Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses

Sara Namvar1,2, Adrian S Woolf1,2,3, Leo AH Zee4, Thomas Wilm5, Bettina Wilm5 and Sarah E Herrick1,2,3

1 Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
2 Manchester Academic Health Science Centre, Manchester, UK
3 Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
4 The Bioinformatics Core Facility, The University of Manchester, Manchester, UK
5 Institute of Translational Medicine, University of Liverpool, Liverpool, UK

*Correspondence to: SE Herrick, 3.106 Stopford Building, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK. E-mail: sarah.herrick@manchester.ac.uk

Abstract

Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and can also be triggered by peritoneal dialysis, resulting in treatment failure. In these settings, fibrosis is driven by activated myofibroblasts that are considered to be partly derived by mesothelial-to-mesenchymal transition (MMT). We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. Rat peritoneal mesothelial cells were purified by the use of an antibody against HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead technology. After exposure of sorted cells to a well-known mediator of MMT, transforming growth factor (TGF)-β1, RNA sequencing was undertaken to define the transcriptomes of mesothelial cells before and during early-phase MMT. MMT was associated with dysregulation of transcripts encoding molecules involved in insulin-like growth factor (IGF) and bone morphogenetic protein (BMP) signalling. The application of either recombinant BMP4 or IGF-binding protein 4 (IGFBP4) ameliorated TGF-β1-induced MMT in culture, as judged from the retention of epithelial morphological and molecular phenotypes, and reduced migration. Furthermore, peritoneal tissue from peritoneal dialysis patients showed less prominent immunostaining than control tissue for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model of TGF-β1-induced peritoneal thickening, BMP4 immunostaining on the peritoneal surface was attenuated as compared with healthy controls. Finally, genetic lineage tracing of mesothelial cells was used in mice with peritoneal injury. In this model, administration of BMP4 ameliorated the injury-induced shape change and migration of mesothelial cells. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT.

Keywords: bone morphogenetic protein; insulin-like growth factor; peritoneum; mesothelium

Received 21 September 2017; Revised 1 March 2018; Accepted 12 May 2018

No conflicts of interest were declared.

Introduction

Epithelia form sheets and tubules conferring physical integrity and performing physiological functions. Epithelial-to-mesenchymal transition (EMT) occurs in normal development during gastrulation and neural crest migration. EMT is characterized by disrupted cell–cell adhesion and apical–basolateral polarity, cytoskeletal reorganization, detachment from basement membranes, and the generation of motile mesenchymal cells. The reverse process, mesenchymal-to-epithelial transition, occurs during somitogenesis and nephrogenesis [1,2]. Mesothelial cells (MCs) are epithelial-like cells lining the coelomic cavities and the organs that they contain. MCs have junctional complexes and apical–basolateral polarity, and adhere to a basement membrane. MCs secrete glycosaminoglycans and surfactant, permitting frictionless gliding of organs, and act as a barrier expressing inflammation-modulating cytokines. MCs in vivo not only express cytokertains, which is characteristic of epithelia, but also vimentin, which is more typical of mesenchyme [3]. In normal development, some MCs undergo mesothelial-to-mesenchymal transition (MMT) to form vascular smooth muscle [4,5]. In development and cancer, the transcription factors Snail, Twist and Slug drive EMT [6,7]. MCs are not typical epithelial cells, so the biological characteristics of MMT and EMT may not be identical.

Fibrosis is an aberrant response to injury, and therapies to slow or reverse fibrosis are urgently needed. α-Smooth muscle actin (αSMA)-expressing myofibroblasts drive fibrosis, and it has been proposed...
that EMT generates some of these cells [1,8,9]. In response to injury, MCs can undergo MMT [10–13]. For example, after injection of labelled MCs into the peritoneal cavity, they appear in the regenerating mesothelial layer and in the submesothelial layer [14]. Peritoneal fibrosis can be triggered by peritoneal dialysis, causing treatment failure, and by surgery, causing adhesions. Targeting of MMT may therefore prevent scarring. Mesothelial damage by peritoneal dialysis or surgery initiates the production of profibrotic mediators, notably transforming growth factor (TGF)-β1 [3]. We hypothesized that, if the molecular signature of TGF-β1-induced MMT could be defined, these insights could be exploited to ameliorate MMT.

Materials and methods

Animals

Animal experiments were undertaken according to ARRIVE guidelines, and were approved by the Review Boards of the Universities of Manchester and Liverpool, and by the Home Office.

Isolation, purification and culture of rat MCs

Omental tissue was dissected from 9–12-week-old female Wistar rats weighing 220–250 g (Charles River, Harlow, UK). Tissue was dissociated in 0.25% trypsin–EDTA (Sigma-Aldrich, Gillingham, UK) for 20 min at 37 °C. Cells were incubated with HBME1 antibody (M3505, 1:50; Dako, Cambridge, UK) for 30 min in 3% bovine serum albumin in phosphate-buffered saline (PBS). Cells were washed and incubated for 30 min with biotinylated secondary antibody (BA2020, Vector Laboratories, Peterborough, UK). Further following washes, 1.5 × 10⁶ cells were incubated with streptavidin-coated magnetic nanobeads (Biolegend, London, UK) for 15 min, and then placed in a MojoSort magnet (Biolegend) for 5 min. Uncaptured cells were decanted, and the remainder were resuspended in culture media comprising high-glucose Dulbecco’s modified Eagle’s medium supplemented with 15% fetal bovine serum (FBS), 4 mM L-glutamine (Sigma-Aldrich), 1% v/v penicillin/streptomycin, and 0.4 μg/ml hydrocortisone (Sigma-Aldrich). In other experiments, cells from trypsinized omentum were subjected to fluorescence-activated cell sorting (FACS), as described previously [15]. Cells were processed as for magnetic bead sorting, but HBME1 antibody was detected with IgM Alexa488 (A-21042, 1:1000; Thermo Fisher Scientific, Runcorn, UK). Cells were seeded at 5 × 10³/cm² in multiwell plates. After comparison of the two methods, subsequent experiments were performed with Mojo purification. After 48–72 h of culture following enrichment, cells were washed with Hanks’ balanced salt solution, and the medium was changed every other day for up to 10–11 days. Cells were then placed in low-serum (5% FBS) medium. Cells were exposed to 1 ng/ml TGF-β1 for 48 h (R&D Systems, Abington, UK) and/or 50 ng/ml bone morphogenetic protein (BMP) 4 (Biolegend) and/or 50 ng/ml insulin-like growth factor (IGF)-binding protein (IGFBP) 4 (Biolegend).

RNA sequencing (RNA-seq) and quantitative polymerase chain reaction (qPCR)

These are detailed in supplementary material, Supplementary materials and methods. For RNA-seq, differentially expressed transcripts were defined as those for which the log₂(fold change) was ≥0.36 or ≤−0.36 versus controls, and for which there was a statistical significance of p < 0.05, corrected for multiple comparisons. (Fold change = test value/control value.) RNA-seq data are available at ArrayExpress E-MTAB-5998.

Immunostaining, cell migration assay, and enzyme-linked immunosorbent assay (ELISA)

Details are given in supplementary material, Supplementary materials and methods.

TGF-β1-induced peritoneal fibrosis and peritoneal MC lineage tracing in mice

Two models of peritoneal injury were studied. In the first, tissues from wild-type C57BL/6 J mice that had received intraperitoneal adenovirus expressing TGF-β1 were analysed; we previously reported that this led to submesothelial fibrosis in vivo [16]. In a second model, we combined surgical abrasion of the peritoneum [17] with an MC lineage tracing strategy, similar to that described by Lua et al [18], but using LacZ rather than GFP. Detailed protocols are given in supplementary material, Supplementary materials and methods.

Human tissue analyses

After informed consent and ethical approval (REC 06/Q1407/94 and 14/NE/0059), peritoneum samples were collected from patients undergoing hernia repair (n = 4) and from end-stage kidney disease patients who had undergone peritoneal dialysis (n = 4). Tissues were fixed in 4% paraformaldehyde for 24 h, and processed into paraffin blocks, from which 7-μm sections were taken and permeabilized with 0.2% Triton in PBS, and then incubated with primary antibodies against HBME1 (Dako; M3505, 1:50), IGFBP4 (Abcam Cambridge, UK; ab83846, 1:700) or BMP4 (Abcam; ab39973, 1:100) overnight at 4 °C. Sections were incubated with the Rabbit IgG Specific horseradish peroxidase/3,3′-diaminobenzidine (ABC) detection kit (Abcam). Images were obtained with a light microscope (Olympus, Southend-on-Sea, UK) and Image-Pro Plus software (Media Cybernetics, Cambridge, UK).

Statistics

Analysis for RNA-seq data is outlined above. All other datasets were normally distributed, and so are presented as mean ±standard error of the mean (SEM). Student’s
Results

MC enrichment

In rat omentum sections, HBME1 was immunodetected in MCs (Figure 1A), but adipose and connective tissue were negative. Primary cultures of omental cells that had been selected after binding to the HBME1 antibody either by FACS or magnetic bead sorting (Mojo) showed an enhanced cobblestone appearance versus unsorted cells (Figure 1B). FACS and magnetic bead sorting each resulted in significant enrichment of cells expressing HBME1 (Figure 1B,C) or Wt1 (Figure 1B,D), an MC transcription factor [4,5]. Unsorted cells showed a mean HBME1 immunostaining level of ≈27 000 pixels/nucleus, which rose after HBME1 FACS to 162 000 (p = 0.022) or after magnetic bead sorting to 192 000 (p = 0.005). Wt1 was immunodetected in approximately half of all nuclei of unsorted cells, rising to 90% after HBME1 FACS sorting (p = 0.022) and to 92% after HBME1 magnetic bead sorting (p = 0.017).

Induction of MMT in cell culture

Mojo-sorted MCs were exposed to TGF-β1, a driver of both MMT and peritoneal fibrosis [19,20]. After
48 h, untreated MCs maintained their cobblestone morphology (Figure 1E), whereas parallel cultures exposed to 1 ng/ml TGF–β1 progressively lost their epithelioid appearance and acquired an irregular elongated morphology (Figure 1E). Primary cultures of sorted cells showed positive immunostaining for ZO1, a tight junction protein, and vimentin, an intermediate filament protein (Figure 1F), as expressed by MCs in vivo [21,22]. Immunostaining for E-cadherin was barely detectable, whereas nearby pancreatic ductal cells were positive (supplementary material, Figure S1). In immunohistochemistry, the mesothelial layer of rat omentum in vivo was negative for E-cadherin, whereas nearby pancreatic ductal cells were positive (supplementary material, Figure S1). On immunohistochemistry, the BMP4 and IGFBP4 recombinant proteins, rendering them inactive [32]. As assessed by qPCR, the levels of Bmp4 and Igfb4 transcripts also decreased (Figure 3B). As assessed by ELISA, TGF–β1 exposure was also associated with decreased concentrations of BMP4 and IGFBP4 in medium conditioned by MCs (Figure 3C).

Exogenous BMP4 or IGFBP4 ameliorates TGF–β1–induced MMT in vitro

We hypothesized that the diminished levels of BMP4 and IGFBP4 described above might modulate TGF–β1–induced MMT. We administered 50 ng/ml BMP4 or IGFBP4 recombinant proteins to MC cultures. As assessed by gross morphology and immunostaining
Mesothelial molecular signatures

Figure 2. Transcriptome analyses of HBME1-sorted rat MCs. (A) Unsupervised hierarchical clustering by transcript expression. Rows are expression levels denoted as the z-score, displayed in a high–low (red–blue) colour scale; the numeric scale indicates z-transformation. Note that levels of numerous transcripts are increased or decreased after 48 h of exposure to 1 ng/ml TGF-β1. Cntl indicates the five vehicle-only exposed samples. TGF indicates the five parallel cultures exposed to TGF-β1. (B) Selected RNA-seq data displayed as a volcano plot, with the image annotated for ‘epithelial signature’ transcripts. (C) qPCR for Cdh1, Col4a3, Col4a4, Cng, Pdxl, Snai1, Tjp1, Upk3b, and Vim (n = 3; mean ± SEM).

for ZO1, cingulin, and αSMA, addition of either protein alone did not affect the phenotype of these cells (data not shown). In contrast, addition of either BMP4 or IGFBP4 to TGF-β1-exposed cells (Figure 4A) preserved aspects of the epithelial phenotype and ameliorated the mesenchymal phenotype, as assessed by: preservation of a cobblestone appearance; less prominent ZO1 cytoplasmic localization; and a reduction in αSMA immunostaining (Figure 4A), confirmed to be significant upon quantification (Figure 4B). In contrast, neither exogenous BMP4 nor IGFBP4 prevented the loss of cell–cell cingulin localization following addition of TGF-β1 (Figure 4A). A key event during MMT is cell migration, so we studied this with a scratch assay in MC cultures (Figure 4C). MCs exposed to 1 ng/ml TGF-β1 showed enhanced wound closure at 16 h, consistent with increased migration. Addition of IGFBP4 or BMP4 abrogated this effect (Figure 4D).

© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com
Figure 3. MMT is associated with dysregulation of the BMP4 and IGF pathways. (A) Volcano plot annotated with transcripts encoding molecules implicated in BMP and IGF signalling. (B) Confirmation of decreased levels of Bmp4 and Igfbp4 as assessed by qPCR (n = 3; mean ± SEM). (C) As determined by ELISA, the levels of BMP4 and IGFBP4 were decreased in medium conditioned by cells exposed to 1 ng/ml TGF-β1 (n = 5; mean ± SEM).

Exploration of BMP4 in two mouse models of peritoneal fibrosis

In a mouse model of peritoneal fibrosis induced by intraperitoneal TGF-β1-expressing adenovirus, there was attenuation of BMP4 immunostaining of the surface of the peritoneum (Figure 5A). Next, we ‘genetically labelled’ peritoneal MCs by activation of the LacZ allele induced by activating Wt1 promoter-driven Cre recombinase. Here, labelled cells and their progeny express a reporter that can be detected with the XGal reaction. As noted by Lua et al., Wt1 promoter-driven Cre recombinase activation occurs in a subset of MCs, so only the fates of the labelled population can be tracked [18]. Mice were subjected to surgery to induce adhesion formation, and a subset were treated with BMP4. In whole mount preparations, we found elongated blue cells in zones immediately adjacent to the nascent scar, whereas, in injured mice exposed to exogenous BMP4, clusters of cuboidal cells were noted (Figure 5B, upper frames). On histology, cells expressing the reporter were noted under the peritoneal surface after injury, whereas, after administration of BMP4, labelled cells were present on the peritoneal surface (Figure 5B, lower frames). These observations suggest that BMP4 helps to restore ‘healthy’ mesothelial morphology following injury in vivo.

Altered patterns of BMP4 and IGFBP4 expression in human peritoneal dialysis tissue

Mesothelium was identified in control and peritoneal dialysis-exposed human peritoneal tissue sections, as determined by HBME1 immunostaining (Figure 6). Control peritoneal tissue, from otherwise healthy patients undergoing incidental hernia surgical repair, showed positive immunostaining for both IGFBP4 and BMP4 on the peritoneal surface. This pattern was attenuated in tissue harvested from peritoneal dialysis patients (Figure 6). Scattered cells below the mesothelial layer showed positive staining for IGFBP4, which may represent retention of some mesothelial characteristics in cells undergoing MMT [10].

Discussion

Previous studies investigating peritoneal MCs generally analysed cultures obtained solely by enzymatic digestion of omentum [23,33,34]. A few studies have enriched for MCs by using procedures such as positive selection for HBME1 with FACS [15], removal of CD45-positive cells [35], or sorting for glycoprotein M6a (GpM6a)-expressing cells with magnetic beads [18]. We found similar levels of MC enrichment by FACS and magnetic bead sorting: both use positive sorting with HBME1 antibody against a microvillus protein characteristic of MCs and produced populations in which 90% of cells were Wt1-positive. Magnetic bead sorting is a convenient method that bypasses the need for cell sorting facilities. Whether sorting by the use of both HBME1 and another specific MC marker, such as mesothelin or GpM6a, generates greater enrichment could be addressed in future studies.

Using RNA-seq, we identified numerous ‘epithelial marker’ RNAs in purified rat MCs, including transcripts encoding ZO1, mesothelin, uroplakin 3B, and podoplanin, similarly to previous reports. Purified MCs also expressed high levels of transcripts for several keratins, Wt1, and Msln, encoding the cell surface protein mesothelin [26]. MCs appear to share certain molecules, including Wt1 and podocalyxin-like protein 1, with...
podocytes, which are specialized epithelial cells within kidney glomeruli. As for podocytes, the molecular signature of MCs has certain similarities to that of generic mesenchymal cells; for example, both epithelia contain abundant vimentin [36]. Thus, MCs are ‘epithelial-like’ rather than exactly like ‘classic’ epithelia.

The expression of the cell–cell junction protein E-cadherin, and its downregulation, reflecting the destabilization of adherens junctions, has been considered to be a hallmark of EMT, and has been noted in some MMT studies [23, 35, 37]. In our study, however, RNA-seq of HBME1-sorted rat MCs revealed very low read numbers for Cdh1, the transcript encoding E-cadherin; moreover, there was no significant change after TGF-β1 exposure. Furthermore, E-cadherin was not detected in rat omentum by the use of immunohistochemistry. The literature already points to heterogeneity of E-cadherin expression by MCs studied in different contexts. Cells harvested from human omentum, or collected from dialysis effluent, expressed E-cadherin [35], but MCs covering the liver [38] or the body wall [18] of mice did not express E-cadherin in vivo, and nor did human ovarian MCs [39].

Given the heterogeneity of MCs, depending on their source, there are unlikely to be exactly the same changes in gene expression as they undergo MMT. Ruiz-Carpio et al [35] analysed human peritoneal cells that had undergone, or were undergoing, MMT. MMT was associated with increased levels of THBS1, VCAN, and ITGA11, whereas BMP4 and THBD were downregulated. Inspection of our RNA-seq data revealed similar significant changes. On the other hand, Ruiz-Carpio et al noted markedly increased levels of IL33 and IL6, whereas we found that the former transcript was expressed but unchanged after TGF-β1, and the latter was not expressed. Moreover, Ruiz-Carpio et al also noted markedly decreased levels of AQP1, MUC16, and VTN. In our arrays, the former two transcripts were expressed but unchanged by TGF-β1, whereas the latter was not expressed. Moreover, because MCs are not typical epithelial cells, MMT molecular profiles are unlikely to be exactly the same as for EMT. In our RNA-seq study, Snai1, Snai2 and Zeb2 were all significantly upregulated in TGF-β1-induced MMT, and the levels of all three tended to increase in typical EMT. Conversely, we did not detect TGF-β1-induced changes in either Cdh2, encoding the cell–cell junction protein N-cadherin, or in Twist1 and Twist2, encoding transcription factors: all three have been implicated in typical EMT. Collectively, these observations support the idea that there are unlikely to be exactly the same changes in gene expression in all forms of EMT or MMT.

In the current study, Sox9, encoding sex-determining region Y-box 9, was significantly upregulated in MMT. This transcription factor has been implicated in fibrosis [40], and probably synergizes with SNAIL1 or SNAIL2 to drive EMT [41, 42]. The role of Sox9 in regulating MMT and peritoneal fibrosis warrants further investigation. Wt1 is a transcription factor that regulates the balance between EMT and MET during development [43, 44]. In the current study, purified
MCs expressed high levels of Wt1, but these showed no significant change in response to TGF-β1. Another group, analysing pleural MCs, detected MMT when Wt1 was experimentally downregulated [45]. Thus, downregulation of Wt1 can be associated with MMT, but appears not to be essential for TGF-β1-induced MMT in our current study.

We also found that TGF-β1 exposure led to upregulation of transcripts encoding tenascins C and N. Tenascin C is an extracellular matrix protein that has been found to inhibit cellular adhesion to fibronectin and has been recently proposed as a biomarker in peritoneal dialysis associated with poor membrane function [46]. Tenascin N is a member of the tenascin family that has been previously associated with neurite outgrowth, and appears not to have been previously highlighted in MMT, so it is worthy of further investigation. Upregulation of neural cell adhesion molecule 1 has been reported to promote the formation of focal adhesions in mesothelium-derived tumours [47], but a possible functional role in MMT is yet to be elucidated. Vascular cell adhesion molecule 1, which is important for leukocyte adhesion, was also induced by TGF-β1; it has previously been reported to be upregulated in MCs exposed to advanced glycation end-products [48,49], and the soluble form has been reported to inhibit MMT [50].

We hypothesized that, if the molecular signature of MMT could be better defined, these insights could be exploited to block this pathological cellular transition. We discovered that, in response to TGF-β1, MCs showed robust downregulation of BMP4. Apart from BMP1, which is a metalloprotease, BMPs are secreted growth factors belonging to the TGF-β superfamily, which bind to dimers of BMP receptors I and II, eliciting intracellular signalling via SMAD phosphorylation. BMP4 is required for gastrulation and for lung, heart and kidney development [51]. We reasoned that
the TGF-β1-induced depletion of BMP4 might itself modulate MMT. Indeed, recombinant BMP4 partially prevented TGF-β1-induced MMT, as indicated by retention of membranous ZO1 localization, lack of αSMA induction and reduced cell migration in vitro. Moreover, we found that BMP4 immunostaining on peritoneal surfaces was attenuated versus healthy controls in human peritoneal dialysis tissue and in a mouse model of TGF-β1-induced peritoneal fibrosis. Finally, genetic lineage tracing of MCs was used in mice with peritoneal injury. Here, BMP4 administration ameliorated injury-induced shape change and migration of cells expressing the reporter gene. We interpret these results as showing that genetically labelled MCs, and/or their progeny, move under the surface of the injured mesothelium, as also concluded by Lua et al when they examined a model of chlorhexidine gluconate-induced fibrosis [18]. Our findings demonstrate a distinctive MMT signature, and highlight the therapeutic potential for BMP4 to reduce MMT. Future experiments will be needed, however, to determine whether BMP4 ameliorates the degree of scarring in vivo. Although this is a novel finding with regard to MMT, application of BMP4 was shown to reduce retinal epithelial cell EMT in a similar manner [52]. BMP7 has been shown to ameliorate MMT in previous studies, and BMP7 and BMP4 signal through similar pathways [53]. Our RNA-seq data showed that Bmp4 was highly expressed in rat MCs, whereas Bmp7 read counts were low; moreover, only Bmp4 was significantly downregulated upon exposure to exogenous TGF-β1 [Bmp4 average reads of 3434 reducing to 1428 with exposure to TGF-β1 (p = 5.09 × 10^-24); and average Bmp7 reads at baseline of 80, and 39 upon exposure to exogenous TGF-β1 (p = 0.108)]. Therefore, of these two BMP molecules, it is BMP4 that is the key endogenous factor in our model. In parallel with the downregulation of BMP4 in MCs undergoing MMT, there was an increase in the level of the transcript encoding gremlin-2, a member of the BMP-antagonist gremlin family [29,54]. Notably, it has been reported that adenovirus-mediated upregulation of gremlin1 promotes peritoneal fibrosis in mice [55]. We speculate that BMP4 signalling via phosphorylation of Smad1/5/8 opposes TGF-β1-mediated phosphorylation of Smad2/3 signalling [53]. Thus, the two signalling pathways may maintain the balance of homeostasis in the mesothelium.

Our transcriptome analyses also revealed that transcripts encoding the growth factors IGF1 and IGF2 were upregulated during MMT. In parallel, the levels of transcripts encoding IGFBP4 and IGFBP5 were markedly downregulated. These changes are predicted to lead to an increase in IGF signalling activity, as IGFBPs lengthen the half-life of circulating IGF1, owing to their higher affinity for IGF ligands than the receptors [31]. We showed that recombinant IGFBP4, like BMP4, ameliorated TGF-β1-induced MMT in vitro. Furthermore, immunostaining for IGFBP4 of peritoneal tissues harvested from peritoneal dialysis patients was less prominent in the mesothelial layer, with some evidence of expression in cells of the submesothelium that might represent migrated MCs or their progeny. IGF signalling interacts at several levels with various components of the TGF-β signalling pathway [56]. In future, it will be important to determine whether similar interactions may be regulating IGF-induced MMT in the peritoneum.

Blocking downstream TGF-β1 signalling pathways may be another way to attenuate MMT; these include Smad-dependent [57] and Smad-independent pathways, such as Akt–mammalian target of rapamycin [57], c-Jun N-terminal kinase [57], Wnt–β-catenin [58], integrin-linked kinase–glycogen synthase kinase-3β [59], extracellular signal-regulated kinase–nuclear factor-κB [33], and mitogen-activated protein kinase [60]. Another approach, however, based on the findings from the current study, would be to focus on introducing BMP4 and IGFBP4 to prevent MMT and peritoneal fibrosis. Importantly, evidence suggests MMT occurs in diverse peritoneal pathologies, including surgical adhesions [61], endometriosis [62], and peritoneal metastasis [63]. In a rat model of surgical adhesions, IGFBP4 administration ameliorated peritoneal scarring [64], although a link to MMT was not explored. Future studies are required to elucidate whether therapeutically manipulating BMP4 or IGFBP4 signalling could ameliorate the severity of these conditions.

Acknowledgements

The Bioimaging Facility microscopes used in this study were purchased with grants from BBSRC, Wellcome, and the University of Manchester Strategic Fund. Special thanks go to Peter March, Roger Meadows and Steven Marsden for their help with the microscopy. We thank Raymond Hodgkiss for technical assistance, Dr Zia Moinuddin (Manchester Royal Infirmary) for collection of human tissue, and Dr Peter Margetts (McMaster University, Hamilton, Canada) for AdTGFβ1. This research was supported by Medical Research Council (MR/M012751/1) and Kidneys for Life (1/2016) project grants.

Author contributions statement

SN contributed to conception and design, all aspects of data acquisition apart from the lineage tracing experiment, and the preparation of figures and drafting of the manuscript. SH and AW contributed to conception and design, data interpretation, and drafting of the manuscript. TW and BW designed and undertook the lineage tracing experiment, and revised the manuscript. TW, SN and BW acquired funding and the preparation of figures and drafting of the manuscript. SN, TW and BW contributed to conception and design, all aspects of data acquisition apart from the lineage tracing experiment, and the preparation of figures and drafting of the manuscript. SN, TW, AW, BW and SH contributed to conception and design, all aspects of data acquisition, data interpretation, and drafting of the manuscript. SH, AW and BW contributed to conception and design, all aspects of data acquisition and interpretation, and drafting of the manuscript. TW, BW, AW, SN and SH contributed to conception and design, all aspects of data acquisition and interpretation, and drafting of the manuscript. SN, BW and TW contributed to conception and design, all aspects of data acquisition and interpretation, and drafting of the manuscript.

References

1. Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.
2. Kovacic JC, Mercader N, Torres M, et al. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 2012; 125: 1795–1808.

3. Mutsaers SE, Birnie K, Lansley S, et al. Mesothelial cells in tissue repair and fibrosis. Front Pharmacol 2015; 6: 113.

4. Wilim B, Ipenberg A, Hastie ND, et al. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 2005; 132: 5317–5328.

5. Que J, Wilim B, Hasegawa H, et al. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 2008; 105: 16626–16630.

6. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

7. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

8. Flier SN, Tanjore H, Kokkotou EG, et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem 2010; 285: 20202–20212.

9. LeBleu VS, Taduri G, O’Connell J, et al. CANX-1 regulates retroperitoneal fibrosis by PGDS and COX2. Proc Natl Acad Sci U S A 2011; 108: 20981–20986.

10. Yang AH, Chen JY, Lin JK. Myofibroblastic conversion of mesothelial cells. Prog Kidney Int 2006; 71: 492–497.

11. Yanez-Mo M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348: 403–413.

12. Strippoli R, Benedetto I, Perez Lozano ML, et al. Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One 2012; 7: e34192.

13. Fang CC, Huang JW, Shyu RS, et al. Fibrin-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline. PLoS One 2011; 6: e24765.

14. Foley-Comer AJ, Herrick SE, Al-Mishlab T, et al. Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. J Cell Sci 2002; 115: 1383–1389.

15. Lansley SM, Searles RG, Hoi A, et al. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells. J Cell Mol Med 2011; 15: 2095–2105.

16. Margetts PJ, Hoff C, Liu L, et al. Transforming growth factor beta-induced peritoneal fibrosis is mouse strain dependent. Nephrol Dial Transplant 2013; 28: 2015–2027.

17. Gorry DA, Herrick SE, Shah M, et al. Experimental manipulation of transforming growth factor-beta isoforms significantly affects adhesion formation in a murine surgical model. Am J Pathol 2005; 167: 1005–1019.

18. Lu A, Li Y, Pappoe LS, et al. Myofibroblastic conversion and regeneration of mesothelial cells in peritoneal and liver fibrosis. Am J Pathol 2015; 185: 3258–3273.

19. Aguilera A, Yanez-Mo M, Selgas R, et al. Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients. Curr Opin Investig Drugs 2005; 6: 262–268.

20. Loureiro J, Aguilera A, Selgas R, et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011; 22: 1682–1695.

21. Chen YT, Chang YT, Pan SY, et al. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol 2014; 25: 2847–2858.

22. Xiao L, Peng X, Liu F, et al. AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by Smrt2 and deubiquitinating enzyme USP4. BMC Cell Biol 2015; 16: 17.
43. von Gise A, Zhou B, Honor LB, et al. WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. *Dev Biol* 2011; 356: 421–431.

44. Piones T, Fischer M, Hohne K, et al. Turning back the wheel: inducing mesenchymal to epithelial transition with Wilms tumor 1 knockdown in human mesothelioma cell lines to influence proliferation, invasiveness, and chemotaxis. *Pathol Oncol Res* 2017; 23: 723–730.

45. Karki S, Surolia R, Hock TD, et al. Wilms’ tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. *FASEB J* 2014; 28: 1122–1131.

46. Hirahara I, Kusano E, Imai T, et al. Effluent tenasin-C levels reflect peritoneal deterioration in peritoneal dialysis: MAJOR IN PD Study. *Biomed Res Int* 2015; 2015: 241098.

47. Zecchini S, Bombardelli L, Decio A, et al. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling. *EMBO Mol Med* 2011; 3: 480–494.

48. Boulanger E, Wautier MP, Wautier JL, et al. AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. *Kidney Int* 2002; 61: 148–156.

49. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. *Antioxid Redox Signal* 2011; 15: 1607–1638.

50. Dolic D, Dettman RW. VCAM-1 inhibits TGFbeta stimulated epithelial–mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells. *Dev Biol* 2006; 299: 489–504.

51. Jiao K, Kelessis H, Tompkins K, et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. *Genes Dev* 2003; 17: 2362–2367.

52. Yao H, Li H, Yang S, et al. Inhibitory effect of bone morphogenetic protein 4 in retinal pigment epithelial–mesenchymal transition. *Sci Rep* 2016; 6: 32182.

53. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. *Nat Rev Endocrinol* 2016; 12: 203–221.

54. Sun J, Zhuang FF, Mullersman JE, et al. Bmp4 activation and secretion are negatively regulated by an intracellular gremlin–Bmp4 interaction. *J Biol Chem* 2006; 281: 29349–29356.

55. Siddique I, Curran SP, Ghayur A, et al. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. *Am J Pathol* 2014; 184: 2976–2984.

56. Danielpour D, Song K. Cross-talk between IGF-I and TGF-beta signaling pathways. *Cytokine Growth Factor Rev* 2006; 17: 59–74.

57. Patel P, Sekiguchi Y, Oh KH, et al. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. *Kidney Int* 2010; 77: 319–328.

58. Zhang F, Liu H, Liu F, et al. New insights into the pathogenesis and treatment of peritoneal fibrosis: a potential role of Wnt/beta-catenin induced epithelial to mesenchymal transition and stem cells for therapy. *Med Hypotheses* 2013; 81: 97–100.

59. Luo L, Liu H, Dong Z, et al. Small interfering RNA targeting ILK inhibits EMT in human peritoneal mesothelial cells through phosphorylation of GSK3beta. *Mol Med Rep* 2014; 10: 137–144.

60. Feng Y, Shin HS, Sun Choi H, et al. Effects of dexamethasone on the TGF-beta1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. *Lab Invest* 2013; 93: 194–206.

61. Sandoval P, Jimenez-Heffernan JA, Guerra-Azcona G, et al. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. *J Pathol* 2016; 239: 48–59.

62. Demir AY, Demol H, Puype M, et al. Proteome analysis of human mesothelial cells during epithelial to mesenchymal transitions induced by shed menstrual effluent. *Proteomics* 2004; 4: 2608–2623.

63. Rynne-Vidal A, Au-Yeung CL, Jimenez-Heffernan JA, et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. *J Pathol* 2017; 242: 140–151.

64. Gimbel ML, Chelius D, Hunt TK, et al. A novel approach to reducing postoperative intraperitoneal adhesions through the inhibition of insulinlike growth factor I activity. *Arch Surg* 2001; 136: 311–317.

65. Bolger AM, Lohse M, Usadel B, Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 2013; 30: 2141–2142.

66. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013; 29: 15–21.

67. Anders S, Pyl PT, Huber W. HTSeq – a Python framework to work with high-throughput sequencing data. *Bioinformatics* 2015; 31: 166–169.

68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* 2014; 15: 22.

69. Zhou B, Ma Q, Rajagopal S, et al. Epidermal progenitors contribute to the cardiomyocyte lineage in the developing heart. *Nature* 2008; 454: 109–113.

70. Wilm B, Munoz-Chapuli R. Tools and techniques for Wt1-based lineage tracing. *Methods Mol Biol* 2016; 1467: 41–59.

*Cited only in supplementary material.

SUPPLEMENTARY MATERIAL ONLINE

Supplementary materials and methods

Supplementary figure legends

Table S1. Epithelial signature transcripts

Table S2. Mesenchymal/extracellular matrix transcripts

Table S3. Transcription and growth factors implicated in EMT and/or MMT

Table S4. Transcripts implicated in BMP and IGF signalling