Magnetic Penetration Depth and Surface Resistance in YBa$_2$Cu$_3$O$_{7−δ}$: New Results for Ultra High Purity Crystals

S. Kamal, Ruixing Liang, A. Hosseini, D.A. Bonn, and W.N. Hardy

Department of Physics, University of British Columbia, Vancouver, B.C., Canada V6T 1Z1

(December 21, 2013)

We have succeeded in growing very high purity (99.995%) YBa$_2$Cu$_3$O$_{7−δ}$ crystals in BaZrO$_3$ crucibles and have measured $\lambda(T)$ and $R_s(T)$ at 1 GHz in crystals with various oxygen treatments. For an oxygen vacancy level of $\delta=0.007$, $\Delta\lambda$ and R_s essentially reproduce our previous results and show no sign of the existence of the two order parameter components as recently reported by Srikanth et al. on BaZrO$_3$-grown crystals. For other oxygen concentrations, we have in some cases observed deviations from the linear low T dependence of $\Delta\lambda$, but never any sign of a second transition.

74.25.Nf, 74.62.Bf, 74.72.BK, 74.40.+k

Measurements of the electrodynamics of high temperature superconductors (HiT_c) have played a crucial role in understanding the physics of these materials. The temperature dependence of magnetic penetration depth $\lambda(T)$ and microwave surface resistance $R_s(T)$ gives information about the nature of quasiparticle excitations, their dynamics and, indirectly, information on the structure of the gap function. However, many early attempts at measuring these quantities led to misleading conclusions, partly because of problems with sample quality. The first concern is purity: impurities can be introduced into the HiT_c material either from the starting chemicals or from the crucible during crystal growth. The second concern is the quality of the surface. Since electrodynamic measurements involve probe currents that flow only within a thousand angstroms of the surface of the crystal, it is natural to raise this concern, and one must distinguish between measurements probing the bulk, such as specific heat or thermal conductivity, and those probing the surface such as microwave or infra-red.

The linear temperature dependence of $\lambda(T)$ was first observed by Hardy et al. for YBa$_2$Cu$_3$O$_{7−δ}$ crystals grown in yttria stabilized zirconia (YSZ) crucibles (purity \approx 99.9%) [1]. They found that $\Delta\lambda(T) = \lambda(T) - \lambda(1.2K)$ below 20 K is largely linear with a slight, sample-dependent curvature below 4 or 5 K. Furthermore, studies of deliberate cation substitutions revealed that the penetration depth is very sensitive to certain types of impurities: for example, 0.3% Zn is enough to change the low temperature behaviour from linear to quadratic. Other types of crystal defects might have a similar effect; in particular, most films exhibit a T^2 behaviour. It was therefore reasonable to believe that the observed sample variation in YSZ-grown pure crystals was due to the presence of impurities or other crystal imperfections.

Similar conclusions were drawn concerning the surface resistance of YBa$_2$Cu$_3$O$_{7−δ}$ single crystals. Bonn et al. observed a peak in $R_s(T)$ of YSZ-grown crystals below T_c which was attributed to a rapid increase in quasiparticle scattering time in the superconducting state [2]. However, the magnitude of the increase could be limited by deliberately introducing impurities: 0.3% Zn and 0.7% Ni were shown to be enough to completely suppress the peak. This left open the question of whether or not the scattering time at low temperatures in YSZ-grown crystals is limited by the residual 0.1% impurities, or by some other mechanism. Like $\lambda(T)$, $R_s(T)$ also exhibits considerable sample dependence below 4 K. The magnitude of the residual $R_s(T)$ at 1.2 K varies considerably and the temperature dependence of $R_s(T)$ at low T varies from linear to quadratic in T [3]. These all point to the fact that the presence of residual impurities and crystal defects prevents us from observing some important features of the intrinsic behaviour of YBa$_2$Cu$_3$O$_{7−δ}$.

A breakthrough in quality of YBa$_2$Cu$_3$O$_{7−δ}$ crystals has been made through the use of BaZrO$_3$ crucibles instead of YSZ. Unlike YSZ, the $BaZrO_3$ crucibles are essentially inert and do not add measurable impurities to the melt during the growth process. This results in crystals with at least one order of magnitude increase in purity as well as higher crystallinity. Erb et al. were the first to grow such crystals [4] and Srikanth et al. have performed microwave measurements on them [5]. Recently Ruixing Liang in our group at UBC has succeeded in fabricating BaZrO$_3$ crucibles and growing high purity crystals in them. In this paper we present the results of our first series of measurements of the microwave surface impedance of this new generation of crystals.

The YBa$_2$Cu$_3$O$_{7−δ}$ crystals are grown by a flux-growth technique in BaZrO$_3$ crucibles. Details of the fabrication of the crucibles and the crystal growth are given elsewhere [6]. The crystals have not only high chemical purity (99.99-99.995%), but also a high degree of crystalline perfection as measured by the width of the (006) rocking curve, FWHM=0.007° (including 0.003° instrumental resolution), a factor of 3 better than the YSZ-grown crystals. The surface impedance measurements are performed using a superconducting loop gap resonator operating at 1.1 GHz. The sample is positioned inside the loop such that the RF field is applied parallel to the ab-plane of the crystal. This way the currents flow primarily in the ab-plane, with a small contribution from the c-axis currents. In previous studies, we have sepa-
rated out the c-axis contribution to $\lambda(T)$ and most recently have done so for $R_\perp(T)$\cite{5}. However, in this paper we ignore c-axis contributions, which introduce errors of less than 5% to the results and will not affect qualitative features of the temperature dependencies.

In an attempt to determine optimal conditions for oxygen doping, we have measured $\Delta \lambda(T)$ for three crystals annealed in flowing oxygen at temperatures ranging from 450 to 500 °C. The areas of the crystals vary between 0.5 to 4 mm2 with thicknesses of 25 to 55 microns. The data for all three samples shown in Fig. 1 are similar, with no indication of the second order parameter component reported by Srikanth et al.\cite{5}. The inset shows the variation of T_c with annealing temperature, with the highest T_c of 93.7 K achieved by annealing at 500 °C.

The same data, shown in detail below 20 K in Fig. 2, exhibits curvature which differs from the largely linear dependencies observed for YSZ-grown crystals. A likely explanation is that the chain oxygen vacancies in the higher purity BaZrO$_3$-grown crystals have a tendency to cluster. Erb et al.\cite{6} have proposed that “fishtail”-shaped magnetization loops observed in their optimally doped crystals are in fact due to pinning by the vacancy clusters. From the point of view of microwave measurements, these clusters could act as electronic scattering centers, thus moving $\Delta \lambda(T)$ towards the quadratic temperature dependence observed in Zn-doped samples\cite{2}.

One obvious way to avoid clustering is to dope the crystals as close as possible to O_\perp, where it has been shown that the magnetization “fishtail” disappears\cite{10}. Figures 3 and 4 show the results of this approach. The crystals were detwinned and then annealed for 50 days, with the annealing temperature initially set at 450 °C and then decreased in several steps, the last one being 350 °C which corresponds to $O_{6.993}$. Figure 3 shows $\Delta \lambda(T)$ and the superfluid fraction $\lambda^2(0)/\lambda^2(T)$ for the a- and b-directions over the whole temperature range below $T_c \approx 88.7$ K. The $\Delta \lambda$’s are similar to those shown in figure 1 and do not differ substantially from data on crystals grown in YSZ crucibles. As yet, the zero temperature values of penetration depth, $\lambda(0)$, of these crystals are not known. We have used values $\lambda_a(0) = 1600$ Å and $\lambda_b(0) = 800$ Å which are inferred from μSR measurements for overdoped $YBa_2Cu_3O_{7-\delta}$ crystals\cite{11}. However, the choice of $\lambda(0)$ does not affect the qualitative features of the superfluid density, namely no signature of a second order parameter component developing below T_c as reported by Srikanth et al., and non-mean field behaviour near T_c.

Figure 4 shows the detailed behaviour of the data below 20 K, revealing a slight curvature in $\Delta \lambda$ in the a-direction and very linear temperature dependence in the b-direction. Linear fits to $\Delta \lambda(T)$ give slopes of 4.0 $\text{Å}/\text{K}$ and 3.0 $\text{Å}/\text{K}$ for the a- and b-directions respectively, which are very similar to the slopes of 4.0 $\text{Å}/\text{K}$ and 3.2 $\text{Å}/\text{K}$ observed for overdoped $YBa_2Cu_3O_{7-\delta}$ crystals grown in YSZ crucibles. Power law fits to $\lambda^2(0)/\lambda^2(T)$ below 20 K give exponents of 1.06 and 0.94 for the a- and b-directions respectively, very close to linear.

We call attention to the fact that the linear temperature dependence persists down to the 1.15 K base temperature, whereas for YSZ-grown crystals we typically observe a cross-over towards higher power laws below 4 or 5 K. This supports the conjecture that the curvature observed in YSZ-grown crystals is due to the presence of the ~0.1% impurities: the new crystals have more than an order of magnitude higher purity and correspondingly little curvature. Kosztin and Leggett\cite{12} have predicted that non-local effects can result in deviations from the expected linear temperature dependencies even for a pure d-wave superconductor. However, as they have noted,
non-local effects for the ab plane penetration depth are mainly important in the geometry where the magnetic field is applied parallel to the c-axis. In the measurements reported here, the RF field is applied parallel to the ab-plane and non-local effects should be negligible.

Previous measurements of $\lambda(T)$ in our laboratory have shown non-mean field behaviour close to T_c. Kamal et al. observed that in YSZ-grown crystals, the superfluid density shows the critical behaviour of the 3DXY universality class at T_c [3]. In figure 2 we show $\lambda^2(0)/\lambda^2(T)$ (circles) for a twinned $YBa_2Cu_3O_{6.92}$ single crystal grown under optimal doping conditions in a $BaZrO_3$ crucible. The crystal was annealed at 500 °C to an oxygen content of $O_{6.92}$, has $T_c \approx 93.78$ K and most importantly, has a very sharp transition of less than 0.25 K wide. For $\lambda(0)$ we have chosen 1400 Å, the same value used for twinned, YSZ-grown crystals, but again the results are not very sensitive to this value. As seen in the figure, this crystal also shows 3DXY critical fluctuations over a fairly wide temperature range, ~ 10 K, very similar to YSZ-grown crystals. The squares show a log-log plot of λ as a function of reduced temperature, $t = 1 - T/T_c$, over almost 3 decades. The solid line is a fit to a power law $\lambda(t) = \lambda_1 t^{-y}$ with $y = 0.34 \pm .01$, where the error corresponds to assuming ± 200 Å error in $\lambda(0)$.

The loop gap resonator and sample holder used in these measurements were designed mainly for precision measurements of $\lambda(T)$. However, we have recently succeeded in making simultaneous measurements of surface resistance using this resonator, thanks to recent improvements in the unloaded Q ($Q_0 \approx 4 \times 10^6$) and to the use of time domain techniques. In our surface resistance measurements we are usually able to withdraw the sample from the resonator in order to find the unloaded Q. This is not possible in the present configuration and we can only measure the change of surface resistance, $\Delta R_s(T) = R_s(T) - R_s(1.15K)$. However, from other measurements on comparable crystals we know that the residual R_s is very low, probably less than 0.5 μΩ.

Figure 4 shows $R_s(T)$ for the a- and b-directions. The main features are similar to our previous results on crystals grown in YSZ crucibles, where the peak at 26 K is attributed to a rapid rise in the quasiparticle scattering time below T_c. In particular, there is no indication whatsoever of a second order parameter developing below T_c as reported by Srikanth et al. [5]. Even with the inclusion of a somewhat uncertain residual surface resistance, one of the striking features of the data is that the average rise

FIG. 3. $\Delta \lambda(T)$ vs T (right axis) and superfluid fraction $\lambda^2(0)/\lambda^2(T)$ vs T (left axis) for a detwinned crystal of $YBa_2Cu_3O_{6.993}$, for a-(circle) and b-(square) directions.

FIG. 4. Same as figure 3 but shown for below 20 K. All solid lines are linear fits to the data.

FIG. 5. 3DXY critical behaviour of the superfluid density in the superconducting state of a sample annealed to $YBa_2Cu_3O_{6.92}$. The circles show $\lambda^2(0)/\lambda^2(T)$ vs T (left and bottom axes) and the squares show $\lambda(t)$ vs reduced temperature $t = 1 - T/T_c$ on a log-log scale (right and top axes).
in R_s from its minimum at about 70 K to its maximum at 26 K is roughly four fold compared to the two fold increase in crystals from YSZ crucibles. We interpret this as indicating that in the new crystals the quasiparticle scattering time rises to a much higher limiting value than in the YSZ-grown crystals, a consequence of the higher purity of the BaZrO$_3$-grown crystals. Another noteworthy difference is that $R_s(T)$ varies linearly with temperature all the way down to 1.15 K, with slopes of 0.52 and 0.21 $\mu\Omega/K$ for a- and b- directions respectively.

In summary, we have presented $\Delta\lambda(T)$ and $R_s(T)$ for very high purity crystals of $YBa_2Cu_3O_7-\delta$ grown in BaZrO$_3$ crucibles. The results show no evidence for two order parameter components. This is consistent with the fact that the specific heat of BaZrO$_3$-grown crystals produced by Erb et al. [10] exhibits a peak at T_c that is identical in size and shape to those seen in high quality YSZ-grown crystals [12]. The specific heat data on the new crystals also shows no sign of a second superconducting phase transition. It is difficult to reconcile this bulk measurement on the BaZrO$_3$-crystals with the surface impedance data of Srikanth et al. [5] which shows a rather weak increase in the superfluid density near T_c and a new feature at lower temperatures. This disagreement with a bulk measurement, coupled with the fact that we have observed no sign of a second phase in our surface impedance measurements, forces us to conclude that all of the new features reported by Srikanth et al. arise from some sort of problem with the surfaces of the crystals that they have been studying.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with A. Erb and R. Hackl and the assistance of P. Dosanjh. This work was supported by the National Science and Engineering Research Council of Canada and the Canadian Institute for Advanced Research. DAB gratefully acknowledges support from the Sloan Foundation.

[1] W.N. Hardy, D.A. Bonn, D.C. Morgan, Ruixing Liang, and Kuan Zhang, Phys. Rev. Lett. 70, 3999 (1993).
[2] D.A. Bonn, S. Kamal, Kuan Zhang, R. Liang, D.J. Baar, E. Klein, and W.N. Hardy, Phys. Rev. B 50, 4051 (1994).
[3] D.A. Bonn, S. Kamal, A. Bonakdarpour, Ruixing Liang, W.N. Hardy, C.C. Homes, D.N. Basov, and T. Timusk, Proc. of LT 21, Czech. J. Phys. 46, 3195 (1996).
[4] A. Erb, E. Walker, and R. Flükiger, Physica C 245, 245 (1995).
[5] H. Srikanth, B.A. Willemsen, T. Jacobs, S. Sridhar, A. Erb, E. Walker, and R. Flükiger, Phys. Rev. B 55, R14733 (1997).
[6] Ruixing Liang, D.A. Bonn, and W.N. Hardy, submitted to Physica C.
[7] W.N. Hardy et al., in Proc. of the 10th Anniversary HTS Workshop, ed. B. Batlogg et al., (World Sci., Singapore, 1996), p. 223; see also ref. [8].
[8] A. Hosseini, S. Kamal, D.A. Bonn, Ruixing Liang, and W.N. Hardy, submitted to Phys. Rev. Lett.
[9] A. Erb, J.Y. Genoud, F. Marti, M. Daumling, E. Walker, and R. Flükiger, J. Low Temp. Phys. 105, 1023 (1996).
[10] A. Erb, E. Walker, R. Flükiger, Physica C 258, 9 (1996).
[11] J.L. Tallon, C. Bernhard, U. Binninger, A. Hofer, G.V.M. Williams, E.J. Ansaldo, J.I. Budnick, and Ch. Niedermayer, Phys. Rev. Lett. 74, 1008 (1995).
[12] I. Kosztin, A. Leggett, Phys. Rev. Lett. 79, 135 (1997).
[13] S. Kamal, D.A. Bonn, Nigel Goldenfeld, P.J. Hirschfeld, R. Liang, W.N. Hardy, Phys. Rev. Lett. 73, 1845 (1994).
[14] Ruixing Liang, P. Dosanjh, D.A. Bonn, D.J. Baar, J.F. Carolan, and W.N. Hardy, Physica C 195, 51 (1992).