XXVIIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
(Quark Matter 2019)

Nuclear effects on jet substructure observables at the LHC

P. Caucaš, E. Iancu, and G. Soyez

Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France.

Abstract

Using a pQCD picture for jet evolution in a dense QCD medium, in which medium-induced parton branchings are factorized from vacuum-like emissions, we study two jet substructure observables: the z_g and the Soft Drop multiplicity distributions. We compute the respective nuclear modification factors using a Monte-Carlo implementation of the parton showers. Our results are in qualitative agreement with LHC data for Pb+Pb collisions. We identify the physical mechanisms explaining our results: incoherent jet energy loss, semi-hard medium-induced emissions and the bias introduced by the steeply falling jet spectrum.

Keywords:
Heavy ion phenomenology, Jet quenching, Jet substructure

1. Introduction

High-p_T jets are promising probes of the quark-gluon plasma (QGP) created in heavy-ion collisions. In this context, there is an increasing interest in jet observables dealing with the inner structure of jets [1]. By requiring infrared and collinear safety for these substructure observables, one can hope for controlled calculations in pQCD even in the complex environment of a nucleus-nucleus collision and therefore quantitative comparisons with experiments.

In this proceeding, we explore jet substructure, and in particular the z_g and the Soft-Drop (SD) multiplicity distributions within our new picture of jet fragmentation in a dense QCD medium [2, 3]. In this picture, vacuum-like and medium-induced emissions (MIEs) are factorized from each other, and separately Markovian which allows for straightforward Monte-Carlo (MC) implementation. The vacuum-like emissions (VLEs) are however modified by the presence of the medium in two important respects: (i) there is a vetoed region for VLEs in phase space and (ii) the angular ordering property can be violated by the first emission outside the medium via colour decoherence.

All the results presented here are obtained using a MC which incorporates these ideas [4, 3]. These MC calculations are supported by analytical calculations which will be briefly sketched thereafter. Our results are in qualitative agreement with the measurements done by CMS and ALICE [5, 6].
2. The z_g and n_{SD} distributions in the vacuum

Firstly, we define the z_g and n_{SD} distributions. These observables rely on the SD procedure [8]. For a given jet of radius R, SD first reclusters the jet constituents using the Cambridge/Aachen algorithm. The subsequent jet is then iteratively declustered, until the SD stopping condition $z_{12} = z_{cut}(\Delta R_{12}/R)^{\beta}$ is met, where z_{12} and ΔR_{12} are respectively the transverse momentum fraction and the distance in the azimuth-rapidity plane between the two subjets and z_{cut} and β are the SD parameters. One can also impose a lower angular cut-off $\Delta R_{12} > \theta_{cut}$. The z_g and θ_g values are then respectively defined as z_{12} and ΔR_{12} for the splitting which satisfies the SD condition, if any. The z_g-distribution $p(z_g)$ is the cross-section for producing a jet with a given value z_g, and we choose to normalize it to the total number of jets.

For jets in the vacuum, at double logarithmic accuracy (DLA) with a fixed coupling α_s,

$$p(z_g) = \Theta(z_g - z_{cut}) \int_{R_{cut}}^{R} \frac{d\theta_g}{\theta_g} 2\alpha_s C_R \frac{1}{z_g} e^{-\frac{z_g}{z_{cut}}} A_0(\theta_g) , \text{ with } A_0(\theta_g) = \int_{R_{cut}}^{R} \frac{d\theta_g}{\theta_g} \int_{\theta_g}^{1/2} \frac{dz}{z} \Theta(z - z_{cut}(\theta_g/R)^{\beta})$$

(1)

The number of SD splittings n_{SD} is found by iterating the SD procedure, following the hardest branch, until the angular cut-off θ_{cut} is reached [9]. n_{SD} is the number of declusterings passing the SD condition. At DLA, n_{SD} follows a Poisson distribution with average value $2\alpha_s C_R A_0(\theta_{cut})/\pi$.

3. Leading medium effects with a “monochromatic” jet spectrum

To simplify, we first consider a leading hard parton with an initial transverse momentum p_T0 such that $\omega_c < p_{T0} < \omega_c/\omega_{cut}$ fragmenting over a distance L into a medium with quenching parameter \hat{q}. The energy scale $\omega_e \equiv \hat{q}L^2/2$ is the largest energy of a MIE. We expect the medium-jet interactions to modify the z_g and n_{SD} distributions. Throughout this analysis, we use $\beta = 0$, $z_{cut} = 0.1$ and $\theta_{cut} = 0.1$. With these choices, SD probes the hatched region in Fig. 1-left, which shows the $(k_\perp = \omega \theta, \theta)$ phase space for VLEs.

Phase space for VLEs. A VLE with formation time $t_f = 2/\omega \theta^2$ inside the medium have a phase space bounded by the constraints $k_\perp^2 = \omega_\perp^2 \theta^2 \geq \hat{q} t_f$ and $\theta > \theta_t = 2/\sqrt{\hat{q} L^2}$, the coherence angle (see [10, 11, 12]), whereas a VLE outside must satisfy $t_f > L$. This leads to the existence of a vetoed region in the phase space where no VLE is allowed [2]. The vetoed region has an impact on these distributions at DLA e.g. by reducing the area A_0 in the parameter of the Poisson law. However, as shown Fig. 1-left, the phase space area probed by SD does not overlap with this vetoed region for our choice of SD parameters. Consequently, the vetoed region can be neglected at DLA.
Incoherent large angle energy loss. All the VLEs produced in the in-medium phase space subsequently lose energy via MIEs at large angles before decaying again via brehmsstrahlung outside the medium. In this picture, all VLEs produced at $\theta \geq \theta_e$ lose energy incoherently.

For a given declustering passing the SD condition (in particular, $\theta_g \geq \theta_{cut} > \theta_e$, see Fig. 1-left), the corresponding z_g value is in general different from the physical energy fraction z before energy loss [13]. These two quantities are related via

$$z_g \approx \frac{z_{PT0} - E_1(z_{PT0}, \theta_e)}{p_{T0} - E_1(z_{PT0}, \theta_g) - E_2(1 - z_{PT0}, \theta_g)}$$

(2)

where E_1 and E_2 are respectively the energy loss of the softer and harder subjets via MIEs at angles larger than θ_e. As $E(p_T)/p_T$ is generally a monotonously decreasing function of p_T, Eq. (2) predicts $z_g < z$, with the following consequences for the substructure observables under consideration. The medium/vacuum ratio for the z_g-distribution is proportional to $p(z)/p(\epsilon_g) \propto z_g/z \approx 1 - \delta z/\epsilon_g$ with $\delta z \equiv z - z_g > 0$ and this is increasing with z_g; with our current normalization, it is also smaller than 1 (blue curve, Fig. 2-left).

Furthermore, the logarithmic area probed by SD in phase space is reduced, hence the medium/vacuum ratio for the n_{SD} distribution decreases with n_{SD} (blue curve, Fig. 2-right). Yet, these general tendencies can be modified by another medium effect, that we now describe.

Intrajet semi-hard MIEs. The semi-hard MIEs with emission angles $\theta < R$ remain inside the jet and can trigger the SD condition [14]. To estimate the order of magnitude of this effect, we rely on the fact that the spectrum for primary MIEs is well approximated by the BDMPS-Z spectrum [15, 16, 17]. Thus, for a jet evolving via primary MIEs only, n_{SD} is also Poisson-distributed with average value $2\pi c R A_m(\theta_{cut})/\pi$ and

$$A_m(\theta_{cut}) \approx \frac{\omega_z}{2 p_{T0}} \int_0^{\omega_z/p_{T0}} \frac{dz}{z^2} \int_{\theta_{cut}}^{R} d\delta \delta(\theta - Q_s/z p_{T0}) \Theta(z - z_{cut}(\theta/R)^\beta)$$

(3)

where we approximate the angular distribution with a delta centered around $k_\perp = Q_s \equiv \sqrt{q_L}$. When $\beta = 0$, this formula enables to distinguish two different regimes [3]. If $z_{cut} p_{T0} \theta_{cut} \gg Q_s$, A_m vanishes and substructure observables should not be sensitive to intrajet MIEs. On the contrary, if $z_{cut} p_{T0} \theta_{cut} \ll Q_s$, one finds $A_m \sim (z_{cut} p_{T0}/\omega_z)^{1/2}$ which is non-negligible compared to A_0 when $z_{cut} p_{T0} \ll \omega_z$.

In this case, n_{SD} follows again a Poisson distribution with average value $2\pi c R (A_0 + A_m)/\pi$. Hence the medium/vacuum ratio increases with n_{SD} (see the red dashed curve in Fig. 2-right). Regarding the z_g distribution, the peak at small z_g seen in our calculation of the nuclear modification of z_g — the red dashed curve in Fig. 2-left — is due to the MIEs captured by SD.
4. Effect of the steeply falling jet spectrum

Analysing monochromatic jets is helpful to seize the dominant medium effects at play. However, the initial p_T spectrum leads to important modifications of the previous results.

Due to the steeply-falling underlying p_T spectrum, imposing cuts on the final jet p_T tends to select jets which lose less energy than on the average. That said, the more a jet fragments inside the medium, the more it will lose energy at large angles, since the number of sources for MIEs increases [18, 3]. Hence, jets with $z_g > z_{\text{cut}}$ or with large n_{SD} lose more energy than average jets because they have also a larger in-medium multiplicity. Accordingly, they are less likely to be produced in the medium [3, 19].

Thus, the ratio medium/vacuum for z_g is considerably smaller when using a realistic spectrum, as shown Fig. 2-left, but the peak at small z_g is still clearly visible. The correlation between z_g and energy loss can be quantitatively measured. To that aim, we highlight that a measurement of the nuclear modification factor for jets R_{AA} for different bins in θ_0 or z_g would be very valuable. We show in Fig. 1-right our Monte-Carlo predictions for such measurement. The important feature of this plot is the striking difference between jets with large θ_0 and small θ_0 with a transition precisely around $\theta_0 \approx 0.04$.

For the n_{SD} distribution with $\beta = 0$, the effect of the initial cross-section is even stronger, see Fig. 2-right. Jets with large n_{SD} are highly suppressed and the enhancement seen at large n_{SD} in the monochromatic case, due to additional MIEs, is no longer visible. Such a compensation implies that one must be cautious when interpreting a measurement of R_{AA} with $\beta = 0$ [6].

Acknowledgements. The work of E.I. and G.S. is supported in part by the Agence Nationale de la Recherche project ANR-16-CE31-0019-01.

References

[1] H. A. Andrews, et al., Novel tools and observables for jet physics in heavy-ion collisions, arXiv:1808.03689.
[2] P. Cauca, E. Iancu, A. H. Mueller, G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001. arXiv:1801.09703.
[3] P Cauca, E Iancu, G Soyez, Deciphering the z_{g} distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273.
[4] P Cauca, E Iancu, A H Mueller, G Soyez, A new pQCD based Monte Carlo event generator for jets in the quark-gluon plasma, PoS HardProbes2018 (2019) 024. arXiv:1812.05393.
[5] A M Sirunyan, et al., Measurement of the Splitting Function in pp and Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 120 (14) (2018) 142302. arXiv:1708.09429.
[6] S Acharya, et al., Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, arXiv:1905.02512.
[7] M Aaboud, et al., Measurement of jet splitting function in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector, Phys. Lett. B790 (2019) 108–128. arXiv:1805.05635.
[8] A J Larkoski, S Marzani, G Soyez, J Thaler, Soft Drop, JHEP 05 (2014) 146. arXiv:1402.2657.
[9] C Frye, A J Larkoski, J Thaler, K Zhou, Casimir Meets Poisson: Improved Quark-Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083. arXiv:1704.06266.
[10] Y Mehtar-Tani, C A Salgado, K Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002. arXiv:1009.2965.
[11] Y Mehtar-Tani, C A Salgado, K Tywoniuk, Jets in QCD Media: From Color Coherence to Decoherence, Phys. Lett. B707 (2012) 156–159. arXiv:1102.4317.
[12] J Casalderrey-Solana, E Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015.
[13] N-B. Chang, S Cao, G-Y. Qin, Probing medium-induced jet splitting and energy loss in heavy-ion collisions, Phys. Lett. B781 (2018) 423–432. arXiv:1707.03767.
[14] Y Mehtar-Tani, K Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung, JHEP 04 (2017) 125. arXiv:1610.08930.
[15] R Baier, Y L Dokshitzer, A H Mueller, S Peigne, D Schiﬀ, Radiative energy loss of high-energy quarks and gluons in a finite volume quark - gluon plasma, Nucl. Phys. B483 (1997) 291–320. arXiv:hep-ph/9607355.
[16] B G Zakharyev, Fully quantum treatment of the Landau-Pomeranchuk-Migdal eﬀect in QED and QCD, JETP Lett. 63 (1996) 952–957. arXiv:hep-ph/9607440.
[17] U A Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B588 (2000) 303–344. arXiv:hep-ph/0005129.
[18] J Casalderrey-Solana, Z Hulcher, G Milhano, D Pablos, K Rajagopal, Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C99 (5) (2019) 051901. arXiv:1808.07386.
[19] J Casalderrey-Solana, G Milhano, D Pablos, K Rajagopal, Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma, JHEP 2020 (1) (2020) 44. arXiv:1907.11246.