Which Patients With Newly Diagnosed Breast Cancer Benefit From Preoperative Magnetic Resonance Imaging?

Hyun Jeong Lee¹, Woo Young Kim¹, Jae Bok Lee¹, Kee Soo Ha², Young Woo Chang³, Hye Yoon Lee³, Seung Pil Jung⁴, Yeonjoo Lee⁵, Ok Hee Woo⁶, Sang Uk Woo¹, Gil Soo Son³

¹Department of Surgery, Korea University College of Medicine Guro Hospital, Seoul, Korea
²Department of Pediatrics, Korea University College of Medicine Guro Hospital, Seoul, Korea
³Department of Surgery, Korea University College of Medicine Ansan Hospital, Gyeonggi-Do, Korea
⁴Department of Surgery, Korea University College of Medicine Anam Hospital, Seoul, Korea
⁵Department of Anesthesiology, Korea University College of Medicine Guro Hospital, Seoul, Korea
⁶Department of Radiology, Korea University College of Medicine Guro Hospital, Seoul, Korea

Objective: The aim of this study was to identify the effectiveness and selective applications of preoperative magnetic resonance imaging (MRI) by investigating clinicopathologic factors of the index tumor with or without false lesions on MRI.

Summary of background data: Preoperative MRI is commonly performed in patients with newly diagnosed breast cancer, but its clinical significance is unclear.

Methods: A total of 103 breast cancer patients who had undergone MRI or ultrasound followed by mastectomy were included in this retrospective investigation of pathologic, clinical, and imaging findings.

Results: MRI showed 29 false-positive lesions in 57 patients, 5 false-negative lesions in 5 patients, and 69 true-positive lesions in 103 patients. More false lesions on MRI were found in patients with more lesions on ultrasound, small-sized index tumors on ultrasound, or early-stage cancer. The sensitivity of MRI and ultrasound were 96.5% and 92.3% (P = 0.119), respectively, and the positive predictive value of them were 71.5% and 72.5% (P = 0.828), respectively.
Conclusions: Preoperative MRI is more useful in patients with newly diagnosed breast cancer who have large-sized or more advanced cancers or fewer lesions on ultrasound.

Key words: Breast neoplasm – Magnetic resonance imaging – Ultrasonography

Preoperative magnetic resonance imaging (MRI) has been increasingly performed in patients with newly diagnosed breast cancer because its detection capability improves the surgical treatment and clinical outcome, owing to higher sensitivity and accuracy than those of traditional breast imaging modalities and the visualization of additional and occult lesions at a rate ranging from 10% to approximately 30%. However, a recent study showed that MRI leads to more women being treated with extensive surgery, without improvement in the surgical outcome or prognosis. Furthermore, MRI is considered to be superior to other modalities in assessing residual tumor size, planning the optimal surgical strategy after neoadjuvant chemotherapy, and detection of additional malignant lesions in high-risk patients with a family history of cancer. Therefore, the application of MRI to almost all women newly diagnosed with breast cancer has been questioned. However, the detection of occult or additional malignant lesions using any imaging modality is the first step to optimal tumor control. Therefore, recognizing the types of breast cancer that present with more false lesions on MRI and providing recommendations on selectively performing MRI help prevent unnecessary examination and incomplete or excessive surgery. The aim of this study was to identify the effectiveness and provide suggestions for selective applications of preoperative MRI by investigating the sensitivity, positive predictive value, and clinicopathologic factors associated with false positivity and negativity of preoperative MRI in patients with newly diagnosed breast cancer.

Materials and Methods

Records of all patients who had undergone mastectomy and were referred to the multidisciplinary breast clinic at our institute between January 2007 and January 2014 were reviewed for demographic data and characteristics at presentation. The Institutional Review Board approved the study protocol (2020GR0196). All patients had been diagnosed with malignancy based on core needle or excisional biopsy and evaluated by a multidisciplinary team. All patients wanted to undergo mastectomy because of delayed surgery, reluctance to biopsy, and personal needs. Medical records were reviewed for imaging and pathologic findings. Two experts in breast radiology interpreted the breast imaging scans. A total of 103 patients had undergone imaging, including MRI and ultrasound. Depending on whether a false or true lesion was found on MRI, patients were categorized under the true-positive, false-positive, or false-negative group. Continuous variables were tested with the independent t test or Mann–Whitney U test. The chi-square test or Fisher’s exact test was used for the categoric variables. The correlation analysis was performed to investigate the correlation between continuous data. The multivariate logistic regression was used to investigate the factors associated with false lesions on MRI. All statistical analyses were performed using R, version 3.2.2.

Results

The pathologic analysis of index malignant tumors in 103 patients revealed 26 multiple (25.2%) and 3 bilateral (2.9%) cancers. These index tumors included 96 invasive (94.1%) and 7 in situ (6.9%) cancers. The number of patients with true-positive, false-positive, and false-negative lesions on MRI was 69, 29, and 5, respectively. Table 1 shows patient characteristics and details of index cancer lesions. Table 2 shows the difference in characteristics between true-positive and false-positive lesions. Table 3 shows the difference in characteristics between true-positive and false-negative lesions. Table 4 shows the results of the multivariate logistic regression analysis. More false-positive lesions on MRI were found in patients with more number of lesions on ultrasound [odds ratio (OR), 2.95; 95% confidence interval (CI), 1.54–6.58; P = 0.004] or with a smaller size of the index tumor on ultrasound (OR, 0.54; 95% CI, 0.34–0.79; P = 0.005). More false-negative lesions on MRI were found in patients with a less advanced cancer (OR, 0.11; 95% CI, 0.00–0.54; P = 0.048). The sensitivity of MRI and ultrasound were 96.5% and 92.3% (P = 0.119; 95% CI, -1.27–10.1), respectively, and the positive predictive value of
them were 71.5% and 72.5% ($P = 0.828$; 95% CI, -8.02–9.91), respectively (Table 5).

Discussion

The globally increasing tendency for conservative breast surgery places great emphasis on the need to precisely assess the full extent of cancer and additional malignant lesions in the affected and contralateral breasts because remnant, additional, and occult malignant lesions may show high incidences of local recurrence. Preoperative MRI could help decrease recurrence and distant metastasis owing to the superiority to other traditional breast imaging modalities in detecting local and additional lesions of the ipsilateral and contralateral breasts. Therefore, to date, preoperative MRI has been performed to detect additional and occult cancers and decrease the re-excision rate. However, it is controversial whether or not preoperative MRI has advantages of fewer local re-excision, improved local control, and reduced rates of contralateral breast cancer. Therefore, the aim of this study was to investigate whether preoperative MRI is effective or traditional imaging is sufficient in treating newly diagnosed breast cancers in the current scenario. Notably, unlike other studies, the reason for focusing on the characteristics of index tumors with additional lesions rather than the additional lesions found on MRI was to use the information on index tumors detected on ultrasound to determine whether to perform MRI.

In our study, the sensitivity of MRI and ultrasound were 96.5% (143/148) and 92.3% (132/143) ($P = 0.119$; 95% CI, -1.27–10.1), respectively, and the positive predictive value of them were 71.5% (143/200) and 72.5% (132/182) ($P = 0.828$; 95% CI, -8.02–9.91), respectively (Table 5). In other words, ultrasound and MRI showed no statistically significant difference in the detection rate of additional malignant lesions or differentiation capability between malignant and benign lesions. In addition, the ipsilateral breast tumor recurrence or re-excision rate did not differ between patients who underwent

Table 1 Patient demographics (n = 103)

Age (years, mean ± SD)	51.5 ± 10.7
Index tumor size in MRI (cm, mean ± SD)	3.8 ± 2.3
Index tumor size in ultrasound (cm, mean ± SD)	3.6 ± 2.2
Index tumor pathologic size (cm, mean ± SD)	3.4 ± 2.3
Conversion of breast conserving surgery to modified radical mastectomy by MRI interpretations	
No	95 (92.2%)
Yes	8 (7.8%)
Multiplicity	
No	77 (74.8%)
Yes	26 (25.2%)
Bilaterality	
No	100 (97.1%)
Yes	3 (2.9%)
Tumors in MRI (n, mean ± SD)	1.9 ± 1.5
Tumors in pathology (n, mean ± SD)	1.4 ± 0.9
Tumors in ultrasound (n, mean ± SD)	1.8 ± 1.2
TNM stage	
0	7 (6.6%)
I	27 (26.2%)
IIA	24 (23.3%)
IIB	16 (15.5%)
IIIA	18 (17.5%)
IIIB	2 (1.9%)
IIIC	9 (8.7%)
Extensive intraductal component (n)	
No	72 (69.9%)
Yes	31 (30.1%)
Lymphovascular invasion (n)	
No	74 (71.8%)
Yes	29 (28.2%)
Extramodal extension (n)	
No	88 (85.4%)
Yes	15 (14.6%)
Histologic grade (n)	
Good	27 (26.2%)
Moderate	43 (41.7%)
Poor	33 (32.0%)
Nuclear grade (n)	
Good	18 (17.5%)
Moderate	45 (43.7%)
Poor	40 (38.5%)
Estrogen receptor (n)	
Negative	34 (33.0%)
Positive	69 (67.0%)
Progesterone receptor (n)	
Negative	45 (43.7%)
Positive	58 (56.3%)
HER2/neu overexpression (n)	
Negative	56 (54.4%)
Positive	47 (45.6%)
EGFR (n)	
Negative	80 (77.7%)
Positive	23 (22.3%)
CK5/6 (n)	
Negative	88 (85.4%)
Positive	15 (14.6%)
p53 (n)	
Negative	48 (46.6%)
Positive	55 (53.4%)

Table 1 Continued

Ki67 (n)	
≤14%	59 (57.3%)
>14%	44 (42.7%)

CK, cytokeratin; EGFR, epidermal growth factor receptor; SD, standard deviation; TNM, tumor, node, metastasis (AJCC 8th).
Table 2 Comparison of characteristics of breast carcinoma between true- and false-positive lesions

Characteristics	True positive (N = 69)	False positive (N = 29)	P
Age [years, median (range)]	50.0 [44.0; 57.0]	50.0 [44.0; 57.0]	0.596
Age 31–40	10 (14.5%)	4 (13.8%)	0.943
Age 41–50	26 (37.7%)	12 (41.4%)	
Age 50–	33 (47.8%)	13 (44.8%)	
The index tumor size in MRI [cm, median (range)]	3.5 [2.2; 5.0]	2.6 [2.0; 3.5]	0.005
The index tumor size in ultrasound [cm, median (range)] (a)	3.2 [2.0; 4.7]	2.4 [1.9; 3.5]	0.010
The index tumor size in ultrasound [cm, median (range)] (b)	3.0 [2.0; 4.8]	2.0 [1.8; 3.4]	0.003
The index tumor pathologic size [cm, median (range)] (b)	3.0 [2.0; 4.8]	2.0 [1.8; 3.4]	0.003
The index tumor pathologic size [cm, median (range)] (b)	0.6 [0.4; 1.2]	0.5 [0.2; 0.9]	0.244
Multiplicity			
No	67 (97.1%)	23 (79.3%)	
Yes	2 (2.9%)	6 (20.7%)	
Bilaterality			
No	67 (97.1%)	28 (96.6%)	1.000
Yes	2 (2.9%)	1 (3.4%)	
Tumors in MRI [n, median (range)] (c)	1.0 [1.0; 2.0]	2.0 [2.0; 4.0]	0.001
Tumors in pathology [n, median (range)] (d)	1.0 [1.0; 2.0]	1.0 [1.0; 2.0]	0.594
Tumors in ultrasonography [n, median (range)] (e)	1.0 [1.0; 2.0]	2.0 [1.0; 3.0]	0.001
Extensive intraductal component(+) (n)			0.873
No	17 (24.6%)	6 (20.7%)	
Yes	52 (75.4%)	23 (79.3%)	
Lymphovascular invasion(+) (n)			0.214
No	53 (76.8%)	18 (62.1%)	
Yes	16 (23.2%)	11 (37.9%)	

Int Surg 2021;105 579
MRI and those who did not in the previous studies. A positive correlation was found between the number of lesions on ultrasound and false-positive lesions on MRI (Spearman’s rank correlation coefficient = 0.38; \(P < 0.001 \)). In addition, more number of lesions found on ultrasound lead to detection of more number of false-positive lesions on MRI (OR, 2.95; 95% CI, 1.54–6.58; \(P = 0.004 \)). Patients with 3 or more lesions on ultrasound [area under the receiver operating characteristic (ROC) curve (AUC), 0.576 [0.487–0.648]; \(P = 0.012 \); ROC curve not shown] showed a higher probability of false positivity. This suggested that if many lesions are found on ultrasound, the likelihood of false-positive lesions on MRI increases, and, therefore, MRI could be omitted.

The size of the index tumor on ultrasound showed a significant difference between the 2 groups (with or without false-positive lesions on MRI). It was significantly smaller in the false-positive group than in the true-positive group (OR, 0.54; 95% CI, 0.34–0.79; \(P = 0.005 \)). Moreover, the index tumors on ultrasound measuring 2.4 cm or less [AUC, 0.649 (0.535–0.76); \(P < 0.001 \)] had a higher probability of false positivity. In other words, if the index tumor is larger, the true positivity or cancer detection rate increases. A positive correlation was found between the size of the index tumor on ultrasound and that on pathology (Spearman’s rank correlation coefficient = 0.80; \(P < 0.001 \)). Similarly, Girardi et al found that the cancer detection rate was 27% in the subgroup of index cancers \(>2 \) cm and 8% in the subgroup of index cancers \(<2 \) cm, showing a statistically significant difference (\(P = 0.001 \)). This may be attributable to the fact that patients with larger index tumors are more likely to have additional or satellite malignant lesions detected on MRI or ultrasound.

Table 2 Continued

Characteristics	True positive (N = 69)	False positive (N = 29)	\(P \)
Extraneural extension (+) (n)	56 (81.2%)	27 (93.1%)	0.233
Yes	13 (18.8%)	2 (6.9%)	
Histologic grade (n)			0.792
Good	18 (26.1%)	6 (20.7%)	
Moderate	29 (42.0%)	12 (41.4%)	
Poor	22 (31.9%)	11 (37.9%)	
Nuclear grade (n)			0.941
Good	13 (18.8%)	5 (17.2%)	
Moderate	30 (43.5%)	12 (41.4%)	
Poor	26 (37.7%)	12 (41.4%)	
Estrogen receptor (+) (n)	23 (33.3%)	8 (27.6%)	0.749
Negative	46 (66.7%)	21 (72.4%)	
Positive			0.028
Progesterone receptor (+) (n)	35 (50.7%)	7 (24.1%)	
Negative	34 (49.3%)	22 (75.9%)	
Positive			0.122
HER2/neu overexpression (+) (n)	42 (60.9%)	12 (41.4%)	
Negative	27 (39.1%)	17 (58.6%)	
Positive			0.110
EGFR (+) (n)	50 (72.5%)	26 (89.7%)	
Negative	19 (27.5%)	3 (10.3%)	
Positive			0.564
CK5/6 (+) (n)	57 (82.6%)	26 (89.7%)	
Negative	12 (17.4%)	3 (10.3%)	
Positive			0.831
p53 (+) (n)	30 (43.5%)	14 (48.3%)	
Negative	39 (56.5%)	15 (51.7%)	
Positive			0.975
Ki67 (n)	\(\leq 14\%)	40 (58.0%)	
Positive	29 (42.0%)	13 (44.8%)	

CK, cytokeratin; EGFR, epidermal growth factor receptor; TNM, tumor, node, metastasis (AJCC 8th).
Table 3 Comparison of characteristics of breast carcinoma between true-positive and false-negative lesions

Characteristics	True positive (N = 69)	False negative (N = 5)	P
Age [years, median (range)]			
31–40	10 (14.5%)	2 (40.0%)	0.312
41–50	26 (37.7%)	1 (20.0%)	
50–	33 (47.8%)	2 (40.0%)	
The index tumor size in MRI (cm, median [range])			
2	14 (20.3%)	1 (20.0%)	0.354
2.1–4	27 (39.1%)	1 (20.0%)	
4.1–6	14 (20.3%)	1 (20.0%)	
6.1–	14 (20.3%)	2 (40.0%)	
The index tumor size in MRI [cm, median (range)] (a)			
–2	3.2 [2.3; 5.1]	4.3 [3.8; 5.7]	0.453
2.1–4	28 (40.6%)	1 (20.0%)	
4.1–6	16 (23.2%)	1 (20.0%)	
6.1–	13 (18.9%)	2 (40.0%)	
The index tumor pathologic size [cm, median (range)] (b)			
–1	3 (4.3%)	1 (20.0%)	0.344
1.1–2	16 (23.2%)	0 (0.0%)	
2.1–5	36 (52.2%)	3 (60.0%)	
5–	14 (20.3%)	1 (20.0%)	
(a)–(b) [cm, median (range)]	0.6 [0.4; 1.2]	1.8 [0.5; 2.7]	0.364
Multiplicity in MRI			
No	67 (97.1%)	5 (100.0%)	0.052
Yes	2 (2.9%)	0 (0.0%)	
Bilaterality			1.000
No	67 (97.1%)	5 (100.0%)	
Yes	2 (2.9%)	0 (0.0%)	
Tumors in MRI [n, median (range)] (c)	1.0 [1.0; 2.0]	1.0 [1.0; 1.0]	0.201
Tumors in pathology [n, median (range)] (d)	1.0 [1.0; 2.0]	2.0 [2.0; 2.0]	0.003
Extensive intraductal component(+) (n) (e)	17 (24.6%)	2 (40.0%)	0.025
Match of axillary LN metastasis interpretation between MRI and pathology			0.819
No	17 (24.6%)	2 (40.0%)	
Yes	52 (75.4%)	3 (60.0%)	
TNM stage			0.417
0	5 (7.2%)	1 (20.0%)	
I	15 (21.7%)	3 (60.0%)	
IIA	18 (26.1%)	1 (20.0%)	
IIB	11 (15.9%)	0 (0.0%)	
IIIA	12 (17.4%)	0 (0.0%)	
IIIB	2 (2.9%)	0 (0.0%)	
IIIC	6 (8.7%)	0 (0.0%)	
Lymphovascular invasion(+) (n)			0.345
No	48 (69.6%)	5 (100.0%)	
Yes	21 (30.4%)	8 (27.6%)	
When the TNM stage was lower, the rate of false negativity increased (OR, 0.11; 95% CI, 0.01–0.54; \(P = 0.048 \)). Breast MRI is considered to have high false-negative rates because of its inability to identify microcalcifications.\(^{18}\) It is controversial whether MRI is an effective diagnostic tool in ductal carcinoma in situ (DCIS) or early breast cancer, although several recent studies have shown the superiority of MRI over mammography for DCIS detection (sensitivity 92% versus 56%, respectively) and determination of the extent of DCIS through technical advancements in MRI, such as high spatial resolution, morphologic features, etc.\(^{19,20}\)

In addition, similar to the aforementioned results, the size of the index tumor on pathology tended to show a strong positive correlation with the size of

Table 3 Continued
Characteristics
Extralongal extension (+) (n)
No
Yes
Histologic grade (n)
Good
Moderate
Poor
Nuclear grade (n)
Good
Moderate
Poor
Estrogen receptor (+) (n)
Negative
Positive
Progesterone receptor (+) (n)
Negative
Positive
HER2/neu overexpression (+) (n)
Negative
Positive
EGFR (+) (n)
Negative
Positive
CK5/6 (+) (n)
Negative
Positive
p53 (+) (n)
Negative
Positive
Ki67 (n)
\(\leq 14\% \)
>14%

\(\text{CK, cytokeratin; EGFR, epidermal growth factor receptor; TNM, tumor, node, metastasis (AJCC 8th).} \)

Table 4 Multivariate logistic regression analysis

| | Estimate | SE | \(z \) value | \(\text{Pr(>|z|)} \) | OR | 95% CI |
|----------------------|----------|----|---------------|------------------------|----|--------|
| False positive | | | | | | |
| (Intercept) | −1.9602 | 0.8932 | −2.19 | 0.0282 | 0.14 | 0.02–0.77 |
| Tumors on ultrasound (n) | 1.0802 | 0.3709 | 2.91 | 0.0036 | 2.95 | 1.54–6.58 |
| The index tumor size on ultrasound (cm) | −0.6146 | 0.2162 | −2.84 | 0.0045 | 0.54 | 0.34–0.79 |
| False negative | | | | | | |
| (Intercept) | −1.6535 | 1.1682 | −1.42 | 0.1569 | 0.19 | 0.01–1.42 |
| TNM stage | −2.1860 | 1.1072 | −1.97 | 0.0483 | 0.11 | 0.01–0.54 |

\(\text{CI, confidence interval; OR, odds ratio; SE, standard error.} \)
the index tumor on ultrasound. Furthermore, pathologic factors identified after surgery suggested that the number of additional lesions suspected to be malignant on ultrasound showed a strong positive correlation with the number of false-negative lesions on MRI.

In the previous study, although the decision whether to perform breast conserving therapy or mastectomy is based on not only the imaging findings but also on other factors such as breast size, surgeon preference, and expected cosmetic results, the use of preoperative MRI for a change in the management of breast cancer could be recommended especially for patients with pathology of invasive lobular carcinoma, and tumors in the lower inner quadrant. Weclser et al reported that the African-American race, heterogeneously or extremely dense mammographic density, and progesterone receptor-positivity were associated with additional biopsy-proven cancers based on the preoperative MRI for occult lesions in breast cancer. These confirm that a larger number of patients, more accurate analyses, and more advanced imaging techniques are likely to lead to the expansion of the preoperative MRI for occult lesions in breast cancer. These confirm that a larger number of patients, more accurate analyses, and more advanced imaging techniques are likely to lead to the expansion of the preoperative MRI for occult lesions in breast cancer. In conclusion, the number of false lesions on MRI increases with increasing number of lesions on ultrasound and decreasing size or TNM of the index tumor on ultrasound. Preoperative MRI may be more useful in those patients with newly diagnosed breast cancer who have large-sized or more advanced cancers or fewer lesions on ultrasound.

Acknowledgments

There was no conflicts of interest statement. This work was supported by a Korea University Grant.

References

1. Hlawatsch A, Teifke A, Schmidt M, Thelen M. Preoperative assessment of breast cancer: sonography versus MR imaging. AJR Am J Roentgenol. 2002;179(6):1493–1501
2. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol. 2003;180(4):901–910
3. Houssami N, Turner R, Macaskill P, Turnbull LW, McCready DR, Tuttle TM et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol. 2014;32(5):392–401
4. Chen JH, Bahri S, Mehta RS, Carpenter PM, McLaren CE, Chen WP et al. Impact of factors affecting the residual tumor size diagnosed by MRI following. J Surg Oncol. 2014;109(2):158–167
5. Drew PJ, Chatterjee S, Turnbull LW, Read J, Carleton PJ, Fox JN et al. Dynamic contrast enhanced magnetic resonance imaging of the breast is superior to triple assessment for the pre-operative detection of multifocal breast cancer. Ann Surg Oncol. 1999;6(6):599–603
6. Houssami N, Ciatto S, Macaskill P, Lord SJ, Warren RM, Dixon JM et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer. J Clin Oncol. 2008;26(19):3248–3258

Table 5 Diagnostic performances of magnetic resonance imaging and ultrasound

Features	MRI (no. of lesions)	Ultrasound (no. of lesions)	P (95% CI^a)
True positive	143	132	
False positive	57	50	
False negative	5	11	
Overall sensitivity (%)	96.5 (143/148)	92.3 (132/143)	0.119 (–1.27–10.1)
Positive predictive value (%)	71.5 (143/200)	72.5 (132/182)	0.828 (–8.02–9.91)

CI, confidence interval.
7. Plana MN, Carreira C, Muriel A, Chiva M, Abaira V, Emparanza JI et al. Magnetic resonance imaging in the preoperative assessment of patients with primary breast cancer: systematic review of diagnostic accuracy and meta-analysis. *Eur Radiol*. 2012;22(1):26–38
8. Brennan ME, Houssami N, Lord S, Macaskill P, Irwig L, Dixon JM et al. Magnetic resonance imaging screening of the contralateral breast in women with newly diagnosed breast cancer: systematic review and meta-analysis. *J Clin Oncol*. 2009;27(33):5640–5649
9. Vapiwala N, Hwang WT, Kushner CJ, Schnall MD, Freedman GM, Solin LJ. No impact of breast magnetic resonance imaging on 15-year outcomes in patients with ductal carcinoma in situ or early-stage invasive breast cancer managed with breast conservation therapy. *Cancer*. 2017;123(8):1324–1332
10. Solin LJ, Orel SG, Hwang W-T, Harris EE, Schnall MD. Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. *J Clin Oncol*. 2008;26(3):386–391
11. Peters NHGM, van Esser S, van den Bosch MAAJ, Storm RK, Plaisier PW, van Dalen T et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET - randomised controlled trial. *Eur J Cancer*. 2011;47(6):879–886
12. Gonzalez V, Sandelin K, Karlsson Å, Åberg W, Löfgren L, Iliescu G et al. Preoperative MRI of the breast (POMB) influences primary treatment in breast cancer: a prospective, randomized, multicenter study. *World J Surg*. 2014;38(7):1685–1693
13. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. *Lancet*. 2010;375(9714):563–571
14. Houssami N, Turner R, Morrow M. Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. *Ann Surg*. 2013;257(2):249–255
15. Houssami N, Turner RM, Morrow M. Meta-analysis of preoperative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. *Breast Cancer Res Treat*. 2017;165(2):273–283
16. Girardi V, Carbognin G, Camera L, Baglio I, Bucci A, Bonetti F et al. Multifocal, multicentric and contralateral breast cancers: breast MR imaging in the preoperative evaluation of patients with newly diagnosed breast cancer. *La Radiologia medica*. 2011;116(8):1226–1238
17. Hlubocky J, Bhavnagri S, Swinford A, Mitri C, Rebner M, Pai V. Does the use of pretreatment MRI change the management of patients with newly diagnosed breast cancer? *Breast J*. 2018;24(3):309–313
18. Boetes C, Strijk SP, Holland R, Barenlsz JO, Van Der Sluis RF, Ruijs JH. False-negative MR imaging of malignant breast tumors. *Eur Radiol*. 1997;7(8):1231–1234
19. Lehman CD. Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. *JNCI Monographs*. 2010;2010(41):150–151
20. Lehman CD, Gatsonis C, Kuhl CK, Hendrick RE, Pisano ED, Hanna L et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. *N Engl J Med*. 2007;356(13):1295–1303
21. Wecsler J, Jeong YJ, Raghavendra AS, Mack WJ, Tripathy D, Yamashita MW et al. Factors associated with MRI detection of occult lesions in newly diagnosed breast cancers. *J Surg Oncol*. 2020;121(4):589–598
22. Newman LA. Role of preoperative MRI in the management of newly-diagnosed breast cancer patients. *J Am Coll Surg*. 2020
23. Bedrosian I. Effect of preoperative breast MRI on surgical outcomes, costs and quality of life in women with breast cancer. Alliance A0111 04/ACRIN 6694trial. NC T01805076.