Army Ants Trapped by Their Evolutionary History

Frédéric Delsuc

Reading the French version of Journey to the Ants by Bert Hölldobler and Edward O. Wilson (1996) during the course of my graduate studies, I remember being amazed by the description of circular mills formed by an isolated group of army ants. This phenomenon occurs when a group of foragers is separated from the main column of the raiding swarm by a perturbation of their pheromonal communication (Schneirla 1944). The separated workers then run in a densely packed circle until they all die from exhaustion (Schneirla 1971).

As a student in evolutionary biology, I was puzzled by how such an apparently aberrant behavior could have originated and could be maintained during the course of evolution. This natural phenomenon is reproducible in the laboratory and has recently been shown to result from a self-organizing pattern (Couzin and Franks 2003). After a period of disorder, a random direction is collectively selected by ants, and a circular mill forms, following simple rules of motion governed by direct interactions between individuals. But now, a phylogenetic study by Séan G. Brady (2003) sheds new light on the origin of this behavior by showing that the answer to the apparent paradox of circular milling lies at least in part in the evolutionary history of these ants.

In fact, the formation of circular mills is a somewhat extreme illustration of the obligate collective foraging behavior characteristic of army ants, which are ineffective at foraging solitarily. These species stage “swarm raids” composed of numerous workers foraging for prey, which is overwhelmed and brought back to the nest along dense traffic lanes. Army ant species are also nomadic—they construct temporary nests whose location depends on food resource availability. Queens of army ant colonies are highly modified relative to those of other ant species in being wingless and able to produce a huge number of eggs per brood cycle. These three characteristics—obligate collective foraging, nomadism, and highly modified queens—define what has been called “the army ant syndrome” of behavioral and reproductive traits shared by all army ant species. Until now, the dominant view was that this syndrome originated at least three times independently in army ant lineages, two restricted to the Old World (Aenictinae and Dorylinae) and one to the New World (Ecitoninae). This hypothesis implies that the army ant array of behavioral and reproductive traits has multiple origins and that their morphological and behavioral resemblances are the result of adaptive evolutionary convergence towards a similar strategy of collective foraging.

By using an arsenal of modern phylogenetic methods, Brady has reconstructed the evolutionary history of army ants to test whether army ant syndrome definitely evolved in three separate lineages. Based on the sequencing of mitochondrial and nuclear genes, on the analysis of morphological characters, and on a comprehensive taxon sampling of the group, including their closest non–army ant relatives, the author built a robust picture of the phylogenetic relationships among army ants. This phylogeny convincingly shows that all army ants species shared a single common ancestor. Consequently, the complex of behavioral and reproductive adaptations constituting the army ant syndrome appears to have evolved only once, contrary to what was traditionally thought and taught. It is thus likely that the main components of the syndrome were already present in the most recent common ancestor of extant army ant species.

Furthermore, using a recently developed molecular dating methodology that explicitly incorporates fossil data (Thorne and Kishino 2002), Brady derived a molecular timescale for the evolution of army ants. These dates, which correspond to the divergence between New World and Old World army ant lineages, place the origin of army ants around 105 million years ago, making them much more ancient than previously thought. This date, remarkably congruent with the complete separation of African and American tectonic plates, strongly suggests that the two major groups of army ants are the result of a speciation event driven by the dislocation of the ancient Southern supercontinent Gondwana. This finding weakens the supposition that New World and Old World army ants originated independently in South America and Africa, respectively, after the breakup of Gondwana and adds support to the hypothesis that army ants have a single origin. Such a process of diversification is also consistent with the biology of army ants in which dispersal is known to be limited due to the presence of flightless queens. New species are therefore more likely to form by allopatric speciation, in which speciation occurs because of the emergence of geographical barriers within a population, than by nonallopatric speciation. The evolutionary history of army ants in fact possesses relatively ancient roots and appears to have been shaped by biogeographical processes driven by plate tectonics.

Put together, this evidence demonstrates that the complex array of behavioral and reproductive

Frédéric Delsuc is a Lavoisier postdoctoral research fellow from the French Ministry of Foreign Affairs working in The Allan Wilson Centre for Molecular Ecology and Evolution at Massey University in Palmerston North, New Zealand, co-directed by David Penny and Michael D. Hendy. E-mail: F.Delsuc@massey.ac.nz

DOI: 10.1371/journal.pbio.0000037
adaptations in army ants has originated only once during the course of evolution and has subsequently been maintained. Remarkably, after more than 100 million years of evolution, none of the army ants species studied to date appears to lack any of the three main components of the syndrome. Such broad-scale inertia suggests that a strong phylogenetic constraint has influenced the evolution of these complex adaptive traits. Of course, evolution continues to operate within each component, but radical modification of the syndrome is apparently quite difficult. Extreme specialization in the ancestral army ant lineage seems to have prevented the appearance of alternative evolutionary strategies in its descendant species.

To return to my initial question: how does this story help us to understand the circular milling paradox? The answer is that the occasional but deadly formation of circular mills seems to be the evolutionary price that army ants pay to maintain such an ecologically successful and stable strategy of collective foraging. The sporadic appearance of this “pathological” behavior might thus be viewed as the footprints left by the evolutionary trajectory in which these ants have been trapped.

This model study illustrates the importance of taking into account evolutionary history for understanding the mechanisms by which complex morphological, behavioral, and reproductive characters have evolved. Modern molecular and phylogenetic tools now allow the rigorous reconstruction of the history of species by providing a way of inferring both phylogenies and evolutionary timescales. Longstanding evolutionary hypotheses of organismal evolution can therefore be tested by bridging the gap between the paleontological and molecular records of life (Benner et al. 2002), an approach that has already been most successfully applied in the case of placental mammal phylogeny (Delsuc et al. 2002; Springer et al. 2003).

Furthermore, the construction of a phylogenetic framework for army ants promises a better understanding of the behavioral adaptations that have led to the ecological success of this group. Future comparative analyses using the derived phylogeny as a backbone will allow further tests of the respective roles played by natural selection and phylogenetic history in shaping the evolution of morphological and behavioral traits developed by these ants. The accurate reconstruction of the patterns of species diversification is a prerequisite for a detailed understanding of the causal processes that underlie organismal evolution.

References

Benner SA, Caraco MD, Thomson JM, Gaucher EA (2002) Planetary biology—Paleontological, geological, and molecular histories of life. Science 296: 864–868.

Brady SG (2003) Evolution of the army ant syndrome: The origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc Natl Acad Sci U S A 100: 6575–6579.

Couzin ID, Franks NR (2003) Self-organized lane formation and optimized traffic flow in army ants. Proc R Soc Lond B 270: 139–146.

Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, et al. (2002) Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol Biol Evol 19: 1656–1671.

Hölldobler B, Wilson EO (1996) Voyage chez les fourmis: Une exploration scientifique. Paris: Seuil. 249 p.

Schneirla TC (1944) A unique case of circular milling in ants, considered in relation to trail following and the general problem of orientation. Am Mus Novit 1253: 1–26.

Schneirla TC (1971) Army ants: A study in social organisation. San Francisco: Freeman, 349p.

Springer MS, Murphy WJ, Ezirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci U S A 100: 1056–1061.

Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51: 689–702.

Primer

Comparative Genomics

Ross C. Hardison

A complete genome sequence of an organism can be considered to be the ultimate genetic map, in the sense that the heritable characteristics are encoded within the DNA and that the order of all the nucleotides along each chromosome is known. However, knowledge of the DNA sequence does not tell us directly how this genetic information leads to the observable traits and behaviors (phenotypes) that we want to understand. Finding all the functional parts of genome sequences and using this information to improve the health of individuals and society are the focus of the next phase of the Human Genome Project (Collins et al. 2003). Comparative analyses of genome sequences will be a major part of this effort.

The major principles of comparative genomics are straightforward. Common features of two organisms will often be encoded within the DNA that is conserved between the species. More precisely, the DNA sequences encoding the proteins and RNAs responsible for functions that were conserved from the last common ancestor should be preserved in contemporary genome sequences. Likewise, the DNA sequences controlling the expression of genes that are regulated similarly in two related species should also be conserved. Conversely, sequences that encode (or control the expression of) proteins and RNAs responsible for differences between species will themselves be divergent.

Different questions can be addressed by comparing genomes at different phylogenetic distances (Figure 1). Broad insights about types of genes can be gleaned by genomic comparisons at very long phylogenetic distances,

Ross C. Hardison is at the Center for Comparative Genomics and Bioinformatics at The Pennsylvania State University in University Park, Pennsylvania, United States of America. E-mail: rch8@psu.edu

DOI:10.1371/journal.pbio.0000058

Illustration by Nathalie Escure.

Figure 1. A Representative Individual from the Soldier Caste of the New World Army Ant Species Eciton burchelli with Characteristically Shaped Mandibles. Illustration by Nathalie Escure.
to identifying the general functional DNA, this approach is also contributing
and functional from nonfunctional
discriminate conserved from divergent
does comparative genomics aim to
the nonfunctional or neutral DNA
sequences will have changed less than
the functional sequences will show
the conserved DNA. In these cases,
nonfunctional DNA is found within
of divergence), both functional and
nonfunctional or neutral DNA is

The property of being on the same chromosome. Conserved synteny means that
genes that are on the same chromosome in one species are also on the same chromosome in
the comparison species; these are also referred to as homology blocks.

Conserved: Derived from a common ancestor and retained in contemporary related
species. Conserved features may or may not be under selection.

Evolutionary drift: The accumulation of sequence differences that have little or no
impact on the fitness of an organism; such neutral mutations are not under selection.
Sequence polymorphisms arise randomly in a population, most of which have no effect on
function. Stochastic processes allow a small fraction of these to increase in frequency until
they are fixed in a population; these are detectable as neutral substitutions in interspecies comparisons.

Homologs: Features (including DNA and protein sequences) in species being compared that are similar because they are ancestrally related.

Negative selection: The removal of deleterious mutations from a population; also referred
to as purifying selection.

Nonredundant protein sets: The set of proteins from which similar proteins, derived from
duplicated genes, have been removed.

Orthologs: Homologous genes (or any DNA sequences) that separated because of a
speciation event; they are derived from the same gene in the last common ancestor.
Orthologs are distinguished from paralogs, which are homologous genes that separated
because of gene duplication events.

Phylogenetic distances: Measures of the degree of separation between two organisms
or their genomes, expressed in various terms such as number of accumulated sequences
changes, number of years, or number of generations. The distances are often placed on
phylogenetic trees, which show the deduced relationships among the organisms.

Positive selection: The retention of mutations that benefit an organism; also referred to as
Darwinian selection.

Synteny: The property of being on the same chromosome. Conserved synteny means that
genes that are on the same chromosome in one species are also on the same chromosome in
the comparison species; these are also referred to as homology blocks.

e.g., greater than 1 billion years
since their separation. For example,
comparing the genomes of yeast,
worms, and flies reveals that these
eukaryotes encode many of the same
proteins, and the nonredundant
protein sets of flies and worms are
about the same size, being only twice
that of yeast (Rubin et al. 2000). The
more complex developmental biology
of flies and worms is reflected in the
greater number of signaling pathways
in these two species than in yeast. Over
such very large distances, the order of
genes and the sequences regulating
their expression are generally not
conserved. At moderate phylogenetic
distances (roughly 70–100 million years
divergence), both functional and
nonfunctional DNA is found within
the conserved DNA. In these cases,
the functional sequences will show
a signature of purifying or negative
selection, which is that the functional
sequences will have changed less than
the nonfunctional or neutral DNA
(Jukes and Kimura 1984). Not only
does comparative genomics aim to
discriminate conserved from divergent
and functional from nonfunctional
DNA, this approach is also contributing
to identifying the general functional
sequence to increase the number of
positions with matching nucleotides.
Several powerful alignment algorithms
have been developed to align two or
more sequences.

However, the computational power
required to align billions of nucleotides
between two or more species vastly
exceeds what is normally available in
individual laboratories. Thus, several
research groups make available
precomputed alignments of genome
sequences through servers or browsers
(Table 1). An early example is EnteriX,
for enteric bacteria (Florea et al.
2000; McClelland et al. 2000). Aligned
human, mouse, and rat genomes can
be accessed at several sites, including
VISTA (Mayor et al. 2000; Couronne et
al. 2003), the conservation tracks at the
University of California at Santa Cruz
(UCSC) genome browser (Kent et al.
2002), Ensembl (Clamp et al. 2003),
and GALA (Gardi et al. 2003).

What Can You Learn about Genome
Evolution?

The basic observation in comparative
genomics is a description of the
matches between genomes. For
example, in the roughly 75–80
million years since humans diverged
from mouse, the large-scale gene
organization and gene order have
been preserved (International Mouse
Genome Sequencing Consortium
2002). About 90% of the human
genome is in large blocks of homology
with mouse. These regions of conserved
synteny have many genes from one
human chromosome that match genes
on a mouse chromosome, often in very
similar orders.

Sequences with no obvious function,
such as relics of transposons that were
last active in the common ancestor of
human and mouse, can still align in
mammalian comparisons; thus, not
all the aligning DNA is functional. By
evaluating the quality of the alignments
genome-wide, the proportion that
scores significantly higher than
alignments in the ancestral (and
presumed nonfunctional) repeats can
be determined. This analysis leads to an
estimate that about 5% of the human
genome is under purifying selection
and thus is functional. This portion of
the human genome under selection
is about three times larger than the
portion coding for protein. Within the
noncoding sequences under selection,
one expects to find noncoding RNA

Glossary

Conserved: Derived from a common ancestor and retained in contemporary related
species. Conserved features may or may not be under selection.

Evolutionary drift: The accumulation of sequence differences that have little or no
impact on the fitness of an organism; such neutral mutations are not under selection.
Sequence polymorphisms arise randomly in a population, most of which have no effect on
function. Stochastic processes allow a small fraction of these to increase in frequency until
they are fixed in a population; these are detectable as neutral substitutions in interspecies comparisons.

Homologs: Features (including DNA and protein sequences) in species being compared that are similar because they are ancestrally related.

Negative selection: The removal of deleterious mutations from a population; also referred
to as purifying selection.

Nonredundant protein sets: The set of proteins from which similar proteins, derived from
duplicated genes, have been removed.

Orthologs: Homologous genes (or any DNA sequences) that separated because of a
speciation event; they are derived from the same gene in the last common ancestor.
Orthologs are distinguished from paralogs, which are homologous genes that separated
because of gene duplication events.

Phylogenetic distances: Measures of the degree of separation between two organisms
or their genomes, expressed in various terms such as number of accumulated sequences
changes, number of years, or number of generations. The distances are often placed on
phylogenetic trees, which show the deduced relationships among the organisms.

Positive selection: The retention of mutations that benefit an organism; also referred to as
Darwinian selection.

Synteny: The property of being on the same chromosome. Conserved synteny means that
genes that are on the same chromosome in one species are also on the same chromosome in
the comparison species; these are also referred to as homology blocks.

The removal of deleterious mutations from a population; also referred
to as purifying selection.

Orthologs: Homologous genes (or any DNA sequences) that separated because of a
speciation event; they are derived from the same gene in the last common ancestor.
Orthologs are distinguished from paralogs, which are homologous genes that separated
because of gene duplication events.

Phylogenetic distances: Measures of the degree of separation between two organisms
or their genomes, expressed in various terms such as number of accumulated sequences
changes, number of years, or number of generations. The distances are often placed on
phylogenetic trees, which show the deduced relationships among the organisms.

Positive selection: The retention of mutations that benefit an organism; also referred to as
Darwinian selection.

Synteny: The property of being on the same chromosome. Conserved synteny means that
genes that are on the same chromosome in one species are also on the same chromosome in
the comparison species; these are also referred to as homology blocks.
Virtually all (99%) of the protein-coding genes in humans align with homologs in mouse, and over 80% are clear 1:1 orthologs. In most cases, the intron-exon structures are highly conserved. This extensive conservation in protein-coding regions may be expected, because many biochemical functions of humans should also be found in mouse. Likewise, rodent- and mouse-specific retrotransposons independently expanded to occupy about 33% of the mouse genome. The lineage-specific and ancestral repeated elements occupy a substantial portion of the genome of all multicellular organisms, averaging about 50% in mammalian genomes and expanding even higher in the maize genome (San Miguel et al. 1996).

The remaining 36% of the human genome currently cannot be accounted for unambiguously. Some of it could be explained by limitations in the sensitivity of the alignment procedures; i.e., some of the nonaligning DNA could be orthologous DNA that has changed so much that current programs cannot recognize that the sequence has evolved from a common ancestor sequence. However, the homologs to some of the nonaligning DNA in human could be deleted in mouse (International Mouse Genome Sequencing Consortium 2002; Hardison et al. 2003). Given the large expansion of mammalian genomes by transposable elements, one would expect that a compensatory amount of the ancestral DNA would be deleted from the genome. As genome sequences from additional species are determined, the various possible explanations for this nonaligning, nonrepetitive DNA can be tested.

Table 1. URLs for Accessing Precomputed Whole-Genome Alignments and Their Analysis

Server or Browser	Genomes Covered	URL
EnteriX	enteric bacteria	http://bio.cse.psu.edu/
VISTA Genome Browser	human, mouse, rat	http://pipeline.lbl.gov/
UCSC Genome Browser	mammals, worms, zoo*	http://genome.ucsc.edu/
Ensembl	mammals, fish, insects, worms	http://www.ensembl.org/
GALA	human, mouse, rat	http://bio.cse.psu.edu/

*Data from multiple alignments of 13 vertebrate genome sequences homologous to the human CFTR region (Thomas et al. 2003) are included.

DOI: 10.1371/journal.pbio.0000058.g001

Figure 1. Comparisons of Genomes at Different Phylogenetic Distances Are Appropriate to Address Different Questions

A generalized phylogenetic tree is shown, leading to four different organisms, with A and D the most distantly related pairs. Examples of the types of questions that can be addressed by comparisons between genomes at the different distances are given in the boxes.
Not only do the rates of evolution vary along phylogenetic lineages, but also they are also highly variable within genomes (Wolfe et al. 1989). With the whole-genome alignments between mammals, which encompass many sites that are highly likely to have no function, it is clear that the neutral rate varies significantly in large, megabase-sized regions along mammalian chromosomes. The rates of insertion of certain classes of retrotransposons, inferred large deletions, and meiotic recombination vary along with the neutral substitution rates (International Mouse Genome Sequencing Consortium 2002; Hardison et al. 2003). These observations indicate that large segments of mammalian chromosomes have an inherent tendency to change by any of several processes, such as nucleotide substitution, insertion of transposons, and recombination.

Another major source of change in genomes is segmental duplications, which are particularly prominent in primate genomes (Bailey et al. 2002). These large duplications of tens to thousands of kilobases are revealed by intraspecies comparisons. These regions of genomic instability may play a role in expanding the diversity of the proteins encoded in the genome.

What Can You Learn about Genome Function?

Information on sequence similarity among genomes is a major resource for finding functional regions and for predicting what those functions are. One of the best examples is the improvement in identification of protein-coding genes. Software that incorporates interspecies similarity into gene prediction (Batzoglou et al. 2000; Korf et al. 2001; Wiehe et al. 2001; Alexandersson et al. 2003) is being used to analyze large genomes. Several of the novel genes predicted in mammals using these programs have been verified experimentally, adding about 1,000 new genes to the mammalian set (International Mouse Genome Sequencing Consortium 2002). Comparisons of the worm genomes led to 1,275 well-supported suggestions for new genes in *C. elegans*, adding significantly to the roughly 20,000 known and predicted genes. Predicting and verifying noncoding RNA genes is a current challenge in genomics and bioinformatics (Rivas and Eddy 2001), and it is likely that interspecies comparisons will also help in this analysis.

Regions of noncoding DNA with a particularly high similarity among species have long been recognized as good candidates for functional regions (Hardison et al. 1997; Pennacchio and Rubin 2001), and several have been confirmed as gene regulatory sequences (e.g., Loots et al. 2000). However, the appropriate threshold for the level of sequence similarity that is diagnostic for functional sequences has not been established, and investigators use a variety of such thresholds. What is needed is a robust assessment of the likelihood that a particular alignment results from purifying selection rather than evolutionary drift. The analysis is complicated by the variable rate of neutral evolution within species, but solutions have been developed and are being improved. Comparison of the rates of within-species polymorphism and between-species divergence has proven effective for monitoring selection in nucleotides sequences from *Drosophila* species (Hudson et al. 1987).
uses the intraspecies polymorphism measurements as a monitor of neutral evolution, and deviations from neutrality, measured as significantly less interspecies change than expected, are indicators of selection. For the human-mouse genome comparisons, the local neutral rate was estimated from the divergence of aligned ancestral repeats, and similarity scores were adjusted accordingly. By evaluating the distribution of these similarity scores in likely-neutral DNA and in DNA inferred as being under selection, a probability that any human-mouse alignment reflects purifying selection can be computed (Figure 2), and such scores are available genome-wide on the UCSC Genome Browser.

Predicting exactly what the function is of these noncoding sequences under selection is a major challenge. One promising approach is to collect good training sets of alignments within sequences of known functions, such as gene regulatory sequences, and use those alignments to develop statistical models for estimating a likelihood that any given alignment could be generated by that model (e.g., Elnitski et al. 2003). This type of approach could be applied to any functional category in which the conserved DNA sequence is critical to the function. For instance, it is still not clear whether conserved DNA sequences are critical to the function of replication origins; if they are not, then this analytical model will not successfully predict this important functional category, and other methods will need to be developed.

Prospects

The past year has brought the genome sequences of species that are close relatives of many model organisms. The list includes several yeast species to compare with *Saccharomyces cerevisiae*, another *Drosophila* species and *Anopheles* (Holt et al. 2002) to compare with *Drosophila melanogaster*, mouse to compare with human, and now *C. briggsae* to compare with *C. elegans* (Stein et al. 2003). Fully harvesting the information in these comparative analyses and integrating it across the many comparisons will be a continuing and fruitful exercise.

Comparing more than two genomic sequences provides even more resolving power. The efficacy of multiple sequences for functional prediction is shown dramatically by the analyses of 13 genomic sequences from species ranging from fish to humans (Thomas et al. 2003). Other approaches using multiple sequences from more closely related species substantially improve the resolving power of comparative genomics (Gumucio et al. 1992; Bozelli et al. 2003). The Human Genome Project recognizes the power of this broad comparative analysis (Collins et al. 2003). Researchers may reasonably expect in the near future to have results of this comparative analysis readily available. By calibrating these results, such as estimated likelihoods of being under selection, likelihood of being a coding exon, etc., against known functional elements, the power of the comparative approaches should improve. The critical next stage is large-scale experimental tests of the predictions, which should prove exciting and challenging.

References

- Alexandersson M, Cavley S, Pachter L (2003) SLAM: Cross-species gene finding and alignment with a generalized pair hidden Markov model. Genome Res 13: 496–502.
- Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, et al. (2002) Recent segmental duplications in the human genome. Science 297: 1655–1657.
- Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES (2000) Human and mouse genome structure: Comparative analysis and application to exon prediction. Genome Res 10: 950–958.
- Bozelli D, McAuliffe J, Oechslen R, Lewis KD, Oechslen I, et al. (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299: 1391–1394.
- Clamp M, Andrews D, Barker D, Bevan P, Cameron G, et al. (2003) Ensemble 2002: Accommodating comparative genomics. Nucleic Acids Res 31: 38–42.
- Clifton PF, Hillier LW, Fulton L, Graves T, Miner T, et al. (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11: 1173–1186.
- Clifton PF, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71–76.
- Collins FS, Green ED, Guttmacher AE, Guyer MS (2003) A vision for the future of genomics research. Nature 422: 835–847.
- Couonne O, Pollakos A, Bray N, Ishikhanov T, Rjabov D, et al. (2002) Strategies and tools for whole-genome alignments. Genome Res 13: 73–80.
- Elnitski L, Hardison RC, Li J, Yang S, Kolbe D, et al. (2005) Distinguishing regulatory DNA from neutral sites. Genome Res 15: 64–72.
- Florea L, Riemer C, Schwartz S, et al. (2003) GALA: A database for interspecies sequences from targeted genomic regions. Genome Res 13: 752–741.
- Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, ShetIon DA, et al. (1992)

Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human y and z globin genes. Mol Cell Biol 12: 4918–4929.

Hardison RC, Roskin KM, Yang S, Diekhans M, Kent WJ, et al. (2003) Covariation in frequencies of substitution, deletion, transposition and recombination during eutherian evolution. Genome Res 13: 13–26.

Hardison RC, Subramanian GM, Halperna S, Sutton GG, Chartlab R, et al. (2002) The genome sequence of the malaria mosquito *Anopheles gambiæ*. Science 298: 129–149.

Hubison RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116: 155–159.

International Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–526.

Jukes TH, Kimura M (1984) Evolutionary constraints and the neutral theory. J Mol Evol 21: 90–92.

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.

Kent WJ, Suguot CW, Fursey TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006.

Korf I, Flick P, Duan D, Brent MR (2001) Integrating genomic homology into gene structure prediction. Bioinformatics 17 Suppl 1: S140–S148.

Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, et al. (2000) Identification of a coordinate regulator of interleukins 6, 13, and 5 by cross-species sequence comparisons. Science 288: 136–140.

Mayo C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, et al. (2000) VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046–1047.

McClelland M, Florea L, Sanderson K, Clifton SW, Parkhill J, et al. (2000) Comparison of the *Escherichia coli K-12* genome with sampled genomes of a *Klebsiella pneumoniae* and three *Salmonella enterica* serovars, *Typhimurium*, *Typhi* and *Paratyphi*. Nucleic Acids Res 28: 4957–4966.

Pennacchio LA, Rubin EM (2001) Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet 2: 100–109.

Rivas E, Eddy SR (2005) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2: 8.

Rubin GM, Yandell MD, Wortman JR, Gabor Miklós GL, Nelson CR, et al. (2000) Comparative genomics of the eukaryotes. Science 287: 2204–2215.

San Miguel P, Tikhomiron A, Jin YK, Mothoulsaika N, Zakharov D, et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

Stein LD, Barz O, Blasier D, Blumenfeld T, Brent MR, et al. (2003) The genome sequence of *Caenorhabditis briggrig*: A platform for comparative genomics. PLoS Biol 1: DOI: 10.1571/journal.pho.00607.

Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, et al. (2003) Comparative analyses of multispecies sequences from targeted genomic regions. Nature 424: 788–793.

Wichet T, Gebauer-Jung S, Mitchell-Olds T, Guigo R, et al. (2001) A vision for the future of genomics. Nature 422: 788–793.

Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of the mammalian genome. Nature 337: 283–285.