Abstract

Cathepsin L (CTSL) is a ubiquitously expressed lysosomal cysteine peptidase with diverse and highly specific functions. The involvement of CTSL in thymic CD4+ T-cell positive selection has been well documented. Using CTSLnkt/nkt mice that lack CTSL activity, we have previously demonstrated that the absence of CTSL activity affects the homeostasis of the T-cell pool by decreasing CD4+ cell thymic production and increasing CD8+ thymocyte production. Herein we investigated the influence of CTSL activity on the homeostasis of peripheral B-cell populations and bone marrow (BM) B-cell maturation. B-cell numbers were increased in lymph nodes (LN), spleen and blood from CTSLnkt/nkt mice. Increases in splenic B-cell numbers were restricted to transitional T1 and T2 cells and to the marginal zone (MZ) cell subpopulation. No alterations in the proliferative or apoptosis levels were detected in peripheral B-cell populations from CTSLnkt/nkt mice. In the BM, the percentage and the absolute number of pre-pro-B, pro-B, pre-B, immature and mature B cells were not altered. However, in vitro and in vivo experiments showed that BM B-cell production was markedly increased in CTSLnkt/nkt mice. Besides, BM B-cell emigration to the spleen was increased in CTSLnkt/nkt mice. Colony-forming unit pre-B (CFU pre-B) assays in the presence of BM stromal cells (SC) and reciprocal BM chimeras revealed that both BM B-cell precursors and SC would contribute to sustain the increased B-cell hemopoiesis in CTSLnkt/nkt mice. Overall, our data clearly demonstrate that CTSL negatively regulates BM B-cell production and output therefore influencing the homeostasis of peripheral B cells.

Introduction

B-cell development occurs continuously during life. In adult mice, this process is initiated in the bone marrow (BM) where hematopoietic stem cells differentiate through a series of intermediate stages during which cells are thought to become progressively more restricted in their developmental potential. Once the B-lineage restricted stage is reached, B-cell progenitors execute a programmed development, first rearranging the immunoglobulin heavy chain gene at the pre-B stage, then undergoing multiple rounds of clonal expansion at the pre-B stage and finally rearranging the light chain gene to yield newly formed B cells expressing surface IgM. These immature B cells are exported primarily to the spleen where they progress through stages of immature transitional B cells and develop into mature naïve B cells [1].

Cathepsin L (CTSL) is an abundant and ubiquitously expressed lysosomal cysteine peptidase which degrades a wide range of cytoplasmic and nuclear proteins [2]. On the other hand, about 10% of CTSL is physiologically secreted and can be extracellularly activated [3]. There, it is capable of processing extracellular matrix (ECM) proteins such as fibronectin, laminin, elastin and diverse type of collagens [3–5]. A considerable body of evidence has accumulated in the last years showing the involvement of CTSL in diverse and highly specific functions such as epidermal homeostasis and regulation of the hair cycle [6–9], maintenance of the heart structure and function [10–12], endothelial progenitor cell-induced neovascularization [13] and processing of proneuropeptides into peptide neurotransmitters and hormones [14], [15]. A role for CTSL in the development and progression of cancer has also been reported [16], [17].

Several cathepsins contributed in the processing of both antigens and self-antigens to antigenic peptides [18–20]. Regarding the thymic compartment, it has been demonstrated that CTSL plays an important role in the MHC class II-mediated peptide presentation in thymic epithelial cells, acting both in the invariant chain degradation [21] and in the generation of MHC class II-bound peptide ligands presented by cortical thymic epithelial cells [18]. Consequently, CTSL KO mice exhibit a marked reduction in the percentage of CD4+ cells in the thymus and spleen. We and others have shown [22–24] that CTSLnkt/nkt mice -which carry an inactivating mutation in the Ctsl gene [24]- also have an early impairment during positive selection of CD4+ thymocytes.

Lymph nodes (LN) from CTSLnkt/nkt mice are enlarged and show an increased number of lymphocytes. In spite of the low rate of CD4+ cell thymic production, the number of LN CD4+ T cells

1 Laboratorio de Inmunología Experimental, Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Laboratorio de Inmunofarmacología Tumoral, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Centro de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina

1 Laboratorio de Inmunología Experimental, Instituto de Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Laboratorio de Inmunofarmacología Tumoral, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Centro de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina

Citation: Badano MN, Camicia GL, Lombardi G, Magliloa A, Cabrera G, et al. (2013) B-Cell Lymphopoiesis Is Regulated by Cathepsin L. PLoS ONE 8(4): e61347. doi:10.1371/journal.pone.0061347

Editor: Fabrizio Mattei, Istituto Superiore di Sanità, Italy

Received December 6, 2012; Accepted March 6, 2013; Published April 9, 2013

Copyright: © 2013 Badano et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from CONICET (National Research Council, Argentine) to IN and IP and FUNDALBU (Fundación para Combatir la Leucemia). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: irenepo@hematologia.anm.edu.ar

† These authors contributed equally to this work.
is similar to that of wild-type (wt) mice due to a marked increase in their proliferative level. In addition, the number of LN CD8+ cells is significantly increased correlating with an increased thymic export of CD8+ cells [25].

Recently, a role for cathepsin B in B cell development has been proposed [26]. However, despite the progress made in elucidating the role of CTSL in CD4 and CD8 T cell homeostasis, the influence of CTSL on B cells has not yet been addressed. Thus, the aim of this work was to investigate whether CTSL activity affects the B-cell compartment.

Materials and Methods

Mice

The following specific pathogen-free mice were used: BALB/c.Cg-Ctg1220ad (CTSL^{+/−/−}), BALB/c and C57BL6-Tg (UBC-GFP) 30Sca/J transgenic BALB/c expressing green fluorescent protein (GFP) under the direction of the human ubiquitin C promoter (BALB/c.GFP). The origin and development of the CTSL^{+/−/−} congenic (N><12) strain has been previously described [24], [25]. CTSL^{+/−/−} mice were identified by their alopecia and by the presence of a deletion in both copies of the Ctsl gene. The deletion was detected by RT-PCR (sense primer 5’-CAAT-CAGGGCCTGAACCGAGG 3’, antisense primer 5’-CATT-GAGGATCCAAGTCATG3’) as previously described [25]. BALB/c.GFP mice were purchased from the Jackson Laboratory, Bar Harbor, Maine. These mice express GFP in all tissues except the brain, where the GFAP promoter is active. BALB/c.GFP mice were identified by their alopecy and nkt/nkt^{−/−} congenic (N⁶) strain used in this study. The following specific pathogen-free mice were used: BALB/c (C57BL6-Tg (UBC-GFP) 30Sca/J transgenic BALB/c expressing green fluorescent protein (GFP) under the direction of the human ubiquitin C promoter (BALB/c.GFP), CByJ.B6-Tg (UBC-GFP) 30Sca/J transgenic BALB/c expressing green fluorescent protein (GFP) under the direction of the human ubiquitin C promoter (BALB/c.GFP), CByJ.B6-Tg (UBC-GFP) 30Sca/J transgenic BALB/c expressing green fluorescent protein (GFP) under the direction of the human ubiquitin C promoter (BALB/c.GFP).

Cell suspensions

LN cell suspensions were prepared from a pool of axillary and inguinal LN as previously described [25]. This pool of LN was used to calculate the number of cells per LN. To obtain BM cells, femurs were dissected free from the muscle, cut both at the knee and hip, and removed. BM cell suspensions were prepared by repeatedly flushing the cells from femurs using a 23-gauge needle with DMEM (GIBCO by Invitrogen, CA, USA), containing 5% FBS (GIBCO) [27]. Mononuclear cells from BM, spleen and blood were isolated by centrifugation on Ficoll-Trisyson gradients.

Antibodies

Anti-murine mAb directly conjugated to FITC, PE, Cy, TruRed or APC were used for fluorescence-activated cell sorting. FITC-labeled mAb included anti-HSA (M1/69, anti-IgM (RI-60.2), anti-IgD (11-26c.2a), and anti-B220 (RA3-6B2). PE-labeled antibodies included anti-CD19 (1D3), anti-CD43 (S7), anti-B220, anti-CD23 (B3B4) and anti-IgM. Cy-labeled anti-B220, TruRed-labeled anti-IgD and APC-labeled anti-CD21 (7G6) mAb were used. All antibodies were independently used to detect apoptotic B cells. For PI staining, cells resuspended in PBS containing 3% FBS were incubated with FITC-labeled mAb directed against surface markers. Cells were washed, fixed with 1 ml of ethanol 70% and stored at 4°C for 24 h. Then, cells were washed and resuspended in PBS containing 1% glucose, 1 mg/ml RNase A (Sigma), and 20 µg/ml PI. After 30 min of incubation, cells were acquired on a FACScan flow cytometer [25]. For Annexin V staining, cells were incubated with the appropriate surface mAb, washed with PBS, resuspended in 150 µl of Annexin V binding buffer and stained with 1 µl of Annexin V. After 30 min of incubation cells were analyzed by FACS.

Cell cycle analysis

For DNA content analysis, PI or 7-amino-actinomycin-D (7-AAD) (BD Pharmingen) [30] were used. PI staining was performed as described above [25]. For 7-AAD staining [29], cells were stained for the appropriate surface markers, washed, fixed and permeabilized using BD Cytofix/Cytoperm Buffer. Cells were washed, treated with 30 µg of DNase I (Sigma), and 20 µg/ml PI. After 30 min of incubation, cells were analyzed on a FACScan flow cytometer.

B cell isolation

B220⁺ cells from LN were purified by positive selection by using CD45R (B220) MicroBeads (Miltenyi Biotec, Germany) according to the manufacturer’s protocol. The B cell purity (%CD19⁺cells, >95%) was determined by flow cytometry. Cytocentrifuge slides were prepared by centrifugation of samples at 80 g for 3 min (Cytospin 4; Shandon, Pittsburgh, USA) and stained with May-Grünwald Giemsa.

BM autoreconstitution assays

WT and CTSL^{+/−/−} mice were exposed to 500 rad of ionizing radiation and BM and spleen B-cell subpopulations were analyzed by FACS fifteen days post-irradiation [31]. Mice were given drinking water supplemented with 2 mg/ml neomycin sulfate (Sigma-Aldrich) 2 days before and following irradiation.

Colonies-forming unit pre-B (CFU pre-B) assay

Femoral BM cells (1×10⁶) were cultured in 35-mm² plastic Petri dishes containing 1 ml of the recombinant IL-7 (rIL-7)-supplemented MethoCult M3630 medium (StemCell Technologies, Vancouver, Canada). Colonies containing more than 30 cells were scored after 1 week of culture.
were scored under an inverted microscope after culture for 7 days at 37°C in a fully humidified atmosphere with 5% CO₂ [32].

BM stromal cells (SC) cultures

BM cells were cultured in 24-well culture plates in DMEM supplemented with 20% FBS, 0.1% 2-mercaptoethanol (ME), 1% L-glutamine, at 37°C in a humidified atmosphere at 5% CO₂ for 24 hours. Thenafter, nonadherent cells were washed out and the remaining cells were further cultured under the same conditions [32].

Co-culture of BM stromal monolayers and pro-B cell-rich populations

To obtain a pro-B cell-rich population a bulk culture of pooled BM cells stimulated with rIL-7 was performed as described by Tauboi et al [32]. Briefly, BM cells from wt and CTSLa/d mice were cultured at 1 x 106 cells/ml in DMEM supplemented with 20% FBS, 2 x 10-3 M 2-ME, 1% L-glutamine, and 2 ng/ml of murine rIL-7 (R&D Systems) and plated in six-well culture trays. Nonadherent cells were harvested after 4 days of culture. This bulk culture provided a highly rich source of IL-7-responsive pro-B cells (>70% B220hiCD433HSAa). Pro-B cell-rich populations were suspended at 5 x 103 cells/ml in DMEM supplemented with 20% FBS, 0.1% ME, 1% L-glutamine and 1 ng/ml of murine rIL-7. Aliquots (1.0 ml) of this cell suspension were added to established SC monolayers in 24-well flat-bottomed trays and co-cultured at 37°C in a fully humidified atmosphere of 5% CO₂. Nonadherent cells were harvested after 3 days, counted, and cloned using the CFU-pre-B colony assay system.

Reciprocal BM chimeras

Reciprocal BM chimeras were constructed as described by Mollenn et al. [33] with minor modifications. Briefly, 2 x 106 BM cells from wt, CTSLa/d were i.v. injected into 8-week old mice that had received 900 rad of whole body irradiation 24 h previously. Parallel experiments using BALB/c.GFP instead of wt mice were performed in order to confirm the B-cell donor-origin in reconstituted mice. 2 days before and following irradiation, mice were given drinking water supplemented with 2 mg/ml neomycin sulfate. Twelve days after adoptive transfer, BM and spleen cells were harvested from recipient mice for analysis.

Statistical analysis

The two-tailed Students \(t \) test was used to assess the statistical significance of the results. Results are expressed as (mean ± SD). A value of \(p<0.05 \) was considered indicative of a significant difference. Except where specified, the figures and tables contain representative results from experiments repeated independently 3 times.

Results

The number of B cells is increased in LN from CTSLnkt/nkt mice

We first investigated whether CTSLa/d mice showed alterations in the number of B cells in the enlarged LN of these mice. As can be observed in Fig 1A, the percentage of B220+cells was significantly increased in LN of CTSLa/d mice. Both the percentage and absolute number of B220+CD19+LN cells were markedly increased in CTSLa/d mice (Fig 1B-C). These data indicate that the number of LN B cells is markedly increased in mutant mice. LN B cells from mutant and wt mice did not show significant differences in the level of expression of B220 (Fig 1A and [34]). All LN B cells were IgMhi IgDhi whereas IgMlo IgDlo cells were not detected (data not shown) indicating that LN B cells of CTSLa/d mice are phenotypically mature. No significant morphological differences were detected between B cells from wt and mutant mice (Fig 1E).

PI staining revealed no alterations in B-cell basal proliferative levels in LN from CTSLa/d mice (percentage of S-G2/M cells within B220+cells: 1.1±0.2 vs 1.6±0.7, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4). Neither B-cell basal apoptosis levels were modified as measured by PI staining (percentage of hypodiploid cells within B220+ cells: 0.32±0.06 vs 0.28±0.04, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4), thus indicating that alterations in proliferation or apoptosis levels are not involved in the increase in the number of LN B cells in mutant mice.

The number of transitional B cells is increased in the spleen and peripheral blood of CTSLnkt/nkt mice

In the spleen, the total number of lymphocytes was not found to be altered in mutant mice [25]. However, both the percentage and the absolute number of splenic B cells were slightly although significantly increased (Fig 2A-B). Splenic B lymphocytes comprise mature and transitional B cells that arrive from the BM to complete their maturation. Transitional B cells are divided into T1 and T2, while the mature B-cell compartment involves the follicular mature (FM) and the marginal zone (MZ) cells [33]. As can be observed in Fig 2C, FACS analysis showed that mutant mice have a higher percentage of transitional B cells (HSAa, B220lo/nkt/nkt) mice. Because of HSA and CD21 expression, the analysis of B spleen and peripheral blood of CTSLa/d mice as compared to wt mice (Fig 2D). In contrast, the percentage of FM (CD21hi/nkt/nkt) B cells was decreased in mutant mice. Analysis of CD23 expression in CD21hi/HSAa cells (T2+MZ) showed that the proportion of T2 and MZ B cells was similar in wt and CTSLa/d mice, indicating that both subsets were equally increased in mutant mice (Fig 2E). The absolute numbers of T1, T2 and MZ B cells were significantly increased in CTSLa/d mice, whereas the number of FM B cells was normal (Fig 2F).

Incorporation of 7-AAD was used to measure the proliferation [30] of B splenocytes. Transitional and mature B splenocytes showed similar proliferative levels in mutant and wt mice (percentage of S-G2/M cells within HSAaB220lo/nkt/nkt+ cells: 1.6±0.5 vs 1.4±0.4; percentage of S-G2/M cells within HSAaB220lo/nkt/nkt+ cells: 0.12±0.05 vs 0.14±0.05, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4). In addition, no differences were observed in the apoptosis levels (percentage of Annexin V+ cells within HSAaB220lo/nkt/nkt+ cells: 25.3±4.0 vs 29.7±3.1; percentage of Annexin V+ cells within HSAaB220lo/nkt/nkt+ cells: 15.3±14.1, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4).

Regarding peripheral blood, B-cell levels were also increased in CTSLa/d mice (Fig 2G). As in the spleen, this increase was restricted to transitional B cells (HSAaB220lo/nkt/nkt+ and both transitional T1 (IgMhi IgDhi and T2 (IgMhi IgDlo) B-cell stages (absolute numbers of T1 cells: 0.74±0.13 x 1010 vs 1.80±0.20 x 1010, in wt vs CTSLa/d mice, mean±SD, \(n \)=4, \(p<0.005 \), absolute numbers of T2 cells: 0.60±0.11 x 1010 vs 1.31±0.10 x 1010, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4, \(p<0.001 \)). Regarding the mature B-cell population (IgMhi IgDlo), no differences in the absolute numbers were detected between normal and mutant mice (absolute numbers of mature B cells: 4.39±1.25 x 109 vs 4.70±0.95 x 109, in wt vs CTSLa/d mice, mean ± SD, \(n \)=4).

Thus, both in the spleen and peripheral blood of CTSLa/d mice, the number of transitional B cells is increased.
The entry of newly formed B cells into the spleen is increased in CTSLnkt/nkt mice

The fact that splenic transitional B cells were increased in the absence of alterations in their proliferative and apoptosis levels led us to investigate whether BM B-cell emigration to the spleen was increased in CTSLabl/abl mice. Taking into account that BM pro-B and pre-B cells proliferate actively [36] and that the vast majority of transitional B splenocytes are in the G0/G1 phase of the cell cycle [37], [38] (and our own results), a 2 day-BrdU pulse was used as a cohort labeling tool to follow the post-mitotic differentiation of recently labeled pro-B and pre-B cells [39], [40]. Since splenic B cells derive from BM proliferating cells, the BrdU+ splenic B cells would mostly represent BM immature B cells that have recently emigrated to the spleen. As can be observed in Fig 3, whereas no changes in the number of BM BrdU+ B cells were detected, the absolute number of BrdU-labeled transitional and mature B cells was increased in the spleen of CTSLnkt/nkt mice, indicating that the entry of newly formed B cells into the spleen is increased in these mice.

BM B-cell production is increased in CTSLnkt/nkt mice

We then investigated whether BM B-cell maturation was altered in CTSLabl/abl mice. No differences in total BM cellularity or in total BM leukocyte numbers were detected between normal and mutant mice (Table 1). The percentage and absolute number of pre-pro-B (B220loCD43hiHSAhiIgMhiIgDlo), pro-B (B220loCD43hiHSAloIgMhiIgDlo), pre-B (B220loCD43loIgMhiIgDlo) immature (B220loCD43loIgMhiIgDhi) and mature B cells (B220hiCD43loIgMhiIgDhi) were found to be similar in wt and mutant mice (Fig 4 and Table 1). To investigate in vivo BM B-cell production, irradiation-induced autoreconstitution experiments were developed [42]. Mutant and wt mice were sublethally irradiated to eliminate mature and immature lymphocytes. BM stem cells survive this level of irradiation and are able to reconstitute the lymphocyte populations [31]. At day 13, when most of B splenocytes displayed a transitional phenotype (>98% HSAhiB220hiIgMloIgDlo[43]), BM and spleen cells were collected to study B-cell development. As can be observed in Fig 5A, the absolute number of BM B220+ cells was significantly higher (3 fold) in CTSLabl/abl mice. This increase included all BM B-cell developmental stages, except for mature B cells which at this time point were undetectable both in mutant and in wt mice. Regarding the spleen, the percentage and absolute number of transitional B cells (HSAhiB220hiIgMloIgDlo) was about 7 fold higher in CTSLabl/abl mice as compared to wt mice (Fig 5B–E). This increase involved both splenic transitional T1 (IgMhiIgDloHSAlo) and T2 (IgMloIgDhiHSAhi) B-cell subsets (Fig 5C and E).

These results indicate that CTSLnkt/nkt mice have an increased BM B-cell production.

CTSLnkt/nkt BM SC and precursor B cells lead to increases in the number of CFU-pre–B cells

We first investigated in vitro BM B-cell production by performing CFU pre-B assays using day 7 as the end point. Correlating with in vivo experiments, a significant increase in the number of pre-B-cell colonies was observed when BM cells from CTSLnkt/nkt mice were cultured in the presence of BM SC and precursor B cells. We then assayed the ability of nonadherent BM cells to form pre-B-cell colonies in the presence of BM SC. Although BM wt cells cocultured in the presence of CTSLnkt/nkt BM SC give rise to significantly higher numbers of pre-B colonies than those obtained

\textbf{Figure 1. LN B-cells are increased in CTSLnkt/nkt mice.} LN cells from wt and CTSLnkt/nkt mice were stained with anti-B220, CD19 and IgM and analyzed by FACS. (A) Representative histograms of LN B220hi cells are shown. (B) Absolute numbers (mean ± SD; n = 4) of LN B220+CD19+ cells are shown. (C) Representative dot plots of CD19+LN cells (D) Representative dot plots of CD19+IgD+LN cells. E. Purified B220+LN cells spotted on a cytospin slide. In both, Wt and CTSLnkt/nkt animals, similar groups of mainly small lymphoid cells are seen with round to oval eccentric nuclei, coarse chromatin, and scanty homogeneous cytoplasm. May-Grunwald Giemsa staining (original magnification x1000). *p<0.001 compared to wt. Experiments were performed four times with similar results. doi:10.1371/journal.pone.0061347.g001
in the presence of wt BM SC (data not shown), a small number of colonies was obtained even when high numbers of nonadherent BM cells were used. We thus assayed a method described by Tsuboi et al. [32]. Pro-B cell-rich populations from wt or CTSL^{β₂-/β₂} mice were co-cultured with wt or CTSL^{β₂-/β₂} BM SC and the differentiation potential of conditioned progenitor cells into pre-B cells was then assayed. After co-culture with wt SC, the number of pre-B-cell colonies derived from CTSL^{β₂-/β₂} B-cell precursors was 2 fold higher than that derived from wt B cell precursors (Fig 6B), indicating that a B-cell precursor intrinsic alteration affects B lymphopoiesis in CTSL^{β₂-/β₂} mice. Co-cultures between mutant BM SC and wt B-cell precursors also led to a significant increase in B-cell production as compared to co-cultures with wt BM SC. Thus, the lack of CTSL activity on BM SC also contributes to the increased B lymphopoiesis. A further increase in the number of pre-B-cell colonies was observed when CTSL^{β₂-/β₂} B-cell precursors were co-cultured with CTSL^{β₂-/β₂} BM SC, suggesting that the effects of β₂ mutation on BM SC and B-cell precursors are additive. Overall these results suggest that the increased BM B-cell production observed in CTSL^{β₂-/β₂} mice results from both B-cell autonomous and BM microenvironment features.

Figure 2. Splenic and blood transitional B-cells numbers are increased in CTSL^{β₂-/β₂} mice. Splenic (A–F) and blood (G) mononuclear cells from wt and CTSL^{β₂-/β₂} mice were stained with anti-B220, anti-HSA, anti-CD21 and anti-CD23 before analysis by FACS. (A) Representative histograms of splenic B₂₂₀⁺ cells are shown. (B) Absolute numbers (mean ± SD; n = 4) of splenic B cells. (C) Representative dot plots of splenic transitional (HSA⁺B220⁺) and mature (HSA⁺B220⁺) B cells are shown. Percentages of transitional and mature B cells are indicated. (D) Representative dot plots of splenic T1 (CD21⁺HSA⁺), T2-MZ (CD21⁺HSA⁺) and FM (CD21⁺HSA⁺) B cells. Percentages of each subset within B220⁺ cells are indicated. (E) Representative histograms of CD23 surface expression within the splenic B220⁺CD21⁺HSA⁺ population. Percentages of T2 and MZ B cells are indicated. (F) Absolute numbers (mean ± SD; n = 4) of splenic T1, T2, MZ and FM B cells. (G) Representative dot plots of blood transitional (HSA⁺B220⁺) and mature (HSA⁺B220⁺) B cells are shown. Percentages of transitional and mature B cells are indicated. *p<0.05; **p<0.0005 compared to wt. doi:10.1371/journal.pone.0061347.g002
In vivo reciprocal BM transplantation experiments indicate that both BM SC and precursor B cells contribute to the increased B lymphopoiesis in CTSLa/b/nkt mice.

In order to evaluate in vivo the role of the nkt mutation expressed on BM SC, lethally irradiated wt and CTSLa/b/nkt mice were i.v. inoculated with wt BM cells. In parallel experiments, BALB/c.GFP BM cells were used as donor cells. B220+ (or B220+ GFP+) BM and splenic cells were analyzed twelve days after transplantation by flow cytometry. As can be observed in Fig 7F and H, over 96% of B220+ BM and splenic cells observed in wt and CTSLa/b/nkt recipients of BALB/c.GFP BM cells were GFP+, indicating that the reconstituting B cells were derived from GFP+ donor BM cells. As can be observed in Fig 7A and G, CTSLa/b/nkt recipients of wt or BALB/c.GFP+ cells showed higher absolute numbers of precursor-B cells than wt recipients. Regarding the spleen, both the percentage and absolute numbers of transitional B-cells were higher in CTSLa/b/nkt recipients (Fig. 7B–E and I–K).

Two mo after transplantation B220lo transitional splenocytes remained increased in CTSLa/b/nkt recipients (Data not shown). These results indicate that the absence of CTSLa activity on BM microenvironment influences BM B-cell production and the number of transitional B splenocytes.

To investigate whether the nkt mutation on BM hematopoietic progenitor-cells is also to influence in vivo B cell lymphopoiesis, BM cells from wt or CTSLa/b/nkt mice were transferred into lethally irradiated wt mice. As can be observed in Fig 6A–C, wt recipients that received CTSLa/b/nkt BM cells had higher percentages and absolute numbers of BM B-cell precursors than those that received wt BM cells. These mice also showed increased percentage and absolute numbers of transitional (T1 and T2) splenic cells (Fig 8D–G). These results indicate that a B-cell precursor intrinsic alteration also plays a role in the increase in BM B-cell production and in the increase in transitional B-cell numbers observed in CTSLa/b/nkt mice.

Our in vitro and in vivo results indicate that CTSLa activity both in BM SC and in hematopoietic progenitor cells is able to negatively regulate BM B cell production and the number of transitional B splenocytes.

Discussion

We have previously shown that the nkt mutation broadly affects the maturation and the homeostasis of T-cell populations. Results presented herein show that in CTSLa/b/nkt mice BM B-cell production and emigration are increased, leading to increases in peripheral B-cell numbers. In the enlarged LN from mutant mice, the number of B cells was found to be highly increased. LN B cells were mature according to their expression of surface markers. In addition, we have previously shown that CTSLa/b/nkt mice produce specific IgG against OVA [34], indicating that B cells of mutant mice are functional.

The fact that LN B cells did not show alterations in basal apoptosis and proliferative levels suggest that a higher input of B cells into LN could be involved in the increased number of LN B cells.

It is well-known that ECM components influence the homeostasis of lymphocytes in lymphoid organs [43–48]. We have previously demonstrated that several ECM components are
increased in the LN of CTSL<nkt/nkt> mice [25]. Thus, it can be hypothesized that increases in LN ECM components may increase the number of niches for B (and T) lymphocytes. Therefore increased numbers of B cells could not only enter but survive in the altered environment of CTSL<nkt/nkt> LN. In support of this hypothesis, the absence of alterations in ECM components in the spleen of CTSL<nkt/nkt> mice [25] correlates with the presence of only slightly increased numbers of splenic B cells.

Table 1. BM B-cell subsets in wt and CTSL<nkt/nkt> mice.

Cell fraction	A	B–C	D	E	F	Total BM
Wt	3.9±0.6	11.7±0.6	35.4±3.5	16.5±2.3	10.4±1.7	416.3±19.7
CTSL<nkt/nkt>	4.4±0.3	13.0±3.1	36.1±5.3	17.3±4.1	8.9±1.1	418.8±16.5

BM cells from wt and CTSL<nkt/nkt> mice were stained with anti-B220, anti-CD43, anti-HSA or anti-IgM mAb before analysis by FACS. Values represent the mean ± SD of cells in each fraction per femur (n = 4). The experiment was performed three times with similar results. BM B-cell progenitors were classified according to the scheme of Hardy41 as follows: Fraction A (pre-pro-B cells: B220loCD43<i>+</i>HSA<i>+</i>), Fraction B–C (pro-B cells: B220loCD43<i>+</i>HSA<i>+</i>), Fraction D (pre-B cells: B220loCD43<i>+</i>IgM<i>+</i>l<i>D</i>i), Fraction E (immature B cells: B220loCD43<i>+</i>IgM<i>+</i>IgM<i>+</i>) and Fraction F (mature B cells: B220hiCD43<i>+</i>IgM<i>+</i>).

Figure 5. B-lymphopoiesis is increased in CTSL<nkt/nkt> mice. Wt and CTSL<nkt/nkt> mice received 500 rad of whole-body irradiation. 13 days later, BM and splenic cells were stained with anti-B220, anti-HSA, anti-CD43 and anti-IgM before analysis by FACS. (A) Absolute numbers (mean ± SD; n = 9) of BM B220<i>+</i>, B220<i>+</i>IgM<i>+</i> and B220<i>+</i>IgM<i>+</i> cells. (B) Representative histograms of splenic B220<i>+</i> cells. (C) Representative dot plots of splenic transitional B cells (HSA<i>+</i>B220<i>+</i>). (D) Dot plots of splenic T1 (IgM<i>+</i>IgD<i>+</i>) and T2 (IgM<i>+</i>IgD<i>+</i>) B cells. (E) Absolute numbers (mean ± SD; n = 9) of splenic B220<i>+</i>, T1 and T2 cells. *<i>p</i> < 0.005; **<i>p</i> < 0.0005; ***<i>p</i> < 0.0001 compared to wt.

doi:10.1371/journal.pone.0061347.g005

Figure 6. BM SC and precursor cells contribute to the in vitro increased B-lymphopoiesis in CTSL<nkt/nkt> mice. (A) BM cells from wt and CTSL<nkt/nkt> mice were cultured in methylcellulose medium in the presence of rIL-7. Pre-B-cell colonies were enumerated at day 7. (B) Co-culture of pro-B-cell rich populations with BM SC. BM cells from wt and CTSL<nkt/nkt> mice were cultured with rIL-7 for 4 days to obtain a population of pro-B cells (B220loCD43<i>+</i>HSA<i>+</i>). Pro-B cells rich populations were co-cultured with wt or CTSL<nkt/nkt> BM SC monolayers in the presence of rIL-7 for 3 days. Nonadherent cells were harvested, counted, and cloned using the CFU pro-B colony assay system. Data are presented as the mean ± SD of triplicate cultures. *<i>p</i> < 0.05; **<i>p</i> < 0.005; ***<i>p</i> < 0.001 compared to wt.

doi:10.1371/journal.pone.0061347.g006
Figure 7. Lack of CTSL activity on BM microenvironment influences the in vivo BM B-cell production and the number of transitional B splenocytes. Wt and CTSL-/-/ mice were lethally irradiated and 24 hs later transplanted with wt (A–E) or BALB/c.GFP (F–K) BM cells. Twelve days post-transfer, BM and splenic cells were stained with anti-B220, anti-HSA, anti-IgD and anti-IgM before analysis by FACS. (A) Absolute numbers (mean ± SD; n = 10) of BM B220+, B220+IgM+ and B220+IgM+ cells. (B) Representative histograms of BM B220+ cells. (C) Representative dot plots of splenic transitional B cells (HSAhiB220lo/hi). (D) Representative dot plots of splenic T1 (IgMhiIgDlow) and T2 (IgMhiIgDhi) B cells. (E) Absolute numbers (mean ± SD; n = 10) of splenic B220+, T1 and T2 cells. (F) Representative histograms of GFP expression within BM B220+ cells. (G) Absolute numbers (mean ± SD; n = 10) of splenic B220+ Igs.
Regarding the spleen, normal numbers of FM B cells and increased numbers of transitional T1, T2 and the minor subset of MZ cells were observed.

Regarding the BM, a clear increase in CTSL+/+ BM B-cell production was detected both \textit{in vitro} (CFU-pre-B assays) and \textit{in vivo} (autoreconstitution experiments). Of interest, no alterations in the total number of B-cell precursors were detected. In addition, their proliferative or apoptosis levels were neither altered (data not shown). Based on BrdU pulse-chase experiments, we could demonstrate that higher numbers of immature B cells leave the BM and reach the spleen of CTSL mutant mice.

Collectively, our data show that both BM B-cell production and emigration are increased in CTSL+/+ mice leading to an

![Figure 8](https://doi.org/10.1371/journal.pone.0061347.g007)

Figure 8. The lack of CTSL activity affects the intrinsic ability of BM progenitor cells to develop into B cells. Wt mice were lethally irradiated and 24 hs later transplanted with wt or CTSL+/+ BM cells. Twelve days later, BM and splenic cells were stained with anti-B220, anti-HSA, anti-IgD and anti-IgM before analysis by FACS. (A) Representative histograms of BM B220+ cells. (B) Dot plots of BM B-cell precursors (B220loIgM2 and B220loIgM+ cells). (C) Absolute numbers (mean ± SD; n = 10) of BM B220+, B220loIgM2 and B220loIgM+ cells. (D) Representative histograms of splenic B220+ cells. (E) Representative dot plots of splenic transitional B cells (HSAhiB220lo/+). (F) Representative dot plots of splenic T1 (IgMhiIgDlow) and T2 (IgMhiIgDhi) cells (g) Absolute numbers (mean ± SD; n = 10) of splenic B220+, T1 and T2 cells. *p<0.0005 compared to wt.

![Figure 8](https://doi.org/10.1371/journal.pone.0061347.g008)
increase in the number of peripheral B cells, notably in follicular LN B-cells.

It is known that BM SC regulates BM B-cell development through the secretion of various cytokines, growth factors and hormones that affect progenitor cell growth, differentiation, and/or survival [49], [50]. Contact of B-cell progenitors with SC and ECM proteins is also involved in BM B-cell development [51]. Alterations in the intrinsic ability of BM progenitor cells to develop into B cells could also affect BM B-cell production. Our in vitro data led us to hypothesize that the nkt mutation could influence B-cell production by acting both on BM SC and BM B-cell precursors. To confirm this hypothesis, in vivo reciprocal BM transplantation experiments were performed. Our results showed that CTSLtnt/nkt hosts receiving wt or GFP.BALB/c cells had higher numbers of BM B-cell precursor and transitional B-splenocytes as compared to wt hosts, thus confirming that the nkt mutation influences B-cell production by altering the BM SC. Besides, the lack of CTSLt activity would also affect the intrinsic ability of BM progenitors to develop into B cells, as indicated by the increase in the number of both BM B-cell precursors and transitional B splenocytes in wt mice transplanted with BM mutant cells.

Taken together, these findings point both to alterations in BM SC and in hematopoietic progenitor cells as contributing to the increased B-cell hematopoiesis in mutant mice.

The molecular mechanisms that underlie the increased BM B-cell production in CTSLtnt/nkt mice remain to be defined. To date, CTSLt activity on factors known to be involved in B-cell hematopoiesis has only been studied in tissues and organs other than BM. Of note, it has been reported that CTSLt-deficient skin fibroblasts show a decreased degradation of insulin-like growth factor binding protein-3 (IGFBP-3) from insulin-like growth factor-1 (IGF)/IGFBP complexes [52]. Limited proteolysis of IGFBP from IGF/IGFBP complexes constitutes a central mechanism by which complexed IGFs are released from IGFBPs increasing IGF bioavailability [53]. Considering that IGF-1 stimulates BM B-cell production [54], [55], it seems unlikely that a putative decrease in IGF-1 release in the BM of CTSLtnt/nkt mice would be directly involved in the increases registered in BM B-cell production. Moreover, decreased degradation of IGFBP-3 from IGF/IGFBP complexes in CTSLt-deficient fibroblasts also results in an extracellular accumulation of IGFBP-3 [52]. Since IGFBP-3 inhibits human pro-B-cell development in vitro [56], these data do not support the hypothesis that a putative decrease in IGFBP-3 proteolysis could account for the increased BM B-cell production of CTSLtnt/nkt mice.

In a model of myocardial infarction, it has been shown that the expression of stem cell factor and stromal cell-derived factor-1 were significantly decreased in the myocardium of CTSLt KO mice [57]. Since both factors show positive effects on B-cell hematopoiesis [58], [59], a putative similar effect of the lack of CTSLt in BM would not play a direct role in the increases in B-cell hematopoiesis reported herein.

On the other hand, it has also been recently shown that CTSLt is able to block AKT signaling in cardiomyocytes [12] and keratinocytes [17]. Studies on PI3K/AKT axis in B lymphocytes have established the importance of this pathway in affecting B-cell proliferation, differentiation and associated molecular events such as V(D)J recombination and class switch recombination [60]. Besides, it has been shown that AKT activation in BM endothelial cells up-regulates specific angiocrine factors that support the expansion of hematopoietic stem and progenitor cells, whereas activation of both AKT and MAPK favors maintenance and lineage-specific differentiation of these cells [61]. It cannot be discarded that an increased activation of the AKT pathway in CTSLtnt/nkt B-cell precursors and/or BM endothelial cells could be involved in the increased BM B-cell hematopoiesis.

Even though there is accumulating evidence for specific functions of CTSLt in health and disease, to our knowledge this is the first report showing that CTSLt plays an important role in the regulation of the homeostasis of the B-cell pool. As schematized in Fig 9, by acting both on BM hematopoietic

Figure 9. Influence of CTSLt on B-cell homeostasis. By acting both on BM B-cell precursors and SC, negatively regulates the BM production and the export of immature B cells to the periphery. As a consequence, the number of blood and spleen TB and LN FM B cells is restricted by CTSLt activity. Besides, by affecting the levels of expression of LN ECM components, CTSLt would also limit the number of LN niches for FM B cells, cooperating in that way to regulate the number of FM B cells. IB: immature B cells; TB: transitional B cells; FM: follicular mature B cells.

doi:10.1371/journal.pone.0061347.g009
References
1. Hardy RR (2003) B-cell commitment: deciding on the players. Curr Opin Immunol 15: 138–163.
2. Turk V, Turk B, Turk D (2001) Lysosomal cysteine protease: facts and opportunities. EMBO J 20: 4629–4633.
3. Kirschke H, Kombluth AA, Bohley P, Barrett AJ (1982) Action of rat liver cathespin L on collagen and other substrates. Biochem J 201: 367–372.
4. Chapman HA Jr, Munger JS, Sha GP (1994) The role of thiol proteases in tissue injury and remodeling. Am J Respir Crit Care Med 150: 8155–8159.
5. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olen B, et al. (2000) Secreted cathepsin L generates an elastolysin from collagen XVIII. EMBO J 19: 1107–1114.
6. Roth W, Deussing J, Boichacki VA, Pauly-Evers M, et al. (2000) Cathespin L deficiency as molecular defect of B-cell hyperproliferation and peroxidation of hair follicle cycling. FASEB J 14: 2075–2086.
7. Tobin DJ, Foitzik K, Reineckel T, Meddriusburg L, Boichacki VA, et al. (2002) The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol 160: 1087–1021.
8. Reineckel T, Dollenmack S, Dottert-S Martinez E, Lohmuller T, et al. (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118: 3387–3395.
9. Benavides F, Starost MF, Flores M, Gimenez-Conti IB, Guenet JL, et al. (2002) Impaired hair follicle morphogenesis and cycling with an abnormal epidermal differentiation in nakt mice, a cdtl-deficient mutation. Am J Pathol 161: 695–703.
10. Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, et al. (2002) Dilated cardiomyopathy in cdtl-deficient mice for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 99: 6243–6249.
11. Petermann I, Mayer C, Stypmann J, Binossier ML, Tobin DJ, et al. (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cdtl knockout mice. FASEB J 20: 1260–1268.
12. Tsuboi I, Morimoto K, Hiraibayashi Y, Li GX, Aizawa S, et al. (2004) Senescent B lymphopoiesis is balanced in suppressive homeostasis: decrease in interleukin-7 and transforming growth factor-beta levels in stromal cells of senescence-accelerated mice. Exp Cell Res 299: 494–502.
13. Tobin DJ, Foitzik K, Reineckel T, Meddriusburg L, Boichacki VA, et al. (2002) The lysosomal protease cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling. J Mol Med 87: 249–260.
14. Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Toneff T, Bundey R, et al. (2005) Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci U S A 100: 9590–9595.
15. Moraga I, Hao Y, Pereira JP, Alves NL, et al. (2010) CpG inhibits pro-B cell expansion through a cathepsin B-dependent mechanism. J Immunol 184: 5678–5685.
47. Jones JI, Gockerman A, Busby WH Jr, Camacho-Hubner C, Clemons DR (1993) Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol 121: 679–687.
48. Ingold K, Zimmetz A, Tardivel A, Huard B, Steiner QG, et al. (2005) Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 201: 1373–1383.
49. Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6: 107–116.
50. Abboud SL, Bethel CR, Aron DC (1991) Secretion of insulin like growth factor I and insulin like growth factor-binding proteins by murine bone marrow stromal cells. J Clin Invest 88: 470–475.
51. Miyake K, Weissman IL, Greenberger JS, Kincade PW (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 173: 599–607.
52. Zwad O, Kühler B, Roth W, Scharf JG, Saftig P, et al. (2002) Decreased intracellular degradation of insulin-like growth factor binding protein-3 in cathepsin L-deficient fibroblasts. FEBS Lett 510: 211–215.
53. Rodthep KS, Narayanan R, Dorshkind K (1992) Insulin-like growth factor-I regulates pro-B cell differentiation. Blood 80: 1207–1212.
54. Gibson LF, Pikel D, Landreth KS (1993) Insulin-like growth factor-I potentiates expansion of interleukin-7-dependent pro-B cells. Blood 82: 3000–3011.
55. Taguchi T, Takenouchi H, Matsui J, Tang WR, Iragaki M, et al. (2006) Involvement of insulin-like growth factor-I and insulin-like growth factor binding proteins in pro-B-cell development. Exp Hematol 34: 508–518.
56. Sun M, Chen M, Liu Y, Fukushima M, Zhou K, et al. (2011) Cathepsin-L contributes to cardiac repair and remodelling post-infarction. Cardiovasc Res 89: 374–383.
57. Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, et al. (1996) Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell derived factor 1 receptor, a murine homolog of the human immuno-deficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 93: 14726–14729.
58. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, et al. (1998) Impaired B lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95: 9448–9453.
59. Baracho GV, Miletic AV, Omori SA, Cato MH, Rickert RC (2011) Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol 23: 178–183.
60. Kobayashi H, Butler JM, O'Donnell R, Kohayashi M, Ding BS, et al. (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 12: 1046–1056.