Rehabilitation potential in older people living with frailty: a systematic mapping review

Alison Cowley¹,²*, Sarah E. Goldberg³, Adam L. Gordon²,⁴,⁵ and Pip A. Logan²,⁵,⁶

Abstract

Background: Following periods of acute ill-health and injury, older people are frequently assessed and provided with rehabilitation services. Healthcare practitioners are required to make nuanced decisions about which patients are likely to benefit from and respond to rehabilitation. The clinical currency in which these decisions are transacted is through the term “rehabilitation potential”. The aim of this study was to explore information about rehabilitation potential in older people to inform the development of an evidence-based assessment tool.

Methods: A systematic mapping review was completed to describe the extent of research and the concepts underpinning rehabilitation potential. We searched Medline, CINHAL, EMBASE, AMED, PsycINFO, PEDro, Cochrane Library, Web of Science, ProQuest, Trip and EThOS from inception to December 2020. We included studies which focused on rehabilitation potential and/or assessing for rehabilitation interventions for older people with comorbidities in the hospital and community setting. Reviewer pairs independently screened articles and extracted data against the inclusion criteria. A descriptive narrative approach to analysis was taken.

Results: 13,484 papers were identified and 49 included in the review. Rehabilitation potential was found to encompass two different but interrelated concepts of prognostication and outcome measurement. 1. Rehabilitation potential for prognostication involved the prediction of what could be achieved in programmes of rehabilitation. 2. Rehabilitation potential as an outcome measure retrospectively considered what had been achieved as a result of rehabilitation interventions. Assessments of rehabilitation potential included key domains which were largely assessed by members of the multi-disciplinary team at single time points. Limited evidence was identified which specifically considered rehabilitation potential amongst older people living with frailty.

Conclusions: Current approaches to rehabilitation potential provide a snapshot of an individual’s abilities and conditions which fail to capture the dynamic nature and fluctuations associated with frailty and rehabilitation. New approaches to measures and abilities over time are required which allow for the prognostication of outcomes and potential benefits of rehabilitation interventions for older people living with frailty.

Keywords: Rehabilitation, Frail elderly, Geriatric assessment, Decision-making
Background

Older people living with frailty often do not have discrete illnesses that they recover from. Rather they have an array of long-term conditions, which can both progressively worsen and have acute exacerbations resulting in hospitalisation. This can have a devastating impact on their function, well-being and social interactions.

Rehabilitation interventions are key in supporting patients’ recovery after periods of acute ill health [1, 2]. Healthcare practitioners are required to make nuanced decisions about patient’s rehabilitation requirements and which patients are likely to benefit from and respond to rehabilitation. The clinical currency in which these decisions are transacted is through the term “rehabilitation potential”.

Rehabilitation potential has been described in a number of ways. It has been used to describe how well a patient’s function improves in response to rehabilitation, [3, 4] restoration of activities of daily living [5, 6] and patients’ psychological abilities to take part in rehabilitation [7]. Being deemed to have rehabilitation potential or not is critical to the amount and type of rehabilitation a patient will receive and can result in individuals being denied access to services which may be beneficial [8, 9]. How rehabilitation potential is conceptualised, assessed and operationalised, and which factors influence clinical decision-making, is highly variable.

The aim of our study was to identify and map literature on rehabilitation potential to inform the development of a tool to support consistent decisions [10, 11]. It sought to identify how the term rehabilitation potential or similar descriptors were used, what was understood by the term, how rehabilitation potential had been assessed, the use of clinical tools and decision-making frameworks, by whom they were used, and the timing of the assessment.

Methods

We conducted a systematic mapping review. These are designed to describe the extent of research into a field and the concepts underpinning the research [12, 13]. They are widely used in developing complex interventions [14].

An electronic, three-step search strategy was used. An initial search was carried out in all databases using the keyword “rehabilitation potential”. A second search was carried out using MeSH combined with the key word “rehabilitation potential” across all included databases from inception to December 2020. Thirdly, a citation search was completed across the reference lists of all identified studies to enhance the rigour of the study [15]. Studies published in the English language were included. Databases searched were: Medline (Ovid 1946-present), CINAHL Plus with full text (EBSCO), EMBASE (Ovid), AMED (Allied and Complementary Medicine, Ovid), PsycINFO (Ovid), PEDro, Cochrane Library and Web of Science. The search for grey literature included: ProQuest Dissertations and Theses, Trip (Turning Research into Practice) and EThOS. Justification for the inclusion of each database can be found in supplementary data file one.

Searches, title and abstract screening were conducted by a single researcher (AC). Full text screening and data extraction were independently completed by two reviewers selected from AC, PL, SG and ALG. Disagreements were resolved through discussions with the study team. Data were recorded on a standardised data extraction form (supplementary data file two) which collected details about the study design, interventions, participants, context and outcomes alongside definitions of rehabilitation potential, methods of assessment and theoretical underpinnings. The form was piloted with a member of the study team on a sample of five papers to ensure that it was fit for purpose, unambiguous and clear.

Inclusion criteria

Studies were included if they focused on rehabilitation interventions delivered in hospitals or community settings for adults aged over 65 with frailty or multiple co-morbidities, where recovery trajectories are particularly uncertain. Studies that included assessments of rehabilitation potential and clinical decision-making during assessments for rehabilitation programmes were included. Studies which presented primary research, including randomized controlled trials, non-randomized controlled trials, quasi-experimental studies, before and after studies, prospective and retrospective cohort studies, case-control studies, analytical cross-sectional studies, case series, individual case reports, descriptive cross-sectional studies, phenomenology, grounded theory, ethnography and action research were included.

Exclusion criteria

Studies focussing on specialist stroke rehabilitation, fracture care, end of life care or with a terminal diagnosis were excluded. Opinion pieces, editorials and books were excluded.

Types of outcome

Outcomes of interest included measures of function or activities of daily living (ADL), instrumental activities of daily living (IADL), and access to and provision of services as a consequence of rehabilitation potential assessments.
Data analysis
Data were analysed by publication rate by year, country of publication, study type, participant type and study settings. Results were displayed in descriptive tables taking into account a priori themes based on the World Health Organization International Classification of Functioning, Disability and Health (WHO ICF) [16] and emergent themes. This enabled the theoretical underpinnings and components of rehabilitation potential assessments relating to health conditions, body functions and structures, activities and participation personal and environmental factors to be identified and to inform the development of a rehabilitation potential assessment tool [10]. Categories were added into the analytical framework based upon important insights from included articles that were not adequately captured by a priori themes.

Results
13,484 papers were identified through bibliographic searches with an additional 48 found through citation searching. After duplicates were removed, 12,566 records titles and abstracts were screened and 12,452 were excluded. 114 articles underwent full paper screening, at which point a further 65 articles were excluded. 49 articles were included in the final review. A PRISMA diagram is shown in Fig. 1.

The majority of studies were conducted in North America (n = 21) and Europe (n = 14). Five were completed in Australasia, three in Asia and six as part of international collaborations. Publication dates ranged from 1959 to 2017 with the greatest number of articles published in 2012 and 2016 (Fig. 2).

The review included a wide range of study designs: 25 observational studies, four clinical assessment protocols, three narrative reviews, two descriptive studies, two comparisons of clinical data against machine learning algorithms, two qualitative interview studies, two cohort studies and one of each of the following: randomized controlled trial, case report, comparison of inter-rater reliability, expert consensus, quantitative survey data, chart reviews, tool validation, literature review and a systematic review. Experimental studies included in the review are described by setting and number of participants in Table 1.

The studies identified in this review included a wide range of participants, patient groups and diagnoses. In
studies which considered how healthcare practitioners assessed rehabilitation potential, assessments were carried out by a single profession or as part of a multidisciplinary team (MDT) (Table 2).

The majority of studies included patients with diverse diagnoses and characteristics who were in receipt of rehabilitation assessments or interventions. Study populations were described in different ways with variables including: frailty, multimorbidity, cognitive status, functional abilities and activities of daily living. Diagnoses commonly identified included: Alzheimer’s diseases and other dementias, orthopaedic diagnoses (osteoarthritis and falls), cardiac and respiratory conditions, stroke and hip fractures. Where reported, mean ages ranged from 65 to 88.1 years (Supplementary data file three). Fourteen articles did not report on specific patient populations or conditions [18, 19, 22–33].

Findings coalesced around specific themes which are presented in Table 3:

Definitions of rehabilitation potential

Definitions demonstrated considerable heterogeneity and a lack of consensus. The term was used prognostically to describe an individual’s potential for restoration of function [28, 34, 35] or predicted benefit from MDT rehabilitation [36]. Cunningham, Mosqueda and New [17, 27, 29] adopted the definition provided by Rentz:

“The prognostic indicator of how the patient will perform within a standard inpatient rehabilitation program ... involving an estimation of the patient’s personal strengths (i.e., level of motivation/cooperation, cognitive status and personality constellation), medical complications and familial support as they interface with therapies and rehabilitation environment ... estimates the individual’s capability of cooperating with a rehabilitation program and making measured functional gains in ambulation and self-care ... appraising whether the patient’s current...

Table 1 Study settings and number of participants (where reported)

Setting	Number of studies	Number of participants
Acute hospital	15	9086
Intermediate care	2	10,901
Community-based	6	25,322
Care homes	7	185,591
Community versus hospital rehabilitation	1	302
Day hospital	2	248
Total	**33**	**231,450**

Fig. 2 Year of publication
quality of life can be improved upon despite chronic or multiple disabilities.” [6].

A number of authors [18, 26, 37–42] adopted a functionally-orientated approach to definitions where individuals had rehabilitation potential if they were likely to achieve restoration of function after an acute event. Hoenig et al. [18] considered that rehabilitation potential was better expressed by gaining improvements in quality of life rather than by functional gain alone. Gray et al. [24] and Hartley et al. [41] used place of residence as a proxy for functional ability whereby individuals had rehabilitation potential if they were predicted to be likely to be discharged back to their usual place of residence after an acute episode of ill health.

In contrast, rehabilitation potential was defined as being present if the individual undergoing rehabilitation and/or a member of the continuing care team thought the individual was capable of increased independence in some objectively measured functional areas [3, 43–46]. This definition was further refined by Zhu et al. [4, 47] whereby true rehabilitation potential was said to be present if an individual demonstrated measurable improvements in ADL functioning (measured using the interRAI ADL long form) over a period of one year or if they remained at home at the end of the rehabilitation intervention.

In three studies by Johansen et al. [48–50] a working definition developed by the Norwegian Government, was adopted which described rehabilitation potential as the “physiological and psychological possibilities of a disabled person to restore, improve on maintain an optimal level of function and quality of life” [51]. Whilst this definition emphasises the relationship between physical and psychological health and well-being, it was not specific to older people living with frailty.

Three studies were identified which stated that they selected patients for rehabilitation on the basis that they had rehabilitation potential [52–54] but robust operational definitions were not given. Badriah et al. [53], designed a retrospective measurement of rehabilitation potential based on the Functional Independence Measure (FIM), where rehabilitation potential was calculated by dividing the change in FIM total score at the beginning of rehabilitation therapy and hospital discharge by the FIM total score target (total maximum FIM minus FIM score at the start of rehabilitation). Rehabilitation potential was assumed to represent an improvement in functional abilities.

Who was involved in the assessment of rehabilitation potential

Rehabilitation potential assessments were completed by: physicians [27, 34, 40], rehabilitation nurses [21],

Table 2 Healthcare practitioners involved in rehabilitation potential studies

Study	Participants	Sample size
Cunningham et al. [17]	Occupational therapist, physiotherapist, nurse, doctor	4
Hoenig et al. [18]	Physician	98
Jette et al. [19]	Occupational therapist, physiotherapist	9
McPhail et al. [20]	Physiotherapist	23
Myers et al. [21]	Nurse	unclear

Table 3 themes

Theme	Description
Definitions of rehabilitation potential	Describes how rehabilitation potential was conceptualised, either as a prognostic or retrospective measure
Who was involved in assessments	Describes who was involved in assessments and decision-making relating to rehabilitation potential
Where assessments took place	Outlines which settings and contexts rehabilitation potential assessments took place in
When assessments took place	When in patients' recovery trajectories rehabilitation potential assessments took place
The use of formal decision-making frameworks	Outlines how decision making frameworks such as safety checklists, prediction tools and clinical assessment protocols were applied
Components of a rehabilitation potential assessment	Describes the key domains included in rehabilitation potential assessments including: diagnoses and medication, functional abilities, mental health, social and environmental factors
How rehabilitation potential was measured	This theme explored how rehabilitation potential was measured, depending on understanding rehabilitation potential as a prognostic or retrospective measure
External factors influencing the assessment of rehabilitation potential	Describes factors such as training, skills, experience and availability of rehabilitation resources required to deliver rehabilitation programmes
Markers of success	Describes optimum outcomes of rehabilitation programmes in terms of improvement, maintenance or managing declining abilities and function
untrained home care staff [3, 38], disability or medical assessors [24, 25, 28, 32, 33] or an MDT [17, 29]. It was unclear from all studies how assessments guided decision-making and who made the final decision about rehabilitation potential. Patients or clients and carers were included in rehabilitation assessments [24, 25, 30, 37, 44] but the extent of their involvement or influence on decision-making was unclear. Chang et al. [3] assessed the differences between self-perceived and carer-evaluated rehabilitation potential among care home residents in Taiwan. The study reported that 63.2% (n = 367) of residents believed that their physical function would improve, but just 9.8% (n = 57) of their caregivers deemed them to have rehabilitation potential.

Where rehabilitation potential was assessed
Assessments took place in outpatient geriatric clinics [28, 55], intermediate care units [48, 52], acute or sub-acute geriatric inpatient wards [32, 33, 41, 56, 57], inpatient rehabilitation units [17, 20, 28, 29, 36, 37, 53, 58–61], care homes [3, 28, 34, 35, 38, 40, 43, 44, 62], rehabilitation situated in care homes [39] and day hospitals [42, 54]. Some studies included multiple sites where rehabilitation took place in either the patient’s own home, inpatient setting or nursing homes [46, 48, 49]. In some studies it was unclear where the assessment of, or decision about, an individual’s rehabilitation potential took place [4, 18, 26, 27, 45, 47, 63].

When assessments of rehabilitation potential were completed
In studies which specifically explored rehabilitation potential, the decision that an individual did or did not have rehabilitation potential was predominantly made at a single time point. Assessments occurred at the time of deciding on patient suitability for admission to a rehabilitation unit [40], to guide care planning after a hospital admission [3, 17, 29], as a snapshot for a study [34] or during application for state benefits [28]. Some studies used multiple time point assessments: at admission and discharge from rehabilitation services [21] and at baseline and one-year follow up [35]. In other studies it was unclear when the assessment and decision was made [4, 27, 38, 47]. Some tools sought to assess individuals’ pre-morbid abilities in the hours or days leading up to a hospital admission [24, 25].

The use of formal decision-making frameworks
The identification of an individual’s rehabilitation potential was said to involve clinical judgement and reasoning [17, 21, 41], but there was limited evidence for the use of formal decision-making frameworks. In one study a Pre-Admission Screening checklist [58] was developed from a sample of 549 referrals over a six month period with medical charts reviewed for risk factors for readmission to acute care from a rehabilitation unit. A type of safety checklist was developed to guide decision making but was found to be largely subjective and unsubstantiated. Clinicians were asked to use a simple binary rating of yes, no or not applicable on absolute and relative contraindications to rehabilitation and on patients’ levels of motivation, and ability to tolerate and participate in rehabilitation.

Jupp et al. [59] developed a tool to aid clinicians in predicting outcomes after acute hospitalization and guide rehabilitation assessments. It was based on factors linked to discharges to residential or nursing home placements. The tool incorporated assessments of gait, eyesight, mental state and sedation (GEMS). In the validation study, patients admitted to care homes were found more likely to have abnormal vision, impaired cognitive abilities, gait abnormalities and taking sedative medications.

The interRAI ADL and IADL Clinical Assessment Protocols (CAP), developed for acute and community-dwelling populations [24, 25, 32, 33], provided decision-making frameworks for use in older and vulnerable populations. An overall score indicated whether the individual ‘triggered’ to prevent decline, facilitate improvement or triggered no action. A series of clinical prompts and care plans were then recommended to guide care planning. Two studies by Zhu et al. [4, 47] compared the use of CAPs with a computer algorithm to guide rehabilitation potential decision making in the Canadian home care setting. Findings indicated that both the K-nearest neighbour algorithm [4] and Support Vector Machine [47] had superior predictive powers for calculating rehabilitation potential and subsequent rehabilitation outcomes when compared to the ADLCAP. Further work to refine and operationalise these tools is required to understand the practical implications of applying big data to clinical decision-making.

Components of a rehabilitation potential assessment
Two studies recommended that holistic assessments were required which addressed biopsychosocial needs and abilities of patients [29, 45]. However, there was a lack of detail about the composition of these assessments. Key areas that were identified included: diagnoses and medication, functional abilities, mental health, social and environmental factors.

Diagnoses and medication
The evidence suggested a pertinent role for assessing comorbidities and diagnoses [4, 18, 19, 21, 23, 28–33, 39–41, 46–50, 52, 54, 55, 58–62] which were likely to affect rehabilitation participation or outcome. These were typically measured by counting the type and number of
underlying diseases [26, 39] or using the Charlson Co-
morbidity Index [64]. Medical stability was frequently
seen as a prerequisite for an individual being able to take
part in or tolerate rehabilitation [29]. Common features
of assessments included the identification of medications
which may affect rehabilitation outcome or participation
[24, 25, 32, 33, 39], nutritional status [24, 25, 32, 33, 39,
60], pain [21, 24, 25, 30, 32, 33, 61], continence [17, 25,
26, 39, 61], tissue viability [62] and communication in-
cluding vision and hearing [24, 25, 30, 32, 33, 39, 46].
There was a lack of evidence to support the exact com-
position of medical components of rehabilitation poten-
tial assessments.

Functional ability
Assessing and identifying functional abilities was
strongly represented in the data. They were largely
assessed and understood through assessing ADLs [4,
19–21, 23–25, 27, 30, 32, 33, 35–39, 41, 42, 44, 46, 48–
50, 53, 54, 59–61, 63, 64]. Some studies were more spe-
cific with their definitions of function such as mobility
[4, 21, 47, 56, 61], transfers [58], or occupational abilities
[28]. Specific issues such as muscle strength neurological
deficits or sensation [26, 34, 39] were included. Assessment
of IADLs describing key life tasks such as manage-
ing finances, cleaning, shopping and meal preparation
were identified [24, 25, 33, 61]. Impairments in IADL
can often be present in those with mild cognitive deficits
and the early stages of dementias [65] so may be an im-
portant indicator of cognitive abilities and function.

Mental health and psychological abilities
Establishing an individual’s psychological abilities or def-
cits was frequently included in rehabilitation potential
assessments [20, 30, 31, 41, 49, 50, 60]. Studies cited that
they specifically considered individuals cognitive abilities
[4, 18, 20, 21, 23–25, 32, 33, 39, 42, 44, 46, 49, 50, 53,
60]. Gray et al. [32] stated that assessing cognitive skills
for decision-making was essential, specifically short term
memory recall, procedural and situational memory. An
assessment of motivation [27], mood [24, 25, 32, 37, 39,
46], disruptive behaviours [21, 24, 25, 29, 30, 39, 40, 46]
and depression [23, 24, 30, 39, 46] were also found to be
included. Motivation was described as being present if
the patient was eager to participate in therapy and took
responsibility for being actively involved in their self-
care [27]. The Kemp model of motivation [66] was pro-
posed, taking into account patient wants, beliefs and re-
wards, offset by the costs of participating in the
rehabilitation programme.

Social
An assessment of rehabilitation potential was found to
require an understanding of an individual’s social
circumstances [18, 21, 22, 35, 37, 39, 46, 52]. Under-
standing social status and conditions were important
factors in determining the recovery of older community
dwelling adults who received intermediate care rehabili-
tation following an acute hospital admission [52] where
the ability to live at home was reported to be a “good
and practical measure of recovery”. Social situation,
where an individual lives and the type of support they
received were found to be strong predictors of rehabili-
tion outcome [63]. Mosqueda [27] outlined that under-
standing the reliability and number of existing social
support mechanisms were essential components of re-
habilitation potential assessments. Caradoc-Davies et al.
[37] explored the perceived benefits of rehabilitation be-
tween health professionals and clients, finding that those
with strong social support mechanisms were more posi-
tive about the potential benefits of rehabilitation.

Environmental
The literature highlighted the need to assess an individ-
ual’s environment [27–30, 54]. Mosqueda [27] suggested
that environmental assessments should include under-
standing the environment of the usual place of residence
and the current or proposed rehabilitation venue. This
view was supported by Nagi [28], who stated that the en-
vIRONMENT should be considered in terms of the individ-
ual’s level of functioning within that specific environment, suggesting that assessments were context-
specific.

How rehabilitation potential was measured
A number of measures were identified in studies specific
to rehabilitation potential. Chang et al. [3] found signifi-
cant disagreement between residents and caregivers on
whether they thought rehabilitation would improve a
residents ADL’s. Myers et al. [21] found a significant re-
relationship between nurses assessment of rehabilitation
potential at admission and functional status as measured
through ADLs at discharge ($r = 0.20$, $R^2 = 0.04$, $P <
0.001$). Cunningham et al. [17] proposed a binary re-
response where members of the MDT were asked to rate
the rehabilitation potential of 27 consecutive patients ad-
mitted onto a geriatric rehabilitation ward as either good
or poor. They found that agreement between profes-
sionals was poor (kappa = 0.21).

Other studies adopted retrospective measures, com-
paring outcome measures before and after rehabilitation
programmes. Measures adopted included changes in in-
dividuals ADL functioning [4, 47] where gains were seen
as a positive affirmation of rehabilitation potential.

New [29] developed a traffic light system to classify a
patient’s appropriateness for rehabilitation and by proxy
their rehabilitation potential. This model, developed by
expert opinion, proposed that ‘green light’ patients were
always appropriate for rehabilitation, those with conversion and personality disorders, obesity or specialist nursing needs were classified as ‘orange’ (proceed with caution) and for patients with limited life expectancy, lack of capacity and severe dementia as red and not appropriate for rehabilitation. This system was not however designed specifically for older people, rather for a heterogeneous inpatient population.

Most aspects of medical interventions were not measured or categorized in a way that could be easily reported. Those that were quantifiable were largely measures of frailty or symptom scores.

Morghen et al. [60] was the only study which sought to measure and evaluate the impact that patient participation had on predicting rehabilitation gains or outcomes. They found that participation was independently associated with functional gain in an older people’s inpatient rehabilitation setting. Participation was assessed using the Pittsburgh Rehabilitation Participation Scale (PRPS) [67], and functional gain was measured using the Montebello Rehabilitation Factor Score [68]. The PRPS measures participation during therapy sessions, where clients were rated using a Likert Scale of 1–6 (1 = refusal to participate in a session and 6 = excellent participation in all exercises, taking an active interest in exercise and/or future therapy sessions). Moseley et al. [26] and Wells et al. [31] proposed the Goal Attainment Scale to measure rehabilitation outcomes, whereby patient-centred goals are set and percentage attainment was measured.

External factors influencing the assessment of rehabilitation potential

Staff skills, training and experience were found to affect the transaction of rehabilitation potential assessments [26, 29, 38, 64]. Two separate concepts emerged from the literature: the skills of staff to assess rehabilitation potential and skills for providing rehabilitation interventions. Fortinsky [38] proposed that training and clinical judgement were key factors, stating that older adults with complex needs may never reach the ideal of maximised function due to clinical judgements and policy guidelines that carry vague and conflicting messages about rehabilitation potential. Moseley [26] and Mo’inah and Guthrie [45] suggested that staff needed a thorough understanding of referral criteria to rehabilitation services in order to decide on the suitability of individuals to rehabilitation.

Funding and availability of resources were considered in rehabilitation potential assessments. Mosqueda [27] stated that economic reality influenced rehabilitation potential, whereby resources are limited or rationed through government commissioning or insurance. Although an individual may demonstrate gains from rehabilitation during their inpatient stay, if resources are not available to continue programmes of rehabilitation, gains may not be maintained and benefit may therefore not be realised. In this context, Gordon [40] found that staff over-estimated an individual’s rehabilitation potential for fear of omission; in other words, they offered rehabilitation even if they were unsure of the benefit. This ethical dilemma is further supported by New [29] who highlighted the tensions clinicians faced in allocating resources including the potential for injustice and bias, utility and beneficence and how these factors may influence the decision that an individual does or does not have rehabilitation potential.

Markers of success

The majority of studies identified in this review included patients who had been deemed to have rehabilitation potential, rather than studies which explored or tested the assessment of rehabilitation potential. As a consequence, a successful outcome of rehabilitation potential was frequently linked to rehabilitation outcomes specific to the study design, aims and objectives.

Frequently, improvement was identified as the optimum outcome associated with rehabilitation or rehabilitation potential amongst older people. Improvement was described as a return to premorbid abilities or an improvement in function [3, 4, 17, 18, 24–26, 32–34, 37, 40, 41, 45–50, 52, 53, 58, 60, 64]. However, some studies recognised that improvement may not always be feasible in this population. Muller et al., Gray et al. and Fusco et al. [24, 35, 39] stated that maintaining an individual’s current status and abilities was also a successful outcome. Poulos et al. [30] further embraced this notion, proposing that reablement programmes in dementia should go beyond improvement and consider maintenance and managing or delaying declining abilities. Assessments should identify and address causes of functional decline discrete from the natural progression of the underlying dementia diagnosis, such as medication management, acute or comorbid medical conditions, deconditioning or lack of activity.

Discussion

This study found considerable variations in definitions of rehabilitation potential and in some cases, an absence of definition. Rehabilitation potential was found to encompass two different, but inter-related, concepts of prognostication and outcome measurement. Prognostic rehabilitation potential described the prediction of what could be achieved through rehabilitation, whereas outcome-based rehabilitation potential considered what had been achieved. The locations of rehabilitation potential assessments were highly contextualized by the study designs and aims.
Prognosis involves the prediction of the future course and outcome of disease processes concerning either their natural course or outcome after treatment [69]. Prognostic methods in medical and rehabilitation decision-making allow for wider contextual factors to be taken into account [70]. These factors are commonly affected by frailty, old age and multi-morbidity. Single conditions and diagnoses are more predictable in terms of their trajectories and response to treatment, however, multimorbidity, frailty and acute ill health make for a very unpredictable rehabilitation context [71]. In contemporary clinical practice, older people living with frailty frequently present with acute illnesses superimposed on underlying conditions and physiological decline. This presents clinicians with particular challenges in understanding and predicting recovery [72, 73] and challenges researchers in establishing the effectiveness of rehabilitation interventions.

Rehabilitation potential was also found to be used as a proxy for entry criteria into rehabilitation studies. In that patients deemed not to have rehabilitation potential were excluded from studies based on the belief that they would not benefit or respond to rehabilitation interventions. This frequently included those with moderate to severe levels of cognitive impairment [19, 52, 64] who are regular recipients of in-patient hospital care. If the evidence base for frailty rehabilitation is to progress, patients with cognitive impairment must be recruited to studies so that their true rehabilitation potential can be understood. There have been suggestions that the term rehabilitation potential may lead to rationing of services particularly in older adults with cognitive impairments [9]. Age based rationing of services presents significant practical and ethical challenges in terms of allocation of services and resources and the term rehabilitation potential may further reinforce outdated notions of rehabilitation benefit [11].

Rehabilitation potential was used as a measure of rehabilitation outcome, in that individuals ‘had rehabilitation potential’ if they achieved favourable outcomes. Based on retrospective analysis, these variables help inform clinicians’ predictions of what an individual may be capable of, but in isolation they do not capture the complexity of human behaviour and nuances of frailty and multimorbidity. However, Enderby et al. [8] warn that variables which are strong predictors may hide the subtleties associated with an individual’s recovery and clinical decision-making.

Unsurprisingly, domains relevant to the World Health Organization’s International Classification of Functioning, Disability, and Health (WHO ICF) [16] featured prominently in the findings of this mapping review. This may be explained by the use of the ICF in the a priori analytical framework but is also indicative of the impact that the ICF has had on contemporary clinical practice. This study has demonstrated that knowledge of physical attributes and underlying diseases and conditions are integral to assessments of rehabilitation potential. Findings from this study draw many parallels with Comprehensive Geriatric Assessment (CGA) models of care which seek to provide an iterative approach of assessment and case management focus on medical, mental health, functional capacity, environmental and social circumstances [74, 75]. CGA aims to place patient and carers needs at the centre of the relationship through the use of targeted goal setting which enables interventions, such as rehabilitation to be identified, delivered and reviewed. This review identified evidence to support the assessment of medical, mental health and functional abilities in terms of rehabilitation potential but limited evidence to focus on environment and social circumstances. Recent literature has suggested that spirituality and economic status should also be considered for a truly holistic assessment [76], but no supporting evidence for the inclusion of these domains in an assessment of rehabilitation potential was identified in this review.

Personal and participatory factors are part of the ICF [16] and this study found that motivation and participation played a key role in assessments of rehabilitation potential. Motivation is a complex construct that has been widely explored in relation to rehabilitation in traumatic brain injury, stroke and sports medicine but less frequently amongst older people living with frailty. Siegert et al. [77] propose that exploring an individual’s motivation, emotions and goals allows for an understanding of how they will react with rehabilitation programmes, whereas prognosis or prediction considers variables and outcomes. Rehabilitation potential assessments should consider prognostic, performance and participatory approaches for maximal rehabilitation outcomes to be achieved. Commonly cited ‘barriers’ to rehabilitation such as poor cognition and low mood [78] can all have a profound impact on an individuals’ ability to be motivated to take part in and achieve beneficial outcomes from rehabilitation interventions. It remains unclear which items within these tools best correlate to or predict rehabilitation potential in older people living with frailty.

It is clear that solely focusing on the physical effects of frailty will not address the complex, highly individualised and fluctuating needs of older people living with frailty. Clinicians need to consider the wider social implications of ageing and the impact these have on continued quality of life and control over individuals lives. The inclusion of environmental and social domains of assessment identified during this review may go some way to remedy this medical and physical bias, but further evidence is needed to understand how these domains relate to
rehabilitation potential. Rehabilitation potential was largely assessed at singular time points, with subsequent reviews of outcome measures completed retrospectively.

Strengths and limitations
Due to the heterogeneous nature of frailty presentations and rehabilitation interventions a mapping review was ideally suited to map this complex field. This enabled the context and mechanism of frailty rehabilitation to be explored, essential in understanding complex interventions [79].

Of the 49 studies included in this review, 24 were from either Anglophone countries (UK, USA, Canada or America) or from European countries which have a tradition in publishing in English language journals. The predominance of studies from Anglophone countries may represent selection bias by limiting selection criteria to the English language. Asian countries have been found to publish less frequently [80], but this study included three publications from Asian countries and a total of six international collaborations.

This study excluded evidence from books and hence the most commonly cited definition of rehabilitation potential by Rentz [6]. Whilst academic books are subject to editorial review, they do not always undergo the same scrutiny as articles in peer-reviewed journals. These sources, commonly classified as grey literature, are frequently excluded from evidence appraisal methods, but can provide new insights and help contextualise research evidence [81].

It proved challenging to identify studies which solely explored rehabilitation potential in relation to frailty. This may represent a limitation in search terms or engines used, but more likely represents the lack of evidence in rehabilitation decision-making and the emerging field of frailty rehabilitation. The studies included in this review comprised a broad range of clinical conditions and patient groups. This study sought to exclude articles which included patient participants in receipt of specialist stroke, palliative and fracture services. However, many of the studies identified included patients with these diagnoses.

Conclusion
This review identified considerable heterogeneity in definitions and use of the term rehabilitation potential and in some cases an absence of definition despite it being used as an entry criterion into a study. It was found to be poorly understood and judged differently by different people at different times. Rehabilitation potential was found to encompass two different but interrelated concepts of prognostication and outcome measurement. Limited evidence was identified which specifically considered rehabilitation potential amongst older people living with frailty. Current tools and approaches provide a snapshot of an individual’s abilities and conditions which failed to capture the dynamic nature and fluctuations associated with frailty and rehabilitation. Snapshot approaches further enhance the risk of age-based rationing of services where those who might benefit from rehabilitation are denied access to interventions. New aggregative approaches to measures and abilities over time are required which allow for the prognostication of outcomes and potential benefits of rehabilitation interventions for older people living with frailty.

Abbreviations
ADL: Activities of Daily Living; CAP: Clinical Assessment Protocol; CGA: Comprehensive Geriatric Assessment; FIM: Functional Independence Measure; IADL: Instrumental Activities of Daily Living; MDT: Multi-disciplinary Team; WHO ICF: World Health Organization International Classification of Functioning, Disability and Health

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12877-021-02498-y.

Additional file 1. Supplementary data file one- Justification for search terms and database selection.
Additional file 2. Supplementary file three- Patient participants demographics (where reported).

Acknowledgements
Not applicable.

Authors’ contributions
The study protocol was written by AC with support from the academic supervisory team of PAL, SEG and ALG. Data screening and analysis was completed by AC, PAL, SEG and ALG. The manuscript was written by AC, SEG, ALG and PAL. All authors have read and approved the manuscript.

Funding
This report is independent research arising from a Clinical Doctoral Research Fellowship (Integrated Clinical Academic Programme) held by Alison Cowley ICA-CDRF-2016-02-015 which was supported by the National Institute for Health Research (NIHR) and Health Education England (HEE). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR, HEE or the Department of Health and Social Care.

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Care Excellence, Derrwent House, City Campus, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham NG5 1PB, UK.
2School of Medicine, University of Nottingham, Nottingham, UK. 3School of Health Sciences, University of Nottingham, Nottingham, UK. 4University
Hospitals of Derby and Burton NHS Foundation Trust, Nottingham, UK. 2NIHR Applied Research Collaboration East Midlands (ARC-EM), Nottingham, UK. 3Nottingham CityCare Partnership CIC, Nottingham, UK.

Received: 11 May 2021 Accepted: 6 September 2021

Published online: 07 October 2021

References

1. Oliver D, Foot C, Humphries R. Making our health care systems fit for an ageing population. London: The Kings Fund; 2014.
2. NHS RightCare. NHS RightCare: frailty toolkit: NHS England; 2019. [https://www.england.nhs.uk/rightcare/wp-content/uploads/sites/40/2019/07/frailty-toolkit-june%2D%2Dv1.pdf].
3. Chang YY, Peng LN, Lin MH, Lai HY, Chen LK, Hwang SJ, et al. Who determines the rehabilitation needs of care home residents? An observational survey. Arch Gerontol Geriatr. 2011;52(2):138–41. https://doi.org/10.1016/j.jcger.2010.03.002.
4. Zhu M, Chen W, Hirdes JP, Stoole P. The K-nearest neighbor algorithm predicted rehabilitation potential better than current clinical assessment protocol. J Clin Epidemiol. 2007;60(10):1051–21. https://doi.org/10.1016/j.jclinepi.2007.06.001.
5. Poynert L, Kwan J, Sayer AA, Vassallo M. Does cognitive impairment affect rehabilitation outcome? J Am Geriatr Soc. 2011;59(11):2108–11. https://doi.org/10.1111/j.1532-5415.2011.03658.x.
6. Rentz D. The assessment of rehabilitation potential: cognitive factors. In: Hartk R, editor. Psychological aspects of geriatric rehabilitation. Aspen: Gaithersburg; 1991.
7. Poduri RK, Cushman AL, Gibson JC. Inpatient rehabilitation: the correlation between functional gains and appropriateness of admissions. Int J Rehabil Res. 1996;19(4):327–32. https://doi.org/10.1097/00004356-199612000-00005.
8. Enderby P, Pandyan A, Bowen A, Hearden D, Ashburn A, Connon P, et al. Accessing rehabilitation after stroke – a guessing game? Disabil Rehabil. 2017;39(7):709–13. https://doi.org/10.3109/09638288.2016.1160448.
9. Goodwin VA, Allan LM. ‘Mrs Smith has no rehab potential’: does it have a role in the management of people with dementia? Age Ageing. 2019;48(1):15–7. https://doi.org/10.1093/ageing/afy152.
10. Cowley A. Assessment of Rehabilitation Potential in Frail Older People in the Acute Healthcare Setting: A Mixed Methods Study. Online https://reprints.nottinton.ac.uk/etheses/. University of Nottingham; 2020.
11. Cowley A, Goldberg SE, Gordon AL, Kerr M, Logan P. Exploring rehabilitation potential in older people living with frailty: a qualitative focus group study. BMC Geriatr. 2021;21(1):165. https://doi.org/10.1186/s12877-021-02107-y.
12. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal. 2009;26(2):91–108. https://doi.org/10.1111/j.1478-5554.2008.00848.x.
13. Malspeis L, Wolff WM, Kempel S, Shannah R, Shelleke PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Systematic Reviews. 2016;10(5):28. https://doi.org/10.1186/s13648-016-0204-x.
14. Mays N, Roberts E, Popay J. Synthesising research evidence. In: Fulop N, Allen P, Clarke A, Black N, editors. Studying the organisation and delivery of health services: research methods. London: Routledge; 2001. p. 188–220.
15. Vom Brocke J, Simons A, Niehaves B, Riemer K, Plattfaut R, Cleven A et al. Assessment of Rehabilitation Potential in Frail Older People in the Acute Healthcare Setting: A Mixed Methods Study. Online https://reprints.nottinton.ac.uk/etheses/. University of Nottingham; 2020.
16. Myers JS, Griggs J, Teel CS, Kramer AM. Nurses’ assessment of rehabilitation potential and prediction of functional status at discharge from inpatient rehabilitation. Int J Rehabil Res. 2009;32(3):264–6. https://doi.org/10.1097/JRIR.0b013e32832a6c23.
17. Aspinal F, Glasby J, Rostgaard T, Tuntland H, Westendorp RG. New horizons: Reabilitation - supporting older people towards independence. Age Ageing. 2016;45(5):572–6. https://doi.org/10.1093/ageing/afw094.
18. Everink I, van Haastregt J, van Hoof S, Schols J, Kempen G. Factors influencing home discharge after inpatient rehabilitation of older patients: a systematic review. BMC Geriatrics. 2016;1669.
19. Gray L, Arimo-Blasco S, Berg K, Bernabei R, Carpenter J, Finne-Soveri H, et al. interRAI Acute Care (AC) Assessment Form and User’s Manual. Version 9.1; interRAI Publications; 2016.
20. Gray L, Arimo-Blasco S, Berg K C B, Gambassi G, Heckman G, et al. interRAI Clinical and Management Applications Manuals. Scales, Screeners, Problems, Clinical Action Points and Quality Indicators. Version 9.1. https://catalog.internorg.com/content/interaclinical-and-management-applications-manual-use-inteiraacute-care-asseessment ed: interRAI; 2016.
21. Moseley C. A functional outcome-based approach to evaluate the quality of geriatric rehabilitation. Physical & Occupational Therapy in Geriatrics. 1994;12(3):51–64. https://doi.org/10.1080/1484128030479642.
22. Mosqueda LA. Assessment of rehabilitation potential. Clin Geriatr Med. 1994;9;4:689–703. https://doi.org/10.1016/S0749-0690(18)30371-9.
23. Nagi S. A study in the evaluation of disability and rehabilitation potential: concepts, methods, and procedures. American Journal of Public Health & the Nation’s Health. 1964;54(9):1568–79. https://doi.org/10.2105/AJPHS.94.9.1568.
24. New P. The assessment and selection of potential rehabilitation patients in acute hospitals: a literature review and commentary. The Open Rehabilitation Journal. 2009;3(2):124–44. https://doi.org/10.17443/1744937000902012.
25. Poulos CJ, Bayer A, Beaupre L, Clare L, Poulos RG, Wang RH, et al. A comprehensive approach to rehabilitation in dementia. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2017;3(3):450–8. https://doi.org/10.1161/trc.167.106.005.
26. Wells JS, Seabrook JA, Stoole P, Borne MJ, Knoefel F. State of the art in geriatric rehabilitation. Part I: review of frailty and comprehensive geriatric assessment. Archives of Physical Medicine & Rehabilitation. 2003;84(6):890–7. https://doi.org/10.1016/S0003-9993(02)04929-8.
27. Morris J, Berg K, Bjorkgren M, Finne-Soveri H, Fries B, Fritjers D, et al. interRAI Clinical Assessment Protocols (CAPS) 9.2.1 ADL. Ontario: interRAI Publications; 2010.
28. Morris J, Berg K, Bjorkgren M, Finne-Soveri H, Fries B, Fritjers D, et al. interRAI Clinical Assessment Protocols (CAPS) 9.2.1 IADL. Ontario: interRAI Publications; 2010.
29. Reynolds F, Abramson M, Young A. The rehabilitation potential of patients in chronic disease institutions. Journal of Chronic Disease. 1959;10(2):152–9. https://doi.org/10.1016/0021-9681(59)90029-3.
30. Muller JN, Tobis JS, Kellman HR. The rehabilitation potential of nursing home residents. American Journal of Public Health & the Nation’s Health. 1963;53(2):243–7. https://doi.org/10.2105/AJPHS.53.2.243.
31. Cameron ID, Schaafsma FG, Wilson S, Baker W, Buckley S. Outcomes of rehabilitation in older people–functioning and cognition are the most important predictors: an inception cohort study. J Rehabil Med. 2012;44(1):24–30. https://doi.org/10.2340/16501977-0901.
32. Caradoc-Davies TH, Dixon GS, Campbell AJ. Benefit from admission to a geriatric assessment and rehabilitation unit. Discrepancy between health professional and client perception of improvement. J Am Geriatr Soc. 1989;37(1):25–8. https://doi.org/10.1111/j.1532-5415.1989.tb01564.x.
33. Fortinsky R. How much rehabilitation potential is in long-term care? Using data for informed practice. Topics in Geriatric Rehabilitation. 1993;9(1):1–10. https://doi.org/10.1097/00016314-199309000-00003.
34. Fusco D, Bochicchio GB, Onder G, Barillaro C, Bernabei R, Landi F, et al. Predictors of rehabilitation outcome among frail elderly patients living in the community. J Am Med Dir Assoc. 2009;10(2):335–41. https://doi.org/10.1016/j.jamda.2009.02.004.
35. Gordon E. A study of rehabilitation potential in nursing home patients over 65 years. Journal of Chronic Disease. 1962;15(3):311–26. https://doi.org/10.1016/0021-9681(62)90140-0.
journals. Eur J Epidemiol. 2004;19(8):811–7. https://doi.org/10.1023/b:ejep.0000365710.00320b8.

81. Adams RJ, Smart P, Huff AS. Shades of Grey: guidelines for working with the Grey literature in systematic reviews for management and organizational studies. Int J Manag Rev. 2017;19(4):432–54. https://doi.org/10.1111/ijmr.12102.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.