猫ひっかき病抗体陰性患者からの
Bartonella henselae DNAの検出

柳原正志

山口大学大学院医学系研究科器官病態外科（外科学第一）　
宇部市南小串1丁目1-1（〒755-8505）

Key words：猫ひっかき病，Bartonella henselae，末梢血，リアルタイムPCR法，間接蛍光抗体法

和文抄録

猫ひっかき病（Cat-scratch disease, CSD）はBartonella henselaeによって引き起こされる人鳥共通感染症である。B. henselaeは患者から分離培養が極めて困難であるため、現在のCSDの検査診断は間接蛍光抗体（Indirect fluorescent antibody, IFA）法による抗B. henselae抗体価測定（血清学的検査）が標準法である。リンパ節腫などが得られるとの検査（B. henselae DNAの検出）も行われる。末梢血中B. henselae DNAを検出した報告は散見されており、リンパ節生検が適応とならない場合や血清学的検査結果が曖昧な場合には末梢血PCR検査が有用と考えられる。しかし、血清学的検査と末梢血PCR検査の併用の有用性に関する報告はない。そこで、我々はB. henselae DNAを高感度に検出するreal-time PCR法を開発し、CSD疑い患者80名（小児73例、成人7例）を対象に、非侵襲的なCSD検査診断における血清学的検査（IFA法）と末梢血PCR検査の併用の有用性を検討した。その結果、17例（21.3%）がIFA法陽性、11例（13.8%）が末梢血PCR検査陽性となり、両者が陽性となったのは6例であった。末梢血PCR検査は単独では感度が十分ではなかったものの、IFA法陰性の7.9%（5/63）の末梢血からB. henselae DNAを検出した。このため、IFA法と末梢血PCR検査の併用によってCSD診断率はIFA法単独の21.3%（17/80）から27.5%（22/80）に向上した。IFA法陰性末梢血PCR検査陽性の5例中4例は発熱とリンパ節腫脹を伴う定型例で、1例はリンパ節腫脹を伴わない不明熱（非定型例）であった。末梢血PCR検査陽性のCSDは未だ不明であるが、菌血症や菌の分解産物の血中への流入の可能性があるため、発症後の日数に関係なく、積極的に末梢血PCR検査を実施すべきである。以上より、CSD抗体陰性患者の末梢血からB. henselae DNAを検出できることが示された。非侵襲的なCSDの検査診断の新たな標準法として、「血清学的検査と末梢血PCR検査の併用」が推奨される。

はじめに

猫ひっかき病（Cat Scratch Disease：CSD）は1950年にDebréらの最初の報告以来、ネコに関与する疾病として認識されていたが、病原体が特定されず長い間不明であった。1990年代に細菌性血管腫を伴ったAIDS患者から新種の細菌Bartonella henselaeが分離されたことがきっかけとなり2,3)。CSD疑い患者の約90%で抗B. henselae抗体が陽性であったこと4)、CSD患者のリンパ節から直接B. henselaeが分離されたこと5)、CSD患者のリンパ節や膿からB. henselae DNAが検出されたこと6)、さらにネコのB. henselae菌血症が報告されたこと7)などの一連の研究を経て、CSDはB. henselaeによる感染症であることが明らかになった。わが国にお
B. henselaeの宿主はネコである。感染したネコは通常、無症状で、長期にわたり菌血症を繰り返す26。ネコ間での本菌の感染は、ネコノミ（Ctenocephalides felis）によって媒介される27。通常、ヒトの感染は本菌に感染したネコにひっかかれたり噛まれることによって起こり、局所リンパ節腫脹と発熱を伴った定型的なCSDとなる。ネコだけではなく、ノミやイヌからも感染することが明らかとなっている28, 29。稀に、血行性にて菌が広がることで非定型例となり、不明熱、脳症、心内膜症、脳症や視神経膜炎、肝・脾肉芽腫を伴った全身性のCSDを引き起こす30-32。また、HIV感染者などの免疫不全患者では、細菌性血管腫や肝臓葉斑症を惹き起こす33。全国から我々の施設に寄せられたCSD疑い573例のうち、血清学的に診断され得た188例の症例では、患者の60%（152/258）が小児であり、定型例が62%（116/188）、非定型例が38%（72/188）であった。非定型例の内訳は、不明熱が最も多く（52/72）、視神経膜炎、急性脳症、肝・脾肉芽腫、パリノ一眼症候群、顔面神経麻痺、若年性慢性関節リウマチであった34。このようなCSDは多彩な臨床症状を呈する人獣共通感染症である。

B. henselaeは患者からの分離培養が極めて困難であるため35。現在のCSDの検査診断は、間接蛍光抗体（Indirect fluorescent antibody：IFA）法による抗B. henselae抗体価測定（血清学的検査）が標準法であり、リンパ節や関節などの生検材料が得られる場合には、PCR検査による確定診断が行われている4, 16, 18, 36。リンパ節腫脹と発熱を伴うCSDの定型例では、自然治癒傾向があるため、リンパ節切除の必要はなく、また、早期に適切な抗菌薬投与した場合には症状軽減と病期短縮が可能となる4, 21。そのため、迅速かつ非侵襲的な検査診断が求められており、IFA法による血清学的検査に依存しているのが国内での現状である。CSD患者の末梢血からB. henselae DNAを検出した報告が散見されており、リンパ節生検が適応となる場合や血清学的検査結果が曖昧な場合に末梢血PCR検査が有用と考えられる22-28。しかし、血清学的検査と末梢血PCR検査の併用の有用性に関する報告はない。そこで、非侵襲的なCSD検査診断における血清学的検査（IFA法）と末梢血PCR検査の併用の臨床的有用性を検討した。
5菌種、そして、ヒトのゲノムDNAを用いて、本法の特異性を検証したところ、B. henselaeのみに増幅曲線のシグナルを検出し、さらに、PCR反応液の一部を電気泳動したところ、B. henselaeのみに増幅産物を確認した(図2)。さらに、B. henselaeと確認済みの56菌株も全て検出できることを確認している。B. henselaeのvirB4遺伝子を組み込んだプラスミドDNAの希釈系列を用いた検量線では4.6コピーまで定量性のある直線が得られた。

結 果

CSD疑い患者80例に対して血清学的検査(IFA法)と末梢血PCR検査を同時に行い、両者の成績を比較したところ、表1のように、80例中17例(21.3％)で血清学的検査(IFA法)が陽性となり、11例(13.8％)で末梢血PCR検査が陽性となった。血清学的検査(IFA法)と末梢血PCR検査の両者が陽性となったのは6例のみで、血清学的検査(IFA法)陽性17例中11例で末梢血PCR陰性、末梢血PCR陽性11例中5例で血清学的検査(IFA法)陰性となる乖離が見られた。全体では80例中22例(27.5％)がCSDとの診断に至った(表1, 2)。

考 察

IFA法による血清学的検査はCSD検査診断の標準法であるが、特異度は高いものの、感度は低く、必ずしも満足できるものではない。これまで様々な血清学的検査法の開発の試みがなされているものの、現在のところ、IFA法より優れたCSDの検査法は存在しない。そのため、定型例・非定型例を問わず、IgG抗体価の上昇が不十分(1:64～1:128倍)のため、B. henselae DNA産物を測定したところ、陽性例(80例中6例)で計6.6％であり、B. henselae DNAを確認することは可能であるが、B. henselae DNAが証明された例はB. henselae YC-12が1例、B. henselae YH-01が3例である。さらに、B. elizabethaeを検出した例(3例)では、B. henselae DNAを検出できなかった。B. henselae DNAを検出できなかったのは、B. henselaeの遺伝子型がB. henselae YC-12とB. henselae YH-01の間で大きく異なるためである。

図1 virB4遺伝子標的領域の塩基配列の比較
リアルタイムPCR法のprimerと加水分解Probeの位置はB. henselaeの共通配列部分かつ近縁のBartonellaには多型が存在する部位を選択した。

図2 アガロースゲル電気泳動によるリアルタイムPCR増幅産物の確認
リアルタイムPCR法の特異性の確認のため、遺伝子型の異なるB. henselaeの3菌株、他のBartonella属の5菌種、ヒトのゲノムDNAをそれぞれ添加し、リアルタイムPCR反応を行なった。その増幅産物の一部を3％アガロースゲル電気泳動で分析した。レーン1～9に94bpの増幅産物のバンドを検出した。レーンM: 100-bp DNA ladder, レーン1: B. henselae ATCC49882, レーン2: B. henselae YC-12, レーン3: B. henselae YH-01, レーン4: B. quintana, レーン5: B. vinsonii, レーン6: B. claridgeae, レーン7: B. elizabethae, レーン8: B. bacilliformis, レーン9: human genomic DNA, レーン10: distilled water.
定型例ではリンパ節を切除してPCR検査による確定診断も可能であるが、患者の多くは小児であり、侵害的処置を伴うため慎重な判断が求められる。一方、非定型例の中で最も多い不明熱では、IFA法による血清学的検査以外の選択肢はない。我々は血清学的検査（IFA法）陰性の非定型例の患者末梢血からB. henselae DNAを検出した症例を経験し、末梢血PCR検査の重要性を認識した26。そこで、我々は

表1 CSD疑い患者80例における血清学的検査（IFA法）と末梢血PCR検査の結果の比較

血清学的検査（IFA法）	末梢血PCR検査	総数
陽性	6	17
陰性	5	63
総数	11	80

表2 CSDと診断できた22症例の患者背景と血清抗体価、末梢血PCR検査の結果一覧

番号	年齢/性別	発熱	細菌検査	末梢血PCR検査	血清抗体価	Real-time PCR Ct値 (mean ± SD)	合併症	
1	15/M	+	+		40	256	NA	
2	4/F	+	-		20	512	36.82 ± 0.57	不明熱
3	6/F	+	-		<10	64	33.93 ± 0.39	不明熱
4	18/M	+	+		<10	256	35.98 ± 0.69	不明熱
5	14/F	+	+		<10	256	34.29 ± 0.43	不明熱
6	8/M	+	+		<10	<64	35.35 ± 0.33	不明熱
7	10/M	+	+		20	256	NA	
8	8/F	+	+		<10	<64	37.18 ± 0.36	不明熱
9	10/M	+	+		20	256	NA	
10	7/F	+	+		10	<64	35.64 ± 0.27	不明熱
11	2/M	+	+		40	256	NA	
12	15/M	+	-		>80	512	NA	脳神経膜炎
13	6/F	+	+		<10	256	37.29 ± 0.15	不明熱
14	10/M	+	+		<10	256	NA	
15	12/F	+	+		<10	512	33.55 ± 0.33	不明熱
16	15/M	+	-		<10	512	NA	脳神経膜炎
17	9/F	+	+		<10	<64	34.84 ± 0.47	不明熱
18	4/M	+	+		20	512	NA	
19	14/F	+	-		80	512	NA	脳神経膜炎
20	56/F	+	-		<10	256	NA	脳神経膜炎
21	35/F	+	+		40	1024	37.19 ± 0.59	不明熱
22	7/M	+	+		<10	512	NA	

*Cp: crossing point; NA: no amplification; +, positive; -, negative.
CSD抗体陰性患者からのB. henselae DNAの検出

CSDの検査診断における血清学的検査（IFA法）と末梢血PCR検査の併用の臨床的有用性について検討したところ、血清学的検査（IFA法）陰性の7.9%（5/63）のCSD疑い患者の末梢血からB. henselae DNAを検出した。このため、血清学的検査（IFA法）と末梢血PCR検査の併用によってCSD診断率は血清学的検査（IFA法）単独の21.3%（17/80）から27.5%（22/80）に向上した。血清学的検査（IFA法）陰性末梢血PCR検査陽性となった5例中4例は発熱とリンパ節腫脹を伴う典型的例で、残る1例はリンパ節腫脹を伴わない不明熱であった（表2）。確定診断後、速やかにマクロライド系抗生物質を投与され、解熱した。これらの症例ではB. henselaeに対する抗体が著明に上昇する以前の発症初期であった。もしくは、患者の免疫反応はB. henselaeに対する抗体産生が不十分であったと考えられる22。患者血液中に抗体を検出できない場合でも、B. henselae DNA検査が検出できることが示され、末梢血PCR検査の有用性が認められた。

末梢血からのB. henselae DNAの検出率を抗体陽性例に限定して過去の報告と比較すると、本検討では35.3%（6/17）で末梢血PCR検査が陽性となったのに対し、19.2%（5/26）の末梢血からB. henselae DNAを検出した報告22a）や16.7%（3/18）の血清からDNAを検出した報告がある22b）。このことからも末梢血PCR検査が陽性となる時期については未だ不明である。発症3週間後に末梢血から検出した1症例22a）や感染3－4ヶ月後に末梢血から検出した1症例22b）の報告がある。本検討では、ほとんどが発症3週間以内に採血された血液を用いた。菌症例が分解された菌のDNA断片の血中への流入の可能性が考えられるため、発症後約1週の関係なく、末梢血PCR検査の検出が検査の初期において検出される。

結論

猫ひっかき病抗体陰性患者の末梢血からB. henselae DNAを検出できることが示された。非侵襲的なCSDの検査診断の新たな標準法として、「血清学的検査と末梢血PCR検査の併用」が推奨される。
associated with cat-scratch disease patients. J Clin Microbiol 1995; 33: 3245-3251.

11) Chomel BB, Kasten RW, Floyd-Hawkins K, et al. Experimental transmission of Bartonella henselae by the cat flea. J Clin Microbiol 1996; 34: 1952-1956.

12) Tsukahara M, Tsuneoka H, Iino H, Ohno K, Murano I. Bartonella henselae infection from a dog. Lancet 1998; 352: 1682.

13) 石田千鶴，常岡英弘，飯野英親，他. 猫・犬寄生ノミのBartonella henselae 感染. 感染症学雑誌 2001; 75: 133-136.

14) Anderson BE, Neuman MA. Bartonella spp. as emerging human pathogens. Clin Microbiol Rev 1997; 10: 203-219.

15) Murakami K, Tsukahara M, Tsuneoka H, et al. Cat scratch disease: analysis of 130 seropositive cases. J Infect Chemother 2002; 8: 349-352.

16) Tsuneoka H, Tsukahara M. Analysis of data in 30 patients with cat scratch disease without lymphadenopathy. J Infect Chemother 2006; 12: 224-226.

17) 常岡英弘, 柳原正志. Bartonella quintana, Bartonella henselae. 臨床と微生物 2009; 36: 139-142.

18) La Scola B, Raoult D. Culture of Bartonella quintana and Bartonella henselae from human samples: a 5-year experience (1993 to 1998). J Clin Microbiol 1999; 37: 1899-1905.

19) Bass JW, Freitas BC, Freitas AD, et al. Prospective randomized double blind placebo-controlled evaluation of azithromycin for treatment of cat-scratch disease. Pediatr Infect Dis J 1998; 17: 447-452.

20) 塚原正人. バルトネラ感染症（猫ひっかき病）. 小児科 2003; 44: 799-807.

21) 吉田 博, 草場信秀, 佐田通夫. ネコひっかき病の臨床的検討. 感染症学雑誌 2010; 84: 292-295.

22) Tsukahara M, Iino H, Ishida C, et al. Bartonella henselae bacteraemia in patients with cat scratch disease. Eur J Pediatr 2001; 160: 316.

23) Vermeulen MJ, Dierden BM, Verbakel H, Peeters MF. Low sensitivity of Bartonella henselae PCR in serum samples of patients with cat-scratch disease lymphadenitis. J Med Microbiol 2008; 57: 1049-1050.

24) Maruyama S, Kabeya H, Nogami S, et al. Three cases of cat scratch disease diagnosed by indirect immunofluorescence antibody assay and/or polymerase chain reaction of 16S rRNA gene of Bartonella henselae. J Vet Med Sci 2000; 62: 1321-1324.

25) Arvand M, Schad SG. Isolation of Bartonella henselae DNA from the peripheral blood of a patient with cat scratch disease up to 4 months after the cat scratch injury. J Clin Microbiol 2006; 44: 2288-2290.

26) Kimura S, Hasegawa S, Yanagihara M, et al. Cat-scratch disease with severe pleuritis in a 6-year-old girl. Pediatr Int 2015; 57: 501-503.

27) Yanagihara M, Tsuneoka H, Tanimoto A, et al. Bartonella henselae DNA in Seronegative Patients with Cat-Scratch Disease. Emerg Infect Dis 2018; 24: 924-925.

28) Yanagihara M, Tsuneoka H, Sugasaki M, et al. Multispacer typing of Bartonella henselae isolates from humans and cats, Japan. Emerg Infect Dis 2010; 16: 1983-1985.
Bartonella henselae DNA in Seronegative Patients with Cat-Scratch Disease

Masashi YANAGIHARA

Department of Surgery and Clinical Science (Surgery I.), Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan

SUMMARY

Cat-scratch disease (CSD) is a worldwide zoonosis caused by *Bartonella henselae*. Because isolation of *B. henselae* by culture is difficult, the standard laboratory diagnosis of CSD is serological tests using indirect fluorescent antibody assay (IFA). Detection of *B. henselae* DNA by PCR is also examined when lymph nodes are obtained. Isolation of *B. henselae* DNA from blood specimens of CSD patients has been sporadically described. However, the usefulness of serological tests, coupled with the detection of *B. henselae* DNA from blood specimens, is not well described. We examined 80 patients with suspected CSD using IFA and real-time PCR (rPCR) on blood specimens, to confirm the clinical utility of the combined use of both assays. Of the 80 patients with suspected CSD, 17 (21.3%) were positive by IFA and 11 (13.8%) were positive by rPCR. Six patients were positive by both assays. CSD detection sensitivity increased from 21.3% (17/80) using IFA alone to 27.5% (22/80) with combined use of IFA and rPCR on blood specimens because *B. henselae* DNA was detected in 7.9% (5/63) of blood specimens from seronegative patients. The combined use of serological tests and rPCR on blood specimens is recommended for the prompt, noninvasive laboratory diagnosis of CSD.