Genetic and clinical findings of panel-based targeted exome sequencing in a northeast Chinese cohort with retinitis pigmentosa

Sun, Yan; Li, Wei; Li, Jian-kang; Wang, Zhuo-shi; Bai, Jin-yue; Xu, Ling; Xing, Bo; Yang, Wen; Wang, Zi-wei; Wang, Lu-sheng; He, Wei; Chen, Fang

Published in:
Molecular genetics & genomic medicine

Published: 01/04/2020

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1002/mgg3.1184

Publication details:
Sun, Y., Li, W., Li, J., Wang, Z., Bai, J., Xu, L., Xing, B., Yang, W., Wang, Z., Wang, L., He, W., & Chen, F. (2020). Genetic and clinical findings of panel-based targeted exome sequencing in a northeast Chinese cohort with retinitis pigmentosa. Molecular genetics & genomic medicine, 8(4), [e1184]. https://doi.org/10.1002/mgg3.1184

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Genetic and clinical findings of panel-based targeted exome sequencing in a northeast Chinese cohort with retinitis pigmentosa

Yan Sun1,2 | Wei Li2,3,4 | Jian-kang Li4,5,6 | Zhuo-shi Wang1,2 | Jin-yue Bai7 | Ling Xu1,2 | Bo Xing7 | Wen Yang4,5 | Zi-wei Wang3,4 | Lu-sheng Wang4,5 | Wei He1,2 | Fang Chen4,6

1Shenyang He Eye Specialist Hospital, Shenyang, China
2He University, Shenyang, China
3BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
4BGI-Shenzhen, Shenzhen, China
5Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
6Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
7School of Basic Medicine, Qingdao University, Qingdao, China

Abstract

Background: Panel-based targeted exome sequencing was used to analyze the genetic and clinical findings of targeted genes in a cohort of northeast Chinese with retinitis pigmentosa.

Methods: A total of 87 subjects, comprising 23 probands and their family members (total patients: 32) with confirmed retinitis pigmentosa were recruited in the study. Panel-based targeted exome sequencing was used to sequence the patients and family members, all subjects with retinitis pigmentosa underwent a complete ophthalmologic examination.

Results: Of the 23 probands, the clinical manifestations include night blindness, narrowing of vision, secondary cataracts, choroidal atrophy, color blindness, and high myopia, the average age of onset of night blindness is 12.9 ± 14 (range, 0–65; median, 8). Posterior subcapsular opacities is the most common forms of secondary cataracts (nine cases, 39.1%), and peripheral choroidal atrophy is the most common form of secondary choroidal atrophy (12 cases, 52.2%). Of these probands with complication peripheral choroidal atrophy, there were eight probands (66.7%, 8/12) caused by the pathogenic variation in USH2A gene. A total of 17 genes and 45 variants were detected in 23 probands. Among these genes, the commonest genes were USH2A (40%; 18/45), RP1 (15.6%; 7/45), and EYS (8.9%; 4/45), and the top three genes account for 56.5% (13/23) of diagnostic probands. Among these variants, comprising 22 (48.9%) pathogenic variants, 14 (31%) likely pathogenic variants, and nine (20%) uncertain clinical significance variants, and 22 variants was discovered first time. Most of the mutations associated with RP were missense (53.3%, 24/45), and the remaining mutation types include frameshift (35.6%, 16/45), nonsense (6.7%, 3/45), and spliceSite (4.4%, 2/45). Among the probands with mutations detected, compound heterozygous forms was detected in 13 (56.5%, 13/23)
1 | INTRODUCTION

Retinitis pigmentosa (RP, MIM#500004) is the most common group of disorder in retinal diseases, with a common manifestation of progressive photoreceptor cells and loss of retinal pigment epithelial function. Retinitis pigmentosa has a strong clinical heterogeneity (Ayuso & Millan, 2010; Galan et al., 2011). The early typical features mainly start from the peripheral retina and gradually develop into the fovea. The main symptoms include night blindness, progressive reduction of visual field, and ultimately tubular vision and blindness. It is the most common blinding monogenic hereditary fundus disease with a prevalence of approximately 1/3,500–1/5,000 (Galan et al., 2011). The pathogenesis of retinitis pigmentosa is closely related to genetic factors. Different gene mutations have different clinical phenotypes, and the specific pathogenesis research is still unclear (Schuster, 2008).

The clinical and genetic heterogeneity of retinitis pigmentosa is difficult for clinical diagnosis and differential diagnosis. Panel-based targeted exome sequencing has been widely used in genetic disease screening and clinical diagnosis. With the continuous advancement of this technology and the continuous reduction in the cost of genetic testing, genetic detection-assisted diagnosis of patients with retinitis pigmentosa and family members has become a reality. Despite the development of targeted sequencing screening strategies for identifying known genes associated with RP, it is estimated that 40% of cases are still molecularly diagnosed, indicating that there are still many novel mutations in known disease-causing genes and novel retinitis pigmentosa diseases-causative gene not found (Ellingford et al., 2016). Here, we reported the mutational spectrum of 23 probands diagnosed with retinitis pigmentosa. The characteristics and clinical manifestations of retinitis pigmentosa in the northeast Chinese population were analyzed, which provided assistance for subsequent clinical diagnosis and genetic counseling.

2 | MATERIALS AND METHODS

2.1 | Subjects and ethics statement

A total of 87 subjects from 23 families with retinitis pigmentosa diagnosed in Shenyang He Eye Specialist Hospital from January 2017 to July 2018 were recruited in the study. Among these subjects, including 44 males and 43 females, aged 9–88 years old, with a median of 36 years old. Inclusion criteria for patients: (a) night blindness; (b) gradual decline in visual acuity; (c) typical fundus changes, optic disc with waxy yellow atrophy, retinal osteoblast-like pigmentation, thinning of blood vessels, blue–gray retina; (d) The early peripheral visual field exhibits a circular dark spot, and the late visual field narrows toward the center; (e) After dark adaptation and light adaptation in the early stage of the lesion, the full-field electroretinogram (ERG) examination showed a decrease in rod function, and decrease in cone function at the same time in the late stage (Hartong, Berson, and Dryja, 2006; Xu, Hu, Ma, Li, and Jonas, 2006). All the examinations and tests involved in this study were approved by the Ethics Committee of Shenyang He Eye Specialist Hospital (approval number: IRB (2016) K001.01), following the Helsinki Declaration, and obtaining informed consent from patients and family members.

2.2 | Clinical assessment

Both patients and family members underwent a comprehensive clinical examination to confirm the diagnosis and to exclude ocular diseases caused by nongenetic factors. Clinical examinations include medical history inquiries and physical examinations. Among them, medical history inquiry includes basic personal information (including gender, age, place of origin, ethnicity, etc.), chief complaint, current medical history (age of onset, regularity, treatment status, medication status, type and time of complications, etc.), past history
obtained candidate variants were first verified by Sanger sequencing or quantitative real time polymerase chain reaction, then reviewed by clinical geneticists and ophthalmologists, and validation of variant segregates with the disease within the family.

3 | RESULTS

3.1 | Clinical presentation and genetic finding

In this study, there were 23 families (23 probands and their relatives), comprising 32 patients with clinically diagnosed retinitis pigmentosa and 55 subjects with normal visual acuity. Among the 32 patients, six of them had best corrected visual acuity of both eyes greater than 0.1, nine of them had the best corrected visual acuity of both eyes less than 0.1, and five of them had the best corrected visual acuity of both eyes less than finger count (FC), and the remaining patients were between the two level (FC ~0.1). Among the 23 probands, the average age of probands was 48.2 ± 17.7 (range, 21–81; median, 43), and the average age of onset of night blindness was 12.9 ± 14 (range, 0–65; median, 8), of which the majority age of onset of night blindness were under 10 years old, accounts for 65% (15/23) (Figure 1a). The average duration of disease in the 23 probands was 35.3 ± 17.3 (range, 13–72; median, 31). Clinical manifestations of different forms of concurrent lens opacities was found in 17th probands, including nine probands with posterior subcapsular opacities, four probands with anterior subcapsular opacities, two probands with punctate opacities, and two probands with nuclear opacities. Clinical manifestations of different forms concurrent choroidal atrophy was found in 21 probands, including 12 probands with peripheral choroidal atrophy, five probands with total choroidal atrophy, and four probands with posterior choroidal atrophy. Of these probands with peripheral choroidal atrophy, the results showed that eight (66.7%, 8/12) of these probands were caused by the mutation of the USH2A gene. A total of 13 probands with systemic or other ocular manifestations, including five probands with color blindness and two probands with high myopia. Clinical information of the probands with definitive diagnosis is shown in Table 1.

A total of 45 pathogenic/likely pathogenic/uncertain clinical significance variants were identified among 17 retinitis pigmentosa (RP)-causative genes, including pathogenic (n = 22), likely pathogenic (n = 14), and uncertain clinical significance (n = 9) variants, with 65% of the mutations found in the top three genes (USH2A, MIM#608400; RPL, MIM#603937; EYS, MIM#612424), and the top three genes account for 56.5% of diagnostic probands.. Among these variants, including missense (n = 24), frameshift (n = 16), nonsense (n = 3), and splicing (n = 2) mutations, 23 of
them were described for the first time (Figure 1b–d). Among the probands with mutations detected, compound heterozygous forms was detected in 13 (56.5%, 13/23) probands, and digenic inheritance forms was detected in five (21.7%, 5/23) probands. Of them, the most common compound heterozygous forms is the mutation of different alleles of the \textit{USH2A} gene (61.5%, 8/13). Consistent with previous studies, most RP patients carried compound heterozygous variants, but few patients detected digenic gene variants. In addition, five variants of three genes were detected in one proband, and four variants of the \textit{RP1} gene were detected in another one proband. Among the first discovered candidate pathogenic mutations, seven unreported mutations were found in the \textit{USH2A} gene, and five unreported mutations were found in the \textit{RP1} gene. Two unreported candidate pathogenic mutations were found for the \textit{AGBL5} gene and the \textit{EYS} gene, respectively. A novel candidate pathogenic variation was detected in the \textit{FLVCR1} (MIM#609144), \textit{MERTK} (MIM#604705), \textit{PRPF31} (MIM#606419), \textit{RP2} (MIM#300757), \textit{RP9} (MIM#607331), and \textit{RPGR} (MIM#312610) genes, respectively (Table 2).

3.2 Genetics analysis

A total of 45 variants of retinitis pigmentosa (RP)-causative genes were identified in the total cohort, including 22 novel variants and 23 known variants. Overall, there were 22...
TABLE 1 Basic information of clinical presentation in 23 probands with retinitis pigmentosa

Family ID	Sex	Age at examination (Yr)	BCVA (OD, OS)	Clinical diagnosis	History	Age of onset (Yr)	Lens opacity	Choroidal atrophy	Other ocular manifestation
1	M	23	FC/FC	Retinitis pigmentosa	N	6	N	N	Retinal detachment
2	F	55	0.02/0.3	Retinitis pigmentosa	N	4	Posterior subcapsular	Peripheral	N
3	M	81	0.05/FC	Retinitis pigmentosa	N	65	Nuclear	Total choroid	N
4	F	62	0.01/0.03	Retinitis pigmentosa	Y	5	Nuclear	Peripheral	Red–green color blindness
5	F	79	0.1/HM	Retinitis pigmentosa	Y	7	Anterior subcapsular	Posterior pole	blue color blindness
6	M	39	HM/HM	Retinitis pigmentosa	Y	5	Posterior subcapsular	Posterior pole	N
7	F	37	0.6/0.8	Retinitis pigmentosa	N	12	Posterior subcapsular	N	Retinal crystal deposit
8	F	68	HM/HM	Retinitis pigmentosa	N	15	Posterior subcapsular	Posterior pole	N
9	F	33	0.6/0.5	Retinitis pigmentosa	N	12	N	Peripheral	Hypotension
10	M	45	0.1/0.05	Retinitis pigmentosa	N	8	Posterior subcapsular	Peripheral	N
11	F	56	FC/HM	Retinitis pigmentosa	N	30	Posterior subcapsular	Peripheral	Hearing loss
12	M	72	HM/HM	Retinitis pigmentosa	N	7	Anterior subcapsular	Posterior pole	N
13	F	39	HM/HM	Retinitis pigmentosa	N	8	punctate	Total choroid	Macular hole
14	M	21	HM/HM	Retinitis pigmentosa	N	0	Posterior subcapsular	Total choroid	Total color blindness
15	M	29	HM/HM	Retinitis pigmentosa	N	9	Posterior subcapsular	Total choroid	High myopia
16	F	66	0.3/0.25	Retinitis pigmentosa	Y	8	Posterior subcapsular	Peripheral	N
17	F	38	0.15/0.5	Retinitis pigmentosa	N	25	N	Peripheral	N
18	M	64	0.05/0.05	Retinitis pigmentosa	Y	32	Posterior subcapsular	Peripheral	Ménière disease
19	M	43	0.1/0.2	Retinitis pigmentosa	Y	8	N	Peripheral	N
20	F	31	0.1/0.2	Retinitis pigmentosa	N	14	punctate	Peripheral	blue color blindness
21	M	36	0.05/0.05	Retinitis pigmentosa	N	5	N	Peripheral	Red–green color blindness
22	M	36	0.05/0.1	Retinitis pigmentosa	N	8	Anterior subcapsular	Peripheral	N
23	M	56	HM/HM	Retinitis pigmentosa	Y	3	Anterior subcapsular	Total choroid	High myopia

Abbreviations: F, female; FC, finger count; HM, high myopia; M, male; N, No; Y, Yes.
Family ID	Gene	MutName	Amino acid change	Exon	Intron ID	Zygous	Chr:pos:mut	Functional change	SIFT	Polyphen2	Mutation taster	Clinical significance	Inheritance mode	References
1	IMPDH1	c.942_944delGAA	p.Lys314del	EX10	CDS10	Het	chr7:128398543:GTTC > G	Frameshift	.	.	.	P	AD	Jin, Qu, Qu, Meng, Xu, & Yin, 2014
2	SLC7A14	c.1391G > T	p.Cys464Phe	EX7	CDS6	Het	chr3:170198680	Missense	Dam	Neu	.	P	AR	Jin, Huang, et al., 2014
	PRPF31	c.357_358delAA	p.Ser119SerfsX5	EX5	CDS4	Het	chr19:54625910.0.54625911	Frameshift	.	.	.	P	AR	Jianping et al., 2018
3	PRPH2	c.205delG	p.Val69CysfsX30	EX1	CDS1	Het	chr6:42689868	Frameshift	.	.	.	P	AD	Manes et al., 2015
4	RHO	c.403C > T	p.Arg135Trp	EX2	CDS2	Het	chr3:129530917:C > T	Missense	.	DC	PD	P	AD	Yu et al., 2016
5	RHO	c.403C > T	p.Arg135Trp	EX2	CDS2	Het	chr3:129530917:C > T	Missense	.	DC	PD	P	AD	Yu et al., 2016
6	RP2	c.348_349insT	p.Phe117Phefs7	EX2	CDS2	Hemi	chrX:46853721	Frameshift	.	.	.	LP	XL	This study
	RP1	c.1419_1420delTG	p.Thr473Thrfs13	EX4	CDS3	Het	chr8:54625300	Frameshift	.	.	.	LP	XL	This study
7	AGBL5	c.1406C > G	p.Ser469Ter	EX8	CDS7	Het	chr2:27056663	Nonsense	.	.	.	PD	LP	This study
	AGBL5	c.1498C > T	p.Arg500Cys	EX8	CDS7	Het	chr2:27056755	Missense	Dam	.	.	PD	VUS	This study
8	BEST1	c.584C > T	p.Ala195Val	EX4	CDS3	Het	chr11:61956946:C > T	Missense	Dam	.	.	PD	P	Gao, Qi, et al., 2019
9	RP9	c.511_512delGA	p.Glu171ArgfsX2	EX6	CDS6	Het	chr7:33135000.33135001	Frameshift	.	.	.	LP	AD	This study
	CYP4V2	c.283G > A	p.Gly95Arg	EX2	CDS2	Het	chr4:187115722	Missense	.	.	.	P	AR	Aodon et al., 2017
10	EYS	c.8012T > A	p.Leu2671Ter	EX4	CDS18	Het	chr6:63762520:A > T	Nonsense	.	.	.	PD	P	Sengillo et al., 2018
	EYS	c.6416G > A	p.Cys2139Tyr	EX3	CDS28	Het	chr6:64230600:C > T	Missense	.	.	.	Pol	P	Chen et al., 2015

(Continues)
Family ID	Gene	MutName	Amino acid change	Exon Intron ID	Zygous	Chr:por:mut	Functional change	SIFT	Polyphen2	Mutation taster	Clinical significance	Inheritance mode	References	
11	FLVCR1	c.719delC	p.Trh240ThrfsX20	EX1/CDS1	Het	chr1:213032513	Frameshift	.	.	.	LP	AR	This study	
	RIMS1	c.3136delA	p.Lys1046LysfsX32	EX20/CDS20	Het	chr7:2974697	Frameshift	.	.	.	LP	AR	This study	
	USH2A	c.2802T > G	p.Cys934Trp	EX13/CDS12	Het	chr1:216419934	Missense	Dam	.	.	PD	P	AR	Lenassi et al., 2015
	USH2A	c.13939G > C	p.Gly4647Arg	EX64/CDS63	Het	chr1:215844508	Missense	.	.	.	VUS	AR	This study	
	USH2A	c.10830G > C	p.Trp3610Cys	EX55/CDS54	Het	chr1:215953294	Missense	.	.	.	VUS	AR	This study	
12	MERTK	c.225delA	p.Thr75Thrfs4	EX2/CDS2	Hom	chr2:111929282:CA > C	Frameshift	.	.	.	LP	AR	This study	
	EYS	c.2756G > A	p.Gly919Glu	EX18/CDS15	Het	chr6:64902203:CT > T	Missense	Dam	Po	.	VUS	AR	This study	
	EYS	c.6410G > A	p.Arg2137His	EX31/CDS28	Het	chr6:64230606:CT > T	Missense	Dam	Po	.	VUS	AR	This study	
13	RP1	c.2886delA	p.Gly962GlyfsX3	EX4/CDS3	Het	chr8:55539328	Frameshift	.	.	.	LP	AD	This study	
	RP1	c.4129delG	p.Asp1377ThrfsX20	EX4/CDS3	Het	chr8:55540571	Frameshift	.	.	.	LP	AD	This study	
14	RP1	c.4168_4169insT	p.His1390Serfs6	EX4/CDS3	Het	chr8:54628050	Frameshift	.	.	.	LP	AR	This study	
	RP1	c.4169A > G	p.His1390Arg	EX4/CDS3	Het	chr8:54628051	Missense	Dam	.	Po	VUS	AR	Jing et al., 2014	
	RP1	c.4196delG	p.Cys1399Leufs5	EX4/CDS3	Het	chr8:54628077	Frameshift	.	.	.	P	AR	This study	
	RP1	c.6535G > A	p.Ser2118Asn	EX4/CDS3	Het	chr8:54630235	Missense	Dam	Po	.	P	AR	This study	
15	USH2A	c.14285A > G	p.Asn4762Ser	EX5/CDS64	Hom	chr1:215650650:TC > C	Missense	Dam	.	.	PD	P	AR	Xu et al., 2014
16	USH2A	c.8641_8642insTATT	p.Tyr2881Tyrfs9	EX4/CDS42	Het	chr1:215877797	Frameshift	.	.	.	LP	AR	This study	
	USH2A	c.13465G > A	p.Gly4489Ser	EX63/CDS62	Het	chr1:215674446	Missense	Tol	.	PD	VUS	AR	This study	
17	USH2A	c.10601A > G	p.Tyr3534Cys	EX54/CDS53	Het	chr1:215782181:TC > C	Missense	Dam	.	PD	VUS	AR	This study	
	USH2A	c.8559-2A > G	_	Intron42	Het	chr1:215877882:TC > C	SpliceSite	.	.	.	P	AR	Lulin et al., 2018	
18	USH2A	c.7075_7076delTT	p.Leu2359AsnfsX17	EX37/CDS36	Het	chr1:215965360:TA > T	Frameshift	.	.	.	LP	AR	This study	
	USH2A	c.2802T > G	p.Cys934Trp	EX13/CDS12	Het	chr1:216246592:AC > C	Missense	.	.	.	PD	P	AR	Lenassi et al., 2015
Family ID	Gene	MutName	Amino acid change	Exon Intron ID	Zygous	Chr:por:mut	Functional change	SIFT	Polyphen2	Mutation taster	Clinical significance	Inheritance mode	References	
-----------	------	---------	-------------------	----------------	--------	-------------	-------------------	------	-----------	-----------------	----------------------	-----------------	------------	
19	USH2A	c.4021G > C	p.Ala1341Pro	EX18/CDS17	Het	chr1:216198375: C > G	Missense	Dam	.	PD	VUS	AR	This study	
19	USH2A	c.8559-2A > G	_	Intron42	Het	chr1:215877882: T > C	SpliceSite	.	.	PD	P	AR	Lulin et al., 2018	
20	USH2A	c.99_100insT	p.Ser33Serfs42	EX2/CDS1	Het	chr1:216422237	Frameshift	.	.	.	P	AR	Dai, Zhang, Zhao, Deng, & Li, 2008	
20	USH2A	c.8254G > A	p.Gly2752Arg	EX42/CDS41	Het	chr1:215879068	Missense	Dam	.	PD	P	AR	Perez-Carro et al., 2016	
21	USH2A	c.9469C > T	p.Gln3157Ter	EX48/CDS47	Het	chr1:215990440	Nonsense	.	.	.	P	AR	Huang et al., 2013	
21	USH2A	c.11156G > A	p.Arg3719His	EX57/CDS56	Het	chr1:215933077	Missense	.	.	.	LP	AR	Lulin et al., 2018	
22	USH2A	c.8232G > C	p.Trp2744Cys	EX42/CDS41	Het	chr1:215879090	Missense	Dam	.	PD	P	AR	Sodi, Mariotti, Passerini, Murro, & Torricelli, 2014	
22	USH2A	c.2802T > G	p.Cys934Trp	EX13/CDS12	Het	chr1:216246592	Missense	.	.	PD	P	AR	Lenassi et al., 2015	
23	RPGR	c.905G > A	p.Cys302Tyr	EX8/CDS8	Hemi	chrX:38304664: C > T	Missense	.	DC	PD	LP	XL	This study	

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; Ben, benign; Dam, damaging; DC, disease causing; Del, deleterious; LP, likely pathogenic; Neu, neutral; P, pathogenic; PD, probably damaging; Pol, polymorphism; Tol, tolerated; VUS, uncertain clinical significance; XL, X-linked inheritance.
pathogenic variants, 14 likely pathogenic variants, and nine uncertain clinical significance variants, the overall variation detection rate was 80% (36/45). The majority of likely pathogenic variants (n = 13) and all uncertain-significance (n = 9) were novel variants. Three of the most common known pathogenic variations in two genes (USH2A and RHO) were detected among seven probands, the three commonest variants were USH2A c.2802T > G p.Cys934Trp (13%, 3/23), c.8559-2A > G (8.7%, 2/23), and RHO c.403C > T c.403C > T (8.7%, 2/23), and all of these were known pathogenic variations.

3.3 Genotype-phenotype correlations

The proband of the family seven detected a compound heterozygous novel mutation in the AGBL5 gene c.1406C > G (p.Ser469Ter) and c.1498C > T (p.Arg500Cys). After Sanger verification, the patient’s father carried the c.1406C > G missense heterozygous mutation with AGBL5 gene, and the patient’s mother carried a c.1498C > T missense heterozygous mutation with AGBL5 gene, but the patient’s parental eye examination was normal (Figure S1). Through the cosegregation verification and clinical phenotypic analysis, we consider AGBL5 gene mutations as candidate pathogenic variants in this family of retinitis pigmentosa. The proband had symptoms of night blindness from the age of 12, but the visual acuity was not affected, and the best corrected visual acuity remained at 0.6/0.8. Clinical fundus photography and fundus puzzles show that except for the posterior macular area, a medium amount of bright yellow granule-like crystals were deposited in the equatorial region and the peripheral retina, with only a small amount of scattered pigmentation was observed, and the retina showed a mottled appearance. Autofluorescence photography showed that the autofluorescence of retinal pigment cells was confined to the central region of the posterior pole, and the peripheral fluorescence was significantly attenuated. This performance was highly consistent with the choroidal atrophy and visual field. Binocular visual field examination showed that the visual field was tubular and the peripheral visual field was completely lost; the flash ERG detection indicated that the Rod–Cone response of both eyes was quenched; The corneal topographic examination suggested that the corneas of both eyes were highly retrograde astigmatism, and the astigmatism was −2.5D (right eye) and −2.1D (left eye), respectively (Figure S2).

In the two families of retinitis pigmentosa in the 13th and 14th, three pairs of compound heterozygous novel mutations of the RP1 gene were detected, and six variants were all in exon 4. Among them, the proband of the 13th family detected a compound heterozygous novel frameshift mutations in the RP1 gene c.2886delA (p.Gly962GlyfsX3), and c.4129delG (p.Asp1377ThrfsX20). Combined with clinical phenotypic analysis, we confirmed that the compound heterozygous mutation was a causative mutation of binocular retinitis pigmentosa. At the age of 8 years, the proband began to experience night blindness. At the age of 20, his vision decreased. At the age of 30, he developed a macular hole. The fundus photography of the eyes showed a small amount of osteoblast-like pigmentation in the retina, involving the macula. The blood vessels and choroids are slightly atrophied, and autofluorescence indicates that the retinal pigment background fade, and the visual field examination is irregular (Figure S3). The proband of the 14th family detected two pair of compound heterozygous mutations in the RP1 gene: c.4168_4169insT and c.4169A > G (p.His1390Serfs6), c.4169A > G (p.His1390Arg), c.4196delG (p.Cys1399Leufs5) and c.6353G > A (p.Ser2118Asn). Three of these variants occurred in a gene mutation region ranging from 4,168 to 4,196 in a total of 28 base sequences. By Sanger verification, the c.4168_4169insT and c.4169A > G mutations were detected in the patient’s father, while the c.4196delG and c.6353G > A mutations were detected in the patient’s mother, but the patient’s clinical examination was normal. The patient developed night blindness within 1 year of age. At 12 years old, his vision decreased, with posterior subcapsular cataract and full color blindness. Except for the posterior macular area, the remaining retina had a blue–gray color and did not show obvious osteocyte-like pigmentation. Fluorescein fundus angiography suggested that the fluorescent background of retinal pigmentation in the fundus was extremely low or absent, showing a mottled appearance. OCT showed that the fovea of the eyes was extremely atrophied, and the thickness was only 37 μm for the right eye and 31 μm for the left eye (Figure S4).

4 DISCUSSION

Of the 23 retinitis pigmentosa families included in the study, 17 probands had clinical manifestations of concurrent lens opacities, and the posterior subcapsular opacities was predominant (nine cases, accounting for 39.13%), suggesting that posterior subcapsular cataracts is the commonest forms of retinitis pigmentosa combined with complication cataract. At the same time, the clinical manifestations of probands with retinitis pigmentosa combined with complication choroidal atrophy were also inconsistent, with peripheral choroidal atrophy as the commonest form (12 cases, accounting for 57.14%). Of these probands with complication peripheral choroidal atrophy, there were eight probands (8/12, 66.7%) caused by the pathogenic variation of USH2A gene. However, there were no significant genotypic differences in probands with concurrent lens opacities. In terms of best corrected visual acuity, peripheral choroidal atrophy has better best corrected visual acuity than patients with
posterior choroidal atrophy (the proportion of eyes with visual acuity greater than 0.05 was 79.17% and 12.50%, respectively). It indicated that the best corrected visual acuity may be related to the degree of choroidal atrophy and the degree of pigment epithelium and cone atrophy. Among the probands with mutations detected, compound heterozygous forms was detected in 13 (56.5%, 13/23) probands, and digenic inheritance forms was detected in five (21.7%, 5/23) probands. It suggested that the compound heterozygous forms and digenic inheritance forms are one of the most striking features of the genetic pathogenesis of retinitis pigmentosa (Audo et al., 2012; Corton et al., 2013; Daiger, Sullivan, & Bowne, 2013; Veltel & Wittinghofer, 2009).

The R1P gene is one of the most common pathogenic genes of retinitis pigmentosa, which encodes oxyregulin 1, involved in the development of photoreceptors and the transport of proteins or the maintenance of cilia between the inner and outer segments, as well as the formation of tissue structures in the outer segments of photoreceptors, and the regulation of photoreceptor microtubules, etc. (Astuti et al., 2016; Liu, Zhou, Daiger, Farber, & Pierce, 2002; Pierce et al., 1999) it's main genetic methods include adRP and arRP (Bowne, 1999; Khaliq, 2005). In the present study, mutations associated with the R1P gene were detected in probands No.13 and No.14. The difference is that the c.2886delA and c.4129delG mutations of the R1P gene detected in 13th proband were frameshift mutations, causing a change in the reading frame, resulting in a change in the amino acid sequence of the encoded protein. For the 14th patient, there were four pathogenic mutations in the R1P gene, c.4168_4169insT and c.4196delG mutations were insertion and deletion frameshift mutations, and c.4169A > G, c.6353G > A mutations were missense mutations. The patient's four heterozygous mutations in the R1P gene are located at different loci, eventually forming two pairs of compound heterozygous mutations. The effect of two pairs of compound heterozygous mutants may be more severe than that of a pair of compound heterozygous mutations. Corresponding to clinical manifestations, the degree of fundus lesions in proband No. 14 was also much severe than that in patients with No. 13. The age of onset of night blindness in proband No. 14 was less than 1-year-old, with full color blindness, severe macular atrophy, disappearance of the outer nuclear layer and cone membrane disc structure of the fovea, and autofluorescence suggesting that the fluorescence of the whole pigment epithelium disappeared, especially obviously of the arterial vascular atrophy. However, the 13th patient began to develop night blindness at the age of 8 years, without color blindness, mild atrophy of blood vessels and choroids, and autofluorescence suggesting that the retinal pigment background fades.

In this study, Proband No. seven is a crystalline retinitis pigmentosa caused by mutation of AGL5 gene, also known as retinitis pigmentosa 75. Its common genetic pattern is autosomal recessive inheritance. AGL5 gene encodes protein ATP/GTP binding protein-like five, which is involved in the regulation of microtubules outside photoreceptors (Branham et al., 2016; Kastner et al., 2015; Patel et al., 2016). The protein is a member of the cytoplasmic carboxypeptidase (CCP) family, which also includes AGLBP1 (Nna-1, CCP1, MIM#606830), AGL1 (CCP4, MIM#615496), and AGL4 (CCP6, MIM#616476). The main function of these proteins is to remove long-chain glutamate chains from tubulin, whereas the AGL5 protein functions in reverse. It mainly localizes the glutamate branching point on tubulin, thereby prolonging the glutamic acid chain (Rogowski et al., 2010). There are few reports of retinitis pigmentosa caused by mutation of AGL5 gene, and only a few reports indicate that homozygous nonsense mutation of AGL5 gene can cause non-syndromic retinitis pigmentosa (Kastner et al., 2015). In turn, it affects the function of tubulin, which eventually leads to atrophy of the optic nerve cell layer and internal and external plexiform layers, causing retinal degenerative diseases. The AGL5 gene mutation found in this study belongs to a compound heterozygous mutation consisting of p.Ser469Ter (c.1406C > G) and p.Arg500Cys (c.1498C > T), all of which were first discovered novel variations. The proband showed blurred vision at the age of eight and decreased in visual acuity at 12 years of age with posterior subcapsular cataract (PSC). Through the co-segregation and Sanger verification, it was found that each parent carries a mutation in the gene locus, but the parents have no abnormal clinical manifestations. The crystallized retinitis pigmentosa (BCD) of the probands is different from the BCD manifestation caused by the typical CYP4V2 gene mutation. Crystalline-like substances are mainly concentrated in the equatorial region and the peripheral retina, but there is no significant change in the posterior polar region. We consider that the tubulin encoded by the AGL5 gene only affects the cilia activity and metabolism of rod cells, but has less effect on cone cells (Branham et al., 2016; Patel et al., 2016).

In summary, this study provides novel mutations and clinical phenotypes of retinitis pigmentosa, and the result suggest that choroidal atrophy can be used as one of the indicators for best correcting visual acuity and retinitis pigmentosa. Posterior subcapsular opacities is the most common form of secondary cataracts, and peripheral choroidal atrophy is the most common form of secondary choroidal atrophy. At the same time, more than half of the probands with retinitis pigmentosa are caused by compound heterozygous forms, and about one-fifth of the probands are caused by digenic inheritance forms. Our finding not only extend the existing genotype
spectrum, but also provide an effective reference for the design of panel-based genetic diagnostic testing, genetic counseling, and future gene therapy in northeast Chinese patients with retinitis pigmentosa, and have a deeper understanding of the relationship between clinical manifestations and genotypes.

ACKNOWLEDGMENTS
The authors thank all of the patients and families who agreed to participate in this study. The authors also thank BGI-Shenzhen for their technical support and the staff at He Eye Specialist Hospital of He University for their assistance. Finally, we are grateful to Dr WH and Dr FC for their valuable contributions in this work.

CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS
WH, FC, WL, and YS conceived and designed this study. YS, Z-SW, LX, and WH recruited patients, performed clinical examinations and interpretation. WL, YS, BX, and J-YB collected the clinical samples and clinical data. J-KL, WY, L-SW, Z-WW, and WL analyzed the sequencing data. WL and YS wrote and revised the manuscript. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study have been deposited in the CNSA (https://db.cngb.org/cnsa/) of CNGBdb with accession code CNP CNP0000503.

REFERENCES
Aastveit, G. D., Arno, G., Hull, S., Pierrache, L., Venselaar, H., Carss, K. . . , Webster, A. R. (2016). Mutations in agbl5, encoding a-tubulin deacetylase, are associated with autosomal recessive retinitis pigmentosa. *Scientific Reports*, 8(1), 2121–2128. https://doi.org/10.1038/srep02121
Branham, K., Matsu, H., Biswas, P., Guru, A. A., Hicks, M., Suk, J. J., . . . Nariai, N. (2016). Establishing the involvement of the novel gene agbl5 in retinitis pigmentosa by whole genome sequencing. *Physiological Genomics*, 48(12), 922.

Chen, X., Liu, X., Sheng, X., Gao, X., Zhang, X., Li, Z., . . . Zhao, C. (2015). Targeted next-generation sequencing reveals novel eye mutations in Chinese families with autosomal recessive retinitis pigmentosa. *Scientific Reports*, 5, 8927. https://doi.org/10.1038/srep08927
Corton, M., Nishiguchi, K. M., Avila-Fernández, A., Nikopoulos, K., Riveiro-Alvarez, R., Tatu, S. D., . . . Rivolta, C. (2013). Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis. *PLoS ONE*, 8(6), e65574. https://doi.org/10.1371/journal.pone.0065574
Dai, H., Zhang, X., Zhao, X., Deng, T., & Li, Y. (2008). Identification of five novel mutations in the long isoform of the ush2a gene in Chinese families with usher syndrome type ii. *Molecular Vision*, 14, 2067–2075.
Daiger, S. P., Sullivan, L. S., & Bowne, S. J. (2013). Genes and mutations causing retinitis pigmentosa. *Clinical Genetics*, 84(2), 132–141. https://doi.org/10.1111/cge.12203
Ellingford, J. M., Barton, S., Bhaskar, S., O'Sullivan, J., Williams, S. G., Lamb, J. A., . . . Black, G. C. M. (2016). Original article: Molecular findings from 537 individuals with inherited retinal disease. *Journal of Medical Genetics*, 53(11), 761–767. https://doi.org/10.1136/jmgene-2016-103837
Galan, A., Chizzolini, M., Milan, E., Sebastiani, A., Costagliola, C., & Parmeggiani, F. (2011). Good epidemiologic practice in retinitis pigmentosa: From phenotyping to biobanking. *Current Genomics*, 12(4), 260–266.
Gao, F.-J., Li, J.-K., Chen, H., Hu, F.-Y., Zhang, S.-H., Qi, Y.-H., . . . Wu, J.-H. (2019). Genetic and clinical findings in a large cohort of chinese patients with suspected retinitis pigmentosa. *Ophthalmology*, 126(11), 1549–1556. https://doi.org/10.1016/j.ophtha.2019.04.038
Gao, F. J., Qi, Y. H., Hu, F. Y., Wang, D. D., & Wu, J. H. (2019). Mutation spectrum of the bestrophin-1 gene in a large Chinese cohort with bestrophinopathy. *British Journal of Ophthalmology*, bjophthalmol-2019-314679. https://doi.org/10.1136/bjophthalmol-2019-314679
Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. *Lancet*, 368(9549), 1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7
Hu, F.-Y., Li, J.-K., Gao, F.-J., Qi, Y.-H., Xu, P., Zhang, Y.-J., . . . Wu, J.-H. (2019). ABCA4 gene screening in a Chinese cohort with stargardt disease: Identification of 37 novel variants. *Frontiers in Genetics*, 10, 773. https://doi.org/10.3389/fgene.2019.00773
Huang, X.-F., Xiang, P., Chen, J., Xing, D.-J., Huang, N. A., Min, Q., . . . Jin, Z.-B. (2013). Targeted exome sequencing identified novel ush2a mutations in usher syndrome families. *PLoS ONE*, 8(5), e63832. https://doi.org/10.1371/journal.pone.0063832
Jin, X., Qu, L. H., Meng, X. H., Xu, H. W., & Yin, Z. Q. (2014). Detecting genetic variations in hereditary retinal dystrophies with next-generation sequencing technology. *Molecular Vision*, 20, 553–560.
Jin, Z. B., Huang, X. F., Lv, J. N., Xiang, L., Li, D. Q., Chen, J., . . . Qu, J. (2014). Slc7a14 linked to autosomal recessive retinitis pigmentosa. *Nature Communications*, 5, 3517. https://doi.org/10.1038/ncomms4517
Kastner, S., Thiemann, I. J., Dekomien, G., Petrasch-Parwez, E., Schreiber, S., Akkad, D. A., . . . Bagci, H. (2015). Exome sequencing reveals agbl5 as novel candidate gene and additional variants for retinitis pigmentosa in five Turkish families. *Investigative Ophthalmology & Visual Science*, 56(13), 8045.
