Testable forecasts

LUCIANO POMATTO
Division of the Humanities and Social Sciences, Caltech

Predictions about the future are commonly evaluated through statistical tests. As shown by recent literature, many known tests are subject to adverse selection problems and cannot discriminate between forecasters who are competent and forecasters who are uninformed but predict strategically.

We consider a framework where forecasters’ predictions must be consistent with a paradigm, a set of candidate probability laws for the stochastic process of interest. This paper presents necessary and sufficient conditions on the paradigm under which it is possible to discriminate between informed and uninformed forecasters. We show that optimal tests take the form of likelihood-ratio tests comparing forecasters’ predictions against the predictions of a hypothetical Bayesian outside observer. In addition, the paper illustrates a new connection between the problem of testing strategic forecasters and the classical Neyman–Pearson paradigm of hypothesis testing.

KEYWORDS. Strategic forecasting, hypothesis testing.

JEL CLASSIFICATION. C120, D810.

1. Introduction

Forecasts are often formulated in terms of probability distributions over future events (e.g., a recession will happen with 5% probability). Probabilistic forecasts appear across a wide variety of economic and scientific activities, including the analysis of weather and climate Gneiting and Raftery (2005), aggregate output and inflation (Diebold et al. 1997), epidemics (Alkema et al. 2007), seismic hazard (Jordan et al. 2011), financial risk Timmermann (2000), demographic variables (Raftery et al. 2012), and elections Tetlock (2005), among others.¹

One practical difficulty with probabilistic forecasts is that they cannot be falsified by casual observation, but only through proper statistical tests. From an economic perspective, a key issue is that statistical tests aimed at evaluating forecasters can be subject to adverse selection. Consider, as an example, a forecaster who is asked to predict how a

¹Corradi and Swanson (2006) and Gneiting and Katzfuss (2014) review the literature on probabilistic forecasts.
stochastic process of interest will evolve over time, and is evaluated by a test comparing her prediction against the realized sequence of outcomes. Suppose the forecaster can be either a true expert, who knows the actual distribution P generating the data and is willing to report it truthfully, or a strategic forecaster, who is uninformed about the stochastic process, but is interested in passing the test so as to establish a false reputation of competence. Recent literature shows that many tests of interest cannot discriminate between the two.

In their seminal paper, Foster and Vohra (1998) examine the well known calibration test. They construct a randomized forecasting algorithm that allows passing the test regardless of how data unfold, and without any knowledge about the distribution of the data-generating process. By employing such an algorithm, an uninformed but strategic forecaster can completely avoid being discredited by the data, thus defeating the purpose of the test.

This surprising phenomenon is not restricted to calibration. Subsequent work emphasizes one critical feature of the calibration test: the fact that it is free of Type I errors. For any possible true law P generating the data, where P is an arbitrary probability measure defined over sequences of outcomes, an expert who predicts according to P will pass the calibration test with high probability Dawid (1982). This remarkable property ensures that the test is unlikely to reject competent forecasters. But, as shown by Sandroni (2003) and Olszewski and Sandroni (2009), once incentives are taken into account, the same property leads to a general impossibility result for testing probabilistic predictions: any test that operates in finite time and is free of Type I errors can be passed by a strategic but uninformed forecaster. This impossibility result has been further extended by Olszewski and Sandroni (2008) and Shmaya (2008), among many others.

Tests such as calibration, that are free of Type I errors, do not impose any restriction on the unknown law P generating the process. Such a degree of agnosticism is all but common in economics and statistics. Indeed, most empirical studies posit that data are generated according to a specific model, often fully specified up to a restricted set of parameters. This paper takes a similar approach and examines the problem of testing forecasters in the presence of a theory about the data-generating process.

This paper considers a framework where it is known that the law generating the data belongs to a given set Λ, which represents a theory, or paradigm, about the phenomenon under consideration. Accordingly, forecasters are required to submit forecasts belonging to Λ, while predictions incompatible with the paradigm are rejected.

For the purpose of this paper, paradigms admit multiple interpretations. A paradigm can be seen as a summary of preexisting knowledge about the problem. It can also represent the set of restrictions imposed on the data-generating process by a scientific theory. It can, alternatively, be interpreted as a normative standard to which forecasters’ predictions must conform so as to qualify as useful. Classic examples of paradigms include the classes of independent and identically distributed (i.i.d.) Markov or stationary

2 Consider a stochastic process that every day can generate two outcomes, say “rain” and “no rain.” A forecaster passes the calibration test if, roughly, for every $p \in [0, 1]$, the empirical frequency of rainy days computed over the days where the forecaster predicted rain with probability p is close to p.
distributions. In this paper, so as to make the analysis applicable to a broad class of environments, no a priori restrictions are imposed over paradigms (beyond measurability).

A paradigm Λ is testable if it admits a test with the following three features. First, it is unlikely that the test rejects a true expert who knows the correct law in Λ. Second, for any possible strategy that a forecaster might employ to misrepresent her knowledge, there is a law belonging to Λ under which the forecaster fails the test with high probability. Hence, strategic forecasters are not guaranteed to avoid rejection. Third, the test returns a decision (acceptance or rejection) in finite time.

A crucial question, then, is which paradigms are testable and, if they are, by using what tests. The existing literature presents instances of testable classes of distributions (see, among others, Olszewski and Sandroni 2009 and Al-Najjar et al. 2010). However, reasonably general conditions under which a paradigm is testable are not known.

The first step of the analysis is a general characterization of testable paradigms. The result is formulated by taking the perspective of a hypothetical Bayesian outside observer. Given a paradigm Λ, consider, for the sake of illustration, an analyst, consumer, or statistician who is uncertain about the odds of the data-generating process, and who is sophisticated enough to express a prior probability μ over the set of possible laws. The prior assigns probability 1 to the paradigm. It is shown that Λ is testable if and only if there exists at least one prior μ such that the observer, by predicting according to the prior, is led to forecasts that are incompatible with any law in the paradigm. Formally, testability is equivalent to the existence of a prior μ over the paradigm such that the law $\int_{\Lambda} P d\mu(P)$ obtained by averaging with respect to the prior is sufficiently distant, in the appropriate metric (the total-variation distance), from every law P in the paradigm.

Based on this characterization we show that given any testable paradigm, it is without loss of generality to restrict attention to standard likelihood-ratio tests. For every testable paradigm Λ there exists a finite likelihood-ratio test that is unlikely to reject a true expert and cannot be manipulated. Such tests are constructed as follows. First, the test creates a fictitious Bayesian forecaster. This forecaster is obtained by placing a sufficiently “uninformative” prior μ over the paradigm. Actual forecasters are then evaluated by comparing their predictions to the forecasts generated by the test. A forecaster passes the test if and only if the realized sequence of outcomes was, ex ante, deemed more likely by the agent than by the fictitious Bayesian forecaster.

The results suggest a simple, and perhaps intuitive, criterion for identifying competent forecasters: a predictor is recognized as knowledgeable if her forecast results are more accurate, in likelihood-ratio terms, than the predictions of a Bayesian endowed with an uninformative prior.

The third main result of the paper shows that likelihood-ratio tests are, in a proper sense, optimal. The result is based on a novel ordering over tests. A test T is evaluated by the worst case probability of passing the test that an uninformed forecaster can guarantee herself, where the worst case is computed over all possible laws for the data-generating process. A test T_1 is less manipulable than T_2 if such worst case probability is lower under T_1 than under T_2. So, less manipulable tests are more effective at screening between informed and uninformed experts. Theorem 3 shows that for any paradigm,
and controlling for sample size and for the level of Type I error, there exists a likelihood-ratio test that is less manipulable than any other test. As explained in the main text, the result is related to the celebrated Neyman–Pearson lemma, and highlights a novel connection between the problem of testing strategic forecasters and the theory of hypothesis testing.

In sum, the analysis of this paper provides a foundation for likelihood-ratio tests as a general methodology for testing probabilistic predictions under adverse selection.

Section 4 studies several examples of paradigms: Markov processes, mixing processes, paradigms defined by moment inequalities, and maximal paradigms. For each example, we provide conditions such that the paradigm under consideration is testable. Section 5 discusses extensions and provides further comments on the related literature.

1.1 Related literature

Foster and Vohra (2013) and Olszewski (2015) survey the literature on testing strategic forecasters. In this section, we comment on those papers that are closer to the present work.

Likelihood-ratio tests appear in Al-Najjar and Weinstein (2008) as a method for comparing the predictions of two forecasters under the assumption that at least one of them is informed. Examples of testable paradigms appear in Olszewski and Sandroni (2009), who also extend the result of Sandroni (2003) to finite tests where the paradigm is convex and compact. Al-Najjar et al. (2010) study the set of laws that have a learnable and predictable representation, a class of distributions introduced by Jackson et al. (1999). They show that the paradigm is testable.

Babaioff et al. (2011) consider a principal–agent model where the principal offers a monetary contract with the intent of discriminating between informed and uninformed experts. They show, quite surprisingly, that screening is possible if and only if the true law is restricted to a non-convex set of distributions. This paper follows the literature on testing strategic experts where transfers are absent and the forecaster’s expected payoff is the probability of passing the test chosen by the tester. As a consequence, the two papers arrive at different conclusions. In particular, there exist non-convex paradigms that are not testable and convex paradigms that are testable.

Likelihood-ratio tests play an important role in Stewart (2011). Stewart proposes a framework where the tester is a Bayesian endowed with a prior over laws and the forecaster is evaluated according to a likelihood-ratio test against the predictions induced by the prior. In the current paper, the tester is not assumed to be Bayesian. Instead, the existence of an appropriate prior that allows construction of a nonmanipulable likelihood-ratio test is shown to be a property that is intrinsic to all testable paradigms. The relation between this paper and Stewart (2011) is discussed more in detail in Appendix A.6.

3Contributions to the literature that are not included in the surveys include Sandroni and Shmaya (2014), Al-Najjar et al. (2014), Feinberg and Lambert (2015), and Kavaler and Smorodinsky (2019).

4The paradigm studied in Al-Najjar et al. (2010) is convex, but testable. Consider a binary process that in each period can take two values, x or y. The paradigm of all distributions such that the probability of observing x in the first period is restricted to be in [0, 0.25) U (0.75, 1] is not convex and not testable.
2. Basic definitions

In each period an outcome from a finite X is realized, where $|X| \geq 2$. A path is an infinite set of outcomes and $\Omega = X^\infty$ denotes the set of all paths. Time is indexed by $n \in \mathbb{N}$ and for each path $\omega = (\omega_1, \omega_2, \ldots)$, the corresponding finite history of length n is denoted by ω^n. That is, ω^n is the set of paths that coincide with ω in the first n periods. We denote by \mathcal{F}_n the algebra generated by all histories of length n and denote by \mathcal{B} the σ-algebra generated by $\bigcup_n \mathcal{F}_n$. The set of paths Ω is endowed with the product topology, which makes \mathcal{B} the corresponding Borel σ-algebra. We denote by $\Delta(\Omega)$ the space of Borel probability measures on Ω. Elements of $\Delta(\Omega)$ are interchangeably referred to as laws or distributions. The space $\Delta(\Omega)$ is endowed with the weak* topology and the corresponding Borel σ-algebra. The same applies to the space $\Delta(\Delta(\Omega))$ of Borel probability measures over $\Delta(\Omega)$. Given a measurable subset $\Gamma \subseteq \Delta(\Omega)$, $\Delta(\Gamma)$ is the set of Borel probability measures on $\Delta(\Omega)$ that assign probability 1 to Γ.

2.1 Empirical tests

A forecaster announces a law $P \in \Delta(\Omega)$, under the claim that P describes how the data evolve. A tester is interested in evaluating this claim using a statistical test.

Definition 1. A test is a measurable function $T : \Omega \times \Delta(\Omega) \to [0, 1]$.

A test T compares the realized path ω with the reported law P. The law is accepted if $T(\omega, P) = 1$ and rejected if $T(\omega, P) = 0$. Values strictly between 0 and 1 describe randomized tests where the forecaster is accepted with probability $T(\omega, P)$. The timing is as follows: (i) At time 0, the tester chooses a test T; (ii) the forecaster announces a law P; (iii) nature generates a path ω; (iv) T reports acceptance or rejection.

A test T is finite if for every law P there exists a time n_P such that $T(\cdot, P)$ is measurable with respect to \mathcal{F}_{n_P}. That is, a law P is accepted or rejected as a function of the first n_P observations, where n_P is deterministic and known ex ante. Throughout this paper, we restrict the attention to finite tests. A relevant special case is given by the class of nonasymptotic tests, where there exists a single deadline N such that $n_P \leq N$ for every P. While the main focus is on asymptotic tests, in Section 5.1 we show that many of the results extend without difficulties to nonasymptotic tests.

2.2 Strategic forecasting

The forecaster can be of two possible types. A true expert (or informed forecaster) knows the law governing the data-generating process and is willing to report it truthfully. A strategic (or uninformed) forecaster does not possess any relevant knowledge.
about the data-generating process. Her goal is simply to pass the test. Strategic forecasters can produce their predictions using mixed strategies. Formally, a strategy is a randomization over laws $\xi \in \Delta(\Delta(\Omega))$.

The next example shows how a standard likelihood-ratio test can be manipulated by strategic forecasters.

Example 1. A manipulable likelihood-ratio test. The test is specified by a time n and a probability measure $Q \in \Delta(\Omega)$ with full support. The law Q serves as a benchmark against which the forecaster is compared. Given a forecast P and a path ω, the test returns 1 if

$$\frac{P(\omega^n)}{Q(\omega^n)} > 1$$

and returns 0 otherwise, where, as defined above, ω^n is the set of paths that coincide with ω in the first n periods. Thus, the forecaster passes the test if and only if the realized history is more likely under the forecast P than under the benchmark Q. The test can be manipulated using the following simple strategy. For each history ω^n of length n, consider the measure $P_{\omega^n} = Q(\cdot|\Omega - \omega^n)$ obtained by conditioning Q on the complement of ω^n. It satisfies

$$P_{\omega^n}(\omega^n) = 0 \quad \text{and} \quad P_{\omega^n}(\tilde{\omega}^n) > Q(\tilde{\omega}^n) \quad \text{for all } \tilde{\omega}^n \neq \omega^n.$$

Let ζ be the mixed strategy that randomizes uniformly over all measures of the form P_{ω^n}. Given a history ω^n, a forecaster using strategy ζ passes the test as long as the law she happens to announce is different from P_{ω^n}. This is an event that under ζ has probability greater than or equal to $1 - 2^{-n}$. So no matter how the data unfold, even for n relatively small, the forecaster is guaranteed to pass the test with high probability.

The test in Example 1 does not assume any structure on the data-generating process. In this example, the freedom of announcing any law allows the uninformed predictor to manipulate the test. We will see how appropriate restrictions on the domain of possible laws allows even simple likelihood-ratio tests to screen between informed and uninformed forecasters.

2.3 Testable paradigms

The tester operates under a theory, or paradigm, about the data-generating process. In this paper, a theory is identified with the restrictions it imposes over the law of the observed process. Formally, a paradigm is a measurable set $\Lambda \subseteq \Delta(\Omega)$, with the interpretation that the data are generated according to some unknown law belonging to Λ. Beyond measurability, no assumptions are imposed on Λ.

A paradigm can be defined in many ways. For instance, it can express statistical independence between different variables (the outcome ω_n realized at time n is independent from the outcome realized at time $n + 365$) or it might reflect assumptions about the long run behavior of the process (P is ergodic). Additional examples are discussed in Section 4.
Given a paradigm, a basic property we would like a test to satisfy is to not reject informed experts.

Definition 2. Given a paradigm Λ, a nonrandomized test T accepts the truth with probability at least $1 - \epsilon$ if, for all $P \in \Lambda$, it satisfies

$$P\{ \omega : T(\omega, P) = 1 \} \geq 1 - \epsilon.$$ \hspace{1cm} (1)

A test that accepts the truth is likely not to reject an expert who reports the actual law of the data-generating process. As shown by Olszewski and Sandroni (2009), any finite test that accepts the truth with respect to the unrestricted paradigm $\Lambda = \Delta(\Omega)$ can be manipulated: Given a finite test T that satisfies property (1) for all $P \in \Delta(\Omega)$, there exists a strategy ζ such that

$$\zeta(\{ P : T(\omega, P) = 1 \}) \geq 1 - \epsilon \quad \text{for all paths } \omega \in \Omega.$$

Thus, the strategy allows the forecaster to completely avoid rejection. The result motivates the next definition.

Definition 3. Given a paradigm Λ, a nonrandomized test T is ϵ-nonmanipulable if, for every strategy ζ, there is a law $P_\zeta \in \Lambda$ such that

$$(P_\zeta \otimes \zeta)(\{ (\omega, P) : T(\omega, P) = 1 \}) \leq \epsilon.$$

The notation $P_\zeta \otimes \zeta$ stands for the independent product of P_ζ and ζ. A test T is ϵ-nonmanipulable if, for any strategy ζ, there is a law P_ζ in the paradigm such that the forecaster is rejected with probability greater than $1 - \epsilon$. Thus, no strategy can guarantee a strategic forecaster more than an ϵ probability of passing the test.

As discussed by Olszewski and Sandroni (2009), nonmanipulable tests can screen out uninformed forecasters. To elaborate, assume that a forecaster who opts not to participate in the test receives a payoff of 0, while a forecaster who announces a law P obtains a payoff that depends on the outcome of the test. If P is accepted, then she is recognized as knowledgeable and gets a payoff $w > 0$. If the law is rejected, then she is discredited and incurs a loss $l < 0$. Assume, in addition, that an uninformed forecaster chooses in accordance with the maxmin criterion of Wald (1950) and Gilboa and Schmeidler (1989), where each strategy ζ is evaluated according to the minimum expected payoff with respect to a set of laws. If such a set equals the paradigm, then for each strategy ζ, the expected payoff is

$$\inf_{P \in \Lambda} \mathbb{E}_{P \otimes \zeta}[wT + l(1 - T)].$$ \hspace{1cm} (2)

If ϵ is sufficiently small, then the value (2) is negative and so the optimal choice for a strategic forecaster is not to take the test. Therefore, given a test that accepts the truth
with probability at least $1 - \epsilon$ and is ϵ-nonmanipulable, a true expert finds it profitable to participate in the test, while for an uninformed expert, it is optimal not to participate.\(^8\)

Definitions 2 and 3 extend immediately to possibly randomized tests. Given a paradigm Λ, a test T accepts the truth with probability at least $1 - \epsilon$ if for every $P \in \Lambda$, it satisfies $\mathbb{E}_P[T(\cdot, P)] \geq 1 - \epsilon$. The test is ϵ-nonmanipulable if for every strategy ζ, there is a law $P_\zeta \in \Lambda$ such that $\mathbb{E}_{P_\zeta \otimes \zeta}[T] \leq \epsilon$. The next definition summarizes the properties introduced so far.

Definition 4. Given $\epsilon > 0$, a paradigm Λ is ϵ-testable if there is a finite test T such that

(i) T accepts the truth with probability at least $1 - \epsilon$

(ii) T is ϵ-nonmanipulable.

A paradigm Λ is testable if it is ϵ-testable for every $\epsilon > 0$.

3. Main results

It will be useful, in what follows, to take the perspective of a Bayesian outside observer (e.g., an analyst, a voter, or a statistician) who is interested in the problem at hand and uncertain about the odds governing the data-generating process. The uncertainty perceived by the observer is expressed by a prior probability $\mu \in \Delta(\Gamma)$, where $\Gamma \subseteq \Delta(\Omega)$ is the set of laws the observer believes to be possible. We focus on the case where Γ coincides with (or is close to) the paradigm Λ, so that the observer and the tester have compatible views. If asked to make forecasts about the future, the observer would predict according to the probability measure defined as

$$Q_\mu(E) = \int_{\Gamma} P(E) d\mu(P) \quad \text{for all } E \in \mathcal{B}. \quad (3)$$

The definition (3) follows the standard approach in Bayesian statistical decision theory of defining, from the prior μ, a probability measure over the sample space Ω by averaging with respect to the prior.\(^9\)

3.1 Characterization

The next result characterizes testable paradigms. Given laws P and Q, let $\|P - Q\| = \sup_{E \in \mathcal{B}} |P(E) - Q(E)|$ denote the (normalized) total-variation distance between the two measures. Given a paradigm Λ, its closure with respect to the weak* topology is denoted by $\overline{\Lambda}$.

Theorem 1. A paradigm Λ is testable if and only if for every $\epsilon > 0$, there exists a prior $\mu \in \Delta(\overline{\Lambda})$ such that $\|Q_\mu - P\| \geq 1 - \epsilon$ for all $P \in \Lambda$.

\(^8\)Section 5.2 considers a different specification where uninformed forecasters are less conservative and, in (2), the worst case scenario is taken with respect to a neighborhood of laws in the paradigm.

\(^9\)In the literature, Q_μ is often referred to as a predictive probability. Cerreia-Vioglio et al. (2013) provide, under appropriate conditions on Γ, an axiomatic foundation for the representation (3).
Consider an outside observer whose prior assigns probability 1 to (the closure of) Λ. The result compares the observer’s forecasts with the paradigm. Two polar cases are of interest. If $Q_\mu \in \Lambda$, then the observer’s prediction cannot be distinguished, ex ante, from the prediction of an expert who announced Q_μ knowing it was the true law of the process. Theorem 1 is concerned with the opposite case, where the prediction Q_μ is far from any possible law P in the paradigm. It shows that a paradigm is testable if and only if there is some observer whose uncertainty about the data-generating process leads her to predictions that are incompatible (in the sense of being far with respect to the total-variation distance) with respect to any law in the paradigm.

Given a prior μ with the above properties, it is possible to define an explicit non-manipulable test. In the next section, we provide a direct construction of such a test, together with an intuition for the result. The intuition for why testability of a paradigm implies the existence of a prior that satisfies the conditions of Theorem 1 can be sketched as follows. For a strategic forecaster, randomization is valuable because it allows one to increase the probability of passing the test in the worst case, across all possible distributions that belong to the paradigm. Naturally, different strategies will correspond to different worst case distributions. For a given strategy ζ, it is irrelevant whether the worst case is computed within the paradigm or across the set of all distributions of the form Q_μ for some prior μ. This follows from the fact that the forecaster’s “payoff function” is given by the expectation of T; hence, it is linear in the randomization ζ and in the law P. However, as we show in the proof of Theorem 1, considering the set of laws Q_μ that can be achieved by some prior μ is important. In the proof we show that given a test, there exists a worst case distribution Q_μ that is common to all strategies. Intuitively, this worst case distribution must not be within the paradigm, since otherwise a forecaster could simply announce it and pass the test. The result shows that, in a specific sense, it must be sufficiently far away from the paradigm.

Testability of a paradigm is a property that can be formulated as a lack of compactness and convexity. To illustrate this idea, we associate to each paradigm Λ an index $I(\Lambda)$ of its compactness and convexity. The definition is based on notions introduced in the context of general equilibrium theory by Folkman, Shapley, and Starr (see Starr 1969). Given a subset $\Lambda \subseteq \Delta(\Omega)$, let

$$I(\Lambda) = \sup_{Q \in \bar{\sigma}(\Lambda)} \inf_{P \in \Lambda} \|Q - P\|,$$

where $\bar{\sigma}(\Lambda)$ is the weak* closed convex hull of Λ. I satisfies $0 \leq I(\Lambda) \leq 1$ by the definition of the total-variation distance. If $I(\Lambda) = 0$, then any law Q in the closed convex hull of the paradigm can be approximated with arbitrary precision by a law P in Λ. In this case, as shown by Olszewski and Sandroni (2009), any finite test that accepts the truth is manipulable.10 In the opposite case, when $I(\Lambda) = 1$, one can find a law in the closed

10The intuition behind the result can be sketched as follows. Finiteness of the test, together with compactness and convexity of Λ, allows one to invoke Fan’s minmax theorem and establish the equality $\min_{P \in \Lambda} \max_{\zeta} \mathbb{E}_{P \in \mathcal{G}}[T] = \max_{\zeta} \min_{P \in \Lambda} \mathbb{E}_{P \in \mathcal{G}}[T]$. If T accepts the truth with probability $1 - \epsilon$, then the left-hand side is greater than $1 - \epsilon$. Hence, there exists a strategy that passes the test with probability $1 - \epsilon$ for every $P \in \Lambda$. Therefore, the paradigm is not testable.
convex hull of Λ that has distance arbitrarily close to 1 from every law in the paradigm. The next result shows that this is true if and only if the paradigm is testable.

Corollary 1. A paradigm Λ is testable if and only if it satisfies $I(\Lambda) = 1$.

3.2 Nonmanipulable tests

Next we study nonmanipulable tests. By applying the characterization provided by Theorem 1, we show that given a testable paradigm, it is without loss of generality to restrict attention to simple likelihood-ratio tests.

Theorem 2. Let Λ be a testable paradigm. Given $\epsilon > 0$, let $\mu \in \Delta(\overline{\Lambda})$ be a prior that satisfies $\|Q_\mu - P\| > 1 - \epsilon$ for all $P \in \Lambda$. There exist positive integers $(n_P)_{P \in \Lambda}$ such that the test defined as

$$T(\omega, P) = \begin{cases} 1 & \text{if } P \in \Lambda \text{ and } P(\omega^{n_P}) > Q_\mu(\omega^{n_P}) \\ 0 & \text{otherwise} \end{cases}$$

(4)

accepts the truth with probability at least $1 - \epsilon$ and is ϵ-nonmanipulable.

Given a law P, the test reaches a decision after n_P observations, where n_P is known in advance. The forecaster passes the test if and only if the history realized at time n_P is strictly more likely under P than under the law Q_μ. The prior μ is required to be sufficiently “uninformative” so that the induced law Q_μ is far from every law in the paradigm. As implied by Theorem 1, such a prior exists whenever the paradigm is testable.

The likelihood-ratio test is one of the most well known statistical tests. It is, therefore, reassuring that all testable paradigms can be unified under the same canonical family of tests.

The main idea behind the proof of Theorem 2 is to exploit a key relation between likelihood-ratio tests and the total-variation distance. To illustrate, let A^P be the set of paths where the law $P \in \Lambda$ passes the test (4), and consider the difference in probability $P(A^P) - Q_\mu(A^P)$. It can be shown that by taking n_P large enough, this difference approximates the distance $\|P - Q_\mu\|$ between the two measures. Hence, the event A^P must have probability higher than $1 - \epsilon$ under P, so the test accepts the truth with high probability. In addition, A^P must have probability at most ϵ under Q_μ. Because this is true for every P, then in the hypothetical scenario where the data were generated according to Q_μ, a forecaster would be unlikely to pass the test regardless of what law is announced and, therefore, regardless of whether she randomizes her prediction. It follows from this observation and from the fact that Q_μ is a mixture of laws in the paradigm, that against every fixed randomization ξ, there must exist some law P_ξ in the paradigm against which passing the test is unlikely. That is, the test cannot be manipulated.

11See, for instance, Lehmann and Romano (2005) for an introduction to the likelihood-ratio test.
3.3 The optimality of likelihood tests: A Neyman–Pearson lemma

Theorem 2 shows that simple likelihood-ratio tests can screen between informed and uninformed forecasters. However, it leaves open the possibility that such tests are inefficient in the number of observations they require. A natural question is whether there exist tests that for a fixed sample size can outperform likelihood-ratio tests in screening between experts and strategic forecasters. We now make this question precise by introducing a new ordering over tests.

Definition 5. Let Λ be a paradigm. Given tests T_1 and T_2, the test T_1 is **less manipulable than** T_2 if

$$
\sup_{\zeta \in \Delta(\Delta(\Omega))} \inf_{P \in \Lambda} E_{P \otimes \zeta}[T_1] \leq \sup_{\zeta \in \Delta(\Delta(\Omega))} \inf_{P \in \Lambda} E_{P \otimes \zeta}[T_2].
$$

Consider a strategic forecaster who is confronted with a test T and must choose whether to undertake the test. As discussed in Section 2, an uninformed forecaster participates only if the value $\sup_{\zeta \in \Delta(\Lambda)} \inf_{P \in \Lambda} E_{\zeta \otimes P}[T]$, which is proportional to the maxmin expected payoff from taking the test, is sufficiently large. So, the left-hand side of (5) is proportional to the highest expected payoff a strategic forecaster can guarantee when facing test T_1.

The ranking (5) requires that any strategic forecaster who finds it optimal not to participate in the test T_2 must also find it optimal not to participate in the test T_1. Hence, any uninformed forecaster who is screened out by the test T_2 is also screened out by the test T_1. In other terms, a less manipulable test has a greater deterrent effect against strategic forecasters.

A comparison between tests is more informative when some variables, such as the required number of observations, are kept fixed. To this end, we call a collection $(n_P)_{P \in \Lambda}$ of positive integers a **collection of testing times** if the map $P \mapsto n_P$ is measurable. A test T is **bounded** by the testing times $(n_P)_{P \in \Lambda}$ if $T(\cdot, P)$ is a function of the first n_P observations. The definition allows for the possibility that different predictions may need different sample sizes so as to be properly tested. Finally, given a class \mathcal{T} of tests, we say that a test T is **least manipulable in** \mathcal{T} if it belongs to \mathcal{T} and is less manipulable than any other test in the same class. We can now state the main result of this section.

Theorem 3. Fix a paradigm Λ, testing times $(n_P)_{P \in \Lambda}$, and a probability $\alpha \in [0, 1]$. There exist a prior $\mu^* \in \Delta(\Lambda)$, thresholds $(\lambda_P)_{P \in \Lambda}$ in \mathbb{R}_+, and a test T^* such that the following statements hold:

(i) We have $T^*(\omega, P) = 1$ if $P \in \Lambda$ and $P(\omega^{n_P}) > \lambda_P Q_{\mu^*}(\omega^{n_P})$.

(ii) We have $T^*(\omega, P) = 0$ if $P \notin \Lambda$ or $P(\omega^{n_P}) < \lambda_P Q_{\mu^*}(\omega^{n_P})$.

(iii) Test T^* is least manipulable in the class of tests that are bounded by (n_P) and accept the truth with probability at least α.

Theorem 3 is a general result that illustrates the optimality of likelihood-ratio tests. Given the number of data points n_P that the tester is willing to collect for each forecast...
P and given a lower bound α on the probability of accepting a true expert, there exists a likelihood-ratio test that is less manipulable than any other test that satisfies the same constraints.

The result does not demand any assumptions on the paradigm, which is not required to be testable. Another difference with the test introduced in Theorem 2 is the use of lawspecific thresholds λ_P that allow one to adjust the probability of accepting a true expert as a function of the desired level α of Type I errors.\(^{12}\)

The result is based on a novel connection between the problem of testing strategic forecasters and the statistical hypothesis testing literature. To illustrate this idea, consider the standard problem of testing a null hypothesis P_0 against an alternative hypothesis P_1, where P_0 and P_1 are two given probability measures over paths. To be clear, in such a context a (possibly randomized) hypothesis test is a function $\phi: \Omega \rightarrow [0, 1]$, where $\phi(\omega)$ is the probability of accepting P_0 given the path ω.

The test T^* is formally equivalent to a hypothesis test where the law produced by the expert plays the role of the null hypothesis, while the outside observer's prediction Q_{μ^*} plays the role of the alternative. The crucial difference with the standard hypothesis testing framework is that the two "hypotheses" P and Q_{μ^*} are not given exogenously: P is produced by a possibly strategic forecaster, while Q_{μ^*} is chosen by the tester.

The celebrated Neyman and Pearson lemma shows that given two hypotheses P_0 and P_1, and given an upper bound on the probability of Type I error, there exists a likelihood-ratio test between P_0 and P_1 that minimizes the probability of Type II errors. The proof of Theorem 3 applies this fundamental result to the problem of strategic forecasters. The proof proceeds in two steps. First, the belief μ^* is obtained as the solution of a nonlinear minimization problem over the space of priors. The test T^* is then defined by applying the Neyman–Pearson lemma to each pair of laws P and Q_{μ^*}. The key step is to show that because of the particular choice of μ^*, a test that minimizes the probability of Type II errors with respect to Q_{μ^*} is also a test that is least manipulable.

4. Examples and properties related to testability

In this section, we analyze examples of paradigms. For each example, we provide conditions under which the paradigm under consideration is testable.

4.1 Markov processes

We first consider Markov processes. The law of a Markov process is described by a transition probability $\pi: X \rightarrow \Delta(X)$ and an initial probability $\rho \in \Delta(X)$. We denote by $\Pi = \Delta(X)^X$ the set of all transition probabilities. Every pair (ρ, π) induces a Markov distribution $P_{\rho, \pi} \in \Delta(\Omega)$. We denote such a law by P_π whenever ρ is uniform.

Consider a Bayesian outside observer who is uncertain about the transition probability of the process and believes the true law to be P_π for some π. Let m be a Borel

\(^{12}\)The proof of Theorem 3 provides a complete description of the test T^*, and illustrates how the thresholds and the prior μ^* are computed. In the knife-edge case where $P(\omega^{\text{rep}}) = \lambda_P Q_{\mu^*}(\omega^{\text{rep}})$, the test is randomized. The use of randomized tests greatly simplifies the analysis and allows the tester to achieve a probability of accepting a true expert that is exactly equal to α.

probability measure over Π that for every $c \in [0, 1]$ and $x, y \in X$ satisfies $m(\{\pi : \pi(x)(y) = c\}) = 0$. In particular, m is nonatomic. By taking π to be distributed according to m, we obtain, implicitly, a prior μ defined over the set of Markov distributions such that the resulting law Q_μ satisfies

$$Q_\mu(E) = \int_{\Pi} P_\pi(E) \, dm(\pi)$$

for all $E \in \mathcal{B}$.

The next result follows by applying standard asymptotic results for Markov processes.

Proposition 1. The prior μ satisfies $\|Q_\mu - P_{\rho, \pi}\| = 1$ for all Markov $P_{\rho, \pi}$. Hence, the paradigm of Markov distributions is testable.

It follows from Theorem 2 that the paradigm of Markov distributions is testable by means of a likelihood-ratio test defined with respect to the law Q_μ. Under this test, forecasters’ predictions are compared against the predictions of a Bayesian who is endowed with a nonatomic prior over the true transition probabilities.

4.2 Asymptotic independence

There is considerable interest, in the analysis of economic time series, in dependence conditions that go beyond independence. A common assumption is *mixing*, which expresses the idea that two events are approximately independent provided they occur sufficiently far apart in time. Mixing is a generalization of the i.i.d. assumption that has found applications in econometrics and in the forecasting literature.14

For every $k \in \mathbb{N}$, denote by \mathcal{F}_k^∞ the σ-algebra generated by the coordinate random variables (Z_k, Z_{k+1}, \ldots), where, for every $m \geq 1$, $Z_m(\omega) = \omega_m$ is the outcome in period m. So \mathcal{F}_k^∞ is the collection of all events that do not depend on the first $k - 1$ realizations of the process. A law P is *mixing* if for every history ω^n, it satisfies $P(\omega^n) > 0$ and

$$\sup_{A \in \mathcal{F}_k^\infty} \left| P(A | \omega^n) - P(A) \right| \to 0 \text{ as } k \to \infty. \quad (6)$$

Under a mixing measure P, the information ω^n known at time n has a negligible effect on the probability $P(A)$ of an event A, if A depends on realizations of the process that occur only in the far enough future.

The fact that a paradigm consists of laws that are mixing does not, without further assumptions, imply that the same paradigm is testable. For instance, if the laws in Λ disagree only about the odds of the first realization ω_1 of the process, testability is not achieved. The next result provides an elementary richness condition that, when added to the mixing assumption, ensures that the paradigm is testable.

13For instance, if $X = \{x, y\}$, then we can define m by setting $\pi(x)(y)$ and $\pi(y)(x)$ to be independent and uniformly distributed over $(0, 1)$.

14See, for instance, Davidson (1994) and Nze and Doukhan (2004), and the reference therein, for the role of mixing and its generalizations in the analysis of time series, and see Giacomini and White (2006, Theorem 1) for an example of applications of mixing in the forecasting literature. In this section, we study mixing in the context of strategic forecasting.
For the next result, recall that the measures P_1, \ldots, P_n are orthogonal if they satisfy $\|P_i - P_j\| = 1$ for all $i \neq j$. We say that P_1, \ldots, P_n are strongly orthogonal if for every pair P_i and P_j, and every $k \in \mathbb{N}$, it holds that $\sup_{E \in \mathcal{F}_k} |P_i(E) - P_j(E)| = 1$.

That is, for any k, any two distinct measures P_i and P_j fully disagree about the probability of some event that does not depend on the first $k-1$ realizations. Thus, two laws are strongly orthogonal if they disagree about the probability of events that are arbitrarily far in the future.

Proposition 2. Let Λ be a paradigm such that each $P \in \Lambda$ is mixing and for every $n \in \mathbb{N}$, there are laws P_1, \ldots, P_n in Λ that are strongly orthogonal. Then Λ is testable.

In the proof, given n, we consider a prior μ_n that is uniform over n orthogonal laws P_1, \ldots, P_n in Λ, and we show that the induced distribution Q_{μ_n} has total-variation distance of at least $1/n$ from every law in Λ. Hence, by Theorem 2, a nonmanipulable test can be obtained by a likelihood-ratio test with respect to Q_{μ_n} for n suitably large.\(^{15}\)

The result implies, in particular, that the paradigm of all mixing processes is testable. This is because i.i.d. laws are mixing and the collection of all i.i.d. distributions satisfies the richness condition. Indeed, by the strong law of large numbers, any two distinct i.i.d. laws assign probability 1 to different limiting frequencies. They are, therefore, strongly orthogonal.

However, the main contribution of Proposition 2 is showing that any set of mixing distributions that satisfies the above richness condition is testable. This is an important difference, since, in applications, mixing is usually coupled with additional conditions that further restrict the paradigm under consideration (e.g., assumptions on the rate of convergence in (6) or parametric assumptions on the functional form of the process; see, for instance, Davidson 1994), and a subset of a testable paradigm is not necessarily testable.\(^{16}\)

The same observation also explains the relation with Al-Najjar et al. (2010), who study the paradigm of asymptotically reverse mixing. This paradigm contains deterministic, i.i.d. and Markov laws. In fact, it is even larger than the class of mixing distributions. Because a subset of a testable paradigm is not necessarily testable, the results in Al-Najjar et al. (2010) do not directly imply (nor are implied by) Propositions 1 or 2.

4.3 Uncertainty sets

A classic topic in the economics of uncertainty is the study of decision making in the presence of ambiguity about the correct law generating the data. We focus here on the approach taken by Hansen and Sargent (2001). In their work, they study non-Bayesian decision makers who are incapable or unwilling to formulate a single belief, and who

\(^{15}\)Notice that the mixing assumption is crucial for the result. The paradigm $\Lambda = \Delta(\Omega)$ trivially satisfies the richness assumption but is not testable.

\(^{16}\)The class of irreducible and aperiodic Markov processes consists of distributions that are mixing, and contains the class of all i.i.d. distributions. It is, therefore, testable by Proposition 2. Because it is a strict subset of the paradigm of Markov distributions, the result does not follow directly from Proposition 1.
instead consider a set of possible probabilistic models obtained by perturbing a baseline measure P. In this section, we ask whether such decision makers can, in principle, learn the correct odds of the process by testing the predictions of an expert. We will see that the answer is negative: a paradigm defined according to the methodology of Hansen and Sargent (2001) is, in general, not testable.

Given two laws $P, Q \in \Delta(\Omega)$, we denote by $D(P \| Q)$ the corresponding Kullback–Leibler divergence. It is defined as $D(P \| Q) = \int_{\Omega} \log(p/dQ) dP$ if P is absolutely continuous with respect to Q and as $D(P \| Q) = +\infty$ otherwise. The Kullback–Leibler divergence is a well known index that measures how difficult it is to distinguish the two distributions.

Hansen and Sargent (2001) study decision makers who consider a set of candidate laws for the process—a set of distributions that are close in Kullback–Leibler divergence to a reference measure P. The measure P can be seen as a first guess for the correct distribution of the process. In the next proposition, we study paradigms Λ that satisfy a similar property.

Proposition 3. Let $P \in \Delta(\Omega)$ and $\alpha > 0$. Any paradigm Λ that satisfies $P \in \Lambda$ and

$\Lambda \subseteq \{ \tilde{P} \in \Delta(\Omega) : D(\tilde{P} \| P) \leq \alpha \}$

is not testable.

Underlying the result is the following intuition. A key property of the Kullback–Leibler divergence is its convexity. This implies, in particular, that any measure Q_μ obtained by placing a prior over the paradigm also satisfies $D(Q_\mu \| P) \leq \alpha$. In turn, this upper bound makes the total variation distance $\|Q_\mu - P\|$ bounded away from 1. Because P is a law in the paradigm, it follows from Theorem 1 that Λ cannot be testable.

In the previous examples, a property essential for testability was the existence of a sufficiently rich set of laws in the paradigm that are far from each other in total variation. This property does not hold for a set Λ that satisfies the condition of Proposition 3, resulting in a paradigm that is not testable.

4.4 Maximal paradigms

We have taken as a datum that the paradigm Λ is correctly specified. A paradigm that is incorrectly specified exposes the tester to the risk of rejecting, out of hand, forecasters who are informed but whose predictions lie outside Λ. Adopting a larger paradigm mitigates such a risk. Olszewski (2015) posed the question of which testable paradigms are *maximal*, in the sense of not being included in any other testable paradigm. The next result provides an answer to this open question.

Proposition 4. Let $\epsilon \in (0, 1)$ and fix a law $P \in \Delta(\Omega)$. The paradigm

$\Lambda_P^\epsilon = \{ \tilde{P} \in \Delta(\Omega) : \|P - \tilde{P}\| > 1 - \epsilon \}$

is ϵ-testable and is not included in any testable paradigm.
The paradigm is constructed by simply fixing a distribution P and considering all laws which are sufficiently far from it. The resulting set Λ_P^ρ is not included in any testable paradigm.\footnote{As shown in the proof, Λ_P^ρ is not included in any δ-testable paradigm, for all $\delta > 0$ sufficiently small. However, we do not know if the class of paradigms that are testable, rather than ϵ-testable, and have the property of not being strictly included in any testable paradigm, admits a simple characterization. For example, given a nondegenerate law P, it can be shown that $\Lambda = \{\hat{P} \in \Delta(\Omega) : \|P - \hat{P}\| = 1\}$ is testable. However, Λ is strictly included in the testable paradigm $\Lambda' = \{\hat{P} \in \Delta(\Omega) : \|P(\cdot | E) - \hat{P}\| = 1\}$, where E is any event such that $P(E) \in (0, 1)$, since Λ' contains the measure $P(\cdot | E^c)$ but Λ does not.}

As shown in the proof of Proposition 4, P equals the law Q_μ induced by some prior μ that assigns probability 1 to the closure of Λ_P^ρ. Therefore, by Theorem 2 and the definition of Λ_P^ρ, the law P can be used to construct a nonmanipulable likelihood-ratio test where it plays the role of a benchmark against which forecasters’ predictions are compared.

5. Discussion and extensions

5.1 Nonasymptotic and prequential tests

We now consider the case of nonasymptotic tests where at most n observations are available to the tester. A paradigm is ϵ-testable in n periods if it admits a test T such that $T(\cdot, P) = F_n$-measurable for every P, accepts the truth with probability at least $1 - \epsilon$, and is ϵ-nonmanipulable. The next result shows how Theorems 1 and 2 can be adapted to nonasymptotic tests. Given n, we define the semimetric $\rho_n(Q, P) = \max_{E \in F_n} |Q(E) - P(E)|$.

Proposition 5. Let Λ be a paradigm. If Λ is ϵ-testable in n periods, then there exists a prior $\mu \in \Delta(\overline{\Lambda})$ such that $\rho_n(Q_\mu, P) > 1 - 2\epsilon$ for every $P \in \Lambda$. Conversely, if there exists a prior $\mu \in \Delta(\overline{\Lambda})$ with the property that $\rho_n(Q_\mu, P) > 1 - \epsilon$ for every $P \in \Lambda$, then the test

$$T(\omega, P) = \begin{cases} 1 & \text{if } P \in \Lambda \text{ and } P(\omega^n) > Q_\mu(\omega^n) \\ 0 & \text{otherwise} \end{cases}$$

accepts the truth with probability at least $1 - \epsilon$ and is ϵ-nonmanipulable.

Hence, similarly to Theorem 1, testability in n periods is equivalent to a high distance between the law Q_μ induced by some prior μ and any law in the testable paradigm. Conversely, if such a prior exists, then restricting attention to likelihood-ratio tests is without loss of generality.

An important distinction in the literature on empirical tests is between prequential and non-prequential tests. Consider, for simplicity, the case where in every period, only two outcomes, 0 or 1, can occur. Recall that for every path ω, we denote by $Z_k(\omega) \in \{0, 1\}$ the corresponding outcome in period k. A test T is prequential if for every path ω and every announced law P, the result $T(\omega, P)$ is a function of the one-step ahead predictions generated by P along the realized sequence ω. This is the sequence of probabilities

$$P(Z_1 = 1), P(Z_2 = 1|\omega^1), P(Z_3 = 1|\omega^2), \ldots$$

(7)
obtained by conditioning, in every period t, on the realized history ω_t. For instance, (7) might correspond to the sequence of rain probabilities reported each day by a weather forecaster.

Many tests used in practice, such as calibration, are prequential. A notable feature of the test described in Proposition 5 is that it shares this property. Because the prior μ and the number of observations n depend on the paradigm but not on the prediction P, the result of the test is a function only of the probability $P(\omega^n)$ assigned by the forecaster to the realized history. By the law of total probability, $P(\omega^n)$ can be computed from the first n terms in the sequence (7) (provided the history ω^n has positive probability under P). Hence, the test can be implemented by asking the forecaster to simply report one-step-ahead probabilities, rather than to announce a fully specified measure at time 0.

The existing literature also studies prequential tests. Consider the unrestricted paradigm $\Lambda = \Delta(\Omega)$. In this case, as shown by Shmaya (2008), every prequential test is manipulable, even if the test is not required to accept or to reject in finite time. However, there exist tests that are not prequential and not finite, but cannot be manipulated (see Olszewski 2015). There are, in addition, specific examples of paradigms that can be tested by means of a nonmanipulable prequential test, as shown by Sandroni and Shmaya (2014).18

In contrast to these results, Proposition 5 shows that for nonasymptotic tests, the requirement of a prequential test is without loss of generality. A paradigm that is ϵ-testable in n periods remains so even when restricting attention to prequential tests.

5.2 Maxmin and strategic forecasters

As discussed in Section 4, a strategic but uninformed forecaster evaluates a strategy ζ as

$$\inf_{P \in C} \mathbb{E}_{P \otimes \zeta} [wT + l(1 - T)],$$

where $C \subseteq \Delta(\Omega)$ is a set of laws. So far, we have considered the case where C is equal to the paradigm. However, an uninformed forecaster may adopt a less conservative decision making criterion.

To this end, let d be a distance that metrizes the weak* topology on $\Delta(\Omega)$, and for every law $P \in \Delta(\Omega)$, denote by $B_\delta(P)$ the open ball of radius δ around P. We consider the specification

$$C = B_\delta(P_0) \cap \Lambda \quad \text{for some } P_0 \in \Lambda. \quad (8)$$

So, under (8), an uninformed forecaster evaluates a strategy by considering the worst case expected payoff with respect to laws that are within distance δ from a reference measure P_0. Similar definitions appear in robust statistics Huber (1981) and economics (Bergemann and Schlag 2011, and Babaioff et al. 2011). We do not assume that P_0 coincides with the correct law generating the data or that P_0 is known to the tester.

18Sandroni and Shmaya (2014) study the paradigm of exchangeable distributions. This is convex and compact, and, hence, not testable according to the definition of this paper. Their result shows that, surprisingly, such a paradigm becomes testable when one allows for nonfinite and prequential tests.
The definition of testable paradigm can now be strengthened as follows.

Definition 6. A paradigm \(\Lambda \) is uniformly testable with precision \(\delta \) if for every \(\epsilon > 0 \), there exists a finite test \(T \) such that the following statements hold:

(i) Test \(T \) accepts the truth with probability at least \(1 - \epsilon \).

(ii) For every strategy \(\zeta \) and every \(P_0 \in \Lambda \), there exists a law \(P_\zeta \in \Lambda \cap B_\delta(P_0) \) such that

\[
\mathbb{E}_{P_\zeta \otimes \zeta}[T] \leq \epsilon.
\]

Thus, the test passes a true expert with high probability. In addition, for every strategy \(\zeta \), there is a law \(P_\zeta \) in the paradigm under which rejection is likely. Given a reference law \(P_0 \), the measure \(P_\zeta \) can be chosen to belong to \(\Lambda \cap B_\delta(P_0) \). Hence, the test guarantees that the value (8) that an uninformed forecaster can expect from participating in the test is negative whenever \(\epsilon \) is sufficiently small. So the test can screen between the two types of forecasters.

While a complete characterization of paradigms that fulfill the requirements of Definition 6 is beyond the scope of this paper, the next proposition provides a basic sufficient condition for a paradigm to be uniformly testable.

Proposition 6. Let \(\Lambda \) be a paradigm. If there exists a prior \(\mu \in \Delta(\Lambda) \) with support \(\Lambda \) and such that \(Q_\mu \) satisfies

\[
\|Q_\mu - P\| = 1
\]

for every \(P \in \Lambda \), then \(\Lambda \) is uniformly testable with precision \(\delta > 0 \).

The most significant difference with respect to Theorem 1 is the assumption that the prior \(\mu \) has full support over the paradigm. Following the interpretation presented in Section 2, a Bayesian outside observer endowed with such a prior \(\mu \) is “cautious,” in the sense of assigning positive probability to any open set of possible laws.

For a simple example of prior \(\mu \) that satisfies this property, consider the case where the set of outcomes is binary, i.e., \(X = \{0, 1\} \), and \(\Lambda \) is the paradigm of all i.i.d. distributions. In this case, the set \(\Lambda \) is closed, and a prior \(\mu \) can be described by a probability measure \(m \) over \([0, 1]\). If \(m \) is uniform over the interval \([0, 1]\), then \(\mu \) satisfies \(\|Q_\mu - P\| = 1 \) for every \(P \in \Lambda \), by the strong law of large numbers. Moreover, \(\mu \) has support equal to \(\Lambda \) and, hence, satisfies the conditions of Proposition 6. These claims are formally proved in Appendix A.6.

Appendix A: Appendix

A.1 Preliminaries

The space of paths \(\Omega \) is endowed with the product topology. Hence, a function that is \(F_n \)-measurable for some \(n \) is also continuous. This implies that for every finite test \(T \) and any law \(P \in \Delta(\Omega) \), the function \(Q \mapsto \mathbb{E}_Q[T(\cdot, P)] \), \(Q \in \Delta(\Omega) \), is continuous. We denote by \(\mathcal{H}_n \) the set of histories \(\omega^n \) of length \(n \).

Recall that the space \(\Delta(\Delta(\Omega)) \) is endowed with the weak* topology. As proved in Phelps (2001, Proposition 1.1), the function \(\mu \mapsto Q_\mu \) assigning to each prior \(\mu \in \Delta(\Delta(\Omega)) \)
its barycenter Q_μ is continuous. In particular, given a continuous function $\psi : \Omega \to \mathbb{R}$, the map $\mu \mapsto \int_\Omega \psi(\omega) \, dQ_\mu(\omega)$, $\mu \in \Delta(\Delta(\Omega))$, is continuous. In addition, Q_μ satisfies $\int_\Omega \psi(\omega) \, dQ_\mu(\omega) = \int_{\Delta(\Omega)} (\int_\Omega \psi(\omega) \, dQ(\omega)) \, d\mu(Q)$ for every bounded measurable function ψ. Given a measurable subset Γ of $\Delta(\Omega)$, denote by $\Delta(\Gamma)$ the set of probability measures $\mu \in \Delta(\Delta(\Omega))$ that assign probability 1 to Γ. The space $\Delta(\Gamma)$ is compact (see Aliprantis and Border 2006, Chapter 16).

Lemma 1. Let T be a finite test. For every strategy ζ, the function $P \mapsto \mathbb{E}_{P \otimes \zeta}[T]$, $P \in \Delta(\Omega)$, is continuous.

Proof. Let (ω_k) be a sequence in Ω converging to a path ω. Given a law P, the function $T(\cdot, P)$ is continuous, so $T(\omega_k, P) \to T(\omega, P)$ as $k \to \infty$. Given a strategy ζ, Lebesgue's convergence theorem implies $\mathbb{E}_\zeta[T(\omega_k, \cdot)] \to \mathbb{E}_\zeta[T(\omega, \cdot)]$ as $k \to \infty$. Hence, for every strategy ζ, the map $\omega \mapsto \mathbb{E}_\zeta[T(\omega, \cdot)]$, $\omega \in \Omega$, is continuous. Fubini's theorem implies $\mathbb{E}_{P \otimes \zeta}[T] = \int_\Omega \mathbb{E}_\zeta[T(\omega, \cdot)] \, dP(\omega)$. Therefore, for each P, $\int_\Omega \mathbb{E}_\zeta[T(\omega, \cdot)] \, dP(\omega)$ is the expectation with respect to P of a continuous function. It follows from the definition of weak* topology that the map $P \mapsto \mathbb{E}_{P \otimes \zeta}[T]$, $P \in \Delta(\Omega)$, is continuous. □

A.2 Proving Theorems 1 and 2

Proof of Theorems 1 and 2. The first half of the proof shows the necessity part of Theorem 1. The second half establishes Theorem 2 and the sufficiency part of Theorem 1.

Assume Λ is testable. Fix $\epsilon > 0$ and let T be a test that satisfies the conditions of Definition 4. Given a measure $P \in \Delta(\Omega)$ and a strategy ζ, let $V(P, \zeta) = \mathbb{E}_{P \otimes \zeta}[T]$. The map V is affine in each argument and for each strategy ζ, the map $V(\cdot, \zeta)$ is continuous by Lemma 1. Since T is ϵ-nonmanipulable, then

$$\sup_{\zeta \in \Delta(\Delta(\Omega))} \inf_{P \in \Lambda} V(P, \zeta) \leq \epsilon. \quad (9)$$

Let $\Delta_0(\Lambda) \subseteq \Delta(\Lambda)$ be the subset of priors on Λ with finite support. We have

$$\sup_{\zeta \in \Delta(\Delta(\Omega))} \inf_{P \in \Lambda} V(P, \zeta) = \sup_{P \in \Lambda} \inf_{\zeta \in \Delta(\Delta(\Omega))} V(Q_\mu, \zeta) = \sup_{\zeta \in \Delta(\Delta(\Omega))} \min_{\mu \in \Delta_0(\Lambda)} V(Q_\mu, \zeta). \quad (10)$$

The first equality follows immediately from the definition of Q_μ and the affinity of $V(\cdot, \zeta)$. The second equality follows from the continuity of the map $\mu \mapsto V(Q_\mu, \zeta)$, $\mu \in \Delta(\Delta(\Omega))$, together with the fact that $\Delta_0(\Lambda)$ is dense in $\Delta(\Lambda)$ (as implied by Aliprantis and Border 2006, Theorem 15.10) and that $\Delta(\Lambda)$ is compact.

The space $\Delta(\Lambda)$ is compact and convex, and for every ζ, the map $\mu \mapsto V(Q_\mu, \zeta)$, $\mu \in \Delta(\Delta(\Omega))$, is continuous (by Lemma 1) and affine. In addition, $\Delta(\Delta(\Omega))$ is convex and for every μ, the map $V(Q_\mu, \cdot)$ is affine. We can, therefore, apply Fan's minmax theorem Fan (1953) to obtain the equality

$$\sup_{\zeta \in \Delta(\Delta(\Omega))} \min_{\mu \in \Delta(\Lambda)} V(Q_\mu, \zeta) = \min_{\mu \in \Delta(\Lambda)} \sup_{\zeta \in \Delta(\Delta(\Omega))} V(Q_\mu, \zeta). \quad (11)$$
For every \(\mu \), the function \(V \) satisfies \(V(Q_\mu, \xi) = \int_\Delta(\Omega) \mathbb{E}_{Q_\mu}[T(\cdot, P)] d\xi(P) \) by Fubini's theorem, so \(\sup_{\xi \in \Delta(\Delta(\Omega))} V(Q_\mu, \xi) = \sup_{P \in \Delta(\Omega)} V(Q_\mu, \delta_P) \). Hence, the right-hand side of (11) can be written as

\[
\min_{\mu \in \Delta(\bar{\Lambda})} \sup_{\xi \in \Delta(\Delta(\Omega))} V(Q_\mu, \xi) = \min_{\mu \in \Delta(\bar{\Lambda})} \sup_{P \in \Delta(\Omega)} V(Q_\mu, \delta_P) = \min_{\mu \in \Delta(\bar{\Lambda})} \mathbb{E}_{Q_\mu}[T(\cdot, P)].
\]

Taking together, (9), (10), (11), and (12) prove the existence of a prior \(\mu \in \Delta(\bar{\Lambda}) \) such that

\[
\sup_{\xi \in \Delta(\Delta(\Omega))} \int_{\Omega} \frac{dQ_\mu}{Q_\mu} = \sup_{P \in \Delta(\Omega)} \mathbb{E}_{Q_\mu}[T(\cdot, P)] \leq \varepsilon.
\]

Because the test accepts the truth with probability at least \(1 - \varepsilon \), it follows that

\[
\mathbb{E}_P[T(\cdot, P)] - \mathbb{E}_{Q_\mu}[T(\cdot, P)] \geq 1 - 2\varepsilon \quad \text{for all } P \in \Lambda.
\]

It follows from standard arguments that the (normalized) total variation distance \(\|Q_\mu - P\| \) satisfies

\[
\|Q_\mu - P\| = \sup_{\phi} \left| \int_{\Omega} \phi dQ_\mu - \int_{\Omega} \phi dP \right|,
\]

where the supremum is taken over all measurable functions \(\phi : \Omega \to [0, 1] \).\(^{19}\)

By letting \(\phi = T(\cdot, P) \), it follows from (13) that \(\|Q_\mu - P\| \geq 1 - 2\varepsilon \) for every \(P \in \Lambda \). Since \(\varepsilon \) is arbitrary, the first part of the proof is concluded.

Now consider a prior \(\mu \in \Delta(\bar{\Lambda}) \) such that \(\|Q_\mu - P\| > 1 - \varepsilon \) for all \(P \in \Lambda \). Fix a measure \(P \in \Lambda \). For any \(n \),

\[
\max_{E \in \mathcal{F}_n} Q_\mu(E) - P(E) = \max_{E \in \mathcal{F}_n} \left| Q_\mu(E) - P(E) \right|,
\]

since \(P(E) - Q_\mu(E) = Q_\mu(E^c) - P(E^c) \). As shown in Halmos (1950, 13D),

\[
\max_{E \in \mathcal{F}_n} \left| Q_\mu(E) - P(E) \right| \uparrow \|Q_\mu - P\|
\]

as \(n \to \infty \).\(^{20}\) Therefore, we can conclude that for each \(P \in \Lambda \) the number

\[
n_P = \min_{E \in \mathcal{F}_n} \left\{ n : \max_{E \in \mathcal{F}_n} Q_\mu(E) - P(E) > 1 - \varepsilon \right\}
\]

\(^{19}\)To see this, let \(R = 0.5Q_\mu + 0.5P \) and define \(E \) as the event where \(dQ_\mu/dR \geq dP/dR \), where \(dQ_\mu/dR \) and \(dP/dR \) denote the corresponding Radon--Nikodym derivatives. Given a measurable \(\phi : \Omega \to [0, 1] \), we have

\[
\int_{\Omega} \phi dQ_\mu - \int_{\Omega} \phi dP = \int_{\Omega} \phi \left(\frac{dQ_\mu}{dR} - \frac{dP}{dR} \right) dR \leq \int_{\Omega} \left(\frac{dQ_\mu}{dR} - \frac{dP}{dR} \right) dR \leq \|Q_\mu - P\|
\]

and

\[
\int_{\Omega} \phi dP - \int_{\Omega} \phi dQ_\mu = \int_{\Omega} \phi \left(\frac{dP}{dR} - \frac{dQ_\mu}{dR} \right) dR \leq \int_{\Omega} \left(\frac{dP}{dR} - \frac{dQ_\mu}{dR} \right) dR \leq \|Q_\mu - P\|.
\]

It follows that \(\sup_{\phi} \left| \int_{\Omega} \phi dQ_\mu - \int_{\Omega} \phi dP \right| \leq \|Q_\mu - P\| \). The converse inequality is obvious.

\(^{20}\)We provide here a sketch of the proof. Let \(\mathcal{F} = \bigcup_n \mathcal{F}_n \). It can be verified that for every \(Q \in \Delta(\Omega) \), the collection of events \(E \) for which there exists a sequence \((F_m) \) in \(\mathcal{F} \) such that \(\lim_m Q(E \Delta F_m) = 0 \) is a \(\sigma \)-algebra containing \(\mathcal{F} \). Hence, it equals \(\mathcal{B} \). Fix \(B \in \mathcal{B} \) and let \((E_m) \) be a sequence in \(\mathcal{F} \) such that \(\lim_m (P + Q_\mu)(B \Delta E_m) = 0 \). Hence, \(\lim_m |P(B) - P(E_m)| \leq \lim_m P(B \Delta E_m) = 0 \). Similarly, \(\lim_m |Q_\mu(B) - Q_\mu(E_m)| = 0 \).
is well defined. Consider now the test
\[
T(\omega, P) = \begin{cases}
1 & \text{if } P \in \Lambda \text{ and } P(\omega^{nP}) > Q_\mu(\omega^{nP}) \\
0 & \text{otherwise.}
\end{cases}
\]

We now prove that \(T \) is measurable. First we show that for every \(k \in \mathbb{N} \), the set \(\{ P \in \Lambda : n_P = k \} \) is measurable. For every \(n \) and every \(E \in \mathcal{F}_n \), the function \(P \mapsto P(E), P \in \Delta(\Omega), \) is continuous. Because \(\mathcal{F}_n \) is finite, it follows that \(\varphi_n(P) = \max_{E \in \mathcal{F}_n} Q_\mu(E) - P(E), P \in \Delta(\Omega), \) is measurable. Since \(\Lambda \) is measurable, the restriction of \(\varphi_n \) on \(\Lambda \) is also measurable. The set \(\{ P \in \Lambda : n_P = k \} \) can be written as \(\{ P \in \Lambda : \varphi_k(P) > 1 - \epsilon \} \) if \(k = 1 \) or as the intersection
\[
\bigcap_{1 \leq n < k} \{ P \in \Lambda : \varphi_n(P) \leq 1 - \epsilon \} \cap \{ P \in \Lambda : \varphi_k(P) > 1 - \epsilon \}
\]
if \(k > 1 \). Hence, \(\{ P \in \Lambda : n_P = k \} \) is measurable. For each path \(\omega \), the function \(T(\omega, \cdot) \) is measurable: For each \(n \), the set \(\{ P \in \Delta(\Omega) : T(\omega, P) = 1 \} \) is given by the union over \(k > 1 \) of all sets of the form
\[
\{ P \in \Delta(\Omega) : P(\omega^k) - Q_\mu(\omega^k) > 0 \} \cap \{ P \in \Lambda : n_P = k \}.
\]

It follows that \(T(\omega, \cdot) \) is measurable. For each \(\omega \in \Omega \) and \(P \in \Delta(\Omega), \) the function \(T(\cdot, P) \) is continuous and \(T(\omega, \cdot) \) is measurable. That is, \(T \) is a Carathéodory function. It follows then from Lemma 4.51 in Aliprantis and Border (2006) that \(T \) is measurable.

We now show that \(P(\{ \omega : T(\omega, P) = 1 \}) > 1 - \epsilon \) and \(Q_\mu(\{ \omega : T(\omega, P) = 1 \}) < \epsilon \) for each \(P \in \Lambda \). The proof follows Lehmann and Romano (2005, Chapter 16). Let \(P \in \Lambda \) and denote by \(A_P \) the set \(\{ \omega : P(\omega^{nP}) > Q_\mu(\omega^{nP}) \} \). Recall that \(\mathcal{H}_{nP} \) is the set of all histories of length \(n_P \). For every \(E \in \mathcal{F}_{nP} \), we have
\[
P(E) - Q_\mu(E) = \sum_{\omega^{nP} \in \mathcal{H}_{nP} : \omega^{nP} \subseteq E} P(\omega^{nP}) - Q_\mu(\omega^{nP})
\leq \sum_{\omega^{nP} \in \mathcal{H}_{nP} : \omega^{nP} \subseteq E \cap A_P} P(\omega^{nP}) - Q_\mu(\omega^{nP})
\leq \sum_{\omega^{nP} \in \mathcal{H}_{nP} : \omega^{nP} \subseteq A_P} P(\omega^{nP}) - Q_\mu(\omega^{nP}).
\]

Therefore, \(P(A_P) - Q_\mu(A_P) = \max_{E \in \mathcal{F}_{nP}} P(E) - Q_\mu(E) > 1 - \epsilon \). So \(P(A_P) > 1 - \epsilon \) (in particular, the test \(T \) accepts the truth with probability at least \(1 - \epsilon \)) and \(Q_\mu(A_P) < \epsilon \).

Because, for every \(m, \)
\[
|P(B) - Q_\mu(B)| \leq |P(B) - P(E_m)| + |P(E_m) - Q_\mu(E_m)| + |Q_\mu(B) - Q_\mu(E_m)|.
\]
then letting \(m \to \infty \), it follows that \(|P(B) - Q_\mu(B)| \leq \sup_{F \in \mathcal{F}} |P(F) - Q_\mu(F)| \). Because \(B \) is arbitrary, then \(\|P - Q_\mu\| \leq \sup_{F \in \mathcal{F}} |P(F) - Q_\mu(F)| \leq \|P - Q_\mu\| \). Since \(\sup_{F \in \mathcal{F}} |P(F) - Q_\mu(F)| \) is uniformly bounded, the result is established.
We can now show that T is ϵ-nonmanipulable. For every strategy ζ, we have

$$V(Q_\mu, \zeta) = \int_{\Delta(\Omega)} Q_\mu(A^P) d\zeta(P) < \epsilon. \quad (14)$$

Using again the fact that $\mu \mapsto V(Q_\mu, \zeta)$ is continuous and $\Delta_o(\Lambda)$ is dense in $\Delta(\Lambda)$, we can find a prior $\mu_\zeta \in \Delta_o(\Lambda)$ such that

$$V(Q_{\mu_\zeta}, \zeta) = \sum_{P \in \Lambda} \mu_\zeta(P) V(P, \zeta) < \epsilon.$$

Hence, there must exist some law $P_\zeta \in \Lambda$ in the support of μ_ζ such that $V(P_\zeta, \zeta) < \epsilon$. Because ϵ is arbitrary, we conclude that Λ is testable.

Proof of Corollary 1. As shown in Phelps (2001, Proposition 1.2), a law P belongs to the weak*-closed convex hull of Λ if and only if there exists a prior $\mu \in \Delta(\Lambda)$ such that $P = Q_\mu$. The result now follows immediately from Theorem 1 and the definition of I.

A.3 Proving Theorem 3

The next result is a version of the Neyman–Pearson lemma. The standard proof parallels the proof of Theorem 3.2.1 in Lehmann and Romano (2005) and is, therefore, omitted.

Theorem 4 (Neyman–Pearson Lemma). Let $P_0, P_1 \in \Delta(\Omega)$. Given $n \in \mathbb{N}$ and $\alpha \in [0, 1]$, let Φ be the set of \mathcal{F}_n-measurable functions $\phi : \Omega \to [0, 1]$ that satisfy $E P_0[\phi] \geq \alpha$. Let

$$\lambda = \sup\{k \in \mathbb{R} : P_0\{\omega : P_0(\omega^n) \geq k P_1(\omega^n)\} \geq \alpha\}$$

and, letting $0 \cdot \infty = 0$, define

$$\delta = P_0\{\omega : P_0(\omega^n) > \lambda P_1(\omega^n)\}$$

$$\gamma = P_0\{\omega : P_0(\omega^n) = \lambda P_1(\omega^n)\}.$$

The function

$$\phi^*(\omega) = \begin{cases} 1 & \text{if } P_0(\omega^n) > \lambda P_1(\omega^n) \\ \frac{\alpha - \delta}{\gamma} & \text{if } P_0(\omega^n) = \lambda P_1(\omega^n) \text{ and } \gamma > 0 \\ 0 & \text{otherwise} \end{cases}$$

is a solution to $\min_{\phi \in \Phi} E P_1[\phi]$.

Proof of Theorem 3. Fix a paradigm Λ, testing times (nP), and a probability $\alpha \in [0, 1]$. Denote by \mathcal{T} the class of finite tests that are bounded by (nP) and accept the truth with probability at least α.

For every $P \in \Lambda$, let Φ_P be the set of \mathcal{F}_{nP}-measurable functions $\phi : \Omega \to [0, 1]$ that satisfy $E P[\phi] \geq \alpha$. Define the function $f : \Delta(\Lambda) \to \mathbb{R}$ as

$$f(\mu) = \sup_{P \in \Lambda} \min_{\phi \in \Phi_P} E Q_\mu[\phi].$$
The function f is lower semicontinuous: Fix $P \in \Lambda$. The set Φ_P can be identified with a subset of $[0, 1]^m$, where m is the cardinality of the set of histories of length n_P. It is then immediate to verify that Φ_P is compact. It follows from the theorem of the maximum that the map $Q \mapsto \min_{\phi \in \Phi_P} E_Q[\phi]$, $Q \in \Delta(\Omega)$, is continuous. Thus, the continuity of the map $\mu \mapsto Q_\mu$, $\mu \in \Delta(\Delta(\Omega))$, implies that the map $\mu \mapsto \min_{\phi \in \Phi_P} E_{\mu} [\phi]$, $\mu \in \Delta(\Delta(\Omega))$, is a composition of continuous functions. Thus, f is a supremum of continuous functions. Hence, f is lower semicontinuous and so attains a minimum on $\Delta(\Omega)$. Let μ^* be a prior that minimizes f.

Denote by ϕ^*_P the test obtained by applying the Neyman–Pearson lemma when setting $P_0 = P$, $P_1 = Q_{\mu^*}$, and $n = n_P$ in the statement of Theorem 4. Denote also by λ_P, δ_P, and γ_P the corresponding quantities. Let T^* be the test defined as

$$T^*(\omega, P) = \begin{cases} \phi^*_P(\omega) & \text{if } P \in \Lambda \\ 0 & \text{if } P \notin \Lambda. \end{cases}$$

We now show that T^* is a well defined test belonging to \mathcal{T}. By definition, the test is finite and accepts the truth with probability at least α. It remains to show it is measurable. By Lemma 4.51 in Aliprantis and Border (2006), it is enough to prove that $T(\omega, \cdot)$ is measurable for every ω. We first show that the map $P \mapsto \lambda_P$, $P \in \Lambda$, mapping each measure to the corresponding threshold $\lambda_P \in [0, \infty]$ in the likelihood-ratio test, is measurable. For every $k \in \mathbb{R}$, let

$$\Gamma_k = \{ P \in \Lambda : P\{ \omega : P(\omega^m) \geq k Q_{\mu^*}(\omega^m) \} \} \geq \alpha \}.$$

Notice that Γ_k can be written as

$$\bigcup_{m \in \mathbb{N}} \{ P \in \Lambda : n_P = m \} \cap \{ P \in \Lambda : P\{ \omega : P(\omega^m) \geq k Q_{\mu^*}(\omega^m) \} \} \geq \alpha \}.$$

Each set $\{ P \in \Lambda : n_P = m \}$ is measurable. For each ω^m, the function $P \mapsto P(\omega^m)$, $P \in \Delta(\Omega)$, is continuous. So, for each history ω^m, the set

$$Y_{\omega^m} = \{ P \in \Lambda : P(\omega^m) \geq k Q_{\mu^*}(\omega^m) \}$$

is measurable. Let $1_{Y_{\omega^m}}$ be the indicator function of Y_{ω^m} and notice that

$$P(\{ \omega : P(\omega^m) \geq k Q_{\mu^*}(\omega^m) \}) = \sum_{\omega^m \in H_m} P(\omega^m) 1_{Y_{\omega^m}}(P),$$

where the latter is a measurable function of P. It then follows that each set of the form

$$\{ P \in \Lambda : P(\{ \omega : P(\omega^m) \geq k Q_{\mu^*}(\omega^m) \}) \} \geq \alpha \}$$

is measurable. Thus, Γ_k is measurable. This in turn yields that for each k, the function $P \mapsto k 1_{\Gamma_k}(P)$ is measurable. Notice that $\lambda_P = \sup_{k \in \mathbb{Q}} k 1_{\Gamma_k}(P)$ for every P. Thus, we can conclude that the function $P \mapsto \lambda_P$ (mapping $\Delta(\Omega)$ to $\mathbb{R} \cup \{ \infty \}$) is measurable. Now fix a path ω. An argument analogous to that used to prove the measurability of the set Γ_k shows that $\{ P \in \Lambda : P(\omega^m) > \lambda_P Q_{\mu^*}(\omega^m) \}$ and $\{ P \in \Lambda : P(\omega^m) = \lambda_P Q_{\mu^*}(\omega^m) \}$ are
measurable, and that δ_P and γ_P are measurable functions of P. It is then routine to verify that $T(\omega, \cdot)$ is measurable. We can, therefore, conclude that T is a well defined test belonging to \mathcal{T}.

We now show that T^* is a least manipulable test in the class \mathcal{T}. Let $T \in \mathcal{T}$. As in the proof of Theorems 1 and 2, given any test $T \in \mathcal{T}$, we can apply Fan's minmax theorem to conclude

$$\sup_{\xi \in \Delta(\Lambda)} \inf_{P \in \Lambda} \mathbb{E}_{P \otimes \xi}[T] = \min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Delta(\Omega)} \mathbb{E}_P[T(\cdot, P)].$$

It is without loss of generality to assume that $T(\omega, P) = 0$ for every ω and $P \notin \Lambda$, so the expression can be simplified to

$$\sup_{\xi \in \Delta(\Lambda)} \inf_{P \in \Lambda} \mathbb{E}_{P \otimes \xi}[T] = \min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Lambda} \mathbb{E}_P[T(\cdot, P)]. \tag{15}$$

The test T is finite and accepts the truth with probability at least α, so it satisfies $T(\cdot, P) \in \Phi_P$ for every $P \in \Lambda$. Thus,

$$\min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Lambda} \mathbb{E}_P[T(\cdot, P)] \geq \min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Lambda} \min_{\phi \in \Phi_P} \mathbb{E}_P[T(\cdot, P)]$$

$$= \min_{\mu \in \Delta(\Lambda)} f(\mu)$$

$$= \sup_{P \in \Lambda} \min_{\phi \in \Phi_P} \mathbb{E}_P[T(\cdot, P)].$$

The essential idea is that the test T^* has been defined to satisfy, for every $P \in \Lambda$,

$$\mathbb{E}_{Q^*}[T^*(\cdot, P)] = \min_{\phi \in \Phi_P} \mathbb{E}_{Q^*}[\phi].$$

This means that

$$\min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Lambda} \mathbb{E}_P[T(\cdot, P)] \geq \sup_{P \in \Lambda} \min_{\phi \in \Phi_P} \mathbb{E}_P[T^*(\cdot, P)]$$

$$= \sup_{P \in \Lambda} \min_{\mu \in \Delta(\Lambda)} \sup_{P \in \Lambda} \mathbb{E}_P[T^*(\cdot, P)].$$

By applying (15) to both T and T^*, we now obtain

$$\sup_{\xi \in \Delta(\Lambda)} \inf_{P \in \Lambda} \mathbb{E}_{P \otimes \xi}[T] \geq \sup_{\xi \in \Delta(\Lambda)} \inf_{P \in \Lambda} \mathbb{E}_{P \otimes \xi}[T^*].$$

Hence, T^* is less manipulable than T. \qed

A.4 Proving Propositions 1–4

Proof of Proposition 1. Fix two outcomes $x, y \in X$. Let $N_n(\omega)$ be the number of periods where outcome x occurs along the path ω up to time n, and let $N_{\infty}(\omega) =$
sup_\text{n} N_\text{n}(\omega). In addition, define N_\text{n}[x \rightarrow y](\omega) to be the number of periods, up to time n, where the outcome x is followed in the next period by y.

For every transition \pi, let E_\pi be the set of paths \omega such that N_\text{N}(\omega) = 1 and

\[
\lim_{n\rightarrow\infty} \frac{N_\text{n}[x \rightarrow y](\omega)}{N_\text{n}(\omega)} = \pi(x)(y).
\]

It is a standard result that every Markov P_\rho,\pi satisfies P_\rho,\pi([N_\text{N} < \infty] \cup E_\pi) = 1. We include here a proof for completeness. Let A = [N_\text{N} < \infty] \cup E_\pi and notice that P_\rho,\pi(A) = \sum_{z \in X} P_\rho,\pi((\omega_1 = z)) P_{z,\pi}(A), where P_{z,\pi} denotes the Markov law with transition \pi and initial probability putting mass 1 on z. Write X = S \cup R_1 \cup \cdots \cup R_N, where S is the set of transient states and (R_i) are disjoint maximal irreducible sets of states (see Theorem 6.2.13 in Dembo 2015). If x is transient, then P_\rho,\pi([N_\text{N} < \infty]) = 1; hence, P_\rho,\pi(A) = 1 as desired. Assume x is transient and x \in R_1 without loss of generality. If z \in R_i and i > 1, then P_{z,\pi}([N_\text{N} = 0]) = 1. So P_{z,\pi}(A) = 1. If z \in R_1, then it is well known that P_{z,\pi}, being irreducible, satisfies P_{z,\pi}(E_\pi) = 1. \text{Thus}, P_{z,\pi}(A) = 1. Hence, P_{z,\pi}(A) = 1 for every recurrent state. Now let z \in S and consider the stopping time \tau(\omega) = \inf\{n: \omega_n \notin S\}. Because z is transient and X is finite, then P_{z,\pi}([\tau < \infty]) = 1. Because P_{w,\pi}(A) = 1 for every w \notin S, it follows from the strong Markov property (Proposition 6.1.16 in Dembo 2015) that P_{z,\pi}(A) = 1.

The measure m assigns probability 1 to the set \Pi_+ = \Pi of transition probabilities \pi that satisfy \pi(y)(z) \in (0, 1) for all y, z \in X. Let \pi \in \Pi_+. Then P_\pi is irreducible and satisfies P_\pi(N_\text{N} = \infty) = 1. Hence, P_\pi(E_\pi) = 1. Therefore, given a Markov law P_\rho,\sigma with transition \sigma \in \Pi,

\[
P_{\rho,\sigma}([N_\text{N} < \infty] \cup E_\sigma) - Q_\mu([N_\text{N} < \infty] \cup E_\sigma) = 1 - \int_{\Pi_+} P_\pi(E_\sigma) dm(\pi) = 1,
\]

where the last equality follows from the fact that \pi(x)(y) \neq \sigma(x)(y) implies E_\sigma \cap E_\pi = \emptyset (hence, P_\pi(E_\sigma) = 0) and \{\pi \in \Pi: \pi(x)(y) = \sigma(x)(y)\} has probability 0 under m. Therefore, \|Q_\mu - P_{\rho,\pi}\| = 1.

Proof of Proposition 2. Let P_1, \ldots, P_N in \Lambda be strongly orthogonal. Denote by F_\infty = \bigcap_{k=1}^{\infty} F_k the tail \sigma-algebra. We first show that for any i \neq j, we can find an event A_{ij} that belongs to F_\infty and satisfies P_i(A_{ij}) = 1 and P_j(A_{ij}) = 0. As shown by Goldstein (1979, Proposition 4.1), it holds that

\[
\lim_{k \rightarrow \infty} \sup_{E \in F_\infty} \left| P_i(E) - P_j(E) \right| = \sup_{E \in F_\infty} \left| P_i(E) - P_j(E) \right|.
\]

Hence, \sup_{E \in F_\infty} \left| P_i(E) - P_j(E) \right| = 1. Now let R_i and R_j be the restriction on F_\infty of P_i and P_j, respectively. Let R = 0.5R_i + 0.5R_j and define A_{ij} \in F_\infty as the event where the

\[\text{21See, for example, http://www.statslab.cam.ac.uk/~james/Markov/s110.pdf.}
two Radon–Nikodym derivatives satisfy \(dR_i/dR \geq dR_j/dR \). For every \(E \in \mathcal{F}\), the event \(A_{ij} \) satisfies

\[
P_i(E) - P_j(E) = \int_E \left(\frac{dR_i}{dR} - \frac{dR_j}{dR} \right) dR \leq R_i(A_{ij}) - R_j(A_{ij}) = P_i(A_{ij}) - P_j(A_{ij}).
\]

Hence \(P_i(A_{ij}) = 1 \) and \(P_j(A_{ij}) = 0 \). Let \(E_i = \bigcap_{j \neq i} A_{ij} \). Then each \(E_i \) is tail-measurable and satisfies \(P_i(E_i) = 1 \) and \(P_j(E_i) = 0 \) for every \(j \neq i \). If \(i \neq j \), then \(A_{ij} \) and \(A_{ji} \) are disjoint; hence, \(E_i \) and \(E_j \) are disjoint as well. By enlarging \(E_n \) to be equal to the complement of \(\bigcup_{i=1}^{n-1} E_i \), we can assume that \(E_1, \ldots, E_n \) form a partition of \(\Omega \). Each of its elements is tail-measurable.

Let \(\mu \) be a uniform prior over \(P_1, \ldots, P_n \). Then \(Q_\mu(E_i) = 1/n \) for every \(i = 1, \ldots, n \). Fix \(P \in \Lambda \). Because \(P \) is mixing, it satisfies \(P(F) \in [0,1] \) for every event \(F \) that is tail-measurable (see Theorem 13.18 in Davidson 1994). Because \(E_1, \ldots, E_n \) is a partition of \(\Omega \) that consists of tail-measurable events, then \(P \in \Lambda \) satisfies \(P(E_{ip}) = 1 \) for some \(i_p \in \{1, \ldots, n\} \). Hence,

\[
\|Q_\mu - P\| \geq P(E_{ip}) - Q_\mu(E_{ip}) = P(E_{ip}) - \mu(P_{ip}) = 1 - 1/n.
\]

Since \(P \) and \(n \) are arbitrary, it follows from Theorem 1 that \(\Lambda \) is testable.

Proof of Proposition 3. The map \(\tilde{P} \mapsto D(\tilde{P}||P) \), \(\tilde{P} \in \Delta(\Omega) \), is convex and lower semicontinuous (see, for instance, Lemma 1.4.3 in Dupuis and Ellis 1997). Convexity implies that for every \(\mu \in \Delta(\Lambda) \) with finite support, i.e., every \(\mu \) such that \(Q_\mu \in \text{co}(\Lambda) \),

\[
D(Q_\mu||P) \leq \sum_{P \in \Lambda} \mu(\tilde{P})D(\tilde{P}||P) \leq \alpha.
\]

Lower semicontinuity implies that the set \(\{ \tilde{P} \in \Delta(\Omega) : D(\tilde{P}||P) \leq \alpha \} \) is closed. Hence, \(D(Q_\mu||P) \leq \alpha \) for every \(Q_\mu \in \overline{\text{co}}(\Lambda) \), i.e., for every \(\mu \in \Delta(\Lambda) \), as shown in the proof of Corollary 1. The normalized total-variation distance between \(Q_\mu \) and \(P \) and the Kullback–Leibler divergence \(D(Q_\mu||P) \) is related by the inequality

\[
\|Q_\mu - P\|^2 \leq 1 - e^{-D(Q_\mu||P)}
\]

(see equation (4) in Sason and Verdú 2016). Thus, every \(\mu \in \Delta(\Lambda) \) satisfies \(\|Q_\mu - P\| \leq \sqrt{1 - e^{-\alpha}} < 1 \). Since \(P \in \Lambda \), it follows from Theorem 1 that \(\Lambda \) is not testable.

Proof of Proposition 4. As shown by Theorem 2, to prove that \(\Lambda_\delta^\varepsilon \) is \(\varepsilon \)-testable, it is enough to find a prior \(\mu \in \Delta(\Lambda_\delta^\varepsilon) \) such that \(P = Q_\mu \). Consider the set \(N = \{ \omega : P(\{\omega\}) = 0 \} \). Each \(\omega \in N \) satisfies \(\delta_\omega \in \Lambda_\delta^\varepsilon \). Notice that \(P \) can have at most countably many atoms, so \(N \) is dense. The function \(\omega \mapsto \delta_\omega \), \(\omega \in \Omega \), is continuous, and so \(\{ \delta_\omega : \omega \in N \} \) is dense in \(\{ \delta_\omega : \omega \in \Omega \} \). We can, therefore, conclude that \(\{ \delta_\omega : \omega \in N \} \subseteq \Lambda_\delta^\varepsilon \). Consider now the prior defined as \(\mu(G) = P(\{\omega : \delta_\omega \in G\}) \) for every measurable set \(G \subseteq \Delta(\Omega) \). Standard arguments shows that \(\mu \) is well defined and satisfies \(Q_\mu = P \). Because \(\mu(\{\delta_\omega : \omega \in \Omega\}) = 1 \), then \(\mu \in \Delta(\Lambda_\delta^\varepsilon) \). Therefore, \(\Lambda_\delta^\varepsilon \) is \(\varepsilon \)-testable.
Suppose, as a means to contradiction, that $\Lambda^c \subseteq \Lambda$, where Λ is a paradigm that is ϵ'-testable and $\epsilon' < \epsilon/2$. As shown in the proof of Theorem 1, there exists a prior $\nu \in \Delta(\overline{\Lambda})$ such that $\|Q_\nu - Q\| \geq 1 - 2\epsilon'$ for every $Q \in \Lambda$. Equivalently,

$$\{ Q \in \Delta(\Omega) : \|Q - Q_\nu\| < 1 - 2\epsilon' \} \subseteq \Lambda^c.$$

By assumption, $\Lambda^c \subseteq (\Lambda^c)^c = \{ Q \in \Delta(\Omega) : \|Q - P\| \leq 1 - \epsilon \}$, so

$$\{ Q \in \Delta(\Omega) : \|Q - Q_\nu\| < 1 - 2\epsilon' \} \subseteq \{ Q \in \Delta(\Omega) : \|Q - P\| \leq 1 - \epsilon \}. \tag{16}$$

To show that this leads to a contradiction, let $R \in \Delta(\Omega)$ be a measure such that $\|R - Q_\nu\| = \|R - P\| = 1$. For instance, let $R = \delta_\omega$ for some path ω that is not an atom of either Q_ν or P. Fix $t \in (2\epsilon', \epsilon)$ and consider the measure $tQ_\nu + (1 - t)R$. We have

$$\|tQ_\nu + (1 - t)R - Q_\nu\| = (1 - t)\|R - Q_\nu\| = (1 - t) < 1 - 2\epsilon'.$$

Hence, it follows from (16) that $\|tQ_\nu + (1 - t)R - P\| \leq 1 - \epsilon$. Now let E be an event such that $R(E) = 1$ and $Q_\nu(E) = P(E) = 0$. Then

$$1 - \epsilon \geq \|tQ_\nu + (1 - t)R - P\| \geq tQ_\nu(E) + (1 - t)R(E) - P(E) = 1 - t.$$

By construction, $1 - t > 1 - \epsilon$. So we obtain a contradiction. Therefore, Λ^c is not included in any testable paradigm.

A.5 Other proofs

Proof of Proposition 5. Let Λ be ϵ-testable in n periods. Then, by substituting the total-variation distance with the semidistance ρ_n and following the same arguments used in the proof of Theorem 1, it follows that there exists a prior $\mu \in \Delta(\overline{\Lambda})$ such that $\rho_n(\mu, P) > 1 - 2\epsilon$ for all $P \in \Lambda$.

Only one change is necessary: the same argument applied in the proof of Theorem 1 shows that $\rho_n(P,Q) = \max_\phi \int_\Omega \phi \ dP - \int_\Omega \phi \ dQ$, where the maximum is taken over all functions $\phi : \Omega \rightarrow [0,1]$ that are F_n-measurable.

Conversely, let $\mu \in \Delta(\overline{\Lambda})$ be a prior such that $\|Q_\mu - P\|_n > 1 - \epsilon$ for all $P \in \Lambda$. This part of the proof follows, verbatim, the proof of Theorem 2 (notice that by assumption, $n_P \leq n$ for every $P \in \Lambda$).

The next result is used in the proof of Proposition 6. In what follows, $B_\delta(P)$ denotes the open ball of radius δ around P with respect to the same metric d fixed in the main text. Recall that the support of a measure $\mu \in \Delta(\Delta(\Omega))$ is the unique closed set $\Gamma \subseteq \Delta(\Omega)$ with the property that $\mu(\Gamma^c) = 0$ and for every open set $V \subseteq \Delta(\Omega)$, if $V \cap \Gamma \neq \emptyset$, then $\mu(V \cap \Gamma) > 0$ (see Aliprantis and Border 2006, 12.3).

Lemma 2. Let $\mu \in \Delta(\Delta(\Omega))$ be a prior and let $\Gamma \subseteq \Delta(\Omega)$ be its support. For every $\delta > 0$, there exists a constant $\lambda > 0$ such that

$$\mu(B_\delta(P)) \geq \lambda \quad \text{for all } P \in \Gamma.$$
Proof of Lemma 2. Suppose not. Then there must exist \(\delta > 0 \) and a sequence \((P_n)\) in \(\Gamma \) such that \(\mu(B_\delta(P_n)) \to 0 \) as \(n \to \infty \). The space \(\Delta(\Omega) \) is compact and \(\Gamma \subseteq \Delta(\Omega) \) is closed. Hence, it is compact. So we can assume (taking a subsequence if necessary) that \(P_n \) converges to a law \(P \in \Gamma \). Fix a law \(Q \). Assume \(Q \in B_{\delta/2}(P) \). Then \(d(P_n, Q) < \delta \) for all \(n \) large enough. Thus, \(Q \in B_\delta(P_n) \) for all \(n \) large enough. Thus,

\[
1_{B_{\delta/2}(P)}(Q) \leq \liminf_{n \to \infty} 1_{B_\delta(P_n)}(Q) \quad \text{for every } Q \in \Gamma,
\]

where \(1_{B_{\delta/2}(P)} \) denotes the indicator function of \(B_\delta(P) \). By applying Fatou's lemma, we can then conclude that

\[
\mu(B_{\delta/2}(P)) \leq \int_{\Delta(\Omega)} \liminf_{n \to \infty} 1_{B_\delta(P_n)}(Q) \, d\mu \leq \liminf_{n \to \infty} \mu(B_\delta(P_n)) = 0.
\]

Hence, \(\mu(B_{\delta/2}(P)) = 0 \). Since \(P \in \Gamma \), then \(\mu \) must assign positive probability to every neighborhood of \(P \), so we reach a contradiction and the proof is finished.

Proof of Proposition 6. By Lemma 2, there exists a \(\lambda > 0 \) such that \(\mu(B_\delta(P)) \geq \lambda \) for every \(P \in \Lambda \). Fix a sequence \((\epsilon_n)\) such that \(\epsilon_n \downarrow 0 \). Because \(\|Q_\mu - P\| = 1 \) for every \(P \in \Lambda \), then, as shown in the proof of Theorem 2, we can find for every \(n \) a finite test \(T_n \) with the properties that \(T_n \) accepts the truth with probability at least \(1 - \epsilon_n \) and for every strategy \(\zeta \), by (14),

\[
\mathbb{E}_{Q_\mu \otimes \zeta}[T_n] = \int \mathbb{E}_{P_\otimes \zeta}[T_n] \, d\mu(P) \leq \epsilon_n.
\]

By applying Markov's inequality, for every \(k > 0 \) and \(\zeta \), we have

\[
\mu(\{ P \in \Lambda \cap B_\delta(P_o) : \mathbb{E}_{P_\otimes \zeta}[T_n] \leq k\epsilon_n \}) \geq 1 - \frac{\mathbb{E}_{Q_\mu \otimes \zeta}[T_n]}{k\epsilon_n} \geq 1 - \frac{1}{k}.
\]

Fix \(\epsilon > 0 \) and choose \(k \) large enough such that \(1 - 1/k + \lambda > 1 \). In addition, given \(k \), choose \(N \) large enough such that \(k\epsilon_n \leq \epsilon \) for all \(n > N \). Now fix a particular \(n > N \). Given \(P_o \in \Lambda \) and a strategy \(\zeta \), we have

\[
\mu(\{ P \in \Lambda \cap B_\delta(P_o) : \mathbb{E}_{P_\otimes \zeta}[T_n] \leq \epsilon \}) \\
\geq \mu(\{ P \in \Lambda : \mathbb{E}_{P_\otimes \zeta}[T_n] \leq k\epsilon_n \} \cap B_\delta(P_o)) \\
= \mu(\{ P \in \Lambda : \mathbb{E}_{P_\otimes \zeta}[T_n] \leq k\epsilon_n \}) \\
+ \mu(B_\delta(P_o)) - \mu(\{ P \in \Lambda : \mathbb{E}_{P_\otimes \zeta}[T_n] \leq k\epsilon_n \} \cup B_\delta(P_o)) \\
\geq 1 - \frac{1}{k} + \lambda - 1 > 0.
\]

This implies that we can select a measure \(P_\zeta \in \Lambda \cap B_\delta(P_o) \) such that \(\mathbb{E}_{P_\zeta \otimes \zeta}[T_n] \leq \epsilon \). By continuity of the map \(P \mapsto E_{P_\otimes \zeta}[T_n] \), we can then select a measure \(P'_\zeta \in \Lambda \cap B_\delta(P_o) \) such that \(\mathbb{E}_{P'_\zeta \otimes \zeta}[T_n] \leq 2\epsilon \). Because \(P_o \) is arbitrary, it then follows that the test \(T_n \) satisfies the conditions of Definition 6 for \(2\epsilon \). Because \(\epsilon \) is arbitrary, it follows that \(\Lambda \) is uniformly testable with precision \(\delta \).
A.6 The paradigm of i.i.d. Distributions is uniformly testable

Let $X = \{0, 1\}$ and for every $\theta \in [0, 1]$, let P^θ be the i.i.d. distribution where the probability of outcome 1 is equal to θ in every period. Consider the paradigm $\Lambda = \{P^\theta : \theta \in [0, 1]\}$. It is immediate to verify that the function $\theta \mapsto P^\theta$ is continuous.

Let m be the uniform distribution on $[0, 1]$ and define the prior $\mu \in \Delta(\Lambda)$ as $\mu(\Gamma) = m(\{\theta : P^\theta \in \Gamma\})$ for every measurable $\Gamma \subseteq \Delta(\Omega)$. Then μ has support equal to Λ. This follows from the fact that for every open set $V \subseteq \Delta(\Omega)$, the set $\{\theta : P^\theta \in V\}$ is open. Therefore, it has positive probability under m.

It remains to show that $\|Q_\mu - P^\theta\| = 1$ for each $\theta \in [0, 1]$. Let $E_\theta \subseteq \Omega$ be the event where the limiting frequency of outcome 1 equals θ. By the strong law of large numbers, we have $P^\theta(E_\theta) = 1$ and $P^\theta(E_{\theta'}) = 0$ for each $\theta' \neq \theta$. Hence, $Q_\mu(E_\theta) = \int_0^1 P^\theta(E_\theta) d\theta' = 0$.

A.7 Relation with Stewart (2011)

Stewart (2011) studies strategic forecasting in an environment where the tester is a Bayesian endowed with a prior μ over $\Delta(\Omega)$. Stewart (2011) considers a (nonfinite) likelihood-ratio test that compares the forecaster’s predictions to the tester’s predictions induced by Q_μ. The paper studies priors μ for which the quantity

$$
\varepsilon = \int P \left\{ \omega : \sum_{t=1}^T (Q_\mu(\omega^t|\omega^{t-1}) - P(\omega^t|\omega^{t-1}))^2 \text{ converges} \right\} d\mu(P)
$$

is sufficiently small. Intuitively, this implies that over time a true expert is able to provide more precise predictions than the tester. For every strategy ζ, a strategic but ignorant forecaster fails the test in Stewart (2011) with probability 1 under $Q_\mu \otimes \zeta$, while a true expert almost surely passes the test, for a class of measures P that has probability 1 $-$ ε under μ.

To see more clearly the connection between the two papers, consider the case where ε is zero, and define the paradigm Λ consisting of all distributions P for which $\sum_{t=1}^T (Q_\mu(\omega^t|\omega^{t-1}) - P(\omega^t|\omega^{t-1}))^2$ diverges P-almost surely. The assumption that $\varepsilon = 0$ implies that $\mu(\Lambda) = 1$. The same argument used by Stewart (2011) in the proof of his main result shows that every such $P \in \Lambda$ has the property that the likelihood-ratio $P(\omega^t) \setminus Q_\mu(\omega^t)$ diverges P-almost surely. In turn, by an application of the Lebesgue decomposition theorem, this implies that each P in Λ is orthogonal to the predictive distribution Q_μ. That is, the two have total variation distance 1. So, while there are many modeling differences between the two papers, given a prior μ that satisfies the condition $\varepsilon = 0$ in Stewart (2011), there is a paradigm that satisfies the conditions of Theorem 1 with respect to μ.

At a conceptual level, Stewart (2011) and the present paper provide complementary perspectives on the use of the log-likelihood ratio as a way to screen forecasters. In this paper, we take as a primitive a paradigm, while the prior μ and the corresponding Bayesian forecaster are endogenously derived from the test. Stewart (2011) takes as a primitive the prior, and the tester is willing to discard measures that have low probability under her subjective belief.

\[22\text{See Theorem 2, p. 525, in Shiryaev (1996).}\]
References

Al-Najjar, Nabil, Luciano Pomatto, and Alvaro Sandroni (2014), “Claim validation.” *American Economic Review*, 104, 3725–3736. [132]

Al-Najjar, Nabil, Alvaro Sandroni, Rann Smorodinsky, and Jonathan Weinstein (2010), “Testing theories with learnable and predictive representations.” *Journal of Economic Theory*, 145, 2203–2217. [131, 132, 142]

Al-Najjar, Nabil and Jonathan Weinstein (2008), “Comparative testing of experts.” *Econometrica*, 76, 541–559. [132]

Aliprantis, Charalambos D. and Kim Border (2006), *Infinite Dimensional Analysis: A Hitchhiker’s Guide*. Springer, Berlin. [147, 149, 151, 155]

Alkema, Leontine, Adrian E. Raftery, and Samuel J. Clark (2007), “Probabilistic projections of HIV prevalence using Bayesian melding.” *Annals of Applied Statistics*, 1, 229–248. [129]

Babaioff, Moshe, Liad Bumrosen, Nicholas Lambert, and Omer Reingold (2011), “Only valuable experts can be valued.” In *Proceedings of the 12th ACM Conference on Electronic Commerce*, 221–222, Association for Computing Machinery. [132, 145]

Bergemann, Dirk and Karl Schlag (2011), “Robust monopoly pricing.” *Journal of Economic Theory*, 146, 2527–2543. [145]

Cerreia-Vioglio, Simone, Fabio Maccheroni, Massimo Marinacci, and Luigi Montrucchio (2013), “Classical subjective expected utility.” *Proceedings of the National Academy of Sciences*, 110, 6754–6759. [136]

Corradi, Valentina and Norman R. Swanson (2006), “Predictive density evaluation.” In *Handbook of Economic Forecasting* (G. Elliott, C. W. J. Granger, and A. Timmermann, eds.), 197–284, Elsevier, Netherlands. [129]

Davidson, James (1994), *Stochastic Limit Theory: An Introduction for Econometricians*. Oxford Press. [141, 142, 154]

Dawid, A. Philipp (1982), “The well-calibrated Bayesian.” *Journal of the American Statistical Association*, 77, 605–610. [130]

Dembo, Amir (2015), “Probability theory.”, https://statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf. Lecture notes. [153]

Diebold, Francis X., Anthony S. Tay, and Kenneth F. Wallis (1997), *Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters*. Working paper, NBER No 6228. [129]

Dupuis, Paul and Richard S. Ellis (1997), *A Weak Convergence Approach to the Theory of Large Deviations*. Wiley, New York. [154]

Fan, Ky (1953), “Minimax theorems.” *Proceedings of the National Academy of Sciences*, 39, 42–47. [147]
Feinberg, Yossi and Nicholas Lambert (2015), “Mostly calibrated.” *International Journal of Game Theory*, 44, 153–163. [132]

Foster, Dean and Rakesh Vohra (2013), “Calibration: Respice, adspice, prospice.” In *Advances in Economics and Econometrics: Tenth World Congress*, volume 1 (Daron Acemoglu, Manuel Arellano, and Eddie Dekel, eds.), 423–442, Cambridge University Press. [132]

Foster, Dean P. and Rakesh V. Vohra (1998), “Asymptotic calibration.” *Biometrika*, 85, 379–390. [130]

Giacomini, Raffaella and Halbert White (2006), “Tests of conditional predictive ability.” *Econometrica*, 74, 1545–1578. [141]

Gilboa, Itzhak and David Schmeidler (1989), “Maxmin expected utility with non-unique prior.” *Journal of Mathematical Economics*, 18, 141–153. [135]

Gneiting, Tillmann and Matthias Katzfuss (2014), “Probabilistic forecasting.” *Annual Review of Statistics and Its Application*, 1, 125–151. [129]

Gneiting, Tillmann and Adrian E. Raftery (2005), “Weather forecasting with ensemble methods.” *Science*, 310, 248–249. [129]

Goldstein, Sheldon (1979), “Maximal coupling.” *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete*, 46, 193–204. [153]

Halmos, Paul R. (1950), *Measure Theory*. Van Nostrand Reinhold Company, New York. [148]

Hansen, Lars Peter and Thomas J. Sargent (2001), “Robust control and model uncertainty.” *American Economic Review*, 91, 60–66. [142, 143]

Huber, Peter J. (1981), *Robust Statistics*. John Wiley and sons, New York. [145]

Jackson, Matthew O., Ehud Kalai, and Rann Smorodinsky (1999), “Bayesian representation of stochastic processes under learning: De Finetti revisited.” *Econometrica*, 67, 875–893. [132]

Jordan, Thomas H., Yun-Tai Chen, Paolo Gasparini, Raul Madariaga, Ian Main, Warner Marzocchi, Gerassimos Papadopoulos, Gennady Sobolev, Koshun Yamaoka, and Jochen Zschau (2011), “Operational earthquake forecasting: State of knowledge and guidelines for utilization.” *Annals of Geophysics*, 54, 315–391. [129]

Kavaler, Itay and Rann Smorodinsky (2019), “On comparison of experts.” *Games and Economic Behavior*, 118, 94–109. [132]

Lehmann, Erich and Joseph Romano (2005), *Testing Statistical Hypothesis*, third edition. Springer-Verlag, New York. [138, 149, 150]

Nze, Patrick A. and Paul Doukhan (2004), “Weak dependence: Models and applications to econometrics.” *Econometric Theory*, 20, 995–1045. [141]

Olszewski, Wojciech (2015), “Calibration and expert testing.”, 949–984. [132, 143, 145]
Olszewski, Wojciech and Alvaro Sandroni (2008), “Manipulability of future-independent tests.” *Econometrica*, 76, 1347–1466. [130]

Olszewski, Wojciech and Alvaro Sandroni (2009), “Strategic manipulation of empirical tests.” *Mathematics of Operations Research*, 34, 57–70. [130, 131, 132, 135, 137]

Phelps, Robert R. (2001), *Lectures on Choquet’s Theorem*. Springer, Berlin. [146, 150]

Raftery, Adrian E., Nan Li, Hana Sevcikova, Patrick Gerland, and Gerhard K. Heilig (2012), “Bayesian probabilistic population projections for all countries.” In *Proceedings of the National Academy of Sciences*, 13915–13921, PNAS. 109. [129]

Sandroni, Alvaro (2003), “The reproducible properties of correct forecasts.” *International Journal of Game Theory*, 32, 151–159. [130, 132]

Sandroni, Alvaro and Eran Shmaya (2014), “A prequential test for exchangeable theories.” *Journal of Dynamics and Games*, 1, 497–505. [132, 145]

Sason, Igal and Sergio Verdú (2016), “f-divergence inequalities.” *IEEE Transactions on Information Theory*, 62, 5973–6006. [154]

Shiryaev, Albert N. (1996), *Probability*, second edition. Springer-Verlag, New York. [157]

Shmaya, Eran (2008), “Many inspections are manipulable.” *Theoretical Economics*, 3, 367–382. [130, 145]

Starr, Ross M. (1969), “Quasi-equilibria in markets with non-convex preferences.” *Econometrica*, 37, 25–38. [137]

Stewart, Colin (2011), “Nonmanipulable Bayesian testing.” *Journal of Economic Theory*, 146, 2029–2041. [132, 157]

Tetlock, Philipp E. (2005), *Expert Political Judgment: How Good Is It? How Can We Know?* Princeton University Press. [129]

Timmermann, Allan (2000), “Density forecasting in economics and finance.” *Journal of Forecasting*, 19, 231–234. [129]

Wald, Abraham (1950), *Statistical Decision Functions*. Wiley, Oxford, England. [135]

Co-editor Ran Spiegler handled this manuscript.

Manuscript received 16 May, 2019; final version accepted 4 April, 2020; available online 28 May, 2020.