NDNetGaming - Development of a No-Reference Deep CNN for Gaming Video Quality Prediction

Saman Zadtootaghaj
Quality and Usability Lab (TU Berlin), (in collaboration with Fraunhofer HHI)
What we are doing

- Quality assessment for gaming service
 - Cloud gaming, e.g. Stadia, Nvidia GeForce Now
 - Passive gaming streaming, e.g. Twitch tv, Youtube gaming
 - Major focus on cloud gaming planning model for ITU-T (G.OMG)
 - Parametric model
 - Signal based models
 - NR-metrics
 - Machine learning based
Cloud Gaming
Special encoding and network protocol

- Latency
 - Capturing RGB data from frame buffer (front buffer) without any involvement from OpenGL/Direct3D
 - Using GPU hardware accelerator engines for video encoding/decoding
 - Fixed macroblock size for fast encoding
- Packet loss (concealment)
 - Designing task-specific network protocol such as reliable UDP
- Encoding setting
 - CBR, short GoP, …
Gaming Content
Special Temporal and Spatial Information

- Game is a **rule-based** system that has special characteristics.
- A game is usually constructed from a **pool of predesigned objects** which result in different level of details.
- A game has a **certain level of abstraction**, and that does not vary much during the gameplay.
- Many games have **specific motion pattern**, e.g. racing game or side scrolling games.
Spatial and temporal features

Game	Original Frame	MAD heatmap	PPSNR with threshold of 35	Heatmap of Average of SI	Heatmap of Variation of SI	Heatmap of Average of TI	Heatmap of Variation of TI
Dest 2							
Lol							
PC (Outside car)							
PC (In-side car)							
CSGO							

10/22/19
Video quality assessment using CNN

- Two types of Convolution can be used
 - 2D and 3D Convolution (frame or video level)
 - How to make it work on the video level?
Frames level quality assessment

- No Dataset available for CGI content
 - We used VMAF as quality indicator of each frame (similar to DeViQ [1])
 - The idea is not to predict the VMAF but to pretrain the network on a reliable metric and retrain some layers based on the subjective results
 - There might be a difference between the perceived quality on the image level and video level
 - Employ the temporal pooling methods
Transfer Learning

Figure from [3]. Kaiming, et al. Deep residual learning for image recognition
The structure of the framework

- Retrain network based on an objective metric
- Fine-tune the model based on subjective data
- Which CNN model to use
- Which video metric to use
- What about other video dimensions
- Blockiness, Blur

- Take different patterns of patches
- Temporal pooling
- Video Quality
Sample Snapshot of Recorded Sequences

	GVSET	KUGVD
Influencing Factors	Resolution, Bitrate	Resolution, Bitrate
Preset	Veryfast	Veryfast
Number of stimuli	90	90
Encoding	FFmpeg, h264, CBR	FFmpeg, h264, CBR
Number of source sequence	24 (6 used in subjective test)	6
Sample Snapshot of Recorded Sequences

(a) Counter Strike: Global Offensive
(b) Diablo III
(c) Dota 2
(d) FIFA 2017
(e) H1Z1: Just Kill
(f) Hearthstone
(g) Heroes of the Storm
(h) League of Legends
(i) Project Cars
(j) PlayerUnknown's Battleground
(k) Starcraft 2
(l) World of Warcraft
The structure of the framework

1. Fundamental Design Phase
 - Find best network design by testing four different architectures, and varying the number of frames and
 - 243,000 images with VMAF scores (GVSET)
 - 210,600 images with VMAF scores (GVSET + KUVGD)
 - Initial design of network (frame-level)

2. Fine-Tuning Phase
 - Subjective ratings of 164 images (GISET)
 - Custom Cross-validation
 - Improve model performance by applying transfer learning based on subjective image ratings

3. Video Quality Prediction Phase
 - Subjective ratings of 90 videos (GVSET)
 - Subjective ratings of 90 videos (KUGVD)
 - Testing different pooling methods for best prediction of video quality

final frame-level quality metric
final NDNetGaming metric
Training Based on VMAF

- We retrained only 25 %, 50 % or 75 % of total trainable weights for four CNNs
- Training set: 243,000 frames

	MobileNetV2	DenseNet-121	Xception	ResNet50
25 %	9.59	7.58	7.33	7.60
50 %	7.98	6.84	7.25	7.34
75 %	7.34	6.74	7.29	6.71

8,062,504 25,636,712
Required number of layers

- The DenseNet-121 architecture consists of four blocks, each containing between 12 and 48 convolutional layers

Dense Blocks	Number of layers	Number of weights	RMSE	SRCC
4	120	7039 k	8.11	0.925
3 ½	113	6878 k	7.02	0.942
3	107	6657 k	6.74	0.945
2 ½	94	6268 k	6.77	0.946
2	82	5594 k	6.84	0.942
1 ½	57	4461 k	6.82	0.946
1	33	2191 k	7.22	0.939
½	16	1233 k	7.39	0.936
0	0	1 k	10.60	0.870
Best model trained for VMAF Prediction

Scatter plot of actual VMAF and predicted VMAF values on frame and video level of KUGVD dataset

RMSE: 7.07 in frame level
RMSE: 5.47 in video level
The structure of the framework

1. Fundamental Design Phase
 - Find best network design by testing four different architectures, and varying the number of frames and
 - 243,000 images with VMAF scores (GVSET)
 - 210,600 images with VMAF scores (GVSET + KUVGD)
 - Initial design of network (frame-level)

2. Fine-Tuning Phase
 - Subjective ratings of 164 images (GISET)
 - Custom Cross-validation
 - Improve model performance by applying transfer learning based on subjective image ratings
 - Final frame-level quality metric

3. Video Quality Prediction Phase
 - Subjective ratings of 90 videos (GVSET)
 - Subjective ratings of 90 videos (KUVGD)
 - Testing different pooling methods for best prediction of video quality
 - Final NDNetGaming metric
Image quality dataset - GISET

- We selected 164 frames from 18 different video sequences
 - 3 resolution (Unlcearness) and 10 bitrates (Fragmentation)
 - Selected multiple source frames (together with 3 distorted) from each game (41 reference frames)
 - Minimum 2 source frame from each game
 - Distribution of quality levels
 - Selection of frames was based on VMAF values ~ ranges from 90 to 25
Image Quality Dataset - GISET

a: MOS vs Unclearness

b: MOS vs Fragmentation

Video Games
- Counter-Strike: Global Offensive (CSGO)
- Dota2
- FIFA17
- Diablo III
- Z1 Battle Royale (H1Z1)
- Hearthstone
- Heroes of The Storm
- League of Legends (LoL)
- Playerunknown's Battlegrounds
- Star Craft II
- World of Warcraft
Image Quality Dataset - GISET

\[
VQ_{\text{Estimated}} = -1.073 + 0.657 \times VF + 0.573 \times VU
\]

PCC: 0.98 - RMSE: 0.154
Fine-tuning Phase

- DMOS was used in training process
- Leave-one-out cross-validation was employed where for every iteration of training the network, we kept one game completely out of training process
- RMSE and SRCC for different numbers of patches used for testing the model:

Number of Patches	RMSE	SRCC
5	0.390	0.953
7	0.374	0.957
9	0.380	0.954
11	0.381	0.958
13	0.377	0.953
Different Patch Patterns Selection (fine-tuning)
Local Quality Predictions
Local Quality Predictions
The structure of the framework

1. Fundamental Design Phase
 - 243,000 images with VMAF scores (GVSET)
 - 210,600 images with VMAF scores (GVSET + KUVGD)
 - Initial design of network (frame-level)

Find best network design by testing four different architectures, and varying the number of frames and

2. Fine-Tuning Phase
 - Subjective ratings of 164 images (GISET)
 - Custom Cross-validation
 - Improve model performance by applying transfer learning based on subjective image ratings
 - Final frame-level quality metric

3. Video Quality Prediction Phase
 - Subjective ratings of 90 videos (GVSET)
 - Subjective ratings of 90 videos (KUGVSD)
 - Testing different pooling methods for best prediction of video quality
 - Final NDNetGaming metric
Video Quality Prediction Phase

No significant improvement compared to average pooling has been observed.
We tried to reduce the effect of temporal masking in two steps:

Step 1

\[
\text{ewma}_{TI} = \text{smooth}_{ewma}(\text{std}_{\text{space}}[M_n(i, j)])
\]

\[
\text{weights}_{frame} = \frac{\text{ewma}_{TI}}{\text{sum}_{time}[\text{ewma}_{TI}]}
\]

\[
\text{inverse weights} = \frac{(1 - P(F = 1))}{1 - P(F = 1|W = w)}
\]

Step 2

\[
\text{TC} = \text{mean}_{time}[\text{std}_{\text{space}}[M_n(i, j)]]
\]

\[
\text{NDNG}_{Temporal} = C_1 + C_2 \times \text{NDNG} + C_3 \times \text{TC}^3 - C_4 \times \text{TC}^2 + C_5 \times \text{TC}
\]
Video Quality Prediction Phase

\[\text{Residual} = 1.4594 - 0.0005 \times TC^3 + 0.0221 \times TC^2 - 0.3421 \times TC \]

\[N D N G_{Temporal} = C_1 + C_2 \times N D N G + C_3 \times TC^3 - C_4 \times TC^2 + C_5 \times TC \]
Video Quality Prediction Phase

\[\text{NDNG}_{\text{Temporal}} = C_1 + C_2 \times \text{NDNG} + C_3 \times TC^3 - C_4 \times TC^2 + C_5 \times TC \]

	C_1	C_2	C_3	C_4	C_5
eq1	-1.99	1.097	0.00069	-0.031	0.43
eq2	-0.532	1.116	0.00011	-0.0043	0.084
eq3	-1.71	1.107	0.00053	-0.024	0.353

Coefficients of temporal pooling methods, eq1, eq2 and eq3 are trained based on GVSET, KUGVD and both respectively.
Image Quality Assessment

- **LIVE Multiply Distorted Image Quality Dataset** and **LIVE Public-Domain Subjective Image Quality Dataset** (the first release)

Metrics	LMDSET		LPDSET	
	PCC	SRCC	PCC	SRCC
FR Metrics				
PSNR	-0.69	-0.64	0.80	0.93
SSIM	-0.58	-0.61	0.92	**0.94**
NR Metrics				
BRISQUE	0.57	0.43	-0.93	-0.92
NIQE	**0.87**	-0.62	-0.92	-0.89
PIQE	0.82	**0.77**	-0.90	-0.87
NDNetGaming	-0.77	-0.68	**0.95**	0.92
Video Quality Assessment

Metrics	Netflix Public Dataset	LIVE-NFLX-I		
	PCC	SRCC	PCC	SRCC
FR Metrics				
PSNR	0.64	0.66	0.49	0.27
SSIM	0.69	0.76	0.24	-0.10
VMAF	**0.93**	**0.91**	0.78	0.24
NR Metrics				
BRISQUE	-0.77	-0.76	-0.65	-0.68
NIQE	-0.83	-0.81	-0.67	-0.28
PIQE	-0.78	-0.80	**-0.85**	**-0.83**
NDNetGaming	0.89	0.85	0.82	0.71
Video Gaming Quality Assessment

Metrics	GVSET	KUGVD		
	PCC	SRCC	PCC	SRCC
FR Metrics				
PSNR	0.75	0.74	0.80	0.78
SSIM	0.80	0.80	0.89	0.88
VMAF	0.87	0.87	0.92	0.92
RR Metrics				
ST-RREDOpt	-0.75	-0.77	-0.73	-0.72
SpEEDQA	-0.75	-0.77	-0.70	-0.70
NR Metrics				
BRISQUE	-0.44	-0.46	-0.62	-0.60
BIQI	-0.42	-0.45	-0.60	-0.59
NIQE	-0.72	-0.71	-0.85	-0.84
MEON	-0.35	-0.30	-0.43	-0.39
NR-GVQM	0.89	0.87	0.91	0.91
NR-GVSQI	0.87	0.86	0.89	0.88
nofu	0.91	0.91	-	-
NDNetGaming	**0.934**	**0.933**	**0.934**	**0.929**
Video Gaming Quality Assessment

Averaged Pooled

KUGVD PCC 0.934 (rmse = 0.464)

GVSET PCC 0.934 (rmse = 0.347)
Video Gaming Quality Assessment
Temporal Pooled

KUGVD PCC 0.965 (rmse = 0.28)
GVSET PCC 0.963 (rmse = 0.27)
Summary

- The plan is to make no-reference quality metric using CNN for gaming content
- The main aim is not only to predict quality but also measure the type of distortion
- We used pretrained CNN models and fine-tune them based on the VMAF and MOS in two steps
- Investigate the reduction of computation cost
 - Lightweight CNN did not perform good
Points for Discussion

- We are biased to our dataset and condition we selected
- Prediction from sequences of the same game we had in training result in very high performance regardless of the distortion type
 - We can go with game specific metric
 - 3D convolution can be seen as a good alternative
 - We did not get good result so far with similar method
 - It increases the computation cost a lot
 - It seems to be difficult to get generalizable deep CNN metric
Points for Discussion

- Better result achieved for blur and noise than blockiness
- Training with more image distortion resulted in lower performance
 - Better to train the model for a specific purpose
- Huge dataset with content diversity might help to train whole network
- Correct patch quality scores may help to improve performance
 - With partial PSNR we did not achieve higher performance
 - Maybe partial VMAF!
Thank you for your Attention!!

Any Question?

NDNetGaming
Saman Zadtootaghaj
saman.zadtootaghaj@qu.tu-berlin.de
Visit www.qu.tu-berlin.de for more information.