REVIEW

New opportunities and challenges of natural products research: When target identification meets single-cell multiomics

Yuyu Zhua,†, Zijun Ouyangb,†, Haojie Duc,†, Meijing Wangc, Jiaojiao Wanga, Haiyan Sunb, Lingdong Kongc, Qiang Xuc,*,†, Hongyue Maa,*,†, Yang Sunc,d,†

aCollege of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
bInstitute of Marine Biomedicine, School of Food and Drug, Shenzhen Polytechnic, Shenzhen 518055, China
cState Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
dJiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China

Received 27 May 2022; received in revised form 6 July 2022; accepted 22 August 2022

Abstract Natural products, and especially the active ingredients found in traditional Chinese medicine (TCM), have a thousand-year-long history of clinical use and a strong theoretical basis in TCM. As such, traditional remedies provide shortcuts for the development of original new drugs in China, and increasing numbers of natural products are showing great therapeutic potential in various diseases. This paper reviews the molecular mechanisms of action of natural products from different sources used in the treatment of inflammatory diseases and cancer, introduces the methods and newly emerging technologies used to identify and validate the targets of natural active ingredients, enumerates the expansive list of TCM used to treat inflammatory diseases and cancer, and summarizes the patterns of action of emerging technologies such as single-cell multiomics, network pharmacology, and artificial intelligence in the pharmacological studies of natural products to provide insights for the development of innovative natural product-based drugs. Our hope is that we can make use of advances in target identification and single-cell multiomics to obtain a deeper understanding of actions of mechanisms of natural products that will allow innovation and revitalization of TCM and its swift industrialization and internationalization.

†Corresponding authors. Tel./fax: +86 25 85811625, +86 25 89687620.
E-mail addresses: hongyuema@njucm.edu.cn (Hongyue Ma), qiangxu@nju.edu.cn (Qiang Xu), yangsun@nju.edu.cn (Yang Sun).
‡These authors made equal contributions to this work.
Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural medicines are defined as chemical substances with pharmacological or biological activities that are produced in nature by living organisms, such as plants, animals, insects, marine organisms, and microorganisms. These natural products are precious treasures gifted to us by nature and serve as key sources of substances for the prevention and treatment of human diseases. As such, they also have an important role and irreplaceable status in drug development and design. More than 10,000 species of medicinal plants are used in China, and their use in traditional Chinese medicine (TCM) is guided by a complex theoretical system with a history of clinical use of more than 2000 years. The identification of the active ingredients in these medicines is an important component of China’s drug research, as natural products provide useful shortcuts in new drug development.

New drugs are needed to cope with the changes in the modern human population, in which accelerating aging and altered dietary habits and lifestyles are now increasing the incidence of inflammatory diseases, making these disorders one of the major threats to human health worldwide. Inflammation is associated with many infections, autoimmune diseases, malignant tumors, neurodegenerative diseases, cardiovascular diseases, diabetes, and other major chronic non-communicable diseases, and these disorders are spreading globally and becoming important public health problems that seriously endanger both human health and sustainable socioeconomic development. Natural products have made great contributions to the prevention and treatment of inflammatory diseases and cancer, and scientists have been greatly encouraged to invest in the development of natural product-based drugs by the discovery of the potent antimalarial natural product artemisinin by Youyou Tu, a Chinese scientist who won the 2015 Nobel Prize in Physiology or Medicine. This paper reviews the important research progress made in the use of natural products for the treatment of inflammatory diseases and cancer, summarizes methods for target identification and validation, and reports on the application of frontier technologies in natural product research aimed at elucidating the targets and mechanisms of natural product action and promoting the development of new drugs to combat major diseases.

2. Natural products in the treatment of inflammatory diseases and cancer

Natural products, especially of plants, animals, marine and mineral origins, play an important role in inflammatory diseases and cancer, as outlined in Fig. 1.

2.1. Plant natural products

Plants are vital components of TCM, as they serve as important guarantees of the quality of the natural product library. Herbal remedies have played a major role in the treatment of various diseases since Shennong first tasted all kinds of herbs. Plant-derived natural products are characterized by diverse chemical structures and activities, wide ranges of action, and a low occurrence of toxic side effects.

2.1.1. Berberine

Berberine is an isoquinoline alkaloid extracted from Coptis chinensis Franch., Phellodendron chinense Schneid. and other plants of the C. Salisb. group. C. chinensis Franch. was first recorded in the “Shennong Ben Cao Jing” as having roots that taste extremely bitter, and impart a cold sensation, with clearing heat, drying dampness, and firing detoxification. It is commonly used in the treatment of dysentery, thirst, carbuncle swelling, and poisoning. Berberine is a broad-spectrum antibacterial drug that is clinically used for the treatment of gastrointestinal diseases caused by bacterial infections. It is also approved for the treatment of hyperlipidemia in several countries.

Jiang and colleagues found that berberine has hypolipidemic atherosclerosis-improving effects and can be used as a complement to statins, an undervalued attribute of this drug in the prevention and treatment of hyperlipidemia, diabetes, and cardiovascular diseases. Berberine can inhibit the action of the potassium voltage-gated channel subfamily H member 6 (KCNH6) potassium channel, which has a newly determined high glucose-dependent pro-insulin secretion effect, so berberine can greatly reduce the risk of hypoglycemia and may be used to develop a whole new class of hypoglycemic drugs in the future. Oral administration of berberine activates the gut—brain axis and enhances tyrosine hydroxylase activity by triggering the biosynthesis of tetrahydrobiopterin in the gut microbiota. This, in turn, elevates blood and brain dopamine concentrations to produce L-dopa, thereby ultimately improving Parkinson’s disease progression. Berberine can also promote osteoblast proliferation and differentiation, as well as inhibit osteoclast differentiation, to improve osteoporosis. Berberine administration can also improve the effects of organ ischemia—reperfusion injury, ischemic stroke, peritoneal adhesions, nonalcoholic fatty liver, and oral diseases.

Berberine has significant effects on many common cancers (e.g., lung, breast, colon, and liver cancer). Fang and colleagues have shown that berberine could also reduce cancer recurrence after endoscopic resection of adenoma, a precancerous colorectal disease.

2.1.2. Capsaicin

Capsaicin is the main pungent secondary metabolite component of the fruit of Capsicum annum L. and is known for its analgesic effects. According to the “Yao Jian” C. annum L. can “dispel wind and blood, dispel cold and relieve depression, induce stagnation, stop diarrhea, and wipe out ringworm”. Modern medicine proves that C. annum L. has pharmacological effects, such as
analgesic, antipruritic, hypolipidemic, hypoglycemic, antibacterial, and antitumor activities.

The United States Food and Drug Administration (FDA) has approved the Qutenza (capsaicin) 8% patch for the treatment of neuropathic pain caused by postherpetic neuralgia13 and neuropathic foot pain associated with diabetic peripheral neuropathy (DPN) in adult patients14. Capsaicin reversibly desensitizes and defunctionalizes the TRPV1 receptor, which plays a key role in pain signaling15. Years of research of Zhu’s team on capsaicin systems16-21 have provided an important scientific basis for the prevention of cardiovascular metabolic diseases by spicy diets. Capsaicin also reportedly exerts anti-obesity effects by altering gut microbial composition, reducing intestinal permeability, and regulating the gut microbe–brain axis22. Capsaicin also activates TRPV1 ion channels to improve glucose homeostasis in the body, thereby preventing and improving prediabetic insulin resistance, diabetes, and its complications23. Capsaicin also has a therapeutic effect on allergic rhinitis by disrupting the TRPV1–substance P nociceptive signaling pathway in the nasal mucosa24. Oral administration of capsaicin was also shown to activate somatosensory nerves by binding to TRPV1, thereby greatly alleviating the acute vaso-occlusive episodes in sickle cell disease mice and significantly preventing chronic liver and kidney damage25.

Capsaicin also has significant antitumor activity. Han’s group26 used an ingenious combination of natural capsaicin and CaCO\textsubscript{3} as a nanocarrier to exploit this activity. The nanocarrier undergoes

Figure 1 Schematic representation of natural products (in white) improving inflammatory diseases and cancer (in blue). This figure is created with biorender.com.
rapid cleavage in the acidic tumor microenvironment and releases capsaicin, which then specifically activates TRPV1 channels and increases the calcium ion concentration within the tumor. This causes mitochondrial damage and increases the intracellular levels of reactive oxygen species, ultimately leading to apoptosis of tumor cells and inhibition of tumor growth. Capsaicin can increase the level of calcitonin gene-related peptide (CGRP) in bone marrow extracellular fluid and promote the movement of hematopoietic stem cells from bone marrow to blood vessels, indicating its promise as a therapy for hematologic tumors.

2.1.3. Quercetin
Quercetin is a plant secondary metabolite widely found in the bark, flowers, leaves, buds, seeds, and fruits of many plants. Quercetin is a dietary polyphenol that has protective effects when consumed in the diet or as a food supplement.

Senolytics is a drug combination composed of dasatinib and quercetin, which can selectively kill senescent cells in a variety of affected organs, repair physiological functions, and delay aging. Liu et al. showed that quercetin not only delayed the aging of UV-irradiated human primary dermal fibroblasts, but it also delayed the aging of HES1-deficient human primary dermal fibroblasts. Quercetin regulates the gut microbiota and affects the progression of non-alcoholic fatty liver disease (NAFLD) in mice via the intestinal—hepatic axis.

Quercetin can also enhance the anticancer effects of adriamycin chemotherapy in hepatocellular carcinoma cells while protecting normal hepatocytes. Quercetin combined with cisplatin nanoparticles significantly inhibited the progression of bladder cancer. Quercetin activated gastric cancer cell autophagy through regulating Akt—mTOR signaling and hypoxia-inducible factor 1α (HIF-1α) signaling, thereby inhibiting gastric cancer progression. The synergistic effect induced by the co-administration of quercetin and alantolactone as a colorectal cancer treatment was able to reactivate antitumor immunity by inducing immunogenic cell death (ICD), causing cytotoxicity, and modulating the immunosuppressive tumor microenvironment.

2.1.4. Icariin
Icariin, an isopentenyl flavonoid glycoside compound from Epimedium Linn., shows antioxidant, anti-inflammatory, and anti-tumor pharmacological effects and has extensive therapeutic capabilities for the treatment of cardiovascular diseases, neuro-degenerative diseases, and tumors. Icariin can also reduce morbidity in MRL/Lpr mice.

Icariin Softgel, an original new drug in TCM, was approved for marketing by the State Drug Administration in China on January 10, 2022, for unresectable hepatocellular carcinoma in patients who are unsuitable for or have refused standard treatment and have not previously received systemic therapy. Mechanistically, icariin inhibits the IKK–NF-κB inflammatory pathway by directly binding to MyD88/IKKα, thereby reducing the production of inflammatory factors, such as TNF-α and IL-6, inhibiting the effects of PD-L1 expression and MDSC, and activating IFN-γ positive CD8+ T cells to exert antitumor effects. Icariin can also induce mitochondrial autophagy and synergize with adriamycin to induce immunogenic cell death in hepatocellular carcinoma.

2.1.5. Artemisinin
Artemisinin, a sesquiterpene lactone containing a peroxy-bridge structure, was first discovered by Chinese scientist Youyou Tu in the 1970s, who then pioneered the design of antimalarial drugs with peroxo-bridges as the active group. In addition to its use as a first-line antimalarial drug, artemisinin has received increasing attention for its other potential pharmacological effects, including antiviral, antifungal, anti-inflammatory, and anticancer activities.

Artemisinin and its derivatives exhibit cytotoxic effects against a variety of cancers, both in vivo and in vitro, and also play roles in the prevention and treatment of carcinogenesis and tumor metastasis. Wang’s team has been researching the antitumor effects of artemisinin and its derivatives for more than ten years, and has elucidated that artemisinin and its derivatives can exert anticancer effects by inhibiting tumor growth and cycle progression, promoting apoptosis of tumor cells, and sensitizing tumor cells to the therapeutic effects of clinical chemotherapeutic and target drugs. Dihydroartemisinin, the main in vivo metabolite of artemisinin drugs, is the active form, and it exerts antitumor effects by targeting autophagy and ferroptosis in tumor cells. Wang’s team was the first to discover the molecular mechanism by showing that dihydroartemisinin selectively inhibits PDGFRα-positive tumor cell growth, metastasis, and the epithelial—mesenchymal transition by targeting PDGFRA and promoting its ubiquitous degradation, as well as having a co-sensitizing effect on clinical PDGFRα inhibitors.

Youyou Tu’s group also found that dihydroartemisinin is uniquely effective in treating lupus erythematosus. In 2016, Kubicek and colleagues demonstrated the efficacy of artemisinin as a diabetes treatment. The ability of artemisinin to achieve α-cell to β-cell transition has identified a new and surprising treatment for type 1 diabetes. Artemisinin can exert anti-atherosclerosis effects by inhibiting inflammatory responses in macrophages through the AMPK/NF-κB/NLRP3 signaling pathway. Artemisinin has also displayed great potential in the fight against fibrosis.

2.1.6. Triptolide
Triptolide, an epoxide diterpene lactone compound, is one of the main active ingredients of Tripterygium wilfordi Hook. f. (family Euonymusaceae). Triptolide shows the anti-inflammatory and immunosuppressive effects. Tripterygium tablets and tripterygium glycoside tablets are mainly used in the treatment of rheumatoid arthritis.

Triptolide can covalently bind XBP and inhibit its DNA-dependent adenosine triphosphatase (ATPase) activity, thereby inhibiting RNA polymerase II-mediated transcription. This, in turn, leads to the inhibition of cell activation and proliferation and explains its pharmacological activity as well as its extreme cytotoxicity. Shen and colleagues found that triptolide can target TAB1 in macrophages and modulate inflammatory diseases by regulating the MAPK signaling pathway. As part of its wide range of antitumor effects, triptolide inhibits the activity of genes such as SLC7A11, inhibits the Nrf-2-associated glutathione synthesis pathway, and allows IDH1-mutated cancer cells to die from oxidative stress, thereby offering hope for the treatment of IDH1-mutated cancers, such as glioma, acute myeloid leukemia, and pancreatic cancer. However, its serious systemic toxicity and poor water solubility greatly hinder its clinical application; therefore, improving its solubility and bioavailability and reducing adverse effects are the focus of current research related to its antitumor effects. Hui et al. developed a pH-sensitive folic acid-coated triptolide nanof orm designed to release the drug in the acidic microenvironment of cancer cells. The drug promoted overexpression of the folic acid receptor in some hepatocellular carcinoma cells, which not only significantly inhibited the growth of hepatocellular carcinoma but also
2.1.7. Celastrol

Celastrol, another major active ingredient in *T. wilfordii* Hook. F., originates from the root bark and has remarkable anti-rheumatoid, anti-oxidant, analgesic, and anti-tumor effects.

In 2015, Ozcan and colleagues found that celastrol is a potentially effective herbal medicine for weight loss. They found that the celastrol-enhanced leptin sensitivity and weight loss effects required IL1R1 mediated, as the absence of IL1R1 completely eliminated the weight loss and antidiabetic effect of celastrol on obese mice. Zhang’s team found that celastrol was effective in inhibiting high-fat diet-induced weight gain in mice and that the mechanism of action involved binding of celastrol to the orphan nuclear receptor Nur77 in the nucleus and promotion of the selective clearance of damaged mitochondria, with a resulting inhibition of the inflammatory response and obesity. This team subsequently found that celastrol promoted ubiquitination of the LBD structural domain at the C-terminus of Nur77 to interact with the UBA structural domain of the autophagy receptor P62, promoted the size and mobility of the P62 phase-separated particles, and completed the clearance of damaged mitochondria in the lysosome. Celastrol also activates the heat-stimulating factor HSF1, which increases energy expenditure and helps mice resist high-fat diet-induced obesity. Celastrol can antagonize obesity by altering the distribution of intestinal microbiota under a high-fat diet and reducing colitis activity and weight loss effects required IL1R1 mediation, as the absence of IL1R1 completely eliminated the weight loss and antidiabetic effect of celastrol on obese mice. Liu’s group found that tanshinone IIA reduces inflammation by inducing neutrophil apoptosis and promoting the reverse migration of neutrophils, offering hope for inflammatory diseases such as chronic obstructive pulmonary disease. Fan’s group conducted scRNA-seq assays of the hearts of myocardial infarction model mice and found that the administration of tanshinone IIA attenuated myocardial infarction progression by inhibiting early infiltrating macrophage subpopulations. Tanshinone IIA also protected neurons and improved cognitive impairment in patients with Alzheimer’s disease and Parkinson’s disease. Tanshinone IIA also shows considerable antitumor activity.

2.1.8. Tanshinone

Tanshinone is a lipophilic diterpenoid isolated from the rhizome of *Salvia miltiorrhiza*. Tanshinone is used in TCM to treat heart disease, stroke, and vascular diseases. Tanshinone IIA, the most studied active component of tanshinone, has anti-inflammatory and antioxidant activities. Clinically, tanshinone IIA sodium sulfonate injection is mainly used for the treatment of coronary heart disease, angina pectoris, myocardial infarction, and premature ventricular contractions.

Renshaw’s group found that tanshinone IIA reduces inflammation by inducing neutrophil apoptosis and promoting the reverse migration of neutrophils, offering hope for inflammatory diseases such as chronic obstructive pulmonary disease. Fan’s group conducted scRNA-seq assays of the hearts of myocardial infarction model mice and found that the administration of tanshinone IIA attenuated myocardial infarction progression by inhibiting early infiltrating macrophage subpopulations. Tanshinone IIA also protected neurons and improved cognitive impairment in patients with Alzheimer’s disease and Parkinson’s disease. Tanshinone IIA also shows considerable antitumor activity.

2.1.9. Andrographolide

Andrographolide is a well-known natural lactone with a range of pharmacological actions in TCM. Andrographolide is reported to improve radiation-induced pneumonia and pulmonary fibrosis by inhibiting the activation of the AIM2 inflammasome. Andrographolide improves lipopolysaccharide-induced acute lung injury in mice by inhibiting the NF-κB pathway. Andrographolide reversed the colitis–colon cancer transformation by inducing mitophagy in macrophages. Andrographolide ameliorated TNBS-induced colitis in mice by inhibiting Th1/Th17-mediated immune response, and it could downregulate F38, MAPK, STAT3, and NF-κB to improve mouse sepsis. Andrographolide mediated apoptosis by binding Bax to restore the sensitivity of drug-resistant colon cancer cells to 5-fluourouracil. Andrographolide alleviated the symptoms of an N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse Parkinson’s model by targeting the mitochondrial division protein DRP1. Andrographolide improved the symptoms of Alzheimer’s disease in mice by regulating mitochondrial homeostasis. Andrographolide improved imiquimod-induced psoriasis-like skin inflammation in mice by inducing the autophagic degradation of MyD88. These series of studies provide a theoretical basis for the new use of old drugs in clinical preparations containing andrographolide as the main component. A recent review has systematically summarized the structure–activity relationship analysis, pharmacokinetics, new andrographolide delivery systems, and the protective functions of andrographolide against inflammatory diseases and cancer.

2.1.10. Emodin

Emodin is an anthraquinone natural compound extracted from the rhizomes of several Chinese herbs, including *Rheum palmatum* L., *Fallopia multiflora* (Thunb.) Harald., and *Reynoutria japonica* Houtt. In traditional studies, emodin is mostly considered an active ingredient of laxatives, but modern pharmacological studies have found that emodin has significant anti-inflammatory, antioxidant, antibacterial, and antitumor effects.

Song et al. developed ferromagnetic responsive rhodopsin-loaded micelles to realize magnetic resonance imaging (MRI)-guided magnetothermal—chemotherapy combination therapy for malignant tumors. The micelles could target tumor sites under external magnetic field guidance and release emodin to kill significant numbers of tumor cells at very low doses. Emodin can selectively inhibit 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which can effectively limit the effect of glucocorticoids and improve diabetes and insulin resistance. Emodin nanoparticles can specifically release emodin in the diseased colon and effectively enhance the anti-colitis effect of emodin related to improving the intestinal wall barrier. Improvements in the therapeutic efficacy and reduction of side effects will make emodin a novel alternative to oral...
colon-targeted ulcerative colitis therapy. In addition, emodin could alleviate the progression of cardiac fibrosis.

Emodin also had a highly significant ameliorative effect on neurodegenerative changes in Alzheimer’s disease mice, including inhibition of Alzheimer’s disease pathology and enhancement of learning memory capacity. An AI-based drug discovery scheme for Alzheimer’s disease treatment, which is efficient and feasible, has been proposed to provide rapid development of anti-Alzheimer's disease drugs and represents a major breakthrough in the modernization of TCM research.

2.1.11. Curcumin
Curcumin is an acidic polyphenolic compound extracted from Curcuma longa L. and used in Chinese medicine to treat bruises and injuries, canker sores, and pain. Curcumin is the main component of C. longa L. and is widely used as a natural pigment in the food industry, TCM, and Indian medicine. Curcumin has antibacterial, antioxidant, anti-inflammatory, analgesic, antimicrobial, and anti-inflammatory properties and is traditionally used in the treatment of liver diseases.

Curcumin can function as an anti-inflammatory agent by blocking NF-κB and STAT3-mediated inflammatory response signaling pathways, and preventing the development of inflammation-related chronic diseases. Curcumin significantly improves atherosclerosis. Curcumin and its metabolites extend the lifespan of nematodes, drosophila, and mice. Curcumin also plays an important role in the prevention and treatment of aging-related diseases and it regulates the abundance and composition of gut microbiota and improves intestinal barrier function. Banerjee et al. used X-ray crystallography and a specificity analysis technique with a kinase inhibitor to successfully reveal that curcumin binds and inhibits the kinase dual specific tyrosine regulated kinase 2 (DYRK2), thereby impeding the function of the cellular proteasome, impairing tumor cell proliferation, and inhibiting cancer progression. In addition, curcumin also showed quite good effect in anti-fibrosis.

However, the low bioavailability and poor stability of curcumin due to its low solubility have affected its application in the pharmaceutical field. Therefore, in recent years, many studies have combined nanomedicine with curcumin to improve its pharmacological activity. Bao et al. established α-lactalbumin nanotubes that successfully overcome intestinal mucus and cellular barriers to improve the bioavailability of lipid-soluble curcumin and effectively promoted the colonic anti-inflammatory effect of curcumin. Yu’s team fabricated nano-inducers composed of curcumin, iron oxide nanoparticles, and organic silica nanoparticles that significantly enhanced intracellular oxidative stress and endoplasmic reticulum stress to induce ICD and systemic immunotherapy. In addition, gut microbiota can biotransform curcumin through demethylation and hydroxylation to produce derivatives that show improved bioavailability and bioactivity.

2.1.12. Epigallocatechin gallate (EGCG)
EGCG is a catechin-like monomer isolated from tea leaves. It is the main component of tea polyphenols and is a well-known antioxidant. EGCG can prolong the lifespan by inducing mitochondrial reactions. EGCG cross-linked in chitosan hydrogels has been shown to promote proliferation and remodeling processes, such as regeneration of the epidermis, dermis, and skin attachments, to accelerate skin wound healing. EGCG shows neuroprotective effects in Alzheimer’s disease and other neurodegenerative disorders by reducing Aβ expression and inflammatory responses. Oral administration of EGCG attenuated ulcerative colitis in mice by regulating gut microbiota. EGCG-targeted action of TAK1 effectively alleviated joint swelling due to rheumatoid arthritis. Liu et al. discovered a new regulator of CGAS, G3BP1, and showed that EGCG can ultimately inhibit the activation of cGAS by inhibiting the binding of G3BP1 to cGAS. They confirmed its effectiveness in autoimmune animal models and cells of AGS patients and suggested the use of EGCG as a therapeutic strategy option for autoimmune diseases, such as AGS syndrome, which currently lacks therapeutic remedies.

EGCG has inhibitory effects on a variety of tumors. EGCG reduces the risk of pancreatic cancer by inhibiting the activity of LDHA, thereby altering the metabolism of pancreatic cancer cells. EGCG can inhibit tongue cancer progression in K-Ras transgenic mice by targeting the Notch pathway. EGCG also acts as a drug delivery system to protect protein drugs from degradation while synergistically exerting its own antitumor effects. Wang’s group was the first to report that EGCG can directly interact with and cause conformational changes in P53 protein that disrupt its interaction with P53–MDM2. This promotes the apoptosis of cancer cells and provides a new concept of nutritional intervention in disease using dietary polyphenols.

In addition, Wang et al. found that the natural glycoside product ginsenoside Rh2 could activate the pentose phosphate pathway after cancer pretreatment discontinuation to improve redox disorders in tumor cells. It also enhanced the antitumor effects of adriamycin by further inhibiting the growth of ovarian cancer spheroids. Cheng’s team found that the antitumor activity was much stronger for the rare ginsenoside proto-panaxadiol (PPD) than for other common ginsenosides, making this a potentially more potent anticancer drug component. Ginseng polysaccharides enhanced the effect of anti-PD-1 monoclonal antibodies in improving lung cancer and mediated immunity by regulating the composition of gut microbiota and metabolites, which, in turn, enhanced responses to immunotherapy. Ginseng extract enriched the intestinal microbiota with Escherichia fæcalis, stimulated the thermogenic activity of brown adipose tissue, and induced the formation of beige adipose tissue to reduce fat accumulation and obesity. The role of natural products in tumor, represented by paclitaxel and camptothecin, has been described in detail in the review by Huang et al. We will not reiterate them here. The discovery time and main efficacy of typical natural products are shown in Fig. 2. The relationship between natural products and disease treatment mentioned in above are shown in Table 1.

2.2. Animal natural products
Animal medicinal compounds are indispensable and important components of TCM. According to Chinese medicine, animal medicine is a “flesh and blood sentient product, which is able to run and pass, attack poison and dispel evil”. Animal-derived medicines have unique therapeutic effects on many difficult and miscellaneous diseases, and their clinical value is irreplaceable. The following is an example of the current research progress in animal medicines as treatments for inflammatory diseases and cancer.

Toad venom is the dried secretion from the skin glands of Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider. In TCM practice, toad venom is considered an anti-infectious agent for the treatment of pyogenic infection-induced unconsciousness and is prescribed to patients with “heat and toxins” syndrome, which has
Figure 2 Milestones in the discovery of typical natural products for the treatment of inflammatory diseases and cancer. This figure is created with biorender.com.

Table 1 Types of diseases treated by typical natural products.

Natural product	Disease type
Berberine	Gastrointestinal diseases, hypoglycemia, atherosclerosis, diabetes, cardiovascular diseases, Parkinson’s disease, ischemic stroke, peritoneal adhesions, nonalcoholic fatty liver, oral diseases, lung cancer, breast cancer, liver cancer, colon cancer
Capsaicin	Neuropathic pain, cardiovascular diseases, obesity, diabetes, nasal mucosa, hematologic tumors, Lassa hemorrhagic fever
Quercetin	Aging, non-alcoholic fatty liver disease, hepatocellular carcinoma, bladder cancer, gastric cancer, colorectal cancer
Icarin	Cardiovascular diseases, neurodegenerative diseases, hepatocellular carcinoma
Artemisinin	Lupus erythematosus, diabetes, atherosclerosis, fibrosis, breast cancer
Triptolide	Rheumatoid arthritis, IDH1-mutated cancers, hepatocellular carcinoma, prostate cancer, breast cancer, ovarian cancer
Celastrol	Rheumatoid arthritis, obesity, diabetes, metabolic syndrome, hypertensive heart injury, gastric cancer, liver fibrosis, psoriasis
Tanshinone	Coronary heart disease, angina pectoris, myocardial infarction, chronic obstructive pulmonary disease, myocardial infarction, Alzheimer’s disease, Parkinson’s disease
Andrographolide	Pulmonary fibrosis, acute lung injury, colitis, colon cancer, Parkinson’s disease, Alzheimer’s disease, psoriasis
Emodin	Malignant tumor, diabetes, ulcerative colitis, cardiac fibrosis, Alzheimer’s disease
Curcumin	Atherosclerosis, aging-related diseases, cancer progression, fibrosis, colitis
EGCG	Alzheimer’s disease, ulcerative colitis, rheumatoid arthritis, pancreatic cancer, tongue cancer
Shikonin	Rheumatoid arthritis, psoriasis, bladder cancer, pancreatic cancer, pulmonary hypertension, hypertrophic scars
Camptothecin	Liver cancer, breast cancer, bladder cancer
Paclitaxel	Ovarian cancer, breast cancer, lung cancer
cancer-like symptoms. Numerous pharmacological studies have revealed that the anti-inflammatory and antineoplastic effects of toad venom were due to its content of bioactive steroidal cardiac glycosides, called bufadienolides, including bufalin, cinobufagin, and gamabufotalin.

The typical antitumor mechanisms included induction of apoptosis and proliferation through targeting of the IKKβ/NF-κB/COX-2 signaling pathway, the AKT/mTOR pathway or Notch signaling pathway, induction of G0/G1 or G2/M cell cycle arrest through HIF-1α- and NF-κB-mediated Ptk1, inhibition of invasion and metastasis through cortactin expression and nuclear translocation, or RIP3-mediated necroptosis, and reversal of multi-drug resistance by regulation of P-glycoprotein (P-gp) as demonstrated in vitro or in vivo in homograft/xenograft tumor models in mice. Several findings have also provided evidence that cardiac glycosides, including bufalin, can exert potent antineoplastic effects by targeting the Na+/K+-ATPase, hence the intracellular accumulation of Ca2+ ions, and they appear to increase the immunogenicity of dying cancer cells. Recent studies have indicated that AHSAI, identified as the targeted protein of bufalin, acts as a co-chaperone of HSP90A to activate CDK6 and PSMD2, thereby regulating multiple myeloma proliferation and proteasome inhibitor resistance, respectively. Yang et al. found that bufalin directly targeted Syndecan-4 and increased its interaction with substrate protein DEAD-box helicase 23 to inhibit the progression of hepatocellular carcinoma. Other mechanisms associated with the anti-inflammation action of bufadienolides have included modulation of NF-κB signaling and enhancement of immune responses.

2.3. Marine natural products

Oceans cover more than 70% of the earth’s surface and were the origin of life on the planet. Since 2008, more than 1000 new marine natural products (MNPs) had been found annually, and approximately 30% of them have bioactive properties. Marine microorganisms have evolved special metabolic pathways due to long-term adaptation to special living environments, resulting in a large number of active substances with novel structures and unique functions, making natural products derived from marine microorganisms a hot spot in the development of new marine drugs. However, a relatively low number of MNPs have been approved in the clinical setting. Here, we provide an overview of the currently approved MNPs.

The marine natural nucleosides cytarabine (Ara-C; originally isolated from the Caribbean sponge Cryptotheca cypraea) and vidarabine (Ara-A; originally isolated from the Caribbean sponge Tethya crypta) are well known as the first FDA-approved MNPs for antitumor treatment (in 1969) and antiviral treatment (in 1976), respectively. Ara-C and Ara-A work as inhibitors of tumor cell or viral DNA synthesis and replication. Ziconotide (originally isolated from the venom of a marine snail) is a novel potent antinoceptive drug that acts as a specific calcium channel blocker for the treatment of severe chronic pain, especially in patients refractory to opioids, but it still has the potential for systemic and central nervous system side effects. Eribulin (originally isolated from the natural Japanese marine sponge Halichondria okada) is a macrocyclic ketone analog that acts as an anticancer drug by inducing irreversible mitotic blockade and is now used to treat people with locally advanced or metastatic breast cancer or unrespectable liposarcoma. Dolastatins (originally isolated from the sea hare Dolabella uricularia) are broad-spectrum cytotoxic anticancer pentapeptides that can impede tubulin assembly and induce cell apoptosis and are widely used in the treatment of lymphoma, and other carcinomas. However, according to the strong adverse reactions observed in preclinical toxicology research, dolastatins are now used as payloads for antibody–drug conjugates (ADCs). ADC technology is based on the idea that the linking of a cytotoxic drug to a monoclonal antibody specific for antigens of cancer cells can deliver high doses of the cytotoxic drug specifically to cancer cells while sparing normal tissues. Brentuximab vedotin is a CD30-directed ADC that consists of a human-specific CD30 antibody and the microtubule-disrupting agent monomethyl auristatin E (MMAE; a synthetic analog of the naturally occurring dolastatin 10) and is now used as a lymphoma treatment. Cephalosporin C, the best known MNP, is a β-lactam type natural antibiotic derived from marine fungi and is widely used to treat bacterial infections by disrupting the synthesis of the peptidoglycan layer that forms the bacterial cell wall. Omega-3 fatty acid, another well-known MNP, was originally derived from fish and fish oils in 1929. Dietary consumption of omega-3 fatty acids reduces the incidence of cardiovascular disease, osteoarthritis, and rheumatoid arthritis. Dietary supplementation with omega-3 fatty acids provides antioxidant activity by regulating the antioxidant signaling pathway and may modulate inflammatory processes.

2.4. Mineral natural products

As one of the important components of TCM, mineral medicine has a long history and abundant resources. The earliest extant pharmacological work in China, the Shennong Ben Cao Jing, contains a total of 41 mineral drugs. Here, we use arsenic as an example to introduce the pharmacological effects of mineral drugs in diseases.

The arsenic-containing compound realgar (mainly As4S4) is a highly recognized and widely used TCM. Although realgar minerals contain large amounts of arsenic, the toxicity related to their structures is far less than that observed for other compounds, such as arsenolite (which contains arsenic trioxide, As2O3) and arsenite (Na3AsO3). Realgar is widely used in prescriptions for treating inflammatory symptoms, ranging from tonsilitis to delirium and allergy. Several recent clinical studies have revealed that realgar provided therapeutic benefits as a cancer treatment, especially for adult and pediatric acute promyelocytic leukemia (APL), where encouraging responses were obtained, including a high complete remission rate, long disease-free survival period, and tolerable side effects.

Numerous in vitro and in vivo pharmacological studies have demonstrated the anti-inflammation and antitumor mechanisms of realgar and realgar-containing preparations. Realgar has been reported to induce G2/M phase arrest, apoptosis, and autophagy in osteosarcoma through mechanisms related to the activation of the ROS/JNK and suppression of the Akt/mTOR signaling pathways. Other studies have shown that realgar preparations inhibited breast cancer through downregulation of HIF-1α expression via the PI3K/Akt/mTOR pathway and reversed drug resistance by degrading the BCR–ABL fusion oncprotein. Several studies identified potential binding proteins of realgar in rat metabolism through interactions with sulphydryl groups in specific proteins, such as pyruvate dehydrogenase, thioredoxin, DNA repair enzymes, and metallothionein, and suggested a high relationship with realgar anti-inflammation activity.
3. Mechanisms of natural products in inflammatory diseases

Exploration of the recent research progress in the use of natural products in inflammatory diseases has revealed three main categories of common mechanisms: inflammation-related signaling pathways, programmed cell death, and gut microbiota (Fig. 3).

The inflammation-related signaling pathways, such as MAPK, PI3K/AKT, NF-κB, and JAK/STAT, can transduce extracellular signals into cells and conduct cellular signals through cascade reactions to regulate cell proliferation, differentiation, and migration as well as inflammatory responses and vascular development.

Programmed cell death can occur by apoptosis, ferroptosis, pyroptosis, or autophagy and describes the active extinction of cell responses to stimulation by certain signals or factors to maintain the stability of the internal environment. Programmed cell death removes unwanted cells, as well as infected or potentially tumorigenic cells, so it plays an important role in homeostasis, host defenses against pathogens, cancer, and a range of other pathologies. Apoptosis is a relatively “mild” form of cell death and generally does not elicit an immune or inflammatory response. Many natural products exert their antitumor effects by promoting apoptosis, mainly mediated by apoptotic caspases (caspase-2, 3, 6, 7, 8, 9, and 10). Pyroptosis is involved in the body’s defense against pathogenic bacteria, occurs more rapidly, is accompanied by the release of large amounts of pro-inflammatory factors, and is mainly induced by inflammatory caspases (caspase-1, 4, 5, and 11). Ferroptosis is an iron-dependent, non-apoptotic, oxidative form of cell death caused by the failure or blockage of cellular glutathione-dependent antioxidant defenses. This leads to uninhibited lipid peroxidation and ultimately kills cells; consequently, inhibition of iron-related death by natural products has great potential in the treatment of tumors, diabetes, ischemic organ damage, and degenerative diseases associated with lipid peroxidation. Autophagy, the process by which cellular cargoes are transported to lysosomes and degraded, removes functionally abnormal intracellular proteins, organs, and microorganisms under normal conditions and is essential for maintaining cellular, tissue, and organ homeostasis. Autophagy is tightly regulated by autophagy-related genes, and mutations in these genes can induce a range of diseases, including neurodegenerative diseases, inflammation, and even cancer.

The gut microbiota represents the second largest genome in the body and is involved in a variety of physiological functions in the liver, intestines, brain, and other organs. Imbalance of the gut microbiota is associated with most diseases in the body, so the...

Figure 3 Molecular mechanisms of natural products ameliorating inflammatory diseases and cancer through inducing cell death, inhibiting inflammatory signaling and affecting gut microbiota. This figure is created with biorender.com.
study of the gut microbiota has become a hot research topic in the field of Chinese medicine in recent years. Gut microbe interactions fit with the theory of TCM, but they also represent one of the important ways by which orally administered TCM can exert its medicinal effects. A variety of gut microbes, especially *Bacillus* spp., *Bifidobacterium* spp., and *Lactobacillus* spp., can biotransform herbal components to improve the bioavailability and bioactivity of some difficult-to-absorb natural drug components and provide a theoretical basis for their remarkable therapeutic effects. The combination of gut microbiota with TCM can help modernize TCM and rejuvenate traditional medicine.

Active TCM ingredients show significant anti-inflammation and anti-tumor activities in vitro, but in clinical practice, TCM is usually supplied as compound prescriptions. We also systemically retrieved literature for 106 Chinese compound prescription preparations (Table 2) using preparation names as keywords and searching different electronic databases, including PubMed (https://pubmed.ncbi.nlm.nih.gov), Web of Science (https://www.webofscience.com/wos), Chinese National Knowledge Infrastructure (CNKI, https://www.cnki.net), the Wanfang Database (https://new.wanfangdata.com.cn), and Pharmacopoeia of China. Here, we reorganized and evaluated the literature on 40 inflammatory diseases and cancer from five aspects: animal experiments, retrospective or real-world experiments, clinical randomized controlled trials, historical human usage, and treatment guideline inclusions or recommendations (Table 3). We graded the retrieved articles for quality and quantity, guideline inclusions or recommendation levels, and history of human use, and drew heatmaps according to the disease scores (Fig. 4). Generally, the preparations, and especially medicines for cardiovascular and cerebrovascular diseases, have been widely studied in inflammatory diseases. In the clinically related literature, retrospective or real-world experiments have been common, whereas few randomized controlled trials were conducted for TCM preparations. The combination of multiple ingredients in prescribed herbal medicinal compounds is consistent with the TCM concept and occurs widely in numerous preparations. In actual use, the key ingredients are likely to provide therapeutic effects, while the ancillary constituents might assist in dissolution or absorption.

4. Target identification and validation of natural products

Natural products are an important source of new compounds for drug research and development. At present, a considerable proportion of clinical drugs are directly or indirectly derived from natural drugs. A drug target is defined as a specific molecule in the human body that interacts with a given drug and confers its actions (Table 3). We also retrieved articles for quality and quantity, guideline inclusions or recommendation levels, and history of human use, and drew heatmaps according to the disease scores (Fig. 4). Generally, the preparations, and especially medicines for cardiovascular and cerebrovascular diseases, have been widely studied in inflammatory diseases. In the clinically related literature, retrospective or real-world experiments have been common, whereas few randomized controlled trials were conducted for TCM preparations. The combination of multiple ingredients in prescribed herbal medicinal compounds is consistent with the TCM concept and occurs widely in numerous preparations. In actual use, the key ingredients are likely to provide therapeutic effects, while the ancillary constituents might assist in dissolution or absorption.

Table 2 Large varieties of TCM for treatment of inflammatory diseases and cancer.

Category	TCM
Medicines for cardiovascular and cerebrovascular diseases	Danhong Injection\(^{124}\), Danshen Injection\(^{95}\), Shenfu Injection\(^{196}\), Shenmai Injection\(^{197}\), Pulse-activating Injection\(^{198}\), Panax Notoginseng Saponins\(^{199}\), Breviscapine Injection\(^{200}\), Erigeron asarum Injection\(^{131}\), Safflower Injection\(^{201}\), Ginkgo Biloba\(^{202}\), Bitter Dish Injection\(^{203}\), Shuaxuetong Injection\(^{204}\), Maifunqing Injection\(^{205}\), Xingnaojing Injection\(^{206}\), Compound Danshen Dropping Pill\(^{207}\), Shensong Yangxin Capsule\(^{208}\), Naixiutong Capsule\(^{209}\), Xuexiuoxinnaming Tablet\(^{210}\), Yixinshu Capsule\(^{211}\), Yangxin’s Tablet\(^{212}\), Heart Comfort Tablet\(^{213}\), Xinyuan Capsule\(^{214}\), Shexiang Baoxin Pill\(^{215}\), Qi-Shen-Yi-Qi Dripping Pill\(^{216}\), Sanqi Tongshu Capsule\(^{217}\), Yindanxin Naotong Soft Capsule\(^{218}\), Xinning Capsule\(^{219}\), Suxiao Juxin Pill\(^{220}\), Huatuo Zaizao Pill\(^{221}\), Zhenyu Capsule\(^{222}\), Xuexifuzhu Capsule\(^{223}\),
effects. Natural products with clear targets are not only conducive to clinical observation of drug metabolism but also further the exploration of mechanisms in related basic research fields. In addition, for natural small-molecule drugs with clear targets, the in vivo signal response pathways can be predicted. Therefore, by using appropriate antagonists and adjuvants, the associated pathways that induce adverse reactions can be inhibited, thereby enhancing the pharmacodynamic pathways and reducing the drug’s side effects.

The identification of drug targets and related research has important theoretical significance and practical value in the field of pharmaceutical research. The discovery of new targets of natural active small molecules will also open up a broad research space for the treatment of related diseases. At present, the identification of natural product targets is becoming increasingly important in the biomedical field, and the identification methods are also diverse, each with its own advantages and disadvantages. The current identification methods can be used both independently and complementarily, and their combined use may be more conducive to the identification of natural product targets.

4.1. Methods for target identification of natural products

4.1.1. Natural product-centric target identification strategies

The method of coupling molecules with affinity probes is one of the main methods for discovering and identifying drug targets. The small molecule probe is mainly composed of a reporter group, a linking group, and an active group. The principle of action is that the active group part of the small molecule will tightly bind to its target, while the reporter group part can effectively label the target biological macromolecules. The targets can then be confirmed by a number of methods, such as chromatography, gel electrophoresis, and mass spectrometry (Fig. 5).

4.1.1.1. Covalent binding to affinity magnetic beads. Li et al. coupled artemisinin to a solid support and performed pull-down experiments in the presence and absence of a competing free artemether and identified gephyrin as the most significantly enriched specific interacting protein by mass spectrometry. They showed that gephyrin is the mammalian target of this antimalarial drug and that the mechanism depends on the enhancement of GABAα receptor signaling. Zhang’s group studied the anti-inflammatory effect and target protein of the natural sesquiterpenoid lactone IJ-5, which reacts with epoxy-activated Sepharose 6B beads. They used the active hydroxyl group in the molecular structure of IJ-5 to form a covalent bond, and then bonded the IJ-5 molecule to the surface of a solid support. The interaction between IJ-5 and the target protein then identified the target protein as the ubiquitin ligase UbcH5. Further research determined that IJ-5 preferentially binds to its target protein through the active site cysteine by forming a covalent adduct. This prevents ubiquitin molecules from binding to UbcH5, thereby inhibiting the activation of NF-κB inflammatory signaling pathway and resulting in the observed anti-inflammatory effects.

4.1.1.2. Biotin modification. The biotin affinity purification system is one of the most commonly used schemes, mainly because the avidin protein has a high ability to recognize its substrate biotin, and the binding energy of the two is almost as close as that of a covalent bond. Labeling a small molecule with biotin as a purification tag and then immobilizing avidin on a matrix as a purification matrix allows isolation of the probe-bound protein complex from a complex mixture for analysis and identification. Lei’s group modified the structure of the natural anti-inflammatory active molecule ainsliadimer A by introducing biotin long-chain molecules to its hydroxyl group. They used the resulting biotin-ainsliadimer A and identified the target protein of its anti-inflammatory activity as IκB kinase (IκKα/β). Ainsliadimer A can selectively form a covalent bond with cysteine 46 of IκKα/β, thereby inhibiting the activity of IκKα/β and down-regulating the NF-κB inflammatory signaling pathway to achieve anti-inflammatory effects. Liu et al. reported that adenanthin, a diterpenoid isolated from the leaves of Rabdosia adenantha, induces the differentiation of acute promyelocytic leukemia (APL) cells. Using biotin-tagged adenanthin, they found that adenanthin directly binds to the conserved cysteines of Prx I and Prx II and

Table 3 Descriptions of score calculated formula.
Category

Evaluation aspect
Evaluation index
Computational formula
inhibits their peroxidase activity. They indicated that adenosine is the first lead natural compound for the development of Prx I- and Prx II-targeted therapeutics, and this may represent a promising approach to induce APL cell differentiation. Tu’s team transformed the key active component of TCM sappanone A into a chemical probe, and used the reverse drug targeting strategy to “target fishing” drug target IMPDH2 in cells, which explained the molecular mechanism of its anti-inflammatory effect from the

Figure 4 Heatmap of literature scores of TCM for treating several diseases.
4.1.1.3. Bioorthogonal chemical reactions. Introducing affinity tags onto small-molecule compounds by derivatization is a very challenging task. For some compounds, the introduction of sterically hindered affinity tags easily leads to a loss of activity of the compounds. Fortunately, these problems can be resolved by bioorthogonal chemistry, such as Cu-catalyzed click reactions. Wang et al. described a novel approach that combined isobaric tags for the relative and absolute quantitation with clickable activity-based protein profiling to identify the targets of andrographolide, a natural product with known anti-inflammatory and anticancer effects. They identified a series of specific targets for andrographolide, further deepening the understanding of the drug’s mechanism of action.

4.1.1.4. Probes for photoaffinity groups. Most biologically active compounds usually bind with their respective target proteins through non-covalent interactions, which have a certain instability and are inconvenient to study. The introduction of photoactive groups enables the complex that forms based on a non-covalent interaction to undergo covalent cross-linking under light excitation and be transformed into a strong covalent conjugate, thereby improving the detection limit of the target protein.

Dai et al. discovered that baicalin acts as a natural allosteric activator of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in the fatty acid β-oxidation (FAO) pathway. They designed and synthesized a photoaffinity probe for baicalin and found that baicalin directly binds to CPT1 and activates it to accelerate fatty acid degradation. Their study provided a mechanism that would explain the biological activity of baicalin, namely, its ability to reduce lipid accumulation. Matrine is a plant alkaloid that has shown potent anticancer activity, but with unknown molecular targets Wang et al. using a photoaffinity labeling approach, have recently identified annexin A2 as a direct binding target of matrine in cancer cells.

Despite the feasibility and effectiveness of the classical compound-centric design of molecular probes, the probes have certain limitations: (1) proteins with low intracellular abundance or that bind only weakly to the probes are difficult to identify; (2) nonspecific binding of the probes to protein impurities has a certain interference effect; (3) the structure–activity analyses of the compound are required, as the synthesized probe molecule should maintain its original biological activity and mechanism of action; and (4) connection of the compound to the linking chain and the reporter group usually requires the introduction of functional groups, such as amino, hydroxyl and carboxyl groups, to the core of the compound, and this may affect the activity of the compound.

4.1.2. Label-free proteomics to identify the targets of natural products

Identifying the target proteins of small-molecule drugs is crucial to understanding the mechanism of action of drugs. Methods based on chemical modifications have certain limitations, all of which require...
labeling or derivatization of small-molecule drugs, which may lack sites for covalent cross-linking, or chemical modifications. Therefore, the establishment of screening technology for small molecule drug target proteins without the need for chemical modifications is very important. At present, a variety of label-free methods have been developed to identify drug targets (Fig. 6).

4.1.2.1. Drug affinity responsive target stability (DARTS). In 2009, Lomenick et al.310–312 established the DARTS technology based on the principle that proteins are protected from protease degradation after binding to their ligands. The main strategy involves incubation of the small molecule drug with the sample protein for a certain time, and then adding protease for digestion. Because the small molecule drug can protect its target protein after binding to its target, the sensitivity of the target protein to proteases is reduced. Therefore, after electrophoresis gel staining, a comparison of the digested proteins in the absence and presence of the drug allows identification of the protected band, and the target protein can then be further identified by mass spectrometry.

The advantage of the DARTS method is that it does not require any chemical modification during the experiment, and it can theoretically be used for the interaction screening of any small molecule and its target protein. Using DARTS, Lomenick’s group312 successfully identified the eIF4A protein as the target of resveratrol, a common plant natural product. Their findings pointed to eIF4A as a previously uncharacterized drug target for antiaging treatments. Zeng’s group313 used Pull-down assay and DARTS assay to identify the ATP6V0D1 subunit in V-ATPase as the direct cellular target of natural small-molecule schisandrol A (SoA). SoA is significantly protective against AGEs-induced neuronal apoptosis by allosterically mediating

Figure 6 Method for target identification of natural products with Label-free. (A) Drug Affinity Responsive Target Stability (DARTS); (B) Cellular Thermal Shift Assay (CETSA); (C) Target-Responsive Accessibility Profiling (TRAP); (D) Target Identification by Chromatographic Co-Elution (TICC). This figure is created with biorender.com.
ATP6V0D1 conformation targeting the unique cysteine 335 residue to activate V-ATPase-dependent lysosomal acidification. Similarly, Geng et al.30 used a DARTS method to identify Dynamin-related protein 1 (DRP1) as the target protein of andrographolide, and further study found that DRP1 is a key effector mediating mitochondrial fission. Andrographolide binds to DRP1 and inhibits its GTPase activity, thereby preventing the excessive mitochondrial fission and neuronal damage associated with Parkinson’s disease. The protein samples used in DARTS technology can be purified proteins or whole cell lysates and can be used for low-affinity target screening because no washing is required during the experimental procedure. However, because this technique requires the use of gel staining for visual comparison, it has certain limitations when attempting to identify low-abundance target proteins31,32.

4.1.2.3. Target-responsive accessibility profiling (TRAP). The DARTS and CETSA methods use the in vivo changes in the dynamic balance of the target proteins due to binding with the drug compounds and ligand-induced protein stability enhancement to identify drug targets. By contrast, TRAP identifies binding proteins for drug molecules in the cellular environment by monitoring the ligand-induced changes in lysosome accessibility at the proteomic level. This method measures the steric hindrance induced in the protein targets due to ligand binding by global analysis of the accessibility changes to reactive lysine. Briefly, peptides that contain TRAP-induced and exhibit significant abundance changes in the presence of drug molecules are designated as target-responsive peptides317. Our research group used TRAP technology to identify the target of celastrol as adenylyl cyclase associated protein 1 (CAP1). Mechanistically, we found that celastrol interacts with CAP1 and resistsin to inhibit the cAMP–PKA–NF-κB signaling pathway and ameliorate high-fat diet-induced metabolic syndrome in mice. Our study showed that celastrol binds to CAP1, inhibits the interaction between resistsin and CAP1, effectively attenuates the subsequent inflammatory response, and ultimately improves metabolic syndrome318.

4.1.2.4. Target identification by chromatographic co-elution (TICC). TICC is a co-fractionation based on the formation of stable ligand–target complexes during native HPLC. The main premise is that binding to one or more target proteins changes the chromatographic properties of the compounds so that the ligand–target complexes exhibit different characteristic elution profiles relative to the free (unbound) drug. That is, the retention time of a compound is “transferred” to the retention time of its interacting protein partner. Binding proteins are then identified by high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Chan et al.320 have used TICC to reveal the sterol biosynthesis enzyme Erg6p as a novel putative antifungal target. The TICC target identification method is more suitable for TCM because it can identify multiple component targets at the same time. This method is also suitable for detecting low-abundance target proteins and low-affinity (micromolar) interactions. One limitation is the need to separate the unbound compounds from protein-bound compounds without using covalent bonding agents. The co-elution of proteins with similar retention properties may also complicate the identification of true targets319,321.

At present, the concept of a drug acting on multiple proteins has gradually been accepted. Drug development and synthesis are not conducted only for pathogenic genes and proteins; they are necessary to study the entire network of drug and pathogenic effects. This increases the need for the identification of drug targets. The continuous development of many disciplines, such as genomics, proteomics, bioinformatics, genetics, and biotechnology, will continue to improve existing methods, and new methods and strategies will continue to emerge. Currently, there are various methods for the identification of natural product targets, each with advantages and disadvantages (Table 4). It can be used independently or complementary, and the combination of the two may be more conducive to the identification of natural product targets. Many drug target proteins with unique structures and functions can be explored and discovered for natural products and will provide key theoretical information for subsequent innovative drug design.

4.2. Natural product target validation

The target identification methods used with a natural drug molecule usually deliver a series of target proteins. If several proteins are candidate targets, they need to be prioritized based on their known function and relevance to the phenotype induced by the drug molecule. For this prioritization, designing and implementing appropriate control experiments are essential to differentiate nonspecific binding. A further complexity that should be taken into account is that the identified protein may not be the direct target, but merely part of a protein complex. Therefore, confirmation of drug molecule targets is also crucial.

4.2.1. Binding experiments to validate target proteins

Determining the binding affinity of small molecules to their putative targets provides strong evidence for target validation. Several methods used to examine protein–protein interactions, such as
Method	Principle	Advantage	Disadvantage	Ref.
Coupling molecules with affinity probes	Active group part of the natural products will tightly bind to its target, while the reporter group part can effectively label the target biological macromolecules	(1) Compounds directly bind to their target proteins in lysates or live cells; (2) Biotin-avidin purification system with high specificity; (3) Experimental process is relatively simple.	(1) Difficulty identifying proteins that are low in intracellular abundance or bind weakly; (2) Introduced reporter groups may affect compound biological activity and mechanism of action.	53,302–304,306–308
Drug Affinity Responsive Target Stability (DARTS)	Compounds that bind to their target proteins reduce the sensitivity of the target protein to proteases	(1) Compounds do not require any chemical modification during the experiment; (2) Lower affinity interacting proteins can be identified.	(1) Difficulty identifying low abundance interacting proteins; (2) Few proteins have different susceptibility to proteolysis	88,310–313,318
Cellular Thermal Shift Assay (CETSA)	Compounds that change protein stability after binding to target proteins, and the bound target protein has a unique melting curve	Wide range of applications and can directly measure whether drug molecules reach their target at the cellular and whole-animal levels	Heat treatment may affect the permeability of cell membranes and may allow the entry of drugs that would not normally enter cells at physiological temperatures, resulting in false positives	314–318
Target–Responsive Accessibility Profiling (TRAP)	TRAP identifies binding proteins for compounds in the cellular environment by monitoring the ligand-induced changes in lysine accessibility at the proteomic level	(1) Compounds do not require any chemical modification during the experiment; (2) Compounds directly bind to their target proteins in lysates or live cells.	No difference in lysine abundance at sites where compounds bind to target proteins	69,319
Target Identification by Chromatographic Co–Elution (TICC)	Compounds bind to the target protein alters the chromatographic properties of the compound so that the ligand–target complex exhibits a different characteristic elution profile relative to the free (unbound) compound	(1) More suitable for traditional Chinese medicine because it can identify multiple component targets at the same time; (2) Suitable for detecting low-abundance target proteins and low-affinity (micromolar) interactions.	(1) Need to separate the unbound compounds from protein-bound compounds without using covalent bonding agents; (2) Suitable for soluble proteins, not for membrane proteins.	190,320,321
required to confirm a protein target. When the target has enzymatic activity, it can modulate its function. For this reason, functional experiments are also carried out to confirm the binding of a small molecule to a protein does not necessarily imply that the molecule is the target. Some targets require fluorescent labeling to be confirmed. If the drug molecule has a strong affinity for the target protein, the specific conformation and position of the drug molecule and the target protein can be further obtained through nuclear magnetic resonance, small angle scattering, and co-crystallization experiments to provide a structural basis for the development of new drugs that target specific diseases.

4.2.2. Biological function verification of target proteins

The binding of a small molecule to a protein does not necessarily mean that the protein is the target. For this reason, functional experiments are also required to confirm a protein target. When the target has enzymatic activity, the modulation of this activity should be assessed with an enzymatic assay. For confirmed targets, in vitro, RNA interference (siRNA/shRNA), and/or cDNA overexpression experiments should be performed, and both positive and negative aspects should be analyzed to verify whether the confirmed targets might affect the biological activity of the drugs. In vivo target validation can be achieved by breeding different Drosophila and Cre mice to achieve tissue/cell-specific knockout/knockin of specific genes. This type of analysis can determine the role of the target protein in the disease phenotype and establish whether the protein is the primary target that dictates the function of the drug molecule.

In conclusion, target validation of drug molecules is as important as target recognition. Validation of a target should not be limited to determining the binding affinity of the target to the ligand, but should also confirm the cellular context indicated by phenotypic screening. A combination of biophysical, biochemical, cell biology, and structural biology approaches will help to identify the final target protein. Broadly speaking, drug targets include proteins that directly interact with drugs, but they can also be intracellular signal-responsive molecules that are triggered by drug molecules. The discovery and research of these signal-responsive molecules have very important theoretical and practical value for understanding the mechanism of action of existing drugs and improving their clinical efficacy. Therefore, the identification of biologically active natural products is of great significance for advancing biomedical research. Identification of target proteins will aid in elucidating the mechanism of drug action, establishing the potential therapeutic value of the drug, and understanding its off-target-related side effects.

5. New techniques and strategies for researching the mechanism of natural small molecular compounds

5.1. Single-cell omics

Single-cell omics, as a rapidly developing frontier technology in life science, describes the genome sequencing, transcriptome sequencing, proteome detection, and metabolome detection in a single individual isolated cell from a sample.

5.1.1. Single-cell transcriptome

The fundamental principle of single-cell sequencing (scRNA-seq) is similar to that of bulk RNA-seq, except that scRNA-seq is aimed at a single cell rather than a group of tissues. This imparts some particularity with respect to single cell isolation and capture, as well as trace RNA amplification. The main methods for single cell separation include fluorescence-activated cell sorting (FACS), microwell, and microfluidic technology. Recently, with the widespread use of SPLit-seq, the separation of individual cells has become a well-established method. The appearance of the terminal tail method, Smart-seq, Cel-seq, and unique molecular identifiers (UMIs) has further improved the accuracy of single cell transcriptome quantification. The emergence of a variety of high-throughput, low-cost, automated commercial sequencing platforms, such as BD Rhapsody, 10 × Genomics Chromium, and IlluminaBio-Rad, has greatly promoted the application of scRNA-seq.

The advent of scRNA-seq has opened new avenues for studies on human physiology and disease pathologies, such as tumorigenesis, inflammation, and immunity, and now allows identification of cell subclusters, heterogeneity of gene expression, cell development trajectories, and cell-cell interactions. It is also widely used in drug screening, efficacy evaluation, and pharmacological research. This technology was selected as “Method of the Year 2019” by NatureMethods. In the study of the mechanisms of natural products, scRNA-seq can comprehensively and accurately describe the differences in cell types and molecular states between physiologically normal and pathological tissue prior to or following drug treatment to provide more information for the discovery of drug targets and pathways. For example, Fan’s group investigated the systematic post-infarction dynamics of cardiac immune cells in the progression of myocardial infarction and found that macrophages M0-5 and M0-6, which express chemokines CCL7, CCL2, and PF4, were crucial for disease progression. Trajectory analysis revealed that the M0-5 and M0-6 macrophages were mainly derived from monocytic progenitors. The natural product tanshinone IIA significantly inhibited the expression of M0-5 and M0-6 and their chemokines.

5.1.2. Single-cell multomics

Recent advances in molecular biology and systems biology have given rise to a multitude of multomics technologies, which integrate different levels of information such as genes, mRNA, regulatory factors, proteins and metabolites, and then constructs gene regulatory networks and reveals the regulation and causal relationship between various molecules.

Bai’s group integrated transcriptome, proteome and metabolome data and confirmed that P53 was a key target of ginsenoside, and 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions with the application of affinity mass spectrometry (MS) screening and SPR. Liu’s group integrated omics data including gene expression, DNA methylation and copy number alterations from TCGA, combined with bioinformatics including the similarity network fusion (SNF) method and the LASSO algorithm, to identify that SIRT3 and SF3B3 are potential autophagic regulators in invasive breast carcinoma. Li et al. integrated lipidomic and transcriptomic analysis revealed that SSA and SSD regulated TF-dependent gene expression to ameliorate non-alcoholic fatty liver disease.

For single cell level, multomics enable a more comprehensive delineation of the state of single cells than is provided by single omics data based on multichannel molecular readouts, and greatly promote the development of exploring rare cell types, identifying accurate cell types, and improving cell annotation information.
Zhang et al.349 combined scRNA-seq, TCR-seq, and ATAC-seq to investigate immune cell dynamics of patients with triple-negative breast cancer (TNBC) treated with paclitaxel or paclitaxel plus atezolizumab, and found that CD8+CXCL13, CD4+CXCL13, Tregs, and Bfoc cells decreased in responders treated with paclitaxel, whereas they increased in those treated with paclitaxel plus atezolizumab. This difference in response indicated that the paclitaxel regimen could selectively reduce key antitumor immune cells while elevating immunosuppressive macrophages in TNBC, thereby providing novel insights into the treatment of TNBC by the combination of paclitaxel and atezolizumab.

Single-cell proteomics and single-cell metabolomics have also been used in pathological research. However, the technological development of both is still in the early stages, and their application is lagging, with no mature commercial solution at present350. In view of the similarities in the detection principles and analysis strategies, subsequent studies should use single-cell proteomics to analyze the protein expression profiles of single cells in the context of drug intervention to render comprehensive and accurate reflections of drug targets in different types of cells.

In view of the widely used single-cell sequencing technologies, we proposed new strategies that focused on elucidating the mechanisms of natural products and their target proteins (Fig. 7). Firstly, an appropriate animal model of disease was constructed to verify the therapeutic effect of natural products. Secondly, tissues from the animal models were selected as samples for single-cell multiome...
sequencing (including sRNA-seq and scATAC-seq) to identify the different cell subclusters that showed significant changes in response to drug treatment, which we defined as target cells (cell lines or primary cell cultures). Thirdly, approaches such as TRAP and DARTS were used to find the binding protein for a natural product in a target cell, with isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), and microscale thermophoresis (MST) then used to confirm the binding of the target protein. Finally, the biological function of the target protein was verified by combining gene knockout/knockin at the animal level and knockdown/overexpression at the cellular level, followed by analysis of downstream pathways to determine the effects of natural product binding to the target protein on the progression of the disease. These new strategies are also applicable to research on the mechanisms of small molecules produced by chemical syntheses.

5.2. Network pharmacology and artificial intelligence

Big data and artificial intelligence technologies will drive the rapid development of modernization of TCM. Integrative pharmacology-based traditional Chinese medicine (TCMIP) is a database- and algorithm-dependent research strategy, which form multidimensional association network with complex interaction types including constituent—target interactions, constituent—gut microbiota interactions, constituent—constituent interactions, gut microbiota—target interactions, and target—target interactions. Protein three-dimensional structure analysis and computer virtual screening based on bioinformatics also provide directions for drug design for a variety of diseases including SARS-CoV-2.

5.2.1. Network pharmacology

Network pharmacology is based on database data and builds a component—target—disease interaction network to predict drug substance efficacy, targets, and pathways. It breaks the model of “one disease—one target—one drug,” which is the main reason for the failure of 70% of new drugs in clinical trials. A variety of chronic diseases, such as tumors, cardio-cerebrovascular disease, and diabetes, are multi-gene and multi-factor diseases, so achieving a good therapeutic effect based on only a single target is difficult. The technology of network pharmacology plays an important role in research into the prescription of TCM and natural products. For example, Jiang’s group proposed a novel Siamese spectral-based graph convolutional network (SSGCN) model based on gene transcriptional profiles. The model successfully predicted and verified the potential host targets of nefilnavir (NFV)-cyclodiphine A, and revealed the possible mechanism of interaction with SARS-CoV-2. The AI technology represented by a SSGCN model can significantly improve the prediction accuracy of drug targets, and therefore represents a powerful tool for the study of drug mechanisms and confirmation of targets. This method is also suitable for the prediction of the molecular targets of natural products.

5.3. Biosynthesis of natural products

In the past 20 years, advances in synthetic biology and the emergence of microbial cell factories have provided a novel idea for efficient and sustainable production of natural products. Through the metabolic transformation of microbial cells, the relevant metabolic enzyme components were transferred into microbial cells, so as to obtain the improved genetic engineering bacteria, and then the engineering bacteria were used to transform cheap carbon and nitrogen sources into natural products. Triterpenes are a large class of natural products with a wide range of bioactivities. More than 20,000 kinds of triterpenes have been identified and over 400 kinds of proprietary medicines, including many important steroid drugs and ginsenosides widely used in clinic. Their biosynthesis begins when squalene synthase catalyzes dimerization of farnesyl pyrophosphate (FPP) to squalene, which is further oxidized to epoxy squalene, and then triterpene synthase (TrTSs) catalyzes the cyclization of squalene or epoxy squalene to holene or lanosterol. The huge structural diversity is catalyzed by many different modifying enzymes. Recently, Tao et al. found that two fungal chimeric class I TrTSs-TvTS and MpMS can directly synthesize triterpene core skeletons from IPP and DMAPP or HexPP, which broke the inherent understanding that the triterpene skeleton can only be synthesized with squalene as the starting unit.

6. Conclusions and perspectives

Natural products are components or metabolites of living organisms that have evolved over a long period in nature, and they are often structurally diverse and have unique pharmacological and biological activities. Currently, more than 60% of the pharmaceuticals on the market are related to the structure and information derived from natural products, and natural product-based drug development strategies still dominate in modern new drug development. The Nobel Prize awarded to Youyou Tu for her research on artemisinin set off a wave of interest in TCM and natural products among scientists. Liu and Shen’s group led the research and development of “Moringa alba tablets” for the treatment of type 2 diabetes, and this drug has been approved for marketing by the State Drug Administration. It represents the first original natural drug for lowering blood sugar in China, and the first new TCM in this field approved in China in the past ten years. Icariin Softgels have also been approved for marketing in China as a first-line treatment for hepatocellular carcinoma, and are original innovative TCM drugs in China. The use of TCM active ingredients to develop new drugs is a special path that China can follow for a long time.

Natural products have some problems, such as poor water solubility, low bioavailability, and poor stability, and the development of new dosage forms using nanotechnology is a hot
research area at present. Many difficulties still remain to be overcome before clinical application. Among them, TCM and natural products are still quite good choices for ADC drugs.

Knowledge of drug targets is a prerequisite for the identification of innovative drugs, and the targets have a source innovation significance for new drug development. An urgent need exists to establish an in vivo method for finding drug targets directly in the real physiological environment, as this is important for promoting biomedical research by elucidating the mechanism of action of drugs and discovering their potential therapeutic value, as well as for further discovery of the side effects unrelated to the targets. The present use of TCM is mostly in the form of compounding, and the identification and characterization of the targets of the chemicals that are combined in TCM compounding is also one of the difficulties. The identification of the targets and the interpretation of the clinical efficacy of the complex system of TCM prescriptions will help to explain the profound laws of TCM in a more scientific way and will play an important role in the development of TCM. Natural products, especially TCM products with a long history of use, have a rich foundation of clinical applications, which should be bestowed and continuously innovated with the help of advanced science and technology to boost the development of innovative drugs in China and to realize TCM industrialization and internationalization in the near future.

Single-cell multiomics technology has a profound impact on the development of life science. The research paradigm of “based on advanced science and technology, driven by data and knowledge” is of great significance for the modernization of TCM. Single-cell technology makes the precision medicine from tissue and organ to a single cell, revealing the dynamic regulation of natural products on different cell types. The application of single-cell multiomics also provides insights into the molecular mechanisms underlying the precise regulation of key molecules at various levels during disease onset and drug intervention. Drug target hooking and validation at the single cell level is of great significance for identifying sensitive cell types and studying the mechanism of drug resistance, especially for the research on tumor microenvironment, and provides insights for the clinical usage of anti-tumor drugs and the mechanism of drug resistance. The application of single-cell multiomics analysis is still in its early stage, with the great breakthroughs of experimental techniques of target identification and the improvement of multiomics analysis methods, it will drive a new era of disease intervention and drug discovery.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 81872877, 81730100, 91853109, 82073975), School of Life Science (NJU)—Sipimo Joint Funds, Characteristic Innovation Project of Guangdong Provincial Education Department (Nos. 2019GKTSCX039, 2020KTSX295, China), School-Level Scientific Research Project of Shenzhen Polytechnic (No. 6021310023K, China), Natural Science Research of Jiangsu Higher Education Institutions of China (No. 22KJB360005), and Fundamental Research Funds for the Central Universities (No. 020814380174, China).

Author contributions

Yang Sun, Qiang Xu, and Hongyue Ma conceived the manuscript, Yuyu Zhu, Zijun Ouyang, Haojie Du, Meijing Wang and Jiaojiao Wang wrote the manuscript, Haiyan Sun and Lingdong Kong gave advice and suggestion.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

1. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004;10:1344–51.
2. Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang HJ, Zhang TT, et al. Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun 2019;10:1981.
3. Zhao MM, Lu J, Li S, Wang H, Cao X, Li Q, et al. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun 2012;12:5616.
4. Wang Y, Tong Q, Ma SR, Zhao ZX, Pan LB, Cong L, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Targeted Ther 2021;6:77.
5. Chen QC, Pu YL, Bi J, Zhang Y. Protective effects of berberine on senile osteoporosis in mice. J Bone Miner Metab 2021;39:748–56.
6. Han SY, Kim YK. Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-Fos and Nfatc1 expression. Am J Chin Med 2019;47:439–55.
7. Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, et al. A new therapeutic candidate for cardiovascular diseases: Berberine. Front Pharmacol 2021;12:631100.
8. Liu X, Wei Y, Bai X, Li M, Li H, Wang L, et al. Berberine prevents primary peritoneal adhesion and adhesion reformation by directly inhibiting TIMP-1. Acta Pharm Sin B 2020;10:812–24.
9. Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, et al. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK–SREBP-1c–SCD1 pathway. Free Radiac Biol Med 2019;141:192–204.
10. Jia X, Jia L, Mo L, Yuan S, Zheng X, He J, et al. Berberine ameliorates periportal bone loss by regulating gut microbiota. J Dent Res 2019;98:107–16.
11. Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, et al. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B 2020;10:2299–312.
12. Chen XY, Gao QY, Zou TH, Wang BM, Liu SD, Sheng JQ, et al. Berberine versus placebo for the prevention of recurrence of colorectal adenoma: a multicentre, double-blinded, randomised controlled study. Lancet Gastroenterol Hepatol 2020;5:267–75.
13. Wallace M, Pappagalio M, Quena. a· a· a sensitising % patch for the management of postherpetic neuralgia. Expert Rev Neurother 2011;11:15–27.
14. Abrams RMC, Pedowitz EJ, Simpson DM. A critical review of the capsaicin 8% patch for the treatment of neuropathic pain associated with diabetic peripheral neuropathy of the feet in adults. Expert Rev Neurother 2021;21:259–66.
15. Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016;21:E844.
16. Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab 2010;12:30–41.
17. Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, et al. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx. Cardiovasc Diabetol 2015;14:22.
New opportunities and challenges of natural products research

18. Ma L, Zhong J, Zhao Z, Luo Z, Ma S, Sun J, et al. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis. *Cardiovasc Res* 2011;92:504–13.

19. Hao X, Chen J, Luo Z, He H, Yu H, Ma L, et al. TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice. *Pflegers Arch* 2011;461:345–53.

20. Gao F, Liang Y, Wang X, Lu Z, Li L, Zhu S, et al. TRPV1 activation attenuates high-salt diet-induced cardiac hypertrophy and fibrosis through PPAR-δ upregulation. *PPAR Res* 2014;2014:491963.

21. Lang H, Li Q, Yu H, Li P, Lu Z, Xiong S, et al. Activation of TRPV1 attenuates high-salt-induced cardiac hypertrophy through improvement of mitochondrial function. *Br J Pharmacol* 2015;172:5548–58.

22. Wang Y, Zhou Y, Fu J. Advances in antiobesity mechanisms of *cauris*. *Opin Pharmacol* 2021;61:1–5.

23. Achariya N, Penumonda S, Shcheglova T, Hagymasi AT, Basu S, Srivastava PK. Endocannabinoid system acts as a regulator of immune homeostasis in the gut. *Proc Natl Acad Sci U S A* 2017;114:5005–10.

24. Van Gerven L, Alpizar YA, Steeland B, Callebaut I, Krohn I, Wouters M, et al. Enhanced chemosensory sensitivity in patients with idiopathic rhinitis and its reversal by nasal capsaicin treatment. *J Allergy Clin Immunol* 2017;140:437–46.

25. Xu C, Gulinello M, Frenette PS. Nociceptors protect sickle cell disease mice from vaso-occlusive episodes and chronic organ damage. *J Exp Med* 2021;218:e20200065.

26. Xu M, Zhang J, Mu Y, Foda MF, Han J. Activation of TRPV1 by capsaicin-loaded CaCO3 nanoparticle for tumor-specific therapy. *Biomaterials* 2022;284:121520.

27. Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS. Nociceptive nerves regulate haematopoietic stem cell mobilization. *Nature* 2021;589:591–6.

28. Zhu Y, Tchkonia T, Pirskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. *Cell Comm Lett* 2021;14:644–58.

29. Schafar MJ, White TA, Ilijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. *Nat Commun* 2017;8:14532.

30. Xu M, Pirskhalava T, Farr JN, Weigand BM, Palmer AK, Weiwo da MM, et al. Senolytics improve physical function and increase lifespan in old age. *Nat Med* 2018;24:1246–56.

31. Wang L, Wang B, Gasek NS, Zhou Y, Cohn RL, Martin DE, et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. *Cell Metab* 2022;34:75–89.

32. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, et al. Cellular senescence drives age-dependent hepatic steatosis. *Nat Commun* 2017;8:15691.

33. Liu J, Zhang J, Lin X, Boyce BF, Zhang H, Xing L, Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. *J Clin Invest* 2022;132:e148073.

34. Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, et al. Long-term treatment with senolytic drugs dastinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. *Nat Commun* 2021;12:5213.

35. Zou Z, Long X, Zhao Q, Zheng Y, Song M, Ma S, et al. A single-cell transcriptomic atlas of human skin aging. *Dev Cell* 2021;56:383–97.

36. Porras D, Nistal E, Reverón M, Olcoz JL, Mapila M, Torres MC, et al. Functional interactions between gut microbiota transplantation, quercetin, and high-fat diet determine non-alcoholic fatty liver disease development in germ-free mice. *Mol Nutr Food Res* 2019;63:e1809930.

37. Xia J, Rong L, Sawakami T, Inagaki Y, Song P, Hasegawa K, et al. Shufeng Jiedu capsule and its active ingredients induce apoptosis, inhibit migration and invasion, and enhances doxorubicin therapeutic efficacy in hepatocellular carcinoma. *Biomed Pharmacother* 2018;99:921–30.

38. Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin re-models the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. *ACS Nano* 2017;11:4916–25.

39. Wang K, Liu R, Li J, Mao J, Lei Y, Wu J, et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt–mTOR- and hypoxia-induced factor 1α-mediated signaling. *Autophagy* 2011;7:966–78.

40. Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. *ACS Nano* 2019;13:12511–24.

41. Zhang F, Li ZL, Xu XM, Hu Y, Yao JH, Xu W, et al. Protective effects of icarin-mediated SIRT1/FOXO3 signaling pathway on intestinal ischemia/reperfusion-induced acute lung injury. *Med Mol Rep* 2015;11:269–76.

42. Zhang L, Shen C, Chu J, Zhang R, Li Y, Li L. Icarin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP transgenic mouse model of Alzheimer’s disease. *Int J Biol Sci* 2014;10:181–91.

43. Su B, Ye H, You X, Ni H, Chen X, Li L. Icarin alleviates murine lupus nephritis via inhibiting NF-κB activation pathway and NLRP3 inflammasome. *Life Sci* 2018;208:26–32.

44. Qin SK, Li Q, Ming Xu J, Liang J, Cheng Y, Fan Y, et al. Icaritin-induced immunomodulatory efficacy in advanced hepatitis B virus-related hepatocellular carcinoma: immunodynamic biomarkers and overall survival. *Cancer Sci* 2020;11:4218–31.

45. Dong Y, Tu Y, Lin Z. Dihydroarteannuin ameliorates lupusrelated hepatocellular carcinoma: immunodynamic biomarkers and overall survival. *Cancer Sci* 2020;11:4218–31.

46. Wang Y, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, et al. Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. *Med Res Rev* 2017;37:1492–517.

47. Abba ML, Patel N, Leupold JH, Saeed MEM, Effert H, Allgayer H. Prevention of carcinogenesis and metastasis by artemisinin-type drugs. *Cancer Let* 2018;429:11–28.

48. Hou J, Wang D, Zhang R, Wang H. Experimental therapy of hepato-tumor with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. *Clin Cancer Res* 2008;14:5519–30.

49. Zhang X, Ba Q, Gu Z, Guo D, Zhou Y, Xu Y, et al. Fluorescent coumarin–artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. *Chemistry* 2015;21:17415–21.

50. Chen T, Li M, Zhang R, Wang H. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. *J Cell Mol Med* 2009;13:1358–70.

51. Ba Q, Zhou N, Duan J, Chen T, Hao M, Yang X, et al. Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. *PLoS One* 2012;7:e42703.

52. Li X, Ba Q, Liu Y, Yue Q, Chen P, Li J, et al. Dihydroartemisinin selectively inhibits PDGFRe-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRe protein. *Cell Discov* 2017:3:17042.

53. Li W, Dong Y, Tu Y, Lin Z. Dihydroartemisinin ameliorates lupus symptom of BXS mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-κappa B translocation. *Int Immunopharm* 2006;6:1243–50.

54. Li J, CasteeLS, Prange T, Ingversen C, Honore C, Courtney M, et al. Artemisinins target GABAA receptor signaling and impair cell identity. *Cell* 2017;168:106–100.

55. Jiang Y, Du H, Liu X, Xu F, Li X, Cao Q. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NFκB/NLRP3 inflammasomes pathway. *J Drug Target* 2020;28:70–9.

56. Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. *Acta Pharm Sin B* 2021;11:322–39.

57. Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, et al. XPB, a subunit of TFIIH, is a target of the natural product triplolide. *Nat Chem Biol* 2011;7:182–8.
57. Lu Y, Zhang Y, Li L, Feng X, Ding S, Zheng W, et al. TAB1: a target of triptolide in macrophages. *Chem Biol* 2014;21:2465–56.
58. Yu D, Liu Y, Zhou Y, Ruiz-Rodado V, Larion M, Xu G, et al. Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism. *Proc Natl Acad Sci U S A* 2020;117:9964–72.
59. Ling D, Xia H, Park W, Hackett MJ, Song C, Na K, et al. pH-Sensitive nanofunctionalized triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. *ACS Nano* 2014;8:8027–39.
60. Datan E, Minn I, Xu P, He QL, Ahn HH, Yu B, et al. A glucose–tripolide conjugate selectively targets cancer cells under hypoxia. *iScience* 2020;23:101536.
61. He J, Peng T, Peng Y, Ai L, Deng Z, Wang XQ, et al. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. *J Am Chem Soc* 2020;142:2699–703.
62. Liu J, Lee J, Salazar Hernandez MA, Mazzitelli R, Orzan U. Treatment of obesity with celestol. *Cell* 2015;161:999–1011.
63. Feng X, Guan D, Auen T, Choi JW, Salazar Hernandez MA, Lee J, et al. ILIR1 is required for celestol’s leptin-sensitization and anti-obesity effects. *Nat Med* 2019;25:575–82.
64. Hu M, Luo Q, Aliotongbiek G, Chong S, Xu C, Xie L, et al. Celestol-induced Nur 77 Interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. *Mol Cell* 2017;66:141–53.
65. Peng SZ, Chen XH, Chen SJ, Zhang J, Wang CY, Liu WR, et al. Phase separation of Nur 77 mediates celestol-induced mitophagy by promoting the liquidity of p62SQST1 condensates. *Nat Commun* 2021;12:5999.
66. Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, et al. Celestol protects against obesity and metabolic dysfunction through activation of a HSF1–PGC1α transcriptional axis. *Cell Metabol* 2015;22:695–708.
67. Hua H, Zhang Y, Zhao F, Chen K, Wu T, Liu Q, et al. Celestol inhibits intestinal lipid absorption by reprofiling the gut microbiota to attenuate high-fat diet-induced obesity. *iScience* 2021;24:102077.
68. He Z, Lieu L, Dong Y, Afrin S, Chau D, Kabahizi A, et al. PERK in POMC neurons connects celestol with metabolism. *JCI Insight* 2021;6:e145306.
69. Zhu Y, Wan N, Shan X, Deng G, Xu Q, Ye H, et al. Celestol targets adenyllyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat-diet-induced metabolic syndrome in mice. *Acta Pharm Sin B* 2021;11:1200–12.
70. Ye S, Luo W, Khan ZA, Wu G, Naun L, Shan P, et al. Celestol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. *Circ Res* 2020;126:1007–23.
71. Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X, et al. Celestol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. *Theranostics* 2020;10:10290–308.
72. Luo P, Liu D, Zhang Q, Yang F, Wong YK, Xia F, et al. Celestol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1. *Acta Pharm Sin B* 2022;12:2300–14.
73. Fu K, Feng C, Shao L, Mei L, Cao R. Tanshinone IIA exhibits anti-inflammatory and antioxidative effects in LPS-stimulated bovine endometrial epithelial cells by activating the Nrf2 signaling pathway. *Res Vet Sci* 2021;136:220–6.
74. Lu TC, Wu YH, Chen WY, Hung YC. Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis. *Oxid Med Cell Longev* 2022;2022:2811789.
75. Robertson AL, Holmes GR, Bojarzuc AK, Burgon J, Loynes CA, Chimen M, et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. *Sci Transl Med* 2014;6:225ra29.
76. Jin K, Gao S, Yang P, Guo R, Li D, Zhang Y, et al. Single-cell RNA sequencing reveals the temporal diversity and dynamics of cardiac immunity after myocardial infarction. *Small Methods* 2022;6:e2100752.
77. Cai N, Chen J, Bi D, Gu L, Yao L, Li X, et al. Specific degradation of endogenous tau protein and inhibition of tau phosphorylation by tanshinone IIA through the ubiquitin–proteasome pathway. *J Agric Food Chem* 2020;68:2054–62.
78. Bing B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. *J Neuroinflammation* 2020;17:302.
79. Ji K, Zhao Y, Yu T, Wang Z, Gong H, Yang X, et al. Inhibition effects of tanshinone on the aggregation of α-synuclein. *Food Funct* 2016;7:409–16.
80. Wang S, Jing H, Yang H, Liu Z, Guo H, Chai L, et al. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. *J Ethnopharmacol* 2015;164:247–55.
81. Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: a review of its anticancer effects. *Front Pharmacol* 2020;11:61087.
82. Zhou J, Jiang YY, Chen H, Wu YC, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. *Cell Prolif* 2020;53:e12739.
83. Gao J, Peng S, Shan X, Deng G, Shen L, Sun J, et al. Inhibition of AIM2 inflammasome-mediated pyroptosis by andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. *Cell Death Dis* 2019;10:957.
84. Peng S, Hang N, Liu W, Guo W, Jiang C, Yang X, et al. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways. *Acta Pharm Sin B* 2016;6:205–11.
85. Guo W, Sun Y, Liu W, Wu X, Guo L, Cai P, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. *Autophagy* 2014;10:972–85.
86. Guo W, Liu W, Chen G, Hong S, Qian C, Xie N, et al. Water-soluble andrographolide sulfonate exerts anti-sepsis action in mice through down-regulating p38 MAPK, STAT3 and NF-κB pathways. *Int Immunopharmac* 2012;14:613–9.
87. Wang W, Guo W, Li L, Fu Z, Liu W, Gao J, et al. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression. *Biochem Pharmacol* 2016;121:8–17.
88. Geng J, Liu W, Gao J, Jiang C, Fan T, Sun Y, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. *Br J Pharmacol* 2019;176:4574–91.
89. Geng J, Liu W, Xiong Y, Ding H, Jiang C, Yang X, et al. Androgapholide sulfonate improves Alzheimer-associated phenotypes and mitochondrial dysfunction in APP/PS1 transgenic mice. *Biomed Pharmacother* 2018;97:1032–9.
90. Shao F, Tan T, Tan Y, Sun Y, Wu X, Xu Q, et al. Andrographolide alleviates iniquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88. *Biochem Pharmacol* 2016;115:94–103.
91. Qu J, Liu Q, You G, Ye L, Jin Y, Kong L, et al. Advances in ameliorating inflammatory diseases and cancers by andrographolide: pharmacokinetics, pharmacodynamics, and perspective. *Med Res Rev* 2022;42:1147–78.
92. Song Y, Li D, Lu Y, Jiang K, Yang Y, Xu Y, et al. Ferrimagnetic mPEG-6-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemo-therapy. *Nat Sci Rev* 2020;7:723–36.
93. Feng Y, Huang S, Dou W, Zhang S, Chen J, Shen Y, et al. Emodin, a natural product, selectively inhibits 11 beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. *Br J Pharmacol* 2010;161:113–26.
94. Wang YJ, Huang SL, Feng Y, Ning MM, Leng Y, Emodin, an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte...
function in vitro and exerts anti-diabetic effect in ob/ob mice. Acta Pharmacol Sin 2012;33:1195–203.

95. Pu X, Ye N, Lin M, Chen Q, Dong L, Xu H, et al. β,1,3-α-Glucan based yeast cell wall system loaded emodin with dual-targeting layers for ulcerative colitis treatment. Carbohydr Polym 2021;273:118612.

96. Xiao D, Zhang Y, Wang R, Fu Y, Zhou T, Diao H, et al. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3. Acta Pharm Sin B 2019;9:724–33.

97. Xie C, Zhuang XX, Niu Z, Ai R, Lautrup S, Zheng S, et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 2022;6:76–93.

98. Chin KY. The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des Dev Ther 2016;10:3029–42.

99. Wang Y, Tang Q, Duan P, Yang L. Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. Immunopharmacol Immunotoxicol 2018;40:476–82.

100. Li X, Zhu R, Jiang H, Yin Q, Gu J, Chen J, et al. Autophagy enhanced by curcumin ameliorates inflammation in atherosclerosis via the TFEB–P300–BRD4 axis. Acta Pharm Sin B 2022;12:2280–99.

101. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: molecular mechanisms. Biomed Therapeutics 2021;134:111119.

102. Shen L, Ji HF. Bidirectional interactions between dietary curcumin and gut microbiota. Crit Rev Food Sci Nutr 2019;59:2896–902.

103. Banerjee S, Ji C, Mayfield JE, Goel A, Xiao J, Dixon JE, et al. Shen L, Ji HF. Bidirectional interactions between dietary curcumin and gut microbiota. Crit Rev Food Sci Nutr 2019;59:2896–902.

104. Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A 2018;115:8155–60.

105. Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, et al. Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Lett 2020;20:1352–61.

106. Dai Z, Tang J, Gu Z, Wang Y, Yang Y, Yang Y, et al. Eliciting immunogenic cell death via a unitized nanoinductor. Nano Lett 2020;20:6246–54.

107. Tjan J, Geiss C, Zarse K, Madreiter-Sokolowski CT, Ristow M. Green tea catechins EGCG and ECG enhance the fitness and lifespan of Caenorhabditis elegans by complex I inhibition. Aging 2021;13:22629–48.

108. Wei Q, Ma L, Zhang W, Ma G, Hu Z. EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing. J Mater Chem B 2022;10:3927–35.

109. Zhang S, Zhu Q, Chen JY, OuYang D, Lu JH. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer’s disease animal model: a systematic review. Phytomedicine 2020;79:153316.

110. Singh NA, Bhardwaj V, Ravi C, Nandan AK, Khan ZA. EGCG nanoparticles attenuate aluminum chloride induced neuro-behavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Front Aging Neurosci 2018;10:244.

111. Wu Z, Huang S, Li T, Li N, Han D, Zhang B, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial mucus and cellular barriers.

112. Lu QY, Zhang L, Yee JK, Go VLW, Lee WN. Metabolic consequences of LDLA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells. Metabolomics 2015;11:71–80.

113. Wei H, Ge Q, Zhang LY, Xie J, Gan RH, Lu YG, et al. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. J Nutr Biochem 2022;99:108843.

114. Liang J, He X, Zhou H, Liang P. Effects of Danhong injection on cardiac function and blood lipid in patients with angina pectoris of...
coronary heart disease: a protocol for randomized, double-blind, placebo-controlled clinical trial. *Medicine (Baltim)* 2021;100: e27479.

135. Liu C, He L, Wang J, Wang Q, Sun C, Li Y, et al. Anti-angiogenic effect of shikonin in rheumatoid arthritis by downregulating PEK/AKT and MAPKs signaling pathways. *J Ethnopharmacol* 2020;260:113039.

136. Mu Z, Guo J, Zhang D, Xu Y, Zhou M, Guo Y, et al. Therapeutic effects of shikonin on skin diseases: a review. *Am J Clin Med* 2021; 49:1871–95.

137. Wang X, Zhang F, Wu XR. Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. *Sci Rep* 2017;7:45983.

138. James AD, Richardon DA, Oh IW, Sritangos P, Attard T, Barrett L, et al. Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2). *Br J Cancer* 2020; 122:266–78.

139. Zhang H, Wang D, Li M, Plectron-Hlatava L, D’Alessandro A, Tauber J, et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. *Circulation* 2017;136:2468–85.

140. Ning X, Wiraja C, Chew WTS, Fan C, Xu C. Transdermal delivery of Chinese herbal medicine extract using dissolvable microneedles for hypertrophic scar treatment. *Acta Pharm Sin B* 2021;11:2937–44.

141. Li G, Zhao M, Zhao L. Lysine-mediated hydroxethyl starch-10-hydroxy camptothecin micelles for the treatment of liver cancer. *Drug Deliv* 2020;27:519–29.

142. Sun M, Jiang H, Liu T, Tan X, Jiang Q, Sun B, et al. Structurally defined tandem-responsive nanoassemblies composed of dipetide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors. *Acta Pharm Sin B* 2022;12:952–66.

143. Koth S, Naito S, Yokomizo A, Kumazawa J, Asakuno K, Kohno K, et al. Increased expression of DNA topoisomerase I gene and collateral sensitivity to camptothecin in human cisplatin-resistant bladder cancer cells. *Cancer Res* 1994;54:3248–52.

144. Chan JK, Brady MF, Penson RT, Huang H, Birrer MJ, Walker JL, et al. Weekly vs. every-3-week paclitaxel and carboplatin for ovarian cancer. *N Engl J Med* 2016;374:738–48.

145. Lou X, Zhang D, Ling H, He Z, Sun J, Sun M, et al. Pure redox-defined tandem-responsive nanoassemblies composed of dipetide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors. *Acta Pharm Sin B* 2021;11:2046–58.

146. Quosin E, Zalcman G, Oster JP, Westeel V, Pichon E, Lavalé A, et al. Carboplatin and weekly paclitaxel doublet chemotherapy compared with monotherapy in elderly patients with advanced non-small-cell lung cancer: IFCIT-0501 randomised, phase 3 trial. *Lancet* 2011; 378:1079–88.

147. Wei WL, Hou JJ, Wang X, Yu Y, Li HJ, Li ZW, et al. Venenum bufonis: an overview of its traditional use, natural product chemistry, pharmacology, pharmacokinetics and toxicology. *J Ethnopharmacol* 2019;237:215–35.

148. Yu Z, Guo W, Ma X, Zhang B, Dong P, Huang L, et al. Gamabufotin, a bufadendrane compound from toad venom, suppresses COX-2 expression through targeting IKKα/IKKβ-NF-κB signaling pathway in lung cancer cells. *Mol Cancer* 2014;13:203.

149. Xiang RF, Wang Y, Zhang N, Xu WB, Cao Y, Tong J, et al. MK2206 enhances the cytotoxic effects of bufalin in multiple myeloma by inhibiting the AKT/mTOR pathway. *Cell Death Dis* 2017;8:e22776.

150. Cao Y, Yu L, Dai G, Zhang S, Zhang Z, Gao T, et al. Cinobufagin induces apoptosis of osteosarcoma cells through inactivation of Notch signaling. *Eur J Pharmacol* 2017;794:77–84.

151. Xie CM, Liu XY, Yu S, Cheng CKH. Cardiac glycodies blocks collagen fiber growth in collagen-exposed fibroblasts. *Cell Death Dis* 2013;4:1870–80.

152. Yin JQ, Wen L, Wu LC, Gao ZH, Huang G, Wang J, et al. The glycosyn thase kinase-3β/nuclear factor-kappa B pathway is involved in cinobufagin-induced apoptosis in cultured osteosarcoma cells. *Toxicol Lett* 2013;218:129–36.

153. Li C, Hashimi SM, Cao S, Qi J, Good D, Duan W, et al. Chan-su inhibits the expression of cortactin in colon cancer cell lines in vitro and in vivo. *BMC Compil Alternative Med* 2015;15:207.

154. Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, et al. Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. *J Transl Med* 2018;16:201.

155. Yuan Z, Shi X, Qiu Y, Jia T, Yuan X, Zou Y, et al. Reversal of P-gp-mediated multidrug resistance in colon cancer by cinobufagin. *Oncol Rep* 2017;37:1815–25.

156. Laurusen M, Gregersen JL, Yatime L, Nissen P, Fedosova NU. Structures and characterization of digoxin- and bufalin-bound Na⁺/-K⁺-ATPase compared with the ouabain-bound complex. *Proc Natl Acad Sci U S A* 2015;112:755–60.

157. Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial watch: cardiac glycosides and cancer therapy. *Oncoimmunology* 2013;2:e23082.

158. Gu C, Wang Y, Zhang L, Qiao L, Sun S, Shao M, et al. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. *J Exp Clin Cancer Res* 2022;41:11.

159. Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, et al. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. *Cell Death Dis* 2021;12:492.

160. Wen L, Huang Y, Xie X, Huang W, Yin J, Lin W, et al. Anti-inflammatory and antiinfective activities of bufalin in rodents. *Mediat Inflamm* 2014;2014:171839.

161. Wu SC, Yi PF, Guo X, Zhang LY, Xu DX, Fu YX, et al. Cinobufagin enhances the protective efficacy of formalin-inactivated *Salmonella typhimurium* vaccine through Th1 immune response. *Microb Pathog* 2016;99:264–70.

162. Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, et al. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. *Mar Drugs* 2015;13:202–21.

163. Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. *Mar Drugs* 2010;8:2619–38.

164. Fiume L, Cerenza MR, Bonino F, Bussi C, Mattioli A, Brunetto MR, et al. Inhibition of hepatitis B virus replication by vidarabine monophosphate conjugated with lactosaminated serum albumin. *Lancet* 1988;2:13–5.

165. Salehi B, Selamoglu Z, Mileksi S, Pezzani R, Redaelli M, Cho WC, et al. Liposomial cytarsine as cancer therapy: from chemistry to medicine. *Biomolecules* 2019;9:E773.

166. Krenner WB. Drugs five years later: cytarsine. *Ann Intern Med* 1975;82:684–8.

167. Jimenez C. Marine natural products in medicinal chemistry. *ACS Med Chem Lett* 2018;9:959–61.

168. Zamponi GW, Strissign J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. *Pharmacol Rev* 2015;67:821–70.

169. Pope JE, Deer TR, Amirdelfan K, McRoberts WP, Azeem N. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. *Pharmacol Rev* 2015;67:293–492.

170. Dybdal—Hargreaves NF, Rinsing AL, Moberly SL. Eribulin mesylate: mechanism of action of a unique microtubule-targeting agent. *Clin Cancer Res* 2015;21:2445–52.

171. Gajula PK, Asthana J, Panda D, Chakrabarty TK. A synthetic dolastatin 10 analogue suppresses microtubule dynamics, inhibits cell proliferation, and induces apoptotic cell death. *J Med Chem* 2013;56:2235–45.

172. Barreca M, Stathis A, Barraja P, Bertoni F. An overview on anti-tubulin agents for the treatment of lymphoma patients. *Pharmacol Ther* 2020;211:107552.

173. Singh SB. Discovery and development of dolastatin 10-derived antitubody drug conjugate anticancer drugs. *J Nat Prod* 2022;85:666–87.

174. Gao G, Wang Y, Hua H, Li D, Tang C. Marine antitumor peptide dolastatin 10: biological activity, structural modification and synthetic chemistry. *Mar Drugs* 2021;19:363.
196. Liu P, Yang S, Wang Z, Dai H, Wang C. Feasibility and mechanism of Pulse-activating injection in treatment of coronary heart disease angina pectoris. World Chinese Medicine 2022;17:123–8.
197. Zhang H, Chen Z, Zhong Z, Gong W, Li J. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav 2018;8:e01127.
198. Sun Q, Xie YM, Hou HY. Clinical characteristics and drug combination of Pulse-activating injection in treatment of coronary heart disease angina pectoris. Acta Pharm Sin B 2020;10:1694–708.
199. Sun CQ, Xie YM, Hou HY. Clinical characteristics and drug combination of Pulse-activating injection in treatment of coronary heart disease angina pectoris. World Chinese Medicine 2022;17:123–8.
200. Sun ZY, Wang FJ, Guo H, Chen L, Chai LJ, Li RL, et al. Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen–glucose deprivation reperfusion. Neuro Regen Res 2019;14:783–93.
201. Wang J, Xu D, Xu J, He F, et al. Safflower injection inhibits pulmonary arterial remodeling in a monocrotaline-induced pulmonary arterial hypertension rat model. Z Naturforsch, C: J Biosci 2021;76:27–34.
202. Wang LT, Huang H, Chang YH, Wang YQ, Wang JD, Cai ZH, et al. Biflavonoids from Ginkgo biloba leaves as a novel anti-atherosclerotic candidate: inhibition potency and mechanistic analysis. Phytomedicine 2022;102:154053.
203. Xu DD, Xie YM, Zhang YL, Liao X, Zhi YJ, Zhao H. Bitter dish injection in treatment of acute cerebral infarction is effective and safety studies: systematic review of randomized controlled trials and meta-analysis. China J Tradit Chin Med 2019;44:372–80.
204. Yu DD, Xie YM, Zhang YL, Liao X, Zhi YJ, Zhao H. Bitter dish injection in treatment of acute cerebral infarction is effective and safety studies: systematic review of randomized controlled trials and meta-analysis. China J Tradit Chin Med 2019;44:372–80.
205. Zhang Y, Liu X, Wang S, Ouyang L, Li H, Ding J, et al. Imatinib co-treatment of Pulse-activating injection in treatment of chronic myeloid leukemia. J Hematol 2021;13:1467–73.
206. Sun ZY, Wang FJ, Guo H, Chen L, Chai LJ, Li RL, et al. Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen–glucose deprivation reperfusion. Neuro Regen Res 2019;14:783–93.
207. Wang Y, Shi Z, Yang HQ, Teng J, Zhao J, Xiang G. Mailuoning for acute ischaemic stroke. Cochrane Database Syst Rev 2015;1:CD007028.
208. Xu M, Su W, Xu Q, Huang W. Effect of Xingnaojing injection on cerebral edema and blood–brain barrier in rats following traumatic brain injury. Chin J Traumatol 2010;13:158–62.
209. Zheng D, Chu Y, Li S, Zhou S, Li W, Xie Y. et al. Enhancing effect of borneol on pharmacokinetics of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 in healthy volunteers after oral administration of compound Danshen dropping pills. Biomed Chromatogr 2022;36:e5311.
210. Ma J, Yin C, Ma S, Qiu H, Zheng C, Chen Q, et al. Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrillation in rats with post-myocardial infarction heart failure. Drug Des Dev Ther 2018;12:3407–18.
211. He Y, Su W, He X, Chen T, Zeng X, Yan Z, et al. Pharmacokinetics and biotransformation investigation in beagle dog of active compounds from naoxintong capsule. Biomed Pharmacother 2021;133:119040.
212. Wang H, Qu SC, Yu XF, Zhang H, Sui DY. Effects of Xuehuoxiaominming tablet on platelet function and blood rheology in acute blood stasis model rats. Chin J Gerontol 2010;30:5335–7.
213. Fu MW, Li HZ, Teng YO, Han YZ, Zhao X, Chen HW, Wang J. Meta-analysis of the efficacy and safety of combined use of Yixinshu capsule for ventricular premature contraction. J Vascular Dis 2022;20:197–206.
214. Jiang B, Wu RM, Zhang C, Zhong ZX, Hong Y, Shen XY. Effects of Yangxin’s tablets on depressed rats after myocardial infarction. Chin Patent Med 2020;42:2868–75.
215. Liu Q, Zhang Y, Liu KC, Wang XX, Zhang CQ, Zhou HL, et al. Study on the active components of Xinkeshu tablets to promote angiogenesis based on zebrafish model and molecular docking technology. Chin Herbal Med 2022;53:1418–33.
216. Liu Y, Ding H. Clinical study of Xinyuan capsule in the treatment of thoracic arthralgia, heart—kidney yin deficiency and blood stasis yin syndrome. Chin Med Pharmacol Clin 2002;18:43–5.
216. Guo J, Qin Z, He Q, Fong TL, Lau NC, Cho WCS, et al. Shexiang Baoxin pill for acute myocardial infarction: clinical evidence and molecular mechanism of antioxidative stress. *Oxid Med Cell Longev* 2021; 2021:7646468.

217. Zhang L, Wang Y, Lu L, Liu L, Qu H, Wang Y, et al. Qi-SHEN-YI-QI accelerates angiogenesis after myocardial infarction in rats. *Int J Cardiol* 2010; 143:105–9.

218. Xie X, Meng T, Li Ti, Yang Q, Li M, Gao Y. Net meta-analysis of *Panax notoginseng* oral preparation in the treatment of acute cerebral infarction. *Chin J Tradit Chin Med* 2021; 52:4277–88.

219. Wu Z, Zhao Z, Chen Y, Huang J, Liu Z, Jiang X, Ke L, Song Y, Wang L. A randomized controlled study of Yindan Xiangton Soft capsule in treatment of blood stasis and collateral obstruction syndrome in convalescent period of cerebral infarction. *Chin J Integr Tradit West Med* 2014; 34:1310–4.

220. Zhao JN, Zhang Y, Lan X, Chen Y, Li J, Zhang P, et al. Efficacy and safety of Xinyaoping capsule in treating chronic stable angina (qi stagnation and blood stasis syndrome): study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. *Medicine (Baltim)* 2019; 98:e16539.

221. Duan X, Zhou L, Wu T, Liu G, Qiao J, Wei J, et al. Chinese herbal medicine suxiao jiuxin wan for angina pectoris. *Cochrane Database Syst Rev* 2008; 2008:CD004473.

222. Zhang JH, Yu LJ, Yang H, Hui Z, Jiang S, Chen L, et al. Huatuo Zaizao pill ameliorates cognitive impairment of APP/PS1 transgenic mice by improving synaptic plasticity and reducing Aβ deposition. *BMC Comp Alternative Med* 2018; 18:167.

223. Jiang Y, Sui D, Li M, Xu H, Yu X, Liu J, et al. Ginsenoside Rg improves inflammation and fibrosis in hepatic tissue by upregulating PPARγ expression and inhibiting oxidative stress in db/db mice. *Evid Based Complement Alternat Med* 2021; 2021:9003603.

224. Wang S, Qiu XJ. The efficacy of Xue Fu Zhu Yu prescription for hyperlipidemia: a meta-analysis of randomized controlled trials. *Compl Ther Med* 2019; 43:218–26.

225. Yao Y, Liu Y, Zeng Z, Zhao Y, Li T, Chen R, et al. Identification of target genes of antirhythmic traditional Chinese medicine Wenxin Keli. *Cardiovasc Ther* 2020; 2020:3480276.

226. Liu L, Chen YM, Zhou YJ. The effect and mechanism of Songling Xuenaiangkap capsule on atherosclerosis in rats. *Sci Technol Eng* 2017; 17:185–8.

227. Du YJ, Zhao YT, Kong LJ, Wang YM. Protective effect of Hedan tablets on vascular endothelium in atherosclerotic rats. *Genom Appl Biol* 2020; 39:94.

228. Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, et al. QiLiqiaoxin capsules optimize cardiac metabolism flexibility in rats with heart failure after myocardial infarction. *Front Physiol* 2020; 11:805.

229. Tan Y, Hu J, Zhang Y, Wu Q, Ni Q. Qihijiangtang capsule for the treatment of diabetic kidney disease: a protocol for systematic review and meta-analysis. *Medicine (Baltim)* 2020; 99:e21923.

230. Gao X, Wang Y, Li Y, Wang Y, Yan M, Sun H, et al. Hunagpian, a traditional Chinese medicine, inhibits liver cancer growth in vitro and in vivo by inducing autophagy and cell cycle arrest. *Biomed Pharmacother* 2019; 120:109469.

231. Li H, Tang Y, Wei W, Yin C, Tang F. Effects of Xiaochaihu decoction on the expression of cytochrome P450s in rats. *Exp Ther Med* 2021; 21:588.

232. Yang L, Hu Z, Zhu J, Fei B. Effects of Weifuchun tablet for chronic atrophic gastritis: a protocol for systematic review and meta-analysis. *Medicine (Baltim)* 2020; 99:e20374.

233. Cai GX, Liu BY, Yi J, Chen XM, Liu FL. Simotang enhances gastrointestinal motility, motilin and cholecystokinin expression in chronically stressed mice. *World J Gastroenterol* 2011; 17:1594–9.

234. Li X, Feng M, Yuan G. Clinical efficacy of Weisu granule combined with Weifuchun tablet in the treatment of chronic atrophic gastritis and its effect on serum G-17, PG I and PG II levels. *Am J Transl Res* 2022; 14:275–84.

235. Wan JH, Zhan Y, Yang N, Hu X, Li YM, Liu WJ. Long term toxicity of Jianwei Xiaoshi tablet on rats of different sexes. *China J Mod Med* 2020; 22:25–9.
256. Huang YR, Wei QX, Wan YG, Sun W, Mao ZM, Chen HL, et al. Uric clearance granule, alleviates renal dysfunction and tubulo-interstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril. *J Ethnopharmacol* 2014; **155**:1514–52.

257. Zhang WT, Miao RP, Zhao QH, Sun Y, Han SJ, Yang HW, et al. Clinical and fundamental research Yinhua Miyanling tablets in treating urinary tract infection. *China J Chin Med Mater* 2019; **44**: 2403–10.

258. Wang H, Mu W, Zhai J, Xing D, Miao S, Wang J, et al. The key role of Shenyang Kangfu tablets, a Chinese patent medicine for diabetic nephropathy: study protocol for a randomized, double-blind and placebo-controlled clinical trial. *Trials* 2013; **14**:165.

259. Pan L, Zhang T, Sun H, Liu G. Ginsenoside Rg3 (Shenyi capsule) combined with platinum-based chemotherapy in the treatment of advanced non-small cell lung cancer. *Chin Tradit Pat Med* 2018; **40**:2048–51.

260. Yang SH, Zhang Y, Lin XF, Wen JM, Bai X, Fang SN, et al. Systematic review on clinical efficacy and safety of Cheezheng Pain Relieving Plaster for soft tissue injury. *China J Chin Mater Med* 2020; **45**:1167–73.

261. Shu S, Zhang Y, Wang Q, Tao P, Li Z, Xu Z, et al. Liuwei Dihuang ingredients of Fufang E’jiao Jiang during chemotherapy-induced nephropathy: study protocol for a randomized, double-blind and placebo-controlled trials. *China J Chin Med Mater* 2014; **38**:472–8.

262. Sheng Z, Wang J, Li J, Liu Y, Du Y, Huang T, Zhu C. Multicenter clinical trials evaluating the analgesic effect of Wang-Bi tablet on the pain and complications of severe pressure ulcer patients. *China J Chin Mater Med* 2012; **37**:2216–23.

263. Law PC, Auyeung KK, Chan LY, Ko JK. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells. *BMC Compl Alternative Med* 2012; **12**:160.

264. Lu J, Wang JC, Ma B, Gao W, Chen P, Sun R, et al. Shenqi Fuzheng injection for advanced gastric cancer: a systematic review of randomized controlled trials. *Clin J Integr Med* 2015; **21**:71–9.

265. Li X, Zhang Y, Hong Z, Gong S, Liu W, Zhou X, et al. Transcriptional profiling analysis reveals the potential mechanisms of three bioactive ingredients of Fufang Ejiao Jiang during chemotherapy-induced myelosuppression in mice. *Front Pharmacol* 2018; **9**:616.

266. Cheng Z, Wu JL, Chen JF. Clinical observation on the treatment of male neoplastic anemia with Yixuesheng capsule combined with recombinant human erythropoietin. *China J Integ Med* 2009; **15**:63–5.

267. Shu S, Zhang Y, Wang Q, Tao P, Li Z, Xu Z, et al. Liweie Dihuang pill attenuates diabetic nephropathy by inhibiting renal fibrosis via TGFB-βSmad2/3 pathway. *Comput Math Methods Med* 2022; **2022**:5063636.

268. Law PC, Auyeung KK, Chan LY, Ko JK. Astragalus saponins downregulate vascular endothelial growth factor under cobalt chloride-stimulated hypoxia in colon cancer cells. *BMC Compl Alternative Med* 2012; **12**:160.

269. Yu YL, Lu Y, He Y, Pan J, Jin Y, Zheng L, et al. Aidi injection for advanced gastric cancer: a systematic review of randomized controlled trials. *China J Integr Med* 2015; **21**:71–9.

270. Yang T, Shi R, Chang L, Tang K, Chen K, Yu G, et al. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF-alpha/TNFFR1 pathway in vitro and in vivo. *J Exp Clin Cancer Res* 2015; **34**:21.

271. Xu HH, Wang MX, Tan HL, Wang YG, Tang XL, Xiao CR, et al. Effect of clinical doses of Realgar—Indigo Naturalis formula and large-dose of realgar on CYP450s of rat liver. *China J Chin Mater Med* 2017; **42**:593–9.

272. Wei Y, Wang Y, Zeng M. Meta-analysis of Pingxiao capsules (tablets) combined with platinum-based chemotherapy in the treatment of advanced non-small cell lung cancer. *Chin Tradit Pat Med* 2017; **39**:2216–21.

273. Zhang Q, Ma X, Qiu J, Jia Z. Main pharmacodynamics and acute toxicity of Duyiwei total iridoid glycoside capsules. *Chin Tradit Pat Med* 2014; **37**:2417–21.

274. Yang SH, Zhang Y, Lin XF, Wen JM, Bai X, Fang SN, et al. Systematic review on clinical efficacy and safety of Cheezheng Pain Relieving Plaster for soft tissue injury. *China J Chin Mater Med* 2020; **45**:1167–73.

275. Gu C, Xiong W, Li L, Pang L. Comparative study on transdermal permeability of Tonglou Qutong patches in vitro based on volatile components in different matrices. *Guid J Tradit Chin Med Pharm* 2018; **24**:45–8.

276. Zhu Y. Comparative study of effects of Shangke Jiegu tablet and Jianba Huqian pill on postoperative rehabilitation of patients with lisfranc joint injury. *Chin J Exp Tradit Med Form* 2014; **20**:199–202.

277. Cheng Y, Dong X, Wang P. Influence of Huoxue Zhitong Plaster on histology and expression of IGF mRNA after acute contusion of rabbit skeletal muscle. *Chin Arch Tradit Chin Med* 2012; **30**:2699–703.

278. Shen W, Guan YY, Wu RM, Liu LX, Li HD, Bao WL, et al. Protective effects of Wang-Bi tablet on bone destruction in collagen-induced arthritis by regulating osteoclast—osteoblast functions. *J Ethnopharmacol* 2019; **238**:111861.

279. Wang F, Shi L, Zhang Y, Wang K, Pei F, Zhu H, et al. A traditional herbal formula Xianlinggubao for pain control and function improvement in patients with knee and hand osteoarthritis: a multicenter, randomized, open-label, controlled trial. *Evid Based Complement Alternat Med* 2018; **2018**:1827528.

280. Tang ZL, Wang X, Yi B, Li ZL, Liang C, Wang XX. Effects of the preoperative administration of Yunnan Baiyao capsules on intraoperative blood loss in bimaxillary orthognathic surgery; a prospective, randomized, double-blind, placebo-controlled study. *Int J Oral Maxillofac Surg* 2009; **38**:261–7.

281. Niu D. Effect of Ma Yinglong Shexiang hemorrhoids cream combined with pearl powder on the pain and complications of severe pressure ulcer patients. *Medicine (Baltim)* 2021; **100**:e26767.

282. Zhang Q. Analysis of the effect of musk hemorrhoid suppository combined with traditional Chinese medicine fumigation and washing on the recovery of hemorrhoids after. *Chin J Mod Drug Appl* 2020; **14**:200–2.

283. Feng Y. 43 cases of keloid treated with Xiao tongzui Qingliangyou mixture. *Chin J Ethic Med* 1999; **1**:101.

284. Liu Y, Li Y, Du Y, Huang T, Zhu C. Multicenter clinical trials analyzing efficacy and safety of topical cortex phellodendri compound fluid in treatment of diabetic foot ulcers. *Med Sci Monit* 2020; **26**:e923424.

285. Liu JP, Yang H, Xia Y, Cardini F. Herbal preparations for uterine fibroids. *Cochrane Database Syst Rev* 2013; **4**:CD005292.

286. Wang YQ, Guo X, Shan T. Clinical effect of Xianling Gubao capsule combined with baofukang suppository in treating atrophic vaginitis. *Chin J Integr Tradit Chin Med West Med* 2010; **30**:766–8.

287. Wu WX, Liu ZH, Liao Q, Dong Y. Clinical study of kangfute suppository in the treatment of senile vaginitis. *Chin J Obstet Gynecol* 2005; **6**:181–4.

288. Zhang Y, Li W, Zou L, Gong Y, Zhang P, Xing S, et al. Metabonomic study of the protective effect of Fukeqianjin formula on multi-pathogen induced pelvic inflammatory disease in rats. *Chin Med Sci J* 2018; **13**:61.

289. Guo QY, Wu QH, Cao HY, Ru L, Liu C, Wu J, et al. Experimental study of Wuji Baifeng pill in the treatment of primary dysmenorrhea. *Northwest Pharm J* 2016; **31**:482–5.

290. Chen Z, Wang JL, Zhong PW, Liu D, Cui GZ, Tong YL, et al. Experimental study on the treatment of oral ulcers in rats with Qingyang Dropping pills. *Chin Herbal Med* 2016; **47**:106–9.

291. Mei QX, Hu Y. Research progress on the pharmacological effects and clinical application of Zongjiefeng. *Shizhen Chin Med Chin Med* 2011; **22**:230–2.

292. Jin GF, Zhang WJ, Tan YZ. Biyankang tablet anti-inflammatory analgesic effect research. *Chin Herbal Med* 2009; **32**:1108–11.
New opportunities and challenges of natural products research 4039

336. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Integrative lipidomics and data analysis methods. *Exp Mol Med* 2020;52:1428—42.

337. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. *Nat Biotechnol* 2019;37:1452—7.

338. Zhu Y, Wu Z, Yan W, Shao F, Ke B, Jiang X, et al. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. *EMBO Mol Med* 2020;12:e14455.

339. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. *Nature* 2019;566:496—502.

340. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudo-temporal ordering of single cells. *Nat Biotechnol* 2014;32:381—6.

341. Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, et al. Analysis of single-cell RNA-seq identifies cell—cell communication associated with tumor characteristics. *Cell Rep* 2018;25:1458—68.

342. Method of the year 2019: single-cell multimodal omics. *Nat Methods* 2020;17:1.

343. Wang Z, Wu W, Gnan X, Gao S, Li C, Niu R, et al. 20(S)-Protopanaxatriol promotes the binding of PS3 and DNA to regulate the antitumor network via multiomic analysis. *Acta Pharm Sin B* 2020;10:1020—35.

344. Zhang S, Zhang J, An Y, Zeng X, Qin Z, Zhao Y, et al. Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma. *Acta Pharm Sin B* 2021;11:1227—45.

345. Li X, Ge J, Li Y, Cai Y, Zheng Q, Huang N, et al. Integrative lipidomic and transcriptomic study unravels the therapeutic effects of saikosaponins A and D on non-alcoholic fatty liver disease. *Acta Pharm Sin B* 2021;11:3527—41.

346. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. *Exp Mol Med* 2020;52:1428—42.

347. Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. *Nat Biotechnol* 2019;37:1452—7.

348. Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. *Cell* 2020;183:1103—16.

349. Zhou Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. *Cancer Cell* 2021;39:1578—93.

350. Vistain LF, Tay S. Single-cell proteomics. *Trends Biochem Sci* 2021;46:661—72.

351. Xu H, Zhang Y, Wang P, Zhang J, Chen H, Zhang L, et al. A comprehensive review of integrative pharmacology-based investigation: a paradigm shift in traditional Chinese medicine. *Acta Pharm Sin B* 2021;11:1379—99.

352. Wu C, Liu Y, Yang Y, Zhang F, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. *Acta Pharm Sin B* 2020;10:766—88.

353. Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHJW. Network pharmacology: curing causal mechanisms instead of treating symptoms. *Trends Pharmacol Sci* 2022;43:136—50.

354. Li T, Zhang W, Hu E, Sun Z, Li P, Yu Z, et al. Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. *Comput Struct Biotechnol J* 2021;19:1002—13.

355. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. *Trends Pharmacol Sci* 2019;40:592—604.

356. Zhong F, Wu X, Yang R, Li X, Wang D, Fu Z, et al. Drug target inference by mining transcriptional data using a novel graph convolutional network framework. *Protein Cell* 2022;13:281—301.

357. Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. *Nat Commun* 2019;10:2142.

358. Hou M, Wang R, Zhao S, Wang Z. Ginsenosides in *Panax* genus and their biosynthesis. *Acta Pharm Sin B* 2021;11:1813—34.

359. Tao H, Lauterbach L, Bian G, Chen R, Hou A, Mori T, et al. Discovery of non-squalene triterpenes. *Nature* 2022;606:414—9.

360. Shen ZF. Research progress of total alkaloids of mulberry branch in the treatment of diabetes. *Chin J Pharmacol Toxicol* 2021;35:1.