Reevaluating Evaluation

Balduzzi et al
Motivation

- **Evaluation** on problems of common interest are the key drivers in ML
 - Go
 - Atari
 - Minecraft
 - MNIST
 - Etc

- **Two main bodies of work:**
 - **Optimize** new algorithms w.r.t these datasets
 - **Propose** a new benchmark
Adversarial Attacks

- Are our models really robust?
- How can we test against all attacks?
Self Play

- Agents train against copies of themselves
- We have trained agents to get superhuman play in e.g. Hanabi

- **Policies** learned through self-play:
 - may adopt arbitrary conventions
 - Do not play well with others
Many Competing Testbeds
Common Thread

- Current methods do not account for non-stationary evaluation settings
- When the evaluation distribution is different from the training distribution, algorithms fail
Motivation

- Results are not used to evaluate and optimize evaluations themselves
- Therefore, our algorithms can be exploited
 - Adversarial attacks
 - We don’t know what attacks to test against
 - Self-Play
 - Can only test against each other
 - Proliferation of testing suites
 - Leads to cherry-picking what environment fits our algorithm the best
Guiding Questions: What does it mean to optimize an evaluation?

Do tasks/agents test what we think they test?

When is a task/agent redundant?

Which tasks (and agents) matter the most?
Solution

We want an **algorithm** that:

- automatically adapts to **redundancies** in evaluation data, so that results are not biased by the incorporation of **easy tasks** or weak agents

Deepmind puts forward one such algorithm called **Nash Averaging** where we play a game between:

- agents and tasks / datasets
- agents and other agents
Nash Averaging

- Play a meta-game on evaluation data

- The fundamental algebraic structure of tournaments and evaluation is antisymmetric

- **Answers Q2 and Q3** -- which tasks and agents do and do not matter is determined by a meta-game
Nash Averaging

Comes in two flavors:

- **Agent vs Task(s)**
 - Training an agent to e.g., solve atari games
 - Relatively easy to say solved vs unsolved vs % solved

- **Agent vs Agent(s)**
 - Training an agent to beat other agents at a specific game
 - Performance between agents is often quantified using *Elo* ratings
Rock-Paper-Scissors

- Zero-Sum Game
- Contains a cycle
 - $A \rightarrow B$
 - $B \rightarrow C$
 - $C \rightarrow A$

- Values here are log probabilities of the ratio of win to loss

$$A_{ij} := \log \frac{p_{ij}}{1-p_{ij}}$$

	A	B	C
A	0.0	4.6	-4.6
B	-4.6	0.0	4.6
C	4.6	-4.6	0.0
Rock-Paper-Scissors

- Matrix is **antisymmetric**
- \(A_{ij} + A_{ji} = 0 \)
- \(A + A^T = 0 \)

\[
A_{ij} := \log \frac{p_{ij}}{1-p_{ij}}
\]

	A	B	C
A	0.0	4.6	-4.6
B	-4.6	0.0	4.6
C	4.6	-4.6	0.0
Nash Averaging (The Game, Very High Level)

- Two agents -- meta-players -- pick ‘teams’ of agents

- Their payoff is the expected log-odds of their respective team winning under the joint distribution

- The value of the metagame is zero

 - Nash equilibria are teams that are unbeatable in expectation
Nash Averaging

- Given antisymmetric logit matrix A (real or approximated)
- A two-player metagame with payoffs for the row and column meta-players
 - $\mu_1(p, q) = p^T A q$
 - $\mu_2(p, q) = p^T B q$
- $B = A^T$
What team would you build?

- Nash equilibria are teams that are unbeatable in expectation

	agent A	agent B	agent C	Elo
agent A	0.5	0.9	0.1	0
agent B	0.1	0.5	0.9	0
agent C	0.9	0.1	0.5	0
Nash Averaging in RPS

• In rock-paper-scissors, the only unbeatable-on-average team is the uniform distribution over the different players

\[p^* = q^* = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}] \]

• When is a task/agent redundant?
• Which tasks (and agents) matter the most?
What agent is the best now?

	agent A	agent B	agent C₁	agent C₂	Elo
agent A	0.5	0.9	0.1	0.1	-63
agent B	0.1	0.5	0.9	0.9	63
agent C₁	0.9	0.1	0.5	0.5	0
agent C₂	0.9	0.1	0.5	0.5	0
Properties of NA

CLAIM:

- The MaxEnt Solution \((p^*, p^*)\) is invariant to additional copies of an agent

- I.e., adding redundant copies of an agent or task to the data should make no difference
There are many NE, which one to pick?

- **row** and **column** meta-players

For **A** there is a unique NE at:

- \((p^*, p^*)\) solves
 - \[
 \max_p \min_q \ p^T Aq
 \]
 - This NE has greater entropy than any other
What agent is the best now?

- Could say that B is better, but that’s a quirk of the evaluation data
What team would you build?

	agent A	agent B	agent C_1	agent C_2	Elo
agent A	0.5	0.9	0.1	0.1	-63
agent B	0.1	0.5	0.9	0.9	63
agent C_1	0.9	0.1	0.5	0.5	0
agent C_2	0.9	0.1	0.5	0.5	0
The Upshot

- Objectively test algorithms against:
 - any dataset
 - all datasets
 - all tasks
 - other agents
The upshot upshot

- Provides a rigorous method of choosing how to sample parents in an evolutionary algorithm that preserves diversity!

- Can we use this to co-optimize agents and tasks?
 - Combine agent learning (RL) with Automatic Environment Design