Immune Response of Amebiasis and Immune Evasion by *Entamoeba histolytica*

Kumiko Nakada-Tsukui and Tomoyoshi Nozaki

Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with *E. histolytica*, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis.

Keywords: *Entamoeba histolytica*, cysteine protease, glycosidase, mucin, phagocytosis, oxidative stress, metabolism

INTRODUCTION

Entamoeba histolytica is an enteric protozoan parasite that infects humans, and is the etiological agent of amebiasis. Amebiasis remains a worldwide health problem accounting for up to 100,000 deaths annually (1, 2). Transmission occurs via ingestion of food and water contaminated with amebic cysts (1, 3, 4). In endemic areas, exposure can be extremely high: an annual incidence of 40% was estimated among children in an urban slum in Bangladesh (5). In some parts of Asia and Australia, amebiasis is endemic among men who have sex with men (MSM) and can be transmitted sexually (6–9). Majority of infections with *E. histolytica* remain asymptomatic, while ~20% of the cases develop clinical manifestations, such as dysentery, which is characterized by colonic mucosal invasion and tissue destruction (10). Invasive disease includes dysentery and extra-intestinal amebiasis, most commonly amebic liver abscesses (ALAs), which occur in approximately 1% of symptomatic cases in developing countries and around 17% in Japan (11, 12).
When amebic trophozoites invade the colonic epithelium, they activate immune response in the human host. In order to survive in the host, the repression of host immune systems and the control of the environment of parasitism are crucial. For instance, during extraintestinal dissemination, the amebae must transiently survive in the blood vessels and the spleen, in which a network of immune cells and humoral factors are present, and the amebae are exposed to high concentrations of oxygen (*E. histolytica* are anaerobic or microaerophilic). To persist in such environment, amebae must subvert detection by antibody and complement, and resist oxidative and nitrosative attack.

In this review, we summarize our current knowledge on immune response during amebic infection (Figure 1) and the parasite’s strategies to evade from host immune system (Figure 2).

IMMUNE RESPONSE DURING AMEBIC INFECTION

Course of Amebic Infection

Entamoeba histolytica infection is initiated by parasite adherence to the colonic mucin layer. Trophozoites express a galactose...
Possible mechanisms of immune evasion during amebiasis. Secreted or surface proteases of the amebae degrade IgA in the mucosal layer. PGE2 from the amebae induces IL-10 secretion from the IECs, and in turn stimulates mucin and IgA secretion, which likely prevents unnecessary inflammation. Overstimulation of TLR causes downregulation of NFκB activation. Removal of infiltrating immune cells by phagocytosis/trogocytosis helps to reduce immune responses. Some commensal microbiota, namely Clostridium XIV and IV groups and Bacteroides fragilis, induce Treg cells to downregulate immune responses. Polysaccharide A from B. fragilis binds to TLR2 on CD4 T cells and induces IL-10 production. The amebae in the tissues and the bloodstream evade from complement by surface receptor capping (LPPG, lectin) and degradation of C3a and C5a by cysteine proteases. Cysteine proteases also degrade IL-1β, antioxidative stress defense by the TRX and PRX systems fends off the attack from ROS and NO from activated neutrophils and macrophages. LPPG binds to TLR2 on monocytes and macrophages, which leads to secretion of cytokines, including IL-10 and TGF-β. High doses of LPPG downregulate TLR2 gene expression in monocyte and cause negative feedback of protective immune responses. PGE2 from the amebae and the host causes downregulation of MHC class II expression on macrophages in the liver, which results in anti-inflammation.

and N-acetyl-D-galactosamine specific lectin (Gal/GalNAc lectin) on the cell surface and attach to host mucin and colonic epithelial cells (13). The colonized parasites are capable of extensive tissue destruction. Beside the pore-forming proteins, amoebapores (14, 15), hydrolytic enzymes, particularly cysteine proteases (CP), are considered to be essential weapons of the parasite to penetrate the epithelium and destroy components of the host's extracellular matrix (ECM) (16–20). During and after penetration into the submucosal region, amebic trophozoites interact directly and indirectly with host immune and non-immune cells.

Humoral Immunity

While the mucosal layer in the gastrointestinal tract generally serves as a primary physical barrier against intestinal pathogens, the intestinal immune response is the secondary defense to E. histolytica infection. Mucosal immunoglobulins (Ig) are the major component of the human intestinal defense mechanism (21). Among them, secretory IgA is one of the most abundant Ig produced by plasma cells and functions by preventing pathogens from adhering and removing the mucosal barrier (21). Haque and colleagues showed that the presence of Gal/GalNAc lectin-specific IgA antibodies in the stool correlated with reduced
re-infection rates with *E. histolytica* in a study on susceptible children from Bangladesh (5, 22, 23). This implication was also confirmed with patients who had recovered from ALA. Increases in anti-Gal/GalNAc lectin IgA antibodies in post-ALA patients were associated with clearance of subsequent amebic infections, demonstrating that post-ALA patients developed a higher immune responsiveness and maintained immunological memory (24, 25). On the other hand, IgG levels have either protective or non-protective effects on the susceptibility to amebic infections (26, 27).

Cell-Mediated Immunity

Cell-mediated immune responses are also important for host defense against *E. histolytica*. During the initial stage of infection, intestinal epithelial cells (IECs) bind to and recognize the carbohydrate recognition domain of the Gal/GalNAc lectin via toll-like receptor (TLR)-2/4, which activates NFkB and leads to the production of inflammatory cytokines, including IL-1β, IL-6, IL-8, IL-12, IFN-γ, and TNF-α (28–30). IECs are the second line of barriers against pathogens after the mucosal layer and the first line of host cells to encounter microbial/parasite antigens, they express an array of pathogen recognition receptors (PRRs), including TLRs (31). IFN-γ is involved in clearance of infection, whereas IL-4 and TNF-α are associated with disease (32–35). In fact, IFN-γ production by peripheral mononuclear cells was shown to be correlated with protection from future *E. histolytica* infection in children (36) and the serum level of IL-4 was high in patients with invasive amebiasis (27, 37). It has been also shown that IFN-γ-producing CD4+ T cells and IL-17-producing CD8+ T cells are involved protection in vaccinated mice (38, 39). IL-17 plays multiple roles in protection against amebic infection, including induction of secretion of mucin and antimicrobial peptides, increase in IgA transport across the intestinal epithelium, and promotion of neutrophil infiltration (40–43).

IFN-γ-activated neutrophils and macrophages have amebicidal activity in vitro (44, 45). In vivo, neutrophils predominated in amebic lesions where the macrophages were infrequent, suggesting importance of neutrophils for clearance of amebae (46). Production of reactive oxygen species (ROS) and nitric oxide (NO) via NAD(P)H oxidase complex and iNOS, respectively, play critical roles in killing trophozoites (45, 47). In experimental ALA, protection was mediated by IFN-γ from natural killer T cells (NKTs), while TNF-α-producing macrophages increased tissue damage (32, 33). Taken together, both humoral and cell-mediated immune responses play important roles against amebic infection.

Microbiota Influences the Parasite’s Virulence

The commensal bacteria are generally protective against enteric pathogens. However, *E. histolytica* infection requires the presence of enteric bacteria. Germ-free animals were resistant to *E. histolytica* infection, but the introduction of a single bacterial species restored amebic pathogenesis (56, 57).

It has been shown that axenization (i.e., removal of associating bacteria) of xenically cultivated trophozoites decreases virulence, and incubation of axenic trophozoites with live bacteria restored virulence in a contact-dependent manner (58, 59). Incubation of *E. histolytica* trophozoites with the enteropathogenic *Escherichia coli* (EHEC) or *Shigella dysenteriae* increased amebic adherence to and cytotoxicity against MDCK cell monolayer (60). These observations indicate the enteric microbiota influence *E. histolytica* virulence during human infection (also see Perturbation of the Enteric Microbiota by *E. histolytica*).

The microbiota-dependent glycobiome has an emerging role in regulating the virulence of enteric pathogenic bacteria, such as EHEC, *Clostridium difficile*, and *Salmonella enterica* serovar *Typhimurium* (*S. typhimurium*) (61–63). EHEC has a fusocose-responsive regulator of virulence genes, while *C. difficile* growth is promoted with high concentrations of free sialic acid reproduced by sialidase from associating bacteria (*Bacteroides thetaiotaomicron*). Similarly, the *in vivo* virulence of *S. typhimurium* was shown to be dependent on both fucose and sialic acid (63). It has been shown that glucose starvation enhances *E. histolytica* virulence, motility, and lectin expression via URE-3BP (64, 65). This finding suggests that the ameba has an ability to sense glucose (and possibly other monosugars) to modulate its virulence. The ameba and the bacterial microbiota influence each other by providing energy source and degrading available carbohydrates.

Microbiota Affects Host Immune Response

Gut microbiota plays a number of physiological roles involving digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against colonization by pathogens, and immunomodulation (66–68). It has been demonstrated...
that *Bacteroides fragilis* and cluster XIV and IV of *Clostridium* species induce the development of regulatory T (Treg) cells in the colon (69, 70). Treg cells have the ability to suppress inflammatory responses through the production of anti-inflammatory cytokines, including IL-10 and TGF-β, and are considered to be involved in self-tolerance (71, 72). The beneficial effect of *B. fragilis* depends on the expression of polysaccharide A, which is a unique surface polysaccharide that binds to TLR2 on CD4+ T cells (72). Microbiota-mediated immunomodulation is evident in several diseases, e.g., Rheumatoid arthritis, diabetes, obesity, and cancer (73–78). It seems that *E. histolytica* requires the intestinal microbiota for pathogenesis, and, conversely, the parasite also needs to disrupt the homeostasis of the microbiota during infection.

STRATEGIES FOR IMMUNE EVASION OF *E. histolytica*

Disruption of Host Physical Barriers and Soluble Immune Mediators by Hydrolases Glycosidases

Hydrolases secreted by *E. histolytica* trophozoites are involved in the elimination of immune cells and degradation and/or activation of soluble immune mediators, as well as disruption of the host gut and liver epithelia (29, 55, 79–84). The mucosal layer between the lumen and the epithelia forms a physical barrier. Degradation of carbohydrates in the barrier is crucial for the initiation of colonization by the amebae. Human intestinal mucus is mainly composed of highly glycosylated mucins (85). Among >20 human mucins, MUC2 is the major gel-forming mucin secreted by goblet cells of the small and large intestines (86, 87). When the amebae colonize the colonic epithelia, they bind to secreted mucin oligosaccharides with the Gal/GalNAc lectin and penetrate through the mucosal layer. In this process, the amebae decompose the mucin barrier to finally reach and subsequently attach on IEC (13).

Secreted proteins by *E. histolytica* trophozoites displayed glycosidase activities, including β-N-acetyl-d-glucosaminidase, α-d-glucosidase, β-d-galactosidase, β-L-fucosidase, and α-N-acetyl-d-galactosaminidase (88). Among these glycosidases, β-N-acetyl-d-glucosaminidase showed the highest activity (88, 89). Thus, β-N-acetyl-d-glucosaminidase activity likely have a central role in degrading carbohydrates on mucin and exposing its protein backbone (88). It was previously demonstrated that the amount of intracellular and secreted β-N-acetyl-d-glucosaminidase activity increased by complement in the serum (90, 91). Huldt et al. also suggested that hexosaminidase activity plays a role in the amebic virulence (90).

Recently, it has been shown that knock down of a β-amylase gene by siRNA caused reduction in the degradation of the mucosal layer and the invasion into the human colon in an *ex vivo* experiment (55). Furthermore, the β-amylase gene was found upregulated after contact with colon tissues (55). Mucin degradation by amebic glycosidases may also affect the central metabolism of the amebae *per se* and also the microbiota equilibrium in the colon since highly glycosylated mucin is a carbon source for the amebae and the colonic microbiota (92, 93).

Cysteine Proteases

The *E. histolytica* genome has ~50 genes encoding CPs (20), which likely reflects robust biological importance of CPs. Of these, however, only four proteins, EhCP-A1, EhCP-A2, EhCP-A5, and EhCP-A7, are highly expressed under culture conditions and altogether account for more than 90% of the proteolytic activity in trophozoite extracts (94). After mucin was digested by amebic glycosidases, the protein backbone of mucin is degraded by robust CPs. Altogether, these mucin-digesting glycosidases and proteases are the ameba’s first line strategy to overcome the innate defense of the mucus barrier.

As suggested by various studies, among the four major CPs, EhCP-A5 appears to play a pivotal role in virulence, including immunomodulation (80, 95–102). EhCP-A5 has a capacity to bind integrin via the RGD motif in the pro region, and elicits pro-inflammatory response in Caco-2 cells *in vitro* and the murine colon via NLRP3 inflammasome activation independent of the CP activity (100, 102, 103). CPs are also known to modulate cell-mediated immunity by activating pro-inflammatory cytokines and also modulate humoral immunity (see below).

Involvement of Glycosidases and Proteases for Extraintestinal Propagation

When *E. histolytica* trophozoites propagate extraintestinally, they take a route similar to that of cancer metastasis (104), which requires both glycosidases and proteases for the disintegration of the basement membrane and entry into circulation (105–107). In case of ALA, amebic glycosidases and proteases are also needed to survive in the blood vessels (see Degradation of Immunoglobulins and Complements), and to destroy Kupffer cells, the epithelial cells, ECM, and hepatocytes in the liver. Thibeaux and colleagues have recently demonstrated that EhCP-A5 secreted from the amebae activates host matrix metalloproteases (MMP), a well-known mediator of ECM degradation (84). Recombinant EhCP-A5 restored the invasiveness of the *EhCP-A5* gene-silenced trophozoites, suggesting that proteases from both the ameba and the host contribute to the tissue invasion process. In contrast to proteases, the roles of glycosidases in pathophysiology of amebiasis are not well demonstrated. It is evident in cancer metastasis that the level of serum β-hexosaminidase correlates with the likelihood of liver metastasis in variety of cancers, including colon, breast, stomach, pancreas, small bowel, kidney, testis, melanoma, lymphoma, and myeloma (108). Increased levels of tissue β-hexosaminidase were also reported for breast, kidney, pancreas, thyroid, colon, ovary, brain, salivary gland, stomach, and larynx cancers (109–112). Thus, it is conceivable by analogy that amebic glycosidases are involved in tissue invasion and extraintestinal dissemination.

Degradation of Immunoglobulins and Complements

As described above, the major component responsible for the intestinal immune response against amebic infection is secreted...
Igs. It was demonstrated that anti-Gal/GalNAc lectin IgA reduces trophozoite colonization in the colon (5, 23, 25, 113–117). Intriguingly, *E. histolytica* surface-associated CP [most likely EhCP-A5, (118)] cleaves human IgA (16, 119). Amebic CPs are capable of cleaving both isotypes, i.e., IgA1 and IgA2 (119, 120). Furthermore, amebic CPs can also inactivate circulating IgG and thus, believed to be involved in the survival during tissue invasion and extraintestinal propagation (18). Degradation of IgG in the blood could prevent activation of the classical pathway of the complement system and immune cells that harbor Fc receptors (19).

When the trophozoites are exposed to the intravascular immune system, complements are the major component that mediates trophozoite destruction. *E. histolytica* trophozoites evade from a complement attack by cleaving and inactivating anaphylatoxins C5a and C3a with CPs (79). C5a and C3a are potent activators of inflammation and enhance the release of histamine from mast cells, lysosomal enzymes from leukocytes, and pro-inflammatory cytokines, including IL-6 and TNF-α, from macrophages (121–123). C5a and C3a also increase vascular permeability and attract immune cells (122, 123). Reduction of these anaphylatoxins detracts from immune detection of the amebae in the blood and reduces inflammation in amebic lesions. It also partially explains the lack of severe inflammation in advanced colitis and ALA region.

Degradation of Cytokines

Cysteine proteases are also known to modulate cell-mediated immunity by activating pro-inflammatory cytokine IL-1β and inactivation of pro- and mature IL-18 (82, 124). It is not concluded, however, if these changes are protective against or deleterious for amebic infection.

Cell Surface Decorations to Evade Host Immunity

Glycosylphosphatidylinositol-Anchored Proteins

Entamoeba histolytica is also capable of evading from complement attack by decorating their surface with glycosylphosphatidylinositol (GPI)-anchored proteins. GPI is a glycolipid required for anchoring many proteins and glycoconjugates to the cell surface in most of eukaryotes (125–127). *E. histolytica* trophozoites expose on their cell surface a complex GPI-anchored glycoconjugate, designated lipopeptidophosphoglycan (LPPG) (128, 129). LPPG on the cell surface is a component of glyocalyx that is composed of oligosaccharides of glycoproteins and glycolipids and afford trophozoites protection by creating an impervious layer to complement (130, 131). It was demonstrated that complement-susceptible *Entamoeba dispar* trophozoites possess a much thinner structure of LPPG-containing glyocalyx, which is consistent with the premise that LPPG is important for the evasion from complement (130). It is also known that antibody against human CD59, a cell surface protein that prevents auto-lysis by inhibiting the formation of the membrane attack complex (MAC) antibody cross-reacts with Gal/GalNAc lectin and a 21 kDa surface protein (132, 133). Later, it was shown that the Gal/GalNAc lectin contains a CD59-like region on the cell surfaces that prevents MAC formation (132). These data suggest that the Gal/GalNAc lectin is a cross-reactive CD59 homolog of the ameba and have a similar function as CD59. In agreement with these results, global inhibition of GPI-anchor formation leaves *E. histolytica* trophozoites susceptible to complement-mediated lysis (131). However, functionality of 21 kDa protein as an inhibitor of MAC formation and its molecular identity has yet to be elucidated.

Surface Receptor Capping

Surface receptor capping is another strategy to hide from the immune system by disposing of the surface molecules that have been recognized by Igs or complements (134, 135). During cell movement, surface-bound immune complexes are translocated toward the uroid, where capped ligands accumulate (136). This polar re-distribution can be induced by concanavalin A (Con A) or anti-amebic polyclonal antibodies (137). It has been reported that serine protease, *E. histolytica* rhomboid protease (ROM1), is involved in the translocation of the complex to the base of the caps and subsequent release of the materials in the cap (135, 138). It is of note that ROM1 also cleaves the transmembrane domain of the heavy subunit of the Gal/GalNAc lectin (138). As the lectin heavy subunit is highly immunogenic, its release from the plasma membrane by ROM1 may interfere with host immune response directed to amebae.

Killing and Phago/Togocytosis of Immune Cells

Contact-Dependent Cell Killing

Immobilization and killing of immune cells also serves as an ameba’s strategy for evasion from immune surveillance. Amebic trophozoites are able to kill a variety of cells, including neutrophils, T lymphocytes, macrophages, and a variety of tissue culture lines (116, 139–141). Adherence of the ameba triggers multiple intracellular events leading to cytotoxic effects to the mammalian cells. Such events include increased intracellular Ca^2+^, production of ROS, loss of membrane integrity, DNA fragmentation, phosphatidylserine exposure on the cell surface, and caspase-3 activation (116, 117, 139–144). It was reported that after host cell killing, *E. histolytica* preferentially ingest the dead cells (117, 140, 143). This observation is consistent with the theory that clearance of dead cells and debris by phagocytosis helps to minimize pro-inflammatory responses (145, 146). A phagocytosis-defective line of *E. histolytica* apparently showed decreased virulence in vitro and in vivo, suggesting a potential causal link between phagocytosis and virulence (147, 148).

Huston and colleagues demonstrated that *E. histolytica* preferentially ingests apoptotic Jurkat cells via recognition of phosphatidylserine and collectins (140, 149). Amebic calreticulin was found to be the surface receptor for host C1q, and required for phagocytosis of apoptotic cells, but it did not directly mediate cell killing (150). A few recent studies have started to unveil the detailed molecular mechanisms involved in the ameba...
phagocytosis (151, 152). However, the molecular events that take place in host immune cells in particular to suppress (or augment) immune response, together with a missing link between the surface receptor to the internalization machinery, remains totally unknown.

Trogocytosis

Ralston and colleagues have recently reported *E. histolytica* trophozoites ingested pieces of intact living cells via trogocytosis (“trogo” = nibbling) (153). When trophozoites were incubated with a combination of live and pre-killed host cells (Jurkat T cells), the live cells were ingested by trogocytosis, while the pre-killed host cells were ingested as a whole by canonical phagocytosis. Trogocytosis is an active process that resembles phagocytosis in some ways, i.e., it requires physiological temperature, actin rearrangements, Gal/GalNAc lectin, C2 domain-containing protein kinase, and phosphatidylinositol 3-phosphate kinase signaling, and it is accompanied with a rapid rise in intracellular Ca²⁺ concentrations. Trogocytosed host cells finally were killed. Trogocytosis of murine IEC was also evident in the *in vivo* animal model, suggesting that both trogocytosis of live host cells and phagocytosis of dead cells are important for pathogenesis and sustained parasitism of *E. histolytica*. Since amebic contact can potentially results in multiple outcomes: apoptosis and necrosis, followed by phagocytosis, or trogocytosis, it remains to be elucidated what factors and conditions differentiate these distinct manners of killing and ingestion of target host cells.

IFN-γ

Entamoeba histolytica regulates IFN-γ for survival in the host. In CBA mice, which are susceptible to *E. histolytica* cecal infection, the amebic infection led to upregulation of Th2 (IL-4, IL-5, and IL-13) and Th17 (IL-17) cytokine responses, while Th1 cytokines, IL-12p35 and IFN-γ, were suppressed (154). This indicates that suppression of INF-γ causes susceptibility of amebiasis. From cohort studies in Bangladesh, susceptible children with malnutrition showed lower IFN-γ levels (36, 155). Analysis of asymptomatic carriers of *E. histolytica* showed that carriers had higher levels of IFN-γ, while patients with invasive amebiasis displayed higher levels of IL-4 (35). The significance of IFN-γ in susceptibility is also implicated for ALA. It is known that more than 80% of all ALA cases occur in adult males (156–158), and the male predominance is attributable to testosterone (159). Lotter and colleagues showed that trogocytosis inhibits IFN-γ secretion from invariant natural killer T (iNKT) cells stimulated by LPPG, a physiological ligand for CD1d (159). iNKT cells are a subset of NK cells that recognize lipid antigens in the context of CD1d and produce IFN-γ and IL-4. *E. histolytica* LPPG is presented on CD1d to invariant TCR and activates iNKT cells in combination with TLR signaling. αGalCer, a CD1d agonist, stimulates production of both IFN-γ and IL-4, whereas LPPG induces IFN-γ but not IL-4 production (33). These data suggest that iNKT cells provide a link between innate and adaptive immunity due to their capacity to produce large amounts of IFN-γ and IL-4 that can bias the immune response into either a Th1 or Th2 direction. Production of IFN-γ helps clearance of *E. histolytica* infection and controls abscess formation, whereas an adequate level of IFN-γ reduces the trophozoite number and pro-inflammatory response at a low level, and may balance for trophozoites to survive.

IL-10

It is known that anti-inflammatory cytokine, IL-10, plays a critical role to maintain the mucosal barrier. IL-10-deficient mice have compromised and highly permeable mucosal barriers and develop spontaneous intestinal inflammation in response to normal microflora (160). A murine amebic colitis model demonstrated that IL-10 from hematopoietic cells (CD4+ T cells) acting upon the non-hematopoietic compartment (IEC) is required for innate resistance to parasite invasion (161). Furthermore, it has been shown that IL-10 enhances MUC2 production, suppresses activation of antigen-presenting cells, induces B cell class-switching to IgA, has anti-apoptotic effects on IECs, reduces pro-inflammatory NFκB signaling in IECs, and promotes induction of CD4+ Treg cells (162–165). Interestingly, in asymptomatic carriers, no elevation of IL-10 level was observed. On the other hand, the IL-10 level was increased in dysenteric and ALA patients (27, 37). These studies indicate that invasion of the colon and liver by *E. histolytica* elicits an anti-inflammatory immune response and may successfully suppress immune reaction to the amebae. Altogether, the ameba needs to balance IL-10 and inflammatory cytokine levels to establish infection. It was shown that peritoneal monocytes and macrophages exposed to LPPG secreted TNF-α, IL-6, IL-8, IL-12, and IL-10 via TLR2 (166). It has been also shown that high doses of LPPG down-regulated TLR2 gene expression (166, 167). Thus, LPPG-driven signaling may activate a negative feedback loop that attenuates inflammatory responses. The mechanisms of the suppression of IL-10 production by the ameba remain to be elucidated (see below).

Suppression of NFκB in IECs

Entamoeba histolytica trophozoites secrete materials that induce a protective response in human IECs (168, 169), the first line of host cells to encounter microbial antigens, via PRRs, including TLRs. Upon binding to their ligand, PRRs trigger activation of a transcription factor NFκB. Gut homeostasis requires continuous activation of NFκB by TLR signaling in response to intestinal bacteria (170), commensal microbes can also disrupt NFκB signaling to attenuate pro-inflammatory IEC responses (171). It has been shown that secreted components from *E. histolytica* trophozoites induce a protective response in human IECs that primed by macrophage secretions through suppression of NFκB via heat shock protein response and increase resistance of IECs to apoptosis (168). Thus, it appears that *E. histolytica* elicits a stress response to IECs and promotes a hyporesponsive state toward trophozoites. The amebic factors that induce NFκB suppression have not yet determined. The factors that activate TLR2, i.e., LPPG and Gal/GalNAc lectin, are candidates involved in this pathway (172).
Prostaglandin PGE2

Entamoeba histolytica trophozoites produce and secrete prostaglandin 2 (PGE2), which have contact-independent effects on tight junction integrity and ion absorption. Secreted amebic PGE2 binds to prostaglandin E receptor 4 (EP4) on IECs, disrupts tight junctions, and increases luminal Cl− secretion (173, 174). PGE2 secreted from the amebae elicits inflammatory response in IECs by increasing IL-8 production by IECs (173). PGE2 is a potent mucin secretagogue (175) that can overcome luminal barrier function by causing hypersecretion and, thus, depletion of the protective mucus barrier (176). On the contrary, it has been also reported that during invasive amebiasis, local PGE2 has anti-inflammatory effect. In animal model of chronic ALA, hepatic granuloma macrophages do not respond to IFN-γ and LPS and do not produce inflammatory cytokines, show decrease in MHC class II expression, and are unable to kill trophozoites (47, 177, 178). This suppression is local during chronic ALA and is directly caused by the parasite (47, 177). A culture supernatant and an unknown soluble protein component of *E. histolytica* trophozoites decrease class II major histocompatibility complex (MHC II) immune-associated (Ia) antigen expression through a PGE2-dependent manner (178). Inhibition of macrophage PGE2 synthesis can partially recover MHC II Ia expression and TNF-α expression (177, 178). However, inhibition of PGE2 synthesis does not recover iNOS expression or amebicidal activity in the deactivated macrophage (177). A continuous supply of parasite-derived PGE2 likely prevents iNOS expression and full recovery of MHC II and TNF-α, possibly through a concentration-dependent effect of PGE2. In short, ameba-secreted PGE2 represses inflammation in ALA, which is beneficial for survival, whereas it likely enhances destruction of the colon.

PERTURBATION OF THE ENTERIC MICROBIOTA BY *E. histolytica*

It has been reported that *E. histolytica* infection alters the microbiota composition. *E. histolytica*-induced dysbiosis was characterized by fewer Bacteroides, Clostridia, Lactobacillus, Campylobacter, and *Eubacterium* species, and increased *Bifidobacterium* species (179). *In vitro* experiments have shown that *E. histolytica* preferentially ingest some bacterial species (59, 180). It is known that amoebapores, a family of the major pore-forming peptides, have differential activity against bacteria and eukaryotes (15). Furthermore, *E. histolytica* infection induces production of colonic antimicrobial peptides, while the trophozoites degrade them (181). A recent study has shown that dendritic cells from the mouse intestine where *Clostridia*-related bacteria colonized provide IL-17A-dependent protection against amebic colitis (182). Detailed molecular events remain to be elucidated, however, by examining how alternations of the microbiota modulate host immune responses against amebic intestinal infection. Altogether, microbiota can be modulated by amebic infection, and in turn concentrations of carbohydrates (and other compounds) that affect growth and virulence of the amebae can strongly influence outcome of infection. It remains to be elucidated whether and how the amebae modulate the intestinal microbiota for their survival and parasitism.

STRATEGY FOR OXIDATIVE STRESS MANAGEMENT AND METABOLIC CONTROL

Lack of Respiration and Antioxidative Stress Management in *E. histolytica*

Entamoeba histolytica trophozoites are microaerophilic and consume oxygen. They tolerate low levels of oxygen tension. *E. histolytica* lacks a conventional respiratory electron transport chain that terminates in the reduction of O2 to H2O. However, it does respire and tolerates up to 5% oxygen in the gas phase (183–185). The parasite lacks most of the components of antioxidant defense mechanisms that are widely present in other protaryotic and eukaryotic organisms, such as catalase, peroxidase, glutathione, and the glutathione-recycling enzymes glutathione peroxidase and glutathione reductase (184, 185). However, during tissue invasion, trophozoites must fend off reactive oxygen and nitrogen species produced by activated immune cells through the respiratory burst. Thus, trophozoites must use antioxidative stress defense to survive immune surveillance.

Anti-Oxidative Stress Response Contributes to Immune Evasion in *E. histolytica*

Entamoeba histolytica trophozoites contain high levels of cysteine, instead of glutathione, as the major thiol in the cell. They possess several enzymes to defend from oxidative stress, such as peroxiredoxin (Prx), superoxide dismutase, flavoprotein A, ferredoxin, thioredoxin (Trx), and Trx reductase (186, 187). The Trx/Trx reductase system is crucial for buffering sensitive proteins under oxidative stress (188). The amebicidal drugs, metronidazole and auranofin, are known to disrupt Trx (189, 190). Interestingly, the oxidative stress increases *E. histolytica* virulence. It has been shown that oxidative stress causes upregulation of a stress-induced adhesion factor and a phospholipid transporting P-type ATPase/flipase (187). Both genes are involved in adhesion and phagocytosis. Oxidative stress also alters metabolic flux, including glycerol and chitin biosynthesis, potentially triggering encystation (191). Furthermore, it has been shown that *E. histolytica* (HM-1:IMSS) responds more strongly to oxidative stress than *E. dispar* and *E. histolytica* non-virulent Rahman strain, and surface localization of Prx in HM-1:IMSS is associated with virulence (186). Altogether, antioxidative defense mechanisms in *E. histolytica* are associated with pathogenesis. For more details on the antioxidative management in *E. histolytica*, a recent review should be consulted (192).

CONCLUSION

Our understanding of molecular mechanisms of the parasite’s pathogenesis, such as adherence to host cells, induction of apoptosis, degradation of mucin and ECM, tissue invasion, and phago- or trocytosis of host cells, has greatly advanced in recent years. So have mechanisms of immune evasion, such as induction of IL-10 and suppression of INF-γ, degradation of Igs, complement, and pro-inflammatory cytokines. In addition, defense against ROS and NO and evasion from antibody and complement-dependent
ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (23117001, 23117005, 26293093, 26111524), a grant for research on emerging and re-emerging infectious diseases from Japan Agency for Medical Research and Development (AMED), a grant for Science and Technology Research Partnership for Sustainable Development (SATREPS) from AMED and Japan International Cooperation Agency (JICA) to TN.

REFERENCES

1. Ackers J, Clark CG, Diamond LS, Duchêne M, Cantellano ME, Jackson TE, et al. WHO/PAHO/UNESCO report. A consultation with experts on amoebiasis. Mexico City, Mexico 28-29 January, 1997. Epidemiol Bull (1997) 18:3–4.
2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet (2012) 380:2095–128. doi:10.1016/S0140-6736(12)61728-0
3. Ali IK, Clark CG, Petri WA Jr. Molecular epidemiology of amebiasis. Infect Genet Evol (2008) 8:698–707. doi:10.1016/j.megev.2008.05.004
4. Ximénez C, Morán P, Rojas L, Valdez A, Gómez A. Reassessment of the epidemiology of amebiasis: state of the art. Infect Genet Evol (2009) 9:1023–32. doi:10.1016/j.megev.2009.06.008
5. Haque R, Ali IM, Sack RB, Farr BM, Ramakrishnan G, Petri WA Jr. Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis (2001) 183:1787–93. doi:10.1086/320740
6. Hung CC, Chang SY, Ji DD. Entamoeba histolytica infection in men who have sex with men. Lancet Infect Dis (2012) 12:729–36. doi:10.1016/S1473-3099(12)70147-0
7. Watanabe K, Gotagama H, Escueta-de Cadiz A, Tanuma J, Nozaki T, Oka S. Entamoeba histolytica isolates from a national survey in Japan: characterization of the Entamoeba histolytica genome. J Microbiol Rev (2002) 168:4081–90. doi:10.1128/JCM.41.8.3748-3756.2003
8. Haque R, Mondal D, Kabir M, Roy S, Farr BM, et al. Entamoeba histolytica infection in children and protection from subsequent amebiasis. Infect Immun (2006) 74:904–9. doi:10.1128/IAI.74.2.904-909.2006
9. Galván-Moroyoqui JM, Del Carmen Domínguez-Robles M, Meza I. Geographic diversity among genotypes of Entamoeba histolytica isolates from AMED and Japan International Cooperation Agency (JICA) to TN.

Frontiers in Immunology | www.frontiersin.org 9 May 2016 | Volume 7 | Article 175

Nakada-Tsukui and Nozaki

Immune Evasion of Entamoeba histolytica

16. Kelsall BL, Ravdin JJ. Degradation of human IgA by Entamoeba histolytica. J Infect Dis (1993) 168:3139–22. doi:10.1093/infdis/168.5.1319
17. Schulte W, Scholze H. Action of the major protease from Entamoeba histolytica on proteins of the extracellular matrix. J Protozool (1989) 36:538–43. doi:10.1111/j.1550-7489.1989.tb1092x
18. Tran VQ, Herdman S, Torian BE, Reed SL. The neutral cysteine protease of Entamoeba histolytica degrades IgG and prevents its binding. J Infect Dis (1998) 177:508–11. doi:10.1086/517388
19. Que X, Reed SL. Cysteine proteases and the pathogenesis of amebiasis. Clin Microbiol Rev (2000) 13:196–206. doi:10.1128/CMR.13.2.196-206.2000
20. Tilack M, Biller L, Irner H, Freitas M, Gomes MA, Tannich E, et al. The Entamoeba histolytica proteolytic enzymes: genome primary structure and expression of proteolytic enzymes. BMC Genomics (2007) 8:170. doi:10.1186/1471-2164-8-170
21. Lamm ME. Current concepts in mucosal immunity. IV. How epithelial transport of IgA antibodies relates to host defense. Am J Physiol (1998) 274:G614–7.
22. Haque R, Duggal P, Ali IM, Hossain MB, Mondal D, Sack RB, et al. Innate and acquired resistance to amebiasis in Bangladeshi children. J Infect Dis (2002) 186:547–52. doi:10.1086/341566
23. Haque R, Mondal D, Duggal P, Kabir M, Roy S, Farr BM, et al. Entamoeba histolytica infection in children and protection from subsequent amebiasis. Infect Immun (2006) 74:904–9. doi:10.1128/IAI.74.2.904-909.2006
24. Koyama H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol (2011) 30:1101–12. doi:10.1155/2013/540375
25. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol (2011) 30:16–34. doi:10.1155/2013/540375
26. Helk E, Berrn H, Ernst T, Iltrich H, Jacobs T, Heeren J, et al. TNFα-mediated liver destruction by Kupffer cells and Ly6Chi monocytes during Entamoeba...
histolytica infection. PLoS Pathog (2013) 9:e1003096. doi:10.1371/journal.ppat.1003096

33. Lindquist H, González-Roldán N, Lindner B, Winaw F, Isabasi A, Moreno-Lafont M, et al. Natural killer T cell activation by a lipopeptido-phosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog (2009) 5(5):e1000434. doi:10.1371/journal.ppat.1000434

34. Peterson KM, Shu J, Duggal P, Haque R, Mondal D, Petri WA Jr. Association between TNF-α and Entamoeba histolytica diarrhea. Am J Trop Med Hyg (2010) 82:620–6. doi:10.4269/ajtmh.2010.09-0493

35. Sánchez-Guillén Mdel C, Pérez-Fuentes R, Salgado-Rosas H, Ruiz-Agüelles A, Ackers J, Shore A, et al. Differentiation of Entamoeba histolytica/Entamoeba dispar by PCR and their correlation with humoral and cellular immunity in individuals with clinical variants of amebiasis. Am J Trop Med Hyg (2002) 66:731–7.

36. Haque R, Mondal D, Shu J, Roy S, Kabir M, Davis AN, et al. Correlation of interferon-γ production by peripheral blood mononuclear cells with childhood malnourishment and susceptibility to amebiasis. Am J Trop Med Hyg (2007) 76:340–4.

37. Bansal D, Sehgal R, Chawla Y, Mallia N, Mahajan RC. Cytokine mRNA expressions in symptomatic vs. asymptomatic amebiasis patients. Parasite Immunol (2005) 27:37–43. doi:10.1111/j.1365-3024.2005.00739.x

38. Guo X, Barroso L, Becker SM, Lyerly DM, Vedvick TS, Reed SG, et al. Protection against intestinal amebiasis by a recombinant vaccine is transferable by T cells and mediated by gamma interferon. Infect Immun (2009) 77:3909–18. doi:10.1128/IAI.00487-09

39. Guo X, Barroso L, Lyerly DM, Petri WA Jr, Houpert ER, CD4+ and CD8+ T cell- and IL-17-mediated protection against Entamoeba histolytica induced by a recombinant vaccine. Vaccine (2011) 29:772–7. doi:10.1016/j.vaccine.2010.11.013

40. Liang SC, Tan YX, Luxenberg DP, Karim R, Dunussi-Hoannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med (2006) 203(10):2271–9. doi:10.1084/jem.20061308

41. Nishida A, Lau CW, Zhang M, Andoh A, Shi HK, Mizoguchi E, et al. The membrane-bound mucin Muc1 regulates T helper 1 cell responses and colitis in mice. Gastroenterology (2012) 142:865–74.e2. doi:10.1053/j.gastro.2011.12.036

42. Cao AT, Yao S, Gong B, Elson CO, Cong Y, Jiang N, Begum S, et al. Th17 cytokines and the gut mucosal barrier. Cell (2011) 146:863–8. doi:10.1016/j.cell.2011.12.013

43. Blaschitz C, Raffatellu M. Th17 cytokines and the gut mucosal barrier. Am J Physiol Gastrointest Liver Physiol (2013) 305:G170–83. doi:10.1152/ajpgi.00058.2013

44. Gilchrist CA, Petri SE, Schneider BN, Reichman DJ, Jiang N, Begum S, et al. Cytokine mRNA expression of interferon-γ and CD8+ T cells in response to Entamoeba histolytica. PLoS Pathog (2010) 6:e1001308

45. Lindquist H, González-Roldán N, Lindner B, Winaw F, Isabasi A, Moreno-Lafont M, et al. Natural killer T cell activation by a lipopeptido-phosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog (2009) 5(5):e1000434. doi:10.1371/journal.ppat.1000434

46. O’Connor K, Soccol VP, Da Silva WV, Nozaki T, Nakada-Tsukui K. Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica. Infect Immun (2013) 81:1820–9. doi:10.1128/IAI.00915-12

47. Thibaux R, Weber C, Hon CC, Dillies MA, Ave P, Coppey JY, et al. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLoS Pathog (2013) 9:e1003824. doi:10.1371/journal.ppat.1003824

48. Phillips BP, Wolfe PA, Rees CW, Gordon HA, Wright WH, Reyniers JA. Studies on the amebabacteria relationship in amebiasis: comparative results of the intracelular infection of germfree, monocomitinated, and conventional guinea pigs with Entamoeba histolytica. Am J Trop Med Hyg (1955) 4:675–92.

49. Galván-Moroyoqui JM, Del Carmen Dominguez-Robles M, Franco E, Meza I. The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage. PLoS Negl Trop Dis (2008) 2:e266. doi:10.1371/journal.pntd.0000266

50. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes (2012) 3:289–306. doi:10.4161/gmic.19897

51. Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, et al. Fucose sensing regulates bacterial intestinal colonization. Nature (2012) 492:113–7. doi:10.1038/nature11623

52. Ng KM, Ferreira JA, Higginbotham SK, Lynch JB, Kashyp PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature (2013) 502:95–9. doi:10.1038/nature12503

53. Toovy A, Hertz R, Siman-Toy R, Svan Y, Saff DA, Guillin N, et al. Glucose starvation boosts Entamoeba histolytica virulence. PLoS Negl Trop Dis (2011) 5:e524. doi:10.1371/journal.pntd.0000524

54. Gilchrist CA, Baba DJ, Zhang Y, Crasta O, Evans C, Caler E, et al. Targets of the Entamoeba histolytica transcription factor URE3-BP. PLoS Negl Trop Dis (2008) 2:e282. doi:10.1371/journal.pntd.0000282

55. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric-load, and nutrient absorption in humans. Am J Clin Nutr (2011) 94:58–65. doi:10.3945/ajcn.110.010132

56. Purchiaroni F, Tortora A, Gabrielli M, Bertucci F, Gigante G, Iaino G, et al. The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci (2013) 17:323–33.

57. Donia MS, Fischbach MA. HUMAN MICROBIOTA. Small molecules for complex carbohydrates in the gut. Nature (2011) 473:332–33. doi:10.1038/nature10070

58. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor predicts intestinal inflammatory disease. Nature (2008) 453:620–5. doi:10.1038/nature06708

59. Atarashi K, Tanoue T, Shima T, Imamo A, Kuhwara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridia species. Science (2011) 331:337–41. doi:10.1126/science.1198469

60. Sakaguchi S. The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J Clin Invest (2003) 112:1310–2. doi:10.1172/JCI20032074

61. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science (2011) 332:974–7. doi:10.1126/science.1206995
73. Hot A, Miossec P. Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis (2011) 70:727–32. doi:10.1136/ard.2010.143768
74. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol (2011) 7:569–78. doi:10.1038/nrrheum.2011.121
75. Romano-Keeler J, Weitkamp JH, Moore DJ. Regulatory properties of the intestinal microbiome effecting the development and treatment of diabetes. Curr Opin Endocr Diabetes Obes (2012) 19:73–80. doi:10.1097/MED.0b013e23541f4d43
76. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes (2012) 3:8–14. doi:10.4161/gmic.19320
77. Jin C, Henao-Mejía J, Flavell RA. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab (2013) 17:873–82. doi:10.1016/j.cmet.2013.05.011
78. Erdman SE, Pouthidis T. Gut bacteria and cancer. Biochem Biophys Acta (2015) 1856:86–90. doi:10.1016/j.bbcan.2015.05.007
79. Reed SL, Ember EA, Herdman DS, DiScipio RG, Hugli TE, Gigli I. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol (1995) 155:266–74.
80. Anker S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D. Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect Immun (1999) 67:421–2. doi:10.1128/IAI.67.2.421-426.1999
81. Stanley SL Jr. Amoebiasis. Lancet (2003) 361:1025–34. doi:10.1016/S0140-6736(03)12830-9
82. Que X, Kim SH, Sajid M, Eckmann L, Dinarello CA, McKerrow JH, et al. A surface amebic cysteine proteinase inactivates interleukin-18. Proc Natl Acad Sci USA (2003) 100:421–2. doi:10.1073/pnas.1430603100
83. Kissoon-Singh V, Mortimer L, Moreau F, Cornick S, Chadee K. Gal-lectin-independent contact activates the NLRP3 inflammasome in the human colon. Cell Microbiol (2012) 14:609–21. doi:10.1111/j.1462-5822.2012.01752.x
84. Mortimer L, Moreau F, Cornick S, Chadee K. The NLRP3 Inflammasome is a pathogen sensor for invasive Entamoeba histolytica via activation of α(5)β(1) integrin at the macrophage-amebae intercellular junction. PLoS Pathog (2015) 11:e1004887. doi:10.1371/journal.ppat.1004887
85. Mortimer L, Moreau F, Cornick S, Chadee K. Gal–lectin dependent contact activates the inflammasome by invasive Entamoeba histolytica. Mucosal Immunol (2014) 7:829–41. doi:10.1038/mi.2013.100
86. Leroy A, Mareel M, De Bruyne G, Bailey G, Nelis H. Metastasis of Entamoeba histolytica compared to colon cancer: one more step in invasion. Invasion Metastasis (1995) 14:177–91.
87. Bernacki RJ, Niedbala MJ, Korytnyk W. Glycosidases in cancer and invasion. Cancer Metastasis Rev (1985) 4:811–4. doi:10.1007/BF00047738
88. Liotta LA. Tumor invasion and metastases: role of the basement membrane. Ann J Pathol (1984) 117:339–48.
89. Coughlin C, Murray GI. Current and emerging concepts in tumour metastasis. Br J Cancer (2010) 122:1–15. doi:10.1038/path.2727
90. Plunkins MC, Prorok JJ, Alhadeff JA. Variant serum beta-hexosaminidase as a biochemical marker of malignancy. Cancer (1986) 58:1484–7. doi:10.1002/1097-0142(1986100)58:7<1484::AID-CNCR2820580718>3.0.CO;2-R
91. Bosmann HB, Hall TC. Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci USA (1974) 71:1833–7. doi:10.1073/pnas.71.5.1833
92. Gil-Martin E, Rodríguez-Brerocca J, Páez de la Cadena M, Fernández-Briera A. Alterations of glycosidases in human colorectal adenocarcinoma. Clin Biochem (1997) 30:17–25. doi:10.1016/S0009-9120(96)00123-3
93. Ramesur KT, Greenwell P, Nash R, Dwek MV. Breast cancer invasion is mediated by beta-N-acetylglucosaminidase (beta-NAG) and associated with a dysregulation in the secretory pathway of cancer cells. Br J Biomed Sci (2010) 67:189–96.
94. Choromańska B, Lutomski S, Sawicki R, Kępkas A, Janica J, et al. Activity of N-acetyl-β-hexosaminidase and its isoenzymes A and B in cancer. Postepy Hig Med Dosw (Online) (2011) 65:752–8. doi:10.5604/17322693.96833
95. Chadee K, Petri WA Jr, Innes DJ, Ravdin JI. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest (1987) 80:1245–54. doi:10.1172/JCI113199
96. Safer LD, Petri WA Jr. Role of the galactose lectin of Entamoeba histolytica in adherence-dependent killing of mammalian cells. Infect Immun (1991) 59:4681–3.
115. Guer rant RL, Brush J, Ravdin JJ, Sullivan JA, Mandell GL. Interaction between Entamoeba histolytica and human polymorphonuclear neutrophils. J Infect Dis (1991) 163:83–93. doi:10.1093/infdis/143.1.83

116. Ravdin JJ, Moreau F, Sullivan JA, Petri WA Jr, Mandell GL. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Infect Immun (1988) 56:505–12.

117. Huston CD, Boettner DR, Miller-Sims V, Petri WA Jr. Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica. Infect Immun (2003) 71:964–72. doi:10.1128/IAI.71.9.964-9.2003

118. Jacobs T, Bruchhaus I, Dandekar T, Tannich E, Leippe M. Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica. Mol Microbiol (1998) 27:269–76. doi:10.1046/j.1365-2958.1998.00662.x

119. García-Nieto RM, Rico-Mata R, Arias-Negrete S, Avila EL. Degradation of human secretory IgA1 and IgA2 by Entamoeba histolytica surface-associated proteolytic activity. Parasitol Int (2008) 57:417–23. doi:10.1016/j. parint.2008.04.013

120. Macpherson AJ, McCoy KD, Johannsen F, Brandtzæg P. The immune geography of IgA induction and function. Mucosal Immunol (2008) 1:11–22. doi:10.1038/mi.2007.6

121. Walport MJ. Complement: second of two parts. N Engl J Med (2001) 344:1140–4. doi:10.1056/NEJM200104123441106

122. Köhl J. Anaphylatoxins and infectious and non-infectious inflammatory diseases. Mol Immunol (2001) 38:175–87. doi:10.1016/S0161-5890(01)00401-4

123. Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol (2004) 41:1089–98. doi:10.1016/j.molimm.2004.06.011

124. Zhang Z, Wang L, Seydel KB, Li E, Ankri S, Mirelman D, et al. Inhibition of human secretory IgA1 and IgA2 by Entamoeba histolytica. J Immunol (2004) 173:262–70. doi:10.4049/jimmunol.173.7.262

125. Mayor S, Riezman H. Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol (2004) 5:110–20. doi:10.1038/nrm1309

126. Fujita M, Kinoshita T. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta (2012) 1821:1050–8. doi:10.1016/j.bbalip.2012.01.004

127. Saha S, Anilkumar AA, Mayor S. GPI-anchored protein organization and dynamics at the cell surface. J Lipid Res (2015). doi:10.1194/jr62885

128. Isibasi A, Santa Cruz M, Soto Montano X, Ramirez A, Kumat J. Localization of a lipopetidophosphoglycan extracted by phenol-water from trophozoites of the HK-9 strain of Entamoeba histolytica. Arch Invest Med (Mex) (1982) 13:57–62.

129. Guha-Niyogi A, Sullivan DR, Turco SJ. Glycocomjugate structures of parasitic protozoa. Glyobiology (2001) 11:41S–59R. doi:10.1093/glycobi/11.4.41S

130. Bhattacharya A, Arya R, Clark CG, Ackers JP. Absence of lipophosphoglycan-like glycocomjugates in Entamoeba dispers. Parasitology (2000) 120:31–5. doi:10.1017/S0031182000002550

131. Weber C, Blazquez S, Marion S, Asseus C, Vats D, Krzeminski M, et al. Bioinformatics and functional analysis of an Entamoeba histolytica mannosyltransferase necessary for parasite complement resistance and hepatic infection. PLoS Negl Trop Dis (2008) 2:e165. doi:10.1371/journal. pn000165

132. Braga L, Nino-miya H, McCoy JJ, Eacker S, Wiedmer T, Pham C, et al. Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J Clin Invest (1992) 90:1311–7. doi:10.1172/JCI91593

133. Ventura-Juárez J, Teixeira JE, Heron BT, Huston CD. C1q- and collectin-dependent phagocytosis of virulence-deficient mutants of Entamoeba histolytica. Infect Immun (2008) 76:505–12. doi:10.1128/IAI.76.2.505-512.2008

134. Vaithilingam A, Teixeira JE, Miller PJ, Heron BT, Huston CD. Entamoeba histolytica cell surface calreticulin binds human C1q and functions in amebic phagocytosis of host cells. Infect Immun (2012) 80:2008–18. doi:10.1128/IAI.106287-11

135. Somlata, Bhattacharya S, Bhattacharya A. A C2 domain protein kinase initiates phagocytosis in the protozoan parasite Entamoeba histolytica. Nat Commun (2011) 2:230. doi:10.1038/ncomms1199

136. Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EeAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog (2014) 10:e1004411. doi:10.1371/journal.ppat.1004411

137. Ralston KS, Solga MD, Mackey-Lawrence NM, Somlata, Bhattacharya A, Petri WA Jr. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature (2014) 508:526–30. doi:10.1038/nature13242

138. Guo X, Stroup SE, Houp E. Persistence of Entamoeba histolytica infection in CBA mice owes to intestinal IL-4 production and inhibition of protective IFN-γ. Mucosal Immunol (2008) 1:139–46. doi:10.1038/mi.2007.18

139. Petri WA Jr, Mondal D, Peterson KM, Duggal P, Haque R. Association of malnutrition with amebiasis. Nurt Rev (2009) 67:5207–15. doi:10.1111/j.1753-4887.2009.00242.x

140. Acuna-Soto R, Maguire JH, Wirth DF. Gender distribution in asymptomatic and invasive amebiasis. Am J Gastroenterol (2000) 95:1277–83. doi:10.1111/j.1572-6524.2000.01525.x
Nakada-Tsukui and Nozaki

157. Blessmann J, Van Linh P, Nu PA, Thi HD, Muller-Myhok B, Buss H, et al. Epidemiology of amebiasis in a region of high incidence of amebic liver abscesses in Vietnam. Am J trop Med Hyg (2001) 65:578–83.

158. Blessmann J, Ali IK, Nu PA, Dinh BT, Viet TQ, Van AL, et al. Longitudinal study of intestinal Entamoeba histolytica infections in asymptomatic adult carriers. J Clin Microbiol (2003) 41:4745–50. doi:10.1128/JCM.41.10.4745-4750.2003

159. Lotter H, Helk E, Bernin H, Jacobs T, Prehn C, Adamski J, et al. Testosterone increases susceptibility to amebic liver abscess in mice and mediates inhibition of IFNγ secretion in natural killer T cells. PLoS One (2013) 8:e55694. doi:10.1371/journal.pone.0055694

160. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Federak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis (1999) 5:262–70. doi:10.1097/00054725-1999110000-00004

161. Hamano S, Asgharpour A, Stoup SE, Wynn TA, Leiter EH, Houpt E. Resistance of C57BL/6 mice to amoebiasis is mediated by nonhemopoietic cells but requires hemopoietic IL-10 production. J Immunol (2006) 177:1208–13. doi:10.4049/jimmunol.177.2.1208

162. Ruiz PA, Shkoda A, Kim SC, Sartor RB, Haller D. IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis. J Immunol (2005) 174:2990–9. doi:10.4049/jimmunol.174.5.2990

163. Schwerbrock NM, Makkinck MK, van der Sluis M, Muller HA, Einerhand AW, Sartor RB, et al. Interleukin-10 deficient mice exhibit defective colonic mucic Mac2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis (2004) 10:811–23. doi:10.1097/00054725-2004110000-00016

164. Grazia Roncarolo M, Baccetta R, Bordignon C, Narula S, Levings MK. Type I T regulatory cells. Immunol Rev (2001) 182:68–79. doi:10.1034/j.1600-060X.2001.1820105.x

165. Zhou P, Streutker C, Borjoevic R, Wang Y, Citrorou K. IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy. Am J Physiol (2004) 287:G599–604. doi:10.1152/ajpgi.0063.2004

166. Maldonado-Bernal C, Kirschning CJ, Rosenstein Y, Rocha LM, Rios-Sarabia N, Esponisa-Cantallano M, et al. The innate immune response to Entamoeba histolytica lipopeptidophosphogycerin is mediated by toll-like receptors 2 and 4. Parasite Immunol (2005) 2:127–37. doi:10.1111/j.1365-3024.2005.00754.x

167. Maldonado C, Trejo W, Ramirez A, Carrera M, Sánchez J, López-Macías J, et al. Lipophosphopeptidoglycan of Entamoeba histolytica induces an anti-inflammatory innate immune response and downregulation of toll-like receptor 2 (TLR-2) gene expression in human monocytes. Arch Biochem Biophys (2004) 428:185–98. doi:10.1016/j.abb.2004.09.018

168. Kammanadiminti SJ, Chadeem K. Suppression of NF-κB activation after Entamoeba histolytica infection of 129 and C57BL/6 mice. Infect Immun (2006) 74:5158–63. doi:10.1128/IAI.00645-08

169. Lejeune M, Moreau F, Chadee K. Prostaglandin E2 produced by Entamoeba histolytica binds to EP4 receptors and stimulates interleukin-8 production in human colonic cells. Infect Immun (2008) 76:5158–63. doi:10.1128/IAI.00645-08

170. Lejeune M, Moreau F, Chadee K. Prostaglandin E2 produced by Entamoeba histolytica signals via EP4 receptor and alters claudin-4 to increase ion permeability of tight junctions. Am J Pathol (2011) 179:807–18. doi:10.1016/j.ajpath.2011.05.001

171. Bellley A, Chadee K. Prostaglandin E(2) stimulates rat and human colonic mucin exocytosis via the EP(4) receptor. Gastroenterology (1999) 117:1352–61. doi:10.1016/S0016-5085(99)70285-4

172. Moncada D, Keller K, Chadee K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun (2003) 71:838–44. doi:10.1128/IAI.71.2.838-844.2003

173. Wang W, Keller K, Chadee K. Entamoeba histolytica modulates the nitric oxide synthase gene and nitric oxide production by macrophages for cytotoxicity against amoebae and tumour cells. Immunology (1994) 83:601–10.

174. Wang W, Chadee K. Entamoeba histolytica suppresses gamma interferon-induced macrophage class II major histocompatibility complex Ia molecule and CD4+ mRNA expression by a prostaglandin E2-dependent mechanism. Infect Immun (1995) 63:1089–94.

175. Verma AK, Verma R, Ahuja V, Paul J. Real-time analysis of gut flora in Entamoeba histolytica infected patients of northern India. BMC Microbiol (2012) 12:183. doi:10.1186/1471-2180-12-183

176. Bracha R, Kobler D, Mirelman D. Attachment and ingestion of bacteria by trophozoites of Entamoeba histolytica. Infect Immun (1982) 36:396–406.

177. Cobo ER, He C, Hirata K, W hàng G, Tran U, Eckmann L, et al. Entamoeba histolytica induces intestinal cathelicidins but is resistant to cathelicidin-mediated killing. Infect Immun (2012) 80:143–9. doi:10.1128/IAI.05029-11

178. Burgess SL, Buonomo E, Scardi M, Cowardin C, Saraiva LM, Teixeira M, Singh U. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol (2009) 11:51–69. doi:10.1111/j.1462-5822.2008.01236.x

179. Rastev E, Vicente JB, Singh U. Oxidative stress resistance genes contribute to the pathogenetic potential of the anaerobic protozoan parasite, Entamoeba histolytica. Int J Parasitol (2012) 42:1007–15. doi:10.1016/j.ijpara.2012.08.006

180. Schlosser S, Leitschm D, Duchêne M. Entamoeba histolytica: identification of thioredoxin-targeted proteins and analysis of serine acetyltransferase-1 as a prototype example. Biochem J (2013) 451:277–88. doi:10.1042/BJ20121798

181. Deb Nath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K, et al. High-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med (2012) 18:956–60. doi:10.1038/nm.2758

182. Leitsch D, Kolarich D, Wilson IB, Altmann F, Duchêne M. Nitroimidazole action in Entamoeba histolytica: a central role for thioredoxin reductase. PLoS Biol (2007) 5:e211. doi:10.1371/journal.pbio.0050211

183. Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis (2012) 6:e1831. doi:10.1371/journal.pntd.0001831

184. Jeelani G, Nozaki T. Entamoeba histolytica thiol-based redox metabolism: a potential target for drug development. Mol Biochem Parasitol (2016). doi:10.1016/j.molbiopara.2016.01.004

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Nakada-Tsukui and Nozaki. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.