MULTIPLICATION MAPS OF LINEAR SYSTEMS ON SMOOTH PROJECTIVE TORIC SURFACES

NAJMUDDIN FAHRUDDIN

Abstract. Let X be a smooth projective toric surface and L and M two line bundles on X. If L is ample and M is generated by global sections, then we show that the natural map $H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M)$ is surjective. We also consider a generalization to the case when M is arbitrary line bundle with $h^0(X, M) > 0$.

In this note we shall prove the following results:

Theorem 1. Let X be a smooth projective toric surface, L an ample line bundle on X, and M a line bundle on X which is generated by global sections. Then the multiplication map $H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M)$ is surjective.

Theorem 2. Let X be a smooth projective toric surface and L an ample line bundle on X. Then there exists a constant $C(L)$ such that for all line bundles M on X with $h^0(X, M) \neq 0$, $\dim(\text{coker}[H^0(X, L) \otimes H^0(X, M) \to H^0(X, L \otimes M)]) \leq C(L)$.

We do not know if either of these results holds if $\dim(X) > 2$ or if $\dim(X) = 2$ and X is singular. Similar questions have been raised by Oda [4].

1. We refer the reader to [1] or [3] for basic facts about toric varieties.

From now on $X = X(\Delta)$ will always be a smooth projective toric surface associated to a fan Δ in $\mathbb{N}R$, where M (resp. N) is the lattice of characters (resp. co-characters) of a 2-dimensional algebraic torus. Any divisor on X is linearly equivalent to a divisor $D = \sum_{i=1}^{n} a_i D_i$ with $a_i \in \mathbb{Z}$, and the D_i’s are divisors on X invariant under the torus action; these are in 1-1 correspondence with the rays in Δ. (We assume that the indices are chosen so that D_i and D_{i+1} correspond to rays forming the boundary of a cone in Δ. Here, and in what follows, we assume that subscripts are considered modulo n.). Moreover, if D is effective then we may assume that all $a_i \geq 0$ and we denote by PD the corresponding polygon in M_R.

We let v_i be the minimal lattice vector in the ray corresponding to D_i.

The proof of Theorem 1 is easily reduced to combinatorial statements about convex polygons, using the well-known dictionary relating equivariant divisors D with $O(D)$ generated by sections and lattice polygons. We may assume that L and M are of the form $O(D)$ and $O(E)$ for some equivariant divisors $D = \sum_{i=1}^{n} a_i D_i$ and $E = \sum_{i=1}^{n} b_i D_i$. Then it suffices to prove that $(PD \cap M) + (PE \cap M) = (PD + PE) \cap M$.

For a divisor D as above with $O(D)$ generated by sections, let $\sigma_i(D) = PD \cap L_i$ where $L_i = \{ u \in M_R | \langle u, v_i \rangle = -a_i \}$. If D is ample then $\sigma_i(D)$ is always an edge of PD but in general it could also be a vertex.
Lemma 1. Let D, E be as above and assume that D is ample and $\mathcal{O}(E)$ is generated by sections. Then $\sigma_i(D + E) = \sigma_i(D) + \sigma_i(E)$ for all $i \in [1, n]$.

Proof. This follows easily from the fact that $P_{D+E} = P_D + P_E$. □

The proof of the following lemma is also left to the reader.

Lemma 2. Let $[a_1, b_1]$ and $[a_2, b_2]$ be closed intervals of \mathbb{R}. Suppose $[a_1, b_1] \cap \mathbb{Z} \neq \emptyset$ and $a_2, b_2 \in \mathbb{Z}$. Then any element z of $[a_1 + a_2, b_1 + b_2] \cap \mathbb{Z}$ is of the form $c_1 + c_2$ for some $c_i \in [a_i, b_i] \cap \mathbb{Z}$, $i = 1, 2$.

To prove Theorem 1 we will first reduce to the case where P_E is a triangle of a special kind, and then explicitly prove the equality in this case.

Proof of Theorem 1. We first dispose off the trivial cases: If P_E is a point then the statement is obvious and if P_E is 1-dimensional, hence a line segment, then the proof is elementary and we leave it to the reader (use Lemma 2).

Let $s : M_\mathbb{R} \times M_\mathbb{R} \to M_\mathbb{R}$ be the sum map $(x, y) \mapsto x + y$. Then $P_{D+E} = P_D + P_E = s(P_D \times P_E)$. Let $p \in P_{D+E} \cap M$ and let $Q = s^{-1}(p) \cap (P_D \times P_E)$. This is a convex polygon (possibly degenerate) in $M_\mathbb{R} \times M_\mathbb{R}$ and we let $Q_i = \pi_i(Q)$, where $\pi_i, i = 1, 2$, are the two projections. So $Q_1 \subset P_D$ and $Q_2 \subset P_E$ are also convex polygons.

Let $(q_1, q_2) \in Q$ be such that q_2 is a vertex of Q_2. If q_2 is in the interior of P_E then $q_1 \in Q_1$ must be a vertex of P_D (sic), hence $q_1 \in M$. Then $q_2 \in M$ and $p = q_1 + q_2$, so we are done. Otherwise, since Q_2 must have at least one vertex, it follows that there exists a point $q \in Q_2$ which lies on the boundary of P_E. If $q \in M$, then we are done so we may assume that q lies in the interior of an edge σ of P_E. We let m_1, m_2 be the two end points of σ.

Recall that $P_E = \{u \in M_\mathbb{R} | \langle u, v_i \rangle \geq -b_i \text{ for all } i \}$. We may assume that the edge σ corresponds to v_1, so $\langle m_1, v_1 \rangle = -b_1$, $i = 1, 2$. Now for each $i = 1, \ldots, n$, let $c_i = \min\{c \in \mathbb{Z} | \langle m_j, v_i \rangle \geq -c \text{ for } j = 1, 2\}$. Then $c_1 = b_1$ and $c_i \leq b_i$ for all i. Let $P = \{u \in M_\mathbb{R} | \langle u, v_i \rangle \geq -c_i \text{ for all } i\}$; by construction $P \subset P_E$ and m_1 and m_2 are vertices of P. If $P = \sigma$ then we are done, so we may assume that P is 2-dimensional. Without loss of generality we may assume that $\langle m_1, v_2 \rangle > \langle m_2, v_2 \rangle$ and we let $k = \max\{i \in [2, n] | \langle m_1, v_i \rangle > \langle m_2, v_i \rangle\}$. So for $i \in [1, k]$, $c_i = -\langle m_2, v_i \rangle$ and for $i \in [k+1, n]$, $c_i = -\langle m_1, v_i \rangle$. By our assumption that P is not 1-dimensional it follows that $\langle m_1, v_i \rangle \neq \langle m_2, v_i \rangle$ for all $i \in [2, n]$. Then $P = \{u \in M_\mathbb{R} | \langle u, v_i \rangle \geq -c_i \text{ for } i = 1, k, k+1\}$, hence P a triangle. Since X is smooth it follows that the third vertex is also in M, so P corresponds to an equivariant divisor on X whose associated line bundle is generated by sections.

Since $q \in P$ by construction, by replacing P_E by P we have reduced to the case when P_E is a triangle with the further property that there exists an $i \in [1, n]$ such that $\sigma_i(E)$ and $\sigma_{i+1}(E)$ are both (non-degenerate) edges of P_E. By using the basis of M dual to $\{v_i, v_{i+1}\}$, and after possible translation by elements of M (which does not affect the hypotheses or the conclusion), we have the following picture: P_E is the convex span of the points $(0, 0), (a, 0), (0, b)$, for some $a, b > 0$, P_D is entirely contained in the first quadrant, and $(0, 0)$ is also a vertex of P_D (consequently P_D must also have edges along the positive x and y axes).

We shall now complete the proof of the theorem by analysing this case. Decompose the region $P_D + P_E \setminus P_D$ as a union of the three regions, A, B and C, as illustrated in the figure below — to see that this is correct we use Lemma 2. Note that A or B may be empty; this happens precisely when $k = 2$ or $k = n - 1$.
We claim that any lattice point in the region A is of the form $m + (x, 0)$ where $m \in P_D \cap M$ and $0 \leq x \leq a$. This is because the trapezium, two of whose sides are the base of the triangle P and the edge U of P_D, is contained in P_D and both these sides contain at least two lattice points each. Thus each horizontal line which contains a lattice element of A also contains a lattice element of P_D, so the claim follows by Lemma 2. By a symmetric argument, any lattice point in the region B is of the form $m + (0, y)$ where $m \in P_D \cap M$ and $0 \leq y \leq b$.

Any point in the region C is contained in $P + P_E$. Since P and P_E are similar triangles (i.e. are translates of multiples of the same triangle) one easily sees that any lattice point in $P + P_E$ is the sum of lattice points in P and P_E.

The following lemma is the key to the deduction of Theorem 2 from Theorem 1.

Lemma 3. Let $D = \sum_{i=1}^{n} a_i D_i$ be an effective divisor on X. Then there exists integers b_i, $0 \leq b_i \leq a_i$, such that for $D' = \sum_{i=1}^{n} b_i D_i$, $\mathcal{O}(D')$ is generated by its sections and the natural map $H^0(X, \mathcal{O}(D')) \to H^0(X, \mathcal{O}(D))$ is an isomorphism.

Proof. Let P_D be the polygon associated to D. Let $S = P_D \cap M$ and let P be the convex hull of the points in S. For each i, $1 \leq i \leq n$, let $b_i = \min \{ c \in \mathbb{Z} \mid \langle s, v_i \rangle \geq -c \text{ for all } s \in S \}$. Since $0 \in S$ and $S \subseteq P_D$, it follows that $0 \leq b_i \leq a_i$. We claim that P is equal to $P' := \{ u \in M_{\mathbb{R}} \mid \langle u, v_i \rangle \geq -b_i \text{ for all } i \}$.

Consider the lines $L_i = \{ u \in M_{\mathbb{R}} \mid \langle u, v_i \rangle = -b_i \}$. By construction, each of these lines contains a point s_i of S and all points of S are contained in the “positive” half planes $H_i = \{ u \in M_{\mathbb{R}} \mid \langle u, v_i \rangle \geq -b_i \}$. It suffices to show that the point
$m_i = L_i \cap L_{i+1}$ is in S for all i. Suppose not; then there exists i and j such that $\langle m_i, v_j \rangle < -b_j$. Since $\langle s_i, v_j \rangle \geq -b_j$ and $\langle s_{i+1}, v_j \rangle \geq -b_j$, it follows L_j must intersect L_i and L_{i+1} along the segments $[s_i, m_i]$ and $[s_{i+1}, m_i]$. But looking at the normal rays, this says that the ray along v_j must lie between the rays along v_i and v_{i+1}. But we have assumed that the v_i’s are cyclically ordered, so this is a contradiction.

Since $P = P'$, it follows that P corresponds to a divisor D' on X of the required form. \square

Lemma 4. There exists a constant C depending only on X with the following property: Let D, D' be as in Lemma 3 and let $J = \{i \in [1, n] \mid b_i < a_i\}$. Then the number of lattice points on all the edges of P'_D whose normal ray contains v_j for some $j \in J$ is bounded by C.

Proof. This follows because there are only finitely many rays in Δ, the fan of X. If we choose a Euclidean metric on M_R, then there are only finitely many possibilities for the angles at the vertices of any polygon associated to a divisor on X. Bounding the number of lattice points is also the same as bounding the lengths of edges. Suppose that the length of the edge corresponding to v_j is not bounded. Let $D'' = \sum_{i=1}^{n} c_i D_i$ with $c_i = b_i$ for $i \neq j$ and $c_j = b_j + 1$. Then $P'_D \subset P'' \subset P_D$ and if the length of is sufficiently large, P'_D would contain lattice points not contained in P_D, contradicting the defining property of D'. \square

The next lemma implies that even though there may be infinitely many divisors D giving rise to the same D' as in Lemma 3, up to translation by elements of M there are only finitely many polygons occurring as connected components of $P_D \setminus P'_{D'}$, where D ranges over all effective divisors on X.

Lemma 5. There exists a constant C_2 depending only on X such that for D, D' and J as in Lemma 3 and $J' = [j_1, j_2]$ any subinterval of $[1, n]$ contained in J, exactly one of the following holds:
1) $[1, n] \setminus J'$ contains at most one element. In this case all the edges of $P_{D'}$ have length $\leq C_1$, and there exists $J'' \subset [1, n]$ such that $a_j \leq C_2$ for $j \in J''$ and such that the polyhedron $P(J'') = \{u \in M_R \mid \langle u, v_j \rangle \geq -a_j \text{ for all } j \in J''\}$ is bounded.
2) $[1, n] \setminus J'$ contains at least two elements, so $j_1 - 1$ and $j_2 + 1$ are distinct elements of $[1, n]$. Consider the lines L_{j_1-1} and L_{j_2+1}. Then either
2a) The lines intersect in a point p such that any line segment joining p and σ_j for any $j \in J'$ does not contain any point of $P_{D'}$ except for an endpoint. Or
2b) The two lines are parallel. Then there exists $j \in J'$ such that $a_j - b_j \leq C_2$. Or
2c) There exists a subset J'' of J such that $a_j - b_j \leq C_2$ for $j \in J''$ and such that the region $P(J'') = \{u \in M_R \mid \langle u, v_j \rangle \geq -a_j \text{ for all } j \in J'' \cup \{j_1 - 1, j_2 + 1\}\}$ is bounded.

Proof. The lemma is essentially a consequence of Lemma 4. Since there are only finitely many possibilities for the lengths of the edges of $P_{D'}$ corresponding to $j \in J$, the number of possible configurations (upto translation) of the subset of the boundary of $P_{D'}$ which is the union of the edges corresponding to the j’s in J' is also finite. (In case 1), even the number of possible D' is finite.) So it is enough to
find a constant C which works in each case separately, since we can then let C_2 be the maximum of all these.

First assume that we are in case 1). Let $\Sigma(J')$ be the collection of subsets J'' of J' such that the rays of $\Delta(X)$ corresponding to $j \in J''$ give rise to a complete fan i.e. any open half-space in $N_\mathbb{R}$ must contain one of these rays; so these are precisely the subsets J'' for which $P(J'')$ is always bounded. Suppose the conclusions in case 1) do not hold. Since there are only a finite number of possible D', we may consider each of them separately, so we may assume that there is no constant which works for some fixed D'. Since J' is a finite set it follows that there exists a sequence of divisors $D^l = \sum_{i=1}^n a_i^l D_i$ with $D^l = D'$ and a subset J''' of J' such that $a_i^l \to \infty$ as $j \to \infty$ for all $i \in J'''$. Furthermore $J''' \cap J'' \neq \emptyset$ for all $J'' \in \Sigma(J')$. It follows that $\cup_l P_{D^l} \supset \{u \in M_\mathbb{R} | (u, v_i) \geq -b_i \text{ for all } i \in J' \setminus J''\}$. But $J' \setminus J'''$ is not in $\Sigma(J')$ so $\cup_l P_{D^l}$ contains an unbounded polyhedron and hence must contain infinitely many elements of M. But this contradicts the assumption that $D^l = D'$ for all l.

Case 2) is handled in an analogous manner, the remarks at the beginning of the proof allowing us to consider essentially one D' at a time. For 2a) there is nothing to prove and 2b) is elementary. For 2c) we let $S(J')$ be as above except that we require that $J'' \cup \{j_1, j_2\}$ give rise to a complete fan; it follows by assumption that $S(J') \neq \emptyset$. The reason for the $a_j - b_j$ occurring here, instead of just the a_j in case 1), is because we only have finiteness of possible configurations up to translation. (Note that the lengths of the edges corresponding to $i \notin J$ have no effect, since the claim is “local” around a given J'.)

Proof of Theorem 3. Let $C = O(D)$ and $M = O(E)$. Let E' be the divisor associated to E using Lemma 3. By Theorem 3 it follows that the map $H^0(X, O(D)) \otimes H^0(X, O(E')) \to H^0(X, O(D) \otimes O(E'))$ is surjective or equivalently the map $(P_D \cap M) + (P_{E'} \cap M) \to (P_{D+E'} \cap M)$ is surjective. By combining the previous three lemmas, it follows that that there are only finitely many possibilities for the connected components of $P_{D+E'} \setminus P_{D+E'}$, up to translation by lattice points. This is because D is fixed, so the lengths of the edges of $P_{D+E'}$ corresponding to $j \in J$ are bounded independently of E (use Lemma 3). The number of lattice points in $P_{D+E'} \setminus P_{D+E'}$ can thus be bounded by a constant depending only on D, whence the theorem.

Acknowledgements. This note was written in response to a question of V. Srinivas. I thank W. Fulton for informing me about [2] and T. Oda for sending it to me.

References

[1] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[2] T. Oda, Problems on Minkowski sums of convex polytopes; preprint.
[3] Convex bodies and algebraic geometry, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, INDIA

E-mail address: naf@math.tifr.res.in