Remarks on the Systems of Semilinear Fractional Rayleigh-Stokes Equation

Le Dinh Long

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

Correspondence should be addressed to Le Dinh Long; ledinhlong@tdmu.edu.vn

Received 25 April 2021; Accepted 7 June 2021; Published 28 June 2021

Academic Editor: Mustafa Inc

Copyright © 2021 Le Dinh Long. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the Cauchy problem for a system of Rayleigh-Stokes equations. In this system of equations, we use derivatives in the classical Riemann-Liouville sense. This system has many applications in some non-Newtonian fluids. We obtained results for the existence, uniqueness, and frequency of the solution. We discuss the stability of the solutions and find the solution spaces. Our main technique is to use the Banach mapping theorem combined with some techniques in Fourier analysis.

1. Introduction

Let \(\Omega \subset \mathbb{R}^N \) \((N \geq 1) \) be a smooth domain with the boundary \(\partial \Omega \), and \(T > 0 \) is a given time. In this paper, we study the initial value problem for systems of Rayleigh-Stokes problem as follows:

\[
\begin{align*}
\partial_t u + (-\Delta)^\beta u - d \partial_t^\alpha \Delta u &= \mathcal{G}(u, v), \quad (x, t) \in \Omega \times (0, T), \\
\partial_t v + (-\Delta)^\beta v - d \partial_t^\alpha \Delta v &= \mathcal{H}(u, v), \quad (x, t) \in \Omega \times (0, T), \\
u(x, t) &= 0, \quad x \in \partial \Omega, \\
u(x, 0) &= \varphi(x), \quad x \in \Omega, \\
v(x, 0) &= \theta(x), \quad x \in \Omega.
\end{align*}
\]

(1)

where \((\varphi, \theta)\) is Cauchy input data. Some functions \(\mathcal{G}, \mathcal{H} \) called the source data which are defined later. Here, \(\partial_t = \partial / \partial t \), and \(\partial_t^\alpha \) is the Riemann-Liouville fractional derivative of order \(0 < \alpha < 1 \) given by \([1, 2]\):

\[
\partial_t^\alpha w(x, t) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \left(\int_0^t (t-s)^{-\alpha} w(x, s) ds \right),
\]

(2)

where \(\Gamma(.) \) is the Gamma function. As far as we know, there are currently several definitions for fractional derivatives and fraction integrals, such as Riemann-Liouville, Caputo, Hadamard, Riesz, and Griinwald-Letnikov. Some works are attracting the attention of the community, like Debbouche and his group \([3–5]\), Karapinar et al. \([6–13]\), Benchohra et al. \([14–16]\), Inc et al. \([17–20]\).

And some very interesting results about unchanged level derivatives are surveyed by.

In fluid dynamics, the Rayleigh problem is the first Stokes problem, which determines the flow generated by the sudden motion of an infinitely long plate from the resting state, named after Lord Rayleigh and Sir George Stokes. This problem is considered to be one of the simplest problems with the correct solution for the Navier-Stokes equation. In recent times, with the development of fractions, a number of authors such as Shen et al. \([21]\) investigated Rayleigh-Stokes, which is a more general form than the classical model. The fractional Rayleigh-Stokes equation (1) has applications in non-Newtonian behavior of fluids \([21]\), and other applications of this equation can be given in \([21, 22]\). We list some papers on fractional Rayleigh stokes in the following.

(i) The initial and boundary values for the Rayleigh-Stokes problem in the case of homogeneity have been explored in a number of interesting papers; see for example \([23–27]\) and its references

(ii) The authors in \([21, 28, 29]\) used the Fourier transform and the fractional Laplace transform to obtain the exact solution
(iii) Numerical solutions for Problem (1) has been studied by many authors in [4, 23, 24, 30, 31]

(iv) In [32], the authors concerned with the following problem for a following stochastic Rayleigh-Stokes equation

$$\begin{align*}
\partial_t X(t) + (1 + \alpha \partial^\beta X(t) = f(t, X(t)) + \gamma(t) B(t), \quad t \in (0, T),
\end{align*}$$

$$X(t)|_{t=0} = 0, X(0) = x_0, \quad t \in (0, T).$$

(3)

The existence and uniqueness of mild solution in each case are established separately by applying a standard method that is Banach fixed point theorem. In [22], Caraballo et al. investigated the following time-fractional Rayleigh-Stokes stochastic equation

$$\begin{align*}
\frac{\partial}{\partial t} - \Delta - u \frac{\partial}{\partial t^\alpha} \Delta u = F(t, u) + \sigma(t, u) \mathcal{W}(t), \quad \text{on } J \times \mathcal{X},
\end{align*}$$

(4)

where \(\{ \mathcal{W}(t, \cdot) \}_{t \in J} \) represents a standard Wiener process.

To the best of the author's knowledge, the problem of the system of equations for a fractional Rayleigh-Stokes with a nonlinear source, i.e., Problem (1), has yet to be studied. The goal of this paper is to develop a theory of the existence and regularity estimate for the mild solution to the Problem (1). Our main technique is to use the Banach mapping theorem combined with some techniques in Fourier analysis.

2. The Existence and Regularity of the Solution

In this section, we consider the existence and mild solution of Problem (1). Before going into the main theorem of this section, we briefly discuss spectral, eigenvalues, and related functional spaces on the Laplacian operator.

Let \(\mathcal{A} = -\Delta \). The domain \(D(\mathcal{A}^s) \) for \(s \geq 0 \) is a Banach space equipped with the norm

$$\begin{align*}
\|h\|_{D(\mathcal{A}^s)} := \left(\sum_{n=1}^{\infty} \|h_n \varphi_n\|_{L^2}^{2s} \right)^{1/2}, \quad h \in D(\mathcal{A}^s).
\end{align*}$$

(5)

The definition of the negative fractional power \(\mathcal{A}^{-s} \) can be found in [33]. Its domain \(D(\mathcal{A}^{-s}) \) is a Hilbert space endowed with the dual inner product \(\langle \cdot, \cdot \rangle_{\mathcal{A}^{-s}} \) taken between \(D(\mathcal{A}^s) \) and \(D(\mathcal{A}^s) \). This generates the norm

$$\begin{align*}
\|h\|_{D(\mathcal{A}^{-s})} := \left(\sum_{n=1}^{\infty} \|h_n \varphi_n\|_{L^2}^{2-2s} \lambda_n^{2s} \right)^{1/2}.
\end{align*}$$

(6)

A couple \((u, v)\) of functions \(u(x, t), v(x, t) : \mathbb{R}^2 \rightarrow \mathbb{R}_\geq 0, (\mathbb{Q}_t = \Omega \times [0, T])\) are called a function of two variables \(x, t\)

$$\begin{align*}
(u, v) : \mathbb{Q}_T \rightarrow \mathbb{R}^2,
(u, v)(x, t) = (u(x, t), v(x, t)).
\end{align*}$$

(7)

Here, the norm of \((u, v) \in \mathbb{X} \times \mathbb{X} \) (for any space \(\mathbb{X}\)) is defined

$$\begin{align*}
\|(u, v)\|_{\mathbb{X} \times \mathbb{X}} = \|(u)\|_\mathbb{X} + \|(v)\|_\mathbb{X}.
\end{align*}$$

(8)

Theorem 1. Let \((\phi, \theta) \in \mathcal{H}^m(\Omega) \times \mathcal{H}^m(\Omega)\). Let \(\mathcal{G}, \mathcal{H} \) satisfies \(\mathcal{G}(0, 0) = \mathcal{H}(0, 0) = 0 \) and the globally Lipschitz function

$$\begin{align*}
\|\mathcal{G}(v_1, v_2) - \mathcal{G}(\bar{v}_1, \bar{v}_2)\| \leq L_\mathcal{G}\left(\|v_1 - \bar{v}_1\|_{L^2(\Omega)} + \|v_2 - \bar{v}_2\|_{L^2(\Omega)}\right),
\|\mathcal{H}(v_1, v_2) - \mathcal{H}(\bar{v}_1, \bar{v}_2)\| \leq L_\mathcal{H}\left(\|v_1 - \bar{v}_1\|_{L^2(\Omega)} + \|v_2 - \bar{v}_2\|_{L^2(\Omega)}\right),
\end{align*}$$

(9)

for any \(v_1, \bar{v}_1, v_2, \bar{v}_2 \in L^2(\Omega)\). Then, problem (1) has a unique solution \((u, v)\) belongs to \(L^\infty(0, T; L^2(\Omega)) \times L^\infty(0, T; L^2(\Omega))\) and regularity estimates hold

$$\begin{align*}
\|(u, v)\|_{L^\infty(0, T; L^2(\Omega))} \leq \mathcal{D}_1\left(\|\phi\|_{H^m(\Omega)} + \|\theta\|_{H^m(\Omega)}\right).
\end{align*}$$

(10)

Proof. Assume that the mild solution \(u\) is described by a Fourier series

$$\begin{align*}
u(x, t) = \sum_j \langle \varphi_j(x), \nu_j(t) \rangle \varphi_j(x), \quad v(x, t) = \sum_j \langle \varphi_j(x), \nu_j(t) \rangle \varphi_j(x).
\end{align*}$$

(11)

Thanks to the results of [24], we deduce that the solution of Problem (1) with the initial condition \(u(x, 0) = \phi(x)\) is given by

$$\begin{align*}
u_j(t) = \left(\int_0^{\infty} e^{-\nu t} \mathcal{K}(j, \alpha, \beta, \nu) d\nu \right) \varphi_j
+ \left(\int_0^{\infty} \left(\int_0^{\infty} e^{-\nu t - s} \mathcal{K}(j, \alpha, \beta, \nu) d\nu \right) ds \right) \langle \mathcal{G}(u(x, s), v(x, s)), \varphi_j(x) \rangle ds,
\end{align*}$$

(12)

where \(\mathcal{K} \) is represented as follows

$$\begin{align*}
\mathcal{K}(j, \alpha, \beta, \nu) = \frac{d}{\pi} \left(\frac{\lambda_j^2 \sin (\alpha \pi \nu^\alpha)}{-\nu + \lambda_j^2 \nu^\alpha \cos \alpha \pi + \lambda_j^2} + \left(\frac{\lambda_j^2 \nu^\alpha \sin \alpha \pi}{\nu + \lambda_j^2 \nu^\alpha \cos \alpha \pi + \lambda_j^2} \right) \right).
\end{align*}$$

(13)
Hence, the mild solution of Problem (1) is given by

\[\begin{align*}
\mathcal{Q}_2(X_1, X_2)(t) &= \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right) \varphi_j(x) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_2(X_1, X_2)(s) \right) \varphi_j(x).
\end{align*}\]

(14)

For any \(X_1, X_2 \in L^\infty(0, T; L^2(\Omega)) \times L^\infty(0, T; L^2(\Omega))\)

\[
(15)
\]

\[
\begin{align*}
\mathcal{Q}_2(X_1, X_2)(t) &= \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right) \varphi_j(x) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_2(X_1, X_2)(s) \right) \varphi_j(x).
\end{align*}
\]

(15)

We get the following estimate

\[
\begin{align*}
\mathcal{Q}_2(X_1, X_2)(t) &= \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right) \varphi_j(x) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_2(X_1, X_2)(s) \right) \varphi_j(x).
\end{align*}
\]

(15)

Now, we continue to show that (1) has a unique mild solution.

For any \(a \geq 0\), denote by \((L^\infty_0(0, T; H^m(\Omega)))^2\) the function space \((L^\infty_0(0, T; H^m(\Omega)))^2\) associated with the norm

\[
\begin{align*}
\|X_1, X_2\|_{a,m} &= \sup_{0 \leq t \leq T} \|\exp(-at)X_1(t)\|_{H^m(\Omega)} \\
&+ \sup_{0 \leq t \leq T} \|\exp(-at)X_2(t)\|_{H^m(\Omega)},
\end{align*}
\]

(17)

for any \(X_1, X_2 \in L^\infty_0(0, T; L^2(\Omega)) \times L^\infty_0(0, T; L^2(\Omega))\).

\[
(18)
\]

Let us give the following operator

\[
Q(X_1, X_2)(t) = (\mathcal{Q}_1(X_1, X_2)(t), \mathcal{Q}_2(X_1, X_2)(t)),
\]

(19)

where \(\mathcal{Q}_1\) and \(\mathcal{Q}_2\) are defined by the following

\[
\begin{align*}
\mathcal{Q}_1(X_1, X_2)(t) &= \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right) \varphi_j(x) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_2(X_1, X_2)(s) \right) \varphi_j(x),
\end{align*}
\]

\[
\begin{align*}
\mathcal{Q}_2(X_1, X_2)(t) &= \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right) \varphi_j(x) \\
&+ \sum_j \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_2(X_1, X_2)(s) \right) \varphi_j(x).
\end{align*}
\]

(15)

Hence, we get that for any \(a > 0\)

\[
\begin{align*}
\|\exp(-at)\mathcal{Q}_1(X_1, X_2)(t)\|_{H^m(\Omega)} + \|\exp(-at)\mathcal{Q}_2(X_1, X_2)(t)\|_{H^m(\Omega)} \\
&= e^{-at} \sum_j \lambda_j^m \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right)^2 \\
&+ e^{-at} \sum_j \lambda_j^m \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right)^2
\end{align*}
\]

(22)

Since the fact that

\[
\begin{align*}
\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j(x) \right)^2 \\
&\leq \mathcal{C}(\alpha, \beta, d) \sum_j \lambda_j^m \varphi_j^2,
\end{align*}
\]

(23)

we know that

\[
\sum_j \lambda_j^m \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \varphi_j^2 \right)^2 \\
\leq \mathcal{C}(\alpha, \beta, d)^2 \sum_j \lambda_j^m \varphi_j^2.
\]

(24)

\[
\begin{align*}
\sum_j \lambda_j^m \left(\int_0^t \left(\int_0^s e^{-\tau t \mathcal{K}}(j, \alpha, \beta, \nu) d\tau \right) \mathcal{Q}_1(X_1, X_2)(s) \right)^2 \\
&\leq \mathcal{C}(\alpha, \beta, d)^2 \sum_j \lambda_j^m \varphi_j^2.
\end{align*}
\]

(25)

Combining (22), (24), and (25), we find that

\[
\begin{align*}
\|\exp(-at)\mathcal{Q}_1(X_1, X_2)(t)\|_{H^m(\Omega)} + \|\exp(-at)\mathcal{Q}_2(X_1, X_2)(t)\|_{H^m(\Omega)} \\
&\leq \mathcal{C}(\alpha, \beta, d) \left(\|\varphi\|_{H^m(\Omega)} + \|\theta\|_{H^m(\Omega)} \right).
\end{align*}
\]

(26)

which allows us to deduce that
Let us emphasize that for $C \leq \alpha t \leq C + \chi_1, \chi_2 \leq \beta \leq 0, \chi_1, \chi_2 \leq \alpha t \leq \beta (\lambda^2 + (1 - \gamma)) \exp \left(\frac{t}{\alpha} \right) = (1 - \gamma)^{\frac{3}{2}} \exp \left(-\frac{t}{\alpha} \right) \int_0^1 (1 - \gamma)^{\alpha t - 1} dy.

Next, we need to deal with the integral quantity $\int_0^1 (t - s)^{\alpha - 1} e^{-\alpha t - 1} ds$. By change variable $s = ty$, we find that

$$\int_0^1 (t - s)^{\alpha - 1} e^{-\alpha t - 1} ds = \frac{2}{\alpha} \left(\frac{T}{\alpha} \right)^{\alpha t}.$$ (36)

This inequality together with (32) leads to

$$e^{-\alpha t} \| \mathcal{G}_1(\chi_1, \chi_2)(t) - \mathcal{G}_1(\bar{\chi}_1, \bar{\chi}_2)(t) \|_{H^p(\Omega)} \leq 2 \mathcal{G}_1(\alpha, \beta, d, m) \left(\frac{T}{\alpha} \right)^{\alpha t} \| (\chi_1, \chi_2) \|_{a.m}.$$ (37)

By a similar way, we also get that

$$e^{-\alpha t} \| \mathcal{G}_2(\chi_1, \chi_2)(t) - \mathcal{G}_2(\bar{\chi}_1, \bar{\chi}_2)(t) \|_{H^p(\Omega)} \leq 2 \mathcal{G}_1(\alpha, \beta, d, m) \left(\frac{T}{\alpha} \right)^{\alpha t} \| (\chi_1, \chi_2) \|_{a.m}.$$ (38)

Therefore, we can deduce that

$$\| Q(\chi_1, \chi_2) - Q(\bar{\chi}_1, \bar{\chi}_2) \|_{a.m} \leq 2 \mathcal{G}_1(\alpha, \beta, d, m) \left(\frac{T}{\alpha} \right)^{\alpha t} \| (\chi_1, \chi_2) \|_{a.m}.$$ (39)
Since the limitation
\[
\lim_{\alpha \to \infty} \frac{4C_1(\alpha, \beta, d, m)}{\alpha} \left(\frac{T}{d} \right)^{a/2} = 0, \quad (40)
\]

we know that there exists a positive \(a^* \) such that \(4C_1(\alpha, \beta, d, m)/\alpha(T/a^*)^{a/2} < 1 \). Thus, we can deduce that \(Q \) is contractive on \((L^{4m^\infty}(0, T; H^{m}(\Omega)))^2 \). Applying Banach fixed point theorem, we get that \(Q \) has a fixed point \((u, v)\), so, the function \((u, v)\) is also the unique solution of (1). Since (14), we find that

\[
\|u(., t)\|_{H^m(\Omega)} \leq \|\mathcal{G}(\alpha, \beta, d)\|_{H^m(\Omega)}
+ \mathcal{G}(\alpha, \beta, d) \int_0^t (t-s)^{a-1} \|\mathcal{G}(u(x, s), v(x, s))\|_{L^2(\Omega)} ds,
\]

(42)

where we have used that \(\mathcal{G}(0, 0) = 0 \) and

\[
\|\mathcal{G}(u(x, s), v(x, s))\|_{L^2(\Omega)} \leq \mathcal{G}(0, 0) + L_\delta \left(\|u(., s)\|_{L^2(\Omega)} + \|v(., s)\|_{L^2(\Omega)} \right).
\]

(43)

Hence, we derive that

\[
\|u(., t)\|_{H^m(\Omega)} \leq \|\mathcal{G}(\alpha, \beta, d)\|_{H^m(\Omega)}
+ \mathcal{G}(\alpha, \beta, d) \int_0^t (t-s)^{a-1}
\cdot \left(\|u(., s)\|_{L^2(\Omega)} + \|v(., s)\|_{L^2(\Omega)} \right) ds.
\]

(44)

By a similar way, we also obtain that the following estimate

\[
\|v(., t)\|_{H^m(\Omega)} \leq \|\mathcal{G}(\alpha, \beta, d)\|_{H^m(\Omega)}
+ \mathcal{G}(\alpha, \beta, d) \int_0^t (t-s)^{a-1}
\cdot \left(\|u(., s)\|_{L^2(\Omega)} + \|v(., s)\|_{L^2(\Omega)} \right) ds.
\]

(45)

Combining (44) and (45), we get that

\[
\|u(., t)\|_{H^m(\Omega)} + \|v(., t)\|_{H^m(\Omega)} \leq \mathcal{G}(\alpha, \beta, d)
+ \mathcal{G}(\alpha, \beta, d) \int_0^t (t-s)^{a-1}
\cdot \left(\|\mathcal{G}(\alpha, \beta, d)\|_{H^m(\Omega)} \right) E_{\alpha, 1} \left(2\mathcal{G}(\alpha, \beta, d) \int_0^t (t-s)^{a-1} \right).
\]

(46)

Hence, we can deduce that \((u, v)\) belongs to \(L^{\infty}(0, T; L^2(\Omega)) \) and furthermore, we also derive that

\[
\|u(., t)\|_{L^\infty(0, T; L^2(\Omega))} + \|v(., t)\|_{L^\infty(0, T; L^2(\Omega))} \leq \mathcal{G}(\alpha, \beta, d)
\]

(47)
where we set
\[
\mathcal{D}_1 = \mathcal{G}(\alpha, \beta, d) E_{a,1} \left(2 \mathcal{G}(\alpha, \beta, d) \lambda_1^{m-d} \right) .
\] (49)

\[C^k([0, T]; H^m(\Omega)) \times C^k([0, T]; H^m(\Omega))
\]

It is easy to see that

\[
u(x, t') - u(x, t) = \sum_j \int_0^t \left[\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv - \int_0^\infty e^{-\nu s} \mathcal{K}(j, a, \beta, v) dv \right] \varphi_j(x)
\]

\[+ \sum_j \int_0^t \left[\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv \right] \left[\mathcal{M} \left(u(x, t' - s), v(x, t' - s) \right) \right] \varphi_j(x) ds \varphi_j(x)
\]

\[+ \sum_j \int_0^t \left[\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv \right] \left[\mathcal{N} \left(u(x, t' - s), v(x, t' - s) \right) - \mathcal{K}(u(x, t) - s), v(x, t - s) \right] \varphi_j(x) ds \varphi_j(x)
\]

\[= J_1(x, t' - t) + J_2(x, t' - t) + J_3(x, t' - t) .
\] (51)

First, we look at the second term \(J_2(x, t' - t) \). Using the inequality, we find that

\[\|J_2(x, t' - t)\|_{H^m(\Omega)} \leq \int_0^t \left[\sum_j \left(\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv \right) \left[\mathcal{M} \left(u(x, t' - s), v(x, t' - s) \right) \right] \varphi_j(x) \right] ds \varphi_j(x)
\]

\[= \int_0^t \left[\sum_j \lambda_j^{m-d} \left(\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv \right)^2 \left[\mathcal{M} \left(u(x, t' - s), v(x, t' - s) \right) \right] \varphi_j(x) \right] ds \varphi_j(x)
\]

\[\leq \mathcal{G}(\alpha, \beta, d) \lambda_1^{m-d} \left\| \left[\mathcal{M} \left(u(x, t' - s), v(x, t' - s) \right) \right] \varphi_j(x) \right\|_{L^2(\Omega)}
\]

\[\leq \mathcal{G}(\alpha, \beta, d) \lambda_1^{m-d} \left\| \left[\mathcal{N} \left(u(x, t' - s), v(x, t' - s) \right) - \mathcal{K}(u(x, t) - s), v(x, t - s) \right] \varphi_j(x) \right\|_{L^2(\Omega)}
\]

\[\leq \mathcal{G}(\alpha, \beta, d) \lambda_1^{m-d} \left\| u(x, t' - s) \right\|_{L^2(\alpha, a, \beta, v)} + \left\| \mathcal{K}(u(x, t) - s), v(x, t - s) \right\|_{L^2(\alpha, a, \beta, v)} \leq \mathcal{D}_1 s^{-1} .
\] (53)

Theorem 2. Let \((\varphi, \theta) \in H^{m+2}(\Omega) \times H^{m+2}(\Omega)\). Then, Problem (1) has a unique solution \((u, v) \in C([0, T]; H^m(\Omega)) \times C([0, T]; H^m(\Omega))\).

Proof. For \(k > 0 \), we set the following space

\[C^k([0, T]; H^m(\Omega)) \times C^k([0, T]; H^m(\Omega)) \sup_{0 \leq s \leq T} \frac{\|v_1(\cdot, t) - v_1(\cdot, s)\|_{H^m(\Omega)}}{|t-s|^k} + \sup_{0 \leq s \leq T} \frac{\|v_2(\cdot, t) - v_2(\cdot, s)\|_{H^m(\Omega)}}{|t-s|^k} < \infty .
\] (50)

Using (16), we obtain that

\[\|J_1(x, t' - t)\|_{H^m(\Omega)} \leq \mathcal{D}_1 t^{2-a} + t^{-a} \leq \mathcal{D}_1 \left(t - t' \right)^{a} .
\] (54)

Next, we consider the second term \(J_2(x, t' - t) \). It is easy to observe that

\[J_2 \left(x, t' - t \right) = \int \left[\int_0^\infty e^{-\nu t} \mathcal{K}(j, a, \beta, v) dv \right] \varphi_j(x)
\]

\[= \int_0^t \left(\sum_j \mathcal{K}(s, j, a, \beta, v) \varphi_j(x) \right) ds.
\] (55)
Here, we set the following function

$$K(t, j, \alpha, \beta, \nu) = \frac{d}{dt} \left(j^\alpha \phi(t) \right)$$

In order to give the further process, we use one result in Theorem 1 [24]. If $f \in H^2(\Omega)$, then, we get the following estimate

$$\sum_j |K(s, j, \alpha, \beta, \nu)f_j|^2 \leq \mathcal{D}(\Omega, d, T, N) J^2 \mathcal{P}(\Omega)^{s-2\nu} \mathcal{P}(\Omega)^2T \mathcal{P}(\Omega)^2.$$

Next, we treat the third term $J_3(x, t' - t)$. Using the inequality, we find that

$$\|J_3(x, t' - t)\|_{H^2(\Omega)} \leq C(\alpha, \beta, d)L_1^{1-\alpha} \int_0^{s-1} \left(\mathcal{D}u(x, t, s), v(x, t, s) \right)\|u\|_{H^2(\Omega)}ds$$

Combining (51), (52), (58), and (59), we obtain that

$$\|u(x, t') - u(x, t)\|_{H^2(\Omega)} \leq \|J_1(x, t') - J_1(x, t)\|_{H^2(\Omega)}$$

By a similar way as above, we also obtain that

$$\|v(x, t') - v(x, t)\|_{H^2(\Omega)} \leq \mathcal{D}(\Omega, d, T, N) \left(\frac{t' - t}{\alpha} \cdot \mathcal{D}u(x, t, s) \right)\|u\|_{H^2(\Omega)}ds$$

Combining (60) and (61), we derive that

$$\|u(x, t') - u(x, t)\|_{H^2(\Omega)} + \|v(x, t') - v(x, t)\|_{H^2(\Omega)}$$

Here, we set $\bar{C} = C_m 2C(\alpha, \beta, d) L_1^{1-\alpha} (L_g + L_h)$. Let $h > 0$ fixed and let the following function

$$\mathcal{O}(t) = e^{-\rho t} \left(u(x, t + h) - u(x, t) \right)_{H^2(\Omega)}$$

$$e^{-\rho t} \left(v(x, t + h) - v(x, t) \right)_{H^2(\Omega)}$$
From some above observations, we can deduce that

\[
e^{\rho t} \mathcal{Y}_\rho(t) \leq \mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ 2\mathcal{D}_1 \frac{h^n}{\alpha} + C_0 \frac{1}{\alpha^2} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s)) \cdot e^{\rho(t-s)} ds \leq \mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ 2\mathcal{D}_1 \frac{h^n}{\alpha} + C_0 \frac{1}{\alpha^2} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s)) \cdot e^{\rho(t-s)} ds.
\]

(64)

From (36), we get that

\[
\int_0^t (t-s)^{\alpha-1} e^{-\rho(t-s)} ds \leq \frac{2}{\alpha} \left(\frac{T}{\rho} \right)^{\alpha/2}.
\]

(65)

This together with (64) that

\[
\mathcal{Y}_\rho(t) \leq \mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ 2\mathcal{D}_1 \frac{h^n}{\alpha} + C_0 \frac{1}{\alpha^2} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s)) \cdot e^{\rho(t-s)} ds.
\]

(66)

This implies that

\[
\max_{t \in [0,T]} \mathcal{Y}_\rho(t) \leq \mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ 2\mathcal{D}_1 \frac{h^n}{\alpha} + C_0 \frac{1}{\alpha^2} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s)).
\]

(67)

Since \(C(T/\rho)^{\alpha/2} \rightarrow 0\) when \(\rho \rightarrow +\infty\), we can choose \(\rho^* > 0\) such that

\[
C_0 \left(\frac{T}{\rho} \right)^{\alpha/2} < 1/2.
\]

(68)

Hence, we follow from (67) and (64) that

\[
\max_{t \in [0,T]} \mathcal{Y}_\rho(t) \leq 2\mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ 4\mathcal{D}_1 \frac{h^n}{\alpha} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s))
\]

(69)

which allows us to conclude that

\[
\|u(.t + \hat{h}) - u(.t)|_{H^m(\Omega)} + \|v(.t + \hat{h}) - v(.t)|_{H^m(\Omega)}
\leq 2e^{\rho(t)} \mathcal{D}(\Omega, d, T, N) \frac{h^n}{\alpha} \left(\|\psi\|_{H^{2\alpha}(\Omega)} + \|\theta\|_{H^{2\alpha}(\Omega)} \right)
+ e^{\rho(t)} 4\mathcal{D}_1 \frac{h^n}{\alpha} \max_{\mathcal{Y}_\rho(s)} (\mathcal{Y}_\rho(s)).
\]

(70)

This inequality says that

\[
(u, v) \in C^\alpha([0, T] ; H^m(\Omega)) \times C^\alpha([0, T] ; H^m(\Omega)).
\]

\[
\square
\]

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Both authors contributed equally and significantly in writing this paper. Four authors read and approved the final manuscript.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, UK, 2006.

[2] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press Inc., San Diego, CA, USA, 1999.

[3] J. Manimaran, L. Shangerganesh, and A. Debbouche, “Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy,” Journal of Computational and Applied Mathematics, vol. 382, article 113066, 2021.

[4] J. Manimaran, L. Shangerganesh, and A. Debbouche, “A time-fractional competition ecological model with cross-diffusion,” Mathematical Methods in the Applied Sciences, vol. 43, no. 8, pp. 5197–5211, 2020.

[5] M. Dehghan, “A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications,” Numerical Methods for Partial Differential Equations, vol. 22, no. 1, pp. 220–257, 2006.

[6] S. D. Maharaj, M. Chaisi, and E. Karapinar, “New anisotropic models from isotropic solutions,” Mathematical Methods in the Applied Sciences, vol. 29, no. 1, pp. 67–83, 2006.

[7] H. Afshari and E. Karapinar, “A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Advances in Difference Equations, vol. 2020, no. 1, 2020.

[8] H. Afshari, S. Kalantari, and E. Karapinar, “Solution of fractional differential equations via coupled fixed point,” Electronic
A. Salim, M. Benchohra, J. E. Lazreg, and J. Henderson, “A solution for Volterra fractional integral equations by hybrid contractions,” *Mathematics*, vol. 7, no. 8, p. 694, 2019.

E. Karapinar, A. Fulga, M. Rashid, L. Shahid, and H. Aydi, “Large contractions on quasi-metric spaces with an application to nonlinear fractional differential-equations,” *Mathematics*, vol. 7, no. 5, p. 444, 2019.

A. Salim, B. Benchohra, E. Karapinar, and J. E. Lazreg, “Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations,” *Advances in Difference Equations*, vol. 2020, no. 1, 2020.

E. Karapinar, T. Abdeljawad, and F. Jarad, “Applying new fixed point theorems on fractional and ordinary differential equations,” *Advances in Difference Equations*, vol. 2019, no. 1, 2019.

A. Abdeljawad, R. P. Agarwal, E. Karapinar, and P. S. Kumari, “Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space,” *Symmetry*, vol. 11, no. 5, p. 868, 2019.

F. S. Bachir, S. Abbas, M. Benbahir, and M. Benchohra, “Hilfer-Hadamard fractional differential equations, existence and attractivity,” *Advances in the Theory of Nonlinear Analysis and its Application*, vol. 5, no. 1, pp. 49–57, 2021.

A. Salim, M. Benchohra, J. E. Lazreg, and J. Henderson, “Nonlinear implicit generalized Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces,” *Advances in the Theory of Nonlinear Analysis and its Application*, vol. 4, no. 4, pp. 332–348, 2020.

Z. Baitichea, C. Derbaza, and M. Benchohra, “ψ–Caputo fractional differential equations with multi-point boundary conditions by topological degree theory,” *Results in Nonlinear Analysis*, vol. 3, no. 4, pp. 167–178, 2020.

A. Yusuf, B. Acay, U. T. Mustapha, M. Inc, and D. Baleanu, “Mathematical modeling of pine wilt disease with Caputo fractional operator,” *Chaos Solitons and Fractals*, vol. 14, article 110569, 2021.

B. Acay and M. Inc, “Fractional modeling of temperature dynamics of a building with singular kernels,” *Chaos Solitons Fractals*, vol. 142, article 110482, 2021.

Z. Korpinar, M. Inc, and M. Bayram, “Theory and application for the system of fractional burger equations with Mittag leffler kernel,” *Applied Mathematics and Computation*, vol. 367, article 124781, 2020.

X. J. Yang, Y. Y. Feng, C. Cattani, and M. Inc, “Fundamental solutions of anomalous diffusion equations with the decay exponential kernel,” *Mathematical Methods in the Applied Sciences*, vol. 42, no. 11, pp. 4054–4060, 2019.

F. Shen, W. Tan, Y. Zhao, and T. Masuoka, “The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model,” *Nonlinear Analysis: Real World Applications*, vol. 7, no. 5, pp. 1072–1080, 2006.

T. Caraballo, T. B. Ngoc, T. N. Thach, and N. H. Tuan, “On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation,” *Discrete & Continuous Dynamical Systems-B*, vol. 26, no. 8, article 4299, 2021.

C. M. Chen, F. Liu, K. Burrage, and Y. Chen, “Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative,” *IMA Journal of Applied Mathematics*, vol. 78, no. 5, pp. 924–944, 2015.

E. Bazhlekov, B. Jin, R. Lazarov, and Z. Zhou, “An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid,” *Numerische Mathematik*, vol. 131, no. 1, pp. 1–31, 2015.

E. Bazhlekov and I. Bazhlev, “Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski,” *Fractional Calculus and Applied Analysis*, vol. 17, no. 4, pp. 54–976, 2014.

M. Khan, A. Anjum, C. Fetecau, and H. Qi, “Exact solutions for some oscillating motions of a fractional Burgers’ fluid,” *Mathematical and Computer Modelling*, vol. 51, no. 5-6, pp. 682–692, 2010.

M. A. Zaky, “An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid,” *Computers & Mathematics with Applications*, vol. 75, no. 7, pp. 2243–2258, 2018.

C. Xue and J. Nie, “Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,” *Applied Mathematical Modelling*, vol. 33, no. 1, pp. 524–531, 2009.

C. Zhao and C. Yang, “Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels,” *Applied Mathematics and Computation*, vol. 211, no. 2, pp. 502–509, 2009.

C. M. Chen, F. Liu, and V. Anh, “Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives,” *Applied Mathematics and Computation*, vol. 204, no. 1, pp. 340–351, 2008.

C. M. Chen, F. Liu, and V. Anh, “A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative,” *Journal of Computational and Applied Mathematics*, vol. 223, no. 2, pp. 777–789, 2009.

N. H. Tuan, V. V. Tri, J. Singh, and T. N. Thach, “On a fractional Rayleigh–Stokes equation driven by fractional Brownian motion,” *Mathematical Methods in the Applied Sciences*, 2020.

H. Brezis, *Functional Analysis*, Springer, New York, NY, USA, 2011.

H. Ye, J. Gao, and Y. Ding, “A generalized Gronwall inequality and its application to a fractional differential equation,” *Journal of Mathematical Analysis and Applications*, vol. 328, no. 2, pp. 1075–1081, 2007.