Supplemental Information

SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2
Are Expressed in the Microvasculature and Ducts
of Human Pancreas but Are Not Enriched in β Cells

Katie C. Coate, Jeeyeon Cha, Shristi Shrestha, Wenliang Wang, Luciana Mateus Gonçalves, Joana Almaça, Meghan E. Kapp, Maria Fasolino, Ashleigh Morgan, Chunhua Dai, Diane C. Saunders, Rita Bottino, Radhika Aramandla, Regina Jenkins, Roland Stein, Klaus H. Kaestner, Golnaz Vahedi, HPAP Consortium, Marcela Brissova, and Alvin C. Powers
Figure S1

A: Camunas-Soler et al.

B:

ACE2

Donor BMI

TMPRSS2

ADAM17

Donor BMI

HPAP
Figure S4

Normal Adult

DPP4

Type 2 Diabetes

INS GCG

Type 1 Diabetes

MERGE

A 55yM

B 60y_1yM

C 20y_7yM
Figure S1. Related to Figure 1. Stratification of ACE2, TMPRSS2, and ADAM17 Expression in β cells by BMI.

(A) Dot plots of ACE2, TMPRSS2, CTSL, ADAM17, FURIN, TMPRSS4, and DPP4 mRNA expression compared with cell type-enriched genes from a previously published single cell (sc) RNA-seq datasets (Camunas-Soler et al., 2020). Dot size indicates percentage of cells in a given population expressing the gene; dot color represents scaled average expression. Dotted line highlights ACE2, TMPRSS2, CTSL, ADAM17, FURIN, TMPRSS4, and DPP4 expression.

(B) ACE2, TMPRSS2, and ADAM17 mRNA expression in single β cells according to BMI. β cell gene expression from eleven donors (ages 1-39 years) from the HPAP scRNA-seq dataset (Kaestner et al., 2019) are displayed from lowest to highest BMI. Only one donor had a BMI in the obese range in this dataset. Human pancreatic donor information is available in Table S2.

Figure S2. Related to Figure 1 and 2. Testing and Characterization of Four ACE2-directed Antibodies on Human Pancreatic Tissue.

(A-E) Characterization of ACE2 antibody (red; ab15348) used by Yang et al. (Yang et al., 2020) and Fignani et al. (Fignani, 2020). Antibody epitope encompasses the ACE2 C-terminal domain (human aa 788-805). Mouse kidney tissue served as a positive control for ACE2 (A), while normal adult human pancreatic tissue incubated with anti-rabbit-Cy3 secondary antibody only served as a negative control (B). Normal adult human pancreas labeled for ACE2 (red), INS (green, β cells) and GCG (blue, α cells) (C-E). Inset area is marked by a yellow box in MERGE column (n = 14 total images analyzed).

(F-I) ACE2 neutralization with immunizing peptide. Scale bars are 100 µm (A-E) and 50 µm (Inset, E and F-I) (n = 8 total images analyzed).

(J-N) Characterization of ACE2 antibody (red; R&D MAB933) at same dilution (1:33) reported by Fignani et al. (Fignani, 2020). Antibody epitope encompasses the ACE2 extracellular domain (human aa 18-740). Human kidney tissue served as a positive control for ACE2 (J), while normal adult human pancreatic tissue incubated with anti-mouse-Cy3 secondary antibody only
served as a negative control (K). Normal adult human pancreas labeled for ACE2 (red), INS (green, β cells) and GCG (blue, α cells) (L-N). Inset area is marked by a yellow box in MERGE column. Scale bars are 50 µm (J-N) and 25 µm (Inset, N) (n = 18 total images analyzed).

(O-S) Characterization of ACE2 antibody (red; R&D AF933) at same dilution (1:200) reported by Yang et al. (Yang et al., 2020). Antibody epitope encompasses the ACE2 extracellular domain (human aa 18-740). Human kidney served as a positive control for ACE2 (O), while normal adult human pancreatic tissue incubated with anti-goat-Cy3 secondary antibody only served as a negative control (P). Normal adult human pancreas labeled for ACE2 (red), INS (green, β cells) and GCG (blue, α cells) (Q-S). Inset area is marked by a yellow box in MERGE column. Scale bars are 50 µm (O-R) and 25 µm (Inset, S) (n = 13 total images analyzed).

(T-W) Characterization of ACE2 antibody (red; HPA000288) used by the Human Protein Atlas (Uhlen et al., 2015) and Hikmet et al. (Hikmet et al., 2020). Antibody epitope encompasses the ACE2 extracellular domain (human aa 1-111). Human kidney tissue served as a positive control for ACE2 (T). Normal adult human pancreas labeled for ACE2 (red) and INS (green, β cells) (U-W). Inset area is marked by a white dashed box in MERGE column. Scale bars are 100 µm (T-V) and 50 µm (Inset, W). DAPI (white) (n = 6 total images analyzed).

Human pancreatic donor information is available in Table S2 (B, donor N8; C-E, donor N4; F-I, donors N6 and N2; J-N, donor N2; O-S, donor N7; T-W, donor N8).

Figure S3. Related to Figures 2 and 5. ACE2 and TMPRSS2 Protein in Human Islets and Exocrine Tissue from Adult Donors With and Without Diabetes.

(A-H) Immunostaining of SARS-CoV-2 cell entry markers ACE2 (antibody ab15348) and TMPRSS2, both shown in red, in islet α cells (GCG, blue) or β cells (INS, green) in pancreatic sections from adult donors without diabetes. Insets are depicted by a yellow box. DAPI (white) (n = 14 total images analyzed).
(I-N) Immunostaining of SARS-CoV-2 cell entry markers ACE2 (antibody ab15348) and TMPRSS2, both shown in red, in islet α cells (GCG, blue) or β cells (INS, green) in pancreatic sections from adult donors with type 2 diabetes. Insets are depicted by a yellow box. DAPI (white) \((n = 12 \text{ total images analyzed}) \).

(O-V) Immunostaining of SARS-CoV-2 cell entry markers ACE2 (antibody ab15348) and TMPRSS2, both shown in red, in islet α cells (GCG, blue) or β cells (INS, green) in pancreatic sections from adult donors with type 1 diabetes. Insets are depicted by a yellow box. DAPI (white) \((n = 11 \text{ total images analyzed}) \).

Human islet and pancreatic donor information is available in Table S2 (A-D, donors N3, N7, N9, N8; E-H, donors N14, N12, N11, N10; I-L, donors 2L, 2B, 2G, 2I; M-N, donors 2H, 2G; O-R, donors 1B, 1D, 1C, 1A; S-V, donors 1H, 1K, 1J, 1G). Scale bars are 100 µm (A-V) and 25 µm (Insets).

Figure S4. Related to Figures 1 and 2. DPP4 Protein in Human Islets from Adult Donors With and Without Diabetes.

(A-C) Immunostaining of DPP4 (red) in human pancreatic islet α cells (GCG, blue; merged, magenta) and β cells (INS, green) in pancreatic sections from adult donors without diabetes \((n = 2 \text{ total images analyzed}) \).

(D-F) Immunostaining of DPP4 (red) in human pancreatic islet α cells (GCG, blue; merged, magenta) and β cells (INS, green) in pancreatic sections from adult donors with type 2 diabetes \((n = 2 \text{ total images analyzed}) \).

(G-I) Immunostaining of DPP4 (red) in human pancreatic islet α cells (GCG, blue; merged, magenta) and β cells (INS, green) in pancreatic sections from adult donors with type 1 diabetes \((n = 2 \text{ total images analyzed}) \).

Human islet and pancreatic donor information is available in Table S2 (A-C, donor N8; D-F,
Figure S5. Related to Figures 3 and 4. ACE2 Protein Localization with Islet and Exocrine Capillaries in Adult Human Pancreas of Individuals with Diabetes.

(A-H’) Representative images of endothelial cells (CD31, white) and ACE2-positive perivascular cells (red; antibody ab15348) in the islet microvasculature of individuals with type 2 (A-D’) or type 1 diabetes (E-H’). DAPI (blue). ACE2-positive perivascular cells (red; antibody ab15348) and the extracellular matrix marker collagen-IV (COL4, green) within the vascular basement membrane are shown (D, D’, H and H’); DAPI counterstain (blue) (n = 23 total images analyzed).

(I-P’) Representative images of endothelial cells (CD31, white) and ACE2-positive perivascular cells (red; antibody ab15348) in the exocrine tissue microvasculature of individuals with type 2 (I-L’) or type 1 diabetes (M-P’). DAPI (blue). ACE2-positive perivascular cells (red; antibody ab15348) and the extracellular matrix marker collagen-IV (COL4, green) within the vascular basement membrane are shown (L, L’, P and P’); DAPI counterstain (blue) (n = 23 total images analyzed).

Human pancreatic donor information is available in Table S2 (A-D’, donor 2E; E-H’, donor 1F; I-L’, donor 2E; M-P’, donor 1C). Yellow arrowheads point to CD31-positive endothelial cells, while magenta arrowheads point to perivascular ACE2-positive cells. Insets (A’-P’) are depicted by yellow boxes in A-P. Scale bars are 50 µm (A-P) and 10 µm (Insets, A’-P’).
Table S1. Related to Figure 1. Number and Percentage of β cells that Express and Co-express Putative SARS-CoV-2 Cell Entry Genes Across Four Independent scRNA-seq Datasets.

Genes	Droplet-based scRNA-seq		SMART-seq					
	HPAP^a	Baron et al.^b	Segerstolpe et al.^c	Camunas-Soler et al.^c				
	(β cell total, n = 2828)	(β cell total, n = 2525)	(β cell total, n = 157)	(β cell total, n = 194)				
# β cell	% β cells							
ACE2	17	0.6	4	0.2	3	1.9	7	3.6
TMPRSS2	60	2.1	7	0.3	4	2.5	2	1.0
TMPRSS4	0	0.0	0	0.0	0	0.0	3	1.5
CTSK	1421	50.2	977	38.7	132	84.1	161	83.0
FURIN	779	27.5	942	37.3	91	58.0	138	71.1
ADAM17	494	17.5	251	9.9	78	49.7	52	26.8
ACE2, TMPRSS2	0	0.0	0	0.0	0	0.0	0	0.0
ACE2, TMPSRSS4	0	0.0	0	0.0	0	0.0	0	0.0
ACE2, CTSK	0	0.0	2	0.1	3	1.9	6	3.1
ACE2, FURIN	0	0.0	1	0.0	1	0.6	3	1.5
ACE2, ADAM17	0	0.0	0	0.0	1	0.6	2	1.0

^a10x genomics; ^bInDrop (Klein et al., 2015); ^cSMART-seq2 (Picelli et al., 2014)
Table S2. Related to STAR Methods. Demographic Information of Donors.

Donor ID	Age	Ethnicity / Race	Diabetes Duration	Sex	BMI	Cause of Death	Tissue/Islet Source
J1	5 days	Caucasian	--	F	14.9	Anoxia	IIAM
J2	3 months	Caucasian	--	M	16.8	Anoxia	NDRI
J3	10 months	Caucasian	--	F	15.4	CVA	NDRI
J4	20 months	Caucasian	--	F	23.5	Anoxia	IIAM
J5	5 years	Caucasian	--	M	16.2	Anoxia	IIAM
N1	42 years	Caucasian	--	M	32.2	Overdose	TNDS
N2	45 years	Caucasian	--	F	29.7	Anoxia	OPO
N3	46 years	Caucasian	--	F	32.9	CVA	IIAM
N4	48 years	Caucasian	--	M	24.6	Anoxia	OPO
N5	51 years	Caucasian	--	M	20.4	Anoxia	OPO
N6	52 years	Black	--	M	29.2	ICH	TNDS
N7	52 years	Caucasian	--	M	28.1	Head Trauma	OPO
N8	55 years	Black	--	M	35.6	CVA	IIAM
N9	59 years	Caucasian	--	M	32.7	Head Trauma	IIAM
N10	20 years	Hispanic	--	M	19.4	Head Trauma	IIAM
N11	24 years	Caucasian	--	M	35.5	ICH	IIAM
N12	35 years	Caucasian	--	M	26.8	Head Trauma	IIAM
N13	20 years	Caucasian	--	M	27.8	Head Trauma	NDRI
N14	18 years	Caucasian	--	M	25.1	Head Trauma	IIAM
HP1754	15 years	N/A	--	M	22.6	Head Trauma	IIAM
HP2041	29 years	N/A	--	M	22.3	Head Trauma	IIAM
HP2091	44 years	N/A	--	F	23.7	CVA	IIAM
1A	43 years	N/A	36 years	M	31.2	CVA	NDRI
1B	45 years	Caucasian	43 years	M	25.0	Anoxia	IIAM
1C	54 years	Caucasian	14 years	F	24.9	Anoxia	IIAM
1D	57 years	Black	45 years	M	33.3	CVA	IIAM
1E	58 years	Caucasian	31 years	M	21.8	Anoxia	NDRI
1F	63 years	Caucasian	44 years	M	24.1	Anoxia	IIAM
1G	35 years	Caucasian	23 years	M	26.9	Anoxia	NDRI
1H	20 years	Caucasian	7 years	M	25.5	Anoxia	NDRI
1I	27 years	Caucasian	17 years	M	18.4	Anoxia	NDRI
1J	13 years	Caucasian	5 years	M	19.1	Anoxia	IIAM
1K	30 years	Caucasian	20 years	M	29.8	Anoxia	NDRI
2A	44 years	Caucasian	7 years	M	44.4	CVA	IIAM
2B	52 years	Caucasian	7 years	M	33.6	CVA	IIAM
2C	52 years	Asian	10 years	F	21.9	CVA	NDRI
2D	52 years	Caucasian	< 1 year	F	29.2	CVA	IIAM
2E	42 years	Black	< 1 year	M	42.0	CVA	IIAM
---	---	---	---	---	---	---	
2F	43 years	Black	1 year	M	36.0	Head Trauma	IIAM
2G	66 years	Caucasian	3 years	F	32.8	CVA	IIAM
2H	47 years	Caucasian	3 years	M	31.3	CVA	IIAM
2I	64 years	Caucasian	5 years	M	33.2	ICH	IIAM
2J	59 years	Caucasian	6 years	F	27.5	CVA	IIAM
2K	60 years	Caucasian	1 year	M	38.3	CVA	IIAM
2L	49 years	Caucasian	3 years	F	33.8	CVA	IIAM

Normal Adult Islets (Gels and scRNA-Seq)

I1	40 years	Caucasian	--	F	30.8	Head Trauma	IIDP
I2	41 years	N/A	--	M	20.3	N/A	IIDP
I3	42 years	Caucasian	--	M	32.2	Overdose	IIDP
HPAP022	39 years	Caucasian	--	F	34.7	Anoxia	HPAP
HPAP026	24 years	Caucasian	--	M	20.8	Anoxia	HPAP
HPAP034	13 years	Caucasian	--	M	18.6	Head Trauma	HPAP
HPAP035	35 years	Caucasian	--	M	26.9	Anoxia	HPAP
HPAP036	23 years	Caucasian	--	F	16	Head Trauma	HPAP
HPAP037	35 years	Caucasian	--	F	21.9	CVA	HPAP
HPAP039	5 years	Caucasian	--	F	16.3	Anoxia	HPAP
HPAP040	35 years	Caucasian	--	M	23.9	CVA	HPAP
HPAP042	1 year	Caucasian	--	M	17.9	Anoxia	HPAP
HPAP044	3 years	Caucasian	--	F	12	Anoxia	HPAP
HPAP047	8 years	Caucasian	--	M	16.8	CVA	HPAP

COVID-19 Patient Autopsy Samples (Histology)

1	82 years	Caucasian	--	M	26.8	ALI	VUMC Autopsy
2	97 years	Caucasian	--	F	19.7	ALI	VUMC Autopsy
3	81 years	Caucasian	>10 years\(^a\)	M	23.3	ALI	VUMC Autopsy
4	60 years	Hispanic	--	M	36.7	ALI	VUMC Autopsy
5	51 years	Hispanic	23 years	M	29.4	ALI	VUMC Autopsy
6	60 years	Caucasian	--	F	38.4	PE	VUMC Autopsy
7	71 years	Black	Pre-existing\(^b\)	M	31.5	ALI	VUMC Autopsy

ALI – acute lung injury; CVA, cerebrovascular accident; HPAP – Human Pancreas Analysis Program (Human Islet Research Network); ICH, intracerebral hemorrhage; IIAM – International Institute for the Advancement of Medicine; IIDP – Integrated Islet Distribution Program; N/A – not available; NDRI – National Disease Research Interchange; OPO – Organ Procurement Organization; PE – pulmonary embolism; T1D = type 1 diabetes; T2D – type 2 diabetes; TNDS – Tennessee Donor Services, Nashville; VUMC Autopsy – Vanderbilt University Medical Center Autopsy Pathology

\(^a\)Oldest clinical patient note including diagnosis of diabetes mellitus was signed in 2010, suggesting disease duration of at least 10 years.

\(^b\)Patient was prescribed an oral anti-diabetic medication confirming pre-existing diabetes diagnosis of unknown duration prior to admission with COVID-19.