Targeting Antibiotic Resistant *Salmonella enterica*: Bio-matrix Based Selection and Bioactivity Prediction of Potential Nutraceuticals

Ankit Tanwar¹, Pallavi Thakur¹, Raman Chawla¹, Sarita Jaiswal², Ankita Singh Chakotiya¹, Rajeev Goel¹, Rakesh Kumar Sharma¹, Haider Ali Khan¹ and Rajesh Arora**

¹Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
²Department of Plant Sciences, Campus Drive College of Agriculture and Bioresources University of Saskatchewan Saskatoon, Saskatchewan, Canada
³Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India
⁴Office of DG (LS), Defence Research and Development Organisation, DRDO Bhawan, Delhi, India

Abstract

Aim: Potential herbal leads as novel therapeutic alternatives against Multi-Drug Resistant *Salmonella enterica* serovar typhimurium were investigated and validated by mol inspiration.

Methodology: The present study utilizes an *in silico* ‘Herbal Informatics’ model which deploys dynamic search protocols, priority indexing and systemic categorization for rationale based selection of nutraceuticals targeting the critical virulence factors of Multi-Drug Resistant *Salmonella enterica* serovar typhimurium. Furthermore, *in silico* biochemical activity prediction was conducted using ‘Mol inspiration’ cheminformatics tool, so as to propose the drug likeness of selected natural plant products.

Results: Out of the 05 selected bioactivity parameters of *Salmonella enterica*, lipo-polysaccharide inhibition exhibited maximum relevance as physiological target i.e., 65%, followed by other parameters like enterochelin inhibition, Type III secretory system inhibition, Superoxide dismutase inhibition and Symptomatic relief provision. The binary matrix analysis of database of 50 plants identified using classical bioprospection filtered 28 herbs which exhibited probable potential to mitigate 03 or more virulence factors. The weightage matrix analysis further scrutinized the selection upto 10 herbs having a score more than median weightage matrix score i.e., 14.98. The optimization of data on a scale of 0-1 using fuzzy score matrix analysis led to the final selection of 10 herbs i.e., *Abrus precatorius*, *Azadirachta indica*, *Camellia sinensis*, *Halarhena antisyenderica*, *Andrographis paniculata*, *Adhatoda vasica*, *Euphorbia hirta*, *Ocimum sanctum*, *Terminalia arjuna* and *Terminalia belerica*. *In silico* Bioactivity prediction analysis of predominant phytocomponents of selected herbs revealed, *Halarhena antisyenderica* (Conessine), *Andrographis paniculata* (Andrographolide), *Euphorbia hirta* (Amyrin) and *Terminalia arjuna* (Arjunolic acid) exhibiting drug likeness with their targeted action as a GPCR Ligand, Nuclear Receptor Ligand or Protease inhibitor.

Keywords: Herbal Informatics; Biochemical activity; Cheminformatics; Nosocomial; *Salmonella enterica* serovar typhimurium; Antibiotic resistance

Introduction

Natural Plant Products (NPPs) with medicinal potential, derived from either traditional or modern medicine, serves as a source of approx. 5000 compounds per species to fight against multifarious diseases. Such tremendous source of secondary plant metabolites employs to defend themselves against bacteria, fungi or viruses and can be used in almost the same way in medicine to treat microbial or viral infections [1]. The effective management of re-emerging pathogens with enhanced scope of attack and attributable resistance require intensive efforts in this direction. NPPs have become an ideal alternative to be explored for their therapeutic utilities by the virtue of their holistic broad spectrum activity; limited or no side effects; better acceptability and ease of local availability [2]. However, the Indian subcontinent has only 2% global market share of herbal medicine despite having 7000 Ayurvedic, 700 Unani, 600 Siddha medicines and 30 modern medicines. This clearly indicates the lack of directed research in instigating the search for newer antimicrobials based on either reverse pharmacology or classical quest of lead moiety. The expected market for NPPs is $5 Trillion by 2050; if focused research is triggered so as to yield therapeutic leads [3]. Such focused research demands an in depth knowledge of pathophysiology of disease causing microorganisms and rationale based selection of holistic agents having bio-protective potential.

Re-emerging strains of commensal microorganisms e.g., *Salmonella enterica* are scouring the human population due to greater penetration in the ecosystem and limited / no treatment options. The outbreaks of Multi-Drug Resistant (MDR) strains of *Salmonella enterica* serovar typhimurium in the Indian subcontinent, Southeast Asia, and Africa showed approximately 16 million cases and 60,000 deaths each year [4]. These infections which were earlier contained within hospitals, have now higher penetration even at community level [5]. *Salmonella* is also associated with reactive arthritis having global population expressivity in a range of 6 to 30%, out of which 0.2%–7.3% cases were of joint inflammation alone. Incubation period of reactive arthritis is ambiguous spanning a time period of 2–4 weeks after the onset of enteric infection [6]. Reactive arthritis is also reported to be associated with other food borne illness like *Campylobacter* and *Shigella* with reported infection rate of 1 and 4% in adults respectively [7]. Such findings implied that such infections are burdening the economic cost of the global market, and hence require a holistic approach toward their prevention and control.

*Corresponding author: Rajesh Arora, Scientist, Office of DG (LS), Defence Research and Development Organisation, DRDO Bhawan, Delhi, India, Tel: 011-23017342; Fax: 011-23014259; E-mail: rajesharoradr@gmail.com

Received: September 30, 2015; Accepted: October 13, 2015; Published: October 16, 2015

Citation: Tanwar A, Khatur P, Chawla R, Jaiswal S, Chakotiya AS, et al. (2015) Targeting Antibiotic Resistant *Salmonella enterica*: Bio-matrix Based Selection and Bioactivity Prediction of Potential Nutraceuticals. Biochem Anal Biochem 4: 217. doi:10.4172/2161-1009.1000217

Copyright: © 2015 Tanwar A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
setup of healthcare management attributed towards a longer duration of treatment with expensive antibiotics. Resistance in multidrug resistant pathogens is accredited to chromosomal mutations and selective pressure of several synthetic drugs used for the treatment [8]. Also, the resistance profile of *Salmonella enterica* serovar typhimurium indicates a shift from multidrug resistance to extensive drug resistance with resistance against tetracycline, streptomycin, sulfamethoxazole, ampicillin and ceftriaxone [9]. Emergence of strains resistant to ciprofloxacin further broadened its risk spectra. The mitigation of such risk at early stages is necessary so as to cease the consequent cascade of its use with biothreat intent. New therapeutic modalities with multi-targeted mode of action are needed to be investigated. The holistic mode of physiological action of natural plant products with reduced or nil adverse drug reactions might serve as the probable candidate(s) to be explored [10].

The present study utilized *in silico* bioprospection herbal informatics tool to filter the potential herbas targeted against virulence factors of MDR *Salmonella enterica* serovar typhimurium. It included web based classical data search, matrix linked data mining followed by fuzzy logic based optimization/ validation to identify potent herbas with probable therapeutic efficacy [11]. Furthermore, the selected herbas were screened for their biochemical activity at *in silico* level using ‘Mol inspiration’, a cheminformatics tool [12]. This study hence also illustrated the active leads for ascertaining desired biological activity, which further warrants antimicrobial efficacy testing at both *in vitro* and *in vivo* levels.

Methodology

Classical literature surge model

Antibiotic resistant *Salmonella enterica* serovar typhimurium was selected as the target pathogen. A classical literature surge model was utilized and ascertainment Enterochelin/enterobactin (ENT) Inhibition, Type III secreto system (TSSIII) Inhibition, Lipopolysaccharides (LPS) Inhibition, Superoxide dismutase (SOD) Inhibition and Symptomatic relief provision as virulence factors [13]. Similarly, the database set of herbas was selected with attributable factors as a) Ethnopharmaceutical importance of plant; b) Relevance of Herb in traditional medicine; c) Availability factor or cultural aceptability in localized regions; d) Any vedic literature supporting its use; e) Investigations/ prior experience on potential of the herb; f) Indirect indications, if any.

Relevance factor linked binary matrix analysis

PubMed was used as the assigned search engine for keyword hits analysis. A combination keyword converging ‘anti-microbial activity and virulence factor’ was entered in the query search box of PubMed. Observation based analysis of first 20 hits was done for linking the relevance of each virulence factor with its direct significance in triggering the disease [14]. Percentage relevance of each virulence factor was evaluated using the following formula:

\[
\text{\% of Relevance} = \frac{\text{No. of relevant hits based on observational analysis}}{\text{Total No. of Hits screened}} \times 100
\]

The scrutinization of primary database set of NPPs was done with respect to presence or absence of a given bioactivity parameter in the NPP, as reported in either traditional databases or PubMed search engine.

Relevance factor linked weightage matrix analysis

On the basis of average percentage relevance, each bioactivity parameter was assigned with a weightage score. Bioactivity parameter having maximum percentage relevance was assigned with a score of 05 and other succeeding parameters were provided with relative weightage scores based on unitary method evaluation. Evaluation of overall weightage of plants having a binary score >3 was done by multiplying their binary score with weightage score of existing bioactivity parameter. This step definitely out-rulled the possibility of any uncertainty factor, thereby reducing investigator’s biasness. Plants with scores ≥3 from previous step were only utilized to identify potent leads [15].

Fuzzy set membership analysis and optimization

The following mathematical relationship was used to ascertain relative relevance within an identified set of herbas:

\[
\mu S = \frac{(S - \text{Min} S)}{(\text{Max} S - \text{Min} S)}
\]

Where, \(\mu S\) represents the desirability values of selected NPPs of the fuzzy set S. Min(S) and Max(S) are minimum and maximum scores, respectively, in the fuzzy set S [16]. The estimated \(\mu S\) were converted into a leveled score by using a scaled magnitude as optimization of identified potential set of NPPs.

In silico biochemical and molecular activity prediction using ‘Mol Inspiration’

Preparation of ligand dataset

The 2D structures and the SMILES (Simplified Molecular-Input Line-Entry System) notation of predominant phyto-constituents of scrutinized herbas (~ Fuzzy Set Score of 1) were obtained from Pubchem [17].

Biological activity prediction

Canonical SMILES of each of the selected biologically active phyto-constituent was considered as the test set. Based on the analysis of large training set consisting of tens of thousands of the known biologically active compounds, computer program PASS analyzed the presence or absence of specific substructures in the test set in relation to the training set. Each substructure fragment contributed towards a bioactivity score for each listed activity i.e., GPCR Ligand, Ion Channel modulator, Kinase inhibitor, Nuclear receptor ligand and Protease inhibitor. This provided a total molecule activity score (a number, typically between -3 and 3). Molecules with the highest activity score had the highest probability to be active [12].

Results

Classical literature surge model

Classical Bioprospection was done utilizing Vedic literature, ethnopharmacological databases, PubMed and direct/indirect scientific evidences as the foundation for rationale based selection of herbs targeting MDR *S. enterica*. Also, pathophysiology of MDR *S. enterica* was reviewed so as to select the crucial 03 virulence factors as drug targets (Bioactivity parameters). These bioactivity parameters were selected on the basis of certain important characteristics including a) category of microorganism as lethal, sub-lethal, incapacitating agent; b) unavailability of a treatment regime/vaccine; c) re-emerging virulent forms from past; d) intended use as a bioweapon. Similarly, classical bioprospection of 50 herbas was done on the basis of their direct significance in a) symptomatic relief provision; b) cell wall synthesis inhibition; c) bacterial enzyme inhibition; and/or d) antibiotic resistance modification.
Relevance factor linked binary matrix analysis

On the basis of keyword hits scoring matrix, average percentage relevance was ascertained for each virulence factor of *Salmonella enterica* subvar typhimurium. Rationale for selection of each of these parameters is elucidated in Table 1. Highest percentage relevance was obtained for Lipopolysaccharide inhibition (~ 65%), followed by other parameters like Symptomatic relief provision, Type III secretory system (TSSIII) inhibition, Superoxide dismutase (SOD) inhibition and Enterochelin/enterobactin inhibition. Consequently weightage was given to selected parameters in the range of 0.05-5, based on statistical unitary approach, with highest weightage i.e. 5, given to Lipopolysaccharide inhibition, followed by other parameters in decreasing order, as explicated in Table 2. The binary matrix analysis of presence / absence of these virulence factors in 50 herbals revealed that 28 herbal plants showed score ≥3 i.e., the median cut off value (Table 3).

Weightage matrix based analysis and optimization

The weightage score matrix analysis of 28 scrutinized plants revealed that 10 plants showed highest weightage score ≥ 14.98, thereby indicating their probable therapeutic utility against one or more of the targeted virulence factors. The final selection included *Abrus precatorius*, *Azadirachta indica*, *Camellia sinensis*, *Holarrhena antidysenterica*, *Andrographis paniculata*, *Adhatoda vasica*, *Euphorbia hirta*, *Ocimum sanctum*, *Terminalia arjuna* and *Terminalia bellerica* with an optimized fuzzy score of 1.0 (Table 4).

In silico biochemical activity prediction using ‘mol inspiration’

The bioactivity scores of the 10 scrutinized NPPs revealed that conessine (*Holarrhena antidysenterica*) was found to be highly bioactive (>0.5) towards GPCR ligands, whereas andrographolide (*Andrographis paniculata*), amyrin (*Euphorbia hirta*) and arjunolic acid (*Terminalia arjuna*) were found to be highly bioactive (>0.5) towards both Nuclear Receptor ligands and protease. None of the phyto-ligands were found to be exhibiting ion channel modulation and kinase inhibition. Abrin (*Abrus precatorius*) and Epicatechin gallate (*Camellia sinensis*) exhibited moderate bioactivity (0.1 ≤ Bioactivity Score ≤ 0.45) with respect to GPCR Ligand, Nuclear Receptor Ligand and Protease. *Azadirachtin* (*Azadirachta indica*), *Vasicinone*

Table 1: Rationale for selection of the bioactivity parameters for Bioprospection study.

S.No.	Bioactivity parameter	Relevance factor linked binary matrix analysis	Rationale for selection (Based on Classical Approach)
1.	Lipopolysaccharides inhibition (LPS)	190	65%
2.	Symptomatic relief	33	45%
3.	Type III secretory system (TSSIII) inhibition	43	35%
4.	Superoxide dismutase (SOD) inhibition	50	30%
5.	Enterochelin/enterobactin inhibition	32	20%

Table 2: Classical literature surge of virulence factors, showcasing relative percentage relevance.

S.No.	Bioactivity parameter	Total No. of hits screened	Hits relevance (N=20)	Percentage (%) relevance	Relative weightage assigned		
1.	Lipopolysaccharides inhibition (LPS)	190	13	65%			
2.	Symptomatic relief	33	9	45%			
3.	Type III secretory system (TSSIII) inhibition	43	7	35%			
4.	Superoxide dismutase (SOD) inhibition	50	6	30%			
5.	Enterochelin/enterobactin inhibition	32	4	20%			
S.No.	Plants Code	Plants Name	Ethnopharmacological Importance	Traditional Medicine	Availability	Indirect indication	Active ingredients and chemical constituents
-------	-------------	-------------	---------------------------------	----------------------	-------------	-------------------	---
1	Ap	Abrus precatorius (Rat) [28]	Abortifacient, anodyne, aphrodisiac, antimicrobial, diuretic, emetic, expectorant, febrifuge, sedative	Treatment of nervous systems, diarrhea, dysentery and possesses anthelmintic properties	Ubiquitous in India,Belize, Caribbean Islands, Hawaii, Polynesia and parts of the United States	Chloroform-methanol extract of Abrus precatorius seeds shows anti-diabetic effect. It is very helpful in lowering the level of blood sugar	Alkaloids 1%, abrin, abraline, choline, trigonelline, gallic acids, prectorain, abrin, abridin, abrectorin and several amino acids
2	Am	Aegle marmelos (Bel) [29]	Improves appetite and digestion, cure for dysentery and dyspepsia, fever and malaria	Uses for constipation, dysentery and diarrhea	South-east Asia	Shows hypoglycaemic activities. It also shows significant elevation in glutathione and Vitamin C	Tannins 5%, Mucilage10% & Mucilage 15%, Main chemical components are marmelosin, alloimperatorin, marmelode, tannic acid, marmrin, umbelliferone, isopimpinellin, skimmrin, marmesin, marmesin, fatty acids, and beta-sitosterol
3	Ac	Acorus calamus (vacha) [30]	Nauseant, stomachic, anthelmintic, stimulants, emetic, expectorant, carminative, antispasmodic and nerve sedative.	Useful in flatulence, colic, dyspepsia, dysentery, stomach problems cough, bronchitis, inflammations	Ubiquitous in India and other country	Methanolic extract of rhizomes possess antiviral activity against bacteria, fungi and yeast	
4	Adp	Andrographis paniculata (Kalmegh) [31]	Useful in diarrhoea, dysentery, enteritis, fever, cough, sore throat, bronchitis, hypertension, menstrual and post-partum hematometra	Anti-biotic, anti-viral, anti-parasitic and immune system stimulant used in viral hepatitis, children's bowel complaints, gastric acidity, liver congestion and flatulence	Cultivated throughout India, Southern and South-eastern Asia	Extract possesses antioxidant and anti-inflammatory properties.	Andrographolide 5% -10%. Main chemical components are diterpenoid lactones, panulicides, farnesols, flavonoids, andrographolide, angonraphin and isoandoaphroangride
5	Adi	Azadirachta indica (Neem) [32]	Anti-septic, anti-inflammatory, ant-bacterial, anti-hyperglycemic and insecticidal in nature. Useful in vomiting, dyspepsia, intestinal worms and hepatopathy	Act as vermifuge, insecticide, astrangent, tonic and antispasmodic	Evergreen and grows throughout India	Head Lice treatment and Measles symptoms alleviation	Bitters 2%, Bitters 3% & Bitters 5%, azadirachtin, azadirachtol, azadirachnol, desacylernabinine, nimbandin, nimboide, queeratin, beta-sitosterol, n-hexacosanol, nimbiol and nimcin
6	Av	Adhatoda vasica (Adossa) [33]	Sedative, expectorant, antispasmodic and anti-helminthic. It is a bronchial antiseptic, bronchodilator and expectorant	Treating cold, cough, whooping cough, chronic bronchitis and asthma. Used in diarrhea and dysentery	Grows in plains & in lower Himalayan ranges upto 1000 m above sea level.	Potent antitussive effect	
7	Ba	Berberis aristata (Daruhaldi) [34]	Anti-bacterial, anti-inflammatory, astrigent, alternative, antipyretic, antiperiodic, anti-septic, anti-cancer	Useful in eye diseases, hemorrhoids, amenorrhea, leucorrhoea, piles, sores, peptic ulcers, dysentery, heartburn, indigestion, hepatitis, intermittent fever and chronic ophthalmia	Himalayan region, distributed from Kashmir to Uttarakhand	Root bark is anticoagulant and hypotensive in nature. It is also used to treat infections, eczema, psoriasis, and vaginitis	Kerachine, Berberine, oxyconthine etc
8	Cs	Camellia sinensis (Green tea) [35]	Antibacterial, anti-septic, antioxidant and detoxifying properties. Helpful in curing arthritis and asthma.	It enhances the liver functioning and immune system. Helpful in mental disorders, skin disorders and cardiovascular diseases	Green tea originated in China More widespread in the West	Leaves increase the body resistance against biological, physical and chemical stressors. It is known as a good adaptogen	Polyphehols 50%, 80%,70%, caffeine, catechins, epigallocatechin, epigallocatechin gallate (EGCG), malic acid, oxalic acid, theophylline, theobromine, xanthine, inositol, kaempferol and quercetin
9	Cms	Chamomile spp. (Babun phool) [36]	Sedative, anodyne, antibacterial, stomachic.	Used as antimicrobial, antihistamine, anti-anxiety, diuretic	Southern Europe, Asia, North America	Chamomile is frequently added to skin cosmetics to serve as an emollient	Tannins, flavonoids resins etc
9	Eh	Euphorbia hirta (Dudhi) [37]	Bronchitic, asthma and laryngeal spasm	Used to treat intestinal amoebic dysentery, enteritis and skin conditions	Waste places and cultivated fields in lowland Japan, Nepal	Shown to kill various types of pathogenic bacteria, Helicobacter pylori and Plasmodium	
10	Ficus religiosa (Peepal) [38]	Fr	Useful in inflammations and glANDular swellings of neck. Used as astringent in leucorrhoea	Root, bark is aiphrodisiac and also good for lumbago	Cultivated in south-west China and Indochina	-	
11	Hemidesmus indicus (Anantmoola) [39]	Hl	Astringent, anti-inflammatory properties	Useful in treatment of skin diseases, wounds, psoriasis and syphilis, inflammations, hepatopathy and neuropathy. Root extract shows potent anti-enterobacterial activity (S. flexneri)	-	Saponine 5%, 7.5% & 10%, sarsasapogenin, smilacin, p-methoxy salicylic aldehyde, beta-sitosterol, sarsapogenin, smiligenin, sitosterol, stigmasterol fatty acids and tannins	
12	Holarrhena antidysenterica (Indrajava) [40]	Ha	Astringents, anticydesentric, stomachic, febrifugal and tonic properties	Useful in treatment of piles, skin diseases and biliousness. Herb for amoebic dysentery and other gastric disorders	Grows wild in mountains like Himalayas	Astringent, sweet, acrid, cooling, antihelminthic, Astringent for asthma, bile duct disorders, scorpion stings, and poisonings	
13	Lawsonia inermis (Mehandi) [41]	Li	Useful in cephalagia, burning sensation, insomnia and fever	Protect against many surface fungi and bacteria and has been used for its cooling and astringent properties	Northern Africa, Western and Southern Asia	Ethanol extract shows significant wound healing property	
14	Nelumbo nucifera (Lotus) [42]	Nn	Useful in vomiting, dysentery, cholera, diarrhea, ringworm affection and dyspepsia, fever, intermittent fever, cough, burning sensation, dysuria and hyperdyspia	The rhizomes or leaves are used with other herbs to treat sinus, fever, diarrhoea, dysentery, dizziness and vomiting of blood. The whole plant is used as an antidote to mushroom poisoning	Tropical Asia, Queensland, Australia	Hydro alcoholic extract of seeds is a potent antioxidant. It exhibits strong free radical scavenging activity	
15	Ocimum sanctum (Tulis) [43]	Os	Diaphoretic, anti periodic, stimulating, expectorant and anti-catarhhal. Used in malaria, bronchitis and gastric disorders	Used as skin ointments and promoted as a treatment for acne	Eastern-World India and Nepal	Extracts have shown some antibacterial activity against E. coli, S. aureus and P. aeruginosa. Mitigation effects of radiation exposure.	
16	Piper longum (Kali mirch) [44,45]	Pi	Used to treat flatulence, gout, laryngitis, and paralysis, abdominal tumors and gastric ulcers.	Good for aromatic, stimulant, carminative, constipation, gonorrea, paralysis of the tongue, diarrhoea, cholera & respiratory infections	Bangladesh, India, Nepal, Sri Lanka, Indonesia	Extract possesses significant immunomodulatory, anti-arthritic and anti-tumor activity	
17	Syzygium cumini (Jamun) [46]	Syc	Anti-diabetic agent by decreasing kidney’s calciastase activity, Anthelmintic, Astringent	Used in diabetes, diarrhoea and ringworm infection. Leaves and bark are used for controlling blood pressure and gingivitis	Barbary extracts possess potent anti-inflammatory activity	Bitter 3%, Bitter 5% & Volatile Oil 1%, methylanthoxylin, conilagin, ellagitanins, ellagic acid and gallic acid, jambosine, volatile oil, jambolin, quercetin, feric acid, veratrole, guajacol and caffeic acid	
18	Terminalia arjuna (Arjuna) [47]	Taj	Astringent, sweet, acid, cooling, aphrodisiac, cardiotoxic, urinary astringent, expectorant, alexiceric and is useful in fractures, ulcers, cirrhosis of the liver, hyperhidsis, otalgia and hypertension	It improves cardiac muscle function and pumping action of the heart. Useful for asthma, bile duct disorders, scorpion stings, and poisonings	West Bengal and south and central India	Arjuncolic Acid 0.5%, Tannin 25%, tannins, triterpenoid saponins (arjunic acid, arjunic acid, arjungenin and arjunic acid), flavonoids, gallic acid, ellagic acid and phytoestrogens	
19	Terminalia bellirica (Behada) [48]	Tb	It is astringent, tonic, expectorant and laxative	Useful in cough, bronchitis and pharyngitis. Used in dyspesia, flatulence, diabetes, and vomiting	Ubiquitous in India Southeast Asia	Extract reduces the levels of lipids in hypercholesterolemia models.	

Citation: Tanwar A, Thakur P, Chawla R, Jainwal S, Chakotiya AS, et al. (2015) Targeting Antibiotic Resistant Salmonella enterica: Bio-matrix Based Selection and Bioactivity Prediction of Potential Nutraceuticals. Biochem Anal Biochem 4: 217. doi:10.4172/2161-1009.1000217
20. Thymus vulgaris (Thyme) [49]
Tv
Anthelmintic, strongly antiseptic, antispaсидnic, carminative, deodorant, diaphoretic, disinfectant, expectorant, sedative and tonic
Treatment of dry coughs, whooping cough, bronchitis, bronchial catarrh, asthma, laryngitis, indigestion, gastritis and diarrhoea
Indigenous to Mediterranean regions and southern Europe, but thrives almost anywhere in temperate climate
Extract shown antibacterial activity against the gram negative bacteria
Main chemical components are a-thujone, a-pinene, and camphene

21. Vitis vinifera (Angoor) [50]
Vv
Used for the treatment of cancer, chorea, smallpox, nausea, skin and eye infections as well as kidney and liver diseases
Leaves being used to stop bleeding, pain and inflammation
Central Europe and South-western Asia
Used as anti-inflammatory and antibacterial agents
Phenolic compounds

22. Allium satium (Garlic) [51]
As
Antiseptic and antimicrobial activity
Uses to prevent scurvy, because of its high vitamin C content
Asia, South Asia, Southeast Asia, Africa, Europe
Extract yields allicin, an antibiotic and antifungal compound
Vitamins, proteins, minerals, saponins, flavonoids.

23. Zingiber officinalis (Ginger) [52]
Zo
Clinically proven as prophylactic of nausea and vomiting associated with motion, sickness, sea sickness and pregnancy
Known for its gastrointestinal benefits and as an anti-inflammatory and carminative.
Used in dyspepsia, diarrhoea, colic, flatulence, vomiting, nausea, cough, cold, asthma
South east Asia and throughout India
Rhizome is a potent inhibitor of platelet activation and aggregation
Gingerols 5%, gingeole, zingerone, shogaol, zingiberene, cineole, borneol, phellandrene, citral, zingerene, linalool, geraniol, chavicol, vanillyl alcohol, camphene and resin

24. Acacia nilotica [53]
An
Strongly astringent due to tannin algalicid activity
Useful in treatment of diarrhea, dysentery, fever, gallbladder, hemorrhage, hemorrhoids, leucorrhoea
Zanzibar, Pemba, and India; Arabia
Algalicidal activity against Chromococcus, Clotezum, Coelastum, Cosmarum
Sulphoxides pentasol, saponin, tannin. Seeds contain crude protein 18.6%, ether extract 4.4%, fiber 10.1%, nitrogen-free extract 61.2%

25. Withania somnifera (Ashwa gandha) [54]
Ws
Used as tonic, abortifacient, astrinngen, deobstruent, nervine, aphrodisiac and sedative
Rheumatism, leprosy and arthritis
Dried regions of India, such as Punjab, Sindh, and Rajasthan. It is also found in Nepal
Inhibits the growth of human tumor cell line. It increases the levels of cortisol in the adrenal glands of stress
Alkaloids 1%, Alkaloids 2%, Withanolides 1.5% & Withanolides 2%, glycosides, withanolides, withaamion, hericaminic acid, dulcitol, withanol and withaferin

26. Acacia catechu [55]
Ac
Strong antioxidant, astringent, anti-inflammatory, anti-bacterial and anti-fungal in nature
Useful in stomach problems like diarrhea, dysentery, colitis and gastric cancer
Asia, China, India and the Indian Ocean area
Extract has significant antipyretic, antiarrhythmia, hypoglycaemic and hepatoprotective properties
Tannins 25%, Catechin 10%, catechuca acid, pyrocatechic acid, phloroglucin acid, quercetin, gum and minerals

27. Semecarpus anacardium (Bhailatik) [56]
Sa
Useful in leucoderma, scaly skin, allergic dermatitis, poisonous bites, leprosy, cough, asthma, and dyspepsia
Act as insecticides, antiseptic, termite repellents and herbicide
India
-
Anacardic acid 0.4%, Proteins

28. Punica granatum (Anar) [57]
Pg
Antioxidant, Anticarcinogenic and anti-inflammatory properties
Stomach carcinoma and syphilis treatment
Cultivated in India
Seed extract possess hypoglycaemic activity
Ellagic Acid 20%, Ellagic Acid 40% & Tannins 25%, punicalagin, ellagic acid, luteolin etc

Table 3: Herbal plants showing probable utility against Salmonella enterica serovar typhimurium infections.

S.No.	Herbal Plant	Herbal code	Binary score	Weightage score	Fuzzy score (µS)
1	Andrographis paniculata	Ap	5	14.98	1
2	Azadirachta indica	Al	5	14.98	1
3	Adhatoda vasica	Av	5	14.98	1
4	Euphorbia hirta	Eh	5	14.98	1
5	Ocimum sanctum	Os	5	14.98	1
6	Terminalia arjuna	Ta	5	14.98	1
7	Terminalia belerica	Tb	5	14.98	1
8	Abrus precatorius	Ap	5	14.98	1
9	Camellia sinensis	Cs	5	14.98	1
10	Holyhema antisydenterica	Ha	5	14.98	1
11	Aegle marmelos	Am	4	13.45	0.867
12	Vitis vinifera	Vv	4	13.45	0.867
13	Acacia catechu	Ac	4	12.68	0.8
14	Berberis aristata	Ba	4	12.68	0.8
15	Ficus religiosa	Fr	4	12.68	0.8
This bioprospection study was aimed at finding antibiotics, the defense resort against the sturdy pathogens of the present day, with identical binary score. Final decision of selection of herbals was ruled by instigating the search for newer antimicrobials of plant origin amalgamated with informatics for rationale based selection of herbals. Such conflict has arisen due to the irrational usage of antibiotics, not competent enough to overcome the irreversible effects of such resistance in these pathogens [8]. The present study utilizes an ethnopharmacological approach amalgamated with informatics for rationale based selection of herbs. Random search model approach was devised using PubMed as the search engine. 05 bioactivity parameters were selected on the basis of matrix based selection and in silico biochemical analysis were viewed from the fact that herbals have been used as the main reservoir for a variety of natural plant products having bio-protection abilities e.g., Taxol (anticancerous, Taxus baccata), Silymarin (radioprotector, Silybum marianum), Vincristine (anticancerous, Rosmarinus officinalis), Vinblastin (anticancerous, Rosmarinus officinalis) etc [20].

The present study utilizes an ethnopharmacological approach amalgamated with informatics for rationale based selection of herbs. Random search model approach was devised using PubMed as the search engine. 05 bioactivity parameters were selected on the basis of their direct/ indirect role in a) symptomatic relief provision, b) antibiotic resistance modification, c) bacterial enzyme modification, d) cell wall synthesis inhibition (Table 1). This bioprospection study was found to be in consonance with a similar study of the evaluation of sleep wake cycle in healthy individuals conducted by Elizabeth S. Jenuwine et al. [19]. The importance of herbal informatics model can further be viewed from the fact that herbals have been used as the main reservoir for a variety of natural plant products having bio-protection abilities e.g., Taxol (anticancerous, Taxus baccata), Silymarin (radioprotector, Silybum marianum), Vincristine (anticancerous, Rosmarinus officinalis), Vinblastin (anticancerous, Rosmarinus officinalis) etc [20].

![Table 4: Fuzzy Set Membership Analysis for herbal plants screened on the basis of Binary and Weightage Matrix scores.](image)

(Adhatoda vasica), Eugenol (Ocimum sanctum) and Chebulagic acid (Terminalia belerica) were found to exhibit nil bioactivity with respect to all the bioactivity predictors (Table 5). Final categorized NPPs on the basis of matrix based selection and in silico biochemical analysis were Holorrhenha antidysenterica, Andrographis paniculata, Euphorbia hirta, Terminalia arjuna, Abrus precatorius and Camellia sinensis.

Discussion

Antibiotics, the defense resort against the sturdy pathogens of commensals as well as nosocomial origin, are now losing the battle against multi-drug resistant re-emerging pathogens e.g., *Salmonella enterica* serovar typhimurium (diversified food borne pathogen) [18]. Such conflict has arisen due to the irrational usage of antibiotics, thereby transforming commensals into extensively drug resistant forms. Natural selection and sudden mutations might be conferring resistance in these pathogens [8]. The present day synthetic drugs are not competent enough to overcome the irreversible effects of such resistance patterns. Limitations of chemotherapeutic moieties i.e., systemic toxicity and adverse drug reactions, hence require to be outruled by instigating the search for newer antimicrobials of plant origin having holistic potential [1].

The present study utilizes an ethnopharmacological approach amalgamated with informatics for rationale based selection of herbs. Random search model approach was devised using PubMed as the search engine. 05 bioactivity parameters were selected on the basis of their direct/ indirect role in a) symptomatic relief provision, b) antibiotic resistance modification, c) bacterial enzyme modification, d) cell wall synthesis inhibition (Table 1). This bioprospection study was found to be in consonance with a similar study of the evaluation of sleep wake cycle in healthy individuals conducted by Elizabeth S. Jenuwine et al. [19]. The importance of herbal informatics model can further be viewed from the fact that herbals have been used as the main reservoir for a variety of natural plant products having bio-protection abilities e.g., Taxol (anticancerous, Taxus baccata), Silymarin (radioprotector, Silybum marianum), Vincristine (anticancerous, Rosmarinus officinalis), Vinblastin (anticancerous, Rosmarinus officinalis) etc [20].

Binary coefficient matrix analysis, the first screening step of herbal informatics, was used to identify herbals on the basis of all or none principle, thereby eliminating the outliers which have scored less than the median cut off value i.e., >3. After the first screening step, 28 plants were filtered from a pool of 50 plants, thus reducing the total time of execution. Furthermore, weightage matrix based analysis was used to scrutinize the selection process in case of 02 or more herbals with identical binary score. Final decision of selection of herbals was based on fuzzy set membership analysis, so as to provide a universally acceptable optimized score [16].

The final categorized set of plants included *Abras precatorius* (Rati), *Azadirachta indica* (Neem), *Camellia sinensis* (Green tea), *Holarrhena antidysenterica* (Indrajava), *Andrographis paniculata* (Kalmegh), *Adhatoda vasica* (Adosa), *Euphorbia hirta* (Dudhi), *Ocimum sanctum* (Tulsi), *Terminalia arjuna* (Arjuna) and *Terminalia belerica* (Behada). All these above mentioned plants have been reported to contain a variety of secondary metabolites like conessine (alkaloid, *Holarrhena antidysenterica*); andrographolide (alkaloid, *Andrographis paniculata*) and epicatechin gallate (flavonoid, *Camellia sinensis*) etc [1,20].
Furthermore, the cheminformatics based biochemical activity prediction of predominant phytoconstituents of these NPPs gave an insight of their mechanistic mode of action. Phytoconstituents which were exhibiting bioactivity with respect to either GPCR or Nuclear receptor ligand (i.e., Conessine, Andrographolide, Amyrin, Arjunolic acid) might have a direct or indirect role in regulation of immune system activity and inflammation. Both G protein-coupled receptor signaling and Nuclear Receptor binding lead to mast cell degranulation which subsequently induces localized inflammation and bacterial antigen clearance [21]. Moreover secondary metabolites with bioactivity linked to protease inhibition (e.g., Conessine, Andrographolide, Amyrin, Arjunolic acid) is directly contemplating the antimicrobial activity of these phytoconstituents as protease is known to be a key enzyme of bacteria required for evasion of host immune defenses, nutrients acquisition for growth and proliferation and tissue necrosis [22]. These secondary metabolites of NPPs might therefore, be responsible for their holistic antibacterial action, which can further be tested and validated at in vitro and in vivo levels.

Conclusion

The study has provided 06 NPPs i.e., Holarrhena antidysenterica, Andrographis paniculata, Euphorbia hirta, Terminalia arjuna, Abrus precatorius and Camellia sinensis with significant therapeutic potential that need to be explored at in vitro and pre-clinical level to manage MDR Salmonella enterica serovar typhimurium and other related infections.

Acknowledgements

The authors are grateful to Director, INMAS and Vice Chancellor, Jamia Hamdard for provision of research facilities and support. The present study was conducted under the Project number INM-318 of ‘Samarthya’ Programme of DRDO.

References

1. Sibanda T, Okoh AI (2007) The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. African J Biotechnol 6: 2886-2896.
2. Wichtl M (2004) Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis. CRC Press.
3. Bhattacharya R, Reddy KRC, Mishra AK (2014) Export strategy of Ayurvedic Products from India. Int J Ayurvedic Med 5: 125-128.
4. Mead PS, Slutsker L, Dietz V, McCaig LF, Breece JS, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625.
5. Thomas MK, Majowicz SE, Sockett PN, Fazil A, Pollari F, et al. (2006) Estimated economic impact of antibiotic resistance: a US Perspective. J Infect Dis Med Microbiol 17: 229-234.
6. Inman RD, Johnston ME, Hodge M, Falk J, Helewa A (1988) Postdysenteric illness and death in the United States. Emerg Infect Dis 5: 607-625.
7. Simonet ML (1999) Enterobacteria in reactive arthritis: Yersinia, Shigella, and Salmonella. Arthritis Rheum 42: 1377-1383.
8. Claeson UP, Malmfors T, Wikman G, Bruhn JG (2000) Adhatoda vasica: a critical review of ethnopharmacological and toxicological data. J Ethnopharmacol 72: 1-20.
9. Mullaicharam A, Halligudi N, Al-bahri H (2012) Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts of Combretum adenansgonium Steud. Ex A. Rach (Combretaceae). BMC Complement Altern Med 12: 163.
10. Thakur P, Chawla R, Goel R, Narula A, Arora R, et al. (2015) Antibacterial, anti-HIV-1 and anti-inflammatory activities of aqueous ethanolic extract of Abrus precatorius on Shigella flexneri. African J Biotechnol 6: 2886-2896.
11. Thakur P, Chawla R, Goel R, Narula A, Arora R, et al. (2015) In silico Bioprospection Approach for Targeting Nosocomial Infections caused by Klebsiella pneumoniae. Int J Interdiscip Multidiscip Stud 2: 163-176.
12. Oprea TI, Tropsha A (2006) Target, chemical and bioactivity databases - integration is key. Drug Discov Today Technol 3: 357-365.
13. Threlfall EJ, Ward LR, Frost JA, Willshaw GA (2000) The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol 62: 1-5.
14. Jenuwine ES, Floyd JA (2004) Comparison of Medical Subject Headings and text-word searches in MEDLINE to retrieve studies on sleep in healthy individuals. J Med Libr Assoc 92: 349-353.
15. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13: 894-901.
16. Kuehn HS, Gillfian AM (2007) G protein coupled receptors and the modification of FcepsilonRI-mediated mast cell activation. Immunol Lett 113: 59-69.
17. Meimandipour A, Hosseini SA, Lotfollahian H, Hosseini SJ, Hosseini SH, et al. (2012) Multiflavor and decision-making: use of scoring methods to compare the performance of laying hen fed with different level of yeast. Ital J Anim Sci 11: 82-86.
18. Arul V, Miyazaki S, Dhananjayan R (2005) Studies on the anti-inflammatory, analgesic and antipyretic properties of the leaves of Aegle marmelos Corr. J Ethnopharmacol 99: 1-12.
19. Duke JA (1997) The Green Pharmacy: New Discoveries in Herbal Remedies for Common Diseases and Conditions from the World’s Foremost Authority on Healing Herbs. Rodale.
20. Kwak J, Breeding SA, Lankford CE (1979) Enterocin (enterocin): virulence factor for Salmonella typhimurium. Infect Immum 24: 174-180.
21. Kobil R, Matsushima Y, Nakamura D, Urahall J, Lara-Tejero M, et al. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602-605.
22. Osborn MJ (1963) Studies On The Gram-Negative Cell Wall. I. Evidence For The Role Of 2-Keto-3-Decoxoyctonate In The Lipopolysaccharide Of Salmonella Typhimurium. Proc Natl Acad Sci U S A 50: 499-506.
23. Carvin J, Langford PR, Wilks KE, Kroll JS (1996) Identification of sodC encoding periplasmic [Cu,Zn]-superoxide dismutase in Salmonella. FEMS Microbiol Lett 136: 215-220.
24. Duke JA (1997) The Green Pharmacy: New Discoveries in Herbal Remedies for Common Diseases and Conditions from the World’s Foremost Authority on Healing Herbs. Rodale.
25. Kwak J, Breeding SA, Lankford CE (1979) Enterocin (enterocin): virulence factor for Salmonella typhimurium. Infect Immum 24: 174-180.
26. Arul V, Miyazaki S, Dhananjayan R (2005) Studies on the anti-inflammatory, antipyretic and agrpecific properties of the leaves of Aegle marmelos Corr. J Ethnopharmacol 96: 159-163.
27. Motley TJ (1994) The ethnobotany of sweet flag,acorus Calamus (Araeaceae). Econ Bot 48: 397-412.
28. Motley TJ (1994) The ethnobotany of sweet flag,acorus Calamus (Araeaceae). Econ Bot 48: 397-412.
29. Motley TJ (1994) The ethnobotany of sweet flag,acorus Calamus (Araeaceae). Econ Bot 48: 397-412.
30. Motley TJ (1994) The ethnobotany of sweet flag,acorus Calamus (Araeaceae). Econ Bot 48: 397-412.
31. Thakur P, Chawla R, Goel R, Narula A, Arora R, et al. (2015) Antibacterial activity of aquo-alcoholic extract of camellia sinensis against isolates of Carabapenem Resistant Escherichia coli and food borne pathogens. Int J Biol Pharm Res 6: 609-616.
32. van der Nat JM, van den Sluis WG, de Silva KT, Labadie RP (1991) Ethnopharmacognostical survey of Azadirachta indica A. Juss (Meliaceae). J Ethnopharmacol 35: 1-24.
33. Claeson UP, Malmfors T, Wikman G, Bruhn JG (2000) Adhatoda vasica: a critical review of ethnopharmacological and toxicological data. J Ethnopharmacol 72: 1-5.
34. Singh M, Srivastava S, Rawat AK (2007) Antimicrobial activities of Indian Berberis species. Filoterapia 78: 574-576.
35. Thakur P, Chawla R, Chakotiya A, Nagoal R, et al. (2015) In vitro Antibacterial Activity of Camellia sinensis and Andrographis paniculata against Vancomycin Resistant Enterococci. Int J Pharm Sci Drug Res 7: 157-162.

36. Sebai H, Jabri MA, Souli A, Ribii K, Selmi M, et al. (2014) Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol 152: 327-332.

37. Kumar S, Malhotra R, Kumar D (2010) Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn Rev 4: 58-61.

38. Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review. J Ethnopharmacol 134: 565-583.

39. Mary NK, Achuthan CR, Babu BH, Padikkala J (2003) In vitro antioxidant and antithrombotic activity of Hemidesmus indicus (L) R.Br. J Ethnopharmacol 87: 187-191.

40. Chakraborty A, Brantner AH (1999) Antibacterial steroid alkaloids from the stem bark of Holarrhena pubescens. J Ethnopharmacol 68: 339-344.

41. Hsouna A Ben, Trigui M, Culioli G, Blache Y, Jaoua S (2011) Antioxidant constituents from Lawsonia inermis leaves: Isolation, structure elucidation and antioxidative capacity. Food Chem 125: 193-200.

42. Huang B, Ban X, He J, Tong J, Tian J, et al. (2010) Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves. Food Chem 120: 873-878.

43. Prakash J, Gupta S (2000) Chemopreventive activity of Ocimum sanctum seed oil. J Ethnopharmacol 72: 29-34.

44. Upmanyu A, Golam Sarwar AH, Umar K, Ahmad N, Sajjad M, et al. (2013) Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol 284: 51-59.

45. Sunil ES, Kuttan G (2004) Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol 90: 339-346.

46. Banerjee A, Dasgupta N, De B (2005) In vitro study of antioxidant activity of fruit. Food Chem 90: 727-733.

47. Dwivedi S (2007) Terminalia arjuna Wight & Am.—a useful drug for cardiovascular disorders. J Ethnopharmacol 114: 114-129.

48. Jadon A, Bhadouria M, Shukla S (2007) Protective effect of Terminalia bertieta Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol 109: 214-218.

49. Rota MC, Herrera A, Martinez RM, Sotomayor JA, Jordán MJ (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19: 681-687.

50. Orhan DD, Orhan N, Ergun E, Ergun F (2007) Hepatoprotective effect of Vitis vinifera L. leaves on carbon tetrachloride-induced acute liver damage in rats. J Ethnopharmacol 112: 145-151.

51. Pantoja CV, Chiang LC, Norris BC, Concha JB (1991) Diuretic, natriuretic and hypotensive effects produced by Allium sativum (garlic) in anaesthetized dogs. J Ethnopharmacol 31: 325-331.

52. Mascolo N, Jain R, Jain SC, Capasso F (1989) Ethnopharmacologic investigation of ginger (Zingiber officinale). J Ethnopharmacol 27: 129-140.

53. Abd el Nabi OM, Reisinger EC, Reinthaler FF, Still F, Etien U, et al. (1992) Antimicrobial activity of Acacia nilotica (L.) Willd. ex Del. var. nilotica (Mimosaceae). J Ethnopharmacol 37: 77-79.

54. Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71: 193-200.

55. Ray D, Thokchom I (2006) Antipyretic, antiinflammatory and hepatoprotective activities of ethyl acetate extract of Acacia catechu Willd. in albino rats. Indian J Pharmacol 38: 408.

56. Nair PK, Melnick SJ, Wnuk SF, Rapp M, Escalon E, et al. (2009) Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 122: 450-456.

57. Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109: 177-206.