BMD and ETEST were 1/1 and ≥ 320, respectively. Failure occurred in 18%; 26% had AKI. Mean (SD) VANC therapy was 18 (14) days. Mean (SD) AUC_{0-24h} was 586.9 (235.5) and 44% and 73% of patients achieved an AUC_{0-24h}/MIC ≥ 650 and AUC_{0-24h}/MIC ≥ 320. In the multivariable analyses (Figure 1), failure was not significantly different between AUC_{0-24h}/MIC groups. In contrast, AKI was significantly more common in patients with an AUC_{0-24h}/MIC ≥ 650. Clinicians should assess the benefits vs. risks of using VANC regimens that confer high AUC_{0-24h}/MIC exposures for patients with MRSA BSIs.

Figure 1. Comparisons of Outcomes between AUC_{DAY2}/MIC Exposure Groups

Disclosures. T. P. Lodise Jr, allergen: Consultant, Grant Investigator, Scientific Advisor and Speaker’s Bureau, Consulting fee and Speaker honorarium; medicines company: Consultant, Investigator, Scientific Advisor and Speaker’s Bureau, Consulting fee; Research support and Speaker honorarium; melinta: Consultant, Investigating, Consulting fee, Research support and Speaker honorarium; nabriva: Consultant, Consulting fee, Research support and Speaker honorarium; melinta: Consultant, Investigating, Consulting fee, Research support and Speaker honorarium; medicines company: Investigator, Speaking fee; Theravance, Novartis, Cubist/Merck; Medical Biosurfaces; Locus; Affinergy; MedImmune, Cerexa/Forest/Actavis/Allergan, Pfizer, Advanced Liquid Logics, Co., Cerexa, Tetraphase, Trius, MedImmune, Bayer, Theravance, Cubist, Basilea, Affinergy, Jansen, xBiotech, Contrafect: Consultant, Consulting fee; NIH, Basilea, MedImmune, Cerexa/Forest/Activis/Allergan, Pfizer, Advanced Liquid Logics, Theravance, Novartis, Cubist/Merck; Medical Biosurfaces; Locus; Affinergy; Contrafect; Karius: Grant Investigator, Research grant; Green Cross, Cubist, Cerexa, Durata, Theravance; Debiopharm: Consultant, Consulting fee; UpToDate: author on several chapters, Royalties

898. Comparing the Outcomes of Adults with Enterobacteriaceae Bacteremia Receiving Short-Course vs Prolonged-Course Antibiotic Therapy

Darune Chotiprasitsakul, MD, MPH; Jennifer H. Han, MD, MSCE; Anna T. Conley, BA; Sara E. Gosgrove, MD, MS; Anthony D. Harris, MD, MPH; Ebbing Lautenbach, MD, MPH, MSCE, FIDSA, FSHEA; Pranita T. Datta, MD, MHS; 1Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; 2Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; 3The University of Maryland School of Medicine, Baltimore, Maryland; 4Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland; 5Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland; 6Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; 7Johns Hopkins University School of Medicine, Baltimore, Maryland

Session: 132. Advances in Management of Bacteremia and Sepsis

Friday, October 6, 2017: 10:30 AM

Background. The recommended duration of antibiotic treatment for *Enterobacteriacea* bacteremia is between 7 and 14 days. We compared the clinical outcomes of patients receiving short-course (6–10 days) vs prolonged-course (11–15 days) antibiotic therapy for *Enterobacteriacea* bacteremia.

Methods. A retrospective cohort study was conducted at The Johns Hopkins Hospital, The University of Maryland Medical Center, and The Hospital of the University of Pennsylvania including patients with monomicrobial *Enterobacteriacea* bacteremia treated with in vitro active antibiotic therapy in the range of 6–15 days between January 2008 and 2015. When there was ≥ 1 nearest neighbor propensity score matching without replacement was performed, prior to regression analysis, to estimate the risk of all-cause mortality within 30 days after the end of antibiotic treatment for patients receiving short vs. prolonged durations of antibiotic therapy. Secondary outcomes included *Clostridium difficile* infection (CDI) and the emergence of multidrug-resistant Gram-negative (MDRGN) bacteria within 30 days after the end of antibiotic therapy.

Results. A total of 1,749 patients met eligibility criteria. There were 385 matched pairs who were well-balanced on baseline characteristics. The median duration of therapy in the short-course group and prolonged-course group was 8 days (interquartile range (IQR) 7–9 days) and 15 days (IQR 13–15 days), respectively. No difference in all-cause mortality between short- and prolonged-course treatment groups was observed (adjusted hazard ratio [aHR] 1.00, 95% CI 0.03–3.51). Rates of CDI were similar between the treatment groups (OR 1.17; 95% CI 0.39–3.51). There was a non-significant protective effect of short-course antibiotic therapy on the emergence of MDRGN bacteria (OR 0.59; 95% CI 0.32–0.99 P = 0.09).

Conclusion. Short courses of antibiotic therapy yields similar clinical outcomes to prolonged courses of antibiotic therapy for *Enterobacteriacea* bacteremia, and may protect against subsequent MDRGN emergence.

Disclosures. All authors: No reported disclosures.

987. Infectious Disease Consultation Is Associated with Decreased Mortality with *Enterococcus* Bloodstream Infections

Rachael A. Lee, MD; Daniel Vo, MD; Joanna Zurdo, MD; Russell Griffin, PhD; J. Martin Rodriguez, MD; Bernard Camins, MD, MSc; Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama; Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama; University of Alabama at Birmingham, Birmingham, Alabama; Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama; Infectious Disease, University of Alabama at Birmingham, Birmingham, Alabama

Session: 132. Advances in Management of Bacteremia and Sepsis

Friday, October 6, 2017: 10:30 AM

Background. *Enterococcus* bloodstream infections (EBSI) have been attributed with significant morbidity and mortality. The objective of this study was to determine whether IDC is associated with improved mortality in patients hospitalized with EBSI.

Methods. This is a cross-sectional study of patients admitted to the University of Alabama Health System between January 1, 2015 and June 30, 2016 who had EBSI. Patients who died within 2 days of hospitalization were excluded. Categorical variables were analyzed with chi-square or Fisher’s exact test and continuous variables were analyzed with a t-test or Wilcoxon rank-sums test when appropriate. A P-value < 0.05 was considered significant. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) for factors associated with 30-day in-hospital mortality.

Results. A total of 213 patients met the case definition. One hundred and thirty-four (63%) received IDC. Baseline patient demographics and comorbidities were similar in both groups. Patients with IDC were more likely to have repeated blood cultures (99% vs. 72%, P < 0.001), echocardiogram performed (77% vs. 46%, P < 0.001), and interventions for source control (19% vs 6%, P = 0.01). Patients with- out IDC were more likely to have inappropriate antibiotic treatment or no antibiotics (20% vs. 0%, P < 0.001) as well as inappropriate duration of therapy (54% vs. 10%, P < 0.001). There were no differences in the rates of recurrent bacteremia or readmis- sion within 60 days. Patients who did not receive IDC had higher 30-day in-hospital mortality (27% vs. 13%, P = 0.02). Having an echocardiogram (OR 2.75, 95% CI 1.36–5.55), surgical intervention (OR 3.11, 95% CI 1.07–9.05) and an IV catheter (OR 3.90, 95% CI 1.39–10.88) were associated with increased likelihood of IDC while inappropriate duration of antibiotics was associated with an 87% decreased likelihood of IDC (OR 0.13, 95% CI 0.06–0.29). The strongest association observed with 30-day mortality was inappropriate duration of antibiotics (OR 4.93, 95% CI 1.21–18.61).

Conclusion. IDC was associated with reduced 30-day in-hospital mortality in patients with EBSI. Although further investigation is warranted, the results of this study suggest that early involvement of ID specialists in EBSI may lead to better outcomes.

Disclosures. All authors: No reported disclosures.

988. "Big data" and Gram-negative Resistance: A Multiple Logistic Regression Model Using EMR Data to Predict Carbapenem Resistance in Patients with *Klebsiella pneumoniae* Bloodstream Infection

Timothy-Sullivan, MD and Judith Aberg, MD, FIDSA; 1Division of Infectious Diseases, Feinberg School of Medicine at Mount Sinai, New York, NY, 2Medicine, Feinberg School of Medicine at Mount Sinai, New York, New York

Session: 132. Advances in Management of Bacteremia and Sepsis

Friday, October 6, 2017: 10:30 AM

Background. The timely identification of carbapenem resistance is essential in the management of patients with *Klebsiella pneumoniae* bloodstream infection (BSI). An algorithm using electronic medical record (EMR) data to quickly predict resistance could potentially help guide therapy until more definitive resistance testing results are available.

Methods. All cases of *K. pneumoniae* BSI at Mount Sinai Hospital from September 2012 through September 2016 were identified. Cases of persistent BSI or recurrent BSI
within 2 weeks were included only once. Patients with recurrent BSI after more than 2 weeks of negative blood cultures were considered distinct cases and included more than once. Carbapenem resistance was defined as an imipenem minimum inhibitory concentration of ≥2 μg/mL. Extensive EMR data for each patient were compiled into a relational database using SQLLite. Possible risk factors for carbapenem resistance were queried from the database and analyzed via univariate methods. Significant factors were then entered into a multiple logistic regression model in a forward stepwise approach using SPSS.

Results. A total of 613 cases of *K. pneumoniae* BSI were identified in 540 unique patients. The overall incidence of imipenem resistance was 10% (61 cases). Significant markers of resistance included in the final model were (1) prior colonization with imipenem-resistant *Klebsiella pneumoniae*; (2) hospital unit (defined as high-risk unit, low-risk unit, and emergency department); (3) total inpatient days in the previous 5 years; (4) total days of oral or parenteral antibiotics in the past 2 years; and (5) age >60 years old (Figure 1). The model generated a receiver operating characteristic curve with an area under the curve of 0.75 (Figure 2). At a cut point of 0.083, the model correctly predicted 72% of imipenem-resistant cases while incorrectly labeling 32% of susceptible cases as resistant (Sn = 72%, Sp = 63%, Figure 3).

Conclusion. A multiple logistic regression model using EMR data can generate immediate, clinically useful predictions of carbapenem resistance in patients with *K. pneumoniae* BSI. Larger data sets are needed to improve and validate these findings.

Figure 1. Algorithm variables

Figure 2. Receiver operating characteristic curve

Figure 3. Classification table

Disclosures. All authors: No reported disclosures.

989. Direct Detection and Identification of Prosthetic Joint Pathogens in Synovial Fluid Using a High-Throughput Metagenomics Platform

Morgan Ivy, BS1; Matthew Thoendel, MD, PhD1; Patricio Jeraldo, PhD2; Keryl Greenwood-Quaintance, MS3; Arlen D. Hanssen, MD4; Matthew Abdel, MD4; Nicholas Chia, PhD4; Janet Yao, PhD5; Aaron Tande, MD6; Jayawant Mandrekar, PhD2; Robin Patel, MD, FIDSA, D(ABMM)1; Infectious Diseases, Mayo Clinic, Rochester, Minnesota; Mayo Clinic, Rochester, Minnesota; Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota; Orthopedics, Mayo Clinic, Rochester, Minnesota; Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota; Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota; Divisions of Clinical Microbiology and Infectious Diseases, Mayo Clinic, Rochester, Minnesota; Smith; Mayo Clinic, Rochester, Minnesota

Session: 133. Diagnostics and Why They Matter

Friday, October 6, 2017: 10:30 AM

Background. Detection and identification of microorganism(s) involved in peri-prosthetic joint infection (PJI) can inform surgical management and directed anti-biotic therapy. Metagenomic shotgun sequencing is a powerful tool with the potential to change how many PJI are diagnosed as it allows direct detection and identification of pathogens in clinical specimens. In the largest series to date, we utilized a metagenomics-based approach applied to SF to define potential microbial etiologies of failed total knee arthroplasties (TKAs).

Methods. Synovial fluid was collected from 112 failed TKAs (74 PJI and 38 aseptic implant failure (AF)) via preoperative arthrocentesis. Cell count and differential, standardized culture and DNA-based metagenomic shotgun sequencing were performed. Human DNA was depleted using the MoYsis basic kit prior to DNA extraction, whole genome amplification, and sequencing. Taxonomic assignment of reads and pathogen identification was achieved using a pipeline incorporating k-mer- and marker gene-based classification software. A scheme for analysis and filtration of false-positives was created and applied, incorporating cut-offs for the number of reads, quality scores, and coverage across a reference genome. Patients were classified as having PJI using the IDSA criteria and expert review. Analyses were recorded as percent agreement, with 95% confidence intervals (CI) to SF culture.

Results. Metagenomic analysis identified the known pathogen in 54 (90%) (CI, 79.5%–96.2%) of the 60 culture-positive PJI analyzed and one (2%) (CI, 0.0%–8.9%) potential polymicrobial infection not detected by culture. For the 14 culture-negative PJI tested metagenomics showed 79% (CI, 49.2%–85.0%) agreement with negative findings; potential pathogens were identified in three (2%) (CI, 4.7%–50.8%) culture-negative PJI cases, with one being polymicrobial. Of the 37 culture-negative AF cases, metagenomics showed 97% (CI, 85.8%–99.9%) agreement with negative culture and identified one (3%) (CI, 0.0%–14.2%) potential pathogen. For the one culture-positive AF case, metagenomic results were negative, suggesting possible culture contamination.

Conclusion. Metagenomic shotgun sequencing performed on SF can be used to diagnose PJI and may be particularly useful for culture-negative PJI.

Disclosures. R. Patel: ASM: Board Member, None; CD Diagnostics, BioFire, Curetis, Merck, Hutchinson Biofilm Medical Solutions, Accelerate Diagnostics, Allergan, and The Medicines Company: Grant Investigator, Grant recipient; Curetis: Consultant, Money paid to my employer; A patent on Bordetella pertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic, and a patent on an anti-biofilm substance issued: Patents, any money is paid to my employer; Actelion: DSMB, Money paid to my employer; ASM and IDSA: Editor’s stipends, Editor’s stipends; NBME, Up-to-Date and the Infectious Diseases Board Review Course: NBME, Up-to-Date and the Infectious Diseases Board Review Course, Honoraria; Roche, ASM, and IDSA: Travel reimbursement, Travel reimbursement

990. Clinical Impact of Two Different Multiplex Respiratory Panel Assays on Management of Hospitalized Children Aged ≤24 months

Ferdanaz Hassan, PhD1; Brian Lee, MPH, PhD2; Jennifer Goldman, MD3; Mary Anne Jackson, MD, FIDSA, FPIDS1; Rangaraj Selvarangan, PhD1;1 Children’s Mercy Hospital and Clinics, Kansas City, Missouri; 2Children’s Mercy Hospital, Kansas City, Missouri; 3Pediatric Infectious Diseases, Children’s Mercy Hospital, Kansas City, Missouri

Session: 133. Diagnostics and Why They Matter

Friday, October 6, 2017: 10:30 AM

Background. Highly multiplexed molecular assays are popular in clinical laboratories due their high sensitivity, specificity and relatively rapid turn-around time (TAT) for results. Luminex® respiratory viral panel (RVP) detects 12 respiratory viruses, while BioFire™ respiratory panel (RP) detects 20 respiratory pathogens (17 viruses, 3 bacteria). The aim of the current study was to compare the impact of RVP and RP assay on management of hospitalized children aged ≤24 months.

Methods. Retrospective data were collected to compare the clinical impact from two multiplex molecular assays (RVP, December 2008–May 2012; RP August 2012–June 2015) on management and outcomes of hospitalized patients. Patients aged ≤24 months and positive for at least one respiratory virus were included. Patients who were (1) receiving immune suppressive therapy, (2) neonates requiring intensive care, or (3) hospitalized for >7 days were excluded.

Results. A total of 810 patients in RVP and 2,095 patients in RP group were included. The median TAT for RVP and RP assay were 29 hours (IQR 26–58 hours) and 4 hours (IQR 2–8 hours), respectively (P < 0.001). Significantly higher number of children in RVP group (44%, 357/810) received empiric antibiotic therapy compared with RP group (28%, 595/2095) (P < 0.001). Following PCR test reporting, the rate of antibiotic discontinuation was markedly higher in the RP group (22%, 135/595) vs. RVP group (14%, 56/357) (P < 0.001). Antibiotics were discontinued more often in older children aged 6–24 months (23%, 113/492) compared with children aged <60 days (11%, 34/297) (P < 0.001). Following positive influenza test results, more children received timely oseltamivir in the RP group (85%, 48/56) compared with the RVP group (17%, 7/41) (P < 0.001). The median length