Expressed Genes in the Lymphoid Organ of Broodstock Banana Prawn (*Penaeus merguiensis*) Using Suppression Subtractive Hybridization

Abstract

Most systemic viral infections in penaeid prawns are associated with the formation of lymphoid organ spheroid (LOS) cells in the lymphoid organ (LO). The development of spheroids is suggested to be a major defence mechanism against viral infection in penaeids. Spheroids were observed in a broodstock population of banana prawns (*Penaeus merguiensis*), while these changes were not identified in the wild population. This opportunity was taken to see how well suppression subtractive hybridization (SSH) would resolve a histological change with no known aetiology. A total of 316 sequenced clones were clustered into 141 contigs and 51.6% of the clones shared significant similarities to known peptide or nucleotide sequences in the NCBI GenBank database. These transcripts were assigned into 8 categories, including immune related genes (25.5%), synthesis, processing and regulation-related proteins (4.4%), ribosomal proteins (6.3%), proteases and inhibitors (7.0%), energy and metabolism factors (7.3%), structural and cytoskeletal related proteins (10.1%) and other sequences (13.9%). Many sequenced clones (48.4%) from the libraries had no significant similarity to amino acids/nucleotides in the public database revealing the ability of this method in disclosing new differentially expressed genes in the lymphoid organ of prawns. Despite the detection of differential gene expression in the SHH libraries, unfortunately there were no viral genomes identified which were associated with spheroid formation within the LO of penaeids. However, polymerase chain reaction (PCR) amplification with HPV140F and HPV140R primers suggested that the development of spheroid cells in the lymphoid organ of the broodstock population most likely due to *Penaeus merguiensis* hepandensovirus (PmeDV) which maybe the senior synonym of lymphoidal parovirus (LPV).

Keywords: Banana Prawn; *Penaeus merguiensis* hepandensovirus; Lymphoid Organ; Spheroid Cells; Suppression Subtractive Hybridisation; Expressed Genes

Abbreviations: LOS: Lymphoid Organ Spheroid; LO: Lymphoid Organ; SSH: Suppression Subtractive Hybridization; NCBI: National Centre For Biotechnology Information; PCR: Polymerase Chain Reaction; RT-PCR: Reverse Transcript-PCR; HPV: Hepatopancreatic Parvovirus; PmeDV: *Penaeus Merguiensis* Hepandensovirus; LPV: Lymphoidal Parovirus; H & E: Haematoxylin and Eosin; RNA: Ribonucleic Acid; DNA: Deoxyribonucleic Acid; cDNA: Complementary DNA; BLAST: Basic Local Alignment Search Tool

Introduction

The rapid development of the cultured prawn industry is associated with environmental and sociological disturbances in land use, the ecology of the aquatic organisms and global trade patterns. A major consequence of these changes is the emergence and the spread of infectious diseases. In the late 1980s, previously unknown diseases emerged in the cultured prawns both in Asia and Americas, spread rapidly to all countries farming prawns and brought catastrophe to this industry around the world. Even though some progress has been made to deal with these challenges and recovery has taken place in recent years, infectious diseases, in particular viral diseases still remain a major problem to the prawn aquaculture industry [1,2].

Several viruses have been reported to cause diseases in the wild and cultured banana prawn *Penaeus merguiensis* including hepatopancreatic parvo-like virus (HPV) [3,4,5,6], the Australian strain of HPV (*Penaeus merguiensis* hepandensovirus, PmeDV) [7,8], lymphoidal parvo-like virus (LPV) [9], white spot syndrome virus (WSSV) [10] and spawner-isolated mortality virus (SMV) [11]. Moreover, even though there is no report on banana prawns naturally infected with gill-associated virus (GAV), experimental infection suggested that this species may be susceptible to GAV [12].

Histopathologically, most of these systemic viruses cause spheroid development within the lymphoid organ (LO) of banana prawns. The formation of spheroid cells in the lymphoid organ is a major defence mechanism to viral infection in penaeid prawns [13,14]. Currently, in northern Queensland approximately 75-100% of cultured banana prawns from different family lines have lymphoid organ spheroid (LOS) cells that occupied more than 40% of the lymphoid organ area (Owens, unpublished...
Several studies have been conducted into disclosing differential gene transcripts of banana prawns. Most of published work on gene transcripts of *P. merguiensis* pays particular attention to the haemocytes [15-17] and ovaries [18-21]. Only a few studies on the tissue distribution of the genes including muscle, gonad, gills, brain, heart, intestine, hepatopancreas and lymphoid organ have been carried out [15,20]. Furthermore, application of suppression subtractive hybridization (SSH) in banana prawns has only been performed to identify genes related to the ovarian development [18,20,21]. Therefore, this study was conducted to determine the expressed genes in the lymphoid organ and detect the viral aetiology of spheroid cells in *P. merguiensis* using suppression subtractive hybridization (SSH).

Materials and Methods

Experimental Animals

Wild banana prawns *P. merguiensis* that did not have spheroids in the lymphoid organ were caught with a cast net in creeks around Townsville, Queensland, Australia. Broodstock *P. merguiensis* that did have spheroids in the lymphoid organ were sourced from a hatchery in northern Queensland where the lymphoid organs were extracted in situ. Prior to histological examination and LO extraction, prawns were anesthetised by placing them in iced water for few minutes.

Histology

Experimental prawns were fixed in Davidson’s fixative for 48 hours. The cephalothorax was cut mid sagitally, placed in a histocassette and preserved in 70% ethanol and then processed for routine histological examination using standard paraffin embedded protocol [22]. Paraffin blocks were cut at 5 μm and stained with haematoxylin and eosin (H & E) and examined under a light microscopy.

Suppression Subtractive Hybridization

Twenty Broodstock *P. merguiensis* with an average body weight of 38.8 ± 6.8 g (SD) from a broodstock population and 20 banana prawns with a mean body weight of 12.0 ± 5.2 g from the wild caught population were used for the suppression subtractive hybridization. Total RNA was separately extracted from the lymphoid organ of wild and hatchery populations using SV Total RNA Isolation System (Promega) following the protocol of the manufacturer. Polyadenylated (poly(A)+) RNA was isolated from pooled total RNA using PolyATract® mRNA Isolation System III (Promega) as described by the company. Prior to use, 1000 μl poly(A) RNA was concentrated by freeze drying (Telstar 23750 - Cryodos -50/230 V 50 Hz, the UK), re-dissolved in 25μl RNAase-free water and kept at -80°C until used. The concentration and purity of nucleic acids were determined using spectrophotometry (NanoPhotometerTM, Implen, Germany).

Suppression subtractive hybridization was performed using the PCR-Select cDNA Subtraction Kit (Clontech, USA) following the manufacturer’s instructions to generate cDNA forward libraries between Broodstock prawns (tester) and wild caught prawns (driver). The tester cDNA was prepared from 1.19 μg of poly (A)+ RNA and the driver cDNA was synthesised from 0.02 μg of poly (A)+ RNA. Tester and driver cDNAs were digested with Rsa I to obtain shorter blunt-ended molecules. Rsa I-digested tester cDNA was divided into two portions. One portion was ligated with adaptor 1 and another one with adaptor 2R. In the first step of hybridization, an excess of driver cDNA was mixed with each tester cDNA, heat denatured and allowed to anneal to generate several fractions of molecules. In the second hybridization step, the two tester cDNAs from the first step were mixed together in the presence of freshly denatured driver cDNA to further enrich the differentially expressed genes. Finally, two rounds of PCR were performed to exponentially amplify the differential gene expression and suppress the common genes of the two cDNA samples. The subtracted PCR products were then inserted into pGEM-T easy vectors (Promega) and transformed into JM109 competent *Escherichia coli* cells which were plated onto agar containing ampicillin, X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) and IPTG (isopropyl-β-D-thiogalactopyranoside). Plasmid DNA was isolated from randomly selected white colonies and commercially sequenced by Macrogen Inc., Korea. Nucleotide sequences were analysed with BLASTx and BLASTn against known amino acid/nucleotide sequences on public databases (NCBI). Sequences with E-values <1e-05 were considered significant.

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) Amplification with Bunyavirus Primers and PCR Amplification with Parvovirus Primers

To investigate the possibility of the aetiological agent of spheroid cells in *P. merguiensis* was caused by virus with no poly (A) tail, several primers sourced from related-genus Phlebo virus within Bunyaviridae family including Mourilyan virus (AY927991), Uukuniemi virus (M17417) and Toscana virus (EU003175) were designed to amplify possible viral genomes in the Broodstock population. Total RNA was extracted from the lymphoid organ of Broodstock *P. merguiensis* (20 prawns) using SV Total RNA Isolation System (Promega). Complementary DNA (cDNA) was synthesised from total RNA using random hexamer primers (SuperScriptTM III first-strand synthesis system for RT-PCR, Invitrogen, USA). The RT-nested PCR was performed using primers MoV24F and MoV25R in the primary PCR, and primers MoV148F and MoV149R in the nested PCR (Table 1).

Deoxyribonucleic acid (DNA) was isolated from the LO of Broodstock banana prawns (20) using a High Pure PCR Template Preparation Kit (Roche Diagnostics), while DNA from the LO of wild population (20 banana prawns) was extracted using Wizard® SV Genomic DNA Purification System (Promega). Using HPV140F/HPV140R primers, the PCR product was amplified at 94°C for 7 mins for initial denaturation, 40 cycles for denaturation at 94°C for 45s, annealing at 65°C for 45s, extension at 72°C for 1 min, and then finally subjected to extension at 72°C for 5 mins [7]. Amplified products (10 µl) were visualised on a 1.2% agarose-TAE gels containing GelRed (10,000× in water) at a concentration of 0.5:10,000. Gels were visualised and photographed using InGenius LHR, gel documentation and analysis system (Syngene, UK).
Table 1: Primer sequences used to amplify presumptive Bunyavirus and Parvovirus in the lymphoid organ of a Broodstock population of *Penaeus merguiensis*.

Primer name	Sequences (5’ to 3’)	Expected amplicon (bp)	GeneBank ID	References
Bunyavirus Primers				
MoV24F	GGG ATG GTG TTG CCA TAC AAA GG	610	AY927991	Cowley et al. [23]
MoV25R	GTC ATT AGC TGG TCT TAG TTT TCA C			
MoV148F	ACA GTT TGT CAA GCT CAC AGG ATG	322	AY927991	Cowley et al. [23]
MoV149R	AGA AGC GCC ATT CTG ATG AAC ATC			
MoV210F	GGC CAC CCT TAC TAT CCT TG	249	AY927991	Present study
MoV439R	ATT GTC CCT GTC TCG GGG TC			
UUKV2558F	TTC CAA TAA GTG TAG CCC AAG	668	M17417	Present study
UUKV3205R	AAA GAC ACG GCT ACA TGG AAC			
TosV2667F	AGC GAA AAG CAA TTT ATC TCA	416	EU003175	Present study
TosV3064R	CTC ATA GCC ATC AGA ACC A			
Parvovirus Primers				
HPV140F	CTA CTC CAA TGG AAA CTT CTG AGC	140	DQ458781	La Fauce et al. [7]
HPV140R	GTG GCG TTT GAA GGC ACT TC			

Results

Histology

Routine histological examination with H & E stain (Figure 1) showed that 12 out of 12 of Broodstock *P. Merguiensis* had lymphoid organ spheroid cells, while these pathological changes were not observed in the lymphoid organ of wild caught prawns (12/12). These abnormal cells had more basophilic cytoplasm and had no central lumen compared to the normal stromal matrix cells of the lymphoid organ. Some spheroids were bounded by elongated flattened cells or fibrous connective tissue and had cytoplasmic vacuoles.

![Figure 1](image1.png)

Figure 1: Light micrograph of longitudinal section of the LO of *Penaeus merguiensis*.
Suppression Subtractive Hybridization

Two bands with approximate 250 bp and 200 bp were visualised following gel electrophoresis and these PCR product was used as SSH libraries. Following hand picking of selected white colonies, 328 clones were sequenced and a total of 316 sequences were clustered into 141 contigs (consensus sequences) with a range of fragment sizes between 47 bp and 427 bp. Homology search revealed that around 51.6% of the total clones (163 out of 316 clones) shared significant similarities to known amino acids or nucleotides in the NCBI GenBank database. Transcripts were assigned functions as predicted from sequence homology from the public database and grouped into 8 categories (Figure 2). Many sequenced clones (48.4%) from the SSH libraries had no significant similarity to amino acids/nucleotides in the public database. This indicates the ability of SSH method in revealing new differentially expressed genes in the lymphoid organ of penaeid species.

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) Amplification with Bunyavirus Primers and PCR Amplification with Parvovirus Primers

Primary PCR with MoV24F/MoV25R primers produced an approximate 300 bp amplicon from 1 out of 20 samples examined. In the nested PCR, this sample also had an approximate 300 bp amplicon size. However, sequencing results failed to show any similarity to Mourilyan virus or other viral sequences, but similarity with zebra fish DNA (BX248086). Primers MoV210F/MoV439R generated expected amplicons from 2 samples and other different amplicon sizes from several samples. However, once again sequencing results showed no similarity to viral sequences. Primers UUKV2558F/UUKV3205R and TosV2667F/TosV3064R produced no amplicons.

Interestingly, when HPV140F/HPV140R primers were applied, three bands with approximate amplicon sizes of 140 bp, 200 bp and 250 bp appeared in the electrophoretic gel (Figure 3) from DNA templates of the Broodstock population. From the DNA templates of wild caught prawns, only two bands with approximate amplicon sizes of 200 bp (4 samples) and 250 bp (5 samples) were observed in the electrophoretic gel. Since the 140 bp was the expected amplicon size for these primers, then three of these four bands (from DNA templates of prawns from the Broodstock population) were extracted from the gel, purified, cloned and sequenced. The sequencing results revealed that the transcripts had 100% (5e-42) nucleotide similarity to Australian Penaeus merguiensis densovirus, PmergDNV (DQ458718) that is currently called Penaeus merguiensis hepadensovirus (PmeDV) [24].

Discussion

Suppression Subtractive Hybridization

Sequenced clones from the lymphoid organ cDNA SSH libraries were clustered into several functional groups. These genes represented immune-related genes, synthesis, processing and regulation-related proteins, proteases and inhibitors, structural and cytoskeletal related proteins, energy and metabolism factors, and ribosomal proteins, which are all known to be involved in biological process and immune response against infectious pathogens and mostly play an important part in antiviral defence mechanisms (Table 2).

Sequence with homology to viral genes was not identified in the SSH libraries. There are several possible reasons why sequences with homology to viral genes was absent in the SSH libraries. Firstly, the abundance of viral transcripts in the tester cDNAs (Broodstock population) was too low to be expressed using SSH. The abundance of the viral cDNA should be more than 5-fold concentrated in the tester than in the driver or the fractional concentration of mRNA of the viral gene needs to be at least 0.1% of the total mRNA in order to be detected using

Citation: Rusaini, Owens L (2015) Expressed Genes in the Lymphoid Organ of Broodstock Banana Prawn (Penaeus merguiensis) Using Suppression Subtractive Hybridization. J Aquac Mar Biol 2(1): 00016. DOI: 10.15406/jamb.2015.02.00016
this method, because the completion of the second hybridization cannot be achieved if the target cDNA is too low [25,26]. Secondly, the poly (A) tail on the mRNA of the virus may be too short for this SSH technology to be successful. Genes in target should have at least four or more poly(A)s in the tail in order to be amplified with SSH technique, because the complementary DNA synthetic primer of this protocol contains four poly(T)s at the first 5’ end [27]. Finally, the virus causing these cellular changes may not have a poly(A) tail, therefore it could not be expressed in the SSH libraries [26]. It should be noted that ~40% of the genes of WSSV do not have a poly(A) tail but were expressed [28]. This is why the RT-PCRs for bunyavirus were attempted and further studies are necessary to determine which hypothesis is more likely (see below).

Table 2: Genes that may be putatively involved in a range of functional activities identified in cDNA suppression subtractive hybridization (SSH) libraries of the lymphoid organ (LO) of banana prawn, *Penaeus merguiensis*. Putative functions against pathogens are assigned based on the up regulation of the genes reported in the published work as indicated. Dash (-) indicates no data available in the published literature.

Genes	Putative functional activities	Viruses	Bacteria	Biological process
Heat shock protein (HSP)		Brenner and Wainberg [54]; de la Vega et al. [63]; Wang et al. [99]	Rungrassamee et al. [93]	Cimino et al. [60]; Jolesch et al. [70]
Gamma-interferon-inducible lysosomal thiold reductase (GILT)	Kongton et al. [73]	Kongton et al. [72]	Hastings and Cresswell [65]	
Anti-lipoplysaccharide factor (ALF)	Liu et al. [74]; de la Vega et al. [63]; Antony et al. [51]	de la Vega et al. [64]; Somboonwiwat et al. [95]	—	
Cathepsin		—	—	—
Metallothionein (MT)	Ilback et al. [69]	—	—	—
Calreticulin precursor (CRT)	Wang et al. [99]; Wang et al. [100]; Liu et al. [76]	Chen et al. [57]	Luana et al. [77]; Qiu and Michalk, [89]	
Eukaryotic translation elongation factor (eEF)	Kawaguchi et al. [71]	—	—	—
Eukaryotic translation initiation factor (eIF)	Wang et al. [101]	—	—	—
Protein disulfide isomerase (PDI)	Wang et al. [99]; Chongsatja et al. [59]; Prapavorarat et al. [88]	Vargas-Albores et al. [98]; Ren et al. [90]	Wilkinson and Gilbert, [104]	
Ubiquitin (Ubq)	Wang et al. [103]; Wang et al. [99]; Chen et al. [56]; Liu et al. [75]	—	—	—
Signal peptidase complex (SPC)	Paetzel et al. [82]	—	—	—
Cytocrome c oxidase (CO)	Leu et al. [74]; Prapavorarat et al. [88]; Liu et al. [76]; Pongsomboon et al. [86]	Pongsomboon et al. [87]; Nayak et al. [81]	Capaldi et al. [55]	
Mitochondrion	Mohankumar and Ramasamy [79]; Chen et al. [58]	—	—	—
NADH dehydrogenase	He et al. [67]; Leu et al. [74]; Prapavorarat et al. [88]	He et al. [66]	Sarkar et al. [94]; Kerscher et al. [72]	
Actin	Chongsatja et al. [59]; Leu et al. [74]; Wu et al. [106]; Pongsomboon et al. [86]	Zhang et al. [107]	Hild et al. [68]	

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) Amplification with Bunyavirus Primers and PCR Amplification with Parvovirus Primers

The possibility of the viral aetiology of the spheroids in *P. merguiensis* due to virus with no poly(A) tail, was investigated using primers designed from related-genus Phlebo virus of family Bunyaviridae. Bunyaviral genome comprises negative-sense tripartite single-stranded RNA (ssRNA) and the viral mRNAs do not have a poly (A) tail [29,30]. In addition, wild and farmed *P. monodon* and *P. japonicus* were naturally infected with Mourilyan virus (MoV) [31] and a quite broad host range may have been infected with this virus (Cowley, pers. commun.). However, the lack of positive results showed that these lymphoid organ changes were unlikely to be associated with bunyaviruses. Hepatopancreatic parvovirus 140 (HPV140) primers were then used to amplify the suspected viral genomes which produced interesting results. This suggested that the formation of spheroid

Citation: Rusaini, Owens L (2015) Expressed Genes in the Lymphoid Organ of Broodstock Banana Prawn (*Penaeus merguiensis*) Using Suppression Subtractive Hybridization. | Aquac Mar Biol 2(1): 00016. DOI: 10.15406/jamb.2015.02.00016
cells in the lymphoid organ of the hatchery prawns was related to PmeDV infection and these cellular changes may be formed as defensive response against this viral infection. The absence of viral (PmeDV) transcripts from cDNA SSH libraries is most likely due to low viral load in the LO of the tested population. The presence of only four positive samples on the PCR amplification suggested that in chronically infected prawns, either PmeDV was undetected due to low viral load in the remaining samples or this virus has been eliminated during spheroid cell development by an unknown mechanism [32]. Hasson et al. [33] who used in situ hybridization in the chronic phase of viral infection believed that rapid development of massive spheroid cells within the LO only contained low grade to moderate number of virions in infected foci. According to Tang and Lightner [34], HPV is an enteric virus targeting hepatopancreatic and intestinal cells of penaeid prawns. Thus, PmeDV could be an enteric virus that spills over into the open circulatory system of all systemic tissues including the LO of the prawns. Indeed, systemic circulating PmeDV has been found in the mud crab, Scylla serrata [35]. In addition, another reported parvovirus of penaeid prawns, lymphoid alarv-like virus (LPV) that was found in P. merguiensis, P. monodon and P. esculentus also infected systemic tissues in duding antennal gland, nerve cord and lymphoid organ. Based on the molecular evidence presented here and the principle of Ockham’s razor (the law of parsimony), it is highly probable that LPV recorded by Owens et al. [9] was indeed systemic PmeDV.

Furthermore, the formation of spheroids within the lymphoid organ has been detected in many naturally or experimentally infected penaeid species with viral diseases (Rusaini and Owens, 2010). These viruses included LPV [9], lymphoid organ vacuolization virus (LOVV) [36], rhabdovirus of penaeid shrimp (RPS) [37], lymphoid organ virus (LOV)/GAV [38,39] and SMV [40]. The spheroid cell formation has also been implicated to be associated with YHV [41,42] TSV [43], WSSV [44,45,46], infectious myonecrosis virus (IMNV) [47], Mourilyan virus (MoV) [23,48] and Laem-Singh virus (LSNV) [49].

To conclude, the massive development of spheroid cells in the lymphoid organ of P. merguiensis from the broodstock population seems most likely to be due to defence mechanism to viral (PmeDV) infection. As a result, the health status of these two populations of banana prawn was remarkably different causing differential gene expression between populations, with some genes being induced in the Broodstock population. The up-regulation of these genes implicated their involvement in the immune responses. All in all, the current investigation has provided some valuable evidence on the up regulated genes in the lymphoid organ that may play crucial roles in viral defence responses in penaeid prawns. This could be used for further research on the host-viral interaction leading to a new immune-intervention approach that may help to circumvent the catastrophe of viral diseases in penaeid prawn industry.

Acknowledgments

The authors would like to thank Dr. Kathy La Fauce for reading the manuscript and offering valuable suggestions on the bench work. We also acknowledge northern Queensland prawn farmers for their excellent cooperation in supplying P. merguiensis Broodstock for this research. This work partly supported by Graduate Research Scheme (GRS) Grant 2010 Faculty of Medicine, Health and Biomolecular Sciences, James Cook University. Rusaini was a recipient of Australian Development Scholarship (ADS) Program from Australian Agency for International Development (AusAID).

References

1. Flegel TW, Lightner DV, Lo CF, Owens L (2008) Shrimp diseases control: past, present and future. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP (Eds), Diseases in Asian Aquaculture. Vol. VI. Fish Health Section, Asian Fisheries Society, Manila.
2. Walker PJ, Mohan CV (2009) Viral disease emergence in shrimp aquaculture: Origins, impact and the effectiveness of health management strategies. Rev Aquac 1 (2): 125-154.
3. Chong YC, Loh H (1984) Hepatopancreas chlamidial and parvoviral infections of farmed marine prawns in Singapore. Sing Vet J 9: 51-56.
4. Lightner DV, Redman RM (1985) A parvo-like virus disease of penaeid shrimp. J Invertebr Pathol 5: 47-53.
5. Roubal FR, Paynter JL, Lester RG (1989) Electron microscopic observation of hepatopancreatic parvo-like virus (HPV) in the penaeid prawn, Penaeus merguiensis de Man, from Australia. J Fish Dis 12: 199-203.
6. Tang KFJ, Pantoja CR, Lightner DV (2008) Nucleotide sequence of a Madagascan hepato pancreatic parvovirus (HPV) and comparison of genetic variation among geographic isolates. Dis Aquat Organ 80(2): 105-112.
7. La Fauce KA, Elliman J, Owens L (2007) Molecular characterisation of hepatopancreatic parvovirus (PmergDNV) from Australian Penaeus merguiensis. Virology 362(2): 397-403.
8. La Fauce KA, Layton R, Owens L (2007) TaqMan real-time PCR for detection of hepatopancreatic parvovirus from Australia. J Virol Methods 140(1-2): 10-16.
9. Owens L, Beer SD, Smith J (1991) Lymphoidal parvovirus-like particles in Australian penaeid prawns. Dis Aquat Org 11: 129-134.
10. Wang YT, Liu W, Seah JN, Lam CS, Xiang JL, Kozh V, Kwang J (2002) White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Dis Aquat Organ 52(3): 249-259.
11. Owens L, McElnea C, Snape N, Harris L, Smith M (2003) Prevalence and effect of spawner-isolated mortality virus on the hatchery phases of Penaeus monodon and P. merguiensis in Australia. Dis Aquat Organ 53(2): 101-106.
12. Spann KM, Donaldson RA, Cowley JA, Walker PJ (2000) Differences in the susceptibility of some penaeid prawn species to gill-associated virus (GAV) infection. Dis Aquat Organ 42(3): 221-225.
13. Anggraeni MS, Owens L (2000) The haemoctytic origin of lymph organ organ spheroid cells in the penaeid prawn P. merguiensis. Dis Aquat Organ 40(2): 85-92.
14. Anggraeni MS, Owens L (2000) The haemoctytic origin of lymph organ spheroid cells in the penaeid prawn P. merguiensis. Dis Aquat Organ 40(2): 85-92.
15. Mai WJ, Hu CQ (2009) Molecular cloning, characterization, expression and antibacterial analysis of a lysozyme homologue from Feneropenaeus merguiensis. Mol Biol Rep 36(6): 1587-1595.
16. Phongdara A, Wanna W, Chatigeat W (2006) Molecular cloning and expression of caspase from white shrimp P. merguiensis. Aquaculture 252: 114-120.
17. Rittidach W, Paijit N, Utarabhand P (2007) Purification and
characterization of a lectin from the banana shrimp Pennerpeneaus merguiensis hemolymph. Biochim Biophys Acta 1770(1): 106-114.
18. Loongyai W, Avarre JC, Cerutti M, Lubzens E, Chotigeat W (2007) Isolation and functional characterization of a new shrimp ovarian peritrophin with antimicrobial activity from Pennerpeneaus merguiensis. Mar Biotechnol (NY) 9(5): 624-637.
19. Loongyai W, Phongdara A, Chotigeat W (2007b) Cloning and expression of a TCTP homolog from the ovaries of banana prawn. Mar Biol 150: 455-462.
20. Wonglapwsuan M, Phongdara A, Chotigeat W (2009) Dynamic changes in gene expression during vitellogenic stages of the white shrimp: Pennerpeneaus merguiensis de Man. Aquac Res 40: 633-643.
21. Wonglapwsuan M, Miyazaki T, Loongyai W, Chotigeat W (2010) Characterization and biological activity of the ribosomal protein L10a of the white shrimp: Pennerpeneaus merguiensis de Man during vitellogenesis. Mar Biotechnol 12(2): 230-240.
22. Bell TA, Lightner DV (1988) A Handbook of Normal Penaeid Shrimp Histology. The World Aquaculture Society, Baton Rouge, Louisiana.
23. Cowley JA, McCulloch RJ, Rajendran KV, Cadogan LC, Spann KM, et al (2005) RT-nested PCR detection of Mournilyan virus in Australian Penaeus monodon and its tissue distribution in healthy and moribund prawns. Dis Aquat Organ 66(2): 91-104.
24. Cotmore SE, Aghbandje-McKenna M, Chiorini JN, Mukha DV, Pintel DJ, et al (2014) The family Paroviridae. Arch Virol 159(5): 1239-1247.
25. Ji W, Wright MB, Cal I, Flament A, Lindpaintner K (2002) Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics 3: 12.
26. Wang Z, Brown DD (1991) A gene expression screen. Proc Natl Acad Sci USA 88(24): 11505-11509.
27. Rusaini, Ariel E, Burgess GW, Owens L (2013) Investigation of an idiopathic lesion in red claw crayfish Cherax quadricarinatus using suppression subtractive hybridization. J Virol Microbiol (2013): DOI: 10.5171/2013.3.69032.
28. Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AH, et al. (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78(20): 11360-11370.
29. Elliott RM (2008) Bunyaviruses: General Features. In: Mahy BWM, van Regenmortel MHV (Eds.), Encyclopedia of Virology (Third Edition). Academic Press, Oxford, pp. 390-399.
30. van Regenmortel MHV, Faquet CM, Bishop DHL, Carstens EB, Estes MK, et al. (2004) Virus Taxonomy: Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego.
31. Cowley JA, McCulloch RJ, Spann KM, Cadogan LC, Walker PJ (2005b) Preliminary molecular and biological characterization of Mourilyan virus (MoV): A new bunya-related virus of penaeid prawns. In: Walker P, Lester R, Bondad-Reantaso MG (Eds.), Diseases in Asian Aquaculture V. Fish Health Section, Asian Fishery Society, Manila, pp. 113-124.
32. Hasson KW, Lightner DV, Mohney LL, Redman RM, White BL, et al. (1995) Taura syndrome in Penaeus vannamei: Demonstration of a viral etiology. Dis Aquat Org 23: 115-126.
33. Rodrigues J, Bayot B, Amano Y, Panchana F, de Blas I, et al. (2003) White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in Ecuador with emphasis on histopathology and ultrastructure. J Fish Dis 26(8): 439-450.
34. Rodrigues J, Ruiz J, Mauldonado M, Echeverria F (2012) Immunodetection of hemocytes, perineids and α2-macroglobulin in the lymphoid organ of white spot syndrome virus infected shrimp. Microbiol Immunol 56(8): 562-571.
35. Wu JL, Muroga K (2004) Apoptosis does not play an important role in the resistance of ‘immune’ Penaeus japonicus against white spot syndrome virus. J Fish Dis 27(1): 15-21.
36. Tang XF, Lightner DV (2011) Duplex real-time PCR for detection and quantification of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV) in Penaeus monodon. Dis Aquat Organ 93(3): 191-198.
37. Owens L, Liessmann L, La Fauce K, Nguyen T, Zeng C (2010) Intramacular bacilliform virus and hepatopancreatic parvovirus (PmernDV) in the mud crab Scylla serrata (Forskål) of Australia. Aquaculture 310: 47-51.
38. Bonami JR, Lightner DV, Redman RM, Poulos BT (1992) Partial characterization of a togavirus (LOV) associated with histopathological changes of the lymphoid organ of penaeid shrimps. Dis Aquat Organ 14: 145-152.
39. Nadala ECB, Lu Y, Loh PC, Brock JA (1992) Infection of Penaeus stylirostris (Boone) with a rhodoviridus isolated from Penaeus spp. Gyobyo Kenkyu 27: 143-147.
40. Spann KM, Cowley JA, Walker PJ, Lester RJG (1997) A yellow-head-like virus from Penaeus monodon cultured in Australia. Dis Aquat Organ 27: 141-148.
41. Boonyaratpaisal S, Supamattaya K, Kasornchandra J, Direksurasom S, Anpanpanthanpong U, Chantanachookin C (1993) Non-occluded baculio-like virus, the causative agent of yellow head disease in the black tiger shrimp (Penaeus monodon). Gyobyo Kenkyu 20(3): 103-109.
42. Chantanachookin C, Boonyaratpaisal S, Kasornchandra J, Direksurasom S, Ekpanpanthanpong U, et al. (1993) Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease. Dis Aquat Org 17: 145-157.
43. Hasson KW, Lightner DV, Poulos BT, Redman RM, White BL, et al. (1995) Taura syndrome in Penaeus vannamei: Demonstration of a viral etiology. Dis Aquat Org 23: 115-126.
44. Rodrigues J, Bayot B, Amano Y, Panchana F, de Blas I, et al. (2003) White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in Ecuador with emphasis on histopathology and ultrastructure. J Fish Dis 26(8): 439-450.
45. Rodrigues J, Ruiz J, Mauldonado M, Echeverria F (2012) Immunodetection of hemocytes, perineids and α2-macroglobulin in the lymphoid organ of white spot syndrome virus infected shrimp. Microbiol Immunol 56(8): 562-571.
46. Wu JL, Muroga K (2004) Apoptosis does not play an important role in the resistance of ‘immune’ Penaeus japonicus against white spot syndrome virus. J Fish Dis 27(1): 15-21.
47. Tang XF, Pantoja CR, Poulos BT, Redman RM, Lightner DV (2005) In situ hybridization demonstrates that Litopenaeus vannamei, L. stylirostris and Penaeus monodon are susceptible to experimental infection with infectious myonecrosis virus (IMNV). Dis Aquat Org 63(2-3): 261-265.
48. Rajendran KV, Cowley JA, McCulloch RJ, Walker PJ (2006) A TaqMan real-time RT-PCR for quantifying Mourilyan virus infection levels in penaeid shrimp tissues. J Virol Methods 137(2): 261-265.
49. Sritunyalucksana K, Apisawetakan S, Boon-nat A, Withyachumnarnkul B, Flegel TW (2006) A new RNA virus found with antimicrobial activity from Fenneropenaeus stylirostris and Penaeus monodon affected by yellow head disease. Dis Aquat Org 17: 145-157.
50. Nadala ECB, Lu Y, Loh PC, Brock JA (1992) Infection of Penaeus stylirostris (Boone) with a rhodoviridus isolated from Penaeus spp. Gyobyo Kenkyu 27: 143-147.
50. Amiard JC, Amiard-Triquet C, Banka S, Pellerin J, and Rainbow PS (2006) Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76(2): 160-202.

51. Antony SP, Philip R, Joseph V, Singh ISB (2011) Anti-lipopolysaccharide factor and crustin-III, the anti-white spot virus peptides in Penaeus monodon: Control of viral infection by up-regulation. Aquaculture 319(1-2): 11-17.

52. Aoki H, Ahsan MN, Watabe S (2003) Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B Biochem Mol Biol 134(4): 681-694.

53. Boulsen S, Monnier A, Le Breton M, Morales J, Gornier P, et al. (2003) Sea urchin elongation factor 1d (EF1d) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase. Cell Mol Life Sci 60(10): 2178-2188.

54. Brenner BG, Wainberg Z (2001) Heat shock proteins: Novel therapeutic tools for HIV-infection? Expert Opin Biol Ther 1(1): 67-77.

55. Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726(2): 135-148.

56. Chen AJ, Wang S, Zhao XF, Yu QX, Wang JX (2011) Enzyme E2 from Chinese white shrimp inhibits replication of white spot syndrome virus and ubiquitinates its RING domain proteins. J Virol 85(16): 8069-8079.

57. Chen FY, Liu HP, Bo J, Ren HL, Wang KJ (2010) Identification of genes differentially expressed in hemocytes of Scylla paramamosain in response to lipopolysaccharide. Fish Shellfish Immunol 28(1): 167-177.

58. Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, et al. (2011) White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J Virol 85(24): 12919-12928.

59. Chongsatja PO, Bourchookarn A, Lo CE, Thongboonkerd V, Krittanai C (2007) Proteomic analysis of differentially expressed proteins in hemocytes of Penaeus vannamei upon Taura syndrome virus infection. Proteomics 7(19): 3592-3601.

60. Cimino EJ, Owens L, Bromage E, Anderson TA (2002) A newly developed ELISA showing the effect of environmental stress on immunity and disease? Curr Opin Immunol 14(1): 32-40.

61. Dalbey RE, Lively MO, Bron S, van Dijl JM (1997) The chemistry and enzymology of the type I signal peptides. Protein Sci 6(6): 1129-1138.

62. de la Vega E, Hall MR, Degnan BM, Wilson KJ (2006) Short-term hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of gill associated virus (GAV). Aquaculture 253(1-4): 82-90.

63. de la Vega E, O'Leary NA, Shockly JE, Robalino J, Payne C, et al. (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LwALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol Immunol 45(7): 1916-1925.

64. Hastings KT, Cresswell P (2011) Disulfide reduction in the endocytic pathway: immunological functions of gamma-interferon-inducible lysosomal thiold reductase. Antioxid Redox Signal 15(3): 657-668.

65. He N, Liu H, Xu X (2004) Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge. Fish Shellfish Immunol 17(2): 121-128.

66. He N, Qin Q, Xu X (2005) Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res 66(3): 39-45.

67. Hild G, Bugyi B, Nyitrai M (2010) Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 67(10): 609-629.

68. Ilback NG, Glynn AW, Wikberg L, Netzel E, Lindh U (2004) Metallothionein is induced and trace element balance changed in target organs of a common viral infection. Toxicology 199(2-3): 241-250.

69. Jolesch A, Elmer K, Bendz H, Issels RD, Noessner E (2012) Hsp70, a messenger from hyperthermia for the immune system. Eur J Cell Biol 91(1): 48-52.

70. Kawaguchi Y, Bruni R, Roizman B (1997) Interaction of herpes simplex virus 1 alpha regulatory protein ICPO with elongation factor 1 delta: ICPO affects translational machinery. J Virol 71(2): 1019-1024.

71. Kerscher S, Drose S, Zickermann V, Brandt U (2008) The three families of respiratory NADH dehydrogenases. Results Prob Cell Differ 45: 185-222.

72. Kongton K, Phongdara A, Tongamanut-Srihatworn M, Wann W (2011) Molecular cloning and expression analysis of the interferon-gamma-inducible lysosomal thiol reductase gene from the shrimp Penaeus monodon. Mol Biol Rep 38(5): 3463-3470.

73. Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, et al. (2007) Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics 8: 120.

74. Liu H, Jiravanichpaisal P, Soderhall I, Ceremius L, Soderhall K (2006) Anti-lipopolysaccharide factor Interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J Virol 80(21): 10365-10371.

75. Liu HP, Chen RY, Zhang QX, Peng H, Wang KJ (2011) Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. Dev Comp Immunol 35(7): 716-724.

76. Luana W, Li F, Wang B, Zhang X, Liu Y, et al. (2007) Molecular characteristics and expression analysis of calreticulin in Chinese shrimp Fenneropenaeus chinensis. Comp Biochem Physiol B Biochem Mol Biol 147(3): 482-491.

77. Mihazo A, Beugnet A, Volta V, Biffo S (2009) Eukaryotic initiation factor 6 mediates a continuum between 60S ribosomal biogenesis and translation. EMBO Rep 10(5): 459-465.

78. Mohankumar K, Ramasamy P (2006) Activities of membrane bound phosphatases, transaminases and mitochondrial enzymes in white spot syndrome virus infected tissues of Penaeus indicus. Virus Res 118(1-2): 130-135.

79. Mort JS, Buttle DJ (1997) Cathepsin B. Int J Biochem Cell Biol 29: 715-728.

80. Nayak S, Singh SK, Ramahah N, Sreepada RA (2010) Identification of upregulated immune-related genes in Vibrio harveyi challenged Peneaus monodon postlarvae. Fish Shellfish Immunol 29(3): 544-549.

81. Paetzel M, Karla A, Strynadka NCJ, Dalbey RE (2002) Signal
Peptidases. Chem Rev 102(12): 4549-4580.

Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, et al. (2007) The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26(1): 41-50.

Picard M, Taivassalo T, Gouspillou G, Hepple RT (2011) Mitochondria: isolation, structure and function. J Physiol 589(18): 4413-4421.

Pickart CM, Eddins MJ (2004) ubiquitin: Structures, functions, mechanisms. Biochim Biophys Acta 1695(1-3): 55-72.

Pongsomboon S, Tang S, Boonda S, Aoki T, Hiroto I, et al. (2011) A cDNA microarray approach for analyzing transcriptional changes in Penaeus monodon after infection by pathogens. Fish Shellfish Immunol 30 (1): 439-444.

Pongsomboon S, Wongpanya R, Tang S, Chaloriruk A, Tassanakajon A (2008) Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 25(5): 485-493.

Prapavorarat A, Pongsomboon S, Tassanakajon A (2010) Identification of genes expressed in response to yellow head virus infection in the black tiger shrimp, Penaeus monodon, by suppression subtractive hybridization. Dev Comp Immunol 34(6): 611-617.

Qiu Y, Michalak M (2009) Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 41(3): 531-538.

Ren Q, Zhou J, Sun SS, Kang CJ, Zhao XF, et al. (2011) Molecular cloning and expression pattern analysis of two novel disulfide isomerase in shrimp. Comp Biochem Physiol C Toxicol Pharmacol 153(3): 301-309.

Ris B, Ratan SI, Clark BF, Merrick WC (1990) Eukaryotic protein elongation factors. Trends Biochem Sci 15(11): 420-424.

Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22: 81-113.

Runggassamee W, Leelatanawit R, Jiravanichpaisal P, Klinbunga S, Karounuthaisiri N (2011) Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Dev Comp Immunol 34(10): 1082-1089.

Sarkar M, Das S, Bandopadhyaya A, Ray K, Chaudhuri K (2005) Upregulation of human mitochondrial NADH dehydrogenase subunit 5 in intestinal epithelial cells is modulated by Vibrio cholerae pathogenesis. FEBS Lett 579(16): 3449-3460.

Somboonwiwat K, Bachere E, Rimphanitchoyakit V, Tassanakajon A (2008) Localization of anti-lipopolysaccharide factor (ALFPm3) in tissues of the black tiger shrimp, Penaeus monodon, and characterization of its binding properties. Dev Comp Immunol 32(10): 1170-1176.