The strawberry (Fragaria xananassa Duch.) was cultivated in South America long before the Spanish arrived on the continent. Native Fragaria chiloensis L. was domesticated over 1000 years ago by the Picunches in central Chile (Hancock et al., 1999). During the Spanish period of exploration and conquest in the mid-to late 1500s, F. chiloensis was spread throughout South America and major industries developed around Cuzco, Peru; Bogota, Colombia; and Ambato, Ecuador.

European cultivars of F. xananassa were probably introduced into South America in the late 1800s (Folquer, 1986), and California cultivars in the 1960s. These rapidly replaced most of the traditional F. chiloensis plantings, first through introgression, and finally through pure cultivar plantings. Today, cultivars of F. xananassa are found in almost all South American countries, flourishing in tropical, subtropical, and southeastern South America, where the climate is strongly conditioned by fresh South Atlantic winds, with average temperatures ranging from 11 °C in July to 24 °C in January.

The South American industry accounts for ≈4% of the world strawberry production, but the strawberry plays important social and economic roles on the continent, since strawberry farms employ ≈50,000 full- or part-time workers. Strawberries are a popular item in local markets and are an exported commodity (Cicare, 1999). This paper discusses the strawberry industry in Argentina, Brazil, Paraguay, Uruguay, Chile, Bolivia, and Ecuador. The first four countries are members of the Mercado Comum del Sur (MERCOSUR), or South American Free Trade Agreement, which is similar to the North American Free Trade Agreement. Brazil, Argentina and Chile are responsible for most of the South American strawberry production, while production in Paraguay, Uruguay, Bolivia, and Ecuador is less developed (Table 1).

BRAZIL

Brazil is the largest strawberry (morango) producer in South America (Table 1). Strawberries in Brazil are a highly profitable crop, and are consumed fresh, frozen, or as pulp (frozen or dehydrated). The state of Minas Gerais leads the country in strawberry production with 29607 t and 444 ha (Santos, 1999b). Most of the strawberry growing area in Brazil is concentrated between latitudes 20° and 32°S (Santos, 1999b).

Each year, the Brazilian strawberry industry utilizes ≈180 million runner plants annually for fruit production. Most of the plantings are renewed annually. Runner plants are produced by certified local nurseries or the fruit growers themselves, or are imported from Argentina, Chile (fresh plants), and the United States (cold-stored plants). Two to four rows of plants are set on raised beds (0.20–0.50 m high) through black plastic mulch. Plant distances within and between rows are ≈0.30 m, resulting in densities of 65,000–80,000 plants/ha. Runners are planted from February (cool regions) to April (warm regions). Water requirements in strawberry plantings are met by sprinkler or furrow irrigation, although in southern states, such as Rio Grande do Sul and Santa Catarina, strawberry fields are watered through drip irrigation (Santos, 1999c; Vaz Ronque, 1998). The fertilizers most commonly used in Brazil are urea, calcium nitrate, normal superphosphate, potassium chloride, potassium sulfate, boric acid, zinc sulfate, and copper sulfate (Pires Ribeiro, 1999). Liming is a common practice to increase soil pH in Sao Paulo and Para (Vaz Ronque, 1998).

Table 1. Strawberry hectarage, production, and yield in some South American countries.

Country	Production area (ha)	Production (t/year)	Avg yield (t/ha⁻¹)
Brazil	2643	62,766	24.3
Argentina	1080	25,000	26.0
Chile	700–900	18,000	22.5
Paraguay	197	2,160	11.2
Uruguay	180	600	3.4
Bolivia	50	500	10.0
Ecuador			

#Sources:
1. Source: Santos (1999b).
2. Source: Kirschbaum (1999a).
3. Source: Gambardella et al. (1999).
4. Source: FAO (1999).
5. Source: Gambardella et al. (1999).
6. Source: FAO (1999).
7. Source: C.E. Vicente – INIA–Salto (Uruguay) (1998, personal communication).
8. Source: G. Lopez–Arce. Departamento Difusion del Instituto Nacional de Estadisticas (Bolivia) (1995, personal communication).
9. Source: Consejo de Comercio Exterior e Inversiones del Ecuador (1999); FAO (1999).
the fruit to shippers located in a regional produce market, to supermarkets, and to processing facilities (Passos et al., 1995).

Fruit with 50% to 75% red color are harvested for the fresh market, while 100% red fruit are picked for processing. Strawberries for processing are bulk-packed in 5-kg wooden boxes. Fruit destined for the fresh market are harvested into baskets and then taken to packing facilities, where they are graded and packaged in individual styrofoam, wooden, plastic, or cardboard containers that hold 250–800 g of fruit (Silva et al., 1998). Four to eight individual containers are packed in larger wooden boxes. Strawberries are graded according to weight (or size) for the fresh market: >14 g = “extra” and 6–14 g = “first” grade (Passos et al., 1995).

ARGENTINA

Argentina is the second largest strawberry (frutilla) producer in South America (Table 1). Strawberries are produced in this country year-round (Fig. 2), as they are planted across a broad range of latitudes (24°S to 42°S), with climates ranging from cold-temperate in the province of Rio Negro to tropical in Jujuy. Three major production regions—northern, central, and southern—can be distinguished, based on their particular climates and harvest seasons (Rodriguez and Hompanera, 1988). Tucuman and Santa Fe provinces produce 70% of Argentina’s strawberries.

Typically, the Argentine strawberry industry uses leafless, bare-root transplants, either fresh, or cold-stored (Voth, 1980) transplants, which are set in two rows through black plastic mulch on raised beds (0.5–0.6 m wide × 0.4 m high), usually after fumigation with 98 methyl bromide: 2 chloropicrin. Plants are spaced 0.2–0.3 m apart in the row, with 0.3–0.4 m between rows, requiring 50,000 to 80,000 plants/ha. One-bed plastic tunnels are used in both winter and spring production systems (northern and central regions, respectively) to accelerate fruit growth and ripening (Instituto Nacional de Tecnología Agropecuaria, 1995). Most of the Argentine strawberry growers utilize drip irrigation. The most common fertilizers are ammonium phosphate, 15N–15P–15K, calcium nitrate, potassium nitrate, ammonium nitrate, magnesium sulfate, and phosphoric acid.

The annual demand for strawberry transplants in Argentina is estimated to be 50 million plants annually (Rodriguez, 1997). Specialized Argentine nurseries supply 80% of this amount, while most of the remaining 20% is imported from the United States and Europe (mostly cold-stored plants). Transplants with different chilling hours are produced at high latitude (34°S at <500 m elevation), low latitude (27°S at <500 m elevation), and high altitude (2000 m at 27°S) by several nurseries (Kirschbaum et al., 1998); however, most Argentine transplants are produced by two high-latitude nurseries located in Mendoza (Kirschbaum, 1999b). Every 2 or more years, >30% of the strawberry hectarage is renewed.

The Argentine industry relies primarily on cultivars released by the Univ. of California, although the demand for Univ. of Florida and Spanish cultivars has increased remarkably over the last 3 years (Kirschbaum, 1999b). The most widely planted cultivars in the northern and central regions are ‘Camarosa’, ‘Chandler’, ‘Sweet Charlie’, and ‘Tudla Milsei’, while ‘Selva’ and ‘Seascape’ lead the strawberry hectarage in the southern region. Other cultivars of importance in Argentina are ‘Oso Grande’, ‘Pajarito’, ‘Heidi’, and ‘Rosa Linda’ (Fernandez, 1997b; Kirschbaum, 1999b; Scaglia, 1997).

Diseases affecting strawberries in Argentina are anthracnose [Colletotrichum gloeosporioides (Penz.) Penz & Sacc., C. fragariae, and C. acutatum], leather rot, gray mold, black root rot, and several leaf diseases caused by Xanthomonas fragariae, Gnomonia comari Karsten, Mycosphaerella fragariae, Diplonema carpon earliana, and Phomopsis obscurans (Baino et al., 1999; Instituto Nacional de Tecnología Agropecuaria, 1997; Mena et al., 1974; Mitidieri, 1997; Ramirez, personal communication). Pests causing economic damage in Argentina are two-spotted spider mites, aphids (e.g., Myzus persicae Schultz and Chaoepioniph fragaefolii), thrips (Franklinella occidentalis), ants (Agromyzae sp.), and lepidopterous larvae (e.g., Agrotis ipsilon (H. Rott and Heliotis zeaz-Boddie) (Costilla and Martinez, 1991; del Toro et al., personal communication; Fernandez, 1997a; Lemme et al., 1996).

According to the Instituto Nacional de Estadística y Censo (INDEC), Argentina in 1997 imported 1000 t and exported 300 t of frozen strawberries. About 60% of Argentina’s locally produced strawberries are consumed fresh, while most of the remaining 40% are frozen. The exported fruit is usually shipped to Brazil and Europe. Little fresh fruit is imported, but in 1997, the Mercado Central de Buenos Aires (MCBA), the largest national wholesale produce market, reported that small quantities of fresh strawberries were imported from Brazil, Chile, and Uruguay.

Fresh-market fruit in Argentina is packed...
in plastic containers, which hold ≈250 g of fruit, and wrapped with plastic film. Eight of these containers are packed together in cardboard boxes (flats) for shipping. Flats are arranged in pallets (200 flats) and then cold-stored and shipped at 1 °C. Argentina has four grades of marketable fresh strawberries: superior, selected, common, and economic. Individually quick frozen (IQF) fruits follow international quality standards. In 1997, the production peak occurred in September, while the price peak occurred in June (Fig. 1B).

CHILE

Strawberries (frutillas) in Chile are grown from Regions IV to XII (27°S to 41°S lat., respectively), although most of the production is concentrated between Santiago and Region VIII (33°S to 36°S lat., respectively). Although all fruit is produced on only 700–900 ha (Table 1), with national yields estimated at 20–25 t·ha–1 (Gambardella et al., 1999).

There are two planting seasons in Chile: summer and fall, depending on the climate of the region. Near the Pacific shores, with mild winters, strawberries are usually planted in the late fall, while in areas with more severe winters, they are usually set in summer. In general, summer plantings are more productive; however, fruit size and early yields are smaller in comparison with those of fall plantings. The national average yield is 22.5 t·ha–1 (Gambardella et al., 1999).

In the summer planting system, transplants are gathered from previously harvested fields. Once fruiting has ended, plants start to produce runners, and runner cold-stored for 6–7 months at –2 °C, are set in the field in December and January. Short-day (SD) cultivars are preferred. In the fall planting system, fresh, bare-rooted transplants, dug from the nursery 1–2 d prior to planting, are set in the field in April and May. This system is designed to hasten production (September) in coastal areas with mild winters. Day-neutral cultivars are preferred in this system, although ‘Chandler’ (SD) is also well adapted. About 25% of the strawberry growing area is in ‘Tuila Milsei’, followed by ‘Seascape’ (20%), ‘Camarosa’ (20%), ‘Chandler’ (10%), Cartuno (10%), ‘Selva’ (10%), ‘Pajaro’ (2%), and ‘Sweet Charlie’ (2%) (Gambardella et al., 1999).

The demand for strawberry transplants in Chile is estimated to be 50 million plants, which remain in the field for 2 years. Two rows of plants are set on raised beds, 0.45 m wide × 0.30 m high, through black or gray plastic mulch. Distance between plants both in and between rows is ≈0.30 m. Therefore, the average plant densities range from 60,000 to 80,000 plants/ha are planted annually between 809H ORT SCIENCE, VOL. 35(5), AUGUST 2000

PARAGUAY

Strawberries (frutillas) in Paraguay are grown in the states of Central, Alto Parana, La Cordillera, Itapua, and Caaguazu; the Central state contains ≈60% of the total hectarage (Table 1), with national yields estimated at 10–12 t·ha–1 (Merzario, 1999). An average of 80,000 plants/ha are planted annually between 10 Mar. and 10 Apr., and harvest lasts until October. The California cultivar Tufts, introduced to Paraguay in the 1980s, leads in importance because of its earliness, high productivity, large, firm, and shiny fruit, good tolerance to local diseases, and high rate of runner formation. Minor cultivars are the Brazilian ‘Monte Alegre’ and ‘Camanducaia’, and the Univ. of Florida’s ‘Florida 90’ (ABC Revista Rural, 1999).

Transplants are gathered from previously harvested fields. Once fruiting has ended, plants start to produce runners, and runner

Fig. 2. Argentina strawberry harvest calendar, including harvests from subtropical Tucuman (May–December) and from Tucuman high-altitude (700–2000 m) valleys (January–April).
plants will be dug the following March–April (Bareiro, 1997). Two-spotted spider mites and aphids are considered the most trouble-some pests in Paraguay (Merzario, 1999).

URUGUAY

About 75% of the strawberries (frutillas) in Uruguay are grown in Salto (NW) and the rest in San Jose and Canelones (south) states. The total production area is estimated to be 180 ha. Transplants are set in the field from March to May in the NW and from May to August in the southern region. According to Junta Nacional de la Granja (JUNAGRA), ‘Oso Grande’ occupies 60% to 80% of the strawberry hectarage, followed by ‘Tudla Milsei’, ‘Camarosa’, ‘Chandler’, ‘Sweet Charlie’, ‘Seascape’, and ‘Selva’. Colletotrichum spp. and Gnomonia spp. (Bernal, 1991) are currently the major pathogens.

In the NW region a winter production system is used, while in the southern region production is in spring-summer, with harvests from July to November, and from September to April, respectively. Seasonal fruit production is highest in September–October (Fig. 1C). Most of the fruit is shipped fresh to Montevideo City, where 50% of the country’s population lives. The Uruguay strawberry industry lacks good-quality transplants and cultivars adapted to local environmental conditions. Most of the transplants are produced by the strawberry growers themselves from plants that produced fruit the previous season.

BOLIVIA

The Bolivian strawberry (frutilla) industry is relatively undeveloped. According to the Instituto Nacional de Estadisticas, in 1995, the total production area was 180 ha, and was entirely of California cultivars. Strawberry fields in Bolivia are distributed in two geographical regions that are very different from one another. One, Santa Cruz (70 ha), is tropical (≈400 m altitude), and the other, which encompasses Cochabamba, Chuquisaca, La Paz, and Tarija (110 ha), is located in the highlands (2000–3500 m altitude).

Average fruit yields in Bolivia are very low compared with those of neighboring countries (Table 1), because technologies such as drip irrigation, soil fumigation, plastic mulch, and good-quality transplants have not yet been available to most of the Bolivian growers. The small volume of fruit produced in Bolivia (=600 t/year) is locally consumed. In the tropical areas, the crop calendar is similar to that of Brazil or northwestern Argentina (April to October), while in the highlands, strawberries are produced in summer.

Table 2. Average prices registered at a Santiago (Chile) wholesale market during 1997($1.00 U.S. = 515.21 Chilean pesos).

Month	Chilean $/kg
Jan	190.7
Feb	182.1
Mar	207.2
Apr	309.9
May	362.0
Jun	---
Jul	---
Aug	---
Sep	593.2
Oct	351.2
Nov	383.1
Dec	346.4

*Source: Oficina de Estudios y Políticas Agrarias (ODEPA), 1997.

Literature Cited

ABC Revista Rural. 1999. Cultivo de frutilla en Paraguay. ABC Revista Rural (Asuncion), 13 Jan.

Baino, O., S. Hong, and J. Ramullo. 1999. Gnomonia comari Karsten, patógeno de frutilla en Argentina, p. 60. In: Abstr. 10th Jornadas Fitosanitarias Argentinas, 7–9 Apr. Jujuy, Argentina.

Banco del Pacifico. 1999. Fruits. Financial Group, Guayaquil, Ecuador. (http://www.bfp.fin.ec/sxt/grup/docs/edacudexporta/ing/fruits.htm#).

Bareiro, J.F. 1997. Momento oportuno para instalar el cultivo de la frutilla en zonas de Uruguay. Montevideo, Uruguay.

Betti, J.A. 1994. Informe sobre la clase de Ecuadors. Campinas, Brazil.

Centrais de Abastecimento S.A. Campinas, 1995. Estatísticas de preços. São Paulo, Brazil.

Cicare, S. 1999. Frutillas para export. Mercado Rural 6:48–50.

Consejo de Comercio Exterior e Inversiones del Ecuador. 1999. Productos. Guayaquil, Ecuador (http://www.metatips.com/ecu/comexi/).

Costilla, M.A. and C.A. Martinez. 1991. Importancia de la aranuela roja (Tetranychus urticae) en el cultivo de la frutilla. Avance Agroindustrial 46:27–28.

Food and Agricultural Organization. 1999. FAOSTAT agriculture data (http://www.apps.fao.org).

Fernandez, H.L. 1997a. Principales plagas producidas por insectos, p. 53–55. In: J. Torchelli and A. Ferreyra (eds.). Frutilla. Instituto Nac. de Technol. Agropecuaria, Buenos Aires.

Fernandez, H.L. 1997b. Area sur del cinturon verde de produccion, p. 60. In: Abstr. 10th Jornadas Fitosanitarias Argentinas. 7–9 Apr. Jujuy, Argentina.

Finn, C., J. Hancock, and C. Heider. 1998. Notes on the strawberry of Ecuador: Ancient land races, the community of farmers, and modern production. HortScience 33:583–587.

Folquer, F. 1986. La frutilla o fresa. Editorial Hemisferio Sur S.A. Buenos Aires.

Gambardella, M. 1996. El cultivo de la frutilla, p. 1–6. In: M. Gambardella and V. Diaz (eds.). El cultivo de la frutilla. Publ. Miscelaneas Agr. Agr. 44. Univ. de Chile.

Gambardella, M., S. Fernandez, and V. Diaz. 1999. El cultivo de la frutilla en Chile y uso de germo-plasma nativo en mejoramiento varietal, p. 251–256. In: Morango: Tecnologia de produção e processamento. J.Filho, G. Cancado, M. Regina, L. Antunes, and M. Fadini (eds.).
Empresa de Pesquisa Agropecuaria de Minas Gerais. Minas Gerais, Brazil.
Hancock, J.F., A. Lavin, and J.B. Retamales. 1999. Our southern strawberry heritage: *Fragaria chiloensis* of Chile. HortScience 34:814–816. Instituto Nacional de Tecnología Agropecuaria. 1999. Cultivo de la frutilla, curso a distancia de produccion de hortalizas en invernadero Buenos Aires. Instituto Nacional de Tecnología Agropecuaria. 1997. Annual report. PT 420145. Tucuman, Argentina.
Junta Nacional de la Granja. 1996. Frutilla. Uruguay (http://www.intecan.com/junagra/uruguay.html). Kirschbaum, D.S. 1999a. Produccion de frutilla en Argentina. Actas del Seminario Intl.: El cultivo de la frutilla. 15–18 Nov. Univ. de Chile (In press).
Kirschbaum, D.S. 1999b. The strawberry industry in Argentina. North American Strawberry Growers Assn. Nwsl. 24:8–10.
Kirschbaum, D.S., J. Honorato, and D.J. Cantliife. 1998. Strawberry waiting-bed plants: A valid alternative to increase early and total yields in subtropical regions. HortScience 33:459. (Abstr.) Latinexpo. 1999. Ecuador exports/fruits. Bogota, Colombia. (http://www.sistecol.com/latinexp/infoexpo/ecuador/010.htm).
Lemme, M.C., A.P.J. Herrero, D.S. Kirschbaum, and A.J. Nasca. 1996. Arropodos asociados al cultivo de la frutilla (*Fragaria xanassa*) en Tucuman, Argentina. Vedalia 3:51–52.
Mena, A.J., M.E. de Garcia, and M.A. Gonzalez. 1974. Presence of strawberry anthracnose (*Colletotrichum fragariae*) in the Argentine Republic (tests with *Colletotrichum gloeosporioides*) (Spanish with English summary). Rev. Agron. Noroeste Argent. 11:307–316.
Mercado Central de Buenos Aires. 1997. Informacion de Mercados. Buenos Aires (http://www.mercadocentral.com.ar/Inf de Mercado).
Merzario, F.F. 1999. Mejoramiento del cultivo de la frutilla. ABC Revista Rural (Asuncion), Mar. 10.
Mitidieri, I.M. 1997. Enfermedades, p. 56–78. In: J. Torchelli and A. Ferreyra (eds.). Frutilla. Instituto Nacional de Tecnol. Agropecuaria. Buenos Aires. Montealegre, J.R. 1996. Enfermedades en frutilla, p. 75–84. In: M.Gambardella and V. Diaz (eds.). El cultivo de la frutilla. Publ. Miscelanea Agricolas 44. Univ. Chile.
Oficina de Estudios y Politicas Agrarias. 1997. Cifras de la agricultura. Precios de productos e insumos. Chile (http://www.oepa.gov.cl/cifras/tabla_html/precios/tabla305.html).
Passos, F.A., P.E. Trani, J.A. Betti, and M.A.S. Tanaka. 1995. Instrucoes agricolas para o Estado de Sao Paulo: Morango (*Fragaria xanassa* Duch.). Boletim 200.
Pires Ribeiro, T.A. 1999. Fertirrigacao, p. 169–186. In: J. Filho, G. Cancado, M. Regina, L. Antunes, and M. Fadini (eds.). Morango: Tecnologia de producao e processamento. Empresa de Pesquisa Agropecuaria de Minas Gerais. Minas Gerais, Brazil.
Rodriguez, J.P. 1997. Manejo del cultivo, p. 1–20. In: J. Torchelli and A. Ferreyra (eds.). Frutilla. Instituto Nacional de TecnologRa Agropecuaria. Buenos Aires.
Rodriguez, J.P. and N. Hompanera. 1988. Produccion de plantines para la multiplicacion de frutilla. Manual de produccion de semillas horticolas. Fusciclo II. Instituto Nacional de TecnologRa Agropecuaria-Mendoza, Argentina.
Santos, A.M. 1999a. Panorama varietal do morango no Brazil. Actas del Seminario Intl.: El cultivo de la frutilla. Nov. 15–18. Univ. Chile (In press).
Santos, A.M. 1999b. Situacao da cultura do morangueiro, p. 51–64. In: J. Filho, G. Cancado, M. Regina, L. Antunes, and M. Fadini (eds.). Morango: Tecnologia de producao e processamento. Empresa de Pesquisa Agropecuaria de Minas Gerais. Minas Gerais, Brazil.
Scaglia, E. 1997. Zona de Coronda (Santa Fe). In: J. Torchelli and A. Ferreyra (eds.). Frutilla. Instituto Nacional de Tecnol. Agropecuaria. Buenos Aires.
Silva, M.S.P., G.A. Groppo, and J.T. Neto. 1998. Morango (*Fragaria x ananassa* Duch.). In: Manual das culturas. CATI. Sao Paulo. (http://www.cati.sp.gov.br).
Suzuki, F. 1992. Cultivo de frutales menores. 5th ed. Editorial Universitaria, Santiago, Chile.
Tanaka, M.A.S., F.A. Passos, and J.A. Betti. 1995. Caracterizacao de germo plasma de morangueiro quanto a resistencia a antracnose do rizoma, causada por *Colletotrichum fragariae*, p. 36. Abstr. Natl. Symp. Plant Genet. Resources, May 9–11, Campinas, Brazil.
Tanaka, M.A.S., F.A. Passos, and J.A. Betti. 1996. Evaluation of resistance of strawberry cultivars to fruit anthracnose. In: J. Filho, G. Cancado, M. Regina, L. Antunes, and M. Fadini (eds.). Morango: Tecnologia de producao e processamento. Empresa de Pesquisa Agropecuaria de Minas Gerais. Minas Gerais, Brazil.
Tanaka, M.A.S., F.A. Passos, and M.F. Ito. 1994b. Influence of cultivar and phenological stage of strawberry fruit on lesion development caused by *Colletotrichum spp.*, Summa Phytopatol. 20:160–163.
Vaz Ronque, E.R. 1998. A cultura do morangueiro. Empresa de Pesquisa Agropecuaria de Minas Gerais, Brazil.
Vaz Ronque, E.R. 1999. Principais pragas da cultura do morangueiro, p. 51–64. In: J. Filho, G. Cancado, M. Regina, L. Antunes, and M. Fadini (eds.). Morango: Tecnologia de producao e processamento. Empresa de Pesquisa Agropecuaria de Minas Gerais. Minas Gerais, Brazil.
Voth, V. 1980. California cultural systems, p. 67–76. In: N.F. Childers (ed.). The strawberry. Horticultural Publ., Gainesville, Fla.