Retrospective Study

Laparoscopic vs open total gastrectomy for advanced gastric cancer following neoadjuvant therapy: A propensity score matching analysis

Hai-Tao Hu, Fu-Hai Ma, Jian-Ping Xiong, Yang Li, Peng Jin, Hao Liu, Shuai Ma, Wen-Zhe Kang, Yan-Tao Tian

Hai-Tao Hu, Fu-Hai Ma, Jian-Ping Xiong, Yang Li, Peng Jin, Hao Liu, Shuai Ma, Wen-Zhe Kang, Yan-Tao Tian, Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, Beijing Province, China

Corresponding author: Yan-Tao Tian, MD, Chief Doctor, Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, Beijing Province, China. tianyantao@cicams.ac.cn

Abstract

BACKGROUND
Laparoscopic total gastrectomy (LTG) has drawn increasing attention over the years. Although LTG has shown surgical benefits compared to open TG (OTG) in early stage gastric cancer (GC), little is known about the surgical and oncological outcomes of LTG for advanced GC following neoadjuvant therapy (NAT).

AIM
To compare the long- and short-term outcomes of advanced GC patients who underwent LTG vs OTG following NAT.

METHODS
Advanced GC patients who underwent TG following NAT between April 2011 and May 2018 at the Cancer Hospital of the Chinese Academy of Medical Sciences were enrolled and stratified into two groups: LTG and OTG. Propensity score matching analysis was performed at a 1:1 ratio to overcome possible bias.

RESULTS
In total, 185 patients were enrolled (LTG: 78; OTG: 109). Of these, 138 were paired after propensity score matching. After adjustment for propensity score matching, baseline parameters were similar between the two groups. Compared to OTG, LTG was associated with a significantly shorter length of hospital stay ($P = 0.012$). The rates of R0 resection, lymph node harvest, and postoperative morbidity did not significantly differ between the two groups. Overall survival (OS) outcomes were comparable between the two groups. Pathological T and N stages were
found to be independent risk factors for OS.

CONCLUSION

LTG can be a feasible method for advanced GC patients following NAT, as it appears to be associated with better short- and comparable long-term outcomes compared to OTG.

Key Words: Gastric cancer; Laparoscopic total gastrectomy; Open total gastrectomy; Neoadjuvant therapy; Propensity score matching

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Laparoscopic total gastrectomy (LTG) is known to have better short-term outcomes and prognosis than open TG (OTG) in early gastric cancer (GC). However, its application in advanced GC remains controversial. In this study, we evaluated both long- and short-term outcomes of LTG compared to those of OTG in 185 patients with advanced GC who had received neoadjuvant therapy (NAT). Our results indicate that LTG is associated with better short-term and comparable long-term outcomes compared to the traditional OTG surgery. Therefore, it can be a feasible surgical treatment for advanced GC patients following NAT.

INTRODUCTION

According to the latest data from the Global Cancer Statistics 2020 report, gastric cancer (GC) is the fifth most common cancer and the fifth leading cause of cancer-related deaths worldwide[1]. Despite a slight drop in mortality rates, a considerable number of patients with GC have locally advanced disease at first diagnosis. Since the MAGIC trial[2], neoadjuvant therapy (NAT) has played a significant role in the comprehensive treatment of advanced GC (AGC). Numerous prospective studies have been carried out in Western and Eastern Asian countries, and although the efficacy of NAT has been validated, chemotherapy regimens are quite different between Western and Eastern Asian countries.

After NAT, patients generally undergo D2 gastrectomy with curative intent. Laparoscopic gastrectomy (LG) has gained popularity in the management of early GC (EGC) because of its minimal invasiveness and similar long-term outcomes compared to those of conventional open gastrectomy (OG) [3]. Although its use is still under debate, the application of LG in AGC has drawn increasing attention over the years. The available evidence from the CLASS-01 and KLASS-02 trials suggests that laparoscopy-assisted distal gastrectomy is safe and provides faster postoperative recovery than open distal gastrectomy (ODG) does for patients with AGC[4]. Moreover, the CLASS-01 trial demonstrated that laparoscopic distal gastrectomy (LDG) did not lead to inferior disease-free survival at 3 years compared to ODG for patients with AGC[5].

Since there has been a recent increase in the prevalence of adenocarcinoma of the esophagogastric junction (AEG), total gastrectomy (TG) constitutes an increasing proportion of all gastric operations[6]. Laparoscopic TG (LTG) has been confirmed to have better short-term outcomes and prognosis than those of open TG (OTG) in EGC; however, its application in AGC remains controversial[7,8]. Some retrospective studies and meta-analyses have shown that LTG has lower rates of complications and amount of blood loss; however, there is still a need for high-volume research to validate its efficacy and safety compared to those of OTG[9,10].

Chemotherapy-induced tissue fibrotic changes and edema provide new technical challenges for LG, and the effect of NAT on LG compared to that on OG remains unclear. A randomized controlled trial conducted by Li et al[11] (2019) reported the safety and efficacy of LDG with D2 lymphadenectomy following neoadjuvant chemotherapy (NAC) for AGC. The STOMACH trial also published preliminary results for LTG after NAC, showing that LTG is not inferior to OTG in short-term outcomes[12]. However, the rate of D2 lymphadenectomy was quite low in both groups-49% for OTG and 36.2% for LTG-and it is still doubtful whether LTG is safe in clinical oncology practice. To the best of our knowledge, only two studies with small sample sizes have investigated the long-term survival of LG following NAC, and no previous study has examined the long-term survival of patients who received LTG[13,14].
Therefore, we conducted this study to evaluate the long- and short-term outcomes of LTG for AGC following NAT and to determine the surgical and oncological safety of LTG as an acceptable alternative to OTG.

MATERIALS AND METHODS

Patients

We retrospectively screened our database of patients with GC and identified those with preoperative and pathological diagnoses of AGC who received LTG or OTG with lymphadenectomy after NAT from April 2011 to May 2018 at the Cancer Hospital of the Chinese Academy of Medical Sciences. The inclusion criteria were as follows: (1) Gastric adenocarcinoma; (2) Clinical stages cT2-4a, N-/+, and M0; and (3) Received chemotherapy or chemoradiotherapy before surgery. The exclusion criteria were as follows: (1) Remnant GC; (2) Siewert type I AEG; (3) Emergent gastrectomy; (4) Other simultaneous malignant diseases; and (5) Missing clinical data. In total, 185 patients were included, of whom 107 had undergone LTG, and 78 had undergone OTG. This study was approved by the Ethics Committee of the Cancer Hospital of the Chinese Academy of Medical Sciences and the requirement was waived.

Administration of NAT

NAC regimens were divided into three categories: (1) Platinum-based doublets (SOX, XELOX, CS, FOLFOX, and TP); (2) Epirubicin-based triplets (ECF); or (3) Taxane-based triplets (DCF, DCX). As neoadjuvant chemoradiotherapy (NCRT), patients received concurrent chemoradiotherapy with tegafur/gimeracil/oteracil (S-1). The planned dose of total radiotherapy was 45 Gy with a daily fraction of 1.8 Gy for 5 wk. S-1 was administered orally twice daily when receiving radiotherapy. After evaluation by experienced oncologists and surgeons, surgery was performed approximately 4-6 wk after the completion of NAT.

Surgical procedure

Approximately 2-4 wk after the end of NAT, patients underwent TG with standard D2 lymphadenectomy following the Japanese Gastric Cancer Treatment Guidelines\[15\]. A total of 5 trocars were used in the LTG surgery. The resection margins were examined intraoperatively in the frozen sections. Reconstruction of the gastrointestinal passage is typically accomplished using the Roux-en-Y gastric bypass. All operations were performed by a lead surgeon who had performed at least 60 OG or LG operations and two or three assistants. Intraoperative and postoperative complications and corresponding outcomes were documented.

Definitions

Clinical and pathological data were collected from medical records. Clinical staging was assessed using the 8th American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) classification through biopsy, endoscopic ultrasonography, and computed tomography (CT) data. Enlarged lymph nodes > 8 mm along their longest axis or those with necrosis were classified as cN+. Postoperative complications included pancreatic fistula, abdominal bleeding, anastomotic leakage, wound infection, lymphorrhagia, intestinal obstruction, abdominal infection, duodenal fistula, and gastroparesis. These were considered surgical and other medical complications and graded according to the Clavien-Dindo system\[16\]. The response to NAT was evaluated using the Mandard tumor regression grading (TRG) system\[17\]. Pathological T status, N status, and ypTNM stage were also determined using the 8th AJCC/UICC staging system. Overall survival (OS) was measured from the day of surgery.

Follow-up

In the first 2 years, patients were followed-up every 3 mo, then every 6 mo for the next 3 years, and yearly thereafter. Any loss to follow-up was censored. The final follow-up was completed in October 2020.

Propensity score matching and statistical analysis

We performed propensity score matching (PSM) to minimize bias between the baseline of the two groups. Propensity scores were calculated using a logistic regression model and the following variables: Sex, age, American Society of Anesthesiologists physical status classification (ASA), body mass index (BMI), tumor size, histological differentiation, ypT, ypN, and ypTNM status. Patients were then individually matched using the 1:1 nearest neighbor matching method with a caliper width of 0.05. This method randomly ordered the case (LTG) and control (OTG) subjects based on the propensity score and matched the control subject with the closest comparison from the first case subject\[18\].

Categorical values are presented as percentages and continuous values are presented as mean ± SEM. Clinical and pathological variables were analyzed using the chi-squared test, Fisher’s exact test and
Variable	All patients		Matched patients	
	LTG (n = 78)	OTG (n = 107)	LTG (n = 69)	OTG (n = 69)
Age (yr)	52.7 ± 16.1	56.0 ± 12.0	53.42 ± 13.4	53.9 ± 12.7
Gender n (%)	0.120		0.828	
Male	61 (78.2)	78 (72.9)	53 (76.8)	52 (75.4)
Female	17 (21.8)	29 (27.1)	16 (23.2)	17 (24.6)
BMI (kg/m²)	22.6 ± 3.1	23.7 ± 3.7	22.6 ± 3.1	22.8 ± 3.3
ASA n (%)	0.028		0.750	
The history of abdominalsurgery n (%)	0.522		1.000	
Yes	74 (94.9)	99 (92.5)	65 (94.2)	64 (92.8)
No	4 (5.1)	8 (7.5)	4 (5.8)	5 (7.2)
Clinical T stage n (%)	0.402		0.784	
2	3 (3.8)	1 (0.9)	3 (4.3)	1 (1.4)
3	19 (24.4)	26 (24.3)	17 (24.6)	18 (26.1)
4	56 (71.8)	80 (74.8)	49 (71.0)	50 (72.5)
Clinical N stage n (%)	0.404		0.619	
0	1 (1.3)	5 (4.7)	1 (1.4)	3 (4.3)
1-3	77 (98.7)	102 (95.3)	68 (98.6)	66 (95.7)
Clinical TNM stage n (%)	0.966		1.000	
II	4 (5.1)	6 (5.6)	4 (5.8)	4 (5.8)
III	73 (93.6)	100 (93.5)	64 (92.8)	65 (94.2)
IVA	1 (1.3)	1 (0.9)	1 (1.4)	0 (0)
Tumor size (cm)	5.2 ± 3.1	6.0 ± 3.4	5.4 ± 3.3	5.4 ± 3.1
Nerve invasion n (%)	1.000		0.394	
Yes	43 (55.1)	59 (55.1)	38 (55.1)	33 (47.8)
No	35 (44.9)	48 (44.9)	31 (44.9)	36 (52.2)
Lymph-vascular invasion n (%)	0.410		1.000	
Yes	43 (55.1)	59 (55.1)	23 (33.3)	23 (33.3)
No	35 (44.9)	48 (44.9)	46 (66.7)	46 (66.7)
Differentiation n (%)	0.360		0.780	
Well	4 (5.1)	3 (2.8)	1 (1.4)	2 (2.9)
Moderate	24 (30.8)	25 (23.4)	22 (31.9)	19 (27.5)
Poor	50 (64.1)	79 (73.8)	46 (66.7)	48 (69.6)
Pathological T stage n (%)	0.254		0.282	
ypT0-I	8 (10.3)	8 (7.5)	6 (8.7)	7 (10.1)
RESULTS

Clinicopathologic characteristics of patients

Table 1 shows the clinical data, clinical staging, tumor status, and pathological staging of the patients before PSM (n = 185) and after PSM (n = 138). Before PSM, there was a significant difference between the two groups in terms of BMI (P = 0.028). Compared to the OTG group, the average age was younger (P = 0.120), tumor size was smaller (P = 0.126), and occurrence of yN stage (P = 0.168) was lower in the LTG group; however, the differences were not statistically significant. Distant metastasis was confirmed by operative pathological examination in all 11 patients (LTG: 6, OTG: 5). In the LTG and OTG groups, distant metastasis occurred in the peritoneum of five and four patients and in the liver of one and one patients, respectively. After PSM, all clinicopathological characteristics were comparable between the LTG and OTG groups.

NAT and response

There was no significant difference in the type of NAT between the two groups neither before nor after PSM. A total of 17 patients received NCRT, and the remaining received NAC. For NAC regimens, there was no significant difference between the groups with respect to the use of platinum-based doublets or epirubicin/taxane-based triplets, although the former was more common. The mean cycles of the groups after PSM were not statistically significantly different (3.3 vs 3.6, P = 0.300). There was no significant difference between the two groups in terms of clinical response and TRG scores before and after PSM (Table 2).

Intraoperative and recovery outcomes

In total, 4 patients in the OTG group and none in the LTG group underwent combined resection. Before and after PSM, the LTG group showed significant differences in the following characteristics:
Table 2 Neoadjuvant therapy and response before and after propensity score matching

Variable	All patients	Matched patients	
	LTG (n = 78)	OTG (n = 107)	
	P value	LTG (n = 69)	OTG (n = 69)
Type n (%)	0.345	0.784	
NAC	69 (88.5)	99 (92.5)	
	61 (88.4)	62 (89.9)	
NCRT	9 (11.5)	8 (7.5)	
	8 (11.6)	7 (10.1)	
NAC regimens n (%)	0.491	0.659	
Platinum-based doublets	41 (59.4)	64 (64.6)	
	36 (59.0)	39 (62.9)	
Epirubicin/taxane-based triplets	28 (40.6)	35 (35.4)	
	25 (41.0)	23 (37.1)	
Cycles	3.3 ± 1.3	3.8 ± 1.8	0.086
	3.3 ± 1.3	3.6 ± 1.6	0.300
Clinical response n (%)	0.939	0.859	
PR	50 (64.1)	68 (63.6)	
	44 (63.8)	45 (65.2)	
SD	28 (35.9)	39 (36.4)	
	25 (36.2)	24 (34.8)	
Mandard TRG score n (%)	0.316	0.654	
1	26 (33.3)	52 (48.6)	
	22 (31.9)	29 (42.0)	
2	4 (5.1)	4 (3.7)	
	4 (5.8)	2 (2.9)	
3	30 (38.5)	34 (31.8)	
	26 (37.7)	25 (36.2)	
4	5 (6.4)	5 (4.7)	
	5 (7.2)	5 (7.2)	
5	13 (16.7)	12 (11.2)	
	12 (17.4)	8 (11.6)	

LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy; NAC: Neoadjuvant chemotherapy; NCRT: Neoadjuvant chemoradiotherapy; PR: Partial response; SD: Stable disease; TRG: Tumor regression grading.

Figure 1 Comparison of cumulative survival rates between laparoscopic total gastrectomy and open total gastrectomy. A: Before propensity score matching (PSM); B: After PSM. There was no statistically significant difference in overall survival between the two groups before (P = 0.111) and after PSM (P = 0.205). LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy; OS: Overall survival; PSM: Propensity score matching.

Postoperative hospital days (11.5 ± 7.1 vs 16.0 ± 12.8 d, P = 0.012), time to removal of gastric tube (5.1 ± 2.0 vs 6.8 ± 5.2, P = 0.013), and length of incision (10.4 ± 4.6 vs 21.9 ± 3.8, P < 0.001). Although the difference was not statistically significant, we found that blood loss during surgery in the LTG group was less than that in the OTG group (200.6 ± 162.0 vs 237.1 ± 194.9, P = 0.116). The R0 resection rates of the LTG and OTG groups were 95.7% and 97.1%, respectively, and the numbers of dissected lymph nodes were 37.3 ± 14.2 and 35.5 ± 15.9, respectively, which were not significantly different (Table 3).

Postoperative complications
The overall postoperative complication rates of the LTG and OTG groups were 19.2% and 29.9%,
Table 3. Description of intraoperative and recovery features before and after propensity score matching

Variable	All patients	Matched patients	P value	All patients	Matched patients	P value
	LTG (n = 78)	OTG (n = 107)		LTG (n = 69)	OTG (n = 69)	
Operation time (min)	207.6 ± 49.3	205.2 ± 52.1	0.744	204.0 ± 45.8	207.1 ± 53.1	0.713
Blood loss (mL)	197.2 ± 162.4	228.1 ± 193.4	0.252	200.6 ± 162.0	237.1 ± 194.9	0.116
Combined resection n (%)			0.139			0.245
Yes	0 (0)	4 (3.7)		0 (0)	3 (4.3)	
No	78 (100)	107 (96.3)		69 (100)	66 (95.7)	
Resection n (%)			0.651			1.000
R0	75 (96.2)	105 (98.1)		66 (95.7)	67 (97.1)	
R1/R2	3 (3.8)	2 (1.9)		3 (4.3)	2 (2.9)	
Blood transfusion n (%)			0.608			0.507
Yes	13 (16.7)	21 (80.4)		11 (15.9)	14 (20.3)	
No	65 (83.3)	86 (19.6)	< 0.001	104.4 ± 4.4	21.6 ± 3.8	< 0.001
Length of incision (cm)	10.2 ± 4.4	21.6 ± 3.8		10.4 ± 4.6	21.9 ± 3.8	< 0.001
Postoperative hospital stay (d)	11.6 ± 7.0	15.1 ± 10.9	0.015	11.5 ± 7.1	16.0 ± 12.8	0.012
Dissected lymph nodes	37.7 ± 14.5	37.8 ± 17.6	0.950	37.3 ± 14.2	35.5 ± 15.9	0.465
Time to ambulation (d)	3.0 ± 1.2	3.4 ± 2.4	0.130	3.0 ± 1.3	3.4 ± 2.3	0.229
Time to first flatus (d)	4.8 ± 1.7	5.2 ± 2.3	0.235	4.9 ± 1.7	5.1 ± 1.8	0.381
Time to first liquid intake (d)	9.2 ± 5.6	10.1 ± 7.8	0.404	9.1 ± 5.6	10.7 ± 8.7	0.201
Time to removal of gastric tube (d)	5.0 ± 2.0	6.5 ± 5.0	0.008	5.1 ± 2.0	6.8 ± 5.2	0.013
Time to removal of all drainage tubes	9.7 ± 10.1	11.1 ± 11.1	0.391	9.7 ± 10.5	10.9 ± 10.3	0.488

LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

respectively, before PSM, and 20.3% and 29.0%, respectively, after PSM. The overall postoperative complications had no significant difference between the two groups before and after PSM. The most common surgical complications after LTG include abdominal infection, anastomotic leakage and wound infection. For OTG, the most common surgical complications include wound infection, anastomotic leakage, abdominal infection, and gastroparesis. Notably, 8 patients in the OTG group developed medical complications, including pulmonary infection, arterial catheter-related infection, and renal failure, whereas none in the LTG group did. There were no significant differences in terms of minor complications (Grades I-II according to the Clavien-Dindo classification) and severe complications (Grade III-V) between the two groups before and after PSM (Table 4). None of the patients in either group died within the first 30 d after surgery.

Long-term oncological outcomes

The Kaplan-Meier survival curve for OS between the LTG and OTG groups was plotted (Figure 1). The median follow-up period was 45 mo (range, 3-94 mo). There were no significant differences between the two groups before (P = 0.111) and after PSM (P = 0.205). After PSM, the calculated 5-year cumulative survival rates of the LTG and OTG groups were 39.4% and 31.4%, respectively.

To identify prognostic factors, univariate and multivariate Cox regression analyses were performed after PSM (Table 5). In the univariate analysis, ypT (P = 0.002), ypN (P = 0.004), metastasis (P = 0.103), nerve invasion (P = 0.064), lymph-vascular invasion (P = 0.005), Mandard TRG scores (P = 0.007), type of NAT (P = 0.083), and R0 (P = 0.109) were closely associated with OS. These variables were entered into the multivariate analysis and revealed that ypT0–3 (P = 0.014) and ypN0 (P = 0.010) were independently associated with OS (Figure 2).

DISCUSSION

Recently, LTG has been widely performed in many high-volume hospitals and has gradually expanded...
Table 4 Postoperative complications before and after propensity score matching

Variable	All patients	Matched patients			
	LTG (n = 78)	OTG (n = 107)	LTG (n = 69)	OTG (n = 69)	
Complications, n (%)			P value		P value
Overall			0.100		0.236
Yes	15 (19.2)	32 (29.9)	14 (20.3)	20 (29.0)	
No	63 (80.8)	75 (70.1)	55 (79.7)	49 (71.0)	
Surgical complications					
Pancreatic fistula	0 (0)	1 (0.9)	1.000	0 (0)	1.000
Abdominal bleeding	1 (1.3)	0 (0)	0.422	1 (1.4)	0.000
Anastomotic leakage	5 (6.4)	6 (5.6)	1.000	4 (5.8)	3 (4.3)
Wound infection	4 (5.1)	5 (4.7)	1.000	4 (5.8)	4 (5.8)
Lymphorrhagia	1 (1.3)	0 (0)	0.422	1 (1.4)	0 (0)
Intestinal obstruction	0 (0)	2 (1.9)	0.510	0 (0)	1 (1.4)
Abdominal infection	5 (6.4)	9 (8.4)	0.611	5 (7.2)	2 (2.9)
Duodenal fistula	0 (0)	1 (0.9)	1.000	0 (0)	0 (0)
Gastroparesis	0 (0)	3 (2.8)	0.264	0 (0)	3 (4.3)
Medical complications					
Pulmonary infection	0 (0)	6 (5.6%)	0.04	0	5 (7.2)
Arterial catheter-related infection	0 (0)	1 (0.9)	1.000	0 (0)	1 (1.4)
Renal failure	0 (0)	1 (0.9)	1.000	0 (0)	1 (1.4)
Clavien-Dindo classification n (%)			0.331		1.000
Grade I-II	12 (80.0)	20 (64.5)	11 (78.6)	14 (73.7)	
Grade III-V	3 (20.0)	11 (35.5)	3 (21.4)	5 (26.3)	

LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy.

The indications for surgery from EGC to AGC[19,20]. However, only one study to date has confirmed the non-inferiority of LTG compared to OTG after NAC in short-term outcomes[12]. To the best of our knowledge, our study is the first to report the long- and short-term outcomes of LTG. Moreover, we found that LTG offered significant advantages in terms of shorter postoperative hospital days and earlier gastric tube removal and had similar postoperative complication rates and OS to those of OTG for patients with GC treated with NAT.

Although NAT is regarded as a key step in the comprehensive treatment of GC, the difference in NAC regimens between Western and Eastern Asian countries should be considered. Three or four-drug NAC regimens have been proved effective in AGC[2,21-24]; however, NAC clinical trials based on two-drug regimens have been extensively undertaken in Eastern Asian countries, including JCOG 0210[25], JCOG 0405[26], JCOG 0501[27] in Japan, the NEO-CLASSIC study[28] and the RESOLVE trial (NCT01534546) in China. The optimal NAC regimen for treating AGC remains controversial worldwide, and the differences between Eastern and Western treatment regimens in GC cannot be neglected[29]. In our study, over 60% of all patients received platinum-based doublets, and the overall response rate was more than 60%. Over 80% of all cases were TRG 1-3, which was proved to be an independent prognostic factor[30].

Previous studies have confirmed the oncological and surgical safety of LDG after NAC. Studies by Li et al.[11] demonstrated that compared to open surgery, LDG has an advantage in postoperative rehabilitation and complications. A number of meta-analyses and retrospective studies have shown that although there is no significant difference between LTG and OTG in the number of lymph node dissections and the rate of radical surgery, LTG has a lower amount of intraoperative bleeding, lower rate of postoperative complications, and faster postoperative rehabilitation[9,10,31-33]. However, none of these studies specifically focused on the influence of NAT on TG. In our study, we found that in addition to the advantage in incision length, the LTG group had a faster postoperative recovery than that of the OTG group after NAT, which was mainly reflected in the postoperative hospital stay.
Table 5 Univariate and multivariate analysis of overall survival after propensity score matching

Variables	Univariate analysis			Multivariate analysis		
	Hazard ratio	95% CI	P value	Hazard ratio	95% CI	P value
Age (yr): < 60 vs ≥ 60	0.806	0.491-1.323	0.393			
Sex: Female vs Male	1.244	0.711-2.177	0.444			
ASA: 1-2 vs 3	0.978	0.555-2.696	0.965			
Surgery: LTG vs OTG	0.729	0.446-1.192	0.207			
BMI: < 28 vs ≥ 28	1.608	0.504-5.133	0.422			
Differentiation: Well/moderate vs Poor	0.713	0.416-1.224	0.220			
ypT stage: T0-3 vs T4	0.446	0.267-0.746	0.002	0.520	0.308-0.877	0.014
ypN stage: N0 vs N1-3	0.401	0.217-0.741	0.004	0.431	0.227-0.821	0.010
Metastasis: M0 vs M1	0.425	0.152-1.188	0.103	0.529	0.185-1.510	0.234
Nerve invasion: Yes vs No	1.601	0.973-2.635	0.064	0.930	0.531-1.628	0.799
Lymph-vascular invasion: Yes vs No	2.046	1.236-3.388	0.005	1.155	0.623-2.140	0.647
Mandard TRG: ≤ 3 vs > 3	0.510	0.312-0.833	0.007	0.666	0.390-1.136	0.136
Postoperative complication: Yes vs No	0.635	0.338-1.193	0.158			
Type of NAT: NAC vs NCRT	2.248	0.900-5.619	0.083	1.647	0.619-4.382	0.317
Resection: R0 vs R1/R2	0.385	0.120-1.237	0.109	0.357	0.110-1.154	0.085

LTG: Laparoscopic total gastrectomy; OTG: Open total gastrectomy; CI: Confidence interval; ASA: American Society of Anesthesiologist; BMI: Body mass index; TRG: Tumor regression grading; NAT: Neoadjuvant therapy; NAC: Neoadjuvant chemotherapy; NCRT: Neoadjuvant chemoradiotherapy.

Compared to a previous study[19], the mean postoperative hospital stay in the LTG group (11.5 d) was slightly longer, which was possibly attributed to the NAT. The number of dissected lymph nodes can be considered an indicator to evaluate the quality of gastrectomy, and is positively correlated with the prognosis of GC[34-36]. The number of dissected lymph nodes between the LTG and OTG groups was not significantly different, and the mean number in LTG (37.3 ± 14.2) was similar to that observed in a previous study[37].

Whether NAT will negatively influence the incidence of postoperative morbidities is of great concern to oncologists and surgeons. A few prospective studies have indicated that NAT does not significantly increase postoperative morbidity in patients with GC[2,22,38]. In the present study, morbidity rates were in accordance with those observed in previous studies, which ranged from 9.6% to 23.8% in LTG, and from 15.6% to 68% in OTG[10,39-41]. To fully elucidate the influence of NAT, large-sample multicenter studies are needed. As for the specific complications, we noticed that both groups had comparable numbers of cases of anastomotic leakage. Moreover, pulmonary infection occurred in 6 patients in the OTG group and none in the LTG group, which was in accordance with a previous study[10]. This rather intriguing finding might be a result of minimally invasive techniques which avoid unnecessary trauma while detaching the cardia region[42].

Whether LTG can achieve the same oncologic outcomes as those of OTG is still debatable. Although LTG is minimally invasive and offers quicker rehabilitation, it also allows a limited visual field and poses challenges to prognosis. Current guidelines only recommend attempting LTG with caution[15, 43]. Several retrospective studies showed that there is no significant difference between LTG and OTG in oncological results[44]; however, none of these studies focused on the prognosis of patients treated with NAT. In our study, we found a comparable OS between the LTG and OTG groups, which showed that LTG is non-inferior to OTG after NAT in long-term oncologic outcomes. By using a univariate and multivariate Cox regression analysis, we further found that pathological T stage and N stage were independent risk factors for OS and that the type of TG did not influence the prognosis. With the development of the concept of comprehensive treatment for GC, patients are expected to have a better prognosis.

The major limitation of our study is that it was a single retrospective study. To reduce sample bias and balance the baseline, PSM was performed, which decreased the sample size. In our study, we excluded the missing data instead of multiple imputation, which may bring less statistical power and bias. Therefore, further high-volume, prospective, and multi-center clinical trials are required to
evaluate the surgical and oncological outcomes of LTG after NAT.

CONCLUSION

In conclusion, LTG is considered advantageous in the postoperative rehabilitation of AGC patients treated with NAT and can achieve similar long-term outcomes compared to those of OTG.

ARTICLE HIGHLIGHTS

Research background
Laparoscopic total gastrectomy (LTG) has been widely used these days. Its surgical and oncological outcomes following neoadjuvant therapy (NAT) is still unknown.

Research motivation
To compare the long- and short-term outcomes between LTG and open TG (OTG) following NAT.

Research objectives
Advanced gastric cancer (GC) patients who underwent TG following NAT.

Research methods
Patients were divided into two groups: LTG and OTG. Propensity score matching analysis was performed to minimize possible bias.

Research results
LTG had advantages in short-term outcomes, such as shorter length of hospital stay ($P = 0.012$), and the oncological outcomes were close to OTG. Overall survival (OS) outcomes were comparable between the two groups. Pathological T and N stages were independent risk factors for OS.

Research conclusions
LTG can be a safe and effective method for advanced GC patients following NAT.

Research perspectives
Further high-volume, prospective, and multi-center clinical trials are required to evaluate the surgical and oncological outcomes of LTG.

FOOTNOTES

Author contributions: Hu HT contributed to the design of the study, collected data and drafted the manuscript; Ma FH and Xiong JP performed the data analyses and revised the manuscript; Li Y, Jin P and Liu H helped perform the analysis with constructive discussions; Ma S and Kang WZ contributed to manuscript preparation data for the work;
Tian YT conceived the work that led to the submission and approved the final version; and all authors issued final approval for the version to be submitted.

Supported by National Natural Science Foundation of China, No. 81772642.

Institutional review board statement: This study was approved by the Ethics Committee of the Cancer Hospital of the Chinese Academy of Medical Sciences (No.14-067/857).

Informed consent statement: This study obtained informed consent exemptions approved by the Ethics Committee of the Cancer Hospital of the Chinese Academy of Medical Sciences.

Conflict-of-interest statement: All authors declare no conflicts of interest related to this article.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Hai-Tao Hu 0000-0003-0585-6070; Fu-Hai Ma 0000-0003-2437-6881; Jian-Ping Xiong 0000-0001-6593-6377; Yang Li 0000-0002-4549-1087; Peng Jin 0000-0001-8179-6191; Hao Liu 0000-0001-5809-6824; Shuai Ma 0000-0003-1738-6651; Wen-Zhe Kang 0000-0001-9965-8109; Yan-Tao Tian 0000-0001-6479-7547.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

REFERENCES

1 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]

2 Cunningham D, Allum WH, Stening SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofs FJ, Falk SJ, Ivenson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ, MAGIC Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006; 355: 1-20 [PMID: 16822992 DOI: 10.1056/NEJMoa055531]

3 Kim HH, Han SU, Kim MC, Kim W, Lee HJ, Ryu SW, Cho GS, Kim CY, Yang HK, Park DJ, Song KY, Lee SI, Ryu SY, Lee JH, Hyung WJ. Korean Laparoendoscopic Gastrointestinal Surgery Study (KLASS) Group. Effect of Laparoscopic Distal Gastrectomy vs Open Distal Gastrectomy on Long-term Survival Among Patients With Stage I Gastric Cancer: The KLASS-01 Randomized Clinical Trial. JAMA Oncol 2019; 5: 506-513 [PMID: 30730546 DOI: 10.1001/jamaoncol.2018.6727]

4 Hu Y, Huang C, Sun Y, Su X, Cao H, Hu J, Xue Y, Suo J, Tao K, He X, Wei H, Ying M, Hu W, Du X, Chen P, Liu H, Zheng C, Liu F, Yu J, Li Z, Zhao G, Chen X, Wang K, Li P, Xing J, Li G. Morbidity and Mortality of Laparoscopic Versus Open D2 Distal Gastrectomy for Advanced Gastric Cancer: A Randomized Controlled Trial. J Clin Oncol 2016; 34: 1350-1357 [PMID: 26903580 DOI: 10.1200/JCO.2015.63.7215]

5 Yu J, Huang C, Sun Y, Su X, Cao H, Hu J, Wang K, Suo J, Tao K, He X, Wei H, Ying M, Hu W, Du X, Huang Y, Liu H, Zheng C, Li P, Xie J, Liu F, Li Z, Zhao G, Yang K, Liu C, Li H, Chen P, Ji J, Li G. Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group. Effect of Laparoscopic vs Open Distal Gastrectomy on 3-Year Disease-Free Survival in Patients With Locally Advanced Gastric Cancer: The CLASS-01 Randomized Clinical Trial. JAMA 2019; 321: 1983-1992 [PMID: 31135830 DOI: 10.1001/jama.2019.5359]

6 Liu K, Yang K, Zhang W, Chen X, Zhang B, Chen Z, Chen J, Zhao Y, Zhou Z, Chen L, Hu J. Changes of Esophagogastroduodenal Adenocarcinoma and Gastroesophageal Reflux Disease Among Surgical Patients During 1988-2012: A Single-institution, High-volume Experience in China. Ann Surg 2016; 263: 88-95 [PMID: 25647058 DOI: 10.1097/SLA.0000000000001148]

7 Katai H, Mizusawa J, Katayama H, Morita S, Yamada T, Bando E, Ito S, Takagi M, Takagane A, Teshima S, Koeda K, Nunobe S, Yoshikawa T, Terashima M, Sasaki M. Survival outcomes after laparoscopic-assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, non-inferiority, phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol 2020; 5: 142-151 [PMID: 31757656 DOI: 10.1016/S2468-1253(19)30332-2]

8 Liu F, Huang C, Xu Z, Su X, Zhao G, Ye J, Du J, Xu H, Huang H, Hu J, Li G, Yu P, Li Y, Suo J, Zhao N, Zhang W, Li H, He H, Sun Y. Chinese Laparoscopic Gastrointestinal Surgery Study (CLASS) Group. Morbidity and Mortality of Laparoscopic vs Open Total Gastrectomy for Clinical Stage I Gastric Cancer: The CLASS02 Multicenter Randomized Clinical Trial. JAMA Oncol 2020; 6: 1590-1597 [PMID: 32815991 DOI: 10.1001/jamaoncol.2020.3152]
9 Straatman J, van der Wielen N, Cuesta MA, de Lange-de Klerk ES, Jansma EP, van der Peet DL. Minimally Invasive Versus Open Total Gastrectomy for Gastric Cancer: A Systematic Review and Meta-analysis of Short-Term Outcomes and Completeness of Resection: Surgical Techniques in Gastric Cancer. World J Surg 2016; 40: 148-157 [PMID: 26350821 DOI: 10.1007/s00268-015-3223-1]

10 Haverkamp L, Weijis TJ, van der Sluis PC, van der Tweel I, Ruurda JP, van Hillegersberg R. Laparoscopic total gastrectomy versus open total gastrectomy for cancer: a systematic review and meta-analysis. Surg Endosc 2013; 27: 1509-1520 [PMID: 23263646 DOI: 10.1007/s00464-012-2661-1]

11 Li Z, Shan F, Ying X, Zhang Y, F JY, Wang Y, Ren H, Su X, Ji J. Assessment of Laparoscopic Distal Gastrectomy After Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer: A Randomized Clinical Trial. JAMA Surg 2019; 154: 1093-1101 [PMID: 31553463 DOI: 10.1001/jamasurg.2019.3473]

12 van der Wielen N, Straatman J, Daams F, Rosati R, Parise P, Weitz J, Reissfelder C, Diez Del Val I, Loureiro C, Parada-González P, Pintos-Martínez E, Mateo Vallejo F, Medina Achirica C, Sánchez-Pernau A, Ruano Campos A, Bonalína V, Asti ELG, Alonso Pozo A, Gilansaz C, Nilsson M, Lindblad M, Gisbers SS, van Berge Henegouw MI, Fumagalli Romario U, De Pascale S, Akhtar K, Jaap Bonjer H, Cuesta MA, van der Peet DL. Open versus minimally invasive total gastrectomy after neoadjuvant chemotherapy: results of a European randomized trial. Gastric Cancer 2021; 24: 258-271 [PMID: 32737637 DOI: 10.1016/j.gastrcanc.2020.10.010-9]}

13 Fujiwara M, Matsuura N, Shinozaka T, Takahashi N, Aoki H, Nymura Y, Kitazawa S, Yanaka K. Short- and long-term outcomes of laparoscopic versus open total gastrectomy for locally advanced gastric cancer following neoadjuvant chemotherapy. Surg Endosc 2021; 35: 1682-1690 [PMID: 32277356 DOI: 10.1007/s00464-020-07552-1]

14 Wang N, Zhou A, Jin J, Huang H, Zhang Y, Chen Y, Zhao D. Open vs. laparoscopic surgery for locally advanced gastric cancer after neoadjuvant therapy: Short-term and long-term survival outcomes. Oncol Lett 2020; 20: 861-867 [PMID: 32566013 DOI: 10.3892/ol.2020.11626]

15 Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 2021; 24: 1-21 [PMID: 32060757 DOI: 10.1001/jnci.2020.01042-y]

16 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54974.8f]

17 Langer R, Becker K. Tumor regression grading of gastrointestinal cancers after neoadjuvant therapy. Virchows Arch 2018; 472: 175-186 [PMID: 28918544 DOI: 10.1007/s00428-017-2232-x]

18 D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 1998; 17: 2265-2281 [PMID: 9802183 DOI: 10.1002/(sici)1097-0258(19981015)17:22<2265::aid-sim918>3.0.co;2-b]

19 Huang CJ, Zhang RC, Mou YP, Zhou YC, Wang YY, Lu C, Xu XW. Short and long-term outcomes of laparoscopic total gastrectomy for gastric cancer: A single-center experience (retrospective cohort study). Int J Surg 2018; 51: 109-113 [PMID: 29367040 DOI: 10.1016/j.ijsu.2018.01.027]

20 Komatsu S, Kosuga T, Kubota T, Okamoto K, Konishi H, Shiozaki A, Fujisawa H, Ichikawa D, Osugi E. Comparison of short- and long-term outcomes following laparoscopy and open total gastrectomy for gastric cancer: a propensity score-matched analysis. Am J Transl Res 2020; 12: 2225-2233 [PMID: 32509214]

21 Ychou M, Boige V, Pignon JP, Conroy T, Bouché O, Lebret G, Ducourtieux M, Bedenne L, Fabre JM, Saint-Aubert B, Genève J, Lasser P, Rougier P. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol 2011; 29: 1715-1721 [PMID: 21444866 DOI: 10.1200/JCO.2010.31.0597]

22 Al-Batran SE, Homann N, Paalzik G, Goetzke TO, Meiler J, Kasper S, Kopp HG, Steinmacher J, Polpogrech G, Probst S, Prasnikar N, Fischbach W, Mahlborg B, Trojan J, Koenigsman M, Martens UM, Thuss-Patience P, Egger M, Block A, Heinemann V, Illerhaus E, Mochel M, Schenk M, Kullmann F, Behringer DM, Heike M, Pink D, Teschedorf C, Löhr C, Bernhard H, Schuch G, Rethwisch V, von Weikersthal LF, Hartmann JT, Kneba M, Daum S, Schulmann K, Weniger J, Belle S, Gaisser T, Oudeus FS, Günter M, Hozaeel W, Reichart A, Jäger T, Krasen T, Möging S, Bechstein WO, Schulter M, Schmalenberg H, Hofheinz RD; FLOT4-AIO Investigators. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and erupicon for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019; 393: 1948-1957 [PMID: 30982686 DOI: 10.1016/S0140-6736(18)32555-1]

23 Al-Batran SE, Hofheinz RD, Paalzik C, Kopp HG, Haag GM, Luley KB, Meiler J, Homann N, Lorenzen S, Schmalenberg H, Probst S, Koenigsman M, Egger M, Prasnikar N, Caca K, Trojan J, Martens UM, Block A, Fischbach W, Mahlborg B, Clemens M, Illerhaus E, Zirlik K, Behringer DM, Schmiegel W, Pohl M, Heike M, Ronellenfisch U, Schuler M, Bechstein WO, Königsmann A, Gaisser T, Schirrmacher P, Hozaeel W, Reichart A, Goetzke TO, Sievert M, Jäger E, Möging S, Tanmpfliep A. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus erupicon, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicentre, open-label, randomised phase 2/3 trial. Lancet Oncol 2016; 17: 1697-1708 [PMID: 27776843 DOI: 10.1016/S1470-2045(16)30531-9]

24 Cunningham D, Starling N, Rao S, Iverson T, Nicolson M, Coxon F, Middleton G, Daniel F, Oates J, Norman AR. Upper Gastrointestinal Clinical Studies Group of the National Cancer Research Institute of the United Kingdom. Capcitabine and oxaliplatin for advanced esophagealgastric cancer. N Engl J Med 2008; 358: 36-46 [PMID: 18172173 DOI: 10.1056/NEJMoa07314]

25 Iwasaki Y, Sasako M, Yamamoto S, Nakamura K, Sano T, Kaitai H, Tsujinaka T, Nashimoto A, Fukushima N, Tsabruya A; Gastric Cancer Surgical Study Group of Japan Clinical Oncology Group. Phase II study of preoperative chemotherapy with S-1 and cisplatin followed by gastrectomy for clinically resectable type 4 and large type 3 gastric cancers (JCOG0210). J Surg Oncol 2013; 107: 741-745 [PMID: 23400787 DOI: 10.1002/jso.23503]
Clinical Oncology Group. Neoadjuvant chemotherapy with S-1 and cisplatin followed by D2 gastrectomy with para-aortic lymph node dissection for gastric cancer with extensive lymph node metastasis. *Br J Surg* 2014; 101: 653-660 [PMID: 24668391] DOI: 10.1002/bjs.9484

27 *Terashima M*, Iwasaki Y, Mizusawa J, Katayama H, Nakamura K, Katai H, Yoshikawa T, Ito Y, Kaji M, Kimura Y, Hirao M, Yamada M, Kunita A, Takagi M, Boku N, Sano T, Sasaki M; Stomach Cancer Study Group, Japan Clinical Oncology Group. Randomized phase III trial of gastrectomy with or without neoadjuvant S-1 plus cisplatin for type IV or of large type 3 gastric cancer, the short-term safety and surgical results. Japan Clinical Oncology Group Study (JCOCG0501). *Gastric Cancer* 2019; 22: 1044-1052 [PMID: 30827001] DOI: 10.1007/s10120-019-00941-z

28 *Yu Y*, Fang Y, Shen Z, Wang Y, Yan M, Cao H, Liu Y, Wang X, Cui Y, Liu F, Chen W, Li W, Li Q, Jiang H, Sun Y, Liu T. Oxaliplatin plus Capecitabine in the Perioperative Treatment of Locally Advanced Gastric Adenocarcinoma in Combination with D2 Gastrectomy: NEO-CLASSIC Study. *Oncolgist* 2019; 24: 1311-e989 [PMID: 31239311 DOI: 10.1634/theoncologist.2019-0416

29 *Chan WI*, Lam KO, Lee VHF, Davidson M, So TH, Li JS, Chau I, Kwong DLW. Gastric Cancer - From Aetiology to Management: Differences Between the East and the West. *Clin Oncol (R Coll Radiol)* 2019; 31: 570-577 [PMID: 31178345 DOI: 10.1016/j.clon.2019.05.012

30 *Mandard AM*, Dalibard F, Mandard JC, Marnay J, Henry-Amor M, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. *Cancer* 1994; 73: 2680-2686 [PMID: 8194005] DOI: 10.1002/1097-0142(19940601)73:11<2680::aid-cncr2820731105>3.0.co;2-c

31 *Kawamura H*, Yokota R, Homma S, Kondo Y. Comparison of invasiveness between laparoscopy-assisted total gastrectomy and open total gastrectomy. *World J Surg* 2009; 33: 2389-2395 [PMID: 19760315 DOI: 10.1001/00268-009-0218-3

32 *Kim MG*, Kim BS, Kim TH, Kim KC, Yook JH. The effects of laparoscopic assisted total gastrectomy on surgical outcomes in the treatment of gastric cancer. *J Korean Surg Soc* 2011; 80: 245-250 [PMID: 22066043 DOI: 10.4174/jkss.2011.80.4.245

33 *Shim JH*, Oh SI, Yoo HM, Jeon HM, Park CH, Song KY. Short-term outcomes of laparoscopic versus open total gastrectomy: a matched-cohort study. *Am J Surg* 2013; 206: 346-351 [PMID: 23642650 DOI: 10.1016/j.amjsurg.2012.11.011

34 *Yamashita K*, Hosoda K, Ema A, Watanabe M. Lymph node ratio as a novel and simple prognostic factor in advanced gastric cancer. *Eur J Surg Oncol* 2016; 42: 1253-1260 [PMID: 27017237 DOI: 10.1016/j.ejso.2016.03.001

35 *Fujiwara Y*, Fukuda S, Tsujiie M, Ishikawa H, Kitani K, Inoue M, Yukawa M, Inoue M. Effects of age on survival and morbidity in gastric cancer patients undergoing gastrectomy. *World J Gastrointest Oncol* 2017; 9: 257-262 [PMID: 28650768 DOI: 10.4251/wjgo.v9i6.257

36 *Marchet A*, Moceilin S, Ambrosi A, Morgagni P, Garcea D, Marrelli D, Roviello F, de Manzoni G, Marrelli D, Roviello F, de Manzoni G, Marrelli D, Roviello F. Comparison of invasiveness between laparoscopic and open total gastrectomy. *World J Gastrointest Oncol* 2017; 9: 257-262 [PMID: 28650768 DOI: 10.4251/wjgo.v9i6.257

37 *Lin JX*, Huang CM, Zheng CH, Li P, Xie JW, Wang JB, Jun L, Chen QY, Lin M, Tu R. Evaluation of laparoscopic total gastrectomy for advanced gastric cancer: results of a comparison with laparoscopic distal gastrectomy. *Surg Endosc* 2016; 30: 1988-1998 [PMID: 26208499 DOI: 10.1007/s00464-015-4429-x

38 *Téoule P*, Trojan J, Bechstein W, Woeste G. Impact of Neoadjuvant Chemotherapy on Postoperative Morbidity after Gastrectomy for Gastric Cancer. *Dig Surg* 2015; 32: 229-237 [PMID: 25966823 DOI: 10.1159/000381884

39 *Li SS*, Costantino CL, Mullen JT. Morbidity and Mortality of Total Gastrectomy: a Comprehensive Analysis of 90-Day Outcomes. *J Gastrointest Surg* 2019; 23: 1340-1348 [PMID: 31062268 DOI: 10.1007/s11605-019-04228-7

40 *Selby LV*, Vertosick EA, Sjoberg DG, Schattner MA, Janjigian YY, Brennan MF, Coit DG, Strong VE. Morbidity after Total Gastrectomy: Analysis of 238 Patients. *J Am Coll Surg* 2015; 220: 863-871.e2 [PMID: 25842172 DOI: 10.1016/j.jamcollsurg.2015.01.058

41 *Jeong O*, Jung MR, Kim GY, Kim HS, Ryu SY, Park YK. Comparison of short-term surgical outcomes between laparoscopic and open total gastrectomy for gastric carcinoma: case-control study using propensity score matching method. *J Am Coll Surg* 2013; 216: 184-191 [PMID: 23211117 DOI: 10.1016/j.jamcollsurg.2012.10.014

42 *Cho H*, Tsuchida K, Iwasaki K, Maesawa Y. Risk factors of post-operative pneumonia in elderly patients with gastric cancer: a retrospective cohort study. *Jpn J Clin Oncol* 2021; 51: 1044-1050 [PMID: 33744955 DOI: 10.1093/jjco/hyab032

43 *Smyth EC*, Verheij J, Allum W, Cunningham D, Cervantes A, Arnold D; ESMO Guidelines Committee. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016; 27: v83-v49 [PMID: 27646260 DOI: 10.1016/annonc/mdw350

44 *Tsumura T*, Kuroda S, Nishizaki M, Kikuchi S, Kikuchi Y, Takata N, Ito A, Watanabe M, Kuwada K, Kagawa S, Fujiwara T. Short-term and long-term comparisons of laparoscopic-assisted proximal gastrectomy with esophagogastronomy by the double-flap technique and laparoscopy-assisted total gastrectomy for proximal gastric cancer. *PLoS One* 2020; 15: e0242223 [PMID: 33180871 DOI: 10.1371/journal.pone.0242223
