Helminths infecting the cat-eyed snake Leptodeira annulata Linnaeus 1758 (Squamata: Dipsadidae) in a semiarid region of Brazil

E. F. FERNANDES DE CARVALHO*, A. FERREIRA DA SILVA-NETA2, C. DE SOUSA SILVA1, C. R. DE OLIVEIRA1, J. DA CUNHA XAVIER NUNES2, T. GONÇALVES DE SOUZA2, R. W. ÁVILA1, 2

1Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento de Ciências Biológicas, Universidade Federal do Ceará, Campus Universitário do Pici, CEP 60021970, Fortaleza, Ceará, Brasil, *E-mail: elvis_ffc@hotmail.com; 2Programa de Pós-Graduação em Bioprospecção Molecular PPBM, Departamento de Química Biológica, Universidade Regional do Cariri, Ceará, Campus Pimenta, CEP 63105-000, Crato, Ceará, Brasil

Article info

Received March 1, 2018
Accepted July 3, 2018

Summary

Snakes have diverse feeding and living habits, being exposed to a variety of endoparasite communities. However, more studies are still necessary to document these relationships. We examined 18 specimens of the cat-eyed snake Leptodeira annulata from a semi-arid region in Northeast Brazil. Eight taxa of parasites were found, with higher prevalence of cystacanths (Acanthocephala). Five nematode species (Hexametra boddaertii, Oswaldocruzia sp., Oxyascaris sp., Physaloptera sp. and Raillietnema spectans) and the pentastome Raillietiella furcocerca represent a new parasitism record for the host studied. Our results also showed that L. annulata could act as paratenic host for acanthocephalans. These results contribute to the knowledge of the helminth fauna of L. annulata.

Keywords: parasites, nematoda, neotropical, Pentastomida, snakes, reptiles

Introduction

Parasitism is one of the most common life styles with parasites representing a considerable portion of the world’s biomass, but these organisms were for a long time neglected in biodiversity surveys (Poulin & Morand, 2004; Dobson et al., 2008; Kuris, 2008). Given the importance of these organisms structuring communities in ecosystems, as well provide data on ecology of the host (Poulin, 1999; Brooks & Hoberg, 2000), there has been a recent increase of studies on the fauna of endoparasites especially of reptiles in Brazil (Anjos et al., 2011; Albuquerque et al., 2012; Ávila et al., 2012; Teles et al., 2015). Such studies provide information about the ecology, natural history, life cycle, and evolution of host-parasite systems. However, the lack of studies on helminths associated with vertebrate organisms is still evident, being necessary more studies in the area (Mati et al., 2015).

The endoparasite fauna can be related, among other factors, to the diet and microhabitat of hosts (Brito et al., 2014; Ribas et al., 1998). Snakes have very diverse feeding habits, being exposed to a wide variety of parasites (Aho, 1990; Jiménez-Ruiz et al., 2002). Leptodeira annulata (Linnaeus 1758) is a semi-arboreal reptile, distributed from Mexico to eastern of South America (Duellman, 1958) and along all biomes of Brazil, such as the Amazon, Atlantic forest, Cerrado, and Caatinga (Bertoluci et al., 2009; Bernarde et al., 2012; Cole et al., 2013; Mesquita et al., 2013). Studies on L. annulata address aspects like foraging, diet and reproduction (Martins & Oliveira, 1998; Mesquita et al., 2013; Silva-Neta et al., 2015), but data on the parasitic fauna are scarce with records only Ophidascaris trichuriformis Vaz, 1935 (Sprent, 1988) and Renifer heterocoeolum Travassos, 1921 (Pinto et al., 2012). In this context, species inventory are important tools serving as a base for ecological studies, enabling the knowledge of what and how many species are part of an ecosystem and providing essential information about the diversity of organisms (Poulin et al., 2015). Aiming at filling the gap in the knowledge of the parasite fauna of L. annulata, this study analyzed the helminth fauna as-
associated with individuals from the Southern region of Ceará State, Brazil.

Material and Methods

This study was carried out with samples from the Herpetological Collection of Universidade Regional do Cariri (URCA-H- 1981; 3279; 4532; 4907; 4910; 4911; 4913; 4914; 4915; 5541; 5631; 6742; 6847; 7521; 7889; 7900; 8014; 11228). The specimens were collected from 2012 to 2014 in the municipality of Aiuaba (n=4) (6° 34’ 25” S, 40° 07’ 25” W, WGS84), Barro (n=4) (7° 10’ 36” S, 38° 46’ 54” W, WGS84), Farias Brito (n=8) (6° 55’ 50” S, 39° 33’ 56” W, WGS84), Jati (n=1) (7° 41’ 10” S, 39° 00’ 57” W, WGS84) and Mauriti (n=1) (7° 23’ 21” S, 38° 46’ 28” W, WGS84) all located in the Southern region of Ceará State, Brazil (Fig. 1). Study area is characterized by hot semi-arid tropical climate and mild hot semi-arid tropical climate (IPECE, 2016). A total of 18 specimens of \textit{L. annulata} being eight females (mean snout-vent length 541.2 mm) and eleven males (447.5 mm SVL) were euthanized with a lethal injection of sodium thiopental (CFMV, 2013) necropsied and had the liver, lung, heart, mouth, larynx, stomach, large and small intestine, coelomic cavity, and kidneys checked for presence of parasites under the stereomicroscope. The parasites found were processed to separate them completely from the host tissue and stored in 70 % ethanol.

Aiming to perform the taxonomic identification of the helminths obtained, different preparation methods were carried out according to the taxonomic group. Cystacanths were, stained with carmine and preserved in 70 % ethanol. The cestode was also stained with carmine and fixed between slide and coverslip. The nematodes were mounted in temporary slides with Amman’s lactophenol or lactic acid. The pentastomes were cleared using Hoyer’s solution and preserved in 70 % ethanol. The slides were examined with optical microscope and the specimens were identified using the keys for identification of Yamaguti (1959, 1961, 1963), Vicente et al. (1993), Gibbons (2010), Rego (1983). Samples of all parasites were deposited in the Helminthological Collection of the laboratory of Zoology of Universidade Regional do Cariri, URCA, Ceará State, Brazil.

The parasitological descriptors of prevalence (P), mean abundance (MA), mean intensity of infection (MII), richness, and range of intensity of infection (RII) were calculated according to Bush et al. (1997).

Ethical Approval and/or Informed Consent

The collection of specimens was authorized by Instituto Chico Mendes de Conservação da Biodiversidade-ICMBio (Authorization number 29613-1) and by the ethics committee of Universidade Regional do Cariri (CEUA/URCA, process No. 00260/2016.1), the
research related to animals has been complied with all the relevant national regulations and institutional policies for the care and use of animals.

Results

A total of 153 parasite specimens were collected with total prevalence of 78.9 % and mean intensity of infection of 10.20 ± 2.81. The component community associated with 153 parasite specimens was comprised of eight taxa: 18 specimens of nematodes distributed in five taxa (Hexametra boddartii, Baird 1860, Raillietnema spectans Gomes 1964, Oswaldocruzia sp., Oxyascaris sp., and Physaloptera sp.), three pentastomes of the species Raillitiella furcocerca Diesing, 1863, one unidentified cestode, and 131 unidentiﬁed cystacanths (Acanthocephala) (Table 1). The cystacanths showed the highest prevalence (63.2 %), intensity (10.92 ± 3.28), and mean abundance (6.9). The cysts could not be identiﬁed at species level because the shape and number of the hooks in the proboscis could not be determined. The cestode was found in one female host specimen (SVL = 544.36), showing the lowest values of prevalence (5 %), intensity (1), and mean abundance (0.05), but the parasite specimen could not be identiﬁed at species level due to poor conditions of preservation.

Discussion

Studies that investigated the helminth fauna of some snake species from the Neotropical region such as McAllister et al. (2010a, 2010b), Bursey and Brooks (2011) did not record any infection in L. annulata. This fact may be due to the low number of individuals studied, because in the present study, L. annulata presented higher richness (8 parasite taxa) compared to studies of endoparasites for other snake species (Avila et al., 2013; Nasiri et al., 2014).

Table 1. Prevalence (P), mean intensity of infection (MII) with standard error (SE), (MA) mean abundance, (IS) infection site, and (RII) range of intensity of infection of the helminths associated with the snake Leptodeira annulata from the South region of Ceará State, Brazil.

Helminth Family	Species	P (%)	MII ± SE	MA	IS	RII
Acanthocephala	Cystacanth	66.7	10.92 ± 3.28	7.28	BC	2 – 37
Cestoda	Unidentiﬁed cestode	5.6	1	0.05	SI	1 – 1
Nematoda	Hexametra boddartii	5.6	1	0.05	L	1 – 1
	Oswaldocruzia sp.	5.6	2	0.11	LI	1 – 2
	Oxyascaris sp.	5.6	2	0.11	SI	1 – 2
	Physaloptera sp.	5.6	1	0.11	ST	1 – 2
	Raillietnema spectans	5.6	11	0.61	LI	1 – 11
Pentastomida	Raillitiella furcocerca	11.1	1.5 ± 0.5	0.17	L	1 – 3

Infection sites: body cavity (BC), large intestine (LI), small intestine (SI), stomach (ST), lung (L).
Lachesis sp. (Motta, 1963; Rego, 1983) Mastigodyra bisfossatuum (Raddi, 1820), Philodymas nattereri (Steindacher, 1870). Pseudoboa nigra (Duméril, Bibron and Duméril, 1854), Thammodynastes chausquenis (Bergna and Alvarez, 1993), Thammodynastes chausquenis (Bergna and Alvarez, 1993), Xenodon merremii (Wagler, 1824). (Alcantara et al., 2014; Almeida et al., 2008b; Esslinger, 1986). The present study represents the first record of R. furcocerca infecting L. annulata. This study presents new records for the nematodes H. boddaertii, Oswaldocruzi sp., Oxyascaris sp. and R. spectans in L. annulata, the first record of a cestode in L. annulata, and the first record of infection by the pentastome R. furcocerca in this snake species. These records have the importance of being part of the first studies for the Caatinga area in Northeast of Brazil with this species, and also contribute significantly to the knowledge of the parasitic fauna of L. annulata in the Neotropical region providing data on the helminths associated with this snake species.

Acknowledgements

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (process 551953/2011-1) and providing a research fellowship to RWA (# 303622/2015-6); and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing a Master fellowship to EFFC. Centro de Pesquisa e Estudos Veterinários do Amazonas (CPVE) for providing the animals for the study. We are grateful to the anonymous reviewers for the valuable suggestions on the manuscript.

Conflict of interest

Authors state no conflict of interest.

References

AHO, J.M. (1990): Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. In: ESCH, G.W., BUSH, A.O., AHO, J.M. (Eds) *Parasite Communities: Patterns and Processes*. Springer, Dordrecht, pp. 157 – 195.

ALBUQUERQUE, S., ÁVILA, R.W., BERNARDE, P.S. (2012): Occurrence of Helminths in Lizards (Reptilia: Squamata) at Lower Moa River Forest, Cruzeiro do Sul, Acre, Brazil. *Comp. Parasitol.*, 79: 64 – 67. DOI: 10.1654/4539.1.

ALCANTARA, E.P., FERREIRA-SILVA, C., ÁVILA, R.W., OLIVEIRA, W.A. (2014): Pseudoboa nigra (Black False Boa) Endoparasites. *Herpetol. Rev.*, 45(2):343 – 343.

ALMEIDA, W., FREIRE, E., LOPES, S. (2008a): A new species of pentastomid infecting Tropidurus hispidus (Squamata: Tropiduridae) from Caatinga in Northeastern. *Braz. J. Biol.*, 68(1): 199 – 203. DOI: 10.1590/S1519-69842008000100029.

ALMEIDA, W.O., GUEDES, T.B., FREIRE, E.M.X., VASCONCELLOS, A. (2008b): Pentastomid infection in Philodymas nattereri Steindacher, 1870 and Oxybelis aeneus (Wagler, 1824) (Squamata: Colubridae) in a Caatinga of northeastern Brazil. *Braz. J. Biol.*, 68(1): 193 – 197. DOI: 10.1590/S1519-69842008000200028.

ANDERSON, R.C. (2000): *Nematode Parasites of Vertebrates, their Development and Transmission*. 2nd Edition, Waringford, UK: CAB International, 650 pp.

ANJOS, A.L., HOLANDA, B.C., CUNHA-PASSOS, D., ZANCHI, D., GADINO, B., ALEKSANDER, C. (2011): Helminth Fauna of Two Gecko Lizards, Hemidactylus agrius and Lygodactylus klugei (Gekkonidae), From Caatinga Biome, Northeastern Brazil. *Neotrop. Helminthol.*, 5(2): 285 – 290.

ÁVILA, R., MORAIS, D., ANJOS, L., ALMEIDA, W., SILVA, R. (2013): Endoparasites infecting the semiaquatic coral snake Micrurus surinamensis (Squamata: Elapidae) in the southern amazonian region, Mato Grosso state, Brazil. *Braz. J. Biol.*, 73(3): 645 – 647. DOI: 10.1590/s1519-69842013000300024.

ÁVILA, R.W., ANJOS, L.A., RIBEIRO, S. C., MORAIS, D.H., SILVA, R.J., ALMEIDA, W.O. (2012): Nematodes of lizards (Reptilia: Squamata) from Caatinga biome, northeastern Brazil. *Comp. Parasitol.*, 79(1): 56 – 63. DOI: 10.1645/16-69.

BAKER, D.G. (2007): Acanthocephalina in: *Flynn’s Parasites of Laboratory Animals*: Second Edition. Oxford, UK: Blackwell Publishing Ltd, pp. 193.

BERNARDE, P.S., ABE, A.S. (2010): Hábitos alimentares de serpentes em Espigão do Oeste, Rondônia, Brasil [Feeding habits of snakes in Espigão do Oeste, Rondônia, Brazil]. *Biotia Neotrop.*, 10(1): 164 – 173 (In Portuguese).

BERNARDE, P.S., DE ALBUQUERQUE, S., BARROS, T.O., TURCI, L.C.B. (2012): Serpentes do estado de Rondônia, Brasil [Snakes of Rondônia State, Brazil]. *Biotia Neotrop.*, 12(3): 1 – 29 (In Portuguese).

BERTOLUCI, J., CANELAS, M.A.S., EISEMBERG, C.C., PALMUTI, C.F.D.S., MONTINGELLI, G.G. (2009): Herpetofauna of Estação Ambiental de Peti, an Atlantic Rainforest fragment of Minas Gerais State, southeastern Brazil. *Biotia Neotrop.*, 9(1): 147 – 155.

BROOKE, S.V., CORSO, G., ALMEIDA, A.M., FERREIRA, F.S., ALMEIDA, W.O., ANJOS, L.A., VASCONCELLOS, A. (2014): Phylogeny and micro-habitats utilized by lizards determine the composition of their endoparasites in the semiarid Caatinga of Northeast Brazil. *Parasitol. Res.*, 113(11): 3963 – 3972. DOI: 10.1007/s00436-014-4061-z.

BROOKS, D.R., HOBBERG, E.P. (2000): Triage for the Biosphere: The Need and Rationale for Taxonomic Inventories and Phylogenetic Studies of Parasites. *Comp. Parasitol.*, 67(1): 1 – 25.

BURSEY, C.R., BROOKS, D.R. (2011): Nematode Parasites of Costa Rican Snakes (Serpentes) with Description of a New Species of Abbreviata (Physalopteridae). *Comp. Parasitol.*, 78(2): 333 – 358. DOI: 10.1654/4495.1.

BUSH, A.O., LAFFERTY, K.D., LOTZ, J.M., SHOSTAK, A.W. (1997): *Parasite Biota Neotrop.* Meets Ecology On Its Own Terms: Margolis et Al. Revisited. *J. Parasitol.*, 83: 575 – 583. DOI: 10.2307/3284227.

CFMV. CONSELHO FEDERAL DE MEDICINA VETERINÁRIA. (2013): Métodos de eutanásia. In: Guia brasileiro de boas práticas de eutanásia.
and free-living biomass in three estuaries. MARTINS, M., OLIVEIRA, M.E. (1998): Natural history of snakes in for-

etia and animal welfare. Brasília, Federal District [In Portuguese] DOSSON, A., LAFFERTY, K.D., KURS, A.M., HECHINGER, R.F., JETZ, W. (2008): Homage to Linnaeus: How many parasites? How many hosts. Proc. Natl. Acad. Sci. 105(Supplement 1): 11482 – 11489. DOI: 10.1073/pnas.0803232105

Duellman, W.E. (1958): A monographic study of the Colubrid snake genus Leptodeira. Bullet Am Mus Nat Hist., 114, 1 – 183

eel stigma (Pentastomida) from a Colombian snake (Clelia clelia)*. J. parasitol., 54(2): 411 – 416. DOI: 10.2307/3276962

GIBBONS, L. (2010): Keys to the Nematode Parasites of Verte-
brates. Supplementary Volume. CAB International, Wallingford, U.K. 416 pp.

IPECE-Instituto de Pesquisa e Estratégia Econômica do Ceará. (2017): Perfíl municipal 2016 [IPECE- Institute of research and economic strategy of Ceará. (2017): Municipal profile 2016] Retrieved October 10, 2017 from <http://www.ipecce.ce.gov.br/index.php/2016-12-16-13-09-40> (In Portuguese)

JIMÉNEZ-RUIZ, F.A., GARCIA-PRIETO, L., PEREZ-PONCE DE LEÓN, G. (2002): Helminth infracomunity structure of the sympatric garter snakes Thamnophis equestris and Thamnophis melanosagaster from the Mesa Central of Mexico. J. Parasitol., 88(3): 454 – 460. DOI: doi.org/10.1645/0022-3395(2002)088[0454:2.0.CO]2

KURIS, A.M. (2008): Ecosystem energetic implications of parasites and free-living biomass in three estuaries. Nature, 454(7203): 515 – 518. DOI: 10.1038/nature06970

MARTINS, M., OLIVEIRA, M.E. (1998): Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. Herpetol. Nat. Hist., 6(2): 78 – 150

MATI, V.L.T., PINTO, H.A., DE MELO, A.L. (2015): Helminths of Liophis miliaris (Squamata, Dipsadidae): a list of species and new records. Helminthologia, 6(2): 159 – 166. DOI: 10.1515/helmin-2015-0029

MCALLISTER, C.T., BURSEY, C.R., FREED, P.S. (2010a): Helminth Parasites of Selected Amphibians and Reptiles from the Republic of Ecuador. Comp. Parasitol., 77(1): 52 – 66. DOI: 10.1654/4402.1

MCALLISTER, C.T., BURSEY, C.R., FREED, P.S. (2010b): Helminth Parasites (Cestoda: Nematomida) of Select Herpetofauna from Paraguay. J. Parasitol., 96(1): 222 – 224. DOI: 10.1645/GE-2191.1

MESQUITA, P.C.M.D., PASSOS, D.C., BORGES-NOJOSA, D., CECHIN, Z. (2013): Ecologia e história natural das serpentes de um área de caatinga no nordeste brasileiro [Ecology and natural history of snakes from an area of caatinga in northeastern Brazil]. Pap avulsos de Zool. 53(8): 99 – 113. DOI: 10.1590/S0031-10492013000800001 (In Portuguese)

NASIRI, V., MOBEDI, I., DAILY, A., MIRAKABADI, A.Z., GHAFFARIFAR, F., TEYMURZADEH, S., KARMI, G., ABDOLI, A., PAYKARI, H. (2014): A description of parasites from Iranian snakes. Exp. Parasitol., 147: 7 – 15. DOI: 10.1016/j.exppara.2014.09.007

PINTO, H.A., MATI, V.L.T., DE MELO, A.L. (2012): New hosts and lo-
calities for trematodes of snakes (reptilia: Squamata) from Minas Gerais State, southeastern Brazil. Comp. Parasitol., 79(2): 238 – 246. DOI: 10.1654/4548.1

POULIN, R. (1999): The functional importance of parasites in animal communities: Many roles at many levels? Int. J. Parasitol., 29(6): 903 – 914. DOI: 10.1016/S0020-7519(99)00045-4

POULIN, R., BESSON, A.A., MORIN, M.B., RANDHAWA, H.S. (2015): Missing links: testing the completeness of host-parasite checklists. Parasitol. 143(1): 114 – 122. DOI: 10.1017/S0031182015001559

POULIN, R., MORAND, S. (2004): Parasite Biodiversity, Smithsonian Institution Books, Washington, D.C., USA. pp. 216

REGO, A.A. (1983): Pentastomidoses de répteis do Brasil: Revisão dos Cephalobaenidae [Reptiles Pentastomids of Brazil: Review of Cephalobaenidae]. Mem. Inst. Oswaldo Cruz, 78 (4): 399 – 411 (In Portuguese)

RBAS, S.C., ROCHA, C.F.D., TEIXEIRA-FILHO, P.F., VICENTE, J.J. (1998): Nematode infection in two sympatric lizards (Tropidurus torquatus and Ameiva ameiva) with different foraging tactics. Amphib. Reptil., 19(2): 323 – 330. DOI: 10.1163/156853898X00232

SILVA-NETA, A.F., CLAUDO, M.S., ÁLVARES, R.W. (2015): Leptodeira anulata (banded cat-eyed). Diet. Herpetol. Rev., 46(3): 452 – 452.

SMALES, L.R. (2007): Acanthocephala in amphibians (Anura) and reptiles (Squamata) from Brazil and Paraguay with description of a new species. J. Parasitol., 93(2): 392 – 398. DOI: 10.1645/GE-937.R.1

SPRENT, J.F.A. (1988) Ascaroid nematodes of amphibians and reptiles: Ophidascaris Baylis, 1920. Syst. Parasit.11: 165 – 213

TELES, D.A., SOUSA, J.G.G., TEIXEIRA, A.A.M., SILVA, M.C., OLIVEIRA, R.H., SILVA, M.R.M., ÁLVARES, R.W. (2015): Helminths of the frog Pseudodema diplolister (Anura, Leiuperidae) from the Caatingain Par

nambuco State, Northeast Brazil. Braz. J. Biol., 75(1): 251 – 253. DOI: 10.1590 / 1519-6984.08513

VICENTE, J.J., RODRIGUES, H.O., GOMES, D.C., PINTO, R.M. (1991): Nematóides do Brasil 2a parte: Nematóides de anfíbios. Rev. Bras. Zool., 7(4): 549 – 626. DOI: 10.1590/S0101-8715199000400015

VICENTE, J.J., RODRIGUES, H.O., GOMES, D.C., PINTO, R.M. (1993): Nematóides do Brasil. Parte III: Nematóides de répteis. Rev. Bras. Zool., 10(1): 19 – 168. DOI: 10.1590/S0101-8715199000100003

YAMAGUTI, S. (1959): Systema Helminthum – Acanthocephalans. v. 2. Interscience Pub., London, pp. 860

YAMAGUTI, S. (1961): Systema Helminthum – Nematomes. v. 3, Interscience Pub., London, part I and II, pp. 697

YAMAGUTI, S. (1963): Systema Helminthum – Acanthocephalans. v. 4, Interscience Pub., London, pp. 1074