CHARACTERISTIC OF HIGHPERFORMANCE ON MILD STEEL/ALN CERMET SELECTIVE SURFACES DEPOSITED BY RF MAGNETRON SPUTTERING

R. Haritharan¹*, R. Raja², R.J. Golden Renjith Nimal³

¹Research Scholar, Assistant Professor, Department of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai. mech.haritharan17@gmail.com
²Professor, Department of Mechanical Engineering, Meenakshi College of Engineering, Chennai.
³Associate Professor, Department of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai.

Received: 18.12.2019 Revised: 22.01.2020 Accepted: 26.02.2020

Abstract
In this research work aluminum nitride (AlN) films were deposited usi g only RF reactive sputtering atmosphere of nitrogen and argon on mild steel (AISI 1018). Coatings were deposited on substrates at RT, 500°C, 700°C, and 900°C. The substrate temperature notably affected the thickness, crystalline grain size, and hardness of the coatings. Use XRD, AFM, SEM, EDX, nanoindentation, salt spray or moisture to check the chemical composition, thickness, roughness, film structure, mechanical and corrosion properties of the film. All samples confirmed excessive hardness values exceeded in some cases; 23 GPa and Elastic modulus 222 Gpa for 500°C AlN with a lattice parameter (a=2.80710 Å) parameter and only developed under conditions of high surface mobility.

Keywords: Aluminum Nitride, XRD (X-ray Diffraction), AFM (Atomic Force Microscopy), SEM (Scanning Electron Microscope), Corrosion.

INTRODUCTION
However, due to the simultaneous existence of wear and corrosion mechanisms, the overall performance of these steels is reduced. Martensitic stainless steel grades, especially AISI 1018, are frequently used as cutting and non-cutting tools in the mechanical industry and medical equipment. In the last few decades, many attempts have been made to modify surfaces and generally improve its friction properties. Martensitic stainless steel has lower corrosion resistance than austenitic and coiled stainless steels. Due to the poor wear resistance of martensitic stainless steel, much work has been done to improve its life. Therefore, various attempts to solve the problem at least partially, in particular by creating a layer structure using thermal chemical processing processes and creating composite and single layer materials using CVD and PVD processes were made. The use of PVD and CVD processes to deposit consumable coatings (transition metal nitrides, carbides, or oxides) on surfaces is the most advanced unidirectional alternative to improve material performance. Transition steel nitrides have extremely high hardness, chemical stability, high temperature resistance and wear resistance and are therefore frequently used in many scientific and industrial applications. AlN films deposited by PVD provide crystalline films, smooth and uniform layers, short processing times and no substrate heating. The purpose of this study was to identify the specific abrasion properties that are deposited by roughness, hardness, wear rate and direct current. Magnetron sputtering made of AISI 410 steel.

By increasing the substrate temperature, it is possible to obtain a subsequent stoichiometric AlN coating on the mild steel. The proximity of the AlN under layer reduces the film consumption barriers. Adhesion improves with increasing substrate temperature. Coverage of open porosity by electrosynthesis estimation remains very high (<0.0056%). Certificate pr. An EMA study with 7x10-4 mbar and nitrogen 9x10-5 mbar shows the microcrystalline structure from XPS spectra. There is a separation interval of 10 cm between the objective lens and the substrate, the cathode voltage of 335-351 V, the lead and the basis weight of 2 x 10-2 T, 4 x 10-5 T, 200 W RF power. The time and flow rate of nitrogen / argon gas are conscious. The GIXRD effect works (100) Wurtzit AlN reflection and the AFM image of a very fine microstructure with a certain roughness of 6-8 nm. Elliptical spectroscopy has films with refractive index bands in the range from 5.0 to 5.48 eV and from 1.58 to 1.84. The SIMS size indicates that was of damage in the film.

EXPERIMENTAL PROCEDURES
An AlN coating used to be deposited in a sputtering configuration in an RF magnetron sputtering system. The magnetron is powered by way of an uneven bipolar pulsed 100 W high-frequency RF power supply (Figure 1). A high-purity (99.999%) aluminum pan (Ø75 mm x 10 mm) was once used as the sputtering target. Annealed AISI moderate steel samples (1018) size: 25 mm diameter, 2 mm thickness) had been used as substrates. Before deposition, the samples had been metallographically polished with the use of general ANSI particle sizes of 400, 600, 800 and 1200 SiC sandpaper, accompanied via material polishing and ultrasonic cleaning with submicron polycrystalline diamond slurry. The polished substrate was once cleaned in a proprietary alkaline solution for 10 minutes at 75 °C and then immersed in 15% HCl for 2 minutes at room temperature, which can be established by way of weighing the substrate earlier than and after the ion cleaning step. Before the authentic deposition, the aluminium goal is pre-sputtered in argon for about 10 to 15 minutes in order to eliminate the thin oxide layer on the surface [3-4]. During the pre-sputtering process, a manually operated closure is positioned between the magnetron cathode and the substrate. Immediately earlier than AlN is deposited, a thin aluminium layer (approx. 0.1 μm thick) is sputtered onto the substrate in order to enhance the bonding of subsequent AlN layers. AlN was once deposited at a working pressure of 7.6 X 10-2 mm Hg in nitrogen and argon plasma (60:40). The values of the deposition parameters are listed in Table 1. Before the sputtering gas is led into the separation chamber, it is cleaned to a moisture and oxygen content material of much less than 10 ppb [23,26]. During the AlN deposition
process, the nitrogen attention in the fuel combination stays constant; the cathode discharge energy remains constant, and the substrate temperature changes. A grazing incidence X-ray diffractometer (XRD; XPert PRO MRD; model: PANalytical B.V.) was once used to consider the crystal shape of the coating, XRD measurements had been made the usage of monochromatic CuKα1 radiation (1.540598 Å) at an angle of incidence of 1°. (ASTM-E415-2008, refer Table 2) to analyze the chemical composition of the coating material. The hardness and the modulus of elasticity of the coating had been measured via a nanoindentation approach the use of a Berkovich diamond indenter below a predetermined load of 1 mN. The 5 x 5 μm observed by way of AFM [8,12]. Corrosion tests have been carried out under more than a few parameters, such as a an attention temperature of 35.5 °C +/- 2 °C, a pH of 6.65-6.85 for a saline solution and 1.0-2.0 ml of solution per Hour collected [5,8,12]. The pressure of the compressed air is 14 to 48 psi and 100 W, it was observed by wafer. Fig. 2 proposes an XRD model of the aluminum nitride coatings deposited in the sputter gas mixture at exceptional temperatures (RT, 200 °C, 400 °C, 500 °C, 600 °C), two of which keep the energy constant discharge at 100W. It can be seen from Fig. 3 that the AlN crystallizes in a cubic crystal structure of the space group Fe (103) (500 °C) and at each value of the attention peaks N2 for the wurtzite AlN from the formulation of the segment Fe0.95 Mn0.05 (cell parameters a = 2.8708 Å). The formation of cubic AlN can be observed with the help of diffraction peaks from the crystal planes (100), (101), (103), (221) and (100). However, the undissolved base lines indicate that the coatings have an additional amorphous phase [4-5]. The variation of the intensity ratio of the reflections (101), (221) and (103) of the cubic phase AlN as a characteristic of the temperature variant (see Table 3). The discharge energy agrees with various large peaks (temperature) from levels (100), (101), (103), (221) and (100) of the hexagonal phase AlN, which leads to Fe Sm (FWHM = 0.2354 Å) The ambient temperature changes. A graph of Table 3 that the AlN crystallizes in a cubic crystal structure of the space group Fe (103) (500 °C) and at each value of the attention peaks N2 for the wurtzite AlN from the formulation of the segment Fe0.95 Mn0.05 (cell parameters a = 2.8708 Å). The formation of cubic AlN can be observed with the help of diffraction peaks from the crystal planes (100), (101), (103), (221) and (100). However, the undissolved lines indicate that the coatings have an additional amorphous phase [4-5]. The variation of the intensity ratio of the reflections (101), (221) and (103) of the cubic phase AlN as a characteristic of the temperature variant (see Table 3). The discharge energy agrees with various large peaks (temperature) from levels (100), (101), (103), (221) and (100) of the hexagonal phase AlN, which leads to Fe Sm (FWHM = 0.2354) The ambient temperature is taken into account in the model in addition to the reflections of Co0.5 Ga Ni 0.5 cubic at 600 °C (221) [16-18]. However, the peak area remained large enough until 100 W. The combined effect of these two compounds leads to the formation of Wurtzite AlN, which interacts well with the plane (100).

Table 1: Specific Parameters used for Deposition of Aluminum Nitride Thin Films on Si(100) and MS

Parameters	Value
Base pressure	7.6 X 10^-5 mm.Hg
Cleaned	300 V
Power	100 W
Target Al	(99.99% purity)
Operative gas pressure	0.6 X 10^-5 mm.Hg
Substrate	MS(AISI 1018)
Substrate distance	60 mm
Sputtering gas	Ar:N= 60:40

Table 2: Chemical Analysis of Mild Steel AISI 1018

Elements	Fe	C	Si	Mn	P	S
Specified value %	98.81-99.28	0.15-0.20	NA	0.60-0.90	0.040	0.050
Observed value %	87.85	0.067	0.012	0.259	0.012	0.008

RESULTS AND DISCUSSIONS

X-Ray Diffraction

The Bragg angle suggests the excellent crystallographic orientation of AlN thin films (002) which have a regular c axis on the silicon substrate as much as mild steel (1018). With a nitrogen / argon gas flow ratio of 60:40 sccm and 100 W, it was found that only the reflex (002) of the hexagonal phase in wurtzite of the thin film AlN was once localized with a slight displacement. This confirms the exact crystallinity of the thin film with low residual stress [2,5]. One of the samples has AlN (100) with a peak intensity at a wavelength of (1.540594Å) from a perspective (20-90°).

Figure 1: Deposition of thin film coating by RF magnetron sputtering

Table 3: Micro crystalline parameter calculated from XRD data Cu-Kα(1.540598Å)

Sample (°C)	Phase classification formula	Crystal structure Lattice constant (nm)	FWHM (20°-90°)
RT	Fe Sm	Hexagona 1	a=2.8520 Å
Cr	00 2	Hexagona 1	a=2.8710 Å
Fe	10 1	Cubic	a=2.8658 Å
Co0.5 Ga Ni 0.5	10 3	Cubic	a=2.8708 Å
Co0.5 Ga Ni 0.5	10 3	Cubic	a=2.8720 Å

Figure 2: XRD model of AlN thin films deposited on MS substrates (1018) at different temperatures.

This peak in a smaller diffraction angle indicates that there is a large distance between the grating plane and indicates that the exact properties are no longer identical. Another reason can also be its position within the sputtering machine or a defect in the wafer. Fig. 2 proposes an XRD model of the aluminum nitride coatings deposited in the sputter gas mixture at exceptional temperatures (RT, 200 °C, 400 °C, 500 °C, 600 °C), two of which keep the energy constant discharge at 100W. It can be seen from Fig. 3 that the AlN crystallizes in a cubic crystal structure of the space group Fe (103) (500 °C) and at each value of the attention peaks N2 for the wurtzite AlN from the formulation of the segment Fe0.95 Mn0.05 (cell parameters a = 2.8708 Å). The formation of cubic AlN can be observed with the help of diffraction peaks from the crystal planes (100), (101), (103), (221) and (100). However, the undissolved lines indicate that the coatings have an additional amorphous phase [4-5]. The variation of the intensity ratio of the reflections (101), (221) and (103) of the cubic phase AlN as a characteristic of the temperature variant (see Table 3). The discharge energy agrees with various large peaks (temperature) from levels (100), (101), (103), (221) and (100) of the hexagonal phase AlN, which leads to Fe Sm (FWHM = 0.2354 Å) The ambient temperature is taken into account in the model in addition to the reflections of Co0.5 Ga Ni 0.5 cubic at 600 °C (221) [16-18]. However, the peak area remained large enough until 100 W. The combined effect of these two compounds leads to the formation of Wurtzite AlN, which interacts well with the plane (100).
CHARACTERISTIC OF HIGH PERFORMANCE ON MILD STEEL/ALN CERMET SELECTIVE SURFACES DEPOSITED BY RF MAGNETRON SPUTTERING

EDX Analysis with a Scanning Electron Microscope
Fig. 4 shows the transmission spectrum of an MS / AlN thin film as a wavelength property equipped with the equation $T = \frac{B - Cx + Dx^2}{Ax}$ as soon as the value of the film thickness increases (d) and the refraction of the index (n) of the film was obtained until the theoretical equations are given on the experimental curve [1,6,11]. The experimental EDX distribution is shown in Fig. 4. It shows that the evaluation at the differentiation points makes it clear that Al and N are evenly distributed [5,7,8]. The distribution of (C, B, Fe), which is difficult to monitor with the EDX measurements of the MS-AlN surface, shows strong deep peaks at 1.25 and 6.5 keV, which are characteristic of Al (Table 4). Fig. 5 shows SEM-EDX, the Al and N atoms are closer to the surface and are very clearly minimized within the base metal. In that chemical analysis of MS was most of the atoms concentrated with 1018 steel, especially the particular highest peaks combined with Fe(6.84%), B(87.85%), C(5.31%).

Table 4: Percentage of each chemical of the MS/AlN coating

Chem.	wt%	Error
B	90.23	17.37
Fe	36.30	68.05
C	6.06	87.85
Total	100.00	5.31

Atomic Force Microscope
Fig. 6 shows the same uniform surface coverage and rate of rotational expansion across the surface as can be seen 5 x 5 µm. The usual particle size was once estimated to be approximately perfect of 200°C (368.92 nm) for Mild steel / AlN coating and RT, 400 °C, 500 °C, 600 °C (177.73 nm, 214.6 nm, 177.89 nm, 284.81 nm). The maximum roughness value evaluate 500°C for 157.637 nm [12,15,22]. Degree of irreversibility and degradation of energy found to be corresponding parameters of RT, 200°C, 500°C (S= 8.48267, 8.22338, 9.77876). The average roughness value low at 200 °C (Sa=5.5914 nm). Co-efficient of the peak of the frequency distribution (SKa) produced at 500 °C for smooth surface of 0.0695802 (refer table 5).

Table 5: Roughness parameters for various temperature

Sample	Roughn	Sa	Sq	Entro	Ska	SSk
RT	200°C	500°C				
characteristic of high performance on mild steel/AlN cermet selective surfaces deposited by RF magnetron sputtering

Method	Thickness (nm)	Temp(°C)	Testing Method	Result
Upto 12 Hrs No corrosion After 24 Hrs red rust formed	177.73	RT	Salt spray (chamtemp 34.5-35.5°C, pH=6.65-6.85, air pr.(14.48 psi) Humidity (95%@45°C,wt.air 2-3 bar)	
368.92	200			
214.6	400			
177.39	500			
284.81	600			

CONCLUSION
The composition of the coating by AlN sputtering by HF magnetron sputtering means that the average roughness value at 200 °C is low (Sa = 5.5914 nm). The coefficient of the frequency distribution peak (Sa) generated at 500 °C for a smooth surface of 0.0695802 (table seems to be stable for table 5). In contrast, reaching temperatures of over 600 °C Applications require more control of deposition parameters to achieve a particular structure, and all samples display higher hardness values in some cases. 23 Gpa and Elastic modulus 222 Gpa for 500°C AlN with a lattice (a=2.80710 Å) parameter and develops only in condition of high surface mobility. Discharge power is constant to a large number of broad peaks (temperatures) from levels (100), (101), (103), (221) and (100) of the hexagonal segment AlN, which belong to the room temperature Fe Sm (FWHM = 0.2354). In addition to the reflection from the cube Co0.5 Ga N6 at 600°C (221). Figure 4 shows the experimental distribution of EDX. An analysis at several points shows that Al and N are evenly distributed [3,4,12]. However, the distribution of [C, B, Fe], which is exhausted for analysis by EDX measurements on the MS-AlN surface, shows two robust intensity peaks at 1.25 and 6.5 keV [3,17,23], which are characteristic of Al (Table 4).

REFERENCES
1. Gabuk Jatiulkamot, Viktor Malau, M Noer Ilman, Priyo Tri Iswanto, Characteristic of AlN Layer Deposited by d.c. Magnetron Sputtering on AISI 410 Steel, International Journal of Engineering & Technology IJET-JENS Vol:13 No:02
2. R Harharan and RRaja, Investigation on Micro Structural, Mechanical And Tribological Properties Of Aluminium Nitride (AlN) Coating Deposited By RF Magnetron Sputtering, International Journal of Latest Trends in Engineering and Technology, pp. 085-091.
3. R. K. Choudhary, P. Mishra, An. Biswas, and A. C. Bidaye, Structural and Optical Properties of Aluminium Nitride Thin Films Deposited by Pulsed DC Magnetron Sputtering, ISRN Nanotechnology. 2013, Article ID 795462, 5 pages.
4. R.K. Choudhary, S.C. Mishra, P. Mishra, P.K. Limaye, K. Singh, Mechanical and Tribological Properties of Crystalline Aluminum Nitride Coatings deposited on Stainless Steel by Magnetron Sputtering, Journal of Nuclear Materials (2015), doi: 10.1016/j.jnucmat.2015.07.036.
5. R. Harharan, R. Raja, Somu. Vasu, Mechanical and tribological behaviour of thin TaN coating produced on AISI 1018 substrate by DC magnetron sputtering, (IJRTE) ISSN: 2277-3878, Volume-7 Issue-652, April 2019.
6. Mohd H.S Alarshad, Azrul Azlan Hamzah, Burhanuddin Yeop Majlis, Mohd Faial Aziz, Aluminum Nitride Thin Film Deposition Using DC Sputtering, IEEE-ECSE2014 Proc. 2014, Kuala Lumpur, Malaysia, 72-75, 2014.
7. R.J Golden Renjith Nimal, S. Siva Kumar, S. Gokul Raj, S Arungalai Vendan and G. Esakkimuthu, Microstructural, Mechanical, and Metallurgical Analysis of Al Interlayer coating on Mg-Al alloy using Diffusion bonding, Materials technology: proceedings, ELSEVIER, Science Direct 5 (2018):5886-5890.
8. Harharan, R. Raja, Golden Renjith Nimal R J, Structural Tribological Characterization and Mechanical Properties of Ti-Zr-N Coating Deposited By RF/DC Magnetron Sputtering, J. Mech. Cont. & Math. Sci., Special Issue, No:2, August 2019 (pp. 744-754).
9. K. Tsuouchi and N. & Mikoshia, “Zero temperature coefficient saw delay line on AlN epitaxial films,” in Ultrasourcins Symposium, Proc. IEEE, 1980, p. 299.
10. X. Hu, H. Wu, F. Zhang, J. Duan, and Z. Li, “The research progress of AlN piezoelectric thin films,” Rare Metal Materials and Engineering, vol. 31, pp. 456-9, 2002.
11. V. Dmitrova, D. Manova, and E. Valcheva, “Optical and dielectric properties of dc magnetron sputtered AlN thin films correlated with deposition conditions,” Materials Science and Engineering B, vol. 68, no. 1, pp. 1-4, 1999.
12. R Haritaran R. Raja. Characterization of Structural Properties and Harden Enhancement of Al-Cu-N By Thin Film Coating, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890, ISSN(E): 2249-9801 Vol. 9, Issue 4, Aug 2019, 1311–1324.
13. Hoffman D., Pralash S, Athavale S, Ekonovc D., Liu J, Zheng Z and Chu W. “Chemical Vapor Deposition of Aluminum and Gallium Nitride Thin Films from
Metalorganic Precursors", J. Vac. Sci Technol. A., Vol.14, No.2, 306, (1996).
14. Gordon R., Hoffman D., and Riaz U., "Atmospheric Pressure Chemical Vapor Deposition of Aluminium Nitride Thin Films at 200-250 °C", J. Mater. Res., Vol.6, No.1, 5, (1991).
15. Harirahan R., Raja R., Golden Renjith Nimal R J, Temperature dependence of composition in Ta-Zr-N thin film Deposited by Magnetron Sputtering, J. Mech. Cont. & Math. Sci., Special Issue, No.-2, August (2019) pp 680-688.
16. L. La Spina, H. Schellevis, N. Nenadović, and L.K. Nantver, "PVD aluminium nitride as heat spreader in silicon-on-glass technology." In Proc. IEEE MIEL, 2006, pp. 365-368.
17. S.K. Kim, J.S. Yoo, J.M. Priest, M.P. Fewell, 2003, "Characteristics of Martensitic Stainless Steel Nitrided in a Low-Pressure RF Plasma", Surface and Coatings Technology, 163-164, pp. 380-385.
18. B.V. Krishna, A. Bandyopadhyay, 2009, "Surface Modification of AISI 410 Stainless Steel Using Laser Engineered Net Shaping (LENSTM)", Materials and Design 30, pp. 1490 – 1496.
19. D.H. Mesa, A. Toro, A. Sinatora, A.P. Tschiptschin, 2003, "The Effect of Testing Temperature on Corrosion–Erosion Resistance of Martensitic Stainless Steel", Wear 255, pp 139 -145.
20. ASTM F 899-02, 2006, "Medical and Surgical Material and Devices; Anesthetic and Respiratory Equipment; Pharmaceutical Application of Process Analytical Technology".
21. A.K. Sinha, 2003, "Physical Metallurgy Handbook", McGraw Hill Handbook.
22. P. Corengia, F. Walther, G. Ybarra, S. Sommadossi, R. Corbari, E. Brojtman, 2006, "Friction and Rolling-Sliding Wear of DC- Pulsed Plasma Nitried AISI 410 Martensitic Stainless Steel", Wear 260, pp. 479-485.
23. K. Lukaszkowicz, L.A. Dobrzansky, M. Pancielejko, 2007, "Mechanical Properties of the PVD Gradient Coatings Deposited Onto the Hot Work Tool Steel X40CrMoV5 -1". Journal of Achievements in Materials and Engineering, Vol. 24, pp. 115-118.
24. Patel JK, Dalvadi HP, Shah DP. "Time and/or Site Specific Drug Delivery of Floating Pulsatile Release Delivery System." Systematic Reviews in Pharmacy 2:1 (2011), 59-65. Print. doi:10.4103/0975-8433.83441
25. L.A. Dobrzansky, K. Lukaszkowicz, J. Mikula, D. Pakula, 2006, "Structure and Corrosion Resistance of Gradient and Multilayer Coatings", Journal of Achievement in Materials and Manufacturing Engineering, Vol. 18, Issue 1, pp. 75-78.
26. G.R. Etaati, M.T. Hosseinnejad, M. Ghoranneviss, M. Habibi, M. Shirazi, 2011, "Deposition of Tungsten Nitride on Stainless Steel Substrates Using Plasma Focus Device", Nuclear Instruments and Methods in Physics Research B 269, pp. 1058-1062.
27. M.J. Carbonari, J.R. Martinelli, 2001, "Effects of Hot Isostatic Pressure on Titanium Nitride Films Deposited by Physical Vapor Deposition", Materials Research, Vol. 4, No. 3, pp. 163 - 168.
28. Withers, S.B., Passi, N., Williams, A.S., De Freitas, D., Heagerty, A.M. Erythropoietin has a restorative effect on the contractility of arteries following experimental hypoxia(2013) Journal of Cardiovascular Disease Research, 4 (3), pp. 164-169. DOI: 10.1016/j.jcdr.2013.08.002