1. Prevalence and impact of pain in people with severe mental illness

There is growing recognition that people with severe mental illness (SMI) have substantially poorer physical health and die 15 to 20 years prematurely, largely because of poor physical health. Severe mental illness often refers to schizophrenia spectrum (psychosis), bipolar, and major depressive disorders, following World Health Organization (WHO) and World Psychiatric Association terminology. The global prevalence of schizophrenia is 0.28% (95% uncertainty interval: 0.24-0.31), of bipolar disorder is 0.7% (0.6-0.8), and of major depression is 4.4% (4.1-4.7). Severe mental illness is associated with increased likelihood of physical health problems (e.g., diabetes and HIV) with a high burden of pain. Although the pain–depression relationship has been studied extensively, innovations are still needed to optimize pain management in people with comorbid major depression. Pain management in people with bipolar and psychotic disorders is underresearched. This review will highlight diagnostically specific challenges for pain management across major depression, bipolar disorder, and psychosis and discuss methodological approaches that may prove useful for improving pain management across them. This review does not capture other mental disorders that are often comorbid with and complicate pain management. These include anxiety, posttraumatic stress, substance use, and personality disorders, which are sometimes categorized with SMI when they cause severe functional impairment. Given the brevity of this review, we have chosen the narrower SMI definition in begin to advance this discussion.

Depression and pain commonly co-occur, although estimates of pain prevalence in people with depression vary widely (15%-100%). Pain prevalence is also high in people with bipolar disorder: 1 meta-analysis (k = 22) found that 29% of people with bipolar disorder (n = 171,352) reported pain, over double the risk of healthy controls (n = 12,342,577). Some doubt arises from unvalidated pain assessments used by many studies in the review.

The pain–psychosis association is complex. Meta-analyses of experimental studies show that adults with schizophrenia have elevated pain thresholds and tolerance, independent of antipsychotic medication. However, a meta-analysis (k = 14) found that 35% of people with schizophrenia (n = 242,703) reported clinical pain, similar to age-matched and sex-matched controls without mental illness (n = 4,259,221). Given the heightened cardiometabolic burden in psychosis and the association between pain and cardiometabolic risk factors, such as obesity and diabetes, this raises the possibility that pain may be underrecognized or underreported in this group. Adding to this complexity, in 1 study of people with psychosis (n = 438), comorbid depressive symptoms were associated with clinically relevant pain. Therefore, pain reporting may be diagnostically specific, with psychosis associated with underreporting and (comorbid) depression with increased reporting.

As in the general population, pain is associated with increased disability and poorer quality of life in people with SMI. Importantly, both SMI and pain are associated with increased suicide risk. However, pain is not routinely assessed and managed in this population, and pain communication and assessment might be obscured by the nature of the SMI. Among people with psychosis, reduced self- and clinician-identification of pain may partially explain under or late recognition of conditions that commonly present with pain, such as appendicitis and cardiovascular disease; this may also partially explain the higher
rates of late, inadequate, or absent treatment, adding to excess morbidity and mortality. Routinely assessing and managing pain and its causes needs to improve in this population. There is also urgency to find ways to identify acute time-sensitive conditions earlier if pain is not serving as an indicator.

2. Understanding pain and its treatment in people with severe mental illness: where is the evidence?

Understanding of biopsychosocial influences on pain and related disability in people with SMI, particularly those with psychosis and bipolar disorder, is scarce and may be diagnostically specific. Research is needed to reconcile comparable rates of reported clinical pain in people with psychosis and healthy controls with mechanisms underpinning reduced experimental pain sensitivity. Increased striatal dopamine may contribute to pain underreporting in this population, given evidence of a negative association between striatal dopamine and pain in Parkinson disease. By contrast, serotonin and norepinephrine depletion may account for the depression–pain link. Of course, mechanisms explaining serotonin and norepinephrine depletion may account for the depression–pain link. However, little is known about the efficacy of psychological treatments for pain and SMI. In particular, people with major depression and bipolar disorder (but not schizophrenia) are more likely than age- and sex-matched controls without mental illness to receive long-term opioids and experience adverse effects. Research is needed to determine whether these findings persist after reduced opioid prescribing in many countries. Cannabis and cannabinoids are increasingly discussed for pain despite evidence that cannabis use is associated with an increased risk of psychosis and increased risk of relapse and rehospitalization among people with psychosis.

Pharmacological management of pain in SMI is complicated by the potential for harmful side effects and interactions with psychotropic medications and the underlying mental health condition. Antidepressants, including serotonin-norepinephrine reuptake inhibitors, are effective for pain management in the absence of depression and of course may improve comorbid depression; however, unopposed antidepressants may destabilise mood in bipolar disorder. Collaborative pharmacological and psychological care for comorbid pain and major depression is promising, but scarce.

The potential benefits and harms of other analgesics need careful consideration for people with SMI, as in the general population. In particular, people with major depression and bipolar disorder (but not schizophrenia) are more likely than age- and sex-matched controls without mental illness to receive long-term opioids and experience adverse effects. Research is needed to determine whether these findings persist after reduced opioid prescribing in many countries. Cannabis and cannabinoids are increasingly discussed for pain despite evidence that cannabis use is associated with an increased risk of psychosis and increased risk of relapse and rehospitalization among people with psychosis.

3. Psychological and exercise-based interventions for severe mental illness in the wider context: synergies with pain management

For decades, pharmacological interventions were the main treatment offered for SMI. However, evidence for psychological treatments in psychosis, bipolar disorder, and severe depression has increased significantly. There has also been a growing focus on exercise-based interventions in this population.

3.1. Cognitive-behavioral treatments

Cognitive-behavioral therapy for psychosis, bipolar disorder, and depression uses cognitive and behavioral strategies to reduce distress and illness-related disabilities, facilitate adaptive coping, and support recovery goals. Individualised formulations of problem development, maintenance, and exacerbation are a central feature. Cognitive-behavioral therapy has efficacy for improving symptoms of psychosis, bipolar disorder, and severe depression. There is clear overlap in the use of cognitive-behavioral therapy for these disorders and evidence-based cognitive-behavioral methods for pain, including facilitating use of adaptive strategies to manage distressing thoughts and feelings and engage in personally meaningful activities in the presence of difficulties. This overlap can facilitate integration of cognitive-behavioral treatments for pain and SMI.

3.2. Family and carer interventions

Many people with SMI are closely supported by “informal” carers, primarily close relatives, whose support is key in determining outcomes. For those with family contact, family interventions
are associated with reduced relapse and hospitalisation in people with psychosis and bipolar disorder.12,18,87,90 Family members often identify physical health problems and facilitate timely receipt of assessments and interventions.82 Therefore, family members are key in advocating for and supporting people with SMI to manage pain and its causes. It is also important to consider how certain caregiver behaviours and communication patterns, such as invalidating or overly solicitous responses toward pain expression may affect distress and disability in people with SMI and pain.14

Importantly, caregiving can adversely affect carer well-being. Carers of people with psychosis are less likely to continue caregiving when in poor health, hence the importance of identifying factors that adversely affect their health.82 Common mental disorders, sleep difficulties, and isolation are common in SMI carers.89,102 In addition, reports of pain may be elevated in carers of people with psychosis compared with noncarer peers, although the mechanisms underpinning this are unclear.40 Understanding how pain is experienced, communicated, and managed in SMI carers is important to develop tailored interventions. For example, delivering cognitive-behavioural approaches for pain jointly for people with SMI and their carers may enable both individuals to develop more adaptive responses to pain and create a healthier caregiving relationship. The need for a joint cognitive-behavioural approach has been discussed for couples affected by pain, but there is limited evidence to date.13

3.3. Exercise-based treatments

Persistent pain and SMI are, individually, associated with low physical activity.109,112 As it does in the general population, persistent pain also influences the ability of people with SMI to be active.108,111 Thus, despite the plethora of benefits of physical activity for physical health, pain, and mental health seen in meta-analyses of RCTs in persistent pain33 and SMI populations,112 both disorders are associated with underactivity.

Little is known about specific levels and benefits of physical activity for individuals with persistent pain and SMI. Exercise-based treatments hold great promise to improve health, well-being, and social connections in this group, as in the general population.86 Specifically, recent European112 and World Psychiatric Association guidelines identify that physical activity (including aerobic and resistance training) can reduce the risk for SMI onset and improve mental health symptoms, cognition, quality of life, and cardiorespiratory fitness in people with SMI.31 However, data on the impact of physical activity for pain in SMI are unclear, despite the positive effects noted in persistent pain generally.33,97 People with persistent pain and SMI experience a range of barriers to physical activity, including low mood and motivation, fatigue, isolation, lack of support, stigma, financial constraints, and service fragmentation.29,71 The multitude of barriers to and any facilitators of physical activity in people with SMI and persistent pain need to be better understood. This could help to develop or repurpose models of increased movement in this population. Historically, access to physical activity has been low, but the recent focus on improving the physical health, particularly metabolic health, of those with SMI has seen an increase,59,71,93 although effects are not well evaluated, particularly in the context of pain in this population.

4. Opportunities to improve integration of care for pain and severe mental illness

There is recognition of the need to better integrate physical and mental health services, with notable innovations to this end.5,55,76 At present, however, treatments for pain and SMI often occur in isolation within separate services and serially, despite clear synergies. Research is needed to understand how to optimise treatment integration and how to best adapt existing pain management pathways so that they are used by and work well for people with SMI. Opportunities to improve integration of care are briefly outlined.

4.1. Improving pain recognition and assessment

Identifying people with SMI who have or are at risk of experiencing pain is essential.109 Research should explore differences in pain communication between people with psychosis, bipolar disorder, and severe depression and healthcare professionals’ sensitivity to that communication and how this might vary depending on patient racial and ethnic minority status. The latter point is particularly important as people from racial and ethnic minority groups are disproportionately diagnosed with SMI (eg,
schizophrenia\(^\text{80}\) and conditions where pain constitutes a primary component (eg, sickle cell) and experience higher healthcare inequalities.\(^\text{40,80}\) Pain assessment exclusively based on self-report may be challenging for people with psychosis who are less likely to self-identify pain and, depending on service setting, might be more inclined to underplay difficulties due to concerns of receiving additional services/treatments. Therefore, nonverbal assessment of pain behaviour is important.\(^\text{41,42}\) In addition, families or close friends can provide vital information given their critical caregiving role and should thus be included in the pain assessment process where possible. Nonverbal assessments of pain behaviours, such as facial expressions (eg, grimacing), body movements (eg, guarding), and interpersonal changes (eg, not wanting to be touched), are well-validated in other populations where self-report is problematic, such as dementia.\(^\text{85}\) Research is needed to determine the utility of these tools in people with psychosis.

Reports of severe pain in people with SMI may contribute to inappropriate medical management of pain, such as long-term opioid prescribing.\(^\text{84}\) Severe pain may prompt use of invasive treatments, which must be carefully considered because, for example, people with psychosis and bipolar disorder have an increased risk of infection and readmission after surgery for painful conditions compared with those without mental illness.\(^\text{52}\) Aggressive pain treatment may lead to underrecognition and treatment of SMI. Therefore, early detection of SMI in people with severe pain is also imperative to enable provision of appropriate treatment and reduce the risk of iatrogenic harm.

Despite increasing awareness and willingness to discuss mental health, SMI continues to be highly stigmatised,\(^\text{7,4}\) which may further impede pain recognition. Healthcare professionals underestimate pain in the presence of perceived “psychosocial” problems,\(^\text{22}\) making discounting of pain in people with SMI particularly likely. Indeed, there is evidence that they experience diagnostic overshadowing for physical health care.\(^\text{30}\) In addition to limiting treatment access, pain-related invalidation, stigma, and discrimination exacerbate distress,\(^\text{94–96}\) Investigation is needed to understand the impact of intersecting experiences of stigma and discrimination in people with SMI and pain and how to address these. At the structural level,\(^\text{104}\) for example, service planning and funding that enable integration of treatments for pain and SMI may reduce stigma and discrimination experienced when fragmented services exclude people.\(^\text{71}\) At the interpersonal level, role plays developed with people with lived experience may be useful for training to improve clinicians’ communication with people with pain and SMI so that interactions are empathic and respectful.\(^\text{25,104}\) At the individual level, psychological interventions may help people respond effectively to the personal impacts of stigma and discrimination, although effects may be modest in the absence of intervention at the other levels.\(^\text{96,104}\)

4.2. Stakeholder involvement

Meaningful involvement of people with lived experience of SMI and pain will be crucial\(^\text{7,11,81,93}\) to improve existing pain management pathways and develop integrated treatments. Involvement of a range of stakeholders is also needed, including carers, mental health and pain management clinicians from primary to tertiary care, healthcare commissioners, policymakers, and third sector organisations. Stakeholder involvement can include, for example, Priority Setting Partnerships, which can be modelled after exemplary work in paediatric pain.\(^\text{19}\) Stakeholders can provide crucial input to shape pain assessment and intervention tailoring, identify meaningful treatment targets, optimize pathways into treatment, and enhance clinician training. Drawing again from work in paediatric pain,\(^\text{15}\) stakeholders can shape dissemination and implementation of knowledge about research and best practice.

4.3. Treating and evaluating the individual

To rapidly advance the understanding of pain management in people with SMI, innovations in treatment evaluation are needed. RCTs are the gold standard for evaluating interventions but require highly selected samples, protocol-adherent treatment delivery, and group-based analysis.\(^\text{75}\) This limits their potential to inform flexible treatment delivery that addresses the context and complexity of individuals in practice.\(^\text{116}\)

Single-case experimental designs (SCEDs) are well suited to advance development of integrated treatments in a manner that appreciates the heterogeneity of diagnostically specific challenges relating to pain and SMI. SCEDs are a rigorous alternative to RCTs that can enable personalized care.\(^\text{17,61,63,68,116}\) In SCEDs, the individual is their own control through intensive, repeated measurement during baseline and treatment phases.\(^\text{68,75}\) Multiple SCEDs can be undertaken informing multiple treatment approaches with heterogeneous participants using fewer resources than would a single RCT with a homogenous sample.\(^\text{68,75}\) The frequency of assessments in SCEDs provides greater opportunity than that in RCTs to evaluate treatment mechanisms necessary to improve effectiveness.\(^\text{10}\)

Single-case experimental designs are not without limitations. The baseline phase can be demanding and is not feasible when urgent treatment is needed, such as for active suicidality.\(^\text{54}\) The generalizability of SCEDs has been questioned, but replication across patients and settings allows generalizability to be tested.\(^\text{54}\) Although RCTs offer many advantages, SCEDs are highlighted here as a lesser used methodology with underexplored possibilities for developing and evaluating treatments in people with pain and SMI.

4.4. Implementation science

Implementation science holds promise to ensure that research into new models of care has a real-world impact. Implementation science is “the scientific study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice, and hence, to improve the quality and effectiveness of health services and care”\(^\text{36}\) (p. 1). Implementation frameworks draw on behavioral and social science and identify individual-level (eg, clinician knowledge, motivation, and professional role/identity) and structural-level (eg, resources, organizational culture, and policy) factors that influence implementation uptake.\(^\text{4,15,44,67,68}\) The number and complexity of available theories can present a challenge for implementation research, particularly where empirical findings are underlined in refining theory.\(^\text{57}\)

Nonetheless, implementation theories may help identify barriers to and facilitators of integrating existing and novel treatments for pain and SMI in practice. For example, quantitative and qualitative methods can investigate knowledge, skill, and perceptions about professional roles for pain/SMI treatment among clinicians in pain and mental health services. This could inform novel training and supervision models, which could be developed using implementation principles to ensure uptake, scalability, and sustainability.\(^\text{58}\) In addition, linking existing data sets of, for example, referral patterns and treatment outcomes from primary to tertiary care can provide insights into opportunities for integration across the system. There are emerging local examples of how rapid communication between mental and physical health services can improve outcomes for people with SMI.\(^\text{59}\)
As an example of bringing different methods together, data set linkages may identify repeat referrals of patients between pain and mental health services. Interviews with mental health clinicians may reveal a need for training in pain management, whereas interviews with pain clinicians may reveal perceptions that the format (eg, group-based) or duration (eg, number of sessions) of commissioned treatment is unsuitable for people with pain and SMI. Together, these data could argue for more collaboration and mutual training between pain and mental health clinicians and coproduction with service users to better deliver holistic pain management within their services. Surveys of service funders could identify key targets (eg, reduced referrals and improved patient satisfaction) that would allow this model to be sustainably funded.

To conclude, there is an urgent need to advance research and practice to improve pain management in people with SMI. This work should draw on synergies in the existing evidence for managing pain and SMI. Meaningful involvement of people with lived experience is essential to advance this agenda.

Acknowledgments

W. Scott, J. Onwumere, B. Stubbs, and F. Gaughran are partly funded through the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust and King’s College London. B. Stubbs has received fellowship (NIHR301206) and grant funding from the NIHR that is relevant to the current manuscript. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. B. Stubbs has also received grant funding from the Medical Research Council, Guy’s & St Thomas’ Charity, and the Reta Lila Weston Trust for Medical Research. B. Stubbs has received honoraria for advisory work from ASICS Europe, BV & Parachute for unrelated work. B. Stubbs has published a book on exercise and mental illness. D. Shiers is an expert advisor to the NICE centre for guidelines and board member of the National Collaborating Centre for Mental Health (NCCMH); views are personal and not those of NICE or NCCMH. F. Gaughran has received honoraria from Lundbeck, Otsuka, and Sunovion and has a family member with previous professional links to Lilly and GSK. F. Gaughran is also partly supported by the Maudsley Charity and the NIHR Applied Research Collaboration South London at King’s College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. The remaining authors have no conflicts of interest to declare.

Supplemental video content

A video abstract associated with this article can be found at http://links.lww.com/PAIN/B605.

Article history:
Received 27 August 2021
Received in revised form 31 January 2022
Accepted 10 February 2022
Available online 16 March 2022

References

[1] Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the UK. Diabetes Care 2011;34:2220–4.
[2] Aragonés E, Rambia C, López-Cortacans G, Tomé-Pires C, Sánchez-Rodríguez E, Caballero A, Miró J. Effectiveness of a collaborative care intervention for managing major depression and chronic musculoskeletal pain in primary care: a cluster-randomised controlled trial. J Affect Disord 2019;252:221–9.
[3] Asmundson GJ, Katz J. Understanding the co-occurrence of anxiety disorders and chronic pain: state-of-the-art. Depress Anxiety 2009;28: 888–901.
[4] Bruns L, Francis J, Islam R, O’Connor D, Patey A, Ivers N, Foy R, Duncan EM, Colquhoun H, Grimshaw JM, Lawton R, Michie S. A guide to using the Theoretical Domains Framework of behaviour change to investigate implementation problems. Implement Sci 2017;12:1–18.
[5] Attie C, Lillywhite K, Hinchliffe E, Bazley A, Cross S. Integrating mental and physical health care: the mind and body approach. Lancet Psychiat 2018;5:387–9.
[6] Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity—a literature review. Arch Intern Med 2003;163:2433–45.
[7] Belton J, Smith B. The IASP Global Alliance of Partners for Pain Advocacy (GAPPA): Incorporating the lived experience of pain into the study of pain, 2020. Available at: https://reifeld.news/2020/03/18/the-iasp-global-alliance-of-pain-patient-advocates-gappa-incorporating-the-lived-experience-of-pain-into-the-study-of-pain/. Accessed July 10, 2021.
[8] Berlin RK, Butler PM, Perloff MD. Gabapentin therapy in psychiatric disorders: a systematic review. Prim Care Companion CNS Disord 2015;17:10.4088/PCC.15r01821.
[9] Birnie KA, Dib K, Ouellette C, Dib MA, Nelson K, Pahtayken D, Baerg K, Chorney J, Forgeron P, Lamontagne C, Noel M, Poulin P, Stinson J. Partnering for pain: a priority setting partnership to identify patient-oriented research priorities for pediatric chronic pain in Canada. CMAJ Open 2019;7:E654–64.
[10] Burns JW. Mechanisms, mechanisms, mechanisms; it really does all boil down to mechanisms. PAIN 2016;157:2393–4.
[11] Callard F, Rose D. The mental health strategy for Europe: why service user leadership in research is indispensable. J Ment Health 2012;21: 215–26.
[12] Carman-Gomez M, Castelvi P. Effectiveness of family intervention for preventing relapse in first-episode psychosis until 24 months of follow-up: a systematic review with meta-analysis of randomized controlled trials. Schizophr Bull 2020;46:98–109.
[13] Cano A, Corley AM, Clark SM, Martinez SC. A couple-based psychological treatment for chronic pain and relationship distress. Cog Behav Pract 2018;25:119–34.
[14] Cano A, Williams ACdC. Social interaction in pain: reinforcing pain behaviors or building intimacy? PAIN 2010;149:9–11.
[15] Chambers CT. From evidence to influence: dissemination and implementation of scientific knowledge for improved pain research and management. PAIN 2018;159:S56–64.
[16] Charlson FJ, Ferrari AJ, Santomaoro DF, Diminc S, Stockings E, Scott JG, McGrath JJ, Whitford HA. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr Bull 2018;44:1195–1203.
[17] Chisari C, McCracken LM, Cruciani F, Moss-Morris R, Scott W. Acceptance and Commitment Therapy for women living with Vulvodynia: a single-case experimental design study of a treatment delivered online. J Context Behav Sci 2021;23:15–30.
[18] Claxton M, Onwumere J, Fornells-Ambrojo M. Do family interventions improve outcomes in early psychosis? A systematic review and meta-analysis. Front Psychol 2018;7:371.
[19] Cooke BK, Magas LL, Virgo KS, Feinberg B, Adityanee J, Anderson JE, Fenn. Appendectomy for appendicitis in patients with schizophrenia. Am J Surg 2007;193:4–8.
[20] Quijano B, Clignet F, van Meijel B, van Straten A, Li J, Andersson G. Psychological treatment of depression in inpatients: a systematic review and meta-analysis. Clin Psychol Rev 2011;31:353–60.
[21] De Hert M, Correll CU, Bobes J, Cetkovich-Bakmas M, Cohen D, Asai I, Detraux J, Gauthier L, Stevens MAL, Deveugele M, Craig KD, Detraux J, Gautam S, Mollé H-J, Ndetei DM, Newcomer JW, Uwakwe R, Leucht S. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 2011;10:52–77.
[22] De Rudder J, Cadarso S, Cruciati F. Psychological treatment of depression in inpatients: a systematic review and meta-analysis. Lancet Psychiatry 2015;2:888–901.
[23] Dettorre L, Goubert L, Stevens MAL, Deveugele M, Craig KD, Crombez G. Health care professionals’ reactions to patient pain: impact of knowledge about medical evidence and psychosocial influences. J Pain 2014;15:262–70.
[24] Dixon-Gordon KL, Conkey LC, Whalen DJ. Recent advances in understanding physical health problems in personality disorders. Curr Opin Psychol 2018;5:1–5.
[25] Eccles MP, Mittman BS. Welcome to implementation science—The Institute for Implementation Science. J Pain 2014;15:2220–4.
[26] Eccles MP, Mittman BS. Welcome to implementation science. Curr Opin Psychol 2018;5:1–5.
Hadjistavropoulos T, Herr K, Prkachin KM, Craig KD, Gibson SJ, Lukas A, Smith JH. Pain assessment in elderly adults with dementia. Lancet Neurol 2014;13:1216–27.

Haroutounian S, Arendt-Nielsen L, Belton J, Blyth FM, Degenhardt L, Di Forti M, Eccleston C, Finn DP, Finnerup NB, Fisher E, Fogarty AE, Gilron I, Hohnmann AG, Kaloi E, Krane E, Mihoudid M, Moore RA, Rowbotham M, Soliman N, Wallace M, Zinboonyaagohn N, Rice AS. International Association for the Study of Pain Presidential Task Force on Cannabis and Cannabinoid Analgesia: research agenda on the use of cannabinoids, cannabis, and cannabis-based medicines for pain management. Pain 2021;162:S117–24.

Harvey G, Kitson A. PARIHS revisited: from heuristic to integrated framework for the successful implementation of knowledge into practice. Implement Sci 2015;11:1–13.

Haywood G, Jr, Tanabe F, Naik P, Neal MC, Lanzkron S. The impact of race and disease on sickle cell patient wait times in the emergency department. Am J Emerg Med 2015;31:651–6.

Hayes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry 2017;81:9–20.

Hughes LS, Clark J, Coldlough JA, Dale E, McMillan D. Acceptance and commitment therapy (ACT) for chronic pain. Clin J Pain 2017;33:552–68.

Ishák WW, Ven RY, Naghdechi L, Vanie B, Dang J, Knoesp M, Dascal J, Gohar Y, Eksander L, Yedagor J, Hamma S, Sadek A, Aguilar-Hernandez L, Danovitch I, Louc Y. Pain and depression: a systematic review. Harv Rev Psychiat 2018;26:352–63.

Jiao JM, So E, Jebakumar J, George MC, Simpson DM, Robinson-Papp J. Chronic pain disorders in HIV primary care: clinical characteristics and treatment directions. Lancet HIV 2018;15:201–9.

Johnson AG, Seideman P, Day RO. Adverse drug interactions with nonsteroidal anti-inflammatory drugs (NSAIDs). Drug Saf 1999;3:97–127.

Kaliva T, Treismann GJ, Clark MR. Borderline personality disorder and chronic pain: a practical approach to evaluation and treatment. J Pain 2017;18:711–35.

Kasper S, Hajak G, Wulff K, Hoogendijk WJ, Montejo AL, Smeraldi E, Rybakowski JK, Quera-Salva MA, Wirz-Justice AM, Picarel-Blanchot F, Bayef J. Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 2010;71:109–20.

Kazdin AE. Single-case experimental designs. Evaluating interventions in research and clinical practice. Behav Res Ther 2019;117:3–17.

Kings Health Partners. Mind and body; joining up mental and physical health. 2021. Available at: https://www.kingshealthpartners.org/our-work/mind-and-body. Accessed August 5, 2021.

Kishi T, Matsunaga S, Iwata N. Suvorexant for primary insomnia: a comparative study with sertraline. J Clin Psychiat 2010;71:109–20.

Knight L, Guildford B, Daley-Eichenhardt L, McCracken L. Assessment and patient selection process for a pain management programme: a case study in specialty care. Br J Pain 2018;13:74–81.

Kokoloff Thége B, Emmanuel T, Hill S, Wells L. Effectiveness of a complex psychosocial intervention to reduce metabolic syndrome in psychiatric outpatients with severe/persistent mental illness. Curr Psychol 2021;12:1–10.

Kopers E, Onwumere J, Bebbington P. Cognitive model of caregiving in psychosis. Br J Psychiatry 2010;196:259–65.

Laveford A, Sundström FT, Buhman M, McCracken LM. Assessment methods in single case design studies of psychological treatments for chronic pain: a scoping review. J Context Behav Sci 2021;21:121–35.

Leung A, Shrivalkar P, Chen R, Kulva J, Vaninetti M, Bermudes R, Poree L, Wasserman EM, Koppel B, Levy R. Transcranial magnetic stimulation for pain, headache, and comorbid depression: INS-NANCS Expert Consensus Panel review and recommendation. Neuromodulation 2020;23:267–90.

Linton SJ, Nicholas M, Shaw W. Why wait to address high-risk cases of acute low back pain? A comparison of stepped, stratified, and matched care. Pain 2018;159:2437–41.

Marangell LB, Clauw DJ, Choy E, Wang F, Shoemaker S, Bradley L, Wohlreich MM. Comparative pain and mood effects in patients with comorbid fibromyalgia and major depressive disorder: secondary analyses of four pooled randomized controlled trials of duloxetine. Pain 2011;152:31–7.
world: systematic review and meta-analysis of 47 observational studies. Am J Psychiatry 2021;178:793–803.

[104] Stangl AL, Earnshaw VA, Logie CH, van Brakel W, Simbayi LC, Barré I, Dovidio JF. The Health Stigma and Discrimination Framework: a global, crosscutting framework to inform research, intervention development, and policy on health-related stigmas. BMC Med 2019;17:31.

[105] Stubbs B, Binnekade TT, Soundy A, Schriefeld P, Huijnen IP, Eggermont LH. Are older adults with chronic musculoskeletal pain less active than older adults without pain? A systematic review and meta-analysis. Pain Med 2013;14:1316–31.

[106] Stubbs B, Eggermont L, Mitchell A, De Hert M, Correll C, Soundy A, Rosenbaum S, Vancampfort D. The prevalence of pain in bipolar disorder: a systematic review and large-scale meta-analysis. Acta Psychiatr Scand 2015;131:75–88.

[107] Stubbs B, Gardner-Sood P, Smith S, Ismail K, Greenwood K, Patel A, Farmer R, Gaughran F. Pain is independently associated with reduced health related quality of life in people with psychosis. Psychiatry Res 2015;230:585–91.

[108] Stubbs B, Koyanagi A, Schuch F, Firth J, Rosenbaum S, Gaughran F, Mugisha J, Vancampfort D. Physical activity levels and psychosis: a mediation analysis of factors influencing physical activity target achievement among 204 186 people across 46 low-and middle-income countries. Schizophr Res 2017;189:1–8.

[109] Stubbs B, Mitchell AJ, De Hert M, Correll CU, Soundy A, Stroobants M, Vancampfort D. The prevalence and moderators of clinical pain in people with schizophrenia: a systematic review and large scale meta-analysis. Schizophrenia Res 2014;160:1–8.

[110] Stubbs B, Thompson T, Acaster S, Vancampfort D, Gaughran F, Correll CU. Decreased pain sensitivity among people with schizophrenia: a meta-analysis of experimental pain induction studies. Pain 2015;156:2121–31.

[111] Stubbs B, Vancampfort D, Firth J, Hallgren M, Schuch F, Veronese N, Solmi M, Gaughran F, Kahl KG, Rosenbaum S, Ward PB, Carvalho AF, Koyanagi A. Physical activity correlates among people with psychosis: data from 47 low-and middle-income countries. Schizophr Res 2018;193:412–17.

[112] Stubbs B, Vancampfort D, Hallgren M, Firth J, Veronese N, Solmi M, Brand S, Cordes J, Malchow B, Gerber M, Schmitt A, Correll CU, De Hert M, Gaughran F, Schneider F, Kinnafick F, Falkai P, Möller HJ, Kahl KG. EPA guidance on physical activity as a treatment for severe mental illness: a meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (OPTMH). Eur Psychiatry 2018;54:124–44.

[113] Sultan A, Gaskell H, Derry S, Moore RA. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: systematic review of randomised trials. BMC Neurol 2008;8:1–9.

[114] Travaglini LE, Kuykendall L, Bennett ME, Abel EA, Lucksted A. Relationships between chronic pain and mood symptoms among veterans with bipolar disorder. J Affect Disord 2020;277:765–71.

[115] Turner DT, Reijnders M, van der Gaag M, Karyotaki E, Valmaggia LR, Moritz S, Lecomte T, Turkington D, Penadés R, Elkis H, Cather C, Shawyer F, O’Connor K, Li ZJ, de Paiva Barretto EM, Cuijpers P. Efficacy and moderators of cognitive behavioural therapy for psychosis versus other psychological interventions: an individual-participant data meta-analysis. Front Psychiatry 2020;11:402.

[116] Vohra S. N-of-1 trials to enhance patient outcomes: identifying effective therapies and reducing harms, one patient at a time. J Clin Epidemiol 2016;76:6–8.

[117] Williams ACdC, Craig KD. Updating the definition of pain. PAIN 2016;157:2420–3.

[118] Williams ACdC, Fisher E, Hearn L, Eccleston C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst Rev 2020;8:CD007407.