THE ENTIRE FACE IRREGULARITY STRENGTH OF
A BOOK WITH POLYGONAL PAGES

Meilin I. Tilukay¹, Venn Y. I. Ilwaru²

¹²:Jurusan Matematika FMIPA Universitas Pattimura
Jl. Ir. M. Putuhena, Kampus Unpatti, Poka-Ambon, Indonesia
e-mail: ¹meilin.tilukay@fmipa.unpatti.ac.id

Abstract

A face irregular entire labeling is introduced by Baca et al. recently, as a modification of the well-known vertex irregular and edge irregular total labeling of graphs and the idea of the entire colouring of plane graph. A face irregular entire \(k\)-labeling \(\lambda: V \cup E \cup F \rightarrow \{1, 2, \ldots, k\}\) of a 2-connected plane graph \(G = (V, E, F)\) is a labeling of vertices, edges, and faces of \(G\) such that for any two different faces \(f\) and \(g\), their weights \(w_f(f)\) and \(w_g(f)\) are distinct. The minimum \(k\) for which a plane graph \(G\) has a face irregular entire \(k\)-labeling is called the entire face irregularity strength of \(G\), denoted by \(\text{ef}\(\text{s}(G)\)).

This paper deals with the entire face irregularity strength of a book with \(m\) \(n\)-polygonal pages, where embedded in a plane as a closed book with \(n\) -sided external face.

Keywords and phrases: Book, entire face irregularity strength, face irregular entire \(k\)-labeling, plane graph, polygonal page.

NILAI KETAKTERATURAN SELURUH MUKA
GRAF BUKU SEGI BANYAK

Abstrak

Pelabelan tak teratur seluruh muka diperkenalkan oleh Baca et al. baru-baru ini, sebagai suatu modifikasi atas pelabelan total tak teratur titik dan tak teratur sisi suatu graf serta ide tentang pewarnaan lengkap pada graf bidang. Pelabelan \(k\)-tak teratur seluruh muka \(\lambda: V \cup E \cup F \rightarrow \{1, 2, \ldots, k\}\) dari suatu graf bidang 2-connected \(G = (V, E, F)\) adalah suatu pelabelan seluruh titik, sisi, dan muka internal dari \(G\) sedemikian sehingga untuk sebarang dua muka \(f\) dan \(g\) berbeda, bobot muka \(w_f(f)\) dan \(w_g(f)\) juga berbeda. Bilangan bulat terkecil \(k\) sedemikian sehingga suatu graf bidang \(G\) memiliki suatu pelabelan \(k\)-tak teratur seluruh muka disebut nilai ketakteraturan seluruh muka dari \(G\), dinotasikan oleh \(\text{efs}(G)\).

Kami menentukan nilai eksak dari nilai ketakteraturan seluruh muka graf buku segi-\(n\), dimana pada bidang datar dapat digambarkan seperti suatu buku tertutup.

Kata Kunci: Graf bidang, graf buku segi-\(n\), nilai ketakteraturan seluruh muka, pelabelan lengkap \(k\)-tak teratur muka.

1. Introduction

Let \(G\) be a finite, simple, undirected graph with vertex set \(V(G)\) and edge set \(E(G)\). A total labeling of \(G\) is a mapping that sends \(V \cup E\) to a set of numbers (usually positive or nonnegative integers). According to the condition defined in a total labeling, there are many types of total labeling have been investigated.

Baca, Jendrol, Miller, and Ryan in [1] introduced a vertex irregular and edge irregular total labeling of graphs. For any total labeling \(f: V \cup E \rightarrow \{1, 2, \ldots, k\}\), the weight of a vertex \(v\) and the weight of an edge \(e = xy\) are defined by \(w(v) = f(v) + \sum_{u \in E} f(uv)\) and \(w(xy) = f(x) + f(y) + f(xy)\), respectively. If all the vertex weights are distinct, then \(f\) is called a vertex irregular total \(k\)-labeling, and if all the edge weights are distinct, then \(f\) is called an edge irregular total \(k\)-labeling. The minimum value of \(k\) for which there exist a vertex (an edge) irregular total labeling \(f: V \cup E \rightarrow \{1, 2, \ldots, k\}\) is called the total vertex (edge) irregularity.
strength of G and is denoted by $tvS(G)$ ($tes(G)$), respectively. There are several bounds and exact values of tvS and tes were determined for different types of graphs given in [1] and listed in [2].

Furthermore, Ivanco and Jendrol in [3] posed a conjecture that for arbitrary graph G different from K_5 and maximum degree $\Delta(G)$,

$$tes(G) = \max \left\{ \frac{|E(G)| + 2}{3}, \frac{\Delta(G) + 1}{2} \right\}.$$

Combining previous conditions on irregular total labeling, Marzuki et al. [4] defined a totally irregular total labeling. A total k-labeling $f : V \cup E \rightarrow \{1, 2, \ldots, k\}$ of G is called a totally irregular total k-labeling if for any pair of vertices x and y, their weights $w(x)$ and $w(y)$ are distinct and for any pair of edges x_1x_2 and y_1y_2, their weights $w(x_1x_2)$ and $w(y_1y_2)$ are distinct. The minimum k for which a graph G has totally irregular total labeling, is called total irregularity strength of G, denoted by $ts(G)$. They have proved that for every graph G,

$$ts(G) \geq \max\{tes(G), tvS(G)\}$$ \hspace{1cm} (6)

Several upper bounds and exact values of ts were determined for different types of graphs given in [4], [5], [6], and [7].

Motivated by this graphs invariants, Baca et al. in [8] studied irregular labeling of a plane graph by labeling vertices, edges, and faces then considering the weights of faces. They defined a face irregular entire labeling.

A 2-connected plane graph $G = (V, E, F)$ is a particular drawing of planar graph on the Euclidean plane where every face is bound by a cycle. Let $G = (V, E, F)$ be a plane graph.

A labeling $\lambda : V \cup E \cup F \rightarrow \{1, 2, \ldots, k\}$ is called a face irregular entire k-labeling of the plane graph G if for any two distinct faces f and g of G, their weights $w_\lambda(f)$ and $w_\lambda(g)$ are distinct. The minimum k for which a plane graph G has a face irregular entire k-labeling is called the entire face irregularity strength of G, denoted by $efS(G)$. The weight of a face f under the labeling λ is the sum of labels carried by that face and the edges and vertices of its boundary. They also provided the boundaries of $efS(G)$.

Theorema A. Let $G = (V, E, F)$ be a 2-connected plane graph G with n_i i-sided faces, $i \geq 3$. Let $a = \min\{i|n_i \neq 0\}$ and $b = \max\{i|n_i \neq 0\}$. Then

$$\left\lfloor \frac{2a + n_3 + n_4 + \cdots + n_b}{2b + 1} \right\rfloor \leq efS(G) \leq \max \{n_i|3 \leq i \leq b\}.$$

For $n_b = 1$, they gave the lower bound as follow

Theorema B. Let $G = (V, E, F)$ be a 2-connected plane graph G with n_i i-sided faces, $i \geq 3$. Let $a = \min\{i|n_i \neq 0\}$, $b = \max\{i|n_i \neq 0\}$, $n_b = 1$ and $c = \max\{i|n_i \neq 0, i < b\}$. Then

$$efS(G) \geq \left\lfloor \frac{2a + |F| - 1}{2c + 1} \right\rfloor.$$

Moreover, by considering the maximum degree of a 2-connected plane graph G, they obtained the following theorem.

Theorem C. Let $G = (V, E, F)$ be a 2-connected plane graph G with maximum degree Δ. Let x be a vertex of degree Δ and let the smallest (and biggest) face incident with x be an a-sided (and a b-sided) face, respectively. Then

$$efS(G) \geq \left\lfloor \frac{2a + \Delta - 1}{2b} \right\rfloor.$$

They proved that Theorem B is tight for Ladder graph L_n, $n \geq 3$, and its variation and Theorem C is tight for wheel graph W_n, $n \geq 3$. In this paper, we determine the exact value of efS of a book with m n-polygonal pages which is greater than the lower bound given in Theorem A - C.
2. Main Results

Considering Theorem C, \(efs(W_n) \), and a condition where every face of a plane graph shares common vertices or edges, our first result provide a lower bound of the entire face irregularity strength of a graph with this condition. This can be considered as generalization of Theorem A, B, and C.

Lemma 2.1. Let \(G = (V, E, F) \) be a 2-connected plane graph with \(n_i \) \(i \)-sided faces, \(i \geq 3 \). Let \(a = \min\{i \mid n_i \neq 0\} \), \(b = \max\{i \mid n_i \neq 0\} \), \(c = \max\{i \mid n_i \neq 0, i < b\} \), and \(d \) be the number of common labels of vertices and edges which have bounded every face of \(G \). Then

\[
efs(G) \geq \begin{cases} \left\lceil \frac{2a + |F| - d - 1}{2c - d + 1} \right\rceil, & \text{for } n_b = 1, \\ \left\lceil \frac{2a + |F| - d}{2b - d + 1} \right\rceil, & \text{otherwise.} \end{cases}
\]

Proof. Let \(\lambda : V \cup E \cup F \to \{1, 2, \ldots, k\} \) be a face irregular entire \(k \)-labeling of 2-connected plane graph \(G = (V, E, F) \) with \(efs(G) = k \). Our first proof is for \(n_b \neq 1 \). By Theorem A, the minimum face-weight is at least \(2a + 1 \) and the maximum face-weight is at least \(2a + |F| \). Since \(G \) is 2-connected, each face of \(G \) is a cycle. It implies that every face might be bounded by common vertices and edges.

Let \(d \) be the number of common labels of vertices and edges which have bounded every face of \(G \) and \(D \) be the sum of all common labels. Then the face-weights \(w_\lambda(f_1), w_\lambda(f_2), \ldots, w_\lambda(f_{|F|}) \) are all distinct and each of them contains \(D \), implies the variation of face-weights is depend on \(2a - d + 2 \leq i \leq 2b - d + 1 \) labels.

Without adding \(D \), the maximum sum of a face label and all vertices and edges-labels surrounding it is at least \(2a + |F| - d \). This is the sum of at most \(2b - d + 1 \) labels. Thus, we have \(efs(G) \geq \left\lceil \frac{2a + |F| - d}{2b - d + 1} \right\rceil \).

For \(n_b = 1 \), it is a direct consequence from Theorem B with the same reason as in the result above. \(\blacksquare \)

This lower bound is tight for ladder graphs and its variation and wheels given in [8].

A book with \(mn \)-polygonal pages \(B_{mn} \), \(m \geq 1, n \geq 3 \), is a plane graph obtained from \(m \)-copies of cycle \(C_n \) that share a common edge. There are many ways drawing \(B_{mn} \) for which the external face of \(B_{mn} \) can be an \(n \)-sided face or a \((2n-2)\)-sided face.

By considering that topologically, \(B_{mn} \) can be drawn on a plane as a closed book such that \(B_{mn} \) has an \(n \)-sided external face, an \(n \)-sided internal face, and \(m - 1 \) number of \((2n-2)\)-sided internal faces, the entire face irregularity strength of \(B_{mn} \) is provided in the next theorem.

Theorem 2.2. For \(B_{mn} \), \(m \geq 1, n \geq 3 \), be a book with \(m \) \(n \)-polygonal pages whose an \(n \)-sided external face, an \(n \)-sided internal face, and \(m - 1 \) \((2n-2)\)-sided internal faces, we have

\[
efs(B_{mn}) = \begin{cases} 2, & \text{for } m \in \{1, 2\}; \\ \left\lceil \frac{4n + m - 7}{4n - 5} \right\rceil, & \text{otherwise.} \end{cases}
\]

Proof. Let \(B_{mn}, m \geq 1, n \geq 3 \), be a 2-connected plane graph. For \(m \in \{1, 2\} \), by Lemma 2.1, we have \(efs(B_{mn}) \geq 2 \). Labeling the \(n \)-sided external face by label 2 and all the rests by label 1, then all face-weights are distinct. Thus, \(efs(B_{mn}) = 2 \).

Now for \(m > 2 \), let \(z = efs(B_{mn}) \). Since every internal face of \(B_{mn} \) shares 2 common vertices, \(a = n \), \(b = 2n - 2 \), and \(n_b > 1 \), by Lemma 2.1, we have \(z \geq \frac{2a + |F|-2}{2b-1} = \frac{2n+m-1}{4n-5} \). Consider that \(z = \frac{2n+m-1}{4n-5} \) is not valid, since for \(m \leq 2n - 4 \), the maximum label is 1.

Moreover, since \(B_{mn} \) has at least 2 face-weights which are contributed by the same number of labels, there must be 2 faces of the same weight. Then the divisor must be at least \(4n - 4 \). Thus we have \(z \geq \frac{4n+m-7}{4n-5} \).
Next, to show that z is an upper bound for entire face irregularity strength of B_m^n, let B_m^n, $m \geq 1$, $n \geq 3$, be the 2-connected plane graph with an n-sided internal face f_{int}^n, $m - 1$ $(2n - 2)$-sided internal faces and an external n-sided face f_{ext}^n.

Let $m_1 = \left\lfloor \frac{m}{2} \right\rfloor$ and $m_2 = m - m_1$. Our goal is to have m_1 distinct even face-weights and m_2 distinct odd face-weights such that $m (2n - 2)$-sided face-weights are distinct and form an arithmetic progression.

Let $z = \left\lfloor \frac{4n + m - 7}{4n - 5} \right\rfloor$. It can be seen that B_m^n has m different paths of length $(n - 1)$. Next, we divide m_1 paths into $S = \left\lceil \frac{m_1}{4n - 5} \right\rceil$ parts, where part s-th consists of $(4n - 5)$ paths, for $1 \leq s \leq S - 1$, and part S-th consists of $r_1 = m_1 - (S - 1)(4n - 5)$ paths. Also, we divide m_2 paths into $T = \left\lceil \frac{m_2 + 1}{4n - 5} \right\rceil$ parts, where the first part consists of $(4n - 5)$ paths, part t-th consists of $(4n - 5)$ paths, for $2 \leq t \leq T - 1$, and part T-th consists of $r_2 = m_2 - (T - 1)(4n - 5)$ paths.

Let

\[
V(B_m^n) = \{x, y, u(s)^{2j}, u(S)^{2j}, v(t)^{2j} | 1 \leq s \leq S - 1, 1 \leq t \leq T - 1, 1 \leq i \leq 4n - 5, 1 \leq j \leq n - 2, 1 \leq k \leq r_1, 1 \leq l \leq r_2 \};
\]

\[
E(B_m^n) = \{xy\} \cup \{u(s)_i^j = x u(s)_i^j, u(s)^{2j-1} = u(s)_i^{2j-2} u(s)_i^{2j}, u(s)_i^{2n-3} = u(s)_i^{2n-4} y, 1 \leq s \leq S - 1, 1 \leq i \leq 4n - 5, 2 \leq j \leq n - 2 \} \cup \{u(S)_i^j = x u(S)_i^j, u(S)^{2j-1} = u(S)_i^{2j-2} u(S)_i^{2j}, u(S)_i^{2n-3} = u(S)_i^{2n-4} y, 1 \leq i \leq r_1, 2 \leq j \leq n - 2 \} \cup \{v(t)_i^j = x v(t)_i^j, v(t)^{2j-1} = v(t)_i^{2j-2} v(t)_i^{2j}, v(t)_i^{2n-3} = v(t)_i^{2n-4} y, 1 \leq t \leq T, 1 \leq i \leq 4n - 5, 2 \leq j \leq n - 2 \} \cup \{v(T)_i^j = x v(T)_i^j, v(T)^{2j-1} = v(T)_i^{2j-2} v(T)_i^{2j}, v(T)_i^{2n-3} = v(T)_i^{2n-4} y, 1 \leq i \leq r_2, 2 \leq j \leq n - 2 \};
\]

\[
F(B_m^n) = \{f_{ext}^n, f_{int}^n, u(s)_i^{2n-2}, u(S)_i^{2n-2}, v(t)_i^{2n-2} \neq v(1)_1^{2n-2}, v(T)_i^{2n-2} | 1 \leq s \leq S - 1, 1 \leq t \leq T - 1, 1 \leq i \leq 4n - 5, 1 \leq k \leq r_1, 1 \leq l \leq r_2 \};
\]

Where f_{ext}^n is bounded by cycle $x v(1)_1^2 v(1)_2^{2n-4} y x$;

\[
f_{int}^n = \text{bounded by cycle } xu(1)_1^2 u(1)_1^2 \cdots u(1)_1^{2n-4} y x;
\]

$u(s)_i^{2n-2}$ is bounded by cycle $x u(s)_i^2 u(s)_i^4 \cdots u(s)^{2n-4} y u(s)^{2n-4} u(s)^{2n-6} \cdots u(s)^{2} x$ for $1 \leq i \leq S, i \neq r_1$;

$u(S)_r_{1}^{2n-2}$ is bounded by cycle $x u(S)_r_{1}^2 u(S)_r_{1}^4 \cdots u(S)^{2n-4} y u(T)^{2n-4} y u(T)^{2n-6} \cdots u(T)_r_{1} x$; and

$v(t)_i^{2n-2}$ is bounded by cycle $x v(t)_i^2 v(t)_i^4 \cdots v(t)^{2n-4} y v(t)^{2n-4} y v(t)^{2n-6} \cdots v(t)_i^{2n-4} x$ for $1 \leq i \leq T, i \neq r_2$;

Our notations above imply that, without losing generality, for $v(t)_i^j$, we let $2 \leq i \leq 4n - 5$ for $t = 1$. It means that there is no vertex or edge or face $v(1)_1$.

Now, we divide our labeling of B_m^n into 2 cases as follows:

Case 1. For odd m **with** $2 \leq r_2 \leq 2n - 1$ **or even** m;**

Define an entire k-labeling $\lambda : V \cup E \cup F \rightarrow \{1, 2, \ldots, k\}$ of B_m^n as follows.

\[
\lambda(x) = \lambda(y) = \lambda(xy) = \lambda(f_{ext}^n) = 1;
\]

\[
\lambda(f_{int}^n) = 2;
\]
Hence, we propose the following open problem.

Note that our result in Theorem 2.2 show that the labeling \(\lambda \) is a face irregular entire \(z \)-labeling. Then we have evaluate the face-weights set \(\{ w(f_{\text{ext}}^n), w(f_{\text{int}}^n), w(u(s))^i_{2^n-2}, w(v(t))^i_{2^n-2} \} \) as follows.

\[
\lambda(u(s))^i_{2^n-2} = \begin{cases}
2s - 1 & \text{for } 2 \leq s \leq S, 1 \leq i \leq \min(r_1, 2n - 2) \text{ and } 1 \leq j \leq 2n - i - 1 \\
2s & \text{for } 2 \leq s \leq S, 1 \leq i \leq \min(r_1, 2n - 2) \text{ and } 2n - i \leq j \leq 2n - 2 \\
2s & \text{for } 2 \leq s \leq S, 2n - 1 \leq i \leq \min(r_1, 4n - 5) \text{ and } 1 \leq j \leq 2n - 2 - \frac{i - 2n + 2}{2} - 2 \\
2s + 1 & \text{for } 2 \leq s \leq S, 2n - 1 \leq i \leq \min(r_1, 4n - 5) \text{ and } 2n - 2 - \frac{i - 2n + 2}{2} - 1 \leq j \leq 2n - 2 \\
2t - 1, & \text{for } 1 \leq t \leq T, 1 \leq i \leq \min(r_2, 2n - 2) \text{ and } 1 \leq j \leq 2n - i - 2 \\
2t, & \text{for } 1 \leq t \leq T, 1 \leq i \leq \min(r_2, 2n - 2) \text{ and } 2n - i - 1 \leq j \leq 2n - 3 \\
2t, & \text{for } 1 \leq t \leq T, 2n - 1 \leq i \leq \min(r_2, 4n - 5) \text{ and } 1 \leq j \leq 2n - 2 - \frac{i - 2n + 2}{2} - 3 \\
2t - 1, & \text{for } 1 \leq t \leq T, 2n - i \leq i \leq \min(r_2, 2n - 1) \text{ and } j = 2n - 2 \\
2t, & \text{for } 1 \leq t \leq T - 1, 2n - 1 \leq i \leq 4n - 5 \text{ and } j = 2n - 2 \\
2t, & \text{for } t = T, 2n - 1 \leq i \leq \min(r_2 - 1, 4n - 6) \text{ and } j = 2n - 2 \\
\end{cases}
\]

\[
\lambda(v(t))^i_{2^n-2} = \begin{cases}
2t + 1, & \text{for } 1 \leq t \leq T, 2n - 1 \leq i \leq \min(r_2, 4n - 5) \text{ and } 2n - 2 - \frac{i - 2n + 2}{2} - 2 \leq j \leq 2n - 3 \\
2t - 2, & \text{for } 1 \leq t \leq T, i = 1 \text{ and } j = 2n - 2 \\
2t - 1, & \text{for } 1 \leq t \leq T, 2 \leq i \leq \min(r_2, 2n - 1) \text{ and } j = 2n - 2 \\
2t, & \text{for } 1 \leq t \leq T - 1, 2n - 1 \leq i \leq 4n - 5 \text{ and } j = 2n - 2 \\
2t, & \text{for } t = T, 2n - 1 \leq i \leq \min(r_2 - 1, 4n - 6) \text{ and } j = 2n - 2 \\
\end{cases}
\]

Case 2. For odd \(m \) with \(r_2 = 1 \) or \(2n \leq r_2 \leq 4n - 5 \):

Define an entire \(k \)-labeling \(\lambda^* : V \cup E \cup F \to \{1, 2, \ldots, k\} \) of \(B_m^n \) as follows.

\[
\lambda^*(x) = \lambda^*(y) = \lambda^*(xy) = \lambda^*(f_{\text{ext}}^n) = 1; \\
\lambda^*(f_{\text{int}}^n) = 2; \\
\lambda^*(u(s))^i = \lambda(u(s))^i; \\
\lambda^*(v(t))^i = \begin{cases}
2T - 2, & \text{for } r_2 = 1, t = T, i = 1, j = 1 \\
2T - 1, & \text{for } r_2 = 1, t = T - 1, i = 4n - 5, j = 2n - 2 \\
\lambda(v(t))^i + 1, & \text{for } r_2 \text{ odd, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2, j = 1 \\
\lambda(v(t))^i - 1, & \text{for } r_2 \text{ odd, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 2 \\
\lambda(v(t))^i - 1, & \text{for } r_2 \text{ even, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 3 \\
\lambda(v(t))^i + 1, & \text{for } r_2 \text{ even, } 2n \leq r_2 \leq 4n - 5, t = T, i = r_2 - 1, j = 2n - 2 \\
\lambda(v(t))^i, & \text{for otherwise.} \\
\end{cases}
\]

It is easy to check that the labeling \(\lambda \) is an entire \(z \)-labeling. Then we have evaluate the face-weights set \(\{ w(f_{\text{ext}}^n), w(f_{\text{int}}^n), w(u(s))^i_{2^n-2}, w(v(t))^i_{2^n-2} \} \) as follows.

\[
w(f_{\text{ext}}^n) = 2n + 1; \\
w(f_{\text{int}}^n) = 2n + 2; \\
w(u(s))^i_{2^n-2} = \begin{cases}
(2s - 1)(4n - 5) + 2i + 2, & \text{for } 1 \leq s \leq S - 1, 1 \leq i \leq 4n - 5, s = S - 1, i = r_1; \\
(2s - 1)(4n - 5) + 2i, & \text{for } 1 \leq s \leq S - 1, 1 \leq i \leq r_1; \\
(2s - 1)(4n - 5) + 2r_1, & \text{for even } m, s = S - 1, i = r_1; \\
(2s - 1)(4n - 5) + 2r_1 - 1, & \text{for odd } m, s = S - 1, i = r_1; \\
\end{cases}
\]

\[
w(v(t))^i_{2^n-2} = \begin{cases}
(2t - 1)(4n - 5) + 2i + 2, & \text{for } 1 \leq t \leq T - 1, 1 \leq i \leq 4n - 5, t = T, i = 1; \\
(2t - 1)(4n - 5) + 2i + 1, & \text{for } 1 \leq t \leq T - 1, 1 \leq i \leq 4n - 5, t = T, i = 1; \\
(2t - 1)(4n - 5) + 2i + 1, & \text{for } t = T, 1 \leq i \leq 2n - 1. \\
\end{cases}
\]

Since all face-weights are distinct, then \(\lambda \) is a face irregular entire \(z \)-labeling of \(B_m^n \) where \(m \) is odd with \(2 \leq r_2 \leq 2n - 1 \) or \(m \) is even; and \(\lambda^* \) is a face irregular entire \(z \)-labeling of \(B_m^n \) where \(m \) is odd with \(r_2 = 1 \) or \(2n \leq r_2 \leq 4n - 5 \). Thus, \(z = \frac{4n + m - 7}{4n - 5} \) is the entire face irregularity strength of \(B_m^n \).

Note that our result in Theorem 2.2 show that the \(\text{ef}s(B_m^n) \) is greater than the lower bound in Lemma 2.1.

Hence, we propose the following open problem.
Open Problems

1. Find a class of graph which satisfy a condition where the lower bound in Lemma 2.1 is sharp;
2. Generalize the lower bound for any condition.

References

[1] M. Baca, S. Jendrol, M. Miller and J. Ryan, “On Irregular Total Labelings,” *Discrete Mathematics*, vol. 307, pp. 1378-1388, 2007.

[2] J. A. Galian, “A Dynamic Survey of Graph Labeling,” *Electronic Journal of Combinatorics*, vol. 18 #DS6, 2015.

[3] J. Ivanco and S. Jendrol, “The Total Edge Irregularity Strength of Trees,” *Discuss. Math. Graph Theory*, vol. 26, pp. 449-456, 2006.

[4] C. C. Marzuki, A. N. M. Salman and M. Miller, “On The Total Irregularity Strengths of Cycles and Paths,” *Far East Journal of Mathematical Sciences*, vol. 82 (1), pp. 1-21, 2013.

[5] R. Ramdani and A. N. M. Salman, “On The Total Irregularity Strengths of Some Cartesian Products Graphs,” *AKCE Int. J. Graphs Comb.*, vol. 10 No. 2, pp. 199-209, 2013.

[6] R. Ramdani, A. N. M. Salman, H. Assiyatun, A. Semanicova-Fenovcikova and M. Baca, “Total Irregularity Strength of Three Family of Graphs,” *Math. Comput. Sci*, vol. 9, pp. 229-237, 2015.

[7] M. I. Tilukay, A. N. M. Salman and E. R. Persulessy, “On The Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs,” *Procedia Computer Science*, vol. 74, pp. 124-131, 2015.

[8] M. Baca, S. Jendrol, K. Kathiresan and K. Muthugurupackiam, “Entire Labeling of Plane Graphs,” *Applied Mathematics and Information Sciences*, vol. 9, no. 1, pp. 263-207, 2015.