Search for Anomalous Production of Diphoton Events with Missing Transverse Energy at CDF and Limits on Gauge–Mediated Supersymmetry–Breaking Models

D. Acosta,16 J. Adelman,12 T. Affolder,9 T. Akimoto,54 M.G. Albrow,15 D. Ambrose,43 S. Amerio,42 D. Amidei,33 A. Anastassov,50 K. Anikeev,31 A. Annovi,44 J. Antos,1 M. Aoki,54 G. Apollinari,15 T. Arisawa,56 J-F. Arguin,32 A. Artikov,13 W. Ashmanskas,15 A. Atlal,7 F. Azfar,41 P. Azzi-Bacchetta,42 N. Bacchetta,42 H. Bachacou,28 W. Badgett,15 A. Barbaro-Galtieri,28 G.J. Barker,25 V.E. Barnes,46 B.A. Barnett,24 S. Baroian,6 M. Barone,17 G. Bauer,31 F. Bedeschi,44 S. Behari,24 S. Belforte,53 G. Bellettini,44 J. Bellinger,58 E. Ben-Haim,15 D. Benjamin,14 A. Beretvas,15 A. Bhatti,48 M. Binkley,15 D. Bisello,42 M. Bishai,15 R.E. Blair,2 C. Blocker,5 K. Bloom,32 B. Blumenfeld,24 A. Bocci,48 A. Bodek,47 G. Bolla,46 A. Bolshov,31 P.S.L. Booth,29 D. Bortoletto,46 J. Boudreau,45 S. Bourov,15 C. Bromberg,34 E. Brubaker,12 J. Budagov,13 H.S. Budd,47 K. Burkett,15 G. Busetto,42 P. Bussey,10 K.L. Byrum,3 S. Cabrera,14 M. Campanelli,18 M. Campbell,33 A. Canepa,46 M. Casarsa,53 D. Carlsmith,58 S. Carron,14 R. Carosi,48 M. Cavalli-Sforza,3 A. Castro,4 P. Castaniti,44 D. Cauz,53 A. Cerri,28 L. Cerrito,23 J. Chapman,33 C. Chen,43 Y.C. Chen,1 M. Chertok,6 G. Chiarelli,44 G. Chlachidze,13 F. Chlebana,15 I. Cho,27 K. Cho,27 D. Chokheli,13 J.P. Chou,20 M.L. Chu,1 S. Chuang,58 J.Y. Chung,38 W-H. Chung,58 Y.S. Chung,47 C.I. Ciobanu,23 M.A. Ciocci,44 A.G. Clark,18 D. Clark,5 M. Coca,47 A. Connolly,28 M. Convery,48 J. Conway,6 B. Cooper,30 M. Cordelli,17 G. Cottiana,42 J. Cranshaw,52 J. Cuevas,10 R. Culbertson,15 C. Currat,28 D. Cyr,58 D. Dagenhart,5 S. Da Ronco,42 S. D’Auria,19 P. de Barbaro,47 S. De Cecco,49 G. De Lentdecker,47 S. Dell’Agnello,17 M. Dell’Orso,44 S. Demers,47 L. Demortier,48 M. Deninno,4 D. De Pedis,49 P.F. Derwent,15 C. Dionisi,49 J.R. Dittmann,15 P. Doksus,23 A. Dominguez,28 S. Donati,44 M. Donega,18 J. Donini,42 M. D’Onofrio,18 T. Dorigo,42 V. Drollinger,36 K. Ebina,56 N. Eddy,23 R. Ely,28 R. Erbacher,6 M. Erdmann,25 D. Errede,23 S. Errede,23 R. Eusebi,47 H-C. Fang,28 S. Farrington,29 I. Fedorko,44 W.T. Fedorko,12 R.G. Feild,59 M. Feindt,25 J.P. Fernandez,46 C. Ferretti,33 R.D. Field,16 G. Flanagan,34 B. Flaugher,15 L.R. Flores-Castillo,45 A. Fondal,20 S. Forrester,9 G.W. Foster,15 M. Franklin,20 J.C. Freeman,28 H. Frisch,12 Y. Fujii,26 I. Furic,12 A. Gajjar,29 A. Gallas,37 J. Galyardt,11 M. Gallinaro,48 A.F. Garfinkel,46 C. Gay,59 H. Gerberich,14 D.W. Gerdes,33 E. Gerchtein,11 S. Giagu,49 P. Giannetti,44 A. Gibson,28 K. Gibson,11 C. Ginsburg,58 K. Giolo,46 M. Giordani,53 M. Giunta,44 G. Giorgi,11 V. Glagolev,13 D. Glenzinski,15 M. Gold,36 N. Goldschmidt,33 D. Goldstein,7 J. Goldstein,41 G. Gomez,10 G. Gomez-Ceballos,31 M. Goncharov,51 O. González,46 I. Gorelov,36 A.T. Goshaw,14 Y. Gotra,45 K. Goulianos,48 A. Gresele,4 M. Griffiths,29 C. Grossopilcher,12 U. Grundler,23 M. Guenter,46 J. Guimaraes da Costa,20 C. Haber,28 K. Hahn,43 S.R. Hahn,15 E. Hallikadakis,47 A. Hamilton,32 B-Y. Han,47 R. Handler,58 F. Happacher,17 K. Har,54 M. Hare,55 R.F. Harr,57 R.M. Harris,15 F. Hartmann,25 K. Hatakeyama,48 J. Hauser,7 C. Hays,14 H. Hayward,29 E. Heider,55 B. Heinemann,29 J. Heinrich,43 M. Hennecke,25 M. Herndon,24 C. Hill,9 D. Hirschbuehl,25 A. Hocker,47 K.D. Hoffman,12 A. Holloway,20 S. Hou,1 M.A. Houlen,29 B.T. Huffman,41 Y. Huang,14 R.E. Hughes,38 J. Huston,34 K. Ikado,56 J. Incandela,9 G. Introzzi,44 M. Iori,49 Y. Ishizawa,54
H. Stadie, B. Stelzer, O. Stelzer-Chilton, J. Strologas, D. Stuart, A. Sukhanov, K. Sumorok, H. Sun, T. Suzuki, A. Taffard, R. Tafirout, S.F. Takach, H. Takano, R. Takashima, Y. Takeuchi, K. Takikawa, M. Tanaka, R. Tanaka, N. Tanimoto, S. Tapprogge, M. Tecchio, P.K. Teng, K. Terashi, R.J. Tesarek, S. Tether, J. Thom, A.S. Thompson, E. Thomson, P. Tipton, V. Tiwari, S. Tkaczyk, D. Toback, K. Tollefson, T. Tomura, D. Tonelli, M. Tönniesmann, S. Torre, D. Tsybychev, N. Turini, V. Varganov, S. Vejcik III, G. Velev, A.B. Wicklund, E. Wicklund, H.H. Williams, P. Wilson, B.L. Winer, M. Wolters, M. Worczer, S. Worm, A. Wyatt, A. Yagil, U.K. Yang, W. Yao, G.P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, I. Yu, Z. Yu, J.C. Yun, L. Zanello, A. Zanetti, I. Zaw, F. Zetti, J. Zhou, A. Zsenei, and S. Zucchelli

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
4 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
5 Brandeis University, Waltham, Massachusetts 02254
6 University of California at Davis, Davis, California 95616
7 University of California at Los Angeles, Los Angeles, California 90024
8 University of California at San Diego, La Jolla, California 92093
9 University of California at Santa Barbara, Santa Barbara, California 93106
10 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
11 Carnegie Mellon University, Pittsburgh, PA 15213
12 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
16 University of Florida, Gainesville, Florida 32611
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138
21 The Helsinki Group: Helsinki Institute of Physics; and Division of High Energy Physics, Department of Physical Sciences, University of Helsinki, FIN-00014, Helsinki, Finland
22 Hiroshima University, Higashi-Hiroshima 724, Japan
Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
Center for High Energy Physics: Kyungpook National University, Taegu 702-701; Seoul National University, Seoul 151-742; and SungKyunKwan University, Suwon 440-746; Korea
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
University of Liverpool, Liverpool L69 7ZE, United Kingdom
University College London, London WC1E 6BT, United Kingdom
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
University of Michigan, Ann Arbor, Michigan 48109
Michigan State University, East Lansing, Michigan 48824
Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
Northwestern University, Evanston, Illinois 60208
The Ohio State University, Columbus, Ohio 43210
Okayama University, Okayama 700-8530, Japan
Osaka City University, Osaka 588, Japan
University of Oxford, Oxford OX1 3RH, United Kingdom
University of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Purdue University, West Lafayette, Indiana 47907
University of Rochester, Rochester, New York 14627
The Rockefeller University, New York, New York 10021
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University di Roma “La Sapienza,” I-00185 Roma, Italy
Rutgers University, Piscataway, New Jersey 08855
Texas A&M University, College Station, Texas 77843
Texas Tech University, Lubbock, Texas 79409
Istituto Nazionale di Fisica Nucleare, University of Trieste/ Udine, Italy
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Tufts University, Medford, Massachusetts 02155
Waseda University, Tokyo 169, Japan
Wayne State University, Detroit, Michigan 48201
University of Wisconsin, Madison, Wisconsin 53706
Yale University, New Haven, Connecticut 06520
Abstract

We present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV we observe no candidate events, with an expected standard model background of 0.27 ± 0.07(stat) ± 0.10(syst) events. The results exclude a lightest chargino of mass less than 167 GeV/c^2, and lightest neutralino of mass less than 93 GeV/c^2 at 95% C.L. in a gauge–mediated supersymmetry–breaking model with a light gravitino.

PACS numbers 13.85Rm, 13.85Qk, 14.80.-j,14.80.Ly
The standard model (SM) [1] of elementary particles has been enormously successful, but it is incomplete. For theoretical reasons [2,3], and because of the ‘eeγγ+missing transverse energy (E_T)’ [4] candidate event recorded by the CDF detector in Run I [5], there is a compelling rationale to search in high–energy collisions for the production of heavy new particles that decay producing the signature of γγ+E_T. Of particular theoretical interest are supersymmetric (SUSY) models with gauge–mediated SUSY–breaking (GMSB). Characteristically, the effective SUSY–breaking scale (Λ) can be as low as 100 TeV, the lightest SUSY particle is a light gravitino (G) that is assumed to be stable, and the SUSY particles have masses that may make them accessible at Tevatron energies [2]. In these models the visible signatures are determined by the properties of the next–to–lightest SUSY particle (NLSP) that may be, for example, a slepton or the lightest neutralino (χ^0_1). In the GMSB model investigated here, the NLSP is a χ^0_1 decaying almost exclusively to a photon and a G that penetrates the detector without interacting, producing E_T. SUSY particle production at the Tevatron is predicted to be dominated by pairs of the lightest chargino (χ^±_1) and by associated production of a χ^±_1 and the next–to–lightest neutralino (χ^0_2). Each gaugino pair cascades down to two χ^0_1’s, leading to a final state of γγ+E_T+X, where X represents any other final state particles.

In this paper we summarize [6] a search for anomalous production of inclusive γγ+E_T+X events in data corresponding to an integrated luminosity of 202 ± 12 pb^{-1} [7] of p\bar{p} collisions at \sqrt{s} = 1.96 TeV using the CDF II detector [8]. We examine events with two isolated photons with |η| ≤ 1.0 and E_γ > 13 GeV for the presence of large E_T. This work extends a previous CDF search [5] for SUSY in this channel by using an upgraded detector, a higher p\bar{p} center-of-mass energy, and a larger data sample. The analysis selection criteria have been re-optimized to maximize, a priori, the expected sensitivity to GMSB SUSY based only on the background expectations and the predictions of the model. Similar searches for diphoton + E_T events have been performed elsewhere [9].

We briefly describe the aspects of the CDF II detector relevant to this analysis. The magnetic spectrometer consists of tracking devices inside the 3-m diameter, 5-m long superconducting solenoid magnet operating at 1.4 T. A 90-cm long silicon micro-strip vertex detector, consisting of one single–sided layer and six double–sided layers, with an additional
double-sided layer at large η, surrounds the beam pipe. Outside the silicon detector, a 3.1-m long drift chamber with 96 layers of sense wires is used with the silicon detector to determine the momenta of charged particles and the z position of the $p\bar{p}$ interaction (z_{vertex}). The calorimeter, constructed of projective towers, each with an electromagnetic and hadronic compartment, is divided into a central barrel that surrounds the solenoid coil ($|\eta| < 1.1$) and a pair of ‘end-plugs’ that cover the region $1.1 < |\eta| < 3.6$. The hadronic compartments of the calorimeter are also used to provide a measurement of the arrival time of the particles depositing energy in each tower. Wire chambers with cathode–strip readout (the CES system), located at shower maximum in the central electromagnetic calorimeter, give 2-dimensional profiles of showers. A system of proportional wire chambers in front of the central electromagnetic calorimeters (the CPR system) uses the one-radiation-length-thick magnet coil as a ‘preradiator’ to determine whether showers start before the calorimeter [10].

Muons are identified with a system of planar drift chambers situated outside the calorimeters in the region $|\eta| < 1.0$.

We select candidate events using both online (during data taking) and offline selection requirements. Online, events are selected for the presence of two photon candidates, identified by the three-level trigger as two isolated electromagnetic clusters [10] with $E_{T}^{\gamma} > 12$ GeV, or two electromagnetic clusters with $E_{T}^{\gamma} > 18$ GeV and no isolation requirement. The offline event selection requirements for the diphoton candidate sample are designed to reduce electron and jet/π^0 backgrounds while accepting well-measured diphoton candidates. We require two central (approximately $0.05 < |\eta| < 1.0$) electromagnetic clusters that: a) have $E_{T}^{\gamma} > 13$ GeV; b) are not near the boundary in ϕ of a calorimeter tower [11]; c) have the ratio of hadronic to electromagnetic energy, Had/EM, < $0.055 + 0.00045 \cdot E^{\gamma}(\text{GeV}^{-1})$; d) have no tracks, or only one track with $p_{T} < 1$ GeV$/c$, extrapolating to the towers of the cluster; e) are isolated in the calorimeter and tracking chamber [12]; f) have a shower shape in the CES consistent with a single photon; g) have no other significant energy deposited nearby in the CES.

To minimize the number of events with large E_{T} due to calorimeter energy mis-measurement, we correct for jet (j) energy loss in cracks between detector components and for nonlinear calorimeter response [13]. To avoid any remaining cases where a jet is not
fully measured by the calorimeter, we remove events based on the azimuthal opening angle between the E_T direction and the ϕ of any jet with uncorrected $E_T > 10$ GeV, $\Delta \phi(E_T, j)$. We require all events to have $10^\circ < \Delta \phi(E_T, j) < 170^\circ$. To reduce beam–related and cosmic–ray backgrounds we require a good vertex with $|z_{\text{vertex}}| < 60$ cm and reject events with significant energy out-of-time with the collision [14]. These backgrounds can also produce E_T equal in magnitude and opposite in direction to a photon, or to the vector sum of the momenta of two photons if they are nearby in ϕ. In this case an event is rejected if there are potential cosmic–ray hits in the muon chamber, within 30 degrees of the photon, that are not matched to any track. Events are also rejected if there is a pattern of energy in the calorimeter indicative of beam–related backgrounds [15]. A sample of 3,306 diphoton events pass all candidate selection requirements. The E_T requirement, $E_T > 45$ GeV, is determined by the final optimization procedure that is discussed below, after a more complete description of the backgrounds.

Before the E_T requirement, the diphoton candidate sample is dominated by QCD interactions producing combinations of photons and jets faking photons. In each case only small measured E_T is expected, due mostly to energy measurement resolution effects. Standard CDF techniques [10] are used to estimate the individual contributions for the sample to be $47 \pm 6\% \gamma j$, $29 \pm 4\% \gamma \gamma$, and $24 \pm 4\% jj$ production. To estimate the shape of the E_T distribution of this background we use a control sample of similarly-produced events that have the same calorimetric response and resolution. We select 7,806 events that pass the same photon E_T, z_{vertex}, fiducial, $\Delta \phi(E_T, j)$, beam–related and cosmic–ray background selection requirements, but are allowed to satisfy looser photon identification and isolation requirements [16]. If an event is in the diphoton candidate sample it is rejected from the control sample. The contribution from $e \gamma$ events, discussed below, is also subtracted from the control sample. Since the E_T resolution for a given event is a function of the sum of all the transverse energy in the event (ΣE_T), and we observe a small difference between the ΣE_T distributions of the diphoton candidate and control samples, we correct the E_T in the control sample for this difference [17]. To predict the number of events with large E_T, we normalize the corrected control sample distribution to the number of diphoton candidate events in the region $E_T < 20$ GeV, and fit the spectrum above 10 GeV to a double
exponential. We predict $0.01 \pm 0.01\text{(stat)} \pm 0.01\text{(syst)}$ events with $E_T > 45$ GeV, where the uncertainty is dominated by differences in the predictions using various control sample selection requirements, the choice of fit function, and the statistical uncertainties of the sample.

Events with an electron and a photon candidate ($W\gamma \rightarrow e\nu\gamma$, $Wj \rightarrow e\nu\gamma_{\text{fake}}$, $Z\gamma \rightarrow ee\gamma$, etc.) can contribute to the diphoton candidate sample when the electron track is lost (by tracking inefficiency or bremsstrahlung) to create a fake photon. For W decays large E_T can come from the neutrinos. This background is estimated using $e\gamma$ events from the data. The diphoton triggers accept electromagnetic clusters with tracks so they provide an efficient and unbiased sample of these events. We find 462 $e\gamma$ events before the E_T requirement. Examining a $Z \rightarrow ee$ sample, we estimate $1.0 \pm 0.4\%$ of electrons will pass the diphoton candidate sample requirements, including charged track rejection. By multiplying the number of observed $e\gamma E_T$ events by the probability that an electron fakes a photon, we estimate $0.14 \pm 0.06\text{(stat)} \pm 0.05\text{(syst)}$ background events in the sample with $E_T > 45$ GeV. The uncertainty is dominated by the statistical uncertainty in the fake rate and the uncertainty in the purity of the $e\gamma$ sample.

Beam-related sources and cosmic rays overlapped with a SM event can contribute to the background by producing spurious energy deposits that in turn affects the measured E_T. While the rate at which these events contribute to the diphoton candidate sample is low, most contain large E_T. The spurious clusters can pass photon cuts. The dominant contribution actually comes from sources that produce two photon candidates at once, such as a cosmic muon undergoing bremsstrahlung twice. This background is estimated from the data using a sample of events with no primary collision and two electromagnetic clusters, multiplied by the rate that clusters from cosmic rays pass the diphoton candidate sample requirements. Backgrounds where only one of the photons, or only the E_T, is from a non-collision source, are estimated to be negligible. The total number of events expected from non-collision sources in the $E_T > 45$ GeV sample is $0.12 \pm 0.03\text{(stat)} \pm 0.09\text{(syst)}$. The uncertainty includes the uncertainty in the rate that spurious clusters pass the diphoton selection requirements and takes into account the statistics and purity of the sample of events with no primary collision.
The E_T distribution of the diphoton candidate sample, see Figure 1, shows good agreement with that from the expected backgrounds. Table I summarizes the number of observed events and predicted backgrounds with four different E_T requirements. There are no events with $E_T > 45$ GeV.

Since there is no evidence for events with anomalous E_T in the diphoton candidate sample, we set limits on new particle production from GMSB using the parameters suggested in Ref. [18]. To estimate the acceptance for this scenario we generate GMSB events using ISAJET [19] with CTEQ5L parton distribution functions [20]. The production cross sections from ISAJET are corrected by a K-factor of approximately 1.2 to match the next-to-leading order (NLO) prediction [21]. We process the events through the GEANT-based [22] detector simulation, and correct the resulting efficiency with information from data measurements.

Since electrons and photons interact similarly in the calorimeter we investigate the efficiency of the photon identification and isolation selection criteria by using a control sample of electrons from $Z \rightarrow ee$ events. Separate efficiency estimates comparing data and detector simulation agree to within 3%. Using the simulation we estimate that if a photon within the fiducial portion of the detector is isolated, it has an 80% probability of passing the identification and isolation criteria. However, the isolation energy of the photons is predicted from the Monte Carlo to be a strong function of the SUSY scale due to the number and energy of the extra jets produced. We find, for example, the single–photon efficiency to be reduced to 62% at $M_{\tilde{\chi}_1^{\pm}}=170$ GeV/c^2. This has a significant impact on the sensitivity. We find that the fraction of generated signal events passing all the selection requirements, including $E_T > 45$ GeV, rises linearly from 3.5% at $M_{\tilde{\chi}_1^{\pm}}=100$ GeV/c^2 to approximately 8% at 180 GeV/c^2. It remains roughly flat for larger masses due to the increasing inefficiency of the $\Delta \phi(E_T,j)$ selection requirement. The relative systematic uncertainty in the efficiency of the photon identification and isolation requirements is approximately 6.5% per photon. Other significant uncertainties in the Monte Carlo model predictions are from initial/final state radiation (10%), Q^2 of the interaction (3%) and uncertainty in parton distribution functions (5%). Combining these numbers with the 6% luminosity uncertainty gives a total relative systematic uncertainty of 18%.

The kinematic selection requirements defining the final data sample are determined by
a study to optimize the expected limit, *i.e.*, without looking at the signal region data. To compute the expected 95% confidence level (C.L.) cross section upper limit we combine the predicted signal and background estimates with the systematic uncertainties using a Bayesian method [23] and follow the prescription described in Ref. [24]. The expected limits are computed as a function of E_T, photon E_T, and $\Delta\phi(E_T,j)$ selection requirements. We find that the best limit is predicted with the selection described above for the diphoton candidate sample, and $E_T > 45$ GeV. The statistical analysis indicates that the most probable expected result, in the absence of a signal, would be an exclusion of $M_{\tilde{\chi}^\pm} \lessgtr 161$ GeV/c^2 and $M_{\tilde{\chi}^0} \lessgtr 86$ GeV/c^2.

In the data signal region, with $E_T > 45$ GeV, we observe zero events. Taking into account the 18% systematic uncertainty we set a 95% C.L. upper limit of 3.3 signal events. Figure 2 shows the observed cross section limits as a function of $M_{\tilde{\chi}^\pm}$ and $M_{\tilde{\chi}^0}$ along with the theoretical LO and NLO production cross sections. Using the NLO predictions we set a limit of $M_{\tilde{\chi}^\pm} > 167$ GeV/c^2 at 95% C.L. From mass relations in the model, we equivalently exclude $M_{\tilde{\chi}^0} < 93$ GeV/c^2 and $\Lambda < 69$ TeV.
FIG. 1. The E_T spectrum for events with two isolated central photons with $E_T^\gamma > 13$ GeV and $|\eta| \lesssim 1.0$ along with the predictions from the GMSB model with a $\tilde{\chi}_1^\pm$ mass of 175 GeV/c2, normalized to 202 pb$^{-1}$. The diphoton candidate sample data are in good agreement with the background predictions. There are no events above the $E_T > 45$ GeV threshold. The properties of the two candidates above 40 GeV appear consistent with the expected backgrounds.
FIG. 2. The 95% C.L. upper limits on the total production cross section times branching ratio versus \(M_{\tilde{\chi}^\pm_1} \) and \(M_{\tilde{\chi}^0_1} \) for the light gravitino scenario using the parameters proposed in [18]. The lines show the experimental limit and the LO and NLO theoretically predicted cross sections. We set limits of \(M_{\tilde{\chi}^\pm_1} > 167 \text{ GeV}/c^2 \) and \(M_{\tilde{\chi}^0_1} > 93 \text{ GeV}/c^2 \) at 95% C.L.

In conclusion, we have searched 202 pb\(^{-1} \) of inclusive diphoton events at CDF run II for anomalous production of missing transverse energy as evidence of new physics. We find good agreement with standard model expectations. We find no events above the \textit{a priori} \(E_T \) threshold, and thus observe no new \(ee\gamma\gamma E_T \) candidates. Using these results, we have set limits on the lightest chargino \(M_{\tilde{\chi}^\pm_1} > 167 \text{ GeV}/c^2 \) and \(M_{\tilde{\chi}^0_1} > 93 \text{ GeV}/c^2 \) at 95% C.L. in a GMSB model. This limit is an improvement over previous CDF and DØ limits and is
comparable to LEP II for similar models [9].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; and in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00292, Probe for New Physics.
TABLE I

E_T Requirement	Expected	Observed			
	QCD	$e\gamma$	Non-Collision	Total	
25 GeV	4.01 ± 3.21 ± 3.76	1.40 ± 0.52 ± 0.45	0.54 ± 0.06 ± 0.42	5.95 ± 3.25 ± 3.81	3
35 GeV	0.30 ± 0.24 ± 0.22	0.84 ± 0.32 ± 0.27	0.25 ± 0.04 ± 0.19	1.39 ± 0.40 ± 0.40	2
45 GeV	0.01 ± 0.01 ± 0.01	0.14 ± 0.06 ± 0.05	0.12 ± 0.03 ± 0.09	0.27 ± 0.07 ± 0.10	0
55 GeV	(negligible)	0.05 ± 0.03 ± 0.02	0.07 ± 0.02 ± 0.05	0.12 ± 0.04 ± 0.05	0

TABLE I. Numbers of events observed and events expected from background sources as a function of the E_T requirement. Here “QCD” includes the $\gamma\gamma$, γj and jj processes. The first uncertainty is statistical, the second is systematic.
REFERENCES

[1] See for example, F. Halzen and A. D. Martin, “Quarks and Leptons,” John Wiley & Sons, 1984; C. Quigg, “Gauge Theories of the Strong, Weak, and Electromagnetic Interactions,” Addison-Wesley, 1983; and I. S. Hughes, “Elementary particles,” Cambridge University Press, 1990.

[2] S. Dimopoulos, S. Thomas, J. D. Wells, Nucl. Phys. B 488, 39 (1997); S. Ambrosanio, G.D. Kribs and S.P. Martin, Phys. Rev. D 56, 1761 (1997); G. F. Giudice and R. Rattazzi, Phys. Rept. 322, 419 (1999); and S. Ambrosanio, G. Kane, G. Kribs, S. Martin and S. Mrenna, Phys. Rev. D 55, 1372 (1997).

[3] R. Culbertson et al., hep-ph/0008070.

[4] We use a cylindrical coordinate system that defines z as the longitudinal axis and along the proton beam axis, in which θ is the polar angle, ϕ is the azimuthal angle and $\eta = -\ln \tan(\theta/2)$. In general, all quantities are defined from $z_{\text{vertex}} = 0$, $E_T = E \sin \theta$ and $p_T = p \sin \theta$ where E is the energy measured by the calorimeter and p the momentum measured in the tracking system. $\vec{E}_T = - \sum_i E_T^i \vec{n}_i$ where \vec{n}_i is a unit vector that points from the interaction vertex to the ith calorimeter tower in the transverse plane. E_T is the magnitude of \vec{E}_T.

[5] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 1791 (1998); CDF Collaboration, F. Abe et al., Phys. Rev. D 59, 092002 (1999).

[6] M. S. Kim, FERMILAB-THESIS-2004-41 (unpublished).

[7] S. Klimenko et al, FERMILAB-FN-0741 (2003); D. Acosta et al, Nucl. Instrum. Meth. A494, 57 (2002)

[8] CDF II Collaboration, R. Blair et al., FERMILAB-PUB-96/390-E (1996).

[9] DØ Collaboration, S. Abachi et al., Phys. Rev. Lett. 78, 2070 (1997), B. Abbott et al., Phys. Rev. Lett. 80, 442 (1998); and V. Abazov et al., Phys. Rev. Lett. 94, 041801 (2005); ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C25 339 (2002); L3 Collaboration, M. Acciarri et al., Phys. Lett. B 472, 420 (2000); OPAL Collaboration,
[10] CDF Collaboration, F. Abe et al., Phys. Rev. D 52, 4784 (1995) and D. Acosta et al., Phys. Rev. D 65, 112003 (2002).

[11] The fiducial region has \(\sim 87\% \) coverage in the central region.

[12] To reject hadronic backgrounds that fake prompt photons, candidates are required to be isolated in the calorimeter and tracking chamber. In the calorimeter the isolation is defined as the energy in a cone of 0.4 in \(\eta - \phi \) space, minus the photon cluster energy, and corrected for energy loss into cracks as well as the number of reconstructed \(p\bar{p} \) interactions in the event. We require isolation \(< 0.1 \times E_T^\gamma \) for \(E_T^\gamma < 20 \) GeV, and \(< 2.0 \) GeV+0.02 \(\times (E_T^\gamma - 20 \) GeV) for \(E_T^\gamma > 20 \) GeV. In the tracking chamber we require the scalar sum of the \(p_T \) of all tracks in a cone of 0.4 to be \(< 2.0 \) GeV+0.005 \(\times E_T^\gamma \), where all values of \(E_T^\gamma \) are in GeV.

[13] See F. Abe et al., Phys. Rev. D 45, 1448 (1992) for a description of the jet-finding algorithm and the jet energy corrections. Jets are reconstructed with a cone in \(\eta - \phi \) space of radius 0.4.

[14] We require the time of arrival of the energy in all hadron calorimeter towers with at least 0.5 GeV to be within 3\(\sigma \) of the expected value.

[15] M. Karagöz Ünel and R. Tesarek, Nucl.Instrum.Meth. A506 7, 2003.

[16] The identification and isolation requirements for the control sample are: a) isolation \(< 0.15 \times E_T^\gamma \) for \(E_T^\gamma < 20 \) GeV, and \(< 3.0 \) GeV+0.02 \(\times (E_T^\gamma - 20 \) GeV) for \(E_T^\gamma > 20 \) GeV; b) tracking isolation \(< 5 \) GeV/\(c \); c) Had/EM \(< 0.125 \); d) at most one track, and no tracks with \(p_T > 0.25 \) \(E_T \)/c.

[17] The means of the \(\Sigma E_T \) distributions (where \(\Sigma E_T \) excludes the photon \(E_T \)’s) are separated by approximately 6\%. This is most likely due to different fractional contributions from \(\gamma\gamma, \gamma j \) and \(jj \) processes. The corrections are made by taking the expected shape of the \(E_T \) distribution from the control sample as a function of \(\Sigma E_T \), and normalizing
to the observed ΣE_T distribution in the signal sample.

[18] B. C. Allanach et al., Eur. Phys. J. C25 113 (2002). We take the messenger mass scale $M_M = 2\Lambda$, $\tan(\beta) = 15$, $\text{sign}(\mu) = 1$, the number of messenger fields $N_M = 1$, and negligibly short $\tilde{\chi}_1^0$ lifetimes.

[19] H. Baer, F. E. Paige, S. D. Protopopescu and X. Tata, hep-ph/0001086.

[20] H. L. Lai et al., Eur. Phys. J. C12 375 (2000).

[21] The K-factor has a small dependence on the $\tilde{\chi}_1^\pm$ mass and is taken from W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999) and T. Plehn http://pheno.physics.wisc.edu/~plehn/prospino/prospino.html.

[22] R. Brun et al., CERN-DD/EE/84-1 (1987).

[23] J. Conway, CERN 2000-005, 247 (2000). We assume a flat prior in the production cross section up to a high cutoff; the limit is not significantly dependent on the value of the cutoff.

[24] E. Boos, A. Vologdin, D. Toback and J. Gaspard, Phys. Rev. D 66, 013011 (2002).