The consensus rye microsatellite map with EST-SSRs transferred from wheat

D.O. Vidakovic1, 2, D. Perovic1, T.V. Semilet3, A. Börner4, E.K. Khlestkina3, 5, 6

1 Julius Kuehn-Institute (JKI), Quedlinburg, Germany
2 University of Novi Sad, Department of Biology and Ecology, Novi Sad, Serbia
3 Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
5 Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
6 Novosibirsk State University, Novosibirsk, Russia

e-mail: khlest@bionet.nsc.ru

Abstract. Microsatellite (SSR) markers with known precise intrachromosomal locations are widely used for mapping genes in rye and for the investigation of wheat-rye translocation lines and triticale highly demanded for mapping economically important genes and QTL-analysis. One of the sources of novel SSR markers in rye are microsatellites transferable from the wheat genome. Broadening the list of available SSRs in rye mapped to chromosomes is still needed, since some rye chromosome maps still have just a few microsatellite loci mapped. The goal of the current study was to integrate wheat EST-SSRs into the existing rye genetic maps and to construct a consensus rye microsatellite map. Four rye mapping populations (P87/P105, N6/N2, N7/N2 and N7/N6) were tested with CFE (EST-SSRs) primers. A total of 23 Xcfe loci were mapped on rye chromosomes: Xcfe023, -136 and -266 on chromosome 1R, Xcfe006, -067, -175 and -187 on 2R, Xcfe029 and -282 on 3R, Xcfe004, -100, -152, -224 and -260 on 4R, Xcfe037, -208 and -270 on 5R, Xcfe124, -159 and -277 on 6R, Xcfe010, -143 and -228 on 7R. With the exception of Xcfe159 and Xcfe224, all the Xcfe loci mapped were found in orthologous positions considering multiple evolutionary translocations in the rye genome relative to those of common wheat. The consensus map was constructed using mapping data from the four bi-parental populations. It contains a total of 123 microsatellites, 12 SNPs, 118 RFLPs and 2 isozyme loci.

Key words: Secale cereale; SSR; Triticum aestivum; microsatellite markers; genetic mapping.

For citation: Vidakovic D.O., Perovic D., Semilet T.V., Börner A., Khlestkina E.K. The consensus rye microsatellite map with EST-SSRs transferred from wheat. Vavilovskii Zhurnal Genetiki i Selektsiy = Vavilov Journal of Genetics and Breeding. 2020. DOI 10.18699/VJ20.48-o

Консенсусная микросателлитная карта ржи с интегрированными EST-SSR маркерами пшеницы

Д.О. Видакович1, 2, Д. Перович1, Т.В. Семилет3, А. Бернер4, Е.К. Хлесткина3, 5, 6

1 Институт Юлиуса Кюна, Кведлинбург, Германия
2 Нови-Садский университет, факультет биологии и экологии, Нови-Сад, Сербия
3 Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР), Санкт-Петербург, Россия
4 Институт генетики растений и растениеводства им. Леонида, Гатерслебен, Германия
5 Федеральный исследовательский институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия
6 Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия

e-mail: khlest@bionet.nsc.ru

Аннотация. Микросателлитные (SSR) маркеры широко используются для картирования генов ржи и анализа транскрипционных линий пшеницы и тритикале. SSR-маркеры с известной внутрихромосомной локализацией очень востребованы для картирования экономически значимых генов и QTL-анализа. Одним из источников новых SSR-маркеров в ржи являются микросателлитные маркеры пшеницы. Несмотря на несколько наборов микросателлитных маркеров, доступных у ржи, по-прежнему необходимо расширение списка SSR, сопоставленных с хромосомами ржи, поскольку на некоторых генетических картах количество SSR-маркеров невелико. Цель настоящего исследования состояла в том, чтобы интегрировать EST-SSR пшеницы в существующие генетические карты ржи и построить консенсусную микросателлитную карту ржи. Четыре картирующих популяции ржи (P87/P105, N6/N2, N7/N2 и N7/N6) тестировали с использованием праймеров CFE (EST-SSR). В результате в молекулярно-генетические карты ржи было интегрировано 23 микросателлитных локуса Xcfe: Xcfe023, -136 и -266 на хромосоме 1R, Xcfe006, -067, -175 и -187 на 2R, Xcfe029 и -282 на 3R, Xcfe004, -100, -152, -224 и -260 на 4R, Xcfe037, -208 и -270 на 5R, Xcfe124, -159 и -277 на 6R, Xcfe010, -143 и -228 на 7R. За исключением Xcfe159 и Xcfe224, все картированные локусы Xcfe были обнару-
The consensus rye microsatellite map with EST-SSRs transferred from wheat

Materials and methods

Four rye \(F_1 \) mapping populations (P87/P105, N6/N2, N7/N2 and N7/N6; see details in (Khlestkina et al., 2004)) were used in PCR assays with CFE primers available at GrainGenes database (http://wheat.pw.usda.gov). DNA was available from previous studies (Korzun et al., 2001; Khlestkina et al., 2004). PCR and analysis of the amplified fragments length was performed as described in L.Y. Zhang et al. (2005). Chromosome arm location of homologous sequences carrying the CFEs (http://wheat.pw.usda.gov) was performed using BLAST analysis (Altschul et al., 1990) of the corresponding wheat ESTs given at http://wheat.pw.usda.gov against wheat chromosome survey sequences available at https://urgi.versailles.inra.fr/blast/blast.php. Linkage maps were constructed with MAPMAKER 2.0 (Lander et al., 1987) using Kosambi function (Kosambi, 1944), based on genotyping data obtained in the current study and previously (Korzun et al., 2001; Khlestkina et al., 2004; Varshney et al., 2007). The consensus map was constructed using JoinMap 2.0 program (Stam, 1993).

Results and discussion

Despite the possibility of a high-throughput marker analysis using SNPs (Bauer et al., 2017), microsatellites remain convenient and low-cost markers for mapping genes and marker assisted selection in rye and triticale. For these purposes microsatellite markers with known precise intrachromosomal location are needed. The sources for mapping novel SSR loci in rye were EST-SSRs (Hackauf, Wehling, 2003; Khlestkina et al., 2004), or wheat genomic microsatellites (Khlestkina et al., 2004). In the current study, we used wheat EST-SSRs for genotyping rye mapping populations.

The parents of the four rye mapping populations (P87/P105, N6/N2, N7/N2 and N7/N6) were tested with 301 CFE primer pairs. Thirty-two pairs revealed polymorphism between the parents of one or more mapping populations: 10 between P87 and P105, 13 between N6 and N2, 11 between N7 and N2 and 15 between N7 and N6. The portion of polymorphic CFE markers (10.6 \%) is comparable with that described for genomic wheat SSRs GWM transferred to the same set of mapping populations parents (9.2 \%) (Khlestkina et al., 2004).

Twenty-three of the 32 markers were segregating in the mapping populations, while nine pairs produced monomorphic PCR-products, that can be explained by rye heterogeneity.

Twenty-three Xce loci were genetically mapped on rye chromosomes (see the Table and Supplementary Materials)1. A consensus map was constructed using mapping data for the four populations. The consensus map contains 11 microsatellite (Xce..., Xrem... or Xgwm...) markers on chromosome 1R, 23 on 2R, 10 on 3R, 15 on 4R, 29 on 5R, 17 on 6R, 18 on 7R (see the Figure). In addition to these 123 SSR markers the consensus map contains 12 SNPs (Xgbs...), 118 RFLP markers (other \(X \) names), and two isozyme loci. The former rye consensus map constructed in 2009 contained 10 microsatellite markers only (Gustafson et al., 2009).

Most of the microsatellites mapped in the current study consist of 3 bp repeats (15 loci), 5 of the mapped SSRs were dinucleotide, 2 sequences carried tetra- and 1 hexanucleotide repeat (see the Table).

Twenty-one of the 23 Xce loci mapped in orthologous positions (see the Table) considering multiple evolutionary translocations in the rye genome relative to those of common wheat, as described in detail by K.M. Devos et al. (1993). Two loci Xce159-6R and Xce224-4R have no orthology with wheat Xce159 (5A, 5D) and Xce224 (5B). The portion of the Xce loci showing orthology between wheat and

1 Supplementary Materials are available in the online version of the paper: http://www.bionet.nsc.ru/vogis/download/pict-2020-24/appx5.pdf
Characterization of CFE markers mapped in the current study

CFE No.	Motif	bp in wheat	bp in rye*	Chromosome location in wheat**	Chromosome location in rye*	Orthologous between wheat and rye
004	(GAG)$_4$	217	124, 130	3B, 4B5, 4D5	4RS	Yes
006	(CGT)$_3$	239	304, 307	2A1, 2B1, 2D1	2RL	Yes
010	(AGG)$_3$	324	311, 314	7A5, 7B5, 7D5	7RS	Yes
023	(CGA)$_2$	231	198, 207, 213	1A5, 1B5, 1D5	1RS	Yes
029	(GA)$_2$	201	194, 196	3A1, 3B3, 3D3	3RL	Yes
037	(TACG)$_3$	150	159, 171	5A5, 5B5, 5D5	5RL	Yes
67	(AG)$_2$	175	180, 182, 194	2A5, 2B5, 2D5	2RS	Yes
100	(TG)$_2$	243	237, 241, 255	7A5, 7B5, 7D5	4R5	Yes
124	(GAACCC)$_3$	263	250, 272	6A5, 6B5, 6D5	6RL	Yes
136	(AG)$_4$	160	194, 200	1A5, 1B5, 1D5	1RL	Yes
143	(CAGG)$_4$	150	168, 172	5B5, 5D5	7RS	Yes
152	(CGA)$_2$	150	226, 232, 235, 238	6A5, 6B5, 6D5, 7A5	4RL	Yes
159	(CAG)$_4$	163	164, 167, 170, 173, 176	5B5, 5D5	6R5	No
175	(GGC)$_2$	216	216, 219, 222	2A5, 2B5, 2D5	2RL	Yes
183	(AG)$_4$	215	210, 212	2A5, 2B5, 2D5	2RL	Yes
208	(AGG)$_2$	249	268, 274	5A5, 5B5, 5D5	5RS	Yes
224	(GCC)$_4$	275	212, 215	5B5	4R5	No
228	(CTG)$_3$	207	324, 333, 348	4A5, 5B5	7RS	Yes
260	(CCT)$_3$	149	136, 139	4A4, 4B5, 4D5	4RS	Yes
266	(ACC)$_3$	251	239, 244, 247	1A5, 1B5, 1D5	1RL	Yes
270	(GTC)$_2$	126	129, 132	4D5, 5D5, 4B5, 5A5	5RL	Yes
277	(ACA)$_2$	202	197, 203	6D	6RL	Yes
282	(GAC)$_2$	149	129, 138	3A5, 3B5, 3D5, 4D5	3RS	Yes

*Data obtained in the current study (different length of the PCR products correspond to different parents of the rye mapping populations used; each microsatellite studied was monolocus and homozygous in all parents of the mapping populations, amplifying one fragment in each parental genotype).** Chromosome location of homologous sequences carrying the CFEs (http://wheat.pw.usda.gov) was performed using BLAST analysis of the corresponding wheat ESTs given at http://wheat.pw.usda.gov against wheat chromosome survey sequences available at https://urgi.versailles.inra.fr/blast/blast.php. Further information is given according to http://wheat.pw.usda.gov.

Characterization of CFE markers mapped in the current study (different length of the PCR products correspond to different parents of the rye mapping populations used; each microsatellite studied was monolocus and homozygous in all parents of the mapping populations, amplifying one fragment in each parental genotype).

Some of the markers mapped to 7RS are found in a comprehensive region of the chromosome 7R corresponding to ancient translocation, while just a few markers are available for the small proximal region not involved in this translocation (Devos et al., 1993; Korzun et al., 2001; Khlestkina et al., 2004). The Xcfe070-5R locus mapped in the current study is located in this region (see the Figure) and can be used for tagging the part of chromosome 7RS, which is orthologous to the short arm of chromosome 7 of Triticaceae (Devos et al., 1993).

The Xcfe loci mapped can be recommended for various applications in rye genetics and breeding. Some of them locate in the regions carrying known rye genes and therefore have a potential for marker-assisted selection. For example, comparison of the consensus map (see the Figure) with data available from previous gene mapping studies suggests Xcfe070-5R to be close to the dwarfing gene Ddw1 (mapped by (Tenhola-Roininen, Tanhuanpää, 2010)), while the Xcfe006-2R locus (see the Figure) is mapped in the region highly comparable with location of the asynaptic genes sy9 and sy18 on chromosome 2R (Malyshchev et al., 2009; Dolmatovich et al., 2013a).

Overall, the consensus map of rye contains 123 microsatellites. The list of mapped SSRs can be broaden in the future based on 856 SSRs recently found in rye genome shotgun survey sequences (Li et al., 2018).

Conclusion

The consensus map constructed in the current study contains a total of 123 microsatellites (including 23 SSRs transferred in our study from wheat to rye map), 12 SNPs, 118 RFLPs.
The consensus rye microsatellite map constructed in the current study based on the map data from our study (for wheat EST-SSRs) and previous studies (for SNPs, Varshney et al., 2007; rye SSRs and wheat gSSRs, Khlestkina et al., 2004; RFLPs, Korzun et al., 2001) using JoinMap 2.0 program (Stam, 1993).
and 2 isozyme loci. Co-linearity between rye and wheat chromosome regions carrying these microsatellite loci was shown using 21 from 23 SSRs. These markers can be useful for both comparative mapping between wheat, rye and triticale as well as for marker-assisted breeding.

References
Adonia I.G., Orlovskaya O.A., Tereshchenko O.Y., Koren L.V., Khoteyleva L.V., Shumny V.K., Salina E.A. Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. Russ. J. Genet. 2011;47:453-461. DOI 10.1134/S1022795411040028.
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403-410. DOI 10.1016/S0022-0302(00)00057-3.
Bauer E., Schmutzer T., Barilar I., Mascher M., Gundlach H., Martin M.M., Twardziok S.O., Hackauf B., Gordillo A., Wilde P., Schmidt M., Korzun V., Mayer K.F.X., Schmid K., Schön C.-C., Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.) inbred lines. Euphytica. 2005;146:109-116. DOI 10.1007/s10681-005-0548-0.
Benito C., Silva-Navas J., Fonteche G., Hernández-Riquer M.V., Eguren M., Salvador N., Gallego F.J. From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil. 2010;327:107-120. DOI 10.1007/s11104-009-0035-9.
Bolibok H., Rakoczy-Trojanowska M., Hromada A., Pietrzykowski R. Efficiency of different PCR-based marker systems in assessing genetic diversity among winter rye (Secale cereale L.) inbred lines. Euphytica. 2005;146:109-116. DOI 10.1007/s10681-005-0548-0.
Bolibok-Brągoszewska H., Heller-Uszynska K., Wenzl P., Uszynski G., Kilian A., Rakoczy-Trojanowska M. DARt markers for the rye genome-genetic diversity and mapping. BMC Genomics. 2009;10:578. DOI 10.1186/1471-2164-10-578.
Devis K.M., Atkinson M.D., Chnicy C.N., Francis H.A., Harcourt R.L., Kobeiner R.M.D., Liu C.J., Masojc P., Xie D.X., Gale M.D. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 1993;85:673-680. DOI 10.1007/BF00225004.
Dobrovolskaya O., Martinek P., Vojlokov A.V., Korzun V., Röder M.S., Börner A. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale). Theor. Appl. Genet. 2009;119:867-874. DOI 10.1007/s00122-009-1095-1.
Dolmatovich T.V., Malyshev S.V., Sokhina S.P., Tsvetkov N.V., Kartel N.A., Vojlokov A.V. Mapping of meiotic genes in rye (Secale cereale L.) Localization of sy18 mutation with impaired homologous synopsis using microsatellite markers. Russ. J. Genet. 2013a; 49:411-416. DOI 10.1134/S1022795413040030.
Dolmatovich T.V., Malyshev S.V., Sokhina S.P., Tsvetkov N.V., Kartel N.A., Vojlokov A.V. Mapping of meiotic genes in rye (Secale cereale L.). Localization of sy19 mutation with impaired homologous synopsis using microsatellite markers. Russ. J. Genet. 2013b; 49:511-516. DOI 10.1134/S1022795413030058.
Fonteche G., Silva-Navas J., Benito C., Mestre M.A., Espino F.J., Hernández-Riquer M.V., Gallego F.J. Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor. Appl. Genet. 2007;114:249-260. DOI 10.1007/s00122-006-0427-7.
Gustafson J.P., Ma X.F., Korzun V., Snape J.W. A consensus map of rye integrating mapping data from five mapping populations. Theor. Appl. Genet. 2009;118:793-800. DOI 10.1007/s00122-008-0939-4.
Hackauf B., Haffke S., Fromme F.J., Roux S.R., Kusterer B., Müssmann D., Kilian A., Miedaner T. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor. Appl. Genet. 2017;130:1801-1817. DOI 10.1007/s00122-017-2926-0.
The consensus rye microsatellite map
with EST-SSRs transferred from wheat

Varshney R.K., Beier U., Khlestkina E.K., Kota R., Korzun V., Granner A., Börner A. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. *Theor. Appl. Genet.* 2007;114:1105-1116. DOI 10.1007/s00122-007-0504-6.

Vyhnánek T., Nevtalová E., Slezáková K. Detection of the genetic variability of triticale using wheat and Rye SSR markers. *Cereal Res. Commun.* 2009;37:23-29. DOI 10.1556/CRC.37.2009.1.3.

Wang D., Zhaung L., Sun L., Feng Y., Pei Z., Qi Z. Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of *Secale cereale* L. cv. ‘Jingzhouheimai’. *Euphytica*. 2010;176:157-166. DOI 10.1007/s10681-010-0199-7.

Xu H., Yin D., Li L., Wang Q., Li X., Yang X., Liu W., An D. Development and application of EST-based markers specific for chromosome arms of rye (*Secale cereale* L.). *Cytogenet. Genome Res*. 2012;136:220-228. DOI 10.1159/000336478.

Yang S., Zhu H., Yu J., Zhong Y.Y., Zhao L.-B., Jiang Y.-F., Hao M., Zhao L., Ning S., Chen X.J., Liu D., Yuan Z. Using a wheat-rye amphihaploid population to map a rye gene responsible for dwarfness. *Euphytica*. 2018;214:166. DOI 10.1007/s10681-018-2247-7.

Zhang L.Y., Bernard M., Leroy P., Feuillet C., Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. *Theor. Appl. Genet.* 2005;111:677-687. DOI 10.1007/s00122-005-2041-5.