The quadratic type of the 2-principal indecomposable modules of the double covers of alternating groups

John Murray

Department of Mathematics & Statistics, National University of Ireland Maynooth, Co Kildare, Ireland

ARTICLE INFO

Article history:
Received 4 April 2018
Available online 17 July 2018
Communicated by Gunter Malle

MSC:
20C30
20C20

Keywords:
Alternating group
Principal indecomposable module
Dual module
Quadratic form
Characteristic 2
Involution

ABSTRACT

The principal indecomposable modules of the double cover $2.A_n$ of the alternating group over a field of characteristic 2 are enumerated using the partitions of $n$ into distinct parts. We determine which of these modules afford a non-degenerate $2.A_n$-invariant quadratic form. Our criterion depends on the alternating sum and the number of odd parts of the corresponding partition.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recall that an element of a finite group $G$ is said to be 2-regular if it has odd order and real if it is conjugate to its inverse. Moreover a real element is strongly real if it is

E-mail address: John.Murray@mu.ie.

https://doi.org/10.1016/j.jalgebra.2018.06.034
0021-8693/© 2018 Elsevier Inc. All rights reserved.
inverted by an involution and otherwise it is said to be weakly real. If $k$ is a field, then a $kG$-module is said to have quadratic type if it affords a non-degenerate $G$-invariant $k$-valued quadratic form. The following is a recent result of R. Gow and the author [3]:

Proposition 1. Suppose that $k$ is an algebraically closed field of characteristic 2. Then for any finite group $G$, the number of isomorphism classes of quadratic type principal indecomposable $kG$-modules is equal to the number of strongly real 2-regular conjugacy classes of $G$.

Our focus here is on the double cover $2.A_n$ of the alternating group $A_n$. All real 2-regular elements of $A_n$ are strongly real. So every self-dual principal indecomposable $kA_n$-module has quadratic type. On the other hand, $2.A_n$ may have real 2-regular elements which are not strongly real. In this note we determine which principal indecomposable $k(2.A_n)$-modules have quadratic type.

Let $S_n$ be the symmetric group of degree $n$ and let $D(n)$ be the set of partitions of $n$ which have distinct parts. In [6, 11.5] G. James constructed an irreducible $kS_n$-module $D^\mu$ for each partition $\mu \in D(n)$. Moreover, he showed that the $D^\mu$ are pairwise non-isomorphic, and every irreducible $kS_n$-modules is isomorphic to some $D^\mu$.

As $A_n$ has index 2 in $S_n$, Clifford theory shows that the restriction $D^\mu|_{A_n}$ is either irreducible or splits into a direct sum of two non-isomorphic irreducible $kA_n$-modules. Moreover, every irreducible $kA_n$-module is a direct summand of some $D^\mu|_{A_n}$.

D. Benson determined [1] which $D^\mu|_{A_n}$ are reducible and we recently determined [8] when the irreducible direct summands of $D^\mu|_{A_n}$ are self-dual (see below for details). Throughout this paper we use $D^\mu_A$ to denote an irreducible direct summand of $D^\mu|_{A_n}$.

As the centre of $2.A_n$ acts trivially on any irreducible module, $D^\mu_A$ can be considered as an irreducible $k(2.A_n)$-module, and all irreducible $k(2.A_n)$-modules arise in this way.

The alternating sum of a partition $\mu$ is $|\mu|_a := \sum (-1)^{j+1} \mu_j$. We use $\ell_o(\mu)$ to denote the number of odd parts in $\mu$. So $|\mu|_a \equiv \ell_o(\mu) \pmod{2}$ and $|\mu|_a \geq \ell_o(\mu)$, if $\mu$ has distinct parts. Our result is:

Theorem 2. Let $\mu$ be a partition of $n$ into distinct parts and let $P^\mu$ be the projective cover of the simple $k(2.A_n)$-module $D^\mu_A$. Then $P^\mu$ has quadratic type if and only if

$$
\frac{n-|\mu|_a}{2} \leq 4m \leq \frac{n-\ell_o(\mu)}{2}, \text{ for some integer } m.
$$

Note that $P^\mu$ is a principal indecomposable $k(2.A_n)$-module, but is not a $kA_n$-module. Throughout the paper all our modules are left modules.
2. Notation

2.1. Principal indecomposable modules

This section consists of statements of well known facts. See [10, Sections 1.1, 1.10, 3.1, 3.6] for details and proofs.

The group algebra of a finite group $G$ over a field $k$ is a $k$-algebra $kG$ together with a distinguished $k$-basis whose elements are identified with the elements of $G$. So each element of $kG$ is unique expressible as $\sum_{g \in G} \lambda_g g$, where $\lambda_g \in k$ for all $g \in G$. The algebra multiplication in $kG$ is the $k$-linear extension of the group multiplication in $G$.

Multiplication on the left makes $kG$ into a module over itself, the so-called regular $kG$-module. The indecomposable direct summands of $kG$ are called the principal indecomposable $kG$-modules. Each such module has the form $kGe$, where $e$ is a primitive idempotent in $kG$.

Let $P$ be a principal indecomposable $kG$-module. The sum of all simple submodules of $P$ is a simple $kG$-module $S$. Moreover, $P/J(P) \cong S$, where $J(P)$ is the sum of all proper submodules of $P$. So $P$ is the projective cover of $S$. Moreover $P \iff S$ establishes a one-to-one correspondence between the isomorphism classes of principal indecomposable $kG$-modules and the isomorphism classes of irreducible $kG$-modules.

Let $(K, R, k)$ be a $p$-modular system for $G$, where $p$ is prime. So $R$ is discrete valuation ring of characteristic 0, with unique maximal ideal $J$ containing $p$, and $R$ is complete with respect to the topology induced by the valuation. Also $K$ is the field of fractions of $R$, $k = R/J$ is the residue field of $R$ and $k$ has characteristic $p$. We assume that $K$ and $k$ are splitting fields for all subgroups of $G$.

In this context every principal indecomposable $kG$-module $P$ has a unique lift to a principal indecomposable $RG$-module $\hat{P}$ (this means that $\hat{P}$ is a finitely generated free $RG$-module, which is projective as $RG$-module, and the $kG$-module $\hat{P}/J\hat{P}$ is isomorphic to $P$).

A conjugacy class of $G$ is said to be $p$-regular if its elements have order coprime to $p$. The number of isomorphism classes of irreducible $kG$-modules equals the number of $p$-regular conjugacy classes of $G$. So the number of isomorphism classes of principal indecomposable $kG$-modules equals the number of $p$-regular conjugacy classes of $G$.

2.2. Symplectic and quadratic forms

A good reference for this section is [5, VII, 8]. A $kG$-module $M$ is said to be self-dual if it is isomorphic to its dual $M^* = \text{Hom}_k(M, k)$. This occurs if and only if $M$ affords a non-degenerate $G$-invariant $k$-valued bilinear form. A self-dual $M$ has quadratic, orthogonal or symplectic type if it affords a non-degenerate $G$-invariant quadratic form, symmetric bilinear form or symplectic bilinear form, respectively.

If $p \neq 2$, R. Gow showed that an indecomposable $kG$-module is self-dual if and only if it has orthogonal or symplectic type, and these types are mutually exclusive. See [5,
VII, 8.11]. W. Willems, and independently J. Thompson [12], showed that the type of a principal indecomposable module coincides with the type of its socle.

If $p = 2$, P. Fong noted that each non-trivial self-dual irreducible $kG$-module has symplectic type. This form is unique up to scalars, by Schur’s Lemma. See [5, VII, 8.13]. However now it is possible that the projective cover has neither orthogonal nor symplectic type.

The correspondence $P \leftrightarrow S$ between principal indecomposable $kG$-modules and simple $kG$-modules respects duality. So $P$ is self-dual if and only if $S$ is self-dual. As the number of isomorphism classes of self-dual irreducible $kG$-modules equals the number of real $p$-regular conjugacy classes of $G$, it follows that the number of isomorphism classes of self-dual principal indecomposable $kG$-modules equals the number of real $p$-regular conjugacy classes of $G$.

Recall that $g \mapsto g^{-1}$, for $g \in G$, extends to a $k$-algebra anti-automorphism $x \mapsto x^\circ$ on $kG$ called the contragredient map.

**Proposition 3.** Let $(K, R, k)$ be a 2-modular system for $G$ and let $\hat{P}$ be a principal indecomposable $RG$-module. Set $P = \hat{P}/J\hat{P}$ and $S = P/ \text{rad}(P)$, let $\Phi$ be the character of $\hat{P}$ and let $\varphi$ be the Brauer character of $S$. Then the following are equivalent:

(i) $\hat{P}$ has quadratic type.
(ii) $P$ has quadratic type.
(iii) $P$ has symplectic type.
(iv) There is an involution $t$ in $G$ and a primitive idempotent $e$ in $kG$ such that $P \cong kGe$ and $t^{-1}et = e^\circ$.
(v) If $B$ is a symplectic form on $S$, then $B(ts, s) \neq 0$, for some involution $t$ in $G$ and some $s$ in $S$.
(vi) $\varphi(g) \notin 2R$, for some strongly real 2-regular elements $g$ of $G$.
(vii) $\frac{\Phi(g)}{|C_G(g)|} \notin 2R$, for all weakly real 2-regular elements $g$ of $G$.

The equivalence of (i), (ii), (iii) and (iv) was proved in [4] and that of (ii), (vi) and (vii) in [3]. We only need the equivalence of (ii) and (v) to prove Theorem 2. This was first demonstrated in [7].

3. The double covers of alternating groups

3.1. Strongly real classes

The alternating group $A_n$ is the subgroup of even permutations in the symmetric group $S_n$. So $A_5, A_6, \ldots$ is an infinite family of finite simple groups. For $n \geq 4$, $A_n$ has a unique double cover $2.A_n$. Then $2.A_n$ is a subgroup of each double cover $2.S_n$ of $S_n$. Moreover $2.A_n$ is a Schur covering group of $A_n$, if $n = 5$ or $n \geq 8$. In this section we
describe the conjugacy classes and characters of these groups. See [11] for an elegant exposition of this theory.

Given distinct $i_1, i_2, \ldots, i_m \in \{1, \ldots, n\}$, we use $(i_1, i_2, \ldots, i_m)$ to denote an $m$-cycle in $\mathcal{S}_n$. So $(i_1, i_2, \ldots, i_m)$ maps $i_j$ to $i_{j+1}$, for $j = 1, \ldots, m-1$, sends $i_m$ to $i_1$ and fixes all $i \neq i_1, \ldots, i_m$. Now each permutation $\sigma \in \mathcal{S}_n$ has a unique factorization as a product of disjoint cycles. If we arrange the lengths of these cycles in a non-increasing sequence, we get a partition of $n$, which is called the cycle type of $\sigma$. The set of permutations with a fixed cycle type $\lambda$ is a conjugacy class of $\mathcal{S}_n$, here denoted $C_\lambda$. In particular the 2-regular conjugacy classes of $\mathcal{S}_n$ are indexed by the set $\mathcal{O}(n)$ of partitions of $n$ whose parts are odd.

A transposition in $\mathcal{S}_n$ is a 2-cycle $(i,j)$ where $i, j$ are distinct elements of $\{1, \ldots, n\}$. So $(i,j)$ has cycle type $(2, 1^{n-2})$. It is clear that there is one conjugacy class of involutions for each partition $(2^m, 1^{n-2m})$ of $n$, with $1 \leq m \leq n/2$. We call a product of $m$-disjoint transpositions an $m$-involution in $\mathcal{S}_n$. It follows that $\mathcal{S}_n$ has \left\lfloor \frac{n}{2} \right\rfloor$ conjugacy classes of involutions; the $m$-involutions, for $1 \leq m \leq n/2$.

Suppose that $\pi = (i_1, i_{1+m})(i_2i_{2+m})\ldots(i_m, i_{2m})$ is an $m$-involution in $\mathcal{S}_n$. Then we say that $(i_1, i_{1+m}), (i_2i_{2+m}), \ldots, (i_m, i_{2m})$ are the transpositions in $\pi$ and write $(i_j, i_{j+m}) \in \pi$, for $j = 1, \ldots, m$. Notice that each $(i_j, i_{j+m})$ is a non-singleton orbit of $\pi$ on $\{1, \ldots, n\}$.

Let $\lambda$ be a partition of $n$. We use $\ell(\lambda)$ to denote the number of parts in $\lambda$, and we say that $\lambda$ is even if $n \equiv \ell(\lambda)$ mod 2. Then $C_\lambda \subseteq \mathcal{A}_n$ if and only if $\lambda$ is even, and if $\lambda$ is even, then $C_\lambda$ is a union of two conjugacy classes of $\mathcal{A}_n$ if $\lambda$ has distinct odd parts and otherwise $C_\lambda$ is a single conjugacy class of $\mathcal{A}_n$. In either case we use $C_{\lambda,A}$ to denote an $\mathcal{A}_n$-conjugacy class contained in $C_\lambda$. If $\lambda$ has distinct odd parts then $C_{\lambda,A}$ is a real conjugacy class of $\mathcal{A}_n$ if and only if $n \equiv \ell(\lambda)$ mod 4.

Next let $z \in 2.\mathcal{A}_n$ be the involution which generates the centre of $2.\mathcal{A}_n$. As $\langle z \rangle$ is a central 2-subgroup of $2.\mathcal{A}_n$, there is a one-to-one correspondence between the 2-regular conjugacy classes of $2.\mathcal{A}_n$ and the 2-regular conjugacy classes of $\mathcal{A}_n \cong (2.\mathcal{A}_n)/\langle z \rangle$; if $\lambda$ is an odd partition of $n$ the preimage of $C_{\lambda,A}$ in $2.\mathcal{A}_n$ consists of a single class $\hat{C}_{\lambda,A}$ of odd order elements and another class $z\hat{C}_{\lambda,A}$ of elements whose 2-parts equal $z$.

Notice that an $m$-involution belongs to $\mathcal{A}_n$ if and only if $m$ is even. Moreover, the $2m$-involutions form a single conjugacy class of $\mathcal{A}_n$. So $\mathcal{A}_n$ has $\left\lfloor \frac{n}{2} \right\rfloor$ conjugacy classes of involutions; the $2m$-involutions, for $1 \leq m \leq n/4$. Now each $2m$-involution in $\mathcal{A}_n$ is the image of two involutions in $2.\mathcal{A}_n$, if $m$ is even, or is the image of two elements of order 4 in $2.\mathcal{A}_n$, if $m$ is odd.

Set $m_o(\lambda)$ as the number of parts which occur with odd multiplicity in $\lambda$.

**Lemma 4.** If $\lambda$ is a partition of $n$ with all parts odd then $\hat{C}_{\lambda,A}$ is a strongly real conjugacy class of $2.\mathcal{A}_n$ if and only if there is an integer $m$ such that $\frac{n-\ell(\lambda)}{2} \leq 4m \leq \frac{n-m_o(\lambda)}{2}$. 
Proof. Let $\sigma \in A_n$ have cycle type $\lambda$ and let $\pi$ be an $m$-involution in $S_n$ which inverts $\sigma$. Set $\ell := \ell(\lambda)$, and let $X_1, \ldots, X_\ell$ be the orbits of $\sigma$ on $\{1, \ldots, n\}$. Then $\pi$ permutes the sets $X_1, \ldots, X_\ell$.

If $\pi X_j = X_j$ for some $j$, then $\pi$ fixes a unique element of $X_j$, and hence acts as an $\frac{|X_j|-1}{2}$-involution on $X_j$. If instead $\pi X_j \neq X_j$, then $\pi$ is a bijection $X_j \to \pi X_j$. So $\pi$ acts as an $|X_j|$-involution on $X_j \cup \pi X_j$. We may order the $X_j$ and choose $k \geq 0$ such that $\pi X_j = X_{j+k}$, for $j = 1, \ldots, k$, and $\pi X_j = X_j$, for $j = 2k + 1, 2k + 2, \ldots, \ell$. Then from above

$$m = \sum_{j=1}^{k} \frac{|X_j| + |X_{j+k}|}{2} + \sum_{j=2k+1}^{\ell} \frac{|X_j| - 1}{2} = \frac{n + 2k - \ell}{2}. $$

Now the maximum value of $2k$ is $2k = \ell - m(\lambda)$, when $\pi$ pairs the maximum number of orbit of $\sigma$ which have equal size. This implies that $m \leq \frac{n - m(\lambda)}{2}$. The minimum value of $2k$ is $0$. This occurs when $\pi$ fixes each orbit of $\sigma$. It follows from this that $m \geq \frac{n - \ell(\lambda)}{2}$.

Conversely, it is clear that for each $m > 0$ with $\frac{n - \ell}{2} \leq m \leq \frac{n - m(\lambda)}{2}$, there is an $m$-involution $\pi \in S_n$ which inverts $\sigma$; $\pi$ pairs $\ell + 2m - n$ orbits of $\sigma$ and fixes the remaining $n - 2m$ orbits of $\sigma$. The conclusion of the Lemma now follows from our description of the involutions in $2.A_n$. \quad \Box

3.2. Irreducible modules

By an $n$-tabloid we mean an indexed collection $R = (R_1, \ldots, R_\ell)$ of non-empty subsets of $\{1, \ldots, n\}$ which are pairwise disjoint and whose union is $\{1, \ldots, n\}$ (also known as an ordered partition of $\{1, \ldots, n\}$). We shall refer to $R_1, \ldots, R_\ell$ as the rows of $R$. Set $\lambda_i := |R_i|$. Then we may choose indexing so that $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ is a partition of $n$, which we call the type of $R$. Now $S_n$ acts on all $\lambda$-tabloids; the corresponding permutation module (over $\mathbb{Z}$) is denoted $M^\lambda$.

Next recall that the Young diagram of $\lambda$ is a collection of boxes in the plane, oriented in the Anglo-American tradition: the first row consists of $\lambda_1$ boxes. Then for $i = 2, \ldots, \ell$ in turn, the $i$-th row consists of $\lambda_i$ boxes placed directly below the $(i - 1)$-th row, with the leftmost box in row $i$ directly below the leftmost box in row $i - 1$.

By a $\lambda$-tableau we shall mean a bijection $t : [\lambda] \to \{1, \ldots, n\}$, or a filling of the boxes in the Young diagram with the symbols $1, \ldots, n$. So for $1 \leq r \leq \ell$ and $1 \leq c \leq \lambda_r$, we use $t(r,c)$ to denote the image of the position $(r,c) \in [\lambda]$ in $\{1, \ldots, n\}$. Conversely, given $i \in \{1, \ldots, n\}$, there is a unique $r = r_t(i)$ and $c = c_t(i)$ such that $t(r,c) = i$. We say that $i$ is in row $r$ and column $c$ of $t$.

Clearly there are $n!$ tableaux of type $\lambda$ and $S_n$ acts regularly on the set of $\lambda$-tableau. For $\sigma \in S_n$, we define $\sigma t : [\lambda] \to \{1, \ldots, n\}$ as the composition $(\sigma t)(r,c) = \sigma(t(r,c))$, for all $(r,c) \in [\lambda]$. In other words, the permutation module of $S_n$ acting on tableau is (non-canonically) isomorphic to the regular module $\mathbb{Z}S_n$; once we fix $t$, we may identify $\sigma \in S_n$ with the tableau $\sigma t$. 


Associated with \( t \), we have two important subgroups of \( S_n \). The column stabilizer of \( t \) is \( C_t := \{ \sigma \in S_n \mid c_t(i) = c_t(i), \text{ for } i = 1, \ldots, n \} \) and the row stabilizer of \( t \) is \( R_t := \{ \sigma \in S_n \mid r_t(i) = r_t(\sigma i), \text{ for } i = 1, \ldots, n \} \).

We use \( \{t\} \) to denote the tabloid formed by the rows of \( t \). So \( \{t\}_r := \{t(r, c) \mid 1 \leq c \leq \lambda_r\} \), for \( r = 1, \ldots, \ell \). Also \( \{s\} = \{t\} \) if and only if \( s = \sigma t \), for some \( \sigma \in R_t \). Notice that the actions of \( S_n \) on tableau and tabloids are compatible, in the sense that \( \sigma \{t\} = \{\sigma t\} \).

In other words, the map \( t \mapsto \{t\} \) induces a surjective \( S_n \)-homomorphism \( \mathbb{Z}S_n \to M^\lambda \). The kernel of this homomorphism is the \( \mathbb{Z} \)-span of \( \{\sigma t \mid \sigma \in R_t\} \).

The polytabloid \( e_t \) associated with \( t \) is the following element of \( M^\lambda \):

\[
e_t := \sum_{\sigma \in C_t} \text{sgn}(\sigma)\{\sigma t\}.
\]

We use \( \text{supp}(t) := \{\{\sigma t\} \mid \sigma \in C_t\} \) to denote the set of tabloids which occur in the definition of \( e_t \). Note that \( e_{\pi t} = \text{sgn}(\pi) e_t \), for all \( \pi \in C_t \). In particular, if \( r_t(i) = r_t(j) \), then \( e_{(i,j) t} = -e_t \). Also if \( \pi \in S_n \), then \( C_{\pi t} = \pi C_t \pi^{-1} \) and \( R_{\pi t} = \pi R_t \pi^{-1} \). So \( e_{\pi t} = \pi e_t \) and \( \text{supp}(\pi t) = \pi \text{supp}(t) \).

The \( \mathbb{Z} \)-span of all \( \lambda \)-polytabloids is a \( S_n \)-submodule of \( M^\lambda \) called the Specht module. It is denoted by \( S^\lambda \). So \( S^\lambda \) is a finitely generated free \( \mathbb{Z} \)-module (\( \mathbb{Z} \)-lattice).

### 3.3. Involutions and bilinear forms

Let \( \mu \) be a partition of \( n \) which has distinct parts and let \( \langle \ , \ \rangle \) be the symmetric bilinear form on \( M^\mu \) with respect to which the \( \mu \)-tabloids form an orthonormal basis. Now let \( k \) be a field of characteristic 2. Then according to James, \( D^\mu := S^\mu / S^\mu \cap (S^\mu)^\perp \) is a non-zero irreducible \( kS_n \)-module. Here \( (S^\mu)^\perp := \{m \in M^\mu \mid \langle m, s \rangle \in 2\mathbb{Z}, \forall s \in S^\mu \} \).

Suppose that \( \mu \) has parts \( \mu_1 > \cdots > \mu_{2s-1} > \mu_{2s} \geq 0 \). Benson’s classification of the irreducible \( kA_n \)-modules [1], and our classification of the self-dual irreducible \( kA_n \)-modules [8], are given by:

**Lemma 5.** \( D^\mu \downarrow_{A_n} \) is reducible if and only if for each \( j > 0 \)

\[
(i) \quad \mu_{2j-1} - \mu_{2j} = 1 \text{ or } 2 \quad \text{and} \quad (ii) \quad \mu_{2j-1} + \mu_{2j} \not\equiv 2 \text{ (mod } 4).\]

If \( D^\mu \downarrow_{A_n} \) is reducible, its irreducible direct summands are self-dual if and only if \( \sum_{j>0} \mu_{2j} \) is even.

Let \( \pi \) denote the residue of an integer \( n \mod 2 \). Then

**Lemma 6.** Let \( \phi : S^\mu \to D^\mu \) be the \( \mathbb{Z}S_n \)-projection. Then \( B(\phi x, \phi y) := \langle x, y \rangle \), for \( x, y \in S^\mu \), defines a non-zero symplectic bilinear form on \( D^\mu \), if \( \mu \neq (n) \).
Remark 7. Notice that if \( x, y \in D^\mu \) and \( \pi \) is an involution in \( S_n \) then
\[
B(\pi(x + y), x + y) = B(\pi x, x) + B(\pi y, y).
\]
So we can focus on a single polytabloid in \( S^\lambda \).

Lemma 8. If \( t \) is a \( \mu \)-tableau and \( \pi \) is an involution in \( S_n \), then
\[
\langle \pi e_t, e_t \rangle \equiv |\{T \in \text{supp}(\pi t) \cap \text{supp}(t) \mid \pi T = T\}| \mod 2.
\]
In particular, if \( \langle \pi e_t, e_t \rangle \) is odd, then \( \pi \in R_{\sigma t} \), for some \( \sigma \in C_t \).

Proof. We have
\[
\langle \pi e_t, e_t \rangle = \sum_{\sigma_1, \sigma_2 \in C_t} \text{sgn}(\pi \sigma_1 \pi^{-1}) \text{sgn}(\sigma_2) |\{(\pi \sigma_1 \{t\}, \sigma_2 \{t\})\}| (\text{mod } 2)
\]
\[
\equiv |\{(\sigma_1, \sigma_2) \in C_t \times C_t \mid \pi \sigma_1 \{t\} = \sigma_2 \{t\}\}| (\text{mod } 2)
\]
\[
= |\text{supp}(\pi t) \cap \text{supp}(t)|.
\]
Now notice that \( T \mapsto \pi T \) is an involution on \( \text{supp}(\pi t) \cap \text{supp}(t) \). So \( |\text{supp}(\pi t) \cap \text{supp}(t)| \equiv |\{T \in \text{supp}(\pi t) \cap \text{supp}(t) \mid \pi T = T\}| \mod 2 \).

Suppose that \( \langle \pi e_t, e_t \rangle \) is odd. Then by the above, there exists \( \sigma \in C_t \) such that \( \pi \{\sigma t\} = \{\sigma t\} \). This means that \( \pi \in R_{\sigma t} \). \( \square \)

Lemma 9. Let \( t \) be a \( \mu \)-tableau and let \( m \) be a positive integer such that \( \langle \pi e_t, e_t \rangle \) is odd, for some \( \mu \)-involution \( \pi \in S_n \). Then \( m \leq \frac{n - \ell_o(\mu)}{2} \) and \( \pi \) fixes at most one entry in each column of \( t \).

Proof. By the previous Lemma, we may assume that \( \pi \in R_t \). Now \( R_t \cong S_\mu \). For \( i > 0 \), there is \( j \)-involution in \( S_i \) for \( j = 1, \ldots, \lceil \frac{i}{2} \rceil \). So there is an \( m \)-involution in \( R_t \) if and only if
\[
m \leq \sum_{\mu_i \leq i} \left\lfloor \frac{\mu_i}{2} \right\rfloor = \sum_{\mu_i \text{ even}} \frac{\mu_i}{2} + \sum_{\mu_i \text{ odd}} \frac{\mu_i - 1}{2} = \frac{n - \ell_o(\mu)}{2}
\]
Let \( i, j \) belong to a single column of \( t \). We claim that \( i, j \) belong to different columns of \( \pi t \). For suppose otherwise. Then \( (i, j) \in C_t \cap C_{\pi t} \). So the map \( T \mapsto (i, j) T \) is an involution on \( \text{supp}(\pi t) \cap \text{supp}(t) \) which has no fixed-points. In particular \(|\text{supp}(\pi t) \cap \text{supp}(t)|\) is even, contrary to hypothesis. This proves the last assertion. \( \square \)

We can now prove a key technical result:

Lemma 10. Let \( t \) be a \( \mu \)-tableau and let \( m \) be a positive integer such that \( \langle \pi e_t, e_t \rangle \) is odd, for some \( m \)-involution \( \pi \in S_n \). Then \( m \geq \frac{n - |\mu|}{2} \).
Proof. Let $T \in \text{supp}(\pi t) \cap \text{supp}(t)$ such that $\pi T = T$. Write $\pi_j$ for the restriction of $\pi$ to the rows $T_{2j-1}$ and $T_{2j}$ of $T$, for each $j > 0$. Then there is $m_j \geq 0$ such that $\pi_j$ is an $m_j$-involution, for each $j > 0$. So $m = \sum m_j$ and $\pi = \pi_1 \pi_2 \cdots \pi_{\lfloor \frac{m+1}{2} \rfloor}$.

We assume for the sake of contradiction that $m < \frac{n-|\mu|}{2}$. Now $\frac{n-|\mu|}{2} = \sum_{j>0} \mu_{2j}$. So $m_j < \mu_{2j}$ for some $j > 0$, and we choose $j$ to be the smallest such positive integer.

There is a unique $\sigma \in C_t$ such that $T = \{\sigma t\}$. Set $s = \sigma t$. So $\pi \in R_s$. We define the graph $Gr_\pi(s)$ of $\pi$ on $s$ as follows. The vertices of $Gr_\pi(s)$ are labels $1, \ldots, \mu_{2j-1}$ of the columns which meet row $\mu_{2j-1}$ of $s$. There is an edge $c_1 \leftrightarrow c_2$ if and only if one of the two transpositions $(s(2j-1, c_1), s(2j-1, c_2))$ or $(s(2j, c_1), s(2j, c_2))$ belongs to $\pi_j$. As there are at most two entries in each column of $s$ which are moved by $\pi_j$, it follows that each connected component of $Gr_\pi(s)$ is either a line segment or a simple closed curve.

We claim that $Gr_\pi(s)$ has a component with a vertex set contained in $\{1, \ldots, \mu_{2j}\}$. For otherwise every component $\Gamma$ of $Gr_\pi(s)$ is a line segment and $|\text{Edge}(\Gamma)| \geq |\text{Vx}(\Gamma) \cap \{1, \ldots, \mu_{2j}\}|$. Summing over all $\Gamma$ we get the contradiction

$$
\mu_{2j} = \sum_{\Gamma} |\text{Vx}(\Gamma) \cap \{1, \ldots, \mu_{2j}\}| \leq \sum_{\Gamma} |\text{Edge}(\Gamma)| = m_j.
$$

Now let $X$ be the union of the component of $Gr_\pi(s)$ which are contained in $\{1, \ldots, \mu_{2j}\}$ and let $\Gamma$ be the component of $Gr_\pi(s)$ which contains $\text{min}(X)$. In particular $\text{Vx}(\Gamma) \subseteq \{1, \ldots, \mu_{2j}\}$.

Consider the involution $\sigma_\Gamma := \prod_{c \in \text{Vx}(\Gamma)} (t(2j-1, c), t(2j, c))$. This transposes the entries between rows $2j-1$ and $2j$ in each column in $\text{Vx}(\Gamma)$. Now it is clear that $\pi$ is in the row stabilizer of $\sigma_\Gamma s$. So $\{\sigma_\Gamma s\} \in \text{supp}(\pi t) \cap \text{supp}(t)$. Moreover, $Gr_\pi(s) = Gr_\pi(\sigma_\Gamma s)$ and $s = \sigma_\Gamma (\sigma_\Gamma s)$. It follows that the pair $T \neq \sigma_\Gamma T$ of tabloids makes zero contribution to $\langle \pi e_t, e_t \rangle$ modulo 2. But $T$ is an arbitrary $\pi$-fixed tabloid in $\text{supp}(\pi t) \cap \text{supp}(t)$. So $\langle \pi e_t, e_t \rangle$ is even, according to Lemma 8. This contradiction completes the proof. □

3.4. Proof of Theorem 2

Suppose first that $P^\mu$ has quadratic type. Then by (ii)$\Longleftrightarrow$(v) in Proposition 3, $B(\check{\pi} x, x) \neq 0$, for some $x \in D^\mu_4$ and involution $\check{\pi} \in 2.A_n$. Let $\pi$ be the image of $\check{\pi}$ in $A_n$. Then Remark 7 implies that there is a $\mu$-tableau $t$ such that $\langle \pi e_t, e_t \rangle$ is odd. Now $\pi$ is a 4m-involution, for some $m > 0$, and Lemmas 9 and 10 imply that $\frac{n-|\mu|}{2} \leq 4m \leq \frac{n-\ell(\mu)}{2}$. This proves the ‘only if’ part of the Theorem.

According to Lemma 4, the strongly real 2-regular conjugacy classes of $2.A_n$ are enumerated by $\lambda \in \mathcal{O}(n)$ such that there is a positive integer $m$ with $\frac{n-\ell(\lambda)}{2} \leq 4m \leq \frac{n-m(\lambda)}{2}$ (if $\lambda$ has distinct parts, $\frac{n-\ell(\lambda)}{2} = \frac{n-m(\lambda)}{2}$) and there are two 2-regular classes of $2.A_n$ labelled by $\lambda$, in all other cases there is a single 2-regular class of $2.A_n$ labelled by $\lambda$.

By Theorem 2.1 in [2] (or the main result in [9]) there is a bijection $\phi : \mathcal{O}(n) \to \mathcal{D}(n)$ such that $\ell(\lambda) = |\phi(\lambda)|_\alpha$ and $m_\alpha(\lambda) = \ell_\alpha(\phi(\lambda))$, for all $\lambda \in \mathcal{O}(n)$. Then from the previous
paragraph the number of strongly real 2-regular conjugacy classes of \(2.A_n\) coincides with the number of irreducible \(k(2.A_n)\)-modules enumerated by \(\mu \in \mathcal{D}(n)\) such that \(\frac{n-|\mu|}{2} \leq 4\mu \leq \frac{n-\ell_\omega(\mu)}{2}\) for some integer \(m\). However, from earlier in the proof, these are the only \(P^\mu\) which can be of quadratic type. We conclude from Proposition 1 that each of these \(P^\mu\) is of quadratic type, and furthermore that no other \(P^\mu\) is of quadratic type. □

3.5. Example with \(2.A_{13}\)

The 18 distinct partitions of 13 give rise to 21 principal indecomposable \(k(2.A_{13})\)-modules. The types are:

| \(\mu\) | \(\frac{n-|\mu|}{2}\) | \(\frac{n-\ell_\omega(\mu)}{2}\) | type |
|--------|-----------------|-----------------|------|
| (7, 6) | 6               | 6               | 2 non-quadratic |
| (8, 5) | 5               | 6               | non-quadratic  |
| (6, 5, 2) | 5       | 6               | non-quadratic  |
| (6, 4, 2, 1) | 5       | 6               | non-quadratic  |
| (5, 4, 3, 1) | 5       | 5               | 2 not self-dual |
| (7, 5, 1) | 5               | 5               | 2 not self-dual |
| (9, 4) | 4               | 6               | quadratic      |
| (7, 4, 2) | 4               | 6               | quadratic      |
| (6, 4, 3) | 4               | 6               | quadratic      |
| (8, 4, 1) | 4               | 6               | quadratic      |
| (7, 3, 2, 1) | 4       | 5               | quadratic      |
| (10, 3) | 3               | 6               | quadratic      |
| (8, 3, 2) | 3               | 6               | quadratic      |
| (9, 3, 1) | 3               | 5               | quadratic      |
| (11, 2) | 2               | 6               | quadratic      |
| (10, 2, 1) | 2       | 6               | quadratic      |
| (12, 1) | 1               | 6               | quadratic      |
| (13) | 0               | 6               | quadratic      |

Using (i) and (ii) in Lemma 5, we see that \(D^\mu\downarrow_{A_{13}}\) is a sum of two non-isomorphic irreducible \(k(2.A_{13})\)-modules for \(\mu = (7, 6), (5, 4, 3, 1)\) or \((7, 5, 1)\). For all other \(\mu\), \(D^\mu\downarrow_{A_{13}}\) is irreducible. So there are 21 = 18 + 3 projective indecomposable \(k(2.A_{13})\)-modules.

By the last statement in Lemma 5, the two irreducible \(k(2.A_{13})\)-modules \(D^\mu_{A}(5, 4, 3, 1)\) are duals of each other, as are the two irreducible \(k(2.A_{13})\)-modules \(D^\mu_{A}(7, 5, 1)\). By the same result both irreducible \(k(2.A_{13})\)-modules \(D^\mu_{A}(7, 6)\) are self-dual. However 6 \(\equiv\) 2 (mod 4). So neither principal indecomposable \(k(2.A_{13})\)-module \(P^{(7, 6)}\) is of quadratic type.

Next if \(\mu = (8, 5), (6, 5, 2)\) or \((6, 4, 2, 1)\) we have \(\frac{n-|\mu|}{2} = 5\) and \(\frac{n-\ell_\omega(\mu)}{2} = 6\). So the principal indecomposable \(k(2.A_{13})\)-module \(P^\mu\) is not of quadratic type for any
of these $\mu$’s. For each of the remaining partitions $\mu$, the principal indecomposable $k(2.A_{13})$-module $P^\mu$ is of quadratic type, according to Theorem 2.

References

[1] D. Benson, Spin modules for symmetric groups, J. Lond. Math. Soc. (2) 38 (1988) 250–262.
[2] W.Y.C. Chen, H.Y. Gao, K.Q. Ji, M.Y.X. Li, A unification of two refinements of Euler’s partition theorem, Ramanujan J. 23 (1–3) (2010) 137–149.
[3] R. Gow, J. Murray, Quadratic principal indecomposable modules and strongly real elements of finite groups, arXiv:1803.03182 [math.RT], 8 Mar 2018.
[4] R. Gow, W. Willems, Quadratic geometries, projective modules and idempotents, J. Algebra 160 (1993) 257–272.
[5] B. Huppert, N. Blackburn, Finite Groups II, Grundlehren der math. Wissen., vol. 242, Springer-Verlag, 1982.
[6] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, vol. 628, Springer-Verlag, 2006.
[7] J.C. Murray, Symmetric bilinear forms and vertices in characteristic 2, J. Algebra 462 (2016) 338–374.
[8] J.C. Murray, The duals of the 2-modular irreducible modules of the alternating groups, SIGMA 14 (2018) 033, arXiv:1711.06009 [math.RT].
[9] J. Murray, A bijection for Euler’s partition theorem in the spirit of Bressoud, arXiv:1803.11104 [math.CO], 29 March 2018.
[10] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, 1988.
[11] J.R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989) 87–134.
[12] J. Thompson, Bilinear forms in characteristic $p$ and the Frobenius–Schur indicator, in: Group Theory, Beijing 1984, in: Lecture Notes in Math., vol. 1185, Springer-Verlag, 1984, pp. 221–230.