposed in an unified manner through the population state-average. In this sense, all agents can be viewed as negligible peers but they can generate some mass effects via some “unified manner” such as the control (input)-average or state (output)-average. These averages represent some type of impact imposed to other peers.

We point out in above works, all agents’ states are formulated by (forward) stochastic differential equations (SDEs) with the initial conditions as a priori. As a sequel, the agents’ objectives are minimizations of cost functionals involving their terminal states. In some realistic situation, there exist some phenomena in which the state behavior depends not only on the situation at time t, but also on a finite lagged state at $t - \theta$. Moreover, if we use the information which we know to anticipate the future evolution, we can get better results. As the novelty, this paper turns to consider the delay framework in which the agents’ dynamics is characterized by some (forward) stochastic differential equations with delay (SDDEs). It means that the impacts are hardly imposed to each agent immediately. A new type of BSDEs called anticipated BSDEs (ABSDEs) was introduced in [20], which type of BSDEs can be applied to many fields such as optimal control and finance. Based on it, the problems which depend not only the present but also the history were solved by [7]. In the consequent works, the FBSDEs with delay and related LQ problems were studied in [8] and [9]. A kind of stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls was considered in [24]. The forward-backward linear quadratic stochastic optimal control problem with delay was investigated in [11]. And the maximum principle for optimal control of fully coupled forward stochastic differential delayed equations was derived in [12]. Moreover, some other important phenomena with delay were under consideration in [25,26].

To formulate the above problem mathematically, some SDDE should be introduced to characterize the dynamics of the agents. It is remarkable that there exist rich literature concerning the theories and applications of SDDE. Generally, the large population problem with delay is under consideration. We discuss the related mean-field LQG games and derive the decentralized strategies. A stochastic process which relates to the delay term of control is introduced here to be the approximation of the control-average process. An auxiliary mean-field SDDE and a AFBSDDE system are considered and analyzed. Here, the AFBSDE, which is composed by a SDDE and a ABSDE. Further, the AFBSDDDE can be divided into two simple AFBSDEs. In addition, the limit process is related to the wellposedness of a anticipated forward-backward ordinary differential equation with delay (AFBODDE) and a AFBSDE. We also derive the ϵ-Nash equilibrium property of decentralized control strategy with $\epsilon = O(1/\sqrt{N})$.

The rest of this paper is organized as follows. Section 2 formulates the large population LQG games of forward systems with delay. In Section 3, we derive the limiting optimal controls of the track systems and the consistency conditions. Section 4 is devoted to the related ϵ-Nash equilibrium property. Section 5 gives two special cases in this work.

2 Problem formulation

(Ω, \mathcal{F}, P) is a complete probability space on which a standard $(d+m\times N)$-dimensional Brownian motion $\{W^0_t, W^i_t, 1 \leq i \leq N\}_{0 \leq s \leq T}$ is defined, in which a finite time horizon $[0, T]$ is considered for fixed $T > 0$. $\mathcal{F}^{W^0}_t := \sigma\{W^0_{s}, 0 \leq s \leq t\}$, $\mathcal{F}^{W^i}_t := \sigma\{W^i_{s}, 0 \leq s \leq t\}$, $\mathcal{F}^i_t := \sigma\{W^0_{s}, W^i_{s}, 0 \leq s \leq t\}$, $\mathcal{F}^{W^0}_{s}, \mathcal{F}^{W^i}_{s}, 0 \leq s \leq t\}$.
\(s \leq t \). Here, \(\{ \mathcal{F}_t^W \}_{0 \leq t \leq T} \) stands for the common information of all players; while \(\{ \mathcal{F}_t^i \}_{0 \leq t \leq T} \) is the individual information of \(i^{th} \) player. Throughout this paper, \(\mathbb{R}^n \) denotes the \(n\)-dimensional Euclidean space, its usual norm \(\| \cdot \| \) and the usual inner product \(\langle \cdot, \cdot \rangle \). For a given vector or matrix \(M, M^T \) stands for its transpose.

Moreover, we denote the spaces of matrices as follows.

- \(S^d \) : the space of all \(d \times d \) symmetric matrices.
- \(S^d_+ \) : the subspace of all positive semi-definite matrices of \(S^d \).
- \(\hat{S}^d_+ \) : the subspace of all positive definite matrices of \(S^d \).

For any Euclidean space \(\mathbb{R}^n \), we introduce the following notations:

- \(L^2(0,T;\mathbb{R}^n) = \{ g : [0,T] \times \Omega \rightarrow \mathbb{R}^n \mid g(\cdot) \text{ is an } \mathbb{R}^n\text{-valued } \mathcal{F}_t\text{-progressively measurable process such that } \|g\|_{L^2_T}^2 = \mathbb{E} \int_0^T |g(t)|^2 dt < \infty \} \).
- \(L^2(0,T;\mathbb{R}^n) = \{ g : [0,T] \rightarrow \mathbb{R}^n \mid g(\cdot) \text{ is an } \mathbb{R}^n\text{-valued deterministic function such that } \|g\|_{L^2_T}^2 = \int_0^T |g(t)|^2 dt < \infty \} \).
- \(L^\infty(0,T;\mathbb{R}^n) = \{ g : [0,T] \rightarrow \mathbb{R}^n \mid g(\cdot) \text{ is an } \mathbb{R}^n\text{-valued uniformly bounded function} \} \).
- \(C(0,T;\mathbb{R}^n) = \{ g : [0,T] \rightarrow \mathbb{R}^n \mid g(\cdot) \text{ is } \mathbb{R}^n\text{-valued continuous function} \} \).

In this paper, we consider a large population system with \(N \) individual agents, denoted by \(\{ \mathcal{A}_i \}_{1 \leq i \leq N} \). The dynamics of \(\mathcal{A}_i \) satisfies the following controlled stochastic differential equation with delay (SDDE):

\[
\begin{cases}
 dx_i^t = \left[A_i x_i^t + \hat{A}_i x_{i-\delta}^t + B_i u_i^t + \hat{B}_i u_{i-\theta}^t + \frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_i u_j^t \right] dt + \sigma_i dW_i^t + \sigma_i^0 dW_i^t, \quad t \in [0,T], \\
 x_i^0 = a, \quad x_i^t = \xi_i^t, \quad t \in [-\delta,0), \quad u_i^t = \eta_i^t, \quad t \in [-\theta,0),
\end{cases}
\]

(1)

where \(a \) is the initial state of \(\mathcal{A}_i \), \(x_i^t \) denotes the individual state delay, \(u_i^t \) denotes the individual input or control delay. In addition, \(\frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_i u_j^t \) is introduced to denote the input delay of all other agents, imposed on a given agent \(\mathcal{A}_i \). Similar state delay can be found in [22]. Here, for simplicity, we assume all agents are statistically identical (homogeneous) in that they share the same coefficients \((A, \hat{A}, B, \hat{B}, \sigma, \sigma^0) \) and deterministic initial state \(a \). The admissible control strategy \(u^t \in U_t \), where

\[
U_t := \left\{ u^t \mid u^t \in L^2_T(0,T;\mathbb{R}^k) \right\}, \quad 1 \leq i \leq N.
\]

Let \(u = (u^1, \cdots, u^N) \) denotes the set of strategies of all \(N \) agents; \(u^{-i} = (u^1, \cdots, u^{i-1}, u^{i+1},\cdots, u^N) \) the strategies set but excluding that of \(\mathcal{A}_i, 1 \leq i \leq N \). Considering the state and control delay, the cost functional for \(\mathcal{A}_i, 1 \leq i \leq N \) is given by

\[
\mathcal{J}^i(u_i^t, u_{-i}^t) = \frac{1}{2} \mathbb{E} \int_0^T \left[(R_{i} x_i^t, x_i^t) + \langle \hat{R}_i x_{i-\delta}^t, x_{i-\delta}^t \rangle + \langle N_i u_i^t, u_i^t \rangle + \langle \hat{N}_i u_{i-\theta}^t, u_{i-\theta}^t \rangle \right] dt + \frac{1}{2} \mathbb{E} \langle M x_T^i, x_T^i \rangle,
\]

(2)
where \(\bar{R}_t = 0, \ t \in [T, T + \delta], \ \bar{N}_t = 0, \ t \in [T, T + \theta]. \)

For the coefficients of (1) and (2), we set the following assumption:

(H1) \(A_t, \bar{A}_t \in L^\infty(0, T; \mathbb{R}^{n \times n}), B_t, \bar{B}_t \in L^\infty(0, T; \mathbb{R}^{n \times k}), \sigma_t \in L^2(0, T; \mathbb{R}^{n \times m}), \sigma_0^t \in L^2(0, T; \mathbb{R}^{n \times d}), a \in \mathbb{R}^n; \)

(H2) \(R_t, \bar{R}_t \in L^\infty(0, T; S^n), N_t, \bar{N}_t \in L^\infty(0, T; S^k), \) and \(R(\cdot) + \bar{R}(\cdot + \delta) \in S^n, \) for some \(\delta > 0; \) \(N(\cdot) + \bar{N}(\cdot + \theta) \in S^n, \) and the inverse \((N(\cdot) + \bar{N}(\cdot + \theta))^{-1} \) is also bounded for some \(\theta > 0; \) \(M \in S^n. \)

Now, we formulate the large population dynamic optimization problem with delay.

Problem (LD). Find a control strategies set \(\bar{u} = (\bar{u}^1, \ldots, \bar{u}^N) \) which satisfies

\[
J^i(\bar{u}_t^i, \bar{u}_t^i) = \inf_{u_t^i \in U} J^i(u_t^i, \bar{u}_t^i), \quad 0 \leq i \leq N,
\]

where \(\bar{u}^i \) represents \((\bar{u}^1, \ldots, \bar{u}^{i-1}, \bar{u}^{i+1}, \ldots, \bar{u}^N), \) for \(1 \leq i \leq N. \)

3 The limiting optimal control and Nash certainty equivalence (NCE) equation system

To study Problem (LD), an efficient approach is to discuss the associated mean-field games by analyzing the asymptotic behavior when the agent number \(N \) tends to infinity. The key ingredient in this approach is to specify some suitable representation of state-average limit. With the help of such limit representation, we can figure out some auxiliary or tracking problem parameterized by the state-average limit. Based on it, the decentralized strategies of individual agents can thus be derived and we can also determine the state-average limit via some consistency condition. Moreover, the approximate Nash equilibrium property can be verified.

Noting that the agents are homogeneous, thus the optimal controls of \(A_i, 1 \leq i \leq N \) are conditionally independent with identical distribution. Suppose \(\frac{1}{N} \sum_{j=1, j \neq i}^N \bar{B}_t u_{t-\theta}^j \) is approximated by \(m_0^\theta(t) \in F_t^{W_0} \) as \(N \to +\infty. \) Introducing the following auxiliary dynamics of the players,

\[
\begin{align*}
&dx_t^i = [A_t x_t^i + \bar{A}_t x_T^{i-\delta} + B_t u_t^i + \bar{B}_t u_{t-\theta}^i + m_0^\theta(t)] \ dt + \sigma_t dW_t^i + \sigma_0^\theta dW_t^0, \ t \in [0, T], \\
x_0^i = a, \quad x_{\theta}^i = \xi_T^i, \quad t \in [-\delta, 0), \quad u_0^i = \eta_0^i, \quad t \in [-\theta, 0).
\end{align*}
\]

The associated limiting cost functional becomes

\[
J^i(u_t^i) = \frac{1}{2} \mathbb{E} \int_0^T \left[\langle R_t x_t^i, x_t^i \rangle + \langle \bar{R}_t x_T^{i-\delta}, x_T^{i-\delta} \rangle + \langle N_t u_t^i, u_t^i \rangle + \langle \bar{N}_t u_{t-\theta}^i, u_{t-\theta}^i \rangle \right] dt \]

\[
+ \frac{1}{2} \mathbb{E} \langle M x_T^i, x_T^i \rangle.
\]

Thus, we formulate the limiting LQG game with delay (LLD) as follows.
Theorem 3.1 Let \((H1)-(H2)\) hold. The sufficient and necessary condition for the optimal control of \(A_i\) for (LLD) is that \(\bar{u}_i^i\) has the following form
\[
\bar{u}_i^i = -(N_i + \bar{N}_{t+\theta})^{-1} (B_i^\top \bar{y}_i^i + \bar{B}_{t+\theta}^\top E^{F_i}[\bar{y}_{t+\theta}^i]).
\] (7)

Moreover, for any given \(m_0^\theta(t) \in L^2_{\mathcal{F}_t}(-\theta, T; \mathbb{R}^n)\), the stochastic Hamiltonian system
\[
(\mathbb{H})
\]
admits a unique solution \((\bar{x}_i^i, \bar{u}_i^i, \bar{y}_i^i, \bar{z}_i^i, \bar{z}_i^0)\) \(\in L^2_{\mathcal{F}_t}(-\theta, T; \mathbb{R}^n) \times \mathcal{U}_t \times L^2_{\mathcal{F}_t}(-\theta, T; \mathbb{R}^n) \times L^2_{\mathcal{F}_t}(0, T; \mathbb{R}^{n \times m}) \times L^2_{\mathcal{F}_t}(0, T; \mathbb{R}^{n \times d}).\)

Proof The sufficient and necessary condition part could be from some variational calculus and dual representation, which is a straightforward consequence of the stochastic maximum principle in Yu [24]. We omit the proof.

Moreover, under assumption \((H2)\), by the form of \((\mathbb{H})\), our problem is to solve the following fully-coupled AFBSDE,
\[
\begin{align*}
\dot{x}_i^i & = A_i x_i^i + \bar{A}_i x_i^i - B_i (N_i + \bar{N}_{t+\theta})^{-1} (B_i^\top \bar{y}_i^i + \bar{B}_{t+\theta}^\top E^{F_i}[\bar{y}_{t+\theta}^i]) \\
&\quad - \bar{B}_i (N_{t+\theta} + \bar{N}_{t+\theta})^{-1} (B_i^\top \bar{y}_i^i + \bar{B}_{t+\theta}^\top E^{F_i}[\bar{y}_{t+\theta}^i]) + m_0^\theta(t)) \ dt + \sigma_i^0 dW_t^i + \sigma_i^0 dW_t^0, \\
\dot{y}_i^0 & = - [A_i^\top \bar{y}_i^i + \bar{A}_{t+\theta}^\top E^{F_i}[\bar{y}_{t+\theta}^i] + (R_i + \bar{R}_{t+\theta}) \bar{x}_i^i] \ dt + \bar{z}_i^0 dW_t^i + \bar{z}_i^0 dW_t^0, \ t \in [0, T], \\
\bar{x}_0^i & = a, \quad \bar{x}_i^i = \xi_i^i, \quad t \in [-\delta, 0), \\
\bar{y}_T^i & = M x_T^i, \quad \bar{y}_0^i = 0, \quad t \in (T, T + (\delta \lor \theta)].
\end{align*}
\] (8)

Applying the classic “continuation method” which was proposed in [16], [21], the proof is similar as in the Appendix of [9], the above linear AFBSDE \((\mathbb{H})\) has a unique solution. So the Hamiltonian system \((\mathbb{H})\) admits a unique solution. \(\square\)
For the further studying, consider the following two AFBSDDEs which are fully-coupled in states,

\[
\begin{align*}
 dx_t^{i,1} &= \left[A_t x_t^{i,1} + \tilde{A}_t x_{t-}^{i,1} - B_t (N_t + \tilde{N}_{t-\theta})^{-1}(B_t^T y_t^{i,1} + \tilde{B}_{t+\theta}^T \mathbb{E}^{\mathcal{F}_{t+\theta}}[y_{t+\theta}]) \right. \\
 &\quad \left. - \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1}(B_{t-\theta}^T y_{t-\theta}^{i,1} + \tilde{B}_{t-\theta}^T \mathbb{E}^{\mathcal{F}_{t-\theta}}[y_{t-\theta}]) \right] dt + \sigma_t dW_t, \\
 dy_t^{i,1} &= - \left[A_t^T x_t^{i,1} + \tilde{A}_t^T x_{t-}^{i,1} + (R_t + \tilde{R}_{t+\delta}) x_t^{i,1} \right] dt + z_t^i dW_t, \quad t \in [0, T], \\
 x_0^{i,1} &= a^{i,1}, \quad x_{t-}^{i,1} = \xi_t^{i,1}, \quad t \in [-\delta, 0), \\
 y_T^{i,1} &= M x_T^{i,1}, \quad y_0^{i,1} = 0, \quad t \in (T, T + (\delta \lor \theta)],
\end{align*}
\]

and

\[
\begin{align*}
 dx_t^{i,2} &= \left[A_t x_t^{i,2} + \tilde{A}_t x_{t-}^{i,2} - B_t (N_t + \tilde{N}_{t-\theta})^{-1}(B_t^T y_t^{i,2} + \tilde{B}_{t+\theta}^T \mathbb{E}^{\mathcal{F}_{t+\theta}}[y_{t+\theta}]) \right. \\
 &\quad \left. - \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1}(B_{t-\theta}^T y_{t-\theta}^{i,2} + \tilde{B}_{t-\theta}^T \mathbb{E}^{\mathcal{F}_{t-\theta}}[y_{t-\theta}]) \right] dt + \sigma_t^0 dW_t, \\
 dy_t^{i,2} &= - \left[A_t^T x_t^{i,2} + \tilde{A}_t^T x_{t-}^{i,2} + (R_t + \tilde{R}_{t+\delta}) x_t^{i,2} \right] dt + z_t^0 dW_t, \quad t \in [0, T], \\
 x_0^{i,2} &= a^{i,2}, \quad x_{t-}^{i,2} = \xi_t^{i,2}, \quad t \in [-\delta, 0), \\
 y_T^{i,2} &= M x_T^{i,2}, \quad y_0^{i,2} = 0, \quad t \in (T, T + (\delta \lor \theta)],
\end{align*}
\]

where \(a^{i} = a^{i,1} + a^{i,2}, \xi_t^{i} = \xi_t^{i,1} + \xi_t^{i,2} \). It follows from the Appendix in [8] that (9) and (10) admit the unique solutions \((x_t^{i,1}, y_t^{i,1}, z_t^{i}) \in L^2_{\mathcal{F}_t^W} ([-\delta, T]; \mathbb{R}^n) \times L^2_{\mathcal{F}_t^W} ([-\delta, T]; \mathbb{R}^{n \times m})\) and \((x_t^{i,2}, y_t^{i,2}, z_t^0) \in L^2_{\mathcal{F}_t^W} ([-\delta, T]; \mathbb{R}^n) \times L^2_{\mathcal{F}_t^W} ([-\delta, T]; \mathbb{R}^{n \times m}) \times L^2_{\mathcal{F}_t^W} (0, T; \mathbb{R}^{n \times d})\). Then we have the following lemma.

Lemma 3.1 Let (H1)-(H2) hold, if \((x_t^{i,1}, y_t^{i,1}, z_t^{i}) \) is the solution of (9) and \((x_t^{i,2}, y_t^{i,2}, z_t^0) \) is the solution of (10), then \((x_t^{i,1} + x_t^{i,2}, y_t^{i,1} + y_t^{i,2}, z_t^{i} + z_t^0) \) is the solution of (8). \(\square\)

Proof It is easily to check that \(\bar{x}_t = x_t^{i,1} + x_t^{i,2}, \bar{y}_t = y_t^{i,1} + y_t^{i,2}, \bar{z}_t = z_t^{i} + z_t^0 \) are the solutions of AFBSDDE (8), then we can get the conclusion.

In the following part, we will point out the essence of the limiting stochastic process \(m_0^\theta(t)\). Firstly, we introduce the following AFBODDE and AFBSDDE,

\[
\begin{align*}
 d[\mathbb{E} x_t^{i}] &= \left[A_t[\mathbb{E} x_t^{i}] + \tilde{A}_t[\mathbb{E} x_{t-}^{i}] - B_t(N_t + \tilde{N}_{t-\theta})^{-1}(B_t^T [\mathbb{E} y_t^{i}] + \tilde{B}_{t+\theta}^T [\mathbb{E} y_{t+\theta}]) \right. \\
 &\quad \left. - \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1}(B_{t-\theta}^T [\mathbb{E} y_{t-\theta}^{i}] + \tilde{B}_{t-\theta}^T [\mathbb{E} y_{t-\theta}]) \right] dt, \\
 d[\mathbb{E} y_t^{i}] &= - \left[A_t^T [\mathbb{E} y_t^{i}] + \tilde{A}_t^T [\mathbb{E} y_{t-}^{i}] + (R_t + \tilde{R}_{t+\delta}) [\mathbb{E} x_t^{i}] \right] dt, \quad t \in [0, T], \\
 \mathbb{E} x_0^{i} &= a^{i}, \quad \mathbb{E} x_{t-}^{i} = \xi_t^{i}, \quad t \in [-\delta, 0), \\
 \mathbb{E} y_T^{i} &= M [\mathbb{E} x_T^{i}], \quad \mathbb{E} y_0^{i} = 0, \quad t \in (T, T + (\delta \lor \theta)],
\end{align*}
\]

6
and

\[
\begin{align*}
 dx_t^2 &= \left[A_t x_t^2 + \tilde{A}_t x_{t-\delta}^2 - B_t (N_t + \tilde{N}_t) - (B_t^\top y_t^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,0}}[y_{t+\theta}]) \
 &\quad - (\tilde{B}_t + \tilde{B}_t) (N_t - \tilde{N}_t) - (B_t^\top y_{t-\theta}^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,0}}[y_t^2]) \
 &\quad - \tilde{B}_t (N_t - \tilde{N}_t) - (B_t^\top [\mathbb{E} y_{t-\theta}^2] + \tilde{B}_t^\top [\mathbb{E} y_t^2]) \right] dt + \sigma_t^0 dW_t^0, \\
 dy_t^2 &= \left[A_t^2 y_t^2 + \tilde{A}_t^2 \mathbb{E}^{F_{t,0}}[y_{t+\delta}] + (R_t + \tilde{R}_t) x_t^2 \right] dt + z_t^0 dW_t^0, \quad t \in [0, T], \\
 x_0^2 &= \alpha^2, \quad x_t = \xi_t, \quad t \in [-\delta, 0), \\
 y_T^2 &= M \alpha^2, \quad y_0^2 = 0, \quad t \in (T, T + (\delta \vee \theta)].
\end{align*}
\]

(12)

Proposition 3.1 $m_0^\theta(t)$ is in $L^2_{F_{t,0}}(-\theta, T + (\delta \vee \theta); \mathbb{R}^n)$ and it is of the following form,

\[
m_0^\theta(t) = -\tilde{B}_t (N_t - \tilde{N}_t) - (B_t^\top y_{t-\theta}^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,0}}[y_t^2]),
\]

where y_t^1 is the solution of (11) and y_t^2 is the solution of (12).

Proof It follows from (9) and (10) that $y_t^{i,1}$ is independent of W_t^0, y_t^2 is independent of W_t^j, for $1 \leq j \leq N$, respectively. Thus, we have

\[
\mathbb{E}^{F_{t,\theta}}[y_t^{i,1}] = \mathbb{E}^{F_{t,\theta}}[y_t^{j,1}], \quad \mathbb{E}^{F_{t,\theta}}[y_t^2] = \mathbb{E}^{F_{t,\theta}}[y_t^2].
\]

(13)

By virtue of Lemma 3.1, we obtain

\[
m_0^\theta(t) = \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1, j \neq i}^N \tilde{u}_t^{j-\theta}
\]

\[
= -\tilde{B}_t \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1, j \neq i}^N (N_t - \tilde{N}_t) - (B_t^\top y_{t-\theta}^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,\theta}}[y_t^2])
\]

\[
= -\tilde{B}_t (N_t - \tilde{N}_t) \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1, j \neq i}^N (B_t^\top y_{t-\theta}^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,\theta}}[y_{t-\theta}^2] + \tilde{B}_t^\top \mathbb{E}^{F_{t,\theta}}[y_t^2])
\]

\[
= -\tilde{B}_t (N_t - \tilde{N}_t) \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1, j \neq i}^N (B_t^\top y_{t-\theta}^2 + \tilde{B}_t^\top \mathbb{E}^{F_{t,\theta}}[y_{t-\theta}^2] + \tilde{B}_t^\top \mathbb{E}^{F_{t,\theta}}[y_t^2])
\]

(14)
Remark 3.1 In what follows (11) - (12) are called the Nash certainty equivalence (NCE) equation system which can be used to determine the control state-average limit $m_0(t)$. Note that $m_0(t)$ plays an important role due to the dependence of decentralized strategy $\bar{u}_i(t)$ on it. We can see that \bar{u}_i in (7) is dependent on the solution \bar{y}_i^t and $\bar{y}^i_{t+\theta}$ of (6), and \bar{y}_i^t, $\bar{y}^i_{t+\theta}$ are dependent on $m_0(t)$.

Hence the result. \hfill \Box

4 ϵ-Nash equilibrium analysis

In above sections, we obtained the optimal control $\bar{u}_i^t, 1 \leq i \leq N$ of Problem (LLD) through the consistency condition system. Now, we turn to verify the ϵ-Nash equilibrium of Problem (LD). To start, we first present the definition of ϵ-Nash equilibrium.

Definition 4.1 A set of controls $u_i^t \in U_i, 1 \leq i \leq N$, for N agents is called to satisfy an ϵ-Nash equilibrium with respect to the costs $J^i, 1 \leq i \leq N$, if there exists $\epsilon \geq 0$ such that for any fixed $1 \leq i \leq N$, we have

$$J^i(\bar{u}_i^t, \bar{u}_i^{-i}) \leq J^i(u_i^t, \bar{u}_i^{-i}) + \epsilon,$$

(15)

when any alternative control $u_i^t \in U_i$ is applied by A_i.

Remark 4.1 If $\epsilon = 0$, then Definition 4.1 is reduced to the usual Nash equilibrium.

Now, we state the main result of this paper and its proof will be given later.

Theorem 4.1 Under (H1)-(H2), $(\bar{u}_1, \bar{u}_2, \cdots, \bar{u}_N)$ satisfies the ϵ-Nash equilibrium of (LD). Here, for $1 \leq i \leq N$, \bar{u}_i^t is given by (7).

The proof of Theorem 4.1 needs several lemmas which are presented later. Denoting \bar{x}_i^t is the centralized state trajectory with respect to \bar{u}_i^t; \hat{x}_i^t is the decentralized one with respect to \bar{u}_i^t. The cost functionals for (LD) and (LLD) are denoted by $J^i(\bar{u}_i^t, \bar{u}_i^{-i})$ and $J^i(\bar{u}_i^t)$, respectively.

Lemma 4.1

$$\sup_{1 \leq i \leq N} \left[\sup_{0 \leq t \leq T} \mathbb{E} \left| \frac{1}{N-1} \sum_{j=1, j \neq i}^{N} \hat{B}_t \bar{u}_{i-\theta}^j - m_0^\theta(t) \right|^2 \right] = O \left(\frac{1}{N} \right),$$

(16)

where \bar{u}_i^j is given by (7).
Proof. By (17), (13) and Lemma 3.1 we get

\[
\frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_t u_{t-\theta}^j = \frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_t \left\{ - (N_{t-\theta} + \tilde{N}_t)^{-1} (B_{t-\theta}^\top \tilde{y}_{t-\theta} + \hat{B}_t^\top \mathbb{E}^{F_{t-\theta}} [\tilde{y}_{t-\theta}]) \right\} \\
= - \hat{B}_t (N_{t-\theta} + \tilde{N}_t)^{-1} \left\{ B_{t-\theta}^\top \left(\frac{1}{N-1} \sum_{j=1,j \neq i}^N y_{t-\theta}^{j,1} + y_{t-\theta}^2 \right) \right\} + \hat{B}_t^\top \left(\frac{1}{N-1} \sum_{j=1,j \neq i}^N \mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^{j,1}] + \mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^2] \right). \tag{17}
\]

Combining (17) and (14), we obtain

\[
\frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_t u_{t-\theta}^j - m_0(t) \\
= - \hat{B}_t (N_{t-\theta} + \tilde{N}_t)^{-1} \left\{ B_{t-\theta}^\top \left(\frac{1}{N-1} \sum_{j=1,j \neq i}^N y_{t-\theta}^{j,1} - \mathbb{E} y_{t-\theta} \right) \right\} + \hat{B}_t^\top \left(\frac{1}{N-1} \sum_{j=1,j \neq i}^N \mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^{j,1}] - \mathbb{E} y_{t-\theta}^1 \right). \tag{18}
\]

Then it follows from (H1) that

\[
\mathbb{E} \left| \frac{1}{N-1} \sum_{j=1,j \neq i}^N \hat{B}_t u_{t-\theta}^j - m_0(t) \right|^2 \\
\leq C_1 \left\{ \mathbb{E} \left| \frac{1}{N-1} \sum_{j=1,j \neq i}^N y_{t-\theta}^{j,1} - \mathbb{E} y_{t-\theta} \right|^2 + \mathbb{E} \left| \frac{1}{N-1} \sum_{j=1,j \neq i}^N \mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^{j,1}] - \mathbb{E} y_{t-\theta}^1 \right|^2 \right\},
\]

where \(C_1 \) is a positive constant. Recall (5) that \(y_{t-\theta}^{j,1} \in L^2 \mathcal{F}_{t-\theta}^W (-\theta, T + (\delta \vee \theta); \mathbb{R}^n) \). Thus \(y_{t-\theta}^{j,1} \) is independent of \(y_{t-\theta}^{k,1} \), for \(j \neq k \), and we have

\[
\mathbb{E} (y_{t-\theta}^{j,1} - \mathbb{E} y_{t-\theta}^1)(y_{t-\theta}^{k,1} - \mathbb{E} y_{t-\theta}^1) = 0
\]

and

\[
\mathbb{E} (\mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^{j,1}] - \mathbb{E} y_{t-\theta}^1)(\mathbb{E}^{F_{t-\theta}} [y_{t-\theta}^{k,1}] - \mathbb{E} y_{t-\theta}^1) = 0.
\]

Hence the result. \(\square \)

Lemma 4.2

\[
\sup_{1 \leq i \leq N} \left[\sup_{0 \leq t \leq T} \mathbb{E} |\tilde{x}_i^t - \hat{x}_i^t|^2 \right] = O \left(\frac{1}{N} \right), \tag{19}
\]

\[
\sup_{1 \leq i \leq N} \left[\sup_{0 \leq t \leq T} \mathbb{E} |\tilde{x}_i^{t-\delta} - \hat{x}_i^{t-\delta}|^2 \right] = O \left(\frac{1}{N} \right). \tag{20}
\]
Proof. For $\forall 1 \leq i \leq N$, by (11) and (13), we have
\[
\begin{cases}
 d(\hat{x}_t^i - \hat{\bar{x}}_t^i) = [A_t(\hat{x}_t^i - \hat{\bar{x}}_t^i) + \tilde{A}_t(\hat{x}_t^i - \hat{\bar{x}}_t^i) + \frac{1}{N-1} \sum_{j=1, j \neq i}^{N} \hat{B}_t \hat{u}_t^j - m_0^t(t)] dt, \ t \in [0, T], \\
 \hat{x}_0^i - \hat{\bar{x}}_0^i = 0, \ \hat{x}_t^i - \hat{\bar{x}}_t^i = 0, \ \ t \in [-\delta, 0).
\end{cases}
\]
Taking integral from 0 to T, we get (20).

By Lemma 4.1 (H1) and Gronwall’s inequality, (19) is obtained.

In addition,
\[
\sup_{0 \leq \tau \leq T-\delta} \mathbb{E}|\hat{x}_t^i - \hat{x}_t^j|^2 = \sup_{0 \leq \tau \leq T} \mathbb{E}|\hat{x}_t^i - \hat{x}_t^j|^2 \leq \sup_{0 \leq \tau \leq T} \mathbb{E}|\hat{x}_t^i - \hat{x}_t^j|^2.
\]
Then we get (20). \qed

Lemma 4.3

\[
\sup_{1 \leq i \leq N} \left[\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 - |\hat{x}_t^j|^2 \right] = O\left(\frac{1}{\sqrt{N}}\right), \quad (21)
\]
\[
\sup_{1 \leq i \leq N} \left[\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 - |\hat{x}_t^j|^2 \right] = O\left(\frac{1}{\sqrt{N}}\right), \quad (22)
\]
\[
\left|J'(\hat{u}_t^i, \hat{u}_t^j) - J'(\hat{u}_t^i)\right| = O\left(\frac{1}{\sqrt{N}}\right), \quad 1 \leq i \leq N. \quad (23)
\]

Proof. For $\forall 1 \leq i \leq N$, it is easy to see $\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 < +\infty$, $\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 < +\infty$. Applying Cauchy-Schwarz inequality and (19), we have
\[
\sup_{0 \leq t \leq T} \mathbb{E}
\left[|\hat{x}_t^i|^2 - |\hat{x}_t^j|^2\right]
\leq \sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 + 2 \left(\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i|^2 \right)^{\frac{1}{2}} \left(\sup_{0 \leq t \leq T} \mathbb{E}|\hat{x}_t^i - \hat{x}_t^j|^2 \right)^{\frac{1}{2}}
= O\left(\frac{1}{\sqrt{N}}\right).
\]
Similarly, (22) is obtained. Then noting (H2), we have
\[
\left|J'(\hat{u}_t^i, \hat{u}_t^j) - J'(\hat{u}_t^i)\right|
\leq C_2 \mathbb{E} \int_0^T \left(|\hat{x}_t^i|^2 - |\hat{x}_t^j|^2 + |\hat{x}_t^i|^2 - |\hat{x}_t^j|^2 \right) dt + C_2 \mathbb{E}|\hat{x}_T^i|^2 - |\hat{x}_T^j|^2
= O\left(\frac{1}{\sqrt{N}}\right).
\]
which implies (23). Here, C_2 is a positive constant.

Until now, we have addressed some estimates of states and costs corresponding to control \bar{u}_i^i, $1 \leq i \leq N$. Next we will focus on the ϵ-Nash equilibrium for (LD). For any fixed i, $1 \leq i \leq N$, consider an alternative control $u^i_t \in U_i$ for A_i and introduce the dynamics

$$
\begin{aligned}
\frac{dl_t^i}{dt} &= \left[A_i l_t^i + A_i l_{\delta} + B_i u_t^i + B_i u_{\theta} + \frac{1}{N-1} \sum_{\kappa=1, \kappa \neq i}^N \hat{B}_t \bar{u}_i^\kappa \right] dt + \sigma_t dW_t^i + \sigma_t^0 dW_t^0, \\
\bar{l}_0^i &= a, \quad \bar{l}_t^i = \xi_t^i, \quad t \in [-\delta, 0), \quad u_t^i = \eta_t^i, \quad t \in [-\theta, 0),
\end{aligned}
$$

whereas other players keep the control $\bar{u}_j^j, 1 \leq j \leq N, j \neq i$, i.e.,

$$
\begin{aligned}
\frac{dl_t^j}{dt} &= \left[A_i l_t^j + A_i l_{\delta} + B_i \bar{u}_t^j + B_i u_{\theta} + \frac{1}{N-1} \hat{B}_t \left(\sum_{\kappa=1, \kappa \neq i,j}^N \bar{u}_i^\kappa + u_{\theta} \right) \right] dt + \sigma_t dW_t^j + \sigma_t^0 dW_t^0, \\
\bar{l}_0^j &= a, \quad \bar{l}_t^j = \xi_t^j, \quad t \in [-\delta, 0), \quad u_t^j = \eta_t^j, \quad t \in [-\theta, 0).
\end{aligned}
$$

The dynamics of A_i with respect to u_t^i for (LLD) is

$$
\begin{aligned}
\frac{dp_t^i}{dt} &= \left[A_i p_t^i + A_i p_{\delta} + B_i \bar{u}_t^j + B_i u_{\theta} + m_0(t) \right] dt + \sigma_t dW_t^i + \sigma_t^0 dW_t^0, \\
p_0^i &= a, \quad p_t^i = \xi_t^i, \quad t \in [-\delta, 0), \quad u_t^i = \eta_t^i, \quad t \in [-\theta, 0).
\end{aligned}
$$

We have the following lemma.

Lemma 4.4

$$
\begin{aligned}
\sup_{1 \leq i \leq N} \sup_{0 \leq t \leq T} \mathbb{E} \left[|l_t^i - p_t^i|^2 \right] &= O \left(\frac{1}{N} \right), \\
\sup_{1 \leq i \leq N} \sup_{0 \leq t \leq T} \mathbb{E} \left[|l_{\delta}^i - p_{\delta}^i|^2 \right] &= O \left(\frac{1}{N} \right), \\
\sup_{1 \leq i \leq N} \sup_{0 \leq t \leq T} \mathbb{E} \left[|l_t^0|^2 - |p_t^0|^2 \right] &= O \left(\frac{1}{N} \right), \\
\sup_{1 \leq i \leq N} \sup_{0 \leq t \leq T} \mathbb{E} \left[|l_{\delta}^0|^2 - |p_{\delta}^0|^2 \right] &= O \left(\frac{1}{N} \right), \\
\left| J^i(u_t^i, \bar{u}_t^i) - J^i(u_t^i) \right| &= O \left(\frac{1}{N} \right), \quad 1 \leq i \leq N.
\end{aligned}
$$

Proof. Using the same analysis to the proof of Lemma 4.2 by (24)-(25) and noting Lemma 4.1, we get (26) and (27). By virtue of (26) and (27), (28) and (29) follows by applying Cauchy-Schwarz inequality. Same to Lemma 4.3 (30) is obtained. \(\square\)
Proof of Theorem 4.1: Now, we consider the ϵ-Nash equilibrium for $A_i, 1 \leq i \leq N$. It follows from (23) and (30) that

$$J^i(\bar{u}^i_t, \bar{u}^{-i}_t) = J^i(u^i_t) + O\left(\frac{1}{\sqrt{N}}\right)$$

$$\leq J^i(u^i_t) + O\left(\frac{1}{\sqrt{N}}\right)$$

$$= J^i(u^i_t, \bar{u}^{-i}_t) + O\left(\frac{1}{\sqrt{N}}\right).$$

Thus, Theorem 4.1 follows by taking $\epsilon = O\left(\frac{1}{\sqrt{N}}\right)$.

5 Special cases

In this section, we will study some special cases to show the essence of MFG problem with delay.

Case I: In this case, we will give the "closed-loop" form of the ϵ-Nash equilibrium. For simplicity, let $\tilde{A}_t = \tilde{B}_t = 0$ in system (11), then we study the following system,

$$\begin{align*}
\begin{cases}
 dx^i_t &= \left[A_t x^i_t + B_t u^i_t + \frac{1}{N-1} \sum_{j=1,j\neq i}^N \tilde{B}_t u^j_{t-\theta} \right] dt + \sigma_t dW^i_t + \sigma^0_t dW^0_t,
 &t \in [0,T], \\
 x_0 &= a,
\end{cases}
\end{align*}$$

and the cost functional is still (2).

Now, we consider the following FBSDE

$$\begin{align*}
\begin{cases}
 d\tilde{x}^i_t &= \left[A_t \tilde{x}^i_t - B_t (N_t + \tilde{N}_{t+\theta})^{-1} B_t^\top \tilde{y}^i_t + m_0^\theta(t) \right] dt + \sigma_t dW^i_t + \sigma^0_t dW^0_t, \\
 dy^i_t &= -\left[A_t^\top \tilde{x}^i_t + (R_t + \tilde{R}_{t+\delta}) x^i_t \right] dt + \tilde{z}^i_t dW^i_t + \tilde{z}^0_t dW^0_t, \\
 \tilde{x}^i_0 &= a, \\
 \tilde{y}^i_T &= M \tilde{x}^i_T,
\end{cases}
\end{align*}$$

In system (32), we could deduce the $m_0^\theta(t)$ as follows,

$$m_0^\theta(t) = \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1,j\neq i}^N \tilde{u}^j_{t-\theta}$$

$$= -\tilde{B}_t (N_{t-\theta} + \tilde{N}_t)^{-1} B_{t-\theta}^\top \lim_{N \to \infty} \frac{1}{N-1} \sum_{j=1,j\neq i}^N \tilde{y}^j_{t-\theta}$$

$$= -\tilde{B}_t (N_{t-\theta} + \tilde{N}_t)^{-1} B_{t-\theta}^\top \mathbb{E}^{F_{t-\theta}} \tilde{y}_{t-\theta}.$$
where \tilde{y}_t satisfies the following FBSDDE,

$$
\begin{aligned}
&\tilde{x}_t = \left[A_t \tilde{x}_t - B_t(N_t + \tilde{N}_{t+\theta})^{-1} B^\top_t \tilde{y}_t - \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1} B^\top_{t-\theta} \E^{F_{t-\theta}}[\tilde{y}_{t-\theta}] \right] dt + \sigma_t dW_t \\
&\qquad\quad + \sigma^0_t dW^0_t, \\
&d\tilde{y}_t = -\left[A^\top_t \tilde{y}_t + (R_t + \tilde{R}_{t+\delta}) \tilde{x}_t \right] dt + \tilde{z}_t dW_t + \tilde{z}^0_t dW^0_t, \quad t \in [0, T],
\end{aligned}
$$

(33)

Then, FBSDDE (32) could be rewritten as follows

$$
\begin{aligned}
&\tilde{x}_t = \left[A_t \tilde{x}_t - B_t(N_t + \tilde{N}_{t+\theta})^{-1} B^\top_t \tilde{y}_t - \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1} B^\top_{t-\theta} \E^{F_{t-\theta}}[\tilde{y}_{t-\theta}] \right] dt + \sigma_t dW_t \\
&\qquad\quad + \sigma^0_t dW^0_t, \\
&d\tilde{y}_t = -\left[A^\top_t \tilde{y}_t + (R_t + \tilde{R}_{t+\delta}) \tilde{x}_t \right] dt + \tilde{z}_t dW_t + \tilde{z}^0_t dW^0_t, \quad t \in [0, T],
\end{aligned}
$$

(34)

FBSDE (31) could be decoupled by the following Riccati equation and ordinary differential equation

$$
\begin{aligned}
&\dot{P}_t + P_t A_t + A^\top_t P_t + R_t + \tilde{R}_{t+\delta} - P_t \tilde{B}_t(N_t + \tilde{N}_{t+\theta})^{-1} B^\top_t P_t = 0, \\
&P_T = M,
\end{aligned}
$$

and

$$
\begin{aligned}
&\dot{\phi}_t + [A_t - B_t(N_t + \tilde{N}_{t+\theta})^{-1} B^\top_t P_t] \phi_t - P_t \tilde{B}_t(N_{t-\theta} + \tilde{N}_t)^{-1} B^\top_{t-\theta} \E^{F_{t-\theta}}[\tilde{y}_{t-\theta}] = 0, \\
&\phi_T = 0.
\end{aligned}
$$

We obtain the optimal feedback is

$$
\bar{u}_t = -(N_t + \tilde{N}_{t+\theta})^{-1} B^\top_t (P_t \bar{x}_t + \phi_t).
$$

From Theorem 1.1 we claim that $(\bar{u}_1, \bar{u}_2, \cdots, \bar{u}_N)$ is the ϵ-Nash equilibrium of the Problem (31), (2).

Case II: Now, we consider another special case. Let $A_t = B_t = 0$ in system (1), moreover, we assume $\delta = \theta$, then we study the following system

$$
\begin{aligned}
&dx_t = \left[\tilde{A}_t x_{t-\delta} + \tilde{B}_t u_{t-\delta} + \frac{1}{N-1} \sum_{j=1,j\neq i}^N \tilde{B}_t u_{t-\delta}^j \right] dt + \sigma_t dW_t + \sigma^0_t dW^0_t, \quad t \in [0, T],
\end{aligned}
$$

(35)

and the cost functional is

$$
\mathcal{J}(u^i, u^{-i}) = \frac{1}{2} \E \int_0^T \left[N_t(u_t^i)^2 + \tilde{N}_t(u_{t-\theta})^2 \right] dt + M \bar{x}_T.
$$
We will consider the following system instead of (35)
\[
\begin{aligned}
 dx^i_t &= \left[\tilde{A}_t x_{t-\delta} + \tilde{B}_t u^i_{t-\delta} + m^i(t) \right] dt + \sigma_t dW^i_t + \sigma^0_t dW^0_t, \quad t \in [0, T], \\
 x^i_0 &= a, \quad x^i_t = \xi^i_t, \quad t \in [-\delta, 0], \\
 u^i_t &= \eta^i_t, \quad t \in [-\theta, 0].
\end{aligned}
\]
(36)
and the adjoint equation is
\[
\begin{aligned}
 dy^i_t &= -\tilde{A}_{t+\delta} \mathbb{E}[F_i^j y^j_{t+\delta}] dt + z^i_t dW^i_t - z^0_t dW^0_t, \quad t \in [0, T], \\
 y^i_T &= -M, \\
 y^i_t &= 0, \quad t \in (T, T + (\delta \land \theta)).
\end{aligned}
\]
(37)
We could solve (37) explicitly by applying the method in [24], which can also be found in [19].

(i) When \(t \in [T - \delta, T] \), the ABSDE (37) becomes
\[
\begin{aligned}
 \bar{y}^i_t &= -M - \int_t^T z^i_s dW^i_s - \int_t^T z^0_s dW^0_s, \quad t \in [T - \delta, T].
\end{aligned}
\]
We could solve
\[
\begin{aligned}
 \bar{y}_t &= -M, \quad \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - \delta, T].
\end{aligned}
\]
(ii) If we solve (37) on the interval \([T - k\delta, T - (k - 1)\delta](k = 1, 2, 3, \cdots)\), and the solution \(\{y^i_t, \bar{z}^i_t, \bar{z}^0_t; T - k\delta \leq t \leq T - (k - 1)\delta\} \) is Malliavin differentiable, then we could solve the (37) on the next interval \([T - (k + 1)\delta, T - k\delta]\),
\[
\begin{aligned}
 \bar{y}^i_t &= \mathbb{E}[\bar{y}_{T-k\delta}] + \int_t^{T-k\delta} \tilde{A}_s \mathbb{E}[F_i^j y^j_{s+\delta}] ds,
\end{aligned}
\]
and
\[
\begin{aligned}
 \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - (k + 1)\delta, T - k\delta].
\end{aligned}
\]
The optimal control is
\[
\begin{aligned}
 \bar{u}^i_t &= -\left(N_t + \bar{N}_{t+\delta} \right)^{-1} \tilde{B}_{t+\delta} \mathbb{E}[F_i^j y^j_{t+\delta}].
\end{aligned}
\]
So the \(\epsilon \)-Nash equilibrium is \((\bar{u}^1_t, \bar{u}^2_t, \cdots, \bar{u}^N_t) \).

Next, we consider a special case that the coefficients are all constants: \(\tilde{A}_t = \tilde{A}, \tilde{B}_t = \tilde{B}, \quad M = 1, N_t = N, \tilde{N}_t = N, \) then the solution of (37) as follows,
\[
\begin{aligned}
 \bar{y}^i_{t+\delta} &= 0, \quad \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - \delta, T]; \\
 \bar{y}^i_{t+\delta} &= -1, \quad \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - 2\delta, T - \delta]; \\
 \bar{y}^i_{t+\delta} &= -1 - \tilde{A}(T - \delta - t), \quad \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - 3\delta, T - 2\delta]; \\
 \bar{y}^i_{t+\delta} &= -1 - \tilde{A}\delta - \tilde{A}(T - 2\delta - t)\left[1 + \frac{1}{2} \tilde{A}(T - 2\delta - t) \right], \quad \bar{z}^i_t = 0, \quad \bar{z}^0_t = 0, \quad t \in [T - 4\delta, T - 3\delta];
\end{aligned}
\]
\[
\begin{aligned}
\cdots.
\end{aligned}
\]
Then, \(\epsilon \)-Nash equilibrium is \((\bar{u}_t^1, \bar{u}_t^2, \cdots, \bar{u}_t^N) \), where
\[
\begin{aligned}
 \bar{u}_t^i &= -\frac{\tilde{B}}{N + \bar{N}} \bar{y}^i_{t+\delta}.
\end{aligned}
\]
References

[1] D. Andersson and B. Djehiche, “A maximum principle for SDEs of mean-field type,” *Appl. Math. Optim.*, vol. 63, pp. 341-356, 2011.

[2] M. Bardi, “Explicit solutions of some linear-quadratic mean field games,” *Netw. Heterogeneous Media*, vol. 7, pp. 243-261, 2012.

[3] A. Bensoussan, K. Sung, S. Yam, and S. Yung, “Linear-quadratic mean-field games,” preprint, 2015.

[4] R. Buckdahn, P. Cardaliaguet and M. Quincampoix, “Some recent aspects of differential game theory,” *Dynam. Games Appl.*, vol. 1, pp. 74-114, 2010.

[5] R. Buckdahn, B. Djehiche, and J. Li, “A general stochastic maximum principle for SDEs of mean-field type,” *Appl. Math. Optim.*, vol. 64, pp. 197-216, 2011.

[6] R. Carmona and F. Delarue, “Probabilistic analysis of mean-field games,” *SIAM J. Control Optim.*, vol. 51, pp. 2705-2734, 2013.

[7] L. Chen and Z. Wu, “Maximum principle for the stochastic optimal control problem with delay and application”, *Automatica*, Vol. 46, pp. 1074-1080, 2010.

[8] L. Chen and Z. Wu “Dynamic programming principle for stochastic recursive optimal control problem with delay systems”, *ESAIM: COCV*, Vol. 18, pp. 1005-1026, 2012.

[9] L. Chen, Z. Wu and Z. Yu, “Delayed Stochastic Linear-Quadratic Control Problem and Related Applications”, *Journal of Applied Mathematics*, Vol. 2012, 2012.

[10] O. Guéant, J.-M. Lasry and P.-L. Lions, “Mean field games and applications,” *Paris-Princeton lectures on mathematical finance*, Springer, Berlin, 2010.

[11] J. Huang, X. Li and J. Shi, “Forward-backward linear quadratic stochastic optimal control problem with delay,” *Systems and Control Letters*, Vol. 61, pp. 623-630, 2012.

[12] J. Huang and J. Shi, “Maximum principle for optimal control of fully coupled forward stochastic differential delayed equations”, *ESAIM: COCV*, Vol. 18, pp. 1073-1096, 2012.

[13] M. Huang, P. Caines, and R. Malhamé, “Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behavior and decentralized ε-Nash equilibria,” *IEEE Transactions on Automatic Control*, vol. 52, pp. 1560-1571, 2007.

[14] M. Huang, P. Caines, and R. Malhamé, “Social optima in mean field LQG control: centralized and decentralized strategies,” *IEEE Transactions on Automatic Control*, vol. 57, pp. 1736-1751, 2012.

[15] M. Huang, R. Malhamé, and P. Caines, “Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,” *Communication in Information and Systems*, vol. 6, pp. 221-251, 2006.

[16] Y. Hu and S. Peng, “Solution of forward-backward stochastic differential equations,” *Proba. Theory Rel. Fields*, vol. 103, pp. 273-283, 1995.
[17] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japan. J. Math., vol. 2, pp. 229-260, 2007.

[18] T. Li and J. Zhang, “Asymptotically optimal decentralized control for large population stochastic multiagent systems,” IEEE Transactions on Automatic Control, vol. 53, pp. 1643-1660, 2008.

[19] O. Menoukeu-Pamen, “Optimal control for stochastic delay system under model uncertainty: a stochastic differential game approach”, Journal of Optimization Theory and Applications, pp. 1-34, 2011.

[20] S. Peng, Z. Yang, “Anticipated backward stochastic differential equations”, Ann Probab, Vol. 37, pp. 877-902, 2009.

[21] S. Peng and Z. Wu, “Fully coupled forward-backward stochastic differential equations and applications to optimal control,” SIAM J. Control Optim., vol. 37, pp. 825-843, 1999.

[22] K. Sung, “Recent Results in Linear-Quadratic Mean Field Games,” 2013 CACS International Automatic Control Conference (CACS), 2013.

[23] Z. Yu, “Linear-quadratic optimal control and nonzero-sum differential game of forward-backward stochastic system,” Asian Journal of Control, vol. 14, pp. 173-185, 2012.

[24] Z. Yu, “The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls”, Automatica, Vol. 48, pp. 2420C2432, 2012.

[25] H.Zhang, L. Li, J. Xu, and M. Fu, “Linear Quadratic Regulation and Stabilization of Discrete-time Systems with Delay and Multiplicative Noise”, IEEE Transactions on Automatic Control, Vol. 47, No. 4, pp. 640-646, 2002.

[26] H. Zhang, X. Lu, W. Zhang, and W. Wang“Kalman filtering for linear time-delayed continuous-time systems with stochastic multiplicative noises”, International Journal of Control, Automation, and Systems, vol. 5, no. 4, pp. 355-363, 2007.