Clinical and Pathological Characteristics of 755 Patients with Skin Cancers in Hainan, China: A 12-Year Retrospective Study

Lengbing Sun
Jiangxi University of Traditional Chinese Medicine

Jiejie Lu
the Fifth People's Hospital of Hainan Province

Ming Zhang
the Fifth People's Hospital of Hainan Province

Xianxu Yang
the Fifth People's Hospital of Hainan Province

Weiwei Wu (vigorwu@126.com)
the Fifth People's Hospital of Hainan Province

Qiao Liu
Jiangxi University of Traditional Chinese Medicine

Keywords: skin cancers, retrospective study, Hainan, China

DOI: https://doi.org/10.21203/rs.3.rs-638422/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Skin cancers are the most frequent types of all malignant tumours with increasing incidence rates worldwide.

Objectives: This study aimed to analyze the clinical–pathological characteristics of skin cancers in patients visited at the Department of Dermatology of the Fifth People's Hospital of Hainan Province from China during the last 12 years.

Methods: The hospital database was searched for patients with skin cancers over a period of 12 years (from January 1, 2009 to December 31, 2020), and a retrospective review was conducted and a descriptive data analysis was undertaken on patients.

Results: A total of 755 specimens of skin cancers were confirmed during this period, of which 696 (92.19%) were common skin cancers and of which 59 (7.81%) were rare skin cancers. The incidence is on the rise year by year, with a marked decline in 2020. The common skin cancers were basal cell carcinoma (341, 48.99%), followed by squamous cell carcinoma (148, 21.26%) and Bowen's disease (109, 15.66%). The range of age at the time of skin cancers was from 40 to 79 years (73.01%). Males and females showed an almost similar incidence. The duration ranged from 7 days to 70 years, mainly occurred in 2 years (53.30%). The head, face and neck region were the most frequent location (452, 59.87%), followed by extremity (107, 14.17%) and trunk (87, 11.52%). The accordance rates of clinical-pathological diagnosis in common skin cancers was about 43.14%, while that of rare skin cancers such as skin appendages was only 27.59%.

Conclusions: Overall, head, face and neck region was the most common site for sun-related skin cancers in Hainan, China. BCC was the most common skin cancer followed by SCC and Bowen's disease. Moreover, skin cancers has a low coincidence rate of clinical-pathological diagnosis. Consequently, any suspicious lesion, for which the clinical diagnosis is uncertain, should be biopsied for histopathological examination to rule out malignancy.

Introduction

Skin cancers showed increasing incidence rates around the world[1]. The most common types of skin cancers, comprising of skin melanoma and non-melanoma skin cancers (NMSCs), account for more than one-third of all cancers[2]. NMSCs are the most frequent human malignancies, and the main types of that, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), represent about 99% of all NMSCs[2,3]. Other NMSCs refer to Merkel cell carcinoma, dermatofibrosarcoma protuberans, Kaposi sarcoma and other rare tumours[4]. The incidence of malignant melanoma (MM) has shown a continuous increase, during the past few decades, which accounts for 80% of skin cancer deaths[5].

The majority of skin cancers published in the literature are white-skinned populations with few references reported to date in the literature on Asians, especially in China. Hainan, as the southernmost province in China, has a tropical monsoon climate and high ultraviolet (UV) intensity, so the occurrence of skin cancers may be special. However, similar comparative studies are lacking. Therefore, the first population-based data of skin cancers in patients visited at the Department of Dermatology of the Fifth People's Hospital of Hainan Province are presented in this paper and compared with other regions for China. Further results on clinical–pathological characteristics are discussed in the context of global data.

Materials And Methods

This study was approved by the ethics committee of the Fifth People's Hospital of Hainan Province. All methods were performed in accordance with the relevant guidelines and regulations. A retrospective and descriptive analysis of the patients with a definite histopathologic diagnosis of skin cancers, based on the histopathologic analysis of all excision specimens and incisional biopsy specimens performed between 1 January 2009 and 31 December 2020 at the Department of Dermatology, the Fifth People's Hospital of Hainan Province, Hainan, China. All patients provided written informed consent. The clinical and pathological data were complete.

Biopsies showing recurrence or persistence of previously diagnosed neoplasms were excluded. The suspected diagnosis and incomplete clinical-pathological data were not collected.

Skin cancers in the present study were considered, as follows: BCC, SCC, Bowen's disease, Paget's Disease, MM, Kaposi's sarcoma (KS), cutaneous lymphomas, cutaneous metastatic carcinoma, dermatofibrosarcoma, angiosarcoma, mycosis fungoides, verrucous carcinoma, hematological malignancies, eccrine carcinoma, langerhans cell histiocytosis, sebaceous carcinomas, leiomyosarcoma, breast ductal carcinoma.

The data were compiled and analyzed for various data such as gender, age at diagnosis, onset age, duration, site, clinical and histopathologic diagnosis.

Results

A total of 755 specimens of skin cancers were confirmed during this period, of which 696 were common skin cancers (Table 1) and of which 59 were rare skin cancers (Table 2). 755 cases of skin cancers constituted 5.15% of 14664 cases of excision specimens and incisional biopsy specimens in the same period. The incidence is on the rise year by year, with a marked decline in 2020, as shown in Fig. 1.
Table 1
The clinical characteristics of 696 patients with common skin cancers

Common skin cancers	No. (%)	Male	Female	Onset age (±s, years)	Age at diagnosis (±s, years)	Duration (±s, months)	Location	Extremity	Vulva	Perianal region	
BCC	341(48.99)	152(44.57)	189(55.43)	59.32 ± 17.78	65.16 ± 14.57	73.12 ± 115.95	Head, face and neck	311(91.20)	12 (3.52)	11(3.23)	3(0.87)
SCC	148(21.26)	75(50.68)	73(49.32)	67.67 ± 15.25	70.57 ± 14.93	36.26 ± 63.94	Trunk	90(60.81)	18(12.16)	25(16.90)	9(6.08)
Bowen's disease	109(15.66)	57(52.29)	52(47.71)	60.09 ± 16.95	64.91 ± 15.21	67.54 ± 94.50	Extremity	38(34.86)	24(22.02)	11(10.09)	26(23.85)
Paget's disease	47(6.75)	32(68.09)	15(31.91)	64.28 ± 13.77	67.66 ± 15.21	67.54 ± 94.50	Vulva	90(60.81)	18(12.16)	25(16.90)	9(6.08)
MM	28(4.02)	14(50.00)	14(50.00)	58.70 ± 16.12	60.50 ± 15.53	36.00 ± 39.80	Perianal region	1(3.57)	1(3.57)	17(60.71)	1(3.57)
KS	23(3.30)	20(86.96)	3(13.04)	63.20 ± 17.39	65.17 ± 14.74	44.25 ± 90.85	Mucosa	0	2(4.35)	20(86.96)	1(4.35)
Total	696(100)	349(50.14)	346(49.71)	61.65 ± 17.16	66.26 ± 14.88	60.06 ± 98.20	-	441(63.36)	68(9.91)	84(12.07)	74(10.63)

There were 383 males (50.73%) and 372 females (49.27%) with skin cancers, no significant difference in gender was observed (Table 3). The age ranged from 1 month to 96 years, of which most of them were between 40 and 79 years, with an incidence of 73.01% (Table 4, Fig. 2). The duration ranged from 7 days to 70 years, mainly occurred in 2 years (Table 5, Fig. 3).

Table 2
The clinical characteristics of 59 patients with rare skin cancers

Rare skin cancers	No. (%)	Male	Female	Onset age (±s, years)	Age at diagnosis (±s, years)	Duration (±s, months)	Location	Extremity	Vulva	Perianal region	Mucosa		
Cutaneous lymphomas	14	6	8	11–91	12–91	0.5–60	Head, face and neck	1	4	9	0	0	
Cutaneous metastatic carcinoma	10	4	6	50–89	50–89	2–24	Trunk	0	5	4	1	0	0
Dermatofibrosarcoma	8	5	3	10–63	10–73	0.5–180	Extremity	0	4	3	0	0	
Angiosarcoma	7	6	1	56–89	56–90	2–12	Vulva	6	1	0	0	0	
Mycosis fungoides	5	3	2	35–70	51–70	1–240	Perianal region	0	2	3	0	0	
Verrucous carcinoma	4	3	1	35–70	35–71	4–96	Mucosa	0	0	2	1	0	
Hematological malignancies	3	2	1	14–82	14–83	4–120	-	2	0	1	0	0	
Eccrine carcinoma	3	2	1	41–58	47–61	6–96	-	2	0	1	0	0	
Langerhans cell histiocytosis	2	1	1	0.08–0.42	0.33–0.66	3	-	0	2	0	0	0	
Sebaceous carcinomas	1	0	1	41	41	6	-	0	0	0	0	0	
Leiomyosarcoma	1	0	1	48	50	24	-	0	0	0	1	0	
Breast ductal carcinoma	1	1	0	36	38	24	-	0	1	0	0	0	
Total	59	33	26	-	-	-	-	11	19	23	3	0	0
Table 3
Distribution of gender and location of skin cancers

Skin cancers	No. (%)	Male	Female	Location
				Head, face and neck
BCC	341	152	189	311
SCC	148	75	73	90
Bowen's disease	109	57	52	38
Paget's disease	47	32	15	1
MM	28	14	14	1
KS	23	20	3	0
Rare skin cancers	59	33	26	11
	755(100)	383(50.73)	372(49.27)	452(59.87)
	387(51.21)	265(52.63)	195(49.37)	365(53.00)
	11(1.46)	12(2.04)	4(1.08)	1 (0.22)
	3(0.39)	2(0.34)	1(0.26)	0 (0.00)

Table 4
Age-wise distribution of skin cancers

Skin cancers	Onset age(years)	0 ≤19	20 ≤39	40 ≤59	60 ≤79	80 ≤99
BCC		10	33	110	136	38
SCC		1	7	32	62	37
Bowen's disease		2	9	38	41	11
Paget's disease		0	2	13	25	6
MM		0	3	10	7	3
KS		1	0	5	10	4
Rare skin cancers		6	11	20	13	9
Total		20(2.8)	65(9.09)	228(31.89)	294(41.12)	108(15.1)

Table 5
Analysis of the duration of skin cancers

Skin cancers	Duration(months)	0–24	25–48	49–72	73–96	96–144
BCC		142	64	31	9	78
SCC		98	15	11	1	14
Bowen's disease		39	22	14	5	22
Paget's disease		24	9	6	1	6
MM		13	6	2	0	3
KS		17	0	0	0	3
Rare skin cancers		47	0	4	0	7
Total		380(53.30)	116(16.27)	68(9.54)	16(2.24)	133(18.65)

The most frequent location was head, face and neck region (452, 59.87%), followed by trunk (87, 11.52%), extremity (107, 14.17%), vulva (77, 10.20%), perianal region (4, 0.53%), mucosa (1, 0.13%), acral region (20, 2.65%), not indicated region (7, 0.93%). Overall, head, face and neck region was the most
common site for BCC (91.20%), SCC (60.81%) and Bowen's disease (34.86%); Paget's Disease was most frequently found on vulva and extremity, while Kaposi's sarcoma was most frequently found on the extremity (86.96%), as shown in Table 3.

755 cases of skin cancers has a low coincidence rate of clinical-pathological diagnosis, as shown in Table 6. The coincidence rate was defined as the percent distribution of cases diagnosed as a certain malignant skin tumors clinically and pathologically in the corresponding skin cancers pathologically. The coincidence of clinical-pathological diagnosis ranged from 25.00–63.83%, which indicated a difficulty in clinical diagnosis.

Skin cancers	No.	The coincidence of clinical-pathological diagnosis(%)	Misdiagnosed diseases (cases)
BCC	341	53.37	pigmented nevi (47), MM (24), SCC (17), seborheic keratosis (10), Bowen's disease (9), skin ulcer (5), keratoacanthoma (5), cutaneous granuloma (5), deep mycosis (3), other diseases (18)
SCC	148	25.00	SCC (36), BCC (32), seborheic keratosis (12), keratoacanthoma (10), cutaneous granuloma (6), verruca vulgaris (5), Bowen's disease (5), deep mycosis (4), skin ulcer (4), condylomata acuminata (3), solar keratosis (3), cutaneous horn (3), eczema (3), epidermal cyst (3), other diseases (22)
Bowen's disease	109	27.52	BCC (17), seborheic keratosis (13), eczema (9), SCC (5), condylomata acuminata (3), Paget's disease (3), other diseases (22)
Paget's disease	47	63.83	eczema (10), SCC (3), other diseases (3)
MM	28	50.00	BCC (3), SCC (2), pigmented nevi (2), cutaneous granuloma (2), lichen planus (1), melanoma (1), onychomycosis (1), deep mycosis (1), keratoacanthoma (1)
KS	23	39.13	MM (2), eczema (2), pigmented nevi (1), skin tuberculosis (1), hemangioma (1), deep mycosis (1), keratoacanthoma (1), dermatofibroma (1)
Rare skin cancers	59	27.59	BCC (4), SCC (4), sebaceous cyst (3), other diseases (35)

Discussion

Eighteen types of skin cancers were observed in the present study. These were BCC (48.99%), SCC (21.26%), Bowen's disease (15.66%), Paget's disease (6.75%), MM (4.02%), KS (3.30%) in common skin cancers and twelve types were in rare skin cancers.

The percentage of common skin cancers was compared with similar reports from other areas of China. The top three skin cancers of different areas were similar, including Tianjin (North of China; BCC, 50.97%, Bowen's disease, 16.01% and SCC, 11.06%)[9], Chongqing (Southwest of China; BCC, 34.06%, SCC, 17.63% and Bowen's disease, 10.20%)[10], Xinjiang (Northwest of China; BCC, 47.00%, SCC, 26.22% and KS, 15.17%)[10], Qinghai (Northwest of China; BCC, 47.00%, SCC, 26.22% and KS, 15.17%)[10]. The skin cancers in all these cities were mainly BCC, SCC and Bowen's disease in China. This can be attributed to prolonged exposure to sun rays, environment, altitude and so on.[9]

In both sexes, males and females showed an almost similar incidence[8–10]. In our study, BCC was slightly more common in females; Paget's disease and KS were more common in males; SCC, MM and Bowen's disease showed an almost similar incidence in gender. Interestingly, Katalinic et al.[2] found a female predominance in melanoma, while some clear gender differences were not observed in nonmelanoma similar to the findings in studies by Katalinic et al. and Andrade et al.[2, 11].

Although skin cancers may present at a very young age[12, 13], it is essentially senile disease in elderly people[13], which is consistent with the results of our study. In our study, the most common age group ranged between 40 and 79 years. Furthermore, the duration mainly occurred in 2 years, which suggested that most of these tumors progress rapidly. Therefore, we should pay attention to the occurrence of skin cancers in young and middle-aged patients.

The most common site of skin cancers were located on the head, face and neck region (59.87%), of which BCC was 91.20% and SCC was 60.81%. It is suggested that UV plays an important role in the pathogenesis of BCC and SCC. This may be related to prolonged exposure to sun rays and a region of high ultraviolet exposure.

Our results supported associations between UV exposure and skin cancer risk, which was in accordance with prior studies of similar latitudes such as Norwegian[14]. Furthermore, Bulliard et al. [15] and Cress et al. [16] have also demonstrated that the most common site of skin cancers developed on appear to be somewhat related to the average amount of UV exposure to those sites, namely, the head and neck. Skin cancer rates are low in rarely UV-exposed areas such as the buttocks in both sexes. While melanoma tends to be found more frequently in the extremity where more average UV exposure may occur[17], as with our case. In addition, Paget's disease is more common in genital parts, and it is easy to be misdiagnosed as eczema in male.
Our findings has indicated a higher data in incidence rates of misdiagnosis clinically. The coincidence rate of clinical and pathological diagnosis of BCC is only 53.37%, followed by SCC 25.00%, Bowen's disease 27.52%, Paget's disease 63.83%, MM 50.00%, KS 39.13%, and other rare skin cancers 27.59%. Hence, it is of great significance to master the characteristics of skin cancers and the diagnosis should be confirmed by pathological diagnosis.

In conclusion, the skin cancers were mainly BCC, SCC and Bowen's disease, with head, face and neck region being the most common site involved in Hainan, China. Moreover, skin cancers has a low coincidence rate of clinical-pathological diagnosis. Consequently, any suspicious lesion, for which the clinical diagnosis is uncertain, should be biopsied for histopathological examination to rule out malignancy.

References

[1] U Leiter, Keim U, Garbe C. Epidemiology of Skin Cancer: Update 2019. [J]. Advances in experimental medicine and biology, 2020, 1268123-139.

[2] A Katalinic, Kunze U, Schäfer T. Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). [J]. The British journal of dermatology, 2003, 149(6): 1200-1206.

[3] M Ciążyńska, Kamińska-Winciorek G, Lange D, et al. The incidence and clinical analysis of non-melanoma skin cancer. [J]. Scientific reports, 2021, 11(1): 4337.

[4] W-D Losquadro. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer. [J]. Facial plastic surgery clinics of North America, 2017, 25(3): 283-289.

[5] J Ortiz-Álvarez, Durán-Romero A-J, Hernández-Rodríguez J-C, et al. Cutaneous malignant melanoma mortality in Andalusia from 1979 to 2018. Toward new perspectives? [J]. Dermatologic therapy, 2021, 34(1): e14715.

[6] Guo HaixiaLiu GangLiu Fenget al. Retrospective Analysis of 1 293 Patients with Skin Cancer[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2019, 18(02): 107-110.

[7] Xiong YaYan HengLiu Yanet al. Retrospective analysis of 1 333 cases with skin malignant tumor[J]. Journal of Practical Dermatology, 2013, 6(02): 77-79.

[8] WAN XuefengZhang LijuanFan Junwei, et al. Retrospective Analysis of 574 Patients with Skin Cancer[J]. The Chinese Journal of Dermatovenereology, 2017, 31(09): 972-974.

[9] Li YuxiangFu QiangZhang Xiuchunet al. Clinical Analysis of 122 Cases With Skin Malignant Tumor in Qinghai[J]. The Chinese Journal of Dermatovenereology, 2016, 30(03): 254-256.

[10] Huang Yuanshen,Li Hang,Tu Ping, et al. Skin cancer and precancerous skin lesions clinical analysis of 632 cases[J]. Chinese Journal of Dermatology, 2010, (07): 452-454.

[11] P Andrade, Brites M-M, Vieira R, et al. Epidemiology of basal cell carcinomas and squamous cell carcinomas in a Department of Dermatology: a 5 year review[J]. Anais brasileiros de dermatologia, 2012, 87(2): 212-219.

[12] CAM Eggen, Durgaram VVL, van Doorn R, et al. Incidence and relative survival of melanoma in children and adolescents in the Netherlands, 1989-2013.[J]. Journal of the European Academy of Dermatology and Venereology : JEADV, 2018, 32(6): 956-961.

[13] R Rajbhar, Anvikar A, Sulhyan K. Clinicopathological correlation of malignant skin tumors: A retrospective study of 5 years.[J]. International journal of health sciences, 2020, 14(3): 18-25.

[14] F-C Liu, Grimsrud T-K, Veierød M-B, et al. Ultraviolet radiation and risk of cutaneous melanoma and squamous cell carcinoma in males and females in the Norwegian Offshore Petroleum Workers cohort.[J]. American journal of industrial medicine, 2021.

[15] J-L Bulliard. Site-specific risk of cutaneous malignant melanoma and pattern of sun exposure in New Zealand.[J]. International journal of cancer, 2000, 85(5): 627-632.

[16] R-D Cress, Holly E-A, Ahn D-K, et al. Cutaneous melanoma in women: anatomic distribution in relation to sun exposure and phenotype.[J]. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 1995, 4(8): 831-836.

[17] A-V Parisi, Kimlin M-G, Lester R, et al. Lower body anatomical distribution of solar ultraviolet radiation on the human form in standing and sitting postures. [J]. Journal of photochemistry and photobiology. B, Biology, 2003, 69(1): 1-6.

Figures
Figure 1

Trend of skin cancers between 2009 and 2020

Figure 2

Age-wise distribution of skin cancers
Figure 3

Analysis of the duration of skin cancers