Generalized integral inequalities for fractional calculus

Muhammad Samraiz¹, Sajid Iqbal*¹ and Josip Pečarić²

Abstract: In this paper, we present a variety of integral inequalities in L_p and L_p^r spaces for the integral operator involving generalized Mittag-Leffler function in its kernel, Hilfer fractional derivative, generalized Riemann-Liouville and Riemann-Liouville k-fractional integral operators.

1. Introduction

The importance of the fractional integral inequalities is enormous in establishing the uniqueness of solutions for certain fractional partial differential equations. This theory is also helpful in providing bounds for the solutions of fractional boundary value problems. In this era of progress and development, the theory of fractional integral inequalities catches the attention of many mathematicians and they provide plenty of applications of integral inequalities in fractional calculus. For more details see Anastassiou (2009), Ansari, Liu, and Mishra (2017), Mishra and Sen (2016), Iqbal, Pečarić, Samraiz, and Sultana (2015), Iqbal, Krulić, and Pečarić (2010), Niculescu and Persson (2006).

Mitrinović and Pečarić (1991) introduced an integral inequality which later generalized by Farid, Iqbal, and Pečarić (2015). In the present work, we have paid attention to provide applications of the generalized integral inequality presented in (Farid et al., 2015) for fractional calculus.

We start with the definition of L_p^r space given in Mubeen and Iqbal (2016).

ABOUT THE AUTHOR

Sajid Iqbal is working as an assistant professor of Mathematics in University of Sargodha (Sub-Campus Bhakkar), Bhakkar, Pakistan. He is mainly known for works in Mathematical Inequalities involving convex functions and application in fractional calculus. He received his PhD degree from Abdus Salam School of Mathematical University, Government College University Lahore, Pakistan. He is a member of Pakistan Mathematical Society. He has published more than 30 research papers in high-quality international journals and works as a reviewer for in many international journals. He has supervised a PhD student and 13 MPhil students.

PUBLIC INTEREST STATEMENT

The importance of Mathematical inequalities is felt from the beginning and is now extensively known as one of the most important motivating forces behind the progress of current real analysis. This theory plays significant part in approximately all branches of Mathematics as well as in other areas of science. Here we have focused to present a variety of integral inequalities in generalized L_p^r spaces involving fractional integral operators. The involvement of generalize fractional integral operator makes our results more general.
Definition 1.1 A space $L_{p,r}([a,b])$ is defined as a space of continuous real valued function $h(y)$ on $[a, b]$, such that

$$\left(\int_a^b |h(y)|^p y^r dy \right)^{\frac{1}{p}} < \infty,$$

where $1 \leq p < \infty$, and $r \geq 0$.

Theorem 1.2 Let $(\Omega_1, \Sigma_1, \mu_1)$, $(\Omega_2, \Sigma_2, \mu_2)$ be measure spaces with σ-finite measures and $f_i: \Omega_i \to \mathbb{R}$, $i = 1, 2, 3, 4$, be non-negative measurable functions. Let g belongs to a particular class of functions $U(f, k)$ which admits the representation

$$g(x) = \int_{\Omega_1} k(x, t) f(t) d\mu_1(t),$$

where $k: \Omega_1 \times \Omega_2 \to \mathbb{R}$ is a general non-negative kernel and $f_i: \Omega_i \to \mathbb{R}$ be a real valued function. If p, q are two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$, then the inequality

$$\left(\int_{\Omega_1} f_1(x) f_2(x) g(x) d\mu_2(x) \right) \leq C \left(\int_{\Omega_2} f_3(x) g(x) d\mu_2(x) \right)^{\frac{1}{p}} \left(\int_{\Omega_2} f_4(x) g(x) d\mu_2(x) \right)^{\frac{1}{q}},$$

(1.1)

holds true, where

$$C = \sup_{k \in \mathcal{K}} \left\{ \left(\int_{\Omega_1} k(x, t) f_1(x) f_2(x) d\mu_2(x) \right) \left(\int_{\Omega_2} k(x, t) f_3(x) d\mu_2(x) \right)^{\frac{1}{p}} \right\} \left(\int_{\Omega_1} k(x, t) f_4(x) d\mu_2(x) \right)^{\frac{1}{q}}.$$

Corollary 1.3 If we set $f_3(x) = f^1_1(x)$, $f_4(x) = f^1_2(x)$, then we get the following inequality

$$\left(\int_{\Omega_1} f_1(x) f_2(x) g(x) d\mu_2(x) \right) \leq C \left(\int_{\Omega_2} f^1_1(x) g(x) d\mu_2(x) \right)^{\frac{1}{p}} \left(\int_{\Omega_2} f^1_2(x) g(x) d\mu_2(x) \right)^{\frac{1}{q}},$$

where

$$C = \sup_{k \in \mathcal{K}} \left\{ \left(\int_{\Omega_1} k(x, t) f^1_1(x) f_2(x) d\mu_2(x) \right) \left(\int_{\Omega_2} k(x, t) f^1_1(x) d\mu_2(x) \right)^{\frac{1}{p}} \right\} \left(\int_{\Omega_1} k(x, t) f^1_2(x) d\mu_2(x) \right)^{\frac{1}{q}}.$$

The rest of the paper is organized as follows: In Section 2, we present the generalized integral inequality for six parameter fractional integral operator with Mittag-Leffler function in its kernel. Section 3 contains results for Hilfer fractional derivative. Section 4 consists of consequences for generalized Riemann-Liouville fractional integral operator. In the last section, we derive results for the Riemann-Liouville $k-$fractional integral.
2. Generalized integral inequality for fractional integral operator with six parameter Mittag-Leffler function in its kernel

First, we give the definition of the Mittag-Leffler function (see Mittag-Leffler, 1903) and fractional integral operator involving the generalized Mittag-Leffler function appearing in the kernel (see Salim & Faraj, 2012).

Definition 2.1 Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}; \min\{\Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\delta)\} > 0; p, q > 0$ and $q < \Re\alpha + p$. Then the generalized Mittag-Leffler function defined in Salim and Faraj (2012) is given by

$$E^{\gamma,\delta}_{\alpha,\beta,p,q}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(n + \beta)} \left(\delta\right)_n z^n,$$

where $(\gamma)_n$ represents the Pochhammer symbol defined by $(\gamma)_n = \gamma(\gamma - 1)(\gamma - 2) \cdots (\gamma - n + 1)$ and Γ is the Euler gamma function i.e. $\Gamma(x) = \int e^{-x}x^{x-1}dx$. The function (2.1) represents all the previous generalizations of the Mittag-Leffler function by setting the following values.

- $p = q = 1$, this reduces to $E^{\gamma,\delta}_{\alpha,\beta,1,1}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(n + \beta)} \left(\delta\right)_n$ defined by Salim in (2009).
- $\delta = p = 1$, this represents $E^{\gamma,1}_{\alpha,1,1,1}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(n + \beta)} \frac{z^n}{n!}$ which was introduced by Shukla and Prajapati in (2007). In Srivastava and Tomovski (2009) investigated the properties of this function and its existence for a wider set of parameters.
- $\delta = p = q = 1$, the operator (2.1) is defined by Prabhakar in (1971) and is denoted as: $E^{\gamma,1}_{\alpha,1,1,1}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_n}{\Gamma(n + 1)} \frac{z^n}{n!}$.
- $\gamma = \delta = p = q = 1$, it reduces to Wiman’s function presented in Wiman (1905), and moreover, if $\beta = 1$, then the Mittag-Leffler function $E_{\alpha}(z)$ will be the result.

Definition 2.2 Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}; \min\{\Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\delta)\} > 0; p, q > 0$ and $q < \Re\alpha + p$. The integral operator which contains the Mittag-Leffler function (2.1) in the kernel is given by

$$\int_0^x f_1(x)f_2(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx \leq C\left(\int_0^x f_1(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx\right)^{\frac{1}{2}} \times \left(\int_0^x f_2(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx\right)^{\frac{1}{2}},$$

where

Theorem 2.3 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1, p > 1$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}; \min\{\Re(\alpha), \Re(\beta), \Re(\gamma), \Re(\delta)\} > 0; p, q > 0$ and $q < \Re\alpha + p$, then the following inequality holds

$$\int_0^x f_1(x)f_2(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx \leq C\left(\int_0^x f_1(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx\right)^{\frac{1}{2}} \times \left(\int_0^x f_2(x)\left(\epsilon^{\gamma,\delta}_{\alpha,\beta,p,q}f\right)(x)dx\right)^{\frac{1}{2}},$$
\[C = \sup_{t \in (a, b)} \left\{ \int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_1(x) f_2(x) \, dx \right\} \]

\[\times \left\{ \int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_3(x) \, dx \right\}^{\frac{\alpha}{\beta}} \]

\[\times \left\{ \int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_4(x) \, dx \right\}^{\frac{\alpha}{\beta}} \}. \]

Proof Applying Theorem 1.2 with \(\Omega_1 = \Omega_2 = (a, b) \), \(d\mu_1(t) = dt \), \(d\mu_2(x) = dx \),

\[k(t, x) = \begin{cases} (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma), & a \leq t \leq x; \\ 0, & x < t \leq b \end{cases} \]

and \(g(x) = \left(E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) \right)(x) \), we get the inequality (2.3). \(\Box \)

COROLLARY 2.4 If we set \(f_3(x) = f_1^*(x) \), \(f_4(x) = f_2^*(x) \), then the inequality

\[\int_a^x f_1(x) f_2(x) \left(E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) \right)(x) \, dx \]

\[\leq C \left(\left(\int_a^x f_1^*(x) \left(E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) \right)(x) \, dx \right)^\frac{\beta}{\alpha} \left(\int_a^x f_2^*(x) \left(E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) \right)(x) \, dx \right)^\frac{\alpha}{\beta} \right) \]

holds true, where

\[C = \sup_{t \in (a, b)} \left\{ \left(\int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_1(x) f_2(x) \, dx \right) \right\} \]

\[\times \left(\int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_3(x) \, dx \right)^{\frac{\alpha}{\beta}} \]

\[\times \left(\int_0^x (x-t)^{\beta-1} E_{\alpha,\beta}^{\alpha,\beta}(\omega(x-t)^\gamma) f_4(x) \, dx \right)^{\frac{\alpha}{\beta}} \}. \]

By similar process we can also obtain results for Mittag-Leffler function of Shukla and Prajapati (2007) and Prabhakar (1971).

3. Generalized integral inequality for Hilfer fractional derivative

In this section, we present the integral inequality (1.1) for the Hilfer fractional derivative. Let us recall the definition of Hilfer fractional derivative which is presented in Tomovski and Rudolf Hilfer Srivastava (2010).

Definition 3.1 Let \(f \in L_1[a, b], f + K_{(1-x^{-1})\mu} \in AC^1(a, b) \). The fractional derivative operator \(D_{a+}^{\mu} \) of order \(0 < \mu < 1 \) and type \(0 < \nu \leq 1 \) with respect to \(x \in [a, b] \) is defined by

\[(D_{a+}^{\mu} f)(x) = \Gamma_{a+}^{1-\mu} \frac{d}{dx} \left(\Gamma_{a+}^{1-\nu} f(x) \right), \quad (3.1) \]

whenever the right hand side exists. The derivative (3.1) is usually called Hilfer fractional derivative.

The more general integral representation of equation (3.1) is given in Hilfer, Luchko, and Tomovski (2009) and it is defined as: Let \(f \in L_1[a, b], f + K_{(1-x^{-1})\mu} \in AC^1[a, b], n - 1 < \mu < n, 0 < \nu \leq 1, n \in \mathbb{N} \), then the following equation holds true:
Theorem 3.2 Let $D_{a+}^{{\alpha+}(n-{\mu})}f \in L_1(a,b)$ and the fractional derivative operator $D_{a+}^{{\alpha+}}$ of order $n - 1 < \mu < n$ and type $0 < \nu < 1$, where $a > 0$, $b > a$, $\nu > 0$, and $1 < \mu < n$, then the inequality

\[
\frac{1}{\Gamma((n-\mu)\nu)} \int_a^b (x - t)^{(n-\mu)-1} \left((D_{a+}^{{\alpha+}(n-{\mu})}f_1)(x) \right) \left((D_{a+}^{{\alpha+}(n-{\mu})}f_2)(x) \right) dx
\]

holds true, where

\[
C = \sup_{t \in (a,b)} \left\{ \left(\int_a^x (x - t)^{(n-\mu)-1} \left((D_{a+}^{{\alpha+}(n-{\mu})}f_1)(x) \right) \left((D_{a+}^{{\alpha+}(n-{\mu})}f_2)(x) \right) dx \right) \right\}^{\frac{1}{2}} \times \left[\left(\int_a^x (x - t)^{(n-\mu)-1} \left((D_{a+}^{{\alpha+}(n-{\mu})}f_3)(x) \right) dx \right) \right]^{\frac{1}{2}} \times \left[\left(\int_a^x (x - t)^{(n-\mu)-1} \left((D_{a+}^{{\alpha+}(n-{\mu})}f_4)(x) \right) dx \right) \right]^{\frac{1}{2}}.
\]

Proof Applying Theorem 1.2 with $\Omega_1 = (a,b)$, $d \mu_1(t) = dt$, $d \mu_2(x) = dx$, $k(x,t) = \begin{cases} \frac{(x-t)^{(n-\mu)-1}}{\Gamma((n-\mu)\nu)}, & a \leq t \leq x; \\ 0, & x < t \leq b \end{cases}$ and $g(x) = (D_{a+}^{{\alpha+}}f)(x)$, we get the inequality (3.3). □

Corollary 3.3 If we set

\[
(D_{a+}^{{\alpha+}(n-{\mu})}f_1)(x) = \left((D_{a+}^{{\alpha+}(n-{\mu})}f_2)(x) \right)^p,
\]

\[
(D_{a+}^{{\alpha+}(n-{\mu})}f_3)(x) = \left((D_{a+}^{{\alpha+}(n-{\mu})}f_2)(x) \right)^q,
\]

then the inequality

\[
(D_{a+}^{{\alpha+}(n-{\mu})}f)(x) \leq \left(\int_a^x (x - t)^{(n-\mu)-1} \left((D_{a+}^{{\alpha+}(n-{\mu})}f_1)(x) \right) \left((D_{a+}^{{\alpha+}(n-{\mu})}f_3)(x) \right) dx \right)^\frac{1}{2}
\]

holds true, where C is a constant.
\[
\int_0^x (\mathcal{L}^{\mu+\nu}(f_1))(\mathcal{L}^{\mu+\nu}(f_2))(x)(\mathcal{L}^{\alpha_1}(f))(x) \, dx \\
\leq C \left(\int_0^x (\mathcal{L}^{\mu+\nu}(f_1))(x)^{\frac{1}{p}}(\mathcal{L}^{\alpha_1}(f))(x) \, dx \right)^\frac{1}{p} \\
\times \left(\int_0^x (\mathcal{L}^{\mu+\nu}(f_2))(x)^{\frac{1}{q}}(\mathcal{L}^{\alpha_1}(f))(x) \, dx \right)^\frac{1}{q}
\]
holds true, where
\[
C = \sup_{t \in (0,1)} \left\{ \left(\int_0^x (x-t)^{\nu-1} (\mathcal{L}^{\mu+\nu}(f_1))(x) \, dx \right)^{\frac{1}{p}} \\
\times \left(\int_0^x (x-t)^{\nu-1} (\mathcal{L}^{\mu+\nu}(f_2))(x) \, dx \right)^{\frac{1}{q}} \right\}
\]

4. Consequences for generalized Riemann-Liouville fractional integral operator

In this section, we find the applications of integral inequality (1.1) for generalized Riemann-Liouville fractional integral operator and extract the results of Farid et al. (2015) as special case. The generalized Riemann-Liouville fractional integral is defined as follows:

Definition 4.1 If \(f \in L_1, [a, b] \), then the left and right sided generalized Riemann-Liouville fractional integrals of order \(\alpha \geq 0 \) and \(r \geq 0 \) are given by

\[
\mathcal{I}^{\alpha, r}_a f(x) = \frac{(r+1)^{1-x}}{\Gamma(\alpha)} \int_0^x (x^{\alpha+1} - t^{\alpha+1})^{r-1} t^r f(t) \, dt, \quad t \in [a, b],
\]

\[
\mathcal{I}^{\alpha, r}_b f(x) = \frac{(r+1)^{1-x}}{\Gamma(\alpha)} \int_x^b (t^{\alpha+1} - x^{\alpha+1})^{r-1} t^r f(t) \, dt, \quad t \in [a, b],
\]

where \(t^r \) is the Euler gamma function.

Theorem 4.2 Let \(f \in L_1, [a, b] \) and the fractional integral operator \(\mathcal{I}^{\alpha, r}_a \) of order \(\alpha \geq 0 \) and type \(r \geq 0 \). Moreover \(p, q \) be two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(p > 1 \), then the inequality

\[
\int_0^x f_1(x)f_2(x)(\mathcal{I}^{\alpha, r}_a f)(x) \, dx \\
\leq C \left(\int_0^x f_1(x)(\mathcal{I}^{\alpha, r}_a f)(x) \, dx \right)^\frac{1}{p} \left(\int_0^x f_2(x)(\mathcal{I}^{\alpha, r}_a f)(x) \, dx \right)^\frac{1}{q}
\]
holds true, where
\[
C = \sup_{t \in (0,1)} \left\{ \left(\int_0^x (x-t)^{\nu+1} t^r f_1(x) \, dx \right)^{\frac{1}{p}} \\
\times \left(\int_0^x (x-t)^{\nu+1} t^r f_2(x) \, dx \right)^{\frac{1}{q}} \right\}.
\]
Proof Applying Theorem 1.2 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(t) = dt$, $d\mu_2(x) = dx$, kernel

$$k(x, t) = \begin{cases} \frac{t^x - t^y}{\Gamma(x)}, & a \leq t \leq x; \\ 0, & x < t \leq b \end{cases}$$

and $g(x) = (I_b^{\alpha} f)(x)$, we get the inequality (4.1).

COROLLARY 4.3 If we set

$$f_3(x) = f_1^p(x), \quad f_4(x) = f_2^q(x),$$

then we get the following inequality:

$$\int_a^x f_1(x)f_3(x)(I_b^{\alpha} f)(x)dx \leq C \left(\int_a^x f_2(x)(I_b^{\alpha} f)(x)dx \right)^\frac{1}{2} \left(\int_a^x f_4(x)(I_b^{\alpha} f)(x)dx \right)^\frac{1}{2}, \quad (4.2)$$

where

$$C = \sup_{t \in [a, b]} \left\{ \left(\int_a^x (x^{\alpha + 1} - t^{\alpha + 1})^{\alpha - 1} t' f_1(x)f_3(x)dx \right)^{\frac{1}{2}} \times \left(\int_a^x (x^{\alpha + 1} - t^{\alpha + 1})^{\alpha - 1} t' f_2(x)dx \right)^{\frac{1}{2}} \times \left(\int_a^x (x^{\alpha + 1} - t^{\alpha + 1})^{\alpha - 1} t' f_4(x)dx \right)^{\frac{1}{2}} \right\}.$$
and \(g(x) = (I_{a}^{\alpha}f)(x) \), we get the inequality (4.3).

COROLLARY 4.5 If we set \(f_1(x) = f_2^1(x) \), \(f_4(x) = f_2^2(x) \), then the inequality

\[
\int_{a}^{b} f_1(x)f_2(x)(I_{a}^{\alpha}f)(x)\,dx \\
\leq C \left(\int_{a}^{b} f_1^2(x)(I_{a}^{\alpha}f)(x)\,dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f_2^2(x)(I_{a}^{\alpha}f)(x)\,dx \right)^{\frac{1}{2}}
\]

holds true, where \(C = \sup_{t \in (a,b)} \left\{ \left(\int_{a}^{b} (t^{\circ \alpha} - x^{\circ \alpha})^{\frac{1}{p}}f_1(t)f_2(t)\,dt \right) \right\} \times \left(\int_{a}^{b} (t^{\circ \alpha} - x^{\circ \alpha})^{\frac{1}{q}}f_1^2(t)\,dt \right)^{\frac{1}{2}} \times \left(\int_{a}^{b} (t^{\circ \alpha} - x^{\circ \alpha})^{\frac{1}{q}}f_2^2(t)\,dt \right)^{\frac{1}{2}} \).

Remark 4.6 If we set \(r = 0 \) in inequalities (4.1), (4.2), (4.3) and (4.4), then we get results for the Riemann-Liouville fractional integrals presented in Farid et al. (2015).

5. Generalized integral inequality for Riemann-Liouville k-fractional integral operator

In this section, we present the integral inequalities for generalized Riemann-Liouville \(k \)-fractional integral operator presented in Mubeen and Habibullah (2012) and is defined as:

Definition 5.1 If \(f \in L_{1,\alpha}^p[a,b] \), then the generalized Riemann-Liouville \(k \)-fractional integral \(I_{a}^{\alpha}_k \) of order \(\alpha \geq 0 \) and \(k > 0 \) is given by

\[
I_{a}^{\alpha}_k f(x) = \frac{1}{\Gamma_k^{\alpha}(a)} \int_{a}^{x} (x-t)^{\frac{1}{k} - 1} f(t)\,dt, \quad x \in [a,b],
\]

where \(\Gamma_k \) is the gamma function i.e. \(\Gamma_k(y) = \int_{0}^{\infty} t^{y-1} e^{-t^k} \,dt \), \(k > 0 \).

THEOREM 5.2 Let \(f \in L_{1,\alpha}^p[a,b] \) and the fractional derivative operator \(I_{a}^{\alpha}_k \) of order \(\alpha \geq 0 \) and type \(k > 0 \). Moreover, \(p, q \) be two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(p > 1 \), then the inequality

\[
\int_{a}^{b} f_1(x)f_2(x)(I_{a}^{\alpha}_k f)(x)\,dx \\
\leq C \left(\int_{a}^{b} f_1^2(x)(I_{a}^{\alpha}_k f)(x)\,dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f_2^2(x)(I_{a}^{\alpha}_k f)(x)\,dx \right)^{\frac{1}{2}}
\]

holds true, where

\[
C = \sup_{t \in (a,b)} \left\{ \left(\int_{a}^{b} (x-t)^{\frac{1}{p} - 1} f_1(x)f_2(x)\,dx \right) \left(\int_{a}^{b} (x-t)^{\frac{1}{q} - 1} f_1(x)\,dx \right) \right\} \times \left(\int_{a}^{b} (x-t)^{\frac{1}{q} - 1} f_2(x)\,dx \right)^{\frac{1}{2}}
\]
Proof. Applying Theorem 1.2 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(x) = dx$, $d\mu_1(t) = dt$,

$$k(x, t) = \begin{cases} \frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)}, & a \leq t \leq x; \\ 0, & x < t \leq b \end{cases}$$

and $g(x) = (I_{a+}^\alpha f)(x)$, we get the inequality (5.2).

\[\text{Corollary 5.3} \quad \text{If we set} \ f_1(x) = f_1^\alpha(x), \ f_2(x) = f_2^\alpha(x), \ \text{then the inequality} \]

\[\int_a^x f_1(x)f_2(x)(I_{a+}^\alpha f)(x)dx \leq C \left(\int_a^x f_1^\alpha(x)(I_{a+}^\alpha f)(x)dx \right)^{\frac{1}{2}} \left(\int_a^x f_2^\alpha(x)(I_{a+}^\alpha f)(x)dx \right)^{\frac{1}{2}} \]

holds true, where

\[C = \sup_{t \in (a,b)} \left\{ \left(\int_a^x (x-t)^{\alpha-1}f_1(x)f_2(x)dx \right) \left(\int_a^x (x-t)^{\alpha-1}f_1^\alpha(x)dx \right)^{\frac{1}{2}} \times \left(\int_a^x (x-t)^{\alpha-1}f_2^\alpha(x)dx \right)^{\frac{1}{2}} \right\}. \]

\[\text{Remark 5.4} \quad \text{If we set} \ k = 1 \ \text{in inequalities (5.2) and (5.3), then we get results for the Riemann-Liouville fractional integral presented in Farid et al. (2015).} \]

\[\text{Funding} \quad \text{The authors received no direct funding for this research.} \]

\[\text{Author details} \quad \text{Muhammad Samraiz}^1 \quad \text{E-mail: m.samraiz@uos.edu.pk} \]

\[\text{Soaj Iqbal}^1 \quad \text{E-mail: soaj_uos2000@yahoo.com} \]

\[\text{Josip Pečarić}^2 \quad \text{E-mail: pecaric@element.hr} \]

\[^1 \text{Department of Mathematics, University of Sargodha (Sub-Campus Bhakkar), Bhakkar, Pakistan.} \]

\[^2 \text{Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia.} \]

\[\text{Citation information} \quad \text{Cite this article as: Generalized integral inequalities for fractional calculus, Muhammad Samraiz, Soaj Iqbal & Josip Pečarić, Cogent Mathematics & Statistics (2018), 5: 1426205.} \]

\[\text{References} \quad \text{Anastassiou, G. A. (2009). Fractional differentiation inequalities. New York, NY: Springer.} \]

\[\text{Anastassiou, G. A. (2011). Advanced inequalities (Vol. 11). Singapore: World Scientific.} \]

\[\text{Ansari, A. H., Liu, X., & Mishra, N. V. (2017). On Mittag-Leffler function and beyond. Nonlinear Science Letters A, 8(2), 187-199.} \]

\[\text{Mishra, L. N., & Sen, M. (2016). On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Applied Mathematics and Computation, 285, 174-183. doi:10.1016/j.amc.2016.03.002} \]

\[\text{Farid, G., Iqbal, S., & Pečarić, J. (2015). On generalization of an integral inequality and its applications. Cogent Mathematics, 2, 1066528.} \]

\[\text{Hilfer, R., Luchko, Y., & Tomovski, Z. (2009). Operational method for solution of fractional differential equations with generalized Riemann-Liouville fractional derivative. Fractional Calculus & Applied Analysis, 12(3), 299–318.} \]

\[\text{Iqbal, S., Krulić, K., & Pečarić, J. (2018). On an inequality of H. G. Hardy. Journal of Inequalities and Applications, 2010.} \]

\[\text{Article ID 264367.} \]

\[\text{Iqbal, S., Pečarić, J., Samraiz, M., & Sultana, N. (2015). Applications of refined Hardy-type inequalities. Mathematical Inequalities & Applications, 18(4), 1539–1560.} \]

\[\text{Mitrinović, D. S., & Pečarić, J. (1999). Two integral inequalities.} \]

\[\text{Sea Bulletin of Mathematics, 15, 153–155.} \]

\[\text{Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction. Comptes Rendus de l'Académie des Sciences, 137, 554–558.} \]

\[\text{Mubeen, S., & Habibullah, G. M. (2012). k-Fractional integrals and application. International Journal of Contemporary Mathematical Sciences, 7, 89–94.} \]

\[\text{Mubeen, S., & Iqbal, S. (2016). Grüss type integral inequality for generalized Riemann-Liouville k fractional integral. Journal of Inequalities and Applications, 2016(1), 109.} \]

\[\text{Niculescu, C., & Persson, L. E. (2006). Convex functions and their applications. A contemporary approach. CMC Books in Mathematics. New York, NY: Springer.} \]

\[\text{Prabhakar, T. R. (1977). A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Mathematical Journal, 19, 7–15.} \]

\[\text{Salim, T. O. (2009). Some properties relating to the generalized Mittag-Leffler function. Advances in Applied Mathematical Analysis, 4, 21–30.} \]

\[\text{Salim, T. O., & Faraj, A. W. (2012). A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. JFCA, 5, 1–13.} \]
Shukla, A. K. & Prajapati, J. C. (2007). On a generalization of Mittag-Leffler function and its properties. *Journal of Mathematical Analysis and Applications*, 336, 797–811.

Srivastava, H. M., & Tomovski, Ž. (2009). Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel. *Applied Mathematics and Computation*, 211, 198–210.

Tomovski, Ž., & Rudolf Hilfer Srivastava, H. M. (2010). Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. *Integral Transforms and Special Functions*, 21(11), 797–814.

Wiman, A. (1905). Über den fundamental satz in der theori der functionen. *Acta Mathematica*, 29, 191–201.