Comparison of pain and psychosocial correlates among Hispanic and Non-Hispanic White youth with chronic pain

Ana B. Goya Arce, Patricia A. Richardson, Susan T. Tran, Rashmi P. Bhandari

Abstract

Introduction: Despite well-documented pain disparities among adults from non-White and Hispanic groups, less is known about pain disparities in non-White and Hispanic pediatric populations.

Objectives: We compare pain and related psychosocial factors at the individual (pain intensity, pain interference, pain catastrophizing, co-occurring symptoms), social (peer relations), and systemic (health insurance) levels among Hispanic and Non-Hispanic White (NHW) youth with chronic pain.

Methods: Eight hundred thirty-seven (71.4% female) Hispanic (n = 268, 32%) and NHW (n = 569, 68%) youth ages 8 to 17 years (M = 14.00; SD = 2.54) completed a survey at their initial visit to a pain clinic. Independent sample t tests investigated mean differences in psychosocial factors at the individual and social levels. Chi-squared tests investigated differences at the systemic level. Bivariate correlations for each group were compared using Fisher r-to-z transformations.

Results: Hispanic youth reported higher levels of pain intensity (t(811) = −2.75, P = 0.006). Groups did not differ in reports of other individual or social factors. Non-Hispanic White youth were more likely to have private insurance (OR, 5.66). All examined variables were significantly correlated among NHW youth. Correlations were weaker or nonsignificant among Hispanic youth. Fisher r-to-z transformations revealed these group differences to be significant.

Conclusion: Hispanic youth reported higher pain levels than NHW counterparts and lower likelihood of having private insurance. Pain and psychosocial factors correlate differently among the 2 groups highlighting a need to better understand the chronic pain experiences of diverse youth because models derived primarily from NHW populations may not generalize across ethnic and racial groups.

Keywords: Pediatric pain, Chronic pain, Health disparities, Ethnicity, Hispanic youth

1. Introduction

Pain is a leading cause of both short-term and long-term disability in the United States (US) with an estimated cost of $560 billion annually when combining direct medical costs, productivity loss, and disability programs. Chronic pain in children and adolescents is relatively common, with estimated prevalence rates ranging from 11% to 38%. Chronic pain in childhood can cause difficulties with school attendance and can have a significant impact in socioemotional and physical functioning. In the United States, costs of moderate to severe chronic pain in children and adolescents are estimated to be $19.5 billion annually. Furthermore, pain in children and adolescents may persist for several years and into adulthood.

Pain affects all ethnic and racial groups. However, the literature on pain disparities on adult patients indicates patients belonging to systemically underrepresented racial and ethnic minority (URE) groups have a higher prevalence of pain conditions, greater pain intensity, and increased risk for chronic pain. These disparities are observed at the biological, psychological, cultural, social, and environmental levels. At the biological level, laboratory studies have found ethnic identity to be associated with higher pain sensitivity among URE populations and with differences in pain processing including differences in pain-related biomarkers (e.g., cortisol, norepinephrine, oxytocin). At the psychological and cultural levels, research has found differences in pain coping, pain catastrophizing, and...
perceived pain control among URE groups, with Hispanic and non-Hispanic Black patients being more likely to use religious coping, report higher levels of pain catastrophizing, and lower levels of perceived pain control. At the social level, non-Hispanic Black and Hispanic adults experience higher impact of pain on the social domain than their non-Hispanic White (NHW) counterparts. At the environmental or systemic level, research has found differences in treatment recommendations and access to specialty care. Research has suggested many of these differences may be driven by differences in the social determinants of health (SDOH). For example, lower socioeconomic status (SES) has been associated with higher prevalence of pain and a higher impact of pain on functioning in both the pediatric and adult populations across all racial and ethnic groups. However, URE populations are more likely to experience economic stress and are disproportionally affected by lower income and SES.

Despite the well-documented disparities among adults, less is known about how these same factors affect the prevalence, experience, and treatment of pain in URE youth and whether similar disparities are present in the pediatric population. The existing pediatric literature indicates that youth with chronic pain are more likely to be affected by SDOH including lower family income, higher barriers to health care, and increased exposure to violence and safety concerns, but differences on the impact of these factors on pain may vary by racial or ethnic groups. Other variables, including level of acculturation and language used at home, have also been found to play a role in pain presentation, with Hispanic youth who speak English and who endore higher levels of acculturation reporting more frequent musculoskeletal pain complaints than their Spanish-speaking counterparts with lower acculturation levels. Additional research with URE pediatric populations is needed as models of care developed with URE adults may not fully apply to children because there is a need for developmentally tailored services, given social factors such as family context are highly relevant to children’s experience of pain.

The Hispanic population in the United States is among the fastest growing groups of people in the country with population projections estimating that Hispanic individuals will make up 31% of the total US population by the year 2050. Despite this, the Hispanic population has remained understudied because most pediatric pain research in the United States has been conducted with NHW samples, thus limiting our understanding of potential differences in pain presentation and treatment among Hispanic youth. Given the rapidly growing Hispanic population in the United States, the known pain disparities among URE adults as well as the prevalence, high cost, and persistence into adulthood of pediatric chronic pain, it is crucial that we better understand the pain experience of Hispanic youth to support better assessment, prevention, and treatment.

This study seeks to understand differences and similarities in pain and other psychosocial factors for Hispanic youth compared with NHW youth with chronic pain presenting to a pediatric tertiary care clinic. The aims of this study are:

Aim 1: Examine how Hispanic and NHW youth compare in their reports of pain intensity and other pain-related factors at the individual (pain interference, co-occurring symptoms, pain catastrophizing), social (peer relations), and systemic (health insurance) levels.

Aim 2: Understand how pain-related factors at the individual and social levels relate to each other in Hispanic and NHW pediatric patients and whether these relations differ between ethnic groups.

Although extant research on disparities by ethnicity in pediatric chronic pain is limited, based on the adult literature, we expect:

Hypothesis 1: Hispanic youth will report greater pain intensity, greater difficulties with peer relations, lower levels of pain interference, greater intensity of co-occurring psychological symptoms (anxiety and depression), and similar or lower rates of co-occurring sleep difficulties. We also expect Hispanic youth to be more likely to have public insurance (Medi-Cal).

Hypothesis 2: Given previous reports of differential impact of certain factors, such as pain catastrophizing on pain interference, we expect correlations between variables at the individual (pain intensity, pain interference, pain catastrophizing, co-occurring symptoms) and social (peer relations) levels to significantly differ between the 2 groups.

2. Materials and methods

2.1. Participants

Inclusion criteria for this study were completing the Peds-CHOIR baseline survey between October 2015 and February 2020 before initial visit to a pediatric pain management clinic in the west coast of the United States, patient being age 8 to 17 years at the time of survey completion, and patient identifying as Hispanic (regardless of race) or NHW. Hispanic ethnicity was defined as belonging to a Latin American or other Spanish culture or origin regardless of race. Youth younger than 8 years and older than 17 years were excluded, given measures used in the survey have not been validated for these age groups. Given this study’s aims of understanding differences among Hispanic and NHW youth and in line with previous research seeking to better understand pain in Hispanic youth when compared with their NHW counterparts, we excluded youth ages 8 to 17 years identifying with other racial or ethnic groups (n = 516). Youth who were unable to complete the survey in English were also excluded because the survey was only available in English at the time of data collection.

This study used data from 837 children and adolescents between the ages 8 and 17 years (M = 14.00; SD = 2.54). Of the 837 youth, 569 (68%) identified as NHW and 268 identified as Hispanic (32%). It is worth noting that race and ethnicity were self-reported by participants and that participants could select more than one race and specify their race as a free-text response. Of those identifying as Hispanic, 36 (13.4%) participants specified their nationality or country of origin as their race (eg, “Mexican” or “El Salvador”), 11 (4.1%) participants selected “other” as their race but did not provide further information, and 26 (9.7%) participants left the race question blank. The demographic characteristics of the sample are presented in **Table 1.** Hispanic and NHW patients did not differ based on age (f(835) = 0.24, P = 0.81) or sex (χ²[2, N = 836] = 1.09, P = 0.58). The education level of youth’s primary caregiver differed significantly between the 2 groups (χ²[6, N = 830] = 162.53, P < 0.001); differences are further presented in **Table 1.**

2.2. Data source

The pediatric adaptation of the Collaborative Health Outcomes Information Registry (Peds-CHOIR) was fully implemented in October 2015 and is an open source, flexible learning healthcare system incorporating classical testing theory-based measures (eg, Pain Catastrophizing Scale) and item-response theory-based measures administered through computer adaptive tests (eg, NIH Patient-Reported Outcomes Measurement Information
Patients complete the Peds-CHOIR baseline survey within 7 days before the initial evaluation at clinic. Families receive a secure URL link to complete the Peds-CHOIR assessment on registration for their appointment. This baseline survey assesses demographic information, pain intensity, and socioemotional functioning. All study procedures were approved by the university’s Institutional Review Board as a retrospective patient chart review, and informed consent was not required because data were collected within standard clinical care. Other publications have used Peds-CHOIR data to investigate research questions.

2.3. Variables of interest

This study used a variety of measures including a numeric rating scale for pain, classical testing theory-based measures (Pain Catastrophizing Scale), data from the electronic medical record (EMR), and PROMIS pediatric measures for anxiety, depression, pain interference, and peer relations. The PROMIS measures were developed by NIH Roadmap Medical Research Initiative to provide clinicians and researchers with validated patient-reported measures of health and well-being. Patient-Reported Outcomes Measurement Information System measures are normed against the US general population in addition to multiple disease populations. The instruments are measured on a Likert scale (1 = “never or not able to do” to 5 = “almost always or with no trouble”). Computer Adaptive Testing (CAT) versions using item response theory (IRT) were used for this study. Computer Adaptive Testing administers questions from item banks based on the responses to earlier items, optimizing the number of questions answered by patients and limiting patient burden. Although the number of items and exact questions answered by patients may differ based on their responses, IRT yields final results as T-scores and assumes invariance in their underlying construct. T-scores enable comparisons across populations or studies, and within and between reporters, as scores yielded

Table 1

Demographic characteristics of the sample.

	Full sample	NHW	Hispanic			
	Number	%	Number	%	Number	%
Sex						
Male	237	28.3	166	29.2	71	26.5
Female	598	71.4	402	70.7	196	73.1
Nonbinary	1	0.1	1	0.2	—	—
Age						
8–12	250	29.9	173	30.4	77	28.7
13–17	587	70.1	396	69.6	191	71.3
Race						
White	717	85.7	569	100	148	55.2
Black	11	1.3	—	—	11	4.1
Asian	13	1.6	—	—	13	4.9
American Indian	17	2.0	—	—	17	6.3
Hawaiian Native or Pacific Islander	6	0.7	—	—	6	2.2
Other or no race reported	73	8.7	—	—	73	27.2
Insurance						
Private	612	73.1	479	84.2	133	49.6
Public	216	25.8	84	14.8	132	49.3
Parental education level						
Less than high school	31	3.7	4	0.7	27	10.3
Some high school	21	2.5	3	0.5	18	6.9
Finished high school or equivalent	74	8.9	30	50.6	44	16.8
Some college or AA degree	228	27.5	140	24.6	88	33.6
College degree	220	26.5	185	32.6	35	13.4
Postgraduate degree	230	27.7	194	34.2	36	13.7
Other	26	3.1	12	2.1	17	5.3
Primary reason for referral to pain clinic						
Abdominal pain	149	17.8	105	18.5	44	16.4
Back pain	58	6.9	40	7.0	18	6.7
Complex regional pain syndrome	76	9.1	59	10.4	17	6.4
Ehlers danlos syndrome	21	2.5	14	2.5	7	2.6
Fibromyalgia or pain amplification syndrome	48	5.7	32	5.6	16	6.0
Headache	125	14.9	85	14.9	40	14.9
Joint pain or arthralgias	34	4.1	18	3.2	16	6.0
Juvenile arthritis	12	1.4	6	1.1	6	2.2
Lower extremity pain	37	4.4	25	4.4	12	4.5
Musculoskeletal pain	28	3.3	17	3.0	11	4.1
Neck pain	16	1.9	10	1.8	6	2.2
Pain related to cancer	1	0.1	1	0.1	0	0
Post concussive syndrome	16	1.9	13	2.3	3	1.1
Upper extremity pain	11	1.3	6	1.1	5	1.9
Other	205	24.5	138	24.3	67	25.0

Age in years	Mean (SD)	Range	Mean (SD)	Range	Mean (SD)	Range
NHW, Non-Hispanic White.						
from IRT are assumed to reflect the same underlying construct. Scores are based on T-score distribution with a mean of 50 points and a standard deviation of 10. Pediatric PROMIS measures have been validated in children aged 8 to 17 years.16

2.4. Individual factors

2.4.1. Pain intensity

Patients were asked to rate their average pain over the past 7 days on an 11-point numeric rating scale (NRS) from 0 (no pain) to 10 (worst pain). The NRS-11 has demonstrated validity and reliability for self-report of pain intensity in children and adolescents.7

2.4.2. Pain interference

The PROMIS Pediatric Pain Interference CAT–administered questionnaire evaluates the impact of children’s pain on physical, psychological, and social functioning over the past 7 days. An example item is “It was hard to have fun when I had pain.” A higher score indicates greater interference of pain on child functioning.2 Consistency was considered to be appropriate for use in this overall sample was appropriate (α = 0.90) for both Hispanic and NHW youth. Of note, this measure differs from other PROMIS indices because T-score internal consistency of α = 0.90 was used for this study.12

2.4.3. Co-occurring anxiety symptoms

The PROMIS Pediatric Anxiety CAT–administered questionnaire examines a child’s worries over the past 7 days. Sample items include “I felt like something awful might happen.” Higher scores demonstrate greater reported symptoms of anxiety. Established reliability coefficient of α = 0.85 was used for this study.35

2.4.4. Co-occurring depression symptoms

The PROMIS Pediatric Depression CAT–administered questionnaire assesses a child’s negative affect, self-perceptions, and social cognition over the past 7 days with items such as “I felt sad” and “I felt alone.” A higher score demonstrates a higher level of depressive symptoms. Established reliability coefficient of α = 0.85 was used for this study.35

2.4.5. Co-occurring sleep disturbance

The PROMIS Pediatric Sleep Disturbance Short Form (8 items) assesses a child’s self-perceived quality, depth, and restoration associated with sleep.25 Sample items include “I had difficulty falling asleep,” and “my sleep was restless.” This scale uses a 5-point Likert scale (1 = “Not at all” to 5 = “Very much”), with higher total scores reflecting higher levels of disturbed sleep. Scores for this measure differ from other PROMIS indices because T-score transformations are in development. Sleep disturbance scores in this study are reported as raw scores ranging from 8 to 40. Internal consistency was considered to be appropriate for use in this overall sample (α = 0.93), for both Hispanic and NHW youth. Of note, this measure was added to the Peds-CHOIR survey on April 2017, and therefore, a smaller number of patients (Table 1) completed this measure compared with the other measures in this study.

2.4.6. Pain catastrophizing

The Pain Catastrophizing Scale for Children (PCS-C) assesses children and adolescents’ catastrophic thoughts related to pain (eg, “When I am in pain, it is awful and I feel that it overwhelms me”).12 The PCS-C is a 13-item measure that uses a 5-point Likert scale (0 = “Not at all” to 4 = “Extremely”), with higher total scores reflecting increased tendency to catastrophize. Pain Catastrophizing Scale for Children scores between 15 and 25 are considered moderate, whereas scores ≥26 are considered high. The total PCS-C score has demonstrated appropriate internal consistency of α = 0.87.12 Reliability of the PCS-C in the current overall sample was appropriate (α = 0.91), with appropriate reliability for Hispanic (α = 0.90) and NHW (α = 0.92) youth.

2.5. Social factors

2.5.1. Peer relations

The PROMIS Peer Relations CAT–administered questionnaire evaluates the quality of a child’s relationships with peers. Items include “I was able to count on my friends” and “I felt good about my friendships.” These scores were inverse coded for consistency and ease of interpretation with higher scores representing greater levels of dysfunction. Established reliability coefficient of α = 0.90 was used for this study.15

2.6. Systemic factors

2.6.1. Health insurance

Insurance information was extracted from the patient EMR. A binary insurance variable was coded to reflect patients having either public (ie, Medi-Cal) or private insurance. Medi-Cal is California’s Medicaid program that provides health coverage to individuals with limited income. All other types of insurance were considered to be private because they were not funded by the state or federal government.

2.7. Data analysis

All analyses were conducted using IBM SPSS Statistics version 26,11 with the exception of Fisher r-to-z transformations, for which the online calculator provided by Lowry (2015)41 (http://vassarstats.net/rcdf.html) was used. Pairwise deletion was used to address missing data. Please refer to Table 2 for additional information about missing data per measure.

Aim 1: Independent samples t tests were conducted to identify mean differences in reporting between the Hispanic and NHW youth in measures of pain intensity and pain-related factors at the individual (pain interference, pain catastrophizing, and co-occurring symptoms of anxiety, depression, and sleep disturbance) and social (peer relations) levels. To identify differences in systemic-level factors (insurance), Pearson χ² analyses were used to identify whether frequencies of insurance type differed by the ethnic group.

Aim 2: Bivariate correlations were examined separately for each of the 2 ethnic groups (Table 2). The 2 sets of correlations were then compared using Fisher r-to-z transformations (Table 3).

3. Results

3.1. Aim 1

Regarding pain-related factors, Hispanic youth and NHW youth only differed in pain intensity. The results for the t tests are presented in Table 3. Chi-square analyses revealed a significant difference in insurance type by the ethnic group (χ²[1, N = 828] = 113.77, P < 0.001), with NHW youth having a higher likelihood of having private insurance (odds ratio = 5.66)—NHW youth were less likely to have public insurance (14.8% vs 49.3%) and more
likely to have private insurance (84.2% vs 49.6%) than Hispanic youth.

3.2. Aim 2

The results (Tables 4 and 5) highlighted significant differences in correlations between the study variables for the NHW and the Hispanic groups. Regarding pain intensity, significant differences in its correlation with pain catastrophizing, peer relations, anxiety, depression, and sleep disturbance symptoms were observed within the 2 groups. Pain intensity was significantly and positively correlated with pain catastrophizing in the NHW group, but this correlation was nonsignificant in the Hispanic group. Similarly, pain intensity was significantly correlated with peer relations, co-occurring anxiety symptoms, co-occurring depression symptoms, and co-occurring sleep disturbance in the NHW group, but these correlations were nonsignificant in the Hispanic group.

The results also highlighted group differences in correlations of pain interference with pain catastrophizing and peer relations. Although pain interference was positively and significantly correlated with pain catastrophizing in both groups, the correlation was significantly stronger for the NHW group. Pain interference was positively and significantly correlated with peer relations in the NHW group, but this correlation was nonsignificant for the Hispanic group; this difference was significant.

Significant differences between the 2 ethnic groups were found in the correlations of pain catastrophizing with peer relations, co-occurring anxiety symptoms, co-occurring depression symptoms, and co-occurring sleep disturbance. Pain catastrophizing was significantly and positively correlated with peer relations in the NHW group, but this relation was nonsignificant in the Hispanic group. The correlations between pain catastrophizing and co-occurring anxiety symptoms, co-occurring depression symptoms, and co-occurring sleep disturbance were significant in both groups but were significantly stronger in the NHW group. Similarly, the correlations between peer relations and co-occurring anxiety symptoms and co-occurring depression symptoms were significant in both groups but significantly stronger in the NHW group.

4. Discussion

Research with adults highlights significant pain disparities among URE populations, with URE patients reporting greater pain intensity, increased risk for developing chronic pain, and unequal treatment of pain.11,34,47 These disparities emerge at multiple levels including at the biological, psychological, cultural, social, and systemic levels. Research understanding whether similar disparities exist in pediatric populations, however, is scant. This study sought to explore this important gap in the pediatric pain literature by examining whether Hispanic and NHW youth differ in their reports of pain intensity and other pain-related factors at the individual (pain interference, co-occurring symptoms, pain catastrophizing), social (peer relations), and systemic (health insurance) levels and whether associations between these factors differ between the 2 groups.

In this sample, Hispanic youth reported higher pain intensity than their NHW counterparts, which is consistent with findings of national surveys indicating Hispanic adults report more severe pain31 and experimental study findings showing Hispanic adults report greater pain sensitivity and lower pain tolerance than NHW adults.39 Our study also highlighted differences in the likelihood of having public vs private insurance with NHW youth being more likely than Hispanic youth to have private insurance, a finding consistent with previous literature indicating Hispanic populations are more likely to have public insurance, be uninsured or underinsured.19 The significant differences in likelihood to have private insurance between Hispanic and NHW youth may suggest differences in access to healthcare and socioeconomic position (SEP) between the 2 groups, both of which have been associated with disparities in pain prevalence and treatment in URE adults.62 For example, previous research has shown that individuals with private insurance are more likely to have access to provider-assisted complementary and alternative medicine treatments,44 which have been shown to be efficacious for treating pediatric chronic pain.71,73 Although it is beyond the scope of this study, future research should further examine the role SEP, insurance type, and access to healthcare play in pain presentation and treatment among URE youth. Future studies should also aim to explore differences in pain reporting in diverse healthcare settings because patient samples from tertiary care clinics, like the one in this study, may overrepresent patients with private insurance.

Contrary to our hypotheses, no mean differences were found in variables commonly associated with pain between the 2 groups including no mean differences in pain interference, pain catastrophizing, co-occurring anxiety symptoms, co-occurring depression symptoms, co-occurring sleep disturbance, and peer relations. Previous literature indicates variability in Hispanic youth’s reports of pain78 and mental health vulnerabilities46,74.
Table 4

| Bivariate correlations between pain intensity and related psychosocial factors. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
1. Pain intensity	2. P-CAT pain interference	3. PCS-C	4. P-CAT peer relations	5. P-CAT anxiety	6. P-CAT depression	7. P-S sleep disturbance	
1. Pain intensity	—	0.44***	0.38***	0.12**	0.28***	0.23***	0.33***
2. P-CAT pain interference	0.34***	—	0.53***	0.26***	0.46***	0.45***	0.59***
3. PCS-C	0.12	0.38***	—	0.27***	0.63**	0.52***	0.41***
4. P-CAT peer relations	−0.06	0.02	0.09	—	0.35***	0.51***	0.22***
5. P-CAT anxiety	0.08	0.37***	0.49***	0.18**	—	0.75***	0.41***
6. P-CAT depression	0.04	0.33***	0.35***	0.36***	0.72***	—	0.42***
7. P-S sleep disturbance	0.13	0.50***	0.22***	0.04	0.40***	0.44***	—

Coefficients appearing above the diagonal correspond to the NHW sample (n = 569); coefficients below the diagonal correspond to the Hispanic sample (n = 268).

P-CAT PROMIS measure administered through Computer Adaptive Testing (CAT), PCS-C PROMIS measure administered as short form, PCS-C-the Pain Catastrophizing Scale for children.

*P < 0.05; **P < 0.01; ***P < 0.001.

NHW, Non-Hispanic White.

Table 5

| Correlation coefficient differences between NHW and Hispanic samples using Fisher r-to-z transformation. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
1. Pain intensity	2. P-CAT pain interference	3. PCS-C	4. P-CAT peer relations	5. P-CAT anxiety	6. P-CAT depression	7. P-S sleep disturbance
1. Pain intensity	—	1.52	—	—	—	—
2. P-CAT pain interference	3.64***	2.55*	—	—	—	—
3. PCS-C	2.36*	3.33***	2.43*	—	—	—
4. P-CAT peer relations	2.81**	1.51	2.79**	2.38*	—	—
5. P-CAT anxiety	2.52*	1.93	2.80**	2.53*	0.76	—
6. P-CAT depression	1.28*	1.40	2.26*	1.91	0.10	−0.22

Correlation coefficients in the 2 samples were compared using Fisher r-to-z transformation (http://vassarstats.net/rdiff.html).

P-CAT PROMIS measure administered through Computer Adaptive Testing (CAT), PCS-C PROMIS measure administered as short form, PCS-C-the Pain Catastrophizing Scale for children.

*P < 0.05; **P < 0.01; ***P < 0.001.

NHW, Non-Hispanic White.

research in the United States has been conducted with NHW samples which has resulted in poor understanding of the constructs and relationships that influence pain and functioning in URE groups.

To the best of our knowledge, this is the first study to use data from a large clinical registry to explore whether pain disparities exist between Hispanic and NHW youth. Current study strengths include a large sample size of 837 youths of which 268 identified as Hispanic, which is a larger sample of Hispanic youth than many research studies in pediatric pain.13,76 The clinical representation of the study population is further strengthened by including a sample that exemplifies the complexities and psychosocial comorbidities of patients commonly seen at tertiary centers treating children with chronic pain without exclusionary criteria often implemented in clinical trials.

Although being one of the first studies to explore disparities in pain and related factors in a large clinical sample of Hispanic and NHW youth, findings should be interpreted within the context of the study’s limitations. First, given that this study is a retrospective analysis of data collected as a part of an existing clinical registry, proxy indices for individual-level, social-level, and system-level factors were selected based on available data and precluded the inclusion of other potentially important domains that can affect pain, particularly in Hispanic youth, including acculturation, language, nativity, and SEP. Second, the Peds-CHIIR surveys were only available in English at the time when data were collected precluding Spanish-speaking youth from completing the questionnaire. Thus, this sample may overrepresent Hispanic youth who are fluent in English therefore limiting the generalizability of findings to Spanish-speaking Hispanic youth. The lack of available variables assessing country of origin, culture, and language fluency prevents disaggregation of data among different Hispanic subgroups. Previous research has found significant intraethnic variability in pain and health status profiles among Hispanic adults,48 and research in pediatric populations with other health conditions (eg, asthma64) shows significant variability in incidence and morbidity among Hispanic subgroups. Given the sample in this study represents patients presenting to one clinic in the west coast of the United States, it may not be representative of Hispanic pediatric patients across the country or of community samples of Hispanic youth who experience pain but face barriers to specialized pain care.12 Future research should aim to collect data prospectively from a larger and more representative sample of Hispanic pediatric patients who experience chronic pain and should strive to collect more nuanced data on country of origin, language, acculturation, and SEP. Although this study used the age range for which the
measures used were validated, future studies should also aim to characterize whether disparities differ by age group to provide further insights into the role developmental stage plays in pain disparities in the pediatric population.

Despite its limitations, this study advances our understanding of pain in Hispanic youth as compared to NHW youth. Findings are consistent with previous literature showing URE youth are disproportionately affected by SDoh because Hispanic youth in our sample were much more likely to have public insurance than NHW youth. Findings of this study add to a growing body of the literature suggesting differences in pain, pain-related factors, and the association between these factors among ethnic groups, underscoring a need to better understand the experiences of URE pediatric patients who experience chronic pain separately from those of NHW patients to support the assessment and treatment of pediatric pain within a culturally informed framework.

Disclosures
The authors have no conflict of interest to declare.

Article history:
Received 9 December 2021
Received in revised form 19 May 2022
Accepted 1 June 2022

References
[1] Ader DN. Developing the patient-reported outcomes measurement information system (PROMIS), Med Care 2007;45:S5–21.
[2] American Psychiatric Association. Mental health disparities: Hispanics and Latinos, Division of Diversity and Equity, 2017. Available at: https://psychiatry.org/File%20Library/Psychiatrists/Cultural-Competency/Mental-Health-Disparities/Mental-Health-Facts-for-Hispanic-Latino.pdf
[3] Amtmann D, Cook KF, Jensen MP, Chen WH, Kao MC, Darnall BD, Beckner TA, Campbell LC, DeBar L, Kerns R, Von Korff M, Porter I, Helmand C. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb Mortal Wkly Rep 2018;37:1001–6.
[4] Dewalt DA, Thissen D, Stucky BD, Langer MM, Morgan Dewitt E, Irwin DE, Lai J-S, Yeatts KB, Gross HE, Taylor C, Varni JW, PROMIS Pediatric Peer Relationships Scale: development of a peer relationships item bank as part of social health measurement. Health Psychol 2013;32: 1093–103.
[5] DeWitt EM, Stucky BD, Thissen D, Irwin DE, Langer M, Varni JW, Lai JS, Yeatts KB, Dewalt DA. Construction of the eight-item patient-reported outcomes measurement information system pediatric physical function scales: built using item response theory. J Clin Epidemiol 2011;64: 794–804.
[6] Edwards CL, Fillingim RB, Keefe F. Race, ethnicity and pain. PAIN 2001; 143:133–7.
[7] Edwards RR, Moric M, Husfeldt B, Buvanendran A, Ivanovich O. Ethnic similarities and differences in the chronic pain experience: a comparison of african American, Hispanic, and White patients. Pain Med 2005;6: 88–98.
[8] Escalante A, del Rincon I, Mulrow CD. Symptoms of depression and psychological distress among Hispanics with rheumatoid arthritis. Arthritis Care Res 2000;13:156–67.
[9] Fabian LA, McGuire L, Goodin BR, Edwards RR, Ethnicity, catastrophizing, and qualities of the pain experience. Pain Med 2011; 12:314–21.
[10] Feinstein AB, Sturgeon JA, Bhandari RP, Yoon IA, Ross AC, Huestis SE, Griffin AT, Simons LE. Risk and resilience in pediatric pain: the roles of parent and adolescent catastrophizing and acceptance. Clin J Pain 2018; 34:1096–105.
[11] Forrest CB, Meltzer LJ, Marcus CL, de la Motte A, Kratchman A, Blyssse DJ, Pilkonis BA, Becker BD, Behans KB. Development and validation of the PROMIS pediatric sleep disturbance and sleep-related impairment item banks, Sleep 2018;41. doi: 10.1093/sleep/zpy054.
[12] Fried JJ, Bough B, Cella D. The promise of PROMIS: using item response theory to improve assessment of patient-reported outcomes. Clin Exp Rheumatol 2005;23(5 suppl 39):S53–57.
[13] Gagnon CM, Matsuura JT, Smith CC, Stanos SP. Ethnicity and interdisciplinary pain treatment. Pain Pract 2014;14:532–40.
[14] Green CR, Anderson KO, Baker TA, Campbell LC, Decker S, Fillingim RB, Kaloukalani DA, Lasch KE, Myers C, Tail RC. The unequal burden of pain: confronting racial and ethnic disparities in pain. PAIN 2003;4: 277–94.
[15] Grewen KM, Light KC, Mechlin B, Girdler SS. Ethnicity is associated with alterations in oxytocin relationships to pain sensitivity in women. Etn Health 2008;13:219–41.
[16] Groenewald CB, Essner BS, Wright D, Fesinmeyer MD, Palermo TM. The economic costs of chronic pain among a cohort of treatment-seeking adolescents in the United States. J Pain 2014;15:925–33.
[17] Groenewald CB, Giles M, Palermo TM. School absence associated with childhood pain in the United States. Clin J Pain 2019;35:525–31.
[18] Hanns L, Radziszewska A, Sullifeld L, Josephs F, Chaplin H, Peckham H, Sen D, Christie D, Carvalho LA, Ioannou Y. Association of anxiety with pain and disability but not with increased measures of inflammation in adolescent patients with juvenile idiopathic arthritis. Arthritis Care Res (Hoboken) 2020;72:1266–74.
[19] Hollingshead NA, Ashburn-Nardo L, Stewart JC, Hirsh AT. The pain experience of Hispanic Americans: a critical literature review and conceptual model. J Pain 2016;17:513–28.
[20] Horst S, Shelby G, Anderson J, Acra S, Polk DB, Saville BR, Garber J, Walker LS. Predicting persistence of functional abdominal pain from childhood into young adulthood. Clin Gastroenterol Hepatol 2014;12: 2026–32.
[21] IBM Corp. IBM SPSS statistics for Mac OS. Version 26.0, 2019.
[22] Institute of Medicine Committee on Advancing Pain Research C, Education. The national academies collection: Reports funded by National Institutes of Health. Relieving pain in America: A blueprint for transforming prevention, care, education, and research. Washington, DC: National Academies Press (US); National Academy of Sciences, 2011.
[23] Irwin DE, Stucky B, Langer MM, Thissen D, Dewitt EM, Lai JS, Varni JW, Yeatts K, Dewalt DA. An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Qual Life Res 2010;19: 5417–27.
[24] Janicev MR, McLaughlin SJ, Heapy AA, Thacker C, Piette JD. Racial and socioeconomic disparities in disabling chronic pain: findings from the health and retirement study, J Pain 2017;18:1459–67.
[36] Jordan MS, Lumley MA, Leisen James CC. The relationships of cognitive coping and pain control beliefs to pain and adjustment among African-American and Caucasian women with rheumatoid arthritis. Arthritis Care Res 1998;11:80–8.

[37] King S, Chambers CT, Huguet A, MacNewn RC, McGrath PJ, Parker L, MacDonald AJ. The epidemiology of chronic pain in children and adolescents revisited: a systematic review. PAIN 2011;152:2729–35.

[38] Lewandowski Holley A, Law EF, Zhou C, Murphy L, Clarke G, Palermo TM. Reciprocal longitudinal associations between pain and depressive symptoms in adolescents. Eur J Pain 2013;17:1058–67.

[39] Lilis TA, Burns J, Aranda F, Burgess HH, Punim-Shem-Tov YA, Bruehl S, Beckham JC, Pinkerton LM, Hobfill SE. Race-related differences in acute pain complaints among inner-city children: the role of socioeconomic status. J Behav Med 2020;43:791–806.

[40] Lowry R. VassarStats: Website for statistical computation, 2015. Available at: http://vassarstats.net/.

[41] Ludwick A, Corey K, Meghani S. Racial and socioeconomic factors associated with the use of complementary and alternative modalities for pain in cancer outpatients: an integrative review. Pain Manag Nurs 2020;21:142–50.

[42] Marugan J, Fernandez-Castan˜o M, Del Carmen Torres M, Del Carmen de Fuentes M. The functional recurrent abdominal pain (RAP) in children may be the precursor of adult migraine. Cephalalgia 2008;28:571–2.

[43] Mechlin MB, Maxner W, Light KC, Fisher JM, Gridler SS. African Americans show alterations in endogenous pain regulatory mechanisms and reduced pain tolerance to experimental pain procedures. Psychosom Med 2005;67:948–56.

[44] Meints SM, Miller MM, Hirsh AT. Differences in pain coping between black and white Americans: a meta-analysis. J Pain 2016;17:642–53.

[45] Miller MM, Meints SM, Hirsh AT. Catastrophizing, pain, and functional outcomes for children with chronic pain: a meta-analytic review. PAIN 2018;159:2424–60.

[46] Morales ME, Yong RJ. Racial and ethnic disparities in the treatment of pain among children and adolescents: differences among White, African American, and Hispanic origin. Washington, DC: Census.gov, 2004.

[47] Nahin RL. Pain prevalence, chronicity and impact within subpopulations based on both hispanic ancestry and race: United States, 2010–2017. J Pain 2021;22:826–51.

[48] National Institute of Health. Fact sheet-pain management, 2010. Available at: https://www.nhin.nih.gov/sites/files/docs/painmanagementninr.pdf.

[49] Nguyen M, Ugarte C, Fuller I, Haas G, Portenoy RK. Access to care for chronic pain: racial and ethnic differences. J Pain 2005;6:301–14.

[50] Orhan C, Van Looveren E, Cagnie B, Mukhtar NB, Lenoir D, Meeus M. Are pain beliefs, cognitions, and behaviors influenced by race, ethnicity, and culture in patients with chronic musculoskeletal pain? a systematic review. Pain Phys 2018;21:541–58.

[51] Palermo TM. Impact of recurrent and chronic pain on child and family daily functioning: a critical review of the literature. J Dev Behav Pediatr 2000;21:58–69.

[52] Parker DM, Birnie KA, Yoon IA, Bhandari RP. Interpersonal dyadic catastrophizing are associated with pain, somatic symptoms, and pain-coping, and adjustment to chronic pain among black and white Americans. Pain Med 2005;6:18–28.

[53] Parker DM, Birnie KA, Yoon IA, Bhandari RP. Clinical correlates of opioid prescription among pediatric patients with chronic pain. Am J Prev Med 2021;60:379–86.

[54] Richardson PA, Birnie KA, Harrison LE, Rajagopal A, Bhandari RP. Profiling modifiable psychosocial factors among children with chronic pain: a person-centered methodology. J Pain 2020;21:467–76.

[55] Richardson PA, Parker DM, Chavez K, Birnie KA, Krane EJ, Simons LE, Cunningham NR, Bhandari RP. Evaluating telehealth implementation in the context of pediatric chronic pain treatment during COVID-19. Children (Basel) 2021;8:764.

[56] Riskowski JL. Associations of socioeconomic position and pain prevalence in the United States: findings from the national health and nutrition examination survey. Pain Med 2014;15:1508–21.

[57] Ross AC, Simons LE, Feinstein AB, Yoon IA, Bhandari RP. Social risk and resilient factors in adolescent chronic pain: examining the role of parents and peers. J Pediatr Psychol 2018;43:933–10.

[58] Rossier FJ, Forno E, Cooper PJ, Celedón JC. Asthma in Hispanics. An 8-year update. Am J Respir Crit Care Med 2014;189:1316–27.

[59] Roth-Isigkeit A, Thyen U, Stöven H, Schwarzenberger J, Schmucker P. Pain among children and adolescents: restrictions in daily living and triggering factors. Pediatrics 2005;115:e152–62.

[60] Sanchez LS, Karoly P, Newton C. Comparing the experiential and psychosocial dimensions of chronic pain in African Americans and Caucasians: findings from a national community sample. Pain Med 2005;6:49–60.

[61] Sherwood GD, McNeill JA, Palos G, Starkch P. Perspectives on pain: a qualitative analysis of the Hispanic pain experience. J Res Nurs 2003;8:364–77.

[62] Tait RC, Chibnall JT. Racial/ethnic disparities in the assessment and treatment of pain: psychosocial perspectives. Am Psychol 2014;69:131.

[63] Tan G, Jensen MP, Thomby J, Anderson KO. Ethnicity, control appraisal, coping, and adjustment to chronic pain among black and white Americans. Pain Med 2005;6:18–28.

[64] Tran ST, Koven ML, Castro AS, Goya Arce AB, Carter JS. Sociodemographic and environmental factors are associated with adolescents’ pain and longitudinal health outcomes. J Pain 2020;21:121–33.

[65] Tsiao JCI, Meldrum M, Kim SC, Jacob MC, Zeltzer LK. Treatment preferences for CAM in children with chronic pain. Evid Based Complement Altern Med 2007;4:367–74.

[66] United States Census Bureau. US interim projections by age, sex, race, and Hispanic origin. Washington, DC: Census.gov, 2004.

[67] Varni JW, Stucky BD, Thissen D, Dewitt EM, Irwin DE, Lai JS, Yeatts K, Dewitt DA, PROMIS Ped Pain InterMed Scale: an item response theory analysis of the pediatric pain item bank. J Pain 2010;11:1109–98.

[68] Vinson R, Yeh G, Davis RB, Logan D. Correlates of complementary and alternative medicine use in a pediatric tertiary pain center. Acad Pediatr 2014;14:491–6.

[69] Ward JB, Vines Al, Haan MN, Fernández-Rhodes L, Miller E, Aiello AE. Spanish language use across generations and depressive symptoms among US Latinos. Child Psychiatry Hum Dev 2019;50:65–71.

[70] Wilcox AC, Moss A, Palermo TM, Fales JL. Parent, pain and catastrophizing are associated with pain, somatic symptoms, and pain-related disability among early adolescents. J Pediatr Psychol 2013;39:418–26.

[71] Zamora-Kapoor A, Omidianpanah A, Monico E, Buchwald D, Harris R, Jimenez N. The role of language use in reports of musculoskeletal pain among Hispanic and non-Hispanic white adolescents. J Transcult Nurs 2017;28:144–51.

[72] A.B. Goya Arce et al. PAIN Reports e10202