QUASI *-ALGEBRAS OF MEASURABLE OPERATORS

FABIO BAGARELLO, CAMILLO TRAPANI, AND SALVATORE TRIOLO

ABSTRACT. Non-commutative L^p-spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For $p \geq 2$ they are also proved to possess a sufficient family of bounded positive sesquilinear forms satisfying certain invariance properties. CQ*-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra (X, \mathfrak{A}_0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ*-algebra of this type.

1. INTRODUCTION AND PRELIMINARIES

A quasi *-algebra is a couple (X, \mathfrak{A}_0), where X is a vector space with involution *, \mathfrak{A}_0 is a *-algebra and a vector subspace of X and X is an \mathfrak{A}_0-bimodule whose module operations and involution extend those of \mathfrak{A}_0. Quasi *-algebras were introduced by Lassner [1, 2, 12] to provide an appropriate mathematical framework where discussing certain quantum physical systems for which the usual algebraic approach made in terms of C*-algebras revealed to be insufficient. In these applications they usually arise by taking the completion of the C*-algebra of observables in a weaker topology satisfying certain physical requirements. The case where this weaker topology is a norm topology has been considered in a series of previous papers [3]-[7], where CQ*-algebras were introduced: a CQ*-algebra is, indeed, a quasi *-algebra (X, \mathfrak{A}_0) where X is a Banach space with respect to a norm $\| \cdot \|$ possessing an isometric involution and \mathfrak{A}_0 is a C*-algebra with respect to a norm $\| \cdot \|_0$, which is dense in $X[\| \cdot \|]$.

Since any C*-algebra \mathfrak{A}_0 has a faithful *-representation π, it is natural to pose the question if this completion also can be realized as a quasi *-algebra of operators affiliated to $\pi(\mathfrak{A}_0)^\prime$. The Segal-Nelson theory [10, 11] of non-commutative integration provides a number of mathematical tools for dealing with this problem.

The paper is organized as follows. In Section 2 we consider non-commutative L^p-spaces constructed starting from a von Neumann algebra \mathfrak{M} and a normal, semifinite, faithful trace τ as Banach quasi *-algebras. In particular if φ is finite, then it is shown that $(L^p(\varphi), \mathfrak{M})$ is a CQ*-algebra. If $p \geq 2$, they even possess a sufficient family of positive sesquilinear forms enjoying certain invariance properties.

In Section 3, starting from a family \mathfrak{F} of normal, finite traces on a von Neumann algebra \mathfrak{M}, we prove that the completion of \mathfrak{M} with respect to a norm defined in natural

2000 Mathematics Subject Classification. Primary 46L08; Secondary 46L51, 47L60.

Key words and phrases. Banach C*-modules, Non commutative integration, Partial algebras of operators.
way by the family \mathcal{F} is indeed a CQ*-algebra consisting of measurable operators, in Segal’s sense, and therefore affiliated with \mathcal{M}.

Finally, in Section 4, we prove that any CQ*-algebra (X, A_0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be continuously embedded into the CQ*-algebra of measurable operators constructed in Section 3.

In order to keep the paper sufficiently self-contained, we collect below some preliminary definitions and propositions that will be used in what follows.

Let (X, A_0) be a quasi *-algebra. The unit of (X, A_0) is an element $e \in A_0$ such that $xe = ex = x$, for every $x \in X$. A quasi *-algebra (X, A_0) is said to be locally convex if X is endowed with a topology τ which makes of X a locally convex space and such that the involution $a \mapsto a^*$ and the multiplications $a \mapsto ab$, $a \mapsto ba$, $b \in A_0$, are continuous. If τ is a norm topology and the involution is isometric with respect to the norm, we say that (X, A_0) is a normed quasi *-algebra and, if it is complete, we say it is a Banach quasi*-algebra.

Definition 1.1. Let (X, A_0) be a Banach quasi *-algebra with norm $\|\cdot\|$ and involution *. Assume that a second norm $\|\cdot\|_0$ is defined on A_0, satisfying the following conditions:

- (a.1) $\|a^*a\|_0 = \|a\|^2_0$, $\forall a \in A_0$;
- (a.2) $\|a\| \leq \|a\|_0$, $\forall a \in A_0$;
- (a.3) $\|ax\| \leq \|a\|_0\|x\|$, $\forall a \in A_0, x \in X$;
- (a.4) $A_0[\|\cdot\|_0]$ is complete.

Then we say that (X, A_0) is a CQ*-algebra.

Remark 1.2. (1) If $A_0[\|\cdot\|_0]$ is not complete, we say that (X, A_0) is a pre CQ*-algebra.

(2) In previous papers the name CQ*-algebra was given to a more complicated structure where two different involutions were considered on A_0. When these involutions coincide, we spoke of a proper CQ*-algebra. In this paper only this case will be considered and so we systematically omit the term proper.

The following basic definitions and results on non-commutative measure theory are also needed in what follows.

Let \mathcal{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathcal{M}_+. Put

$$\mathcal{J} = \{X \in \mathcal{M} : \varphi(|X|) < \infty\}.$$

\mathcal{J} is a *-ideal of \mathcal{M}.

We denote with $\text{Proj}(\mathcal{M})$, the lattice of projections of \mathcal{M}.

Definition 1.3. A vector subspace D of \mathcal{H} is said to be strongly dense (resp., strongly φ-dense) if

- $U'U \subset D$ for any unitary U' in \mathcal{M}'
- there exists a sequence $P_n \in \text{Proj}(\mathcal{M})$: $P_nH \subset D, P_n^\perp \downarrow 0$ and (P_n^\perp) is a finite projection (resp., $\varphi(P_n^\perp) < \infty$).
Clearly, every strongly \(\varphi \)-dense domain is strongly dense.

Throughout this paper, when we say that an operator \(T \) is affiliated with a von Neumann algebra, written \(T \eta \mathcal{M} \), we always mean that \(T \) is closed, densely defined and \(TU \supseteq UT \) for every unitary operator \(U \in \mathcal{M} \).

Definition 1.4. An operator \(T \eta \mathcal{M} \) is called

- measurable (with respect to \(\mathcal{M} \)) if its domain \(D(T) \) is strongly dense;
- \(\varphi \)-measurable if its domain \(D(T) \) is strongly \(\varphi \)-dense.

From the definition itself it follows that, if \(T \) is \(\varphi \)-measurable, then there exists \(P \in \text{Proj}(\mathcal{M}) \) such that \(TP \) is bounded and \(\varphi(P^\perp) < \infty \).

We remind that any operator affiliated with a finite von Neumann algebra is measurable [10, Cor. 4.1] but it is not necessarily \(\varphi \)-measurable.

2. Non-commutative \(L^p \)-spaces as CQ *-algebras

In this Section we will discuss the structure of the non-commutative \(L^p \)-spaces as quasi *-algebras. We begin with recalling the basic definitions.

Let \(\mathcal{M} \) be a von Neumann algebra and \(\varphi \) a normal faithful semifinite trace defined on \(\mathcal{M}_+ \). For each \(p \geq 1 \), let

\[
\mathcal{J}_p = \{ X \in \mathcal{M} : \varphi(|X|^p) < \infty \}.
\]

Then \(\mathcal{J}_p \) is a *-ideal of \(\mathcal{M} \). Following [11], we denote with \(L^p(\varphi) \) the Banach space completion of \(\mathcal{J}_p \) with respect to the norm

\[
\|X\|_p := \varphi(|X|^p)^{1/p}, \quad X \in \mathcal{J}_p.
\]

One usually defines \(L^\infty(\varphi) = \mathcal{M} \). Thus, if \(\varphi \) is a finite trace, then \(L^\infty(\varphi) \subseteq L^p(\varphi) \) for every \(p \geq 1 \). As shown in [11], if \(X \in L^p(\varphi) \), then \(X \) is a measurable operator.

Proposition 2.1. Let \(\mathcal{M} \) be a von Neumann algebra and \(\varphi \) a normal faithful semifinite trace on \(\mathcal{M}_+ \). Then \((L^p(\varphi), L^\infty(\varphi) \cap L^p(\varphi)) \) is a Banach quasi *-algebra.

If \(\varphi \) is a finite trace and \(\varphi(\mathbb{I}) = 1 \), then \((L^p(\varphi), L^\infty(\varphi)) \) is a CQ*-algebra.

Proof. Indeed, it is easily seen that the norms \(\| \cdot \|_\infty \) of \(L^\infty(\varphi) \cap L^p(\varphi) \) and \(\| \cdot \|_p \) on \(L^p(\varphi) \) satisfy the conditions (a.1)-(a.2) of Definition [11]. Moreover, if \(\varphi \) is finite, then \(L^\infty(\varphi) \subseteq L^p(\varphi) \) and thus \((L^p(\varphi), L^\infty(\varphi)) \) is a CQ*-algebra. \(\square \)

Remark 2.2. Of course the condition \(\varphi(\mathbb{I}) = 1 \) can be easily removed by rescaling the trace.

Definition 2.3. Let \((\mathcal{X}, \mathcal{A}_0) \) be a Banach quasi *-algebra. We denote with \(S(\mathcal{X}) \) the set of all sesquilinear forms \(\Omega \) on \(\mathcal{X} \times \mathcal{X} \) with the following properties

(i) \(\Omega(x, x) \geq 0 \quad \forall x \in \mathcal{X} \)
(ii) \(\Omega(xa, b) = \Omega(a, x^*b) \quad \forall x \in \mathcal{X}, \forall a, b \in \mathcal{A}_0 \)
(iii) \(|\Omega(x, y)| \leq \|x\| \|y\| \quad \forall x, y \in \mathcal{X} \).

A subfamily \(\mathcal{A} \) of \(S(\mathcal{X}) \) is called sufficient if \(x \in \mathcal{X}, \Omega(x, x) = 0, \text{ for every } \Omega \in \mathcal{A} \), implies \(x = 0 \).
If \((X, \mathfrak{A}_0)\) is a Banach quasi \(*\)-algebra, then the Banach dual space \(X^\sharp\) of \(X\) can be made into a Banach \(\mathfrak{A}_0\)-bimodule with norm
\[
\|f\|_\sharp = \sup_{\|x\| \leq 1} |\langle x, f \rangle|, \quad f \in X^\sharp,
\]
by defining, for \(f \in X^\sharp\), \(a \in \mathfrak{A}_0\), the module operations in the following way:
\[
\langle x, f \circ a \rangle := \langle ax, f \rangle, \quad x \in X,
\]
\[
\langle x, a \circ f \rangle := \langle xa, f \rangle, \quad x \in X.
\]
As usual, an involution \(f \mapsto f^*\) can be defined on \(X^\sharp\) by \(\langle x, f^* \rangle = \overline{\langle x^*, f \rangle}\), \(x \in X\).

With these notations we can easily prove the following (see, also [8]):

Proposition 2.4. \((X, \mathfrak{A}_0)\) be a Banach quasi \(*\)-algebra and \(\Omega\) a positive sesquilinear form on \(X \times X\). The following statements are equivalent:

(i) \(\Omega \in \mathcal{S}(X)\);

(ii) there exists a bounded conjugate linear operator \(T : X \to X^\sharp\) with the properties

(ii.1) \(\langle x, Tx \rangle \geq 0\), \(\forall x \in X\);

(ii.2) \(T(ax) = (Tx) \circ a^*\), \(\forall a \in \mathfrak{A}_0\), \(x \in X\);

(ii.3) \(\|T\|_{\mathcal{B}_+(X^\sharp)} \leq 1\);

(ii.4) \(\Omega(x, y) = \langle x, Ty \rangle\), \(\forall x, y \in X\).

We will now focus our attention on the question as to whether for the Banach quasi \(*\)-algebra \((L^p(\varphi), L^\infty(\varphi) \cap L^p(\varphi))\), the family \(\mathcal{S}(L^p(\varphi))\), that we are going to describe, is or is not sufficient.

Before going forth, we remind that many of the familiar results of the ordinary theory of \(L^p\)-space hold in the very same form for the non-commutative \(L^p\)-spaces. This is the case, for instance, of Hölder’s inequality and also of the statement that characterizes the dual of \(L^p\): the form defining the duality is the extension of \(\varphi\) (this extension will be denoted with the same symbol) to products of the type \(XY\) with \(X \in L^p(\varphi)\), \(Y \in L^p(\varphi)\) with \(p^{-1} + p' = 1\) and one has \((L^p(\varphi))^\sharp \simeq L^p(\varphi)\).

In order to study \(\mathcal{S}(L^p(\varphi))\), we introduce, for \(p \geq 2\), the following notation
\[
\mathcal{B}_+^p = \{X \in L^{p/(p-2)}(\varphi), \ X \geq 0, \|X\|_{p/(p-2)} \leq 1\}
\]
where \(p/(p-2) = \infty\) if \(p = 2\).

For each \(W \in \mathcal{B}_+^p\), we consider the right multiplication operator
\[
R_W : L^p(\varphi) \to L^{p/(p-1)}(\varphi); \quad R_W X = XW, \quad X \in L^p(\varphi).
\]
Since \(L^\infty(\varphi) \cap L^p(\varphi) = \mathcal{J}_p\), we use, for shortness, the latter notation.

Lemma 2.5. The following statements hold.

(i) Let \(p \geq 2\). For every \(W \in \mathcal{B}_+^p\), the sesquilinear form \(\Omega(X, Y) = \varphi[X(R_W Y)^*]\) is an element of \(\mathcal{S}(L^p(\varphi))\);

(ii) If \(\varphi\) is finite, then for each \(\Omega \in \mathcal{S}(L^p(\varphi))\), there exists \(W \in \mathcal{B}_+^p\) such that
\[
\Omega(X, Y) = \varphi[X(R_W Y)^*], \quad \forall X, Y \in L^p(\varphi).
\]
Lemma 3.1. Let M be a von Neumann algebra in Hilbert space H, $\{P_\alpha\}_{\alpha \in \mathcal{I}}$ a family of projections of M with

$$\bigvee_{\alpha \in \mathcal{I}} P_\alpha = P.$$

If $A \in M$ and $AP_\alpha = 0$ for every $\alpha \in \mathcal{I}$, then $A \overline{P} = 0$.

Proof. (i): We check that the sesquilinear $\Omega(X,Y) = \varphi[X(R_wY)\ast], X,Y \in L^p(\varphi)$ satisfies the conditions (i),(ii),(iii) of Definition 2.3. For every $X \in L^p(\varphi)$ we have

$$\Omega(X,X) = \varphi[X(R_wX)\ast] = \varphi[X(XW)\ast] = \varphi[(XW)\ast X] = \varphi[W|X|^2] \geq 0.$$

Then we define φ and assume, in addition, that the following condition (P) is satisfied:

Then we define φ and assume, in addition, that the following condition (P) is satisfied:

(ii) Let $\Omega \in S(L^p(\varphi))$. Let $T : L^p(\varphi) \to L^p(\varphi)$ be the operator which represents Ω in the sense of Proposition 2.4. The finiteness of φ implies that $J_p = \mathcal{M}$; thus we can put $W = T(\mathbb{I})$. It is easy to check that $R_w = T$. This concludes the proof. \hfill \Box

Proposition 2.6. If $p \geq 2$, $S(L^p(\varphi))$ is sufficient.

Proof. Let $X \in L^p(\varphi)$ be such that $\Omega(X,X) = 0$ for every $\Omega \in S(L_p(\varphi))$. By the previous lemma, since $|X|^{p-2} = L^{p-2}(\varphi)$, the right multiplication operator R_w with $W = \frac{|X|^{p-2}}{\alpha}, \alpha \in \mathbb{R}$ satisfying $\|\frac{|X|^{p-2}}{\alpha}\|_{p/p-2} \leq 1$, represents a sesquilinear form $\Omega \in S(L_p(\varphi))$. By the assumption, $\Omega(X,X) = 0$. We then have

$$\Omega(X,X) = \varphi[X(R_wX)\ast] = \varphi[(XW)\ast X] = \varphi[|X|^{p-2}] = 0 \Rightarrow X = 0,$$

by the faithfulness of φ. \hfill \Box

3. CQ*-algebras over finite von Neumann algebras

Let \mathcal{M} be a von Neumann algebra and $\mathcal{F} = \{\varphi_\alpha; \alpha \in \mathcal{I}\}$ be a family of normal, finite traces on \mathcal{M}. As usual, we say that the family \mathcal{F} is sufficient if for $X \in \mathcal{M}$, $X \geq 0$ and $\varphi_\alpha(X) = 0$ for every $\alpha \in \mathcal{I}$, then $X = 0$ (clearly, if $\mathcal{F} = \{\varphi\}$, then \mathcal{F} is sufficient if, and only if, φ is faithful). In this case, \mathcal{M} is a finite von Neumann algebra [15] ch.7. We assume, in addition, that the following condition (P) is satisfied:

(P) $\varphi_\alpha(\mathbb{I}) \leq 1, \forall \alpha \in \mathcal{I}.$

Then we define

$$\|X\|_{p,\mathcal{I}} = \sup_{\alpha \in \mathcal{I}} \|X\|_{p,\varphi_\alpha} = \sup_{\alpha \in \mathcal{I}} \varphi_\alpha(|X|^p)^{1/p}.$$

Since \mathcal{F} is sufficient, $\|\cdot\|_{p,\mathcal{I}}$ is a norm on \mathcal{M}.

In the sequel we will need the following Lemmas whose simple proofs will be omitted.

Lemma 3.1. Let \mathcal{M} be a von Neumann algebra in Hilbert space H, $\{P_\alpha\}_{\alpha \in \mathcal{I}}$ a family of projections of \mathcal{M} with

$$\bigvee_{\alpha \in \mathcal{I}} P_\alpha = \mathcal{P}.$$
Lemma 3.2. Let $\mathcal{F} = \{\varphi_\alpha\}_{\alpha \in I}$ be a sufficient family of normal, finite traces on the von Neumann algebra \mathcal{M} and let P_α be the support of φ_α. Then, $\vee P_\alpha = I$, where I denotes the identity of \mathcal{M}.

It is well-known that the support of each φ_α enjoy the following properties

(i) $P_\alpha \in Z(\mathcal{M})$, the center of \mathcal{M}, for each $\alpha \in I$;
(ii) $\varphi_\alpha(X) = \varphi_\alpha(XP_\alpha)$, for each $\alpha \in I$.

From the two preceding lemmas it follows that, if the P_α’s are as in Lemma 3.2, then

$AP_\alpha = 0 \quad \forall \alpha \in I \Rightarrow A = 0$.

If Condition (P) is fulfilled, then

$\|X\|_{p,I} = \sup_{\alpha \in I} \|XP_\alpha\|_{p,\alpha} \quad \forall X \in \mathcal{M}$

Clearly, the sufficiency of the family of traces and Condition (P) imply that $\| \cdot \|_{p,I}$ is a norm \mathcal{M}.

Proposition 3.3. Let $\mathcal{M}(p,I)$ denote the Banach space completion of \mathcal{M} with respect to the norm $\| \cdot \|_{p,I}$. Then $(\mathcal{M}(p,I)[\| \cdot \|_{p,I}], \mathcal{M}[\| \cdot \|_{B(H)}])$ is a CQ*-algebra.

Proof. Indeed, we have

(1) $\| X^* \|_{p,I} = \sup_{\alpha \in I} \| X^*P_\alpha \|_{p,\alpha} = \sup_{\alpha \in I} \| (XP_\alpha)^* \|_{p,\alpha} = \| X \|_{p,I} \quad \forall X \in \mathcal{M}$.

Furthermore, for every $X,Y \in \mathcal{M}$,

(2) $\| XY \|_{p,I} = \sup_{\alpha \in I} \| XY^*P_\alpha \|_{p,\alpha} \leq \| X \|_{B(H)} \sup_{\alpha \in I} \| YP_\alpha \|_{p,\alpha} = \| X \|_{B(H)} \| Y \|_{p,I}$.

Finally, condition (P) implies that

$\| X \|_{p,I} \leq \| X \|_{B(H)} \quad \forall X \in \mathcal{M}$.

From (1) and (2) it follows that $\mathcal{M}(p,I)$ is a Banach quasi *-algebra. It is clear that $\| \cdot \|_{B(H)}$ satisfies the conditions (a.1)-(a.3) of Section 1. Therefore $(\mathcal{M}(p,I), \mathcal{M})$ is a CQ *-algebra. \square

The next step consists in investigating the Banach space $\mathcal{M}(p,I)[\| \cdot \|_{p,I}]$. In particular we are interested in the question as to whether $\mathcal{M}(p,I)[\| \cdot \|_{p,I}]$ can be identified with a space of operators affiliated with \mathcal{M}. For shortness, whenever no ambiguity can arise, we write \mathcal{M}_p instead of $\mathcal{M}(p,I)$.

Let $\mathcal{F} = \{\varphi_\alpha\}_{\alpha \in I}$ be a sufficient family of normal, finite traces on the von Neumann algebra \mathcal{M} satisfying Condition (P). The traces φ_α are not necessarily faithful. Put $\mathcal{M}_\alpha = \mathcal{M}P_\alpha$, where, as before, P_α denotes the support of φ_α. Each \mathcal{M}_α is a von Neumann algebra and φ_α is faithful in $\mathcal{M}P_\alpha$ [13 Proposition V. 2.10].

More precisely,

$\mathcal{M}_\alpha := \mathcal{M}P_\alpha = \{ Z = XP_\alpha, \text{ for some } X \in \mathcal{M} \}$.

The positive cone \mathcal{M}_α^+ of \mathcal{M}_α equals the set

$\{ Z = XP_\alpha, \text{ for some } X \in \mathcal{M}^+ \}$.
For $Z = XP_\alpha \in \mathcal{M}_\alpha^+$, we put:

$$\sigma_\alpha(Z) := \varphi_\alpha(XP_\alpha).$$

The definition of $\sigma_\alpha(Z)$ does not depend on the particular choice of X. Each σ_α is a normal, finite, faithful trace on \mathcal{M}_α. It is then possible to consider the spaces $L^p(\mathcal{M}_\alpha, \sigma_\alpha), p \geq 1$, in the usual way. The norm of $L^p(\mathcal{M}_\alpha, \sigma_\alpha)$ is indicated as $\| \cdot \|_{p, \alpha}$.

Let now (X_k) be a Cauchy sequence in $\mathcal{M}[[\| \cdot \|_p]]$. For each $\alpha \in I$, we put $Z_k^{(\alpha)} = X_kP_\alpha$. Then, for each $\alpha \in I$, $(Z_k^{(\alpha)})$ is a Cauchy sequence in $\mathcal{M}_\alpha[[\| \cdot \|_{p, \alpha}]]$. Indeed, since $|Z_k^{(\alpha)} - Z_h^{(\alpha)}|^p = |X_k - X_h|^p P_\alpha$,

$$\|Z_k^{(\alpha)} - Z_h^{(\alpha)}\|_{p, \alpha} = \sigma_\alpha(|Z_k^{(\alpha)} - Z_h^{(\alpha)}|^p)^{1/p} = \varphi_\alpha(|X_k - X_h|^p P_\alpha)^{1/p} = \varphi_\alpha(|X_k - X_h|^p)^{1/p} \to 0.$$

Therefore, for each $\alpha \in I$, there exists an operator $Z^{(\alpha)} \in L^p(\mathcal{M}_\alpha, \sigma_\alpha)$ such that:

$$Z^{(\alpha)} = \| \cdot \|_{p, \alpha} - \lim_{k \to \infty} Z_k^{(\alpha)}.$$

It is now natural to ask the question as to whether there exists an operator X closed, densely defined, affiliated with \mathcal{M} which reduces to $Z^{(\alpha)}$ on \mathcal{M}_α. To begin with, we assume that the projections $\{P_\alpha\}$ are mutually orthogonal. In this case, putting $\mathcal{H}_\alpha = P_\alpha \mathcal{H}$, we have

$$\mathcal{H} = \bigoplus_{\alpha \in I} \mathcal{H}_\alpha = \{(f_\alpha) : f_\alpha \in \mathcal{H}_\alpha, \sum_{\alpha \in I} \|f_\alpha\|^2 < \infty\}.$$

We put

$$D(X) = \{ (f_\alpha) \in \mathcal{H} : f_\alpha \in D(Z^{(\alpha)}); \sum_{\alpha \in I} \|Z^{(\alpha)} f_\alpha\|^2 < \infty \}$$

and for $f = (f_\alpha) \in D(X)$ we define

$$Xf = (Z^{(\alpha)} f_\alpha).$$

Then

(i) $D(X)$ is dense in \mathcal{H}.

Indeed, $D(X)$ contains all $f = (f_\alpha)$ with $f_\alpha = 0$ except that for a finite subset of indices.

(ii) X is closed in \mathcal{H}.

Indeed, let $f_n = (f_{n, \alpha})$ be a sequence of elements of $D(X)$ with $f_n \to g = (g_\alpha) \in \mathcal{H}$ and $Xf_n \to h$. Since

$$f_n \to g \iff f_{n, \alpha} \to g_\alpha \in \mathcal{H}_\alpha, \forall \alpha \in I$$

and

$$Xf_n \to h \iff (Xf_n)_\alpha \to h_\alpha \in \mathcal{H}_\alpha, \forall \alpha \in I,$$

by $(Xf_n)_\alpha = Z^{(\alpha)} f_{n, \alpha}$ and from the closedness of each $Z^{(\alpha)}$ in \mathcal{H}_α, we get

$$g_\alpha \in D(Z^{(\alpha)}) \text{ and } h_\alpha = Z^{(\alpha)} g_\alpha.$$
It remains to check that \(\sum_{\alpha \in I} \| Z^{(\alpha)} g_\alpha \| < \infty \) but this is clear, since both \((Z^{(\alpha)} g_\alpha) \) and \(h = (h_\alpha) \in \mathcal{H} \).

(iii) \(X \eta \mathcal{M} \).

Let \(Y \in \mathcal{M}' \). Then, \(\forall f \in \mathcal{H}, Yf = (YP_\alpha f) \) and \(YP_\alpha \in (\mathcal{MP}_\alpha)' = \mathcal{M}' \).

Therefore
\[
XYf = ((XY)P_\alpha f) = (YP_\alpha f) = Yf.
\]

In conclusion, \(X \) is a measurable operator.

Thus, we have proved the following

Proposition 3.4. Let \(\mathfrak{F} = \{ \varphi_\alpha \}_{\alpha \in I} \) be a sufficient family of normal, finite traces on the von Neumann algebra \(\mathcal{M} \). Assume that Condition \((P)\) is fulfilled and that the \(\varphi_\alpha \)'s have mutually orthogonal supports. Then \(\mathcal{M}_p, p \geq 1, \) consists of measurable operators.

The analysis of the general case would really be simplified if, from a given sufficient family \(\mathfrak{F} \) of normal finite traces, one could extract (or construct) a *sufficient* subfamily \(\mathcal{G} \) of traces with mutually orthogonal supports. Apart from quite simple situations (for instance when \(\mathfrak{F} \) is finite or countable), we do not know if this is possible or not. There is however a relevant case where this can be fairly easily done. This occurs when \(\mathfrak{F} \) is a convex and \(\tau^*-\)compact family of traces on \(\mathcal{M} \).

Lemma 3.5. Let \(\mathfrak{F} \) be a convex \(\tau^*-\)compact family of normal, finite traces on a von Neumann algebra \(\mathcal{M} \); assume that, for each central operator \(Z \), with \(0 \leq Z \leq 1 \), and each \(\eta \in \mathfrak{F} \) the functional \(\eta_Z(X) := \eta(XZ) \) belongs to \(\mathfrak{F} \). Let \(\mathcal{E} \mathfrak{F} \) be the set of extreme elements of \(\mathfrak{F} \). If \(\eta_1, \eta_2 \in \mathcal{E} \mathfrak{F}, \eta_1 \neq \eta_2, \) and \(P_1 \) and \(P_2 \) are their respective supports, then \(P_1 \) and \(P_2 \) are orthogonal.

Proof. Let \(P_1, P_2 \) be, respectively, the supports of \(\eta_1 \) and \(\eta_2 \). We begin with proving that either \(P_1 = P_2 \) or \(P_1 P_2 = 0 \). Indeed, assume that \(P_1 P_2 \neq 0 \). We define
\[
\eta_{1,2}(X) = \eta_1(XP_2) \quad X \in \mathcal{M}.
\]

Were \(\eta_{1,2} = 0 \), then, in particular \(\eta_{1,2}(P_2) = 0 \), i.e. \(\eta_1(P_2) = 0 \) and therefore, by definition of support, \(P_2 \leq 1 - P_1 \). This implies that \(P_1 P_2 = 0 \), which contradicts the assumption. We now show that the support of \(\eta_{1,2} \) is \(P_1 P_2 \). Let, in fact, \(Q \) be a projection such that \(\eta_{1,2}(Q) = 0 \). Then
\[
\eta_1(QP_2) = 0 \Rightarrow QP_2 \leq 1 - P_1 \Rightarrow QP_2 (1 - P_1) = QP_2 \Rightarrow QP_2 P_1 = 0.
\]

Then the largest \(Q \) for which this happens is \(1 - P_2 P_1 \). We conclude that the support of the trace \(\eta_{1,2} \) is \(P_1 P_2 \). Finally, by definition, one has \(\eta_{1,2}(X) = \eta_1(XP_2) \), and, since \(XP_2 \leq X \),
\[
\eta_{1,2}(X) = \eta_1(XP_2) \leq \eta_1(X) \quad \forall X \in \mathcal{M}.
\]

Thus \(\eta_1 \) majorizes \(\eta_{1,2} \). But \(\eta_1 \) is extreme in \(\mathfrak{F} \). Therefore \(\eta_{1,2} \) has the form \(\lambda \eta_1 \) with \(\lambda \in [0,1] \). This implies that \(\eta_{1,2} \) has the same support as \(\eta_1 \); therefore \(P_1 P_2 = P_1 \) i.e. \(P_1 \leq P_2 \). Starting from \(\eta_{2,1}(X) = \eta_2(XP_1) \), we get, in similar way, \(P_2 \leq P_1 \). Therefore, \(P_1 P_2 \neq 0 \) implies \(P_1 = P_2 \). However, two different traces of \(\mathcal{E} \mathfrak{F} \) cannot have the same support. Indeed, assume that there exist \(\eta_1, \eta_2 \in \mathfrak{F} \) having the same support \(P \). Since \(P \) is central, we can consider the von Neumann algebra \(\mathcal{M}P \). The restrictions of \(\eta_1, \eta_2 \)
to $\mathcal{M}P$ are normal faithful semifinite traces. By [14, Prop. V.2.31] there exist a central element Z in $\mathcal{M}P$ with $0 \leq Z \leq P$ (P is here considered as the unit of $\mathcal{M}P$) such that

\begin{equation}
\eta_1(X) = (\eta_1 + \eta_2)(ZX) \quad \forall X \in (\mathcal{M}P)_+.
\end{equation}

Then Z also belongs to the center of \mathcal{M}, since for every $V \in \mathcal{M}$

$$ZV = Z(VP + VP^\perp) = VZP = VZ.$$

Therefore the functionals

$$\eta_{1,Z}(X) := \eta_1(XZ) \quad \eta_{2,Z}(X) := \eta_2(XZ) \quad X \in \mathcal{M}$$

belong to the family \mathcal{F} and are majorized, respectively, by the extreme elements η_1, η_2. Then, there exist $\lambda, \mu \in [0, 1]$ such that

$$\eta_1(XZ) = \lambda \eta_1(X) \quad \eta_2(XZ) = \mu \eta_1(X), \quad \forall X \in \mathcal{M}.$$

If $\lambda = 1$ we would have, from (3), $\eta_2(ZX) = 0$, for every $X \in (\mathcal{M}P)_+$; in particular, $\eta_2(|Z|^2) = 0$; this implies that $Z = 0$. Thus $\lambda \neq 1$. Analogously, $\mu \neq 0$; indeed, if $\mu = 0$, then $\eta_1(X) = \lambda \eta_1(X)$ and thus $\lambda = 1$. Therefore there exist $\lambda, \mu \in (0, 1)$ such that

$$\eta_1(X) = \lambda \eta_1(X) + \mu \eta_2(X) \quad \forall X \in \mathcal{M}P,$$

which, in turn, implies

$$\eta_1(X) = \lambda \eta_1(X) + \mu \eta_2(X) \quad \forall X \in \mathcal{M}$$

Hence,

$$(1 - \lambda) \eta_1(X) = \mu \eta_2(X) \quad \forall X \in \mathcal{M}.$$

From the last equality, dividing by $\max\{1 - \lambda, \mu\}$ one gets that one of the two elements is a convex combination of the other and of 0; which is absurd. In conclusion, different supports of extreme traces of \mathcal{F} are orthogonal.

\[\square\]

Since, for every $X \in \mathcal{M}$, $\|X\|_{p,Z}$ remains the same if computed either with respect to \mathcal{F} or to $\mathcal{E}_{\mathcal{F}}$, we can deduce the following

Theorem 3.6. Let \mathcal{F} be a convex and w^\ast-compact sufficient family of normal, finite traces on the von Neumann algebra \mathcal{M}. Assume that \mathcal{F} satisfies Condition (P) and that for each central operator Z, with $0 \leq Z \leq I$, and each $\eta \in \mathcal{F}$ the functional $\eta_Z(X) := \eta(XZ)$ belongs to \mathcal{F}. Then the completion $\mathcal{M}_p[\|\cdot\|_{p,Z}]$, consists of measurable operators.

Families of traces satisfying the assumptions of Theorem 3.6 will be constructed in the next section.
4. A REPRESENTATION THEOREM

Once we have constructed in the previous section some CQ*-algebras of operators affiliated to a given von Neumann algebra, it is natural to pose the question under which conditions can an abstract CQ*-algebra \((X, \mathfrak{A})\) be realized as a CQ*-algebra of this type.

Let \((X, \| \cdot \|; \mathfrak{A}_0[\| \cdot \|_0])\) be a CQ*-algebra with unit \(e\) and let
\[
T(X) = \{ \Omega \in S(X) : \Omega(x, x) = \Omega(x^*, x^*), \forall x \in X \}.
\]
We remark that if \(\Omega \in T(X)\) then, by polarization, \(\Omega(y^*, x^*) = \Omega(x, y)\), \(\forall x, y \in X\).

It is easy to prove that the set \(T(X)\) is convex.

For each \(\Omega \in T(X)\), we define a linear functional \(\omega_\Omega\) on \(\mathfrak{A}_0\) by
\[
\omega_\Omega(a) := \Omega(a, e) \quad a \in \mathfrak{A}_0.
\]
We have
\[
\omega_\Omega(a^*a) = \Omega(a^*a, e) = \Omega(a, a) = \Omega(a^*, a^*) = \omega_\Omega(aa^*) \geq 0.
\]
This shows at once that \(\omega_\Omega\) is positive and tracial.

We put
\[
\mathcal{M}_T(\mathfrak{A}_0) = \{ \omega_\Omega; \Omega \in T(X) \}.
\]
From the convexity of \(T(X)\) it follows easily that \(\mathcal{M}_T(\mathfrak{A}_0)\) is convex too. If we denote with \(\| f \|_2\) the norm of the bounded functional \(f\) on \(\mathfrak{A}_0\), we also get
\[
\| \omega_\Omega \|_2^2 = \omega_\Omega(e, e) \leq \| e \|_2^2.
\]
Therefore
\[
\mathcal{M}_T(\mathfrak{A}_0) \subseteq \{ \omega \in \mathfrak{A}_0^\# : \| \omega \|_2^2 \leq \| e \|_2^2 \},
\]
where \(\mathfrak{A}_0^\#\) denotes the topological dual of \(\mathfrak{A}_0[\| \cdot \|_0]\).

Setting
\[
f_\Omega(a) := \frac{\omega_\Omega(a)}{\| a \|_2}
\]
we get
\[
f_\Omega \in \{ \omega \in \mathfrak{A}_0^\# : \| \omega \|_2^2 \leq 1 \}.
\]
By the Banach - Alaglou theorem, the set \(\{ \omega \in \mathfrak{A}_0^\# : \| \omega \|_2^2 \leq 1 \}\) is a \(w^*\)-compact subset of \(\mathfrak{A}_0^\#\). Then, the set \(\{ \omega \in \mathfrak{A}_0^\# : \| \omega \|_2^2 \leq \| e \|_2^2 \}\) is also \(w^*\)-compact.

Proposition 4.1. \(\mathcal{M}_T(\mathfrak{A}_0)\) is \(w^*\)-closed and, therefore, \(w^*\)-compact.

Proof. Let \((\omega_\Omega_\alpha)\) be a net in \(\mathcal{M}_T(\mathfrak{A}_0)\) \(w^*\)-converging to a functional \(\omega \in \mathfrak{A}_0^\#\). We will show that \(\omega = \omega_\Omega\) for some \(\Omega \in T(X)\). Let us begin with defining \(\Omega_\alpha(a, b) = \omega(b^*a), a, b \in \mathfrak{A}_0\). By the definition itself, \((\omega_\Omega_\alpha)(a) \longrightarrow \omega(a) = \Omega_\alpha(a, e)\). Moreover, for every \(a, b \in \mathfrak{A}_0\),
\[
\Omega_\alpha(a, b) = \omega(b^*a) = \lim_\alpha \omega_\Omega_\alpha(b^*a) = \lim_\alpha \Omega_\alpha(a, b).
\]
Therefore
\[
\Omega_\alpha(a, a) = \lim_\alpha \Omega_\alpha(a, a) \geq 0.
\]
We also have
\[
\| \Omega_\alpha(a, b) \| = \lim_\alpha \| \Omega_\alpha(a, b) \| \leq \| a \| \| b \|.
\]
Hence \(\Omega_0 \) can be extended by continuity to \(\mathfrak{X} \times \mathfrak{X} \). Indeed, let
\[
x = \| \cdot \| - \lim_n a_n \quad y = \| \cdot \| - \lim_n b_n \quad (a_n, b_n) \subseteq \mathfrak{A}_0
\]
then
\[
| \Omega_o(a_n, b_n) - \Omega_o(a_m, b_m) | = | \Omega_o(a_n, b_n) - \Omega_o(a_m, b_n) + \Omega_o(a_m, b_n) - \Omega_o(a_m, b_m) | \leq \\leq | \Omega_o(a_n - a_m, b_n) | + | \Omega_o(a_m, b_n - b_m) | \leq \| a_n - a_m \| \| b_n \| + \| a_m \| \| b_n - b_m \| \to 0,
\]
since \((\| a_n \|) \) ed \((\| b_n \|) \) are bounded sequences. Therefore we can define
\[
\Omega(x, y) = \lim_n \Omega_o(a_n, b_n).
\]
Clearly, \(\Omega(x, x) \geq 0 \quad \forall x \in \mathfrak{X} \).
It is easily checked that \(\Omega \in \mathcal{T}(\mathfrak{X}) \). This concludes the proof. \(\square \)

Since \(\mathfrak{M}_T(\mathfrak{A}_o) \) is convex and \(w^* \)-compact, by the Krein-Milman theorem it follows that it has extreme points and it coincides with the \(w^* \)-closure of the convex hull of the set \(\mathfrak{M}_T(\mathfrak{A}_o) \) of its extreme points.

By the Gelfand - Naimark theorem each \(C^* \)-algebra is isometrically *-isomorphic to a \(C^* \)-algebra of bounded operators in Hilbert space. This isometric *-isomorphism is called the universal *-representation.

Thus, let \(\pi \) be the universal *-representation of \(\mathfrak{A}_0 \) and \(\pi(\mathfrak{A}_0)'' \) the von Neumann algebra generated by \(\pi(\mathfrak{A}_0) \).

For every \(\Omega \in \mathcal{T}(\mathfrak{X}) \) and \(a \in \mathfrak{A}_0 \), we put
\[
\varphi_\Omega(\pi(a)) = \omega_\Omega(a).
\]

Then, for each \(\Omega \in \mathcal{T}(\mathfrak{X}) \), \(\varphi_\Omega \) is a positive bounded linear functional on the operator algebra \(\pi(\mathfrak{A}_0) \).

Clearly,
\[
\varphi_\Omega(\pi(a)) = \omega_\Omega(a) = \Omega(a, e)
\]
\[
| \varphi_\Omega(\pi(a)) | = | \omega_\Omega(a) | = | \Omega(a, e) | \leq \| a \| \| e \| \leq \| a \| \| e \|^2 = \| \pi(a) \| \| e \|^2.
\]
Thus \(\varphi_\Omega \) is continuous on \(\pi(\mathfrak{A}_0) \).

By \cite{[10]} Theorem 10.1.2], \(\varphi_\Omega \) is weakly continuous and so it extends uniquely to \(\pi(\mathfrak{A}_0)'' \). Moreover, since \(\varphi_\Omega \) is a trace on \(\pi(\mathfrak{A}_0) \), the extension \(\varphi_\Omega \) is a trace on \(\mathfrak{M} := \pi(\mathfrak{A}_0)'' \) too.

The norm \(\| \varphi_\Omega \| \) of \(\varphi_\Omega \) as a linear functional on \(\mathfrak{M} \) equals the norm of \(\varphi_\Omega \) as a functional on \(\pi(\mathfrak{A}_0) \).

We have:
\[
\| \varphi_\Omega \| = \varphi_\Omega(\pi(e)) = \omega_\Omega(e) \leq \| e \|^2.
\]

The set
\[
\mathfrak{M}_T(\mathfrak{A}_o) = \{ \varphi_\Omega; \Omega \in \mathcal{T}(\mathfrak{X}) \}
\]
is convex and \(w^* \)-compact in \(\mathfrak{M}^2 \), as can be easily seen by considering the map
\[
\omega_\Omega \in \mathfrak{M}_T(\mathfrak{A}_o) \to \varphi_\Omega \in \mathfrak{M}_T(\mathfrak{A}_o)
\]
which is linear and injective and taking into account the fact that, if \(a_\alpha \to a \) in \(\mathfrak{A}_o[\| \cdot \|] \), then \(\varphi_\Omega(\pi(a_\alpha) - \pi(a)) = \omega_\Omega(a_\alpha - a) \to 0. \)
Let $\mathcal{N}_T(\mathfrak{A}_o)$ be the set of extreme points of $\mathfrak{N}_T(\mathfrak{A}_o)$; then $\mathfrak{N}_T(\mathfrak{A}_o)$ coincides with w^*-closure of the convex hull of $\mathcal{E}N_T(\mathfrak{A}_o)$. The extreme elements of $\mathfrak{N}_T(\mathfrak{A}_o)$ are easily characterized by the following

Proposition 4.2. $\tilde{\varphi}_\Omega$ is extreme in $\mathfrak{N}_T(\mathfrak{A}_o)$ if, and only if, ω_Ω is extreme in $\mathfrak{M}_T(\mathfrak{A}_o)$.

Definition 4.3. A Banach quasi $*$-algebra $(\mathfrak{X}[\| \cdot \|], \mathfrak{A}_o[\| \cdot \|_o])$ is said to be strongly regular if $T(\mathfrak{X})$ is sufficient and

$$\| x \| = \sup_{\Omega \in T(\mathfrak{X})} \Omega(x, x)^{1/2}, \quad \forall x \in \mathfrak{X}.$$

Example 4.4. If \mathfrak{M} is a von Neumann algebra possessing a sufficient family $\tilde{\mathfrak{F}}$ of normal finite traces, then the CQ*-algebra $(\mathfrak{M}_p, \mathfrak{M})$ constructed in Section 3 is strongly regular. This follows from the definition itself of the norm in the completion.

Example 4.5. If φ is a normal faithful finite trace on \mathfrak{M}, then $T(L^p(\varphi))$, for $p \geq 2$, is sufficient. To see this, we start with defining Ω_0 on $\mathfrak{M} \times \mathfrak{M}$ by

$$\Omega_0(X, Y) = \varphi(Y^* X), \quad X, Y \in \mathfrak{M}.$$

Then

$$|\Omega_o(X, Y)| = |\varphi(Y^* X)| \leq \|X\|_p \|Y\|_{p'}, \quad \forall X, Y \in \mathfrak{M}.$$

Since $p \geq 2$, then $L^p(\varphi)$ is continuously embedded into $L^p(\varphi)$. Thus, there exists $\gamma > 0$ such that $\|Y\|_{p'} \leq \gamma \|Y\|_p$ for every $Y \in \mathfrak{M}$. Let us define

$$\Omega(X, Y) = \frac{1}{\gamma} \Omega_o(X, Y), \quad \forall X, Y \in \mathfrak{M}.$$

Then

$$|\Omega(X, Y)| \leq \|X\|_p \|Y\|_{p'}, \quad \forall X, Y \in \mathfrak{M}.$$

Hence, Ω has a unique extension, denoted with the same symbol, to $L^p(\varphi) \times L^p(\varphi)$. It is easily seen that $\Omega \in T(L^p(\varphi))$.

Were, for some $X \in L^p(\varphi)$, $\Omega(X, X) = 0$, for every $\Omega \in T(L^p(\varphi))$, we would then have $\Omega(X, X) = \|X\|_2^2 = 0$. This, clearly, implies $X = 0$. The equality $\Omega(X, X) = \|X\|_2^2$ also shows that $L^2(\varphi)$ is strongly regular.

Let now $(\mathfrak{X}[\| \cdot \|], \mathfrak{A}_o[\| \cdot \|_o])$ be a CQ*-algebra with unit e and sufficient $T(\mathfrak{X})$. Let $\pi : \mathfrak{A}_o \rightarrow \mathcal{B}(\mathcal{H})$ be the universal representation of \mathfrak{A}_o. Assume that the C^*-algebra $\pi(\mathfrak{A}_o) := \mathfrak{M}$ is a von Neumann algebra. In this case, $\mathfrak{M}_T(\mathfrak{A}_o) = \mathfrak{M}_{T}(\mathfrak{A}_o)$ and $\mathfrak{N}_T(\mathfrak{A}_o)$ is a family of traces satisfying Condition (P). Therefore, by Proposition 3.3, we can construct for $p \geq 1$, the CQ*-algebras $(\mathfrak{M}_p[\| \cdot \|_p, \mathfrak{N}_T(\mathfrak{A}_o)], \mathfrak{M}[\| \cdot \|])$. Clearly, \mathfrak{A}_o can be identified with \mathfrak{M}. It is then natural to pose the question if also \mathfrak{X} can be identified with some \mathfrak{M}_p. The next Theorem provides the answer to this question.

Theorem 4.6. Let $(\mathfrak{X}[\| \cdot \|], \mathfrak{A}_o[\| \cdot \|_o])$ be a CQ*-algebra with unit e and and sufficient $T(\mathfrak{X})$.

Then there exist a von Neumann algebra \mathfrak{M} and a monomorphism $\Phi : x \in \mathfrak{X} \rightarrow \Phi(x) := \tilde{X} \in \mathfrak{M}_2$ with the following properties:
Then the family of traces \(\Omega \) is a von Neumann algebra. By Proposition 4.1, the family of traces \(\{ \Omega \} \) is strongly regular, then

\[(i) \quad \Phi \text{ extends the universal } *\text{-representation } \pi \text{ of } \mathfrak{A}_0; \]

\[(ii) \quad \Phi(x^*) = \Phi(x^*), \quad \forall x \in \mathfrak{X}; \]

\[(iii) \quad \Phi(xy) = \Phi(x)\Phi(y) \text{ for every } x, y \in \mathfrak{X} \text{ such that } x \in \mathfrak{A}_0 \text{ or } y \in \mathfrak{A}_0. \]

Then \(\mathfrak{X} \) can be identified with a space of operators affiliated with \(\mathfrak{M} \).

Proof. Let \(\pi \) be the universal representation of \(\mathfrak{A}_0 \) and assume first that \(\pi(\mathfrak{A}_0) =: \mathfrak{M} \) is a von Neumann algebra. By Proposition 4.1, the family of traces \(\mathfrak{M}_T(\mathfrak{A}_0) \) is convex and \(w^* \)-compact. Moreover, for each central positive element \(Z \) with \(0 \leq Z \leq 1 \) and for \(\varphi \in \mathfrak{M}_T(\mathfrak{A}_0) \), the trace \(\varphi_Z(X) := \varphi(ZX) \) yet belongs to \(\mathfrak{M}_T(\mathfrak{A}_0) \). Indeed, starting from the form \(\Omega \in T(\mathfrak{X}) \) which generates \(\varphi \), one can define the sesquilinear form

\[\Omega_Z(x, y) := \Omega(x\pi^{-1}(Z^{1/2}), y\pi^{-1}(Z^{1/2})) \quad \forall x, y \in \mathfrak{X}. \]

We check that \(\Omega_Z \in T(\mathfrak{X}) \).

\[(i) \quad \Omega_Z(x, x) = \Omega(x\pi^{-1}(Z^{1/2}), x\pi^{-1}(Z^{1/2})) \geq 0, \quad \forall x \in \mathfrak{X} \]

\[(ii) \quad \text{We have, for every } x \in \mathfrak{X} \text{ and for every } a, b \in \mathfrak{A}_0, \]

\[\Omega_Z(xa, b) = \Omega(xa\pi^{-1}(Z^{1/2}), b\pi^{-1}(Z^{1/2})) \]

\[= \Omega(a\pi^{-1}(Z^{1/2}), x^*b\pi^{-1}(Z^{1/2})) \]

\[= \Omega_Z(a, x^*b). \]

\[(iii) \quad \text{We have, for every } x, y \in \mathfrak{X}, \]

\[| \Omega_Z(x, y) | = | \Omega(x\pi^{-1}(Z^{1/2}), y\pi^{-1}(Z^{1/2})) | \]

\[\leq || x\pi^{-1}(Z^{1/2}) || || \pi^{-1}(Z^{1/2})y || \]

\[\leq || x || || \pi^{-1}(Z^{1/2}) ||_0 || y || || \pi^{-1}(Z^{1/2}) ||_0 \]

\[\leq || x || || y ||. \]

\[(iv) \quad \text{For every } x \in \mathfrak{X}, \]

\[\Omega_Z(x^*, x^*) = \Omega(x^*\pi^{-1}(Z^{1/2}), x^*\pi^{-1}(Z^{1/2})) \]

\[= \Omega(x\pi^{-1}(Z^{1/2}), x\pi^{-1}(Z^{1/2})) = \Omega_Z(x, x). \]

Moreover, \(\Omega_Z \) defines, for every \(A = \pi(a) \in \mathfrak{M} = \pi(\mathfrak{A}_0) \), the following trace

\[\varphi_{\Omega_Z}(A) = \Omega_Z(a, e) = \Omega(a\pi^{-1}(Z^{1/2}), \pi^{-1}(Z^{1/2})) \]

\[= \Omega(a\pi^{-1}(Z), e) = \Omega(\pi^{-1}(AZ), e) = \varphi_{\Omega}(AZ) \]

Then, the family of traces \(\mathfrak{M}_T(\mathfrak{A}_0) (= \mathfrak{M}_T(\mathfrak{A}_0)) \) satisfies the assumptions of Lemma 3.5 therefore, if \(\eta_1, \eta_2 \in \mathfrak{M}_T(\mathfrak{A}_0) \), denoting with \(P_1 \) and \(P_2 \) their respective supports, one has \(P_1P_2 = 0 \).

By the sufficiency of \(T(\mathfrak{X}) \) we get

\[\| X \|_{2, \pi, \mathfrak{M}_T(\mathfrak{A}_0)} := \sup_{\varphi \in \mathfrak{M}_T(\mathfrak{A}_0)} \| X \|_{2, \varphi} = \sup_{\varphi \in \mathfrak{M}_T(\mathfrak{A}_0)} \| X \|_{2, \varphi} \quad \forall X \in \pi(\mathfrak{A}_0). \]

By Proposition 3.3 the Banach space \(\mathfrak{M}_2 \), completion of \(\mathfrak{M} \) with respect to the norm \(\| \cdot \|_{2, \pi, \mathfrak{M}_T(\mathfrak{A}_0)} \), is a CQ*-algebra. Moreover, since the supports of the extreme traces
Indeed, if \(N \) converges to \(T \) then, owed to the sufficiency of \(T \) implies that \(\| T \| \leq \| \cdot \| \).

The condition (iii) can be easily proved. If \(T \), then there exists a sequence \(\{a_n\} \) of elements of \(\mathfrak{A}_0 \) converging to \(x \) with respect to the norm \(\mathfrak{X}(\| \cdot \|) \). Put \(X_n = \pi(a_n), \ n \in \mathbb{N} \). Then,

\[
\| X_n - X_m \|_{2,\mathfrak{M}_2(\mathfrak{A}_0)} := \sup_{\varphi \in \mathfrak{M}_2(\mathfrak{A}_0)} \| \pi(a_n) - \pi(a_m) \|_{2,\varphi}
\]

\[
= \sup_{\Omega \in \mathcal{T}(X)} [\Omega((a_n - a_m)^*(a_n - a_m), e)]^{1/2}
\]

\[
= \sup_{\Omega \in \mathcal{T}(X)} [\Omega(a_n - a_m, a_n - a_m)]^{1/2} \leq \| a_n - a_m \| \to 0.
\]

Let \(\tilde{X} \) be the \(\| \cdot \|_{2,\mathfrak{M}_2(\mathfrak{A}_0)} \)-limit of the sequence \(\{X_n\} \) in \(\mathfrak{M}_2 \). We define \(\Phi(x) := \tilde{X} \).

For each \(x \in \mathfrak{X} \), we put

\[
p_{T(x)}(x) = \sup_{\Omega \in \mathcal{T}(x)} \Omega(x,x)^{1/2}.
\]

Then, owed to the sufficiency of \(T(\mathfrak{X}) \), \(p_{T(x)} \) is a norm on \(\mathfrak{X} \) weaker than \(\| \cdot \| \). This implies that

\[
\| \tilde{X} \|_{2,\mathfrak{M}_2(\mathfrak{A}_0)}^2 = \lim_{n \to \infty} \sup_{\Omega \in \mathcal{T}(x)} \Omega(a_n, a_n) = \lim_{n \to \infty} p_{T(x)}(a_n)^2 = p_{T(x)}(x)^2.
\]

From this equality it follows easily that the linear map \(\Phi \) is well defined and injective. The condition (iii) can be easily proved. If \((\mathfrak{X}, \mathfrak{A}_0) \) is strongly regular, then, for every \(x \in \mathfrak{X} \), \(p_{T(x)}(x) = \| x \| \). Thus \(\Phi \) is isometric. Moreover, in this case, \(\Phi \) is surjective; indeed, if \(T \in \mathfrak{M}_2 \), then there exists a sequence \(T_n \) of bounded operators of \(\pi(\mathfrak{A}_0) \) which converges to \(T \) with respect to the norm \(\| \cdot \|_{2,\mathfrak{M}_2(\mathfrak{A}_0)} \). The corresponding sequence \(\{T_n\} \subseteq \mathfrak{A}_0 \), \(T_n = \Phi(T_n) \), converges to \(T \) with respect to the norm of \(\mathfrak{X} \) and \(\Phi(T) = T \) by definition. Therefore \(\Phi \) is an isometric \(*\)-isomorphism.

To complete the proof, it is enough to prove that the given \(\mathrm{CQ}^* \)-algebra \((\mathfrak{X}, \mathfrak{A}_0) \) can be embedded in a \(\mathrm{CQ}^* \)-algebra \((\mathfrak{K}, \mathfrak{B}_0) \) where \(\mathfrak{B}_0 \) is a \(\mathrm{W}^* \)-algebra. Of course, we may directly work with \(\pi(\mathfrak{A}_0) \) with the universal representation of \(\mathfrak{A}_0 \). The family of traces \(\mathfrak{M}_T(\mathfrak{A}_0) \) defined on \(\pi(\mathfrak{A}_0)' \) is not necessarily sufficient. Let \(P_{\Omega}, \ \Omega \in \mathcal{T}(\mathfrak{X}) \), denote the support of \(\tilde{\varphi}_\Omega \) and let

\[
P = \mathop{\bigvee}_{\Omega \in \mathcal{T}(\mathfrak{X})} P_{\Omega}.
\]

Then \(\mathfrak{B}_0 := \pi(\mathfrak{A}_0)''P \) is a von Neumann algebra, that we can complete with respect to the norm

\[
\| X \|_{2,\mathfrak{M}_2(\mathfrak{A}_0)} = \sup_{\Omega \in \mathcal{T}(\mathfrak{X})} \tilde{\varphi}_\Omega(X^*X), \ \ X \in \pi(\mathfrak{A}_0)''P.
\]

We obtain in this way a \(\mathrm{CQ}^* \)-algebra \((\mathfrak{K}, \mathfrak{B}_0) \) with \(\mathfrak{B}_0 \) a \(\mathrm{W}^* \)-algebra. The faithfulness of \(\pi \) on \(\mathfrak{A}_0 \) implies that

\[
\pi(a)P = \pi(a), \ \ \forall a \in \mathfrak{A}_0.
\]

It remains to prove that \(\mathfrak{X} \) can be identified with a subspace of \(\mathfrak{K} \). But this can be shown in the very same way as we did in the first part: for each \(x \in \mathfrak{X} \) there exists
a sequence \(\{ a_n \} \subset \mathfrak{A}_0 \) such that \(\| x - a_n \| \to 0 \) as \(n \to \infty \). We now put \(X_n = \pi(a_n) \). Then, proceeding as before, we determine the element \(\hat{X} \in \mathfrak{K} \), where

\[
\hat{X} = \| \cdot \|_{2,\mathfrak{K}(\mathfrak{A}_0)} - \lim \pi(a_n)P.
\]

It is easy to see that the map \(x \in \mathcal{X} \to \hat{X} \in \mathfrak{K} \) is injective. If \((\mathcal{X}, \mathfrak{A}_0) \) is regular, but \(\pi(\mathfrak{A}_0) \subset \pi(\mathfrak{A}_0)'' \), then \(\Phi \) is an isometry of \(\mathcal{X} \) into \(\mathfrak{M}_2 \), but needs not be surjective. □

Acknowledgment We acknowledge financial support of MIUR through national and local grants.

References

1. G. Lassner, Topological algebras and their applications in Quantum Statistics, Wiss. Z. KMU-Leipzig, Math.-Naturwiss. R. 30 (1981), 572–595.
2. G. Lassner, Algebras of unbounded operators and quantum dynamics, Physica A 124 (1984), 471–480.
3. F. Bagarello, C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61, 103-133 (1994).
4. F. Bagarello and C. Trapani, \(L^p \)-spaces as quasi *-algebras, J. Math. Anal. Appl. 197, 810-824 (1996).
5. F. Bagarello and C. Trapani, CQ*-algebras: structure properties Publ. RIMS, Kyoto Univ. 32, 85-116 (1996).
6. F. Bagarello and C. Trapani, Morphisms of certain Banach C*-modules, Publ. RIMS, Kyoto Univ. 36 (2000) 681-705.
7. F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980.
8. C. Trapani and S. Triolo, Representations of certain Banach C*-modules, Mediterr. J. Math. 1 (2004), 441-461.
9. J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their Operator Realizations, Kluwer, Dordrecht, 2002.
10. I. E. Segal, A noncommutative extension of abstract integration, Ann. Math. 57 (1953), 401–457.
11. E. Nelson, Note on non-commutative integration, J. Funct. Anal., 15 (1974) 103-116.
12. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990.
13. I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions Vol. 4, Academic Press, New York and London, 1964.
14. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
15. S. Stratiă and L. Zsido, Lectures on von Neumann Algebras, Editura Academiei, București and Abacus Press, Tunbridge Wells, Kent, 1979.
16. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II, Academic Press, New York, 1986.
Dipartimento di Metodi e Modelli Matematici, Università di Palermo, I-90128 Palermo (Italy)
E-mail address: bagarell@unipa.it

Dipartimento di Matematica ed Applicazioni, Università di Palermo, I-90123 Palermo (Italy)
E-mail address: trapani@unipa.it

Dipartimento di Matematica ed Applicazioni, Università di Palermo, I-90123 Palermo (Italy)
E-mail address: salvo@math.unipa.it