NUTRITIVE VALUE OF SUN-DRIED COMMON REED (PHRAGMITES AUSTRALIS) LEAVES AND ITS EFFECT ON PERFORMANCE AND CARCASS CHARACTERISTICS OF THE GROWING RABBIT¹

KADI S.A.*, OUENDI M.*, BANNELIER C.†, BERCHICHE M.*, GIDENNE T.†

*Département des sciences Agronomiques, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri UN1501, Tizi-Ouzou, Algérie.
†GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France.

Abstract: The nutritive value and potential use of sun-dried common reed (Phragmites australis) leaves (CRL), for growing rabbits was studied by comparing 3 diets (regression method) containing an increasing incorporation rate of CRL: 0% (control, CRL0), 15% (CRL15) and 30% (CRL30) in substitution for the control diet (356 g neutral detergent fibre (NDF) and 197 g crude protein (CP)/kg). Three groups of 37 rabbits (individually caged) were fed the 3 diets ad libitum from weaning (35 d, mean weight: 722±142 g) to 77 d of age. The faecal digestibility of the diets was measured between 42 and 46 d of age in 10 rabbits per group. CRL can be considered high-fibre roughage, as it contained 64% of NDF (38% of ADF and 10% ADL) and 10.2% of CP. The digestible energy (DE) content of CRL calculated by regression was null (–1.8±0.29 MJ/kg as fed). CP digestibility reached 29%, corresponding to a digestible crude protein concentration of 29.0±5.6 g/kg as fed basis. The fibre digestibility was reduced with CRL incorporation. Dietary incorporation of CRL impaired the rabbit growth (34.2 vs 31.5 g/d during the period 35-77 d without CRL or with CRL (CRL15 and CRL30), respectively; *P*=0.002). Consequently, feed conversion was impaired with the high incorporation rate in feed (30%). Health status or main slaughter traits were not affected by CRL incorporation rate. Thus, the sun-dried common reed leaves had a poor nutritive value for growing rabbits and it can be considered a high-fibre feedstuff, interesting to supply low digested fibres (cellulose) and lignin.

Key Words: growing rabbit, digestion, common reed leaves, growth performance, nutritive value.

INTRODUCTION

In Algeria and other Maghreb countries (Morocco, Tunisia), dehydrated alfalfa (Medicago sativa) and wheat by-products are the main fibre sources for rabbit feed formulations. Alfalfa is imported and becomes very expensive. Therefore, alternatives are required to produce balanced pelleted feeds using local raw materials, available at a lower price. For instance, recent studies reported the interest in using sulla (Hedysarum flexuosum) as a fibre and protein source when incorporated in a complete pelleted feed for the growing rabbit (Kadi et al., 2011).

Phragmites australis (Cav.) Trin. ex Steud. (Poaceae) (previously P. communis or P. Phragmites) is a large perennial rhizomatous grass often called common reed and also known as giant reed, giant reed grass, Roseau, Roseau cane, yellow cane and cane (Uchytil, 1992). It is an invading plant with one of the largest geographical distribution of any flowering plant in the world and found on every continent except Antarctica (Brix, 1999). The plant is tall (2.0-4.0 m) and common in and near freshwater, brackish and alkaline wetlands in temperate zones world-wide (Marks et al., 1994). According to the same authors, common reed is frequently regarded as an aggressive and unwanted invader because it is typically the dominant species in the areas that it occupies (Lavoie, 2008). Common reed has been used throughout history for the production of non-food commodities such as paper pulp, roofing and building materials or

¹ One part of these results was presented during the 10th World Rabbit Congress (Sharm El-Sheikh, Egypt, September 2012).

Correspondence: S.A. Kadi, kadisiammar@yahoo.fr. Received April 2016 - Accepted February 2018.
http://doi.org/10.4995/wrs.2018.5217
litter material, as well as heating and as forage feed (Allirand and Gosse, 1995; Kiviat and Hamilton, 2001). Recently, Zhao et al. (2011) reported that common reed biomass has great potential for producing biofuel.

Early in the growing season, common reed is high-quality forage for cattle, horses (Majchrzak, 1992) and goats (Sun et al., 2008), but also for ostrich (Cilliers and Angel, 1999). In fact, Baran et al. (2002) concluded that this feedstuff could possibly be used as a partial replacement of roughage for ruminants. Reed leaves are already used as forage in some traditional rabbitries in Algeria (Kadi et al., unpublished data), and could be a potential source of fibre and protein as the crude protein (CP) content reached 12.7% (Dela Cruz, 1983). To our knowledge, there are no reports in the literature on the effect of sun-dried common reed (Phragmites australis) leaves (CRL) incorporation in pelleted complete feed for growing rabbits. So, we aimed to determine the nutritive value of CRL for the growing rabbit.

MATERIALS AND METHODS

Experimental design and feeds

A total of 111 rabbits of Algerian white local population (Zerrouki et al., 2008) were used to assess the nutritive value of CRL and its effect on growth at the rabbitry of the Mechtras vocational training centre, located near Tizi-Ouzou in Algeria (15 to 23°C, 7:00-19:00 lighting schedule). Chemical analyses were conducted at INRA of Toulouse (INRA Toulouse, UMR 1388 GenPhySE, France).

CRL were harvested after flowering stage at the end of autumn, when their colour begins to change from initially fully green to bright yellow, at the Mechtras vocational training centre in the Tizi-Ouzou area. Then, the leaves were manually separated from stems and sun-dried. Samples of CRL were collected in the feed mill factory, and after grinding (3 mm diameter sieves) their chemical composition was determined (Table 1). Three pelleted diets were formulated with an increasing CRL inclusion level (0, 15, and 30%, Table 2). A basal mixture was formulated to fit with nutritional requirement of the growing rabbit (De Blas and Mateos, 2010) and contained dehydrated alfalfa, maize and soya bean meal as main ingredients. Three experimental diets containing an increasing incorporation rate of CRL were prepared by substituting the basal diet, without minerals and premix, with 0, 15 or 30% of dried common reed leaves (CRL0, CRL15, CRL30, Table 2). Mineral and premix were added to all diets at a fixed amount of 2%. The mixture was then pelleted (4 mm diameter, 9 mm length).

Animals and measurements

Rabbits were weaned at 35 d old (mean weight: 722±142 g) and allotted to 3 groups (37 per diet), according to weaning weight and litter origin. They were placed in wire mesh individual cages (56×38×28 cm) in flat deck layout till 77 d old.

During the 6 wk of the experiment, rabbits were fed ad libitum one of the 3 diets, with a weekly control of live weight and feed consumption and a daily control of mortality, following the recommendations for applied nutrition experiments in rabbits of the EGRAN (Fernández-Carmona et al., 2005). Fresh water was always available.

| Table 1: Chemical composition of sun-dried common reed leaves (g/kg raw basis)¹. |
|-----------------------------------|----------------|
| Dry matter | 932 |
| Crude ash | 121 |
| Crude protein (N×6.25) | 102 |
| Neutral detergent fibre | 642 |
| Acid detergent fibre | 380 |
| Acid detergent lignin | 107 |
| Gross energy (MJ/kg) | 17.3 |

¹Analytical value of a sample from the material incorporated in the experimental diets.
conditions, according to Blasco and Ouhayoun (1996), to record the weight of skin, full digestive tract, hot carcass and liver.

Chemical analyses

The chemical analyses were performed at INRA (UMR 1289 TANDEM) on diets, faeces (10 per group) and the common reed leaves, according to ISO methods and considering the recommendations proposed by the EGRAN group (EGRAN, 2001): dry matter (ISO 6496:1999), crude ash (ISO 5984:2002), crude protein (N×6.25, Dumas method, ISO 16634-2:2009), energy (ISO 9831:1998) and neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) according to sequential method of Van Soest, ashless, without sodium sulphite, and using crucibles (Tecator apparatus) (AFNOR 1997, ISO 16472:2006 and ISO 13906:2008).

The nutritive value of CRL was determined according to the regression and substitution methods described by Villamide et al. (2001).

Statistical analyses

Data were analysed as a completely randomised design with type of diet as the main source of variation, using the GLM procedure from SAS software (OnlineDoc®, SAS Inst., Cary, NC). Means comparison were performed using the Scheffe test. The linear effect of CRL incorporation was analysed with the REG procedure of SAS.

RESULTS AND DISCUSSION

Sun-dried common reed leaves composition and experimental feeds

According to their chemical composition (Table 1), CRL can be classified as a very fibrous feedstuff, with values close to those found by Sun et al. (2008) but for the whole plant. This may be due to the earlier stage of growth of plants used by those authors and to the latest stage of maturity of leaves used in our trial. At maturity stage, NDF
concentration reached 64.2%, with other fibre fractions comparable to the most fibrous feedstuffs such as wheat straw or grape pomace (Maertens et al., 2002). CRL contained a moderate amount of CP, close to that reported by De la Cruz (1983) (12.7%), but higher than that reported for some fibrous feedstuffs usually used in rabbit feed formulation, such as beet pulp, grape seed meal or wheat straw. In addition, CRL presented a relatively high level of ash (12.1%), higher than that reported for the same raw material by Ho (1981; 9.1%) and De la Cruz (1983; 8.6%), mostly owing to their silica content (Schaller et al., 2011), and can also be attributed to soil contamination. However, this ash content is within the range reported by Nikolajevs.kij (1971; between 10 and 18%).

Accordingly, the crude ash level of the diets increased from 9.4 in CRL0 to 10.6% in CRL30.

As expected, the dietary incorporation of CRL increased the NDF level from 35 (CRL0) to 43% (CRL30), while the CP level decreased by 3 units (Table 2).

Nutritive value of common reed leaves

As expected, the dry matter digestibility decreased linearly from CRL0 to CRL30, according to the CRL dietary incorporation (Table 3). Classically, when the dietary fibre level increases the diet digestion is reduced, because of the lower digestion of fibrous components (Gidenne et al. 2010a). As usual, a close relationship was observed between the digestibility of organic matter and that of energy. For the majority of the diets, the digestibility of gross energy is 1 to 2 points less than that of organic matter (Maertens and Van Herck, 2001).

Gross energy digestibility was very negatively influenced by CRL level, as it decreased by 20 percentage points from CRL0 to CRL30 (P<0.001). This result agrees with the literature (De Blas et al., 1984, 1989; Gidenne et al., 2010a), which established that the fibre content is the main factor affecting energy digestibility. According to García et al. (2002) and Nicodemus et al. (2002), dietary inclusion of fibrous feedstuffs at levels of 100-150 g/kg has little effect on rabbit performance. However, an excessive substitution of lucerne hay with highly lignified sources of fibre, which was the case in this assay, depresses energy digestibility (García et al., 1999).

CP digestibility was negatively influenced by CRL incorporation (P=0.001) and it could be explained by the fact that proteins could be associated with cell walls, as usually found in roughages, and their availability being limited.

The fibre fractions digestibility was linearly impaired with CRL dietary inclusion. Indeed, the NDF and ADF digestibility was reduced by 3 and 2 times from CRL0 to CRL30, respectively, probably due to harvesting at the latest stage of maturity of CRL, which increased the content in cellulose, perhaps with high crystallinity for the cellulose molecule due to their silica content, as reported by Schaller et al. (2011). Indeed, dry fodders such as cereal straws are generally high in silica and may reach 9% (Gowda et al., 2004).

Table 3: Effect of common reed leaves dietary incorporation level [0, 15 and 30% of common reed leaves (CRL0, CRL15 and CRL30, respectively)] on faecal digestibility coefficients (%) and nutritive value of experimental diets in growing rabbits between 42 and 46 d of age.

Experimental diets	CRL0	CRL15	CRL30	SEM	P-value
Digestibility coefficients (%)					
Dry matter	57.1c	44.8b	38.3a	0.25	<0.001
Organic matter	57.2c	44.5b	38.2a	0.26	<0.001
Gross energy	56.8c	44.1b	36.8a	0.26	<0.001
Crude protein	63b	58.6b	58.5a	0.74	0.001
Neutral detergent fibre	33.9a	25.1b	11.1a	1.51	<0.001
Acid detergent fibre	22.6a	17.7ab	11.4a	1.58	0.002
Dietary nutritive value					
DP (g/kg)	119c	102b	92a	1.28	<0.001
DE (MJ/kg)	9.20c	7.18b	5.88a	0.04	<0.001
Ratio DP/DE (g/MJ)	12.9c	14.2b	15.6a	0.20	<0.001

SEM: Standard error of the mean (n=10 per treatment). DP: digestible crude protein. DE: digestible energy.

a,b,c Mean values in the same row with a different superscript differ at P<0.05.
Using the digestibility coefficient for energy and protein obtained on the 3 feeds, we devised equations to predict the digestible energy \([DE (MJ/kg)]=9.081–0.1088 \text{CRL} (\%)] and digestible protein \([DP (g/kg)=117.91–0.89 \text{CRL}] \) of CRL by the regression method. Accordingly, and using the calculation procedure proposed by Villamide et al. (2001), the DE obtained for sun-dried CRL was not different from zero \((-1.8±0.29 \text{MJ/kg})\) and showed a relatively high standard error (16%). In rabbit nutrition there were few studies that dealt with highly fibrous raw material, such forages or by-products. For instance, García et al. (1996) reported a negative value \((-4.6 \text{MJ/kg DM})\), for DE for sunflower hulls, and even at a low substitution level (6%). Moreover, the DE value of CRL was similar to that of the wheat straw estimated by Lebas and Djago (2001), which was also not different from zero. For other species, the metabolisable energy of common reed whole plant is estimated to be 2.8 \text{MJ/kg} for fowl and 8.7 \text{MJ/kg} for ostriches (Cilliers and Angel, 1999).

DP content of the CRL was also relatively low \((29.0±5.6 \text{ g DP/kg})\), which corresponded to a CP digestibility coefficient of 28.5%. This value is close to that of cacao hulls (25%), but much higher than that of sunflower hulls (15%) and carob meal (20%), whose fibre content is lower (Maertens et al., 2002). The DP of CRL was more than twice as high in pre-flowering green oat forage \((12.4 \text{ g/kg})\) found by Deshmukh et al. (1990). The standard error for the predicted value of DP content was also relatively high (19%). Although the CP digestibility variation is only slightly explained by the chemical composition (16% according to Villamide et al., 2010), this DP content should to be related to the fibre concentration in CRL as for the majority of fibrous feedstuffs in EGRAN tables reported by Maertens et al. (2002).

Moreover, a high level of substitution of the basal diet with a high fibrous but low fermentable raw material could impair the digestibility of the basal diet and accordingly underestimate its nutritive value, as observed for wheat straw (De Blas et al., 1989).

Health status, feed intake and growth of animals

Throughout the experiment, the health status of rabbits was good, as only 2 rabbits died in the CRL0 groups and 4 in CRL15, but none in the CRL30 group (no antibiotic treatment was used during the trial).

As we choose an unbalanced feed formulation to assess the nutritive contribution of the CRL, growth and intake over the whole fattening period was better in the control group (Table 4). According to Motta-Ferreira et al. (1996), an excessive substitution of lucerne hay with highly lignified sources of fibre impairs average daily gain and feed efficiency. However, global growth rate exceeded 30 g/d, while feed intake varied from 114 g/d in the CRL15 group to 129 g/d in the CRL30 group \((P<0.05)\). Consequently, the global feed conversion ratio was better \((P<0.001)\) for the control group and CRL15 compared to CRL30 \((3.6 \text{ vs. } 4.16)\). These results are in agreement with the literature.

The performances deteriorated during the second period 56-77 d of fattening with the decrease in growth rate and increase in feed intake, especially in the CRL30 group. Consequently, the feed conversion ratio is the worst but similar in the 3 groups.

Accordingly, for the whole fattening period (35-77 d), feed intake was 13% higher in CRL30 than in CRL15. This was the consequence of the capacity of the rabbits to control their feed intake according to the dietary DE content, although when the DE content is lower than 9 \text{MJ/kg} a reduction of DE intake is usually observed (Lebas, 1975). Here, diets CRL15 and CRL30 are under this threshold, with a DE content of 7.1 and 5.8 \text{MJ/kg} respectively. Accordingly, rabbits attempt to increase their feed intake to satisfy energetic needs, but it is not enough because of the high fibre level (Gidenne and Lebas, 2002). For instance, DE intake (35-77 d) decreased with CRL incorporation: 1.1, 0.82 and 0.76 MJ/d ingested respectively in CRL0, CRL15 and CRL30. However, as the reduction of DP is less abrupt, the DP to DE ratio increases from 12.9 in CRL0 to 15.65 g/MJ in CRL30. Thus, the growth rate was not modified, but presented a sensible increase of feed conversion ratio, as reported by several authors (Maertens, 1992; Lebas and Djago, 2001; Xiccato and Trocino, 2010).

Overall, rabbits used here reached a relatively high growth performance compared to those generally obtained with “Kabyle” rabbits of the local population. For instance, they were about 11% higher than those reported by Lakabiloualifene et al. (2008) and Guemour et al. (2010) but 32% higher than those reported by Lounaouci-Ouyed et al. (2009).
Table 4: Effect of dietary level of inclusion of common reed leaves (CRL0, CRL15 and CRL30, respectively) on feed intake and growth of rabbits.

Experimental diets	CRL0	CRL15	CRL30	SEM	P-value
Period 35-56 d					
Live weight at 35 d (g)	720	729	716	45.4	0.98
Live weight at 56 d (g)	1512	1508	1419	56.7	0.42
Weight gain (g/d)	38.9	38.4	33.9	0.82	<0.001
Daily intake (g/d)	106.0	118.8	107.0	4.0	0.048
Feed conversion (g/d)	2.89	3.18	3.15	0.11	0.129
Period 56-77 d					
Live weight at 77 d (g)	2130	2050	2020	55.7	0.35
Weight gain (g/d)	29.5	26.5	28.6	0.80	0.04
Daily intake (g/d)	127.3	115.8	137.8	3.02	<0.001
Feed conversion (g/d)	4.38	4.40	4.81	0.12	0.035
Period 35-77 d					
Weight gain (g/d)	34.2	31.8	31.1	0.62	0.002
Daily intake (g/d)	119.9	114.4	129.5	2.85	0.001
Feed conversion (g/d)	3.59	3.64	4.16	0.09	<0.001

n: number of rabbits at the end of experimental period. SEM: Standard error of the mean.
a,b: Mean values in the same raw with a different superscript differ, P<0.05.

Slaughter performances

The average slaughter live weight (Table 5) obtained at 77 d (2309 g) was usual in our breeding conditions with white population rabbits. For instance, it was similar to that reported by Kadi et al. (2011) for this line in the same breeding conditions. However, compared to live weight at slaughter usually reached by rabbits of local population “Kabyle”, it is 60% higher than that found by Guemour et al. (2010) and 26% than that reported by Lakabi-Ioualitene et al. (2008).

As a consequence of the very low NDF digestibility of CRL, and of the increased fibre level of feeds with CRL incorporation, the weight of the full digestive tract increased linearly. This may be explained, as already underlined by Gidenne et al. (1991) and Gidenne (1992), by the physical adaptation of the rabbits’ digestive tract to the increase in diet intake, a consequence of high cell wall levels (43% NDF in CRL30). Hence, the full digestive tract weight linearly impairs dressing out percentage. As pointed out by Hernández and Dalle Zotte (2010), when a high dietary fibre level decreases the growth rate, slaughter yield falls due to increased digestive tract proportions. Indeed, Tao and Li

Table 5: Effect of dietary level of inclusion of common reed leaves (0, 15 and 30% of common reed leaves (CRL0, CRL15 and CRL30, respectively) on slaughter traits of rabbits.

Slaughter weight (SLW), g	CRL0	CRL15	CRL30	SEM	P-value
Skin weight, g	248	237	240	8.0	0.39
Full digestive tract, g	340	363a	409b	10.2	<0.001
Hot carcass weight (HC), g	1619	1571	1569	38.2	0.33
Liver weight, g	81ab	78a	90b	2.81	0.047
Dressing out percentage HC/SLW, %	70.1b	69.3b	67a	9.9	<0.001

1 Slaughter at 11 wk of age. 2 Standard error of the mean (n=18 per treatment).
a,b: Mean values in the same raw with a different superscript differ, P<0.05.
Common reed leaves nutritive value

(2006) reported that caecum weight and proportion of caecum weight to body weight increases when the dietary NDF concentration increased.

Hot carcass weight was not significantly affected by CRL inclusion rate, and reached an average weight of 1586 g, which is slightly higher than the local market weight (Kadi et al., 2008).

Liver weight was influenced either by CRL incorporation but also by the rate of incorporation with, on av., values close to those reported in the literature (Eiben et al., 2010). The fibre digestion was so low and linearly impaired with CRL dietary incorporation that it can be suspected to increase liver weight. Recently, Papadomichelakis et al. (2012) reported that liver weight of rabbits decreased with increasing degradable fibre in the diet.

CONCLUSION

The nutritive value for the growing rabbit appears poor, either in terms of its DE (around zero) and its DP levels (29 g DP/kg as fed basis). CRL can therefore be considered as a high fibre feedstuff, interesting to cover the fibre requirements of the growing rabbit in cellulose and lignin. In perspective, we should consider an earlier harvest of the CRL, before the maturity stage, and expect a lower mineral content and a higher protein concentration. Moreover, further research with balanced diets is necessary to determine the effect of reed leaves on rabbit performance and health.

Acknowledgements: The authors thank Belaidi-Gater N., Louchami Y., Slimani M., Selmani K., Djaroun T., Haddad M. and Yahi K. for their assistance in the experimental trial.

This work was partially financed by the CMEP-Tassili project (05 MDU 667).

REFERENCES

Abdel-Samee A.M., El-Masry K.A. 1992. Effect of drinking natural saline well water on some productive and reproductive performance of California and New-Zealand White rabbits maintained under north Sinai conditions. Egypt. J. Rabbit Sci., 2, 1-11.

AFNOR. 1997. Norme Française homologuée, Aliments des animaux. Détermination séquentielle des constituants paréiaux. Méthode par traitement aux détergents neutre et acide et à l’acide sulfurique. AFNOR publ., Paris. NF V 18-122, 11.

Allirand J.M., Gosse G. 1995. An above-ground biomass production model for a common reed (Phragmites communis Trin.). Stand. Biomass Bioenerg., 9: 441-448. https://doi.org/10.1016/0961-9534(95)00042-9

Baldantoni D., Ligrone R., Alfani A. 2009. Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J. Geochem. Explor., 101:166-174. https://doi.org/10.1016/j.geexplo.2008.06.007

Baran M., Váradyová Z., Kráčmar S., Hedlbányi J. 2002. The common reed (Phragmites australis) as a source of roughage in ruminant nutrition. Acta Vet. Brno., 71: 445-449. https://doi.org/10.2754/abv2002071040445

Blasco A., Ouayoun J. 1996. Harmonization of criteria and Terminology in rabbit meat research. Revised proposal. World Rabbit Sci., 4: 93-99. https://doi.org/10.4995/wrs.1996.278

Bonanno G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotox. Environ. Saf., 74: 1057-1064. https://doi.org/10.1016/j.ecoenv.2011.01.018

Cheeke P. R. 1986. Potentials of Rabbit Production in Tropical and Subtropical Agricultural Systems. J. Anim. Sci., 63: 1581-1586. https://doi.org/10.2527/jas1986.6351581x

Cilliers S.C., Angel C.R. 1999. Basic Concepts and Recent Advances in Digestion and Nutrition. In: Deeming D.C. (Eds.), The Ostrich: Biology, Production and Health, CABl, 105-128.

De Blas J.C., Rodríguez J.M., Santoma G., Fraga M.J. 1984. The nutritive value of feeds for growing fattening rabbits. 1. Energy evaluation. J. Appl. Rabbit Res., 7: 72-74.

De Blas J.C., Villamide M.J., Carabaño R. 1989. Nutritive value of cereal by-products for rabbits. 1. Wheat straw. J. Appl. Rabbit Res. 12: 149-151.

De Blas C., Mateos G.G. 2010. Feed formulation. In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABl, 222-232. https://doi.org/10.1079/9781485936693.0222

De la Cruz, A.A. 1983. Caloric values of marsh biota. Mississippi-Alabama Sea Grant Consortium Publ. No. MASGP -83-006. Ocean Springs, Mississippi. 32 p.

Deshmukh S.V., Pathak N.N., Johari S.B. 1990. A note on the nutritional evaluation of pre-flowering oat (Avena sativa) forage for rabbits. J. Appl. Rabbit Res. 13: 93-94.

Eiben Cs., Végi B., Virágh Gy., Gódor-Surmann K., Maró A., Odermatt M., Zsédelé E., Tóth T., Schmidt J. 2010. Effect of different dietary ratios of sunflower and linseed oils on growth and carcass traits of rabbits. Livest. Sci., 131: 15-22. https://doi.org/10.1016/j.livsci.2010.02.017

EGRAN 2001. Technical note: Attempts to harmonise chemical analyses of feeds and faeces, for rabbit feed evaluation. World Rabbit Sci., 9: 57-64. https://doi.org/10.4995/wrs.2001.446

Fernández-Carmona J., Blas E., Pascual J.J., Maertens L., Gidenne T., Xiccato G., García J. 2005. Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Sci., 13: 209-228. https://doi.org/10.4995/wrs.2005.516
Garcia J., Carabaño R., de Blas C. 1999. Effect of fiber source on cell wall digestibility and rate of passage in rabbits. J. Anim. Sci., 77: 938-945.

Garcia J., Nicodermus N., Carabaño R., de Blas C. 2002. Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. J. Anim. Sci., 80: 162-170. https://doi.org/10.2527/2002.801162x

Garcia J., Villamide M.J., de Blas J.C. 1996. Energy, protein and fibre digestibility of sunflower hulls, olive leaves and NAOH-treated barley straw for rabbits. World Rabbit Sci., 4: 205-209. https://doi.org/10.4995/wrs.1996.296

Gidenne T. 1992. Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. Brit. J. Nutr., 67: 133-146. https://doi.org/10.1079/BJN199200015

Gidenne T., Scalabrini F., Marchais C. 1991. Adaptation digestive du lapin à la teneur en constituants parétaux du régime. Ann. Zootec., 34: 73-84. https://doi.org/10.1051/animres:19910203

Gidenne T., Carabaño R., Garcia J., DeBlas C. 2010a. Fibre Digestion. In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 66-82. https://doi.org/10.1079/9781845936693.0066

Gidenne T., Garcia J., Lebas F. 2008. Commercialisation of rabbit’s meat in Tizi-Ouzou area, Algeria. In Proc.: 9th World Rabbit Congress, June 10-13, 2008, Verona, Italy.

Gidenne T., Bannelier C., Della A., Gidenne T., García J., Lebas F. Licois D. 2010b. Nutrition and feeding strategy: Interactions with pathology. In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 179-199. https://doi.org/10.1079/9781845936693.0179

Gidenne T., Lebas F. 2001. Valorisation alimentaire de la paille par le lapin, élevage et pathologie. Ann. Zootec., 7: 81-94.

Gidenne T., Lebas F. 2002. Role of dietary fibre in rabbit nutrition and in digestive troubles prevention. 2nd Rabbit Congress of the America, Habana City, Cuba, June 19-22, 2002, 47-59.

Guemour D., Bannelier C., Della A., Gidenne T. 2010. Nutritive value of sun-dried grape pomace, incorporated at a low level in complete feed for the rabbit bred under magrebian conditions. World Rabbit Sci., 18: 17-25. https://doi.org/10.4995/wrs.2010.18.03

Gowda N.K.S., Ramana J.V., Prasad C.S., Singh K. 2004. Micronutrient content of certain tropical conventional and unconventional feed resources of southern India. Trop. Anim. Health Prod., 36: 77-94.

Habeeb A.M., Marai, I.F.M., El-Maghawy, A.M. and Gad, A.E. 1997. Physiological response of growing rabbit to different concentrations of salinity in drinking water under winter and hot summer conditions. Egyp. J. Rabbit Sci., 7: 81-94.

Hernández P., DalleZotte A. 2010. Diet and Rabbit Meat Quality. In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 163-178. https://doi.org/10.1079/9781845936693.0163

Ho Y.B. 1981. Mineral composition of Phragmites australis in Scottish lochs as related to eutrophication. I. Seasonal changes in organs. Hydrobiologia,85: 227-237. https://doi.org/10.1007/BF00017612

International Standardarization Organization. 1998. Animal feeding stuffs animal products, and faeces or urine - Determination of gross caloric value. Bomb calorimeter method. Norme international ISO 9831. Available at: http://www.iso.org. Accessed May 2018.

International Standardarization Organization. 1999. Animal feeding stuffs Determination of moisture and other volatile matter content. Norme international ISO 6496. Available at: http://www.iso.org. Accessed May 2018.

International Standardarization Organization. 2002. Animal feeding stuffs: Determination of crude ash. Norme international ISO 5864 Available at: http://www.iso.org. Accessed May 2018.

International Standardization Organization. 2006. Animal feeding stuffs Determination of amylose-treated neutral detergent fibre content (aNDF). Norme international ISO 16472. Available at: http://www.iso.org. Accessed May 2018.

International Standardarization Organization. 2008. Animal feeding stuffs Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents. Norme international ISO 13906. Available at: http://www.iso.org. Accessed May 2018.

International Standardarization Organization. 2009. Food products. Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Part 2: Cereals, pulses and milled cereal products. Norme international ISO 16834-2. Available at: http://www.iso.org. Accessed May 2018.
Maertens L., Pérez J.M., Villamide M., Cervera C., Gidenne T., Xiccato G. 2002. Nutritive value of raw materials for rabbits: EGRAN tables 2002. World Rabbit Sci., 10: 157-166. https://doi.org/10.4995/wrs.2002.488

Majchrzak Y. 1992. Evolution des communautés végétales de marais tourbeux soumises au pâturage de bovins et d’équins. Application pour la gestion conservatoire d’une zone humide, le marais de Lavaurs (Ain, France). PhD Thesis, Grenoble I university, France.

Marks M., Lapin B., Randall J. 1994. Phragmites australis (P. communis): threats, management, and monitoring. Nat. Area., 14: 265-294.

Motta Ferreira W., Fraga M.J., Carabaño R. 1996. Inclusion of grape pomace, in substitution for alfalfa hay, in diets for growing rabbits. Anim. Sci., 63: 167-174. https://doi.org/10.1017/S135772980000240X

Nicodemus N., Carabaño R., García J., Méndez J., de Blas J.C. 1999. Performance response of lactating and growing rabbits to dietary lignin content. Anim. Feed Sci. Technol., 80: 43-54. https://doi.org/10.1016/S0377-8401(99)00042-5

Nicodemus N., García J., Carabaño R., de Blas C. 2002. Effect of the inclusion of sunflower hulls in the diet on performance, disaccharidase activity in the small intestine and caecal traits of growing rabbits. Anim. Sci., 75: 237-243. https://doi.org/10.1017/S1357729800052991

Nikolajevskij V.G. 1971. Research into the biology of the common reed (Phragmites communis Trin.) in the U.S.S.R. Folia Geobot. Phytotx., 6: 221-230.

Papadomichelakis G., Zoidis E., Fegeros K. 2012. Dietarily induced changes in liver composition and weight of fattening rabbits. Livest. Sci., 144: 190-196. https://doi.org/10.1016/j.livsci.2011.11.012

Pérez J.M., Lebas F., Gidenne T., Maertens L., Xiccato G., Parigi-Bini R., DalleZotte A., Cossu M.E., Carazzolo A., Villamide M.J., Carabaño R., Fraga M.J., Ramos M.A., Cervera C., Blas E., Fernández-Carmona J., Falcão-e-Cunha L., Bengala Freire J. 1995. European reference method for in-vivo determination of diet digestibility in rabbits. World Rabbit Sci., 3: 41-43. https://doi.org/10.4995/wrs.1995.239

Schaller J., Brackhage C., Gessner M.O., Baùker E., GerDudel E. 2011. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol., 14: 392-396 https://doi.org/10.1111/j.1343-8677.2011.00537.x

Sun Z., Zhou D., Ferreira L.M.M., Zhong Q., Lou Y. 2008. Diet composition, herbage intake and digestibility in Inner Mongolian Cashmere goats grazing on native Leymus chinensis plant communities. Livest. Sci., 116: 146-155. https://doi.org/10.1016/j.livsci.2007.09.018

Tao Z.Y., Li F.C. 2006. Effects of dietary neutral detergent fibre (NDF) on production performance, nutrient utilization, caecum fermentation and fibrolytic activity in 2-3 month New Zealand rabbits. J. Anim. Physiol. Anim. Nutr., 90, 467-473. https://doi.org/10.1111/j.1439-0396.2006.00628.x

Uchytíl R.J. 1992. Phragmites australis. In: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System. Available at: http://www.fs.fed.us/database/feis/plants/graminoid/phausa/all.html. 19p. Accessed: May 2018.

Villamide M.J., Maertens L., Cervera C., Pérez J.M., Xiccato G. 2001. A critical approach of the calculation procedures to be used in digestibility determination of feed ingredients for rabbits. World Rabbit Sci., 9: 19-26. https://doi.org/10.4995/wrs.2001.442

Villamide M.J., Nicodemus N., Fraga M.J., Carabaño R. 2010. Protein Digestion In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 39-55. https://doi.org/10.1079/9781845936693.0039

Windham L., Weis J.S., Weis P. 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cord grass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science, 56: 63-72. https://doi.org/10.1016/S0272-7714(02)00121-X

Xiccato G., Trocino A. 2010. Energy and Protein Metabolism and Requirements. In: De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 83-118. https://doi.org/10.1079/9781845936693.0083

Zerrouki N., Hannachi R., Lebas F., Berchiche M. 2008. Productivity of rabbit does of a white population in Algeria. In Proc.: 9th World Rabbit Congress, June 10-13, 2008. Verona, Italy.

Zhao H., Yan H., Zhang C., Liu X., Yue Y., Qiao Y., Tian Y., Qin S. 2011. Pyrolytic characteristics and kinetics of Phragmites Australis. Evid-Based Compl. Alt., 1-6.