Kinetic Parameters of Thermal Decomposition Process Analyzed using a Mathematical Model

A B D Nandiyanto¹*, R Ekawati², S C Wibawa³

¹Departemen Kimia, Universitas Pendidikan Indonesia, Indonesia
²Departemen Matematika, Universitas Negeri Surabaya, Indonesia
³Departemen Pendidikan Informatika, Universitas Negeri Surabaya, Indonesia

Email : nandiyanto@upi.edu

Abstract. The purpose of this study was to show a mathematical analysis model for understanding kinetic parameters of thermal decomposition process. The mathematical model was derived based on phenomena happen during the thermal-related reaction. To get the kinetic parameters (i.e. reaction order, activation energy, and Arrhenius constant), the model was combined with the thermal characteristics of material gained from the thermal gravity (TG) and differential thermal analysis (DTA) curves. As an example, the model was used for analyzing the kinetic properties of trinitrotoluene. Interestingly, identical results gained from the present model with current literatures were obtained; in which these were because the present model was derived directly from the analysis of stoichiometrical and thermal analysis of the ideal chemical reaction. Since the present model confirmed to have a good agreement with current theories, further derivation from the present mathematical model can be useful for further development.

1. Introduction
Analysis of kinetic parameters has been reported as one of the important factors for understanding type of reaction.[1,2] These parameters are required for optimizing the process condition to get the best product.[3-5]

Many studies have reported how to identify the kinetic parameters, as shown by Kissinger[6], Huang et al.[7], Huang and Wu[8], and Lou[9]. Although their models have been referred by many reports, their methods have still limitations, especially for recognizing in detail what values for the reaction order, the activation energy, and the Arrhenius constant.

Based on our previous studies on the material properties [10-13], here, the purpose of this study was to show a mathematical analysis model for understanding the kinetic parameters based on thermal gravity (TG) and differential thermal analysis (DTA) curves. To confirm that the model is effective, the results gained from the present mathematical approach was compared with current literatures. As an example, kinetic parameters of thermal decomposition of trinitrotoluene were analyzed. Trinitrotoluene is well-known as a basic material that is used in wide range of applications, especially for mining uses.[14] Since the present model is in a good agreement with the current theories and literatures in the thermal decomposition process, further studies gained from this model can be useful for further development.
2. Experimental method
Mathematical model was derived based on the specific condition of the thermal decomposition process. The model was then applied for analyzing thermal-related reaction parameters of trinitrotoluene and compared with literatures, such as Kissinger[6], Huang et al.[7], Huang and Wu[8], and Lou[9]. In short, the calculation was obtained by adopting thermal characteristics (i.e. the ending temperature (T_{end}), the inflection temperature (T_{i1}), and the maximum temperature (T_m)) and heating condition (i.e. flow rate).

3. Results and Discussion

3.1. Derivation model for kinetic parameters gained from TG-DTA curves

The expression of kinetic reaction induced by thermal decomposition is described as
\[\frac{dx}{dt} = k(T) \cdot f(x) \] \quad (1)
where x, t, $k(T)$, and $f(x)$ is the fraction of reactive material, the reaction time, the reaction constant, and the type of reaction model, respectively. The f(x) was assumed as $f(x) = (1 - x)^n$, where n is the reaction order. $k(T)$ was obtained from $k(T) = A \cdot \exp(-E/RT)$, where A and E are the Arrhenius constant and the activation energy, respectively. R is the Boltzmann constant (8.314 J/mol.K). T is the process temperature (in K) that depends on the heating rate (ϕ; in K/s) and is approximated as a function of initial temperature (T_o) (expressed as $T = T_0 + \phi \cdot t$). In this model, we also assumed that the temperature deviation is proportional to the decomposition rate of material ($\Delta T = \beta \frac{dx}{dt}$; where ΔT and β are the temperature deviation and the proportional constant, respectively).

To solve equation (1), three boundary conditions were used:

(1) **Boundary 1**: In the end time, shown as $t = t_{end}$ and $T = T_{end}$, the result of ΔT_{end} will be $\Delta T_{end} = 0$.

(2) **Boundary 2**: In the time when reaching maximum temperature, shown as $t = t_m$ and $T = T_m$, the first derivative of ΔT is zero ($\frac{d}{dt} \Delta T = 0$).

(3) **Boundary 3**: When the process reaches inflection time ($t = t_i$), the second derivative of ΔT is zero ($\frac{d^2}{dt^2} \Delta T = 0$).

Finally, by integrating equation (1) with additional boundaries, the result is
\[\frac{T_m - T_{i1}}{T_{end} - T_m} = \ln \left[\frac{1}{2} (2 + n - \sqrt{4n + n^2}) \right] \quad \frac{1}{\ln[1-n]} \] \quad (2)

Further, by substituting the value of n, E and A can be obtained as
\[E = \frac{RT_o^2}{T_m - T_{end}} \ln(1-n) \] \quad (3)
\[A = \frac{E \phi}{RT_o^2 \exp\left(-\frac{E}{RT_o}\right) \exp\left(\frac{E}{RT_o}[T_m - T_o]\right)(1-n)} \] \quad (4)

Detailed information on derivation of the above mathematical equations is reported in our previous report [15].
3.2. Simplification of theoretical model from TG and DTA curves

The reaction order \(n \) is a function of the measurable characteristic process temperatures, i.e., \(T_{\text{end}} \), \(T_{i1} \), and \(T_m \). However, the above equations are inconvenient since solving this equation needs a trial and error approach.

To simplify the above approximation, Figure 1 shows \(n \) versus characteristic temperatures curve based on equation (2). The curve showed that the increases in \(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \) results in the decrease in the value of \(n \). The regression result from these data is a polynomial correlation and can be expressed as

\[
\begin{align*}
 n &= 0.000932 \left(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \right)^4 - 0.023807 \left(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \right)^3 \\
 &\quad + 0.213463 \left(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \right)^2 - 0.796363 \left(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \right) + 1.11849
\end{align*}
\]

The regression result in equation (5) can be used for approximating the value of \(n \). However, the correlation is effective for \(n \) of less than 1 and \(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \) of between 0.10 and 10.

![Figure 1. \(n \) versus characteristic temperatures curve](image)

3.3. Verification and application of the mathematical model

Table 1 shows kinetic parameters of trinitrotoluene results based on above analysis compared with previous studies. Since the present model is effective in the specific condition, the calculation was limited to the approximation of material with \(n \) of less than 1 and \(\frac{T_m - T_{i1}}{T_{\text{end}} - T_m} \) of between 0.10 and 10.

The present model analyzed the value of \(n \) using above correlation shown in Figure 1, whereas the
values of E and A were calculated based on equations (3) and (4), respectively. The result showed that the present model successfully predicted the kinetic parameters in detail including n, E, and A, while other reports[6-9] have some limitations. For instance, one literature can predict the n value, while the other can not estimate E or A. In addition, our present study for the approximation of n, E, and A values is better than our previous study [15], in which more detailed values can be obtained.

Table 1. Kinetic parameters of trinitrotoluene obtained by various methods.

Method	ϕ (°C/min)	n	E (kcal/mol)	A	Ref.
Values in literature					
6	1.00	24.20	-		[7]
10	-	14.00	-		[7]
15	0.00	29.40	-		[7]
Kissinger					
Huang and Wu	6	1.65	22.00	7.1 10^5	[7]
	10	1.75	21.00	2.9 10^5	[7]
	15	2.66	-	-	[7]
Luo					
	6	1.00	251.00	4.1 10^{93}	[9]
	10	1.00	193.70	1.8 10^{79}	[9]
	15	1.00	126.40	3.7 10^{44}	[9]
Our previous study					
	6	1.00	364.69	6.0 10^{93}	[15]
	10	1.00	281.44	1.8 10^{79}	[15]
	15	1.00	183.66	3.7 10^{44}	[15]
Present study					
	6	1.00	356.15	4.2 10^{93}	
	10	1.00	274.85	1.8 10^{79}	
	15	1.00	179.35	3.7 10^{44}	

Note: The present model used $R = 8.314 \, \text{J/K.mol}$ and $1 \, \text{J} = 0.000239006 \, \text{cal}$.

4. Conclusion
The present study has successfully derived the mathematical analysis model for understanding the kinetic parameters based on TG dan DTA curves. The accuracy of the present model was confirmed by the identical results with current literatures. The analysis of the present model was also done for calculating the kinetic parameters of trinitrotoluene. Since the mathematical approximation confirmed that the TG and DTA analysis can be used for analyzing the kinetic parameters (i.e. reaction order, activation energy, and Arrhenius constant), further derivation from the present mathematical model can be useful for further development.

Acknowledgements
We acknowledged RISTEK – DIKTI for grant in aid Penelitian Terapan Unggulan Penelitian Tinggi (PTUPT) and Penelitian Produk Terapan (PPT) for supporting and funding this study.

References
[1] Nandiyanto A B D, Munawaroh H S H, Kurniawan T and Mudzakir A 2016 Influences of temperature on the conversion of ammonium tungstate pentahydrate to tungsten oxide particles with controllable sizes, crystallinities, and physical properties Indonesian Journal of Chemistry 16(2) pp. 124-129
[2] Anshar A M, Tabaa P and Rayaa I 2016 Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2 Indonesian Journal of Science and Technology 1(1) pp. 47-60.
[3] Zhao J and Yang X 2003 Photocatalytic oxidation for indoor air purification: a literature review Building and Environment 38(5) pp. 645-654.
[4] Putra Z A 2016 Early phase process evaluation: Industrial practices Indonesian Journal of Science and Technology 1(2) pp. 238-248
[5] Nandiyanto A B D, Sofiani D, Permatasari N, Sucahya T N, Wiryani A S, Purnamasari A, Rusli A and Prima E C 2016 Photodecomposition profile of organic material during the partial solar eclipse of 9 march 2016 and its correlation with organic material concentration and photocatalyst amount Indonesian Journal of Science and Technology 1(2) pp. 132-155.
[6] Kissinger H E 1957 Reaction kinetics in differential thermal analysis Analytical chemistry 29(11) pp. 1702-1706
[7] Huang C C, Wu T S and Leu A L 1991 Determination of kinetic parameters for decomposition reaction from a single DTA curve Thermochimica acta 188(1) pp. 119-128
[8] Huang C C and Wu T S 1992 Obtaining kinetic data of energetic material decomposition by differential thermal analysis Thermochimica acta 204(2) pp. 239-250
[9] Luo K M 1995 Calculation of kinetic parameters from DTA curves using the characteristic temperature Thermochimica acta 255 pp. 241-254
[10] Nandiyanto A B D, Permatasari N, Sucahya T N, Purwanti S T, Munawaroh H S H, Abdullah A G and Hasanah L 2017 Preparation of Potassium-Posphate-embedded Amorphous Silicate Material from Rice Straw Waste IOP Conference Series: Materials Science and Engineering 180(1) pp. 012138
[11] Nandiyanto A B D, Permatasari N, Sucahya T N, Abdullah A G and Hasanah L 2017 Synthesis of Potassium Silicate Nanoparticles from Rice Straw Ash Using a Flame-assisted Spray-pyrolysis Method IOP Conference Series: Materials Science and Engineering 180(1) pp. 012133
[12] Nandiyanto A B D, Putra Z A, Andika R, Bilad M R, Kurniawan T, Zulhijah R and Hamidah I 2017 Porous Activated Carbon Particles from Rice Straw Waste and Their Adsorption Properties Journal of Engineering Science and Technology 12 pp. 1-11
[13] Nandiyanto A B D, Sofiani D, Permatasari N, Sucahya T N, Wiryani A S, Purnamasari A, Rusli A and Prima E C 2016 Photodecomposition profile of organic material during the partial solar eclipse of 9 march 2016 and its correlation with organic material concentration and photocatalyst amount Indonesian Journal of Science and Technology 1(2) pp. 132-155.
[14] Zlateva V and Pavlova S 1998 The impact of trinitrotoluene on eyes in miners. Meditsina truda i promyshlennaiia ekologii 1998(2) pp. 26-29
[15] Nandiyanto A B D 2017 Mathematical Approximation Based on Thermal Analysis Curves for Calculating Kinetic Parameters of Thermal Decomposition of Material Journal of Engineering Science and Technology 12 pp. 76-90