Nonnegative measures belonging to $H^{-1}(\mathbb{R}^2)$.

Grzegorz Jamróz

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warszawa
e-mail: jamroz@impan.pl

December 19, 2014

Abstract

Radon measures belonging to the negative Sobolev space $H^{-1}(\mathbb{R}^2)$ are important from the point of view of fluid mechanics as they model vorticity of vortex-sheet solutions of incompressible Euler equations. In this note we discuss regularity conditions sufficient for nonnegative Radon measures supported on a line to be in $H^{-1}(\mathbb{R}^2)$. Applying the obtained results, we derive consequences for measures on \mathbb{R}^2 with arbitrary support and prove elementarily, among other things, that measures belonging to $H^{-1}(\mathbb{R}^2)$ may be supported on a set of Hausdorff dimension 0. We comment on possible numerical applications.

Keywords: embeddings of measures, vorticity, Hausdorff dimension

MSC 2010: 46E27, 46E30, 46E35, 28A78

1 Introduction

Let $\mathcal{M}_+(\mathbb{R}^2)$ denote the space of nonnegative bounded Radon measures on \mathbb{R}^2 (see [7]) and let $H^{-1}(\mathbb{R}^2)$ be the space of all tempered distributions f on \mathbb{R}^2 such that

$$
\int_{\mathbb{R}^2} (1 + |y|^2)^{-1} |\hat{f}(y)|^2 dy < \infty.
$$

Alternatively, $H^{-1}(\mathbb{R}^2)$ can be viewed as the space of all continuous functionals on the Sobolev space $W^{1,2}(\mathbb{R}^2)$ (see e.g. [1]). The following basic problem can be posed:

Problem A. Characterize the space $\mathcal{M}_+(\mathbb{R}^2) \cap H^{-1}(\mathbb{R}^2)$.

Our motivation to study this problem originates in fluid mechanics. Namely, let $u : \mathbb{R}^2 \to \mathbb{R}^2$ be the velocity field of a fluid in two-dimensional space and let

$$
\omega = \text{curl}(u) := \partial_{x_1} u_2 - \partial_{x_2} u_1
$$

be its vorticity field. Then $\omega \in \mathcal{M}_+(\mathbb{R}^2) \cap H^{-1}(\mathbb{R}^2)$ for compactly supported ω means that
• vorticity of the flow is everywhere nonnegative (condition $\omega \in \mathcal{M}_+(\mathbb{R}^2)$),

• kinetic energy of the fluid is locally finite, i.e. $\int_{\Omega} u^2(x) dx < \infty$ for every bounded $\Omega \subset \mathbb{R}^2$ (condition $\omega \in H^{-1}(\mathbb{R}^2)$).

The latter condition follows from the fact that the Biot-Savart operator mapping ω to u by the convolution formula

$$u = K * \omega$$

for $K(x) = \frac{x^+}{2\pi|x|^2}$ is bounded from H^{-1} to L^2_{loc}, see below.

Solutions of the incompressible Euler equations,

$$\partial_t u + u \nabla u + \nabla p = 0,$$

$$\text{div}(u) = 0.$$

with vorticity belonging to $\mathcal{M}_+(\mathbb{R}^2)$ were defined and studied in [5]. In [4] Delort proved a basic existence theorem, which states that for initial data $u(t = 0, x)$ such that $\omega(0, x) := \text{curl}(u(0, x))$ is a bounded nonnegative Radon measure belonging to $H^{-1}(\mathbb{R}^2)$ there exists a global solution $u(t, x)$ of the Euler equations such that $\omega(t, x) := \text{curl}(u(t, x))$ is a bounded nonnegative Radon measure belonging to $H^{-1}(\mathbb{R}^2)$ for every $t > 0$. Uniqueness of such solutions is still an outstanding open problem. To approach it, it seems reasonable to study Problem A see also the introduction in [3] for a more comprehensive physical background and motivations.

In the case of compactly supported measures Problem A can be solved as follows. Define the positive logarithmic energy of a measure $\omega \in \mathcal{M}_+(\mathbb{R}^2)$ by

$$\mathcal{H}^+(\omega) := \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \log^+ \frac{1}{|x-y|} \omega(dx) \omega(dy), \quad (1)$$

where $\log^+(x) = \max(\log(x), 0)$. In [11], which builds upon previous ideas of Delort [4] the following crucial characterization was demonstrated.

Lemma 1.1 (Lemma 3.1 in [11]). Let ω be a nonnegative measure of finite mass and compact support, and let $u = K * \omega$ be the velocity corresponding to the vorticity ω. Then the following are equivalent:

1. ω is in H^{-1}.
2. u is in L^2_{loc}.
3. $\mathcal{H}^+(\omega) < \infty$.

As a simple corollary, we obtain that measures belonging to H^{-1} have no discrete part. Indeed, $\mathcal{H}^+(\delta_x) = +\infty$ for every $x \in \mathbb{R}^2$, where δ_x is the Dirac mass in x. For general measures, however, Formula (1) is not very convenient to use and we would like
to have more ‘tangible’ local conditions characterizing measures belonging to H^{-1}.

The study of Problem A in relation to spirals of vorticity was initiated in [3], where the authors proved that the so-called Prandtl and Kaden spirals belong locally to $H^{-1}(\mathbb{R}^2)$. The crucial tool in [3] was the following theorem.

Theorem 1.2 (Theorem 1.1 from [3]). Let μ be a positive Radon measure supported in a ball $B(0, R_0) \subset \mathbb{R}^2$. Assume that there exists a positive constant c_1 such that for any $r \leq R_0$

$$\mu(B(0,r)) = c_1 r^\alpha,$$

where $\alpha > 0$.

Then $\mu \in H^{-1}(\mathbb{R}^2)$.

In this note, motivated by studies in [3], we go beyond Theorem 1.2. We investigate, namely, singular continuous measures belonging to $\mathcal{M}_+(\mathbb{R}^2) \cap H^{-1}(\mathbb{R}^2)$ and derive, using formula (1), simple analytical and geometric conditions characterizing such measures. We begin with measures supported on a line $\{(x_1, 0) : x_1 \in \mathbb{R}\}$ and then generalize the results to measures with more general support. In particular, we recover Theorem 1.2 as a special case. Let us note that our methods are based on transformation of formula (1), which, in contrast to t-energy methods (see [10]) used in [3] allow us to extract more detailed information on measures.

Measure supported on a line can be written in the form

$$\omega = \eta(dx_1)\delta_0(dx_2),$$

where $x = (x_1, x_2) \in \mathbb{R}^2$ and η is a compactly supported nonnegative Radon measure on \mathbb{R} with no discrete part. Measure ω can be equivalently represented as

$$\omega = dF(x_1)\delta_0(dx_2),$$

where $F : \mathbb{R} \rightarrow [0, \infty)$ is the continuous, nondecreasing cumulative distribution function of η, given by

$$F(x) := \eta((-\infty, x)).$$

If η is absolutely continuous with respect to the one-dimensional Lebesgue measure or, equivalently, $F \in W^{1,1}_{loc}(\mathbb{R})$, then we can represent ω as

$$\omega = f(x_1)dx_1\delta_0(dx_2),$$

where $f := F'$ is a nonnegative compactly supported function belonging to $L^1(\mathbb{R})$. In the following, we study, under which conditions on F and f does ω belong to $H^{-1}(\mathbb{R}^2)$. We consider the following cases:

- $f \in L^1$,
- $f \in L^\infty$ or equivalently F – Lipschitz continuous,
• $f \in L^p$ for $1 < p < \infty$,
• $f \in L(\log L)^\gamma$, where $L(\log L)^\gamma$ is the Calderón-Zygmund class, see Section 3
• F – continuous,
• F – Hölder continuous with exponent $\alpha \in (0,1)$.

We prove that any of the conditions $f \in L^\infty$, $f \in L^p$, F - Hölder continuous, F-Lipschitz continuous is sufficient (Section 2). On the other hand, we show that conditions $f \in L^1$, $f \in L(\log L)^\gamma$ for $\gamma < 1/2$ or F being absolutely continuous are not sufficient (Section 3). Finally (Section 4) we apply these results to more general nonnegative measures ω and discuss the Hausdorff dimension of support of ω. We comment also on possible numerical applications.

2 Classes of measures belonging to H^{-1}

For measures ω of the form (2) formula (1) reduces to

$$
\mathcal{H}^+(\omega) = \mathcal{H}^+(dF) := \int_R \int_R \log^+ \frac{1}{|x-y|} dF(x)dF(y), \tag{5}
$$

where integrals are understood in the Lebesgue-Stieltjes sense (i.e. $dF \equiv \eta$ is the Lebesgue-Stieltjes measure generated by equality (3), see [2]). Similarly, for measures ω of the form (4), we obtain

$$
\mathcal{H}^+(\omega) = \mathcal{H}^+(f) := \int_R \int_R \log^+ \frac{1}{|x-y|} f(x)f(y)dx\,dy. \tag{6}
$$

So prepared, we are ready to study particular cases of Problem A. By Lemma 1.1 it suffices to determine whether $\mathcal{H}^+(dF)$ or $\mathcal{H}^+(f)$ are finite, using formulas (5) and (6), respectively. We begin with the simple cases of $f \in L^\infty$ and $f \in L^p$, $p > 1$.

Proposition 2.1. If f is bounded and compactly supported then $\mathcal{H}^+(f) < \infty$.

Proof.

$$
\mathcal{H}^+(f) \leq \|f\|_{L^\infty}^2 \int_{\supp(f)} \int_{\supp(f)} \log^+ \frac{1}{|x-y|} dx\,dy < \infty,
$$

where $\supp(f)$ denotes the support of function f. \qed

Corollary 2.2. For F Lipschitz continuous $\mathcal{H}^+(dF) < \infty$.

Proposition 2.3. If $f \in L^p$, $1 < p \leq \infty$ and f is compactly supported then $\mathcal{H}^+(f) < \infty$.
Proof. Let $f \in L^p$ have a compact support such that $\text{supp}(f) \subset B(0, R)$, where $B(0, R)$ is the closed ball centered at 0 and with radius R. Then, setting q such that $\frac{1}{p} + \frac{1}{q} = 1$ and using the H"older and Young inequalities we obtain

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \log^+ \frac{1}{|x-y|} f(x)f(y) dy dx = \int_{B(0,R+1)} \int_{B(0,R+1)} \log^+ \frac{1}{|x-y|} f(x)f(y) dy dx
$$

$$
\leq \left\| \int_{B(0,R+1)} \log^+ \frac{1}{|y|} f(y) dy \right\|_q \|f\|_p
$$

$$
\leq \left\| \int_{B(0,R+1)} \log^+ \frac{1}{|y|} f(y) dy \right\|_\infty [2(R+1)]^{\frac{1}{q}} \|f\|_p
$$

$$
\leq \left\| \log^+ \frac{1}{|\cdot|} 1_{B(0,R+1)}(\cdot) \right\|_q [2(R+1)]^{\frac{1}{q}} \|f\|_p^2 < +\infty.
$$

\qed

Next, we consider the more demanding case of F being Hölder continuous. Recall that $F \in C^{0,\alpha}(\mathbb{R})$, $0 < \alpha \leq 1$, if there exists a constant $K > 0$ such that $|F(x+y) - F(x)| \leq K|y|^\alpha$ for every $x, y \in \mathbb{R}$.

Proposition 2.4. If $F \in C^{0,\alpha}$, $0 < \alpha \leq 1$ then $\mathcal{H}^+(dF) < \infty$.

Proposition 2.4 is a consequence of the following lemma.

Lemma 2.5. Suppose a bounded continuous nondecreasing $F : \mathbb{R} \to [0, \infty)$ satisfies:

1) $(F(x+\varepsilon) - F(x)) \log \varepsilon \to 0$ as $\varepsilon \to 0$ uniformly in x,

2) $(F(x-\varepsilon) - F(x)) \log \varepsilon \to 0$ as $\varepsilon \to 0$ uniformly in x,

3) $\int_0^1 \frac{F(x+y) - F(x)}{y} dy \leq C$ uniformly in x,

4) $\int_0^1 \frac{F(x-y) - F(x)}{y} dy \leq C$ uniformly in x.

Then

$$
\mathcal{H}^+(dF) = \int_{\mathbb{R}} \left(\int_0^1 \frac{1}{y} (F(x+y) - F(x-y)) dy \right) dF(x)
$$

and in particular, $\mathcal{H}^+(dF) < +\infty$.

5
Proof. Using the properties of Lebesgue-Stieltjes integrals (see [2]) we obtain:

\[
\mathcal{H}^+(dF) = \int_\mathbb{R} \int_\mathbb{R} \log \frac{1}{|x-y|} dF(x)dF(y)
\]

\[
= \int_\mathbb{R} \left[\int_{x=1}^{x+1} \log \frac{1}{|x-y|} dF(y) \right] dF(x)
\]

\[
= \int_\mathbb{R} \left[\int_{y=1}^{y+1} \log \frac{1}{|y|} dF(x+y) \right] dF(x)
\]

\[
= \int_\mathbb{R} \left[\int_{y=0}^{1} \log \left(\frac{1}{y} \right) d(F(x+y) - F(x-y)) \right] dF(x)
\]

\[
= \int_\mathbb{R} \int_0^1 \log \left(\frac{1}{y} \right) d(F(x+y) - F(x)) dF(x)
\]

\[
+ \int_\mathbb{R} \int_0^1 \log \left(\frac{1}{y} \right) d(F(x) - F(x-y)) dF(x)
\]

\[
= \int_\mathbb{R} \lim_{\varepsilon \to 0} \left[\int_{\varepsilon}^1 \log \left(\frac{1}{y} \right) d(F(x+y) - F(x)) \right] dF(x)
\]

\[
+ \int_\mathbb{R} \lim_{\varepsilon \to 0} \left[\int_{\varepsilon}^1 \log \left(\frac{1}{y} \right) d(F(x) - F(x-y)) \right] dF(x)
\]

\[
= \int_\mathbb{R} \lim_{\varepsilon \to 0} \left[\log \left(\frac{1}{x+y} \right) (F(x+y) - F(x)) \right]_{\varepsilon}^{1} + \int_{\varepsilon}^1 \frac{1}{y} (F(x+y) - F(x)) dy \] dF(x)

\[
+ \int_\mathbb{R} \lim_{\varepsilon \to 0} \left[\log \left(\frac{1}{x+y} \right) (F(x) - F(x-y)) \right]_{\varepsilon}^{1} + \int_{\varepsilon}^1 \frac{1}{y} (F(x) - F(x-y)) dy \] dF(x)

\[
= \int_\mathbb{R} \left(\int_{0}^{1} \frac{1}{y} (F(x+y) - F(x) + F(x) - F(x-y)) dy \right) dF(x) \leq 2C \int_\mathbb{R} dF(x),
\]

where in the last equality we used the Lebesgue dominated convergence theorem and the fact that measure \(dF\) is bounded. \(\Box\)

Proof of Proposition 2.4. For \(F \in C^{0,\alpha}\), where \(0 < \alpha \leq 1\), we obtain

\[
|F(x \pm \varepsilon) - F(x)| \log(\varepsilon) \leq K \varepsilon^\alpha \log(\varepsilon) \to 0
\]

as \(\varepsilon \to 0\) and

\[
\int_0^1 \frac{|F(x+y) - F(x)|}{y} dy \leq K \int_0^1 y^{\alpha-1} dy = K/\alpha.
\]

Using Lemma 2.5 we conclude. \(\Box\)

Remark 2.6. Proofs of Lemma 2.5 and Proposition 2.4 show that if \(F\) satisfies

\[
|F(x+y) - F(x)| \leq K|y|^\alpha
\]

then

\[
\mathcal{H}^+(dF) \leq 2(K/\alpha) \omega(\mathbb{R}^2).
\]
Remark 2.7. Conditions i)-iv) from Lemma 2.5 encompass a larger class of functions than functions which are Hölder continuous. For instance, it suffices to assume that \(|F(x + y) - F(x)| \leq 1/|\log(|y|)|^\beta\) for \(|y| \leq \varepsilon, x \in \mathbb{R}\) and fixed \(\beta > 1\) and \(\varepsilon > 0\).

Remark 2.8. Due to embedding \(W^{1,p}(\mathbb{R}) \hookrightarrow C^0(\mathbb{R})\) for \(p > 1\) (see e.g. [1]), using Proposition 2.4 we recover the result from Proposition 2.3.

Remark 2.9. Results of this section allow us to obtain embeddings of various spaces into the fractional Sobolev space \(H^{1/2}\) (see [12]) as follows. Distributions belonging to \(H^{-1}(\mathbb{R}^2)\), which are supported on the line \(\{(x_1,0) : x_1 \in \mathbb{R}\}\) may be identified with the space of \(H^{-1/2}(\mathbb{R})\) due to the fact that the trace operator \(T : W^{1,2}(\mathbb{R}^2) \rightarrow H^{1/2}(\mathbb{R})\) is bounded and has a bounded right inverse, see [12, Section 16]. Hence, if \(\omega \in H^{-1}(\mathbb{R}^2)\) is of the form (2) then \(dF\) belongs to \(H^{-1/2}(\mathbb{R})\) and consequently \(F\) belongs locally to \(H^{1/2}\).

It is not possible to extend the results of this section to arbitrary absolutely continuous \(F\). In the next section we show counterexamples.

3 Counterexamples

We begin by describing a class of functions, which we will use for construction of counterexamples for \(f \in L^1\) and \(f \in L(\log L)^\gamma\). Let, namely,

\[f(x) = \sum_{n=1}^{\infty} h_n 1_{[a_n, a_n + d_n]}(x), \]

where for every \(n = 1, 2, \ldots\) we have \(a_n \in \mathbb{R}, h_n > 1, 0 < d_n \leq 1\) and \(a_n + d_n \leq a_{n+1}\). Observe that

\[H^+(h 1_{[a_n, a_n + d_n]}) \geq \int_a^{a+d} \int_a^{a+d} \log^+ \left(\frac{1}{|x - y|} \right) h^2 dx dy \geq h^2 d^2 \log(1/d) \]

and hence

\[H^+(f) \geq \sum_{n=1}^{\infty} h_n^2 d_n^2 \log(1/d_n). \] (7)

Proposition 3.1. There exists a nonnegative compactly supported \(f \in L^1\) such that \(H^+(f) = +\infty\).

Proof. Take \(d_n = \exp(-2^n)\) and \(h_n = 1/(2^nd_n)\). Then on the one hand

\[\|f\|_{L^1} = \sum_{n=1}^{\infty} h_n d_n = 1. \]
On the other hand, however, by (7)
\[H^+(f) \geq \sum_{n=1}^{\infty} 2^{-2n} \log(1/d_n) = +\infty. \]

\[\square \]

Corollary 3.2. There exists an absolutely continuous \(F \) such that \(H^+(dF) = +\infty \).

Using the same construction we can generalize the result to the Calderón-Zygmund class \(L(\log L)^{\gamma} \), for \(\gamma < 1/2 \). Recall that \(f \in L(\log L)^{\gamma}(\mathbb{R}) \) if
\[\int_{\mathbb{R}} |f(x)| (\log(1 + |f(x)|)^{\gamma} dx < \infty. \]

Proposition 3.3. For every \(\gamma < 1/2 \) there exists a nonnegative compactly supported \(f \in L(\log L)^{\gamma} \) such that \(H^+(f) = +\infty \).

Proof. A direct calculation shows that function \(f \) constructed in Proposition 3.1 belongs in fact to \(L(\log L)^{\gamma} \) for every \(\gamma < 1/2 \).

\[\square \]

4 Applications

To apply the results of the previous sections it is useful to generalize them to the two-dimensional setting. We begin by defining the radial cumulative distribution function of a measure \(\omega \in \mathcal{M}_+(\mathbb{R}^2) \).

\[G(r) := \begin{cases} \omega(B(0, r)) & \text{for } r > 0, \\ 0 & \text{otherwise}, \end{cases} \tag{8} \]

where \(B(0, r) \) is the closed ball centered at 0 and with radius \(r \). Using \(G(r) \) we estimate \(H^+(\omega) \) by \(H^+(dG) \) as follows.

Lemma 4.1. Let \(\omega \) be a compactly supported nonnegative Radon measure on \(\mathbb{R}^2 \). Let \(G \) be its radial cumulative distribution function defined by (8). Then

i) for every Borel function \(h : [0, \infty) \rightarrow [0, \infty) \)
\[\int_{\mathbb{R}^2} h(|x|) \omega(dx) = \int_{[0, \infty)} h(r) dG(r), \tag{9} \]

ii) \(H^+(\omega) \leq H^+(dG) \).

Remark 4.2. The reverse inequality in Lemma 4.1ii is false even up to a constant. For instance, both \(\nu_1 = \delta_{(1,0)} \) and \(\nu_2 \) – a probability measure distributed uniformly on the circle \(\{(x_1, x_2) : x_1^2 + x_2^2 = 1\} \) have the same radial cumulative distribution function
\[G(r) = 1_{[1, \infty)}(r). \]

Nevertheless, \(H^+(\nu_1) = H^+(dG) = \infty \) yet \(H^+(\nu_2) < \infty \), see Remark 4.3.
Remark 4.3. Inequality in Lemma 4.1 holds for G centered at any $x_0 \in \mathbb{R}^2$, i.e. $\mathcal{H}^+(\omega) \leq \mathcal{H}^+(dG_{x_0})$ for

\[G_{x_0}(r) := \begin{cases} \omega(B(x_0, r)) & \text{for } r > 0, \\ 0 & \text{otherwise.} \end{cases} \]

The choice of x_0 is important in order to obtain a useful estimate. Taking, for instance, $x_0 = (1, 0)$ we obtain for measure ν_2 from Remark 4.2 that

\[G_{x_0}(r) = \begin{cases} 0 & \text{for } r < 0, \\ (2/\pi) \arcsin(r/2) & \text{for } 0 \leq r \leq 2, \\ 1 & \text{for } 2 \leq r, \end{cases} \]

which is Hölder continuous with exponent $1/2$. Thus, $\mathcal{H}^+(\nu_2) \leq \mathcal{H}^+(dG_{x_0}) < \infty$. On the other hand, the choice $x_0 = (0, 0)$ leads to $\mathcal{H}^+(\nu_2) \leq \mathcal{H}^+(dG_{x_0}) = \mathcal{H}^+(\delta_1) = \infty$, which does not allow us to conclude about finiteness of $\mathcal{H}^+(\nu_2)$.

Proof of Lemma 4.1. i) By definition of G, equality (9) holds for $h(r) = 1_{[r_1, r_2]}(r)$ with any $0 \leq r_1 < r_2 \leq \infty$. Standard approximation arguments for Radon measures and the Lebesgue monotone convergence theorem allow us to prove the case of general h.

ii) We observe that $\log^+ \frac{1}{|x-y|} \leq \log^+ \frac{1}{||x|-|y||}$, use repeatedly representation from i) as well as the Fubini theorem and calculate:

\[
\mathcal{H}^+(\omega) = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \log^+ \frac{1}{|x-y|} \omega(dx) \omega(dy) \\
\leq \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \log^+ \frac{1}{||x|-|y||} \omega(dx) \omega(dy) \\
= \int_{\mathbb{R}^2} \left[\int_{[0,\infty)} \log^+ \frac{1}{|r_x-y|} dG(r_x) \right] \omega(dy) \\
= \int_{[0,\infty)} \int_{[0,\infty)} \log^+ \frac{1}{|r_x-r_y|} dG(r_x) dG(r_y) \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} \log^+ \frac{1}{|r_x-r_y|} dG(r_x) dG(r_y) = \mathcal{H}^+(dG).
\]

Corollary 4.4. Fix $\alpha > 0$ and let ω be a Radon measure such that $\omega(B(0,r)) = G(r)$ for

\[G(r) = \begin{cases} cr^\alpha & \text{for } 0 \leq r \leq R, \\ cR^\alpha & \text{for } r > R, \\ 0 & \text{otherwise.} \end{cases} \quad (10) \]

Then $\omega \in H^{-1}(\mathbb{R}^2)$. Thus, we recover Theorem 1.2.
Proof. $\mathcal{H}^+(dG) < +\infty$, which follows by the fact that $G'(r) = r^\alpha 1_{[0, R]}(r)$ belongs to L^p for some $p > 1$. Using Proposition 2.3 and Lemmas 4.1, we conclude. Alternatively, we can use Proposition 2.4 observing that $G(r) \in C^{\alpha, \alpha}$.

Next, let us investigate the Hausdorff dimension of the support of measures belonging to $H^{-1}(\mathbb{R}^2)$. As we will use Cantor sets and Cantor functions, we recall the definitions and basic properties of them.

Definition 4.5. i) The standard Cantor set is the set $C \subset [0, 1]$ constructed inductively as follows.

- $Z_0 = [0, 1]$.
- Z_1 is obtained from Z_0 by removing the middle third of the interval, i.e. $Z_1 = [0, 1/3] \cup [2/3, 1]$.
- Z_2 is obtained from Z_1 by removing the middle third of every remaining interval in Z_1, i.e. $Z_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$.
- Z_n is, in general, obtained by removing the middle third of every remaining interval in Z_{n-1}.

Finally, $C := \bigcap_{n=1}^\infty Z_n$.

ii) The standard Cantor function $\Gamma : [0, 1] \to [0, 1]$ can be constructed inductively as follows.

- $\gamma_0(x) = x$
- $\gamma_n(x) = \begin{cases} 1/2 \gamma_{n-1}(3x) & \text{for } 0 \leq x < 1/3, \\ 1/2 & \text{for } 1/3 \leq x \leq 2/3, \\ 1/2 + 1/2 \gamma_{n-1}(3x - 2) & \text{for } 2/3 < x \leq 1. \end{cases}$

We define $\Gamma := \lim_{n \to \infty} \gamma_n$, where the convergence is uniform on $[0, 1]$. If we prolong Γ by 0 for $x \leq 0$ and 1 for $x \geq 1$ then we obtain a nondecreasing continuous function mapping \mathbb{R} onto $[0, 1]$.

Let us summarize the basic properties of the standard Cantor set and Cantor function useful later on. For the proofs, we refer the reader to the survey paper [6].

Proposition 4.6. i) The standard Cantor set is closed.

ii) The dimension of the standard Cantor set equals $\log(2)/\log(3)$.

iii) The standard Cantor function is Hölder continuous with exponent $\log(2)/\log(3)$.

iv) Measure $d\Gamma$ is supported on C.

10
Example 4.7. Let \(\omega \) satisfy
\[
\omega(B(0, r)) = \Gamma(r),
\]
where \(\Gamma(r) \) is the standard Cantor function. Then \(\omega \in H^{-1}(\mathbb{R}^2) \).

Proof. \(\Gamma(r) \) is Hölder continuous with exponent \(\alpha = \log(2)/\log(3) \). The assertion follows by Proposition 2.4 and Lemmas 1.1 and 4.1. \(\square \)

Now, we are ready to construct examples of measures belonging to \(H^{-1}(\mathbb{R}^2) \) supported on very small sets.

Proposition 4.8. A nonnegative Radon measure belonging to \(H^{-1}(\mathbb{R}^2) \) may be supported on a set of arbitrary small positive Hausdorff dimension.

Proof. Consider a modified Cantor set \(C_K \) obtained by removing in every step of the construction, described in Definition 4.5, the middle \((K - 2)/K \) portion of every interval (note that for \(K = 3 \) we obtain the standard Cantor set). Let \(\Gamma_K(r) \) be the corresponding Cantor function, constructed similarly as in Definition 4.5, and consider the measure
\[
\omega_K = d\Gamma_K(x_1)\delta_0(dx_2).
\]
Then measure \(\omega_K \) is supported on the closed set \(C_K \) of dimension \(\alpha = \log(2)/\log(K) \). Moreover, \(\Gamma_K(r) \) is Hölder continuous with the same exponent \(\alpha = \log(2)/\log(K) \), see e.g. \(\square \), and hence \(\omega_K \in H^{-1}(\mathbb{R}^2) \).

Adapting the above construction, we can prove that a measure belonging to \(H^{-1}(\mathbb{R}^2) \) may be supported on a set of Hausdorff dimension 0.

Proposition 4.9. There exists a nonnegative bounded Radon measure belonging to \(H^{-1}(\mathbb{R}^2) \) which is supported on a bounded set of Hausdorff dimension 0.

Sketch of the proof. We construct a general Cantor set \(C_\infty \) by removing in step \(n \) of the construction the central \(1 - 2c_n \) portion of every interval remaining from step \(n - 1 \). We obtain
\[
\begin{align*}
Z^0_\infty &= [0, 1], \\
Z^1_\infty &= [0, c_1] \cup [1 - c_1, 1], \\
Z^2_\infty &= [0, c_1 c_2] \cup [c_1 - c_1 c_2, c_1] \cup [1 - c_1, 1 - c_1 + c_1 c_2] \cup [1 - c_1 c_2, 1], \\
&\quad \ldots
\end{align*}
\]
(note that \(c_n \equiv 1/3 \) would lead to the standard Cantor set). Observe that the length of every of the \(2^n \) intervals constituting \(Z^\infty_\infty \) is equal
\[
d_n = c_1 c_2 \ldots c_n.
\]
Fix $\beta > 1$ and set

$$d_n = e^{-2^n/\beta}.$$

Then $c_n = d_n/d_{n-1}$ is decreasing and tends to 0 as $n \to \infty$. Define

$$C_\infty := \bigcap_{n=0}^{\infty} Z^n_\infty.$$

Observe that Z^n_∞ is a union of 2^n intervals of length d_n and hence C_∞ can be covered by 2^n balls of diameter d_n for $n = 1, 2, \ldots$. Since for every fixed $\varepsilon > 0$ we have $2^n(d_n)^\varepsilon \to 0$ as $n \to \infty$, we conclude that the Hausdorff dimension of C_∞ is equal 0.

Define

$$\omega_\infty := d\Gamma_\infty(x_1)\delta(x_2),$$

where Γ_∞ is the corresponding Cantor function constructed as in Definition 4.5. More precisely, let

- $\gamma_\infty^0(x) = x$
- $\gamma_\infty^n(x) = \begin{cases} 1/2\gamma_\infty^{n-1}(x/c_n) & \text{for } 0 \leq x < c_n, \\
1/2 & \text{for } c_n \leq x \leq 1 - c_n, \\
1/2 + 1/2\gamma_\infty^{n-1}((x-1+c_n)/c_n) & \text{for } 1 - c_n < x \leq 1. \end{cases}$

and define $\Gamma_\infty := \lim_{n \to \infty} \gamma_n$, prolonging it by 0 for $x \leq 0$ and 1 for $x \geq 1$. We claim that

$$\Gamma_\infty(y) \leq 1/|\log(|y|)|^\beta$$

for $y \leq \exp(-(\beta + 1))$. Indeed,

- function $y \mapsto 1/|\log(|y|)|^\beta$ is increasing on the interval $[0, 1]$,
- function $y \mapsto 1/|\log(|y|)|^\beta$ is concave on the interval $[0, \exp(-(\beta + 1))]$,
- $\Gamma_\infty(d_n) = 2^{-n} = 1/|\log(|d_n|)|^\beta$ for $n = 0, 1, \ldots$,
- the graph of Γ_∞ restricted to $[d_{n+1}, d_n]$ lies below the segment connecting points $(d_{n+1}, \Gamma_\infty(d_{n+1}))$ and $(d_n, \Gamma_\infty(d_n))$, i.e.

$$\Gamma_\infty(y) \leq \Gamma_\infty(d_{n+1}) + \frac{y - d_{n+1}}{d_n - d_{n+1}}(\Gamma_\infty(d_n) - \Gamma_\infty(d_{n+1}))$$

for every $y \in [d_{n+1}, d_n]$,
- the segment connecting points $(d_{n+1}, \Gamma_\infty(d_{n+1}))$ and $(d_n, \Gamma_\infty(d_n))$ lies, for n satisfying $d_n \leq \exp(-(\beta + 1))$, below the graph of $y \mapsto 1/|\log(|y|)|^\beta$ due to concavity of the latter function.
Consequently, $\Gamma_\infty(y) \leq 1/|\log(|y|)|^\beta$ for $0 \leq y \leq \exp(-(\beta+1))$. Self-similarity of Γ_∞ allows us to conclude that

$$|\Gamma_\infty(x+y) - \Gamma_\infty(x)| \leq 1/|\log(|y|)|^\beta$$

for $|y| \leq \exp(-(\beta+1))$ and arbitrary $x \in \mathbb{R}$. Using Remark 2.7 and Lemma 2.5 we obtain $\mathcal{H}^+(d\Gamma_\infty) < +\infty$ and hence $\omega_\infty \in H^{-1}(\mathbb{R}^2)$.

Finally, let us briefly comment on possible numerical applications of our results.

Remark 4.10. From the point of view of proving the convergence of numerical schemes it is important to know that ω^n, a sequence of approximations of a compactly supported measure

$$\omega \in M_+(\mathbb{R}^2) \cap H^{-1}(\mathbb{R}^2),$$

is such that $\mathcal{H}^+(\omega^n)$ remains bounded uniformly in n (see e.g. [11] or [9]). Let, for instance, ω be the positive branch of the Kaden spiral (see [3]) at some point in time. Then function $r \mapsto \omega(B(0, r))$ is Hölder continuous with exponent $\alpha = 1/2$ (see [3]) and hence belongs locally to $H^{-1}(\mathbb{R}^2)$. Let ω_n be a smooth approximation of ω, e.g. a vortex blob approximation, see [9]. To prove that $\mathcal{H}^+(\omega^n)$ is bounded uniformly with respect to n it suffices, by Remark 2.6, to show that functions

$$r \mapsto \omega^n(B(0, r))$$

are uniformly Hölder continuous with constant K and exponent α independent of n. Whether this is the case, depends on a particular form of vortex blob approximation. The goal is then to construct an approximation which satisfies the uniform Hölder condition. This, however, is relatively simple, since $r \mapsto \omega(B(0, r))$ is Hölder continuous.

Acknowledgements. I am grateful to Tomasz Cieślak from the Institute of Mathematics, Polish Academy of Sciences in Warsaw for reading the manuscript and valuable comments regarding it. I also acknowledge his drawing my attention to numerical applications of the obtained results. Furthermore, I am grateful to Marcin Malogrosz from the Institute of Applied Mathematics and Mechanics, University of Warsaw for a useful discussion concerning Remark 2.9.

References

[1] R. A. Adams, J. J. F. Fournier, *Sobolev Spaces. Second edition.* Academic Press (2003).

[2] M. Carter, B. van Brunt, *The Lebesgue-Stieltjes Integral. A practical Introduction* Springer-Verlag, New York (2000).

[3] T. Cieślak, M. Szumańska, *A theorem on measures in dimension 2 and applications to vortex sheets*, J. Funct. Anal. 266, 6780-6795 (2014).

[4] J.-M. Delort, *Existence de nappes de tourbillon en dimension deux*, J. Amer. Math. Soc. 4 553-586 (1991).
[5] R. DiPerna, A. Majda, *Concentrations in regularizations for 2-D incompressible flow*. Comm. Pure Appl. Math. 40(3) 301-345 (1987).

[6] O. Dovgoshey, O. Martio, V. Ryazanov, M. Vuorinen, *The Cantor function*. Expo. Math. 24(1) 1-37 (2006).

[7] L. C. Evans, R. Gariepy, *Measure theory and fine properties of functions*, CRC Press (1992).

[8] E.A. Gorin, B.N. Kukushkin, *Integrals associated with the Cantor staircase*, St. Petersburg Math. J. 15(3) 449-468 (2006).

[9] M.C. Lopes Filho, J. Lowengrub, H. J. Nussenzveig Lopes, Y. Zheng *Numerical evidence of nonuniqueness in the evolution of vortex sheets*, ESAIM: Math. Model. and Num. Anal. 40(2) 225-237 (2006).

[10] P. Mattilla, *Geometry of Sets and Measures in Euclidean Spaces*, Cambridge University Press (1992).

[11] S. Schochet, *The point-vortex method for periodic weak solutions of the 2D Euler equations*, Comm. Pure Appl. Math. 49, 911-965 (1996).

[12] L. Tartar, *An Introduction to Sobolev Spaces and Interpolation Spaces*, Lecture Notes of the Unione Matematica Italiana, 3. Springer, Berlin; UMI, Bologna (2007).