Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes†

Kang Cai,a Yi Shi,a Changsu Cao,b Suneal Vemuri,a Binbin Cui,a Dengke Shen,a Huang Wu,a Long Zhang,a Yunyan Qiu,a Hongliang Chen,a Yang Jiao,a Charlotte L. Stern,a Fehaid M. Alsubaie,c Hai Xiao,a Jun Li,b and J. Fraser Stoddart*ade

Although host–guest pairing interactions between bisradical dicationic cyclobis(paraquat-p-phenylene) (BB2+) and the bipyridinium radical cation (BIPY+) have been studied extensively, host molecules other than BB2+ are few and far between. Herein, four bisradical dicationic cyclophanes with tunable cavity sizes are investigated as new bisradical dicationic hosts for accommodating the methyl viologen radical cation (MV+) to form trisradical tricationic complexes. The structure–property relationships between cavity sizes and binding affinities have been established by comprehensive solution and solid-state characterizations as well as DFT calculations. The association constants of the four new trisradical tricationic complexes are found to range between 7400 and 170 000 M−1, with the strongest one being 4.3 times higher than that for [MV⊂BB]32++. The facile accessibility and tunable stability of these new trisradical tricationic complexes make them attractive redox-controlled recognition motifs for further use in supramolecular chemistry and mechanostereochemistry.

Introduction

Among the various noncovalent bonding interactions1 which have been explored in the context of supramolecular chemistry, radical–radical interactions between conjugated radical cations2 and/or anions3 are relatively new on the chemical scene. The bipyridinium radical cation (BIPY+) is a well-known thermally stable species with a strong tendency to undergo π-+-π–π conjugation, [pimerization]4 in aqueous or confined media. The dimerization constant, however, is usually relatively low2a in organic solvents, a property which limits applications in supramolecular chemistry.

Cyclobis(paraquat-p-phenylene) (CBPQT4+), also known as the blue-box4+ (BB4+), in which two BIPY2+ units are connected by two p-xylene spacers to produce a rigid, box-like conformation with a centroid-to-centroid distance of ca. 6.9 Å between two BIPY2+ units, is an excellent host for accommodating BIPY+ in its reduced state† to form a trisradical tricationic complex, [BIPY⊂BB]32++. This complex enjoys enhanced stability, on account of the macrocyclic effect,5f rendering the radical host–guest recognition motif attractive for templating the formation of mechanically interlocked molecules9 (MIMs) which otherwise cannot be made. A striking feature of this radical host–guest complex is that it can be switched (Scheme 1).
1a) from radically based attraction to coulombic repulsion\(^{7-9}\) by oxidizing the BIPY\(^{+}\) units back to their dicaticonic states, and so providing\(^{10,11}\) a large driving force for the relative motions of component parts inside MIMs. If the coulombic repulsion-induced motions are restricted by the formation of mechanical bonds, BIPY\(^{++}\) radicals with extraordinary stability\(^{10,11}\) can be produced, affording a new strategy for the design of persistent organic radicals.

Despite the attractive properties and applications of trisradical tricationic complexes, most of the current studies\(^{7-10}\) have focused on [BIPY\(\subset\)BB\(]\(^{3+}\)], and host molecules\(^{11}\) other than BB\(^{2+}\) have been little investigated. We have a particular interest in developing new BB\(^{2+}\) analogues with smaller cavity sizes, since the decreased separation distance between the two bipyridinium units in cyclophanes is expected to result in increased coulombic repulsion between the guest and different hosts in their oxidized states, which will be beneficial for both the operation of redox-driven molecular machines, such as molecular pumps,\(^{10,11}\) and the production of mechanically protected persistent organic radicals. In addition, we have observed\(^8\) that the centroid-to-centroid distance between two BIPY\(^{+}\) units in free BB\(^{2+}\) (6.9 Å) is ca. 0.5 Å larger than that (6.4 Å) present in [BIPY\(^{+}\)\(\subset\)BB\(^{3+}\)], indicating that a cavity size slightly smaller than that present in BB\(^{3+}\) could be even more favourable for the formation of highly stable trisradical tricationic complexes.

Herein, we describe the syntheses of four tetracationic cyclophanes (Scheme 1b), one (mpBB\(^{2+}\)) with m- and p-xylene\(^{15}\) linkers and three (PyBB\(^{2+}\), DThBB\(^{2+}\) and ThBB\(^{2+}\)) with either 2,6-pyridinedimethyl\(^{16}\) or 2,5-thiophenedimethyl\(^{17}\) linkers, which retain similar rigidities and conformations to BB\(^{2+}\), while the separation distances between the two BIPY\(^{+}\) units are gradually decreased (Scheme 1b). Complexation of the methyl viologen radical cation (MV\(^{+}\)) with these four cyclophanes—mpBB\(^{2+}\), PyBB\(^{2+}\), DThBB\(^{2+}\) and ThBB\(^{2+}\)—in their reduced states afforded four new trisradical tricationic complexes—[MV\(\subset\)mpBB\(^{2+}\)]\(^{4+}\), [MV\(\subset\)PyBB\(^{2+}\)]\(^{4+}\), [MV\(\subset\)DThBB\(^{2+}\)]\(^{4+}\) and [MV\(\subset\)ThBB\(^{2+}\)]\(^{4+}\)—that were characterised fully by UV-vis-NIR spectroscopy, cyclic voltammetry (CV), and X-ray crystallography. We have discovered that the sizes of the cyclophane cavities exert a large influence on the magnitude of the association constants in MeCN between these four reduced cyclophanes and MV\(^{+}\).

Results and discussion

All four tetracationic cyclophanes, namely, mpBB\(^{2+}\), PyBB\(^{2+}\), DThBB\(^{2+}\) and ThBB\(^{2+}\), were prepared—see ESI†—by exploiting the tetrabutylammonium iodide (TBAI) catalysed cyclication,\(^{18}\) which involves the reaction of the bis(pyridinium) salt precursor (HS\(-2PF_6\)) with 1,4-bis(bromomethyl)benzene or 2,5-bis(bromomethyl)thiophene in the presence of 20 mol% TBAI in MeCN while stirring under reflux for 4 days. The products were purified by exploiting normal-phase silica gel column chromatography and were obtained in isolated yields (28–52%) which were higher than that (19%) obtained for BB\(^{4+}\) under identical conditions,\(^{19}\) probably because of the decreased ring strain in the four cyclophanes.

The electrochemical properties of these four cyclophanes, as their 4PF\(_6\) salts, were investigated by cyclic voltammetry (CV) in MeCN at room temperature. The CV curves of these four cyclophanes plus that of BB\(-4PF_6\) showed (Fig. 7†) two reversible reduction waves which are characteristic of BIPY\(^{2+}\) units. The positions of the two reduction waves for the four new cyclophanes are similar to those observed for BB\(-4PF_6\), with only slight shifts of no more than 0.12 V compared with BB\(-4PF_6\). These observations are in accordance with our expectations, since the links in these cyclophanes should have no significant influence on the electrochemical properties of their BIPY\(^{2+}\) units.

The formation of the four new trisradical tricationic complexes were investigated by UV-vis-NIR spectroscopy. Methyl viologen (MV\(^{2+}\)) was chosen as the representative guest for studying host-guest complexation. The tetracationic cyclophanes and MV\(^{2+}\) were reduced separately in MeCN using Zn dust to yield suspensions which were filtered to remove the reducing agent. The resulting blue solutions displayed (Fig. 1) similar strong absorptions characteristic of BIPY\(^{+}\) units in the range 500–700 nm. When the bisradical dicaticonic cyclophanes were mixed with 1 equiv. MV\(^{+}\), new broad peaks appeared at around 1100 nm, characteristic of trisradical tricationic complexes. Hence, despite the different constitutions of the links, all four cyclophanes retained their ability to host MV\(^{+}\) in their reduced states. The association constants (K\(_a\)) for the trisradical tricationic complexes were obtained (Fig. 1) by UV-vis-NIR titrations. The absorption changes at ca. 1100 nm were monitored and matched to 1 : 1 isotherms to give the binding constants (Fig. 1 and Table 1) for all four complexes. In addition, the K\(_a\) value for [MV\(\subset\)BB\(^{3+}\)]\(^{4+}\) was found, in a control experiment (Fig. S2†), to be (3.9 ± 0.5) \(\times 10^4\) M\(^{-1}\) in agreement with the previously reported\(^8\) K\(_a\) value. For mpBB\(^{2+}\) and PyBB\(^{2+}\), which have very similar constitutions and cavity sizes, K\(_a\) values of (8.9 ± 1.3) \(\times 10^4\) M\(^{-1}\) and (7.4 ± 0.6) \(\times 10^4\) M\(^{-1}\) were obtained, respectively. Notably, both the two thiophene-
Table 1 Summary of cavity sizes (d), binding constants (\(K_a\)) and binding energies (\(E\))

	\(d_1\) \(\AA\)	\(d_2\) \(\AA\)	\(K_a\) \(M^{-1}\)	\(E_{\text{Exp}}\) \(kJ\) mol\(^{-1}\)	\(d_{\text{Calc}}\) \(\AA\)	\(E_{\text{Calc}}\) \(kJ\) mol\(^{-1}\)
BB	6.80	6.90	39 000 ± 5000	-26.2	6.71	-102.2
ThBB	6.10	6.72	170000 ± 60 000	-29.9	6.35	-103.7
DTHBB	5.80	6.56	67 000 ± 3800	-27.5	5.98	-100.4
mpBB	5.94	6.62	8900 ± 1300	-22.5	5.73	-95.1
PyBB	5.65	—	7400 ± 600	-22.1	5.50	-91.2

\(^a\) Centroid-to-centroid distances of BIPY\(^{2+}\) units in tetracationic cyclophanes according to solid-state structures. \(^b\) Centroid-to-centroid distances of BIPY\(^{3+}\) units in bisradical dicaticonic cyclophanes according to solid-state structures. \(^c\) Binding constants of the trisradical triscationic complexes from vis/NIR titrations. \(^d\) Binding energies of the trisradical triscationic complexes calculated from vis/NIR titrations. \(^e\) Centroid-to-centroid distances of BIPY\(^{+}\) units in bisradical dicaticonic cyclophanes according to B3LYP-D3-optimized structures solvated in acetonitrile. \(^f\) B3LYP-D3 method calculated binding energies of the trisradical triscationic complexes.

containing compounds DThBB\(^{2+}\) and ThBB\(^{3+}\) display much stronger binding affinities than mpBB\(^{2+}\) or PyBB\(^{3+}\), with their respective \(K_a\) values of \((6.7 \pm 3.8) \times 10^9 \text{M}^{-1}\) and \((1.7 \pm 0.6) \times 10^{10} \text{M}^{-1}\), which are also higher than that \((K_a = (3.9 \pm 0.5) \times 10^{9} \text{M}^{-1})\) of BB\(^{2+}\). These results demonstrate the all-important influence of the linkers on the association constants of these four new trisradical triscationic complexes.

In order to gain a better understanding of the reasons behind the different binding strengths of the dicaticonic diradical cyclophanes towards MV\(^{+}\), single crystals of the four trisradical triscationic complexes were grown by vapor diffusion of iPr\(_2\)O into equimolar solutions in MeCN of the corresponding method calculated binding energies of the trisradical triscationic complexes.

The centroid-to-centroid distance (Fig. 2c) between the two BIPY\(^{+}\) units of the symmetric tetracationic DThBB\(^{4+}\) is 5.80 \(\AA\), which is ca. 0.5 \(\AA\) smaller than the “ideal size” of 6.3 \(\AA\) for binding MV\(^{+}\) by the bisradical dicaticonic cyclophanes. PyBB\(^{4+}\) featured (Fig. 3b) a trapezoid-like conformation in view of the different separation distances for the p-xylene and 2,6-pyridinedimethyl linkers. Consequently, the distance between the two BIPY\(^{2+}\) units gradually decreases upon going from the p-xylene linker to the m-xylene linker and the centroid-to-centroid distance (Fig. 4b) of the two BIPY\(^{2+}\) units is ca. 5.65 \(\AA\) (Fig. 4), which is about 0.65 \(\AA\) smaller than 6.3 \(\AA\).
We also obtained the crystal structures of the bisradical dicaticonic forms of the cyclophanes, DThBB\(^{2(*)}\), ThBB\(^{2(*)}\), and mpBB\(^{2(*)}\), while PyBB\(^{2(*)}\) failed to form single crystals suitable enough for X-ray crystallography. Again, disorder also plagued (Fig. 4b and S13†) the crystal structure of ThBB\(^{3(*)}\) on account of its having two different linkers. No disorder, however, was observed in the case of the other asymmetric cyclophane mpBB\(^{2(*)}\). Notably, all three bisradical dicaticonic cyclophanes formed (Fig. 4, S11-S13†) one-dimensional stacked columns in the solid state on account of intermolecular radical–radical interactions between adjacent BIPY\(^+\) units, in a manner similar to that already reported⁶ for BB\(^{2(*)}\), with distances (Fig. 4) between stacked BIPY\(^+\) units in neighbouring bisradical dicaticonic cyclophanes of 3.36, 3.09 and 3.11 Å for mpBB\(^{2(*)}\), DThBB\(^{2(*)}\) and ThBB\(^{2(*)}\), respectively. Consequently, these bisradical dicaticonic cyclophanes display significantly longer centroid-to-centroid BIPY\(^+\) distances than the corresponding BIPY\(^{2+}\) distances (Fig. 3 and Table 1) in the tetracaticonic cyclophanes in their solid states, most likely as a result of the strong intermolecular radical–radical interactions enlarging the cavities of the bisradical dicaticonic cyclophanes in the solid states. In solution, however, the intermolecular stacking interactions between bisradical dicaticonic cyclophanes will be negligible, and the solution-phase cavity sizes are expected to be smaller than those observed in their solid states.

Finally, density functional theory (DFT) calculations using B3LYP basis set with D3 dispersion correction were conducted in order to investigate the binding energies of the trisradical tricaticonic complexes. The optimised structures of the bisradical dicaticionic hosts were optimised (Fig. S18†) showing that the predicted cavity sizes—centroid-to-centroid distances between BIPY\(^+\) units—are in better agreement with the measured distances in the tetracaticonic cyclophanes in the solid state than those of the bisradical dicaticonic cyclophanes. The calculations predict (Table 1 and Fig. 5b) the host-guest binding energies to be in the order of \(|\Delta E_{\text{PyBB}}| < |\Delta E_{\text{BIPY}}| < |\Delta E_{\text{DThBB}}| < |\Delta E_{\text{ThBB}}| < |\Delta E_{\text{mpBB}}|\) in agreement with the experimental results. The binding energies with MV\(^+\) exhibit strong dependences on

![Image](https://example.com/image.png)

Fig. 4 Solid-state structures of (a) mpBB\(^{2(*)}\), (b) DThBB\(^{2(*)}\); (c) ThBB\(^{2(*)}\). Left: plan views depicted as tubular representations; right: 1D packing of the diradical dicationic cyclophanes depicted as tubular superimposed upon space-filling representations. Hydrogen atoms and disorder in the asymmetric cyclophanes are omitted for the sake of clarity.

The crystal structures (Fig. 3a and d, S8, and S10†) of the other two asymmetric cyclophanes, mpBB\(^{+}\) and ThBB\(^{+}\), exhibit disorder in the m-xylene/p-xylene or p-xylene/2,5-thiophenedimethyl linkers. Consequently, both mpBB\(^{+}\) and ThBB\(^{+}\) display a symmetric conformation according to X-ray crystallographic analysis with an apparent centroid-to-centroid distance between BIPY\(^{2+}\) units of 5.94 and 6.10 Å, respectively. Since mpBB\(^{+}\) has an almost identical constitution to that of PyBB\(^{+}\), the actual conformations and cavity sizes of these two cyclophanes should be similar to each other. Therefore, the apparent centroid-to-centroid distances in mpBB\(^{+}\) (5.94 Å) and ThBB\(^{+}\) (6.10 Å), which were deduced from the crystal structures, may not be all that accurate as a consequence of the disorder. In general, these solid-state structures, however, do provide some clues when it comes to interpreting the trend in the host-guest association constants obtained from titration experiments in their reduced states. Since the cavity sizes of DThBB\(^{+}\) (5.8 Å) and BB\(^{+}\) (6.8 Å) are either ca. 0.5 Å smaller or larger than 6.3 Å, their binding constants when reduced to bisradical dications for hosting MV\(^+\) are quite similar, i.e., \((6.7 \pm 3.8) \times 10^4\) vs. \((3.9 \pm 0.5) \times 10^4\) M\(^{-1}\). The asymmetric ThBB\(^{+}\), which can be regarded as an “averaged” version of DThBB\(^{+}\) and BB\(^{+}\), displays a binding constant \((1.7 \pm 0.6) \times 10^3\) M\(^{-1}\) for [MV\(\subset\)ThBB]\(^{3(*)}\) that is higher than those for both [MV\(\subset\)DThBB]\(^{3(*)}\) and [MV\(\subset\)BB]\(^{3(*)}\). The two other cyclophanes, PyBB\(^{+}\) and mpBB\(^{+}\), which have asymmetric constitutions and much smaller cavities, display much lower binding constants \((7.4 \pm 0.6) \times 10^1\) M\(^{-1}\) and \((8.9 \pm 1.3) \times 10^2\) M\(^{-1}\), respectively) for [MV\(\subset\)PyBB]\(^{3(*)}\) and [MV\(\subset\)mpBB]\(^{3(*)}\). When the cavity size is decreased even further, as in the case of mbBB\(^{+}\) (5.26 Å) with its two m-xylene spacers (Scheme 1), no binding towards MV\(^+\) in its reduced state was observed either in solution or in the solid state.

![Image](https://example.com/image.png)

Fig. 5 Binding energies (y axis) towards MV\(^+\) for the five cyclophanes with different cavity sizes (centroid-to-centroid distances between the two BIPY\(^+\) units, x axis). The x axis presents the DFT-calculated centroid-to-centroid distances between the two BIPY\(^+\) units. The left red y axis indicates the experimental binding energies towards binding with MV\(^+\) from vis/NIR titration, while the right blue axis presents the DFT-calculated binding energies towards binding with MV\(^+\).

110 | Chem. Sci., 2020, 11, 107–112
the cyclophane cavity sizes. In an attempt to analyse the correlations between the cavity sizes and the binding energies, we decomposed (Table S2†) the binding energies into the contributions from dispersion and electrostatic energies. The attractive dispersion interactions (Table S2†) weaken with increasing host size, while the concomitant decrease (Table S2†) in electrostatic repulsion stabilises host–guest binding. Thus, it is the competition between the two counter-acting interactions which results in the optimal host–guest binding (Fig. 5) at a cavity size of ca. 6.3 Å, i.e., as exemplified by ThBB2(++)

Conclusions

Four bisradical dicaticonic cyclophanes were investigated as hosts for binding MV** and found to form trisradical trisca
tionic complexes. UV-vis-NIR titration experiments, X-ray crystallographic characterizations and DFT calculations revealed that the binding affinities of these trisradical triscaticionic complexes are highly dependent on the cavity sizes of the bisradical dicaticionic cyclophanes. The structure–property relationship we have established will provide useful information for the design of new radical host–guest pairs in the future. Notably, the asymmetric p-xylene/2,5-thiophene-dimethyl linked cyclophane ThBB3(+++/−) which displayed an association constant of 170 000 M−1 of MV**/C0 which has two p-xylene linkers. The facile accessibility, tunable association constants, as well as decreased host cavity sizes associated with these four new trisradical triscaticionic complexes, make them attractive redox-controlled recognition motifs for further use in supramolecular chemistry and in the template-directed synthesis of mechanically interlocked molecules.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research is part of the Joint Center of Excellence in Integrated Nano-Systems (JCIN) at King Abdullah City for Science and Technology (KACST) and Northwestern University (NU). The authors thank both KACST and NU for their continued support of this research. This work utilized Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is partially supported by the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Science and Engineering Center (DMR-1720139), the State of Illinois, and Northwestern University.

Notes and references

1 (a) D. C. Sherrington and K. A. Taskinen, Chem. Soc. Rev., 2001, 30, 83–93; (b) K. Tashiro and T. Aida, Chem. Soc. Rev., 2007, 36, 189–197; (c) Z. J. Chen, A. Lohr, C. R. Saha-Möller and F. Würthner, Chem. Soc. Rev., 2009, 38, 564–584; (d) X. Zhang and C. Wang, Chem. Soc. Rev., 2011, 40, 94–101; (e) Y. R. Zheng and P. J. Stang, Chem. Rev., 2013, 113, 734–777; (f) M. W. Watt, M. S. Collins and D. W. Johnson, Acc. Chem. Res., 2013, 46, 955–966; (g) Q. Yan, Z. Luo, K. Cai, Y. Ma and D. Zhao, Chem. Soc. Rev., 2014, 43, 4199–4221.

2 For reviews on radical–radical interactions between conjugated radical cations or anions, see: (a) D. W. Zhang, J. Tian, L. Chen, L. Zhang and Z.-T. Li, Chem.–Asian J., 2015, 10, 56–68; (b) L. Chen, Y.-C. Zhang, W.-K. Wang, J. Tian, L. Zhang, H. Wang, D.-W. Zhang and Z.-T. Li, Chin. Chem. Lett., 2015, 26, 811–816.

3 (a) E. M. Fatila, R. A. Mayo, M. Rouzieres, M. C. Jennings, P. Dechambenoit, D. V. Soldatov, C. Mathioniere, R. Clerac, C. Coulon and K. E. Preuss, Chem. Mater., 2015, 27, 4023–4032; (b) X. Zheng, Y. Zhang, N. Cao, X. Li, S. Zhang, R. Du, H. Wang, Z. Ye, Y. Wang, F. Cao and H. Li, Nat. Commun., 2018, 9, 2016; (c) B. Tang, W.-L. Li, Y. Chang, B. Yuan, Y. Wu, M.-T. Zhang, J.-F. Xu, J. Li and X. Zhang, Angew. Chem., Int. Ed., 2019, 58, 15526–15531.

4 (a) J. W. Park, N. H. Choi and J. H. Kim, J. Phys. Chem., 1996, 100, 769–774; (b) W. S. Jeon, H.-J. Kim, C. Lee and K. Kim, Chem. Commun., 2002, 1828–1829; (c) A. Iordache, M. Oltean, A. Milet, F. Thomas, B. Baptiste, E. Saint-Aman and C. Bucher, J. Am. Chem. Soc., 2012, 134, 2653–2671; (d) A. T. Buck, J. T. Paletta, S. A. Khindurangala, C. L. Beck and A. H. Winter, J. Am. Chem. Soc., 2013, 135, 10594–10597; (e) L. Zhang, T.-Y. Zhou, J. Tian, H. Wang, D.-W. Zhang, X. Zhao, Y. Liu and Z.-T. Li, Polym. Chem., 2014, 5, 4715–4721.

5 (a) E. M. Kosower and J. Hajdu, J. Am. Chem. Soc., 1971, 93, 2534–2535; (b) W. Geuder, S. Hünig and A. Suchy, Tetrahedron, 1986, 42, 1665–1677.

6 B. Odell, M. V. Reddigton, A. M. Slavin, N. Spencer, J. F. Stoddart and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1988, 27, 1547–1550.

7 A. Trabolsi, N. Khashab, A. C. Fahrenbach, D. C. Friedman, M. T. Colvin, K. K. Cot, D. Benitez, E. Tkatchouk, J.-C. Olsen, M. E. Belowich, R. Carmielli, H. A. Khatib, W. A. Goddard III, M. R. Wasielewski and J. F. Stoddart, Nat. Chem., 2010, 2, 42–49.

8 (a) A. C. Fahrenbach, J. C. Barnes, D. A. Lanfranchi, H. Li, A. Coskun, J. J. Gassensmith, Z. Liu, D. Benitez, A. Trabolsi, W. A. Goddard III, M. Elhabiri and J. F. Stoddart, J. Am. Chem. Soc., 2012, 134, 3061–3072; (b) C. Cheng, T. Cheng, H. Xiao, M. D. Krzyaniak, Y. Wang, P. R. McGonigal, M. Frasconi, J. C. Barnes, A. C. Fahrenbach, M. R. Wasielewski, W. A. Goddard III and J. F. Stoddart, J. Am. Chem. Soc., 2016, 138, 8288–8300.

9 (a) H. Li, A. C. Fahrenbach, S. K. Dey, S. Basu, A. Trabolsi, Z. Zhu, Y. Y. Botros and J. F. Stoddart, Angew. Chem., Int. Ed., 2010, 49, 8260–8265; (b) J. C. Barnes, A. C. Fahrenbach, D. Cao, S. M. Dyar, M. Frasconi, M. A. Giesener, D. Benitez, E. Tkatchouk, O. Chernyshevsksyy, W. H. Shin, H. Li, S. Sampath, C. L. Stern, A. A. Sarjeant, K. J. Hartlieb, Z. Liu, R. Carmielli, Y. Y. Botros, J. W. Choi, A. M. Z. Slavin,
1. All the four bisradical dicationic cyclophanes have strong intermolecular radical–radical interactions in the solid states, enlarging their cavity sizes significantly. Disorder plagued the crystal structures of the asymmetric PyBB4+ and ThBB4+, making it difficult to determine their cavity sizes accurately. Therefore, DFT-calculated cavity sizes for these bisradical dicationic cyclophanes are probably a better basis for estimating their real cavity sizes.

10 (a) C. J. Bruns, S. Frasconi, J. Iehl, K. J. Hartlieb, S. T. Schneebeli, C. Cheng, S. I. Stupp and J. F. Stoddart, *J. Am. Chem. Soc.*, 2014, 136, 4714–4723; (b) C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke and J. F. Stoddart, *Nat. Nanotechnol.*, 2015, 10, 547–553.

11 (a) J. Deng, N. Song, Q. Zhou and Z. Su, *Org. Lett.*, 2007, 26, 5393–5396; (b) A. Iordache, M. Oltean, A. Milet, F. Thomas, B. Baptiste, E. Saint-Aman and C. Bucher, *J. Am. Chem. Soc.*, 2012, 134, 2653–2671; (c) C. Kahlfuss, S. Denising-Quanquin, N. Calin, E. Dumont, M. Garavelli, G. Royal, S. Cobo, E. Saint-Aman and C. Bucher, *J. Am. Chem. Soc.*, 2016, 138, 15234–15242.

12 (a) H. Li, Z. Zhu, A. C. Fahrenbach, B. M. Savoie, C. Ke, J. C. Barnes, J. Lei, Y.-L. Zhao, L. M. Lilley, T. J. Marks, M. A. Ratner and J. F. Stoddart, *J. Am. Chem. Soc.*, 2013, 135, 456–467; (b) J. Sun, Z. Liu, W.-G. Liu, Y. Wu, Y. Wang, J. C. Barnes, K. R. Hermann, W. A. Goddard III, M. R. Wasielweksi and J. F. Stoddart, *J. Am. Chem. Soc.*, 2017, 139, 12704–12709.

13 (a) M. Berville, L. Karmazin, J. A. Wytko and J. Weiss, *Chem. Commun.*, 2015, 51, 15772–15775; (b) M. Berville, S. Choua, C. Gourlaouen, C. Boudon, L. Ruhlmann, C. Bailly, S. Cobo, E. Saint-Aman, J. Wytko and J. Weiss, *ChemPhysChem*, 2017, 18, 796–803; (c) K. Cai, M. C. Lipke, Z. Liu, J. Nelson, T. Cheng, Y. Shi, C. Cheng, D. Shen, J.-M. Han, S. Vemuri, Y. Feng, C. L. Stern, W. A. Goddard III, M. R. Wasielweksi and J. F. Stoddart, *Nat. Commun.*, 2018, 9, 5275.

14 A bolded descriptor denotes a compound, be it free or complexed, and an unbolded descriptor refers to either (i) a component within a molecule or (ii) a component part of a mechanically interlocked molecule.