Health care users’ acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda [version 2; peer review: 1 approved, 3 approved with reservations]

Hellen Nansumba1, Mugalula Flaviano1, Semanda Patrick1, Ssewanyana Isaac1, Douglas Wassenaar2

1Central Public Health Laboratories (CPHL), Ministry of Health of Uganda, Kampala, Uganda
2South African Research Ethics Training Initiative (SARETI), University of KwaZulu-Natal, South Africa, Kwazulu-Natal, South Africa

Abstract

Background: Implementation of appropriate informed consent has become a cornerstone for the use of biological materials and data from clinical care to use in research. During 2017-2018, the Ugandan National Biorepository has since sought prior informed consent for long-term storage and use of remnant clinical human biological materials, where a shortened informed consent form (ICF) was incorporated on the laboratory investigation form. This project aimed at determining the acceptability rate of broad consent from health care users (HCUs) for storage of biological materials and data for research purposes in Uganda.

Methods: A cross-sectional study was conducted at three Primary Health Care Facilities. 500 HCUs above 18 years of age seeking health care at outpatient departments between March to December 2020 were invited to enrol. A shortened experimental ICF for this study was developed and attached to the Laboratory investigation form.

Results: Overall the acceptability of broad consent for storage of biological materials and data was 86.2% [95% CI: 82.9%-88.9%]. Compared to participants who perceived that the informed consent information is understandable (OR=0.10, CI [0.03-0.32], participants who either partly or totally disagreed were significantly less likely to perceive information as understandable (OR=0.27, CI [0.15-0.46]. 226 out of 431 respondents that accepted storage of biological materials and data, majority (61.7%) preferred to receive feedback on results of relevance to their health.

Conclusion: Acceptance of broad consent for storage of biological
materials and data for future research purposes was high among HCU. A shortened and simplified ICF may trigger discussions between participants and health care workers hence increase research participant understanding of study related materials in biobanking. This in turn could enrich ethically collected biobank resources for future research of public health relevance.

Keywords
Broad consent, biobanking, comprehension, informed consent form, biological materials
Background

Uganda adopted a centralized model of testing to scale-up its national Health programmes such as HIV Early Infant Diagnosis (EID) and HIV viral load monitoring (VL) programmes. Human biological materials such as dried blood spots (DBS) and plasma are collected from remote health facilities in Uganda and delivered to HUBS. A HUB is a coordination center of the sub-district network serving approximately 20–40 health facilities where several referral tests are done. Currently, there are 100 functional HUBS bringing together a network of over 2,500 health facilities. Biological materials are transported from the HUB to the Central Public Health Laboratory for testing. The total national coverage of both EID and VL for over 150,000 HIV exposed infants and 1,200,000 HIV patients on Antiretroviral Therapy (ART) has resulted in the collection of over 1,500,000 remnant biological materials in a Biorepository for future research.

In September 2016, a National Biorepository was proposed and established to enable storage of human biological materials in a retrievable manner for future research purposes and to foster both local and international research collaborations. During 2017–2018, the National Biorepository sought prior informed consent for long-term storage and use of remnant clinical human biological materials mainly from the programmes mentioned above. A shortened informed consent form has been incorporated on the laboratory request form.

Several bottlenecks in governance and regulation of Biobanks in LMICs were highlighted in our previous work. National Research Biobanking Guidelines have since been developed. They state that all biological materials and associated data obtained during research, clinical care, public health interventions and surveillance require evidence of documented informed consent from the sample donor or their representative for storage. Each biospecimen should have documentation of informed consent status. Consent for Biobanking for specified or unspecified future research raises unique challenges and concerns for informed decision making especially in the context of clinical care. Participants often do not understand much of the information they are provided with and this is attributed to overly complex Informed consent forms. In most cases, there are competing clinical demands that limit time for HCUs engagement with the informed consent document. Broad consent provides participants with a choice about whether to allow their stored specimens to be used in future research based on a broad category, e.g., cancer, heart disease, or behavioral research. However, in the genomics era, broad consent should be implemented within health systems that are trust worthy and have measures in place to ensure that open-ended agreements are not used. This is because broad consent may provide participants with insufficient information to make a reasonable choice while others may change their minds in the future. Additionally, several studies show the lack of understanding of consent and preferences about broad consent. Few studies have investigated the African population, so this research conducted is very relevant and needed.

Implementation of appropriate informed consent is fundamental for the collection and use of biological materials and associated data from clinical care. This project aimed to understand the acceptance for broad consent and HCUs knowledge, attitudes, and perceptions of broad consent for storage of biological materials and associated data in Uganda. Findings from this study may contribute to current debate regarding understanding the content of informed consent documents, the purpose of biobanks generally, or the scope of the future research and projects to be carried out. Additionally, findings from this study may be used to design evidence-based practices and procedures for obtaining informed consent for biobanking and to inform research ethics committees (RECs) on assessment of biobanking protocols based on the preferences of actual donors.

Objectives

Objective 1: Determine factors associated with the relationship between understanding of essential elements of the informed consent form and acceptability of storage of biological material and data

Objective 2: Determine the factors associated with attitudes and acceptability of storage of biological material and data

Objective 3: Determine HCUs acceptability rate for storage of biological materials and associated data

Objective 4: Determine factors associated with motivation and acceptability for storage of biological materials and data

Objective 5: To determine the factors associated between HCUs’ perceptions and acceptability of storage of biological materials and data

Methods

The Uganda National Health Laboratory Services Research Ethics Committee (UNHLSREC) for ethics reviewed and approved this study (UNHLSRECO008032020). The study
was approved by Uganda National Council for Science and Technology (HS652ES). Permission was sought from the Medical officer in-charge of each health facility.

A cross-sectional study design was conducted at three Primary Health Care Facilities; Kiruddu National Referral Hospital, Mukono Health Center IV and Reach-Out Mbuya Community Health Initiative. Two data collection tools were used in this study; (i) a shortened experimental informed consent form and (ii) a semi-structured questionnaire that contained the predictor variables. It is comprised of both closed- and open-ended questions. Both the shortened experimental informed consent form and the questionnaire can be found in the Extended data.

HCUs above 18 years of age seeking health care at outpatient departments (OPDs) between March to December 2020 from the selected Health Facilities (HFs) in Uganda were invited to enrol. Only HCUs who consented were enrolled in this study. HCUs that are not fluent in English were excluded since the shortened Experimental informed consent form about biobanking was in English language only.

The sample size was estimated using the modified Kish Leslie (1965) formula $N = \frac{Z^2 \cdot P(1-P)\cdot D^2}{d^2}$ where: $Z= \text{Standard normal value corresponding to the 95\% confidence interval}= 1.96$, $P= \text{Meta-analytic results of studies examining comprehension of "generic" domains of informed consent. The proportion of participants that understood the right of withdrawal}= 0.567$, $D= \text{Design effect } = 1$. Because sampling will be implemented in same level of Health facilities, $d= \text{Error that can be tolerated in the study}=0.05$, $N= \frac{(1.96^2+0.72(1-0.567)) *1}{0.05^2} = 479$. Thus, a sample size of 500 participants was enrolled in this project.

HCUs at the selected health facilities were approached by trained research assistants and asked whether they were willing to participate. If willing, they were asked to read and sign a study consent form that explained the essential elements of this study to them before they decided whether to participate in this study or not. Once they consented they were asked to study the experimental Informed consent form about biobanking and then complete a closed-ended and open-ended questionnaire on knowledge, perceptions and attitudes towards biobanking.

A shortened experimental informed consent form (ICF) was developed for this study. This was read, understood and “completed” by the participant before the questionnaire was administered. The experimental ICF contained all the essential elements of informed consent such as background to the National Biorepository, purpose of the consent form, examples of possible future research, benefits, risks, costs, refusal to store left-over specimens, return of research findings, inquiry and consent statement. Completion of the experimental ICF was ‘hypothetical’ and agreement with it did not mean that the participants’ samples were actually to be stored in the National Biorepository. It was simply to collect data about the acceptability of HCUs to store human biological material and associated data. A semi-structured questionnaire consisted of both closed- and open-ended questions. Predictor variables included; Socio-demographic variables (Age, Sex, Level of Education), understanding of informed consent form, attitude towards the informed consent form, motivation of HCUs for storage of biological material and associated data and perceptions of broad consent for storage of biological material and data. Outcome variable was defined as hypothetical acceptability of the HCUs to store biological material and associated data in the National Biorepository.

Outcome variables were computed and presented as percentages with a 95% Confidence Interval. Continuous variables were computed and presented as means and standard deviations while categorical variables were computed and presented as proportions. Independent/ predictor variables were computed and analyzed as percentages with a 95% Confidence Interval. The statistical associations between socio-demographic characteristics, understanding, attitudes, motivation and perception and acceptability to store biological material to the National Biorepository were determined using logistic regression. Odds ratios (OR) and 95% confidence intervals were generated to measure the strength of the association of each factor. All statistical analysis was performed using STATA 14.2.

Results

Background characteristics of the HCUs enrolled at selected Primary Health Care Facilities

The mean age of the HCUs was 30.18 years. The proportion of female HCUs was higher (53.80%) than males. The highest percentage (49.40%) of HCUs had attained secondary education. The highest proportion (92.40%) of respondents had never participated in health-related research. Most HCUs (91.20%) did not work in a health-related field.

The lowest proportion of respondents (6.45%) understood that remnant biospecimens are sometimes stored for beyond clinical use. Other background characteristics of participating HCUs are summarized in **Table 1**.

Prevalence of acceptability of storage of biological material and data related to the background characteristics of health care users

The overall prevalence of acceptability of storage of biological materials and data among HCUs was high (86.2%, 95% CI [82.9%-88.9%]). Acceptability was higher among the young adults aged 18–35 years (76.6%, 95% CI [72.3%-80.3%]). The prevalence of acceptability was higher among respondents that completed at least secondary education (50.1%, 95% CI [45.4%-54.8%]). Acceptability of storage of biological materials and data for research purposes among HCUs stratified by various background characteristics is summarized in **Table 2**.

Perception of the format of the experimental informed consent form

Informed consent information that is either partly or not understandable was found to be statistically significant (OR=0.27, 95% CI [0.15-0.46]) and (OR=0.10, 95% CI [0.03-0.32]) respectively as compared to informed consent information perceived as understandable. Less informed consent form information was found to be statistically significant (OR=4.39, 95% CI [2.03-9.53] with acceptability for storage of biological
Table 1. Background characteristics of 500 HCUs at selected health facilities in Uganda, 2020.

Characteristics	Health Care Users (n=500)
Mean Age (SD)	30.18 (± 9.87)
Gender n (%)	
Male	231 (46.20)
Female	269 (53.80)
Level of education n (%)	
Primary	91 (18.20)
Secondary	247 (49.40)
Diploma	61 (12.20)
Tertiary	39 (7.80)
Postgraduate	38 (7.60)
Other*	24 (4.80)
History of participation in health related research n (%)	
Yes	38 (7.60)
No	462 (92.40)
History of professional work in a medical field n (%)	
Yes	44 (7.60)
No	456 (91.20)
Knowledge of what happens to remnant biospecimen after laboratory tests n (%)	
Destroyed immediately	230 (46.37)
Destroyed after a duration of time	64 (12.90)
Stored for a duration of time	32 (6.45)
Stored for research purposes	94 (15.32)
Not sure	76 (15.32)

* Certificate

materials and data. Difficult language was found to be statistically significant (OR= 2.65, 95% CI [1.30-5.39]). Length of informed consent form was found not to be statistically significant. HCUs opinion on the format of the informed consent form is summarised in Table 3 and Figure 1.

Understanding of essential elements of the experimental informed consent form

The majority of respondents understood that their specimen and data could also be used for other health research questions (93.2%, 95%CI [90.6%-95.1%]). A high proportion of the respondents understood they could withdraw consent for storage on specimen and data at any time (84.34%, 95% CI [80.9%-87.3%]). Most HCUs incorrectly believed that their specimens and data would only be used by the National Biorepository (46.48%, 95% CI [42.1%-50.9%]), instead of being accessed from there by other researchers. A summary of HCUs understanding of the essential elements of the informed consent form is described in Table 4: Understanding of essential elements of the experimental informed consent form by HCUs in Uganda, 2020.

Motivation of HCUs who accepted storage of biological materials and data for research purposes

The majority of the HCUs accepted storage of biological materials and data to help other future patients with the same disease/health problem (84.35%, 95% CI [80.6%-87.5%]). A low proportion of respondents worried that they might be somehow disadvantaged if they gave consent to store biological materials and data for research purposes (5.9%, 95% CI [3.9%-8.6%]).
The various reasons that motivate HCU s to accept storage of biological materials and data are summarized in Table 5.

HCUs’ attitudes towards return of research findings from biological materials and associated data used for research purposes
Among respondents that accepted storage of biological materials and data, the majority (266 of 431) preferred to receive feedback on results of any relevance to their health. Figure 2 summarizes HUCs opinion on the return of research results from utilized biological materials and data.

Reasons given for why HCUs wanted feedback of results of clinical relevance included:
1. Early diagnosis: Understand unexpected medical conditions and access early treatment
2. Understand health complications hence improve health outcomes
3. Understand health status
4. Promote and improves quality of life
5. Improve relevance of research to study populations
Table 3. Perception of the format of the experimental informed consent form by HCUs in Uganda, 2020.

Variable	‘Hypothetical’ broad consent for biospecimen storage	OR [95% CI]	p-value	
	Accept n (%)	Decline n (%)		
Length of informed consent form				
Too short	17 (3.94)	5 (7.25)	0.91 [0.30-2.81]	0.874
Too long	59 (13.72)	19 (27.54)	2.31 [0.81-6.57]	0.115
Just right	354 (82.33)	45 (65.22)		
Information is understandable				
Yes	307 (71.40)	26 (37.68)	1.0	
No	7 (1.63)	6 (8.70)	0.10 [0.03-0.32]	<0.001
Partly	116 (26.98)	37 (53.62)	0.27 [0.15-0.46]	<0.001
Format of the informed consent form				
Did not understand the technical terms				
Yes	79 (65.29)	21 (51.22)	1.0	
No	42 (34.71)	20 (48.78)	0.56 [0.27-1.14]	0.111
Too much information				
Yes	49 (39.84)	32 (74.42)	1.0	
No	74 (60.16)	11 (25.58)	4.39 [2.03-9.53]	<0.001
Too little explanation				
Yes	34 (28.10)	2 (4.88)	1.0	
No	87 (71.90)	39 (95.12)	0.13 [0.03-0.57]	0.007
Too long				
Yes	29 (23.97)	11 (26.19)	1.0	
No	92 (76.03)	31 (73.81)	1.13 [0.50-2.52]	0.773
Language too difficult				
Yes	42 (34.43)	25 (58.14)	1.0	
No	80 (65.57)	18 (41.86)	2.65 [1.30-5.39]	0.007
Read too quickly				
Yes	36 (29.51)	--	1.0	
No	86 (70.49)	42 (100)	--	--
Not interested in the content				
Yes	6 (5.08)	7 (17.07)	1.0	
No	112 (94.92)	34 (82.93)	3.84 [1.21-12.2]	0.022
Asked questions but did not understand response				
Yes	7 (5.79)	6 (14.29)	1.0	
No	114 (94.21)	36 (85.71)	2.71 [0.86-8.60]	0.090
Table 4. Understanding of essential elements of the experimental informed consent form by HCUs in Uganda, 2020.

Characteristics	Correct n (%) [95% CI]	Not correct n (%) [95% CI]	Not sure n (%) [95% CI]
My specimen and data can only be used for research questions that relate to my disease	159 (31.9) [28.0-36.2]	293 (58.95) [54.6-63.2]	45 (9.05) [6.8-11.92]
My specimen and data can also be used for any other medical research question	464 (93.2) [90.6-95.1]	14 (2.81) [1.7-4.7]	20 (4.02) [2.6-6.1]
I can withdraw my consent to store my specimen and associated data at any time	420 (84.34) [80.9-87.3]	16 (3.21) [1.9-5.2]	62 (12.45) [9.8-15.7]
If I have consented that my specimen and associated data are stored, I cannot withdraw this consent	36 (7.23) [5.3-9.9]	342 (68.67) [64.4-72.6]	120 (24.10) [20.5-28.1]
My specimen and data will only be used at the National Biorepository	183 (36.82) [32.7-41.2]	231 (46.48) [42.1-50.9]	83 (16.70) [13.7-20.3]
My specimen and data might also be shared with interested researchers who work on relevant medical research projects and have the approval of a research ethics committee.	443 (89.13) [86.0-91.6]	18 (3.62) [2.3-5.7]	36 (7.24) [5.3-9.9]
Any unauthorized tracking back of data to me personally is completely impossible	299 (60.16) [55.8-64.4]	27 (5.43) [3.7-7.8]	171 (34.41) [30.3-38.7]
If in the course of the research with my specimen and data something is found out that is relevant to my health, this will be reported to me	468 (93.79) [91.3-95.6]	--	31 (6.21) [4.4-8.7]
Table 5. Motivation of HCUs who accept storage of biological materials and data for unspecified reasons in Uganda, 2020.

Characteristics	YES n (%)	YES [95% CI]	No n (%)	No [95% CI]
I hope I will personally benefit from the research with my specimen and data	325 (75.93)	[74.6-82.4]	103 (24.07)	[17.6-25.4]
I would like to support medical research in general	340 (79.44)	[75.3-83.0]	88 (20.56)	[17.0-24.7]
I would like to help other future patients with the same disease/health problem	361 (84.35)	[80.6-87.5]	67 (15.65)	[12.5-19.4]
I would like to benefit from the advantages of medical research; therefore, I should also make a contribution to it	214 (50)	[45.3-54.7]	214 (50)	[45.3-54.7]
I would like to act as a role model for other patients	167 (39.02)	[34.5-43.7]	261 (60.98)	[56.3-65.5]
Being a patient myself, I feel connected to future patients and would like to do something for them	184 (42.99)	[38.4-47.7]	244 (57.01)	[52.3-61.6]
I am interested in medical research and would like to be part of it	208 (48.6)	[43.9-53.4]	220 (51.4)	[46.6-56.1]
I know other patients who consented and this persuaded me to consent too	91 (21.6)	[17.6-25.4]	337 (78.4)	[74.6-82.4]
I am grateful to my doctors and give my consent in order to help them with their work	248 (57.94)	[53.2-62.6]	180 (42.06)	[37.4-46.8]
I worry that I will be disadvantaged or that my treatment will suffer if I do not give my consent	25 (5.88)	[3.9-8.6]	400 (94.12)	[91.4-96.0]
I have not thought about the use of my specimen and data, I do not care	75 (17.77)	[14.4-21.7]	347 (82.23)	[78.3-85.6]

Figure 2. HCUs’ attitudes towards return of research results from biological materials and data in Uganda, 2020.
In summary, acceptability for storage of biological materials and data for research purposes among HCUs was high (86.2%, 95% CI [82.9%-88.9%]). HCUs with a history of participating in health-related research were statistically different from those that had never participated (p-value = 0.019). And HCUs with a history of professional work in a medical field were statistically different from those that worked in non-medical fields (p-value = 0.005).

Compared to participants who perceived that the informed consent information is understandable (OR=0.10, 95% CI [0.03-0.32]), participants who either partly or totally disagreed were significantly less likely to perceive information as understandable (OR=0.27, 95% CI [0.15-0.46]). Respondents who perceived the ICF information as brief and concise were four times more likely to accept storage of biological materials and data compared to those who thought it was lengthy (OR=4.39, 95% CI [2.03-9.53]). HCUs who perceived the ICF language as easy to read were 3 times more likely to accept storage of biological materials and data compared to those who found the language quite difficult (OR= 2.65, 95% CI [1.30-5.39]). HCUs opinion on the format of the informed consent form is summarised in Table 3 and Figure 1.

Most respondents understood that their specimen and data could also be used for other health research questions (93.2%, 95% CI [90.6%-95.1%]). A high proportion of respondents understood that they could withdraw consent for storage of specimens and data at any time (84.34%, 95% CI [80.9%-87.3%]). Most HCUs incorrectly believed that their specimens and data would only be used by the National Biorepository (46.48%, 95% CI [42.1%-50.9%]), instead of being accessible from there by other researchers on request. Among respondents that accepted storage of biological materials and data, the majority (266 of 431) preferred to receive feedback on results of relevance to their health. A summary of HCUs understanding of the essential elements of the informed consent form is described in Table 4.

The majority of the HCUs accepted storage of biological materials and data to help other future patients with the same disease/health problem (84.35%, 95% CI [80.6%-87.5%]). A low proportion of respondents worried that they might be somehow disadvantaged if they gave consent to store biological materials and data for research purposes (5.9%, 95% CI [3.9%-8.6%]).

One of the limitations is that the study did not adjust for key confounding variables such as level of education. However, health care users that were illiterate of the English language were excluded from the study since the experimental informed consent form about biobanking was written in English language.

Discussion

Prevalence of acceptability for storage of biological materials and data

Acceptance of storage of biological materials and data was found to be high at 86%, suggesting that most participating HCUs hypothetically accepted broad consent for storage and use of biological material and data for unspecified and/or broad research purposes. This acceptance was higher than the 49.5% that indicated that they would want to be contacted each time their sample was re-used, as reported by Moodley et al. (2014). Additionally, our acceptance rate was higher than the 66.1% that agreed that broad consent was permissible as reported by Mwaka et al. (2019).

This could partially be explained by the fact that the concept of broad consent and alternative approaches to consent for re-use of biological materials and data has increasingly been discussed in LMICs. As mentioned in our Background section, several challenges have been highlighted in obtaining only specific informed consent; e.g., samples obtained from pediatric and autopsy studies regarded as precious resources, considering the circumstances of the consent process and scarcity of such cases. Biological materials obtained during outbreak investigations may not be traceable to the primary source. Consent to re-use biological materials for unspecified future research helps to lessen the cost and time burdens on researchers.

Almost half of the participants (43.8%) believed that remnant biospecimens were destroyed immediately after laboratory tests. Only 6.6% and 21.3% thought clinical specimens might be stored for a specified period and for research purposes, respectively. This data may guide in the development of Standard Operating Procedures for sample retention times for biological materials used for clinical purposes that have not been consented for storage. This suggests that sample storage and further use possibilities should be more clearly specified at the time of sampling.

Perception of format of experimental informed consent form

A shortened experimental Informed consent form was developed and tested with HCUs in a public health setting. One of the objectives of this study was to determine HCUs’ perception of the length and technical content of the informed consent form. Our data suggest that 82.3% of HCUs found that the length of the informed consent form was appropriate. Sixty five percent of HCUs who accepted storage of biological materials and data indicated that they did not understand some technical terms. However, acceptability of storage of biological materials was not a statistically significant preference. Compared to participants who perceived that the informed consent information is understandable, participants who either partly or totally disagreed were significantly less likely to perceive the information as understandable. Lengthy informed consent forms remain common in research settings in LMICs, despite the fact that they negatively affect potential participants’
understanding about the proposed research. A shortened informed consent form may prompt better understanding and willingness to consent, as has been shown elsewhere.\(^2\)\(^,\)\(^3\)

HCUs responses on how to improve the broad consent form were articulated as follows: (a) Simplify the technical terms and language used. (b) The Informed consent form should be translated in various languages. (c) Shorten the informed consent form to make it brief. (d) Offer participants enough time to understand the information. (e) More sensitization of the informed consent process should be done. (f) The examples for possible re-use of biological materials should be written in a simplified language.

Understanding of the essential elements of experimental draft informed consent form

The current study found that most HCUs understood the essential elements of the informed consent form. This may have been biased by the fact that our questionnaire was administered immediately after the discussion of the informed consent information. Although there are several reports on assessment of understanding in clinical trials in Africa,\(^4\) there are no existing guidelines on assessment of comprehension of informed consent information used in biobanks, clinical trials and/or research studies.

Regulations and National guidelines\(^5\)\(^,\)\(^6\) have set forth topics that should be covered in consent forms however, there is lack of guidance on the action that should be done when a prospective participant fails to understand the information.

Conclusions

Our study showed high HCUs acceptance of broad consent for storage of biological materials for future unspecified research uses. This was statistically significant in HCUs with a history of participating in research and those that worked in a health-related field. Almost half of the participants believed that their biological materials were destroyed immediately after the laboratory test. A shortened Informed consent form was developed and assessed by HCUs in a public health setting. A clear majority of HCUs stated that the length of the informed consent form was appropriate. HCUs that found information either not or partly understandable were less likely to support storage of their biological material and data. Therefore, understanding of the essential elements of the informed consent form is critical as a core ethical principle. A shortened and simplified informed consent form may trigger constructive discussions between potential participants and health care workers and potentially increase research participant understanding of study related materials in biobanking. The current National Research Biobanking Guidelines should be reviewed to include validated assessment tools for comprehension of informed consent information used in biobanks.

The media of presentation that information on the informed consent form is conveyed is key as supported by the participants’ suggestions that the informed consent forms should be translated into local languages. Other innovative ways of conveying the information on the consent forms to HCUs should be used. For example Health care facilities could develop short video clips on what and how human materials are used in research and the role of the National Biorepository as a resource for scientific research.

Data availability

Underlying data

Harvard Dataverse: Replication Data for: Health care users’ acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda https://doi.org/10.7910/DVN/GOMGRT\(^2\)\(^5\).

This project contains the following underlying data:
- Original dataset.csv (For the study titled “Health care users’ acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda)

Extended data

Harvard Dataverse: Replication Data for: Health care users’ acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda https://doi.org/10.7910/DVN/GOMGRT\(^2\)\(^5\).

This project contains the following extended data:
- A copy of the experimental informed consent form
- A copy of the questionnaire

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements

We would like to thank our study participants and the team of interviewers for your tireless inputs into this project. My heartfelt appreciation to Ms. Carla Pettit for the support rendered during the field placement and protocol development at SARETI, University of KwaZulu-Natal in South Africa. Great thanks to our colleagues Ms. Grace Esther Kushemererwa, Ms. Christine Namulindwa Bukenya and Mr. Iga Tadeo for the technical input towards the development and review of the informed consent experimental tools.
References

1. Kiyya C, Sendagire H, Joseph E, et al.: Uganda’s new national laboratory sample transport system: a successful model for improving access to diagnostic services for Early Infant HIV Diagnosis and other programs. PLoS One. 2013; 8(11): e78600. PubMed Abstract | Publisher Full Text | Free Full Text
2. Ssewanyana I, Kiyya C, Nansumba H: Establishment of a National Health Laboratory Services Biorepository in Uganda. Central Public Health Laboratories. 2016.
3. Nansumba H, Ssewanyana I, Tai M, et al.: Role of a regulatory and governance framework in human biological materials and data sharing in National Biobanks: Case studies from Biobank Integrating Platform, Taiwan and the National Biorepository, Uganda (version 2; peer review: 2 approved). Wellcome Open Res. 2020; 4: 171. PubMed Abstract | Publisher Full Text | Free Full Text
4. UNCST: Uganda National Policy Guidelines for Biobanking. 2019.
5. UNCST: National Research Biobanking Guidelines. Uganda National Council for Science and Technology. 2021. Reference Source
6. Moodley K, Sibanda N, February K, et al.: “It’s my blood”: ethical complexities in the use, storage and export of biological samples: perspectives from South African research participants. BMC Med Ethics. 2014; 15(1): 4. PubMed Abstract | Publisher Full Text | Free Full Text
7. MOH: Patients’ Charter. Ministry of Health, Department of Quality Assurance.
8. Kasperbauer TJ, Schmidt KK, Thomas A, et al.: Incorporating Biobank Consent into a Healthcare Setting: Challenges for Patient Understanding. AJOB Empir Bioeth. 2021; 12(2): 113–22. PubMed Abstract | Publisher Full Text
9. Allen J, McNamara B: Reconsidering the value of consent in biobank research. Bioethics. 2011; 25(3): 155–66. PubMed Abstract | Publisher Full Text
10. Master Z, Resnik DB: Incorporating Exclusion Clauses into Informed Consent for Biobanking. Comb Q Health Ethics. 2013; 22(2): 203-12. PubMed Abstract | Publisher Full Text | Free Full Text
11. Horton R, Lucassen A: Consent and Autonomy in the Genomics Era. Curr Genet Med Rep. 2019; 7(2): 85-91. PubMed Abstract | Publisher Full Text | Free Full Text
12. Caulfield TA, Tiggesmier BV: Health Care Reform & the Law in Canada: Meeting the Challenge. University of Alberta; 2002; 292. Reference Source
13. Shickle D: The consent problem within DNA biobanks. Stud Hist Philos Biol Biomed Sci. 2006; 37(3): 503-19. PubMed Abstract | Publisher Full Text
14. Ballard LM, Horton RH, Dheensa S, et al.: Exploring broad consent in the context of the 100,000 Genomes Project: a mixed methods study. Eur J Hum Genet. 2020; 28(6): 732–41. PubMed Abstract | Publisher Full Text | Free Full Text
15. UNCST. National Guidelines for Research involving Human as Research Participants. Uganda National Council for Science and Technology; 2014. Reference Source
16. Afzalib MG, Okebe JU, McGrath N, et al.: Informed consent comprehension in African research settings. Trop Med Int Health. 2014; 19(8): 625–42. PubMed Abstract | Publisher Full Text
17. Tindana P, Molyneux S, Bull S, et al.: ‘It is an entrustment’: Broad consent for genomic research and biobanks in sub-Saharan Africa. Dev World Bioeth. 2019; 19(1): 9–17. PubMed Abstract | Publisher Full Text | Free Full Text
18. Matandika L, Ngöngola RT, Mita K, et al.: A qualitative study exploring stakeholder perspectives on the use of biological samples for future unspecified research in Malawi. BMC Med Ethics. 2020; 21(1): 61. PubMed Abstract | Publisher Full Text | Free Full Text
19. Mwaka E, Horn L: Researchers’ Perspectives on Informed Consent and Ethical Review of Biobank Research in South Africa: A Cross-Sectional Study. J Empir Res Hum Res Ethics. 2019; 14(4): 307–17. PubMed Abstract | Publisher Full Text | Free Full Text
20. Chen H, Pang T: A call for global governance of biobanks. Bull World Health Organ. 2015; 93(2): 113–7. PubMed Abstract | Publisher Full Text | Free Full Text
21. Sgaier SK, Jha P, Mony P, et al.: Public health. Biobanks in developing countries: needs and feasibility. Science. 2007; 318(5853): 1074–5. PubMed Abstract | Publisher Full Text
22. Nishimura A, Carey J, Erwin PJ, et al.: Improving understanding in the research informed consent process: a systematic review of 54 interventions tested in randomized control trials. BMC Med Ethics. 2013; 14(1): 28. PubMed Abstract | Publisher Full Text | Free Full Text
23. Beskow LM, Weinfurt KP: Exploring Understanding of “Understanding”: The Paradigm Case of Biobank Consent Comprehension. Am J Bioeth. 2019; 19(5): 6–18. PubMed Abstract | Publisher Full Text | Free Full Text
24. Lindegger G, Milford C, Slack C, et al.: Beyond the checklist: assessing understanding for HIV vaccine trial participation in South Africa. J Acquir Immune Defic Syndr. 2006; 43(5): 560–6. PubMed Abstract | Publisher Full Text
25. Nansumba H: Replication Data for: Health care users’ acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda. Harvard Dataverse, V3, 2022. http://www.doi.org/10.7910/DVN/GOM6RT
Open Peer Review

Current Peer Review Status: 🟢 🟢 🟢 🟢

Version 2

Reviewer Report 29 November 2023

https://doi.org/10.21956/wellcomeopenres.20429.r64749

© 2023 Kozlakidis Z. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Zisis Kozlakidis
International Agency for Research on Cancer, World Health Organization, Lyon, France

This is a well-structured study, and the limitations are clearly indicated.

The introduction is sufficiently detailed. It is unclear how representative the HCUs are to the rest of the Ugandan population - a succinct statement should be made by the authors to that effect.

The discussion presents the results well within the Ugandan context, it would benefit by comparing and contrasting to the few similar, other studies that have taken place in sub-Saharan Africa on the subject of broad consent. Currently it is mentioned in passing.

The authors correctly state: "there is lack of guidance on the action that should be done when a prospective participant fails to understand the information" - however, they provide no potential recommendation on what may be appropriate within the Ugandan context; or as the basis for future research on the topic.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes
Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biobanking; microbiology; public health

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Mariana Dittborn
Great Ormond Street Hospital for Children, London, UK

Many thanks for inviting me to review the manuscript. The article offers the results of a very interesting and relevant study on broad consent acceptability in Uganda and contributes to the wider debate around informed consent models for storage of specimens and data in biobanks. Have some comments to the authors with the aim of strengthening the study's report and contributions.

Please offer a definition for broad consent.

When discussing “unique challenges” associated with consent for Biobanking, please add examples and references. What are the benefits and limitations of this type of consent?

The authors present 5 objectives, which seem somehow confusing. Would it be possible to have one main aim and specific objectives? I.e., Aim: Determine healthcare users acceptability of broad consent for storage of biological material and data. And specific objectives clarifying the different aspects the study will address including understanding, attitudes, motivations and perceptions. These should be clearly defined clarifying what each of these dimensions explored.

Please write HCUs in full the first time it appears in the text (Pag. 3, para 3)

Unfortunately, I don't have the expertise to comment on statistical tests applied in this study. Suggest having an expert reviewer to comment on this area.

Please use consistent terminology to refer to the shortened experimental informed consent form throughout the text. It would be very helpful to include it as a Table/Box/Figure as it is essential to understanding the results. In this line, was it clarified to participants that the form was an hypothetical form? Was acceptability measured as yes/no after participants read this hypothetical
Results:

Background characteristics of the HCU enrolled at the selected Primary Health Care facilities. Are these characteristics of the universe population or participants? How many HCU participated? How many did not participate?

These statements need clarification:

Page 4, last para. “Informed consent information that is either partly or not understandable was found to be statistically significant (OR=0.27, 95% CI [0.15-0.46]) and (OR=0.10, 95% CI [0.03-0.32]) respectively as compared to informed consent information perceived as understandable.”

“Difficult language was found to be statistically significant (OR= 2.65, 95% CI [1.30-5.39]).”

Table 1. Please add the total number of participants.

Pag 5. First para. When saying that most participants incorrectly believed that their specimens and data would only be used by the National Biorepository - was this information included in the hypothetical Informed Consent form? Please clarify.

Table 2. Please add the total number of respondents for reference. Are percentages taken from a total of 431 or total respondents?

Page 6, last para. Reasons given for why HCU wanted feedback. Were these obtained via open ended questions? Please clarify.

Table 3. Please add the total number of participants. Please add total numbers for each answer, as well as the numbers for “accept” and “decline” and clarify what total number the percentages refer to.

Some statements are somehow confusing as they use double negatives. I.e., “Did not understand the technical terms” Yes 79, does that mean that 79 participants did not understand the technical terms? Please clarify.

Similarly, “not interested in the content”. Please clarify.

Not sure about what Figure 1 adds, as it is the same data shown in Table 3. Please clarify/justify.

Table 4. Please add the total number of participants. Please mention which is the correct answer for each question.

Table 5. Please add the total number of participants.

Figure 2. Please add the total number of participants. Could participants select more than one answer for this question? Please clarify.
“HCU's with a history of participating in health-related research were statistically different from those that had never participated (p-value = 0.019). And HCU's with a history of professional work in a medical field were statistically different from those that worked in non-medical fields (p-value = 0.005).” Please clarify how were these groups statistically different.

“Compared to participants who perceived that the informed consent information is understandable (OR=0.10, 95% CI [0.03-0.32], participants who either partly or totally disagreed were significantly less likely to perceive information as understandable (OR=0.27, 95% CI [0.15-0.46]). " Partially or totally disagree with? I cannot see any questions that include partially or totally disagreement (like Likert scales?). Please clarify.

Suggest moving the limitations to the discussion section, and explain how the exclusion of non-English fluent HCU's might have affected the results and its generalizability.

Please describe LMICs in full the first time it appears in the text (Discussion section, second para).

Pag 11, second para “HCU's responses on how to improve the broad consent form were articulated as follows: (a) Simplify the technical terms and language used. (b) The Informed consent form should be translated in various languages. (c) Shorten the informed consent form to make it brief. (d) Offer participants enough time to understand the information. (e) More sensitization of the informed consent process should be done. (f) The examples for possible re-use of biological materials should be written in a simplified language." This should go in the results section.

The discussion could be strengthened by adding references to existing literature and recommendations for further research and practice that can be drawn from this study.

Hope these comments are helpful. I would be happy to review an updated version.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Clinical ethics, research ethics, end of life and palliative care, paediatrics.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Version 1

Reviewer Report 05 May 2022

https://doi.org/10.21956/wellcomeopenres.19505.r48966

© 2022 Broekstra R. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reinder Broekstra

1 Clinical Ethics and Law Southampton (CELS), Faculty of Medicine, University of Southampton, Southampton, UK
2 Health Psychology Research, Health Sciences, Faculty of Medicine, University of Groningen, Groningen, The Netherlands

Review Health care users' acceptance of broad consent for storage of biological materials and associated data for research purposes in Uganda

This manuscript reports on an interesting and truly relevant study on information and hypothetical consent procedure for a biorepository in Uganda. Additionally, authors apply an open science approach, which deserves compliments. However, before indexing the manuscript requires major revision.

General issues

Overall, there is a lack of transparency or clarity in the report of this study. It is not possible yet to understand or replicate the study easily. The structure of this manuscript requires improvement. Results are incorrectly reported which worries the reviewer a bit. Lastly the report is superficial in relating to the literature, description of the methods, and discussing the implications of the results.

Detailed comments

Abstract

“short informed consent statement (ICF)” = shortened informed consent form (ICF) or shortened statement of informed consent (IC).

“Shortened experimental draft ICF” revise to shortened or experimental, since the draft is used eventually.
Background

- Bio-repository = biorepository
- Bio-banking = biobanking

“Consent for bio-banking for specified or unspecified future research raises unique challenges and concerns for informed decision making especially in the context of clinical care.”: Explain, give some examples, and add references.

“Broad consent provides participants with a choice about whether to allow their stored specimens to be used in future research based on a broad category, e.g., cancer, heart disease, or behavioural research (9).”: Better define broad consent and relate to the literature, since there much more literature discussing consent and the complexity of being informed. For example, Manson, 2019¹. Or Horton R, Lucassen A., 2019².

“However, a few researchers argue that broad consent may provide participants with insufficient information to make a reasonable choice (10) while others may change their minds in the future (11).” : this is somewhat an understatement of the ongoing debate on consent in literature. Additionally, several studies show the lack of understanding of consent and preferences about broad consent, for example Ballard et al., 2020⁰. Few studies have investigated the African population, so this research conducted is very relevant and needed.

“Implementation of appropriate informed consent has become a cornerstone for the collection and use of biological materials and associated data from clinical care¹⁰.”: This is a very strange reference for this statement.

“Findings from this study may hopefully contribute to current debate regarding understanding the content of informed consent documents, the purpose of biobanks generally, or the scope of the future research and projects to be carried out¹¹.”: Why does your hope need a reference? That does not seem right.

“aim” = “objective”, the current descriptions of aim/objective/research question are rather confusing or not correct and overlap. Keep a revised objective and loose the rest.

Methods

- The study design (experimental versus non-experimental) should be written more clearly. How was the study introduced to potential participants in the study consent form, and how were research assistants trained? This might influence your outcome measure, for example being a hypothetical willingness or closer to a ‘real’ willingness.

- Lack of description of variables chosen and rationale for the choice. It requires the reader to check the attachments to get some understanding. The authors should help the reader by providing more information in the text.

Results

- Table 2, percentages do not correspond to the relevant information in table 1 and table 2. It would help to have a comparison per characteristic of accepted versus declined.

- Prevalence is a strange term to use in this context.

- It would be good to understand how motivations are associated with other characteristics,
for example perform some anova or t-tests or multiple logistic regression. Do older people have different motivations than younger people? Is there an association between educational level and motivation?

○ “HCUs with a history of participating in health-related research were statistically different from those that had never participated (p-value = 0.019). And HCUs with a history of professional work in a medical field were statistically different from those that worked in non-medical fields (p-value = 0.005).” How were these different?

○ Table 4. Show the reader what the correct answers were because some do not know or do not have time to check your documents themselves.

Discussion
○ General lack of comparing the results of this study with other studies in literature, and discussing the ethical and research implications.

○ The following reads as results, but is mentioned as discussion. Is this correct?

“Almost half of the participants (43.8%) believed that remnant biospecimens were destroyed immediately after laboratory tests. Only 6.6 % and 21.3% thought clinical specimens might be stored for a specified period and for research purposes, respectively. This data may guide in the development of Standard Operating Procedures for sample retention times for biological materials used for clinical purposes that have not been consented for storage. This suggests that sample storage and further use possibilities should be more clearly specified at the time of sampling.

Perception of format of experimental draft informed consent form

A shortened draft experimental Informed consent form was developed and tested with HCUs in a public health setting. One of the objectives of this study was to determine HCUs’ perception of the length and technical content of the informed consent form. Our data suggest that 82.3% of HCUs found that the length of the draft informed consent form was appropriate. Sixty five percent of HCUs who accepted storage of biological materials and data indicated that they did not understand some technical terms. However, acceptability of storage of biological materials was not a statistically significant preference. HCUs who could not understand some of the draft ICF were 90% less likely to accept storage of their biological material and data for research purposes. Those who partly understood the draft ICF were 73% less likely to accept storage of their biological material and data for research purposes. Longhly informed consent forms remain common in research settings in LMICs, despite the fact that they negatively affect potential participants’ understanding about the proposed research. A shortened informed consent form may prompt better understanding and willingness to consent, as has been shown elsewhere18,19.”

References
1. Manson NC: The ethics of biobanking: Assessing the right to control problem for broad consent. *Bioethics*. 33 (5): 540-549 PubMed Abstract | Publisher Full Text
2. Horton R, Lucassen A: Consent and Autonomy in the Genomics Era. *Curr Genet Med Rep*. 2019; 7
3. Ballard LM, Horton RH, Dheensa S, Fenwick A, et al.: Exploring broad consent in the context of the 100,000 Genomes Project: a mixed methods study. *Eur J Hum Genet*. 28 (6): 732-741 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
No

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Ethical, Legal, and Social Aspects of innovative (Information) Technology in biomedical sciences and Medicine.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 27 Sep 2022

Hellen Nansumba

This is a cross sectional study design that was performed in 3 Health Facilities. A shortened experimental Informed Consent Form (ICF) was used.

Competing Interests: No competing interests were disclosed.

Reviewer Report 25 March 2022

https://doi.org/10.21956/wellcomeopenres.19505.r48967
This paper addresses an important ethical issue in research involving human biological materials and associated data. It reports on the findings of a cross-sectional study which assessed healthcare users' acceptance of Broad Consent for the collection, storage and future use of human biological materials in Uganda.

Some comments for consideration

The study design is sound and appropriate for addressing the research aims and objectives, but the presentation of the results and narrative needs to be improved.

Authors' presentation and interpretation of participants' perceptions derived from logistic regression analysis are not accurate. These results as presented do not highlight the comparison group for proper interpretation. E.g. "informed consent information that is either partly or not understandable was...significant (OR=0.27, CI [0.15-0.46]) & (OR=0.10, CI [0.03-0.32])." This should be revised to read along the lines of, "compared to participants who perceived that the informed consent information is understandable, participants who either partly or totally disagreed were significantly less likely to perceive the information as understandable." Please revise these sections to convey the right interpretation of the regression tables.

ORs from regression analysis should be adjusted for confounders e.g. level of education attained, others.

Results:

The use of large to describe proportions estimated as percentages should be revised. The convention is either 'high' or 'low'. Please revise such statement as, "The largest group (49.40%)" to read "A high percentage (or proportion if you like) of HCUs had..." - Please revise all such statements accordingly.

Data presentation should be consistent. Please specify 95% CI throughout the results. Not included in the summary description of table 3.

Based on the authors' statement that "there are no existing guidelines on assessment of comprehension of informed consent information used in biobanks, clinical trials and/or research studies" - are there any suggestions for improving the current Ugandan National Research Biobanking Guidelines?

The authors' suggestion that a shortened consent form will enhance understanding over looks other data driven suggestions for enhancing the general understanding of elements of consent.
How the information on the consent form is conveyed is key as supported by the participants' suggestions that the form should be translated into local languages. The authors could recommend other innovative ways of conveying the information on the consent forms to healthcare users. For example, healthcare facilities could develop short video clips on what and how human biological materials are used in research and the role of the National Bio-repository as a resource for scientific research.

Overall, this is a very good paper and will be of interest to the broader readership. The authors conclude that acceptability of Broad Consent was high among healthcare users and that participants are more likely to accept this model of consent if they understand the purpose of future uses of human biological samples. The recommendations drawn from the study are important and could inform other research initiatives on how understanding of research could be enhanced to support the ethical use of biological samples and associated data.

Under Acknowledgement, with more than one author listed, all the singular pronouns should be changed to plural i.e. 'we would like to thank my participants' should be 'our participants' etc.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Public health, bioethics, social science research, research ethics, health policy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
1. One of the limitations is that this study did not adjust for key confounding variables such as level of education. However, Health care users' that are illiterate of the English language were excluded from the study since the draft Experimental informed consent form about Biobanking was written in English language.

2. The National Research Biobanking Guidelines should be reviewed to include a validated assessment tool for comprehension of ICFs used in Biobanking.

3. The media of presentation of the information on the ICFs is conveyed is key as supported by the participants' suggestions that the Informed Consent form should be translated into local languages.

4. Other innovative ways of conveying the information on the ICFs to HCUs should be adopted. For example development of short video clips on what and how human biological materials are used in research and the role of the National Biorepository as a resource for scientific research.

Competing Interests: I have no competing interests in this submission.