Limit load in the problem on penetration of wedge-shaped tool in anisotropic medium

AI Chanyshev1,2* and IM Abdulin1
1Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University of Economics and Management, Novosibirsk, Russia
E-mail: *sa.i.chanyshev@gmail.com

Abstract. The mathematical model of plastic deformation in an initially anisotropic medium assumes that principal directions of strain in elasticity remain principal directions of strain in plasticity and fracture as well. The modeling considers penetration of a bit represented by a cylindrical tool with a wedge-shaped tip. The maximal penetration depth of the bit is calculated at the preset initial rate of penetration. The influence of the anisotropy of the medium and the bit parameters on the bit penetration depth is studied.

1. Introduction
Many studies address the problem of penetration of a stiff toll in a plastic medium [1–10]. Such problems allow determining indentation hardness of materials (Brinnel test), stability of foundations for various structures, and penetration depths of hammering tools in soil and rocks. In the meanwhile, these studies analyze plasticity of media which are initially isotropic than anisotropic. This fact is governed by the advancement of the plasticity theory without any relationship with elasticity. The plastic theory arose from observations over the surfaces of plastically deformable bodies. Plastic deformation generated slide lines on the body surfaces, similar to planes of maximal shear stresses (Chernov–Luders lines). The Tresca criterion was invented in associations with those planes, then the plasticity theories were originated to reflect the gradient influence of plastic strains relative to the maximal shear sites. Von Mises condition was the approximation of the Tresca condition for the initially anisotropic media and gave rise to the quadratic condition for the initially isotropic media that time (the early 20th century).

For the first time, the randomness of the mentioned assumption and the disconnectedness of the plasticity and elasticity were pointed out by the authors of [11, 12]. These researchers emphasized that the principal directions of strains in elasticity remain the principal directions of strains in plasticity. This fact is particularly pronounced in the theories of plasticity and creep of initially isotropic media where the principal directions are the spherical tensor and deviator. On the other hand, the ellipsoids based on the elastic constants and ultimate strength limits of initially anisotropic media are similar [13].

2. Plastic model of initially anisotropic medium
We proceed from the solution of problem on indentation of a press-tool in an initially anisotropic medium [11, 12]. Let the deformation conditions be plane. The Hooke law in the coordinate system xOy is given by:
here, \(a_{ij} \) are the yields \(a_{ij} > 0 \). The tensor basis is selected to be:

\[
T_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad T_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad T_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

This basis is orthonormal and orthogonal \([14]\).

In basis (2) the Hooke law is presented in the form of a matrix:

\[
\begin{pmatrix}
\Omega_1 \\
\Omega_2 \\
\Omega_3
\end{pmatrix} = \begin{pmatrix}
a_{11} & a_{12} & 0 \\
a_{12} & a_{22} & 0 \\
0 & 0 & a_{33}
\end{pmatrix}
\begin{pmatrix}
S_1 \\
S_2 \\
S_3
\end{pmatrix},
\]

where \(\Omega_i = (T_x, T_i), \ S_i = (T_x, T_i), \ \Omega_1 = \epsilon_{xy}, \ \Omega_2 = \epsilon_{yx}, \ \Omega_3 = \sqrt{2} \epsilon_{xy}, \ldots \).

With respect to (3), we transform basis (2) so that (3) is arranged diagonally. To this end, we need to solve the equation \(\lambda E \), where \(A \) is the matrix determined from (3). The roots of this equation are:

\[
\lambda_1 = \frac{a_{11} + a_{22}}{2} + \sqrt{\left(\frac{a_{11} - a_{22}}{2}\right)^2 + a_{12}^2}, \quad \lambda_2 = \frac{a_{11} + a_{22}}{2} - \sqrt{\left(\frac{a_{11} - a_{22}}{2}\right)^2 + a_{12}^2}, \quad \lambda_3 = a_{33}.
\]

For roots (4) we find principal vectors:

\[
\tilde{b}_1 = (\cos \beta, -\sin \beta, 0), \quad \tilde{b}_2 = (-\sin \beta, \cos \beta, 0), \quad \tilde{b}_3 = (0, 0, 1).
\]

Finally, principal tensors (1) have the form:

\[
\tilde{T}_1 = \cos \beta T_1 - \sin \beta T_2, \quad \tilde{T}_2 = \sin \beta T_1 + \cos \beta T_2, \quad \tilde{T}_3 = T_3
\]

or

\[
\tilde{T}_1 = \begin{pmatrix} \cos \beta & 0 \\ 0 & -\sin \beta \end{pmatrix}, \quad \tilde{T}_2 = \begin{pmatrix} \sin \beta & 0 \\ 0 & \cos \beta \end{pmatrix}, \quad \tilde{T}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

For the plasticity theory, we need to analyze multiplicity of roots (4). For the initially isotropic medium, \(\lambda_1 = \lambda_3 \). Let this case be taken as the basis. For this case, the plasticity condition is written as [12]:

\[
S_1^2 + S_3^2 = k^2 \quad \text{or} \quad S_1 = k \cos \varphi, \quad S_3 = k \sin \varphi,
\]

where \(k \) is the elastic limit; \(\varphi \) is the polar angle in the plane of the variables \(S_1, S_3 \). In other words, we introduce the relations:

\[
\sigma_x \cos \beta - \sigma_y \sin \beta = k \cos \varphi, \quad \sqrt{2} \tau_{xy} = k \sin \varphi.
\]

Here:

\[
\tan 2\beta = \frac{2a_{12}}{(a_{11} - a_{22})}.
\]

The connection of stresses and strains along the ort \(\tilde{T}_2 \) is assumed as elastic, and plasticity develops in the plane formed by the orts \(\tilde{T}_1, \tilde{T}_3 \). Then, we disregard all elastic strains and place Eq. (5) in the equation of equilibrium:
\[
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0.
\] (7)

For determining functions \(\varphi(x, y), \sigma_y(x, y)\), we obtain the system of equations:
\[
\begin{cases}
-\frac{k \sin \varphi}{\cos \beta} \frac{\partial \varphi}{\partial x} + \sqrt{2} \frac{\partial \sigma_y}{\partial x} + \tan \beta \frac{\partial \sigma_y}{\partial x} = 0, \\
\sqrt{2} \frac{\partial \sigma_y}{\partial x} + k \cos \varphi \frac{\partial \varphi}{\partial y} = 0.
\end{cases}
\] (8)

Characteristics (8) are found in the form:
\[
\begin{align*}
\left(\frac{dy}{dx} \right)_1 &= \frac{\tan \varphi + \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta}, \\
\left(\frac{dy}{dx} \right)_2 &= \frac{\tan \varphi - \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta}.
\end{align*}
\] (9)

The relations on these characteristics are:
\[
d \sigma_y \frac{dy}{dx} + k \cos \varphi \cot \beta \frac{d \varphi}{d \sigma_y} = 0
\]
or, with regard to (9):
\[
d \sigma_y - k \frac{2 \sin \beta}{\sin \varphi} \left[\frac{\sin \varphi}{\sqrt{2} \sin \beta} \right] \left[\frac{\sin \varphi + \sqrt{\sin 2 \beta + (1 - \sin 2 \beta) \sin^2 \varphi}}{1 - \sin^2 \varphi} \right] d \varphi = 0.
\] (10)

The integrals for (10) are:
\[
\sigma_y + k \left(\frac{\cos \varphi - \cos \varphi_0}{2 \sin \beta} \right) + k \frac{2 \sin \beta}{\sin \varphi} \int_{\varphi_0}^{\varphi} \left[1 - \sin^2 \left(\frac{\varphi - \pi}{2} \right) \right] d \varphi = C,
\] (11)

where \(N^2 = 1 - \sin 2 \beta\); \(C\) is the integration constant. For the problem solution, we need to find the spherically symmetric field.

Let the point \(A\) be the pole. In term of the polar coordinates \(\rho\) and \(\theta\), the coordinates of any point can be given by the formulas:
\[
y = y_A + \rho \sin \theta, \quad x = x_A + \rho \cos \theta.
\] (12)

Substitution of (12) in (9) yields:
\[
\begin{align*}
\frac{d \rho}{\sin \theta - \frac{\tan \varphi + \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta} \cos \theta} + \rho \left[\frac{\cos \varphi + \frac{\tan \varphi + \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta} \sin \varphi}{\sin \theta} \right] d \theta &= 0, \\
\frac{d \rho}{\sin \theta - \frac{\tan \varphi - \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta} \cos \theta} + \rho \left[\frac{\cos \varphi - \frac{\tan \varphi - \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta} \sin \varphi}{\sin \theta} \right] d \theta &= 0.
\end{align*}
\] (13)

Let in the second equation in (13), \(\theta = \text{const}\) and \(d \theta = 0\). One more condition is:
\[
\tan \theta = \frac{\frac{\tan \varphi - \sqrt{\tan^2 \varphi + \sin^2 2\beta}}{\sqrt{2} \sin \beta}}{\sin \theta}.
\] (14)

These two conditions meant that the characteristics of the second family in (9) turn into rays \(\theta = \text{const}\), where the extreme values \(\theta\) are determined in terms of the extreme values of the angle \(\varphi\) using (14). Regarding the characteristics of the first family in (9), placement of (14) in the first equation of (13) yields:
\[
\frac{d \rho}{\rho} = \frac{\sin \beta - \cos \beta}{\sqrt{2} \sqrt{\tan^2 \varphi + \sin^2 2\beta}}.
\] (15)
With regard to (14), we find:
\[
\sqrt{\tan^2 \varphi + \sin 2\beta} = \tan \varphi - \tan \theta \sqrt{2} \sin \beta .
\] (16)

After raising (16) to the second power, we have:
\[
\tan \varphi = \frac{\tan^2 \theta \sin \beta - \cos \beta}{\sqrt{2} \tan \theta} .
\] (17)

Placement of (17) in (16) gives:
\[
\sqrt{\tan^2 \varphi + \sin 2\beta} = -\frac{\tan^2 \theta \sin \beta + \cos \beta}{\sqrt{2} \tan \theta} .
\] (18)

It follows from (18) and (15) that:
\[
\frac{d\rho}{\rho} = \frac{(1 - \tan \beta) \tan \theta}{1 + \tan \beta \tan^2 \theta} d\theta .
\] (19)

We integrate (19) and have:
\[
\ln \rho - \ln c = -\frac{1}{2} \ln (\cos^2 \theta + \tan \beta \sin^2 \theta)
\]
or
\[
\rho^2 \cos^2 \theta + \tan \beta \rho^2 \sin^2 \theta = C^2 .
\] (20)

It is apparent that condition (20) defines an ellipse with half-axes
\[
a = |C| , \ b = \sqrt{\cot \beta} |C| ,
\]
where \(C \) is the integration constant. Since \(b / a = \sqrt{\cot \beta} \), we have a family of similar ellipses.

3. Problem on penetration of rigid wedge in anisotropic medium

Let there be an anisotropic medium with elasticity law (1) and condition \(\lambda_1 = \lambda_3 \), where \(\lambda_1, \lambda_2, \lambda_3 \) is determined from (4). Let the plasticity condition \(S^2_i + S^2_i = k^2 \) represented by (5) lead to characteristics (9) with relations (10) and (11) on them. This medium is penetrated with a rigid nondeformable wedge with a nose angle \(2\gamma \) (Figure 1). It is assumed that the wedge moves at an initial velocity \(v_0 \). Using the scheme of a rigid-plastic body, we are going to find the maximum penetration depth of the wedge.

Figure 1. Wedge \(AEF \) penetrates rock mass. The domains \(ABC \) and \(ADE \) are the uniform stress state zones, the domain \(ADC \) is a centered field formed by the beams emerged from the point \(A \) and by the arcs of similar ellipses.
We construct the problem solution from the boundary AB. This boundary is free of stresses for $\sigma_y = \tau_{xy} = 0$. It follows from (5) that $\varphi = \pi$, since at such value of φ:

$$\sigma_x = -k / \cos \beta < 0.$$

At the boundary AE $\tau_n = 0$, or:

$$\tau_n = \frac{\sigma_x - \sigma_y}{2} \sin 2\gamma + \tau_{xy} \cos 2\gamma = 0. \quad (21)$$

Let us express the stress σ_y from (21) using (5). From (5) we find:

$$\sigma_x = k \frac{\cos \varphi + \sigma_y \sin \beta}{\cos \beta}, \quad \tau_{xy} = \frac{k \sin \varphi}{\sqrt{2}}. \quad (22)$$

We insert (22) in (21) and have:

$$\sigma_y = k \frac{\cos \varphi \sin 2\gamma + \sqrt{2} \sin \varphi \cos 2\gamma \cos \beta}{\sin 2\gamma (\cos \beta - \sin \beta)}. \quad (23)$$

We denote the unknown value φ in (22) and (23) as φ_*. Then, we turn to characteristics (10). Along the first characteristic (9), relation (1) is fulfilled with the upper sign before radical. We integrate it from the point P, where $\sigma_y = 0$, $\varphi = \pi$, to the point Q, where σ_y is calculated from (23) and $\varphi = \varphi_*$. As a result, we obtain a transcendental equation to find φ_* at the boundary EA:

$$\frac{\cos \varphi_* \sin 2\gamma + \sqrt{2} \sin \varphi_* \cos 2\gamma \cos \beta}{\sin 2\gamma (\cos \beta - \sin \beta)} + \frac{\cos \varphi_* + 1}{2 \sin \beta} - \frac{1}{2 \sin \beta} \int_{\pi}^{\varphi_*} \sqrt{1 - \sin^2 (\varphi - \pi / 2)} d\varphi = 0. \quad (24)$$

The normal stress σ_n is recovered from the formula:

$$\sigma_n = \sigma_x \cos^2 \gamma - 2 \tau_{xy} \cos \gamma \sin \gamma + \sigma_y \sin^2 \gamma,$$

where $\sigma_x, \sigma_y, \tau_{xy}$ are expressed in terms of (22), (23) at $\varphi = \varphi_*$. With σ_n known from (25), we find force on the wedge side AE by multiplying σ_n by the length of AE. The same force affects the side FE. After that, we find the vertical force which prevents downward movement of the wedge. Newton’s equation of motion is integrated at the initial condition $v = v_0$, $t = t_0$. The time at which the velocity turns to zero is determined, and using this time, the maximal penetration depth of the wedge is found.

Table 1. Stresses at smooth wedge for different angles γ

γ, deg	σ_x / k	σ_y / k	τ_{xy} / k	φ_*, rad
In anisotropic rock mass				
10	-0.282	-1.208	0.169	2.901
15	-0.421	-1.242	0.237	2.780
20	-0.559	-1.268	0.298	2.707
25	-0.698	-1.29	0.352	2.620
30	-0.842	-1.308	0.403	2.535
In isotropic rock mass				
10	-0.289	-1.616	0.241	2.793
15	-0.465	-1.687	0.353	2.619
20	-0.658	-1.74	0.454	2.445
25	-0.869	-1.776	0.541	2.271
30	-1.093	-1.799	0.612	2.096
Table 1 compiles the calculation results for quartz rock crystal at $\beta = 0.442$ (elastic characteristics are taken from [15], MPa$^{-1}$: $a_{11} = 19.66 \times 10^{-6}$, $a_{22} = 12.73 \times 10^{-6}$, $a_{12} = 4.23 \times 10^{-6}$) and for isotropic medium, MPa$^{-1}$ ($\beta = 0.785$, $a_{11} = 19.66 \times 10^{-6}$, $a_{22} = 19.60 \times 10^{-6}$, $a_{12} = 4.23 \times 10^{-6}$), where the values of σ_y/k are proportional to the expression $-1 - 2\gamma + \cos 2\gamma$.

4. Conclusions
The authors have constructed the mathematical model of plastic deformation in an initially anisotropic medium with multiple roots of the characteristic equation. The authors use the model to solve the problem on penetration of a rigid wedge in the initially anisotropic medium.

Acknowledgements
The study was supported by the Russian Foundation for Basic Research, Project No. 18-05-00757.

References
[1] Kachanov MV 1969 Fundamentals of the Theory of Plasticity Moscow: Nauka (in Russian)
[2] Sokolovsky VV 1969 Theory of Plasticity Moscow: Vyssh. shk. (in Russian)
[3] Tomas TY 1961 Plastic Flow and Fracture in Solids Elsevier Science
[4] Hill R 1998 The Mathematical Theory of Plasticity Clarendon Press
[5] Khromov AI 1996 Deformation and Destruction of Rigid-Plastic Bodies Vladivostok: Dalnauka (in Russian)
[6] Buhanko AA and Khromov AI 2002 Deformation fields under intrusion of wedge-shaped and flat stamps. Part 3 Dalnevost. Matem. Zh. No 2 pp 311–319
[7] Ivlev DD 1957 Pressing a thin blade into a plastic medium Izv. AN SSSR. OTN No 10 pp 89–93
[8] Ivlev DD and Maksimova LA 2000 Pressing an indenter into a perfect rigid-plastic band Izv. RAN. Mekh. Tverd. Tela No 3 pp 131–136
[9] Hill R, Lee EH and Tupper SJ 1947 The theory of wedge indentation of ductile materials Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol 188 No 1013 pp 273–289
[10] Davydov DV and Myasnikin YuM 2009 On the introduction of bodies into a rigid-plastic medium Vestnik VGU Physics and Mathematics Series 1 pp 94–100
[11] Rychlowski J 1984 On Hooké’s Law Journal of Applied Mathematics and Mechanics Vol 48 Issue 3 pp 303–314
[12] Chanyshchev AI 1984 Plasticity of anisotropic media Journal of Applied Mathematics and Technical Physics Vol 25 No 2 pp 311–314
[13] Ashkenazi EK and Ganov EV 1972 Anisotropy of Structural Materials: Handbook Leningrad, Leningrad: Mashinostroenie (in Russian)
[14] Novozhilov VV 1963 On the forms of stress–strain relation for initially isotropic inelastic bodies (geometric aspect of the question) Journal of Applied Mathematics and Mechanics Vol 27 Issue 5 pp 1219–1243
[15] Lekhnitsky SG 1977 Theory of Elasticity of an Anisotropic Body Moscow: Nauka (in Russian)