Variation in topoisomerase I gene copy number as a mechanism for intrinsic drug sensitivity

HL McLeod and WN Keith

CRC Department of Medical Oncology, University of Glasgow, CRC Beatson Laboratories, Alexander Stone Building, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.

Summary DNA topoisomerase I (topo I) is the principle target for camptothecin and its derivatives such as SN38. Levels of topo I expression vary widely between and within tumour types and the basis for this is poorly understood. We have used fluorescence in situ hybridisation to detect the topo I locus in a panel of breast and colon cancer cell lines. This approach has identified a range of topo I gene copies from 1 to 6 between the cell lines as a result of DNA amplification, polysomy and isochromosome formation. Topo I gene copy number was highly correlated with topo I expression, \(r_s = 0.92 \), and inversely correlated to sensitivity to a 1 h exposure to SN38 \(r_s = -0.904 \). This illustrates the significant impact of altered topo I gene copy number on intrinsic drug sensitivity and influences potential mechanisms for acquisition of drug resistance.

Keywords: topoisomerase I; fluorescence in situ hybridisation; SN38; drug resistance

DNA topoisomerase I (topo I) is a nuclear enzyme that catalyses the breakage and rejoining of DNA, allowing the strands to pass through one another. In normal cells, topo I activity is probably required for gene transcription and possibly for DNA synthesis and replication (Slichenmyer et al., 1993). The topo I inhibitors are an exciting new class of antineoplastic agents with activity in patients with refractory solid tumour malignancies (reviewed in Potmesil, 1994). Human cancer cell lines with acquired resistance to topo I inhibitors in vitro have demonstrated point mutations in the topo I gene or down-regulation of topo I expression (reviewed in Pommier et al., 1994). Whereas these mechanisms of resistance may have clinical relevance in long-term treatment with topo I inhibitors, they provide little insight into the mechanisms for intrinsic resistance to topo I inhibition. One postulated source of altered sensitivity to topo I inhibitors is variable topo I expression. A wide range of topo I protein expression and catalytic activity has been observed in human tumours, with significant variation within specific tumour types (McLeod et al., 1994; Husain et al., 1994). The basis for variable expression of topo I has not been elucidated. Genetic alterations in the region of the topo I locus on chromosome 20q have been reported in breast cancer biopsies and cell lines (Devilee et al., 1991; Keith et al., 1993; Tanner et al., 1994; Kallioniemi et al., 1994), but there is relatively little information on direct changes to the topo I locus, (Keith et al., 1993). Therefore, we examined four breast cancer cell lines available in our laboratory for alterations at the topo I locus in an attempt to generate valuable well-characterised cell line models for the study of drug sensitivity. In addition, the colon cancer cell line HT29 was included in the study as it is routinely used in a number of laboratories for topoisomerase studies, (Tazawa et al., 1994). In this study we demonstrate altered topo I gene copy number in human breast and colon carcinoma cell lines and establish correlations between copy number, protein expression and intrinsic sensitivity to topo I inhibition, thereby providing evidence for alterations in topo I gene copy number as a mechanism for intrinsic resistance to topo I-directed therapy.

Materials and methods

Cell lines and chemicals

Four human breast carcinoma cell lines (MCF-7, ZR75-1, MB MDA231, MB MDA436) and one human colon carcinoma cell line (HT29) were obtained from the American Type Culture Collection (Rockville, MD, USA) and maintained as previously described (McLeod et al., 1994). All chemicals were obtained from Sigma (Dorset, UK) and were of the highest available grade. The topo I inhibitor SN38 was a kind gift from Dr J-F Riou, Rhône-Poulenc Rorer Bellon (Neuilly sur Seine, France). SN38 is the active metabolite of CPT11, a potent analogue of camptothecin, and has a high level of specificity for inhibition of topo I (Potmesil, 1994).

Cytotoxicity assay

The cytotoxic activity of SN38 was determined by the MTT assay (Plumb et al., 1989). Multiwell plates were seeded at \(1 \times 10^4 \) cells per well and maintained for 48 h. Cells were then exposed to drug at 0.000128–10 \(\mu \)M for 1 to 24 h. Cells were then maintained in drug-free medium for 72 h. Reduction of tetrazolium dye was determined after addition of MTT to each well for 4 h, solubilised in dimethyl sulphoxide (DMSO) and glycine buffer and measured at 570 nm. The concentration lethal to 50% of cells (IC\(_{50}\)) was determined using the sigmoidal Hill equation.

Topo I protein analysis

Nuclear protein extracts were prepared as previously described (Van der Zee et al., 1991). Extracted nuclear protein (50 \(\mu \)g) was separated by 7.5% sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis and protein transferred to immobilon P PVDF nylon membranes (Millipore, Watford, UK) at 200 mA for 45 min at room temperature by using a semidry-blot system. Topo I was detected using a polyclonal antibody from scleroderma patient serum (1:1000;TopoGEN, Columbus, OH, USA). The enhanced chemiluminescence Western blotting system (Amersham, Little Chalfont, UK) was used to detect topo I, using protein A conjugated horseradish peroxidase as the secondary antibody. Quantitation was performed by autoradiograph scanning (Molecular Dynamics, UK) and expressed in arbitrary units. Protein analysis was performed in duplicate for two separate culture flasks of each cell line.
Figure 1 Detection and mapping of the topo I locus by FISH. (a) Metaphase spread from lymphocytes, (b) an intensity plot of fluorescence along the profile of chromosome 20. Horizontal axis shows the length along which fluorescence intensity is measured from the p-arm telomere and the vertical axis shows fluorescence intensity. The chromosome profile generated by the DNA counterstain, propidium iodide is shown as is the hybridisation site for topo I. Thus, a visual representation of the hybridisation site for topo I relative to the chromosome 20 profile is generated. Flpeter analysis of topo I gave a mean value of 0.64. For comparison an ideogram of chromosome 20 with the approximate map positions of topo I, SRC and PTPN 1 is shown below the intensity plot. (c) Metaphase spread from the MB MDA231 cell line which has four copies of topo I, the isochromosome 20q is marked *. (d, e, f, g, h, i) Details of the chromosomes carrying multiple copies of topo I. (d) Lymphocytes. (e) MB MDA436. (f) MCF7. (g) ZR75-1. (h) MB MDA231. (i) HT29. Fluorescence was detected using a confocal microscope and the chromosomes are pseudocoloured red, hybridisation sites green. (f) The two chromosomes in MCF7 that carry more than one copy of topo I. The MCF7 chromosome in the inset of (f) has the low level amplicon with three copies. Two of the hybridisation sites on one of the sister chromatids are out of the plane or focus used for image capture. (h) One end of the small chromosome from MB MDA231 containing the two copies of topo I is indistinct as it partially overlaps a neighbouring chromosome, (see (c) for an example of a metaphase spread).
Fluorescence in situ hybridisation

The topo I probe used for fluorescence in situ hybridisation (FISH), was a phage clone designated TP3.6, (kindly provided by Dr N Kunze), which contains genomic DNA encompassing the third exon of the functional topo I gene, (Kunze et al., 1991). The sequences present in this clone are not present in the two topo I pseudogenes and do not cross-hybridise with them. Probe labelling, in situ hybridisation and probe detection are as previously described, (Coutts et al., 1993; Murphy et al., 1995), using the Hybaid Omnislide system (Hybaid Ltd, Teddington, UK). The topo I probe was localised by fractional length measurements, Flipter, where the Flpter is the distance from the probe location to the end of the short arm of chromosome 20 divided by the total length of the chromosome, (Lichter et al., 1990; Mascio et al., 1995; Sakamoto et al., 1995). Analysis of digitised images for Flpter measurements was carried out using IPLab Spectrum software with SmartCapture extension from Digital Scientific (Cambridge, UK). Images were processed using edge enhancement algorithms (Comos Software, Bio-Rad) to aid definition of chromosome boundaries and hybridisation sites and length measurements carried out using IPLab spectrum. In addition, GraphPolygon was used to produce an intensity plot along the profile of the chromosome where the width of the chromosome was determined in pixels and the average intensity over the width plotted. Thus, a visual representation of the hybridisation site relative to the chromosome profile is generated, (see Figure 1b). The unit of measurement is 1 pixel.

Statistics

The correlation between gene copy number, topo I protein content, and cytotoxicity was assessed by the Spearman rank correlation test.

Results

Detection and mapping of the topo I locus

Topo I sequences were detected by FISH using a phage clone designated TP3.6, (Kunze et al., 1991). Figure 1a shows an example of detection of topo I sequences in normal lymphocyte chromosomes by FISH. Hybridisation efficiency for TP3.6 on lymphocytes is 85% when efficiency is defined as the percentage of metaphase spreads with both chromosome 20 homologues and both chromatids labelled. Forty metaphase spreads were analysed. Juan et al. (1988) and Kunze et al. (1989), have previously mapped the topo I locus to chromosome bands 20q11.2–q13.2 by isotopic in situ hybridisation. With the rapid progress in molecular cytogenetics and the use of FISH to assemble physical maps, standard ideograms are often unsuitable for the description of probe localisation. An appealing and robust approach to mapping probe localisation by FISH is to define the map position of the hybridisation signal as the fractional length along the chromosome in relation to the short arm telomere, (Flipter; Lichter et al., 1990). Flipter measurements were carried out on digitised images using length measurement and Graph-Polygon extensions within IPLab Spectrum. Figure 1b shows an intensity plot of fluorescence along the profile of chromosome 20 produced using GraphPolygon. Thus, a visual representation of the hybridisation site for topo I relative to the chromosome 20 profile is generated. Flipter analysis of topo I gave a mean value of 0.64, (seven chromosomes measured, standard error, 0.048). This localisation for topo I is consistent with the published Flipter maps available from the Resource for Molecular Cytogenetics at Lawrence Berkeley National Laboratories and the University of California, San Francisco, (Internet connection, http://rnc-wwww.lbl.gov/).

Table 1 Topoisomerase I copy number, protein expression and sensitivity to SN38 in human breast and colon cell lines

Cell line	Copy number	Protein expression	SN38 IC₅₀	SN38 IC₅₀
MCF7	6	3.26 (0.9)	1.68 (0.52)	0.35 (0.24)
ZR75-1	5	2.45 (0.17)	35.5 (6.5)	51.5 (34.5)
MB MDA231	4	1.83 (0.040)	461 (249)	33.9 (5.8)
MB MDA436	1	1.25 (0.1)	31700 (5000)	10 (1.1)
HT29	5	2.99 (0.7)	640 (160)	53 (8.1)

a Mean (s.d.) arbitrary units. *b* Mean (s.e.) μM; 1 h exposure. *c* Mean (s.e.) nM.

Figure 2 Western blot analysis of topo I expression. Lane 1, MCF7; lane 2, ZR75; lane 3, MB MDA231; lane 4, MB MDA436; lane 5, HT29. Molecular weight markers are shown to the right of the figure and are in kDa.
copies found as single copies on separate chromosomes. Thus, for example the MB MDA231 cell line has two chromosomes each with one copy and an isochromosome 20q with two copies as shown in Figure 1c and 1h.

Relationship between topo I gene copy number, topo I expression and cellular sensitivity to the topo I inhibitor SN-38

Topo I protein expression was determined by Western blot analysis (Figure 2). A 2.6-fold range in topo I protein levels was observed in nuclear extracts (Table I). Topo I protein expression was highly correlated with gene copy number ($r_s = 0.92$; Table II, Figure 3a). The cytotoxic effect of SN38 was highly variable with a 4-log range of IC$_{50}$ values after a 1 h drug exposure and a 150-fold range in IC$_{50}$ values after a 24-h drug exposure (Table I). Intrinsic sensitivity to topo I inhibition by a 1 h exposure to SN38 was inversely related to both topo I protein expression ($r_s = -0.81$, Table II), and gene copy number ($r_s = -0.904$, Table II, Figure 3b). This relationship was not apparent after a 24 h drug exposure, (Table II).

![Graphical representation of the relationship between topo I gene copy number and topo I expression, and sensitivity to SN38](image)

Discussion

This study shows a significant relationship between topo I copy number, topo I protein expression, and cellular sensitivity to topo I inhibition, thus demonstrating for the first time the importance of genetic background as a determinant of intrinsic resistance to topo I-targeting agents. However, it is unlikely that the observed genetic changes at the topo I locus are initial driving oncogenic events during tumour development. Rather, gene dosage changes at the topo I locus, including gene amplification, isochromosome formation and polysomy, are most likely due to selection for alterations to chromosome 20 at for example an oncogene in the proximity of topo I. This situation has been shown to occur for the topo I I locus on chromosome 17q, which can be co-amplified along with the erbB2 oncogene in a proportion of breast cancers resulting in high levels of topo I expression, (Coutts et al., 1993; Keith et al., 1993; Murphy et al., 1995).

Both allelic imbalances and gene amplification have been detected on chromosome 20 in breast cancer, (Devilee et al., 1991; Keith et al., 1993; Kallioniemi et al., 1994; Tanner et al., 1994). Indeed, a high proportion of primary breast cancers and cell lines show amplification of sequences originating close to the topo I locus on chromosome 20 (Tanner et al., 1994; Kallioniemi et al., 1994). Tanner et al. (1994) have shown the MCF7 cell line to have such an amplicon and so provide a representative cell line model for the in vivo situation. The three copies of topo I clustering to a region of an MCF7 chromosome (Figure 1f) are probably included within the amplicon described by Tanner et al. (1994), albeit at a lower copy number than other markers closer to the selective locus. However, the present study emphasises that fortuitous amplification of the topo I locus in breast cancer may occur and could lead to high levels of target for enzyme inhibition. Thus, in conjunction with other mechanisms operating to deviate the number of topo I gene copies from normal, the intrinsic sensitivity of tumours to topo I-inhibitory drugs may in part be controlled at the genetic level.

The current results also have implications for both developmental mechanisms of resistance to topo I inhibition and strategies for enhancing drug sensitivity. These studies emphasise the need for genetic characterisation before creation of resistant cell lines. If only one gene copy is present at initiation of study, as was the case for MB MDA436, selection for down-regulation of topo I expression may be difficult owing to the cells normal requirement for topo I activity, (Lee et al., 1993). Indeed, the cell line may display some intrinsic resistance and so further increase in resistance may only be possible through acquired gene mutation affecting drug interaction, but not normal catalytic activity. It has been shown in primary breast cancer biopsies that allele loss at the topo I locus can occur, suggesting that tumours can pass through a stage at which they have only one copy of the topo I locus (Keith et al., 1993). Cell lines such as MB MDA436 may therefore fulfil a role as a model for tumours with only one copy of topo I undergoing exposure to a topo I inhibitor.

Cell lines with multiple copies of topo I at the outset of selection for resistance, such as MCF7 in this study, are unlikely to mutate all gene copies as this may require up to

Protein	Log IC$_{50}$ 1 h	Log IC$_{50}$ 24 h
Protein	0.92	-0.904
Log IC$_{50}$ 1 h	-0.81	-0.35
Log IC$_{50}$ 24 h	0.52	
References

COUTTS J., PLUMB JA, BROWN F AND KEITH WN. (1993). Expression of topoisomerase II alpha and beta in a adenocarci- noma cell line expressing amplified topoisomerase II alpha and retinoic acid receptor alpha genes. Br. J. Cancer, 68, 793 – 800.

DEVILEE P, VAN VLIEET M, VAN SLOVEN P, DIJKSKOORN NK, HERMENS J, PEARSON PL AND CORNELISSE CJ. (1991). Allelotype of human breast carcinoma: a second major site for loss of heterozygosity is on chromosome 6q. Oncogene, 6, 1705 – 1711.

EPSTEIN FH. (1986). Clinical implications of tumour cell hetero- geneity. N. Eng. J. Med., 314, 1423 – 1431.

HUSAIN K, MOHLER JL, SEIGLER HF AND BESTERMAN JM. (1994). Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: Demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res., 54, 539 – 546.

JUAN CC, HWANG J, LIU AA, WHANG-PENG J, KNUTSEN T, HUEBNER K, CROCE CM, ZHANG H, WANG JC AND LIU LF. (1988). Human topoisomerase I is encoded by a single copy gene that maps to chromosome region 20q12 – 13.2. Proc. Natl Acad. Sci. USA, 85, 8910 – 8913.

KALLIONIEMI A, KALLIONIEMI-O, PIPER J, TANNER M, STOKKE T, CHEN L, SMITH HS, WISHART GC, MCCALLUM HM, GEORGE WD, KAYE SB AND BROWN R. (1993). Colocalisation of erbB2, topoisomerase Iil and retinoic acid receptor α genes in breast cancer and allelic loss at topoisomerase Iq on chromosome 20. Br. J. Cancer, 29A, 1469 – 1475.

KUNZE N, YANG GC, JIANG ZY, HAMEISTER H, ADOLPH S, WIEDORN KH, RICHTER A AND KNIPPELS M. (1989). Localisation of the active type I DNA topoisomerase gene on human chromosome 20q11.2 – 13.1, and two pseudogenes on chromosome 1q21.2 – 6.1. Hum. Genet., 84, 1 – 10.

KUNZE N, YANG G, DÖLBERG M, SUNDARP R, KNIPPELS R AND RICHTER A. (1991). Structure of the Human type I DNA topoisomerase gene. J. Biol. Chem., 266, 9610 – 9616.

LEE MP, BROWN SD, CHEN A AND HSIEH T. (1993). DNA topoisomerase I is essential in Drosophila melanogaster. Proc. Natl Acad. Sci. USA, 90, 6656 – 6660.

LICHTER P, TANG CC, CALL K, HERMANSON G, EVANS GA, HOUSMAN D AND WARD DC. (1990). High-resolution mapping of human chromosome 11q in situ hybridization with cosmids clones. Science, 247, 64 – 69.

MCLEOD HL, DOUGLAS F, OATES M, SYMONDS RP, PRAKASH D, VAN DER ZEE AGI, KAYE SB, BROWN R AND KEITH WN. (1994). Topoisomerase I and II activity in human breast, cervix, lung and colon cancer. Int. J. Cancer, 59, 607 – 611.

MASCIO LN, VERBEEK PW, SUDAR D, KUO WL AND GRAY JW. (1995). Semiautomated DNA probe mapping using digital imaging microscopy: I. System development. Cytometry, 19, 51 – 59.

MERTENS F, JOHANSSON B AND MITTELMAN F. ISOCHROMO- SOMES IN NEOPLASIA. (1994). Genes, Chromosomes., Cancer, 10, 221 – 230.

MURPHY DS, MCHARDY P, COUTTS J, MALLON EA, GEORGE WD, KAYE SB, BROWN R AND KEITH WN. (1995). Interphase cytogenetic analysis of ERBB2 and TOPOII alpha co-amplification in invasive breast cancer and polysomy of chromosome 17 in ductal carcinoma in situ. Int. J. Cancer, 64, 18 – 26.

PLUMB JA, MILROY R AND KAYE SB. (1989). Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo- lium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res., 49, 4435 – 4440.

POMMIER Y, LETEURTRE F, FESEN MR, FUJIMORI A, BERTRAND R, SOLARY E, KOHLHAGEN G AND KOHN KW. (1994). Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest., 12, 530 – 542.

POTMESIL M. (1994). Camptothecins: from the laboratory to the bedside. Cancer Res., 54, 431 – 1439.

SAGAMOTO M, PINKEL D, MASCIO L, SUDAR D, PETERS D, KUO WL, YAMAKAWA K, NAKAMURA Y, DRABKIN H, JERICEVIC Z, SMITH I AND GRAY JW. (1995). Semiautomated DNA probe mapping using digital imaging microscopy: II. System performance. Cytometry, 19, 60 – 69.

SLICHENMYER WJ, ROWINSKY EK, DONEHOWER RC AND KAUFMANN SH. (1993). The current status of camptothecin analogues as antitumor agents. J. Natl Cancer Inst., 85, 271 – 291.

TANIZAWA A, FUJIMORI A, FUJIMORI Y AND POMMIER Y. (1994). Comparison of Topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J. Natl Cancer Inst., 86, 836 – 842.

TANNER MM, TIRKKONEN M, KALLIONIEMI A, COLLINS C, STOKKE T, KARHU R, KOWBEL D, SHADRAVAN F, HINTZ M, KUO W-L, WALDMAN FM, ISOLA JJ, GRAY JW AND KALLIO- NIEMI O-P. (1994). Increased copy number at 20q13 in breast cancer: Defining the critical region and exclusion of candidate genes. Cancer Res., 54, 4257 – 4260.

VANDER ZEE AGJ, HOLEMA H, DE JONG S, BOONSTRA H, GOUW A, WILLEMSE PHB, ZIJLSTRA JG AND DE VRIES EGE. (1991). P- glycoptsein expression and DNA topoisomerase I and II activity in benign tumors of the ovary and in malignant tumors of the ovary, before and after platinum/cyclophosphamide chemother- apy. Cancer Res., 51, 5915 – 5920.