Abstract

In a study on the structure–dependency of the total π-electron energy from 1972, Trinajstić and one of the present authors have shown that it depends on the sums $\sum_{v \in V} d(v)^2$ and $\sum_{v \in V} d(v)^3$, where $d(v)$ is the degree of a vertex v of the underlying molecular graph G. The first sum was later named first Zagreb index and over the years became one of the most investigated graph–based molecular structure descriptors. On the other hand, the second sum, except in very few works on the general first Zagreb index and the zeroth–order general Randić index, has been almost completely neglected. Recently, this second sum was named forgotten index, or shortly the F-index, and shown to have an exceptional applicative potential. In this paper we examine the trees extremal with respect to the F-index.
1 Introduction

The first and the second Zagreb indices, introduced in 1972 [16], are among the oldest graph-based molecular structure descriptors, so-called topological indices [1, 8, 11]. For a graph G with a vertex set $V(G)$ and an edge set $E(G)$, these are defined as

$$M_1(G) = \sum_{v \in V(G)} d(v)^2 \quad \text{and} \quad M_2(G) = \sum_{uv \in E(G)} d(u)d(v),$$

where the degree of a vertex $v \in V(G)$, denoted by $d(v)$, is the number of the first neighbors of v.

Over the years these indices have been thoroughly examined and used to study molecular complexity, chirality, ZE-isomerism and hetero-systems. More about their physico-chemical applications and mathematical properties can be found in [10, 11, 24] and [6, 13, 14, 21, 30], respectively, as well as in the references cited therein. The sum of squares of vertex degrees was also independently studied in quite a few mathematical papers [2–5, 7, 25].

In an early work on the structure–dependency of the total π-electron energy [16], beside the first Zagreb index, it was indicated that another term on which this energy depends is of the form

$$F(G) = \sum_{v \in V(G)} d(v)^3.$$

For unexplainable reasons, the above sum, except (implicitly) in a few works about the general first Zagreb index [19, 20] and the zeroth–order general Randić index [17], has been completely neglected. Very recently, Furtula and one of the present authors succeeded to demonstrate that $F(G)$ has a very promising applicative potential [9]. They proposed that $F(G)$ be named the forgotten topological index, or shortly the F-index.

Before the publication of the paper [9], the F-index was not examined as such. On the other hand, in some earlier studies on degree–based graph invariants, it appears as a special case.

The general first Zagreb index of a graph G is defined as

$$M^\alpha_1(G) = \sum_{v \in V(G)} d(v)^\alpha = \sum_{uv \in E(G)} [d(u)^{\alpha-1} + d(v)^{\alpha-1}], \quad \text{for } \alpha \in \mathbb{R}, \alpha \neq 0, \alpha \neq 1,$$
and its first occurrence in the literature seems to be the work \[19\] by Li and Zhao from 2004. Observe that \(M_1^3(G) = F(G)\). In \[19\] the trees with the first three smallest and largest general first Zagreb index were characterized. In \[19,20\], among other things, it was shown that for \(\alpha > 1\), the star \(S_n\) is the tree on \(n\) vertices with maximal \(M_1^\alpha\) whereas the path \(P_n\) is the tree on \(n\) vertices with minimal \(M_1^\alpha\)-value. Needless to say that these results directly apply to the \(F\)-index (\(\alpha = 3\)). More results and information about the general first Zagreb index can be found in \[12,17,19,20,22,28,29\].

The Randić (or connectivity) index was introduced by Randić in 1975 \[27\] and is defined as

\[
R = R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d(u) \cdot d(v)}}.
\]

Later in 1977, Kier and Hall \[18\] have introduced the so-called zeroth–order Randić index

\[
0R = 0R(G) = \sum_{v \in V(G)} d(v)^{-\frac{1}{2}},
\]

which was generalized in 2005 by Li and Zheng \[20\]. It was named the zeroth–order general Randić index and was defined as

\[
0R_\alpha = 0R_\alpha(G) = \sum_{v \in V(G)} d(v)^\alpha
\]

for any real number \(\alpha\). Evidently, \(0R_3(G) = F(G)\).

In \[17\] graphs of maximal degree at most 4 (molecular graphs), with given number of vertices and edges, and with extremal (maximum or minimum) zeroth–order general Randić index were characterized. This, again, in the special case \(\alpha = 3\) renders results for the \(F\)-index.

Here, we extend the work on trees with extremal values of \(F\)-index, by considering trees with bounded maximal degree. Since the paths are the trees with minimal \(F\)-index also in this case, we consider here the characterization of trees with bounded maximal degree that have maximal \(F\)-value.

In the sequel we introduce notation that will be used in the rest of the paper. For \(u, v, x, y \in V(G)\) such that \(uv \in E(G), xy \notin E(G)\), we denote by \(G - uv\) the graph that is obtained by deleting the edge \(uv\) from \(G\) and by \(G + xy\) the graph that is obtained by adding the edge \(xy\) to \(G\). By \(\Delta = \Delta(G)\) we denote the maximal
degree of G. A sequence $D = [d_1, d_2, \ldots, d_n]$ is graphical if there is a graph whose vertex degrees are d_i, $i = 1, \ldots, n$. If in addition $d_1 \geq d_2 \geq \cdots \geq d_n$, then D is a degree sequence. Furthermore, the notation $D(G) = [x_1^{n_1}, x_2^{n_2}, \ldots, x_t^{n_t}]$ means that the degree sequence is comprised of n_i vertices of degree x_i, where $i = 1, 2, \cdots, t$.

A tree is said to be rooted if one of its vertices has been designated as the root. In a rooted tree, the parent of a vertex is the vertex adjacent to it on the path to the root; every vertex except the root has a unique parent. A vertex is a parent of a subtree, if this subtree is attached to the vertex. A child of a vertex v is a vertex of which v is the parent.

2 Results

First, we characterize trees with maximal degree at most Δ that have maximal F-index.

2.1 Trees with bounded maximal degree

Theorem 2.1. Let T be a tree with maximal F-index among the trees with n vertices and maximal degree at most Δ. Then the following holds:

(i) If $(n - 2) \mod (\Delta - 1) = 0$, then T contains $\frac{n - 2}{\Delta - 1}$ vertices of degree Δ and $\frac{n(\Delta - 2) + 2}{\Delta - 1}$ vertices of degree 1.

(ii) Otherwise, T contains $\frac{n - 1 - x}{\Delta - 1}$ vertices of degree Δ, $\frac{(n - 1)(\Delta - 2) + x}{\Delta - 1}$ vertices of degree 1 and one vertex of degree x, where x is uniquely determined by $2 \leq x \leq \Delta - 1$ and $(n - 1 - x) \mod (\Delta - 1) = 0$.

Proof. We may assume that T is a rooted tree, whose root is a vertex with degree Δ. First, we show that T is comprised of vertices of degrees Δ and 1, and in some cases of one additional vertex u, with $2 \leq d(u) \leq \Delta - 1$. Assume that this is not true and that T has more than one such vertex. Denote by V_d the set of all vertices of T whose degrees are different from Δ and 1. We assume that for the degrees of the vertices of V_d the order $d(u) \geq \cdots \geq d(v)$ holds. Let w be a child vertex of v.

Delete the edge vw and add the edge uw to T, obtaining a tree T'. After this transformation, the degree of u increases by one, while the degree of v decreases by one, and the degree set V_d changed into V'_d. It holds that

$$F(T') - F(T) = (d(u) + 1)^3 - d(u)^3 + (d(w) - 1)^3 - d(w)^3 > 0.$$

It holds that $|V'_d| \leq |V_d|$, with strict inequality if $d(u) = \Delta - 1$ or $d(v) = 2$. If $|V'_d| \geq 2$ we choose from V'_d a vertex with maximal and a vertex with minimal degree, and we repeat the above operation, obtaining a tree with larger F-index. We proceed on iteratively with the same type of transformation until the transformed V_d has cardinality 1 or 0, and thus obtain a contradiction to the assumption that T has more that one vertex with degree different from 1 and Δ. It follows that T has a degree sequence $[\Delta^{n\Delta}, 1^{n_1}]$ or $[\Delta^{n\Delta}, x^1, 1^{n_1}]$, $2 \leq x \leq \Delta - 1$.

Observe that any transformation on T will result in a tree with $|V_d| > 1$ or will disconnect T. Thus, we conclude that T must have one of the two above presented degree sequences.

Next, with respect to the cardinality of $|V_d|$, we determine the parameters n_Δ, n_1, and x.

Case 1. $|V_d| = 0$. In this case the degree sequence of T is $[\Delta^{n\Delta}, 1^{n_1}]$ where the equations

$$\sum_{i=1}^{\Delta} n_i = n_\Delta + n_1 = n \quad \text{and} \quad \sum_{i=1}^{\Delta} i n_i = \Delta n_\Delta + n_1 = 2(n - 1)$$

hold. The above equations have the integer solution

$$n_\Delta = \frac{n - 2}{\Delta - 1}, \quad n_1 = \frac{n(\Delta - 2) + 2}{\Delta - 1},$$

for $(n - 2) \mod (\Delta - 1) = 0$.

Case 2. $|V_d| = 1$. Here the degree sequence of T is $[\Delta^{n\Delta}, x^1, 1^{n_1}]$, with

$$\sum_{i=1}^{\Delta} n_i = n_\Delta + n_1 + 1 = n \quad \text{and} \quad \sum_{i=1}^{\Delta} i n_i = \Delta n_\Delta + n_1 + x = 2(n - 1).$$

The above equations give the integer solution

$$n_\Delta = \frac{n - 1 - x}{\Delta - 1}, \quad n_1 = \frac{(n - 1)(\Delta - 2) + x}{\Delta - 1},$$

for $(n - 1 - x) \mod (\Delta - 1) = 0$. \qed
As straightforward consequence of Theorem 2.1, we obtain the maximal value of the F-index for trees with maximal degree Δ.

Corollary 2.1. Let T be a tree with maximal F-index among the trees with n vertices and maximal degree at most Δ. Then,

(i) if $(n - 2) \mod (\Delta - 1) = 0$,

$$F(T) = \Delta(\Delta + 1)(n - 2) + 2(n - 1);$$

(ii) otherwise,

$$F(T) = (\Delta^2 + \Delta + 2)(n - 1) - (\Delta^2 + \Delta + 1)x + x^3,$$

where x is uniquely determined by $2 \leq x \leq \Delta - 1$ and $n - 1 - x \mod (\Delta - 1) = 0$.

Proof. If $(n - 2) \mod (\Delta - 1) = 0$, by Theorem 2.1, T has degree sequence $[\Delta^n, 1^n]$, where $n_\Delta = (n - 2)/(\Delta - 1)$ and $n_1 = (n(\Delta - 2) + 2)/(\Delta - 1)$. Thus,

$$F(T) = \Delta^3 \frac{n - 2}{\Delta - 1} + \frac{n(\Delta - 2) + 2}{\Delta - 1} = \Delta(\Delta + 1)(n - 2) + 2(n - 1).$$

Otherwise, T has degree sequence $[\Delta^n, x, 1^n]$, where $n_\Delta = (n - 1 - x)/(\Delta - 1)$, $n_1 = ((n - 1)(\Delta - 2) + x)/(\Delta - 1)$. Then,

$$F(T) = \Delta^3 \frac{n - (x + 1)}{\Delta - 1} + \frac{(n - 1)(\Delta - 2) + x}{\Delta - 1} + x^3$$

$$= \left(\frac{\Delta^3 + \Delta - 2}{\Delta - 1}n + (1 - \Delta^3)x - (\Delta^3 + \Delta - 2)\right) + x^3$$

$$= (\Delta^2 + \Delta + 2)(n - 1) - (\Delta^2 + \Delta + 1)x + x^3.$$

\[\square\]

2.2 Molecular trees

For the special case of molecular trees, i.e., $\Delta \leq 4$, we obtain the following result. Recall that such trees provide the graph representation of the so-called saturated hydrocarbons or alkanes [1,15] and are of major importance in theoretical chemistry.

Theorem 2.2. Let T be a molecular tree with maximal F-index among the trees with n vertices. Then the following holds:
• If $(n-2) \mod 3 = 0$, then T contains $\frac{n-2}{3}$ vertices of degree 4 and $\frac{2n+2}{3}$ vertices of degree 1. Its F-index is

$$F(T) = 22n - 42.$$

• Otherwise, T contains $\frac{n-1-x}{3}$ vertices of degree 4, $\frac{2(n-1)+x}{3}$ vertices of degree 1 and one vertex of degree x, where x is uniquely determined by $2 \leq x \leq 3$ and $(n-1-x) \mod 3 = 0$. Its F-index is

$$F(T) = 22(n-1) - 21x + x^3.$$

Proof. For $n = 2, 3, 4, 5$ the star S_n maximizes the F-index \[19\]. For $n = 6$ and $\Delta \leq 4$, the possible degree sequences of T are $(4, 2, 1, 1, 1, 1), (3, 3, 1, 1, 1, 1), (3, 2, 2, 1, 1, 1)$ and $(2, 2, 2, 1, 1)$. The first of these degree sequences corresponds to the largest F-index, $F(T)$. Thus, the corresponding degree sequences of T for $n = 2, 3, 4, 5, 6$ satisfy the theorem.

In the rest of the proof we assume that $n \geq 7$. First, we show that T has maximal degree $\Delta = 4$. A tree with maximal degree Δ we denote by T_Δ. By Corollary 2.1(i), $F(T_2) = 8n - 14$. Further, we distinguish between two case.

Case 1. $(n-2) \mod 2 = 0$.

By Corollary 2.1(i), we have that $F(T_3) = 14n - 26$. Since $(n-2) \mod 2 = 0$, it follows that $(n-2) \mod 3 \neq 0$, and by Corollary 2.1(ii), $F(T_4) = 22(n-1) - 21x + x^3$, where $x = 2$ or $x = 3$. For $n \geq 7$, $F(T_4) > F(T_3) > F(T_2)$ is satisfied.

Case 2. $(n-2) \mod 2 \neq 0$.

By Corollary 2.1(ii), $F(T_3) = 14(n-1) - 13x + x^3$, where $x = 2$ or $x = 3$.

Subcase 2.1. $(n-2) \mod 3 = 0$.

By Corollary 2.1(i), $F(T_4) = 22n - 42$. For $n \geq 7$ and $x = 2, 3$, it holds that $F(T_4) > F(T_3) > F(T_2)$.

Subcase 2.2. $(n-2) \mod 3 \neq 0$.

By Corollary 2.1(ii), $F(T_4) = 22(n-1) - 21x + x^3$. Again, a straightforward calculation yields that $F(T_4) > F(T_3) > F(T_2)$.

So, we have shown that for $n \geq 3, 4, 5$ the tree with maximal F-index has maximal degree $n - 1$, and for $n \geq 5$ it has maximal degree $\Delta = 4$. Setting $\Delta = 4$ in Theorem 2.1 and Corollary 2.1, we complete the proof.

We would like to note that the results of Theorem 2.2 coincide with the results of Theorem 2.2 in [17], pertaining to the zeroth–order general Randić index of a graph, when $\alpha = 3$ and $m = n - 1$.

In the sequel we present some computational results obtain by integer linear programming and by exhaustive computer search of trees with maximal F-index.

2.3 Computational results

Degree sequences of trees with bounded maximal degree and maximal $F(T)$ can be completely described by solving the integer linear programming problem in Lemma 2.1. We denote the number of vertices of tree T of degree i by n_i, $\forall i = 1, 2, \ldots, \Delta$ and the number of edges, connecting a vertex of degree i with a vertex of degree j, by m_{ij}.

Lemma 2.1. Let T be a tree with maximal F-index among all trees with n vertices and maximal degree Δ. Then, the trees with maximal F-index are completely described by solving the maximization problem

$$
\text{maximize } F = \sum_{i=1}^{\Delta} i^3 n_i \\
\text{subject to } \sum_{i=1}^{\Delta} n_i = n,
\sum_{i=1}^{\Delta} i n_i = 2(n - 1),
\sum_{i=2}^{\Delta-1} n_i \leq 1,
\sum_{j=1, j \neq i}^{\Delta} m_{ij} + 2m_{ii} = in_i, \quad 1 \leq i \leq \Delta,
0 \leq n_i \leq n - 1, \quad 1 \leq i \leq \Delta,
0 \leq m_{ij} \leq n - 2, \quad 1 \leq i, j \leq \Delta.
$$
For experimental proposes we first consider the molecular trees of orders \(n = 4, \ldots, 20 \). In this case, the previous integer linear programming model can be represented as follows.

\[
\begin{align*}
\text{maximize} & \quad F = n_1 + 8n_2 + 27n_3 + 64n_4 \\
\text{s. t.} & \quad n_1 + n_2 + n_3 + n_4 = n, \\
& \quad n_1 + 2n_2 + 3n_3 + 4n_4 = 2(n - 1), \\
& \quad n_2 + n_3 \leq 1, \\
& \quad -n_1 + m_{12} + m_{13} + m_{14} = 0, \\
& \quad -2n_2 + m_{12} + 2m_{22} + m_{23} + m_{24} = 0, \\
& \quad -3n_3 + m_{13} + m_{23} + 2m_{33} + m_{34} = 0, \\
& \quad -4n_4 + m_{14} + m_{24} + m_{34} + 2m_{44} = 0,
\end{align*}
\]

\(0 \leq n_i \leq n - 1, \quad 0 \leq m_{ij} \leq n - 2, \quad 1 \leq i \leq 4, \quad 1 \leq j \leq 4. \) (1)

The above integer linear program was implemented in Matlab [23], and run on 2.3 GHz Intel Core i5 processor with 4GB 1333 MHz DDR3 RAM. Beside the degree sequence that maximize the \(F \)-index, it gives only one corresponding tree. However, for a given degree sequence there usually exist several non-isomorphic trees with the same degree sequence. In view of this, the degree sequence as well as all corresponding trees were obtained by exhaustive computer search using the mathematical software Sage [26]. In the contrast to the integer linear program that gives a solution for \(n \) of order 1000000 and \(\Delta \leq 400 \) in less than a minute, the exhaustive computer search with Sage for \(n = 20 \) took several hours. On the other hand, due to the closed-form solutions in Theorem 2.1, we obtain the degree sequence that maximizes the \(F \)-index for arbitrary \(n \) and arbitrary \(\Delta \) in few milliseconds.

The experimental results for \(\Delta = 4 \) and \(\Delta = 5 \) are given in Tables 1 and 2 respectively, while their corresponding trees are given in Figures 1 and 2.
n	Sage	LP solution - Matlab	F
	$D(T)$	Non-zero variables	
4	$[3^3, 1^3]$	$n_1 \ n_3$ \ $m_{1,3}$	30
	1	3 \ 1	
5	$[4^4, 1^4]$	$n_1 \ n_4$ \ $m_{1,4}$	68
	1	4 \ 1	
6	$[4^4, 2^1, 1^4]$	$n_1 \ n_2 \ n_4$ \ $m_{1,2} \ m_{1,4} \ m_{2,4}$	76
	1	4 \ 1 \ 1 \ 1 \ 3 \ 1	
7	$[4^4, 3^1, 1^5]$	$n_1 \ n_3 \ n_4$ \ $m_{1,3} \ m_{1,4} \ m_{3,4}$	96
	1	5 \ 1 \ 1 \ 2 \ 3 \ 1	
8	$[4^2, 1^6]$	$n_1 \ n_4$ \ $m_{1,4} \ m_{4,4}$	134
	1	6 \ 2 \ 6 \ 1	
9	$[4^2, 2^1, 1^6]$	$n_1 \ n_2 \ n_4$ \ $m_{1,4} \ m_{2,4}$	142
	2	6 \ 1 \ 2 \ 6 \ 2	
10	$[4^2, 3^1, 1^7]$	$n_1 \ n_3 \ n_4$ \ $m_{1,3} \ m_{1,4} \ m_{3,4}$	162
	2	7 \ 1 \ 2 \ 1 \ 6 \ 2	
11	$[4^3, 1^8]$	$n_1 \ n_4$ \ $m_{1,4} \ m_{4,4}$	200
	1	8 \ 3 \ 8 \ 2	
12	$[4^3, 2^1, 1^8]$	$n_1 \ n_2 \ n_4$ \ $m_{1,4} \ m_{2,4} \ m_{4,4}$	208
	3	8 \ 1 \ 3 \ 8 \ 2 \ 1	
13	$[4^3, 3^1, 1^9]$	$n_1 \ n_3 \ n_4$ \ $m_{1,4} \ m_{3,4}$	228
	4	9 \ 1 \ 3 \ 9 \ 3	
14	$[4^4, 1^{10}]$	$n_1 \ n_4$ \ $m_{1,4} \ m_{4,4}$	266
	2	10 \ 4 \ 10 \ 3	
15	$[4^4, 2^1, 1^{10}]$	$n_1 \ n_2 \ n_4$ \ $m_{1,4} \ m_{2,4} \ m_{4,4}$	274
	6	10 \ 1 \ 4 \ 10 \ 2 \ 2	
16	$[4^4, 3^1, 1^{11}]$	$n_1 \ n_3 \ n_4$ \ $m_{1,4} \ m_{3,4} \ m_{4,4}$	294
	8	11 \ 1 \ 4 \ 11 \ 3 \ 1	
17	$[4^5, 1^{12}]$	$n_1 \ n_4$ \ $m_{1,4} \ m_{4,4}$	332
	3	12 \ 5 \ 12 \ 4	
18	$[4^5, 2^1, 1^{12}]$	$n_1 \ n_2 \ n_4$ \ $m_{1,4} \ m_{2,4} \ m_{4,4}$	340
	14	12 \ 1 \ 5 \ 12 \ 2 \ 3	
19	$[4^5, 3^1, 1^{13}]$	$n_1 \ n_3 \ n_4$ \ $m_{1,4} \ m_{3,4} \ m_{4,4}$	360
	17	13 \ 1 \ 5 \ 13 \ 3 \ 2	
20	$[4^6, 1^{14}]$	$n_1 \ n_4$ \ $m_{1,4} \ m_{4,4}$	398
	5	14 \ 6 \ 14 \ 5	

Table 1: Extremal molecular trees of order up to 20. First column: the order of a tree. Second column: the degree sequences that maximize the F-index and the number of corresponding trees, obtained by Sage. Third column: solutions of an integer linear programming problem with one realization of each degree sequence, obtained by Matlab. Fourth column: the value of the F-index.
Figure 1: Extremal molecular trees of order $n = 4, \ldots, 20$ with respect to the F-index.
n	Sage	LP solution - Matlab	F	
	$D(T)$	$\#T$	Non-zero variables	
4	$[3^1, 1^3]$	1	n_1 n_3 $m_{1,3}$ $m_{1,5}$	30
			3 1 3	
5	$[4^1, 1^4]$	1	n_1 n_4 $m_{1,4}$	68
			4 1 4	
6	$[5^1, 1^5]$	1	n_1 n_5 $m_{1,5}$	130
			5 1 5	
7	$[5^1, 2^1, 1^5]$	1	n_1 n_2 n_5 $m_{1,2}$ $m_{1,5}$ $m_{2,5}$	138
			5 1 1 1 4 1	
8	$[5^1, 3^1, 1^6]$	1	n_1 n_3 n_5 $m_{1,3}$ $m_{1,5}$ $m_{3,5}$	158
			6 1 1 2 4 1	
9	$[5^1, 4^1, 1^7]$	1	n_1 n_4 n_5 $m_{1,4}$ $m_{1,5}$ $m_{4,5}$	196
			7 1 1 3 4 1	
10	$[5^2, 1^8]$	1	n_1 n_5 $m_{1,5}$ $m_{5,5}$	258
			8 2 8 1	
11	$[5^2, 2^1, 1^8]$	1	n_1 n_2 n_5 $m_{1,5}$ $m_{2,5}$	266
			8 1 2 8 2	
12	$[5^2, 3^1, 1^9]$	2	n_1 n_3 n_5 $m_{1,3}$ $m_{1,5}$ $m_{3,5}$ $m_{5,5}$	286
			9 1 2 2 7 1 1	
13	$[5^2, 4^1, 1^{10}]$	2	n_1 n_4 n_5 $m_{1,4}$ $m_{1,5}$ $m_{4,5}$	324
			10 1 2 2 8 2	
14	$[5^3, 1^{11}]$	1	n_1 n_5 $m_{1,5}$ $m_{5,5}$	326
			11 3 11 2	
15	$[5^3, 2^1, 1^{11}]$	3	n_1 n_2 n_5 $m_{1,5}$ $m_{2,5}$ $m_{5,5}$	394
			11 1 3 11 2 1	
16	$[5^3, 3^1, 1^{12}]$	4	n_1 n_3 n_5 $m_{1,3}$ $m_{1,5}$ $m_{3,5}$ $m_{5,5}$	414
			12 1 3 2 10 1 2	
17	$[5^3, 4^1, 1^{13}]$	4	n_1 n_4 n_5 $m_{1,4}$ $m_{1,5}$ $m_{4,5}$	452
			13 1 3 1 12 3	
18	$[5^4, 1^{14}]$	2	n_1 n_5 $m_{1,5}$ $m_{5,5}$	514
			14 4 14 3	
19	$[5^4, 2^1, 1^{14}]$	7	n_1 n_2 n_5 $m_{1,2}$ $m_{1,5}$ $m_{2,5}$ $m_{5,5}$	522
			14 1 4 1 13 1 3	
20	$[5^4, 3^1, 1^{15}]$	8	n_1 n_3 n_5 $m_{1,3}$ $m_{1,5}$ $m_{3,5}$ $m_{5,5}$	542
			15 1 4 2 13 1 3	

Table 2: Extremal trees of order up to 20 and maximal degree $\Delta = 5$. First column: the order of a tree. Second column: the degree sequences that maximize the F-index and the number of corresponding trees, obtained by Sage. Third column: solutions of an integer linear programming problem with one realization of each degree sequence, obtained by Matlab. Fourth column: the value of the F-index.
Figure 2: Extremal trees of order $n = 4, 5, \cdots, 20$ and $\Delta = 5$ with respect to the F-index.

References

[1] A. T. Balaban, I. Motoc, D. Bonchev, O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983) 21–55.

[2] F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45–54.

[3] S. M. Cioabă, Sums of powers of the degrees of a graph, Discrete Math. 306 (2006) 1959–1964.

[4] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph, Kragujevac J. Math. 25 (2003) 31–49.

[5] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57–66.
[6] K. C. Das, I. Gutman, *Some properties of the second Zagreb index*, MATCH Commun. Math. Comput. Chem. **52** (2004) 103–112.

[7] D. de Caen, *An upper bound on the sum of squares of degrees in a graph*, Discrete Math. **185** (1998) 245–248.

[8] J. Devillers, A. T. Balaban (Eds.), *Topological indices and related descriptors in QSAR and QSPR*, Gordon & Breach, Amsterdam, 1999.

[9] B. Furtula, I. Gutman, *A forgotten topological index*, J. Math. Chem. **53** (2015) 1184–1190.

[10] B. Furtula, I. Gutman, M. Dehmer, *On structure–sensitivity of degree–based topological indices*, Appl. Math. Comput. **219** (2013) 8973–8978.

[11] I. Gutman, *Degree–based topological indices*, Croat. Chem. Acta **86** (2013) 351–361.

[12] I. Gutman, *An exceptional property of first Zagreb index*, MATCH Commun. Math. Comput. Chem. **72** (2014) 733–740.

[13] I. Gutman, K. C. Das, *The first Zagreb index 30 years after*, MATCH Commun. Math. Comput. Chem. **50** (2004) 83–92.

[14] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, *On Zagreb indices and coindices*, MATCH Commun. Math. Comput. Chem. **74** (2015) 5–16.

[15] I. Gutman, O. E. Polansky, *Mathematical concepts in organic chemistry*, Springer, Berlin, 1986.

[16] I. Gutman, N. Trinajstić, *Graph theory and molecular orbitals. Total π–electron energy of alternant hydrocarbons*, Chem. Phys. Lett. **17** (1971) 535–538.

[17] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, *On molecular graphs with smallest and greatest zeroth–order general Randić index*, MATCH Commun. Math. Comput. Chem. **54** (2005) 425–434.

[18] L. B. Kier, L. H. Hall, *The nature of structure–activity relationships and their relation to molecular connectivity*, Europ. J. Med. Chem. **12** (1997) 307–312.

[19] X. Li, H. Zhao, *Trees with the first three smallest and largest generalized topological indices*, MATCH Commun. Math. Comput. Chem. **50** (2004) 57–62.

[20] X. Li, J. Zheng: *A unified approach to the extremal trees for different indices*, MATCH Commun. Math. Comput. Chem. **54** (2005) 195–208.

[21] B. Liu, Z. You, *A survey on comparing Zagreb indices*, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010, pp. 227–239.

[22] M. Liu, B. Liu, *Some properties of the first general Zagreb index*, Australas. J. Combin. **47** (2010) 285–294.

[23] Mathworks Matlab Software (Version R2014a), 2014, http://de.mathworks.com/.
[24] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, *The Zagreb Indices 30 years after*, Croat. Chem. Acta **76** (2003) 113–124.

[25] U. N. Peled, R. Petreschi, A. Sterbini, *(n,e)-graphs with maximum sum of squares of degrees*, J. Graph Theory **31** (1999) 283–295.

[26] Sage Mathematics Software (Version 6.5), 2015, http://www.sagemath.org/.

[27] M. Randić, *On characterization of molecular branching*, J. Am. Chem. Soc. **97** (1975) 6609–6615.

[28] G. Su, L. Xiong, L. Xu, *The Nordhaus-Gaddum-type inequalities for the Zagreb index and co-index of graphs*, Appl. Math. Lett. **52** (2012) 1701–1707.

[29] S. Zhang, H. Zhang, *Unicyclic graphs with the first three smallest and largest first general Zagreb index*, MATCH Commun. Math. Comput. Chem. **55** (2006) 427–438.

[30] B. Zhou, *Zagreb indices*, MATCH Commun. Math. Comput. Chem. **52** (2004) 113–118.