Estimations of Order α_s^3 and α_s^4 Corrections to Mass-Dependent Observables

K.G. Chetyrkin1,2, B.A. Kniehl2, A. Sirlin3

1 Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312, Russia
2 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany
3 Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA

Abstract

A simple procedure to estimate $O(\alpha_s^3)$ and $O(\alpha_s^4)$ corrections to mass-dependent observables is conjectured. The method is tested in a number of cases where the $O(\alpha_s^3)$ contribution is exactly known, and reasonable agreement is found.

PACS numbers: 11.15.Me, 11.25.Db, 12.38.-t, 12.38.Cy
Given the great difficulty of evaluating higher-order corrections, it is very desirable to have reasonable methods to estimate their sign and magnitude. In fact, significant and interesting investigations in this subject have been carried out in the past \[1,2,3,4,5,6\]. The aim of this note is to propose a simple estimation method to treat an important class of mass-dependent observables.

We first recall salient features of the estimation methods proposed in the literature. Calling \(R(s) \) an observable depending on a single time-like kinematic variable \(s \), such as a squared centre-of-mass energy, we consider the QCD expansion

\[
R(s) = \sum_{n=0}^{\infty} R_n(s, \mu^2) a^n(\mu^2), \tag{1}
\]

where \(a(\mu^2) = \alpha_s^{(n_f)}(\mu^2)/\pi \), \(\mu \) is the renormalization scale, and \(n_f \) is the number of flavours active at that scale. By factoring out an appropriate power of \(s \), it is always possible to render \(R(s) \) dimensionless. Henceforth, we shall adopt this convention. As \(R(s) \) is renormalization-group invariant, we may choose \(\mu^2 = s \), in which case Eq. (1) becomes

\[
R(s) = \sum_{n=0}^{\infty} r_n a^n(s), \tag{2}
\]

where \(r_n = R_n(s, s) \). If \(R(s) \) does not depend on masses or other kinematical variables, the \(r_n \) are numerical constants. Estimations of higher-order corrections using optimization procedures based on the fastest apparent convergence (FAC) \[1\] and the principle of minimal sensitivity (PMS) \[2\] have been carried out in two main scenarios:

(i) Suppose that \(r_0, r_1, \) and \(r_2 \) are known. Then the FAC and PMS approaches lead to the estimates \[1,2\]

\[
\begin{align*}
 r_3^{\text{FAC}} &= r_2 \left(\frac{r_2}{r_1} + \frac{\beta_1}{\beta_0} \right), \\
 r_3^{\text{PMS}} &= r_1 \left(\frac{r_2}{r_1} + \frac{\beta_1}{2\beta_0} \right)^2,
\end{align*}
\tag{3}
\]

where

\[
\beta_0 = \frac{1}{4} \left(11 - \frac{2}{3} n_f \right), \quad \beta_1 = \frac{1}{16} \left(102 - \frac{38}{3} n_f \right) \tag{4}
\]

are the first two coefficients of the QCD \(\beta \) function.

(ii) Suppose that \(r_0, r_1, r_2, \) and \(r_3 \) are known. Then in both the FAC and PMS methods one finds \[1,2,3,4\]

\[
 r_4^{\text{FAC/PMS}} = r_2 \left(3 \frac{r_3}{r_1} - 2 \frac{r_2^2}{r_1^2} - \frac{r_2 \beta_1}{2r_1 \beta_0} + \frac{\beta_2}{\beta_0} \right), \tag{5}
\]

where, in the \(\overline{\text{MS}} \) scheme, \[5\]

\[
\beta_2 = \frac{1}{64} \left(\frac{2857}{2} - \frac{5033}{18} n_f + \frac{325}{54} n_f^2 \right). \tag{6}
\]
If r_3 is not known, we may consider employing the estimates from Eq. (3). Inserting these expressions into Eq. (5), one finds

\[
\begin{align*}
r_4^{\text{FAC}} &= r_2 \left(\frac{r_2^2}{r_1^2} + \frac{5r_2\beta_1}{2r_1\beta_0} + \frac{\beta_2}{\beta_0} \right), \\
r_4^{\text{PMS}} &= r_2 \left(\frac{r_2^2}{r_1^2} + \frac{5r_2\beta_1}{2r_1\beta_0} + \frac{\beta_2}{\beta_0} + \frac{3\beta_2^2}{4\beta_0^2} \right).
\end{align*}
\]

(7)

Formally, the FAC and PMS procedures could be applied in both Minkowskian and Euclidean spaces. However, on general grounds it is expected that the optimization procedures are more accurate when applied in Euclidean space, as one avoids the presence of physical thresholds. Accordingly, when the theoretical expansion for an observable is given Minkowskian space, it has been proposed [4] to apply the optimization procedures to an associated function defined in the Euclidean region, namely

\[
D(Q^2) = Q^2 \int_0^\infty ds \frac{R(s)}{(s + Q^2)^2},
\]

(8)

with $Q^2 \geq 0$. $R(s)$ admits the inverse integral representation

\[
R(s) = \frac{1}{2\pi i} \int_{-s-i\epsilon}^{-s+i\epsilon} ds' \frac{D(s')}{s'},
\]

(9)

where $D(s')$ is the analytic continuation of $D(Q^2)$ to the complex plane. Inserting the expansion of Eq. (1) into Eq. (8), carrying out the integration, and then setting $\mu^2 = Q^2$, one finds

\[
D(Q^2) = \sum_{n=0}^{\infty} d_n a^n(Q^2),
\]

(10)

where

\[
\begin{align*}
d_0 &= r_0, & d_1 &= r_1, & d_2 &= r_2, \\
d_3 &= r_3 + \frac{\pi^2}{3} r_1^2 \beta_0^2, & d_4 &= r_4 + \pi^2 \beta_0 \left(r_2 \beta_0 + \frac{5}{6} r_1 \beta_1 \right).
\end{align*}
\]

(11)

(12)

In the Euclidean approach, one estimates d_3 and d_4 using the expressions analogous to Eqs. (3), (4), and (7) with r_n replaced by d_n, and obtains r_3 and r_4 from Eq. (12).

At this point, we turn our attention to mass-dependent observables of the form

\[
T(s) = m^2(\mu^2) \sum_{n=0}^{\infty} T_n(s, \mu^2) a^n(\mu^2),
\]

(13)

where $m(\mu^2)$ is a running quark mass. Again, without loss of generality, we may assume that the $T_n(s, \mu^2)$ are dimensionless. Setting $\mu^2 = s$ and defining $t_n = T_n(s, s)$, we have

\[
T(s) = m^2(s) \sum_{n=0}^{\infty} t_n a^n(s).
\]

(14)
If \(T(s)/m^2(s) \) does not depend on masses or other kinematic variables, the \(t_n \) are numerical constants. The associated function defined in the Euclidean region is

\[
F(Q^2) = Q^2 \int_0^{\infty} ds \frac{T(s)}{(s + Q^2)^2}.
\]

In order to carry out the \(s \) integration in Eq. (15), we substitute in Eq. (14) the expansions

\[
a(s) = a(\mu^2) \left\{ 1 - a(\mu^2)\beta_0 \ell + a^2(\mu^2)\ell(\beta_0^2 - \beta_1) + a^3(\mu^2)\ell \left(- \frac{\beta_0^2 \ell^2}{2} + \frac{5}{2} \beta_0 \beta_1 \ell - \beta_2 \right) \right. \\
+ a^4(\mu^2)\ell \left[\frac{\beta_0^4 \ell^3}{3} - \frac{13}{3} \beta_0^2 \beta_1 \ell^2 + 3 \left(\frac{\beta_0^2}{2} + \beta_0 \beta_2 \right) \ell - \beta_3 \right] + O(a^5\ell^5) \}.
\]

\[
m(s) = m(\mu^2) \left\{ 1 - a(\mu^2)\gamma_0 \ell + a^2(\mu^2)\ell \left[\frac{\gamma_0}{2} (\beta_0 + \gamma_0) \ell - \gamma_1 \right] \right.
+ a^3(\mu^2)\ell \left[\frac{-\gamma_0}{3} (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) \ell^2 + \left(\frac{\beta_1 \gamma_0}{2} + \gamma_1 (\beta_0 + \gamma_0) \right) \ell - \gamma_2 \right] \\
+ a^4(\mu^2)\ell \left[\frac{\gamma_0}{4} (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) \ell^3 \\
- \left(\frac{\beta_0 \gamma_0}{2} + \gamma_1 (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) \right) \ell^2 \\
+ \left(\frac{\beta_0 \gamma_0}{2} + \gamma_1 \left(\beta_0 + \frac{\gamma_0}{2} \right) \right) + \gamma_2 \left(\frac{3}{2} \beta_0 \gamma_0 \right) \ell - \gamma_3 \right] + O(a^5\ell^5) \}.
\]

where \(\ell = \ln(s/\mu^2) \) and, in the \(\overline{\text{MS}} \) scheme, the coefficients of the mass anomalous dimension are

\[
\gamma_0 = 1, \quad \gamma_1 = \frac{1}{16} \left(\frac{202}{3} - \frac{20}{9} n_f \right), \\
\gamma_2 = \frac{1}{64} \left(1249 - \frac{2216}{27} + \frac{160}{3} \zeta(3) \right) n_f - \frac{140}{81} n_f^2.
\]

Here, \(\zeta \) is Riemann’s zeta function, with value \(\zeta(3) \approx 1.20206 \). The coefficient \(\gamma_3 \) is presently unknown. For completeness, we have also presented the \(O(\alpha^4) \) term in Eq. (16), although we shall not need it here. These substitutions bring Eq. (14) into the form of Eq. (13) with coefficient functions \(T_n(s, \mu^2) \) that depend on \(s \) only through powers of \(\ell \). Inserting the expression thus obtained into Eq. (13) and using the elementary integrals

\[
Q^2 \int_0^{\infty} ds \frac{1; \ell; \ell^2; \ell^3; \ell^4}{(s + Q^2)^2} = \left\{ 1; L; \frac{\pi^2}{3}; L^2 + \frac{\pi^2}{3}; L^3 + \pi^2 L; L^4 + 2\pi^2 L^2 + \frac{7\pi^4}{15} \right\},
\]

where \(L = \ln(Q^2/\mu^2) \), one obtains an expansion of the form

\[
F(Q^2) = m^2(\mu^2) \sum_{n=0}^{\infty} F_n(Q^2, \mu^2) \alpha^n(\mu^2).
\]
Setting $\mu^2 = Q^2$, Eq. (20) becomes

$$F(Q^2) = m^2(Q^2) \sum_{n=0}^{\infty} f_n a^n(Q^2),$$ \hspace{1cm} (21)$$

where $f_n = F_n(Q^2, Q^2)$ are numerical constants. Specifically, one finds

$$f_0 = t_0, \quad f_1 = t_1, \quad f_2 = t_2 + \frac{\pi^2}{3} t_0 \gamma_0 (\beta_0 + 2 \gamma_0),$$ \hspace{1cm} (22)$$

$$f_3 = t_3 + \frac{\pi^2}{3} \{ t_1 (\beta_0 + \gamma_0) (\beta_0 + 2 \gamma_0) + t_0 [\beta_1 \gamma_0 + 2 \gamma_1 (\beta_0 + 2 \gamma_0)] \},$$ \hspace{1cm} (23)$$

$$f_4 = t_4 + \frac{\pi^2}{3} \{ t_2 (\beta_0 + \gamma_0) \left(\beta_0 + \frac{2}{3} \gamma_0 \right) + t_1 \left[\beta_1 \left(\frac{5}{6} \beta_0 + \gamma_0 \right) + \frac{4}{3} \gamma_1 (\beta_0 + \gamma_0) \right] + t_0 \left[\frac{\beta_2 \gamma_0}{3} + \frac{2}{3} \gamma_1 (\beta_1 + \gamma_0) + \gamma_2 \left(\beta_0 + \frac{4}{3} \gamma_0 \right) \right] \} + \frac{7\pi^4}{15} t_0 \gamma_0 (\beta_0 + \gamma_0) (\beta_0 + 2 \gamma_0) \left(\frac{\beta_0}{2} + \gamma_0 \right).$$ \hspace{1cm} (24)$$

The case of Eqs. (1) and (2), in which the $m^2(\mu^2)$ factor is not present, can be obtained from Eqs. (22)–(24) by setting $\gamma_i = 0$ ($i = 0, 1, 2$). In fact, the relations between the f_n and t_n then become identical to those between the d_n and r_n in Eqs. (11) and (12).

Our proposal is to apply the estimation procedure described before to the f_n expansion of Eq. (21) and to obtain the corresponding t_n coefficients via Eqs. (22) and (24). For instance, if the t_n are known for $n \leq 2$, we obtain f_n for $n \leq 2$ from Eq. (22) and estimate f_3 using the expressions analogous to Eq. (3) with r_n replaced by f_n. The estimate for t_3 is then obtained from Eq. (23). If the t_n are known for $n \leq 3$, we obtain f_n for $n \leq 3$ from Eqs. (22) and (23), f_4 is estimated from the expression analogous to Eq. (3) with r_n replaced by f_n, and t_4 follows from Eq. (24). If t_3 is not known, we may also attempt to estimate f_4 from the expressions analogous to Eq. (4), and t_4 once more from Eq. (24). This proposal essentially relates the estimation of the higher-order coefficients in the mass-dependent expansion to the previously considered mass-independent case. It should be pointed out that there is an element of arbitrariness in this approach. In Eq. (20), we have set $\mu^2 = Q^2$ and proposed to apply the optimization procedure to $\sum_{n=0}^{\infty} f_n a^n(Q^2)$, the cofactor of $m^2(Q^2)$. Had we chosen a different scale $\mu^2 \neq Q^2$ in Eq. (20), the expansion in Eq. (21) and the estimation procedure would be different. On the other hand, the choice $\mu^2 = Q^2$ seems natural and convenient, as all the logarithms in the $F_n(Q^2, \mu^2)$ vanish. In fact, this feature has an additional very useful property: it renders the analysis of t_4 independent of the unknown coefficient γ_3.

An interesting application is the estimation of the $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^4)$ coefficients in the evaluation of the partial width $\Gamma(H \rightarrow \text{hadrons})$ involving final-state quarks with running mass $m(\mu^2) \ll M_H$. The relevant expansion [10] is of the form of Eq. (14) with...
Table 1: Estimations of t_3 and t_4 in $\Gamma(H\to q\bar{q})$ based on the FAC and PMS optimizations of the associated function $F(Q^2)/m^2(Q^2)$, defined in the Euclidean region, and Eqs. (22)–(24). The estimation of t_4 employs the exact value of t_3.

n_f	t_3^{exact}	t_3^{FAC}	t_3^{PMS}	$t_4^{\text{FAC/PMS}}$
3	89.156	75.729	80.206	−945.28
4	65.198	64.956	68.316	−1098.8
5	41.758	53.295	55.547	−1237.4

Table 2: As in Table 1, but using the original function $T(s)/m^2(s)$, defined in the Minkowskian region.

n_f	t_3^{exact}	t_3^{FAC}	t_3^{PMS}	$t_4^{\text{FAC/PMS}}$
3	89.156	235.82	240.30	−527.81
4	65.198	211.20	214.56	−748.62
5	41.758	186.67	188.92	−949.39

\[\sqrt{s} = M_H, \ t_0 = 1, \ t_1 = 17/3, \text{ and } t_2 \approx 35.93996 - 1.35865\ n_f, \] where n_f is the number of active flavours at scale $\sqrt{s} = M_H$. The calculation assumes that there is one massive flavour, identical with that present in the final state of the reaction $H \to q\bar{q}$, and $n_f - 1$ massless ones. Table 1 compares the t_3 estimates of the proposed procedure, based on the FAC and PMS optimizations of $F(Q^2)/m^2(Q^2)$, with the exact result and also provides the t_4 estimate obtained using the exact value of t_3. Table 2 displays the corresponding estimations based on the optimization of the original function $T(s)/m^2(s)$ defined in the Minkowskian domain. We see that the predicted signs for t_3 are correct, but it is apparent that the magnitude of the estimations is much closer to the exact result in the Euclidean approach. In fact, the estimations of t_3 in Table 1 are fairly good: t_3^{FAC} shows errors of $(-15, -0.4, +28)\%$ for $n_f = 3, 4, 5$, respectively; for t_3^{PMS} the corresponding errors are $(-10, +5, +33)\%$. We also see that the t_4 coefficients are predicted to be large and negative.

There are two other cases in which t_3 is exactly known: these are the terms proportional to m_0^2 in the absorptive parts of the axial-vector correlators pertinent to the parton-level decays $W^+ \to cs$ and $Z \to bb$. Here, m_c is evaluated with $n_f = 4$ at $\sqrt{s} = M_W$ and m_b with $n_f = 5$ at $\sqrt{s} = M_Z$. In either case, it is assumed that the remaining $n_f - 1$ quarks are massless. The corresponding coefficients are $t_1 = 5/3$, $t_2 \approx -3.06004 - 0.02532\ n_f$.

\[\sqrt{s} = M_H, \]
Table 3: Estimations of t_3 and t_4 in the m_q^2 contribution to $\Gamma(W^+ \to cs)$ based on the FAC and PMS optimizations of the associated function $F(Q^2)/m^2(Q^2)$, defined in the Euclidean region, and Eqs. (22)–(24). The estimation of t_4 employs the exact value of t_3.

n_f	t_3^{exact}	t_3^{FAC}	t_3^{PMS}	$t_4^{\text{FAC/PMS}}$
3	-87.394	-105.06	-103.75	-582.03
4	-83.356	-98.597	-97.609	-487.93
5	-79.598	-92.475	-91.813	-400.78

Table 4: As in Table 3, but for $Z \to b\bar{b}$.

n_f	t_3^{exact}	t_3^{FAC}	t_3^{PMS}	$t_4^{\text{FAC/PMS}}$
3	32.096	8.6895	11.587	-331.80
4	20.311	4.2754	6.4494	-400.40
5	8.6525	-0.70475	0.75256	-464.41

for $W^+ \to cs$ and $t_1 = 11/3, t_2 \approx 18.02329 - 0.74754 n_f$ for $Z \to b\bar{b}$. Tables 3 and 4 show the FAC and PMS estimations for these transitions in the Euclidean approach. For illustration, we also consider other values of n_f. In the case of $W^+ \to cs$, we see once more that the t_3 estimations are fairly good, with relative errors of 20% or below. Instead, in the case of $Z \to b\bar{b}$, the relative errors are large. We note, however, that in this case both the exact and estimated t_3 values are relatively small. In fact, a simple, way to characterize Tables 1, 3, and 4 is to say that the t_3 estimations have absolute errors of order 20 or below. When t_3^{exact} is large, as in Tables 1 and 3, this leads to fairly accurate results.

There are some important cases in which the t_3 coefficients are not known. Examples include mass relations of the form

$$M_q = \mu_q \sum_{n=0}^{\infty} t_n a^n(\mu_q^2),$$ \hspace{1cm} (25)$$

where M_q is the pole mass and $\mu_q = m_q(\mu_q^2)$ is the $\overline{\text{MS}}$ mass of quark q. In contrast to the previous applications, Eq. (25) does not depend on an external mass parameter such as M_H, M_W, or M_Z which, in principle, can have arbitrary values independent of m_q. On the other hand, defining $T(s) = m_q(s) \sum_{n=0}^{\infty} t_n a^n(s)$ for arbitrary $s \geq 0$, we have the
Table 5: Estimations of t_3 and t_4 in Eq. (25) based on the FAC and PMS optimizations of the associated function $F(Q^2)/m(Q^2)$, defined in the Euclidean region, and Eqs. (27)–(29).

n_f	t_3^{FAC}	t_3^{PMS}	t_4^{FAC}	t_4^{PMS}
3	152.71	153.76	2083.8	2123.4
4	124.10	124.89	1544.1	1571.4
5	97.729	98.259	1091.0	1107.8
6	73.616	73.903	718.74	727.00

Table 5: Estimations of t_3 and t_4 in Eq. (25) based on the FAC and PMS optimizations of the associated function $F(Q^2)/m(Q^2)$, defined in the Euclidean region, and Eqs. (27)–(29).

mathematical identity

$$M_q = \frac{1}{2\pi i} \int_{-\mu q+i\epsilon}^{-\mu q-i\epsilon} ds' \int_{0}^{\infty} ds \frac{T(s)}{(s+s')^2}. \quad (26)$$

In analogy with the previous applications, we introduce the function $F(Q^2)$ defined by Eq. (15) in the Euclidean region $Q^2 \geq 0$. Because of their linear dependence on m_q, the relations between the f_n and t_n are different from those in Eqs. (22)–(24). We now have

$$f_0 = t_0, \quad f_1 = t_1, \quad f_2 = t_2 + \frac{\pi^2}{6} t_0 \gamma_0 (\beta_0 + \gamma_0), \quad (27)$$

$$f_3 = t_3 + \frac{\pi^2}{3} \left\{ t_1 (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) + t_0 \left[\frac{\beta_1 \gamma_0}{2} + \gamma_1 (\beta_0 + \gamma_0) \right] \right\}, \quad (28)$$

$$f_4 = t_4 + \frac{\pi^2}{3} \left\{ t_2 \left(\beta_0 + \frac{\gamma_0}{2} \right) \left(\beta_0 + \frac{\gamma_0}{3} \right) + t_1 \left[\frac{\beta_1}{2} \left(\frac{5}{3} \beta_0 + \gamma_0 \right) + \frac{\gamma_1}{3} (2\beta_0 + \gamma_0) \right] \right. + t_0 \left[\frac{\beta_2 \gamma_0}{6} + \frac{\gamma_1}{3} (\beta_1 + \frac{\gamma_1}{2}) + \gamma_2 \left(\frac{\beta_0}{2} + \frac{\gamma_0}{3} \right) \right] \right\} \right.$$

$$\left. + \frac{7\pi^4}{60} t_0 \gamma_0 (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) \left(\beta_0 + \frac{\gamma_0}{3} \right) \right\} \right. + \frac{7\pi^4}{60} t_0 \gamma_0 (\beta_0 + \gamma_0) \left(\beta_0 + \frac{\gamma_0}{2} \right) \left(\beta_0 + \frac{\gamma_0}{3} \right). \quad (29)$$

Assuming once more that $n_f - 1$ quarks are massless, we have in the case of Eq. (24) $t_0 = 1$, $t_1 = 4/3$, and $t_2 \approx 14.48476 - 1.04137 n_f$ [12]. Table 5 displays the coefficients t_3 and t_4 in Eq. (25) estimated by the FAC and PMS optimizations of the associated function $F(Q^2)/m(Q^2)$, using Eqs. (13) and (14) with r_n replaced by f_n. The entry for $n_f = 6$ corresponding to M_t/m_t, where t is the top quark, gives an expansion very close to that obtained in a different approach based on an optimization of the ratios $M_t/m_t(M^2_t)$ and $m_t(M^2_t)/\mu_t$ [13]. For example, if the expansion is made in powers of $a(M^2_t)$ rather than $a(\mu^2_t)$, the FAC result in Table 5 becomes

$$M_t = \mu_t \left[1 + \frac{4}{3} a(M^2_t) + 8.2366 a^2(M^2_t) + 79.838 a^3(M^2_t) + 835.69 a^4(M^2_t) + \mathcal{O}(a^5) \right], \quad (30)$$
while the approach of Ref. [13] leads to

\[
M_t = \mu_t \left[1 + \frac{4}{3} a(M_t^2) + 8.2366 a^2(M_t^2) + 76.172 a^3(M_t^2) + 797.95 a^4(M_t^2) + \mathcal{O}(a^5) \right].
\]

(31)

It is well known that, if expressed in terms of \(\mu_t \), the QCD corrections to \(\Delta \rho_f \), the fermionic contributions to the electroweak \(\rho \) parameter, are of the form [14]

\[
\Delta \rho_f = \frac{3G_\mu \mu_t^2}{8\pi^2 \sqrt{2}} \left[1 - 0.19325 a(M_t^2) - 3.9696 a^2(M_t^2) + \mathcal{O}(a^3) \right],
\]

(32)

where \(G_\mu \) is Fermi’s constant. Most of the second-order coefficient in Eq. (32), \(- 4.2072\), arises from the opening of a new channel, namely the double-triangle diagram. It is clear that at present there is no sufficient information to optimize Eq. (32). However, if one makes the reasonable assumption that the higher-order terms in Eq. (32) follow the pattern of rather small coefficients shown by the leading contributions, we can combine this result with Eqs. (30) or (31) to estimate \(t_3 \) and \(t_4 \) in \(\Delta \rho_f / M_t^2 \). Substituting Eq. (30) into Eq. (32), one finds

\[
\Delta \rho_f = \frac{3G_\mu M_t^2}{8\pi^2 \sqrt{2}} \left[1 - 2.8599 a(M_t^2) - 14.594 a^2(M_t^2) - 90.527 a^3(M_t^2) - 924.88 a^4(M_t^2) + \mathcal{O}(a^5) \right].
\]

(33)

The pattern of rapidly increasing coefficients of the same sign displayed in Eqs. (30), (31), and (33) also emerges from the analysis of infrared-renormalon contributions [17]. As pointed out in Ref. [13], expansions with much better convergence properties can be obtained by optimizing the scale \(\mu \) at which \(a(\mu^2) \) is evaluated.

In summary, we have presented a procedure to estimate \(\mathcal{O}(\alpha_s^3) \) and \(\mathcal{O}(\alpha_s^4) \) corrections to a class of mass-dependent observables of the type shown in Eqs. (13) and (14). Although there are elements of arbitrariness in its construction, the proposed algorithm, based on the optimization of associated expansions in the Euclidean region, is quite simple and obviates the dependence on the unknown coefficient \(\gamma_3 \) of the mass anomalous dimension. In the cases where the \(t_3 \) coefficients are exactly known, the proposed algorithm estimates \(t_3 \) with absolute errors of order 20 or below. In two of the three cases considered, \(t_3^{\text{exact}} \) is large, and the estimations are fairly accurate, with reasonable relative errors. We have then generalized the estimation algorithm to important expansions of the form of Eq. (23), where the \(t_3 \) coefficients are so far unknown. The corresponding \(t_3 \) and \(t_4 \) estimations turn out to be close to those found in recent analyses based on alternative optimizations procedures.

One of us (A.S.) would like to thank the Max Planck Institute in Munich and the Benasque Center for Physics in Benasque, Spain, for their kind hospitality during the summer of 1996, when part of this work was done. His work was supported in part by NSF Grant PHY–9313781.
References

[1] G. Grunberg, Phys. Lett. 95 B (1980) 70; 110 B (1982) 501 (E); Phys. Rev. D 29 (1984) 2315.

[2] P.M. Stevenson, Phys. Rev. D 23 (1981) 2916; Phys. Lett. 100 B (1981) 61; Nucl. Phys. B 203 (1982) 472; Phys. Lett. B 231 (1984) 65.

[3] J. Kubo and S. Sakakibara, Z. Phys. C 14 (1982) 345.

[4] A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A 10 (1995) 235; Phys. Rev. D 52 (1995) 402 and references cited therein.

[5] S.J. Brodsky, G.P. Lepage and P.B. Mackenzie, Phys. Rev. D 28 (1983) 228; S.J. Brodsky and H.J. Lu, Phys. Rev. D 51 (1995) 3652.

[6] L.R. Surguladze and M.A. Samuel, Phys. Lett. B 309 (1993) 157.

[7] O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, Phys. Lett. 93 B (1980) 429; S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B 303 (1993) 334.

[8] B.A. Kniehl, Z. Phys. C 72 (1996) 437.

[9] O.V. Tarasov, Dubna Report No. JINR P2–82–900 (1982); S.A. Larin, in Proceedings of the International Baksan School: Particles and Cosmology, Kabardino-Balkaria, Russia, April 22–27, 1993, edited by E.N. Alexeev, V.A. Matveev, Kh.S. Nirov and V.A. Rubakov (World Scientific, Singapore, 1994).

[10] K.G. Chetyrkin, Phys. Lett. B 390 (1997) 309.

[11] K.G. Chetyrkin and J.H. Kühn, Preprint Nos. MPI/PhT/96–084 and hep–ph/9609202.

[12] N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys. C 48 (1990) 673.

[13] A. Sirlin, Phys. Lett. B 348 (1995) 201; B 352 (1995) 498 (A); in Reports of the Working Group on Precision Calculations for the Z Resonance, edited by D.Yu. Bardin, W. Hollik and G. Passarino, CERN Yellow Report No. 95–03 (March 1995) p. 285; G. Degrassi, P. Gambino and A. Sirlin, Preprint Nos. NYU–TH–96/11/02, MPI–PhT/96–118 and hep–ph/9611363, to appear in Phys. Lett. B.

[14] L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, Phys. Lett. B 336 (1994) 560; B 349 (1995) 597 (E); K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, Phys. Lett. B 351 (1995) 331; Phys. Rev. Lett. 75 (1995) 3394.

[15] M. Beneke and V.M. Braun, Phys. Lett. B 348 (1995) 513; K. Philippides and A. Sirlin, Nucl. Phys. B 450 (1995) 3; P. Gambino and A. Sirlin, Phys. Lett. B 355 (1995) 295.