An Updated List of Parasitoid Hymenoptera Reared from the Bemisia tabaci Species Complex (Hemiptera: Aleyrodidae)

Authors: Lahey, Zachary, and Stansly, Philip

Source: Florida Entomologist, 98(2) : 456-463

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.098.0211
An updated list of parasitoid Hymenoptera reared from the *Bemisia tabaci* species complex (Hemiptera: Aleyrodidae)

Zachary Lahey* and Philip Stansly

Abstract

An updated list to the world fauna of parasitoid Hymenoptera reared from members in the *Bemisia tabaci* species complex (Hemiptera: Aleyrodidae) is provided. In total, 112 parasitoid species in 5 families and 7 genera are tabulated along with their global distributions. Pertinent references are given to aid in the accurate identification of these minute insects. We also reviewed published host-genera associations and consider some dubious, possibly due to contamination of rearing vessels with non-target insects or to misidentification of the host whitefly or parasitoid species.

Key Words: Aphelinidae; Azotidae; Encyrtidae; Signiphoridae; Platygastridae; *Encarsia*; *Eretmocerus*

Resumen

Se proporciona una lista actualizada de la fauna mundial de parasitoides himenópteros criados de los miembros del complejo de especies *Bemisia tabaci* (Hemiptera: Aleyrodidae). Se tabulan un total de 112 especies de parasitoides en cinco familias y siete géneros junto con sus distribuciones globales. Se dan referencias pertinentes para ayudar en la identificación correcta de estos diminutos insectos. Revisamos también las asociaciones publicadas de género con sus huéspedes. Algunas de ellos parece ser erróneas, debido posiblemente a la contaminación de los envases de crianza con insectos lejano o de una identificación errónea de la mosca blanca de acogida o especie de parasitoides.

Palabras Clave: Aphelinidae; Azotidae; Encyrtidae; Signiphoridae; Platygastridae; *Encarsia*; *Eretmocerus*

The whitefly, *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae), is considered to represent a cryptic species complex of global economic importance (De Barro et al. 2011; De Barro 2012). Two putative species are internationally distributed, Middle East-Asia Minor 1 (MEAM1; formerly biotype B or *Bemisia argentifolii* Bellows & Perring) and Mediterranean (MED; formerly biotype Q, and a genetic match to the original specimens collected by P. Gennadius) (Tay et al. 2012). Both have become notorious for their roles as the vectors of plant viruses to economically important crops (Lapidot & Polston 2010; Polston et al. 2014) and for their ability to develop resistance to a number of insecticides (Horowitz et al. 2005; Castle et al. 2010).

Since the initial invasion and spread of MEAM1 throughout the United States there has been a strong focus on the use of biological control agents to combat *Bemisia* infestations both in open-field and protected environments (Nguyen & Bennett 1995; Gould et al. 2008). The natural enemies of whiteflies include predators, parasitoids, and fungi. Arguably, the most important of these are the parasitoid Hymenoptera due to the relative ease of culture in the laboratory and the narrow host range of many species (Goolsby et al. 2005; De Barro & Coombs 2009; Pickett et al. 2013). The purpose of this paper is to provide a list of the parasitoid wasps reported to attack members of the *B. tabaci* species complex (Table 1).

All parasitoids known to attack *B. tabaci* whiteflies are hymenopteran wasps distributed between 5 families: Aphelinidae, Azotidae, Encyrtidae, Signiphoridae (Chalcidoidea), and Platygastridae (Platygastridae). In addition to named species, there exist numerous published records of undescribed or otherwise unidentified species in particular genera parasitizing a member of the *B. tabaci* species complex. These are excluded from the list herein because they potentially represent nominal species already listed, with exception to the genus *Metaphycus* Mercet (Encyrtidae), where accurate rearing records exist but no specific entities have been formally characterized (Evans 1993). There also are certain genera with host records that include a *B. tabaci* species complex member that is unlikely given known host-associations. We discuss these taxa and our rationale for their exclusion in detail below.

The following table compiles information presented in previously published parasitoid lists while adding recent information gleaned from the literature. The number of parasitoid species reported from the *B. tabaci* species complex has increased significantly since 18 parasitoid species were first tabulated by Greathead & Bennett (1981). Gerling (1986) included 19 species in his review, omitting several from Greathead & Bennett (1981), while including new taxa, many of genus rank. Gerling et al. (2001) increased that number to 56, and Arnó et al. (2010) added an additional 20 species (all *Encarsia* and *Eretmocerus* not included, reported, or described since Gerling et al. (2001). The current work continues on this theme bringing the total to 112 species with the expectation that this number will continue to grow as
Table 1. Parasitoid Hymenoptera reportedly reared from the *Bemisia tabaci* species complex.

Taxa	Authority	Distribution	Reference
Aphelinidae			
Cales noacki	Howard	2, 3, 4	Guastella et al. 2014
Encarsia abundanta	Chou & Su	5, 6	Li et al. 2011
acaudaleyrodis	Hayat	3, 6	Polaszek et al. 1999
accenta	Schmidt & Naumann	7	Schmidt et al. 2001
adusta	Schmidt & Naumann	7	Schmidt et al. 2001
albiscutellum (Girault)	(Merkert)	5, 7	Liu et al. 2011
aleurochitonis	Evans & Polaszek	2	de Oliveira et al. 2003
ancistrocera	Huang & Polaszek	5	Li et al. 2011
aseta	Hayat & Polaszek	5, 6, 9	Shih et al. 2008
aspioptiocola	(Merkert)	3	Evans 2007
asterobemisiae	Viggiani & Mazzone	3	Evans 2007
azimi	Hayat	3, 5, 6	Schmidt et al. 2001
bennetti	Hayat	5, 6	Li et al. 2011
Encarsia bimaculata	Heraty & Polaszek	1, 2, 3, 4, 5, 6, 7	Heraty & Polaszek 2000
bothrocera	Huang & Polaszek	5	Li et al. 2011
brasiliensis	(Hempel)	1, 2, 3, 4, 7	Polaszek et al. 1992
brevivena	Hayat	6	Hayat 1989
californica	Polaszek	1	Polaszek et al. 2004
cibcensis	Lopez-Avila	3, 5, 6, 7	Lopez-Avila 1987
citrella	(Howard)	1, 2	Evans & Polaszek 1997
citri	(Ishii)	5	Kajita 2000
collecta	Chou & Su	5	Li et al. 2011
coquilletti	Howard	1, 2	Hoelmer & Goolsby, 2002
davidi	Viggiani & Mazzone	3, 4	Hernandez et al. 2003
desantisi	Viggiani	2	Polaszek et al. 1992
duorungana	Hayat	5, 6	Hayat 1989
echinocera	Huang & Polaszek	5	Li et al. 2011
Encarsia elegans	Masi	3, 5, 6	Abd-Rabou 1998
formosa	Gahan	WW	De Barro et al. 2000
fujianensis	Huang & Polaszek	5	Li et al. 2011
fuzhouensis	Huang & Polaszek	5	Shih et al. 2008
gerlingi	Viggiani	3, 5	Li et al. 2011
guadeloupeae	Viggiani	1, 2, 3, 4, 6, 7, 9	Schmidt et al. 2001
hamata	Huang & Polaszek	5	Li et al. 2011
hamoni	Evans & Polaszek	1, 2	Evans & Polaszek 1998
inaron	(Walker)	1, 2, 3, 4, 5, 6, 7	Manzari et al. 2002
ishii	(Silvestri)	5	Li et al. 2011
japonica	Viggiani	5	Kajita 2000
lahorensis	(Howard)	1, 3, 5, 6	Li et al. 2011
lanceolata	Evans & Polaszek	1, 2	Evans & Polaszek 1997
longicauda	Hayat	5, 6	Li et al. 2011
Encarsia longifasciata	Subba Rao	5, 6, 7	Pedata & Polaszek 2003
longivalvula	Viggiani	5, 6	Schmidt & Polaszek 2007
lounsburyi	(Berlese & Paoli)	1, 2, 3, 4, 5, 6, 7, 8	Li et al. 2011
lutea	(Masi)	1, 2, 3, 4, 5, 6, 7, 8	Folytn & Gerling 1985
luteola	Howard	1, 2, 3, 5	Castningeiras 1995
macoensis	Abd-Rabou & Ghahari	3	Abd-Rabou & Ghahari 2007
magnivena	Huang & Polaszek	5	Li et al. 2011
melanostoma	Polaszek & Hernandez	3	Hernández-Suárez et al. 2003
merceti	Silvestri	2, 5, 6, 7	Li et al. 2011
meritoria	Gahan	1, 2	Hoelmer & Goolsby 2002
mineoi	Viggiani	3, 4, 7	Polaszek et al. 1999
mohyuddini	Shaheef & Risvi	3, 5, 6	Shaheef & Risvi 1982
neoporteri	Myartseva & Evans	1, 2	Myartseva & Evans 2007
nigricephalia	Dozier	1, 2, 4, 8	Stansly et al. 1997
Encarsia nipponica	Silvestri	5, 9	Li et al. 2011
noohi	Polaszek & Hernandez	3	Hernández-Suárez et al. 2003
Table 1. (Continued) Parasitoid Hymenoptera reportedly reared from the *Bemisia tabaci* species complex.

Taxa	Authority	Distribution	Reference
oakeyensis	Schmidt & Naumann	7	Schmidt et al. 2001
obtusicaclava	Hayat	5	Shih et al. 2008
opulenta	(Silvestri)	5, 6	Li et al. 2011
paracitrella	Evans & Polaszek	2	Evans & Polaszek 1997
parvella	Silvestri	4	Sauvion et al. 2000
perflava	Hayat	5, 6	Evans 2007
pergandiella	Howard	1, 2, 3, 7	Argov & Rössler 1988; Liu & Stansly 1996
perplexa	Huang & Polaszek	1, 2, 5, 6	Li et al. 2011
polaszeki	Evans	2	Evans 1997
porteri	(Mercet)	2	Viscarret et al. 2000
protransvema	Viggiani	1, 2, 3, 5, 8, 9	Huang & Polaszek 1998
pseudocitrella	Evans & Polaszek	1, 2	Evans & Polaszek 1997
Encarsia quaintancei	Howard	1, 2	Stansly et al. 1997
repticulata	Rivnay	3	Rivnay & Gerling 1987
scapeata	Rivnay	3	Gerling et al. 2009
smithi	(Silvestri)	1, 5, 6, 7	Polaszek et al. 1992
sophia	(Girault & Dodd)	1, 2, 3, 4, 5, 6, 7, 9	Heraty & Polaszek 2000
strenua	(Silvestri)	3, 5, 6	Shih et al. 2008
synaptocera	Huang & Polaszek	5	Shih et al. 2008
tabacivora	Viggiani	1, 2	Evans & Serra 2002
thorequini	(Girault)	7	Schmidt & Polaszek 2007
tricolor	Förster	3, 4	Hernández-Suárez et al. 2003
tristis	(Zehntner)	4, 5, 6, 7	Li et al. 2011
variegata	Howard	1, 2	Myartseva & Evans 2007
Eretmocerus aegypticus	Evans & Abd-Rabou	3	Abd-Rabou & Evans 2002
dissicerca	Silvestri	3, 4	Abd-Rabou 1998
Eretmocerus emiratus	Zolnerowich & Rose	1, 4	Zolnerowich & Rose 1998
eremicus	Rose & Zolnerowich	1, 3	Rose & Zolnerowich 1997a
evansi	Myartseva	2	Myartseva 2006a
furushii	Rose & Zolnerowich	1, 5	Li et al. 2011
gunturiensis	Hayat	6	Li et al. 2011
hayati	Zolnerowich & Rose	1, 6, 7	Zolnerowich & Rose 1998
joeballi	Rose & Zolnerowich	1	Rose & Zolnerowich 1997a
longiscapus	Hayat	3	Li et al. 2011
melanoscutus	Zolnerowich & Rose	1, 6	Zolnerowich & Rose 1998
mundus	Mercet	1, 3, 4, 5, 6, 7	Zolnerowich & Rose 2008
nikolskaja	Myartseva	3	Abd-Rabou 2006
orientalis	Gerling	5	Tseng & Kao 1995
queenslandensis	Naumann & Schmidt	7	De Barro et al. 2000
rajesthanicus	Hayat	6	Li et al. 2011
Eretmocerus rui	Zolnerowich & Rose	1, 5	Zolnerowich & Rose 2004
sculpturatus	Hayat	6	Li et al. 2011
serius	Silvestri	1, 2, 3, 5, 6, 7, 9	Abd-Rabou et al. 2005
silvestrii	Gerling	5	Li et al. 2011
staufferi	Rose & Zolnerowich	1	Rose & Zolnerowich 1997a
tejanus	Rose & Zolnerowich	1	Rose & Zolnerowich 1997a
warrae	Naumann & Schmidt	7	Kumar et al. 2008
Azotidae			
Ablerus	macrochaeta	5, 6	Li et al. 2011
Encyrtidae			
Metaphycus	spp. (Columbia, Venezuela, USA)	1, 2	Bellotti et al. 2005, Evans 1993, present study
Signiphoridae			
Signiphora aleyrodis	Ashmead	1, 2, 3	Stansly et al. 1997
Platygastridae			
Amitus bennetti	Viggiani & Evans	1, 2	Viggiani & Evans 1992
fuscipennis	MacGown & Nebeke	1, 2, 3	Gerling et al. 2001
hesperidum	Silvestri	1, 2, 5	Li et al. 2011
longicornis	(Förster)	3	Li et al. 2011
new species are discovered and the host ranges of named species are expanded to include members of this cryptic species complex.

Distribution of Bemisia tabaci Parasitoids

Parasitoid distribution records are numbered by geographic region following Evans (2007) and are reproduced below for ease of reference. The reader is referred to the same publication, freely available online, for in-depth information pertaining to the species listed including species synonyms, collection localities, host records, and citations. Additional information can be retrieved from John Noyes’ Universal Chalcidoidea Database (http://www.nhm.ac.uk/chalcidooids) (Noyes 2014).

1. Nearctic – United States, Canada, and Greenland
2. Neotropical – Mexico, Central and South America, Caribbean Islands
3. Western Palearctic – Europe, North Africa (bordering the Mediterranean), Russia, the Middle East, Uzbekistan, Kyrgyzstan, Tajikistan, Afghanistan, Turkmenistan, and Azores, Madeira, and Canary Islands
4. Ethiopian – Africa south of the Mediterranean countries, Madagascar, Seychelles, and Cape Verde Islands
5. Eastern Palearctic – China, Japan, Korea, Taiwan, and Southern Primor’ye
6. Oriental – India, Pakistan, Philippines, and Southeast Asia
7. Australasian – Australia, Indonesia, and New Guinea
8. Pacific Islands – New Zealand and South Pacific Islands
9. Hawaii
WW. Worldwide

Parasitoids of the Bemisia tabaci Species Complex

Ablerus Howard (Chalcidoidea: Azotidae)

Species of *Ablerus* (=*Azotus* Howard) are most commonly recorded as primary, or hyperparasitoids, of immature Sternorrhyncha (Hemiptera) although certain species are known to attack lepidopteran eggs (Darling & Johnson 1984) and the pupae of chamaemyiid Diptera (Blanchard 1936). Material bred from whiteflies is typically assumed to be hyperparasitic on aphelinid primary parasitoids developing in the same host (Viggiani 1982; Evans 2007). Recently, *Ablerus macrochaeta* Silvestri was reported from *B. tabaci* in Guangxi and Yunnan Provinces in the People’s Republic of China following a 10 yr natural enemy census (Li et al. 2011). Additional whitefly host records for *A. macrochaeta* include *Aleurocanthus inceratus* Silvestri, and the citrus blackfly, *Aleurocanthus woglumi* Ashby. The only other instance of an *Ablerus* species attacking a whitefly in the genus *Bemisia* is *Ablerus inquirendo* Silvestri parasitizing *Bemisia* (as *Lipaleyrodes*) euphorbiaceae (David and Subramaniam) (Evans 2007).

Cales Howard (Chalcidoidea: Aphelinidae)

Cales is a relatively poorly known genus whose members, where host relationships are known, are primary parasitoids of aleyrodine whiteflies. *Cales* are morphologically conserved and character poor making their identification difficult without the use of molecular tools (Mottern 2012). Abd-Rabou (1997, 2002) reported a *Cales* sp. from *B. tabaci* in Beni-Suef, Egypt, citing rare incidence. At least one species, *Cales noacki* Howard, is globally distributed having been implemented in successful biological control programs for control of whitefly, *Aleyrothrix flavocosus* (Maskell), a severe pest of *Citrus* in many countries (Meyerdink et al. 1980; Miklasiewicz & Walker 1990; Rose & DeBach 1994). This same species was reared from the *B. tabaci* complex in Tanzania on cassava (*Manihot esculenta* Crantz) (Guastella et al. 2014). It is important to note, however, that recent morpho-molecular analyses have identified *C. noacki* as a cryptic complex composed of at least 9 other species, some of which are indistinguishable morphologically (Mottern & Heraty 2014).

Mottern (2012) recently revised the Neotropical fauna adding an additional 21 new species. Further information is available from Mottern et al. (2011), Mottern (2012), and Mottern & Heraty (2014). The latter includes a key to male and female species and species complexes.

Encarsia Förster (Chalcidoidea: Aphelinidae)

Encarsia is the most speciose genus of Aphelinidae with more than 450 described species which mainly parasitize either whiteflies (Aleyrodoidea) or armored scale insects (Diaphidinae). The number of species recorded from the *B. tabaci* species complex has greatly increased over recent years from the 35 listed in Gerling et al. (2001), to 55 in Arné et al. (2010) to 81 here. Minus a few exceptional cases, female *Encarsia* are primary endoparasitoids whereas males develop as ectophageous hyperparasitoids on conspecific or heterospecific individuals including those of other genera (Walter 1983; Hunter & Woolley 2001). The host-associations of females appear to be obligate insomuch as they are restricted to a particular host family (e.g., Aleyrodoidea; Diaphidinae; Hormaphididae) (Polaszek et al. 2009). Conversely, although male *Encarsia* are usually reared from the same host(s) as the females, they have also been obtained from alternative hosts, including soft scales (Coccidae) (Myartseva & Evans 2007), psyllid nymphs (Liviidae; Triozidae) (Polaszek et al. 1992; Butler & Trumble 2011), and the eggs of Lepidoptera (Polaszek 1991) and Cicadellidae (Hemiptera: Auchenorrhyncha) (Polaszek & Luft Albarracin 2011). The reports of the armored scale parasitoids *Encarsia aspidioticola* (Mercet) and *Encarsia lounsburyi* (Berlese & Paoli) from *B. tabaci* should be treated with caution (Greathead & Bennett 1981; Li et al. 2011), especially in regard to *En. lounsburyi*, where males are unknown.

Identification aids to *Encarsia* species are available for the following localities: Australia (Schmidt & Polaszek 2007), China (Huang & Polaszek 1998), Egypt (Polaszek et al. 1999), Hispaniola (Evans & Serra 2002), Italy (Viggiani 1987), India (Hayat 2011), Mexico (Myartseva & Evans 2007), North America (Schauff et al. 1996), and Taiwan (Shih et al. 2008). Polaszek et al. (1992) and Evans & Polaszek (1997) treated the species parasitizing the *B. tabaci* species complex. Heraty et al. (2008) recently discussed the systematics and biology of *Encarsia* with an emphasis on those attacking *Bemisia* species.

Eretmocerus Haldeman (Chalcidoidea: Aphelinidae)

The genus *Eretmocerus* contains 78 nominal species all of which are solitary, obligate, primary ecto-endoparasitoids of the whitefly subfamily Aleyrodinae. Myriad undescribed species exist including several that have been reared from *Bemisia* (Zolnerowich & Rose 2008). Twenty-three of the 78 described species have reportedly been reared from the *B. tabaci* species complex. In our list, we exclude 3 species that continue to be, or have been, commonly recorded as parasitizing *B. tabaci*, namely *Eretmocerus californicus* Howard, *Eretmocerus corni* Haldeman, and *Eretmocerus haldemani* Howard. We follow the convention of Zol-
nerowich & Rose (2008) that these taxa, or their host whitely, are being misidentified (Rose et al. 1996; Rose & Zolnerowich 1997a).

Recent efforts have been made to utilize Eretmocerus in biological control programs against B. tabaci MEAM1 at the international level. Five exotic species were released in the United States for control of MEAM1 in Florida, Texas, Arizona, and California (Nguyen & Bennett 1995; Gould et al. 2008). Following the success of one of these species, Eretmocerus hayati Zolnerowich & Rose, importation for evaluation and/or releases have been made in Australia (De Barro & Coombs 2009), Egypt (Abd-Rabou 2004), the People’s Republic of China (Yang & Wan 2011), and Tanzania (Guastella et al. 2014). Eretmocerus hayati appears to display a precise level of host specificity limited to the genus Bemisia (De Barro & Coombs 2009), a trait possibly shared by other Eretmocerus from the Old World that have been reported only from this genus (e.g., Er. emiratus Zolnerowich & Rose, Er. sp. nr. emiratus [Ethiopia and Sudan], Er. melanococcus Zolnerowich & Rose) (Zolnerowich & Rose 1998). Castillo & Stansly (2011) created a nomen nundem for Er. sp. nr. emiratus (Sudan) when they published its bionomics under the name Eretmocerus sudanensis Zolnerowich & Rose. This species is excluded from the list because it currently is not a valid species, despite being the dominant Eretmocerus parasitoid of B. tabaci in Florida (Z. Lahey, unpublished data).

Accurate identification of Eretmocerus depends, in large part, on the examination of properly curated material (Rose & Zolnerowich 1996). Keys to species have been produced for the following world regions: Australia (De Barro et al. 2000), China (Wu et al. 2009), Egypt (Abd-Rabou & Evans 2002), India (Hayat 1972, 1998), Iran (Abd-Rabou et al. 2005), Italy (Vigiani & Bataglia 1983), Mexico (Myartseva 2006a), and the United States (Rose & Zolnerowich 1997a,b; Zolnerowich & Rose 1998).

Metaphycus Mercet (Chalcidoidea: Encyrtidae)

Metaphycus are primary endoparasitoids of scale insects in the Coccoidea, although a few New World species are known to parasitize whiteflies (Myartseva 2006b) and jumping plant lice (Hemiptera: Triozidae) (Guerrieri & Noyes 2000). An as yet undescribed Metaphycus sp. was reared from B. tabaci collected in Venezuela by F.D. Bennett, providing the first record of the genus attacking an aleyrodid (Evans 1993). A recent survey of whitely natural enemies conducted in Columbia also yielded a Metaphycus sp. (Bellotti et al. 2005). In the continental United States, there exists at least a single species capable of parasitizing B. tabaci. Recently, specimens were reared from B. tabaci (presumably MEAM1) as part of a survey of the parasitoid Hymenoptera associated with the B. tabaci species complex in southwest Florida (Z. Lahey, unpublished data). In all instances, the adults emerged through a hole chewed in the side of the whitely and not through the dorsum, which is the typical escape route of whitely parasitoids. This unusual emergence behavior may be explained, in part, by the subsequent rearing of the same species from a mealybug (Hemiptera: Pseudococcidae) found inhabiting the same host plant, Plucaha baccharis (Miller) Pruski (Asterales: Asteraceae). This bi-parental species probably utilizes B. tabaci facultatively and is so infrequently collected from the whitely that it is not of economic importance.

The species of Metaphycus known to attack whitelyes are all from the New World with those that are described known solely from the Neotropical realm. A key to those species is available in Myartseva (2006b), but many remain undescribed (Guerrieri & Noyes 2000).

Signiphora Ashmead (Chalcidoidea: Signiphoridae)

Signiphora is a relatively small genus that contains primary and hyperparasitoids, most of which are distributed throughout the Neotropics (Woolley 1988). Signiphora aleyrodis Ashmead has been reared in small numbers from B. tabaci in numerous surveys throughout the Neotropics (Schuster et al. 1998; Viscarret et al. 2000; de Oliveira et al. 2003) and represents the only nominal signiphorid associated with the species complex. This species is an obligate hyperparasitoid of Aphelinidae and Platygastroidae (Woolley 1988). Additional reports of unidentified Signiphora species reared from the B. tabaci complex exist from Cuba (Castineiras 1995), Columbia (Bellotti et al. 2005), Martinique (Ryckewaert & Alauzet 2002), and Argentina (Viscarret et al. 2000).

A key to the species and species groups of Signiphora is provided in Girault (1913) and Woolley (1988), respectively.

Amitus Haldeman (Platygastridea: Platygastroidae)

Amitus is 1 of 3 genera of whitely parasitoids in the Platygastroidae, all of which are primary endoparasitoids of whitelyes. Of the 19 species that comprise the genus, 4 (bennetti, fuscipennis, heresipidium, and longicornis) are recorded as parasitoids of B. tabaci. Amitus bennetti Viggiani & Evans was introduced into Florida from Puerto Rico for control of MEAM1 in the early 1990’s (Nguyen & Bennett 1995). Although recoveries were made several weeks after initial field releases, it is unknown if this species established. Surveys conducted in southwest Florida in the mid 1990s, and from 2012–2013 did not recover this species, or any other species of Amitus, from B. tabaci (Stansly et al. 1997; Z. Lahey, unpublished data). Amitus fuscipennis MacGown & Nebeker is a well-known parasitoid of the greenhouse whitely, Trialeurodes vaporariorum (Westwood), and appears capable of utilizing B. tabaci in the laboratory (reference in Gerling et al. 2001); to our knowledge A. fuscipennis has never been reared from B. tabaci in the field. Both A. hesperidium Silvestri and A. longicornis (Förster) parasitize citrus pests in the genus Aleurocanthus Quaintance. Additional Amitus have been reared from B. tabaci in Honduras (Vélez 1993) and Nicaragua (Nunes et al. 2006).

Identification of Amitus is difficult due to a lack of information regarding the genus. Viggiani & Mazzone (1982) provided a key to the species of Italy. MacGown & Nebeker (1978) reviewed the species of the Western Hemisphere, and Polaszek (1997) discussed the European species. Some of the New World species were addressed by Viggiani & Evans (1992).

Doubtful Reports

One species from each of the following 3 chalcidoid genera are recorded as parasites of the B. tabaci species complex: Adelenyrtus Ashmead (Encyrtidae), Neochrysocharis Kurdjumov (Eulophidae), and Pteroptyx Westwood (Aphelinidae). Adelenyrtus are parasitoids of Coccoidea (mostly Diaspididae), with 1 doubtful record of A. moderatus (Howard) from B. tabaci (Greathead & Bennett 1981). To our knowledge, A. moderatus, as well as any other species of Adelenyrtus, has never reliably been reared from an aleyrodid. Most likely the whitely collection that produced these specimens was contaminated with diaspine scales resulting in this host association.

A similar situation arises in regards to Pteroptyx, also parasitoids of Diaspididae. Like the genus Encarsia, Pteroptyx exhibit heteronomous life histories with females acting as primary parasitoids and males developing as hyperparasitoids on the same or different species (Hunter & Woolley 2001). If females are capable of utilizing parasitized whitelyes as hosts for males, rearings of male but not female Pteroptyx from aleyrodids could be possible. Both Pruthi & Samuel (1942) and Samuel (1950) included P. bemsia Mani as a B. tabaci parasitoid in India. Hayat (1986) considered this species a nomen nudum, and for this reason alone it cannot be included as a valid parasitoid of the B.
tabaci complex. In addition, no other species of Pteroptrix appears to be associated with whiteflies, making the relationship between P. bemi- siae and B. tabaci unlikely.

The eulophid genus Neochrysocharis was added to the list of whitefly parasitoids following reported rearings from the 3 whitefly species, Aleyrodidae: Aleyrodes proletella L., Bemisia tabaci (Gennadius), and Terticularia eri- anthi Danzig, in central Asia (Myartseva 1993; Myartseva & Yasnosh 1994). Typical host-associations for Neochrysocharis species include leaf-mining Diptera and Lepidoptera, although other taxa have also been cited (Noyes 2014). Arguably the most well-known and polyphagous species is N. formosus (= formosus Westwood), which has been bred from over 100 different host species in 5 orders (Luna et al. 2011). Although we do not completely exclude the possibility of N. formosus as a valid parasitoid of the B. tabaci species complex, or of whiteflies in general, we evince caution in doing so for the following reasons; (i) no other species of Neochrysocharis has been associated with the Aleyrodidae; (ii) primary whitefly parasitism in the family Eulophidae appears to be restricted to the tribe Euderomphalini; (iii) N. formosus and certain members of the B. tabaci complex have a cosmopolitan distribution and can be found within the same agricultural environment on the same host plant(s). Unless N. formosus displays an affinity for parasitizing a species of the B. tabaci complex endemic to the collection locality, one would expect subsequent collecting efforts to have produced N. formosus specimens from B. tabaci on at least one other occasion somewhere else in the world.

Conclusions

The B. tabaci species complex remains a serious economic problem worldwide despite the considerable attention gained over the past 30 yr. Fortunately, the number of potential biocontrol agents used for control of these pest whiteflies continues to grow as new species are discovered and the host range of known species is expanded to include members of this cryptic species complex. In this regard, the genus Eret- mocerus leads the way as the most important group of parasitic wasps used against B. tabaci whiteflies with Er. hayati having been introduced onto 3 continents outside its native range. It is our hope that the current work will serve as an important reference for biocontrol workers in regards to general information about the genera that parasitize B. tabaci whiteflies, as a portal to the references that allow for their accurate identification, and as a starting point for the construction of a comprehensive key to the species that help control this serious pest complex of world agriculture.

Acknowledgments

This work was completed as part of the first author’s graduate studies. ZL thanks his co-author for financial support throughout his coursework.

References Cited

Abd-Rabou S. 1997. Parasitoids attacking the Egyptian species of whiteflies (Homoptera: Aleyroidea). Bulletin of the Society of Entomology of Egypt 75: 110-125.
Abd-Rabou S. 1998. A revision of the parasitoids of whiteflies from Egypt. Acta Phytopathologica Hungarica 33: 193-215.
Abd-Rabou S. 2002. Revision of Aphelinidae (Hymenoptera) in Egypt, pp. 268-286. In 2nd International Conference, Plant Protection Research Institute, Cairo, Egypt, 21-24 Dec 2002.
Abd-Rabou S. 2004. Biological control of Bemisia tabaci Biotype “B” (Homoptera: Aleyroidea) by introduction, release and establishment of Eretmo- cerus hayati (Hymenoptera: Aphelinidae). Journal of Pest Science 77: 91-94.
Abd-Rabou S. 2006. Hymenopterous parasitoids as a bioagent for controlling homopterous insects in Egypt. Journal of Agricultural Research 6: 1-59.
Abd-Rabou S, Evans GA. 2002. The Eretmocerus Haldeman of Egypt (Hymenoptera: Aphelinidae). Mitteilungen des Internationalen Entomologischen Vereins E V Frankfurt 27: 115-123.
Abd-Rabou S, Ghahari H. 2007. Two new species of the genus Encarsia Foerster (Hymenoptera: Aphelinidae) from Iran. Acta Phytopathologica Hungarica 42: 161-167.
Abd-Rabou S, Ghahari H, Evans G. 2005. Iranian Eretmocerus species including two new species (Hymenoptera: Chalcidoidea: Aphelinidae) of parasitoids of whiteflies (Sternorrhyncha: Aleyroidea). Mitteilungen des Internationalen Entomologischen Vereins E V Frankfurt 30: 157-176.
Argov Y, Rössler Y. 1988. Introduction of beneficial insects into Israel for the control of insect pests. Phytoparasitica 16: 303-315.
Arnol J, Gabarra R, Liu TX, Hoshino AM. 2011. Natural enemies of Bemisia tabaci: predators and parasitoids, pp. 385-421 In Stansly PA, Naranjo SE [eds.], Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht, The Netherlands.
Bellotti AC, Peña J, Arias B, Guerero JM, Trujillo H, Holguin C, Ortega A. 2005. Biological control of whiteflies by indigenous natural enemies for major food crops in the Neotropics, pp. 313-323 In Anderson PK, Morales FJ [eds.], Whitefly and Whitefly-borne Viruses in the Tropics: Building a Knowledge Base for Global Action. CIAT, Cali, Colombia.
Blanchard EE. 1936. Apuntes sobre calcidoideos argentinos, nuevos y conoci- dos. Revista de la Sociedad Entomológica Argentina 8: 7-32.
Butler CD, Trumble JT. 2011. New records of hyperparasitism of Tamarixia riboflora (Burks) (Hymenoptera: Eulophidae) by Encarsia spp. (Hymenoptera: Aphelinidae) in California. Pan-Pacific Entomologist 87: 130-133.
Castillo JA, Stansly PA. 2011. Biology of Eretmocerus sudanensis n. sp. Zolnerowich and Rose, parasitoid of Bemisia tabaci Gennadius. BioControl 56: 843-850.
Castineiras A. 1995. Natural enemies of Bemisia tabaci (Homoptera: Aleyrodi- dae) in Cuba. Florida Entomologist 78: 538-540.
Castle S, Palumbo J, Prabhaker N, Horowitz AR, Denholm I. 2010. Ecological determinants of Bemisia tabaci resistance to insecticides, pp. 423-465 In Stansly PA, Naranjo SE [eds.], Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht, The Netherlands.
Darling DC, Johnson NF. 1984. Synopsis of Nearctic Aztotinae (Hymenoptera: Aphelinidae). Proceedings of the Entomological Society of Washington 86: 555-562.
De Barro P, Coombs M. 2009. Post-release evaluation of Eretmocerus hayati Zolnerowich and Rose in Australia. Bulletin of Entomological Research 99: 193-206.
De Barro P, Driver F, Naumann I, Schmidt S, Clarke G, Curran J. 2000. Descrip- tion of a new species of Eretmocerus (Hymenoptera: Eulophidae) in Cuba. Florida Entomologist 83: 420-425.
De Barro P, Liu SS, Boykin LM, Dinsmore AB. 2011. Bemisia tabaci: a statement of species status. Annual Review of Entomology 56: 1-19.
de Oliveira MRV, Amancio E, Laumann RA, Gomes LdO. 2003. Natural enemies of Bemisia tabaci (Gennadius) B biotype and Trieuleurodes vaporariorum (Westwood) (Hemiptera: Aleyroidea) in Brazilia based on morphological and molecular data. Australian Journal of Ento- mology 39: 259-269.
De Barro PI. 2012. The Bemisia tabaci species complex: questions to guide fu- ture research. Journal of Integrative Agriculture 11: 187-196.
De Barro PI, Liu SS, Boykin LM, Dinsmore AB. 2011. Bemisia tabaci: a statement of species status. Annual Review of Entomology 56: 1-19.
Evans GA. 1993. Systematic studies of New World Encarsia species and a sur- vey of the parasitoids of Bemisia tabaci in Florida, the Caribbean and Latin America. Ph.D. dissertation. University of Florida, Gainesville, Florida, USA.
Evans GA. 1997. A new Encarsia (Hymenoptera: Aphelinidae) species reared from the Bemisia tabaci complex (Homoptera: Aleyroidea). Florida Ento- mologist 40: 24-27.
Evans GA. 2007. Parasitoids (Hymenoptera) associated with whiteflies (Aleyr- roidea) of the world. United States Department of Agriculture, Animal and Plant Health Inspection Service, http://www.nhm.ac.uk/resources/ research-curation/projects/chalcidooids/pdf_V/Evans2007.pdf (last accessed 10 Apr 2012).
Evans GA, Polaszek A. 1997. Additions to the Encarsia parasitoids (Homopter- a: Aphelinidae) of the Bemisia tabaci-complex (Homoptera: Aleyroidea). Bulletin of Entomological Research 87: 563-571.
Evans GA, Polaszek A. 1998. The Encarsia cubensis species-group (Homopter- a: Aphelinidae). Proceedings of the Entomological Society of Washington 100: 222-233.
Evans GA, Serra CA. 2002. Parasitoids associated with whiteflies (Homoptera: Aleyroidea) in Hispaniola and descriptions of two new species of Encarsia

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 09 Jun 2020
Terms of Use: https://bioone.org/terms-of-use
Lahey & Stansly: Parasitoids of the Bemisia tabaci species complex

Polaszek A. 1991. Egg parasitism in Aphelinidae (Hymenoptera: Chalcidoidea) with special reference to Centrodora and Encarsia species. Bulletin of Entomological Research 81: 97-106.

Polaszek A. 1997. Amíthus Haldeman (Hymenoptera: Platygastridae): a genus of whitefly parasitoids new to Britain. Entomologist’s Monthly Magazine 133: 77-79.

Polaszek A, Luft Albaracin E. 2011. Two new Encarsia species (Hymenoptera: Aphylinidae) reared from eggs of Ciadellidae (Hemiptera: Auchenorrhyncha) in Argentina: an unusual new host association. Journal of Natural History 45: 55-64.

Polaszek A, Evans GA, Bennett FD. 1992. Encarsia parasitoids of Bemisia tabaci (Hymenoptera: Aphelinidae, Homoptera: Aleyrodidae): a preliminary guide to identification. Bulletin of Entomological Research 82: 375-392.

Polaszek A, Abd-Rabou S, Huang J. 1999. The Egyptian species of Encarsia (Hymenoptera: Aphelinidae): a preliminary review. Zoologische Mededelingen 73: 131-163.

Polaszek A, Manzari S, Quicke DJJ. 2004. Morphological and molecular taxonomic analysis of the Encarsia mentoria species-complex (Hymenoptera, Aphelinidae), parasitoids of whiteflies (Hemiptera, Aleyrodidae) of economic importance. Zoologica Scripta 33: 403-421.

Polaszek A, Hernández-Suárez EM, Manzari S, Pedata PA, Schmidt S. 2009. Mega diversity of Encarsia (Chalcidoidea, Aphelinidae): macroevolution in a microhymenopteran, pp. 87-92 in Memoria Taller Internacional de Recursos Naturales. Victoria, Mexico, 21-23 Oct 2009.

Polston JE, De Barro PJ, Boykin LM. 2014. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Management Science 70: 1547-1552.

Pruthi HS, Samuel CK. 1942. Entomological investigations of the leaf curl disease vector of tobacco leaf-curl in Northern India. Indian Journal of Entomology 12: 171-181.

Pruthi HS, Samuel CK. 1943. The woolly whitefly of citrus, (Hemiptera: Aleyrodidae). Vedalia 1: 29-60.

Rivnay T, Gerling D. 1987. Aphelinidae parasitoids (Hymenoptera: Chalcidoidea), parasitoids of whiteflies (Hemiptera, Aleyrodidae) in Israel, with description of three new species. Entomophaga 32: 463-475.

Rivnay T, Gerling D. 1987. The genus Encarsia (Aphelinidae) imported and released in the United States for control of Bemisia tabaci (Gen), in the relation to the incidence of the disease. Indian Journal of Agricultural Science 12: 37-57.

Rose M, DeBach P. 1994. The woolly whitefly of citrus, Aleurothrixus floccosus (Homoptera: Aleyrodidae). Vedalia 1: 29-60.

Rose M, Zolnerowich G. 1997a. Eretmocerus Haldeman (Hymenoptera: Aphelinidae) in the United States, with descriptions of new species attacking Bemisia tabaci (complex). (Homoptera: Aleyrodidae). Proceedings of the Entomological Society of Washington 99: 1-27.

Rose M, Zolnerowich G. 1997b. The genus Eretmocerus (Hymenoptera: Aphelinidae): Parasites of Whitefly (Homoptera: Aleyrodidae). California Department of Food and Agriculture, Special Publication.

Rose M, Zolnerowich G, Hunter MS. 1996. Systematics, Eretmocerus, and biological control, pp. 477-497 In Gerling D, Mayer RT [eds.], Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Intercept, Andover, United Kingdom.

Rychewaert P, Alauzet C. 2002. The natural enemies of Bemisia argentifolii in Martinique. Biocontrol 47: 115-126.

Samuel CK. 1950. Parasites and parasitism of the whitefly Encarsia formosa Gennadius (Hym., Platygasteridae) of Italy, pp. 87-92 in Memoria Taller Internacional de Recursos Naturales. Victoria, Mexico, 21-23 Oct 2009.

Saousson N, Pavis C, Huc A, Rousseau M, Delvare G, Morales FJ, Boissot N. 2000. Eretmocerus ceylonensis Hal. (Hym., Platygasteridae) an exotic natural enemy of Bemisia argentifolii (Gennadius) (Aleyrodidae). M.S. thesis. Escuela Agricola Panamericana, El Zamorano, Honduras.

Shafee SA, Rizvi S. 1982. A new species of Encarsia (Hymenoptera: Aphelinidae) from Pakistan. Journal of Entomological Research 6: 157-158.

Shih YT, Ko CC, Polaszek A. 2008. Encarsia (Hymenoptera: Aphelinidae) parasitoids of Bemisia tabaci species in Taiwan (Hemiptera: Aleyrodidae). Journal of Natural History 42: 2923-2941.

Stansly P, Schuster D, Liu TX. 1997. Apparent parasitism of Bemisia argentifolii (Homoptera: Aleyrodidae) on vegetable crops and associated weeds in South Florida. Biological Control 9: 49-57.

Tay WT, Evans GA, Boykin LM, De Barro PJ. 2012. Will the real Bemisia tabaci please stand up? PLoS One 7: e50550.

Tzeng CC, Kao SS. 1995. Toxicity of insecticides to Eretmocerus orientalis and Encarsia transvena – parasitoids of silver leaf whitefly (Bemisia argentifolii). Plant Protection Bulletin (Taichung) 37: 271-279.

Vélez J. 1993. Relacion entre la etapa fenológica y la variedad de frjol con el nivel de parasitismo de Bemisia tabaci (Gennadius). M.S. thesis. Escuela Agricola Panamericana, El Zamorano, Honduras.

Viggiani G. 1982. New species and host records of African aphelinids. Linnean Society of London Biennial Proceedings of the XXI International Congress of Entomology. Foz Do Iguassu, Brazil, 20-26 Aug 2000.

Viggiani G, Massone P. 1982. The Amíthus Hal. (Hom., Platygasteridae) of Italy, with descriptions of three new species. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici 44: 121-179.

Viggiani G, Battaglia D. 1983. Specie italiane del genere Eretmocerus Hald. (Hymenoptera: Aphelinidae). Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici 40: 97-101.

Viggiani G, Evans GA. 1992. Descriptions of three new species of Amíthus Haldeman (Hymenoptera: Platygasteridae), parasitoids of known whiteflies from the New World. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, Portici 49: 189-194.

Viggiani G, Zolnerowich G. 2000. Encarsia formosa in China. Entomotaxonomia 31: 369-387.

Walter GH. 1983. ‘Divergent male ontogenies’ in Aphelinidae (Hymenoptera: Chalcidoidea): a simplified classification and a suggested evolutionary sequence. Biological Journal of the Linnean Society 19: 63-82.

Woodley JB. 1988. Phylogeny and classification of the Signiphoridae (Hymenoptera: Chalcidoidea). Systematic Entomology 13: 465-501.

Wu Q, Huangfu Wg, Gao Mq, Wei Sj, Chai Wg, Huang J, Liu Ss, Chen Xx. 2009. Newly recorded species of Eretmocerus parasitizing the whitefly Bemisia tabaci in China. Entomotaxonomia 31: 310-314.

Yang NW, Wan FH. 2011. Host suitability of different instars of Bemisia tabaci biotype B for the parasitoid Eretmocerus hayoti. Biological Control 59: 313-317.

Zolnerowich G, Rose M. 1998. Eretmocerus Haldeman (Hymenoptera: Aphelinidae) imported and released in the United States for control of Bemisia tabaci (complex) (Homoptera: Aleyrodidae). Proceedings of the Entomological Society of Washington 100: 310-323.

Zolnerowich G, Rose M. 2004. Eretmocerus rui n. sp (Hymenoptera: Chalcidoidea: Aphelinidae), an exotic natural enemy of Bemisia tabaci group (Homoptera: Aleyrodidae) released in Florida. Florida Entomologist 87: 283-287.

Zolnerowich G, Rose M. 2008. The genus Eretmocerus, pp. 89-109 In Gould J, Hoelmer K, Goolsby J [eds.], Classical Biological Control of Bemisia tabaci in the United States – A Review of Interagency Research and Implementation, Vol. 4. Springer, Dordrecht, The Netherlands.