Review Article

Neuroprotective Effects, Biological Activities and Therapeutic Potential of Phytochemicals: A Comprehensive Review

Shi Qiu¹,², Ai-hua Zhang², Jian-hua Miao¹, Hui Sun², Guang-li Yan², Fang-fang Wu¹,² and Xi-jun Wang¹,²*

¹National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
²Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China

ARTICLE INFO

Article history:
Received: 18 February, 2020
Accepted: 6 March, 2020
Published: 24 March, 2020

Keywords:
Phytochemicals
neuroprotective effects
natural products
lead drug
pharmacological targets

ABSTRACT

The incidence of neurological disorders is growing in the world together with an increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathology, which make necessary to search for new therapeutic agents. Natural products, most of them used in phytochemicals from herbal medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Numerous herbs have been applied to neurodegenerative disease treatments as complementary and alternative medicines. In the 21st century, omics-coupled functional pharmacology was developed for neurodegenerative drug discovery from natural products. In this article, we firstly provide the latest understanding of neurological disorders on risk factors, category, diagnosis and treatment, and then specially present an overview of natural products in neuroprotective effects research from chemical biology to pharmacological targets, and also discuss the natural products application and future challenge.

Introduction

Neurological disorder is any disorder from nervous system, which most people in the world suffer from the problems and torment people of different age [1-2]. In the brain, spinal cord or nerves, structural, biochemical or electrical abnormalities lead to a range of symptoms including paralysis, myasthenia, poor coordination, interceptions, spasm, pain, altered consciousness and others [3-4]. Neurological disorders bring about a large burden on world-wide health, which is the main culprit of death or disability and the mortality is increasing year by year. Recent studies have demonstrated that the global burden such as Alzheimer’s disease, depression, stroke, Parkinson’s disease, multiple sclerosis, Huntington’s disease, traumatic brain injury and cerebral ischemia accounts for 3 percent of the worldwide burden of disease.

Although the overall percentage of neurological disorders seems relatively unimportant, dementia, epilepsy, migraine, and stroke are still in the top 50 causes of disability-adjusted life years [5].

In addition to migraine and epilepsy occupies more than a third of the neurological burden, the morbidity of neurodegenerative diseases such as dementia and Parkinson’s disease has greatly risen in the past decade. With population growth and ageing, the numbers and rates of years lived with disability have increased in the past two decades. Neurological disorder as one of the most common causes has not decreased [6]. Facing widespread, fatal, complex and exorbitant disease for patients, modern researches have been in progress in different race, age group and regions. It seems that neurological disorders are not frequent illness, but it is infrequently recognized in clinical practice and better understanding the early prevention, accurate diagnosis and prompt medical treatment.
Furthermore, there is the absence of substantial prospective methods and techniques to decrease its occurrence and development. Due to the non-communicable disorder becoming more serious and complex, rapid globalization, urbanization, the society faces new challenges and opportunities for innovative health care systems. Compared with currently available therapeutic options, natural products are becoming popular over the world and widely accepted as a conservative clinical therapy.

More public awareness and scientific interest has led to research towards the effect of natural products in the field of health promotion and disease treatment due to their effectiveness, convenience, less side-effects and relatively low cost [7, 8]. Growing evidence suggests that natural products, especially herbs and dietary supplements, have a major role for neurological disorders prevention, management, and treatment. Herbal and dietary supplements application for chronic disease states is increasing all over the United States. According to current circumstances, the reviews present new understanding and overview on neurological disorders, and then we pay particular attention to natural products for prevention, management, treatment of neurological disorders, and finally we probe into the future research directions and challenges.

Overview of Neurological Disorders

I Risk Factors

According to previous studies, various risk factors such as infection, poisoning, genetic defects, endocrine disorder and immunological injury have been led to a neurological disorder. It was showed that Coxsackievirus A16 is a major pathogen related to human hand, foot, and mouth disease in the Asia-pacific region, which lead to severe lesions or necrosis towards the skeletal muscle, spinal cord and brainstem in 21 days aged gerbils after five days infection [9]. In the Americas, Zika virus, as an arbovirus transmitted by mosquitoes, is now crazily spread and has proved to be detected in amniotic fluid, placenta and fetus brain tissue. A number of neurological disorders such as microcephaly, Guillain–Barré syndrome, meningoencephalitis and myelitis are associated with the virus infection [10]. Infection of HIV virus is often associated with neurological disease, the pathological mechanism will to be further studied [11]. Cigarette smoking and carbon monoxide are considered as a major risk factor in deteriorative process of various neurological disorders.

Chronic cigarette smoking-induced toxicity attribute to oxidative stress, which disrupts the brain’s protective mechanism and cause oxidative damage to the brain [12]. Under the influence of CO, the body cell respiration is inhibited. After hypoxia, the structure of the central nervous system (CNS) is usually susceptible to injury, the emergence of various pathological neurological symptoms [13]. Recent evidence suggests that sphingolipids, which contain a variety of molecules that can carry out N-acylated sphingosine-containing long-chain bases, are rich in the central nervous system, the genetic defects of synthesis and decomposition of intrathelial lipoproteins can cause undesirable consequences of brain physiology. These diseases are due to gene mutations in encode enzymes that catalyze maturation or degradation of simple sphingolipids such as ceramides or complex sphingolipids [14].

In addition, there are genes such as rs6094539 gene variant, ATP7B gene variants and apolipoprotein E gene associated with neurological diseases in recent study [15-17]. It has recently been noted that endocrine disrupting substances can cause increased neuropsychiatric disorders including autism, attention deficit, hyperactivity, learning disabilities and depression, which can lead to severe neurodegeneration. Meanwhile, compared with the same age healthy children, the morbidity of hyperthyroidism caused by endocrine disorders making sick children in a series of neurological disease is increasing [18, 19]. Autoimmune diseases are increasingly recognized as the main cause of some neurological disorders leading to clinical disability [20]. In addition, other risks contain nutritional disorders, congenital malformations, blood circulation disorders, abnormal hyperplasia, metabolic disorders, age and sex [21-25].

II Category

In the light of the primary position affected, the main type of dysfunction involved, or the main cause of disease, neurological disorders can be categorized different types in clinic. The nervous system includes the central nervous system and the peripheral nervous system, then the former contains the brain (cerebellum, brain, brain stem) and the spinal cord and the peripheral nervous system is composed of the brain and spinal nerve. Relevant research report lists brain, spinal cord and nervous disorders in the following categories [26-28]. Brain damage according to cerebral lobe: frontal lobe damage, parietal lobe damage, temporal lobe damage, occipital lobe damage. Brain dysfunction according to type: aphasia (language), dysgraphia (writing), dystarthritis (speech), apraxia (movements), agnosia (recognition), amnesia (memory). Spinal cord disorder according to pathology, injury, inflammation characteristics is divided into different types. Peripheral neuropathy system disorders: cranial nerve disorder such as Trigeminal neuralgia, autonomic nervous system disorder such as Dysautonomia, multiple system atrophy seizure disorders such as Epilepsy, movement disorders of the central and peripheral nervous system such as Parkinson’s disease, Amyotrophic lateral sclerosis, Multiple Sclerosis, Sleep disorders, migraines and other types.

III Clinical Manifestation

Typical symptoms of neurological disorders in clinic are muscle stiffness, trembling, slow movement, dysphagia, limb numbness, convulsions. In addition, it also presents speaking with a lisp, limb balance disorders, and loss of action capability. Sometimes, nervous system diseases continue to deteriorate leading to dementia [29, 30]. Different degree of depression is one of the common symptoms of nervous system, and it is often characterized by slow disease progression and symptoms mild at first which it is not easy to be found [31]. If not treated in time, the patient may have an accident in daily life. With the deterioration of the disease, the patient is in a greater risk of depression, which depression has become particularly serious in order that suffers lose the ability of independence in final [32]. Alzheimer’s disease (AD), a central nervous system disease, is the main culprit of dementia in elderly individuals around the world. Before symptoms of the disease emerge, individual had been in pathophysiological state of AD for many years. AD shows up prominent neuropsychiatric features including loss of memory, cognitive decline, language dysfunction closely, and
impairment of normal social and emotional behaviors such as depression, hallucinations, or agitation, even leading to death finally [33].

The key pathological changes of AD are increasing extracellular deposits levels of β-amyloid(AB) as diffuse and inflammatory plaques and abnormally neurofibrillary tangles (NFTs) resulting from hyper-phosphorylated tau (p-tau) accumulating intracellular and reduction in number of neurons [34]. Parkinson’s disease, as an incurable degenerative disorder, usually occurs in 1% population above the age of 65. It often damages movement and language skill of invalids and is accompanied by a series of the distinct symptoms of the disease such as still shaking, rigidity, bradykinesia, and loss of postural reflexes on account of head trauma or drug poisoning [35, 36]. Epilepsy is a disorder in brain, which it is generally recognized that the occurrence of two unprovoked seizures appearing more than 24 hours in addition to an enduring tendency to arise more serious seizures. When epilepsy occurs, patients lose consciousness suddenly and then come into being tonic clonic spasm accompanied by shouting, complexion colorless, urinary incontinence, biting tongue, foaming at the mouth, and other symptoms [37].

Depression is a clinical symptom of mood disorders with significant and persistent mental retardation, slow thinking, cognitive impairment, decreased will and physical symptoms as the principal clinical features [38]. Studies have shown that the prevalence rate of global depression and poor mood surveyed by WHO is 12.8% and predicted depression will become the world’s second medical in 2020 [39]. Scientific research found that approximately 17% of the population had at least one stroke in their life [40]. Not only do many stroke patients appear sudden faint, loss of cognitive ability, hemiplegia, mouth adverse symptoms, but they present sudden mental disorders, involuntary movement, memory decline, dizziness, walking instability, blurred vision and other clinical manifestations [41]. Multiple sclerosis, a chronic autoimmune inflammatory demyelination disorder, impairs the central nervous system and typically attacks people between 20 and 40 years of age [42, 43]. The main symptoms include limb numbness and tingling, balance disorders, blurred vision, bladder dysfunction. After repeated relapse and incomplete remission, the illness becomes more and more heavy leading to weakness, stiffness, sensory disturbances, physical instability, visual impairment and urinary incontinence for suffers.

IV Diagnosis

In clinical practice, diagnosis of neurological disorders includes location diagnosis, qualitative diagnosis and etiological diagnosis. Location diagnosis can provide information on lesions in specific parts of the nervous system on the basis of disease syndrome in different parts, which often contributes to the decision of the nature of the disease. What clinicians are often confused is the etiology of the patient is difficult to make due to incomplete understanding of disease. Using neurological examination mainly containing medical history, mental state assessment, physical examination and laboratory diagnostic examination in the diagnosis of neurological diseases can detect brain, nerve, muscle and spinal cord disease. In addition to medical history and physical examination, cerebrospinal fluid examination and other laboratory tests, electromyography, electroencephalogram also provide an important clue for clinical diagnosis [44, 45].

Neurological imaging examination plays a crucial role in the diagnosis of some related diseases, especially computed tomography and magnetic resonance imaging put into use, and positron emission computerized tomography, single photon emission computed tomography, transcranial doppler sonography, quantitative electroencephalogram, digital subtraction angiography, myelography and other new techniques are of value in the diagnosis of neurological diseases [46, 47]. The recent advances in high-throughput genome technologies leading to the rapid analysis and identification of millions of disease-related genes in thousands of patients has significantly promoted our understanding of the genomic underpinnings of neurological disorders susceptibility which are the result of mutations in genes involved in normal action of the brain, spinal cord, peripheral nerves or muscles [48]. The development has promoted the recognition of whole-genome structure and variation and research of its influence of human phenotypes.

Genome-wide association studies, which have offered information on the mechanism of risk factors for the development of neurological disorders caused by common genetic variability, discover emerging biological pathways related to disease pathogenesis after identification of disease-causing mutations [49]. In the last decade, the development of genomic technologies such as comparative genomic hybridization and genome-wide single nucleotide polymorphism arrays based on microarray-based techniques as substitute of cytogenetic testing and chromosomal microarray for screening copy number variants and long continuous stretches of homozygosity brings new era to interpretation individual’s genome in large scale[50]. Also, the emerging next-generation DNA sequencing platforms, coupling targeted capture and massively parallel DNA sequencing and whole-genome sequencing make the clinical diagnosis of neurological disorders more comprehensive, accurate and convenient [51-53].

V Intervention

In everyday clinical practice, drug intervention is more common applied than other clinical treatments such as genes, surgery, electrical stimulation and psychotherapy intervention, and the neurological disorders patient is more receptive and easier to use, which facilitates researchers to devote a lot of effort and research in recent years [54, 55]. It indicates that intrathecal baclofen treatment is used in children and young adult patients with spastic cerebral palsy, dystonic cerebral palsy and progressive neurological disease [56]. Some new drug is under clinical development for the neurological disorders treatment such as a class of tetracyclic butyrophenones that possess binding affinities to serotonin 5-HT and dopamine D2 receptors, and catechol-O-methyltransferase including neurotransmitters dopamine, epinephrine and norepinephrine as enzymes that catalyze the transfer of methyl from S-adenosyl methionine to catechol and catecholamines, which can be used for schizophrenia, Parkinson’s disease, bipolar disorder and many other neurological and mental disorders.

The new type of COMT inhibitor with good and safe therapeutic characteristics has been designed to replace previous inhibitors possessing high toxicity, short acting, poor bioavailability and
gastrointestinal side effects [57, 58]. The clinical development of metabotropic glutamate 5 (mGlu5) negative allosteric modulators, mGlu1 and mGlu5 PET ligands has also been shown outstanding advance as the potential treatment of Parkinson’s disease, autism, anorexia, depression, pain, levodopa-induced dyskinesia, however, it is reported that these modulators have some side effects and cytotoxicity [59, 60]. Due to dysfunction of the glutamatergic signaling pathway associated with the pathophysiology of mental and neurological pathophysiology, it has long been interested in scientists involved in drug research. The research of AMPAR positive allosteric modulators provides the chance to modulate rapid excitatory synaptic transmission and select emerging potential therapeutic agents for a series of neurological disorders [61].

As a significant potential for the treatment of neurological diseases, peptide therapeutic agents provide a new way to treat a wide variety of neurological disorders. However, clinic faces to many obstacles such as short half-life of the peptide, less passage through the blood-brain barrier, slowing through the extracellular space and rapid rinse of cerebrospinal fluid, which we studied stem cell-based cell therapy relying on the secretion of soluble factors as well as a new method of encapsulating genetically cells as peptide transfer vectors [62, 63].

Research confirmed that phospholipases A2 inhibitors and cannabinoids from plants are related to the pathogenesis of neurological disorders for treatment of oxidative stress and neuroinflammation [64, 65].

Gene therapy, as a powerful tool for treating neurological disorder such as central nervous system neoplasms, metabolic disorders and amyotrophic lateral sclerosis, inhibits the expression of toxic proteins and restore lost function [66-68]. Taking into account the instability of the gene and strong immunogenicity, selecting the appropriate carrier need to be further studied [69]. In addition, the clinical practice in the treatment of diseases also has surgery, electrical stimulation, psychological therapy and others [70-72]. With the advance of cell reprogramming technology and nanotechnology carriers, the laboratory has acquired new human cell sources such as iPSCs derived nerve cells that contribute to insight and treatment of early-onset neurological disorders, which not only to increase the potential for testing known drugs and recycle, but also to promote the clinical efficacy of new compounds and gene therapy [73, 74]. Compared to the delivery method of conventional drug, the nanotechnology carrier has the advantages such as high drug loading ability, targeting effect, low toxicity and increased therapeutic effect, and has established a new platform for clinical treatment (Figure 1) [75].

Herbal Products

Traditional Chinese medicine (TCM) which is equipped with complex recipes and formulae stem from historical and anecdotal evidence of ancient healer, has a long history for clinical practice through western drugs brought in China. With the development of economic modernization, TCM as a promising role bring an exploring trend of new therapeutic chemicals and drugs for disease, including neurological disorders. In researches of recent years, a great number of plant-derived herbs and prescription have been explored in the research of neurological disorders such as Tripterygium wilfordii Hook F, Ginseng, Valeriana amurensis, Ginko bilboa, Pueraria lobata and fig fruits, and prescription such as Di Dang soup, Xiao Yao san, Kai-Xin-San, Liwu Dihuang decoction, YQiFuMai and Tao hong si wu decoction [76-86]. Various active ingredients have been extracted from Chinese herbal extracts and then confirmed to have the characteristics of outstanding pharmacological effects in nervous system [87-89].

Polyphenols such as flavonoids, epigallocatechin gallate and epicatechin perfect learning and memory deficits in both animals and humans though acting on ERK/CREB pathway connected with synaptic plasticity and potentiation, and in vitro oxidative stress and in neurotoxicity cellular models’ polyphenols as the free radical scavengers reflects neuroprotective effects [90-92]. Curcumin referred to as anti-carcinogenic, antioxidant and anti-inflammatory resource is derived from turmeric. Results of vitro and animal studies indicated that curcumin alter Aβ metabolism and also affect brain work and the development of dementia in AD, which become promising mean of...
adjusting early AD pathology associated with new curcumin formulations to enhance bioavailability by comparing treating healthy, pre-clinical and mild cognitive impairment-period groups [93]. Resveratrol possesses various pharmacological effects such as anti-inflammatory, anti-apoptosis, antioxidation, antifungal and anticancer. As a polyphenolic compound naturally present in red wine and grapes, many researches have studied the use of resveratrol in PD and consider resveratrol related with neuroinflammation, apoptosis, and oxidative stress as neuro-protective role from many angles [94, 95].

In a recent research of probing the neuroprotective ability and underlying mechanisms of salvianolic acid B (Sal B), it is shown that pellium MDA level and the NOS activity of cerebral ischemia-reperfusion mice observably decreased and the activity of SOD and the T-AOC markedly increased in comparison of the model group (P<0.05 or P<0.01). Meanwhile, SalB inhibit neuronal loss, intensely accelerate expression of Bcl-2 protein (P<0.01) and prevented Bax protein expression by mitochondria-dependent pathway [96]. SalB also restrained NF-kB transcriptional activity and pro-inflammatory cytokine responses including IL-1β, IL-6, and TNF-α by blocking Toll-like receptor 4 in an oxygen-glucose deprivation and reoxygenation model [97]. As we all know, Ginseng is a famous invigorant in China, which saponin extract such as ginsenoside Rg1, Rg3, Rg5, RE and Rk1 was used in enhancing athletic performance and immune function, treating diabetes, erectile dysfunction, and male infertility [98, 99].

There is also increasing evidence that a range of saponin extracts from the plants are able to relieve deterioration and beneficial for the therapy of neurological disorder. Ginseng Fruit Saponins (GFS) plays an important role in regulating expressions of 5-HT and 5-HT2AR expressions after MI and depression [100]. A study evaluated GFS influence on the 5-HT system though comparing Myocardial Infarction depression, and MI + depression pointed that GFS decrease the reuptake of 5-HT from serum to platelet and the change in the brain is the opposite [101]. Salidroside inhibits cognitive deficit and ameliorated apoptosis in the hippocampal CA1 area in rats caused by chronic cerebral hyperperfusion, which is remarkably impeded the activation of caspase-3, up-regulated the ratio of Bax/Bcl-2 and reversed hippocampal neuronal loss [102]. The study also found that asiaticoside which come from herb Centella asiatica may alleviate the mitochondrial injuries, the activity of anti-inflammatory, and the influence on the apoptosis-associated proteins expression levels in AD [103].

The mechanism of ruscogenin on cerebral ischemia-induced blood-brain barrier dysfunction may reduce the brain infarction and edema, increased cerebral brain flow, improved neurological deficits, decreased evans blue (EB) leakage and promoted tight junctions’ expression [104]. In addition, the study also found that flavonoids from plants, alkaldoids, coumarins, terpenes, polysaccharides, volatile oils, anthraquinones such as puerarin, oxymatrine, daphnetin, oleanolic acid, crocin, physcion play important role in cerebral ischemia, encephalomyelitis, Alzheimer Disease, spinal injury, brain injury and other neurological diseases, and provides a valuable reference for the latter part of the study [105-114].

In another study by Lee SH et al., Cordyceps, a multifunctional natural products with various biological activities including nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic roles, was named by the fungi on insects and suggest that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis by improving cerebral ischemia-induced short-term memory impairment in transient global ischemia in gerbils, inhibiting cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus and increasing the expressions of BDNF and TrkB in the hippocampus of ischemic gerbils [115]. Xyloketal B which shows protective effects against toxicity in neurodegenerative disease models such as PD and AD is a natural product from mangrove fungus as novel drug candidates for treating Huntington's disease in recent years. A study of screening potential neuroprotective molecules for Huntington's disease indicate that xyloketal B could bind to residues GLN369 and GLN393 of the mutant Htt protein, and then form a stable trimeric complex in case the formation of mutant Htt aggregates by molecular target analysis [116].

Animal Products

Bile acids possess a long history for medicine propose from intervention for primary ocular diseases as therapeutic agents in ancient times to using for liver diseases in approved way in modern, which is a specific structure related group of molecules related from cholesterol. Though data from models in vivo and in vitro and clinical experiments endorse neuroprotective role in treating a diverse spectrum of age-related neurodegenerative disorders, the origin and molecular mechanism of bile acids is little-known [117]. Taurochendodeoxycholic acid is considered as a promising role in reducing loss of dopaminergic neurons and dopaminergic fiber compared by MPTP which associate with ROS production and activation of JNK-mediated apoptosis [118]. Currently, arthropod venoms are recognized as an emerging source of bioactive compounds, which offer a platform for new neuroactive compounds discovery and provide novel and attractive chances for acting on the central nervous system by various neuronal targets.

There are some medications gained from venom proteins and derivatives including captopril, epitiobatide, tirofiban, bivalirudin, ziconotide, and exenatide. Some recent researches reported that peptides and acyl polypeptides isolated from arthropod venoms in mammalian CNS have analgesic, anxiolytic, antiplatelet and neuroprotective effects ability as inhibitors or stimulants for treating major existing neurological disorders such as stroke, Alzheimer's disease, epilepsy, Parkinson's disease, and pathological anxiety [119, 120]. Abundant source of structurally novel natural products derived from marine environment have markedly anti-cancer, anti-inflammatory, analgesic, immuno-modulatory, and neuroprotective ability. Previous studies have shown that some natural products from marine and their derivatives such as cytarabin, trabectedin, eribulin mesylate, and brentuximab vedotin using in cancer treatment approved by European national authority [121].

Phytochemical compounds which come out of microalgae and have neuroprotective potentials associated with the management and/or treatment of AD, are applied as pharmaceuticals, nutraceuticals and food supplements, and may possess neuroprotective potentials that are relevant to the management and/or treatment of AD [122]. Furthermore, some marine natural ingredients such as Omega-3-acid ethyl esters, ziconotide and iota-carrageenan have been proved to be therapeutically effective in clinical trial for neurologic diseases treatment, but the mechanism needs further study.
Dietary Supplements

Not only as nutrition in daily but also for medicinal application, dietary supplements have been widely used for a long time among the USA and the EU population [123]. The use of dietary supplements which have the ability to bring neuroprotective, neurotropic, and proneurogenic support occurs in fight of age-related illnesses and neurodegenerative diseases [124]. Several studies measured by real-time PCR have confirmed that vitamin A upregulate specific nuclear receptors such as Forkhead box P3 and transforming growth factor (TGF)-β gene expression in multiple sclerosis patients though retinoic acid as an active metabolite reestablishing the imbalance [125]. Complex of vitamin B such as B6, B12, and folic acid which associated with age-related cognitive fragility were found in plasma/serum of geriatric patients with cognitive impairment in lower level [126]. Vitamin B deficiency is common in invalids with neurological disorders suggesting its preventive and therapeutic potential [127, 128].

As one of the significant nuclear steroid transcription regulators, Vitamin D regulates a large number of genes transcriptions. In the recent study, Vitamin D may exert protective and neurotropic effects directly at the cellular level in different types of neurological disorders such as Parkinson’s disease and multiple sclerosis [129, 130]. In addition, vitamin D3 as an effective supplementary treatment beneficially improve clinical features of Huntington’s disease, which observably increased the lifespan of transgenic animals measured by Kaplan-Meier survival curves [131]. The deficiency of vitamin D is related with late depression and well-designed RCTs is needed to evaluate the prevention impact of vitamin D that seems as a risk factor for late-life depression [132]. Some experts believe that more trials are necessary to determine the appropriate vitamin E composition and dosage for AD treatment, because vitamin E in the proper dose prevents or delays AD, however, it also worsens the pathology in unusual dose by increasing the level of Aβ and decrease Aβ degradation [133].

Researchers have also evaluated the use of n-3 long chain polyunsaturated fatty acids (PUFAs) such as mega-3, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in regulating neuronal membrane excitability and improving the capacity for neuronal transmission, which indicated that they prevent neuronal loss, cognitive decline stems and maintain membrane fluidity in preventing and/or slowing AD pathology [136, 137]. In early PD, inosine as a potential disease-modifying therapy was safe, tolerable, and effective in increasing urate levels of serum and cerebrospinal fluid. Compared with inosine groups, urate level in placebo groups was lower and has more disability chance [138]. Yu S et al. conducted cerebral ischemia experimental models in vitro and in vivo to explore neuroprotective role of Achyranthes bidentata Blume polypeptides (ABPks) isolated by reverse-phase HPLC [139]. ABPks promoted neuronal survival and inhibited ischemia-induced neuronal damage though modulating expression of apoptosis-related gene, regulating mitochondrial membrane potential for mitochondrial dysfunction, reducing and inhibiting harmful substances production and release (Figure 2).

A Kuopio Ischemic Heart Disease Risk Factor Study assessed the relationship between magnesium intake and unipolar depressive disorder by a 4-day food record of 2320 Eastern Finnish men aged 42-61 years old. Compared the lowest tertile of magnesium intake participants, the middle tertile has a statistically obviously decreased depression risk and present an inverse association between magnesium intake and the risk of depression. Further studies are necessary to explore whether magnesium intake have ability to prevent or treat depression [134]. Compared carotenoid and vitamin C intake associated with risk of amyotrophic lateral sclerosis (ALS) from different groups including the National Institutes of Health-Association of American Retired Persons Diet and Health Study, the Cancer Prevention Study II Nutrition Cohort, the Multiethnic Cohort, the Health Professionals Follow-up Study, and the Nurse Health Study, it has suggested that carotenoids intake reduce risk of ALS by restraining oxidative stress in the pathogenesis of ALS [135].

Conclusions and Future Directions

As a life threatening disorders with explosively increasing mortality and morbidity rate in populations worldwide, neurological disorders such as AD, PD and HD impose the high health impact not only to patients and their families, but also to society, which drive intense study for therapeutic alternatives of neurological disorders in consideration of fact that most of current chemical drugs are ineffective or only symptomatic treatment. The discovery and preparation of new drugs to cure them is highly demanding. Recently, natural products with their abundant source, low toxicity and side-effects have become a popular role when discussing methods for prevention and treatment of neurological diseases. It is necessary to conduct more clinical trials in design to improve the quality of evidence and the credibility of the beneficial effects of therapeutic supplements for neurological disorders.
disorders. In addition, especially, herbs possess various pharmacological activity such as antioxidant, anti-inflammatory, anti-apoptosis and free radicals-scavenging by a variety of mechanisms.

In this view, traditional Chinese herbs monomer and active ingredients with clear molecular structures attract a large number of scholar’s attention, but there exist some problems in the application of Chinese herbs. Some natural compounds which needs further exploration for necessary development due to many herbal produces lacking rigorous scientific further clinical observation and verification and still remaining in the stage of laboratory stage leading to serious toxic effects and drug-to-drug interaction have a vital role to perform neurological disorders management. We should reduce the efficacy difference between single use of monomers or active ingredients and herbal ingredients using in clinical and improve bioavailability of combination of various natural monomer and effective composition for better therapeutic effect.

The marine natural products could be a specially promising object to discover active ingredients with novel structures as potential drug for neurological disorders on account of high biodiversity, genetic uniqueness and severe competition for survival of marine organisms. Although medical research of neurological disorders is a long way to go for a large number of natural material, the discovery and application of natural products is still expected to endlessly made some progress with the help of rapidly evolving modern science and technology for improving the control system of natural medicine and promoting the modernization development of medicine.

Acknowledgments

This work was supported by grants from the Key Program of Natural Science Foundation of State (Grant No. 81830110, 81861168037, 81973745, 81903818, 81430093), National Key Research and Development Program of China (2018YFC1706103), National Key Subject of Drug Innovation (Grant No. 2015ZX09010104-005, 2015ZX09010104-011), TCM State Administration Subject of Public Welfare (Grant No. 2015468004), Major Projects of Application Technology Research and Development Plan in Heilongjiang Province (GA18C004, GX16C003), Natural Science Foundation of Heilongjiang Province (YQ2019H030, LH2019H056, QC2018117, H2016056), Chinese Postdoctoral Science Foundation (2017M621319b), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015118, UNPYSCT-2016213, UNPYSCT-2016212), Returned Oversea Program of Heilongjiang Province (2017QD0025), Young Talent Lift Engineering Project of China Association of Traditional Chinese Medicine (QNRC2-B06), Foundation of Heilongjiang University of Chinese Medicine (2018j01, 2018bs02, 2018bs05, 2018bs09), Nursing Program for Young Scholars with Creative Talents of Heilongjiang University of Chinese Medicine (2018RCQ13, 2018RCDD21), Longjiang Scholar Program of Education Department of Heilongjiang Province (Q201916), Heilongjiang Touyan Innovation Team Program.

Competing Financial Interest

None.

REFERENCES

1. Manuera CC (2011) [Assessment and management of dysphagia in children with neurological disorder]. Enferm Clin 21: 56-58. [Crossref]
2. Teive HA (2015) Non-progressive cerebellar ataxia with previous acute cerebellar injury of undetermined origin: a puzzling neurological disorder. Arq Neuropsiquiatr 73: 819-820. [Crossref]
3. Work SS, Colamonico JA, Bradley WG, Kaye RE (2011) Pseudobulbar affect: an under-recognized and under-treated neurological disorder. Adv Ther 28: 586-601. [Crossref]
4. Debaddata M, Mishra AK (2013) Meige's Syndrome: Rare Neurological Disorder Presenting as Conversion Disorder. Indian J Psychol Med 35: 317-318. [Crossref]
5. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2197-2223. [Crossref]
6. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C et al. (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2163-2196. [Crossref]
7. Brown MA, Potroz MG, Teh SW, Cho NJ (2016) Natural Products for the Treatment of Chlamydiaceae Infections. Microorganisms 4: E39. [Crossref]
8. Tundis R, Loizzo MR, Menichini F (2010) Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10: 315-331. [Crossref]
9. Sun YS, Li YJ, Xia Y, Xu F, Wang WW et al. (2016) Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep 6: 34299. [Crossref]
10. Araujo AQ, Silva MT, Arausjo AP (2016) Zika virus-associated neurological disorders: a review. Brain 139: 2122-2130. [Crossref]
11. Evzelman MA, Sznimschuckova IA, Koroleva LY (2015) Neurological disorders associated with HIV-infection. Zh Nevrol Psikhiatr Im S S Korsakova 115: 89-93.
12. Romanowski P, Kulakowska A, Drozdowski W (2004) Neurological disorders after carbon monoxide intoxication. Headache Pain 44: 28-34. [Crossref]
13. Araujo AQ, Silva MT, Arausjo AP (2016) Zika virus-associated neurological disorders: a review. Brain 139: 2122-2130. [Crossref]
14. Evzelman MA, Sznimschuckova IA, Koroleva LY (2015) Neurological disorders associated with HIV-infection. Zh Nevrol Psikhiatr Im S S Korsakova 115: 89-93.
15. Romanowski P, Kulakowska A, Drozdowski W (2004) Neurological disorders after carbon monoxide intoxication. Pol Merkar Lekarski 16: 592-594.
16. Sasaki A, Sazci A, Sazci G, Ergul E, Idrisoglu HA (2016) Nicotinamide-N-Methyltransferase gene rs694539 variant and migraine risk. J Headache Pain 17: 93. [Crossref]
17. Squitti R, Siotto M, Arciello M, Rossi L (2016) Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer's disease. Metallomics 8: 863-873. [Crossref]
18. Mahley RW (2016) Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl) 94: 739-746. [Crossref]
18. Kajta M, Wójcikiewicz AK (2013) Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. *Pharmacol Rep* 65: 1632-1639. [Crossref]

19. Nandi Munshi D, Taplin CE (2015) Thyroid-related neurological disorders and complications in children. *Pediatr Neurol* 52: 373-382. [Crossref]

20. Liewhuck T, Miravalle A (2015) Immune-Mediated Neurological Disorders. *Curr Neurol Neurosci Rep* 15: 61. [Crossref]

21. Benga I, Benga O (2012) Implications of water channel proteins in selected neurological disorders: epilepsies, muscular dystrophies, amyotrophic lateral sclerosis, neomyelitis optica, Parkinson’s disease, and spongiform encephalopathies. *Mol Aspects Med* 33: 590-604. [Crossref]

22. Howell KB, Kornberg AJ, Harvey AS, Ryan MM, Mackay MT et al. (2013) High resolution chromosomal microarray in undiagnosed neurological disorders. *J Paediatr Child Health* 49: 716-724. [Crossref]

23. Mott M, Pahigianis K, Koroshetz W (2014) Small blood vessels: big health problems: National Institute of Neurological Disorders and Stroke update. *Stroke* 45: e257-e258. [Crossref]

24. Lathia JD, Mattson MP, Cheng A (2008) Notch: from neural development to neurological disorders. *J Neurochem* 107: 1471-1481. [Crossref]

25. Ji AL, Zhang X, Chen WW, Huang WJ (2017) Recent perspectives of metabolic alterations in neurological disorders. *J Neurosci Sci* 61: 689-690. [Crossref]

26. Mateen FJ, Dua T, Shen GC, Reed GM, Shaker R et al. (2012) Neurological disorders in the 11th revision of the International Classification of Diseases: now open to public feedback. *Lancet NeuroL* 11: 484-485. [Crossref]

27. Rajakulendran S, Dua T, Harper M, Shaker R (2014) The classification of neurological disorders in the 11th revision of the International Classification of Diseases (ICD-11). *J Neurol Neurosurg Psychiatry* 85: 952-953. [Crossref]

28. Brigo F, Igwe SC, Nardone R, Lochner P, Tezzon F et al. (2015) Wikipedia and neurological disorders. *J Clin Neurosci* 22: 1170-1172. [Crossref]

29. Beghi E, Pupillo E, Giussani G (2016) Peculiarities of Neurological Disorders and Study Designs. *Front Neurol Neurosci* 39: 8-23. [Crossref]

30. Lamberg L (2001) Psychiatric symptoms common in neurological disorders. *JAMA* 286: 154-156. [Crossref]

31. Hansen CP, Amari M (2015) Combined detection of depression and anxiety in epilepsy patients using the Neurological Disorders Depression Inventory for Epilepsy and the World Health Organization well-being index. *Seizure* 33: 41-45. [Crossref]

32. Agrawal N, Rickards H (2011) Detection and treatment of depression in neurological disorders. *J Neurol Neurosurg Psychiatry* 82: 828-829. [Crossref]

33. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. *Int J Alzheimers Dis* 2012: 369808. [Crossref]

34. Cash DM, Rohrer JD, Ryan NS, Ourselin S, Fox NC (2014) Imaging endpoints f or clinical trials in Alzheimer’s disease. *Alzheimers Res Ther* 6: 87. [Crossref]

35. Schrag A, Weintraub D, Schott JM (2017) Cognitive decline before diagnosis of Parkinson’s disease - Authors’ reply. *Lancet Neurol* 16: 262. [Crossref]

36. Abushouk AI, Negida A, Ahmed H, Abdel Daim MM (2017) Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. *Biomed Pharmacother* 85: 635-645. [Crossref]

37. Fisher RS, Acevedo C, Arzimanoglu A, Bogacz A, Cross JH et al. (2014) ILAE official report: a practical clinical definition of epilepsy. *Epilepsia* 55: 475-482. [Crossref]

38. Rotenstein LS, Ramos MA, Torre M, Segal JB, Peluso MJ (2016) Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students: A Systematic Review and Meta-Analysis. *JAMA* 316: 2214-2236. [Crossref]

39. Dennis CL, Dowsew T (2013) Interventions (other than pharmacological, psychosocial or psychological) for treating antenatal depression. *Cochrane Database Syst Rev* 7: CD006795. [Crossref]

40. Bushnell CD (2008) Stroke and the female brain. *Nat Clin Pract Neurol* 4: 22-33. [Crossref]

41. Coupland AP, Thapar A, Qureshi MI, Jenkins H, Davies AH (2017) The definition of stroke. *J R Soc Med* 110: 9-12. [Crossref]

42. Camara Lemarroy CR, Ibarra Yruegas BE, Rodriguez Gutiérrrez R, Berrios Morales I, Ionete C et al. (2017) The varieties of psychosis in multiple sclerosis: A systematic review of cases. *Mult Scler Relat Disord* 12: 9-14. [Crossref]

43. Uccelli MM (2014) The impact of multiple sclerosis on family members: a review of the literature. *Neurodegener Dis Manag* 4: 177-185. [Crossref]

44. Benaroch EE (2014) The clinical approach to autonomic failure in neurological disorders. *Nat Rev Neurol* 10: 396-407. [Crossref]

45. Stone J (2016) Functional neurological disorders: the neurological assessment as treatment. *Pract Neurol* 16: 7-17. [Crossref]

46. Zhu M, Wu W, Chen S, Liu M, Wang L et al. (2014) [The etiology of neurological disorders in 1 188 elder patients with neuroimaging at geriatric outpatient clinic]. *Zhonghua Nei Ke Za Zhi* 53: 202-205. [Crossref]

47. Lee S, Mirsky DM, Beslow LA, Amlie LW, Becker EB et al. (2013) Next generation sequencing in neuronal diseases. *Curr Neurol Neurosci Rep* 13: 524. [Crossref]

48. Goto J (2009) Guidelines for gene diagnosis of neurological disorders. *Rinsho Shinkeigaku* 50: 812. [Crossref]

49. Guio Vega GP, Forero DA (2017) Functional genomics of candidate genes derived from genome-wide association studies for five common neurological diseases. *Int J Neurosci* 127: 118-123. [Crossref]

50. Howell KB, Kornberg AJ, Harvey AS, Ryan MM, Mackay MT et al. (2013) High resolution chromosomal microarray in undiagnosed neurological disorders. *J Paediatr Child Health* 49: 716-724. [Crossref]

51. Németh AH, Kwasniewska AC, Lise S, Parolin Schmechenberg R, Becker EB et al. (2013) Next generation sequencing for molecular diagnosis of neurological disorders using axatas as a model. *Brain* 136: 3106-3118. [Crossref]

52. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR et al. (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. *Proc Natl Acad Sci USA* 106: 19096-19101. [Crossref]

53. Veeramah KR, O'Brien JE, Meisler MH, Cheng X, Dib-Haj SJ et al. (2012) De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. *Am J Hum Genet* 90: 502-510. [Crossref]
54. Berisavac II, Pavlović AM, Trajković JJ Šternić NM, Bumbasićević LG (2015) Drug treatment of vertigo in neurological disorders. *Neuro India* 63: 933-939. [Crossref]

55. Kapoor S (2014) Bexarotene and its potential role in the treatment of neurological disorders: beyond its role as an anti-cancer agent. *J Drugs Dermatol* 13: 240. [Crossref]

56. Bonouvić L, Buceri J, Soudani D, Buizer A, van Ouerkerk W et al. (2016) The effect of intrathecal baclofen treatment on activities of daily life in children and young adults with cerebral palsy and progressive neurological disorders. *Eur J Paediatr Neurol* 20: 538-544. [Crossref]

57. Li P, Zhang Q, Robichaud AJ, Lee T, Tomesch J et al. (2014) Discovery of a tetracyclic quinonoxaline derivative as a potent and orally active multifunctional drug candidate for the treatment of neuropsychiatric and neurological disorders. *J Med Chem* 57: 2670-2682. [Crossref]

58. Jatana N, Apoorva N, Malik S, Sharma A, Latha N (2013) Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders. *Cent Nerv Syst Agents Med Chem* 13: 166-194. [Crossref]

59. Li G, Jorgensen M, Campbell BM, Doeller D (2016) Recent Developments in Group I Metabotropic Glutamate Receptor Allosteric Modulators for the Treatment of Psychiatric and Neurological Disorders (2014-May 2015). *Curr Top Med Chem* 16: 3470-3526. [Crossref]

60. Li G, Jorgensen M, Campbell BM (2013) Metabotropic glutamate receptor 5-negative allosteric modulators for the treatment of psychiatric and neurological disorders (2009-July 2013). *Pharm Pat Anal* 2: 767-802.

61. Reullton T, Ward SE, Beswick P (2016) AMPA Receptor Positive Allosteric Modulators: Potential for the Treatment of Neuropsychiatric and Neurological Disorders. *Curr Top Med Chem* 16: 3536-3565. [Crossref]

62. Shaw AE, Bamburg JR (2017) Peptide regulation of colin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. *Pharmacol Ther* 175:17-27. [Crossref]

63. Brinker T, Spader H (2014) A translational view of peptide treatment of neurological disorders. *Curr Med Chem* 21: 2583-2590. [Crossref]

64. Ong WY, Farooqui T, Kokotos G, Farooqui AA (2015) Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. *ACS Chem Neurosci* 6: 814-831. [Crossref]

65. Devinsky O, Whalley BJ, Di Marzo V (2015) Cannabinoids in the Treatment of Neurological Disorders. *Neurotherapeutics* 12: 689-691. [Crossref]

66. Kamran N, Candolfi M, Baker GI, Ayala MM, Dzaman M et al. (2016) Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms. *Methods Mol Biol* 1382: 467-482. [Crossref]

67. Gessler DJ, Gao G (2016,) Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders. *Methods Mol Biol* 1382: 429-465. [Crossref]

68. McEachin ZT, Donsante A, Bouls N (2016) Gene Therapy for the Treatment of Neurological Disorders: Amyotrophic Lateral Sclerosis. *Methods Mol Biol* 1382: 399-408. [Crossref]

69. Baba M, Itaka K, Kondo K, Yamasoba T, Kataoka K (2015) Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. *J Control Release* 201: 41-48. [Crossref]

70. Jette N, Reid AY, Wiebe S (2014) Surgical management of epilepsy. *CMAJ* 186: 997-1004. [Crossref]
Neuroprotective Effects, Biological Activities and Therapeutic Potential of Phytochemicals: A Comprehensive Review

87. Wang ZY, Liu JG, Li H, Yang HM (2016) Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer’s Disease: A Review. Am J Chin Med 44: 1525-1541. [Crossref]

88. More SV, Kumar H, Kang SM, Song SY, Lee Ket al. (2013) Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease. Evid Based Complement Alternat Med 2013: 957875. [Crossref]

89. Zhang X, Hong YL, Xu DS, Feng Y, Zhao LJ et al. (2014) A review of experimental research on herbal compounds in amyotrophic lateral sclerosis. Phytother Res 28: 9-21. [Crossref]

90. Kean RJ, Lampert DJ, Dodd GF, Freeman JE, Williams CM et al. (2015) Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr101: 506-514. [Crossref]

91. Bensalem J, Servant L, Alfos S, Gaudout D, Layé S et al. (2016) Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice. Front Behav Neurosci 10: 9. [Crossref]

92. Nabavi SF, Dadlia M, D’Antonia G, Sobarzo Sanchez E, Talas ZS et al. (2015) Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr Pharm Biotechnol 16: 211-218. [Crossref]

93. Goozee KG, Shah TM, Sohrabi HR, Rainey Smith SR, Brown B et al. (2016) Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br J Nutr 115: 449-465. [Crossref]

94. Gaballah HH, Zakaria SS, Elbashir MM, Tahooon NM et al. (2016) Modulatory effects of resveratrol on endoplasmic reticulum stress-associated apoptosis and oxido-inflammatory markers in a rat model of rotenone-induced Parkinson’s disease. Chem Biol Interact 251: 10-16. [Crossref]

95. Wang ZH, Zhang JY, Duan YL, Zhang QS, Li GF et al. (2015) MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting n-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 74: 252-256. [Crossref]

96. Jiang YF, Liu QZ, Cui W, Zhang WT, Gong JP et al. (2015) Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chin J Integr Med 21: 516-522. [Crossref]

97. Wang Y, Chen G, Yu X, Li Y, Zhang L et al. (2016) Salvianolic Acid B Ameliorates Cerebral Ischemia/Reperfusion Injury Through Inhibiting TLR4/MyD88 Signaling Pathway. Inflammation 39: 1503-1513. [Crossref]

98. Zhang L, Feng H, He Y, Zhao J, Chen Y et al. (2017) Ginseng saponin Rbl enhances hematopoietic function and dendritic cells differentiation. Acta Biochim Biophys Sin (Shanghai) 49: 746-749. [Crossref]

99. Zhao X, Sun H, Wang S, Guo X, Ding H et al. (2017) Ginseng Stem-and-Leaf Saponin (GLSLS)- Enhanced Protective Immune Responses Induced by Toxoplasma gondii Heat Shocked Protein 70 (HSP70) Against Toxoplasmosis in Mice. J Parasitol 103: 111-117. [Crossref]

100. Liu MY, Ren YP, Zhang LJ, Ding JY (2016) Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression. Aging Dis 7: 680-686. [Crossref]

101. He DF, Ren YP, Liu MY (2016) Effects of Ginseng Fruit Saponins on Serotonin System in Sprague-Dawley Rats with Myocardial Infarction, Depression, and Myocardial Infarction Complicated with Depression. Chin Med J (Engl) 129: 2913-2919. [Crossref]

102. Yan ZQ, Chen J, Xing GX, Huang JG, Hou XH et al. (2015) Salidroside prevents Cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Int Med Res 43: 402-411. [Crossref]

103. WANG XJ, WANG DX, XU CJ (2016) Therapeutic effect of asiaticoside on Alzheimer’s disease. CHINA MEDICINE AND PHARMACY 6: 37-39.

104. Cao G, Jiang N, Hu Y, Zhang Y, Wang G et al. (2016) Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway. Int J Mol Sci 17: E1418. [Crossref]

105. FAN Yue, WU Xiaoguang, MIAO Hong (2015) Effect of Scutellaria Barbita Flavonoids on β-Amyloid Protein-induced Injury in Rats Astrocytes [J]. Herald of Medicine 34: 141-145.

106. YIN Xue li, GUI Li, LI Zhen (2015) Effects of puerarin preconditioning on neuronal injury in hippocampal CA1 region of rats with focal cerebral ischemia - reperfusion and its mechanism. J Anhui Med University 50: 723-726.

107. LIU Xiao long, LI Wen yan, GAO Tian, et al. (2015) Study on experimental autoimmune encephalomyelitis with oxymatrine on rats model [J]. Chin J Biochem Pharm 35: 22-24.

108. Liu J, Chen Q, Jian Z, Xiong X, Shao L et al. (2016) Daphnetin Protects against Cerebral Ischemia/Reperfusion Injury in Mice via Inhibition of TLR4/NF-κB Signaling Pathway. Biomed Res Int 2016: 2816056. [Crossref]

109. SONG WS, ZHANG YL, SU N W (2016) Research on effects and mechanisms of oleanolic acid on waking silent synapses in Alzheimer’s disease rat hippocampus. CJTCM P 31: 3471-3474.

110. Huang S, Mao J, Ding K, Zhou Y, Zeng X et al. (2017) Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem Cell Reports 8: 84-94. [Crossref]

111. KONG L, YAO Y, JIAO Y (2015) Protective Effects of Osthole on the Nerves of Model Mice with Cerebicerebral Injury [J]. China Pharmacy 26: 3046-3049.

112. LI C, LI Z, JI W (2015) Effect of physcion on the expression of Bcl-2 and Bax in rats after brain injury [J]. Chin J Neurosurg Dis Res 14: 200-203.

113. Lin L, Chang LL, Liu GL (2016) Effects of Crocin on Spatial Learning and Memory and LTP in Hippocampus on Rat’s with Alzheimer disease. Chin J Neuronat 32: 482-486.

114. Karani M, Batheia SZ, Tairahi T, Habibi Rezaei M, Arabkhadermand J et al. (2013) Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). Phytomedicine 21: 62-67. [Crossref]

115. Lee SH, Ko IG, Kim SE, Hwang L, Jin JJ et al. (2016) Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils. J Exerc Rehabil 12: 69-78. [Crossref]

116. Zeng Y, Guo W, Xu G, Wang Q, Feng L et al. (2016) Xyloketal-derived small molecules show protective effect by decreasing mutant
Huntingtin protein aggregates in Caenorhabditis elegans model of Huntington's disease. *Drug Des Devel Ther* 13: 1443-1451. [Crossref]

117. Koster KP, Smith C, Valencia Olvera AC, Thatcher GR, Tai LM et al. (2017) Rexinoids as therapeutics for Alzheimer disease: role of APOE. *Curr Top Med Chem* 17: 708-720. [Crossref]

118. Huang Q, Du X, He X, Yu Q, Hu K et al. (2016) JNK- mediated activation of ATF2 contributes to dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease. *Exp Neurol* 277: 296-304. [Crossref]

119. Mortari MR, Cunha AOS (2013) New perspectives in drug discovery using neuroactive molecules from the venom of arthropods. In: Baptista GR, editor. An Integrative View of the Molecular Recognition and Toxinology. From Analytical Procedures to Biomedical Applications p. 91-117.

120. Fuentes VM, Gomes FMM, Campos GAA, Silva JC, Biolchi AM et al. (2015) Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. *J Venom Anim Toxins incl Trop Dis* 21: 31. [Crossref]

121. Choi DY, Choi H (2015) Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. *Arch Pharm Res* 38: 139-170. [Crossref]

122. Olasehinde TA, Olaniran AO, Okoh AI (2017) Therapeutic Potentials of Microalgae in the Treatment of Alzheimer's Disease. *Molecules* 22: E480. [Crossref]

123. Wu DT, Deng Y, Chen LX, Zhao J, Bzhelyansky A et al. (2017) Evaluation on quality consistency of Ganoderma lucidum dietary supplements collected in the United States. *Sci Rep* 7: 7792. [Crossref]

124. Guillen-Grima L, Essa MM, Song BJ, Manivasagam T (2017) Dietary Supplements/Antioxidants: Impact on Redox Status in Brain Diseases. *Oxid Med Cell Longev* 2017: 5048432. [Crossref]

125. Saboor Yaraghi AA, Harirchian MH, Mohammadzadeh Honarvar N, Bitarafan S, Abdolahy M et al. (2015) The Effect of Vitamin A Supplementation on FoxP3 and TGF-β Gene Expression in Avonex-Treated Multiple Sclerosis Patients. *J Mol Neurosci* 56: 608-612. [Crossref]

126. Raszewski G, Chwedorowicz R, Chwedorowicz A, Gustaw Rothenberg K (2016) Homocysteine, antioxidant vitamins and lipids as biomarkers of neurodegeneration in Alzheimer’s disease versus non-Alzheimer’s dementia. *Ann Agric Environ Med* 23: 193-196. [Crossref]

127. Chen H, Liu S, Ji L, Wu T, Ma F et al. (2015) Associations between Alzheimer’s disease and blood homocysteine, vitamin B12, and folate: a case control study. *Curr Alzheimer Res* 12: 88-94. [Crossref]

128. Eagappan K, Sasikumar S (2015) Functional nutrition is a detrimental factor in biological aging. *International Journal of Pharmaceutical Sciences Review and Research* 32: 153-161.

129. Liu Y, Li YW, Tang YL, Liu X, Jiang JH et al. (2013) Vitamin D: preventive and therapeutic potential in Parkinson’s disease. *Curr Drug Metab* 14: 989-993. [Crossref]

130. Sundström P, Salzer J (2015) Vitamin D and multiple sclerosis—from epidemiology to prevention. *Acta Neurol Scand* 132: 56-61. [Crossref]

131. Molnár MF, Török R, Szalárdy L, Szemüegi E, Vécsei L et al. (2016) High-dose 1,25-dihydroxyvitamin D supplementation elongates the lifespan of Huntington's disease transgenic mice. *Acta Neurobiol Exp (Wars)* 76: 176-181. [Crossref]

132. Okereke OL, Singh A (2016) The role of vitamin D in the prevention of late-life depression. *J Affect Disord* 198: 1-14. [Crossref]

133. Grinmm MO, Stahlmann CP, Mett J, Haupenthal VJ, Zimmer VC et al. (2015) Vitamin E: curse or benefit in Alzheimer’s disease? A systematic investigation of the impact of α-, γ- and δ-tocopherol on Aβ generation and degradation in neuroblastoma cells. *J Nutr Health Aging* 19: 646-656. [Crossref]

134. Yary T, Lehto SM, Tolmunen T, Tuomainen TP, Kauhanen J et al. (2016) Dietary magnesium intake and the incidence of depression: A 20-year follow-up study. *J Affect Disord* 193: 94-98. [Crossref]

135. Fitzgerald KC, O’Reilly ÉJ, Falcione GI, McCullough ML et al. (2013) Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: pooled results from 5 cohort studies. *Ann Neurol* 73: 236-245. [Crossref]

136. Vauzour D, Martinsen A, Layé S (2015) Neuroinflammatory processes in cognitive disorders: is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? *Nutrochem Int* 89: 63-74. [Crossref]

137. Fitzgerald KC, O’Reilly ÉJ, Falcione GI, McCullough ML, Park Y et al. (2014) Dietary α-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. *JAMA Neurol* 71: 1102-1110. [Crossref]

138. Parkinson Study Group SURE PD Investigators, Schwarzschild MA, Ascherio A, Beal MF, Cudkowicz ME, et al. (2014) Insosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. *JAMA Neurol* 71: 141-150. [Crossref]

139. Yu S, Wang C, Cheng Q, Xu H, Zhang S et al. (2014) An active component of Achyranthes bidentata polypeptides provides neuroprotection through inhibition of mitochondrial-dependent apoptotic pathway in cultured neurons and in animal models of cerebral ischemia. *PLoS One* 9: e109923. [Crossref]