Improved Diastolic Function Is Associated With Higher Cardiac Output in Patients With Heart Failure Irrespective of Left Ventricular Ejection Fraction

Tomoyuki Tobushi, MD; Masatsugu Nakano, MD, PhD; Kazuya Hosokawa, MD, PhD; Hidenobu Koga, MMSc; Akira Yamada, MD, PhD

Background—Little is known regarding the impact of diastolic function on cardiac output (CO) in patients with heart failure, particularly in patients with lower ejection fraction. This study aimed to evaluate the impact of end-diastolic pressure–volume relationship (EDPVR) on CO and end-diastolic pressure (EDP).

Methods and Results—We retrospectively analyzed 1840 consecutive patients who underwent heart catheterization. We divided patients into 8 groups according to ejection fraction (EF) (35–45%, 46–55%, 56–65%, and 66–75%) and EDP (>16 or ≤16 mm Hg). We estimated EDPVR from single measurements in the catheterization data set. Then, we replaced EDPVRs of high-EDP groups with those of normal-EDP groups and compared CO before and after EDPVR replacement. Normalized EDPVR significantly increased CO at EDP=10 mm Hg regardless of EF (EF 35–45%, from 4.5±1.6 to 4.9±1.0; EF 46–55%, 4.6±1.3 to 5.1±1.1; EF 56–65%, 4.9±1.5 to 5.2±1.0; EF 66–75%, 4.9±1.5 to 5.2±1.1). Changes in CO were similar across EF groups.

Conclusions—Diastolic function normalization was associated with higher CO irrespective of EF. Diastolic dysfunction plays an important role in determining CO irrespective of EF in heart failure patients. (J Am Heart Assoc. 2017;6:e003389. DOI: 10.1161/JAHA.116.003389.)

Key Words: cardiac output • diastolic dysfunction • heart failure

Diastolic dysfunction of the left ventricle is one of the major pathological factors in heart failure (HF). However, evaluation of diastolic dysfunction is insufficient because of methodological difficulty. Annually, 5.1 million people have HF, and the medical cost accounts for $31 billion dollars in the United States. The prevalence of HF with preserved ejection fraction (HFpEF), which accounts for more than 50% of HF cases, has been increasing. The prognosis of HF is devastating. Diastolic dysfunction has been considered a major pathological factor of HFpEF, but because there has been increased focus on several other comorbid conditions that might contribute to HFpEF pathogenesis such as arterial stiffness, diabetes mellitus and anemia, elevated peripheral vessel resistance, left atrial dysfunction, and baroreflex dysfunction, the influence of diastolic dysfunction on pathophysiology in HFpEF patients is not evaluated precisely. Additionally, the impact of diastolic dysfunction on disease pathophysiology is unknown in not only patients with HFpEF but also those with HF with reduced ejection fraction (HFrEF). In HFrEF patients, the combination of systolic dysfunction and diastolic dysfunction makes it more difficult to evaluate the impact of diastolic dysfunction on the hemodynamic pathophysiology. The evaluation of diastolic function in clinical settings is practically limited and mainly depends on echocardiographic examination. Echocardiographic assessment of diastolic function is insufficient to determine the diastolic property of the left ventricle, because heart rate, fluid retention/depletion, and several conditions might change diastolic filling pattern on Doppler echocardiography or annular diastolic velocity pattern on tissue Doppler imaging. While end-diastolic pressure-volume relationship (EDPVR) represents the diastolic property of the left ventricle, measuring EDPVR is not practical in the clinical setting, since it requires perturbing preload or afterload during recording instantaneous left ventricular volume and its

From the Department of Cardiology, Aso-Iizuka Hospital, Iizuka, Fukuoka, Japan (T.T., M.N., A.Y.); Department of Health Information Management, Aso-Iizuka Hospital, Fukuoka, Japan (H.K.); Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (K.H.).

Correspondence to: Tomoyuki Tobushi, MD, Department of Cardiovascular Medicine, Saiseikai Futsukaichi Hospital, Fukuoka 818-8516, Japan. 3-13-1 Yumachi, Chikushino, Japan. E-mail: ttobushi@gmail.com
Received September 19, 2016; accepted February 6, 2017.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Methods

Study Design and Patient Selection

The ethics committee of Aso-Iizuka Hospital approved all study protocols; the requirement for informed consent was waived because of the retrospective nature of the study. We retrospectively examined the impact of the diastolic property on hemodynamics in 2417 consecutive patients who underwent cardiac catheter examination on both sides of the heart from January 2003 to December 2013. We analyzed patient etiology, underlying diseases, and sex distribution. End-systolic volume (ESV), end-diastolic volume (EDV), and left ventricular ejection fraction (EF) were derived from left ventriculography. CO was calculated by multiplying (EDV−ESV) by heart rate (HR). We removed incomplete data and the 10 patients who had the largest or smallest systolic aortic pressure, left ventricular pressure, left ventricular EDV, or ESV as outliers. We removed patients with EF <35% or >75% due to the small number of samples. The final number of patients included in the data set was 1840. Then, we classified the patients into 4 groups according to EF: 35% to 45% (n=280), 46% to 55% (n=345), 56% to 65% (n=564), and 66% to 75% (n=651). Then, we divided each group into 2 subgroups according to end-diastolic pressure (EDP): a high-EDP group (EDP ≥16 mm Hg) and normal-EDP group (EDP <16 mm Hg), as previously reported (Figure 1).

Estimated Diastolic Pressure From a Single Data Set of EDV and EDP

We estimated EDPVR by referring to previous articles employing a single set of EDV and EDP data. Briefly, EDPVR is considered generally invariant among subjects after normalization of volumes. EDPVR after normalizing LV volume axis was expressed by the following equation,

\[\text{EDP} = A_n \cdot \text{EDV}_n^{B_n} \]

where \(\text{EDV}_n \) is normalized EDV and \(A_n \) and \(B_n \) are coefficient values of 27.8 mm Hg and 2.76 (no units), respectively. Then we calculated EDV at EDP=0, 15, and 30 mm Hg (\(V_0 \), \(V_{15} \), and \(V_{30} \)) based on previous reports as follows:

\[V_u = V_m \cdot (0.6 - 0.0006 \cdot P_m) \]
\[V_{30} = V_u + \frac{(V_m - V_u)}{(P_m/A_n)^{b_n}} \]
\[V_{15} = 0.8 \cdot (V_{30} - V_u) + V_u \]

where \(V_m \) and \(P_m \) are the measured EDV and EDP. Then, coefficients of diastolic properties \(\beta \) and \(\alpha \) were calculated according to the following equations:

\[\beta = \frac{\log(P_m/30)}{\log(V_m/V_{30})}, \quad \alpha = \frac{30}{V_{30}^\beta} \]

Finally, we estimated each EDPVR as

\[\text{EDP} = \alpha \cdot \text{EDV}^\beta \]

where \(\alpha \) and \(\beta \) represent coefficients of diastolic properties. We compared EDV at EDP=0, 15, and 30 mm Hg between the high-EDP and normal-EDP subgroups in each EF group (Figures 2 and 3).

Calculation of Cardiac Output

CO is theoretically determined by the following formula:

\[\text{CO} = \frac{E_{es}}{E_{es} + E_a} \cdot (\text{EDV} - V_0) \cdot \text{HR} \]

where \(E_{es} \) is left ventricular end-systolic elastance, \(E_a \) is the effective arterial elastance, and \(V_0 \) is the theoretical volume at zero pressure. To simplify the calculation, we considered \(V_0 \) as zero and used 0.9 times peak systolic arterial pressure as the arterial end-systolic pressure as the arterial end-systolic pressure, which is required to determine \(E_{es} \) and \(E_a \). Thus, combining those 2 equations, CO is expressed as follows using \(\alpha \) and \(\beta \):

\[\text{CO} = \frac{E_{es}}{E_{es} + E_a} \cdot \left(\frac{\text{EDP}}{\alpha} \right)^{\beta} \cdot \text{HR} \]

First, we calculated mean diastolic parameters (ie, \(\alpha \) and \(\beta \)) of the normal-EDP subgroup in each EF group and replaced the diastolic parameters of the high-EDP subgroup with those of the normal diastolic group. Thus, we mathematically restored diastolic properties to clarify the impact on the hemodynamics. We then compared COs at EDP=10 mm Hg between before and after changing diastolic parameters in the high-EDP group.

Statistical Analysis

Statistical analyses were performed using SAS statistical software version 9.2 (SAS Institute, Inc., Cary, NC) and Microsoft Excel 2010 (Microsoft Corp., Redmond, WA). We
compared hemodynamic variables of the 8 groups by using Kruskal–Wallis analysis of variance. We used the Wilcoxon rank–sum test to analyze data among the same EF groups. Categorical variables are expressed as numbers and percentages. The \(\chi^2 \) test was used for comparisons of categorical variables. Data are expressed as mean±SD in Table and mean±SE in Figure 4.

Results

Comparison of EDPVR Between High-EDP and Normal-EDP Subgroups

The characteristics of the study population and hemodynamic variables are detailed in Table. There was no significant difference in age and sex. Mean age was around 70 years old, and 28% to 38% of patients were female. The prevalence of ischemic heart disease was not significantly different among EF groups. The prevalence of ischemic heart disease was more than 60% in all EF groups. The percentages of patients with diabetes mellitus, mitral regurgitation, and diastolic cardiomyopathy were lower in higher EF groups. Percentage of patients with hypertrophic cardiomyopathy showed a reverse trend.

Higher EF groups tended to have higher left ventricular (LV) peak systolic pressure, lower HR, smaller LV ESV, and smaller LV EDV. Within the same EF groups, high-EDP groups tended to have higher LV pressures and volumes. Estimated \(V_{15} \), \(V_{30} \), and \(V_{30} \) were smaller in the high-EDP subgroup than in normal-EDP subgroup regardless of EF. The lower EF groups tended to have greater \(V_{15} \), \(V_{30} \), and \(V_{30} \). Figure 3 shows mean EDV and EDP and the estimated EDPVR of each EF group. EDPVR shifted toward the right, which indicated enlarged LV volume as EF was reduced. Within the same EF groups, EDPVRs in high-EDP groups (dashed line) were steeper than those in normal-EDP groups (solid line). The calculated coefficients \(\alpha \) and \(\beta \) values were higher in patients in the EDP-elevated group than in patients in the normal-EDP group.

Change in Cardiac Output Before and After Normalizing EDPVR

COs at EDP=10 mm Hg before and after changing diastolic properties are shown in Figure 4. Normalizing diastolic properties in high-EDP groups significantly increased CO in all EF groups (4.5±1.6 to 4.9±1.0 L/min in EF 35–45% group, 4.6±1.3 to 5.1±1.1 L/min in EF 46–55% group, 4.9±1.5 to 5.2±1.0 L/min in EF 56–65% group, and 4.9±1.5 to 5.2±1.1 L/min in EF 66–75% group) (Figure 4A). The degrees of increase in CO were similar among all EF groups (Figure 4B).
Discussion

This study revealed that diastolic dysfunction plays a similar role in the pathophysiology of HF in patients with high EDP irrespective of EF. In addition, this study demonstrates that the mathematical estimation of EDPVR is feasible and may be an attractive tool for evaluating the contribution of diastolic function to hemodynamics.

Hemodynamic Characteristics and EDPVR According to EF and EDP Subsets

The present study demonstrated that CO was consistently preserved even in HF patients with lower EF. Borlaug et al also reported that CO was preserved even in HFP EF patients. Moreover, Schwartzenberg et al reported that CO was increased in HFP EF patients. These findings support our results and suggest that the mathematical CO estimation is adequate for clinical use. Meanwhile, within each EF group, EDPVRs of the high-EDP subgroup were shifted left and steeper compared with the normal-EDP subgroup (Figure 3). This report is the first to reveal how EDPVR differs according to EDP.

Change in Cardiac Output After EDPVR Normalization in the High-EDP Group

Diastolic dysfunction, which is the key pathophysiological mechanism in HFP EF, is also considered a potential pathophysiological factor of HFrEF. In the present study, EDPVR normalization was significantly associated with higher CO regardless of EF in high-EDP patients. Furthermore, there were no differences in the degree of change in CO among EF groups, suggesting that diastolic dysfunction exerts a similar hemodynamic effect regardless of EF. Although several previous articles have mentioned the importance of diastolic dysfunction in HFrEF, this study is the first to demonstrate its quantitative impact on CO. This finding highlights the profound impact of diastolic dysfunction on hemodynamics in patients with HFrEF.

Previous studies used the same single-point EDPVR estimation method as we used in the current study. In those studies, α and β were defined as the diastolic curve fitting constant and stiffness constant, respectively. Those studies reported that the both α and β values were significantly different between HFP EF and HFrEF. It is difficult to distinguish the effect of each specific coefficient on diastolic function. Therefore, we changed both coefficients in the current study to clarify the effect of diastolic properties.

In the guideline of management of HF, it is mentioned that abnormalities of systolic and diastolic dysfunction

Figure 2. Estimated entire EDPVR and end-diastolic volumes (EDVs) at end-diastolic pressure (EDP) of 0, 15, and 30 mm Hg (V_u, V_15, and V_30, respectively). V_u, V_15, and V_30 are plotted in blue dots. Measured (EDV, EDP) is plotted in red dot. EDPVR values superimposed. EDP = α EDV^β, where α and β represent coefficients of diastolic properties. EDPVR, end-diastolic pressure–volume relationship.

Figure 3. Calculated EDPVRs and single sets of (mean EDV, mean EDP). Calculated EDPVRs and single sets of (mean EDV, mean EDP) are plotted (squares) in (A through D). Solid lines indicate EDPVRs of normal EDP subgroups and dashed lines indicate EDPVRs of elevated EDP subgroups. In lower EF groups, EDVs are larger than that of higher EF groups. EDPVRs from elevated EDP subgroups are shifted upward compared to EDPVRs from normal EDP subgroups. EDP indicates end-diastolic pressure; EDPVR, end-diastolic pressure–volume relationship; EDV, end-diastolic volume; EF, ejection fraction; LV, left ventricular.
Diastolic Dysfunction in Heart Failure
Tobushi et al

DOI: 10.1161/JAHA.116.003389

Journal of the American Heart Association

independently of EF. Although specific therapies for diastolic dysfunction are lacking, the guideline28 recommends systolic and diastolic blood pressure control, correcting volume overload status, coronary revascularization for patients with coronary artery disease, and atrial fibrillation management. These recommendations also might be beneficial for HF patients with low EF.

The previous studies reported that diastolic function is impaired in the female29 and aged30 patients. Other studies showed that diabetes mellitus31 and hypertension32 were the

Table. Characteristics of Study Population and Hemodynamic Variables

	EF=40%	EF=50%	EF=60%	EF=70%	P Value*
EDP elevation	-	+	-	+	-
N	167	113	219	126	406
Age, y	69.0±11.4	69.6±11.9	69.8±10.9	68.9±13.3	66.8±12.9
Female sex, n (%)	65 (38.9)	32 (28.3)	62 (28.3)	49 (38.9)	137 (33.7)
Body weight, kg	552±11.7	577.7±11.1	568.8±11.4	585.5±12.1	581.1±11.6
Heart rate, bpm	73±17	73±15	72±17	71±16	69±15
LV peak systolic pressure, mm Hg	120±25	130±28T	124±25	140±31T	130±25
LV end-diastolic pressure, mm Hg	10±4	21±5T	10±4	20±4T	10±3
LV end-systolic volume, mL	97±36	106±39	70±22	75±24	50±17
LV end-diastolic volume, mL	164±58	177±61	140±43	150±46	128±41
Underlying diseases					
Hypertension, n (%)	86 (51.5)	53 (46.9)	124 (56.6)	72 (57.1)	214 (52.7)
Diabetes mellitus, n (%)	49 (29.3)	32 (28.3)	47 (21.5)	31 (24.6)	83 (20.4)
Etiology					
Ischemic heart disease, n (%)	107 (64.1)	93 (82.3)	152 (69.4)	102 (81.0)	243 (59.9)
Mitral valve regurgitation, n (%)	18 (10.8)	9 (8.0)	9 (4.1)	5 (4.0)	26 (6.4)
Aortic valve regurgitation, n (%)	7 (4.2)	8 (7.1)	3 (1.4)	6 (4.8)	24 (5.9)
Aortic valve stenosis, n (%)	2 (1.2)	7 (6.2)	7 (3.2)	5 (4.0)	6 (1.5)
Dilated cardiomyopathy, n (%)	15 (9.0)	3 (2.7)	4 (1.8)	1 (0.8)	4 (1.0)
Hypertrophic cardiomyopathy, n (%)	1 (0.6)	1 (0.9)	3 (1.4)	2 (1.6)	8 (2.0)
Calculated values					
\(\alpha\) (10−11 mm Hg)	1.2±5.9	13.5±82T	1.4±3.1	17.6±59	2.8±8.6
\(\beta\) (unit less)	5.8±0.14	5.9±0.53	5.8±0.14	6.0±0.50T	5.8±0.13
\(V_{15}\), mL	89±31	83±29	77±23	72±22T	69±22
\(V_{30}\), mL	181±64	166±57	156±49	142±43T	141±44
\(V_{90}\), mL	204±72	187±64	176±56	160±49T	158±50

Continuous variables are expressed as mean±SD. Categorical variables are expressed as numbers and percentages. bpm indicates beats per minute; EDP, end-diastolic pressure; EF, ejection fraction; LV, left ventricular; \(V_{15}\), \(V_{30}\), and \(V_{90}\), end-diastolic volumes at which end-diastolic pressure is 0 (\(V_{15}\)), 15 (\(V_{30}\)), and 30 (\(V_{90}\)) mm Hg.

*\(P\) values obtained from Kruskal–Wallis test for continuous variables and from the \(x^2\) test for categorical variables.

†\(P<0.05\) vs normal/EDP subgroup in same EF group using Wilcoxon rank-sum test.

Continuous variables are expressed as mean±SD. Categorical variables are expressed as numbers and percentages. bpm indicates beats per minute; EDP, end-diastolic pressure; EF, ejection fraction; LV, left ventricular; \(V_{15}\), \(V_{30}\), and \(V_{90}\), end-diastolic volumes at which end-diastolic pressure is 0 (\(V_{15}\)), 15 (\(V_{30}\)), and 30 (\(V_{90}\)) mm Hg.

*\(P\) values obtained from Kruskal–Wallis test for continuous variables and from the \(x^2\) test for categorical variables.

†\(P<0.05\) vs normal/EDP subgroup in same EF group using Wilcoxon rank-sum test.
Limitations

First, we estimated EDPVR from a single point based on the previously reported mathematical model that hypothesized EDPVR as a simple nonlinear curve. This limited the accuracy of estimating true EDPVR. However, perturbation of volume load to measure EDPVR during catheterization is ethically unacceptable in HF patients. Therefore, estimating EDPVR from a single data set is considered the best method to determine EDPVR at this time. Second, LV volume was measured from left ventriculography, although the “gold standard” for LV volumetry is computed tomography or magnetic resonance imaging. However, left ventriculography is still widely performed and often used as a reference value to evaluate other volumetric methods. It is reasonable to think that our results would not differ substantially with the use of computed tomography or magnetic resonance imaging to evaluate LV volume.

Conclusions

Although diastolic dysfunction is one of the major pathophysiological causes of HFrEF, our results revealed that diastolic dysfunction also plays a key role in the pathogenesis of HFrEF. The mathematical estimation of EDPVR can provide clinicians with detailed information about the role of diastolic dysfunction in individual patients and thus appears to be an attractive tool for practical applications.

Disclosures

None.

References

1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lakkis DT, Lichtman JH, Lisabeth LD, MacKey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER III, Moy CS, Mussolino ME, Neumark RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:28–292.

2. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Khandheria BK, Owan TE, Reede DO, Rodeheffer RJ, Redfield MM; American Heart Association Advocacy Coordinating Committee; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Stroke Council. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–619.

3. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–259.

4. Zarrinkoub R, Wettermark B, Wändell P, Mejert M, Szulkin R, Ljunggren G, Kahan T. The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail. 2013;15:995–1002.

5. Shibata S, Hastings JL, Prasad A, Fu O, Bhella PS, Pacini E, Krainski F, Palmer MD, Zhang R, Levine BD. Congestive heart failure with preserved ejection fraction is associated with severely impaired dynamic Starling mechanism. J Appl Physiol. 2011;110:944–951.

6. Mohammed SF, Borlaug BA, Roger VL, Mirzoyev SA, Rodeheffer RJ, Chininos JA, Redfield MM. Comorbidity and ventricular and vascular structure and function in heart failure with preserved ejection fraction a community-based study. Circ Heart Fail. 2012;5:710–719.

7. Tartiere-Kesri L, Tartiere-JM, Logeart D, Beauvais F, Cohen Solal A. Increased proximal arterial stiffness and cardiac response with moderate exercise in

Figure 4. Cardiac output changes and cardiac output increment. In the high-EDP subgroup, changing diastolic properties (α and β) to those of the normal-EDP group significantly increased CO (A). There were no significant differences in the increment of CO among EF groups (B). CO indicates cardiac output; EDP, end-diastolic pressure; EF, ejection fraction. *P<0.05 vs normal-EDP subgroup of the same EF group using the paired t test. #P values obtained from Kruskal–Wallis test.
Diastolic Dysfunction in Heart Failure

Tobushi et al

patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;59:455–461.

8. Ernezt PV, Marichaux S, Six-Carpentier M, Pinçon C, Sediri I, Delpert S, Gras M, Mounier-Vehier C, Gautier C, Montaigne D, Jude B, Aseman P, Le Jemtel TH. Renal resistance index and its prognostic significance in patients with heart failure with preserved ejection fraction. Nephrol Dial Transplant. 2011;26:3908–3913.

9. Fang F, Lee AP, Yu CM. Left atrial function in heart failure with impaired and preserved ejection fraction. Curr Opin Cardiol. 2014;29:430–436.

10. Hosokawa K, Ide T, Tobushi T, Sakamoto K, Otitsuka K, Sakamoto T, Fujino T, Saku K, Sunagawa K. Bionic baroreceptor corrects postural hypotension in rats with impaired baropreference. Circulation. 2012;126:1278–1285.

11. Funakoshi K, Hosokawa K, Kishi T, Ide T, Sunagawa K. Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function. Acta Physiol (Oxf). 2012;203:19–28.

12. Penicka M, Vanderheyden M, Bartunek J. Diagnosis of heart failure with preserved ejection fraction: role of clinical Doppler echocardiography. Heart. 2014;100:68–76.

13. Klotz S, Dickstein ML, Burkhoff D. A computational method of prediction of the end-diastolic pressure-volume relationship by single beat. Nat Protoc. 2007;2:2152–2158.

14. Ten Brinke EA, Burkhoff D, Klautz RJ, Tschudy MO. Volume measurement of the left ventricle in children using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2007;49:221–229.

15. Paulus WJ, Tschudy MO. Reduction of ventricular-arterial coupling by atrial natriuretic peptide in humans. J Am Coll Cardiol. 2004;43:1990–1996.

16. Ten Brinke EA, Burkhoff D, Klaatz RJ, Tschöpe C, Schalij MJ, Bax JJ, van der Wall EE, Dion RA, Steendijk P. Single-beat estimation of the left ventricular end-diastolic pressure-volume relationship in patients with heart failure. Heart. 2010;96:213–219.

17. Uemura K, Sugimachi M, Kawada T, Kamiya A, Jin Y, Kashihara K, Sunagawa K. A novel framework for circulatory equilibrium. Am J Physiol Heart Circ Physiol. 2004;286:H2376–H2385.

18. Uemura K, Kawada T, Kamiya A, Aiba T, Hidaka I, Sunagawa K, Sugimachi M. Prediction of circulatory equilibrium in response to changes in stressed blood volume. Am J Physiol Heart Circ Physiol. 2005;289:H301–H307.

19. Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA, Fang JC, Sweitzer NK, Borlaug BA, Kass DA, St John Sutton M, Cappola TP. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol. 2013;62:1165–1172.

20. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiu KR, Ding PA, Kawaguchi M, Kass DA. Noninvasive single-beat estimation of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38:2028–2034.

21. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, Redfield MM. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–854.

22. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiological response to therapy. J Am Coll Cardiol. 2012;59:442–451.

23. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Filk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip MG, Maggioni AP, Parkhomenko A, Pieke BM, Popescu BA, Rannevik PK, Rutten FF, Schwitter J, Seferovic P, Stepinska J, Trinidad PT, Voors AA, Zannad F, Zeiher A; Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology, Bax JJ, Baumgartner H, Cecconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Kirchhof P, Knudt J, Kohn P, McDonagh T, Moulin C, Ntagiopoulos PS, Reiner Z, Sechtem U, Sinanes PS, Tendera M, Torbicck A, Vahanian A, Windischer S, McDonagh T, Sechtem U, Bonet LA, Avraamides P, Ben Lamin HA, Brignole M, Coca A, Cowburn P, Dargie H, Elliott P, Flachskampf FA, Guida GF, Hardman S, Iung B, Markell B, Mueller C, Nanas NJN, Nielsen OW, Om S, Parissis JTS, Ponikowski P, ESC Committee for Practice Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–869. Erratum in: Eur J Heart Fail. 2013;15:361–362.

24. Naguwa SF, Atkinson CP, Gillebert TC, Marino PN, Oh JK, Smeeth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165–193.

25. Dokainish H. Left ventricular diastolic function and dysfunction: central role of echocardiography. Glob Cardiol Sci Pract. 2015;2015:3.

26. Lam CSP, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, Kass DA, Redfield MM. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115:1982–1990.

27. Schwarz M, Ojeda F, Zeller T, Seifertt M, Becher PM, Munzel T, Wild PS, Blttnner M, Lackner KJ, Pfeiffer N, Beutel ME, Blankenberg S, Westermann D. Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure-volume relationship in non-heart failure individuals: data from a large-scale, population-based cohort. Eur Heart J. 2016;37:1807–1814.

28. Yancy CW, Jessup M, Bozuktur B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JIV, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang HWW, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:340–364.

29. den Ruijter H, Pasterkamp G, Rutten FH, Lam CSP, Chi C, Tan KH, van Zonneveld AJ, Spaderman M, de Klein DPV. Heart failure with preserved ejection fraction in women: the Dutch Queen of Hearts program. Neth Heart J. 2015;23:89–93.

30. van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18:242–252.

31. Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, de Las Fuentes L, Joseph SM, Vader J, Hernandez AF, Redfield MM. Cardiovascular phenotype in HfPEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–549.

32. Teo LYL, Chan LL, Lam CSP. Heart failure with preserved ejection fraction in hypertension. Curr Opin Cardiol. 2016;31:410–416.

33. Samson R, Jaiswal A, Enneazt PV, Cassidy M, Le Jemtel TH. Clinical phenotypes in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2015;65:e002477. DOI: 10.1016/J.JAHA.115.002477.

34. Ohtara H, Li WC. Evolving focus on diastolic dysfunction in patients with coronary artery disease. Curr Opin Cardiol. 2010;25:613–621.

35. Khorsand A, Gyöngyösi F, Graf S, Zamin S, Schuster E, Sochor H, Porenta G. Assessment of left ventricular volume and ejection fraction: comparison of QGS and MBGS analyses of ECG-gated myocardial perfusion SPECT imaging. Nucl Med Commun. 2009;30:300–307.

36. Iino M, Shiraishi H, Ichihashi K, Hoshina M, Saitoh M, Hikabuki Y, Morimoto Y, Momo MF. Volume measurement of the left ventricle in children using real-time three-dimensional echocardiography: comparison with ventriculography. J Cardiol. 2007;49:221–229.