Leptogenesis parametrized by lepton mass matrices

Pei-Hong Gu1 and Xiao-Gang He1,2,*
1Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240
2Department of Physics, National Taiwan University, Taipei 106
3National Center for Theoretical Sciences, Hsinchu 300

The conventional seesaw-leptogenesis can simultaneously explain the suppression of neutrino masses and the generation of cosmic baryon asymmetry, but usually cannot predict an unambiguous relation between these two sectors. In this work we shall demonstrate a novel left-right symmetric scenario, motivated to solve the strong CP problem by parity symmetry, where the present baryon asymmetry is determined by three charged lepton masses and a seesaw-suppressed hermitian Dirac neutrino mass matrix up to an overall scale factor. To produce the observed baryon asymmetry, this scenario requires that the neutrinos must have a normal hierarchical mass spectrum and their mixing matrix must contain a sizable Dirac CP phase. Our model can be tested in neutrino oscillation and neutrinoless double beta decay experiments.

PACS numbers: 98.80.Cq, 14.60.Pq, 12.60.Cn, 12.60.Fr

I. INTRODUCTION

No significant amount of primordial antimatter is found in the present universe and any initial matter-antimatter asymmetry would have been eliminated by inflation. These facts lead to the problem of baryon asymmetry in the universe (BAU). We need a baryogenesis mechanism to dynamically generate this BAU. There have been a number of successful baryogenesis scenarios, all of which require new physics beyond the minimal standard model (SM). Furthermore, the phenomena of neutrino oscillations implies that three neutrinos should have different masses and mix with each other. This again calls for new physics since the neutrinos are massless in the SM.

It would be an interesting progress if the generation of BAU and the origin of small neutrino masses can be simultaneously understood in a unified framework. This actually has been achieved by the so-called seesaw1 and leptogenesis2 schemes where the lepton number is violated by two units and the neutrinos are Majorana particles. One should keep in mind, however, that the Majorana nature of neutrinos has not been confirmed by any experiments. It has been shown that even if the neutrinos turn out to be Dirac particles, one can realize the seesaw and leptogenesis mechanisms by introducing additional symmetries besides some heavy degrees of freedom to the theory3,4. Compared with Majorana neutrino models, Dirac neutrino models usually do not violate the lepton number, but need more unknown parameters. In general, for both of Majorana and Dirac seesaw-leptogenesis scenarios, one does not know much about the texture of the masses and couplings involving the new heavy fields, and hence cannot give an unambiguous relation between the BAU and the information reside in the neutrino mass matrix, such as mass hierarchy and CP phase(s). The predictive power is quite limited5.

In this paper we shall develop a novel scenario where the Dirac neutrinos have a seesaw-suppressed hermitian mass matrix and up to an overall scale factor, the baryon asymmetry is determined by the neutrino and charged lepton mass matrices. To construct a realistic model we also aim at the strong CP problem which is another big challenge to the SM. Specifically we shall consider an $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_L \times U(1)_R \rightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ left-right symmetric2 model with a softly broken parity symmetry to solve the strong CP problem without an unobserved axion6,7. Our leptogenesis also requires the existence of a lepton number violation which, however, is not allowed to contribute any Majorana neutrino masses. For this purpose we shall impose an unbroken Z_4 discrete symmetry. To produce the BAU, the neutrino mass matrix is required to satisfy a normal hierarchy pattern and contain a sizable Dirac CP phase. Our model can be tested in the running and forthcoming neutrino oscillation experiments such as NO\textsubscript{A} and JUNO, and can be excluded by any observations of neutrinoless double beta decay.

II. THE MODEL

In this model three generations of fermions and their corresponding $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_L \times$
As we will show later that the new particles SU where the components of the
$
𝝈 \rho
$
ever, due to the
takes a positive mass M
full renormalizable scalar potential to analyze the break-

\[(1)\]
\[Q_L(3, 2, 1, \frac{1}{3}, 0, i) \leftrightarrow Q_R(3, 1, 2, 0, \frac{1}{3}, i),\]
\[U_R(3, 1, 1, \frac{4}{3}, 0, i) \leftrightarrow U_L(3, 1, 1, 0, \frac{4}{3}, i),\]
\[D_R(3, 1, 1, -\frac{2}{3}, 0, i) \leftrightarrow D_L(3, 1, 1, 0, -\frac{2}{3}, i),\]
\[L_L(1, 2, 1, -1, 0, i) \leftrightarrow L_R(1, 1, 2, 0, -1, i),\]
\[ε_R(1, 1, 1, -2, 0, i) \leftrightarrow E_L(1, 1, 1, 0, -2, i),\]
\[(1)\]

where the components of the $SU(2)$ doublets are

\[Q_L R = \begin{bmatrix} u_{L, R} \end{bmatrix}, L_L = \begin{bmatrix} ν_L \end{bmatrix}, L_R = \begin{bmatrix} ν_R \end{bmatrix}. \]

As we will show later that the new particles $U_{L, R}, D_{L, R}$ and $E_{L, R}$ are heavy.

The scalars in this model are

\[\omega_U(1, 1, 1, \frac{4}{3}, \frac{4}{3}, -1) \leftrightarrow \omega_U^+, \]
\[\omega_D(1, 1, 1, -\frac{2}{3}, \frac{2}{3}, 1) \leftrightarrow \omega_D^+, \]
\[Σ(1, 2, 2, -1, 1, 1) \leftrightarrow Σ^+, \]
\[ϕ_L(1, 2, 1, -1, 0, 1) \leftrightarrow ϕ_L(1, 1, 2, 0, -1, 1), \]
\[δ_L(1, 3, 1, 2, 0, -1) \leftrightarrow δ_L(1, 1, 3, 0, 2, -1), \]
\[χ(1, 1, 1, 0, 0, -1) \leftrightarrow χ. \]

Symmetry breaking is driven by nonzero vacuum expectation values (VEV) of scalars. One can write down the full renormalizable scalar potential to analyze the breaking pattern in details. Here we will, instead, write down a few of the terms which play some special roles,

\[V \ni μ_{ϕ_1}^2 ϕ_1^L ϕ_1^R + μ_{ϕ_2}^2 ϕ_2^L ϕ_2^R + \xi_1 ϕ_1^L Σ^L Σ ϕ_R + ξ_2 ϕ_2^L Σ^L Σ ϕ_R + [ρ_ω ω_U^2 + μ_ϕ^4 Σ ϕ_R + λ_ω ω_D Tr(Σ^L Σ) + κ_χ (ϕ_1^L iτ_2 Δ_L ϕ_L + ϕ_2^L iτ_2 Δ_R ϕ_R) + H.c.]. \]

When the $ω_D$ scalar develops its VEV, the $U(1)_L × U(1)_R$ symmetry will be broken down to a $U(1)_{B−L}$, i.e.

\[U(1)_L × U(1)_R \rightarrow \text{U}(1)_{B−L}. \]

Naively, if the $ω_U$ scalar takes a positive mass $M_{ω_U}$, its VEV should be zero. However, due to the $ρ$-term in the above potential, one can get an induced VEV, $⟨ω_U⟩ ≃ −ρ⟨ω_D⟩^2/M_{ω_U}^2 ≤ ⟨ω_D⟩$. Subsequently, the $ϕ_R$ and $ϕ_L$ scalars will respectively drive the left-right symmetry breaking $SU(2)_L × U(1)_{B−L} \rightarrow SU(2)_L × U(1)_{Y}$ and the electroweak symmetry breaking $SU(2)_L × U(1)_Y \rightarrow U(1)_Y$. In order to separate the left-right and electroweak symmetry breaking scales, we softly break the parity symmetry by taking $μ_{ϕ_1}^2 ≠ μ_{ϕ_2}^2$. As a result of the softly broken parity, the left-right symmetry breaking scale can be much higher than the electroweak one, i.e. $⟨ϕ_R⟩ ≫ ⟨ϕ_L⟩$.

After the left-right symmetry breaking, the Higgs bidoublet $Σ$ can be conveniently treated as two $SU(2)_L$ doublets, $Σ ≡ [σ_1, σ_2]$. The $σ_1$ and $σ_2$ scalars can have a large mass split because of the $ζ_{1, 2}$-terms in the potential $[4]$. By choosing the masses $M_{σ_1}^2$ of $σ_{1, 2}$ positive and very large, the $μ$-term and the $λ$-term in the potential will lead to the induced small VEVs for $σ_{1, 2}$ as below,

\[⟨σ_1⟩ ≃ −μ⟨ϕ_R⟩/M_{σ_1} ≫ ⟨σ_2⟩ ≃ −λ⟨ϕ_R⟩⟨ϕ_L⟩/M_{σ_2}^2. \]

As we will show later a successful leptonogenesis requires the VEV $⟨σ_1⟩$ below the eV scale.

We emphasize that the Z_4 discrete symmetry will not be broken at any scales. Accordingly, the real singlet scalar $χ$ and the $[SU(2)]$-triplet scalars $Δ_{L, R}$ will not have any nonzero VEVs and the neutrinos will not develop nonzero Majorana masses.

III. Fermion Masses

Fermion masses can be generated at tree level through the Yukawa couplings as follows,

\[L_Y = −y_U(\tilde{Q}_L φ_L U_R + \tilde{Q}_R φ_R U_L) − f_U ω_U U_R U_R \]
\[−y_D(\tilde{Q}_L φ_L D_R + \tilde{Q}_R φ_R D_L) − f_D ω_D D_R D_R \]
\[−y_c(\tilde{L}_L φ_c c_R + \tilde{L}_R φ_c c_L) − f_c L_R E_R \]
\[−f_{L̃} (\tilde{L}_L iτ_2 Δ_L L + \tilde{L}_R iτ_2 Δ_R L_R + H.c.) \]

The parity symmetry, although softly broken, still enforce $f_{U(D, Σ)} = f_{U(D, Σ)}^1$. The mass matrices of the ordinary $[SU(2)]$-doublet quarks and the new $[SU(2)]$-singlet quarks are given by

\[L \ni \begin{bmatrix} u_L \ U_L \end{bmatrix} M_u \begin{bmatrix} u_R \ U_R \end{bmatrix}, \begin{bmatrix} d_L \ D_L \end{bmatrix} M_d \begin{bmatrix} d_R \ D_R \end{bmatrix} \]

+ H.c.

\[M_{u(d)} = \begin{bmatrix} 0 & y_{U(D)} \ (ϕ_R) \ y_{U(D)} \ (ϕ_L) \end{bmatrix}. \]

The quark mass matrices $M_{u(d)}$ have real determinants and hence do not contribute to the strong CP phase $Θ = Θ − \text{ArgDet}(M_u M_d)$ at tree level. Here $Θ$ is from the QCD $Θ$-vacuum and should have been removed by the parity symmetry. The loop-level contribution from the quark mass matrices to the strong CP phase can be below the experimental limit when the new quarks are heavy enough [4]. Therefore, the strong CP problem can be solved without introducing an unobserved axion.

The lepton mass matrices are very different from those for quarks. The mass matrices for the ordinary charged leptons $e_{L, R}$ and the mirror charged leptons $Ẽ_{L, R}$ are

\[L \ni \begin{bmatrix} e_L \ E_L \end{bmatrix} \begin{bmatrix} y_c (ϕ_L) \ y_c (ϕ_R) \end{bmatrix} \begin{bmatrix} e_R \ E_R \end{bmatrix} + H.c. \]

\[L \ni \begin{bmatrix} Ẽ_L \ \bar{E}_L \end{bmatrix} \begin{bmatrix} y_c (ϕ_R) \ y_c (ϕ_L) \end{bmatrix} \begin{bmatrix} Ẽ_R \ \bar{E}_R \end{bmatrix} + H.c. \]

\[L \ni \begin{bmatrix} e_L \ ẽ_L \end{bmatrix} \begin{bmatrix} y_e (ϕ_L) \ y_e (ϕ_R) \end{bmatrix} \begin{bmatrix} e_R \ ẽ_R \end{bmatrix} + H.c. \]
Without loss of generality and for convenience, we will work in the base where the above charged lepton mass matrices are real and diagonal. As for the left-handed neutrinos ν_L, they can form Dirac pairs and acquire a hermitian mass matrix,

$$L \supset m_\nu \nu_L^c + H.c.,$$

with U being the PMNS matrix which now does not contain any Majorana CP phases. Taking into account the perturbation requirement $|f_{\Sigma}|_{\beta\alpha} \ll \sqrt{4\pi}$, the VEV $\langle \phi^0 \rangle$ should have a low limit. For the neutrino mass spectrum being normal hierarchy (NH) $m_3 > m_2 > m_1$, or inverted hierarchy (IH) $m_2 > m_1 > m_3$, we can constrain

$$\langle \sigma^0 \rangle^2 > \frac{m^2_3}{4\pi} \geq 1.96 \times 10^{-4} \text{ eV}^2 \text{ (NH)},$$

$$\langle \sigma^1 \rangle^2 > \frac{m^2_2}{4\pi} \geq 2.01 \times 10^{-4} \text{ eV}^2 \text{ (IH)},$$

by inputting the best fitting values [11].

IV. LEPTON AND BARYON ASYMMETRIES

After the left-right symmetry is broken down to the electroweak symmetry, the Yukawa interactions in Eq. (6) will result in

$$L \supset - f_\Sigma L^\dagger \sigma_L \nu_R - f_\Sigma L^\dagger \sigma_2 \nu_R - M E \bar{E}^R E + H.c. \tag{12}$$

Therefore, the mirror charged leptons $E_{\mu,\tau}$ can decay into the ordinary leptons $L_{\mu,\tau}$, the heavy Higgs scalar σ_2 if kinematically allowed. Evaluating the diagrams in Fig. [1] we obtain the flavor-dependent CP asymmetries in the decays of the mirror lepton-antilepton pairs as

$$\varepsilon_{\beta\alpha} = \frac{\Gamma(E_\beta \to L_{\alpha\alpha} \sigma_2^+ \tau) - \Gamma(E_\beta^\dagger \to L_{\alpha\alpha}^\dagger \sigma_2^- \tau)}{\Gamma_{E_\beta}}$$

$$= \frac{1}{4\pi} \sum \frac{\text{Im}(f_{\Sigma}^\dagger f_{\beta}^\dagger f_{\beta\alpha}^\dagger f_{\alpha\alpha}^\dagger)}{M_{E_\beta}^2} \frac{M_{E_\beta}^4}{M_{E_\beta}^4 - M_{E_\beta}^2}$$

$$= \frac{1}{4\pi} \sum \frac{\text{Im}(m_\nu^2 m_\nu^\dagger m_\nu^\dagger m_\nu)}{m_\rho^2 - m_\beta^2} m_\rho^2 - m_\beta^2 \tag{13}$$

It is easy to see that $\sum_{\alpha=e,\mu,\tau} \varepsilon_{\alpha\alpha} = 0$ and $\varepsilon_{\beta\alpha}$ can be fully determined by the Dirac neutrino mass matrix m_ν and the charged lepton mass matrix \hat{m}_e for a given VEV $\langle \phi^0 \rangle$.

$$\varepsilon_{ee} = -\frac{1}{4\pi} \frac{J_{CP} F(\hat{m}_e)(m_\nu^2)_{ee} m_\rho^2}{(m_\nu^2 m_\nu^\dagger m_\nu^\dagger m_\nu)^2 m_\rho^2} \tag{14}$$

$$\varepsilon_{e\mu} = -\frac{1}{4\pi} \frac{J_{CP} F(\hat{m}_e)(m_\nu^2)_{e\mu} m_\rho^2}{(m_\nu^2 m_\nu^\dagger m_\nu^\dagger m_\nu)^2 m_\rho^2},$$

$$\varepsilon_{e\tau} = (\varepsilon_{ee} + \varepsilon_{e\mu}) \tag{15}$$

Note ε_{ee} and $\varepsilon_{e\mu}$ have the same sign and are sensitive to whether the neutrino masses satisfy the NH or IH pattern.

Although these lepton number conserving decays do not generate a net lepton number, they can produce three individual lepton asymmetries $L_{e,\mu,\tau}$ stored in the ordinary electron, muon and tau lepton flavors. Since the mirror electron is much lighter than the mirror muon and tau, the decays of the mirror electron-positron pairs can be expected to determine the individual lepton asymmetries $L_{e,\mu,\tau}$. If the mirror electron and positron are heavy enough, their decays can produce the lepton asymmetries $L_{e,\mu,\tau}$ before the sphaleron processes stop working. Furthermore, the [SU(2)_L]-triplet scalar Δ_L can mediate some lepton number violating processes, such as the lepton number violating annihilation shown in Fig. [2]. For a proper choice of the couplings and mass of the Δ_L scalar, only the lepton number violating interactions of certain lepton flavor(s) can keep in equilibrium when the individual lepton asymmetries $L_{e,\mu,\tau}$ are produced. For this reason a nonzero lepton asymmetry, i.e. $L_e, L_\mu, L_\tau, L_e + L_\mu, L_e + L_\tau$ or $L_\mu + L_\tau$, can survive from the lepton number violating processes. If this remaining lepton asymmetry is induced before the sphaleron epoch, it can be partially converted to a baryon asymmetry.
The lepton number violating annihilations of the ordinary leptons.

The interaction rate of the flavor-dependent lepton number violating processes, from Fig. 2, is given by,

\[
\Gamma_{\alpha\beta} = \Gamma(L_{La} L_{L\beta} \rightarrow \phi \phi \chi) = \left\{ \begin{array}{ll} \frac{3}{2\pi^2} \kappa^2 |(f_{\Delta})_{\alpha\beta}|^2 \frac{T^5}{M_{\Delta}^4} & \text{for } T < M_{\Delta}, \\
\frac{1}{2\pi^2} \kappa^2 |(f_{\Delta})_{\alpha\beta}|^2 T^4 & \text{for } T > M_{\Delta}. \end{array} \right. \tag{16}
\]

As an example, we consider the case where only the L_τ asymmetry can be quickly washed out once they are produced, if the following conditions are satisfied \[14\]

\[
\left(\Gamma_{\tau\tau} > H\right)_{T=M_{E_\tau}}, \\
\left(\Gamma_{\alpha\beta} < H\right)_{T=M_{E_\tau}} \left((\alpha, \beta) \neq (\tau, \tau)\right), \tag{17}
\]

where $H = (8\pi g_s/90)^{1/2} T^2/M_{Pl}$ is the Hubble constant with $M_{Pl} \approx 1.22 \times 10^{19}$ GeV being the Planck mass and $g_s = 117$ being the relativistic degrees of freedom (the SM fields, the real singlet scalar, the heavy Higgs doublet σ_2, the right-handed neutrinos). This means that for $M_{\Delta} > M_{E_{\tau}}$, the Yukawa couplings f_{Δ} should take the structure,

\[
|f_{\Delta}^{(1)}| > 0.0048 \left(\frac{1}{\kappa}\right)^2 \left(\frac{10^{12} \text{ GeV}}{M_{E_{\tau}}}\right)^3 \left(\frac{M_{\Delta}}{M_{E_{\tau}}}\right)^4, \\
|f_{\Delta}^{(2)}| > 0.0048 \left(\frac{1}{\kappa}\right)^2 \left(\frac{10^{12} \text{ GeV}}{M_{E_{\tau}}}\right)^3 \left(\frac{M_{\Delta}}{M_{E_{\tau}}}\right)^4 \\
((\alpha, \beta) \neq (\tau, \tau)), \tag{18}
\]

which may be induced by some symmetry arrangements like the Froggatt-Nielsen mechanism \[13\].

The mirror electron mass is above the sphaleron temperature but much below the high left-right symmetry breaking scale. Therefore, the gauge interactions of the mirror electron and positron can go out of equilibrium before the efficient decays of the mirror electron-positron pairs. In the weak washout region, the out-of-equilibrium condition of the mirror electron and positron can be simply described by $\Gamma_{E_{\tau}}/(2H)_{T=M_{E_{\tau}}} < 1$. The individual lepton asymmetries induced by the decays of the mirror electron-positron pairs then can approximate to \[14\]

\[
L_{\alpha} = \frac{n_{\alpha}}{s} \simeq \varepsilon_{ee} \frac{n_{E_{\tau}}}{s} \bigg|_{T=M_{E_{\tau}}} = \frac{45}{2\pi^2 T c g_s} \frac{\varepsilon_{ee}}{g_s} = \frac{0.11 \varepsilon_{ee}}{g_s}. \tag{19}
\]

From the out-of-equilibrium condition and the neutrino oscillation data \[11\], we can constrain the VEV $\langle \sigma_1^{0} \rangle$ by

\[
\langle \sigma_1^{0} \rangle > \frac{1}{32\pi H} \left(\frac{m_1 m_\mu}{M_{E_{\tau}}}\right) \tag{20}
\]

\[
\left\{ \begin{array}{l} 1.96 \times 10^{-4} \text{eV}^2 \left(\frac{5.24 \times 10^{17} \text{GeV}}{M_{E_{\tau}}}\right) \text{, NH with } m_1 = 0 , \\
2.01 \times 10^{-4} \text{eV}^2 \left(\frac{1.62 \times 10^{17} \text{GeV}}{M_{E_{\tau}}}\right) \text{, IH with } m_3 = 0 , \end{array} \right.
\]

which is allowed to match the perturbation condition for a large mirror electron mass $M_{E_{\tau}}$. In the above, for definitiveness we have taken $m_1 = 0$ and $m_3 = 0$ for NH and IH, respectively. These choices give the lower bounds for $\langle \sigma_1^{0} \rangle$, and also the upper bounds for $\varepsilon_{ee} + \varepsilon_{\mu\mu}$ which will be shown later in Eq. (22).

The sphaleron processes can partially convert a remaining lepton asymmetry $L_{e}, L_{\mu}, L_{\tau}, L_{e} + L_{\mu}, L_{e} + L_{\tau}$ or $L_{\mu} + L_{\tau}$ to a baryon asymmetry. For example, we consider an $L_{e} + L_{\mu}$ asymmetry from the decays of the mirror electron-positron pairs to be the remaining lepton asymmetry. The final baryon asymmetry then should be \[14\]

\[
\eta_B = 7.04 \times \frac{n_B}{s} = 5.91 \times 10^{-10} \left(\frac{\varepsilon_{ee} + \varepsilon_{\mu\mu}}{-2.52 \times 10^{-7}}\right),
\]

with \[
\frac{n_B}{s} = -\frac{28 n_\mu}{79} \simeq -28 \times 0.11(\varepsilon_{ee} + \varepsilon_{\mu\mu}) \tag{21}
\]

Here the factor $-28/79$ is the lepton-to-baryon conversion coefficient \[14\]. By inputting the known neutrino oscillation data \[11\] into the CP asymmetries \[14\], which do not have any cancellations between ε_{ee} and $\varepsilon_{\mu\mu}$, we obtain

\[
\varepsilon_{ee} + \varepsilon_{\mu\mu} = 2.52 \times 10^{-7} \left(\sin \delta \right) \frac{1.96 \times 10^{-4} \text{eV}^2}{\langle \sigma_1^{0} \rangle} \tag{22}
\]

for NH with $m_1 = 0$,

\[
\varepsilon_{ee} + \varepsilon_{\mu\mu} = 1.61 \times 10^{-8} \left(\sin \delta \right) \frac{2.01 \times 10^{-4} \text{eV}^2}{\langle \sigma_1^{0} \rangle} \tag{22}
\]

for IH with $m_3 = 0$.

To obtain the observed value, $\eta_B = 5.91 \times 10^{-10}$ \[17\], the CP asymmetry $\varepsilon_{ee} + \varepsilon_{\mu\mu}$ needs to satisfy $\varepsilon_{ee} + \varepsilon_{\mu\mu} \sim -2.52 \times 10^{-7}$.

Comparing the above with Eq. (11), we conclude that our model with the IH neutrinos cannot solve the BAU problem, but with the NH neutrinos can if the Dirac CP phase satisfies,

\[
-\sin \delta \simeq 0.125 \left(\frac{\langle \sigma_1^{0} \rangle^2}{1.96 \times 10^{-4} \text{eV}^2}\right) \geq 0.125
\]

for $\langle \sigma_1^{0} \rangle^2 \geq 1.96 \times 10^{-4} \text{eV}^2$. \tag{23}

Note that recent NOvA result \[18\] also hints the NH neutrino mass spectrum. For the currently favored value $\sin \delta \sim -1$ \[19\], we get $\langle \sigma_1^{0} \rangle^2 \sim 1.6 \times 10^{-3} \text{eV}^2$.

FIG. 2: The lepton number violating annihilations of the ordinary leptons.
V. SUMMARY

In this paper we have described a novel left-right symmetric scenario where the strong CP problem can be solved by parity, the neutrinos can acquire a seesaw-suppressed Dirac mass matrix, while the BAU can be determined by the Dirac neutrino and charged lepton mass matrices up to an overall scale. To solve the BAU problem our model predicts a NH pattern for the neutrino masses and a sizable Dirac CP phase in the mixing matrix. We look forward to testing our model by new data from the NOνA and JUNO, as well as neutrinoless double beta decay experiments.

Acknowledgement: PHG was supported by the Shanghai Jiao Tong University (Grant No. WF220407201) and the Recruitment Program for Young Professionals (Grant No. 15Z127000004). HXG was supported in part by MOE Academic Excellent Program (Grant No. 102R891505) and MOST of ROC, and in part by NSFC (Grant No. 11175115). The authors were also supported by the Shanghai Laboratory for Particle Physics and Cosmology under Grant No. 11DZ2260700.

[1] P. Minkowski, Phys. Lett. B 67, 421 (1977); T. Yanagida, Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe, ed. O. Sawada and A. Sugamoto (Tsukuba 1979); M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, ed. F. van Nieuwenhuizen and D. Freedman (North Holland 1979); R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980).
[2] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[3] M. Roncadelli and D. Wyler, Phys. Lett. B 133, 325 (1983); P. Roy and O. Shanker, Phys. Rev. Lett. 52, 713 (1984).
[4] K. Dick, M. Lindner, M. Ratz, and D. Wright, Phys. Rev. Lett. 84, 4039 (2000).
[5] P.H. Gu and H.J. He, JCAP 0612, 010 (2006).
[6] S. Davidson and A. Ibarra, Nucl. Phys. B 618, 171 (2001).
[7] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 566 (1975); R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 2558 (1975); R.N. Mohapatra and G. Senjanović, Phys. Rev. D 12, 1502 (1975).
[8] R.N. Mohapatra and G. Senjanović, Phys. Lett. B 79, 283 (1978); M.A.B. Beg and H.S. Tsao, Phys. Rev. Lett. 41, 278 (1978); H. Georgi, Hadronic J. 1, 155 (1978).
[9] K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D 41, 1286 (1990).
[10] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957); Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[11] M.C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, JHEP 1411, 052 (2014).
[12] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[13] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
[14] E.W. Kolb and M.S. Turner, The Early Universe, Addison-Wesley, 1990.
[15] C.D. Froggatt and H.B. Nielsen, Nucl. Phys. B 417, 277 (1994).
[16] J.S. Harvey and M.S. Turner, Phys. Rev. D 42, 3344 (1990).
[17] P.A.R. Ade et al., (Planck collaboration), arXiv:1303.5076 [astro-ph.CO].
[18] J. Bian, arXiv:1510.05708 [hep-ex].
[19] A. Palazzo, arXiv:1509.03148 [hep-ph].