Pharmacological inhibition of APP processing and knock-down of APP in primary human macrophages impairs the secretion of cytokines

CURRENT STATUS: POSTED

Philipp Spitzer
Philipp.Spitzer@uk-erlangen.de
Universitatsklinikum Erlangen
Corresponding Author
ORCiD: 0000-0001-9555-605X

Matthias Walter
Universitatsklinikum Erlangen Klinik fur Psychiatrie und Psychotherapie

Caroline Kranig
Universitatsklinikum Erlangen Klinik fur Psychiatrie und Psychotherapie

Timo Jan Oberstein
Universitatsklinikum Erlangen Klinik fur Psychiatrie und Psychotherapie

Philipp Linning
Technische Universität Dresden

Hans-Joachim Knölker
Technische Universität Dresden

Johannes Kornhuber
Universitatsklinikum Erlangen Klinik fur Psychiatrie und Psychotherapie

Juan Manuel Maler
Universitatsklinikum Erlangen Klinik fur Psychiatrie und Psychotherapie

DOI:
10.21203/rs.2.17045/v1

SUBJECT AREAS
Neurobiology of Disease

KEYWORDS
Amyloid Precursor Protein; APP; amyloid; Abeta; Alzheimer; cytokine; immune system; secretase; BACE
Abstract

Background

The amyloid precursor protein (APP) and amyloid β (Aβ) peptides support the innate immune defense as an immune receptor, an antimicrobial peptide and an opsonine. In APP-deficient mouse models, a reduced secretion of cytokines has been observed. It is unclear whether this can be attributed to the lack of APP or to the missing secretion of Aβ peptides.

Methods

In primary human monocyte derived macrophages the secretion of Aβ peptides was inhibited by the γ-secretase inhibitor DAPT or by the β-secretase inhibitor GL-189, applied as a tripartite substance. Alternatively, APP was knocked down by transfection with siRNA. TNFα, IL-6 and IL-10 were measured by ELISA and the phagocytotic activity was evaluated by flow cytometry.

Results

Reduced concentrations of TNFα and IL-6 were observed in the media of APPk/d macrophages and after inhibition of the β-, or γ-secretase, especially after additional immunological activation with LPS. Secretion of IL-10 was increased after pharmacological inhibition of APP processing when the macrophages were not immunologically activated but was decreased during LPS-induced inflammation in APPk/d macrophages. No changes of the phagocytotic activity were observed.

Conclusion

We conclude that macrophage APP and Aβ peptides support the initiation of an immune response and are involved in the secretion of TNFα, IL-6 and IL-10.

Background

The amyloid precursor protein (APP) is expressed on nearly every cell type and the amyloid β (Aβ) peptides, which are generated by sequential cleavage of APP by the β- and γ-secretase, are known to aggregate to plaques in the brains of patients with Alzheimer’s
disease (AD) (1). However, there are individuals with a considerable amount of amyloid plaques who do not show signs of dementia. Furthermore, preventing the agglutination of Aβ peptides in plaques by Aβ-specific antibodies does not stop the progress of dementia (2). Therefore, the causal association of Aβ peptides and Alzheimer’s disease may not be as immediate as assumed for the last decades.

Although APP and its cleavage products have been intensely investigated in the context of Alzheimer’s disease, little is known about their physiological functions and their role within the immune system. Inflammatory processes such as the activation of microglia and peripheral macrophages are increasingly considered in the research of AD pathophysiology (3-5). However it is still not clear, whether neuroinflammation is the cause or the consequence of AD and whether it is harmful or beneficial (3, 6, 7).

The anti amyloid antibody Aducanumab was associated with an increased incidence of urinary-tract and lung infections (8). Also, a knock-out of APP or the β-site amyloid cleaving enzyme (BACE-1) in mice was associated with a reduced activity of microglia and a reduced secretion of pro-inflammatory cytokines (9-13). Vice versa, reduced concentrations of Aβ peptides in cerebrospinal fluid (CSF) were also found during brain infections (14, 15). Astrocytes express higher amounts of the APP processing enzymes BACE-1 and presenilin 1 upon infection with C. pneumonia (16). Therefore, an immunological function of APP and Aβ peptides can be assumed.

Brain microglia and peripheral macrophages both belong to the mononuclear phagocyte system and part of the microglia seems to be recruited from peripheral monocytes transmigrating into the brain (17, 18). Although microglia and peripheral monocyte-derived macrophages differ to some extent, they still share many features (17, 19). As primary human microglia is hard to obtain, monocyte derived macrophages are therefore a frequently used model for certain aspects of microglial biology (19-21). We previously
reported that monocytes express APP and that its metabolisation into Aβ peptides depends on their immunological activation (22-24). Phagocytosis of polystyrene particles and E. coli was shown to be improved by coating the particles with different Aβ peptide variants (25). Furthermore, an antimicrobial activity of Aβ peptides in cultures of gram positive and gram negative bacteria as well as candida spp. has been observed (26, 27). Especially the more hydrophobic Aβ peptide variants seem to agglutinate microorganisms and form channels in their cell membranes (27-29). These findings could be confirmed in an in vivo model of experimental bacterial meningitis resulting in an improved survival of APP transgenic mice, and a reduced survival of APP$^{k/o}$ mice (30).

The question arises, whether Aβ peptides only support the immune system as opsonin and antimicrobial agent or if they have additional functions as co-stimulatory factors that induce a pro-inflammatory immune response. During inflammation, macrophages secrete a plethora of cytokines (21). Key cytokines indicating a pro-inflammatory reaction are besides others IL-1β, IL-12A, IL-12B and IL23, IL-6 and TNFα. One of the most important anti-inflammatory cytokines of macrophages is IL-10 (21). We tested, whether the autologous Aβ peptides, secreted by macrophages during inflammatory processes support the immune defense by increasing the secretion of IL-6 and TNFα and by improving the phagocytosis of polystyrene particles.

Methods

Preparation and cultivation of monocytes

Monocytes were isolated from buffy coats of anonymous healthy erythrocyte donors (Transfusionsmedizin, Suhl, Germany) by density gradient centrifugation and adhesion to polystyrene cell culture dishes in Dulbecco’s modified minimal essential medium (DMEM, Pierce biotechnology, Rockford, USA) without serum. Lymphocytes were removed by
thorough washing with 4°C Dulbecco's modified phosphate buffered saline (PBS). Cultures only included monocytes of a single donor. All experiments were replicated with the indicated number of donors (biological replicates). Monocytes were then cultivated at 37°C and 5% CO₂ in RPMI medium (Promocell, Heidelberg, Germany) containing 10% fetal calf serum (FCS, Biochrome, Berlin, Germany) and differentiated into macrophages by adding 40 ng/ml GM-CSF (Immunotools, Friesoythe, Germany). 50% of the medium was exchanged after four days. To avoid interference of endogenous Aβ peptides with those contained in FCS, the medium was changed to serum-free AIM-V medium (Thermo scientific, Dreieich, Germany) at the 7th day in vitro (div).

An inflammatory reaction was induced either by adding 1 µm polystyrene particles (7/cell) (Polysciences, Hirschberg, Germany) or 10 ng/ml lipopolysaccharide (LPS, Sigma-Aldrich, Munich, Germany) to the cell culture medium at the 9th div, 24 h before measuring cytokine secretion or phagocytotic activity.

All cell culture experiments were carried out in duplicates and the viability of the cells was assessed with the Cytotox96 non-radioactive assay (Promega, Mannheim, Germany) (Additional figure 1) as well as the MTT-test according to the manufacturer's instructions (Sigma-Aldrich, Munich, Germany).

Inhibition of APP processing

APP processing was pharmacologically inhibited by adding 10 µM of the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl-ester (DAPT, Sigma-Aldrich, Munich, Germany) or 500 nM of the tripartite β-secretase inhibitor T_{GL-189} (provided by Prof. Knoelker, Dresden Germany) when exchanging the medium on the 7th div. (Figure 1) (31, 32) The applied concentration of the secretase inhibitors did not reduce the viability of the cells.

Transfection of macrophages
Macrophages were transfected with validated silencer® select siRNA directed towards APP (ID s1500, Thermo Scientific, Dreieich, Germany) using the viromere blue transfection system (Lipocalyx, Halle, Germany) according to the manufacturer's instructions. On the 7th div. the medium was exchanged with serum free AIM-V medium. APP siRNA was diluted to 2.8 µM with buffer BLUE. Viromer® BLUE was mixed with buffer BLUE at a ratio of 1:90 and added to the siRNA dilution. After 15 minutes of incubation, 100 µl of the siRNA mix was added to 1 ml of cell culture medium resulting in a final siRNA concentration of 0.14 µM. Non-silencing silencer® select negative control No. 1 siRNA (Thermo Scientific, Dreieich, Germany) served as control (mock). All experiments were carried out in duplicates.

Phagocytosis-Assay - Flow Cytometry

To assess the phagocytic activity of macrophages, fluorescent 1 µm polysterene particles were added in a previously optimized concentration of 20 particles/cell (Additional figure 2). At several timepoints between 10 and 1200 minutes, cells were detached with accutase (PAA laboratories, Cölbe, Germany) and the mean fluorescent intensity per macrophage was measured with the CyFlow space flow cytometer (Partec, Goerlitz, Germany) equipped with flow max 2.8 software (Partec, Goerlitz, Germany) and evaluated with the Kaluza 2.0 software (Beckman & Coulter, Krefeld, Germany).

ELISA of TNFα, IL-6, IL-10

The concentrations of TNFα, IL-6 and IL-10 in the conditioned macrophage media were quantified 48 h after transfecting the macrophages with APP siRNA or adding the secretase inhibitors by commercially available antibody sets (Catalog numbers: IL-6: 31670069, IL-10: 31670109, TNFα: 31673019; all Immunotools, Friesoythe, Germany). Optimized working concentrations of the respective antibodies were established before
the experiments. All measurements were run in duplicates. The samples were diluted to be measured within the detection range of the assays and the coefficient of variation of all measurements was below 20%.

Immunoprecipitation, SDS-page and immunoblot

The concentrations of APP and Aβ peptides in macrophage cultures were assessed with SDS-PAGE followed by immunoblotting.

For the measurement of APP, cells were lysed with the RIPA-buffer (50 mM HEPES, 150 mM NaCl, 1%(v/v) Igepal, 0.5%(w/v) Na-DOC, 0.1% SDS and 1 tablet Complete Mini protease inhibitor cocktail (Roche, Germany)). The protein content of cell lysates was assessed with the BCA-assay (Pierce Biotechnology, Rockford, USA) and a standardized amount of protein was boiled with sample buffer and loaded on 7.5 % SDS-pages according to Laemmli et al. (33). The consecutive immunoblot on PVDF membranes was performed according to the method described by Towbin et al. (34). The immunolabeling was carried out with the anti-APP antibody 22C11 (Merck-Millipore, Darmstadt, Germany) followed by incubation with the horseradish peroxidase labeled goat anti mouse antibody (Merck-Millipore, Darmstadt, Germany). Membranes were developed with ECL® advance (GE-Healthcare, Freiburg, Germany) and recorded with the Amersham Imager 600 (GE-Healthcare, Freiburg, Germany). A quantification of the blots was performed on the bases of band intensity normalized to the density of the GAPDH band with the quantity one software (Bio-Rad, Munich, Germany).

The concentrations of Aβ peptides in cell culture medium were evaluated according to Wiltfang et al.. Aβ peptides were immunoprecipitated with the n-terminal anti Aβ peptide antibody 1E8 and separated on Tris/Bicine SDS-Pages containing 8 M urea (35). Peptides were transferred to PVDF membranes using a semi-dry westernblot with a discontinuous buffer-system (35). Immunolabeling was performed with the anti-Aβ antibody clone 1E8
and the signal was enhanced by a two-step labeling with a biotinylated goat-anti-mouse antibody and streptavidine conjugated horseradish peroxidase. Finally, membranes were developed with ECL® advance (GE-Healthcare, Freiburg, Germany) and recorded with the Amersham Imager 600 (GE-Healthcare, Freiburg, Germany). Quantification of the blots was carried out with the quantity one software (Bio-Rad, Munich, Germany).

Statistical analysis

Statistical analysis was carried out using Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA). As each experiment was carried out with cells from the same donor, pairwise comparisons were calculated with the ratio paired t-test. Results are presented as mean with standard deviations and were considered to be significant at a p-value < 0.05.

Results

Reduced secretion of TNFα and IL-6 after inhibition of APP processing:

Primary human monocyte derived macrophages were cultivated in serum-free media. The secretion of Aβ peptides was inhibited either by addition of the tripartite β-secretase inhibitor T_{GL-189} in a concentration of 500 nM or 10 µM of the γ-secretase inhibitor DAPT. As expected, both treatments reduced the secretion of A{β}_1-40 and A{β}_1-42 considerably (Figure 2 A). The amount of A{β}_3-40/A{β}_2-40, which co-migrate in the same lane, remained unchanged as recently described by Oberstein et al.. (36). The viability of the cells was not compromised as assessed by measurement of the LDH release into the conditioned media and the reduction of (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT assay) by vital cells.

TNFα, IL-6 and IL-10 were determined by ELISA 24 h after the macrophages were immunologically activated either by 10 ng/ml LPS or 1 µm polystyrene particles in a concentration of 7 particles/cell. Reduced concentrations of IL-6 were found 72 h after
inhibition of Aβ peptide secretion by T_{GL-189} and DAPT in macrophage cultures without immunological activation as well as in those activated with polystyrene particles or LPS (Figure 3). In cultures activated by LPS T_{GL-189} and DAPT also reduced the concentration of TNFα (Figure 3). Interestingly, IL-10 was found elevated after inhibition of APP processing, but only in cultures without an immunological activation (Figure 3).

Reduced secretion of IL-6 and IL-10 after inhibition of APP expression

To discriminate the impact of the APP from Aβ peptides, the expression of APP was inhibited by a siRNA knock-down of APP in the same macrophage cultures. Transfection with a non-binding siRNA (mock) served as control and viability was tested as indicated above (Additional figure 1). The reduced concentration of APP in cell lysates 72 h after the transfection is shown in figure 2B (Figure 2B). The medium remained on the cells for 24 h, 48h after the transfection. The knock-down of APP reduced the concentration of IL-6 in the media of LPS activated macrophages (Figure 4). Unexpectedly, the secretion of IL-6 and IL-10 was also reduced after transfection with non-binding siRNA. However, the effect of the transfection with siRNA directed towards APP was significantly stronger than that of the transfection with non-binding siRNA. The transfection with APP siRNA did not change the cytokine secretion in cells that were unchallenged or activated by phagocytosis of polystyrene particles (Figure 4). While the pharmacological inhibition of APP processing resulted in increased concentrations of IL-10 in LPS activated cultures, the knock down of APP reduced the concentration of IL-10 in the medium (Figure 4). Again, no change of IL-10 was found in unchallenged or particle-challenged cultures of APP^{k/d} macrophages (Figure 4).

No change in the phagocytic activity of monocytes after inhibition of APP processing or knock-down of APP.
To evaluate the impact of APP expression and Aβ peptide secretion on phagocytosis, APP processing was either pharmacologically inhibited or APP was knocked down by siRNA as detailed above. After establishing the optimal concentration of fluorescent particles and time of measurement, phagocytosis was determined by flow cytometry 240 minutes after adding fluorescent 1 µm microparticles (20 particles/cell) to the cultures (Additional figure 2). However, neither the inhibition of the β- or g-secretase nor the APP knock-down affected the amount of intracellular particles as indicated by the mean fluorescent intensity (MFI) or the fraction of macrophages that is associated with at least one fluorescent particle (Figure 5).

Discussion

We showed that the pharmacological inhibition of APP processing by the tripartite β-secretase inhibitor T_{GL-189} and an established g-secretase inhibitor (DAPT) reduced the secretion of IL-6 and increased the anti-inflammatory IL-10 in primary human monocyte-derived macrophages. During LPS induced inflammation reduced concentrations of IL-6 and TNFα were observed. After an APP knock/down, IL-6 and IL-10 were reduced in macrophages which were activated by LPS.

A major weakness of this work is the incomplete inhibition of APP expression and processing. Neither the pharmacological inhibition of APP cleavage nor the knockdown of APP resulted in a complete absence of Aβ peptides or APP, respectively. This probably leads to a considerable underestimation of the effects. The reasons for this are a limitation of inhibitor concentrations by toxicity and unwanted side-effects as well as the existence of additional β- and g-secretases not inhibited by the applied substances such as meprin-β or cathepsin B (36-38). Primary human macrophages are, besides neurons, probably the most difficult cells for transfection experiments. Therefore, several different
techniques including lipofection and electroporation have been tested and rejected, before the transfection with viromers lead to acceptable results. A rate of transfected cells of about 80% was measured by transfection with fluorescent siRNA and stealth siRNA. The transfection with siRNA directed at APP reduced the expression of APP to approx. 25 % in our experiments. Interestingly, the transfection with non-binding siRNA, meant as a control, did reduce the secretion of IL-6 and IL-10 in macrophage cultures activated with LPS. This effect was reproducible with a second non-binding siRNA and was not caused by reduced viability of the cells. Therefore, we are currently not able to explain this finding.

To increase the probability of our reported findings not being due to pharmacological side effects, we used two different substances (T\textsubscript{GL-189} and DAPT) with two different mechanisms (inhibition of \(\beta\)- and \(g\)-secretase). It was described previously that the application of GL-189 as a tripartite substance (T\textsubscript{GL-189}) reduces unspecific side effects by directing the pharmacophore to the catalytic center of the \(\beta\)-secretase (31, 32, 36). The reported reduction of IL-6 and TNF\(\alpha\) as well as the increased secretion of IL-10 are therefore very probable induced by the reduced production of A\(\beta\) peptides.

Blockage of the \(\beta\)-secretase pathway normally increases processing via the \(\alpha\)-secretase pathway, resulting in increased concentrations of sAPP\(\alpha\) (32). While we have not measured sAPP\(\alpha\), our results still suggest that macrophage sAPP\(\alpha\) is not able to replace the missing A\(\beta\) peptides. This is opposing earlier publications which found that sAPP\(\alpha\) activates microglia (39-41). However, this discrepancy might be an issue of concentration and the impact of amyloid peptides was not assessed in former experiments.

It is long known that A\(\beta\) fibrils and oligomers activate macrophages and microglia (39, 42). However, our data suggests that not only external A\(\beta\) but also the A\(\beta\) peptides produced by macrophages themselves have an activating effect on the secretion of proinflammatory cytokines. As a consequence, the missing ability to produce A\(\beta\) peptides impaired the
proinflammatory reaction induced by LPS. We and others previously reported that the expression of APP and the secretion of Aβ peptides by monocytes/macrophages depends on their immunological activation (22, 23, 43). Expression of APP and secretion of Aβ peptides was increased during phagocytosis and LPS-induced inflammation. In this context it seems possible that the Aβ peptides are part of a self-energizing circuit initiating an immune response.

Further functions of Aβ peptides within the immune defense as antimicrobial agent and opsonine have been shown (26, 27, 30). The reason, why an inhibition of Aβ peptide generation had no impact on phagocytosis although it changed the concentrations of IL-6, TNFα and IL-10 in this study might be that phagocytosis is strongly affected by opsonines and the expression of receptors involved in phagocytosis but poorly by the investigated cytokines (44). Effects caused by Aβ peptides as an opsonine could probably not be seen in this study because the changes in Aβ peptide concentrations were too small to induce a measurable effect.

Kumar and his colleagues could show that APP knockout mice had a reduced survival, while mice transgenic for APP had an improved survival in a model of infectious meningitis (30). Fitting into this hypothesis, an increased expression of APP, an accumulation of Aβ peptides in the brain and reduced concentrations of Aβ peptides in the CSF were not only observed in patients with Alzheimer’s disease but also with meningitis and other inflammatory diseases (14, 15, 45-47).

Regarding AD this would indicate, that the Aβ peptide deposition could be the consequence and not the cause of neuroinflammation. This idea is supported by epidemiological data showing a reduced risk of AD in patients using non-steroidal anti-inflammatory drugs (48). TNFα antagonists also seem to improve cognitive performance in AD patients (49, 50). Some even hypothesize an infectious agent as the cause of AD (51-
Pharmacological inhibition of Aβ peptide generation reduced Aβ$_{1-x}$ but not n-terminal modified Aβ peptides. This indicates, that the Aβ$_{1-x}$ species are responsible for the observed differences. As we did not analyze the aggregation state of the Aβ peptides in our cultures we are not able to differentiate whether Aβ monomers, oligomers or fibrils are responsible for the observed effects. However, Aβ aggregation takes place within few hours and aggregation of Aβ peptides in cultures of macrophages has been shown (56). Therefore, it seems very likely, that at least part of the secreted Aβ peptides aggregate to oligomers and fibrils. Several receptors expressed by macrophages have been shown to bind Aβ peptide fibrils or oligomers, e.g. CD14, CD36, macrophage scavenger receptor 1, N-formyl-peptide receptor like-1 and APP (10, 57). Binding of these receptors triggers downstream thyrosin kinases, release of Ca$^{++}$ and ultimately activation of NFkB and CREB (39, 57-64).

In microglial cultures of APP knock-out mice as well as in brains and intestines of these mice a reduced motility of macrophages as well as reduced concentrations of several cytokines, including IL-6, TNFα and IL-10 were observed which is in accordance to our findings (9, 10, 12). However, due to their methodology, the authors could not discriminate between the effects caused by APP and those caused by Aβ peptides. Consequently, they discuss the role of APP as a receptor for LPS or a transcription factor. The different effects of the APP knock-down and pharmacological inhibition of APP processing concerning the IL-10 concentrations after stimulation with LPS support this assumption. Pro- and anti-inflammatory activities are reduced in APP$^{k/o}$/APP$^{k/d}$ macrophages. When APP as a cell bound protein remains intact, the pharmacological inhibition of Aβ peptide generation removes a pro-inflammatory peptide and might result
in a more anti-inflammatory state of the macrophages with reduced secretion of IL-6 and increased secretion of IL-10.

Conclusions

Taken together, the presented data supports the hypothesis that APP and Aβ peptides expressed and secreted by macrophages are involved in initiating and regulating immune responses. In clinical trials testing Aβ lowering therapies, dysfunctions of the immune system should be closely monitored.

List Of Abbreviations

Abbreviation	Description
APP	Amyloid precursor protein
Aβ	Amyloid-β
AD	Alzheimer’s disease
BACE	beta site amyloid cleaving enzyme
CSF	cerebrospinal fluid
DAPT	N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl-ester
MFI	mean fluorescent intensity

Declarations

Ethics approval and consent to participate

No ethic approval was necessary for this study. The human material (buffy coats) was purchased at the Transfusionsmedizin, Suhl. The identity of the healthy donors is not known to the researchers.

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analysed for the current study are available from the
corresponding author on reasonable request

Competing interests

PS MW, CK, TJO, PL, HJK, JK and JMM declare no conflicts of interest.

Funding

This work is supported by Grants from the Interdisciplinary Center for Clinical Research (IZKF), Erlangen and by Deutsche Forschungsgemeinschaft (DFG) and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) within the funding program Open Access Publishing.

Authors' contributions

PS, MW, CK, THO, JK and JMM designed the study. PS, MW and CK carried out the experiments. PL and HJK developed and provided the tripartite β-secretase inhibitor. Data was analyzed and evaluated by PS, MW, CK, TJO, JK and JMM. The statistics were carried out by PS, MW and CK. PS, MW and JMM drafted the manuscript. All authors critically reviewed the manuscript and provided constructive comments to improve the quality of the manuscript. All authors have read and approved the final manuscript.

Acknowledgements

We gratefully thank Janine Utz for language editing. The present work was performed in partial fulfillment of the requirements for obtaining the degree “Dr. med” of MW and CK.

References

1. Haass C. Take five--BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. The EMBO journal. 2004;23(3):483-8.

2. Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.

3. Navarro V, Sanchez-Mejias E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer's Disease: Activated, Dysfunctional or Degenerative. Front Aging Neurosci. 2018;10:140.
4. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414-30.

5. Spitzer P, Weinbeer J, Herrmann M, Oberstein TJ, Condic M, Lewczuk P, et al. Analysis of Surface Levels of IL-1 Receptors and Macrophage Scavenger Receptor I in Peripheral Immune Cells of Patients With Alzheimer Disease. J Geriatr Psychiatry Neurol. 2019;32(4):211-20.

6. Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement. 2016;12(6):719-32.

7. Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Abeta in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci. 2017;74(12):2167-201.

8. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature. 2016;537(7618):50-6.

9. Carrano A, Das P. Altered Innate Immune and Glial Cell Responses to Inflammatory Stimuli in Amyloid Precursor Protein Knockout Mice. PLoS One. 2015;10(10):e0140210.

10. Manocha GD, Floden AM, Rausch K, Kulas JA, McGregor BA, Rojanathammanee L, et al. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease. J Neurosci. 2016;36(32):8471-86.

11. Puig KL, Brose SA, Zhou X, Sens MA, Combs GF, Jensen MD, et al. Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain. Sci Rep. 2017;7:43725.

12. Puig KL, Swigost AJ, Zhou X, Sens MA, Combs CK. Amyloid precursor protein
expression modulates intestine immune phenotype. J Neuroimmune Pharmacol. 2012;7(1):215-30.

13. Stertz L, Contreras-Shannon V, Monroy-Jaramillo N, Sun J, Walss-Bass C. BACE1-Deficient Mice Exhibit Alterations in Immune System Pathways. Molecular neurobiology. 2018;55(1):709-17.

14. Krut JJ, Zetterberg H, Blennow K, Cinque P, Hagberg L, Price RW, et al. Cerebrospinal fluid Alzheimer's biomarker profiles in CNS infections. J Neurol. 2013;260(2):620-6.

15. Spitzer P, Lang R, Oberstein TJ, Lewczuk P, Ermann N, Huttner HB, et al. A Specific Reduction in Abeta1-42 vs. a Universal Loss of Abeta Peptides in CSF Differentiates Alzheimer's Disease From Meningitis and Multiple Sclerosis. Front Aging Neurosci. 2018;10:152.

16. Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of beta-amyloid found in Alzheimer disease. BMC Neurosci. 2019;20(1):6.

17. Meyer-Luehmann M, Prinz M. Myeloid cells in Alzheimer's disease: culprits, victims or innocent bystanders? Trends Neurosci. 2015;38(10):659-68.

18. Hickey WF, Vass K, Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992;51(3):246-56.

19. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225-42.

20. Lue LF, Beach TG, Walker DG. Alzheimer's Disease Research Using Human Microglia. Cells. 2019;8(8).

21. Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the
Phenotype of Macrophages and Microglia. Frontiers in immunology. 2017;8:1520.

22. Maler JM, Spitzer P, Klafki H-W, Esselmann H, Bibl M, Lewczuk P, et al. Adherence-dependent shifts in the patterns of beta-amyloid peptides secreted by human mononuclear phagocytes. Brain Behav Immun. 2008;22(7):1044-8.

23. Spitzer P, Herrmann M, Klafki HW, Smirnov A, Lewczuk P, Kornhuber J, et al. Phagocytosis and LPS alter the maturation state of beta-amyloid precursor protein and induce different Abeta peptide release signatures in human mononuclear phagocytes. J Neuroinflammation. 2010;7:59.

24. Maler JM, Spitzer P, Klafki HW, Esselmann H, Lewczuk P, Kornhuber J, et al. Distinct fractional Abeta release patterns in human mononuclear phagocytes. J Neuroimmunol. 2009;206(1-2):1-4.

25. Condic M, Oberstein TJ, Herrmann M, Reimann MC, Kornhuber J, Maler JM, et al. N-truncation and pyroglutaminylation enhances the opsonizing capacity of Abeta-peptides and facilitates phagocytosis by macrophages and microglia. Brain Behav Immun. 2014;41:116-25.

26. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505.

27. Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, et al. Amyloidogenic amyloid-beta-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep. 2016;6:32228.

28. Torrent M, Pulido D, Nogues MV, Boix E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog. 2012;8(11):e1003005.

29. Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S, Lal R, et al.
Antimicrobial properties of amyloid peptides. Mol Pharm. 2012;9(4):708-17.

30. Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Science translational medicine. 2016;8(340):340ra72.

31. Linning P, Haussmann U, Beyer I, Weidlich S, Schieb H, Wiltfang J, et al. Optimisation of BACE1 inhibition of tripartite structures by modification of membrane anchors, spacers and pharmacophores - development of potential agents for the treatment of Alzheimer's disease. Organic & biomolecular chemistry. 2012;10(41):8216-35.

32. Schieb H, Weidlich S, Schlechtingen G, Linning P, Jennings G, Gruner M, et al. Structural design, solid-phase synthesis and activity of membrane-anchored beta-secretase inhibitors on Abeta generation from wild-type and Swedish-mutant APP. Chem Eur J. 2010;16(48):14412-23.

33. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.

34. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76(9):4350-4.

35. Wiltfang J, Smirnov A, Schnierstein B, Kelemen G, Matthies U, Klafki HW, et al. Improved electrophoretic separation and immunoblotting of beta-amyloid (A beta) peptides 1-40, 1-42, and 1-43. Electrophoresis. 1997;18(3-4):527-32.

36. Oberstein TJ, Spitzer P, Klafki HW, Linning P, Neff F, Knölker HJ, et al. Astrocytes and microglia but not neurons preferentially generate N-terminally truncated Abeta peptides. Neurobiol Dis. 2015;73:24-35.

37. Bien J, Jefferson T, Causevic M, Jumpertz T, Munter L, Multhaup G, et al. The metalloprotease meprin beta generates amino terminal-truncated amyloid beta
peptide species. J Biol Chem. 2012;287(40):33304-13.

38. Takeda K, Araki W, Akiyama H, Tabira T. Amino-truncated amyloid beta-peptide (Abeta5-40/42) produced from caspase-cleaved amyloid precursor protein is deposited in Alzheimer's disease brain. FASEB J. 2004;18(14):1755-7.

39. Austin SA, Combs CK. Mechanisms of Microglial Activation by Amyloid Precursor Protein and its Proteolytic Fragments. In: Lane TE, Carson MJ, Bergmann C, Wyss-Coray T, editors. Central Nervous System Diseases and Inflammation: Springer; 2008. p. 13-32.

40. Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388(6645):878-81.

41. Bodles AM, Barger SW. Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol Aging. 2005;26(1):9-16.

42. Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation. 2009;6:1.

43. Kubota T, Maruyama S, Abe D, Tomita T, Morozumi T, Nakasone N, et al. Amyloid beta (A4) precursor protein expression in human periodontitis-affected gingival tissues. Arch Oral Biol. 2014;59(6):586-94.

44. Coleman DL. Regulation of macrophage phagocytosis. Eur J Clin Microbiol. 1986;5(1):1-5.

45. Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H. Expression of amyloid precursor protein after rat traumatic brain injury. Neurol Res. 2009;31(1):103-9.

46. Jung SS, Gauthier S, Cashman NR. Beta-amyloid precursor protein is detectable on monocytes and is increased in Alzheimer's disease. Neurobiol Aging. 1999;20(3):249-57.

47. Andras IE, Toborek M. Amyloid beta accumulation in HIV-1-infected brain: The role of
the blood brain barrier. IUBMB Life. 2013;65(1):43-9.

48. McGeer PL, Guo JP, Lee M, Kennedy K, McGeer EG. Alzheimer's Disease Can Be Spared by Nonsteroidal Anti-Inflammatory Drugs. J Alzheimers Dis. 2018;62(3):1219-22.

49. Butchart J, Brook L, Hopkins V, Teeling J, Puntener U, Culliford D, et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161-8.

50. Tobinick EL, Gross H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer's disease. BMC Neurol. 2008;8:27.

51. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, et al. Microbes and Alzheimer's Disease. J Alzheimers Dis. 2016;51(4):979-84.

52. Licastro F, Porcellini E. Persistent infections, immune-senescence and Alzheimer's disease. Oncoscience. 2016;3(5-6):135-42.

53. Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med. 2011;13:e30.

54. Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, et al. 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci. 2017;9:195.

55. Walker DG, Tang TM, Lue LF. Increased expression of toll-like receptor 3, an anti-viral signaling molecule, and related genes in Alzheimer's disease brains. Exp Neurol. 2018;309:91-106.

56. Gellermann GP, Ullrich K, Tannert A, Unger C, Habicht G, Sauter SR, et al. Alzheimer-like plaque formation by human macrophages is reduced by fibrillation inhibitors and lovastatin. J Mol Biol. 2006;360(2):251-7.

57. Van Nostrand WE, Melchor JP, Keane DM, Saporito-Irwin SM, Romanov G, Davis J, et
al. Localization of a fibrillar amyloid beta-protein binding domain on its precursor. J Biol Chem. 2002;277(39):36392-8.

58. Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nature communications. 2013;4:2030.

59. Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci. 1999;19(3):928-39.

60. Sondag CM, Combs CK. Amyloid precursor protein cross-linking stimulates beta amyloid production and pro-inflammatory cytokine release in monocytic lineage cells. J Neurochem. 2006;97(2):449-61.

61. Fogel H, Frere S, Segev O, Bharill S, Shapira I, Gazit N, et al. APP homodimers transduce an amyloid-beta-mediated increase in release probability at excitatory synapses. Cell reports. 2014;7(5):1560-76.

62. Visconte C, Canino J, Guidetti GF, Zara M, Seppi C, Abubaker AA, et al. Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cellular signalling. 2018;52:95-102.

63. Wang Z, Jackson RJ, Hong W, Taylor WM, Corbett GT, Moreno A, et al. Human Brain-Derived Abeta Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP. J Neurosci. 2017;37(49):11947-66.

64. Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease. eNeuro. 2017;4(2).
Additional Materials

Additional figure 1: No reduction of macrophage viability by the inhibitors of APP metabolism and transfection.

Spitzer 2019 - monocyte APP - additional figure 1.tif

Viability of the macrophages was measured 24 h to 72 h after adding the inhibitors of APP metabolism (A) or transfection with siRNA (B) with the Cytotox96 non-radioactive assay. This assay quantifies the amount of lactate dehydrogenase (LDH) that is released by damaged cells photometrically. Measurements were carried out in duplicates. Each point represents a biological replicate and is the mean value of the duplicates. As can be seen in the figure, neither the inhibitors of APP metabolism (n=5) nor the transfection with siRNA (n=5) lead to increased levels of LDH in the media. Mark that the absolute absorption values given in the figures can not be compared between the two diagrams as the incubation time of the assay varied.

Additional figure 2: Time- and dose-dependency of phagocytosis.

Spitzer 2019 - monocyte APP - additional figure 2.tif

Primary human macrophages were isolated and cultured in the same way as for the experiments indicated above. Phagocytosis was evaluated by flow cytometry after adding 1 µm fluorescent polystyrene particles to the cultures. Each experiment was repeated with at least five cultures of different donors and the measurement of phagocytosis was performed in duplicate wells. According to these experiments, a concentration of 20 particles /cell and a timepoint of 240 minutes after the addition of the particles was chosen.

Figures
Structure of the tripartite β-secretase inhibitor TGL-189 Within the tripartite structure the commercially available β-secretase inhibitor GL-189 (E-V-N-Sta-V-A-E-F-NH₂, shown in red) is linked via a spacer of optimal length (shown in blue) to a hydrophobic membrane anchor (shown in green) to achieve optimal inhibitory effects at the site of cleavage and reduce unspecific pharmacological side effects (31, 32). The chemical structure of the inhibitor has been published by Schieber et al. and is named substance 8g in the respective manuscript (32).

Western blots of Aβ peptides and APP. (A, B) representative western blot and semiquantitative assessment of the Aβ peptides secreted by primary human macrophages after inhibition of APP processing by the β-secretase inhibitor TGL-
189 or the β-secretase inhibitor DAPT. 72 hours after the addition of TGL-189 or DAPT in the indicated concentrations the media were collected. Cultures treated only with the solvent of the substances (DMSO) served as control (Con). Aβ peptides were analyzed after immunoprecipitation by SDS-Page containing 8 M Urea and subsequent immunoblot. Aβ1-40 was added as a standard. The bands are labeled according to previously published in depth analysis of Aβ peptides secreted by monocytes/macrophages (22-24). According to the results, a concentration of 500 nM for TGL-189 and 10 μM for DAPT were chosen for the experiments. (C, D) Representative western blot and semiquantitative assessment of macrophage APP after siRNA knock-down of APP. Transfection of non-coding siRNA served as additional control (mock). The analysis of Aβ and APP was performed at the same time point, when the experiments were carried out. Each point represents the result of a biological replicate.
Reduced secretion of IL-6 and TNFα after inhibition of APP processing. IL-6, TNFα and IL-10 were determined by ELISA in cultures of primary human monocyte derived macrophages (n=5). Cultures were unstimulated (upper row), stimulated with 1 µm polystyrene particles (7 particles/cell) (middle row) or stimulated with 10 ng/ml LPS (bottom row). The secretion of Aβ peptides was inhibited with 500 nM of the β-secretase inhibitor TGL-189 or 10 µM of the γ-secretase inhibitor DAPT. Results are presented as mean with standard deviation. ELISA were carried out in duplicates. Each point represents a biological replicate and is the mean value of the duplicates. The significance of the differences was evaluated with the ratio-paired t-test between cultures treated with secretase inhibitors and those without. * p < 0.05; ** p < 0.01
Reduced secretion of IL-6 and IL-10 after knock-down of APP. IL-6 (n=4), TNFα (n=5) and IL-10 (n=4) were determined by ELISA in cultures of primary human monocyte derived macrophages. Cultures were unstimulated (upper row), stimulated with 1 µm polystyrene particles (7 particles/cell) (middle row), or stimulated with 10 ng/ml LPS (bottom row). The expression of APP was inhibited by transfection with siRNA. Cultures transfected with non-coding siRNA served as control (mock). Results are presented as mean with standard deviation. ELISA were carried out in duplicates. Each point represents a biological replicate and is the mean value of the duplicates. Significance of the differences was evaluated with the ratio-paired t-test between mock-transfected and APP-transfected macrophages. *** p < 0.001
Figure 5

No change of the phagocytotic activity after inhibition of APP processing or knock-down of APP. Macrophages were treated with 500 nM of the β-secretase inhibitor TGL-189 or 10 µM of the γ-secretase inhibitor, DAPT (n=9). Alternatively, APP was knocked-down by siRNA (n=5). Phagocytotic activity of the macrophages was determined by flow cytometry 240 minutes after addition of fluorescent 1 µm polystyrene particles. Results are presented as mean with standard deviation of the measured mean fluorescence intensity (MFI) of the macrophages after phagocytosis. Measurements were carried out in duplicates. Each point represents a biological replicate and is the mean value of the duplicates. Phagocytosis was also evaluated by comparing the fraction of macrophages that contained at least one fluorescent particle normalized in the same way.
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Additional Figure 2.png
Additional Figure 1.png