Pyrazolone is a five-membered lactam ring containing two Nitrogens and one ketonic group in its structure. Numerous pyrazolone derivatives were exhibited with diverse biological, pharmacological, and chemical applications. When pyrazolones were discovered, they were only known as NSAIDs but in recent times they play a versatile role in several complications like cerebral ischemia, cardiovascular diseases, antibacterial, antioxidant, anticancer and several other pharmacological activities. Over the last few decades, pyrazolone derivatives have been used for various biochemical applications. Some of these derivatives such as metamizole, phenazone, aminopyrine, and propyphenazone, are widely used as anti-inflammatory and analgesics. The chemistry of pyrazolone has gained increasing attention due to its diverse pharmacological properties such as anticancer, analgesic, anti-inflammatory, antimicrobial, antioxidant, antiulcer, antiviral, anti-inflammatory, and several other biological activities. Thus, keeping because of their importance, synthetic strategies for existing as well as novel pyrazolone derivatives have been developed and explored their biochemical utility. This review deals with the various pharmacological properties of different pyrazolone derivatives and puts chemical synthetic schemes.

Keywords: Pyrazolones, biological activities, antidiabetic, antimicrobial, anti-inflammatory, cardioprotective, antioxidant, anticancer, heterocyclic compounds.

1. INTRODUCTION

Heterocyclic compounds represent an important class of biologically active molecules. Moreover, various heterocyclic and biologically active compounds have five-member nitrogen, sulfur, oxygen-containing heterocyclic ring [1]. Pyrazolones have acquired versatile importance as drug substances in the pharmaceutical industry of their biological importance. Pyrazolone is a five-membered lactam ring, containing two nitrogen and one ketonic group in its structure [2]. The 3-pyrazolone (I) and 5-pyrazolone (2) are the most dominant classes having importance in the pharmaceutical industry due to their bio-activity (Figure-1). Compounds containing the pyrazolone nucleus have been shown to possess high biological activities such as tranquilizing, muscle relaxant, psycho analpeptic, anticonvulsant, antihypertensive, antidepressant activities [3-10]. The derivatives of pyrazolone are an important class of antipyrergic and analgesic compounds. Some substituted pyrazolines and their derivatives are used as antitumor, antibacterial, antifungal, antiviral, anti-parasitic, anti-tubercular, and insecticidal agents [11-15].

For instance, various pyrazolones drugs, viz. phenazone, propyphenazone, ampyrone, and metamizole are useful antipyretic and analgesic drugs [16]. Therefore, pyrazolones possess antimicrobial, antifungal [17], anticymbobacterial [18,19], antibacterial [20], anti-inflammatory [21], antitumor [22], gastric secretion stimulatory [23], antidepressant [24], and antifilarial activities [25]. Many attempts have been made to synthesize, characterize, and to study the biological activity of pyrazolones [26]. Interests in the chemistry of organic photochromic compounds containing pyrazoline-ring were tested for their photochromic properties and these compounds exhibited good antibacterial activities [27].

The late 19th century gave rise to the discovery of the three prototypes of modern nonopioid antipyretics and analgesics such as acetaminophen, acetylsalicylic acid, and phenazone [29]. The Chemistry of pyrazolone began in 1883 when Knorr reported the first pyrazolone derivative. The reaction of phenylhydrazine and ethyl acetoacetate resulted in a novel structure identified in 1887 as 1-phenyl-3-methyl-5-pyrazolone [30]. The Knorr pyrazole synthesis is the reaction of hydrazines with 1,3-dicarbonyl compounds to provide the pyrazole or pyrazoline ring system. Pyrazolone is a five-membered lactam ring containing two nitrogen and a ketone group in its ring. The prototype molecule, antipyrine was synthesized for clinical use in 1883. The methylated nitrogen derivative aminopyrine was introduced in 1897 and taken off from the market in the 1970s because of its property to form nitrosamines. Dipyrone had been in clinical use since 1922. Antipyrine was the first pyrazolone derivative as a drug introduced in 1887 and as the name implies it was the first agent to reduce fever and used in the treatment of arthritis, muscular-skeletal and joint disorder. These derivatives were widely used in medical practice viz antipyrine, aminopyrine, analgin, etc. This discovery initiated the beginnings of the great German drug industry that dominated the field for about 40 years. Several pyrazolone derivatives with other heterocyclics were exhibited different types of biological activities [31].

Compounds like 3-Alkyl-4-arylmethylpyrazol-5-ones are reported to exhibit potent antihyperglycemic activity, while 1-phenyl-3-tetrafluoroethylpyrazol-5-one is an anxiolytic. Thus, the biological activities of pyrazol-5-ones depend upon the nature of the substituents [32]. 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone), a strong free radical scavenger is used for the treatment of patients with acute brain infarction [33]. Demethylated antipyrine is a novel potent free radical scavenger that has been clinically used to reduce the neuronal damage following ischemic stroke. Demethylated antipyrine exerts neuroprotective effects by inhibiting endothelial injury and by ameliorating neuronal damage in brain ischemia. The pharmacological spectrums of pyrazolone compounds are very similar to that of aspirin and some other nonsteroidal anti-inflammatory agents. The drugs containing pyrazolone nucleus are known to display diverse pharmacological activities such as antibacterial, antifungal, anti-inflammatory, analgesic, and antipyretic. The pyrazoline nucleus has been known to exist in three tautomeric structures [34]. The synthesis of 5-substituted-2-[2-

Figure-1. Chemical structures and electrostatic surfaces of 3- and 5-pyrazolone

The structure I, is present in several substituted pyrazolones which are widely known and used as antipyretic agents. All these compounds are characterized by the presence of a phenyl group attached to the nitrogen atom in the 1- position and a methyl group in 3-position. Phenyl group in 1- position and a methyl group in 3-position seem to be essential for antipyretic activity. Several 4, 4-dimethyl derivatives, as well as Pyrazole Blue and Tartrazine, are derived from formula II whereas from structure III several pyrazolone dyes have been derived [28].
substituted-10Hphenothiazin-10-yl)-2-oxoethyl]-2,4-dihydro-3H-pyrazol-3-one containing phenothiazine were evaluated for their antiproliferative activity [35]. In the recent years, the chemistry and antibacterial activity of pyrazolone have been investigated and synthesized to be novel pyrazolones from easily available starting materials and their broad range of antimicrobial and anti-inflammatory activity were evaluated [36-40]. The study was aimed at exploring our synthesis of some new biologically active pyrazolone derivatives by the reaction of thiosemicarbazide and ethyl-2-chloro acetoacetate.

Table 1. Pyrazolone derivatives available in the market.

Name	Str	IUPAC Name	Brand Name	Uses
Antipyrine	1	1,2 dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one	phenzone Analgesine	Analgesic, Antipyretic
Aminophenzone	2	4-dimethylamino-1,5-dimethyl-2-phenylpyrazol-3-one	Aminopyrin	Analgesic, Antiinflammatory
Propyphenzone	3	1,5-dimethyl-2-phenyl-4-propan-2yl pyrazol-3-one	Pyramidone Anodymin	Analgesic, Antiinflammatory, in rheumatism, in cardiovascular disorder
Metamizole	4	Sod[(2,3-dihydro-1,5 dimethyl-3-oxo-2-phenyl- 1H-pyrazol-4-yl) methylamino] Methanesulfonate	Novalgin Dipyrone Analgin Algozone	Analgesic, Antipyretic, Antiinflammatory
Phenylbutazone	5	4- butyl-1,2-diphenyl-pyrazolidine-3,5 dione	Atropan Azdid Butazolidin Phanyzone	Analgesic, Antipyretic, Antiinflammatory
Edaravone	6	3-methyl-1-phenyl-2-pyrazolin-5-one	Edaravone MCI-186	As antioxidant, In cerebral ischemia, in rheumatism, in cardiovascular disorder

Pharmacological activities of pyrazolones derivatives

The pyrazolone derivatives like ampyrone, phenazone, and propylphenazone are well known for their antipyretic and analgesic activities. Edaravone has been used for treating brain ischemia [41] and myocardial ischemia [42]. Some novel pyrazolones have been possessed antimicrobial [43], analgesic, anti-inflammatory, antipyretic [44], antitubercular [45], anti-HIV [54], anti-diabetic [55], anti-hyperlipidemic [56] and immunosuppressive activity [57].

Anticancer activity

A series of (z)-5-amino-4-[2-(6-bromo-1,3-benzothiazol-2-yl)hydrazinylidene]-2,4-dihydro-3H-pyrazol-3-one derivatives (1) were tested for their cytotoxic activity. These compounds had shown prominent cytotoxic activity [58]. Some pyrazolone derivatives (2) from ciprofloxacin and were tested for their cytotoxic activity and it was found that these compounds had shown potential cytotoxic activity against brine shrimp nauplii than ciprofloxacin [59]. The brominated 5-methyl-2,4-dihydropyrazol-3-one and its derivatives were exhibited significant cytotoxic activity [60].
In 2004, several 3-methyl-4-oximopyrazolin-5-one (4) scaffold which was found to be Cdc25B inhibitor, out of which 3-Methyl-4-(O-methyl-oximino)-1-phenylpyrazolin-5-one (5) and 1,3-dimethyl-4-(O-propargyl oximino)-pyrazolin-5-one (6) were found to be most potent. The activity decreases when phenyl group at 1-position was modified to bigger aromatic groups [61,62]. A derivative of 1-phenyl-3-methyl-5-pyrazolone (7), 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone (8), named TELIN, was identified as a potent inhibitor of human telomerase in the cell-free telomeric repeat amplification protocol. It inhibits the telomerase activity at the submicromolar level with IC₅₀ of 0.3µM. The binding to telomerase protein and the mode of inhibition by this substance was competitive–non-competitive mixed-type concerning the TS primer, whereas it was uncompetitive or noncompetitive–uncompetitive mixed type concerning the three deoxyribonucleosides. TELIN is a potent catalytic blocker of telomerase and is considered to be an important compound for the treatment of cancer and related diseases [63].

Antimicrobial activity

The (4Z)-2-(2,4-dinitrophenyl)-4-[6-methoxynaphthalen-2-yl]methylidene]-5-methyl-2,4-dihydro-3H-pyrazol-3-one (9) and (4Z)-4-[6-methoxynaphthalen-2-yl]methylidene]-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (10) were exhibited antimicrobial activity [40].

A series of 4-chloro-3-methyl-N-(substituted phenyl)-5-oxo-4,5-dihydro-1H-pyrazole-1-carbothioamide compounds (11a-d) were tested for their potent antifungal activity against three fungal pathogens viz A. niger, C. albicans and Curvularia and flucanazole were used as standard drug. All compounds exhibited good to moderate activity. Compounds 11a and 11b were assigned to inhibit the growth of A. niger and C. albicans, respectively, compounds 11c and 11d exhibited remarkable inhibition on Curvularia, respectively. The presence of an electron-withdrawing group on the aromatic ring of thiosemicarbazide increases the antifungal activity of tested compounds. Here, the electron-donating group also showed moderate activity against tested pathogens such as A. niger, C. albicans, and Curvularia. All these compounds exposed better antifungal activities against a wide range of microorganisms [64].
Antioxidant activity

It has been proved that the pyrazolone derivatives have significant antioxidant activity. The 5-amino-4-[2-(6-bromo-1,3-benzothiazol-2-yl) hydrazinylidene]-2,4-dihydro-3H-pyrazol-3-one derivatives (15) were exhibited good antioxidant activity [69]. Some 5-pyrazolone based Schiff bases by the condensation of 4-acylpyrazolone with different aromatic diamines (16) were exhibited significant antioxidant activity [70].

The 3-methyl-1-phenyl-2-pyrazolin-5-one (17, Edaravone) is a strong free radical scavenger. It reduces or restores the amount of ROS increased by postischemic reperfusion and prevents impairment of the antioxidant defense system [71]. The antioxidant action of edaravone is as follows: an electron transfer from an edaravone anion to peroxy radical yields an edaravone radical and peroxy anion, and this reaction breaks the chain oxidation of lipids. Then, edaravone peroxy radical transforms to 4,5-dione by the elimination of a hydrogen atom and one electron. Finally, 2-oxo-3-(phenylhydrazono)-butanoic acid (18, OBP) is produced by the hydrolysis of 4,5-dione [72].

Structure-Activity Relationship (SAR)

Sterically small substituents like hydrogen and methyl group did not show any activity, substituents containing carbocyclic moieties like cyclohexyl, naphthyl, and benzyl maintained or increased the in vitro lipid peroxidation-inhibitory activity.

- The activity of 2-substituted compounds largely reduced except for a phenolic hydroxyl derivative.
- The activity is increased by the lipophilic substituents like alkyl and halogen. Longer alkyl and alkoxy chains show an increase in activity.
- A disubstituted halogen derivative increases activity as compared with monosubstituted halogen derivatives.
- The introduction of hydrophilic substituents appreciably reduced the activity. A phenyl derivative exhibited excellent activity which was far better than that of a 2-furyl derivative having the lipophilic aromatic group.

- The isobutyl group was exhibited increased activity in contrast to the 2-hydroxyethyl group which showed almost no inhibitory activity.
- The 4,4-Disubstituted compounds showed no inhibitory activity, which supports the hypothesis that compounds which generate the aromatic hydroxyl group by the keto-enol tautomerization have lipid peroxidation-inhibitory activity.

Anti-inflammatory, analgesic, and antipyretic activity

Phenylbutazone, a pyrazolone drug is useful in the treatment of acute gout, rheumatoid arthritis, and allied disorders. A series of pyrazolone derivatives with imidazol, benzimidazol, and benzotriazo moiety (19-21) were tested for their anti-inflammatory activity and the pyrazolone derivatives with benzimidazole were exhibited significant anti-inflammatory activity [73].

The 3-methyl-4-substituted benzylidene-pyrazol-5-one derivatives (21) were tested for their anti-inflammatory activity. These compounds had shown good anti-inflammatory activity and the pyrazolone derivatives with benzimidazole were exhibited significant anti-inflammatory activity [74]. The 3-methyl pyrazol-5-one derivatives diclofenac, ibuprofen, flurbiprofen were found that the most of the compounds tested for their analgesic activity [75]. The 3-methyl-4-substituted benzyldiene-pyrazol-5-one derivatives (22) were tested for their analgesic activity. These compounds had shown prominent analgesic activity [76].

The 4-acetyl-1-phenyl-3-methyl pyrazolone (24, HAP) and 4-trifluoroacetyl-1-phenyl-3-methyl pyrazolone (25, HTFP) significantly reduces the inflammation in rats [77]. The selective inhibition of Phospholipase A2 is crucial in the search for an efficient anti-inflammatory drug with fewer side effects.
Dipyrone as well-known pyrazolone inhibitor having anti-inflammatory activity is strongly found to be linked to PLA2s through three hydrogen bonds whereas 1-phenyl-3-methyl-5-pyrazolone (18) presents an intramolecular hydrogen bond that makes difficult the formation of more efficient interactions with PLA2 [78]. Free radicals have some roles in inflammation and systemic and local tissue injuries. Intrathecally administered edaravone, a free radical scavenger, had analgesic effects on inflammatory-induced acute and facilitated pain [79].

Oral dipyrone was showed more effective than an equal dose of aspirin or paracetamol in alleviating postoperative pain, and intravenous dipyrone 2.5g was the same in efficacy to pethidine 50 mg. In patients with acute ureteral or biliary colic, dipyrone 2.5g intravenously (i.v.) was similar in efficacy to indomethacin 50 mg or pethidine 50 mg [80]. pyrazolones exert analgesic effect by inhibiting prostaglandin (PG) synthesis. The early phase (1-2 h) inflammation is mainly mediated by histamine, serotonin, and increased synthesis of PGs in the damaged tissue surroundings. The late phase is sustained by PG release and mediated by bradykinin, leukotrienes, polymorph nuclear cells, and PGs produced by tissue macrophages. Fever results due to generation of mediators such as IL-1ß, IL-6, interferons, and TNF-a cytokines higher the synthesis of PG which elevates the body temperature. From the results of the antipyretics study, pyrazolone derivatives produce the antipyretic action by inhibiting the PG synthesis by blocking cyclooxygenase (COX) isoenzymes, platelet thromboxane (TX) synthesis, and prostanooids synthesis [81,82]. There is increasing evidence that lysosomal enzymes play an important role in the development of acute and chronic inflammation [67]. Most anti-inflammatory drugs exert their beneficial effect by inhibiting either release of lysosomal enzymes or by stabilizing the lysosomal membrane which is one of the major events responsible for the inflammatory process.

Some pyrazolone derivatives were tested for their anti-inflammatory activity in-vitro using celecoxib as a reference drug. Compound 26 was found to be the most potent derivative of the series with 75% inhibition of inflammation. The pharmacological screening of these compounds was showed anti-inflammatory activity ranging from 16.66 to 75% inhibition after 3 hours, whereas the standard drug celecoxib was showed 83.33% inhibition after 3 hours. The compound 26 was found to be nearly equipotent to celecoxib. Compounds (27-29) shown this activity but less potent than compound 26 and celecoxib. The structural similarity of the celecoxib (log P=3.90) and potent compound 26 (log P=3.69) has the same pyrazole ring and methyl group (CH3) is substituted by trifluoro methyl (CF3). Compound 26 was showed maximum log P value among all these compounds have maximum anti-inflammatory activity compared with celecoxib as COX-2 inhibitor [83].

Anticonvulsant activity and Antidepressant activity

Some 4,4-disubstituted pyrazolone compounds (30) were exhibited anticonvulsant activity [84]. For instance, Dipyrone was found to have anticonvulsant activity in three experimental epilepsy models. At a dose of 300 mg/kg i.p., dipyrone blocked the maximal hind limb extention in the electroshock (MES) model in rats, the tonic-clonic component of acute sound-induced seizures and the limbic component of audiogenic kindling in genetically susceptible Wistar rats. In the MES model higher doses (400 and 500 mg/kg) were also effective but lower doses (100 and 200 mg/kg) were not [85].

Role of Pyrazolone in Cardiovascular Disease

Edaravone enhances the expression of eNOS and restores the reduction in eNOS by oxidized low-density lipoprotein in endothelial cells. It shows it prevents cell damage induced by oxidative stress through not only direct ROS scavenging effect but also restoration of reduced eNOS expression [86]. A group of 3-phenyl or pyridyl-5-pyrazolone derivatives have been discovered which is useful in improving cardiac contractibility. It is expected that edaravone has beneficial effects on coronary artery and myocardial cells after ischemic and postischemic myocardial injury in patients with ischemic heart diseases (IHDs), including acute myocardial infarction (MI) and angina pectoris [87,88]. The 3methyl-1-phenyl-2-pyrazolin-5-one derivative at a dose of 3 mg/kg attenuates the loss of myocardial creatine kinase activity from the left ventricular free wall in rats subjected to coronary artery occlusion for 10 minutes followed by reperfusion for 24 hours and reduced infarct size by approximately 50% compared with that in the control vehicle group [88, 89]. The 3methyl-1-phenyl-2-pyrazolin-5-one derivative attenuated the myocardial necrotic area by approximately 50% in isolated reperfusion rat heart subjected to coronary artery occlusion [86].

The effects of edaravone on left ventricular function and infarct size using a randomized, placebo-controlled, open-label protocol in 80 patients with acute MI. The i.v. use of edaravone at a dose of 30 mg for 10 minutes before myocardial reperfusion reduced serum levels of creatine kinase-MB isoenzymes, a surrogate point of infarct size, and improved left ventricular ejection fraction in patients with acute MI compared with those in the placebo group [90,91]. A series of 3-phenyl or pyridyl-5-pyrazolone derivatives (31, 32) were useful in improving cardiac contractibility [21].

Antithrombotic activity

The beneficial effects of Edaravone on postischemic reperfusion injury [92,93]. It has been found to ameliorate infarct size and brain edema in embolization and transient focal, global, and hemispheric ischemia models in adult rats and to attenuate the hypoxic-ischemic encephalopathy in neonatal rats. In Japan, edaravone was approved in April 2001 for the treatment of acute brain infarction and subarachnoid hemorrhage in the acute phase. Several investigators have reported that edaravone has beneficial effects on the prevention of brain damage in patients with stroke [90]. Nafazatrom, a pyrazolone derivative has dual arachidonate enzyme inhibition. It exhibits antithrombotic and thrombolytic action by inhibiting 5-lipoxigenase catalobolism of arachidonate. This drug reduces the myocardial infarct size after experimental coronary artery occlusion and reperfusion.

Antiviral activity

Pyrazolones are known to possess antiviral activity. The 4-iodo-1,5-dimethyl-2-phenyl-pyrazol-3-one (iodoantipyrine) (33) was evaluated as antiviral agent against different varieties of viruses.
These derivatives were showed potent antiviral activity against tick-borne encephalitis virus, hantavirus, HBV or HCV, coxsackie A, and B enteroviruses, Rift valley fever viruses, and influenza type A viruses [94].

Spasmolytic effect on smooth muscles

Dipyrone showed a spasmolytic effect on the precontracted smooth muscle in vitro model. The premedication with dipyrone allowed the bronchoscope to pass through the bronchus more easily and increased the gas exchange in the lungs [97]. Dipyrone was also found to increase the gas exchange in the lungs when given as an analgesic for postoperative pain relief. The mechanism by which dipyrone relieves bronchospasm is not clearly understood. Although anti-inflammatory properties by way of COX enzyme and thus PG synthesis inhibition by NSAIDs is thought to be responsible for the spasmolytic effect of some NSAIDs, as dipyrone has no or minimal anti-inflammatory effect [98].

SARS-Coronavirus 3C-Like protease inhibitors:

A series of pyrazolone compounds (34) were tested by in vitro protease assay using fluorogenic substrate peptide. It was observed that several compounds showed potent inhibition against the 3C-Like protease and one of the inhibitors was also active against 3C protease [99].

Antihyperglycemic activity

A group of 4-(arylmethyl) and heteroaryl methyl)-5-substituted-3-pyrazolone derivatives (35a and 35b) were exhibited antihyperglycemic activity which is useful in non insulin-dependent diabetes mellitus [100, 101]. The 1,2-dihydro-4-[(4-methylthio)phenyl]methyl]-5-(trifluoromethyl)-3H-pyrazol-3-one (36) in oral and subcutaneous glucose tolerance tests, indicated that unlike the renal and intestinal glucose absorption inhibitor phlorizin, it does not effectively block intestinal glucose absorption. Substitution of 4-methylthio, methylsulfinyl, or ethyl to a benzyl group at C4, in combination with trifluoromethyl at C5 of pyrazol-3-one, generated potent antihyperglycemic agents in obese, diabetic db/db mice (16-30% reduction in plasma glucose at 2 mg/kg). The 5-alkyl-4-(arylmethyl)pyrazol-3-ones (hydroxyl tautomers) were exhibited potential oral antidiabetic effects, based on their ability to lower plasma glucose when used orally to obese, diabetic mice [102,103]. The ethyl 2-phenyl-1H-pyrazol-3-one-4-carboxylate derivatives (38) were tested for their hypoglycemic activity. These compounds were exhibited potent hypoglycemic activity[102].

Antihyperglycemic activity

A group of 4-(arylmethyl) and heteroaryl methyl)-5-substituted-3-pyrazolone derivatives (35a and 35b) were exhibited antihyperglycemic activity which is useful in non insulin-dependent diabetes mellitus [100, 101]. The 1,2-dihydro-4-[(4-methylthio)phenyl]methyl]-5-(trifluoromethyl)-3H-pyrazol-3-one (36) in oral and subcutaneous glucose tolerance tests, indicated that unlike the renal and intestinal glucose absorption inhibitor phlorizin, it does not effectively block intestinal glucose absorption. Substitution of 4-methylthio, methylsulfinyl, or ethyl to a benzyl group at C4, in combination with trifluoromethyl at C5 of pyrazol-3-one, generated potent antihyperglycemic agents in obese, diabetic db/db mice (16-30% reduction in plasma glucose at 2 mg/kg). The 5-alkyl-4-(arylmethyl)pyrazol-3-ones (hydroxyl tautomers) were exhibited potential oral antidiabetic effects, based on their ability to lower plasma glucose when used orally to obese, diabetic mice [102,103]. The ethyl 2-phenyl-1H-pyrazol-3-one-4-carboxylate derivatives (38) were tested for their hypoglycemic activity. These compounds were exhibited potent hypoglycemic activity[102].

Antihyperglycemic activity

A group of 4-(arylmethyl) and heteroaryl methyl)-5-substituted-3-pyrazolone derivatives (35a and 35b) were exhibited antihyperglycemic activity which is useful in non insulin-dependent diabetes mellitus [100, 101]. The 1,2-dihydro-4-[(4-methylthio)phenyl]methyl]-5-(trifluoromethyl)-3H-pyrazol-3-one (36) in oral and subcutaneous glucose tolerance tests, indicated that unlike the renal and intestinal glucose absorption inhibitor phlorizin, it does not effectively block intestinal glucose absorption. Substitution of 4-methylthio, methylsulfinyl, or ethyl to a benzyl group at C4, in combination with trifluoromethyl at C5 of pyrazol-3-one, generated potent antihyperglycemic agents in obese, diabetic db/db mice (16-30% reduction in plasma glucose at 2 mg/kg). The 5-alkyl-4-(arylmethyl)pyrazol-3-ones (hydroxyl tautomers) were exhibited potential oral antidiabetic effects, based on their ability to lower plasma glucose when used orally to obese, diabetic mice [102,103]. The ethyl 2-phenyl-1H-pyrazol-3-one-4-carboxylate derivatives (38) were tested for their hypoglycemic activity. These compounds were exhibited potent hypoglycemic activity[102].
Radioprotective effect

Analgin, antipyrine, and aminopyrine, if administered to mice in large doses 3 h before irradiation (800 R), increases the survival rate and prolong the life of the dying animals. In combination with cystamine, these compounds increase the chances of survival of the mice after the period of acute intestinal death following irradiation in a dose of 1050 R. The pyrazolone derivatives considerably increase the resistance to hypoxia of both healthy mice and irradiated mice at various periods of acute radiation sickness [105].

Toxicity and adverse effects

The most frequently reported side effects of the pyrazolone derivatives are skin rashes. Gastrointestinal side effects are rare. Blood dyscrasias, mostly associated with aminopyrine (Brogden. 1986). Side effects, including acute renal failure, liver dysfunction, acute allergic reaction, disseminated intravascular coagulation, leukocytopenia, thrombocytopenia, and renal dysfunction. Edaravone should be carefully used in elderly patients and patients with renal disease, liver disease, hematologic disease, or dehydration. Therapeutic uses of edaravone are limited because it possesses toxic side effects which include peptic ulcer with hemorrhage, hypersensitivity reactions of the serum sickness type, nephritis, hepatitis, aplastic anemia, agranulocytosis, leucopenia, and thrombocytopenia [77]. Hence it is necessary to modify the structure of pyrazolones to minimize the side effects and to improve its therapeutic application.

Synthesis approaches of pyrazolone derivatives

Advancement in the synthesis or derivatization of pyrazolones and exploration of their applications have been emerged and grown exponentially. Here we describe the various reported strategies for chemical synthesis of pyrazolone derivatives. A light was also put on their various bio-activities. This work will help to recognize the site of modification on the pyrazolone skeleton, to design the synthetic strategy and to explore their possible bio-application [106,107].

Synthesized various substitutions on 4-N-dialkylamino alkyl-substituted bisindolyl, and diphenyl pyrazolone derivatives (40a-f) using ethyl ester, acyl chloride and hydrazines (Scheme 1). The growth inhibitory activity evaluation in human cell lines (HT-29, HeLa, and PC-3) indicated compound 40b and 40e as most potent with IC$_{50}$ 11.3 and 46.7 μm, respectively [108].

Scheme 1. Synthesis of bis arylpyrazolones (40a-f): (a) BuLi/THF, DIPA, -78 °C; (b).

compound	R1	R2	X	Y	
40a	Ph	Ph	H	H	
40b	N-Methylindolyl	N-Methylindolyl	H	H	
40c	Ph	Ph	(CH$_3$)$_2$N(Me)$_2$		
40d	Ph	Ph	(CH$_3$)$_2$N(Et)$_2$		
40e	N-Methylindolyl	N-Methylindolyl	H	(CH$_3$)$_2$N(Et)$_2$	
40f	Ph	Ph	(CH$_3$)$_2$N(Et)$_2$	H	

Synthesized phenyl pyrazolones and converted them into a series of corresponding pyrazole derivatives (41a-g and 42a-e) using the Buchi Syncore synthesizer (Scheme 2) [109]. Their biological evaluation and SAR indicated that small lipophilic substituents in pyrazole ring (R$_1$) and phenyl ring (R$_2$) potentiate the activity as inhibitors of M. tuberculosis. The presence of p-chlorobenzoyl functionality was found to be essential for the antitubercular (anti-TB) activity of the compounds.

Scheme 2. Synthesis of pyrazolones to pyrazoles: (a) Polymer bound p-toluenesulfonic acid, EtOH, Buchi Syncore, 300 rpm (b) p-Cl-benzoyl chloride, Ca(OH)$_2$, dioxane, Syncore, 300 rpm, reflux (c) Benzyl halide, NaH, DMF, NaI, Syncore, 300 rpm.

Table 1. The anti-TB activity of benzoxy pyrazoles (41a-g) and benzyloxy pyrazolones (42a-e) against M. tuberculosis.

Compd	R$_1$	R$_2$	MIC (μg mL$^{-1}$)	Compd	R$_1$	R$_2$	MIC (μg mL$^{-1}$)
41a	CH$_3$	Cl	6.25	42a	Bn	Cl	16
41b	CH$_3$	H	6.25	42b	(p-F)Bn	H	32
41c	CH$_3$	F	12.5	42c	(p-N$_2$)Bn	H	>32
41d	CH$_3$	Cl	16	42d	Bn	H	>64
41e	CH$_3$	Br	4	42e	(p-N$_2$)Bn	Cl	32
41f	CH$_3$	CH$_3$	16	42a	Bn	Cl	16
41g	CH$_3$	Isopropyl	16				

Synthesis of combretastatin-fused-pyrazolones using a multistep strategy (Scheme 3) and tested for their cytotoxicity and anti-tubulin activity. Compounds 43a-7 were found to be most potent among all tested compounds (Table-2). However, only compound 44a-7 showed tubulin polymerization inhibitory activity 98% [110,111].
Scheme 3. Synthesis of combretastatin-fused-pyrazolones: (a). NH₂NCOCH₃, Py, DCM, 0°C-rt, 17h; (b). NBS, Py, rt, 10 min; (c). DCM, reflux, 4h; (d). NaOH/MeOH, DCM/MeOH, rt, 31h and HCl.

Table 2. Cytotoxicity profile of combretastatin-fused-pyrazolones (43a-d and 44a-d).

Compd	Ar₁	Ar₂	IC₅₀(µm)	Compd	Ar₁	Ar₂	IC₅₀(µm)
43a	H₂CO	OCH₃	0.337	44a	H₂CO	OCH₃	0.114
43b	C₆H₆	H₂CO	0.523	44b	H₂CO	OCH₃	0.152
43c	H₃CO	OCH₃	0.959	44c	H₃CO	OCH₃	0.158
43d	F	H₂CO	1.72	44d	F	H₂CO	0.176

The Ce/SiO₂ catalyzed synthesis of N-arylpyrazolone skeleton (45) using a multicomponent one-pot synthetic strategy under aqueous media with a yield of 83-92% (Scheme 4). These pyrazolones were exhibited promising antimicrobial activity against both bacteria and fungi [112].

Scheme 4. Multicomponent synthesis of N-arylpyrazolones (8): (a) Ce/SiO₂, H₂O, D.

Recently, synthesized the N-arylfluoropyrazolones (46) using quinine catalyzed asymmetric fluorination with yield up to 98% (35-81% ee), Scheme 5 [113].

Scheme 5. Synthesis of N-arylfluoropyrazolones (9): (a) N-FBS, Quinine, C₆H₅CO₃H, CHCl₃, -60 °C.

Synthesis of bis pyrazolones (47 and 48) from hydrazide derivatives of pyrazolone using acid-catalyzed condensation-cyclization reaction under reflux conditions (Scheme 6) [114]. These bis pyrazolones have been shown comparable antibacterial (against *S. aureus*, *B. cereus*, *E. coli*, and *P. aeruginosa*) and antifungal (against *A. niger*, *C. albicans*) activities.

Scheme 6. Synthesis of 3-amino and 3-methyl bis pyrazolones (47, 48): (a) CH₃COCl, COCl₂, AcOH, EtOH; (b) CNCH₂COOC₂H₅, AcOH, EtOH.

Sphingosine 1-phosphate receptor 1 (S1P1) is recognized to involve in the pathogenesis of inflammation-related diseases of immune, vascular, and nervous systems [115]. The S1P1 antagonists are expected to be potential therapeutic.
agents for cardiovascular disorders and angiogenesis. In a molecular library screening study, S1P1 receptor antagonizing pyrazolone derivative 49 inhibits S1P1 receptors with IC50 17.0 nM [116]. Compound 49 led to the identification of novel biphenyl sulfonates as S1P1 receptor antagonists.

Lavergne et al. synthesized the N-alkylated pyrazolones (50) from enol ethers and hydrazones by aminocarbonylation with a yield of 45-95% (Scheme 7) [117].

![Scheme 7. Synthesis of N-alkylated pyrazolones: (a) Et3N, PhCF3 (0.1 M), 70-100 °C (sealed vial); (b) NaBH4, MeOH, -20 °C to rt, then NH2Cl or NH2Cl, p-TsOH, CHCl3, 60 °C, 3h.](image)

Recently, one pot synthesis of highly strained chiral spiropyrazolones (51) using Br2 assisted cyclization with yield of 61-97% (Scheme 8) [118] and known for their antimicrobial [119], antitumor [120], and anti-trypanosomiasis activities [121].

![Scheme 8. Synthesis of spiropyrazolones: (a) Br2, Et3N, EtOH, r.t., 3h; (b) 0.2M Br2, in water, EtOH, 40 °C, 1h.](image)

A asymmetric synthesis of spiropyrazolones (52a-d) from benzylidenehydrazones and glutaraldehyde using (S)-2-(diphenyl (trimethylsilyl)oxy)methyl)pyrroline as a catalyst (Scheme 9) [112]. Final products obtained with excellent yields and diastereoselectivities but poor enantioslectivities (Table 4.)

![Scheme 9. Synthesis of spiropyrazolones (52a-d).](image)

Table 4. Diastereoselectivity and yield of spiropyrazolones (52a-d).

Compd	Ar	Diastereoselectivity (d.r.)	% Yield
52a	Ph	>8:1	72
52b	(p-Br)Ph	>8:1	87
52c	(p-Me)Ph	11:1	93
52d	(p-Cl)Ph	14:1	92

Oxindole containing spiropyrazolones (53) through DIPEA or squaramide catalyzed diastereoselective Michael/alkylation cascade reactions of aryldienehyrazones with 3-chlorooxindoles (Scheme 10) [123].

![Scheme 10. Synthesis of oxindole containing spiropyrazolones: (a) DIPEA (100 mol%), CH3CN, r.t. 12-36h or squaramide (5 mol%), K2CO3 (100 mol%), CH3CN.](image)

The synthesized aryldiene pyrazolones (54) and C-tethered bispyrazol-5-ols (55) from acetylene dicarboxylates, phenylhydrazine, and aryl aldehydes with multicomponent domino reactions with yield 75-92% (Scheme 11) [124].

![Scheme 11. Synthesis of bispyrazolone and bispyrazol-5-ol: (a) and (b) CH3COOH, MW or rt, 10 min.](image)

The synthesis of N-aryl 4-arylpyrazolones (56) from phenyl hydrazine, 4-pyrazolaldehyde and N-arylpyrazoline via Knoevenagel condensation (Scheme 12) [125]. The compounds were active against Gram-positive (B. subtilis and S. aureus), Gram-negative (P. fluorescens and E. coli) bacteria, and pathogenic fungi (C. albicans and S. cerevisiae) with MIC 0.4-400 mg/ml.

![Scheme 12. Synthesis of N-aryl 4-arylpyrazolones: (a) Et3N, EtOH, reflux.](image)

Halogenated pyrazolones are useful synthetic intermediates for the synthesis of dyes [126] fused- and spiroheterocyclic compounds [127, 128]. Brominated pyrazolones were synthesized using Br2-acetic acid, Br2-water and N-bromosuccinimide (NBS) [129-131]. Synthesized di-bromopyrazolones (57) using pyrazoline or hydroxypyrazolones and N-bromobenzamidine with product yield 90% (Scheme 3)[132].

![Scheme 13. Synthesis of dibromopyrazolones (57).](image)
A green method for synthesis of N-arylpyrazolones (58) using CuI nanoparticles catalyzed four-component reaction under sonication (Scheme 14). Under optimized reaction conditions, the yield of product was found to be 86-93% [133].

Scheme 14. Four-component synthesis of pyrazolones: (a) EtOH/H₂O, ultrasound irradiation, rt, 35-40 min.

Enantioselective synthesis of p-benzoquinone substituted pyrazolones (59) using cinchona alkaloid, quinine, catalyzed Michael addition/oxidation reaction with a yield up to 72% (99% ee), Scheme 15 [134].

Scheme 15. Synthesis of benzoquinone substituted pyrazolones: (a) Quinine (2 mol %), DCE, 25 °C, 24 h.

Synthesis of fused-ring pyrazolones (60) from ethyl 2-oxocyclohex-3-ene carboxylate and hydrazine hydrate in the presence of a base with yield 70-78% (Scheme-16) [135]. These compounds were exhibited good antimicrobial activity against B. subtilis and C. albicans with MIC values of 0.313-1.25 μg/ml. The compounds with p-OH group were exhibited good antioxidants and iron metal chelating properties.

Scheme 16. Synthesis of fused-ring pyrazolone; (a) NH₂NH₂·H₂O. Base

Pyrazolone derivatives (61 and 62) have therapeutic potential in amyotrophic lateral sclerosis (ALS) through activation of proteasome pathway [136]. On biological evaluation, compound 62 was found to be highly potent against ALS with EC₅₀ 0.07 mM.

Synthesized the substituted pyrazolo-triazinylidene fused ring adduct of 1-(phenyl(piperidin-1-yl)methyl)urea/thiourea (Scheme-17) [137]. Both compounds (63a and 63b) have been shown synergistic effect on CNS depression with diazepam at a dose of 0.5 mg/kg.

Scheme 17. Synthesis of pyrazolo-triazinylidene derivatives.

Synthesis of chiral 4-aminopyrazolones (64) from corresponding pyrazolones and azodicarboxylates using N,N-dioxide gadolinium(III) complex (L-Gd(OTf)₃) catalyzed asymmetric α-amination (Scheme-18) [138].

Scheme 18. Asymmetric synthesis of 4-aminopyrazolones (64): (a) L-Gd(OTf)₃, (0.05 or 1 mol%), 4Å MS, DCM, -20 °C.

Pyrazolone derivative (65) as selective and highly potent orally active c-Met inhibitors, the receptor tyrosine kinase, c-Met, is known as a vital target for anticancer agents. Compound 65 (AMG458) was showed the most favorable c-Met based anticancer profile among the tested compounds. Synthesis of 65 was done by coupling of 4-quinolinylxyloxy-2-pyridinamine moiety with a pyrazolone nucleus (Scheme-19) [139].

Scheme 19. Synthesis of AMG458: (a) BnCOCl, Ca(OH)₂, dioxane (b) 1,1-dimethoxyirane, AlMe3, chlorobenzene (c) H₂, Pd/C, MeOH (d) HATU, (Pr)₂EtN, DMF, 60 °C.

Two step synthesis of spiropyrazolones (66) from 3-benzoyl-1-phenylpiperidin-2-ones using iodine-mediated oxidative C-N bond formation with a yield of 47-93% (Scheme-20) [50].

Figure 3. Structures of Anti-ALS pyrazolones.
X = C, O; Ar₁ = Ph, o-met-Ph, p-MeOPh, p-CIPh, p-CF₃Ph, p-CNPh; Ar₂ = Et, o-MePh, m-BrPh, p-CNPh, p-MeOPh, 2-thienyl, 4-pyridyl; R₁ = H, Ph, Bn

Scheme 20. Synthesis of spiropyrazolones (66): (a) R₃NHNH₂·H₂O/HCl/2HCl, EtOH, 75-90 °C, overnight (b) I₂, AgOTf, 0 °C, Stirring, 30-60 min.

Asymmetric synthesis of pyrrolidine-2-thione-spiropyrazolones (67) from benzylidene pyrazolones via an organocatalytic Michael/cyclization sequence (Scheme-21). The reaction afforded spiropyrazolones containing three contiguous stereogenic centers with high levels of diastereo- and enantioselectivity (up to 20:1 dr and 99 % ee) [141].

Scheme 21. Synthesis of pyrrolidine-2-thione-spiropyrazolones (67): (a) Cat. (15 mol %), DCM, rt.

Diarylazobenzylidene pyrazolones (68) as potent HIV-1 integrase inhibitors (Scheme-22), the structure-activity relationship (SAR) indicated that compounds with substituents R₁ = 3,5-dichlorophenyl substituent (IC₅₀ = 12±1 mM), R₂ = 3 (4-fluorobenzyl)4-methoxy benzylidene (IC₅₀ = 11±1 mM) and R₃ = carboxylate (IC₅₀ = 19±3 mM) having higher potency than other in strand transfer assay [142].

Scheme 22. Synthesis of dialkoxybenzylidene pyrazolones (68): (a) R₃COCH₂CO₂Me, EtOH/AcOH/K₂CO₃·EtOH, reflux (b) R₂CHO, H₂O, reflux or LiOH, MeOH/THF/H₂O.

Chiral synthesis of oxindole-pyrazolones (69) from N-phenylpyrazolones and isatinderived N-Boc ketimines with excellent yield (92-95 %) and enantioselectivity (59-99 % ee) (Scheme-23) [143].

Scheme 23. Synthesis of oxindole-pyrazolones (69): (a) i. Cat. (0.5 mol %), DCM, 25 °C, ii. NFSI, K₂CO₃, DCM, 25 °C or NCS/NBS 25 °C or N-phenylthiophthalimide, K₂CO₃, 25 °C.

Parekh et al. synthesized heterocyclic-fused-pyrazolones (70a-j) from nitroalkenes and pyrazolo esters via DABCO-catalyzed Michael addition and reductive ring-closing strategy with a yield of 74-92% (Scheme-24) [144].

Compd	R₁	R₂	R₃	n	Compd	R₁	R₂	R₃	N
70a	Ph	H	Ph	0	70f	Ph	Me	Ph	0
70b	(p-MeO) Ph	H	Ph	0	70g	1,2-Naphtho	1,2-Naphtho	Ph	0
70c	(p-MeCO₂) Ph	H	Ph	0	70h	Ph	H	Me	0
70d	n-Pr	H	Ph	0	70i	Ph	H	Ph	1
70e	2-Thienyl	H	Ph	0	70j	1,2-Naphtho,	1,2-Naphtho	Ph	1

Scheme 24. Synthesis of heterocyclic-fused-pyrazolones (70a-j): (a) DABCO, DCM, r.t., 4h, (b) Zn, AcOH, r.t., 2 h, (c) Toluene : AcOH (3/2), 120 °C, 24 h.
Synthesis of N-aryl benzylidenepyrazolone (71) using SiO₂/Al₂O₃ under solvent free microwave assisted conditions with 80-81% yield of product [145].

Scheme 25. Synthesis of N-aryl benzylidenepyrazolone (71): (a) SiO₂/Al₂O₃, Solvent-free, MW, 420W, 10 min

The most wide method synthesis for pyrazol-5-one is the condensation of dicarbonyl compounds with hydrazines. The reaction of arylthiosemicarbazide and ethyl acetoacetate afforded 1-aryltioanilido-3-methylpyrazolone [107]

Scheme 26. Synthesis of pyrazol-5-one compound.

Synthesized different derivatives with pyrazolone as the basic heterocyclic nucleus, treated ethyl acetoacetate with thiosemicarbazide in ethanol, and triethylamine afforded the condensation product ethyl 3-(2-carboxamidoxyhydradrazono)butanoate, not the cyclized form 73. The treatment of arylthiosemicarbazide with phenyl bromide in ethanol and fused sodium acetate afforded 3-methyl-1-(4-phenylthiazol-2-yl)-1H-pyrazol-5(4H)-one 74, scheme 27 [146-149].

Scheme 27. Synthesis of compound 73.

Synthesis 28. Synthetic pathways for compounds 74 and 75.

Scheme 30: synthesis of pyrazolone derivative.

Scheme 31: synthesis of substituted pyrazolone compounds.

DISCUSSION

Pyrazolone derivatives are believed to be involved in various biochemical and physiological reactions and thus scientific research programs are continuously pouring in concerning improvised synthetic techniques to prepare numerous pyrazolone derivatives. From the last decade, a lot of work is going on the pyrazolone nucleus. Scientists have developed various new compounds related to this moiety and tested them for their different pharmacological activities to get a molecule of desired pharmacological activities. An intensive literature survey including the methods of synthesis for various pyrazolone derivatives has been carried out, as the pyrazolone derivatives have been of interest to medicinal chemists for their wide range of biological activities [150-154]. Pyrazolones are an important class of heterocyclic compounds that occur in many drugs and is an anti-inflammatory agent used in the treatment of arthritis and other musculoskeletal and joint disorders.

Pyrazolones are a biologically important group of compounds having diverse biological activities like antibacterial, antifungal, anti-inflammatory, antidiabetic, analgesic, antipyretic, immunosuppressive agents, hypoglycemic, antiviral, antineoplastic activity and other biological activities [155-159]. Although earlier many of pyrazolone derivatives were associated with adverse effects such as agranulocytosis, skin rashes, and blood dyscrasia, etc. that may have halted peer progress for some time but peer extensive and versatile profile have made the pyrazolones favorites for newer drug development. Keeping in view the increasing importance of these derivatives, a need to review the progress regarding pyrazolone was felt.

CONCLUSION

The pyrazolone is an important heterocyclic skeleton that can be modified into a variety of derivatives. For more than a century, heterocyclic compounds have constituted one of the largest areas of research in organic chemistry. Pyrazolones are the versatile active heterocyclic which is of immense importance biologically and industrially. Pyrazolone nucleus is present as a core structural component in an array of drug categories. Several strategies have been developed to synthesize the pyrazolone derivatives for different proposes. Here, several synthetic strategies are described for the development of pyrazolone derivatives along with their biological activities. This article will help to design synthetic schemes and their possible biological applications. Pyrazolone derivatives are gaining importance through their diverse biological and pharmacological activities such as antioxidant, antidiabetic, anticancer, anticonvulsant, hepatoprotective, neuroprotective, antiviral, antithrombotic, antimicrobial, myocardial and vascular injury, ischemia, myocardial infarction, atherosclerosis, and radioprotective and other biological effects. This review reflects the contribution of pyrazolone heterocycle to the development of society from a biological point of view and the understanding of life processes as well as may enlighten the medicinal chemists who are aspiring to discover a versatile drug candidate for the benefit of mankind.

ACKNOWLEDGEMENT

We are very thankful to the Department of pharmaceutical Chemistry, Himalayan Institute of Pharmacy and Research, Dehradun, Uttarakhand, India, and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia for providing necessary facilities.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Lednicer, D., and Mitscher, L.A. In Organic Chemistry of Drug Synthesis; Wiley Interscience: New York, 1997, 1, 226.
2. Lalit, K., Chandresh, T., Vivek, S. Inter. J. Res. Pharm. & Sci., 2012, 2(2), 13–22.
3. Yoon, S., Choi, B., Rahman, M.M., Kumar, S., Kabir, S.S.M.M., Koh, J. Materials, (Basel), 2019, 12(24), 4209.
142. Hadi, V., Koh, Y.H., Sanchez, T.W., Barrios, D., Neamati, N., Junga, K.W. *Bioorg. Med. Chem.*, 2010, 20(22), 6854–6857.
143. Bao, X., Wang, B., Cui, L., Zhu, G., He, Y., Qu, J., Song, Y. *Org. Lett.*, 2015, 17(21), 5168–5171.
144. Parekh, N., Thomas, J., John, J., Kusurkar, R., De Borggraeve, W.M., Dehaen, W. *J. Org. Chem.*, 2014, 79(11), 5338–5344.
145. Ma, R., Zhu, J., Liu, J., Chen, L., Shen, X., Jiang, H., Li. *J. Molecules*, 2010, 15, 3593–3601.
146. Pawar, R.A., Patil, A.A. *Ind. J. Chem.*, 33B, 1994, 156–158.
147. Srivalli, T., Satish, K., Suthakaran, R. *Inter. J. Innovative Pharm. Res.*, 2(4), 2011, 172–174.
148. Kobarkov, K.I., Rybina, I.I., Kelarev, V.I., Koloev, V.K. *Chem. Heterocycl. Compu.*, 39 (6), 2003, 749–755.
149. Naik, C.G., Malik, C.M. *Orient J. Chem.*, 2010, 26(1), 113–116.
150. Althagafi, I., El-Metwally, N.M., Elghalban, M.G., Farghaly, T.A., Khedr, A.M. *Bioinorg. Chem. Appl.*, 2018, 2727619. doi:10.1155/2018/2727619
151. Yoon, S., Choi, B., Rahman, M.M., Kumar, S., Kabir, S.M.M., Koh, J. *Materials*, 2019, 12(24), 4209. doi:10.3390/ma12244209.
152. Zhang, Y., Zhao, K.T., Fox, S.G., Kim, J., Kirsch, D.R., Ferrante, R.J., Morimoto, R.I., Silverman, R.B. *J Med Chem.*, 2015, 58(15), 5942–5949.
153. Pei, L., He, S., Gao, J., Liao, H., Gao, H. *Polymers*, 2017, 9(7), 262. doi:10.3390/polym9070262
154. Yepremyan, A., Mehmood, A., Brewer, S., Barnett, MM., Janesko, B.G., Akkaraju, G., Simanek, E.E., Green, KN. *RSC Adv.*, 2018, 8(6), 3024–3035.
155. Amata, E., Bland, N.D., Campbell, R.K., Pollastri, M.P. *Tetrahedron Lett.*, 2015, 56(21), 2832–2835.
156. Mochona, B., Jackson, T., McCauley, D., Mazzio, E., Redda, K.K. *J. Heterocycl. Chem.*, 2016, 53(6), 1871–1877.
157. Sweeney, N.L., Lipker, L., Hanson, A.M., Bohl, C.J., Engel, K.E., Kalous, K.S., Stemper, M.E., Scm, D.S., Schwann, W.R. *Antibiotics*, 2017, 6(1), 4. doi:10.3390/antibiotics6010004
158. Mariappan, G., Saha, B.P., Sutharson, L., Singh, A., Garg, S., Pandey, L., Kumar, D. *Saudi Pharm. J.*, 2011, 19(2), 115–122.
159. Sivakumar, K.K., and Rajasekaran, A. *J. Pharm. Bioallied. Sci.*, 2013, 5(2), 126–135.