First Observation of the $Z_0^0(10610)$ in a Dalitz Analysis of $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0$

P. Krokovny, A. Bondar, I. Adachi, H. Aihara, K. Arinstein, D. M. Asner, V. Aulchenko, T. Aushev, T. Aziz, A. M. Bakich, A. Bala, A. Bay, V. Bhardwaj, B. Bhuyan, G. Bonvicini, C. Bookwalter, A. Bozek, M. Bracko, T. E. Browder, P. Chang, A. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, I. S.- Cho, K. Cho, V. Chobanova, S.-K. Choi, Y. Choi, D. Cinabro, J. Dalseno, M. Danilov, J. Dingfelder, Z. Dolezal, Z. Dráskal, A. Drutskoy, D. Dutta, S. Eidelman, D. Epifanov, H. Furhat, M. Feindt, T. Ferber, A. Frey, V. Gaur, N. Gabyashvile, S. Ganyuly, A. Garmash, R. Gillard, Y. M. Goh, B. Golob, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, Y. Hoshi, W.-S. Hou, Y. B. Hsiung, H. J. Hyun, T. Iijima, A. Ishikawa, R. Itoh, Y. Iwasaki, T. Julius, D. H. Kah, J. H. Kang, E. Kato, H. Kawai, T. Kawasaki, C. Kiesling, D. Y. Kim, H. O. Kim, B. J. Kim, J. H. Kim, Y. J. Kim, K. Kinoshita, J. Klucar, B. R. Ko, P. Kodyš, S. Korpar, P. Krizan, T. Kuhl, T. Kunita, A. Kuzmin, Y.-J. Kwon, J. S. Lange, S.-H. Lee, J. Li, Y. Li, J. Libby, Y. Liu, Z. Q. Liu, D. Liventsev, P. Lukin, D. Matvienko, K. Miyabayashi, H. Miyata, R. Mizuk, M. Molyant, A. Moll, N. Muramatsu, R. Mussa, Y. Nakao, M. Nayak, E. Nedelkovska, C. Ng, N. K. Nisar, S. Nishida, N. Nitoh, S. Ogawa, C. Oswald, G. Pakhlova, C. W. Park, H. Park, T. K. Pedlar, R. Pestotnik, M. Petric, L. E. Pilonien, A. Poluektov, M. Rüttel, M. Röhrken, A. Rostomyan, S. Ryu, H. Sahoo, T. Saito, K. Sakai, Y. Sakai, S. Sandilya, L. Santelj, T. Sanuki, Y. Sato, V. Savinov, O. Schneider, D. Schwall, D. Semmler, K. Senyo, O. Seon, M. E. Sevior, M. Shapkin, V. Shebalin, T.-A. Shibata, J.-G. Shiu, B. Shwartz, A. Sibidanov, F. Simon, Y.-S. Sohn, A. Sokolov, E. Solovieva, M. Steder, S. Sumiyoshi, T. Tamponi, K. Tanida, G. Tatishvili, Y. Teramoto, K. Trabelsi, T. Tsuboyama, M. Uchida, S. Uehara, T. Uglow, Y. Unno, S. Uno, E. Urquijo, S. E. Vahsen, C. Van Hulse, P. Vanhoefer, G. Varner, V. Vorobyev, M. N. Wagner, C. H. Wang, M.-Z. Wang, P. Wang, X. L. Wang, Y. Watanabe, K. M. Williams, E. Won, Y. Yamashita, S. Yashchenko, Y. Yook, C. Z. Yuan, Y. Yusa, C. C. Zhang, Z. P. Zhang, V. Zhibich, V. Zhulianov, A. Zupanc

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 University of Bonn, 53115 Bonn
3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
4 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
5 Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6 University of Cincinnati, Cincinnati, Ohio 45221
7 Deutsches Elektronen-Synchrotron, 22607 Hamburg
8 Justus-Liebig-Universität Gießen, 35392 Gießen
9 II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
10 Gyeongsang National University, Chinju 660-701
11 Hanyang University, Seoul 133-791
12 University of Hawaii, Honolulu, Hawaii 96822
13 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
14 Hiroshima Institute of Technology, Hiroshima 731-5193
15 Ikerbasque, 48011 Bilbao
16 Indian Institute of Technology Guwahati, Assam 781039
17 Indian Institute of Technology Madras, Chennai 600036
18 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
19 Institute of High Energy Physics, Vienna 1050
20 Institute for High Energy Physics, Protvino 142281
21 INFN - Sezione di Torino, 10125 Torino
22 Institute for Theoretical and Experimental Physics, Moscow 117218
23 J. Stefan Institute, 1000 Ljubljana
24 Kagawa University, 724-8686
25 Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
26 Korea Institute of Science and Technology Information, Daejeon 305-806
27 Korea University, Seoul 136-713
28 Kyungpook National University, Daegu 702-701
29 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
30 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
31 Luther College, Decorah, Iowa 52101
I. INTRODUCTION

Two charged bottomonium-like resonances, $Z_b^{\pm}(10610)$ and $Z_b^{\pm}(10650)$, have been observed by the Belle Collaboration\footnote{Belle Collaboration,\textit{Phys. Rev. Lett.} 100, 132001 (2008).} in the $\Upsilon(nS)\pi^\pm\pi^\mp$ invariant mass in $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^\pm\pi^\mp$ decays ($n = 1, 2, 3$) and in $h_0(mP)\pi^\pm$ mass spectra in the recently observed $\Upsilon(10860) \rightarrow h_0(mP)\pi^\pm\pi^\mp$ decays ($m = 1, 2$). An angular analysis suggests that these states have $I^G(J^P) = 1^+ (1^+)$ quantum numbers. An analysis of the quark composition of the initial and final states allows us to assert that these hadronic objects are the first examples of states of an exotic nature with a $b\bar{b}$ quark pair: Z_b should be comprised of (at least) four quarks. Several models have been proposed to describe the internal structure of these states\cite{3-6}. The proximity of the $Z_b^0(10610)$ and $Z_b^0(10650)$ masses to thresholds for the open beauty channels $B^+\bar{B}^-$ and B^+B^- suggests a “molecular” structure for these states, which is consistent with many of their observed properties.\footnote{K. Fujii, S. Kuroda, and H. Nishimura, \textit{Phys. Rev. Lett.} 99, 032003 (2007).} More recently, Belle reported the observation of both $Z_b^0(10610)$ and $Z_b^0(10650)$ in an analysis of the three-body $\Upsilon(10860) \rightarrow [B^{(*)}\bar{B}^*]\pi^\pm\pi^\mp$ decay.\footnote{E. A. O. Usyukina, \textit{Phys. Rev. Lett.} 101, 022001 (2008).} The dominant Z_b decay mode is found to be $B^{(*)}\bar{B}^*$, supporting the molecular hypothesis. It would be natural to expect the existence of neutral partners of these states. This motivates us to search for Z_b^0 in the resonant substructure of $\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0$ decays.
II. DATA SAMPLE AND DETECTOR

We use a (121.4 ± 1.7) fb⁻¹ data sample collected on the peak of the Υ(10860) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider [10]. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters, and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid that provides a 1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM). The detector is described in detail elsewhere [1].

III. SIGNAL SELECTION

Υ(10860) candidates are formed from Υ(nS)$\pi^0\pi^0$ ($n = 1, 2, 3$) combinations. We reconstruct Υ(nS) candidates from pairs of leptons (e^+e^- and $\mu^+\mu^-$), referred to as e^+e^-, with an invariant mass between 8 and 11 GeV/c². An additional decay channel is used for the $\Upsilon(2S)$: $\Upsilon(2S) \rightarrow \Upsilon(1S)[e^+e^-]^{+}$. Charged tracks are required to have a transverse momentum, p_t, greater than 50 MeV/c. We also impose a requirement on the impact parameters of $dr < 0.3$ cm and $|dz| < 2.0$ cm, where dr and dz are the impact parameters in the r-ϕ and longitudinal directions, respectively. Muon candidates are required to have associated hits in the KLM detector that agree with the extrapolated trajectory of a charged track provided by the drift chamber [11]. Electron candidates are identified based on the ratio of ECL shower energy to the track momentum, ECL shower shape, dE/dx from the CDC, and the ACC response [12]. No particle identification requirement is imposed for the pions. Candidate π^0 mesons are selected from pairs of photons with an invariant mass within 15 MeV/c² (3σ) of the nominal π^0 mass. An energy greater than 50 (75) MeV is required for each photon in the barrel (endcap). We use the quality of the π^0 mass-constrained fits, $\chi^2(\pi^0_1) + \chi^2(\pi^0_2)$, to suppress the background. This sum must be less than 20 (10) for the $\Upsilon(nS) \rightarrow \mu^+\mu^-$, $\Upsilon(1S)\pi^+\pi^-$ ($\Upsilon(nS) \rightarrow e^+e^-$).

We use the energy difference $\Delta E = E_{\text{cand}} - E_{\text{CM}}$ and momentum P to suppress background, where E_{cand} and P are the energy and momentum of the reconstructed $\Upsilon(10860)$ candidate in the center-of-mass (c.m.) frame, and E_{CM} is the c.m. energy of the two beams. $\Upsilon(10860)$ candidates must satisfy the requirements $-0.2 \text{ GeV} < \Delta E < 0.14 \text{ GeV}$ and $P < 0.2 \text{ GeV}/c$. The potentially large background from QED processes such as $e^+e^- \rightarrow e^+e^-(n)\gamma$ is suppressed using the missing mass associated with the e^+e^- system, calculated as $M_{\text{miss}}(e^+e^-) = \sqrt{(E_{\text{CM}} - E_{e^+e^-})^2 - P^2_{e^+e^-}}$, where $E_{e^+e^-}$ and $P_{e^+e^-}$ are the energy and momentum of the e^+e^- system measured in the c.m. frame. We require $M_{\text{miss}}(e^+e^-) > 0.15 (0.30)$ GeV/c² for the $\Upsilon(nS) \rightarrow \mu^+\mu^- (e^+e^-)$. We select the candidate with the smallest $\chi^2(\pi^0_1) + \chi^2(\pi^0_2)$ in the rare cases (1-2%) when there is more than one candidate in the event. Figures 1 (a) and (b) show the $M_{\text{miss}}(\pi^0\pi^0)$ distributions for the $\Upsilon(10860) \rightarrow \Upsilon(nS)[e^+e^-]^{+}$ candidates, which are evaluated similarly to $M_{\text{miss}}(e^+e^-)$. Clear peaks of the $\Upsilon(1S), \Upsilon(2S)$ and $\Upsilon(3S)$ can be seen.

For the $\Upsilon(10860) \rightarrow \Upsilon(2S)[\Upsilon(1S)\pi^+\pi^-]^{+}$ decays, $\Upsilon(1S)$ candidates are selected from e^+e^- pairs with invariant mass within 150 MeV/c² of the nominal $\Upsilon(1S)$ mass. A mass-constrained fit is used for $\Upsilon(1S)$ candidates to improve the momentum resolution. We apply the requirements on ΔE and P for $\Upsilon(10860)$ candidates described earlier. We select signal candidates with the invariant mass of $\Upsilon(1S)\pi^+\pi^-$ within 20 MeV/c² of the nominal $\Upsilon(2S)$ mass. Figure 1 (c) shows the $M(\Upsilon(1S)\pi^+\pi^-)$ distribution for the $\Upsilon(1S)\pi^+\pi^-|\pi^0\pi^0$ events. The clear peak of the $\Upsilon(2S)$ can be seen. The peak around 10.3 GeV/c² corresponds to a reflection from the decay $\Upsilon(10860) \rightarrow \Upsilon(2S)\pi^+\pi^-, \Upsilon(2S) \rightarrow \Upsilon(1S)\pi^0\pi^0$.

IV. $e^+e^- \rightarrow \Upsilon(nS)\pi^0\pi^0$ CROSS SECTIONS AT $\Upsilon(10860)$

The signal yields for $\Upsilon(10860) \rightarrow \Upsilon(nS)[e^+e^-]^{+|}$ decays are extracted by a binned maximum likelihood fit to the $M_{\text{miss}}(\pi^0\pi^0)$ distributions. The signal probability density function (PDF) is described by a sum of two Gaussians for each $\Upsilon(nS)$ resonance with parameters fixed from the signal Monte Carlo (MC) sample. The correctly reconstructed events (∼80%) are described by a core Gaussian with the resolution of 21, 14 and 10 MeV/c² for $\Upsilon(1S), \Upsilon(2S)$ and $\Upsilon(3S)$, respectively. A sizable fraction (∼20%) of events with misreconstructed γ from π^0 decay are described by a wider Gaussian with a shifted mean. The background PDF is parameterized by the sum of a constant and an exponential function.

For the $\Upsilon(2S)[\Upsilon(1S)\pi^+\pi^-]^{+}$ decay, we fit the invariant mass of $\Upsilon(1S)\pi^+\pi^-$. The signal PDF is described by a Gaussian function with a resolution of 5 MeV/c² (fixed from signal MC). The background PDF is described by a constant. The cross-feed from the decay $\Upsilon(10860) \rightarrow \Upsilon(2S)[\Upsilon(1S)\pi^0\pi^0]^{+}$ contributes as a broad peak around 10.3 GeV/c². Its shape is parameterized by a Gaussian function with parameters fixed from MC. The fit results are also shown in Fig. 2 (a)-(c).

Though $\Upsilon(nS)\pi^0\pi^0$ final states are expected to be produced from the decay of the $\Upsilon(10860)$ resonance, here we present the signal rates as the cross sections of $e^+e^- \rightarrow \Upsilon(nS)\pi^0\pi^0$ since the fraction of the resonance among $b\bar{b}$ hadronic events is unknown and the energy dependence of the $\Upsilon(nS)\pi^+\pi^-$ yield is found to be rather different from that of $b\bar{b}$ hadronic events [13]. Table II summarizes the signal yield, MC efficiency and measured
The visible cross section (with only the statistical uncertainty shown). The reconstruction efficiency is obtained from
MC using the matrix element determined from the Dalitz plot fit described below. The systematic uncertainty due
to the corresponding fit model is found to be negligible.

The visible cross section is calculated from

$$\sigma_{\text{vis}} = \frac{N_{\text{sig}}}{\epsilon B(\Upsilon(nS) \to X) L},$$

where N_{sig} is the number of signal events, ϵ is the re-
construction efficiency, $B(\Upsilon(nS) \to X)$ is the branching
fraction of the $\Upsilon(nS)$ to the reconstructed final state X
($\mu^+\mu^-$, e^+e^- or $\Upsilon(1S)\ell^+\ell^-\pi^+\pi^-$), and L is the
integrated luminosity. The cross section corrected for the
initial state radiation (ISR), the “dressed” cross section, is calculated as

$$\sigma = \sigma_{\text{vis}}/(1 + \delta_{\text{ISR}}).$$

The initial state radiation (ISR) correction factor, $(1 + \delta_{\text{ISR}}) = 0.666 \pm 0.013$, is determined using the formul-
ae in Ref. [12]. We assume the energy dependence of $e^+e^- \to \Upsilon(nS)\pi^0\pi^0$ to be the same as for the isospin-
related channel $e^+e^- \to \Upsilon(nS)\pi^+\pi^-$, given by Ref. [13].

Since $B(\Upsilon(3S) \to e^+e^-)$ has not been measured, we as-
sume it to be equal to $B(\Upsilon(3S) \to \mu^+\mu^-)$.

Table I shows the dominant sources of systematic uncertainties for the cross section measurements. The uncertainty on the data/MC difference is estimated by varying the requirements on P, $|\Delta E|$, $M_{\text{miss}}(\ell^+\ell^-)$ and $x^2(\pi^0)$. We obtain a 4% uncertainty on both
$\Upsilon(1S, 2S)\pi^0\pi^0$ samples. The same value is used for
$\Upsilon(3S)\pi^0\pi^0$ due to the small sample size in this final
state. The uncertainty on the signal and background PDFs in the fit is estimated by variation of the fit range
and changing the parameterization to a single Gaussian for the signal and a third- and fourth-order polynomial
for the background. The systematic uncertainties on lepton ID are estimated using the process $\Upsilon(10860) \to$
$\Upsilon(nS)\pi^+\pi^-, \Upsilon(nS) \to \ell^+\ell^-$. The tracking uncertainty
is obtained from partially and fully reconstructed $D^+ \to \pi^+D^0$, $D^0 \to K^0_S\pi^+\pi^-$ decays. The π^0 reconstruction
uncertainty is estimated using $\tau^- \to \pi^-\pi^0\nu_\tau$. The trig-
ger efficiency is determined by MC to be 94-99%, depend-

The branching fractions

$$\sigma_{\text{Born}} = \sigma(1 - \Pi)^2,$$

where $|1 - \Pi|^2 = 0.9286$ [16]. The branching fractions

![FIG. 1. The $\pi^0\pi^0$ missing mass distribution for $\Upsilon(nS)\pi^0\pi^0$ candidates, using (a) $\Upsilon(nS) \to \mu^+\mu^-$ and (b) $\Upsilon(nS) \to e^+e^-$ candidates. The $M(\Upsilon(1S)\pi^+\pi^-)$ distribution for $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$ candidates is shown in (c). Histograms represent the data. In each panel, the solid curve shows the fit result while the dashed curve corresponds to the background contribution.](image-url)
listed in PDG can be obtained by

\[
B(\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0) = \frac{\sigma_{\text{vis}}(e^+e^- \rightarrow \Upsilon(nS)\pi^0\pi^0)}{\sigma_{\text{tot}}(at \ \Upsilon(10860))},
\]

where \(\sigma_{\text{tot}}(at \ \Upsilon(10860)) = (0.340 \pm 0.016) \text{ nb} \) \[17\].

V. DALITZ ANALYSIS

Figure 2 shows the Dalitz distributions for the selected \(\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0\) candidates in the signal regions given in Table I. A mass-constrained fit is performed for the \(\Upsilon(nS)\) candidates. Samples of background events are selected in the \(M_{\text{miss}}(\pi^0\pi^0)\) sidebands for \(\Upsilon(nS) \rightarrow \ell^+\ell^-\) and in the \(M(\Upsilon(1S)\pi^+\pi^-)\) sidebands for \(\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-\). Then we refit candidates to the nominal mass of the corresponding \(\Upsilon(nS)\) state to match the phase space boundaries. We use the following sideband regions: \([9.20 : 9.35]\text{ GeV/c}^2\) and \([9.60 : 9.75]\text{ GeV/c}^2\) for \(\Upsilon(1S)\) sidebands; \([9.80 : 9.95]\text{ GeV/c}^2\) and \([10.15 : 10.30]\text{ GeV/c}^2\) for \(\Upsilon(2S)\) sidebands; \([9.90 : 10.10]\) GeV/c\(^2\) for \(\Upsilon(2S)\) sidebands; \([10.15 : 10.30]\) GeV/c\(^2\) and \([10.45 : 10.50]\) GeV/c\(^2\) for \(\Upsilon(3S)\) sidebands.

We parameterize the background PDF by the following function:

\[
B(s_1, s_2) = 1 + p_1 e^{-q_1 s_3} + p_2 e^{-q_2 (s_{\text{min}} - s_2)},
\]

where \(p_1, p_2, q_1\) and \(q_2\) are the fit parameters, \(s_3 = M^2(\pi^0\pi^0)\), \(s_{\text{min}} = \text{min}(s_1, s_2)\) and \(s_{1,2} = M^2(\Upsilon(nS)\pi^0)\). \(c_2\) is defined as \((m_{\Upsilon(nS)} + m_{\pi^0})^2\).

Variation of the reconstruction efficiency over the Dalitz plot is determined using a large sample of MC with a uniform phase space distribution. We use the following function to parameterize the efficiency:

\[
\epsilon = 1 + \alpha \{1 - e^{-(s_3 - c_0)/b_0}\} \{1 - e^{-(c_1 - s_{\text{max}})/b_1}\},
\]

where \(\alpha, b_0\) and \(b_1\) are fit parameters, \(s_{\text{max}} = \text{max}(s_1, s_2)\), \(c_0\) and \(c_1\) are defined as \(c_0 = 4m_{\pi^0}^2\) and \(c_1 = (m_{\Upsilon(10860)} - m_{\pi^0})^2\).

The amplitude analysis of the three-body \(\Upsilon(10860) \rightarrow \Upsilon(nS)\pi^0\pi^0\) decays closely follows Ref. \[1\]. We describe the three-body signal amplitude with a sum of quasi-two-body contributions:

\[
M(s_1, s_2) = A_{Z1} + A_{Z2} + A_{f0} + A_{f2} + a^{nr},
\]

where \(A_{Z1}\) and \(A_{Z2}\) are the amplitudes for contributions from the \(Z_0^0(10610)\) and \(Z_0^0(10650)\), respectively. The amplitudes \(A_{f0}, A_{f2}\) and \(a^{nr}\) account for the contributions from the \(\pi^0\pi^0\) system in an \(f_0(980)\), \(f_2(1275)\) and a non-resonant state, respectively. We assume that the dominant contributions to \(A_{Z1}\) are from amplitudes that preserve the orientation of the spin of the heavy quarkonium state and, thus, both pions in the cascade decay \(\Upsilon(10860) \rightarrow Z_0^0\pi^0 \rightarrow \Upsilon(nS)\pi^0\pi^0\) are emitted in an \(S\)-wave with respect to the heavy quarkonium system. As demonstrated in Ref. \[3\], angular analysis supports this assumption. Consequently, we parameterize both amplitudes with an \(S\)-wave Breit-Wigner function, neglecting the possible \(s\) dependence of the resonance width:

\[
\text{BW}(s, M, \Gamma) = \frac{\sqrt{\lambda T}}{M^2 - s - iM\Gamma}.
\]

Both amplitudes are symmetric with respect to \(\pi^0\) interchange:

\[
A_{Zk}(k = 1, 2) = a_k e^{i\delta_k} (\text{BW}(s_1, m_k, \Gamma_k) + \text{BW}(s_2, m_k, \Gamma_k)).
\]

The masses and widths are fixed to the values obtained in the \(\Upsilon(nS)\pi^+\pi^-\) and \(h_{\pi}(m\pi\pi)\pi^+\pi^-\) analyses: \(M(Z_1) = 10607.2\text{ MeV/c}^2, \Gamma(Z_1) = 18.4\text{ MeV}, M(Z_2) = 10652.2\text{ MeV/c}^2\) and \(\Gamma(Z_2) = 11.5\text{ MeV} \[1\]. We use a Flatté function \[13\] for the \(f_0(980)\) and a Breit-Wigner function for the \(f_2(1275)\). Coupling constants of the \(f_0(980)\) are fixed at the values from the \(B^+ \rightarrow K^+\pi^+\pi^-\) analysis: \(M = 950\text{ MeV/c}^2, g_{\pi\pi} = 0.23\) and \(g_{KK} = 0.73 \[19\]. The mass and width of the \(f_2(1275)\) resonance are fixed to the world average values \[20\]. Following suggestions in Ref. \[21\], the non-resonant amplitude \(a^{nr}\) is parameterized as

\[
a^{nr} = a^{nr}_1 e^{i\phi_1^{nr}} + a^{nr}_2 e^{i\phi_2^{nr}} s_3,
\]

where \(a^{nr}_1\), \(a^{nr}_2\), \(\phi_1^{nr}\) and \(\phi_2^{nr}\) are free parameters in the fit. As there is only sensitivity to the relative amplitudes and phases between decay modes, we fix \(a^{nr}_1 = 10.0\) and \(\phi_2^{nr} =
Since the phase space of the decay $\Upsilon(10860) \to \Upsilon(3S)\pi^0\pi^0$ is very limited, contributions from f_0 and f_2 are not included in the fit.

We perform an unbinned maximum likelihood fit. The likelihood function is defined as

$$L = \prod \epsilon(s_1, s_2) \left(f_{\text{sig}} S(s_1, s_2) + (1 - f_{\text{sig}}) B(s_1, s_2) \right),$$

where the product runs over all signal candidates. $S(s_1, s_2) = |M(s_1, s_2)|^2$ convoluted with the detector resolution (6.0 MeV/c^2 for $M(\Upsilon(nS)\pi^0)$); $\epsilon(s_1, s_2)$ describes the variation of the reconstruction efficiency over the Dalitz plot. The fraction f_{sig} is the fraction of signal events in the data sample determined separately for each $\Upsilon(nS)$ decay mode (see Table III). The function $B(s_1, s_2)$ describes the distribution of background events over the phase space. Both products $S(s_1, s_2)\epsilon(s_1, s_2)$ and $B(s_1, s_2)$ are normalized to unity.

To ensure that the fit converges to the global minimum, we perform 10^3 fits with randomly assigned initial values for amplitudes and phases. We find two solutions for the $\Upsilon(2S)\pi^0\pi^0$ sample with similar values of $-2\ln L$ (see Table III). Solution A has better consistency with the Dalitz plot fit result for the $\Upsilon(10860) \to \Upsilon(2S)\pi^+\pi^-$ decay [5]. We find single solutions for the $\Upsilon(1,3S)\pi^0\pi^0$ samples. Table IV shows the values and errors of amplitudes and phases obtained from the fit to the $\Upsilon(1S)\pi^0\pi^0$ and $\Upsilon(3S)\pi^0\pi^0$ Dalitz plots. Projections of the fits are shown in Figs. 3A. These projections are very similar to the corresponding distributions in $\Upsilon(nS)\pi^+\pi^-$ [1].

The Z_b^0 signal is most clearly observed in $M(\Upsilon(2S)\pi^0)_{\text{max}}, M(\Upsilon(3S)\pi^0)_{\text{max}}$ and $M(\Upsilon(3S)\pi^0)_{\text{min}}$.

The Z_b^0 significance is calculated from a large number of pseudo-experiments, each with the same statistics as in data. MC samples are generated using models without the Z_b^0 contribution. We fit them with and without the $Z_b^0(10610)$ contribution and examine the $\Delta(-2\ln L)$ distributions. We find 5.3σ for the $Z_b^0(10610)$ statistical significance in both solutions for $\Upsilon(2S)\pi^0\pi^0$. In addition, the $Z_b^0(10610)$ statistical significance is 4.7σ in the fit to the $\Upsilon(3S)\pi^0\pi^0$ sample. The $Z_b^0(10610)$ signal is not significant in the fit to the $\Upsilon(1S)\pi^0\pi^0$ events due to the smaller relative branching fraction. The signal for the $Z_b^0(10650)$ is not significant in any of the $\Upsilon(1,2,3S)\pi^0\pi^0$ datasets.

We calculate the relative fit-fraction of each resonance as the ratio $f_R = \frac{f(\text{data})}{f(\text{fit})}$. We use the central values from Table III to calculate the fit fractions.
TABLE IV. Results of the Dalitz plot fit of $\Upsilon(1,3S)\pi^0\pi^0$ events. The phases are in degrees. The non-resonant amplitude $a_1^{\pi r}$ and its phase are fixed to 10.0 and 0.0, respectively.

Solutions	w/o Z_b^0	with Z_b^0's	w/o Z_b^0	with Z_b^0's	w/o Z_b^0	with Z_b^0's
$A(Z_b^0)$	0.0 (fixed)	0.46$^{+0.19}_{-0.11}$	0.58$^{+0.21}_{-0.14}$	0.0 (fixed)	1.35$^{+0.64}_{-0.33}$	1.42 ± 0.48
$\phi(Z_b^0)$	—	243 ± 14	247 ± 14	—	88 ± 18	91 ± 21
$A(Z_b^0')$	0.0 (fixed)	0.0 (fixed)	0.37$^{+0.22}_{-0.16}$	0.0 (fixed)	0.0 (fixed)	0.66 ± 0.40
$\phi(Z_b^0')$	—	—	235 ± 27	—	124 ± 37	
$A(f_2)$	28.2 ± 7.0	23.9 ± 7.3	18.2 ± 7.3	41.8 ± 9.0	48.7 ± 15.4	43.3 ± 15.6
$\phi(f_2)$	28 ± 10	28 ± 13	36 ± 21	359 ± 14	10 ± 16	132 ± 19
$A(f_0)$	8.2 ± 2.1	10.5 ± 1.9	11.5 ± 1.9	13.3 ± 3.6	13.4 ± 4.2	12.6 ± 4.9
$\phi(f_0)$	210 ± 8	213 ± 7	211 ± 6	131 ± 11	134 ± 15	132 ± 19
$a_1^{\pi r}$	24.6 ± 4.2	31.8 ± 4.3	34.7 ± 4.9	44.2 ± 10.1	50.4 ± 12.2	50.8 ± 13.7
$a_2^{\pi r}$	93 ± 15	85 ± 13	80 ± 12	290 ± 16	291 ± 22	288 ± 25
$-2\ln L$	−154.5	−186.6	−193.1	−155.4	−186.3	−191.2

TABLE V. Results of the Dalitz plot fit of $\Upsilon(2S)\pi^0\pi^0$ events. The phases are in degrees. The non-resonant amplitude $a_1^{\pi r}$ and its phase are fixed to 10.0 and 0.0, respectively.

Model	$\Upsilon(1S)\pi^0\pi^0$	$\Upsilon(1S)\pi^0\pi^0$	$\Upsilon(3S)\pi^0\pi^0$	$\Upsilon(3S)\pi^0\pi^0$	$\Upsilon(3S)\pi^0\pi^0$	$\Upsilon(3S)\pi^0\pi^0$
A(Z_b^0)	0.50$^{+0.24}_{-0.30}$	0.0 (fixed)	1.07$^{+1.42}_{-1.33}$	1.09$^{+1.71}_{-1.31}$	0.0 (fixed)	
$\phi(Z_b^0)$	324 ± 50	—	158 ± 25	149 ± 24	—	
A(Z_b^0')	0.60$^{+0.51}_{-0.47}$	0.0 (fixed)	0.32$^{+1.18}_{-0.32}$	0.0 (fixed)	0.0 (fixed)	
$\phi(Z_b^0')$	301 ± 60	—	252 ± 81	—	—	
A(f_2)	15.7 ± 2.0	14.6 ± 1.6	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	
$\phi(f_2)$	60 ± 11	51 ± 9	—	—	—	
A(f_0)	1.07 ± 0.15	0.97 ± 0.12	0.0 (fixed)	0.0 (fixed)	0.0 (fixed)	
$\phi(f_0)$	168 ± 11	163 ± 10	—	—	—	
a$^{\pi r}_1$	15.2 ± 1.2	13.9 ± 0.7	50.5 ± 14.1	44.8 ± 12.5	48.0 ± 12.7	
a$^{\pi r}_2$	162 ± 4	161 ± 4	155 ± 15	153 ± 14	151 ± 15	
$-2\ln L$	−316.7	−321.4	−31.3	−30.7	−5.3	

of the fit given in Tables III and IV. Errors and 90% CL upper limits for non-significant fractions are obtained using pseudo-experiments. Results are summarized in Table V. The sum of individual contributions is not equal to 100% due to interference between amplitudes. Reasonable agreement is observed with the corresponding fit-fractions in the $\Upsilon(nS)\pi^+\pi^-$ analysis [8]. Table VI shows the product of cross sections and branching fractions $\sigma(e^+e^- \rightarrow Z_b^0\pi^0) \cdot B(Z_b^0 \rightarrow \Upsilon(nS)\pi^0)$.

We perform a simultaneous fit of the $\Upsilon(2S)\pi^0\pi^0$ and $\Upsilon(3S)\pi^0\pi^0$ data samples. No constraints between samples are imposed on signal model parameters and the background description. The combined significance of the $Z_b^0(10610)$ signal is 6.8σ. Results for the simultaneous fit are exactly the same as in separate fits of $\Upsilon(2S)\pi^0\pi^0$ samples, as expected. We also perform a simultaneous fit with the $Z_b^0(10610)$ mass as a free parameter and find $m(Z_b^0(10610)) = (10609\pm4\pm4)$ MeV/c^2; this is consistent with the mass of the $Z_b^0(10610)$.

VI. SYSTEMATIC UNCERTAINTIES IN THE DALITZ ANALYSIS

Table VII shows the main sources of systematic uncertainties for the measurement of fractions obtained from a fit of individual channels. The model uncertainty originates mainly from the parameterization of the non-resonant amplitude. Four additional models are used: with an additional $f_0(500)$ resonance, parameterized by a Breit-Wigner function with $M = 600$ MeV/c^2 and $\Gamma = 400$ MeV/c; a model with $a^{\pi r} = a e^{i\phi_0} + b e^{i\phi_0} \sqrt{s}(\pi^0\pi^0)$; a model without the $f_0(980)$ contribution; and a model without the $a^{\pi r}_1$ contribution. Another source of systematic uncertainty is the determination of the signal efficiency. To estimate this effect, we perform two additional fits with a modified efficiency function by varying the momentum dependence of the π^0 reconstruction efficiency. We also perform a fit with a modified detector resolution function; the resolutions are varied from 4 to 8 MeV/c^2 instead of the nominal 6 MeV/c^2 to take into account the effect of different momentum resolu-
in the signal region. The legends are the same as in Fig. 3. Only solution A is shown. Both solutions give indistinguishable
histograms show the fit with and without \(Z_0 \)'s, respectively. Hatched histograms show the background components.

\[\text{FIG. 3. Comparison of the fit results (open histograms) with experimental data (points with error bars) for } \Upsilon(1S) \pi^0 \pi^0 \text{ events in the signal region.} \]

\[\text{FIG. 4. Comparison of the fit results (open histograms) with experimental data (points with error bars) for } \Upsilon(2S) \pi^0 \pi^0 \text{ events in the signal region. The legends are the same as in Fig. 3. Only solution A is shown. Both solutions give indistinguishable plots.} \]

\[\text{FIG. 5. Comparison of the fit results (open histograms) with experimental data (points with error bars) for } \Upsilon(3S) \pi^0 \pi^0 \text{ events in the signal region. The legends are the same as in Fig. 3} \]

\[
\begin{array}{cccc}
\text{Fraction, } \% & \Upsilon(1S) & \Upsilon(2S) \text{ solution A} & \Upsilon(2S) \text{ solution B} & \Upsilon(3S) \\
\hline
Z_0^{0}(10610) & 0.9^{+0.7}_{-0.2}(4.6) & 13.5^{+3.7}_{-2.7}(8.9) & 25.4^{+3.6}_{-2.9}(12.4) & 34^{+14}_{-11}(10.9) \\
Z_0^{0}(10650) & 0.6^{+0.7}_{-0.3}(4.8) & 4.8^{+2.1}_{-1.3}(7.4) & 6^{+2.3}_{-1.4}(10.0) & 8^{+2.8}_{-2.0}(16.7) \\
f_2(1275) & 26.3^{+4.2}_{-1.5} & 3.9^{+1.7}_{-0.7} & 8.1^{+4.5}_{-2.2} & 65^{+14}_{-15} \\
\text{Total S-wave} & 72.4^{+4.7}_{-3.4} & 95.5^{+6.2}_{-4.5} & 110^{+7.6}_{-9.8} & 133^{+12}_{-15} \\
\text{Sum} & 100^{+4}_{-3} & 116^{+3}_{-4} & 145^{+9}_{-10} & 153^{+15}_{-12} \\
\end{array}
\]

\[
\text{TABLE V. Summary of results for the fit-fractions of individual channels in the } \Upsilon(nS) \pi^0 \pi^0 \text{ final state.}
\]
tions in MC and data. We use different sideband subsamples to determine the background PDF parameters: the low-mass sideband only, or the high-mass sideband, or $Y(nS) \to e^+e^-$ events only, or $Y(nS) \to \mu^+\mu^-$ events only. We also vary the signal to background ratio within its errors. We considered the effect of the uncertainty of the c.m. energy (conservatively taken as ± 3 MeV).

The contribution of all experimental effects to the degradation of $\Delta(-2 \ln L)$ from the simultaneous fit of the $Y(2,3S)\pi^0\pi^0$ sample is smaller than 4.4. The corresponding limit for the model uncertainties is 4.5. We combine these two values in quadrature and decrease $\Delta(-2 \ln L)$ from the simultaneous fit by 6.3 in calculations of the $Z_b^0(10610)$ significance. As a result, the $Z_b^0(10610)$ significance is 6.5σ. Fits with the $Z_b^0(10610)$ mass as a free parameter yield values from 10606 to 10613 MeV/c^2. We use ± 4 MeV/c^2 as a model uncertainty for the $Z_b^0(10610)$ mass.

**TABLE VI. Product of the $\sigma(e^+e^- \to Z_b^0\pi^0) \cdot B(Z_b^0 \to Y(nS)\pi^0)$.

$\sigma \cdot B$, fb	$T(1S)\pi^0\pi^0$	$T(2S)\pi^0\pi^0$	$T(3S)\pi^0\pi^0$
$Z_b^0(10610)$	10^{+10}_{-10} (< 59)	$252^{+727+97}_{-52-88}$	$475^{+799596}_{-114-214}$
$Z_b^0(10650)$	7^{+29+6}_{-7-4} (< 62)	50^{+26+28}_{-26-22} (< 168)	$50^{+108+22}_{-30-22}$ (< 260)

VII. CONCLUSION

We report the observation of $T(10860) \to Y(nS)\pi^0\pi^0$ decays with $n = 1, 2$ and 3. The measured cross sections, $\sigma(e^+e^- \to Y(10860) \to Y(1S)\pi^0\pi^0) = (1.16 \pm 0.06 \pm 0.10)$ pb, $\sigma(e^+e^- \to Y(10860) \to Y(2S)\pi^0\pi^0) = (1.87 \pm 0.11 \pm 0.23)$ pb, and $\sigma(e^+e^- \to Y(10860) \to Y(3S)\pi^0\pi^0) = (0.98 \pm 0.24 \pm 0.19)$ pb, are consistent with the expectations from isospin conservation based on $\sigma(Y(10860) \to Y(nS)\pi^0\pi^0)$. The first observation of a neutral resonance decaying to $Y(2,3S)\pi^0\pi^0$, the $Z_b^0(10610)$, has been obtained in a Dalitz analysis of $Y(10860) \to Y(2,3S)\pi^0\pi^0$ decays. The statistical significance of the $Z_b^0(10610)$ signal is 6.8σ (6.5σ including experimental and model uncertainties). Its measured mass, $m(Z_b^0(10610)) = (10609 \pm 4 \pm 4)$ MeV/c^2, is consistent with the mass of the corresponding charged state, the Z_b^+ (10610). The $Z_b^0(10650)$ signal is not significant in any of the $Y(1,2,3S)\pi^0\pi^0$ channels. Our data are consistent with the existence of $Z_b^0(10650)$, but the available statistics are insufficient for the observation of this state.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under contract No. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; The BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grant No. 2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330, BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”), and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”). This work is partially supported by grants of the Russian Foundation for Basic Research 12-02-00862, 12-02-01296, 12-02-01032, 12-02-33015 and by the grant of the Russian Federation government 11.G34.31.0047.
TABLE VII. Systematic uncertainty on the fractions of individual channels in the $\Upsilon(nS)\pi^0\pi^0$ final states.

Uncertainty, %	Model	Efficiency	Resolution	Background	Beam energy	Sum
$\Upsilon(1S)$, $Z_0^+(10610)$	$+0.3$	$+0.2$	$+0.04$	$+0.07$	$+0.04$	$+0.2$
$\Upsilon(1S)$, $Z_0^+(10650)$	$+0.3$	$+0.2$	$+0.02$	$+0.13$	$+0.01$	$+0.3$
$\Upsilon(1S)$, $f_2(1275)$	$+0.1$	$+0.1$	$+0.05$	$+0.1$	$+0.1$	$+0.3$
$\Upsilon(1S)$, S-wave	$+0.5$	$+0.6$	$+0.05$	$+0.1$	$+0.2$	$+0.6$
$\Upsilon(2S)$, sol. A, $Z_0^+(10610)$	$+1.1$	$+0.6$	$+0.05$	$+0.1$	$+0.1$	$+0.3$
$\Upsilon(2S)$, sol. A, $Z_0^+(10650)$	$+0.1$	$+0.1$	$+0.05$	$+0.1$	$+0.1$	$+0.3$
$\Upsilon(2S)$, sol. A, $f_2(1275)$	$+0.0$	$+0.0$	$+0.05$	$+0.1$	$+0.1$	$+0.3$
$\Upsilon(2S)$, sol. A, S-wave	$+0.7$	$+0.6$	$+0.05$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(2S)$, sol. B, $Z_0^+(10610)$	$+0.1$	$+0.1$	$+0.05$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(2S)$, sol. B, $Z_0^+(10650)$	$+0.1$	$+0.1$	$+0.05$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(2S)$, sol. B, $f_2(1275)$	$+0.0$	$+0.0$	$+0.05$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(2S)$, sol. B, S-wave	$+0.1$	$+0.1$	$+0.1$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(3S)$, $Z_0^+(10610)$	$+0.2$	$+0.5$	$+0.1$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(3S)$, $Z_0^+(10650)$	$+0.2$	$+0.5$	$+0.1$	$+0.2$	$+0.2$	$+0.4$
$\Upsilon(3S)$, S-wave	$+0.1$	$+0.1$	$+0.1$	$+0.2$	$+0.2$	$+0.4$

[1] A. Bondar, A. Garmash, R. Mizuk, D. Santel, K. Kinoshita et al. (Belle Collaboration), Phys. Rev. Lett. 108, 122001 (2012).
[2] I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 032001 (2012).
[3] I. Adachi et al. (Belle Collaboration), arXiv:1105.4583 [hep-ex].
[4] I. V. Danilkin, V. D. Orlovsky and Yu. A. Simonov, Phys. Rev. D 85, 034012 (2012).
[5] D. Bugg, Europhys. Lett. 96, 11002 (2011).
[6] M. Karliner and H. J. Lipkin, arXiv:0802.0649 [hep-ph].
[7] A.E. Bondar, A. Garmash, A.I. Milstein, R. Mizuk and M.B. Voloshin, Phys. Rev. D 84, 054010 (2011).
[8] I. Adachi et al. (Belle Collaboration), arXiv:1209.6450 [hep-ex].
[9] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. (2012) 04D001.
[10] S. Kurokawa and E. Kitakami, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. (2013) 03A001 and following articles up to 03A011.
[11] A. Abashian et al., Nucl. Instrum. Meth. A 491, 69 (2002).
[12] K.Hanagaki et al., Nucl. Instrum. Meth. A 485, 490 (2002).
[13] K.-F. Chen, W.-S. Hou et al. (Belle Collaboration), Phys. Rev. D 82, 091106(R) (2010).
[14] E.A.Kuraev, V.S.Fadin, Sov. J. Nucl. Phys. 41, 466 (1985). M.Benayoun, S.I. Eidelman, V.N.Ivanchenko, Z.K.Silagadze, Mod. Phys. Lett. A 14, 2605 (1999).
[15] Throughout the paper, the first and second errors are statistical and systematic, respectively. When one error is shown, it includes only statistical uncertainty. In such cases the systematic error is omitted.
[16] S. Actis et al., Eur. Phys. J. C 66, 585 (2010).
[17] S. Essen, A. J. Schwartz et al. (Belle Collaboration), Phys. Rev. D 87, 031101(R) (2013).
[18] S. M. Flatte, Phys. Lett. B 63, 224, (1976).
[19] A. Garmash et al. (Belle Collaboration), Phys. Rev. Lett. 96, 251803 (2006).
[20] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
[21] M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008); M.B. Voloshin, Phys. Rev. D 74, 054022 (2006) and references therein.