A Ca$^{2+}$ Influx Associated with Exocytosis is Specifically Abolished in a *Paramecium* Exocytotic Mutant

Daniel Kerboeuf and Jean Cohen
Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex France

Abstract. A *Paramecium* possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 μM aminoethyl dextran (AED; Plattner, H., H. Matt, H.Kersken, B. Haake, and R. Stürz, 1984. *Exp. Cell Res.* 151:6-13) as a vital secretagogue, we analyzed the movements of calcium (Ca$^{2+}$) during the discharge of trichocysts. We showed that (a) external Ca$^{2+}$, at least at 3 x 10$^{-7}$ M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca$^{2+}$ as measured from 45Ca uptake is induced by AED; (c) this influx is independent of the well-characterized voltage-operated Ca$^{2+}$ channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, ndl2. We propose that the Ca$^{2+}$ influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca$^{2+}$ channel or the activation of other Ca$^{2+}$ transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca$^{2+}$ concentration would in turn induce membrane fusion. The mutation ndl2 would affect a gene product involved in the control of plasma membrane permeability to Ca$^{2+}$, specifically related to membrane fusion.

Membrane fusion, which is the last step of the exocytotic pathway, is a ubiquitous process in eukaryotic cell life, yet the underlying mechanism is almost completely obscure compared to that of other aspects of membrane traffic. Much evidence indicates that the calcium ion (Ca$^{2+}$) plays a key role in regulated exocytosis, as discussed by Douglas (1974) and Knight et al. (1989). However, in most cellular systems studied, the exocytotic process comprises several steps, from protein synthesis and transit to granule targeting toward the plasma membrane and membrane fusion, so that it is difficult to identify the precise step(s) sensitive to Ca$^{2+}$ and in particular to know whether the membrane fusion itself is Ca$^{2+}$ dependent in vivo.

In *Paramecium*, membrane fusion in exocytosis can be studied per se since the secretory vesicles (trichocysts) are docked at predetermined sites of the cell cortex in a "pre-fusion" state, awaiting an external stimulus that triggers the fusion of their membrane with the plasma membrane (for recent reviews see Plattner, 1987; Adoutte, 1988; Satir et al., 1988). Moreover, synchronous discharge can be triggered by aminoethyl dextran (AED) without damage to the cell (Plattner et al., 1984). Several results argue for the direct involvement of external Ca$^{2+}$ in membrane fusion in this organism. (a) External Ca$^{2+}$ seems necessary for exocytosis to take place (Matt et al., 1978; Gilligan and Satir, 1983; Garofalo et al., 1983; Garofalo and Satir, 1984) at a concentration of 10$^{-4}$-10$^{-3}$ M (Plattner et al., 1985). (b) Ca$^{2+}$ ionophores in the presence of Ca$^{2+}$ can trigger exocytosis (Plattner, 1974; 1976; Matt et al., 1978, 1980; Satir and Oberg, 1978), although the response appears far from complete (see the quantification of Satir and Oberg, 1978). (c) Transient elevation of the concentration of free Ca$^{2+}$ in the cytosol ([Ca$^{2+}$]) was shown to be associated with exocytosis (Matt et al., 1978; Plattner et al., 1985). *Paramecium* has been known for a long time to have voltage-operated Ca$^{2+}$ channels which are localized on ciliary membranes (for reviews see Kung and Saimi, 1985; Machemer, 1989), however, the external Ca$^{2+}$ supposed necessary for exocytosis does not enter the cell via these channels. Indeed, mutants that are devoid of functional voltage-operated Ca$^{2+}$ channels, called pw (Satow and Kung, 1980), show normal exocytosis when triggered (Adoutte et al., 1981; Plattner et al., 1984), as do deciliated cells (Plattner et al., 1984). A Ca$^{2+}$ channel specific for trichocyst exocytosis therefore may be present in *Paramecium*, as has already been suggested (Satir et al., 1988; Satir, 1989).

Numerous mutants, called nd (for nondischarge), have been isolated that are unable to perform trichocyst exocytosis (Pollack, 1974; Sonneborn, 1974; Nyberg, 1978; Cohen and Beisson, 1980), and they fall into 12 complementation groups (Bonnemain and Cohen, manuscript in preparation). The precise compartment (trichocyst, plasma membrane, cytosol) altered by each of the mutations can be determined by microinjection experiments (Aufderheide, 1978; Beisson...
The physiology of exocytosis can therefore be approached by the analysis of its alterations in the mutants. For all these reasons, Paramecium provides an excellent experimental model for the general problem of Ca^{2+} entry during the membrane fusion step of regulated exocytosis. We first reinvestigated the dependence of trichocyst exocytosis on external Ca^{2+} and we than studied Ca^{2+} fluxes in wild type, pw, and nd mutant cells, which can be interpreted as a transient increase in membrane permeability to Ca^{2+}. Among the 6 nd mutants tested, one was found to lack the exocytosis-induced Ca^{2+} influx. To our knowledge, it is the first time that a mutant with a defect in Ca^{2+} permeability, specific for membrane fusion in exocytosis, has been described.

Materials and Methods

Strains and Culture Conditions

The wild type strain used in this study was stock d4-2, a derivative of stock 51 of P. tetraurelia (Sonneborn, 1975). Mutations belonging to three classes were used. (1) nd6, nd7, and nd9 (Sonneborn, 1974), nd2 (Cohen and Beisson, 1980), nd69 (Nyberg, 1978), and nd39 (Bonnemain, H., and J. Cohen, manuscript in preparation) which affect only the final step of exocytosis (membrane fusion); the nd9 mutation is expressed only at temperatures above 24°C (Beisson et al., 1980) and nd2 and 35°C (Cohen and Beisson 1980), just below the limit temperature of 36°C for Paramecium growth. The morphology of the exocytotic site of the various nd mutants used here is well known: they all lack the “rosette,” an array of particles seen in freeze fracture microscopy, and the subjacent “connecting material,” except nd12 which displays a normal exocytotic site (Beisson et al., 1976; Lefort-Tran et al., 1981; Pouphile et al., 1986). (2) tam8 (Beisson and Rossignol, 1975), which blocks trichocyst migration and attachment to the cell cortex and therefore possesses a plasma membrane devoid of attached trichocyst. (3) pwa (d4-500), which prevents ciliary beating reversal upon membrane depolarization (Satow and Kung, 1980) but does not affect exocytosis (see Introduction). The double mutants pwa-nd39, pwa-nd6, pwa-nd7, pwa-nd9, pwa-nd12, and pwa-nd69 were obtained by crossing each nd mutant by the pwa mutant according to the standard method (Sonneborn, 1970) or to a rapid method using 96-well titration plates (Cohen and Beisson, 1980) and looking for recombinants in the F2 progenies. The double mutants associate both of the mutant phenotypes, i.e., lack of ciliary reversal in depolarizing conditions plus absence of trichocyst exocytosis.

Cells were grown in a grass infusion or wheat grass powder (Pines International, Lawrence, Kansas) infusion buffered the day before use with Klebsiella pneumoniae and supplemented with 0.4 μg/ml β-sitosterol according to Sonneborn (1970). The standard temperature of growth was 26-27°C, unless otherwise specified.

AED Synthesis

AED was synthesized according to Plattner et al. (1984) and references therein with minor modifications (adaptation of the method was performed with the collaboration of H. Husson and A. Husson, Institut des Substances Naturelles du CNRS, Gif-sur-Yvette): 5.55 g NaOH and 5.55 g 2-aminoethyl hydrogen sulfate (Aldrich Chemical Co., Milwaukee, WI) were dissolved in 11 ml H2O. 3.66 g of Dextran T40 (Pharmacia, Uppsala, Sweden), dissolved in the mixture, and dried overnight at 105°C. 60 ml of HCl 0.3 N were added for dissolution of the dissesicated material and the pH was adjusted to 9.5 with concentrate HCl yielding a brown precipitate which was eliminated by centrifugation. The supernatant was filtered on paper, extensively dialyzed against H2O until neutralization, and lyophilized. 0.9 g of powder were obtained and dissolved as a 5% stock solution in H2O. This AED solution proved to be efficient at a final dilution of 1:400, representing ~3 μM, if pure AED. The potency of our AED is a little lower than the authors noticed, low [Ca^{2+}] buffers are also necessary for AED to obtain flux concentrations of free Ca^{2+} between 10^{-5} and 10^{-4} M (using K_{Ca/EGTA} = 7.62 × 10^{-6} and K_{Mg/EGTA} = 5.33 × 10^{-4} as dissociation constants at pH 7.1; Portzehl et al., 1964). The external Ca^{2+} concentration was experimentally checked using the fluorescent indicator Quin 2 according to Grynkiewicz et al. (1985). Exocytosis induced by AED prepared in each of the Ca/EGTA buffers was monitored after equilibration of cells for 5-10 min in these Ca/EGTA buffers.

Determination of Variations in the Intracellular Free [Ca^{2+}]

In Paramecium it is possible to monitor internal Ca^{2+} concentration by observing behavior. Backward swimming, corresponding to ciliary reversal, indicates that [Ca^{2+}] is higher than 6 × 10^{-7} M (Nakaoka et al., 1984) and provides a simple means of detecting an increase in [Ca^{2+}]; above this concentration, induction of exocytosis always triggers concomitant brief backward swimming (Matt et al., 1978; Plattner et al., 1985) even in pw mutants (Adoutte, 1988), which in other conditions never swim backward as they lack voltage-operated Ca^{2+} channels (Satow and Kung, 1980). Individual cells were collected with a micropipette, washed in 1 mM Tris-HCl, pH 7.4, 1 mM CaCl2, and introduced into an equal volume of 6 μM AED on a slide. The swimming behavior of the cells was observed under a microscope at a low magnification during the stimulation.

Results

External Ca^{2+} Is Necessary for AED-induced Exocytosis

By challenging Ca^{2+} with EGTA, Plattner et al. (1985) showed that a concentration of 10^{-3} M free [Ca^{2+}] in the external medium was necessary for AED to trigger exocytosis. However, as the authors noticed, low [Ca^{2+}] buffers are also quickly lethal for the cells. Repeating this experiment, we obtained the same results and also observed that the cells immediately lyse if excess Ca^{2+} is added back to low [Ca^{2+}].
Figure 1. 45Ca uptake by wild type (a) and pwA (b) cells upon AED stimulation at the steady state. Cells were incubated for 11 min in 45Ca before nine 0.5-ml samples were taken, stimulated with AED, and filtered after 5, 10, 15, and 30 s and 1, 2, 3, 4, and 5 min of incubation. A net peak of incorporation above the control level (open squares) is observed when cells are stimulated with AED (black squares). In such experiments, the time constant for basal Ca$^{2+}$ exchange, determined as the time necessary to reach 63% $(1/e)$ of the plateau, varied from 5 to 10 min, here \sim10 min in a and 5 min in b.

Cubation media, indicating that cell membranes have been damaged by the treatment.

To preserve membrane integrity, we maintained a constant concentration of external divalent cation by adding 0.5 mM MgCl$_2$ to the Ca/EGTA buffers. In these conditions, we observed that the cells can survive 15-20 min in 10$^{-6}$M [Ca$^{2+}$] and up to 1-2 h above 3 x 10$^{-8}$ M [Ca$^{2+}$]. Cells preincubated in various concentrations of free Ca$^{2+}$, from 10^{-8} to 10^{-4}M, were submitted to 3 μM AED, and their trichocyst release was monitored. We observed that AED can trigger massive exocytosis down to 3 x 10$^{-7}$ M free [Ca$^{2+}$], but not at 10^{-7} M free [Ca$^{2+}$] and below. Therefore, external Ca$^{2+}$ seems necessary for AED to trigger exocytosis. One possibility is that AED requires Ca$^{2+}$ in order to bind to the membrane and be effective. Alternatively, a transmembranar Ca$^{2+}$ gradient and an influx of this ion could be necessary for AED-induced exocytosis. To test this hypothesis, Ca$^{2+}$ influx was measured from 45Ca uptake experiments.

A Ca$^{2+}$ Influx Is Associated with Exocytosis

To analyze the Ca$^{2+}$ movements associated with exocytosis, we developed a method for 45Ca measurements based on that of Browning and Nelson (1976) and Browning et al. (1976). In contrast to these results, we were able to observe uptake at room temperature, as also described by Martinac and Hildebrand (1981), but using simpler methods with better time resolution. Furthermore, to avoid interference with the well-characterized voltage-operated Ca$^{2+}$ channels (Kung and Saimi, 1985), we worked in parallel on the pw mutant, devoid of these channels (Satow and Kung, 1980) and wild type cells.

Fig. 1 illustrates an experiment on wild type and pwA cells. Addition of AED initiated a strong increase of 45Ca uptake by cells. This was transient (\sim1 min) and followed by a decline of the 45Ca content to the resting level. These experiments are indicative of a marked increase of Ca$^{2+}$ influx initiated by AED in the two cell types, but the results are essentially qualitative. The true Ca$^{2+}$ influx initiated by AED must be measured over a period that is quite short compared with the time constant of Ca$^{2+}$ exchanges through the plasma membrane (Mauger et al., 1984). In this way, undesirable labeling of intracellular Ca$^{2+}$ can be avoided: the influx of 45Ca is neither altered by Ca$^{2+}$ efflux from the cells nor by a redistribution of Ca$^{2+}$ into the internal pools in response to the massive AED-mediated uptake of Ca$^{2+}$. Thus, Ca$^{2+}$ influx will depend only on the external [Ca$^{2+}$] and on the permeability of the plasma membrane. If external [Ca$^{2+}$] is experimentally fixed, any change in the initial rate provoked by AED will directly reflect the modification of the translocation rate of Ca$^{2+}$ through the plasma membrane (Mauger et al., 1984).
Therefore, the initial rate of \(^{45}\)Ca uptake was measured in the presence or absence of the triggering agent and the Ca\(^{2+}\) influx calculated from the linear part of the \(^{45}\)Ca uptake curve (2–5 s, according to the experiment). As shown on Fig. 2, a and b, the initial rate of \(^{45}\)Ca uptake measured at 26°C for nonstimulated cells is \(\sim 1\) pmol/s/1,000 cells and 10-fold higher for stimulated cells. When the same experiment is carried out at 0°C (Fig. 2, c and d), a temperature that inhibits exocytosis, the initial rate of \(^{45}\)Ca uptake from AED-stimulated cells is not increased as compared to that from nonstimulated ones. AED-triggered exocytosis and \(^{45}\)Ca uptake are therefore correlated and thermo-dependent.

To check whether this uptake could reflect an artefactual binding of \(^{45}\)Ca on released trichocyst matrices or diffusion from the external medium into the trichocyst ghost vesicles during the transient opening which accompanies exocytosis, we performed \(^{45}\)Ca uptake experiments on the mutant tam8, whose trichocysts are not attached to the plasma membrane and cannot be released, owing to a mutation that has been localized to the trichocyst compartment (Aufderheide, 1978).

Fig. 2 e shows that, although no exocytosis could occur in tam8, AED was able to induce the same 10-fold increase in \(^{45}\)Ca uptake as in wild type cells. This indicates (a) that the observed \(^{45}\)Ca uptake indeed represents a Ca\(^{2+}\) influx, not binding to excreted trichocysts; and (b) that this influx, still present in the mutant, is not mediated by transient contacts between the external medium and the interior of the vesicles during membrane fusion.

To measure the duration of the AED-induced \(^{45}\)Ca influx, we added \(^{45}\)Ca to the cells at different times after the stimulation and measured the initial rate of calcium uptake in wild type and pwA cells. As illustrated in Fig. 3 for pwA, the initial rate of \(^{45}\)Ca uptake quickly decreases (it is reduced by half in 2–3 s) and returns to the basal rate within \(\sim 10\) s. The observed Ca\(^{2+}\) influx induced by AED is therefore rapidly regulated.

Ca\(^{2+}\) Influx in nd Mutants

When exocytosis is triggered, wild type cells as well as pwA...
cells (despite their lack of voltage-operated channels) show backward swimming from a half to a few seconds in response to transient elevation of $[\text{Ca}^{2+}]$, above 6×10^{-7} M (see Materials and Methods). Mutants representative of the 12 known nd genes all displayed backward movements upon AED stimulation (Bonnemain, H., and J. Cohen, unpublished observation) as also observed for three of these nd mutants by Plattner et al. (1985) and by Matt et al. (1980) with other secretagogues. However, all these mutants possess normal voltage-operated Ca$^{2+}$ channels in their cilia since they are PW$^+$, and the behavior observed after the stimulation of exocytosis could result from the opening of these channels. To detect alterations due to nd mutations without interference from voltage-operated Ca$^{2+}$ channels, we constructed pwA-nd double mutants (see Materials and Methods) and observed their swimming reactions and 45Ca uptake upon triggering of exocytosis by AED.

Among the six pwA-nd double mutants constructed, three (pwA-nd3, pwA-nd6, pwA-nd9) displayed normal backward swimming upon contact with AED. pwA-nd7 and pwA-nd169 show significantly shorter backward swimming upon stimulation, while pwA-nd12 never showed any backward swimming when cells were grown at 35°C, the nonpermissive temperature for ndl2. The observed correlation between exocytotic capacity and backward swimming in the same strain (pwA-nd12), depending on the culture conditions, strongly suggests the idea that both phenomena are related to the same event.

In 45Ca uptake experiments, five pwA-nd mutants (pwA-nd3, -nd6, -nd7, -nd9, -nd169) presented a normal Ca$^{2+}$ influx when stimulated with AED (shown in Fig. 4 for pwA-nd7 and pwA-nd9). Only one of them, pwA-nd12, when grown at the nonpermissive temperature (35°C), displayed no AED-inducible 45Ca uptake (Fig. 5 b), although pwA (Fig. 5 a), and wild type (not shown) cells grown at the same temperature presented the same AED-induced uptake, as observed at lower temperatures. 45Ca uptake experiments were also performed on the corresponding single nd mutants (data not shown) with the same result as obtained with the double mutants. The gene ndl2, therefore, seems a good candidate to encode a protein involved in the regulation of membrane permeability to Ca$^{2+}$. Here, too, the correlation between exocytotic capacity and the increase in 45Ca uptake according to the temperature of the cell culture supports the idea that the uptake triggered by AED is physiological and directly related to exocytosis.

Discussion

In *Paramecium* trichocyst exocytosis can be equated to membrane fusion and therefore provides a model system for studying this ubiquitous but obscure phenomenon. An important unresolved question is whether Ca$^{2+}$ is necessary or not for membrane fusion in vivo. Trichocyst exocytosis is accompanied by ciliary reversal detected as backward swimming, a behavior known to be directly dependent on a rise.
of \([\text{Ca}^{2+}]\), to a concentration superior to 6 \(\times 10^{-7}\) M (see Materials and Methods). This \([\text{Ca}^{2+}]\) can a priori arise either from internal stores or from the extracellular medium or from both by a "calcium-induced calcium release" mechanism (Berridge and Galione, 1988; Lipscombe et al., 1988). We have measured the \([\text{Ca}^{2+}]\) movements associated with exocytosis in *Paramecium* and we have taken advantage of the genetic properties of the organism by analyzing mutations affecting on the one hand exocytosis (nd) and on the other hand ciliary voltage-operated \([\text{Ca}^{2+}]\) channels (pw). The properties of the mutants are summarized in Table I.

Our results demonstrate that (a) 3 \(\times 10^{-7}\) M external \([\text{Ca}^{2+}]\) is required for induction of trichocyst release by the triggering agent AED; and (b) a massive \([\text{Ca}^{2+}]\) influx is induced by AED. Most interestingly, one of the exocytosis mutations studied, ndl2, specifically affects this influx.

Trichocyst Exocytosis Is Accompanied by a Transient \([\text{Ca}^{2+}]\) Influx

In this study, carried out on wild type, pwA, and a series of nd mutants unable to undergo exocytosis (as well as the corresponding pwA-nd double mutants), we observed that (a) steady-state measurements display a biphasic incorporation curve upon AED stimulation where significant \([\text{Ca}^{2+}]\) uptake lasting almost 1 min is followed by \(^{45}\text{Ca}\) extrusion; (b) the initial rate of \(^{45}\text{Ca}\) uptake is increased 10-fold when AED is added; and (c) the AED-induced \(^{45}\text{Ca}\) uptake has a half-life of 2–3 s. As explained in the Results, initial rates of \(^{45}\text{Ca}\) uptake can be equated to \([\text{Ca}^{2+}]\) influx, without interference from efflux or internal redistributions, provided that the kinetics are performed over times sufficiently short compared to the time constant of \([\text{Ca}^{2+}]\) exchanges (Mauger et al., 1984), which in our experiments stands between 5 and 10 min (see two examples in Fig. 1). The results presented here, therefore, demonstrate that AED induces a marked \([\text{Ca}^{2+}]\) influx concomitant with trichocyst exocytosis. However, the molecular support of this influx (channel, exchanger...) cannot be deduced from our study and awaits an electrophysiological approach.

As external free \([\text{Ca}^{2+}]\) is needed and as \([\text{Ca}^{2+}]\) enters the cell upon AED induction, and although the time range of our influx measurements is much longer than exocytosis itself (a few milliseconds), a cause–effect relationship can be proposed between the \([\text{Ca}^{2+}]\) influx and exocytotic membrane fusion. Indeed, on the one hand, deprivation of external \([\text{Ca}^{2+}]\) instantaneously inhibits exocytosis as EGTA present in the AED sample prevents trichocyst release and, on the other hand, in experiments where cells are preequilibrated in Ca/EGTA buffers, a minimum of \(3 \times 10^{-7}\) M free \([\text{Ca}^{2+}]\) is necessary for AED-triggered exocytosis. We favor the hypothesis that the dependence of exocytosis upon external \([\text{Ca}^{2+}]\) reflects its dependence upon the \([\text{Ca}^{2+}]\) influx and, therefore, that this influx takes place before membrane fusion. This hypothesis however does not exclude the possibility that \([\text{Ca}^{2+}]\) liberated from internal stores acts cooperatively with entering \([\text{Ca}^{2+}]\) to promote membrane fusion.

The time necessary for membrane permeability to \([\text{Ca}^{2+}]\) to return to its basal level after AED stimulation is much longer than trichocyst release itself. This could reflect either the inertia of the cell upon physiological disturbance or an incomplete synchrony between individual events. This could also be due to events following exocytosis such as membrane resealing, vesiculization of the trichocyst ghost membrane, and recycling of these membranes (Haussmann and Allen, 1976; Allen and Fok, 1980). As reported and discussed by Foskett et al. (1989) and Cheek (1989) for mammalian secretory cells, what seems important for triggering membrane fusion is an initial local \([\text{Ca}^{2+}]\) increase rather than a global concentration increase in the cell, which spans longer times.

Interestingly, the time course of the AED-induced \([\text{Ca}^{2+}]\) influx approximately fits that of the transient dephosphorylation (Zieseniss and Plattner, 1985) of a 65-kD phosphoprotein first described by Gilligan and Satir (1982). This situation strongly resembles what happens with voltage-operated \([\text{Ca}^{2+}]\) channels of *Paramecium* where the transient dephosphorylation of a phosphoprotein is necessary for regulation of the channel (Klumpp et al., 1990). In our system, the 65-kD phosphoprotein dephosphorylation may turn out to be a mechanism of regulation of the change in membrane permeability. Alternatively, this dephosphorylation could be provoked by the \([\text{Ca}^{2+}]\) influx, as proposed by Momayesi et al. (1987).

The \([\text{Ca}^{2+}]\) Influx Is Abolished in an nd Mutant

In contrast to all the other nd mutants tested, the mutant nd12 is deficient in both the \([\text{Ca}^{2+}]\) uptake and the intracellular \([\text{Ca}^{2+}]\) elevation associated with AED stimulation when cultured at the temperature (35°C) which prevents exocytosis, but not at lower temperatures where exocytosis is possible (Table I). Although the lipid composition of the membrane
could be different at the nonpermissive temperature, the lack of Ca\(^{2+}\) uptake at 35°C in the mutant is highly significant since control wild type or pwA cells grown at that temperature do take up Ca\(^{2+}\) upon AED stimulation at the same rate as at 26°C or even slightly faster. The fact that ndl2 is the only mutation, among the six nd mutants tested, which affects AED-induced Ca\(^{2+}\) movements strongly, suggests that the ND12\(^+\) gene specifically encodes a factor involved in the regulation of membrane permeability to Ca\(^{2+}\) (e.g., opening of a channel) or to an event induced by AED which lies upstream of Ca\(^{2+}\) influx in the stimulation sequence (e.g., reception of AED, signal transduction, generation of a second messenger). To our knowledge, it is the first time that such a mutation, affecting Ca\(^{2+}\) influx involved in membrane fusion in exocytosis, has been described.

Exocytosis-specific Ca\(^{2+}\) Channel?

The massive Ca\(^{2+}\) influx associated with AED-induced exocytosis could occur through the opening of a novel specific Ca\(^{2+}\) channel. As mentioned in the Introduction, secretion strongly depends on Ca\(^{2+}\) and channels exist that are specialized in Ca\(^{2+}\) entry for particular physiological responses.
Different types of channels have been reported that respond to different stimuli, voltage-operated channels, receptor-operated channels, and second messenger–operated channels (Meldolesi and Pozzan, 1987), as well as mechanosensitive ion channels (Kung et al., 1990). It is unlikely that in Paramecium exocytosis depends on novel voltage-operated channels, since local application of AED triggers trichocyst discharge only in the restricted area of contact (Plattner et al., 1984) without propagation resembling the action potentials observed in ciliary reversal (Satow and Kung, 1980). Whether this putative Ca\(^{2+}\) channel is directly activated by AED or via a second messenger remains to be established. The existence of a Ca\(^{2+}\) channel specific for trichocyst exocytosis has already been proposed, mainly because inhibition of exocytosis has been obtained using the Ca\(^{2+}\) blockers verapamil and nifedipine (Maleki et al., 1987). However, these results were not confirmed for nifedipine (see Satir et al., 1988) and were in contradiction with those of Matt et al. (1978) who found stimulation (not inhibition) of exocytosis with D600, an analog of verapamil. The pharmacology of these putative channels is an open problem.

In addition, from the study of different nd mutants, we do not observe any correlation between the Ca\(^{2+}\) influx and the presence of an organized array of intramembranous particles, the rosette (see Materials and Methods). Indeed, nd12 possesses a normal rosette at nonpermissive temperature (Pouphile et al., 1986) but lacks the Ca\(^{2+}\) influx, whereas the 5 other nd mutants tested as well as the tam8 mutant lack the rosette but display normal AED-induced Ca\(^{2+}\) influx. Therefore, the hypothesis that the assembly of the rosette initiates a Ca\(^{2+}\) channel activity, as initially proposed by Satir and Oberg (1978), is most unlikely.

To identify the gene products responsible for Ca\(^{2+}\) entry and those involved in membrane fusion, and to investigate the nature of possible second messenger(s) and of their target(s), as well as of Ca\(^{2+}\) target(s), in vitro systems have to be worked out for direct access to the exocytotic site, either using permeabilized cells or lysed cells which retain their exocytotic performance (Vilmart-Seuwen et al., 1986) or by reconstituting models from cellular fractions such as cortices (Keryer et al., 1990) and trichocysts isolated with their membranes (Lima et al., 1989).

We are indebted to Brigitte Berthon and Michel Claret (Université Paris XI Orsay) for their help in developing 45Ca uptake measurements and in interpreting flux results, and to Janine Beisson (Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette) for precious advice throughout this work. We thank Janine Beisson, Michel Claret, Peter Tatham (University College, London), and Linda Sperling (Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette) for critical reading of the manuscript.

A fellowship from the Ministère de la Recherche et de la Technologie to D. H.-D. Görtz, editor. Springer-Verlag, Berlin, Heidelberg, 324–362. Adoutte, A., K. Y. Ling, M. Forte, R. Ramanathan, D. Nelson, and C. Kung. 1981. Ionic channels of Paramecium: from genetics and electrophysiology to biochemistry. J. Physiol. (Paris). 77:1145–1159. Allen, R. D., and A. K. Fok. 1980. Membrane recycling and exocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J. Cell Sci. 45:131–145. Auffreund, K. J. 1978. The effective sites of some mutations affecting exocytosis in Paramecium tetraurelia. Mol. & Gen. Genet. 165:199–205. Beisson, J., and M. Rossignol. 1975. Movements and positioning of organelles in Paramecium aurelia. In Molecular Biology of Nucleo-cyttoplasmic Relationships. S. Pauleux-Denas, E. Leserman, and A. Turner. 294. Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir. 1976. Genetic analysis of membrane differentiation in Paramecium: freeze-fracture study of the trichocyst cycle in wild type and mutant strains. J. Cell Biol. 99:126–143. Beisson, J., J. Cohen, M. Lefort-Tran, M. Pouphile, and M. Rossignol. 1980. Control of membrane fusion in exocytosis: physiological studies on a Paramecium mutant blocked in the final step of the trichocyst extrusion process. J. Cell Biol. 85:231–237. Berridge, M. J., and A. Galione. 1988. Cytosolic calcium oscillators. PASEB (Fed. Am. Soc. Exp. Biol.) J. 2:3074–3082. Browning, J. L., and D. L. Nelson. 1976. Biochemical studies of the excitable membrane of Paramecium aurelia I. Ca\(^{2+}\) fluxes across resting and excited membrane. Biochim. Biophys. Acta. 448:338–351. Browning, J. L., D. L. Nelson, and H. Hansma. 1976. Ca\(^{2+}\) influx across the excitable membrane of behavioural mutants of Paramecium. Nature (Lond.). 269:491–494. Cheek, T. R. 1989. Spatial aspects of calcium signaling. J. Cell Sci. 93:211–216. Cohen, J., and J. Beisson. 1980. Genetic analysis of the relationships between the cell surface and the nuclei in Paramecium tetraurelia. Genetics. 95:797–818. Douglas, W. W. 1974. Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. Biochem. Soc. Symp. 39:1–28. Foskett, J. K., P. J. Gunter-Smith, E. Melvin, and R. Ullian. 1982. Physiological localization of an agonist-sensitive pool of Ca\(^{2+}\) in parotid acinar cells. Proc. Natl. Acad. Sci USA. 86:1671–171. Garfalo, R. S., and B. H. Satir. 1984. Paramecium secretory granule content: quantitative studies on in vitro expansion and its regulation by calcium and pH. J. Cell Biol. 99:2193–2199. Garfalo, R. S., D. M. Gilligan, and B. H. Satir. 1983. Calmodulin antagonists inhibit secretion in Paramecium. J. Cell Biol. 96:1072–1081. Gilligan, D. M., and B. H. Satir. 1982. Protein phosphorylation/phosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J. Biol. Chem. 257:13903–13906. Gilligan, D. M., D. M. Satir. 1983. Stimulation and induction of secretion in Paramecium: role of divalent cations. J. Cell Biol. 97:224–234. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. 1985. A new generation of Ca\(^{2+}\) indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450. Haarmann, K., and K. D. Allen. 1976. Membrane behavior of exocytic vesicles. II. Fate of the trichocyst membranes in Paramecium after induced trichocyst discharge. J. Cell Biol. 69:313–326. Keryer, G., A. Adoutte, S. F. Ng, J. Cohen, N. Garreau de Loubresse, M. Rossignol, N. Stelly, and J. Beisson. 1990. Purification of the surface membrane-cytoskeleton complex (corpuscule) of Paramecium and identification of several of its protein constituents. Eur. J. Protistol. 25:209–225. Klump, S., P. Cohen, and J. E. Schultz. 1990. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, causes sustained Ca\(^{2+}\)-dependent backward swimming in response to depolarizing stimuli. EMBO (Eur. Biol. Organ.) J. 9:685–689. Knight, D. E., H. von Grafanstein, and C. M. Athayde. 1989. Calcium-dependent and calcium-independent exocytosis. Trends Neurosci. 12:451–458. Kung, C., and Y. Saimi. 1985. Ca\(^{2+}\) channels of Paramecium: a multidisciplinary study. Curr. Top. Membr. Transp. 23:45–66. Kung, C., Y. Saimi, and B. Martinez. 1990. Mechanosensitive ion channels in microbes and the early evolutionary origin of solvent sensing. Curr. Top. Membr. Transp. 36:145–153. Lefort-Tran, M., K. Auffreund, M. Pouphile, M. Rossignol, and J. Beisson. 1981. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J. Cell Biol. 88:301–311. Lima, O., T. Guilk-Krizwicky, and L. Sperling. 1989. Paramecium trichocysts isolated with their membranes are stable in the presence of millimolar Ca\(^{2+}\). J. Cell Sci. 93:557–564. Lippeonse, D., D. V. Madison, M. Poenie, H. Reuter, R. W. Tsien, and R. Y. Tsien. 1988. Imaging of cytosolic Ca\(^{2+}\) transients arising from Ca\(^{2+}\) stores and Ca\(^{2+}\) channels in sympathetic neurons. Neuron. 1:355–365. Machenzer, H. 1989. Cellular behaviour modulated by ions: electrophysiological implications. J. Protoplasma. 136:463–487. Maleki, S. F., S. Amini, and P. Nouhnejad. 1987. The effect of Ca\(^{2+}\) antagonists on trichocyst release in Paramecium tetraurelia. Protoplasma. 140:92–99. Martinez, B., and E. Hildebrand. 1981. Electrical induced Ca\(^{2+}\)-transport across the membrane of Paramecium cedatum measured by means of flow-through technique. Biochim. Biophys. Acta. 649:244–252. Matt, H., M. Biliński, and H. Plattner. 1978. Adenosine3'-phosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J. Cell Sci. 32:67–86.
Matt, H., H. Plattner, K. Reichel, M. Lefort-Tran, and J. Beisson. 1980. Genetic dissection of the final exocytosis steps in *Paramecium tetraurelia* cells: trigger analyses. *J. Cell Sci.* 46:41-60.

Mauger, J.-P., J. Poggioli, F. Guesdon, and M. Claret. 1984. Noradrenaline, vasopressin and angiotensin increase Ca\(^{2+}\) influx by opening a common pool of Ca\(^{2+}\) channels in isolated rat liver cells. *Biochem. J.* 221:121-127.

Meldolesi, J., and T. Pozzan. 1987. Pathways of Ca\(^{2+}\) influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. *Exp. Cell Res.* 171:271-283.

Momayesi, M., C. J. Lumpert, H. Kersken, U. Gras, H. Plattner, M. H. Krinks, and C. B. Klee. 1987. Exocytosis induction in *Paramecium tetraurelia* cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion. *J. Cell Biol.* 105:181-189.

Naitoh, Y., and I. Yasumasu. Binding of Ca ions by *Paramecium caudatum*. *J. Gen. Physiol.* 50:1303-1310.

Nakaoka, Y., H. Tanaka, and F. Oosawa. 1984. Ca\(^{2+}\)-dependent regulation of beat frequency of cilia in *Paramecium*. *J. Cell Sci.* 65:223-231.

Nyberg, D. 1978. Genetic analysis of trichocyst discharge of the wild stocks of *Paramecium tetraurelia*. *J. Protozool.* 25:107-112.

Plattner, H. 1974. Intramembranous changes on cationophore-triggered exocytosis in *Paramecium*. Nature (Lond.). 252:722-724.

Plattner, H. 1976. Membrane disruption, fusion and resealing in the course of exocytosis in *Paramecium* cells. *Exp. Cell Res.* 103:431-435.

Plattner, H. 1987. Synchronous exocytosis in *Paramecium* cells. In *Cell Fusion*. A. E. Sowers, editor. Plenum Publishing Corp., New York. 69-98.

Plattner, H., H. Matt, H. Kersken, B. Haake, and R. Stürlz. 1984. Synchronous exocytosis in *Paramecium* cells. I. A novel approach. *Exp. Cell Res.* 151:6-13.

Plattner, H., R. Stürlz, and H. Matt. 1985. Synchronous exocytosis in *Paramecium* cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. *Eur. J. Cell Biol.* 36:52-57.

Pollack, S. 1974. Mutations affecting the trichocysts in *Paramecium aurelia*. I. Morphology and description of the mutants. *J. Protozool.* 21:352-362.

Portzel, H., P. C. Caldwell, and J. C. Rüegg. 1964. The dependence of concentration and relaxation of muscle fibres from the crab *Maia squinado* on the internal concentration of free calcium ions. *Biochim. Biophys. Acta.* 79:581-591.

Pouphile, M., M. Lefort-Tran, H. Plattner, M. Rossignol, and J. Beisson. 1986. Genetic dissection of the morphogenesis of exocytosis sites in *Paramecium*. *Biol. Cell.* 56:151-162.

Satir, B. H. 1989. Signal transduction events associated with exocytosis in Ciliates. *J. Protozool.* 36:382-389.

Satir, B. H., and S. G. Oberg. 1978. *Paramecium* fusion rosettes: possible function as Ca\(^{2+}\) gates. *Science (Wash. DC).* 199:536-538.

Satir, B. H., G. Busch, A. Vuoso, and T. J. Murtough. 1988. Aspects of signal transduction in stimulus exocytosis-coupling in *Paramecium*. *J. Cell Biol.* 36:429-443.

Sato, Y., and C. Kung. 1980. Membrane currents of Pawn mutants of the *pwA* group in *Paramecium tetraurelia*. *J. Exp. Biol.* 84:57-71.

Sonneborn, T. M. 1970. Methods in *Paramecium* research. *Methods Cell Physiol.* 4:241-339.

Sonneborn, T. M. 1974. *Paramecium aurelia*. In *Handbook of Genetics*. R. King, editor. Plenum Publishing Corp., New York. 469-594.

Sonneborn, T. M. 1975. The *Paramecium aurelia* complex of 14 sibling species. *Trans. Am. Microsc. Soc.* 94:155-178.

Vilmart-Seuwen, J., H. Kersken, R. Strützl, and H. Plattner. 1986. ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with *Paramecium* cells in vivo and in vitro. *J. Cell Biol.* 103:1279-1288.

Zieseniss, E., and H. Plattner. 1985. Synchronous exocytosis in *Paramecium* cells involves very rapid (<1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. *J. Cell Biol.* 101:2028-2035.