A Review on Wide Range Application of Nanoparticles in Agriculture and its Implications in Plant Disease Management

Tushar P. Vaghasiya, Adesh Kumar* and Kartik Nakum

Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India

Abstract

In the current situation several types of synthetic pesticides are available but they are harmful for the ecosystem and do possess a devastating impact on human health. The other side organic fungicides and biocontrol agents are also accessible in the market which relies on specific environmental conditions and can be used only under particular situations. Most of the organic methods are slow and time-consuming processes and contrary farmers don’t have time as biological processes of the plants are fast, so the timing is foremost valuable for economic yields. To combat the existing situation there is an alternate solution exists in the form of nano technology for the management of plant pathogens and currently nano fungicides i.e., AgNps, CuNPs, TiO$_2$, chitosan nanoparticles and nano emulsions are being used in the sector of plant diseases management. These days’ nanoparticles are used in the agriculture sector because of their antifungal, antibacterial and antiviral properties. Nano silvers (silver nanoparticles) and nano sensors are applied against abiotic stresses and insect pests as fertilizers, growth promoters and insecticides respectively. Presently many researches were conducted on silver particles and silver nano-based fungicides show high effectivity against plant pathogens. Hopefully in the future, silver nanoparticles will be marketed for the control of plant diseases and insect pests and for the detection of pesticides. Therefore, this manuscript addresses all the possible applications and approaches of nanoparticles as effective and ecofriendly tools imparting growth to the plants which reduces impact of plant diseases on plant part as plant system is strengthen and to combat against plant pathogens & insect pests because of their antifungal, antibacterial, antiviral & insecticidal properties.

Keywords

Nanotechnology, Nanoparticles, Synthetic fungicides, Ecosystem, Human health

Introduction

Worldwide loss to the yield due to insect pests, diseases and weeds is 14, 13 and 13 percent respectively [1]. An average worldwide yield loss due to plant diseases every year estimated 2,000 billion dollars [1] wherein only fungi cause 200 billion US dollar loss in a year [2]and pesticides are the sources of management of plant diseases, and these synthetic pesticides undoubtedly cause severe health concerns to humans and animals via treated plant produce and products [3]. In India, total consumption of pesticides was 60,566 MT in the financial year 2019-2020 [4].

A good economic and widely accepted alternate to synthetic pesticides can be use of a nano technological approach which may termed as nano-agriculture in...
which nanoparticle or nano-size materials are used to enhance crop productivity and suppress the pest [5, 6]. Nanotechnology has all the potential to improve plants yield [7], detect plant pathogens [8], protect plants [9], increase food production [10] and improve food quality [11].

Metals play an important role in the plant management; application of direct metal can cause phytotoxic effects to plants but once it was used with nanotechnology improves plant’s quality and quantity [12]. Nano agriculture lies on various types of metals like silver [13], silica [14], sulphur [15], gold [16], titanium [17] etc. but silver particles has been widely used since very long time because of its antimicrobial and anti-viral properties [18-23] also silver nanoparticles are hydrophilic in nature so disperse easily and distribute uniformly in water [24, 25]. Though the medical use of silver has been documented long back since 1000 B.C and Chinese and Indian Ayurveda has recommended silver as medicine to maintain good health [26]. Silver (Ag) metal elements have atomic number 47 and atomic mass 107.87. The average Ag content in the soil is 100 ng g⁻¹ and ranging from 10 to 5,000 ng g⁻¹ [27].

Nanotechnology in Agriculture

Agriculture is a broad term that includes various types of systems to cultivate plants. Nanotechnology has been used since the last half-century, but its application and implantation started in recent years in agriculture [28]. In agriculture, nanotechnology is being a very useful and eco-friendly tool for soil, air and water management; bubble chart depicts multi-dimensional application of nanomaterial for crop protection, crop production, management of crops and food processing [29].

Nanotechnology and crop production

Used for monitoring of crops

Nanotechnological tools or machines are used these days for the supervision of crops. In the nanotech field, they develop nanosensors wherein the sensing capacity is less than 100 nm in the depth of material [30]. Nanosensors determine the chemical and physical changes in the soil and plant ecosystems, available soil and plant nutrient status and detect the presence of plant pathogens, weeds and insect pests in the field [31, 32]. Nanotechnology also helps the detection of pesticides for instance Surface-enhanced Raman scattering (SERS) technology, in this technology Au and Ag is used to detect Thiacloprid, Profenofos and Oxamyl [33]. Use of gold and silver nanoparticles to detect organophosphate pesticides into the environment was executed effectively (Simolian et al. [34]. Humic acid protected nanoparticles are sensitive to an increased amount of sulfurazan-ethyl herbicide and the particle changes color of solution yellow to purple and acts as nanosensor and herbicide detector [35]. Nanotechnology is also useful for suppression of pollution wherein the nanoparticles are used to treat soil, sediment, wastewater and, control air pollution for instance Chitosan and silver combination is used as a filter of drink water and remove pesticide particles from the wastewater [36]. Nanoparticles are also used for the mineralization of halocarbons and other organic as well as inorganic contaminants [37].

Used as fertilizers

In the conventional application methods like spraying and broadcasting which cause losses by leaching, runoff, evaporation, microbial and photolytic degradation. In these conventional methods, fewer amounts of fertilizers get available to the plants wherein about 40-70% Nitrogen, 80-90% Phosphorus and 50-90% potassium get lost in the environment [38]. Due to this loss of fertilizers farmers apply more fertilizers which cause pollution, reduction of microflora and have residual effect on plant produce. These losses can be solved through Nano fertilizers; fertilizers are being used in combination with nanomaterials. Nanomaterials are beneficial and give better performance when compared with synthetic fertilizers regarding the plants [39] for instance use of magnetic fields with silver nanoparticles improve growth and quality of fodder maize crops [40].

Used as growth promoters

When nanofertilizers were used in adverse conditions for the improvement of plant’s growth, improvement of germination rate, germination percentage, dry weight and root length was observed. AgNPs treated tomato plants under two levels of salinity [100 ppm and 150 ppm] found incorporating and increasing growth and yield of tomato plants [41]. Razzaq and teammates [42] stated that silver nanoparticles have potential to improve plant growth and yield with a low concentration (25 to 50 ppm), silver nanoparticles with the combination of gold nanoparticles improve leaf area, number of leaves, plant height, chlorophyll content and sugar content that led to improving yields [43-45]. Silver nanoparticles at 50 ppm concentration in black mustard seeds improve shoot length and root length of the plant [146]. Seeds coated with silver nanoparticles absorb more water in comparison to uncoated seeds [47] and seeds treated with AgNPs could show 90% more resistance then untreated under drought conditions [48].

Used in genetics and tissue culture

Silver nanoparticles are also used in gene regulation, for instance a sublethal dose of silver nanoparticles was not found having direct effect on N₂ fixing (anfD, nirH, nitD, vnfD) and N, denitrifying (napB, norB, nirH, narG) genes but other involved genes (amoA1, amoC2) in nitrification is upregulated in *Nitrosomonas europaea* [49]. In tissue culture, the use of silver nanoparticles in callus formation, root and shoot generation have been reported, for instance *Tecomella undulata* explant medium with the use of silver nanoparticlefound increasing number of shoots and the formation of callus [50-52]. Silver nanoparticles also improve the quality of the plant when used as tissue culture methods, for instance variety *Solanum ni- gram* was improved by somaclonal variationwith the use of silver nanoparticles [53].

Nanotechnology and crop protection

Now a day pesticides or synthetic chemicals are used in a large amount in the agriculture sector for the management of
plant diseases, insect pests and weeds. This excess use of synthetic chemicals does have harmful effects on the ecosystem as it causes mortality, modifications in beneficial fauna and flora and develop resistance into pests of plants [54]. When the use of nanoparticles integrated with other chemicals it has negligible adverse effect on the ecosystem and found reducing toxicity in fauna and flora [55] and humans [56, 57].

Used in management of Insect pests

Silver nanoparticles synthesized from *Azadirachta indica* were used to control mosquito larvae as it has hydrophilic nature and insecticidal properties; AgNPs used against *Aedes aegypti* and *Anopheles stephensi* [58]. Sap-Iam and colleagues also used UV-induced silver nanoparticles to kill mosquito larvae as a larvicide [59]. Silver nanoparticles were also integrated with insecticides like, Dichlorvos and Chlorpyrifos to enhance their insecticidal properties and effectiveness; 95% and 98% in Dichlorvos and Chlorpyrifos respectively [60]. According to Yang and colleagues, use of nanoparticles with the garlic oil is effective against *Tribolium castaneum* (Herbst) [61]. Nanosilvers affect larva of *Callosobruchus maculatus* and silica nanoparticles affect adult stage while experimenting with silver and sulphur nanoparticles found effective against the different stages of *Drosophila melanogaster* [62]. Table 1 show nanoparticles used worldwide in the management of insect pests of crops.

Used in management of plant pathogens

Silver nanoparticles (AgNPs) have become one of the most commonly used nanomaterials in consumer products, and for several decades, silver (Ag’) has been studied as an antimicrobial agent against various harmful microorganisms [60]. Being powerful disinfectant agent silver nanoparticles (AgNPs) have antiviral [63], antifungal [64], antibacterial [65] properties and became one of the most used nanomaterials in the management of plant diseases.

Management of fungal diseases

Nanoemulsions like polyvinyl chloride, polyvinyl pyridine and chitosan, Nanoclays and Nanoparticles like ZnO, Ag and Ag’, TiO₂, CeO₂, Au, Al, Fe and CuO are the nanotechnologies used with fungicides in the management of plant diseases [66]. In nano fungicides many metals like Au, Ag, Au-Ag alloy [67], selenium [68], tellurium [69], platinum [70] are used to control the plant pathogens, in those metals silver is very efficient to control plant pathogens.

The smaller nanosilver particles are more effective at inhibiting fungal growth because it easily passes through the cell wall [71]. According to Kim and teammates, silver with silica nanoparticles increased more than 90% growth of *Rhizoctonia solani* at 6 μg/ml concentrations [72, 73]. Ouda and colleagues stated that use of AgNPs with CuNPs was effective against *Alternaria alternata* and *Botrytis cinerea* [74]. Karimi and Sadeghi found that 100 ppm concentration of AgNPs inhibited 100% growth of *Pythium aphanidermatum*, *Botrytis cinerea*, *Pythium spinosum*, *Cletontricum cucumerinum*, *Glomera cingulata*, *Cylindrocarpon destructans*, *Fusarium oxysporum* f.sp. *cucumerinum*, *Monotroporus cannonballus* and *Fusarium oxysporum* [75]. Aziz and his team found that use of biogenic silver nanoparticles showed better results compared to chemical fungicides like fluconazole, ketoconazole and amphotericin B [20, 76].

Mode of action: There are several mechanisms through which silver nanoparticles are used to control plant diseases. There are numerous theories on mechanisms of working of silver nanoparticles; caesestructural changes inceullularmechanism and cause cell death [76], interact with thiol (-SH) group to inhibit and inactivate enzymes [77, 78], inhibit respiratory enzymes in DNA and Protein contain sulphur and phosphorus [79-83]. They can increase the permeability of cell membranes by producing reactive oxygen speciesand interrupt in replica-

Table 1: Silver nanoparticles and their combination with other material for the management of insect pests.

Insect	Combination	Reference
Chironomus riparius	-	[124]
Aedes albopictus	*Cassia fistula* extract	[125]
Calopropips pallens	*Cassia fistula* extract	[125]
Aedes albopictus	Salicylic acid and 3,5-dinitrosalicylic acid	[126]
Drosophila melanogaster	-	[127, 128]
Spodoptera litura	-	[129]
Aschaca janata	*Punica granatum*	[130]
Lipaphis erysimi Kalt.	*Bouveria basiana*	[131]
Tribolium castaneum	Malathion	[132]
Sitophilus oryzae	*Euphorbia prostrata*	[133]
Pestallosa ricini	Gold nanoparticle	[134]
Aphis nerii	Zinc nanoparticle	[135]
Agrais ipisilen	*Bacillus thuringiensis* kurstaki (Btk)	[136]
Trichoplusia ni (Hübner)	*Bacillus thuringiensis* kurstaki (Btk)	[136]
Corcyra cephalonica	*Oximum sanctum*	[137]
tion of deoxyribonucleic acid [84]. Table 2 and 3 show silver nanoparticles and their combination with other nanoparticles used for the management of fungal plant pathogens.

Management of bacterial diseases

Silver nanoparticles are known for strong bacteriostats, Bactericidal and broad-spectrum antimicrobial activity [85, 86]. Silver nanoparticles also affect soil plant pathogenic bacteria [87] and act as strong antimicrobial agents due to inhibitory effects against various bacteria [88-90]. Silver and TiO₂ nanoparticles in combination are effective for removing bacterial pathogens from tobacco plants [91]. The bacterium, Xanthomonas perforans (tomato) was reported developing resistance against Cu fungicides but when low concentration (16 ppm) of silver nanoparticles with Graphene oxide were used, inhibited bacterial spot diseases of tomato [92].

Mode of action: Owing to electrostatic attraction and affinity to sulfur proteins, silver ions can adhere to the cell wall and cytoplasmic membrane. The adhered ions can enhance the permeability of the cytoplasmic membrane and lead to disruption of the bacterial envelope [93, 94]. Those silver irons also have inbuilt properties to bind with thiol (-SH) group of enzymes and inactive them [78]. Pathogen cells come in contact with silver irons, which inhibits many functions that lead to inhibition of deoxyribonucleic acid [84].

Table 2: Silver nanoparticles against fungal plant pathogens.

Name of pathogen	Diseases name	Crop	Reference
Alternaria alternata	Alternaria blight	Strawberry, Chilli, Tomato	[73, 138]
Sclerotinia sclerotiorum	-	-	[138, 139]
Macrophomina phaseolina	-	-	[138]
Rhizoctonia solani	-	-	[72, 138, 139]
Botrytis cinerea	Gray mold	Brinjal, tomato, potato, Capsicum, strawberry	[73, 138]
Curvularia lunata	-	-	[138]
Sphaeroteca pannosa var rose	Powdery mildew	Rose	[85]
S. minor	-	-	[139]
Fusarium gramineorunum	-	-	[140]
Fusarium adum	-	-	[140]
B. sorokiniana	Wheat		[141]
Sphaeroteca fusca	-	-	[142]
Fusarium culmerum	-	-	[143]
Alternaria brassicicola	Black spot	Cauliflower, radish, cabbage, kale	[73]
Alternaria solani	leaf spot	Capsicum, tomato, Brinjal, potato	[73, 144, 145]
Cladosporium cucumerinum	Scab	Brinjal, cucumber, pumpkin, melon	[73]
Corynespora cassicola	Leaf spot	Capsicum, cucumber, bean, tomato, sesame	[73]
Cylindrocarpon destructans	Root rot	Strawberry, ginseng, peony	[73]
Didymella bryoniac	Black rot	Cucumber, pumpkin, watermelon, melon	[73]
Fusarium oxyporum f. sp. cucumerinum	Fusarium wilt	Cucumber	[73]
Fusarium oxyporum f. sp. lycopersici	Fusarium wilt	Tomato	[73]
Fusarium solani	Fusarium wilt	Potato, ginseng	[73]
Glomerella cingulata	Anthracnose	Pepper, strawberry, grapevine	[73]
Monosporascus	Root rot	Cucumber, pumpkin, watermelon, melon	[73]
Pythium aphanidermatum	Damping-off	Tomato, tobacco, radish	[73]
Pythium spinosum	Root rot	Sweet potato, pumpkin, cabbage Eggplant,	[73]
Stemphylium lycopersici	Leaf spot	Eggplant, tomato, pepper	[73]
Alternaria niger	-	-	[146]
Alternaria flavus	-	-	[146]
Fusarium verticilliodes	-	-	[148]
Fusarium moniliforme	-	-	[147]
Penicilium brevicompactum	-	-	[147]
Helminthosporium oryzae	-	-	[147]
Pseudomonas grisea	-	-	[147]
Table 3: Combined applications of silver nanoparticles with other materials against fungal plant pathogens.

Combination with other material	Pathogen	Diseases name	Crop	Reference
DHPAC shell nanocluster	Phytophthora capsici			[148]
DHPAC shell nanocluster	*Phytophthora nicotianae*			[148]
DHPAC shell nanocluster	*Phytophthora coloacise*			[148]
Trichoderma spp.	*Phytophthora oxyporum*	Powdery Mildew	Cucurbits	[112]
Trichoderma spp.	*Alternaria zinniae*	Leaf spot	Merigold	[151]
Fluconazole	Phoma glomerata			[150]
Fluconazole	Phoma berharum			[150]
Fluconazole	*Fusarium semistextum*			[150]
Fluconazole	Trichoderma spp.			[150]
Fluconazole	Candida albicans			[150]
Neem	*Alternaria zinniae*	Leaf spot	Marigold	[151]
Ephobia	*Alternaria zinniae*	Leaf spot	Marigold	[151]
Silica	*Pythium ultimum*			[112]
Silica	Magnaporthe grisea			[112, 141]
Silica	*Colletotrichum gloeosporioides*			[112]
Silica	Botrytis cinerea			[112]
CuNPs	*Alternaria alternata*			[74]
CuNPs	Botrytis cinerea			[74]
Chloramphenicol	Citrobacter freundii			[12]
Chloramphenicol	*Erwinia cacticida*			[152]
Silica	*Podosphaera xanthii*	Powdery mildew	Cucurbits	[112]
SIO2	*Rhizoctonia solani*			[73, 112]
Chitosan	*Rhizoctonia solani*			[153]
Chitosan	*Aspergillus flavus*			[153]
Chitosan	*Alternaria. alternata*			[153]
Chitosan	*Colletotrichum*			

Table 4: Silver nanoparticles against bacterial plant pathogens.

Name of pathogen	Diseases name	Crop	Ref.
Xanthomonas campestris pv. campestris	Black rot	Cabbage	[88, 155]
Bacillus megaterium	-	-	[156]
Pseudomonas syringae	-	-	[156]
Burkholderia glumae	-	-	[156]
Xanthomonas oryzae	-	-	[156]

Table 5: Combined applications of silver nanoparticles with other materials against bacterial plant pathogens.

Combination with other material	Pathogen	Reference
Graphene oxide	*Xanthomonas performance*	[92]
Silica	*Pseudomonas syringae*	[112]
Silica	*Xanthomonas campestris*	[112]
Silica	*Bacillus subtilis*	[112]
Silica	*Rhizobium tropici*	[112]
Silica	*Escherichia coli*	[112]
generation of reactive oxygen species (ROS) and cause inhibition in respiratory enzymes. Silver nanoparticles can prevent replication and protein synthesis [95], DNA contains sulfur and phosphorus as major components, silver nanoparticles that act on both and cause destruction of DNA [96]. Table 4 and 5 exhibit silver nanoparticles and their combination with other nanoparticles used for the management of fungal plant pathogens.

Management of viral diseases

There were three metal nanoparticles include Ag, Au and zinc used to control the viruses; an anthropological study showed that silver nanoparticles were used effectively against human viruses such as Tacaribe virus [97] and influenza virus [87]88], similar nanoparticles (Ag and Zn) have also been used against plant viruses for instance, Bean yellow mosaic virus [99], Potato virus Y [100], Sunhemp rosette virus [101] and Cucumber mosaic virus [102].

Mode of action: Elbeshely and his co-workers experimented that silver nanoparticles bind with virus envelopes inhibit virus infection [99] and similar results exhibit in table 6.

Used as preservatives

Recently, a pesticide product (NSPW-L30SS) containing nano-silver has been conditionally registered as preservative under FIFRA [103]. Silver nanoparticles are also used as preservatives because silver inhibits ethylene mediated processes, such as flowers abscission and senescence [104, 105]. Silver is also used in the packing industry to increase the shelf life of food products [106, 107].

Phytotoxicity of Nanoparticles

Silver is the second most poisonous element next to mercury to all the living beings in an ecosystem [108]. Silver nanoparticles leach silver ions (Ag+) which are bio-accumulative, persistent and highly toxic to organisms [109], therefore, the release of AgNPs into ecosystems raise great concerns about their safety and environmental toxicity [110]. As a result, the release of AgNPs into habitats poses serious questions about their safety and toxicity to the environment [111].

Though silver and silica control powdery mildew pathogens but its higher concentration i.e., 3200 ppm causes phytotoxicity in plants [112]. Higher concentrations of AgNPs i.e., 5 to 20 mg/L resulted in a reduction of biomass in Arabidopsis [113]. Silver Nanoparticles with higher concentration shortened the length of wheat shoots and roots [114], reduced root elongation, shoot and root fresh weight in rice [115], inhibited seed germination and decreased biomass in zucchini (Cucurbita pepo) [116, 117]. In lettuce crop 1 and 2 mg/mL concentration of Al2O3 decreased biomass 10.4 and 17.9 percent respectively while 0.4 and 1 mg/mL concentration of AlCl3 found reducing biomass 22.3 and 9.96 percent respectively [118]. Zinc oxide (ZnO) as nanoparticle was investigated for its toxicity, in this study root uptake and Phytotoxicity was observed by TEM and SEM and found that in the presence of ZnO nanoparticles Lolium perenne biomass reduced significantly, root tips shrink and cortical & epidermal cells of roots vacuolated and collapsed severely [118]. Similar results of Phytotoxicity were reported in Cucumis sativus and Fagopyrum esculentum in 2012 and 2013 respectively by Kim et al. [119, 120].

Conclusion

Use of nanoparticles in India still is in the research phase and has been proved to be very useful in the agriculture sector in the near future [121]. The active compounds of nanoparticles are supposed to be used as nano-fungicides, nano-insecticides, nano-bactericides, nano-weedicides, nano-virucides etc. effectively and extensively in the days to come [122]. Nano particles seem to be eco-friendly as they possess low residual effect and will be used as antimicrobial compounds against microorganisms which are used to develop pesticide resistance against synthetic pesticides [123]. Wide range application of nanoparticles makes it futuristic in many senses as nanoparticles used not only as pesticides but as growth regulators to accelerate balanced growth into roots and shoots contributing good yield, as fertilizers to fulfill the nutritional requirement of the plant, as gene regulators in genetics for the settling of desired genes among the plant species, as bio primer used in coating seeds, medicines, food materials to enhance their properties and to protect from outer threats. Nanoparticles are also had great ability to be used as food preservatives to improve self-life of the product and value addition. More research using nanotechnology and nanoparticles are required to prove and rehears previously done research worldwide.

Table 6: Silver nanoparticles against viral plant pathogens.

Virus	Plant	Reference
Banana bunchy top virus	Banana	[101]
Sunhemp rosette virus (SHRV)	Cymopsis tetragonoloba	[157]
Bean yellow mosaic virus (BYMV)	Vicia faba	[92]
Tobacco mosaic virus (TMV)	Nicotiana tabacum	[86]
Potato virus Y (PVY)	Solanum tuberosum	[158]
Tomato spotted wilt virus (TSWV)	Solanum tuberosum L. cv. Spunta	[159]
Tomato mosaic virus (ToMV)	Solanum lycopersicum	[160]
Potato virus Y (PVY)	Solanum lycopersicum	[160]
Cucumber mosaic virus (CMV)	Cucumis sativus	[102]
A Review on Wide Range Application of Nanoparticles in Agriculture and its Implications in Plant Disease Management

Vaghasiya et al.

References

1. Pestovsky, YS, Martinez-Antonio, A. 2017. The use of nanoparticles and nanofibrillations in agriculture. Journal of Nanoscience and Nanotechnology 17(12): 6999-7830. https://doi.org/10.1166/jnn.2017.15041

2. Horbach R, Navarro-Quesada AR, Knogge W, Desing HB. 2011. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J. Plant Physiol 168(1):51-62. https://doi.org/10.1016/j.jplph.2010.06.014

3. Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International journal of environmental research and public health, 8(5), 1402-1419.

4. Anonymous. 2020. Pesticide action network UK. https://www.pnn.uk.org/health-effects-of-pesticides/

5. Batsanov, A.M, Gonchar LM, Taran NY, Okanenko AA. 2013. Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. Proceedings of the International Conference Nanomaterials: Applications and Properties 2(4): 04NABM14.

6. Shang Y, Hasan M, Ahammer GJ, Li M, Yin H. 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14): 2558. https://doi.org/10.3390/molecules24142558

7. Gruère G, Narrod C, Abbott L. 2011. Agricultural, food, and water nanotechnologies for the poor. International Food Policy Research Institute, Washington, DC, USA, pp 1-4.

8. Frewer LJ, Norde W, Fischer A, Kamps F. 2011. Nanotechnology in the agri-food sector: implications for the future. John Wiley & Sons, New York, USA. https://doi.org/10.1002/9783527634798

9. Mousavi, S. R., & Rezaei, M. (2011). Nanotechnology in agriculture and food production. J Appl Environ Biol Sci, 1(10), 414-419.

10. Biswal, SK, Nayak AK, Parida UK, Nayak PL. 2012. Applications of nanotechnology in agriculture and food science. Int J Innov Discov, 2(1): 21-36.

11. Souza LRR, da Rocha Neto AC, da Silva CR, Franchi LP, de Souza TAJ. 2019. Green Synthesis Approaches of Nanoparticles. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Nanotechnology in the life sciences. Springer, Cham. pp 353-380. https://doi.org/10.1007/978-3-030-17061-5_15

12. Sharma P, Bhart D, Zaidi MGH, Saradhi PP, Khanna PK, et al. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl BiochemBiotechnol 167(8): 2225-2233. https://doi.org/10.1007/s12010-012-9759-8

13. Narwar J, Yadav RN, Kewani C, Singh SP, Singh HB. 2019. Silver nanoparticle-based biostatistics for phytopathogens: scope and potential in agriculture. In: Opendeer K (ed) Nano-biostatistics today and future perspectives. Academic Press, Cambridge, Massachusetts, USA, pp 303-314.

14. Razaq A, Ammar A, Jhanzab HM, Mahmood T, Hafeez A, et al. 2016. A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol21(1): 55-58.

15. Vuong LD, Luan NDT, Ngoc DDH, Anh PT, Bao VQ. 2017. Green synthesis of silver nanoparticles from fresh leaf extract of Centella asiatica and their applications. Int J Nanosci16(01): 1650018. https://doi.org/10.1142/S0219551X16500186

16. Graily-Moradi F, MallakAM, Ghorbanpour M. 2020. Biogenic synthesis of gold nanoparticles and their potential application in agriculture. In: Ghorbanpour M, Bhargava P, Varma A, Choudhary D (eds) Biogenic nano-particles and their use in agro-ecosystems. Singapore, Springer, Singapore, pp 187-204. https://doi.org/10.1007/978-3-030-33996-8_5

17. Faraz A, Faizan M, Fariduddin Q, Hayat S. 2020. Response of titanium nanoparticles to plant growth: agricultural perspectives. In: Hayat S, Pichtel J, Faizan M, Fariduddin Q (eds) Sustainable agriculture reviews. Singapore, Cham, pp 101-110. https://doi.org/10.1007/978-3-030-33996-8_5

18. Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, et al. 2015. Facile alga-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42): 11605-11612. https://doi.org/10.1021/acs.langmuir.5b03081

19. Aziz N, Fatma T, Varma A, Prasad R. 2014. Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles 2014: 689419. https://doi.org/10.1155/2014/689419

20. Aziz N, Pandey R, Barman I, Prasad R. 2016. Leveraging the attributes of Micor heimalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol16: 1984. https://doi.org/10.3389/fmicb.2016.01984

21. Castellano JJ, Shafi SM, Ko F, Donate G, WrightTE, et al. 2007. Comparative evaluation of silver containing antimicrobial dressings and drugs. Int Wound J2(4): 114-122. https://doi.org/10.1111/j.1742-481X.2007.00316.x

22. Fabregas J, LuomaSN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int37(2): 517-531. https://doi.org/10.1016/j.envint.2010.10.012

23. Rajesh S, Raja D, Ruthi JM, Sahayaraj K. 2012. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Bioger5: 119-128.

24. Crane RA, Scott TR. 2012. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater211: 112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073

25. Mochi, F., Borratti, L., Fratoddi, I., Venditti, I., Batocchio, C., Carlini, L., and Casciardi, S. (2018). Interaction of colloidal silver nanoparticles with Co2+ and Ni2+ in water for sensing application. Nanomaterials, 8, 488. doi: 10.3390/nano8070488

26. Sahayaraj K, Madasamy M, RathiKA. 2016. Insecticidal activity of bio-silver and gold nanoparticles against Pericalliarciini Fab.(Lepidoptera: Arachidae). J Bioger5(1): 63-72.

27. Ghosh, S., Sarkar, B., Kumar, A., & Thongmee, S. (2012). Regulatory affairs, commercialization, and economic aspects of nanomaterials used for agriculture. In Agricultural Nanobiotechnology (pp. 479-502). Woodhead Publishing.

28. Mukhopadhyay SS. 2014. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl7: 63-71. https://doi.org/10.2147/NSA.S39409

29. Pulit-Pociak J, Banach M. 2016. Silver nanoparticles—a material of the future…? Open Chemistry14(1): 76–91. https://doi.org/10.1515/chem-2016-0005

30. Hu Q, Wocjick EK, Kelarakis A, Cyriac J, Gong X. 2017. Carbon-based nanomaterials as novel nanosensors. J Nanomater 2017: 3643517. https://doi.org/10.1155/2017/3643517

31. Joseph T, Morrison M. 2006. Nanotechnology in agriculture and food, A Nanoforum report, available for download fromwww.nanoforum.org

32. Dubey A, Mailapalli DR. 2016. Nanofertilisers, nanoparticles and nano-sensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews.Springer, Cham, pp 307-330. https://doi.org/10.1007/978-3-319-26777-7_7

33. Yasur J, Usha-Rani P. 2015. Lepidopteran insect susceptibility to silver nanoparticles and its application to herbicide detection. Mater Lett62(17-18): 2661-2663. https://doi.org/10.1016/j.matlet.2008.01.033
36. Crane RA, Scott TB. 2012. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater211: 112-125. https://doi.org/10.1016/j.jhazmat.2011.11.073
37. Wu S, Lan X, Zhao W, Li Y, Zhang L, et al. 2011. Controlled immobilization of acetylicholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens Bioelectron27(1): 82-87.https://doi.org/10.1016/j.bios.2011.06.020
38. Turganbay S, Aidadova SB, BekturganovaNE, Li CS, Musabekov KB, et al. 2012. Nanoparticles of sulfur as fungicidal products for agriculture. Eurasian Chem Technol14(4): 313-319.https://doi.org/10.18321/ectj128
39. Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ514: 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
40. Berahmand AA, Panahi AG, Sahabi H, Feizhi H, Moghaddam PR, et al. 2012. Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.). Bio Trace Elem Res149(3): 419-424.https://doi.org/10.1007/s12011-012-9434-5
41. Ashour HA, Mahmoud AWM. 2017. Response of Jatropha integerrima plants irrigated with different levels of saline water to nano Silicon and Gypsum. J Agric Sci54(4): 136-160.https://doi.org/10.5296/jas.v54i4.12170
42. Rouhani M, Samih MA, Kalantari S. 2012. Insecticide effect of silver and zinc nanoparticles against Apis nervii Boyer De Foncobelme (Hemiptera: Aphididae). Chidnese Journl of Agricultural Research82(4): 590-594.
43. Arora S, SharmaP, Kumar S, Nayan R, Khanna PK, et al. 2012. Gold nanoparticle-induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul63(3): 303-310.https://doi.org/10.1007/s10725-011-9649-z
44. Sap-Iam N, Homklunchan C, Larpudomlert R, Watisnoicharoon W, Sereeamsap A, et al. 2010. UV irradiation-induced silver nanoparticles as mosquito larvicides. Journal of Applied Sciences10(23): 3132-3136.https://doi.org/10.3923/jas.2010.3132.3136
45. Wainwright M, Grayston SJ, De Jong P. 1986. Absorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Micr Technol10(10): 597-600.https://doi.org/10.1016/0141-229X(86)90117-1
46. Shendge VS. Biosynthesis of silver nanoparticles (AgNPs) by using Trichoderma harzianum and its efficacy against soilborne plant pathogens of Tomato (Doctoral dissertation, Vasantho Naik Marathwada Krishi Vidyaapeeth, Parbhani).
47. Adhikari T, Kundu S, Rao AS. 2016. Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr39(1): 136-146.https://doi.org/10.1080/01904167.2015.1087562
48. Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv27(1): 76-83.https://doi.org/10.1016/j.biotechadv.2008.09.002
49. Yaseen T, Pu H, Sun DW. 2019. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-cellular insecticide resistances in peach with SERS technique. Talanta196:537-545.https://doi.org/10.1016/j.talanta.2018.12.030
50. Agbdhi M, Salehi H, Sarmast MK. 2012. Effects of silver nanoparticles on Tecomella undulata (Roxb·) Seem, micropropagation. J Arid Regul7(1): 21-24.https://doi.org/10.13128/ars-12748
51. Sayed AM, Kim S, Behe RW. 2017. Characterisation of silver nanoparticles synthesised by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Sci Technol27(11): 1308-1326.https://doi.org/10.1080/09583157.2017.1397597
52. Scott, N., & Chen, H. (2012). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 8(6), 340-343.
53. Ewas EA, Desouky SA, Elshazly EH. 2015. Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanoscience and Nanotechnology5(3): 45-56.https://doi.org/10.5923/j.nnn.20150503.01
54. Akhtar W, Sengupta D, Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol21(1): 1-12.https://doi.org/10.2478/v10102-009-0001-7
55. Aziz N, Pandey R, Barman I, Prasad R. 2016. Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol7: 1984.https://doi.org/10.3389/fmicb.2016.01984
56. Sekhon, B. S. (2014). Nanotechnology in agri-food production: an overview. Nanotechnology, science and applications, 7, 31.
57. Ihegwuagu NE, Sh‘Ato R, Tor-Anyi TIA, NnamorLA, Buckes P, et al. 2016. Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New J. Chem40(2): 1777-1784.https://doi.org/10.1039/C5NJ01831E
58. Rahimi D, Kartoolinejad D, Nourmohammadi K, Naghdi R. 2016. Increasing drought resistance of Alnus subcordata C.A. Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. J ForSci62(6): 269-278.https://doi.org/10.17221/15/2016-JFS
59. Sarmast MK, Salehi H. 2016. Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol58(7): 441-449.https://doi.org/10.1007/s12033-016-9943-0
60. Ihegwuagu NE, Sh‘Ato R, Tor-Anyi TIA, NnamorLA, Buckes P, et al. 2016. Facile formulation of starch–silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New J. Chem40(2): 1777-1784.https://doi.org/10.1039/C5NJ01831E
61. Yang Y, Wang J, Xiu Z, Alvarez PJ. 2013. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem32(7): 1488-1494.https://doi.org/10.1002/etc.2230
62. Araj SEA, Salem NM, Ghabeish IH, Awad AM. 2015. Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater2015: 758132.https://doi.org/10.1155/2015/758132
63. Bergeson, L. L. (2009). FIFRA Scientific Advisory Panel Considers Nanosilver. Envtl. Rep. News & Analysis, 39, 11143
64. Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, et al. 2015. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Int Med Trop Sao Paulo57(2): 165-167.https://doi.org/10.1590/S0036-46532015000200011
65. Javed B, Nadhman A. 2020. Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. Mater Res Express7(8): 085406.https://doi.org/10.1088/2053-1591/aba1f9
66. Das S, Pattanayak, S. 2020. Nanotechnological approaches in sustainable agriculture and plant disease management. In: Das SK (ed) Organic Agriculture. IntechOpen.https://doi.org/10.5772/intechopen.92463
67. Kuppusamy P, Ilavenil S, Srigopalram S, Kim DH, Govindan N, et al. 2017. Synthesis of bimetallic nanoparticles (Au–Ag alloy) using Comelina nudiflora L. plant extract and study its on oral pathogenic bacteria. J Inorg Organomet Polym27(2): 562-568.https://doi.org/10.1007/s10904-017-0498-8
68. Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, et al. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J MicrobiolBiotechnol18:1482-1484.
69. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M. 2018. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine13:8013-8024.https://doi.org/10.2147/IJNN.S182959
70. Trenkel ME. 1997. Controlled-release and stabilized fertilizers in agriculture: improving fertilizer use efficiency. IFA.
In this study, we have demonstrated the antibacterial activity of silver nanoparticles against a wide range of pathogenic bacteria, including Staphylococcus aureus, Escherichia coli, and Bacillus spp. The nanoparticles were synthesized using Carissa carandas berries and showed high antibacterial activity against these bacteria. The study also highlights the potential of silver nanoparticles in controlling bacterial infections, which can be further explored for the development of new antimicrobial agents.

Keywords: Silver nanoparticles; Antimicrobial activity; Bacteria; Carissa carandas

Joshi N, Jain N, Pathak A, Singh J, Prasad R, et al. 2018. Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sel-Gol Sci Technol 68: 682-689. https://doi.org/10.1007/s10791-018-4666-2

Published: 11.02.2018

Trends in Biotech, Vol. 28, No. 1: 27-33

Chiranjeevi N. “Microbial Synthesis and Characterization of Nano Scale Silver Material and Evaluation of their Bio Efficacy against Rice Sheath Blight Pathogen Rhizoctonia solani (Kuhn)” (Doctoral dissertation, Acharya NG Ranga Agricultural University, Gunur).

Kim HJ, Park HJ, Choi SH. 2011. Antimicrobial action effect and stability of nanosized silica hybrid Ag complex. J Environ Microbiol 9(12): 5042-5045. https://doi.org/10.1128/AEM.6.5042-5045.1998

Matsunura Y, Yoshikata K, Kunisaki SI, Tsuchido T. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7): 4278-4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003

Ahn JM, Eom HJ, Yang X, Meyer NJ, Choi J. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chromophore 108: 343-352. https://doi.org/10.1016/j.chromep.2014.01.078

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, et al. 2000. A mechanism study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4): 662-668. https://doi.org/10.1002/(SICI)1097-4674(20001215)52:4+662::AID-JBM-10.3.0-C2.3.0.CO;2-3

Hackenberg S, Scherzer A, Kessler M, Hummel S, Techau A, et al. 2011. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011(1): 27-33. https://doi.org/10.1016/j.toxlet.2010.12.001

Kasyanenko M, Varshavskii M, Ikonnikov E, Tolstyko E, Belykh R, et al. 2011. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011(1): 27-33. https://doi.org/10.1016/j.toxlet.2010.12.001

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, et al. 2020. The antibacterial effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Int J Food Saf 6(4): 6874. https://doi.org/10.4081/ijfs.2017.6874

Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, et al. 2010. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small 6(24): 2900-2906. https://doi.org/10.1002/smll.201001349

Elbeheby EK, Elzarzay AM, Aggelis G. 2015. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle character-ization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6: 453. https://doi.org/10.3389/fmicb.2015.00453

Mochi, F., Burratti, L., Fratoddi, I., Venditti, I., Battocchio, C., Carlini, L. and Caciardi, S. (2018). Interaction of colloidal silver nanoparticles with Co2+ and Ni2+ in water for sensing application. Nanomaterials, 8, 488. doi: 10.3390/nano7080488

Jain D. 2014. Green synthesis of silver nanoparticles and their application in plant virus inhibition. J Mycol Pathol 44: 21-24.

Stampoulis D, Sinha SK, White JC. 2009. Assay-dependent phytotoxicity of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. Appl Environ Microbiol 75(1): 21-36. https://doi.org/10.1128/AEM.75.1.21-36.2009

Biswal SK, Nayak AK, Parida UK, Nayak PL. 2012. Applications of nanotechnology in plant disease management: DNA-directed silver nanoparticles. Nanotechnology 23(32): 493-497. https://doi.org/10.1088/0957-4484/23/32/493

Safavi K, Mortazaeizadeh F, Esfahanizadeh M, Asgari MJ. 2011. In vitro antibacterial activity of nanomaterial for using in tobacco plants-tisue culture. In: World Academy of Science, Engineering and Technology (Conference Paper) 55: 372. https://doi.org/10.13140/2.1.1236.8007

Hatchett DW, White HS. 1996. Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100(23): 9854-9859. https://doi.org/10.1021/jp953757a

Chaloupka K, Malam Y, Seifalian AM. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology 28(11): 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006

Ocsoy I, Paret-ML, Ocsoy MA, Kunwar S, Chetlet, T. et al. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. Ac. Nano7(10): 8972-8980. https://doi.org/10.1016/j.nanomaterials.2014.03.047

Mahfouze HA, El-Dougdoug NK, Mahfouze SA. 2020. Virucidal activity of silver nanoparticles against banana bunchy top virus (BBTV) in banana plants. Bull Natl Res Cent 4(1): 1-11. https://doi.org/10.1186/s42269-020-00433-6

Mahfouze HA, El-Dougdoug NK, Mahfouze SA. 2020. Virucidal activity of silver nanoparticles against banana bunchy top virus (BBTV) in banana plants. Bull Natl Res Cent 4(1): 1-11. https://doi.org/10.1186/s42269-020-00433-6

Joshi N, Jain N, Pathak A, Singh J, Prasad R, et al. 2018. Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sel-Gol Sci Technol 68: 682-689. https://doi.org/10.1007/s10791-018-4666-2

Fernando S, Gunasekara T, Holton J. 2018. Antimicrobial Nanoparticules: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases 1(2): 1-11. https://doi.org/10.4038/sljid.v8i1.8167

Takwoli H, RastegarH, Taherian M, Samadi M, Rostami H. 2017. The effect of nano-silver packaging in increasing the shelf life of nutes: An in vitro model. Int J Food Saf 6(4): 6874. https://doi.org/10.4081/ijfs.2017.6874

Geng X, Lin F, Karagol G, He X, Meng J, et al. 2014. Antibacterial mechanism of silver nanoparticles and its application in dentistry. J Agric Food Chem 108: 343-352. https://doi.org/10.1021/jf401695c

Biswal SK, Nayak AK, Parida UK, Nayak PL. 2012. Applications of nanotechnology in agriculture and food science. Int J Sci Innov Discov, 2(1): 21-36.

Altmann SA, Solomos T. 1995. Differential respiratory and morphological responses of carnations pulsed or continuously treated with silver thiosulfate. Pesticides Biol Technol 54(3): 331-343. https://doi.org/10.1007/BF00109031-M

Ichimura K, Yoshioka S, Yumoto-Shimizu H. 2008. Effects of silver thiosulfate complex (STS), sucrose and combined pulse treatments on the vase life of cut snapdragon flowers. J Phys Chem 102(1): 21-36. https://doi.org/10.1021/jp803145n

Dubej A, Malipalli DR. 2016. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sensors of pest and nanotoxicity in agriculture. In: Lichtfouse E (ed) Sensors of pest and nanotoxicity in agriculture.
synthesize from aqueous extract of Cuscuta fistuliformis pulp and its mode of action. Acta Celli Nanomed Biotechnol 46(3):558-567.https://doi.org/10.1080/21691401.2017.1329739

126. Gzal H, Foadu H, Tian J, Hu Y, Abbas G, et al. 2018. Synthesis, characterization and efficacy of silver nanoparticles against Aedes aegypti larvae and pupae. Pestic Biochem Physiol 144:49-56.https://doi.org/10.1016/j.pestbp.2017.11.004

127. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. 2013. Mechanism of silver nanoparticles action on insect pigmention reveals intervention of copper homeostasis. PLoS One 8(1):e53186.https://doi.org/10.1371/journal.pone.0053186

128. Mao BH, Chen ZW, Yang YJ, Yan SJ. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):2445.https://doi.org/10.1038/s41598-018-20728-z

129. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA. 2012. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Bioparticles 5(5): 95–102.

130. Bhanari RA, Namasivayam SKR. 2017. Biogenic silver nanoparticles-mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.): Lepidoptera: Noctuidae - An eco-friendly approach of insect pest control. J Environ Chem Eng 5(1): 453-467.https://doi.org/10.1016/j.jece.2016.12.023

131. Kamil D, Prameeladevi T, Ganesh S, Prabhakaran N, Nareshkumar RA, et al. 2017. Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphiserysimi Kult.).

132. AS AA, Thangapandiyam S. 2019. Comparative bioassay of silver nanoparticles and mulathion on infestation of red flour beetle, Tribolium castaneum, JBioD 280(1): 1-10.https://doi.org/10.1186/s41936-019-0124-0

133. Zambonino MC, Quizhpe EM, Jaramillo SF, Rahman A, Vispo NS, et al. 2021. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci 22(3): 899.https://doi.org/10.3390/ijms22030899

134. Salama HM. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnology 3(10):190-197.

135. Russell PE. 2005. A century of fungicide evolution. J Agric Sci 143(1): 11-25.https://doi.org/10.1017/S0021861605004971

136. Scott, N., & Chen, H. (2012). Nanoscale science and engineering for agriculture and food systems. Industrial Biotechnology, 8(6), 340-343.

137. Gogate S, Rahman S, Durta P. 2018. Efficacy of synthesized silver nanoparticles using Ozonium sanctorum (L.) leaf extract against Corcyra cephalonica (S.). J EntomolZool Stud 6(3):1149-1155.

138. Krishmaraj C, Ramachandran R, Mohan K, Kalaielvhan PT. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytotoxic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93: 5-99.https://doi.org/10.1016/j.saa.2012.03.002

139. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, et al. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4): 376-380.https://doi.org/10.5423/PPJ.2009.25.4.376

140. Akter T, Hemalatha S. 2019. Mycosilver nanoparticles: synthesis, characterization and its efficacy against plant pathogenic fungi. BioNanosc9(2): 296-301.https://doi.org/10.1186/s12668-019-0607-y

141. Jo YK, Kim BH, Jung G. 2009. Antifungal activity of silver ions and nanoparticles on phytotoxic fungi. Plant Dis 93(10): 1037-1043. https://doi.org/10.1094/PDIS-93-10-1037

142. Lamsa K, Kim SW, Jung JH, Kim KS, et al. 2011. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology39(1): 26-32.https://doi.org/10.4489/MYCO.2011.39.1.026
A Review on Wide Range Application of Nanoparticles in Agriculture and its Implications in Plant Disease Management

Vaghasiya et al.

143. Kasprowicz MJ, Kozioł M, Gorczyca A. 2010. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol56(3): 247-253. https://doi.org/10.1139/w10-012

144. Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Darós JA, et al. 2016. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech6(2): 199. https://doi.org/10.1007/s13205-016-0515-6

145. Devi LS, Barch DA, Joshi SR. 2014. Studies on biosynthesis of antimicrobial silver nanoparticles using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc Natl Acad Sci India Sect B Biol Sci84(4): 1091-1099. https://doi.org/10.1007/s40011-013-0185-7

146. Elumalai EK, Vinothkumar P. 2013. Role of silver nanoparticle against plant pathogens. Nano Bimed Eng5(2): 90-93.

147. Elamawi RM, Al-Harbi RE, Hindi AA. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control28(1): 28. https://doi.org/10.1186/s41938-018-0028-1

148. Ho VA, Le PT, NguyenTP, Nguyen CK, Nguyen VT, et al. 2015. Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater. 2015: 241614. https://doi.org/10.1155/2015/241614

149. Simonian AL, Good TA, Wang SS, Wild JR. 2005. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta534(1): 69-77. https://doi.org/10.1016/j.aca.2004.06.056

150. Gajbhiye M, Kesharwani, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine5(4): 382-386. https://doi.org/10.1016/j.nano.2009.06.005

151. Negi M. 2016. Bio-efficacy of silver nanoparticles of botanicals against Alternaria zinniae causing leaf spot disease in marigold (Doctoral dissertation).

152. Paulkumar K, Gnanaobjitha G, Vanaja M, Rajeshkumar S, Malarkodi C, et al. 2014. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World Journal2014: 829894. https://doi.org/10.1155/2014/829894

153. Kaur P, Thakur R, Choudhary A. 2012. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res1(6): 83-86.

154. Chowdappa P, Gowda S, Chethana CS, Madhura S. 2014. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res8(17): 1803-1812. https://doi.org/10.5897/AJMR2013.6584

155. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, et al. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech9(3): 1-11. https://doi.org/10.1007/s13205-019-1626-7

156. Pramanik P, Krishnan P, Maity A, Mridha N, Mukherjee A, et al. 2020. Application of nanotechnology in agriculture. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental Nanotechnology. Springer, Cham, pp 317-348. https://doi.org/10.1007/978-3-030-26668-4_9

157. Dougdoug NK, Bondok AM, El-Dougdoug KA. 2018. Evaluation of silver nanoparticles as antiviral agent against tomv and pvy in tomato plants. Middle East J Appl Sci8(1): 100-111.

158. Wang Y, Sun C, Xu C, Wang Z, Zhao M, et al. 2016. Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tobacco Technology49(1): 22-30. https://doi.org/10.16135/j.fj.issn1002-0861.20160104

159. El-shazly M, Attia Y, Kabil F, Anis E, Hazman M. 2017. Inhibitory effects of salicylic acid and silver nanoparticles on potato virus Y-infected potato plants in Egypt. Middle East J Agric Res6(3): 835-848.

160. Shafee RM, Salama AM, Farroh KY. 2018. Silver nanoparticles activity against Tomato spotted wilt virus. Middle East J AgricRes 7(4): 1251-1267.