Activity of Epigenetic Inhibitors against *Plasmodium falciparum* Asexual and Sexual Blood Stages

Leen N. Vanheer, Hao Zhang, Gang Lin, Björn F. C. Kafsack

Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA

ABSTRACT Earlier genetic and inhibitor studies showed that epigenetic regulation of gene expression is critical for malaria parasite survival in multiple life stages and a promising target for new antimalarials. We therefore evaluated the activity of 350 diverse epigenetic inhibitors against multiple stages of *Plasmodium falciparum*. We observed ≥90% inhibition at 10 μM for 28% of compounds against asexual blood stages and early gametocytes, of which a third retained ≥90% inhibition at 1 μM.

KEYWORDS malaria, *Plasmodium falciparum*, epigenetic inhibitors, small-molecule screen, antimalarial agents, drug screening

Despite substantial progress in reducing malaria infections and deaths over the past 2 decades, the disease remains among the greatest global health challenges, with 219 million cases and 435,000 deaths in 2017 (1). The emergence of drug and insecticide resistance now threatens to reverse these gains and highlights the need for new classes of antimalarials for use in combination therapies (2). To minimize the emergence and spread of resistance, these new antimalarials should have independent modes of action from existing therapies and be effective against multiple parasite stages, including the asexual blood stages responsible for the disease's clinical manifestation, and gametocytes, the sexual blood stages that mediate transmission. Recent studies have demonstrated the essential function of multiple genes involved in epigenetic regulation of gene expression in asexual blood stages (3–7). Many of these genes likely also play key roles during the substantial chromatin remodeling that occurs during the early stages of gametocytogenesis (8, 9).

Several epigenetic inhibitors have been approved for treatment of various cancers, with more actively being evaluated in clinical trials (10). Such inhibitors also hold promise as antimalarials, with several studies involving limited numbers of epigenetic inhibitors having found activity against one or more stages of malaria parasites (11–18). To evaluate the promise of targeting epigenetic processes more systematically, we decided to test known inhibitors of epigenetic targets to maximize the chance of finding compounds with potent antimalarial activity that would make promising starting points for identifying parasite targets and subsequent structure-activity relationship (SAR) studies to improve selectivity. To this end, we screened the two largest commercially available libraries of 209 (Selleckchem, Houston, TX) and 141 (Cayman Chemicals, Ann Arbor, MI) epigenetic inhibitors at 10 μM and 1 μM (see Fig. S1 and Data Set S1 in the supplemental material) against both asexual blood stages and gametocytes of *Plasmodium falciparum*. Using previously described assays, we determined activity against asexual blood stages (19), as well as early- and late-stage gametocytes (20) of the *P. falciparum* NF54 strain expressing the tandem dimeric tomato red fluorescent protein under the control of a *peg4* gametocyte promoter (21). For the 25 compounds included more than once, differing only by vendor or counterion, the mean response is reported, as responses to repeat compounds showed only
minimal variation (see Fig. S2), leaving 324 unique compounds across a broad range of epigenetic target classes (Table 1).

Of these, 150 exhibited greater than half-maximal activity at 10 μM against at least one stage (Fig. 1, Fig. S3, and Fig. S4; see Fig. S1 and Data Set S1 for activities of all compounds tested). Of all compounds, 45% (146) and 17% (54) had greater-than-half-maximal activity against asexual stages at 10 μM and 1 μM, respectively (Table 1, Fig. 1A, and Fig. S3A). Activity against early gametocyte stages was similar, with 37% (120) and 17% (55) of compounds exhibiting more than 50% inhibition at 10 μM and 1 μM, respectively. More than 90% inhibition was observed for 28% (92) of compounds against asexual blood stages at 10 μM, with 10% (32) retaining ≥90% activity even at 1 μM (Table 2). Against early gametocyte stages, 29% (93) and 10% (32) had 90% effective concentrations (EC90) below 10 μM and 1 μM, respectively. Despite differences in methods and parasite strains, our findings agree well with previous results for eight (panobinostat, belinostat, vorinostat, chaetocin, trichostatin A, BIX01294, CAY10603, and pracinostat) of these compounds that had been screened against either asexual stages or gametocytes (11–17).

Notably fewer compounds showed activity against mature gametocytes at 1 μM (Fig. S4 and S3B), possibly because the epigenetic changes that underlie sexual differentiation are initiated during earlier stages of gametocytogenesis (8, 9). Nevertheless, 13 compounds exhibited substantial activity against all three stages at 1 μM (Fig. 1B). Thirty-one of the most active compounds (EC90 < 1 μM) against asexual or early gametocyte stages were selected for more detailed dose-response studies (Fig. 1C and Fig. S3B). While the majority showed similar potency against asexual stages and early gametocyte stages, we found that 13 compounds exhibited a >2-fold difference in activity against these two stages (Fig. S5A).

When compounds were grouped based on reported epigenetic targets in higher eukaryotes, those effecting deacetylation, methylation, and phosphorylation of histones had hit rates between 35 and 40% at 10 μM for both asexual blood stages and gametocytes (Table 1). Indeed, histone deacetylase (HDAC) inhibitors have recently shown significant promise as multistage antimalarials (15, 22–25). Genome-wide mutagenesis studies in P. falciparum and the rodent malaria parasite Plasmodium berghei have indicated the essentiality of multiple genes encoding histone-modifying enzymes (6, 7). While phosphorylation of histone tails has been observed in P. falciparum blood stages (26), it remains unclear whether the observed activity of these kinase inhibitors is the result of diminished histone phosphorylation, as the kinases implicated in modification of histone tails in higher eukaryotes also perform other critical functions (see Fig. S3 for kinase inhibitor results).

Hit rates were lower for compounds targeting processes involved in demethylation, acetylation, binding of histone modifications (histone readers), and DNA methylation.

Table 1: Epigenetic inhibitors with EC50 at 10 and 1 μM, grouped by reported epigenetic process targeted in higher eukaryotes

Target class	No. of compounds	10 μM	1 μM			
	Asexual stages	Stage I-II gametocytes	Stage I-II gametocytes	Stage IV-V gametocytes		
Histone acetylation	10	1 (10)	1 (10)	0 (0)	0 (0)	
Histone deacetylation	85	43 (51)	38 (45)	25 (29)	26 (31)	7 (8)
Histone methylation	51	32 (63)	24 (47)	11 (22)	12 (24)	4 (8)
Histone demethylation	18	9 (50)	7 (39)	1 (6)	2 (11)	2 (11)
Histone phosphorylation	66	41 (62)	38 (58)	13 (20)	13 (20)	1 (2)
Histone PARPylation	22	5 (23)	4 (18)	0 (0)	0 (0)	0 (0)
Histone reader domains	28	6 (21)	3 (11)	0 (0)	0 (0)	0 (0)
DNA methylation	14	3 (21)	1 (7)	1 (7)	1 (7)	1 (7)
Other	30	6 (20)	4 (13)	3 (10)	1 (3)	0 (0)
Total	324	146 (45)	120 (37)	54 (17)	55 (17)	15 (5)

nPercentage of active compounds (n = 2 or 3).
FIG 1 Epigenetic inhibitors with activity against *P. falciparum* blood stages. (A) Compounds with ≥50% inhibition against asexual or early gametocyte blood stages at 10 μM. A heat map of mean percent inhibition of asexual replication and early gametocyte maturation at 10 and 1 μM compared to (Continued on next page)
P. falciparum carries one or more genes involved in these pathways, and lower hit rates against these may indicate greater divergence from their mammalian homologs or nonessentiality of these pathways in blood stages. For example, all but three of the 28 inhibitors of histone readers target the recognition of acetylated histones by mammalian bromo-domains, which have been noted for their divergence in *P. falciparum* (5).

The HDAC inhibitor quisinostat was the most potent multistage active compound, as EC\textsubscript{50} values against all three stages were in the low-nanomolar range. Of the eight compounds more active against asexual stages, seven were HDAC inhibitors, while three histone methyltransferase (HMT) inhibitors, the DNA methyltransferase (DNMT) inhibitor SGI-1027, and the pan-Jumonji histone demethylase (HDM) inhibitor JIB-04 (27) were more effective against early gametocytes. Intriguingly, the DNA methyltransferase inhibitor SGI-1027 had EC\textsubscript{50}s in the low-nanomolar range against asexual and early gametocyte stages and was among active compounds against late gametocyte stages. Two recent papers also identified DNMT inhibitors as potent antimalarials (24, 28). Interestingly, the lone DNA methyltransferase homolog in malaria parasites was found to be dispensable for asexual growth in *P. falciparum* (6), suggesting a novel alternative target.

Sixty compounds with submicromolar EC\textsubscript{50}s were evaluated for toxicity against human HepG2 cells (HB-8065; ATCC) at 1 μM for 72 h using Cell-titer Glo assays (Promega), as previously described (29). Unsurprisingly, a majority of these compounds exhibited some toxicity at 1 μM (Fig. S6 and S3B), as compounds were included in these libraries based on activity against epigenetic processes in mammalian cells. Nevertheless, two histone methyltransferases inhibitors, UNC0631 and UNC0642, exhibited promising selectivity, with antimalarial activity in the low-nanomolar range but low toxicity even at 1 μM.

Overall, this large screen shows that inhibitors targeting diverse epigenetic processes can effectively block asexual replication and sexual development of *P. falciparum* blood stages, confirming and extending findings of earlier studies targeting individual epigenetic enzyme classes. Our findings identified several additional inhibitors with nanomolar multistage activity and encouraging selectivity that offer a promising basis for additional SAR studies to improve both potency and selectivity for possible use as a new class of antimalarials with targets orthogonal to existing therapies.

FIG 1 Legend (Continued)

solvent-treated controls (n = 2; see Table S1 for complete data) is shown. Compounds are grouped based on the reported epigenetic process affected in higher eukaryotes: histone deacetylation (HDAC), histone acetylation (HAT), histone methylation (HMT), histone demethylases (HDM), DNA methylation (DNMT), and “other.” Gray shading indicates values excluded due to significant hemolysis at 10 μM. (B) Inhibition at 1 μM compared between early gametocyte stages (x axis), late gametocyte stages (y axis), and asexual stages (symbol color). The box lists 13 multistage-active compounds, with target categories indicated by the color of the compound names. (C) Additional analysis of dose response for 31 compounds with submicromolar EC\textsubscript{50}s against asexual stages or early gametocyte stages (n = 2 or 3).
SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, PDF file, 1.0 MB.

SUPPLEMENTAL FILE 2, XLSX file, 0.08 MB.

ACKNOWLEDGMENTS

We thank the High Throughput and Spectroscopy Resource Center at Rockefeller University for technical assistance, Photini Sinnis (Johns Hopkins University) for generously providing the NF54 peg4-tdTomato reporter parasites, and Elisabeth Martinez (UT Southwestern) for additional JIB-04 inhibitor. We also thank L. Kirkman for valuable feedback on the manuscript.

This work was supported by a BohmFalk Charitable Trust Research Grant and NIH grants 1R01AI141965 and 1R01AI138499 to B.C.F.K., NIH grant R01AI143714 to G.L., and a Belgian American Educational Foundation postdoctoral fellowship to L.N.V.

REFERENCES

1. World Health Organization. 2018. World malaria report 2018. World Health Organization, Geneva, Switzerland.
2. Menard D, Dondorp A. 2017. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med 7:a025619. https://doi.org/10.1101/cshperspect.a025619.
3. Brancucci NMB, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, Freymond C, Rottmann M, Felger I, Bozdech Z, Voss TS. 2014. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16:165–176. https://doi.org/10.1016/j.chom.2014.07.004.
4. Coleman Bl, Skillman KM, Jiang RHY, Childs LM, Altenhofen LM, Ganter M, Leung Y, Goldowitz I, Kafasc BFC, Marti M, Linhas M, Buckee CO, Duraisingh MT. 2014. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16:177–186. https://doi.org/10.1016/j.chom.2014.06.014.
5. Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O, Wilson DW, Schubert T, Längst G, Gilson PR, Crabb BS, Moes S, Jenone P, Lim SW, Brown GV, Bozdech Z, Voss TS, Duffy MF. 2015. A Plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17:741–751. https://doi.org/10.1016/j.chom.2015.05.009.
6. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF, Casandra D, Mayho M, Brown J, Li S, Swanson J, Rayner JC, Jia R, Rhy AD. 2018. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360:eaap7847. https://doi.org/10.1126/science.aap7847.
7. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, Metcalf T, Rutledge GG, Vaidya AB, Wengelnik K, Rayner JC, Billker O. 2017. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170:266–272.E8. https://doi.org/10.1016/j.cell.2017.06.030.
8. Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY, Brancucci NMB, Mohring F, Mushunje AT, Huang X, Christensen PR, Nosten F, Bozdech Z, Russell B, Moon RW, Marti M, Preiser PR, Bartfai R, Voss TS. 2018. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe 23:407–420.E8. https://doi.org/10.1016/j.chom.2018.01.008.
9. Bunnik EM, Cook KB, Varouquax N, Batugedara G, Prudhomme J, Cort A, Shi L, Andolina C, Ross LS, Brady D, Fidock DA, Nosten F, Tewari R, Sinnis P, Ay F, Vert J-P, Noble WS, Le Roch KG. 2018. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat Commun 9:1910. https://doi.org/10.1038/s41467-018-04295-9.
10. Bennett RL, Lict JD. 2018. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol 58:187–207. https://doi.org/10.1146/annurev-pharmtox-010716-105106.
11. Chua MJ, Arnold MSJ, Xu W, Lancelot J, Lamotte S, Spåth GF, Prina E, Pierce RJ, Fairlie DP, Skinner-Adams TS, Andrews KT. 2017. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. Int J Parasitol Drugs Drug Resist 7:42–50. https://doi.org/10.1016/j.jpddr.2016.12.005.
12. Engell JA, Jones AJ, Avery VM, Sumanadasa SDM, Ng SS, Fairlie DP, Adams TS, Andrews KT. 2015. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitol Drugs Drug Resist 5:117–126. https://doi.org/10.1016/j.jpddr.2015.05.004.
13. Ukaegbu UE, Zhong X, Heinberg AR, Wele M, Chen Q, Deitsch KW. 2015. A unique virulence gene occupies a principal position in immune evasion by the malaria parasite Plasmodium falciparum. PLoS Genet 11:e1005234. https://doi.org/10.1371/journal.pgen.1005234.
14. Trenholme K, Marek L, Duffy S, Pradel G, Fisher G, Hansen FK, Skinner-Adams TS, Butterworth A, Ngwa CJ, Moecking J, Goodman CD, Mcfadden GI, Sumanadasa SDM, Fairlie DP, Avery VM, Kurz T, Andrews KT. 2014. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules. Antimicrob Agents Chemother 58:3666–3678. https://doi.org/10.1128/AAC.02721-13.
15. Hansen FK, Sumanadasa SDM, Stenzel K, Duffy S, Meister S, Marek L, Schmetter R, Kuna K, Hamacher A, Mordmüller B, Kassack MU, Winzeler EA, Avery VM, Andrews KT, Kurz T. 2014. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur J Med Chem 82:204–213. https://doi.org/10.1016/j.ejmech.2014.05.050.
16. Ngwa CJ, Kiesow MJ, Orchard LM, Ferraghuk A, Llnhas M, Pradel G. 2019. The G9a histone methyltransferase inhibitor BIX-01294 modulates gene expression during Plasmodium falciparum gametocyte development and transmission. Int J Mol Sci 20:E5087. https://doi.org/10.3390/ijms20205087.
17. Andrews KT, Haque A, Jones MK. 2012. HDAC inhibitors in parasitic diseases. Immolun Cell Biol 90:66–77. https://doi.org/10.1038/icb.2011.97.
18. Patel V, Mazitschek R, Coleman B, Nguyen C, Uragaonkar S, Cortese J, Barker RH, Greenberg E, Tang W, Bradner JE, Schreiber SL, Duraisingh MT, Wirth DF, Clardy J. 2009. Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. J Med Chem 52:2185–2187. https://doi.org/10.1021/jm801654y.
19. Smitkein M, Srilakijjaroen N, Kelly JX, Wilairat P, Riscoe M. 2004. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004.
20. Kirman LA, Zhan W, Visone J, Dziedziech A, Singh PK, Fan H, Tong X, Bruzual I, Hara R, Kawasaki M, Imeda T, Okamoto R, Sato K, Michino M, Alvaro EF, Guiang LF, Sanz L, Mota DJ, Gowd NC, Fairlie DP, Avery VM, Kurz T, Andrews KT. 2017. Generation of integrated fluorescent reporters. Sci Rep 9:13131. https://doi.org/10.1038/s41598-019-49348-x.
22. Mackwitz MKW, Hesping E, Koch YA, Diedrich D, Woldaregai TG, Adams TS, Clarke M, Schöler A, Limbach L, Kurz T, Winzeler EA, Held J, Andrews KT, Hansen FK. 2019. Structure-activity and structure-toxicity relationships of peptoid-based histone deacetylase inhibitors with dual-stage antiplasmodial activity. ChemMedChem 14:912–926. https://doi.org/10.1002/cmdc.201800808.

23. Ngwa CJ, Kiesow MJ, Papst O, Orchard LM, Filarsky M, Rosinski AN, Voss TS, Llinàs M, Pradel G. 2017. Transcriptional profiling defines histone acetylation as a regulator of gene expression during human-to-mosquito transmission of the malaria parasite Plasmodium falciparum. Front Cell Infect Microbiol 7:320. https://doi.org/10.3389/fcimb.2017.00320.

24. Bouchut A, Rotili D, Pierrot C, Valente S, Lafitte S, Schultz J, Hoglund U, Mazzone R, Lucidi A, Fabrizi G, Pechalrieu D, Arimondo PB, Skinner-Adams TS, Chua MJ, Andrews KT, Mai A, Khalife J. 2019. Identification of novel quinazoline derivatives as potent antimalarial agents. Eur J Med Chem 161:277–291. https://doi.org/10.1016/j.ejmech.2018.10.041.

25. Andrews KT, Tran TN, Fairlie DP. 2012. Towards histone deacetylase inhibitors as new antimalarial drugs. Curr Pharm Des 18:3467–3479.

26. Coetzee N, Sidioli S, van Biljon R, Painter H, Llinàs M, Garcia BA, Birkholtz L-M. 2017. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep 7:607. https://doi.org/10.1038/s41598-017-00687-7.

27. Wang L, Chang J, Varghese D, Dellinger M, Kumar S, Best AM, Ruiz J, Bruick R, Peña-Llopis S, Xu J, Babinski DJ, Frantz DE, Brekken RA, Quinn AM, Simeonov A, Easmon J, Martinez ED. 2013. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nat Commun 4:2035. https://doi.org/10.1038/ncomms3035.

28. Nardella F, Halby L, Hammam E, Erdmann D, Cadet-Daniel V, Peronet R, Ménard D, Witkowski B, Mecheri S, Scherf A. 2020. DNA methylation bisubstrate inhibitors are fast-acting drugs active against artemisinin-resistant Plasmodium falciparum parasites. ACS Cent Sci 6:16 –21. https://doi.org/10.1021/acscentsci.9b00874.

29. de Luna Almeida Santos R, Bai L, Singh PK, Murakami N, Fan H, Zhan W, Zhu Y, Jiang X, Zhang K, Assker JP, Nathan CF, Li H, Azzi J, Lin G. 2017. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat Commun 8:1692. https://doi.org/10.1038/s41467-017-01760-5.