Metric of a Slow Rotating Body with Quadrupole Moment from the Erez-Rosen Metric

Francisco Frutos-Alfaro
Edwin Retana-Montenegro
Iván Cordero-García,
Javier Bonatti-González
School of Physics, University of Costa Rica, San Pedro 11501, Costa Rica
frutos@fisica.ucr.ac.cr

September 15, 2015

Abstract

A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account.

1 Introduction

The first quadrupole solution to the Einstein field equations (EFE) was found by Erez & Rosen (1959) [10]. Some errors were found in this derivation. These were later corrected by Doroshkevich et al. [9], Winicour et al. (1968) [24] and Young & Coulter (1969) [26]. Other multipole solutions to the EFE were obtained by Quevedo (1986) [18], Quevedo (1989) [19], Quevedo & Mashhoon [20], and Castejón et al. (1990) [7]. In the three first articles, the solutions were obtained with the help of the Hoenselaers-Kinnersley-Xanthopoulos (HKX) transformations [14], while in the latter, they used the
Ernst formalism [11]. These authors obtain new metrics from a given seed metric. One can include other desirable characteristics (rotation, multipole moments, etc.) to these seed metrics by means of these formalisms. Recently, Boshkayev et al. (2012) [5] obtained an approximate solution describing the interior and exterior gravitational field of a slowly rotating and slightly deformed object.

The aim of this article is to derive an appropriate analytical tractable metric for calculations in astrometry and gravitational lens theory including the quadrupole moment and rotation in a natural form. For this new rotating metric, it is not necessary a multipolar expansion in the potential to include the multipolar terms because the seed metric has already a quadrupole term, that is this metric is multipolar intrinsically.

This paper is organized as follows. In section 2 we get the weak limit of the Erez-Rosen metric. The Lewis metric is presented in section 3. The perturbation method is discussed in section 4. The application of this method leads to a new solution to the EFE with quadrupole moment and rotation. It is checked by means of the REDUCE software [13] that the resulting metric is solution of the EFE. In section 5 we compare our solution with the exterior Hartle-Thorne metric [12] in order to assure that our metric has astrophysical meaning. In section 6 we transform the obtained metric using Cartesian coordinates. Forthcoming works with this metric are discussed in section 7.

2 Weak Limit of the Erez-Rosen Metric

The Erez-Rosen metric [6, 24, 26, 27] represents a body with quadrupole moment. The principal axis of the quadrupole moment is chosen along the spin axis, so that gravitational radiation can be ignored. This metric is given by

\[ds^2 = e^{2\psi} dt^2 - e^{2(\gamma-\psi)} \tilde{\Delta} \left(\frac{dr^2}{r^2 - 2Mr} + d\theta^2 \right) - e^{-2\psi} (r^2 - 2Mr) \sin^2 \theta d\phi^2, \]

where \(M \) is the mass of the object and

\[\tilde{\Delta} = r^2 - 2Mr + M^2 \sin^2 \theta, \]

(2)
\[
\psi = \frac{1}{2} \left\{ \left(1 + \frac{q}{4} (3\lambda^2 - 1) (3\mu^2 - 1) \right) \ln \left[\frac{\lambda - 1}{\lambda + 1} \right] \right. \\
+ \left. \frac{3}{2} q \lambda (3\mu^2 - 1) \right\}, \\
\gamma = \frac{1}{2} (1 + q)^2 \ln \left[\frac{\lambda^2 - 1}{\lambda^2 - \mu^2} \right] \\
- \frac{3}{2} q (1 - \mu^2) \left[\lambda \ln \left[\frac{\lambda - 1}{\lambda + 1} \right] + 2 \right] \\
+ \frac{9}{4} q^2 (1 - \mu^2) \left[\frac{1}{16} (\lambda^2 - 1) (\lambda^2 + \mu^2 - 9\lambda^2 \mu^2 - 1) \ln^2 \left[\frac{\lambda - 1}{\lambda + 1} \right] \right] \\
+ \frac{\lambda}{4} \left(\lambda^2 + 7\mu^2 - 9\lambda^2 \mu^2 - \frac{5}{3} \right) \ln \left[\frac{\lambda - 1}{\lambda + 1} \right] \\
+ \frac{\lambda^2}{4} (1 - 9\mu^2) + \left(\mu^2 - \frac{1}{3} \right) \right].
\]

with \(\lambda = r/M - 1 \) and \(\mu = \cos \theta \). From now on, we will keep in the derivations terms up to order \(M^2 \) and \(qM^3 \). The approximate forms of \(\psi \) and \(\gamma \) are

\[
\psi = \frac{1}{2} \ln \left(1 - \frac{2M}{r} \right) - \frac{2}{15} q \frac{M^3}{r^3} P_2(\cos \theta) + O(M^3, qM^4, q^2),
\]

(4)

\[
\gamma = \frac{1}{2} \ln \left(\frac{r^2 - 2Mr}{\Delta} \right) + O(M^3, qM^4, q^2),
\]

(5)

where \(q = 15GQ/(2c^2M^3) \) with \(Q \) representing the quadrupole moment, and \(P_2(\cos \theta) = (3\cos^2 \theta - 1)/2 \) is the second Legendre polynomial.

Defining the following variables

\[
C := e^{-\chi} \approx 1 - \frac{2}{15} q \frac{M^3}{r^3} P_2(\cos \theta) + O(M^3, qM^4, q^2),
\]

(6)

\[
\mathcal{F} := e^{2\psi} = \left(1 - \frac{2M}{r} \right) e^{-2\chi}
\]

\[
\approx 1 - \frac{2M}{r} - \frac{4}{15} q \frac{M^3}{r^3} P_2(\cos \theta) + O(M^3, qM^4, q^2),
\]

(7)
and
\[G := e^{2\gamma} \simeq \frac{r^2 - 2Mr}{\Delta} + O(M^3, qM^4, q^2). \] (8)
where
\[\chi = 2 \frac{M^3}{15 q r^3} P_2(\cos \theta). \] (9)
If we substitute the former definitions into (1), the metric takes the form
\[
\begin{align*}
 ds^2 &= \mathcal{F} dt^2 - \frac{1}{\mathcal{F}} \left[dr^2 + r^2 \left(1 - \frac{2M}{r} \right) d\Sigma^2 \right] \\
 &= \mathcal{F} dt^2 - \frac{dr^2}{\mathcal{F}} - r^2 e^{2\chi} d\Sigma^2,
\end{align*}
\]
where \(d\Sigma^2 = d\theta^2 + \sin^2 \theta d\phi^2 \), and the inverse of \(\mathcal{F} \) is written as
\[
\frac{1}{\mathcal{F}} = \left(1 - \frac{2M}{r} \right)^{-1} e^{2\chi}
\]
\[
\simeq 1 + \frac{2M}{r} + \frac{4M^2}{r^2} + \frac{4}{15} q \frac{M^3}{r^3} P_2(\cos \theta) + O(M^3, qM^2, q^2).
\]
It is interesting to note that the spherical symmetry is not presented in the weak limit.

3 The Lewis Metrics

The Lewis metric is given by [16][6]
\[
ds^2 = V dt^2 - 2W dt d\phi - e^\mu d\rho^2 - e^\nu dz^2 - X d\phi^2
\]
where we have chosen the canonical coordinates \(x^1 = \rho \) and \(x^2 = z \), \(V, W, X, \mu \) and \(\nu \) are functions of \(\rho \) and \(z \) (\(\rho^2 = VX + W^2 \)). Choosing \(\mu = \nu \) and performing the following changes of potentials
\[V = f, \quad W = \omega f, \quad X = \frac{\rho^2}{f} - \omega^2 f \quad \text{and} \quad e^\mu = \frac{e^\gamma}{f}, \]
we get the Papapetrou metric

\[ds^2 = f(dt - 2\omega d\phi)^2 - \frac{e^\gamma}{f}[d\rho^2 + dz^2] - \frac{\rho^2}{f}d\phi^2. \]

(13)

4 Perturbing the Erez-Rosen Metric

To include slow rotation into the Erez-Rosen metric we use the Lewis-Papapetrou metric (13). First of all, we choose expressions for the canonical coordinates \(\rho \) and \(z \). For the Kerr metric [15], one particular choice is [6, 8]

\[
\rho = \sqrt{\Delta} \sin \theta \quad \text{and} \quad z = (r - M) \cos \theta
\]

(14)

where \(\Delta = r^2 - 2Mr + a^2 \simeq r^2 - 2Mr = r^2Fe^{2\chi} \).

From (14) we get

\[
d\rho^2 + dz^2 = [(r - M)^2 \sin^2 \theta + \Delta \cos^2 \theta] \left(\frac{dr^2}{\Delta} + d\theta^2 \right)
\]

(15)

\[
\simeq \left(1 + \frac{M^2}{r^2} \sin^2 \theta \right) dr^2 + r^2 \left(1 - \frac{2M}{r} + \frac{M^2}{r^2} \sin^2 \theta \right) d\theta^2
\]

where we have expanded up to \(M^2 \) order.

Now, let us choose \(V = f = F \) and neglect the second order in \(\omega \) \((\omega^2 \simeq 0 \Rightarrow W^2 \simeq 0) \). Then, we have

\[
X \simeq \rho^2 f r^2 e^{2\chi} \sin^2 \theta.
\]

If we choose

\[
e^\mu = \frac{r^2 e^{2\chi}}{(r - M)^2 \sin^2 \theta + \Delta \cos^2 \theta},
\]

the term (15) becomes

\[
e^\mu [d\rho^2 + dz^2] = \frac{dr^2}{F} + r^2 e^{2\chi} d\theta^2.
\]

This term appears in the approximate Erez-Rosen metric (10).

From (13), let us propose the following metric
\[ds^2 = V dt^2 - 2 W dt d\phi - Z dr^2 - Y d\theta^2 - X d\phi^2, \] \hspace{1cm} (16)

where \(X = r^2 e^{2\chi} \sin^2 \theta, \) \(Y = r^2 e^{2\chi}, \) and \(Z = 1/V. \)

We see that to obtain a slowly rotating version of the metric (10) the only potential we have to find is \(W. \) Then, the EFE must be solved:

\[G_{ij} = R_{ij} - \frac{R}{2} g_{ij} = 0 \] \hspace{1cm} (17)

where \(R_{ij} \) (\(i, j = 0, 1, 2, 3 \)) are the Ricci tensor components and \(R \) is the curvature scalar.

Fortunately, the Ricci tensor components \(R_{00}, R_{11}, R_{12}, R_{22}, R_{23}, R_{33} \) and the curvature scalar \(R \) depend upon the potentials \(V, X, Y, Z \) and not on \(W. \) Therefore, these components vanish (see appendix). The only remaining equation we have to solve is \(R_{03} = 0, \) because it depends upon \(W. \) The equation for this component up to the order \(O(M^3, a^2, qM^4, q^2) \) is

\[2(1 - P_2(\cos \theta)) \left[\frac{\partial^2 W}{\partial \theta^2} + r^2 \frac{\partial^2 W}{\partial r^2} \right] - 3 \cos \theta \sin \theta \frac{\partial W}{\partial \theta} = 0. \] \hspace{1cm} (18)

The solution for this equation is

\[W = \frac{\mathcal{K}}{r} \sin^2 \theta. \] \hspace{1cm} (19)

where \(\mathcal{K} \) is a constant that we have to find. This constant can be found from the Lense-Thirring metric which can be obtained from the Kerr metric, \(i.e. \)

\[ds^2 = \left(1 - \frac{2M}{r} \right) dt^2 + \frac{4J}{r} \sin^2 \theta dt d\phi - \left(1 - \frac{2M}{r} \right)^{-1} dr^2 - r^2 d\Sigma^2, \] \hspace{1cm} (20)

where \(J = Ma \) is the angular momentum and \(a \) is the rotation parameter.

Comparing the second term of the latter metric with the corresponding of the metric (16), \(i.e. W, \) we note that \(\mathcal{K} = -2J = -2Ma. \)

Then, the new rotating metric with quadrupole moment written in standard form [23] in spherical coordinates is

\[ds^2 = \left(1 - \frac{2M}{r} \right) e^{-2\chi} dt^2 + \frac{4J}{r} \sin^2 \theta d\phi - \left(1 - \frac{2M}{r} \right)^{-1} e^{2\chi} dr^2 \]
\[- r^2 e^{2\chi} (d\theta^2 + \sin^2 \theta d\phi^2). \] \hspace{1cm} (21)
We verified that the metric (21) is indeed a solution of the EFE using REDUCE \[13\] up to the order $O(a^2, qM, q^2)$. Hence, one does not need to expand the term $(1 - 2M/r)^{-1}$ in a Taylor series.

5 Comparison with the Exterior Hartle-Thorne Metric

In order to establish whether our metric does really represent the gravitational field of an astrophysical object, one should show that it is possible to construct an interior solution, which can appropriately be matched with the exterior solution. For this purpose, we employ the exterior Hartle-Thorne metric \[12, 4\], which is given by

$$ds^2 = \left(1 - \frac{2M}{r} + \frac{2QM^3}{r^3}P_2(\cos \theta)\right) dt^2 - \left(1 + \frac{2M}{r} + \frac{4M^2}{r^2} - \frac{2QM^3}{r^3}P_2(\cos \theta)\right) dr^2 - r^2 \left(1 - \frac{2QM^3}{r^3}P_2(\cos \theta)\right) d\Sigma^2 + \frac{4J}{r} \sin^2 \theta dt d\phi,
$$

(22)

where M, J, and Q are related with the total mass, angular momentum, and mass quadrupole moment of the rotating object, respectively. Now, comparing the exterior Hartle-Thorne metric with our expression (21), it can easily be seen that upon defining

$$M = M, \quad J = J, \quad 2QM^3 = -\frac{4}{15} qM^3,$$

(23)

both metrics coincide up to the order $O(M, a^2, qM^4, q^2)$. Our approximate expression for the Hartle-Thorne metric (22) was obtained by means of a REDUCE program using the expressions from Abramowicz et al. \[1\]. We compared these results with the approximate expression given by Boshkayev et al. \[5\] and found that they have an extra term of order $O(qM^4)$, which we neglected, because it is beyond the order we are working with. Additional differences are that our metric parameters ($M, J = Ma, qM^3$) are distinct and our expressions (23) are simpler than those of Boshkayev et al. \[5\].
6 The Transformation of the Metric

In some cases, the metric (21) has to be transform from spherical \((r, \theta, \phi)\) into Cartesian coordinates \((x, y, z)\). For example, if a comparison with a post-Newtonian (PN) metric is made, we have to transform the metric (21) by using one of the following radial coordinates transformation: the harmonic or the isotropic coordinates of Schwarzschild metric. The first one is \(r = \tilde{r} + M\), and the second one is \(r = \tilde{r}(1 + M/2\tilde{r})^2\), where \(\tilde{r}\) is a new radial coordinate [23]. We choose the first one, then the metric (21) is transformed into

\[
ds^2 = \mathcal{H}dt^2 + \frac{4J}{\tilde{r}} \sin^2 \theta dt d\phi - \frac{d\tilde{r}^2}{\mathcal{H}} - \tilde{r}^2 e^{2\chi} \left(1 + \frac{M}{\tilde{r}}\right)^2 d\Sigma^2, \tag{24}
\]

where

\[
\mathcal{H} = \left(\frac{1 - \frac{M}{\tilde{r}}}{1 + \frac{M}{\tilde{r}}}\right) e^{-2\chi} \tag{25}
\]

\[
\simeq 1 - \frac{2M}{\tilde{r}} + \frac{2M^2}{\tilde{r}^2} - \frac{4}{15} q \frac{M^3}{\tilde{r}^3} P_2(\cos \theta) + O(M^3, a^2, qM^4, q^2),
\]

and

\[
\frac{1}{\mathcal{H}} = \left(\frac{1 + \frac{M}{\tilde{r}}}{1 - \frac{M}{\tilde{r}}}\right) e^{2\chi} \tag{26}
\]

\[
\simeq 1 + \frac{2M}{\tilde{r}} + \frac{2M^2}{\tilde{r}^2} + \frac{4}{15} q \frac{M^3}{\tilde{r}^3} P_2(\cos \theta) + O(M^3, a^2, qM^4, q^2).
\]

Noting that \(C = e^{\chi}\) is still given by (6) with \(r\) changed by \(\tilde{r}\). Now, dropping the bar on \(r\), we transform the metric (21) into the Cartesian coordinates which are given by the usual relations

\[
x = r \sin \theta \cos \phi, \\
y = r \sin \theta \sin \phi, \\
z = r \cos \theta. \tag{27}
\]

The resulting metric has the following form
\[ds^2 = \mathcal{H}dt^2 + \frac{4J}{r^3} dt(xy - ydx) - \frac{\mathcal{P}}{r^2} (x \cdot dx)^2 - \left(1 + \frac{M}{r}\right)^2 e^{2\chi} dx^2, \quad (28) \]

where

\[\mathcal{P} = \frac{1}{\mathcal{H}} - \left(1 + \frac{M}{r}\right)^2 e^{2\chi} = \frac{M^2}{r^2} + O(M^3, a^2, qM^4, q^2). \quad (29) \]

The former metric can be generalized as follows

\[ds^2 = \mathcal{H}dt^2 + 8V \cdot dxdt - \frac{\mathcal{P}}{r^2} (x \cdot dx)^2 - \left(1 + \frac{M}{r}\right)^2 e^{2\chi} dx^2, \quad (30) \]

where

\[\left(1 + \frac{M}{r}\right)^2 e^{2\chi} \simeq 1 + \frac{2M}{r} + \frac{M^2}{r^2} + \frac{4}{15} q \frac{M^3}{r^3} P_2 (\cos \theta) + O(M^3, a^2, qM^4, q^2), \quad (31) \]

and the vector \(V \) is defined as

\[V = \frac{G}{2c^3 r^3} [J \times x], \quad (32) \]

with \(J = J\hat{e}_J \) (\(\hat{e}_J \) an unit vector in the direction of \(J \)). The expressions for \(\mathcal{H} \) and \(\mathcal{H}^{-1} \) are valid changing \(\bar{r} \) by \(r \) in eqs. (25) and (26).

7 Conclusion

In this paper, we include the rotational effect using the weak limit of the Erez-Rosen metric as seed metric into the Lewis-Papapetrou metric. Thus, a new metric with quadrupole moment and rotation in the weak limit is obtained. Generally speaking, the quadrupole moment is included in the metric, for instance, in gravitational lensing, through the expansion of the
The gravitational potential in a power series \[3\]. The resulting metric from our calculations includes the quadrupole moment in a natural form and is similar to the exterior metric obtained by Boshkayev et al. \[5\].

As we have seen in section \[4\], our new metric agrees with the Hartle-Thorne solution \[12\], whom obtained an interior metric that appropriately matches their exterior one, which guarantees the construction of an interior solution for our spacetime. This result indicates that our metric may be used to represent a compact astrophysical object.

The new metric has many applications. For example, in calculations involving relativistic astrometry, in gravitational lens theory or planetary perihelion shift, it is useful to have a metric that include rotation and quadrupole moment. In relativistic astrometry, one needs a post-Newtonian metric to get after some approximations the deflection angle. It allows to get expressions for the right ascension \(\alpha\) and declination \(\delta\) for a celestial body \[21, 22\] in the gravitational field including rotation and quadrupole moment. In gravitational lens theory, the deflection angle \[17, 2\] can be used to obtain the lens equation, thereby the lensing properties for this new metric with intrinsic gravitational quadrupole may be studied. Another application of this metric is to calculate the planetary perihelion shift \[25\]. These applications will be the aim of forthcoming works.

\section{Appendix}

The Ricci tensor components are

\[R_{00} = \frac{1}{4\rho^2 Y^2 Z^2} \left\{ VYZ^2 \frac{\partial X}{\partial \theta} \frac{\partial V}{\partial \theta} + VY^2 Z \frac{\partial X}{\partial r} \frac{\partial V}{\partial r} + 2\rho^2 YZ \frac{\partial^2 V}{\partial \theta^2} \right. \]

\[- \left. \left[XYZ \left(\frac{\partial V}{\partial \theta} \right)^2 - \rho^2 Z \frac{\partial V}{\partial \theta} \frac{\partial Y}{\partial \theta} + \rho^2 YZ \frac{\partial V}{\partial \theta} \frac{\partial Z}{\partial \theta} + 2\rho^2 YZ \frac{\partial^2 V}{\partial r^2} \right. \right. \]

\[- \left. \left. XY^2 Z \left(\frac{\partial V}{\partial r} \right)^2 + \rho^2 YZ \frac{\partial V}{\partial r} \frac{\partial Y}{\partial r} - \rho^2 Y^2 \frac{\partial V}{\partial r} \frac{\partial Z}{\partial r} \right\} \]
\[
R_{01} = R_{10} = 0 \\
R_{02} = R_{20} = 0 \\
R_{03} = R_{30} = \frac{1}{4 \rho^2 Y^2 Z^2} \left\{ -2WYZ^2 \frac{\partial X \partial V}{\partial \theta \partial \theta} + VY^2 Z^2 \frac{\partial X \partial W}{\partial \theta \partial \theta} \\
- 2WY^2 Z \frac{\partial X \partial V}{\partial r \partial r} + VY^2 Z \frac{\partial X \partial W}{\partial r \partial r} + XY^2 Z^2 \frac{\partial V \partial W}{\partial \theta \partial \theta} \\
+ XY^2 Z \frac{\partial V \partial W}{\partial \theta \partial r} - 2 \rho^2 Y^2 Z^2 \frac{\partial^2 W}{\partial \theta^2} + \rho^2 Z^2 \frac{\partial W \partial Y}{\partial \theta \partial \theta} \\
- \rho^2 YZ \frac{\partial W \partial Z}{\partial \theta} - 2 \rho^2 Y^2 Z^2 \frac{\partial^2 W}{\partial r^2} - \rho^2 YZ \frac{\partial W \partial Y}{\partial r \partial \theta} \\
+ \rho^2 Y^2 \frac{\partial W \partial Z}{\partial r \partial \theta} \right\} \\
R_{11} = \frac{1}{4 \rho^4 Y^2 Z} \left\{ -\rho^2 YZ \frac{\partial X \partial Z}{\partial \theta \partial \theta} - 2 \rho^2 Y^2 Z \frac{\partial^2 X}{\partial r^2} - V^2 Y^2 Z \left[\frac{\partial X}{\partial r} \right]^2 \\
- 4 \rho^2 Y^2 Z \frac{\partial X \partial V}{\partial r \partial \theta} + \rho^2 Y^2 \frac{\partial X \partial Z}{\partial r \partial \theta} - \rho^2 X YZ \frac{\partial V \partial Z}{\partial \theta \partial \theta} \\
- 2 \rho^2 X Y^2 \frac{\partial^2 V}{\partial r^2} - X^2 Y^2 Z \left[\frac{\partial V}{\partial r} \right]^2 + \rho^2 X Y^2 \frac{\partial V \partial Z}{\partial r \partial \theta} + \rho^4 Y \frac{\partial Y \partial Z}{\partial r \partial \theta} - 2 \rho^4 Y Z^2 \frac{\partial^2 Z}{\partial \theta^2} \\
+ \rho^4 Y \left[\frac{\partial Z}{\partial \theta} \right]^2 \right\} \\
R_{12} = R_{21} = \frac{1}{4 \rho^4 Y Z} \left\{ -2 \rho^2 YZ \frac{\partial^2 X}{\partial \theta \partial \theta} - V^2 YZ \frac{\partial X \partial X}{\partial \theta \partial \theta} - 2 \rho^2 YZ \frac{\partial X \partial V}{\partial \theta \partial \theta} \\
+ \rho^2 YZ \frac{\partial X \partial Y}{\partial \theta \partial \theta} - 2 \rho^2 YZ \frac{\partial X \partial V}{\partial \theta \partial \theta} + \rho^2 YZ \frac{\partial X \partial Z}{\partial \theta \partial \theta} - 2 \rho^2 X YZ \frac{\partial^2 V}{\partial \theta \partial \theta} \\
- X^2 YZ \frac{\partial V \partial V}{\partial \theta \partial \theta} + \rho^2 XZ \frac{\partial V \partial Y}{\partial \theta \partial \theta} + \rho^2 X Y \frac{\partial V \partial Z}{\partial \theta \partial \theta} \right\} \\
R_{13} = R_{31} = 0 \\
\]
\[R_{22} = \frac{1}{4\rho^4 Y^2 Z^2} \left\{ -2\rho^2 V Y Z^2 \frac{\partial^2 X}{\partial \theta^2} - V^2 Y Z^2 \frac{\partial^2 X}{\partial \theta^2} - 4\rho^2 Y Z^2 \frac{\partial X}{\partial \theta} \frac{\partial V}{\partial \theta} \right. \\
+ \rho^2 V Z^2 \frac{\partial X}{\partial \theta} \frac{\partial Y}{\partial \theta} - \rho^2 V Y Z \frac{\partial X}{\partial r} \frac{\partial Y}{\partial r} - 2\rho^2 V Y Z^2 \frac{\partial^2 V}{\partial \theta^2} \\
- X^2 Y Z^2 \left(\frac{\partial Y}{\partial \theta} \right)^2 + \rho^2 V Z^2 \frac{\partial V}{\partial \theta} \frac{\partial Y}{\partial \theta} - \rho^2 V Y Z \frac{\partial V}{\partial r} \frac{\partial Y}{\partial r} \\
+ \rho^4 Z \frac{\partial Y}{\partial \theta} \frac{\partial Z}{\partial \theta} - 2\rho^4 \frac{\partial^2 V}{\partial r^2} + \rho^4 \frac{\partial Y}{\partial r} \frac{\partial Y}{\partial r} \\
- \left. 2\rho Y Z \frac{\partial^2 Z}{\partial \theta^2} + \rho^4 \frac{\partial Y}{\partial \theta} \frac{\partial Z}{\partial \theta} \right\} \]

\[R_{23} = R_{32} = 0 \]

\[R_{33} = \frac{1}{4\rho^2 Y^2 Z^2} \left\{ -2\rho^2 Y Z^2 \frac{\partial^2 X}{\partial \theta^2} + V Y Z^2 \left[\frac{\partial Y}{\partial \theta} \right]^2 - X Y Z^2 \frac{\partial X}{\partial \theta} \frac{\partial V}{\partial \theta} \right. \\
+ \rho^2 Z \frac{\partial X}{\partial \theta} \frac{\partial Y}{\partial \theta} - \rho^2 Y Z \frac{\partial X}{\partial r} \frac{\partial Z}{\partial r} - 2\rho^2 Y^2 Z \frac{\partial^2 V}{\partial \theta^2} + V Y^2 Z \left[\frac{\partial Y}{\partial r} \right]^2 \\
- \left. X Y Z \frac{\partial X}{\partial r} \frac{\partial V}{\partial r} + \rho^2 Y^2 \frac{\partial X}{\partial r} \frac{\partial Z}{\partial r} \right\} \]

The scalar curvature is

\[R = \frac{1}{2\rho^2 Y^2 Z^2} \left\{ 2V Y Z^2 \frac{\partial^2 X}{\partial \theta^2} + 3Y Z^2 \frac{\partial X}{\partial \theta} \frac{\partial V}{\partial \theta} \frac{\partial Y}{\partial \theta} - V Z^2 \frac{\partial X}{\partial \theta} \frac{\partial Y}{\partial \theta} \frac{\partial V}{\partial \theta} \right. \\
+ V Y Z \frac{\partial X}{\partial \theta} \frac{\partial Z}{\partial \theta} + 2V Y^2 Z^2 \frac{\partial^2 V}{\partial r^2} + 3Y Z \frac{\partial X}{\partial r} \frac{\partial V}{\partial r} \frac{\partial Y}{\partial r} + V Y \frac{\partial X}{\partial r} \frac{\partial Y}{\partial r} \frac{\partial V}{\partial r} \\
- V Y^2 \frac{\partial X}{\partial r} \frac{\partial Z}{\partial r} + 2X Y Z^2 \frac{\partial^2 V}{\partial \theta^2} - X Z^2 \frac{\partial V}{\partial \theta} \frac{\partial Y}{\partial \theta} \frac{\partial Z}{\partial \theta} + X Y \frac{\partial V}{\partial \theta} \frac{\partial Z}{\partial \theta} \\
+ 2X Y \frac{\partial^2 V}{\partial r^2} + X Y \frac{\partial V}{\partial r} \frac{\partial Z}{\partial r} - X Y^2 \frac{\partial V}{\partial r} \frac{\partial Z}{\partial r} - Y \frac{\partial V}{\partial r} \frac{\partial Z}{\partial r} \\
+ 2\rho^2 Y Z \frac{\partial Y}{\partial r} \frac{\partial Z}{\partial r} - \rho^2 Y \left[\frac{\partial Y}{\partial r} \right]^2 - \rho^2 Y \frac{\partial Y}{\partial r} \frac{\partial Z}{\partial r} + 2\rho Y Z \frac{\partial^2 Z}{\partial \theta^2} \\
- \left. \rho^2 Y \left[\frac{\partial Z}{\partial \theta} \right]^2 \right\} \]
References

[1] Abramowicz, M. A., Almargren, G. J. E., Kluźniak, W. & Thampan, A. V. 2003. Circular geodesics in the Hartle-Thorne metric. ArXiv (gr-qc/0312070).

[2] Asada, H., Kasai, M. & Yamamoto, T. 2003 Separability of rotational effects on a gravitational lens. Phys. Rev. D, 67, 043006 (5 pages).

[3] Asada, H. 2005 Effects of a deformation of a star on the gravitational lensing. MNRAS, 356, 1249–1255.

[4] Berti, E., White, F., Maniopoulou, A. & Bruni, M. 2005 Rotating neutron stars: an invariant comparison of approximate and numerical spacetime models. MNRAS, 358, 923–938.

[5] Boshkayev, K., Quevedo, H. & Ruffini, R. 2012 Gravitational field of compact objects in general relativity. Phys. Rev. D, 86, 064043 (13 pages).

[6] Carmeli, M. 2001 Classical Fields. World Scientific Publishing.

[7] Castejon-Amenedo, J. & Manko, V. S. 1990 Superposition of the Kerr metric with the generalized Erez-Rosen solution. Phys. Rev. D, 41, 2018–2020.

[8] Chandrasekhar, S. 2000 The Mathematical Theory of Black Holes. Oxford.

[9] Doroshkevich, A. G. Zel’dovich, Ya. B. & Novikov, I. D. 1966 Gravitational collapse of nonsymmetric and rotating masses. JETP, 22, 122–130.

[10] Erez, G. & Rosen, N. 1959 The gravitational field of a particle possessing a multipole moment. Bull. Res. Council Israel, 8F, 47–50.

[11] Ernst, F. J. 1968 New formulation of the axially symmetric gravitational field problem. Phys. Rev., 167, 1175–1177.

[12] Hartle, J. B. & Thorne, K. S. 1968 Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars AJ, 153, 807–834.
[13] Hearn, A. C. 1999 *REDUCE* (User’s and Contributed Packages Manual). Konrad-Zuse-Zentrum für Informationstechnik, Berlin.

[14] Hoenselaers, C., Kinnersley, W. & Xanthopoulos, B. C. 1979 Symmetries of the stationary Einstein-Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments. *J. Math. Phys.*, 20(12), 2530–2536.

[15] Kerr, R. P. 1963 Gravitational field of a spinning mass as an example of algebraically special metrics. *Phys. Rev. Lett.*, 11, 237–238.

[16] Lewis, T. 1932 Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. *Proc. Roy. Soc. Lond.*, A, 176–192.

[17] Páez, J. & Frutos, F. 1994 Astrometry in the Kerr field in PPN approximation. *Astrophysics and Space Science*, 214, 71–87.

[18] Quevedo, H. 1986 Class of stationary axisymmetric solutions of Einstein’s equations in empty space. *Phys. Rev. D*, 33, 324–327.

[19] Quevedo, H. 1989 General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates. *Phys. Rev. D*, 39, 2904–2911.

[20] Quevedo, H. & Mashhoon, B. 1991 Generalization of Kerr spacetime. *Phys. Rev. D*, 43, 3902–3906.

[21] Soffel, M. H. 1989 *Relativity in Astrometry, Celestial Mechanics and Geodesy (Astronomy and Astrophysics Library)*. Springer-Verlag.

[22] Soffel, M. H., Schastok, J., Ruder, H. & Schneider, M. 1985 Relativistic Astrometry. *APSS*, 110, 95–101.

[23] Weinberg, S. 1972 *Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity*. John Wiley & Sons, Inc.

[24] Winicour, J., Janis, A. I. & Newman, E. T. 1968 Static, axially symmetric point horizons. *Phys. Rev.*, 176, 1507–1513.

[25] Yamada, K. & Asada, H. 2012 Post-Newtonian effects of planetary gravity on the perihelion shift. *MNRAS*, 423, 3540–3544.
[26] Young, J. H. & Coulter, C. A. 1969 Exact metric for a nonrotating mass with a quadrupole moment. *Phys. Rev.*, **184**, 1313–1315.

[27] Zel’dovich, Ya. B. & Novikov, I. D. 2011 *Stars and Relativity*. Dover Publications.