Leveraging Term Banks for Answering Complex Questions:
A Case for Sparse Vectors

Peter D. Turney
Allen Institute for Artificial Intelligence
2157 N Northlake Way Suite 110, Seattle, WA 98103
peter.turney@gmail.com

Abstract

While open-domain question answering (QA) systems have proven effective for answering simple questions, they struggle with more complex questions. Our goal is to answer more complex questions reliably, without incurring a significant cost in knowledge resource construction to support the QA. One readily available knowledge resource is a term bank, enumerating the key concepts in a domain. We have developed an unsupervised learning approach that leverages a term bank to guide a QA system, by representing the terminological knowledge with thousands of specialized vector spaces. In experiments with complex science questions, we show that this approach significantly outperforms several state-of-the-art QA systems, demonstrating that significant leverage can be gained from continuous vector representations of domain terminology.

In our experiments, we made the surprising discovery that dense, low-dimensional embeddings (used in many AI systems) were not the most effective representation, and that sparse, high-dimensional vector spaces performed better. We discuss the reasons for this, and the implications this may have for other projects that have assumed embeddings are the best continuous representation.

1 Introduction

Open-domain question answering (QA) systems typically use information retrieval (IR) techniques to answer questions by searching in a large corpus of natural language text (Strzalkowski and Harabagiu, 2006). They support relatively simple queries, such as questions about facts involving named entities. More complex queries are possible with restricted-domain QA systems (Mollá and Vicedo, 2007). These systems generally use classical AI techniques, such as rule-based systems with knowledge bases.

We aim to answer complex questions in a restricted domain without the use of knowledge bases or other expensive resources. Our chosen domain is science at the levels of elementary school (3rd to 5th grade) and middle school (6th to 8th grade). We use multiple-choice science exam questions to evaluate our QA system. Figure 1 shows an example of a middle school exam question.

Which of the following statements best explains why earthquakes occur more frequently in California than in Massachusetts?

(A) The rock found in California is igneous, but the rock found in Massachusetts is sedimentary.
(B) California is located on the boundary of two crustal plates, but Massachusetts is not.
(C) The rock under California is soft, but the rock under Massachusetts is hard.
(D) California is located on a continental plate, but Massachusetts is not.

Figure 1: A middle school multiple-choice exam question. The correct answer is (B).

Several recent papers address answering multiple-choice science exam questions (Khot et al., 2015; Clark et al., 2016; Jauhar et al., 2016; Khashabi et al., 2016). Multiple-choice exams are an excellent bench-
mark for QA systems, since the questions are complex, yet performance is easily measured.

Our approach to restricted-domain QA is to assume that the domain will have a specific vocabulary, in the form of a term bank, which can guide the QA system. The intuition is, for every question, there is a key concept that links the question to the best answer. If we can identify the term that expresses the key concept, then we have an excellent guide to finding the correct answer. This intuition is related to lexical cohesion in discourse. Morris and Hirst (1991) describe lexical cohesion as “the cohesion that arises from semantic relationships between words”, resulting from “chains of related words that contribute to the continuity of lexical meaning.”

We use a term bank to find a cohesive link between a question and a candidate answer. For each candidate answer, we search for the term that provides maximal lexical cohesion between the question and the answer. The best candidate is the choice with the highest lexical cohesion with the question.

Our QA system, Multivex, uses an unsupervised method to build three types of vector spaces: terminology space, word space, and sentence space. Terminology space is designed for finding a term in the term bank that links a question to a candidate answer with strong lexical cohesion. Word space is designed to characterize a word by the context in which the word appears. Sentence space is designed to characterize a sentence by the words that it contains.

There is only one terminology space, which contains one vector for each term in the term bank. There are thousands of word spaces and sentence spaces, one for each term in the term bank. The vector representation of a word or a sentence is modulated by the term bank. A word or sentence has no global vector representation; it only has a representation with respect to a given term.

For example, consider Figure 1. Terminology space tells us that the term earthquakes has a high lexical cohesion with the question and answer (B). The word space for earthquakes tells us that the word plates often appears in the context crustal. The sentence space for earthquakes tells us that the question as a whole is similar to the kinds of sentences that occur in the earthquakes sentence space. The three spaces all agree that there is a high lexical cohesion between the question and answer (B).

In our prototypes of Multivex, at first we used dense, low-dimensional embeddings for our vector spaces, since embeddings have achieved impressive results on a variety of tasks (Mikolov et al., 2013a). We were surprised to later find that sparse, high-dimensional vector spaces yielded better results.

The reason sparse vectors work well in our QA system is that rare word co-occurrences provide the strongest evidence for lexical cohesion. When a term such as earthquakes links plates and crustal, this is a rare event that signals an important connection. The problem with dense, low-dimensional embeddings is that they smooth away rare events. Dense embeddings are good for capturing the general usage of a word such as plates, but they ignore specialized word senses, such as crustal plates.

We have two main results: (1) Leveraging term banks is an inexpensive way to answer complex questions. Term banks are a good source for the concepts that make an answer lexically cohesive with a question. (2) Sparse vectors capture lexical cohesion better than dense vectors. Dense vectors are good for capturing the general sense of a word, but facts lie at the intersection of several word meanings; facts tend to be rare and specific, which makes sparse vectors more appropriate when seeking facts.

In the following section, we discuss related work with science exam questions and past analysis of sparsity versus density. Section 3 presents a detailed description of Multivex. In Section 4, we show that Multivex performs better on science exam questions than a strong IR baseline. We compare sparse vectors to Word2vec embeddings (Mikolov et al., 2013b) and truncated singular value decomposition (SVD) embeddings (Turney and Pantel, 2010), demonstrating that Multivex works best with sparse vectors. Section 5 discusses the results of the experiments. We consider limitations of Multivex in Section 6 and we conclude in Section 7.

2 Related Work

The first TREC (Text REtrieval Conference) QA task took place in 1999 (Voorhees, 1999). The task was to answer fact-based, short-answer, open-domain questions, mostly involving named entities, by retrieving small snippets of text. We now have ro-
bust, well-tested IR techniques for answering these kinds of questions and research is shifting to more challenging problems.

In this section, we discuss related work with science exam questions. Since embeddings are currently popular, our results with sparse vectors may be surprising; therefore we also discuss past work that compares sparse vectors to embeddings.

2.2 Sparsity and Density

Dense embeddings achieve good results on many tasks (Turney and Pantel, 2010). The classical approach to embeddings is to make a word–context co-occurrence matrix and then apply a dimensionality reduction algorithm (Landauer and Dumais, 1997). A more recent approach is to learn embeddings with a neural network (Mikolov et al., 2013a; Mikolov et al., 2013b). Baroni et al. (2014) described the classical approach as context-counting and the neural network approach as context-predicting. However, Levy et al. (2014b) argued the two approaches are learning the same latent structure.

Many papers report that dense embeddings are better than sparse vectors. For example, Landauer et al. (1997) achieved 64.4% on the TOEFL synonym test with embeddings from truncated SVD, but the original sparse matrix only achieves 36.8%.

In a series of papers, Levy et al. (2014a; 2014b; 2015) compared sparse and dense vectors. In summary, they reported that “there is no single method that consistently performs better than the rest” (Levy et al., 2015) and a sparse representation “is superior in some of the more semantic tasks” (Levy and Goldberg, 2014a). Toutanova et al. (2015) show that a sparse “observed features” model is better than a dense “latent feature” model for knowledge bases and textual inference.

3 Multivex

The inputs to Multivex are a term bank, a corpus, and a multiple-choice question. The output is the answer to the question. Multivex uses three types of spaces: terminology space, word space, and sentence space. Each term in the term bank maps to one row vector in the terminology matrix, one word matrix in the set of word matrices, and one sentence matrix in the set of sentence matrices. Table 1 summarizes the spaces.

Let q be a question with m possible answers $A = \{a_1, \ldots, a_m\}$ and let $T = \{t_1, \ldots, t_n\}$ be our term bank with n terms. Multivex scores each QA pair $\langle q, a_i \rangle$ with respect to a science term t_j. The score $score(q, a_i | t_j)$ is an average over eight subscores, four based on terminology space, two based on word space, and two based on sentence space. The final score for the pair $\langle q, a_i \rangle$ is the maximum score over all $t_j \in T$. The best guess for the correct answer to q is the answer a_* with the highest score over all $a_i \in A$ and all $t_j \in T$.

To construct these vector spaces for a given domain, we begin with a term bank for the domain and a large corpus of text, such that most of the terms in the term bank occur frequently in the corpus. We then build a set of pseudo-documents, one for each term, by taking the union of the sentences.
in the corpus that contain the given term. From the pseudo-documents, we build terminology space, word space, and sentence space. These three types of spaces are used to calculate $score(q, a_i|t_j)$.

3.1 Term Bank

In our case, the given domain is elementary and middle school science. The term bank consists of 9,356 terms from 52 science glossaries. Most of the glossaries came from K-12 (kindergarten and 1st to 12th grades) websites.

3.2 Corpus

The corpus consists of 280 GB of text (50 billion tokens) collected by a web crawler. All markup was removed from the web pages and the text was split into sentences with the Stanford CoreNLP sentence segmenter. We selected English text by requiring all sentences to contain English stop words, using the SMART stop word list (Salton, 1971). The result was 1.75 billion English sentences.

3.3 Pseudo-Documents

For each of the 9,356 science terms, we searched in the corpus for sentences that contained the given term. If there were fewer than ten sentences, we dropped the term, leaving us with 9,009 science terms. For each remaining term, we collected a maximum of 50,000 sentences, which formed the pseudo-document for the term.

3.4 Terminology Space

Terminology space is designed to find the best linking concept (the best science term) for a given QA pair. Terminology space consists of a single matrix with 9,009 rows, one row for each science term. Each row is a sparse vector with 22,767,476 columns, where the columns are features derived from the sentences in the pseudo-documents for the science terms. Each sentence was converted into a set of features, consisting of unigrams and conjunctions of unigrams. Sentences were tokenized with the Stanford CoreNLP tokenizer and tokens were stemmed and converted to lower case.

The motivation for the conjunction features is to represent potential cohesive links. For example, consider Figure 1. In the row vector for *earthquakes*, the conjunction feature *boundary & earthquake* has a high tf–idf (term frequency–inverse document frequency) weight (Salton and Buckley, 1988), and it links the word *earthquakes* in the question to the word *boundary* in the correct answer (B).

For a given row in the terminology matrix (corresponding to a unique science term and a unique pseudo-document), any unigram that occurred in ten or more sentences and did not appear in the SMART stop word list was selected as a feature for that row. Any two distinct unigrams (excluding stop words) that occurred together in the same sentence, in a window of ten words, in ten or more sentences were selected as a conjunction feature for that row. Conjunction features were normalized by putting the component unigrams in alphabetical order. Table 2 shows the top features for the term *earthquakes*.

Frequency	Feature
49,944	earthquake
4,149	flood
4,064	earthquake & flood
3,709	volcano
3,604	earthquake & volcano
3,254	earth
3,117	occur
3,062	earthquake & occur
2,969	natural
2,936	disaster

Table 2: The top features for *earthquakes*.

We convert the raw frequency counts into tf–idf values and binary values. Consider the conjunc-
tion feature earthquake & flood for the science term earthquakes. Suppose earthquakes corresponds to the i-th row in the terminology matrix and earthquake & flood corresponds to the j-th column. The term frequency \(tf_{ij} \) is the number of sentences in the pseudo-document for earthquakes that contain earthquake & flood; that is, \(tf_{ij} = 4,064 \) (see Table 2). The document frequency \(df_j \) is the number of pseudo-documents for which the feature is nonzero. The tf–idf weight \(w_{ij} \) for the feature earthquake & flood in the science term earthquakes is defined as follows:

\[
TF_{ij} = \frac{\log_{10}(tf_{ij} + 1)}{\max_j \log_{10}(tf_{ij} + 1)} \quad (1)
\]

\[
IDF_j = 1 - \frac{\log_{10}(df_j + 1)}{\max_j \log_{10}(df_j + 1)} \quad (2)
\]

\[
w_{ij} = TF_{ij} \cdot IDF_j \quad (3)
\]

The tf–idf weight \(w_{ij} \) ranges between 0 and 1. The binary weight is zero if the tf–idf weight is zero; otherwise, it is one.

3.5 Word Space

Word space is designed to characterize how a word behaves in the context of a given scientific term. For example, the context that surrounds the word boundary in sentences about earthquakes will be different from the context around boundary in sentences about solid state. The idea is to evaluate whether the words in a QA pair are being used in the QA pair in the same sense as they are used with the given scientific term. That is, the contexts in the QA pair should be similar to the contexts in the pseudo-document for the scientific term. If they are not similar, then the term is not a good match for the QA pair.

This can be viewed as a kind of word sense disambiguation. The vector representation of boundary is modulated by the scientific terms earthquakes and solid state. By choosing the term, we choose the sense of boundary (Reisinger and Mooney, 2010).

There are 9,009 word space matrices, one for each science term. The word matrix for a given science term is generated from the corresponding pseudo-document for the term. The rows in the word matrix correspond to all of the unigrams (excluding stop words) that occur ten or more times in the pseudo-document. For example, the word matrix for earthquakes has 5,385 rows, corresponding to 5,385 unique unigrams. The columns in the word matrix are features derived from the contexts around the words in the pseudo-document.

For a given row in a word matrix, the context for the corresponding word (unigram) is defined as all unigrams, bigrams, and trigrams that appear in a window of three words to the left and three words to the right of the given word, in all of the sentences in the given pseudo-document. The term frequency \(tf_{ij} \) for a contextual n-gram feature is the number of tokens of the given word, such that the n-gram occurs in the context of the token. The document frequency \(df_j \) is the number of words such that the n-gram appears in some context of the word. The weight \(w_{ij} \) is defined as in Equation 3.

3.6 Sentence Space

Sentence space is intended to model the typical sentences that contain the given science term. The aim is to treat the given QA pair as if it were a sentence, and then compare it to the sentences in sentence space. If the given scientific term is appropriate for the given QA pair, then the QA pair should be similar to sentences in the pseudo-document for the scientific term. For instance, one of the sentences in the pseudo-document for earthquakes is, “For example, major earthquakes regularly occur along California’s San Andreas fault – a giant fracture in the Earth that marks the boundary between the North American and Pacific tectonic plates.” Compare this sentence to the question in Figure 1. In this example, the sentence covers the QA pair thoroughly, but we do not assume that a single sentence will contain all of the information that we need to answer a question. Sentence space is used to calculate subscores that combine information from several parts of several sentences (see Section 3.7).

There are 9,009 sentence space matrices, one for each science term. The sentence matrix for a given science term is generated from the corresponding pseudo-document for the term. The rows correspond to all of the sentences in the pseudo-document. The columns correspond to all of the unigrams, bigrams, and trigrams in the pseudo-document. The sentence matrix for earthquakes has 50,000 rows, corresponding to the 50,000 sentences that appear in the pseudo-document for earthquakes.
For the sentence matrices, we found that binary vectors worked better than tf–idf weighted vectors. In other words, a sentence row vector is simply the set of n-grams that appear in the sentence.

3.7 Scoring QA Pairs

The score, $\text{score}(q, a_i | t_j)$, for a QA pair, (q, a_i), is the average of eight subscores that are calculated in four steps, two subscores per step. All of the subscores are designed to measure the lexical cohesion between the question and the candidate answer.

The subscores are weighted inner products of vectors. They all range from 0 to 1. To answer questions quickly, we do not calculate all subscores for every scientific term $t_j \in T$. As we go through each step, we only advance the best terms to the next step.

Step 1: terminology space with tf–idf weights: In this step, we calculate two subscores using the terminology matrix. We iterate over all 9,009 scientific terms, searching for the top ten terms that maximize the average of the first two subscores. The QA pair must be converted into unigrams and conjunctions, so that it can be compared to the row vectors in terminology space. We first process the question and the answer separately, generating unigrams and conjunctions for each as if they were two separate sentences. We then create further conjunction features by pairing every unigram in the question q with every unigram in the answer a_i.

Step 1.1: tf–idf weighted unigram match: Let $v_{ru}(t_j)$ be the sparse tf–idf row vector in terminology space that corresponds to the science term t_j, where the features are only unigrams; all conjunction features are dropped (ru for real-valued unigrams). Let $v_{bu}(q, a_i)$ be the sparse binary vector that represents the QA pair, where the features are only unigrams (bu for binary unigrams). We define the subscore for Step 1.1 as follows:

$$\text{score}_{1.1}(q, a_i | t_j) = \frac{v_{ru}(t_j) \cdot v_{bu}(q, a_i)}{|v_{bu}(q, a_i)|_1}$$

(4)

Here $|x|_1$ is the L1 norm of the vector x and $x \cdot y$ is the inner product of the vectors x and y.

Step 1.2: tf–idf weighted conjunction match: Let $v_{rc}(t_j)$ be the sparse tf–idf row vector in terminology space that corresponds to the science term t_j, where the features are only conjunctions; all unigram features are dropped (rc for real-valued conjunctions). Let $v_{bc}(q, a_i)$ be the sparse binary vector that represents the QA pair, where the features are only conjunctions (bc for binary conjunctions). We define the subscore for Step 1.2 as follows:

$$\text{score}_{1.2}(q, a_i | t_j) = \frac{v_{rc}(t_j) \cdot v_{bc}(q, a_i)}{|v_{bc}(q, a_i)|_1}$$

(5)

Step 2: terminology space with binary weights: In this step, we only iterate over the top ten science terms that maximize the average of the two subscores from Step 1. We use terminology space again, but we convert the science term feature weights from tf–idf to binary.

Step 2.1: binary unigram match: This is the same as Step 1.1, except with binary term weights:

$$\text{score}_{2.1}(q, a_i | t_j) = \frac{v_{bu}(t_j) \cdot v_{bu}(q, a_i)}{|v_{bu}(q, a_i)|_1}$$

(6)

Step 2.2: binary conjunction match: This is the same as Step 1.2, except with binary term weights:

$$\text{score}_{2.2}(q, a_i | t_j) = \frac{v_{bc}(t_j) \cdot v_{bc}(q, a_i)}{|v_{bc}(q, a_i)|_1}$$

(7)

Step 3: word space with tf–idf weights: In this step, we only iterate over the top four science terms that maximize the average of the four subscores from Steps 1 and 2. We use word space to calculate two subscores. For each QA pair, we consider four science terms, corresponding to four word matrices. To compare the QA pair to a word matrix, the pair must be converted into words and for each QA word we need to find the corresponding context, which is the set of unigrams, bigrams, and trigrams that occur in a window of three words to the left and three words to the right of the given word. We compare the contexts in the QA pair to the contexts in the word spaces.

Step 3.1: word context match with same word: Let w be a word in the QA pair. This subscore measures the degree to which the context of w in the QA pair is similar to the context of w in the word space for t_j, for an average w. Let $v_{ruw}(w | t_j)$ be the sparse tf–idf context vector that represents w in the word matrix for t_j (ruw for real-valued words) and let $v_{buw}(w | q, a_i)$ be the sparse binary context vector that represents w in the QA pair (bvw for binary words). In both vectors, $v_{ruw}(w | t_j)$ and $v_{buw}(w | q, a_i)$, the features are unigrams, bigrams, and trigrams that...
occur in a window around \(w \). The score for \(w \) is defined as follows:

\[
score_w(w|q, a_i, t_j) = \frac{\mathbf{v}_{rw}(w|t_j) \cdot \mathbf{v}_{bw}(w|q,a_i)}{||\mathbf{v}_{bw}(w|q,a_i)||_1}
\]

(8)

If \(w \) does not correspond to a row in the word matrix for the term \(t_j \), then \(score_w(w|q, a_i, t_j) \) is zero. Let \(W \) be the set of all words (unigrams excluding stopwords) in the QA pair. The subscore for Step 3.1 is defined as the average of the word scores:

\[
score_{3.1}(q, a_i|t_j) = \frac{1}{|W|} \sum_{w \in W} score_w(w|q, a_i, t_j)
\]

(9)

Step 3.2: word context match with different words: This subscore measures the degree to which, for the average word \(x \) in \(q \) (or in \(a_i \)), there is a word \(y \) in \(a_i \) (or in \(q \)) such that the context around \(x \) in the QA pair is similar to the context around \(y \) in the word matrix that corresponds to the science term \(t_j \). Let \(x \) and \(y \) be words in the QA pair, such that one of them is from \(q \) and the other is from \(a_i \). For each \(x \), we want to find the word \(y \) that has the most similar context with \(x \); we are looking for context that connects the question \(q \) to the answer \(a_i \). Let \(\mathbf{v}_{bw}(x|q,a_i) \) be the sparse binary context vector that represents \(x \) and let \(\mathbf{v}_{rw}(y|t_j) \) be the sparse tf–idf context vector that represents \(y \) in the word matrix for \(t_j \). If \(x \) is in \(q \), let \(Y \) be the set of words in \(a_i \); otherwise, if \(x \) is in \(a_i \), let \(Y \) be the set of words in \(q \). The score for \(x \) is defined as follows:

\[
score_{xy}(x|q, a_i, t_j) = \max_{y \in Y} \frac{\mathbf{v}_{rw}(y|t_j) \cdot \mathbf{v}_{bw}(x|q,a_i)}{||\mathbf{v}_{bw}(x|q,a_i)||_1}
\]

(10)

Let \(W \) be the set of all words in the QA pair. The subscore is the average of the word scores:

\[
score_{3.2}(q, a_i|t_j) = \frac{1}{|W|} \sum_{w \in W} score_{xy}(w|q, a_i, t_j)
\]

(11)

Step 4: sentence space with binary weights: In this step, we only consider the first top science term that maximizes the average of the six subscores from Steps 1, 2, and 3. We use sentence space to calculate two subscores. For each QA pair, we only evaluate the one sentence matrix that corresponds to the top science term. We treat the QA pair as if it were a sentence and we compare it to the sentences in the sentence matrix. To compare the QA pair to a row vector in the sentence matrix, we extract all unigrams, bigrams, and trigrams from \(q \) and from \(a_i \).

Step 4.1: sentence whole match: Let \(s \) be a sentence in the set of sentences \(S \) in the pseudo-document that corresponds to the term \(t_j \). Let \(\mathbf{v}_{bs}(s|t_j) \) be the sparse binary row vector in the sentence matrix for \(t_j \) that corresponds to the sentence \(s \in S \) (\(bs \) for binary sentence). We also represent the QA pair as if it were a sentence. Let \(\mathbf{v}_{bs}(q,a_i) \) be a sparse binary vector in which the features are all unigrams, bigrams, and trigrams from \(q \) and from \(a_i \). We score \(s \in S \) by its similarity to the QA pair:

\[
score_{sw}(q,a_i,t_j) = \frac{\mathbf{v}_{bs}(s|t_j) \cdot \mathbf{v}_{bs}(q,a_i)}{||\mathbf{v}_{bs}(q,a_i)||_1}
\]

(12)

Let \(S_k \) be the top \(k \) sentences in \(S \) that have the highest similarity scores for the given QA pair (we set \(k \) to five). The subscore is the average of the \(k \) scores:

\[
score_{4.1}(q,a_i|t_j) = \frac{1}{|S_k|} \sum_{s \in S_k} score_{sw}(s|q,a_i,t_j)
\]

(13)

Step 4.2: sentence subset match: For this subscore, we search for a subset of the words in the QA pair such that the context around that subset has a large overlap with a sentence in \(S \) for \(t_j \). Let \(U_m \) be the set of all subsets of unigrams in the QA pair, up to a maximum of \(m \) unigrams per subset (we set \(m \) to six). For \(u \in U_m \), let \(c(u) \) be the union of the contexts for every unigram in \(u \). Thus \(c(u) \) contains the unigrams, bigrams, and trigrams from \(q \) and from \(a_i \) that occur three words to the left and right of each unigram in \(u \). Let \(\mathbf{v}_{bs}(c(u)|q,a_i) \) be a sparse binary vector of the n-grams in \(c(u) \) and let \(\mathbf{v}_{bs}(s|t_j) \) be the sparse binary row vector in the sentence matrix for \(t_j \) that corresponds to the sentence \(s \in S \). Let \(|u| \) be the cardinality of the set \(u \). We score the sentence \(s \) by its maximum similarity to \(c(u) \):

\[
score_{ss}(s|q,a_i,t_j) = \max_{u \in U_m} \frac{\mathbf{v}_{bs}(s|t_j) \cdot \mathbf{v}_{bs}(c(u)|q,a_i)}{||\mathbf{v}_{bs}(c(u)|q,a_i)||_1 \cdot |u|}
\]

(14)

Let \(S_k \) be the top \(k \) sentences in \(S \) that have the highest similarity scores for the given QA pair (we set \(k \) to five). The subscore is the average of the \(k \) scores:

\[
score_{4.2}(q,a_i|t_j) = \frac{1}{|S_k|} \sum_{s \in S_k} \max_{u \in U_m} \left(\frac{\mathbf{v}_{bs}(s|t_j) \cdot \mathbf{v}_{bs}(c(u)|q,a_i)}{||\mathbf{v}_{bs}(c(u)|q,a_i)||_1 \cdot |u|}, \frac{|u|}{m} \right)
\]

(15)

The final score for the QA pair, \(q,a_i \), is the av-
average of the eight subscores above, given the top science term \(t_j \) selected by the four steps.

4 Experiments

In this section, we first test whether Multivex can surpass an IR baseline system. We then replace some of the sparse, high-dimensional vectors in Multivex with dense, low-dimensional vectors, to determine the effect of dimensionality and density. We also measure how much each of the eight subscores is contributing to the accuracy and how sensitive Multivex is to parameter settings.

In the following experiments, we use multiple-choice science exam questions at the elementary school (3rd to 5th grade) and middle school (6th to 8th grade) levels.\(^5\) The questions have been divided into train, development, and test subsets, summarized in Table 3. We used the train and development subsets while developing Multivex and we used the test subsets for the experiments that follow.

Questions	Train	Dev	Test	Total
Public Elementary	432	84	339	855
Public Middle	293	65	282	640
Licensed Elementary	574	143	717	1434
Licensed Middle	1581	482	1631	3694
All Questions	2880	774	2969	6623

Table 3: Number of questions in each set.

4.1 Comparison with an IR Baseline

In their experiments with multiple-choice science exam questions, Clark et al. (2016) show that a QA system based on Lucene\(^6\) is a strong approach to question answering, out-performing several more complex algorithms. Therefore our first experiment compares Multivex with a Lucene-based approach.

Table 4 shows the accuracy of Lucene and Multivex on the test questions. The algorithms assign a score to each of the four possible answer choices and the choice with the highest score is selected as the best guess. Accuracy is measured by the percentage of correct choices. If \(n \) answer choices tie for the correct score, the algorithm gets a partial mark of \(1/n \), the expected value of randomly resolving ties.

Both algorithms use the same corpus of 1.75 billion English sentences, described in Section 3.2.

Multivex achieved higher scores than Lucene on all test question sets. The difference between Multivex (51.8%) and Lucene (49.1%) is statistically significant, using Fisher’s Exact test with a significance level of 95%. For comparison with past work, Jauhar et al. (2016) achieve 54.9% on the Public Elementary questions, but this result is for the whole set of 855 questions, not the test set. Sachan et al. (2016) achieve 46.7% on the whole Public Elementary set (855 questions). Baudis et al. (2016) achieve 44.1% on the Public Middle test set (282 questions).

4.2 SVD Embeddings

To compare sparse vectors with dense vectors, we modify the first two subscores (Steps 1.1 and 1.2) to use dense, low-dimensional SVD embeddings (Landauer and Dumais, 1997; Turney and Pantel, 2010). We focus on these two subscores because Step 1 plays a key role in Multivex: searching through the 9,009 scientific terms to pick out the top ten. We leave the other subscores as they are, to make it easier to interpret the results.

The embeddings are generated by SVDLIBC,\(^7\) which decomposes the terminology matrix into the product of three matrices \(\mathbf{U} \Sigma \mathbf{V}^T \), where \(\mathbf{U} \) and \(\mathbf{V} \) are column orthonormal and \(\Sigma \) is a diagonal matrix of singular values (Golub and Van Loan, 1996). The embedding space is given by the matrix \(\mathbf{U}_k \Sigma_k \), where \(\mathbf{U}_k \) is composed of the first \(k \) columns of \(\mathbf{U} \) and \(\Sigma_k \) is the first \(k \) singular values of \(\Sigma \). We use the widely recommended setting \(k = 300 \).

We evaluate two different ways to apply SVD to terminology space. (1) We simply apply SVD to the whole terminology matrix. (2) We separate the terminology matrix into two matrices, one matrix with all of the unigram features and another matrix with all of the conjunction features. Step 1.1 uses the first matrix and Step 1.2 uses the second.

Suppose that \(\mathbf{e}(t_j) \) is the embedding in \(\mathbf{U}_k \Sigma_k \) that corresponds to the term \(t_j \). In order to compare a QA pair to \(\mathbf{e}(t_j) \), we need to project the high-dimensional vector \(\mathbf{v}(q, a_i) \) for the QA pair into the same space as \(\mathbf{e}(t_j) \). We can do this by multiplying \(\mathbf{v}(q, a_i) \) by \(\mathbf{V}_k \); that is, \(\mathbf{e}(q, a_i) = \mathbf{v}(q, a_i) \mathbf{V}_k \).

\(^5\)http://allenai.org/data.html
\(^6\)https://lucene.apache.org/
\(^7\)https://tedlab.mit.edu/~dr/SVDLIBC/
Table 4: Accuracy of various algorithms on the test question sets. Delta is the accuracy of an algorithm on all test questions minus the accuracy of Multivex.

Section	Algorithm	Public Elementary	Public Middle	Licensed Elementary	Licensed Middle	All Test Questions	Vector Type	Delta
4.1	Multivex	59.7	60.6	51.1	49.0	51.8	sparse	0.0
4.1	Lucene	55.8	52.5	48.7	47.3	49.1	sparse	-2.7
4.2	SVD 1	55.5	51.5	46.8	45.6	47.6	dense	-4.3
4.2	SVD 2	56.2	51.8	48.3	46.9	48.8	dense	-3.1
4.3	Word2vec 1	49.9	49.7	41.7	42.2	43.7	dense	-8.2
4.3	Word2vec 2	51.9	52.6	45.3	44.8	46.5	dense	-5.4

Since \(v(q, a_i) \) is sparse, the multiplication is fast.

Table 4 shows that Multivex with sparse vectors has higher accuracy than the two SVD variations. The difference between Multivex (51.8%) and SVD (47.6% and 48.8%) is statistically significant. Lucene also has a higher accuracy (49.1%) than the two SVD variations, but the difference is not statistically significant.

4.3 Word2vec Embeddings

As another comparison of sparse vectors with dense vectors, this experiment evaluates Word2vec embeddings (Mikolov et al., 2013a; Mikolov et al., 2013b) that are pre-trained with Google News.\(^8\) As with SVD, we apply embeddings to the first two subscores (Steps 1.1 and 1.2) and leave the rest of Multivex the same. The embeddings are 300-dimensional.

We evaluate two ways to replace the row vectors in terminology space with Word2vec embeddings. (1) Given a term such as *earthquakes*, we simply use the Word2vec vector corresponding to *earthquakes*. For multi-word terms, we add the Word2vec vectors for each word in the term. (2) Given a term such as *earthquakes*, we can use the corresponding pseudo-document to make an embedding for *earthquakes* by taking the sum of the Word2vec embeddings for each unigram in the pseudo-document.

For the unigram match subscore of a QA pair (Step 1.1), we use the average of the cosines between the term vector and each vector for unigrams in the QA pair. For the conjunction match subscore (Step 1.2), we use the average of the geometric means of the cosines for each word in the conjunctions. For example, if the term is *earthquakes* and the QA pair has the conjunction *flood & occur*, then we use the geometric mean of \(\cos(earthquakes, flood) \) and \(\cos(earthquakes, occur) \).

Table 4 shows that Multivex with sparse vectors has higher accuracy than the two Word2vec variations. The difference between Multivex (51.8%) and Word2vec (43.7% and 46.5%) is statistically significant. The difference between Lucene (49.1%) and Word2vec is also statistically significant.

4.4 Ablating Subscores

Table 5 shows the results of ablating each of the eight subscores in Multivex. All of the subscores make some contribution to the accuracy, except for the two unigram subscores (Steps 1.1 and 2.1). These subscores appeared to be useful in the training and development sets, but they are not useful for the test set.

Step	Ablated Subscore	Delta
1.1	tf-idf weighted unigram match	+0.2
1.2	tf-idf weighted conjunction match	-2.1
2.1	binary unigram match	+0.2
2.2	binary conjunction match	-1.9
3.1	context match with same word	-0.6
3.2	context match with different words	-0.8
4.1	sentence whole match	-1.3
4.2	sentence subset match	-0.5

Table 5: Ablating subscores in Multivex. Delta is the accuracy of the ablated Multivex minus the accuracy of the complete Multivex. The results are based on the union of all test questions.

The table suggests that the two conjunction subscores (Steps 1.2 and 2.2) play a key role in Multivex, based on their deltas. Consider the example in Section 3.4 of the conjunction feature *boundary & earthquake*. If this feature has a high tf–idf weight, there must be many sentences in the pseudo-
document for earthquakes that contain both boundary and earthquake. This means that there is strong lexical cohesion between the question and answer (B) in Figure 1, given the term earthquakes.

4.5 Varying Parameters

In Section 3.7, we described how Multivex searches through the 9,009 scientific terms. Step 1 selects the top ten terms, using the first two subscores. Step 2 reduces the ten down to four. Step 3 picks out the single best term, which is the final output in Step 4.

These parameter values were tuned on the training sets, with the goal of balancing accuracy and speed. Table 6 explores some alternative values for the parameters, showing the results on the test set. The default settings, given in Section 3.7, correspond to the second row in the body of the table.

Number of Top Terms	All Test Qs	Score	Time		
Step 1	Step 2	Step 3	Step 4	Score	Time
5	2	1	1	51.1	2.8
10	4	1	1	51.8	5.0
20	8	2	1	51.9	10.4
40	16	4	1	51.9	20.9

Table 6: Varying parameters in Multivex. The results are based on the union of all test questions. Time is given in seconds per question.

The parameter values have little impact on the accuracy (which is a good thing), but they have a big impact on the execution time (as expected). Answering a single question involves four passes through the steps in Section 3.7, one pass for each of the four candidate answers. With the default parameter settings, Multivex can answer a typical four-choice question in five seconds, running on a standard desktop computer (iMac Intel Core i7).

5 Trouble with Embeddings

A problem with embeddings is that rare events tend to be smoothed away. This hypothesis is supported by the results in the experiments with SVD and Word2vec (Sections 4.2 and 4.3).

Table 5 shows the value of conjunction features (Steps 1.2 and 2.2). The tf–idf weighted conjunction match is the most important subscore. Of the 22,767,476 columns in the terminology matrix, 22,505,565 are conjunctions (98.8%). The pseudo-document frequency (dfj in Section 3.4) of conjunction features ranges from 1 to 4,292, with a median of 1. Conjunction features have a very long tail of rare events. Rare conjunction events convey valuable information for answering science questions.

6 Future Work and Limitations

Our focus in this paper has been multiple-choice questions, but it should be feasible to extend Multivex to direct-answer questions. For example, the sentence matrices could be used to generate a set of candidate direct answers (see Section 3.6).

Multivex is unsupervised; we expect that a supervised approach would yield higher test scores. One possibility is to use a supervised deep learning approach with an attention model to focus on rare events (Li et al., 2016; Zhao et al., 2017).

Another limitation is that the features in Multivex are simple unigrams, bigrams, trigrams, and conjunctions of unigrams. More complex features, such as part-of-speech tags and semantic relations, could supplement these basic features.

The success of our term bank suggests that we should look for other inexpensive resources that can guide QA systems. Most of the glossaries that we merged to create our science term bank also contained definitions for the terms, but we did not use the definitions. A natural improvement to Multivex would be to exploit the definitions.

7 Conclusion

Multivex is a restricted-domain QA system, in that it requires a domain-specific term bank, but this is a relatively light-weight requirement, compared to QA systems that require if-then rules or tables. The key insight is that, with a term bank and some vectors, we can use lexical cohesion to guide us to the correct answer.

Multivex is different from much recent work in that it uses sparse, high-dimensional vectors instead of dense, low-dimensional embeddings. The intuition is that word meanings are distributional and general, but facts are intersections of word meanings; facts tend to be rare and specific. The experimental results in Sections 4.2 and 4.3 lend support to these intuitions. Replacing sparse vectors with dense embeddings reduces the test scores.
As QA systems mature, the emphasis in research will shift from word meanings to sentence meanings. Our experience with Multivex suggests that this will require a corresponding shift from dense embeddings to sparse vectors. Words are repeated but most sentences are unique.

References

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In *Proceedings of ACL*, pages 238–247.

Petr Baudis, Silvestr Stanko, and Jan Sedivy. 2016. Joint learning of sentence embeddings for relevance and entailment. *arXiv preprint arXiv:1605.04653*.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Turney, and Daniel Khashabi. 2016. Combining retrieval, statistics, and inference to answer elementary science questions. In *Thirtyeth AAAI Conference on Artificial Intelligence*, pages 2580–2586, Arizona, USA. AAAI.

Gene Golub and Charles Van Loan. 1996. *Matrix Computations*. JHU Press, 3rd edition.

Sujay Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark, Oren Etzioni, and Dan Roth. 2016. Question answering via integer programming over semi-structured knowledge. In *IJCAI*, pages 1145–1152.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark, and Oren Etzioni. 2015. Exploring Markov logic networks for question answering. In *Proceedings of EMNLP*, volume 5, pages 685–694.

Thomas Landauer and Susan Dumais. 1997. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. *Psychological Review*, 104(2):211–240.

Omer Levy and Yoav Goldberg. 2014a. Linguistic regularities in sparse and explicit word representations. In *CoNLL*, pages 171–180.

Omer Levy and Yoav Goldberg. 2014b. Neural word embedding as implicit matrix factorization. In *Advances in Neural Information Processing Systems*, pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word embeddings. *Transactions of the Association for Computational Linguistics*, 3:211–225.

Huayu Li, Martin Renqiang Min, Yong Ge, and Asim Kadav. 2016. A context-aware attention network for interactive question answering. *arXiv preprint arXiv:1612.07411*.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013a. Distributed representations of words and phrases and their compositionality. In *Advances in Neural Information Processing Systems*, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word representations. In *HLT-NAACL*, volume 13, pages 746–751.

Diego Mollá and José Luis Vicedo. 2007. Question answering in restricted domains: An overview. *Computational Linguistics*, 33(1):41–61.

Jane Morris and Graeme Hirst. 1991. Lexical cohesion computed by thesaural relations as an indicator of the structure of text. *Computational Linguistics*, 17(1):21–48.

Joseph Reisinger and Raymond Mooney. 2010. Multi-prototype vector-space models of word meaning. In *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, pages 109–117. Association for Computational Linguistics.

Mrinmaya Sachan and Eric Xing. 2016. Easy questions first? A case study on curriculum learning for question answering. In *Proceedings of the Annual Meeting of the Association for Computational Linguistics*, pages 453–463.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in automatic text retrieval. *Information Processing & Management*, 24(5):513–523.

Gerard Salton. 1971. *The SMART Retrieval System: Experiments in Automatic Document Processing*. Prentice-Hall, Inc.

Tomek Strzałkowski and Sanda Harabagiu. 2006. *Advances in Open Domain Question Answering*, volume 32. Springer.

Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features for knowledge base and text inference. In *Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality*, pages 57–66.

Peter Turney and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, 37(1):141–188.

Ellen Voorhees. 1999. The TREC-8 question answering track report. In *TREC*, pages 77–82.

Kai Zhao, Liang Huang, and Mingbo Ma. 2017. Textual entailment with structured attentions and composition. *arXiv preprint arXiv:1701.01126*.