Macroscopic Equations of Motion for Two Phase Flow in Porous Media

R. Hilfer1,2

1ICA-1, Universität Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart
2Institut für Physik, Universität Mainz, 55099 Mainz, Germany

The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state variables. A capillary pressure function can be identified in equilibrium which shows the qualitative saturation dependence known from experiment. In addition the new equations allow to describe the spatiotemporal changes of residual saturations during immiscible displacement.

PACS: 47.55Mh, 81.05Rm, 61.43Gt, 83.10Lk, (47.55Kf)

\textit{Physical Review E (1998), in print}
I. INTRODUCTION

An aquifer or a petroleum reservoir may be seen as a mixture of porous rocks and soil with various gases and liquids, usually residing at depths that prohibit precise measurements on the constituents [1,2]. Despite many years of research and despite the fact that the microscopic laws of fluid dynamics are well known, the prediction of macroscopic multiphase flow in porous media has not met with success (see [3–5] for recent overviews).

Microscopic and macroscopic descriptions of multiphase fluid flow in porous media differ considerably from each other and both have their own characteristic problems [1,2,4]. A microscopic description fails because it is generally impossible and not interesting to know the detailed microstructure and flow patterns on the pore scale. In contrast, the generally accepted macroscopic models are incomplete. Owing to its widespread importance in applied problems, the transition from the microscale to the macroscale for two-phase flow in porous media has attracted considerable interest from physicists in recent years [6–22]. Relatively little or no attention has been focused, however, on the continuum limit of the proposed microscopic models. Effective macroscopic equations of motion used by engineers are based on generalizations of Darcy’s law, although every practitioner knows that they are incomplete [23,1]. Microscopic models by physicists often attempt to predict the relative permeabilities and the capillary pressure functions for simple microstructures although it is clear that they are highly nonunique.

Detailed and rigorous derivations of macroscopic equations from microscopic ones is usually the last step in understanding a physical phenomenon. Experimental observations and tests of phenomenological macroscopic models usually precede the microscopic understanding. It is therefore of interest to improve the current macroscopic description which is known to fail even for simple laboratory systems.

Given the need for more predictive macroscopic theories, this paper proposes a new set of macroscopic equations. Loosely speaking, the traditional theory includes only mass and momentum balance but fails to incorporate the energy balance. Obviously, the interfacial energy depends on the interfacial area and hence the set of macroscopic observables describing the state of the mixture must be enlarged to include surface areas. Relative permeabilities and capillary pressures must then be identified within the new framework. I shall begin the discussion by presenting briefly the traditional formulation and discussing its problems. Afterwards, the macroscopic balance laws for mass, momentum and energy will be combined with constraints and constitutive relations to give new macroscopic equations of motion. My last section in this paper will discuss the consequences and the identification of relative permeabilities and capillary pressures.

II. PROBLEMS WITH EXISTING MACROSCOPIC EQUATIONS

Consider simultaneous flow of two incompressible and immiscible fluid phases denoted generically as water (subscript \(W \)) and oil (subscript \(O \)) inside a porous medium. The accepted and widely used macroscopic equations of motion [1,2,18,25]
are based on mass conservation

\[\phi \frac{\partial S_W}{\partial t} = -\nabla \cdot \mathbf{v}_W \]

\[\phi \frac{\partial S_O}{\partial t} = -\nabla \cdot \mathbf{v}_O \]

(1)

\[S_W + S_O = 1 \]

(2)

and the well known generalization of Darcy’s law \[25\]

\[\mathbf{v}_W = -\left[\frac{K k_{rw}}{\mu_w} (\nabla P_W - \rho_w g \nabla Z) \right] \]

\[\mathbf{v}_O = -\left[\frac{K k_{ro}}{\mu_o} (\nabla P_O - \rho_o g \nabla Z) \right] \]

(3)

all of which are assumed to be valid on length scales large compared to a typical pore diameter. The variables in these equations are the macroscopic pressure fields of water and oil, denoted as \(P_W \) and \(P_O \), the water and oil saturations \(S_W, S_O \) and the macroscopic (Darcy) velocity fields \(\mathbf{v}_W, \mathbf{v}_O \). The saturation is defined as the ratio of water (oil) volume to pore space volume. Pressures and saturations are averages over a macroscopic region much larger than the pore size, but much smaller than the system size. Their arguments are the macroscopic space and time variables \((x, t)\). The porosity \(\phi \) is the ratio of pore volume to total volume of the medium. The fluid viscosities and densities are denoted by \(\mu \) and \(\rho \). The acceleration of gravity is \(g \) and the function \(Z(x) \) is the depth function. In the equations above \(K \) stands for the absolute (single phase flow) permeability tensor, \(k_{rw} \) is the relative permeability for water, \(k_{ro} \) the oil relative permeability. The equations above are closed by defining the capillary pressure as

\[P_c(x, t) = P_O(x, t) - P_W(x, t) \]

(4)

and by postulating for it the constitutive relationship

\[P_c(x, t) = P_c(S_n(x, t)) \]

(5)

where

\[S_n(x, t) = \frac{S_W(x, t) - S_{Wi}}{1 - S_{Wi} - S_{Or}} \]

(6)

is a normalized saturation. The water saturation obeys \(S_{Wi} < S_W < 1 - S_{Or} \) where the two numbers \(0 \leq S_{Wi}, S_{Or} \leq 1 \) are two parameters representing the irreducible water saturation, \(S_{Wi} \), and the residual oil saturation, \(S_{Or} \). The residual oil saturation gives the amount of oil remaining in a porous medium after a water
flood. The normalized saturation S_n varies between 0 and 1 as S_{wi} varies between S_{wi} and $1 - S_{or}$.

Next it is argued [26,1] that each fluid flows in flow channels given by the solid matrix and the presence of the other fluid. One postulates that to each saturation there corresponds a unique configuration of flow channels. This picture is then formalized into the constitutive assumption that the relative permeabilities

$$k^w_r(x, t) = k^w_r(S_n(x, t))$$

$$k^o_r(x, t) = k^o_r(S_n(x, t))$$

(7) (8)

are functions of saturation alone.

Although these equations are widely accepted and almost universally applied in numerical reservoir simulation [27] or aquifer modeling [28] they must be considered physically incomplete. Even if the picture of flow channels is accepted it is clear that the resulting permeability depends not only on saturation (i.e. volume fraction) but also on the surface area with other fluid or solid phases. This experimental fact is well known from observations of single phase flow in porous media [26,1].

The second basic problem with the macroscopic equations of motion (1)-(8) arises from the experimental observation that the parameters S_{or} and S_{wi} are neither constant nor are they known in advance for a given experiment. Instead they vary with space and time and depend on the flow conditions in the experiment [29–37]. More precisely, the residual oil saturation depends on the microscopic capillary number $Ca = \mu v / \sigma_{ow}$ where v is a typical flow velocity and σ_{ow} is the surface tension between the two fluids. The dependence $S_{or}(Ca)$ is called a capillary desaturation curve. The measured values of S_{or} are known to depend also on the duration of the flood. Capillary desaturation experiments contradict clearly to the assumption that the functions $k^w_r(S_{wi}), k^o_r(S_{wi})$ and $P_c(S_{wi})$ depend only on saturation. Instead they depend also on velocity [38,39] and pressure. Hence they depend on the solution and cannot be considered to be constitutive relations characterizing the system. Therefore the system of equations of motion must be considered to be incomplete.

III. MACROSCOPIC CONSERVATION LAWS

The basic idea of this paper is to include the energy balance involving the macroscopic interfacial energy into the basic equations of motion. As the interfacial tensions do not appear explicitly in equations (1) through (8) it is clear that this requires an enlarged description of the macroscopic state. While previously the macroscopic state of the fluids was described by saturations, pressures and velocities it must now include macroscopic interfacial areas per unit volume. The necessity to include interfacial areas in a macroscopic description is also stressed by volume averaging approaches [40–42]. The main difference between volume averaging techniques and the approach of the present paper is that the present approach is based purely on macroscopic mixture theory, and makes no reference to the underlying microscopic equations.
To discuss mass, energy and momentum balance laws in a unified manner consider first a general conserved quantity Ψ defined per unit mass. Let τ denote the flux of this conserved quantity across a surface of a material control region $\mathbb{G}(t)$ in \mathbb{R}^3. The general multiphase conservation law in the theory of mixtures reads in differential form $\cite{33,34}$

$$\frac{D\nu}{Dt}(\phi_\alpha \rho_\alpha \Psi_\alpha) + \phi_\alpha \rho_\alpha \Psi_\alpha \nabla \cdot \mathbf{v}_\alpha - \nabla \cdot \tau_\alpha - \phi_\alpha \rho_\alpha g_\alpha = e_\alpha$$

(9)

Here the subscript α refers to the different phases of the mixture, and

$$\frac{D\nu}{Dt} = \frac{\partial}{\partial t} + \mathbf{v}_\alpha \cdot \nabla$$

(10)

denotes the material derivative and \mathbf{v}_α is the velocity. ρ_α is the mass density, and ϕ_α is the volume fraction of phase α. Of course

$$\sum_\alpha \phi_\alpha = 1$$

(11)

and introducing the volume fraction of the void space, i.e. the porosity,

$$\phi = \sum_{\alpha \neq \text{solid}} \phi_\alpha$$

(12)

allows to define saturations S_α of the fluid phases through

$$\phi_\alpha = \phi S_\alpha$$

(13)

In $\cite{33}$ g_α denotes the external supply of Ψ. e_α represents the interphase transfer of the conserved quantity Ψ into phase α from all other phases. In other words

$$e_\alpha = \sum_\beta e_{\alpha\beta}$$

(14)

where $e_{\alpha\beta}$ is the transfer of Ψ from phase β into phase α. Of course global conservation of Ψ would require that summation of $\cite{33}$ gives zero, $\sum_\alpha e_\alpha = 0$, but this will not be required here. This general formalism can now be applied to mass, momentum and energy conservation.

For mass conservation $\Psi_\alpha = 1, \tau_\alpha = 0, g_\alpha = 0$ and $e_\alpha = M_\alpha$ is the transfer of mass from all other phases into phase α. Inserting into eq. $\cite{33}$ yields

$$\frac{\partial}{\partial t}(\phi_\alpha \rho_\alpha) + \nabla \cdot (\phi_\alpha \rho_\alpha \mathbf{v}_\alpha) = M_\alpha$$

(15)
as usual.

For momentum conservation $\Psi_\alpha = v_\alpha$ is the velocity, $\tau_\alpha = \Sigma_\alpha$ is the stress tensor, $g_\alpha = b_\alpha$ is the body force, and $e_\alpha = m_\alpha$ is the momentum transfer from all other phases into phase α. Inserting into (9) and using mass balance now yields

$$\phi_\alpha \rho_\alpha \frac{D^\alpha \vec{v}_\alpha}{Dt} - \nabla \cdot \Sigma_\alpha - \phi_\alpha \rho_\alpha \vec{b}_\alpha = \vec{m}_\alpha - \vec{v}_\alpha M_\alpha$$ \hspace{1cm} (16)

where the divergence $\nabla \cdot \Sigma_\alpha$ of the stress tensor is a vector whose i-th coordinate is $\sum_j \partial (\Sigma_{\alpha})_{ij} / \partial x_j$.

For energy conservation only the kinetic energy and the interfacial energies are considered, while thermal effects will be ignored. Hence in this case

$$\Psi_\alpha = \frac{1}{2} v_\alpha \cdot v_\alpha + \frac{1}{2} \sum_\beta \frac{\sigma_{\alpha \beta} A_{\alpha \beta}}{\phi_\alpha \rho_\alpha + \phi_\beta \rho_\beta}$$ \hspace{1cm} (17)

where $\sigma_{\alpha \beta}$ is the surface tension between phase α and β and $A_{\alpha \beta}$ is the specific internal surface of the $\alpha \beta$-interface. The denominator in the interfacial energy terms (giving the $\alpha \beta$-density) ensures the same normalization with respect to mass and volume as for the kinetic energy term. The factor $1/2$ in front of it attributes the interfacial energy between phase α and β equally to the two phases. This assumption will be relaxed in a future publication [45]. Proceeding with this assumption the energy flux becomes

$$\tau_\alpha = \Sigma_\alpha \cdot v_\alpha - q_\alpha$$ \hspace{1cm} (18)

where $\Sigma_\alpha \cdot v_\alpha$ is the work done by stress and q_α is the flux of surface energy. The external energy supply is similarly split,

$$g_\alpha = b_\alpha \cdot v_\alpha + h_\alpha,$$ \hspace{1cm} (19)

into the work $b_\alpha \cdot v_\alpha$ done by body forces and the external supply h_α of interfacial energy. Finally the energy exchange from all phases into phase α is $e_\alpha = E_\alpha$.

Inserting equations (17) through (19) into the general balance law (9) gives the energy balance for immiscible displacement as

$$\frac{1}{2} \left(\nabla \cdot v_\alpha + \frac{D^\alpha}{Dt} \right) \left(\phi_\alpha \rho_\alpha \sum_\beta \frac{\sigma_{\alpha \beta} A_{\alpha \beta}}{\phi_\alpha \rho_\alpha + \phi_\beta \rho_\beta} \right) + \nabla \cdot q_\alpha - \Sigma_\alpha : \nabla v_\alpha - \phi_\alpha \rho_\alpha h_\alpha =$$

$$= E_\alpha - m_\alpha \cdot v_\alpha + M_\alpha \frac{v_\alpha^2}{2}$$ \hspace{1cm} (20)
TABLE I. Overview over the subphases and their indices for immiscible displacement of two fluids inside a rigid porous medium.

Phase index \(\alpha \)	Phase description
1	connected (percolating) water phase
2	disconnected (trapped) water phase
3	connected (percolating) oil phase
4	disconnected (trapped) oil phase
\(\mathcal{R} \)	rigid porous rock phase

where

\[
\Sigma_\alpha : \nabla \mathbf{v}_\alpha = \sum_{i=1}^{d} \sum_{j=1}^{d} (\Sigma_\alpha)_{ij} \frac{\partial (\mathbf{v}_\alpha)_j}{\partial x_i}
\]

Equations (17) and (20) embody the idea to include interfacial areas and energies into the macroscopic energy balance. This is the first step beyond the traditional approach described e.g. in [1,26,43].

The second step beyond the traditional theory consists in splitting each fluid phase into a connected (percolating) and disconnected (nonpercolating) subphase. The idea here is that such a division is necessary to handle the dynamics of residual phase saturations. During an immiscible displacement process a finite fraction of each fluid phase becomes trapped in the pores. Once trapped the droplets are immobile and fixed through large local capillary forces. Only at very high flow rates can such trapped droplets be mobilized. Therefore the second main idea of the present theory is to treat these droplets as an individual phase interacting with the connected mother phase mainly via mass exchange.

Consider now the simplest case of two immiscible fluids (called oil and water as before) flowing inside a rigid porous medium. Dividing each of the two fluid phases into two subphases one has a total of five phases. Each fluid superphase is divided into a percolating (connected) and a trapped (disconnected) subphase. Here percolating means that each point in the subset occupied by the percolating subphase can be connected to the exterior boundaries of the sample by a path within the subphase. The disconnected subphase is the complement within the chosen superphase. The connected (percolating) subphase can also be defined as the region inside of which an external applied pressure gradient can propagate. Therefore the phase index \(\alpha \) above can assume five values summarized in Table I.

IV. CONSTITUTIVE RELATIONS AND CONSTRAINTS

This section complements the basic balance laws with geometrical and physical constraints and with constitutive relations.
The fluids are assumed to be incompressible

\[\rho_1(x, t) = \rho_2(x, t) = \rho_w = \text{const} \quad (22) \]
\[\rho_3(x, t) = \rho_4(x, t) = \rho_o = \text{const} \quad (23) \]

and their stress tensors are approximated as

\[\Sigma_\alpha = -\phi_\alpha P_\alpha \mathbf{1} \quad (24) \]

for all \(\alpha \in \{1, 2, 3, 4\} \) where \(\mathbf{1} \) is the unit tensor. In (24) it is assumed that all shear stresses in the fluid are negligible, and that \(P_\alpha \) are the true pressures in the fluids. It will be assumed that the only body force is gravity, \(\mathbf{b}_\alpha = g \nabla Z \) where \(g \) is the acceleration of gravity and \(Z(x) \) is the depth function. In addition inertial effects will be neglected, \(D^* \mathbf{v}_\alpha /Dt = 0 \), for all phases. All of these assumptions are also made in the derivation of the traditional equations described in the previous section \[1, 26, 43\].

It will be assumed that there are no external sources or sinks of surface energy, \(g_\alpha = 0 \). Next it is assumed that \(q_\alpha = 0 \), i.e. there is no diffusive flux of surface energy during the time scale of observation. A crucial assumption is that the exchange of interfacial energy between the phases is dominated by separation and coalescence of disconnected subphase droplets from/with their connected mother phase, i.e. through mass transfer, and that all other mechanisms are negligible. This amounts to setting \(E = 0 \).

The porous matrix as well as the disconnected (trapped) subphases are immobile, and hence

\[\mathbf{v}_\mathbf{R} = \mathbf{v}_2 = \mathbf{v}_4 = 0. \quad (25) \]

The interfacial area between a disconnected subphase and its superphase vanishes, and the same holds for the contact between the two disconnected subphases. Hence

\[A_{12} = A_{34} = A_{24} = 0 \quad (26) \]

Of course \(A_{\alpha \alpha} = 0 \) and symmetry \(A_{\alpha \beta} = A_{\beta \alpha} \) holds.

The disconnected fluid phases have macroscopic pressures \(P_2(x, t) \) and \(P_4(x, t) \) obtained by averaging the pressure in the disconnected drops and droplets. The resulting functions \(P_2(x, t) \), \(P_4(x, t) \) however are generally not continuous and hence not differentiable.

The wetting properties are assumed to be constant, and they are specified by the requirements that the individual interface areas with the rock are constant, i.e.

\[A_{1R}(x, t) = A_{1R} = \text{const} \quad (27) \]
\[A_{2R}(x, t) = A_{2R} = \text{const} \quad (28) \]
\[A_{3R}(x, t) = A_{3R} = \text{const} \quad (29) \]
\[A_{4R}(x, t) = A_{4R} = \text{const} \quad (30) \]
Of course $A = A_{1R} + A_{2R} + A_{3R} + A_{4R}$ is the total specific internal surface of the porous medium. The ratio

$$W_w = \frac{A_{1R} + A_{2R}}{A}$$

varies from 1 to 0 as the medium varies from water wet to oil wet.

Finally it remains to specify the momentum exchanges $m_{\alpha} = \sum_{\beta} m_{\alpha\beta}$ and the mass exchanges $M_{\alpha} = \sum_{\beta} M_{\alpha\beta}$. In both cases $m_{\alpha\alpha} = 0, M_{\alpha\alpha} = 0$ will be used. The momentum exchange is conventionally modelled through Stokes drag in the form

$$m_{\alpha\beta} = R_{\alpha\beta}(v_{\beta} - v_{\alpha}) = \frac{\phi_{\alpha}}{\Lambda_{\alpha\beta}} (v_{\beta} - v_{\alpha})$$

where the mobility $\Lambda_{\alpha\beta} = k_{\alpha\beta}/\mu_{\alpha\beta}$ is expressed as usual in terms of the permeability $k_{\alpha\beta}$ and the viscosity $\mu_{\alpha\beta}$. As a new assumption the mobilities $\Lambda_{\alpha\beta}$ are modeled through

$$\Lambda_{\alpha\beta} = \frac{k_{\alpha\beta}}{\mu_{\alpha\beta}} = \frac{\phi^3_{\alpha}}{\mu_{\alpha} A^2_{\alpha\beta}}$$

analogous to the Carman-Kozeny relation for absolute permeabilities. This assumption reflects the traditional view that each fluid flows in its own channel. If there is no common interface, then it is not possible to exchange momentum, hence

$$m_{12} = m_{34} = m_{24} = 0$$

completes the specification of the momentum exchange.

The rigid porous matrix has a volume fraction $1 - \phi = \text{const}$ which is assumed to be spatially and temporally constant. The rigid matrix is dynamically inert (see eq.(25)), and hence only the balance laws for the fluid phases will appear below. \(^1\)

Chemical reactions between oil, water and rock are excluded, and hence

$$M_{13} = M_{14} = M_{23} = M_{24} = M_{14R} = M_{24R} = M_{34R} = M_{44R} = 0.$$

(35)

Mass transfer occurs within each fluid phase between its connected and the disconnected subphases. These nonvanishing mass transfers are

$$M_{W} = M_{12} = -M_{21}$$

(36)

\(^1\)Because the rock matrix is assumed to be rigid and impermeable one has $R_{R1} = R_{R2} = R_{R3} = R_{R4} = \infty$ which implies dissipation. Because of this and the balance laws for the matrix phase would either be trivial or ill defined.
\[M_O = M_{34} = -M_{43} \]

(37)

In general the mass transfer may be a function of the velocities, saturations and interface areas of the other phases. A precise form for the dependence \(M_w = M_w(v_1, A_{13}, S_1, S_3) \) is not needed here. Any concrete assumption for such a dependence would have to be checked by experiment.

V. RESULTS

Combining the balance laws with the constitutive equations gives the macroscopic equations of motion of the two pore fluids. 2 Mass conservation yields four equations

\[
\rho_w \phi \frac{\partial}{\partial t} S_1 + \rho_w \phi \nabla \cdot (S_1 v_1) = M_w
\]

(38)

\[
\rho_w \phi \frac{\partial}{\partial t} S_2 = -M_w
\]

(39)

\[
\rho_o \phi \frac{\partial}{\partial t} S_3 + \rho_o \phi \nabla \cdot (S_3 v_3) = M_o
\]

(40)

\[
\rho_o \phi \frac{\partial}{\partial t} S_4 = -M_o
\]

(41)

while momentum conservation gives only two equations,

\[
\nabla (\phi_1 P_1) - \phi_1 \rho_w g \nabla Z = R_{13} v_3 - (R_{13} + R_{14} + R_{1R} + M_w) v_1
\]

(42)

\[
\nabla (\phi_3 P_3) - \phi_3 \rho_o g \nabla Z = R_{31} v_1 - (R_{31} + R_{32} + R_{3R} + M_o) v_3
\]

(43)

because \(P_2 \) and \(P_4 \) are not differentiable. Energy conservation gives again four equations

\[
\frac{1}{2} \left(\nabla \cdot v_1 + \frac{D^1_t}{D} \right) \left(\frac{\phi_1 \rho_w \sigma_{wO} A_{13}}{\rho_w \phi_1 + \rho_o \phi_3} + \frac{\phi_1 \rho_w \sigma_{wO} A_{14}}{\rho_w \phi_1 + \rho_o \phi_4} + \frac{\phi_1 \rho_w \sigma_{wR} A_{1R}}{\rho_w \phi_1 + \rho_R (1 - \phi)} \right)
\]

\[
= -\phi_1 P_1 \nabla \cdot v_1 - R_{13} v_1 \cdot v_3 + (R_{13} + R_{14} + R_{1R}) v_1^2 + M_w \frac{v_1^2}{2}
\]

(44)

\[
\frac{\partial}{\partial t} \left(\frac{\phi_2 \rho_w \sigma_{wO} A_{23}}{\rho_w \phi_2 + \rho_o \phi_3} + \frac{\phi_2 \rho_w \sigma_{wR} A_{2R}}{\rho_w \phi_2 + \rho_R (1 - \phi)} \right)
\]

\[
= 0
\]

(45)

\[
\frac{1}{2} \left(\nabla \cdot v_3 + \frac{D^3_t}{D} \right) \left(\frac{\phi_3 \rho_o \sigma_{wO} A_{13}}{\rho_w \phi_1 + \rho_o \phi_3} + \frac{\phi_3 \rho_o \sigma_{wO} A_{23}}{\rho_w \phi_2 + \rho_o \phi_3} + \frac{\phi_3 \rho_o \sigma_{wR} A_{3R}}{\rho_o \phi_3 + \rho_R (1 - \phi)} \right)
\]

2Balance equations for the rock matrix do not arise (see footnote 1).
\[-\phi_3 P_3 \nabla \cdot v_3 - R_{31} v_1 \cdot v_3 + (R_{31} + R_{32} + R_{33}) v_3^2 + M_\sigma \frac{\nabla^2 v_3}{2} \quad (46) \]

\[\frac{\partial}{\partial t} \left(\frac{\phi_4 \rho_\sigma \sigma_\omega A_{14}}{\rho_\omega \phi_1 + \rho_\sigma \phi_4} + \frac{\phi_4 \rho_\sigma \sigma_\Omega A_{32}}{\rho_\sigma \phi_4 + \rho_\Omega (1 - \phi)} \right) = 0 \quad (47) \]

The unknown fields in these equations are the four saturations \(S_\alpha \) (\(\alpha = 1, 2, 3, 4 \)) of the fluids related to \(\phi_\alpha \) by equation (13), the two pressures \(P_1, P_3 \), the six components of the two velocities \(v_1, v_3 \) of the connected fluids, and the three surface areas \(A_{13}, A_{14}, A_{23} \). Note that all \(A_{\alpha, \beta}, \alpha = 1, 2, 3, 4 \), are constant by virtue of eqs. (27) through (30). This is a total of 15 unknowns for which the condition \(S_1 + S_2 + S_3 + S_4 = 1 \) (see (11)) together with equations (38)–(47) form a set of 15 equations.

A detailed analysis of these equations will be presented elsewhere [45]. Here only the simplest comparison with the traditional equations (1)–(8) will be discussed. In particular the question arises whether the new equations allow to determine relative permeabilities and capillary pressure functions.

The capillary pressure, defined in eq. (4), is an equilibrium property. In the traditional equations it is related to the saturation profile in complete gravitational equilibrium [26], i.e. when \(v_\alpha = 0 \) and when all terms involving time derivatives are set to zero. Proceeding in this way one finds that the resulting equations can be solved to give

\[P_c(x, \infty) = P_3 - P_1 = \frac{c_3}{\phi S_3(x, \infty)} - \frac{c_1}{\phi S_1(x, \infty)} + (\rho_\sigma - \rho_\omega) x \cdot g \quad (48) \]

where \(g \) is the acceleration vector of gravity and \(c_3, c_1 \) are integration constants. Using \(S_w = S_1 + S_2 \) and \(1 - S_w = S_3 + S_4 \) shows that in the directions perpendicular to gravity

\[P_c(x, \infty) = P_3 - P_1 = \frac{c_3}{\phi(1 - S_4 - S_w)} - \frac{c_1}{\phi(S_w - S_2)} \quad (49) \]

If it is assumed that \(S_2 \) and \(S_4 \) are spatially constant throughout the sample then it is tempting to identify them with \(S_{w1} \) and \(S_{\sigma r} \) because this would imply the assumption (1) of the traditional formulation. Moreover the capillary pressure would indeed have the familiar S-shaped form as a function of saturation. It should be noticed however that eq. (49) holds only without flow while assumption (1) is assumed to hold always. Therefore in the new formulation the capillary pressure depends strongly on the flow regime. This prediction agrees with what is known from theory and experiment [38, 39]. Notice also that in (49) the quantities \(S_2 \) and \(S_4 \) are state variables and hence the capillary pressure includes the spatiotemporal variability of the residual saturations.

The generalization of Darcy’s law follows from the equations of momentum balance (42) and (43) by solving these equations for \(v_1 \) and \(v_3 \). This yields a generalized form of Darcy’s law for two phase flow in the form

\[v_1 = k_{vvw}^{\nu} \frac{k}{\mu_w} (\nabla (\phi_1 P_1) - \phi_1 \rho_w g) + k_{wO}^{\nu} \frac{k}{\mu_\sigma} (\nabla (\phi_3 P_3) - \phi_3 \rho_\sigma g) \quad (50) \]
\[
\mathbf{v}_3 = k_{r_{OW}}^c \frac{k}{\mu_{W}} (\nabla (\phi_1 P_1) - \phi_1 \rho_\alpha \mathbf{g}) + k_{r_{CO}}^c \frac{k}{\mu_{O}} (\nabla (\phi_3 P_3) - \phi_3 \rho_\delta \mathbf{g})
\]

(51)

where the relative permeabilities \(k_{r_{\alpha\beta}} \) are defined by these equations. The \(k_{r_{\alpha\beta}} \) are related to the resistivities \(R_{\alpha\beta} \) which in turn are given by equations (32) and (33).

This result differs from the traditional generalization of Darcy’s law given in eqs. (3) in three respects. Firstly (50) and (51) includes off-diagonal coupling terms \(k_{r_{WO}}^c \) and \(k_{r_{OW}}^c \) which are missing in (3). Secondly (50) and (51) include a new driving force \(\phi P_\alpha \nabla S_\alpha \) resulting from the term \(\nabla (\phi_\alpha P_\alpha) \). The new driving force is proportional to saturation gradients. Thirdly, and perhaps most importantly, the relative permeabilities defined through (50) and (51) depend not only on saturation as assumed in (8) but

\[
k_{r_{\alpha\beta}} = k_{r_{\alpha\beta}} (R13, R31, R14, R23, R12, R32, M_W, M_O)
\]

(52)

\[
k_{r_{\alpha\beta}} = k_{r_{\alpha\beta}} (S1, S2, S3, S4, A13, A14, A32, \partial S_2/\partial t, \partial S_4/\partial t, A12, A3R)
\]

(53)

by virtue of (42), (43) and (32), (33), (39) and (41). This expresses a dependence on saturation, changes of saturation, disconnected (residual) saturations, interfacial area and wetting properties \((A1R, A3R) \). Thus the present theory gives a much more detailed picture of relative permeabilities than the traditional assumption (8).

In conclusion the present paper has discussed the problems associated with the macroscopic equations of motion for two phase immiscible displacement in porous media. After discussion of the traditional formulation a new theory has been developed based on mixture theory. The new equations differ from the traditional ones in the following main aspects:

1. The set of macroscopic state variables is enlarged to include specific surface area of the fluid phases.
2. The set of macroscopic balance laws is enlarged to include interfacial energy balance.
3. The theory allows a macroscopic quantification of the wetting properties through the surface areas.
4. The dynamics of the disconnected fluid phases is included. This allows to describe the spatiotemporal behaviour of residual saturations.
5. The theory predicts a dynamic capillary pressure which, at least in complete gravitational equilibrium, shows the correct qualitative behaviour as a function of saturation.
6. The relative permeabilities are found to depend on macroscopic state variables other than saturation. In particular they depend on wetting properties and the internal surfaces areas.

All of these results are consistent with experiment. More analysis of the equations
is necessary to compare their solutions with experiment.

ACKNOWLEDGEMENT
I am grateful to Dr. H. Besserer for discussions and for critically reading the manuscript, and to the Deutsche Forschungsgemeinschaft for financial support.

[1] F. Dullien, Porous Media - Fluid Transport and Pore Structure. San Diego: Academic Press, 1992.
[2] P. Adler, Porous Media. Boston: Butterworth-Heinemann, 1992.
[3] M. Sahimi, “Flow phenomena in rocks: From continuum models to fractals, percolation, cellular automata and simulated annealing,” Rev. Mod. Phys., vol. 65, p. 1393, 1993.
[4] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock. Weinheim: VCH Verlagsgesellschaft mbH, 1995.
[5] R. Hilfer, “Transport and relaxation phenomena in porous media,” Advances in Chemical Physics, vol. XCII, p. 299, 1996.
[6] M. Blunt and P. King, “Macroscopic parameters from simulations of pore scale flow,” Phys. Rev. A, vol. 42, p. 4780, 1990.
[7] N. Martys, M. Cieplak, and M. Robbins, “Critical phenomena in fluid invasion of porous media,” Phys. Rev. Lett., vol. 66, p. 1058, 1991.
[8] R. Hilfer, “Geometric and dielectric characterization of porous media,” Phys. Rev. B, vol. 44, p. 60, 1991.
[9] U. Oxaal, “Fractal viscous fingering in inhomogeneous porous models,” Phys. Rev. A, vol. 44, p. 5038, 1991.
[10] U. Oxaal, F. Boger, J. Feder, T. Jessang, P. Meakin, and A. Aharony, “Viscous fingering in square lattice models with two types of bonds,” Phys. Rev. A, vol. 44, p. 6564, 1991.
[11] R. Hilfer, “Local porosity theory for flow in porous media,” Phys. Rev. B, vol. 45, p. 7115, 1992.
[12] P. Meakin, J. Feder, V. Frette, and T. Jessang, “Invasion percolation in a destabilizing gradient,” Phys. Rev. A, vol. 46, p. 3357, 1992.
[13] V. Frette, J. Feder, T. Jessang, and P. Meakin, “Buoyancy driven fluid migration in porous media,” Phys. Rev. Lett., vol. 68, p. 3164, 1992.
[14] M. Blunt and H. Scher, “Pore-level modeling of wetting,” Phys. Rev. E, vol. 52, p. 6387, 1995.
[15] M. Blunt, M. King, and H. Scher, “Simulation and theory of two-phase flow in porous media,” Phys. Rev. A, vol. 46, p. 7680, 1992.
[16] M. Kataja, K. Hiltsunen, and J. Timonen, “Flow of water and air in a compressible porous medium, a model of wet pressing of paper,” J. Phys. D, vol. 25, p. 1053, 1992.
[17] M. Kataja, A. Rybin, and J. Timonen, “Permeability of highly compressible porous medium,” J. Appl. Phys., vol. 72, p. 1271, 1992.
[18] R. Hilfer and P. Oren, “Dimensional analysis of pore scale and field scale immiscible displacement,” Transport in Porous Media, vol. 22, p. 53, 1996.
[19] S. Schwarzer, “Sedimentation and flow through porous media: Simulating dynamically coupled discrete and continuum phases,” Phys. Rev. E, vol. 52, p. 6461, 1995.
[20] V. Horvat and H. Stanley, “Temporal scaling of interfaces propagating in porous media,” Phys. Rev. E, vol. 52, p. 5166, 1995.
[21] L. Furuberg, K. Maloy, and J. Feder, “Intermittent behaviour in slow drainage,” Phys. Rev. E, vol. 53, p. 966, 1996.
[22] J. Andrade, M. Almeida, J. M. Filho, S. Havlin, B. Suki, and H. Stanley, “Fluid flow through porous media: The role of stagnant zones,” Phys. Rev. Lett., vol. 79, p. 3901, 1997.
[23] C. Marle, Multiphase Flow in Porous Media. Editions Technip, Paris: Institut Francais du Petrole, 1981.
[24] N. Morrow (ed.), Interfacial Phenomena in Petroleum Recovery, vol. 36 of Surfactant Science Series. New York: Marcel Dekker, Inc., 1991.
[25] A. Scheidegger, The Physics of Flow Through Porous Media. Toronto: University of Toronto Press, 1974.
[26] J. Bear, Dynamics of Fluids in Porous Media. New York: Elsevier Publ. Co., 1972.
[27] J. Trangenstein, “Numerical analysis of reservoir fluid flow,” in Multiphase Flow in Porous Media (M. Allen, G. Behie, and J. Trangenstein, eds.), (Berlin), p. 87, Springer Verlag, 1988.
[28] R. Helmig, Multiphase Flow and Transport Processes in the Subsurface. Berlin: Springer, 1997.
[29] H. Dombrowski and L. Brownell, “Residual equilibrium saturation of porous media,” Industrial and Engineering Chemistry, vol. 46, p. 1207, 1954.
[30] J. Taber, “Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water,” Soc. Petr. Eng. Journal, vol. 9, p. 3, 1969.
[31] J. Taber, J. Kirby, and F. Schroeder, “Studies on the displacement of residual oil: Viscosity and permeability effects,” AIChE Symp. Ser., vol. 69, p. 53, 1973.
[32] A. Abrams, “The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil left by waterflood,” Soc. Petr. Eng. Journal, vol. 15, p. 437, 1975.
[33] I. Chatzis, M. Kuntamukkula, and N. Morrow, “Effect of capillary number on the microstructure of residual oil in strongly water wet sandstones,” SPE Reservoir Engineering, vol. August 1988, p. 902, 1988.
[34] N. Wardlaw and M. McKellar, “Oil blob populations and mobilization of trapped oil in unconsolidated packs,” The Canadian Journal of Chemical Engineering, vol. 63, p. 525, 1985.
[35] R. Larson, H. Davis, and L. Scriven, “Displacement of residual nonwetting fluid from porous media,” Chemical Engineering Science, vol. 36, p. 75, 1981.
[36] N. Morrow, I. Chatzis, and J. Taber, “Entrapment and mobilization of residual oil in bead packs,” SPE Proceedings, SPE 14423, vol. 60th SPE Conference, Las Vegas, 1985.
[37] P. Ören, J. Billiotte, and W. Pinczewski, “Mobilization of waterflood residual oil by gas injection for water wet conditions,” SPE Formation and Evaluation, vol. March 1992, p. 70, 1992.
[38] P. deGennes, “Dynamic capillary pressure in porous media,” Europhys. Lett., vol. 5, p. 689, 1988.
[39] F. Kalaydijan, “Dynamic capillary pressure curve for water/oil displacement in porous media: Theory and experiment,” SPE Proceedings, SPE 24813, vol. 67th SPE Conference, Washington, p. 491, 1992.
[40] C. Marle, “On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media,” Int. J. Engng. Sci., vol. 20, p. 643, 1982.
[41] S. Whitaker, “Flow in porous media II: the governing equations for immiscible two phase flow,” Transport in Porous Media, vol. 1, p. 105, 1986.
[42] D. Pavone, “Macroscopic equations derived from space averaging for immiscible two-phase flow in porous media,” Rev. Inst. Francais Petrole, vol. 44, p. 29, 1989.
[43] M. Allen, “Basic mechanics of oil reservoir flows,” in Multiphase Flow in Porous Media (M. Allen, G. Behie, and J. Trangenstein, eds.), (Berlin), p. 1, Springer Verlag, 1988.
[44] C. Truesdell (ed), Rational Thermodynamics. Berlin: Springer, 1984.
[45] H. Besserer and R. Hilfer. to be published.