Supplementary information

X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications

Yingchen Ju1,2, Lu Han1,2, Bingyi Chen1,2, Zhiteng Luo1,2, Qiong Gu2, Jun Xu2, Xiang-Lei Yang3, Paul Schimmel3,4,* and Huihao Zhou1,2,*

1 Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
2 Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
3 Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
4 Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.

* To whom correspondence should be addressed. Tel: +86 20 39943350; Email: zhuihao@mail.sysu.edu.cn
Correspondence may also be addressed to Paul Schimmel. Tel: +1 858 784 8970; Fax: +1 858 784 8990; Email: schimmel@scripps.edu
Supplementary Figure S1. Measuring the oligomeric state of EcGlyRS-FL and EcGlyRS575 in solution using size-exclusion chromatography. The apparent molecular weights of EcGlyRS-FL and EcGlyRS575 in solution were measured using a HiLoad 16/60 Superdex 200 pg column (Cytiva) which was calibrated with standard proteins from Gel Filtration LMW Calibration Kit (Cytiva). EcGlyRS-FL was eluted as a sharp symmetric peak at 62.5 mL, which is corresponding to the molecular weight of MW_{SEC} = 253.9 kDa. This number is close to the molecular weight deduced from the protein sequences of the predicted heterotetrameric form of EcGlyRS-FL (MW_{deduced} = 225.2 kDa), indicating that EcGlyRS-FL is a heterotetramer in solution. Similarly, EcGlyRS575 was eluted at 64.6 mL with a MW_{SEC} = 212.9 kDa, which is close to MW_{deduced} = 199.2 kDa and supports that EcGlyRS575 forms a heterotetramer in solution.
Supplementary Figure S2. Solution Structure of EcGlyRS575 and EcGlyRS-FL by SAXS assays. (A) The back-calculated scattering profile (orange) fits well with the experimental scattering profile (blue) for the EcGlyRS575 ($\chi^2=1.05, \chi^2_{free}=1.12$). The inset shows the overlay of the pair distance distribution function (PDDF) of the crystal structure (orange) with that of SAXS experiment (blue). (B) The SAXS ab initio envelope was represented as a space-filling model (grey), and the crystal structure of EcGlyRS575 fits well into this shape envelope. (C) The overlay of the scattering profiles of the modeled structure (orange) and SAXS experiment (blue) for EcGlyRS-FL ($\chi^2=1.36, \chi^2_{free}=1.86$). The inset shows the overlay of the modeled structure (orange) with experimental (blue) PDDFs. (D) The structure of EcGlyRS-FL with the modeled ABD (wheat) fits well in the SAXS ab initio envelope.
Supplementary Figure S3. Electron density map of EcGlyRS575 structure. (A) The 2F₀−Fᵣ electron density map of the protein chain. (B) The 2F₀−Fᵣ electron density maps for AMP-PNP, glycine, and Mg²⁺ are shown as blue meshes and contoured at 1.0 σ in the aminoacylation pocket of EcGlyRS575. Three signature motifs of class II aaRSs on the α-subunit are labeled (motif 1, res. 9-32; motif 2, res. 54-88; motif 3, res. 160-175).
Supplementary Figure S4. Sequence alignments of α-subunits from EcGlyRS and homologs.

Protein sequences of E. coli GlyRS (EcGlyRS, UniProtKB ID: P00960), Aquifex aeolicus GlyRS (AaGlyRS, UniProtKB ID: O67081), Bacillus subtilis GlyRS (BsGlyRS, UniProtKB ID: P54380), Enterococcus faecalis GlyRS (EfGlyRS, UniProtKB ID: Q831U2), Geobacter lovleyi GlyRS (GlGlyRS, UniProtKB ID: B3E622), Helicobacter pylori GlyRS (HpGlyRS, UniProtKB ID:...
B5Z7W3), *Lactobacillus paracasei* GlyRS (*LpGlyRS, UniProtKB ID: Q038U2), *Oenococcus oeni* GlyRS (*OoGlyRS, UniProtKB ID: Q04F71), *Rhodospirillum rubrum* GlyRS (*RrGlyRS, UniProtKB ID: Q2RQ44), *Rickettsia typhi* GlyRS (*RtGlyRS, UniProtKB ID: Q68VR3), *Synechococcus elongatus* GlyRS (*SeGlyRS, UniProtKB ID: Q31KD2) and *Streptococcus pneumoniae* GlyRS (*SpGlyRS, UniProtKB ID: B8ZL21) were aligned using Clustal Omega program(1). The residue numbering and secondary structures corresponding to *EcGlyRS* are displayed above the sequences. The conservation scores were calculated by the program Jalview(2) and exhibited in various shades of purples. The signature motifs 1, 2, and 3 conserved in class II aaRSs are marked with salmon, yellow and blue arrows, respectively.
Supplementary Figure S5. The structural flexibility of the B2 domain. The structure superposition of the two protomers (colored the same as in Figure 1B) reveals that both protomers are almost identical except that their B2 domains undergo large conformation movement between two protomers.
Supplementary Figure. S6. Domain-swapping interactions between the residual ABD sequences of two EcGlyRS575 proteins from adjacent asymmetric units contribute to crystal packing. The yellow cube represents an asymmetric unit that contains one EcGlyRS575 molecule consisting of two protomers (colored in magenta for protomer1 and cyan for protomer 2). The two protomers of the adjacent EcGlyRS575 molecules are colored in gray and gold, respectively. The zoom-in views show the formation of domain-swapping interactions between adjacent EcGlyRS575 molecules.
Supplementary Figure S7. The phosphate groups of AMP-PNP rotate toward the β-subunit.
Structural comparison of the aminoacylation pockets between EcGlyRS and CjGlyRS-ATP-glycine and CjGlyRS-ATP complexes (PDB: 3grl and 3ufg, colored yellow), and the major conformation differences of the phosphate groups are indicated by red arrows.
Supplementary Figure S8. The binding of B1, B3 and HD domains of β-subunit to the areas surrounding of the active cavity on the α-subunit results in the formation of a deeper and better-covered aminoacylation pocket.
Supplementary Figure S9. ITC titrations of ATP to EcGlyRS-FL or α-subunit. (A) ITC titration of ATP into EcGlyRS-FL. The top panel shows raw thermogram and bottom panel shows the binding isotherm fitted to a single-site model (B) Titration of ATP into purified α-subunit of EcGlyRS. Bottom panel isotherm was very close to baseline, indicating that the binding affinity between ATP and α-subunit alone is very low.
Supplementary Figure S10. Structural superposition of the B1-B2 domain and its homologs. (A) The structural superposition of the B1-B2 domains of the β-subunit (colored the same as Fig. 1A) and a putative transposase from *Deinococcus radiodurans* (PDB: 2fyx, golden). (B) The B1-B2 domain is superimposed to the DNA-grasping palm subdomain of the DNA polymerase I from *Geobacillus stearothermophilus*. The domains used in structural superposition are shown as cartoons, and the rest parts of the structures are presented as ribbons.
Supplementary Figure S11. Sequence alignments of β-subunit from EcGlyRS and homologs.

Protein sequences of the β-subunits of EcGlyRS (UniProtKB ID: P00961), AaGlyRS (UniProtKB ID: O67898), BsGlyRS (UniProtKB ID: P54381), EfGlyRS (UniProtKB ID: Q831U3), GiGlyRS, (UniProtKB ID:B3E621), HpGlyRS, (UniProtKB ID: B5Z7X4), OoGlyRS, (UniProtKB ID: Q04F69), LpGlyRS (UniProtKB ID: IDQ038U3), RrGlyRS (UniProtKB ID: Q2RQ43), RtGlyRS (UniProtKB ID: Q68VR4), SeGlyRS (UniProtKB ID: Q31SB9) and SpGlyRS (UniProtKB ID: B8ZL20) were aligned using Clustal Omega program(1). The residue numbering and secondary structures corresponding to EcGlyRS are displayed above the sequence. The conservation scores were calculated by the program Jalview(2) and exhibited in various shades of purples.
Supplementary Figure S12. Binding of full length and truncated EcGlyRS to tRNAGly is analyzed by using size-exclusion chromatography. The binding assays were performed by using a Superdex 200 increase 10/30 column (Cytiva), which was calibrated with standard proteins from Gel Filtration LMW Calibration Kit (Cytiva). Full and dash lines represent the absorption at a wavelength of 280 and 260 nm, respectively. The molar ratio for the EcGlyRS protein and tRNAGly is 4:1. As shown in (A), after 30 min co-incubation at room temperature, EcGlyRS-FL and tRNAGly were able to form a peak (gray) which shifts to the left compared to the peak of EcGlyRS-FL alone (blue). And the UV260 of the gray peak increased significantly compared to the blue peak, indicating the complex formation of EcGlyRS-FL and tRNAGly. After using the same co-incubation process as EcGlyRS-FL, in contrast, the EcGlyRS\textDelta B2 (B) and EcGlyRS\textDelta 575 (C) protein could not form a complex with the same amount of tRNAGly, as their gray peaks in gel-filtration showed almost the same location and intensity with the blue peak. These results showed the importance of the B2 domain and ABD of EcGlyRS in tRNA binding.
Supplementary Figure S13. The structural and mutagenesis analysis of the B1 domain surface facing tRNA acceptor stem. (A) The electrostatic surface of the B1 domain facing tRNA acceptor stem. The positively charged residues in the S1-H1 loop and H3-S7 are shown as sticks. (B) The glycine activation of wild-type EcGlyRS and EcGlyRS variants with single mutations on the B1 domain were measured by a continuous spectrophotometric assay. The activity of the wild-type enzyme is normalized as 100%. The experiments were repeated three times, and the blank circles indicate the results for each experiment. The error bars are SD. (C) The aminoacylation activities of the wild-type EcGlyRS and its variants with single mutations in the B1 domain.
Supplementary Figure S14. Structural comparison between the Ins3 domain of *Hs*GlyRS and the B2 domain of *Ec*GlyRS in tRNA^{Gly} binding. (A) The structure of *Hs*GlyRS in complex with tRNA^{Gly} (PDB: 4qei) reveals that the Ins3 domain (shown as cartoon) could bind to the elbow region of tRNA^{Gly}. Notably, a cross-subunit tRNA^{Gly}-binding mode was employed by *Hs*GlyRS, that the acceptor arm and anticodon of a tRNA^{Gly} molecule are recognized by one subunit of *Hs*GlyRS homodimer while its elbow region is recognized by Ins3 from the other subunit. (B) The B2 domain (red) of *Ec*GlyRS575 is close to the elbow region of the substrate tRNA^{Gly} according to structural modeling based on the crystal structure of A/CCA-tRNA^{Phe} complex (PDB: 1sz1); and with its conformation dynamics, B2 is likely able to contact the elbow region of tRNA^{Gly}. Different to *Hs*GlyRS-tRNA^{Gly} complex, the tRNA^{Gly} molecule will be recognized by different domains from a single protomer of *Ec*GlyRS575.
Supplementary Figure S15. The glycine activation activity of EcGlyRS-FL and its HD domain variants. The amino acid activation activity of wild-type EcGlyRS-FL and its variants in the HD domain were measured by a continuous spectrophotometric assay, and the results confirmed that the single site-directed mutations of the cavity-forming residues in the HD domain does not affect the first step of the catalysis.
Supplementary Figure S16. The structural superposition between the HD domain and the Mid1 subdomain of *Archaeoglobus fulgidus* AlaRS (AfAlaRS) in complex with tRNA^{Ala} (PDB: 3wqy). The Mid 1 (palecyan) in the tRNA-recognition domain of the AfAlaRS and tRNA^{Ala} (black) are shown as the cartoon. The HD domain (purple) is shown as cartoon, and other parts of the EcGlyRS (a protomer only) are shown as ribbons and colored the same as Figure1B.
Supplementary Figure S17. A diagram comparing human mtPheRS with the prokaryotic PheRS. (A) Diagrammatic representation of the arrangements of the phenylalanyl-tRNA synthetase (PheRS) encoding genes found in the genomes of *Aquifex aeolicus* VF5 (GenBank: AE000657.1), *Bacillus subtilis* strain 168 (GenBank: NC_000964.3), *Helicobacter pylori* G27 (GenBank: CP001173.1), *Chlamydia trachomatis* D-EC (GenBank: CP002052.1), *Escherichia coli* strain K-12 (GenBank: CP009685.1) and *Homo sapiens* (chromosome 6, NCBI Reference Sequence: NG_033003.2). For the mitochondrial PheRS (mtPheRS), the regions similar to α- and β-subunits of the bacterial PheRS are indicated by the black dashed lines, and the N-terminal region of mtPheRS is colored gray. (B) Schematic representation of α- and β-subunits of the bacterial PheRS and mitochondrial PheRS in terms of structural domains.
Supplementary Figure S18. Modeled complexes suggested that EcGlyRS α-subunit and the catalytic domains of class Ia synthetases could bind to tRNA acceptor stem simultaneously. The modeled EcGlyRS-tRNAGly complex was superimposed to the co-crystal structures of class Ia synthetases in complex with their tRNAs by aligning the acceptor stems of the tRNA molecules. For clarity, only the tRNAGly (gray), the α-subunit of EcGlyRS (green) and the catalytic domains of class Ia aaRSs (magenta) are shown as cartoon. All the docking results are shown in two different orientations. The views show the molecules along the axis of the anticodon stem-loop, from the acceptor stem side.
Supplementary Figure S19. Structure superposition of the EcGlyRS and HsGlyRS. (A) When catalytic domains of EcGlyRS (green) and HsGlyRS (yellow) were superimposed, the tRNA^{Gly} molecules were found to bind to opposite sides of the catalytic domains of two GlyRSs. (B) When tRNA^{Gly} molecules were aligned, the catalytic domains of EcGlyRS (green) and HsGlyRS (yellow) were found to bind the acceptor stem of tRNA^{Gly} from different directions. Notably, the class Ia MetRS (magenta) could dock to acceptor stem of tRNA without clash with both types of GlyRS.
Supplementary Figure S20. Structural superposition of the N-terminal part of the HD domain and the class II CCA-adding enzyme. In *Aquifex aeolicus*, the CCA-3′ is synthesized by CC-adding and A-adding enzymes in a collaborative manner, which are all belong to the class II CCA-adding enzymes. The body domain (shown as blue cartoon) of the *Aquifex aeolicus* CC-adding enzyme (PDB: 3wfq) is composed of a bundle of a-helices, which is involved in selecting and fixing the tRNA molecule onto the enzymes. The N-terminal part of the HD domain exhibits significant similarity to the body domain of class II CCA-adding enzymes.
Supplementary Table 1. Statistics of X-ray diffraction data collection and structure refinement.

Data collection	
Resolution (Å)	50.00-2.68 (2.78-2.68) a
Wavelength (Å)	0.979
Space group	F222
Cell parameters a, b, c (Å) a^b, b^b, c^b (Å) a^d=207.4, b^d=253.9, c^d=270.7	
α, β, γ (°) α^d=90.0, β^d=90.0, γ^d=90.0	
Unique reflections	99458 (9862)
Redundancy	13.5 (13.1)
Completeness (%)	99.6 (92.9)
Average I/σ (I)	42.5 (3.5)
R_{merge}^b (%)	8.4 (60.2)
Refinement Resolution (Å) 48.58-2.68 (2.78-2.68)	
Reflections for refinement/test	94460/4996
R_{work}/R_{free}^d (%)	22.8/24.9
RMSD bond (Å)	0.003
RMSD angle (°)	1.21
Mean B factor (Å²)	68.4
Non-hydrogen protein atoms	13275
Water oxygen atoms	56
Other non-hydrogen atoms	76
MolProbity Ramachandran plot (%)	
Most favored regions	96.4
Additional allowed regions	3.1
Outliers	0.5

^aValues in parentheses are for the highest resolution shell.

^bR_{merge} = Σ_h Σ_i | I(h)_i - <I(h)> | / Σ_h Σ_i I(h)_i, where I_i(h) is the <i>i</i>th observation of the reflection <i>h</i> and <I(h)> is the weighted average intensity for all observations <i>i</i> of reflection <i>h</i>.

^cR_{work} = Σ_h | F_{obs}(h) | - | F_{calc}(h) | / Σ_h | F_{obs}(h) |, where F_{obs}(h) and F_{calc}(h) are the observed and calculated structure factors for reflection <i>h</i> respectively.

^dR_{free} was calculated as R_{work} using 5.0% of the reflections which were selected randomly and omitted from refinement.
Supplementary Table 2. The DALI result for the α-subunit in EcGlyRS.

No:	Chain	Z	rmsd	lali	nres	%id	Description
1	3rgl-A	40.3	1.3	286	293	64	Glycyl-tRNA synthetase alpha subunit;
2	3wgy-A	18.7	3.7	209	906	17	Alanine--tRNA synthetase;
3	3hxu-A	16.7	3.0	195	442	14	Alanyl-tRNA synthetase;
4	2du7-A	14.6	2.9	167	539	17	O-phosphoseryl-tRNA synthetase;
5	3reu-B	14.6	2.7	172	290	13	Asns-like asparaginyl-tRNA synthetase
6	2odr-A	14.1	2.7	162	491	18	Phosphoserine-tRNA synthetase;
7	1eqr-A	13.9	4.0	187	590	13	Aspartyl-tRNA synthetase;
8	6aqq-C	13.8	2.7	165	491	13	Lysine--tRNA synthetase;
9	3ica-B	13.7	2.4	144	207	8	Phenylalanine-tRNA synthetase beta chain;
10	3dsq-B	13.7	3.0	163	282	13	Pyrolyl-tRNA synthetase;
11	4up8-A	13.7	2.9	168	580	14	Lysine--tRNA synthetase;
12	5mgu-A	13.5	3.5	172	408	14	Phenylalanine--tRNA synthetase, mitochondrial;
13	6r02-C	13.4	3.0	155	380	10	ATP phosphoribosyltransferase regulatory subunit;
14	1gsh-D	13.1	3.6	154	415	7	Mitochondrial DNA polymerase accessory subunit;
15	4o2d-B	13.1	3.6	180	516	14	Aspartate--tRNA synthetase;
16	3pco-B	12.9	2.9	151	795	10	Phenylalanine-tRNA synthetase, beta subunit;
17	1kmm-B	12.9	2.8	162	365	15	Histidyl-tRNA synthetase;
18	11as-A	12.7	2.9	169	328	11	Asparagine synthetase;
19	2x77-A	12.3	3.2	159	531	13	Glycyl-tRNA synthetase;
20	1adj-A	12.3	2.8	156	421	17	Histidyl-tRNA synthetase;
21	4kqe-A	12.3	3.1	155	597	14	Glycine--tRNA synthetase;
22	4yrn-A	12.3	3.0	159	416	10	Histidyl-tRNA synthetase;
23	3lg-C	12.1	2.8	163	509	14	Phenylalanine-tRNA synthetase alpha subunit;
24	5e6m-A	12.0	3.5	156	520	13	Glycine--tRNA synthetase;
25	6pqh-B	12.0	2.7	168	479	12	Asparagine--tRNA synthetase;
26	1z7m-B	11.9	2.8	155	318	12	ATP phosphoribosyltransferase regulatory subunit;
27	3w3s-A	11.4	3.2	164	527	12	Serine--tRNA synthetase;
28	3mif2-A	11.3	3.7	155	299	17	BL0957 protein;
29	6d08-A	11.1	2.7	170	506	9	Putative aspartyl-tRNA synthetase;
30	1nyq-B	11.1	3.2	160	646	11	Threonyl-tRNA synthetase;
Supplementary Table 3. The DALI result for the B1-B2 domain from β-subunit in EcGlyRS.

No.	Chain	Z	rmsd	lali	nres	%id	Description
1	3ovs-B	6.9	4.0	113	437	10	Transposase, putative;
2	2fyx-B	6.5	3.6	95	130	12	CCA-adding enzyme;
3	2zh6-A	6.4	4.3	114	437	10	CCA-adding enzyme;
4	1fby-B	6.4	4.1	112	437	10	CCA-adding enzyme;
5	2dr7-A	6.4	4.1	113	437	10	CCA-adding enzyme;
6	2zh1-A	6.4	4.0	113	437	10	CCA-adding enzyme;
7	1fw-A	6.4	4.0	111	437	10	Transposase, putative;
8	2f4f-B	6.4	2.6	91	130	9	CCA-adding enzyme;
9	1r8b-A	6.4	4.3	120	437	10	CCA-adding enzyme;
10	1r89-A	6.3	4.3	112	437	10	CCA-adding enzyme;
11	2d9-A	6.3	4.1	113	437	10	CCA-adding enzyme;
12	1uev-A	6.3	4.1	112	431	10	CCA-adding enzyme;
13	2drb-A	6.3	4.1	113	437	10	CCA-adding enzyme;
14	2dvi-A	6.3	4.2	114	431	10	CCA-adding enzyme;
15	1r8a-A	6.3	4.2	112	437	10	CCA-adding enzyme;
16	1fw-D	6.3	4.1	111	437	10	CCA-adding enzyme;
17	2d7-A	6.3	4.1	113	436	10	CCA-adding enzyme;
18	1sz1-A	6.3	4.1	112	437	10	CCA-adding enzyme;
19	2d2-A	6.3	4.0	112	437	10	CCA-adding enzyme;
20	4x4n-A	6.3	4.2	112	436	10	CCA-adding enzyme;
21	1fby-D	6.3	4.4	113	437	10	CCA-adding enzyme;
22	1r8c-A	6.3	4.2	113	437	10	CCA-adding enzyme;
23	1fw-B	6.3	4.0	111	437	10	CCA-adding enzyme;
24	1fw-C	6.3	4.1	113	437	10	CCA-adding enzyme;
25	2dih-A	6.3	4.0	113	436	10	Transposase, putative;
26	2fg-B	6.3	2.5	88	130	9	Transposase;
27	2xo6-A	6.3	3.0	87	134	8	CCA-adding enzyme;
28	3ovb-B	6.3	4.1	115	437	10	CCA-adding enzyme;
29	2hvh-A	6.3	2.6	90	580	12	DNA polymerase;
30	4yfu-A	6.3	2.7	90	579	12	Transposase, putative;
Supplementary Table 4. The DALI result for the HD domain from β-subunit in EcGlyRS.

No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	3mem-A	11.6	3.0	139	453	19	Putative signal transduction protein;
2:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
3:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
4:	2o0s-A	10.3	3.4	118	187	17	BH1327 protein;
5:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
6:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
7:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
8:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
9:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
10:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
11:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
12:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
13:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
14:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
15:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
16:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
17:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
18:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
19:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
20:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
21:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
22:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
23:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
24:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
25:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
26:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
27:	2pq7-A	11.3	3.1	132	174	17	Predicted HD superfamily hydrolase;
28:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
29:	3sc1-A	10.1	2.8	136	298	17	Uncharacterized HDOD domain protein;
30:	4s1b-D	11.1	3.0	142	214	9	LMO1466 protein;
Supplementary information reference

1. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol*, 7, 539.

2. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. and Barton, G.J. (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*, 25, 1189-1191.