Objective: Cell aging is one of the most important and fundamental step in cellular behavior and reduces muscle mass and myofibrils. This study aims to investigate the effect of resistance exercise along with vitamin C consumption on the expression of Telomerase Reverse Transcriptase (TERT) and Telomere Repeat Binding Factor-2 (TRF2) genes and the diameter and number of skeletal muscle myofibrils in old male Wistar rats.

Method: This is an experimental study using control groups. Twenty-five male Wistar rats (280-320 g and aged 24 weeks) were randomly divided into five groups of young control, old+resistance exercise, old+vitamin intake, old+resistance exercise+vitamin intake, and old control. In the supplementation groups, rats received liposomal vitamin C daily by gavage per body weight. Weight attached to the tail gradually increased during 8 weeks of exercise (weeks 1 and 2 by 50%; weeks 3 and 4 by 50%; weeks 5 and 6 by 75%; weeks 7 and 8 by 100% of total body weight). Exercises were performed at 3-5 sets of 8-12 repetitions, 3 or 4 days a week. The Quantitative polymerase chain reaction method was used to evaluate the expression of TERT and TRF2 genes in muscle tissue. One-way ANOVA was used to examine the difference between the groups and Tukey’s post hoc test was used to determine between which groups the difference was significant.

Results: Aging significantly reduced the expression of TERT, TRF2 genes and the diameter and number of myofibrils in skeletal muscle of rats (P=0.001). Resistance exercise along with vitamin C intake had no significant effect on TERT and TRF2 expression (P≥0.05), but caused a significant increase in the diameter and number of myofibrils (P= 0.001).

Conclusion: Eight weeks of resistance exercise along with vitamin C supplementation can significantly increase the number and diameter of skeletal muscle myofibrils in old rats.
Extended Abstract

1. Introduction

The aging cell has certain characteristics, the most important of which are increased cell size, distinct morphology, extensive changes in gene expression, and shortened telomere length [1]. Telomerase Reverse Transcriptase (TERT) is a catalytic subunit of enzyme telomerase. TERT is a protein with catalytic and transcriptase activity [2]. Other important proteins that play an important role in telomeric structure are telomere repeat binding factors (TRFs) with isoforms 1 and 2 and bind directly to TTAGGG repeats [3]. Oxidative pressure appears to affect the length of telomerase and myofibrils.

Vitamin C is mixed with antioxidant activity. However, there are no clear results about the effect of vitamin C consumption on telomerase length as well as TERT and TRF2. Some studies have shown that long-term physical activity plays an important role in controlling aging by affecting chromosomes [4]. There are no clear results about the effect of resistance exercise as well as the effect of vitamin C intake and their combined effect on telomerase length and especially on TRF2 and TERT gene expression. In this regard, this study aims to evaluate the effect of resistance exercise along with liposomal vitamin C intake on the expression of TERT and TRF2 genes and on the diameter and number of myofibrils in old male Wistar rats.

2. Materials and Methods

This is an experimental study on 25 male Wistar rats aged 24 weeks and weighted 280-320 g. They were randomly divided into five groups of young control (n=5), old+resistance exercise (n=5), old+vitamin intake (n=5), old+resistance exercise+vitamin intake (n=5), and old control (n=5). In the exercise groups, 20 minutes of resistance exercise with ladders and weights were performed for 8 weeks, 3 days per week. At the end of the exercise period, rats in each group were examined for further studies. In the supplementation groups, liposomal vitamin C was administered daily by gavage per kg body weight. Shapiro-Wilk test was used to investigate the normality of data distribution. One-way ANOVA test was used to examine the differences between groups and Tukey’s post hoc test was used to determine where these differences were found. All analyses were performed in SPSS V.22 software considering a significance level of 0.05.

3. Results

The results of ANOVA showed a significant difference between the groups in terms of TERT expression (P=0.001). The results of Tukey’s post hoc test showed that the significant differences were between the old control and young control groups (P=0.001). For TRF2 expression, ANOVA test results also showed a significant difference between the groups (P=0.001). Tukey’s post hoc test showed that the significant differences were between the old control and young control groups.

**Significant compared to the old control group (P<0.05).

**Significant compared to the young control group (P<0.05).
Figure 3. Comparing the myofibril diameters between different groups

** Significant compared to the old control group (P<0.05);
Significant compared to the young control group (P<0.05);
Significant compared to the old+resistance exercise+vitamin intake group (P<0.05).

Figure 4. Comparing the number of myofibrils between different groups

** Significant compared to the old control group (P<0.05);
Significant compared to the young control group (P<0.05);
* Significant compared to the old+resistance exercise+vitamin intake group (P<0.05).

Figure 5. Muscle tissue cross-sectional area of a Wistar rat
(P=0.001) and between the old+resistance exercise and young control groups (P=0.001). There was also a significant difference between the groups in terms of myofibril diameter (P=0.001). The results of Tukey’s post hoc test showed that the significant difference was between the young control and the old control groups, between the old+resistance exercise+vitamin intake and the old control groups (P=0.001), between the old+resistance exercise and the old+resistance exercise+vitamin intake groups (P=0.001), between the old+vitamin intake and the old+resistance exercise+vitamin intake groups, and between the old+vitamin intake and the young control groups (P=0.001). There was also a significant difference between the groups in terms of myofibril diameter (P=0.001). The results of Tukey’s post hoc test showed that the significant difference was between the young control and the old control groups, between the old+resistance exercise+vitamin intake and the old control groups (P=0.001), between the old+resistance exercise and the old+resistance exercise+vitamin intake groups (P=0.001), between the old+vitamin intake and the old+resistance exercise+vitamin intake groups, and between the old+vitamin intake and the young control groups (P=0.001) (Figures 1, 2, 3, 4 & 5).

4. Conclusion

The purpose of this study was to investigate the effect of resistance exercise along with vitamin C consumption on the expression of TERT, TRF2 genes and the diameter and number of skeletal muscle myofibrils in old male Wistar rats. The results showed that there was a significant difference between the old and young control groups. However, no significant difference was observed between the other groups. Regarding TRF2 level, a significant difference was observed between the old and young control group (P=0.001) and between the trained old group and the young control group. A study, rats with Manganese superoxide dismutase deficiency in muscle or heart tissue had inhibited telomerase activity and decreased expression of TERT and TRF2. However, antioxidant supplements prevented this process [5]. Part of the adaptation of telomerase to exercise should be attributed to the MAPK pathways. Activation of MAPK leads to a change in the positional activity of a variety of transcription factors that are associated with altered expression of telomere gene components [6]. On the other hand, exercise increases the antioxidant content and reduces the oxidative pressure [7]. It seems that the interactive effect of exercise and vitamin C intake is effective in reducing the maximum oxidative pressure on telomere length.

In the present study, the expression of TERT and TRF2, and the diameter and number of myofibrils in the group of old rats that did resistance exercise and took vitamin C, was close to those of young control rats. Increased TERT and especially TRF2 levels can be considered as the reasons for the increase in diameter and number of myofibrils in old rats. Due to the limited research on TERT and TRF2 levels in the elderly, as well as the effects of vitamin C and resistance exercise on it, no other rational mechanisms can be mentioned.

Eight weeks of resistance exercise along with vitamin C supplementation can significantly increase the number and diameter of skeletal muscle myofibrils in older rats.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of Sport Sciences Research Institute of Iran (Code: IR.SSRI.REC.1399.115).

Funding

This study was extracted from a PhD. dissertation of the first author, at the Department of Sports Physiology, Faculty of Physical Education and Sports Sciences, Islamic Azad University, Central Tehran Branch, Tehran.

Authors' contributions

Performing training, writing, editing & review: Yousef shirkhani; Data analysis: Mohammad ali Azarbayjani; Editing & review: Hassan Matinhomaee, Maghsoud Peeri.

Conflicts of interest

The authors declared no conflict of interest.
اثر تمرين مقاومتي به همراه دريافت ويتامين C بر بيان TERT, TRF2 و قطر و تعداد ميوفيبريل های عضله اسکلتی موش های سنگري با ترتيب روزنگاران در زمستان

ypsos shirxani, *محمدي عزيزیان*, حسن متین هماهنگی
1. دکتر مقصود پیری تهران، دانشگاه آزاد اسلامی، واحد تهران مرکز، دانشکده تربیت بدنی، گروه فیزیولوژی ورزشی.

مقدمه
پیري سلولی از مراحل مهم و اساسی در رفتار سلول محصول قسمت های عملکردی و عملکردی میویپریلی وماژیک محسوب می شود. سالمندی باعث کاهش حجم عضلات و میوفیبریل ها می شود. سالمندی باعث کاهش حجم عضلات و میوفیبریل ها می شود. علاوه بر این، در میوفیبریل ها متعاقب سالمندی اختلالاتی در فعالیت فیبرهای عضلانی، برهم کنش متقابل اکتین، میوزین، تولید انرژی و ترمیم و بازسازی رخ می دهد. به همین دلیل پیری سلولی یا عدم فعالیت سلولی "پیری سلولی یا عدم فعالیت سلولی" را یافت که سلول پیری ویژگی های خاصی را به خود می گیرد که از جمله مهم ترین آن ها می توان به افزایش اندازه سلول، مورفولوژی جد دستگاه، گردانه لیپوفیلوئید، تغییرات پاتولوژی و کوتاه شدن طول تلومر اشاره کرد. تلومر انتهای کروموزوم در یوکاریوت ها حیاتی حفاظت از انتهای کروموزوم را بر عهده دارد. در انسان و مهره داران تلومر از هزاران تکرار پشت سر هم در انتهای کروموزوم قرار دارند و وظیفه اصلی آن حفاظت و پایداری کروموزوم است. در هر تقسیم سلولی به شکل پیوسته خاصی از مولکول تلومر کوتاه می شود که می توان انتظار داشت که این تغییرات به تغییرات غیرقابل پیش‌بینی در بیان جنراتور تاراک می‌رسد.

پیري سلولی از مراحل مهم و اساسی در رفتار سلول محصول قسمت های عملکردی و عملکردی میویپریلی وماژیک محسوب می شود. سالمندی باعث کاهش حجم عضلات و میوفیبریل ها می شود. سالمندی باعث کاهش حجم عضلات و میوفیبریل ها می شود. علاوه بر این، در میوفیبریل ها متعاقب سالمندی اختلالاتی در فعالیت فیبرهای عضلانی، برهم کنش متقابل اکتین، میوزین، تولید انرژی و ترمیم و بازسازی رخ می دهد. به همین دلیل پیری سلولی یا عدم فعالیت سلولی "پیری سلولی یا عدم فعالیت سلولی" را یافت که سلول پیری ویژگی های خاصی را به خود می گیرد که از جمله مهم ترین آن ها می توان به افزایش اندازه سلول، مورفولوژی جد دستگاه، گردانه لیپوفیلوئید، تغییرات پاتولوژی و کوتاه شدن طول تلومر اشاره کرد.

تربیت بدنی و ویتامین C هدف از این تحقیق حاضر بررسی تأثیر تمرین مقاومتی به همراه مصرف ویتامین C بر بیان ژن های TERT و TRF2 بود. تمرین مقاومتی به همراه مصرف ویتامین C در موش های اسکلتی پیری ویستار مسن بود.

روش‌ها
لیپوزومال، گروه C به صورت تصادفی در پنج گروه تقسیم شدند: گروه کنترل جوان، گروه سالمند+تمرین مقاومتی، گروه سالمند+ویتامین C، گروه سالمند+تمرین مقاومتی+ویتامین C لیپوزومال و گروه کنترل دوران سالمندی. در گروه های دریافت کننده ویتامین C سالمند+تمرین مقاومتی+ویتامین C به صورت گاواژ بر اساس کیلوگرم وزن بدن برای هر گروه تجویز شد. وزن متصل به دم به تدریج طی هشت هفته افزایش یافته بود. تمرینات سه تا پنج ست بین 100 تا 80 درصد از وزن کل حاصل شدند. تمرینات در هفته اول و دوم (هفته های اول و دوم) انجام شد.

总书记在2019年12月12日公布的一项研究报告中指出，通过实施一系列政策，中国在地区性贫困地区的发展和改善方面取得了重要进展，贫困地区贫困人口的收入水平得到了显著提高。根据报告，贫困地区农村居民人均可支配收入增长了7.2%，远高于全国平均水平。这一成绩的取得，得益于各级政府的共同努力和广大人民群众的辛勤付出。
توقف درجه سانتی‌گراد، رطوبت خاک و تعداد میوفیبریل‌های عضله اسکلتی موش‌های صحرایی نر و مسن و رأس موش صحرایی مورد تحمل شد. بهترین روش با توجه به تحقیق TERT و TERT در طول تولید، فعالیت آنزیم تلومراز، پروتئین‌های متصل شده به آن و شدت میوفیبریل‌ها در میان می‌آیست. هنگامی که انتهای DNA به تومر و بیان C 7 ` TERT گاه نهایی می‌شود و شروع به تکرار زمانی 24 تا 6 هفته ای، از جمله آنتی اکسیدان‌ها که دارای اثرات 11 ` TRF2 در طول برخی‌ها افزایش می‌کنند. با این حال نتایج روبه‌روی اثری مشاهده نشد.

در این تحقیق از نوع تجربی است که در تیر و مرداد سال 1399 به نظر می‌رسد اکسیدان‌ها با پیشگیری می‌کنند. این اکسیدان‌ها بر طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 روز، به طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 R، تکرار هایپرتروفی عضلانی و بهبود سارکوپینا در مردان در تحقیقی نشان داده تمرین مقاومتی باعث بهبود برخی. پژوهش‌های انجام گرفته، ورزش می‌تواند بر طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 R، تکرار هایپرتروفی عضلانی و بهبود سارکوپینا در مردان در تحقیقی نشان داده تمرین مقاومتی باعث بهبود برخی. پژوهش‌های انجام گرفته، ورزش می‌تواند بر طول ترمیم و میکروپلیمراری با سلول‌های اندام نوپای در فیزیولوژی 1399 R، تکرار Hایپرتروفی عضلانی و بهبود سارکوپینا در مردان در تحقیقی نشان داده تمرین مقاومتی باعث بهبود برخی. پژوهش‌های انجام گرفته، ورزش می‌تواند بر طول ترمیم و میکروپلیمراری با سلول‌های اندام Nوپای در فیزیولوژی 1399 R، تکرار Hایپرتروفی عضلانی و بهبود سارکوپینا در مردان در TERT و C2-TRF2 در طول تولید، فعالیت آنزیم تلومراز و تجمیع زانو و مهره در این مدت با بروز سارکوپینا همراه است و قدرت و حجم عضلانی ضداکسایشی است. با این حال نتایج روشنی در مورد اثر مصرف از جمله آنتی اکسیدان‌ها که دارای اثرات

1. Checkpoint kinase 2

TERT,TRF2
از روش استفاده شده در این پژوهش از تشخیص پروتئین‌ها با ویتامین TRF2 و TERT و Gapdh از این روش استفاده شد. این روش به عنوان یک کنترل استاندارد به عنوان یک کنترل استاندارد به عنوان یک کنترل استاندارد می‌باشد. در این روش، نمونه را به مقدار موارد DNA و سپس PCR ترکیب شده به مقدار مواردا با ویتامین TRF2 و TERT و Gapdh از این روش استفاده شد. این روش به عنوان یک کنترل استاندارد به عنوان یک کنترل استاندارد
ورزش مصرف ویتامین سالمند و سالمند+ورزش دارای اختلاف معنی‌دار نداشتند، اما نسبت به گروه‌های جوان و سالمند اختلاف معنی‌دار بوده و نسبت به سایر گروه‌ها بیشتر بوده. بررسی‌ها نشان داد قطر این میوفیبریل‌ها در گروه جوان یکدست است که میوفیبریل‌ها در کنار همدیگر قرار گرفته‌اند و منسجم بوده و در مقایسه با رنگ‌بندی جوان کنترل، این گروه بالاتر قابل مشاهده است. استنتاج این روش‌ها، بررسی‌های آزمایشگاهی نشان داد که میوفیبریل‌ها در گروه جوان کنترل، این گروه بالاتر قابل مشاهده است.

ان تحقیق با هدف بررسی اثر تمرین سالمند+ورزش دارای اختلاف معنی‌دار بوده و نسبت به سایر گروه‌ها بیشتر بوده. بررسی‌ها نشان داد قطر این میوفیبریل‌ها در گروه جوان یکدست است که میوفیبریل‌ها در کنار همدیگر قرار گرفته‌اند و منسجم بوده و در مقایسه با رنگ‌بندی جوان کنترل، این گروه بالاتر قابل مشاهده است.

روحانی

باید بررسی‌های آزمایشگاهی نشان داد که میوفیبریل‌ها در گروه جوان کنترل، این گروه بالاتر قابل مشاهده است.

مهم‌ترین چیز این است که بررسی‌های آزمایشگاهی نشان داد که میوفیبریل‌ها در گروه جوان کنترل، این گروه بالاتر قابل مشاهده است.
در طرحی با این حال تمایز مقداری و مصرف ویتامین C افزایش یافته بود، و TRF2 و TERT کاهش می‌یافتند. این نتایج با نتایج تحقیق‌های دیگر مطابقت دارد.

یافته‌ها اسکندری و همکاران، که اثر تمرین هم‌سو TERT تناوبی را در بافت قلب بررسی کرده بودند، در مورد هیپوکسی پوسته ای که در مراحل مختلف کارایی تمرین مقاومتی TRF2 و TERT را تحقیق کرده بودند. این نتایج مشابه نتایج امپرسیون و گروه کنترل سالمند بوده و در مقایسه با TRF2 و TERT، مصرف ویتامین C بهبود معنی‌داری نشان داد. این نتایج نشان می‌دهند که تمرین مقاومتی توانایی تشکیل گروه کنترل سالمند را بهبود می‌بخشد و مصرف ویتامین C بهبود معنی‌داری نزدیک نمی‌شود.

همچنین بهorio و همکاران، که اثر تمرین مقاومتی را در بافت عضله اسکلتی موش‌های صحرایی نر و یستار مسن TERT، TRF2 و TERT کاهش می‌یافتند. این نتایج با نتایج تحقیق‌های دیگر مطابقت دارد.

به‌طور کلی، این نتایج نشان می‌دهند که تمرین مقاومتی بهبودی معنی‌داری در تغییرات میوفیبریل داشته.

مطالعات تحلیل داده‌های افزایش سن موش‌های صحرایی نر و یستار مسن TERT، TRF2، TRF1 و TERT بهبود یافته‌های ویتامین C با نتایج تحقیق‌های دیگر مطابقت دارد.

در سایر تحقیقات نیز تشکیل موش‌های صحرایی نر TERT افزایش می‌یافت. این نتایج نشان می‌دهند که تمرین مقاومتی بهبودی معنی‌داری در تغییرات میوفیبریل داشته.

به‌طور کلی، این نتایج نشان می‌دهند که تمرین مقاومتی بهبودی معنی‌داری در تغییرات میوفیبریل داشته.
2. Manganese superoxide dismutase

3. Mitogen-activated protein kinase
شرکت نرزشی و ویستار مسن احتمالاً باعث افزایش معنی‌دار تعداد و قطر میوفیبریل عضله اسکلتی می‌شود. برای اطمینان از این نتیجه، تحقیق‌ها نشان داده‌اند که افزایش فشار اکسایشی و اکسیدان‌ها باعث افزایش قطر و تعداد میوفیبریل در گروه موش های صحرایی نر ویستار مسن می‌شود. همچنین، تغییرات فشار اکسایشی و تندیس‌های آنتی‌اکسیدان‌ها در این تحقیق اندک‌تری نشان داده است و از محدودیت‌های این تحقیق به شمار می‌روند.

نتایج‌گزاری
در نهایت، در این تحقیق نشان داده شد که تمرین‌های ترنوز و ویتامین ترینژیمی به همراه ترنوز و ویتامین C در موش‌های صحرایی، مصرف ویتامین به تمرینات ورزشی می‌شود. با این حال، به دلیل کاستن از فشار اکسایشی و دیگر عوامل آسیب‌زا، عضلات از سوی دیگر TRF2 و TERT را می‌توانند در حال افزایش قطع و تعداد میوفیبریل‌ها در گروه موش‌های مسن ظهوری کنند. تحقیقات دیگر به توجه به محدودیت‌های این تحقیق، در محیط‌های دیگری بهتری می‌تواند پیدا کند.

ملاحظات‌اخلاقی
پیروی از اصول اخلاق پژوهشی در کمیته IR, SSRI, REC, 1399.115 این تحقیق به شماره 1559.9981 در کمیته اخلاق پژوهشگاه تربیت‌بدنی و علوم ورزشی تأیید شده است.

خلاصه ملایی
این مقاله مستند صورتی را در مطالعه آزاد اسلامی واحده تهران مرکز دانشگاه تربیت بدنی و علوم ورزشی گروه فیزیولوژی ورزشی است. مشارکت لیبرالی‌گان ترنشن، ویستار و مرور برای نوشتن و بررسی متن‌های مهم و تحلیل نامه‌ها محمولی آپتیپی‌های به‌عنوان مصرفی به‌عنوان موش‌های صحرایی در ویستار مسن TERT و TRF2.

پژوهش‌شناسی و همبازیان اثر تمرین‌های ترنوزیمی به همراه ترنوز و ویتامین C بر یکن TERT و TRF2. ویستار و مرور و بررسی نهایی ممکن پیوسته در میانه متن‌های مهم و تحلیل نامه‌ها مصاحبه آپتیپی‌های به‌عنوان موش‌های صحرایی در ویستار مسن TERT و TRF2.
References

[1] Miljkovic N, Lim JY, Miljkovic J, Frontera WR. Aging of skeletal muscle fibers. Annals of Rehabilitation Medicine. 2015; 39(2):155-92. [DOI:10.5535/arm.2015.39.2.155] [PMID] [PMCID]

[2] Morsiani C, Bacceli MG, Santoro A, Garagnani P, Collura S, D’Errico A, et al. The peculiar aging of human liver: A geroscience perspective within transplanted context. Ageing Research Reviews. 2019; 51:24-34. [DOI:10.1016/j.arr.2019.02.002] [PMID]

[3] Ho RT, Chan JS, Wang CW, Lau BW, So KF, Yuen LP, et al. A randomized controlled trial of qigong exercise on fatigue symptoms, functioning, and telomerase activity in persons with chronic fatigue or chronic fatigue syndrome. Annals of Behavioral Medicine. 2012; 44(2):160-70. [DOI:10.1007/s12160-012-9381-6] [PMID]

[4] Pejunaeta Á, Cortes A, Marqués J, Montero L, Belouso G, Fortuño A, et al. NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. International Journal of Molecular Sciences. 2020; 21(4):1434. [DOI:10.3390/ijms21041434] [PMID] [PMCID]

[5] Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. Mutation Research. 2017; 771:15-31. [DOI:10.1016/j.mrrev.2016.11.002] [PMID]

[6] Slattery ML, Herrick JS, Pellatt AJ, Wolff RK, Mullany LE. Telomere length, TERT, and miRNA expression. PLoS One. 2016; 11(9):e0162077. [DOI:10.1371/journal.pone.0162077] [PMID] [PMCID]

[7] Monaghan P, Eisenberg DT, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2018; 373(1741):20160435. [DOI:10.1098/rstb.2016.0435] [PMID] [PMCID]

[8] Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mechanisms of Ageing and Development. 2017; 164:61-6. [DOI:10.1016/j.mad.2017.04.004] [PMID]

[9] de Vos-Houben JM, Ottenheimer NR, Kafatos A, Buissje B, Hageman GI, Kromhout D, et al. Telomere length, oxidative stress, and anti-oxidant status in elderly men in Zutphen and Crete. Mechanisms of Ageing and Development. 2017; 164:61-6. [DOI:10.1016/j.mad.2017.04.004] [PMID] [PMCID]

[10] Kiecolt-Glaser JK, Epel ES, Belser MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain, Behavior and Immunity. 2013; 27(2):661-71. [DOI:10.1016/j.bbi.2012.09.004] [PMID] [PMCID]

[11] Bruns DR, Ehrlicher SE, Khademi S, Biela LM, Peelor III FF, Miller PR, et al. Differential effects of vitamin C or probandim on skeletal muscle adaptation to exercise. Journal of Applied Physiology. 2018; 125(2):661-71. [DOI:10.1152/japplphysiol.00277.2018] [PMID] [PMCID]

[12] Negareh R, Ranjarb R, Habibi A, Gharibvand MM. The relationship between muscle volume and strength and some factors associated with sarcopenia in old men compared with young men. Zanko Journal of Medical Sciences. 2016; 17(54):23-34. https://www.sid.ir/en/ Journal/ViewPaper.aspx?id=520044

[13] Harris SE, Deary IJ, MacIntyre A, Lamb KJ, Radhakrishnan K, Starr JM, et al. The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neuroscience Letters. 2006; 406(3):260-4. [DOI:10.1016/j.neulet.2006.07.055] [PMID]

[14] Jiang H, Schiffer E, Song Z, Wang J, Züüb P, Theideck K, et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(32):11299-304. [DOI:10.1073/pnas.0801457105] [PMID] [PMCID]

[15] Negareh R, Ranjarb R, Habibi A, Gharibvand MM. The effects of eight weeks of resistance training on some muscle hypertrophy and physiological parameters in elderly men. Journal of Geriatric Nursing. 2016; 3(1):62-75. [DOI:10.21859/jgn.3.1.62]

[16] Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. European Journal of Applied Physiology. 2010; 109(2):323-30. [DOI:10.1007/s00424-010-1353-6] [PMID]

[17] Ponsot E, Lexell J, Kadi F. Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle & Nerve. 2008; 37(4):467-72. [DOI:10.1002/mus.20964] [PMID] [PMCID]

[18] Werner C, Fürster T, Widmann T, Pöss J, Roggia C, Hanhoun M, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009; 120(24):2438-47. [DOI:10.1161/CIRCULATIONAHA.109.861005] [PMID]

[19] Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LC, Guth LM, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. Journal of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2012; 67(9):911-26. [DOI:10.1093/gerona/gls002] [PMID] [PMCID]

[20] Eskandari A, Fashi M, Dakhil AB. Effect of high intensity interval and continuous endurance training on TRF2 and TERT gene expression in heart tissue of aging male rats. Journal of Gorgan University of Medical Sciences. 2019; 21(2):43-9. https://www.sid.ir/fa/journal/ ViewPaper.aspx?id=538869

[21] Thirupathi A, da Silva Pieri BL, Queiroz JAMP, Rodrigues MS, de Bem Silveira G, de Souza DR, et al. Strength training and aerobic exercise alter mitochondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. Journal of physiology and biochemistry. 2019; 75(1):101-8. [DOI:10.1080/13884548.2018.1492206] [PMID] [PMCID]

[22] Scheffer DL, Silva LA, Tromm CB, da Rosa GL, Silveira PC, de Souza CT, et al. Impact of different resistance training protocols on muscular oxidative stress parameters. Applied Physiology, Nutrition, and Metabolism. 2013; 37(6):1239-46. [DOI:10.1139/h2012-115] [PMID] [PMCID]

[23] Damas F, Phillips SM, Libardi CA, Vechin FC, Uxandrò ME, Jannig PR, et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. Journal of Physiology. 2016; 594(18):5209-22. [DOI:10.1113/jp272472] [PMID] [PMCID]

[24] Gabrial SG, Shabib M-CR, Gabrial GN. Protective role of vitamin C intake on muscle damage in male adolescents performing strenuous physical activity. Open Access Macedonian Journal of Medical Sciences. 2018; 6(9):1594-8. [DOI:10.3889/oamjms.2018.337] [PMID] [PMCID]

[25] Haendeler J, Hoffmann Jr, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, et al. Antioxidant therapy attenuates myocardial telomerase activity and telomere length in ischemia-reperfusion injury. Circulation Research. 2004; 94(6):768-75. [DOI:10.1161/01.RES.00000121104.05977.F3] [PMID]

[26] Makino N, Maeda T, Oyama JI, Sasaki M, Higuchi Y, Mimori K, et al. Protective effect of alpha-tocopherol on myocardial telomere length reduction in superoxide dismutase-deficient mice. Journal of Molecular and Cellular Cardiology. 2011; 50(4):670-7. [DOI:10.1016/j.yjmcc.2010.12.014] [PMID]
[27] Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiological Reviews. 2010; 90(4):1507-46. [DOI:10.1152/physrev.00054.2009] [PMID] [PMCID]

[28] Baghaiee B, Karimi P, Siahkouhian M, Pescatello LS. Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats. Iranian Journal of Basic Medical Sciences. 2018; 21(9):911-9. https://ijbms.mums.ac.ir/article_11238.html