Quarkonium measurements via the di-muon decay channel in p+p and Au+Au collisions with the STAR experiment

Takahito Todoroki (for the STAR collaboration)
Brookhaven National Laboratory, Upton, New York 11973, USA
E-mail: todoroki@bnl.gov

Abstract. We present the first J/ψ and Υ measurements in the di-muon decay channel at mid-rapidity at RHIC using the newly installed Muon Telescope Detector. In p+p collisions at $\sqrt{s} = 500$ GeV, inclusive J/ψ cross section can be described by CGC+NRQCD and NLO NRQCD model calculations for $0 < p_T < 20$ GeV/c. In Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, we observe (i) clear J/ψ suppression indicating dissociation; (ii) $J/\psi R_{AA}$ can be qualitatively described by transport models including dissociation and regeneration with a tension at high p_T; and (iii) hint of less melting of $\Upsilon(2S + 3S)$ relative to $\Upsilon(1S)$ at RHIC compared to that at LHC.

1. Introduction
Quarkonia are an essential probe to study the properties of the Quark Gluon Plasma (QGP). The suppression of J/ψ due to color-screening effects in the medium was initially proposed as a direct evidence of the QGP formation [1]. However, the interpretation of the J/ψ suppression is still a challenge due to the contributions from the regenerated J/ψ by the recombination of $c\bar{c}$ pairs in the medium and the cold nuclear matter effects. Therefore it is important to have more precise J/ψ measurements over a broad kinematic range and even cleaner Υ state measurements. The latter do not suffer from the regeneration contribution due to the much smaller $b\bar{b}$ pair cross section, i.e. $\sigma_{b\bar{b}} \sim 2$ μb [2] while $\sigma_{c\bar{c}} \sim 800$ μb [3] at top RHIC energy. The newly installed Muon Telescope Detector (MTD), which provides both the di-muon trigger and the muon identification capability at mid-rapidity, opens the door to measuring quarkonia via the di-muon decay channel at STAR. Compared to the di-electron decay channel, the di-muon decay channel suffers much less from bremsstrahlung and thus provides much better invariant mass resolution to separate different Υ states. Using the MTD di-muon trigger, the STAR experiment recorded data corresponding to an integrated luminosity of 28.3 pb^{-1} in p+p collisions at $\sqrt{s} = 500$ GeV in the RHIC 2013 run, and 14.2 nb^{-1} in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the RHIC 2014 run. In these proceedings, we report (1) the measurements of J/ψ production in p+p collisions at $\sqrt{s} = 500$ GeV; and (2) the measurements of the nuclear modification factor (R_{AA}) for J/ψ and the production of different Υ states in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
2. \(J/\psi\) measurements in \(p+p\) collisions at \(\sqrt{s} = 500\) GeV

Figure 1 shows the cross section of \(J/\psi\) in \(p+p\) collisions at \(\sqrt{s} = 500\) GeV in the di-electron and di-muon decay channels for \(0 < p_T < 20\) GeV/c. The di-muon decay channel extends \(p_T\) reach down to 0 GeV/c. The results in these decay channels are consistent in the overlapping \(p_T\) range of \(4 < p_T < 9\) GeV/c. The experimental results can be well described by CGC+NRQCD calculations at low \(p_T\) [4] and NLO NRQCD calculations at high \(p_T\) [5]. Figure 2 shows the \(x_T = 2p_T/\sqrt{s}\) scaling of \(J/\psi\) cross section [6]. The \(J/\psi\) cross section in \(p+p\) collisions at \(\sqrt{s} = 500\) GeV follows the common trend as a function of \(x_T\) at high \(p_T\). The breaking of the \(x_T\) scaling at low \(p_T\) can be attributed to the soft processes.

3. \(J/\psi\) measurements in \(Au+Au\) collisions at \(\sqrt{s_{NN}} = 200\) GeV

Figure 3 shows the invariant yield of \(J/\psi\) in \(Au+Au\) collisions at \(\sqrt{s_{NN}} = 200\) GeV for different collision centralities. The new results in the di-muon decay channel are consistent with previous results in the di-electron decay channel [7, 8] within uncertainties.

The nuclear modification factor \(R_{AA} = \frac{d^2N_{AA}/dy dp_T}{d^2N_{pp}/dy dp_T}\) of \(J/\psi\) in 0-40% central \(Au+Au\) collisions is shown in Fig. 4, compared with LHC results [13, 14]. The strong suppression at RHIC at low \(p_T\) indicates that dissociation plays a significant role in this \(p_T\) range. The hint of the increasing trend of \(R_{AA}\) at RHIC at high \(p_T\) can be explained by formation-time effects and feed-down of \(B\) hadrons. The less suppression of \(J/\psi\) at LHC at low \(p_T\) indicates larger regeneration contribution due to higher charm cross section, while more suppression of \(J/\psi\) at LHC at high \(p_T\) indicates larger dissociation rate due to higher temperature of the medium. Transport Models from Tsinghua [9, 10] and Texas A&M University (TAMU) [11, 12], including dissociation and regeneration effects, can qualitatively describe the \(p_T\) dependence of RHIC and LHC data.

Centrality dependence of \(J/\psi\) cross section is shown in Fig. 5 for integrated \(p_T\) and in Fig. 6 for \(p_T > 5\) GeV/c. For integrated \(p_T\), both models can describe centrality dependence at RHIC, but tend to overestimate suppression at LHC. For \(p_T > 5\) GeV/c, there is tension among models.
and data. New measurements in the di-muon decay channel provide a distinguishing power for these transport models.

4. \(\Upsilon \) measurements in Au+Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

Figure 7 shows the di-muon mass spectrum in \(\Upsilon \) state mass range in Au+Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \). We observe signs of an indication of \(\Upsilon(2S + 3S) \) signals in the di-muon decay channel. The raw yields of \(\Upsilon \) states are obtained by a simultaneous fit to the like-sign and unlike-sign distributions. In this fit, (i) the \(\Upsilon \) state masses are fixed to the PDG values and their widths are determined by simulation; (ii) the ratio of \(\Upsilon(2S)/\Upsilon(3S) \) is fixed to the value in p+p collisions; and (iii) the shape of \(bb \) and Drell-Yan background is estimated using PYTHIA.

Figure 8 shows the fitted \(\Upsilon(2S + 3S)/\Upsilon(1S) \) ratio compared with the world-wide p+p data [16] and CMS data [17, 18]. There is a hint of less melting of \(\Upsilon(2S + 3S) \) relative to \(\Upsilon(1S) \) at RHIC
than at LHC.

5. Summary and Outlook

We present the first J/ψ and Υ measurements in the di-muon decay channel at mid-rapidity at RHIC. In p+p collisions at $\sqrt{s} = 500$ GeV, inclusive J/ψ cross section can be described by CGC+NRQCD and NLO NRQCD model calculations for $0 < p_T < 20$ GeV/c. In Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, we observe (i) clear J/ψ suppression indicating dissociation; (ii) $J/\psi R_{AA}$ can be qualitatively described by transport models including dissociation and regeneration despite a tension at high p_T; and (iii) there is a hint of less melting of $\Upsilon(2S + 3S)$ relative to $\Upsilon(1S)$ at RHIC compared to that at LHC. These measurements in Au+Au collisions will have better statistical precision by combining the similar amount of data recorded in the RHIC 2016 run.

References

[1] T. Matsui and H. Satz, Phys. Lett. B 178 416-422 (1986)
[2] A. Adare et. al. (PHENIX Collaboration), Phys. Rev. Lett. 103 082002 (2009)
[3] L. Adamczyk et. al. (STAR Collaboration), Phys. Rev. D 86 072013 (2012)
[4] Yan-Qing Ma and Raju Venugopalan, Phys. Rev. Lett. 113 192301 (2015)
[5] H. Shao et. al., JHEP 05 103 (2015)
[6] B. Abelev et. al. (STAR Collaboration), Phys. Rev. C 80 041902 (2009)
[7] L. Adamczyk et. al. (STAR Collaboration), Phys. Let. B 722 55-62 (2013)
[8] L. Adamczyk et. al. (STAR Collaboration), Phys. Rev. C 90 024906 (2014)
[9] Y. Liu et. al., Phys. Let. B 678 72-76 (2009)
[10] K. Zhou et. al., Phys. Rev. C 89 054911 (2014)
[11] X. Zhao and R. Rapp, Phys. Rev. C 82 064905 (2010)
[12] X. Zhao and R. Rapp, Nucl. Phys. A 859 114-125 (2011)
[13] B. Abelev et. al. (ALICE Collaboration), Phys. Let. B 734 314-327 (2014)
[14] S. Chatrchyan et. al. (CMS Collaboration), JHEP 05 063 (2012)
[15] L. Adamczyk et. al. (STAR Collaboration), Phys. Rev. Lett. 111 052301 (2013)
[16] W. Zha et. al., Phys. Rev. C 88 067901 (2013)
[17] S. Chatrchyan et. al. (CMS Collaboration), Phys. Rev. Lett. 109 222301 (2012)
[18] S. Chatrchyan et. al. (CMS Collaboration), JHEP 04 103 (2014)