A Charge Recycling Stacked I/O in Standard CMOS Technology for Wide TSV Data Bus

Takefumi Yoshikawa1, Tatsuya Iwata1, Junji Shibazaki1, Sho Muroga2, and Hiroaki Ikeda3

Abstract This paper describes theoretical approach and proposed scheme of wide data bus architecture using charge-recycling and stacked I/O for signal transmission via TSV (Through Silicon Via). This data bus is assumed for vertical stacked chips of 3D integration. This theoretical approach is based on probability calculation for data stream on pure random pattern. Through the calculation, power reduction ratio to normal data bus (non-charge recycling) is clarified in given conditions for power estimation in early design stage. The proposed scheme for data and clock transmission adopts Local Voltage Stabilizer (LVS) and compact level shifter for capacitor area and clock power reduction. Simulation results show that the proposed 2 story data bus architectures of 64bits (32×2) and 128bits (64×2) achieve competitive power efficiency (0.160 pJ/bit) with smaller size (44% to prior work) and normal operation voltage (1 V). These achievements are in dense TSVs (40μm pitch), standard 65 nm process technology and PRBS9 data stream.

Key words: Signal Transmission, Charge Recycling, Stacked I/O

Classification: Electron devices, circuits and modules

1. Introduction

Because of slow down of technology scaling [1-4] and several limitation of interconnect performance improvement [5-10], three dimensional (3D) integration technology has been considered as a solution to boost system performances by tight connection between stacked chips, e.g. a processor and memories [11-15]. An essence to obtain higher system performance by TSV utilization is a large number of parallel interconnection between the stacked chips [16-20]. This parallelism has a possibility to realize considerably higher data bandwidth beyond 1Tbit/sec.

On the other hands, high bandwidth data transmission through wide data bus causes power crisis in dense packaging of multiple chips, and power reduction in data transmission should be carefully considered simultaneously in such 3D packaging.

Fig. 1. 3D chip Packaging using Through Silicon Vias

In order to reduce the power dissipation of data transmission on wide data bus, several approaches are disclosed, e.g. lowering I/O voltage [20], charge-recycling on differential I/O [21-23] or parallel I/O [24]. However, [22] needs excessive low voltage (0.14V) and needs sophisticated regulator. [21-23] need equalizing period for charge recycling to complement or adjacent transmission line, then high bandwidth of Gbit/sec class can not be achieved. For higher bandwidth with charge recycling, stacked I/O architectures have been disclosed [25,26]. As shown in Fig.2, the Stacked I/O [25,26] has 2-story configuration (4×2) and realizes Gbit/sec class data transmission by fast charge transfer from top to bottom I/O via intermediate voltage node (V_REG).

Fig. 2. Stacked I/O for Charge Recycling [25]

As for [26], it is difficult to apply to 3D integration due to necessity of level conversion in the middle of TSV. The charge recycling on simple stacked I/O [25] is seemed to be the most suitable scheme to reduce power dissipation of data transmission on wide TSV data bus in 3D chip packaging.

DOI: 10.1587/elex.17.20200112
Accepted April 03, 2020
Publicized April 15, 2020

a) tyoshikawa@pu-toyama.ac.jp
To apply Sacked I/O scheme [25] to wide TSV data bus, there are some difficulties as listed below.

- The stacked I/O cell [25] is too large for wide data bus due to capacitance allocation for intermediate voltage.
- Clock line is out of the I/O stacking and needs full swing, therefore clock transmission consumes much more power compared to the data transmission.
- Trench capacitors are used for larger capacitance, and it restricts process variation and requires additional cost.

This paper proposes data transmission scheme using compact Stacking I/O for wide data bus. It covers low power clock transmission with unique level shifter and calculation formula for charge recycling probability in given number of data bus width.

2. Charge Recycling for Wide Data Bus

2.1 Applicability to Wide Data Bus

A concept of charge sharing between regulator node capacitance (C_{REG}) and TSV load capacitance (C_L) is depicted in Fig.3. When C_{REG} is quite larger than C_L, i.e. M (a ratio of C_{REG} and C_L) is much greater than 1, then charge from the top driver can be completely utilized on the bottom driver and power dissipation can be reduced to be half (1/2) compared to normal 0.5VDD data swing bus. However, M is actually not so large number in wide data bus. Assuming wide data bus of more than 256 bits, realistic M is about 2.5 considering area impact and normal process (non-trench capacitor) on semiconductor chip. It means regulator voltage (V_{REG}) has +/- 0.14VDD (=140mV at 1V VDD) distortion at each data cycle. This situation is not acceptable due to performance degradation of drivers. Due to above reason, [26] adopts trench capacitor with paying additional cost.

2.2 Local Voltage Stabilizer

To compensate small capacitance on V_{REG}, we allocate Local Voltage Stabilizer (LVS) on each pair of Top and Bottom Drivers. The LVS has common gate amplifier (Mpt, Mnt, Mpd, Mnd) and pull-up/down transistors (Mp, Mn) to be 0.75VDD and 0.25VDD respectively. In initial state, Mp and Mn are basically off because of $V_{GS} < V_{TH}$, and very small DC current ($< 5 \mu A$) flows through MP and Mn. When V_{REG} goes up through charge injection from Top Driver, Mpd becomes on and drives Mn for fast pull-down of increasing V_{REG}. Meanwhile, when V_{REG} goes down by discharge to Bottom Driver, Mnt turns on and enables Mp to suppress V_{REG} decrease.

Fig.4 shows actual layout of driver unit, which includes pre-driver, driver and LVS for both floors (Top and Bottom). The size of the driver unit is 40µm×12.56µm by 65nm SOTB process. C_L is assumed to be around 0.8 pF. Each capacitor of PMOS and NMOS has approximately 1 pF, which is about 1.25 times to C_L.

Fig.5 shows simulation waveforms for 1×2 bit data bus configured by single driver unit. A supply voltage is 1V and data rate is 1Gbit/sec considering non-clock recovery system.

\[
\begin{align*}
V_{REG}^{0.5VDD} &= \frac{M\cdot C_L}{M+1} \\
V_{REG}^{-0.5VDD} &= \frac{-M\cdot C_L}{M+1} \\
C_{REG} &= M\cdot C_L \\
C_L &= 0.25VDD \\
C_{REG} &= (M+1)\cdot C_L \\
V_{REG} &= 0.5VDD + p_{bias}
\end{align*}
\]
As shown in this figure, V_{REG} distortion is suppressed within ±50mV thanks to LVS. This symptom appears in wider bit bus, e.g. 4×2 bits, 8×2 bits... etc., because single driver unit has own LVS and the suppression of the V_{REG} distortion is basically concluded in the single driver unit basis.

Because LVS can reduce V_{REG} distortion as stated above, V_{REG} voltage returns to initial value (0.5V_{DD}) within almost single data cycle. However LVS needs additional power consumption due to prompt charge feed to V_{REG} node in case that charge recycling is not executed in single data cycle. The additional power consumption on LVS is severe disadvantage to large V_{REG} capacitance scheme [25], but it can be compensated by parallel charge sharing on wide data bus.

3. Efficiency Calculation for Wide Data Bus

3.1 Precondition

As stated above, V_{REG} behavior completes in single cycle with or without charge recycling. Therefore, charge recycling can be possible only in case of simultaneous occurrence for following 2 events;
- 1 to 0 data state transition at Top I/O
- 0 to 1 data state transition at Bottom I/O

Considering this manner, power reduction ratio can be calculated by the charge recycling probability. In this calculation, pure random pattern is assumed, and appearance probabilities of all data polarities are quite same.

3.2 Calculation Example at 2×2bits Stacked Data Bus

At first, we are going to try to calculate an appearance probability at 2 bit data bus (#1 and #2) on Top and Bottom I/O respectively, i.e. 2×2bits stacked data bus assuming pure random data pattern. In Table 1, all cases of ‘0 to 1’ transition are listed for 2 bits data bus. As listed in Case 1 to 6 on the table, the number of combinations for ‘0 to 1’ transition at 1bit on Bottom I/O can be calculated as

$$2C_1 \times 3^{2-1}. \quad \text{(eq. 1)}$$

When both bits (#1 and #2) become ‘0 to 1’ simultaneously (Case 7 in Table 1), the number of combinations for ‘0 to 1’ transition at 2bit on Bottom I/O can be calculated as

$$2C_2 \times 3^{2-2}. \quad \text{(eq. 2)}$$

By applying same thought to Top I/O, the number of combinations for ‘1 to 0’ transition at 2bit on Top I/O can be calculated as

$$2C_1 \times 3^{2-1}. \quad \text{(eq. 3)}$$

In similar manner, the number of combinations for ‘1 to 0’ transition at 2bit on Top I/O can be calculated as

$$2C_2 \times 3^{2-2}. \quad \text{(eq. 4)}$$

3.3 Combination of Events for Charge Recycling

Fig.7 shows possible case of charge recycling on 2×2bits stacked data bus.

![Possible bits for Charge Recycling on 2×2 Stacked Bus](image)

Referring to eq.1 to 4, the number of combinations can be calculated for each event in Fig.7. Summary is in Table 2.

Table 1 Combination of 0 to 1 transition in 2 bits data bus

Case	#1	#2
1	0 to 1	0 to 0
2	0 to 1	1 to 0
3	0 to 1	1 to 0
4	0 to 0	0 to 1
5	1 to 0	0 to 1
6	1 to 1	0 to 1
7	0 to 1	0 to 1

‘0 to 1’ transition at 1bit of 2bits: $2C_1 \times 3^{2-1}$

‘0 to 1’ transition at 2bit of 2bits: $2C_2 \times 3^{2-2}$

Table 2 Charge Recycling in 2×2bits Data Bus

Event	Recycled Bits	Number of Combinations referred to Chapter 3.2 (1C2)	Figure
(a)	1 bit	$2C_1 \times 3^{2-1} \times 2C_1 \times 3^{2-1}$	Fig.7
(b)	1 bit	$2C_1 \times 3^{2-1} \times 2C_1 \times 3^{2-1}$	
(c)	1 bit	$2C_1 \times 3^{2-1} \times 2C_1 \times 3^{2-1}$	
(d)	2 bits	$2C_2 \times 3^{2-2} \times 2C_2 \times 3^{2-2}$	

There fore, a number of combination for charge recycling bits ($N_{\text{CR}, 2×2}$) can be calculated as follows;

$$N_{\text{CR}, 2×2} = 2C_1 \times 3^{2-1} \times 2C_1 \times 3^{2-1} \times 1 + 2C_1 \times 3^{2-1} \times 2C_2 \times 3^{2-2} \times 1 + 2C_2 \times 3^{2-2} \times 2C_1 \times 3^{2-2} \times 1 + 2C_2 \times 3^{2-2} \times 2C_2 \times 3^{2-2} \times 2$$

$$= \sum_{p=1}^{2} \sum_{q=1}^{2} C_p^p \times 3^{2-p} \times 2C_q^q \times 3^{2-q} \times \min(p, q)$$

(eq. 5)

p and q are number of bits for ‘1 to 0’ transient on Top and ‘0 to 1’ transient on Bottom Driver respectively. This formula is derived from product of a number of recycled bits and a number of combination in Table 2.
(4) Calculation of Power Reduction Ratio

To calculate power reduction ratio by the charge recycling, power consumption of non-charge recycling case should be defined. It can be calculated by appearance probability of '0 to 1' transition on 4 bits. A number of combination for '0 to 1' transient bits in 4 bits data bus \((N_{01,4})\) can be calculated as;

\[
N_{01,4} = \sum_{k=1}^{4} 4C_k \times 3^{4-k} \times k \quad (\text{eq. 6})
\]

As for power reduction ratio on the \(2 \times 2\) bits stacked data bus \((RR_{2\times2})\), it is derived from a ratio of \(N_{CR,2\times2}\) and \(N_{01,4}\) from eq. 5 and 6.

\[
RR_{2\times2} = \frac{N_{CR,2\times2}}{N_{01,4}} = \frac{\sum_{p=1}^{2} \sum_{q=1}^{2} C_p \times 3^{2-p} \times C_q \times 3^{2-q} \times \min(p,q)}{\sum_{k=1}^{4} 4C_k \times 3^{4-k} \times k} \quad (\text{eq. 7})
\]

3.3 Calculation Formula for \(N \times 2\) bits Stacked Data Bus
As stated above, charge recycling can be possible between TSVs on Top and Bottom floors, and a number of combination for recycling bit in \(N \times 2\) stacked bus can be obtained by extension of eq. 5 to \(N\) bits.

\[
N_{CR,N \times 2} = \sum_{p=1}^{N} \sum_{q=1}^{N} C_p \times 3^{N-p} \times C_q \times 3^{N-q} \times \min(p,q) + m \times b_N \quad (\text{eq. 8})
\]

\[
N_{01,2N} = \sum_{k=1}^{N} 4C_k \times 3^{2N-k} \times k \quad (\text{eq. 9})
\]

(1) Positive and Negative Factor Consideration
As described above, capacitance is positive factor for increasing the recycling bit. In contrast, wider bit width (\(N\)) needs longer wiring of \(V_{REG}\) node, and it causes timing offset between charge injection and subtraction on \(V_{REG}\) node. The timing offset is negative factor, equivalently decreasing the recycling bit. The positive and negative factor on \(N \times 2\) bits bus are described as \(a_N\) and \(b_N\) respectively, then eq.8 can be expressed as follows.

If \(q \geq p\), then

\[
N_{CR,N \times 2} = \sum_{p=1}^{N} \sum_{q=1}^{p} C_p \times 3^{N-p} \times C_q \times 3^{N-q} \times (\min(p,q) + b_N) \quad (\text{eq. 10})
\]

If \(q < p\), then

\[
N_{CR,N \times 2} = \sum_{p=1}^{N} \sum_{q=1}^{p} C_p \times 3^{N-p} \times C_q \times 3^{N-q} \times (\min(p,q) + a_N - b_N) \quad (\text{eq. 10})
\]

If \(p\) is greater than \(q\), the positive factor does not work to increase \(N_{CR}\) because theoretical maximum number of recycle bit is \(q\).

(2) Positive and Negative Factor Extension
Positive and negative factors \((a_N, b_N)\) become more significant as the bus width (\(N\)) increases. When multipliers for doubling data bus width at \(a_N\) and \(b_N\) are set to \(m_p\) and \(m_n\) respectively, eq.10 can be expressed as shown in Fig.8. These parameters will be derived through simulation results in later chapter. The power reduction ratio of \(N \times 2\) bits \((RR_{N \times 2})\) can be obtained by eq.9 and eq.10.

4. Clock Management and Data Reception

4.1 Clock Transmission
The pair of clocks is fed to receiver side using stacked I/O configuration to expect frequent charge recycling. Fig.9 depicts clock waveforms of Top and Bottom drivers. As shown in this figure, clocks have 0.5\(V_{DD}\) voltage swing likely to data transmission. The clocks are complementary and equalized on \(V_{REG}\) node (0.5\(V_{DD}\)) in every clock period.

\[
RR_{N \times 2} = \frac{N_{CR,N \times 2}}{N_{01,2N}} \quad (\text{eq. 11})
\]

\[
\begin{aligned}
&\text{N} \times 2\text{bit} \quad \text{N} \times 2\text{bit} \\
\text{X2 width} \quad \text{positive: } m_p \text{ times, negative: } m_n \text{ times}
\end{aligned}
\]

\[
\begin{aligned}
&\text{N} \times 2\text{bit} \quad \text{N} \times 2\text{bit} \\
\text{X2 width} \quad \text{positive: } m_p \text{ times, negative: } m_n \text{ times}
\end{aligned}
\]

\[
\begin{aligned}
&\text{N} \times 2\text{bit} \quad \text{N} \times 2\text{bit} \\
\text{N} \times 2\text{bit} \quad \text{N} \times 2\text{bit}
\end{aligned}
\]

Fig. 8. Number of combination for recycling bit with doubling bus width

\[
\begin{aligned}
&\text{VDD} \quad \text{VDD} \\
\text{ClkU} \quad \text{ClkD} \\
\text{VSS} \quad \text{VSS}
\end{aligned}
\]

Fig. 9. Clock signal transmission

4.2 Receiver
Fig.10 illustrates block diagram of Receiver for \(1 \times 2\) bit bus. The Receiver has level shifter and two comparators.

The transmitted clocks (ClkU, ClkB) are buffered by level shifter in Receiver, and the level shifter generates local clocks (Clk, ClkB) of full voltage swing (\(V_{DD}\)).

Fig.11 depicts circuit schematic and incoming clock signal for level shifter.

IEICE Electronics Express, Vol.xx, No.xx, xx-xx
As shown in the figure, the level shifter can be configured with a small number of transistors and acts as a digital behavior (ON and OFF).

5. Simulation Results

Each TSV is modeled by referencing [28-30]. In this assumption, TSV length, TSV diameter and oxide thickness are 100 μm, 50 μm and 0.5 μm respectively. An effective capacitance of the TSV is about 0.84 pF, which would be equivalent to 5 mm metal wire in [26].

4.1 Power Reduction Ratio in Data Transmission

Fig.12 shows a breakdown of power consumption for N×2 bit data bus with and without charge recycling.

![Power Comparison between w/o and with Charge Recycling](image)

To calculate power reduction ratio corresponding to eq.11, power consumptions of Data Driver and LVS are took into account in Fig.12. Fig.13 shows power reduction ratio of calculation by eq.11 and the simulation results.

![Driver Power Comparison](image)

In the calculation, parameters of a_N, b_N, m_p and m_n are set as Table 3 for the best fitting to the simulation results. As shown in Fig.13 and Table 3, results of calculation and simulation are well matched using reasonable values of a_N, b_N, m_p and m_n. Hence, the eq.11 is useful to estimate power reduction ratio of the charge recycling with given N in this process technology.

4.2 Power Efficiency

Power efficiency of parallel data bus is defined as power consumption (Jules) per channel bandwidth (bit per second) for single bit data transmission (bit). Fig.14 shows power efficiencies of proposed scheme (This Work).

![Power Efficiency Comparison](image)

In this power efficiency calculation, power dissipation for all blocks are considered. As shown in the figure, the power efficiency is improved as bus width becomes wider, but degree of improvement decreases as bus width increases. N should be set to 32 or 64. This figure depicts power efficiencies with (solid line) and without clock (dotted line).

In this simulation, one clock line is allocated to 8 bit data bus for data acquisition. Performances for Reference [20,25] and this work are summarized in Table 4.

![Performance Summary](image)

In [25], clock is assumed to have full VDD swing. In a comparison to [25], the power efficiency is 15% worse in data transmission. This comes from power dissipation on LVS for capacitance reduction. However, considering clock transmission, the power efficiency becomes comparable to [25] thanks to charge recycling and local level shifter on clock line. Ref [20] has very small size than others and it comes from i) simple CMOS driver (no charge recycling),
ii) low TSV capacitance (200 ff) and iii) no voltage regulator for excessive low V_{DD} (0.14 V). Therefore, the size can not simply be compared to others.

6. Conclusion

The formula to calculate power reduction ratio is derived from transition probability for pure random data stream. The reduction ratio is for the proposed charge recycling scheme to normal scheme (non-charge recycling). The formula has good correlation with simulation result of driver’s power dissipation, and it gives easy method to perceive the power reduction effect using charge recycling for early stage of system design in 3D chip integration.

The proposed data and clock transmission scheme has a potential to be comparable power efficient (0.16 pJ/bit) with prior work (0.152 pJ/bit) of more advanced and expensive technology [25]. The power efficiency can be achieved by wide bit bus (>32×2 bits) and charge recycling for data and clock transmission. The size of proposed Tx and Rx macro has 56% smaller size to the prior work thanks to Local Voltage Stabilizer (LVS) and simple comparator with compact level shifter. The proposed scheme suggests one promising candidate for the data transmission methodology in 3D chip integration through TSVs.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP17K00090. This work is supported by VLSI Design and Education Center (VDEC), the University of Tokyo in collaboration with Cadence Design Systems, Inc., Synopsys, Inc., Mentor Graphics, Inc. and Renesas Electronics Corporation.

References

[1] The International Technology Roadmap for Semiconductors (ITRS), 2015 [Online]. Available: https://www.semiconductors.org/
[2] M. T. Bohr at al., “CMOS Scaling Trends and Beyond”, IEE Micro, Issue-6, pp20-29, DOI: 10.1109/MM.2017.4241347
[3] J. Meindl et al., “Limits on silicon nanoelectronics for terascale integration,” Science, vol. 293, no. 5537, pp. 2044–2049, Sep. 2001.
[4] S. Borkar, “Design challenges of technology scaling,” Micro, IEE, vol. 19, no. 4, pp. 23–29, Jul.–Aug. 1999.
[5] E. F. Rent, Microminiature Packaging Logic Block to Pin Ratio Memoranda, vol. 28, 1960.
[6] K. Hardee et al., “A 1.4GHz per Data I/O 16Mb DDR Low-Power Embedded DRAM Macro for a 3D Graphics Engine,” ISSCC Dig. Tech. Papers, pp. 386-387, Feb. 2001.
[7] H. Pilo et al., “A 5.6ns Random Cycle 144Mb DRAM with 1.4Gb/s-pin and DDR3-SRAM Interface,” ISSCC Dig. Tech.Papers, pp. 308-309, Feb. 2003.
[8] E. Mensink et al., “Power Efficient Gigabit Communication Over Capacitively Driven RC-Limited On-Chip Interconnects,” IEEE J. Solid-State Circuits, vol. 45, pp. 447-457, Feb. 2010.
[9] B. Kim et al., “An Energy-Efficient Equalized Transciever for RC-Dominant Channels,” IEEE J. Solid-State Circuits, vol. 45, pp. 1186-1197, Feb. 2010.
[10] J. Seo et al., “High-Bandwidth and Low-Energy On-Chip Signaling with Adaptive Pre-emphasis in 90nm CMOS”, ISSCC Dig. Tech. Papers, pp. 182-183, 2010.
[11] E.J. Marinissen et al., “A structured and scalable test access architecture for TSV-based 3D stacked IC,” Proc.2010 28th IEEE VLSI Test Symposium, pp.269–274, April 2010.
[12] Satoshi Takaya et al., “Diagnosis of Signaling and Power Noise Using In-Place Waveform Capturing for 3D Chip Stacking “, Trans. Electron., Vol. E97-C No.6, Jun. 2014.
[13] M. Farooq et al., “3D copper TSV integration, testing and reliability,” IEEE EEDM, pp. 143-146, Dec. 2011.
[14] T. Dickson et al., “An 8×10-Gb/s source-synchronous I/O system based on high-density silicon carrier interconnects,” IEEE Symp. VLSI Circuits, pp. 80-81, June 2011.
[15] W. R. Davis et al., “Demystifying 3D ICs: the pros and cons of going vertical,” in IEEE Design & Test of Computers, vol. 22, pp. 498-510, 2005.
[16] J.-S. Kim, et al., “A 1.2V 12.8Gb/s 2Gb mobile wide-I/O DRAM with 4 × 128 I/Os using TSV-based stacking,” Dig. Tech. Papers, 2011 IEEE Intl. Solid-State Circuits Conference, pp.496-497, Feb. 2011.
[17] J. Jeddeloh et al., “Hybrid Memory Cube New DRAM Architecture Increases Density and Performance,” IEEE Symp. VLSI Circuits, pp. 87-88, 2012.
[18] J. Rouillard, et al., “Evaluation of 3D Interconnect Routing and Stacking Strategy to Optimize High Speed Signal Transmission for Memory on Logic,” in IEEE Electronic Components and Technology Conf., pp. 8-13, 2012.
[19] F. O’Mahony et al., “A 47×10 Gb/s 1.4 mW/Gb/s parallel interface in 45nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2828-2837, Dec. 2010.
[20] Liu et al., “A Compact Low-Power 3D I/O in 45nm CMOS,” ISSCC Dig. Tech. Papers, pp. 142-144, 2012.
[21] H. Yamauchi et al., “An Asymptotically Zero Power Charge-Recycling Bus Architecture for Battery-Operated UltraHigh Data Rate ULSI’s”, in IEEE J. Solid-State Circuits, Volume: 30, Issue: 4, Apr 1995.
[22] K. Hardee et al., “A 170Gb/s 16Mb Embedded DRAM with Data-Bus Charge-Recycling,” ISSCC Dig. Tech. Papers, pp. 272-273, 2008.
[23] H. Yamauchi, et al., “A Low Power Bus Architecture with Local and Global Charge Recycling Bus Techniques for Battery Operated Ultra-High Data Rate ULSI’s”, IEICE Transaction on Electronics, Vol.78-C, No.4, pp. 394-403, 1995.
[24] P.P. Sotiriadis et al., “Analysis and implementation of charge recycling for deep sub-micron buses”, 1 SLPE001: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No.01TH8581).
[25] Y. Liu et al., “A 0.1pJ/b 5-10Gb/s Charge-Recycling Stacked Low-Power I/O for On-Chip Signaling in 45nm CMOS SOI,” ISSCC Dig. Tech. Papers, pp. 400–401, 2013.
[26] John M. Wilson et al., “A 6.5-to-23.3fJ/b/mm Balanced Charge-Recycling Bus in 16nm FinFET CMOS at 1.7-to-2.6Gb/s/wire with Clock Forwarding and Low-Crosstalk Contraflow Wiring,” ISSCC Dig. Tech. Papers, pp. 156-158, 2016.
[27] Joohee Kim, et al., “High frequency Scalable Electrical Model and Analysis of a Through Silicon Via (TSV),” in IEEE Transaction on Components, Packaging, and Manufacturing Technology, VOL. 1, NO. 2, FEBRUARY 2011.
[28] C. Ryu, J. Lee et al., “High frequency electrical model of through wafer via for 3-D stacked chip packaging,” in Electron. Syst. Integration Technol. Conf. (ESTC), Sep. 5–7, 2006,vol. 1, pp. 215–220.
[29] C. Bermond et al., “High frequency characterization and modeling of high density TSV in 3-D integrated circuits,” in Proc. 13th IEEE Workshop Signal Propagation Interconnects, Strasbourg, France, May 12–15, 2009, pp. 1–4.
[30] I. Savids et al., “Electrical modeling and characterization of through-silicon vias (TSVs) for 3-D integrated circuits,” Microelectron. J., pp. 9–16, 2010.