Boolean and ortho fuzzy subset logics

Daniel J. Greenhoe

Abstract: Constructing a fuzzy subset logic \mathcal{L} with Boolean properties is notoriously difficult because under a handful of “reasonable” conditions, we have the following three debilitating constraints: (1) Bellman and Giertz in 1973 showed that if \mathcal{L} is distributive, then it must be idempotent. (2) Dubois and Padre in 1980 showed that if \mathcal{L} has the excluded middle or the non-contradiction property or both, then it must be non-idempotent. (3) Bellman and Giertz also demonstrated in 1973 that even if \mathcal{L} is idempotent, then the only choice available for the (\land, \lor) logic operator pair is the (\min, \max) operator pair. Thus it would seem impossible to construct a non-trivial fuzzy subset logic with Boolean properties. However, this paper examines these three results in detail, and shows that “hidden” in the hypotheses of the three is the assumption that the operator pair (\land, \lor) is pointwise evaluated. It is further demonstrated that removing this constraint yields the following results: (A) It is indeed possible to construct fuzzy subset logics that have all the Boolean properties, including that of idempotency, non-contradiction, excluded middle, and distributivity. (B) Even if idempotency holds, (\min, \max) is not the only choice for (\land, \lor).

2010 Mathematics Subject Classification 03B52, 03B50, 03B47 (primary); 03B60, 03G05, 03G10 (secondary)

Keywords: fuzzy logic, fuzzy sets, fuzzy subsets, fuzzy subset logic, fuzzy set logic, multi-valued logic, Boolean algebra, ortho logic, lattice theory, order theory

Contents

Table of Contents 2

Introduction 2

1 Fuzzy subset operators 4
 1.1 Indicator functions 4
 1.2 Membership functions 6
 1.3 Operators on membership functions 7
 1.4 Key theorems 11
 1.5 Examples of non-ortho and non-Boolean fuzzy subset 15

2 Boolean and ortho fuzzy subset logics 20

A Background: Order 22
 A.1 Ordered sets 22
 A.2 Lattices 24
 A.2.1 General lattices 24
 A.2.2 Bounded lattices 25
 A.2.3 Modular lattices 26
 A.2.4 Distributive lattices 27
 A.3 Complemented lattices 28
Introduction

The problem. This paper addresses a well known conflict in fuzzy subset logic theory. Fuzzy subset logic is the foundation for fuzzy set theory, just as classical logic is the foundation for classical set theory. Just as classical logic and the algebras of sets constructed upon it are Boolean algebras (and hence have all the “nice” Boolean properties such as idempotency, excluded middle, non-contradiction, distributivity, etc.), one might very much prefer to have a fuzzy subset logic and resulting fuzzy subset algebras that are Boolean as well.¹ But it has been found that under what would seem to be very “reasonable” conditions, this is simply not possible. In particular, we have the following crippling constraints:

Bellman and Gertz in 1973 demonstrated that under very “reasonable” conditions, if we want a fuzzy subset logic that is distributive, then it also must be idempotent.²

Dubois and Padre in 1980 demonstrated that under very “reasonable” conditions, if we want a fuzzy subset logic that has the non-contradiction and excluded middle properties, then that logic is not idempotent...and therefore not only fails to be a Boolean algebra, but also is not even a lattice.³

¹ excluded middle: \(x \lor \neg x = 1 \). non-contradiction: \(x \land \neg x = 0 \). idempotency: \(x \lor x = x \) and \(x \land x = x \). distributivity: \(x \lor (y \land z) = (x \lor y) \land (x \lor z) \) and \(x \land (y \lor z) = (x \land y) \lor (x \land z) \). classic Boolean properties: Theorem A.42 page 30.

² see fuzzy operators idempotency theorem (Theorem 1.25 page 12)

³ Dubois-Padre 1980 result: see fuzzy negation idempotency theorem (Theorem 1.28 page 14) and Dubois-Padre 1980 theorem (Corollary 1.29 page 15). Every lattice is a Boolean algebra, but not conversely (Definition A.11 page 24, Definition A.41 page 30). A lattice is idempotent, commutative, associative, and absorptive (Theorem A.14 page 25). A Boolean algebra has all these properties but is moreover bounded, distributive, complemented, de Morgan, involutory, and has identity (Theorem A.42 page 30).
Moreover, even if we are willing to give up the non-contradiction and excluded middle properties and retain idempotency, Bellman and Giertz also demonstrated in 1973 that the only choice we have for the logic operator pair \((\land, \lor)\) is the \((\min, \max)\) operator pair such that \((\land, \lor) = (\min, \max)\).^4

A solution. Section 1 of this paper examines these results in detail, and demonstrates that “hidden” in the hypotheses of these results is the assumption that the operator pair \((\land, \lor)\) is pointwise evaluated.^5 Section 2 demonstrates that if this constraint is removed, then it is indeed possible to construct fuzzy subset logics that have all the Boolean properties, including that of idempotency, non-contradiction, excluded middle, and distributivity.

A solution yielding ortho fuzzy subset logics. In this paper, a logic \(L' \triangleq (X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)\) is defined as a lattice \(L \triangleq (X, \lor, \land; \leq)\) with a negation function \(\neg\) and implication function \(\rightarrow\) defined on this lattice. And in this sense, the logic \(L'\) is said to be “constructed on” the lattice \(L\). This paper demonstrates that it is possible to construct fuzzy subset logics on Boolean lattices yielding Boolean fuzzy subset logics. However, more generally, it is also demonstrated that it is possible to construct fuzzy subset logics on orthocomplemented lattices yielding ortho fuzzy subset logics. The main difference between a Boolean lattice and an orthocomplemented lattice is that the latter does not in general support distributivity.^6 On finite sets, there are significantly more choices of orthocomplemented lattices than there are Boolean lattices.^7 And so having the option of constructing ortho fuzzy subset logics is arguably not without advantage. The disadvantage is that we give up the guarantee of distributivity. But some authors^8 have investigated structures without this property anyways. In fact, one could argue that the “crucial” properties that we would really like a logic to have, if possible, are the following:

1. **disjunctive idempotency:** \(x \lor x = x\) and
2. **conjunctive idempotency:** \(x \land x = x\) and
3. **excluded middle:** \(x \land \neg x = 1\) and
4. **non-contradiction:** \(x \land \neg x = 0\).

Not all fuzzy logics have all these properties. Of course all Boolean lics have them. But more generally than Boolean logics and less generally than fuzzy logics, all ortho logics have them as well.^9

^4 Bellman-Giertz 1973 result: see fuzzy min-max theorem (Theorem 1.26 page 13) and Bellman-Giertz 1973 theorem (Corollary 1.27 page 14). \((\land, \lor)\) in an ordered set: Definition A.9 page 24 and Definition A.8 page 24. \((\land, \lor)\) in a lattice: Definition A.11 page 24. \((\land, \lor)\) in a logic: Definition C.5 page 50. \((\min, \max)\): Definition 1.15 page 7.

^5 pointwise evaluated: (Definition 1.12 page 7)

^6 logic: Definition C.5 page 50. lattice: Definition A.11 page 24. negation function: Definition B.2 page 35. implication function: Definition C.1 page 45 Boolean lattice: Definition A.41 page 30. orthocomplemented lattice: Definition A.44 page 31. ortho negation: Definition B.3 page 35. ortho+distributivity=Boolean: Proposition A.50 page 33.

^7 There are a total of 5 orthocomplemented lattices with 8 elements; of these 5, only 1 is Boolean. There are a total of 10 orthocomplemented lattices with 8 elements or less; of these 10, only 4 are Boolean. For further details, see Example A.46 page 31.

^8 [Alsina et al.(1980)Alsina, Trillas, and Valverde], [Hamacher(1976)] (referenced by [Alsina et al.(1983)Alsina, Trillas, and Valverde])

^9 properties of fuzzy negations and hence also fuzzy logics: Theorem B.11 page 36. properties of ortho negations and hence also ortho logics: Theorem B.15 page 37. relationships between logics: Figure 13 page 50.
Negation functions. There are several types of negation functions and information about these functions is scattered about in the literature. Appendix B introduces several types of negation, describes some of their properties, and shows where fuzzy negation, ortho negation, and Boolean negation “fit” into the larger structure of negations in general.

Implication functions. Defining an implication function for a logic constructed on a Boolean lattice is straightforward because we can simply use the classical implication \(x \rightarrow y \equiv \neg x \lor y \). However, defining an implication function for a non-Boolean logic is more difficult. Appendix C addresses the problem of defining implication functions on lattices, including lattices that are non-Boolean.

1 Fuzzy subset operators

A fuzzy subset is often specified in terms of a membership function. A fuzzy subset logic is a lattice of membership functions together with a fuzzy negation function and an implication function. Although its definition is simple and straightforward, fuzzy subset logic has some notorious problems attempting to provide some very standard Boolean properties.

1.1 Indicator functions

In classical subset theory, a subset \(A \) of a set \(X \) can be specified using an indicator function \(1_A(x) \) (next definition). An indicator function specifies concretely whether or not an element is a member of \(A \). That is, it is a convenient “indicator” of whether or not a particular element is in a subset. A subset that can be defined using an indicator function is a crisp subset (next definition).

Definition 1.1 ¹¹ Let \(2^X \) be the power set of a set \(X \). Let \(Y^X \) be the set of all functions mapping from \(X \) to a set \(Y \). The indicator function \(1_A \in \{0,1\}^X \) is defined as

\[
1_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases} \quad \forall x \in X, A \in 2^X.
\]

The parameter \(A \) of \(1_A \) is a crisp subset of \(X \) if \(1_A(x) \) is an indicator function on \(X \).

Every set \(X \) has at least one crisp subset (itself). A set of subsets, together with the relation \(\subseteq \), form an ordered set, and in some cases also form a lattice. Common set structures include the power set \(2^X \), topologies, rings of sets and algebras of sets. A set structure may be represented in terms of subsets, or equivalently, in terms of set indicator functions. ¹²

¹¹ fuzzy subset: Definition 1.7 page 6, fuzzy subset logic: Definition 1.11 page 6, membership function: Definition 1.7 page 6, lattice: Definition A.11 page 24, fuzzy negation: Definition B.2 page 35, implication: Definition C.1 page 45 and Definition C.5 page 50; problems: Theorem 1.26 page 13 and Theorem 1.28 page 14.
¹² ordered set: Definition A.1 page 22, lattice (Definition A.11 page 24), set indicator function: Definition 1.1 page 4, topologies: Example 1.3 page 5 and Example 1.4 page 5; examples of set structures: Example 1.3 page 5 and Example 1.5 page 5.
Remark 1.2 Often set structures are defined in terms of set operators like intersection \cap, union \cup, and set complement \subseteq. The set operators $(\cap, \cup, \subseteq, \rightarrow, \emptyset, X)$ in turn can be defined in terms of arithmetic operators ($\land, \lor, f(x) \triangleq 1 - x, g(x, y) \triangleq y - xy, 0, 1$) on the set indicator function13 or in terms of classic logic operators ($\land, \lor, \neg, \rightarrow, 0, 1$) like this:

$$
\begin{align*}
0 & \triangleq 1_{\emptyset} = 0 \\
1 & \triangleq 1_X = 1 \\
1_A \lor 1_B & \triangleq 1_{A \cup B} = \max(1_A, 1_B) \\
1_A \land 1_B & \triangleq 1_{A \cap B} = \min(1_A, 1_B) \\
\neg 1_A & \triangleq 1_{A^c} = 1 - 1_A \\
1_A \rightarrow 1_B & \triangleq 1_{A \Rightarrow B} = \max(1 - 1_A, 1_B)
\end{align*}
$$

where $A \Rightarrow B \triangleq A^c \cup B$ is the set implication from A to B.\(^{14}\)

Example 1.3 The set structures illustrated to the left and right are the power set of the set $X \triangleq \{a, b, c\}$. A power set is a special case of an algebra of sets and also a topology. The lattice to the left uses set notation; the one to the right uses set indicators.

Example 1.4 The set structures illustrated to the left and right are a topology on the set $X \triangleq \{a, b\}$. The lattice to the left uses set notation; the one to the right uses set indicators.

Example 1.5 The set structures illustrated in Figure 1 (page 5) are not topologies (or algebras of sets or power sets), but are set structures none the less. The negation function in the structure is an ortho negation (Definition B.3 page 35). The lattice in (A) uses set notation; the one in (B) uses set indicators.

Definition 1.6 Let 1^X be the set of all indicator functions on a set X. Let a logic be defined as in Definition C.5 (page 50). A crisp subset logic is a logic

$(1^X, \lor, \land, \neg, 1_{\emptyset}, 1_X; \subseteq, \rightarrow)$.\(^{13}\) [Aliprantis and Burkinshaw(1998)], page 126, [Hausdorff(1937)], pages 22–23

\(^{14}\) [Ellerman(2010)] (§1.7; $A \Rightarrow B = (A^c \cup B)^c$ where C^c is the interior of a set C in a topological space)
1.2 Membership functions

In a crisp subset A of a crisp set X, $A \subseteq X$, an element $x \in X$ has only two possible “degrees of membership” in A: Either x is in A or x is not in A. Said another way, either x has “full membership” in A, or x has “absolute non-membership” in A. And this “degree of membership” is specified by an indicator function (Definition 1.1 page 4) $1_A(x)$ which maps from X to the 2-valued set $\{0, 1\}$, where 0 represents “absolute non-membership” and 1 represents “full membership”.

In a fuzzy subset B of a crisp set X, $B \subseteq X$, an element $x \in X$ has a range of possible degrees of membership in B. And this membership is specified by a membership function (next definition) $m_B(x)$ which maps from X to the infinite set $[0 : 1]$.

Definition 1.7 Let $[0 : 1]$ be the closed interval on \mathbb{R} such that $[0 : 1] \triangleq \{ x \in \mathbb{R} \mid 0 \leq x \leq 1 \}$. Let X be a set. A function $m_A(x)$ is a membership function on X if $m_A \in [0 : 1]^X$. The parameter A is called a fuzzy subset of X. For any value $x \in X$, $m_A(x) \in [0 : 1]$ represents the “degree of membership” of x in A. The condition $m_A(x) = 1$ indicates that x has “full membership” in A, and the condition $m_A(x) = 0$ indicates that x has “absolute non-membership” in A.

Remark 1.8 What is typically called a “fuzzy set” arguably should more accurately be called a “fuzzy subset” because every element x at any “degree of membership” in a fuzzy subset A has absolute full membership in some universal crisp set X. And thus A is a subset of the crisp set X ($A \subseteq X$).

Remark 1.9 In a crisp set X, a fuzzy subset $A \subseteq X$ should not be confused with a random subset $B \subseteq X$. In the fuzzy subset A, an element $x \in X$ has a “degree of membership” in A that specifies “to what extent” x can be considered a member of A. In the random subset B, the element $x \in X$ has a “degree of likelihood” that x is in B and that specifies the probability that x is a member of B. Alternatively, a fuzzy subset is a result of “inference under vagueness”, while a random subset is a result of “inference under randomness”.

Example 1.10 Let A be the set of all people who are “young” with membership function $m_A(x)$. Let B be the set of all people who are “middle age” with membership function $m_B(x)$. Let C be the set of all people who are “old” with membership function $m_C(x)$. Of course all these are vague, or “fuzzy”, concepts; but the following figure illustrates what the membership functions (Definition 1.7 page 6) for these sets might look like.

![Membership Functions Diagram](image)

Definition 1.11 Let \mathbb{M} be a set of membership functions (Definition 1.7 page 6). The structure $\mathbb{L} \triangleq (\mathbb{M}, \lor, \land, \neg, 0, 1; \leq)$ is a fuzzy subset logic if \mathbb{L} is a fuzzy logic (Definition C.5 page 50).

15 [Hájek(2011)], page 68 ("absolutely true", "absolutely false"), [Dubois(1980)] page 10, [Dubois et al.(2000)] page 42 ("full membership", "absolute non-membership"), [Zadeh(1965)] page 339 ("grade of membership")

16 [Dubois(1980)] page 10 (Remarks 1), [Kaufmann(1975)]

17 [Hájek(2011)], page 67 (5.1 Introduction)
1.3 Operators on membership functions

The *meet-join* operator pair \((\land, \lor)\) on a set of indicator functions \(1^X\) induces an ordering relation on \(1^X\). So the operator pairs \((\land, \lor)\) can be defined on sets of membership functions to form lattices. But while lattices of set indicators effectively have just one choice for \((\land, \lor)\), membership function lattices have many choices.

In this paper, the operators \((\land, \lor)\) are called *pointwise evaluated* if at each single value \(x\), the functions \([m \land n](x)\) and \([m \lor n](x)\) depend only on the values of \(m(x)\) (\(m\) evaluated at the single value \(x\)) and \(n(x)\) (next definition).

Definition 1.12 \(^{19}\) Let \(L = (M, \land, \lor)\), where \(M\) is a set of membership functions (Definition 1.7 page 6) with operators \((\land, \lor)\). \(L\) is *pointwise evaluated*, or said to have *pointwise evaluation*, if there exists \(f, g \in [0 : 1]^{[0:1]}\) such that

1. \([m \land n](x) = f[m(x), n(x)] \quad \forall x \in \mathbb{R}, \text{ and } \forall m, n \in M\)
2. \([m \lor n](x) = g[m(x), n(x)] \quad \forall x \in \mathbb{R}, \text{ and } \forall m, n \in M\)

Example 1.13

1. The function \(\Delta\) defined as \([m \Delta n](x) \triangleq m(x) + n(x)\) is pointwise evaluated.
2. The function \(\Delta\) defined as \([m \Delta n](x) \triangleq \int_{-\infty}^{x} m(u)n(x-u) du\) is not pointwise evaluated.

Example 1.14 Examples of operators that are pointwise evaluated include the *min-max operators* (next definition), the *product and probabilistic sum operators* (Definition 1.17 page 8), and the Łukasiewicz *t-norm and t-conorm* (Definition 1.18 page 9).

One of the most common fuzzy logic operator pairs is the *min-max operator pair* (next). As will be demonstrated by the *fuzzy min-max theorem* (Theorem 1.26 page 13), under fairly “reasonable” conditions the min-max operators are the only choice available for a fuzzy subset logic.

Definition 1.15 \(^{20}\) Let \(M\) be a set of membership functions on a set \(X\). Let \(f(x)\) and \(g(x)\) be functions both with domain \(X\). Let \(\min(f(x), g(x))\) and \(\max(f(x), g(x))\) be the *pointwise minimum* and *pointwise maximum*, respectively, of \(f(x)\) and \(g(x)\) over \(X\). The *min-max operators* \((\land, \lor)\) for \(L\) are defined as

\[
\begin{align*}
[m_A \land m_B](x) & \triangleq \max \left(m_A(x), m_B(x) \right) \quad \forall m \in M, x \in X \\
[m_A \lor m_B](x) & \triangleq \min \left(m_A(x), m_B(x) \right) \quad \forall m \in M, x \in X
\end{align*}
\]

Proposition 1.16 Let \(M\), \(\max\), and \(\min\) defined as in Definition 1.15. Let \(L = (M, \lor, \land; \leq)\) be an algebraic structure with \(x \leq y \iff x \land y = x\).

\[(\land, \lor) = (\min, \max) \implies L \text{ is a lattice (Definition A.11 page 24).}\]
1.3 OPERATORS ON MEMBERSHIP FUNCTIONS

PROOF: To be a lattice, \(L \) must be commutative, associative, and absorptive (Theorem A.18 page 25).

\[
m \lor n = \max(m, n) \\
= \max(n, m) \\
= n \lor m \\
\implies \lor \text{ is commutative}
\]

\[
m \land n = \min(m, n) \\
= \min(n, m) \\
= n \land m \\
\implies \land \text{ is commutative}
\]

\[
m \lor (n \lor p) = \max[m, \max(n, p)] \\
= \max[\max(m, n), p] \\
= (m \lor n) \lor p \\
\implies \lor \text{ is associative}
\]

\[
m \land (n \land p) = \min[m, \min(n, p)] \\
= \min[\min(m, n), p] \\
= (m \land n) \land p \\
\implies \land \text{ is associative}
\]

\[
m \lor (m \land n) = \max[m, \min(m, n)] \\
= \left\{ \begin{array}{ll}
\max(m, m) & \text{if } m(x) \leq n(x) \forall x \in X \\
\max(m, n) & \text{otherwise} \\
\end{array} \right.
\]

\[
m \land (m \lor n) = \min[m, \max(m, n)] \\
= \left\{ \begin{array}{ll}
\min(m, n) & \text{if } m(x) \leq n(x) \forall x \in X \\
\min(m, m) & \text{otherwise} \\
\end{array} \right.
\]

\[
\implies (\land, \lor) \text{ is absorptive}
\]

\[\]

Definition 1.17

Let \(\mathbb{M} \) be defined as in Definition 1.15. Then for all \(m \in \mathbb{M} \), the probabilistic sum operator \(\lor \) on \(\mathbb{M} \) is defined as

\[
m_A \lor m_B(x) \triangleq m_A(x) + m_B(x) - m_A(x)m_B(x)
\]

and the product sum operator \(\land \) on \(\mathbb{M} \) is defined as

\[
m_A \land m_B(x) \triangleq m_A(x)m_B(x)
\]

Note that the product and probabilistic sum operators (previous definition) do not in general form a lattice because, for example, they are not in general idempotent (a necessary condition for being a lattice—Theorem A.14 page 25). Suppose for example \(m(p) = \frac{1}{2} \) at some point \(p \). Then at that point \(p \)

\[
m \lor m \triangleq m + m - mm = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} \neq m \implies \lor \text{ is non-idempotent}
\]

\[
m \land m \triangleq mm = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \neq m \implies \land \text{ is non-idempotent}
\]

[21] Fodor and Yager(2000), page 133
Definition 1.18 Let \(L, D, \min \) and \(\max \) be defined as in Definition 1.15. Then for all \(m \in M \), the \textbf{Łukasiewicz t-conorm} \(\lor \) is defined as
\[
[m_A \lor m_B](x) \triangleq \max[0, m_A(x) + m_B(x) - 1] \quad \forall m \in M, x \in X
\]
and the \textbf{Łukasiewicz t-norm} \(\land \) is defined as
\[
[m_A \land m_B](x) \triangleq \min[1, m_A(x) + m_B(x)] \quad \forall m \in M, x \in X
\]
The \textit{Łukasiewicz t-conorm} is also called the \textbf{bold sum}, and the \textbf{Łukasiewicz t-norm} is also called the \textbf{bold intersection}.

Note that the \textit{Łukasiewicz operators} (previous definition) do not in general form a lattice because, for example, they are not in general \textit{idempotent}. Suppose for example \(m(p) = \frac{1}{2} \) at some point \(p \). Then
\[
m \lor m = \min(1, m + m) = \min(1, \frac{1}{2} + \frac{1}{2}) = 1 \neq m
\]
\[
m \land m = \max(0, m + m - 1) = \max(0, \frac{1}{2} + \frac{1}{2} - 1) = 0 \neq m
\]

There are several choices for \textit{negations} in a \textit{fuzzy subset logic}. Arguably the “simplest” is the \textit{discrete negation} (Example B.16 page 38). Perhaps the most “common” is the \textit{standard negation} (next definition). More generally there is the \(\lambda \)-\textit{negation} (Definition 1.20 page 9) which reduces to the standard negation at \(\lambda = 0 \) and approaches the discrete negation as \(\lambda \to \infty \). Alternatively there is also the \textit{Yager negation} (Definition 1.21 page 9) which reduces to the standard negation at \(p = 1 \).

Definition 1.19 The function \(\neg m(x) \) is the \textbf{standard negation} (or \Łukasiewicz negation) of \(m \) if
\[
\neg m(x) \triangleq 1 - m(x) \quad \forall x \in \mathbb{R}
\]

Definition 1.20 The function \(\neg m(x) \) is the \textbf{\(\lambda \)-negation} of a function \(m(x) \) if
\[
\neg m(x) \triangleq \frac{1 - m(x)}{1 + \lambda m(x)} \quad \forall \lambda \in (-1 : \infty).
\]

Definition 1.21 The function \(\neg m(x) \) is the \textbf{Yager negation} of a function \(m(x) \) if
\[
\neg m(x) \triangleq (1 - m^p)^{1/p} \quad \forall p \in (0 : \infty).
\]

If \(\neg m \) is a \(\lambda \)-\textit{negation}, then the function \(\neg \) in a \textit{fuzzy subset lattice} \(L \) is a \textbf{de Morgan negation} (Definition B.3 page 35) and thus the \textit{de Morgan} properties hold in \(L \) (Theorem B.14 page 37). The \textbf{standard negation} (Definition 1.19 page 9) is a \(\lambda \)-\textit{negation} (at \(\lambda = 0 \)) and so the standard negation is also \textit{de Morgan}.

Theorem 1.22 Let \(L \triangleq (M, \lor, \land, \neg, 0, 1; \leq) \) be a \textbf{lattice with negation} (Definition B.5 page 35).
\[
\begin{array}{c}
\{ \neg m(x) \textit{ is a } \lambda \text{-negation} \} \quad \forall m \in M \\
\text{(Definition 1.7 page 6)}
\end{array} \quad \implies \quad \begin{array}{c}
\{ \neg \textit{ is a de Morgan negation on } L \} \\
\text{(Definition B.3 page 35)}
\end{array}
\]

22 [Fodor and Yager(2000)], page 133
23 [Zadeh(1965)] page 340, [Jager(1995)] page 243 (Appendix A)
24 [Fodor and Yager(2000)], page 129, [Hájek(2011)], page 68 (Definition 5.1), [Sugeno(1977)] page 95 (23) “\(\lambda \)-complement”, see also p.94(12), p.96(28), [Jager(1995)] page 243 (Appendix A)
25 [Yager(1980a)] (cf Jager(1995)), [Jager(1995)] page 243 (Appendix A)
1.3 OPERATORS ON MEMBERSHIP FUNCTIONS

✏️ PROOF: To be a de Morgan negation, \(\neg m_A(x) \) must be antitone and involutory (Definition B.3 page 35).

\[
\begin{align*}
&\text{by property of real numbers } \mathbb{R} \\
&m_A(x) \leq m_B(x) \implies \neg m_B(x) \leq \neg m_A(x) \\
&\text{by property of real numbers } \mathbb{R} \\
&\implies 1 - m_B(x) \leq 1 - m_A(x) \\
&\text{because } 1 + \lambda m > 0 \\
&\implies \neg m_B(x) \leq \neg m_A(x) \\
&\implies m \text{ is antitone} \\
\end{align*}
\]

\[
\neg \neg m_A(x) \triangleq (1 - \frac{1 - m_A(x)}{1 + \lambda m_A(x)}) \\
\triangleq \frac{1 - m_A(x)}{1 + \lambda m_A(x)} \quad \text{by definition of } \lambda \text{-negation (Definition 1.20 page 9)} \\
= \frac{(1 + \lambda m_A(x)) - (1 - m_A(x))}{(1 + \lambda m_A(x)) + \lambda (1 - m_A(x))} \\
= \frac{(1 + \lambda m_A(x)) + \lambda (1 - m_A(x))}{1 + \lambda} \\
= \frac{(1 + \lambda) m_A(x)}{1 + \lambda} \\
= m_A(x) \\
\implies \neg m \text{ is involutory}
\]

Corollary 1.23 Let \(L \triangleq (M, \lor, \land, \neg, 0, 1 ; \leq) \) be a lattice with negation (Definition B.5 page 35).

\[
\begin{align*}
A. & \quad \neg m(x) \text{ is a } \lambda \text{-negation } \forall m \in M \text{ and} \\
B. & \quad \neg m_1 = m_0
\end{align*}
\]

\[\implies \begin{align*}
1. & \quad \neg \text{ is a de Morgan negation on } L \\
2. & \quad \neg \text{ is a fuzzy negation on } L
\end{align*}
\]

✏️ PROOF:

(1) Proof for (1): by Theorem 1.22 (page 9)

(2) Proof for (2): To be a fuzzy negation, \(\neg m_A(x) \) must be antitone, have weak double negation, and have boundary condition \(\neg m_1(x) = m_0(x) \) (Definition B.2 page 35).

(a) Proof that \(\neg \) is antitone: by Theorem 1.22 (page 9).

(b) Proof that \(\neg \) has weak double negation: by Theorem 1.22 (page 9), \(\neg \) is involutory, which implies \(\neg \) has weak double negation.

(c) Proof that \(\neg m_1(x) = m_0(x) \) by left hypothesis (B).

We can now define fuzzy subset operators (\(\cap, \cup, c \)) in terms of the fuzzy logic operators (\(\land, \lor, \neg \)) like this (cross reference Remark 1.2 page 5):

\[
\begin{align*}
m_\emptyset & \triangleq 0 \quad \text{(Definition A.19 page 25)} \\
m_X & \triangleq 1 \quad \text{(Definition A.19 page 25)} \\
m_{A \cup B} & \triangleq m_A \lor m_B \quad \text{(Section 1.3 page 7)} \\
m_{A \land B} & \triangleq m_A \land m_B \quad \text{(Section 1.3 page 7)} \\
m_{\neg A} & \triangleq \neg m_A \quad \text{(Section 1.3 page 9)}
\end{align*}
\]

In the case of set indicator functions, defining (\(\land, \lor \)) is straightforward. But again here in fuzzy subset logics, it is not.
1.4 Key theorems

This section contains the following key theorems which under very “reasonable” conditions say very roughly the following about the fuzzy subset logic operator pair \((\land, \lor)\):

\[\text{fuzzy operators idempotency theorem (Theorem 1.25 page 12):} \]
\[\text{distributive } \implies \text{idempotent and conversely} \]
\[\text{non-idempotent } \implies \text{non-distributive} \]

\[\text{fuzzy negation idempotency theorem (Theorem 1.28 page 14):} \]
\[\text{excluded middle or non-contradiction } \implies \text{non-idempotent and conversely} \]
\[\text{idempotent } \implies \text{excluded middle or non-contradiction or both fails} \]

\[\text{fuzzy min-max theorem (Theorem 1.26 page 13):} \]
\[\text{idempotent } \implies (\land, \lor) = (\text{min}, \text{max}) \quad \text{and conversely} \]
\[(\land, \lor) \neq (\text{min}, \text{max}) \implies \text{non-idempotent} \]

The fuzzy min-max boundary theorem (next theorem) shows that under three pairs of arguably “reasonable” conditions (including pointwise evaluation), the functions \(\min(m, n)\) and \(\max(m, n)\) act as bounds for any possible operators \((\land, \lor)\).

Theorem 1.24 (fuzzy min-max boundary theorem) Let \(\mathbb{M}\) be a set of membership functions (Definition 1.7 page 6).

\[
\begin{align*}
1. & \exists f \in [0:1]^2 \text{ such that } [m \land n](x) = f[m(x), n(x)] \quad \forall m,n \in \mathbb{M} \quad \text{(POINTWISE EVALUATED)} \quad \text{and} \\
2. & \exists g \in [0:1]^2 \text{ such that } [m \lor n](x) = g[m(x), n(x)] \quad \forall m,n \in \mathbb{M} \quad \text{(POINTWISE EVALUATED)} \quad \text{and} \\
3. & m \lor 0 = m \quad \forall m \in \mathbb{M} \quad \text{(DISJUNCTIVE IDENTITY)} \\
4. & m \land 1 = m \quad \forall m \in \mathbb{M} \quad \text{(CONJUNCTIVE IDENTITY)} \\
5. & n \leq p \implies m \land n \leq m \land p \quad \text{and} \quad n \lor m \leq p \lor m \quad \forall m,p \in \mathbb{M} \quad \text{(DISJUNCTIVE ISOTONE)} \\
6. & n \leq p \implies m \land n \leq m \land p \quad \text{and} \quad n \lor m \leq p \lor m \quad \forall m,p \in \mathbb{M} \quad \text{(CONJUNCTIVE ISOTONE)}
\end{align*}
\]

\[\implies \{m \land n \leq \min(m,n) \quad \text{and} \quad \max(m,n) \leq m \lor n \quad \forall m \in \mathbb{M}\} \]

\[\text{Proof:} \]
\[\max(m,n) = \max([m \lor 0], [0 \lor n]) \quad \text{by disjunctive identity property} \]
\[\leq \max([m \lor n], [0 \lor n]) \quad \text{by disjunctive isotone property: } 0 \leq n \implies m \lor 0 \leq m \lor n \]
\[\leq \max(m \lor n, m \lor n) \quad \text{by disjunctive isotone property: } 0 \leq m \implies 0 \lor n \leq m \lor n \]
\[= m \lor n \quad \text{by definition of } \max(\cdot, \cdot) \]
\[m \land n = \min(m \land n, m \land n) \quad \text{by definition of } \min(\cdot, \cdot) \]
\[\leq \min([m \land 1], [m \land n]) \quad \text{by conjunctive isotone property: } n \leq 1 \implies m \land n \leq m \land 1 \]
\[\leq \min([m \land 1], [1 \land n]) \quad \text{by conjunctive isotone property: } m \leq 1 \implies m \land n \leq 1 \land n \]
\[= \min(m,n) \quad \text{by conjunctive identity property} \]

How reasonable are the “reasonable conditions” of Theorem 1.24? Let’s discuss them briefly:

\[\text{The strength of the pointwise evaluation condition is perhaps more in its simplicity than in its reasonableness. In mathematics in general, functions are often mapped to other functions in blatant disregard to this property or one like it. Often such a mapping is referred to as an “operator”}. \]

\[{\scriptscriptstyle 26} \] [Alsina et al.(1983)Alsina, Trillas, and Valverde] page 16 (§1)
In fuzzy logic, the **identity** properties are “reasonable” because if either the “degree of membership” of \(x \) is \(m(x) \) or \(x \) has “full membership”, then arguably the “degree of membership” of \(x \) is \(m(x) \). Likewise, if both the “degree of membership” of \(x \) is \(m(x) \) and \(x \) has “absolute non-membership”, then arguably the “degree of membership” of \(x \) is \(m(x) \). In order theory, \(x \lor 0 = x \) and \(x \land 1 = x \) are true of any bounded lattice (Proposition A.21 page 26). Their commuted counterparts follow from a weakened form of the **commutative** property. Note that all lattices are **commutative** (Theorem A.14 page 25).

The **isotone** properties are a natural requirement of fuzzy logic—if the “degree of membership” \(m(x) \) increases, then we might expect that the “degrees of membership” \(m \lor n \), \(m \land n \), and \(n \lor m \) to also increase. In order theory, the **isotone** properties hold for all lattices (Proposition A.15 page 25).

The **fuzzy operators idempotency theorem** (next theorem) shows that under a handful of additional arguably “somewhat reasonable” conditions (including the rather “strong” distributivity property), the functions \(\land \) and \(\lor \) are both **idempotent**.

Theorem 1.25 (fuzzy operators idempotency theorem) \(^{27}\) Let \(M \) be a set of **membership functions** (Definition 1.7 page 6).

\[
\begin{align*}
1. & \exists f \in [0 : 1]^{[0 : 1]^2} \text{ such that } \forall m,n \in M : [m \land n](x) = f[m(x), n(x)] \\
2. & \exists g \in [0 : 1]^{[0 : 1]^2} \text{ such that } \forall m,n \in M : [m \lor n](x) = g[m(x), n(x)] \\
3. & 0 \lor 0 = 0 \land 1 = 1 \\
4. & m \lor 0 = m \land 1 = m \\
5. & m \lor (n \land p) = (m \land n) \lor (m \land p) \\
6. & m \land (n \lor p) = (m \lor n) \land (m \lor p)
\end{align*}
\]

\[\implies \begin{cases}
1. & m = m \lor m \quad \forall m \in M \quad (\text{DISJUNCTIVE IDEMPOTENT}) \\
2. & m = m \land m \quad \forall m \in M \quad (\text{CONJUNCTIVE IDEMPOTENT})
\end{cases}\]

Proof:

\[
\begin{align*}
m = m \land 1 &= \text{by conjunctive identity property} \\
&= m \land (1 \lor 1) \quad \text{by boundary condition} \\
&= (m \lor 1) \land (m \lor 1) \quad \text{by conjunctive distributive property} \\
&= m \lor m \\
m = m \lor 0 &= \text{by disjunctive identity property} \\
&= m \lor (0 \land 0) \quad \text{by boundary condition} \\
&= (m \lor 0) \land (m \lor 0) \quad \text{by disjunctive distributive property} \\
&= m \land m \\
\end{align*}
\]

How reasonable are the “reasonable conditions” of Theorem 1.25? Let’s discuss them briefly:

In fuzzy logic, the **boundary conditions** are “reasonable” because if \(x \) has both “absolute non-membership” and “absolute non-membership”, then arguably \(x \) has “absolute non-membership”.

\(^{27}\) [Bellman and Giertz(1973)] page 154 \(\langle a \lor a = a \land a = a \ldots (10) \rangle \), [Alsina et al.(1983)Alsina, Trillas, and Valverde] page 15 \(\langle x = G(x, x) \rangle \)
Likewise, if \(x \) has either “full membership” or “full membership”, then arguably \(x \) has “full membership”. In order theory, the boundary conditions are simply a weakened form of the \textit{idempotent} property, which holds for all lattices (Theorem A.14 page 25).

The \textit{distributive} properties hold in classical logic (2-valued logic) and more generally in any Boolean logic, but not necessarily in any other form of logic (Definition C.5 page 50). In order theory, a comparatively small but important class of lattices are \textit{distributive}. But note that in any lattice, the \textit{distributive inequalities} always hold (Theorem A.16 page 25); and if one of the distributive properties hold, then they both hold (Theorem A.28 page 27).

The \textit{fuzzy \text{min-max} theorem} (next theorem) shows that under the \textit{identity} and \textit{isotone} conditions (Theorem 1.24 page 11) and the additional condition of \textit{weak idempotency}, the \textbf{only} functions for \((\land, \lor)\) are \((\land, \lor) = (\min, \max)\).

\begin{enumerate}
\item \(\exists f \in [0 : 1]^2 \) such that \(m \land n \rangle(x) = f(m(x), n(x)) \) \(\forall m, n \in \mathcal{M} \) (pointwise evaluated) and
\item \(\exists g \in [0 : 1]^2 \) such that \(m \lor n \rangle(x) = g(m(x), n(x)) \) \(\forall m, n \in \mathcal{M} \) (pointwise evaluated) and
\item \(m \lor 0 = m \)
\item \(m \land 1 = m \)
\item \(m \land m \geq m \)
\item \(n \leq p \implies m \lor n \leq m \lor p \) and \(n \lor m \leq p \lor m \) \(\forall m, n, p \in \mathcal{M} \) (disjunctive isotone) and
\item \(n \leq p \implies m \land n \leq m \land p \) and \(n \land m \leq p \land m \) \(\forall m, n, p \in \mathcal{M} \) (conjunctive isotone)
\end{enumerate}

\[\implies \begin{cases} 1. m \lor n = \max(m, n) \quad \forall m, n \in \mathcal{M} \quad \text{and} \\ 2. m \land n = \min(m, n) \quad \forall m, n \in \mathcal{M} \end{cases} \]

\textbf{Proof:}

\begin{align*}
\max(m, n) & \leq m \lor n \quad \text{by fuzzy \text{min-max} boundary theorem (Theorem 1.24 page 11)} \\
& \leq \max(m, n) \lor n \quad \text{by disjunctive isotone property: } m \leq \max(m, n) \\
& \leq \max(m, n) \lor \max(m, n) \quad \text{by disjunctive isotone property: } n \leq \max(m, n) \\
& \leq \max(m, n) \quad \text{by \textit{weak idempotent} property} \\
\min(m, n) & \leq m \land \min(m, n) \quad \text{by \textit{weak idempotent} property} \\
& \leq m \land \min(m, n) \quad \text{by isotone property of } \land: \min(m, n) \leq m \\
& \leq m \land n \quad \text{by isotone property of } \land: \min(m, n) \leq n \\
& \leq \min(m, n) \quad \text{by fuzzy \text{min-max} boundary theorem (Theorem 1.24 page 11)}
\end{align*}

How reasonable are the “reasonable conditions” of Theorem 1.26? Let’s discuss them briefly:

\textbf{冑} One way to get the \textit{weak idempotent} property or even the stronger \textit{idempotent} property is to force \((\min, \max)\) to have the \textit{boundary} and \textit{distributive} properties (Theorem 1.25 page 12). However, this is arguably a kind of sledge hammer approach and is not really necessary.

28 This result is very similar to the celebrated result of Bellman and Giertz (1973): \cite{BellmanGiertz1973} pages 153–154 (§4)
In fuzzy logic, even the stronger idempotent property is arguably “reasonable” because if an element \(x \) both has a “degree of membership” \(m(x) \) and a “degree of membership” \(m(x) \), then arguably \(x \) has a “degree of membership” \(m(x) \). Likewise, if \(x \) either has a “degree of membership” \(m(x) \) or a “degree of membership” \(m(x) \), then arguably \(x \) has a “degree of membership” \(m(x) \). In order theory, all lattices are idempotent (Theorem A.14 page 25). But, again, here we only require weak idempotency, not idempotency.

Corollary 1.27 (Bellman-Giertz 1973 theorem) 29 Let \(\mathcal{M} \) be a set of membership functions (Definition 1.7 page 6).

\[
\begin{align*}
1. & \quad \exists f \in [0 : 1]^{[0:1]} \text{ such that } [m \land n](x) = f(m(x), n(x)) \quad \forall m, n \in \mathcal{M} \quad \text{(POINTWISE EVALUATED)} \\
2. & \quad \exists g \in [0 : 1]^{[0:1]} \text{ such that } [m \lor n](x) = g(m(x), n(x)) \quad \forall m, n \in \mathcal{M} \quad \text{(POINTWISE EVALUATED)} \\
3. & \quad m \lor 0 = m \quad \forall m \in \mathcal{M} \quad \text{(DISJUNCTIVE IDENTITY)} \\
4. & \quad m \land 1 = m \quad \forall m \in \mathcal{M} \quad \text{(CONJUNCTIVE IDENTITY)} \\
5. & \quad m \land m = m \quad \forall m \in \mathcal{M} \quad \text{(IDEMPOTENT)} \\
6. & \quad n \leq p \implies m \lor n \leq m \lor p \quad \forall m, n, p \in \mathcal{M} \quad \text{(DISJUNCTIVE ISOTONE)} \\
7. & \quad n \leq p \implies m \land n \leq m \land p \quad \forall m, n, p \in \mathcal{M} \quad \text{(CONJUNCTIVE ISOTONE)}
\end{align*}
\]

\[\implies \begin{align*}
1. & \quad m \lor n = \max(m(n)) \quad \forall m, n \in \mathcal{M} \quad \text{(FIXED POINT CONDITION) and} \\
2. & \quad m \land n = \min(m(n)) \quad \forall m, n \in \mathcal{M}
\end{align*}\]

\[\text{Proof:} \quad \text{This follows directly from Theorem 1.26 (page 13).}\]

One big difficulty in fuzzy subset logic (Definition 1.11 page 6) is that under “reasonable” conditions, if the fuzzy subset logic is required to have either the excluded middle property or the non-contradiction property (Boolean algebras have both), then the fuzzy subset logic cannot be idempotent (next theorem). Furthermore, if a structure is not idempotent, then it is not a lattice (Theorem A.14 page 25).

Theorem 1.28 (fuzzy negation idempotency theorem) Let \(L \triangleq (\mathcal{M}, \lor, \land, \neg, 0, 1 ; \leq) \) be a fuzzy subset logic (Definition 1.11 page 6). Let \((\land, \lor) \) be pointwise evaluated (Definition 1.12 page 7). If there exists \(p \) such that \(\neg m(p) = m(p) \in (0 : 1) \) then

\[\begin{align*}
(A). & \quad m \lor \neg m = 1 \quad \forall m \in \mathcal{M} \quad \text{(EXCLUDED MIDDLE)} \implies m \lor m \neq m \quad \text{(NON-IDEMPOTENT)} \\
(B). & \quad m \land \neg m = 0 \quad \forall m \in \mathcal{M} \quad \text{(NON-CONTRADICTION)} \implies m \land m \neq m \quad \text{(NON-IDEMPOTENT)}
\end{align*}\]

\[\text{Proof:} \quad 1 = m(p) \lor \neg m(p) \quad \text{by excluded middle hypothesis (A)}
\]

\[= m(p) \lor m(p) \quad \text{by fixed point hypothesis}
\]

\[= m(p) \quad \text{if } \lor \text{ is idempotent}
\]

\[\implies \neg m(p) = 0 \quad \text{because } \neg m(p) = \neg 1 = 0
\]

\[\implies m(p) = 0 \quad \text{by fixed point hypothesis}
\]

\[\implies \text{contradiction because } m(p) = 1 \neq 0 = m(p) \text{ is a contradiction}
\]

\[\implies \lor \text{ is non-idempotent}
\]

\[0 = m(p) \land \neg m(p) \quad \text{by non-contradiction hypothesis (B)}\]
= m(p) ∧ m(p) by fixed point hypothesis
= m(p) if ∧ is idempotent
⇒ ¬m(p) = 1 because ¬m(p) = ¬0 = 1
⇒ m(p) = 0 by fixed point hypothesis
⇒ contradiction because m(p) = 0 ≠ 1 = m(p) is a contradiction
⇒ ∧ is non-idempotent

How reasonable are the “reasonable conditions” of Theorem 1.28? Let’s discuss them briefly:
One of these “reasonable conditions” is that at some point \(p \), \(¬m(p) = m(p) \in (0 : 1) \). Because fuzzy negations are antitone, in some cases this is arguably a “reasonable” assumption, especially if \(m(x) \) is continuous and strictly antitone. However, be warned that it is not always the case that there is such a point \(p \) in a fuzzy subset logic \((\mathbb{M}, \lor, \land, \lnot, 0, 1 ; \leq) \). For example, under standard negation, and if the universal set is finite, then it is certainly possible that \(p \) does not exist, as in the example illustrated to the right with \(X \equiv \{a, b, c, d\} \):

\[
\begin{array}{ccc}
 x & m(x) & ¬m(x) \\
 d & 1 & 0 \\
 c & \frac{3}{4} & \frac{3}{4} \\
 b & \frac{3}{4} & \frac{3}{4} \\
 a & 0 & 1 \\
\end{array}
\]

Corollary 1.29 (Dubois-Padre 1980 theorem) Let \(L \equiv (\mathbb{M}, \lor, \land, \lnot, 0, 1 ; \leq) \) be a fuzzy subset logic (Definition 1.11 page 6). Let \((\land, \lor) \) be pointwise evaluated (Definition 1.12 page 7).
If \(¬(x) \) is continuous and strictly antitone then
(A). \(m \lor ¬m = 1 \quad \forall m \in \mathbb{M} \) (excluded middle) \(\implies m \lor m \neq m \) (non-idempotent)
(B). \(m \land ¬m = 0 \quad \forall m \in \mathbb{M} \) (non-contradiction) \(\implies m \land m \neq m \) (non-idempotent)

Proof: This follows directly from Theorem 1.28 (page 14).

1.5 Examples of non-ortho and non-Boolean fuzzy subset

This section presents some examples of fuzzy subset logics. They all have “problems”. The problem of the first example is just that it is a kind of trivial fuzzy subset logic in that it is 2-valued and equivalent to the classical subset logic. In all the other examples, the “problem” involves not having one or more of the following four properties:

1. \textit{disjunctive idempotence}: \(x \lor x = x \) and
2. \textit{conjunctive idempotence}: \(x \land x = x \) and
3. \textit{excluded middle}: \(x \lor ¬x = 1 \) and
4. \textit{non-contradiction}: \(x \land ¬x = 0 \)

Actually, this is a problem only as far as not having an ortho or Boolean logic is a problem—because all ortho logics and all Boolean logics have these properties. And so if even one is missing, the logic is neither an ortho logic nor a Boolean logic. Also note that if a logic does not have both (1) and (2), then it cannot even be constructed on a lattice at all...and as defined in this paper, is not even a logic.

Example 1.30 Consider the structure \(L \equiv (\mathbb{M}, \lor, \land, \lnot, 0, 1 ; \leq) \) in Figure 2 page 16 (A).

1. \(L \) is a Boolean lattice (Definition A.41 page 30).

\[\text{[Dubois and Padre(1980)], page 62 (P1, requires } ¬(x) \text{ be to continuous and strictly antitone)}\]
\[\text{[Fodor and Yager(2000)], pages 130–131 (Theorem 2, reference to previous without proof)}\]
2. The function \(\neg \) is an ortho negation (Definition B.3 page 35) (and hence also is a fuzzy negation Definition B.2 page 35, Figure 9 page 34).

3. The negation \(\neg m \) of each membership function \(m \) (Definition 1.7 page 6) is the standard negation (Definition 1.19 page 9).

4. \(L \) together with the classical implication (Example C.4 page 46) is the classical logic (Example C.6 page 50) and is also a fuzzy logic (Definition C.5 page 50).

5. Because the membership functions \(m(x) \) equal 0 or 1 only, the fuzzy subsets are equivalent to crisp sets.

6. \(L \) is linear (Definition A.11 page 24) and therefore distributive (Theorem A.30 page 27); and therefore \((\land, \lor) \) are idempotent (Theorem 1.25 page 12).

7. The excluded middle and non-contradiction properties hold in \(L \), but \(L \) is also idempotent. This does not contradict Theorem 1.28 (page 14), because \(\neg \) does not satisfy the fixed point condition (there is no point \(p \) such that \(\neg m(p) = m(p) \in (0 : 1) \)).

Example 1.31 Consider the structure \(L \triangleq (M, \lor, \land, \neg, 0, 1 ; \leq) \) in Figure 2 page 16 (B).

1. The function \(\neg \) is a Kleene negation (Definition B.3 page 35) (and hence a de Morgan negation), and is also a fuzzy negation (Example B.25 page 41).

2. The negation \(\neg m \) of each membership function \(m \) is the standard negation because for example \(m_A(x) \triangleq \frac{1}{2} = 1 - \frac{1}{2} = 1 - m_A(x) \triangleq \neg m_A(x) \).

3. \(L \) is linear (Definition A.11 page 24) and therefore distributive (Definition A.27 page 27, Theorem A.30 page 27); and therefore \((\land, \lor) \) are idempotent (Theorem 1.25 page 12).

4. \(L \) does not have the excluded middle property because \(m_A \lor \neg m_A = m_A \lor m_A = m_A \triangleq \frac{1}{2} \neq 1 \).

5. \(L \) does not have the non-contradiction property because \(m_A \land \neg m_A m_A \land m_A = m_A \triangleq \frac{1}{2} \neq 0 \).

6. \((\land, \lor) = (\min, \max) \) (Definition 1.15 page 7), which together with the idempotence property agrees with Theorem 1.26 (page 13).
7. L together with the classical implication (Example C.4 page 46) is a Kleene 3-valued logic (Example C.7 page 51) and also a fuzzy logic (Definition C.5 page 50).

Example 1.32 Consider the structure \(L \triangleq (M, \lor, \land, \neg, 0, 1 ; \leq) \) in Figure 2 page 16 (C).

1. The function \(\neg \) is an intuitionistic negation (Definition B.3 page 35) (and hence also a fuzzy negation Example B.26 page 41).
2. The negation \(\neg m \) of each membership function \(m \) is the discrete negation (Example B.16 page 38).
3. \(L \) does not have the excluded middle property because \(m_A \lor \neg m_A \neq 1 \)
4. \(L \) does not have the non-contradiction property.
5. \(L \) is linear (Definition A.11 page 24) and therefore distributive (Definition A.27 page 27, Theorem A.30 page 27); and therefore \((\land, \lor) \) are idempotent (Theorem 1.25 page 12).
6. Note that having both non-contradiction and idempotency does not conflict with Theorem 1.28 (page 14) because it does not satisfy the fixed point condition.
7. \((\land, \lor) = (\min, \max) \) (Definition 1.15 page 7), which together with the idempotence property agrees with (Theorem 1.26 page 13).
8. \(L \) together with the classical implication (Example C.4 page 46) is a Heyting 3-valued logic (Example C.10 page 52) and also a fuzzy logic (Definition C.5 page 50).

Example 1.33 Consider the structure \(L \) illustrated in Figure 3 page 17 (A).

1. The function \(\neg \) is a Kleene negation (Definition B.3 page 35) and also a fuzzy negation (Definition B.2 page 35).
2. The negation \(\neg m \) of each membership function \(m \) is the standard negation (Definition 1.19 page 9).
3. The \(\land \) and \(\lor \) operators are the min-max operators (Definition 1.15 page 7).
4. Because \((\land, \lor) = (\min, \max) \), \(L \) is a lattice (Proposition 1.16 page 7).
5. Because \(L \) is a lattice, \(L \) is idempotent (Theorem A.14 page 25). Conversely, idempotence and (\min,\max) are in agreement with Theorem 1.26 (page 13).
6. \(L \) does not have the excluded middle property because \(m_A \lor \neg m_A = m_1 \neq 1 \).
7. \(L \) does not have the non-contradiction property because \(m_A \land \neg m_A = m_0 \neq 0 \).
8. The idempotence property is not in disagreement with Theorem 1.28 (page 14) because \(L \) does not have the excluded middle or non-contradiction properties.
9. \(L \) together with any of the six implication functions listed in Example C.4 (page 46) is a fuzzy subset logic (Definition 1.11 page 6).

Example 1.34 Consider the structure \(L \) illustrated in Figure 3 page 17 (B).

1. The function \(\sim \) is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation \(\neg m \) of each membership function \(m \) is the standard negation (Definition 1.19 page 9).
3. The \(\land \) and \(\lor \) operators are the Lukasiewicz operators (Definition 1.18 page 9). Under these operators, \(L \) has the non-contradiction and excluded middle properties, but \(L \) is not idempotent (e.g. \(m_A \lor m_A \neq m_A \)), and so \(L \) is not a lattice (Theorem 1.28 page 14, Theorem A.14 page 25).

Example 1.35 Consider the structure \(L \) illustrated in Figure 4 page 18 (A).

1. The function \(\sim \) is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation \(\neg m \) of each membership function \(m \) is the standard negation (Definition 1.19 page 9).
3. The \(\land \) and \(\lor \) operators are the min-max operators (Definition 1.15 page 7).
4. Because \((\land, \lor) = (\min, \max) \), \(L \) is a lattice (Proposition 1.16 page 7).
5. Because \(L \) is a lattice, \(L \) is idempotent (Theorem A.14 page 25). Conversely, idempotence and (min, max) are in agreement with Theorem 1.26 (page 13).
6. \(L \) does not have the excluded middle property because \(m_A \lor \neg m_A = m_A \neq 1 \).
7. \(L \) does not have the non-contradiction property because \(m_A \land \neg m_A = m_0 \neq 0 \).
8. \(L \) together with any of the six implication functions listed in Example C.4 (page 46) is a fuzzy subset logic (Definition 1.11 page 6).

Example 1.36 Consider the structure \(L \) illustrated in Figure 4 page 18 (B).

1. The function \(\sim \) is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation \(\neg m \) of each membership function \(m \) is the standard negation (Definition 1.19 page 9).
3. The \land and \lor operators are the *Łukasiewicz operators* (Definition 1.18 page 9). Under these operators, L has the *non-contradiction* and *excluded middle* properties, but L is *not idempotent*, and so L is not a lattice (Theorem 1.28 page 14).

Example 1.37 Consider the structure L illustrated in Figure 5 (page 19).

1. The function \neg is an *ortho negation* (Definition B.3 page 35) (and thus also a *fuzzy negation*).
2. The negation $\neg m$ of each membership function m is the *standard negation* (Definition 1.19 page 9).
3. The \land and \lor operators are the *min-max operators* (Definition 1.15 page 7).
4. Because $(\land, \lor) = (\min, \max)$, L is a lattice (Proposition 1.16 page 7).
5. Because L is a lattice, L is *idempotent* (Theorem A.14 page 25). Conversely, *idempotence* and (\min, \max) are in agreement with Theorem 1.26 (page 13).
6. L does *not* have the *excluded middle* property because for example
 \[m_A \lor \neg m_A = m_A \lor m_R = m_K \neq 1. \]
7. L does *not* have the *non-contradiction* property because for example
 \[m_A \land \neg m_A = m_A \land m_R = m_G \neq 0. \]
8. \(L \) does not contain \(M_3 \) or \(N_5 \) and so is distributive (Theorem A.30 page 27). (also cross reference Theorem 1.25 page 12 and Theorem 1.28 page 14).
9. \(L \) is non-Boolean, but has an \(L_2^3 \) Boolean sublattice (shaded in Figure 5).

2 Boolean and ortho fuzzy subset logics

The Introduction described the problem of constructing Boolean fuzzy subset logics and more generally ortho fuzzy subset logics. It also briefly described a "solution". This section presents this solution in more detail.

Simply put, a solution is available if we are willing to give up the pointwise evaluation condition (Definition 1.12 page 7). In particular, we can proceed as follows:

1. We give up the pointwise evaluation condition.
2. We define the ordering relation (Definition A.1 page 22) \(\leq \) in the fuzzy subset logic \(L \triangleq (M, \lor, \land, \neg, 0, 1; \leq) \) to be the pointwise ordering relation (Definition A.7 page 23).
3. In a lattice (Definition A.11 page 24), the definitions of the ordering relation \(\leq \) and operators \((\land, \lor) \) are not independent—the ordering relation defines the operators (Definition A.9 page 24, Definition A.8 page 24) and the operators define the ordering relation (Proposition A.10 page 24).
4. Traditionally in fuzzy logic literature, we first define a pointwise evaluated \((\land, \lor) \) pair of operators \((\land, \lor) \), and then define the ordering relation \(\leq \) in terms of \((\land, \lor) \). For example, if \((\land, \lor) = (\min, \max) \), then
 \[
 \begin{align*}
 x \leq y & \iff \max(x, y) = y \\
 x \leq y & \iff \min(x, y) = x
 \end{align*}
 \]
5. However, here we take a kind of converse approach: We first define a pointwise ordering relation \(\leq \) (Definition A.7 page 23), and then define the operators \((\land, \lor) \) in terms of \(\leq \). In doing so, \((\land, \lor) \) may possibly no longer satisfy the pointwise evaluation condition.
6. By carefully constructing a set of membership functions (Definition 1.7 page 6) \(M \), we can construct fuzzy subset logics (Definition 1.11 page 6) on Boolean and other types of lattice structures.
7. A fuzzy subset logic then inherits the properties of the lattice it is constructed on. So, for example, if a fuzzy subset logic is constructed on a Boolean lattice, then that fuzzy subset logic is also Boolean with all the properties of a Boolean algebra (Theorem A.42 page 30) including the non-contradiction, excluded middle, idempotent, and distributive properties.
8. Despite Theorem 1.26 page 13 and Theorem 1.28, this is all possible because \((\land, \lor) \) is no longer pointwise evaluated (Definition 1.12 page 7). The result of, say, \([m \lor n](x)\) at the point \(x \) is no longer necessarily the result of the two values \(m(x) \) and \(n(x) \) alone, but instead \([m \lor n](x)\) at the point \(x \) may be the result of entire membership functions in the structure or even the position of \(m \) and \(n \) in the structure.
9. Examples follow.

Example 2.1 Consider the structure \(L \triangleq (M, \lor, \land, \neg, 0, 1; \leq) \) with \(M \triangleq \{m_0, m_A, m_B, m_1\} \) illustrated in Figure 6 page 21 (A).
1. The function \neg is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation $\neg m$ of each membership function m is the standard negation (Definition 1.19 page 9).
3. L is very similar to the structure in Example 1.34 (page 18), which fails to even be a logic.
4. However the structure of this example has a valid ordering relation \leq (pointwise ordering relation), has valid operators (\land, \lor) defined in terms of \leq (Definition A.9 page 24, Definition A.8 page 24), and is a Boolean lattice with all the accompanying Boolean properties including the non-contradiction, excluded middle, idempotency, and distributivity.
5. In this example, the operators are no longer Łukasiewicz operators (as in Example 1.34), but some other operators (not explicitly given in terms of a function of the form given in Theorem 1.26 (page 13)).
6. This Boolean lattice together with the classical implication (Example C.4 page 46) is an ortho logic (and thus also a fuzzy subset logic—Definition 1.11 page 6).

Example 2.2 Consider the structure $L \triangleq (\mathbb{M}, \lor, \land, \neg, 0, 1 ; \leq)$ with

$$M \triangleq \{m_0, m_A, m_B, m_P, m_Q, m_1\}$$

illustrated in Figure 6 page 21 (B).

1. The function \neg is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation $\neg m$ of each membership function m is the standard negation (Definition 1.19 page 9).
3. L is very similar to the structure in Example 1.36 (page 18), which fails to be a logic.
4. However the structure of this example has a valid ordering relation \leq, has valid operators (\land, \lor) defined in terms of \leq, and is an orthocomplemented lattice (Definition A.44 page 31) with all the accompanying properties of an orthocomplemented lattice including the non-contradiction, excluded middle and idempotency properties (Theorem A.14 page 25, Definition A.44 page 31, Theorem A.47 page 32).
5. In this example, the operators are no longer Łukasiewicz operators (as in Example 1.36, but some other operators.
6. This orthocomplemented lattice together with any one of the implications given in Example C.4 (page 46) is an ortho logic (and thus also a fuzzy subset logic—Definition 1.11 page 6).
Example 2.3 Consider the structure $L \triangleq (M, \lor, \land, \neg, 0, 1 ; \leq)$ illustrated in Figure 7 (page 22).

1. The function \neg is an ortho negation (Definition B.3 page 35) (and thus also a fuzzy negation).
2. The negation $\neg m$ of each membership function m is the standard negation (Definition 1.19 page 9).
3. L is somewhat similar to the fuzzy subset logic of Example 1.37 (page 19), which fails to be Boolean.
4. However the structure of this example has a valid ordering relation \leq, has valid operators (\land, \lor) defined in terms of \leq, and is a Boolean lattice with the accompanying Boolean properties including the non-contradiction, excluded middle, idempotent, and distributivity properties (Theorem A.42 page 30).
5. In this example, the operators are no longer min-max operators (as in Example 1.37), but some other operators.
6. This Boolean lattice together with the classical implication (Example C.4 page 46) is an ortho logic (and thus also a fuzzy logic).

Appendix A Background: Order

A.1 Ordered sets

Definition A.1 31 Let 2^{XX} be the set of all relations on a set X.
A relation \leq is an order relation in 2^{XX} if

31 [MacLane and Birkhoff(1999)] page 470, [Beran(1985)] page 1, [Korselt(1894)] page 156 (I, II, (1)), [Dedekind(1900)] page 373 (I–III)
1. \(x \leq x \forall x \in X \) (reflexive) and preorder
2. \(x \leq y \) and \(y \leq z \implies x \leq z \forall x, y, z \in X \) (transitive) and preorder
3. \(x \leq y \) and \(y \leq x \implies x = y \forall x, y \in X \) (anti-symmetric)

The pair \((X, \leq)\) is an ordered set if \(\leq\) is an order relation on a set \(X\). If \(x \leq y\) or \(y \leq x\), then elements \(x\) and \(y\) are said to be comparable, denoted \(x \sim y\). Otherwise they are incomparable, denoted \(x \parallel y\).

Definition A.2 Let \((X, \leq)\) be an ordered set. Let \(2^X\) be the set of all relations on \(X\). The relations \(\geq, <, > \in 2^X\) are defined as follows:

\[
\begin{align*}
x \geq y & \iff y \leq x \forall x, y \in X \\
x < y & \iff x \leq y \text{ and } x \neq y \forall x, y \in X \\
x > y & \iff x \geq y \text{ and } x \neq y \forall x, y \in X
\end{align*}
\]

Definition A.3 An ordered set \((X, \leq)\) (Definition A.1 page 22) is linear, or is a linearly ordered set, if \(x \leq y\) or \(y \leq x\) \(\forall x, y \in X\) (comparable).

A linearly ordered set is also called a totally ordered set, a fully ordered set, and a chain.

Definition A.4 \(y\) covers \(x\), denoted \(x < y\), in the ordered set \((X, \leq)\) if

1. \(x \leq y\) \((y\) is greater than \(x))\) and
2. \((x \leq z \leq y) \implies (z = x \text{ or } z = y)\) \((\text{there is no element between } x \text{ and } y)\).

An ordered set can be represented graphically by a Hasse diagram (next definition).

Definition A.5 Let \((X, \leq)\) be an ordered pair. A diagram is a Hasse diagram of \((X, \leq)\) if

1. Each element in \(X\) is represented by a dot or small circle and
2. for each \(x, y \in X\), if \(x < y\), then \(y\) appears at a higher position than \(x\) and a line connects \(x\) and \(y\).

Example A.6 Here are three ways of representing the ordered set \((\mathcal{P}\{x, y\}, \subseteq)\);

1. Hasse diagram: \[
\begin{array}{c}
(x) \\
\emptyset \\
\{x\} \\
\{y\} \\
\{x, y\}
\end{array}
\]

2. Sets of ordered pairs specifying order relations:

\[
\subseteq = \{ (\emptyset, \emptyset), \ (\{x\}, \{x\}), \ (\{y\}, \{y\}), \ (\{x, y\}, \{x, y\}) \}
\]

3. Sets of ordered pairs specifying covering relations:

\[
\lhd = \{ (\emptyset, \{x\}), \ (\emptyset, \{y\}), \ (\{x\}, \{x, y\}), \ (\{y\}, \{x, y\}) \}
\]

Definition A.7 Let \(Y^X\) be the set of all functions that map from a set \(X\) to a set \(Y\). Let \((Y, \preceq)\) be an ordered set. The relation \(\preceq\) is a pointwise ordering relation on \(Y^X\) with respect to \(\preceq\) if for all \(f, g \in Y^X\)

\[
f \preceq g \implies \{f(x) \preceq g(x) \forall x \in X\}
\]
Definition A.8 Let \((X, \leq) \) be an ordered set and \(2^X \) the power set of \(X \).
For any set \(A \in 2^X \), \(c \) is an upper bound of \(A \) in \((X, \leq) \) if
\[
1. x \in A \implies x \leq c.
\]
An element \(b \) is the least upper bound, or l.u.b., of \(A \) in \((X, \leq) \) if
\[
2. b \text{ and } c \text{ are upper bounds of } A \implies b \leq c.
\]
The least upper bound of the set \(A \) is denoted \(\bigvee A \). It is also called the supremum of \(A \), which is denoted \(\text{sup } A \). The join \(x \lor y \) of \(x \) and \(y \) is defined as \(x \lor y \triangleq \bigvee \{ x, y \} \).

Definition A.9 Let \((X, \leq) \) be an ordered set and \(2^X \) the power set of \(X \). For any set \(A \in 2^X \), \(p \) is a lower bound of \(A \) in \((X, \leq) \) if
\[
1. p \leq x \quad \forall x \in A.
\]
An element \(a \) is the greatest lower bound, or glb, of \(A \) in \((X, \leq) \) if
\[
2. a \text{ and } p \text{ are lower bounds of } A \implies p \leq a.
\]
The greatest lower bound of the set \(A \) is denoted \(\bigwedge A \). It is also called the infimum of \(A \), which is denoted \(\text{inf } A \). The meet \(x \land y \) of \(x \) and \(y \) is defined as \(x \land y \triangleq \bigwedge \{ x, y \} \).

Proposition A.10
\[
x \leq y \iff \begin{cases} 1. x \land y = x \quad \text{and} \\ 2. x \lor y = y \end{cases} \quad \forall x, y \in X
\]

A.2 Lattices

A.2.1 General lattices

Definition A.11 An algebraic structure \(L \triangleq (X, \lor, \land; \leq) \) is a lattice if
\[
1. (X, \leq) \text{ is an ordered set} \quad \text{(X, \leq) is a partially or totally ordered set)}
\]
\[
2. x, y \in X \implies \exists (x \lor y) \in X \quad \text{(every pair of elements in } X \text{ has a least upper bound in } X) \quad \text{and}
\]
\[
3. x, y \in X \implies \exists (x \land y) \in X \quad \text{(every pair of elements in } X \text{ has a greatest lower bound in } X).
\]
The lattice \(L \) is linear if \((X, \leq) \) is a linearly ordered set (Definition A.3 page 23).

Example A.12 The ordered set \((X, \leq) \) illustrated by the Hasse diagram to the right is not a lattice because, \(a \) and \(b \) have no lower bound in \(X \).

Example A.13 The ordered set illustrated by the Hasse diagram to the right is not a lattice because, for example, while \(a \) and \(b \) have upper bounds \(c \), \(d \), and \(1 \), still \(a \) and \(b \) have no least upper bound. The element \(1 \) is not the least upper bound because \(c \leq 1 \) and \(d \leq 1 \). And neither \(c \) nor \(d \) is a least upper bound because \(c \not\leq d \) and \(d \not\leq c \); rather, \(c \) and \(d \) are incomparable \((a \| b) \). Note that if we remove either or both of the two lines crossing the center, the ordered set becomes a lattice.

\[35\] [MacLane and Birkhoff(1999)] page 473, [Birkhoff(1948)] page 16, [Ore(1935)], [Birkhoff(1933)] page 442, [Maeda and Maeda(1970)], page 1

\[36\] [Dominich(2008)] page 50 (Fig. 3.5)

\[37\] [Birkhoff(1967)] pages 15–16, [Oxley(2006)] page 54, [Dominich(2008)] page 50 (Figure 3.6), [Farley(1997)] page 3, [Farley(1996)] page 5
Theorem A.14 \((X, \lor, \land; \leq)\) is a lattice \iff
\[
\begin{align*}
x \lor x &= x & x \land x &= x \\
x \lor y &= y \lor x & x \land y &= y \land x \\
(x \lor y) \lor z &= x \lor (y \lor z) & (x \land y) \land z &= x \land (y \land z) \\
x \lor (x \land y) &= x & x \land (x \lor y) &= x
\end{align*}
\]
\((\text{idempotent})\) and \((\text{commutative})\) and \((\text{associative})\) and \((\text{absorptive}).\)

Proposition A.15 \((\text{Monotony laws})\)
\[
\begin{align*}
\{a \leq b\text{ and }x \leq y\} \implies \{a \land x \leq b \land y\text{ and }a \lor x \leq b \lor y\} & \quad \forall a, b, x, y \in X
\end{align*}
\]

Theorem A.16 \((\text{distributive inequalities})\)
\[
\begin{align*}
x \land (y \lor z) \geq (x \land y) \lor (x \land z) & \quad \forall x, y, z \in X \quad (\text{join super-distributive}) \text{ and } \\
x \lor (y \land z) \leq (x \lor y) \land (x \lor z) & \quad \forall x, y, z \in X \quad (\text{meet sub-distributive}) \text{ and } \\
(x \lor y) \lor (x \land z) \lor (y \land z) & \leq (x \lor y) \land (x \lor z) \land (y \lor z) \quad \forall x, y, z \in X \quad (\text{median inequality}).
\end{align*}
\]

Theorem A.17 \((\text{Modular inequality})\)
\[
\begin{align*}
x \leq y & \implies x \lor (y \land z) \leq y \land (x \lor z)
\end{align*}
\]

Theorem A.14 (page 25) gives 4 necessary and sufficient pairs of properties for a structure \((X, \lor, \land; \leq)\) to be a lattice. However, these 4 pairs are actually overly sufficient (they are not independent), as demonstrated next.

A.2.2 Bounded lattices

Definition A.19 Let \(L \triangleq (X, \lor, \land; \leq)\) be a lattice. Let \(\lor X\) be the least upper bound of \((X, \leq)\) and let \(\land X\) be the greatest lower bound of \((X, \leq)\). \(L\) is upper bounded if \((\lor X) \in X\). \(L\) is lower bounded if \((\land X) \in X\). \(L\) is bounded if \(L\) is both upper and lower bounded. A bounded lattice is optionally denoted \((X, \lor, \land, 0, 1; \leq)\), where \(0 \triangleq \land X\) and \(1 \triangleq \lor X\).

Proposition A.20 Let \(L \triangleq (X, \lor, \land; \leq)\) be a lattice.
\[
\{L \text{ is finite}\} \implies \{L \text{ is bounded}\}
\]
A.2 LATTICES

Figure 8: relationships between selected lattice types

Proposition A.21 Let \(L \triangleq (X, \lor, \land; \leq) \) be a lattice with \(\lor X \triangleq 1 \) and \(\land X \triangleq 0 \).

\[
\{ L \text{ is BOUNDED} \} \implies \begin{cases}
x \lor 1 &= 1 \quad \forall x \in X \quad \text{(upper bounded)} \quad \text{and} \\
x \land 0 &= 0 \quad \forall x \in X \quad \text{(lower bounded)} \quad \text{and} \\
x \lor 0 &= x \quad \forall x \in X \quad \text{(join-identity)} \quad \text{and} \\
x \land 1 &= x \quad \forall x \in X \quad \text{(meet-identity)}
\end{cases}
\]

A.2.3 Modular lattices

Definition A.22 \(^{43}\) Let \((X, \lor, \land; \leq)\) be a lattice. The **modularity** relation \(\odot \in 2^{XX} \) is defined as

\[
x \odot y \iff \{(x, y) \in X^2 | a \leq y \implies y \land (x \lor a) = (y \land x) \lor a \quad \forall a \in X\}.
\]

Modular lattices are a generalization of **distributive lattices** in that all distributive lattices are modular, but not all modular lattices are distributive (Example A.33 page 28, Example A.34 page 28).

Definition A.23 \(^{44}\) A lattice \((X, \lor, \land; \leq)\) is **modular** if \(x \odot y \quad \forall x, y \in X \).

Definition A.24 \(^{45}\) (N5 lattice/pentagon) The **N5 lattice** is the ordered set \(((0, a, b, p, 1), \leq)\) with cover relation

\[
\leq = \{(0, a), (a, b), (b, 1), (p, 1), (0, p)\}.
\]

The N5 lattice is also called the **pentagon**. The N5 lattice is illustrated by the Hasse diagram to the right.

\(^{43}\) [Stern(1999)] page 11, [Maeda and Maeda(1970)], page 1 (Definition (1.1)), [Maeda(1966)] page 248

\(^{44}\) [Birkhoff(1967)] page 82, [Maeda and Maeda(1970)], page 3 (Definition (1.7))

\(^{45}\) [Beran(1985)] pages 12–13, [Dedekind(1900)] pages 391–392 (44) and (45)
Theorem A.25 \[46\] Let \(L \) be a lattice (Definition A.11 page 24).
\[L \text{ is modular} \iff L \text{ does not contain the N5 lattice} \]

Examples of modular lattices are provided in Example A.33 (page 28) and Example A.34 (page 28).

A.2.4 Distributive lattices

Definition A.26 \[47\] Let \((X, \vee, \wedge; \leq)\) be a lattice (Definition A.11 page 24).
The distributivity relation \(\otimes \in 2^{XX} \) and the dual distributivity relation \(\otimes^* \in 2^{XX} \) are defined as
\[\otimes \triangleq \{(x, y, z) \in X^3 \mid x \land (y \lor z) = (x \land y) \lor (x \land z)\} \quad (\text{each } (x, y, z) \text{ is disjunctive distributive}), \]
\[\otimes^* \triangleq \{(x, y, z) \in X^3 \mid x \lor (y \land z) = (x \lor y) \land (x \lor z)\} \quad (\text{each } (x, y, z) \text{ is conjunctive distributive}). \]

A triple \((x, y, z)\) is distributive if \((x, y, z) \in \otimes\) and such a triple is alternatively denoted as \((x, y, z) \otimes\).

Definition A.27 \[48\] A lattice \((X, \vee, \wedge; \leq)\) is distributive if \((x, y, z) \in \otimes \forall x, y, z \in X\)

Not all lattices are distributive. But if a lattice \(L \) does happen to be distributive—that is all triples in \(L \) satisfy the distributive property—then all triples in \(L \) also satisfy the dual distributive property, as well as another property called the median property. The converses also hold (next theorem).

Theorem A.28 \[49\] Let \((X, \vee, \wedge; \leq)\) be a lattice. The following statements are all equivalent:

1. \(L \) is distributive
2. \(x \land (y \lor z) = (x \land y) \lor (x \land z) \forall x, y, z \in X \quad (\text{disjunctive distributive})\)
3. \(x \lor (y \land z) = (x \lor y) \land (x \lor z) \forall x, y, z \in X \quad (\text{conjunctive distributive})\)
4. \((x \lor y) \land (x \lor z) \land (y \lor z) = (x \lor y) \lor (x \lor z) \lor (y \lor z) \forall x, y, z \in X \quad (\text{median property}) \)

Definition A.29 (M3 lattice/diamond) \[50\] The M3 lattice is the ordered set \((\{0, p, q, r, 1\}, \leq)\) with covering relation
\[\leq = \{(p, 1), (q, 1), (r, 1), (0, p), (0, q), (0, r)\}. \]
The M3 lattice is also called the diamond, and is illustrated by the Hasse diagram to the right.

Theorem A.30 (Birkhoff distributivity criterion) \[51\] Let \((X, \vee, \wedge; \leq)\) be a lattice.
\[L \text{ is distributive} \iff \begin{cases} L \text{ does not contain N5 as a sublattice} \quad \bigwedge \text{and} \quad L \text{ does not contain M3 as a sublattice} \end{cases} \]

\[56\] [Burris and Sankappanavar(1981)] page 11, [Grätzer(1971)] page 70, [Dedekind(1900)] (cf Stern 1999 page 10)
[47\] [Maeda and Maeda(1970)], page 15 (Definition 4.1), [Foulis(1962)] page 67, [von Neumann(1960)], page 32 (Definition 5.1), [Davis(1955)] page 314 (disjunctive distributive and conjunctive distributive functions)
[48\] [Burris and Sankappanavar(1981)] page 10, [Birkhoff(1948)] page 133, [Ore(1935)] page 414 (arithmetic axiom), [Birkhoff(1933)] page 453, [Burris and Sankappanavar(1981)] page 10, [Ore(1935)] page 416 (7,8, Theorem 3), [Ore(1940)] (cf Gratzer 2003 page 159), [Schröder(1890)] page 286 (cf Birkhoff(1948)p.133), [Korselt(1894)] (cf Birkhoff(1948)p.133)
[50\] [Beran(1985)] pages 12–13, [Korselt(1894)] page 157 (\(p_1 \equiv x, p_2 \equiv y, p_3 \equiv z, g \equiv 1, 0 \equiv 0 \))
[51\] [Burris and Sankappanavar(1981)] page 12, [Birkhoff(1948)] page 134, [Birkhoff and Hall(1934)]
Distributive lattices are a special case of modular lattices. That is, all distributive lattices are modular, but not all modular lattices are distributive (next theorem). An example is the $M3$ lattice—it is modular, but yet it is not distributive.

Theorem A.31 \(^{52}\) Let $(X, \lor, \land; \leq)$ be a lattice.

$(X, \lor, \land; \leq)$ is DISTRIBUTIVE \iff $(X, \lor, \land; \leq)$ is MODULAR.

Proposition A.32 \(^{53}\) Let X_n be a finite set with order $n = |X_n|$. Let l_n be the number of unlabeled lattices on X_n, m_n the number of unlabeled modular lattices on X_n, and d_n the number of unlabeled distributive lattices on X_n.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
l_n	1	1	1	1	2	5	15	53	222	1078	5994	37622	262776	2018305	
m_n	1	1	1	1	2	4	8	16	34	72	157	343	766	1718	3899
d_n	1	1	1	1	2	3	5	8	15	26	47	82	151	269	494

Example A.33 \(^{54}\) There are a total of 5 unlabeled lattices on a five element set. Of these, 3 are distributive (Proposition A.32 page 28, and thus also modular), one is modular but non-distributive, and one is non-distributive (and non-modular).

Example A.34 \(^{55}\) There are a total of 15 unlabeled lattices on a six element set; and of these 15, five are distributive (Proposition A.32 page 28). The following illustrates the 5 distributive lattices. Note that none of these lattices are complemented (none are Boolean Definition A.41 page 30).

A.3 Complemented lattices

A.3.1 Definitions

Definition A.35 \(^{56}\) Let $L \defeq (X, \lor, \land, 0, 1; \leq)$ be a bounded lattice (Definition A.19 page 25). An element $x' \in X$ is a complement of an element x in L if

\[^{52}\] [Birkhoff(1948)] page 134, \[^{53}\] [Burris and Sankappanavar(1981)] page 11
\[^{54}\] [oei(2014)] \(\langle\text{http://oeis.org/A006966}\rangle\), \[^{55}\] [Heitzig and Reinhold(2002)] \(\langle l_n \rangle\), \[^{56}\] [Stern(1999)] page 9, \[^{57}\] [Birkhoff(1948)] page 23
1. \(x \land x' = 0 \) (non-contradiction) and
2. \(x \lor x' = 1 \) (excluded middle).

An element \(x' \) in \(L \) is the **unique complement** of \(x \) in \(L \) if \(x' \) is a complement of \(x \) and \(y' \) is a complement of \(x \implies x' = y' \). \(L \) is **complemented** if every element in \(X \) has a complement in \(X \). \(L \) is **uniquely complemented** if every element in \(X \) has a unique complement in \(X \). A complemented lattice that is not uniquely complemented is **multiply complemented**.

Example A.36 Here are some examples:

non-complemented lattices	uniquely complemented lattices
![Non-complemented Lattices](image1.png)	![Uniquely Complemented Lattices](image2.png)

multiply complemented lattices
![Multiply Complemented Lattices](image3.png)

Example A.37 Of the 53 unlabeled lattices on a 7 element set, 0 are **uniquely complemented**, 17 are **multiply complemented**, and 36 are **non-complemented**.

Theorem A.38 (next) is a landmark theorem in mathematics.

Theorem A.38 \(^{57}\) For every lattice \(L \), there exists a lattice \(U \) such that
1. \(L \subseteq U \) (\(L \) is a sublattice of \(U \)) and
2. \(U \) is **UNIQUELY COMPLEMENTED**.

Corollary A.39 \(^{58}\) Let \(L \triangleq (X, \lor, \land; \leq) \) be a lattice.
\[
\begin{align*}
L \text{ is DISTRIBUTIVE} \quad \text{and} \\
L \text{ is COMPLEMENTED}
\end{align*}
\implies \{ \text{\(L \) is UNIQUELY COMPLEMENTED} \}

Theorem A.40 (Huntington properties) \(^{59}\) Let \(L \) be a lattice.
\[
\begin{align*}
L \text{ is} \\
\text{UNIQUELY} \\
\text{COMPLEMENTED}
\end{align*}
\begin{align*}
L \text{ is MODULAR} \\
L \text{ is ATOMIC} \\
L \text{ is ORTHOCOMPLEMENTED} \\
L \text{ has FINITE WIDTH} \\
L \text{ is DE MORGAN}
\end{align*}
\implies \{ \text{\(L \) is DISTRIBUTIVE} \}

\(^{57}\) [Dilworth(1945)](page 123), [Salić(1988)](page 51), [Grätzer(2003)](page 378) (Corollary 3.8)

\(^{58}\) [MacLane and Birkhoff(1999)](page 488), [Salić(1988)](page 30) (Theorem 10)

\(^{59}\) [Roman(2008)](page 103), [Adams(1990)](page 79), [Salić(1988)](page 40), [Dilworth(1945)](page 123), [Grätzer(2007)](page 698)
A.3.2 Boolean lattices

Definition A.41 A lattice (Definition A.11 page 24) \(L \) is Boolean if

1. \(L \) is bounded (Definition A.19 page 25) and
2. \(L \) is distributive (Definition A.27 page 27) and
3. \(L \) is complemented (Definition A.35 page 28).

In this case, \(L \) is a Boolean algebra or a Boolean lattice. In this paper, a Boolean lattice is denoted \((X, \lor, \land, 0, 1; \leq) \), and a Boolean lattice with \(2^N \) elements is sometimes denoted \(L^N_2 \).

Theorem A.42 (classic 10 Boolean properties) \(^{60}\) Let \(A \equiv (X, \lor, \land, 0, 1; \leq) \) be an algebraic structure. In the event that \(A \) is a BOUNDED LATTICE (Definition A.19 page 25), let \(x' \) represent a COMPLEMENT (Definition A.35 page 28) of an element \(x \) in \(A \).

\(A \) is a Boolean algebra \iff \(\forall x, y, z \in X \)

\[
\begin{array}{ccc}
\lor \ x \ x & = & x \\
\lor \ x \ y & = & y \lor x \\
\lor (y \land z) & = & (x \lor y) \lor z \\
\lor (x \land y) & = & x \\
\lor 1 & = & 1 \\
\lor 0 & = & x \\
\lor (y \land z) & = & (x \lor y) \land (x \lor z) \\
\lor (x \land y) & = & x \land x' \\
\lor (x \land y)' & = & x \lor y' \\
\lor (x')' & = & x
\end{array}
\]

\(\begin{array}{l}
\land \ x \ x & = & x \\
\land \ x \ y & = & x \land y \\
\land (y \lor z) & = & (x \land y) \lor (x \land z) \\
\land (x \lor y) & = & x \lor x' \\
\land (x \lor y)' & = & x' \land y' \\
\land (x')' & = & x
\end{array} \)

\(\begin{array}{l}
(x \land y)' & = & x' \lor y' \quad (x')' & = & x \\
\end{array} \)

property name

Lemma A.43

\((X, \lor, \land, 0, 1; \leq) \) is a Boolean algebra

\(\Rightarrow \) \(\forall x, y, z \in X \)

\(\begin{array}{l}
1. \ x' \land (x \land y) = x' \land y \quad \forall x, y \in X \\
2. \ x \lor (x' \land y) = x \lor y \quad \forall x, y \in X
\end{array} \)

\(\Box \) Proof:

\[
x' \lor (x \land y) = x' \lor (x' \land y) \lor (x \land y) \quad \text{by absorption property (Theorem A.42 page 30)}
\]

\[
= x' \lor [(x' \lor x) \land y] \quad \text{by associative and distributive properties (Theorem A.42 page 30)}
\]

\[
= x' \lor [1 \land y] \quad \text{by excluded middle property (Theorem A.42 page 30)}
\]

\[
= x' \lor y \\
\]

\[
x \lor (x' \land y) = x \lor (x \land y) \lor (x' \land y) \lor (x \land y) \quad \text{by absorption property (Theorem A.42 page 30)}
\]

\[
= x \lor [(x \lor x') \land y] \quad \text{by associative and distributive properties (Theorem A.42 page 30)}
\]

\[
= x \lor [1 \land y] \quad \text{by excluded middle property (Theorem A.42 page 30)}
\]

\[
= x \lor y \\
\]

\(\Box \)

\(^{60}\) [MacLane and Birkhoff(1999)] page 488, [Jevons(1864)]

\(^{61}\) [Huntington(1904)] pages 292–293 (“1st set”), [Huntington(1933)] page 280 (“4th set”), [MacLane and Birkhoff(1999)] page 488, [Givant and Halmos(2009)] page 10, [Müller(1909)], pages 20–21, [Schröder(1890)], [Whitehead(1898)] pages 35–37
A.3.3 Orthocomplemented Lattices

Definition A.44 Let $L \triangleq (X, \lor, \land, 0, 1; \leq)$ be a bounded lattice (Definition A.19 page 25). An element $x^\perp \in X$ is an orthocomplement of an element $x \in X$ if

1. $x^\perp \land x = x \forall x \in X$ (involutive) and
2. $x \land x^\perp = 0 \forall x \in X$ (non-contradiction) and
3. $x \leq y \iff y^\perp \leq x^\perp \forall x, y \in X$ (antitone).

The lattice L is orthocomplemented (L is an orthocomplemented lattice) if every element x in X has an orthocomplement.

Definition A.45 The O_6 lattice is the ordered set $\{(0,p,q,p^\perp,q^\perp,1)\}$ with cover relation $\leq = \{(0,p),(0,q),(p,q^\perp),(p,p^\perp),(q,p^\perp),(q^\perp,1)\}$.

The O_6 lattice is illustrated by the Hasse diagram to the right.

Example A.46 There are a total of 10 orthocomplemented lattices with 8 elements or less. These along with some other orthocomplemented lattices are illustrated next:

Lattices that are orthocomplemented but non-orthomodular and hence also non-modular-orthocomplemented and non-Boolean:
![Diagram 1](image1.png)
1. O_6 lattice
![Diagram 5](image5.png)
5.

Lattices that are orthocomplemented and orthomodular but non-modular-orthocomplemented and hence also non-Boolean:

[^1]: [Stern(1999)] page 11, [Beran(1985)] page 28, [Kalmbach(1983)] page 16, [Gudder(1988)] page 76, [Loomis(1955)] page 3, [Birkhoff and Neumann(1936)] page 830 (L1-L73)
[^2]: [Kalmbach(1983)] page 22, [Holland(1970)], page 50, [Beran(1985)] page 33, [Stern(1999)] page 12. The O_6 lattice is also called the hexagon or Benzene ring.
[^3]: [Beran(1985)] pages 33-42, [Maeda(1966)] page 250, [Kalmbach(1983)] page 24 (Figure 3.2), [Stern(1999)] page 12, [Holland(1970)], page 50
[^4]: As can be seen in this example, the number of orthocomplemented lattices with $(1,2,3,...)$ elements is $(1,1,0,1,0,2,0,5,0,...)$. It is interesting to note that at least the first 9 terms (and possibly more?) of this sequence are the same as the "expansion of $\frac{1+\sqrt{5}}{2}$" [oei(2014)] (http://oeis.org/A097331) and the "Catalan numbers ...interpolated with 0's" [oei(2014)] (http://oeis.org/A126120)
Theorem A.47 66 Let \(x^\perp \) be the orthocomplement of an element \(x \) in a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\begin{align*}
\{ \text{L is orthocomplemented} \} & \implies \\
(1) & : \quad 0^\perp = 1 \quad \text{(boundary condition)}
\end{align*}
\]

\[
\begin{align*}
(2) & : \quad 1^\perp = 0 \quad \text{(boundary condition)}
\end{align*}
\]

\[
\begin{align*}
(3) & : \quad (x \lor y)^\perp = x^\perp \land y^\perp \quad \forall x, y \in X \quad \text{(disjunctive de Morgan)}
\end{align*}
\]

\[
\begin{align*}
(4) & : \quad (x \land y)^\perp = x^\perp \lor y^\perp \quad \forall x, y \in X \quad \text{(conjunctive de Morgan)}
\end{align*}
\]

\[
\begin{align*}
(5) & : \quad x \lor x^\perp = 1 \quad \forall x \in X \quad \text{(excluded middle)}
\end{align*}
\]

\[\square\text{Proof:} \quad \text{Let} \quad \neg x \triangleq x^\perp, \text{where} \quad \neg \text{is an ortho negation function (Definition B.3 page 35). Then this theorem follows}\]

\[66 \quad \square\text{[Beran(1985)] pages 30–31, [Birkhoff and Neumann(1936)] page 830 (L74), [Cohen(1989)] page 37 (3B.13. Theorem)}\]
Corollary A.48 Let $L \triangleq (X, \lor, \land, 0, 1; \leq)$ be a LATTICE (Definition A.11 page 24).
\[
\begin{align*}
\{ & L \text{ is orthocomplemented} \text{ (Definition A.44 page 31)} \} \implies \{ L \text{ is complemented} \text{ (Definition A.35 page 28)} \}
\end{align*}
\]

\begin{proof}
This follows directly from the definition of orthocomplemented lattices (Definition A.44 page 31) and complemented lattices (Definition A.35 page 28).
\end{proof}

Example A.49 The O_6 lattice (Definition A.45 page 31) illustrated to the left is both orthocomplemented (Definition A.44 page 31) and multiply complemented (Definition A.35 page 28). The lattice illustrated to the right is multiply complemented, but is non-orthocomplemented.

Example A.51 The O_6 lattice (Definition A.45 page 31) illustrated to the left is orthocomplemented (Definition A.44 page 31) but non-join-distributive (Definition A.27 page 27) and hence non-Boolean. The lattice illustrated to the right is orthocomplemented and distributive and hence also Boolean (Proposition A.50 page 33).

A.3.4 Orthomodular lattices

Definition A.52 Let $L \triangleq (X, \lor, \land, 0, 1; \leq)$ be a bounded lattice (Definition A.19 page 25).

L is orthomodular if
\[
\begin{align*}
1. & \text{ L is orthocomplemented} \\
2. & x \leq y \implies x \lor (x \land y) = y \quad \forall x, y \in X \quad \text{(orthomodular identity)}
\end{align*}
\]

Theorem A.53 Let $L = (X, \lor, \land, 0, 1; \leq)$ be an algebraic structure.

\[
\begin{align*}
\{ & L \text{ is an orthomodular lattice and} \\
& L(\land \land y) = y \lor (x \land y) \quad \forall x, y \in X \quad \text{(Elkan's Law)} \}
\end{align*}
\]

\[
\begin{align*}
\implies \{ L \text{ is a Boolean algebra} \text{ (Definition A.41 page 30)} \}
\end{align*}
\]
Definition A.54 Let $L \triangleq (X, \lor, \land, 0, 1; \leq)$ be a *bounded lattice* (Definition A.19 page 25). L is a *modular orthocomplemented lattice* if

1. L is *orthocomplemented* (Definition A.44 page 31) and
2. L is *modular* (Definition A.23 page 26)

Theorem A.55 Let L be a lattice.

{ L is BOOLEAN } \implies { L is MODULAR ORTHOCOMPLEMENTED } (Definition A.54 page 34) \implies { L is ORTHOMODULAR } (Definition A.52 page 33) \implies { L is ORTHOCOMPLEMENTED } (Definition A.44 page 31)

Appendix B Background: Negation

![Lattice of Negations Diagram]

Figure 9: lattice of negations

B.1 Definitions

Definition B.1 Let $L \triangleq (X, \lor, \land, 0, 1; \leq)$ be a *bounded lattice* (Definition A.19 page 25).

A function $\neg \in X^X$ is a *subminimal negation* on L if

$$x \leq y \implies \neg y \leq \neg x \quad \forall x, y \in X \quad \text{(antitone)}.$$
Definition B.2 73 Let \(L \triangleq (X, \lor, \land, 0, 1; \leq) \) be a bounded lattice (Definition A.19 page 25).

A function \(\neg \in X^X \) is a negation, or minimal negation, on \(L \) if

1. \(x \leq y \implies \neg y \leq \neg x \quad \forall x, y \in X \) \ (antitone) and
2. \(x \leq \neg \neg x \quad \forall x \in X \) \ (weak double negation).

A minimal negation \(\neg \) is an intuitionistic negation on \(L \) if

3. \(x \land \neg x = 0 \quad \forall x, y \in X \) \ (non-contradiction).

A minimal negation \(\neg \) is a fuzzy negation on \(L \) if

4. \(\neg 1 = 0 \) \ (boundary condition).

Definition B.3 74 Let \(L \triangleq (X, \lor, \land, 0, 1; \leq) \) be a bounded lattice (Definition A.19 page 25).

A minimal negation \(\neg \) is a de Morgan negation on \(L \) if

5. \(x = \neg \neg x \quad \forall x \in X \) \ (involutary).

A de Morgan negation \(\neg \) is a Kleene negation on \(L \) if

6. \(x \land \neg x \leq y \lor \neg y \quad \forall x, y \in X \) \ (Kleene condition).

A de Morgan negation \(\neg \) is an ortho negation on \(L \) if

7. \(x \land \neg x = 0 \quad \forall x, y \in X \) \ (non-contradiction).

A de Morgan negation \(\neg \) is an orthomodular negation on \(L \) if

8. \(x \land \neg x = 0 \quad \forall x, y \in X \) \ (non-contradiction) and
9. \(x \leq y \implies x \lor (x^\bot \land y) = y \quad \forall x, y \in X \) \ (orthomodular).

Remark B.4 75 The Kleene condition is a weakened form of the non-contradiction and excluded middle properties in the sense

\[
x \land \neg x = 0 \quad \leq \quad 1 = y \lor \neg y .
\]

Definition B.5 Let \(L \triangleq (X, \lor, \land, 0, 1; \leq) \) be a bounded lattice (Definition A.19 page 25) with a function \(\neg \in X^X \). If \(\neg \) is a negation (Definition B.2 page 35), then \(L \) is a lattice with negation.

B.2 Properties of negations

Lemma B.6 76 Let \(\neg \in X^X \) be a function on a lattice \(L \triangleq (X, \lor, \land; \leq) \) (Definition A.11 page 24).

\[
x \leq y \implies \left\{ \begin{array}{l}
\neg x \lor \neg y \leq \neg (x \land y) \quad \forall x, y \in X \quad \text{(conjunctive de Morgan inequality)} \\
\neg (x \lor y) \leq \neg x \land \neg y \quad \forall x, y \in X \quad \text{(disjunctive de Morgan inequality)}
\end{array} \right.
\]

antitone

72 In the context of natural language, D. Devidi has argued that, subminimal negation (Definition B.1 page 34) is “difficult to take seriously as” a negation. For further details see [Devidi(2010)], page 511, [Devidi(2006)], page 568.

73 [Dunn(1996)] pages 4–6, [Dunn(1999)] pages 24–26 (2 The Kite of Negations), [Troelstra and van Dalen(1988)] page 4 (1.6 Intuitionism. (b)), [de Vries(2007)] page 11 (Definition 16), [Gottwald(1999)] page 21 (Definition 3.3), [Novák et al.(1999)/Novák,Perfilieva, and Močkoř] page 50 (Definition 2.26), [Nguyen and Walker(2006)] pages 98–99 (5.4 Negations), [Bellman and Giertz(1973)] pages 155–156 ((N1) \(\neg 0 = 1 \) and \(\neg 1 = 0 \), (N3) \(\neg \neg x = x \))

74 [Dunn(1999)] pages 24–26 (2 The Kite of Negations), [Jenei(2003)] page 283, [Kalmbach(1983)] page 22, [Lidl and Pilz(1998)] page 90, [Husimi(1937)]

75 [Cattaneo and Ciucci(2009)] page 78

76 [Beran(1985)] page 31 (Theorem 1.2 Proof), [Fáy(1967)] page 268 (Lemma 1 Proof), [de Vries(2007)] page 12 (Theorem 18)
Lemma B.7 Let \(\neg \in X^X \) be a function on a lattice \(L \triangleq (X, \lor, \land; \leq) \) (Definition A.11 page 24). If \(x = (\neg \neg x) \) for all \(x \in X \) (involutory), then

\[
\neg y \leq \neg x \iff \neg (x \lor y) = \neg x \land \neg y \quad \forall x, y \in X \quad \text{(disjunctive de Morgan)} \quad \text{and} \\
\neg (x \land y) = \neg x \lor \neg y \quad \forall x, y \in X \quad \text{(conjunctive de Morgan)}
\]

Lemma B.8 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\{ 1. \quad x \leq \neg \neg x \quad \forall x \in X \quad \text{(weak double negation)} \quad \text{and} \quad 2. \quad \neg 1 = 0 \quad \text{(boundary condition)} \} \implies \{ \neg 0 = 1 \quad \text{(boundary condition)} \}
\]

\[\text{Proof:} \]
\[\neg 0 = \neg \neg 1 \]
\[\geq 1 \]
\[\implies \neg 0 = 1 \]

Lemma B.9 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\{ x \land \neg x = 0 \quad \forall x \in X \quad \text{(non-contradiction)} \} \implies \{ \neg 1 = 0 \quad \text{(boundary condition)} \}
\]

\[\text{Proof:} \]
\[0 = 1 \land \neg 1 \]
\[= \neg 1 \]

Lemma B.10 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\{ (A). \quad \neg \text{ is bijective} \quad \text{and} \quad (B). \quad x \leq y \implies \neg y \leq \neg x \quad \forall x, y \in X \quad \text{(antitone)} \} \implies \{ (1). \quad \neg 0 = 1 \quad \text{(and)} \quad (2). \quad \neg 1 = 0 \quad \text{(boundary conditions)} \}
\]

Theorem B.11 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\{ \neg \text{ is a fuzzy negation} \} \implies \{ \neg 0 = 1 \quad \text{(boundary condition)} \}
\]

\[\text{Proof:} \quad \text{This follows directly from Definition B.2 (page 35) and Lemma B.8 (page 36).} \]

Theorem B.12 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[
\{ \neg \text{ is an intuitionistic negation} \} \implies \{ (a) \quad \neg 1 = 0 \quad \text{(boundary condition)} \quad \text{and} \quad (b) \quad \neg 0 = 1 \quad \text{(boundary condition)} \quad \text{and} \quad (c) \quad \neg \text{ is a fuzzy negation} \}
\]

\[\{ [\text{Beran}(1985)] \text{ pages 30–31 (Theorem 1.2)}, \quad [\text{Fáy}(1967)] \text{ page 268 (Lemma 1)}, \quad [\text{Nakano and Romberger}(1971)] \quad \text{(cf Beran 1985)} \}

\[\{ [\text{Varadarajan}(1985)] \text{ page 42} \} \]
Proof:

\[\neg \text{ is an intuitionistic negation } \implies x \land \neg x = 0 \]

by Definition B.2 page 35

\[\neg 1 = 0 \]

by Lemma B.9 page 36

\[\neg \text{ is a fuzzy negation } \]

by Definition B.2 page 35

\[\neg 0 = 1 \]

by Theorem B.11 page 36

Theorem B.13 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[\neg \text{ is a minimal negation } \implies \begin{cases} \neg x \lor \neg y \leq \neg (x \land y) \quad \forall x, y \in X \quad \text{(Conjunctive De Morgan Inequality)} \quad \text{and} \\ \neg (x \lor y) \leq \neg x \land \neg y \quad \forall x, y \in X \quad \text{(Disjunctive De Morgan Inequality)} \end{cases} \]

Proof: This follows directly from Definition B.5 (page 35) and Lemma B.6 (page 35).

Theorem B.14 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[\neg \text{ is a de Morgan negation } \implies \begin{cases} \neg (x \lor y) = \neg x \land \neg y \quad \forall x, y \in X \quad \text{(Disjunctive De Morgan)} \quad \text{and} \\ \neg (x \land y) = \neg x \lor \neg y \quad \forall x, y \in X \quad \text{(Conjunctive De Morgan)} \end{cases} \]

Proof: This follows directly from Definition B.5 (page 35) and Lemma B.7 (page 36).

Theorem B.15 Let \(\neg \in X^X \) be a function on a bounded lattice \(L \triangleq (X, \lor, \land, 0, 1; \leq) \).

\[\neg \text{ is an ortho negation } \implies \begin{cases} \neg 0 = 1 \quad \text{(Boundary condition)} \quad \text{and} \\ \neg 1 = 0 \quad \text{(Boundary condition)} \quad \text{and} \\ \neg (x \lor y) = \neg x \land \neg y \quad \forall x, y \in X \quad \text{(Disjunctive De Morgan)} \quad \text{and} \\ \neg (x \land y) = \neg x \lor \neg y \quad \forall x, y \in X \quad \text{(Conjunctive De Morgan)} \quad \text{and} \\ x \lor \neg x = 1 \quad \forall x \in X \quad \text{(Excluded Middle)} \quad \text{and} \\ x \land \neg x \leq y \lor \neg y \quad \forall x, y \in X \quad \text{(Kleene Condition)} \end{cases} \]

Proof:

(1) Proof for \(0 = \neg 1 \) boundary condition: by Lemma B.9 (page 36)

(2) Proof for boundary conditions:

\[1 = \neg \neg 1 \quad \text{by involutory property} \]

\[= \neg 0 \quad \text{by previous result} \]

(3) Proof for de Morgan properties:

(a) By Definition B.5 (page 35), ortho negation is involutory and antitone.

(b) Therefore by Lemma B.7 (page 36), de Morgan properties hold.

(4) Proof for excluded middle property:

\[x \lor \neg x = \neg(x \lor \neg x) \quad \text{by involutory property of ortho negation (Definition B.5 page 35)} \]

\[= \neg(\neg x \land [\neg x]) \quad \text{by disjunctive de Morgan property} \]

\[= \neg(\neg x \land x) \quad \text{by involutory property of ortho negation (Definition B.5 page 35)} \]

\[= \neg(x \land \neg x) \quad \text{by commutative property of lattices (Definition A.11 page 24)} \]

\[= \neg 0 \quad \text{by non-contradiction property of ortho negation (Definition B.5 page 35)} \]

\[= 1 \quad \text{by boundary condition (item (2) page 37) of minimal negation} \]
B.3 Examples

Example B.16 (discrete negation) 79 Let \(L \triangleq (X, \lor, \land, \neg, 0, 1; \leq) \) be a bounded lattice (Definition A.19 page 25) with a function \(\neg \in X^X \). The function \(\neg x \) defined as

\[
\neg x \triangleq \begin{cases}
1 & \text{for } x = 0 \\
0 & \text{otherwise}
\end{cases}
\]

is an intuitionistic negation (Definition B.2 page 35, and a fuzzy negation).

\[\text{PROOF:} \quad \text{To be an intuitionistic negation, } \neg x \text{ must be antitone, have weak double negation, and have the non-contradiction property (Definition B.2 page 35).}\]

\[
\begin{align*}
\neg y \leq \neg x & \iff 1 \leq 1 \quad \text{for } 0 = x = y \\
\neg y \leq \neg x & \iff 0 \leq 1 \quad \text{for } 0 = x \leq y \\
\neg y \leq \neg x & \iff 0 \leq 0 \quad \text{for } 0 \neq x \leq y \\
\neg x = \neg 1 & = 0 \quad \geq 0 = x \quad \text{for } x = 0 \\
\neg x = \neg 0 & = 1 \quad \geq x = x \quad \text{for } x \neq 0 \\
x \land \neg x = x \land 1 & = 0 \land 0 = 0 \quad \text{for } x = 0 \\
x \land \neg x = x \land 0 & = x \land 0 = 0 \quad \text{for } x \neq 0
\end{align*}
\]

\(\implies \neg x \) is antitone

\[
\begin{align*}
\neg\neg x = \neg 0 & = 1 \quad \geq x \quad \text{for } x = 1 \\
\neg\neg x = \neg 1 & = 0 \quad \leq x \quad \text{for } x \neq 1
\end{align*}
\]

\(\implies \neg x \) has weak double negation

\(\implies \neg x \) has non-contradiction property

Example B.17 (dual discrete negation) 80 Let \(L \triangleq (X, \lor, \land, \neg, 0, 1; \leq) \) be a bounded lattice (Definition A.19 page 25) with a function \(\neg \in X^X \). The function \(\neg x \) defined as

\[
\neg x \triangleq \begin{cases}
0 & \text{for } x = 1 \\
1 & \text{otherwise}
\end{cases}
\]

is a subminimal negation (Definition B.1 page 34) but it is not a minimal negation (Definition B.2 page 35) (and not any other negation defined here).

\[\text{PROOF:} \quad \text{To be a subminimal negation, } \neg x \text{ must be antitone (Definition B.1 page 34). To be a minimal negation, } \neg x \text{ must be antitone and have weak double negation (Definition B.2 page 35).}\]

\[
\begin{align*}
\neg y \leq \neg x & \iff 0 \leq 0 \quad \text{for } x = y = 1 \\
\neg y \leq \neg x & \iff 0 \leq 1 \quad \text{for } x \leq y = 1 \\
\neg y \leq \neg x & \iff 1 \leq 1 \quad \text{for } x \leq y \neq 1 \\
\neg x = \neg 0 & = 1 \quad \geq x \quad \text{for } x = 1 \\
\neg x = \neg 1 & = 0 \quad \leq x \quad \text{for } x \neq 1
\end{align*}
\]

\(\implies \neg x \) does not have weak double negation

79 [Fodor and Yager(2000)] page 128, [Yager(1980b)] pages 256–257, [Yager(1979)] (cf Fodor)
80 [Fodor and Yager(2000)] page 128, [Ovchinnikov(1983)] page 235 (Example 4)
Example B.18

The function \(\neg \) illustrated to the right is an ortho negation (Definition B.3 page 35).

Proof:

1. Proof that \(\neg \) is antitone:
 \[0 \leq 1 \implies \neg 1 = 0 \leq x \implies \neg \text{ is antitone over } (0, 1) \]
2. Proof that \(\neg \) is involutory: \(1 = \neg 0 = \neg \neg 1 \)
3. Proof that \(\neg \) has the non-contradiction property:
 \[1 \land \neg 1 = 1 \land 0 = 0 \]
 \[0 \land \neg 0 = 0 \land 1 = 0 \]

Example B.19

The functions \(\neg \) illustrated to the right are not any negation defined here. In particular, none of them is antitone.

Proof:

1. Proof that (a) is not antitone: \(a \leq 1 \implies \neg 1 = 1 \not\leq a = \neg a \)
2. Proof that (b) is not antitone: \(a \leq 1 \implies \neg 1 = a \not\leq 0 = \neg a \)
3. Proof that (c) is not antitone: \(0 \leq a \implies \neg a = 1 \not\leq a = \neg 0 \)

Example B.20

The function \(\neg \) as illustrated to the right is not a subminimal negation (it is not antitone) and so is not any negation defined here. Note however that the problem is not the \(O_6 \) lattice—it is possible to define a negation on an \(O_6 \) lattice (Example B.31 page 43).

Proof: Proof that \(\neg \) is not antitone: \(a \leq c \implies \neg c = d \not\leq b = \neg a \)

Remark B.21

The concept of a complement (Definition A.35 page 28) and the concept of a negation are fundamentally different. A complement is a relation on a lattice \(L \) and a negation is a function. In Example B.20 (page 39), \(b \) and \(d \) are both complements of \(a \) (and so the lattice is multiply complemented), but yet \(\neg \) is not a negation. In the right side lattice of Example B.31 (page 43), both \(b \) and \(d \) are complements of \(a \), but yet only \(d \) is equal to the negation of \(a \) (\(d = \neg a \)). It can also be said that complementation is a property of a lattice, whereas negation is a function defined on a lattice.

Remark B.22

If a lattice is complemented, then by definition each element \(x \) in the lattice has a complement \(x' \) such that \(x \land x' = 0 \) (non-contradiction property) and \(x \lor x' = 1 \) (excluded middle property). If a lattice \(L \) is both distributive and complemented, then \(L \) is uniquely complemented (Definition A.41 page 30, Theorem A.42 page 30). If \(L \) is uniquely complemented and satisfies any one of Huntington’s properties (\(L \) is modular, atomic, ortho-complemented, has finite width, or de Morgan), then \(L \) is distributive (Theorem A.40 page 29).

Example B.23

Each of the functions \(\neg \) illustrated in Figure 10 (page 40) is a subminimal negation (Definition B.1 page 34); none of them is a minimal negation (each fails to have weak double negation).
1 = ¬0 = ¬a
0 = ¬1 = ¬a

(A)

1 = ¬1 = ¬a = ¬0
0 = ¬1

(B)

1 = ¬0 = ¬a
0 = ¬1 = ¬a

(C)

Figure 10: subminimal negations on L_1 (Example B.23 page 39)

1 = ¬a = ¬0
a = ¬1

(A) minimal (but not fuzzy)

See Example B.24 page 40

1 = ¬0
a = ¬a

(B) Kleene and fuzzy

See Example B.25 page 41

1 = ¬0
a = ¬1 = ¬a

(C) intuitionistic (and fuzzy)

See Example B.26 page 41

Figure 11: negations on L_3

Proof:

(1) Proof that (A) \neg is antitone:

\[
\begin{align*}
a \leq 1 & \implies \neg 1 = 0 \leq 0 = \neg a \implies \neg \text{ is antitone over } (a, 1) \\
0 \leq 1 & \implies \neg 1 = 0 \leq a = \neg 0 \implies \neg \text{ is antitone over } (0, 1) \\
0 \leq a & \implies \neg a = 1 \leq 1 = \neg 0 \implies \neg \text{ is antitone over } (0, a)
\end{align*}
\]

(2) Proof that (A) \neg fails to have weak double negation:

\[
1 \not\leq a = \neg 0 = \neg \neg 1
\]

(3) Proof that (B) \neg is antitone:

\[
\begin{align*}
a \leq 1 & \implies \neg 1 = a \leq a = \neg a \implies \neg \text{ is antitone over } (a, 1) \\
0 \leq 1 & \implies \neg 1 = a \leq a = \neg 0 \implies \neg \text{ is antitone over } (0, 1) \\
0 \leq a & \implies \neg a = 1 \leq 1 = \neg 0 \implies \neg \text{ is antitone over } (0, a)
\end{align*}
\]

(4) Proof that (B) \neg fails to have weak double negation: $1 \not\leq a = \neg a = \neg \neg 1$

(5) (C) is a special case of the dual discrete negation (Example B.17 page 38).

Example B.24 Consider the function \neg on L_3 illustrated in Figure 11 page 40 (A):

1. \neg is a minimal negation (Definition B.2 page 35);
2. \neg is not an intuitionistic negation and it is not a de Morgan negation.

Proof:

(1) Proof that \neg is antitone:

\[
\begin{align*}
a \leq 1 & \implies \neg 1 = a \leq 1 = \neg a \implies \neg \text{ is antitone over } (a, 1) \\
0 \leq 1 & \implies \neg 1 = 0 \leq 1 = \neg 0 \implies \neg \text{ is antitone over } (0, 1) \\
0 \leq a & \implies \neg a = 1 \leq 1 = \neg 0 \implies \neg \text{ is antitone over } (0, a)
\end{align*}
\]

(2) Proof that \neg is a weak double negation (and so is a minimal negation, but is not a de Morgan negation):

\[
\begin{align*}
1 = 1 & = \neg a = \neg \neg 1 \implies \neg \text{ is involutory at } 1 \\
a = a & = \neg 1 = \neg \neg a \implies \neg \text{ is involutory at } a \\
0 \leq a & = \neg 1 = \neg \neg 0 \implies \neg \text{ is a weak double negation at } 0
\end{align*}
\]

(3) Proof that \neg does not have the non-contradiction property (and so is not an intuitionistic negation):

\[
1 \land \neg 1 = 1 \land a = a \not= 0
\]

(4) Proof that \neg is not a fuzzy negation: $\neg 1 = a \not= 0$
Example B.25
Consider the function \(\neg \) on \(L_3 \) illustrated in Figure 11 page 40 (B).

1. \(\neg \) is a Kleene negation (Definition B.3 page 35) and is also a fuzzy negation (Definition B.2 page 35, Example 1.31 page 16).
2. \(\neg \) is not an ortho negation and is not an intuitionistic negation (it does not have the non-contradiction property).
3. This negation on \(L_3 \) is used with an implication function to construct the Kleene 3-valued logic in Example C.7 (page 51), with another implication to construct the Łukasiewicz 3-valued logic in Example C.8 (page 52), and with yet another implication to construct the \(RM_3 \) logic in Example C.9 (page 52).

\[\begin{align*}
1 & \quad \implies \neg 1 = 0 \quad \implies \neg \text{is antitone over} (a, 1) \\
0 & \quad \implies \neg 0 = 0 \quad \implies \neg \text{is antitone over} (0, 1) \\
0 & \quad \implies \neg a = a \quad \implies \neg \text{is antitone over} (0, a)
\end{align*} \]

\[\begin{align*}
1 & \quad \neg 0 = \neg 1 \quad \implies \neg \text{is involutory at} 1 \\
a & \quad \neg a = \neg a \quad \implies \neg \text{is involutory at} a \\
0 & \quad \neg 0 = \neg 0 \quad \implies \neg \text{is involutory at} 0
\end{align*} \]

\[\begin{align*}
x \land \neg x = x \implies x \neq 0
\end{align*} \]

\[\begin{align*}
1 & \quad \land \neg 1 = 1 \land 0 = 0 \quad \implies a = a \lor a = a \lor \neg a \\
1 & \quad \land \neg 1 = 1 \land 0 = 0 \quad \implies 1 = 0 \lor 1 = 0 \lor \neg 0 \\
a & \quad \land \neg a = 1 \land a = a \quad \implies 1 = 0 \lor 1 = 0 \lor \neg 0 \\
a & \quad \land \neg a = 1 \land a = a \quad \implies 1 = 0 \lor 1 = 0 \lor \neg 0 \\
0 & \quad \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a \\
0 & \quad \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a
\end{align*} \]

Example B.26 (Heyting 3-valued logic/Jaśkowski’s first matrix)
Consider the the function \(\neg \) on \(L_3 \) illustrated in Figure 11 page 40 (C):

1. \(\neg \) is an intuitionistic negation (Definition B.2 page 35) (and thus is also a fuzzy negation).
2. \(\neg \) is not a de Morgan negation.
3. This negation on \(L_3 \) is used with an implication function to construct the Heyting 3-valued logic in Example C.10 (page 52).

\[\begin{align*}
1 & \quad \land \neg 1 = 1 \land 0 = 0 \quad \implies a = a \lor a = a \lor \neg a \\
1 & \quad \land \neg 1 = 1 \land 0 = 0 \quad \implies 1 = 0 \lor 1 = 0 \lor \neg 0 \\
a & \quad \land \neg a = 1 \land a = a \quad \implies 1 = 0 \lor 1 = 0 \lor \neg 0 \\
0 & \quad \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a \\
0 & \quad \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a
\end{align*} \]

\[\begin{align*}
1 & \quad \neg 0 = \neg 1 \quad \implies \neg \text{is involutory at} 1 \\
a & \quad \neg a = \neg a \quad \implies \neg \text{is involutory at} a \\
0 & \quad \neg 0 = \neg 0 \quad \implies \neg \text{is involutory at} 0
\end{align*} \]

\[\begin{align*}
0 \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a \\
0 \land \neg 0 = 0 \land 1 = 0 \quad \implies a = a \lor a = a \lor \neg a
\end{align*} \]
Example B.27 The function \neg illustrated in Figure 12 page 42 (A) is a fuzzy negation (Definition B.2 page 35). It is not an intuitionistic negation (it does not have the non-contradiction property) and it is not a de Morgan negation (it is not involutory).

Proof: Note that

- $1 = \neg 0 \Rightarrow \neg 1 = 0 \Rightarrow 0 = \neg a \Rightarrow \neg$ is antitone at $(a, 1)$
- $0 = \neg 1 \Rightarrow \neg 1 = 0 \Rightarrow 1 = \neg 0 \Rightarrow \neg$ is antitone at $(0, 1)$
- $0 = \neg a \Rightarrow \neg 0 = 0 \Rightarrow 1 = \neg a \Rightarrow \neg$ is antitone at $(0, a)$
- $b = \neg 1 \Rightarrow \neg 1 = 0 \Rightarrow b = \neg b \Rightarrow \neg$ is antitone at $(b, 1)$
- $0 = \neg b \Rightarrow \neg b = b \Rightarrow 1 = \neg 0 \Rightarrow \neg$ is antitone at $(0, b)$

(2) Proof that \neg has weak double negation property (and so is a minimal negation, but not a de Morgan negation):

- $1 = \neg 0 = \neg \neg 1$ \Rightarrow \neg is involutory at 1
- $a = \neg 0 = \neg \neg a$ \Rightarrow \neg has weak double negation at a
- $0 = \neg 1 = \neg \neg 0$ \Rightarrow \neg is involutory at 0
- $b = \neg b = \neg \neg b = \neg \neg \neg b$ \Rightarrow \neg is involutory at b

(3) Proof that \neg does not have the non-contradiction property (and so is not an intuitionistic negation):

- $b \land \neg b = b \land \neg b = b \neq 0$

(4) Proof that \neg is has boundary conditions (and so is a fuzzy negation): $\neg 1 = 0$, $\neg 0 = 1$

Example B.28 The function \neg illustrated in Figure 12 page 42 (B) is an ortho negation (Definition B.3 page 35).

Proof:

(1) Proof that \neg is antitone:

- $a \leq 1 \Rightarrow \neg 1 = 0 \leq 0 = \neg a \Rightarrow \neg$ is antitone
- $0 \leq 1 \Rightarrow \neg 1 = 0 \leq 1 = \neg 0 \Rightarrow \neg$ is antitone
- $0 \leq a \Rightarrow \neg a = 0 \leq 1 = \neg 0 \Rightarrow \neg$ is antitone
- $b \leq 1 \Rightarrow \neg 1 = 0 \leq b = \neg b \Rightarrow \neg$ is antitone
- $0 \leq b \Rightarrow \neg b = a \leq 1 = \neg 0$

83 Belnap(1977) page 13, Restall(2000) page 177 (Example 8.44), Pavičić and Megill(2009) page 28 (Definition 2, classical implication)
(2) Proof that \(\neg\) is involutory (and so is a de Morgan negation):
\[
\begin{align*}
1 &= \neg 0 = \neg\neg 1 \\
a &= \neg a = \neg\neg a \\
b &= \neg b = \neg\neg b \\
0 &= \neg 0 = \neg\neg 0
\end{align*}
\]

(3) Proof that \(\neg\) is has the non-contradiction property (and so is an ortho negation):
\[
\begin{align*}
1 \land \neg 1 &= 1 \land 0 = 0 \\
a \land \neg a &= a \land b = 0 \\
b \land \neg b &= b \land a = 0 \\
0 \land \neg 0 &= 0 \land 1 = 0
\end{align*}
\]

Example B.29 (BN\(_4\)) \(^{84}\) The function \(\neg\) illustrated in Figure 12 page 42 (C) is a de Morgan negation (Definition B.3 page 35), but it is not a Kleene negation and not an ortho negation (it does not satisfy the Kleene condition).

\(\triangleright\) Proof:

(1) Proof that \(\neg\) is antitone:
\[
\begin{align*}
a &\leq 1 \implies \neg 1 = 0 \leq b = \neg a \\
0 &\leq 1 \implies \neg 1 = 0 \leq 1 = \neg 0 \\
0 &\leq a \implies \neg a = a \leq 1 = \neg 0 \\
b &\leq 1 \implies \neg 1 = 0 \leq b = \neg b \\
0 &\leq b \implies \neg b = b \leq 1 = \neg 0
\end{align*}
\]

(2) Proof that \(\neg\) is involutory (and so is a de Morgan negation):
\[
\begin{align*}
1 &= \neg 0 = \neg\neg 1 \\
a &= \neg a = \neg\neg a \\
b &= \neg b = \neg\neg b \\
0 &= \neg 0 = \neg\neg 0
\end{align*}
\]

(3) Proof that \(\neg\) does not have the non-contradiction property (and so is not an ortho negation):
\[
\begin{align*}
a \land \neg a &= a \land a = a \neq 0 \\
b \land \neg b &= b \land b = b \neq 0
\end{align*}
\]

(4) Proof that \(\neg\) does not satisfy the Kleene condition (and so is a de Morgan negation):
\[
\begin{align*}
a \land \neg a &= a \land a = a \not\leq b \land \neg b = b
\end{align*}
\]

Example B.30

The function \(\neg\) illustrated to the left is a de Morgan negation, but it is not a Kleene negation and not an ortho negation. The negation illustrated to the right is a Kleene negation, but it is not an ortho negation.

Example B.31

The function \(\neg\) illustrated to the left is a de Morgan negation (Definition B.3 page 35); it is not a Kleene negation (it does not satisfy the Kleene condition). The negation illustrated to the right is an ortho negation (Definition B.3 page 35).

\(^{84}\) [Cignoli(1975)] page 270, [Restall(2000)] page 171 (Example 8.39), [de Vries(2007)] pages 15–16 (Example 26), [Dunn(1976)], [Belnap(1977)]
Example B.32

The function \(\neg \) illustrated to the left is not antitone and therefore is not a \textit{negation} (Definition B.2 page 35). The function \(\neg \) illustrated to the right is a \textit{Kleene negation} (Definition B.3 page 35); it is not an \textit{ortho negation} (it does not have the \textit{non-contradiction} property).

\textbf{Proof:}

\begin{enumerate}
 \item Proof that left \(\neg \) is not \textit{antitone}: \(a \leq c \) but \(\neg c \not\leq \neg a \).
 \item Proof that right \(\neg \) satisfies the \textit{Kleene condition}:
 \[
 x \land \neg x = \begin{cases}
 b & \text{for } x = b \\
 0 & \text{otherwise}
 \end{cases} \quad \forall x \in X
 \quad \land \quad \forall y \in X
 \]
 \[
 y \land \neg y = \begin{cases}
 c & \text{for } y = c \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \item Proof that right \(\neg \) does not have the \textit{non-contradiction} property: \(b \land \neg b = b \land c = b \neq 0 \)
\end{enumerate}

Example B.33

The lattices illustrated to the left and right are \textit{Boolean} (Definition A.41 page 30). The function \(\neg \) illustrated to the left is a \textit{Kleene negation} (Definition B.3 page 35), but it is not an \textit{ortho negation} (it does not have the \textit{non-contradiction} property). The \textit{negation} illustrated to the right is an \textit{ortho negation} (Definition B.3 page 35).

\textbf{Proof:}

\begin{enumerate}
 \item Proof that left side negation does not have \textit{non-contradiction} property (and so is not an \textit{ortho negation}): \(a \land \neg a = a \land d = a \neq 0 \)
 \item Proof that left side negation does not satisfy \textit{Kleene condition} (and so is not a \textit{Kleene negation}): \(a \land \neg a = a \land d = a \not\leq f = c \lor f = c \lor \neg c \)
\end{enumerate}

Appendix C \hspace{1cm} \textbf{New implication functions for non-Boolean logics}

C.1 Implication functions

This paper deals with how to construct a \textit{fuzzy subset logic} not only on a \textit{Boolean lattice}, but more generally on other types of \textit{lattices} as well. However, any logic (fuzzy or otherwise) is arguably not complete without the inclusion of an \textit{implication} function \(\rightarrow \). If we were only concerned with logics on \textit{Boolean lattices}, then arguably the \textit{classical implication} \(x \rightarrow y \triangleq \neg x \lor y \) would suffice. However, for some \textit{non-Boolean} lattices, we may do well to have other options. Two common properties of \textit{classical implication} are \textit{entailment} and \textit{modus ponens}. However, these properties do not always support well known logic systems that are constructed on \textit{non-orthocomplemented} (and hence also \textit{non-Boolean}) lattices. For example,
the RM_3 logic does not support the strong entailment property,
the Łukasiewicz 3-valued logic does not support the strong modus ponens property, and
the Kleene 3-valued logic and BN_4 logic do not support either property.

This section introduces a new definition for an implication function with weakened forms of entailment and modus ponens (herein called weak entailment and weak modus ponens), and that supports logics constructed on a large class of lattices including non-orthocomplemented (and non-Boolean) ones.

Definition C.1 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice (Definition A.19 page 25). The function \to in X^X is an implication on L if

1. $\{x \leq y\} \implies x \to y \geq x \vee y \quad \forall x, y \in X$ (weak entailment) and
2. $x \wedge (x \to y) \leq \neg x \vee y \quad \forall x, y \in X$ (weak modus ponens)

Proposition C.2 Let \to be an implication (Definition C.1 page 45) on a bounded lattice $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ (Definition A.19 page 25).

$$\{x \leq y\} \iff \{x \to y \geq x \vee y\} \quad \forall x, y \in X$$

\[\text{Proof:}\]

1. Proof for \implies case: by weak entailment property of implications (Definition C.1 page 45).
2. Proof for \iff case:

$$y \geq x \wedge (x \to y) \quad \text{by right hypothesis}$$
$$\geq x \wedge (x \vee y) \quad \text{by modus ponens property of } \to \text{ (Definition C.1 page 45)}$$
$$= x \quad \text{by absorptive property of lattices (Definition A.11 page 24)}$$

Remark C.3 Let $L \triangleq (X, \vee, \wedge, 0, 1; \leq)$ be a bounded lattice (Definition A.19 page 25). In the context of orthocomplemented lattices, a more common (and stronger) definition of implication \to might be\(^{85}\)

1. $x \leq y \implies x \to y = 1 \quad \forall x, y \in X$ (entailment / strong entailment) and
2. $x \wedge (x \to y) \leq y \quad \forall x, y \in X$ (modus ponens / strong modus ponens)

This definition yields a result stronger than that of Proposition C.2 (page 45):

$$\{x \leq y\} \iff \{x \to y = 1\} \quad \forall x, y \in X$$

The Heyting 3-valued logic (Example C.10 page 52) and Boolean 4-valued logic (Example C.12 page 53) have both strong entailment and strong modus ponens. However, for non-Boolean logics in general, these two properties seem inappropriate to serve as a definition for implication. For example, the Kleene 3-valued logic (Example C.7 page 51), RM_3 logic (Example C.9 page 52), and BN_4 logic (Example C.13 page 54) do not have the strong entailment property; and the Kleene 3-valued logic, Łukasiewicz 3-valued logic (Example C.8 page 52), and BN_4 logic do not have the strong modus ponens property.

\[\text{Proof:}\]

1. Proof for \implies case: by entailment property of implications (Definition C.1 page 45).

\(^{85}\) [Hardegree(1979)] page 59 ⟨(E),(MP),(E*)⟩, [Kalmbach(1973)] page 498, [Kalmbach(1983)] pages 238–239 ⟨Chapter 4 §15⟩, [Pavičić and Megill(2009)] page 24, [Xu et al.(2003)Xu, Ruan, Qin, and Liu] page 27 ⟨Definition 2.1.1⟩, [Xu(1999)] page 25, [Jun et al.(1998)Jun, Xu, and Qin] page 54
(2) Proof for \(\iff \) case:
\[
x \rightarrow y = 1 \implies x \land 1 \leq y \quad \text{by modus ponens property (Definition C.1 page 45)}
\[
\implies x \leq y \quad \text{by definition of 1 (least upper bound) (Definition A.8 page 24)}
\]

Example C.4 Let \(L \triangleq (X, \lor, \land, \neg, 0, 1; \leq) \) be a lattice with negation (Definition B.5 page 35). If \(L \) is an orthocomplemented lattice, then under Definition C.1, functions (1)–(5) below are valid implication functions with strong entailment and weak modus ponens. The relevance implication (6) in this lattice is not a valid implication: It does have weak modus ponens, but it does not have weak or strong entailment. However, if \(L \) is an orthomodular lattice (Definition A.23 page 26, a special case of an orthocomplemented lattice), then (6) is also a valid implication function with strong entailment.

1. \(x \rightarrow y \triangleq \neg x \lor y \quad \forall x, y \in X \) (classical implication / material implication / horseshoe)
2. \(x \rightarrow y \triangleq \neg x \lor (x \land y) \quad \forall x, y \in X \) (Sasaki hook / quantum implication)
3. \(x \rightarrow y \triangleq (\neg x \lor y) \lor (\neg x \land \neg y) \lor (x \land (\neg x \lor y)) \quad \forall x, y \in X \) (Kalmbach implication)
4. \(x \rightarrow y \triangleq (\neg x \lor y) \lor (x \land y) \lor ((\neg x \land y) \land \neg y) \quad \forall x, y \in X \) (non-tollens implication)
5. \(x \rightarrow y \triangleq (\neg x \lor y) \lor (x \land y) \lor (\neg x \land \neg y) \quad \forall x, y \in X \) (relevance implication)

Moreover, if \(L \) is a Boolean lattice, then all of these implications are equivalent to \(\rightarrow \), and all of them have strong entailment and strong modus ponens.

Note that \(\forall x, y \in X, \ x \rightarrow y = \neg y \rightarrow \neg x \quad \text{and} \quad x \rightarrow y = \neg y \rightarrow \neg x \). The values for the six implications on an orthocomplemented \(O_6 \) lattice (Definition A.45 page 31) are listed in Example C.14 (page 54).

Proof:

(1) Proofs for the classical implication \(\rightarrow \):

(a) Proof that on an orthocomplemented lattice, \(\rightarrow \) is an implication:
\[
x \leq y \implies x \rightarrow y \triangleq \neg x \lor y \quad \forall x, y \in X \quad \text{by definition of} \rightarrow
\]
\[
\geq \neg y \lor y \quad \text{by} \ x \leq y \quad \text{and antitone property of} \neg \quad \text{(Definition B.3 page 35)}
\]
\[
= 1 \quad \text{by excluded middle property of} \neg \quad \text{(Theorem B.15 page 37)}
\]
\[
\implies \text{strong entailment} \quad \text{by definition of strong entailment}
\]
\[
x \land (\neg x \lor y) \leq \neg x \lor y \quad \text{by definition of} \land \quad \text{(Definition A.9 page 24)}
\]
\[
\implies \text{weak modus ponens} \quad \text{by definition of weak modus ponens}
\]

Note that in general for an orthocomplemented lattice, the bound cannot be tightened to strong modus ponens because, for example in the \(O_6 \) lattice (Definition A.45 page 31) illustrated to the right
\[
x \land (\neg x \lor y) = x \land 1 = x \land \neg x \implies \text{not strong modus ponens}
\]

(b) Proof that on a Boolean lattice, \(\rightarrow \) is an implication:
\[
x \land (\neg x \lor y) = (x \land \neg x) \lor (x \land y) \quad \text{by distributive property (Definition A.41 page 30)}
\]
\[
= 1 \lor (x \land y) \quad \text{by excluded middle property of Boolean lattices}
\]
\[
= x \land y \quad \text{by definition of} \land \quad \text{(Definition A.9 page 24)}
\]
\[
\leq y \quad \text{by definition of} \land \quad \text{(Definition A.9 page 24)}
\]
\[
\implies \text{strong modus ponens} \quad \text{by definition of strong modus ponens}
\]

\(^{86}\) [Kalmbach(1973)] page 499, [Kalmbach(1974)], [Mittelstaedt(1970)] (Sasaki hook), [Finch(1970)] page 102 (Sasaki hook (1.1)), [Kalmbach(1983)] page 239 (Chapter 4 §15, 3. THEOREM)
(2) Proofs for Sasaki implication \Rightarrow:

(a) Proof that on an orthocomplemented lattice, \Rightarrow is an implication:

\[
x \leq y \implies x \Rightarrow y
\]

\[\triangleq \neg x \lor (x \land y)\] by definition of \Rightarrow

\[= \neg x \lor x\] by $x \leq y$ hypothesis

\[= 1\] by excluded middle prop. (Theorem B.15 page 37)

\[\implies \text{strong entailment}\] by definition of strong entailment

\[
x \land (x \Rightarrow y) \triangleq x \land [\neg x \lor (x \land y)]\]

\[\leq [\neg x \lor (x \land y)]\] by definition of \land (Definition A.9 page 24)

\[\leq \neg x \lor y\] by definition of \land (Definition A.9 page 24)

\[\implies \text{weak modus ponens}\]

(b) Proof that on a Boolean lattice, $\Rightarrow=\Rightarrow$:

\[
x \Rightarrow y \triangleq \neg x \lor (x \land y)\] by definition of \Rightarrow

\[= \neg x \lor y\] by Lemma A.43 (page 30)

\[= x \Rightarrow y\] by definition of \Rightarrow

(3) Proofs for Dishkant implication \Rightarrow:

(a) Proof that $x \Rightarrow y \equiv \neg y \Rightarrow \neg x$:

\[
x \Rightarrow y \triangleq y \lor (\neg x \land \neg y)\] by definition of \Rightarrow

\[= y \lor (\neg y \land \neg x)\] by commutative property of lattices (Theorem A.14 page 25)

\[= \neg \neg y \lor (\neg y \land \neg x)\] by involutary property of ortho negations (Definition B.3 page 35)

\[\triangleq \neg y \Rightarrow \neg x\] by definition of \Rightarrow

(b) Proof that on an orthocomplemented lattice, \Rightarrow is an implication:

\[
x \leq y \implies x \Rightarrow y
\]

\[\triangleq y \lor (\neg x \land \neg y)\] by definition of \Rightarrow

\[= y \lor \neg y\] by $x \leq y$ hypothesis and antitone property

\[= 1\] by excluded middle property of ortho negation

\[\implies \text{strong entailment}\] by definition of strong entailment

\[
x \land (x \Rightarrow y) \triangleq y \lor (\neg x \land \neg y)\] by definition of \Rightarrow

\[= y \lor \neg x\] by definition of \land (Definition A.9 page 24)

\[\implies \text{weak modus ponens}\]

(c) Proof that on a Boolean lattice, $\Rightarrow=\Rightarrow$:

\[
x \Rightarrow y \triangleq y \lor (\neg x \land \neg y)\] by definition of \Rightarrow

\[= \neg x \lor y\] by Lemma A.43 (page 30)

\[= x \Rightarrow y\] by definition of \Rightarrow

(4) Proofs for the Kalmbach implication \Rightarrow:
(a) Proof that on an orthocomplemented lattice, \downarrow is an implication:

\[x \leq y \implies x \downarrow y\]

\[\begin{align*}
\uparrow (\neg x \land y) &\lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)] & \text{by definition of } \uparrow \\
= (\neg x \land y) &\lor (\neg y) \lor [x \land (\neg x \lor y)] & \text{by antitone property (Definition B.3 page 35)} \\
= (\neg x \land y) &\lor \neg y \lor [x \land (1)] & \\
= (\neg x \land y) &\lor (x \lor \neg y) & \text{by definition of } 1 \text{ (Definition A.8 page 24)} \\
= (\neg (\neg x \land y) &\lor (x \lor \neg y) & \text{by involutive property (Definition B.3 page 35)} \\
= (\neg x \land \neg y) &\lor (x \lor \neg y) & \text{by de Morgan property (Theorem B.15 page 37)} \\
= 1 & & \text{by excluded middle prop. (Theorem B.15 page 37)} \\
\implies \text{ strong entailment}
\end{align*}\]

\[x \land (x \downarrow y)\]

\[\begin{align*}
\uparrow x \land [(\neg x \land y) &\lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)]] & \text{by definition of } \uparrow \\
\leq (\neg x \land y) &\lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)] & \text{by definition of } \land \text{ (Definition A.9 page 24)} \\
\leq (\neg x \land y) &\lor (\neg x \land \neg y) \lor (\neg x \land y) & \text{by definition of } \land \text{ (Definition A.9 page 24)} \\
\leq y \lor (\neg x \land \neg y) &\lor (\neg x \land y) & \text{by definition of } \land \text{ (Definition A.9 page 24)} \\
= y \lor (\neg x \land \neg y) &\lor (\neg x \land y) & \text{by idempotent p. (Theorem A.14 page 25)} \\
\leq y \lor (\neg x \land \neg y) &\lor (\neg x \land y) & \text{by definition of } \land \text{ (Definition A.9 page 24)} \\
= (\neg x) \lor (\neg x \land \neg y) &\lor (\neg x \land y) & \text{by excluded middle prop. (Theorem B.15 page 37)} \\
= (\neg x) \lor (\neg x \land y) &\lor (\neg x \land y) & \text{by idempotent p. (Theorem A.14 page 25)} \\
= (\neg x) \lor (\neg x \land y) &\lor (\neg x \land y) & \text{by Lemma A.43 (page 30)} \\
\implies \text{ weak modus ponens}
\end{align*}\]

(b) Proof that on a Boolean lattice, $\downarrow \equiv \lessdot$:

\[x \lessdot y\]

\[\begin{align*}
\uparrow (\neg x \land y) &\lor (\neg x \land \neg y) \lor [x \land (\neg x \lor y)] & \text{by definition of } \downarrow \\
= (\neg x \land y) &\lor (\neg x \land \neg y) \lor [(\neg x) \land (\neg x \lor y)] & \text{by distributive property (Definition A.41 page 30)} \\
= (\neg x \land y) &\lor (\neg x \land \neg y) \lor ([0] \lor (x \land y)) & \text{by non-contradiction property} \\
= (\neg x \land y) &\lor (\neg x \land \neg y) \lor (x \land y) & \text{by bounded property (Definition A.19 page 25)} \\
= (\neg x \land y) &\lor (\neg x \land \neg y) \lor (x \land y) & \text{by distributive property (Definition A.41 page 30)} \\
= (\neg x \land 1 \lor (x \land y) &\lor (x \land y) & \text{by excluded middle property} \\
= (\neg x \lor (x \land y) &\lor (x \land y) & \text{by definition of } 1 \text{ (Definition A.8 page 24)} \\
= (\neg x \lor y) &\lor (x \land y) & \text{by Lemma A.43 (page 30)} \\
\implies \text{strong entailment}
\end{align*}\]

(5) Proofs for the non-tollens implication \lessdot:

(a) Proof that $x \lessdot y \equiv \neg y \lessdot \neg x$:

\[x \lessdot y \equiv (\neg x \land y) \lor (x \land y) \lor [(\neg x \lor y) \land \neg y] \]

\[\begin{align*}
= (y \land \neg x) &\lor (y \land x) \lor [(\neg y \land (y \lor \neg x)) \land \neg y] & \text{by definition of } \lessdot \\
= (\neg y \land \neg x) &\lor (\neg y \land \neg x) \lor [(\neg y \land (\neg y \lor \neg x)) \land \neg x] & \text{by definition of } \lessdot
\end{align*}\]
(b) Proof that on an orthocomplemented lattice, \rightarrow_r is an implication:

\[
x \leq y \implies x \rightarrow_r y \equiv \neg y \Downarrow \neg x \text{ by item (5a) page 48}
\]
\[
= 1 \text{ by item (4a) page 48}
\]
\[\implies \text{ strong entailment}
\]
\[
x \land (x \rightarrow_r y) = x \land (\neg y \Downarrow \neg x) \text{ by item (5a) page 48}
\]
\[
\leq \neg y \lor \neg x \text{ by item (4a) page 48}
\]
\[
= y \lor \neg x \text{ by involutory property of } \neg \text{ (Definition B.3 page 35)}
\]
\[
= \neg x \lor y \text{ by commutative property of lattices (Definition A.11 page 24)}
\]
\[\implies \text{ weak modus ponens}
\]

(c) Proof that on a Boolean lattice, $\rightarrow = \rightarrow_c$:

\[
x \rightarrow_c y = \neg y \Downarrow \neg x \text{ by item (5a) page 48}
\]
\[
= \neg y \lor \neg x \text{ by item (4b) page 48}
\]
\[
= y \lor \neg x \text{ by involutory property of } \neg \text{ (Definition B.3 page 35)}
\]
\[
= \neg x \lor y \text{ by commutative property of lattices (Definition A.11 page 24)}
\]
\[\Downarrow x \rightarrow_c y \text{ by definition of } \rightarrow_c
\]

(6) Proofs for the relevance implication \rightarrow_r:

(a) Proof that on an orthocomplemented lattice, \rightarrow_r does not have weak entailment:
In the orthocomplemented lattice to the right...

\[
x \leq y \implies x \rightarrow_r y \triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \text{ by definition of } \rightarrow_r
\]
\[
= 0 \lor x \lor \neg y \text{ by } x \leq y \text{ hypothesis}
\]
\[
= x \lor \neg y
\]
\[
\neq x \lor y
\]

(b) Proof that on an orthomodular lattice, \rightarrow_r does have strong entailment:

\[
x \leq y \implies x \rightarrow_r y \triangleq (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y) \text{ by definition of } \rightarrow_r
\]
\[
= (\neg x \land y) \lor x \lor (\neg x \land \neg y) \text{ by } x \leq y \text{ hypothesis}
\]
\[
= (\neg x \land y) \lor x \lor \neg y \text{ by orthomodular identity (Definition B.3 page 35)}
\]
\[
= y \lor \neg y \text{ by excluded middle property of } \neg \text{ (Theorem B.15 page 37)}
\]
\[= 1
\]
\[\implies \text{ weak modus ponens}
\]

(c) Proof that on an orthocomplemented lattice, \rightarrow_r does have weak modus ponens:

\[
x \land (x \rightarrow_r y) \triangleq x \land [(\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y)] \text{ by definition of } \rightarrow_r
\]
\[
\leq [(\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y)] \text{ by definition of } \land \text{ (Definition A.9 page 24)}
\]
\[
\leq \neg x \lor (x \land y) \lor (\neg x \land \neg y) \text{ by definition of } \land \text{ (Definition A.9 page 24)}
\]
\[
\leq \neg x \lor y \lor (\neg x \land \neg y) \text{ by definition of } \land \text{ (Definition A.9 page 24)}
\]
\[
\leq \neg x \lor y \text{ by absorption property (Theorem A.14 page 25)}
\]
\[\implies \text{ weak modus ponens}
\]
(d) Proof that on a Boolean lattice, \(\rightarrow \equiv \Delta \):

\[
x \rightarrow y \equiv (\neg x \land y) \lor (x \land y) \lor (\neg x \land \neg y)
\]

by definition of \(\rightarrow \)

\[
= [\neg x \land (y \lor \neg y)] \lor (x \land y)
\]

by distributive property (Definition A.41 page 30)

\[
= [\neg x \land 1] \lor (x \land y)
\]

by excluded middle property of \(\neg \) (Theorem B.15 page 37)

\[
= \neg x \lor (x \land y)
\]

by definition of 1 and \(\land \) (Definition A.9 page 24)

\[
= \neg x \lor y
\]

by property of Boolean lattice's (Lemma A.43 page 30)

\[
\equiv x \rightarrow c
\]

by definition of \(\rightarrow \).

\[\square\]

C.2 Logics

\[\text{Figure 13: lattice of logics}\]

Definition C.5 87 Let \(\rightarrow \) be an *implication* (Definition C.1 page 45) defined on a *lattice with negation* \(L \equiv (X, \lor, \land, \neg, 0, 1; \leq) \) (Definition B.5 page 35),

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is a *logic* if \(\neg \) is a minimal negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is a *fuzzy logic* if \(\neg \) is a fuzzy negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is an *intuitionistic logic* if \(\neg \) is an intuitionistic negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is a *de Morgan logic* if \(\neg \) is a de Morgan negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is a *Kleene logic* if \(\neg \) is a Kleene negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is an *ortho logic* if \(\neg \) is an ortho negation.

\[
(X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)
\]

is a *Boolean logic* if \(\neg \) is an ortho negation and \(L \) is Boolean.

Example C.6 (Aristotelian logic/classical logic) 88 The *classical bi-variate logic* is defined below. It is a 2 element *Boolean logic* (Definition C.5 page 50), with \(L \equiv (\{1, 0\}, \lor, \land, \neg, 0, 1; \leq, \lor) \) and a classical implication \(\rightarrow \) with strong entailment and strong modus ponens. The value 1 represents “true” and 0 represents

87 [Straßburger(2005)] page 136 (Definition 2.1), [de Vries(2007)] page 11 (Definition 16)

88 [Novák et al.(1999)Novák, Perfilieva, and Močkoř] pages 17–18 (EXAMPLE 2.1)
"false",

\[
\begin{array}{c|c|c|c}
& 1 & 0 & 1 \\
\hline
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\]

\[
\forall x \leq y \quad \forall x, y \in X
\]

\[
\neg x \lor y
\]

\[x \rightarrow y \triangleq \left\{ \begin{array}{ll}
1 & \text{if } \forall x \leq y \\
0 & \text{otherwise}
\end{array} \right. = \left\{ \begin{array}{ll}
\rightarrow & 1 \quad 0 \\
1 & 1 \quad 0 \\
0 & 1 \quad 1 \\
\end{array} \right. \]

\[
\forall x, y \in X
\]

\[\neg x \lor y
\]

\begin{itemize}
\item [PROOF:]
\item (1) Proof that \(\neg\) is an ortho negation: by Definition B.3 (page 35)
\item (2) Proof that \(\rightarrow\) is an implication with strong entailment and strong modus ponens:
\begin{itemize}
\item (a) \(L\) is Boolean and therefore is orthocomplemented.
\item (b) \(\rightarrow\) is equivalent to the classical implication \(\Rightarrow\) (Example C.4 page 46).
\item (c) By Example C.4 (page 46), \(\rightarrow\) has strong entailment and strong modus ponens.
\end{itemize}
\end{itemize}

The classical logic (previous example) can be generalized in several ways. Arguably one of the simplest of these is the 3-valued logic due to Kleene (next example).

Example C.7 The Kleene 3-valued logic \((X, \lor, \land, \neg, 0, 1 ; \leq, \rightarrow)\) is defined below. The function \(\neg\) is a Kleene negation (Definition B.3 page 35) and is presented in Example B.25 (page 41). The function \(\rightarrow\) is the classic implication \(x \rightarrow y \triangleq \neg x \lor y\). The values 1 represents “true”, 0 represents “false”, and \(n\) represents “neutral” or “undecided”.

\[
\begin{array}{c|c|c|c}
& 1 & n & 0 \\
\hline
1 & 1 & n & 0 \\
n & 1 & n & n \\
0 & 0 & 1 & 1 \\
\end{array}
\]

\[
\forall x, y \in X
\]

\[
\neg x \lor y
\]

\[x \rightarrow y \triangleq \left\{ \begin{array}{ll}
\neg x \lor y & \forall x \in X
\end{array} \right. \]

\[\forall x, y \in X
\]

\[\neg x \lor y
\]

\begin{itemize}
\item [PROOF:]
\item (1) Proof that \(\neg\) is a Kleene negation: see Example B.25 (page 41)
\item (2) Proof that \(\rightarrow\) is an implication: This follows directly from the definition of \(\rightarrow\) and the definition of an implication (Definition C.1 page 45).
\item (3) Proof that \(\rightarrow\) does not have strong entailment: \(n \rightarrow n = n \lor n \neq 1\).
\item (4) Proof that \(\rightarrow\) does not have strong modus ponens: \(n \rightarrow 0 = n = \neg n \lor 0 \notin 0\).
\end{itemize}

A lattice and negation alone do not uniquely define a logic. Łukasiewicz also introduced a 3-valued logic with identical lattice structure to Kleene, but with a different implication relation (next example). Historically, Łukasiewicz’s logic was introduced before Kleene’s.

\[^{89}\text{[Kleene(1938)] page 153, [Kleene(1952)], pages 332–339 (§64. The 3-valued logic), [Avron(1991)] page 277}\

THURSDAY 7TH MAY, 2015 1:32PM UTC
Example C.8 90
The Łukasiewicz 3-valued logic \((X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)\) is defined to the right and below. The function \(\neg\) is a Kleene negation (Definition B.3 page 35) and is presented in Example B.25 (page 41). The implication has strong entailment but weak modus ponens. In the implication table below, values that differ from the classical \(x \rightarrow y \equiv \neg x \lor y\) are shaded.

\[
x \rightarrow y \triangleq \begin{cases} 1 & \forall x \leq y \\
\neg x \lor y & \text{otherwise}
\end{cases} = \begin{cases} 1 & 1 \\
1 & 0 \\
1 & n \\
0 & 1 \\
1 & 1
\end{cases}
\]

\[
\begin{array}{c|c|c|c}
\rightarrow & 1 & n & 0 \\
\hline
1 & 1 & n \\
1 & n & 0 \\
n & 1 & 1 \\
0 & 1 & 1
\end{array}
\]

\(\forall x, y \in X\)

✎

Proof:

1. Proof that \(\neg\) is a Kleene negation: see Example B.25 (page 41)
2. Proof that \(\rightarrow\) is an implication: This follows directly from the definition of \(\rightarrow\) and the definition of an implication (Definition C.1 page 45).
3. Proof that \(\rightarrow\) does not have strong modus ponens: \(n \rightarrow 0 = n = \neg n \lor 0 \not\geq 0\).

Example C.9 91
The RM\(_3\) logic \((X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)\) is defined below. The function \(\neg\) is a Kleene negation (Definition B.3 page 35) and is presented in Example B.25 (page 41). The implication function has weak entailment but strong modus ponens. In the implication table below, values that differ from the classical \(x \rightarrow y \equiv \neg x \lor y\) are shaded.

\[
x \rightarrow y \triangleq \begin{cases} 1 & \forall x < y \\
\neg x \lor y & \forall x = y \\
0 & \forall x > y
\end{cases} = \begin{cases} 1 & 1 \\
1 & n \\
n & 1 \\
0 & 1 \\
1 & 1
\end{cases}
\]

\[
\begin{array}{c|c|c|c}
\rightarrow & 1 & n & 0 \\
\hline
1 & 1 & n \\
1 & n & 0 \\
n & 1 & 1 \\
0 & 1 & 1
\end{array}
\]

\(\forall x, y \in X\)

✎

Proof:

1. Proof that \(\neg\) is a Kleene negation: see Example B.25 (page 41)
2. Proof that \(\rightarrow\) is an implication: This follows directly from the definition of \(\rightarrow\) and the definition of an implication (Definition C.1 page 45).
3. Proof that \(\rightarrow\) does not have strong entailment: \(n \rightarrow n = n = n \lor n \not= 1\).

In a 3-valued logic, the negation does not necessarily have to be as in the previous three examples. The next example offers a different negation.

Example C.10
(Heyting 3-valued logic/Jaśkowski’s first matrix) 92
The Heyting 3-valued logic \((X, \lor, \land, \neg, 0, 1; \leq, \rightarrow)\) is defined below. The negation \(\neg\) is both intuitionistic and fuzzy (Definition B.2 page 35), and is defined on a 3 element linearly ordered lattice (Definition A.3 page 23).

\[
\begin{array}{c|c|c|c}
\rightarrow & 1 & n & 0 \\
\hline
1 & 1 & n \\
1 & n & 0 \\
n & 1 & 1 \\
0 & 1 & 1
\end{array}
\]

(Łukasiewicz(1920)] page 17 (II. The principles of consequence), [Avron(1991)] page 277 (Łukasiewicz.)

[Avron(1991)] pages 277–278, [Sobociński(1952)]

[Karpenko(2006)] page 45, [Johnstone(1982)] page 9 (§1.12), [Heyting(1930a)], [Heyting(1930b)], [Heyting(1930c)], [Heyting(1930d)], [Jaskowski(1936)], [Mancosu(1998)]
The implication function has both strong entailment and strong modus ponens. In the implication table below, values that differ from the classical $x \rightarrow y \equiv \neg x \lor y$ are shaded.

$$\begin{align*}
1 = \neg 0 \\
n \\
0 = \neg n = \neg 1
\end{align*}$$

$x \rightarrow y \equiv \begin{cases} 1 & \forall x \leq y \\ y & \text{otherwise} \end{cases}$

$$\begin{pmatrix}
\rightarrow & 1 & n & 0 \\
1 & 1 & n & 0 \\
n & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{pmatrix}_{\forall x,y \in X}$$

Proof:

1. Proof that \neg is a Kleene negation: see Example B.26 (page 41)
2. Proof that \rightarrow is an implication: by definition of implication (Definition C.1 page 45)

Of course it is possible to generalize to more than 3 values (next example).

Example C.11 93 The Łukasiewicz 5-valued logic (X, \lor, \land, \neg, 0, 1 ; \leq, \rightarrow) is defined below. The implication function has strong entailment but weak modus ponens. In the implication table below, values that differ from the classical $x \rightarrow y \equiv \neg x \lor y$ are shaded.

$$\begin{align*}
1 = \neg 0 \\
p = \neg m \\
n = \neg n \\
m = \neg p \\
0 = \neg 1
\end{align*}$$

$x \rightarrow y \equiv \begin{cases} 1 & p \ n \ m \ 0 \\
1 & 1 & n & m \\
p & 1 & 1 & n & m \\
n & 1 & 1 & m & n \\
m & 1 & 1 & 1 & p \\
0 & 1 & 1 & 1 & 1
\end{cases}_{\forall x,y \in X}$

Proof:

All the previous examples in this section are linearly ordered. The following examples employ logics that are not.

Example C.12 94 The Boolean 4-valued logic is defined below. The negation function \neg is an ortho negation (Example B.28 page 42) defined on an M_2 lattice. The value 1 represents “true”, 0 represents “false”, and m and n represent some intermediate values.

$$\begin{align*}
b = \neg n \\
1 = \neg 0 \\
n = \neg b \\
0 = \neg 1
\end{align*}$$

$x \rightarrow y \equiv \begin{cases} 1 & b \ n \ 0 \\
b & 1 & n \ n \\
n & 1 & b \ 1 \\
0 & 1 & 1 & 1
\end{cases}_{\forall x,y \in X}$

93 See [Xu et al.(2003)Xu, Ruan, Qin, and Liu] page 29 (Example 2.1.3), [Jun et al.(1998)Jun, Xu, and Qin] page 54 (Example 2.2).

94 See [Belnap(1977)] page 13, [Restall(2000)] page 177 (Example 8.44), [Pavičić and Megill(2009)] page 28 (Definition 2, classical implication), [Mittelstaedt(1970)], [Finch(1970)] page 102 (1.1), [Smets(2006)] page 270.
All the previous examples in this section are distributive; the previous example was Boolean. The next example is non-distributive, and de Morgan (but non-Boolean). Note for a given order structure, the method of negation may not be unique; in the previous and following examples both have identical lattices, but are negated differently.

Example C.13 The BN₄ logic is defined below. The function ¬ is a de Morgan negation (Example B.29 page 43) defined on a 4 element M_2 lattice. The value 1 represents “true”, 0 represents “false”, b represents “both” (both true and false), and n represents “neither”. In the implication table below, the values that differ from those of the classical implication \rightarrow are shaded.

\[
x \rightarrow y \overset{\triangleleft}{=} \begin{cases} 1 & n & b & 0 \\ 1 & 1 & n & 0 \\ n & 1 & 1 & n \\ b & 1 & b & 0 \\ 0 & 1 & 1 & 1 \\
\end{cases}
\]

Example C.14

The tables that follow are the 6 implications defined in Example C.4 (page 46) on the O_6 lattice with ortho negation (Definition B.3 page 35), or the O_6 orthocomplemented lattice (Definition A.45 page 31), illustrated to the right. In the tables, the values that differ from those of the classical implication \rightarrow are shaded.

Example C.15 A 6 element logic is defined below. The function ¬ is a Kleene negation (Example B.32 page 44). The implication has strong entailment but weak modus ponens. In the implication table below, the values that differ from those of the classical implication \rightarrow are shaded.

95 [Restall(2000)] page 171 (Example 8.39)
96 [Xu et al.(2003)Xu, Ruan, Qin, and Liu] pages 29–30 (Example 2.1.4)
Proof:

(1) Proof that \(\neg \) is a Kleene negation: see Example B.32 (page 44)

(2) Proof that \(\implies \) is an implication: This follows directly from the definition of \(\implies \) and the definition of an implication (Definition C.1 page 45).

(3) Proof that \(\implies \) does not have strong modus ponens:

\[
\begin{align*}
\neg p \land (p \implies m) &= n \land p = n \leq p = \neg p \lor m \\
\neg n \land (n \implies m) &= n \land p = n \leq p = \neg p \lor m \\
\neg p \land (p \implies 0) &= n \land n = n \leq n = \neg p \lor 0 \\
\neg n \land (n \implies 0) &= p \land n = n \leq p = \neg n \lor 0
\end{align*}
\]

For an example of an 8-valued logic, see \[\text{Kamide(2013)} \]. For examples of 16-valued logics, see \[\text{Shramko and Wansing(2005)} \].

References

[oei(2014)] , 2014. On-line encyclopedia of integer sequences. World Wide Web. URL http://oeis.org/

[Łukasiewicz(1920)] Łukasiewicz, J., 1920. On three-valued logic. In: McCall, S. (Ed.), Polish Logic, 1920–1939. Oxford University Press, pp. 15–18, collection published in 1967. URL http://books.google.com/books?vid=ISBN0198243049&pg=PA15

[Adams(1990)] Adams, M. E., 1990. Uniquely complemented lattices. In: Bogart, K. P., Freese, R. S., Kung, J. P. (Eds.), The Dilworth theorems: selected papers of Robert P. Dilworth. Birkhäuser, Boston, pp. 79–84. URL http://books.google.com/books?vid=ISBN0817634347

[Aliprantis and Burkinshaw(1998)] Aliprantis, C. D., Burkinshaw, O., 1998. Principles of Real Analysis, 3rd Edition. Acedemic Press, London. URL http://www.amazon.com/dp/0120502577

[Alsina et al.(1980)] Alsina, C., Trillas, E., Valverde, L., 1980. On non-distributive logical connectives for fuzzy sets. BUSEFAL 3, 18–29.

[Alsina et al.(1983)] Alsina, C., Trillas, E., Valverde, L., April 30 1983. On some logical connectives for fuzzy sets theory. Journal of Mathematical Analysis and Applications 93, 15–26. URL http://www.sciencedirect.com/science/article/pii/0022247X83902160

[Avron(1991)] Avron, A., March 1991. Natural 3-valued logics–characterization and proof theory. The Journal of Symbolic Logic 56 (1), 276–294. URL http://www.jstor.org/stable/2274919
[Balbes and Dwinger(1975)] Balbes, R., Dwinger, P., February 1975. Distributive Lattices. University of Missouri Press, Columbia, 2011 reprint edition available (ISBN 9780983801108).
URL http://books.google.com/books?vid=ISBN098380110X

[Bellman and Giertz(1973)] Bellman, R., Giertz, M., 1973. On the analytic formalism of the theory of fuzzy sets. Information Sciences 5, 149–156.
URL http://www.sciencedirect.com/science/article/pii/0020025573900091

[Belnap(1977)] Belnap, Jr., N. D., 1977. A useful four-valued logic. In: Dunn, J. M., Epstein, G. (Eds.), Modern Uses of Multiple-valued Logic: Invited Papers from the 5. International Symposium on Multiple-Valued Logic, Held at Indiana University, Bloomington, Indiana, May 13 - 16, 1975; with a Bibliography of Many-valued Logic by Robert G. Wolf. Vol. 2 of Episteme. D. Reidel, pp. 8–37.
URL http://www.amazon.com/dp/9401011613

[Beran(1985)] Beran, L., 1985. Orthomodular Lattices: Algebraic Approach. Mathematics and Its Applications (East European Series). D. Reidel Publishing Company, Dordrecht.
URL http://books.google.com/books?vid=ISBN902771715X

[Birkhoff(1933)] Birkhoff, G., October 1933. On the combination of subalgebras. Mathematical Proceedings of the Cambridge Philosophical Society 29, 441–464.
URL http://adsabs.harvard.edu/abs/1933MPCPS..29..441B

[Birkhoff(1938)] Birkhoff, G., 1938. Lattices and their applications. Bulletin of the American Mathematical Society 44, 1:793–800.
URL http://www.ams.org/bull/1938-44-12/S0002-9904-1938-06866-8/

[Birkhoff(1948)] Birkhoff, G., 1948. Lattice Theory, 2nd Edition. American Mathematical Society, New York.
URL http://books.google.com/books?vid=ISBN3540120440

[Birkhoff(1967)] Birkhoff, G., 1967. Lattice Theory, 3rd Edition. Vol. 25 of Colloquium Publications. American Mathematical Society, Providence.
URL http://books.google.com/books?vid=ISBN0821810251

[Birkhoff and Hall(1934)] Birkhoff, G., Hall, P., 1934. Applications of lattice algebra. Mathematical Proceedings of the Cambridge Philosophical Society 30 (2), 115–122.
URL http://adsabs.harvard.edu/abs/1934MPCPS..30..115B

[Birkhoff and Neumann(1936)] Birkhoff, G., Neumann, J. V., October 1936. The logic of quantum mechanics. The Annals of Mathematics 37 (4), 823–843.
URL http://www.jstor.org/stable/1968621

[Burris and Sankappanavar(1981)] Burris, S., Sankappanavar, H. P., 1981. A Course in Universal Algebra, 1st Edition. No. 78 in Graduate texts in mathematics. Springer-Verlag, New York, 2000 edition available for free online.
URL http://books.google.com/books?vid=ISBN0387905782

[Cattaneo and Ciucci(2009)] Cattaneo, G., Ciucci, D., 2009. Lattices with interior and closure operators and abstract approximation spaces. In: Peters, J. F., Skowron, A. (Eds.), Transactions on Rough Sets X. Vol. 5656 of Lecture notes in computer science. Springer, pp. 67–116.

[Cignoli(1975)] Cignoli, R., February 1975. Injective de morgan and kleene algebras. Proceedings of the American Mathematical Society 47 (2), 269–278.
URL http://www.ams.org/journals/proc/1975-047-02/S0002-9939-1975-0357259-4/S0002-9939-1975-0357259-4.pdf

[Cohen(1989)] Cohen, D. W., 1989. An Introduction to Hilbert Space and Quantum Logic. Problem Books in Mathematics. Springer-Verlag, New York.
URL http://books.google.com/books?vid=ISBN1461388430

[Davey and Priestley(2002)] Davey, B. A., Priestley, H. A., May 6 2002. Introduction to Lattices and Order, 2nd Edition. Cambridge mathematical text books. Cambridge University Press, Cambridge.
URL http://books.google.com/books?vid=ISBN0521784514
[Davis(1955)] Davis, A. C., 1955. A characterization of complete lattices. Pacific Journal of Mathematics 5 (2), 311–319.
URL http://projecteuclid.org/euclid.pjm/1103044539

[de la Vallée-Poussin(1915)] de la Vallée-Poussin, C. J., October 1915. Sur l’intégrale de lebesgue. Transactions of the American Mathematical Society 16 (4), 435–501.
URL http://www.jstor.org/stable/1988879

[de Vries(2007)] de Vries, A., July 14 2007. Algebraic hierarchy of logics unifying fuzzy logic and quantum logic, the registered submission date for this paper is 2007 July 14, but the date appearing on paper proper is 2009 December 6. The latest year in the references is 2006.
URL http://arxiv.org/abs/0707.2161

[Dedekind(1900)] Dedekind, R., January 8 1900. Ueber die von drei moduln erzeugte dualgruppe. Mathematische Annalen 53, 371–403, regarding the Dual Group Generated by Three Modules.
URL http://resolver.sub.uni-goettingen.de/purl/?GDZPPN002257947

[Devidi(2006)] Devidi, D., April 6 2006. Negation: Philosophical aspects. In: Brown, K. (Ed.), Encyclopedia of Language & Linguistics, 2nd Edition. Elsevier, pp. 567–570.
URL http://www.sciencedirect.com/science/article/pii/B0080448542012025

[Devidi(2010)] Devidi, D., April 6 2010. Negation: Philosophical aspects. In: Barber, A., Stainton, R. J. (Eds.), Concise Encyclopedia of Philosophy of Language and Linguistics. Elsevier, pp. 510–513.
URL http://books.google.com/books?vid=ISBN0080965016&pg=PA510

[Dilworth(1945)] Dilworth, R., January 1945. Lattices with unique complements. Transactions of the American Mathematical Society 57 (1), 123–154.
URL http://www.jstor.org/stable/1990171

[Dilworth(1984)] Dilworth, R., February 1984. Aspects of distributivity. Algebra Universalis 18 (1), 4–17.
URL http://www.springerlink.com/content/14480658xw08pp71/

Dominich(2008) Dominich, S., 2008. The Modern Algebra of Information Retrieval. Vol. 24 of The Information Retrieval Series. Springer Science & Business Media.
URL http://books.google.com/books?vid=ISBN3540776591

[Doner and Tarski(1969)] Doner, J., Tarski, A., 1969. An extended arithmetic of ordinal numbers. Fundamenta Mathematicae 65, 95–127.
URL http://matwbn.icm.edu.pl/tresc.php?wyd=1&tom=65

Dubois et al.(2000) Dubois, Ostasiewicz, and Padre] Dubois, D., Ostasiewicz, W., Padre, H., 2000. Fuzzy sets: History and basic notions. In: Dubois, D., Padre, H. (Eds.), Fundamentals of Fuzzy Sets. Vol. 7 of The Handbooks of Fuzzy Sets. pp. 21–124.
URL http://books.google.com/books?vid=ISBN079237732X

[Dubois and Padre(1980)] Dubois, D., Padre, H., 1980. New results about properties and semantics of fuzzy set-theoretic operators. In: Wang, P. P., Chang, S. K. (Eds.), Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems. Springer, pp. 59–75.
URL http://link.springer.com/chapter/10.1007/978-1-4684-3848-2_6

[Dubois(1980)] Dubois, D. J., December 1 1980. Fuzzy Sets and Systems: Theory and Applications. Vol. 144 of Mathematics in science and engineering. Academic Press.
URL http://books.google.com/books?vid=ISBN0080917720

[Dunn(1976)] Dunn, J. M., 1976. Intuitive semantics for first-degree entailments and `coupled trees'. Philosophical Studies 29 (3), 149–168.
URL http://link.springer.com/article/10.1007/BF00373152

[Dunn(1996)] Dunn, J. M., January 1 1996. Generalized ortho negation. In: Wansing, H. (Ed.), Negation: A Notion in Focus. Vol. 7 of Perspektiven der Analytischen Philosophie / Perspectives in Analytical Philosophy. De Gruyter, pp. 3–26.
URL http://books.google.com/books?vid=ISBN3110876809
[Dunn(1999)] Dunn, J. M., 1999. A comparative study of various model-theoretic treatments of negation: A history of formal negation. In: Gabbay, D. M., Wansing, H. (Eds.), What is Negation? Vol. 13 of Applied Logic Series. De Gruyter, pp. 23–52. URL http://books.google.com/books?vid=ISBN0792355695

[Ellerman(2010)] Ellerman, D., June 2010. The logic of partitions: introduction to the dual of the logic of subsets. The Review of Symbolic Logic 3 (2), 287–350. URL http://arxiv.org/pdf/0902.1950.pdf

[Erné et al.(2002)] Erné, M., Heitzig, J., Reinhold, J., April 2002. On the number of distributive lattices. The Electronic Journal of Combinatorics 9 (1). URL http://www.emis.de/journals/EJC/Volume_9/Abstracts/v9i1r24.html

[Farley(1996)] Farley, J. D., June 26–28 1996. Chain decomposition theorems for ordered sets and other musings. African Americans in Mathematics DIMACS Workshop 34, 3–14. URL http://books.google.com/books?vid=ISBN0821806785

[Farley(1997)] Farley, J. D., July 16 1997. Chain decomposition theorems for ordered sets and other musings, 1–12. URL http://arxiv.org/abs/math/9707220

[Fáy(1967)] Fáy, G., 1967. Transitivity of implication in orthomodular lattices. Acta Scientiarum Mathematicarum 28 (3–4), 267–270. URL http://www.acta.hu/acta/

[Feller(1971)] Feller, W., 1971. An Introduction to Probability Theory and its Applications Volume II, 2nd Edition. John Wiley & Sons/ Mei Ya Publications, New York/Taipei.

[Finch(1970)] Finch, P. D., 1970. Quantum logic as an implication algebra. Bulletin of the Australian Mathematical Society 2, 101–106. URL http://dx.doi.org/10.1017/S0004972700041642

[Fodor and Yager(2000)] Fodor, J., Yager, R. R., 2000. Fuzzy set-theoretic operators and quantifiers. In: Dubois, D., Padre, H. (Eds.), Fundamentals of Fuzzy Sets. Vol. 7 of The Handbooks of Fuzzy Sets. pp. 125–195. URL http://books.google.com/books?vid=ISBN079237732X

[Foulis(1962)] Foulis, D. J., 1962. A note on orthomodular lattices. Portugaliae Mathematica 21 (1), 65–72. URL http://purl.pt/2387

[Givant and Halmos(2009)] Givant, S., Halmos, P., 2009. Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer. URL http://books.google.com/books?vid=ISBN0387402934

[Gottwald(1999)] Gottwald, S., 1999. Many-valued logic and fuzzy set theory. In: Höhle, U., Rodabaugh, S. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. Vol. 3 of The Handbooks of Fuzzy Sets. Kluwer Academic Publishers, pp. 5–90. URL http://books.google.com/books?vid=ISBN0792383885

[Grätzer(1971)] Grätzer, G. A., June 1971. Lattice Theory; first concepts and distributive lattices. A Series of books in mathematics. W. H. Freeman & Company, San Francisco. URL http://books.google.com/books?vid=ISBN0716704420

[Grätzer(2003)] Grätzer, G. A., January 17 2003. General Lattice Theory, 2nd Edition. Birkhäuser Verlag, Basel. URL http://books.google.com/books?vid=ISBN3764369965

[Grätzer(2007)] Grätzer, G. A., June/July 2007. Two problems that shaped a century of lattice theory. Notices of the American Mathematical Society 54 (6), 696–707. URL http://www.ams.org/notices/200706/

[Greenhoe(2015)] Greenhoe, D. J., March 2015. Sets Relations and Order Structures. Vol. 1 of Mathematical Structure and Design series. Abstract Space Publishing, to be published, Lord willing, in 2015 or 2016. URL http://books.google.com/books?vid=ISBN0983801118
[Gudder(1988)] Gudder, S., August 28 1988. Quantum Probability. Probability and Mathematical Statistics. Academic Press.
URL http://books.google.com/books?id=ISBN0123053404

[Hájek(2011)] Hájek, P., 2011. Deductive systems of fuzzy logic. In: Bentham, J. V., Gupta, A., Parikh, R. (Eds.), Proof, Computation and Agency: Logic at the Crossroads. Vol. 352 of Synthese Library. Springer Science & Business Media, pp. 67–78.
URL http://books.google.com/books?id=ISBN9400700806

[Hamacher(1976)] Hamacher, H., 1976. On logical connectives of fuzzy statements and their affiliated truth function. In: Trappi, R. (Ed.), Cybernetics and Systems ’76: Proceedings of the Third European Meeting on Cybernetics and Systems Research. Kluwer Academic Publishers.

[Hardegree(1979)] Hardegree, G. M., May 31 1979. The conditional in abstract and concrete quantum logic. In: Hooker, C. A. (Ed.), The Logico-Algebraic Approach to Quantum Mechanics: Volume II: Contemporary Consolidation. The Western Ontario Series in Philosophy of Science, Ontario University of Western Ontario. Kluwer, pp. 49–108.
URL http://www.amazon.com/dp/9027707073

[Hausdorff(1937)] Hausdorff, F., 1937. Set Theory, 3rd Edition. Chelsea Publishing Company, New York, 1957 translation of the 1937 German Grundzüge der Mengenlehre.
URL http://books.google.com/books?id=ISBN0828401195

[Heitzig and Reinhold(2002)] Heitzig, J., Reinhold, J., August 2002. Counting finite lattices. Journal Algebra Universalis 48 (1), 43–53.
URL http://citeseer.ist.psu.edu/486156.html

[Heyting(1930a)] Heyting, A., 1930a. Die formalen regeln der intuitionistischen logik i. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften. pp. 42–56, english translation of title: “The formal rules of intuitionistic logic I”. English translation of text in Mancosu 1998 pages 311–327.

[Heyting(1930b)] Heyting, A., 1930b. Die formalen regeln der intuitionistischen logik ii. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften. pp. 57–71, english translation of title: “The formal rules of intuitionistic logic II”.

[Heyting(1930c)] Heyting, A., 1930c. Die formalen regeln der intuitionistischen logik iii. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften. pp. 158–169, english translation of title: “The formal rules of intuitionistic logic III”.

[Heyting(1930d)] Heyting, A., 1930d. Sur la logique intuitionniste. Bulletin de la Classe des Sciences 16, 957–963, english translation of title: “On intuitionistic logic”. English translation of text in Mancosu 1998 pages 306–310.

[Holland(1970)] Holland, Jr., S. S., 1970. The current interest in orthomodular lattices. In: Abbott, J. C. (Ed.), Trends in Lattice Theory. Van Nostrand-Reinhold, New York, pp. 41–126, from Preface: “The present volume contains written versions of four talks on lattice theory delivered to a symposium on Trends in Lattice Theory held at the United States Naval Academy in May of 1966.”.
URL http://books.google.com/books?id=ZfA-AAAAIAAJ

[Huntington(1904)] Huntington, E. V., July 1904. Sets of independent postulates for the algebra of logic. Transactions of the American Mathematical Society 5 (3), 288–309.
URL http://www.jstor.org/stable/1986459

[Huntington(1933)] Huntington, E. V., January 1933. New sets of independent postulates for the algebra of logic, with special reference to whitehead and russell’s principia mathematica. Transactions of the American Mathematical Society 35 (1), 274–304.
URL http://www.jstor.org/stable/1989325

[Husimi(1937)] Husimi, K., 1937. Studies on the foundations of quantum mechanics i. Proceedings of the Physico-Mathematical Society of Japan 19, 766–789.
[Iturrioz(1985)] Iturrioz, L., July 29–August 2 1985. Ordered structures in the description of quantum systems: mathematical progress. In: Methods and applications of mathematical logic: proceedings of the VII Latin American Symposium on Mathematical Logic held July 29-August 2, 1985. Vol. 69. Sociedad Brasileira de Lógica, Sociedade Brasileira de Matemática, and the Association for Symbolic Logic, AMS Bookstore (1988), Providence Rhode Island, pp. 55–75.

[Jager(1995)] Jager, R., 1995. Fuzzy Logic in Control. René Jager. URL http://books.google.com/books?vid=ISBN9090083189

[Jaskowski(1936)] Jaskowski, S., 1936. Investigations into the system of intuitionistic logic. In: McCall, S. (Ed.), Polish Logic, 1920–1939. Oxford University Press, pp. 259–263, collection published in 1967. URL http://books.google.com/books?vid=ISBN0198243049&pg=PA259

[Jenei(2003)] Jenei, S., 2003. Structure of girard monoids on [0,1]. In: Rodabaugh, S. E., Klement, E. P. (Eds.), Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets. Vol. 20 of Trends in Logic. Springer, pp. 277–308. URL http://books.google.com/books?vid=ISBN1402015151

[Jevons(1864)] Jevons, W. S., 1864. Pure Logic or the Logic of Quality Apart from Quantity; with Remarks on Boole’s System and the Relation of Logic and Mathematics. Edward Stanford, London. URL http://books.google.com/books?vid=ISBN0008537189

[Johnstone(1982)] Johnstone, P., 1982. Stone Spaces. Cambridge University Press, London, library QA611. URL http://books.google.com/books?vid=ISBN0521337798

[Jun et al.(1998)Jun, Xu, and Qin] Jun, Y. B., Xu, Y., Qin, K., 1998. Positive implicative and associative filters of lattice implication algebras. Bulletin of the Korean Mathematical Society, 53–61. URL http://www.mathnet.or.kr/mathnet/kms_tex/31983.pdf

[Kalmbach(1973)] Kalmbach, G., 1973. Orthomodular logic. In: Proceedings of the University of Houston. Lattice Theory Conference, Houston, Texas, USA, pp. 498–503. URL http://www.math.uh.edu/~hjm/1973_Lattice/p00498-p00503.pdf

[Kalmbach(1974)] Kalmbach, G., 1974. Orthomodular logic. Mathematical Logic Quarterly 20 (25–27), 395–406. URL http://onlinelibrary.wiley.com/doi/10.1002/malq.19740202504/abstract

[Kalmbach(1983)] Kalmbach, G., 1983. Orthomodular Lattices. Academic Press, London, New York. URL http://books.google.com/books?vid=ISBN0123945801

[Kamide(2013)] Kamide, N., May 22–24 2013. On natural eight-valued reasoning. Multiple-Valued Logic (ISMVL), 2013 IEEE 43rd International Symposium on, 231–236. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6524669

[Karpenko(2006)] Karpenko, A., January 1 2006. Łukasiewicz’s Logics and Prime Numbers. Luniver Press, Beckington, Frome BA11 6TT UK. URL http://books.google.com/books?vid=ISBN0955117038

[Kaufmann(1975)] Kaufmann, A., June 1 1975. Introduction to the Theory of Fuzzy Subsets Volume 1. Academic Press. URL http://www.amazon.com/dp/0124023010

[Kleene(1938)] Kleene, S. C., December 1938. On notation for ordinal numbers. The Journal of Symbolic Logic 3 (4). URL http://www.jstor.org/stable/2267778

[Kleene(1952)] Kleene, S. C., 1952. Introduction to Metamathematics.

[Korselt(1894)] Korselt, A., March 1894. Bemerkung zur algebra der logik. Mathematische Annalen 44 (1), 156–157, referenced by Birkhoff(1948)p.133. URL http://www.springerlink.com/content/v681m56871273j73/
REFERENCES

[Lidl and Pilz(1998)] Lidl, R., Pilz, G., 1998. Applied Abstract Algebra. Undergraduate texts in mathematics. Springer, New York.
URL http://books.google.com/books?vid=ISBN0387982906

[Loomis(1955)] Loomis, L. H., 1955. The Lattice Theoretic Background of the Dimension Theory of Operator Algebras. Vol. 18 of Memoirs of the American Mathematical Society. American Mathematical Society, Providence RI.
URL http://books.google.com/books?id=P3V1_1XCFRkC

[MacLane and Birkhoff(1999)] MacLane, S., Birkhoff, G., 1999. Algebra, 3rd Edition. AMS Chelsea Publishing, Providence.
URL http://books.google.com/books?id=isbn0821816462

[Maeda and Maeda(1970)] Maeda, F., Maeda, S., 1970. Theory of Symmetric lattices. Vol. 173 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin/New York.
URL http://books.google.com/books?id=4oeBAAAAIAAJ

[Maeda(1966)] Maeda, S., 1966. On conditions for the orthomodularity. Proceedings of the Japan Academy 42 (3), 247–251.
URL http://joi.jlc.jst.go.jp/JST.Journalarchive/pjab1945/42.247

[Mancosu(1998)] Mancosu, P. (Ed.), 1998. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. Oxford University Press.
URL http://books.google.com/books?vid=ISBN0195096320

[McKenzie(1970)] McKenzie, R. N., December 1970. Equational bases for lattice theories. Mathematica Scandinavica 27, 24–38.
URL http://www.mscand.dk/article.php?id=1973

[Mittelstaedt(1970)] Mittelstaedt, P., 1970. Quantenlogische interpretation orthokomplementärer quasimodularer verbände. Zeitschrift für Naturforschung A 25, 1773–1778, english translation of title: “Quantum Logical interpretation ortho complementary quasi modular organizations”.
URL http://www.znaturforsch.com/

[Müller(1909)] Müller, K. E., 1909. Abriss der Algebra der Logik (Summary of the Algebra of Logic). B. G. Teubner, “bearbeitet im auftrag der Deutschen Mathematiker-Vereinigung” (produced on behalf of the German Mathematical Society). "In drei Teilen" (In three parts).
URL http://projecteuclid.org/euclid.bams/1183421830

[Müller-Olm(1997)] Müller-Olm, M., September 12 1997. 2. complete boolean lattices. In: Modular Compiler Verification: A Refinement-Algebraic Approach Advocating Stepwise Abstraction. Vol. 1283 of Lecture Notes in Computer Science. Springer, Ch. 2, pp. 9–14, chapter 2.
URL http://link.springer.com/chapter/10.1007/BFb0027455

[Nakano and Romberger(1971)] Nakano, H., Romberger, S., 1971. Cluster lattices. Bulletin De l’Académie Polonaise Des Sciences 19, 5–7.
URL books.google.com/books?id=gkUSAQAAMAAJ

[Nguyen and Walker(2006)] Nguyen, H. T., Walker, E. A., 2006. A First Course in Fuzzy Logic, 3rd Edition. Chapman & Hall/CRC.
URL http://books.google.com/books?vid=ISBN1584885262

[Novák et al.(1999)] Novák, V., Perfilieva, I., Močkoř, J., 1999. Mathematical Principles of Fuzzy Logic. The Springer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston.
URL http://books.google.com/books?vid=ISBN0792385950

[Ore(1935)] Ore, O., April 1935. On the foundation of abstract algebra. i. The Annals of Mathematics 36 (2), 406–437.
URL http://www.jstor.org/stable/1968580
[Ore(1940)] Ore, O., 1940. Remarks on structures and group relations. Vierteljschr. Naturforsch. Ges. Zürich 85, 1–4.

[Ovchinnikov(1983)] Ovchinnikov, S. V., March 1983. General negations in fuzzy set theory. Journal of Mathematical Analysis and Applications 92 (1), 234–239. URL http://www.sciencedirect.com/science/article/pii/0022247X83902822

[Oxley(2006)] Oxley, J. G., 2006. Matroid Theory. Vol. 3 of Oxford graduate texts in mathematics. Oxford University Press, Oxford. URL http://books.google.com/books?vid=ISBN0199202508

[Padmanabhan and Rudeanu(2008)] Padmanabhan, R., Rudeanu, S., 2008. Axioms for Lattices and Boolean Algebras. World Scientific, Hackensack, NJ. URL http://www.worldscibooks.com/mathematics/7007.html

[Peirce(1880)] Peirce, C., March 1880. On the algebra of logic. American Journal of Mathematics 3 (1), 15–57. URL http://www.jstor.org/stable/2369442

[Saliǐ(1988)] Saliǐ, V. N., 1988. Lattices with Unique Complements. Vol. 69 of Translations of mathematical monographs. American Mathematical Society, Providence, translation of Reshetki s edinstvennymi dopolneniiam.

[Schröder(1890)] Schröder, E., 1890. Vorlesungen über die Algebra der Logik: Exakte Logik. Vol. 1. B. G. Teubner, Leipzig. URL http://www.archive.org/details/vorlesungenberd02mlgoog

[Smets(2006)] Smets, S., 2006. From intuitionistic logic to dynamic operational quantum logic. In: Malinowski, J., Pietruszczak, A. (Eds.), Essays in Logic and Ontology. Vol. 91 of Poznań studies in the philosophy of the sciences and the humanities. Rodopi, pp. 257–276. URL http://books.google.com/books?vid=ISBN9042021306&pg=PA257

[Sobociński(1952)] Sobociński, B., 1952. Axiomatization of a partial system of three-value calculus of propositions. Journal of Computing Systems 1, 23–55.

[Stern(1999)] Stern, M., May 13 1999. Semimodular Lattices: Theory and Applications. Vol. 73 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge. URL http://books.google.com/books?vid=ISBN0521461057

[Straßburger(2005)] Straßburger, L., 2005. What is logic, and what is a proof? In: Beziau, J.-Y. (Ed.), Logica Universalis: Towards a General Theory of Logic. Mathematics and Statistics. Birkhäuser, pp. 135–145. URL http://books.google.com/books?vid=ISBN3764373040
[Sugeno(1977)] Sugeno, M., 1977. Fuzzy measures and fuzzy integrals: a survey. In: Gupta, M. M., Saridis, G. N., Gaines, B. R. (Eds.), Fuzzy Automata and Decision Processes. North-Holland, pp. 89–102.
URL http://books.google.com/books?vid=ISBN0444002316

[Thakare et al.(2002)] Thakare, N. K., Pawar, M. M., Waphare, B. N., September 2002. A structure theorem for dismantlable lattices and enumeration. Journal Periodica Mathematica Hungarica 45 (1–2), 147–160.
URL http://www.springerlink.com/content/p6r26p872j603285/

[Troelstra and van Dalen(1988)] Troelstra, A., van Dalen, D., 1988. Constructivism in Mathematics: An Introduction. Vol. 121 of Studies in Logic and the Foundations of Mathematics. North Holland/Elsevier, Amsterdam/New York/Oxford/Tokyo.
URL http://books.google.com/books?vid=ISBN0080570887

[Varadarajan(1985)] Varadarajan, V. S., 1985. Geometry of Quantum Theory, 2nd Edition. Springer.
URL http://books.google.com/books?vid=ISBN0387493867

[von Neumann(1960)] von Neumann, J., 1960. Continuous Geometry. Princeton mathematical series. Princeton University Press, Princeton.
URL http://books.google.com/books?id=3bqjQgAAACAJ

[Whitehead(1898)] Whitehead, A. N., 1898. A Treatise on Universal Algebra with Applications. Vol. 1. University Press, Cambridge.
URL http://resolver.library.cornell.edu/math/1927624

[Xu(1999)] Xu, Y., 1999. Lattice implication algebras and mv-algebras.

[Xu et al.(2003)] Xu, Y., Ruan, D., Qin, K., Liu, J., July 15 2003. Lattice-Valued Logic: An Alternative Approach to Treat Fuzziness and Incomparability. Vol. 132 of Studies in Fuzziness and Soft Computing. Springer.
URL http://www.amazon.com/dp/354040175X/

[Yager(1979)] Yager, R. R., 1979. On the measure of fuzziness and negation part i: Membership in the unit interval. International Journal of General Systems 5 (4), 221–229.
URL http://www.tandfonline.com/doi/abs/10.1080/03081077908547452

[Yager(1980a)] Yager, R. R., November 1980a. On a general class of fuzzy connectives. Fuzzy Sets and Systems 4 (3), 235–242.
URL http://www.sciencedirect.com/science/article/pii/0165011480900135

[Yager(1980b)] Yager, R. R., March 1980b. On the measure of fuzziness and negation ii: Lattices. Information and Control 44 (3), 236–260.
URL http://www.sciencedirect.com/science/article/pii/S0019995880901564

[Zadeh(1965)] Zadeh, L. A., 1965. Fuzzy sets. Information and Control 8, 338–353.
URL http://www.sciencedirect.com/science/article/pii/S001999586590241X

Reference Index

[Aliprantis and Burkinshaw(1998)], 4, 5
[Adams(1990)], 29
[Alsina et al.(1980)] Alsina, Trillas, and Valverde, 3
[Alsina et al.(1983)] Alsina, Trillas, and Valverde, 3, 11, 12
[Avron(1991)], 41, 51, 52

[Belbes and Dwinger(1975)], 27
[Bellman and Gertz(1973)], 12–14, 35
[Belnap(1977)], 42, 43, 53
[Beran(1985)], 22, 25–27, 31, 32, 35, 36
[Birkhoff(1933)], 23–25, 27

[Birkhoff and Hall(1934)], 27
[Birkhoff(1938)], 25
[Birkhoff(1948)], 24, 25, 27, 28
[Birkhoff(1967)], 24, 26
[Birkhoff and Neu- mann(1936)], 31, 32
[Burris and Sankapanavar(1981)], 25, 27, 28
Subject Index
L_1 lattice, 32
L_2 lattice, 32
L_3 lattice, 32
L_4 lattice, 32
M_1 lattice, 53
M_2 lattice, 32
M_3 lattice, 32
M_4 lattice, 32
N lattice, 32
O lattice, 31, 33
O_1 lattice, 31
L_1, 16
L_2 sublattice, 19
L_3 sublattice, 19
M_1 lattice, 17, 21
Lukasiewicz 3-valued logic, 41, 45, 52
Lukasiewicz 5-valued logic, 53
Lukasiewicz negation, 9
Lukasiewicz operators, 9, 18, 19, 21
Lukasiewicz t-conorm, 9
Lukasiewicz t-norm, 9
Lukasiewicz t-norm and t-
domain, 7
dual discrete negation, 38, 40
dual distributive, 27
dual distributivity relation, 27
Dubois-Padre 1980 result, 2
Dubois-Padre 1980 theorem, 2, 15

Elkan’s law, 33
entailment, 44, 45
examples
Łukasiewicz 3-valued logic, 45
Aristotelian logic, 50
BN, 43
BN logic, 45
Boolean 4-valued logic, 45
classical logic, 50
discrete negation, 38, 41
dual discrete negation, 38, 40
Heyting 3-valued logic, 41, 45, 52
Jaśkowski’s first matrix, 41, 52
Kleene 3-valued logic, 45
RM logic, 45
excluded middle, 1–3, 11, 14–22, 29, 30, 32, 35, 37–39, 46–50
excluded middle, 19
false, 51, 53, 54
finite, 25
finite width, 29, 39
fixed point condition, 14, 16, 17
fully ordered set, 23
function, 34, 35, 39
characteristic, 4
indicator, 4
functions
Łukasiewicz negation, 9
Łukasiewicz operators, 9, 18, 19
Łukasiewicz t-conorm, 9,
Łukasiewicz t-norm, 9
Łukasiewicz t-norm and t-conorm, 7
λ-negation, 9
bold intersection, 9
bold sum, 9
Boolean negation, 4
classic implication, 51
classical implication, 22, 44, 46, 50, 51, 54
complement, 28, 29
de Morgan negation, 9, 10, 16, 35, 35, 40–43, 50
discrete negation, 9, 17
Dishkant implication, 47
fuzzy negation, 4, 10, 16–19, 21, 22, 35, 36–38, 40–42, 50
implication, 4, 41, 44–49, 51–53, 55
implication function, 3
indicator function, 4, 4, 6
intuitionistic negation,
intuitionistic negation, 17, 35, 37, 38, 40–42
Kalmbach implication, 47
Kleene negation, 16, 17, 35, 41–44, 50–55
membership function, 4,
6, 6, 20
min-max operator pair, 7
min-max operators, 7, 7, 17–19
minimal negation, 35, 35, 37, 38, 40, 42, 50
negation, 35, 39, 43, 44
negation function, 3
negations, 4, 9
non-tollens implication,
48
ortho negation, 4, 5, 16, 18, 19, 21, 22, 32, 35, 37, 39, 41–44, 47, 50, 51, 53
orthomodular identity, 49
orthomodular negation,
35
probabilistic sum operator, 8
product and probabilistic sum operators, 7, 8
product sum operator, 8
relevance implication, 46, 49
Sasaki hook, 30
Sasaki implication, 47
set indicator, 5
set indicator function, 4
set indicator functions, 4,
10
standard negation, 9, 9, 16–19, 21, 22
subminimal negation, 34, 35, 38, 39
unique complement, 29
Yager negation, 9, 9
fuzzy, 40, 42, 52
fuzzy classical logic, 16
fuzzy Heyting 3-valued logic, 16
fuzzy Kleene 3-valued logic, 16
fuzzy logic, 6, 16–19, 21, 22, 50, 50
fuzzy logics, 3
fuzzy min-max boundary theorem, 11, 11, 13
fuzzy min-max theorem, 3, 7, 11, 13, 13
fuzzy negation, 4, 10, 16–19, 21, 22, 34, 35, 36–38, 40–42, 50
fuzzy negation idempotency theorem, 2, 11, 14
fuzzy negations, 3
fuzzy operators idempotency theorem, 2, 11, 12, 12
fuzzy set theory, 2
fuzzy subset, 4, 6, 6
fuzzy subset algebras, 2
fuzzy subset lattice, 9
Fuzzy subset logic, 2
fuzzy subset logic, 1–4, 6, 7, 9, 11, 14, 15, 18, 20, 21, 44
fuzzy subset logics, 3, 10
greatest lower bound, 24, 24
Hasse diagram, 23, 23, 24
hexagon, 31
Heyting 3-valued logic, 17, 41,
41, 45, 52
horseshoe, 46
Huntington properties, 29, 29
Huntington’s properties, 39
idempotence, 16–19
idempotency, 1–3, 14, 17, 21
idempotent, 1, 2, 8, 9, 11–20,
22, 25, 30, 48
identity, 2, 12, 13, 30
implication, 4, 18, 21, 41, 44, 45, 45, 46–53, 55
implication function, 3
incomparable, 23, 24
independent, 25
indicator function, 4, 4, 6
inequalities
 distributive, 25
 modular, 25
infimum, 24
interior, 5
intersection, 5
intuitionistic logic, 50, 50
intuitionistic negation, 34, 50
intuitionistic, 40, 42, 52
intuitionistic negation, 17, 35, 36–38, 40–42
involutory, 2, 10, 30, 31, 35–37, 39–43, 47–49
isotone, 12, 13
Jaśkowski’s first matrix, 41, 52
join, 7, 24
join super-distributive, 25
join-identity, 26
Kalmbach implication, 46, 47
Kleene, 40
Kleene 3-valued logic, 17, 41, 45, 51
Kleene condition, 35, 37, 38, 41, 43, 44
Kleene logic, 50
Kleene negation, 16, 17, 34, 35, 41–44, 50–55

lattice, 2–4, 7, 14, 15, 20, 24, 26, 25–27, 30, 33, 35–37, 44, 45, 47
complemented, 28
distributive, 27
M3, 27
N5, 26, 27
relatively complemented, 28
lattice with negation, 9, 10, 35, 46, 50
lattices, 4, 49
least upper bound, 24, 26, 46
linear, 16, 17, 23, 24
linear lattice, 16
linearly ordered, 53
linearly ordered lattice, 52
linearly ordered set, 23, 24, 26
logic, 3, 5, 13, 15, 50, 52
lower bound, 24, 26
lower bounded, 25, 26
M1, lattice, 54
M3, 20
M3 lattice, 27, 28
material implication, 46
median inequality, 25
median property, 27
meet, 7, 24
meet sub-distributive, 25
meet-identity, 26
membership function, 4, 6, 7, 11–14, 16, 17, 20
min-max operator pair, 7
min-max operators, 7, 7, 17–19, 22
minimal, 40
minimal negation, 34, 35, 37–40, 42, 50
modular, 26, 26, 27–29, 34, 39
modular inequality, 25
modular negation, 3–5, 16, 18, 19, 21, 22, 32, 34, 35, 37, 39, 41–44, 47, 50, 51, 53
orthogonal negations, 3
ortho+distributivity=Boolean, 3
orthocomplemented, 39
orthocomplemented lattice, 3, 31
orthomodular, 26, 31, 32, 34, 35
orthomodular identity, 33, 49
orthomodular lattice, 33, 46, 49
orthomodular negation, 34, 35
pentagon, 26
pointwise, 20
pointwise evaluated, 1, 3, 7, 11–15, 20
pointwise evaluation, 7, 11, 20
pointwise maximum, 7
pointwise minimum, 7
pointwise ordering, 7
pointwise ordering relation, 20, 21, 23
power set, 4, 5
power sets, 5
preorder, 23
probabilistic sum operator, 8
product and probabilistic sum operators, 7, 8
product sum operator, 8

absorption, 30, 49
absorptive, 2, 8, 25, 30, 45
anti-symmetric, 23
antitone, 10, 15, 31, 34–43, 46–49
associative, 2, 8, 25, 30
atomic, 29, 39
bijective, 36
Boolean, 1–3, 15, 20, 22, 28, 30, 32–34, 44, 50, 51, 54
Boolean algebra, 2
Boolean lattice, 4
boundary, 13
boundary condition, 10, 12, 32, 35–37
boundary conditions, 12, 36, 42
bounded, 2, 25, 26, 30, 48
classic Boolean properties, 2
commutative, 2, 8, 12, 25, 30, 37, 47, 49
comparable, 23
complemented, 2, 26, 28, 29, 30, 33, 39
conjunctive de Morgan, 36, 37
conjunctive de Morgan inequality, 35, 37
conjunctive distributive, 12, 27
conjunctive idempotence, 3, 15
conjunctive idempotent, 12
conjunctive identity, 11–14
conjunctive isotope, 11, 13, 14
continuous, 15
covers, 23
de Morgan, 2, 9, 29, 30, 36, 37, 39, 48, 54
de Morgan negation, 43, 54
disjunctive de Morgan, 36, 37
disjunctive de morgan, 32
disjunctive de Morgan inequality, 35, 37
disjunctive distributive, 12, 27
disjunctive idempotence, 3, 15
disjunctive idempotent, 12
disjunctive identity, 11–14
disjunctive isotope, 11, 13, 14
distributive, 20
distributive, 1, 2, 11, 13, 16, 17, 19, 20, 26, 27, 28–30, 33, 39, 46, 48, 50, 54
distributive inequalities, 13
distributivity, 1–3, 12, 21
dual distributive, 27
Elkan’s law, 33
entailment, 44, 45
excluded middle, 1–3, 11, 14–22, 29, 30, 32, 35, 37–39, 46–50
excluded middle, 19
finite, 25
finite width, 29, 39
fixed point condition, 14, 16, 17
fuzzy, 40, 42, 52
Huntington properties, 29
idempotence, 16–19
idempotency, 1–3, 14, 17, 21
identity, 1, 2, 8, 9, 11–20, 22, 25, 30, 48
incomparable, 24
independent, 25
intuitionistic, 40, 42, 52
intuitionistic negation, 36
involutory, 2, 10, 30, 31, 35–37, 39–43, 47–49
isotope, 12, 13
join super-distributive, 25
join-identity, 26
Kleene, 40
Kleene condition, 35, 37, 38, 41, 43, 44
Kleene negation, 43, 44, 51, 52
linear, 16, 17, 23, 24
linearly ordered, 53
linearly ordered lattice, 52
lower bounded, 25, 26
M1 lattice, 54
median inequality, 25
meet sub-distributive, 25
meet-identity, 26
minimal, 40
modular, 26, 26, 27–29, 34, 39
modular orthocomplemented, 26, 32
modular-orthocomplemented, 32
modus ponens, 44–46
multiply complemented, 29, 29, 33, 39
non-Boolean, 4, 20, 31–33, 44, 45, 54
non-complemented, 29
non-contradiction, 1–3, 11, 14–22, 29, 31, 35–44, 48
non-distributive, 11, 28, 54
non-idempotent, 1, 8, 11, 14, 15, 17, 18
non-join-distributive, 33
non-modal, 28
non-modal-orthocomplemented, 31
non-ortho, 16–19
non-orthocomplemented, 33, 45
non-orthocomplemented, 44
non-orthomodular, 31
not antitone, 39, 44
not idempotent, 2, 18, 19
not pointwise evaluated, 7
not strong modus ponens, 46
ortho, 15
ortho negation, 44
ortho-complemented, 39
orthocomplemented, 26, 29, 31, 32–34, 51
orthomodular, 26, 31, 32, 33, 34, 35
orthomodular identity, 33
pointwise, 20
pointwise evaluated, 1, 3, 7, 7, 11–15, 20
pointwise evaluation, 7, 11, 20
pointwise evaluation, 11
pointwise ordering, 7
reflexive, 23
strictly antitone, 15
strong entailment, 45–54
strong modus ponens, 45,
46, 50–53, 55
transitive, 23
trivial, 16
uniquely complemented, 29, 39
upper bound, 36
upper bounded, 25, 26
weak double negation, 10, 35, 36, 40–42
weak entailment, 45, 49
weak idempotency, 13, 14
weak idempotent, 13
weak modus ponens, 45–49, 52–54
quantum implication, 46
random subset, 6
real numbers, 10
reflexive, 23
relation, 22, 39
relations
classical implication, 16, 17, 21, 42, 46, 53
complement, 39
covering relation, 23
Dishkant implication, 46
distributivity relation, 27
dual distributivity relation, 27
function, 39
horseshoe, 46
implication, 18, 21, 45, 50
Kalmbach implication, 46
material implication, 46
modularity, 26
non-tollens implication, 46
order relation, 22, 23
ordering relation, 20
pointwise maximum, 7
pointwise ordering relation, 20, 21, 23
quantum implication, 46
relation, 39
relevance implication, 46
Sasaki hook, 46
relevance implication, 46, 49
rings of sets, 4
RM logic, 41, 45, 52
Sasaki hook, 30, 46
Sasaki implication, 47
set complement, 5
set implication, 5
set indicator, 5
set indicator function, 4
set indicator functions, 4, 10
set of all functions, 4
set of all indicator functions, 5
set of membership functions, 7
set structures, 4, 5
standard negation, 9, 9, 16–19, 21, 22
strictly antitone, 15
strong entailment, 45–54
strong modus ponens, 45, 46, 50–53, 55

structures
L1 lattice, 32
L2 lattice, 32
L2 lattice, 32
L2 lattice, 32
M1 lattice, 53
M2 lattice, 32
M3 lattice, 32
O cellattice, 31, 33
O cellattice, 31
L2, 16
L2 sublattice, 19
L2, 16
M1 lattice, 17, 21
Łukasiewicz 3-valued logic, 41, 45, 52
Łukasiewicz 5-valued logic, 43
Łukasiewicz logic, 50
Łukasiewicz operators, 21
algebra of sets, 5
algebras of sets, 2, 4, 5
BN logic, 45, 54
Boolean 4-valued logic, 53
Boolean algebra, 2, 30, 30
Boolean fuzzy subset logics, 20
Boolean fuzzy subset logic, 16, 21, 22
Boolean fuzzy subset logics, 3
Boolean lattice, 3, 15, 21, 22, 30, 44, 46–50
Boolean lattice L1, 22
Boolean lattices, 3
Boolean logic, 13, 15, 50, 50
Boolean logics, 3, 15
bounded lattice, 12, 25, 28, 30–38, 45
chain, 23
classic logic, 50
classical bi-variate logic, 50
classical implication, 4
classical logic, 2, 13, 16, 51
classical set theory, 2
classical subset theory, 4
closed interval, 6
complement, 39
complemented lattice, 33
complements, 33
crisp subset, 4, 5
crisp subset logic, 5
de Morgan logic, 50, 50
de Morgan negation, 34, 41, 42
diamond, 27
distributive lattice, 26
distributivity, 3
domain, 7
fully ordered set, 23
function, 34, 35
fuzzy classical logic, 16
fuzzy Heyting 3-valued logic, 16
fuzzy Kleene 3-valued logic, 16
fuzzy logic, 6, 16–19, 21, 22, 50
fuzzy logics, 3
fuzzy negation, 34
fuzzy negations, 3
fuzzy set theory, 2
fuzzy subset, 4, 6, 6
fuzzy subset algebras, 2
fuzzy subset lattice, 9
Fuzzy subset logic, 2
Fuzzy subset logic, 1–4, 6, 7, 9, 11, 14, 15, 18, 20, 21, 44
fuzzy subset logics, 3, 10
Hasse diagram, 23, 24
Heyting 3-valued logic, 17, 41, 52
Huntington’s properties, 39
interior, 5
intuitionistic logic, 50, 50
intuitionistic negation, 34
intuitionistic negation, 40
Kleene 3-valued logic, 17, 41, 51
Kleene logic, 50
Kleene negation, 34, 44
lattice, 2–4, 7, 14, 15, 20,
SUBJECT INDEX

24, 24, 25–27, 30, 33, 35–37, 44, 45, 47
lattice with negation, 9,
10, 35, 46, 50
lattices, 4, 49
linear lattice, 16
linearly ordered set, 23,
23, 24
logic, 3, 5, 13, 15, 50
M₃, 20
M3 lattice, 28
membership function, 4, 7, 11–14, 16, 17
min-max operators, 22
minimal negation, 34, 39
modular lattice, 27
modular orthocomplemented lattice, 34
N₄, 20
N5 lattice, 27
negation, 43
O₆, 5
O₆ lattice, 18, 31, 31, 39, 46
O₆ lattice with ortho negation, 54
O₆ orthocomplemented lattice, 54
order relation, 23
ordered set, 3, 4, 23, 23, 24
ortho fuzzy subset logics,
20
ortho fuzzy subset logic,
21
ortho fuzzy subset logics,
3
ortho logic, 15, 21, 22, 50,
50
ortho logics, 3, 15
ortho negation, 3, 34, 41,
43, 44, 47
ortho negations, 3
orthocomplemented lattice, 3, 21, 31, 33, 45–49
orthocomplemented lattices, 3, 31
orthomodular lattice, 33,
46, 49
orthomodular negation,
34
power set, 4, 5
power sets, 5
preorder, 23
random subset, 6
real numbers, 10
relation, 22
rings of sets, 4
RM₁ logic, 41, 45, 52
set of all functions, 4
set of all indicator functions, 5
set of membership functions, 7
set structures, 4, 5
subminimal negation, 34,
40
topological space, 5
topologies, 4, 5
topology, 5
totally ordered set, 23
subminimal negation, 34, 34, 35, 38–40
supremum, 24
theorems
Bellman-Giertz 1973 result, 3
Bellman-Giertz 1973 theorem, 3, 14
Birkhoff distributivity criterion, 27
classic 10 Boolean properties, 30
distributive inequalities, 25
Dubois-Padre 1980 result, 2
Dubois-Padre 1980 theorem, 2, 15
fuzzy min-max boundary theorem, 11, 11, 13
fuzzy min-max theorem, 3, 7, 11, 13, 13
fuzzy negation idempotency theorem, 2, 11, 14
fuzzy operators idempotency theorem, 2, 11, 12, 12
Huntington properties,
29
Modular inequality, 25
Monotony laws, 25
ortho+distributivity=Boolean,
3
topological space, 5
topologies, 4, 5
topology, 5
totally ordered set, 23
transitive, 23
true, 50, 51, 53, 54
undecided, 51
union, 5
unique complement, 29
uniquely complemented, 29,
29, 39
upper bound, 24, 24, 36
upper bounded, 25, 26
values
GLB, 24
l.u.b., 24
both, 54
complement, 30
false, 51, 53, 54
greatest lower bound, 24,
24
infimum, 24
least upper bound, 24, 24,
46
lower bound, 24, 24
neither, 54
neutral, 51
orthocomplement, 31, 31,
32
true, 50, 51, 53, 54
undecided, 51
upper bound, 24, 24
weak double negation, 10, 35,
36, 38–40, 42
weak entailment, 45, 49, 52
weak idempotency, 13, 14
weak idempotent, 13
weak modus ponens, 45–49,
52–54
Yager negation, 9, 9