Ethnobotanical study of plants used against onchocerciasis in the far north region of Cameroon

Amina Mamat¹², Zambou Zebaze Leïla¹, Ndjib Rosette Christelle¹*, Nguezeeye Yvette¹, Kenne Meli Phalone¹, Okah-Nnane Ndode Herman³ Bitja Nyom Roger Arnold² and Ndjonka Dieudonne²

¹Centre for Medicinal Plants Research and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, P. O. Box 13033 Yaounde, Cameroon.
²Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P. O. Box 454 Ngaoundere, Cameroon.
³Wakwa Regional Center, Institute of Agricultural Research for Development, P. O. Box 65 Ngaoundere, Cameroon.

Received 30 June, 2020; Accepted 10 August, 2020

Despite the multitude of studies which have shown the use of medicinal plants in the management of parasitic diseases, little data was available on the plants used against onchocerciasis. Ethnobotanical surveys were carried out among traditional healers in the Far North region of Cameroon. Studies were conducted from July 2017 to May 2018 through direct interviews using a semi-structured questionnaire taking into consideration the socio-demographic characteristics of the respondents as well as their knowledge in the art of onchocerciasis and parasitic infections treatment using plant recipes. A total of one hundred people were interviewed in villages found in the Far North region of Cameroon: 43 were females and 57 males, among which, 71 were recognized as traditional healers. Adults were the most represented (71 respondents). The study identified 96 plant species belonging to 49 genera divided into 29 families among which the most represented was the Fabaceae (20 quotes). The most represented biotope was savannah (98%) and trees (51) were the most used followed by shrub (41). The leaves (40) are the organs which are mostly demanded and the main preparation method is a decoction (69) and 36 diseases and / or symptoms related to onchocerciasis and helminthiases were recorded. The medicinal plants identified, constitute an undeniable asset and a good database for the biological screening of plant-based antiparasitic molecules, which can lead to the manufacture of improved traditional medicines.

Key words: Onchocerciasis, medicinal plants, ethnobotanical surveys, filariasis, Cameroon.

INTRODUCTION

Parasitic diseases are a significant source of threat to human and animal health and, these include helminthiasis caused by parasitic nematode worms also called helminths. These nematodes are a major public health
problem in developing countries and affecting approximately two billion people worldwide (WHO, 2017). These infestations are prevalent mainly in deprived areas of the globe, especially in tropical and intertropical areas (Molyneux et al., 2003). They promote growth of poverty rate, thereby compromising child survival and weakening the working population (WHO, 2015). Among these helminthiases are, filariasis which are parasitic infections caused by nematodes. They constitute significant obstacles to the development of underdeveloped and developing countries, in the tropics and particularly in sub-Saharan Africa (Fenwick, 2012). These neglected tropical diseases do not receive as much attention as other endemic diseases, yet they have afflicted mankind for centuries (WHO, 2017). An estimated 1 billion people are at risk of contracting filariasis and about 120 million individuals are infected with filariasis in 73 countries, predominantly in African countries (Marlieke et al., 2006; Hartman et al., 2011). Among these filariasis, there is onchocerciasis, a disease to which more than 90 million people are exposed (Turner et al., 2010). Onchocerciasis is a filariasis caused by *Onchocerca volvulus*, a parasitic nematode of the family Onchocercidae (Despommier et al., 1995; Magdi, 2006). It is transmitted by the bite of a blood-sucking black fly belonging to the genus *Simulium* which lives near fast-flowing rivers (Basanez et al., 2008; WHO, 2017). Over 120 million people worldwide are at risk of onchocerciasis, approximately 37 million are infected, 270,000 who are blind and 6.5 million suffer from skin damage (Eze and Malau, 2011; WHO, 2017).

In Cameroon, onchocerciasis is endemic in the ten regions with variable endemicity rates (Zoure et al., 2014). An estimated 10 million people are at risk and 7 million case were reported in which 32,000 are blind and 1.5 million suffer from complications due to the disease (Eze and Malau, 2011). The treatment of onchocerciasis is compromised by the multiple resistances to reference anthelmintics. In recent decades, onchocerciasis has caused economic losses of more than $30 million a year due to the abdication of cultivated land in the fertile valleys and the unavailability or absence of work (WHO, 2015). In fact, due to the nuisance of flies and disease, populations are obliged to desert endemic areas which are generally areas with high agricultural potential. The main consequence of this migration is a shortfall in the national economy through a weakening of the agricultural sector. As a result, several means of control have been considered in order to eradicate this disease, such as vector control, nodulectomy and chemotherapy. Currently, Levamisole® and Ivermectin® are the only conventional drugs to control onchocerciasis. Unfortunately, Ivermectin® is only microfilaricide and as the numerous harmful side effects such as asthenia, ataxia, abdominal pain, anorexia, constipation, diarrhea, nausea, vomiting, drowsiness, dizziness, tremors and leukopenia (Borsboom et al., 2003). In addition, after several years of treatment, there is an emergence of resistance as well as a re-invasion of the microfilariae in the treated patients (Kamgno et al., 2008; Tanya et al., 2013). To face problems of chemoresistance of parasites, limited innovations in onchocerciasis therapy, low therapeutic coverage and hotspots, limited funding in the fight, the need to develop new effective and well tolerated anthelmintics is not only important but urgent. Fortunately, traditional medicine could serve as a support given since 75 to 80% of the populations of the developing countries depend closely on the preparations based on local medicinal plants (Adjanohoun, 2000; Dibong et al., 2015); on the other hand, at least 25% of modern medicines derive directly or indirectly from medicinal plants, mainly thanks to the application of modern technologies to traditional knowledge (Biyiti et al., 2004). This interest in traditional medicine and more specifically in medicinal plants has led to ethnobotanical investigations which have proven to be one of the most reliable approaches for the discovery of new drugs (Koné, 2009). Through ethnobotanical studies, many plants have been identified around the world as being useful against onchocerciasis and helminthiasis (Benlamdini et al., 2014; Ndjonka et al., 2018). In Cameroon, although the flora is rich in medicinal plant species, very few investigations to record the use of plants against onchocerciasis have been carried out so far (Ndjonka et al., 2018). The treatment of onchocerciasis remains a big challenge, however, the secondary metabolites of plants have shown a greater and more rapid action than generic drugs in the treatment of many parasitic diseases in general and onchocerciasis in particular (Sereme et al., 2008; Ndjonka et al., 2018). The present study aimed to identify the plants and recipes used against onchocerciasis by the population of the far north region of Cameroon.

MATERIALS AND METHODS

Study site

Figure 1 indicates the region covered in this study. Several factors contributed to the choice of the syrupy sites in the Far North region which is the most populated region, border of Chad and Nigeria with an area of 34,263 km², it has 6 departments, Diamaré, Logone-et-Chari, Mayo-Danay, Mayo-Kani, Mayo-Sava, Mayo-Tsanaga with a population of 3,993 million with a density of 91 inhabitants/km². The study was carried out in the Sudano Sahelian zone with reported high endemicity of onchocerciasis and filariasis (WHO, 2016). Another reason for the choice of the study area is the distribution of the vector of the disease that lives around the rivers, this disease is also called river blindness (Demanou et al., 2003).

Survey methods

The ethnobotanical survey was carried out with practitioners of traditional medicine in the Far North region of Cameroon. They were made by direct interviews using a semi structured questionnaire. The interviewees were to give all the information related to medicinal plants directed against parasitic infections in...
general and onchocerciasis in particular. These surveys were prospective and cross-sectional study; they were conducted from July 2017 to May 2018. The main lines of the interview concerned on one hand, the socio-demographic characteristics of the respondents (region of origin, sex, age, ethnicity, profession and experience) and on the other hand, information on the plants used in the recipes of medicinal preparations used against onchocerciasis (symptoms and/or manifestations) and parasitic infections in general (the local name, the scientific name, the family, the provenance, the biotope, the harvest period and method, the plant parts used, the morphological type, the methods of preparation of the recipes, the methods of administration, the modes of conservation, the preparation time, the associations, the quantity and type of solvents, the routes of administration, the nature of knowledge acquisition as well as the other diseases treated by these plants). Interviews of local population were carried out in French and local languages. Access and maintenance in the villages was facilitated by indigenous village guides who also translated local languages into French. The exchanges were facilitated by the purchases of medicinal plants presented by herbalists, traditional healers and users of medicinal plants.

Identification methods

The collection of samples at the study sites was done in situ thanks to the knowledge holders, herbalists and traditional healers who made themselves available for the harvest of plants around huts or in the bush. These samples were kept in a control herbarium according to the techniques and methods of Schnell (1960). The identification was done using appropriate scientific documentation, by comparison of the vernacular and/or trade names obtained from the respondents, samples of the control herbarium with the data available in the literature, the reference documents of the library of the Faculty of Sciences of the University of Ngaoundere and the material available at the Laboratory of Physiology of Plant Organisms of the University of Ngaoundere. The identification was confirmed by the botanists of the Department of Biology of Plant Organisms of the Faculty of Sciences of the University of Ngaoundere and those of the Department of Biology of Plant Organisms of the Faculty of Sciences of the University of Maroua. It was also confirmed by the botanists of the botany and traditional medicine laboratory of the Institute of Medical Research and Studies of Medicinal Plants and equally with the help of the different volumes of flora of Cameroon stored in the national herbarium from Cameroon. The samples collected were characterized by the types of geobotanical distribution, the morphological types, as well as the types of biotopes (Aubreville, 1962; Evrard, 1968; Letouzey, 1985).

Data analysis methods

The data was first analyzed by entering the various recipes and their characteristics by region and by informant on a Microsoft Excel Version 2018 spreadsheet. The variables were presented as
Mamat et al. 499

Figure 2. Histogram of the ethnic groups encountered in the Far North according to the number of citation.

Table 1. Socio-demographic characteristics of interviewed interviewees (N = 100).

Demographic characteristics (total score)	Variable	Score (%)
Gender (100)	Women	43
	Men	57
Profession (100)	Herbalists	13
	Heraldists	16
	Traditional healers	71
Age group (100)	Youth	06
	Adults	71
	Old	23
Experience (100)	Novice	11
	Averagely experience	18
	Well experienced	71

RESULTS

Socio-demographic characteristics of the respondents

One hundred (100) people in the Far North region were interviewed on the traditional knowledge and importance of medicinal plants used in the treatment of onchocerciasis. The most represented ethnic groups were Araba choa (38) and Kotoko (31) (Figure 2). The sociodemographic characteristics of this study are listed in Table 1.

Floristic characteristics of plants directed against onchocerciasis

The floristic inventory identified 96 plant species belonging to 49 genera and divided into 29 families. The most represented families being those of Fabaceae (20 citations), followed by Apocynaceae (12) and Combretaceae (9). The most represented genera were Acacia (4). The 96 medicinal plants listed mainly came...
from the bushes (63) followed by ruderal species (19),
the case gardens (13) and field species (5) (Figure 3).
The identified species have two types of biotopes:
Savannahs (98) and meadows (2). The registered plants
were mainly harvested at dawn (57) followed by dusk
(23), day (17), night (2) and Monday morning (1) (Figure
4).

The most common preparation method was decoction
(69) followed by maceration (16) and infusion (15). For
the various preparations, the most widely used solvent
was water (97). Drug are mostly warmed (73) but the

different recipes were preferably reheated and stored at
cold (17) followed by ambient temperature (10). The most
widely used route of administration has been the oral
route (76) followed by the dermal and oral route (14),
dermal route (9), oral and rectal route (1). Eighteen plant
organs were used to prepare the various traditional
recipes. The most represented were the leaves (40) and

leaf-bark-root mixture (25). The herbal medicines
identified made it possible to obtain two hundred recipes
with their method of preparation and administration for 36
diseases and or symptoms related to parasitic infections

Figure 3. Diagram of provenance of plant organs in percentage.

Figure 4. Histogram of the harvest periods of plant organs according to the citation numbers. Four morphological types
are recorded: Trees (51) followed by shrubs (41), Herbaceous plants (6) and shrubbery (2) (Figure 5).
Figure 5. Histogram of the citations number according to the morphological types used in the treatment of helminthiasis in the Far North region of Cameroon.

in general and onchocerciasis in particular (Table 2).

DISCUSSION

In Africa, traditional medicine contributes up to nearly 80% of primary health care among rural populations. In this study, out of 100 interviewed, 43 women were identified; similarly, study conducted in Pakistan revealed that women were afraid of exchange with strangers and particularly the male gender (Umair et al., 2017). This is also due to the inability of women to enter forests for plant samples collection, although they hold the same traditional knowledge. On the other hand, ethnobotanical surveys carried out in the coastal region of Cameroon showed rather a high proportion of women compared to men (Ladoh Yemeda et al., 2016). In this present investigation, 75% of respondents were adults. This could be linked to the fact that the practice of traditional medicine requires an initiation and that is often acquired over time. Besides, it is from a certain age that practitioners are credible and able to exercise like mastering of the use of plants in the treatment of vaginal infections (Ndjib et al., 2017). Although all age groups were involved in the present surveys carried out, the age group greater than 60 (23%) no longer seems interested in the transmission of traditional knowledge. In addition, only a few young people under the age of 29 (06%) follow and exercise the medicinal practices and traditional knowledge transmitted by adults. This is also the case in a study carried out in Nigeria in which young people were less represented because they are very attached to modern life (Bouasla and Bouasla, 2017) and this constitutes a high risk of ancestral knowledge loss in Africa (Ndjib et al., 2017). That situation was also reported from Nepal (Joshi and Edington, 1990). The transmission of knowledge about medicinal plants is most often by inheritance from grands-parents to the descendants. Thus, the fact that young people are losing the interest in traditional medicine for the benefit of their education and various other hobbies, might lead to a risk of a permanent loss of therapeutic uses of medicinal plants in rural areas, or in the national territory (Mpondo et al., 2017). The Foulbe and Choa Arab ethnic groups are the most represented in this present study. This may be explained by the fact that these ethnic groups migratory cattle-breeders living in pasture zones, exposed to high risk of onchocerciasis and for treatment, use medicinal plants. Traditional healers were the most represented in this study (71%). This could be explained by the fact that traditional healers were more opened to people inquiries compared to heraldists or holders of rural knowledge who exercise in addition, other activities. The important proportion of respondents (71%) possessed a large experience more than 10 years of practice in the exercise and knowledge of the use of medicinal plants. The studied population inherited knowledge from their ascendants. The traditional use of herbal medicines, transmitted in by inheritance, forms the basis of medicine for the treatment of onchocerciasis in populations living in the areas studied. Knowledge about the practice of traditional medicine is transmitted from the ascendants to the descendants but also empirically, each individual holds a secret which was transmitted to him either by his ancestors, or during the training with the holders or what he has acquired over the years of experience, but communication between individuals remains a priority. In fact, in Africa, the practice of traditional medicine remains a family affair. Some authors reported that knowledge is traditionally and empirically transmitted from father to son (Dibong et al., 2015; Adjanohoun, 2000). From Figure 5, the ethnobotanical
C.R.O.	Eth.G.	V. N.	Sc.N.	F.	P. U.	T.D. and/or M.S.	M.P.	Do.	M. C.	P.T.	M.T.	R.A.	N.K.A.
FN1	Kotoko	Kinkéléba	Combretum micranthum	Combretaceae	L., Se., R.	1, 31	Dec.	Bath 3 times /day	War.	15 to 20 min	Shr.	Cu.	Her., Emp.
FN2	Kotoko	Ngkwalé	Boscia senegalensis	Capparaceae	Ba., L., R.	1, 28	Dec.	1 glass 3 times/day for 3 days	War.	45 min	Sh.	Or.	Her., Emp.
FN3	Kotoko	Dorot	Terminalia avicennioides	Combretaceae	Ba., L., R.	4, 6	Mac.	1 glass 2 times /day for 3 days	War.	300 min	Sh.	Or.	Emp.
FN4	Mundang	Kamalen	Entada africana	Fabaceae	Ba., L.	32, 8	Dec.	1 glass 2 times/day for 7 days	War.	20 min	Sh.	Or.	Her., Emp.
FN5	Mundang	Tefamme	Calotropis procera	Apocynaceae	Ba., L.	6	Dec.	bath for 7 days, 1 glass 2 times/day for 7 days	War.	10 min	Sh.	Cu.	Emp.
FN6	Arabe Choa	Habil	Combretum glutinosum	Combretaceae	L.	6	Dec.	1 glass 3 times/day for 7 days, bath for the same number of days	War.	30 min	Sh.	Cu., Or.	Her.
FN7	Foulbe	Chebe	Croton zambescius	Euphorbiaceae	L.	6	Dec.	1 glass 3 times/day for 3 days, bath 3 times /day for 3 days	War.	30 min	Tr.	Cu., Or.	Emp.
FN8	Arabe Choa	Choc	Acacia sieberiana	Fabaceae	L.	6	Dec.	Bath and drink 1 glass for 7 days	War.	15 min	Tr.	Cu., Or.	Emp.
FN9	Arabe Choa	Suridj	Bombax costatum	Malvaceae	L.	6	Dec.	1 glass/ 2 times/day for 7 days, bath 3 times /day	War.	10 to 15 min	Tr.	Cu., Or.	Emp.
FN10	Foulbe	Giligandja	Moringa oleifera	Moringaceae	L., Fl., R.	6	Dec.	2 glasses/day for 3 days	War.	15 min	Tr.	Or.	Emp.
FN11	Toupouri	Baaré	Tamarindus indica	Fabaceae	Fr.	6, 1	Inf.	2 glasses 2 times/day for 7 days and bath for 7 days	War.	25 to 30 min	Tr.	Cu., Or.	Her., Emp.
FN12	Kotoko	Ardep	Tamarindus indica	Fabaceae	Fr.	6, 1	Dec.	1 glass /day for 3 days in fasting and bath 2 times /day	War.	15 min	Tr.	Cu., Or.	Emp.
FN13	Toupouri	Mirjja	Acacia albida	Mimosaceae	L.	6, 5, 1	Inf.	1 glass 2 times /day for 7 days	War.	10 min	Tr.	Or.	Emp.
FN14	Toupouri	Mbaga	Balanites aegyptiaca	Zygophyllaceae	Ba., L., Fr.	7, 8	Dec.	1v/jr pendant7jr	War.	30 to 45 min	Tr.	Cu., Or.	Her., Emp.
FN15	Kotoko	Oshar	Calotropis procera	Apocynaceae	L., S.	36, 1	Inf.	3 glasses/day for 30 days	Col.	20 min	Sh.	Or.	Emp.
FN16	Kotoko	Ganié	Azadirachta indica	Meliaceae	Se.	2	Mac.	1 glass 3 times/ day for 7 days	Col.	1440 min	Sh.	Or.	Her., Emp.
FN17	Kotoko	Swoswo	Mimoso pigra	Fabaceae	L.	9, 8	Dec.	1 glass 2 times/day for 3 days	War.	30 to 45 min	Sh.	Or.	Emp.
FN18	Arabe Choa	Angorne	Pterocarpus lucens	Fabaceae	L.	33, 23	Dec.	bath 2 times/day for 10 days	War.	30 min	Sh.	Cu.	Emp.
FN19	Kotoko	Fii	Ziziphus mauritiana	Rhamnaceae	Ba., L., R.	10	Dec.	Bath 2 times /day	War.	45 min	Sh.	Cu.	Her., Emp.
FN20	Massa	Mbelenjena	Acacia nilotica	Mimosaceae	L.	11	Mac.	Rub 2 times/day after bath	Ro.T.	2880 min	Sh.	Cu.	Her.
FN21	Kotoko ou marulz	Sclerocarya birea	Anacardiaceae	L.	11	Dec.	1 glass 2 times/day for 7 days	War.	15 min	Tr.	Or.	Emp.	
FN22	Arabe Choa	Hidjelij	Balanites aegyptiaca	Zygophyllaceae	L.	11, 1	Dec.	1 glass/day for 3 days	War.	10 min	Tr.	Or.	Emp.
Table 2. Contd.

FN23	Arabe Choa	Tamur	*Phoenix dactylifera*	Arecaceae	Fr.	11, 1 Dec.	1 glass 3 times/day for 15 days	Ro.T.	10 min	Tr.	Or.	Her., Emp.
FN24	Mundang	Amsalum	*Leptadenia hastata*	Apocynaceae	L.	11, 1 Dec.	1 glass 2 times/day for 10 days	War.	15 min	He.	Or.	Emp.
FN25	Kotoko	Smo	*Balanites aegyptiaca*	Zygophyllaceae	Ba., L., Fr.	11, 1 Inf.	1 glass/day in fasting for 7 to 10 days	Ro.T.	60 min	Tr.	Or.	Her., Emp.
FN26	Kotoko	Helio	*Leptadenia hastata*	Apocynaceae	Ba., L., R.	12, 8 Mac.	1 glass 2 times / day	Fra.	1440 min	He.	Or.	Emp.
FN27	Arabe Choa	Sere	*Maerua angolensis*	Capparaceae	Ba., L., Fr.	1 Inf.	1 glass/day in fasting for 7 to 10 days	Réch.	30 min	Tr.	Or.	Her.
FN28	Arabe Choa	Chii	*Borassus aethiopium*	Arecaceae	Fr.	1 Dec.	1 glass/day for 7 days	War.	60 min	Tr.	Or.	Her.
FN29	Arabe Choa	Msguele	*Capparis fascicularis*	Capparaceae	Ba., L., R.	1 Dec.	1 glass 2 times/day for 7 days	War.	30 min	45 Sh.	Or.	Emp.
FN30	Arabe Choa	Gana,Kamoro	*Oxytenanthera abyssinica*	Poaceae	L.	1 Dec.	2 glasses/day for 7 days	War.	60 min	Tr.	Or.	Emp.
FN31	Arabe Choa	Karague	*Faidherbia albida*	Fabaceae	Ba., L., R.	1 Dec.	bath 7 days / 2 times	War.	30 min	Tr.	Cu.	Emp.
FN32	Kotoko	Msguele	*Capparis fascicularis*	Capparaceae	L.	1 Dec.	bath 3 times/day, 1 glass 3 times/day for 7 days	Ro.T.	120 min	Sh.	Cu., Or.	Her., Emp.
FN33	Mandara	Dorot	*Terminalia avicennioides*	Combretaceae	Ba., L.	1 Dec.	1 glass 3 times/day for 5 days	War.	30 min	Sh.	Or.	Her.
FN34	Arabe Choa	Safarmot	*Eucalyptus camaldulensis*	Myrtaceae	Ba., L.	1 Mac.	1 glass/day in fasting 3 days	Ro.T.	30 min	Tr.	Cu., Or.	Her.
FN35	Foulbe	Kuulaahi	*Terminalia avicennioides*	Combretaceae	Ba., L., R.	1 Dec.	1 glass/day in fasting 3 days	War.	10 min	Sh.	Or.	Her.
FN36	Mafa	Duvunohw	*Acacia polycantha*	Mimosaceae	L.	1 Dec.	Bath 2 times for 7 days	War.	10 min	Sh.	Cu.	Her., Emp.
FN37	Arabe Choa	Chalab	*Strychnos spinosa*	Loganiaceae	L.	1 Dec.	1 glass/day for 3 days	War.	15 min	Sh.	Or.	Emp.
FN38	Kotoko	Blangou	*Kigelia africana*	Bignoniaceae	Fr., Fl.	1 Dec.	1 glass/day for 3 days	War.	15 min	Sh.	Cu., Or.	Her.
FN39	Arabe Choa	Oshar	*Calotropis procera*	Apocynaceae	Fr., Fl., S.	1 Mac.	1 glass 2 times / day for 3 days and bath for the same number of day	Col.	2880 to 4320 min	Sh.	Or.	Her.
FN40	Foulbe	Karub	*Piliostigma recticulatum*	Fabaceae	Ba., L.	13 Inf.	Bath for 7 days	War.	15 min	Sh.	Cu.	Her., Emp.
FN41	Kotoko	Amdugulgul	*Vitex diversifolia*	Lamiaceae	L.	13 Mac.	1 glass/day for 7 days	Col.	1440 min	Sh.	Cu., Or.	Her.
FN42	Toupouri	Poole	*Calotropis procera*	Apocynaceae	L., S.	14, 6 Dec.	Bath 2 times/day and drink 1 glass 2 times/day for 7 days	War.	30 min	Sh.	Cu., Or.	Emp.
FN43	Kotoko	Arat	*Entada africana*	Fabaceae	L.	14, 15, 16 Mac.	1 glass/day for 3 days	Col.	1440 min	Sh.	Or.	Her., Emp.
FN44	Arabe Choa	Djimeyzahamar	*Ficus platyphylla*	Moraceae	Ba., L., R.	14, 15, 8 Mac.	1 glass 2 times/day for 10 days	Col.	30 min	Tr.	Or.	Her.
Table 2. Contd.

No.	Country	Name	Family	Genus	Common Name	Species, Form	Duration	Route of Administration						
FN45	Kotoko	Ganié	Azadirachta indica	Meliaceae	L., Se.	17, 8	Dec.	1 glass 2 times/day and cover yourself with a blanket						
FN46	Mafa	Tsenad	Khaya senegalensis	Meliaceae	L., Se.	17, 8	Dec.	1 glass/day for 7 days, seeds in the form of suppositories						
FN47	Arabe Choa	Am nabad	Ziziphus mauritiana	Rhamnaceae	Ba., L., R.	18, 6	Inf.	2 glasses/day for 30 days						
FN48	Kotoko	Keuchi	Calotropis procera	Apocynaceae	Ba., L., Fr., R.	18, 6, 13, 8	Mac.	1/2 glass 2 to 3 times/day for 1 month, 1 drop in the eye morning and evening						
FN49	Kotoko	Musabi	Daniellia oliveri	Caesalpiniaceae	L.	18, 8	Dec.	2 glasses/day for 5 days, bath 3 times/day						
FN50	Arabe Choa	Mbage	Khaya senegalensis	Meliaceae	R.	19, 1, 6	Dec.	Bath, 1 glass/day for 3 days						
FN51	Arabe Choa	Girli	Prosopis africana	Fabaceae	Ba., L., R.	19, 1, 6	Dec.	1 glass 2 times/day for 15 days						
FN52	Kotoko	Basam	Dalbergia melanoxylon	Fabaceae	Ba., L., R.	19, 20, 6	Dec.	1 glass 2 times/day for 7 days						
FN53	Mandara	Arak	Salvadora persica	Salvadoraceae	Ba., L., R.	20, 13	Dec.	1 glass /day for 7 days						
FN54	Toupouri	Mirja	Acacia albida	Fabaceae	Ba., L.	21	Inf.	1 glass /day for 7 days						
FN55	Massa	Tomborie	Mitragyna inermis	Rubiaceae	Ba., L., R.	21	Dec.	1 glass/day for 7 days						
FN56	Arabe Choa	Asmelca	Ximenia americana	Olacaceae	Ba., L., R.	21, 6	Dec.	1 glass 1 time/day for 7 days						
FN57	Kotoko	Msgeule	Capparis fassiculius	Capparaceae	L.	21, 6	Dec.	1 glass 2 times/day for 7 days						
FN58	Arabe Choa	Ambor	Annona senegalensis	Annonaceae	L.	21, 6, 1	Dec.	1/2 glass 2 to 3 times / day for 1 month						
FN59	Arabe Choa	Kulkul	Bauhinia reticulata	Caesalpiniaceae	L.	21, 6, 1	Inf.	1 glass 2 times/day for 10 days						
FN60	Kapsiki	AM salup	Leptadenia hastata	Apocynaceae	L.	21, 12	Dec.	1 glass/day for 5 days						
FN61	Toupouri	Mesket	Prosopis juliflora	Mimosaceae	L.	21, 12	Dec.	1 glass /day for 3 days						
FN62	Kotoko	Ardep	Tamarindus indica	Caesalpiniaceae	L., Fr.	21, 11	Mac.	1 glass in fasting for 7 days						
FN63	Mundang	Mapew	Adansonia digitata	Bombacaceae	L., Se.	21, 11	Dec.	1 glass 3 times/day for 3 days						
FN64	Mafa	Karague	Faidherbia albida	Fabaceae	Ba., L., R.	21, 1	Dec.	2 glasses 2 times/day for 7 days						
FN65	Arabe Choa	Gana, Kamoro	Oxycarhis abyssinica	Poaceae	L.	21, 12, 1	Mac.	1 glass/day until healing						
FN66	Kotoko	Mblgo	Capparis sepiaria	Capparaceae	L.	21, 8	Dec.	1 glass 3 times/day for 15 days						
FN67	Mafa	Nénezlé	Leptadenia hastata	Apocynaceae	L.	21, 8	Inf.	1 glass/day for 7 days	War.	25 min	He.	Or.	Her.	
-----	------	---------	-------------------	-------------	----	------	------	----------------------	------	---------	-----	-----	-----	
FN68	Mandara	Gana, Kamoro	Oxytenanthera abyssinica	Poaceae	Ba., L., R.	21, 8	Dec.	1 glass/day for 7 days	War.	60 min	Tr.	Or.	Emp.	
FN69	Arabe Choa	Chebe	Croton zambesiensis	Euphorbiaceae	L.	34, 35, 5	Inf.	1 glass/day for 3 days	War.	10 min	Tr.	Or.	Her.	
FN70	Mundang	Mapew	Adansonia digitata	Malvaceae	Ba., L., R.	5, 1, 29	Mac.	1 glass/day for 3 days in fasting	Col.	4320 min	Tr.	Or.	Emp.	
FN71	Kotoko	Sehet	Combretum aculeatum	Combretaceae	L.	23, 24, 25	Dec.	1 glass/day for 7 days	War.	10 min	Sh.	Or.	Emp.	
FN72	Arabe Choa	Fel	Acacia nilotica	Fabaceae	Se.	8, 1	Dec.	Bath 2 times /days	War.	45 min	Tr.	Or.	Her., Emp.	
FN73	Foube	Chembal	Cissus quadrangularis	Vitaceae	L.	26	Dec.	Bath 2 times/day for 5 days	War.	45 min	He.	Cu.	Her., Emp.	
FN74	Arabe Choa	Salfou	Piliostigma recticulatum	Fabaceae	Ba., L., Fr., R., Br.	26, 3	Dec.	1 glass 2 times/day	War.	60 min	Sh.	Or.	Her., Emp.	
FN75	Mafa	Ala	Celtis integrifolia	Ulmaceae	Ba., L., R.	8, 22	Inf.	1 glass 3 times/day for 10 days	War.	25 min	Tr.	Or.	Her.	
FN76	Foube	Geelewki	Guiera senegalensis	Combretaceae	L.	8, 31	Dec.	1 glass 3 times /day for 3 days	War.	20 to 30 min	30	Sh.	Or.	Emp.
FN77	Arabe Choa	Karsa	Securinega virosa	Euphorbiaceae	Ba., L.	8	Dec.	1 glass 3 times/day for 7 days	War.	15 min	Tr.	Or.	Her., Emp.	
FN78	Toupouri	Mbambayklum	Parkinsonia aculeata	Fabaceae	L.	8	Dec.	1 glass/day for 30 days in fasting	War.	60 min	Tr.	Or.	Emp.	
FN79	Kotoko	Pastèque sauvage	Citrullus lanatus	Cucurbitaceae	L., Fr.	8	Mac.	1 glass/day for 5 days	Col.	1440 min	He.	Or.	Her.	
FN80	Kotoko	Ardep	Tamarindus indica	Fabaceae	L., Fr., R.	8	Dec.	NTR	War.	NTR	Tr.	Or.	Emp.	
FN81	Kotoko	Oshar	Calotropis procer	Apocynaceae	L., S.	8	Dec.	1 glass/day and purge for 2 days	War.	10 to 15 min	15	Sh.	Or.	Her., Emp.
FN82	Kotoko	Tamur	Phoenix dactylifera	Areceae	Fr.	8	Dec.	1 glass/day for 3 days	War.	10 min	Tr.	Or.	Emp.	
FN83	Foube	Banambambi	Calotropis procer	Apocynaceae	Ba., L., R.	8	Dec.	1 glass/day for 3 days	War.	10 min	Sh.	Or.	Her.	
FN84	Arabe Choa	Karaghe	Faidherbia albida	Fabaceae	Ba., L., R.	8	Inf.	1 glass/day 1 time for 7 days	War.	10 min	Tr.	Or.	Her., Emp.	
FN85	Arabe Choa	Karague	Faidherbia albida	Fabaceae	Ba., L., R.	8	Dec.	1 glass 2 times/day for 3 days	War.	30 min	Tr.	Or.	Emp.	
FN86	Mafa	Tsekerak	Gardenia ternifolia	Rubiaceae	Ba., L., R.	8	Dec.	1 glass 2 times/day for 10 days	War.	10 min	Sh.	Or.	Her., Emp.	
FN87	Kotoko	Amdzo	Tamarindus indica	Caesalpinioideae	Ba., L., R.	8	Dec.	1 glass 1 time/day for 10 days	War.	90 min	Sh.	Or.	Her., Emp.	
FN88	Kotoko	Karub	Piliostigma recticulatum	Caesalpinioideae	L.	8	Inf.	1 glass 2 time/day for 3 days	War.	180 to 240 min	180	Sh.	Or.	Her., Emp.
FN89	Kapsiki	Keete	Boswellia papyfera	Burseraceae	L.	8	Dec.	2 glasses 2 times/day for 5 days	War.	Until boiling	Tr.	Or.	Emp.	
FN90	Arabe Choa	Muray	Khaya senegalensis	Meliaceae	L.	8	Dec.	1 glass /day for 3 days	War.	60 min	Tr.	Or.	Her., Emp.	
Table 2. Contd.

FN	Name	Scientific name	Family	D.	T.D.	M.T.	Do	P.T.	War.	Tr.	Or.	Her., Emp.		
FN91	Mandara	Kulkul	Bauhinia reticulata	Caesalpinaceae	L.	8	Dec.	1 glass 3 times/day for 7 days	War.	15 min	Tr.	Or.	Her., Emp.	
FN92	Toupouri	Basum	Grewia bicolor	Malvaceae	L.	8	Dec.	1 glass/day for 7 days	War.	15 min	20	Sh.	Or.	Her.
FN93	Arabe Choa	Djimmis	Ficus glumosa	Moraceae	L.	8	Dec.	1 glass 2 times/day for 10 days	Ro.T.	25 min	30	Tr.	Or.	Emp.
FN94	Kotoko	Sehet	Combretum aculeatum	Combretaceae	L.	8	Dec.	1 glass 2 times/day for 7 days	War.	15 min	Tr.	Or.	Her.	
FN95	Arabe Choa	Sehet	Combretum aculeatum	Combretaceae	Ba., L., R.	8	Inf.	1 glass 2 times/day for 3 days	War.	60 min	Sh.	Or.	Her.	
FN96	Arabe Choa	Gulum	Capparis tomentosa	Capparaceae	L.	8	Dec.	3v/jr pendant3jr	War.	30 min	Sh.	Or.	Her., Emp.	
FN97	Toupouri	Poole	Calotropis procera	Apocynaceae	L.	8,18, 27	Mac.	2 glasses/day for 10 days	Col.	1440 min	Sh.	Or.	Her., Emp.	
FN98	Foulbe	Delep	Styrchnos spinosa	Loganiaceae	Ba., L., R.	8, 18, 22	Dec.	1 glass 2 times/day for 10 days	War.	15 min	Sh.	Or.	Emp.	
FN99	Kotoko	Gana, Kamoro	Oxytenanthera abyssinica	Poaceae	Ba., L., R.	8, 21, 30	Inf.	Bath 3 times/day for 1 month and drink 1 glass in fasting for 15 days	War.	30 min	Tr.	Cu.	Or.	Her.
FN100	Arabe Choa	Gawa	Cassia occidentalis	Fabaceae	L., Se.	8, 21, 1	Dec.	1 glass/day for 7 days	Ro.T.	20 min	20	Sh.	Or.	Her., Emp.

FN: Far North; C.R.O.: Code of region of origin; A: Adamawa; C: Center; EN: Extreme North; N: North; V.N.: Vernacular name; M.P.: Method of preparation; Decoction: Dec.; Trituration: Tri.; Infusion: Inf.; Powder: Pow.; Maceration: Macr.; Eth. G: Ethnic Group; Sc.N.: Scientific name; F.: Family; T.D. and/or M.S.: Treatment diseases and/or Major symptoms; M.C.: Method of conservation; War.: Warming; Ro.T.: Room temperature; Col.: Cold; Can. Prox.: Canary proximity; Dr.: Dried; P.T.: Preparation time (min); Noting to Report: NTR; Do: Dosage; /: Per; M.T.: Morphological types; Tr.: Tree; He. Herb.; Sh.: Shrub; Shr.: Shrubbery; R.A.: Route of administration; Cu.: Cutaneous; Or.: Oral; Oc.: Ocular; Sub.: Sublingual; Rec.: Rectal; N.K.A.: Nature of knowledge acquisition; Emp.: Empiric; Her.: Hereditary; P.U.: Parts Used; Leaves: L; W.P.: Whole Plant; Seed: Se.; La. Latex: B.: bulb; Ba.: Bark; Fl.: Flowers; R.: Roots; Fr.: Fruit; S.: Sap; Sh.: Shell; Br.: Branch; T.D. and/or M.S.: Treated diseases and/or Major symptoms: 1: Filarisis; 2: Amoebiasis; 3: Anemia; 4: Conjunctivitis; 5: Wound; 6: Itching; 7: Diabetes; 8: Intestinal worms; 9: Skin rashes; 10: Fibrosis; 11: yellow fever; 12: Typhoid fever; 13: Scabies; 14: Gastritis; 15: Magico-religious usage; 16: Stomatitis; 17: ovarian cyst; 18: Eye defects; 19: Bad luck; 20: Mouth odour; 21: Malaria; 22: Ulcer; 23: Measles; 24: Mycosis; 25: Paralysis; 26: Woman’s worms; 27: Antibiotics; 28: Dewormer; 29: Stomach disorder; 30: Hemorrhoids; 31: Deterioire breast milk; 32: Constipation; 33: Nappy rash; 34: White discharge; 35: Infections; 36: Diarrheas.

A survey carried out in the Far North region of Cameroon identified 96 species divided into 29 families belonging to 49 genera. In the department of Lom and Djerem in eastern Cameroon, 115 species, belonging to 59 families and grouped into 105 genera were reported (Etame-Loe et al., 2018). It emerges from this study that the diversity of plant species obtained is linked to the degree of knowledge and use of plants by populations who are accustomed to their use and benefiting from them for their well-being. Botanical identification has shown that from the 29 families identified, Fabaceae (20 species); also called legumes, is the one that people masters best because it provides most of their plant food. Besides this, the preponderance of this family accounts for its importance in traditional medicine. Fabaceae family is well-known in Africa and contributes to the treatment of several diseases such as hemorrhoids (Dibong et al., 2015), vaginitis (Ndjib et al., 2017), helminthiasis (Bajin Ba Ndob et al., 2016). The similarity between the predominant families elsewhere and those of the regions studied, testifies to the richness of these areas flora. The savannah represents the main type of biotope, characteristic of agro-ecological zones representing the Far North region. This result shows that people use the plants around their environments to treat onchocerciasis. This is comparable to the study carried out in Haut Nkam where the populations had mentioned semi-mountainous species, characteristic of the region of West Cameroon (Mpondo et al., 2017). The plants used in this study are preferably harvested at dawn. Indeed, the harvest period plays an important role when it comes to the nature of
Compounds which give them medicinal importance. Dibong et al. (2015) reported that plants harvested at dawn are the most therapeutic in traditional medicine. By grouping the medicinal plants identified in this study, trees mainly represented the morphological type. This is particular because they provide the necessary materials (leaves, bark, fruit, roots, etc.) which are used to prepare medication recipes, but also because they last for several years (Tsabang et al., 2017).

The administration of herbal drugs was made easier by the different preparation methods. Decoction is the most mode of preparation of the drugs employed in this study. Indeed, boiling is the method which allows the extraction of the maximum active ingredients and also sterilizes the drug. Decoction has been mentioned in a multitude of ethnobotanical studies, it could be the best mastered mode by local populations (Dibong et al., 2015; Mpondo et al., 2017). The best solvent is water; this could be justified by the fact that water is not only more accessible but also better controlled and would not exhibit any interaction with drugs derived from the plant (Ndjib et al., 2017; Kidik Pouka et al., 2015). The oral route is the most used in the traditional treatment of onchocerciasis. This could be justified by the fact that assimilation is easier after consumption (Ghedadba et al., 2014; Lougbégnon et al., 2015). The drugs prepared in the treatment of onchocerciasis are often warmed before being consumed but also kept cool and at room temperature; this is also the case for drugs prepared for the treatment of diseases such as hemorrhoids and vaginits (Dibong et al., 2015; Ndjib et al., 2017). The leaves are the parts which are mostly used in the areas studied and harvested by simple cutting. That plant part is the seat of secondary metabolites responsible for the biological properties of the plant. The bioactive compounds are synthesized in the leaves and stored in the roots; these organs constitute the storage places of basic materials, protectors of the organism thus promoting a high yield in the capacity to treat (Mangambu et al., 2014; Ngoule et al., 2015).

Conclusion

Ethnobotanical surveys of the populations of the Far North region of Cameroon have revealed that several medicinal plants are used for the treatment of diseases and symptoms similar to helminthiasis (Figure 5). Indeed a total of 96 plant species grouped in 49 genera and belonging to 29 families were identified. Trees mainly found in Savannah and belonging to Fabaceae and Apocynaceae families were the most represented. Plant parts commonly used included roots and mostly the leaves. Decoction constituted the prevailing preparation method. In these regions, population knowledge on medicinal plants was inherited from the ancestors. One hundred recipes treating 36 diseases, symptoms and/or uses for therapeutic or preventive purposes, related to parasitic infections were identified. These findings may constitute a relevant Cameroonian database for biological screening in the search for plant-based antiparasitic molecules, especially for antihelminthiasis purposes.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interest.

REFERENCES

Adjanohoun E (2000). Biodiversity in the face of the development of the African pharmaceutical industries. In Network of “medicinal woody species”. Eyog Matig O, Adjanohoun E, de Souza S and Sinsin B (eds). Report of the first network meeting held December 15-17, 1999 at the IITA Cotonou Station, Benin. pp. 88-103.

Aubreville A (1962). Chronological position of Gabon. Flore du Gabon 2:3-11.

Basanze MG, Pion SD, Boakes E, Filipe JAN, Churker TS, Boussinesq M (2008). Effect of single-dose ivermectin on Onchocerca volvulus: A systematic review and meta-analysis. Lancet Infectious Diseases 8:310-322.

Benlamdini N, Elhatian M, Rochdi A, Zidane L (2014). Floristic and ethnobotanical study of the medicinal flora of the Eastern High Atlas (Haute Moulouya). Journal of Applied Biosciences 78:6771-6787.

Biéli LF, Meko’o DJL, Tamzcz V, Amvm Zollo PH (2004). Research of the antibacterial activity of four Cameroonian medicinal plants. Pharmacopoeia and African Traditional Medicine 13:11-20.

Borsboom GJ, Boatin BA, Nagelkerke NJ, Agoua H, Akpoboua KL (2003). Impact of ivermectin on onchocerciasis transmission: Assessing the empirical evidence that repeated ivermectin mass treatments may lead to elimination/eradication in West Africa. Filaria Journal 2:1-25.

Bousla A, Bouaasla I (2017). Ethnobotanical survey of medical plants in north eastern of Algeria. Phytomedicine 36:68-81.

Demanou M, Enyong P, Pion SDS, Basanze MG, Boussinesq M (2003). Experimental studies on the transmission of Onchocerca volvulus by its vector in the Sanaga valley (Cameroon): Similium squamosum B. Intake of microfilariae and their migration to the haemocoel of the vector. Annals of Tropical Medicine and Parasitology 97(4):381-401. doi: 10.1179/00034890325002254

Despommier DD, Gwadz RW, Hotez PJ (1995). Onchocerca volvulus (Leuckart 1893) in Parasitic Disease. Springer New York, pp. 47-53.

Dibong SD, Mvogo Oltou PB, Vandi D, Ndjib RC, Monkam Tchamaha F, Mpondo Mpendo E (2015). Ethnobotany of anti hemorroidal medicinal plants in the markets and villages of the Center and the littoral Cameroon. Journal of Applied Biosciences 96:9072-9093.

Etame-Loe G, Ngoule CC, Mbome B, Kidik Pouca C, Ngene JP, Yinuyang J, Okalia Ebongue C, Ngaba GP, Dibong SD (2018). Contribution to the study of medicinal plants and their traditional uses in the department of Lom and Djerem (East, Cameroon). Journal of Animal and Plant Sciences 35(1):5560-5578.

Evrard C (1968). Ecological research on the forest stand of hydromorphic soils of the Congolese central basin. Publish. INEAC. Sér. Science. N°110 Bruxelles, 295p.

Eze J, Malau BM (2011). Assessment of the epidemiology of Onchocerca volvulus after treatment with ivermectin in the federal capital territory, Abuja, Nigeria. International Journal of Recent Research and Applied Sciences 7(3):319-325.

Fenwick A (2012). The global burden of neglected tropical diseases. Public Health 126(3):233-236.

Ghedadba N, Hambaba L, Aberkane MC, Oued-Mokhtar SM, Fercha N, Bousselsela H (2014). Evaluation of the in vitro hemostatic activity of the aqueous extract of the leaves of Marrubium vulgare L. Algerian...
Journal of Natural Products 2:64-74.
Gounoue-Kamkumo R, Nanna-jeungha HC, Bopba J, Akame J, Tarini A, Kamgno J (2015). Loss of sensitivity of immune chromatographic test (ICT) for lymphatic filariasis diagnosis in low prevalence settings: consequence in the monitoring and evaluation procedures. BMC Infectious Diseases 15:579.
Hartman W, Haben I, Fleischer B, Breloer M (2011). Pathogenic nematodes suppress humoral responses to third-party antigens in vivo by IL-10-mediated interference with Th cell function. The Journal of Immunology 187:4088-4099.
Joshi A, Edington J (1990). The use of medicinal plants by two village communities in the central development region of Nepal. Economic Botany 44:71-83.
Kamgno EJ, Labrousse F, Bousinesq M, Nguegou B, Thylefors B, Mackenzie CD (2008). Case report: Encephalopathy after ivermectin treatment in a patient infected with *Loa Loa* and *Plasmodium* spp. American Journal of Medicine and Hygiene 78:546-551.
Kidik Pouka MC, Ngene JP, Ngoule CC, Mvogo Ottou PB, Ndjib RC, Dibong SD, Mpondo Mpondo E, Wansi Koné D (2009). Ethnobotanical survey of six Malian medicinal plants. Journal of Traditional Medicine Research 2(9):366-371.
Koné D (2009). Ethnobotanical survey of six Millan medicinal plants - extraction-identification of alkaloids - characterization, quantification of polyphenols: Study of their antioxidant activity. Doctoral thesis University of Bamako, Mali. 157p.
Ladjoh Yemeda CF, Vandi D, Dibong SD, Mpondo Mpondo E (2015). Characterization of medicinal plants with flavonoids from the markets of Douala (Cameroon). International Journal of Biological and Chemical Sciences 9:1494-1516.
Lembo RJ (2015). Loss of sensitivity of immune chromatographic test (ICT) for lymphatic filariasis diagnosis in low prevalence settings: consequence in the monitoring and evaluation procedures. BMC Infectious Diseases 15:579.
Remme JH (2014). The geographic distribution of onchocerciasis in Cameroon. PLoS ONE 9(4):e93468.
Mangambu MJD, Mushagalusa KD, Kadima NJ (2014). Contribution to the phytochemical study of some anti-diabetic medicinal plants from the city of Bukavu and its surroundings (Sud-Kivu, R.D. Congo). Journal of Applied Science 45:1161-1166.
Mangree MA, Malhe A, Stolk, Gerrit J, van O, Habbema JDF (2006). Model-based analysis of trial data: microfilaria and worm-productivity loss after diethylcarbamazine-albendazole of ivermectine-albendazole combination therapy against *Wuchereria bancrofti*. Tropical Medicine and International Health 11:718-728.
Molyneux DH, Bradley M, Hoerauf A, Kyelem D, Taylor MJ (2003). Mass drug treatment for lymphatic filariasis and onchocerciasis. Trends in Parasitology 19:516-522.
Mpondo ME, Ngene JP, Mponzon Som L, Etame Loe G, Ngo Bounsom PC, Yin Yang J, Dibong SD (2017). Traditional knowledge and uses of medicinal plants in the Haut Nyong Department. Journal of Applied Biosciences 113:11229-11245.
Ndjib RC, Dibong SD, Mvogo Ottou PB, Nyegue MA, Eto B (2017). Ethnobotanical study of medical plant used in the treatment of vaginal infection in four towns in Cameroon. Saudi Journal of Biological Sciences 2(9):366-375.
Ndjonka D, Djafibia B, Eva L (2018). Review on medicinal plants and natural compounds as anti Onchocerca agents. Parasitology Research 117:2697-2713.
Ngoule CC, Ngene JP, Kidik Pouka MC, Ndjjib RC, Dibong SD, Mpondo Mpondo E (2015). Floristic inventory and characterization of medicinal plants with essential oils from the Douala Est markets (Cameroon). International Journal of Biological and Chemical Science 9(2):874-889.
Schnell R (1960). Techniques for herbalisation and conservation of plants in countries tropical. Journal d'agriculture traditionnelle et de botanique appliquée 7:1-48.
Sereme A, Millogo-rasolodimby J, Guiniko S, Nacro M (2008). Therapeutic properties of tannin plants in Burkina Faso. African Pharmacopoeia and Traditional Medicine 15:41-49.
Tanya VN, Wandji S, Kamgno J, Achukwi DM, Enyong PA (2013). Recent advances in onchocerciasis research and implication for control. The Cameroon Academy of Sciences. Yaounde, Cameroon, 91p.
Tsabang N, Yedjiou CG, Tchounwou PB (2017). Phytotherapy of High Blood Pressure in three phytogeographic regions of Cameroon. Pharmaceutica Analytica Acta 8(1).
Turner JD, Tendonfor N, Esum M, Johnston KL, Langley RS, Ford L, Faragher B, Specht S, Mand S, Hoerauf A, Enyong P, Samuel W, Taylor MJ (2010). Macrofilaricidal activity after doxycycline only treatment of *Onchocerca volvulus* in an area of *Loa loa* endemicity: A randomized controlled trial. PLoS Neglected Tropical Diseases 4(4):1-14.
Umair M, Altaf M, Abbasi AM (2017). An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pakistan. PloS ONE 12(6):e0177912.
WHO (World Health Organization) (2015). Investing to overcome the global impact of neglected tropical diseases: Third WHO report on neglected diseases. 211p. ISBN 978 92 4 156468 1.
WHO (2016). Analytical health profile of Cameroon, Minister of Public Health. 145p.
WHO (2017). Progress report on the elimination of human onchocerciasis, Weekly epidemiological record, Switzerland. 2016-2017. 45(92):681-700.
Zoure HG, Noma M, Tekle AH, Amazigo UV, Diggle PJ, Giorgi E, Remme JH (2014). The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasites and Vectors 7(1):326.