Transgenic Expression of the Amyloid-β Precursor Protein-Intracellular Domain Does Not Induce Alzheimer’s Disease–Like Traits In Vivo

Luca Giliberto1*, Cristina d’Abramo1, Christopher Michael Acker2, Peter Davies1,2, Luciano D’Adamio3*

1 The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, North Shore–Long Island Jewish Health System (North Shore-LIJ), Manhasset, New York, United States of America, 2 Department of Pathology, Albert Einstein College of Medicine, New York, New York, United States of America, 3 Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America

Abstract

Background: Regulated intramembranous proteolysis of the amyloid-β precursor protein by the γ-secretase yields amyloid-β, which is the major component of the amyloid plaques found in Alzheimer’s disease (AD), and the APP intracellular domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription.

Methodology/Principal Findings: Here, we have further characterized several lines of AID transgenic mice by crossing them with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as activation of GSK-3β, hyperphosphorylation of Tau and formation of neurofibrillary pathology.

Conclusions/Significance: Overall, these data suggest that AID transgenic mice do not represent a model that reproduces the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be characterized.

Introduction

Alzheimer disease (AD) is characterized by the production of amyloidogenic peptides, neurofibrillary tangles (NFT) and neurodegeneration [1,2]. The prevailing pathogenic theory, the “Amyloid Cascade Hypothesis” [3], postulates that the accumulation of neurotoxic amyloidogenic peptides triggers Tauopathy, neurodegeneration, cognitive and behavioral changes. In AD, the amyloid lesions are formed by Aβ42, which derives from the Amyloid Precursor Protein (APP). APP is cleaved by β-secretase to release the soluble β-ectodomain (sAPPβ) and the membrane-bound COOH-terminal fragment C99. C99 is in turn processed by γ-secretase to produce the APP intracellular domain (AID/AICD) and Aβ peptides. More recently, attention of researchers in the field has shifted from Amyloid plaques to Aβ42 oligomers as the main cause of AD [4,5,6]. However, the amyloid cascade hypothesis is yet to be validated, and causes of dementia may be multifaceted and involve other mechanisms. Several investigators have suggested that other APP-derived fragments may cause or contribute to AD pathogenesis. Evidence hints to specific functions and disfunctions for holoAPP and APP-derived polypeptides. An APP fragment derived from sAPPβ interacts with DR6 to trigger axon pruning and neuron death [7]. The short AID/AICD is a biologically active intracellular peptide, which modulates cell death, gene transcription and Ca++ homeostasis [8,9,10,11,12,13,14,15,16,17,18,19]. Caspase-derived APP fragments, such as C31 [20] and Jcasp [9,21], possess in vitro toxic activities. Because of these evidence, various APP-derived fragments, such as AID/AICD [10,22], C31 [23], JCasp [9], sAPPβ [7] have been implicated in neurodegenerative processes.

Mouse models are critical to explore both pathogenesis and therapy of human diseases. All animal models used to study human neurodegenerative diseases consist of transgenic mice carrying mutant forms of genes shown to be involved in human dementia [24,25,26]. A serious limitation of these models is that their design is predicated on the assumption that development of amyloid plaques and neurofibrillary tangles is directly related to the cognitive and behavioral changes associated with human dementia. To determine whether AID could trigger an AD-like neurodegenerative process in vivo, we have made transgenic mice expressing AID-peptides in the CNS [27]. A previous analysis of these mice showed that AID can modulate apoptosis in vivo. However, a role of AID in gene transcription in vivo [28] could not
be confirmed. Here, we have further characterized our AID transgenic mice to determine whether over-expression of AID in the forebrain, when human Tau is also expressed, provokes AD-like features, as recently suggested [22]. To this end, we have crossed our AID lines with hTau mice [29,30] overexpressing human Tau. We have chosen this model as it shows progressive, age-related, Tau pathology in forebrain regions of the brain which are also affected in human AD pathology (hippocampus, parahippocampal cortex, frontal cortex etc.) and which overlap with the pattern of expression of the AID transgene, without necessarily expressing mutated Tau.

Materials and Methods

Ethics Statement
Mice were handled according to the Ethical Guidelines for Treatment of Laboratory Animals of Albert Einstein College of Medicine. The procedures were described and approved in animal protocol number 20040707.

AID mice generation and crossing with hTau mice to yield AID/hTau transgenic mice
AID mice were generated as described before [31]. Briefly, the cDNA sequences corresponding to AID 50, 57 or 59, were subcloned into the pNN vector, downstream of the 8Kb CamKIIα promoter, driving the expression of the transgene in the forebrain of the postnatal mouse [32]. Transgenic mice, initially on a FVB background, were backcrossed, at least for 8 generations, onto the C57BL/6 background. hTau mice were obtained as described [29] by crossing 8c mice, expressing a human Tau transgene, H1 haplotype driven by the Tau promoter [33], with Tau knock-out (KO) mice that have a targeted disruption of exon 1 of Tau [34]. Animals were backcrossed 10 times to C57BL/6J background. AID transgenic mice were crossed with hTau mice to yield mice expressing AID transgene, human Tau transgene and one allele copy of mouse Tau.

Monoclonal antibodies specific for Tau and Tau phosphorylations
The following monoclonal antibodies were used for western blot and ELISA:
- DA9 (IgG1): total Tau aa102–140
- TG5 (IgG1): total Tau aa220–240 (murine and human)
- CP27 (IgG2B): total Tau aa130–170 (human specific)
- CP13 (IgG1): pSer202
- PHF1 (IgG1): pSer396/Ser404
- MC1 (IgG1): N-terminal nonconformational change, Exon 10
- CP17 (IgG3): pThr231
- CP9 (IgM): pThr231
- Antibodies were used pure (hybridoma medium), purified or biotinylated. Biotinylation of antibodies was performed using EZ-Link NHS-PEO Solid Phase Biotinylation Kit (Pierce, # 21440).

Heat stable preparation for Tau
Mice were sacriﬁced by cervical dislocation after Isoﬂurane anesthesia. One of the two brain hemispheres was processed for protein and Tau extraction, the other for immunohistochemistry. Forebrains were homogenized in 400µL/100mg of Homogenizing Buffer (TBS-10mM TRIS, 140mM NaCl, pH 7.4, Roche Complete-EDTA Protease Inhibitor, 1mM PMSF, 1mM EDTA, 0.05% NaN3, pH 7.2). Wells were blocked with 100% Starting Block (Pierce) for 1 hour at room temperature. Homogenates were then added: brain homogenates, prepared as described above, were mixed 1/1 with 0.1% SDS, briefly vortexed and spun for 10’ at 20,000g, at room temperature, and the supernatant loaded on the ELISA plate at 1/250 to 1/2000 dilution in 20% Superblock-TBS (Pierce) as needed, and left overnight, at 4°C, gently shaking. Purified primary antibodies we added to the plate, diluted in 20% Superblock-TBS, as follow: TG5-biotinylated 1/50000, CP27 (IgG2B) 1/20000, CP13 (IgG1) 1/20000, PHF1-biotinylated 1/10000, CP17-biotinylated 1/20000, MC1 (IgG1) 1/20000, and left for 2 hours at room temperature, gently shaking. Secondary antibodies, Streptavidin-HRP or HRP-Goat-anti mouse IgG2B/IgG1, 1/5000 in 20% Superblock-TBS (Pierce), were left on the plate for 1 hour as above. Fifty µL of TMB (Pierce) were added and left for 20’, room temperature, light shielded, gently shaking, and the reaction was stopped with same volume of 2M Sulfuric Acid, and read at 450nm with an automated Tectan plate reader. Every step was followed by 5 automated washes with washing buffer (100mM NaCl, 10mM Tris Base, 0.1% Tween20).

Western Blot
For Tau, heat stable preparations were run on a 4–12% tris-HCl precast gel (Biorad), blotted on a 0.45µM Nitrocellulose membrane and probed with monoclonal antibodies specific for total Tau or site specific Tau phosphorylations as follows: DA9 (1/3000), CP13 (1/3000CP9 (1/3000), PHF1 (1/3000), MC1 (1/500). Antibodies were diluted in 5% milk in TBS. Western Blots were developed either with the ECL system on film or by means of 4-Chloro-Nameitol reagent on the membranes. For GSK, brains were homogenized as described for ELISA, subjected to PAGE as described above, and the membranes were probed with antibodies against GSK3α/β (Santa Cruz SC-7291, 1/1000), GSK3βpSer9 (Cell Signaling #9323, 1/1000), GSK3β pTyr279/B216 (Invitrogen #44604G), diluted in 20% Superblock-TBS, and anti β-Actin (Sigma-Aldrich A1978) 1/8000 in 5% Milk-TBS-0.1%Twee20.

Immunochemistry
Brains were ﬁxed in 4% PFA overnight and cut sagittally with a vibratome the next day. Selection of corresponding sections from each mouse was performed as follows: brains were cut sagittally at 50µm thickness, from the lateral to the medial aspect, preserving the cerebellum. For each antibody, 3 sections were stained, starting at section #15 (i.e. 750µm form the lateral pole), and taking every 7th section inward (i.e. 350µm apart from each other). Free-floating sections were conserved in TBS (50mM Tris, 150mM NaCl, pH 7.6/0.02%Na3, and the staining was performed on multwell plates. Endogenous peroxidases were quenched with 3% H2O2/0.25% Triton X-100/TBS for 30’. Non-speciﬁc binding was blocked with 5% Milk-TBS for 1 hour at room temperature. Primary antibodies are as follows: NeuN (Invitrogen #187373, 1/1000), Iba1 (WAKO #019-19741, 1/20,000g for 10’ at 4°C. The supernatant, containing heat stable microtuble protein enriched for Tau, was retained and used for subsequent experiments. Protein concentration was measured in the original homogenate in order to load equal amounts of protein for western blot and ELISA.

ELISA
Clear, ﬂat bottom, 96 well plates were coated overnight with an antibody speciﬁc for total Tau (DA9) 2µg/mL in Coating Buffer (230mM K2HPO4, 135mM KH2PO4, 130mM NaCl, 2mM EDTA, 0.05% NaN3, pH 7.2). Wells were blocked with 100% Starting Block (Pierce) for 1 hour at room temperature. Homogenates were then added: brain homogenates, prepared as described above, were mixed 1/1 with 0.1% SDS, briefly vortexed and spun for 10’ at 20,000g, at room temperature, and the supernatant loaded on the ELISA plate at 1/250 to 1/2000 dilution in 20% Superblock-TBS (Pierce) as needed, and left overnight, at 4°C, gently shaking. Purified primary antibodies we added to the plate, diluted in 20% Superblock-TBS, as follow: TG5-biotinylated 1/50000, CP27 (IgG2B) 1/20000, CP13 (IgG1) 1/20000, PHF1-biotinylated 1/10000, CP17-biotinylated 1/20000, MC1 (IgG1) 1/20000, and left for 2 hours at room temperature, gently shaking. Secondary antibodies, Streptavidin-HRP or HRP-Goat-anti mouse IgG2B/IgG1, 1/5000 in 20% Superblock-TBS (Pierce), were left on the plate for 1 hour as above. Fifty µL of TMB (Pierce) were added and left for 20’, room temperature, light shielded, gently shaking, and the reaction was stopped with same volume of 2M Sulfuric Acid, and read at 450nm with an automated Tectan plate reader. Every step was followed by 5 automated washes with washing buffer (100mM NaCl, 10mM Tris Base, 0.1% Tween20).

Immunohistochemistry
Brains were ﬁxed in 4% PFA overnight and cut sagittally with a vibratome the next day. Selection of corresponding sections from each mouse was performed as follows: brains were cut sagittally at 50µm thickness, from the lateral to the medial aspect, preserving the cerebellum. For each antibody, 3 sections were stained, starting at section #15 (i.e. 750µm form the lateral pole), and taking every 7th section inward (i.e. 350µm apart from each other). Free-floating sections were conserved in TBS (50mM Tris, 150mM NaCl, pH 7.6/0.02%Na3, and the staining was performed on multwell plates. Endogenous peroxidases were quenched with 3% H2O2/0.25% Triton X-100/TBS for 30’. Non-speciﬁc binding was blocked with 5% Milk-TBS for 1 hour at room temperature. Primary antibodies are as follows: NeuN (Invitrogen #187373, 1/1000), Iba1 (WAKO #019-19741, 1/
1500), and non-purified anti Tau antibodies DA9 (1/5000), CP13 (1/5000), PHF1 (1/5000), MC1 (1/200), all diluted in 5% Milk-TBS, and left overnight at 4°C, shaking. Biotin-conjugated secondary antibodies directed against the specific isotypes were diluted 1/1000 in 20% Superblock, left for 2 hours at room temperature, and likely Streptavidin-HRP was incubated for 1 hour. Staining was visualized by 3,3’-Diaminobenzidine. Each step was followed by 5×5” washes in TBS.

Statistical analysis
All quantified data represent an average of at least triplicate samples. Error bars represent standard errors of the mean. Statistical analysis was done by 2-Way ANOVA and Bonferroni Post Test. Significance was determined by Student’s t test and a p<0.05 was considered significant.

Results
AID/hTau mice general characteristics
Mice are presenting with normal growth and weaning, thrive at appropriate age. No significant differences were observed in breeding and litter size and survival compared to C57BL/6 mice. Up to 21 months of age, there is no prevalent pathology, susceptibility to infections, and animals appear active and alert.

Tau phosphorylation and brain load are not univocally affected by AID overexpression
Tau accumulation, phosphorylation and axonopathy can be subtle and precede neuronal degeneration, tangle formation and cognitive or behavioural deficits [36,37]. Thus, we have extensively searched for any contribution of AID overexpression to Tau patholgy. We have used antibodies raised against specific Tau phosphorylation sites that characterize early [pSer202 and pThr231], or late (pSer396/404) stages of Tau phosphorylation in AD [37,38]. In addition, we have also analyzed a typical conformational change in Tau that is found at the latest stages of AD, using the MC1 antibody. We have analyzed several mice bearing hTau and AID50, 57 or 59, corresponding respectively to the γ-secretase ε-cleavage and γ-cleavage producing Ap42 or Ap40 [27], at different ages, from 4 to 21 months. For each AID transgene, different lines derived from distinct founders were analyzed. Analysis of more than one AID50, 57 or 59 line is necessary to control for phenotypes dependent on the integration site, that vary according to age and weather only human (CP27 vs TG5).

Neuronal Tau distribution is not affected by AID overexpression
Our biochemical data does not reveal a net trend of Tau phosphorylation induced by AID overexpression. Nonetheless, we wanted to ascertain if subtle changes could be seen at the tissue level, in both the quantity and the distribution of Tau phosphorylation. Furthermore, we have searched if any neuronal loss would be evident and if any microglia activation would be induced by AID overexpression. In Fig. 3, we show representative hippocampal immunostaining with antibodies against total Tau (DA9; Fig. 3A, B, C), pSer202 (CP13; Fig. 3D, E, F), pSer396/404 (PHF1; Fig. 3G, H, I). We could not detect any substantial difference in the amount and pattern of Tau phosphorylation, in the hippocampal area and parahippocampal cortex, attributable to AID overexpression. When using NeuN [Fig. 3J, K] and Iba1 (Fig. 3L, M) antibodies, neither neuronal loss nor microglia activation was seen. We did not perform unbiased stereological neuronal counting [39], given the paucity of indications toward a substantial loss of neurons in these mice. Microglia staining did not show signs of either recruiting or activation [40]. Of note, these mice show Tau distribution and phosphorylation similar to what previously described [29].

GSK3α/β is not significantly upregulated by AID overexpression
Although the data presented do not hint to a role for AID in promoting Tau accumulation or deranged phosphorylation, it is still possible that transgenic AID may cause hyperphosphorylation of Tau at later time, by activating kinases. Another model of AID59 overexpression [22,28] shows GSK3β activation as early as 4 months, heterogeneous Tau phosphorylation as early as 8 months, and neurodegeneration at 18 months. When we analyzed our transgenic mice however, we could not detect any significant and consistent activation of GSK3β (Fig. 4, column C). The AID 57 and 59 transgenic mice show some GSK3β activation at 4 months, which is however not seen in older mice.

Discussion
To directly examine the effects of AID in vivo, in the CNS, we generated transgenic mice expressing CaMKIIα-AID, to target AID expression to areas that are most relevant to Alzheimer’s pathology [32]. We generated transgenic lines expressing either the 59- or 30-residue AID peptide, which would be produced by γ-cleavage together with either AP40 or AP42, respectively, or the “ε-cleavage” [41,42]. The AID50 is reputed the naturally occurring AID fragment. We obtained two AID59 (AID59-4.4 and -1.1), four AID57 (AID57-13.3, -5.1, -5.2 and -8.1) and three AID50 (AID50-3.4, -1.3 and .52) founder mice. Some of these lines have been analyzed here (AID50-1.5, AID57 5.1 and 13.3, AID59-4.4). When transgenic mice are used, it is important to study lines derived from more than one founder. This precaution is
Figure 1. Western Blot analysis of Tau phosphorylation. Heat Stable Preparation of Tau, from forebrains of AID/hTau mice, were run on PAGE (Column A) and probed with antibodies specific for total Tau (DA9), pSer202 (CP13), pThr231 (CP9), pSer396/Ser404 (PHF1) and conformational modification of human Tau (MC1). Densitometric quantification, both raw (Column B) and over total Tau (DA9, Column C), shows no clear cut change in the pattern of Tau phosphorylation due to AID overexpression, related neither to AID length, mouse line nor age. Experiments were repeated at least 3 times on at least 2 mice/line. Quantifications units are arbitrary. *p<0.05; **p<0.01; ***P<0.001.
doi:10.1371/journal.pone.0011609.g001
Figure 2. ELISA analysis of Tau phosphorylation. Homogenate from forebrains of AID/hTau mice were analyzed by mean of sandwich ELISA, capturing with the total Tau DA9 antibody, and revealing with antibodies specific for total human Tau (CP27), total mouse and human Tau (T5), or for several Tau phosphorylations, pSer202 (CP13) (Column A), pThr231 (CP17) (Column B), pSer396/Ser404 (PHF1) (Column C) and conformational modification of human Tau (MC1) (column D). The top 16 panels show scattered differences in the phosphorylation pattern, which do not seem to be related to AID overexpression, length, mouse line or age. The bottom panel (E) shows how levels of total human and murine Tau are maintained in the different mouse lines and ages. Experiments were repeated at least 3 times on at least 2 mice/line. Quantifications units are arbitrary. *p<0.05; **p<0.01; ***P<0.001.

doi:10.1371/journal.pone.0011609.g002
necessary to avoid erroneously attributing a phenotype, caused by an insertional effect on endogenous mouse genes, to the transgene itself.

A previous analysis of these mice showed that overexpression of AID did not affect gene transcription. However, cultured neuronal cells derived from AID transgenic mice were more sensitive to selective apoptotic and toxic stimuli. This evidence suggests that AID overexpression may predispose to neuronal degeneration. Thus, we tested whether in vivo AID expression could initiate aspects of AD that precede and lead to neuronal loss.

Contrarily to previous reports however [22,28], we failed to see an AID-dependent activation of GSK3β and the phosphorylation of Tau phosphorylation typical of AD. What could be the basis of these discrepancies? There are several possibilities, which do not need to be mutually exclusive. The findings implicating AID in GSK3β activation and Tau pathology are based on the use of a single mouse line, and the double transgenic model expresses an AID molecule (AID 59) that probably does not correspond to the one produced in vivo by processing of APP-CTFs. This is problematic, for the reasons explained above. Although some evidence pointed to a role of AID as a “nuclear regulator” per se [43], the animal model used in these studies expresses Fe65, an APP binding protein, together with AID 59, [44]. Thus, the effectual contribution of AID to the described phenotypes is not obviously clear. Mice transgenic for AID alone would have helped, in that specific setting, to clarify the relative contribution of Fe65 and the intracellular domain of APP to the observed phenotypes. AID is very short lived [12] and it has been argued that Fe65 could potentiate AID functions by stabilizing it [45]. On the other side, it has been suggested that AID, recruiting Fe65 to the plasma membrane, is then able to release it and allow its transcriptional function to take part in the nucleus, with or

Figure 3. Immunohistochemical analysis of AID/hTau mice. Forebrains were stained with antibodies against total Tau (DA9, A, B, C), pSer202 (CP13; D, E, F), pSer396/404 (PHF1; G, H, I), the neuronal protein NeuN (J, K) and the microglia activation protein Iba1 (L, M). The expressed AID transgene, together with hTau, and mouse are indicated in the panels. Selected samples are representative of the analysis conducted on all AID/hTau transgenics, at all ages. We found no significant difference in the amount and pattern of distribution of total Tau and its phosphorylations, in hippocampal and peri-hippocampal neuronal cellularity and microglia activation between controls and AID expressing mice.

doi:10.1371/journal.pone.0011609.g003
without Tip60 [11,17,46]. The relationships between AID, Fe65, transcriptional control and induction of apoptosis are still uncertain, but several facts are of note. AID overexpression in our model is very high, as determined by Real Time PCR, and as evident from WB analysis [27]. In particular, we have shown how AID 57 and 59 are well expressed at the protein level, while AID 50 is not, although its mRNA is abundant. Such overexpression, we can assume, would probably be sufficient to activate kinases and promote Tau phosphorylation, even in the absence of Fe65 overexpression.

Figure 4. Western Blot analysis of GSK3β activation. Forebrain lysates from different lines of AID/hTau mice, at 4 different ages, were run on PAGE (Column A) and probed with antibodies against total GSK3α and β, the inhibiting phosphorylation pSer9 and the activating phosphorylation pTyr279/216. Densitometric quantification over β-Actin only (Column B) and over total GSK3α/β (Column C), shows no clear cut activation or inhibition of GSK3β by AID overexpression, related neither to AID length, mouse line nor age. Experiments were repeated at least 3 times on at least 2 mice/line. Quantifications units are arbitrary. *p<0.05; **p<0.01; ***P<0.001.
doi:10.1371/journal.pone.0011609.g004
Do our data exclude a role for AID in AD? A common view for mechanisms underlying early pathophysiology of Alzheimer's disease (AD) includes axonopathy [47] and changes at synaptic level leading to subtle amnesic symptoms at an early stage of disease [48]. APP processing occurring in axonal extensions and/or synapses, leading to regional production of AID, may play a physiologic role that, if disregulated, could lead to synaptic dysfunction. In transgenic animals, most of AID is produced in the cell body, “far” from those neuronal compartments (axons/synapses) were this peptide might play its pathophysiologic role. It is also likely that reduction in AID levels plays a pathogenic role in AD. The evidence that mutations in PSEN1/PSEN2 that cause Familial Alzheimer's disease are loss of function mutants, and that loss of PSEN1/PSEN2 function causes neurodegeneration in mice, supports this hypothesis [49,50,51,52,53]. In these cases, AD pathology coincides with lower production of total Aβ, an increase of the Aβ42/Aβ40 ratio, and a reduction of total AID.

In conclusion, our transgenic model shows that overexpression of several isoforms of AID in the CNS fails to reproduce obvious signs of AD-like pathology in mice. These data question whether a generalized overexpression of this APP fragment can address its role in both biology and disease if it is dissociated from the in vivo physiopathological context in which it is generated. Given these premises, AD and its functions should be investigated not much as a source of AD pathology, but as a possible interesting intracellular signaling pathway, much similar to NOTCH and NICD, that is still obscure but highly likely to be effective in neurons, possibly under stressing conditions.

Author Contributions
Conceived and designed the experiments: LG. LD. Analyzed the data: LG. Wrote the paper: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD. Performed the experiments: LG. Conceived and designed the experiments: LG. Performed the experiments: LG. Analyzed the data: LG. Cited and discussed the experiments: LD.
40. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33: 256–266.

41. Yu C, Kim SH, Ikouchi T, Xu H, Gasparini L, et al. (2001) Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma-secretase processing of the APP and Notch1 transmembrane domains. J Biol Chem 276: 43746–43760.

42. Gu Y, Misonou H, Sato T, Dohmae N, Takio K, et al. (2001) Distinct intramembrane cleavage of the beta-amyloid precursor protein family resembling gamma-secretase-like cleavage of Notch. J Biol Chem 276: 35233–35238.

43. Gao Y, Pimplikar SW (2001) The gamma-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci U S A 98: 14979–14984.

44. Fiore F, Zambrano N, Minopoli G, Donini V, Duilio A, et al. (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer’s amyloid precursor protein. J Biol Chem 270: 30853–30856.

45. Walsh DM, Fadeeva JV, LaVosie MJ, Paliga K, Eggert S, et al. (2003) gamma-Secretase-cleavage and binding to Fe65 regulate the nuclear translocation of the intracellular C-terminal domain (ICD) of the APP family of proteins. Biochemistry 42: 6664–6673.

46. Cao X, Sudhof TC (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 279: 24601–24611.

47. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, et al. (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307: 1292–1298.

48. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298: 789–791.

49. Bentahir M, Nyabi O, Verhamme J, Tolia A, Horre K, et al. (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96: 732–742.

50. De Strooper B (2007) Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8: 141–146.

51. Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8: 136–140.

52. Shen J, Kelleher RJ, 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 104: 403–409.

53. Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, et al. (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42: 23–36.