FREQUENCY OF ORTHOGNATHIC SURGERY TREATMENT IN A UNIVERSITY HOSPITAL SETTING - RETROSPECTIVE STUDY

Ramya G1, Remmiya Mary Varghese2, M.Jeevitha3
1Saveetha Dental College and Hospitals, Saveetha institute of medical and technical sciences (SIMATS), Saveetha University, Chennai – 600077
2Senior Lecturer, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha institute of medical and technical sciences (SIMATS), Saveetha University, Chennai - 600077.
3Senior Lecturer, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha institute of medical and technical sciences (SIMATS), Saveetha University, Chennai - 600077

ABSTRACT:

Background: Orthognathic surgery is an unique endeavour in facial surgery, a patient’s appearance and occlusal function can be improved significantly, which has a great impact on the patient’s sense of self and well being. Successful outcomes in modern orthognathic surgery rely on a close collaboration between the surgeon and the orthodontist across all stages of treatment.

Aim: To assess the frequency of orthognathic surgery in a university hospital setting.

Materials and Methodology: Data required for the study was procured by reviewing patient records and analysed data of 86000 patients between June 2019 to March 2020. The data was sorted in excel and statistically analysed using the IBM SPSS software analysis and the results tabulated.

Results: The frequency of orthognathic surgery in this study was found to be 22.4%.

Conclusion: Orthognathic surgery improves the quality of life for all age groups of dentofacial deformities and hence it is imperative to educate people regarding the same.

Keywords: Orthognathic surgery; prevalence; dentofacial deformities; occlusal function; facial appearance

I. INTRODUCTION

Orthognathic surgery refers to repositioning of the maxilla and mandible or the chin as commonly referred as, which is the mainstay treatment for patients who are too old for growth modifications and for any dentofacial conditions that are too severe for either surgical or orthodontic camouflage (Khechoyan, 2013; Krishnan, Pandian and Kumar S, 2015; Samantha, 2017). The gonial angle and lower gonial angle can be used as an indicator for growth (Rubika, SumathiFelicitia and Sivambiga, 2015). The anterior and posterior maxilla, the cranial floor, ramus vertical composite are all in dimensional balance in individuals with normal occlusion and facial harmony (Felicitia, Chandrasekar and Shanthasundari, 2012; Kamisetty et al., 2015). The objective of orthodontic surgery is based on the repositioning of the basal bone framework to correct the maxillo-mandibular deformities (Jain, 2014; Felicitia and SumathiFelicitia, 2018). A collaborative approach between the orthodontist and the surgeon is imperative to successfully devise and execute a comprehensive treatment plan with predictable outcomes (Precious, Splinter and Bosco, 1996; Dinesh and Saravana Dinesh, 2013; Sivamurthy and Sundari, 2016)

Key principles of surgical care and overall patient care include psychologically preparing the patient, adequate preoperative and postoperative nutrition, protection of bone and neurovascular structures, appropriate postoperative instructions and wound management, proper control of occlusion and rehabilitation to full jaw function (Bell, 1973; Krishnan, Pandian and Kumar, 2018). Patients with dentofacial deformity and malocclusion
have a higher incidence of temporomandibular joint (TMJ) derangements than compared to the general population (Viswanath et al., 2015; Felicita, 2017b; S et al., 2017)

The results of orthognathic surgeries are esthetic oriented than function in the patient’s point of view. Some patients mainly seek esthetic amelioration and not the functional one. In adults it has become of greater importance mainly owing to it although being an invasive procedure, highly improves an individual's esthetics (Kavin, Jagadesan and Venkataraman, 2012). The main indications for an orthognathic surgery include malocclusion, TMJ disorders, esthetics, pre prosthetics (Charrier, 2012). Functional importance in regard with orthognathic surgeries is that, discrepancies between dental arches, i.e., between maxilla and mandible can cause functional disorders that hinder the phonetics and masticatory mechanisms of the individual. Severe discrepancies can also lead to affecting the psychological wellbeing of the individual (Reyneke, 2003).

Variant procedures can be opted based on the discrepancy, its extent and the patient’s condition (Kumar et al., 2011; Felicita, 2017a; Vikram et al., 2017). In dire situations where there is significant risk of relapse, a combination of maxillary and mandibular procedures are a requisite, due to the relation between the magnitude of movement and the stability after surgery (Ghai and Sikes, 2000; Chang et al., 2001; Magalhães et al., 2010).

The patient’s perspective regarding the decision to take up orthognathic surgery or not relies on various factors. These factors include their anxiety, satisfaction with self, facial appearance, financial situation, past medical / surgical / dental experiences and the complications post surgery (Posnick, 2014). The risk levels of postoperative complications of orthognathic surgeries have been found to be associated more with increasing age (Kim, 2017). It is to be stressed that awareness of orthognathic surgery is not much prevalent and dental professionals enhance approachability and management of patients, enlighten them regarding orthognathic surgeries (Elmouden and Ousehal, 2018). Previously our team has a rich experience in working on various research projects across multiple disciplines((Neelakantanet al., 2015; Ramamoorthi, Nivedhitha and Divyanand, 2015; Abdul Wahabet al., 2017; Eapen, Baig and Avinash, 2017; Manivannanet al., 2017; Patilet et al., 2017; Ezhilarasan, Sokal and Najimi, 2018; Jeevanandanand Govindaraju, 2018; Ravindiran and Praveenkumar, 2018; Wahabet et al., 2018; MalliSureshbabuet al., 2019; Mehta et al., 2019; Rajeshkumatet al., 2019; Samuel, Acharya and Rao, 2020; Sathish and Karthick, 2020).

The aim of this study is to find the frequency of orthognathic surgery in a university hospital setting.

II. MATERIALS AND METHODOLOGY:

The study was performed under a university hospital setting. Data required for the study was procured by reviewing patient records and analysed data of 86000 patients between June 2019 to March 2020, for the number of people who require orthognathic surgery and the number of people who took up the surgery. Ethical approval was obtained from the institutional committee (ethical approval number : SDC/SIHEC/ DIASDATA/0619-0320). The sample size of the study is n=107. Verification of the data was done with the presence of additional reviewers, procedure notes and photographs. Stratification and randomisation was done to minimize sampling error. Incomplete data was excluded. The obtained data was tabulated in excel and the following parameters were assessed:

Age
Gender
Orthognathic surgery - Yes / No

The data was then entered in the IBM SPSS software and descriptive statistical analysis performed. The obtained results were interpreted in tabulations and graphs.

III. RESULTS AND DISCUSSION:

The frequency of orthognathic surgery in this study was observed to be 22.4%. (table.1, fig.1). The SPSS analysis was done and the mean age group of the study was obtained to be 26years. (table.2). The gender distribution of the study shows equal proportions of both male and female participants in this study. (fig.2). The chi square test was performed and the results show that there does not exist a statistical significance between age and gender in individuals undergoing orthognathic surgery, in this study (p>0.05). (fig.3).
Table 1: frequency of orthognathic surgery as observed in this study. Table depicting the prevalence rate of orthognathic surgery as observed in this study, out of 107 patients who required the treatment only 24 individuals underwent surgery while the remaining 83 individuals refused to undergo treatment. The frequency rate in this study was observed to be 22.4%.

TOPIC	COUNT
Total number of cases	107
No. of individuals who underwent orthognathic surgery	24
treatment	
No. of individuals who refused treatment	83
PREVALENCE RATE	22.4%

FIGURE 1: Bar chart depicting the frequency of orthognathic surgery in this study. X-axis represents the status of the frequency of orthognathic surgery, as observed in this study. Y-axis represents the count of the number of individuals who required orthognathic surgery, underwent orthognathic surgery to be and refused treatment in a scale of 0-120. Out of the total study population, the majority refused to undergo orthognathic surgery.

Cumulative percentage (%)	AGE (in yrs)
8.3	17
4.2	19
12.5	20
Table 2: Age Distribution. Table depicting the mean age of the study, the mean age of this study was found to be around 26yrs.

4.2	46
8.3	50
8.3	26.8 yrs

Figure 2: Bar graph representing the gender distribution as observed in this study.

The gender distribution of this study was found to be having equal distribution of males and females who opted for orthognathic surgery treatment. 12 males and 12 females each have reported to have undergone orthognathic surgery as observed in this study. Blue half depicts males while the red half depicts the females.
Figure 3: Association between age and gender of the study population undergoing orthognathic surgery. X-axis represents the gender distribution of the study. Y-axis represents the mean age of the study group. Red colour denotes males and Blue colour denotes females. The graph depicts the association of the age and gender wherein mean age of males (Red) who underwent orthognathic surgery in this study are to be of 27yrs of age, while females (Blue) who underwent orthognathic surgery in this study are found to be averagely of 25yrs of age. Chi square statistical analysis was performed, p value = 0.283 (p<0.05), hence statistically not significant.

Frequency of Orthognathic surgery was 22.4%, indicating a low frequency condition. This may be due to factors like the study being unicentric, unequal distribution and a smaller sample size taken for study. Previous literature citations were found to be in concordance with the results obtained in this study, and these may be attributed to various factors including, the patient’s perception towards the procedure, their economic background, anxiousness towards treatment, emotional stress etc. (Stirling et al., 2007). The low rate of acceptance by patients suggests that awareness among patients regarding the pros and cons of orthognathic surgery have to be reached out effectively. Assessing the factors of shortcoming and effective management of the same is to be processed.

The mean age as observed in our results of the patients taking up the surgery is 26 years. Causes for inclination of young aged patients towards orthognathic surgery can account due to its primary feature of esthetic transformation (Irby, 2016; Brecher et al., 2019). The average patient who undergoes orthognathic treatment is usually in their second or third decade of life (Sarver, 1998). Previous literature also cite findings in concordance to that obtained in our study that patients aged between 25-30yrs opt more willingly for orthognathic treatment (Andrup, 2015; Vega et al., 2015). This can also be attributed to the fact that some studies do imply that the complications of orthognathic surgery increase with an increase in age (Naini, 2013; Cunningham, 2018).

However over the past decade, there have been some studies which report orthognathic surgery acceptance in patients over 40yrs of age (Peacock et al., 2014; Lee, Peacock and Kaban, 2015).

The results obtained in our study with respect to any gender predilection for orthognathic cases show equal proportions of male and female participants. This is attributed to the facts that the study was done in a unicentric setup, geographic variation, unequal distribution and sample size. Previous literature is not in concordance with our study results, female predilection has been reported for taking up orthognathic surgery in previous studies. (Scariot et al., 2010). The female to male ratio observed in previous studies are mostly 1.5:1 (Suen, no date;
Castro et al., 2013). This difference in gender distribution can be due to varying reasons like the trivia of psychological impact of appearance is more in females than males, females show more discrepancies with respect to dentofacial features compared to males (Swennen, 2017; Posnick and Kinard, 2019). Our institution is passionate about high quality evidence based research and has excelled in various fields (Pc, Marimuthu and Devadoss, 2018; Ramesh et al., 2018; Ezhilarasan, Apoorva and Ashok Vardhan, 2019; Ramadurai et al., 2019; Sridharan et al., 2019; Vijayashree Priyadharsini, 2019; Mathew et al., 2020). We hope this study adds to this rich legacy. A female predilection for orthognathic surgery also implies that esthetics majorly influences the willingness to take up orthognathic surgery or not.

The chi square test was performed using the IBM SPSS software analysis and the interpreted results show that there does not exist a statistical significance between age and gender in individuals undergoing orthognathic surgery, as observed in this study. (p>0.05)

The limitations of this study mainly include the study being unicentric, unequal distribution, geographical variation and a small sample size. Incomplete data was excluded.

A study performed on a large scale with a variant geographical distribution thereby a greater sample size including different ethnicities can procure better results. The treatment for dentofacial deformities involves quality orthognathic procedures to correct jaw deformity, along with adjunctive therapy to improve the hard and soft tissues contours. Awareness and effective concepts of management of orthognathic surgery to be brought to the public. It is an invaluable aid in providing comprehensive patient education. Orthognathic surgery improves the quality of life for all groups of dentofacial abnormalities. Orthognathic surgery eliminates severe esthetic and functional deformities and proves to be a life-changing event for the individual.

![PRE - OPERATIVE](image1)

![POST - OPERATIVE](image2)
Within the limitations of this study, the majority of the patients refused to undergo orthognathic surgery. Hence it is imperative to educate people in requisite of it and address issues regarding the factors leading to the individual’s decision to or not take up the surgery.

REFERENCES

1. Abdul Wahab, P. U. et al. (2017) ‘Risk Factors for Post-operative Infection Following Single Piece Osteotomy’, Journal of maxillofacial and oral surgery, 16(3), pp. 328–332.
2. Andrup, M. (2015) ‘Indications and Frequency of Orthognathic Surgery in Sweden - A Questionnaire Survey’, International Journal of Oral and Dental Health. doi: 10.23937/2469-5734/1510019.
3. Bell, W. H. (1973) ‘Biologic basis for maxillary osteotomies’, American journal of physical anthropology, 38(2), pp. 279–289.
4. Brecher, E. et al. (2019) ‘Is age a risk factor for orthognathic surgery complications?’, International Journal of Oral and Maxillofacial Surgery, p. 247. doi: 10.1016/j.ijom.2019.03.754.
5. Castro, V. et al. (2013) ‘Assessment of the epidemiological profile of patients with dentofacial deformities who underwent orthognathic surgery’, The Journal of craniofacial surgery, 24(3), pp. e271–5.
6. Chang, E. W. et al. (2001) ‘Sliding genioplasty for correction of chin abnormalities’, Archives of facial plastic surgery, 3(1), pp. 8–15.
7. Charrier, J.-B. (2012) ‘Orthognathic surgery of adults and facial aesthetics’, Journal of Dentofacial Anomalies and Orthodontics, p. 302. doi: 10.1051/odfen/2012202.
8. Cunningham, S. J. (2018) ‘The Psychosocial Aspects of Facial Deformity’, Fundamentals of Orthognathic Surgery and Non Surgical Facial Aesthetics, pp. 498–509. doi: 10.1142/9789813221857_0016.
9. Dinesh, S. P. S. and Saravana Dinesh, S. P. (2013) ‘An Indigenously Designed Apparatus for Measuring Orthodontic Force’, JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, doi: 10.7860/jcdr/2013/7143.3631.
10. Eapen, B. V., Baig, M. F. and Avinash, S. (2017) ‘An Assessment of the Incidence of Prolonged Postoperative Bleeding After Dental Extraction Among Patients on Uninterrupted Low Dose Aspirin Therapy and to Evaluate the Need to Stop Such Medication Prior to Dental Extractions’, Journal of maxillofacial and oral surgery, 16(1), pp. 48–52.
11. Elmouden, L. and Ouselah, L. (2018) ‘Assessment of the Quality of Life in Moroccan Patients Undergoing Orthognathic Surgery’, Turkish journal of orthodontics, 31(3), pp. 79–85.
12. Ezhilarasan, D., Apoorva, V. S. and Ashok Vardhan, N. (2019) ‘Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells’, Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 48(2), pp. 115–121.
13. Ezhilarasan, D., Sokal, E. and Najimi, M. (2018) ‘Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets’, Hepatobiliary & pancreatic diseases international: HBPD INT, 17(3), pp. 192–197.
Felicita, A. S. (2017a) ‘Orthodontic management of a dilacerated central incisor and partially impacted canine with unilateral extraction - A case report’, The Saudi Dental Journal, 29(4), pp. 185–193.

Felicita, A. S. (2017b) ‘Quantification of intrusive/retraction force and moment generated during en-masse retraction of maxillary anterior teeth using mini-implants: a conceptual approach’, Dental press journal of orthodontics, 22(S), pp. 47–55.

Felicita, A. S., Chandrasekar, S. and Shanthasundari, K. K. (2012) ‘Determination of craniofacial relation among the subethenic Indian population: a modified approach - (Sagitall relation)’, Indian journal of dental research: official publication of Indian Society for Dental Research, 23(3), pp. 305–312.

Felicita, A. S. and SumathiFelicita, A. (2018) ‘Orthodontic extrusion of Ellis Class VIII fracture of maxillary lateral incisior – The sling shot method’, The Saudi Dental Journal, pp. 265–269.doi: 10.1016/j.sdentj.2018.05.001.

Ghali, G. E. and Sikes, J. W. (2000) ‘Intraoral vertical ramus osteotomy as the preferred treatment for mandibular prognathism’, Journal of Oral and Maxillofacial Surgery, pp. 313–315. doi: 10.1016/s0278-2391(00)00963-6.

Irby, A. (2016) ‘Orthognathic Surgery Risk Factors and Complications in Patients with Increasing Age’, Journal of Oral and Maxillofacial Surgery, pp. e66–e67. doi: 10.1016/j.joms.2016.06.120.

Jain, R. K. (2014) ‘Comparison of Intrusion Effects on Maxillary Incisors Among Mini Implant Anchorage. J-Hook Headgear and Utility Arch’, JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. doi: 10.7869/jcdnr/2014/8339.4554.

Jeevanandan, G. and Govindaraju, L. (2018) ‘Clinical comparison of Kedo-S paediatric rotary files vs manual instrumentation for root canal preparation in primary molars: a double blindered randomised clinical trial’, European Archives of Paediatric Dentistry, pp. 273–278. doi: 10.1007/s00436-018-0356-6.

Kamissetty, S. et al. (2015) ‘SBS vs Inhouse Recycling Methods–An Invitro Evaluation’, Journal of clinical and diagnostic research: JCDR, 9(9), pp. ZC04–8.

Kawin, T., Jagadesan, A. G. P. and Venkataraman, S. S. (2012) ‘Changes in quality of life and impact on patients’ perception of esthetics after orthognathic surgery’, Journal of pharmacy biotechnology sciences. 4(Suppl 2), pp. S290–3.

Khecheoany, D. Y. (2013) ‘Orthognathic surgery: general considerations’, Seminars in plastic surgery, 27(3), pp. 133–136.

Kim, Y.-K. (2017) ‘Complications associated with orthognathic surgery’, Journal of the Korean Association of Oral and Maxillofacial Surgeons, p. 3. doi: 10.5125/jkoms.2017.43.1.3.

Krishnan, S., Pandian, K. and Kumar, S. (2018) ‘Angular photogrammetric analysis of the soft-tissue facial profile of Indian adults’, Indian Journal of Dental Research, p. 137. doi: 10.4103/jirdr.jirdr_496_16.

Krishnan, S., Pandian, S. and Kumar S, A. (2015) ‘Effect of bisphosphonates on orthodontic tooth movement–an update’, Journal of clinical and diagnostic research: JCDR, 9(4), pp. ZC01–5.

Kumar, K. R. R. et al. (2011) ‘Depth of resin penetration into enamel with 3 types of enamel conditioning methods: A confocal microscopic study’, American Journal of Orthodontics and Dentofacial Orthopedics, pp. 479–485. doi: 10.1016/j.ajodo.2010.10.022.

Lee, C. C. Y., Peacock, Z. S. and Kabab, L. B. (2015) ‘Skeletal Stability of Orthognathic Surgery: A Comparison of Patients Over and Under 40 Years of Age’, Journal of Oral and Maxillofacial Surgery, p. e25. doi: 10.1016/j.joms.2015.06.041.

Magalhães, I. B. et al. (2010) ‘The influence of malocclusion on masticatory performance. A systematic review’, The Angle orthodontist, 80(5), pp. 981–987.

Mallisureshbabu, N. et al. (2019) ‘Concentrated Growth Factors as an Ingenious Biomaterial in Regeneration of Bony Defects after Periapical Surgery: A Report of Two Cases’, Case reports in dentistry, 2019, pp. 7046203.

Manivannan, I. et al. (2017) ‘Tribological and surface behavior of silicon carbide reinforced aluminum matrix composite’, Surfaces and interfaces, 8, pp. 127–136.

Mathew, M. G. et al. (2020) ‘Evaluation of adhesion of Streptococcus mutans, plaque accumulation on zirconia and stainless steel crowns, and surrounding gingival inflammation in primary …’, Clinical oral investigations. Available at: https://link.springer.com/article/10.1007/s00784-020-02320-9.

Mehta, M. et al. (2019) ‘Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases’, Chemico-biological interactions, 308, pp. 206–215.

Naini, F. B. (2013) ‘Psychological Ramifications of Facial Deformities’, Facial Aesthetics, pp. 54–61. doi: 10.1002/9781118786567.ch4.

Neelakantan, P. et al. (2015) ‘Influence of Irrigation Solution on the Adhesion of Root Canal Sealers to Dentin: A Fourier Transform Infrared Spectroscopy and Push-out Bond Strength Analysis’, Journal of endodontia, 41(7), pp. 1108–1111.

Patil, S. B. et al. (2017) ‘Comparison of Extended Nasolabial Flap Versus Buccal Fat Pad Graft in the Surgical Management of Oral Submucous Fibrosis: A Prospective Pilot Study’, Journal of maxillofacial and oral surgery, 16(3), pp. 512–521.

Pc, J., Mar, D. S., Splinter, W. and Bosco, D. (1996) ‘Induced hypotensive anesthesia for adolescent orthognathic surgery patients’, Journal of Oral and Maxillofacial Surgery: A Report of Two Cases’, Journal of Oral and Maxillofacial Surgery, pp. 1955–2004. doi: 10.1016/j.joms.2013.03.020.

Posnick, J. C. (2014) ‘Complications Associated with Orthognathic Surgery’, Orthognathic Surgery, pp. 475–542. doi: 10.1016/b978-1-4557-2698-1.00016-2.

Posnick, J. C. and Kinard, B. E. (2019) ‘Orthognathic Surgery Has a Significant Positive Effect on Perceived Personality Traits and Perceived Emotional Facial Expressions in Subjects With Primary Mandibular Deficiency’, The Journal of craniofacial surgery, 30(8), pp. 2337–2340.

Precious, D. S., Splinter, W. and Bosco, D. (1996) ‘Induced hypotensive anesthesia for adolescent orthognathic surgery patients’, Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons, 54(6), pp. 680–3; discussion 683–4.

Rajeshkumar, S. et al. (2019) ‘Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnottiana plant extract’, Journal of Photochemistry and Photobiology B: Biology, pp. 111531. doi: 10.1016/j.jpb.2019.111531.

Ramsadurai, N. et al. (2019) ‘Effectiveness of 2% Articaine as an anesthetic agent in children: randomized controlled trial’, Clinical oral investigations, 23(9), pp. 3543–3550.

Ramamoorthy, S., Niveditha, M. S. and Divyanand, M. J. (2015) ‘Comparative evaluation of postoperative pain after using endodontic needle and EndoActivator during root canal irrigation: A randomised controlled trial’, Australian endodontic journal: the journal of the Australian Society of Endodontology, 41(2), pp. 78–87.

Ramesh, A. et al. (2018) ‘Comparative estimation of sulfiredoxin levels between chronic periodontitis and healthy patients - A case-control study’, Journal of periodontology, 89(10), pp. 1241–1248.

Ravindiran, M. and Praveen Kumar, C. (2018) ‘Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device’, Renewable & Sustainable Energy Rev., 94, pp. 317–329.

Reyneke, J. P. (2003) Essentials of Orthognathic Surgery. Quintessence Publishing (IL).

Rubika, J., SumathiFelicita, A. and Sivambiga, V. (2015) ‘Gonial Angle as an Indicator for the Prediction of Growth Pattern’, World Journal of Dentistry, pp. 161–163. doi: 10.5005/jp-journals-10015-1334.

Samantha, C. (2017) ‘Comparative Evaluation of Two Bis-GMA Based Orthodontic Bonding Adhesives - A Randomized Clinical Trial’, JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. doi: 10.7869/jcdnr/2017/16716.9665.
51. Samuel, S. R., Acharya, S. and Rao, J. C. (2020) ‘School Interventions-based Prevention of Early-Childhood Caries among 3-5-year-old children from very low socioeconomic status: Two-year randomized trial’, Journal of public health dentistry, 80(1), pp. 51–60.
52. Sarver, D. M. (1998) Esthetic Orthodontics and Orthognathic Surgery. Mosby Incorporated.
53. Sathish, T. and Karthick, S. (2020) ‘Wear behaviour analysis on aluminium alloy 7050 with reinforced SiC through taguchi approach’, Journal of Japan Research Institute for Advanced Copper-Base Materials and Technologies, 9(3), pp. 3481–3487.
54. Scariot, R. et al. (2010) ‘Epidemiological analysis of orthognathic surgery in a hospital in Curitiba, Brazil: Review of 195 cases’, Revista Española de Cirugía Oral y Maxilofacial, pp. 147–151. doi: 10.1016/s1130-0558(10)70034-4.
55. Sivamurthy, G. and Sundari, S. (2016) ‘Stress distribution patterns at mini-implant site during retraction and intrusion—a three-dimensional finite element study’, Progress in orthodontics, 17, p. 4.
56. S, M. et al. (2017) ‘Outcome of Arthrocentesis in Patients with Internal Derangement of Temperomandibular Joint with Disc Reduction and without Disc Reduction’, Journal of Medical Science And clinical Research. doi: 10.18535/jmscr/v5i12.110.
57. Sridharan, G. et al. (2019) ‘Evaluation of salivary metabolomics in oral leukoplakia and oral squamous cell carcinoma’, Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 48(4), pp. 299–306.
58. Stirling, J. et al. (2007) ‘Elective orthognathic treatment decision making: a survey of patient reasons and experiences’, Journal of orthodontics, 34(2), pp. 113–27; discussion 111.
59. Suen, K.-S. (no date) ‘A prospective study of changes in psychosocial characteristics of patients with dentofacial deformities after corrective surgery’. doi: 10.5353/th_b5063967.
60. Swennen, G. R. J. (2017) ‘3D Virtual Evaluation of Treatment Outcome of Orthognathic Surgery’, 3D Virtual Treatment Planning of Orthognathic Surgery, pp. 329–365. doi: 10.1007/978-3-662-47389-4_5.
61. Vega, O. et al. (2015) ‘Epidemiological analysis of orthognathic surgery in the Bogota Central Military Hospital, Colombia’, International Journal of Oral and Maxillofacial Surgery, p. e185. doi: 10.1016/j.ioms.2015.08.009.
62. VijayashreePriyadharsini, J. (2019) ‘In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens’, Journal of periodontology, 90(12), pp. 1441–1448.
63. Vikram, N. R. et al. (2017) ‘Ball Headed Mini Implant’, Journal of clinical and diagnostic research: JCDR, 11(1), pp. ZL02–ZL03.
64. Viswanath, A. et al. (2015) ‘Obstructive sleep apnea: awakening the hidden truth’, Nigerian journal of clinical practice, 18(1), pp. 1–7.
65. Wahab, P. U. A. et al. (2018) ‘Scalpel Versus Diathermy in Wound Healing After Mucosal Incisions: A Split-Mouth Study’, Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons, 76(6), pp. 1160–1164.