

Complex Quantum Phenomena in a Bilayered Calcium Ruthenate

G. Cao1, L. Balicas2, Y. Xin2, E. Dagotto2, J.E. Crow2, C. S. Nelson3, and J. P. Hill3,
1Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306. and
3Department of Physics, Brookhaven National Laboratory, Upton, NY 11973.
(Dated: March 22, 2022)

Ca\textsubscript{3}Ru\textsubscript{2}O\textsubscript{7} undergoes an antiferromagnetic transition at $T_N = 56$K, followed by a Mott-like (MI) transition at $T_{MI} = 48$ K. This nonmetallic ground state, with a charge gap of 0.1 eV, is suppressed by a highly anisotropic metamagnetic transition that leads to a fully spin-polarized metallic state. We report the observation of Shubnikov-de Haas oscillations in the gapped state, colossal magnetoresistance in the inter-plane resistivity with a large anisotropy different from that observed in the magnetization, and non-Fermi liquid behavior in the metallic state at high magnetic fields.

PACS numbers: 72.15.Gd, 75.30.Vn, 75.50.Ee

The colossal magnetoresistance (CMR) phenomenon, a gigantic decrease of resistance triggered by the application of a magnetic field, so far has only been observed in manganese based oxides. Originally, this phenomenon was theoretically treated in terms of the double-exchange (DE) mechanism2, whose basic description relies on the doping dependent valence states of Mn. However, to explain the richness of the experimentally observed phases, several instabilities, caused by a strong coupling between spin, charge and lattice degrees of freedom, have been proposed to compete with the ferromagnetic DE interaction. In fact, a series of experiments are explained2 assuming that the manganites are intrinsically inhomogeneous and present strong tendencies toward phase separation between ferromagnetic metallic (FMM) and antiferromagnetic charge/orbital ordered insulating (AFI) domains.

This complex interplay between interactions, fluctuations, and inhomogeneities seems to be ubiquitous in transition metal oxides (TMOs). Although their description is still the subject of an intense debate, it is clear that most of these systems cannot be described by the standard Fermi liquid (FL) theory with interactions renormalized in Landau like quasiparticles. Only recently a stoichiometric2 and an overdoped cuprate3 have been claimed to present a FL-like ground state. In this respect, the 4d electron Ru-based stoichiometric oxides, or ruthenates, are perhaps unique systems since the oxygen vacancies inherent to the cuprates or the valence disorder peculiar to the manganites are not characteristics of these systems. In fact, in at least one compound, Sr\textsubscript{2}RuO\textsubscript{4}3,4 a FL ground state has been found. Despite the relative absence of disorder, the ruthenates are novel systems rich in complex physical phenomena as can be illustrated by the example of Ca\textsubscript{3}Ru\textsubscript{2}O\textsubscript{7}5,6,7,8: With a double Ru-O layered orthorhombic structure5, Ca\textsubscript{3}Ru\textsubscript{2}O\textsubscript{7} (Ca\textsubscript{3}27) belongs to the Ruddlesden-Popper series, Ca\textsubscript{n+1}Ru\textsubscript{n}O\textsubscript{2n+1}, with $n = 2$, where n is the number of coupled Ru-O layers in a unit cell. Ca\textsubscript{3}27 undergoes an antiferromagnetic ordering at $T_N = 56$ K followed by a sharp metal-nonmetal transition at $T_{MI} = 48$ K9 (throughout this manuscript we define a “non-metallic” regime whenever the slope of the resistivity respect to the temperature T is $d\rho/dT < 0$). The inter-layer spacing, c-axis, collapses at T_{MI}9 suggesting a strong coupling between the electrons and the lattice. In between T_N and T_{MI} the system is in an antiferromagnetic metallic state (AFM)8,9,10, a rare occurrence for a stoichiometric compound at ambient pressure. At $T < T_{MI}$ Ca\textsubscript{3}27 undergoes a first-order metamagnetic (MM) transition for a $B_{MI} \approx 6$ T along the a-axis, which is responsible for negative magnetoresistive. In this field-induced ferromagnetic phase the spins are nearly completely polarized8,9. At the MI transition, Raman spectra studies11,12 reveal a rapid suppression of low-frequency electronic scattering closely associated with the formation of a charge gap $\Delta_c \sim 0.1$ eV12. The corresponding gap ratio $R = \Delta_c/k_BT_{MI} \sim 23$ is large, suggesting that this transition is driven by strong electronic correlations, typical of a Mott-Hubbard system13,14. In addition, the optical conductivity at room temperature yields a large scattering rate, $\hbar/2\tau = 0.84$ eV, corresponding to a very short mean free path $\ell = 0.8 \le \ell \le 8$ Å. Remarkably, these values for ℓ, assuming a typical Fermi velocity of $10^7 - 10^8$ cm/s15, are well beyond the so-called Mott-Ioffe-Regel limit for bandlike transport.

In this letter, we present an electrical transport study of the Ca\textsubscript{3}Ru\textsubscript{2}O\textsubscript{7} compound at high magnetic fields (B). At low temperatures, very low frequency Shubnikov-de Haas oscillations are observed for B nearly parallel to the c-axis only in the “insulating” state. Consequently, Ca\textsubscript{3}27 exhibits the coexistence of quasiparticles with a “gapped” ground state. Below $T_{MI} = 48K$, and for an angle dependent critical field in the b-c plane, a phase transition suppresses this gapped state stabilizing a ferromagnetic metallic phase. At the transition, colossal like negative magnetoresistance, assisted perhaps by a spin-valve type effect, is observed in the inter-layer resistivity ρ_c, what leads to a resistivity drop by a factor...
Thus, similarly to manganites, stoichiometric Ru based oxide can also present CMR like effects, although the underlying mechanism is perhaps unique.

Samples were grown in Pt crucibles by the self-flux method described in Ref. 4. The resistivity was measured by the standard Lock-In technique, while the magnetization (susceptibility) was measured with a commercial SQUID magnetometer. Cryogenic facilities and magnetic fields up to 45 T were provided by the National High Magnetic Field Laboratory.

Fig. 1 (a) shows the inter-plane resistivity ρ_{c} as a function of B||c-axis for several temperatures T between 0.6 and 6.5 K. An oscillatory component, i.e., the Shubnikov-de Haas (SdH) effect, develops as T is lowered. The inset shows the SdH oscillations at $T = 20$ mK in a limited field range $2 < B < 12$ T. Shown in Fig. 1 (b) is the amplitude of the SdH oscillations as a function of inverse field B^{-1}. Here, the SdH signal is defined as $(\sigma - \sigma_0)/\sigma_0$ where σ is the conductivity (1/ρ) and σ_0 is the background conductivity. The inset shows the amplitude of the SdH signal normalized respect to T in a logarithmic scale, and as a function of T. The fit is excellent and yields a cyclotron effective mass $\mu_e = 0.85 \pm 0.05$. As clearly seen, the observed frequencies are very low, i.e., only a few oscillations are observed in the entire field range. A frequency of $F = 28$ T is determined by directly measuring the period of the oscillations for $B^{-1} \leq 0.1$ T^{-1} which, based on the crystallographic data of Ca327 and on the Onsager relation $F_0 = A(h/2\pi e)$ (h is the Planck constant e is the electron charge), corresponds to an area of 0.2% of its first Brillouin zone (FBZ). The vanishing oscillations at higher B (> 25 T) may indicate the proximity to the quantum limit which therefore imposes limitations on the applicability of the LK formalism. Dotted lines in Fig. 1 (b) are a guide to the eye showing the envelope of the SdH oscillations. Its shape suggests beating between two close frequencies, i.e., the presence of a second frequency $F_2 \sim 10$ T.

QOs are usually observed in high purity compounds since a weak scattering of electrons preserves the sharpness of the Landau levels (LL). In TMOs the absence of QOs in the vast majority of compounds has been taken as an additional evidence for a non-FL like, metallic state. At first glance the observation of QOs in Ca327 would seem impossible since it requires the existence of a robust FS and a long $\ell > 10^3$ Å. In fact, from the QOs we can estimate the scattering rate τ^{-1} and the Fermi wave vector k_F, and from them we obtain $k_F\ell \gg 1$. The fairly small Fs detected here formally excludes the possibility of QO’s resulting from any source contamination. Furthermore, and as shown below, QO’s are not observed in the FMM state even in fields up to 45 T indicating that they are a property of the gapped state. Perhaps they can be attributed to small FS pockets resulting from FS reconstruction at T_{MI}, due, for instance, to an eventual spin/orbital ordering: A gap opens along most of the FS leaving (very) small-reconstructed electron and/or hole FS pockets. This would be consistent with the small value of μ_e, i.e., a small density of states, indicating a small amount of charge carriers at the Fermi level. In fact, orbital ordering is predicted to occur in Ca32RuO4, compatible with a sudden change in the basal plane at $T = 357$ K. But for Ca327, besides the collapse of the c-axis, no firm evidence for orbital ordering has been reported so far. At high fields the absence of QOs, or any other indication of FL behavior in the FMM state, clearly indicates the relevance of the electron correlations for this system.

QOs are detected when B is relatively close to the c-axis, but when B is tilted towards the a or the b-axis we observe an orientation-dependent metamagnetic transition. For fields along the a-axis, a very sharp first or-
der MM transition, observed at $B_{\text{MM}} \approx 6$ T, see Fig. 2(a), destroys the antiferromagnetic order of the ferromagnetic Ru-O planes leading to a state with a magnetization $M_s = 1.7 \mu_B$/Ru along the a-axis. For $B \parallel b$-axis, the transitions are not only broader but also occur at higher B than those for $B \parallel a$ (see Fig. 2(a)), implying a strong anisotropy between the a- and the b-axis which is consistent with the fact that the b-axis is the hard-axis for magnetization. Surprisingly, the decrease in ρ_c for $B \parallel b$ is, at least, one order of magnitude larger than that for $B \parallel a$. At low T, sample #1 provides $\rho_c(0)/\rho_c(30 \text{T}) \sim 10$ and 10^2 for $B \parallel a$ and $B \parallel b$, respectively. For $B \parallel a$-axis, the effect of the MM transition on the inter-plane charge transport is considerably stronger than on the in-plane one, $\rho_c(0)/\rho_c(H) > \rho_a(0)/\rho_a(H)$, which can be understood in terms of tunneling, or coherent motion, of (field-induced) spin-polarized electrons between Ru-O planes: Above B_{MM}, and due to the layered nature of Ca$_3$27, the spin-polarized (FM) Ru-O sheets, sandwiched between insulating (I) Ca-O planes, form a natural stack of FM/I/FM junctions that largely enhances the probability of inter-layer tunneling, and, thus, the inter-plane conductivity. Nevertheless, as seen in the figure, for fields along the b-axis, a much more pronounced resistivity drop is observed for $B \geq 14$ T. In Fig. 2 (b) we show ρ_c as a function of B for a second sample (sample #2) at $T = 0.6$ K and for several angles θ between B and the c-axis. Notice how B_{MM} decreases as B approaches the b-axis revealing the high degree of anisotropy of this transition. Thus, as indicated by Figs. 2 (a) and (b), the amplitude of the relative change in resistivity $\Delta \rho/\rho(0)$ is sample, $\theta,$ and T dependent, and can be as large as 10^3. In fact, as seen in Fig. 2 (c), the CMR effect shown in Fig. 2 (b) is basically due to the complete suppression of the gapped state by an external field (in our case, 30 T along the b-axis). This contrasts with what is observed for $B \parallel a$, where a metallic state cannot be stabilized at high fields: B completely polarizes the spins, broadens the transition towards the ground state, but has little effect on T_{MM} which remains in the vicinity of 48 K. The application of $B \geq 14$ T along b leads to the stabilization of a metallic state where, as seen in the inset, $\rho_c(T)$ shows an unusual, non-FL-like, $T^{1.2}$ dependence on T. A sizeable amount of hysteresis is seen at B_{MM} suggesting a first-order transition. By comparing the remarkable differences in behavior between both orientations, we conclude that spin-polarization alone cannot account for the CMR like effects reported here.

The upper panel of Fig. 3 shows ρ_c as a function of B for several temperatures $0.6 \leq T \leq 60$ K. The resistivity drop is strongly T dependent: The higher $\rho_c(T)$, i.e., the lower the number of charge carriers thermally excited above the gap Δ_e, the higher $\rho_c(0)/\rho_c(H > 20)$. Notice how B_{MM} decreases as T increases.

We summarize our results in the phase-diagram shown in the lower panel of Fig. 3. In this figure, perhaps the most relevant fact is the rather anisotropic field-induced suppression of the charge gapped state. Similar but isotropic behavior is observed in the RE$_{1/2}$Ca$_{1/2}$MnO$_3$ (RE= Pr, Nd, Sm...) compounds, where the commensuration of the band filling (doping level) with the crystal lattice spacing is believed to be responsible for their orbital/charge ordered ground state. The application of a field produces a remarkable decrease in resistivity at a MM transition where a FM metallic phase is stabilized at the expense of the charge/orbital ordered (OO) state. From a thermodynamic point of view, this field-induced “melting” of the OO phase is understood by assuming that both states are almost degenerate in energy, but under an external field H the free energy of the FM metallic state may become lower due to the Zeeman term $-M_s H$ (M_s is the spontaneous magnetization) inducing the hysteretic structural transition seen

![Figure 2](image-url)

FIG. 2: (a) Inter-plane resistivity ρ_c of a Ca$_3$Ru$_2$O$_7$ single crystal (sample # 1) as a function of magnetic field B along both the a and the b-axis at $T = 0.6$ K. (b) ρ_c from a second sample (sample # 2) as a function of B at $T = 0.6$ K and for several angles θ in the b-c plane. The step in angle between traces is $\Delta \theta \approx 7^\circ$. Lower panel: ρ_c as a function of T for two values of B, 0 and 30 T along the b-axis. Notice, how the gapped state is entirely suppressed by the field. Inset: ρ_c as a function of $T^{1.2}$ for $B = 30$ T along the b-axis. Notice the linear dependence.
FIG. 3: Upper panel: \(\rho_c \) as a function of \(B \) parallel to the b-axis and for several temperatures \(T \). The MM transition moves towards lower \(B \) as \(T \) increases. Lower panel: The resulting \(B-T \) phase diagram of \(\text{Ca}_3\text{Ru}_2\text{O}_7 \). At low fields, and as the \(T \) is lowered, it shows two successive transitions, an antiferromagnetic metallic (AFM-M) phase, followed by a gapped ground state, where the Ru-O planes seem to order in an antiferromagnetic A-type phase (AFM-NM). For \(B \parallel a \)-axis, the AFM-NM phase is suppressed by a sharp MM transition at \(B_{\text{MM}} \leq 6 \text{T} \) (indicated by solid circles), which leads the system into a ferromagnetic poorly metallic phase (FM-M(II)). For \(B \parallel b \)-axis, the MM transition at \(6 \leq B_{\text{MM}} \leq 15 \text{T} \) completely “melts” the charge gap associated to the AFM-NM phase (opened circles), leading to a ferromagnetic metallic phase (FM-M(II)). The CMR effect is seen at the MM transition. Although the spins are nearly completely polarized along \(B \), the FM-M(II) phase still shows an anomalously high resistivity and a nearly linear dependence on \(T \) characteristic of a non-FL (gray area). At low \(T \) and for \(B \parallel b \)-axis, QOs are observed only in the AFM-NM phase. At higher \(T \), open squares show the frontier between the antiferromagnetic metallic (AFM-M) phase and, both, the paramagnetic metallic (PM-M) and the FM-M(II) phases.

It is interesting to mention that QO in the \(t_{2g} \) orbitals is predicted to occur in ruthenates [15], and it has in fact, been reported in \(\text{Ca}_2\text{Ru}_2\text{O}_4 \) [16]. In this framework, the gapped state of \(\text{Ca}_3\text{Ru}_2\text{O}_7 \) could perhaps be the result of an OO transition at \(T_{\text{MM}} \), while the CMR effect would result from an eventual field-induced OO melting transition. This intriguing hypothesis certainly deserves further studies. Similarly to the bilayered \(\text{Ca}_3\text{Ru}_2\text{O}_7 \), anisotropic CMR [23] and spin-valve like effects [24,25] have already been reported in bilayered manganites. Although we unveil here similarities between both families, the QOs and the highly anisotropic, doping independent, CMR like effect seen in \(\text{Ca}_3\text{Ru}_2\text{O}_7 \) suggest that the physics of the ruthenates is indeed unique. Alternatively, their study is a promising new route for exploring the physics of CMR systems.

In summary, we have shown clear evidence for Landau quasiparticles coexisting with a gapped ground state in a transition metal oxide. Furthermore, our study reveals that Ru based oxides can also display colossal magnetoresistance like behavior.

We would like to thank the Hybrid Magnet Group at the NHMFL for their invaluable assistance and V. Dobrosavljevic for very helpful discussions. The NHMFL is supported by a cooperative agreement between the State of Florida and the NSF through NSF-DMR-0084173. E. D. is supported by NSF grant DMR-0122523.

[1] For a review see, Y. Tokura and Y Tomioka, J. Magn. and Magn. Mater. 200, 1 (1999).
[2] C. Zener, Phys. Rev. 82, 403 (1951).
[3] E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
[4] N. Hussey et al., (unpublished).
[5] C. Proust et al., cond-mat/0202101.
[6] See for instance: Y. Maeno, T. M. Rice and M. Sigrist, Physics Today 54, 42 (2001).
[7] A. P. Mackenzie et al., Phys. Rev. Lett. 76, 3786 (1996).
[8] G. Cao et al., Phys. Rev. B 56, R2916 (1997).
[9] G. Cao, S. McCall, J. E. Crow and R. P. Guertin, Phys. Rev. Lett. 78, 1751 (1997).
[10] G. Cao, K. Abbound, S. McCall, J.E. Crow and R.P.Guertin, Phys. Rev. B 62, 998 (2000).
[11] C. Nelson, J. Hill and G. Cao, to be published.
[12] H.L. Liu et al., Phys. Rev. B 60, R6980 (1999).
[13] T. Katsufuji, Phys. Rev. B 51, 4830 (1995).
[14] H.L. Liu, S.L. Cooper, and S-W. Cheong, Phys. Rev. Lett. 81, 5920 (1998).
[15] A.V. Puchkov et al., Phys. Rev. Lett. 81, 2747 (1998).
[16] I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1956).
[17] From the amplitude of the QOs as a function of \(B^{-1} \) one can extract, the so-called Dingle temperature, \(T_D = \hbar/2\pi k_B \tau \), a measure of the the relaxation time \(\tau \) (\(k_B \) is Boltzmann constant). For our \(\text{Ca}_3\text{Ru}_2\text{O}_7 \) single crystals, \(T_D \) ranges from 1.5 and 3.0 K, indicating their extreme high quality.
[18] T. Hotta and E. Dagotto, Phys. Rev. Lett. 88, 017201 (2002).
[19] C.S. Alexander et al., Phys. Rev. B 60, R8422 (1999).
[20] T. Mizokawa et al., Phys. Rev. Lett. 87, 077202-1 (2001).
[21] G. Cao, S. McCall, J. E. Crow and R. P. Guertin, Phys. Rev. B 56, 5387 (1997).
[22] H. Kuwahara et al., Science 270, 961 (1995).
[23] M. Apostu et al., Phys. Rev. B 64, 012407 (2001).
[24] T. Kimura et al., Science 274, 1698 (2001).
[25] T. G. Perring et al., Phys. Rev. B 58, R14693 (1998).