Measuring the resonant absorption coefficient of rare-earth-doped optical fibers

Mostafa Peysokhan,1,2 Esmaeil Mobini,1,2 Behnam Abaie,1,2 and Arash Mafi1,2

1Department of Physics & Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
2Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA

(Dated: October 16, 2018)

A method for measuring the resonant absorption coefficient of rare-earth-doped optical fibers is introduced. It can be applied to a broad range of fiber designs and host materials. The method compares the side-collected spontaneous emission at two arbitrary locations along the fiber as a function of the pump wavelength to extract the absorption coefficient. It provides an attractive and accurate alternative to other available techniques. In particular, the proposed method is superior to the cut-back method, which destroys the sample and is prone to inaccuracies due to the cladding mode contamination. Moreover, it does not involve any mechanical movement, so it can be used for fragile optical fibers.

I. INTRODUCTION

Fiber lasers and amplifiers are widely adopted in industry and scientific research because of their high power, good beam quality, and ease of operation [11,12]. In order to design and optimize fiber lasers and amplifiers, it is essential to know the geometrical and optical properties of the optical fiber gain medium to a high degree of accuracy [3-6]. Such characteristics may be considerably different from those anticipated from the fiber preform and can be altered during the fiber drawing process. Therefore, it is important to accurately measure these characteristics directly in the fiber. An important property of a rare-earth-doped optical fiber is the resonant absorption coefficient \(\alpha_r(\lambda) \), which can be determined from the dopant density \(N_0 \) and the absorption cross section \(\sigma_{\text{abs}}(\lambda) \). However, \(\sigma_{\text{abs}}(\lambda) \) is strongly dependent on the host glass, which can be affected during the preform fabrication and drawing. The dopant density profile can also be modified during the fiber drawing because of diffusion; therefore, it is imperative to determine \(\alpha_r(\lambda) \) directly using the optical fiber.

In this work, we present a novel method that can be used to accurately determine \(\alpha_r(\lambda) \) in the presence of rare-earth ions in an optical fiber at all relevant wavelengths. The method is based on analyzing the emitted side-light, which contains both fluorescence and pump scattering at different locations along the fiber. It is a universal technique that can be applied to single-mode, multi-mode, large-mode-area, photonic crystal, and double-clad rare-earth-doped optical fibers. It is also applicable to fibers made from different materials such as ZBLAN, silica, or chalcogenides. Because the method does not involve the movement of any mechanical or optical components in the measurement process, it can be readily applied to fragile fibers [7], including highly tapered fibers [8].

The presented method is an alternative to the cut-back method, which is widely used to measure the absorption coefficient of optical fibers [9]. In the cut-back method, the output power from the fiber is measured by gradually cutting back the fiber from the end and reducing its length [9]. The cut-back method is destructive; therefore, it cannot be employed in experiments that need to be performed on a single piece of optical fiber. In a sensitive experiment, e.g. for laser cooling, even a slight sample-to-sample variation can affect the outcome; therefore, two pieces of the same fiber may not perform the same way and must be characterized individually [10-12]. Another issue involves the excitation of the cladding modes that contaminate the cut-back measurements in short pieces of the fiber [13]. Moreover, in the cut-back measurements of highly absorbing rare-earth-doped optical fibers, because the core must be pumped well below the saturation intensity, the output signal can be quite weak and even comparable to the cladding power contamination. Finally, the cut-back method involves undesirable mechanical processing such as cleaving, polishing, and inspecting the fiber that at best can be quite elaborate, and in cases involving fragile fibers totally impractical.

We already mentioned that our proposed method is highly advantageous for characterizing fibers for laser cooling. In a similar context, accurate determination of \(\alpha_r(\lambda) \) is essential for designing radiation-balanced lasers (RBLs) [14-24]. RBLs have been proposed as a way to mitigate the thermal issues in high-power fiber lasers, which have hindered the progress in power-scaling because of the thermally induced transverse mode instability [25-29]. RBLs operate based on the radiative cooling principle, in which the rare-earth-doped optical fiber is pumped at a wavelength, which is higher than the mean fluorescence wavelength of the active ions; therefore, the anti-Stokes fluorescence removes some of the excess heat [14]. In RBLs, the heat generated due to the quantum defect, parasitic background absorption of the pump and laser, and the non-radiative relaxation of the excited rare-earth ions is balanced against radiative cooling. RBLs pose stringent requirements on the
type and level of dopants, as well as the host materials. In particular, the parasitic background absorption (α_b) must be quite small for RBLs to work. Our proposed method, when combined with the laser-induced temperature modulation spectrum (LITMoS) test developed in Sheik-Bahae’s research group [12], allows us to also accurately determine α_b for the doped fiber and the cooling efficiency of rare-earth doped fibers [10] [11].

II. THEORY

We refer to this new technique as “measuring the absorption coefficient via side-light analysis” (MACSLA). This method is based on the fact that when a rare-earth doped optical fiber is pumped far below the saturation intensity, the spontaneous emission power emitted from the side of the fiber is directly proportional to the pump power. The method compares the side-collected spontaneous emission at two arbitrary locations along the fiber as a function of the pump wavelength and employs the McCumber theory [30] to extract the spectral form of the absorption coefficient.

![Figure 1](image_url)

Figure 1. Schematic of the propagation of the pump power in the optical fiber and the collection of the spontaneous emission from the side of the rare-earth-doped optical fiber.

Figure 1 shows a schematic of the proposed method. The pump propagates through the core of the optical fiber from left to right. The pump wavelength is assumed to be in the proximity of the peak absorption wavelength such that $\alpha_r(\lambda)$ is much larger than α_b. The pump intensity in the fiber core is assumed to be far below the saturation intensity; therefore, the pump power propagating in the core, $P_{\text{core}}(z)$, attenuates exponentially due to the absorption by the rare-earth dopants:

$$P_{\text{core}}(z) = P_0 \exp (-\alpha_r(\lambda) z), \quad (1)$$

where P_0 is input pump power in the core at $z = 0$.

The side-emitted spontaneous emission power is collected by two large-core high-numerical-aperture multimode optical fibers at points A and B along the fiber, which are separated by a distance Δz. The collection efficiencies of the two multimode fibers may be slightly different due to inevitable misalignments. Therefore, we can write

$$P_{\text{coll}}(z_A) = \gamma_A P_{\text{core}}(z_A), \quad (2a)$$
$$P_{\text{coll}}(z_B) = \gamma_B P_{\text{core}}(z_B), \quad (2b)$$

where $P_{\text{coll}}(z_A)$ and $P_{\text{coll}}(z_B)$ are the collected powers at points A and B, respectively. γ_A and γ_B are coefficients that relate the propagating power in the core to the collected spontaneous emission power, which also incorporate the coupling efficiencies to the multimode fibers at points A and B, respectively. We now divide Eq. 2 by Eq. 2a take the natural logarithm of both sides, and obtain:

$$r(\lambda) = \ln \left(\frac{\gamma_B}{\gamma_A} - \alpha_r(\lambda) \Delta z, \quad (3)$$

where

$$r(\lambda) = \ln \left(\frac{P_{\text{coll}}(z_B)}{P_{\text{coll}}(z_A)} \right), \quad (4)$$

In Eq. 3, $\alpha_r(\lambda)$ follows a strict spectral function of the form [31]:

$$\alpha_r(\lambda) \propto \lambda^5 S(\lambda) \exp \left(\frac{hc}{\lambda k_B T} \right), \quad (5)$$

where $S(\lambda)$ is the emission power spectral density measured by the optical spectrum analyzer, h is the Planck constant, k_B is the Boltzmann constant, and c is the speed of light in vacuum. We also assume that the ratio γ_B/γ_A is wavelength independent over the narrow range of wavelengths used in this experiment. Therefore, the left-side in Eq. 3 ($r(\lambda)$) must also follow the spectral form in Eq. 5 when the pump wavelength is varied. Because the spectral shape of $\alpha_r(\lambda)$ is obtained from Eq. 3 all that is needed is to find its overall magnitude by balancing the left-side and right-side in Eq. 3 over the respective wavelengths. Therefore, we replace $\alpha_r(\lambda)$ in Eq. 3 with $\alpha_r^p \times \alpha_r^{\text{peak}}(\lambda)$, where $\alpha_r^{\text{peak}}(\lambda)$ is the absorption coefficient normalized to its peak value, $\alpha_r^p = \alpha_r(\lambda_{\text{peak}})$. This way, we can determine both γ_B/γ_A and α_r^p through a fitting procedure that involves measurements of $r(\lambda)$ and $\alpha_r(\lambda)$ at multiple wavelengths near the peak absorption wavelength.

III. EXPERIMENT

In our experiment, we used a commercial Yb-doped optical fiber (SM-YSF-LO-HP, Nufern, Inc.) to demonstrate the utility of the MACSLA method. SM-YSF-LO-HP is a low-doped Yb-silica single-mode and single-clad optical fiber. As we mentioned in the previous section, in order to use the Beer-Lambert exponential decay form in Eq. 1, the pump intensity must be kept considerably below the saturation intensity. As such, we first measured...
the pump saturation power \((P_{\text{sat}}) \) by pumping the core of the doped fiber \((P_{\text{core}}) \) and measuring the side spontaneous emission power \((P_{\text{spont}}) \) for different values of the pump power at 976 nm wavelength. The measurements were fitted to the functional form of the saturated power in a doped fiber \[32\]

\[
P_{\text{spont}}(P_{\text{core}}) \propto \frac{P_{\text{core}}}{1 + P_{\text{core}}/P_{\text{sat}}}
\]

For our fiber, the saturation power was determined to be 966 µW. In our later experiments, \(P_{\text{core}} \) was kept below 5% of the saturation power to make sure that Eq. 1 could be reasonably applied.

For the fitting procedure, we chose seven different pump wavelengths near the absorption peak wavelength for the Yb-silica fiber (\(\lambda_{\text{peak}} = 977 \) nm) by tuning the operating wavelength of the CW Ti:Sapphire laser. For each wavelength, the emission signal power was measured at positions A and B over sufficient time windows until the desired signal-to-noise-ratio was achieved. Seven independent measurements were also performed at each wavelength to obtain the proper statistics and error-bars. The distance between points A and B was also measured by a digital caliper. The power spectral density \(S(\lambda) \) of the Yb-silica fiber is shown in Fig. 3. The inset shows the resonant absorption coefficient, which is normalized to its peak value, and is calculated by using the McCumber theory \[30\].

IV. RESULTS AND DISCUSSION

The fitted line over the experimental measurements related to Eq. 3 are shown in Fig. 4. The points (with error-bars) indicate the values of \(r(\lambda) \) measured at seven different wavelengths, and the fitting curve comes directly from the resonant absorption spectrum shown as the inset in Fig. 3. The outcome of the fitting procedure was the peak value of the absorption coefficient \(\alpha_p = 0.198 \pm 0.008 \) cm\(^{-1}\). While unimportant to the procedure, the fitting also resulted in \(\gamma_B/\gamma_A = 0.69 \). Our result for \(\alpha_p \) should be compared with the value reported by the vendor, which is \(0.220 \pm 0.033 \) cm\(^{-1}\). We also performed cut-back measurements, which resulted in \(0.203 \) cm\(^{-1}\).

We would like to comment on a recent pioneering method proposed by Min Oh, et al. \[33\], where they also
FIG. 4. The points with error-bars indicate the values of $r(\lambda)$ from Eq. 4 measured at seven different wavelengths near the peak of the resonant absorption coefficient. The fitting curve comes directly from the resonant absorption spectrum shown as the inset in Fig. 3. The fitting parameters are α_p and γ_B/γ_A.

employ the side-light analysis to measure $\alpha_r(\lambda)$. In their procedure, the doped fiber is pumped at a fixed wavelength and the spontaneous emission is measured at different positions along the fiber by using an optical spectrometer. They measure α_r at the respective wavelength by fitting the side-collected power to the Beer-Lambert exponential decay form in Eq. 1. In their method, the coupling efficiency to the side-collecting fiber is assumed to remain unchanged at different locations along the doped fiber. This assumption is applicable when the measured fiber is multimode with a large core; however, it may result in inaccuracies if the fiber is single-mode with a small core. Moreover, the requirement to keep the pump power far below the saturation power, which is on the order of 1 mW in single-mode fibers, necessitates high-sensitivity spectrometers for adequate signal-to-noise-ratio.

In summary, the MACSLA method provides an attractive and accurate alternative to other techniques for measuring the resonant absorption coefficient in rare-earth-doped optical fibers. In particular, it is superior to the cut-back method, which destroys the sample and is prone to inaccuracies due to the cladding mode contamination. When combined with the LITMoS test [12, 34], the MACSLA method allows one to also determine the parasitic background absorption coefficient (α_b). In laser cooling experiments and RBLs, the cooling efficiency is improved by reducing the ratio of background absorption coefficient to the resonant absorption coefficient (α_b/α_r) [10–12, 33–37]. Our techniques enables an accurate determination of α_b that is essential to design and interpret such radiative cooling experiments.

The methods presented here can potentially be modified and adopted for measuring α_r in bulk materials; e.g. in rare-earth doped crystals. One of the main advantages of the MACSLA method is the fact that it does not require precise alignments, which makes it suitable for commercial applications. Moreover, the technique does not require an accurate knowledge of the actual coupled power into the medium, hence one is not worried about surface reflections and scatterings. In practice, the lock-in amplifier may not be required if one uses a high-sensitivity detector such as a low threshold avalanche photodiode.

V. ACKNOWLEDGEMENTS

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0362 titled Multidisciplinary Approaches to Radiation Balanced Lasers (MARBLE). We thank M. Sheik-Bahae, R. I. Epstein and, A. R. Albrecht for illuminating discussions.

[1] DJ Richardson, J Nilsson, and WA Clarkson, “High power fiber lasers: current status and future perspectives,” JOSA B 27, B63–B92 (2010).
[2] Michalis N Zervas and Christophe A Codemard, “High power fiber lasers: a review,” IEEE Journal of selected topics in Quantum Electronics 20, 219–241 (2014).
[3] Dmitrii Kouznetsov and Jerome V Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. iii. calculation of modes,” JOSA B 19, 1304–1309 (2002).
[4] Eldad Yahel and Amos Hardy, “Modeling high-power Er$^{3+}$-Yb$^{3+}$ codoped fiber lasers,” J. Lightwave Technol. 21, 2044 (2003).
[5] A. Mafi, J. V. Moloney, D. Kouznetsov, A. Schulgen, Shbin Jiang, Tao Luo, and N. Peyghambarian, “A large-core compact high-power single-mode photonic crystal fiber laser,” IEEE Photonics Technology Letters 16, 2595–2597 (2004).
[6] Eldad Yahel, Ortwin Hess, and Amos A. Hardy, “Modeling and optimization of high-power Nd$^{3+}$-Yb$^{3+}$ codoped fiber lasers,” J. Lightwave Technol. 24, 1601 (2006).
[7] Xiushan Zhu and N Peyghambarian, “High-power zblan glass fiber lasers: review and prospect,” Advances in OptoElectronics 2010, 501956 (2010).
[8] Juho Kerttula, Valery Filippov, Yuri Chamorovskii, Vasily Ustimchik, Konstantin Golant, and Oleg G. Okhotnikov, “Principles and performance of tapered fiber lasers: from uniform to flared geometry,” [Appl. Opt. 51, 7025–7038 (2012).]
[9] HM Pask, Robert J Carman, David C Hanna, Anne C Tropper, Colin J Mackechnie, Paul R Barber, and Judith M Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE Journal of
Selected Topics in Quantum Electronics 1, 2–13 (1995).
[10] CE Mungan, MI Buchwald, BC Edwards, RI Epstein, and TR Gosnell, “Laser cooling of a solid by 16 k starting from room temperature,” Physical review letters 78, 1030 (1997).
[11] TR Gosnell, “Laser cooling of a solid by 65 k starting from room temperature,” Optics Letters 24, 1041–1043 (1999).
[12] Seth Melgaard, Denis Seletskiy, Victor Polyak, Yemanee Asmerom, and Mansoor Sheik-Bahae, “Identification of parasitic losses in yb: YLF and prospects for optical refrigeration down to 80k,” Optics Express 22, 7756–7764 (2014).
[13] Lei Yao, TA Birks, and Jonathan C Knight, “Low bend loss in tightly-bent fibers through adiabatic bend transitions,” Optics express 17, 2962–2967 (2009).
[14] Steven R Bowman, “Lasers without internal heat generation,” IEEE journal of quantum electronics 35, 115–122 (1999).
[15] SR Bowman, “Radiation balanced lasers,” in Advanced Solid State Lasers (Optical Society of America, 1999) p. MA6.
[16] Galina Nemova and Raman Kashyap, “Athermal continuous-wave fiber amplifier,” Optics Communications 282, 2571–2575 (2009).
[17] Galina Nemova and Raman Kashyap, “Radiation-balanced amplifier with two pumps and a single system of ions,” J. Opt. Soc. Am. B 28, 2191–2194 (2011).
[18] Steven R Bowman, Shawn P O’Connor, Subrat Biswal, Nicholas J Condon, and Armand Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE Journal of Quantum Electronics 46, 1076–1085 (2010).
[19] Steven R Bowman, “Low quantum defect laser performance,” Optical Engineering 56, 011104 (2016).
[20] Mostafa Peysookhan and Arash Mafi, “Minimizing heat generation by radiative cooling in a ytterbium-doped silica fiber laser,” in Frontiers in Optics (Optical Society of America, 2017) pp. JTu3A–106.
[21] Zhou Yang, Alexander R Albrecht, Junwei Meng, and Mansoor Sheik-Bahae, “Radiation balanced thin disk lasers,” in CLEO: Science and Innovations (Optical Society of America, 2018) pp. SM4N–5.
[22] Esmaeil Mobini, Mostafa Peysookhan, Behnam Abaie, and Arash Mafi, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” JOSA B 35, 2484–2493 (2018).
[23] Esmaeil Mobini, Mostafa Peysookhan, Behnam Abaie, and Arash Mafi, “Radiation balanced ytterbium-doped silica double-clad fiber amplifier,” in Frontiers in Optics (Optical Society of America, 2018) pp. JWV3A–134.
[24] J. M. Knall, M. Esmaeelpour, and M. J. F. Digonnet, “Model of anti-stokes fluorescence cooling in a single-mode optical fiber,” Journal of Lightwave Technology 36, 4752–4760 (2018).
[25] David C Brown and Hanna J Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE Journal of quantum electronics 37, 207–217 (2001).
[26] L. Li, H. Li, T. Qiu, V. L. Temyanoko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, “3-dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express 13, 3420–3428 (2005).
[27] Tino Eidam, Christian Wirth, Cesar Jauregui, Fabian Stutzki, Florian Jensen, Hans-Jürgen Otto, Oliver Schmidt, Thomas Schreiber, Jens Limpert, and Andreas Tünnemann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Optics express 19, 13218–13224 (2011).
[28] B Ward, C Robin, and I Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Optics Express 20, 11407–11422 (2012).
[29] Cesar Jauregui, Tino Eidam, Hans-Jürgen Otto, Fabian Stutzki, Florian Jensen, Jens Limpert, and Andreas Tünnemann, “Physical origin of mode instabilities in high-power fiber laser systems,” Optics express 20, 12912–12925 (2012).
[30] DE McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Physical Review 136, A505–A54 (1964).
[31] Seth Melgaard, Cryogenic optical refrigeration: Laser cooling of solids below 123 K., Ph.D. thesis, University of New Mexico (2013).
[32] H Zech, “Measurement technique for the quotient of cross sections $\frac{\sigma_a(\lambda)}{\sigma_e(\lambda)}$ of erbium-doped fibers,” IEEE Photonics Technology Letters 7, 986–988 (1995).
[33] Min Oh, Jonghoon Yi, Uihyeon Seo, Hojae Lee, Hyunjoo Cho, Minseung Hwang, and Kyungyung Kim, “Measurement of the absorption coefficient of yb-doped fibers by a side light analysis,” New Physics: Sae Mulli 67, 499–503 (2017).
[34] Mostafa Peysookhan, Behnam Abaie, Esmaeil Mobini, Saeid Rostami, and Arash Mafi, “Measuring quantum efficiency and background absorption of an ytterbium-doped zblan fiber,” in CLEO: Applications and Technology (Optical Society of America, 2018) pp. JW2A–118.
[35] Esmaeil Mobini, Mostafa Peysookhan, Behnam Abaie, and Arash Mafi, “Laser cooling investigation of a single-mode yb-doped zblan optical fiber,” in Frontiers in Optics (Optical Society of America, 2017) pp. JTu3A–8.
[36] Esmaeil Mobini, Mostafa Peysookhan, Behnam Abaie, and Arash Mafi, “Investigation of solid state laser cooling in ytterbium-doped silica fibers,” in CLEO: QELS, Fundamental Science (Optical Society of America, 2018) pp. FF3E–4.
[37] Jenny Knall, Mina Esmaeelpour, and Michel Digonnet, “Model of anti-stokes cooling in a yb-doped fiber,” in Optical and Electronic Cooling of Solids III, Vol. 10550 (International Society for Optics and Photonics, 2018) p. 105500K.