ABSTRACT: Here, we present a new stereoselective alkylation of titanium(IV) enolates of chiral N-acyloxazolidinones with tert-butyl peresters from Cα-branched aliphatic carboxylic acids, which proceeds through the decarboxylation of the peresters and the subsequent formation of alkyl radicals to produce the alkylated adducts with an excellent diastereoselectivity. Theoretical calculations account for the observed reactivity and the outstanding stereocontrol. Importantly, the resultant compounds can be easily converted into ligands for asymmetric and catalytic transformations.

The need for more efficient and broad scope methods for the stereoselective construction of chiral molecular architectures is an endless source of inspiration for the development of new carbon–carbon bond-forming reactions.1 In this context and despite the advances reported in the last decades, the α-alkylation of carbonyl compounds still remains as a challenging objective.2 It is certainly true that successful methods based on the alkylation of metal enolates and enamines are widespread, but they are usually restricted to a privileged set of alkyating agents, namely sterically unhindered and active alkyl halides or sulfonates, able to react through an SN1-like mechanism.3−5 Alternative methods based on an SN2-like mechanism have been also reported, but they mostly require stabilized carbenium or oxocarbenium intermediates.6−8 As a result, the chemo- and stereoselective introduction of any secondary or tertiary alkyl group continues to be an unresolved issue.

Radical chemistry may offer an appealing way to achieve such an objective. Indeed, the tremendous success of the SOMO activation mode concept coined by MacMillan in the context of the direct and asymmetric alkylation of aldehydes illustrates the synthetic potential of the radical approach.10 Inspired by these ideas and considering the biradical character of the titanium(IV) enolates,11 we envisaged that they might undergo highly stereoselective alkylation reactions that the required radical intermediates were generated in the reaction mixture. The feasibility of such an approach was clearly demonstrated in the alkylation of chiral N-acyloxazolidinones with diacyl peroxides (Scheme 1).12−14 Unfortunately, diacyl peroxides from α-branched aliphatic carboxylic acids are difficult to manipulate, which made the reaction with tertiary alkyl groups particularly elusive. In the search for more stable carboxylic acid derivatives to enable the introduction of secondary and tertiary alkyl groups we focused our attention on redox-active esters (Scheme 1).15 Widely used phthalimide-derived esters16 containing an O–N bond proved to be unreactive, but peresters containing an O–O bond turned out to be much more satisfactory.17 Herein, we describe the chemo- and stereoselective Cα alkylation of titanium(IV) enolates from chiral N-acyloxazolidinones with tert-butyl peresters from branched aliphatic carboxylic acids, which permits the stereocontrolled introduction of secondary and tertiary alkyl groups with moderate to high yields (Scheme 1). Importantly, this method gives a straightforward access to enantiomerically pure intermediates that can be employed as precursors for ligands in catalytic and asymmetric synthesis.18

Taking advantage of our experience, we were pleased to observe that the titanium(IV) enolate of (S)-4-benzyl-5,S-dimethyl-N-propanoyl-1,3-oxazolidin-2-one (1 in Table 1) reacted with the tert-butyl perester from 1-adamantancarboxylic acid (a in Table 1) under mild conditions similar to those employed for the alkylation with diacyl peroxides.12 Indeed, the alkylated adduct 1a was isolated with a high yield and an excellent diastereoselectivity (74% and dr 97:3, see Table 1) through the simple stirring of a mixture of the titanium(IV) enolate of 1 with 1.5 equiv of a in 1,2-dichloroethane for 1.5 h at room temperature. Slight variations of such conditions also gave the desired adduct 1a but in lower yields (Table 1).

The experimental procedure was next applied to a number of tert-butyl peresters from Cα-branched carboxylic acids.19

Received: October 4, 2021
Published: October 26, 2021
The introduction of tertiary alkyl groups proved to be possible in variable yields and heavily dependent on their structure but with outstanding stereocontrol since a single diastereomer (dr $\geq 97:3$) of the alkylated adducts 1a–d was observed in all cases. Indeed, the results summarized in Scheme 2 show that they range from excellent for 1a (74%) to low for 1d in which perester d contains a tert-butyl-like chain possessing an arylether (23%). Importantly, peresters b–d react slowly compared to a, and we have occasionally observed the formation of the carboxylic acid derived from the reaction of the titanium enolate from 1 with the carbon dioxide released in the perester decarboxylation. Therefore, slow kinetics allow undesired side reactions to emerge and reduce the overall yield. Remarkably, the stereochemical outcome of the alkylation was firmly established through X-ray analysis of tert-butyl alkylated adduct 1c.

The reaction with secondary alkyl groups proved to be much more successful. As summarized in Scheme 2, the reaction with tert-butyl peresters e–j with Cα-branched aliphatic chains also gave the corresponding adducts 1e–j as a single diastereomer (dr $\geq 97:3$) in good to high yields. Finally, it is worth pointing out the lack of stereocontrol of the β-stereocenter in the alkylation with perester f, so adduct 1f was isolated as a 2:1 mixture of two diastereomers (Scheme 2).

Having established the scope of the alkylation agent, we next examined the influence of the N-acyl group on the outcome of the alkylation with a. The reaction turned out to be sensitive to steric hindrance but at the same time chemoselective. Indeed, a variety of functional groups as double or triple bonds, esters, or phenyl rings may be embedded in the acyl chain and produce the corresponding alkylated adducts in yields up to 67% (Scheme 3). Importantly, protected α-hydroxy and α-amino acyl derivatives (α-OTBS and α-pyrrole, 8 and 9, respectively, in Scheme 3) proved to be successful platforms from which the alkylated adducts 8a and 9a were obtained in high yields in a multigram scale, which demonstrates the robustness of the method and represents a straightforward way to get access to enantiomerically pure α-hydroxy and α-amino acids.

At this point, we carried out a comprehensive theoretical study to unveil the origin of the observed reactivity and selectivity. As for the reaction with diacyl peroxides, DFT calculations of the alkylation of 1 with perester a indicated that it also may proceed through an electron transfer from

Table 1. Examination of the Alkylation Conditions

entry	changes on the reaction conditions	yield (%)
1	none	74
2	i-Pr$_2$NEt	66
3	2 equiv of a	62
4	0 °C for 2 h	58
5	2 equiv of a at 0 °C for 2 h	60

"Isolated yield after chromatographic purification of 1a"
Scheme 4, the biradical form of titanium enolates,11 to the \(\sigma^*\) of the O\(\text{−}\)O bond of \(\text{a}\). Thus, a single-electron transfer (SET) redox reaction causes the formation of the Ti(IV) radical \(\text{II}\) by a one electron loss and triggers the cleavage of the O\(\text{−}\)O bond, which produces an oxygen radical and an oxygen anion species. Due to the lack of symmetry of the perester, such a fragmentation may produce up to four different species shown in Scheme 4. These species may be in an equilibrium favoring the carboxylate anion \(\text{III}\), more stable than the radical counterpart \(\text{IV}\). However, \(\text{IV}\) is a very unstable intermediate and undergoes a spontaneous decarboxylation to the corresponding tertiary radical \(\text{V}\) in an almost barrierless step (\(\Delta\Delta G^\ddagger < 5\text{ kcal mol}^{-1}\)); importantly, a parallel decomposition of anion \(\text{III}\) is precluded by kinetic and thermodynamic reasons (\(\Delta G^0 \approx 50\text{ kcal mol}^{-1}\)). Thus, a Curtin–Hammett model may account for the formation of the adamantly radical \(\text{V}\), which combines with the highly reactive Ti(IV) radical \(\text{II}\) to lead to the alkylated product \(\text{Ia}\) after C\(\text{−}\)C bond formation and decoordination of the titanium.

Given the short distance at which the reagents must approach for the occurrence of the electron transfer, and due to the bulkiness of \(\text{I}\) and \(\text{a}\), a good diastereoselectivity was ensured. Thereby, a remarkable minimum energy difference of at least 5.0 kcal mol\(^{-1}\) corresponding to a \(\text{dr} >99:1\) was calculated for the approach of distinct conformations of the perester to both \(\pi\)-faces of the enolate, with C\(\text{−}\)O distances ranging from 1.8 to 4 Å. This effect can be visualized in the 3D-representation shown in Scheme 4 of the approach between \(\text{I}\) and \(\text{a}\), where the bulky adamantyl perester and the benzylic directing group are located at opposite faces of the enolate. Therefore, such a proposal accounts for both the observed reactivity and stereoselectivity since carbon-centered alkyl radicals are involved in the alkylation, whose stereochemical outcome hinges on the approach of the entire perester to the less sterically shielded \(\text{Si} \pi\)-face of the enolate.

Eventually, the easy access to \(\alpha\)-adamantyl alkylated adducts \(\text{1a}−\text{9a}\) led us to explore their conversion into enantiomerically pure building blocks and derivatives that might be employed as ligands for chiral catalysts. The results matched our expectations (Scheme 5). Indeed, reductive removal of the chiral auxiliary from \(\text{1a}\) with LiBH\(_4\) gave the corresponding alcohol \(\text{10}\) in 64% yield. Furthermore, 1,2-dihydroxy and 2-amino-1-hydroxy derivatives \(\text{11}\) and \(\text{12}\), respectively, were synthesized from adducts \(\text{8a}\) and \(\text{9a}\) in a similar way, which represents a straightforward approach to such interesting ligands.21

In summary, we have developed a highly stereoselective alkylation of titanium(IV) enolates of a variety of chiral \(\text{N}\)-acyl oxazolidinones with tert-butyl peresters from \(\text{C}6\) branched aliphatic acids under experimentally mild conditions. The resultant alkylated adducts are isolated in moderate to high...
yields as a single diastereomer (dr ≥97:3), which represents an appealing entry to the challenging alkylation of metal enolates with secondary or tertiary alkyl groups. Computational studies have revealed that the success of such an approach is based on the reduction of the tert-butyl perester by the enolate, which triggers a radical-like transformation. Finally, it should be noted that this method complements a parallel and previously reported introduction of secondary and primary alkyl groups based on the use of diacyl peroxides. All together, both pieces of reactivity permit the diastereoselective Cα alkylation of titanium enolates with a broad range of alkyl groups (Scheme 6).

Scheme 6. Cα Alkylation

Accession Codes
CCDC 2098119 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c03366. Experimental details, compound characterization, and copies of 1H and 13C NMR spectra (PDF) Crystallographic data for 1c (PDF)

AUTHOR INFORMATION
Corresponding Authors
Pedro Romea – Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain; orcid.org/0000-0002-0259-9155; Email: pedro.romea@ub.edu
Félix Urpi – Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain; orcid.org/0000-0003-4289-6506; Email: felix.urpi@ub.edu
Enrique Gómez-Bengoa – Departamento de Química Orgánica I, Universidad del País Vasco, 20080 San Sebastián, Spain; orcid.org/0000-0002-8753-3760; Email: enrique.gomez@ehu.es

REFERENCES
(1) Carreira, E. M.; Kværno, L. Classics in Stereoselective Synthesis; Wiley-VCH: Weinheim, 2009.
(2) (a) MacMillan, D. W. C.; Watson, A. J. B. α-Functionalization of Carbonyl Compounds. In Science of Synthesis: Stereoselective Synthesis 3; De Vries, J. G., Molander, G. A., Eds.; Thieme: Stuttgart, Germany, 2011; Vol. 3, pp 674–715. (b) Stoltz, B. M.; Bennett, N. B.; Duquette, D. C.; Goldberg, A. F. G.; Liu, Y.; Loewinger, M. B.; Reeves, C. M. Alkylation of Enols and Enolates. In Comprehensive Organic Synthesis II, Chapter 3.1; pp 1–49.
(3) For classical approaches based on chiral auxiliaries, see: (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetric Alkylation Reactions of Chiral Imide Enolates. A Practical Approach to the Enantioselective Synthesis of α-Substituted Carboxylic Acid Derivatives. J. Am. Chem. Soc. 1982, 104, 1737–1739. (b) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. Pseudoephedrine as a Practical Chiral Auxiliary for the Synthesis of Highly Enantiomerically Enriched Carboxylic Acids, Aldehydes, and Ketones. J. Am. Chem. Soc. 1997, 119, 6496–6511.
(4) For a method based on the use of a traceless chiral auxiliary, see: Stivala, C. E.; Zambon, A. Highly Enantioselective Direct Alkylation of Arylaldehydes with Chiral Lithium Amides as Traceless Auxiliaries. J. Am. Chem. Soc. 2011, 133, 11936–11939.
(5) For a recent review, see: Wright, T. B.; Evans, P. A. Catalytic Enantioselective Alkylation of Prochiral Enolates. Chem. Rev. 2021, 121, 9196–9242.
(6) (a) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzzelli, D.; De Vincentis, F.; Cozzi, P. G. Direct Nucleophlic Sβ1-Type Reactions of Alcohols. Eur. J. Org. Chem. 2011, 2011, 647−666. (b) Gualandi, A.; Mengozzi, L.; Cozzi, P. G. Stereoselective Sα1-Type Reaction of Enols and Enolates. Synthesis 2017, 49, 3433−3443.

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c03366

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We acknowledge financial support from the Spanish Ministerio de Ciencia, e Innovación (MCIN)/Agencia Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional (FEDER, UE) (Grant No. PGC2018-094311-B-I00 and Grant No. PID2019-110008GB-I00), the Generalitat de Catalunya (FEDER, UE) (Grant No. PGC2018-094311-B-I00 and Grant No. PGC2018-110008GB-I00), the Generalitat de Catalunya (2017SGR 271), and SGiker (UPV/EHU) for providing human and computational resources. Furthermore, a doctorate studentship to M.P.-P. (FPU, MINU) is acknowledged.

Authors
Marina Pérez-Palau – Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain; orcid.org/0000-0001-9905-3513
Nil Sanosa – Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain;
Rosa López – Departamento de Química Orgánica I, Universidad del País Vasco, 20080 San Sebastián, Spain
Mercè Font-Bardia – Unitat de Difracció de RX. CCiTUB, Universitat de Barcelona, 08028 Barcelona, Catalunya, Spain

https://doi.org/10.1021/acs.orglett.1c03366
Org. Lett. 2021, 23, 8852−8856

8855
Carbocationic Salts.

Trifluoromethylation of

J. Org. Chem. 2020, 1753.

(b) Niu, P.; Li, J.; Zhang, Y.; Huo, C. One-Electron Reduction Synthesis 2017, 49, 5263–5284.

(16) Murarka, S. N. (Acyloxy)phtalimides as Redox-Active Esters in Cross-Coupling Reactions. Adv. Synth. Catal. 2018, 360, 1735–1753.

(19) For the synthesis of the peresters, see the Supporting Information.

(20) The calculations were run with the Gaussian 16 set of programs and the M06 functional, including an implicit solvation model (IEF-PCM, ClCH2CH2Cl). For more details, see the Supporting Information.

(21) (a) Clarina, J.; Garcia-Granda, S.; Gotor, V.; Gutierrez-Fernandez, A.; Luna, A.; Moreno-Mañas, M.; Vallinbera, A. Preparation of \(R \)-(1-adamantyl)glycine and \(R \)-2-(1-adamantyl)-2-aminoethanol: a combination of cobalt-mediated \(\beta \)-ketoester alkylation and enzyme-based aminalolcohol resolution. Tetrahedron: Asymmetry 2000, 11, 4549–4557. (b) Clarina, J.; Comelles, J.; Moreno-Mañas, M.; Vallinbera, A. 2,2-Isopropylidenes[4R-(1-adamantyl)-2-oxazoline] (Adam-Box). A new enantiopure C2-symmetrical ligand: enantioselective cyclopropanations, Diels–Alder reactions, and allylic oxidations. Tetrahedron: Asymmetry 2002, 13, 1551–1554.