Plant size, leaf economics, and their diversity are strong controls of tundra carbon cycling

Konsta Happonen*, Anna-Maria Virkkala*, Julia Kemppinen¹, Pekka Niittynen¹ & Miska Luoto¹
* These authors contributed equally to this work.
¹ Department of Geosciences and Geography, University of Helsinki
P.O.Box 64, Gustaf Hällströmin katu 2, 00014 University of Helsinki, Finland
² Woodwell Climate Research Center
149 Woods Hole Road, Falmouth, MA, 02540-1644

Authors for correspondence:
Konsta Happonen, konsta.happonen@gmail.com, +358452591889, or
Anna-Maria Virkkala, avirkkala@woodwellclimate.org, +358445441040

Data availability: Data and scripts used in this study are deposited into Zenodo (Happonen et al. 2021).

Author contributions: KH, AMV and ML conceived the research. KH, AMV, JK and PN collected the field data. KH and AMV preprocessed the data. KH, with support from AMV, analysed the data. KH and AMV, with the support of all co-authors, wrote the paper. All authors gave approval for publication.

Acknowledgements: The authors thank Liangzhi Chen, Elisa Hanhirova, Arttu Kivimäki, Panu Lammi, Meri Lindholm, Mitro Müller, Tiia Määttä, Aino-Maija Määttänen, Annina Niskanen, Nina Nordblad, Helena Rautakoski, Henri Riihimäki, Tuuli Rissanen, Sakari Sarjakoski, Outi Seppälä, Akseli Toikka, Vilna Tyystjärvi, and the Arctic Microbial Ecology group at the University of Helsinki for their field and laboratory work, and the staff of the Kilpisjärvi Biological Station for their help. We also thank Markus Hartman at Natural Resources Institute Finland for borrowing measurement equipment. KH was funded by the Doctoral Programme in Wildlife Biology Research at the University of Helsinki. A-MV was funded by Societas pro Fauna et Flora Fennica, Otto Malm foundation, Nordenskiöld-samfundet, Alfred Kordelin foundation, Finnish Cultural Foundation, Academy
of Finland (project no. 286950), and Väisälä fund. JK was funded by the Doctoral
Programme in Geosciences at the University of Helsinki, Maa- ja vesitekniikan tuki ry. and
Tiina and Antti Herlin Foundation. The authors acknowledge funding from the Academy of
Finland (project 286950).
Abstract

1. The functional composition and diversity of plant communities are globally applicable predictors of ecosystem functioning. Yet, it is unclear how traits influence carbon cycling. This is an important question in the tundra where vegetation shifts are occurring across the entire biome, and where soil organic carbon stocks are large and vulnerable to environmental change.

2. To study how traits affect carbon cycling in the tundra, we built a model that explained carbon cycling (above-ground and soil organic carbon stocks, and photosynthetic and respiratory fluxes) with abiotic conditions (air temperature and soil moisture), plant community functional composition (plant size described with average plant height, and leaf economics with leaf dry matter content and specific leaf area), and functional diversity (weighted standard deviations of the traits).

3. The explanatory power of the models was relatively high, but a large part of variation in soil organic carbon stocks remained unexplained. Plant size was the strongest predictor of all carbon cycling variables except soil carbon stocks. Communities of larger plants were associated with larger CO$_2$ fluxes and above-ground carbon stocks. Communities with fast leaf economics had higher photosynthesis, ecosystem respiration, and soil organic carbon stocks.

4. Diversities on axes of size and leaf economics affected ecosystem functions differently. Leaf economic diversity increased CO$_2$ fluxes and soil organic carbon stocks, while size diversity increased the above-ground carbon stock. The contributions of functional diversity metrics to ecosystem functioning were about as important as average leaf economic traits.

5. Synthesis: Community composition and diversity on the two axes of the global spectrum of plant form and function have clear and separate effects on ecosystem functioning. The importance of functional diversity highlights a potentially important mechanism controlling the vast carbon pools that should be better recognized. More research on root traits and decomposer communities is needed to understand the below-ground mechanisms regulating carbon cycling in the tundra.
Key words
Alpine, Arctic, biodiversity, functional traits, ecosystem function and services

Introduction
The Arctic is warming two to four times faster than the world on average (Holland and Landrum 2015; Post et al. 2019), leading to changes in plant growth (Myers-Smith et al. 2015), height (Bjorkman et al. 2018), and species distributions (Steinbauer et al. 2018). It is unclear how such changes in vegetation will influence the carbon stocks and balance of these ecosystems. On one hand, the expansion of larger plants might increase net carbon uptake (Cahoon et al. 2012; Sørensen et al. 2019). On the other hand, vegetation-driven changes in soil conditions and microorganisms might accelerate decomposition and, in turn, increase carbon losses to the atmosphere (Parker, Subke, and Wookey 2015; Vowles and Björk 2018). Arctic soils contain more than half of the global soil organic carbon stock (Hugelius et al. 2014), thus changes in tundra vegetation and carbon cycling have the potential to influence atmospheric CO$_2$ concentrations at the global scale.

Plant functional traits provide a quantitative and globally applicable means to study the interactions among vegetation and carbon cycling in the tundra (Thomas et al. 2020). Above-ground traits of plant species and the functional composition of plant communities have been found to vary primarily along two axes (Díaz et al. 2016; Bruelheide et al. 2018). The first axis describes the trade-offs between resource acquisitive (fast) and conservative (slow) strategies, and has often been called the leaf economics spectrum (Wright et al. 2004) that is measured with traits such as specific leaf area (SLA), leaf nitrogen content, and leaf dry matter content (LDMC) (Bruelheide et al. 2018). The other axis is related to plant size, characterizing the trade-offs between investments to light competition, and photosynthesis and reproduction, and can be measured with, for example, plant vegetative height or stem specific density (Díaz et al. 2016). The plant size axis, and in particular plant height, has been observed to increase with climate change over the past decades across the tundra, whereas changes in leaf economic spectrum have been more variable (Bjorkman et al. 2018).
These trait axes explain differences between species’ vital rates that define population processes (Adler et al. 2014), and ecosystem functioning such as carbon cycling from local to global scales (Diaz et al. 2004; Michaletz et al. 2014). In the tundra, photosynthesis has been shown to correlate positively with fast leaf economics, indicated by, for example, high average SLA (Sørensen et al. 2019). This is because fast communities have more photosynthetic machinery relative to leaf area compared to slower communities (Shipley et al. 2006; Wright et al. 2004). Communities with fast traits often have higher ecosystem respiration as well because maintaining photosynthetic capacity is costly (Cavaleri, Oberbauer, and Ryan 2008). Plant size is often described using biomass or its proxies, such as total plant cover or leaf area index (LAI) (Oberbauer et al. 2007; Street et al. 2007; Shaver et al. 2007; Marushchak et al. 2013). Studies have shown that larger biomass leads to higher photosynthesis, net carbon uptake, and sometimes also soil organic carbon stocks (Lafleur and Humphreys 2018; Gagnon, Domine, and Boudreau 2019).

The relationships of the two main axes of the functional composition of plant communities with soil organic carbon stocks can be more complex. This is because these stocks might be more indirectly linked to traits, via, for example, the quantity and quality of litter inputs (DeMarco, Mack, and Bret-Harte 2014), by affecting microbial communities or soil microclimate (Parker, Subke, and Wookey 2015; Kemppinen et al. 2021), or by correlating with traits that more directly affect soil processes, such as root chemical composition (G. T. Freschet et al. 2010; Bergmann et al. 2020). Earlier research indicates that faster communities such as meadows often accumulate large amounts of carbon into the soil whereas shrubs, and in particular deciduous shrub communities have smaller soil organic carbon stocks and high soil respiration (Sørensen et al. 2018; Vowles and Björk 2018; Parker, Subke, and Wookey 2015). However, the effects of the two axes of above-ground traits of plant species on carbon cycling has not been comprehensively studied yet.

Climate change-driven changes in tundra vegetation are also predicted to influence the diversity of communities (Niittynen, Heikkinen, and Luoto 2020) which also influences carbon cycling (Tilman, Isbell, and Cowles 2014; Duffy, Godwin, and Cardinale 2017). In the tundra, some evidence points out that more diverse shrub communities located in transition zones might be less productive than communities dominated by one shrub species due to
competition (Fletcher et al. 2012). However, in general, the effects of tundra biodiversity on carbon cycling remain poorly understood. Using functional traits allows partitioning the diversity effect to contributions from complementarity along different niche axes and helps to understand how carbon cycling is influenced by changes in functional diversity, which represents one component of biodiversity (Cadotte, Carscadden, and Mirochnick 2011).

In this study, we examine the effect of plant community functional composition and diversity on growing season ecosystem CO₂ fluxes and above-ground and soil organic carbon stocks in a tundra ecosystem. We use a systematic study setting of up to 129 intensively measured plots and regression models while controlling for the effects of key microclimate variables of soil moisture and air temperature explaining carbon cycling (Poyatos et al. 2014; Nobrega and Grogan 2008; Siewert 2018; López-Blanco et al. 2017).

Materials and Methods

Study site

The field observations were collected in 2016–2018 in a subarctic tundra environment in Kilpisjärvi, northwestern Finland (Fig. 1). The study area is located on an elevational gradient between two mountains, Saana (1029 m.a.s.l) and Korkea-Jehkats (960 m.a.s.l), and the valley in between (ca. 600 m.a.s.l.). The study area is above the mountain birch (Betula pubescens var. pumila (L.) Govaerts) forest line, and is predominantly dwarf-shrub heath, with graminoid- and herb-rich meadows concentrated around meltwater streams. Empetrum nigrum L., Betula nana L., Vaccinium myrtillus L., Vaccinium vitis-idaea L. and Phyllodoce caeruleae (L.) Bab. are highly abundant in the area with graminoids and herbs such as Deschampsia flexuosa (L.) Trin. and Viola biflora L. dominant along the streams. The main herbivores in the area are reindeer (Rangifer tarandus tarandus L.), and voles and lemmings (Cricetidae). The soils in the area are mostly poorly developed leptosols with shallow organic layers and occasional podzolization; however, the meadows have soils with thicker organic layers. The mean annual air temperature and annual precipitation at a nearby meteorological station (Kilpisjärvi kyläkeskus, 480 m.a.s.l, 1.5 km from the study area, 1981–2010) are
-1.9°C and 487 mm, respectively (Pirinen et al. 2012). The annual air temperature was -0.4°C in 2016, -1.5°C in 2017, and -0.9°C in 2018, and precipitation 552 mm in 2016, 551 mm in 2017, and 405 mm in 2018 (Finnish Meteorological Institute 2021).

The study design consisted of 129 locations in a 1.5 x 3.0 km area (Fig. 1). The distance between two adjacent locations was a minimum of 23 m (average 101 m). Individual study locations were thus in separate vegetation patches. Not all variables were measured in all locations, and the number of replicates for each analysis varied between 119 and 129 (Table 2). At the sampling locations where all variables were collected, organic and mineral layer depths and longer-term (i.e., a three-year record of) soil moisture and air temperature were measured at the central plot of the measurement scheme. Plant functional traits, above-ground carbon stocks, and CO₂ fluxes measured together with instantaneous chamber air temperature and soil moisture were measured in another plot 1–3 meters away from the central plot to avoid perturbing these permanent plots; however, we made sure that the environmental conditions of this plot were similar to the central plot to guarantee that these plots are comparable with each other. Finally, soil samples were collected from the immediate vicinity of the trait-carbon plot. A schematic illustration of the sampling scheme is depicted in Fig. S1. Further information on the measurement of different variables is depicted below. To ease reading, the different measurement instruments are listed separately in Table S1.

Environmental predictors of tundra carbon cycle variables

Microclimate variables: air temperature and soil moisture

Soil moisture was measured during the growing seasons of 2016–2018 3–6 times per year between June 6 and August 23 as volumetric water content (Happonen et al. 2019; Kemppinen et al. 2018). In each soil moisture plot, three measurements were taken, and the average was used in further analyses. Temperature loggers were installed in 2016 to monitor air temperature 10 cm above-ground at 2–4 h intervals. These air temperature measurements were aggregated to monthly averages. We used July air temperature in further analyses, because it is the warmest month in the area.
To quantify longer-term mean summer air temperature and soil moisture conditions (i.e., not representing just one year), we averaged July air temperature and growing season soil moisture levels over 2016–2018 for each location using random effects models with the R package lme4 (Bates et al. 2015). Air temperature were modelled using location and year as random effects (y ~ 1|location + year). In each location, soil moisture was measured from five 1 m² plots: one central plot and one plot 5 m away in each cardinal direction to reflect fine-scale heterogeneity (Fig. S1). Soil moisture was modelled using plot nested in location, and year as random effects (y ~ 1|location/plot + year). Soil moisture was log-transformed before modelling. Finally, the environmental variables were predicted for the central plot of the soil moisture measurement scheme, averaging out yearly variation.

Longer-term air temperature data were available for 86 plots with carbon stock measurements. To increase this number to 119, we interpolated average July air temperature using kriging with a spherical variogram model (R package gstat, Pebesma and Heuvelink 2016). Visual inspection revealed no effects of interpolation on the covariance and partial covariance structures of our data.

We further measured the air temperature inside the chamber and soil moisture directly next to the collar during the CO₂ flux measurements to reflect instantaneous microclimate conditions during the flux measurement. We recorded soil moisture as the average of three measurements using the same devices as for the longer-term measurements; the air temperature measurements are described in section CO₂ flux data.

Vegetation data: trait and community data

We quantified vascular plant community species composition in the majority of the plots where CO₂ flux measurements were conducted using the point-intercept method during the peak growing season in 2017 (Happonen et al. 2019). A circular frame (20 cm diameter) with 20 evenly spaced pinholes was placed over the soil collar (see section CO₂ flux data) after CO₂ flux measurements. The total number of times each species touched pins (3 mm in thickness) lowered into the vegetation through the frame was counted and used as a measure of species abundance. While cryptophytes might have important effects on soil processes,
their biomass is considerably lower than that of vascular plants in subarctic heaths (M.C. Press et al. 1998). Furthermore, there is still no consensus on which quantitative traits of bryophytes and lichens best capture their effects on ecosystem functioning. For these reasons, the present study focuses on the effects of vascular plants on carbon cycling.

We measured plot-specific plant height to indicate plant size, and LDMC as well as SLA to represent the leaf economics spectrum for all species (Happonen et al. 2019). These three traits have been shown to be good proxies of the axes of above-ground plant trait variation (Bruegheide et al. 2018; Diaz et al. 2016). Trait measurements were done separately for all locations, and always on plant individuals within the soil collars in order to account for intraspecific trait variation. Height was quantified as the height of the highest leaf on two random ramets within the collar. LDMC and SLA were measured from two leaf samples taken from two different ramets. The leaf samples were taken at the time of community surveys, put in re-sealable plastic bags with moist paper towels, and transported to the lab to be stored at 4°C for up to three days before scanning for leaf area and weighing for fresh mass. The leaves were then dried at 70°C for 48 h and weighed for dry mass. A precision scale with a resolution of 0.001 g was used for weighing. Location-specific trait values for each of the 70 observed vascular plant species were quantified as the average of the two individual trait values.

As a measure of functional composition, we used community weighted means (CWM) of these three traits following the mass-ratio hypothesis (Grime 1998), which states that ecosystem processes are determined by the trait values of dominant species in the community. CWM of traits has been shown to correlate both with environmental conditions and ecosystem functioning (Garnier et al. 2004). We chose abundance-weighted standard deviation as the measure of functional diversity. Functional composition and diversity were calculated separately for all traits.
Carbon cycle variables

CO₂ flux data

We measured CO₂ exchange using a static, non-steady state non-flow-through system (Livingston and Hutchinson 1995) composed of a transparent acrylic chamber (20 cm diameter, 25 cm height). Measurements were done during the growing season in 2017 during which the weather conditions in the near-by meteorological station (10.8°C and 104 mm in July) were rather close to the average climatic conditions (11.2°C and 72 mm in July over 1981-2010). Measurements were done during the growing season as it is the most active season for plants with the largest net CO₂ uptake (Belshe, Schuur, and Bolker 2013). The chamber included a small ventilator, a carbon dioxide probe, an air humidity and temperature probe, and a measurement indicator. In the chamber, CO₂ concentration and air temperature were recorded at 5-s intervals for 90 s. PAR was logged manually at 10-s intervals during the same period using a quantum sensor with a hand-held meter.

Steel soil collars (21 cm in diameter and 6–7 cm in height) were inserted in the soil at least 24 h before the measurements to avoid potential CO₂ flush from soil due to the disturbance caused by the installation of the collars. The soils in the study area are relatively rocky and the plants have long horizontal roots, thus our collars could be embedded only ca. 2 cm into the soil. To guarantee an air-tight seal, we sealed the edges of the collar using inert quartz sand. The chamber was placed on top of the collar and ventilated after each measurement. We progressively decreased the light intensity of NEE measurements from ambient conditions to ca. 80%, 50% and 30% PPFD by shading the chamber with layers of white mosquito net (n = 7–10). ER was measured in dark conditions (0 PPFD), which were obtained by covering the chamber with a space blanket (n = 3). Each plot was measured at midday during the peak season in 2017 between the 26th of June and 27th of July.

To convert concentration measurements into flux estimates, we deleted the first and last 5 s of each measurement series to remove potentially disturbed observations. The final measurement period was thus 80 seconds for each plot. Fluxes were calculated using linear regression, and converted to µmol CO₂ m⁻² s⁻¹.
Carbon stock data

Stocks reflect the balance of carbon uptake and losses over a longer period of time. We measured the depth of the soil organic and mineral layers from three points on each central plot up to a depth of 80 cm using a metal probe. In the analyses, we used the mean value of the three point measurements to represent the organic and mineral layer depths in each sampling location. We collected samples of roughly 1 dl from the soil organic and mineral layers with metal soil core cylinders. The organic samples were collected from the top soil, and mineral samples directly below the organic layer. Organic samples were collected from all plots and mineral samples from a subset of plots. The soil samples were taken on the 1st to 31st of August 2016 and 2017, and were pre-processed and analysed at the Laboratory of Geosciences and Geography and the Laboratory of Forest Sciences, University of Helsinki.

Soil samples were first freeze-dried (ISO 11464:1994E). We analysed the bulk density from all organic samples, as well as the total carbon content (C%) or the soil organic matter content (SOM%). We estimated the bulk density (kg m\(^{-3}\)) by dividing the dry weight by the sample volume. We used C% for the majority of the organic layer stock calculations, but for plots that were missing C% data we used SOM% (n = 24). We further analysed bulk density from 70 mineral samples and C% from 54 samples, respectively. We used the median bulk density and C% of these samples (820 kg m\(^{-3}\) for bulk density, range 470–1400 kg m\(^{-3}\); 3% for C%, range 0.4–6.5%) to estimate the carbon stock of the mineral layer. We used the median values, as we did not have data on the mineral soil conditions from all plots. Before C% analysis, mineral samples were sieved through a 2 mm plastic sieve. Organic samples were homogenized by hammering the material into smaller pieces. We analysed C% using elemental analysers, and SOM% using the loss-on-ignition method according to SFS 3008.

SOC for organic and mineral layer was estimated using the following equations:

\[
\text{Organic layer carbon stock} = \frac{\text{organic layer C\%}}{100\%} \times \text{organic layer bulk density (kg m}\(^{-3}\)) \times \text{organic layer depth (m)} \quad (\text{Eqn 1})
\]
Mineral layer carbon stock = mineral layer C% / 100% × mineral layer bulk density (kg m⁻³) × mineral layer depth (m) (Eqn 2)

Finally, organic and mineral layer stocks were summed together to calculate the total SOC stock up to 80 cm. For plots that were missing organic layer C%, SOM% was used instead of C% in Eq. 1 to calculate the soil organic matter stocks, which we converted into organic layer carbon stocks based on a relationship between C% and SOM% (carbon fraction in the soil organic matter). We calculated the carbon fraction in the soil organic matter as 0.54 (R² = 0.97), similar to Parker, Subke and Wookie (2015). For more details, see Kemppinen et al. (2021). Locations with no soil were excluded from the analysis.

Above-ground vascular plant biomass was collected between the 1st and 10th of August, 2017 from the collars. Biomass samples were oven-dried at 70°C for 48 h and weighed after drying. Above-ground carbon stocks (AGC) were estimated by multiplying the total biomass by 0.475 (Schlesinger, 1991).

Statistical analyses

Light response model and flux normalization

All models were run in R version 3.5.3 with the package brms (Bürkner, 2018), which is an interface to the Bayesian modelling platform Stan (Carpenter et al., 2017).

To account for the effects of variation in light levels and air temperature on CO₂ fluxes, we fitted plot-specific light-response curves using a non-linear hierarchical bayesian model. We used the Michaelis-Menten equation to model the n instantaneous observations of NEE as a function of k plot-specific ER, maximum photosynthetic rate GPPmax, and the half-saturation constant K (Eqns 1 & 5). ER, GPPmax and K were allowed to have plot-specific averages (Eqns 2–4 & 6–8), and ER also had an exponential air temperature (T) response (Eqn 2).

\[\text{NEE}_{ij} = - \text{ER}_{ij} + \left(\frac{\text{GPP}_{\text{max},j} \times \text{PAR}_{i}}{K_{j} + \text{PAR}_{i}} \right) + e_{ij} \quad (i = i...n, j = 1...k) \] (Eqn 1)

\[\log(\text{ER}_{ij}) = \text{Intercept}_{ER} + T_{ij} \beta_{\text{Air temperature}} + u_{ER,j} \] (Eqn 2)
\[\text{GPP}_{\text{max}} j = \text{Intercept}_{\text{GPP}} + u_{\text{GPP}} j \] (Eqn 3)

\[\log(K_j) = \text{Intercept}_K + u_K j \] (Eqn 4)

\[e \sim N(0, \sigma_{\text{NEE}}) \] (Eqn 5)

\[u_{\text{ER}} \sim N(0, \sigma_{\text{ER}}) \] (Eqn 6)

\[u_{\text{GPP}} \sim N(0, \sigma_{\text{GPP}}) \] (Eqn 7)

\[u_K \sim N(0, \sigma_K) \] (Eqn 8)

The Michaelis-Menten parameters \(\text{GPP}_{\text{max}} \) and half-saturation constant \(K \) sometimes identify weakly, so that the data would be consistent with infinitely increasing photosynthesis. This is especially true when CO\(_2\) fluxes are small, which is frequently the case in tundra ecosystems.

To counter this, we set weakly informative priors on the plot-specific intercept terms based on visual inspection of the scale of variation in our data and typical parameter values reported in Williams et al., (2006) (Eqns 9–11). A weakly informative prior was also set for the air temperature effect on respiration \(\beta_{\text{Air temperature}} \) (Eqn 12). Priors for the variance parameters were left as the weakly informative \textit{brms} defaults (Eqn 13).

\[\text{Intercept}_{\text{ER}} \sim N(1, 2) \] (Eqn 9)

\[\text{Intercept}_{\text{GPP}} \sim N(10, 10) \] (Eqn 10)

\[\text{Intercept}_K \sim N(6.2, 0.3) \] (Eqn 11)

\[\beta_{\text{Air temperature}} \sim N(0, 1) \] (Eqn 12)

\[\sigma_{\text{ER}}, \sigma_{\text{GPP}}, \sigma_{K}, \sigma_{\text{NEE}} \sim \text{Student} - t^*(3, 10) \] (Eqn 13)

The model was fit with 4 Markov Chain Monte Carlo (MCMC) chains, which were run for 2000 iterations each. The first 1000 iterations were discarded as warmup, leaving a total of 4000 samples of each parameter.

We used this model to predict the rate of NEE at dark (0 PPFD) and average light (600 PPFD) conditions, and an air temperature of 20°C at each plot. Normalizing removes the effects of variation in instantaneous light and temperature conditions from the resulting variables, making them more comparable across the landscape. We refer to the flux
normalized to dark conditions as ecosystem respiration (ER). We then subtracted ER from the NEE normalized to average light conditions to arrive at an estimate of normalized GPP.

Modeling tundra carbon cycling

We modelled GPP, ER, AGC and SOC as functions of functional composition and functional diversity while adjusting for soil moisture and air temperature using bayesian generalized additive models (GAMs). All response variables were log-transformed before analyses to satisfy the assumption of homoscedasticity. Functional diversities were square root transformed to facilitate estimation of interactions by bringing very high values closer to the averages.

The effects of height and height diversity were included as thin-plate splines with basis dimension set to 15. A higher basis dimension allows estimation of wigglier responses, much in the same way that higher polynomials do (Wood 2017). Since LDMC and SLA are not independent, but both reflect variation along the LES, the effects of leaf economic trait composition and diversity were modelled with tensor product smooths of their weighted averages and weighted standard deviations, respectively. A tensor product smooth allows estimation of wiggly and interpretable interaction surfaces that are much less rigid than interactions achieved using linear regression models (Pedersen et al. 2019). The thin plate basis dimension of each trait was set to five, resulting in a theoretical maximum degrees of freedom of 25 for the tensor product smooth. A similar tensor product smoother was also used to adjust for any remaining non-linear effects of air temperature, soil moisture and their interaction on CO₂ fluxes and carbon stocks. Fluxes are controlled by instantaneous environmental conditions, whereas stocks are the balance of inputs and outputs over a longer period of time. For this reason, instantaneous air temperature and soil moisture measurements were used to adjust models of CO₂ fluxes, while longer-term average air temperature and soil moisture were used for stocks.

Bayesian models require setting priors for the parameters. The intercept was given a student-t prior with an expectation of the empirical mean of the response, three degrees of freedom, and a standard deviation of 2.5. Each β parameter was given an uninformative flat prior over
the reals. These are the default priors of the brms package. To reduce overfitting and excess
wigginess of the splines, we set the prior for the standard deviations of β parameters to an
exponential distribution with a rate parameter of 1. All models were fitted with four MCMC
chains of 2000 iterations. The first 1000 samples of each chain were discarded as warmup,
leaving 4000 MCMC samples of each parameter of each model.

Since the inputs to our model were weighted averages and standard deviations of two leaf
economic traits, but we were interested in the effects of the leaf economic spectrum, we
post-processed our model predictions to better display the effects of leaf economics. First,
using an errors-in-variables model (standard major axis regression, Legendre and Legendre
2012) written in Stan, we calculated an allometric relationship between LDMC and SLA, and
LDMC diversity and SLA diversity. We then sampled values evenly from the lowest
observed SLA value to the highest, and predicted the value of LDMC at this value of SLA.
We then calculated the values of the tensor product smoothers at these trait values to visualize
the effects of covarying SLA and LDMC. We repeated the procedure for the square root
transformed functional diversities. These axes of leaf economic composition and diversity
were scaled to lie between zero and one.

Data and scripts used in this study are deposited into Zenodo (Happonen et al. 2021).

Results

Variability in environmental conditions and carbon cycle variables

Average values and within-landscape variabilities of carbon cycling, air temperature, soil
moisture, traits and their diversities are presented in Table 2.

Model diagnostics

The diagnostics for all bayesian models were satisfactory: no MCMC chain showed erratic
behaviour under visual inspection, rank-normalized potential scale reduction factors for all
parameters stayed below 1.01, and visual inspection of the posterior predictive distributions
showed no large systematic differences between distributions of predicted and observed data.
The median Bayesian R² (Gelman et al. 2019) for the light-response model was 0.95.
Bayesian R² values for models of stocks and fluxes are presented in Table 2 and show that the model explaining soil organic carbon stocks had the lowest explanatory power.

Effects of air temperature and soil moisture on carbon cycling

Microclimate conditions and carbon cycle variables were in general positively linked to each other. In the light-response model, a one degree increase in air temperature resulted in a 2.9% (SE: 0.3%) increase in ER. In the GAM, air temperature and soil moisture increased GPP by 40% from the driest and coldest to the warmest and wettest parts of the gradient. AGC was predicted to be higher than average in warm and moist conditions, but lower than average in cool and moist environments. SOC stocks corresponded strongly with soil moisture and air temperature; average SOC stocks almost doubled along the gradient from cool and dry to warm and moist plots (Fig 2).

Trait effects on CO₂ fluxes

GPP and ER had very similar positive responses to plant community functional composition and diversity (Fig. 3). Fluxes increased with plant height, fast leaf traits, and leaf economic diversity. Variation in plant height had the largest absolute effect, as indicated by the larger range of marginal response values, with average GPP and ER increasing from shortest to tallest vegetation by 600% and 400%, respectively. Communities with the fastest leaf economic traits (inferred using the type II regression line) had about 80% higher GPP and 50% higher ER compared to communities on the slowest end of the spectrum. Plots with the highest LES diversity had about 80% higher GPP and ER compared to plots with the lowest diversity.

Trait effects on carbon stocks

AGC increased with plant height and decreased with faster leaf economic traits (Fig. 3). On the observed gradient of plant height, average AGC increased 23-fold. The gradient from slow to fast leaf economic traits caused a 70% reduction in AGC. There was also a 95% probability that AGC increases along with increasing height diversity, with the difference in AGC between highest and lowest height diversity being about 4-fold on average.
Faster leaf economic traits and greater leaf economic diversity increased SOC. Along the compositional leaf trait axis, SOC about doubled, while along the leaf economic diversity axis SOC increased about 2.5-fold. We observed no clear links between SOC and plant height.

The effects of functional composition and diversity on carbon cycling are summarized in Fig. 4.

Discussion

Arctic vegetation is reshuffled in various ways at an unprecedented speed (G. J. Jia, Epstein, and Walker 2003; Phoenix and Bjerke 2016; Post et al. 2009). Thus, it is imperative that we form a solid understanding of the causal forces shaping Arctic ecosystems and their functioning. Here, we show that a functional trait-based approach proved informative, since we were able to partition the effects of vegetation composition and diversity on carbon cycling to size and resource use strategy-related components. Functional composition and diversity on the recently identified axes of plant above-ground functional trait variation (Díaz et al. 2016; Bruelheide et al. 2018) thus have clear and separate effects on tundra carbon cycling. Since these community trait attributes also respond differently to environmental conditions (Happonen et al. 2019; Bjorkman et al. 2018), they are excellently suited to inform us about the impacts of global change and vegetation shifts on carbon cycling and resulting climate feedbacks.

Our research further highlights the potential of using traits instead of plant functional groups or vegetation classifications which have often been used in earlier carbon cycle studies to describe the functional properties of vegetation (Virkkala et al. 2018). Using traits is advantageous as classifications might ignore large variation in vegetation properties that are relevant for ecosystem functioning (Thomas et al. 2019; Cadotte, Carscadden, and Mirotechnick 2011). Furthermore, the use of classification methods makes it impractical to compare the results of independent studies if their classifications differ whereas plant functional trait measurements are standardized and can be compared not only across the tundra but also across the globe.
Modeling the variability in the tundra carbon cycle

We observed high variability in CO$_2$ fluxes and carbon stocks which was of similar magnitude as has been reported in other studies covering a range of environments across the entire Arctic during the growing season. For example, photosynthesis varied between 0.3 and 13.4 µmol CO$_2$ m$^{-2}$ s$^{-1}$ in our study whereas those reported in Cahoon et al. (2012) in Greenland, Alaska, and Sweden varied from 1.5 to 10.2 (standardized similarly at an irradiance of 600 µmol CO$_2$ m$^{-2}$ s$^{-1}$ of photosynthetic photon flux density). Observed soil organic carbon stocks (mostly 1–10 kg C m$^{-2}$) were lower than those estimated for the upper 1 meter of the soil in this region by Hugelius et al., 2014 (5–15 kg m$^{-2}$) but of similar magnitude as those reported for other Fennoscandian mountain regions (Sørensen et al. 2018; Ylänne et al. 2018). Nevertheless, observed soil organic carbon stocks were on average ca. 40 times larger than the above-ground carbon stocks, highlighting the fact that the soil carbon budget is highly important for the carbon balance of tundra ecosystems as a whole.

The models used in this study with R2 values of 0.27-0.53 had a similar or even higher explanatory power than what has been shown in earlier studies (e.g., models explaining photosynthesis had an R2 of 0.1-0.52 and models of ecosystem respiration 0.18-0.32 in Sørensen et al. (2019), models of photosynthesis had an R2 of 0.32 and of ecosystem respiration 0.45 in Mauritz et al. (2017)). Our light-response model showed that air temperature is important for respiration. In addition, soil moisture and air temperature had a positive relationship with photosynthesis and soil organic carbon stocks. This finding was similar to studies by López-Blanco et al. (2017), Nobrega and Grogan (2008), and Poytaos et al. (2014), that showed the widely-known importance of air temperature in controlling enzymatic processes, and soil moisture in acting as an important resource for organisms. Above-ground carbon stocks were smaller in moist and cold environments, which might reflect a general scarcity of vascular plant vegetation in these environments.
Plant size is the most important trait for most of the carbon cycle variables. Plant size had a strong and positive relationship with all growing season fluxes and above-ground carbon stocks, but not with soil organic carbon stocks. The relationship between plant size and photosynthesis was stronger than that of plant size and ecosystem respiration. Our study agrees with the results of Lafleur and Humphreys (2018), who discovered that taller plants (and in particular, shrubs) had larger growing season net CO$_2$ uptake than lower plants in the low Arctic. They argued that this was likely due to colder soils limiting heterotrophic respiration and taller plants having a larger total leaf area to capture sunlight, which likely also explains the stronger relationship that we observed for photosynthesis.

However, our data indicate that communities with high growing season productivity likely also suffer higher yearly soil carbon losses, as we found no clear links with plant size and soil organic carbon stocks that reflect the long-term annual carbon accumulation. This was an interesting finding because we hypothesized the relationship between plant size and soil organic carbon stocks to be positive as larger communities might produce larger carbon inputs to soils (DeMarco, Mack, and Bret-Harte 2014). The lack of this relationship suggests that in this ecosystem, other mechanisms have a stronger control over soil organic carbon stocks. Such mechanisms can be linked to carbon cycling processes during the shoulder and winter seasons or lateral transport of carbon, for example. One such mechanism is that during the winter, taller communities have warmer soils (Kropp et al. 2020), which accelerate soil respiration and increase soil carbon losses (Natali et al. 2019). Or, tall plant communities might inhabit environments where carbon leaching is high (Ma et al. 2019). In any case, our results show that tundra soil organic carbon stocks might be weakly linked to changes in growing season ecosystem CO$_2$ fluxes, above-ground carbon stocks, and plant size, similar to the findings by Sørensen et al. (2018).

Evidence suggests that plant size is increasing around the Arctic in response to climate change. Sometimes this is in part due to “shrubification”, the increase in the biomass, cover, and abundance of woody species (Myers-Smith et al. 2011; Berner et al. 2020), but the height of non-woody species is increasing as well. Bjorkman et al. (2018) reported an average
increase of about 1 cm in plant height over 1989–2015 years across the tundra. Our results suggest that such an increase would have resulted in 8–16% larger growing season photosynthesis and 6–11% times larger ecosystem respiration (assuming a linear response to height, 90% CI). From our results it thus follows that the documented changes in plant height across the tundra might have already caused large shifts in the functioning of Arctic ecosystems, especially on growing season CO$_2$ fluxes and above-ground carbon storage, but the effects on total ecosystem carbon storage require further investigation. New measurements in taller plant communities are likely important to address this as our study design did not cover the full plant size spectrum observed across the tundra; community-weighted plant height varied between 1 and 20 cm in this study whereas it varied between 0 and 40 cm in Bjorkman et al. (2018).

Earlier studies in the tundra have often characterized the effects of vegetation functional composition on carbon cycling with LAI (Street et al. 2007; Shaver et al. 2007; Dagg and Lafleur 2011; Marushchak et al. 2013). Measuring LAI does not require information on species assemblages, making it useful for landscape-scale or temporal predictions of carbon cycling (Shaver et al. 2007; Cahoon, Sullivan, and Post 2016). However, LAI is a composite of several trait axes as, for example, increases in plant size and SLA can both increase LAI (Fletcher et al. 2012). Consequently, understanding the mechanisms driving the relationships between the environment and LAI, or LAI and carbon cycling, can be challenging. Our study adds to the results of these earlier studies by partitioning plant community functional composition to community position on the two main axes of trait variation, thus improving our mechanistic understanding about vegetation-carbon linkages in the tundra.

Communities with fast traits are associated with higher soil organic carbon stocks

The effects of the leaf economics spectrum on carbon cycling were more variable and in general weaker compared to the relationships between plant size and carbon cycling. Our study supports the well-established strong positive relationship between faster economic traits and photosynthesis (Williams et al. 2006; Street et al. 2007; Shaver et al. 2007), but suggests that the connection to ecosystem respiration is not as strong. The relationship between ecosystem respiration and economic traits is more complex due to the various sources of
ecosystem respiration (above-ground plant tissues, roots, symbionts, and heterotrophs) which all have different drivers (Segal and Sullivan 2014; Barba et al. 2018). We speculate that there are four main mechanisms that explain higher ecosystem respiration associated with faster communities. First, higher levels of photosynthesis of fast communities also accelerates plant respiration (Lund et al. 2010). Second, faster growing plants often produce more litter that is rich in nutrients and more easily broken down by soil microbes, resulting in higher soil respiration rates (Cornwell et al. 2008; G. T. Freschet, Aerts, and Cornelissen 2012). Third, faster plants produce more root exudates, which are, together with root respiration, suggested to be a main source of soil respiration in the tundra (Illeris, Michelsen, and Jonasson 2003). And fourth, plants with high leaf nutrient concentrations also have high nutrient concentrations in the roots, as suggested by the whole-plant economic spectrum hypothesis (G. T. Freschet et al. 2010), which might also accelerate soil respiration by facilitating root respiration (S. Jia et al. 2013). Thus, there are several processes that could be associated with the relationships that we have observed, all consistent with our observation that fast leaf economic traits accelerate both respiratory and photosynthetic fluxes.

Even though plant size did not have a clear effect on soil organic carbon stocks, leaf economic traits had a relatively strong relationship with it. This might indicate that differences in organic matter quality (associated with leaf economics) instead of quantity (associated with larger plants) controls soil organic carbon stocks in this landscape (Hobbie 1996). Similar to Sørensen et al. (2018), largest soil organic carbon stocks in our study were located in graminoid and forb-dominated meadow communities with fast traits whereas smallest soil organic carbon stocks were found in slow communities. Therefore, although it is generally hypothesized that fast communities often produce litter that decomposes rapidly, and that slow communities associated with evergreen species produce recalcitrant litter that decomposes slowly and accumulates into the soil (Hobbie et al. 2000), these hypotheses did not explain our results. Instead, our results suggest that mechanisms related to roots or microorganisms likely have a stronger control on soil organic carbon stocks. For example, communities with fast traits might have deeper-reaching roots and larger amounts of biomass below-ground (Ylänne et al. 2018; Iversen et al. 2015), and conditions deeper in the soil might make root litter relatively resistant to microbial decomposition compared to leaf litter and root litter in higher soil layers (De Deyn, Cornelissen, and Bardgett 2008; G. T. Freschet
et al. 2013). Further, as speculated by Sørensen et al. (2018), microorganisms could retain more carbon in the soil due to the arbuscular mycorrhiza associated with faster communities whereas slower communities with mycorrhizal fungi and ectomycorrhiza could decompose organic matter faster (Väre, Vestberg, and Eurola 1992; Becklin, Pallo, and Galen 2012; Parker, Subke, and Wookey 2015). Moreover, communities with slow leaf economics often have evergreen leaves that produce relatively small carbon inputs to the soil compared to faster communities that lose their leaves each year (Hobbie 1996).

Nevertheless, a large part of variation in soil organic carbon stocks remained unexplained, even when soil moisture and air temperature conditions were considered. It is possible that these weaker links are partly due to practical reasons, as we measured soil organic carbon outside the vegetation collar (see Fig. S1). However, our study design captured the entire continuum of fast-slow communities representative of the entire tundra biome as well as the global spectrum of leaf economics spectrum (Thomas et al. 2020), thus our results should provide relatively robust results describing the direction and magnitude of the relationship between leaf economic traits and carbon cycle variables.

Functional diversity of leaf economics increases ecosystem functioning

All fluxes and soil organic carbon stocks responded positively to the functional diversity of leaf economics, but not to the diversity of plant size. Thus, within-community variability on the slow-fast strategy axis increased ecosystem functioning, supporting the niche complementarity hypothesis (Cadotte, Carscadden, and Mirotchnick 2011). Similar findings of a positive correlation with plant diversity and soil organic carbon stocks have also been made in observational (Chen et al. 2018) and experimental (Lange et al. 2015; Fornara and Tilman 2008) studies. There are several mechanisms for how soil organic carbon stocks could increase with plant functional diversity. One such mechanism is that increased productivity could lead to higher litter inputs from leaves and roots (DeMarco et al. 2014; Chen et al. 2018). This is plausible, since leaf economic diversity also increases photosynthesis and the ratio of photosynthesis to ecosystem respiration. Niche complementarity pertaining to nutrient-use strategies could also lead to more efficient use of below-ground niche space and thus higher total investments in acquiring below-ground resources. Other mechanisms are related to soil microbes. High plant diversity might enhance the diversity and activity of soil
microbial communities and decrease carbon losses from microbial decomposition (Chen et al. 2018).

Functional diversity of plant size was positively if somewhat uncertainly associated with above-ground carbon stocks, indicating that multi-layered vegetation stores more carbon compared to less structurally diverse plant communities. Similar effects of size-related trait diversity on above-ground biomass have been reported for temperate semi-natural grasslands (Schumacher and Roscher 2009). On the other hand, Conti and Diaz (2013) reported a negative correlation between structural diversity and above-ground carbon stocks in subtropical forests, but note that this is probably due to confounding factors. Our results provide more evidence that structurally layered plant communities might contain more carbon than vertically homogeneous vegetation patches, although the effects were uncertain enough that further research is needed to verify this relationship.

Characterizing the underground community should be a priority

Our results showed that plant functional community composition and diversity were good predictors of above-ground carbon stocks and ecosystem fluxes whereas a large part of variation in soil organic carbon stocks remained unexplained. This is an issue as most of the carbon in tundra ecosystems is located in the soil (Hugelius et al. 2014; Mishra et al. 2021). Field and laboratory evidence suggests that this carbon pool is vulnerable to warming and permafrost thaw (Voigt et al. 2017; Schädel et al. 2016), but it is not well known how it responds to the wide-spread shifts in tundra vegetation (Bjorkman et al. 2018; Berner et al. 2020; Parker et al. 2021). This is because soil organic carbon stocks are a result of various carbon inputs from above- and below-ground plant tissues, outputs from ecosystem and soil respiration, and lateral transport, which all respond differently to trait variation. Therefore, interpreting the effects of above-ground traits on soil organic carbon stocks is challenging as the links might be weak and indirect (e.g., via litter decomposition and accumulation). Further, soil organic carbon stocks are strongly driven by abiotic environmental conditions as well, some of which might have been missing from our model. For example, soil organic carbon stocks can be influenced by geomorphological processes such as cryoturbation, or
aeolian and fluvial transportation of litter (Klaminder, Yoo, and Giesler 2009), or soil development and carbon accumulation in the past (Palmtag et al. 2015).

Most importantly, our results highlight that we need more measurements and understanding on belowground community composition, diversity and functioning of plant roots, litter, and microorganisms (Orwin et al. 2010). With recent advancements such as a new a root ecology handbook (G. Freschet et al. 2020) and the identification of major axes of variation in below-ground traits (Bergmann et al. 2020), some of these measurements can soon be done in a comparable way across the globe. Such measurements will help us understand the mechanisms influencing soil organic carbon stocks and vegetation-carbon feedbacks in a changing climate.

Conclusions

We found that carbon cycling in the tundra was well explained by plant community functional composition and diversity. Average plant size was the strongest predictor of most carbon cycling variables. Leaf economic diversity mattered strongly for soil organic carbon stocks, highlighting a potentially important mechanism controlling the vast carbon pools that should be better recognized. Plant size increased CO$_2$ fluxes and above-ground carbon stocks but had no clear effect on soil organic carbon stocks, whereas fast leaf economics were associated with higher CO$_2$ fluxes and soil organic carbon stocks. By utilizing globally applicable plant functional traits, our findings facilitate forming an integrated view on the causes and ecosystem consequences of climate change-related vegetation transitions in the tundra.

References

Adler, Peter B., Roberto Salguero-Gómez, Aldo Compagnoni, Joanna S. Hsu, Jayanti Ray-Mukherjee, Cyril Mbeau-Ache, and Miguel Franco. 2014. “Functional Traits Explain Variation in Plant Life History Strategies.” Proceedings of the National Academy of Sciences of the United States of America 111 (2): 740–45. https://doi.org/10.1073/pnas.1315179111.

Barba, Josep, Alejandro Cueva, Michael Bahn, Greg A. Barron-Gafford, Benjamin Bond-Lamberty, Paul J. Hanson, Aline Jaimes, et al. 2018. “Comparing Ecosystem and Soil Respiration: Review and Key Challenges of Tower-Based and Soil Measurements.” Agricultural and Forest Meteorology 249: 434–43. https://doi.org/10.1016/j.agrformet.2017.10.028.

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Usinglme4.” Journal of Statistical Software 67 (1). https://doi.org/10.18637/jss.v067.i01.

Becklin, Katie M., Megan L. Pallo, and Candace Galen. 2012. “Willows Indirectly Reduce Arbuscular
Mycorrhizal Fungal Colonization in Understorey Communities: Indirect Effects on Arbuscular Mycorrhizal Fungi.” *The Journal of Ecology* 100 (2): 343–51. https://doi.org/10.1111/j.1365-2745.2011.01903.x.

Belshe, E. F., E. A. G. Schuur, and B. M. Bolker. 2013. “Tundra Ecosystems Observed to Be CO2 Sources due to Differential Amplification of the Carbon Cycle.” *Ecology Letters* 16 (10): 1307–15. https://doi.org/10.1111/ele.12164.

Bergmann, Joana, Alexandra Weigelt, Fons van der Plas, Daniel C. Laughlin, Thom W. Kuyper, Nathaly Guerrero-Ramirez, Oscar J. Valverde-Barrantes, et al. 2020. “The Fungal Collaboration Gradient Dominates the Root Economics Space in Plants.” *Science Advances* 6 (27): eaba3756. https://doi.org/10.1126/sciadv.aba3756.

Berner, Logan T., Richard Massey, Patrick Jantz, Bruce C. Forbes, Marc Macias-Fauria, Isla Myers-Smith, Timo Kumpula, et al. 2020. “Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome.” *Nature Communications* 11 (1): 4621. https://doi.org/10.1038/s41467-020-18479-5.

Bjorkman, Anne D., Isla H. Myers-Smith, Sarah C. Elmendorf, Signe Normand, Nadja Rüger, Pieter S. A. Beck, Anne Blach-Overgaard, et al. 2018. “Plant Functional Trait Change across a Warming Tundra Biome.” *Nature* 562 (7725): 57–62. https://doi.org/10.1038/s41586-018-0699-8.

Cadotte, Marc W., Kelly Carscadden, and Nicholas Mirotchnick. 2011. “Beyond Species: Functional Diversity and the Maintenance of Ecological Processes and Services.” *Journal of Applied Ecology* 48 (5): 1079–87. https://doi.org/10.1111/j.1365-2664.2011.01219.x.

Cahoon, Sean M. P., Patrick F. Sullivan, and Eric Post. 2016. “Greater Abundance of Betula Nana and Early Onset of the Growing Season Increase Ecosystem CO2 Uptake in West Greenland.” *Ecosystems* 19 (7): 1149–63. https://doi.org/10.1007/s10021-016-9997-7.

Cahoon, Sean M. P., Patrick F. Sullivan, Gaius R. Shaver, Jeffrey M. Welker, Eric Post, and Marcel Holyoak. 2012. “Interactions among Shrub Cover and the Soil Microclimate May Determine Future Arctic Carbon Budgets.” *Ecology Letters* 15 (12): 1415–22. https://doi.org/10.1111/j.1461-0248.2012.01865.x.

Cavaleri, Molly A., Steven F. Oberbauer, and Michael G. Ryan. 2008. “Foliar and Ecosystem Respiration in an Old-Growth Tropical Rain Forest.” *Plant, Cell & Environment* 31 (4): 473–83. https://doi.org/10.1111/j.1365-3040.2008.01775.x.

Chen, Shiping, Wantong Wang, Wenting Xu, Yang Wang, Hongwei Wan, Dima Chen, Zhiyao Tang, et al. 2018. “Plant Diversity Enhances Productivity and Soil Carbon Storage.” *Proceedings of the National Academy of Sciences of the United States of America* 115 (16): 4027–32. https://doi.org/10.1073/pnas.1700298114.

Conti, Georgina, and Sandra Diaz. 2013. “Plant Functional Diversity and Carbon Storage - an Empirical Test in Semi-Arid Forest Ecosystems.” *Journal of Ecology* 101 (1): 18–28. https://doi.org/10.1111/j.1365-2745.12012.

Cornwell, William K., Johannes H. C. Cornelissen, Kathryn Amatangelo, Ellen Doree, Marie T. Evener, Oscar Godoy, Sarah E. Hobbie, et al. 2008. “Plant Species Traits Are the Predominant Control on Litter Decomposition Rates within Biomes Worldwide.” *Ecology Letters* 11 (10): 1065–71. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

Dagg, Jennifer, and Peter Lafleur. 2011. “Vegetation Community, Foliar Nitrogen, and Temperature Effects on Tundra CO2 Exchange across a Soil Moisture Gradient.” *Arctic, Antarctic, and Alpine Research* 43 (2): 189–97. https://doi.org/10.1657/1938-4246-43.2.189.

De Deyn, Gerlinde B., Johannes H. C. Cornelissen, and Richard D. Bardgett. 2008. “Plant Functional Traits and Soil Carbon Sequestration in Contrasting Biomes.” *Ecology Letters* 11 (5): 516–31.
Lange, Markus, Nico Eisenhauer, Carlos A. Sierra, Holger Bessler, Christoph Engels, Robert I. Griffiths, Perla G. Mellado-Vázquez, et al. 2015. “Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage.” Nature Communications 6 (April): 6707. https://doi.org/10.1038/ncomms7707.

Legendre, P., and L. F. J. Legendre. 2012. Numerical Ecology. Developments in Environmental Modelling. Elsevier Science.

Livingston, G. P., and G. L. Hutchinson. 1995. “Enclosure-Based Measurement of Trace Gas Exchange: Applications and Sources of Error.” In Biogenic Trace Gases: Measuring Emissions from Soil and Water, edited by P. A. Matson and R. C. Harriss, 14–51. Oxford, United Kingdom: Blackwell Science.

López-Blanco, Efrén, Magnus Lund, Mathew Williams, Mikkel P. Tamstorf, Andreas Westergaard-Nielsen, Jean-François Exbrayat, Birger U. Hansen, and Torben R. Christensen. 2017. “Exchange of CO2 in Arctic Tundra: Impacts of Meteorological Variations and Biological Disturbance.” Biogeosciences 14 (19): 4467. https://curis.ku.dk/ws/files/191386588/bg_14_4467_2017.pdf.

Lund, Magnus, Peter M. Lafleur, Nigel T. Roulet, Anders Lindroth, Torben R. Christensen, Mika Aurela, Bogdan H. Chojnicki, et al. 2010. “Variability in Exchange of CO2 across 12 Northern Peatland and Tundra Sites.” Global Change Biology 16 (9): 2436–48. https://doi.org/10.1111/j.1365-2486.2009.02104.x.

Ma, Qiang, Huijun Jin, Congrong Yu, and Victor F. Bense. 2019. “Dissolved Organic Carbon in Permafrost Regions: A Review.” SCIENCE CHINA Earth Sciences 62 (2): 349–64. https://doi.org/10.1007/s11430-018-9309-6.

Marushchak, M. E., I. Kiepe, C. Biasi, V. Elsakov, T. Friborg, T. Johansson, H. Soegaard, T. Viftalanen, and P. J. Martikainen. 2013. “Carbon Dioxide Balance of Subarctic Tundra from Plot to Regional Scales.” Biogeosciences 10 (1): 437–52. https://doi.org/10.5194/bg-10-437-2013.

Mauritz, Marguerite, Rosvel Bracho, Gerardo Celis, Jack Hutchings, Susan M. Natali, Elaine Pegoraro, Verity G. Salmon, Christina Schädel, Elizabeth E. Webb, and Edward A. G. Schuur. 2017. “Nonlinear CO2 Flux Response to 7 Years of Experimentally Induced Permafrost Thaw.” Global Change Biology 23 (9): 3646–66. https://doi.org/10.1111/gcb.13661.

M.C. Press, J. A. Potter, M. J. W. Burke, T. V. Callaghan, and J. A. Lee. 1998. “Responses of a Subarctic Dwarf Shrub Heath Community to Simulated Environmental Change.” The Journal of Ecology 86 (2): 315–27. https://doi.org/10.1046/j.1365-2745.1998.00261.x.

Michaletz, Sean T., Dongliang Cheng, Andrew J. Kerkhoff, and Brian J. Enquist. 2014. “Convergence of Terrestrial Plant Production across Global Climate Gradients.” Nature 512 (7512): 39–43. https://doi.org/10.1038/nature13470.

Mishra, Umakant, Gustaf Hugelius, Eitan Shelef, Yuanhe Yang, Jens Strauss, Alexey Lupachev, Jennifer W. Harden, et al. 2021. “Spatial Heterogeneity and Environmental Predictors of Permafrost Region Soil Organic Carbon Stocks.” Science Advances 7 (9). https://doi.org/10.1126/sciadv.aaz5236.

Myers-Smith, Isla H., Sarah C. Elmendorf, Pieter S. A. Beck, Martin Wilmking, Martin Hallinger, Daan Blok, Ken D. Tape, et al. 2015. “Climate Sensitivity of Shrub Growth across the Tundra Biome.” Nature Climate Change 5 (9): 887–91. https://doi.org/10.1038/nclimate2697.

Myers-Smith, Isla H., Bruce C. Forbes, Martin Wilmking, Martin Hallinger, Trevor Lantz, Daan Blok, Ken D. Tape, et al. 2011. “Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities.” Environmental Research Letters 6 (4): 045509. https://doi.org/10.1088/1748-9326/6/4/045509.

Natali, Susan M., Jennifer D. Watts, Brendan M. Rogers, Stefano Poter, Sarah M. Ludvig, Anne-Katrin Sellmann, Patrick F. Sullivan, et al. 2019. “Large Loss of CO2 in Winter Observed across the Northern Permafrost Region.” Nature Climate Change 9 (11): 852–57. https://doi.org/10.1038/s41558-019-0592-8.

Niittynen, Pekko, Risto K. Heikkinen, and Miska Luoto. 2020. “Decreasing Snow Cover Alters
Functional Composition and Diversity of Arctic Tundra.” *Proceedings of the National Academy of Sciences of the United States of America* 117 (35): 21480–87. https://doi.org/10.1073/pnas.2001254117.

Nobrega, Sonia, and Paul Grogan. 2008. “Landscape and Ecosystem-Level Controls on Net Carbon Dioxide Exchange along a Natural Moisture Gradient in Canadian Low Arctic Tundra.” *Ecosystems* 11 (3): 377–96. https://doi.org/10.1007/s10021-008-9128-1.

Oberbauer, Steven F., Craig E. Tweedie, Jeff M. Welker, Jace T. Fahnestock, Greg H. R. Henry, Patrick J. Webber, Robert D. Hollister, et al. 2007. “Tundra CO₂ Fluxes in Response to Warming across Latitudinal and Moisture Gradients.” *Ecological Monographs* 77 (2): 221–38. https://doi.org/10.1890/06-0649.

Orwin, Kate H., Sarah M. Buckland, David Johnson, Benjamin L. Turner, Simon Smart, Simon Oakley, and Richard D. Bardgett. 2010. “Linkages of Plant Traits to Soil Properties and the Functioning of Temperate Grassland.” *Journal of Ecology* 98 (5): 1074–83. https://doi.org/10.1111/j.1365-2745.2010.01679.x.

Palmtag, J., G. Hugelius, N. Lashchinskiy, M. P. Tamstorf, A. Richter, B. Elberling, and P. Kuhry. 2015. “Storage, Landscape Distribution, and Burial History of Soil Organic Matter in Contrasting Areas of Continuous Permafrost.” *Arctic, Antarctic, and Alpine Research* 47 (1): 71–88. https://doi.org/10.1657/aaar0014-027.

Parker, Thomas C., Jens-Arne Subke, and Philip A. Wookey. 2015. “Rapid Carbon Turnover beneath Shrub and Tree Vegetation Is Associated with Low Soil Carbon Stocks at a Subarctic Treeline.” *Global Change Biology* 21 (5): 2070–81. https://doi.org/10.1111/gcb.12793.

Parker, Thomas C., Alana M. Thurston, Katrine Raundrup, Jens-Arne Subke, Philip A. Wookey, and Iain P. Hartley. 2021. “Shrub Expansion in the Arctic May Induce Large-Scale Carbon Losses due to Changes in Plant-Soil Interactions.” *Plant and Soil*, March. https://doi.org/10.1007/s11104-021-04919-8.

Pebesma, E., and G. Heuvelink. 2016. “Spatio-Temporal Interpolation Using Gstat.” *The R Journal* 8 (1): 204–18. https://doi.org/10.32614/RJ-2016-014.

Pedersen, Eric J., David L. Miller, Gavin L. Simpson, and Noam Ross. 2019. “Hierarchical Generalized Additive Models in Ecology: An Introduction with Mgcov.” *PeerJ* 7 (May): e6876. https://doi.org/10.7717/peerj.6876.

Phoenix, Gareth K., and Jarle W. Bjerke. 2016. “Arctic Browning: Extreme Events and Trends Reversing Arctic Greening.” *Global Change Biology* 22 (9): 2960–62. https://doi.org/10.1111/gcb.13261.

Pirinen, Pentti, Henriikka Simola, Juha Aalto, Juho-Pekka Kaukoranta, Pirkko Karlsson, and Reija Ruuheła. 2012. “Tilastoja Suomen Ilmastosta 1981–2010 - Climatological Statistics of Finland 1981–2010.” 1. Finnish meteorological institute. http://hdl.handle.net/10138/35880.

Post, Eric, Richard B. Alley, Torben R. Christensen, Marc Macias-Fauria, Michael N. Gooseff, Amy Iler, et al. 2019. “The Polar Regions in a 2°C Warmer World.” *Science Advances* 5 (12): eaaw9883. https://doi.org/10.1126/sciadv.aaw9883.

Post, Eric, Mads C. Forchhammer, M. Syndonia Bret-Harte, Terry V. Callaghan, Torben R. Christensen, Bo Elberling, Anthony D. Fox, et al. 2009. “Ecological Dynamics across the Arctic Associated with Recent Climate Change.” *Science* 325 (5946): 1355–58. https://doi.org/10.1126/science.1173113.

Poyatos, Rafael, Andreas Heinemeyer, Phil Ineson, Jonathan G. Evans, Helen C. Ward, Brian Huntley, and Robert Baxter. 2014. “Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-Arctic Forest–Mire Ecotone.” *Ecosystems* 17 (3): 377–93. https://doi.org/10.1007/s10021-013-9728-2.

Schädel, Christina, Martin K. -F. Bader, Edward A. G. Schuur, Christina Biasi, Rosvel Bracho, Petr Čapek, Sarah De Baets, et al. 2016. “Potential Carbon Emissions Dominated by Carbon Dioxide from Thawed Permafrost Soils.” *Nature Climate Change* 6 (10): 950–53. https://doi.org/10.1038/nclimate3054.
Schumacher, Jens, and Christiane Roscher. 2009. “Differential Effects of Functional Traits on Aboveground Biomass in Semi-Natural Grasslands.” *Oikos* 118 (11): 1659–68. https://doi.org/10.1111/j.1600-0706.2009.17711.x.

Segal, Aliza D., and Patrick F. Sullivan. 2014. “Identifying the Sources and Uncertainties of Ecosystem Respiration in Arctic Tussock Tundra.” *Biogeochemistry* 121 (3): 489–503. https://doi.org/10.1007/s10533-014-0017-8.

Shaver, G. R., L. E. Street, E. B. Rastetter, M. T. Van Wijk, and M. Williams. 2007. “Functional Convergence in Regulation of Net CO2flux in Heterogeneous Tundra Landscapes in Alaska and Sweden.” *Journal of Ecology* 95 (4): 802–17. https://doi.org/10.1111/j.1365-2745.2007.01259.x.

Shipley, Bill, Martin J. Lechowicz, Ian Wright, and Peter B. Reich. 2006. “Fundamental Trade-Offs Generating the Worldwide Leaf Economics Spectrum.” *Ecology* 87 (3): 535–41. https://doi.org/10.1890/05-1051.

Siewert, Matthias B. 2018. “High-Resolution Digital Mapping of Soil Organic Carbon in Permafrost Terrain Using Machine Learning: A Case Study in a Sub-Arctic Peatland Environment.” *Biogeosciences* 15 (6): 1663–82. https://doi.org/10.5194/bg-15-1663-2018.

Sørensen, Mia Vedel, Bente Jessen Graae, Aimee Classen, Brian J. Enquist, and Richard Strimbeck. 2019. “Drivers of C Cycling in Three Arctic-Alpine Plant Communities.” *Arctic, Antarctic, and Alpine Research* 51 (1): 128–47. https://doi.org/10.1080/15230430.2019.1592649.

Sørensen, Mia Vedel, Richard Strimbeck, Krstin Odden Nystuen, Rozalia Erzsebet Kapas, Brian J. Enquist, and Bente Jessen Graae. 2018. “Draining the Pool? Carbon Storage and Fluxes in Three Alpine Plant Communities.” *Ecosystems* 21 (2): 316–30. https://doi.org/10.1007/s10021-017-0158-4.

Steinbauer, Manuel J., John-Arvid Grytnes, Gerald Jurasinski, Aino Kulonen, Jonathan Lenoir, Harald Pauli, Christian Rixen, et al. 2018. “Accelerated Increase in Plant Species Richness on Mountain Summits Is Linked to Warming.” *Nature* 556 (7700): 231–34. https://doi.org/10.1038/s41586-018-0005-6.

Street, L. E., G. R. Shaver, M. Williams, and M. T. Van Wijk. 2007. “What Is the Relationship between Changes in Canopy Leaf Area and Changes in Photosynthetic CO2flux in Arctic Ecosystems?” *Journal of Ecology* 95 (1): 139–50. https://doi.org/10.1111/j.1365-2745.2006.01187.x.

Thomas, H. J. D., A. D. Bjorkman, I. H. Myers-Smith, S. C. Elmdorf, J. Kattge, S. Diaz, M. Vellend, et al. 2020. “Global Plant Trait Relationships Extend to the Climatic Extremes of the Tundra Biome.” *Nature Communications* 11 (1): 1351. https://doi.org/10.1038/s41467-019-13991-0.

Thomas, H. J. D., I. H. Myers-Smith, A. D. Bjorkman, S. C. Elmdorf, D. Blok, J. H. C. Cornelissen, B. C. Forbes, et al. 2019. “Traditional Plant Functional Groups Explain Variation in Economic but Not Size-Related Traits across the Tundra Biome.” *Global Ecology and Biogeography: A Journal of Macroecology* 28 (2): 78–95. https://doi.org/10.1111/geb.12783.

Tilman, David, Forest Isbell, and Jane M. Cowles. 2014. “Biodiversity and Ecosystem Functioning.” *Annual Review of Ecology, Evolution, and Systematics* 45 (1): 471–93. https://doi.org/10.1146/annurev-ecolsys-120213-091917.

Väre, H., M. Vestberg, and S. Eurola. 1992. “Mycorrhiza and Root-Associated Fungi in Spitsbergen.” *Mycorrhiza* 1 (3): 93–104. https://doi.org/10.1007/BF00203256.

Virkkala, Anna-Maria, Tarmo Virtanen, Aleks Lehtonen, Janne Rinne, and Miska Luoto. 2018. “The Current State of CO2 Flux Chamber Studies in the Arctic Tundra.” *Progress in Physical Geography: Earth and Environment* 42 (2): 162–84. https://doi.org/10.1177/0309133317745784.

Voigt, Carolina, Richard E. Lamprecht, Maija E. Marushchak, Saara E. Lind, Alexander Novakovskiy, Mika Aurela, Pertti J. Martikainen, and Christina Biasi. 2017. “Warming of Subarctic Tundra Increases Emissions of All Three Important Greenhouse Gases - Carbon Dioxide, Methane, and Nitrous Oxide.” *Global Change Biology* 23 (8): 3121–38. https://doi.org/10.1111/gcb.13563.

Vowles, Tage, and Robert G. Björk. 2018. “Implications of Evergreen Shrub Expansion in the Arctic.”
Williams, M., L. E. Street, M. T. van Wijk, and G. R. Shaver. 2006. “Identifying Differences in Carbon Exchange among Arctic Ecosystem Types.” *Ecosystems* 9 (2): 288–304. https://doi.org/10.1007/s10021-005-0146-y.

Wood, Simon N. 2017. *Generalized Additive Models: An Introduction with R*. CRC press. https://www.google.com/books?hl=en&lr=&id=HL-PDwAAQBAJ&oi=fnd&pg=PP1&dq=Generalized+Additive+Models:+An+Introduction+with+R&ots=NqSLdiuAo3&sig=s1Z0AWSfnG43GJyk9aeIMVp-Nds.

Wright, Ian J., Peter B. Reich, Mark Westoby, David D. Ackerly, Zdravko Baruch, Frans Bongers, Jeannine Cavender-Bares, et al. 2004. “The Worldwide Leaf Economics Spectrum.” *Nature* 428 (6985): 821–27. https://doi.org/10.1038/nature02403.

Ylänne, Henni, Johan Olofsson, Lauri Oksanen, and Sari Stark. 2018. “Consequences of Grazer-Induced Vegetation Transitions on Ecosystem Carbon Storage in the Tundra.” *Functional Ecology* 32 (4): 1091–1102. https://doi.org/10.1111/1365-2435.13029.
Tables

Table 1. Glossary

Concept	Definition	Variable used to represent the concept	Variable description
Environmental drivers			
Soil moisture	Soil moisture is a substance that plants need in order to grow and reproduce.	Soil moisture	Average growing-season soil moisture for stocks, instantaneous soil moisture for fluxes
Air temperature	Air temperature that the plants experience during the peak growing season.	July/chamber air temperature	Average air temperatures in July from loggers for stocks, instantaneous chamber air temperature for fluxes
Plant functional traits			
Leaf economics (LES)	Describes differences between resource-acquisitive (fast) and resource-conservative (slow) plant communities. A measure of functional composition.	The combined (LES) and individual effects of leaf dry matter content (LDMC) and specific leaf area (SLA)	Community weighted mean (CWM) of LDMC and SLA, calculated using vascular plant species point-intercept counts. High SLA and low LDMC values indicate fast communities that can rapidly assimilate resources and grow.
Leaf economic diversity	Functional diversity on the leaf economics spectrum.	The combined (LES diversity) and individual effects of LDMC and SLA diversity	Abundance-weighted standard deviations of LDMC and SLA
Plant size	Variation between plant communities caused by trade-offs between average investments to light competition, and photosynthesis and reproduction. A measure of functional composition.	Height	CWM of plant height. Plant vegetative height is linked to the ability of a plant community to capture light resources. However, taller and larger communities have also high maintenance costs.
Plant size diversity	Functional diversity on the plant size spectrum.	Height diversity	Abundance-weighted standard deviation of height
Carbon cycling variables			
Photosynthesis	The process by which plants build carbohydrates from light and CO₂.	GPP	Gross primary productivity normalized at a common irradiance (600 PPFD, partly sunny conditions)
Ecosystem respiration	The process by which plants, soil animals and microbes convert sugars into energy, thus releasing CO₂ to the atmosphere.	ER	Ecosystem respiration normalized at a common air temperature (20°C, average chamber air temperature)
----------------------	---	----	--
Above-ground carbon stock	The carbon content in the living plant biomass.	AGC	Above-ground carbon stocks were estimated by multiplying the above-ground vascular plant biomass by 0.475.
Soil organic carbon stock	Soil organic carbon stocks in the soil horizon (up to 80 cm) excluding the largest roots.	SOC	Soil organic carbon stocks were estimated using the information of soil organic and mineral layer depth, bulk density, and carbon or organic matter content.

Table 2. Medians, median absolute deviations (MAD), sample sizes and values for carbon cycling variables and their predictors. Bayesian R² values for GAMs explaining carbon cycling variables are listed as well. GPP=gross primary productivity normalized at a common irradiance, ER = ecosystem respiration normalized at a common air temperature, AGC = above-ground carbon stock, SOC = soil organic carbon stock. Diversities are abundance-weighted standard deviations.

Variable	Median	MAD	Unit	N	R²
Responses					
GPP	4.60	1.41	μmol CO₂ m⁻² s⁻¹	129	0.52
ER	2.92	0.69	μmol CO₂ m⁻² s⁻¹	129	0.47
AGC	0.12	0.07	kg C m⁻²	119	0.53
SOC	4.57	1.76	kg C m⁻²	119	0.27
Environment					
July air temperature	13.88	0.29	°C	119	
Chamber soil moisture	20.97	5.00	°C	129	
Growing-season moisture	18.85	3.07	VWC (%)	119	
Chamber air temperature	12.27	2.05	VWC (%)	129	
Traits					
Height	6.63	1.97	cm	129	
Height diversity	2.72	0.74	cm	129	
LDMC	0.44	0.06	unitless	129	
LDMC diversity	0.08	0.03	unitless	129	
SLA	11.86	3.10	mm² mg⁻¹	129	
SLA diversity	5.72	2.05	mm² mg⁻¹	129	
Figure 1. The study site. The vegetation is heterogenous. On the rocky slopes, the vegetation is sporadic (a). Intermediately productive sites are dominated by both deciduous (b: Betula nana, Vaccinium myrtillus) and evergreen (d: Empetrum nigrum) ericoid-graminoid heaths. Lush meadows can be found in the valley bottom (c). Orange dots represent the 220 study locations. The orthophoto (0.5 m resolution) is provided by the National Land Survey of Finland under a Creative Commons Attribution 4.0 licence (https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/orthophotos, accessed on 2019-10-28.). Photographs by Julia Kemppinen.
Figure 2. The marginal responses of CO$_2$ fluxes and carbon stocks to the abiotic environment, modelled using a tensor product smooth of air temperature and soil moisture. For CO$_2$ fluxes, the variables are chamber air temperature and soil moisture immediately next to the chamber during flux measurement. For carbon stock variables, the variables are 3-year average July air temperature and growing-season soil moisture. Point clouds show the observed data, and contour lines represent predicted relative responses on the log-scale. Responses are shown only where the standard error of the smoother is less than ¼ of the observed standard deviation. As respiration was already standardized to 20°C, it does not display an air temperature response here. GPP = Standardized gross primary productivity, ER = Standardized ecosystem respiration, AGC = Above-ground carbon stock, SOC = Soil organic carbon stock.
Figure 3. Marginal responses of CO₂ fluxes, above-ground carbon stocks (AGC) and soil organic carbon stocks (SOC) to plant community functional composition and diversity. The shading represents two standard errors and the points are partial residuals. A difference of 0.7 on the y-axis represents about a doubling in the response. Height = community-weighted mean plant height, LES = leaf economics spectrum, the combined effect of covarying community-weighted leaf dry matter content and specific leaf area, Height diversity = square-root -transformed abundance-weighted standard deviation of plant height, LES diversity = the combined effect of covarying square-root -transformed abundance-weighted standard deviations of leaf dry matter content and specific leaf area, GPP = gross primary productivity normalized at a common irradiance, ER = ecosystem respiration normalized at a common air temperature. In addition to the displayed variables, the models adjusted for the effects of instantaneous (fluxes) or long-term average (stocks) soil moisture, air temperature and their interaction (Fig. 2).
Figure 4. Summary of the effects of functional composition and functional diversity on peak-season CO$_2$ fluxes and stocks.