Antimicrobial Resistance and Sensitivity among Isolates of *Escherichia coli* from Urine Samples in Denizli, Turkey

Selma Kirac¹*, Dilek Keskin², F. Banu Karahasanoğlu³

¹Denizli Health Services Vocational High School, Pamukkale University, Denizli, TURKEY
²Cine Vocational High School, Adnan Menderes University, 09500- Cine- Aydın, TURKEY
³ER-PA Special Health Hospital, Denizli, TURKEY

*Email for Correspondence: skirac@pau.edu.tr

ABSTRACT

Objective: The research was carried out with isolate and determines the antimicrobial sensitivity in *E. coli* from urinary tract infections in special hospital in Denizli and recorded at specimens.

Methods: Urine samples (n=21) were collected from patients with signs and symptoms of Urinary tract infections. Bacteria were isolated and identified by conventional biochemical profile. Antibiotic resistance pattern of *E. coli* against different antibiotic was determined by Kirby-Baur method.

Results: The results revealed that sensitivity rate of antimicrobial agents were in the range of meropenem (100%), norfloxacin and ciprofloxacin (86%), cefotaxime (80%), aztreonam (76%). None of the samples showed no resistance to amikacin, ceftazidime, aztreonam, amoxicillin/clavulanic acid, and meropenem. Out of 21 isolates, 3(14%) isolates showed Multiple Antibiotic Resistance ten to thirteen antibiotics.

Conclusion: It is concluded that most of the urinary tract infections in human are caused by *E.coli* exhibited highest resistance to meropenem (100%), followed by norfloxacin and ciprofloxacin (86%).

Key words: Escherichia coli, Antibiotic, Resistance, Prevalence, MDR

INTRODUCTION

Antibiotic resistance is recognized worldwide as a major problem in the management of patients hospitalized with serious infections (Swartz, 1994). Turkish hospitals also face increasing numbers of antibiotic-resistant organisms including *Klebsiella pneumonia, Pseudomonas aeruginosa, Methicillin resistance in Staphylococcus aureus, Escherichia coli* (Toroglu and Keskin, 2011, Toroglu et al., 2013, Yakupoguları et al., 2006).

E. coli are gram negative, facultative bacteria that ferment glucose and are members of the family Enterobacteriaceae (Feng and Weagant, 2009). They are mainly allocated in the intestine of animals and forms part of the normal intestinal flora that maintains the physiology of a healthy animal (Conway and Macfarlane, 1995). Thus, most *E.coli* strains are nonpathogenic but pathogenic strains that cause gastrointestinal illness in humans and opportunistic ones that normally affect immune compromised patients exists (Nataro and Kaper, 1998). For example, more than 80% of urinary tract infections occur in outpatients and *E.coli* accounts for more than 50% of the infections in these patients (Blomgran et al., 2004, Jha and Bapat, 2005). In rare cases, virulent strains are also responsible for Haemolytic Uremic Syndrome (HUS), peritonitis, mastitis septicemia, and gram-negative pneumonia Olowe et al., 2003). It is one of the organisms most frequently isolated from different clinical cases of diarrhea and others (Okeke et al., 1999, Tobih et al., 2006).

We aimed in these research to determine the status of antibiotic resistance, underlying conditions, and isolation of *E.coli* isolates with from a special hospital in Denizli, Turkey.
Subjects and Methods

Isolation of bacterial strains and identification: 21 isolates were determined from special hospital patients in Denizli July and August in 2013 and recorded at specimens. Mac Conkey agar and EMB agar (Eosin Methylene Blue) agar used for E.coli isolation. Isolates were considered to be presumptive Escherichia spp. Gram-Negative bacilli, mucoid colonies and lactose positive. Confirmation of isolates was performed by using classic chemical tests (motility test, ure hydrolysis, acid production from mannitol, production of H₂S, IMVIC (Indol, Metil Red, Voges-Proskauer and Citrate) (Prakash et al., 2011, Cowan and Steel, 1970).

Antibiotic resistance activity

Antibiotic resistance was determined by an agar disc diffusion test (Bauer et al., 1996) using Mueller-Hinton agar (Difco) according to Clinical and Laboratory Standards Institute (CLSI, 2005) recommendations. Twenty different antibiotics were used. For antibiotic resistance determination, the isolates were grown in Luria-Bertani (LB) broth until the turbidity equal to the 0.5 Mc Farland standart. Cultures were swabbed on to the Mueller–Hinton agar and all isolates were tested against Meropenem (MEM, 10 µg/ml), Piperacillin/ tazobactam (TZP, 110 µg/ml), Ampicillin/ Sulbactam (SAM, 20 µg/ml), Amikacin (AK, 30 µg/ml), Ceftazidime (CAZ, 30 µg/ml), Tobramycin (TOB, 10 µg/ml), Amoxycillin/ clavulanic acid (AMC, 30 µg/ml), Gentamycin (CN, 10 µg/ml), Aztreonam (ATM, 30 µg/ml), Cefepime (FEP PM, 30 µg/ml), Cefotaxime (CTX, 30 µg/ml), Cefuroxime (CXM, 30 µg/ml), Ceftriaxone (CRO, 30 µg/ml), Sulphamethazol/ Trimetroprim (SXT, 25 µg/ml), Ciprofloxacin (CIP, 5 µg/ml), Ceftoperazone (CFP, 75 µg/ml), Cephazolin (CZ, 30 µg/ml), Norfloaxain (NOR, 10 µg/ml), Ampicillin (AM, 10 µg/ml), Cefixime (CFM, 5 µg/ml).

The isolates those grown in inoculation were evaluated as resistant, and the others were evaluated as susceptible (Bauer et al., 1996). The antibiotic discs were dispensed sufficiently separated from each other so as to avoid overlapping of inhibition zones. The plates were incubated at 37°C, and the diameters of the inhibition zones were measured after 18 h. All susceptibility tests were carried out in duplicate and were repeated twice if discordant results had been obtained.

Multiple Antibiotic Resistance Index:

For all isolates, we calculated the MAR index values (a/b, where a represents the number of antibiotics the isolate was resistant to, b represents the total number of antibiotics the isolate tested against). A MAR index value ≥ 0.2 is observed when isolates are exposed to high-risk sources of human or animal contamination, where antibiotics use is common; in contrast a MAR index value < or = 0.2 observed when antibiotics are seldom or never used (Krumperman, 1985, Matyar et al., 2008).

Results

The sensitivity to antimicrobial agents (n=21) gave high sensitive rates found that E.coli isolates diffusion tests for meropenem (100%), norfloxacin and ciprofloxacin (86%), cefotaxime (80%), aztreonam (76%). None of the samples showed no resistance to amikacin, ceftazidime, aztreonam, amoxicillin/clavulanic acid, and meropenem. The results were given in table 1.

Discussion

Carbapenems, mainly meropenem, sensitivity rate of meropenem was showed in 100 %. Some researchers have reported meropenem sensitivity rate to E.coli from 100% to 90.9% (İnan and Gurler, 2004, Yılmaz et al., 2010, Barisic et al., 2003). Our results were similar to Yılmaz et al.,(2010) who also reported that percentage of meropenem sensitivity was 100% in Turkey. It can be suggested that meropenem can be used for infections based on E.coli.

Table 1: Antibiotic resistance pattern of Escherichia coli isolated from urine samples

Antibiotics	Sensitive	Intermediate	Resistance
MEM	21(100%)		
NOR	18(86%)		
CIP	18(86%)		
CTX	17(80%)	3(14%)	1(5%)
ATM	16(76%)	5(24%)	(0%)
CAZ	15(71%)	5(24%)	(0%)
FEP PM	15(71%)	5(24%)	1(5%)
CFM	13(62%)	5(24%)	3(14%)
CRO	12(57%)	6(29%)	3(14%)
TZP	12(57%)	9(42%)	(0%)
SXT	11(57%)	4(19%)	6(29%)
CFP	10(48%)	8(44%)	3(14%)
CXM	9(42%)	8(38%)	4(19%)
AMC	8(38%)	13(62%)	(0%)
AK	7(33%)	14(67%)	(0%)
CN	6(29%)	12(57%)	5(21%)
TOB	4(19%)	16(76%)	1(5%)
CZ	4(19%)	12(57%)	5(21%)
SAM	3(14%)	17(80%)	1(5%)
AM	1(5%)	10(21%)	10(48%)
When it comes to norfloxacin, sensitivity rate, it was %86. Many researchers tested sensitivity of norfloxacin to E.coli (Karki et al., 2001, Ay et al., 2003).

Sensitivity rate of ciprofloxacin was shown in 86%. Many researchers have tested the sensitivity of ciprofloxacin to E.coli (Turnidge et al., 2002, Aiyegoro et al., 2007, Mansouri et al., 2002). Our results were similar to Mansouri et al.,(2002) who also reported that percentage of ciprofloxacin sensitivity was 84.62% in Iran. It can be suggested that ciprofloxacin can be used for infections based on E.coli.

As for the sensitivity rate of cefotaxime, it was 80%. Many researchers have tested resistance of cefotaxime to E.coli (Jones et al., 2004, Gönülü et al., 2008. Our results were similar to Gonullu et al (2008) who also reported that sensitivity rate of cefotaxime was 84%.

Sensitivity rate of cefixime was 62%. Cefixime has a broad antibacterial spectrum and it is active against a wide variety at gram-negative organisms, including E.coli. Our results were similar to Iqbal et al (2002) who also reported that cefixime sensitivity rate was 80% .

As for sensitivity rate of cephalosporins, it was 71%. Some researchers have reported that ceftazidime sensitivity rate from 99.6% to 4.5% (Rhonberg and Jones, 2007, Ozsahin et al., 2005). Our results were in compliance with previous researchers.

As for sensitivity rate of ceftriaxone, it was 57%. Many researchers have tested the resistance of ceftriaxone to E.coli. According to previous studies resistance of E.coli was from 0%to 100% (Koken et al., 2008, Matute et al., 2004, Ateş, 2007, Yułuğkıral, 2007, Kalantar et al., 2008, Uzun et al., 2006).

As for the sensitivity rate of cefepime, it was 71%. Some researchers have reported cefepime sensitivity rate to E.coli in clinical samples (Iqbal et al 2002, Ashgar, 2006, Albayrak and Kaya, 2009, Kumarasinghe, 2001). Our results were similar to Iqbal et al (2002) who also reported that cefepime sensitivity rate was 80% .

As for sensitivity rate of cefuroxime, it was 58%. Some researchers have reported cefuroxime sensitivity rate from 99.6% to 4.5% (Koken et al., 2008, Matute et al., 2004, Ateş, 2007, Yułuğkıral, 2007, Kalantar et al., 2008, Uzun et al., 2006).

As for sensitivity rate of amikacin, it was 71%. Many researchers have tested resistance of amikacin to E.coli. According to previous studies resistance of E.coli was from 0%to 100% (Koken et al., 2008, Matute et al., 2004, Ateş, 2007, Yułuğkıral, 2007, Kalantar et al., 2008, Uzun et al., 2006).

As for the sensitivity rate of amoxicillin-clavunat, it was %33. Some researchers have reported amoxicillin-clavunat sensitivity rate to E.coli (Karki et al., 2001, Ekim et al., 1998, Çetin et al., 2006, Giray et al., 2012). In our study resistance of amoxicillin was detected 0%. Our results were similar to Giray et al., (2012) who also reported that resistance of amoxicillin showed 0 % in E.coli strains isolated from children with urinary tract infections.

Among the aminoglycosides group, gentamycin sensitivity rate was 29%. Some researchers have reported gentamycin sensitivity rate to E.coli from 1.5% to 54% (Koksaldi-Motor et al., 2010, Kutlu, 2007, Pieboji et al., 2004, Kalem et al., 2008). Our results were compliance with previous researchers. Koksaldi-Motor et al., (2010) reported that when it compared to previous year’s data susceptibility of E.coli isolated from urine to gentamycin were decreased and also different resistance rate occurred different locations.
As for the sensitivity rate of tobramycin, it was 19%. Some researchers have reported tobramycin sensitivity rate to E. coli (Gonlugur et al., 2004, Sucu et al., 2004). Our results were similar to Gonlugur et al. (2004) who also reported that tobramycin sensitivity rate was 16.6%.

As for the sensitivity rate of cefazolin, it was 19%. Some researchers have reported that cefazolin sensitivity (Vlieghe, 2009, Arıkan et al., 1995, Frederick, 2011). Our results were in compliance with previous researchers.

As for sensitivity rate of ampicillin/sulbactam was 14%. Many researchers have tested sensitivity ampicillin/sulbactam to E. coli (Toroglu et al., 2013, Khan and Zaman, 2006).

As for sensitivity rate of ampicillin was 5%. Many researchers have tested the resistance of ampicillin to E. coli (Leblebicioğlu et al., 1994, Rawat et al., 2010, Ahmed et al., 2000). Our results were similar to Rawat et al. (2004) who also reported that aztreonam sensitivity rate was 5.71% from Kumaun region.

In the present study, the lowest MAR index was 0 obtained from urine samples from female and male. In contrast to the highest MAR index was 0.65 obtained from a female. Out of 21 isolates, 3 (14%) isolates showed Multiple Antibiotic Resistance ten to thirteen antibiotics. The MAR index were determined 0.25 and above (Table 2). Some researchers have reported Multi-Drug Resistance rate to E. coli from 2% to 97% (Al- Mardeni et al., 2009, Mathai et al., 2008, Al-Tawfiq, 2006). Our results were in compliance with previous researchers. Study shows that multiple resistance is a common hospital pathogen.

Table 2: Multiple antibiotic resistance (MAR) index among 21 Escherichia coli urine samples

Source of isolates	Total isolates	MAR index
Male	1	0.5
Female	2	0.15
Male	1	0.45
Female	2	0.85
Male	1	0.65
Female	1	0.05
Female	3	0.1
Female	0	
Male	2	0
Total	21	

In conclusion, it is suggested that meropenem, norfloxacin and ciprofloxacin, ceftaxime, aztreonam could be better for the treatment of infections based on E. coli according to the present study. Ampicillin/sulbactam and ampicillin were not-advisable antibiotics for E. coli infections according to results of the present study.

REFERENCES

Ashgar, AH. 2006. Frequency and antimicrobial susceptibility patterns of bacterial pathogens isolated from septicemic patients in Makkah hospitals. Saudi Med J, 27(3):361-367.

Ahmed AA, Osman H., Mansour AM, Musa HA, Ahmed AB,Karrar Z and Hassan HS.. Antimicrobial agent resistance in bacterial isolates from patients with diarrhea and urinary tract infection in Sudan. The American Soc Trop Med Hygiene, 63(5, 6), , pp. 259–263,2000.

Aiyeogoro, O.A., O.O. Igbinos, I.N. Ogummwonyi, E.E. Odjadre, O.E.Igbinos and A.I. Okoh, 2007. Incidence of urinary tract infections(UTI) among children and adolescents in Ile-Ife, Nigeria. African J.Microbiol. Res., 013 –019

Albayrak, N. and S. Kaya,. Extended spectrum beta lactamases production and antimicrobial resistance ratio of the Escherichia coli and Klebsiella pneumoniae strains isolated from various clinical specimens. Türk Microbiol Cem. Derg., 39: 16–21,2009.

Al-Mardeni RI, Batarseh A, Omaish L, Shraideh M, Batarseh B, Unis N. Empirical treatment for pediatric urinary tract infection and resistance patterns of uropathogens, in Queen Alias Hospital and Prince A’isha Military Center. Jordan. Saudi J Kidney Dis Transplant; 20: 135–9, 2009.

Al-Tawfiq J.A. Increasing Antibiotic Resistance Among Isolates of Escherichia coli Recovered From Inpatients and Outpatients in a Saudi Arabian Hospital. Infect Control Hosp Epidemiol; 27:748-753,2006.

Arıkan S, Gür D, Hayran M,ve ark Hastane dışi enfeksiyonlara yol açan gram negatif bakterilere karşı cefamet’in in vitro etkiini. Mikrobiol Bült 1995; 29:14-19.

Atas F. The analyse of urine culture results in patients with lower urinary tract infection, Türk Üroloji Derg;33(2):223-7,2007

Ay S, Işırtı LA, Duman B. Antibiotic Susceptibilities of Gram Negative Microorganisms Isolated from Urine Samples. İnönü ÜnivTip Fak Derg.,10(2) 59-62, 2003

Barisić Z, Babić-Erceg A, Borzić E, Zoranić V, Klaiterna V, Carev M. Urinary tract infections in South Croatia: aetiology and antimicrobial resistance. Int J Antimicrob Agents, 22, 61-64,2003.

Bauer, A.W, Kirby, WM.M, Sherris, JC., Turck, M. Antimicrobial susceptibility testing by a standart.. CLSI, Performance standards for antimicrobial susceptibility testing; 15th informational supplement. 1966.
Blahova J, Hupkova M, Kremery V Sr. The effectiveness of so called potentiated penicillins (augmentin and tazobactam) in vitro. Cas Lek cesk 1995: 134: 558-61

Blomgran, R., Zheng L, Stendhal O. 2004. Uropathogenic Escherichia coli trigger oxygen-dependent apoptosis in human neutrophils through the cooperative effect of type 1 fimbiae and lipo polysaccharide. Infect. Immun., 72:4570-4578.

Cetin ES, Demirci M, Kaya S, Andogan BC, Adiloglu AK, Goksu Y, Goulatus N. Antibiotic susceptibilities of Escherichia coli strains isolated from blood specimens. Turk Mikrobiyol Cem Derg 36 (1): 20 – 24, 2006

Cho SH, Lim YS, Park MS, Kim SH a, Yeon-Ho Kang YH. 2011. Prevalence of Antibiotic Resistance in Escherichia coli Fecal Isolates From Healthy Persons and Patients With Diarrhea. Public Health Res Persp 2(1), 41-45.

CLSI., 2005. Performance standards for antimicrobial susceptibility testing; 15th informational supplement. CLSI / NCCLS M 100-S 15. Clinical and Laboratory Standards Institute, Wayne, PA().

Conway P and G. Macfarlane,1995. Microbial ecology of the Human large intestine. In: Human Colonic Bacteria: Role in nutrition, Physiology and pathology, GibsonG and G. Macfarlane(Eds.) CRC Press, London.

Cowan SF, Steel KJ (1970). Manual for the Identification of the Medical Bacteria Cambridge: Cambridge University Press. pp. 7-122

Dean DC., Krahe D., Wa., 1995. Microbial ecology of the Human large intestine. In: Human Colonic Bacteria: Role in nutrition, Physiology and pathology, GibsonG and G. Macfarlane(Eds.) CRC Press, London.

Ekim M., Kuluglu Z., Aysev D., Cani S. 1998. Changes in antibiotic sensitivity in urinary tract infection caused by Escherichia coli Journal of the Turkish Nephrology, 3: 141-144.

Eryilmaz M., Eylil– Bozkurt M., Yildiz MM., Akin A. Antimicrobial resistance of urinary Escherichia coli isolates. Trop J of Pharm Res, 9(2) 205-209, 2010.

Feng P and S.D. Weagant., 2009. Bacteriological analytical manual 8th. Edn., Chapter 4 http:wwwfd.gov/Food/science Research / laboratoryMethods/ Bacteriological Analytical Manu Bam / UCM 064948.

Frederick A., 2011. Escherichia coli, it prevalence and antibiotic resistant in Malasia: A mini review . Microbiology Journal 1(2) 47-53.

Giray B., Ucar FB., Aydemir SS.2012. Characterization of uropathogenic Esherichia coli strains obtained from urology outpatients. Turk J Med Sci. 42(1) 1328-1337.

Gönül Güler, U., M.Z. Bakici, I. Akkurt and T. Ereoglu, 2004. Antibiotic susceptibility patterns among respiratory isolates of Gram negative bacilli in a Turkey university hospital. BMC Microbiol., 4: 1–5

Gönlügü N., Canberk MB., Filiz O., Altinkum S., Kucükbasmacı O., Aygun G., Altas K.. Antimicrobial susceptibilities and beta lactam resistance phenotypes of Escherichia coli strains isolated from various clinical samples. AnKem Derg 22(2) 64-68, 2008.

Iqbal M, Patel IK, Shah SH, Ain Q, Barney N, Kiani Q, Rabbani KZ, Zaidi G, Mehdi B. Susceptibility patterns of Escherichia coli: prevalence of multidrug-resistant isolates and extended spectrum beta-lactamase phenotype J Pak Med Assoc. 2002 Sep;52(9):407-11.

İnan N U, Gurler N. Investigation of Antibiotic Resistance and Some Virulence Factors of Escherichia coli Strains Isolated from Children with Urinary Tract Infections. Ankem Derg; 18(2):89-96, 2004.

Jha, N and Bapat SK. 2005. A study of sensitivity and resistance of pathogenic microorganisms causing UTI in Kathmandu valley. Kathmandu Univ. Med J., 3:123-129.

Jones ME, DC, Draghi, C, Thornsberry., JA, Karlowsky., DF, Sahm., RP, Wenzel. 2004. Emerging resistance among bacterial pathogens in the intensive care unit a European and North American Surveillance study. Ann Clin Microbiol, 3(14) 1-11.

Kader, A.A. and A. Kumar, Prevalence and antimicrobial susceptibility of extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital in Saudi Arabia. Saudi Med J., 25: 570–574,2004.

Kalantar E, Motlagh ME, Lornejad H, Reshadmanesh N. Prevalence of urinary tract pathogens and antimicrobial susceptibility patterns in children at hospitals in Iran. Iranian Journal of Clinical Infectious Diseases, 2008;3(3):149-153.

Kalem F., Gunden NS., Arıca V., Arıca S., Ay B. Susceptibility of Uropathogen Esherichia coli Strains Isolated from Urine Cultures. Ankara Derg. 22: 193-197,2008.

Karki T., Truuaslu K., Vainumaa, Mikellsaaar M. Antibiotic Susceptibility Patterns of Community and Hospital-acquired Staphylococcus aureus and Escherichia coli strains isolated in Estonia. Scand J Infect Dis 33: 333–338, 2001.

Khan AU and Zaman MS. Multiple drug resistance pattern in Urinary Tract Infection patients in Aligarh. Biomedical Research 2006; 17 (3): 179-181.

Koken G, Asik G, Ciftci H, Cetinkaya Z, Aktepe O.C, Ylmazer M. Efficiency of Fosfomycin Trometamol on Escherichia coli Strains from Community Acquired Urinary Tract Infections. AnKem Derg, 22(1):23-27,2008.

Koksaldi-Motor V., Tutanç M., Arica V., Arica S., Ay B. Susceptibility of Uropathogen Escherichia coli strains to commonly used antibacterial agents in urinary tract infections. AnKem Derg, 2010,24(4) 198-201, 2010.

Kruumperman, PH. 1985. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. App. Environ. Microbiol., 46:165–170.

Kumarasinghe G, Chow C, Tambyah PA. Widespread resistance to new antimicrobials in a university hospital before clinical use. Int J Antimicrob Agents., Oct;18(4):391-393. 2001.

Kutlu S, Kutlu M. Antibiotic susceptibility of Escherichia coli strains isolated in urinary tract infections in Didim, Turkey. Turk J Infect; 21(2): 81-83, 2007.

Ludviková H., Ďurašová H., Sanic A.,Buyukalpelli R.1994. Comparative İn-vitro susceptibility of beta lactam and beta lactam/beta lactamase inhibitor antibiotics against gram negative rods isolated from urine cultures. Mikrobiyol Bul., 28 218-222.

Lim KT., Yasin R.,Yeo CC.,Puthucheary S., Thong K.L. Characterization of multidrugresistant ESBL producing escherichia coli isolates from hospitals in Malaysia. J. Biomed Biotechnol., 1-10, 2009
Mansouri S, Shareif S, Ahmad K (2002). Antimicrobial resistance pattern of E. coli causing urinary tract infections and that of human faecal flora in southeast of Iran. Iran Med. Journal: 7: 123-128.

Mathai E, Chandy S, Thomas K, Antoniswamy B, Joseph I, Mathai M, Sorensen TL, Holloway K.. Antimicrobial resistance surveillance among commensal Escherichia coli in rural and urban areas in Southern India. Trop Med Int Health. Jan;13(1):41-5, 2008.

Matute AJ, Hak E, Schurink CA, McArthur A, Alonso E, Paniagua M, Van Asbeck E, Roskott AM, Froeling F, Rozenberg-Arnska M, Hoepelman IM. Resistance of uropathogens in symptomatic urinary tract infections in León, Nicaragua. Int J Antimicrob Agents.,23(5):506-9,2004.

Matyar, F., Kaya, A and Dinçer, S. 2008. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci. Total Environ., 407:279-285.

Nataro J.P and J.B Kaper,1999. Diarrheagenic Esherichia coli. In: Foodborne Disease Handbook, Hui,Y.H., JR. Gorham, K.D.Murrell and D.O Cliver (Eds). Marcel Decker, Inc., New York, pp:169-213.

Okeke IN, Lamikanra A, Edelman R. 1999. Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg.Infect. Dis. 5:18-27.

Olowe OA, Olayemi AB, Eniola KIT and Adevyeb AO.2003:Aetiological agents of diarrhoea in children under 5 years of age in Osogbo. Afr. J. Clin and Exp. Microbiol 4(3):62-66.

Ozsahin D., Digrak M., Kiran OE.2005. The Investigation on resistance Properties of Escherichia coli against Beta Lactam Groups Antibiotics. KSU, Journal Of science and Engineering 8(2):8-12.

Piéboji JC, Koulla-Shiro S, Ngassam P, Adiogo D, Njine T, Ndumbe P.Antimicrobial resistance of Gram-negative bacilli isolates from inpatients and outpatients at Yaounde Central Hospital, Cameroon. Int J Infect Dis., 8(3):147-54, 2004.

Prakash S. Dayalan JA and Edison N.2011. Prevalence of Bacteriuria In Jeyaseharaan Hospital of South India and their antibiogram. Asian Pacific Journal of Tropical Biomedicine, 105-108.Cambridge University Press. pp. 7-122.

Rawat DV, Umesh D, Paul MP. 2010. Antibiotic Resistance Pattern of Urinary Tract Isolates of Escherichia coli from Kumaun Region. National Journal of Integrated Research in Medicine 1(4): 43-46.

Rhonberg PR and Jones RN.2007. Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005). Diagn Microbiol Infect Dis. 2007 Feb;57(2):207-15

Sucu N, Boz GA, Bayraktar O, Caylan R, Aydn K, Koskai I. Th e change of antibiotic susceptibilities of uropathogen Escherichia coli strains in years. Klimik Dergisi 2004; 17: 128-131.

Swartz MN,1994.Hospital-acquired diseases with increasingly limited therapies. Proc Natl Acad Sci USA, 91:2420-2427.

Tobih JE, Taiwo SS, Olowe OA, Olaosun OA, Adejumo SO.2006. Microbiological profiles of discharging ears in Osogbo, Nigeria. Trop. Doc. 36(3):165-166.

Toroglu S and Keskin D. Antimicrobial Resistance and Sensitivity among Isolates of Klebsiella pneumoniae from Hospital Patients in Turkey. Int J Agri Biol, 13(6) 941–946,2011

Toroglu, H. Avan, D. Keskin. Beta- Lactamases production and Antimicrobial resistance ratio of Pseudomonas aeruginosa from hospitalized patients in Kahramanmaras, Turkey. Journal of Environmental Biology, 34 (4), 695-700, 2013.

Turnidge J., Bell J., Biedenbach J and Jones R.N, 2002Pathogen occurrence and antimicrobial resistance trends among urinary tract infection isolates in the Asia-Western Pacific Region: report from the SENTRY Antimicrobial Surveillance Program, 1998–1999, International Journal of Antimicrobial Agents 2002, 20, 10-17.

Uzun K., Teke T., Yavuz Z. , G. Survey of antimicrobial resistance and susceptibility in bacteria isolated from pulmonary critical care. Tip Arağ Derg., 4(3): 8-13, 2006.

Vlieghe E., Phoha MF., Muyembe Tamfun JJ., Jacobs J. Antibiotic resistance among bacterial pathogens in Central africa: a review of the published literature between 1995 and 1999. Int J Antimicrob Agents, 34, 295-303, 2009.

Yakupoglu, Y., A, Gunduz, M, Ozcan, M, Dogukan., A, Seyrek., M, Yilmaz. 2006. Susceptibility of Staphylococcus aureus Strains to Ciprofloxacin, Ofloxacin, Levofloxacin and Moxifloxacin. Firat Tip Derg; 11(1): 45-47.

Yilmaz N., Köse Ş., Ağuş N., Ece G., Akkoçtu G., Karaklı C. Microorganisms Isolated from Blood Cultures of Intensive Care Unit Patients, their Antimicrobial Susceptibility and Etiological Agents in Nosocomial Bacteremia. Ankem Derg 24(1):12-19,2010.

Yuluğkural Z, Mutlu B. Susceptibility of Escherichia colistrains isolated from urine cultures to some commonly used antibacterial agents Medical Journal of Trakya University; 24: 6-11, 2007

Authors Contributions
All the authors have contributed significantly in study design, experimentation, data analysis and manuscript drafting.