On the Maximum of Random Variables on Product Spaces

Joscha Prochno Stiene Riemer

May 5, 2014

Abstract
Let $\xi_i, i = 1, \ldots, n$, and $\eta_j, j = 1, \ldots, m$ be iid p-stable respectively q-stable random variables, $1 < p < q < 2$. We prove estimates for $\mathbb{E}\Omega_1 \Omega_2 \max_{i,j} |a_{ij} \xi_i(\omega_1) \eta_j(\omega_2)|$ in terms of the $\ell_p^m(\ell_q^n)$-norm of $(a_{ij})_{i,j}$. Additionally, for p-stable and standard gaussian random variables we prove estimates in terms of the $\ell_p^m(\ell_{\mathcal{M}_\xi}^n)$-norm, \mathcal{M}_ξ depending on the Gaussians. Furthermore, we show that a sequence $\xi_i, i = 1, \ldots, n$ of iid log-$\gamma(1,p)$ distributed random variables $(p \geq 2)$ generates a truncated ℓ_p-norm, especially $\mathbb{E} \max_i |a_i \xi_i| \sim \|(a_i)\|_2$ for $p = 2$. As far as we know, the generating distribution for ℓ_p-norms with $p \geq 2$ has not been known up to now.

Keywords: Random variables, Orlicz norms

1 Introduction and Notation

Let $\xi_i, i = 1, \ldots, n$ be independent copies of a random variable ξ on a probability space $(\Omega_1, \mathcal{A}_1, \mathbb{P}_1)$, whose first moment is finite. Furthermore, let $a_i, i = 1, \ldots, n$ be real numbers. In [4] and [5], the following theorem was shown:

Theorem 1.1. Let

$$M_{\xi}(s) = \int_0^s \frac{1}{t} \mathbb{P}_1(|\xi| \geq \frac{1}{t}) + \int_t^\infty \mathbb{P}_1(|\xi| \geq u)du dt. \quad (1)$$

Then, for all $x \in \mathbb{R}^n$,

$$\mathbb{E} \max_{i=1,\ldots,n} |a_i \xi_i| \sim \|(a_i)_{i=1}^n\|_{\mathcal{M}_\xi}. $$
We recall that a convex function $M : [0, \infty) \to [0, \infty)$ with $M(0) = 0$ is called an Orlicz function. For an Orlicz function M we define the Orlicz norm $\|\cdot\|_M$ on \mathbb{R}^n by

$$
\|x\|_M = \inf \left\{ t > 0 \mid \sum_{i=1}^{n} M \left(\frac{|x_i|}{t} \right) \leq 1 \right\},
$$

and the Orlicz space ℓ^n_M to be \mathbb{R}^n equipped with the norm $\|\cdot\|_M$. For references see for example [6].

In the following let also $n_j, j = 1, \ldots, m$ be independent copies of a random variable η on a probability space $(\Omega_2, \mathcal{A}_2, \mathbb{P}_2)$, whose first moment is finite and $a_{ij}, i = 1, \ldots, n, j = 1, \ldots, m$ be real numbers. It is a natural question if we can give estimates for

$$
\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)|.
$$

Since the random variables $(\xi_i \eta_j)_{i,j=1}^{n,m}$ are no longer independent on the product space $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mathbb{P}_1 \otimes \mathbb{P}_2)$ the previous result, Theorem 1.1, is not applicable in this case.

We give precise estimates up to absolute constants for a certain class of random variables, namely p- and q-stable, $p, q \in (1, 2)$, $p < q$, and standard gaussians. This shows in addition that we can treat dependent random variables with a certain structure of dependence and give precise estimates, this has not been feasible at all by now. Considering p-stable random variables seems to be natural in this case, since they generate the ℓ_p-norm, that means the Orlicz function resulting in Theorem 1.1 equals $s \mapsto s^p$ for $p \in (1, 2)$. One would expect, that the standard gaussians generate the ℓ_2-norm, but in fact, as shown for example in [5], they do not, but we can treat them as well. These estimates can be found in the second section. For applications we refer the reader to [3], [4] and [5].

Furthermore, in this context the question arose which random variables generate the ℓ_2-norm, since standard gaussians astonishingly do not. We provide the solution together with the solution of the generation of truncated ℓ_p-norms ($p > 2$) in the third section. Additionally, we give order estimates for (2) for these generating distributions.

In the following we will give order estimates and this will be denoted by \sim, since we are not interested in the exact values of the absolute constants. If for example the absolute constants depend on a certain variable p we denote this by \sim_p.

2
2 Estimates for $\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)|$

In the following let $p, q \in (1, 2)$ with $p < q$. We analyze $\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)|$ under two different assumptions. Let η always be a p-stable random variable.

In the first case let ξ be a q-stable random variable, we prove the following:

$$\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \sim \left(\left\| \left(\sum_{i=1}^{n} \left| a_{ij} \right| \right)^{\frac{n}{q}} \right\|_{p} \right)^{m}.$$

In the second case let ξ be a standard gaussian random variable, we prove under this assumption

$$\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \sim \left(\left\| \left(\sum_{i=1}^{n} \left| a_{ij} \right| \right)^{\frac{n}{M_{\xi}}} \right\|_{p} \right)^{m},$$

where $\| \cdot \|_{M_{\xi}}$ denotes the Orlicz norm given by the Orlicz function

$$M_{\xi}(s) = \begin{cases} 0, & \text{if } s = 0 \\ e^{-\frac{s^2}{2}}, & \text{if } s \in (0, 1) \\ e^{-\frac{s}{2}(3s - 2)}, & \text{if } s \geq 1. \end{cases}$$

The idea to prove these two results is using the triangle inequality and Jensen’s inequality for getting a lower and an upper bound. Afterwards we show that the resulting expressions are equal up to constants depending only on p and q using Theorem 1.1. Furthermore, we show that we can express this resulting object in terms of a product norm, as above. This also allows us, in these cases, to express a result due to S. Kwapien and C. Schütt, [8] (Example 1.6), in terms of random variables and in a very handy form.

Applying the results from [3], combined with the first steps of the proof of Theorem 2.1 one obtains

$$c_1 \alpha^{-1} \left\| \max_{1 \leq l \leq n} \left(\frac{n + 1 - j}{\sum_{i=1}^{n} \frac{1}{a_{ij}}} \right)^{n} \right\|_{p} \leq \mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \leq c_p \beta^{-1} \ln(n + 1) \left\| \max_{1 \leq l \leq n} \left(\frac{n + 1 - j}{\sum_{i=1}^{n} \frac{1}{a_{ij}}} \right)^{n} \right\|_{p},$$

where η is p-stable and ξ is a standard gaussian. Since there is a logarithmic factor in the upper bound, this obviously does not give the correct order.
With our method we give the correct order up to absolute constants in a very handy form.

Theorem 2.1. Let \(p, q \in (1, 2) \) with \(p < q \). Additionally, let \(\xi_i, i = 1, \ldots, n \) be independent copies of a \(q \)-stable random variable \(\xi \) on \((\Omega_1, \mathcal{A}_1, \mathbb{P}_1)\) and let \(\eta_j, j = 1, \ldots, m \) be independent \(p \)-stable copies of a random variable \(\eta \) on \((\Omega_2, \mathcal{A}_2, \mathbb{P}_2)\). Then, for all \((a_{ij})_{i,j} \in \mathbb{R}^{n \times m}\),

\[
\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{1 \leq i,j \leq m} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \sim_{p \cdot q} \left\| \left(\mathbb{E}_{\Omega_1} \max_{1 \leq i \leq n} |a_{ij} \xi_i(\omega_1)| \right)^m \right\|_p.
\]

Proof. Let \(a_j, j = 1, \ldots, m \) be real numbers. In [5] it was shown that

\[
\mathbb{E}_{\Omega_2} \max_{1 \leq j \leq m} |a_j \eta_j(\omega_2)| \sim \left\| (a_j)^m \right\|_p. \tag{4}
\]

Applying this, we get

\[
\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \sim \mathbb{E}_{\Omega_1} \left(\max_{1 \leq i \leq n} |a_{ij} \xi_i(\omega_1)| \right)^m \left\| \left((a_j)^n \right)^m \right\|_p.
\]

Using the triangle inequality and (4) for the \(q \)-stable \(\xi_i, i = 1, \ldots, n \), we get

\[
\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \geq \left(\mathbb{E}_{\Omega_1} \max_{1 \leq i \leq n} |a_{ij} \xi_i(\omega_1)| \right)^m \left\| \left((a_j)^n \right)^m \right\|_p.
\]

For the upper bound we apply Jensen’s inequality and obtain

\[
\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij} \eta_j(\omega_2) \xi_i(\omega_1)| \leq \left(\mathbb{E}_{\Omega_1} \max_{1 \leq i \leq n} \left| a_{ij} \xi_i^p(\omega_1) \right|^p \right)^{\frac{1}{p}} \left\| (a_j)^m \right\|_p.
\]

By Theorem 1.1 we get

\[
\mathbb{E}_{\Omega_1} \max_{1 \leq i \leq n} \left| a_{ij}^p \xi_i^p(\omega_1) \right| \sim \left\| (a_{ij})^m \right\|_{M_{\xi^p}},
\]

where

\[
M_{\xi^p}(s) = \int_0^s \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_s^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du \right) dt. \tag{5}
\]

To prove that the upper and lower bound are equal up to constants, we show that \(M_{\xi^p}(s) \sim s^{q/p} \). This is equivalent to \(M_{\xi^p}(s^p) \sim s^q \) and hence we get

\[
\left\| (a_{ij})^n \right\|_{M_{\xi^p}} = \left\| (a_{ij})^n \right\|_{M_{\xi^{p^2}}} \sim \left\| (a_{ij})^n \right\|_q.
\]

4
since the function $s \mapsto s^q$ generates the l_q-norm. To do so, we use the fact that if a random variable ξ is q-stable for all $t > 0$ it holds true that

$$P(|\xi| \geq t) \lesssim t^{-q},$$

for references see for example [2]. Combining (3) and (4) we get, since $q > p$,

$$M_{\xi^p}(s) = \int_0^s \left(\frac{1}{t} \mathbb{P}_1(|\xi|^p \geq \frac{1}{t}) \right) dt + \int_\frac{1}{t}^\infty \mathbb{P}_1(|\xi|^p \geq u) du \lesssim \int_0^s \left(\frac{1}{t} \left(\frac{1}{t} \right)^{-\frac{q}{p}} + \int_\frac{1}{t}^\infty u^{-\frac{q}{p}} du \right) dt \leq 2 \int_0^s \left(t^{-1+\frac{q}{p}} + \left[\frac{-u^{-\frac{q}{p}}}{t} \right]_t^{\infty} \right) dt = 2 \int_0^s t^{-1+\frac{q}{p}} dt \sim s^\frac{q}{p},$$

which yields the desired result.

Theorem 2.2. Let $p \in (1, 2)$, let $\xi_i, i = 1, ..., n$ be independent copies of a p-stable random variable ξ on $(\Omega_1, \mathcal{A}_1, \mathbb{P}_1)$ and let $\eta_j, j = 1, ..., m$ be independent copies of a standard gaussian random variable η on $(\Omega_2, \mathcal{A}_2, \mathbb{P}_2)$. Then, for all $(a_{ij})_{i,j} \in \mathbb{R}^{n \times m}$,

$$\mathbb{E}_{\Omega_1} \mathbb{E}_{\Omega_2} \max_{i,j} |a_{ij}\eta_j(\omega_2)\xi_i(\omega_1)| \sim_p \left\| \left\| (a_{ij})_{i=1}^n \right\|_{\mathcal{M}_p} \right\|_p \mathcal{M}_p,$$

where $\| \cdot \|_{\mathcal{M}_p}$ denotes the Orlicz norm given by the Orlicz function

$$M_\xi(s) = \begin{cases} 0 & \text{if } s = 0 \\ e^{-\frac{3}{2}s^2} & \text{if } s \in (0, 1) \\ e^{-\frac{3}{2}(3s - 2)} & \text{if } s \geq 1. \end{cases} \hspace{1cm} (7)$$

Before giving the proof, we need the following observation concerning standard gaussian random variables:

Observation 2.3. Let ξ be a standard gaussian random variable, then the following holds for all $t > 0$, since the distribution of ξ is symmetric

$$\mathbb{P}(|\xi| \geq t) = 2\mathbb{P}(\xi \geq t) = \sqrt{\frac{2}{\pi}} \int_\frac{t}{\sqrt{2}}^\infty e^{-\frac{x^2}{2}} dx.$$
Now, applying the results from [3], we get

\[P(|ξ| ≥ t) = \sqrt{\frac{2}{\pi}} \int_t^{\infty} e^{-\frac{x^2}{2}} \, dx \sim \frac{1}{t} e^{-\frac{t^2}{2}}. \]

\((8) \)

Proof. (Theorem 2.2) Let \((a_i)_{i=1}^n \in \mathbb{R}^n\). Applying Theorem 1.1, we get

\[E \max_{i=1,\ldots,n} |a_i ξ_i| \sim \| (a_i)_{i=1}^n \|_{M_ξ}, \]

where, as shown in [5], the following holds

\[M_ξ(s) = 0 \left\{ \begin{array}{ll}
0 & \text{, if } s = 0 \\
\frac{t}{2} & \text{, if } s \in (0, 1) \\
\frac{1}{2} (3s - 2) & \text{, if } s \geq 1.
\end{array} \right. \]

In accordance with the ideas from the proof of Theorem 2.1, we get

\[E_{Ω_1} E_{Ω_2} \max_{i,j} |a_{ij} η_j(ω_2) ξ_i(ω_1)| \geq \left\| \left(\left\| \left(a_{ij} \right)_{i=1}^n \|_{M_ξ} \right\|_{M_ξ(Ω)} \right)_{j=1}^m \right\|_p
\]

and

\[E_{Ω_1} E_{Ω_2} \max_{i,j} |a_{ij} η_j(ω_2) ξ_i(ω_1)| \leq \left\| \left(\left\| \left(a_{ij} \right)_{i=1}^n \|_{M_ξ(Ω)} \right\|_{M_ξ} \right)_{j=1}^m \right\|_p. \]

As in the previous proof it remains to show that

\[\left\| \left(\left(a_{ij} \right)_{i=1}^n \|_{M_ξ} \right)_{j=1}^m \right\|_p \sim \left\| \left(a_{ij} \right)_{i=1}^n \right\|_{M_ξ}. \]

Therefore, we prove again that \(M_{ξ^p}(s) \sim_p M_ξ \left(s^\frac{1}{p} \right) \), since this is equivalent to \(M_{ξ^p}(s^p) \sim_p M_ξ (s) \) and yields

\[\left\| \left(a_{ij} \right)_{i=1}^n \right\|_{M_ξ(Ω)} \sim \left\| \left(a_{ij} \right)_{i=1}^n \right\|_{M_ξ(Ω^p)} \sim \left\| \left(a_{ij} \right)_{i=1}^n \right\|_{M_ξ}. \]

First we show \(M_{ξ^p}(s) \leq_p M_ξ \left(s^\frac{1}{p} \right) \) and afterwards we prove the reverse inequality. To do so, we distinguish between \(s \leq 1 \) and \(s > 1 \).

Upper bound \(M_{ξ^p}(s) \leq_p M_ξ \left(s^\frac{1}{p} \right): \)
Case 1: Let $s \leq 1$.

$$M_{\xi^p}(s) = \int_0^s \left(\frac{1}{t} P_1(|\xi|^p \geq \frac{1}{t}) + \int_0^\infty P_1(|\xi|^p \geq u)du \right) dt$$

$$\sim_p \int_0^s \left(\frac{1}{x} P_1(|\xi| \geq \frac{1}{x}) + \int_{\frac{1}{x}}^\infty P_1(|\xi|^p \geq y) dy \right) x^{p-1} dx.$$

By (8) we get

$$(I) \sim \int_\frac{1}{x}^\infty e^{-\frac{y^2}{2}} y^{p-2} dy.$$

Since $p - 2 < 0$ and $y \geq \frac{1}{x} \geq 1$, we have $y^{p-2} \leq 1$ and so we get again by (8)

$$(I) \lesssim \int_\frac{1}{x}^\infty e^{-\frac{y^2}{2}} dy \sim x e^{-\frac{1}{2x^2}}.$$

Altogether

$$M_{\xi^p}(s) \lesssim_p \int_0^s \left(\frac{1}{x} P_1(|\xi| \geq \frac{1}{x}) + x e^{-\frac{1}{2x^2}} \right) x^{p-1} dx.$$

To estimate $P\left(|\xi| \geq \frac{1}{x}\right)$, we apply (8) and then take into account that for all $x \in (0, s^{1/p})$ it holds that $x \leq 1$ and so $e^{-\frac{1}{2x^2}} + x e^{-\frac{1}{2x^2}} \leq 2 e^{-\frac{1}{2x^2}}$. Using this, we get

$$M_{\xi^p}(s) \lesssim_p \int_0^s x^{p-1} \left(e^{-\frac{1}{2x^2}} + x e^{-\frac{1}{2x^2}} \right) dx$$

$$= \int_0^s x^{p-1} \left(e^{-\frac{1}{2x^2}} + x e^{-\frac{1}{2x^2}} \right) dx$$

$$\lesssim \int_0^s x^{p-1}e^{-\frac{1}{2x^2}} dx$$

$$= \int_0^\infty t^{-p-1}e^{-\frac{t^2}{2}} dt.$$

Since $-p - 1 < -2$ and $t \geq s^{-\frac{1}{p}} \geq 1$, it holds that $t^{-p-1} \leq 1$. Applying this and (8), we get

$$M_{\xi^p}(s) \lesssim_p \int_0^s \int_0^\infty e^{-\frac{t^2}{2}} dt \sim s^{\frac{1}{p}} e^{-\frac{1}{2s^{\frac{1}{p}}}}.$$

7
Finally, as \(s \leq 1 \), we get

\[
M_{\xi^p}(s) \lesssim e^{-\frac{1}{2s^2}} \sim M_{\xi}\left(s^{\frac{1}{2}}\right).
\]

Case 2: Let \(s > 1 \).

\[
M_{\xi^p}(s) = \int_0^1 \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du \right) dt.
\]

\[
= \int_0^1 \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du \right) dt
+ \int_{\frac{1}{s}}^s \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du \right) dt.
\]

(a) can be estimated by case 1 and so yields

\[
\int_0^1 \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du \right) dt \lesssim e^{-\frac{1}{4}}.
\]

So it suffices to estimate

\[
(b) = \int_{\frac{1}{s}}^s \frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) dt + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 \left(|\xi|^p \geq u \right) du dt
\]

At first, we estimate (I). Using Markov’s inequality, we get

\[
(I) = \int_1^s \frac{1}{t} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{t} \right) dt \leq \int_1^s \frac{1}{t} \mathbb{E} |\xi| \left\{ \left(\frac{1}{t} \right)^{\frac{p}{2}} \right\} dt \sim \int_1^s t^{-1+\frac{1}{p}} dt = \left[t^{\frac{1}{p}} \right]_1^{s^{\frac{1}{p}}} = s^{\frac{1}{p}} - 1 \lesssim \frac{1}{2s^{\frac{1}{2}}}
\]

To estimate (II), we use (8) and get

\[
(II) \sim \int_1^s \int_1^\infty u^{-\frac{1}{2}} e^{-\frac{u^2}{2}} du dt = \int_1^s \int_1^\infty y^{-1} e^{-\frac{y^2}{2}} p y^{p-1} dy dt \sim \int_1^s \int_1^\infty y^{p-2} e^{-\frac{y^2}{2}} dy dt
\]

\[
\sim \int_1^s \left[-\Gamma \left(\frac{p-1}{2}, \frac{y^2}{2} \right) \right]_{\frac{1}{t^{\frac{1}{p}}}}^\infty dt = \int_1^s \Gamma \left(\frac{p-1}{2}, \frac{1}{2t^{\frac{1}{p}}} \right) dt.
\]

In general, we have

\[
\int x^{b-1} \Gamma(t, x) dx = \left[\frac{1}{b} \left(x^b \Gamma(t, x) - \Gamma(t + b, x) \right) \right]
\]
see for example [1]. With $b = 1$ this provides

$$
(II) \sim \int_1^s \Gamma \left(\frac{p-1}{2}, \frac{1}{2t^p} \right) dt = \left[\frac{1}{2t^p} \Gamma \left(\frac{p-1}{2}, \frac{1}{2t^p} \right) - \Gamma \left(\frac{p-1}{2} + 1, \frac{1}{2t^p} \right) \right]_1^s
$$

$$
= \frac{1}{2s^p} \Gamma \left(\frac{p-1}{2}, \frac{1}{2s^p} \right) - \Gamma \left(\frac{p-1}{2} + 1, \frac{1}{2s^p} \right) + c_p
$$

$$
\text{for } s \geq 1.
$$

Generally by integration by parts we have

$$
\Gamma(t, x) = (t-1)\Gamma(t-1, x) + xe^{t-1}e^{-x}.
$$

We apply this for $t = \frac{p-1}{2} + 1$ and $x = \frac{1}{2s^p}$. Since $1 < s < \infty$ and $1 < p < 2$,

$$
0 \leq xe^{t-1}e^{-x} = \frac{1}{2s^p} e^{-\frac{1}{2} + \frac{2}{s^p}} \leq \frac{1}{2},
$$

$$
\text{for } s \geq 1.
$$

Altogether, this yields

$$
\Gamma \left(\frac{p-1}{2} + 1, \frac{1}{2s^p} \right) \sim_p \Gamma \left(\frac{p-1}{2}, \frac{1}{2s^p} \right) + \tilde{c}_p.
$$

Overall, we have

$$
(II) \lesssim_p \tilde{c}_p.
$$

Combining the previous, we get

$$
M_{\xi^p}(s) = (a) + (b) \lesssim_p e^{-\frac{s}{2}} + s^{\frac{1}{p}} - 1 + \tilde{c}_p \lesssim_p \sim M_{\xi} \left(\frac{s}{p} \right).
$$

Subsumed, we proved for all s

$$
M_{\xi^p}(s) \lesssim_p M_{\xi} \left(\frac{s}{p} \right).
$$

Lower bound $M_{\xi^p}(s) \gtrsim_p M_{\xi} \left(\frac{s}{p} \right)$:
Case 1: Let \(s \leq 1 \).

\[
M_{\xi^p}(s) = \int_0^s \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_0^\infty \mathbb{P}_1(|\xi|^p \geq u) du \right) dt
\]

\[
\sim_p \int_0^{s^{\frac{1}{p}}} \left(\frac{1}{x} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) + \int_{\frac{1}{x}}^\infty \mathbb{P}_1(|\xi| \geq y) y^{p-1} dy \right) x^{p-1} dx
\]

\[
\geq \int_0^{s^{\frac{1}{p}}} x^{p-2} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) dx.
\]

We have \(-1 < p - 2 < 0\) and \(x \leq 1 \), so \(1 \leq x^{p-2} \leq x^{-1} \) holds and therefore

\[
M_{\xi^p}(s) \geq_p \int_0^{s^{\frac{1}{p}}} x^{p-2} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) dx \geq \int_0^{s^{\frac{1}{p}}} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) dx.
\]

Applying (8), we get

\[
M_{\xi^p}(s) \geq_p \int_0^{s^{\frac{1}{p}}} x e^{-\frac{x^2}{2}} dx = \int_{s^{-\frac{1}{p}}}^{\infty} t^{-3} e^{-\frac{t^2}{2}} dt = \int_{s^{-\frac{1}{p}}}^{\infty} e^{-\frac{t^2}{2}-3 \ln(t)} dt \geq \int_{s^{-\frac{1}{p}}}^{\infty} e^{-\frac{t^2}{2}} dt \sim s^{\frac{1}{p}} e^{-\frac{s}{2p}}.
\]

Finally, we proved

\[
M_{\xi^p}(s) \geq_p M_{\xi^p} (s^{\frac{1}{p}}).
\]
Case 2: Let $s > 1$.

$$M_{\xi^p}(s) = \int_0^s \left(\frac{1}{t} \mathbb{P}_1 \left(|\xi|^p \geq \frac{1}{t} \right) + \int_{\frac{1}{t}}^\infty \mathbb{P}_1 (|\xi|^p \geq u) du \right) dt$$

$$\sim_p \int_0^{s^\frac{1}{p}} \left(\frac{1}{x} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) + \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) y^{p-1} dy \right) x^{p-1} dx$$

$$= \int_0^{s^\frac{1}{p}} \frac{1}{x} \mathbb{P}_1 \left(|\xi| \geq \frac{1}{x} \right) x^{p-1} dx + \int_0^{s^\frac{1}{p}} \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) y^{p-1} dy x^{p-1} dx$$

$$\geq \int_0^{s^\frac{1}{p}} \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) y^{p-1} dy x^{p-1} dx$$

$$\geq \int_0^{s^\frac{1}{p}} \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) x^{-p+1} dy x^{p-1} dx$$

$$= \int_0^{s^\frac{1}{p}} \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) dy dx$$

$$\geq \int_1^{s^\frac{1}{p}} \int_{\frac{1}{x}}^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) dy dx$$

$$\geq \int_1^{s^\frac{1}{p}} \int_1^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) dy dx.$$

By (8), we get

$$\int_1^\infty \mathbb{P}_1 \left(|\xi| \geq y \right) dy \sim \int_1^\infty \frac{1}{y} e^{-\frac{y^2}{4}} dy = \int_1^\infty e^{-\frac{y^2}{4}-\ln(y)} dy \sim \int_1^\infty e^{-\frac{y^2}{4}} dy \sim e^{-1},$$

which yields

$$M_{\xi}(s) \gtrsim_p \int_1^{s^\frac{1}{p}} e^{-1} dx \sim s^{\frac{1}{p}} - 1 \sim s^{\frac{1}{p}} \sim M_{\xi^p}(s^{\frac{1}{p}}).$$

altogether, we proved that for all s

$$M_{\xi^p}(s) \gtrsim_p M_{\xi^p} \left(s^{\frac{1}{p}} \right).$$

With regard to the previous, we proved for all s

$$M_{\xi^p}(s) \sim_p M_{\xi^p} \left(s^{\frac{1}{p}} \right),$$

which concludes the proof.
3 Generation of truncated ℓ_p-norms ($p > 1$)

Since standard gaussian random variables do not generate the ℓ_2-norm, the question arises what distribution does. We prove that $\log - \gamma_{1,p}$ distributed random variables generate more or less the ℓ_p-norm and especially $\log - \gamma_{1,2}$ distributed random variables generate exactly the ℓ_2-norm.

We remind the reader that the density of a $\log - \gamma_{q,p}$ distributed random variable ξ with parameters $q,p > 0$ is given by

$$f_\xi(x) = \begin{cases} \frac{p^q}{\Gamma(q)} x^{-p-1} (\ln(x))^{q-1}, & x \geq 1, \\ 0, & x < 1. \end{cases}$$

We prove the following theorem.

Theorem 3.1. Let $p > 1$ and ξ_1, \ldots, ξ_n be i.i.d. copies of a $\log - \gamma_{1,p}$ distributed random variable ξ. Then for all $x \in \mathbb{R}^n$

$$\mathbb{E} \max_{1 \leq i \leq n} |x_i \xi_i| \sim \|x\|_{M_\xi},$$

and $M_\xi(s) = \begin{cases} \frac{1}{p-1}s^p, & s \leq 1; \\ \frac{1}{p-1}s - 1, & s > 1. \end{cases}$

Proof. By Theorem 1.1, we have

$$\mathbb{E} \max_{1 \leq i \leq n} |x_i \xi_i| \sim \|x\|_{M_\xi},$$

where

$$M_\xi(s) = \int_0^s \frac{1}{t} \mathbb{P}\left(|\xi| \geq \frac{1}{t}\right) dt + \int_t^\infty \mathbb{P}(|\xi| \geq u) du dt. \quad (9)$$

Case 1: Let $s \leq 1$. Since we have integration limits 0 and s, $\frac{1}{s} \geq 1$ holds. For all $y \geq 1$

$$\mathbb{P}(|\xi| \geq y) = \int_y^\infty f_\xi(x) dx = \int_y^\infty px^{-p-1} dx = [-x^{-p}]^\infty_y = y^{-p}. \quad (10)$$

Therefore, by (10)

$$\int_0^s \frac{1}{t} \mathbb{P}\left(|\xi| \geq \frac{1}{t}\right) dt = \int_0^s \frac{1}{t} t^p dt = \frac{s^p}{p}.$$

Furthermore, by (10) and because $p > 1$

$$\int_\frac{1}{t}^\infty \mathbb{P}(|\xi| \geq u) du = \int_\frac{1}{t}^\infty u^{-p} du = \frac{1}{p-1}t^{p-1}$$
and hence
\[\int_0^s \frac{1}{p-1} t^{p-1} dt = \frac{1}{p(p-1)} s^p. \]

Using the representation (9), we obtain
\[M_{\xi}(s) = \frac{1}{p} s^p + \frac{1}{p(p-1)} s^p = \frac{1}{p-1} s^p. \]

Case 2: Let \(s > 1 \). We first calculate
\[\int_0^s \frac{1}{t} \mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) dt. \]

We have
\[\int_0^s \frac{1}{t} \mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) dt = \int_0^1 \frac{1}{t} \mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) dt + \int_1^s \frac{1}{t} \mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) dt. \]

In (I), we have \(\frac{1}{t} \geq 1 \) and therefore (10) applies and we obtain
\[\mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) = t^p. \]

Hence
\[(I) = \int_0^1 \frac{1}{t} t^p dt = \left[\frac{1}{p} t^p \right]_0^1 = \frac{1}{p}. \]

In (II), we have \(\frac{1}{t} \leq 1 \) and therefore
\[\mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) = \int_{1/t}^\infty f_{\xi}(x) dx = \int_1^{\infty} f_{\xi}(x) dx = \int_1^{\infty} px^{-p-1} dx = [-x^{-p}]_1^\infty = 1. \]

So we obtain
\[(II) = \int_1^s \frac{1}{t} dt = \ln(s). \]

Therefore
\[\int_0^s \frac{1}{t} \mathbb{P} \left(|\xi| \geq \frac{1}{t} \right) dt = \ln(s) + \frac{1}{p}. \]

We now calculate
\[\int_0^s \int_{1/t}^{\infty} \mathbb{P}(|\xi| \geq u) du \ dt. \]

Again, we have
\[\int_0^s \int_{1/t}^{\infty} \mathbb{P}(|\xi| \geq u) du \ dt = \int_0^1 \int_{1/t}^{\infty} \mathbb{P}(|\xi| \geq u) du \ dt + \int_1^s \int_{1/t}^{\infty} \mathbb{P}(|\xi| \geq u) du \ dt. \]
In part \((III)\), we have \(\frac{1}{t} \geq 1\) and hence by \((10)\)
\[
P(|\xi| \geq u) = u^{-p}.
\]
So we obtain
\[
\int_{\frac{1}{t}}^{\infty} u^{-p} = \frac{1}{p-1} t^{p-1}.
\]
Therefore
\[
(III) = \int_0^1 \int_{1/t}^{\infty} P(|\xi| \geq u) du \; dt = \int_0^1 \frac{1}{p-1} t^{p-1} dt = \frac{1}{p(p-1)}.
\]
In part \((IV)\), we have \(\frac{1}{t} \leq 1\), so we get
\[
\int_{\frac{1}{t}}^{\infty} P(|\xi| \geq u) du = \int_{\frac{1}{t}}^{1} P(|\xi| \geq u) du + \int_{1}^{\infty} P(|\xi| \geq u) du.
\]
Since in \((IV.1)\) we have \(u \leq 1\), we obtain
\[
(IV.1) = \int_{\frac{1}{t}}^{1} \int_{u}^{\infty} f_{\xi}(x) dx \; du = \int_{\frac{1}{t}}^{1} \int_{1}^{\infty} f_{\xi}(x) dx \; du = \int_{1}^{1} 1 du = 1 - \frac{1}{t}.
\]
In \((IV.2)\), we have \(u \geq 1\) and therefore by \((10)\)
\[
P(|\xi| \geq u) = u^{-p}.
\]
Hence
\[
(IV.2) = \int_{1}^{\infty} u^{-p} du = \frac{1}{p-1}.
\]
So
\[
(IV) = \int_{1}^{s} \int_{1/t}^{\infty} P(|\xi| \geq u) du \; dt = \int_{1}^{s} 1 - \frac{1}{t} + \frac{1}{p-1} dt = \frac{p}{p-1} (s - 1) - \ln(s).
\]
Altogether, we have
\[
M_\xi(s) = \ln(s) + \frac{1}{p} + \frac{1}{p(p-1)} + \frac{p}{p-1} (s - 1) - \ln(s),
\]
i.e. for \(s > 1\) we have \(M_\xi(s) = \frac{p}{p-1} s - 1\).

An Orlicz norm \(\| \cdot \|_M\) is uniquely determined on the interval \([0, s_0]\) where \(M(s_0) = 1\). Therefore, we obtain the following interesting corollary.
Corollary 3.2. Let ξ_1, \ldots, ξ_n be i.i.d. copies of a log $-\gamma_{1,2}$ distributed random variable ξ. Then, for all $x \in \mathbb{R}^n$,

$$E \max_{1 \leq i \leq n} |x_i \xi_i| \sim \|x\|_2.$$

In fact, this is interesting since one would assume standard gaussians to generate the ℓ_2-norm. In fact, the norm generated by Gaussians is far from being the ℓ_2-norm.

Naturally now the question arises, can we prove Theorem 2.1 and Theorem 2.2 also in case that $p = 2$, this means in the case that the random variables ξ_i, $i = 1, \ldots, n$, are independent log $-\gamma_{1,2}$ distributed. We can do so, as provided in the following.

Theorem 3.3. Let $p \in (1, 2)$, let ξ_i, $i = 1, \ldots, n$ be independent copies of a log $-\gamma_{1,2}$ distributed random variable ξ on $(\Omega_1, \mathcal{A}_1, \mathbb{P}_1)$ and let η_j, $j = 1, \ldots, m$ be independent p-stable copies of a random variable η on $(\Omega_2, \mathcal{A}_2, \mathbb{P}_2)$. Then, for all $(a_{ij})_{i,j} \in \mathbb{R}^{n \times m}$,

$$E_{\Omega_1} E_{\Omega_2} \max_{i,j} |a_{ij} \xi_i(\omega_1) \eta_j(\omega_2)| \sim_p \left(\| (a_{ij})_{i=1}^n \|_2 \right)_{j=1}^m.$$

Proof. We follow the proof of Theorem 2.1. Therefore we have

$$E_{\Omega_1} E_{\Omega_2} \max_{1 \leq i \leq n, 1 \leq j \leq n} |a_{ij} \xi_i(\omega_1) \eta_j(\omega_2)| \sim E_{\Omega_1} \left(\max_{1 \leq i \leq n} |a_{ij} \xi_i(\omega_1)| \right)^n_{j=1}.$$

As before, we have to show that $M_{\xi}(s) \sim M_{\xi}(s^{1/p}) = s^{2/p}$. We calculate $M_{\xi}(s)$ and start with $s \leq 1$. Since for all $y \geq 1$

$$\mathbb{P}(|\xi| \geq y) = \int_y^\infty f_\xi(x)dx = y^{-2},$$

we obtain

$$M_{\xi}(s) = \int_0^1 \frac{1}{t} \mathbb{P}(|\xi| \geq t^{-1/p}) + \int_t^\infty \mathbb{P}(|\xi| \geq u^{1/p})du \, dt$$

$$= \int_0^s t^{2/p-1} + \left[-\frac{1}{2/p-1} u^{-2/p+1} \right]_t^\infty \, dt$$

$$= \frac{2}{2-p} \int_0^s t^{2/p-1} \, dt$$

$$= \frac{p}{2-p} s^{2/p}.$$
So for all $s \leq 1$ we have $M_{\xi p}(s) = \frac{p}{2-p}s^{2/p} = \frac{p}{2-p}M_{\xi}(s^{1/p})$. Since $\frac{p}{2-p} > 1$, the case $0 \leq s \leq 1$ suffices because $M_{\xi p}(1) > 1$ and therefore the Orlicz norm $\|\cdot\|_{M_{\xi p}}$ is uniquely determined on this interval.

Theorem 3.4. Let $\xi_i, i = 1, ..., n$ be independent copies of a log $-\gamma_{1,2}$ distributed random variable ξ on $(\Omega_1, \mathcal{A}_1, \mathbb{P}_1)$ and let $\eta_j, j = 1, ..., m$ be independent copies of a standard gaussian random variable η on $(\Omega_2, \mathcal{A}_2, \mathbb{P}_2)$. Then, for all $(a_{ij}) \in \mathbb{R}^{n \times m}$,

$$
\mathbb{E}_{\Omega_1, \Omega_2} \max_{i,j} |a_{ij}\eta_j(\omega_2)\xi_i(\omega_1)| \sim \left(\left\|\left\|(a_{ij})_{i=1}^n\right\|_{M_{\xi}}\right\|_{j=1}^m\right)^2,
$$

where $\|\cdot\|_{M_{\xi}}$ denotes again the Orlicz norm given by the Orlicz function

$$
M_{\xi}(s) = \begin{cases}
0, & \text{if } s = 0 \\
e^{-\frac{3}{2}s^2}, & \text{if } s \in (0, 1) \\
e^{-\frac{3}{2}(3s-2)}, & \text{if } s \geq 1.
\end{cases}
$$

(11)

The proof works exactly in the same way as the proof of Theorem 2.2.

References

[1] M. Abramowitz, I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[2] J. Bernués, M. López-Valdes, *Tail estimates and a random embedding of ℓ_p^n into $\ell_r^{(1+\epsilon)n}$, $0 < r < p < 2$*, Publ. Math. Debrecen, 70(1-2):–18, 2007

[3] Y. Gordon, A. E. Litvak, C. Schütt, E. Werner, *On the minimum of several random variables*, Proc. Amer. Math. Soc., 134(12):366–3675 (electronic), 2006

[4] Y. Gordon, A. Litvak, C. Schütt, E. Werner, *Uniform estimates for order statistics and orlicz functions*, Positivity

[5] Y. Gordon, A. Litvak, C. Schütt, E. Werner, *Orlicz norms of sequences of random variables*, Ann. Probab., 30(4):183–1853, 2002
[6] M. A. Krasnoleski, Y. B. Rutickii, *Convex Functions and Orlicz Spaces*, P. Noordhoff LTD., Groningen (1961)

[7] S. Kwapien, C. Schuett, *Some combinatorial and probabilistic inequalities and their application to Banach space theory I*, Studia Math., 82 (1985), 91–106

[8] S. Kwapien, C. Schuett, *Some combinatorial and probabilistic inequalities and their application to Banach space theory II*, Studia Math., 95(2):14–154, 1989

[9] S. J. Szarek, E. Werner, *A nonsymmetric correlation inequality for Gaussian measure*, J. Multivariate Anal., 68(2):193–211, 1999.

Joscha Prochno
Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
Ludewig Meyn Str. 4
24098 Kiel, Germany
prochno@math.uni-kiel.de
and
Department of Mathematical and Statistical Sciences
University of Alberta
605 Central Academic Building
Edmonton, Alberta
Canada T6G 2G1
prochno@ualberta.ca

Stiene Riemer
Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
Ludewig Meyn Str. 4
24098 Kiel, Germany
riemer@math.uni-kiel.de