Regulatory T cells control immune responses through their non-redundant tissue specific features

Sari Lehtimäki and Riitta Lahesmaa*

Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland

INTRODUCTION

Regulatory T cells (Treg) maintain immune homeostasis, prevent autoimmune and allergic responses, and control the magnitude and duration of inflammatory responses. Although there are other cell types that also participate in these processes and are sometimes named Treg cells, such as IL-10 producing Tr1 cells and TGF-β producing Th3 cells, this review will use the term Treg cells only for the most potent regulators, i.e., CD4+ T cells expressing Forkhead box P3 transcription factor (Foxp3) (1).

Foxp3 has been shown to be the key regulator of Treg cell differentiation and function, as demonstrated by the devastating effects of loss-of-function mutations in the Foxp3 gene, leading to the lethal IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-linked). Patients with this disorder suffer from autoimmune and allergic responses, and control the magnitude of inflammation. Although there are other cell types that also participate in these processes and are sometimes named Treg cells, such as IL-10 producing Tr1 cells and TGF-β producing Th3 cells, this review will use the term Treg cells only for the most potent regulators, i.e., CD4+ T cells expressing Forkhead box P3 transcription factor (Foxp3) (1).

Foxp3 has been shown to be the key regulator of Treg cell differentiation and function, as demonstrated by the devastating effects of loss-of-function mutations in the Foxp3 gene, leading to the lethal IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-linked). Patients with this disorder suffer from severe autoimmune responses, persistent eczema, and colitis. Similar effects can also be observed in mice with mutated Foxp3 (2–7).

Treg cells can be divided into two major subsets, natural Treg (nTreg) cells, which develop in the thymus, and induced Treg (iTreg) cells, which develop in the periphery from naïve T cells in response to such signals as low immunogenic doses of antigen, commensal microbes, lymphopenia, or activation by immature DCs (8–11). In addition, iTreg cells can also be generated under inflammatory conditions, as has been shown in infections with certain pathogens, and mouse disease models, in which the development of the disease is due to the absence of nTreg cells (12).

To date, no unique marker that can distinguish nTreg cell from iTreg cell has been found. It has been suggested that the intracellular molecule Helios, which does not seem to be involved with the suppressive potential of Treg cells, is expressed only by nTreg cells in non-immunized animals (13). However, under certain activating conditions, Helios is also expressed by iTreg cells (14, 15), and in humans, a small subset of naïve Foxp3+ cells with suppressive function can lack Helios expression (16). Another potential marker that might distinguish these two cell types is Neuropilin-1 (Nrp-1), which also seems to be expressed only by nTreg cells (17, 18).

Treg cells often accumulate at the site of inflammation, most likely to control the magnitude and the duration of the inflammation, and in this way protect the host from immune-mediated pathology (19–23). Foxp3+ Treg cells have been reported to express transcription factors associated with effector T cells, including the Th1 transcription factor T-bet, Th2 transcription factor Gata3, and the Th2- and Th17-cell-related transcription factor IRF4 (24–26). These probably facilitate the expression of a number of features that are shared with effector T cells, such as the same homing receptors, which would allow Foxp3+ Treg cells to localize to the same site with the cells they are expected to suppress.

All of the environmentally exposed areas of the human body, such as the gastrointestinal tract, respiratory tract, skin, and urogenital tract, are covered by commensal microbiota (27). In addition to this, these surfaces are continuously facing harmless antigens, such as pollen or food. One of the main functions of Treg cells is the induction of tolerance toward these innocuous agents. Failure to do so may lead to development of allergy or inflammatory responses against commensals, which can be detrimental to the host (7, 10, 28). However, pathogens also utilize mucosal sites and the skin to enter the body. In order to be able to mount an appropriate immune response for a given trigger, the immune system constantly needs to balance between tolerance and immunity.

Tolerogenic dendritic cells (tDC) and structural cells, such as pulmonary stromal cells or intestinal epithelial cells (IEC), promote tolerance by producing anti-inflammatory substances, such as TGF-β, retinoic acid (RA), and TSLP (29), which are known to promote Treg generation and function. In addition, at least in the gut and in the lungs, a specific subset of macrophages seems to induce Treg cells (30–32).
Table 1 | Features of Treg cells in different compartments of the body.

| Site            | Special features                                      | Main function for Treg cells                                                                 |
|-----------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Gut             | High number of iTreg cells induced by orally delivered | Oral tolerance (systemic)                                                                  |
|                 | antigens and commensal microbes                       |                                                                                             |
| Skin            | High number of Treg cells in the steady state. UV-radiation induced Treg cells | Immune homeostasis                                                                            |
| Lung            | Pathogens affect Treg number and function             | Induction of tolerance against nasal antigens                                               |
| Liver           | Antigen presentation in the liver may lead to formation | Systemic tolerance                                                                            |
|                 | of iTreg cells which confer systemic tolerance        |                                                                                             |
| Fat tissue      | Limited TCR repertoire                                 | Control of sterile, low-grade inflammation in the adipose tissue                           |

Treg cells are also found in those compartments of the body that are not directly exposed to external environment, where they most likely mainly participate in the maintenance of immune homeostasis and prevention of autoimmunity. It is not surprising that these Treg cells possess several features that distinguish them from Treg cells that are continuously exposed to external antigens. A recent report by Feuerer et al. (33) nicely demonstrated the transcriptional similarities and differences between Treg cells from lymph nodes (LN), spleen, adipose tissue, and Treg cells induced under different conditions. These comparisons clearly show that although they are all suppressive in nature and clearly closer to each other than to conventional T cells, they all have unique features of their own. These observations combined with mouse models, where it is possible to follow effects of either nTreg cell or iTreg cell depletion or deficiencies in homing receptors of Treg cells in different disease models, indicate that multiple Treg cell subsets have their own specific roles in the immune system and although they have overlapping tasks, they are also needed to complement each other’s functions (19, 24, 34–36). In this review we will go through some of the specific features of Treg cells in defined compartments of the body (Table 1) and how Treg cells in these different sites contribute to tolerance.

**TREG CELLS IN THE GUT**

Over 60 years ago, Chase (37) reported that the feeding of an antigen resulted in an “immunologic non-responsiveness” to the same antigen when it was later administered systemically (37). This kind of non-responsiveness to intestinal antigens is now referred to as oral tolerance (38, 39). In mice, oral tolerance can be transferred from one animal to another through adoptive transfer of CD4+CD25+ cells (40, 41). On the other hand, depletion of Foxp3+ cells abolishes the oral tolerance (31), indicating that tolerance is not solely a result of effector T cell depletion or anergy but is also actively induced through activation of Treg cells.

In addition to orally administered antigens, tolerance to gut microbiota has been reported several years ago by Powrie et al. (42) who demonstrated that adoptive transfer of CD4+CD45RBhigh cells into immunodeficient mice resulted in the development of colitis, and the inflammatory response could be prevented by simultaneous transfer of CD4+CD45RBlow cells, i.e., Treg cells. Colitis was not provoked in germ-free (GF) mice indicating that inflammatory response against commensal microbes was involved in the pathology (43, 44). Treg cells do develop in GF-mice and are able to suppress T cell proliferation, but according to some experiments, not as efficiently as Treg cells from conventionally housed mice (45, 46). Recent studies indicate that colon derived microbes play an important role in shaping the T cell repertoire in the gut and certain bacterial species seem to be particularly efficient in promoting Treg cell differentiation and suppressive function (8, 47). At least some of the gut derived Treg cells have TCRs recognizing gut microbe derived antigens. Moreover, adoptively transferred colon microbe recognizing Treg cells with a GFP marker, localized preferentially in the colon (48). Interestingly, iTreg cells also shape the microbial colonies in the gut. In mice devoid of iTreg cells, the gut microbiota is different from WT mice, possibly due to spontaneous Th2 type inflammation developing in the gut in the absence of iTreg cells (24).

Several studies indicate that a large proportion of gut Treg cells are derived from conventional T cells, which are converted into immunosuppressive Foxp3+ cells and are thus iTreg cells. Adoptive transfer of Foxp3−OT-II T T cells into mice subsequently fed with OVA resulted in expansion of OT-II specific Foxp3+ cells (31). Additionally, in mice where nTreg development was inhibited but iTreg cells could form, administration of OVA in the drinking water lead to formation of OVA-specific iTreg cells and prevented subsequent sensitization with OVA (19, 40). When the development of both of these cells was prevented, no tolerance was generated (19). A great majority of gut derived Treg cells lack Helios and Nrp-1 expression, indicating that they are not thymic derived Treg cells (13, 17, 48). Finally, the TCR repertoire of Treg cells in the gut has been shown to be different from Treg cells in the secondary lymphoid organs, indicating development in the periphery from naive precursors (48). This observation has, however, been challenged in a recent paper by Cebula et al. (49), who found a significant overlap between TCRs of gut derived and thymus derived Treg cells. Over 90% of the TCRs of gut derived Treg cells, which were able to recognize gut commensal antigens, were also expressed by Foxp3+ thymocytes. Based on these observations, plus the fact that colitis is not induced in CNS1−/− mice devoid of iTreg cells (24), and that the colonization of GF-mice with a specific microbiota results in the expansion of nTreg cells (50), the authors concluded that nTreg cells constitute the majority of gut...
Treg cells and dominantly confer tolerance to gut microbiota. It is true that adoptive transfer of Foxp3− cells into lymphopenic host induces colitis in the recipient, although a certain proportion of the transferred cells convert into Foxp3 expressing iTreg cells (10). Moreover, in vitro generated and adoptively transferred iTreg cells were unable to cure the colitis in this same model, although they did prevent the lethality of the disease. However, nTreg cells were unable to cure the colitis either, unless transferred together with iTreg cells or transferred into mice that could generate iTreg cells. These results indicate that nTreg cells and iTreg cells have non-redundant roles in tolerance against gut microbiota. Furthermore, CNS1−/− mice develop spontaneous Th2 type inflammation in the gut (24), and conversion of Foxp3− into Foxp3+ cells has been observed upon colonization of GF-mice with specific microbiota (50). As a conclusion, most likely iTreg cells, but also nTreg cells participate in the tolerance against gut microbiota. High inter-personal variability in the gut’s microbial communities has been observed, whereas at the individual level, the variation is minimal over time (51, 52), and therefore tolerogenic responses against gut microbes could resemble tolerance toward self-structures. Instead, iTreg could be especially important for generating tolerance to orally delivered antigens with even more diverse and “fluctuating” antigen repertoire. This view is supported by OVA feeding experiments, as described above as well as the study by Nagatani et al. (53) indicating that adoptively transferred OVA-specific naïve T cells in Peyer’s patches (PP) start to express Foxp3 after oral administration of ovalbumin.

Induced Treg cells in the gut are most likely induced in the mesenteric LNs (mLN) by tolerance inducing CD103+ DCs. Synthesis of RA and the production of immunosuppressive indoleamine-2,3-dioxygenase (IDO) by these DCs are involved in the induction (54–56). Intestinal macrophages, which arise from different precursors than DCs, may also play a role in the Foxp3 conversion and/or proliferation in the gut (30–32). In addition, IEC participate in the induction of oral tolerance by secreting TSLP, TGF-β, and RA, and thus creating a local microenvironment which favors tolerogenic responses, for instance by enabling DCs to produce RA from food derived vitamin A (29). Microbes may also favor conversion, for example, bacteria derived matrix-metalloproteinases may cleave latent TGF-β into active form which supports Treg conversion. Moreover, Bacteroides fragilis and Clostridium species, both gut microbiota, have been shown to promote the number and function of certain Treg cell subsets in the gut (8, 47).

Establishment of oral tolerance requires migration of tDCs into to mLN to activate Foxp3 cells. Mice devoid of mLN are unable to mount oral tolerance (57) and an impaired inhibition of colitis has been observed in mice deficient of CCR7 or CD62L (58, 59), most likely due to impaired homing of Treg cells to the mLNs. However, subsequent recruitment of Foxp3 cells into the lamina propria (LP) and local expansion there is also necessary for the establishment of oral tolerance. Foxp3+ cells proliferate only little in the mLN but vigorously in the LP. In addition, oral tolerance is weaker or abolished in mice with deficiencies in gut homing molecules, such as integrin α4β7+ or chemokine receptor CCR9+ expressed on Treg cells or mucosal addressin cell adhesion molecule-1 (MAdCAM1) expressed on intestinal venules and PPs (31, 60). It has been speculated that this local expansion may offer an additional checkpoint between immunity and tolerance (31).

TREG CELLS IN THE SKIN

Skin is continuously exposed to a variety of external antigens, pathogens, and chemicals. The structure of the skin forms a physical barrier to prevent harmful substances or antigens entering the body. In addition, many chemical and biochemical properties, such as low pHi, low water content, production of antimicrobial peptides, or composition of lipid compounds, protect the host from the “outside invaders.” However, if a pathogen/chemical is able to breach the epithelial barrier and penetrate into the skin, both the innate and the adaptive immune systems are activated (61, 62).

Like the gut, also skin is covered by commensal bacteria, which in humans occupy specific niches, like sebaceous glands or hair follicles (63). Furthermore, as in the gut, the skin commensals are needed for the development of a proper immune response in the skin, and commensals have been shown to modulate especially IL-1 driven inflammation (64). Although gut induced tolerance has been shown to have systemic effects (39), absence or reduction of gut commensal bacteria does not affect skin commensals or their ability to modulate immune responses in the skin (64).

In the steady state, both the skin Langerhans cells (LCs) and dermal dendritic cells (dDCs) maintain the tolerance through induction/activation of Treg cells. While LCs have been shown to promote skin resident Treg cell proliferation (65), it seems that mainly dDCs present self-antigens in the skin draining LNs (66–68). Approximately 6% of DCs in the skin draining LNs in the mouse have been shown to originate from the skin in the steady state (23). Vitamin D plays a role in the development of tolerogenic DCs in the skin. Vitamin D3 is activated by UVradiation and vitamin D receptor agonist treatment of DCs elicits Treg inducing tDCs and LCs (69–71). In addition, RA producing DCs, which in contrast to gut are CD103−, have been shown to induce Treg in the skin draining LNs (72), although their number is lower in the dermal LNs compared with intestinal tract (73). During primary response to an antigen, iTreg cells are generated from conventional T cells in the skin draining LNs (74).

In the steady state, skin has a high proportion of Treg cells and they are needed to maintain local homeostasis in the skin. This becomes evident in experiments where Treg recruitment into the skin is impaired, e.g., due to the absence of skin homing chemokine receptor, CCR4, or E/P-selectin ligand, α-1,3-fucosyltransferase VII (23, 75–77). Although Treg cells deficient in these molecules are functional in in vitro suppression assays and are able to control other peripheral autoimmune responses in scurfy mice, they are not able to control spontaneous inflammation developing in the skin. However, during hapten induced contact hypersensitivity (CHS) response, Treg cells accumulate in the skin even in the absence of CCR4 receptor (78), possibly through another chemokine receptor such as CCR10 (78, 79) or CCR5, which is important for Treg recruitment into the skin during Leishmania major infection (80). CCR7 and CCR6 expression have also been reported in skin derived Treg cells. Other markers typical for skin resident Treg cells are CD44 and CD103, indicating that
the majority of skin Treg cells are of memory/effector type (23, 75, 76).

During CHS response, Treg cells migrate from the skin exposed to hapten to the draining LN. Upon rechallenge with the same hapten, they migrate back to the skin, into the site of new exposure (23). These skin derived Treg cells are more suppressive than LN derived Treg cells and they function, at least partly, in an antigen-specific manner. In addition, they express more IL-10, TGF-beta, and have higher surface expression of CD103 and GITR (23). Increasing percentages of Treg cells accumulate in the skin at different time points after challenge and ablation of Treg cells during the challenge phase of CHS results in a prolonged inflammation, pointing to an important role for Treg cells in terminating the inflammatory response at the site of inflammation (21, 23).

UV-irradiation of the skin induces Treg cells, which can prevent sensitization to contact allergen in an antigen-specific manner when adoptively transferred from UV radiated and hapten exposed mouse to a naïve recipient prior to sensitization (81). These UV-iTreg cells express Foxp3, CD4, CD25, CTLA-4, GITR, neuropilin, and CD62L (82). The mechanism for Treg induction involves LCs, which suffer from UV radiation in such a way that they are unable to present hapten professionally, resulting in tolerance instead of immunity. Keratinocytes may also be involved through RANK-RANKL mediated mechanisms (83, 84). UV-iTreg cells are, however, unable to suppress the elicitation phase in an already sensitized recipient, unless injected directly at the site of hapten administration. This is most likely due to expression of LN homing molecule, CD62L, on Treg cells, which prevents their migration into the skin. Education of these UV-iTreg cells in vitro or in vivo with skin derived APC equips the cells with skin homing molecules, ligands for E-and P-selectin, and results in the suppression of the elicitation phase. These results clearly demonstrate that UV-iTreg cells can efficiently suppress both primary and secondary responses and that they are needed at the site of inflammation, i.e., the skin, during the secondary response (82). Like Treg cells in general, UV-iTreg cells are also a heterogeneous population, possessing different properties depending on the UV-dosage, mouse strain, and even hapten used to sensitize the mice (85).

**TREG CELLS IN THE "INSIDE"**

In the lungs, normal flora and exogenous antigens delivered via the airways trigger DCs and lung resident tissue macrophages to induce iTreg cells in order to control pulmonary homeostasis and tolerance (29, 86, 87). Moreover, pulmonary stromal cells participate in the process by promoting differentiation of tDCs (88).

Low doses of antigen administered intranasally induce generation of Foxp3+ TGF-β+ cells, which maintain tolerance to the same antigen when later administered at doses that would induce sensitization (89). Foxp3+ cells control allergic airway inflammatory responses and their depletion during the sensitization phase results in increased IgE titers and eosinophilia after challenge in the lungs (20, 90). Adoptive transfer of Treg cells in the challenge phase, in turn, results in suppressed inflammatory response, and both nTreg cells and in vitro generated iTreg cells are capable of suppression (91–93). Importantly, mice with defects in iTreg generation develop spontaneous inflammation in the lungs (and gut) with features of Th2 type allergic airway inflammation (24).

Mice with CCR4 deficient Treg cells develop spontaneous lung inflammation (76) and in contrast to the skin, efficient Treg recruitment into the lungs during inflammation also requires CCR4 (55). Moreover, asthmatic patients show increased percentages of CCR4+ Foxp3+ Treg cells in the BAL fluid after allergen challenge. CCR4 expression seems to be especially important during secondary allergic inflammatory responses, whereas in the priming phase, Treg mediated suppression requires CCR7 expression (34) and allergic airway inflammation is exacerbated in the absence of CCR7 (94).

Pathogens affect Treg cells in the lungs and may have consequences on tolerance. While some infections increase the number of Treg cells, promote their function, and subsequently inhibit sensitization to common allergens, some infections exacerbate allergic inflammation in the lung. For instance, vaccination of mice with bovis Bacille Calmette–Guerin (BCG) or recombinant BCG expressing house dust mite protein Derp, reduced subsequent allergic airway inflammation after OVA or Derp sensitization and challenge, respectively. In addition, increased numbers of Foxp3+ cells in the lung and enhanced expression of CTLA-4 and elevated levels of IL-10 and TGF-b were observed (95, 96). Instead, infection early in life with respiratory syncytial virus (RSV) impaired Treg function and exacerbated allergic airway inflammation in mice (97).

Tissues not directly exposed to outside world, such as organs and adipose tissue also harbor Treg cells with specific functions. A couple of examples of these sites are considered, as follows.

The liver favors immune tolerance and it has been already known for a long time that liver allografts are accepted even without immune suppression or require less immunosuppression for long term survival than other transplants (98, 99). Furthermore, liver-allograft recipients seem to tolerate non-hepatic allografts from the same donor, and ongoing rejection can be reversed by liver allografts, indicating a systemic tolerant response (100). Although the liver is not directly exposed to environmental antigens, it is continuously sampling food and microbial antigens from the gut and may also play a role in the development of oral tolerance (101). In addition, being a primary metabolic organ, several neo-antigens are developed during metabolic processes, which may require tolerance. Several cell types in the liver, such as liver sinusoidal endothelial cells, Kupffer cells, stellate cells, and DCs, can present antigens in the context of suppressive cytokines and inhibitory cell surface molecules and promote tolerance (102). Although several mechanisms of tolerance prevail, such as clonal deletion or immune deviation (103–105), increasing evidence also points toward the role of Treg cells in mediating hepatic tolerance. For instance, in a mouse model of Concavalin A (ConA) induced T cell mediated liver injury, Treg cell depletion results in more severe inflammation, whereas adoptive transfer of Treg cells ameliorates the symptoms. These hepatic Treg cells express more Foxp3, CTLA-4, CD103, and GITR than their splenic counterparts, and are more suppressive in vivo than Treg cells from non-treated mice (106, 107). More importantly, targeted expression of...
antigens in the liver can establish systemic tolerance by inducing antigen-specific Foxp3+ Treg cells (108, 109). For example, in a mouse model of multiple sclerosis, ectopic expression of neuronal autoantigen myelin basic protein (MBP) in the liver prevented the development of the disease. The protection could be transmitted to a WT recipient through adoptive transfer of Foxp3+ Treg cells from mouse expressing MBP in the liver. Treg cells were shown to develop from conventional T cells in a TGF-β-dependent manner and only when the autoantigen was expressed in the liver, not in the skin (109).

Obesity is accompanied by low-grade inflammation in the adipose tissue, which has consequences on insulin-resistance and subsequently, development of type 2 diabetes (110, 111). In normal mice, Foxp3+ cells can be found in the adipose tissue, but in the obese insulin-resistance mouse models or mouse fed with high fat diet, the number of these cells is reduced (112, 113). Loss-of-function/depletion experiments and gain-of-function/adoptive transfer experiments, demonstrate that these Foxp3+ cells are responsible for controlling the inflammation in the fat tissue and development of insulin resistance (113, 114). In mice, T cells comprise approximately 10% of the abdominal fat tissue cells, of which three quarters are CD4+ T cells, and approximately half of these express Foxp3, which is a high percentage compared to lymphoid and non-lymphoid tissues. Interestingly, high Foxp3+ cell numbers are recovered from visceral adipose tissue, but not from subcutaneous tissue, the former being associated with insulin resistance (110, 113). The TCRs of fat deposited Treg cells are distinct from their LN resident counterparts and have a limited TCR repertoire, indicating that fat Treg cells may be selected through antigen specificity. Also the transcriptional signature of adipose derived Treg cells is different from Treg cells derived from secondary lymphoid organs or Treg cells induced in vivo or in vitro (33). In humans, both lowered Foxp3 expression (112, 113) and increased Foxp3 expression in the adipose tissue (115) has been shown to accompany obesity. Eller et al. (114), in turn, observed similar Foxp3 mRNA expression in obese patients with insulin resistance, whilst Foxp3 expression in obese patients without insulin resistance was lowered, compared to healthy controls. The expression of Helios was decreased in both obese groups, indicating lowered nTreg numbers. Clearly further studies are needed to confirm Treg contribution to fat tissue inflammation in humans.

**GENOME-WIDE ANALYSIS**

Feuerer et al. (33), have demonstrated that the gene-expression in different murine Treg cells differs from that of conventional T cells. However, when comparing, for example, spleen derived Treg cell signatures with conventional Treg cells derived Treg cells or with Treg cells induced in vivo or in vitro, it becomes evident that Treg cells form a heterogeneous group of suppressive cells. The rapid development of technologies enabling fast and reproducible genome-wide analysis of the cells has enabled finding such small differences between the subsets of cells. These methods include array- or next-generation sequencing based transcriptome studies, proteomic studies and ChIP-Seq analysis, which enable detection of novel protein coding and non-coding transcripts, differential splicing, epigenetic modifications, or transcription factor-binding sites along the whole genome [reviewed in Ref. (116)].

Genome-wide approaches provide valuable information about complex networks occurring in the cells during or in response to differentiation and reveal novel genes and mechanisms participating in these processes. For example, array based analysis of differentiated human Th1 and Th2 cells revealed several previously unknown genes differently expressed between these cell types (117, 118). Similarly, analysis on human cord blood derived Th1/Th2/Th17 cells during the early differentiation process identified several new candidates potentially involved in the fate decision of these cells (119–121). Functional analysis of these candidates in turn, resulted in the discovery of new regulators of human Th cell differentiation (122–126). Genome-wide approaches have also been utilized to unravel the role of transcriptional regulators, such as STAT6, SATB1, or ATF3, in the differentiation process (122, 124, 127). Similarly in mouse, genes regulated by STAT4 and STAT6 during Th1 or Th2 cell development have been studied (128, 129), and quite surprisingly, only a small subset of genes was similarly regulated by STAT6 in mouse and human, underlying the importance of human studies.

A large proportion of the single-nucleotide polymorphisms (SNPs) associated with autoimmune diseases identified through GWAS studies are in the non-coding regions of DNA. To investigate how such SNPs may participate in molecular mechanisms of human diseases, integrative analysis of human cells is required. For example, a recent study that combined analysis of transcription factor-binding sites, chromatin state maps, modeling of enhancer-gene pairs, and genome-wide association studies of autoimmunity-associated SNPs provide a potential link for distal regulatory regions in disease pathogenesis. Such SNPs were shown to alter binding of transcription factors involved in Th cell differentiation (130).

Several systems biology approaches have also been used to study Treg cells, including genome-wide analysis of Foxp3 binding sites, both in mouse and human (131–134), transcriptomes of resting and activated nTreg and iTreg cells in mice (33, 135, 136) and epigenetic modifications of Treg cells in mouse and human (137–139).

Whilst the regulatory functions of Treg cells indicate their potential therapeutic use, there are a large number of questions that should be answered first. For instance, the stability of Treg cells is one of the major concerns. Natural Treg cells have been shown to prevent onset of different autoimmune diseases in several animal models and have already been tested also in clinical trials (140, 141). Additionally, a number of studies have demonstrated a remarkably more demethylated Foxp3 locus in nTreg cells compared to iTreg cells, which is thought to provide a more stable suppressive phenotype in nTreg cells (137, 142, 143). However, in some studies, iTreg cells have shown enhanced stability over nTreg cells during inflammation, due to IL-2 and TGF-β-mediated downregulation of IL-6 receptor, which makes iTreg cells more resistant to conversion into Th17 cells. In addition, in contrast to nTreg cells, iTreg cells also retained suppressive activity in vivo in inflammatory conditions (144–146). These results suggest that while nTreg cells might be efficient in preventing the onset of the disease, iTreg cells could be more suitable for treating the already established disease.
The heterogeneity of Treg cells and their non-redundant roles in immune tolerance also imply that the mechanisms of suppression may differ between different Treg types, tissues, and inflammatory conditions. Also antigen specificity plays a role. The expansion of nTreg cells in vivo or in vitro generates a polyclonal pool of cells, whereas iTreg cells can be generated with a certain antigen specificity, which may diminish harmful side effects. Finally, while having a lot of information of more or less terminally differentiated Treg cells, we still lack information about gene-expression and regulation during Treg development, especially in humans. Genome-wide studies, including transcriptomes, regulomes, and proteomes, will help us to recognize the subtle differences between different Treg subtypes, identify the factors that drive the differentiation process toward Treg phenotypes and define the elements that contribute to the stability and functionality of these cells. In the future this knowledge could be used to effectively manipulate and generate functional Treg cells for therapeutic purposes.

CONCLUSION

Treg cells have attracted intense attention, due to their therapeutic potential for a number of different conditions including autoimmune diseases, allergies, transplantation, and even obesity. While promising, the clinical success of using Treg cells has been limited. One challenge is to study such small differences in a mixed group of cells, holistic proteomes, will help us to recognize the subtle differences between different Treg subtypes, identify the factors that drive the differentiation process toward Treg phenotypes and define the elements that contribute to the stability and functionality of these cells. In the future this knowledge could be used to effectively manipulate and generate functional Treg cells for therapeutic purposes.

ACKNOWLEDGMENTS

We thank the Academy of Finland (the Centre of Excellence in Molecular Immunology and Physiology Research, 2012–2017, Decision No. 250114 and Grant No. 256355), European Commission Seventh Framework grant (EC-FP7-SYBILLA-201106), and the Sigrid Juselius Foundation for financial support.

REFERENCES

1. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. *Immunity* (2009) 30:636–45. doi:10.1016/j.immuni.2009.09.010
2. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitely L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. *Nat Genet* (2001) 27:20–1. doi:10.1038/s713
3. Brunkow ME, Jeffery EW, Hjerding RA, Paeper B, Clark LB, Yasyko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfy, results in the fatal lymphoproliferative disorder of the scurfy mouse. *Nat Genet* (2001) 27:68–73. doi:10.1038/3784
4. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. *Immunity* (2005) 22:329–41. doi:10.1016/j.immuni.2005.01.016
5. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. *Science* (2003) 299:1057–61. doi:10.1126/science.1079490
6. Itoh K, Okumura M, Yagita H. Regulatory T cells that express Foxp3. *J Immunol* (2005) 174:5588–95. doi:10.4049/jimmunol.174.8.5588
7. Kretzmer K, Apostolou I, Hawiger D, Khazie K, Nussenzeig MC, von Boehm H. Inducing and expanding regulatory T cell populations by foreign antigen. *Nat Immunol* (2005) 6:1219–27. doi:10.1038/ni1265
8. Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. *J Exp Med* (2012) 209:1723–22, S1. doi:10.1084/jem.20120914
9. Verhagen J, Wraith DC. Comment on “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells.” *J Immunol* (2010) 184:3433–41. doi:10.4049/jimmunol.0904028
10. Weiss JM, Bilate AM, Hobert M, Ding Y, CarettoA,CF20150901. Laffaixa MA, Parkhurst CN, et al. Neurophilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. *J Exp Med* (2012) 209:1717–22. doi:10.1084/jem.20120822
11. Kretzmer K, Apostolou I, Hawiger D, Khazie K, Nussenzeig MC, von Boehm H. Inducing and expanding regulatory T cell populations by foreign antigen. *Nat Immunol* (2005) 6:1219–27. doi:10.1038/ni1265
12. Bilete AM, Laffaixa J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. *Annu Rev Immunol* (2012) 30:233–58. doi:10.1146/annurev-immunol-021108-075043
13. Thornton AM, Korty PE, Tran DQ, Wohlert EA, Murray PE, Belkid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. *J Immunol* (2010) 184:3433–41. doi:10.4049/jimmunol.0904028
14. Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. *PloS ONE* (2011) 6:e24226. doi:10.1371/journal.pone.0024226
15. Verhagen J, Wraith DC. Comment on “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells.” *J Immunol* (2010) 185:7129. doi:10.4049/jimmunol.1090105
16. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and Helios− cells coexist within the natural FoxP3+ T regulatory cell subset in humans. *J Immunol* (2013) 190:2001–8. doi:10.4049/jimmunol.1201379
17. Weiss JM, Bilate AM, Hobert M, Ding Y, CarettoA,CF20150901. Laffaixa MA, Parkhurst CN, et al. Neurophilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. *J Exp Med* (2012) 209:1717–22. doi:10.1084/jem.20120822
18. Yadvav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neurophilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. *J Exp Med* (2012) 209:1717–22. doi:10.1084/jem.20120822
19. Carotto de Laffaixa MA, Kuchukhidze N, Shen S, Ding Y, Yee H, Laffaixa J, Adaptive Foxp3+ regulatory T cell–dependent and –independent control of allergic inflammation. *Immunity* (2008) 29:114–26. doi:10.1016/j.immuni.2008.05.010
20. Fyrhoust N, Lehtimäki S, Lahl K, Savinko T, Lappeteläinen AM, Sparwasser T, et al. Foxp3+ cells control Th2 responses in a murine model of atopic dermatitis. J Invest Dermatol (2012) 132:1672–80. doi:10.1038/jid.2012.40

21. Lehtimäki S, Savinko T, Lahl K, Sparwasser T, Wolf H, Lauerma A, et al. The temporal and spatial dynamics of Foxp3+ Treg cell-mediated suppression during contact hypersensitivity responses in a murine model. J Invest Dermatol (2012) 132:2744–51. doi:10.1038/jid.2012.212

22. Mason CM, Porretta E, Zhang P, Nelson S. CD4+ CD25+ transforming growth factor-beta-produing T cells are present in the lung in murine tuberculosis and may regulate the host inflammatory response. Clin Exp Immunol (2007) 148:537–45. doi:10.1111/j.1365-2427.2007.03373.x

23. Tomura M, Honda T, Tanizaki H, Otsuka A, Egawa G, Tokara Y, et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J Clin Invest (2010) 120:883–93. doi:10.1172/JCI49826

24. Josefowicz SZ, Nied RE, Kim HY, Teutuing P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature (2012) 482:365–9. doi:10.1038/nature10722

25. Koch MA, Tucker-Heard G, Perdue NR, Kilbacre RE, Urbahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol (2009) 10:595–602. doi:10.1038/ni.1731

26. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature (2009) 458:351–6. doi:10.1038/nature07674

27. Turنبbaugl FJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature (2007) 449:804–10. doi:10.1038/nature06244

28. Ling EM, Smith T, Nguyen XD, Pradhan SM, Fallaen M, Albery J, et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease, Lancet (2004) 363:608–15. doi:10.1016/S0140-6736(04)15592-X

29. Maldonado BA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol (2010) 108:111–65. doi:10.1016/S0001-7978(0)80995-7.70004-S

30. Bogunovic M, Ginhoux F, Hefti J, Shang L, Hashimoto D, Greter M, et al. Origin of the lamina propria dendritic cell network. Immunity (2009) 31:513–25. doi:10.1016/j.immuni.2009.08.010

31. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of Foxp3+ regulatory T cells in the lamina propria. Immunity (2011) 34:237–46. doi:10.1016/j.immuni.2011.01.016

32. Varol C, Vollan-Eberhard A, Eli nav A, Ayehk T, Shapira Y, Luche H, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity (2009) 31:502–12. doi:10.1016/j.immuni.2009.06.025

33. Feuerer M, Hill JA, Kretschmer K, von Bohlen H, Mathis D, Benoist C. Genomic definition of multiple ex vivo regulatory T cell subpopulations. Proc Natl Acad Sci U S A (2010) 107:5919–24. doi:10.1073/pnas.1000620107

34. Alifar R, Strasser AP, Seung E, Causton B, Cho JL, Harris RS, et al. Compartimentalized chemokine-dependent regulatory T-cell inhibition of allergic pulmonary inflammation. J Allergy Clin Immunol (2013) 131:1644–52. doi:10.1016/j.jaci.2013.03.002

35. Faustino L, da Fonseca DM, Take wi M, Nelson S. CD4+ CD25+ regulatory T cell function in peripheral tolerance. J Immunol (2011) 187:4245–53. doi:10.1008/jimmunol.2011.01.016

36. Powrie F, Leach MW, Sauze C, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol (1993) 5:1461–71. doi:10.1093/immunol/iim.5.1461

37. Schultz M, Tonkonyog S, Sel lon RK, Velkamp C, Godfrey VL, Kwon J, et al. IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. Am J Physiol Regul Integr Comp Physiol (2000) 278:R1461–72.

38. Sellon RK, Tonkonyog S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun (1998) 66:5241–51. doi:10.1128/IAI.66.9.5241

39. Min B, Thornton A, Cautherhe SM, Younes SA, Ob K, Hu-Li J, et al. Gut flora antigens are not important in the maintenance of regulatory T cell heterogeneity and homeostasis. Eur J Immunol (2007) 37:1916–23. doi:10.1002/ ejim.200737236

40. Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E, Impaired regulatory T cell function in germ-free mice. Eur J Immunol (2006) 36:2336–46. doi:10.1002/eji.200532524

41. Round JL, Marmanian SK, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A (2010) 107:12204–9. doi:10.1073/pnas.1000912107

42. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Liu CW, San tacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature (2011) 478:250–4. doi:10.1038/nature10434

43. Cebula B, Seweryn M, Rempala GA, Palba SS, Mclnoro RA, Den ning TL, et al. Thymus-derived regulatory T cells contribute to toler ance to commensal microbiota. Nature (2013) 497:258–62. doi:10.1038/nature12079

44. Geuking MB, Cazenhi J, Lawson MA, Ng DC, Slack E, Harpelmeier S, et al. Intestinal bacterial coloni zation induces mutualistic regulatory T cell responses. Immunity (2011) 34:794–806. doi:10.1016/j.immuni.2011.03.021

45. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JJ, Knight R. Bacterial community variation in human body habitats across space and time. Science (2009) 326:1647–9. doi:10.1126/science.1110591

46. Nagatani K, Komagata Y, Asako K, Takayama M, Yamamoto K. Antigen-specific regulatory T cells are detected in Peyer’s patches after the interaction between T cells and dendritic cells loaded with orally administered antigen. Immunobiology (2011) 216:416–22. doi:10.1007/j.10127.2010.06088

47. Benson MJ, Pino-Lagos K, Roseblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med (2007) 204:1765–74. doi:10.1084/jem.20070719

48. Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, et al. Functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med (2007) 204:1757–64. doi:10.1084/jem.20070590

49. Mattei G, Mazzini EL, Iliev D, Mileti E, Fallarino F, Puccetti P, et al. Gut CD103+ dendritic cells express indoleamine 2,3-dioxigenase which influences Treg cell balance and oral tolerance induction. Gut (2010) 59:595–604. doi:10.1136/gut.2009.185108

50. Spahn TW, Weiner HL, Rennert PD, Luger A, Fontana A, by colonic commensal microbiota.
Lehtimäki and Lahesmaa

Treg cell heterogeneity

Domschke W, et al. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer’s patches. *Eur J Immunol* (2002) 32:1109–13. doi:10.1002/1521-4141(200204)32:4<1109::AID-IMMU1109>3.3.CO;2-B

58. Fu S, Yopp AC, Mao X, Chen D, Zhang N, Mao M, et al. CD4+ CD25+ CD62L+ regulatory cell subset has optimal suppressive and proliferative potential. *Am J Transplant* (2004) 4:65–78. doi:10.1038/sj.aot.9100703

59. Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. *J Exp Med* (2007) 204:735–45. doi:10.1084/jem.20061405

60. Cassani B, Villablanca EL, Quintana FI, Love PE, Lacy-Hulbert A, Blener WS, et al. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. *Gastroenterology* (2011) 141:2109–18. doi:10.1053/j.gastro.2011.09.015

61. Elias PM. The skin barrier as an innate immune element. *Semin Immunopathol* (2007) 29:3–14. doi:10.1007/s00292-006-0060-9

62. Proshk E, Branderm JD, Jensen TM. The skin: an indispensable barrier. *Exp Dermatol* (2008) 17:1063–72. doi:10.1111/j.1600-0625.2008.0398x.x

63. Grice EA, Segre JA. The skin microbiome. *Nat Rev Microbiol* (2011) 9:244–53. doi:10.1038/nrmicro2537

64. Naik S, Bouladoux N, Wilheln C, Molloy MJ, Salcedo R, Karterenmuller W, et al. Compartimentalized control of skin immunity by resident commensals. *Science* (2012) 337:1115–9. doi:10.1126/science.1225152

65. Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper J. Skin: an indispensable element. *Semin Immunopathol* (2012) 34:873–84. doi:10.1007/s00292-012-0105-6

66. Azukizawa H, Höhler A, Kanazawa N, Naya K, Lipp M, Malissen B, et al. Steady state migratory RALT+ dermal dendritic cells mediate peripheral induction of antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells. *Eur J Immunol* (2011) 41:1420–34. doi:10.1002/eji.201049930

67. Bedoui S, Whitney PG, Warthan J, Eisdon J, Wakan L, Caminchi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. *Nat Immunol* (2009) 10:888–95. doi:10.1038/ni.1724

68. Henri S, Poulin LF, Tamoutounour S, Ardoniu L, Guilmains M, de Bovis B, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells in *Eur J Immunol* (2010) 40:189–206. doi:10.1002/eji.200919640

69. Adorini L, Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. *Handb Exp Pharmacol* (2009) 188:251–73. doi:10.1007/978-3-540-71025-1_12

70. Unger WW, Laban S, Kleijwegt FS, van der Slak AR, Roep BO. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-1. *Eur J Immunol* (2009) 39:3147–59. doi:10.1002/eji.200891030

71. van der Aar AM, Sibiryak DS, van der Steeg H, Beissert S, Schwarz T. Ulceration of dendritic cells. *Clin Immunol* (2011) 130:2743–51. doi:10.1016/j.clim.2010.10.208

72. Reiss Y, Proudfoot AE, Power CA, Campbell JF, Butcher EC. CC chemokine receptor (CCR3) and the CCR10 ligand cutaneous T-cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. *J Exp Med* (2001) 194:1541–7. doi:10.1084/jem.194.10.1541

73. Wurchenko E, Trill M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. *J Exp Med* (2006) 203:2451–60. doi:10.1084/jem.20060956

74. Schwarz T, Maeda A, Wild MK, Kernekke B, Gross N, Aragane Y, et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. *J Immunol* (2004) 172:1036–43.

75. Schwarz T, Naik N, Goody S, Marti A, Siciliano F, Bebbington M, et al. Phototoxic T cells reverse established allergic skin inflammation. *J Invest Dermatol* (2009) 129:926–33. doi:10.1111/j.1523-1747.2009.02923.x

76. Sather BD, Treuting P, Perdue N, Mizaghizwicz M, Fontenot JD, Rudensky AY, et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. *J Exp Med* (2007) 204:1335–47. doi:10.1084/jem.20070081

77. Siegmund K, Feurer M, Stiewert C, Ghanii S, Haubold U, Dankof A, et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. *Blood* (2005) 106:3097–104. doi:10.1182/blood-2005-08-1864

78. Lehtimäki S, Tillander S, Puustinen A, Matikainen S, Nyman T, Fyhriquist N, et al. Absence of CCR4 exacerbates skin inflammation in an oxazolone-induced contact hypersensitivity model. *J Invest Dermatol* (2013) 130:762–7. doi:10.1038/jid.2013.00786.x

79. Orosan P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. *J Exp Med* (2013) 210:775–88. doi:10.1084/jem.20121849

80. Li Q, Guo Z, Xu X, Xia S, Cao X. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung hypersensitivity. *J Immunol* (2008) 180:2751–61. doi:10.4049/jimmunol.2008038542

81. Ostrookhova M, Segura Devaux C, Oris TB, Dixon-McCarthy B, Yang L, Ameredes BT, et al. Tolerance induced by inhaled antigen involves CD4(+)? T cells expressing membrane-bound TGF-beta and Foxp3. *J Clin Invest* (2004) 114:28–38. doi:10.1172/JCI20509

82. Baru AM, Harit A, Lahl K, Krishnaswamy JK, Fechenbaur H, Yildirim AO, et al. Selective depletion of Foxp3+ Treg during sensitization phase aggravates experimental allergic airway inflammation. *J Immunol* (2010) 184:2259–66. doi:10.4049/jimmunol.20090997

83. Kearley J, Robinson DS, Lloyd CM, CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. *J Allergy Clin Immunol* (2012) 128:617.e–4.e. doi:10.1016/j.jaci.2008.05.048

84. Leech MD, Benson RA, De Vries A, Fitch PM, Howie SE. Resolution of Dpr1-induced allergic airway inflammation is dependent on CD4+CD25+Foxp3+ regulatory T cells. *J Immunol* (2007) 179:7050–8.

85. Xu W, Lan Q, Chen M, Chen H, Zhu N, Zhou X, et al. Adoptive transfer of induced-Treg cells effectively attenuatesmurine...
airway allergic inflammation. PLoS ONE (2012) 7:e40314. doi: 10.1371/journal.pone.0040314
94. Kawakami M, Narumoto O, Mat
M, T, Kamei T, Flye MW. Lehtimäki and Lahesmaa Treg cell heterogeneity
101. Callery MP, Kamei T, Flye MW.
94. Kawakami M, Narumoto O, Mat-
99. Crispe IN, Giannandrea M, Klein
103. Erhardt A, Biburger M, Papadopoulos T, Tieg
10.1371/journal.pone.0040314
9. Klugewitz K, Blumenthal-Barby F, 
34. Krishnamoorthy N, Khare A, Oriss 
30. Calne RL, Sells RA, Pena JR, Davis 
29. Crispe IN, Giannandrea M, Klein 
28. Caramia A, Herkel J, CDN T cells 
27. Caramia A, Herkel J, CDN T cells 
26. Caramia A, Herkel J, CDN T cells 
25. Caramia A, Herkel J, CDN T cells 
24. Caramia A, Herkel J, CDN T cells 
23. Caramia A, Herkel J, CDN T cells 
22. Caramia A, Herkel J, CDN T cells 
21. Caramia A, Herkel J, CDN T cells 
20. Caramia A, Herkel J, CDN T cells 
19. Caramia A, Herkel J, CDN T cells 
18. Caramia A, Herkel J, CDN T cells 
17. Caramia A, Herkel J, CDN T cells 
16. Caramia A, Herkel J, CDN T cells 
15. Caramia A, Herkel J, CDN T cells 
14. Caramia A, Herkel J, CDN T cells 
13. Caramia A, Herkel J, CDN T cells 
12. Caramia A, Herkel J, CDN T cells 
11. Caramia A, Herkel J, CDN T cells 
10. Caramia A, Herkel J, CDN T cells 
9. Caramia A, Herkel J, CDN T cells 
8. Caramia A, Herkel J, CDN T cells 
7. Caramia A, Herkel J, CDN T cells 
6. Caramia A, Herkel J, CDN T cells 
5. Caramia A, Herkel J, CDN T cells 
4. Caramia A, Herkel J, CDN T cells 
3. Caramia A, Herkel J, CDN T cells 
2. Caramia A, Herkel J, CDN T cells 
1. Caramia A, Herkel J, CDN T cells
13. Marson A, Kretschmer K, Framp-ton GM, Jacobsen ES, Polansky JK, MacIsaac KD, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. *Nature* (2007) 445:931–5. doi:10.1038/nature05478

133. Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bressat S, Gar-gett T, et al. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. *J Immunol* (2010) 185:1071–81. doi:10.4049/jimmunol.1000082

134. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. *Int Immunol* (2008) 20:1041–55. doi:10.1093/intimm/dxn062

135. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Andreesen R, Hoffmann P, Edinger M, et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. *Genome Res* (2009) 19:1165–74. doi:10.1101/gr.091470.109

136. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, et al. Foxp3 transcription-factor dependent and -independent regulatory T cell predominance. *J Immunol* (2010) 185:7235–43. doi:10.4049/jimmunol.1001551

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.