String Theory: The Early Years

John H. Schwarz
California Institute of Technology
Pasadena, CA 91125, USA

Abstract

Lenny Susskind has made many important contributions to theoretical physics during the past 35 years.

In this talk I will discuss the early history of string theory (1968-72) emphasizing Susskind’s contributions.

Presented at Symposium for L. Susskind’s 60th Birthday

¹Work supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701.
1 S-Matrix Theory, Duality, and the Bootstrap

In the late 1960s there were two parallel trends in particle physics. On the one hand, many hadron resonances were discovered, making it quite clear that hadrons are not elementary particles. In fact, they were found, to good approximation, to lie on linear parallel Regge trajectories, which supported the notion that they are composite. Moreover, high energy scattering data displayed Regge asymptotic behavior that could be explained by the extrapolation of the same Regge trajectories, as well as one with vacuum quantum numbers called the *Pomeron*. This set of developments was the focus of the S-Matrix Theory community of theorists. The intellectual leader of this community was Geoffrey Chew at UC Berkeley. One popular idea espoused by Chew and followers was “nuclear democracy” – that all hadrons can be regarded as being equally fundamental. A more specific idea was the “bootstrap”, that the forces arising from hadron exchanges are responsible for binding the hadrons, as composites of one another, in a more or less unique self-consistent manner.

The second major trend in the late 1960s grew out of the famous SLAC experiments on deep inelastic electron scattering. These gave clear evidence for point-like constituents (quarks and gluons) inside the proton. This led to Feynman’s “parton” model, which was also an active area of research in those days. I would submit that Susskind was philosophically more in tune with the parton world view than the S matrix one, though he clearly had a foot in each camp. My Berkeley training put me solidly in the S-matrix camp.

In the early 1970s, it became clear that QCD is the correct theory of strong interactions. It can be used for explicit computations in large momentum regimes where perturbation theory can be used, thanks to asymptotic freedom. Modern phenomenological studies in such regimes are directly descended from the older parton models. In other regimes, such as diffraction scattering, where perturbation theory is not applicable, S-matrix ideas are still used. So both major trends from the late 1960s have their descendents 30 years later.

String theory, which is the subject I want to focus on here, grew out of the S-Matrix approach to hadronic physics. The bootstrap idea got fleshed out in the late 1960s with the notion of a duality relating s-channel and t-channel processes that went by the name of “finite energy sum rules” [1] - [7]. Another influential development was the introduction of “duality diagrams”, which keep track of how quark quantum numbers flow in various processes [8, 9]. Susskind contributed papers on this topic [10, 11]. Later, duality diagrams would be reinterpreted as string world-sheets, with the quark lines defining boundaries. A related development that aroused considerable interest was the observation that the bootstrap idea requires a density of states that increases exponentially with mass, and that this implies the existence of a critical temperature, called the Hagedorn temperature [12] - [15].
generally supposed that this it is an ultimate temperature, though a phase transition was
clearly another possibility.

2 The Dual Resonance Model

The duality program got a real shot in the arm in 1968 when Veneziano found a specific
mathematical function that explicitly exhibits the features that people had been discussing
in the abstract [16]. The function, an Euler beta function, was proposed to give a good
phenomenological description of the reaction $\pi + \omega \to \pi + \pi$ in the narrow resonance
approximation. This was known to be a good approximation, because near linearity of Regge
trajectories implies that the poles should be close to the real axis. A little later Lovelace
and Shapiro proposed a similar formula to describe the reaction $\pi + \pi \to \pi + \pi$ [17, 18].
Chan and Paton explained how to incorporate “isospin” quantum numbers in accord with
the Harari–Rosner rules [19]. Also, within a matter of months Virasoro found an alternative
formula with many of the same duality and Regge properties that required full s-t-u symmetry [20]. Later it would be understood that whereas Veneziano’s formula describes scattering
of open-string ground states, Virasoro’s describes scattering of closed-string ground states.

In 1969 several groups independently discovered N-particle generalizations of the Veneziano
four-particle amplitude [21] - [25]. The N-point generalization of Virasoro’s four-point am-
plitude was constructed by Shapiro [26]. In short order Fubini and Veneziano, and also
Bardakci and Mandelstam, showed that the Veneziano N-particle amplitudes could be con-
sistently factorized in terms of a spectrum of single-particle states described by an infinite
collection of harmonic oscillators [27] - [30]. This was a striking development, because it sug-
gested that these formulas could be viewed as more than just approximate phenomenological
descriptions of hadronic scattering. Rather, they could be regarded as the tree approxima-
tion to a full-fledged quantum theory. I don’t think that anyone had anticipated such a
possibility one year earlier. It certainly came as a surprise to me.

One problem that was immediately apparent was that since the oscillators transform
as Lorentz vectors, the time components would give rise to negative-norm ghost states.
Everyone knew that such states would violate unitarity and causality. Virasoro came to the
rescue by identifying an infinite set of subsidiary conditions, which plausibly could eliminate
the negative-norm states from the spectrum [31, 32]. These subsidiary conditions are defined
by a set of operators, which form the famous Virasoro algebra [33]. The central term in the
algebra was discovered by Joe Weis (unpublished). One price for eliminating ghosts in the
way suggested by Virasoro was that the leading open-string Regge trajectory had to have
unit intercept, and hence, in addition to a massless vector, it contributes a tachyonic ground
3 The String Idea

Once it was clear that we were dealing with a system with a rich spectrum of internal excitations, and not just a bunch of phenomenological formulas, it was natural to ask for a physical interpretation. The history of who did what and when is a little tricky to sort out. As best I can tell, the right answer – a one-dimensional extended object (or “string”) – was discovered independently by three people: Nambu, Susskind, and Nielsen. Nambu’s contribution to the 1969 conference held at Wayne State University apparently was first, but the conference was rather obscure [32], and the paper was not widely circulated. His subsequent paper, submitted to a symposium in Copenhagen, proposed that the string action is the area of the world-sheet in analogy with the proper length of the world-line of a point particle [33]. These difficult to find papers have been reprinted in [37].

The string idea also appears quite clearly in Susskind papers, which were published in a refereed journal [38, 39, 40]. Nielsen’s first paper on the subject was submitted to a 1970 conference in Kiev, though it was not published in the proceedings [41]. However, shortly thereafter, he and Fairlie described their approach in a refereed journal [42]. The Nielsen papers emphasize an analog electrostatic model in which one solves Laplace’s equation on a disk with sources on the boundary. This is just the string wave equation on a Euclideanized world sheet. The electrostatic analogy was also discussed by Shapiro for the Virasoro–Shapiro model taking the domain to be a sphere rather than a disk and with the sources attached to the interior of the surface [26]. We recognize this to be the proper description of tree-level closed-string amplitudes.

A somewhat different approach treated the string world-sheet as some kind of sum or limit of complicated planar Feynman diagrams, sometimes referred to as fishnet diagrams. This approach, along with various related parton ideas, was pursued by Sakita and Virasoro [43] as well as by Susskind and Nielsen [44] - [50]. Note that these works are several years prior to ‘t Hooft’s famous paper on large-N gauge theory [51]. They were not very specific, however, about which field theory should be used to form the fishnet diagrams or what limit was required to make contact with a string world sheet.

Though there was some progress in the intervening years [52, 53], the string interpretation of the dual resonance model was not very influential in the development of the subject until the appearance of the 1973 paper by Goddard, Goldstone, Rebbi, and Thorn [54]. It explained in detail how the string action could be quantized in light-cone gauge. Subsequently Mandelstam extended this approach to the interacting theory [55].
4 Loop Amplitudes

From the factorization of N-particle amplitudes one had learned the tree approximation spectrum and couplings. With this information in hand, it became possible to construct one-loop amplitudes. The first such attempt was made by Kikkawa, Sakita, and Virasoro \[56\]. They did not have enough information in hand to do it completely right, but they pioneered many of the key ideas and pointed the way for their successors \[57\] - \[66\].

Those who worked on this problem included a group at Princeton consisting of David Gross, André Neveu, Joël Scherk, and myself. Another group consisted of Lenny Susskind and various collaborators. Neveu and Scherk studied the divergence of the one-loop planar amplitude. They realized that by performing a Jacobi transformation of the theta functions in the integrand they could isolate the divergent piece and propose a fairly natural counterterm \[63\]. Essentially the same thing was done independently by Susskind and Frye \[64\]. The modern interpretation of these results is that viewed in a dual channel there is a closed string going into the vacuum. The divergence can be attributed to the tachyon in that channel. Its contribution is the piece they subtracted. This also explains why in a model without tachyons such divergences would not occur. The cancellation of the milder divergences due to dilaton tadpoles also became an important consideration in later years.

One of the important things discovered by the Princeton group \[59\], which was discovered independently by Frye and Susskind at about the same time \[65\], was that the nonplanar loop amplitude gives new and unexpected singularities. In both of these works the dimension of spacetime was assumed to be four, and the Virasoro subsidiary constraints were not implemented on the internal states circulating in the loop. As a result the singularities were found to be unitarity-violating branch points.

Lovelace observed that if one allows the spacetime dimension to be 26 and supposes that the subsidiary conditions imply that only transverse oscillators contribute, then instead of branch points the singularities would be poles \[67\]. As we now know, these are the closed-string poles in the nonplanar open-string loop. This calculation showed that unitarity requires that one choose the critical dimension and the intercept value for which the Virasoro conditions are satisfied. In those days these states were referred to as Pomeron-states rather than closed string states, since they necessarily carried vacuum quantum numbers. It was supposed that the unphysical Regge intercept value of two – implying the existence of a massless spin two particle as well as a tachyon – would somehow be lowered to the desired value of one in a more realistic model.

Shapiro carried out the first closed-string loop calculation \[69\]. Specifically, he computed the one-loop (torus) amplitude.
5 Conclusion

The younger generation of theoretical physicists is aware of the wide range of important contributions that Lenny Susskind has made to our field in recent years. What they may be less aware of is his important role in the early history of string theory. I hope this presentation will help to publicize that work.

References

[1] R. Dolen, D. Horn, and C. Schmid, “Prediction of Regge Parameters of ρ Poles from Low-Energy πN Data,” Phys. Rev. Lett. 19, 402 (1967).

[2] R. Dolen, D. Horn, and C. Schmid, “Finite-Energy Sum Rules and Their Application to πN Charge Exchange,” Phys. Rev. 166, 1768 (1968).

[3] K. Igi and S. Matsuda, “New Sum Rules and Singularities in the Complex J Plane,” Phys. Rev. Lett. 18, 625 (1967).

[4] K. Igi and S. Matsuda, “Some Consequences from Superconvergence for πN Scattering,” Phys. Rev. 163, 1622 (1967).

[5] A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, “Dispersion Sum Rules and High Energy Scattering,” Phys. Lett. 24B, 181 (1967).

[6] P. G. O. Freund, “Finite Energy Sum Rules and Bootstraps,” Phys. Rev. Lett. 20, 235 (1968).

[7] H. Harari, “Pomeranchuk Trajectory and its relation to low-energy scattering amplitudes,” Phys. Rev. Lett. 20, 1395 (1968).

[8] H. Harari, “Duality Diagrams,” Phys. Rev. Lett. 22, 562 (1969).

[9] J. L. Rosner, “Graphical Form of Duality,” Phys. Rev. Lett. 22, 689 (1969).

[10] L. Susskind and G. Frye, “Algebraic Aspects of Pionic Duality Diagrams,” Phys. Rev. D1, 1682 (1970).

[11] L. Susskind, “Structure of Hadrons Implied by Duality,” Phys. Rev. D1, 1182 (1970).

[12] R. Hagedorn, “Hadronic Matter Near the Boiling Point,” Nuovo Cim. 56A, 1027 (1968).
[13] L. N. Chang, P. G. O. Freund, and Y. Nambu, “Statistical Approach to the Veneziano Model,” Phys. Rev. Lett. 24, 628 (1970).

[14] K. Huang and S. Weinberg, “Ultimate Temperature and the Early Universe,” Phys. Rev. Lett. 25, 895 (1970).

[15] S. Frautschi, “Statistical Bootstrap Model of Hadrons,” Phys. Rev. D3, 2821 (1971).

[16] G. Veneziano, “Construction of a Crossing-Symmetric Regge-Behaved Amplitude for Linearly Rising Regge Trajectories,” Nuovo Cim. 57A, 190 (1968).

[17] C. Lovelace, “A Novel Application of Regge Trajectories,” Phys. Lett. 28B, 264 (1968).

[18] J. A. Shapiro, “Narrow Resonance Model with Regge Behavior for $\pi\pi$ scattering,” Phys. Rev. 179, 1345 (1969).

[19] J. E. Paton and H. Chan, “Generalized Veneziano Model with Isospin,” Nucl. Phys. B10, 516 (1969).

[20] M. Virasoro, “Alternative Constructions of Crossing-Symmetric Amplitudes with Regge Behavior,” Phys. Rev. 177, 2309 (1969).

[21] K. Bardakci and H. Ruegg, “Reggeized Resonance Model for Arbitrary Production Processes,” Phys. Rev. 181, 1884 (1969).

[22] C. J. Goebel and B. Sakita, “Extension of the Veneziano Formula to N-Particle Amplitudes,” Phys. Rev. Lett. 22, 257 (1969).

[23] H. M. Chan and T. S. Tsun, “Explicit Construction of the N-Point Function in the Generalized Veneziano Model,” Phys. Lett. 28B, 485 (1969).

[24] Z. Koba and H. B. Nielsen, “Reaction Amplitudes for N Mesons, a Generalization of the Veneziano–Bardakci–Ruegg–Virasoro Model,” Nucl. Phys. B10, 633 (1969).

[25] Z. Koba and H. B. Nielsen, “Manifestly Crossing-Invariant Parametrization of the N-Meson Amplitude,” Nucl. Phys. B12, 517 (1969).

[26] J. A. Shapiro, “Electrostatic Analog for the Virasoro Model,” Phys. Lett. 33B, 361 (1970).

[27] S. Fubini and G. Veneziano, “Level Structure of Dual Resonance Models,” Nuovo Cim. 64A, 811 (1969).
[28] S. Fubini, D. Gordon, and G. Veneziano, “A General Treatment of Factorization in Dual Resonance Models,” Phys. Lett. 29B, 679 (1969).

[29] K. Bardakci and S. Mandelstam, “Analytic Solution of the Linear-Trajectory Bootstrap,” Phys. Rev. 184, 1640 (1969).

[30] S. Fubini and G. Veneziano, “Duality in Operator Formalism,” Nuovo Cim. 67A, 29 (1970).

[31] M. Virasoro, “Subsidiary Conditions and Ghosts in Dual Resonance Models,” Phys. Rev. D1, 2933 (1970).

[32] E. Del Giudice and P. Di Vecchia, Nuovo Cim. 70A, 579 (1970).

[33] S. Fubini and G. Veneziano, “Algebraic Treatment of Subsidiary Conditions in Dual Resonance Models,” Ann. Phys. 63, 12 (1971).

[34] D.B. Fairlie and K. Jones, “Integral Representations for the Complete Four and Five-point Veneziano Amplitudes,” Nucl. Phys. B17, 323 (1969).

[35] Y. Nambu, “Quark Model and the Factorization of the Veneziano Model,” p. 269 in Proc. Intern. Conf. on Symmetries and Quark Models, ed. R. Chand, Wayne State Univ., 1969 (Gordon and Breach, NY 1970).

[36] Y. Nambu, “Duality and Hadrodynamics” Notes prepared for the Copenhagen High Energy Symposium (1970).

[37] Broken Symmetry: selected papers of Y. Nambu, eds. T. Eguchi and K. Nishijima, World Scientific (1995).

[38] L. Susskind, “Harmonic Oscillator Analogy for the Veneziano Amplitude,” Phys. Rev. Lett. 23, 545 (1969).

[39] L. Susskind, “Dual-Symmetric Theory of Hadrons I,” Il Nuovo Cim. 69A, 457 (1970).

[40] G. Frye, C. W. Lee, and L. Susskind, “Dual-Symmetric Theory of Hadrons. II - Baryons,” Il Nuovo Cim. 69A, 497 (1970).

[41] H. B. Nielsen, “An Almost Physical Interpretation of the N-Point Veneziano Model,” submitted to Proc. of the XV Int. Conf. on High Energy Physics (Kiev, 1970), unpublished.
[42] D. B. Fairlie and H. B. Nielsen, “An Analogue Model for KSV Theory,” Nucl. Phys. B20, 637 (1970).

[43] B. Sakita and M. A. Virasoro, “Dynamical Model of Dual Amplitudes,” Phys. Rev. Lett. 24, 1146 (1970).

[44] H. B. Nielsen and P. Olesen, “A Parton View on Dual Amplitudes,” Phys. Lett. 32B, 203 (1970).

[45] H. B. Nielsen and L. Susskind, CERN preprint TH1230 (1970), unpublished.

[46] H. B. Nielsen, L. Susskind, and A. B. Kraemmer, “A Parton Theory Based on the Dual Resonance Model,” Nucl. Phys. B28, 34 (1971).

[47] H. B. Nielsen, “Connection Between the Regge Trajectory Universal Slope α' and the Transverse Momentum Distribution of Partons in Planar Feynman Diagram Model,” Phys. Lett. 35B 515 (1971).

[48] Y. Aharonov, A. Casher, and L. Susskind, “Dual Parton Model for Mesons and Baryons,” Phys. Lett. 35B, 512 (1971).

[49] S. H. Noskowicz and L. Susskind, “The Distribution of Partons in a Hadron,” Nucl. Phys. B36, 99 (1972).

[50] L. Susskind, “Applications of the Dual-Parton Model to High-Energy Multiparticle Processes,” Phys. Rev. D6, 894 (1972).

[51] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B72, 461 (1974).

[52] L. N. Chang and F. Mansouri, “Dynamics Underlying Duality and Gauge Invariance in the Dual-Resonance Models,” Phys. Rev. D5, 2535 (1972).

[53] F. Manouri and Y, Nambu, “Gauge Conditions in Dual Resonance Models,” Phys. Lett. 39B, 375 (1972).

[54] P. Goddard, J. Goldstone, C. Rebbi and C. B. Thorn, “Quantum Dynamics of a Massless Relativistic String,” Nucl. Phys. B56, 109 (1973).

[55] S. Mandelstam, “Interacting String Picture of Dual Resonance Models,” Nucl. Phys. B64, 205 (1973).
[56] K. Kikkawa, B. Sakita and M. A. Virasoro, “Feynman-like diagrams compatible with duality. I: Planar diagrams,” Phys. Rev. 184, 1701 (1969).

[57] K. Kikkawa, B. Sakita, M. A. Virasoro and S. A. Klein, “Feynman-like diagrams compatible with duality. II: General discussion including nonplanar diagrams,” Phys. Rev. D1, 3258 (1970).

[58] D. J. Gross, A. Neveu, J. Scherk, and J. H. Schwarz, “The Primitive Graphs of Dual Resonance Models,” Phys. Lett. 31B, 592 (1970).

[59] D. J. Gross, A. Neveu, J. Scherk, and J. H. Schwarz, “Renormalization and Unitarity in the Dual Resonance Model,” Phys. Rev. D2, 697 (1970).

[60] D. J. Gross and J. H. Schwarz, “Basic Operators of the Dual Resonance Model,” Nucl. Phys. B23, 333 (1970).

[61] J. C. Gallardo and L. Susskind, “Dual-Symmetric Loop Diagrams from the Harmonic-Oscillator Model,” Phys. Rev. D1, 1186 (1970).

[62] J. C. Gallardo, E. J. Galli, and L. Susskind, “Structure of Hadrons. II. Nonplanar Diagrams,” Phys. Rev. D1, 1189 (1970).

[63] A. Neveu and J. Scherk, “Parameter-Free Regularization of One-Loop Unitary Dual Diagram,” Phys. Rev. D1, 2355 (1970).

[64] G. Frye and L. Susskind, “Removal of the Divergence of a Planar Dual-Symmetric Loop,” Phys. Lett. 31B, 537 (1970).

[65] G. Frye and L. Susskind, “Non-Planar Dual Symmetric Loop Graphs and the Pomeron,” Phys. Lett. 31B, 589 (1970).

[66] P. H. Frampton, P. Goddard and D. A. Wray, “Perturbative Unitarity of Dual Loops,” Nuovo Cim. A3, 755 (1971).

[67] C. Lovelace, “Pomeron Form Factors and Dual Regge Cuts,” Phys. Lett. 34B, 500 (1971).

[68] E. Cremmer and J. Scherk, “Factorization of the Pomeron Sector and Currents in the Dual Resonance Model,” Nucl. Phys. B50, 222 (1972).

[69] J. A. Shapiro, “Loop Graph in the Dual Tube Model,” Phys. Rev. D5, 1945 (1972).