Association of Six Well-Characterized Polymorphisms in TNF-α and TNF-β Genes with Sarcoidosis: A Meta-Analysis

Yun Feng1*, Jianping Zhou1*, Chaohao Gu2*, Yongjie Ding1, Huanying Wan1, Lei Ni1*, Wenquan Niu3*

1 Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 2 College of Computer Science, Sichuan University, Chengdu, China, 3 State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Abstract

Backgrounds: In this study, we aimed to investigate the association of six well-characterized polymorphisms in tumor necrosis factor alpha and beta (TNF-α and TNF-β) genes with the risk for sarcoidosis via a comprehensive meta-analysis.

Methods And Findings: The electronic MEDLINE (Ovid) and PubMed databases covering the period from the earliest possible year to June 2013 were searched. Total 13 qualified articles including 1584 patients with sarcoidosis and 2636 controls were recruited. The data were analyzed by RevMan software, and risk estimates were expressed as odds ratios (ORs) and 95% confidence intervals (95% CIs). Analyses of the full data set failed to identify any significant association of TNF-α gene -307A (OR=1.25; 95% CI: 0.98-1.59), -1031C (OR=0.88; 95% CI: 0.71-1.1), -863A (OR=0.89; 95% CI: 0.72-1.11), -238A (OR=0.97; 95% CI: 0.71-1.32), and -857T (OR=1.14; 95% CI: 0.74-1.77) alleles, but a significant association for TNF-β 252A allele (OR=1.65; 95%CI = 1.33-2.04; P<0.00001). Under a random-effects allelic model, there was marginally significant increased risk of sarcoidosis for -307A allele among Caucasians (OR=1.25; 95% CI: 0.96-1.62; P=0.09) but not among Asians (OR=2.12; 95% CI: 0.31-14.27; P=0.44). There was a low probability of publication bias as reflected by the fail-safe number.

Conclusions: This meta-analysis extended previous findings on the association between the TNF-α and TNF-β genetic polymorphisms and sarcoidosis, by showing that the TNF-β gene A252G polymorphism might be a potential risk factor for the development of sarcoidosis.

Citation: Feng Y, Zhou J, Gu C, Ding Y, Wan H, et al. (2013) Association of Six Well-Characterized Polymorphisms in TNF-α and TNF-β Genes with Sarcoidosis: A Meta-Analysis. PLoS ONE 8(11): e80150. doi:10.1371/journal.pone.0080150

Editor: Marco Idzko, University Hospital Freiburg, Germany

Received July 1, 2013; Accepted September 30, 2013; Published November 7, 2013

Copyright: © 2013 Feng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the National Natural Science Foundation of China (81201837). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: niuwenquan_shcn@163.com (WN); nilei_rujin@163.com (LN)
☯ These authors contributed equally to this work.

Introduction

Sarcoidosis is a multiorgan inflammatory disorder with unknown etiology; it is characterized by the accumulated activation of the CD4+ T lymphocytes and macrophages at disease sites and by the formation of noncaseating epithelioid cell granulomas [1]. The onset age of sarcoidosis ranges from 20 to 40 years, and it often affects the lungs with 5% of the patients resulting in lung fibrosis, and eventually respiratory insufficiency [2,3]. Due to a significant but unpredictable risk of recurrence, sarcoidosis is suggested to be an independent clinical disease with a constitutional, and possibly a genetic component in its etiology. Muller-Quernheim and coworkers have written an excellent review on the genetic aspects of sarcoidosis [4]; however, to determine how many genes and which genetic determinants are actually involved in the pathogenesis of sarcoidosis so far remains an interpretive challenge.

Epidemiological data supported that the increased production of tumor necrosis factor (TNF) family members may have physiological implications on the development of sarcoidosis [5]. TNF family is a growing group of cytokines, and mainly includes TNF alpha and beta (TNF-α and TNF-β). The genes encoding TNF-α and TNF-β are located adjacent to each other in the major histocompatibility complex class III region on chromosome 6p21.3. Given the highly polymorphic sequences of both genes, it is of interest to determine which genetic defects have the causal potentials to regulate plasma
TNF-α and TNF-β levels, further to precipitate the occurrence of sarcoidosis. Although exhaustive association studies have been undertaken to address this issue, no definitive conclusion has yet been reached in the literature, with irreproducible results. As a caveat, this lack of reproducibility might be mainly attributed to the ethnicity-specific genetic profiles and the individual underpowered studies. To generate more information, we carried out a meta-analysis of all available case-control studies to investigate the association of genetic polymorphisms of TNF-α and TNF-β with the risk of sarcoidosis. Selection of polymorphisms under study is straightforward if three or more unduplicated studies are available for a certain polymorphism in TNF-α and TNF-β genes.

Methods

Meta-analysis of observational studies poses particular challenges due to the inherent biases and differences in study designs. In this context, we carried out this meta-analysis in accordance with the standards set forth by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline (please see Checklist S1) [6].

Literature search

The electronic Medline (Ovid) and PubMed databases covering the period from the earliest possible year to June 2013 were searched for potentially eligible publications. The key words used for the search were “TNF-α or TNFA or TNF-β or lymphotoxin-α or LTA” and “sarcoidosis”, combined with “gene or variant or polymorphism or allele”. The research was also supplemented by reviews of reference lists, hand-searching of relevant journals, and correspondence with authors. If multiple publications were available from the same study group, the most complete and the recent results were abstracted. Search results were limited to articles published in English language and studies performed in human subjects.

Inclusion/exclusion criteria

Our analyses were restricted to articles that fulfilled the following inclusion criteria (all must be satisfied): 1) if they investigated the association between genetic polymorphisms in TNF-α or TNF-β gene and sarcoidosis among unrelated subjects; 2) if they had genotypes of examined polymorphisms tested by validated sample size; 3) if they were on a case-control study design; 4) if they provided sufficient information on the genotypes or alleles of examined polymorphisms to allow an estimation of odds ratio (OR) and its corresponding 95% confidence interval (95% CI).

Articles were excluded (one was sufficient) if they investigated the progression, severity, phenotype modification, response to treatment or survival, as well as if they were conference abstracts, case reports/series, editorials, review articles, or the non-English articles.

Data extraction

Data were extracted from qualified articles independently by two investigators (YF and WN) according to a standardized Excel template (Microsoft Corp, Redmond, WA). The following data were collected from each study: first author, year of publication, ethnicity, baseline characteristics of the study population, total number of cases and controls, and genotype or allele distributions in cases and controls. Information on the Hardy-Weinberg equilibrium test was also tracked or calculated if unavailable. After data extraction, discrepancies were adjudicated by discussion and a consensus was reached.

Statistical analyses

The meta-analysis was calculated using the Review Manager version 5.0.19 software available at website http://ims.cochrane.org/reviewman/download. Hardy-Weinberg equilibrium was assessed with the Pearson χ² test or the Fisher’s exact test (SAS version 9.1.3, Institute Inc., Cary, NC, USA).

The inconsistency index (I²) was used to quantify the presence of between-study heterogeneity with a statistical significance of 0.1. In this study, we applied the random-effects model for all comparisons because it accommodates the possibility that the underlying effect differs across studies. For practical use, the random-effects model is more conservative and has a wider 95% CI than the fixed-effects model.

Sensitivity analyses were performed to look at more narrowly drawn subsets of the studies by removing an individual study each time or studies with similar features such as deviation from Hardy-Weinberg equilibrium to assess their separate influence. Predefined subgroup analyses were performed a priori according to the ethnicity.

Publication bias was assessed by the fail-safe number (Nfs) with the significance set at 0.05 for each meta-comparison. Specifically, if the calculated Nfs value was smaller than the number of studies observed, the meta-analysis results might have publication bias. We calculated the Nfs according to the formula $N_{fs0.05} = (\Sigma Z/1.64)^2 - k$, where k is the number of articles included.

Results

Study characteristics

Based on the search strategy, our primary search produced 32 potentially relevant articles, of which 13 qualified articles met the inclusion criteria [7-19]. In total, 1584 patients with sarcoidosis and 2636 controls and were examined. The detailed selection process is presented in Figure 1. The baseline characteristics of qualified studies are presented in Table 1. Of the 12 case-controls articles examining the association between the TNF-α gene G-307A polymorphism and sarcoidosis risk, 9 involved Caucasian populations [7,9,11-13,15-17,19], and 3 included Asian populations [8,10,14].

Of these studies, 12 articles examined the association of the TNF-α gene G-307A polymorphism with sarcoidosis [7-17,19]; five articles focused on the TNF-α gene G-238A polymorphism [10,12,14,15,17]; four articles focused on the TNF-α gene C-857T polymorphism [14,15,17,18]; three articles focused on the TNF-α gene T-1031C and C-863A polymorphisms.
[14,15,17]: three articles focused on the TNF-β gene A252G polymorphism [13,14,16].

Overall analyses

Figures 2 depicts the pooled risk estimates of developing sarcoidosis for the mutant alleles of the TNF-α and TNF-β gene four polymorphisms. Under a random-effects model, analyses of the full data set failed to reveal any significance for -307A (OR=1.25; 95% CI: 0.98-1.59), -1031C (OR=0.88; 95% CI: 0.71-1.1), -863A (OR=0.97; 95% CI: 0.71-1.32), and -857T (OR=1.14; 95% CI: 0.74-1.77) alleles in association with sarcoidosis. In contrast, relative to the TNF-β 252A allele, the risk of having sarcoidosis was 1.65 times (95%CI = 1.33-2.04; P<0.00001) for the TNF-β 252G allele.
Polymorphism and Author Year	Ethnicity	Total sample size	Allele distributions	Characteristics
			Controls Cases	
			C T C T	
TNF-α C-857T				
Grutters JC et al. 2002	Caucasian	576 196	1068 84 339 53	The controls were sex- and age-matched healthy volunteers.
Seyhan EC et al. 2008	Turkish	110 90	164 56 142 38	Controls (age: 45.3±13.1, M/F: 36/74). Cases (age: 44.5±11.2, M/F: 35/55).
Sharma S et al. 2008	Indian	155 96	276 34 171 21	Cases (age: 43.5±9). Controls were age-matched healthy volunteers.
Makrythanasis P et al. 2010	Greek	178 100	265 91 148 52	Controls (age: 30.7±5.7). Cases (age: 53.3±13.5).
TNF-α G307 A				
Seitzer U et al. 1997	German	216 101	349 83 155 47	The controls were sex- and age-matched healthy volunteers.
Takashige N et al. 1999	Japanese	125 26	248 2 47 5	The controls were sex- and age-matched healthy volunteers.
Somoskövi A et al. 1999	German	216 43	349 83 68 18	The controls were sex- and age-matched healthy volunteers.
Yamaguchi E et al. 2001	Japanese	161 110	320 2 218 2	Cases (age: 39.4; M/F: 36/74). Controls were age-matched healthy volunteers.
Labunski S et al. 2001	German	12 10	21 3 3 17	Cases (sarcoidosis and erythema nodosum patients). Controls were age-matched healthy volunteers.
Pandey JP et al. (C) 2002	Caucasian	278 278	462 94 450 106	The controls were sex- and age-matched healthy volunteers.
Pandey JP et al. (AA) 2002	African Americans	219 219	378 60 379 59	The controls were sex- and age-matched healthy volunteers.
Grutters JC et al. 2002	Caucasian	576 196	927 225 316 76	The controls were sex- and age-matched healthy volunteers.
Mrzek F et al. 2005	Czechs	232 114	381 83 173 55	Controls (age: 33.8±8.2); Cases (age: 44.8±11.2).
Sharma S et al. 2008	Indian	155 96	283 27 181 11	Cases (age: 43.5±9). Controls were age-matched healthy volunteers.
Makrythanasis P et al. 2010	Greek	202 103	360 37 181 25	Controls (age: 30.7±5.7). Cases (age: 53.3±13.5).
Kieszkó R et al. 2010	Polish	84 128	139 29 199 57	Cases (age: 39.5±11.7, M/F: 60/70). Controls were age-matched healthy volunteers.
Petković TR et al. 2013	Serbian	50 70	75 75 25 114 26	Controls (age: 47.9±14.2). Cases (age: 49.2±12.8).
TNF-α T-1031 C				
Grutters JC et al. 2002	Caucasian	576 196	926 226 322 70	The controls were sex- and age-matched healthy volunteers.
Sharma S et al. 2008	Indian	155 96	210 100 138 54	Cases (age: 43.5±9). Controls were age-matched healthy volunteers.
Makrythanasis P et al. 2010	Greek	204 103	323 85 160 46	Controls (age: 30.7±5.7). Cases (age: 53.3±13.5).
TNF-α C-863 A				
Grutters JC et al. 2002	Caucasian	576 196	973 179 337 55	The controls were sex- and age-matched healthy volunteers.
Sharma S et al. 2008	Indian	155 96	210 100 138 54	Cases (age: 43.5±9). Controls were age-matched healthy volunteers.
Makrythanasis P et al. 2010	Greek	192 95	314 70 155 35	Controls (age: 30.7±5.7). Cases (age: 53.3±13.5).
TNF-α G-238 A				
Yamaguchi E et al. 2001	Japanese	161 110	315 7 212 8	Cases (age: 39.4; M/F: 36/74). Controls were age-matched healthy volunteers.
Pandey JP et al. 2002	Caucasian	278 278	538 18 533 23	The controls were sex- and age-matched healthy volunteers.
Table 1 (continued).

Polymorphism and Author	Year	Ethnicity	Total sample size	Allele distributions	Characteristics			
				Controls	Cases			
				C	T	C	T	
TNF-α C-857T								
Pandey JP et al.	2002	African Americans	219	219		419	19	19
Grutters JC et al.	2002	Caucasian	576	196		1108	44	379 13
Sharma S et al.	2008	Indian	155	96		296	14	185 7
Makrythanasis P et al.	2010	Greek	209	107		406	12	207 7
TNF-β A252G								
Mrazek F et al.	2005	Czechs	425	114		617	233	136 92
Sharma S et al.	2008	Indian	155	96		244	66	138 54
Kieszko R et al.	2010	Polish	84	130		129	39	175 85

Abbreviations: M/F: males/females. The unit for age was years in characteristics.

doi: 10.1371/journal.pone.0080150.t001

Subgroup analyses

In view of the number of involved articles, subgroup analyses were only undertaken for TNF-α gene G-307A polymorphism by the ethnicity. Under a random-effects allelic model, there was marginally significant increased risk of sarcoidosis for -307A allele among Caucasians (OR=1.25; 95% CI: 0.96-1.62; P=0.09) but not among Asians (OR=2.12; 95% CI: 0.31-14.27; P=0.44) (Figure 3).

Publication bias

The N_f values were calculated to assess the potential existence of publication bias. At a significant level of 0.05, the $N_f_{0.05}$ values were consistently greater than the number of studies included in this meta-analysis for all polymorphisms under investigation.

Discussion

In this study, we sought to investigate the association of the TNF-α and TNF-β genetic polymorphisms with sarcoidosis risk from English journals by conducting a meta-analysis of 13 articles and 4100 subjects. The principal finding of this study was that the TNF-β gene A252G polymorphism might be a potential risk factor for the development of sarcoidosis. Moreover, subgroup analysis indicated a contributory role of the TNF-α gene G-307A polymorphism in Caucasians. To the authors’ knowledge, this is the first meta-analysis to date investigating the association of the TNF-α gene T-1031C, C-863A, C-857T polymorphisms and the TNF-β gene A252G polymorphism with sarcoidosis.

In 2007, Medica and coworkers have meta-analyzed the TNF-α gene G-307A polymorphism in association with sarcoidosis, and found that this polymorphism was linked to the occurrence of sarcoidosis [20]. Contrastingly by enlarging the sample sizes, we in this meta-analysis failed to replicate the significant finding by Medica and coworkers when pooling all qualified studies together, whereas this significance was somewhat evident after restricting analyses to Caucasian populations, suggesting the genetic heterogeneity of this polymorphisms across ethnic groups. Generally, genetic heterogeneity is an inevitable problem in any disease identification strategy, and populations of different genetic backgrounds may have different linkage disequilibrium patterns. It is reasonable to speculate that the TNF-α gene G-307A polymorphism might be in linkage with another causal variant in one ethnic population but not in another, which was partly exemplified by the wide divergences of the -307A allele frequencies across ethnic populations in this meta-analysis (data not shown). As such, it is necessary to construct a database of susceptible genes and polymorphisms implicated in sarcoidosis in each racial or ethnic group.

Extending previous findings, we provided convincing evidence on the contributory effect of the TNF-β gene A252G polymorphism in the development of sarcoidosis. Although only three articles were available for this association, considering the estimated risk estimate (OR=1.65), it seems unlikely that our results could be explained by confounding. In addition, there was a low probability of publication bias for this comparison as reflected by the fail-safe number. It is reasonable to speculate that, the TNF-β gene A252G polymorphism, if involved, might be implicated in the pathogenesis of sarcoidosis by increasing the production of TNF-β. Large epidemiological and clinical studies are required to fully answer this speculation.
Figure 2. Pooled risk estimates of TNF-α gene G-307A, T-1031C, C-863A, G-238A, C-857T polymorphisms, and TNF-β gene A252G polymorphism in association with sarcoidosis under allelic model.

doi: 10.1371/journal.pone.0080150.g002
Meta-analysis is recognized as a powerful tool to summarize results of individual studies; however, it is important to recognize certain limitations. First, all qualified studies were retrospective in design, which precludes further comments on causality. Second, albeit a low probability of publication bias in this meta-analysis, potential selection bias cannot be ruled out, because we only retrieved articles published in English language. Third, we selected only five polymorphisms from TNF-α and TNF-β genes, and did not cover other sarcoidosis-susceptibility genes, such as annexin A11 gene [21] and butyrophilin-like 2 gene [22]. Therefore, the jury must refrain from drawing a final conclusion until large, well-designed, prospective studies confirm or refute our findings.

Taken together, this meta-analysis extended previous findings on the association between the TNF-α and TNF-β genetic polymorphisms and sarcoidosis, by showing that the TNF-β gene A252G polymorphism might be a potential risk factor for the development of sarcoidosis. Nevertheless, despite the small sample sizes involved, this meta-analysis provides an anchoring point for better understanding of the pathogenesis of sarcoidosis. For practical reasons, we hope that this study will not remain just another endpoint of research instead of a beginning to establish the background data for further investigation on mechanisms of the TNF-α and TNF-β genes in sarcoidosis.

Supporting Information

Checklist S1. PRISMA checklist.

Author Contributions

Conceived and designed the experiments: YF WN. Performed the experiments: YF WN. Analyzed the data: YF CG. Contributed reagents/materials/analysis tools: JZ YD HW LN. Wrote the manuscript: YF WN.

References
1. Baughman RP, Lower EE, du Bois RM (2003) Sarcoidosis. Lancet 361: 1111-1118. doi:10.1016/S0140-6736(03)12866-7. PubMed: 12723226.

2. Nunes H, Bovry D, Soler P, Valeyre D (2007) Sarcoidosis. Orphanet J Rare Dis 2: 46. doi:10.1186/1750-1172-2-46. PubMed: 18021432.

3. Lynch JP 3rd, Ma YL, Koss MN, White ES (2007) Pulmonary sarcoidosis. Semin Respir Crit Care Med 28: 53-74. doi:10.1055/s-2007-970333. PubMed: 17330192.

4. Müller-Quernheim J, Schürmann M, Hofmann S, Gaede KI, Fischer A et al. (2008) Genetics of sarcoidosis. Clin Chest Med 29: 391-414, vii doi:10.1016/j.ccm.2008.03.007. PubMed: 18539234.

5. Iannuzzi MC, Rybeck BA, Teirstein AS (2007) Sarcoidosis. N Engl J Med 357: 2153-2165. doi:10.1056/NEJMra071714. PubMed: 18032765.

6. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151: 264-269, W264 doi:10.7326/0003-4819-151-4-200908180-00135. PubMed: 19622511.

7. Seitz U, Swider C, Stüber F, Suchnicki K, Lange A et al. (1997) Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis. Cytokine 9: 787-790. doi:10.1006/cyto.1997.0224. PubMed: 9344512.

8. Takashige N, Naruse TK, Matsumori A, Hara M, Nagai S et al. (1999) Genetic polymorphisms at the tumour necrosis factor loci (TNFA and TNFB) in cardiac sarcoidosis. Tissue Antigens 54: 191-193. doi:10.1034/j.1399-0039.1999.540201.x. PubMed: 10488747.

9. Somoskövi A, Zissel G, Seitzer U, Gerdes J, Schlaak M et al. (1999) Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF-alpha release in sarcoidosis. Cytokine 11: 882-887. doi:10.1006/cyto.1999.0498. PubMed: 10547277.

10. Yamaguchi E, Itoh A, Hizawa N, Kawakami Y (2001) The gene polymorphism of tumor necrosis factor-beta, but not that of tumor necrosis factor-alpha, is associated with the prognosis of sarcoidosis. Chest 119: 753-761. doi:10.1378/chest.119.3.753. PubMed: 11243953.

11. Labunski S, Posern G, Ludwig S, Kundt G, Bröcker EB et al. (2001) Tumour necrosis factor-alpha promoter polymorphism in erythema nodosum. Acta Derm Venereol 81: 18-21. doi:10.1080/0001555011691912. PubMed: 11411907.

12. Pandey JP, Frederick M (2002) TNF-alpha, IL1-beta, and immunoglobulin (GM and KM) gene polymorphisms in sarcoidosis. Hum Immunol 63: 485-491. doi:10.1016/S0198-8859(02)00399-3. PubMed: 12039524.

13. Mrzek F, Holla LJ, Hutryova B, Zngilj V, Vasiku A et al. (2005) Association of tumour necrosis factor-alpha, lymphotoxin-alpha and HLA-DRB1 gene polymorphisms with Lofgren's syndrome in Czech patients with sarcoidosis. Tissue Antigens 65: 163-171. doi:10.1111/j.1399-0039.2005.00370.x. PubMed: 15713215.

14. Sharma S, Ghosh B, Sharma SK (2008) Association of TNF polymorphisms with sarcoidosis, its prognosis and tumour necrosis factor (TNF)-alpha levels in Asian Indians. Clin Exp Immunol 151: 251-259. PubMed: 18021432.

15. Makrythanasis P, Tzetsis M, Rapti A, Papatheodorou A, Tsipi M et al. (2010) Cystic fibrosis conductance regulator, tumor necrosis factor, interferon alpha-10, interferon alpha-17, and interferon gamma genotyping as potential risk markers in pulmonary sarcoidosis pathogenesis in Greek patients. Genet Tests Mol Biomarkers 14: 577-584. doi:10.1089/gtmb.2009.0198. PubMed: 20722470.

16. Kieszko R, Krawczyk P, Chocholska S, Dmoszyńska A, Milanowski J (2010) TNF-alpha and TNF-beta gene polymorphisms in Polish patients with sarcoidosis. Connection with the susceptibility and prognosis. Sarcoidosis Vasc Diffuse Lung Dis 27: 131-137. PubMed: 21319595.

17. Greutters JC, Sato H, Pantelidis P, Lagan AL, McGrath DS et al. (2002) Increased frequency of the uncommon tumor necrosis factor -857T allele in British and Dutch patients with sarcoidosis. Am J Respir Crit Care Med 165: 1119-1124. doi:10.1164/ajrccm.165.8.200110-0320. PubMed: 11956055.

18. Seyhan EC, Cetinkaya E, Altin S, Gunlugulu Z, Demir A et al. (2008) Tumor necrosis factor gene polymorphisms in Turkish patients with sarcoidosis. Intern Med 47: 833-838. doi:10.2169/internalmedicine.47.0703. PubMed: 18451575.

19. Petković TR, Pejić T, Videnović-Ivanov J, Stoimenov TJ, Janković I et al. (2013) Tumor necrosis factor alpha gene polymorphism in serbian patients with sarcoidosis. Srp Arh Celok Lek 141: 169-172. doi:10.2298/SARH1304169R. PubMed: 23745338.

20. Medica I, Kastrin; A, M aver A, Peterlin B (2007) Role of genetic polymorphisms in ACE and TNF-alpha gene in sarcoidosis: a meta-analysis. J Hum Genet 52: 836-847.

21. Levin AM, Iannuzzi MC, Montgomery CG, Trudeau S, Datta I et al. (2013) Association of ANXA11 genetic variation with sarcoidosis in African Americans and European Americans. Genes Immun 14: 13-18. doi:10.1038/gen.2012.48. PubMed: 23151485.

22. Milman N, Svendsen CB, Nielsen FC, van Overeem Hansen T (2011) The BTN2A1 allele variant is frequent in Danish patients with sarcoidosis. Clin Respir J 5: 105-111. doi:10.1111/j.1752-699X.2010.00206.x. PubMed: 2149903.