An upright circular cylindrical rigid tank performs a small-magnitude prescribed periodic horizontal motion, which is described by the two generalized coordinates $\eta_1(t)$ and $\eta_2(t)$ (r_0 is the tank radius) as shown in fig. 1. Those tank motions are relevant for bioreactors [1]. In contrast to industrial containers whose dimensions are relatively large, the bioreactors have $r_0 \approx (5-10) [\text{cm}]$ that requires accounting for the damping associated with a laminar boundary layer and the bulk viscosity.

The problem is studied in the nondimensional statement provided by the characteristic size r_0 and time $1/\sigma$, where σ is the forcing frequency close to the lowest natural sloshing frequency. Whereas the undamped sloshing implies coexisting the co-directed (with forcing) and counter-directed angular progressive waves (swirling), the damping makes the counter-directed swirling impossible as the forcing orbit tends to a circle.

Keywords: sloshing, damping, steady-state waves.

An upright circular cylindrical rigid tank performs a small-magnitude prescribed periodic horizontal motion, which is described by the two generalized coordinates $\eta_1(t)$ and $\eta_2(t)$ (r_0 is the tank radius) as shown in fig. 1. Those tank motions are relevant for bioreactors [1]. In contrast to industrial containers whose dimensions are relatively large, the bioreactors have $r_0 \approx (5-10) [\text{cm}]$ that requires accounting for the damping associated with a laminar boundary layer and the bulk viscosity.

The problem is studied in the nondimensional statement provided by the characteristic size r_0 and time $1/\sigma$, where σ is the forcing frequency close to the lowest natural sloshing frequency σ_{11}. The nondimensional forcing magnitude is small, i.e. $\eta_i(t) = O(\varepsilon), i = 1, 2$. Fig. 1 illustrates the adopted nomenclature. The unknowns, ζ and Φ (the velocity potential), are defined in the tank-fixed coordinate system and can be found from either the corresponding free-surface problem or its equivalent variational formulation. Using the Fourier-type representation (in the cylindrical coordinates)

$$
\zeta(r, \theta, t) = \sum_{M, i} \int M(k_Mr) \cos(M\theta) p_{M_i}(t) + \sum_{m, i} \int m(k_m r) \sin(m\theta) r_{m}(t)
$$

makes it possible to derive an approximate system of ordinary differential equations (nonlinear modal equations [2]) with respect to the free-surface generalized coordinates $p_{M_i}(t)$.
The damped sloshing in an upright circular tank due to an orbital forcing

and $r_m(t)$; here, $J_M(\cdot)$ is the Bessel functions of the first kind, k_{Mi} are the radial wave numbers ($J'_M(k_{Mi}) = 0$), and
\[
\sigma_{Mi} = \sqrt{[k_{Mi} \tanh(k_{Mi}h)]g / \rho_0}
\]
are the dimensional natural sloshing frequencies (g is the gravity acceleration).

Furthermore, the nonlinear Narimanov—Moiseev-type modal system [2] (the infinite-dimensional system of ordinary differential equations with respect to $p_{Mi}(t)$ and $r_{mi}(t)$) is equipped with the linear damping terms
\[
2\xi_{Mi} \sigma_{Mi} p_{Mi} \quad \text{and} \quad 2\xi_{Mi} \sigma_{Mi} r_{Mi},
\]
where the damping coefficients ξ_{Mi} are taken according to the formula by Miles [3], which provides a rather accurate theoretical prediction of the logarithmic decrements of the natural sloshing modes due to the boundary layer and the bulk viscosity. The 2π-periodic solutions of the modified modal system describe the resonant steady-state sloshing. To find the asymptotic steady-state solutions, we use the Bubnov—Galerkin procedure [2, 4] by posing the lowest-order components of the primary resonantly excited modes as

\[
p_{11}(t) = a \cos t + \bar{a} \sin t + O(\varepsilon), \quad r_{11}(t) = \bar{b} \cos t + b \sin t + O(\varepsilon),
\]

where the nondimensional amplitudes a, \bar{a}, \bar{b}, and b are of $O(\varepsilon^{1/3})$. Having known these amplitudes approximates the steady-state free-surface elevations as the superposition of the two out-of-phase angular modes

\[
\zeta(r, \theta, t) = J_1(k_{11}r)[(a \cos \theta + \bar{b} \sin \theta) \cos t + (\bar{a} \cos \theta + b \sin \theta) \sin t] + O(\varepsilon^{1/3}),
\]

which implies the so-called swirling (angular progressive wave) unless $(a \cos \theta + \bar{b} \sin \theta)$ and $(\bar{a} \cos \theta + b \sin \theta)$ are congruent patterns ($\Leftrightarrow ab = \bar{a}\bar{b}$). The latter means that (3) determines a standing wave. Occurrence of swirling and standing waves was in many details discussed in [2, 4—6].

The Bubnov—Galerkin procedure leads to a necessary solvability condition with respect of a, \bar{a}, \bar{b}, and b appearing as a system of nonlinear algebraic equations [2, 4, 5]. To describe the steady-state sloshing, we should solve the system for any $\sigma_{11} = \sigma_{11} / \sigma$ close to 1. The first Lyapunov method can be used to study the stability. The algebraic system is rederived in terms of the integral amplitudes A, B (the main wave elevation components in the Ox and Oy directions, respectively) and the phase-lags ψ, ϕ:

\[
A = \sqrt{a^2 + \bar{a}^2} \quad \text{and} \quad B = \sqrt{b^2 + \bar{b}^2}
\]

\[
a = A \cos \psi, \quad \bar{a} = A \sin \psi, \quad \bar{b} = B \cos \phi, \quad \bar{b} = B \sin \phi,
\]

\[
\text{ISSN 1025-6415. Допов. Нац. акад. наук України. 2017. № 10}
\]

49
Fig. 2. Response curves in the $(\sigma/\sigma_{11}, A, B)$ -space for the longitudinal ($\varepsilon = 0$) harmonic forcing in the Oxz-plane, $h/r_0 = 1.5$, the nondimensional forcing amplitude $\eta_{1a} = 0.01$ ($\eta_{2a} = 0$). The undamped sloshing ($\xi = 0$) is presented in (a) and the damped case ($\xi = 0.02$) is shown in (b). There is no stable steady-state sloshing between E_1 and E_2, where irregular (chaotic) waves are expected. Curves on (close to) the $(\sigma/\sigma_{11}, A)$-plane correspond to the (almost) planar wave regime

\[\begin{align*}
A[\bar{\sigma}_{11}^2 - 1 + m_1 A^2 + (m_3 - F) B^2] &= \varepsilon_x \cos \psi; \quad A[DB^2 + \xi] = \varepsilon_x \sin \psi; \\
B[\bar{\sigma}_{11}^2 - 1 + m_1 B^2 + (m_3 - F) A^2] &= \varepsilon_y \sin \phi; \quad B[DA^2 - \xi] = \varepsilon_y \cos \phi; \\
F &= (m_3 - m_1) \cos^2 (\alpha) = (m_3 - m_1) / (1 + C^2), \\
D &= (m_3 - m_1) \sin (\alpha) \cos (\alpha) = (m_3 - m_1) C / (1 + C^2),
\end{align*} \]

(5a)

\[\begin{align*}
F &= (m_3 - m_1) \cos^2 (\alpha) = (m_3 - m_1) / (1 + C^2), \\
D &= (m_3 - m_1) \sin (\alpha) \cos (\alpha) = (m_3 - m_1) C / (1 + C^2),
\end{align*} \]

(5b)

where $\alpha = \varphi - \psi$, $C = \tan \alpha$, $0 \leq \varepsilon_y \leq \varepsilon_x \neq 0$, $F(\alpha)$ and $D(\alpha)$ are π -periodic functions of the phase-lags difference α, and $\varepsilon_x, \varepsilon_y$ are linear functions of the forcing amplitudes η_{1a}, η_{2a}. The coefficients m_1 and m_2 are known functions of the liquid depth (see, [2, 4]) but $\xi = 2 \xi_{11}$ (damping rate of the two lowest natural sloshing modes). A special numerical scheme [7] was developed to solve (5), i.e. to describe how the main wave amplitude components A and B change versus σ/σ_{11}.

The undamped resonant steady-state sloshing due to longitudinal excitations along the Ox-axis ($\varepsilon_x > 0, \varepsilon_y = 0, \xi = 0$) was analyzed in [2, 4]. A planar standing wave and the swirling are identified. In terms of (4) and (5) with $\xi = 0$ these imply $B = 0, \sin \psi = 0, C = 0$, and $AB \neq 0, \sin \psi = \cos \varphi = 0$, $(C = \pm \infty)$, respectively. The swirling consists of two identical angular progressive waves occurring in either counter- or clockwise directions, they correspond to $C = +\infty$ and $-\infty$ respectively. Fig. 2, a presents the corresponding response curves. Case (b) shows the linear damping effect with $\xi = 0.02$ The branches belonging (close) to the plane $\sigma/\sigma_{11}, A$ are responsible for the (almost) planar standing wave regime. The regime is stable to the left of E_1 and to the right of E_2. It becomes unstable in a neighborhood of the primary resonance $\sigma/\sigma_{11} = 1$, where the stable swirling (to the right of $H(H_1)$) and irregular waves (the steady-state sloshing is unstable) between E_1 and $H(H_1)$ are predicted. The damping removes infinite points on the response curves of (a), so that the steady-state swirling branching in (b) constitutes an arc pinned
The damped sloshing in an upright circular tank due to an orbital forcing

The response curves for \(\delta = \varepsilon_y / \varepsilon_x > 0 \) in the \((\sigma/\sigma_{11}, A, B)\)-space. The steady-state resonant sloshing is due to an elliptic counterclockwise forcing with \(\eta_{1a} = 0.01, \eta_{2a} = \delta \eta_{1a}; \xi = 0.02 \). All the points on the response curves correspond to the swirling. The bold lines mark the stability.

Fig. 3. Response curves for \(\delta = \varepsilon_y / \varepsilon_x > 0 \) in the \((\sigma/\sigma_{11}, A, B)\)-space. The steady-state resonant sloshing is due to an elliptic counterclockwise forcing with \(\eta_{1a} = 0.01, \eta_{2a} = \delta \eta_{1a}; \xi = 0.02 \). All the points on the response curves correspond to the swirling. The bold lines mark the stability.

at \(E_2 \) and \(P \), which can be treated as bifurcation points, where the swirling emerges from the (almost) planar steady-state wave regime.

In [5], we showed that any orbital small-magnitude periodic tank motions are equivalent, to within the higher-order terms, to an artificial elliptic-type horizontal excitation with \(\varepsilon_y = \delta \varepsilon_x \), \(0 < \delta \leq 1 \). How the response curves of the damped steady-state sloshing change with increasing \(\delta \) is shown in Fig. 3. When \(\delta \neq 0 \), all the steady-state sloshing regimes are of the swirling type. Specifically, there are no identical swirling waves with opposite directions, as it has been in the
A.N. Timokha, I.A. Raynovskyy

longitudinal case (each point on $PH_1H_2E_2$ in Fig. 2, b implies the pair of these waves). The connected branching in Fig. 2, b splits into the response curve $E_1H_1H_2E_2$ existing for any σ / σ_{11} and $0 < \delta \leq 1$ and corresponding to the co-directed (with the counterclockwise elliptic forcing) angular progressive waves and the loop-like branch with R_1 and R_2 whose points imply the counter-directed swirling. Fig. 3 shows that the latter branch disappears, as δ increases. This is a very interesting fact, which contradicts the steady-state analysis of the undamped sloshing in [2], where both the co- and counter-directed angular progressive waves exist and can be stable in certain frequency ranges for any $0 < \delta \leq 1$.

In summary, the linear viscous damping matters for the orbitally-excited sloshing in bioreactors of an upright circular cylindrical shape. It affects qualitatively and quantitatively the steady-state sloshing and the corresponding response curves. The most interesting fact is that the damping, even being relatively small, makes the counter-directed angular progressive waves (swirling) impossible, as the forcing orbit tends to a circle. This fact contradicts the undamped steady-state analysis, but it is qualitatively consistent with model tests by M. Reclari in [1].

The first author acknowledges the financial support of the Centre of Autonomous Marine Operations and Systems (AMOS) whose main sponsor is the Norwegian Research Council (Project No. 223254--AMOS).

REFERENCES
1. Reclari, M. (2013). Hydrodynamics of orbital shaken bioreactors (PhD Thesis, No. 5759). Ecole Polytechnique Federale de Lausanne, Suisse.
2. Faltisen, O. M., Lukovsky, I. A. & Timokha, A. N. (2016). Resonant sloshing in an upright tank. J. Fluid Mech., 804, pp. 608-645.
3. Miles, J. W. (1998). A note on interior vs. boundary-layer damping of surface waves in a circular cylinder. J. Fluid Mech., 364, pp. 319-323.
4. Lukovsky, I. A. (2015). Nonlinear dynamics: Mathematical models for rigid bodies with a liquid. Berlin: De Gruyter.
5. Raynovskyy, I. & Timokha, A. (2016). Resonant liquid sloshing in an upright circular tank performing a periodic motion. J. Numer. Appl. Math., No. 2(122), pp. 71-82.
6. Royon-Lebeaud, A., Hopfinger, E. & Cartellier, A. (2007). Liquid sloshing and wave breaking in circular and square- base cylindrical containers. J. Fluid Mech., 577, pp. 467-494.
7. Faltisen, O. M. & Timokha, A. N. (2017). Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 4. Oblique forcing and linear viscous damping. J. Fluid Mech., 822, pp. 139-169.

Received 26.06.2017

O.M. Тимоха1,2, І.А. Райновський1

1 Інститут математики НАН України, Київ
2 Центр досконалості “Автономні морські операції та системи”,
Норвезький університет природничих та технічних наук, Трондхейм, Норвегія
E-mail: tim@imath.kiev.ua, ihor.raynovskyy@gmail.com

ХЛЮПАННЯ ІЗ ДЕМПФУВАННЯМ
У ВЕРТИКАЛЬНОМУ ЦИЛІНДРИЧНОМУ БАКУ
ПРИ ОРБІТАЛЬНИХ ЗБУРЕННЯХ

З використанням нелінійної модальної системи Наріманова—Мойсеєва з лінійним демпфуванням вивчається затухаюче усталене хлюпання рідини у вертикальному круговому баку при заданому горизонтальному орбітальному (еліптичному) русі посудини з вимушеною частотою, близькою до власної частоти

ISSN 1025-6415. Dopov. Nac. acad. nauk Ukr. 2017. № 10
The damped sloshing in an upright circular tank due to an orbital forcing

A.H. Timoha1,2, I.A. Raynovsky1

1 Институт математики НАН Украины, Киев
2 Центр совершенства “Автономные морские операции и системы”, Норвежский университет естественных и технических наук, Трондхейм, Норвегия
E-mail: tim@imath.kiev.ua, ihor.raynovskyy@gmail.com

ПЛЕСКАНИЕ С ДЕМПФИРОВАНИЕМ В ВЕРТИКАЛЬНОМ ЦИЛИНДРИЧЕСКОМ БАКЕ ПРИ ОРБИТАЛЬНЫХ ВОЗБУЖДЕНИЯХ

С использованием нелинейной модальной системы Нариманова—Моисеева с линейным демпфированием изучается затухающее установившееся плескание жидкости в вертикальном круговом баке при заданном горизонтальном орбитальном (эллиптическом) движении сосуда с вынужденной частотой, близкой к собственной частоте колебаний жидкости. В то время как случай без демпфирования включает как сонаправленные (с направлением орбитального движения), так и противоположно направленные угловые прогрессивные волны, демпфирование делает невозможным существование противоположно направленной волны при возбуждениях, близких к круговым.

Ключевые слова: плескание жидкости, демпфирование, установившиеся волны.