Integrating insulin-like growth factor 1 and sex hormones into neuroprotection: Implications for diabetes

Jacob Huffman, Christina Hoffmann, George T Taylor

Abstract

Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1 (IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sex-hormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinase signaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through similar signaling cascades. Future research on both neuroprotection and diabetes should include androgens into the interplay of IGF1 and sex hormones.

Key words: Diabetes; Androgens; Estrogen; Insulin; Insulin-like growth factor 1; Neuroprotection; Brain
INFORMATION

Diabetes mellitus is a metabolic syndrome known for impaired insulin production. This condition is associated with an abundance of sequelae including cardiovascular disease, brain atrophy, and more recently, Alzheimer’s disease. Over the past thirty years, researchers have established strong evidence supporting a link between patients with diabetes and subsequent cognitive impairments and abnormalities in brain integrity.

While meta-analyses have found inconsistencies in the specifics of the literature, general trends point to cognitive impairments and abnormalities in related structural and functional brain areas. For example, patients with type 1 diabetes (T1D) are frequently found to have decreased psychomotor speed, mental flexibility, and IQ scores. T1D patients also often show reductions in the volume of regional gray matter in areas such as the prefrontal cortex, hippocampus, and thalamus. On the other hand, affected skills in type 2 diabetes (T2D) are largely executive function, memory, and information processing. Neuroimaging studies done on T2D patients indicate global brain atrophy and microstructural changes, while findings regarding white matter hyperintensities are mixed.

In both T1D and T2D these decrements are considered mild across most age groups. The severity of cognitive impairments and brain abnormalities are correlated with age of onset in T1D and duration of the disease in T2D. Age is also a risk factor as deficits in learning and memory have been reported to worsen considerably in T2D patients above 65 years of age. Findings suggest the decreased brain volume in patients with T2D is correlated with increased insulin resistance, and both brain atrophy and microstructural changes are associated with impaired cognitive performance.

These data lend support to the idea that brain integrity is compromised in patients with both T1D and T2D, but also emphasize the need to integrate peripheral biomarkers associated with neuroprotection into diabetes research in humans. Various hormones altered as a result of diabetes have been recognized as neuroprotective, including insulin-like growth factor 1 (IGF1) and sex hormones. Research has revealed differences in the serum levels of IGF1 and gonadal hormones in diabetic patients, with clear sex differences in the effects of androgens and estrogens on the brain in animal models.

There is currently a movement in biomedical research to incorporate analyses of sex differences into studies; however, studies on brain integrity of diabetic patients often fail to examine men and women separately. This is despite findings of sex-specific differences in regional brain volume between men and women. Others have shown that, by combining the data of men and women, T2D patients had smaller gray matter volume with larger ventricular volume and white matter lesions compared to healthy controls. However, when the sexes were analyzed separately, the data for men failed to reach statistical significance.

Because sex hormones can act on similar molecular pathways as IGF1, and IGF1 is functionally related to insulin and diabetes, there is a need to further investigate how these hormones interact in the brains of diabetic patients. The relationship between estrogen and IGF1 is the most extensively studied in the neuroprotection literature, but it has yet to expand experimentally into diabetes research. Furthermore, little attention has been paid to androgen-IGF1 interactions, even in the animal literature, despite the similar mechanisms underlying estrogenic and androgenic neuroprotection.

DIABETES AND IGF1 RELATION

IGF1 has a hypoglycemic response similar to insulin and, in some circumstances, is capable of modulating insulin receptor (IR) activities. Research has demonstrated that low IGF1 is associated with T1D and T2D. Moreover, genetic studies suggest decreased IGF1, due to a genetic polymorphism in the promoter region of the IGF1 gene, increases the risk of glucose intolerance and T2D.

On the other hand, T2D has also been correlated...
with excessively high levels of IGF1. For example, people with acromegaly - a condition known for its overproduction of pituitary growth hormone - have both high levels of IGF1 and a greater risk of developing T2D[49]. These findings were corroborated by two large studies from Denmark (n = 3354) and Germany (n = 7777) which found U-shaped associations between IGF1 levels and the likelihood of developing insulin resistance and T2D[24,25]. Moreover, treatment with IGF1 can improve glycemic control in patients with T1D and T2D[43,46], which may suggest an optimal range of IGF1 for normal glycemic control.

Although IGF1 is synthesized in the brain, peripheral values cannot be used to accurately infer brain levels of IGF1 in humans as local synthesis of IGF1 in the brain appears not to correlate with the quantity of IGF1 receptors (IGF1R)[47-49]. Evidence from animal models suggest that brain atrophy and loss of DNA are prevented following injection of insulin and IGF1, but not insulin alone, into cerebrospinal fluid of mice[50]. Thus, proper systemic levels of IGF1 and its transport from the periphery into the brain is likely necessary for the maintenance of various cognitive processes[51].

Collectively, these data support the involvement of IGF1 in diabetes but also point to an “optimal range” of IGF1. Future research should examine the significance of an optimal peripheral range in the development and maintenance of diabetes and cognitive decline. Moreover, there is a need for data on the role of central vs peripheral IGF1 levels and the subsequent impact on cognitive impairment and brain atrophy.

THE IGF1 SYSTEM

Transportation

IGF1 is a polypeptide, structurally similar to insulin, that is released in response to growth hormones secreted by the anterior pituitary[52]. While synthesized predominantly by hepatocytes in the liver and released into general circulation, both paracrine and autocrine functions contribute through local tissue synthesis of IGF1. The concentration of IGF1 is greatest during perinatal development and decreases markedly into adulthood. IGF1R are expressed in nearly all neural cells of the CNS, being most highly expressed in the cortex, hippocampus, cerebellum, brainstem, hypothalamus, and spinal cord[53].

The blood brain barrier and blood-cerebrospinal fluid barrier are the two primary routes involved with transporting systemic IGF1 into the brain. Both barriers utilize lipoprotein receptor-related proteins along with IGF1R as transporters to enter the brain[54,55]. However, the bioavailability of IGF1 is largely determined by the amount of hormone bound to IGF binding proteins (IGFBPs). Most circulating IGF is bound by IGFBPs, which are proteins that control the distribution and functional capabilities of IGF1 throughout the body. Six different IGFBPs modulate the activity of IGFs via binding affinities exceeding that of its respective receptor and, thus, help regulate the amount of IGF1 that enters the brain[56].

Signaling pathways

The role of IGF1 is dependent on its binding to insulin-like peptide receptors. The three most important include the IGF1R, IR, and a hybrid receptor formed from heterodimer α-β IR and IGF1R subunits[53,57]. These receptors are important to the functional efficacy of IGF1 and have defined downstream molecular pathways. As part of the tyrosine kinase receptor family, activation of IGF1R leads to the signaling of either the mitogen-activated protein kinases-extracellular signal-related kinase (MAPK-ERK) or phosphoinositide 3-kinase (PI3K)-Akt pathways[53,57]. These pathways are involved in several important cellular processes including the regulation of gene transcription, apoptosis, oxidative stress, and cellular proliferation and differentiation.

The affinity of IGF1 varies among the three receptors with the highest affinity for IGF1R. Activation of the IGF1R is capable of directly stimulating the RAS-ERK pathway, leading to the modulation of gene transcription by way of activating ETS-like transcription factor, ELK1[57]. The capacity of insulin-like peptide receptors to initiate downstream molecular activity is modified in part by the recruitment of insulin receptor substrate (IRS) scaffolding proteins[57-59]. This scaffolding helps adjust pathway choice following receptor phosphorylation. The result is activation of PI3K-Akt and subsequent expression of downstream effectors, including glycogen synthase 3 kinase (GSK3β) and mammalian target of rapamycin[53,57,60].

Relationship to the insulin system

IGF1 acts primarily through binding to the IGF1R, but also shares with insulin the capacity to bind the IR and hybrid receptor[53,56,57]. Insulin is produced exclusively by β-cells of the pancreas and, hence, is strictly transported in the systemic circulation. The amount of insulin capable of entering the brain varies considerably[54,55]. Unlike IGF1, insulin appears not to be locally synthesized in adult brain cells[53,56]. Similar to IGF1, IR located on endothelial and epithelial cell membranes allow insulin to be transported into the brain from systemic circulation. IRs are concentrated mostly in the olfactory bulb, cerebral cortex, hypothalamus, hippocampus, and cerebellum[55]. The movement of systemic insulin into the brain is not controlled by binding proteins.

Both insulin and IGF1 produced in the periphery contribute to varied physiological processes. Proper peripheral IGF1 activation is necessary for insulin secretion from the pancreas and, hence, is implicated in many facets of diabetes[61]. However, their functions differ once entering the brain. IGF1R are expressed at notably higher rates in the brain than the rate IGF1 is synthesized. This differential suggests that active transport of IGF1 into the brain is required to furnish sufficient IGF1 for proper neuronal function[47-49]. For example, peripheral IGF1 supplies the brain with...
information regarding body mass, is related to neural plasticity and cognitive processes, and attenuates cognitive impairment induced by diabetes. 51,62,63 Deficiency of IGF1 can also lead to hippocampal atrophy and impaired learning. 64 Indeed, IGF1 in the brain is required for proper tissue growth in both the brain and periphery, as well as sufficient glucose regulation and insulin sensitivity. 65,66

Insulin in the periphery is well-known for its role in glucose regulation and communication with the brain to maintain energy homeostasis. Similar to IGF1, insulin is involved in modifying BBB permeability in the brain 35 with T2D patients showing greater permeability of the BBB 37. Insulin also acts on the PI3K and MAPK signaling cascades to enhance neuronal survival, plasticity, and subsequent cognitive processes 65,68,69. With that said, insulin does not necessarily regulate glucose activity in neuronal cells after entering the brain. Rather, insulin modulates energy homeostasis through its actions at the level of the hypothalamus 70.

INTEGRATING SEX HORMONES INTO DIABETES AND IGF1

Diabetes is associated with imbalances in sex steroid hormone levels. This is not surprising as androgens and estrogens are known to play an important role in body composition 71 while maintaining glucose and lipid homeostasis 72,73. Research into these imbalances suggests a complex relation between estradiol (E2) and insulin insensitivity. Several studies have reported that postmenopausal women with T2D have increased levels of circulating E2 74,75. Elevated E2 has been correlated with the development of insulin resistance and T2D in these women 76,77. Nevertheless, there are at least two studies that have shown inconsistencies between E2 levels and the development of diabetes in postmenopausal women 78,79. There is also a link between high levels of E2 and diabetes in men. Diabetic men have shown relatively high basal levels of E2 77,80, while men with higher levels of circulating E2 have an increased risk of developing T2D 81. Although this may simply be a product of higher body fat content as adrenal androgens are readily converted to E2 in adipose tissue $^{81-83}$, two studies reported E2 results in men were independent of obesity 76,80.

Findings with animal models suggest an opposite conclusion for E2 and diabetes, at least during reproductive ages. Male mice with streptozotocin-induced insulin insensitivity are more likely to develop diabetes than their female cohorts. This increased risk of diabetes in the males can be attenuated with E2 supplements 84. Also, mice lacking the alpha subtype of estrogen receptor (ERα) have been reported to develop insulin insensitivity 85. In contrast, these data in animals mirror those from postmenopausal women in which glucose homeostasis was positively impacted with estrogen therapy in the short term 86.

Sex differences in androgen-diabetes relations have also been reported. Postmenopausal women with diabetes displayed elevated circulating testosterone (TS) levels 27,75. Reports suggest that premenopausal women with higher levels of TS 76,79, as well as female mice administered the androgen 84, had a greater risk of developing diabetes. Another example is the link between T2D development and hyperandrogenism experienced by patients with polycystic ovarian syndrome 87. Still, much like E2, there are also studies that dispute these reports, particularly in postmenopausal women 77,78.

A clear sex difference is also indicated in that diabetic men tend to have either lower total, free, or bioavailable TS than healthy men 27,88,89. Indeed, men with the highest levels of TS were at the lowest risk and men with lowest levels of TS were at highest risk for developing T2D 78,79,80. Moreover, men undergoing androgen deprivation treatments for prostatic cancer had a greatly increased risk of developing T2D 91. Yet again, these reports are not without contradiction 92 and some studies found this relationship to be dependent on obesity 80,83.

Taken together, there are clear inconsistencies in the findings on sex hormones and diabetes. There is also an apparent lack of research focusing on sex hormones in premenopausal diabetic women that should be addressed 80. It is again important to note that many studies fail to acknowledge the possible relation of sex hormones to the IGF1 system. Findings with serum E2 data are consistent with findings from meta-analyses examining IGF1 94, while maintaining glucose and lipid homeostasis 92, and men with lowest levels of TS were at highest risk for developing T2D 94,95. Their proposed U-shaped association of IGF1 and T2D fits into the well-defined mechanistic relationship between E2 and IGF1, described in more detail below. The relation between sex hormones and IGF1 suggests that a delicate hormonal balance is likely an important facet of diabetes-induced brain and cognitive impairment.

NEUROPROTECTION: SEX HORMONES AND IGF1

Estrogen and IGF1

An intriguing feature of neuroactive hormones is their ability to protect the CNS from damage, especially in regards to estrogen. ER activation is implicated in the maintenance of various metabolic processes that are also associated with diabetes, including glucose homeostasis and obesity 94,95. Only recently has research with animal models focused on neuroprotection from IGF1-E2 interactions. Evidence suggests that neuroprotective properties of E2 are directly related to receptor activities of insulin-like peptide receptors, mainly IGFIR. E2 and IGF1 work in tandem to reciprocally modulate and facilitate ER and IGFIR activation of the PI3K-Akt and MAPK-ERK signaling cascades $^{96-100}$. IGF1 shows differential sensitivities to the two
estrogen receptor subtypes with ERα being more sensitive than ERβ[97,101]. Selective inhibition of IGF1R, for instance, downregulates ERα expression in the hypothalamus, hippocampus, and cerebral cortex, with the only significant changes of ERβ occurring in the cerebellum[38]. Many glial and neuronal cells in the brain express IGF1R and both ER subtypes[102]. In particular, ERα is uniquely capable of increasing IGF1R activity of downstream PI3K-Akt signaling in rodent models[103,104]. ERα activation also increases the binding of p85 and IRS-1 regulatory subunits of PI3K and, thus, may be one mechanism assisting in Akt pro-survival signaling through the IGF1R[96,97] (Figure 1).

Administration of E2 to mice increased IGF1R and ERα activity in the brain, enabling activation of IGF1R and downstream PI3K-Akt pathway signaling[97]. Similarly, IGF1 and insulin modulated ER effects on gene transcription and the PI3K-Akt-GSK3β signaling cascade[38,98,103,105,106]. GSK3β is a protein kinase known particularly well for its role in glycolgen synthesis. However, as reviewed by Jacobs et al[100], recent attention has turned to the dual pro- and anti-apoptosis capabilities of GSK3β regulated through multiple different pathways. Indeed, the neuroprotective effects of IGF1 may be consequent to Akt-derived inhibition of GSK3β in a hypoxic state[107] (Figure 1).

Activation of the MAPK pathway is another important signal transduction pathway involved with regulating gene transcription and cellular proliferation and differentiation, particularly in cancer[108]. However, multiple studies have demonstrated that the neuroprotective properties of estrogen are also derived from its ability to regulate MAPK signaling in the brain[38]. Both estrogen and IGF1 can facilitate MAPK signaling through the IGF1R, with IGF1 increasing ERα activities in the presence of E2[104]. Akt inhibitors are capable of nullifying the neuroprotective effects of IGF1 and E2 regardless of MAPK signaling[99,104], while ERK suppression increases PI3K-Akt activity via ER and IGF1R heterodimers[39]. Thus, it appears the PI3K-Akt pro-survival signaling cascade is the most involved with the neuroprotective coupling of E2 and IGF1[39].

It is important to note that IGF1 and E2 have a remarkable reciprocity. Inhibition of ER activity can downregulate IGF1R expression in the hippocampus[109], a brain region known to atrophy in patients with diabetes and glucose intolerance[110-112]. Similarly, IGF1 has the capacity to upregulate ERs in the hippocampus and is impaired following administration of IGF1R antagonists[109]. Agonists or antagonists of either hormone can respectively facilitate or inhibit the neuroprotective and memory enhancing properties of the other[96,109,113-115]. This has led some to suggest that cooperation between IGF1R and ER is required for many E2-induced neuroprotective processes. The present section does not, however, do justice to the complexity of the relation between estrogen and IGF1 receptors. A fuller explanation can be found in one of several reviews[37-39,104,109,117].

Androgens and IGF1
Far less research has examined a functional link between IGF1 and androgens in the brain. This is an unfortunate but common trend in neuroendocrinology. Estrogens are the most intensely studied gonadal hormone, despite estrogens and androgens sharing metabolic pathways and functional properties. Much of the current literature on IGF1-androgen relations are directed at the periphery, particularly prostate cancer and motor systems, for which there are a number of recent reviews[118,119]. Few studies have examined IGF1-androgen interactions in neuroprotection[120,121] and none, to our knowledge, have empirically examined this interaction in diabetes. Therefore, we have relied on peripheral data, often from in vitro experiments, to extrapolate the androgen receptor (AR) brain discussion.

There is evidence that the two main androgens, TS and dihydrotestosterone (DHT), are capable of neuroprotection through binding the AR[122-126]. Similar to ERα, androgen activation of the AR in mouse vas deferens epithelial cells can modulate the p85 regulatory subunits of PI3K and subsequently trigger Akt expression (Figure 1). Inhibiting the AR prevents these signaling effects[127]. Phosphorylation of MAPK and Akt can also increase AR activation in low androgen and estrogen concentrations, as well as increase the neuroprotective activities of ERα and AR[128]. Recent findings showed that DHT, which has a higher affinity than TS for the AR, prevents apoptosis in a C6 glial cell line through the PI3K-Akt signaling cascade[126]. These effects were also impaired by inhibition of PI3K and suggest a functional relationship between apoptosis and AR activities.

Interestingly, studies have demonstrated that binding of DHT to the transmembrane AR impairs MAPK and PI3K signaling and subsequent neuroprotection from DHT or E2[129-132]. This suggests that nuclear activation of the AR by DHT is likely one mechanism behind DHT’s neuroprotective properties[130]. DHT may also interact with effectors downstream of ER and IGF1R signaling. Both TS and DHT can activate the MAPK-ERK signaling cascade[132] which has been shown to induce ribosomal S6 kinase (Rsk) expression. Rsk signaling can lead to the inhibition of the pro-apoptosis Bad protein and the activation of downstream effectors including the ER, GSK3β and ELK1[133] (Figure 1).

One possible explanation for the neuroprotective role of androgens is the conversion in the steroid metabolic cascade of TS into E2 by the enzyme aromatase. That is, TS may be involved in neuroprotection only to the extent that TS is a precursor for E2, which is capable of activating MAPK or PI3K signaling through the ER and IGF1R. The aromatization of TS into E2, as well as the aromatase enzyme, have been suggested to play an important role in neuroprotection[134-139].

The ratio of endogenous TS to E2, and subsequent influences of aromatized TS, is indeed a topic of recent interest[26]. Increased local synthesis of E2 from elevated aromatase expression is seen in models...
of neuroprotection from other brain disorders, e.g., stroke. More pertinent to this review, streptozotocin-induced diabetes causes a considerable reduction in aromatase synthesis in female and male reproductive systems. Notably, inhibition of aromatase decreases E2 and impairs insulin sensitivity and peripheral glucose disposal in healthy males, although the influence this may have on brain integrity and cognitive outcomes remains debated. Few in vivo studies examining these sex steroid metabolites have focused on MAPK or PI3K signal cascades in the brain. There is, however, evidence that 3α-Diol inhibits protein kinase A expression in the rat hippocampus. Others have reported that streptozotocin-induced diabetic mice had lower levels of TS and 3α-Diol in the cerebral cortex, and lower levels of DHT and 3α-Diol in the spinal cord. It is still unclear, though, whether 3α-Diol and 3β-Diol interact with or initiate the MAPK or PI3K signaling cascades following activation of the ER, AR, or, possibly, IGF1R. None of these explanations clarify fully the ability of the AR to directly trigger these signaling cascades. We do not aim to discount the neuroprotective mechanisms of ER and AR, or the clear link between E2 and IGF1 processes in neuroprotection. Rather, we simply suggest that androgen-derived neuroprotection may be intertwined with IGF1, the activation of insulin-like peptide receptors, and/or the IGF1R and ER coupling. Given the common signaling pathways between these hormones, we suggest future research should aim to include androgens and AR activities into the ER-IGF1R neuroprotective coupling, as well as serum comparisons in brain-health outcomes of diabetic patients.

CONCLUSION
The reciprocity of IGF1 and estrogen in neuroprotective processes is well-established in cell cultures and...
animal models. Interactions between androgens and IGF1 may also play an important role in the E2-IGF1 neuroprotective coupling. Both estrogens and androgens enact their neuroprotection through similar, but not identical, signal transduction pathways. Recognition of this has led us to consider the possibility that these sex hormones may work together with IGF1 and insulin-like peptide receptors to modulate MAPK and PI3K signalling and their neuroprotective properties.

Regulation of MAPK and PI3K activity may also be a driving force behind the structural changes, atrophy of brain regions, or functional changes, often observed in diabetic patients. Drawing conclusions from imaging data in humans to those found in animal models is indeed difficult. Nevertheless, there is a need for a clearer mechanistic explanation grounding the cognitive decline and brain abnormalities observed in diabetic patients.

Future studies in human research on diabetic brain integrity should integrate hormone titre measures to help substantiate sex differences in brain-health outcomes of diabetic patients. This approach may also assist in identifying region-specific brain abnormalities resulting from fluctuations in IGF1 and sex hormones between men and women. Moreover, animal models examining the E2-IGF1 coupling in neuroprotection should employ streptozotocin-induced diabetes, as well as the possible role of androgens and AR activities. These conclusions warrant further examination of the variability present in cognitive and brain-health outcomes for patients with diabetes as a result of sex hormone relations to IGF1, insulin, and the insulin-like peptide receptors.

REFERENCES

1. Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Matte M, Marx N, Mellbin L, Ostergren J, Patrano C, Seferovic P, Uva MS, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL, ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases in type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition.
2. Tilling T, Hughes AD, Mayet J, Whincup P, Sattar N, Forouhi NG, McKeigue PM, Chaturvedi N. The relationship between metabolic risk factors and incident cardiovascular disease in Europeans, South Asians, and African Caribbeans: SABRE (Southhall and Brent Revisited) -- a prospective population-based study. J Am Coll Cardiol 2013; 61: 1777-1786
3. van Elderen SG, de Roos A, de Craen AJ, Westendorp RG, Blauw GJ, Jukema JW, Bollen EL, Middelkoop HA, van Buchem MA, de Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ. Microstructural white matter abnormalities and IGF1 neuroprotective coupling. Both estrogens and IGF1 may also play an important role in the E2-IGF1 neuroprotective coupling. Both estrogens and androgens enact their neuroprotection through similar, but not identical, signal transduction pathways. Recognition of this has led us to consider the possibility that these sex hormones may work together with IGF1 and insulin-like peptide receptors to modulate MAPK and PI3K signaling and their neuroprotective properties.

Regulation of MAPK and PI3K activity may also be a driving force behind the structural changes, atrophy of brain regions, or functional changes, often observed in diabetic patients. Drawing conclusions from imaging data in humans to those found in animal models is indeed difficult. Nevertheless, there is a need for a clearer mechanistic explanation grounding the cognitive decline and brain abnormalities observed in diabetic patients.

Future studies in human research on diabetic brain integrity should integrate hormone titre measures to help substantiate sex differences in brain-health outcomes of diabetic patients. This approach may also assist in identifying region-specific brain abnormalities resulting from fluctuations in IGF1 and sex hormones between men and women. Moreover, animal models examining the E2-IGF1 coupling in neuroprotection should employ streptozotocin-induced diabetes, as well as the possible role of androgens and AR activities. These conclusions warrant further examination of the variability present in cognitive and brain-health outcomes for patients with diabetes as a result of sex hormone relations to IGF1, insulin, and the insulin-like peptide receptors.
Gudnason V, Launer LJ. Glycemic status and brain injury in older individuals: the age gene/environment susceptibility-Reykjavik study. Diabetes Care 2009; 32: 1608-1613 [PMID: 19500080 DOI: 10.2337/diacare.32.11.1608]

Ryan CM, Geckle M. Why is learning and memory dysfunction in Type 2 diabetes limited to older adults? Diabetes Metab Rev 2000; 16: 308-315 [PMID: 11025555 DOI: 10.1002/1520-7560(200007)16:5<308::AID-DMBR1>3.0.CO;2-9]

Tan ZS, Beiser AS, Fox CS, Au R, Hirami JJ, Debbete S, Decarlo C, Vasan RS, Wolf PA, Seshadri S. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study. Diabetes Care 2011; 34: 1766-1770 [PMID: 21680719 DOI: 10.2337/dc11-0308]

Friedrich N, Thuesen B, Jørgensen T, Juul A, Spielhagen C, Jongen C. Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabetologia 2007; 50: 1509-1516 [PMID: 17492428 DOI: 10.1007/s00125-007-0688-y]

Arevalo MA, Azcoitia I, García-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2005; 16: 17-29 [PMID: 15423096 DOI: 10.1038/nrn1736]

García-Segura LM, Arévalo MA, Azcoitia I. Interactions of estradiol and insulin-like growth factor-I signalling in the nervous system: new advances. Prog Brain Res 2010; 181: 251-272 [PMID: 20478442 DOI: 10.1016/S0079-6123(08)1014-X]

Sohrabi FJ. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36: 1-14 [PMID: 24882635 DOI: 10.1016/j.yfrne.2014.05.003]

Ezzat VA, Duncan ER, Wheatcroft SB, Kearney MT. The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes Obes Metab 2008; 10: 198-211 [PMID: 18269635 DOI: 10.1111/j.1463-1326.2007.00709.x]

Janssen JA, Jacobs ML, Derkx FH, Weber RF, van der Lely AJ, Lamberts SW. Free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and their relationships to the presence of diabetic retinopathy and glomerular hyperfiltration in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997; 82: 2809-2815 [PMID: 9284701 DOI: 10.1210/cen.82.9.4180]

Toppala S, Shankar A, Sabanayagam C. Association between IGF-I and chronic kidney disease among US adults. Clin Exp Nephrol 2010; 14: 440-444 [PMID: 20567872 DOI: 10.1007/s10157-010-0307-y]

Vaessen N, Heutink P, Janssen JA, Witteman JC, Testers L, Hofman A, Lamberts SW, Oostra BA, Pols HA, van Duijn CM. A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001; 50: 637-642 [PMID: 11246855 DOI: 10.2337/diabetes.50.3.637]

Melmel S. Medical progress: Acromegaly. N Engl J Med 2006; 355: 2558-2573 [PMID: 17167139 DOI: 10.1056/NEJMra062453]

Carroll PV, Christ ER, Unpleby ML, Gowrie I, Jackson N, Bowes SB, Hovorka R, Croos P, Sönksen PH, Russell-Jones DL. IGF-I treatment in adults with type 1 diabetes: effects on glucose and protein metabolism in the fasting state and during a hyperinsulinaemic-euglycaemic amino acid clamp. Diabetes 2000; 49: 789-796 [PMID: 10905488 DOI: 10.2337/diabetes.50.5.789]

Zenobi PD, Jaeggi-Groisman SE, Riesner WF, Roder ME, Frosch ER. Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest 1999; 103: 2234-2241 [PMID: 10469083 DOI: 10.1172/JCI16109]

Carro E, Trejo JL, Núñez A, Torres-Alemán I. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 2003; 27: 153-162 [PMID: 12776866 DOI: 10.1007/s12035-003-0013-1]

Carro E, Torres-Alemán I. Serum insulin-like growth factor I in brain function. Keio J Med 2006; 55: 59-63 [PMID: 16830417 DOI: 10.2302/kjm.55.5.59]

Nishijima T, Piriz J, Dutlot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nuñez A, Torres-Alemán I. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 2010; 67: 834-846 [PMID: 20826314 DOI: 10.1016/j.neuron.2010.08.007]

Serbedzija P, Madl JE, Ishii DN. Insulin and IGF-I prevent brain atrophy and DNA loss in diabetes. Brain Res 2009; 1303: 179-194 [PMID: 19781531 DOI: 10.1016/j.brainres.2009.09.063]

Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res 2003; 74: 512-523 [PMID: 14598295 DOI: 10.1002/jnr.10791]

Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11: 1165-1190 [PMID: 19014342 DOI: 10.1089/ars.2008.2161]

Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13: 225-239 [PMID: 22430016 DOI: 10.1038/nrn3299]

Banks WA. The source of cerebral insulin. Eur J Pharmacol 2004;
lipid and glucose metabolism. Front Endocrinol (Lausanne) 2014; 5: 241 [PMID: 25846091 DOI: 10.3389/fendo.2014.00241]

74 Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2003; 26: 912-918 [PMID: 10858540 DOI: 10.2373/diabetes.23.7.912]

75 Phillips GB, Tuck CH, Jing TY, Boden-Albala B, Lin IF, Dahodwala N, Sacco RL. Association of hyperandrogenemia and hyperestrogenemia with type 2 diabetes in Hispanic postmenopausal women. Diabetes Care 2000; 23: 74-79 [PMID: 10857972 DOI: 10.2337/diabetes.23.1.74]

76 Ding EL, Song Y, Manson JE, Rifai N, Buring JE, Liu S. Plasma sex steroid hormones and risk of developing type 2 diabetes in women: a prospective study. Diabetologia 2007; 50: 2076-2084 [PMID: 17701157 DOI: 10.1007/s00125-007-0785-y]

77 Kalyani RR, Franco M, Dobs AS, Ouyang P, Vaidya D, Bertoni A, Gasparr SM, Golden SH. The association of endogenous sex hormones, adiposity, and insulin resistance with incident diabetes in postmenopausal women. J Clin Endocrinol Metab 2009; 94: 4127-4135 [PMID: 19789205 DOI: 10.1210/jc.2009-0918]

78 Hu J, Zhang A, Yang S, Wang Y, Goswami R, Zhou H, Zhang Y, Wang Z, Li R, Cheng Q, Zhen Q, Li Q. Combined effects of sex hormone-binding globulin and sex hormones on risk of incident type 2 diabetes. J Diabetes 2016; 8: 508-515 [PMID: 26119029 DOI: 10.1111/1753-0407.12322]

79 Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care 2002; 25: 55-60 [PMID: 11772901 DOI: 10.2337/diabetes.25.1.55]

80 Vikas T, Schirrer H, Njolstad I, Svartberg J. Low testosterone and sex hormone-binding globulin levels and high estradiol levels are independent predictors of type 2 diabetes in men. Eur J Endocrinol 2010; 162: 747-754 [PMID: 20661333 DOI: 10.1530/EJE-09-0943]

81 Cauley JA, Gutai JP, Kuller LH, LeDonne D, Powell JG. The epidemiology of serum sex hormones in postmenopausal women. Am J Epidemiol 1989; 129: 1120-1131 [PMID: 27929251 DOI: 10.1093/aje/129.6.1120]

82 Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev 2004; 5: 197-216 [PMID: 15458395 DOI: 10.1111/j.1467-789X.2004.00152.x]

83 Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr Rev 2006; 27: 575-605 [PMID: 16736155 DOI: 10.1210/er.2005-0020]

84 Paik SG, Michelles MA, Kim YT, Shin S. Induction of insulin-dependent diabetes by streptozotocin. Inhibition by estrogens and potentiation by androgens. Diabetes 1982; 31: 724-729 [PMID: 6219020 DOI: 10.2337/diab.31.8.724]

85 Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 2000; 97: 12729-12734 [PMID: 11070866 DOI: 10.1073/pnas.97.23.12729]

86 Andersson B, Mattsson LA, Hahn L, Márin P, Lapidus L, Holm G, Bengtsson BA, Björntorp P. Estrogen replacement therapy decreases hyperandrogenicity and improves glucose homeostasis and plasma lipids in postmenopausal women with non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997; 82: 638-643 [PMID: 9024268 DOI: 10.1210/jcem.82.3.23746]

87 Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update 2010; 16: 347-363 [PMID: 20159883 DOI: 10.1093/humupd/dmq011]

88 Dhindsa S, Prabhaker S, Sethi M, Bandyopadhyay A, Chaudhari A, Dandona P. Frequent occurrence of hypogonadal hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 5462-5468 [PMID: 15351498 DOI: 10.1210/jcem.89.8.2004-0804]

89 Rhoden EL, Ribeiro EP, Teloken C, Souto CA. Diabetes mellitus is associated with subnormal serum levels of free testosterone in men.
Huffman J et al. IGF1 and sex hormones in neuroprotection

BJU Int 2005; 96: 867-870 [PMID: 16153219 DOI: 10.1111/j.1440-410X.2005.05728.x]

90 Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care 2000; 23: 490-494 [PMID: 10857940 DOI: 10.2337/diabetes.52.4.490]

91 Keating NL, O'Malley A, Freedland SJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst 2012; 104: 1518-1523 [PMID: 23210129 DOI: 12.1000/ICO.2006.3.4.2497]

92 Laaksonen DE, Niskanen L, Punnonen K, Nyssonen K, Tuomainen TP, Valkonen VP, Salonen R, Salonen JT. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 2004; 27: 1036-1041 [PMID: 15111517 DOI: 10.2337/diabetes.27.5.1036]

93 Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, Forti G, Mannucci E, Maggi M. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl 2011; 34: 528-540 [PMID: 22069590 DOI: 10.1111/j.1365-2605.2010.01117.x]

94 Foryst-Ludwig A, Kintscher U. Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol 2010; 122: 74-81 [PMID: 20599505 DOI: 10.1016/j.jsbmb.2010.06.012]

95 Fuente-Martín E, García-Cáceres C, Morselli E, Clegg DJ, Chowen JA, Fimbin R, Tschöp MH. Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev Endoc Metab Dev Neurobiol 2013; 14: 331-338 [PMID: 24009071 DOI: 10.1007/s11543-012-9263-7]

96 A佐seita I, 島田, G, サガラ, H, 過保護性作用の効果を示すエストロゲンを成熟したラットの髄腔: 有機合成型の成長ファクターI成長因子を介した信号経路の研究. J Neurosci Res 1999; 58: 815-822 [PMID: 10583912 DOI: 10.1002/SJC.1097-1457(1999215)58:6]

97 Mendez P, A佐seita I, 高橋, K, 過保護性作用を示すエストロゲンを介した信号経路の研究. J Neurosci Res 2003; 112: 170-176 [PMID: 12670715 DOI: 10.1002/jn.10269]

98 D'Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol: an antagonist of estrogen receptors blocks the induction of Akt and GSK3beta. Eur J Neurosci 2006; 21: 1489-1502 [PMID: 15845077 DOI: 10.1111/j.1460-9568.2005.03982.x]

99 Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007; 26: 3279-3290 [PMID: 17490022 DOI: 10.1038/sj.onc.1210421]

100 Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogen and insulin-like growth factor-I in the brain: molecular mechanisms and functional implications. J Steroid Biochem Mol Biol 2002; 83: 211-217 [PMID: 12650718 DOI: 10.1016/S0960-7667(02)00261-3]

101 Convit A, Wolf OT, Tarshish C, de Leon MJ. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 2003; 100: 2019-2022 [PMID: 12571363 DOI: 10.1073/pnas.030973100]

102 Gold SM, Dizobek I, Sweat V, Tirs A, Rogers K, Bruehl H, Tsai W, Richardson S, Javier E, Convit A. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 2007; 50: 711-719 [PMID: 17334649 DOI: 10.1007/s00125-007-0602-7]

103 Kamiyama K, Wada A, Sugihara M, Kurioka S, Hayashi K, Hayashi T, Yoshisaku T, Yamamoto N, Tsuchie Y, Yamaguchi S, Sugimoto T, Kitagaki H. Potential hippocampal region atrophy in diabetes mellitus type 2: a voxel-based morphometry VSRAD study. Jpn J Radiol 2010; 28: 266-272 [PMID: 20512543 DOI: 10.1016/s1164-0944(10)612-6]

104 Nelson BS, Springer RC, Daniel JM. Antagonism of brain insulin-like growth factor-I receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats. Psychopharmacology (Berl) 2014; 231: 899-907 [PMID: 24146138 DOI: 10.1007/s00213-013-3310-7]

105 Perez-Martín M, A佐seita I, Trigo JL, 島田, G, 携帯, O, 肾上腺皮質ホルモンの影響下で成長因子I成長因子を介した信号経路の研究. J Neurosci Res 2003; 112: 170-176 [PMID: 12670715 DOI: 10.1002/jn.10269]

106 Takeuchi K, Yang Y, Takayasu Y, Gertner M, Hwang JY, Arromolhan K, Bennett MV, Zukin RS. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulin ICA neurons after transient global ischemia. Brain Res 2015; 1621: 222-230 [PMID: 25463028 DOI: 10.1016/j.brainres.2014.11.016]

107 Witty CF, Gardella LP, Perez MC, Daniel JM. Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the hippocampus: a role for insulin-like growth factor-I. Endocrinology 2013; 154: 842-852 [PMID: 23264616 DOI: 10.1210/en.2012-1698]

108 Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. Brain Res Dev Brain Res 2001; 137: 320-334 [PMID: 11744097 DOI: 10.1016/S0165-0173(01)00137-0]

109 Aggarwal RR, Ryan CJ, Chan JM. Insulin-like growth factor pathway: a link between androgen deprivation therapy (ADT), insulin resistance, and disease progression in patients with prostate cancer? Urol Oncol 2013; 31: 522-530 [PMID: 21659788 DOI: 10.1016/j.urolonc.2011.05.001]

110 OkI K, Law TD, Loeucks AB, Clark BC. The effects of testosterone...
Castilla-Cortázar I, García-Fernández M, Delgado G, Puch CJE, Sierra I, Barhoum R, González-Barón S. Hepatoprotection and neuroprotection induced by low doses of IGFBP-2 in aging rats. *J Transl Med* 2011; 9: 103 [PMID: 21733157 DOI: 10.1186/1479-5876-9-103]

Lin SY, Cui H, Yusta B, Belsham DD. IGF-I signaling prevents dehydroepiandrosterone (DHEA)-induced apoptosis in hypothalamic neurons. *Mol Cell Endocrinol* 2004; 214: 127-135 [PMID: 15062551 DOI: 10.1016/j.mce.2003.10.064]

Bläck M, Zaremba P, Borowicz KK, Czczarzew SJ. Neuroprotective role of testosterone in the nervous system. *Pol J Pharmacol* 2004; 56: 509-518 [PMID: 15591638]

Creta M, Riccio R, Chiancone F, Fusco F. Androgens exert direct neuroprotective effects on the brain: a review of pre-clinical evidences. *J Androl Sci* 2010; 17: 49-55

Segura-LMI, Balthazart J. Steroids and neuroprotection: New advances. *Front Neuroendocrinol* 2009; 30: v-ix [PMID: 19393683 DOI: 10.1016/j.ynefn.2009.04.006]

Hammond J, Le Q, Goodyer C, Gelfand M, Trifiro M, LeBlanc A. Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. *J Neurochem* 2001; 77: 1319-1326 [PMID: 11389183 DOI: 10.1046/j.1471-4159.2001.00345.x]

Nguyen TV, Jayaraman A, Quaglino A, Pike CJ. Androgens selectively protect against apoptosis in hippocampal neurons. *J Neuroendocrinol* 2010; 22: 1013-1022 [PMID: 20561156 DOI: 10.1111/j.1365-2826.2010.02044.x]

Baron S, Manin M, Beaudoin C, Leotoing L, Communial Y, Veyssiére G, Morel L. Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-OH kinase in androgen-sensitive epithelial cells. *J Biol Chem* 2004; 279: 14579-14586 [PMID: 14668339 DOI: 10.1074/jbc.M306143200]

Rochette-Egly C. Nuclear receptors: integration of multiple signaling pathways through phosphorylation. *Cell Signal* 2003; 15: 355-366 [PMID: 12618210 DOI: 10.1016/S0898-6568(02)00115-8]

Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signalling. *Neurochem Res* 2015; 40: 41-48 [PMID: 25347962 DOI: 10.1007/s11064-014-1463-3]

Gatson JW, Kaur P, Singh M. Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositol 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells. *Endocrinology* 2006; 147: 2028-2034 [PMID: 16410299 DOI: 10.1210/en.2005-1395]

Gatson JW, Singh M. Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes. *Endocrinology* 2007; 148: 2458-2464 [PMID: 17303658 DOI: 10.1210/en.2006-1443]

Nguyen TV, Yao M, Pike CJ. Androgens activate mitogen-activated protein kinase signaling: role in neuroprotection. *J Neurochem* 2005; 94: 1639-1651 [PMID: 16017141 DOI: 10.1111/j.1471-4159.2005.03318.x]

Pike CJ, Nguyen TV, Ramsden M, Yao M, Murphy MP, Rosario ER. Androgen cell signaling pathways involved in neuroprotective actions. *Horm Behav* 2008; 53: 693-705 [PMID: 18222446 DOI: 10.1016/j.yhbeh.2007.11.006]

Segura-LMI, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. *J Neurobiol* 2001; 47: 318-329 [PMID: 11351342 DOI: 10.1002/neu.1038]

Segura-LMI, Sierra A, Veiga S, Garcia-Segura LM. Aromatase expression by reactive astrogliosis is neuroprotective. *Ann N Y Acad Sci* 2003; 1007: 298-305 [PMID: 14993062 DOI: 10.1196/annals.1286.028]

Garcia-Segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. Aromatase: a neuroprotective enzyme. *Prog Neurobiol* 2003; 71: 31-41 [PMID: 14611865 DOI: 10.1016/j.pneurobio.2003.09.005]

Garcia-Segura LM. Aromatase in the brain: not just for reproduction anymore. *J Neuroendocrinol* 2008; 20: 705-712 [PMID: 18601693 DOI: 10.1111/j.1365-2826.2008.01713.x]

Roselli CF. Brain aromatase: roles in reproduction and neuroprotection. *J Steroid Biochem Mol Biol* 2007; 106: 143-150 [PMID: 17643294 DOI: 10.1016/j.jsbmb.2007.05.014]

Sahlahna CJ, Duncan KA, Walters BJ. Neuroprotective actions of brain aromatase. *Front Neuroendocrinol* 2009; 30: 106-118 [PMID: 19450619 DOI: 10.1016/j.ynefn.2009.04.016]

Carswell HV, Dominiczak AF, Garcia-Segura LM, Harada N, Hutchison JB, Macrae IM. Brain aromatase expression after experimental stroke: topography and time course. *J Steroid Biochem Mol Biol* 2005; 96: 89-91 [PMID: 15896953 DOI: 10.1016/j.jsbmb.2005.02.016]

Burul-Bozkurt N, Pekiner K, Kelicen P. Diabetes alters aromatase enzyme levels in gonadal tissues of rats. *Naunyn Schmiedebers Arch Pharmacol* 2010; 382: 33-41 [PMID: 20428845 DOI: 10.1007/s00210-010-0518-5]

Gibb FW, Homer NZ, Faqehi AM, Upreti R, Livingstone DE, Mclnnes KJ, Andrew R, Walker BR. Aromatase Inhibition Reduces Insulin Sensitivity in Healthy Men. *J Clin Endocrinol Metab* 2016; 101: 2040-2046 [PMID: 26967690 DOI: 10.1210/jc.2015-4146]

Pintana H, Chattipakorn N, Chattipakorn S. Testosterone deficiency, insulin-resistant obesity and cognitive function. *Metab Brain Dis* 2015; 30: 853-876 [PMID: 25703239 DOI: 10.1007/s11011-015-9655-3]

Dozmanov MG, Yang Q, Matwalli A, Hurst RE, Culkin DJ, Kropp BP, Lin HK. 5alpha-androstane-3alpha,17beta-diol selectively activates the canonical PI3K/AKT pathway: a bioinformatics-based evidence for androgen-activated cytoplasmic signaling. *Genom Med* 2007; 1: 139-146 [PMID: 18923939 DOI: 10.1007/s11568-008-9018-9]

Narayni SA, Naghdi N, Azadmankesh K, Edalat R. 3a-diol administration decreases hippocampal PCA (II) mRNA expression and impairs Morris water maze performance in adult male rats. *Behav Brain Res* 2015; 280: 149-159 [PMID: 25451551 DOI: 10.1016/j.bbr.2014.11.038]

Caruso D, Scurati S, Maschi O, De Angelis L, Roglio I, Giatti S, Garcia-Segura LM, Melcangi RC. Evaluation of neuroactive steroid levels by liquid chromatography-tandem mass spectrometry in central and peripheral nervous system: effect of diabetes. *Neurochem Int* 2008; 52: 560-568 [PMID: 17686551 DOI: 10.1016/j.neuint.2007.06.004]

P- Reviewer: Comasco E, Egea J, Phillips J S- Editor: Qiu S L- Editor: A E- Editor: Wu HL
