Sensing ultra-low magnetic fields has various applications in the fields of science, medicine and industry. There is a growing need for a sensor that can be operated in ambient environments where magnetic shielding is limited or magnetic field manipulation is involved. To this end, here we demonstrate a new magnetometer with high sensitivity and wide dynamic range. The device is based on the current nonlinearity of superconducting material stemming from kinetic inductance. A further benefit of our approach is of extreme simplicity: the device is fabricated from a single layer of niobium nitride. Moreover, radio frequency multiplexing techniques can be applied, enabling the simultaneous readout of multiple sensors, for example, in biomagnetic measurements requiring data from large sensor arrays.
Ultrahsensitive magnetic detection is utilized in a variety of applications, such as magnetoecephalography, magnetocardiography, ultra-low-field NMR, and magnetic resonance imaging (ULF NMR and MRI), exploration of magnetic minerals and a wide range of other scientific purposes. The most established method is to use superconducting quantum interference devices (SQUIDs) based on low critical temperature superconducting materials, as the sensor, featuring field sensitivity in the fT Hz$^{-1/2}$ regime or below. In some applications, their high critical temperature counterparts are an option as well. Emerging sensing techniques include magnetometers combining the giant magnetoresistance effect and a superconducting receiver coil, the mixed sensors and atomic magnetometers relying on the interaction of magnetic field and optically manipulated electronic spins of alkali vapour atoms. Also, the magnetic manipulation of the density of states in normal metal–superconductor interfaces has been proposed, in a so-called superconducting quantum interference proximity transistor.

Kinetic inductance of superconductors has been actively pursued in the fields of submillimeter-wave detection and parametric amplification during the last decade. There have been a few demonstrations of kinetic inductance being used as a sensing element in a magnetic field detector as well. Yet, the reported characteristics have been far inferior in comparison with competing techniques. Meservev and Tedrow were the first ones to observe shifts in kinetic inductance of superconducting thin film under perpendicular magnetic field, detecting a field change of 1 nT. A more advanced magnetic flux detector was proposed, employing a scheme similar to radio frequency (RF) SQUIDs. Instead of having a tunnel junction, a thin superconducting bridge was deposited as a part of superconducting cylinder. The nonlinear relation between the kinetic inductance of the constriction and the magnetic flux applied through the cylinder was read out with a tank circuit. Later, taking advantage of the divergence of the kinetic inductance near critical temperature T_c, Ayela et al. applied thermal modulation to a superconducting ring to enhance its field sensitivity down to pT Hz$^{-1/2}$. Recently, a set of new nonlinear kinetic inductance devices was proposed by Kher et al., including a magnetic field sensor.

In this article, we demonstrate a magnetometer exploiting the nonlinearity of the kinetic inductance with respect to d.c. current, often encountered in high normal resistance thin films. As opposed to ref. 18, the entire superconducting loop, having integrated tuning and matching capacitors, acts as a distributed nonlinear element. This improves the sensitivity, enables the use of large pickup sizes and simplifies the design since external tank circuit is not necessary. The device is fabricated from a single superconducting thin-film layer of NbN, simplifying the fabrication processes compared with other magnetometer technologies considerably. In addition, the technology is compatible with frequency-division multiplexing in analogy to submillimeter-wave kinetic inductance detectors, enabling a compact readout of an array of sensors. Large sensor arrays are needed, for instance, in biomagnetic imaging systems relying on inverse mathematics in source mapping. The device performance is evaluated both theoretically and experimentally with the results in good agreement with each other.

Results

Operating principle. Consider a superconducting loop composed of thin film with thickness h and linewidth w. When $h < \lambda$, the current density J can be assumed to be homogeneous within the cross-section and the magnetic flux quantization through the ring reads

$$L_k(I_s) = L_{k0} + \frac{\Phi_0}{2}\left(1 + \frac{I_s}{I_s^*}\right)^2,$$

where λ is the magnetic penetration depth, $I_s = \frac{\Phi_s}{2\pi h}$ the shielding current, Φ_s the applied magnetic flux, m an integer and $\Phi_0 = 2.07 \text{ fWb}$ the flux quantum. Unlike the geometric inductance L_0 that is associated with the magnetic field of the ring, the kinetic inductance $L_k = \mu_0 J_s^2 h \Phi_0$ is the vacuum permeability and I_s the length of the loop stems from the motion of the Cooper pairs. Kinetic inductance becomes nonlinear with respect to shielding current I_s, as the kinetic energy approaches the depairing energy of the Cooper pairs. With sufficiently small I_s, the nonlinearity assumes a form $L_k(I_s) = L_{k0} + \frac{\Phi_0}{2}\left(1 + \frac{I_s}{I_s^*}\right)^2$. Here, L_{k0} is the kinetic inductance at zero current and I^*, a parameter usually of the order of critical current I_c, sets the scale for the nonlinearity.

The operating principle behind the kinetic inductance magnetometer is as follows: the magnetic flux Φ_s applied through the loop (inductance $L = L_0 + L_k$) generates a shielding current I_s according to equation (1), which in turn modifies the inductance of the loop through equation (2). Figure 1a shows a practical realization of such a device in planar geometry along with the simplified measurement setup depicted in Fig. 1b. A square-shaped superconducting loop (width $W = 20\text{ mm}$) has been fabricated from thin-film NbN ($T_c = 14\text{ K}$). An interdigital capacitor C is arranged in parallel with the loop, and the formed resonator is further coupled to a transmission line (characteristic impedance $Z_0 = 50\text{ Ohm}$) with a matching capacitor C_0. After cooling the device below T_c, the inductance change is read out by measuring the transmission $S_{21} = Z/\sqrt{Z_0}$ through the resonator, which near the resonance frequency $\omega \approx \omega_0 = 1/\sqrt{L_{tot}(C + C_0)}$ is determined by impedance (Fig. 1c)

$$Z \approx \frac{Z_0 Q_{ext}}{2Q_i}(1 + j2Q_i(\omega - \omega_0))^2,$$

assuming $Q_i \gg 1$. Here, Q_i is the intrinsic quality factor describing the superconductor losses, $Q_{ext} = 2(C + C_0)/\omega_0 Z_0 C_0^2$ the coupling quality factor and the inductance $L_{tot} = L_0 + L_{par}$ contains the contributions from the loop inductance and parasitics. The resonator impedance reaches a real value $Z_{min} \approx Z_0 Q_{ext}/(2Q_i)$ at the resonance, creating a decline in S_{21} depicted in Fig. 2ab. We quantify the magnetic bias and excitation as an average orthogonal field $B_0 = \Phi_0/A$ with A the surface area of the loop. As the applied field B_0 and consequently I_s (assuming $m = 0$), is adjusted between zero and a maximum value, the resonance dip $f_0 = \omega_0/(2\pi)$ shifts between points O and P, respectively. When I_s is driven above $I_s = 10\text{ mA}$ (point P), the integer m assumes a new value and the current I_s resets according to equation (1). For most of our devices, I_s drops close to zero after exceeding the critical current and the resonance dip hops back from state P to state O. As the external field is changed further, the resonance frequency f_0 starts again the approach towards point P.

The decrease in Cooper pair density n_s with growing I_s degrades the intrinsic quality factor Q_i of the device (Fig. 2c) and enhances the resonator inductance L_{tot} (Fig. 2d) due to the kinetic term given by equation (2), resulting in the resonance frequency shift Δf_0 (Fig. 2c). The inductance change enables the derivation of parameters $L_{k0} = 147\text{ nH}$ and $T = 34\text{ mA}$. Assuming the nominal geometry of the superconducting strip ($l = 80\text{ mm}$, $w = 5\text{ mm}$ and $h = 165\text{ nm}$), one can determine the penetration depth $\lambda = 1,100\text{ nm}$ for the NbN thin film. The value is somewhat larger than the zero-temperature magnetic penetration depth in the impure limit $\lambda_0 = \sqrt{\hbar/\mu_0 \pi \Delta} = 710 \pm 40\text{ nm}$, where $\hbar = h/(2\pi)$ is the reduced Planck constant, $\mu_0 = 750 \pm 90\text{ fWb}$/cm the film resistivity at room temperature and $\Delta = 2.5\text{ meV}$ the gap energy at zero temperature for NbN.24
Figure 1 | Magnetometer design and simplified circuit diagrams for the setup and the transmission measurement. (a) The device contains a superconducting loop L fabricated employing a single NbN thin-film layer. The interdigital capacitors C and C₀ shown in the optical microphotograph zoom-ins, are placed inside and outside the loop, respectively. Together with the inductive loop, the capacitors form a resonator coupled to an external transmission line. A superconducting on-chip bias coil concentric with L was not employed in the experiments. (b) Two off-chip coils L₁ and L₂ with calibrated mutual inductances (M₁ and M₂) are located around the magnetometer loop to generate bias and excitation fluxes. An RF generator supplies excitation and reference signals for the resonator and mixer, respectively. The applied magnetic field changes the kinetic inductance of the loop affecting the transmission spectrum of the microwaves passing the resonator. The resulting signal, being proportional to the excitation voltage v_{in} is amplified, mixed down to d.c. and finally Fourier transformed to frequency domain. All experiments were performed at liquid helium bath temperature $T = 4.2\,\text{K}$. (c) Transmission S_{21} can be modelled with an equivalent circuit, which yields $S_{21} = 2v_{out}/v_{in} = 2Z/(2Z + Z_0)$.

Responsivity. To calculate magnetometer responsivity $\partial v_{out}/\partial B_0$, where v_{out} is the output voltage of the transmission measurement, we differentiate equations (1)–(3). At the resonance, the responsivity can be approximated as

$$
\left. \frac{\partial v_{out}}{\partial B_0} \right|_{\omega = \omega_0} = \left. \frac{\partial v_{out}}{\partial L_k} \frac{\partial L_k}{\partial \Phi_0} \frac{\partial \Phi_0}{\partial B_0} \right|_{\omega = \omega_0} = \frac{v_{in}Q_k^2}{4Q_{ext}L_{tot}} I^2 s \left(1 + \frac{I_s}{2I_k} \right) A
$$

where the resonator is excited with a voltage v_{in} and the total quality factor $Q_e = Q_kQ_{ext}(Q_k + Q_{ext})$ along with the inductance L_{tot} are functions of the bias current I. The responsivity given by equation (4) is valid from d.c. to a roll-off frequency $f_r \approx \min\{f_0/(2Q_k), 1/(2\pi \tau_r)\}$, where either the electric time constant of the resonator or the quasiparticle recombination time τ_r (ref. 26) restricts the device bandwidth. Ultimately, the device gain becomes limited by the excitation v_{in} generating an RF current (amplitude i_k) through inductance L_{tot}. In the limit $i_k = 2(I_c - I_s)$, where the factor of two stems from the loop geometry, the magnetometer is driven to the normal state and the...
maximum gain for a given bias current I_s becomes

$$\frac{\partial G_{\text{tot}}}{\partial B_0}_{|_{\text{linear}} \approx} \approx \frac{Q}{Q_s} \sqrt{\frac{Q_s}{Q_{\text{ext}}}} \sqrt{\frac{1}{2} \frac{I_s}{Q_{\text{ext}}} \left(1 + \frac{I_s}{I_{\text{th}}} \right)} A. \quad (5)$$

The measured device responsivities $G_{\text{rad}}(\text{dB})/dI_B$ and $G_{\text{rad}}(\text{dB})/dI_{\text{th}}$ are depicted in Fig. 3a,b for quadrature (Q) and in-phase (I) components, respectively. The theoretical plots, using parameters derived from the transmission measurements, follow the measured data yielding $G_{\text{tot}} = 490 \pm 30$ V V$^{-1}$ for the system gain, which is in reasonable agreement with the nominal value $G_{\text{nom}} = 400$ V V$^{-1}$. The large dynamic range of the detector is visualized with the aid of half-gain bandwidth, which converted to magnetic field gives $\Delta B_0 \approx 600$ nT. For a constant excitation $V_\text{in} = 6.3$ mV, the current I_s is a weak function of I_L and can be approximated as $I_s \approx 1.3$ mA. In this case, flux trapping was observed below the resonance frequency $f_0 \approx 99.5$ MHz corresponding to bias current of the order $I_s \approx 9.2$ mA, approximately fulfilling the maximum gain condition $I_L \approx 2(1 - I_s)$.

Noise. The fluctuation mechanisms peculiar to kinetic inductance devices are related to the dynamics of quasiparticle excitations: the thermal motion of the unpaired electrons and the stochastics of the quasiparticle density. The former, combined with the contribution from thermal fluctuations of the attenuated feeding line, generates Johnson noise voltage $e_{\text{th}}^{1/2} = \sqrt{4k_B T Z_{\text{min}} Z_0/(Z_{\text{min}} + Z_0)}$ on resonance, where k_B is the Boltzmann constant. Taking into account the coupling to the input of the amplifier and utilizing the equation (4), this can be mapped to magnetic field noise at the magnetometer loop

$$S_{B_{\text{th}}}^{1/2} = \sqrt{8k_B T Z_{\text{ext}}(2Q_{\text{ext}} + Q_s)} \frac{L_{\text{tot}}}{Q_s Q_{\text{in}} A} \left(1 + \frac{1}{P} \right)^2 + \frac{L_0}{I_{\text{th}}} \right) \right)^\frac{1}{2}.$$

The generation–recombination of the charge carriers, on the other hand, leads to fluctuate according to spectral density $S_{\text{tot}}(\omega) = 4N_{\text{qp}}(\omega)/(1 + \omega^2/\tau_r^2)$, where $N_{\text{qp}} = V_{\text{th}}$ is the number of quasiparticles in the superconductor volume V. The field noise due to the generation–recombination process can be evaluated in the low-frequency limit $f \ll f_r$ as (see Methods)

$$S_{B_{\text{gr}}}^{1/2} = 2L_{\text{gr}} \frac{N_{\text{qp}}}{V_{\text{th}}^2} \frac{1}{\tau_r^2} \left(1 + \frac{1}{P} \right)^2 + \frac{L_0}{I_{\text{th}}} \right) \right)^\frac{1}{2}.$$

where N_{qp} is the density of quasiparticles.

To study the noise properties, a device similar to the one characterized above was operated without external magnetic bias, using persistent current $I_s = m\Delta \phi_b/(I_L + I_h)$ with finite m to determine the operating point. The RF frequency and amplitude were set to approximately maximize the field responsivity $G_{\text{rad}} (\text{dB})/dI_B$ and the experimental noise, shown in Fig. 4a, was recorded at high-gain operating point $I_s = 7$ mA. This is scaled to equivalent magnetic field noise $S_{B_{\text{th}}}^{1/2}$ in Fig. 4b. The white noise above 1000 Hz corresponds to about 32 \pm 2 μT $^{-1/2}$. The error limit stems from the uncertainty in mutual inductance M_1 calibration (Fig. 1b; see Methods). The peaks visible in the spectrum are mainly multiples of 50 Hz and interference located at low frequencies and from frequencies close to the carrier. To investigate the role of the electronics and any potential excess noise mechanisms, the noise spectrum was also recorded in a zero field-responsivity operating point $I_s = 0$ mA (Fig. 4a). Due to the similarity of the data at zero and finite field responsivity, we can exclude any noise mechanism related to random flux variations, such as the movement of trapped flux or fluctuating spins of localized electrons on thin-film surfaces, as the limiting factor in the experimental noise. Furthermore, we can also exclude the effect of parametric fluctuation of Γ_s, since the inductance is to first order independent of Γ_s at $I_s = 0$. After removing the sensor from the system, comparable noise values were measured for the setup, see Fig. 4. We attribute the slight difference to stem from the difference in the impedance levels with respect to the amplifier noise optimum, as the source impedance on resonance is lower. A mechanism increasing the field noise at high-gain operating point is the RF amplitude fluctuations, manifesting itself through current rectification due to nonlinear inductance at high readout power, see Methods for details. The amplitude noise of the RF source was measured and an estimate of its (insignificant) contribution is shown in Fig. 4b. Using the device parameters and equations (6) and (7), we can calculate the theoretical noise floor of the sensor. The dominant contribution is the thermal noise $S_{B_{\text{th}}}^{1/2} \approx 2 \mu$T $^{-1/2}$. The contribution of generation–recombination noise $S_{B_{\text{gr}}}^{1/2} \approx 0.02 \mu$T $^{-1/2}$ is negligible as derived in the Methods. Therefore, after evaluating the magnitude of all the known noise processes, it is reasonable to conclude that the measured experimental noise is limited by the electronics.

Discussion

The geometry and the material of the kinetic inductance magnetometer correspond to those used in the pickup loops of SQUID magnetometers. Therefore, together with the results obtained from the noise measurements, low-frequency noise similar to that of SQUIDs can be anticipated. This should enable

Figure 3 | Device gain. (a) The measured device responsivities $G_{\text{rad}} (\text{dB})/dI_B$ and $G_{\text{rad}} (\text{dB})/dI_{\text{th}}$ representing quadrature and in-phase components, respectively, are shown along with theoretical fits (solid lines), where the total voltage gain G_{rad} and bias current I_s were chosen as fitting parameters (see Methods). The total gain $G_{\text{tot}} = G_{\text{rad}} + G_{\text{att}}$ includes the contributions from the amplification G, mixer conversion loss L_{mix}, and other attenuation L_{att} present in the setup. In a, the equation (4) scaled with $G_{\text{tot}} = 490 \pm 30$ V V$^{-1}$ gives an estimate for the Q-component at resonance (red dashed line), in reasonable agreement with the measurements. The half-gain bandwidth for the largest peak expressed in terms of magnetic field is $\Delta B_0 \approx 600$ nT.

© 2014 Macmillan Publishers Limited. All rights reserved.
biomagnetic measurements at low frequencies, down to <1 Hz (magnetoencephalography or magnetocardiography) or in the range of ~kHz (ULF NMR and MRI). In comparison with SQUIDs, additional benefits include a high dynamic range, tolerance against ambient magnetic fields and immunity to RF interference. For the devices reported here, the dynamic range is several hundreds of nanotesla, outperforming typical SQUID magnetometers operated without feedback by two orders of magnitude. So far, the operation in Earth’s magnetic field has been verified, although the detailed characterization was done in shielded environment. The operability without shielding in higher ambient magnetic fields is expected, in contrast to SQUIDs for shielded environment. The operability without shielding in higher magnitude. So far, the operation in Earth’s magnetic field has magnetometers operated without feedback by two orders of several hundreds of nanotesla, outperforming typical SQUID tolerance against ambient magnetic fields and immunity to RF (magnetoencephalography or magnetocardiography) or in the range of ~kHz (ULF NMR and MRI).

Methods

General. The experiments were performed in liquid helium using a cryoprobe equipped with two coaxial RF lines for the transmission measurement of the resonator as well as two d.c. lines for magnetic field generation. A magnetic shield made of Pb and cryopern was mounted around the sample, resulting in ambient noise level below 5 fT Hz⁻¹/² in the white region measured with a SQUID magnetometer.

Fabrication. The NbN films were formed by reactive sputtering of niobium in nitrogen atmosphere on thermally oxidized silicon substrates. The devices were patterned through optical lithography and reactive-ion etching. The critical temperature and the resistivity of the film were verified by measuring the resistance as a function of temperature from reference structures on the same wafer as the magnetometers.

Transmission measurements. The field dependency of the device shown in Fig. 2 was characterized in transmission measurements. The bias field was varied by tuning the d.c. voltage supplied through resistors 2R1 = 300 Ω and recording the corresponding transmission spectra with a network analyser. The spectra were then used for fitting the transmission \(S_{21} = 2\text{int}L_{\text{in}}/\text{int}(2\text{int}Z_{\text{in}}) \) (Fig. 1c), where the complete impedance of the capacitive coupled resonator

\[
Z = \frac{1}{j\omega C_0} + \frac{R_{\text{int}}/C_0}{j\omega L_{\text{int}}R + R/(j\omega C_0) + L_{\text{int}}/C_0}
\]

was employed. Capacitor values measured with an impedance analyser from similar test structures were assumed \((C_0 = 2.2 \text{ pF and } C = 20 \text{ pF})\), while resonance frequency \(f_0 = 1/(2\pi\sqrt{L_{\text{int}}/(C + C_0)}) \) and quality factor \(Q_{\text{int}} = R(L_1) \sqrt{/C + C_0)/L_{\text{int}}(L_1)} \) were used as fitting parameters. The amplitude of the transmission was fixed to unity sufficiently far away from the resonance. The best fit was achieved with \(Z_{\text{in}} = 63\ \Omega\). As a result, the curves of Fig. 2c were obtained. Solid lines represent polynomial fits containing all the necessary information for reproducing the transmission curves of Fig. 2a,b.

Responsivity measurements. The device responsivities \(G_{\text{tot}}d\text{int}d\text{int}B_{\text{tot}}\) were measured with the setup of Fig. 5a. Two channels of an RF generator provide signals for excitation \(\epsilon_0: = \epsilon_{0\text{RF}}(\sin(\omega_{\text{RF}}t)) \) of the resonator and for a reference
The phase φ of the local oscillator (LO) was first manually tuned close to a value φ = φmax where a maximum response (quadrature (Q) component) at a given resonance frequency f0 was obtained. The responsivity was also recorded at π/2 offset giving the approximate in-phase (I) component. The LO was then scanned to the next frequency point (F0 = F0 + 1/n0) where f0 was held constant. The in-phase (I) and quadrature (Q) components were then Fourier transformed to give the total gain G = G(LO) = G(I) + jG(Q) at the LO frequency. The device was then reconfigured to the next LO frequency using a digital mixer without any offset giving the approximate in-phase (I) component. Thus, the generation–recombination noise depends on parameters n, nqp, and τs as noted above. We assume that the paired carrier density ns approximately equals the total density of electrons: ns ≈ n/n0 = 10^{13} cm^{-2} (ref. 31). For our Nb films, the Cooper pair density is empirically found to follow relation \(n_p/n_s = 1 - (177T/0.5)^2\) (ref. 15). Using this combined with the relation of the intrinsic quality factor \(Q = \pi n_p G_0 q_0/\Delta E\), where \(q_0\) is the quasiparticle thermalization time with a superconductor lattice, and the current dependency of Q, gives \(n_p/n_s \approx 0.1\). The recoupling time can be expressed as

\[\tau_s = \frac{\tau_{0}}{\sin(\omega_0/2\tau_{0})}\]

where \(\tau_{0}\) is material-dependent electron–phonon interaction time and \(\omega_{0}\) is the energy gap of the superconductor. For NbN, an empirical relation \(\tau_{0}[\omega_{0}] = 5 \times 10^{-19}[\text{K}]^{-1/2}\) is typically found valid\(^2\) leading to \(\tau_{0} \approx 50\) ps. The zero-temperature energy gap for NbN is \(\Delta = 2.5\) meV (ref. 24). This is likely somewhat suppressed at the operating point, it will give a worst-case estimate for the noise. Finally, we get \(\tau_{s} \approx 1.5\) ns and \(\tau_{0}^{\text{eff}} = 0.02\) GHz \(\pm 1/2\) using \(\Delta E / \Delta E_{\text{B}} \approx 3 \times 10^{-4}\) at operating point.

References

1. Hickminton, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography theory, instrumentation and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).
2. Seki, Y., Kandori, A., Suzuki, D. & Ohnuma, M. Open-type magnetocardiograph with cylindrical magnetic shield. Appl. Phys. Lett. 86, 249302 (2005).
3. McDermott, R. et al. Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295, 2247–2249 (2002).
4. McDermott, R. et al. Microtesla MRI with a superconducting quantum interference device. Proc. Natl Acad. Sci. USA 101, 7857–7861 (2004).
5. Zoter, V. S. et al. Microtesla MRI of the human brain combined with MEG. J. Magn. Reson. 194, 115–120 (2008).
6. Vesainen, P. T. et al. Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magn. Reson. Med. 69, 1795–1804 (2013).
7. Chwala, A. et al. Low temperature SQUID magnetometer systems for geophysical exploration with transient electromagnetics. Supercond. Sci. Technol. 24, 120506 (2011).
8. Clarke, J. & Braginski, A. I. The SQUID Handbook (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
9. Ryhänen, T., Seppä, H., Ilmoniemi, R. & Knuttila, J. SQUID magnetometers for low-frequency applications. J. Low Temp. Phys. 76, 287–386 (1989).
10. Fink, M. I. et al. High-Tc QDs for magnetoencephalography. IEEE Trans. Appl. Supercond. 23, 1600705 (2013).
11. Pannetier, M., Fermon, C., Le Goff, G., Simola, J. & Kerr, E. Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304, 1648–1650 (2004).
12. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla single-channel atomic magnetometer. Nature 422, 596–599 (2003).
13. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting magnetometers for noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993).
14. Day, P. K., LeDuc, H. G., Mazzin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).
15. Timofeev, A. V. et al. Submillimeter-wave kinetic inductance bolometers on free-standing nanomembranes. Supercond. Sci. Technol. 27, 025002 (2014).
16. Eom, B. H., Day, P. K., LeDuc, H. G. & Zmuidzinas, J. A wideband, low-noise superconducting amplifier with high dynamic range. Nat. Phys. 8, 623–629 (2012).
17. McHugh, S. et al. A readout for large arrays of microwave kinetic inductance detectors. Rev. Sci. Instrum. 83, 044702 (2012).
18. Yang, D. et al. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 (1987).
19. Annunziata, A. J. et al. Tunable superconducting nanoinductors. Nanotechnology 21, 445202 (2010).
Acknowledgements
We thank Andrey Timofeev, Panu Helisto, Mikko Kiviranta and Arttu Luukanen for useful discussions as well as Paula Holmlund and Harri Pohjonen for the help in sample preparation. The work was financially supported by the Academy of Finland through Centre of Excellence in Low Temperature Quantum Phenomena and Devices.

Author contributions
J.L. carried out the experiments in the supervision of J.H., and analysed the data. He is also the principal writer of the manuscript. J.H. and V.V. developed the theory, designed the devices and contributed to writing the manuscript. L.G. was responsible for device fabrication.

Additional information
Competing financial interests: The authors declare no competing financial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/
How to cite this article: Luomahaara, J., et al. Kinetic inductance magnetometer. Nat. Commun. 5:4872 doi: 10.1038/ncomms5872 (2014).