Deep Very Long Baseline Interferometry Observations Challenge Previous Evidence of a Binary Supermassive Black Hole Residing in Seyfert Galaxy NGC 7674

Peter Breiding1,2,3, Sarah Burke-Spolaor2,3,4, Tao An5, Karishma Bansal6, Prashanth Mohan5, Gregory B. Taylor7, and Yingkang Zhang5

1 Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218, USA; pbreiding@gmail.com
2 Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506, USA
3 Center for Gravitational Waves and Cosmology, West Virginia University, Chestnut Ridge Research Building, Morgantown, WV 26505, USA
4 Canadian Institute for Advanced Research, CIFAR AziZi Global Scholar, MaRS Centre West Tower, 661 University Ave. Suite 505, Toronto ON M5G 1M1, Canada
5 Shanghai Astronomical Observatory, Key Laboratory of Radio Astronomy, CAS, 80 Nandan Road, Shanghai 200030, People’s Republic of China
6 SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035-0001, USA
7 Department of Physics and Astronomy, University of New Mexico, 210 Yale Blvd NE, Albuquerque, NM 87106, USA

Received 2021 October 15; revised 2022 May 26; accepted 2022 May 26; published 2022 July 11

Abstract

Previous Ku-band (15 GHz) imaging with data obtained from the Very Long Baseline Array (VLBA) had shown two compact, subparsec components at the location of a presumed kiloparsec-scale radio core in Seyfert galaxy NGC 7674. It was then presumed that these two unresolved and compact components were dual radio cores corresponding to two supermassive black holes (SMBHs) accreting surrounding gas and launching radio-bright relativistic jets. However, utilizing the original VLBA data set used to claim the detection of a binary SMBH, in addition to later multipolych/multiplicity data sets obtained from both the VLBA and the European very long baseline interferometry (VLBI) network, we find no evidence to support the presence of a binary SMBH. We place stringent upper limits to the flux densities of any subparsec-scale radio cores that are at least an order of magnitude lower than the original VLBI radio-core detections, directly challenging the original binary SMBH detection claim. With this in mind, we discuss the possible reasons for the nondetection of any VLBI radio cores in our imaging, the possibility of a binary SMBH still residing in NGC 7674, and the prospect of future observations shedding further light on the true nature of this active galactic nucleus.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Radio cores (1341); Gravitational waves (678); Supermassive black holes (1663)

1. Introduction

In the standard ΛCDM concordance model of cosmology, a major driver of galaxy growth and evolution is the hierarchical merging of other galaxies, subsuming each other’s stars, gas, dark matter halos, and supermassive black holes (SMBHs; \(M_{\text{BH}} \gtrsim 10^6 M_\odot \)) in the process (e.g., Kauffmann & Haehnelt 2000). As most galaxies are believed to host a SMBH in their dynamical centers (Kormendy & Ho 2013), a predicted outcome of these galaxy mergers is the formation of gravitational bound binary SMBHs (Begelman et al. 1980). First, the SMBHs residing in each galaxy are thought to sink toward the nuclear environment of the post-merger remnant via dynamical friction (Chandrasekhar 1943), ultimately achieving binary separations on the order of \(\sim 10 \text{ pc} \) within \(\sim 100 \text{ Myr} \) (Callegari et al. 2009). The subsequent stage of binary evolution from \(\sim 10 \text{ pc} \) to subparsec separations relies on three-body interactions with stars (e.g., Sesana et al. 2007), gravitational torques from a gaseous circumbinary disk (e.g., Escala et al. 2005), and potentially three-body SMBH interactions (e.g., Hoffman & Loeb 2007) to harden, or shrink, the binary until gravitational radiation can efficiently remove angular momentum from the pair until their eventual coalescence. Depending on the nuclear environment of the post-merger host galaxy, this intermediate evolutionary stage between dynamical friction and gravitational radiation dominating the binary’s orbital dynamics can take anywhere from 10 Myr (e.g., Khan et al. 2015) to several tens of Gyr (e.g., Yu 2002), where the latter scenario is typically referred to as the “final parsec problem” (Milosavljević & Merritt 2003). After surmounting the evolutionary stage pertinent to the final parsec problem, long-wavelength gravitational waves emitted by close-orbit (\(\lesssim 0.1 \text{ pc} \)) binary SMBHs in the local universe should soon be detectable by current pulsar timing array experiments (Hobbs 2013; McLaughlin 2013; Verbliest et al. 2016; Arzoumanian et al. 2020) and the upcoming Laser Interferometer Space Antenna (LISA; Amaro-Seoane et al. 2017), constituting a crucial source class for these observatories (Burke-Spolaor et al. 2019).

There are several observational approaches other than gravitational wave detection used to infer the presence of binary SMBHs at separations \(\lesssim 10 \text{ pc} \). The two main methods include the observation of quasiperiodic light curves of close-orbit (\(\lesssim 0.1 \text{ pc} \)) binaries (e.g., Graham et al. 2015; Mohan et al. 2016; Charisi et al. 2016; Liu et al. 2016, 2019, 2020) and velocity-offset broad emission lines for binaries with separations of \(\sim 0.1 \) to tens of parsecs in nearby quasars (e.g., Bogdanović et al. 2009; Tsalmantza et al. 2011; Eracleous et al. 2012; Ju et al. 2013; Shen et al. 2013; Runnoe et al. 2017; Kelley 2021). The former involves a periodic modulation of the observed luminosity (at the orbital period of the binary), while the latter technique relies on the Doppler shifting of spectral lines emitted by gas gravitationally bound to the SMBH in the
so-called broad line region (BLR; where the Doppler shifts result from the binary’s orbital dynamics). However, both methods have a variety of more mundane explanations. In the case of periodic light curves, jet precession not induced by a binary (e.g., Liska et al. 2018), a warped accretion disk (e.g., Hopkins & Quataert 2010), helical jet morphologies (e.g., Conway & Murphy 1993), magnetohydrodynamic (MHD) instabilities associated with the accretion flow (e.g., King et al. 2013) or global oscillation of the accretion disk (e.g., An et al. 2013a; Wang et al. 2014), and stochastic variability (Vaughan et al. 2016) are all viable alternative hypotheses to a binary SMBH. In the case of quasars with velocity-offset broad emission lines, recoiling SMBHs and BLR outflows are also plausible alternative hypotheses (see, e.g., Breiding et al. 2021).

A more direct observational technique that does not suffer from the above uncertainties is the spatially resolved imaging of both SMBHs (e.g., An et al. 2018), given that they are both actively accreting material and shining brightly as active galactic nuclei (AGN). This technique has revealed several dozens of dual AGN (AGN with kiloparsec-scale separations), utilizing telescopes across the electromagnetic spectrum (see, e.g., Table 1 from Rubinur et al. (2018) and De Rosa et al. (2019) for an overview). However, in order to resolve the parsec and subparsec spatial scales in gravitationally bound binary SMBHs, telescopes with milliarcsecond (mas) and submilliarcsecond resolving powers are required.8 Currently, the only approach capable of achieving this type of angular resolution relies on very long baseline interferometry (VLBI) in order to synthesize the large required apertures. There have been several radio9 VLBI studies searching for parsec-scale binary SMBHs systematically in surveys (e.g., Burke-Spolaor 2011; Tremblay et al. 2016), and as follow-up observations of binary SMBH candidates identified through more indirect methods (e.g., Kharb et al. 2017; Breiding et al. 2021). However, to date these projects have been largely unsuccessful in uncovering large numbers of bona fide binary SMBHs.

In the context of high-angular-resolution radio imaging, the “smoking gun” signature of a binary SMBH would be the observation of two compact, and flat (or inverted) spectrum cores. The physical model used to describe these VLBI cores is the radio emission from the optical depth, σ = 1 surface at which the base of some relativistic jet become opaque to synchrotron self-absorption (Sokolovsky et al. 2011), or a standing shock slightly downstream from this surface (Marscher 2008). In either case, the VLBI core is located several to tens of parsecs downstream of the SMBH producing the jet, and is thus a good marker for its location. At a projected separation of 7 pc, the AGN CSO G402+379 is a striking example of a nearby (z = 0.055) binary radio core confidently confirmed as a binary SMBH system (Rodriguez et al. 2006). Using the Very Long Baseline Array (VLBA), Bansal et al. (2017) have tracked the orbital motion of the cores with proper motion measurements, lending further support to the binary SMBH nature of this system.

NGC 7674 (aka MRK 533) is a nearby (z = 0.03), type II Seyfert galaxy (Mirabel & Wilson 1984) home to another purported close-separation binary SMBH. Kharb et al. (2017), referred to as K17 in the rest of the paper, claimed the detection of two inverted-spectrum radio cores in the nucleus of NGC 7674 (at a projected separation of 0.7 pc), presumably the product of a binary SMBH system in which each black hole is active and hosts a radio jet. The host galaxy is a luminous infrared galaxy (LIRG; González Delgado et al. 2001), and the brightest in a group of four interacting galaxies comprising the Hickson 96 compact galaxy group.10 It is a nearly face-on (inclination angle of ~30°) spiral galaxy (Sbc type; Williams & Rood 1987), exhibiting tidal features, which are likely the imprint of gravitational interactions with its neighbors (Verdes-Montenegro et al. 1997).

Deep 2001 S-band (~1.4 GHz) VLBA observations of NGC 7674, in combination with phased Very Large Array (VLA) and Arecibo observations, allowed for the first detection of the S (or Z)-shaped morphology of the kiloparsec-scale radio jet (Momjian et al. 2003). One hypothesized origin for S-shaped radio jet morphologies is jet precession induced by the orbital dynamics of a binary SMBH (Regelman et al. 1980). However, S-shaped jets may also be caused by jet precession induced by a tilted accretion disk (Sarazin et al. 1980; Lu 1990) or the gas circulation of the interstellar medium (ISM; Gopal-Krishna 2003). The linear extent of the jet is ~0.6 kpc projected on the plane of the sky, thus allowing for the classification of this source as a compact symmetric object11 (CSO). Given their small jet size, CSOs are able to interact strongly with the narrow-line region (NLR) gas within the central kiloparsec of their host galaxy (O’Dea 1998). With this in mind, the observations of NLR gas outflows in NGC 7674 (Unger et al. 1988; Shastri et al. 2006; Smirnova et al. 2007) are naturally explained by the interaction of the jet with the surrounding medium (e.g., An et al. 2013b; Jaiswal et al. 2019).

In this paper, we use deep multiband VLBI imaging from both the VLBA and European VLBI Network (EVN) to search for evidence of the two putative VLBI radio cores in NGC 7674 indicative of a binary SMBH. This search includes the VLBA data used to make the original dual VLBI core detection claim in addition to VLBI data from approximately a decade and a half later. We also analyze the VLA data used in K17 to claim the presence of a single, kiloparsec-scale radio core, which corresponds to the unresolved emission from the two VLBI cores. Finally, we assess the binary SMBH hypothesis and AGN activity of this source by putting our findings into the larger context of the other multilength observations and analyses of this source. Throughout this paper we adopt a ΛCDM cosmology, with H0 = 67.74 km s−1 Mpc−1, ΩΛ = 0.69, and Ωm = 0.31 (Planck Collaboration et al. 2016).

2. VLA Data Reduction & Analysis

We reduced the archival Ku-band (15 GHz) radio data from project 14A-471 taken with the VLA in its A-array configuration on 2014 March 21. The data were calibrated using the Common Astronomy Software Applications (CASA; 10 The two largest galaxies in this group, one of which being NGC 7674, are separated by ~80 kpc (projected). The closest galaxy companion to NGC 7674 is at a projected separation of ~30 kpc (see Figure 1 from Verdes-Montenegro et al. 1997 for an optical image of the compact galaxy group).
11 CSOs are young (~104 yr) radio-loud AGN classified on the basis of double, symmetric, radio jets/lobes less than 1 kpc in extent (Wilkinson et al. 1994; An & Baan 2012).
3. VLBI Observations & Data Analysis

Below we describe the VLBI observations employed to create our final high-sensitivity images, using the VLBA and EVN. All of the VLBI observations used in this paper are listed in Table 1. Combining these disparate data sets together from both the VLBA and EVN improved the sensitivity afforded by the individual epochs. In turn, this allowed us to test the hypothesis that dual, inverted-spectrum radio cores were present in this source, and furthermore that they were indicative of a binary SMBH (in which both black holes are active) residing in this galaxy. All VLBI observations are phase-referenced, where we show plots of phase calibrator phase before and after calibration is applied to the high-frequency 15 and 22 GHz data obtained with the VLBA in the Appendix. Importantly, no obvious structure that would impact our phase calibration was seen in the images of any of our phase calibrators. We show high-frequency 15 and 22 GHz images of our phase calibrators in the Appendix for both the 2002 K17 detection epoch and follow-up 2018 epochs. These phase calibrator targets include J2327+0940 and J2329+0834, which are separated from NGC 7674 by 0:09 and 0:35, respectively. In the Appendix, we also show the $\langle u,v \rangle$ plane coverage for each individual 15/22 GHz VLBI epoch, in addition to the $\langle u,v \rangle$ coverage corresponding to the combined 15 and 22 GHz high-frequency data sets.

3.1. VLBI Observations & Calibration

3.1.1. VLBA Project BV045

The original VLBI data set used to assert the existence of a binary SMBH in NGC 7674 was obtained from phase-referenced VLBA Ku-band (15 GHz) observations (project ID BV045) taken in 2002. Associated with this project were observations at S, C, and X bands (2.3, 5, 8 GHz, and 15 GHz). The experimental setup included only a single polarization recording capability, 4.2 s integration times, and a total bandwidth of 32 MHz, split into four spectral windows (with 16 channels per spectral window). These observations included nine VLBA antennas (excluding the Brewster station), and the cycle time used for the “nodding” mode observations (phase-target-phase scans) was \sim11 minutes (\sim4 minutes on the phase calibrator J2329+0834, \sim7 minutes on NGC 7674). Quasar 3C 84 was used as both the fringe finder and bandpass calibrator for each set of observations (i.e., each observing band) in BV045.

3.1.2. VLBA Projects BK212 & BT143

VLBA projects BK212 and BT143 involved follow-up observations of NGC 7674 at the Ku and K bands (15 GHz and 22 GHz, respectively) in 2018. The experimental setups for both BK212 and BT143 included full polarization capabilities, 2 s integration times, and a total bandwidth of 256 MHz, split into eight spectral windows (where BK212 had 16 channels per spectral window, and BT143 had 64 channels per spectral window). BK212 included at least nine VLBA antennas, and BT143 had at least eight VLBA antennas. The cycle time used for the “nodding” mode observations (phase–target–phase scans) was \sim7 minutes for BK212 (\sim4 minutes on the phase calibrator J2329+0834, \sim3 minutes on NGC 7674). For BT143, the cycle time was \sim3 minutes (\sim2 minutes on the phase calibrator J2327+0940, \sim1 minute on NGC 7674). Quasars 3C 454.3 and 3C 345 were used as both the fringe finder and bandpass calibrators for BK212 and BT143, respectively.

3.1.3. VLBA Calibration

We calibrated all of the VLBA visibility data in AIPS (van Moorsel et al. 1996) using the standard calibration procedures applied in the pipeline task VLBARUN for continuum imaging, where appropriate reference antennas were chosen. Log-based flagging was performed prior to calibration.

3.1.4. EVN Observations & Calibration

The target source was also observed by EVN on 2018 June 6 (project code EA059A) with the aim of probing the dual cores. The observations were conducted at 8.4 GHz with a total observing time of 10 hours. The session was recorded at 1024 Mbps rate (16 MHz x 8 subbands, 2-bit sampling, dual polarization). 12 stations participated in session A, which are Ef (Effelsberg, Germany), Wb (Westerbork, The Netherlands), Mc (Medicina, Italy), Nt (Noto, Italy), O6 (Onsala, Sweden),

Observatory	Project Code	Date (UTC)	Observing Band
VLBA	BV045	2002/08/28	S
VLBA	BV045	2002/08/28	C
VLBA	BV045	2002/08/28	X
EVN	EA059	2018/06/05	X
VLBA	BV045	2002/08/28	Ku
VLBA	BK212	2018/03/31	Ku
VLBA	BT143	2018/11/29	K
VLBA	BK212	2018/03/19	K
VLBA	BK212	2018/04/12	K
VLBA	BT143	2018/11/29	K

Note. Observing dates mark the start of an observing session if the observations spill over into subsequent days.
we used a shorter nodding cycle at shorter wavelengths. We used a cycle time of “call(30s)-tar(15s)-cal(45s)”.
Due to some operational problems and bad fringe solutions at a few stations, some antennas did not record well during specific time periods. These bad data were deleted. After the observations were completed, the data from each station were transported to the Joint Institute for VLBI ERIC at Dwingeloo, the Netherlands for correlation. The correlated visibility data were then downloaded to the China Square Kilometre Array (SKA) Regional Centre computing clusters (An et al. 2019) for further analysis and processing. We calibrated the visibility data using AIPS following a standard procedure used for phase-reference EVN observations of weak radio sources (e.g., Mohan et al. 2020; Salafia et al. 2022).

3.2. Data Combination & Imaging

After calibration, we used CASA for further flagging of RFI. Subsequently, we combined all of the visibility data from the different observatories and epochs common to a given observing band using the CASA task concat, and then cleaned/imaged those data with the CASA task tclean. We used a natural weighting scheme, as this has the highest sensitivity for point sources (which is the expectation for the two unresolved, compact cores), with cell sizes of ~4 pixels per restoring beam. We used the hogbom deconvolution algorithm, and an interactive cleaning procedure with CLEAN masks ultimately created for components C and W during the cleaning process. At no point did any significant residuals suggest the need for cleaning any image components near the purported location of the binary SMBH. All cleaning had 3σ, rms-based threshold minor cycle stopping points.

We also made wide-field images to search for any VLBI cores on scales up to ~1″ from the phase center. This was accomplished with the wproject gridding algorithm (Cornwell et al. 2008, which corrects for the effect of noncoplanar baselines), with the use of wprojplanes = −1 in CASA. This choice automatically determines the number of planes to use based upon the data and image size.\(^\text{12}\)

4. Results

4.1. VLA Imaging and Spectral Analysis

In Figure 1 we show the 15 GHz radio image of NGC 7674, synthesized from 2014 A-configuration VLA observations and label the jet features following the conventions in previous studies of the source. The feature most relevant to this analysis is between the eastern/western hot spot components (C/W), and is identified as the radio core in K17. We show in the bottom panel of Figure 1 the in-band spectral index, α map of NGC 7674. For this study, we assumed a spectral index defined as \(F_\nu \propto \nu^{-\alpha}\), where \(F_\nu\) is the flux density, and \(\nu\) is the observing frequency. Using an elliptical extraction region (with the same shape as the synthesized beam) across the feature identified as the radio core, we measured the mean spectral index from this region to be \(-0.66\pm0.52\). This index is consistent with the claimed inverted-spectrum index found in K17.

\(^{12}\) CASA determines this number based upon the following formula:

\[N_{\text{wprojplanes}} = 0.5 \times \frac{W_{\text{max}}}{\lambda} \times \frac{\text{imsize (radii)}}{\lambda}\]

Here, imsize is the image size, \(\lambda\) is the wavelength, and \(W_{\text{max}}\) is the maximum \(w\) in the uvw data (i.e., physical extent of the visibility data that is orthogonal to the image plane).
4.2. Nondetections of VLBI Radio Cores

In Table 2 we give the central observing frequencies, rms noise levels, major and minor axes (B_{maj} and B_{min}, respectively) of the synthesized beam full width at half maximums (FWHMs), and beam position angles (P.A.) for the final high-sensitivity images used in our study (refer to Table 1 for the list of data sets that went into creating each image). In Figure 2 we show the S-, C-, and X-band images in which we can report detections of the hot spot components (C and W). As shown in K17 and found again in our imaging, these hot spots have a fairly steep spectrum indicative of aged, optically thin plasma emitting synchrotron radiation. In Figure 2 we also show the K_u-band (15 GHz) and K-band (22 GHz) synthesized VLBI images for the combined K_u- and K-band data described in Section 3.1, in addition to an image of the original K_u-band K17 detection data set. We mark the locations of the dual VLBI core detections from K17 with cross hairs (taking the center of the cross hair to be the center position between the dual core positions), where we estimate the error on the core positions from K17 to be no greater than ~ 0.7 mas. For this estimate we note that the phase calibrator position error is negligible (0.15 mas), and the error associated with the phase-referencing technique is expected to be of the order of ~ 0.1 mas (Pradel et al. 2006). Thus, these errors would add negligible contributions, considering the beam size of the tentative detection reported in K17 is 0.7 \times 0.7 mas.
given the limit on spectral index and assumed inverted spectrum for the \(K_u \) at \(X \) based upon the nondetections of our high-sensitivity data combinations. We also plot as a blue arrow the resulting 3\(\sigma \) limit from our reanalysis of the original K17 detection claim, the 4\(\sigma \) upper limit reported by K17 on the \(\sigma_u \) of the core detections was also used in our analysis. Furthermore, the jet precession induced by a binary SMBH system can result from two scenarios. In the first (disk precession; e.g., Katz 1997; Liu \& Chen 2007; Nandi et al. 2021), the accretion disk surrounding the primary SMBH (hosting the jet) precesses due to torque action owing to a misalignment between the orbital plane of the binary system and the disk plane. In the second (geodetic precession; e.g., Begelman et al. 1980; Rieger 2004), the direction of spin of the primary SMBH may be misaligned with the total angular momentum of the binary system, thus setting up a precession of the spin axis and hence, the jet hosted by the primary SMBH–accretion disk system. The Keplerian angular frequency, and those in the cases of disk precession (Katz 1997) and geodetic precession (Rieger 2004) are

\[
\Omega_K = \sqrt{\frac{GM(1+q)}{d^3}} \]

\[
\Omega_0 = \frac{3q \cos \theta_0}{4(1+q)^{3/2}} \frac{r_p^3}{d} \Omega_K,
\]

\[
\Omega_G = qM \frac{4 + 3q}{1+q} \frac{GM \Omega_K}{2d c^2}.
\]

where \(G \) is the gravitational constant, \(M \) is the mass of the primary SMBH, \(q \leq 1 \) is the mass ratio between the secondary companion and the primary SMBH, \(d \) is the binary separation, \(\theta_0 \) is the angle of inclination between the accretion disk and the binary orbital plane, and \(r_p \) is the extent of the accretion disk. We use the choices \(M \approx 10^7 M_\odot \) (Woo \& Urry 2002; Kharb et al. 2017), \(d = 0.35 \) pc (Kharb et al. 2017), \(\theta_0 = 20^\circ \)
where \dot{m} is the ratio of the mass accretion rate scaled in terms of
of the Eddington rate and is set to 0.1, appropriate for accretion
disks in Seyfert galaxies (e.g., Mohan & Mangalam 2014).
With these assumptions, we obtain minimum precession periods
for the case $q = 1$ (equal mass binary), with
\[P_D = 2\pi / \Omega_D \geq 2.6 \times 10^5 \text{yr} \quad \text{and} \quad P_G = 2\pi / \Omega_G \geq 1.8 \times 10^5 \text{yr}. \]
These correspond to angular precessions of ~ 4.9 arcsec yr$^{-1}$
and ~ 0.2 mas yr$^{-1}$, respectively. A maximal value of $\sim 0'02$
may thus be inferred for the case of disk precession, considering a luminosity dimming timescale of ~ 16 yr. For a
typical jetted AGN with an inclination angle of a few degrees
(e.g., Lister et al. 2019), this precession is 2 orders of
magnitude smaller; changes due to relativistic beaming effects
may not be discernible within the observation window. Thus, a
binary SMBH enabled jet precession is unlikely to result in a
significant dimming of the luminosity, and we place a low
credence on this possibility for our radio core nondetections.
Alternatively, it is possible mass loading mediated by jet–
ISM feedback, or some other jet disruption/diminishment
mechanism (potentially due to variable accretion) is responsible
for the radio core nondetections we observed in the 2018 epoch
and the short observed duty cycle\footnote{Momjian et al. (2003) estimate the age of the AGN in NGC 7674 to be \sim a few Myr, based upon the time necessary to inflate its lobes into the ambient medium. See Jurlin et al. (2020) for a longer discussion of radio-jet duty cycles in AGN.} for this AGN (Croston & Hardcastle 2014; Shabala et al. 2020).

However, a phased VLA/VLBA setup also allows for a
sufficient mixture between small and large-distance baselines to
determine the actual scale (i.e., between subparsec to kiloparsec
scales) and morphology of this emission component in the
event that we can detect this feature. The future next-generation
Very Large Array (ngVLA; Murphy 2018) would naturally
allow for this mixture between small and large-distance
baseline lengths to allow for sensitivities to features of varying
size in this radio-loud AGN from subparsec to kiloparsec
scales. Our analysis of the VLA in-band spectral index of the
purported core feature is consistent with its flat or inverted
spectrum, and thus its interpretation as a synchrotron self-
absorbed radio core. However, as suggested by Momjian et al.
(2003), the inverted radio spectrum of this jet region could be a
consequence of free–free absorption (FFA; see models by, e.g.,
Bicknell et al. 1997; Begelman 1999). The FFA hypothesis for
the inverted spectrum is strengthened by the work of Gandhi et al.
(2017), who find large hydrogen column densities associated with the Compton-thick X-ray AGN in NGC 7674 from recent NuStar observations, in addition to ionized Fe-line
emission (together these findings suggest a high density of
hydrogen gas and a high intensity of ionization continuum
radiation in the vicinity of the central AGN). Considering both
hot spots and lobes detected from this young radio-loud AGN
(see Figure 1 from Momjian et al. (2003) for a clear detection
of lobes on either side of both hot spots and depiction of the
overall S shape), the naive expectation would be a relatively
misaligned radio jet. This would imply the core emission could
be relativistically beamed out of our line of sight, leading to the
expectation of very weak emission in the direction of the observer.

If, as we suspect, the dual radio core detections reported
by K17 correspond to spurious noise features, then presumably
there is still at least one radio core of lower luminosity, which
has yet to be detected. In this vein, even-deeper high-sensitivity
VLBI observations could help detect this feature. One property
of this system which still suggests a binary SMBH may be
present is the overall S shape of the radio jets. However, we
note that the “curve” portion of the S shape in this jet is made
by the lobe plasma, after it leaves the working surfaces
Corresponding to the hot spots where the jet is assumed to be
pushing against the ambient medium. As the lobe plasma does
not have the momentum or kinetic power carried by the twin
radio jets, it is much more likely the lobes could be pushed into
the observed antialigned curves by the circulating ISM gas
pressure (see Gopal-Krishna 2003 for a discussion of this
model in generating S-shaped jets).

We thank the anonymous referee for the many useful and
constructive comments which ultimately helped improve the
quality of the manuscript. T.A. thanks the grant support by the
Youth Innovation Promotion Association of CAS. The EVN
data analysis has used the China SKA Regional Center
prototype (An et al. 2019) funded by the National Key R&D
Programme of China (under grant number 2018YFA0404603)
and Chinese Academy of Sciences (under grant number
114231KYSB20170003). Y.Z. thanks Jun Yang for helping with
VLBI data processing.

\textit{Facilities:} VLBA, EVN, VLA.
\textit{Software:} astropy (Astropy Collaboration et al. 2013, 2018),
CASA, AIPS.

\section*{Appendix}
Below we show the (u,v) plane coverage for the high-
frequency Ku- (15 GHz) and K-band (22 GHz) VLBI visibilities
used in this study, along with plots demonstrating the
proper phase calibration of these visibilities and high-frequency
images of our phase calibrators (Figures 4–7, respectively). The
purpose of these figures is to demonstrate the improvements in
(u,v) plane coverage upon data combination and the fact that
the nondetection of any VLBI radio cores in this work is not a
result of improper calibration.

\begin{thebibliography}{99}
\bibitem{Momjian2003} Momjian et al. (2003) estimate the age of the AGN in NGC 7674 to be \sim a few Myr, based upon the time necessary to inflate its lobes into the ambient medium. See Jurlin et al. (2020) for a longer discussion of radio-jet duty cycles in AGN.
\end{thebibliography}
Figure 4. \((U,V)\) plane coverage for all of the individual epoch, high-frequency Ku and K-band (15/22 GHz) VLBI visibility data used in this study. The VLBI observatory along with project code is given in the top left of each plot, and the date of the observation is given in the top right as YYYY/MM/DD. The frequency/band of the observation is also labeled in the bottom center of each plot.
Figure 5. Ku-band (15 GHz) phase of each observation’s phase calibrator before (left plots) and after (right plots) phase calibration is applied for a selection of representative VLBA baselines. The data are frequency averaged and we use a phase-solution interval ranging from 15 s to the scan length for calibration depending upon which resulted in the best phase calibration. Observatory and project code are given above each plot, along with date of observation and the designation “Uncalibrated” or “Calibrated” representing phase data before or after calibration, respectively.
Figure 6. Continuation of Figure 5 for the K-band, 22 GHz VLBA data.
Figure 7. Here we show the high-frequency VLBA K- and K-band (15 and 22 GHz) images of our phase calibrators as contour plots. The contours start at a base level of 5σ and are spaced by factors of 2 thereafter. The synthesized beams are shown as filled ellipses, and the image intensity noise level is specified by the rms quoted in each contour plot. The frequency and name of phase calibrator are given in the top of the plots, and project codes are also given along with the date of the observation in YYYY/MM/DD format. The images are made following the same CLEAN procedure defined in Section 3.2. No relevant structure that would impact the phase calibration is observed for any of our calibrators.
