Microplastic ingestion in zooplankton from the Fram Strait in the Arctic

Zara L.R. Botterella,b, Melanie Bergmann c, Nicole Hildebrandtc, Thomas Krumpend, Michael Steinkee,b, Richard C. Thompson e, Penelope K. Lindeque a,*

a Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
b School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
c HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
d Climate Sciences, Sea Ice Physics, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bussestraße 24, 27570 Bremerhaven, Germany
e Marine Biology and Ecology Research Centre (MBERC), School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

HIGHLIGHTS

• We investigate microplastic ingestion in several species of Arctic zooplankton.
• Novel technique allows microplastic identification to 6.25 μm and removes human bias.
• Amphipods had ingested significantly more microplastics than copepods.
• Ingested microplastics were all fragments and the majority below 50 μm in size.
• Comparison with water samples suggest selectivity of smaller-sized microplastics.

GRAPHICAL ABSTRACT

ABSTRACT

Some of the highest microplastic concentrations in marine environments have been reported from the Fram Strait in the Arctic. This region supports a diverse ecosystem dependent on high concentrations of zooplankton at the base of the food web. Zooplankton samples were collected during research cruises using Bongo and MOCNESS nets in the boreal summers of 2018 and 2019. Using FTIR scanning spectroscopy in combination with an automated polymer identification approach, we show that all five species of Arctic zooplankton investigated had ingested microplastics. Amphipod species, found in surface waters or closely associated with sea ice, had ingested significantly more microplastic per individual (Themisto libellula: 1.8, Themisto abyssorum: 1, Apherusa glacialis: 1) than copepod species (Calanus hyperboreus: 0.21, Calanus glacialis/nmarchicus: 0.01). The majority of microplastics ingested were below 50 μm in size, all were fragments and several different polymer types were present. We quantified microplastics in water samples collected at six of the same stations as the Calanus using an underway sampling system (inlet at 6.5 m water depth). Fragments of several polymer types and anthropogenic cellulosic fibres were present, with an average concentration of 7 microplastic particles (MP) L⁻¹ (0–18.5 MP L⁻¹). In comparison to the water samples, those microplastics found ingested by zooplankton were significantly smaller, highlighting that the smaller-sized microplastics were being selected for by the zooplankton. High levels of microplastic ingestion in zooplankton have been associated with negative effects on growth, development, and fecundity. As Arctic zooplankton only have a short window of biological productivity, any negative effect could have broad consequences. As global plastic consumption continues to increase.

Keywords:
Amphipod
Bioavailability
Copepod
Marine litter
Microplastic ingestion
Plastic pollution

* Corresponding author.
E-mail address: pkw@pml.ac.uk (P.K. Lindeque).

http://dx.doi.org/10.1016/j.scitotenv.2022.154886
0048-9697/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
and climate change continues to reduce sea ice cover, releasing ice-bound microplastics and leaving ice-free areas open to exploitation, the Arctic could be exposed to further plastic pollution which could place additional strain on this fragile ecosystem.

1. Introduction

Microplastic particles (microscopic plastic; 1 μm–5 mm) have been widely reported in the Arctic Ocean (Halsband and Herzke, 2019). They have been discovered in snow, sea ice, sea surface, water column, and deep-sea sediments (Obbard et al., 2014; Lusher et al., 2015; Bergmann et al., 2017, 2019; Tekman et al., 2020), and as such they are a contaminant of growing concern in this remote region (AMAP, 2021). Prevailing Atlantic and Pacific water and wind currents can transport nutrients, biota and marine debris including microplastics to this ocean basin (Zarfl and Matthies, 2010; Kanhai et al., 2018). Microplastics can become trapped in sea ice which can not only function as a temporary sink but act as a transport medium and a subsequent secondary source of microplastics upon melting (Peeken et al., 2018; Kanhai et al., 2020). Accelerated melting due to global warming would release an increased number of microplastics into the surrounding water, increasing the exposure to Arctic species (Obbard et al., 2014). In addition, reduced sea-ice coverage would lead to increased local anthropogenic activities such as fishing, tourism, shipping, and resource exploitation, potentially increasing the plastic burden and placing further stress on an already vulnerable ecosystem (Dalsøren et al., 2007; Bergmann and Klages, 2012; Melia et al., 2016; Rodríguez-Torres et al., 2020).

The Fram Strait, which lies between Greenland and Svalbard, is the only deep-water connection between the North Atlantic and Arctic Oceans (Thiede et al., 1990). Recent research has shown that the amount of plastic debris, particularly around the Svalbard region, has been steadily increasing over the last 15 years (Parga Martínez et al., 2020). Previous studies investigating microplastic concentrations have shown the Fram Strait to have some of the highest recorded concentrations (1.2 × 10^3 m^-3) in the Arctic and are amongst the highest records worldwide, with the majority of these microplastic particles being smaller than 50 μm (Peeken et al., 2018). These waters support highly productive food webs, which may be vulnerable to microplastic pollution (Lusher et al., 2015; Rist et al., 2020).

Due to the small size of microplastic particles, they are bioavailable to a wide range of species including many species of zooplankton (Cole et al., 2013). Zooplankton is a crucial food source and provides an important link in the marine food web between phytoplankton and higher trophic levels (Kiarboe, 2011). In the Arctic, amphipods and copepods are particularly important food sources found within the zooplankton. They are also essential for vertical export of organic matter and carbon sequestration (Dalpadado et al., 2008; Steinberg and Landry, 2017). Laboratory studies have shown that microplastics are readily ingested by several species of zooplankton and can cause a range of detrimental effects including reduced feeding behavior, growth and fecundity (Lee et al., 2013; Cole et al., 2015). Ingestion of microplastic in the field has also been documented, however, impacts in the field are difficult to assess due to major methodological obstacles in controlling experimental conditions and variables (i.e. contamination, biotransformation of microplastics, food availability and prior dietary history) (Botterell et al., 2019). Yet current knowledge gaps regarding occurrence of ingestion in the natural environment, where information is scarce, difficult to obtain and limited to a few geographical regions, still need to be addressed as they provide important data for exposure scenarios for use in laboratory experiments and help toward an assessment of risk to an individual, population, and species (Evertaet et al., 2020).

Recent laboratory research has highlighted that factors, such as microplastic shape and size, can affect the bioavailability of microplastics to a species (Vroom et al., 2017; Coppock et al., 2019; Botterell et al., 2020; Isinibilir et al., 2020). To better understand the mechanisms behind microplastic ingestion, it is vital to identify which environmental microplastics are ingested in the field and whether this is representative of the microplastics available in the marine environment or demonstrates selectivity by a species. Previous studies have shown there is a close overlap to what is found ingested by the zooplankton and that present in the surrounding water (Desforges et al., 2015; Steer et al., 2017). However, these studies used a different methodology that would have been unable to detect the smallest microplastics.

In this study, we investigate microplastic ingestion in several species of Arctic zooplankton, i.e., the calanoid copepods Calanus finmarchicus, C. glacialis and C. hyperboreus and the amphipods Themisto abyssorum, T. libellula and Apherusa glacialis, collected from the Fram Strait. The Calanus species often dominate the Arctic mesozooplankton communities in terms of biomass (Aarflot et al., 2018). They are suspension feeders which accumulate large lipid reserves during spring/summer by feeding on the ice algae and/or phytoplankton bloom whereas they migrate to deeper water layers and enter a diapause state during winter (reviewed e.g. by Falk-Petersen et al., 2009). Their approximate prey size is ≤35 μm, but many prey species are chain forming and copepods are able to bite smaller pieces off of larger items (Neistgaard et al., 1997; Cole et al., 2019; Coppock et al., 2019; B. Niehoff per comms). The copepods high nutritional value makes them an important prey species for higher trophic levels such as amphipods, fish, or seabirds (Wold et al., 2011; Kraft et al., 2013; Majewski et al., 2016; Bouchard and Fortier, 2020). The epi- to mesopelagic Themisto species T. libellula and T. abyssorum are dominant members of the Arctic amphipod communities (Dalpadado et al., 2001). They are omnivorous, feeding on dinoflagellates but primarily mesozooplankton species such as Calanus (approx. prey size ≤7–8 mm)(Auel et al., 2002; Dalpadado et al., 2008; Kraft et al., 2013; Leinaas et al., 2016). The sympagic (ice-associated) A. glacialis feeds on ice algae and small detritus particles (Poltermann, 2001). All three amphipod species are important food sources for Arctic fish including polar cod, marine mammals and seabirds, which are all suggested as indicators for biomonitoring in the Arctic (Lønne and Gulliksen, 1989; Mehlum and Gabrielsen, 1993; Dalpadado et al., 2001; Majewski et al., 2016; McNicholl et al., 2016; Collard and Ask, 2021). Therefore, amphipods together with the copepods, represent a route whereby microplastics could enter the food web. As high concentrations of microplastics have been reported in the Arctic surface waters and sea ice this could put certain species such as amphipods that inhabit these waters at an increased risk of encountering microplastic (Peeken et al., 2018; Tekman et al., 2020).

In this study, we seek to characterize in terms of size, shape, and polymer what types of microplastics are ingested and quantify the ingestion of microplastics in the copepod and amphipod species investigated. Previously, microplastics smaller than 30 μm have been difficult to characterize due to methodological constraints. However, using spectral imaging FTIR (Fourier Transform Infrared) spectroscopy combined with SIMPLE software analysis we were able to identify microplastic polymers down to the size of 0.25 μm whilst also removing human bias. We hypothesize that 1) the majority of the microplastics found ingested will be smaller than 50 μm, 2) those species of zooplankton, e.g. Apherusa and Themisto sp., that are closely associated with sea ice and surface waters will have ingested more microplastics than other species, and 3) that microplastics ingested by zooplankton will be representative of what is found in the surrounding water.

2. Materials and methods

2.1. Study area and sample collection

Zooplankton samples were collected from 10 stations in the Fram Strait during research cruises on board the research icebreaker RV Polarstern (expedition PS114, 2018) to HAUSGARTEN/FRAM observatory and the RRS
James Clark Ross (research cruise JR18007, 2019) (Fig. 1, see Supplementary materials Table S1 for station list). The Fram Strait is characterised by a complex hydrographic regime with warm waters of Atlantic origin prevailing in the eastern parts (West Spitsbergen Current) and colder less saline water of polar origin carried with the transpolar drift to the western parts (East Greenland Current) (Beszczynska-Möller et al., 2012). During PS114, zooplankton was sampled with a Bongo net (150 μm mesh size, towed at 0.5 ms⁻¹ for ~40 min) that was attached to the side of a multinet. During JR18007, we used Bongo nets (200 μm mesh size, towed at 0.3 ms⁻¹ for ~25 min) and a MOCNESS multinet (330 μm mesh size, towed at 0.16 ms⁻¹ for ~120 min, with nets opening and closing at set depths for 5–10 min). Back on board, the net content was released into plastic-lidded buckets (JR18007) or metal buckets (PS114). Using a 200 μm mesh sieve, a sample from the bucket was transferred to a Petri dish. Under a dissection microscope (Wild M5-4936; ×20 magnification - JR18007; or a Leica MZ9.5, ×20 magnification - PS114), individuals were carefully picked out using stork bill forceps and gently but thoroughly rinsed with Milli-Q water and visually examined to ensure that no plastic debris was attached to the external surface of any of the individuals. Specimens of the amphipod species Themisto libellula, Themisto abyssorum, Apherusa glacialis, and copepod species Calanus hyperboreus, Calanus glacialis/marshicus of similar life stage (adult amphipods and adult female or stage CV copepods) were collated into a glass vial and 5 mL 10% sodium dodecyl sulfate (SDS) homogenising solution (filtered over 0.45 μm cellulose nitrate filter) was added to begin enzymatic digestion immediately (Supplementary materials Table S1). The vials were then stored at room temperature, with regular manual shaking, until further analysis could be conducted at Plymouth Marine Laboratory (PML). Amphipod species were individually digested, and copepods digested in batches. To keep both sets of data constant, the amphipod species data were pooled to match those of the copepods.

Water samples were collected in plastic bottles from the underway system (inlet at 6.5 m water depth) at each of the stations sampled from the JR18007 (2019) cruise. One sample was taken from a cast of the CTD rosette at 5 m depth whilst in the ice. Plastic bottles were used for ease of handling on ship, but a sample from the bottles was scanned and added to the FTIR polymer library (polypropylene) to account for any potential contamination from the sample bottle. Two litres of water were filtered onto a 25 mm polycarbonate filter (5 μm pore size, Whatman, UK) at each station using a peristaltic pump and vacuum pump system with a 20 μm mesh covering the filtration vessel to minimise contamination from the environment. Filters were then retained in a Petri dish and frozen at -20 °C for analysis at PML.

2.2. Sample preparation

2.2.1. Enzymatic digestion

An enzymatic protocol, developed by Lindeque and Smerdon (2003) and further adapted by Cole et al. (2014) was used to digest the zooplankton samples and remove organic material. The 10% sodium dodecyl sulfate (SDS) homogenising solution consisted of 400 mL Tris-HCl buffer, 120 mL ethylenediaminetetraacetic acid (EDTA), 30 mL sodium chloride (NaCl), 100 mL sodium dodecyl sulphate (SDS) and 350 mL Milli-Q water.

2.2.2. Filtration of zooplankton samples

Prior to filtration, samples were simultaneously shaken and incubated at 50 °C for 24 h to help digest any remaining biological material. Each sample was then poured through a 500 μm mesh directly into the filtration vessel and rinsed thoroughly with Milli-Q water. The mesh was used to catch remaining empty carapaces from the zooplankton, which could interfere with FTIR analysis. Then the sample was filtered onto a 13 mm silver filter (5 μm pore size, Sterlitech, USA) using a vacuum pump. The filtration vessel was thoroughly rinsed with Milli-Q and a few drops of ethanol (30%) to remove any debris that may be adhered to the vessel. The filter was transferred to a sterile Petri dish and left to dry at room temperature. Filters were stored at 3 °C until used in FTIR analysis.

The 500 μm mesh used to filter larger undigested sample material was backwashed with Milli-Q water into a filtration vessel and filtered onto a 10 μm mesh, then rinsed and processed as above. Filters were then stored at 3 °C until visually inspected for any microplastic debris.

2.2.3. Filtration of water samples

The filters used to collect the water samples were gently rinsed with Milli-Q water and a few drops of ethanol (30%) and the filtrate was collected in a filtration vessel. Filters were visually inspected using an Olympus (SZX16) microscope to ensure the sample had been rinsed off. They were then filtered and processed using the same methodology as the above zooplankton samples. The filter was then placed into a sterile Petri dish and left to dry. Filters were stored at 3 °C until FTIR analysis.

2.3. Microplastic identification

FTIR spectroscopy to identify microplastic particles was performed on a PerkinElmer Spotlight 400 (PerkinElmer, UK) in reflectance mode. Spectral imaging was carried out at a resolution of 16 cm⁻¹ using 4 accumulations (4 scans per spectrum) at a pixel resolution of 6.25 μm and an interferometer speed of 1 cm s⁻¹. Scans were carried out from 4000 to 750 cm⁻¹. All spectra were corrected for light reflectance penetration and baseline displacement using a clean silver filter (5 μm pore size, Sterlitech) as a background sample. Each sample, on a 13 mm silver filter, required 16 h to be scanned entirely.

The free software programme, SIMPLE (https://simple-plastics.eu/), was used to quantify and identify particles by comparing spectra to a polymer database with reference spectra of known plastic polymers (Primpke et al., 2020). Sample spectra were matched against the database using a Pearson’s correlation coefficient threshold of 0.65 against the first and second derivative. This threshold was used as a compromise between allowing for spectral modifications that may occur due to weathering in the marine environment and having a reasonable confidence in the spectral match.
(Johnson et al., 2020). The second and third thresholds that were used for particle building (the pixels adjoining the particle already identified as a polymer) were set using the Pearson’s correlation coefficient thresholds of 0.4 and 0.3, respectively. Anthropogenic cellulose fibres (e.g. rayon) return the same spectra as cellulose within the SIMPLE software, and due to their structure, not all of the fibre is often in the correct plane of focus for scanning. Therefore, the images generated using the FTIR prior to scanning, were visually checked for the presence of anthropogenic fibres using colour and structure as markers of anthropogenic origin. The lengths of the fibres were measured using the Olympus cellSens software on an Olympus (SZX16) microscope.

2.4. Contamination and prevention of microplastic loss

2.4.1. On-board quality assurance/quality control (QA/QC)

QA/QC procedures were designed and implemented at all stages to reduce sample contamination. Metal and glass equipment were used as much as possible; all equipment was thoroughly cleaned with ethanol (70%) and triple rinsed with Milli-Q water prior to use. The same personal protective equipment was worn for the duration of the sampling and stored separately. Sample fibres were taken from all clothing, along with any potential contaminants such as ropes, pipes etc. to be analysed alongside zooplankton samples. Blank control vials containing only homogenising buffer (5 mL) were prepared alongside zooplankton samples at each station. Blank controls were also taken in parallel with the water samples using the filtration rig and mesh covered filtration vessel with no water sample.

2.4.2. Laboratory QA/QC

Samples were prepared and analysed in an ultra-clean laboratory (positive pressure system with HEPA filters, cotton lab coats, key card entry and tact mats) at Plymouth Marine Laboratory in a positively pressured laminar flow hood. All surfaces were thoroughly cleaned with ethanol (70%) before use. Glass and metal equipment were used where possible, and consumables were used directly from sterile packaging. All equipment was triple rinsed with Milli-Q water before use. When not in use, samples were kept covered. Natural fibre clothing was worn underneath a clean 100% cotton laboratory coat, stored within the laboratory to avoid contact with synthetic fibres.

Background laboratory contamination was assessed by exposing a damp filter paper (47 mm, Whatman, UK) in a clean Petri dish for the duration of the experimental work to catch airborne microplastics. These were sealed and labelled for further analysis. Samples of potential contaminants such as sterile packaging, natural clothing fibres etc. were taken and added to the FTIR reference library to be analysed alongside zooplankton samples.

Positive controls, in triplicate, of known spiked microplastic quantities were conducted to assess the capture efficiency of our filtration methodology. Ten fluorescent 20 μm spherical polystyrene beads (Spherotech, USA) and ten 19 × 250 μm Nile Red stained nylon fibres (Goodfellow Cambridge Ltd., prepared following the method by Cole (2016)) were added to each positive control vial. These controls were processed and filtered using the same methodology as for the zooplankton samples (see Section 2.2.2). Using a microscope (Olympus SZ X16) with fluorescence, silver filters were visually inspected and microplastics of both types counted. Using this methodology with these sized microplastics, our capture efficiency was measured using the Olympus cellSens software on an Olympus (SZX16) microscope.

Using a microscope (Olympus SZ X16) with the same methodology as for the zooplankton samples (see Section 2.2.2). Microplastic ingestion was calculated as the total number of microplastic particles ingested/No. of organisms. Whilst the amphipod species were collected individually, they were pooled together to match that of the copepods to keep both sets of data constant. A Kruskal Wallis test, with following pairwise comparisons using Dunn’s test, was used to compare the ingestion of microplastics between species, and also the relationship between species and the size of the microplastics ingested (Thomas et al., 2013). Size differences between the ingested microplastics in the 2019 samples and those found within the water samples were analysed using a Mann-Whitney U test. It was also used to investigate the differences in the mean number of microplastics ingested by copepods between 2018 and 2019 and mean microplastic size between 2018 and 2019. A Spearman’s rank coefficient was used to compare the correlation between ingestion of microplastics per organism and distance to land, sea ice, latitude and longitude. Identical tests were carried out for microplastics found in water samples. A Spearman’s rank coefficient was also used to compare the correlation between microplastic size and latitude for both biota and water samples. A Fisher’s exact test (Thomas et al., 2013) was conducted to assess differences in the polymer compositions of water and zooplankton samples. The significance level for all tests was set at α = 0.05.

Land and coastline data were sourced from Natural Earth (http://www.naturalearthdata.com) and imported into ArcGIS 10.2.2 (ESRI, 2011). Geographic locations of sampling stations were provided as longitude and latitude (WGS1984). An assessment of the sea ice condition in Fram Strait at the time of sampling was made using standard satellite products. The applied sea ice concentration product is provided by the Center for Satellite Exploitation and Research (CERSAT) and based on 85 GHz SSM/I brightness temperatures, using the ARTIST Sea Ice (ASI) algorithm. The product is available on a 12.5 × 12.5 km grid (Ezzy et al., 2007). This data set was then also used to calculate the distance between sampling locations and the ice edge. For this, we first smoothed the sea ice concentration data set by convolution with a 2 × 2 grid cell kernel. Next, the shortest distance between the sampling location and an area with more than 15% ice cover is calculated.

3. Results

3.1. Number of microplastics found

We assessed microplastic ingestion in several species of zooplankton including the copepods Calanus hyperboreus (n = 177) and Calanus glacialis/finnmarchicus (n = 1229), and the amphipods Themisto libellula (n = 5), Themisto abyssorum (n = 5) and Apherusa glacialis (n = 1). All species were found to have ingested microplastics, all of which were fragments (n = 64). Ingestion of microplastic (total number of microplastic particles ingested/no. of individuals) varied between species with relatively more amphipods found to have ingested microplastics than copepods. The mean number (± SE) of microplastics ingested per zooplankton individual was 1.8 ± 0.2 in T. libellula (frequency of occurrence (f0) of microplastics found/no. of individuals analysed)*100%) = 180%, 1 in T. abyssorum (100%), 1 in A. glacialis (100%), 0.21 ± 0.03 in C. hyperboreus (21%), and 0.17 ± 0.003 in C. glacialis/finnmarchicus (1%) (Table 1). There was a significant difference in the ingestion of microplastics (per individual) between species (Kruskal-Wallis test, H = 407.76, d.f. = 4, P = 2.2 × 10−19). Pairwise comparisons using Dunn’s test indicate that T. libellula, T. abyssorum, and A. glacialis had ingested significantly more than C. hyperboreus (P < 0.001 for all tests) and C. glacialis/finnmarchicus (P < 0.001 for all tests). C. hyperboreus had ingested significantly more microplastics than C. glacialis/finnmarchicus (P < 0.001). There was no significant correlation between the ingestion of microplastics per individual and distance to land (Spearman’s rank rs = −0.05, P = 0.86), sea ice (rs = 0.19, P = 0.49), latitude (rs = −0.49, P = 0.15) or longitude (rs = −0.17, P = 0.62). Comparing the difference in microplastic ingestion per individual in copepods to...
for each year, *C. hyperboreus* ingested substantially more microplastics in 2019 (Mann-Whitney U = 638.5, *P* = 0.056), and *C. finmarchicus/glacialis* ingested significantly more microplastics in 2018 (Mann-Whitney U = 284, *P* = 2.2 × 10⁻¹⁹) (Supplementary materials Table S3).

Six water samples (2 L) were collected at the same stations as the zooplankton samples during JR18007. In total, we found 32 microplastic particles and 52 fibres in these samples. The average microplastic concentration was 7 MP L⁻¹ (range: 0–18.5 MP L⁻¹) (7000 MP m⁻³; range 0–18,500 MP m⁻³) (Supplementary material Table S2). There was no correlation between the number of microplastics found at each station with distance to land (Spearman’s rank *rs* = 0.07, *P* = 1), distance to ice (*r* = 0.58, *P* = 0.14) or latitude (*r* = −0.2, *P* = 0.72).

### 3.2. Size of microplastics found

The microplastic fragment sizes found in the zooplankton samples ranged from 8 to 286 μm with a mean size ± SE of 41 ± 6 μm. The majority (75%) of the microplastics were below 50 μm in size (Fig. 2a). Further breakdown of this size category showed that microplastics between 11 and 20 μm were the most common (Fig. 2b). Analysis of the size difference showed that there was a significant difference between species (Kruskal-Wallis, *H* = 21.82, d.f. = 4, *P* = 0.0002). Pairwise comparisons using Dunn’s test indicated that *C. hyperboreus* had ingested significantly smaller microplastics than *T. abyssorum* (*P* = 0.03), *T. libellula* (*P* = 0.01), and *C. finmarchicus/glacialis* (*P* = 0.02) (Table 2). Comparing the size of the ingested microplastics in each year showed that *C. hyperboreus* ingested significantly smaller microplastics in 2019 (Mann-Whitney U = 93, *P* = 0.02). There was no significant difference in the microplastics size for *C. finmarchicus/glacialis* between 2018 and 2019 (Mann-Whitney U = 18, *P* = 0.8) (Supplementary materials Table S3). There was a significant positive correlation between the size of the ingested microplastics and latitude (Spearman’s rank *rs* = 0.61, *P* = 7 × 10⁻⁸) with the size of the microplastics increasing as latitude increases.

The mean size of the microplastics fragments found in water samples was 69 (±9) μm (range: 6.3–271 μm). The microplastic particles ingested by zooplankton (JR18007) were significantly smaller than those found in the water samples (Mann-Whitney *U* = 3290, *P* = 2.7 × 10⁻¹⁵). The average length of the fibres was 577 (±77) μm (range: 45–2552 μm).

### Table 1

Ingestion of microplastics by zooplankton from the Fram Strait.

| Species (Species (Species (Species (Species | No. of No. of No. of No. of individuals | No. of No. of No. of No. of microplastics | Incidence of ingestion for microplastics | Ingestion of microplastics (total | Frequency of no. of microplastics ingested/no. ZP digested) mean | Frequency of occurrence |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Calanus finmarchicus/glacialis | 1229 | 12 | n/a | n/a | 0.01 ± 0.003 | 0.21 ± 0.03 | 1 in 102 (1%) | 1 in 5 (21%) | 1 in 1 (100%) | 1 in 102 (1%) |
| *Calanus hyperboreus* | 177 | 37 | n/a | n/a | 1 | 1 | 1 in 102 (1%) | 1 in 1 (100%) | 1 in 5 (21%) | 1 in 1 (100%) |
| *Apherusa glacialis* | 1 | 1 | 1 | 1 | 1 | 1 | 1 in 102 (1%) | 1 in 1 (100%) | 1 in 1 (100%) | 1 in 1 (100%) |
| *Themisto abyssorum* | 5 | 5 | 0.6 | 0.6 | 1.8 ± 0.2 | 1.8 ± 0.2 | 2 in 1 (180%) |
| *Themisto libellula* | 5 | 9 | 0.6 | 0.6 | 1.8 ± 0.2 | 1.8 ± 0.2 | 2 in 1 (180%) |

*1 Cannot be calculated due to individuals pooled in samples.*
Six plastic polymers were identified in the zooplankton samples (Fig. 4). Polyurethane (PU) was the most prevalent (66%, n = 42), followed by acrylic and polystyrene (PS) (both 11%, n = 7), polyethylene (PE) (6%, n = 4), polyester and polyvinylidene chloride (PVDC) (both 3%, n = 2). Polymer types varied between the different size categories, with the greatest diversity found in the smallest size category (Fig. 3). Those species that had a higher ingested particle mean size also had the highest diversity of microplastic polymers, i.e. the amphipods *T. abyssorum* and *T. libellula* (Table 2).

In the water samples, anthropogenic cellulose fibres were most common (n = 54, 63.5%), followed by six polymer types; PS (n = 21, 25%), PVDC (n = 4, 4.8%), PU (n = 3, 3.6%), PE (n = 2, 2.4%), PVC and PA (both n = 1, 1.2%) (Fig. 4). The stations 114-4, NT11 and F7 had the greatest diversity of polymer types. While zooplankton samples contained exclusively polymer fragments, anthropogenic cellulose fibres dominated the water samples. Many of the polymers found ingested are also present in the procedural blanks from the water samples. In comparison with the water samples, those microplastics found ingested were all fragments, had significantly different polymer composition, and were also significantly smaller (mean size 41 μm in zooplankton, 383 μm in water samples), indicating that the smaller sized microplastics were being selected for by the zooplankton. Recent research on water samples taken from the Fram Strait and the North Atlantic Ocean has shown that the smallest microplastics are often found at the highest concentrations (Lindeque et al., 2020; Tekman et al., 2020). If the smaller microplastics also have a higher bioavailability to zooplankton, these organisms could be at particular risk of ingesting high concentrations of microplastics. This could have negative impacts not only for the zooplankton themselves but for the species that depend on them as a food source promoting bioaccumulation.

### 4. Discussion

This is the first study to use FTIR scanning spectroscopy, in combination with automated polymer identification software, to investigate microplastic ingestion by zooplankton. Using this novel technique, we were able to identify that the majority of microplastics found ingested were below 50 μm in size and therefore could have previously been missed by other standard techniques. All five species of Arctic zooplankton investigated had ingested microplastics. Amphipod species, i.e., *Themisto spp.* and *Apherusa glacialis*, which are mainly found in surface waters or closely associated with ice, had ingested significantly more microplastics than copepod species (*Calanus finmarchicus/glacialis, Calanus hyperboreus*). We also showed that, contrary to our hypothesis, microplastics found ingested by zooplankton were not representative of those found in water samples. In comparison with the water samples, those microplastics found ingested were all fragments, had significantly different polymer composition, and also significantly smaller (mean size 41 μm in zooplankton, 383 μm in water samples), indicating that the smaller sized microplastics were being selected for by the zooplankton. Recent research on water samples taken from the Fram Strait and the North Atlantic Ocean has shown that the smallest microplastics are often found at the highest concentrations (Lindeque et al., 2020; Tekman et al., 2020). If the smaller microplastics also have a higher bioavailability to zooplankton, these organisms could be at particular risk of ingesting high concentrations of microplastics. This could have negative impacts not only for the zooplankton themselves but for the species that depend on them as a food source promoting bioaccumulation.

Whilst the impacts of microplastic ingestion in the field are currently unknown, several laboratory studies have shown that if the zooplankton are ingesting microplastics it is likely that they are ingesting less natural prey (Cole et al., 2013, 2019; Coppock et al., 2019). This could lead to an energy deficit that could result in impacts on growth, development, reproduction, and life span (Lee et al., 2015; Cole et al., 2015; Lo and Chan, 2018). Microplastic ingestion by *Calanus helgolandicus* also led to 1.7–3-fold decreased in metabolic rates and time spent swimming, similar to that of starving copepods (Sasibhir et al., 2020). In addition, chemical additives, either present on the surface of the plastic or incorporated within, have been shown to potentially be a contributing factor causing premature molting in the copepod *Calanus finmarchicus* (Cole et al., 2019).

### 4.1. Microplastic ingestion by Arctic zooplankton species

Some of the highest marine microplastics concentrations to date have been reported from Arctic surface waters (Tekman et al., 2020) and sea ice (Peeken et al., 2018), indicating that zooplankton found in the Arctic...
may have a greater chance of encountering microplastics in the environment. Of the five species of Arctic zooplankton investigated, the amphipod *T. libellula* had the highest frequency of occurrence (180%), followed by the highly productive surface waters (epipelagic: *Themisto*) or are associated with sea ice (sympagic: *A. glacialis*) in the Arctic where algal blooms ensure that there is a sufficiently high abundance of prey (Kraft et al., 2013; Kunisch et al., 2020). They are an important food source for many species, especially polar cod (McNicholl et al., 2016) and seabirds (Dalpadado et al., 2001, 2008), and have been identified as possible indicator species for biomonitoring in the Arctic (Collard and Ask, 2021). *Apherusa glacialis* is a herbivorous-detritivorous suspension-feeding species (Poltermann, 2001), whereas *T. abyssorum* and *T. libellula* are considered omnivorous visual feeders (Kraft et al., 2013). These species may have directly ingested microplastics from the water, having mistaken them for prey, or may accumulate microplastics via consumption of other zooplankton species, which may have ingested microplastics themselves (Setälä et al., 2014). If so, the accumulation from prey items may explain the higher microplastic ingestion, however further research into the retention times of microplastics in the environment (Jones-Williams et al., 2020). Microplastic ingestion in zooplankton from regions, which have reported high microplastic concentrations in surface waters (i.e. South China Sea), report frequencies of microplastic occurrence of up to 8% in copepods, and up to 143% in predatory species such as fish larvae (Sun et al., 2017). Whereas in the northeast Pacific Ocean, 1 in 34 (3%) copepods were found to have ingested microplastics (Desforges et al., 2015), and in the Black Sea, 2.1% in *Calanus euxinus* and 0.8% in *Acartia clausi* (Aytan et al., 2022). These studies highlight the variation in microplastic ingestion in similar zooplankton species in different regions. In all these studies, however, microplastics were manually picked out from samples by hand, which may mean that not all microplastics, especially from the smallest size fraction, will have been captured. This may explain in part the differences in reported ingestion between these studies and our values reported here.

Research from the Canadian Arctic reported microplastic presence in 90% of the zooplankton samples with a mean particle concentration of 3.51 particles g$^{-1}$ (range: 0–16 particles g$^{-1}$) (Huntington et al., 2020). However, a direct comparison of their findings with our data is limited as samples were processed in batches of unknown number of different species. Elsewhere, 1 in 125 (0.8%) amphipods from Antarctica have also been shown to ingest microplastics, yet the lower concentrations of microplastics reported in water samples may mean that there is a lower chance of encountering microplastics in the environment (Jones-Williams et al., 2020).

Of the five species investigated, *C. glacialis/fimnarchicus* were the smallest (2–4 mm (Leinaas et al., 2016)), followed by *C. hyperboreus* (6–7 mm (Leinaas et al., 2016)), *A. glacialis* (7–16 mm (Kunisch et al., 2020) and *Themisto* spp. (5–18 mm (Kosztyln et al., 1995)). Ultimately, the size of any microplastic ingested is going to be constrained by the gape size of the species’ mouthparts. Those species with a larger gape will have a wider range of microplastics sizes bioavailable to them (Botterell et al., 2019). As seen in our results, whereby the larger *Themisto* amphipods had the highest mean size of ingested microplastics. Additionally, predatory species (i.e. amphipods) may show a wider range of ingested microplastic sizes due to accumulation of smaller particles ingested by their prey (Setälä et al., 2014). These factors highlight that the life history and ecology of certain species could put them at increased risk of microplastic ingestion.

The majority of the microplastics found ingested by the zooplankton were below 50 μm in size and were all fragments. In comparison to the microplastics found in the water samples, they were significantly smaller, indicating that the smaller-sized microplastics were potentially being selected for by the zooplankton. Fragments were also primarily found in...
pelagic copepods from the Black Sea (Aytan et al., 2022). In addition, recent experiments on the closely related Calanus helgolandicus showed a significant preference for the smallest particles when offered microplastics of 6, 12, and 26 μm diameter (Sinibilll et al., 2020). However, polymer analysis indicated that some of these small fragments found are polymer types that are typically fibres (e.g. polyester). This could be due to fibres fragmenting into very small pieces that no longer resemble classic fibres.

The greatest diversity of polymers was found at the smallest size range, consistent with fragmentation of larger plastics that have been in the environment for a long time. Whilst a wide range of polymer types were found within the zooplankton, PU was the most commonly ingested. Nearly all PU was not biodegraded (under laboratory conditions) causes fragmentation of fibres, which could easily occur over the Arctic summer timescale with potentially 24 h of sunlight (Sørensen et al., 2021) or while entrained in ice, whose cold temperature may affect the crystalline structure of plastic (Peeken et al., 2018). In addition, fragmentation through ingestion by the organism could also be a contributing factor to the smaller sizes found. The freshwater amphipod Gammarus duebeni, for example, fragmented polyethylene spheres into a variety of different shapes and sized fragments, including nanoplastics (Mateos-Cárdenas et al., 2020) as did Antarctic krill (Dawson et al., 2018).

The greatest diversity of polymers was found at the smallest size range, consistent with fragmentation of larger plastics that have been in the environment for a long time. Whilst a wide range of polymer types were found within the zooplankton, PU was the most commonly ingested. Nearly all (99%) of these fragments are below 50 μm in size, which may have increased the bioavailability. However, to show these particles were actively ingested, representing an important transport vector, sink and source of microplastics in the Fram Strait and the North Atlantic (Krumpen et al., 2016; Peeken et al., 2018). The water masses at those stations toward the west of the Fram Strait are likely characterised by the East Greenland Current/Transpolar Drift, whereas the other stations are probably influenced by the Atlantic-West Spitsbergen Current (Fahrbach et al., 2001; Beszczyńska-Möller et al., 2012). However, in this study, there was no correlation between either the number of microplastics in water or zooplankton samples and with distance to ice, distance to land, latitude, or longitude. Except for the size of microplastics in zooplankton samples, which showed a positive correlation with latitude, indicating that as latitude increased so did microplastic size. Yet this could be linked to species, as C. hyperboreus was shown to ingest significantly smaller microplastics, which when compared to the station information, predominately occurred at the lowest latitude station.

In comparison to the microplastics found within the zooplankton samples, fibres were present as well as fragments in the water samples. In addition, there was a much larger range of microplastic sizes present (6.3–2552 μm), but there was a similarly high diversity of polymer types. The most common size class was 100–200 μm followed closely by <50 μm, with the majority of those microplastics under 50 μm being fragments and all particles over 300 μm being fibres. This agrees with other studies in the same region using similar methodology where the majority of the microplastics identified were below 50 μm in size (Peeken et al., 2018; Bergmann et al., 2019; Tekman et al., 2020). This highlights the importance of using scanning FTIR and an automated polymer identification approach (e.g. SIMPLE software) to include smaller particles that otherwise escape detection. But it also crucially indicates that the majority of the microplastics found have a high bioavailability to zooplankton (Botterell et al., 2019). Whilst this method provides vital information to understand ingestion in the field, it is a time consuming and labour-intensive technique requiring very clean samples (i.e., little other organic or inorganic material remaining) which may not be appropriate for all field-based studies. We need a combination of monitoring studies, that take less time and provide a broad estimate of risk (i.e., the encounter rate), but also more detailed studies such as ours to better understand the fundamental mechanism of the interactions between zooplankton and microplastics, which is essential to understand the complex relationship and ultimately to better interpret the risks.

Whilst the water samples taken at each station were of a small volume (2 L), they do provide an important indication of microplastic concentrations, size distribution and polymer types present in a remote and difficult area to access. Moreover, it enables comparisons with microplastics found within zooplankton, which inform on whether this is representative of the microplastics available in the marine environment or indicates selectivity. It should be noted that while the zooplankton samples were taken in vertical tows from 0 to 200 m, water samples originated from a discrete water depth of 6.5 m, which may have caused some bias. However, the data can be compared since zooplankton migrate vertically throughout the water column (Turner, 2015). Vertical water sampling, on the other hand, would have resulted in excess organic matter that would have rendered analysis via FTIR virtually impossible even after additional sample purification steps. Previous research has shown that, in comparison to net tows, sampling with grab bottles (1 L bottles used in Green et al. (2018) or using plastic-free pumps (Rist et al., 2020) is the most effective way of capturing smaller microplastics. However, further research has shown that there can be high within-site variation and using larger grab water volumes (10L) combined with multiple replicates is recommended to provide a more accurate estimate of microplastics abundances in water samples (Ryan et al., 2020). Sampling from the ship is complicated, as there are many sources of contamination, which require rigorous control measures and protocols, such as multiple blanks and recording of any clothing, equipment, and potential sources in the sampling area to be compared to samples in the FTIR library, as conducted in this study. An additional problem of operating on ships in cold environments is the prevalence of fleecy material that is commonly used in clothing (Jones-Williams et al., 2020). Limiting the use of fleecy and ensuring any is covered during sampling is
recommended. Lastly, as a ship passes through an area it can release microplastic pollution through paint, equipment such as rope, and grey water including washing machine effluent, creating a contamination ‘footprint’ as it travels (Leistenschneider et al., 2021). To minimise this contamination in our samples, water samples were taken as soon as we arrived on station as washing machine usage was prohibited. Samples of paint and equipment from the sampling area were taken, scanned into the FTIR, and compared to those found in samples.

5. Conclusion

In our study, we highlight which microplastics (size, shape) have the highest bioavailability to Arctic amphipods and copepods, which species have the highest risk of microplastic ingestion and report, in accordance with other studies, high microplastic concentrations in surface waters. Understanding the factors behind microplastic ingestion is an important step to understanding the risk threshold to a species, population, and an ecosystem. As the Arctic continues to warm due to climate change, increasing quantities of ice-bound microplastics will be released and ice-free areas will be open to known polluting anthropogenic activities such as fishing, shipping, and resource exploitation. At the same time, global plastic production continues to grow and rising production leads to increasing plastic shipping, and resource exploitation. At the same time, global plastic production continues to grow and rising production leads to increasing plastic leakage to the environment (Borrelle et al., 2020; Lau et al., 2020) beyond production.

This work contributes to the Pollution Observatory of the Helmholtz Association-funded infrastructure program FRAM (Frontiers in Arctic Marine Research), which funded NH, MB and TK were funded by the Helmholtz-Gemeinschaft Deutscher Forschungszentren. This publication is Eprint ID 54462 of the Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und Meeresforschung.

We thank the editor and four anonymous reviewers for their constructive and insightful feedback that improved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2022.154886.

References

Aarflot, J.M., et al., 2018. Contribution of calanus species to the mesozooplankton biomass in the Barents Sea. ICES J. Mar. Sci. 75, 2342–2354. https://doi.org/10.1093/icesjms/fsx221.

AMAP, 2021. AMAP Litter and Microplastics Monitoring Guidelines. AMAP Litter and Microplastics Monitoring Guidelines. Version 1.0. (AMAP, Arctic Monitoring and Assessment Programme, Tromsø, Norway, p. 257.

Auer, H., et al., 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hypsidid amphipods Themisto abyssorum and T. Libellula. Polar Biol. 25, 374–383. https://doi.org/10.1007/s00300-001-0354-7.

Aytan, U., Esensoy, F.B., Senturk, Y., 2022. Microplastic ingestion and egestion by copepods in the Black-Sea. Sci. Total Environ. 806.https://doi.org/10.1016/j.scitotenv.2021.150921.

Barnes, D.K.A., et al., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc., B 364 (1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205.

Bergmann, M., Klages, M., 2012. Increase of litter at the Arctic deep sea-observatory HAUSGARTEN. Mar. Pollut. Bull. 64 (12), 2734–2741. https://doi.org/10.1016/j.marpolbul.2012.09.018.

Bergmann, M., et al., 2017. High quantities of microplastic in Arctic Deep-Sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010. https://doi.org/10.1021/acs.est.7b03331.

Bergmann, M., et al., 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, 1–11.

Beszczyńska-Möller, A., et al., 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES J. Mar. Sci. 69 (5), 852–863. https://doi.org/10.1093/icesjms/fsr056.

Blaeser, S., et al., 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518.

Botterell, Z.L.R., et al., 2019. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ. Pollut. 245, 98–110. https://doi.org/10.1016/j.envpol.2018.10.065.

Botterell, Z.L.R., et al., 2020. Bioavailability of microplastics to marine zooplankton: effect of shape and infochemicals. Environ. Sci. Technol. 54 (19), 12024–12033. https://doi.org/10.1021/acs.est.0c02715.

Bouchard, C., Fortier, L., 2020. The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis. Polar Biol. 43 (8), 1095–1107. https://doi.org/10.1007/s00300-020-02643-0.

Breckels, M.N., et al., 2013. Effect of grazing-mediated dimethyl sulﬁde (DMS) production on the swimming behaviour of the copepod calanus helgolandicus. Mar. Drugs 11 (7), 2486–2500. https://doi.org/10.3390/md11072486.

Cole, M., 2016. A novel method for preparing microplastic fibers. Sci. Rep. 6, 1–7. https://doi.org/10.1038/srep34519.

Cole, M., et al., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47 (12), 6646–6655. https://doi.org/10.1021/es400663f.

Cole, M., et al., 2014. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 1–8. https://doi.org/10.1038/srep04528.

Cole, M., et al., 2015. The impact of polystyrene microplastics on feeding, function and fecun- dity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 49 (4), 1103–1107. https://doi.org/10.1021/acs.est.0c05425a.

Cole, M., et al., 2019. Effects of nylon microplastic on feeding, lipid accumulation, and molting in a Coldwater copepod. Environ. Sci. Technol. 53 (12), 7075–7082. https://doi.org/10.1021/acs.est.9b01852.

Collard, F., Ask, A., 2021. Plastic ingestion by Arctic fauna: a review. Sci. Total Environ. 786, 147462. https://doi.org/10.1016/j.scitotenv.2021.147462.

Coppock, R.L., et al., 2019. Microplastics alter feeding selectivity and fecal density in the copepod Calanus helgolandicus. Sci. Total Environ. 687, 780–789. https://doi.org/10.1016/j.scitotenv.2019.06.009.

Daldropado, P., Borkorn, N., Bogstad, B., 2001. Distribution of themistio (Amphipoda) sp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58 (1940), 876–895. https://doi.org/10.1006/jmss.2001.1078.
Dalpadado, P., et al., 2008. Trophic interactions of macro-zooplankton (krill and amphipods) in the marginal ice zone of the Barents Sea. Deep-Sea Res. Part II, 55, 2266–2274. https://doi.org/10.1016/j.dsr2.2008.05.016.

Dalpadado, P., et al., 2012. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316.

Dalpadado, P., et al., 2020. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Seas. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320.

Dalsøren, S.B., et al., 2007. Environmental impacts of the expected increase in sea transport activities on the Norwegian continental shelf. Norsk. Geol. Tidskr. 87 (3), 117–127. https://doi.org/10.1111/j.1873-2346.2007.tb01732.x.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by zooplankton in Arctic marine environments. Mar. Pollut. Bull. 100, 16–22. https://doi.org/10.1016/j.marpolbul.2015.06.035.

Dalpadado, P., et al., 2012. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316.

Dalpadado, P., et al., 2020. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Seas. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320.

Dalsøren, S.B., et al., 2007. Environmental impacts of the expected increase in sea transport activities on the Norwegian continental shelf. Norsk. Geol. Tidskr. 87 (3), 117–127. https://doi.org/10.1111/j.1873-2346.2007.tb01732.x.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by zooplankton in Arctic marine environments. Mar. Pollut. Bull. 100, 16–22. https://doi.org/10.1016/j.marpolbul.2015.06.035.

Dalpadado, P., et al., 2012. Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69, 1303–1316.

Dalpadado, P., et al., 2020. Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Seas. Prog. Oceanogr. 185, 102320. https://doi.org/10.1016/j.pocean.2020.102320.

Dalsøren, S.B., et al., 2007. Environmental impacts of the expected increase in sea transport activities on the Norwegian continental shelf. Norsk. Geol. Tidskr. 87 (3), 117–127. https://doi.org/10.1111/j.1873-2346.2007.tb01732.x.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by zooplankton in Arctic marine environments. Mar. Pollut. Bull. 100, 16–22. https://doi.org/10.1016/j.marpolbul.2015.06.035.
Turner, J.T., 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248. https://doi.org/10.1016/j.pocean.2014.08.005.

Vroom, R.J.E., et al., 2017. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 231, 987–996. https://doi.org/10.1016/j.envpol.2017.08.088.

Wold, A., et al., 2011. Arctic seabird food chains explored by fatty acid composition and stable isotopes in kongfjorden, Svalbard. Polar Biol. 34 (8), 1147-1155. https://doi.org/10.1007/s00300-011-0975-4.

Zarfl, C., Matthies, M., 2010. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar. Pollut. Bull. 60 (10), 1810-1814. https://doi.org/10.1016/j.marpolbul.2010.05.026.