Correct in vivo splicing of the mouse immunoglobulin κ light-chain pre-mRNA is dependent on 5′ splice-site position even in the absence of transcription

Dean H. Kedes and Joan A. Steitz
Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510 USA

In transcripts from the rearranged mouse immunoglobulin κ light-chain locus, the intron separating the variable (V) plus joining (J) exon from the constant (C) exon contains up to three additional J regions, each with a functional 5′ splice site. Previously, HeLa cells transfected with DNA encoding κ light chains have been shown to mimic κ-producing lymphocytes in splicing exclusively to the upstream-most 5′ splice site, whereas selectivity is lost when κ transcripts containing two more J regions are incubated in HeLa cell or lymphocyte nuclear extracts. Here we demonstrate that the fidelity of in vivo splicing depends on neither V-J rearrangement, the instability of erroneously splicing transcripts, nor a hierarchy of J-region 5′ splice site utilization. Analysis of the splicing of presynthesized κ transcripts injected into Xenopus oocytes demonstrates that correct 5′ splice-site selection is independent of transcription. Implications for in vitro studies of regulated splice-site pairing are discussed.

[Key Words: Pre-mRNA; alternative splicing, immunoglobulin light chain, 5′ splice site]

Received June 13, 1988; revised version accepted September 21, 1988.

Although the number of characterized mRNAs that arise from alternative splicing continues to increase, the principles governing splice-site selection remain obscure (for reviews, see Green 1986; Leff et al. 1986; Padgett et al. 1986, Breitbart et al. 1987). In some instances, a single 5′ splice site is joined to one of several 3′ splice sites; conversely, one of a number of 5′ splice sites can be joined to a single 3′ splice site. A combination of these events can occur, giving rise to exon skipping. Because different patterns prevail in different cell types or stages of differentiation, it is often assumed that interactions of the pre-mRNA with cell-specific components of the splicing apparatus must be responsible. Alternatively, subtle changes in the general splicing machinery could conceivably lead to alternative modes of splice-site pairing. In either case, cis-acting elements within the transcript itself will determine the response to trans-acting factors and be instrumental in specifying the nature of the final spliced product.

To begin to elucidate the molecular mechanism of alternative splice-site selection, we have chosen to study a comparatively simple system in which the interactions of cis-acting elements with the general splicing machinery, rather than cell-specific trans-acting factors, seem to govern splice-site selection (Kedes and Steitz 1987). Splicing of the mouse immunoglobulin κ light-chain pre-mRNA is an example of highly specific alternative 5′ splice-site selection. The κ light-chain locus in pre-B cells comprises several hundred variable protein-coding (V) regions, each with a promoter and short leader (L) exon upstream. These are separated by a large distance [as yet undefined, although ~23 kb in humans (Klobeck et al. 1987)], from a 1.5-kbp cluster of four short [36–38 bp, highly homologous (~65%) joining (J) regions (Max et al. 1979; for a review of immunoglobulin structure and expression, see Tonegawa 1983; Honjo and Habu 1985). Each J sequence is followed immediately by a 5′ splice site, and the last J [J4] is separated by ~2.5 kbp from a single downstream 3′ splice site adjacent to the constant (C) exon (Fig. 2). During B-cell differentiation, DNA recombination converts the germ-line configuration to one in which a single leader–variable unit is joined to the 5′ end of one of the J regions. This creates a variable (V) plus J [V + J] exon. Because four J regions exist, the second intron of the κ chain pre-mRNA in mature lymphocytes can include as many as three unused 5′ splice sites. These are nearly identical in sequence (each has an eight out of nine fit to the 5′ splice-site consensus sequence) [see Fig. 1]. Yet, the only κ gene products detected at both the mRNA and protein levels arise from exclusive use of the 5′ splice site immediately downstream from the V + J exon (Kabat et al. 1983).

Previously, both we (Kedes and Steitz 1987) and Lowery and Van Ness (1987) attempted to study mouse κ
light-chain J-region 5' splice-site selection in vitro. We observed unexpectedly that in either lymphocyte (Kedes and Steitz 1987; Lowery and Van Ness 1988) or HeLa cell (Kedes and Steitz 1987; Lowery and Van Ness 1987) nuclear extracts, all available J-region 5' splice sites in synthetic transcripts are used equivalently. In contrast, studies in which HeLa cells were transfected with plasmids containing comparable rearranged κ gene segments showed correct utilization of only the upstream-most 5' splice site. Thus, 5' splice-site selection in the κ light-chain appears to be neither cell-type- nor species-specific in vivo but cannot be studied effectively in vitro because of loss of selectivity.

Here we have probed the structure of the κ pre-mRNA and tested several previously suggested mechanisms that might underlie correct in vivo 5' splice-site selection. Because others have shown that exon length and sequences can affect the efficiency of splice-site usage (Reed and Maniatis 1986; Furdon and Kole 1988), we have asked whether the V region somehow renders the 5' splice site of the juxtaposed J region most attractive to the splicing machinery. We have also investigated whether, conversely, germ-line sequences of a J region might be inhibitory. Another explanation for 5' splice-site selection in κ transcripts is that there is a hierarchy of J1 > J2 > J3 > J4 in affinity for either splicing factors or the 3' splice site itself exists. Finally, it has been suggested that selectivity depends on a dynamic interplay between splicing and transcription, thereby somehow ensuring that the first 5' splice site transcribed is the only one paired to a single 3' splice site (Khoury et al. 1979; Osheim et al. 1985; Aebi and Weissmann 1987). The results we have obtained argue that it should be possible to design simple uncoupled in vitro splicing systems that will allow further dissection of the molecular mechanisms of alternative splice-site selection.

Results

To define the parameters governing 5' splice-site selection in immunoglobulin κ light-chain transcripts, we first constructed plasmids containing κ gene segments inserted downstream from the powerful human β-actin promoter (Gunning et al. 1987). We concentrated on model transcripts containing only the J3 and J4 5' splice sites so that analysis of the processed RNA would reflect simple binary splicing decisions.

Variable-region sequences are not required for accurate 5' splice-site selection in vivo

The V region could be important for correct 5' splice-site selection in κ transcripts because it either binds an essential factor or confers a necessary structure on the pre-mRNA. We therefore asked whether deletion or replacement of this sequence might lead to loss of selectivity. The relevant constructs and potential splicing patterns of their transcripts are diagramed in Figure 2 (see first three templates). pV3-4 is the control construct representing a V-J3 rearrangement; transcripts from this template have an intact (307 bp) V region juxtaposed to J3 (37 bp), followed sequentially by the entire sequence between J3 and J4 (301 bp), J4 (37 bp), a truncated J4-C intron (251 bp) and, finally, the first 51 nucleotides of C. pV[ΔBamHI]3-4 is identical to pV3-4, except for a 109-nucleotide deletion from the 3' end of the 307-nucleotide V region, whereas pbG3-4 has the entire V region replaced with most of the second exon (204 bp) of the human β-globin gene (see Materials and methods).

Two days after transfection with each of these plasmids into HeLa cells, cytoplasmic RNA was isolated and subjected to primer extension analysis, using a primer complementary to the C exon (see Fig. 2). [Nuclear RNA was also analyzed and gave qualitatively identical results to those in Figure 2 (data not shown).] Transfection with the parent vector without an insert (see Materials and methods) gives no signal above background (data not shown). Transfection with the control plasmid pV3-4 leads to a primer extension product of 456 nucleotides, consistent with the exclusive use of the J3 5' splice site [Fig. 3, lane 1], as reported previously (Kedes and Steitz 1987). A 794-nucleotide primer extension product, which would indicate use of the J4 5' splice site, is absent. The 109-nucleotide deletion in the V region of the plasmid pV[ΔBamHI]3-4 has no effect on selection of the J3 5' splice site; the predicted 685-nucleotide primer extension product resulting from use of the downstream J4 5' splice site (Fig. 2, follow broken arrow) is noticeably absent, whereas the 347-nucleotide product from the J3-to-C splice can be seen clearly (Fig. 3, lane 3). Likewise, construct pbG3-4, in which the entire V region is replaced with the second exon of the human β-globin gene, gives rise to a processed RNA that arises from exclusive use of the upstream J3 5' splice site. The primer extension product is a distinct band of 358 nucleotides (Fig. 3, lane 2), whereas a primer exten-
Figure 2. Schematic representation of constructs transfected into HeLa cells. The pre-mRNAs transcribed from the human β-actin promoter are shown along with the potential splicing patterns. The solid arrows following the transcripts indicate the splicing path observed, and the broken arrows the potential but unobserved alternate (see Fig. 3). The predicted primer extension lengths (in nucleotides) are represented by a left-pointing arrow below each final product. The primer, which hybridizes to the C exon (see Materials and methods), is indicated by the thicker segment of this arrow, and the 5' radiolabeled end by an asterisk (*). (UT) 5'-Untranslated region of the human β-actin gene; (IVS1) first intervening sequence of the human β-actin gene; (PL) polylinker; (V) variable region; (J3) joining region 3; (J4) joining region 4; (C) constant region; (PA) SV40 polyadenylation signal; (BG) β-globin second exon (see Materials and methods). Constructions of pV3-4, pV(ΔBamHI)3-4, pβG3-4, pV3/4, and pV3(Δ5'ss)-4 are described in Materials and methods.

The fusion product of 696 nucleotides, which would represent use of the downstream J4 5' splice site, is not seen (see Figs. 2 and 3, lane 2). These data indicate that in transfected HeLa cells the V region can be either deleted or replaced by other exon sequences and still allow accurate selection of the upstream-most J region 5' splice site. Analysis by RNase T1 mapping confirmed these results: Only transcripts containing the J3-C were detected in RNA isolated from transfected HeLa cells [data not shown; see Kedes and Steitz 1987]. Because the uniformly labeled complementary RNA probes had specific activities up to two orders of magnitude higher than the 5' end-labeled primer extension products, they would have favored the detection of the longer J4-to-C spliced products from pV3-4, pβG3-4, and pV(ΔBamHI)3-4 (see Fig. 2).
splice-site selection in mouse $\kappa$-pre-mRNA

Figure 3. Results of primer extension analyses on cytoplasmic RNA from HeLa cells transfected with the plasmids diagramed in Fig. 2. HeLa cell transfections and primer extension analyses were conducted as described in Materials and methods, and the products were separated on a 4% polyacrylamide/8 M urea gel. [Lane 1] pV3-4; [lane 2] pG3-4; [lane 3] pV(ΔBamHI)3-4; [lane 4] pV3/4; [lane 5] pV3(Δ'ss)-4. Sizes in nucleotides of the primer extension products are indicated by left-pointing arrows on the right, and sizes of DNA markers [in nucleotides] are indicated at the left.

To show that the J4 5' splice site has not somehow been inactivated in our constructs, we also tested a plasmid in which 12 bp from the 5' end of the J3 exon had been fused to last 20 bp of the J4 exon. This J3/J4 chimera deletes the J3 5' splice site while preserving the J4 5' splice site and downstream sequences [see pV3/4 in Fig. 2]. When this plasmid was transfected into HeLa cells, the J4 5' splice site of the resultant transcript was efficiently spliced to the 3' splice site of C, giving a primer extension product of 469 nucleotides [see Figs. 2 and 3, lanes 4]. This result demonstrates that the J4 5' splice site can be used if cis-competition from the upstream J3 5' splice site is eliminated.

Selection is not due to instability of incorrectly spliced transcripts

We have also examined the possibility that splicing does occur at the downstream J4 5' splice site but that the resulting products are inherently unstable and therefore not detected [see Fig. 2, spliced products indicated by broken arrows]. If this were the case, correct 5' splice-site selection seen in the J3/J4 fusion described above would arise merely because elimination of 'poison' sequences contained in the intervening sequences between the J regions allowed detection of a stable J4-to-C spliced RNA. We devised a construct in which all but the first 7 bp of the intervening sequence between the two J regions remained intact [pV3(Δ'ss)-4; Fig. 2 and Materials and methods] and transfected it into HeLa cells. To our surprise, this plasmid produced a stable RNA spliced at the J4 5' splice site (see Fig. 2), as indicated by a primer extension product of 726 nucleotides [see Fig. 3, lane 5]. (Note that the lower intensity of this band relative to that of others is not reproducible.) We conclude that the transcript is stable, despite the presence of the normally excised intervening sequences [except for the 7 nucleotides at the J3 5' splice site itself] between J3 and J4.

We also confirmed that the presence of intron sequences upstream of the J3 region do not preclude use of its 5' splice site or lead to instability of resulting products. Downstream from the human $\beta$-actin promoter [in a plasmid without the $\beta$-actin first intron [Gunning et al. 1987]], we inserted the unrearranged $\kappa$ gene segment J3 with its germ-line 5'-flanking (intron) sequence [no upstream V region or other exon sequence], the J3-J4 intron, followed by J4, the foreshortened intron and, finally, the first 51 nucleotides of C [see Fig. 4A, p3-4]. Figure 4A outlines schematically the two possible splicing patterns for the resultant transcript. A J3-to-C splice would lead to a primer extension product of 157 nucleotides, whereas the product of a J4-to-C splice would be 495 nucleotides. Figure 4B, lane 3, shows analysis of the RNA from HeLa cells transfected with this plasmid. A single band migrating at 157 nucleotides, indicating use of the J3 5' splice site, is observed despite both the lack of any exon sequence adjacent to J3 and the presence of the naturally occurring J3 5'-flanking sequence. A 495-nucleotide product, representing use of the downstream J4 5' splice site is absent even on long exposures. Note that the parent vector without an insert gives no signal over background [Fig. 4B, lane 2]. The plasmid pV3-4, tested in parallel as a control for primer extension efficiency, leads to a distinct band migrating at 456 nucleotides [see Fig. 4B, lane 5]. Again, RNase mapping confirmed the patterns of splice-site selection deduced from Figure 4 (data not shown).

A J-region hierarchy does not explain 5' splice-site selection

The 5' splice-site selection observed in all of the above transfection experiments, as well as in $\kappa$-producing lymphocytes, could reflect an inherently greater affinity of the splicing machinery for the J3 relative to the J4 site. Because this explanation predicts that use of a 5' splice site will be dependent on its rank in this hierarchy of affinity rather than its position in the transcript, we
Figure 4. Analysis of germ-line configuration and J-region transposition on the splicing of K transcripts in HeLa cells. (A) p3-4, a K construct in the germ-line configuration and p4-3, an analogous control, but with its J regions transposed. Their respective pre-mRNAs are shown schematically, along with their potential splicing patterns following solid and broken arrows as in Fig. 2. The lengths of the predicted primer extension products (in nucleotides) are indicated as in Fig. 2. (B) The results of primer extension analyses on cytoplasmic RNA from HeLa cells transfected with the plasmids diagramed in A. Transfections, primer extension analysis, and gel electrophoresis were conducted as described in Fig. 3. [Lane 1] DNA markers [M]; [lane 2] parent plasmid pH8Pr-2-neo without a K gene insert (see Materials and methods); [lane 3] p3-4; [lane 4] p4-3; [lane 5] pV3-4 (see Fig. 2). pV3-4 was included as a control for primer extension efficiency. Sizes of the primer extension products (in nucleotides) are indicated by left-pointing arrows on the right and sizes of the DNA markers (in nucleotides) are indicated on the left.

tested it directly with construct p4-3 (see Fig. 4A). Here the positions of the J regions are switched (see Materials and methods), but the distances between J4 and J3 and J3 and C are approximately the same as in the p3-4 control (see Fig. 4A). The two potential splices in the p4-3 transcript are diagramed in Figure 4A [follow arrows]: use of the upstream J4 or downstream J3 5' splice site would give rise to a primer extension product of 231 or 536 nucleotides, respectively. Analysis of transcripts produced in HeLa cells after transfection with this plasmid is shown in lane 4 of Figure 4B: a single band migrating at 231 nucleotides indicates exclusive use of the upstream J4 5' splice site. Again, RNase mapping data confirmed this finding (not shown). We conclude that splicing is confined to use of the upstream-most 5' splice site (in this case, that of J4) without regard to its original position in the gene. A J hierarchy model, therefore, seems untenable.

**κ transcripts are spliced correctly in Xenopus laevis oocytes**

Indiscriminate use of all available 5' splice sites in vitro compared to correct selection of the upstream-most 5' splice site of κ transcripts in transfected HeLa cells is consistent with models proposing that accurate splicing is dependent upon transcriptional coupling (Aebi and Weissmann 1987). To examine this possibility, we turned to the X. laevis oocyte system, where splicing can be analyzed either in the presence [upon injection of the DNA] or absence [upon injection of the pre-mRNA] of transcription. We first injected presynthesized, gel-purified SP6-generated κ transcripts into the nuclei of oocytes, collected total RNA after incubation times of 0, 10, 30, and 90 min, and analyzed the spliced products. Because the amount of injected RNA recovered from oocytes is significantly lower than that produced in HeLa transfection experiments, we employed the highly sensitive RNase T1 mapping technique and confirmed the appearance of spliced products by primer extension analyses (not shown). Altogether, we tested three transcripts, which are diagramed schematically in Figure 5, along with their potential spliced products.

The first transcript pSP-3-4, is the SP6 homolog of p3-4 (cf., Fig. 5 with Fig. 4A) and contains 48 nucleotides of J3 5'-flanking sequence, J3, the sequence between the J regions, J4, and the same foreshortened J-C intron as described above for the transfection plasmids. Two RNA probes and their regions of complementarity to pSP-3-4, its splicing intermediates, and final product are diagramed in Figure 6A (top). With probe 3-4 BanI (691 nucleotides), a protected fragment of 555 nucleotides would represent the precursor, a 108-nucleotide fragment would arise from both the J3-to-C spliced product and the J3 5' cutoff exon, and the 458-nucleotide fragment would correspond to the J3 lariat. (Note that although we use the term 'lariat,' the labeled bands in Figure 6 could represent either the linearized or the
Figure 5. Schematic representation of SP6-generated \( \kappa \) transcripts for *Xenopus* oocyte injections. pSP-3-4 and pSP-4-3 are analogous to p3-4 and p4-3, respectively (see Fig. 4A). pSP-4 is identical to pSP-3-4 but codes for a transcript that begins 8 nucleotides downstream of the J3 5' splice site. Potential splicing patterns are indicated following solid and broken arrows, as in Figs. 1 and 3A.

lariat form of the intron and that the analysis does not differentiate between the lariat intermediate with an attached C exon and the intron lariat product.] The results of an injection experiment with pSP-3-4 are shown in Figure 6A, panel 1. A 108-nucleotide fragment and a 458-nucleotide fragment, indicative of splicing to the J3 5' splice site, appear with time and reach a maximum after \( \sim 30 \) min [see Fig. 6A, lanes 6–8]. Levels of splicing intermediates and products are barely detectable at time '0' [Fig. 6A, lane 6], because in actuality 2–4 min have

Figure 6. [See following page for legend.]
In contrast, RNA from uninjected oocytes gives no signal above background (Fig. 6A, lane 5). Use of the downstream J4 5’ splice site would be indicated by protected fragments of 444 nucleotides (the final product and J4 5’ cutoff exon) and of 120 nucleotides (the corresponding J4 lariat). The J4 lariat is noticeably absent even after 90 min [Fig. 6A, lanes 6–8], but because the 444-nucleotide fragment from the J4-to-C splice would be difficult to distinguish from the 458-nucleotide fragment corresponding to the J3 lariat, we also hybridized the recovered RNA to a second probe, 3-4 BanI in the region complementary to the 5’ end of the pSP-3-4 transcript. Thus, all protected fragments, except the ones corresponding to lariats, should be shorter [Fig. 6A, top]. In Figure 6A, lane 10, we see that the pattern of protected fragments with probe 3-4 HhaI changes as predicted for exclusive use of the upstream J3 5’ splice site: a 517-nucleotide [rather than a 555-nucleotide] fragment from the precursor, a 68-nucleotide [rather than a 108-nucleotide] fragment representing both the J3 final product and 5’ cutoff exon, and an unchanged 458-nucleotide for the J3 lariat [rather than a 404-nucleotide fragment corresponding to both the J4-to-C spliced final product and its 5’ cutoff exon]. These data demonstrate that correct 5’ splice-site selection in the pSP-3-4 transcript does not require concomitant transcription in the oocyte.

To ensure that the sequence upstream from J4 neither inhibits use of the J4 5’ splice site nor destabilizes a final product and that the J4 splice site remains functional, we also tested a transcript in Xenopus oocytes that begins 8 nucleotides downstream of the J3 5’ splice site [see Fig. 5, pSP-4]. The RNA probe 3-4 HhaI and its complementarity to the transcript, splicing intermediates, and final product are diagramed in Figure 6B (top). After incubation for 30 min in the oocyte, the truncated pSP-4 transcript is spliced successfully at the J4 5’ splice site. We observe the expected 457-nucleotide fragment corre-

**Figure 6.** RNase T1 mapping of Xenopus oocyte RNA after injection with transcripts from pSP-3-4, pSP-4, and pSP-4-3. RNA from a one-half oocyte equivalent for each incubation time [see Materials and methods] was hybridized with at least a 10-fold molar excess of the indicated complementary (and uniformly radiolabeled) RNA probe and digested with RNase T1, as described in Materials and methods. The protected fragments were separated by electrophoresis on 6% polyacrylamide/8 M urea gels. The top of each panel depicts the complementarity between each probe and the transcript, splicing intermediates, and final product. The sizes of the predicted T1 fragments are indicated in parentheses. For reasons of clarity, only the protected products that are detected are included in the diagrams. 

**A** The results from a 90-min incubation of the pSP-3-4 transcript using probes 3-4 BanI (1) and 3-4 HhaI (2). [Only the 90-min time point is shown for the latter.] [Lane 1] DNA markers [M]; [lane 2] 100 cpm of purified 3-4 BanI probe alone and without RNase; [lane 3] purified transcript hybridized with the probe 3-4 BanI and then digested with RNase; [lane 4] probe 3-4 BanI alone with RNase; [lane 5] total RNA from uninjected oocytes; [lanes 6–8] the RNA after 0 [see Materials and methods], 30, and 90 min of incubation of the transcript, respectively; [lane 9] 100 cpm of purified probe 3-4 HhaI alone and without RNase; [lane 10] the RNA from the 90-min sample hybridized with probe 3-4 HhaI. The protected fragments representing the probes, precursor, intron-containing intermediates [lariat], and final product [and 5’ cutoff exon] are indicated along with their sizes [in nucleotides] in the center. [Note that lanes 1–10 are from a single gel.] 

**B** The results from a 30-min incubation of the pSP-4 transcript using the complementary RNA probe 3-4 HhaI. [Lane 1] DNA markers [M] as in A; [lane 2] purified pSP-4 transcript alone hybridized with the probe; [lanes 3–5] the RNA after 0 [see Materials and methods], 10, and 30 min of incubation, respectively. The protected fragments representing the probe, precursor, intron-containing fragments [lariat], and the final product [and 5’ cutoff exon], along with their sizes [in nucleotides], are indicated at the right. [C] The results from a 30-min incubation of the pSP-4-3 transcript, using the complementary RNA probes 4-3 BanI (1) and 4-3 AvaII (2). [Lane 1] DNA markers [M] as in A; [lane 2] purified pSP-4-3 transcript hybridized with probe 4-3 BanI [lanes 3–5] the RNA after 0 [see Materials and methods], 10, and 30 min of incubation, respectively, each hybridized with probe 4-3 BanI, [lane 6] the RNA after 30 min of incubation but hybridized to probe 4-3 AvaII; [lane 7] 100 cpm of purified probe 4-3 AvaII without RNase; [lane 8] DNA markers [M], as above. [Note that lanes 1–5 and 6–8 are from two separate gels.]
Discussion

A problem currently impeding the elucidation of molecular mechanisms underlying alternate splicing is the inability to reproduce, in vitro, splice-site selection observed in vivo. Consistently, splice sites that are ignored or less favored in vivo are used constitutively in equivalent transcripts in vitro [Noble et al. 1986; Van Santen and Spritz 1986; Bovener et al. 1987; Norton and Hynes 1988]. Only in one case [Schmitt et al. 1987] has the altering of in vitro conditions [lowering the ionic strength of the splicing extract] progressively favored the pairing of two downstream 5' splice sites relative to an upstream site with a single 3' splice site; however, whether such ionic changes are relevant to the in vivo situation is unclear. This disappointing in vitro versus in vivo discrepancy is also observed in the selection of J-region 5' splice site in κ pre-mRNA: The exclusive choice of the upstream-most 5' splice site in lymphocytes can be reproduced in transfected HeLa cells [Kedes and Steitz 1987; Lowery and Van Ness 1988] but is lost in HeLa cells [Kedes and Steitz 1987; Lowery and Van Ness 1987] or lymphocyte [Kedes and Steitz 1987; Lowery and Van Ness 1988] nuclear extracts in which splicing occurs at all available J-region 5' splice sites.

To probe the role of cis-acting signals in the selection of J-region 5' splice sites, we first introduced a variety of modified κ-expressing plasmids into HeLa cells. These constructs contained only the κ light-chain J3 and J4 regions and a deletion in the J4/C intron, but we had ascertained previously that exclusive utilization of the 5'-most splice site occurs when all four J segments or the complete intron are present in transfected HeLa cells [Kedes and Steitz 1987]. Because HeLa cells thus mimic κ-producing lymphocytes in their splicing behavior, we believe that our conclusions in this model system can be extrapolated to the in vivo situation.

We are surprised to learn that the J regions in κ transcripts are able to direct proper 5' splice-site selection without being joined to additional exon sequences. Each J region (36–38 nucleotides), although longer than the 20 nucleotides found to be a minimum exon length for efficient in vitro splicing of monointronic pre-mRNA [Parent et al. 1987], is shorter than the 90 nucleotides required to bias splicing in cis-competition between 5' splice sites in vitro [Reed and Maniatis 1986]. In the latter experiments, Reed and Maniatis found that when a fragment containing the last 16 nucleotides of exon 1 of the human β-globin was placed downstream from the full-length exon 1 (155 nucleotides), splicing occurred exclusively at the upstream 5' splice site. The splice-site choice, however, was reversed when the downstream site was preceded by 90 nucleotides of exon sequence, even in the presence of a full-length exon 1 (with its 5' splice site) upstream. [Note that this study did not examine intermediate exon lengths between 16 and 90 nucleotides.] Similar conclusions were reported recently by Lowery and Van Ness (1988).

Our observation that use of either the J3 or the J4 5' splice site is unperturbed by the presence of retained upstream germ-line sequences leads to two conclusions: [1] The choice of the upstream-most 5' splice site does not depend on inhibitory intron sequences to inactivate all downstream, unarranged J-region 5' splice sites, and [2] the J-J intervening sequences that would be retained...
in any product spliced at a downstream J region do not, in themselves, lead to rapid degradation. The only sequences we have not ruled out as destabilizing are the 8 nucleotides at the upstream 5' splice site that were deleted in pV3(Δ5'ss)-4 (Fig. 3). However, the possibility that an upstream 5' splice-site consensus sequence alone leads to rapid degradation is made unlikely by naturally occurring counter examples: The yB γ-fibrinogen mRNA of both rat (Crabtree and Kant 1982) and human (Fornace et al. 1984), the 13S and 12S E1A mRNAs of adenovirus (Berk and Sharp 1978; Chow et al. 1977), the small-t mRNA in SV40 (Khoury et al. 1979), and the P element mRNA in Drosophila somatic cells (Laski et al. 1986) all retain an unused 5' splice site[s] and yet are stable.

We also found no evidence of a J3-J4 hierarchy, although the κ-chain J regions do differ slightly in their sequences (see Fig. 1). Earlier work had suggested that certain examples of alternative splicing might reflect different competition efficiencies among splice sites, even if all conform to the consensus (Breathnach et al. 1978; Seif et al. 1979; Lerner et al. 1980; Rogers et al. 1980; Sharp 1981, Mount 1982). Such effects on splice-site selection have been observed in vitro, as well as in the in vivo splicing patterns of late SV40 RNAs (Somasekhar and Mertz 1985), human β-globin mRNAs with duplicated 5' splice sites (Cunningham et al. 1988), and human fibronectin RNA (Mardon et al. 1987). Moreover, certain 5'/3' splice-site pairs can have a particular intrinsic affinity even when a competing splice site is interposed between them (Eperon et al. 1986; Furdon and Kole 1988), leading to exon skipping. Yet the spliced products of constructs in which the J regions were switched demonstrated that the splicing of κ transcripts in HeLa cells follows a strict rule of selecting the upstream-most 5' splice site. Similar observations were reported recently by Lowery and Van Ness (1988).

Next, we addressed the possibility that correct splicing requires coupling to transcription, which would explain the loss of selectivity in vitro. We observed that Xenopus oocytes injected with presynthesized κ transcripts with J3 and J4 in either order gave splicing patterns identical to those in HeLa cells. Thus, even in the absence of transcription, the upstream-most 5' splice site is consistently chosen. That oocytes do not exhibit an intrinsic bias in always choosing the first of alternative 5' splice sites has been demonstrated by Fradin et al. (1984); they reported that oocytes synthesize significantly more SV40 small-t mRNA relative to large-T mRNA, meaning a preference for the downstream 5' splice site in that case. The oocyte data are also consistent with our conclusion from the HeLa cell experiments that differential transcript stability is not a major factor in determining which product is seen. Specifically, the pSP-3-4 and pSP-4-3 splicing intermediates, which contain the entire sequence between the upstream J-region 5' splice site and the C exon, survive in the oocytes for ≥30 min (Fig. 6), because they include all intron sequences that would be present in a spliced RNA arising from use of the downstream 5' splice site, such products should therefore be readily detectable if they are produced. Moreover, if RNAs were spliced at the downstream 5' splice site but rapidly degraded, we would expect approximately half the amount of final product from pSP-3-4 or pSP-4-3 compared to pSP-4 (assuming that splicing occurs at the two sites with similar frequencies), yet we find that the yield of spliced product from the pSP-3-4 or pSP-4-3 transcript is approximately equal to that for the pSP-4 transcript. Taken together, these data argue strongly that the splicing machinery acts at only a single 5' splice site in each of the three transcripts tested in the oocyte.

There are two parameters known to affect 5' splice-site choice that we have not tested with the κ transcript. (1) In vivo studies of pre-mRNA constructs in which 5' splice-site regions were duplicated have shown that the upstream-most site is usually preferred when a single 3' splice site exists (Kuhne et al. 1983; Lang and Spritz 1983; Eperon et al. 1986). Alternatively, the downstream copy may be favored, but this preference can be lost if the sites are brought very close together (Cunningham et al. 1988). Because the J-region 5' splice sites are separated from their neighbors by 273 to 630 bp, selectivity seems unlikely to result from splice-site interference. (2) In some cases, splice-site selection in vitro reflects preferential intron removal: Very short introns are less likely to be spliced out than longer ones. A striking example is the favoring of the large-T over small-t splice in SV40 transcripts (Fu and Manley 1987), which can be eliminated by increasing the length of the small-t intron (66 nucleotides) with filler sequences. Because the lengths of introns in our constructs range from 244 to 582 nucleotides, well over the minimum length of ~60 nucleotides (Wieringa et al. 1984) required for efficient splicing, differences in intron length are unlikely to explain the complete exclusion of the downstream J-region 5' splice site[s] in κ transcripts.

A model that invokes simple proximity to the cap structure (Konarska et al. 1984) in the absence of other cis-acting signals could explain 5' splice-site selection among the mouse κ light-chain J regions. How such a mechanism operates on the molecular level remains to be deciphered. Although the 5' splice site was no more than 422 nucleotides from the 5' cap in the constructs used here, the distance was greater than 1000 nucleotides in previously examined constructs and still the upstream-most site was selected exclusively (Kedes and Steitz 1987). Because correct splicing is seen in two different cell types (HeLa cells and Xenopus oocytes), which normally do not produce κ mRNA, the trans-acting factors involved must be of general character. Known components of the splicing machinery include snRNPs, factors not (tightly) associated with snRNPs (Furneaux et al. 1985; for reviews, see Green 1986; Padgett et al. 1986; Steitz et al. 1987), and hnRNP proteins (Choi et al. 1986; for reviews, see Dreyfuss 1986; Dreyfuss et al. 1988). Although only U1 snRNPs have been shown to be directly involved in recognition, any of these other factors could also contribute to fidelity in 5' splice-site choice. For instance, isolated U1 snRNPs bind to mutant 5' splice sites in model human β-globin transcripts, whereas these sites are not used in complete splicing extracts (Chabot and Steitz 1987). The existence
of other factors conferring discrimination is also consistent with the observations of Mayeda et al. [1986], who demonstrated that the binding of U1 snRNPs to a 5′ splice site in vitro was enhanced by addition of a nuclear extract DEAE–Sepharose fraction lacking U1 and U2 RNA. One or more such factors directing proper splice-site selection could be lost or destroyed during the extraction procedure currently used to prepare active nuclear splicing systems. The resulting imbalance could lead to improper splicesome assembly, allowing sites discriminated against in vivo to be used in vitro. Because we have demonstrated that accurate 5′ splice-site selection in the κ pre-mRNA is independent of transcription, future studies aimed at dissecting the molecular basis of alternative splicing should not need to pursue the difficult task of coupling transcription and splicing in an in vitro system.

Materials and methods

Materials
All enzymes and labeled nucleotides were purchased from New England Biolabs, Boehringer–Mannheim, Promega Biotec, New England Nuclear, and Amersham. *X. laevis* mature females were purchased from Xenopus 1 [Madison, Wisconsin].

SP6 transcription

Linearized plasmid templates were transcribed with SP6 RNA polymerase [Melton et al. 1984], and the transcripts were purified by denaturing polyacrylamide gel electrophoresis as described [Black et al. 1985].

Recombinant DNA

λ Phage clones of the immunoglobulin κ light-chain genes [gifts from S. Lewis and D. Baltimore], containing the variable region Vκ, as well as the J and C regions, have been described [Lewis et al. 1984]. Standard cloning techniques [Maniatis et al. 1982] were employed to generate the pHBPPr-1 and pHBPPr-2-neo [Gunning et al. 1987] and pSP6 [Melton et al. 1984] constructs. The vector pHBPPr-1 contains the human β-actin promoter, 78 bp of 5′ untranslated region (UT), 832 bp of the first intervening sequence (IVS 1) of the β-actin gene fused at its 3′ splice site to a SP6 runoff transcript and only 17 nucleotides of pHBPPr-2-neo PL preceding the J4 5′-flanking sequence.

Probe 3-4 *Banl* is an SP6 runoff transcript complementary to the pSP-3-4 precursor, beginning 61 nucleotides upstream of J3 and ending 113 nucleotides into the J4-C intron. In addition, the probe has noncomplementary tails of 28 nucleotides at its 5′ end and 21 nucleotides at its 3′ end. Probe 3-4 *HhaI* is identical to 3-4 *Banl*, except that its complementarity to the pSP-3-4 precursor begins 21 nucleotides before J3 and it has no noncomplementary 3′ tail. Probe 4-3 *Banl* is an SP6 runoff transcript complementary to the pSP-4-3 precursor, beginning 69 nucleotides upstream of J4 and ending 133 nucleotides into the J3-C intron. This probe also has noncomplementary tails of 21 nucleotides at its 5′ end and 100 nucleotides at its 3′ end. Probe 4-3 *Avall* is identical to 4-3 *Banl*, except that its complementarity to the pSP-4-3 precursor begins 18 nucleotides into J4 and it has no noncomplementary 3′ tail.

Transfection of HeLa cells

Transfections and immunofluorescence assays to monitor transfection efficiency were carried out as described [Weber et al. 1984]. Transfection efficiencies ranged between 30% and 40%. Cytoplasmic RNA was isolated according to Berk and Sharp [1978].

Microinjections of X. laevis oocytes

*X. laevis* oocytes were surgically removed from adult *X. laevis* females and defolliculated by treatment with collagenase [type IA, Sigma] at 1 mg/ml overnight, or 2 mg/ml for 5 h, both at 18°C. Oocytes were stored, microinjected, and incubated in modified Barth's saline (MBS) [Gurdon 1977]. Approximately 40 nl of 0.1 mg/ml gel-purified SP6-transcribed RNA resuspended in distilled H2O was microinjected into the germinal vesicle of stage VI [Dumont 1972] oocytes, using 8 μm-outside-diameter glass needles pulled on a Brown–Flaming model P-80 pipette puller [Sutter Instruments, San Rafael, California]. Injection volume was determined independently by microinjection of isotope-labeled marker. After incubation at 20°C, samples of 10 oocytes free of visible mechanical damage were taken from sets of injected oocytes and frozen on dry ice. The first samples [labeled time 0] were actually taken 2–4 min after injection.

The vector pHBPPr-1 contains the human β-actin promoter, is identical to that of p3-4 [above], except that the 5′ end of the SP6 runoff transcript contains 14 nucleotides of SP6 PL plus 48 nucleotides of J3 5′-flanking sequence. pSP4 is similar to pSP-3-4, except that the κ insert begins 7 nucleotides downstream from the J3 5′ splice site, and the 5′ end of the SP6 transcript has 25 nucleotides of SP65 PL sequence. The κ configuration of the pSP-4-3 insert is identical to that of p3-4 [above] but has 8 nucleotides of SP6 PL at the 5′ end of its SP6 runoff transcript and only 17 nucleotides of pHBPPr-2-neo PL preceding the J4 5′-flanking sequence.

5′ splice-site selection in mouse κ pre-mRNA

Table of Contents

- **Materials and methods**
  - **Materials**
  - **SP6 transcription**
    - Linearized plasmid templates were transcribed with SP6 RNA polymerase [Melton et al. 1984], and the transcripts were purified by denaturing polyacrylamide gel electrophoresis as described [Black et al. 1985].
  - **Recombinant DNA**
    - λ Phage clones of the immunoglobulin κ light-chain genes [gifts from S. Lewis and D. Baltimore], containing the variable region Vκ, as well as the J and C regions, have been described [Lewis et al. 1984]. Standard cloning techniques [Maniatis et al. 1982] were employed to generate the pHBPPr-1 and pHBPPr-2-neo [Gunning et al. 1987] and pSP6 [Melton et al. 1984] constructs. The vector pHBPPr-1 contains the human β-actin promoter, 78 bp of 5′ untranslated region (UT), 832 bp of the first intervening sequence (IVS 1) of the β-actin gene fused at its 3′ splice site to a short polylinker (PL), followed by a simian virus 40 poly[A]-addition site [PA]. pV3-4, a derivative of pHBPPr-1, possesses an intact V region rearranged to J3, followed by J4 and the first 51 nucleotides of the C region, and has been described [plasmid A in Kedes and Steitz 1987]. pVΔBanHIJ3-4 is identical to pV3-4, except that a 109-bp BanHI fragment [from -2 to -110 bp upstream of the V3-J3 junction] is deleted from the V region. pBG3-4 differs from pV3-4 in that the first 204 bp of the second exon of the human β-globin gene and 54 bp of its 5′-flanking sequence replace the entire V region [except for the last A-T bp plus 269 bp of its 5′-flanking sequence. pV3-4 is also derived from pV3-4 by the ligation of the first 12 bp of J3 to 13 bp of pSP64 PL sequence and this, in turn, to the last 20 bp of J4, thereby deleting the J3 5′ splice site and the J1 intervening sequence, as well as creating a 45-bp J3-4 fusion. pV3[Δ(5′)-ss]-4, similarly derived from pV3-4, results from the deletion of the last 22 bp of J3 plus the first 7 bp of the J1 intervening sequence.
    - p3-4 and p4-3 are derivatives of the parent plasmid pHBPPr-2-neo, which is similar to pHBPPr-1 [above], except that it contains only the first 48 bp of the human β-actin 5′ UT and lacks downstream from the J4 5′-flanking sequence, J3, the J3-J4 intervening sequence, J4, and the same foreshortened 244 bp 1-C intron and first 51 nucleotides of C found in the pHBPPr-1 constructs. Downstream from the 48 bp human β-actin 5′ UT p4-3 has inserted the following fragments [from 5′ to 3′]: 43 bp of PL, 69 bp of J4 5′-flanking sequence, J4, 110 bp of J4 3′-flanking sequence, 215 bp of J3 5′-flanking sequence, J3, 117 bp of J3 3′-flanking sequence, 21 bp of SP6 PL, the 135 bp immediately upstream of C and, finally, the first 51 bp of C.
    - pSP3-4 has been described before [J3-J4-C in Kedes and Steitz 1987]. Its κ configuration, inserted downstream from the SP6 promoter, is identical to that of p3-4 [above], except that the 5′ end of the SP6 runoff transcript contains 14 nucleotides of SP6 PL plus 48 nucleotides of J3 5′-flanking sequence. pSP4 is similar to pSP-3-4, except that the κ insert begins 7 nucleotides downstream from the J3 5′ splice site, and the 5′ end of the SP6 transcript has 25 nucleotides of SP65 PL sequence. The κ configuration of the pSP-4-3 insert is identical to that of p4-3 [above] but has 8 nucleotides of SP6 PL at the 5′ end of its SP6 runoff transcript and only 17 nucleotides of pHBPPr-2-neo PL preceding the J4 5′-flanking sequence.

**Materials**

All enzymes and labeled nucleotides were purchased from New England Biolabs, Boehringer–Mannheim, Promega Biotec, New England Nuclear, and Amersham. *X. laevis* mature females were purchased from Xenopus 1 [Madison, Wisconsin].
Kedes and Steitz

X. laevis oocyte RNA purification

RNA was extracted from oocytes as follows: Ten frozen oocytes were lysed, without thawing, by addition of 250 µl of guanidinium extraction buffer [4.2 M guanidine thiocyanate; 0.5% sarkosyl], 25 mM Tris [pH 8.0]; 0.7% 2-mercaptoethanol, vortexed briefly, and transferred to a new microfuge tube containing 250 µl phenol, 250 µl chloroform, and 250 µl extraction buffer [1% SDS; 0.1 M Tris [pH 8.0]; 10 mM EDTA]. The samples were then vortexed for ~20 sec, spun in a table top microfuge for 2 min, and extracted once with 500 µl chloroform. The RNA was precipitated from the aqueous layer by freezing the sample plus 500 µl of isopropanol on solid CO₂. After spinning in a microfuge for 7 min, the samples were washed twice with 75% ethanol and dried under vacuum. The pellets were resuspended in 6 µl of 90% formamide with ~1 mg/ml each of xylene cyanol and bromphenol blue dyes. Three microliters were loaded per lane onto polyacrylamide gels.

Primer extension and RNase mapping

Typically, 10% of the RNA collected from a confluent 6-cm (diam.) tissue culture dish, or the equivalent of one-tenth to one-half Xenopus oocyte, was used for each assay. The 25-nucleotide oligodeoxynucleotide complementary to nucleotides 9–33 of the C exon was 5' end labeled using [γ-32P]ATP and polynucleotide kinase [Maniatis et al. 1982]. Hybridization and primer extension was then performed as described (Solnick et al. 1985). RNase T1 mapping was performed according to Melton et al. [1984], except that RNase A was omitted. RNA and DNA samples were analyzed on either 4% or 6% polyacrylamide gels with 8 M urea, as indicated in the figure legends.

Acknowledgments

We are indebted to Jon Izant for providing the Xenopus oocytes, performing the microinjections, and for advice on Xenopus RNA metabolism. We are grateful to Ursula Bond, Kimberly Bovenber, R.A. L., P.D. Baas, and H.S. Jansz. for careful reading of the manuscript and to Doug Black for helpful advice and discussions. This work was supported by U.S. Public Health Service grant GM-26154 and National Institutes of Health grant GM-07205 from the National Institute of General Medical Sciences, Medical Scientist Training Program. Computer resources were provided by the National Institutes of Health, U.S. Public Health Service BIONET grant 1IU1 RR-01685-03.

References

Aebi, M. and C. Weissmann. 1987. Precision and orderliness in splicing. Trends Genet. 3: 102–107.

Berk, A.J. and P.A. Sharp. 1978. Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711.

Black, D.L., B. Chabot, and J.A. Steitz. 1985. U2 as well as U1 small nuclear ribonucleoproteins are involved in pre-messenger RNA splicing. Cell 42: 737–750.

Bovenber, R.A.L., P.D. Baas, and H.S. Jansz. 1987. Processing human calc-I RNA. Mol. Biol. Rep. 12: 194–195.

Breathnach, R., C. Benoist, K. O’Hare, F. Gannon, and P. Chambon. 1978. Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the intron-exon boundaries. Proc. Natl. Acad. Sci. 75: 4853–5857.

Breitbart, R.E., A. Andreidis, and B. Nadal-Girard. 1987. Alternative splicing: A ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu. Rev. Biochem. 56: 467–495.

Chabot, B. and J.A. Steitz. 1987. Recognition of mutant and cryptic 5' splice sites by the U1 small nuclear ribonucleoprotein in vitro. Mol. Cell. Biol. 7: 698–707.

Choi, Y.D., P.J. Grabowski, P.A. Sharp, and G. Dreyfuss. 1986. Heterogeneous nuclear ribonucleoproteins: Role in RNA splicing. Science 231: 1534–1539.

Chow, L.T., R.E. Gelinas, T.R. Broker, and R.J. Roberts. 1977. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12: 1–8.

Crabtree, G.R. and J.A. Kant. 1982. Organization of the rat γ-fibrinogen gene: alternative mRNA splice patterns produce the γA and βB [γ] chains of fibrinogen. Cell 31: 159–166.

Cunningham, S.A., A.J. Else, and I.C. Eperon. 1988. Use of alternative 5' splice sites depends on their separation. J. Cell. Biochem. [suppl.] 12D: 47.

Dreyfuss, G. 1986. Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu. Rev. Cell. Biol. 2: 459–498.

Dreyfuss, G., M.S. Swanson, and S. Pinol-Roma. 1988. Heterogeneous nuclear ribonucleoprotein particles and the pathway of mRNA formation. Trends Biochem. Sci. 13: 86–91.

Dumont, J.N. 1972. Oogenesis in Xenopus laevis. I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136: 153–180.

Eperon, I.P., J.P. Estibethro, and I.C. Eperon. 1986. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature 324: 280–282.

Fornace, A.J., Jr., D.E. Cummings, C.M. Comeau, J.A. Kant, and G.R. Crabtree. 1984. Structure of the human γ-fibrinogen gene. J. Biol. Chem. 259: 12826–12830.

Fradin, A.J., R. Jove, C. Hemenway, H.D. Keiser, J.L. Manley and C. Prives. 1984. Splicing pathways of SV40 mRNAs in X. laevis oocytes differ in their requirements for snRNPs. Cell 37: 927–936.

Fu, X.-Y. and J.L. Manley. 1987. Factors influencing alternative splice site utilization in vivo. Mol. Cell. Biol. 7: 738–748.

Furdon, P.J. and R. Kole. 1988. The length of the downstream exon and the substitution of specific sequences affect pre-mRNA splicing in vitro. Mol. Cell. Biol. 8: 860–866.

Furneaux, H.M., K.K. Perkins, G.A. Freyer, J. Arenas, and J. Hurwitzi. 1985. Isolation and characterization of two fragments from HeLa cells required for mRNA splicing in vitro. Proc. Natl. Acad. Sci. 82: 4351–4355.

Green, M.R. 1986. Pre-mRNA splicing. Annu. Rev. Genet. 20: 671–708.

Gunning, P., J. Leavitt, G. Muscat, S. Ng, and L. Kedes. 1987. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. 84: 4831–4835.

Gurdon, J.B. 1977. Methods for nuclear transplantation in amphibia. Methods Cell Biol. 16: 125–139.

Honjo, T. and S. Habu. 1985. Origin of immune diversity: Genetic variation and selection. Annu. Rev. Biochem. 54: 803–830.

Kabat, E.A., T.T. Wu, H. Bilofsky, M. Reid-Miller, and H. Perry. 1983. Sequences of proteins of immunologic interest. U.S. Dept. of Health and Human Services, Bethesda, Maryland.

Kedes, D.H. and J.A. Steitz. 1987. Accurate 5' splice site selection in mouse immunoglobulin kappa light chain pre-mRNA splicing is not cell-type specific. Proc. Natl. Acad. Sci. 84: 7928–7932.

Khoury, G., P. Gruss, R. Dhar, and C.-J. Lai. 1979. Processing and expression of early SV40 mRNA: A role for RNA conformation in splicing. Cell 18: 85–92.

Klobeck, H.-G., F.-J. Zimmer, G. Combrato, and H.G. Zachau.
1987. Linking of human immunoglobulin V_k and J_C_k regions by chromosomal walking. *Nucleic Acids Res.* 15: 9655–9665.

Konarska, M.M., R.A. Padgett, and P.A. Sharp. 1984. Recognition of cap structure in splicing in vitro of mRNA precursors. *Cell* 38: 731–736.

Kuhne, T., B. Wieringa, J. Reiser, and C. Weissmann. 1983. Evidence against a scanning model of RNA splicing. *EMBO J.* 2: 727–733.

Lang, K.M. and R.A. Spritz. 1983. RNA splice site selection: Evidence for a 5'to 3' scanning model. *Science* 220: 1351–1355.

Laski, F.A., D.C. Rio, and G.M. Rubin. 1986. Tissue specificity of transcriptional units: Diversity in gene expression by alternative RNA processing. *Annu. Rev. Biochem.* 55: 1091–1117.

Lerner, M.R., J.A. Boyle, S.M. Mount, S.L. Wolin, and J.A. Steitz. 1980. Are snRNPs involved in splicing? *Nature* 283: 220–224.

Lewis, S., A. Gifford, and D. Baltimore. 1984. Joining of V_k to J_C_k gene segments in a retroviral vector introduced into lymphoid cells. *Nature* 308: 425–428.

Lowery, D.E. and B.G. Van Ness. 1987. In vitro splicing of kappa immunoglobulin precursor mRNA. *Mol. Cell. Biol.* 7: 1346–1351.

Lowery, D.E. and B.G. Van Ness. 1988. Comparison of in vitro and in vivo splice site selection in κ-immunoglobulin precursor mRNA. *Mol. Cell. Biol.* 8: 2610–2619.

Maniatis, T., E.F. Fritsch, and J. Sambrook. 1982. *Molecular cloning: A laboratory manual.* Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Mardon, H.J., G. Sebastio, and F.E. Baralle. 1987. A role for exon sequences and intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. *Nucleic Acids Res.* 15: 7725–7733.

Max, E.E., J.G. Seidman, and P. Leder. 1979. Sequences of five potential recombination sites encoded close to an immunoglobulin κ constant region gene. *Proc. Natl. Acad. Sci.* 76: 3450–3454.

Mayeda, A., K. Tatei, H. Kitayama, K. Takemura, and Y. Oshima. 1986. Three distinct activities possibly involved in mRNA splicing are found in a nuclear fraction lacking U1 and U2 RNA. *Nucleic Acids Res.* 14: 3045–3057.

Melton, D.A., P.A. Kricemento, M.R. Rebagliati, T. Maniatis, K. Zinn, and M.R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. *Nucleic Acids Res.* 12: 7035–7056.

Mount, S.M. 1982. A catalogue of splice junction sequences. *Nucleic Acids Res.* 10: 459–472.

Noble, J.C.S., C. Prives, and J.L. Manley. 1986. In vitro splicing of simian virus 40 early pre-mRNAs. *Nucleic Acids Res.* 14: 1219–1235.

Norton, P.A. and R.O. Hynes. 1988. Splicing of fibronectin RNA in vitro. *J. Cell Biochem.* [suppl.] 12D: 53.

Osheim, Y.N., O.L. Miller, Jr. and A.L. Beyer. 1985. RNP particles at splice junction sequences on *Drosophila* chorion transcripts. *Cell* 43: 143–151.

Padgett, R.A., P.J. Grabowski, M.M. Konarska, S. Seiler, and P.A. Sharp. 1986. Splicing of messenger RNA precursors. *Annu. Rev. Biochem.* 55: 1019–1050.

Parent, A., S. Zeitlin, and A. Efstratiadis. 1987. Minimal exon sequence requirements for efficient in vitro splicing of mono-intronic nuclear pre-mRNA. *J. Biol. Chem.* 262: 11284–11291.

Reed, R. and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice-site selection. *Cell* 46: 681–690.

Rogers, J., P. Early, C. Carter, K. Calame, M. Bond, L. Hood, and R. Wall. 1980. Two mRNAs with different 3' ends encode membrane-bound and secreted forms of immunoglobulin κ chain. *Cell* 20: 303–312.

Schmitt, P., R. Gattoni, P. Koehavong, and J. Stevenin. 1987. Alternative splicing of e1a transcripts of adenovirus requires appropriate ionic conditions in vitro. *Cell* 50: 31–39.

Seif, I., G. Khoury, and R. Dhar. 1979. BKV splice sequences based on analysis of preferred donor and acceptor sites. *Nucleic Acids Res.* 6: 3387–3398.

Sharp, P.A. 1981. Speculations on RNA splicing. *Cell* 23: 643–646.

Solnick, D. 1985. Trans splicing on mRNA precursors. *Cell* 42: 157–164.

Somasekhar, M.B. and J.E. Mertz. 1985. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. *Nucleic Acids Res.* 13: 5591–5609.

Steitz, J.A., D.L. Black, V. Gerke, K.A. Parker, A. Kramer, D. Frensdewey, and W. Keller. 1987. Functions of the abundant μ-snRNPs. In *Structure and function of major and minor small nuclear ribonucleoprotein particles, structure and functions* [ed. M.L. Birnstiel], pp. 115–154. Springer Verlag, Berlin, Heidelberg, New York.

Tonegawa, S. 1983. Somatic generation of antibody diversity. *Nature* 302: 575–581.

Van Santen, V.L. and R.A. Spritz. 1986. Alternative splicing of SV40 early pre-mRNA in vitro. *Nucleic Acids Res.* 14: 9911–9926.

Webber, F., J. de Villiers, and W. Schaffner. 1984. An SV40 ‘enhancer trap’ incorporates exogenous enhancers or generates enhancers from its own sequences. *Cell* 36: 983–992.

Wietinga, B., E. Hofer, and C. Weissmann. 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit beta-globin intron. *Cell* 37: 915–925.
Correct in vivo splicing of the mouse immunoglobulin kappa light-chain pre-mRNA is dependent on 5' splice-site position even in the absence of transcription.

D H Kedes and J A Steitz

*Genes Dev.* 1988, 2:
Access the most recent version at doi:10.1101/gad.2.11.1448

---

**References**

This article cites 57 articles, 14 of which can be accessed free at:
[http://genesdev.cshlp.org/content/2/11/1448.full.html#ref-list-1](http://genesdev.cshlp.org/content/2/11/1448.full.html#ref-list-1)

**License**

**Email Alerting Service**

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here.](#)