JAA-Net: Joint Facial Action Unit Detection and Face Alignment via Adaptive Attention

Zhiwen Shao1,2,3 · Zhilei Liu4 · Jianfei Cai5 · Lizhuang Ma3

Received: date / Accepted: date

Abstract Facial action unit (AU) detection and face alignment are two highly correlated tasks, since facial landmarks can provide precise AU locations to facilitate the extraction of meaningful local features for AU detection. However, most existing AU detection works handle the two tasks independently by treating face alignment as a preprocessing, and often use landmarks to predefine a fixed region or attention for each AU. In this paper, we propose a novel end-to-end deep learning framework for joint AU detection and face alignment, which has not been explored before. In particular, multi-scale shared feature is learned firstly, and high-level feature of face alignment is fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively. Finally, the assembled local features are integrated with face alignment feature and global feature for AU detection. Extensive experiments demonstrate that our framework (i) significantly outperforms the state-of-the-art AU detection methods on the challenging BP4D, DISFA, GFT and BP4D+ benchmarks, (ii) can adaptively capture the irregular region of each AU, (iii) achieves competitive performance for face alignment, and (iv) also works well under partial occlusions and non-frontal poses. The code for our method is available at https://github.com/ZhiwenShao/PyTorch-JAANet.

Keywords Joint learning · Facial AU detection · Face alignment · Adaptive attention learning

1 Introduction

Facial action unit (AU) detection and face alignment are two important face analysis tasks in the fields of computer vision and affective computing (Corneanu et al. 2016; Martinez et al. 2019). In most of face related tasks, face alignment (Kazemi and Sullivan 2014; Zhang et al. 2016b; Shao et al. 2019b) is usually employed to localize certain distinctive facial locations, namely landmarks, to define the facial shape or expression appearance. Facial AUs refer to a unique set of basic facial actions at certain facial locations defined by Facial Action Coding System (FACS) (Ekman and Friesen 1978; Ekman et al. 2002), which is one of the most comprehensive and objective systems for describing facial expressions. Considering AU detection and face alignment are coherently related to each other, they should be beneficial for each other if putting them in a joint framework. However, in literature it is rare to see such joint study of the two tasks.

In some previous AU detection studies (Gudi et al. 2015; Zhao et al. 2016b; Chu et al. 2017), facial landmarks are only used to align faces into a common reference face, so that the extracted features from each face correspond to the same semantic locations. Since landmarks can also provide precise AU locations, recent works pay more attention to extracting AU-related features from regions of interest (ROIs) centered around the associated landmarks. For example, Li et al. (2018, 2017) proposed a deep learning based approach named EAC-Net for AU detection by enhancing and cropping the ROIs with landmark information. However, they
just treated face alignment as a preprocessing. Wu and Ji (2016) tried to exploit face alignment and AU detection simultaneously with a cascade regression framework, which is a pioneering work for the joint study of the two tasks. However, this cascade regression method only uses handcrafted features and is not based on the prevailing deep learning technology, which limits its performance.

In addition to EAC-Net (Li et al. 2018) which predefined the ROI of each AU with a fixed size and a fixed attention distribution, a few works also adopt the attention mechanism. Sanchez et al. (2018) used a predefined Gaussian distribution to generate an attention map for each AU, in which the amplitude and size of the Gaussian distribution are determined by the AU intensity. However, these methods cannot adapt to various AUs with irregular shapes and transformations. Recently, Shao et al. (2019a) directly learned spatial attentions of AUs without the prior landmark knowledge. Although this work can find the irregular AU regions, some irrelevant regions are also captured.

To tackle the above limitations, we propose a novel deep learning based joint AU detection and face alignment framework called JAA-Net to exploit the strong correlations of the two tasks. In particular, multi-scale shared feature for the two tasks is learned firstly, and high-level feature of face alignment is extracted and fed into AU detection. Moreover, to extract precise local features, we propose an adaptive attention learning module to refine the attention map of each AU adaptively, which is initially specified by the predicted facial landmarks. Finally, the assembled local features are integrated with face alignment feature and global feature for AU detection. In the adaptive attention learning module, each AU has an independent branch to refine its attention map under the supervision of its local AU detection loss. Besides, the face alignment feature and the global feature supplement other useful information on top of the assembled local features. The entire framework is end-to-end without any post-processing operation, and all the modules are optimized jointly.

The contributions of this paper are threefold:

- We propose an end-to-end multi-task deep learning framework for joint facial AU detection and face alignment. To the best of our knowledge, jointly modeling these two tasks with deep neural networks has not been done before.
- With the aid of face alignment results, an adaptive attention network is learned to determine the attention distribution of the ROI of each AU.
- We conduct extensive experiments on benchmarks, where our proposed joint framework significantly outperforms the state-of-the-art AU detection methods, can adaptively capture the irregular region of each AU, achieves competitive performance for face alignment, and also works well under partial occlusions and non-frontal poses.

In comparison to the earlier conference version (Shao et al. 2018) of this work, we introduce the new local AU detection loss in Sec. 3.5 to generalize the original idea of the back-propagation enhancement. Specifically, we show that the local AU detection loss is a more effective way to supervise the refinement of attention maps so as to extract more precise local features. We also remove the constraint on the differences of the attention maps before and after the refinement, which reduces the restrictions from predefined attention maps and thus facilitates the adaptive learning of attentions. With these improvements, our JAA-Net framework becomes more general and achieves better AU detection performance. Aside from the changes in methodology, this extension also supplements the comparisons on challenging GFT (Girard et al. 2017) and BP4D+ (Zhang et al. 2016a) benchmarks, as well as the results under partial occlusions and non-frontal poses.

2 Related Work

Our proposed framework is closely related to existing landmark aided facial AU detection methods as well as face alignment with multi-task learning methods, since we combine both AU detection models and face alignment models.

2.1 Landmark Aided Facial AU Detection

The preprocessing step in most of the previous facial AU recognition works is to detect and align faces with the help of face detection and face alignment methods (Martinez et al. 2019). Considering it is robust to measure the landmark-based geometry changes, Benitez-Quiroz et al. (2016) proposed an approach to fuse the geometry and local texture information for AU detection, in which the geometry information is obtained by measuring the normalized facial landmark distances and the angles of Delaunay mask formed by the landmarks. Valstar and Pantic (2006) analyzed Gabor wavelet features near 20 facial landmarks, and these features were then selected and classified by Adaboost and SVM classifiers for AU detection. Zhao et al. (2015, 2016a) proposed a Joint Patch and Multi-Label Learning (JPML) method for facial AU detection by taking into account both patch learning and multi-label learning, in which the local regions of AUs are defined as patches centered around the facial landmarks obtained using IntraFace (De la Torre et al. 2015). Recently, Li et al. (2018, 2017) proposed the EAC-Net for facial AU detection by enhancing and cropping the predefined ROI of each AU. All the ROIs with central locations specified by landmarks have a fixed size and a fixed attention distribution.

All these researches demonstrate the effectiveness of utilizing facial landmarks on feature extraction for AU detec-
tion task. However, they all treat face alignment as a single and independent task and make use of the existing well-designed facial landmark detectors.

2.2 Face Alignment with Multi-Task Learning

The correlation of facial expression recognition and face alignment has been leveraged in several face alignment works. For example, recently, Wu et al. (2017) combined the tasks of face alignment, head pose estimation, and expression-related facial deformation analysis using a cascade regression framework. Zhang et al. (2014b, 2016b) proposed a Task-Constrained Deep Convolutional Network (TCDCN) to optimize the shared feature map between face alignment and other heterogeneous but subtly correlated tasks, e.g. head pose estimation and the inference of facial attributes including expression. Ranjan et al. (2019) proposed a deep multi-task learning framework named HyperFace for simultaneous face detection, face alignment, pose estimation, and gender recognition. All these works demonstrate that related tasks such as facial expression recognition are beneficial for face alignment.

However, in TCDCN and HyperFace, face alignment and other tasks are just simply integrated with the first several layers shared. In contrast, besides sharing feature layers, our proposed JAA-Net also feeds high-level representations of face alignment into AU detection, and utilizes the estimated landmarks for the initialization of the adaptive attention learning.

2.3 Joint Facial AU Detection and Face Alignment

Although facial AU recognition and face alignment are related tasks, their interaction is usually one way in the aforementioned methods, i.e. facial landmarks are used to extract features for AU recognition. Instead of treating face alignment independently, Li et al. (2013) proposed a hierarchical framework with Dynamic Bayesian Network to capture the joint local relationship between facial landmark tracking and facial AU recognition. However, this framework requires an offline facial activity model construction and an online facial motion measurement and inference, and only local dependencies between facial landmarks and AUs are considered. Inspired by Li et al. (2013), Wu and Ji (2016) tried to exploit global AU relationship, global facial shape patterns, and global dependencies between AUs and landmarks with a cascade regression framework, which is a pioneering work for the joint process of the two tasks.

In contrast with these conventional methods using handcrafted local appearance features, we employ an end-to-end deep framework for joint learning of facial AU detection and face alignment. Moreover, we develop a deep adaptive attention learning method to explore the feature distributions of different AUs in different ROIs specified by the predicted facial landmarks.

3 JAA-Net for Facial AU Detection and Face Alignment

3.1 Overview

The architecture of our proposed JAA-Net is shown in Fig. 1, which takes a color face with size $l \times l \times 3$ as input. It consists of four modules in different colors: hierarchical and multi-scale region learning, face alignment, global feature learning, and adaptive attention learning. Firstly, the hierarchical and multi-scale region learning is designed as the foundation of JAA-Net, which extracts a multi-scale feature from local regions with different sizes. Secondly, the face alignment module is designed to estimate the locations of facial landmarks, which will be further utilized to predefine the initial attention map of each AU. The global feature learning is to capture the structure and texture information of the whole face. Finally, the adaptive attention learning (in red) is designed as the central part for AU detection with a multi-branch network, which refines the attention map of each AU adaptively so as to capture local AU features at different locations. The assembled local AU features are then integrated with the face alignment feature and the global feature for final AU detection. The three modules, face alignment, global feature learning, and adaptive attention learning, are optimized jointly, which share the layers of the hierarchical and multi-scale region learning.

3.2 Hierarchical and Multi-Scale Region Learning

Considering AUs in different local facial regions have various structure and texture information, different local regions should be processed with different filters. However, a plain convolutional layer only uses a shared convolutional filter across the entire spatial domain. To extract more precise features of local regions, Zhao et al. (2016b) proposed a region layer $R(l_1, l_2, c_1)$ which contains a plain convolutional layer and a partitioned convolutional layer, as shown in Fig. 2(b). In the partitioned convolutional layer, each local patch shares an independent convolutional filter. However, all the local patches have identical sizes, which limits the performance of the region layer to process various AUs with different sizes.

To address this issue, we propose a hierarchical and multi-scale region layer $R_{hs}(l_1, l_2, c_1)$ to learn features from multi-scale local regions. Fig. 2(c) illustrates its detailed structure. It consists of a plain convolutional layer and another three hierarchical partitioned convolutional layers. Specifically, the feature map of the plain convolutional layer is uni-
formally divided into 8×8 patches, each of which is processed with an independent convolutional filter by the first partitioned convolutional layer. In the same manner, the second and third partitioned convolutional layers apply independent convolutional filters on the uniformly divided 4×4 and 2×2 feature map patches of their previous layers, respectively. By concatenating the feature maps of the first, second, and third partitioned convolutional layers, we can extract a hierarchical and multi-scale feature map with the same number of channels $4c_1$ as the feature map of the plain convolutional layer. A residual structure (He et al. 2016) is then utilized to element-wise sum the two feature maps, so as to learn over-complete features and avoid the vanishing gradient problem.

Different from the region layer (Zhao et al. 2016b), our proposed hierarchical and multi-scale region layer uses multi-scale partitions, which are beneficial for covering all kinds of AUs in the ROIs with different sizes.

In our JAA-Net, this hierarchical and multi-scale region learning module is composed by two blocks of $R_{hm}(l, l, c)$ and $R_{hm}(l/2, l/2, 2c)$, each of which is followed by a max-pooling layer to reduce its feature map size. c is a parameter with respect to the number of layer channels. The multi-scale feature with size $l/4 \times l/4 \times 8c$ output by this module is further fed into the rest three modules to facilitate both AU detection and face alignment.

3.3 Face Alignment and Global Feature Learning

The face alignment module includes three successive blocks of $P(l/4, l/4, 3c), P(l/8, l/8, 4c)$, and $P(l/16, l/16, 5c)$, each of which is followed by a max-pooling layer. As shown in Fig. 1, the output face alignment feature of this module is fed into two fully-connected layers with the dimensions of d and $2n_{align}$ respectively, where n_{align} is the number of facial landmarks. We define the face alignment loss as

$$E_{align} = \frac{1}{2d} \sum_{j=1}^{n_{align}} ((y_{2j-1} - \hat{y}_{2j-1})^2 + (y_{2j} - \hat{y}_{2j})^2),$$

where y_{2j-1} and y_{2j} denote the ground-truth x-coordinate and y-coordinate of the j-th facial landmark, \hat{y}_{2j-1} and \hat{y}_{2j} are the corresponding predicted results. d is the ground-truth inter-ocular distance for normalization (Shao et al. 2016, 2019b).
The global feature learning module is utilized to capture global facial structure and texture information, which has the same structure as the face alignment module. As illustrated in Fig. 1, its output global feature and the face alignment feature are both used for the final AU detection, which can provide additional useful information on top of the local AU features.

3.4 Adaptive Attention Learning

Fig. 3 shows the architecture of the proposed adaptive attention learning. It consists of two steps: AU attention refinement and local AU feature learning, where the first step is to refine the predefined attention map of each AU with a separate branch and the second step is to learn and extract local AU features.

Predefinition of Attention Maps

In the AU attention refinement step, we first utilize the estimated facial landmarks by the face alignment module to predefine the locations of AU centers. The rules for defining the locations of AU centers are detailed in Table 1. We also visualize the locations of AU centers and landmarks on the input image in Fig. 3, in which each AU has two centers due to the symmetry. The predefined attention map of each AU contains two sub-regions of interest (sub-ROIs) centered around the AU centers. Let the size of predefined attention maps be $l_{\text{pre}} \times l_{\text{pre}} \times 1$, we need to convert the locations of AU centers from the image scale to current map scale by multiplying l_{pre} / l with both x- and y-coordinates of AU centers. The size of each sub-ROI is set to $l_{\text{pre}} \zeta \times l_{\text{pre}} \zeta \times 1$, where ζ is the width ratio between the sub-ROI and the predefined attention map.

The predefined attention maps are set to only highlight in the two sub-ROIs, in which the attention weight of any point beyond the sub-ROIs is initialized to be 0. Specifically, for

Table 1

AU	Description	Location
1	Inner brow raiser	1/2 scale above inner brow
2	Outer brow raiser	1/3 scale above outer brow
4	Brow lowerer	1/3 scale below brow center
6	Cheek raiser	1 scale below eye bottom
7	Lid tightener	Eye
9	Nose wrinkle	1/2 scale above nose bottom
10	Upper lip raiser	Upper lip center
12	Lip corner puller	Lip corner
14	Dimpler	Lip corner
15	Lip corner depressor	Lip corner
17	Chin raiser	1/2 scale below lip
23	Lip tightener	Lip center
24	Lip pressor	Lip center
25	Lips part	Lip center
26	Jaw drop	1/2 scale below lip
the predefined attention map V_i of the i-th AU, if the k-th point is in a sub-ROI, its attention weight is initialized as

$$v_{ik} = \max\{1 - \frac{d_{ik} \xi}{l_{n_{au}} \xi}, 0\}, \quad i = 1, \cdots, n_{au},$$

where d_{ik} is the Manhattan distance of this point to the AU center, and n_{au} is the number of AUs. $\xi \geq 0$ is a coefficient to control the intensity of attention weights, in which the attention weights of all the sub-ROI points will become 1 if $\xi = 0$. Eq. (2) essentially suggests that the attention weights are decaying when the sub-ROI points are moving away from the AU center. The maximization operation in Eq. (2) is to ensure $v_{ik} \in [0, 1]$. If a point belongs to the overlap of two sub-ROIs, it is set to be the maximum value of two computed attention weights associated with each sub-ROI.

Refinement of Attention Maps. In each AU attention refinement branch, we employ three plain convolutional layers with 8c channels and a plain convolutional layer with one channel to process the predefined attention map, in which the last plain convolutional layer followed by a sigmoid function outputs the refined attention map \hat{V}_i. The sigmoid function is to make each refined attention weight $\hat{v}_{ik} \in (0, 1)$, in which the attention distributions of sub-ROIs and the remaining regions are both adaptively refined.

Considering that padding in plain convolutional layers could do harm to the refinement of edge regions in attention maps, we set the padding of convolutional filters in all the four plain convolutional layers to be 0. In this case, the sizes of their feature maps will be reduced after each convolution. As shown in Fig. 3, to match the size $l/4 \times l/4 \times 8c$ of the multi-scale feature output by the hierarchical and multi-scale region learning module, the size of the refined attention map should be $l/4 \times l/4 \times 1/4$. Therefore, we set $l_{pre} = l/4 + 8$ so that the feature map widths of the four plain convolutional layers become $l/4 + 6, l/4 + 4, l/4 + 2$, and $l/4$, respectively.

Learning of Local AU Features. In the local AU feature learning step, the refined attention map of each AU is first element-wise multiplied with the multi-scale feature to obtain the learned local AU feature $f_{i}^{(l)}$, and all the local AU features are assembled:

$$f^{(l)} = \frac{1}{n_{au}} \sum_{i=1}^{n_{au}} f_{i}^{(l)}.$$

The assembled local features $f^{(l)}$ capture precise local AU information, which will then contribute to the final AU detection. Note that the adaptive attention refinement requires the supervision of AU detection. To supervise the learning of each AU attention map, we apply a local AU detection loss $E_{local, au}$ to each AU branch. The details of $E_{local, au}$ will be elaborated in Sec. 3.5.

3.5 Facial AU Detection

AU Detection Using Integrated Information. As illustrated in Fig. 1, the face alignment feature, the global feature, and the assembled local features are concatenated together and fed into two fully-connected layers with the dimensions of d and $2n_{au}$, respectively. In this way, landmark related information, global facial information, and local AU information are integrated together for facial AU detection. Finally, a softmax function is applied across each two units of the last $2n_{au}$-dimensional fully-connected layer to obtain the predicted occurrence probability \hat{p}_i of each AU.

Facial AU detection can be regarded as a multi-label binary classification problem with the following weighted multi-label cross entropy loss:

$$E_{cross} = -\sum_{i=1}^{n_{au}} w_i [p_i \log \hat{p}_i + (1 - p_i) \log(1 - \hat{p}_i)],$$

where p_i denotes the ground-truth occurrence probability of the i-th AU, which is 1 if occurrence and 0 otherwise. The weight w_i introduced in Eq. (4) is to alleviate the data imbalance problem. For most facial AU detection benchmarks, the occurrence rates of AUs are imbalanced (Martinez et al. 2019). Since AUs are not mutually independent, imbalanced training data has a bad influence on this multi-label learning task. Particularly, we set $w_i = (1/r_i) / \sum_{au=1}^{n_{au}} (1/r_{au})$, where r_i is the occurrence rate of the i-th AU in the training set.

In many cases, some AUs appear rarely in training samples, for which the cross entropy loss in Eq. (4) often makes the AU prediction strongly bias towards non-occurrence. To address this, we exploit precision and recall which are both relevant to the true positive. Since F1-score: $F1 = 2PR/(P + R)$ considers both precision P and recall R, we introduce a weighted multi-label Dice coefficient (F1-score) loss (Milletari et al. 2016):

$$E_{dice} = \sum_{i=1}^{n_{au}} w_i \left(1 - \frac{2\hat{p}_i \hat{p}_i + \varepsilon}{p_i^2 + \hat{p}_i^2 + \varepsilon}\right),$$

where ε is a smooth term. F1-score is known as the most popular evaluation metric for facial AU detection. The use of Eq. (5) keeps the consistency between the learning process and the evaluation metric. By combining Eqs. (4) and (5), we can obtain the overall AU detection loss:

$$E_{all, au} = E_{cross} + E_{dice},$$

where the occurrence probability \hat{p}_i of each AU is predicted based on the integrated information of all the AUs.

Local AU Detection for Adaptive Attention Learning. As illustrated in Fig. 3, the local AU detection loss $E_{local, au}$ is used to supervise the adaptive refinement of each AU attention map. In particular, the local feature $f_{i}^{(l)}$ of the i-th AU is followed by two fully-connected layers with the dimensions of d_l and 2 respectively, in which a softmax function
is applied to the last layer to predict a temporary occurrence probability \(\hat{p}_i^{(l)} \). By replacing \(\hat{p}_i \) with \(\hat{p}_i^{(l)} \) in Eq. (6), we can obtain the definition of \(E_{\text{local,au}} \), in which \(\hat{p}_i^{(l)} \) is predicted only based on the local information of the \(i \)-th AU. The use of local information is beneficial for avoiding the influence of irrelevant AUs on the attention refinement. Due to the same reason, the assembled local features \(f_i^{(l)} \) are set to discard the back-propagated gradients from \(E_{\text{all,au}} \) which uses the integrated information of all the AUs. In this case, \(E_{\text{local,au}} \) is also responsible for supervising the learning of each local feature \(f_i^{(l)} \).

After introducing each loss term, we can define the overall loss of our JAA-Net as

\[
E = \left(E_{\text{all,au}} + E_{\text{local,au}} \right) + \lambda_{\text{align}} E_{\text{align}},
\]

where \(\lambda_{\text{align}} \) is a trade-off parameter. Our framework is trainable end-to-end, in which the hierarchical and multi-scale region learning, face alignment, global feature learning, and adaptive attention learning are trained simultaneously. The joint training of facial AU detection and face alignment contributes to each other due to the close relationship between the two tasks.

4 Experiments

4.1 Datasets and Settings

4.1.1 Datasets

Our JAA-Net is evaluated on four widely used datasets for AU detection, i.e. BP4D (Zhang et al. 2014a), DISFA (Mavadati et al. 2013), GFT (Girard et al. 2017), and BP4D+ (Zhang et al. 2016a), in which both AU and landmark labels are provided.

- **BP4D** contains 41 subjects with 23 females and 18 males, each of which is involved in 8 sessions. There are 328 videos including about 140,000 frames with AU labels of occurrence or non-occurrence. Each frame is also annotated with 49 landmarks detected by SDM (Xiong and De la Torre 2013). Similar to the settings of Zhao et al. (2016b); Li et al. (2018), 12 AUs (1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23, and 24) are evaluated using subject exclusive 3-fold cross-validation, where two folds are used for training and the remaining one is used for testing.

- **DISFA** consists of 27 videos recorded from 12 women and 15 men, each of which has 4,845 frames. Each frame is annotated with AU intensities on a six-point ordinal scale from 0 to 5, as well as 66 landmarks detected by AAM (Cootes et al. 2001). To be consistent with BP4D, we use 49 landmarks, a subset of the 66 landmarks. It has a serious data imbalance problem, in which most AUs have very low occurrence rates while only a few other AUs have higher occurrence rates. According to the setting in Zhao et al. (2016b); Li et al. (2018), AU intensities equal or greater than 2 are considered as occurrence, while others are treated as non-occurrence. Subject exclusive 3-fold cross-validation is also conducted with evaluations on 8 AUs (1, 2, 4, 6, 9, 12, 25, and 26).

- **GFT** includes 96 subjects from 32 three-subject groups with unscripted social communication. Each subject is detected with 49 landmarks by ZFace (Jeni et al. 2017). The captured frames exhibit moderate out-of-plane poses, resulting in a more challenging AU detection. Following the original training/testing partitions in Girard et al. (2017), we employ 78 subjects with about 108,000 frames for training, and 18 subjects with about 24,600 frames for testing.

- **BP4D+** consists of 140 subjects with 82 females and 58 males, each of which is involved in 10 sessions. It has larger scale and variability than BP4D (Zhang et al. 2014a) dataset. AU annotations are provided for 4 sessions with totally 197,875 frames, in which each frame is also detected with 49 landmarks by ZFace (Jeni et al. 2017). Similar to Shao et al. (2019a), we conduct a cross-dataset evaluation by training on the entire BP4D dataset (41 subjects with 12 AUs) and testing on all the BP4D+ images.

4.1.2 Implementation Details

For each face image, we perform similarity transformation including rotation, uniform scaling, and translation to obtain an aligned \(200 \times 200 \times 3 \) color face. This transformation is shape-preserving and brings no change to the expression. In order to enhance the diversity of training data, aligned faces are further randomly cropped into \(176 \times 176 \) and horizontally flipped. In our JAA-Net, each convolutional layer uses \(3 \times 3 \) convolutional filters with a stride 1 and a padding 1 except for the AU attention refinement layers using a padding 0, and each max-pooling layer processes \(2 \times 2 \) spatial fields with a stride 2 and a padding 0. Besides, each convolutional layer is operated with Batch Normalization (BN) (Ioffe and Szegedy 2015) and Rectified Linear Unit (ReLU) (Nair and Hinton 2010). Following the settings in Zhao et al. (2016b); Li et al. (2018), JAA-Net is initialized with the parameters of the well-trained model for BP4D when trained on DISFA.

Our JAA-Net is implemented using PyTorch (Paszke et al. 2019) with the stochastic gradient descent (SGD) solver, a Nesterov momentum (Sutskever et al. 2013) of 0.9, and a weight decay of 0.0005. We train JAA-Net for up to 12 epochs with initial learning rate of 0.01, in which the learning rate is multiplied by a factor of 0.3 at every 2 epochs. The parameters with respect to the structure of JAA-Net
Table 2 F1-frame and accuracy results for 12 AUs on BP4D. The results of LSVM and JPML are from Zhao et al. (2016b), and those of CPM are from Chu et al. (2017). The results of all the remaining methods are directly taken from their original papers. LP-Net and JAA-Net are shortened as LP and JAA, respectively.

AU	LSVM	JPLM	DRML	CPM	EAC-Net	DSIN	CMS	LP	ARL	JAA	EAC-Net	CMS	ARL	JAA-Net
1	23.2	32.6	36.4	43.4	39.0	51.7	49.1	43.4	45.8	53.8	68.9	55.9	73.9	75.2
2	22.8	25.6	41.8	40.7	35.2	50.4	44.1	38.0	39.8	47.8	73.9	67.7	76.7	80.2
4	23.1	37.4	43.0	43.3	48.6	56.0	50.3	54.2	55.1	58.2	78.1	71.5	80.9	82.9
6	27.2	42.3	55.0	59.2	76.1	76.1	79.2	77.1	75.7	78.5	78.5	81.3	78.2	79.8
7	47.1	50.5	67.0	61.3	72.9	73.5	74.7	76.7	77.2	75.8	69.0	71.9	74.4	72.3
10	77.2	72.2	66.3	62.1	81.9	79.9	80.9	83.8	82.3	82.7	77.6	77.3	79.1	78.2
12	63.7	74.1	65.8	68.5	86.2	85.4	88.3	87.2	86.6	88.2	84.6	87.4	85.5	86.6
14	64.3	65.7	54.1	52.5	58.8	62.7	63.9	63.3	58.8	63.7	60.6	69.5	74.2	62.8
15	18.4	38.1	33.2	36.7	37.5	37.3	44.4	45.3	47.6	43.3	73.1	71.6	84.7	81.0
17	33.0	40.0	48.0	50.4	59.1	62.9	60.3	60.5	61.6	61.8	79.6	73.7	74.1	72.8
23	19.4	30.4	31.7	39.5	35.9	38.8	41.4	48.1	47.4	46.5	81.0	74.6	82.9	82.9
24	20.7	42.3	30.0	37.8	38.5	41.6	51.2	55.4	49.9	82.4	84.1	85.7	86.3	
Avg	35.3	45.9	48.3	50.0	55.9	58.9	60.6	61.0	61.1	62.4	75.2	72.9	78.2	78.6

Mean error (%) and failure rate (%), where % is also omitted in the results.

4.2 Comparison with State-of-the-Art Methods

We compare our method JAA-Net against state-of-the-art single-frame based facial AU detection methods under the same evaluation setting. These methods include LSVM (Fan et al. 2008), JPML (Zhao et al. 2016a), APL (Zhang et al. 2015), AlexNet (Krizhevsky et al. 2012), DRML (Zhao et al. 2016b), CPM (Zeng et al. 2015), EAC-Net (Li et al. 2018), DSIN (Corneanu et al. 2018), CMS (Sankaran et al. 2019), LP-Net (Niu et al. 2019), and ARL (Shao et al. 2019a). Note that a few related works like CNN+LSTM (Chu et al. 2017) and R-T1 (Li et al. 2017) are not compared due to their inputs of a sequence of frames instead of a single frame.

Evaluation on BP4D. Table 2 reports the F1-frame and accuracy results of different methods on BP4D. It can be seen that our JAA-Net overall outperforms all previous works in terms of both F1-frame and accuracy metrics. JAA-Net is superior to all the conventional methods including LSVM, JPML, and CPM, which demonstrates the strength of deep learning based methods. Compared to the latest LP-Net and
JAA-Net: Joint Facial Action Unit Detection and Face Alignment via Adaptive Attention

Table 4 F1-frame and accuracy results for 10 AUs on GFT. The results of LSVM and AlexNet are from Girard et al. (2017).

AU	1	2	4	6	10	12	14	15	23	24	Avg
F1-Frame											
LSVM	38	32	13	67	64	78	15	29	-49	44	42.9
AlexNet	44	46	2	73	72	82	5	19	43	42	42.8
ARL	51.9	45.9	13.7	79.2	75.5	82.8	0.1	44.9	59.2	47.5	50.1
JAA-Net	46.5	49.3	19.2	79.0	75.0	84.8	44.1	33.5	54.9	50.7	53.7
Accuracy											
ARL	96.6	82.4	96.1	89.0	87.5	90.3	97.0	91.1	80.4	83.6	89.4
JAA-Net	96.2	87.4	96.3	89.4	88.5	91.8	97.2	91.4	79.8	86.7	90.5

Table 5 F1-frame and accuracy results for 12 AUs of cross-dataset evaluation on BP4D+.

AU	1	2	4	6	7	10	12	14	15	17	23	24	Avg
F1-Frame													
ARL	29.9	33.1	27.1	81.5	83.0	84.8	86.2	59.7	44.6	43.7	48.8	32.3	54.6
JAA-Net	39.7	35.6	30.7	82.4	84.7	88.8	87.0	62.2	46.4	48.9	36.0	56.8	
Accuracy													
ARL	67.2	82.8	84.4	80.3	77.8	80.7	82.9	59.1	88.0	75.1	83.9	93.2	79.6
JAA-Net	79.3	85.1	85.1	80.8	79.1	85.0	83.3	61.3	89.8	82.1	83.3	90.7	82.1

Table 6 The structures of different variants of JAA-Net. R: region layer (Zhao et al. 2016b). HMR: hierarchical and multi-scale region layer. GF: global feature learning. C: multi-label cross entropy loss. D: multi-label Dice coefficient loss. W: w_i for weighting the loss of each AU. FA: face alignment module. IF: integrating the face alignment feature, global feature, and assembled local features if they are available. LF: local AU feature learning with input attention maps. AR: AU attention refinement. “w/o” is the abbreviation of “without”.

Method	R	HMR	GF	C	D	W	FA	IF	LF	AR	\(E_{\text{local,\mu}} \)
R-Net	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓
H-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
HD-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
HDW-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
J-Net w/o IF	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
J-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
JA-Net w/o GF	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
JA-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
JAA-Net w/o E_{local,\mu}	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
JAA-Net	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

ARL methods, JAA-Net still achieves higher average F1-frame and average accuracy. Note that CMS shows good F1-frame results but poor accuracy results. In contrast, our method obtains high accuracy without sacrificing F1-frame, which is attributed to the integration of the cross entropy loss and the Dice coefficient loss in Eq. (6).

Evaluation on DISFA. Experimental results on DISFA are shown in Table 3, from which it can be observed that our JAA-Net outperforms all the state-of-the-art works with even more significant improvements. Specifically, JAA-Net increases the average F1-frame and average accuracy by large margins of 4.8 and 0.7 over ARL, respectively. Due to the serious data imbalance issue in DISFA, performances of different AUs fluctuate severely in most of the previous methods. For instance, the accuracy of AU 12 is far higher than that of other AUs for LSVM and APL. Although EAC-Net processes the imbalance problem explicitly, its detection result for AU 26 is much worse than others. In contrast, our method uses \(w_i \) to weight the loss of each AU in Eqs. (4) and (5), which contributes to the more balanced and better results.

Evaluation on GFT. Table 4 shows the F1-frame and accuracy results of our JAA-Net and previous works on GFT. Compared to the state-of-the-art ARL, JAA-Net achieves better performance with average F1-frame and average accuracy of 53.7 and 90.5, respectively. We notice that the numerical results of our JAA-Net on GFT are lower than those on BP4D and DISFA. This is because BP4D and DISFA images are mainly near-frontal faces while GFT images are more challenging with larger pose variations. We will further evaluate our method under non-frontal poses in Sec. 4.6.

Evaluation on BP4D+. The above experiments have demonstrated that our method works well for within-dataset evaluations. To perform a cross-dataset evaluation, we train JAA-Net on all the BP4D images and test on the entire BP4D+ dataset. Table 5 presents the results of JAA-Net and ARL on BP4D+. We can see that our JAA-Net outperforms ARL by 2.2 and 2.5 in terms of average F1-frame and average accuracy, respectively. Despite the domain gap between BP4D and BP4D+, the achieved performance validates the good generalization ability of our method.

4.3 Ablation Study

4.3.1 Each Component in JAA-Net

To investigate the effectiveness of each component in our JAA-Net framework, we implement different variants of JAA-
Net, as summarized in Table 6. R-Net is a baseline method which is composed by a region learning module with $R(i, l, c)$ and $R(1/2, 1/2, 2c)$, the global feature learning module, and the two fully-connected layers with dimensions d and $2n_{au}$. Besides, it only employs a multi-label cross entropy loss. JAA-Net is named because of Joint learning and Adaptive Attention. In this way, J-Net only considers Joint learning, and JAA-Net further uses predefined Attention maps to extract local AU features. Table 7 presents the results of different variants of JAA-Net on BP4D benchmark.

Hierarchical and Multi-Scale Region Layer
Comparing the results of H-Net with R-Net, we can observe that our proposed hierarchical and multi-scale region layer improves the performance of AU detection. This is due to that multi-scale partitions help adapt to AUs with different sizes, and hierarchical structure enlarges receptive fields on top of the region layer (Zhao et al. 2016b). In addition to the stronger feature learning ability, the hierarchical and multi-scale region layer utilizes fewer parameters. As illustrated in Fig. 2, except for the common first plain convolutional layer, the parameters of $R(l_1, l_2, c_1)$ is $(3 \times 3 \times 4c_1 + 1) \times 4c_1 \times 8 \times 8 = 9216c_1^2 + 256c_1$, while the parameters of $R_{mm}(l_1, l_2, c_1)$ is $(3 \times 3 \times 4c_1 + 1) \times 2c_1 \times 8 \times 8 + (3 \times 3 \times 2c_1 + 1) \times c_1 \times 4 \times 4 + (3 \times 3 \times c_1 + 1) \times c_1 \times 2 = 4932c_1^2 + 148c_1$, where adding 1 corresponds to the biases of convolutional filters.

Dice Coefficient Loss
By integrating the Dice coefficient loss with the cross entropy loss, HD-Net achieves higher average F1-frame and average accuracy than H-Net. This prof- its from the Dice coefficient loss which optimizes networks from the perspective of the evaluation metric F1-score. The cross entropy loss is effective for classification, but often makes the predictions strongly bias towards non-occurrence for some AUs with low occurrence rates in the training set. The Dice coefficient loss can suppress the prediction bias by focusing on precision and recall which are both related to the true positive.

Weighting the Loss of Each AU
After using w_j to weight the loss of each AU, HDW-Net improves the average F1-frame and average accuracy to be 57.4 and 76.4 over HD-Net, respectively. Benefiting from the weighting to address the data imbalance issue, our method obtains more significant and balanced performance.

Integration of Features
Compared to HD-Net, J-Net w/o IF achieves better results by adding the face alignment module, in which the face alignment feature is not fed into AU detection. When integrating the face alignment feature and the global feature for AU detection, J-Net further improves the AU detection performance. These demonstrate that the joint learning with face alignment contributes to AU detection.

When integrating the two tasks deeper by utilizing the estimated landmarks to generate predefined attention maps, J-Net w/o GF advances the average F1-frame from level 58 to level 59. Specifically, JAA-Net w/o GF element-wise multiplies predefined attention maps with the multi-scale feature, and only integrating the face alignment feature and the assembled local features. Its improvement over J-Net shows the effectiveness of the assembled local features. Since the

Table 7 F1-frame and accuracy results for 12 AU of different variants of our JAA-Net on BP4D.

AU	1	2	3	4	6	7	10	12	14	15	17	23	Avg
R-Net	39.9	37.6	48.2	73.6	71.3	81.4	84.7	85.8	72.8	59.1	35.9	39.6	54.9
H-Net	43.9	46.4	51.4	74.3	70.0	79.5	85.1	55.9	28.9	58.2	35.4	40.1	55.8
HD-Net	39.7	41.5	51.4	75.4	70.8	82.9	85.3	58.9	33.3	59.9	40.7	39.3	56.6
HDW-Net	43.4	41.5	51.3	75.5	72.3	82.8	85.9	60.2	34.0	62.0	38.2	41.5	57.4
J-Net w/o IF	42.4	40.2	54.4	76.0	70.3	81.4	86.5	59.2	39.6	61.1	42.2	42.3	58.0
J-Net	46.4	44.2	48.9	73.9	71.1	78.5	84.7	60.2	43.5	60.0	45.4	49.0	58.8
JA-Net w/o GF	47.1	42.8	51.5	75.0	74.2	78.7	85.8	58.1	45.6	58.2	45.8	49.4	59.3
JA-Net	48.3	44.2	52.9	75.7	74.3	82.1	87.6	61.0	39.7	63.1	42.8	46.9	59.9
JAA-Net w/o $E_{local, au}$	48.8	43.1	50.6	77.1	76.6	81.4	87.1	64.0	43.8	61.0	46.9	52.0	61.0
JAA-Net ($\xi = 0$)	53.8	47.8	58.2	78.5	75.8	82.7	88.2	63.7	43.3	61.8	45.6	49.9	62.4
JAA-Net ($\xi = 0$)	45.6	45.9	53.7	76.3	73.8	81.5	88.6	62.8	48.8	62.4	48.7	53.0	61.8
JA-Net ($\xi = 0$)	49.7	41.7	54.3	77.0	75.3	82.5	88.3	60.1	49.4	58.8	45.6	49.4	61.0

1 Zhiwen Shao²,³ et al.
global feature can provide useful global facial information, JAA-Net achieves better performance with the average F1-frame of 59.9 by adding the global feature. However, the predefined attention maps use a fixed size and a fixed attention distribution for each sub-ROI and completely ignore regions beyond the sub-ROIs, which makes JAA-Net fail to adapt to AUs with different sizes and exploit correlations among different facial parts.

Adaptive Attention Learning. To adapt to various AUs, our JAA-Net employs the AU attention refinement step to adaptively learn attention maps, and uses the local AU detection loss $E_{local, au}$ to supervise the attention refinement. The comparison results of JA-Net, JAA-Net w/o $E_{local, au}$ and JAA-Net demonstrate that AU attention refinement and $E_{local, au}$ are both beneficial for extracting precise local AU features so as to facilitate AU detection.

For JAA-Net, each AU sub-ROI is predefined with an approximate Gaussian attention distribution. To validate the robustness of our proposed adaptive attention learning, we set $\xi = 0$ to give predefined attention weight value 1 for all the points in the sub-ROIs. We can observe that JAA-Net ($\xi = 0$) achieves comparable performance to JAA-Net. Besides, we show the results of the JAA-Net $E_{local, au}$ whose average F1-frame 61.0 and average accuracy 78.0 are worse than 62.4 and 78.6 of the final predictions \hat{p}_i. This again indicates the usefulness of face alignment feature and global feature.

4.3.2 Different Strategies for Adaptive Attention Learning

In the earlier conference version (Shao et al. 2018), an alternative strategy for adaptive attention learning is proposed. In particular, to enhance the supervision from $E_{all, au}$ on the AU attention refinement step, a back-propagation enhancement method is proposed to enlarge the back-propagated gradients for each attention map:

$$\frac{\partial E_{all, au}}{\partial V_i} \leftarrow \lambda_e \frac{\partial E_{all, au}}{\partial V_i}$$

where $\lambda_e \geq 1$ is the enhancement coefficient. By enhancing the gradients from $E_{all, au}$, the attention maps are performed stronger adaptive refinement. The default value of λ_e is 2.

Besides, to avoid the refined attention maps deviating too far from the predefined attention maps, a constraint is introduced for AU attention refinement:

$$E_r = \sum_{i=1}^{n_a} \sum_{k=1}^{n_m} |v_{ik} \log \hat{v}_{ik} + (1 - v_{ik}) \log (1 - \hat{v}_{ik})|,$$

where $n_{am} = l \times 4 \times 1 / 4$ is the number of points in each refined attention map, and each predefined attention map with size $l_{pre} \times l_{pre} \times 1$ is resized to be $1 \times 4 \times 1 / 4$ as the ground truths. Eq. (9) essentially measures the cross entropy between the refined and predefined attention maps.

The results using the back-propagation enhancement and the refinement constraint E_r are shown in Table 8. JAA-Net w/o $E_{local, au} + BE$ is the re-implementation of the earlier version (Shao et al. 2018). We can observe that JAA-Net w/o $E_{local, au} + BE$ achieves better performance than JAA-Net w/o $E_{local, au}$, which demonstrates the effectiveness of the back-propagation enhancement. However, after further employing the E_r, the results of JAA-Net w/o $E_{local, au} + BE + E_r$ become worse. This because E_r enforces a limited solution space for the refinement of attention maps, in which the optimal solutions are often ignored.

We also notice that JAA-Net w/o $E_{local, au} + BE$ ($\lambda_e = 3$) fails to obtain better results than JAA-Net w/o $E_{local, au} + BE$ when the value of λ_e is increased from 2 to 3. This indicates that the selection of λ_e value is important. In addition, the information of irrelevant AUs from $E_{all, au}$ may disturb the attention refinement of current AU. Instead, we introduce the local AU detection loss $E_{local, au}$ to generalize the idea of back-propagation enhancement, in which the influence of irrelevant AUs is also avoided. Besides, we discard the the refinement constraint E_r to learn more precise attention maps. In this way, our JAA-Net is more general and achieves better performance than the earlier version (Shao et al. 2018).
w/o $E_{\text{local, au}} + BE + E_r$ both adjust the predefined size and the predefined attention distribution of each AU sub-ROI. We can see that JAA-Net adaptively refines the attention maps within a larger range so as to capture more accurate irregular region of each AU than JAA-Net w/o $E_{\text{local, au}} + BE + E_r$. For example, AUs 12, 14, and 15 with different characteristics have the same predefined attention maps. The refined attention maps of these AUs by JAA-Net w/o $E_{\text{local, au}} + BE + E_r$ are similar, while their refined attention maps by JAA-Net look different. We also notice that there are low attentions in regions beyond the sub-ROIs for the refined attention maps, which contributes to exploiting correlations among different facial parts. With the adaptively refined attention maps, our JAA-Net can accurately capture the local feature with respect to each AU.

Fig. 4 also presents the learned attention maps of a recent method ARL (Shao et al. 2019a). It learns the attention map of each AU only with the supervision of AU detection. We can see that each learned attention map by ARL captures the rough AU region as well as other correlated regions. However, some irrelevant regions are also captured, which have a bad impact on AU detection. On the other hand, our JAA-Net can accurately detect the irregular region of each AU with the help of landmark knowledge, while the regions beyond the irregular sub-ROIs are treated with equal importance. Although a few correlated regions far from the sub-ROIs are not highlighted, the use of the face alignment feature and global feature can supplement other required information. Moreover, the comparison results in Sec. 4.2 also demonstrate better performance of our JAA-Net than ARL.

4.4 JAA-Net for Face Alignment

We have validated the contribution of face alignment to AU detection in Sec. 4.3.1. To also investigate the effectiveness of AU detection for face alignment, we implement a baseline face alignment method called JAA-Net w/o AU which only achieves the face alignment task with the removal of AU detection components. Specifically, it consists of the hierarchical and multi-scale region learning module, face alignment module, and two fully-connected layers with di-
4.5 JAA-Net for Faces with Partial Occlusions

In this section, we investigate the influences of partial occlusions on AU detection. Following the settings of Li et al. (2018); Shao et al. (2019a), we directly employ the trained JAA-Net models on BP4D via 3-fold cross-validation to evaluate the corresponding testing set with partial occlusions. Specifically, each testing face is occluded with only lower, upper, right, and left half-faces visible, respectively. Fig. 6 illustrates an example face with different partial occlusions.

The F1-frame results of EAC-Net (Li et al. 2018), ARL (Shao et al. 2019a), and JAA-Net on partially occluded BP4D faces are shown in Table 10. Note that the prediction of each “None” testing image is fixed, which is treated as a baseline. Due to the zero values of all image pixels, the prediction of a “None” image only depends on statistics, i.e. the occurrence rate of each AU in the training set.
Table 11 Overall F1-frame results on all the 9 poses of FERA 2017.

AU	CRF	EAC-Net	ARL	JAA-Net
1	15.4	27.2	24.0	30.2
4	17.2	**33.2**	28.0	28.8
6	56.4	**69.9**	68.3	68.2
7	72.7	**80.8**	78.1	78.2
10	69.2	**83.4**	75.7	78.3
12	64.7	**80.2**	76.3	77.8
14	62.2	62.1	62.7	**67.4**
15	14.6	25.1	30.0	**30.6**
17	22.4	34.2	37.9	**41.9**
23	20.7	26.1	**39.8**	31.2
Avg	41.6	52.2	52.1	**53.3**

Compared to EAC-Net and ARL, our JAA-Net achieves competitive performance for images with half-faces occluded. In addition, the average F1-frame results of JAA-Net for the four half-face occlusions are more balanced than those of EAC-Net and ARL, which demonstrates the robustness of JAA-Net on partial occlusions. This is partially due to that our JAA-Net jointly trains AU detection and face alignment, and uses predicted landmarks to predefine attention maps, in which the implicit constraint of facial shape contributes to the robustness of landmark detection on occlusions. We also notice that the predictions of most occluded AUs in half-face images are better than “None” images. Besides, compared to “Full”, the predictions of almost all AUs become worse in half-face images, even though these AUs are not occluded. These indicate that correlations among AUs are beneficial for the detection of a single AU, in which its prediction requires information from correlated AUs in other facial parts.

4.6 JAA-Net for Faces with Non-Frontal Poses

To evaluate our JAA-Net on faces with non-frontal head poses, we conduct an experiment on FERA 2017 (Valstar et al. 2017) benchmark. FERA 2017 includes BP4D (Zhang et al. 2014a) and BP4D+ (Zhang et al. 2016a) with 9 poses, in which each face image is rotated with pitch angles of -40, -20, 0, 40, -40, and 40 degrees, and yaw angles of -40, 0 and 40 degrees from its frontal pose, respectively. The nine poses of an example face is illustrated in Fig. 7. Similar to Li et al. (2018); Shao et al. (2019a), we utilize BP4D with 41 subjects for training, a subset of BP4D+ with 20 subjects for testing, in which 10 AUs (1, 4, 6, 7, 10, 12, 14, 15, 17, and 23) are evaluated. We compare JAA-Net against state-of-the-art methods including CRF (Lafferty et al. 2001), EAC-Net (Li et al. 2018), and ARL (Shao et al. 2019a). CRF is implemented by Valstar et al. (2017) as a baseline method.

Table 11 shows the overall F1-frame results on all the 9 poses. We can see that our JAA-Net outperforms all the other methods. Since facial shape formed by landmarks is related to head poses, the joint learning with face alignment in JAA-Net contributes to AU detection. We also present the F1-frame results for each pose in Table 12. It can be observed that our JAA-Net achieves the best performance in terms of average F1-frame for most poses (2, 3, 4, 6, and 9). This demonstrates that our method is robust to faces with various non-frontal poses.

5 Conclusion

In this paper, we have developed a novel deep learning framework for joint facial AU detection and face alignment. Joint learning of the two tasks contributes to each other by sharing features and initializing the attention maps with the face alignment results. In addition, we have proposed the adaptive attention learning module to localize irregular regions of AUs adaptively so as to extract more precise local features. Our framework is end-to-end without any post-processing operation.

We have compared our approach with state-of-the-art methods on the challenging BP4D, DISFA, GFT, and BP4D+ benchmarks. It is demonstrated that our approach significantly outperforms the state-of-the-art AU detection methods, in terms of both within-dataset evaluation and cross-dataset evaluation. In addition, we have conducted an ablation study which indicates that each component in our framework is beneficial for AU detection, and the introduced local AU detection loss is an effective strategy for adaptive attention learning. Besides, the visual results demonstrate that our approach can adaptively capture the irregular region of each AU.

We have further compared our approach against a baseline method with the removal of AU detection components, as well as state-of-the-art face alignment methods. The results indicate that AU detection also contributes to face alignment, and our approach achieves competitive face alignment performance. Moreover, we have conducted experiments to validate the effectiveness and robustness of our framework on faces with partial occlusions and non-frontal poses, respectively. Our proposed framework is also promising to be applied for other face analysis tasks and other multi-task problems.
AU	1	2	3	4	5	6	7	8	9
CRF	10.3	15.0	13.6	19.3	16.4	21.7	18.0	12.1	10.0
EAC-Net	18.8	37.5	22.1	10.1	40.0	66.7	40.1	33.3	40.0
CRF	15.0	15.9	14.8	19.1	19.0	18.3	20.2	20.2	17.5
EAC-Net	7.0	40.0	33.3	40.0	30.7	66.7	25.0	18.2	8.0
CRF	50.5	55.7	13.4	68.9	74.7	72.4	56.0	53.2	49.3
EAC-Net	66.7	66.7	72.2	60.8	68.2	80.0	69.2	75.0	52.1
CRF	72.1	72.9	41.3	74.6	79.7	78.7	71.6	74.7	75.8
EAC-Net	66.7	62.9	73.1	75.7	85.7	85.7	83.7	84.7	73.3
CRF	55.4	71.0	64.2	77.7	77.6	75.0	63.9	67.9	65.9
EAC-Net	85.0	69.2	76.9	83.3	90.9	75.0	62.8	92.3	82.8
CRF	52.2	67.8	18.4	87.6	80.9	77.1	59.6	63.8	60.1
EAC-Net	74.3	68.5	85.1	74.2	86.7	66.7	64.3	84.2	72.0
CRF	51.5	56.3	9.0	67.5	72.4	74.4	61.9	67.0	67.8
EAC-Net	66.7	51.1	51.2	68.9	59.3	50.0	60.0	61.2	74.1
CRF	15.1	15.0	14.2	14.6	14.6	14.3	15.9	15.2	15.9
EAC-Net	57.1	5.1	36.4	25.0	28.6	10.2	7.0	40.0	11.8
CRF	17.3	25.1	23.5	24.2	24.6	24.1	22.0	21.1	19.5
EAC-Net	23.5	36.4	34.7	35.3	46.2	50.0	58.8	21.4	44.4
CRF	22.7	22.9	19.9	20.8	19.6	16.6	20.1	20.1	20.8
EAC-Net	44.4	36.3	7.3	57.1	47.1	6.3	9.0	46.2	11.7
Avg	36.0	41.8	23.2	46.5	48.2	46.8	40.8	41.8	40.4
EAC-Net	50.3	46.9	48.5	52.1	58.3	54.1	46.4	55.7	46.2

Table 12 F1-frame results for each of the 9 poses of FERA 2017. The best average results of all methods for each pose are shown in bold.

Acknowledgements This work is supported by the National Natural Science Foundation of China (No. 61972157). It is also partially supported by the Data Science & Artificial Intelligence Research Centre@NTU (DSAIR) and Monash FIT Start-up Grant.

References

Benitez-Quiroz CF, Srinivasan R, Martinez AM, et al. (2016) Emoti-onet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 5562–5570

Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2018) Openpose: real-time multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:181208008

Chu WS, De la Torre F, Cohn JF (2017) Learning spatial and temporal cues for multi-label facial action unit detection. In: IEEE International Conference on Automatic Face & Gesture Recognition, IEEE, pp 25–32

Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6):681–685

Corneanu CA, Simón MO, Cohn JF, Guerrero SE (2016) Survey on rgb, 3d, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(8):1548–1568

Corneanu CA, Madadi M, Escalera S (2018) Deep structure inference network for facial action unit recognition. In: European Conference on Computer Vision, Springer, pp 309–324

Ekman P, Friesen WV (1978) Facial action coding system: A technique for the measurement of facial movement. Consulting Psychologists Press

Ekman P, Friesen WV, Hager JC (2002) Facial action coding system. Research Nexus

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) Liblinear: A library for large linear classification. Journal of Machine Learning Research 9(Aug):1871–1874

Girard JM, Chu WS, Jeni LA, Cohn JF (2017) Sayette group formation task (gft) spontaneous facial expression database. In: IEEE International Conference on Automatic Face & Gesture Recognition, IEEE, pp 581–588

Gadi A, Tashi HE, Den Uyl TM, Maroulis A (2015) Deep learning based face action unit occurrence and intensity estimation. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, IEEE, vol 6, pp 1–5

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 770–777

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp 448–456

Jeni LA, Cohn JF, Kanade T (2017) Dense 3d face alignment from 2d video for real-time use. Image and Vision Computing 58:13–24

Kazemi V, Sullivan J (2014) One millisecond face alignment with an ensemble of regression trees. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 1867–1874

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, Curran Associates, Inc., pp 1097–1105

Lafferty J, McCallum A, Pereira FC (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp 282–289

Li W, Abtahi F, Zhu Z, Yin L (2017) Action unit detection with region adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 488–496

Li W, Abtahi F, Zhu Z, Yin L (2018) Eac-net: Deep nets with enhancing region adaptation for facial action unit detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(11):2583–2596

IEEE Transactions on Pattern Analysis and Machine Intelligence 40(11):2583–2596

IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 25–32
Li Y, Wang S, Zhao Y, Ji Q (2013) Simultaneous facial feature tracking and expression recognition. IEEE Transactions on Image Processing 22(7):2559–2573
Martinez B, Valstar MF, Jiang B, Pantic M (2019) Automatic analysis of facial actions: A survey. IEEE Transactions on Affective Computing 10(3):325–347
Mavadati SM, Mahoor MH, Bartlett K, Trinh P, Cohn JF (2013) Disfa: A spontaneous facial action intensity database. IEEE Transactions on Affective Computing 4(2):151–160
Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, IEEE, pp 565–571
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning, pp 807–814
Niu X, Han H, Yang S, Huang Y, Shan S (2019) Local relationship learning with person-specific shape regularization for facial action unit detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 11917–11926
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, Curran Associates, Inc., pp 8024–8035
Ranjan R, Patel VM, Chellappa R (2019) Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 41(1):121–135
Sanchez E, Tzimopoulos G, Valstar M (2018) Joint action unit localisation and intensity estimation through heatmap regression. In: British Machine Vision Conference, BMVA Press, p 233
Sankaran N, Mohan DD, Setlur S, Govindaraju V, Fedorishin D (2019) Representation learning through cross-modality supervision. In: IEEE International Conference on Automatic Face & Gesture Recognition, IEEE, pp 1–8
Shao Z, Ding S, Zhao Y, Zhang Q, Ma L (2016) Learning deep representation from coarse to fine for face alignment. In: IEEE International Conference on Multimedia and Expo, IEEE, pp 1–6
Shao Z, Liu Z, Cai J, Ma L (2018) Deep adaptive attention for joint facial action unit detection and face alignment. In: European Conference on Computer Vision, Springer, pp 725–740
Shao Z, Liu Z, Cai J, Wu Y, Ma L (2019a) Facial action unit detection using attention and relation learning. IEEE Transactions on Affective Computing
Shao Z, Zhu H, Tan X, Hao Y, Ma L (2019b) Deep multi-center learning for face alignment. Neurocomputing
Simon T, Joo H, Matthews I, Sheikh Y (2017) Hand keypoint detection in single images using multiview bootstrapping. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 4645–4653
Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp 1139–1147
De la Torre F, Chu WS, Xiong X, Vicente F, Ding X, Cohn JF (2015) Intraface. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, IEEE, pp 1–8
Valstar M, Pantic M (2006) Fully automatic facial action unit detection and temporal analysis. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop, IEEE, pp 149–149
Valstar MF, Sánchez-Lozano E, Cohn JF, Jeni LA, Girard JM, Zhang Z, Yin L, Pantic M (2017) Fera 2017-addressing head pose in the third facial expression recognition and analysis challenge. In: IEEE International Conference on Automatic Face & Gesture Recognition, IEEE, pp 839–847
Wu Y, Ji Q (2016) Constrained joint cascade regression framework for simultaneous facial action unit recognition and facial landmark detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3400–3408
Wu Y, Gou C, Ji Q (2017) Simultaneous facial landmark detection, pose and deformation estimation under facial occlusion. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3471–3480
Xiong X, De la Torre F (2013) Supervised descent method and its applications to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 532–539
Zeng J, Chu WS, De la Torre F, Cohn JF, Xiong Z (2015) Confidence preserving machine for facial action unit detection. In: IEEE International Conference on Computer Vision, IEEE, pp 3622–3630
Zhang X, Yin L, Cohn JF, Canavan S, Reale M, Horowitz A, Liu P, Girard JM (2014a) Bp4d spontaneuous: a high-resolution spontaneous 3d dynamic facial expression database. Image and Vision Computing 32(10):692–706
Zhang Z, Luo P, Loy CC, Tang X (2014b) Facial landmark detection by deep multi-task learning. In: European Conference on Computer Vision, Springer, pp 94–108
Zhang Z, Girard JM, Wu Y, Zhang X, Liu P, Cifci U, Canavan S, Reale M, Horowitz A, Yang H, Cohn JF, Ji Q, Yin L (2016a) Multimodal spontaneous emotion corpus for human behavior analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3438–3446
Zhang Z, Luo P, Loy CC, Tang X (2016b) Learning deep representation for face alignment with auxiliary attributes. IEEE Transactions on Pattern Analysis and Machine Intelligence 38(5):918–930
Zhao K, Chu WS, De la Torre F, Cohn JF, Zhang H (2015) Joint patch and multi-label learning for facial action unit detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 2207–2216
Zhao K, Chu WS, De la Torre F, Cohn JF, Zhang H (2016a) Joint patch and multi-label learning for facial action unit and holistic expression recognition. IEEE Transactions on Image Processing 25(8):3931–3946
Zhao K, Chu WS, Zhang H (2016b) Deep region and multi-label learning for facial action unit detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3391–3399
Zhong L, Liu Q, Yang P, Huang J, Metaxas DN (2015) Learning multi-scale active facial patches for expression analysis. IEEE Transactions on Cybernetics 45(8):1499–1510