HOMOTOPY DECOMPOSITION OF DIAGONAL ARRANGEMENTS

KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Abstract. Given a space X and a simplicial complex K with m-vertices, the arrangement of partially diagonal subspaces of X^m, called the diagonal arrangement, is defined. We decompose the suspension of the diagonal arrangement when $2(\dim K + 1) < m$, which generalizes the result of Labassi [L]. As a corollary, we calculate the Euler characteristic of the complement $X^m - \Delta_K(X)$ when X is a closed connected manifold.

1. Introduction and statement of results

A homotopy decomposition is a powerful tool in studying the topology of subspace arrangements and their complements. Ziegler and Živaljević [ZZ] give a homotopy decomposition of the one point compactification of affine subspace arrangements, from which one can deduce the well known Goresky-MacPherson formula [GM]. Bahri, Bendersky, Cohen, and Gitler [BBCG] give a homotopy decomposition of polyhedral products, a generalization of coordinate subspace arrangements and their complements, after a suspension, from which one can deduce Hochster’s formula on related Stanley-Reisner rings. A homotopy decomposition of polyedral products due to Grbić and Theriault [GT] and the authors [IK1, IK2] also implies the Golod property of several related simplicial complexes. In this paper, we consider a homotopy decomposition of diagonal arrangements which is defined as follows. Given a space X, we assign a partially diagonal subspace of X^m corresponding to a subset $\sigma \subset [m] = \{1, \ldots, m\}$ as

$$\Delta_{\sigma}(X) = \{(x_1, \ldots, x_m) \in X^m \mid x_{i_1} = \cdots = x_{i_k} \text{ for } \{i_1, \ldots, i_k\} = [m] - \sigma\}. \tag{1}$$

Throughout the paper, let K be a simplicial complex on the index set $[m]$, possibly with ghost vertices, where we always assume that the empty subset of $[m]$ is a simplex of K. We define the arrangement of partially diagonal subspaces of X^m as

$$\Delta_K(X) = \bigcup_{\sigma \in K} \Delta_{\sigma}(X),$$

which is called the diagonal arrangement associated with K. Since $\Delta_K(X)$ is actually the union of the partially diagonal subspaces $\Delta_F(X)$ for facets F of K, it is also called the hypergraph arrangement associated with the hypergraph whose edges are facets of K. Diagonal arrangements include many important subspace arrangements. For example, if K is the $(m - 3)$-skeleton of $(m - 1)$-simplex, $\Delta_K(X)$ is the braid arrangement of X. Topology and combinatorics of diagonal arrangements have been studied in several directions. See [Ko, PRW, Ki, KS, L, MW, M] for

2010 Mathematics Subject Classification. 52C35, 55P10.

Key words and phrases. diagonal arrangement, polyhedral product, homotopy decomposition.
example. We are particularly interested in the homotopy type of $\Delta_K(X)$. Labassi [L] showed that the suspension $\Sigma \Delta_K(X)$ decomposes into a certain wedge of smash products of copies of X when K is the $(m-d-1)$-skeleton of the $(m-1)$-simplex and $2d > m$, in which case $\Delta_K(X)$ consists of all $(x_1, \ldots, x_m) \in X^m$ such that at least d-tuple of x_i's are identical. The proof for this decomposition in [L] heavily depends on the symmetry of the skeleta of simplices, and then it cannot apply to general K. The aim of this note is to generalize this result to arbitrary K with $2(\dim K + 1) < m$ by a new method, where the result is best possible in the sense that if $2(\dim K + 1) \geq m$, the decomposition does not hold as is seen in [L].

Theorem 1.1. If X is a connected CW-complex and $2(\dim K + 1) < m$, then

$$\Sigma \Delta_K(X) \simeq \Sigma \left(\bigvee_{\sigma \in K} \tilde{X}^{[\sigma]} \vee \tilde{X}^{[\sigma]+1} \right)$$

where \tilde{X}^k is the smash product of k-copies of X for $k > 0$ and \tilde{X}^0 is a point.

As a corollary, we calculate the Euler characteristic of the complement of the diagonal arrangement $\mathcal{M}_K(X) = X^m - \Delta_K(X)$.

Corollary 1.2. Let X be a closed connected n-manifold. If $2(\dim K + 1) < m$, the Euler characteristic of $\mathcal{M}_K(X)$ is given by

$$\chi(\mathcal{M}_K(X)) = \chi(X)^m - (-1)^m \chi(X)(1 + \sum_{\emptyset \neq \sigma \in K} (\chi(X) - 1)^{|\sigma|}).$$

Remark 1.3. Corollary 1.2 does not hold without compactness of X. For example, if $X = \mathbb{R}$ (hence $n = 1$) and K consists only of the empty subset of $[m]$, $\mathcal{M}_K(X)$ is the off-diagonal subset of \mathbb{R}^m which has the homotopy type of S^{m-2}. Then $\chi(\mathcal{M}_K(X)) = 1 + (-1)^m$, which differs from Corollary 1.2.

Acknowledgement. The authors are grateful to Sadok Kallel for introducing the paper [L] to them.

2. Proofs

Before considering the proof of Theorem 1.1, we prepare two lemmas on homotopy fibrations.

Lemma 2.1 ([F, Proposition, pp.180]). Let $\{F_i \to E_i \to B\}_{i \in I}$ be an I-diagram of homotopy fibrations over a fixed connected base B. Then

$$\hocolim_i F_i \to \hocolim_i E_i \to B$$

is a homotopy fibration.

Lemma 2.2. Consider a homotopy fibration $F \overset{j}{\to} E \overset{s}{\to} B$ of connected CW-complexes. If $\Sigma j : \Sigma F \to \Sigma E$ has a homotopy retraction, then

$$\Sigma E \simeq \Sigma B \vee \Sigma F \vee \Sigma (B \wedge F).$$
Proof. Let \(r: \Sigma E \to \Sigma F \) be a homotopy retraction of \(\Sigma j \), and let \(\rho \) be the composite
\[
\Sigma E \to \Sigma E \vee \Sigma E \vee \Sigma E \xrightarrow{\Sigma (\pi \vee \nu \vee \Delta)} \Sigma B \vee \Sigma F \vee \Sigma (E \wedge E) \xrightarrow{1 \vee 1 \vee (\pi \wedge r)} \Sigma B
\]
where \(A = A \vee F \vee (A \wedge F) \) for a space \(A \). Since \(\Sigma E \) and \(\Sigma B \vee \Sigma F \vee \Sigma (B \wedge F) \) are simply connected CW-complexes, it is sufficient to show that \(\rho \) is an isomorphism in homology by the J.H.C. Whitehead theorem. We first observe the special case that there is a fiberwise homotopy equivalence \(\theta: B \times F \to E \) over \(B \). Then it is straightforward to see
\[
\rho_* \circ \theta_*(b \times f) = b \times \hat{\theta}_*(f) + \sum_{|b_i| < |b|} b_i \times f_i
\]
for singular chains \(b, b_i \) in \(B \) and \(f, f_i \) in \(F \), where we omit writing the suspension isomorphism of homology and \(\hat{\theta} \) is a self-homotopy equivalence of \(F \) given by the composite
\[
\Sigma F \xrightarrow{\rho} \Sigma (B \times F) \xrightarrow{\theta} \Sigma E \xrightarrow{\rho} \Sigma F.
\]
This readily implies that the map \(\rho \circ \theta \) is an isomorphism in homology, and then so is \(\rho \). For non-connected \(B \), the above is also true if we assume that \(r \) is a homotopy retraction of the suspension of the fiber inclusion on each component of \(B \). We next consider the general case. Let \(B_n \) be the \(n \)-skeleton of \(B \), and let \(E_n = \pi^{-1}(B_n) \). We prove that the restriction \(\rho|_{\Sigma E_n}: \Sigma E_n \to \Sigma \hat{B}_n \) is an isomorphism in homology by induction on \(n \). Since \(B \) is connected, \(j \) is homotopic to the composite
\[
F \simeq \pi^{-1}(b) \xrightarrow{\text{incl}} E
\]
for any \(b \in B \). Then \(\rho|_{\Sigma E_0}: \Sigma E_0 \to \Sigma \hat{B}_0 \) is an isomorphism in homology. Consider the following commutative diagram of homology exact sequences.
\[
\cdots \to H_*(E_{n-1}) \xrightarrow{(\rho|_{\Sigma E_{n-1}})_*} H_*(E_n) \xrightarrow{(\rho|_{\Sigma E_n})_*} H_*(E_n, E_{n-1}) \xrightarrow{(\rho|_{\Sigma E_n})_*} \cdots
\]
By the induction hypothesis, \((\rho|_{\Sigma E_{n-1}})_* \) is an isomorphism. Since \(B_{n-1} \) is a subcomplex of \(B_n \), there is a neighborhood \(U \subset B_n \) of \(B_{n-1} \) which deforms onto \(B_{n-1} \). By the excision isomorphism, there is a commutative diagram of natural isomorphisms
\[
\begin{align*}
H_*(E_n, E_{n-1}) &\xrightarrow{\cong} H_*(E_n, \pi^{-1}(U)) \xrightarrow{\cong} H_*(E_n - E_{n-1}, \pi^{-1}(U) - E_{n-1}) \\
H_*(\hat{B}_n, \hat{B}_{n-1}) &\xrightarrow{\cong} H_*(\hat{B}_n, \hat{U}) \xrightarrow{\cong} H_*(\hat{B}_n - \hat{B}_{n-1}, \hat{U} - \hat{B}_{n-1})
\end{align*}
\]
where we may chose the basepoints of \(B_n \) and \(U \) in \(U - B_{n-1} \) since \(B \) is connected. Since each connected component of \(B_n - B_{n-1} \) is contractible, \(E_n - E_{n-1} \) is fiberwise homotopy equivalent to \((B_n - B_{n-1}) \times F \) over \(B_n - B_{n-1} \), and then so is also \(\pi^{-1}(U) - E_{n-1} \) to \((U - B_{n-1}) \times F \) over \(U - B_{n-1} \). As in the 0-skeleton case, we see that \(\Sigma r \) restricts to a homotopy retraction of
the suspension of the fiber inclusion on each component of $\Sigma(B_n - B_{n-1})$. Then by the above trivial fibration case, we obtain that the map

$$(\rho|_{\Sigma(B_n - B_{n-1})})_* : H_*(E_n - E_{n-1}, \pi^{-1}(U) - E_{n-1}) \to H_*(\tilde{B}_n - \tilde{B}_{n-1}, \tilde{U} - \tilde{B}_{n-1})$$

is an isomorphism, hence so is the right $(\rho|_{\Sigma E_n})_*$ in (2.1). Thus by the five lemma, the middle $(\rho|_{\Sigma E_n})_*$ in (2.1) is an isomorphism. We finally take the colimit to get that the map ρ is an isomorphism in homology as desired, completing the proof. □

Remark 2.3. If we assume further that F is of finite type, it immediately follows from the Leray-Hirsch theorem that the map ρ is an isomorphism in cohomology with any field coefficient, implying that ρ is an isomorphism in the integral homology by [H, Corollary 3A.7].

We now consider the diagonal arrangement $\Delta_K(X)$. Suppose that $2(\dim K + 1) < m$, or equivalently, $2|\sigma| < m$ for any $\sigma \in K$. Then for $(x_1, \ldots, x_m) \in \Delta_K(X)$, there is unique $x \in X$ such that $x_{i_1} = \cdots = x_{i_k} = x$ with $i_1 < \cdots < i_k$ and $2k > m$. Then by assigning such x to $(x_1, \ldots, x_m) \in \Delta_K(X)$, we get a continuous map

$$\pi : \Delta_K(X) \to X.$$

For $\tau \subseteq [m]$, let $X^\tau = \{(x_1, \ldots, x_m) \in X^m \mid x_i = \ast \text{ for } i \in [m] - \tau\}$, and we put

$$X^K = \bigcup_{\sigma \in K} X^\sigma$$

which is called the polyhedral product or the generalized moment-angle complex associated with the pair (X, \ast) and K. Observe that for $2(\dim K + 1) < m$, we have $\pi^{-1}(\ast) = X^K$.

Proposition 2.4. If X is a CW-complex and $2(\dim K + 1) < m$, then $X^K \to \Delta_K(X) \xrightarrow{\pi} X$ is a homotopy fibration.

Proof. For each $\sigma \in K$, the map $\pi|_{\sigma} : \Delta_\sigma(X) \to X$ is identified with the projection from the product of copies of X. Then it follows from Lemma 2.1 that

$$\operatorname{hocolim}_{\sigma \in K} X^\sigma \to \operatorname{hocolim}_{\sigma \in K} \Delta_\sigma(X) \to X$$

is a homotopy fibration. Since the inclusions $X^\sigma \to X^\tau$ and $\Delta_\sigma(X) \to \Delta_\tau(X)$ for any $\sigma \subseteq \tau \subset [m]$ are cofibrations, we have

$$\operatorname{hocolim}_{\sigma \in K} X^\sigma \simeq \operatorname{colim}_{\sigma \in K} X^\sigma = X^K \quad \text{and} \quad \operatorname{hocolim}_{\sigma \in K} \Delta_\sigma(X) \simeq \operatorname{colim}_{\sigma \in K} \Delta_\sigma(X) = \Delta_K(X),$$

completing the proof. □

Put $\hat{X}^K = \bigvee_{\emptyset \neq \sigma \in K} \hat{X}^{[\sigma]}$. In [BBCG], it is proved that there is a homotopy equivalence

$$(2.2) \quad \epsilon_X : \Sigma X^K \xrightarrow{\simeq} \Sigma \hat{X}^K$$
which is natural with respect to \(X \), i.e. for a map \(f : X \rightarrow Y \), the square diagram

\[
\begin{array}{ccc}
\Sigma X^K & \xrightarrow{\epsilon} & \Sigma \hat{X}^K \\
\Sigma f^K & \downarrow & \Sigma j^K \\
\Sigma Y^K & \xrightarrow{\epsilon} & \Sigma \hat{Y}^K
\end{array}
\]

is homotopy commutative, where the vertical arrows are induced from \(f \).

Proposition 2.5. If \(X \) is a CW-complex and \(2(\dim K + 1) < m \), the inclusion \(j : X^K \rightarrow \Delta_K(X) \) has a homotopy retraction after a suspension.

Proof. Let \(E : X \rightarrow \Omega \Sigma X \) be the suspension map. Since \(\Sigma E \) has a retraction, we easily see that the induced map \(\Sigma \hat{E}^K : \Sigma \hat{X}^K \rightarrow \Sigma \hat{\Omega \Sigma X}^K \) has a retraction, say \(r \). If \(Y \) is an H-space, the map

\[
Y \times Y^K \rightarrow \Delta_K(Y), \quad (y, (y_1, \ldots, y_m)) \mapsto (y \cdot y_1, \ldots, y \cdot y_m)
\]

is a map between homotopy fibrations with common base and fiber, and then is a weak homotopy equivalence. Hence if \(Y \) has the homotopy type of a CW-complex, the map is a homotopy equivalence, implying that there is a homotopy retraction \(r' : \Delta_K(Y) \rightarrow Y^K \) of the inclusion \(j : Y^K \rightarrow \Delta_K(Y) \). Combining the above maps, we get a homotopy commutative diagram

\[
\begin{array}{ccc}
\Sigma \hat{X}^K & \xrightarrow{\epsilon^{-1}} & \Sigma X^K \\
\Sigma \hat{E}^K & \downarrow & \Sigma \Omega \Sigma X^K \\
\Sigma \hat{X}^K & \xrightarrow{\epsilon} & \Sigma (\Omega \Sigma X)^K
\end{array}
\begin{array}{ccc}
\Sigma \Delta_K(X) & \xrightarrow{\Sigma j} & \Sigma \Delta_K(E) \\
\Sigma E^K & \downarrow & \Sigma j \\
\Sigma \Omega \Sigma X^K & \xrightarrow{\epsilon} & \Sigma \Delta_K(\Omega \Sigma X)
\end{array}
\]

where \(\Delta_K(E) : \Delta_K(X) \rightarrow \Delta_K(\Omega \Sigma X) \) is induced from \(E \). Thus the composite

\[
\Sigma \Delta_K(X) \xrightarrow{\Sigma \Delta_K(E)} \Sigma \Delta_K(\Omega \Sigma X) \xrightarrow{\Sigma r'} \Sigma (\Omega \Sigma X)^K \xrightarrow{\epsilon} \Sigma \hat{\Omega \Sigma X}^K \xrightarrow{r} \Sigma \hat{X}^K \xrightarrow{\epsilon^{-1}} \Sigma X^K
\]

is the desired homotopy retraction. \(\square \)

Proof of Theorem 1.1. If \(2(\dim K + 1) < m \), there is a homotopy fibration \(X^K \rightarrow \Delta_K(X) \rightarrow X \), where the fiber inclusion has a homotopy retraction after a suspension by Proposition 2.5. Then by Lemma 2.2, we get a homotopy equivalence

\[
\Sigma \Delta_K(X) \simeq \Sigma X \vee \Sigma X^K \vee \Sigma (X \wedge X^K).
\]

Therefore the proof is completed by (2.2). \(\square \)

Proof of Corollary 1.2. Since \(X \) is a compact manifold, \(\Delta_K(X) \) is a compact, locally contractible subset of an \(mn \)-manifold \(X^m \). Then by the Poincaré-Alexander duality [H, Proposition 3.46], there is an isomorphism

\[
H_i(X^m, \mathcal{M}_K(X); \mathbb{Z}/2) \cong H^{mn-i}(\Delta_K(X); \mathbb{Z}/2),
\]
implying that $\chi(X^m, \mathcal{M}_K(X)) = (-1)^{mn}\chi(\Delta_K(X))$. Thus since $\chi(\Delta^k) = (\chi(X) - 1)^k + 1$ for $k \geq 1$, it follows from Theorem 1.1 that

$$\chi(X^m, \mathcal{M}_K(X)) = (-1)^{mn}\chi(X)(1 + \sum_{\emptyset \neq \sigma \in K} (\chi(X) - 1)^{||\sigma||}).$$

Therefore the proof is completed by the equality $\chi(X^m) = \chi(X^m, \mathcal{M}_K(X)) + \chi(\mathcal{M}_K(X))$. □

References

[BBCG] A. Bahri, M. Bendersky, F.R. Cohen, and S. Gitler, *The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces*, Advances in Math. 225 (2010), 1634-1668.

[F] E.D. Farjoun, *Cellular spaces, null spaces and homotopy localization*, Lecture Notes in Mathematics 1622, Springer-Verlag, Berlin, 1996.

[GM] M. Goersky and R. MacPherson, *Stratified Morse Theory*, Ergebnisse der Math. 14, Springer-Verlag, Berlin, Heidelberg, New York, 1988.

[GT] J. Grbić and S. Theriault, *The homotopy type of the complement of a coordinate subspace arrangement*, Topology 46 (2007), 357-396.

[H] A. Hatcher, *Algebraic Topology*, Cambridge University Press, Cambridge, 2002.

[IK1] K. Iriye and D. Kishimoto, *Decompositions of polyhedral products for shifted complexes*, Advances in Math. 245 (2013), 716-736.

[IK2] K. Iriye and D. Kishimoto, *Topology of polyhedral products and the Golod property of the Stanley-Reisner rings*, arXiv:1306.6221.

[KS] S. Kallel and I. Saihi, *Homotopy groups of diagonal complements*, arXiv:1306.6272.

[Ki] S. Kim, *Shellable complexes and topology of diagonal arrangements*, Discrete Comput. Geom. 40 (2008), 190-213.

[Ko] D.N. Kozlov, *A class of hypergraph arrangements with shellable intersection lattice*, J. Comb. Theory, Ser. A 86 (1999), 169-176.

[L] F. Labbasi, *Sur les diagonales épaisses et leurs complémentaires*, to appear in Homotopy and Related Structures.

[M] M.S. Miller, *Massey products and k-equal manifolds*, Int. Math. Res. Not. IMRN 2012, no. 8, 1805-1821.

[MW] M. Miller and M. Wakefield, *Formality of Pascal arrangements*, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4461-4466.

[PRW] I. Peeva, V. Reiner, and V. Welker, *Cohomology of real diagonal subspace arrangements via resolutions*, Compositio Math. 117 (1999), 99-115.

[ZZ] G.M. Ziegler and R.T. Živaljević, *Homotopy types of subspace arrangements via diagrams of spaces*, Math. Ann. 295, (1993), 527-548.