ON THE SOLUTIONS FOR AN EXTENSIBLE BEAM EQUATION WITH INTERNAL DAMPING AND SOURCE TERMS

DUCIVAL C. PEREIRA, HOANG NGUYEN*, CARLOS A. RAPoso AND CELSA H. M. MARANHÃO

Dedicated to the 60th birthday of Jaime Rivera

(Communicated by P. I. Naumkin)

Abstract. In this manuscript, we consider the nonlinear beam equation with internal damping and source term

\[uu + \Delta^2 u + M(|\nabla u|^2)(-\Delta u) + u_t = |u|^{r-1}u \]

where \(r > 1 \) is a constant, \(M(s) \) is a continuous function on \([0, +\infty)\). The global solutions are constructed by using the Faedo-Galerkin approximations, taking into account that the initial data is in appropriate set of stability created from the Nehari manifold. The asymptotic behavior is obtained by the Nakao method.

1. Introduction

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \). In this paper, we study the existence and the energy decay estimate of global solutions for the initial boundary value problem of the following equation with internal damping and source terms

\[uu + \Delta^2 u + M(|\nabla u|^2)(-\Delta u) + u_t = |u|^{r-1}u \quad \text{in} \quad \Omega \times (0, T), \]

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega, \]

\[u(x, t) = \frac{\partial u}{\partial \eta}(x, t) = 0, \quad x \in \partial \Omega, t \geq 0, \]

where \(r > 1 \) is a constant, \(M(s) \) is a continuous function on \([0, +\infty)\). In (1.3), \(u = 0 \) is the homogeneous Dirichlet boundary condition and the normal derivative \(\partial u / \partial \eta = 0 \) is the homogeneous Neumann boundary condition where \(\eta \) is the unit outward normal on

Mathematics subject classification (2010): 35B40, 35G30, 35K30, 74K20, 74K10, 74Kxx, 93D15, 93D20.

Keywords and phrases: Nonlinear beam equation, existence, uniqueness, asymptotic behavior, source term.

* Corresponding author.

This project was partially supported by PNPD/CAPES (Brasil).
\[\partial \Omega. \] The physical meaning of the clamped boundary conditions (1.3) is that, with the natural boundary conditions, we imposed no a priori conditions on the function space and it turns out that a weak solution automatically satisfies the boundary conditions.

In 1955, Berger [10] established the equation

\[u_{tt} - \left(Q + \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u = p(u, u_t, x), \] (1.4)

which is called the Berger plate model [12], where the parameter \(Q \) describes in-plane forces applied to the plate and the function \(p \) represents transverse loads which may depend on the displacement \(u \) and the velocity \(u_t \). If \(n = 2 \), the equation (1.4) represents the “Berger approximation” of the Von Kármán equations, modelling the nonlinear vibrations of a plate (see [15], pg. 501-507).

When \(n = 1 \) and \(p = 0 \), the corresponding equation had been introduced by Woinowsky-Krieger [13] as a model for the transverse motion of an extensible beam. It means that the equation (1.1) describes the transverse deflection of an extensible beam of the length \(L \) whose ends are attached at a fixed distance is the following equation

\[\frac{\partial^2 u}{\partial t^2} + \alpha \frac{\partial^4 u}{\partial x^4} + \left(\beta + \int_0^L \dot{u}_u^2(\varepsilon, t) \, d\varepsilon \right) \left(-\frac{\partial^2 u}{\partial u^2} \right) = f, \]

where \(\alpha \) is a positive constant, \(\beta \) is a constant not necessarily positive and the nonlinear term represents the change in the tension of the beam due to its extensibility.

The physical origin of the problem here relates to the study of the dynamical buckling of the hinged extensible beam which is either stretched or compressed by an axial force. The readers could also see in Burgreen [24] and Eisley [25] for more physical justifications and the model background.

Cavalcanti et al [28] studied the equation

\[u_{tt} + \Delta^2 u + M(|\nabla u|^2)(-\Delta u) + g(u_t) + f(u) = 0 \] (1.5)

with \(g(s) = |s|^\rho-1 s \) and \(f(s) = |s|^{\gamma-1} s \) where \(\rho \) and \(\gamma \) are positive constants such that \(1 < \rho, \gamma \leq n/(n-2) \) if \(n \geq 3; \rho, \gamma > 1 \) if \(n = 1, 2 \). The global existence and asymptotic stability were proved by means of the fixed point theorem and continuity arguments.

Zhijian [29] investigated the problem (1.5) more generally as follows

\[u_{tt} + \Delta^2 u + M(|\nabla u|^2)(-\Delta u) + g(u_t) + f(u) = h(x), \] (1.6)

where the source terms \(f, g \in C^1(\mathbb{R}) \), \(|f'(s)| \leq C(1 + |s|^{p-1}) \) and \(K_0 |s|^{q-1} < g'(s) \leq C(1 + |s|^{q-1}), K_0, C > 0 \) with \(1 \leq p < \infty, 1 \leq q < \infty \) if \(n \leq 4 \); \(1 \leq p \leq p^* = (n+4)/(n-4) \) and \(p \leq q \) if \(N \geq 5 \). By Galerkin approximation combined with the monotone arguments, the author proved the existence of global solution.

The equation (1.1) without source terms was studied by several authors in different contexts. The problem without damping was considered in Dickey [5], Ball [1], Medeiros [6], Pereira [7] among others. When the damping term is considered, the problem was studied by, Brito [4], Biler [3], Ball [2] see also the references therein.
Beam equation with weak internal damping in domain with moving boundary was studied by Clark [8]. Extensible beam equation with nonlinearity of Kirchhoff type in domains with moving boundary and memory was studied in [11]. For coupled system of extensible beam models, we cite [9] and references therein.

In this work we use the potential well theory which approach is completely different from those in [28, 29]. In [28], the existence of global solutions was proved by means of the Fixed point theorem and the asymptotic behavior was obtained by using the perturbed energy method. In [29], the global existence and the longtime dynamics of solutions were considered by using semigroup theory. The outline of the paper is as follows. In the Section 2, we introduce some notations and the stability set created from the Nehari Manifold. In the Section 3, we prove the existence of solution through the Faedo-Galerkin method. By result of M. Nakao [20], the energy decay in the appropriate set of stability will be given in Section 4. In the last section, some final comments will be presented.

2. The potential well

It is well-known that the energy of a PDE system, in some sense, splits into the kinetic and the potential energy. By following the idea of Y. Ye [26], we are able to construct a set of stability. We will prove that there is a valley or a well of the depth \(d \) created in the potential energy. If \(d \) is strictly positive, then we find that, for solutions with the initial data in the good part of the potential well, the potential energy of the solution can never escape the potential well. In general, it is possible that the energy from the source term to cause the blow-up in a finite time. However, in the good part of the potential well, it remains bounded. As a result, the total energy of the solution remains finite on any time interval \([0; T)\), providing the global existence of the solution.

We started by introducing the functional \(J : H^2_0(\Omega) \to \mathbb{R} \) defined by

\[
J(u) = \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1} \right) |\Delta u|^2 - \frac{1}{r+1} |u|^{r+1}_{r+1}.
\]

For \(u \in H^2_0(\Omega) \), we have

\[
J(\lambda u) = \frac{\lambda^2}{2} \left(1 - \frac{\beta}{\lambda_1} \right) |\Delta u|^2 - \frac{\lambda r+1}{r+1} |u|^{r+1}_{r+1}, \lambda > 0.
\]

Associated with \(J \), we have the well-known Nehari Manifold given by

\[
\mathcal{N} \overset{\text{def}}{=} \left\{ u \in H^2_0(\Omega) \setminus \{0\}; \left[\frac{d}{d\lambda} J(\lambda u) \right]_{\lambda=1} = 0 \right\}.
\]

Equivalently,

\[
\mathcal{N} = \left\{ u \in H^2_0(\Omega) \setminus \{0\}; \left(1 - \frac{\beta}{\lambda_1} \right) |\Delta u|^2 = |u|^{r+1}_{r+1} \right\}.
\]
We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [14],

\[d \overset{\text{def}}{=} \inf_{u \in H^2_0(\Omega) \setminus \{0\}} \sup_{\lambda \geq 0} J(\lambda u). \]

It is well-known for \(1 < r \leq 5\) that the depth of the well is a real constant strictly positive ([15], theorem 4.2) and \(d = \inf_{u \in \mathcal{N}} J(u)\).

We now introduce the potential well

\[W = \{ u \in H^2_0(\Omega) ; J(u) < d \} \cup \{0\} \]

and partition it into two sets as follows

\[W_1 = \left\{ u \in H^2_0(\Omega) ; \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1} \right) |\Delta u|^2 > \frac{1}{r+1} |u|_{r+1}^{r+1} \right\} \cup \{0\} \]

and

\[W_2 = \left\{ u \in H^2_0(\Omega) ; \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1} \right) |\Delta u|^2 < \frac{1}{r+1} |u|_{r+1}^{r+1} \right\}. \]

We will refer to \(W_1\) as the “good” part of the potential well. Then we define by \(W_1\) the set of stability for the problem (1.1)-(1.3).

3. Existence of global solutions

We consider the following hypothesis

\((H)\) \(M \in C([0, \infty])\) with \(M(\lambda) \geq -\beta, \forall \lambda \geq 0, 0 < \beta < \lambda_1\), \(\lambda_1\) is the first eigenvalue of the problem \(\Delta^2 u - \lambda (-\Delta u) = 0\).

Remark 1. Let \(\lambda_1\) be the first eigenvalue of \(\Delta^2 u - \lambda (-\Delta u) = 0\) with the clamped boundary conditions

\[u|_{\partial \Omega} = 0, \quad \frac{\partial u}{\partial \eta}|_{\partial \Omega} = 0, \]

then (see Miklin [16]),

\[\lambda_1 = \inf_{u \in H^2_0(\Omega)} \frac{|\Delta u|^2}{|\nabla u|^2} > 0 \text{ and } |\nabla u|^2 \leq \frac{1}{\lambda_1} |\Delta u|^2. \]

Theorem 1. Let \(u_0 \in W_1, E(0) < d, u_1 \in L^2(\Omega)\), \(1 < r \leq 5\). If the hypothesis

\((H)\) holds, then there exists a function \(u : [0, T] \rightarrow L^2(\Omega)\) in the class

\[u \in L^\infty(0, T; H^2_0(\Omega)) \cap L^\infty(0, T; L^{r+1}(\Omega)) \]

(3.1)

\[u_t \in [L^\infty(0, T; L^2(\Omega))] (3.2) \]
such that, for all \(w \in H_0^2(\Omega) \)

\[
\frac{d}{dt}(u_t(t), w) + \langle \Delta u(t), \Delta w \rangle + M(\|\nabla u^m\|^2)(-\Delta u^m(t), w) + (u_t(t), w) - (|u(t)|^{r-1}u(t), w) = 0,
\]

\(u(0) = u_0, \ u_t(0) = u_1, \)

(3.3)

in \(\mathcal{D}'(0,T) \).

Proof. We use the Faedo-Galerkin’s method and potential well to prove the global existence of solutions.

3.1. Approximated problem

Let \((w_\nu)_{\nu \in \mathbb{N}} \) be a basis of \(H_0^2(\Omega) \) from the eigenvectors of the operator \(-\Delta\), and \(V_m = \text{span}\{w_1, w_2, \ldots, w_m\} \). Let

\[
\begin{align*}
 u^m(t) &= \sum_{j=1}^{m} k_{jm}(t)w_j, \\
 u^m(0) &= u_{0m} \longrightarrow u_0 \text{ strongly in } H_0^2(\Omega), \\
 u^m_t(0) &= u_{1m} \longrightarrow u_1 \text{ strongly in } L^2(\Omega).
\end{align*}
\]

The system (3.5)-(3.7) has a local solution in \([0,t_m)\), \(0 < t_m \leq T \), by virtue of Carathéodory’s theorem, see [17]. The extension of the solution to the whole interval \([0,T]\) is a consequence of the following estimate.

3.2. A priori estimates

Let \(w = u^m_t(t) \) in (3.5). We get

\[
\frac{d}{dt} \left[\frac{1}{2} |u^m_t(t)|^2 + \frac{1}{2} |\Delta u^m(t)|^2 + \frac{1}{2} \hat{M}|\nabla u^m(t)|^2 - \frac{1}{r+1} |u^m(t)|^{r+1} \right] = -|u^m_t(t)| \leq 0,
\]

(3.8)

where \(\hat{M}(s) = \int_s^\infty M(\xi)d\xi \).

Integrating (3.8) from 0 to \(t, 0 \leq t \leq t_m \), we obtain

\[
\begin{align*}
 \frac{1}{2} |u^m_t(t)|^2 + \frac{1}{2} |\Delta u^m(t)|^2 + \frac{1}{2} \hat{M}|\nabla u^m(t)|^2 - \frac{1}{r+1} |u^m(t)|^{r+1} + \int_0^t |u^m(t)|^2 ds &= \frac{1}{2} |u_{1m}|^2.
\end{align*}
\]

(3.9)
Now, by (H), since $\beta < \lambda_1$, we have

$$\dot{M}(|\nabla u^m(t)|^2) \geq -\frac{\beta}{\lambda_1} |\Delta u^m(t)|^2. \quad (3.10)$$

By (3.9) and (3.10), it follows

$$\frac{1}{2} |u_1^m(t)|^2 + \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1}\right) |\Delta u^m(t)|^2 - \frac{1}{r+1} |u^m(t)|_{r+1}^1 + \int_0^t |u^m(s)|^2 \, ds \leq \frac{1}{2} |u_{1m}|^2 + \frac{1}{2} |\Delta u_{0m}|^2 + \frac{1}{2} \dot{M}(|\nabla u_{0m}|^2) - \frac{1}{r+1} |u_{1m}|_{r+1}^1.$$

Now,

$$\dot{M}(|\nabla u_{0m}|^2) \leq m_0 |\nabla u_{0m}|^2 \leq \frac{m_0}{\lambda_1} |\Delta u_{0m}|^2,$$

where $m_0 = \max_{0 \leq s \leq |\nabla u_{0m}| \leq C_0} M(s)$ and C_0 is a positive constant independent of m and t.

Therefore, the approximate energy

$$E_m(t) = \frac{1}{2} |u^m(t)|^2 + \frac{1}{2} |\Delta u^m(t)|^2 + \frac{1}{2} \dot{M}(|\nabla u^m(t)|^2) - \frac{1}{r+1} |u^m(t)|_{r+1}^1$$

satisfies

$$E_m(t) \leq E(0) = \frac{1}{2} |u_{1m}|^2 + C_1 J(u_{0m}),$$

where $C_1 = C_1(m_0, \lambda_1, \beta) > 0$ is a constant independent of m and t.

We have that $J(u_{0m}) < d$ and by convergence (3.7), there exists a constant $C_2 > 0$ independent of m and t such that $\frac{1}{2} |u_{1m}|^2 \leq C_2$. So, there exists a constant $C_3 > 0$ such that

$$E_m(t) + \int_0^t |u^m(s)|^2 \, ds = E_m(0) < C_3,$$

that is,

$$\frac{1}{2} |u^m(t)|^2 + \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1}\right) |\Delta u^m(t)|^2 - \frac{1}{r+1} |u^m(t)|_{r+1}^1 \leq E_m(t) \leq C_3. \quad (3.12)$$

We can extend the approximate solutions $u^m(t)$ to the interval $[0, T]$, $T > 0$ (see [18]). Then by (3.12) we have

$$(u^m) \text{ is bounded in } L^\infty(0, T; H^2_0(\Omega)) \cap L^\infty(0, T; L^{r+1}(\Omega)) \quad (3.13)$$

$$(u_1^m) \text{ is bounded in } L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; L^2(\Omega)) \quad (3.14)$$

$$|u^m|_{r-1} u^m \text{ is bounded in } L^{\frac{r+1}{r}}(0, T; L^{\frac{r+1}{r}}(\Omega)) \quad (3.15)$$
3.3. Passage to the limit

From the estimates (3.13)-(3.15), there exists a subsequence of \((u^m)\), also denoted by \((u^m)\), such that

\[
u^m \rightharpoonup u \text{ weakly star in } L^\infty(0, T; H^0_0(\Omega)),
\]
\[u_t^m \rightharpoonup u_t \text{ weakly star in } L^\infty(0, T; L^2(\Omega)),
\]
\[|u^m|^{r-1}u^m \rightharpoonup \chi \text{ weakly in } L^{\frac{r+1}{r}}(0, T; L^{\frac{r+1}{r}}(\Omega)).
\]

Applying the Lions-Aubin Lemma [19], we get from (3.16)-(3.17)

\[u^m \longrightarrow u \text{ strongly in } L^2(0, T; H^1_0(\Omega))
\]
and since \(M\) is continuous, it follows

\[M(|\nabla u^m|^2) \longrightarrow M(|\nabla u|^2) \text{ strongly in } L^2(0, T).
\]

Therefore,

\[M(|\nabla u^m|^2)(-\Delta u^m) \rightharpoonup M(|\nabla u|^2)(-\Delta u) \text{ weakly in } L^2(0, T; L^2(\Omega)).
\]

Now we prove that \(\chi = |u|^{r-1}u\). Observe that

\[
\int_0^T |u^m(t)|^{r-1}u^m(t) \, dt = \int_0^T |u(t)|^{r+1} \, dt \leq C.
\]

So,

\[|u^m|^{r-1}u^m \longrightarrow |u|^{r-1}u \text{ a.e. in } \Omega \times [0, t).
\]

Therefore, from [19] Lemma 1.3, we have

\[|u^m|^{r-1}u^m \rightharpoonup |u|^{r-1}u \text{ weakly in } L^{\frac{r+1}{r}}(0, T; L^{\frac{r+1}{r}}(\Omega)).
\]

So, by (3.18) and (3.20), we have \(\chi = |u|^{r-1}u\).

By the convergence (3.16), (3.17) and (3.20), we can pass to the limit in the approximate equation (3.5) and obtain the equation

\[
\frac{d}{dt}(u_t(t), w) + \langle \Delta u(t), \Delta w \rangle + M(|\nabla u|^2)(-\Delta u, w) + (u_t(t), w) - (|u(t)|^{r-1}u(t), w) = 0
\]
in \(\mathcal{D}'(0, T)\). The proof of existence is complete. \(\Box\)

4. Asymptotic behavior

We use the following result due to Nakao (see [20], Lemma 2).
Lemma 1. Suppose that $\phi(t)$ is a bounded nonnegative function on \mathbb{R}^+, satisfying
\[\sup_{t \leq s \leq t+1} \phi(s) \leq C_0[\phi(t) - \phi(t+1)], \]
for any $t \geq 0$, where C_0 is a positive constant. Then,
\[\phi(t) \leq Ce^{-\alpha t}, \forall t \geq 0, \]
where C and α are positive constants.

Theorem 2. Under the hypotheses of theorem 1, the solution of problem (1.1)-(1.3) satisfies:
\[\frac{1}{2} \|u_t(t)\|^2 + \frac{1}{2} \left(1 - \frac{\beta}{\mathcal{A}_1} \right) |\Delta u(t)|^2 - \frac{1}{r+1} \|u(t)\|_{r+1}^2 + \int_t^{t+1} |u(s)|^2 ds \leq Ce^{-\alpha t}, \]
for any $t \geq 0$, where C and α are positive constants.

Proof. Let $w = u_t(t)$ in the equation (3.3). Then
\[\frac{d}{dt} \left[\frac{1}{2} \|u_t(t)\|^2 + \frac{1}{2} |\Delta u(t)|^2 + \frac{1}{2} \frac{\mathcal{M}(|\nabla u(t)|^2)}{r+1} \right] + |u_t(t)|^2 = 0. \]
That is,
\[\frac{d}{dt} E(t) + |u_t(t)|^2 = 0, \]
where
\[E(t) = \frac{1}{2} \|u_t(t)\|^2 + \frac{1}{2} |\Delta u(t)|^2 + \frac{1}{2} \frac{\mathcal{M}(|\nabla u(t)|^2)}{r+1} - \frac{1}{r+1} |u(t)|_{r+1}^2. \] \hspace{1cm} (4.1)
Integrating from t to $t+1$, we obtain
\[\int_t^{t+1} |u_t(s)|^2 ds = E(t) - E(t + 1) \overset{\text{def}}{=} F^2(t). \] \hspace{1cm} (4.2)
Then there exist $t_1 \in [t, t + \frac{1}{4}]$, $t_2 \in [t + \frac{3}{4}, t + 1]$ such that
\[|u_t(t_i)| \leq 2F(t_i), i = 1, 2. \] \hspace{1cm} (4.3)
Let $w = u(t)$ in the equation (3.3). Integrating from t_1 to t_2 and observing the hypothesis (H), we obtain
\[\int_{t_1}^{t_2} \left[\frac{1}{2} \left(1 - \frac{\beta}{\mathcal{A}_1} \right) |\Delta u(s)|^2 - |u(s)|_{r+1}^2 \right] ds \leq |u_t(t_1)||u_t(t_1)| + |u_t(t_2)||u_t(t_2)| + \int_{t_1}^{t_2} |u_t(s)|^2 ds + \int_{t_1}^{t_2} |u(s)|^2 ds \leq C_1 \sup_{t \leq s \leq t+1} |\Delta u(s)| |u_t(t_1)| + |u_t(t_2)| + F^2(t) + \int_{t_1}^{t_2} C_1 |u_t(s)| |\Delta u(s)| ds \leq 4C_1 F(t) \sup_{t \leq s \leq t+1} |\Delta u(s)| + F^2(t) + \frac{C_1^2}{\delta} \int_{t_1}^{t_2} |u_t(s)|^2 ds + \delta \int_{t_1}^{t_2} |\Delta u(s)|^2 ds, \]
where \(0 < \delta \leq \frac{1}{2} - \frac{\beta}{\lambda_1}\) and \(C_1 > 0\) is a constant such that \(|u(t)| \leq C_1 |\Delta u(t)|\). Then

\[
\int_{t_1}^{t_2}\left[\left(1 - \frac{\beta}{\lambda_1} - \delta\right)|\Delta u(s)|^2 - |u(s)|_{r+1}^2\right]ds \leq 4C_1 F(t) \sup_{t \leq s \leq t+1} |\Delta u(s)| + \left(1 + \frac{C_1^2}{\delta}\right) F^2(t).
\]

Whence,

\[
\int_{t_1}^{t_2}\left[\left(1 - \frac{\beta}{\lambda_1} - \delta\right)|\Delta u(s)|^2 - |u(s)|_{r+1}^2\right]ds \leq C_2 \left[F(t) \sup_{t \leq s \leq t+1} |\Delta u(s)| + F^2(t)\right] \equiv G^2(t).
\]

(4.4)

Thanks to (4.2) and (4.3), we have

\[
\int_{t_1}^{t_2}\left[\left(1 - \frac{\beta}{\lambda_1} - \delta\right)|\Delta u(s)|^2 - |u(s)|_{r+1}^2\right]ds \leq F^2(t) + G^2(t).
\]

Hence there exists \(t^* \in [t_1, t_2]\) such that

\[
|u_i(t^*)| + \left(1 - \frac{\beta}{\lambda_1} - \delta\right)|\Delta(t^*)|^2 - |u(t^*)|_{r+1}^2 \leq 2[F^2(t) + G^2(t)]
\]

or,

\[
|u_i(t^*)|^2 + |\Delta u(t^*)|^2 - |u(t^*)|_{r+1}^2 \leq C_3 [F^2(t) + G^2(t)],
\]

(4.5)

where \(C_3\) is a positive constant. Now,

\[
\hat{M}(\nabla u(t^*)) \leq m_0 |\nabla u(t^*)|^2 \leq \frac{m_0}{\lambda_1} |\Delta u(t^*)|^2,
\]

where \(m_0 = \max_{0 \leq s \leq |\nabla u(t^*)|^2} M(s)\). Therefore,

\[
\hat{M}(\nabla u(t^*)) \leq C_4 [F^2(t) + G^2(t)].
\]

(4.6)

From (4.1), (4.5) and (4.6), it follows that

\[
E(t^*) \leq C_5 [F^2(t) + G^2(t)].
\]

(4.7)

Now, by (4.2) and (4.7), we have

\[
\sup_{t \leq s \leq t+1} E(s) \leq E(t^*) + \int_t^{t+1} |u_i(s)|^2 ds \leq C_6 F^2(t) + \frac{1}{2} \sup_{t \leq s \leq t+1} E(s).
\]

Therefore,

\[
\sup_{t \leq s \leq t+1} E(s) \leq C_7 [E(t) - E(t + 1)],
\]

where \(C_i, i = 4, 5, 6, 7\) are positive constants. By Lemma 1, we have

\[
E(t) \leq Ce^{-\alpha t}, \forall t \geq 0,
\]

(4.8)

where \(C\) and \(\alpha\) are positive constants. So, by hypothesis (H), (4.2) and (4.8), it follows that

\[
\frac{1}{2} |u_i(t)|^2 + \frac{1}{2} \left(1 - \frac{\beta}{\lambda_1}\right) |\Delta u(t)|^2 - \frac{1}{r+1} |u(t)|_{r+1}^2 + \int_t^{t+1} |u_i'(s)|^2 ds \leq Ce^{-\alpha t}, \forall t \geq 0,
\]

and the proof of theorem 2 is complete. \(\square\)
Final comments

The force term can be more general that $|u|^{r-1}u$, type $f \in C^1(\mathbb{R})$ with $|f(u)| \leq c|u|^r$ for all $|u| \geq 1$, where $1 \leq r < 6$ with the suitable Sobolev imbeddings. For instance, for $n = 3$ we have $H^1_0(\Omega) \hookrightarrow L^6(\Omega)$ and the Nemytski operator $f(u)$ is locally Lipschitz continuous from $H^1_0(\Omega)$ into $L^2(\Omega)$ for $1 \leq r \leq 3$. The source is called sub-critical if $1 \leq r < 3$, critical if $r = 3$ and supercritical if $3 < r \leq 5$. When $5 < r < 6$, the source is super-supercritical (see [27]) and in this situation, the potential energy may not be defined in the finite energy space, so the problem itself is no longer in the framework of the potential well theory.

REFERENCES

[1] J. M. BALL, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61–90.
[2] J. M. BALL, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399–418.
[3] P. BILER, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839–842.
[4] E. H. BRITO, Decay estimates for generalized damped extensible string and beam equations, Nonlinear Anal., 8 (1984), 1489–1496.
[5] R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh A, 82 (1978), 19–26.
[6] L. A. MEDEIROS, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252–262.
[7] D. C. PEREIRA, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Anal., 8 (1990), 613–623.
[8] H. R. CLARK, M. A. RINCON, R. D. RODRIGUES, Beam equation with weak-internal damping in domain with moving boundary, Applied Numerical Mathematics, 47, 2 (2003), 139–157.
[9] D. C. PEREIRA, R. F. C. LOBATO, C. A. RAPOSO, Energy decay to an abstract coupled system of extensible beams models, Appl. Math. Inf. Sci., 6, 3 2012, 252–262.
[10] M. BERGER, A new approach to the large deflection of plate, J. Appl. Mech., 22 (1955), 465–472.
[11] C. A. RAPOSO, M. L. SANTOS, J. FERREIRA, Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary, Abstract and Applied Analysis, 8 (2005), 901–919.
[12] I. CHUESHOV, I. LASIECKA, Long-time behavior of second order evolution equations with nonlinear damping, Amer. Math. Soc., Mem. Amer. Math. Soc. 195, Providence, RI, 2008.
[13] S. WOJNOWSKY-KRIEGER, The effect of an axial force on the vibration of hinged bars, Journal Applied Mechanics, 17 (1950), 35–36.
[14] A. AMBROSETTI, P. H. RABINOWITZ, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349–381.
[15] M. WILLEM, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24, Birkhouser Boston Inc., Boston, MA, 1996.
[16] S. G. MIKLIN, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964.
[17] E. A. CODDINGTON, N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill Inc., New York, 1955.
[18] J. K. HALE, Ordinary Differential Equations, 2nd ed., Dover Publications Inc., New York, 1997.
[19] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier Villars, Paris, 1969.
[20] M. NAKAO, Decay of solutions for some nonlinear evolution equations, J. Math. Analysis Appl., 60 (1977), 542–549.
[21] D. C. PEREIRA, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis, Theory, Methods & Applications, 14, 8 (1990), 613–623.
[22] E. Piskin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Math., 13 (2015), 408–420.
[23] A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, Willy Interscience, New York, 1979.
[24] D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18 (1951), 135–139.
[25] J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167–175.
[26] Y. Ye, Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations, Differ. Equ. Nonlinear Mech., 019685 (2007).
[27] L. Bociu, I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with super-critical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835–860.
[28] M. M. Cavalcanti, V. N. D. Cavalcanti, J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705–731.
[29] Y. Zhijian, On an extensible beam equation with nonlinear damping and source terms, J. Differential Equations, 254 (2013), 3903–3927.

(Received December 15, 2018)

Ducival C. Pereira
Department of Mathematics
State University of Pará (UEPA)
Brazil
e-mail: ducival@uepa.br

Hoang Nguyen
LMAP (UMR E2S-UPPA CNRS 5142)
Bat. IPRA, Avenue de l’Université
64013 Pau, France
Institute of Mathematics and Campus Duque de Caxias
Federal University of Rio de Janeiro (UFRJ)
Brazil
e-mail: huy-hoang.nguyen@univ-pau.fr, nguyen@im ufrj.br

Carlos A. Raposo
Department of Mathematics
Federal University of São João del-Rei (UFSJ)
Brazil
e-mail: raposo@ufsj.edu.br

Celsa H. M. Maranhão
Department of Mathematics
Federal University of Pará (UFPA)
Brazil
e-mail: celsa@ufpa.br