Força muscular e resistência aeróbia: existem diferenças de desempenho físico durante as fases de dois ciclos menstruais?

Muscular strength and aerobic resistance: are there differences of physical performance during the stages of two menstrual cycles?

Isadora Cristina Ribeiro1*, Leonardo Henrique Fernandes Carvalho2, Anderson Souza Oliveira3, Carlos Roberto Padovani4, João Paulo Borin5.

1. Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.
2. Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, SP, Brasil.
3. Aalborg University, Aalborg, Dinamarca.
4. Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP, Brasil.
5. Universidade Estadual de Campinas, Campinas, SP, Brasil.

RESUMO
Introdução: O ciclo menstrual tem sido apontado como um possível fator de interferência no treinamento físico, porém a relação entre suas diferentes fases e o desempenho físico tem sido alvo recente de investigação.

Objetivo: verificar o desempenho físico nas capacidades biomotoras de resistência aeróbia e força muscular durante as fases do ciclo menstrual.

Métodos: Durante dois ciclos menstrual, 12 mulheres saudáveis, ativas e usuárias de contraceptivos orais foram submetidas a um protocolo de treinamento e foram avaliadas quanto ao desempenho físico em cada fase de cada ciclo menstrual por meio dos testes: Yo Yo Test 1 e teste de uma repetição máxima (1RM) para os exercícios: cadeira extensora, supino reto, cadeira flexora e remada.

Resultados: Houve redução do desempenho no teste de resistência na fase folicular para ambos os ciclos menstrual avaliados. Já o comportamento da força muscular apresentou-se significativamente maior (p<0,05) no segundo ciclo para os exercícios supino reto e cadeira flexora.

Conclusão: o desempenho na capacidade de resistência em mulheres ativas, quando avaliado em dois ciclos menstruais, é menor na fase folicular, e que o desempenho de força muscular não foi influenciado pelas fases do ciclo menstrual.

Palavras-chave: Aptidão física, Exercício, Mulheres.

ABSTRACT
Introduction: The menstrual cycle has been pointed as a possible factor of interference in the physical training, but the relation between its different phases and the physical performance has been recent target of investigation.

Aim: to verify the physical performance in the motor capacities of aerobic resistance and muscular strength during the menstrual cycle phases.

Methods: During two complete menstrual cycles, 12 healthy, active and oral contraceptive women underwent a training protocol. During training were evaluated for physical performance in each phase of each cycle through the tests: Yo Yo Test 1 and one repetition maximum test (1RM) for exercises in the leg extension, bench press, leg curl and rower machine.

Results: There was reduction of the resistance performance in the follicular phase for both menstrual cycles evaluated. The behavior of muscle strength was significantly higher in the second cycle for the bench press and leg curl exercises.

Conclusion: the performance on resistance capacity in active women, when evaluated in two menstrual cycles, is lower in the follicular phase, while the muscular strength performance was not influenced by the menstrual cycle phases.

Key-words: Physical fitness, Exercise, Women.
Introdução

Nos últimos anos a possível influência do ciclo menstrual (CM) sobre o desempenho físico (DF) tem sido uma preocupação para atletas, profissionais da área da saúde e pesquisadores. As flutuações hormonais, naturais desse processo, produzem respostas fisiológicas de acordo as fases do CM e podem levar a modificações na performance de exercícios físicos [1]. O CM é o resultado dos eventos coordenados pelo eixo hipotalâmico-hipofisário-ovariano e divide-se nas fases: Folicular, Ovulatoria e Lútea. Durante a fase folicular as concentrações sanguíneas de estrógeno e progesterona são baixas e na fase lútea são elevadas, já na fase ovulatoria a concentração de estrógeno é elevada e a de progesterona é baixa. As flutuações hormonais provocam respostas no organismo tais como alterações psicológicas, renais, de peso corporal, de metabolização de substratos e afetam o sistema cardiovascular, os ossos, o cérebro, a termorregulação e a ventilação [1,2].

Apesar das possíveis alterações fisiológicas frente ao exercício físico, Lebrun [1] demonstra não ter encontrado diferenças significativas na literatura quanto a capacidade aeróbica, anaeróbica ou de força muscular entre as fases do CM. Por outro lado, estudos sugerem que a variação hormonal deste período favorece o DF nos exercícios durante a fase ovulatoria e leva a um menor DF durante a fase lútea, sendo uma das justificativas o aspecto catabólico da progesterona e anabólico do estrógeno [3-5]. Estudos que avaliam o DF em resistência aeróbica defendem que as flutuações hormonais durante o CM não afetam significativamente o DF [1,6-8]. Porém há relatos de que durante a fase lútea ocorra uma redução do DF [9] ou melhora da recuperação do consumo de oxigênio [10].

Quanto a capacidade de força muscular, Thompson [11] sugere que as alterações hormonais do CM podem influenciar no DF, uma vez que os receptores de estrogênio e progesterona estão identificados nos músculos esqueléticos. É documentado um maior desempenho de força muscular durante a fase lútea do CM por Loureiro [12] e durante a fase folicular por Wikström-Frisén [13]. Por outro lado, há relatos de diminuição da força muscular durante a fase folicular [11,14,15], e estudos que indicam que não houve diferenças significativas no desempenho de força muscular entre as fases do CM [6,12,15-20].

As divergências encontradas em relação ao DF nas diferentes fases do CM podem estar relacionadas às diferenças metodológicas entre os estudos. Além disso, a maioria dos estudos avaliam o DF em apenas um CM, limitando o entendimento das fases desse ciclo em períodos estendidos. Sendo assim, estudos que abordem o CM como um processo periódico acerca de múltiplos ciclos são relevantes para demonstrar potenciais flutuações de DF em capacidades biomotoras entre ciclos. Portanto, o presente estudo tem como objetivo investigar a influência das fases do CM no desempenho das capacidades motoras: resistência aeróbica e força muscular de MMII e MMSS, em um período de dois ciclos menstruais (CMs).

Métodos

Trata-se de um estudo prospectivo de corte transversal, aprovado pelo Comitê de Ética em Pesquisa da Universidade Estadual de Campinas (CEP – UNICAMP) sob número de aprovação número de aprovação 2.678.716, CAAE: 87128617.2.0000.5404.
Amostra
Participaram deste estudo 12 mulheres universitárias, saudáveis, com idade média de 26 ± 3,7 anos e fisicamente ativas, praticantes da modalidade de dança. Além disso, faziam uso de anticoncepcional oral (de diversas marcas) há no mínimo seis meses, sendo do tipo de ingestão de 21 dias e pausa de 7 dias, ou de ingestão de 24 dias e pausa de 4 dias ou ainda de ingestão diária contínua.

O nível de atividade física foi determinado através de autorrelato simples sobre a prática de atividade física semanal e foram utilizados como critérios de inclusão, através de autorrelato: fazer o uso de anticoncepcional oral com o propósito de regular e manipular o CM [21] e ser fisicamente ativa (praticar exercício físico por pelo menos duas vezes na semana). Para os critérios de exclusão foram considerados: possuir doença cardiovascular, neuromuscular ou patologia em tratamento.

Após a seleção das voluntárias, as participantes foram esclarecidas acerca da pesquisa e somente foram incluídas no projeto após a leitura e assinatura do Termo de Consentimento Livre e Esclarecido.

Protocolo experimental
Durante duas semanas antecedentes a coleta de dados, foi feita uma familiarização incluindo os testes de desempenho e exercícios propostos para treinamento, sendo um encontro semanal para cada e seguindo de forma idêntica os protocolos da coleta de dados. Além disso, estabeleceu-se conhecimento sobre qual fase do CM as voluntárias se encontravam.

Ao longo de oito semanas, completando um período de dois CMs consecutivos, em dois encontros semanais de 60 minutos, as voluntárias fizeram um treinamento das capacidades motoras (resistência aeróbia e força muscular) e foram avaliadas em testes de desempenho ao final de cada fase do CM. Portanto, o teste de desempenho incluiu um terceiro encontro semanal para as semanas em que a fase do CM se alterava.

Nesse período, as voluntárias fizeram somente os exercícios propostos pelo projeto, evitando a influência de outras práticas físicas sobre os resultados de desempenho. Todos os encontros aconteceram no período matutino, mantendo o mesmo horário por voluntária. A ordem dos procedimentos de coleta de dados de treinamento das capacidades e de testes de desempenho são mostrados na Figura 1A e 1B.

Treinamento das capacidades biomotoras: Para o treinamento de resistência foi prescrito corrida contínua em espaço aberto. Em seguida, para força foram prescritos exercícios de grande grupo muscular, com intervalo de um minuto entre as séries e entre os exercícios. Além disso, a carga utilizada foi baseada na porcentagem de repetição máxima (1RM) do último teste feito pela voluntária. Na primeira vez, foi estimada a carga com base no último teste feito durante a familiarização (Figura 1A).

Testes de desempenho físico (Figura 1B): O primeiro dia de testes ocorreu na fase folicular, entre o terceiro e o quinto dia do CM (no primeiro ciclo chamado de fase folicular 1 (FOL1) e no segundo ciclo fase folicular 2 (FOL2). Já o segundo dia de testes ocorreu na fase ovulatória, entre o nono e o 10º dia do CM, (OVU1 e OVU2 respectivamente). E por fim, o terceiro dia de testes ocorreu na fase lútea, entre 17º e o 21º dia do CM, (LUT1 e LUT2) [12]. Nos dias de realização dos testes de desempenho as voluntárias não fizeram nenhum outro esforço físico intenso.

Para a capacidade de resistência foi aplicado o Yo Yo Test 1 (Yo-Yo Intermittent Recovery Test - Level 1) [22] com objetivo de avaliar a capacidade de deslocamento (em metros) em alta intensidade repetidas vezes. Esse teste consiste na realização de dois percursos de 20 metros cada (ida e volta) em uma variação de dificuldade cres-
Os deslocamentos são anunciados por um sinal sonoro e tem um intervalo de recuperação de 10 segundos entre eles. As voluntárias realizaram o maior número de idas e voltas que conseguiram. A finalização do teste ocorreu quando a participante não alcançou por duas vezes seguidas a marcação de 20 metros dentro do tempo solicitado, indicando um desgaste físico.

Para avaliar a capacidade de força muscular utilizou-se o teste de uma repetição máxima (1RM) [23]. Antes de sua execução, foi feito um aquecimento de oito repetições com 50% da carga do 1RM apresentado no teste anterior, seguido de três repetições a 70% de 1RM. Para o primeiro teste, a carga de aquecimento foi estipulada de modo que a participante conseguisse completar a série com facilidade. O teste de 1RM mediu a carga máxima na qual se podia realizar uma única repetição com a técnica correta, não sendo possível executar uma segunda repetição e para cada tentativa manteve-se um intervalo de cinco minutos.

Os testes de DF foram realizados na mesma ordem do treinamento, porém respeitando a pausa mínima necessária para a recuperação da voluntária, diminuindo a influência de uma capacidade sob a outra: após o Yo Yo Test 1 houve um intervalo de 10 minutos antes dos testes de 1RM. Entretanto, ainda existe influência de uma capacidade sobre a outra na realização dos testes em um mesmo dia, pois a reserva energética para realização do teste de 1RM é menor após o Yo Yo Test 1.

Análise estatística

As variáveis dependentes do presente estudo são: tempo de execução do YoYo-Test, e força máxima (1RM) nos exercícios cadeira extensora, supino reto, cadeira flexora e remada. Todas as variáveis serão apresentadas como média ± 1 desvio padrão. A normalidade das variáveis dependentes foi verificada pelo teste de Shapiro-Wilk. Para verificar os efeitos do ciclo menstrual (Ciclo 1 vs. Ciclo 2) e da fase do CM (FOL...
vs. OVU vs. LUT), foi utilizada a ANOVA 2-way para medidas repetidas, utilizando o software SPSS (Versão 24, SPSS, Inc., Chicago, IL, USA). No caso de efeito significante da fase de CM, testes de Bonferroni foram utilizados para análise post-hoc. O nível de significância foi estabelecido em p<0,05, e foram reportados os valores de F e effect size (partial ETA square) para a ANOVA 2-way em caso de efeitos significantes.

Resultados

Foi encontrado efeito significante para as fases do CM na distância percorrida durante o Yo Yo Test 1 (F(2,10) = 7,159, effect-size = 0,394, p<0,05, Figura 2). A análise de post-hoc demonstrou que a distância percorrida é menor durante a fase FOL em comparação às fases OVU (p<0,05) e LUT (p<0,05). Não houve efeito significante do CM, nem interação entre CM vs fase do ciclo para esta variável.

![Figura 2 - Média (DP) da distância percorrida durante o Yo Yo Test 1 nos CMs 1 e 2, subdivididos nas fases folicular (FOL1 e FOL2), ovulatória (OVU1 e OVU2) e lútea (LUT1 e LUT2). † denota diferença significante em relação à fase ovulatória e lútea (p<0,05).](image)

Houve um efeito significante do CM na carga máxima do supino reto (F(1,11) = 24,497, effect-size = 0,690, p <0,0001, Figura 3B), e da cadeira flexora (F(1,11) = 9,158, effect-size = 0,454, p<0,05, Figura 3C). Para ambas as variáveis, a carga máxima foi maior no segundo CM em comparação com o primeiro. Não houve efeito da fase do CM para os exercícios cadeira extensora (p = 0,08 [Figura 3A], considerado tendência), e remada (p = 0,727, Figura 3D). Não houve efeito significante da fase do CM, bem como interação entre CM vs fase do ciclo para nenhuma variável de força muscular.
Discussão

Este estudo destaca-se por avaliar um período maior do que um CM, avaliar simultaneamente mais de uma capacidade biomotora e possuir um protocolo de treinamento durante o período de análise. Em relação a capacidade de resistência, os resultados apresentados apontam um desempenho menor na fase folicular do que nas fases ovulatória e lútea em ambos os CMs avaliados. Além disso, não houve diferenças significativas de desempenho de resistência entre os ciclos, provavelmente devido ao treinamento aplicado, que não levou a adaptações suficientes para gerar diferenças de desempenho entre um ciclo e outro.

O desempenho menor na fase folicular em relação as outras fases, encontrado em ambos os ciclos, pode ser justificado por ter sido avaliado no início da fase folicular. Nesse período ocorre a menstruação da mulher, podendo levá-la a um desconforto natural devido ao fluxo sanguíneo e inchaço, gerando menor disposição para a atividade física [24]. As concentrações sanguíneas de estrógeno estão baixas, e sendo este um hormônio associado a produção de serotonina, neurotransmissor que regula humor, apetite, sono e outras variáveis fisiológicas, o ânimo e a motivação para fazer os exercícios físicos pode ser mais baixo, além da possibilidade da presença de cólicas menstruais que também influenciam na prática de atividades físicas [24,25].

Alguns estudos que avaliaram apenas um CM se contrapõem aos nossos achados. Julian et al. [9] investigaram o desempenho de resistência nas diferentes fases do CM por meio do teste Yo-Yo Intermittent endurance test (Yo-Yo IET) e encontraram menor desempenho na fase lútea em relação à folicular. Na mesma direção Silva et al. [6], utilizando o Yo-Yo Test 1, não encontraram diferenças de desempenho entre as fases do CM. Ambos os estudos se assemelham quanto ao método de avaliação, porém se diferem do nosso estudo quanto à população investigada, sendo atletas de futebol (n = 9) e mulheres treinadas em exercícios resistidos (n = 11), respectivamente. Resul-
tados semelhantes foram encontrados por estudos que utilizam outros métodos de avaliação da capacidade de resistência e que avaliam mulheres com diferentes níveis de treinamento [17,8].

Em relação às mulheres fisicamente ativas, Middleton [10] sugere melhor recuperação do VO2 durante a fase lútea, entretanto difere-se quanto aos objetivos de investigação, bem como quanto aos métodos de avaliação do desempenho e da divisão de fases do CM. Nossos resultados deixam mais claro a relação entre o CM e o desempenho em resistência aeróbia em mulheres fisicamente ativas, por avaliar essa população ainda não investigada nesse sentido anteriormente, e por ser um estudo pioneiro na avaliação do desempenho de resistência em dois CMs.

Diferentemente do observado nos resultados de desempenho de resistência, os dados obtidos sobre a capacidade de força muscular apontam uma melhora significativa de desempenho no segundo ciclo para os exercícios supino reto e cadeira flexora, o que não foi observado para a cadeira extensora e remada. A melhora do desempenho de força nos exercícios de um CM para o outro pode ser justificada pela adaptação neural ao treinamento e ao ganho de força, conforme o protocolo de treinamento aplicado [4]. De modo que, se um período maior que dois ciclos, provavelmente relatariam aumento de desempenho também para os exercícios remada e cadeira extensora (que apresentou uma tendência de aumento).

Além disso, em nossos resultados não foram observadas diferenças significativas de desempenho entre as fases do CM e exercícios de força. De acordo com os estudos que avaliam um único CM, mulheres fisicamente ativas [16], treinadas em exercícios resistidos, pelo teste de carga [18], e mulheres fisicamente ativas [17], treinadas em exercícios aeróbios [17] e atletas [20] através do dinamômetro isocinético. Esses achados, junto aos nossos resultados indicam que as fases do CM não influenciam no desempenho de força avaliado por diferentes métodos e em mulheres de diversos níveis de aptidão física.

Em contrapartida, estudos apontam para uma diminuição no desempenho de força de mulheres fisicamente ativas [11,15] e de mulheres treinadas em exercícios resistidos [14] durante a fase folicular. Entretanto, utilizam outros métodos de avaliação da força, como avaliação da força isométrica, teste de 8RM e volume total de carga utilizada, respectivamente. A divergência de resultados entre estes estudos pode se justificar pelas diferenças metodológicas apresentadas. Destaca-se ainda que os estudos supracitados avaliam apenas um CM.

Assim como o presente estudo, Fridén [19] investigou o desempenho de força de mulheres fisicamente ativas (n = 10) durante dois CMs. Entretanto, foram utilizados os testes de força de preensão manual, força muscular isocinética na cadeira extensora, e não foi aplicado um protocolo de treinamento específico durante o período de análise e as voluntárias não faziam uso de contraceptivo oral. Como resultados não foram encontradas diferenças significativas entre as fases do CM para nenhuma variável em ambos os CMs avaliados, aproximando-se dos nossos achados. Deste modo, sugere-se que em mulheres fisicamente ativas, quando avaliadas por dois CMs, independentemente do método de avaliação da força muscular, do uso ou não de contraceptivos orais, da aplicação ou não de um protocolo de treinamento, não ocorre influência das fases do CM sob o desempenho de força.

Apontamos como limitações deste estudo o não controle da intensidade do treinamento de resistência, o que interferiu no progresso do desempenho físico para essa capacidade biomotora, além do número baixo de participantes. Novos estudos são sugeridos a fim de compreender como a avaliação por diferentes métodos poderia influenciar nos resultados de desempenho de força.
Conclusão

O presente estudo demonstrou que mulheres fisicamente ativas apresentam alterações distintas em resistência aeróbia e força muscular quando dois ciclos menstruais (e suas fases) são comparados. O desempenho de resistência aeróbia foi menor na fase folicular em ambos os ciclos avaliados, enquanto a força muscular não se alterou de forma significativa entre as diferentes fases do ciclo menstrual. Além disso, ao comparar um ciclo menstrual e outro, nota-se um aumento significativo no desempenho de força, mas não no desempenho de resistência aeróbia.

Agradecimentos
Os autores agradecem ao Espaço da Escrita - Pró-Reitoria de Pesquisa - UNICAMP - pelos serviços de idiomas prestados e pelo Programa de Iniciação Científica Voluntária (PICV).

Potencial conflito de interesse
Nenhum conflito de interesses com potencial relevante para este artigo foi reportado.

Fontes de financiamento
Não houve fontes de financiamento externas para este estudo.

Contribuição dos autores
Concepção e desenho da pesquisa: Borin JP, Ribeiro IC. Obtenção de dados: Ribeiro IC, Carvalho LHF. Análise e interpretação dos dados: Ribeiro IC, Oliveira ASC, Borin JP. Análise estatística: Oliveira ASC, Padovani CR. Obtenção de financiamento: Não se aplica. Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Ribeiro IC, Borin JP.

Referências

1. Lebrun CM, Rumball JS. Relationship between athletic performance and menstrual cycle. Curr Women Health Rep 2001;1(3):232-240.
2. Constantini NW, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med 2005;24(2):e51-e82. https://doi.org/10.1016/j.csm.2005.01.003
3. Guyton AC, Hall JE. Fisiologia humana e mecanismo das doenças. 6a ed. Guanabara Koogan; 1999.
4. Fleck SJ, Kraemer WJ. Fundamentos do treinamento de força muscular. 3a ed. Porto Alegre: Artmed; 2006.
5. Timon R, Corvillo M, Brazo J, Robles MC, Maynar M. Strength training effects on urinary steroid profile across the menstrual cycle in healthy women. Eur J Appl Physiol 2013;113(6):1469-75. https://doi.org/10.1007/s00421-012-2575-6
6. Silva JD, Farias DA, de Azevedo Raiol R, Estevam ECM, Coswig VS. Efeitos das fases do ciclo menstrual e da síndrome pré-menstrual sobre a aptidão física e percepção subjetiva de esforço em mulheres jovens. Pensar Prát 2018;21(3). https://doi.org/10.5216/rpp.v21i3.49976
7. Wiecek M, Szymura J, Maciejczyk M, Cempla J, Szygula Z. Effect of sex and menstrual cycle in women on starting speed, anaerobic endurance and muscle power. Acta Physiol Hung 2016;103(1):127-32. https://doi.org/10.1556/036.103.2016.1.13
8. Lamina S, Hanif S, Muhammed H. Influence of menstrual cycle on maximal aerobic power of young female adults. African J Physio Rehab Sci 2011;3(1):36-41. https://doi.org/10.4314/ajprs.v3i3.7
9. Julian R, Hecksteden A, Fullagar HH, Meyer T. The effects of menstrual cycle phase on physical performance in female soccer players. PloS One 2017;12(3):e0173951. https://doi.org/10.1371 / journal.pone.0173951
10. Middleton LE, Wenger HA. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur J Appl Physiol 2006;96(1):53-8. https://doi.org/10.1007 / s00421-005-0073-9
11. Thompson B, Sculley D, Hands D, de Jonge XJ. The acute effect of the menstrual cycle and oral contraceptive cycle on responses to a resistance training session. J Sci Med Sport 2019;2:S31-S32. https://doi.org/10.1016/j.jsams.2019.08.196
12. Loureiro S, Dias I, Sales D, Alessi I, Simão R, Fermino RC. Effect of different phases of the menstrual cycle on the performance of muscular strength in 10RM. Rev Bras Med Esporte 2011;17(1):22-5. https://doi.org/10.1590/S1517-86922011000100004

13. Wikström-Frisén L, Boraxbekk CJ, Henriksson-Larsén K. Effects on power, strength and lean body mass of menstrual/oral contraceptive cycle based resistance training. J Sport Med Phys Fit 2017;57(1-2):43-52. https://doi.org/10.23736/S0022-4707.16.05848-5

14. Lopes CR, Crisp AH, da Mota GR, Avanço GA, Verlengia R. A fase folicular influencia a performance muscular durante o periodo de treinamento de forca. Pensar Prát 2013;16(4). https://doi.org/10.5216/rpp.v16i4.19660

15. Simão R, Maior AS, Nunes APL, Monteiro L, Chaves CPG. Variações na força muscular de membros superior e inferior nas diferentes fases do ciclo menstrual. Rev Bras Ciênc Mov 2008;15(3):47-52. https://doi.org/10.18511/rbcm.v15i3.759

16. Dibrezzo RO, Fort IL, Brown B. Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Ther 1988;10(4):113-16. https://doi.org/10.2519 / jospt.1988.10.4.113

17. Lebrun CM, McKenzie DC, Prior JC, Taunton JE. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 1995;27(3):437-44. https://doi.org/10.1249/00005768-199503000-00022

18. Romero-Moraleda B, Del Coso J, Gutiérrez-Hellín J, Ruiz-Moreno C, Grgic J, Lara B. The influence of the menstrual cycle on muscle strength and power performance. J Hum Kinet 2019;68(123). https://doi.org/10.2478 / hukin-2019-0061

19. Fridén C, Hirschberg AL, Saartok T. Muscle strength and endurance do not significantly vary across 3 phases of the menstrual cycle in moderately active premenopausal women. Clin J Sport Med 2003;13(4):238-41. https://doi.org/10.1097/00042752-200307000-00007

20. Jonge XJ, Bota CRL, Thom JM, Ruell PA, Thompson MW. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 2001;530(1):161-6. https://doi.org/10.1111 / j.1469-7793.2001.0161m.x

21. Bennell K, White S, Crossley K. The oral contraceptive pill: a revolution for sportswomen?. Br J Sports Med 1999;33(4):231-38. https://doi.org/10.1136/bjsm.33.4.231

22. Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test. Sports Med 2008;38(1):37-51. https://doi.org/10.2165 / 00007256-20083801-00004

23. Brown LE, Weir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exerc Physiol Online 2001;4(3). https://doi.org/10.1590/S1517-86922007000100007

24. Findlay RJ, Macrae EHR, Whyte IY, Easton C, Forrest Née Whyte LJ. How the menstrual cycle and menstruation affect sporting performance: experiences and perceptions of elite female rugby players. Br J Sports Med 2020. https://doi.org/10.1136/bjsports-2019-101486

25. Neis C, Pizzi, J. Influências do ciclo menstrual na performance de atletas: Revisão de literatura. Arq Ciências saúde UNIPAR 2018;22(2). https://doi.org/10.25110/arqsaude.v22i2.2018.6260