Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation

Fawzia Faleh Al-Blewi¹, Nadjet Rezki¹,²*, Salsabeel Abdullah Al-Sadies¹, Sanaa K. Bardaweel³, Dima A. Sabbah⁴, Mouslim Messali¹ and Mohamed Reda Aouad¹*

Abstract

Background: Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry.

Results: A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely 8, 28, 29 and 32 suggesting an apoptotic cellular death pathway.

Conclusions: Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds 2–6 bind to the kinase site and form H-bond with S774, K802, H917 and D933.

Keywords: Cationic, Amphiphilic, Pyridinium, Hydrazones, Ultrasound, Anticancer, QPLD docking

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Encouraged by these findings and in continuation of our efforts in designing highly active heterocyclic hydrazones [17–19], we aim to introduce a lipophilic long alkyl chain to a hydrazone skeleton to develop a new class of bioactive molecules. In the present work, a series of novel cationic fluorinated pyridinium hydrazone-based amphiphiles tethering different fluorinated counteranions were designed, synthesized and screened for their anticancer activities against four different cell lines. Additionally, their activities were further characterized via investigating the Caspase-3 signaling pathway, a hallmark of apoptosis that is commonly studied to understand the mechanism of cellular death.

Molecular quantum-polarized ligand docking (QPLD) studies were carried out employing MAESTRO [20] software against the kinase domain of phosphoinositide 3-kinase α (PI3Kα) [21] to identify their structural-basis of binding and ligand/receptor complex formation.

Results and discussion

Synthesis

The methodology for affecting the sequence of reactions utilized ultrasound irradiations which have been widely used by our team as an alternative source of energy. Starting from fluorinated pyridine hydrazone 1, the quaternization of pyridine ring through its conventional alkylation with various long alkyl iodide with chain ranging from C8 to C18, in boiling acetonitrile as well as under ultrasound irradiation and gave the desired cationic fluorinated pyridinium hydrazones 2–9 tethering lipophilic side chain and iodide counteranion in good yields (Scheme 1). Short reactions time were required (10–12 h) when the ultrasound irradiations were used as an alternative energy source (Table 1).

The structure of newly designed pyridinium cationic surfactants 2–9 have been elucidated based on their spectral data (IR, NMR, Mass). Their IR spectra revealed the appearance of new characteristic bands at 2870–2969 cm$^{-1}$ attributed to the aliphatic C-H stretching which confirmed the presence of alkyl side chain in this structure. The 1H NMR analysis showed one methyl and methylene groups resonating as two multiplets between δ_H 0.74–0.87 ppm and 1.16–1.32 ppm, respectively. The spectra also showed the presence of characteristic triplet and/or doublet of doublet ranging between δ_H 4.68–4.78 ppm assigned to NCH$_2$ protons.

In addition, the imine proton (H–C=–N) resonated as two singlets at δ_H 8.15–8.50 ppm with a 1:3 ratio. The presence of such pairing of signals confirmed that these compounds exist as E/cis and E/trans diastereomers.

The 13C NMR data also confirmed the appearance of E/cis and E/trans diastereomers through the presence of two peaks at δ_C 58.60 and 62.74 ppm for NCH$_2$. In the downfield region between δ_C 156.38–165.76 ppm, the carbonyl and the imine carbons of the hydrazone linkage resonated as two multiplets of signals.

In their 19F NMR spectra, the aromatic fluorine atom appeared as two multiplet signals between δ_H (−107.98 to −109.89 ppm) and (−107.72 to −109.37 ppm).

Treatment of the halogenated pyridinium hydrazones 2–9 with fluorinated metal salts (KPF$_6$, NaBF$_4$ or NaOCCF$_3$) afforded the targeted cationic amphiphilic fluorinated pyridinium hydrazones 10–33 carrying variant fluorinated counteranions (Scheme 2). The reaction involved the anion exchange and was carried out in short time (6 h) under ultrasound irradiation and gave comparative yields with those obtained using classical heating (16 h) (Table 2).

Structural differentiation between the metathetical products 10–33 and their halogenated precursors 2–9 was very difficult on the basis of their 1H NMR and 13C NMR spectra because they displayed virtually the same characteristic proton and carbon signals.

Consequently, other spectroscopic techniques (19F, 31P, 11B NMR and mass spectroscopy) have been adopted to confirm the presence of fluorinated counteranions (PF$_6^-$, BF$_4^-$ and CF$_3$COO$^-$) in the structure of the resulted ILs 10–33.

Thus, the presence of PF$_6^-$ in ILs 10, 13, 16, 19, 22, 25, 28 and 31 has been established by their 31P and 19F NMR analysis. Thus, the resonance of a diagnostic
multiplet between δ_P = -152.70 and -135.76 ppm in the 31P NMR spectra confirmed the presence of PF₆⁻ in their structure.

On the other hand, the 19F NMR analysis of the same compounds revealed the appearance of new doublet at δ_F = -70.39 and -69.21 ppm attributed to the six fluorine atoms in PF₆⁻ anions.

The formation of ionic liquids 11, 14, 17, 20, 23, 26, 29 and 32 carrying BF₄⁻ in their structures were supported by the 11B and 19F NMR experiments. Thus, their 11B NMR spectra exhibited a multiplet between δ_B = -1.30 and -1.29 ppm confirming the presence of boron atom in its BF₄⁻ form. Two doublets were recorded at δ_F = -149.12 and -148.12 ppm in their 19F NMR spectra.

Structural elucidation of the ionic liquids containing trifluoroacetate (CF₃COO⁻) was investigated by the 19F NMR analysis which revealed the presence of characteristic singlet ranging from -73.50 to -75.30 ppm.

The physical (state of product and melting points) and photochemical (fluorescence and λ_max in UV) data of the synthesized pyridinium hydrazones 2–33 were investigated and recorded in Table 3.

Biological results

Attempting to characterize any potential biological activity associated with the newly synthesized compounds, an in vitro assessment of their antiproliferative activity was conducted on four different human cancerous cell lines; the human breast adenocarcinoma (MCF-7), human breast carcinoma (T47D), human colon epithelial (Caco-2) and human uterine cervical carcinoma (Hela) cell lines. Only compounds shown in Table 4 demonstrated a reasonably high antiproliferative activity against the model cancer cell lines used.

Remarkably, increasing the length of the hydrophobic chain appears to significantly potentiate the antiproliferative activities associated with the examined analogues, probably owing to their better penetration into the cellular compartment.

To determine the apoptotic effects of cytotoxic compounds and to evaluate modulators of the cell death cascade, activation of the caspase-3 pathway, a hallmark of apoptosis, can be employed in cellular assays. According to the demonstrated results (Fig. 1) and in response to 48 h treatment with the most potent compounds, significant increase in caspase-3 activity is yielded suggesting that the antiproliferative activities of the examined compounds are most likely mediated by an apoptotic cellular death pathway.

Further exploration of possible pathways by which these compounds exert their antiproliferative activities should shed light onto prospective molecular targets with which the compounds may interrelate.

Docking results

In order to explain the anticancer activity of the verified compounds 2–9 against the examined cancer cell lines, we recruited the crystal structure of PI3Kα (PDB ID: 2RD0) [21] to determine the binding interaction of these compounds in PI3Kα kinase domain. Noting that these cell lines express phosphatidylinositol 3-kinase (PI3Kα) particularly MCF-7 [22–26], T47D [22, 25–32], Caco-2 [33–35] and Hela [36–38].

The binding site of 2RD0 is composed of M772, K776, W780, I800, K802, L807, D810, Y836, I848, E849, V850, V851, S854, T856, Q859, M922, F930, I932 and D933 [39]. The hydrophobic and polar residues are located in the binding domain. It’s worth noting that the exposed hydrophilic and hydrophobic surface areas of the co-crystallized ligand agree with the surrounding residues.
The polar residues furnish hydrogen-bonding, ion–dipole and dipole–dipole interactions. Furthermore, the polar acidic or basic residues mediate an ionic (electrostatic) bonding. The nonpolar motif such as the aromatic and/or hydrophobic residue affords π-stacking aromatic and hydrophobic (van der Waals) interaction, respectively.

In order to identify the structural-basis of PI3Kα/ligand interaction of the verified compounds in the catalytic kinase domain of PI3Kα, we employed QPLD docking [40, 41] against the kinase cleft of 2RD0. Our QPLD docking data show that some of the synthesized molecules 2–9 bind to the kinase domain of PI3Kα (Fig. 2, part a). Indeed, compounds having side chain alkyl group more than twelve carbon atoms extend beyond the binding cleft boundary.

Moreover, a part of the docked pose of 2 superposes that of the co-crystalized ligand (Fig. 2, part b).

Some of key binding residues are shown and H atoms are hidden for clarity purpose. Picture is captured by PYMOL. The backbones of 2–9 tend to form H-bond with S774, K802, H917, and D933 (Table 5) (Fig. 3). Additionally, 2–9 showed comparable QPLD binding affinity thus referring that the flexibility of the side-chain carbon atoms might ameliorate the steric effect. Other computational [41–45] and experimental studies [21] reported the significance of these residues in PI3Kα/ligand formation.

Noticing that the whole synthesized compounds, 2–18 and 22–23, share the core nucleus but differs in the side-chain carbon atoms number as well as the counterpart anion, example 2 matches 10, 11, and 12. It’s worth noting that the effect of salt enhances compound solubility and assists for better biological investigation.

Contrarily, in silico modeling neglects the effect of the counterpart anion thus we carried out the docking studies for 2–9 as representative models for the whole dataset. Figure 4 shows that there is a positive correlation factor ($R^2=0.828$) between the QPLD docking scores against PI3Kα and IC50.

In order to get further details about the functionalities of 2–9, we screened them against a reported PI3Kα inhibitor pharmacophore model [42]. The verified

Compound no	R	Y	Conventional method CM	Ultrasound method US		
			Time (h)	Yield (%)	Time (h)	Yield (%)
10	C8H17	PF₆	16	83	6	90
11	C8H17	BF₄	16	98	6	98
12	C8H17	COOCF₃	16	80	6	88
13	C9H19	PF₆	16	90	6	94
14	C9H19	BF₄	16	85	6	90
15	C10H21	COOCF₃	16	87	6	92
16	C10H21	PF₆	16	98	6	98
17	C10H21	BF₄	16	88	6	90
18	C10H21	COOCF₃	16	94	6	98
19	C11H23	PF₆	16	93	6	94
20	C11H23	BF₄	16	93	6	94
21	C11H23	COOCF₃	16	90	6	94
22	C12H25	PF₆	16	87	6	90
23	C12H25	BF₄	16	82	6	90
24	C12H25	COOCF₃	16	88	6	92
25	C12H25	PF₆	16	95	6	98
26	C12H25	BF₄	16	93	6	96
27	C12H25	COOCF₃	16	97	6	98
28	C13H27	PF₆	16	89	6	92
29	C13H27	BF₄	16	90	6	94
30	C14H29	COOCF₃	16	88	6	92
31	C14H29	PF₆	16	88	6	92
32	C14H29	BF₄	16	87	6	90
33	C14H29	COOCF₃	16	84	6	90
compounds 2–9 sparingly match the fingerprint of active PI3Kα inhibitors; three out of five functionalities for 2–9 (Fig. 5a, b) whereas two out of five functionalities for 6–9 (Fig. 5c, d). This finding explains their moderate to weak PI3Kα inhibitory activity and recommends optimizing the core skeleton of this library aiming to improve the biological activity.

Strikingly, the biological activity of 8–9 would suggest that the hydrophobicity of the attached alkyl group as well as the lipid membrane solubility parameter might affect their attachment to the cell line membrane.

In order to evaluate the performance of QPLD program, we compared the QPLD-docked pose of KWT in the mutant H1047R PI3Kα (PDB ID: 3HHM) [46] to its native conformation in the crystal structure. Figure 6 shows the superposition of the QPLD-generated KWT pose and the native conformation in 3HHM. The RMSD for heavy atoms of KWT between QPLD-generated docked pose and the native pose was 0.409 Å. This demonstrates that QPLD dock is able to reproduce the native conformation in the crystal structure and can reliably predict the ligand binding conformation.

Experimental

Apparatus and analysis

The Stuart Scientific SMP1 apparatus (Stuart, Red Hill, UK) was used in recording of the uncorrected melting points.

The SHIMADZU FTIR-8400S spectrometer (SHIMADZU, Boston, MA, USA) was used on the IR measurement.

The Bruker spectrometer (400 and 600 MHz, Brucker, Fällanden, Switzerland) was used in the NMR analysis using Tetramethylsilane (TMS) (0.00 ppm) as an internal standard.

The Finnigan LCQ and Finnigan MAT 95XL spectrometers (Finnigan, Darmstadt, Germany) were used in the ESI and EI measurement, respectively.

The Kunshan KQ-250B ultrasound cleaner (50 kHz, 240 W, Kunshan Ultrasonic Instrument, Kunshan, China) was used for carrying out all reactions.

General alkylation procedure for the synthesis of cationic amphiphilic fluorinated pyridinium hydrazones 2–9

Conventional method (CM)

To a mixture of pyridine hydrazone 1 (1 mmol) in acetonitrile (30 ml) was added an appropriate long alkyl iodides with chain ranging from C₈ to C₁₈ (1.5 mmol) under stirring. The mixture was refluxed for 72 h, then the solvent was reduced under pressure. The obtained solid was collected by filtration and washed with acetonitrile to give the target ILs 2–9.

Comp no	R	Y	mp °C	λmax (nm)	Fluorescence	
2	C₈H₁₇	I	104–105	222, 330, 430	+	
3	C₉H₁₉	I	91–93	220, 332, 432	+	
4	C₁₀H₂₁	I	110–112	220, 332, 430	+	
5	C₁₁H₂₃	I	82–83	220, 332, 430	+	
6	C₁₂H₂₅	I	72–73	220, 330, 430	+	
7	C₁₄H₂₉	I	86–88	220, 332, 430	+	
8	C₁₆H₃₃	I	78–80	220, 332, 430	+	
9	C₁₈H₃₇	I	98–99	220, 332, 430	+	
10	C₈H₁₇	PF₆	Yellow crystals	64–65	220, 330, 430	+
11	C₈H₁₇	BF₄	Yellow crystals	80–82	220, 332, 430	+
12	C₈H₁₇	COOCF₃	Yellow crystals	74–76	220, 332, 430	+
13	C₉H₁₉	PF₆	Yellow crystals	69–70	220, 330, 430	+
14	C₉H₁₉	BF₄	Yellow crystals	88–90	222, 328, 426	+
15	C₉H₁₉	COOCF₃	Yellow crystals	96–98	222, 332, 424	+
16	C₁₀H₂₁	PF₆	Yellow syrup	98	220, 330, 428	+
17	C₁₀H₂₁	BF₄	Colorless syrup	222	230, 330, 428	+
18	C₁₀H₂₁	COOCF₃	Yellow syrup	222	334, 432	+
19	C₁₁H₂₃	PF₆	Yellow syrup	220	330, 428	+
20	C₁₁H₂₃	BF₄	Yellow syrup	220	330, 426	+
21	C₁₁H₂₃	COOCF₃	Colorless syrup	222	332, 430	+
22	C₁₂H₂₅	PF₆	Yellow syrup	220	330, 430	+
23	C₁₂H₂₅	BF₄	Yellow syrup	218	332, 430	+
24	C₁₂H₂₅	COOCF₃	Colorless syrup	220	336, 428	+
Table 3 (continued)

Comp no	R	Y	mp °C	λ_max (nm)	Fluorescence
25	C_{14}H_{29}	PF$_6$	Yellow syrup	220, 332, 428	+
26	C_{14}H_{29}	BF$_4$	Yellow syrup	220, 336, 430	+
27	C_{14}H_{29}	COOCl$_2$	Colorless syrup	220, 330, 428	+
28–29	C_{16}H_{33}	PF$_6$	Yellow syrup	220, 336, 428	28
29	C_{16}H_{33}	BF$_4$	Yellow syrup	218, 332, 428	29
30	C_{16}H_{33}	COOCl$_2$	Colorless syrup	220, 334, 430	30
31	C_{18}H_{37}	PF$_6$	Yellow syrup	220, 336, 432	31
32	C_{18}H_{37}	BF$_4$	Yellow syrup	220, 330, 432	32
33	C_{18}H_{37}	COOCl$_2$	Colorless syrup	220, 332, 430	33

Ultrasound method (US)
To a mixture of pyridine hydrazone 1 (1 mmol) in acetonitrile (30 ml) was added an appropriate long alkyl iodides with chain ranging from C$_8$ to C$_{18}$ (1.5 mmol) under stirring. The mixture was irradiated by ultrasound irradiation for 10–12 h. The reaction was processed as described above to give the same target ILs 2–9.

4-(2-(4-Fluorobenzylidene) hydrazinecarbonyl)-1-oc-topyridin-1-ium iodide (2) It was obtained as yellow crystals; mp: 104–105 °C. FT-IR (KBr), cm$^{-1}$: ν = 1595 (C=N), 1670 (C=O), 2870, 2960 (Al–H), 3071 (Ar–H).

Table 4 IC$_{50}$ values (μM) on 4 different cancer cell lines

Code	MCF-7	T47D	Caco-2	Hela
4	153 ± 12	145 ± 10	156 ± 9	155 ± 11
5	136 ± 4	134 ± 10	139 ± 9	142 ± 6
6	134 ± 9	139 ± 7	139 ± 9	129 ± 11
7	120 ± 6	123 ± 7	128 ± 7	119 ± 8
8	61 ± 5	59 ± 7	67 ± 6	68 ± 5
9	20 ± 3	23 ± 4	18 ± 3	25 ± 3
10	179 ± 15	172 ± 13	171 ± 19	177 ± 10
11	176 ± 12	170 ± 10	168 ± 12	177 ± 11
12	137 ± 8	133 ± 11	139 ± 6	141 ± 10
13	132 ± 4	139 ± 9	134 ± 5	138 ± 5
14	178 ± 10	176 ± 19	171 ± 15	169 ± 17
15	129 ± 4	129 ± 8	125 ± 9	124 ± 13
16	128 ± 10	120 ± 9	121 ± 14	128 ± 11
17	131 ± 10	139 ± 6	145 ± 7	132 ± 12
18	134 ± 10	133 ± 9	132 ± 5	131 ± 9
19	123 ± 10	127 ± 15	127 ± 12	129 ± 11
20	67 ± 4	61 ± 2	67 ± 4	68 ± 6
21	39 ± 5	40 ± 6	32 ± 4	36 ± 4
22	21 ± 3	20 ± 4	19 ± 1	26 ± 2
23	45 ± 6	46 ± 4	41 ± 3	48 ± 6
24	71 ± 3	77 ± 8	74 ± 5	79 ± 2
25	39 ± 7	34 ± 4	38 ± 7	35 ± 7
26	41 ± 5	48 ± 7	44 ± 3	49 ± 5

Values are expressed as mean ± SD of three experiments.

4-(2-(4-Fluorobenzylidene) hydrazinecarbonyl)-1-nonylpyridin-1-ium iodide (3) It was obtained as yellow crystals; mp: 91–93 °C. FT-IR (KBr), cm$^{-1}$: ν = 1598 (C=N), 1682 (C=O), 2872, 2969 (Al–H), 3078 (Ar–H).

1H NMR (400 MHz, DMSO-d$_6$): δ$_H$ = 0.83–0.87 (m, 3H, CH$_3$), 1.25–1.32 (m, 10H, 5 × CH$_2$), 1.94–1.99 (m, 2H, NCH$_2$CH$_2$), 4.68 (t, 2H, J = 8 Hz, NCH$_2$), 7.22 (t, 0.5H, J = 8 Hz, Ar–H), 7.34 (t, 1.5H, J = 8 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.88 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C–N), 8.39 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C–N), 8.53 (d, 1.5H, J = 8 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.33 (d, 1.5H, J = 4 Hz, Ar–H), 12.47 (bs, 1H, CONH).

13C NMR (100 MHz, DMSO-d$_6$): δ$_C$ = 13.89 (CH$_3$), 21.99, 25.36, 25.41, 28.30, 28.40, 30.50, 30.63, 31.08 (6 × CH$_2$), 60.95, 61.02 (NCH$_2$), 115.74, 115.95, 116.17, 126.14, 127.11, 129.36, 129.44, 129.73, 129.81, 130.21, 130.24, 145.08, 145.67, 147.33, 149.36, 149.63 (Ar–C), 158.76, 162.28, 164.75, 165.21 (C=C=N, C=O).

19F NMR (377 MHz, DMSO-d$_6$): δ$_F$ = (−109.72 to −109.65), (−109.20 to −109.12) (2m, 1F, Ar–F).

MS (ES) m/z = 483.32 [M$^+$].
1-Decyl-4-(2-(4-fluorobenzylidene) hydrazinecarbonyl) pyridin-1-ium iodide (4) It was obtained as yellow crystals; mp: 110–112 °C. FT-IR (KBr), cm⁻¹: ʋ = 1615 (C=N), 1690 (C=O), 2873, 2966 (Al–H), 3074 (Ar–H).

⁴H NMR (400 MHz, DMSO-d₆): δ H = 0.83–0.87 (m, 3H, C₃H₃), 1.25–1.32 (m, 14H, 7× C₂H₅), 1.94–1.99 (m, 2H, NCH₂C₂H₅), 4.68 (t, 2H, J = 8 Hz, NCH₂), 7.23 (t, 0.5H, J = 8 Hz, Ar–H), 7.38 (dd, 1.5H, J = 8 Hz, 12 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.40 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, J = 8 Hz, Ar–H), 9.25 (d, 0.5H, J = 4 Hz, Ar–H), 9.34 (d, 1.5H, J = 8 Hz, Ar–H), 12.48 (bs, 1H, CONH).

¹³C NMR (100 MHz, DMSO-d₆): δ C = 12.40, 12.42 (CH₃), 20.55, 23.85, 23.89, 26.84, 27.11, 27.24, 27.28, 27.32, 28.99, 29.13, 29.72 (8× CH₂), 59.42, 59.49 (NCH₃), 114.24, 114.46, 114.68, 124.63, 125.59, 127.84, 127.92, 128.22, 128.31, 128.55, 128.68, 128.71, 143.54, 144.18, 145.78, 147.80, 148.12 (Ar–C), 157.25, 160.77, 163.24, 163.73 (C=N, C=O). ¹⁹F NMR (377 MHz, DMSO-d₆): δ F = (−109.94 to −109.85), (−109.42 to −109.34) (2m, 1F, Ar–F).

MS (ES) m/z = 511.05 [M⁺].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-undecylpyridin-1-ium iodide (5) It was obtained as yellow crystals; mp: 82–83 °C. FT-IR (KBr), cm⁻¹: ʋ = 1598 (C=N), 1677 (C=O), 2872, 2967 (Al–H), 3078 (Ar–H).

⁴H NMR (400 MHz, DMSO-d₆): δ H = 0.83–0.87 (m, 3H, C₃H₃), 1.24–1.32 (m, 16H, 8× C₂H₅), 1.96–1.99 (m, 2H, NCH₂C₂H₅), 4.68 (t, 2H, J = 8 Hz, NCH₂), 7.22 (t, 0.5H, J = 8 Hz, Ar–H), 7.34 (t, 1.5H, J = 8 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C=N), 8.53 (d, 1.5H, J = 8 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.34 (d, 1.5H, J = 8 Hz, Ar–H), 12.45 (bs, 1H, CONH).

¹³C NMR (100 MHz, DMSO-d₆): δ C = 12.39 (CH₃), 20.53, 23.86, 26.83, 27.13, 27.23, 27.37, 27.40, 28.98, 29.12, 29.74 (9× CH₂), 59.46, 59.53 (NCH₃), 114.23, 114.44, 114.66, 124.63, 125.61, 127.85, 127.93, 128.22, 128.31, 128.53,

Fig. 1 Caspase3 activity in MCF7 cells after 48 h. The results are the means of two independent experiments. P < 0.05 was considered significant.

Fig. 2 The catalytic kinase domain of (a) 2RD0 harbors the QPLD docked poses of some of the verified molecules 2–9 and (b) superposition of the QPLD docked pose 2 and the co-crystallized ligand represented in red and blue colors, respectively.

Table 5 The QPLD docking scores (Kcal/mol) and H-bond interactions between the verified compounds 2–9 and PI3Kα

Compound no	Docking score (Kcal/mol)	H-bond
2	−6.03	K802
3	−5.93	K802
4	−5.78	D933
5	−6.16	H917, D933
6	−5.69	S774, D933
7	−5.68	NA
8	−5.36	K802
9	−4.58	NA
128.56, 128.71, 128.74, 143.58, 144.18, 145.82, 147.88, 148.15 (Ar–C), 157.23, 160.78, 163.26, 163.69 (C=N, C=O). 19F NMR (377 MHz, DMSO-d_{6}): $\delta_F = (-109.95$ to $-109.88), (-109.35$ to $-109.37) \ (2m, 1F, Ar–F)$. MS (ES) $m/z = 525.10 \ [M^+].$

1-Dodecyl-4-[(2-(4-fluorobenzylidene) hydrazinecarbonyl)pyridin-1-ium iodide (6) It was obtained as yellow crystals; mp: 72–73 °C. FT-IR (KBr), cm^{-1}: 6 = 1605 (C=N), 1688 (C=O), 2883, 2961 (Al–H), 3074 (Ar–H).

1H NMR (400 MHz, DMSO-d_{6}): $\delta_H = 0.83–0.87 \ (m, 3H, CH_3), 1.24–1.32 \ (m, 18H, 9 \times CH_2), 1.96–1.99 \ (m, 2H, NCH_2CH_2), 4.70 \ (dd, 2H, J = 4 \ Hz, 8 Hz, NCH_2), 7.22 \ (t, 0.5H, J = 8 \ Hz, Ar–H), 7.34 \ (t, 1.5H, J = 8 \ Hz, Ar–H), 7.62 \ (dd, 0.5H, J = 4 \ Hz, 8 Hz, Ar–H), 7.88 \ (dd, 1.5H, J = 4 \ Hz, 8 Hz, Ar–H), 8.16 \ (s, 0.25H, H–C=N), 8.39 \ (d, 0.5H, J = 4 \ Hz, Ar–H), 8.50 \ (s, 0.75H, H–C=N), 8.53 \ (d, 1.5H, J = 8 \ Hz, Ar–H), 9.25 \ (d, 0.5H, J = 4 \ Hz, Ar–H), 9.34 \ (d, 1.5H, J = 8 \ Hz, Ar–H), 12.46 \ (bs, 1H, CONH).

13C NMR (100 MHz, DMSO-d_{6}): $\delta_C = 11.54, 11.59 \ (CH_3), 128.56, 128.71, 128.74, 143.58, 144.18, 145.82, 147.88, 148.15 \ (Ar–C), 157.23, 160.78, 163.26, 163.69 \ (C=N, C=O). 19F NMR (377 MHz, DMSO-d_{6}): $\delta_F = (-109.95$ to $-109.88), (-109.35$ to $-109.37) \ (2m, 1F, Ar–F). MS (ES) $m/z = 525.10 \ [M^+]$.Fig. 3 The ligand/protein complex of a 2, b 3, c 6, and d 9

Fig. 4 The correlation between the QPLD docking scores and between IC$_{50}$ for the tested compounds
19.68, 23.00, 25.98, 26.30, 26.38, 26.60, 28.13, 28.27, 28.88 (10 × CH₃), 58.60, 58.67 (NCH₂), 113.37, 113.59, 113.80, 123.78, 124.75, 127.00, 127.08, 127.36, 127.45, 127.86, 127.89, 142.72, 143.33, 144.97, 147.02, 147.29 (Ar–C), 156.38, 159.93, 162.40, 162.83 (C=N, C=O). ¹⁹F NMR (377 MHz, DMSO-d₆): δF = (−109.95 to −109.88), (−109.44 to −109.36) (2m, 1F, Ar–F). MS (ES) m/z = 539.40 [M⁺].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-tetradecylpyridin-1-ium iodide (7) It was obtained as yellow crystals; mp: 86–88 °C. FT-IR (KBr), cm⁻¹: ramework. Picture made by MOE.

Fig. 5 PI3Kα inhibitor pharmacophore model with a 2, b 3, c 6, and d 9. Aro stands for aromatic ring; Acc for H-bond acceptor; and Hyd for hydrophobic group. Picture made by MOE³.

Fig. 6 The superposition of KWT QPLD-docked pose and its native conformation in 3HHM. The native coordinates are represented in orange and the docked pose in green color. Picture visualized by PYMOL.

19.68, 23.00, 25.98, 26.30, 26.38, 26.51, 26.60, 28.13, 28.27, 28.88 (10 × CH₃), 58.60, 58.67 (NCH₂), 113.37, 113.59, 113.80, 123.78, 124.75, 127.00, 127.08, 127.36, 127.45, 127.86, 127.89, 142.72, 143.33, 144.97, 147.02, 127.29 (Ar–C), 156.38, 159.93, 162.40, 162.83 (C=N, C=O). ¹⁹F NMR (377 MHz, DMSO-d₆): δF = (−109.95 to −109.88), (−109.44 to −109.36) (2m, 1F, Ar–F). MS (ES) m/z = 539.40 [M⁺].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-tetradecylpyridin-1-ium iodide (7) It was obtained as yellow crystals; mp: 86–88 °C. FT-IR (KBr), cm⁻¹: ramework. Picture made by MOE.

Fig. 5 PI3Kα inhibitor pharmacophore model with a 2, b 3, c 6, and d 9. Aro stands for aromatic ring; Acc for H-bond acceptor; and Hyd for hydrophobic group. Picture made by MOE³.

Fig. 6 The superposition of KWT QPLD-docked pose and its native conformation in 3HHM. The native coordinates are represented in orange and the docked pose in green color. Picture visualized by PYMOL.
116.16, 126.13, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.08, 146.78, 147.31, 149.38, 149.65 (Ar–C), 158.73, 162.29, 164.29, 165.18 (C= N, C=O). 19F NMR (377 MHz, DMSO-d6): δF = (-109.96 to -109.89), (-109.44 to -109.36) (2m, 1F, Ar–F). MS (ES) m/z = 567.20 [M+].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-hexadecylpyridin-1-ium iodide (8) It was obtained as yellow crystals; mp: 78–80 °C. FT-IR (KBr), cm⁻¹: vC–H 1678 (C= N), 1677 (C=O), 2887, 2969 (Al–H), 3076 (Ar–H). 1H NMR (400 MHz, DMSO-d6): δH = 0.83–0.86 (m, 3H, CH₃), 1.23–1.30 (m, 26H, 13CH₂), 1.96–1.98 (m, 2H, NCH₂CH₃), 4.68 (t, 2H, J = 8 Hz, NCH₃), 7.22 (t, 0.5H, J = 8 Hz, Ar–H), 7.34 (t, 1.5H, J = 8 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.93 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C= N), 8.53 (d, 1.5H, J = 4 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.34 (d, 1.5H, J = 4 Hz, Ar–H), 12.45 (s, 0.75H, CONH), 12.49 (s, 0.25H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.88 (CH₃), 22.03, 25.36, 28.34, 28.74, 28.87, 29.00, 30.49, 31.24 (12CH₂), 60.96, 61.03 (NCH₃), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.04, 130.24, 145.08, 146.69, 147.31, 149.37 (Ar–C), 158.72, 162.29, 164.76, 165.18 (C=N, C=O). 19F NMR (377 MHz, DMSO-d6): δF = (-109.97 to -109.89), (-109.45 to -109.37) (2m, 1F, Ar–F). MS (ES) m/z = 595.30 [M+].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-octadecylpyridin-1-ium hexafluorophosphate (10) It was obtained as yellow crystals; mp: 64–65 °C. 1H NMR (400 MHz, DMSO-d6): δH = 0.82–0.88 (m, 3H, CH₃), 1.26–1.30 (m, 10H, 5CH₂), 1.94–2.00 (m, 2H, NCH₂CH₃), 4.68 (t, 2H, J = 8 Hz, Ar–H), 7.26 (dd, 0.5H, J = 8 Hz, 12 Hz, Ar–H), 7.38 (dd, 1.5H, J = 8 Hz, 12 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.40 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C= N), 8.53 (d, 1.5H, J = 4 Hz, Ar–H), 9.25 (d, 0.5H, J = 4 Hz, Ar–H), 9.33 (d, 1.5H, J = 4 Hz, Ar–H), 12.50 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.09 (CH₃), 22.00, 25.36, 25.41, 28.30, 28.40, 30.51, 30.64, 31.09 (6CH₂), 60.95, 61.02 (NCH₃), 115.75, 115.96, 116.16, 126.14, 127.11, 129.35, 129.44, 129.73, 129.81, 130.05, 130.24, 145.06, 145.67, 147.35, 149.35, 149.63 (Ar–C), 158.37, 162.28, 164.75, 165.22 (C=N, C=O). 13P NMR (162 MHz, DMSO-d6): δP = -152.70 to -139.29 (m, 1P, PF₆). 19F NMR (377 MHz, DMSO-d6): δF = -69.98 (d, 6F, PF₆). (−109.72 to −109.65), (−109.20 to −109.12) (2m, 1F, Ar–F). MS (ES) m/z = 501.20 [M+].

Ultrasound method (US) A mixture of equimolar of II. 2–9 (1 mmol) and fluorinated metal salt (KPF₆, NaBF₄ and/or NaCF₃COO) (1 mmol) in dichloromethane (15 ml) was heated under reflux for 12 h. After cooling, the solid formed was collected by extraction and/or by filtration. The solid was washed by dichloromethane to afford the task-specific IIs 10–33.

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-octadecylpyridin-1-ium tetrafluoroborate (11) It was obtained as yellow crystals; mp: 80–82 °C. 1H NMR (400 MHz, DMSO-d6): δH = 0.84–0.88 (m, 3H, CH₃), 1.26–1.31 (m, 10H, 5CH₂), 1.95–2.00 (m, 2H, NCH₂CH₃), 4.70 (dd, 2H, J = 4 Hz, 8 Hz, NCH₃), 7.26 (dd, 0.5H, J = 8 Hz, 12 Hz, Ar–H), 7.38 (dd, 1.5H, J = 8 Hz, 12 Hz, Ar–H), 7.63 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.90 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.41 (d, 0.5H, J = 8 Hz, Ar–H), 8.51 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, J = 4 Hz, Ar–H), 9.27 (d, 0.5H, J = 8 Hz, Ar–H), 9.36 (d, 1.5H, J = 8 Hz, Ar–H), 12.49 (s, 0.75H, CONH), 12.53 (s, 0.25H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.87 (CH₃), 21.97, 25.32, 25.38, 28.27, 28.37, 28.40, 30.48, 30.61, 31.06 (6CH₂), 60.89, 60.96

General metathesis procedure for the synthesis of pyridinium hydrazones 10–33

Conventional method (CM) A mixture of equimolar of IL 2–9 (1 mmol) and fluorinated metal salt (KPF₆, NaBF₄ and/or NaCF₃COO) (1 mmol) in dichloromethane (15 ml) was heated under reflux for 12 h. After cooling, the solid formed was collected by extraction and/or by filtration. The solid was washed by dichloromethane to afford the task-specific IIs 10–33.
4-(2-(4-Fluorobenzylidene) hydrazinocarbonyl)-1-nonylpyrin-1-ium trifluoroacetate (12) It was obtained as yellow crystals; mp: 74–76 °C. 1H NMR (400 MHz, DMSO-d6); δH = 8.03–0.87 (m, 3H, CH3), 1.25–1.30 (m, 12H, 6×CH2), 1.94–1.99 (m, 2H, NCH2CH3), 4.69 (dd, 2H, J = 4 Hz, 8 Hz, NCH2), 7.25 (dd, 0.5H, J = 8 Hz, Ar-H), 7.37 (dd, 1.5H, J = 8 Hz, Ar-H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar-H), 8.15 (s, 0.25H, H–C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar-H), 8.51 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, J = 8 Hz, Ar-H), 9.24 (d, 0.5H, J = 4 Hz, Ar-H), 9.33 (d, 1.5H, J = 4 Hz, Ar-H), 12.50 (s, 1H, CONH). 13C NMR (100 MHz, DMSO-d6); δC = 13.91 (CH3), 22.03, 25.36, 28.34, 28.41, 28.52, 28.70, 28.70, 30.51, 30.64, 31.18 (7×CH2), 60.93, 61.03 (NCH3), 115.74, 115.96, 116.18, 126.17, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.06, 145.68, 147.30, 149.34 (Ar–C), 158.75, 162.28, 164.75, 165.23 (C=N, C=O). 31P NMR (162 MHz, DMSO-d6); δp = -152.98 to -135.42 (m, 1P, PF3). 19F NMR (377 MHz, DMSO-d6); δF = -69.21 (d, 6F, PF3), (-109.94 to -109.86), (-109.42 to -109.34) (2m, 1F, Ar-F). MS (ES) m/z = 483.20 [M+].

4-(2-(4-Fluorobenzylidene) hydrazinocarbonyl)-1-nonylpyrindin-1-ium hexafluorophosphate (13) It was obtained as yellow crystals; mp: 69–70 °C. 1H NMR (400 MHz, DMSO-d6); δH = 8.03–0.87 (m, 3H, CH3), 1.25–1.30 (m, 12H, 6×CH2), 1.94–1.99 (m, 2H, NCH2CH3), 4.69 (dd, 2H, J = 4 Hz, 8 Hz, NCH2), 7.25 (dd, 0.5H, J = 8 Hz, Ar-H), 7.37 (dd, 1.5H, J = 8 Hz, Ar-H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar-H), 8.15 (s, 0.25H, H–C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar-H), 8.51 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, J = 8 Hz, Ar-H), 9.24 (d, 0.5H, J = 4 Hz, Ar-H), 9.33 (d, 1.5H, J = 4 Hz, Ar-H), 12.50 (s, 1H, CONH). 13C NMR (100 MHz, DMSO-d6); δC = 13.91 (CH3), 22.03, 25.36, 28.34, 28.41, 28.52, 28.70, 28.70, 30.51, 30.64, 31.18 (7×CH2), 60.93, 61.00 (NCH3), 115.74, 115.96, 116.18, 126.17, 127.11, 129.34, 129.43, 129.72, 129.81, 130.21, 130.24, 145.06, 145.68, 147.30, 149.34 (Ar–C), 158.75, 162.28, 164.75, 165.23 (C=N, C=O). 31P NMR (162 MHz, DMSO-d6); δp = -152.98 to -135.42 (m, 1P, PF3). 19F NMR (377 MHz, DMSO-d6); δF = -69.21 (d, 6F, PF3), (-109.94 to -109.86), (-109.42 to -109.34) (2m, 1F, Ar-F). MS (ES) m/z = 483.20 [M+].

1-Decyl-4-(2-(4-Fluorobenzylidene) hydrazinocarbonyl)-1-nonylpyrindin-1-ium hexafluorophosphate (16) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d6); δH = 8.03–0.88 (m, 3H, CH3), 1.25–1.30 (m, 14H, 7×CH2), 1.95–1.98 (m, 2H, NCH2CH3), 4.67 (t, 2H, J = 8 Hz, NCH2), 7.25 (dd, 0.5H, J = 8 Hz, Ar-H), 7.35 (t, 1.5H, J = 8 Hz, Ar-H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar-H), 7.89 (dd, 1.5H, J = 4 Hz, Ar-H), 8.15 (s, 0.25H, H–C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar-H), 8.51 (s, 0.75H, H–C=N), 8.53 (d, 1.5H, J = 4 Hz, Ar-H), 9.24 (d, 0.5H, J = 8 Hz, Ar-H), 9.32 (d, 1.5H, J = 8 Hz, Ar-H), 12.49 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d6); δC = 13.91 (CH3), 22.03, 25.36, 28.34, 28.41, 28.52, 28.70, 28.70, 30.51, 30.64, 31.18 (7×CH2), 60.93, 61.00 (NCH3), 115.74, 115.96, 116.18, 126.15, 127.11, 129.34, 129.43, 129.80, 130.04, 130.21, 130.24, 145.07, 145.69, 147.31, 149.35, 149.65 (Ar–C), 158.75, 162.28, 164.75, 165.23 (C=N, C=O). 19F NMR (377 MHz, DMSO-d6); δF = -73.50 (s, 3F, CF3), (-109.96 to -109.88), (-109.44 to -109.36) (2m, 1F, Ar-F). MS (ES) m/z = 483.20 [M+].
(s, 0.25H, H−C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar−H), 8.50 (s, 0.75H, H−C=N), 8.53 (d, 1.5H, J = 4 Hz, Ar−H), 9.23 (d, 0.5H, J = 4 Hz, Ar−H), 9.31 (d, 1.5H, J = 8 Hz, Ar−H), 12.48 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.90 (CH3), 22.04, 25.36, 25.40, 28.33, 28.60, 28.74, 28.77, 28.82, 30.50, 30.63, 31.23 (8×CH2), 60.96, 61.06 (NCH2), 115.72, 115.95, 116.16, 126.13, 127.11, 129.33, 129.42, 129.69, 129.77, 130.07, 130.28, 130.31, 145.07, 145.65, 147.48, 149.35 (Ar−C), 158.82, 162.25, 164.73, 165.23 (C=N, C=O). 19F NMR (377 MHz, DMSO-d6): δF = −73.52 (s, 3F, CF3), (−109.95 to −109.87), (−109.50 to −109.42) (2m, 1F, Ar−F). MS (ES) m/z = 497.33 [M+].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-undecylpyridin-1-ium hexafluorophosphate (19) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d6): δH = 0.83−0.87 (m, 3H, CH3), 1.24−1.30 (m, 16H, 8×CH2), 1.96−1.99 (m, 2H, NCH2CH2), 4.69 (dd, 2H, J = 4 Hz, 8 Hz, NCH3), 7.22 (t, 0.5H, J = 8 Hz, Ar−H), 7.36 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar−H), 7.61 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar−H), 7.88 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar−H), 8.16 (s, 0.25H, H−C=N), 8.39 (d, 0.5H, J = 4 Hz, Ar−H), 8.53 (s, 0.75H, H−C=N), 8.54 (d, 1.5H, J = 4 Hz, Ar−H), 8.64 (t, 0.5H, J = 4 Hz, Ar−H) (2m, 1F, Ar−F). MS (ES) m/z = 529.70 [M+].

1-Decyl-4-(2-(4-fluorobenzylidene) hydrazinecarbonyl) pyridin-1-ium tetrafluoroborate (17) It was obtained as colorless syrup. 1H NMR (400 MHz, DMSO-d6): δH = 0.83−0.87 (m, 3H, CH3), 1.25−1.30 (m, 14H, 7×CH2), 1.95−1.98 (m, 2H, NCH2CH2), 4.67 (t, 2H, J = 2 Hz, 8 Hz, NCH3), 7.25 (dd, 0.5H, J = 8 Hz, Ar−H), 7.35 (t, 1.5H, J = 8 Hz, Ar−H), 7.62 (dd, 0.5H, J = 8 Hz, 12 Hz, Ar−H), 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar−H), 8.16 (s, 0.25H, H−C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar−H), 8.52 (s, 0.75H, H−C=N), 8.55 (d, 1.5H, J = 8 Hz, Ar−H), 9.24 (d, 0.5H, J = 4 Hz, Ar−H), 9.32 (d, 1.5H, J = 4 Hz, Ar−H), 12.52 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.90, 13.91 (CH3), 22.05, 25.36, 25.40, 28.34, 28.61, 28.75, 28.78, 28.83, 30.50, 30.63, 31.23, (8×CH2), 60.94, 61.01 (NCH2), 115.74, 115.96, 116.18, 126.16, 127.11, 129.34, 129.42, 129.71, 129.80, 130.07, 130.23, 130.26, 145.07, 145.67, 147.34, 149.35 (Ar−C), 158.76, 162.28, 164.75, 165.23, (C=N, C=O). 11B NMR (128 MHz, DMSO-d6): δB = −1.31 to −1.29 (m, 1B, BF2). 19F NMR (377 MHz, DMSO-d6): δF = (−109.94 to −109.88), (−109.44 to −109.36) (2m, 1F, Ar−F); −148.30, −148.24 (2d, 4F, BF2). MS (ES) m/z = 471.60 [M+].

1-Decyl-4-(2-(4-fluorobenzylidene) hydrazinecarbonyl) pyridin-1-ium trifluoroacetate (18) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d6): δH = 0.83−0.87 (m, 3H, CH3), 1.25−1.30 (m, 14H, 7×CH2), 1.95−1.98 (m, 2H, NCH2CH2), 4.68 (t, 2H, J = 2 Hz, 8 Hz, NCH3), 7.25 (dd, 0.5H, J = 8 Hz, 12 Hz, Ar−H), 7.37 (dd, 1.5H, J = 8 Hz, 12 Hz, Ar−H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar−H), 7.88 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar−H), 8.17 (s, 0.25H, H−C=N), 8.40 (d, 0.5H, J = 8 Hz, Ar−H), 8.52 (s, 0.75H, H−C=N), 8.55 (d, 1.5H, J = 8 Hz, Ar−H), 9.25 (d, 0.5H, J = 4 Hz, Ar−H), 9.34 (d, 1.5H, J = 8 Hz, Ar−H), 12.56 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.89, 13.91 (CH3), 22.05, 25.36, 25.40, 28.34, 28.61, 28.74, 28.78, 28.82, 30.50, 30.64, 31.23 (8×CH2), 60.94, 60.98 (NCH2), 115.74, 115.95, 116.16, 126.13, 127.11, 129.33, 129.42, 129.69, 129.77, 130.07, 130.28, 130.31, 145.07, 145.65, 147.48, 149.35 (Ar−C), 158.82, 162.25, 164.73, 165.23 (C=N, C=O). 19F NMR (377 MHz, DMSO-d6): δF = (−109.97 to −109.89), (−109.48 to −109.40) (2m, 1F, Ar−F); −148.36, −148.30 (2d, 4F, BF2). MS (ES) m/z = 485.20 [M+].
4-(2-(4-Fluorobenzylidene)hydrazinocarbonyl)-1-undecylpyridin-1-ium trifluoroacetate (21) It was obtained as colorless syrup. 1H NMR (400 MHz, DMSO-d_6): $\delta_H=0.83$–0.87 (m, 3H, CH_3), 1.24–1.30 (m, 16H, 8×CH_2), 1.96–1.99 (m, 2H, NCH$_2$CH$_3$), 4.69 (dd, 2H, $J=4$ Hz, 8 Hz, NCH$_2$), 7.22 (t, 0.5H, $J=8$ Hz, Ar–H), 7.36 (dd, 1.5H, $J=8$ Hz, 12 Hz, Ar–H), 7.61 (dd, 0.5H, $J=4$ Hz, 8 Hz, Ar–H), 7.87 (dd, 1.5H, $J=4$ Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, $J=4$ Hz, Ar–H), 8.51 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, $J=8$ Hz, Ar–H), 9.25 (d, 0.5H, $J=8$ Hz, Ar–H), 9.32 (d, 1.5H, $J=4$ Hz, Ar–H), 12.54 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d_6): $\delta_C=13.89$ (CH$_3$), 22.03, 25.36, 28.33, 28.64, 28.73, 28.81, 30.31, 40.63, 31.24 (9×CH_2), 60.96, 60.99 (NCH$_2$), 115.73, 115.93, 116.15, 126.12, 127.11, 129.34, 129.42, 129.67, 129.76, 130.05, 130.30, 130.33, 145.07, 145.63, 147.55, 149.38, 149.67 (Ar–C), 158.82, 162.25, 164.72, 165.20 (C=N, C=O). 19F NMR (377 MHz, DMSO-d_6): $\delta_F=-7.53$ (3s, 3F, CF$_3$), (–109.97 to –109.89), (–109.54 to –109.46) (2m, 1F, Ar–F). MS (ES) $m/z=511.30$ [M$^+$].

1-Dodecyl-4-(2-(4-Fluorobenzylidene)hydrazinocarbonyl)pyridin-1-ium hexafluorophosphate (22) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d_6): $\delta_H=0.83$–0.87 (m, 3H, CH_3), 1.24–1.30 (m, 18H, 9×CH_2), 1.96–1.98 (m, 2H, NCH$_2$CH$_3$), 4.69 (dd, 2H, $J=4$ Hz, 8 Hz, NCH$_2$), 7.22 (t, 0.5H, $J=8$ Hz, Ar–H), 7.37 (dd, 1.5H, $J=8$ Hz, 12 Hz, Ar–H), 7.61 (dd, 0.5H, $J=4$ Hz, 8 Hz, Ar–H), 7.89 (dd, 1.5H, $J=4$ Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, $J=4$ Hz, Ar–H), 8.51 (s, 0.75H, H–C=N), 8.53 (d, 1.5H, $J=8$ Hz, Ar–H), 9.24 (d, 0.5H, $J=4$ Hz, Ar–H), 9.33 (d, 1.5H, $J=8$ Hz, Ar–H), 12.47 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d_6): $\delta_C=13.89$ (CH$_3$), 22.03, 25.36, 28.63, 28.85, 28.95, 30.48, 30.62, 31.24 (10×CH_2), 60.96, 61.03 (NCH$_2$), 115.73, 115.95, 116.17, 126.14, 127.11, 129.34, 129.72, 129.81, 130.04, 130.25, 145.09, 145.68, 144.38, 149.66 (Ar–C), 158.74, 162.29, 164.76, 165.20 (C=N, C=O). 31P NMR (162 MHz, DMSO-d_6): $\delta_P=-157.37$ to –131.02 (m, 1P, PF$_6$). 19F NMR (377 MHz, DMSO-d_6): $\delta_F=-69.25$ (d, 6F, PF$_6$), (–109.95 to –109.88), (–109.44 to –109.36) (2m, 1F, Ar–F). MS (ES) $m/z=525.20$ [M$^+$].

I-Dodecyl-4-(2-(4-Fluorobenzylidene)hydrazinocarbonyl)pyridin-1-ium tetrafluoroborate (23) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d_6): $\delta_H=0.83$–0.87 (m, 3H, CH_3), 1.24–1.30 (m, 18H, 9×CH_2), 1.96–1.98 (m, 2H, NCH$_2$CH$_3$), 4.68 (t, 2H, $J=8$ Hz, NCH$_2$), 7.22 (t, 0.5H, $J=8$ Hz, Ar–H), 7.34 (t, 1.5H, $J=8$ Hz, Ar–H), 7.62 (dd, 0.5H, $J=4$ Hz, 8 Hz, Ar–H), 7.88 (dd, 1.5H, $J=4$ Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, $J=4$ Hz, Ar–H), 8.52 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, $J=8$ Hz, Ar–H), 9.25 (d, 0.5H, $J=8$ Hz, Ar–H), 9.33 (d, 1.5H, $J=4$ Hz, Ar–H), 12.48 (bs, 1H, CONH). 13C NMR (100 MHz, DMSO-d_6): $\delta_C=13.89$ (CH$_3$), 22.03, 25.36, 28.33, 28.65, 28.73, 28.86, 28.95, 30.48, 30.62, 31.24 (10×CH_2), 60.97, 61.04 (NCH$_2$), 115.73, 115.94, 116.16, 126.14, 127.11, 129.34, 129.43, 129.72, 129.80, 130.22, 130.25, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–C), 158.73, 162.29, 164.76, 165.19 (C=N, C=O). 19B NMR (128 MHz, DMSO-d_6): $\delta_B=-1.31$ to –1.28 (m, 1B, BF$_3$). 19F NMR (377 MHz, DMSO-d_6): $\delta_F=(–109.96 to –109.88), (–109.45 to –109.37) (2m, 1F, Ar–F); (–148.36, –148.30 (2d, 4F, BF$_3$). MS (ES) $m/z=499.20$ [M$^+$].
4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-tetradecylpyrrolidin-1-ium tetrafluoroborate (26) It was obtained as yellow syrup. 1H NMR (400 MHz, DMSO-d_6): δ_H = 0.83–0.87 (m, 3H, CH$_3$), 1.23–1.30 (m, 26H, 13×CH$_2$), 1.96–2.00 (m, 2H, NCH$_2$CH$_2$), 6.48 (t, 2H, J = 8 Hz, NCH$_2$), 7.24 (dd, 0.5H, J = 8 Hz, 12 Hz, Ar–H), 7.34 (t, 1.5H, J = 8 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H) 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, J = 4 Hz, Ar–H), 8.51 (s, 0.75H, H–C=N), 8.53 (d, 1.5H, J = 4 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.33 (d, 1.5H, J = 4 Hz, Ar–H), 12.44 (s, 0.75H, CONH), 12.49 (s, 0.25H, CONH). 13C NMR (100 MHz, DMSO-d_6): δ_C = 13.88 (CH$_3$), 22.03, 25.36, 28.34, 28.64, 28.74, 28.87, 28.96, 29.98, 30.48, 30.62, 31.24 (12×CH$_2$), 60.96, 61.03 (NCH$_2$), 115.73, 115.94, 116.16, 124.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.07, 130.21, 130.24, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–C), 158.72, 162.29, 164.77, 165.19 (C=N, C=O). 11B NMR (128 MHz, DMSO-d_6): δ_B = 1.20 to 1.29 (m, 1B, BF$_3$). 19F NMR (377 MHz, DMSO-d_6): δ_F = (−109.97 to −109.89), (−109.45 to −109.37) (2m, 1F, Ar–F); −148.37, −148.32 (2d, 4F, BF$_4$). MS (ES) m/z $= 527.40$ [M$^+$.]

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-tetradecylpyrrolidin-1-ium trifluoroacetate (27) It was obtained as colorless syrup. 1H NMR (400 MHz, DMSO-d_6): δ_H = 0.85 (t, 3H, J = 8 Hz, CH$_3$), 1.24–1.30 (m, 22H, 11×CH$_2$), 1.96–1.98 (m, 2H, NCH$_2$CH$_2$), 4.68 (t, 2H, J = 8 Hz, NCH$_2$), 7.22 (t, 0.5H, J = 8 Hz, Ar–H), 7.34 (t, 1.5H, J = 8 Hz, Ar–H), 7.62 (dd, 0.5H, J = 4 Hz, 8 Hz, Ar–H), 7.89 (dd, 1.5H, J = 4 Hz, 8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, J = 4 Hz, Ar–H), 8.50 (s, 0.75H, H–C=N), 8.53 (d, 1.5H, J = 4 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.33 (d, 1.5H, J = 4 Hz, Ar–H), 12.44 (s, 0.75H, CONH), 12.49 (s, 0.25H, CONH). 13C NMR (100 MHz, DMSO-d_6): δ_C = 13.88 (CH$_3$), 22.03, 25.36, 28.34, 28.65, 28.74, 28.87, 28.96, 29.98, 30.48, 30.62, 31.24 (12×CH$_2$), 60.96, 61.03 (NCH$_2$), 115.73, 115.94, 116.16, 124.14, 127.11, 129.34, 129.43, 129.72, 129.81, 130.07, 130.21, 130.24, 145.08, 145.69, 147.32, 149.38, 149.66 (Ar–C), 158.72, 162.29, 164.77, 165.19 (C=N, C=O). 11B NMR (128 MHz, DMSO-d_6): δ_B = 1.20 to 1.29 (m, 1B, BF$_3$). 19F NMR (377 MHz, DMSO-d_6): δ_F = (−109.97 to −109.89), (−109.45 to −109.37) (2m, 1F, Ar–F); −148.37, −148.32 (2d, 4F, BF$_4$). MS (ES) m/z = 527.40 [M$^+$.]
8 Hz, Ar–H), 8.16 (s, 0.25H, H–C=N), 8.39 (d, 0.5H, J = 4 Hz, Ar–H), 8.52 (s, 0.75H, H–C=N), 8.54 (d, 1.5H, J = 8 Hz, Ar–H), 9.25 (d, 0.5H, J = 8 Hz, Ar–H), 9.33 (d, 1.5H, J = 8 Hz, Ar–H), 12.50 (s, 1H, CONH). 13C NMR (100 MHz, DMSO-d6): δC = 13.88 (CH3), 22.03, 25.35, 28.33, 28.64, 28.73, 28.86, 28.95, 29.00, 30.49, 31.23 (14×CH3), 60.95, 61.02 (NCH3), 115.72, 115.94, 116.16, 127.11, 129.33, 129.42, 129.71, 129.80, 130.08, 130.26, 145.08, 147.33, 149.39 (Ar–C), 157.26, 162.29, 164.76, 165.19 (C=N, C=O). 19F NMR (377 MHz, DMSO-d6): δF = −73.52 (s, 3F, CF3), (−109.96 to −109.88), (−109.46 to −109.38) (2m, 1F, Ar–F). MS (ES) m/z = 581.30 [M+].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-octadecylpyridin-1-ium hexafluorophosphate (31) It was obtained as colorless syrup. 1H NMR (400 MHz, CDCl3): δH = 8.02 (dd, 3H, J = 4 Hz, 8 Hz, CH3), 1.15–1.18 (m, 30H, 15×CH3), 1.94–1.98 (m, 2H, NCH2CH3), 4.72 (t, 2H, J = 8 Hz, NCH3), 6.95 (t, 2H, J = 8 Hz, Ar–H), 7.67 (dd, 2H, J = 4 Hz, 8 Hz, Ar–H), 8.82 (d, 2H, J = 4 Hz, Ar–H), 9.01 (s, 1H, H–C=N), 9.08 (d, 2H, J = 8 Hz, Ar–H), 12.14 (bs, 1H, CONH). 13C NMR (100 MHz, CDCl3): δC = 14.08 (CH3), 22.66, 26.09, 28.97, 29.33, 29.49, 29.59, 29.64, 29.68, 31.64, 31.90 (16×CH3), 62.69 (NCH3), 115.87, 116.09, 127.71, 129.45, 130.09, 130.18, 144.87, 147.76, 151.75 (Ar–C), 158.62, 163.23, 165.74 (C=N, C=O). 31P NMR (162 MHz, CDCl3): δP = −153.38 to −135.76 (m, 1P, PF3). 19F NMR (377 MHz, CDCl3): δF = −70.39 (d, 6F, PF6), (−107.98 to −107.89), (−107.72 to −107.65) (2m, 1F, Ar–F). MS (ES) m/z = 641.55 [M+].

4-(2-(4-Fluorobenzylidene)hydrazinecarbonyl)-1-octadecylpyridin-1-ium tetrafluoroborate (32) It was obtained as yellow syrup. 1H NMR (400 MHz, CDCl3): δH = 0.82 (dd, 3H, J = 4 Hz, 8 Hz, CH3), 1.16–1.20 (m, 30H, 15×CH3), 1.94–1.98 (m, 2H, NCH2CH3), 4.73 (t, 2H, J = 8 Hz, NCH3), 6.99 (dd, 2H, J = 8 Hz, 12 Hz, Ar–H), 7.69 (dd, 2H, J = 4 Hz, 8 Hz, Ar–H), 8.83 (d, 2H, J = 8 Hz, Ar–H), 9.00 (s, 1H, H–C=N), 9.06 (d, 2H, J = 4 Hz, Ar–H), 12.11 (bs, 1H, CONH). 13C NMR (100 MHz, CDCl3): δC = 14.08 (CH3), 22.66, 26.10, 28.97, 29.33, 29.48, 29.57, 29.63, 29.68, 31.66, 31.90 (16×CH3), 62.64 (NCH3), 115.85, 116.07, 127.76, 129.46, 130.12, 130.21, 144.82, 147.96, 151.72 (Ar–C), 158.57, 163.25, 165.76 (C=N, C=O). 11B NMR (128 MHz, CDCl3): δB = −1.29 to 1.28 (m, 1B, BF3). 19F NMR (377 MHz, CDCl3): δF = (−107.98 to −107.85) to (107.82 to −107.75) (2m, 1F, Ar–F); −149.14, 149.19 (2d, 4F, BF3). MS (ES) m/z = 583.45 [M+].

Biological studies

Antiproliferative activity

MCF-7, T47D, HeLa and Caco-II cell lines were cultivated in Dulbecco’s modified Eagles medium (DMEM, Biochrom, Berlin, Germany). Cell lines were maintained at 37 °C and all media were supplemented with 1% of 2 mM L-glutamine (Lonza), 10% fetal calf serum (Gibco, Paisley, UK), 50 IU/ml penicillin/streptomycin (Sigma, St. Louis, MO) and amphotericin B (Sigma, St. Louis, MO). Cells from passage number 10–16 were used. For the antiproliferative activity test, compounds under examination, dissolved in DMSO, were added to the culture medium and incubated for 48 h incubation period in an atmosphere of 5% CO2 and 95 relative humidity at 37 °C.

Cells were seeded at a density of 8 × 103 cells per well in 96-well plates in appropriate medium. When the exposure period ends, Promega Cell Titer 96 Aqueous Non-Radioactive Cell Proliferation (MTS) assay was carried out according to the manufacturer’s protocol. Absorbance values of each well were determined with a microplate enzyme-linked immuno-assay (ELISA) reader equipped with a 492 nm filter. Survival rates of the controls were set to represent 100% viability. Untreated cultures were used as controls groups.

Caspase-3 enzyme activity

To assess changes in caspase-3 activity, the caspase-3 colorimetric assay kit (BioVision Research Products, Milpitas, CA) was used after treatment with 100 µM of each compound and incubation for 48 h. Briefly, apoptosis was provoked in treated cells before cells were collected by centrifugation at 1000 rpm for 10 min. Cells were lysed
and supernatants were separated according to the manufacturer’s protocol. Protein concentration in the supernatant was determined using the Bradford method. 50 µl of the reaction buffer, 200 µM of DEVD-pNA substrate were added to 50 µl supernatant in a 96-well plate and incubated at 37 °C for 2 h. After incubation, the plate was read under 405 nm wavelength using an ELISA reader (Tecan Group Ltd., Mannedorf, Switzerland).

Computational methods
Preparation of protein structure
The crystal structure of apo PI3Kα (PDB ID: 2RD0) [(2)] was retrieved from the RCSB Protein Data Bank. The homology modeled structure of 2RD0 was adopted for this study [47]. The coordinates of wortmannin in 3HHM [48] were moved to 2RD0 and assigned as the ligand. Minimization of the protein side chains was applied to reduce the steric clashes recruiting MacroModel [20] module in MAESTRO. Further preparation of the coordinates was carried out using Protein Preparation [20] wizard in Schrödinger to maximize the H-bond interactions between residues.

Preparation of ligand structures
The synthesized compounds (ligands) were built based on the coordinates of wortmannin in 3 HHM. The ligands were built using MAESTRO [20] BUILD module and then subjected for energy minimization using OPLS2005 force field in MacroModel program.

Quantum–polarized ligand docking (QPLD)
QPLD [20, 45] (3, 4) docking employed the combined QM/MM approach to determine ligand/protein complex formation. The Glide [49–51] docking was implemented in QPLD to generate a list of ligand docked poses that fit the protein binding site. The binding energy of the protein/newly generated ligand pose was derived using the molecular mechanical (MM) method for the protein coordinates while the quantum mechanical (QM) method was applied for ligand pose recruiting the QSite wizard in Schrödinger [45]. The Qsite program generated the atomic partial charges for the ligand pose within the protein environment. The ligand pose with QM-generated partial charges were redocked to the binding pocket using Glide [45] program with XP-scoring function. Specifically, the polarization effect of the protein binding pocket was accounted during the docking procedure. The ligand pose with the lowest root mean square deviation (RMSD) was investigated. The kinase binding domain was defined using the ligand as a centroid. The scaling of receptor Vander Waals for the non-polar atoms was set to 0.75.

Conclusions
Novel cationic fluorinated pyridinium hydrazones tethering lipophilic side chain were designed and synthesized under both conventional and green ultrasound conditions. The synthesized compounds were assessed for their anticancer activities and the results revealed that adding to the length of the hydrophobic chain significantly enhances their anticancer activities. Considerable increase in caspase-3 activity was associated with the most potent compounds, namely 8, 28, 29 and 32 suggesting an apoptotic cellular death pathway. Molecular Docking studies employing QPLD approach against PI3Kα demonstrated that compounds 2–9 accommodate the kinase site and form H-bond with S774, K802, H917, and D933 (Additional file 1).

Additional file

Additional file 1. Additional figures.

Authors' contributions
NR, MRA, and MM conceived the presented study. NR, FFA and SAS contributed to the design and implementation of the work, to the collection of the experimental results and to the writing of the manuscript. SKB and DAS performed the biological and simulation part. MRA, NR, MM and FFA contributed to the interpretation of the results. All authors provided critical feedback and helped shape the research, analysis and manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina 30002, Saudi Arabia. 2 Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M'nouar, 31000 Oran, Algeria. 3 Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan. 4 Faculty of Pharmacy, Al-Zaytoonah University, Amman 11733, Jordan.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 March 2018 Accepted: 13 November 2018
Published online: 22 November 2018
References

1. Rollas, S., Kucukguzel, S.G. (2007) Biological activities of hydrazine derivatives. Molecules 12:1910–1939
2. Verma G, Marelia A, Shaquiuzzaman M, Akhtar M, Ali MR, Alam MM (2014) A review exploring biological activities of hydrazines. J Bioal Sci 6:69–80
3. Pieczonka AM, Strzelczyk A, Sadisova B, Mlostoj G, Stączek P (2013) Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1H-imidazole-4-carboxyhydrazides. Eur J Med Chem 64:389–395
4. Kumar P, Narasimhan B (2013) Hydrazides/hydrazone as antimicrobial and antitumor agents in the new millennium. Mini Rev Med Chem 13:971–987
5. Ahmed HE, Abdel-Salam HA, Shaker MA (2016) Synthesis, characterization, molecular modeling, and potential antimicrobial and antitumor activities of novel 2-aminoisonicotine-1,3-dione derivatives. Bioorg Chem 6:1–11
6. Savino L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cesentino S, Pisano MP (2004) New alpha-[(heterocyclichydrazones) evaluation of antitumor, anti-HIV and antimicrobial activity. Eur J Med Chem 39:113–122
7. Altıntop MD, Özdemir A, Turan-Zitouni G, Ilgın S, İşcan G, Kaplancıklı ZA (2012) Synthesis and biological evaluation of some hydrazine derivatives as new antitumor and antitumor agents. Eur J Med Chem 58:299–307
8. Chen K, Hu Y, Li Q-Sh, Lu X, Yan R, Zhu H-L (2012) Design, synthesis, biological evaluation and molecular modeling of 1,3,4-oxadiazole analogs of combretastatin-A4 as new antitubulin agents. Bioorg Med Chem 20:903–909
9. Lamaty F, Martin Ch, Martinez J, Nun P (2013) Solvent-free synthesis of hydrazones and their subsequent N-alkylation in a Ball-mill. Tetrahedron 67:8187–8194
10. Tiwari VK, Dubey AK, Dikshit SN (2016) Synthesis, spectral and biological evaluation of anticancer, anti-HIV and antimicrobial activity. S Afr J Chem 69:219–225
11. Neha S, Ritu R, Manju K, Birendra K (2016) A review on biological activities of hydrazine derivatives. Int J Pharm Clin Res 8:162–166
12. Padmani K, Preethi PJ, Divya M, Rohini P, Lohita M, Swetha K, Kaladar PA (2013) Review on biological importance of hydrazones. Int J Pharm Res Rev 2:43–58
13. Messali M (2015) Eco-friendly synthesis of a new class of pyridinium-based liquidic ions with attractive antimicrobial activity. Molecules 20:14936–14949
14. Messali M, Almtrini MN, Abderrahman B, Salghi R, Aouad MR, Alshahat SF, Ali AA-Sh (2015) New pyridazinium-based ionic liquids: an eco-friendly synthesis, characterization and evaluation of some novel 2-aminoisonicotine-1,3-dione derivatives. Bioorg Med Chem 23:162–166
15. Rezki N, Al-Sodies SA, Aouad MR, Bardaweel S, Messali M, El Ashry EA (2016) Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinase–3–kinase inhibition with endocrine therapy for estrogen receptor–positive breast cancer. Breast Cancer Res 18:R21–R28
16. Spangme IM, Drejerink KM, Groner AC, Cheng H, Ohlsson CE, Reyes J, Lin CY, Brader N, Zhao JJ, Roberts TM, Brown M (2016) PI3K/akt signaling regulates H3K4 methylation in breast cancer. Cell Rep 15:2692–2704
17. Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H (2010) Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 21:255–262
18. Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, Van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C, Dixit V (2014) Mutational analysis of PI3 K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol 32:2951–2958
19. J-Liu, Gao G-R, Zhang X, Cao S-F, Guo C-L, Wang X, Tong L-J, Ding J, Duan W-H, Meng L-H (2014) DW09849, a selective phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, prevents p3k signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110alpha (H1047R). J Pharm Exp Ther 348:432–441
20. Hidalgo IL, Rauja TB, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterol 96:736–749
21. Sambuy Y, De Angelis I, Ranaldi G, Scarino M, Stammati A, Zucco F (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26
22. Leone V, Di Palma A, Ricchi P, Acquaviva F, Giannouli M, Di Prisco AM, Iuliano F, Acquaviva AM (2007) PI3K regulates H3K4 methylation in breast cancer. J Am Physiol Gastrointest Liver Physiol 293:G673–G681
23. Lee CM, Fuhrman CB, Planelles V, Peltier MR, Gaffney DK, Soisson AP, Dodson MK, Tolley HD, Green CL, Zempolich KA (2006) Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clin Cancer Res 12:250–256
24. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1089–1101
25. Lee S, Choi E-J, Jin C, Kim D-H (2005) Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol 97:26–34
26. Sabbagh DA, Simms NA, Brattain MG, Vennstrom JL, Zhong H (2012) Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases. Bioorg Med Chem Lett 22:876–880
27. Sabbagh DA, Simms NA, Wang W, Dong Y, Ezell EL, Brattain MG, Vennstrom JL, Zhong HA (2012) Synthetic inhibitors of phosphoinositide-3-kinases (PI3Ks). Bioorg Med Chem 20:7175–7183
28. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749
29. Friesner RA, Murphy RB, Repasky MP, Fye LL, Greenwood JR, Halgren TA, Samschaggin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196
30. Sabbagh DA, Vennstrom JL, Zhong H (2010) Docking studies on isomeric-specific phosphoinositide-3-kinases. J Chem Inf Model 50:1887–1898
31. Sweidan K, Sabbagh DA, Bardaweel S, Dush KA, Sheikha GA, Mubarak MS (2015) Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg Med Chem Lett 26(11):2685–2690
32. of a human p110alpha/ps85 alpha complex elucidates the effects of oncogenic PI3K alpha mutations. Science 318:1744–1748
33. Ebi H, Costa C, Faber AC, Nishihata M, Kotani H, Juric D, Della-Pelle P, Song Y, Yano S, Mino-Kerudsson M, Benes CH, Engelmann JA (2013) Pi3 K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci USA 110:21124–21129
34. Sanchez CG, Ma CX, Crowder RJ, Quintoili T, Phommaly C, Gao F, Lin L, Ellis MJ (2011) Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor–positive breast cancer. Breast Cancer Res 13 R21–R28
35. Sabbagh DA, Vennstrom JL, Zhong H (2010) Docking studies on isomeric-specific phosphoinositide-3-kinases. J Chem Inf Model 50:1887–1898
36. Sweidan K, Sabbagh DA, Bardaweel S, Dush KA, Sheikha GA, Mubarak MS (2015) Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg Med Chem Lett 26(11):2685–2690
40. Sabbah DA, Vennerstrom JL, Zhong HA (2012) Binding selectivity studies of phosphoinositide 3-kinases using free energy calculations. J Chem Inf Model 52:3213–3224

41. Sabbah DA, Saada M, Khalaf RA, Bardaweel S, Sweidan K, Al-Qirim T, Al-Zughier A, Halim HA, Sheikh GA (2015) Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinositide 3-kinase (PI3Kα). Bioorg Med Chem Lett 25:3120–3124

42. Sweidan K, Sabbah DA, Engelmann J, Halim HA, Sheikh GA (2015) Computational docking studies of novel heterocyclic carboxamides as potential PI3Kα inhibitors. Lett Drug Des Discov 12:856–863

43. The Molecular operating (2016) Environmnet chemical computing group. Inc Montreal, Quebec Canada

44. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang C-H, Kinzler KW, Vogelstein B, Amze LM (2009) A frequent kinase domain mutation that changes the interaction between PI3K alpha and the membrane. Proc Natl Acad Sci USA 106:16996–17001

45. Cho AE, Guallar V, Berne BJ, Friesner R (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931

46. Protein Preparation Wizard (2012) Maestro, macromodel, phase, induced fit, jaguar, and glide. Schrodinger, LLC, Portland

47. Wu G, Xing M, Mambo E, Huang X, Liu J, Guo Z, Chatterjee A, Goldenberg D, Gollin SM, Sukumar S, Trink B, Sidransky D (2005) Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res 7 R609–R616

48. Beaver JA, Gustin JP, Yi KH, Rajpurohit A, Thomas M, Gilbert SF, Rose DM, Park BH, Lauring J (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19:5413–5422

49. She Q-B, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, DeFeo-Jones D, Huber HE, Rosen N (2008) Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE 3:e3065–e3068

50. Weigelt B, Warne PH, Downward J (2011) PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30:3222–3233

51. Zardavas D, Phillips WA, Loi S (2014) PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res 16:201–208