$A_n^{(1)}$ Affine Quiver Matrix Model

H. Itoyamaa,b and T. Ootab

a Department of Mathematics and Physics, Graduate School of Science
Osaka City University

b Osaka City University Advanced Mathematical Institute (OCAMI)
3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract

We introduce $A_n^{(1)}$ ($n = 1, 2, \cdots$) affine quiver matrix model by simply adopting the extended Cartan matrices as incidence matrices and study its finite N Schwinger-Dyson equations as well as their planar limit. In the case of $n = 1$, we extend our analysis to derive the cubic planar loop equation for one-parameter family of models labelled by α: $\alpha = 1$ and $\alpha = 2$ correspond to the non-affine A_2 case and the affine $A_1^{(1)}$ case respectively. In the case of $n = 2$, we derive three sets of constraint equations for the resolvents which are quadratic, cubic and quartic respectively.
1 Introduction

Schwinger-Dyson equation for matrix models played an important role in the development of 2d gravity and its extensions in nineties and takes the form of infinite dimensional algebraic constraints \[1, 2\]. Among other things, A_n quiver (or conformal) matrix model was constructed such that it satisfies the W_n constraints automatically \[3, 4\]. The model in its β deformation has contributed a great deal to the recent understanding of the connection \[5\] between 2d conformal field theory and the instanton sum \[6\] that derives the Seiberg-Witten curve \[7\]. The understanding consists of the proof in some special cases \[8\], isomorphism of the curves in both sides \[9\] and direct checks in the q-expansion \[10, 11\]. The case in which the incidence matrices take the generalized Cartan matrices of the affine Lie algebra $A_n^{(1)}$ appears to us an interesting and natural generalization and deserves study for its own sake. In this paper, we provide such model and study its finite N Schwinger-Dyson equations and their planar limit.

This paper is organized as follows. In the next section, we introduce one-parameter family of matrix models labelled by a parameter α with two species of eigenvalues. The non-affine A_2 and affine $A_n^{(1)}$ quiver matrix models correspond to the $\alpha = 1$ and $\alpha = 2$ cases respectively. In section three, we consider S-D equations of this “α” model. We consider the finite N S-D equations as well as their planar limit. We derive a cubic planar loop equation and the cubic curve associated with it. A drastic simplification is observed in the case where $\alpha = 2$ and $W_0 = -W_1$ and the cubic symmetry of the curve is made manifest. In section four, we introduce an $A_n^{(1)}$ affine quiver matrix model. In section five, we derive the planar loop equations for the case of $n = 2$. They take the form of quadratic, cubic and quartic constraints for the resolvents. In the appendix A, we outline the derivation of the S-D equations in section three. The appendix B gives the detail of the derivation of the planar loop equation in section five.

While it is not unlikely that, with a proper engineering of the potential W_i and the choice of the contour \[14, 11\], the partition function of the model may get identified with the Nekrasov function specified by a set of gauge theory data, we are unable to find one so far.

\[1\] For a more extensive list of references till now, see, for instance, \[12\] as well as \[13\].
2 $A_1^{(1)}$ model and the α deformation

Following the punchlines in the introduction, let us consider the β-deformed matrix model with the partition function

$$Z := \int d^{N(0)} \mu \int d^{N(1)} \nu \prod_{1 \leq I < J \leq N(0)} |\mu_I - \mu_J|^{2\beta} \prod_{1 \leq I < J \leq N(1)} |\nu_I - \nu_J|^{2\beta} \prod_{I=1}^{N(0)} \prod_{J=1}^{N(1)} \frac{1}{|\mu_I - \nu_J|^{\alpha \beta}} \times \exp \left(\frac{\sqrt{\beta}}{g_s} \sum_{I=1}^{N(0)} W_0(\mu_I) + \frac{\sqrt{\beta}}{g_s} \sum_{J=1}^{N(1)} W_1(\nu_J) \right).$$

Here, we have left the range of the integrations unspecified except that it is designed such that the integrand vanishes at the end points of the integrations. The second “deformation” parameter α interpolates between the β-deformed matrix model of $A_1^{(1)}$ type ($\alpha = 2$) and that of A_2 type ($\alpha = 1$).

For notational simplicity, let us introduce the “effective” action

$$e^{-S_{\text{eff}}} := \prod_{1 \leq I < J \leq N(0)} |\mu_I - \mu_J|^{2\beta} \prod_{1 \leq I < J \leq N(1)} |\nu_I - \nu_J|^{2\beta} \prod_{I=1}^{N(0)} \prod_{J=1}^{N(1)} \frac{1}{|\mu_I - \nu_J|^{\alpha \beta}} \times \exp \left(\frac{\sqrt{\beta}}{g_s} \sum_{I=1}^{N(0)} W_0(\mu_I) + \frac{\sqrt{\beta}}{g_s} \sum_{J=1}^{N(1)} W_1(\nu_J) \right).$$

3 S-D equation of the “α model” and the planar limit

Let us begin with the Virasoro constraints:

$$0 = \int d^{N(0)} \mu \int d^{N(1)} \nu \sum_{I=1}^{N(0)} \frac{\partial}{\partial \mu_I} \left(\frac{1}{z - \mu_I} e^{-S_{\text{eff}}} \right),$$

we have

$$\left\langle \sum_{I=1}^{N(0)} \frac{1}{(z - \mu_I)^2} \right\rangle + 2\beta \left\langle \sum_{I=1}^{N(0)} \sum_{J=1}^{N(0)} \frac{1}{z - \mu_I \mu_I - \mu_J} \right\rangle$$

$$- \alpha \beta \left\langle \sum_{I=1}^{N(0)} \sum_{J=1}^{N(1)} \frac{1}{z - \mu_I \mu_I - \nu_J} \right\rangle + \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{I=1}^{N(0)} \frac{W_0'(\mu_I)}{z - \mu_I} \right\rangle = 0.$$

Similarly, from

$$0 = \int d^{N(0)} \mu \int d^{N(1)} \nu \sum_{J=1}^{N(1)} \frac{\partial}{\partial \nu_J} \left(\frac{1}{z - \nu_J} e^{-S_{\text{eff}}} \right),$$

we have

$$\left\langle \sum_{J=1}^{N(1)} \frac{1}{(z - \nu_J)^2} \right\rangle - 2\beta \left\langle \sum_{I=1}^{N(0)} \sum_{J=1}^{N(1)} \frac{1}{z - \mu_I \mu_I - \nu_J} \right\rangle + \alpha \beta \left\langle \sum_{I=1}^{N(0)} \sum_{J=1}^{N(1)} \frac{1}{z - \mu_I \mu_I - \nu_J} \right\rangle + \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{I=1}^{N(0)} \frac{W_0'(\mu_I)}{z - \mu_I} \right\rangle = 0.$$
we have
\[
\left\langle \sum_{j=1}^{N^{(1)}} \frac{1}{(z - \nu_j)^2} \right\rangle + 2\beta \left\langle \sum_{i=1}^{N^{(1)}} \sum_{j=1}^{N^{(1)}} \frac{1}{z - \nu_i \nu_j - \nu_j} \right\rangle - \alpha \beta \left\langle \sum_{i=1}^{N^{(0)}} \sum_{j=1}^{N^{(1)}} \frac{1}{z - \nu_j \nu_j - \mu_i} \right\rangle + \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{j=1}^{N^{(1)}} W_1(\nu_j) \right\rangle = 0. \tag{3.4}
\]

Let
\[
\tilde{\omega}_0(z) := \sqrt{\beta} g_s \sum_{i=1}^{N^{(0)}} \frac{1}{z - \mu_i}, \quad \tilde{\omega}_1(z) := \sqrt{\beta} g_s \sum_{j=1}^{N^{(1)}} \frac{1}{z - \nu_j}. \tag{3.5}
\]

Adding \(g_s^2\cdot(3.2)\) and \(g_s^2\cdot(3.1)\), we have
\[
\left\langle (\tilde{\omega}_0(z))^2 \right\rangle + \left\langle (\tilde{\omega}_1(z))^2 \right\rangle - \alpha \left\langle \tilde{\omega}_0(z) \tilde{\omega}_1(z) \right\rangle + \epsilon \left\langle \tilde{\omega}_0(z) \right\rangle + \epsilon \left\langle \tilde{\omega}_1(z) \right\rangle + W_0'(z) \left\langle \tilde{\omega}_0(z) \right\rangle + W_1'(z) \left\langle \tilde{\omega}_1(z) \right\rangle - \left\langle f_0(z) \right\rangle - \left\langle f_1(z) \right\rangle = 0 \tag{3.6}
\]
where
\[
\epsilon := \left(\sqrt{\beta} - \frac{1}{\sqrt{\beta}} \right) g_s. \tag{3.7}
\]

\[
\hat{f}_0(z) := \sqrt{\beta} g_s \sum_{i=1}^{N^{(0)}} \frac{W_0'(z) - W_0'(\mu_i)}{z - \mu_i}, \tag{3.8}
\]

\[
\hat{f}_1(z) := \sqrt{\beta} g_s \sum_{j=1}^{N^{(1)}} \frac{W_1'(z) - W_1'(\nu_j)}{z - \nu_j}. \tag{3.9}
\]

To take the planar limit \(g_s \to 0\), let
\[
\omega_{0,1}(z) := \lim \left\langle \tilde{\omega}_{0,1}(z) \right\rangle, \quad f_{0,1}(z) := \lim \left\langle \hat{f}_{0,1}(z) \right\rangle, \tag{3.10}
\]
We obtain
\[
\omega_0(z)^2 + \omega_1(z)^2 - \alpha \omega_0(z) \omega_1(z) + W_0'(z) \omega_0(z) + W_1'(z) \omega_1(z) - f_0(z) - f_1(z) = 0. \tag{3.11}
\]

Let us turn to the higher order constraints. In particular, let us consider
\[
0 = \int d^{N^{(0)}} \mu \int d^{N^{(1)}} \nu \sum_{i=1}^{N^{(0)}} \frac{\partial}{\partial \mu_i} \left(\frac{1}{z - \mu_i} \sum_{K=1}^{N^{(1)}} \frac{1}{\nu_K - \mu_i} e^{-S_{\text{eff}}} \right), \tag{3.12}
\]
as well as
\[
0 = \int d^{N^{(0)}} \mu \int d^{N^{(1)}} \nu \sum_{K=1}^{N^{(1)}} \frac{\partial}{\partial \nu_K} \left(\frac{1}{z - \nu_K} \sum_{I=1}^{N^{(0)}} \frac{1}{\nu_K - \mu_I} e^{-S_{\text{eff}}} \right). \tag{3.13}
\]
Taking the difference of these two equations and carrying out some algebra which is outlined in the appendix A, we obtain

\[
\left\langle \left(\frac{2(1-\alpha)}{\alpha} A - \alpha \beta B - \frac{(1-\alpha \beta)}{2} C + D \right) \right\rangle = 0, \tag{3.14}
\]
where

\[
A := -\frac{1}{2} \left(\sum_{I \neq J} \frac{1}{z - \mu_I z - \mu_J} \right)' + (2\beta - 1) \sum_{I \neq J} \frac{1}{z - \mu_I (\mu_I - \mu_J)^2}
\]
\[
+ \frac{2\beta}{3} \sum_{I \neq J \neq K} \frac{1}{(z - \mu_I)(z - \mu_J)(z - \mu_K)}
\]
\[
+ \frac{\sqrt{\beta} W_0'(z)}{g_s} \left(\sum_{I \neq J} \frac{1}{z - \mu_I z - \mu_J} \right) - \frac{\sqrt{\beta}}{g_s} \left(\sum_{I \neq J} \frac{W_0'(z) - W_0'(\mu_I)}{z - \mu_I} \right)
\]
\[
- (\mu_I \leftrightarrow \nu_I, W_0 \leftrightarrow W_1),
\]
\[
B := \sum_{I,J,K} \frac{1}{(z - \mu_I)(z - \nu_J)(z - \nu_K)} - \sum_{I,J,K} \frac{1}{(z - \mu_I)(z - \mu_J)(z - \nu_K)},
\]
\[
C := \sum_{I,K} \frac{1}{(z - \mu_I)(z - \nu_K)^2} - \sum_{I,K} \frac{1}{(z - \mu_I)^2(z - \nu_K)}
\]
\[
+ \frac{1}{\alpha \beta} \left(\sum_{I} \frac{1}{(z - \mu_I)^2} + 2\beta \sum_{I \neq K} \frac{1}{z - \mu_I \mu_I - \mu_K} \right)
\]
\[
+ \frac{\sqrt{\beta}}{g_s} \sum_{I} W_0'(\mu_I)
\]
\[
- (\mu_I \leftrightarrow \nu_I, W_0 \leftrightarrow W_1)',
\]
\[
D := \frac{\sqrt{\beta} W_0'(z)}{g_s} \frac{1}{\alpha \beta} \left(\sum_{I} \frac{1}{(z - \mu_I)^2} + 2\beta \sum_{I \neq K} \frac{1}{z - \mu_I \mu_I - \mu_K} \right)
\]
\[
+ \frac{\sqrt{\beta}}{g_s} \sum_{I} W_0'(\mu_I)
\]
\[
- \frac{\sqrt{\beta}}{g_s} \left(\sum_{I,K} \frac{W_0'(z) - W_0'(\mu_I)}{z - \mu_I} \right)
\]
\[
- (\mu_I \leftrightarrow \nu_I, W_0 \leftrightarrow W_1).
\]

This is a complicated equation but let us multiply by \(g_s^3 \sqrt{\beta}\) and take the planar limit.

Let

\[
u(z) := \omega_0(z) - \omega_1(z), \quad v(z) := \omega_0(z) + \omega_1(z). \tag{3.16}\]
Also, let

\[h_0(z) := \lim \left\langle \beta g_s^2 \sum_{l \neq k} \frac{W_0' (z) - W_0' (\mu_I)}{z - \mu_I} - \frac{1}{\mu_I - \mu_K} \right\rangle, \]

\[h_1(z) := \lim \left\langle \beta g_s^2 \sum_{l \neq k} \frac{W_1' (z) - W_1' (\nu_I)}{z - \nu_I} - \frac{1}{\nu_I - \nu_K} \right\rangle, \]

\[g_0(z) := \lim \left\langle \beta g_s^2 \sum_{l, K} \frac{W_0' (z) - W_0' (\mu_I)}{z - \mu_I} - \frac{1}{\mu_I - \mu_K} \right\rangle, \]

\[g_1(z) := \lim \left\langle \beta g_s^2 \sum_{l, K} \frac{W_1' (z) - W_1' (\nu_K)}{z - \nu_K} - \frac{1}{\nu_K - \nu_I} \right\rangle. \]

(3.17)

In terms of \(u, v \), the planar SD equations can be rewritten as

\[\left(\frac{2 + \alpha}{4} \right) u(z)^2 + \left(\frac{2 - \alpha}{4} \right) v(z)^2 \]

\[+ \frac{1}{2} \left(W_0''(z) - W_1''(z) \right) u(z) + \frac{1}{2} \left(W_0'(z) + W_1'(z) \right) v(z) - f_0(z) - f_1(z) = 0, \]

\[\frac{(3 \alpha - 2)(\alpha + 2)}{12 \alpha} u(z)^3 - \frac{(2 - \alpha)}{4 \alpha} (W_0'(z) - W_1'(z)) u(z)^2 - \frac{1}{2 \alpha} \left\{ (W_0'(z))^2 + (W_1'(z))^2 \right\} u(z) \]

\[- \frac{1}{\alpha} \left\{ (2 - \alpha) u(z) + (W_0'(z) - W_1'(z)) \right\} \left(\frac{2 - \alpha}{4} v(z)^2 + \frac{1}{2} (W_0'(z) + W_1'(z)) v(z) \right) \]

\[+ \frac{1}{\alpha} \left(W_0''(z) f_0(z) - W_1''(z) f_1(z) \right) - 2 \left(1 - \frac{1}{\alpha} \right) (h_0(z) - h_1(z)) + g_0(z) - g_1(z) = 0. \]

(3.18)

Using the planar Virasoro constraint (3.18), we can convert (3.19) into an equation for \(u \):

\[\frac{(\alpha + 2)}{3 \alpha} u(z)^2 + \frac{1}{\alpha} (W_0'(z) - W_1'(z)) u(z)^2 - \frac{1}{\alpha} \left\{ W_0'(z) W_1'(z) + (2 - \alpha) (f_0(z) + f_1(z)) \right\} u(z) \]

\[+ \frac{1}{\alpha} \left(W_1''(z) f_0(z) - W_0''(z) f_1(z) \right) - \frac{2(\alpha - 1)}{\alpha} (h_0(z) - h_1(z)) + g_0(z) - g_1(z) = 0. \]

(3.20)

For simplicity, we assume \(\alpha \neq -2 \). Let

\[x(z) := u(z) + \frac{1}{\alpha + 2} (W_0'(z) - W_1'(z)) = \omega_0(z) - \omega_1(z) + \frac{1}{\alpha + 2} (W_0'(z) - W_1'(z)). \]

(3.21)

The cubic equation (3.20) becomes

\[x(z)^3 - p(z)x(z) - q(z) = 0, \]

(3.22)

where

\[p(z) = \frac{3}{(\alpha + 2)^2} \left\{ (W_0'(z))^2 + (W_1'(z))^2 + \alpha W_0'(z) W_1'(z) \right\} + \frac{3(2 - \alpha)}{\alpha + 2} (f_0(z) + f_1(z)), \]

(3.23)
\[q(z) = -\frac{1}{(\alpha + 2)^3} (W_0'(z) - W_1'(z)) \left\{ 2(W_0'(z))^2 + 2(W_1'(z))^2 + (3\alpha + 2)W_0'(z)W_1'(z) \right\} \]
\[\quad - \frac{3}{(\alpha + 2)^2} \left\{ (2 - \alpha)W_0'(z) + 2\alpha W_1'(z) \right\} f_0(z) + \frac{3}{(\alpha + 2)^2} \left\{ 2\alpha W_0'(z) + (2 - \alpha)W_1'(z) \right\} f_1(z) \]
\[\quad + \frac{6(\alpha - 1)}{\alpha + 2} (h_0(z) - h_1(z)) - \frac{3\alpha}{\alpha + 2} (g_0(z) - g_1(z)). \] (3.24)

At \(\alpha = 2 \), we get the cubic equation for \(A_1^{(1)} \) model:

\[x^3 - \frac{3}{16} (W_0' + W_1')^2 x + \frac{1}{32} (W_0' - W_1') \left\{ (W_0')^2 + (W_1')^2 + 4W_0'W_1' \right\} \]
\[\quad + \frac{3}{4} (W_1'f_0 - W_0'f_1) + \frac{3}{2} (-h_0 + h_1 + g_0 - g_1) = 0. \] (3.25)

Here

\[x = \omega_0 - \omega_1 + \frac{1}{4} (W_0' - W_1'). \] (3.26)

At \(\alpha = 1 \), it turns into the loop equation for \(A_2 \) model

\[x^3 - \frac{1}{3} \left\{ (W_0')^2 + (W_1')^2 + W_0'W_1' + 3(f_0 + f_1) \right\} x \]
\[\quad + \frac{1}{27} (W_0' - W_1') \left\{ 2(W_0')^2 + 2(W_1')^2 + 5W_0'W_1' \right\} \]
\[\quad + \frac{1}{3} (W_0' + 2W_1')f_0 - \frac{1}{3} (2W_0' + W_1')f_1 + g_0 - g_1 = 0, \] (3.27)

Here

\[x = \omega_0 - \omega_1 + \frac{1}{3} (W_0' - W_1'). \] (3.28)

This cubic equation (3.27) can be rewritten as follows:

\[(x - t_1(z))(x - t_2(z))(x - t_3(z)) - f_1(z)(x - t_3(z)) - f_0(z)(x - t_1(z)) - g_1(z) + g_0(z) = 0, \] (3.29)

where

\[t_1(z) = \frac{1}{3} (2W_1'(z) + W_0'(z)), \quad t_2(z) = -\frac{1}{3} (W_1'(z) - W_0'(z)), \quad t_3(z) = -\frac{1}{3} (W_1'(z) + 2W_0'(z)). \] (3.30)

This is the form which have been analysed before.

Finally, let us consider the special case where \(\alpha = 2 \) and \(W_0 = -W_1 \). In this case, eq. (3.25) reduces to

\[x^3 - \frac{1}{8} (W_0')^3 - \frac{3}{4} W_0'(f_0 + f_1) - \frac{3}{2} (h_0 - h_1 - g_0 + g_1) = 0, \] (3.31)

possessing the symmetry of \(x \) rotation by cubic root of unity \(x \to e^{\pm \frac{2\pi i}{3}} x \). This drastic simplification is understood as the prescription \(\sqrt[3]{\beta} \to -\sqrt[3]{\beta} \) for the second species of eigenvalues.
\(\nu_J, \; (J = 1, 2, \ldots, N^{(1)}) \). Let us introduce notation

\[
\begin{align*}
\nu_I &= \begin{cases}
\mu_I, & (I = 1, 2, \ldots, N^{(0)}), \\
\nu_{I-N^{(0)}}, & (I = N^{(0)} + 1, \ldots, N^{(0)} + N^{(1)}),
\end{cases} \\
\operatorname{sgn} I &= \begin{cases}
1, & (I = 1, 2, \ldots, N^{(0)}), \\
-1, & (I = N^{(0)} + 1, \ldots, N^{(0)} + N^{(1)}).
\end{cases}
\end{align*}
\]

The partition function in this case can be written as that of the \(\beta \) deformation of one-matrix model with positive and negative “charges” in the Coulomb gas analogy:

\[
Z := \int d^{N(0)+N(1)} z \prod_{1 \leq I < J \leq N(0)+N(1)} |z_I - z_J|^{2\beta (\operatorname{sgn} I)(\operatorname{sgn} J)} \exp \left(\frac{\sqrt{\beta}}{g_s} \sum_{I=1}^{N(0)+N(1)} (\operatorname{sgn} I)W_0(z_I) \right).
\]

The entire S-D equations can be formulated in terms of a single resolvant \(\hat{\omega}(z) := \hat{w}_0(z) - \hat{w}_1(z) \) and two kinds of quantum deformations \(\hat{f}(z) := \hat{f}_0(z) + \hat{f}_1(z) \) and \(\hat{h}(z) := (\hat{h}_0(z) - \hat{h}_1(z)) - (\hat{g}_0(z) - \hat{g}_1(z)) \), all of which are written succinctly in this one-matrix notation.

4 \(A_n^{(1)} \) affine quiver matrix model

The partition function for the \(\beta \)-deformed \(A_n^{(1)} \) quiver matrix model is defined by

\[
Z := \int d\lambda e^{-S_{\text{eff}}},
\]

where

\[
d\lambda = \prod_{i=0}^{n} \prod_{I=1}^{N(i)} d\lambda^{(i)}_I,
\]

\[
e^{-S_{\text{eff}}} := \prod_{i=0}^{n} \prod_{1 \leq I < J \leq N(i)} |\lambda^{(i)}_I - \lambda^{(i)}_J|^{2\beta} \prod_{i=0}^{n} \prod_{I=1}^{N(i)} \prod_{J=1}^{N(i+1)} |\lambda^{(i)}_I - \lambda^{(i+1)}_J|^{-\beta}
\]

\[
\times \exp \left(\frac{\sqrt{\beta}}{g_s} \sum_{i=0}^{n} \sum_{I=1}^{N(i)} W_i(\lambda^{(i)}_I) \right),
\]

with the periodicity of the index \(i \): \(\lambda^{(n+1)}_I = \lambda^{(0)}_I \) and \(N^{(n+1)} = N^{(0)} \). In the following part, we assume this kind of periodicity for the index \(i \): \(i = k + n + 1 \equiv k \).
For later convenience, we define the following functions:

\[\tilde{\omega}_i(z) := \sqrt{\beta} g_s \sum_{I=1}^{N^{(i)}} \frac{1}{z - \lambda_I^{(i)}}, \]

\[\tilde{R}_{i,j_1,j_2\ldots,j_k}^{(i)}(z) := \sqrt{\beta} g_s \sum_{I=1}^{N^{(i)}} \frac{\xi_{j_1,j_2\ldots,j_k}^{(i)}(\lambda_I^{(i)})}{z - \lambda_I^{(i)}}, \]

\[\tilde{U}_{i,j_1,j_2\ldots,j_k}^{(i)}(z) := \sqrt{\beta} g_s \frac{\partial \xi_{j_1,j_2\ldots,j_k}^{(i)}(\lambda_I^{(i)})}{\partial \lambda_I^{(i)}}. \]

(4.4)

Here \(i, j_1, \ldots, j_k = 0, 1, \ldots, n \) and

\[\xi_{j_1,j_2\ldots,j_k}^{(i)}(\lambda_I^{(i)}) := \begin{cases} \xi_{j_1}^{(i)}(\lambda_I^{(i)})\xi_{j_2}^{(i)}(\lambda_I^{(i)})\ldots\xi_{j_k}^{(i)}(\lambda_I^{(i)}), & (k \geq 1), \\ 1 & (k = 0), \end{cases} \]

(4.5)

with

\[\xi_{j}^{(i)}(\lambda_I^{(i)}) := \begin{cases} \sqrt{\beta} g_s \sum_{I=1 \atop (J \neq I)}^{N^{(i)}} \frac{1}{\lambda_I^{(i)} - \lambda_J^{(i)}}, & (j = i), \\ \sqrt{\beta} g_s \sum_{J=1 \atop (J \neq i)}^{N^{(i)}} \frac{1}{\lambda_I^{(i)} - \lambda_J^{(i)}} = \tilde{\omega}_j(\lambda_I^{(i)}), & (j \neq i). \]

(4.6)

Notice that \(\tilde{R}_{j_1\ldots,j_k}^{(i)}(z) \) with \(k = 0 \) coincide with \(\tilde{\omega}_i(z) \):

\[\tilde{R}^{(i)}(z) = \sqrt{\beta} g_s \sum_{I=1}^{N^{(i)}} \frac{1}{z - \lambda_I^{(i)}} = \tilde{\omega}_i(z), \quad (k = 0), \]

(4.7)

Later, we use several identities which relate products of \(\tilde{\omega}_i(z) \) to sums of these functions. For \(\{j_1, j_2, \ldots, j_k\} \) all different, the identity

\[\prod_{\ell=1}^{k} \frac{1}{z - \lambda_I^{(j_\ell)}} = \sum_{\ell=1}^{k} \frac{1}{z - \lambda_I^{(j_\ell)}} \prod_{m=1 \atop (m \neq \ell)}^{k} \frac{1}{\lambda_I^{(j_m)} - \lambda_I^{(j_m)}} \]

(4.8)

leads to the following identity:

\[\tilde{\omega}_{j_1}(z)\tilde{\omega}_{j_2}(z)\ldots\tilde{\omega}_{j_k}(z) = \sum_{\ell=1}^{k} \tilde{R}_{j_1\ldots,j_{\ell-1}j_{\ell+1}\ldots,j_k}^{(j_\ell)}(z), \quad (\{j_i\} \text{ all different}). \]

(4.9)
If some of indices j_ℓ coincide, there are $O(g_s)$ corrections:

$$\hat{\varpi}_j(z)\hat{\varpi}_k(z) = \sum_{\ell=1}^k \hat{R}^{(j_\ell)}_{j_{\ell-1}j_\ell1\cdots j_k}(z) + O(g_s).$$ \hspace{1cm} (4.10)

Explicit forms of (4.10) for $k = 2, 3$ are given by

$$\hat{\varpi}_i(z)\hat{\varpi}_j(z) = \hat{R}^{(i)}_{j}(z) + \hat{R}^{(j)}_{i}(z) - \sqrt{\beta g_s}\hat{\varpi}_i(z)\delta_{ij},$$ \hspace{1cm} (4.11)

$$\hat{\varpi}_i(z)\hat{\varpi}_j(z)\hat{\varpi}_k(z) = \hat{R}^{(i)}_{jk}(z) + \hat{R}^{(j)}_{ki}(z) + \hat{R}^{(k)}_{ij}(z), \quad (i \neq j \neq k \neq i),$$ \hspace{1cm} (4.12)

$$\left(\hat{\varpi}_i(z)\right)^2 = 2\hat{R}^{(i)}_{ij}(z) + \hat{R}^{(j)}_{ii}(z) - \sqrt{\beta g_s}d\hat{R}^{(i)}_j(z) + \sqrt{\beta g_s}\hat{\varpi}^{(i)}_j(z), \quad (i \neq j),$$ \hspace{1cm} (4.13)

The identity (4.11) for $j = i$, we have

$$2\hat{R}^{(i)}_i(z) = (\hat{\varpi}_i(z))^2 + \sqrt{\beta g_s}\hat{\varpi}^{(i)}_i(z).$$ \hspace{1cm} (4.14)

Substituting this identity into (4.15), we have

$$\left\langle \epsilon\hat{\varpi}^{(i)}_i(z) + (\hat{\varpi}^{(i)}_i(z))^2 - \hat{R}^{(i)}_{i-1}(z) - \hat{R}^{(i)}_{i+1}(z) + W'_i(z)\hat{\varpi}_i(z) - \hat{F}^{(i)}(z) \right\rangle = 0,$$ \hspace{1cm} (4.16)

where

$$\epsilon := \left(\sqrt{\beta} - \frac{1}{\sqrt{\beta}}\right) g_s.$$

The identity (4.11) for $j = i + 1$ gives

$$\hat{\varpi}_i(z)\hat{\varpi}_{i+1}(z) = \hat{R}^{(i)}_{i+1}(z) + \hat{R}^{(i+1)}_{i}(z).$$ \hspace{1cm} (4.17)
Summing over i, we have
\[
\sum_{i=0}^{n} (\hat{R}_{i+1}(z) + \hat{R}_{i-1}(z)) = \sum_{i=0}^{n} \hat{\omega}_i(z) \hat{\omega}_{i+1}(z). \tag{4.20}
\]

Only this combination of $\hat{R}_{i+1}(z) + \hat{R}_{i-1}(z)$ allows an expression in terms of the resolvents $\hat{\omega}_j(z)$. Hence the sum of (4.17) over i gives the “Virasoro constraint”:
\[
\left\langle \sum_{i=0}^{n} (\epsilon \hat{\omega}'_i(z) + (\hat{\omega}_i(z))^2 - \hat{\omega}_i(z) \hat{\omega}_{i+1}(z) + W'_i(z) \hat{\omega}_i(z) - \hat{F}^{(i)}(z)) \right\rangle = 0. \tag{4.21}
\]

5 Planar loop equations for $n = 2$

For simplicity, we consider the S-D equations for the $A_n^{(1)}$ model in the planar limit: $g_s \rightarrow 0$.

Let
\[
\begin{align*}
R_{j_1j_2 \ldots j_k}^{(i)}(z) &:= \lim \left\langle \hat{R}_{j_1j_2 \ldots j_k}^{(i)}(z) \right\rangle, \tag{5.1} \\
F_{j_1j_2 \ldots j_k}^{(i)}(z) &:= \lim \left\langle \hat{F}_{j_1j_2 \ldots j_k}^{(i)}(z) \right\rangle. \tag{5.2}
\end{align*}
\]

In the planar limit, the SD equations (4.14) are given by
\[
2R_{j_1j_2 \ldots j_k}^{(i)}(z) - R_{(i-1)j_1j_2 \ldots j_k}^{(i)}(z) - R_{(i+1)j_1j_2 \ldots j_k}^{(i)}(z) + W'_i(z) R_{j_1j_2 \ldots j_k}^{(i)}(z) - F_{j_1j_2 \ldots j_k}^{(i)}(z) = 0. \tag{5.3}
\]

We write explicit constraints for the resolvents (loop equations) in the $A_2^{(1)}$ model. The planar Virasoro constraint is given by
\[
\begin{align*}
\omega_0^2 + \omega_1^2 + \omega_2^2 - \omega_0 \omega_1 - \omega_0 \omega_2 - \omega_1 \omega_2 \\
+ W'_0 \omega_0 + W'_1 \omega_1 + W'_2 \omega_2 - F^{(0)} - F^{(1)} - F^{(2)} = 0. \tag{5.4}
\end{align*}
\]

The cubic loop equation takes the form
\[
\begin{align*}
\frac{8}{3}(\omega_0^3 + \omega_1^3 + \omega_2^3) - \omega_0(\omega_1^2 + \omega_2^2) - \omega_1(\omega_0^2 + \omega_2^2) - \omega_2(\omega_0^2 + \omega_1^2) - 2\omega_0 \omega_1 \omega_2 \\
+ W'_0(3\omega_0^2 + W'_0 \omega_0 - F^{(0)}) + W'_1(3\omega_1^2 + W'_1 \omega_1 - F^{(1)}) + W'_2(3\omega_2^2 + W'_2 \omega_2 - F^{(2)}) \\
- 4F'_0 - F'_0 - F'_2 - 4F'_1 - F'_2 - F'_0 - 4F'_2 - F'_0 - F'_2 = 0. \tag{5.5}
\end{align*}
\]
The quartic loop equation is given by
\[\frac{13}{2} (\omega_0^4 + \omega_1^4 + \omega_2^4) - \omega_0 (\omega_1^3 + \omega_2^3) - \omega_1 (\omega_0^3 + \omega_2^3) - \omega_2 (\omega_0^3 + \omega_1^3) \]
\[- \frac{3}{2} (\omega_0^2 \omega_1^2 + \omega_0^2 \omega_2^2 + \omega_1^2 \omega_2^2) - 3 \omega_0 \omega_1 \omega_2 (\omega_1 + \omega_2 + \omega_2) \]
\[+ W_0' \left[9 \omega_0^3 + W_0' \left(\frac{9}{2} \omega_0^2 + W_0' \omega_0 - F^{(0)} \right) - 7 F_0^{(0)} - F_1^{(0)} - F_2^{(0)} \right] \]
\[+ W_1' \left[9 \omega_1^3 + W_1' \left(\frac{9}{2} \omega_1^2 + W_1' \omega_1 - F^{(1)} \right) - 7 F_1^{(1)} - F_2^{(1)} - F_0^{(1)} \right] \]
\[+ W_2' \left[9 \omega_2^3 + W_2' \left(\frac{9}{2} \omega_2^2 + W_2' \omega_2 - F^{(2)} \right) - 7 F_2^{(2)} - F_0^{(2)} - F_1^{(2)} \right] \]
\[- 13 F_{00}^{(0)} - 5 F_{01}^{(0)} - 5 F_{02}^{(0)} - F_{11}^{(0)} - 2 F_{12}^{(0)} - F_{22}^{(0)} \]
\[- 13 F_{11}^{(1)} - 5 F_{12}^{(1)} - 5 F_{01}^{(1)} - F_{22}^{(1)} - 2 F_{02}^{(1)} - F_{00}^{(1)} \]
\[- 13 F_{22}^{(2)} - 5 F_{02}^{(2)} - 5 F_{12}^{(2)} - F_{00}^{(2)} - 2 F_{01}^{(2)} - F_{11}^{(2)} = 0. \]

The derivation of these constraints is given in Appendix B

Acknowledgements

We thank Nobuhiro Yonezawa for interesting discussion. The research of H. I. and T. O. is supported in part by the Grant-in-Aid for Scientific Research (2054278, 23540316) from the Ministry of Education, Science and Culture, Japan.

A Derivations of (3.14), (3.15)

In this appendix, we outline the derivation of (3.14) and (3.15), starting from the second set of S-D equations eq. (3.12), eq. (3.13) which are constraints higher than Virasoro constraints. Eq. (3.12) reads
\[\left\langle \sum_{I,K} \frac{1}{(z - \mu_I)^2} \frac{1}{\mu_I - \nu_K} \right\rangle - \left\langle \sum_{I,K} \frac{1}{(z - \mu_I)} \frac{1}{(\mu_I - \nu_K)^2} \right\rangle \]
\[+ 2 \beta \left\langle \sum_{I,K} \frac{1}{z - \mu_I} \frac{1}{\mu_I - \nu_K} \sum_{J \neq I} \frac{1}{\mu_I - \mu_J} \right\rangle - \alpha \beta \left\langle \sum_{I,K,J} \frac{1}{z - \mu_I} \frac{1}{\mu_I - \nu_K} \frac{1}{\mu_I - \nu_J} \right\rangle \]
\[+ \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{I,K} W_0' (\mu_I) \frac{1}{z - \mu_I} \frac{1}{\mu_I - \nu_K} \right\rangle = 0. \]

The counterpart read from eq. (3.13) is given by replacing \(\mu_I \) by \(\nu_K \) in eq. (A.1) and we will not spell it out. Let us subtract this one from eq. (A.1), which we refer to as eq. (A.1), and
analyse this in what follows. We will make a frequent use of the partial fraction formula

\[
\sum_{i=1}^{n} \prod_{j \neq i}^{n} \frac{1}{z_i - z_j} = 0. \quad (A.2)
\]

for a set of \(n \) complex numbers \((z_1, \cdots, z_n)\). For the developments of this formula in the context of, see [15]. Using (A.2) for \((z, \mu, \nu_K, \nu_J)\) and for \((z, \nu_K, \mu, \mu_J)\), we convert the fourth term of eq. (A.1) as

\[
2\alpha\beta \cdot \left\langle \sum_{I, K, J \atop (K \neq J)} \frac{1}{z - \nu_K} \frac{1}{\nu_J} \frac{1}{\nu_K - \mu_I - \nu_K} - \sum_{I, K, J \atop (I \neq J)} \frac{1}{z - \mu_I} \frac{1}{\mu_J} \frac{1}{\mu_I - \nu_K} \right\rangle
\]

\[
- \alpha\beta \cdot \left\langle \sum_{I, K, J \atop (K \neq J)} \frac{1}{z - \mu_I} \frac{1}{z - \nu_K} \frac{1}{z - \nu_J} - \sum_{I, K, J \atop (I \neq J)} \frac{1}{z - \mu_I} \frac{1}{z - \mu_J} \frac{1}{z - \nu_K} \right\rangle \quad (A.3)
\]

\[
- \alpha\beta \cdot \left\langle \sum_{I, K} \frac{1}{z - \mu_I} \frac{1}{(\mu_I - \nu_K)^2} - \sum_{I, K} \frac{1}{z - \nu_K} \frac{1}{(\nu_K - \mu_I)^2} \right\rangle.
\]

The first line of eq. (A.3) combined with the third term in eq. (A.1) as gives

\[
2(1 - \alpha)\beta \cdot \left\langle \sum_{I, K, J \atop (I \neq J)} \frac{1}{z - \mu_I} \frac{1}{\mu_J} \frac{1}{\mu_I - \nu_K} - \sum_{I, K, J \atop (K \neq J)} \frac{1}{z - \nu_K} \frac{1}{\nu_J} \frac{1}{\nu_K - \mu_I} \right\rangle. \quad (A.4)
\]

The third line of eq. (A.3) combined with the first and the second terms in eq. (A.1) as gives

\[
- \frac{1 + \alpha\beta}{2} \cdot \left\langle \sum_{I, K} \frac{1}{z - \mu_I} \frac{1}{(z - \nu_K)^2} - \sum_{I, K} \frac{1}{z - \nu_K} \frac{1}{(z - \mu_I)^2} \right\rangle
\]

\[
+ \frac{1 - \alpha\beta}{2} \cdot \left\langle \sum_{I, K} \frac{1}{(z - \mu_I)^2} \frac{1}{\mu_I - \nu_K} - \sum_{I, K} \frac{1}{(z - \nu_K)^2} \frac{1}{\nu_K - \mu_I} \right\rangle. \quad (A.5)
\]
Here we have used ν_K derivative and μ_I derivative of eq. (A.2) for (z, μ_I, ν_K). All in all, we obtain

$$2(1-\alpha)^{-\beta} \cdot \left\langle \sum_{I,K,J \atop (I \neq J)} \frac{1}{z-\mu_I} \frac{1}{\mu_I-\mu_J} \frac{1}{\nu_K-\nu_J} - \sum_{I,K,J \atop (K \neq J)} \frac{1}{z-\nu_K} \frac{1}{\nu_K-\nu_J} \frac{1}{\nu_J-\mu_I} \right\rangle$$

$$-\alpha^{-\beta} \cdot \left\langle \sum_{I,J,K} \frac{1}{z-\mu_I} \frac{1}{z-\nu_K} \frac{1}{\nu_J-\mu_I} + \frac{1}{\nu_I-\mu_J} \right\rangle$$

$$-\frac{1-\alpha^{-\beta}}{2} \cdot \left\langle \sum_{I,K} \frac{1}{z-\mu_I} \frac{1}{(z-\nu_K)^2} \frac{1}{\nu_K-\mu_I} \right\rangle$$

$$+ \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{I,K} \frac{1}{z-\mu_I} \frac{1}{(z-\nu_K)^2} \right\rangle - \sqrt{\beta} \left\langle \sum_{I,K} \frac{1}{z-\nu_K} \frac{1}{\nu_K-\mu_I} \right\rangle$$

$$= 0.$$

In this expression, all except the first line take forms which are expressible in terms of the two resolvents $\tilde{\omega}_{0,1}(z)$, their derivatives and polynomials in z once we invoke the original Virasoro constraints eq. (3.2)

$$\alpha^{-\beta} \cdot \left\langle \sum_{I,J} \frac{1}{z-\mu_I} \frac{1}{\mu_I-\mu_J} \right\rangle =$$

$$\left\langle \sum_{I,J} \frac{1}{z-\mu_I} \right\rangle + 2\beta \left\langle \sum_{I,J \atop (J \neq I)} \frac{1}{z-\mu_I} \frac{1}{\mu_I-\mu_J} \right\rangle + \frac{\sqrt{\beta}}{g_s} \left\langle \sum_{I=1} W'_0(\mu_I) \right\rangle.$$

(A.7)

and the one eq. (3.4) obtained by $\mu_I \leftrightarrow \nu_K$.

In order to handle the first line of eq. (A.6), let us consider another S-D equation:

$$0 = \int d^{N(0)} \mu \int d^{N(1)} \nu \sum_{I,J} \frac{\partial}{\partial \mu_I} \left(\frac{1}{z-\mu_I} \sum_{J \atop (J \neq I)} \frac{1}{\mu_I-\mu_J} e^{-S_{\text{eff}}} \right).$$

(A.8)

Exploiting eq. (A.2) for (z, μ_I, μ_J), (z, μ_I, μ_J, μ_K) as well as its z derivative? in eq. (A.8), we
reexpress the first line of eq. (A.6), using
\[\alpha \beta \left\langle \sum_{I,K,J \neq J} \frac{1}{z - \mu_I} \frac{1}{\mu_I - \mu_J} \frac{1}{\mu_I - \nu_K} \right\rangle = -\frac{1}{2} \left\langle \left(\sum_{I \neq J} \frac{1}{z - \mu_I} \frac{1}{z - \mu_J} \right)^{\prime} \right\rangle \]
+ (2\beta - 1) \left\langle \left(\sum_{I \neq J} \frac{1}{z - \mu_I} \frac{1}{(\mu_I - \mu_J)^2} \right) \right\rangle + \frac{2\beta}{3} \left\langle \left(\sum_{I \neq J \neq K \neq I} \frac{1}{(z - \mu_I)(z - \mu_J)(z - \mu_K)} \right) \right\rangle \] \hspace{1cm} (A.9)
+ \frac{\sqrt{\beta} W_0' (z)}{2} \left\langle \left(\sum_{I \neq J} \frac{1}{z - \mu_I} \frac{1}{z - \mu_J} \right) \right\rangle - \frac{\sqrt{\beta}}{g_s} \left\langle \left(\sum_{I \neq J} \frac{W_0'(z) - W_0' (\mu_I)}{z - \mu_I} \frac{1}{\mu_I - \mu_J} \right) \right\rangle

Substituting this into eq. (A.6), we obtain the expression quoted in the text.

\section*{B Derivations of the constraints (5.4), (5.5), (5.6)}

\subsection*{B.1 The constraint (5.4)}

The planar Virasoro constraint (5.4) can be obtained by taking the planar limit of the Virasoro constraint (4.21). But we rederive it from the planar S-D equations (5.3) because we will need (B.4), (B.5) and (B.6) to obtain higher order loop equations (5.5) and (5.6).

For \(n = 2\) and \(k = 0\), \((5.3)\) are explicitly given by

\[2R_0^{(0)} - R_2^{(0)} - R_1^{(0)} + W_0' \omega_0 - F^{(0)} = 0,\]
\[2R_1^{(1)} - R_0^{(1)} - R_2^{(1)} + W_1' \omega_1 - F^{(1)} = 0,\]
\[2R_2^{(2)} - R_1^{(2)} - R_0^{(2)} + W_2' \omega_2 - F^{(2)} = 0.\] \hspace{1cm} (B.1)

Notice that we have planar identities:

\[\omega_i(z) \omega_j(z) = R_i^{(i)} (z) + R_i^{(j)} (z).\] \hspace{1cm} (B.2)

In particular,

\[R_0^{(0)} = \frac{1}{2} \omega_0^2, \quad R_1^{(1)} = \frac{1}{2} \omega_1^2, \quad R_2^{(2)} = \frac{1}{2} \omega_2^2.\] \hspace{1cm} (B.3)

Using these relations, we find

\[R_2^{(0)} + R_1^{(0)} = \omega_0^2 + W_0' \omega_0 - F^{(0)},\] \hspace{1cm} (B.4)
\[R_0^{(1)} + R_2^{(1)} = \omega_1^2 + W_1' \omega_1 - F^{(1)},\] \hspace{1cm} (B.5)
\[R_1^{(2)} + R_0^{(2)} = \omega_2^2 + W_2' \omega_2 - F^{(2)}.\] \hspace{1cm} (B.6)

By adding these three constraints, we have the planar Virasoro constraint (5.4).
B.2 The cubic loop equation (5.5)

The planar S-D equations (5.3) for $n = 2$ and $k = 1$ are given by

\[2R_{00}^{(0)} - R_{02}^{(0)} - R_{01}^{(0)} + W_0' R_0^{(0)} - F_0^{(0)} = 0, \]
\[2R_{01}^{(0)} - R_{12}^{(0)} - R_{11}^{(0)} + W_0' R_1^{(0)} - F_1^{(0)} = 0, \]
\[2R_{02}^{(0)} - R_{22}^{(0)} - R_{12}^{(0)} + W_0' R_2^{(0)} - F_2^{(0)} = 0, \]

and similar six equations obtained by cyclic permutations of the indices $0 \to 1 \to 2 \to 0$ or $0 \to 2 \to 1 \to 0$.

Using
\[R_{00}^{(0)}(z) = \frac{1}{3} \omega_0(z)^3, \] (B.10)

(B.7) leads to
\[R_{02}^{(0)} + R_{01}^{(0)} = \frac{2}{3} \omega_0^3 + \frac{1}{2} W_0' \omega_0^2 - F_0^{(0)}. \] (B.11)

The sum of (B.8) and (B.9) gives
\[R_{11}^{(0)} + 2R_{12}^{(0)} + R_{22}^{(0)} = 2(R_{02}^{(0)} + R_{01}^{(0)}) + W_0'(2R_2^{(0)} + R_1^{(0)}) - F_1^{(0)} - F_2^{(0)} \]
\[= \frac{4}{3} \omega_0^3 + W_0'(2\omega_0 + W_0' \omega_0 - F^{(0)}) - 2F_0^{(0)} - F_1^{(0)} - F_2^{(0)}. \] (B.12)

From \{2 \times (B.11) + (B.12)\} + (cyclic equations), we obtain the cubic loop equation (5.5).

B.3 The quartic loop equation (5.6)

The explicit form of planar SD equations (5.3) for $n = 2$ and $k = 2$ are given by

\[2R_{000}^{(0)} - R_{002}^{(0)} - R_{001}^{(0)} + W_0' R_{00}^{(0)} - F_{00}^{(0)} = 0, \]
\[2R_{001}^{(0)} - R_{012}^{(0)} - R_{011}^{(0)} + W_0' R_{01}^{(0)} - F_{01}^{(0)} = 0, \]
\[2R_{002}^{(0)} - R_{022}^{(0)} - R_{012}^{(0)} + W_0' R_{02}^{(0)} - F_{02}^{(0)} = 0, \]
\[2R_{011}^{(0)} - R_{112}^{(0)} - R_{111}^{(0)} + W_0' R_{11}^{(0)} - F_{11}^{(0)} = 0, \]
\[2R_{012}^{(0)} - R_{122}^{(0)} - R_{112}^{(0)} + W_0' R_{12}^{(0)} - F_{12}^{(0)} = 0, \]
\[2R_{022}^{(0)} - R_{222}^{(0)} - R_{122}^{(0)} + W_0' R_{22}^{(0)} - F_{22}^{(0)} = 0, \]

and similar equations.

The constraint (B.13) can be rewritten as
\[R_{001}^{(0)} + R_{002}^{(0)} = \frac{1}{2} \omega_0^4 + \frac{1}{3} W_0' \omega_0^3 - F_{00}^{(0)}. \] (B.19)
The sum of \((B.14)\) and \((B.15)\) leads to

\[
R^{(0)}_{011} + 2R^{(0)}_{012} + R^{(0)}_{022} = \omega_0^4 + W'_0 \left(\frac{4}{3} \omega_0^3 + \frac{1}{2} W'_0 \omega_0^2 - F^{(0)}_0 \right) - 2F^{(0)}_{00} - F^{(0)}_{01} - F^{(0)}_{02}.
\]

(B.20)

By taking the combination \((B.16) + 2 \times (B.17) + (B.18)\), we find

\[
R^{(0)}_{111} + 3R^{(0)}_{112} + 3R^{(0)}_{122} + R^{(0)}_{222} = 2\omega_0^4 + W'_0 \left\{ 4\omega_0^3 + W'_0(3\omega_0^2 + W'_0 \omega_0 - F^{(0)}_0) - 4F^{(0)}_{00} - F^{(0)}_{01} - F^{(0)}_{02} \right\}
\]

(B.21)

\[
- 4F^{(0)}_{00} - 2F^{(0)}_{01} - 2F^{(0)}_{02} - F^{(0)}_{11} - 2F^{(0)}_{12} - F^{(0)}_{22}.
\]

From \(\{3 \times (\ (B.19) + (B.20)) + (B.21)\} + (\text{cyclic equations})\), we find the quartic loop equation (5.6).

References

[1] M. Fukuma, H. Kawai and R. Nakayama, “Continuum Schwinger-Dyson Equations And Universal Structures In Two-Dimensional Quantum Gravity,” Int. J. Mod. Phys. A6, 1385-1406 (1991); R. Dijkgraaf, E. Verlinde and H. Verlinde, “Loop equations and Virasoro constraints in nonperturbative 2-D quantum gravity,” Nucl. Phys. B348, 435-456 (1991).

[2] F. David, “Loop equations and nonperturbative effects in two-dimensional quantum gravity,” Mod. Phys. Lett. A 5, 1019-1030 (1990); J. Ambjørn, J. Jurkiewicz and Yu. M. Makeenko, “Multiloop correlators for two-dimensional quantum gravity,” Phys. Lett. B 251, 517-524 (1990); A. Mironov and A. Morozov, “On the origin of Virasoro constraints in matrix models: Lagrangian approach,” Phys. Lett. B 252, 47-52 (1990); H. Itoyama and Y. Matsuo, “Noncritical Virasoro algebra of \(d < 1\) matrix model and quantized string field,” Phys. Lett. B 255, 202-208 (1991); H. Itoyama, “Matrix models at finite N,” [arXiv:hep-th/9111039].

[3] A. Marshakov, A. Mironov and A. Morozov, “Generalized matrix models as conformal field theories: Discrete case,” Phys. Lett. B 265, 99-107 (1991); S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and S. Pakuliak, “Conformal Matrix Models As An Alternative To Conventional Multimatrix Models,” Nucl. Phys. B 404, 717-750 (1993) [arXiv:hep-th/9208044].
[4] I. K. Kostov, “Gauge Invariant Matrix model for the $\hat{A}-\hat{D}-\hat{E}$ Closed Strings,” Phys. Lett. B 297, 74-81 (1992) [arXiv:hep-th/9208053];
I. K. Kostov, “Solvable statistical models on a random lattice,” Nucl. Phys. Proc. Suppl. 45A, 13-28 (1996) [arXiv:hep-th/9509124].

[5] L. F. Alday, D. Gaiotto and Y. Tachikawa, “Liouville Correlation Functions from Four-dimensional Gauge Theories,” Lett. Math. Phys. 91, 167-197 (2010) [arXiv:0906.3219 [hep-th]];
N. Wyllard, “A_{N-1} conformal Toda field theory correlation functions from conformal $\mathcal{N} = 2$ $SU(N)$ quiver gauge theories,” JHEP 0911, 002 (2009) [arXiv:0907.2189 [hep-th]].

[6] N. A. Nekrasov, “Seiberg-Witten Prepotential From Instanton Counting,” Adv. Theor. Math. Phys. 7, 831-864 (2004) [arXiv:hep-th/0206161];
N. Nekrasov and A. Okounkov, “Seiberg-Witten Theory and Random Partitions,” in The Unity of Mathematics, in Honor of the Ninetieth Birthday of I.M. Gelfand, Progress of Mathematics Vol. 244, 525-596, ed. by P. Etingof, V. Retakh and I. M. Singer, Birkhäuser, Boston (2006) [arXiv:hep-th/0306238];
H. Nakajima and K. Yoshioka, “Instanton counting on blowup. I. 4-dimensional pure gauge theory,” Invent. Math. 162, 313-355 (2005) [arXiv:math/0306198 [math.AG]];
H. Nakajima and K. Yoshioka, “Lectures on Instanton Counting,” in Algebraic Structures and Moduli Spaces, CRM Proceedings & Lecture Notes 38, 31-101 (2004), AMS [arXiv:math/0311058 [math.AG]];
H. Nakajima and K. Yoshioka, “Instanton counting on blowup. II. K-theoretic partition function,” Transf. Groups 10, 489-519 (2005) [arXiv:math/0505553 [math.AG]].

[7] N. Seiberg and E. Witten, “Monopole Condensation, And Confinement In $N = 2$ Supersymmetric Yang-Mills Theory,” Nucl. Phys. B 426, 19-52 (1994) [Erratum-ibid. B 430, 485-486 (1994)] [arXiv:hep-th/9407087];
N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in $N = 2$ supersymmetric QCD,” Nucl. Phys. B 431, 484-550 (1994) [arXiv:hep-th/9408099];
A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, “Simple Singularities and $N = 2$ Supersymmetric Yang-Mills Theory,” Phys. Lett. B 344, 169-175 (1995) [arXiv:hep-th/9411048];
P. C. Argyres and A. E. Faraggi, “The Vacuum Structure and Spectrum of $N = 2$ Supersymmetric $SU(n)$ Gauge Theory,” Phys. Rev. Lett. 74, 3931-3934 (1995) [arXiv:hep-th/9411057];
A. Hanany and Y. Oz, “On the Quantum Moduli Space of Vacua of $N = 2$ Supersymmetric
SU(Nc) Gauge Theories,” Nucl. Phys. B 452, 283-312 (1995) [arXiv:hep-th/9505075];
P. C. Argyres, M. R. Plesser and A. D. Shapere, “The Coulomb phase of N = 2 supersymmetric QCD,” Phys. Rev. Lett. 75, 1699-1702 (1995) [arXiv:hep-th/9505100];
E. Witten, “Solutions of four-dimensional field theories via M-theory,” Nucl. Phys. B 500, 3-42 (1997) [arXiv:hep-th/9703166].

[8] V. A. Fateev and A. V. Litvinov, “On AGT conjecture,” JHEP 1002, 014 (2010) [arXiv:0912.0504 [hep-th]];
L. Hadasz, Z. Jaskólski and P. Suchanek, “Proving the AGT relation for Nf = 0, 1, 2 antifundamentals,” JHEP 1006, 046 (2010) [arXiv:1004.1841 [hep-th]];
A. Mironov, A. Morozov and Sh. Shakirov, “A direct proof of AGT conjecture at β = 1,” JHEP 1102, 067 (2011) [arXiv:1012.3137 [hep-th]].

[9] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and N = 2 Gauge Systems,” [arXiv:0909.2453 [hep-th]];
H. Itoyama, K. Maruyoshi and T. Oota, “The Quiver Matrix Model and 2d-4d Conformal Connection,” Prog. Theor. Phys. 123, 957-987 (2010) [arXiv:0911.4244 [hep-th]].

[10] A. Marshakov, A. Mironov and A. Morozov, “On non-conformal limit of the AGT relations,” Phys. Lett. B682, 125-129 (2009) [arXiv:0909.2052 [hep-th]];
A. Marshakov, A. Mironov and A. Morozov, “Combinatorial expansions of conformal blocks,” Theor. Math. Phys. 164, 831-852 (2010) [arXiv:0907.3946 [hep-th]];
A. Mironov and A. Morozov, ‘The power of Nekrasov functions,” Phys. Lett. B680, 188-194 (2009). [arXiv:0908.2190 [hep-th]];
A. Mironov and A. Morozov, “On AGT relation in the case of U(3),” Nucl. Phys. B825, 1-37 (2010) [arXiv:0908.2569 [hep-th]].

[11] A. Mironov, A. Morozov and Sh. Shakirov, “Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions,” JHEP 1002, 030 (2010) [arXiv:0911.5721 [hep-th]];
A. Mironov, A. Morozov and Sh. Shakirov, “Conformal blocks as Dotsenko-Fateev Integral Discriminants,” Int. J. Mod. Phys. A 25, 3173-3207 (2010) [arXiv:1001.0563 [hep-th]];
H. Itoyama and T. Oota, “Method of Generating q-Expansion Coefficients for Conformal Block and N = 2 Nekrasov Function by β-Deformed Matrix Model,” Nucl. Phys. B 838, 298-330 (2010) [arXiv:1003.2929 [hep-th]];
H. Itoyama, T. Oota and N. Yonezawa, “Massive Scaling Limit of β-Deformed Matrix Model of Selberg Type,” Phys. Rev. D 82, 085031 (2010) [arXiv:1008.1861];
A. Mironov, A. Morozov and And. Morozov, “Matrix model version of AGT conjecture
and generalized Selberg integrals,” Nucl. Phys. B843, 534-557 (2011) [arXiv:1003.5752 [hep-th]].

[12] H. Itoyama and N. Yonezawa, “ε-Corrected Seiberg-Witten Prepotential Obtained From Half Genus Expansion in β-Deformed Matrix Model,” [arXiv:1104.2738 [hep-th]].

[13] S. Kanno, Y. Matsuo and S. Shiba, “W_{1+∞} algebra as a symmetry behind AGT relation,” arXiv:1105.1667 [hep-th];
A. Mironov, A. Morozov, Sh. Shakirov and A. Smirnov, “Proving AGT conjecture as HS duality: extension to five dimensions,” [arXiv:1105.0948 [hep-th]];
G. Bonelli, K. Maruyoshi and A. Tanzini, “Quantum Hitchin Systems via β-deformed Matrix Models,” arXiv:1104.4016 [hep-th].

[14] V. S. Dotsenko and V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models,” Nucl. Phys. B 240, 312-348 (1984);
V. S. Dotsenko and V. A. Fateev, “Four Point Correlation Functions And The Operator Algebra In The Two-Dimensional Conformal Invariant Theories With The Central Charge c ≤ 1,” Nucl. Phys. B 251, 691-734 (1985).

[15] H. Itoyama and Y. Matsuo, “w_{1+∞}-type constraints in matrix models at finite N,” Phys. Lett. B 262, 233-239 (1991).