Phytochemical analysis of *Ficus thonningii*: A qualitative study

Sunday Faith Oyelere¹, David Adesoye Tunwagun¹, Makinde Victor Bamikunle¹, Titilayo Eunice Ayoade¹, Temitope Aderonke Adebayo¹, Blessing Seun Oluwatola⁴, Olalekan Amos Akinyemi¹,⁵*

¹Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, ²Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, ³Department of Pure and Applied Biology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, ⁴Department of Chemistry, Federal University of São Carlos, São Carlos –São Paulo, Brazil

**ABSTRACT**

This study assessed the phytochemical contents of the aqueous, ethanol, ethyl acetate and methanol extracts of the fruit, leaves, root, and stem of *Ficus thonningii* at selected concentrations. The results obtained showed that alkaloids are present in the leaves, roots and stem barks of *F. thonningii*. The volatile oil is found in the stem bark, root bark, and fruit (aqueous only) of the plant. Saponin is found to be concentrated in all the extracts of the plant. Phenol is found to be concentrated in the fruit of the plant. Its presence is also confirmed in the leaves (at few concentrations) and present in trace amount in the stem bark. Tannin is found in the fruit, root bark and leaves of *F. thonningii*. Flavonoids are found in all the parts of *F. thonningii*. The variety of phytochemicals confirmed in the fruit, leaves, stem, and root barks of *F. thonningii* show that the plant is pharmacologically active.

**INTRODUCTION**

*Ficus thonningii* of the family Moraceae, is a multi-stemmed evergreen African medicinal plant that grows 6 to 21-meter-high commonly in upland forests of tropical and subtropical Africa (Cousins & Huffman, 2002) at altitudes of between 1,000–2,500 m and grows best in light, deep and well drained soils (Hines & Eckman, 1993). The is traditionally named Cediyà (Hausa), Odan (Yoruba), Tşediyà (Nupe) and Okpooma (Idoma) in Nigeria (Maïha et al., 2013). The leaves are alternate, fairly-dark green and sub glossy above whilst paler below (Schmidt et al., 2002). The hairless or finely hairy leaves which are about 4.5-12 cm long are usually rounded or tapering, with a prominent midrib (Hyde & Wursten, 2011). The singly born or paired hairy fruits are round with 10-20 mm diameter and usually yellow or rarely pink when ripe (Schmidt et al., 2013). According to Dangarembizi et al (2013), various reported pharmacological activities of *Ficus thonningii* include antimicrobial, antiprotozoal, antifungal, anthelmintic, antioxidant, analgesic, anti-inflammatory, cardioprotective, hypoglycemic, antineoplastic, and antidiarrheal properties.

As shown in Table 1 below, different anatomical parts of the plant have been reportedly used traditionally for medicinal purposes.

| Phytochemicals | Aqueous Extract | Ethanol Extract | Ethyl Acetate Extract | Methanol Extract |
|----------------|-----------------|-----------------|----------------------|-----------------|
| Alkaloids      | 0.5%            | 0.3%            | 0.2%                 | 0.1%            |
| Tannins        | 2.5%            | 2.2%            | 2.0%                 | 1.8%            |
| Saponins       | 3.0%            | 2.8%            | 2.5%                 | 2.3%            |
| Flavonoids     | 1.5%            | 1.3%            | 1.2%                 | 1.0%            |

Owing to the paucity of information on the phytochemical contents of *Ficus thonningii*, this research work aims at determining qualitatively the phytochemical contents of the fruit, leaves, root, and stem bark extracts of *Ficus thonningii* at selected concentrations.
MATERIALS AND METHODS

Chemicals and Reagents

Mercury chloride, potassium iodide, sodium hydroxide, hydrochloric acid (dilute and concentrated), iron (iii) chloride, ethanol, ethylacetate, methanol.

Plant Materials

Ficus thonningii (Figure 1) was collected at Aroje Aba area of Ogbomoso, along Ilorin Express road, Oyo state, Nigeria. The fruit, leaves, root, and stem barks of Ficus thonningii were air-dried and grinded; 1gram of each part of the plant was soaked in 20mls of distilled water, 1% volume per volume (v/v), 2%v/v, 3%v/v, 4%v/v and 5%v/v of ethanol, ethyl acetate and methanol separately to obtain the aqueous, ethanol, ethyl acetate and methanol extracts, respectively. The mixtures were left for 24 hours after which they were sieved to obtain the extracts.

Test for Alkaloid

Two drops of Mayer’s reagent together with two drops of 2% v/v of Hydrochloric (HCl) acid was added to 1ml of plant extracts. The cream coloration of the mixture indicates the presence of Alkaloid (Obidoa et al., 2010).

Test for Volatile Oil

0.2mls of 1% v/v of sodium hydroxide was added to 1ml of plant extracts. Formation of white precipitate indicates the presence of Volatile oil (Akinyemi & Oyelere, 2019).

Test for Saponin

1ml of distilled water was added to 1mls of plant extracts. Foaming after vigorous shaking for about 20minutes indicates the presence of saponin (Sabri et al., 2012).

Test for Phenol

Two drops of FeCl₃ were added to a mixture of 1ml of distilled and 1ml of plant extracts. The formation of a green precipitate indicates the presence of tannin and bluish green or dark green indicates the presence of phenol (Malliga et al., 2014).

Test for Flavonoid

Three drops of 20% NaOH were added to the mixture of 1ml of distilled and 1ml of plant extracts. The intense yellow colouration of the mixture indicates the presence of Flavonoid. The disappearance of the yellow colour after the addition of 1mls of dilute HCl acid validates the presence of Flavonoid (Ayoade et al., 2019).

RESULTS AND DISCUSSION

As shown in Table 2, alkaloid is absent at all selected concentrations of F. thonningii fruit extracts while volatile oil is found in moderate amounts only in the aqueous extract of Ficus thonningii fruit. Saponin, Phenol and Tannin are found in all selected extracts of Ficus thonningii fruit at moderate to high concentration. Flavonoid is found in moderate concentration at aqueous and ethyl acetate extracts of Ficus thonningii fruit.

According to Table 3, Alkaloid is found to be moderately present at 2% ethanol, 2% ethyl acetate, 1% and 2% methanol extracts of Ficus thonningii root bark. The volatile oil was found to be moderately present in aqueous, 1% and 2% ethanol and 3% ethyl acetate extracts of Ficus thonningii root bark. Saponin is found to be present in 4% ethanol, 4% ethyl acetate and 4% methanol.

| Medicinal use                  | parts used            | Reference            |
|-------------------------------|-----------------------|----------------------|
| Treatment of diarrhea         | Leaves, stem, root    | Njoronge & Kibunga, 2007 |
| Treatment of gonorrhea        | Leaves                | Njoronge & Kibunga, 2007 |
| Treatment of diabetes mellitus| Leaves                | Njoronge & Kibunga, 2007 |
| Treating bronchitis and urinary tract infections | Leaves | Cousins & Huffman, 2002 |
| Treating stomach pains        | Leaves                | Nwude & Ibrahim, 1980 |
| Treating gastritis            | Leaves                | Nwude & Ibrahim, 1980 |
| Treating gastric ulcer        | Leaves                | Nwude & Ibrahim, 1980 |
| Treating influenza            | Stem                  | Orwa et al., 2009    |
| Treating sore throat          | Stem                  | Orwa et al., 2009    |
| Treating colds                | Stem                  | Orwa et al., 2009    |
| Treatment of arthritis        | Stem                  | Orwa et al., 2009    |
| Rheumatism                    | Stem                  | Orwa et al., 2009    |
| Relieve inflammation          | Stem                  | Orwa et al., 2009    |
| Treating ulcer                | Stem                  | Teklehaymanot & Gidday, 2007 |
| Treating skin diseases        | Stem                  | Gelfand et al., 1985 |
| Treating cyst                 | Stem                  | Gelfand et al., 1985 |
| Relief for constipation and bowel disorders | Stem | Gelfand et al., 1985 |
| Healing of wound infections   | Stem                  | Usman et al., 2009   |
| Preventing miscarriages       | Root                  | Gelfand et al., 1985 |
| Stopping nose-bleeding        | Root                  | Gelfand et al., 1985 |
| Healing stomach pains         | Root                  | Njoronge & Kibunga, 2007 |
| Treating pneumonia            | Root                  | Teklehaymanot & Gidday, 2007 |
| Treating chest pains          | Root                  | Teklehaymanot & Gidday, 2007 |

Figure 1: a. Ficus thonningii plant; b. Ficus thonningii fruits
methanol extracts of *Ficus thonningii* root bark and moderately present in 2% and 3% ethanol and 1% ethyl acetate extracts of *Ficus thonningii* root bark. Tannin is moderately present at 1%, 2% and 4% ethanol extracts, 1% and 2% ethanol extracts and all tested concentrations (except 3%) of ethyl acetate extracts of *Ficus thonningii* root bark. Flavonoid is moderately present at 4% ethanol, 2% and 5% ethyl acetate and 2%, 3% and 4% methanol extracts of *Ficus thonningii* root bark. Phenol is absent at all tested concentrations of the selected extracts of *Ficus thonningii* root bark.

Table 4 shows that Tannin is absent at all selected concentrations of *Ficus thonningii* stem bark extracts. Phenol is present in trace amounts at 1% and 2% ethanol extracts of *Ficus thonningii* stem bark. Flavonoid is present in trace amounts at 3% ethanol and 4% methanol extracts of *Ficus thonningii* stem bark. The volatile oil is present at all selected concentrations (except 1%) of methanol extracts of *Ficus thonningii* stem bark. Alkaloid is present in trace evident in aqueous, 2%, 3% and 5% ethanol, 2% ethyl acetate2% and 5% methanol extracts of *Ficus thonningii* stem bark; moderately present in 1% ethanol and highly present in 4% ethanol extracts of *Ficus thonningii* stem bark.

As represented in Table 5, volatile oil was totally absent in *Ficus thonningii* leaves. Alkaloid is present in trace amounts at 5% ethanol extract of *Ficus thonningii* leaves and moderately present at 2% ethyl acetate extract of *Ficus thonningii* leaves. Flavonoid is present in trace amount at 1% ethanol extract of *Ficus thonningii* leaves and 4% ethyl acetate extract of *Ficus thonningii* leaves. Phenol and Tannin are present in moderate and high concentrations at 3% and 4% ethyl acetate extracts of *Ficus thonningii* leaves. Saponin is present in moderate to high concentration at all selected extracts (except aqueous) of *Ficus thonningii* leaves.

Medicinal properties of plants are a function of their phytoconstituents as plants rich in phytochemicals have been proven to exhibit varying pharmacological activities (Timwagun et al., 2020). Therefore, evaluation of the phytochemicals present in a plant is critical in the development of plant-based drugs. In this study, the phytochemicals present in the fruit, leaves, stem, and root barks of aqueous, ethanol, methanol, and ethyl acetate extracts of *Ficus thonningii* plant is assessed qualitatively at selected concentrations.

The results obtained show the presence of alkaloid, volatile oil, saponin, phenol, tannin, and flavonoid at different quality in the selected extracts of *Ficus thonningii* plant. This observation is in alignment with the report of Dangarembizi et al., (2013). This observation shows that all selected anatomical parts of *Ficus thonningii* plant are of medicinal importance (Dangarembizi et al., 2013). Extracts obtained at all anatomical parts (except fruit) of *Ficus thonningii* plant are found to contain alkaloids. Alkaloids are low-molecular-weight heterocyclic nitrogen-containing alkaline compounds known for several pharmacological effects (Matsuura & Fett-Neto, 2015) such as antimalaria, analgesic, antihypertensive, anticancer properties (Rao et al., 1978; Wink et al., 1998).
The volatile oil is found to be present in varying quality at selected anatomical parts of Ficus thonningii plant. However, contrary to the findings of Ogunwande et al., (2008), volatile oil is not found to be present in the leaves of Ficus thonningii plant. This discrepancy may be because the specific volatile oil assayed for in the previous studies is not present in this present study. Volatile oils are said to demonstrate antimicrobial, antioxidative, antibiotic, analgesic, anti-inflammatory, antiseptic, astringent, diuretic, laxative, sedative, vasodilative and vasoconstrictive properties (Haihashemi et al., 2002; Abdollahi et al., 2003).

All anatomical parts of Ficus thonningii plant considered in this study is shown to be rich in saponin. Saponins are glucosides with foaming characteristics. They are said to endow plant with different pharmacological properties such as antimicrobial, anti-tumour, anti-insect, hepatoprotective, hemolytic, anti-inflammatory and antihypercholesterolemic activities (Ross & Kassum, 2012).

Comparison of Tables 2, 3, 4 and 5 above shows that phenol is particularly concentrated in the fruit of Ficus thonningii plant and totally absent in the root bark extracts of the plant. Phenolics are compounds possessing one or more aromatic rings with one or more hydroxyl groups (Dai & Mumper, 2010). They are known for their antioxidant, anti-inflammatory, anti-proliferative, antioxidant and pro-apoptotic potentials (Manach et al., 2004).

Tannin was found to be concentrated in the fruit and root bark of Ficus thonningii and found in the leaves of the plant at few concentrations. Tannins are high molecular weight polyphenols ranging from 500 to 3,000 kDa which react with proteins through hydrogen bonds and/or hydrophobic interactions when in the unoxidized form (Sgarbieri, 1996). They can be hydrolyzed or condensed with the condensed form more studied due to their antimicrobial property (Chung et al., 1984; Akiyama et al., 2001; Lim et al., 2006; Min et al., 2008; Agostini-Costa et al., 2015). Tannins bind to the proteins and adhesins present in mucosal cells with this action being attributed to the phenolic hydroxyl group situated on the surface of this molecule (Jones et al., 1994; Haslam, 1996). They inhibit microbial enzymes by forming a protective cover (Haslam, 1996), which promotes plasma membrane disruption and blockage of substrates required for the microbial growth by forming a tannin-protein and/or polysaccharide complex (Jones et al., 1994; Haslam, 1996; Guimarães-Beelen et al., 2006). Other pharmacological activities of tannin include anti-inflammatory, antiseptic and antioxidant activities (Dolara et al., 2005).

Flavonoids are found in varying qualities in the selected anatomical parts of Ficus thonningii plant. Flavonoids are an important class of natural products; particularly, they belong to a class of plant secondary metabolites having a polyphenolic structure with favorable biochemical and antioxidant effects associated with various oxidative stress-related disorders (Burak & Imen, 1999; Castañeda-Ovando et al., 2009; Lee et al., 2009). Their other therapeutic activities include antioxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic and enzyme modulating activities (Panchel et al., 2016).

CONCLUSION

The variety of phytochemicals found in the fruit, leaves, stem, and root barks of Ficus thonningii show that these parts of the plant could pharmacologically active against some disorders. Effort should be taken towards the identification and characterization of the various phytoconstituents of the Ficus thonningii plant.

CONFLICT OF INTERESTS

There is neither financial nor non-financial conflicts of interest among authors as regards this study.

REFERENCES

Abdollahi, M., Karimpour, H., & Monsef-Esfehani, H. R. (2003). Antinociceptive effects of Teucrium polium L. total extract and essential oil in mouse writhing test. Pharmacological Research, 48, 31–35. https://doi.org/10.1016/S1043-6618(03)00059-8

Agostini-Costa, T. S., Teodoro, A. F. P., Alves, R. B. N., Braga, L. R., Ribeiro, I. F., Silva, J. P., Quintana, L. G., & Burle, M. L. (2015). Total phenolics, flavonoids, tannins and antioxidant activity of lima beans conserved in a Brazilian Genebank. Ciencia Rural, 45 (2), 335-341. https://doi.org/10.1590/0103-8478cr20140030

Ahur, V. M., Madubunyi, I., Adenkola, A. Y., & Udem, S. C. (2010). The effect of acetyl acetate extract of Ficus thonningii (Blume) leaves on erythrocyte osmotic fragility and haematological parameters in acetoninophentreated rats. Comparative Clinical Pathology, 10, 1107-1111. https://doi.org/10.1007/s00580-010-1107-7

Akiyama, O. A., & Oyelere, F. S. (2019). Phytochemical profile of selected morphological organs of Cocossucuera I. European Journal of Biomedical and Pharmaceutical Sciences, 6 (11), 5458.

Akiyama, H., Fuji, K., Yamasaki, C., Oono, T., & Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487-491. https://doi.org/10.1093/jac/48.4.487

Ayode, E. T., Akiyama, A. O., & Oyelere, F. S. (2019). Phytochemical profile of different morphological organs of Moringa oleifera plant. Journal of Phytopharmacology, 8(6), 296-298. https://doi.org/10.31254/phypo.2019.8605

Bamikole, M. A., Ikhatua, U. J., Arigbede, M.O., Babayemi, O. J., & Etela, I. (2004). An evaluation of the acceptability as forage, of some nutritive and antioxidative components of the dry matter degradation profiles of five species of Ficus, Tropical Animal Health Production, 36, 157-167. https://doi.org/10.1023/B: TROP.0000001204.47814.78

Burak, M., & Imen, Y. (1999). Flavonoids and their antioxidant properties. Türkiye Klinikleri Tip Bilimleri Dergisi, 19, 296–304.

Castañeda-Ovando, A., Pacheco-Hernández, M. L., Páez-Hernández, M. E., Rodríguez, J. A., Galian-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001

Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y.-W., & Lin, Y. (1998). Tannins and human health: a review. Critical Reviews in Food Science and Nutrition, 38(6), 421–446. https://doi.org/10.1080/10408699891274273

Coker, M. E., Emikpe, B. O., Adeniyi, B. A., & Budale, B. A. (2009). The inflammatory potential, haematological and histological changes induced in rats due to the administration of methanolic extracts of Ficus thonningii leaves. African Journal of Pharmacy and Pharmacology, 3, 273-276

Cousins, D., & Huffman, M. A. (2002). Medicinal properties in the diets of gorillas: an ethno-pharmacological evaluation. African Study Monographs, 23, 65-89.

Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352. https://doi.org/10.3390/molecules15107313
