Remote sensing of american maple in alluvial forests: a case study in an island complex of the Loire valley (France)

Hilaire Martin (1), Jean-Matthieu Monnet (2), Marie De Boisvilliers (3), Richard Chevalier (4), Marc Villar (4)

Due to their particular topographic position between land and river, riparian forests are ecosystems rich in biodiversity. In France, along the Middle Loire (from Nevers to Angers), Black poplar (Populus nigra L.) forests are often in mixtures with the American maple (Acer negundo L.), introduced into the country in the 18th century. We tested the detectability of American maple by LiDAR and very high-resolution multispectral imagery on an island complex. We found that coupling the point cloud height standard deviation with a vegetation index in the red, green and blue spectrums discriminated American maple with a success rate of more than 90%.

Keywords: Acer negundo, American Maple, Box Elder, Populus nigra, Black Poplar, Airborne Laser Scanning, Remote Sensing, Exogenous Woody Species, Loire River

Introduction

Riparian forests are a key component of river ecosystems due to their position at the interface between water and land (Naiman et al. 2005, Curnell 2014). In the ana-branch river landscape of the Middle Loire in France (around 400 km between Nevers and Angers), alluvial forests represent a significant part of the vegetation biomass (Grivel & Gautier 2012). Because of their vulnerability to anthropomorphic impact (Rodrigues et al. 2006), riparian forests are considered to be habitats of Special Community Interest in the Habitats Directive 92/43/CEE (EUNIS: G1.11 – Beslin & Gazeau 2016). In these habitats, groundwater re-distribution due to channel digging (Dunford et al. 2009), water pollution and the introduc-tion of exogenous woody species have perturbed the natural colonization by Salica-ceae of river banks and islands (Asner et al. 2008). For example, the American maple (Acer negundo L., AC) was introduced in France in 1732 (Dumas 2019) and is now commonly found in native Black poplar (Populus nigra L., PN) stands (Berg et al. 2017). In addition, the reintroduction of the European beaver in the 1970’s indirectly fa-vored colonization by the introduced spe-cies since beaver consumes the Black poplar but not the American maple.

In view of the above-mentioned ele-ments, regular monitoring of riparian for-ests is important for their conservation and management, all the more so in a context of global warming, as these forests vary with the water level from one year to an-other and present multiple aspects. Thus, mapping these alluvial forests and updat-ing the maps on a near-annual basis are the most appropriate tools to ensure quality monitoring. Currently, cartography has made tremendous progress thanks to Geo-graphic Information Systems (GIS) soft-ware and satellite or aerial imagery (Dufour et al. 2013, Huylenbroeck et al. 2020). In France, the National Forest Inventory carries out a permanent inventory of forest re-sources and provides a great deal of data, including interactive maps. Data are col-lected at both the stand and tree levels. At the stand level, the forest cover type is in-terpreted from infrared aerial images at a 50-cm resolution. The final product is a vec-tor layer (BD Forêt V2) with polygons of 0.5 ha minimum attributed to 32 categories of species composition. However, neither AC nor PN has a category of its own, so this data cannot be used to monitor their spatio-tial dynamics. At the tree level, many pa-rameters are recorded on the NFI sample plots in different scientific domains such as dendrometry, botany and pedology (Hervé et al. 2014). Tree data include diameter, species and position, and height for a sub sample. However, precise plot locations are not publicly available, which prevents cross-analysis with external geographical data. Furthermore, plot density is 1 plot/2km² with surveys only every 5 years, thus making the data unsuitable for statistical analysis of small areas.

Aerial imagery provides only two-dimen-sional images that do not enable direct measurement of the vertical components of the forest canopy. However, in the be-ginning of the twenty-first century, techno-logical advances in drones and active re mote sensing, in particular through the de velopment of new sensors, opened promis-ing perspectives for accessing forest struc-tures (Campbell et al. 2017). For instance, UAVs (Unmanned Aerial Vehicles) with Light Detection and Ranging (LiDAR) pro vide a three-dimensional geo-referenced point cloud corresponding to the surface objects that intercept the laser pulses from a scanner mounted on an aircraft (Bal enovic et al. 2019). Though the first uses of Li- DAR were mainly devoted to digital terrain models (Wehr & Lohr 1999), numerous ap-plications in forestry have since been inves-tigated.

An overview of the bibliography reveals that there are two main approaches to tree crown delineation from LiDAR data. The
first one aims to model tree shape directly in the LiDAR cloud, but this process is quite complex (Monnet et al. 2010, Zhen et al. 2016). The second approach involves reducing the LiDAR cloud from 3D to 2D. This simplification is interesting because rasters have a longer development history than other approaches (Monnet et al. 2010, Zhen et al. 2016). The 3D-to-2D approach relies on the detection of treetops in the canopy height model (CHM). Then, the crowns are delineated with the watershed algorithm, which reverses the image and considers the crown envelope as a basin (Mei & Durrieu 2004, Lindberg & Holmgren 2017).

To ensure proper delineation of the trees, the algorithm’s parameters must be carefully chosen in order to correspond to tree allometries, which are often species- and structure-specific. Applying watershed theory to the forest requires some intrinsic parameters for tree architecture, such as the distance to the nearest treetop, crown size, etc.

Our main goal was to test the ability of the various parameters in the tree segmentation function of the “lidaRtRee” package (Monnet 2018) running on free R software to predict American maple stands in Black poplar island forests. Another objective of this technical paper is to assess the ability of combined LiDAR data and multispectral data acquired by unmanned aerial vehicles (UAVs) to distinguish American maple from Black poplar at the tree level. The test site was located in a French National Nature Reserve along the Loire River. We focused on the use of open-source software tools with visual interpretation for training and validation steps to ensure that the method could be applied to larger areas.

Material and methods

Study area

The research was conducted in central France in the Loiret county, on the Mareau-aux-Prés islands in the Loire River (within the boundaries of the Saint-Mesmin National Nature Reserve) near the village of Mareau-aux-Prés (Fig. 1), approximately 10 km downstream from the city of Orléans (47° 51' 51.88" N, 01° 46' 52.84" E). The total area of the experiment was about 10 ha and elevation ranged from 84 to 89 m a.s.l. The mosaic of four islands (Fig. 2) is mainly dominated by species from the Salicaceae family – adult black poplar and willow shrubs (Salix spp.) – except for the central island (C) where, in September 2012, the vegetation was uprooted and the island was leveled and lowered in order to maintain the flow capacity of the Loire river and to prevent floods. A new sedimentary bar appeared in spring 2013 and was colonized by Black poplar and willow seedlings; this island was therefore surveyed with the three other islands.

Image and LiDAR acquisition

Because terns were nesting on the banks, we were allowed to fly over the islands only after August 15. The UAV flights were carried out on 20 and 21 August 2017 by “L’Avion Jaune”, a French aerial mapping operator using an octorotor FOX-C8 Onyxstar®. The level of the Loire River was one meter above zero, corresponding to summer low water. Eight successive flights occurred; three with a LiDAR sensor, then five others with a camera. LiDAR data were acquired by a YellowScan Surveyor® (YellowScan, Montferrier-sur-Lez, France), which included an onboard computer controlling three main components: a Velodyne laser scanner (VLP16), a Global Navigation Satellite System (GNSS) and an Inertial Navigation System (INS) built by Applanix (APX15). The flight height for the LiDAR was 45 m with a line spacing of 45 m and a sidelap of 60%. The average point density per m² was 215. Multispectral imagery was acquired with a mapping system conceived by L’Avion Jaune. The latter con-
sisted of a pair of identical digital single-lens reflex cameras (Canon® EOS 500D) – one modified to assess the near infrared (NIR) wavelength, while the other unmodified camera assessed the visible wavelengths (RGB). The flight height for multispectral acquisition was 100 m with a side-lap of 60% and a frontlap of 80%.

Workflow
The workflow was divided into three main steps (Fig. 3): (i) data pre-processing; (ii) tree crown delineation; (iii) model classification.

Data pre-processing: LiDAR data
Raw data processing was done by the mapping operator. LiDAR data were processed by successively running them through the PosPAC software by Applanix, a Surveyor QGIS plugin by YellowScan, and TerraMatch and TerraScan modules by TerraSolid. The classified point cloud was delivered in LAS format. The Digital Terrain Model (DTM) and the Canopy Height Model (CHM) were delivered in Geotif format at 0.2-m resolution. In order to compare different tree segmentations, we created a flood and non-flood forest mask within the mosaic of islands (Fig. 4). Since American maple mainly colonizes river banks (Gurnell 2014), we excluded the hardwood forest (oak, elm, ash), located on higher terrain (in the non-flood area on island B), and retained only values between 0 and 2.5 m in height. This general mask was applied to all image treatments, including point clouds, DTM and CHM files, and orthophotos.

Data pre-processing: multispectral imagery and vegetation index
Multispectral imagery processing was performed according to scripts developed by L’Avion Jaune and the Correlator3D software by Simactive. An orthophoto with four spectral bands (blue, green, red and near-infrared) was generated with a Ground Sample Distance (GSD) of 0.02 m. The orthophoto was resampled to 0.2 m for consistency with the CHM. Then four simple vegetation indices, excluding the infrared wavelength, were computed: (i) Red / (Green + Blue); (ii) Green / (Red + Blue); (iii) Blue / (Green + Red). We also computed the (iv) Normalized Difference Vegetation Index (NDVI – Rouse et al. 1973).

Tree crown delineation
This step is important because it determines the location and extent of the crowns. Subsequently, the data extracted inside the delineated crowns are used to select the discrimination variables in the classification step. Tree segmentation was performed with the “treeSegmentation” function from the “lidaRtRee” package (Monnet 2018) of the R software (R Development Core Team 2017). Delineation was based on a 3-phase approach, with each phase requiring several values for parametrization.

First, we applied filters to remove noise from the CHM file. A “salt-and-pepper” noise generally appears when there are CHM pixels with no corresponding laser points (due to the shading effect of trees, for example), or when there is a low number of pixels inside the canopy. The low and zero values were removed by applying...
a closing filter on a 3-pixel-wide neighborhood, which is the default parameter. We next applied a Gaussian filter to smooth out small local variations; this prevents multiple branches from being detected as separate apices (Monnet 2011). Smoothing intensity is driven by the sigma value of the Gaussian filter, which must be adapted to

### Table 1 - Parameters of the “treeSegmentation” function (*“lidaRtRee” package*). (*:*)
| Name          | Function                                                                 |
|---------------|--------------------------------------------------------------------------|
| nFilter, nSize| Prevents “salt and pepper” where no laser points are recorded. We used the default option “Closing” and 3 for size. |
| sigma *       | Prevents branches in a crown from being considered as trees. We tested from 0.1 to 0.9 |
| dmin/dprop    | Treetop minimum distance to the next higher pixel and distance as a proportion of height to the next higher pixel. We set these two values at “0” due to crown overlap |
| hmin          | Minimum treetop height: 3 m due to tall nettles |
| crownProp *   | Minimum height of tree crown as a proportion of treetop height. We tested from 0.1 to 0.9 |
| crownMinH     | Minimum crown height. We set this value at 3 m. |

In order to classify the two tree species, variables were computed for each delineated crown based on the CHM, the point cloud and the orthophoto intersecting the crown segments. Tab. 2 presents the variables tested sorted by category: tree metrics (T), LiDAR metrics (L) and orthophoto indices (O). We tested different combinations: (i) T + L + O; (ii) T + L; (iii) L + O; (iv) T + O; (v) T; (vi) L; (vii) O. This made seven possible combinations mixed with

### Table 2 - Metrics computed.
| Metrics group | Metrics | Description                                                      |
|---------------|---------|------------------------------------------------------------------|
| Tree metrics (T) | s       | Crown surface                                                      |
|                | v       | Crown volume                                                       |
|                | chm.sd  | Height standard deviation                                          |
|                | zskew   | Skewness of height distribution                                    |
|                | zkurt   | Kurtosis of height distribution                                    |
|                | zentropy| Normalized Shannon diversity index of height distribution          |
|                | zpcum1  | Cumulative percentage of return in the 1st layer                  |
|                | zpcum2  | Cumulative percentage of return in the 2nd layer                  |
|                | zpcum3  | Cumulative percentage of return in the 3rd layer                  |
|                | zpcum4  | Cumulative percentage of return in the 4th layer                  |
|                | zpcum5  | Cumulative percentage of return in the 5th layer                  |
|                | zpcum6  | Cumulative percentage of return in the 6th layer                  |
|                | zpcum7  | Cumulative percentage of return in the 7th layer                  |
|                | zpcum8  | Cumulative percentage of return in the 8th layer                  |
|                | zpcum9  | Cumulative percentage of return in the 9th layer                  |
|                | isd     | Standard deviation of intensity                                    |
|                | iskew   | Skewness of intensity distribution                                 |
|                | ikurt   | Kurtosis of intensity distribution                                 |
|                | ipcumzq1| Percentage of intensity returned below the 10th percentile of height |
|                | ipcumzq2| Percentage of intensity returned below the 20th percentile of height |
|                | ipcumzq3| Percentage of intensity returned below the 30th percentile of height |
|                | ipcumzq4| Percentage of intensity returned below the 40th percentile of height |
|                | ipcumzq5| Percentage of intensity returned below the 50th percentile of height |
|                | ipcumzq6| Percentage of intensity returned below the 60th percentile of height |
|                | ipcumzq7| Percentage of intensity returned below the 70th percentile of height |
|                | ipcumzq8| Percentage of intensity returned below the 80th percentile of height |
|                | m.r.g.b | Median (R/(G+B))                                                   |
|                | m.g.r.b | Median (B/(R+G))                                                   |
|                | m.b.rg  | Median (B/(R+G))                                                   |
|                | m.ndvi  | Median (NDVI)                                                      |
|                | sd.r.g  | Standard deviation of (R/(G+B))                                    |
|                | sd.g.r  | Standard deviation of (B/(R+G))                                    |
|                | sd.b.r  | Standard deviation of (B/(R+G))                                    |
|                | sd.ndvi | Standard deviation of (NDVI)                                       |
Fig. 5 - Overall accuracy (%) on the y-axis) of the metrics groups tested (on the x-axis) according to crown proportion (values in gray horizontal) and Gaussian filter (values in gray vertical). Metrics groups tested were: Tree metrics (T), LiDAR metrics (L) and Orthophotos indices (O). Combinations tested were: T+L+O, T+L, L+O, T+O, T, L, O. White rectangles correspond to the number of trees used for training and validation. Green dots correspond to an accuracy > 94%.

possibilities for the Gaussian filter and nine possibilities for the crown proportion (567 processes).

Direct height variables such as CHM, DTM and point cloud minimum, mean or maximum values were a priori discarded from the analysis, based on our knowledge of fluvial dynamics. Indeed, local island topography changes annually due to sand accretion and erosion. Therefore, keeping a fixed height topography value set on the Mareau-aux-Prés complex would have falsified our extrapolation for the Middle-Loire stretch of the river. Secondly, due to the propagation strategy of the American maple, whose seeds arrive by cohort on exposed river banks (Straigyte et al. 2015), a classification based on height values might have merely reflected the age difference between PN and AC, particularly at our study location in the National Reserve. This would also have led to erroneous extrapolated results for other areas along the Loire River.

Classification model: decision tree

In order to select discriminating variables, we used Decision Tree in the R party package (Hothorn et al. 2006). To confirm our results, we ran each decision tree 250 times.

Results

The entire classification process was run on the riparian forests of the Mareau-aux-Prés islands (Islands: A, B and D – Fig. 4), excluding the hardwood forests. We tested 567 processes and report their overall accuracy and standard deviation in Tab. S1 (Supplementary material).

The accuracy of our classification varied according to metrics group. In Fig. 5, we only present the results from Gaussian filter 0.4 because below this threshold, none of the models succeeded (see Tab. S1 in Supplementary material). Best overall accuracy is represented by green dots for a value greater than 94%. These results concerned all of the metrics groups since the standard deviation was the most robust discriminant variable to distinguish AC from PN. Indeed, even below a height value of just one meter, we consistently detected AC. Above this threshold, a vege-

| Gaussian filter | crownProp | T/V tree number | TLO | TO | T |
|-----------------|-----------|-----------------|-----|----|---|
| 0.7             | 0.7       | 255             | -   | 94.3 ± 2.7 | - |
| 0.6             | 0.7       | 257             | -   | 94.1 ± 2.5 | - |
| 0.5             | 0.8       | 219             | 94.8 ± 2.5 | 94.8 ± 2.4 | 94.7 ± 2.3 |
tation index Red / (Green + Blue) standard deviation below 0.009 discriminated PN. However, above 0.009 there was an uncertainty of more than 20% for the prediction of PN.

Fig. 7 presents a prediction map showing that American maple is mainly confined to the outer edges of the islands.

Discussion

Our results show that, within the National Nature Reserve of Mareau-aux-Prés, point cloud height standard deviation and the standard vegetation index Red / (Green + Blue) predict the presence of American maple (Acer negundo L.) in more than 90% of the riparian Black poplar (Populus nigra L.) forests.

The retained variables correspond respectively to the groups of tree metrics (point cloud height standard deviation) and the orthophoto indices (standard vegetation index).

In the context of introduced species in alluvial forest contexts, our results reinforce the use of LiDAR coupled with photogrammetry (Manfreda et al. 2018, Huylenbroeck et al. 2020), although comparison with previous research also displays differences. In a Mediterranean riparian forest, Dunford et al. (2009) distinguished five classes including four tree species with an overall accuracy of 91% from a single RGB image of 13 cm resolution obtained from UAV. Their reference data consisted of homogeneous terrain units identified on the field with an inclusive sampling and then digitized on the imagery. The overall accuracy dropped to 71% at the mosaic scale, partly because of radiometry differences in images. The greater accuracy achieved in our case might be explained by the height information added by LiDAR data, as well as the lower number of classes. The radiometry issue might be a problem when analysing larger areas which would require more images and acquisition time with a UAV. With bi-spectral LiDAR data, Laslier et al. (2019) classified eight species of a riparian forest in Normandy (France) with an overall accuracy of 67%. Their study also highlights the importance of elevation metrics for classification. Intensity-related metrics did not bring much improvement in their classification, suggesting that spectral information of LiDAR might not be as straightforward to use as with imagery. Differences with our results might be explained in part by the fact that they explored a larger gradient of tree species, while we limited ourselves to two species. A wider variety of species can present complex internal canopy structures revealed by LiDAR metrics. When comparing the importance of variables from multispectral and hyperspectral imagery and full-waveform LiDAR for the classification of four tree species in a temperate forest, Heinzel & Koch (2012) found out that the NIR channel had great importance. Height metrics derived from LiDAR were not selected, but there was one LiDAR metric linked with the internal struc-

Fig. 7 - Prediction map. Upper part of the figure: prediction map of the American maple (AC, in orange) and Black poplar (PN, in green). Lower part of the figure: an example on a part of the furthest island from the study: circles represent the data interpreted visually, triangles represent the predicted apices, symbology of colors is identical to that previously described.
Remote sensing of American maple in alluvial forests

study, we could also test other tree crown delineation algorithms such as "Li 2012" and "Dalponte 2016". The Dalponte 2016 algorithm (Dalponte & Coomes 2016) is similar to the one we used in this study since it starts from rather similar parameters and then segments the CHM. On the other hand, Li’s 2012 algorithm (Li et al. 2012) does not use a CHM and works directly on the point cloud instead. Though algorithms based directly on the point cloud seem to take more processing time, they could enable researchers to explore the canopy structure of these Loire-island forests.

Conclusion

American maple (Acer negundo L.) is an introduced species, which competes with the endemic Black poplar (Populus nigra L.). We used an airborne LiDAR scanner and imagery-derived vegetation index data to discriminate American maple from Black poplar with 90% accuracy on a complex of four islands inside the National Nature Reserve of Saint-Mesmin in the Loire River (France), based on a training and validation dataset obtained by photointerpretation. Mapping the American maple is all the more important since beavers (reintroduced in the 1970s) do not consume it, though it consumes Black poplar. We found that tree crown delineation is optimized by the “treeSegmentation” function from the “iidaTree” package (Monnet 2018) running under free R software (R Development Core Team 2017). We tested two important parameters of this function: the Gaussian filter and crown proportion. The first parameter prevents big branches in a crown being considered as trees. The second optimizes the proportion of the crown relative to the total height. We found that the best values for the Gaussian filter and crown proportion were respectively 0.7 (and 0.6) and 0.7. We also found that the best predictors were point cloud height standard deviation and the standard deviation of a simple vegetation index based on RGB wavelengths, Red/Green + Blue).

Acknowledgements

This study is part of the BioMareau project, funded within the framework of the Loire River Interregional Program 2014–2020. Funding institutions are the Centre-Val de Loire Region (no. 2016-00108348), INRA, IRSTEA and the European Union (Europe being engaged in the Loire basin through the EU operational program of the European Regional Development Fund, no. 2016-EXO00604). The BioMareau project has been approved by the CNRS Loire LTER “Zone Atelier Loire” and the regional MIDI (Habitat and Diversity) research network. Michel Chantereau and Damien Hémonay from the National Natural Reserve of Saint-Mesmin are acknowledged for their interest and their support for science at the Mareau-aux-prés Islands.

We also thank Vicki Moore for her relevant editorial remarks.

References

Asner GP, Knapp DE, Kennedy-Bowdoin T, Jones MO, Martin RE, Boardman J, Hughes RF (2008). Remote sensing of native and invasive species in Hawaiian forests. Remote Sensing of Environment 112: 1942–1945. - doi: 10.1016/j.rse.2007.11.016

Balenović I, Alberti G, Marjanović H (2013). Airborne laser scanning - the status and perspectives for the application in the South-East European forestry. South-East European Forestry 4(2): 59-79. - doi: 10.15177/seefor.13-07

Berg C, Drescher A, Essl F (2017). Using relevé-based metrics to explain invasion patterns of alien trees in temperate forests. Taxonexa 37: 127-142. [online] URL: http://dx.doi.org/10.1114105.534

Beslin O, Gazeau J-C (2016). Système d’Information des Évolutions du Lit de la Loire et de ses affluent. Typologie des habitats du SIEL 2. Guide de terrain et de lecture pour la cartographie [Information System of the Evolutions of the Loire riverbed and its tributaries. SIEL Habitat Typology 2: Field and Reading Guide for Mapping]. Conservatoire National du Bassin Parisien, délégation Centre-Val de Loire, Orléans, France, pp. 1-27. [In French].

Campbell L, Coops N, Saunders S (2017). LiDAR and an advanced remote sensing technology to augment ecosystem classification and mapping. Journal of Ecosystems and Management 17(1): 1-15. [online] URL: http://jem-online.org/forex/index.php/jem/article/view/588

Dalponte M, Bruzzzone L, Gianelle D (2012). Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sensing of Environment 123: 258-270. - doi: 10.1016/j.rse.2012.03.013

Dalponte M, Coomes DA (2016). Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution 7: 1236-1245. - doi: 10.1111/2041-210X.12575

Demarchi L, Kania A, Ciezkowski W, Piorkowski H, Oswieclmska-Plasko Z, Chormanski J (2020). Recursive feature elimination and random forest classification of Natura 2000 grasslands in lowland river valleys of Poland based on airborne hyperspectral and LiDAR data fusion. Remote Sensing 12: 1-33. - doi: 10.3390/rs12111842

Dufour S, Berneiz I, Betheder J, Corgne S, Hu bert-Moy L, Nabucet J, Rapinel S, Szwatshuk J, Trollé C (2013). Monitoring restored riparian vegetation: how can recent developments in remote sensing sciences help? Knowledge and Management of Aquatic Ecosystems 410(1): 1-15. - doi: 10.1016/j.kmae.2013.0636

Dumas Y (2019). Que savons-nous de l’érable négondron (Acer negundo L., 1753)? [What do we know about American maple (Acer negundo L., 1753)]? Natura (10): 257-283.

Dunford R, Michel K, Gagnage M, Piégay H, Trémel M-L (2009). Potential and constraints of biogeosciences help? Knowledge and management of aquatic ecosystems. Remote Sensing of Environment 113: 1753-1763. - doi: 10.1016/j.rse.2009.08.011

iForest 13: 409-416
I research new methods for segmenting individual trees from the lidar point cloud. Photogrammetric Engineering and Remote Sensing 78: 75-84. - doi:10.14358/PERS.78.1.75

Manfreda S, McCabe MF, Miller PE, Lucas R, Pa-juelo Madrigal V, Mallinis G, Ben Dor E, Helman D, Estes L, Ciraco G, Mullerová J, Tauro F, De Lima M, De Lima JLMP, Maltese A, Frances S, Taylor K, Kohv M, Perks M, Ruiz-Pérez G, Su Z, Vico G, Toth B (2018). On the use of unmanned aerial systems for environmental monitoring, Remote Sensing 10: 1-33. - doi:10.3390/rs10040641

Mei C, Durrieu S (2004). Tree crown delineation from digital elevation models and high resolution imagery. In: Proceedings of the ISPRS Working Group part 8/22. Freiburg (Germany) 3-6 Oct 2004. The International Archives of the Photogrammetry, Remote Sensing, vol. 36, pp. 6. [online] URL: http://www.researchgate.net/publication/228288068

Michoz A, Piégay H, Lisien J, Claessens H, Lejeune P, Pliégay H, Lisien J, Claessens H, Lejeune P (2016). Classification on riparian forest species and a temporal condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environmental Monitoring and Assessment. Environmental Monitoring and Assessment 188 (146): 1-19.

Monnet J-M, Memrin E, Chanussot J, Berger F (2010). Tree top detection using local maxima filtering: a parameter sensitivity analysis. In: Proceedings of “Silvisensor 2010 - 10th International Conference on Laser Applications for Assessing Forest Ecosystems”, Freiburg (Germany) 14 Sep 2010, pp. 9. [online] URL: http://hal.archives-ouvertes.fr/hal-00523245

Monnet J-M (2011). Caractérisation des forêts de la détection de sommets [Using airborne laser scanning for mountain forests mapping: A parameter sensitivity analysis]. PhD thesis, Grenoble Images Parole Signal Automatique, Université de Grenoble Alpes, France, pp. 187. [online] URL: http://www.theses.fr/2011GRENT056

Monnet J-M (2018). lidarTRee, forest analysis with airborne laser scanning (Lidar) data. Web site. [online] URL: http://gitlab.irstea.fr/jean-mathieu.monnet/lidarTRee

Naiman RB, Décamps H, McClain ME (2005). Ri-paria: ecology, conservation, and management of streamsides communities. Elsevier Academic Press, London, UK, pp. 418.

Pirotti F, Kobal M, Roussell J-R (2017). A comparision of tree segmentation methods using very high density airborne laser scanner data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7: 285-290. - doi:10.5194/isprs-archives- XLII-2/W7-285-2017

R Development Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. [online] URL: http://www.r-project.org/

Rodrigues S, Brhéret J-C, Macaire J-J, Greulich S, Villar M (2006). In-channel woody vegetation controls on sedimentary processes and the sedimentary record within alluvial environments: a modern example of an anabranch of the River Loire, France. Sedimentology 54 (1): 223-242. - doi:10.1111/j.1365-3091.2006.00832.x

Roue J, Haas RT, Schell JA, Deering DW (1973). Monitoring vegetation systems in the great plains with ERTS. In: Proceeding of the “3rd ERTS Symposium”. Washington, DC, USA 10-14 Dec 1973. NASA SP-351 1, US Government Printing Office, Washington, DC, USA, pp. 309-317.

Straigyte L, Cekstere G, Laivins M, Marozas V (2015). The spread, intensity and invasiveness of the Acer negundo in Riga and Kaunas. Den-drobiology 74: 157-168. - doi:10.12657/denbio.74.74.016

Wehr A, Lohr U (1999). Airborne laser scanning an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing 54: 68-72. - doi:10.1016/S0924-2716(99)00101-8

Zhen Z, Quackenbush L, Zhang L (2016). Trends in automatic individual tree crown detection and delineation evolution of LiDAR data. Remote Sensing 8 (4): 333. - doi:10.3390/rs8040333

Supplementary Material

Tab. S1 - Overall accuracy (%) and standard deviation of the metrics groups tested according to crown proportion and Gaussian filter.

Link: Martin_3237@suppl001.pdf