Kager, Wouter; Lis, Marcin; Meester, Ronald

The signed loop approach to the Ising model: foundations and critical point. (English) [Zbl 1276.82009]
J. Stat. Phys. 152, No. 2, 353-387 (2013).

Summary: The signed loop approach is a beautiful way to rigorously study the two-dimensional Ising model with no external field. In this paper, we explore the foundations of the method, including details that have so far been neglected or overlooked in the literature. We demonstrate how the method can be applied to the Ising model on the square lattice to derive explicit formal expressions for the free energy density and two-point functions in terms of sums over loops, valid all the way up to the self-dual point. As a corollary, it follows that the self-dual point is critical both for the behaviour of the free energy density, and for the decay of the two-point functions.

MSC: 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B27 Critical phenomena in equilibrium statistical mechanics
82D40 Statistical mechanics of magnetic materials

Keywords: Ising model; signed loops; critical point; free energy density; two-point functions

Full Text: DOI arXiv

References:
[1] Aizenman, M.; Barsky, D.J.; Fernández, R., The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys., 47, 343-374, (1987)- doi:10.1007/BF01007515
[2] Beffara, V., Duminil-Copin, H.: Smirnov’s fermionic observable away from criticality \text{(2012), arXiv:1010.0526 [math.PR]} Zbl 1339.60136
[3] Burgoyne, P.N., Remarks on the combinatorial approach to the Ising problem, J. Math. Phys., 4, 1320-1326, (1963) - Zbl 0151.46602 - doi:10.1063/1.1703907
[4] Cimasoni, D.: A generalized Kac-Ward formula. J. Stat. Mech. Theory E (2010JUL), P07023 (2010). arXiv:1004.3158 - Zbl 0060.46001
[5] Costa, G.A.T.F.; Maciel, A.L., Combinatorial formulation of Ising model revisited, Rev. Bras. Ensino Fis., 25, 49-59, (2003)- doi:10.1590/S1806-11172003000100007
[6] Dobrushin, R.L., Existence of a phase transition in two-dimensional and three-dimensional Ising models, Teor. Veroâtn. Ee Primen., 10, 209-230, (1965) - Zbl 0168.23803
[7] Dobribin, N.P.; Shtan’ko, M.A.; Shtogrin, M.I., Combinatorial problems in the two-dimensional Ising model, Tr. Mat. Inst. Steklova, 196, 51-65, (1991) - Zbl 0744.57008
[8] Dobribin, N.P.; Zinov’ev, Yu.M.; Mishchenko, A.S.; Shtan’ko, M.A.; Shtogrin, M.I., The two-dimensional Ising model and the Kac-Ward determinant, Izv. Ross. Akad. Nauk Ser. Mat., 63, 79-100, (1999) - Zbl 0990.82003 - doi:10.4213/im251
[9] Fisher, M.E., Critical temperatures of anisotropic Ising lattices. II. general upper bounds, Phys. Rev., 162, 480-485, (1967)- doi:10.1103/PhysRev.162.480
[10] Glasser, M.L., Exact partition function for the two-dimensional Ising model, Am. J. Phys., 38, 1033-1036, (1970)- doi:10.1119/1.1976530
[11] Griffiths, R.B., Peierls' proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev., 136, a437-a439, (1964) - Zbl 0129.23205 - doi:10.1103/PhysRev.136.A437
[12] Griffiths, R.B., Correlations in Ising ferromagnets. III. A Mean-field bound for binary correlations, Commun. Math. Phys., 6, 121-127, (1967)- doi:10.1007/BF01654128
[13] Helmuth, T.: Planar Ising model observables and non-backtracking walks (2012). arXiv:1209.3996 - Zbl 1296.82011
[14] Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. \text{(1925FEB-APR)}, 253-258 (1925)
[15] Kac, M.; Ward, J.C., A combinatorial solution of the two-dimensional Ising model, Phys. Rev., 88, 1332-1337, (1952) - Zbl 0048.45804 - doi:10.1103/PhysRev.88.1332
[16] Kadanoﬀ, L.P.; Ceva, H., Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B, 3, 3918-
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.