We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices.

The use of ultrahigh-frequency acoustic waves to manipulate or modulate the optical behaviors of micro- and nanostructures has recently drawn significant attention in the fields of nano-scale photonics and fundamental optical physics. Linear light modulation by acoustic phonons in the interior of homogeneous bulk materials relies on the influence of local stress field induced by the acoustic waves, which is known as the photoelastic effect. Furthermore, the light modulation can potentially be enhanced through the disturbance of the structural interfaces by acoustic waves, which is termed the interface effect. On the other hand, carefully engineered optical modes, such as waveguide, cavity, or slow-light modes in nanostructured materials are often used to achieve enhanced nonlinear interactions between photons and phonons. Recently, considerable enhancement of photon-phonon and optomechanical interactions has involved the utilization of dual photonic-phononic bandgap structures and micro- or nanocavities with optical modes efficient in the multiphonon absorption and emission, in which high densities of photon and phonon states can be simultaneously tightly confined to the same small region of space. In an optical nanocavity, the (cold-cavity) quality factor is used to describe the spectral energy density of the cavity modes and how long the stored energy of the cavity mode remains in the cavity. Because the Q factor is intrinsically proportional to the cavity photon lifetime, nanocavities with high Q have been exploited to achieve efficient optomechanical interaction together with the photoelastic and interface effects. Recently, nanocavities have been designed to simultaneously provide high Q factors for both photon and phonon resonances to trigger multiphonon processes that enable much stronger photon-phonon interactions. Strong optomechanical interaction may lead to several fundamental...
studies of quantum effect and optical physics in nanosystems, such as optical cooling of mechanical oscillators in the quantum regime, enhancement of optical nonlinearity, and development of optomechanical crystals and devices. Although conventional dielectric nanocavities can be designed to have very high Q factors, the phonon disturbance is still restrictive in that acoustic intensity cannot be amplified freely because of limited excitation efficiency or because the mechanical strain must be maintained well below the elastic limit of the material. A possible alternative for further enhancing optomechanical interaction is to design the optical wavelength beyond the diffraction limit so that the achievable or allowable acoustic amplitude is comparable to the characteristic scale of the optical cavities.

The optical cavity mode can be designed beyond the diffraction limit by forming the surface plasmons at the metal-dielectric interface. Surface plasmons are highly potential to generate intense optical fields in an ultra-compact cavity to accelerate light-matter interaction by boosting the so-called Purcell factor (proportional to the ratio of Q factor and mode volume, Q/Vm), which has been used in extremely sensitive nano-scale spectroscopy. Surface plasmon-assisted lasing was demonstrated in several previous reports on topics such as gold nanospheres coated with a gain medium, metal-cladding nanoresonator, insulator-metal nanowaveguide, and plasmonic band gap nanocavity. Plasmonic nanocavities can achieve deep subwavelength mode volume; however, the Q factor are limited by the significant material loss of metal.

Recently, hybrid optical nanocavities have been proposed to compress optical energy into deep subwavelength regions. The systems hybridize the photonic and surface plasmonic modes to form surface plasmon polaritons (SPPs), resulting in tighter spatial confinement of optical energy, higher local field intensity, and lower parasitic loss of metal. These properties can be used to enhance the efficiency of the optomechanical interaction between the photonic and phononic modes. In this study, we demonstrate the strong modulation of SPP modes at telecommunication wavelengths by surface acoustic waves (SAWs). The SPP modes were strictly confined to a nanocavity which consisted of a defect-containing photonic crystal beam and a metal surface with a nanoscale air gap in between, as shown schematically in Fig. 1a. The one-dimensional periodic beam contained defects in the middle by removing or modifying the air holes and was set up above a metal substrate with an air-gap separation of distance d. Although the hybrid system supported a strong optical energy confined in the low-loss air gap region. Though the hybrid structure also introduced several photonic loss mechanisms, such as in-plane SPP radiation, evanescent coupling with the dielectric beam, and metal absorption, it achieved a much higher Q/Vm ratio (or smaller mode volume Vm), which relates more directly than does the Q factor to the enhancement of photon-phonon interactions that allow for intense high-frequency acoustic disturbance. In this report, we will demonstrate the enhanced optomechanical modulation of the SPP mode in a nanocavity of high Q and low Vm using monochromatic coherent acoustic phonons localized on the silver substrate surface formed by high-frequency SAWs. In addition, we will systematically study the influential factors in such a system.

Results and Discussion
Figure 1b shows the geometry of a unit cell of the crystal nanostructure composed of a photonic crystal beam. The structure consisted of silicon with periodic circular air holes along the x-axis and was separated from a silver substrate by a nano air gap of distance d. The lattice constant was a = 450 nm, the
the cavity along the beam. As a result, the interaction between the SPP cavity mode and mechanical oscillation may be variation related to the SAW frequency and regenerate the mechanical oscillation of the photonic crystal mechanism that SAW field perturbs the stored optical power in the nanocavity to have an optical power work, we focus on the interaction between SAW field and SPP cavity mode. However, mechanical oscillation gave rise to Bragg scattering of the electromagnetic field and optomechanical interaction. In this nanocavity scheme, the interface effect dominated the optomechanical interaction. In the present work, we focus on the interaction between SAW field and SPP cavity mode. However, mechanical oscillation in the photonic crystal beam may also contribute to the optomechanical interaction through the mechanism that SAW field perturbs the stored optical power in the nanocavity to have an optical power variation related to the SAW frequency and regenerate the mechanical oscillation of the photonic crystal beam. As a result, the interaction between the SPP cavity mode and mechanical oscillation may be enhanced.

To relate the resonance wavelength shift $\Delta \lambda$ of the SPP cavity mode perturbed by the SAW field to the resonant mode characteristics, their trends as a function of the air-gap width d were compared. The
SAW field lay in an arbitrarily chosen phase relative to the unperturbed SPP cavity mode, as shown in Fig. 5a,b. Figure 5c shows the resonance wavelength λ_r of the SPP cavity mode with different air gap width d and the corresponding shift $\Delta \lambda_r$ which was perturbed by the 3-GHz SAWs with a restricted amplitude of $U_y = 4$ nm. When the air gap d was increased, the resonance wavelength decreased because the coupling of the silicon photonic mode and surface plasmonic mode was reduced with a decreased effective index 47,54, and the wavelength shift was smaller because the interface effect at larger d values becomes weaker for photon-phonon interaction. The dependences of the Q factor, mode volume V_m, inverse of mode volume $1/V_m$, and Q/V_m ratio on gap width d for the SPP cavity mode are shown in Fig. 5d,e. Figure 5e exhibits a positive correlation between the $1/V_m$ and Q/V_m ratio and wavelength shift $\Delta \lambda_r$ from Fig. 5c, while the influence of the strength of the interface effect was dominated by the low optical mode volume because small V_m is susceptible to the deformation. The SAW field also broke the symmetry of the cavity geometry, resulting in an asymmetric SPP cavity mode shape. Figure 6 illustrate the $|E|^2$ field distribution of the SPP cavity mode with $d = 20$ nm perturbed by the SAW field. The perturbed $|E|^2$ field has a redistributed concentration pattern, corresponding to a wavelength shift $\Delta \lambda_r$ of 1.07 nm ($\lambda_r = 1549.78$ nm).

To understand the dynamic response of the SAW-base optomechanical interaction in the crystal nanocavity, we analyzed the resonance wavelength λ_r with different SAW properties. SAWs can be excited as traveling waves (TSAWs) or constructed to form standing waves (SSAWs) using, for example, an acoustic cavity or two-beam interference on a surface. Because the SAW frequency is five orders of magnitude smaller than that of the optical mode of comparable wavelength, the SAW field perturbation to the optical nanocavity are regarded as quasi-static. As a result, at any instant of time, the SSAW scheme can be viewed as the TSAW scheme at a specific phase, but with a varying amplitude associated with the SSAW phase θ_S. First, we considered the highest spatial correlation of the 3-GHz TSAWs to be at another phase defined as $\theta_T = \pi$ with the SPP cavity mode, as shown in Fig. 7a,b. The resonance wavelength shift was increased to $\Delta \lambda_r = 2.31$ nm. Figure 7c shows the evolution of the resonance wavelength λ_r by changing...
Figure 4. (a) Schematic of the perturbation of the crystal nanocavity using 3-GHz Rayleigh SAWs propagating along the x-direction on the surface of the silver substrate. (b) Calculated SAW field distribution on the surface of the silver substrate with a total displacement amplitude $|U|$ equal to 4.5 nm. (c) The corresponding displacement components U_y and U_x of the SAW field, where the amplitude of $U_y = 4.0$ nm. (d) Variation of the displacements of Rayleigh SAWs along the depth from the silver substrate surface.

Figure 5. (a) An arbitrarily chosen SAW phase relative to the nanocavity. (b) Comparison of spatial distributions between the traveling SAW field at the chosen phase and the SPP cavity mode. (c) Resonance wavelength λ_r with different air gap width d and the corresponding shift $\Delta \lambda_r$ of the SPP cavity mode perturbed by the 3-GHz SAWs with a restricted amplitude U_y of 4 nm. The dependences of (d) the Q factor, mode volume V_m (e) $1/V_m$ and Q/V_m ratio for the SPP cavity mode.
the TSAW phase $\theta_T = 2\pi f_{SAW} t$, in which the resonance wavelength monotonically increases with the change of the SAW phase θ_T from 0 to π. The total bandwidth $\Delta \lambda$, in the modulation of the resonance wavelength with the same period as the 3-GHz TSAWs increased to 2.7 nm. As a result of the optical energy being squeezed inside the deep subwavelength region of space, optical modulation by the acoustic perturbation on the interface was effective.

The strength of the optomechanical interaction also highly correlated to the wavelength of the SAW field. We examined the nanocavity modulation at several SAW frequencies (2, 3, 4, and 5 GHz) corresponding to different SAW wavelengths ($\lambda_{SAW} = 1.78a$, 1.15a, 0.91a, and 0.67a, respectively). Table 1

| f_{SAW} (GHz) | λ_{SAW} | $|U_y|^2$ (nm) | λ_r (nm) | $\Delta \lambda_r$ (nm) | $\Delta \lambda_c$ (nm) |
|-----------------|----------------|----------------|------------------|-----------------------|-----------------------|
| 2 | 1.78a | | 4.0 | 1548.71 | |
| 3 | 1.15a | | | | |
| 4 | 0.91a | | | | |
| 5 | 0.67a | | | | |
| $\theta_T = 0$ | $\theta_T = \pi/2$ | $\theta_T = \pi$ | $\Delta \lambda_c$ |
| 1.66 | 0.64 | -0.34 | 2.0 |
| -0.39 | 0.89 | 2.31 | 2.7 |
| 8.58 | 1.73 | -5.37 | 13.95 |
| 4.0 | 1.45 | -0.92 | 4.92 |

Table 1. Modulation of the SPP cavity mode using TSAWs of different frequencies and phases.
lists the unperturbed resonance wavelength \(\lambda \) and \(\Delta \lambda \), and \(\Delta \lambda \), of the SPP cavity mode under the perturbation of the SAW fields with different frequencies and phases based on the TSAW scheme. The SAW field of 4-GHz frequency exhibited the strongest modulation for the optical resonance wavelength shift and total bandwidth, which correspond to \(\Delta \lambda = 8.58 \text{ nm} \) and \(\Delta \lambda = 13.95 \text{ nm} \), respectively. The wavelength of the 4-GHz SAW field closely matches the spacing of the two closest nodal points of the \(|E|^2 \) field profile of the SPP cavity mode, demonstrating the condition (wavelength matching) which maximizes the interface effect for the photon-phonon interaction. The modulation using the SSAW scheme can be derived from the results of TSAW scheme. Figure 8a,b compare the traveling and standing SAW schemes, respectively. The TSAWs propagate their acoustic energy forward, whereas SSAWs remained in a constant position with no net propagation of acoustic energy. Figure 8c illustrates the resonance wavelength variations of the SPP cavity mode perturbed by the 4-GHz SSAW field with different phases (Fig. 8a) related to that perturbed by a TSAW field of the same frequency and maximum amplitude. The inset of Fig. 8c shows the spatial relation between the TSAW and SPP cavity mode. Figure 8d corresponds to the SSAW fields with nodal points located at the middle of the cavity and 0.3 \(\lambda_{\text{SAW}} \) from it, respectively. Then these two SSAW fields can be regarded as identical to the TSAW fields at the instant of time at which the phase are \(\theta_T = \pi/2 \) and \(\theta_T = 3\pi/5 \) and \(2\pi/5 \), respectively. As a result, the upper and lower bounds for the range of \(\lambda \) variation caused by a SSAW field can be determined using Fig. 8c with the corresponding values of \(\theta_T \).

To achieve a stronger optomechanical effect with a more sophisticated optical nanocavity, we optimized the crystal nanocavity by shifting the two neighbor circular air holes of the defect region outward from their lattice point by a distance \(s \), as shown in Fig. 9a. Compared with the case of \(s = 0 \), Fig. 9b shows that the electric field intensity \(|E|^2 \) with \(s = 0.125a \) has reduced mode mismatch with a larger cavity length so that the Q factor is increased. Figures 9c shows the variations in the quality factor Q and mode volume \(V_m \) as functions of the shift distance \(s \). Increasing the distance \(s \) from 0 to 0.125a increased the resonance wavelength and Q factor, while the mode volume \(V_m \) was not significantly influenced. The highest \(Q/V_m \) ratio occurred at \(s = 0.125a \). The variations of \(\lambda_r \) and \(\Delta \lambda_r \) with increasing \(s \) under the perturbation of the 4-GHz SAW field of amplitude \(U_s = 4 \text{ nm} \) with \(\theta_T = 0 \) are shown in Fig. 9d. The refined effective cavity length further improves the SPP confinement to increase the wavelength shift \(\Delta \lambda \) by the SAW field. With \(s = 0.1a \), the wavelength shift \(\Delta \lambda \) achieved 9.16 nm. Q and \(V_m \) can be further increased and reduced, respectively, to boost the optomechanical interaction or photon-phonon interaction by optimizing the overall geometry of the SAW-based tuning nanocavity structure, when optical losses and air gap width are optimized. The ultrahigh-frequency SAW field can also be tailored to provide a resonant phonon intensity distribution that closely resembles or correlates to the spatial mode profile of the hybrid optical field using phononic bandgap structures to enhance the multiphonon absorption and emission by a photon and to increase the photon-phonon interaction time.\(^{54–57} \)
Conclusion
We have studied the optomechanical effect of high-frequency SAW-based modulation on a crystal nanocavity. The enhancement of the photon-phononic interactions was achieved through an efficient interface effect using the SAW disturbance at the nanoscale air gap of the nanocavity where the deep subwavelength hybrid optical energy is highly concentrated. A large modulation bandwidth $\Delta \lambda_c$ of 13.95 nm and resonance wavelength shift $\Delta \lambda_r$ of 8.58 nm with a 4-GHz SAW field were demonstrated at telecommunication wavelength for the high Q and low V_m crystal nanocavity. We correlated the influences of the Q factor and mode volume V_m of the crystal nanocavity on the optomechanical interaction with the perturbation of the high frequency SAWs. Additionally, we demonstrated the feasibility of achieving efficient optomechanical interaction beyond the optical diffraction limit. This study can be used to realize many applications involving enhanced sound-light interaction, such as nanolaser cooling, light modulation, quantum motion, and phonon laser action.

Method
Simulation. The numerical calculations of the optical and acoustic wave field were performed using the finite-element method (FEM) software package (COMSOL Multiphysics) with the RF and Structural Mechanics modules combined and a moving mesh tool for field interaction. In the optical modeling, the used refractive indices were $n_{Si} = 3.46$ for silicon and $n_{Ag} = n_R + jn_I$ for silver based on the experimental data that considers the dispersive property. For the electromagnetic eigenmode and eigenfrequency solutions, the Bloch periodic boundary conditions (PBCs) as a function of wavevector k were applied along the propagation direction (i.e., the x-direction) on the boundaries of the unit-cell model, and continuous PBCs are applied on other boundaries. For the solutions of the cavity modes, the supercell model that contains 16 lattices and two missing air circular holes in the middle of the photonic crystal beam was adopted with PBCs. The mode volume of the SPP cavity mode is calculated using

![Figure 9.](image-url)

(a) Schematic of optimization for the crystal nanocavity by shifting the two neighbor circular holes of the defect region outward from their lattice point by a distance s. (b) The electric field intensity $|E|^2$ distributions with $s = 0$ and $0.125a$, where the mode mismatch with $s = 0.125a$ is reduced to achieve a higher Q factor. (c) Variations of Q and V_m as a function of the shift distance s. (d) Variations of λ_r and $\Delta \lambda$ with the increasing of s under the perturbation of 4-GHz TSAW field of amplitude $U_y = 4 \text{ nm}$ at $\theta_T = 0$, where the maximum $\Delta \lambda_r$ occurs at $s = 0.1a$.
\[V_m = \iiint W(r) d^3r \max [W(r)], \]

where \(W(r) \) is the optical energy density at position \(r \), given by

\[W(r) = \frac{1}{2} \left[\text{Re} \left(\frac{d}{d\omega} \right) \left| E(r) \right|^2 + \mu \left| H(r) \right|^2 \right] \]

with \(\omega \) being the optical frequency, and \(\varepsilon \) and \(\mu \) being the associated permittivity and permeability, respectively. The quality factors of the cavity mode were obtained using the formula \(Q = \lambda / \Delta \lambda \), with \(\Delta \lambda \) being the full width at half-maximum of the resonance intensity spectrum, where the spectrum was calculated using the FEM-based frequency response analysis with \(\gamma \)-polarized electric dipole excitation located in the cavity. The well-known perfectly matched layers (PMLs) were employed at the calculated domain boundaries to eliminate the reflection of outgoing electromagnetic waves. The SAW wavelength was estimated by solving the equation for the Rayleigh SAW velocity \(c_R \) in elastic isotropic media

\[(2 - c_R^2/c_s^2)^2 = 4 \left(1 - c_R^2/c_L^2 \right) \left(1 - c_R^2/c_s^2 \right)^2 \]

with \(c_L \) and \(c_s \) being the longitudinal and transverse bulk acoustic wave velocities, respectively, and the relation \(c_R = f_{SAW} \lambda_{SAW} \). In the FEM modeling of the acoustic field, the SAW displacement field \(u(r, t) \) was calculated based on the elastodynamic wave equation

\[\nabla \cdot (c \nabla u(r, t)) = \rho_{Ag} \frac{\partial^2 u(r, t)}{\partial t^2} - F, \]

with a mass density \(\rho_{Ag} = 10,500 \text{ kg/m}^3 \) and elastic stiffness tensor \(c \) which is expressed in terms of Young's modulus \(E = 83 \text{ GPa} \) and Poisson's ratio \(\nu = 0.37 \) for the silver substrate. \(F \) is the forcing term for the excitation of the SAW field setting on the silver substrate surface. A sinusoidal line source force was applied in the simulations, and acoustic PMLs were used at the calculated domain boundaries to eliminate the reflection of outgoing SAWs and radiated bulk acoustic waves. In analyzing the SAW field, we neglected the acoustic attenuation because the crystal nanocavity covers only several SAW wavelengths. Typical attenuation coefficient \(\alpha \) in the gigahertz regime is proportional to square of acoustic frequency. Estimation with an attenuation coefficient \(\alpha = 10^4 \text{ dB/m}^5 \), the attenuation of the SAW amplitude was minor during such short-distance propagation. Then the SAW disturbed optical model was built through the moving mesh technique in the FEM calculations for the interaction of electromagnetic and acoustic fields.

References

1. Fuhrmann, D. A. *et al.* Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. *Nat Photonics* **5**, 605–609 (2011).
2. Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. *Phys. Rev. Lett.* **105**, 037401 (2010).
3. Volk, S. *et al.* Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. *Nano Lett.* **10**, 3399–3407 (2010).
4. Berstermann, T. *et al.* Optical bandpass switching by modulating a microcavity using ultrafast acoustics. *Phys. Rev. B* **81**, 085316 (2010).
5. Royer, D. & Dieulesaint, E. *Elastic Waves in Solids* (Springer, New York, 2000).
6. Yariv, A. & Yeh, P. *Optical Waves in Crystals* (John Wiley and Sons, New Jersey, 2003).
7. Psarobas, I. E. *et al.* Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. *Phys. Rev. B* **82**, 174303 (2010).
8. Hsu, J.-C., Lin, C.-H., Ku, Y.-C. & Lin, T.-R. Photonic band gaps induced by submicron acoustic plate waves in dielectric slab waveguides. *Opt. Lett.* **38**, 4050–4053 (2013).
9. Chen, N.-K. & Chi, S. Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers. *Opt. Lett.* **31**, 2251–2253 (2006).
10. Gantzounis, G., Papamikolaou, N. & Stefanou, N. Nonlinear interactions between high-Q optical and acoustic modes in dielectric particles. *Phys. Rev. B* **84**, 104303 (2011).
11. Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M. & Painter, O. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. *Appl. Phys. Lett.* **97**, 181106 (2010).
12. Safavi-Naeini, A. H. *et al.* Electromagnetically induced transparency and slow light with optomechanics. *Nature* **472**, 69–73 (2011).
13. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical Crystals. *Nature* **462**, 78–82 (2009).
14. Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. *Appl. Phys. Lett.* **88**, 251907 (2006).
15. Lin, T.-R., Lin, C.-H. & Hsu, J.-C. Enhanced acousto-optic interaction in two-dimensional phoxonic crystals with a line defect. *J. Appl. Phys.* **113**, 053508 (2013).
16. Oudich, M. *et al.* Optomechanical interaction in a corrugated phoxonic nanobeam cavity. *Phys. Rev. B* **89**, 245122 (2014).
17. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. *Nature Comm.* **3**, 1196 (2012).
18. Safavi-Naeini, A. H. *et al.* Two-dimensional phononic-photonic band gap optomechanical crystal cavity. *Phys. Rev. Lett.* **112**, 153603 (2014).
The authors declare no competing financial interests.
