Is sentinel lymph node biopsy alone accurate for breast cancer mastectomy? Results of a cohort study of 2423 patients.

CURRENT STATUS: POSTED

Gilles HOUVENAEGHEL
Institut Paoli-Calmettes
Corresponding Author
ORCiD: 0000-0002-4384-6255

J.M. Classe
Institut de Cancerologie de l'Ouest

G. Blache
Institut Paoli-Calmettes

C. Mazouni
Gustave Roussy

F. Reyal
Institut Curie

P. Gimbergues
Centre Jean Perrin

E. Daraï
Hopital Tenon

A.S. Azuar
Centre Hospitalier de Grasse

P.E. Colombo
Institut du Cancer de Montpellier

M. Bannier
Institut Paoli-Calmettes

E. Lambaudie
Institut Paoli-Calmettes

M. Cohen
Institut Paoli-Calmettes
DOI:
10.21203/rs.2.14318/v1
SUBJECT AREAS
Cancer Biology Oncology
KEYWORDS
Sentinel node; breast cancer; mastectomy
Abstract

Backgroud: Few patients with mastectomy and only with pN0(i+) or pN1mi sentinel node (SN) were included in randomized trial. To demonstrate SN biopsy accuracy for mastectomy. Methods: We examined results of SN among a multi-institutional cohort of patients, <=cT2-N0, who required total mastectomy, according to SN status and complementary axillary lymph-node dissection (cALND) or not. We have analyzed involved non-sentinel node (NSN) rate at cALND, overall (OS) and disease-free survival (DFS).

Results: Among 2423 patients we reported 1307 pN0(i-)SN, 120 pN0(i+)SN, 273 pN1miSN and 723 pN1macro-metastases SN with cALND respectively in 24.5, 73.3, 82.4 and 93.1%. Median follow-up was 42.72 months. Among 320 patients with pN0(i-)SN we observed 35 NSN macro-metastases (10.9%) and among 723 patients with SN macro-metastases, cALND was omitted in 50 patients (6.9%): in multivariate analysis, OS and DFS were not significantly different according to cALND or not. Among 120 patients with pN0(i+)SN and 273 with pN1miSN, cALND were respectively omitted in 32 and 48 patients: age, pT-size and SN-status were predictive of NSN involvement. In multivariate analysis, post-mastectomy radiotherapy, regional nodal irradiation and adjuvant chemotherapy were significantly correlated to cALND and a significant lesser DFS rate was reported for patients without cALND (HR: 3.861, p=0.002). Conclusion: SN biopsy appeared as an accurate procedure for axillary staging of breast cancer mastectomy for pN0 SN status. For pN1-macro-metastases it is not possible to propose to avoid cALND. When SN was involved by ITC or micro-metastases, omission of cALND is still controversial and should have a negative prognosis impact in relation with a down staging and under treatment.

Background

A decrease of axillary lymph node dissection (ALND) rate since the development and
validation of sentinel lymph node biopsy (SLNB) for non-involved sentinel node (SN)\(^1\) has been observed. More recently, since results of ACOSOG Z0011, IBCSG 23-01 and AATRM trials\(^2, 3, 4\), complementary ALND (cALND) was questioned in some situations for involved-SN. However, few studies were reported about SLNB accuracy for patients who need total mastectomy.

In Z0011 trial\(^2\) patients undergoing upfront conservative surgery followed by systemic adjuvant therapy for unifocal breast cancer (BC) with 1 or 2 SN involved by micro or macro-metastases, without capsular rupture, were included. Results were discussed concerning the limits and the biases of this study\(^5, 6\). Omission of cALND was held in some teams and recommendations\(^7, 8\), underlining the strict conditions of possible omission of cALND. An evaluation in selected patients considered at high-risk was reported\(^9\). But some points remains unclear, particularly for patients who required total mastectomy. The possibility of cALND avoidance for patients who required total mastectomy is a timely topic. Very few patients with mastectomy were included in randomized trial\(^3, 4\) and only for patients with pN0(i+) or pN1mi SN (86 patients in IBCSG 23-01 trial and 18 in AATRM trial). For this reason we designed the SERC trial to compare outcomes in patients with SN-involvement treated with cALND or no further treatment to the axilla with larger inclusion criteria\(^10, 11\).

The aim of this study was to examine involved non-sentinel node (NSN) rate, axillary recurrence (AR) rate and mainly survival according to SN status among a multi-institutional cohort of patients who required total mastectomy.

Methods

We conducted a retrospective analysis of 2423 consecutive patients managed between
March 1999 and December 2012 in 9 specialized breast centers, referred for mastectomy and SLNB (not included in SERC trial) among a breast cancer data base of 23145 patients. Total mastectomy was usually proposed to manage multi focal tumors, small invasive BC with a large in situ component, patients with a very small breast volume and patient’s choice for total mastectomy.

All patients included in this study have been managed for early BC <= cT2-N0, without pre-operative treatment before SLNB and total mastectomy. We excluded patients with axillary cN1 or T3-4. SLNB was performed using combined isotopic and colorimetric detection or isotopic detection alone with peri-tumoral and/or sub areolar injection11.

Although the methods used for SN histological examination were not standardized in the protocol, all sites proceeded similarly: serial sections were performed every 200 microns and stained with standard HE. The number of sections was six to ten, or pursued until node exhaustion in case of large SN. Additional IHC analysis was done in case of negative results at standard examination. For lymph nodes (LN) identified by cALND, routine HE analysis was performed10,11.

For data analysis, we used:

Five tumor subtypes were defined according to immunohistochemistry (IHC) analysis of endocrine receptors (ER) and Her2: Luminal-A (ER+ Her2- Grade 1-2, Her2 (Her2+ ER-), Triple negative (ER- Her2--: negative estrogen and progesterone receptors), Luminal-B Her2- Grade 3, Luminal-B Her2+ ER+ 8,9. ERs (Estrogen receptor and/or progesterone receptor expression) were considered as positive if they were expressed in at least 10% of the tumor specimen. HER2 status was determined according to French guidelines by IHC +/- fluorescent in situ hybridization.

Statistical analysis: Four categories of SN-status were defined: negative-SN (pN0i-),
isolated tumor cells (ITC: pN0(i+)$ \leq 0.2$mm), detected either by hematoxylin and eosin (HE) staining or by cytokeratin IHC, micro-metastases (pN1mi >0.2mm and ≤ 2mm), and macro-metastases (>2mm)$^{10-12}$.

We have analyzed involved non-sentinel node (NSN) rate at cALND and predictive factors of NSN involvement. Then we have evaluated axillary recurrence (AR) rate, overall survival (OS) and disease-free survival (DFS) according to cALND or not. We used standard descriptive statistics (mean, standard deviation [SD], median and range for quantitative variables, count and frequency for categorical variables) to describe patients and tumors characteristics. In univariate analyses, comparisons were performed using Chi Square. Multivariable analysis was performed using binary logistic regression. Survival analysis was performed using Log Rank test for univariate analysis and Cox model for multivariate analysis. Overall survival was defined as the time elapsed between surgery and death from any cause. Disease-free survival was calculated from the date of surgery to the first date of loco-regional recurrence, distant recurrence or death from any cause, whichever occurred first.

All statistical analyses were conducted using SPSS 16.0. All statistical tests were two-sided. The level of statistical significance was set at a p value of 0.05.

All procedures performed in this study involving human participants were done in accordance with the French ethical standards and with the 2008 Helsinki declaration. This work was approved by our institutional review board (IPC Comité d'Oriention Stratégique).

Results

Population

Among 2423 patients with SLNB for BC mastectomy we reported 1307 pN0(i-)SN, 120
pN0(i+)SN, 273 pN1miSN and 723 pN1macroSN. cALND has been performed for 1306 patients (53.9%), in 24.5, 73.3, 82.4 and 93.1% for SN pN0(i-), pN0(i+), pN1mi and pN1macro, respectively. Factors associated with pN final status with or without cALND are reported in Table 1.

Median follow-up was 42.72 months (mean: 51.33, CI95%: 49.9-52.8, range: 0.26-211). We reported 120 death and 213 recurrences including 152 metastases and 21 axillary recurrences and 40 local breast recurrence or unknown as first event.

pN0(i-) SN status

Among 1307 patients with pN0(i-)SN, 320 underwent an additional ALND, mainly before publication of NSABP B-32 trial results. We observed 35 LN macro metastases at cALND (10.9%) and false negative rate (FNR) was 3.63% among 964 patients with LN involvement (35/964) at cALND with pathologic results known or at SN.

In binary logistic regression, cALND was significantly associated with grade, LVI, ER, tumor size and periods of treatment. Adjuvant chemotherapy (AC), post-mastectomy radiotherapy (PMRT) and regional nodal irradiation (RNI) were delivered more frequently for patients with cALND, including 95.4% (21/22) of AC and 97.1% (34/35) of PMRT for patients with involved NSN at cALND. (Table 2).

In Cox regression analysis, OS and DFS were not significantly different according to cALND or not (Table 3, 4). AR rates were 1.4% for patients without cALND (14/987) and 0.3% with cALND (1/320) (p: 0.086): 2.8% (9/323) and 0.8% (5/660) for patients without cALND respectively with and without PMRT, 0.4% (1/225) and 0% (0/95) for patients with cALND respectively with and without PMRT (p: 0.039: cALND or not for patients with PMRT).

pN1 macro metastases SN status

Among 723 patients with SN macro-metastases, cALND was omitted in only 50 patients (6.9%). Among patients with involved-SN number known, only one SN macro-metastases...
was observed in 372 patients and more than one in 257 patients: 124 patients with only one SN macro-metastases had one or more NSN-involved at cALND (124/332: 37.3%). AC and PMRT were delivered more frequently for patients with cALND (Table 2). In Cox regression analysis, OS and DFS were not significantly different according to cALND or not (Table 3, 4). AR rates were 1.0 and 0% respectively for patients with and without cALND (7/673 vs 0/50), 0.9% and 2.5% respectively for patients with and without PMRT (6/683 vs 1/40: p=0.330).

pN0(i+) and pN1mi SN status

Among 120 patients with pN0(i+) SN and 273 patients with pN1mi SN, cALND were respectively omitted in 32 patients (26.7%) and 48 patients (17.6%) (Table 2). One or several macro-metastases in NSN at cALND was observed in 6 patients with pN0(i+) SN (6/88: 6.8%, 1 NSN positive for 4 patients, 2 and 6 NSN positive for 2 others) and 30 patients with pN1mi (30/225: 13.3%, 1 NSN positive for 21 patients, 2 NSN positive for 7 patients, 3 and 6 NSN positive for 2 others).

In univariate analysis, age, pT size and SN status were significantly predictive of NSN involvement among patients with pN0(i+) or pN1mi SN and cALND (Table 5). These factors remained significant in binary logistic regression (Table 5).

Four groups were determined according to pT tumor size < or >= 20mm and age > or <= 40 years-old with NSN involvement rate for pN0(i+) and pN1mi from 0 to 65%. In binary logistic regression cALND was not significantly associated to these 4 sub-groups and SN status (Table 6).

For pN0(i+) and for pN1mi, AC and PMRT was delivered more frequently for patients with cALND, including for patients with involved NSN at cALND 100% (5/5) and 92.3% (24/26) of AC, 83.3% (5/6) and 100% (30/30) of PMRT for pN0(i+) and pN1mi respectively (Table 2). For pN0(i+) and pN1mi according to cALND or not, PMRT rate was significantly different
only for patients with pT<20mm/age>40 years-old, RNI rate was significantly different for patients with pT<20mm/age>40 years-old and pT<20mm/age<=40 years-old, AC rate was significantly different for patients with pT<20mm/age>40 years-old and pT>=20mm/age>40 years-old (Supplementary Table 1).

In binary logistic regression, PMRT, RNI and AC were significantly associated with cALND but also to SN status and pT/age sub-groups (Table 6).

In univariate analysis (Log Rank), OS and DFS was lesser and significantly different for patients with pN0(i+) SN without cALND (respectively, p: 0.012 and <0.0001), but without difference for pN1mi SN (respectively, p: 0.985 and 0.180). In Cox regression analysis (Tables 3-4), OS were not significantly different according to cALND or not for patients with pN0(i+) or pN1mi (HR: 2.063, CI95%: 0.439-9.693, p: 0.359) and a significant difference was observed for DFS with lesser survival rate for patients without cALND (HR: 3.861, CI95%: 1.660-8.982, p: 0.002) without other significant criteria (ET, AC, LVI, age, SN status, PMRT and RNI) (Fig. 1).

In Cox regression analysis adjusted on endocrine therapy (ET), SN status and pT/age (< or >=20mm/<= or >40 years-old), omission of cALND was negatively associated to DFS (HR: 4.023, CI95%: 1.896-8.534, p<0.001) and no ET had also a borderline negative association (HR: 2.755, CI95%: 0.988-7.684, p: 0.053). Omission of cALND and no ET were negatively associated to RFS (respectively, HR: 3.187, CI95%: 1.379-7.363, p: 0.007 and HR: 3.968, CI95%: 1.399-11.25, p: 0.010). On OS adjusted on ET, SN status, pT/age (< or >=20mm/<= or >40 years-old), LVI, only no ET was negatively associated to OS (HR: 7.985, CI95%: 1.346-47.37, p: 0.022) without significant difference for cALND or not (HR: 2.904, CI95%: 0.733-11.51, p: 0.129).

AR rates were no significantly different according to cALND or not and PMRT or not, 0% (0/31) and 0% (0/49) for patients without cALND, 0.8% (2/246) and 1.5% (1/67) for
patients with cALND respectively with and without PMRT.

Conclusions

We reported from a large retrospective cohort of mastectomy, no OS and DFS significant difference between cALND or not for patients with pN0(i-) SN status and for patients with pN1 macro metastases SN status. However, few patients with pN1 macro metastases SN had no cALND. For patients with pN0(i+) or pN1mi SN, lesser DFS was reported for patients without cALND in comparison with patients with cALND in multivariable analysis (HR: 3.861, p: 0.002) bur without significant difference for OS.

For patients with pN0(i-) SN, we reported analysis of 1307 patients without cALND in 75.5% of patients. In Veronesi et al trial13, randomization of cALND was proposed for patients cN0 with tumor diameter of 2cm or less and breast conserving surgery: 8 positive NSN at cALND were reported (8/257: 3.1%) with 8.8% FNR (8/91). In NSABP-B32 trial1, randomization of cALND was proposed for patients cN0 with unifocal tumor, mainly <=20mm (83.8%: 3344/3989) with conservative treatment (87.5%) or mastectomy (n=499, 12.5%). In cALND arm, 75 patients (75/1975: 3.8%) had positive NSN with a FNR > 8.3% (75 among 904 patients with SN positive or unknown). FNR was lower in our study (3.63%). A lower rate of FNR should be attributed to more extensive SN pathologic analysis in our study with serial sections and IHC for negative HE analysis. After more extensive pathologic analysis, it was reported that 15.9% (CI95%: 14.7-17.1%) of SN (616/3884) presented occult metastases (69.8% among ITC: 430/616 and 27.9% among micro-metastases: 172/616) and in some cases macro-metastases (2.3% of macro-metastases: 14/616)14. It had been reported that SLNB was accurate for large tumors (1101 with tumors > 20 and <30mm and 748 tumors >=30mm)15 and for multi-focal multicentric tumors16 even if LN involvement rate was higher for these patients.
For patients who had a macro-metastases SN, the only reported trial with cALND randomization versus only SLNB\(^2\) had included macro and micro-metastases only for conservative treatment. In AMAROS trial\(^ {17}\), with randomization between cALND versus axillary radiotherapy, patients with tumors up to 5cm diameter, cN0, unifocal or multifocal and breast-conserving treatment or mastectomy were eligible: 19.4% of patients had tumors more than 2cm (276/1425), 17.4% had mastectomy (248/1425), 60.4% had macro-metastases SN (861/1425), 28.8% had micro-metastases SN (410/1425) and 10.8% had ITC SN (154/1425). In the cALND arm, involved NSN rate was 32.8% (220/671). In NSABP B-04 trial with randomization between ALND or no axillary surgery for patients with total mastectomy, no survival impact was observed with a long follow-up\(^ {18}\). However, patients included in this trial had large tumors, which were very different with patients for whom SLNB is indicated, and any systemic treatment was administered with low survival rates in two arms. Omission of regional treatment with ALND had in consequence no survival impact.

In OTOASOR trial\(^ {19}\), with randomization between cALND versus axillary radiotherapy, patients with tumors up to 3cm diameter, cN0, unifocal or multifocal and breast-conserving treatment or mastectomy were eligible: 48.7% of patients had tumors more than 2cm (231/474) with 11.1% of multifocal tumors (53/474), 15.6% had mastectomy (74/474), 60.4% had macro-metastases SN (139/230), 33.5% had micro-metastases SN (77/230) and 6.1% had ITC SN (14/230) in the radiotherapy arm. In the cALND arm, involved NSN rate was 38.5% (94/244).

Several trials are ongoing with randomization of cALND: INSEMA trial with only 1 or 2 SN macro-metastases and conservative treatment\(^ {20}\), POSNOC trial with only 1 or 2 SN macro-metastases and conservative treatment or mastectomy with cALND or radiotherapy versus
no other axillary treatment21, SERC trial10, 11 and BOOG 2013–07 trial for mastectomy and 1 to 3 involved SN by micro or macro-metastases with only mastectomies22, SENOMAC trial for patients with 1 or 2 SN macro-metastases including mastectomies23.

In SERC trial10, 11, 1897 patients are actually included with randomization between cALND or no other treatment for involved SN by ITC or micro-metastases or macro-metastases with conservative treatment or mastectomy. In the first 963 patients included in the first analysis (170 mastectomies and 793 conservative treatment), the overall rate of positive NSN was 19\% (84/442) for patients with cALND, and crude rates of positive NSN according to SN status were 4.5\% for patients with ITC (1/22), 9.5\% for SN micro-metastases (13/137), 23.9\% for SN macro-metastases (61/255).

For patients with pN0(i+) or pN1mi SN, two trials were reported with randomization of cALND3, 4 with 86 mastectomies in IBCSG 23-01 trial (86/931: 9.2\%) and the rate of involved NSN in cALND arm was 13\%. In AATRM trial only 18 patients had had mastectomy4. In the study published by Tvedskov et al., these rates of involved NSN were 9.2\% for ITC and 17.9\% for Mic24 and in a previous study we had reported positive-NSN rates of 13.9\% (40/287) for ITC and 14.1\% (93/658) for pN1mi SN with a predictive nomogram based on tumor size, ratio of positive-SN/analyzed-SN, LVI, tumor histologic type15, 25.

AC rate was not higher for patients without cALND for pN0(i+) and pN1mi in comparison with patients with ALND in our study, respectively 59.4\% and 39.6\% versus 34.1\% and 21.3\%.

In the AMAROS trial17, ALND realization had no impact on the decision of adjuvant treatment. In a study in 172 patients with pN1mi SN who underwent cALND, Mazouni et
al.26 showed the low impact of SN status in the therapeutic decision for AC, except in case of low grade or HER2-negative tumors. However, in the study by Aigner et al.27, indication of AC was modified in 18.2\% of cases. In the Multicenter Clinical Trial AATRM4, 247 patients with Mic were randomized between cALND and no cALND and AC rate was higher in those who underwent cALND (40.2\%) compared to those without cALND (36.8\%). Finally, in the study by Savolt et al. with randomization between cALND and regional node RT, AC was more frequently administered in case of cALND (78 versus 69\%)19. In IBCSG trial AC was not different between cALND and no cALND: 32.1\% (149/464) and 29.1\% (136/467)3. Indications of AC depended of tumor phenotype and molecular tumor subtypes but also of presence or no of axillary lymph node macro-metastases. Under evaluation of axillary LN status with omission of cALND could resulted in AC under indication, particularly for Luminal-A or Luminal-B Her2-negative tumors.

PMRT rate was not lower in our study for pN0(i+) and pN1mi for patients with cALND versus cALND (respectively, 34.1\% and 21.3\% versus 59.4\% and 39.6\%). In IBCSG 23-01 trial, no PMRT was realized in all patients with mastectomy. The role of RT in the absence of cALND in patients with invaded SN has been extensively discussed28. In the ACOSOG Z0011 trial, adjuvant treatments associated with whole breast irradiation (WBI) using axillary tangential fields, likely contributed to the low rate of node recurrence (1\% in the group without ALND). However, WBI with tangential fields and regional RT were specified in only one third of cases29. Most series evaluating the SN technique showed that tangential fields include the majority of levels I and II but others reported that standard tangential fields of breast RT include the axillary only to a limited extent30, 31. AR is a rare event corresponding to a strong survival pejorative factor32.
In Gentilini et al. study, AR rates were significantly different between patients who received WBI or partial breast irradiation after conservative treatment33. At 10-years, AR rate were in IBCSG 23-01 trial 1.2% and 1.2% for 86 mastectomies respectively in arm with ALND (1/44) and without cALND (1/42) but AR rates for patients with conservative treatment with IORT without WBI were 0% (0/79) in arm with cALND and 6.25% (5/80) in arm without cALND. In our study, AR rates were no significantly different according to cALND or not and PMRT or notPMRT is usually indicated for patients with lymph node macro-metastases34. Two trials explored omission of cALND for patients with positive-SN treated by mastectomy with determination of tangential fields: BOOG 2013–07 and SERC trials10, 11, 22.

Abbreviations

AC : Adjuvant chemotherapy
ALND : axillary lymph node dissection
AR : axillary recurrence
BC : breast cancer
cALND : complementary axillary lymph node dissection
DFS : disease-free survival
ER : endocrine receptors
ET : endocrine therapy
FNR : false negative rate
HE : hematoxylin and eosin
HR : hazard ratio
IHC : immunohistochemistry
IORT : intra operative radiotherapy
ITC : isolated tumor cells
LN : lymph nodes
LVI : lympho vascular invasion
NSN : non-sentinel node
OS : overall survival
PMRT : post-mastectomy radiotherapy
RNI : regional nodal irradiation
RT : radiotherapy
SD : standard deviation
SLNB : sentinel lymph node biopsy
SN : sentinel node
WBI : whole breast irradiation

Declarations

Ethics approval and consent to participate :
This work was approved by our institutional review board (IPC - Comité d'Orienta
tion Stratégique).
All procedures performed in this study involving human participants were done in
accordance with the French ethical standards and with the 2008 Helsinki declaration.
All included patients provided written informed consent before surgery, including the use
of their data for research.

Availability of data and material :
Administrative data and clinical data are compiled in a common database and are
available to editors and peer reviewers.

Competing interests :
The authors declare that they have no competing interests.
Source of funding: This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors' contributions:

GH, JMC, GB, CM, FR, PG, ED, ASA, PEC, MB, EL, MC supervised or participated in the data collection.

GH and MC conducted data analyses and interpreted the results.

GH and MC drafted the manuscript.

GH, JMC, GB, CM, FR, PG, ED, ASA, PEC, MB, EL, MC participated in revisions of the manuscript.

GH, JMC, GB, CM, FR, PG, ED, ASA, PEC, MB, EL, MC have read and approved the final manuscript.

Acknowledgements: Not applicable.

References

1. Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Costantino JP, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11:927-33.

2. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. AM, Saha S, McCall LM, Morrow M. JAMA. 2011 Feb 9;305(6):569-75.

3. Galimberti V, Cole BF, Zurrida S, Viale G, Luini A, Veronesi P, et al. Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol. 2013 Apr;14(4):297-305.

4. Sola M, Alberro JA, Fraile M, Santesteban P, Ramos M, Fabregas R, et al. Complete
axillary lymph node dissection versus clinical follow-up in breast cancer patients with sentinel node micrometastasis: final results from the multicenter clinical trial AATRM 048/13/2000. Ann Surg Oncol 2013; 20(1): 120-7.

5. Caudle AS, Hunt KK, Kuerer HM, Meric-Bernstam F, Lucci A, Bedrosian I, et al. Multidisciplinary Considerations in the Implementation of the Findings from the American College of Surgeons Oncology Group (ACOSOG) Z0011 Study: A Practice-Changing Trial. Ann Surg Oncol. 2011; 18(9): 2407–2412.

6. Tsai-Wei Huang , Ken N. Kuo , Kee-Hsin Chen, Chiehfeng Chen, Wen-Hsuan Hou, Wei-Hwa Lee, et al. Recommendation for axillary lymph node dissection in women with early breast cancer and sentinel node metastasis: A systematic review and meta-analysis of randomized controlled trials using the GRADE system. Int J Surg 2016, 34 (2016) 73-80.

7. Lyman GH, Temin S, Edge SB, Newman LA, Turner RR, Weaver DL, Benson AB 3rd, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update J Clin Oncol. 2014 May 1;32(13):1365-83.

8. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, et al. Tailoring therapies--improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015 Aug;26(8):1533-46.

9. Chung A, Gangi A, Mirocha J, Giuliano A. Applicability of the ACOSOG Z0011 Criteria in Women with High-Risk Node-Positive Breast Cancer Undergoing Breast Conserving Surgery Ann Surg Oncol 2015 ; 22:1128–1132.

10. Houvenaeghel G, Resbeut M, Boher JM. Sentinel node invasion: is it necessary to perform axillary lymph node dissection? Randomized trial SERC. Bull Cancer. 2014
11. Houvenaeghel G, Cohen M, Raro P, De Troyer J, de Lara CT, Gimbergues P, Gauthier T, Faure-Virelizier C, Vaini-Cowen V, Lantheaume S, Regis C, Darai E, Ceccato V, D'Halluin G, Del Piano F, Villet R, Jouve E, Beedassy B, Theret P, Gabelle P, Zinzindohoue C, Opinel P, Marsollier-Ferrer C, Dhainaut-Speyer C, Colombo PE, Lambaudie E, Tallet A, Boher JM; Others investigators (SERC trial group). Overview of the pathological results and treatment characteristics in the first 1000 patients randomized in the SERC trial: axillary dissection versus no axillary dissection in patients with involved sentinel node. BMC Cancer. 2018 Nov 21;18(1):1153.

12. Houvenaeghel G, Nos C, Mignotte H, Classe JM, Giard S, Rouanet P, et al. Micrometastases in sentinel lymph node in a multicentric study: predictive factors of nonsentinel lymph node involvement—Groupe des Chirurgiens de la Federation des Centres de Lutte Contre le Cancer. J Clin Oncol 2006 ; 24 : 1814-22.

13. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. New Engl J Med 2003;349:546e53.

14. Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, Harlow SP, et al. Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med. 2011 Feb 3;364(5):412-21.

15. Houvenaeghel G, Quilichini O, Cohen M, Reyal F, Classe JM, Mazouni C, et al. Sentinel lymph node biopsy validation for large tumors. Int J Surg. 2017 Dec;48:275-280.

16. Houvenaeghel G, Tallet A, Jalaguier-Coudray A, Cohen M, Bannier M, Jauffret-Fara C, Lambaudie E. Is breast conservative surgery a reasonable option in multifocal or multicentric tumors? World J Clin Oncol. 2016 Apr 10;7(2):234-42.

17. Donker M, van Tienhoven G, Straver ME, Meijnen P, van de Velde CJ, Mansel RE, et al.
Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014 Nov;15(12):1303-10.

18. Fisher B, Jeong JH, Anderson S, et al. Twenty-five-year followup of a randomized trial comparing radical mastectomy, total mastectomy and total mastectomy followed by irradiation. N Engl J Med. 2002;347:567-75.

19. Savolt A, Peley G, Polgar C, Udvarhelyi N, Rubovszky G, Kovacs E, et al. Eight-year follow up result of the OTOASOR trial: The Optimal Treatment Of the Axilla - Surgery Or Radiotherapy after positive sentinel lymph node biopsy in early-stage breast cancer: A randomized, single centre, phase III, non-inferiority trial. Eur J Surg Oncol. 2017;43(4):672-9.

20. Reimer T, Stachs A, Nekljudova V, Loibl S, Hartmann S, Wolter K, et al. Restricted Axillary Staging in Clinically and Sonographically Node-Negative Early Invasive Breast Cancer (c/iT1-2) in the Context of Breast Conserving Therapy: First Results Following Commencement of the Intergroup-Sentinel-Mamma (INSEMA) Trial. Geburtshilfe Frauenheilkd. 2017 Feb;77(2):149-157.

21. Goyal A, Dodwell D. POSNOC: A Randomised Trial Looking at Axillary Treatment in Women with One or Two Sentinel Nodes with Macrometastases. Clin Oncol (R Coll Radiol). 2015 Dec;27(12):692-5.

22. van Roozendaal LM, de Wilt JH, van Dalen T, van der Hage JA, Strobbe LJ, Boersma LJ, et al. The value of completion axillary treatment in sentinel node positive breast cancer patients undergoing a mastectomy: a Dutch randomized controlled multicentre trial (BOOG 2013-07). BMC Cancer. 2015 Sep 3;15:610.

23. de Boniface J, Frisell J, Andersson Y, Bergkvist L, Ahlgren J, Rydén L, Olofsson Bagge R, Sund M, Johansson H, Lundstedt D & SENOMACTrialists’ Group. Survival and axillary
recurrence following sentinel node-positive breast cancer without completion axillary lymph node dissection: the randomized controlled SENOMAC BMC Cancer. 2017 May 26;17(1):379.

24. Tvedskov TF, Meretoja TJ, Jensen MB, Leidenius M, Kroman N. Cross-validation of three predictive tools for non-sentinel node metastases in breast cancer patients with micrometastases or isolated tumor cells in the sentinel node. Eur J Surg Oncol 2014; 40(4):435-41.

25. Houvenaeghel G, Nos C, Giard S, Mignotte H, Esterni B, Jacquemier J, et al. A nomogram predictive of non-sentinel lymph node involvement in breast cancer patients with a sentinel lymph node micrometastasis. Eur J Surg Oncol 2009;35(7):690-

26. Mazouni C, Reitsamer R, Rimareix F, Stranzl H, Uzan C, Garbay JR, et al. The positive non-sentinel status is not the main decisional factor for chemotherapy assignment in breast cancer with micrometastatic disease in the sentinel lymph node. J Surg Oncol 2012;106(6):703-7.

27. Aigner J, Smetanay K, Hof H, Sinn HP, Sohn C, Schneeweiss A, et al. Omission of axillary dissection according to ACOSOG Z0011: impact on adjuvant treatment recommendations. Ann Surg Oncol 2013;20(5):1538-44.

28. Haffty BG, Hunt KK, Harris JR, Buchholz TA. Positive sentinel nodes without axillary dissection: implications for the radiation oncologist. J Clin Oncol 2011;29(34):4479-81.

29. Jagsi R, Chadha M, Moni J, Ballman K, Laurie F, Buchholz TA, et al. Radiation field design in the ACOSOG Z0011 (Alliance) trial. J Clin Oncol 2014;32(32):3600-6.

30. Belkacemi Y, Allab-Pan Q, Bigorie V, Khodari W, Beaussart P, Totobenazara JL, et al. The standard tangential fields used for breast irradiation do not allow optimal
coverage and dose distribution in axillary levels I-II and the sentinel node area. Ann Oncol 2013;24(8):2023-8.

31. Belkacemi Y, Bigorie V, Pan Q, Bouaita R, Pigneur F, Itti E, et al. Breast radiotherapy (RT) using tangential fields (TgF): a prospective evaluation of the dose distribution in the sentinel lymph node (SLN) area as determined intraoperatively by clip placement. Ann Surg Oncol 2014;21(12):3758e65.

32. Houvenaeghel G, Classe JM, Garbay JR, Giard S, Cohen M, Faure C, et al. Survival impact and predictive factors of axillary recurrence after sentinel biopsy Eur J Cancer. 2016 May;58:73-82.

33. Gentilini O, Botteri E, Leonardi MC, Rotmensz N, Vila J, Peradze N, et al. Ipsilateral axillary recurrence after breast conservative surgery: The protective effect of whole breast radiotherapy. Radiother Oncol. 2017 Jan;122(1):37-44. doi: 10.1016/j.radonc.2016.12.021.

34. Forissier V, Tallet A, Cohen M, Classe JM, Reyal F, Chopin N, Mazouni C, Gimbergues P, Daraï E, Colombo PE, Azuar P, Lambaudie E, Houvenaeghel G. Is post-mastectomy radiation therapy contributive in pN0-1mi breast cancer patients? Results of a French multi-centric cohort. Eur J Cancer. 2017 Nov 3;87:47-57.

Tables

Table 1: Characteristics of patients according to pN status.

pN final status	pN0	pN0(i+)	pN1mi	pN1 macro	T				
	Nb	%	Nb	%	Nb	%	Nb	%	Nb
Total	1272	52.5	11	4.7	243	10.0	794	32.8	2423
SN alone									
pN0(i-) sn	987	88.4	32	2.9	48	4.3	50	4.5	1117
pN0(i+) sn	285	89.1	0	0	0	35	10.9	320	
pN1 mi sn	0	82	93.2	0	6	6.8	88		
pN1 macro sn	0	0	195	86.7	30	13.3	225		

21
age									
	≤40	7.9	23	20.	32	13.			
40.1-50	317	24.9	29	25.	460	24.			
50.1-74.9	718	56.4	56	49.	125	51.			
≥ 75	136	10.7	6	5.3	26	10.			
pT mm									
0-5	176	14.3	9	8.0	18	7.5			
>5-10	260	21.2	19	17.	30	12.			
>10-20	387	31.5	27	24.	79	32.			
21-50	344	28.0	43	38.	80	33.			
>50	61	5.0	14	12.	34	14.			
Grade									
1	351	27.6	20	17.	70	28.			
2	618	48.6	65	57.	116	47.	70	427	53.
3	246	19.3	24	21.	51	21.			
unknown	57	4.5	5	4.4	6	2.4			
LVI									
No	950	86.8	69	63.	135	63.			
Yes	144	13.2	39	36.	77	36.			
unknown	327								
ER									
positive	1072	84.3	10	89.	225	92.			
negative	171	13.4	9	7.9	16	6.5			
unknown	29	2.3	3	2.6	2	0.8			
Her2									
positive	160	13.7	17	17.	26	12.			
negative	955	81.8	71	73.	171	83.			
unknown	52	4.5	9	9.3	7	3.4			
Histology									
Ductal	925	72.7	76	66.	176	72.			
Lobular	225	17.7	26	22.	38	15.			
Mixt	26	2.0	6	5.3	7	2.9			
Others	96	7.5	6	5.3	22	9.1			
T subtypes									
Lum A	775	69.8	54	61.	134	68.			
Lum B HER-	96	8.6	15	17.	31	15.			
Lum B HER+	90	8.1	10	11.	18	9.1	69	9.7	187
Abbreviation: SN: sentinel node; ALND: axillary lymph node dissection; ER: endocrine receptor; LVI: lympho vascular invasion; PMRT: post-mastectomy radiotherapy; RNI: regional nodal irradiation;

Table 2: Characteristics of patients according to sentinel node status and cALND or not.

HER2	70	6.3	7	8.0	8	4.1	61	8.6	146
TN	80	7.2	2	2.3	6	3.0	46	6.5	134

Chemotherapy

	No	762	59.9	49	43.0	65	26.7	64	8.1	940
	Yes adjuvant	493	38.8	63	55.3	167	68.7	663	83.5	1386
	Yes Neo adjuvant	12	0.9	2	1.8	10	4.1	66	8.3	90
unknown	5	0.4	0	1	0.4	1	0.1	7		

Endocrine Therapy

	No	281	22.2	18	15.8	26	10.8	135	17.1	460
	Yes	985	77.8	95	84.2	214	89.2	654	82.9	1949
unknown										14

Trastuzumab

	No	1048	90.1	10	88.6	219	90.1	680	86.6	2048
	Yes	115	9.9	13	11.4	24	9.9	105	13.4	257
unknown										1

PMRT

	No	754	59.4	39	34.2	58	23.9	42	5.3	893
	Yes	514	40.5	75	65.8	185	76.1	752	94.7	1526
unknown		1	0.1	0	0	0	0	0	1	

RNI

	No	1000	84.8	57	58.8	104	48.8	77	11.2	1238
	Yes	179	15.2	40	4.3	109	51.2	611	88.8	939
unknown		246								

SN status	pN0	pN0(i+)	SN+ALND	SN	Chi2	SN+ALND	SN	Chi2
pN final								
pN0	285	987						
pN0(i+)		82	32					
pN1mi	35	0	6		0			
pN1macro								
age								
<= 40	20	82	0.218		16	8		0.54
40.1-50	89	239	22		8	8		
Grade	Overall Survival	ER+	ER-	ER+	ER-			
----------------	------------------	------	------	------	------			
1	185	66	287	18	3			
2	179	179	460	47	22			
3	69	69	189	20	5			
unknown	6	6	18	3	2			
LVI No	185	66	287	18	3			
LVI Yes	55	179	460	47	22			
Endocrine Yes	56	69	189	20	5			
Endocrine No	262	262	750	76	26			
Chemotherapy No	140	215	676	53	21			
Chemotherapy Yes	160	20	63	2	0			
Chemotherapy Neo	19	16	57	5	2			
Chemotherapy unknown	1	21	75	6	4			
PMRT No	95	140	623	30	19			
PMRT Yes	225	225	354	55	13			
RNI No	211	211	794	41	18			
RNI Yes	101	101	107	35	8			

Table 3: Overall Survival according to sentinel node status: multivariable analysis.
Overall Survival	pN0 SN	pN0(i+) & pN1mi SN	pN1 macro SN				
	HR	CI95%	p	HR	CI95%	p	HR
ALND							
Yes	1						
No	1.472	0.614-3.526	0.386	2.063	0.439-9.693	0.359	
Grade							
1	1						
2	0.551	0.225-1.350	0.192				
3	1.238	0.501-3.057	0.644				
LVI							
No	1						
Yes	2.293	1.010-5.205	0.047	0.775	0.181-3.314	0.731	
Endocrine therapy							
Yes	1						
No	3.044	1.484-6.247	0.002	6.924	1.087-44.09	0.040	
age							
<= 40	1						
40.1-50	0.280	0.069-1.140	0.076	0.628	0.037-10.58	0.747	
50.1-74.9	0.610	0.205-1.813	0.374	1.521	0.164-14.14	0.712	
>= 75	2.499	0.730-8.558	0.145	1.957	0.136-28.14	0.622	
pN final							
pN0	1						
pN1macro	7.180	2.031-25.38	0.002				
Chemotherapy							
No	1						
Yes	0.347	0.074-1.619	0.178				
NAC							
PMRT							
No	1						
Yes	0.289	0.024-3.486	0.328				
RNI							
No	1						
Yes	5.095	0.350-74.16	0.233				

Legend: Significant univariate variables were included in each model.

Abbreviations: HR: hazard ratio; ALND: axillary lymph node dissection; LVI: lymph vascular invasion; PMRT: post-mastectomy radiotherapy; RNI: regional nodal irradiation;

Table 4: Disease Free Survival according to sentinel node status: multivariable analysis.
Grade	1	1					
2	0.883	0.453-1.722	0.715				
3	1.893	0.858-4.178	0.114				
LVI							
No	1	1					
Yes	2.031	1.050-3.928	**0.035**	1.136	0.508-2.542	0.756	
Endocrine therapy							
Yes	1	1	1				
No	3.190	1.785-5.703	**<0.0001**	2.450	0.770-7.799	0.129	2.52
SN status							
pN0(i-)							
pN0(i+)							
pN1mi		0.708	0.315-1.592	0.404			
pN1macro							
T size							
<=5mm	1						
5.1-10	3.016	0.826-11.01	0.095				
10.1-19.9	4.087	1.153-14.48	**0.029**				
20-50	4.874	1.356-17.52	**0.015**				
>50mm	6.537	1.583-26.99	**0.009**				
age							
<= 40	1						
40.1-50	0.886	0.276-2.846	0.839	0.773	0.245-2.442	0.661	0.79
50.1-74.9	0.967	0.335-2.791	0.950	0.689	0.240-1.976	0.489	1.07
>= 75	1.821	0.532-6.233	0.340	0.578	0.125-2.686	0.485	1.52
Chemotherapy							
No	1						
Yes	0.446	0.221-0.901	**0.024**	1.164	0.413-3.280	0.774	0.96
NAC	0.000	0.0-8.4E256	0.971	2.841	0.280-28.87	0.377	1.44
PMRT							
No	1						
Yes	0.472	0.145-1.538		0.213		2.12	
RNI							
No	1						
Yes	1.015	0.345-2.985	0.978				

Legend: Significant univariate variables were included in each model.

DFS: Disease Free Survival; HR: hazard ratio
SN: sentinel node; ALND: axillary node dissection; LVI: lympho vascular invasion; PMRT: post-mastectomy radiotherapy; RNI: regional nodal irradiation.
Table 5: Binary logistic regression predictive of positive NSN.

	pN0(i+) & pN1mi with ALND			
	univariate	Regression		
	p	OR	CI95%	p
age				
> 40	0.013	1		
<= 40	2.306	1.078-4.932	0.031	
pT size				
< 20mm	0.003	1		
>= 20mm	2.603	1.426-4.751	0.002	
SN status				
pN0(i+)	<0.0001	1		
pN1mi	4.825	1.930-12.06	0.001	
Grade				
1 vs 2 vs 3	0.617			
LVI				
No vs Yes	0.430			
ER				
No vs Yes	0.340			
Periods				
P1 vs P2 vs P3	0.170			
Her2/ER				
ER+ Her2-	0.255			

Abréviation: ALND : axillary lymph node dissection; SN : sentinel node; LVI : lympho vascular invasion ; ER : endocrine receptor;

Table 6: PMRT, RNI and AC realization: binary logistic regression.

	PMRT		RNI					
	OR	CI95%	p	OR	CI95%	p		
cALND or no	SN+cALND	1		1				
	SN	0.477	0.273-0.833	0.009	SN	0.436	0.244-0.779	0.005
	pN0(i+)	1		1				
	pN1mi	1.905	1.134-3.201	0.015	pN1mi	1.629	0.991-2.678	0.055
	> 40 years	pT < 20mm	1		1			
		3.019	1.774-5.137	<0.0001	2.155	1.322-3.513	0.002	
	<= 40 years	pT < 20mm	2.168	0.885-5.312	0.090	1.222	0.541-2.761	0.630
		17.82	2.330-136.3	0.006	4.545	1.692-12.21	0.003	

évictions: PMRT : post-mastectomy radiotherapy ; RNI : regional nodal irradiation ; AC : adjuvant chemotherapy; cALND : complementary axillary lymph node dissection ; SN : sentinel node;

Figures
Figure 1

DFS for pN0(i+) and pN1mi according to cALND or not, adjusted in multivariable analysis.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary Table1.docx