Abstract—We revisit a one-step control problem over an adversarial packet-dropping link. The link is modeled as a set of binary channels controlled by a strategic jammer whose intention is to wage a ‘denial of service’ attack on the plant by choosing a most damaging channel-switching strategy. The paper introduces a class of zero-sum games between the jammer and controller as a scenario for such attack, and derives necessary and sufficient conditions for these games to have a nontrivial saddle-point equilibrium. At this equilibrium, the jammer’s optimal policy is to randomize in a region of the plant’s state space, thus requiring the controller to undertake a nontrivial response which is different from what one would expect in a standard stochastic control problem over a packet dropping channel.

I. INTRODUCTION AND MOTIVATION

The topic of control over a communication channel has been extensively studied in the past decade, with issues such as the minimum data rate for stabilization [1], [2], [3], [4]. [5] and optimal quadratic closed-loop performance [6], [7], [8] being the main focus. Other issues of interest concern effects of channel-induced packet drops and/or time-varying delays on closed-loop performance.

The majority of papers concerned with control over networks regards the mechanism of information loss in the network as probabilistic but not strategic. In contrast, in the problem of control over an adversarial channel, the communication link is controlled by a rogue jammer whose intention is to mount a cyber attack on the system by actively jamming the communication link. Its objectives are to impose on the controller a control law which cannot be expected under normal circumstances. The controller’s best response to the jammer’s optimal randomized strategy was to act as if it was operating over a packet-dropping channel. Since under normal circumstances the controller cannot be aware of these characteristics, and cannot implement such a best response strategy, we regard the zero-sum game in [15] as an example of a successful cyber attack.

In this paper, we show that such a situation is not specific to the zero-sum game considered in [15]. We introduce a class of zero-sum stochastic games that generalize the model introduced in [15]. For these games we obtain necessary and sufficient conditions which guarantee the existence of optimal jammer’s strategies whose nature suggests that the jammer must select its actions randomly, in order to make a maximum impact on the control performance. Our conditions are quite general, they apply to nonlinear systems and draw on standard convexity/coercivity properties of payoff functions. Furthermore, we specialize these conditions to the linear-quadratic control problem over a packet-dropping channel considered in [15] and show that our conditions allow for an express characterization of a set of plant’s initial states for which optimal randomized jammer strategies exist (this is in contrast to [15] where a complete analysis of the state space had to be performed to determine such regions). We also compute an optimal controller response to those strategies, which turns out to be nonlinear.

Our analysis is restricted to one-step zero-sum games. Although such a formulation is admittedly simple, due to the general nature of the game under consideration, it can be thought of as reflecting a more general situation where one is dealing with a one-step Hamilton-Jacobi-Bellman-
Isaacs min-max problem associated with a multi-step optimal control problem. Also, even a one-step formulation provides a rich insight into a possible scenario of cyber attacks on controller networks. We believe that such an insight can be valuable as was the case, e.g., in early studies of adversarial channels and multi-agent decision problems involving incomplete information [12].

We present our model in Section II The problem formulation, its assumptions and preliminary results are given in Section III. The main result of the paper that gives a necessary and sufficient condition for the game under consideration to have a nontrivial saddle point is presented in Section IV Next, in Section V we demonstrate an application of this result to the linear-quadratic static problem which is an extension of the problem in [15]. In this problem, the jammer is offered an additional reward for undertaking actions concealing its presence. Conclusions are given in Section VI.

II. MODEL DESCRIPTION

The general model description is an extension of that in [15]. We consider a situation where a strategic jammer is attacking the link in the feedback loop between a controller and a plant. The plant is a general discrete-time system described by

$$x^+ = F(x, v)$$

(1)

with a given initial condition: $x \in \mathbb{R}^N$ is the state, v is a scalar input, $F(\cdot, \cdot)$ is an \mathbb{R}^N-valued function defined on $\mathbb{R}^N \times \mathbb{R}$.

The plant input v and the control signal u are related by the equation

$$v = bu,$$

which describes the transmission of information from the controller to the plant over a packet-dropping communication link. Here, b is a discrete random variable taking value in $\{0, 1\}$, that describes the transmission state of the link. The value of b depends on actions of the jammer and the state of the communication link, as explained below.

The communication link consists of a finite set \mathcal{F} of channels (with $|\mathcal{F}| = n$) out of which the jammer can draw with certain probability a channel to replace the currently active channel so as to optimally disrupt the control task. Each channel can be either in passing or blocking state, and the transmission states of all channels randomly change after one of them is selected as a replacement. Hence, each channel $f_j \in \mathcal{F}$ represents a binary channel with the state space $\{0, 1\}$, as pictured in Figure 1. To describe the probability model of channel transitions, let $c^-, c \in \{0, 1\}^n$ denote the vectors of transmission states of all channels before and after the jammer has selected one of them to replace the current one, respectively, with the jth component c_j^-, c_j denoting the corresponding transmission state of channel f_j. The probability of channel f_j to become “passing” after the replacement is selected, given its and all other channels’ previous transmission states, is then

$$q_j = \Pr(c_j = 1 | c^-).$$

(2)

The jammer strategy is to choose a probability distribution over \mathcal{F}, indicating which channel it desires to switch to. We denote this distribution by a vector p in the unit simplex \mathcal{F}_{n-1} of \mathbb{R}^n. That is, the jammer’s strategy is to influence the selection of a channel linking the controller to the plant. Let the index of the selected channel be S, then S is a discrete random variable taking values in $\{1, ..., n\}$, distributed in accordance with the vector p. The latter depends on the information set available to the jammer which includes the current state of the plant x, the index of the channel occupying the link j^-, and the vector of transmission states of all channels c^- which jammer observes before the link switches from channel f_{j^-} to a new channel:

$$p_j = \Pr(S = j|x, c^-, j^-) \text{ for all } j = 1, ..., n. \quad (3)$$

In addition, if the control input u is available to the jammer, the vector p may depend on u as well.

After the jammer has made its decision, the random variable S is realized and the link switches to the channel f_S. After that, the transmission state of all channels including f_S changes, according to (2). Thus, the jammer cannot predict the transmission state of the channels in \mathcal{F} when selecting the probability vector p.

In accordance with this channel switching mechanism, the transmission state of the link between the controller and the plant is determined by the binary random variable c_S, i.e., $b = c_S$, which takes value 1 with probability $p'q$ and value 0 with probability $1 - p'q$.

Clearly, b and S are statistically dependent. All random variables considered in this paper will be adapted to the joint conditional probability distribution of S and b, given x, j^- and c^-. The expectation with respect to this conditional probability distribution is denoted $\mathbb{E}[\cdot]$.

III. PROBLEM FORMULATION AND PRELIMINARY RESULTS

We now introduce a general two-player stochastic one-step zero-sum game as follows. In this game, we assume that the initial state of the plant x, the initial vector of transmission states c^- and the channel that initially occupies the link f_{j^-} are known to both the jammer and controller. Let $\sigma(y, u, f)$ be a scalar function of $(y, u, f) \in \mathbb{R}^N \times \mathbb{R} \times \mathcal{F}$. This function will determine the payoff of the game played by the controller and the jammer. The standing assumptions regarding this function are summarized below:

Assumption 1: For all $f_j \in \mathcal{F}$, $\sigma(\cdot, \cdot, f_j) \in C^1(\mathbb{R}^N \times \mathbb{R})$.
Assumption 2: For each $f_j \in \mathcal{F}$ and $x \in \mathbb{R}^n$, the functions $\sigma(F(x,0), \ldots, f_j)$ and $\sigma(F(x,\cdot), \ldots, f_j)$ are coercive.

Lemma 1: Under Assumptions 1 and 2 for every $x \neq 0$ there exists a compact set $U(x) \subset \mathbb{R}$ with the properties:

(i) For all $f_j \in \mathcal{F}$,

$$\inf_{u \in U(x)} \max_j \mathbb{E}[\sigma(x^+, u, f_j) | S = j] = \inf_{u \in U(x)} \max_j \mathbb{E}[\sigma(x^+, u, f_j) | S = j].$$

(ii) $\inf_u \mathbb{E}[\sigma(x^+, u, f_j)] = \inf_{u \in U(x)} \mathbb{E}[\sigma(x^+, u, f_j)].$

The proof is omitted for the sake of brevity. It proceeds by first proving that the coercivity of the functions involved ensures that the infima on the left hand side of (4) and (5) exist. In particular, $\inf_u h(u) > -\infty$, $h(u) \triangleq \max_j h_j(u)$, $h_j(u) \triangleq \mathbb{E}[\sigma(x^+, u, f_j) | S = j]$. Next we show that a suitably defined set $U_\alpha = \{u : h(u) \leq \alpha\}$, with a sufficiently large $\alpha > \inf_u h(u)$ can be chosen as $U(x)$.

We now define the stochastic zero-sum min-max game of interest for the plant. In this game, the controller is a minimizing player who selects the control input $u \in \mathbb{R}$ based on x, j^- and c^-. The jammer is the maximizing player who chooses a probability distribution vector $p \in \mathcal{F}_{n-1}$ for the ‘channel selection’ random variable S, as the function of x, j^-, c^- and possibly u, as in Assumption 4. The controller’s best action is determined by computing

$$J_1 = \inf_{p \in \mathcal{F}_{n-1}} \max_j \mathbb{E}[\sigma(x^+, u, f_j)].$$

while the jammer’s best action is obtained by computing

$$J_2 = \max_{p \in \mathcal{F}_{n-1}} \inf_u \mathbb{E}[\sigma(x^+, u, f_j)].$$

Our goal is to show that $J_1 = J_2$, i.e., that the corresponding zero-sum game has a value.

Lemma 1 allows to reduce the minimization over $u \in \mathbb{R}$ in (6) and (7) to minimization over a compact set $U(x)$. Indeed, the cost function of the inner maximization problem (6) is linear in p, therefore using claim (i) of Lemma 1 leads to the conclusion that

$$J_1 = \inf_{u \in U(x)} \max_j \mathbb{E}[\sigma(x^+, u, f_j)] = \inf_{u \in U(x)} \max_j \mathbb{E}[\sigma(x^+, u, f_j)]$$

and

$$J_2 = \max_{p \in \mathcal{F}_{n-1}} \inf_{u \in U(x)} \mathbb{E}[\sigma(x^+, u, f_j)].$$

Also, it follows from claim (ii) of Lemma 1 that for every p, the inner minimization problem in (7) can be carried out over $U(x)$. Thus

$$J_2 = \max_{p \in \mathcal{F}_{n-1}} \inf_{u \in U(x)} \mathbb{E}[\sigma(x^+, u, f_j)].$$

We make an additional assumption about the set $U(x)$.

Assumption 3: The set $U(x)$ is connected.

Under this assumption, the set $U(x)$ is a closed bounded interval, hence it is a convex set. Of course, this can be guaranteed when σ is chosen so that each h_j is convex.

Lemma 2: Under Assumptions 1, 2 and 4 the value of the game (6) exists, i.e., $-\infty < J_1 = J_2 < \infty$. Furthermore, the game has a (possibly non-unique) saddle point.

It is not unreasonable to assume that in the game (6) the jammer, who observes the controller action u, can rank all the channels according to the contribution they make towards the payoff and order them accordingly. It can do so by comparing the conditional expected cost values $h_j(u) = \mathbb{E}[\sigma(x^+, u, S) | S = j]$.

Assumption 4: For any two channels $f_j, f_k \in \mathcal{F}$, $j \neq k$ then

$$\mathbb{E}[\sigma(x^+, u, f_j) | S = j] \geq \mathbb{E}[\sigma(x^+, u, f_k) | S = k] \quad \forall u \in U(x).$$

Assumption 4 generalizes the situation considered in [15] where all channels were ranked according to the probability of becoming passing, $q_1 < q_2 < \ldots < q_n$. In Section V we will show that such a natural ranking leads to satisfaction of Assumption 4.

According to this assumption, the jammer who seeks a higher value of payoff should favour channels with lower numbers, since a larger reward is associated with these channels. In contrast, the controller actions should be directed towards forcing the jammer into utilizing channels with higher numbers. Also, the channel f_{j^-} is excluded from this ranking. This is done to allow the jammer to consider contributions to payoff other than those based on blocking/passing. These considerations may either discourage the jammer from switching, or conversely encourage it to undertake a denial-of-service attack. Such decisions can be influenced by a number of factors that are not related to channel properties. The cost of channel switching is one reason as to why the jammer may decide not to change the channel. Under another scenario, the jammer may be offered a reward for remaining stealthy, and may choose this reward over disrupting the control loop. For instance, when the controller monitors the link, an anomaly in the channel transition probabilities could signal the attack. In this case, rewarding the jammer for not defaulting to the most blocking channel unless it is absolutely necessary will provide it with an incentive for not revealing itself. In yet another class of problems, the jammer’s decision could be based on the knowledge that the system is prepared to tolerate service disruptions as long as the cost of such disruptions is below the cost of rectifying them. We defer detailed analyses of these situations to Section V. It should be stressed that jammer decisions in each of these scenarios will depend on the plant state x, the channel f_{j^-} and the channel ranking (the latter may require knowledge of u).

Using the channel ranking introduced in Assumption 4 the value and saddle points of the game (6) can be characterized by solving a game over a reduced jammer strategy space. This reduced game focuses on two channels, namely the channel that currently occupies the link and the channel that delivers the highest payoff to the jammer when it seeks to block communications between the controller and the plant. The latter channel is indexed as channel f_1, by Assumption 4.
Let us introduce the reduced jammer action vector \(\tilde{p} = (\tilde{p}_1, \tilde{p}_2)' \), \(\tilde{p}_1, \tilde{p}_2 \geq 0 \), \(\tilde{p}_1 + \tilde{p}_2 = 1 \). Also, consider payoffs associated with selecting channel \(f_1 \) and keeping the current channel \(f_j \):

\[
\tilde{h}_1(u) = \mathbb{E} [\sigma(x^+, u, f_S)|S = 1],
\]

\[
\tilde{h}_2(u) = \mathbb{E} [\sigma(x^+, u, f_S)|S = j^-],
\]

and define \(\tilde{h}(u) = (\tilde{h}_1(u), \tilde{h}_2(u))' \). Consider the following ‘reduced’ two-player game with upper value

\[
\tilde{J}_1 = \inf_{\tilde{p} \in \mathcal{S}_1} \max_u \tilde{p}' \tilde{h}(u)
\]

and lower value

\[
\tilde{J}_2 = \max_{\tilde{p} \in \mathcal{S}_2} \inf_u \tilde{p}' \tilde{h}(u).
\]

Lemma 3: Suppose Assumptions 1-4 are satisfied. Then

\[
J_1 = \tilde{J}_1 = \tilde{J}_2 = J_2.
\]

Furthermore, the zero-sum game (12) has a (possibly non-unique) saddle point. Also, if \((u^*, \tilde{p}^*) \) is such a saddle point, then \((u^*, p^*) \) is a saddle point of the game (6), where

\[
p_j^* = \begin{cases}
\tilde{p}_1^*, & j = 1, \\
\tilde{p}_j^-, & j \neq 1, j^- \\
0, & j \notin \{1, j^-\}.
\end{cases}
\]

IV. MAIN RESULTS

Lemma 3 allows the jammer to constrain its actions to the set \(\mathcal{S} = \{ p : p_j = 0, j \neq 1, j^- \} \subset \mathcal{S}_{n-1} \). Among these actions there are two trivial actions: choose the most blocking channel (channel \(f_1 \) in our notation) by using \(p_1 = 1 \) and \(p_j = 0, j \neq 1, j^- \), or stay put by allocating \(p_j = 1 \) and \(p_j = 0, j \neq j^- \), so that the controller continues communicating with the plant over channel \(f_j^- \). However, the question arises as to whether there exist optimal mixed strategies in \(\mathcal{S} \) for the jammer to undertake, i.e., optimal policy vectors \(p \) such that \(0 < p_j < 1, j = 1, j^- \).

The first main result of this paper provides necessary and sufficient conditions for the existence of nontrivial saddle points. These conditions characterize the controller-jammer games in which the jammer randomizes its choice of optimal strategies. As we will see, this will force the controller to respond in a non-obvious manner in order to remain optimal, which ultimately represents a signature of an attack on the communication link.

Theorem 1: Suppose \(\tilde{h}_1, \tilde{h}_2 \) are strictly convex functions of \(u \) for all \(x \). For every \(x \), the zero-sum game (12) admits a nontrivial saddle point \((u^*, \tilde{p}^*) \) if and only if there exists \(\tilde{u} \) such that

\[
\tilde{h}_1(\tilde{u}) = \tilde{h}_2(\tilde{u}),
\]

and one of the following conditions hold: either

\[
\left(\frac{\partial \tilde{h}_1(\tilde{u})}{\partial u} \right) \left(\frac{\partial \tilde{h}_2(\tilde{u})}{\partial u} \right) < 0,
\]

or

\[
\frac{\partial \tilde{h}_1(\tilde{u})}{\partial u} = \frac{\partial \tilde{h}_2(\tilde{u})}{\partial u} = 0.
\]

V. A LINEAR-QUADRATIC CONTROLLER-JAMMER GAME

In this section, we specialize Theorem 1 to the controller-jammer game where the plant is linear,

\[
x^+ = Ax + Bu
\]

and the performance cost is quadratic. In this game the jammer is rewarded for remaining stealthy. We show that in this game, there is a region in the plant state space where the jammer’s optimal policy is to randomize its channel selection. Furthermore, an optimal control response to this optimal jammer action is nonlinear.

Consider a controller-jammer game for the plant (19) with the quadratic payoff

\[
(\|x\|^2 + \|u\|^2) + \|x^+\|^2 + (\delta_{j,j^-}) \tau.
\]

Here, \(\delta_{j,k} \) is the Kronecker symbol, and \(\tau > 0 \) is the constant ‘reward for stealthiness’ which the jammer receives if the channel does not change as a result of its action. As explained earlier, the rationale here is to reward the jammer for keeping the current channel in the link when excessive switching may reveal its presence, or may drain its resources. This controller-jammer game was analyzed in [15] (for a one-dimensional plant), where the region in the state-space was found where the game has a unique saddle point corresponding to a jammer’s nontrivial strategy. Such a region was found by computing the game value directly, which required a quite tedious analysis. Here, we revisit this result of [15] from a more general perspective, using conditions of Theorem 1.

The corresponding function \(\sigma \) in this case is

\[
\sigma(y, u, f_j) = \begin{cases}
\|x\|^2 + u^2 + \|y\|^2, & j \neq j^-, \\
\|x\|^2 + u^2 + \|y\|^2 + \tau, & j = j^-.
\end{cases}
\]

Clearly, the function \(\sigma \) defined in (20) satisfies Assumptions 1 and 2. Also in this case, the functions \(h_j \) have the form

\[
h_j(u) = \mathbb{E}[\sigma(x^+, u, f_S)|S = j] = \gamma_j(x) + u^2 + r_j q_j u (u + 2\beta(x)),
\]

where

\[
\gamma_j(x) = \begin{cases}
x'(I + A'A)x, & j \neq j^-, \\
x'(I + A'A)x + \tau, & j = j^-.
\end{cases}
\]

\[
\beta(x) = \frac{\delta_{j,k}}{\|B\|^2}, \text{ and } r_j = \|B\|^2 \text{ for all } j.
\]

Also, the available channels are assumed to be ordered according to their probability to become passing, that is,

\[
q_1 < q_2 < \ldots < q_n.
\]

Lemma 4: Under condition (22), the set \(U(x) = \{ u : u(x + 2\beta(x) \leq 0 \} \) verifies properties (i) and (ii) stated in Lemma 1 and also satisfies Assumptions 3 and 4.

Under the above assumptions, the payoff functions \(\tilde{h}_1 \) and \(\tilde{h}_2 \) for the reduced zero-sum game become

\[
\tilde{h}_1(u) = h_1(u) \text{ and } \tilde{h}_2(u) = h_j^-(u).
\]
With these definitions, condition (16) reduces to the equation
\[\ddot{u} + \left(\frac{2}{\|B\|^2} B' A x \right) = \frac{\tau}{\|B\|^2 (q_1 - q_j^*)} \]
which admits real solutions if \(-\frac{\tau}{\|B\|^2} x'A'B'B' A x \geq \frac{\tau}{q_j^* - q_1} \).
Also, condition (17) reduces to the condition
\[-\frac{\|B\|^2 q_j^*}{1 + \|B\|^2 q_j^*} < \ddot{u} < -\frac{\|B\|^2 q_1}{1 + \|B\|^2 q_1}. \]
Let
\[z = \frac{\tau \|B\|^2}{(q_j^* - q_1) x'A'B'B' A x}. \]
The analysis of conditions (24), (25) shows that only one of the solutions of equation (24),
\[\ddot{u} = u^* \]
\[= -\frac{1}{\|B\|^2} B' A x \left(1 - \sqrt{\frac{\tau \|B\|^2}{(q_1 - q_j^*) x'A'B'B' A x}} \right) \]
satisfies (25) provided
\[1 - \frac{1}{1 + \|B\|^2 q_1^2} < z < 1 - \frac{1}{1 + \|B\|^2 q_j^2}. \]
Condition (27) describes the region in the state space in which the jammer’s optimal policy is to choose randomly between the channel \(f_j^* \) currently in use and the most blocking channel \(f_1 \). Observe that in the case where the plant (19) is scalar and \(B = 1 \), we recover the exactly same condition as that obtained in [15] by direct computation. That is, Theorem II confirms the existence of the nontrivial optimal jammer’s strategy for this region. We refer the reader to [15] for the exact value of the optimal vector \(p^* \); the calculation for the multidimensional plant (19) follows the same lines, and is omitted for the sake of brevity. We also point out that the optimal controller’s policy (24) is nonlinear. Hence, any linear feedback policy that controller may employ assuming that its signals are transmitted over a bona fide packet dropping channel will lead to an inferior control performance. We interpret this situation as a signature of a successful DoS attack by the jammer.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed a class of control problems over adversarial channels, in which the jammer actively attempts to disrupt communications between the controller and the plant. We have posed the problem as a static game, and have given necessary and sufficient conditions for such a game to have a nontrivial saddle point. The significance of these conditions is to allow a characterization of a set of plant’s initial states for which a DoS attack can be mounted that requires a nontrivial controller’s response. For instance, in the linear quadratic problem analyzed in the paper the optimal control law is nonlinear. This gives the jammer an advantage over any linear control policy in those problems. The jammer achieves this outcome by randomizing its choice of a packet-dropping channel rather than operating packet dropping facility directly.

On the other hand, the part of the state space where the jammer randomizes is determined by the jammer’s cost of switching (reward for not switching) and transition probabilities of the current and the most blocking channels. If these parameters can be predicted/estimated by the controller, it has a chance of mitigating the attack by either eliminating those regions, or steering the plant so that it avoids visiting those regions.

Future work will be directed to further understanding conditions for DoS attacks, with the aim to consider dynamic/multi-step control problems. Another interesting question is whether associating a distinct payoff with one of the channels is necessary for the jammer to resort to randomization.

REFERENCES

[1] S. Tatikonda and S. Mitter, Control under Communication Constraints, IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1056-1068, 2004.
[2] G. Nair, F. Fagnani, S. Zampieri, and R. Evans, Feedback control under data rate constraints: an overview, Proceedings of the IEEE, vol. 95, no. 1, pp. 108-137, 2007.
[3] S. Yüksel and T. Başar, Minimum rate coding for LTI systems over noiseless channels, IEEE Transactions on Automatic Control, vol. 51, no. 12, pp. 1878-1887, 2006.
[4] P. Minero, M. Franceschetti, S. Dey, and G. Nair, Data rate theorem for stabilization over time-varying feedback channels, IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 243-255, 2009.
[5] N. Martins, M. Dahleh, and N. Elia, Feedback stabilization of uncertain systems in the presence of a direct link, IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 438-447, 2006.
[6] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Sastry, Foundations of control and estimation over lossy networks, Proceedings of the IEEE, vol. 95, no. 1, pp. 163-187, 2007.
[7] O. Imer, S. Yüksel, and T. Başar, Optimal control of LTI systems over unreliable communication links, Automatica, vol. 42, no. 9, pp. 1429-1439, 2006.
[8] E. Garone, B. Sinopoli, and A. Casavola, LQG control over lossy TCP-like networks with probabilistic packet acknowledgements, International Journal of Systems, Control and Communications, vol. 2, no. 1, pp. 55-81, 2010.
[9] S. Amin, A. Cárdenas, and S. Sastry, Safe and secure networked control systems under denial-of-service attacks, Hybrid Systems: Computation and Control, pp. 31-45, 2009.
[10] A. Gupta, C. Langbort, and T. Başar, Optimal control in the presence of an intelligent jammer with limited actions, in Proc. of 49th IEEE Conference on Decision and Control (CDC), pp. 1096-1101, December 2010.
[11] I. Csiszár and P. Narayan, Arbitrarily varying channels with constrained inputs and states, IEEE Transactions on Information Theory, vol. 34, no. 1, pp. 27-34, 1988.
[12] T. Başar and Y-W. Wah, A Complete Characterization of Minimax and Maximin Encoder-Decoder Policies for Communication Channels with Incomplete Statistical Description, IEEE Transactions on Information Theory, vol. 31, no. 4, 1985.
[13] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2003.
[14] T. Başar and G. Olsder, Dynamic Noncooperative Game Theory, Academic Press, 1982.
[15] C. Langbort and V. Ugrinovskii, One-shot control over an AVC-like adversarial channel, in Proc. of 2012 American Control Conference, Montreal, Canada, 2012.