Eigenvalue Bounds for Dirac and Fractional Schrödinger Operators with Complex Potentials

Jean-Claude Cuenin

LMU München

Mathematical Challenges in Quantum Mechanics
Bressanone, February 12, 2016
Motivation

- Lieb-Thirring Inequalities (S.A.)
- Lieb-Thirring Inequalities (N.S.A.)

New Results

- Dirac and Fractional Schrödinger Operators
- Method of Proof
Outline

1 Motivation
 • Lieb-Thirring Inequalities (S.A.)
 • Lieb-Thirring Inequalities (N.S.A.)

2 New Results
 • Dirac and Fractional Schrödinger Operators
 • Method of Proof
Lieb-Thirring Inequalities (S.A.)

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$. Then $H_0^* = H_0$ and $\sigma(H_0) = \sigma_{ess}(H_0) = [0, \infty)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{R})$.

Lieb-Thirring and CLR inequalities

$$
\sum_{E \in \sigma_d(H)} |E|^\gamma \leq L_{d,\gamma} \int_{\mathbb{R}^d} V_-(x)^{d/2+\gamma} \, dx,
$$

where $V_-(x) = \min\{V(x), 0\}$.

- $\gamma \geq 0$ if $d \geq 3$,
- $\gamma > 0$ if $d = 2$,
- $\gamma \geq 1/2$ if $d = 1$.

Jean-Claude Cuenin
Complex Eigenvalue Bounds
Outline

1 Motivation
 - Lieb-Thirring Inequalities (S.A.)
 - Lieb-Thirring Inequalities (N.S.A.)

2 New Results
 - Dirac and Fractional Schrödinger Operators
 - Method of Proof
Preliminaries: Non-Selfadjoint Operators

X a Banach space, T a closed operator in X.

Definition

- $\rho(T) := \{ z \in \mathbb{C} : T - z \text{ is bijective} \}$, $\sigma(T) := \mathbb{C} \setminus \rho(T)$.
- $\sigma_d(T) := \{ z \in \mathbb{C} : z \text{ isolated e.v. of finite algebraic mult.} \}$.
- $\sigma_{\text{ess}}(T) := \{ z \in \mathbb{C} : T - z \text{ is not Fredholm} \}$.

Fact 1: $(T - z)^{-1} - (S - z)^{-1}$ compact \implies $\sigma_{\text{ess}}(T) = \sigma_{\text{ess}}(S)$.

Fact 2: If each connected component of $\mathbb{C} \setminus \sigma_{\text{ess}}(T)$ contains a point in $\rho(T)$, then

$$\sigma(T) = \sigma_d(T) \cup \sigma_{\text{ess}}(T).$$
N.S.A. Schrödinger Operators: Single Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{C})$.
- Assume $z \in \mathbb{C} \setminus [0, \infty)$ is an eigenvalue of H.

Jean-Claude Cuenin

Complex Eigenvalue Bounds
N.S.A. Schrödinger Operators: Single Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{C})$.
- Assume $z \in \mathbb{C} \setminus [0, \infty)$ is an eigenvalue of H.
Motivation

New Results

Lieb-Thirring Inequalities (S.A.)

Lieb-Thirring Inequalities (N.S.A.)

N.S.A. Schrödinger Operators: Single Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{C})$.
- Assume $z \in \mathbb{C} \setminus [0, \infty)$ is an eigenvalue of H.

Theorem (Abramov, Aslanyan, Davies 2001 [1])

Assume $d = 1$. Then

$$|z|^{1/2} \leq \frac{1}{2} \int_{\mathbb{R}} |V(x)| dx.$$

Proof.

$$1 \leq \|V^{1/2}R_0(z)\|V^{1/2}\|^2 \leq \int \int \frac{|V(x)|e^{-2\Im \sqrt{z}|x-y|}|V(y)|}{4|z|} \leq \frac{\|V\|_1^2}{4|z|}.$$
N.S.A. Schrödinger Operators: Single Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{C})$.
- Assume $z \in \mathbb{C} \setminus [0, \infty)$ is an eigenvalue of H.

Conjecture (Laptev, Safronov 2009 [10])

Assume $d \geq 1$ and $0 < \gamma \leq d/2$. Then

$$|z|^{\gamma} \leq C_{d,p} \int_{\mathbb{R}} |V(x)|^{d/2+\gamma} dx.$$

- Case $0 < \gamma \leq 1/2$ proved by R. Frank [6].
 Proof relies on uniform Sobolev inequality of C. Kenig, A. Ruiz, C. Sogge [9]:

$$\|R_0(z)\|_{L^p \rightarrow L^{p'}} \leq C|z|^{d(1/p-1/2)-1}, \quad \frac{2d}{d+2} \leq p \leq \frac{2(d+1)}{d+3}.$$
N.S.A. Schrödinger Operators: Single Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^{d/2+\gamma}(\mathbb{R}^d; \mathbb{C})$.
- Assume $z \in \mathbb{C} \setminus [0, \infty)$ is an eigenvalue of H.

Conjecture (Laptev, Safronov 2009 [10])

Assume $d \geq 1$ and $d/2 \leq p \leq d$. Then

$$|z|^{p-d/2} \leq C_{d,p} \int_{\mathbb{R}} |V(x)|^p \, dx.$$

Case $0 < \gamma \leq 1/2$ proved by R. Frank [6]. Proof relies on uniform Sobolev inequality of C. Kenig, A. Ruiz, C. Sogge [9]:

$$\|R_0(z)\|_{L^p \to L^{p'}} \leq C |z|^{d(1/p-1/2)-1}, \quad \frac{2d}{d+2} \leq p \leq \frac{2(d+1)}{d+3}.$$

Jean-Claude Cuenin

Complex Eigenvalue Bounds
N.S.A. Schrödinger Operators: Sums of Eigenvalues

- \(H_0 = -\Delta \) in \(L^2(\mathbb{R}^d) \), with \(D(H_0) = H^2(\mathbb{R}^d) \).
- \(H = H_0 + V \), where \(V \in L^p(\mathbb{R}^d; \mathbb{C}) \).

Theorem (Frank, Laptev, Lieb, Seiringer 2006 [7])

For \(\theta \in (0, \pi/2) \) and \(p \geq d/2 + 1 \):

\[
\sum_{z \in \sigma_d(H) \setminus \Omega_\theta} |z|^{p-d/2} \leq C_{d,p}(1 + 2/\tan(\theta))^{p} \| V \|_{p}^{p}.
\]

Jean-Claude Cuenin
Complex Eigenvalue Bounds
N.S.A. Schrödinger Operators: Sums of Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^p(\mathbb{R}^d; \mathbb{C})$.

Theorem (Demuth, Hansmann, Katriel 2009 [2])

For $p \geq d/2 + 1$, $d \geq 0$, $\epsilon > 0$ and $\Re(V) \geq 0$:

$$\sum_{z \in \sigma_d(H)} \frac{\text{dist}(z, [0, \infty))^{p+\epsilon}}{|z|^{d/2}(1 + |z|)^{2\epsilon}} \leq C_{d,p} \|V\|_p^p.$$
N.S.A. Schrödinger Operators: Sums of Eigenvalues

- $H_0 = -\Delta$ in $L^2(\mathbb{R}^d)$, with $D(H_0) = H^2(\mathbb{R}^d)$.
- $H = H_0 + V$, where $V \in L^p(\mathbb{R}^d; \mathbb{C})$.

Conjecture (Demuth, Hansmann, Katriel [3])

For $p > d/2$:

$$
\sum_{z \in \sigma_d(H)} \frac{\text{dist}(z, [0, \infty))^p}{|z|^{d/2}} \leq C_{d,p} \|V\|_p^p.
$$

- In part. $\sigma_d(H) \ni z_n \to z^* \in (0, \infty) \implies (\Im z_n)_{n \in \mathbb{N}} \subset l^p(\mathbb{N})$.
- What is the lowest possible p?

Jean-Claude Cuenin

Complex Eigenvalue Bounds
Outline

1 Motivation
 - Lieb-Thirring Inequalities (S.A.)
 - Lieb-Thirring Inequalities (N.S.A.)

2 New Results
 - Dirac and Fractional Schrödinger Operators
 - Method of Proof
Fractional Schrödinger Operator

- \[H_0 = (m^2 - \Delta)^{s/2} \text{ in } L^2(\mathbb{R}^d), \text{ with } 0 < s < d \] and
 \[D(H_0) = H^s(\mathbb{R}^d). \] Then \(\sigma(H_0) = \sigma_{\text{ess}}(H_0) = [m, \infty) \)

- \(H = H_0 + V, \) where \(V \in L^p(\mathbb{R}^d; \mathbb{C}) \) or \(V \in (L^p \cap L^q)(\mathbb{R}^d; \mathbb{C}). \)

Dirac Operator

- \(H_0 = \alpha \cdot D + m\beta \text{ in } L^2(\mathbb{R}^d, \mathbb{C}^N), \) w. \(D(H_0) = H^1(\mathbb{R}^d, \mathbb{C}^N). \) Then \(\sigma(H_0) = \sigma_{\text{ess}}(H_0) = (-\infty, m] \cup [m, \infty). \)

- \(H = H_0 + V, \) where \(V \in (L^p \cap L^q)(\mathbb{R}^d; \mathbb{C}^{N \times N}). \)

- We define \(s = 1 \) in this case.

- Here: \(m \geq 0. \)

- The range of admissible \(p, q \) will depend on \(d \) and \(s. \)
Motivation

New Results

Dirac and Fractional Schrödinger Operators

Method of Proof

Main result

Assumptions:

\[
\Lambda_{\text{crit}}(H_0) = \begin{cases}
\{m\} & \text{if } H_0 = (m^2 - \Delta)^{s/2}, \\
\{-m, m\} & \text{if } H_0 = \alpha \cdot D + m\beta.
\end{cases}
\]

Assume

\[
\begin{align*}
V &\in L^{p \in [d/s, (d+1)/2]} & \text{if } s \geq 2d/(d+1), \\
V &\in L^{d/s} \cap L^{(d+1)/2} & \text{if } s < 2d/(d+1).
\end{align*}
\]

Theorem (Bounds for single eigenvalues)

Assume \(H_0 = (m^2 - \Delta)^{s/2}\) with \(s \geq 2d/(d+1), d \geq 2\). Then all complex eigenvalues of \(H\) lie in a compact neighborhood of \(\Lambda_{\text{crit}}(H_0)\). In particular, for \(m = 0 \Rightarrow |z|^{p - \frac{d}{s}} \leq \|V\|_p^p\).

In \(d = 1\) the Theorem is true for Dirac, but not for \((m^2 - \Delta)^{1/2}\).
Main result

Assumptions:

- \(\Lambda_{\text{crit}}(H_0) = \begin{cases} \{m\} & \text{if } H_0 = (m^2 - \Delta)^{s/2}, \\ \{-m, m\} & \text{if } H_0 = \alpha \cdot D + m\beta. \end{cases} \)

- Assume \(V \in L^{p \in \left[\frac{d}{s}, \frac{(d+1)/2}{d}\right]} \text{ if } s \geq 2d/(d+1), \)
 \(V \in L^{d/s} \cap L^{(d+1)/2} \text{ if } s < 2d/(d+1). \)

Theorem (Bound on distribution of eigenvalues)

Let \((z_n)_n \subset \sigma_d(H)\) such that \(z_n \to z^\ast \in \sigma(H_0) \setminus \Lambda_{\text{crit}}(H_0).\) Then \((\text{dist}(z_n, \sigma(H_0)))_{n \in \mathbb{N}} \in l^1(\mathbb{N}).\)

- The case \(s = 2\) is due to Frank and Sabin [8].
- Dubuisson [4]–[5] proved \((\text{dist}(z_n, \sigma(H_0)))_{n \in \mathbb{N}} \in l^p(\mathbb{N})\) for larger \(p.\)
Main result

Assumptions:

\[\Lambda_{\text{crit}}(H_0) = \begin{cases}
\{m\} & \text{if } H_0 = (m^2 - \Delta)^{s/2}, \\
\{-m, m\} & \text{if } H_0 = \alpha \cdot D + m\beta.
\end{cases} \]

Assume

\[V \in L^{p \in [d/s, (d+1)/2]} \] if \(s \geq 2d/(d + 1), \]

\[V \in L^{d/s} \cap L^{(d+1)/2} \] if \(s < 2d/(d + 1). \]

Corollary

\[\#\{z \in \sigma_d : |\Im z| \geq s\} \leq \frac{C}{s}. \]

If \(d \geq 2d/(d + 1) \) and \(\| V \|_{L^{d/s}} \ll 1 \), then \(\# \) complex spectrum; in fact, \(H \) is similar to \(H_0 \) (\(|V|^{1/2} \) is Kato-smooth w.r.t \(H_0 \)).
Outline

1 Motivation
 - Lieb-Thirring Inequalities (S.A.)
 - Lieb-Thirring Inequalities (N.S.A.)

2 New Results
 - Dirac and Fractional Schrödinger Operators
 - Method of Proof
Perturbation Determinant

- Assume \(V^{1/2} R_0(z) | V |^{1/2} \in \mathcal{G}^\alpha(L^2(\mathbb{R}^d)) \).
- Regularized determinant

\[
f : \rho(H_0) \to \mathbb{C}, \quad f(z) := \det(I + V^{1/2} R_0(z) | V |^{1/2}),
\]

where for \(A \in \mathcal{G}^n(L^2(\mathbb{R}^d)) \):

\[
\det(I + A) := \prod_k [1 + \lambda_k(A)] \exp \left(\sum_{j=1}^{n-1} (-1)^{j-1} \lambda_k(A)^j \right).
\]

- \(f \) is holomorphic, and

\[
f(z) = 0 \iff z \in \sigma_d(H).
\]

- \(\ln |f(z)| \leq C_\alpha \| V^{1/2} R_0(z) | V |^{1/2} \| \mathcal{G}^\alpha. \)
Jensen’s Identity

- $h : \mathbb{D} \to \mathbb{C}$ holomorphic, $h(0) = 1$.
- $N(h; s)$ number of zeros of h in $B(0, s)$.

Jensen’s identity: $\forall r \in (0, 1)$

$$\int_0^r \frac{N(h; s)}{s} \, ds = \sum_{\{w \in B(0, r) : h(w) = 0\}} \ln \left| \frac{r}{w} \right| = \frac{1}{2\pi} \int_{0}^{2\pi} \ln \left| h(re^{i\theta}) \right| \, d\theta$$

- In particular, if $\sup_{|w| = 1} |\ln h(w)| \leq M$, then

$$\sum_{\{z \in B(0, r) : h(z) = 0\}} (1 - |z|) \leq \sum_{\{z \in B(0, r) : h(z) = 0\}} \ln \left| \frac{1}{z} \right| \leq M.$$
Conformal map

- \(\psi : \mathbb{D} \rightarrow \rho(H_0) \) conformal map s.t. \(\psi(0) \in \rho(H_0) \).
- \(h : \mathbb{D} \rightarrow \mathbb{D}, \)

\[
h(w) := \frac{\det[\alpha](I + V^{1/2}R_0(\psi(w))|V|^{1/2})}{\det[\alpha](I + V^{1/2}R_0(\psi(0))|V|^{1/2})}.
\]

- \(\psi^{-1} \) extends diffeomorphically to \(\mathbb{C} \setminus \Lambda_{\text{crit}}(H_0) \).
- Koebe distortion theorem: \(z = \psi(w) \)

\[
\implies (1 - |w|) \approx \left| \frac{dw}{dz} \right| \text{dist}(z, \sigma(H_0)).
\]

- \(\exists \mu_j \geq 0:\)

\[
|\ln h(w)| \leq C(V) \prod_{z_j \in \Lambda_{\text{crit}}(H_0) \cup \{\infty\}} |w - \psi^{-1}(z_j)|^{-\mu_j}.
\]
Motivation

New Results

Dirac and Fractional Schrödinger Operators

Method of Proof

Uniform resolvent bounds in Schatten spaces

Theorem

Let $H_0 \in \{(m^2 - \Delta)^{s/2}, \alpha \cdot D + m\beta\}$. There exists $N : \rho(H_0) \to \mathbb{R}_+$ with continuous extension to $\mathbb{C} \setminus \Lambda_{\text{crit}}(H_0)$ s.t.

a) If $s \geq 2d/(d + 1)$ and $V \in L^{p \in [d/s, (d + 1)/2]}$, then

$$\| V^{1/2} R_0(z) |V|^{1/2} \|_{\mathcal{S}^p(d-1)/(d-p)} \leq N(z) \| V \|_{L^p}$$

b) If $s < 2d/(d + 1)$ and $V \in L^{d/s} \cap L^{(d+1)/2}$, then $\forall \epsilon > 0$

$$\| V^{1/2} R_0(z) |V|^{1/2} \|_{\mathcal{S}^{\max\{d+1,d/s+\epsilon\}}} \leq N(z) \| V \|_{L^d \cap L^{(d+1)/2}}$$

- The case $s = 2$ is due to Frank and Sabin [8].
- Proof uses Stein’s interpolation theorem for analytic families of operators.
- Theorem is valid for more general operators.

Jean-Claude Cuenin

Complex Eigenvalue Bounds
A. A. Abramov, A. Aslanyan, and E. B. Davies. Bounds on complex eigenvalues and resonances. *J. Phys. A*, 34(1):57–72, 2001.

M. Demuth, M. Hansmann, and G. Katriel. On the discrete spectrum of non-selfadjoint operators. *J. Funct. Anal.*, 257(9):2742–2759, 2009.

M. Demuth, M. Hansmann, and G. Katriel. Eigenvalues of non-selfadjoint operators: a comparison of two approaches. In *Mathematical physics, spectral theory and stochastic analysis*, volume 232 of *Oper. Theory Adv. Appl.*, pages 107–163. Birkhäuser/Springer Basel AG, Basel, 2013.
C. Dubuisson.
Notes on Lieb-Thirring type inequality for a complex perturbation of fractional Schrödinger operator.
ArXiv e-prints, March 2014.

C. Dubuisson.
On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator.
Integral Equations Operator Theory, 78(2):249–269, 2014.

R. L. Frank.
Eigenvalue bounds for Schrödinger operators with complex potentials.
Bull. Lond. Math. Soc., 43(4):745–750, 2011.
R. L. Frank, E. Laptev, E. H. Lieb, and R. Seiringer.
Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials.
Lett. Math. Phys., 77(3):309–316, 2006.

R. L. Frank and J. Sabin.
Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates.
ArXiv e-prints, April 2014.

C. E. Kenig, A. Ruiz, and C. D. Sogge.
Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators.
Duke Math. J., 55(2):329–347, 1987.
A. Laptev and O. Safronov. Eigenvalue estimates for Schrödinger operators with complex potentials. *Comm. Math. Phys.*, 292(1):29–54, 2009.