A review on the current applications of genetic algorithms in mean-variance portfolio optimization

Ortalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırması

Can Berk KALAYCI1, Ökkes ERTENLICE2, Hasan AKYER2, Hakan AYGOREN2

1Department of Industrial Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey.
2Department of Business Administration, Faculty of Economics and Administrative Sciences, Pamukkale University, Denizli, Turkey.

Abstract
Mean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized.

Keywords: Portfolio management and optimization, Mean-variance model, Evolutionary algorithms, Genetic algorithm

1 Introduction: Portfolio optimization and mean-variance model

Investors’ desire is to have a non-decreasing fund even if the market is losing value. It is not always possible to achieve this by investing on only one security. In a financial market, it is rare that all securities gain or lose value at the same time.

Therefore, an investor should use a diversification strategy, such as forming a portfolio, to spread the risk among assets. The main question in portfolio management is to decide on the assets and weights for a better investment. A fundamental answer to the problem of portfolio management was given by the mean-variance model [1],[2]. Mathematical formulation of unconstrained portfolio optimization problem (UCPO) according to Markowitz’s standard mean-variance approach is given as follows where parameter N represents the number of available assets, μ_i represents the expected return of asset i, σ_{ij} represents the covariance between asset i and asset j, R^* represents the expected return at the desired level and variable w_i represent the proportion of asset i.

$$\min \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij}$$

Subject to:

$$\sum_{i=1}^{N} w_i \mu_i = R^*$$

$$\sum_{i=1}^{N} w_i = 1$$

(4)

Equation (1) minimizes risk of the portfolio while equation (2) ensures that expected return (R^*) is at the desired level. Equation (3) guarantees that proportions add to one while the proportion of an asset neither can be less than zero nor can be greater than one (Equation (4)). In practice, it is possible to calculate an optimal solution for a particular data set with this formulation. Solving this formulation by varying values of the expected return, an efficient frontier can be found as a non-decreasing curve. This frontier represents the balance of expected return corresponding to risk that must be accepted. Figure 1 demonstrates a standard efficient frontier.

![Figure 1: An example of standard efficient frontier.](image-url)

The mean-variance model has been extended throughout the decade by introducing additional real-world constraints such as the cardinality constraints that impose a predetermined
limit on the number of assets \((K) \) to be held in the portfolio and the quantity constraints which restrict the proportion of each asset in the portfolio to satisfy lower \((\varepsilon_i) \) and upper \((\delta_i) \) bounds. The mixed integer nonlinear programming formulation of cardinality constrained portfolio optimization (CCPO) problem is given as follows with additional parameters: \(K \) representing the desired number of assets to be held in the portfolio, \(\varepsilon_i \) representing the minimum proportion of asset \(i \), \(\delta_i \) representing the maximum proportion of asset \(i \) and \(z_i \) representing a binary variable whether or not an asset \(i \) is held in the portfolio \[3\]:

\[
\min \lambda \left[\sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij} \right] - (1 - \lambda) \sum_{i=1}^{N} w_i \mu_i \tag{5}
\]

Subject to:

\[
\sum_{i=1}^{K} w_i = 1 \tag{6}
\]

\[
\sum_{i=1}^{K} z_i = K \tag{7}
\]

\[
\varepsilon_i z_i \leq w_i \leq \delta_i z_i \quad i = 1, \ldots, N \tag{8}
\]

\[
z_i \in (0,1) \quad i = 1, \ldots, N \tag{9}
\]

\[
1 \leq w_i \leq 1, \quad i = 1, \ldots, N \tag{10}
\]

\[
0 \leq \varepsilon_i \leq 1, \quad i = 1, \ldots, N \tag{11}
\]

Equation (6) and equation (10) are inherited from the original Markowitz formulation. Equation (7) guarantees that exactly \(K \) assets are held in the portfolio while equation (8) restricts the proportion of an asset to be between predetermined values of minimum and maximum limits with decision variable defined in Equation (9). Equation (11) defines variable domains. The quadratic objective function given in equation (5) seeks the best trade-offs between two conflicting objectives, maximizing return and minimizing risk. In the equation (5), a \(\lambda \) parameter is used to trace the efficient frontier by gradually increasing the value of \(\lambda \) from 0 to 1. Thus, a weighted sum of two objectives is obtained. The resulting single objective aims to construct the cardinality constrained efficient frontier that represents the best balance of expected return and the risk that must be accepted since both objectives cannot be simultaneously achieved. Transaction costs are also considered as additional real life constraints in the literature \[4\]-\[7\]. It is not convenient to find an optimal efficient frontier in practice when real life constraints are taken into account. In fact, calculating an optimal portfolio for the standard mean-variance model is known to be NP-hard \[8\] since a classical quadratic optimization problem becomes NP-hard if a single cardinality constraint is added to the formulation \[9\]. Therefore, in the literature, several computationally efficient solution approaches have been developed in order to calculate the efficient frontier. Among those approaches, genetic algorithms (GA) is one of the most preferred algorithm for solving the problem. Metaxiotis and Liagkouras \[10\] presented a review of multi-objective evolutionary algorithms applied to portfolio management problem in a broad problem perspective. In this study, however, a comprehensive review of GA applications including single and multi-objective implementations specifically in mean-variance portfolio optimization is conducted. This aim of this review is to reveal the problem specifications considered and the key strategies of GA utilized to solve mean-variance portfolio optimization problem types. Section 2 presents the genetic algorithm implementations for mean-variance portfolio optimization while Section 3 concludes the paper with a discussion of future research directions.

2 Genetic algorithms for mean-variance portfolio optimization

GA, firstly introduced by Holland \[11\], is a search method that can be modified to solve complex optimization problems. In GA, a set of iterative search procedures based on biological natural selection and genetic inheritance principals is executed. A population of solutions is updated over generations using selection, crossover and mutation strategies. Each individual that is evaluated in the population represents a potential solution to the problem in hand. Individuals form new individuals a stochastic transformation of individuals is achieved by genetic operators such as crossover and mutation. Crossover provides better solutions to be constructed from good solutions by a random, yet structured change of genetic materials. The role of mutation is to obtain lost or unexplored genetic materials, thereby preventing premature convergence and stuck in local optima. After several iterations, the algorithm converges a (near) optimal solution. Basic steps of the GA are given in Table 1.

Step	Procedure
1	Generate initial population.
2	Evaluate fitness of each individual in the population.
3	Select the set of individuals for applying genetic operators.
4	Apply genetic operators and evaluate new fitness values.
5	Form new generation according to fitness values.
6	Go to step 3 if termination criteria are not satisfied.
7	End evolution and report the results.

Table 1: Basic steps of GA.

Components of a typical GA are summarized below:

- Genetic representation (Encoding strategy): The solution of the problem that is formed by binary, integer or real numbers,
- Chromosome: A solution of encoding,
- Population: A set of chromosomes,
- Fitness: A function that evaluates how good a solution is,
- Genetic operators: Procedures such as crossover and mutation that provide to obtain new population from the current population,
- Control parameters: Input parameters such as population size, crossover and mutation rates.

Goldberg \[12\] pointed out search and optimization applications of GA in different areas. Efficient portfolio selection is one of the main concerns of researchers who practice in financial optimization domain. One of the most preferred solution approach for portfolio optimization is GA. Several researchers applied GA variants for solving portfolio optimization problems since 1998 \[12\]. In this study, 44 articles published in conferences and refereed journals between 1998-2016 are examined. Figure 2 shows the number of papers published in recent years for GA implementation on mean-variance portfolio optimization with respect to publication years. Among these studies published in the literature, 3 types of problems; UCPO, CCP and Portfolio
Optimization with Transaction Costs (POTC) come into prominence among other types (See Figure 3).

Figure 2: Number of papers published between 1998-2016 for GA implementation on mean-variance portfolio optimization.

Figure 3: Problems types studied in mean-variance portfolio optimization.

Studies in the literature can be classified in many ways. In this review, two classification schemes for studies that apply GA to mean-variance portfolio optimization are used. First classification is formed according to the problem specifications such as data type, compared methods, problem type and coded programming language. Table 2 provides an up-to-date list of problem specifications. As summarized in Table 2, experimental settings are generally carried out on either real world applications or hypothetical data sets for benchmarking purposes. Methods reported in the literature are generally compared against other metaheuristics either taken from the literature or coded by the authors themselves. Literature analysis show that most of the problems types considered so far consist of UCPO, CCPO and POTC. Most of recent studies focused on CCPO and POTC while UCPO provided a basis for other types of problems.

The second classification scheme is formed according to applied algorithm specifications such as the generation methodology of initial population, size of the population, chromosome representation, crossover type and rate, mutation type and rate, type of selection mechanism, survival type, feasibility construction and termination criteria. Table 3 provides an up-to-date list of algorithm specifications. As summarized in Table 3, single objective GA are widely applied while some multi-objective GA are also suggested for mean-variance portfolio optimization. A two-stage GA is employed in [14] that firstly identifies good quality assets in terms of asset ranking and then optimizes investment allocation in the selected good quality assets. Some hybrid strategies are also suggested as in [15] that utilize quadratic programming approach with GA, in [16] that combines GA with simulated annealing approach and in [17] that utilizes a position displacement strategy of the particle swarm optimization methodology with GA.

GA implementations in the literature shows that initial population is widely preferred to be randomly generated while just a few studies [15],[18] employed heuristic approaches for the construction of initial population. In the studies examined, population size (PS) parameter is set to be 20 as minimum and 2000 as maximum. However, most of the researchers zoomed in the range of 100 and 300 for PS parameter. Binary and real valued chromosome representation are observed to be popular although some other representation strategies such as integer based, tree based are also utilized. Several studies differentiate from each other with the use of crossover operators such as uniform, BLX-Alpha, one point, n-point and mutation operators such as swap, one-point, Gaussian, guided, bit-flipping strategies. Tournament selection is mostly utilized while roulette wheel selection is also used. Elitism and ranking strategies are generally employed for survival of population. Feasibility of chromosomes are ensured by repair or penalty functions. It is observed that iteration number is used as the termination criterion in all of the studies examined.

Although several authors used the data as downloaded from the mentioned OR-Library to test their proposed algorithm, unfortunately, there is a limited number of papers that provide a performance comparison against other published papers in the literature.

In terms of evaluation approaches, there are two types of methodologies in the literature, namely weighted sum and pareto based approaches. As for weighted sum approach, studies make use of equation (5) given in Section 1 by combining two conflicting objectives: risk minimization and return maximization. On the other hand, pareto based methodology, especially used in multi-objective evolutionary algorithms, considers two objectives separately by systematically removing dominated solutions from the heuristic frontier during the search in solution space. Table 3 summarizes the classification.

3 Introduction
Portfolio optimization is a significant problem that intrigues investors and challenges researchers. As GA was established to be a popular technique in the optimization field, the application of GA to optimization problems related to portfolio selection has expanded since 2000 as the problem is known to be NP-Hard. Two different classifications are introduced. Firstly, the main specifications of the problems were summarized, and then implemented GAs with chromosome representations, genetic operators and the fitness functions used for performance evaluation were discussed. 44 articles were examined and grouped in chronological order.

Although, there are several implementations of GA for mean-variance portfolio optimization problem, unfortunately, the improvements and enhancements made to the algorithms’ main framework is not evidently noticeable since there is a limited number of papers that provide a benchmark based comparison against other published studies in the literature.

Therefore, future studies should definitely consider such a comparison that may lead the way towards a better algorithmic design and related software implementations.

Furthermore, it would be very helpful to analyze and compare other heuristics, exact solution approaches as well as metaheuristics applied to solve this problem in a future research study. A comparison on the performance of different approaches would help researchers to move forward in the search of discovering better methodologies for solving portfolio optimization problems.
Table 2: Mean-variance portfolio optimization problem specifications.

Year	Researcher(s)	Performance specifications / Experimental Settings	Benchmark	Methods compared	Problem type
1998	Shoaib and Foster [13]	Five stocks from various markets	-	-	UCPO
2000	T J Chang et al. [3]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	SA, TS	CCP0
2000	Xia et al. [4]	Six stocks	-	-	PCTC
2006	Lai et al. [14]	One-hundred stocks from Shanghai market	-	-	UCPO
2006	ChiangLin [19]	Forty-two stocks from Taiwan market	-	-	CCP0
2006	Moral-Escudero et al. [15]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	Exact	CCP0
2008	W Chen et al. [5]	Fifteen stocks from China market	-	-	PCTC
2008	Lin and Liu [6]	Taiwanese mutual fund data from the year 1997 to 2000	-	-	UCPO
2009	Aranha and Rha [20]	Thirty stocks in FTSE from 24 April 2001 to 29 December 2006	PSO, DE	-	UCPO
2009	Bai and Michel [22]	BSE200 and Nikkei225	-	-	CCP0
2009	Dong et al. [16]	Twenty stocks from Shanghai market	-	-	UCPO
2009	Shaikh and Abbas [26]	Twenty-three stocks from KSE30	-	-	UCPO
2009	Soleimani et al. [7]	580 and 2000 stocks randomly generated by MATLAB	-	-	POTC
2010	Anagnostopoulos and Mamanis [27]	FTSE100	OR-Library	NSGA-2, PES, SPEA2	CCP0
2010	Ruiz-Torrubiano and Suarez [28]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	SA	CCP0
2011	Anagnostopoulos and Mamanis [29]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	SDEA	
2011	Anagnostopoulos and Mamanis [30]	DAX100	OR-Library	-	CCP0
2011	Fu et al. [31]	Four stocks from Hong Kong market	-	-	UCPO
2011	Y Chen et al. [32]	Five-hundred stock from Tokyo market	-	-	UCPO
2011	Kremml et al. [33]	Software projects	SPEA2, NSGA-2	-	UCPO
2011	Woodsidge-Uriahtli et al. [34]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	TS, SA	CCP0
2012	Sadjadi et al. [35]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	-	CCP0
2013	Li and Wang [18]	Six stocks from Chinese market	-	-	UCPO
2013	Li and Yang [36]	Eight stocks from china market	-	-	UCPO
2014	Akcoca-Trab et al. [37]	Randomly selected five stocks from Ghana market	-	-	UCPO
2014	Joglerov et al. [38]	Seventy-two stocks from MSN Money	-	-	UCPO
2014	Liagkouras and Metaxiotis [39]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei	OR-Library	MOEA-PLM	CCP0
2014	Lwini et al. [40]	Hang Seng, DAX100, FTSE100, S&P100, Nikkei, S&P500, BSE200 and Nikkei225	OR-Library	NSGA-2, SPEA2, Russel2000	
2015	Adebiyi Ayodele and Ayo Charles [41]	Hang Seng, DAX100	OR-Library	SA, TS, PSO	CCP0
2016	Hadi et al. [42]	Forty-five stocks from Egypt market	-	-	CCP0
2016	Mashayekhi and Omran [43]	Fifty-two stocks from Iran market	-	-	CCP0

Table 3: Genetic algorithm specifications.

Year	Researcher(s)	Evolutionary algorithm specifications									
1998	Shoaib and Foster [13]	GA Weighted sum PS=100 Binary and real value 2-Point & Rc=60% Rm=0.1% Roulette wheel - Penalty Iteration number									
2000	T J Chang et al. [3]	GA Pareto based Random & PS=100 Integer and real value Uniform & Rc=100% One-point mutation & Rm=10% Roulette wheel - Repair Iteration number									
2000	Xia et al. [4]	GA Pareto based Random & PS=30 Integer and real value Uniform & Rc=30% Roulette wheel - Repair Iteration number									
2006	Lai et al. [14]	2 stage GA Weighted sum Random & PS=100 Integer and real value One point crossover & Rc=50% Rm=0.5% Roulette wheel - Repair Iteration number									
2006	ChiangLin [19]	GA Pareto based Random & PS=100 Integer and real value One point crossover & Rc=100% Rm=3% Roulette wheel - Iteration number									
2006	Moral-Escudero et al. [15]	Hybrid GA and quadratic programming Weighted sum Heuristic & PS=100 Binary Uniform & Rc=100% Swap mutation & Rm=1% Tourname nt steady-state Repair and Penalty -									
2008	W Chen et al. [5]	GA Pareto based Random & PS=30 Real value One point crossover & Rc=variable Roulette wheel - Repair Iteration number									
2008	Lin and Liu [6]	GA Weighted sum Random & PS=n Integer and real value One point crossover & Rc=100% Uniform & Rc=variable Roulette wheel - Replaceme nt Penalty Iteration number									
Year	Researcher(s)	Method	Evaluation approach	Initial population & size	Chromosome type & representation	Crossover type & rate (%)	Mutation type & rate (Rm)	Selection type	Survival type	Possibility (Repair or Penalty)	Termination criteria
------	---------------	--------	---------------------	---------------------------	-------------------------------	--------------------------	--------------------------	----------------	--------------	-----------------------------	-------------------
2009	Arana and Iba [20]	Tree based GA	Weighted sum	P=200 Tree based	Best-Worst Sub-tree	Swap mutation & Rm=3%	Tournament nt	Ranking	-	-	Iteration number
2009	Branke et al. [21]	envelop e-based MOEA	Pareto based Random & PS=30	Binary and real value	Uniform & Swap mutation	Tournament nt	Ranking	-	-	Iteration number	
2009	T-J Chang et al. [22]	MOEA	GA Pareto based Random & PS=100	Binary and real value	Uniform & Rc=100%	Tournament nt	steady-state	Repair	Iteration number		
2009	Li and Guo [23]	GA	Weighted sum Random & PS=100	Binary and real value	BLX-Alpha	Bit-flipping mutation	Real values uniform	Tournament nt	-	-	Iteration number
2009	Loukeris et al. [24]	GA	Pareto based Random & PS=100	Binary and real value	Arithmetic & Rc=80%	Non-uniform	Tournament nt	-	Penalty	Iteration number	
2009	Pai and Michel [25]	GA	Pareto based Random & PS=100	Binary and real value	Uniform & Rc=90%	Gaussian & Rm=100%	Tournament nt	Elitism	Repair	Iteration number	
2009	Rong et al. [16]	Hybrid (GA and SA)	Pareto based Random & PS=20	Binary and real value	RAR & Rc=100%	Bit-flipping mutation & Rm=1%	Tournament nt	Ranking	Repair	Iteration number	
2009	Shaikh and Abbas [26]	GA	Weighted sum Random & PS=20	-	-	-	Tournament nt	-	-	Iteration number	
2009	Soleimani et al. [7]	NSGA-II, PESA, SPEA	GA Weighted sum Random & PS=100	-	Random separate & Rc=100%	Rm=50%	Randomly	Ranking	-	-	Iteration number
2010	Anagnostopoulos and Mamanis [27]	GA	Pareto based Random & PS=200-300	Binary and real value	Uniform & Rc=90%	Gaussian & Rm=100%	Tournament nt	Elitism	Repair	Iteration number	
2010	Ruiz-Torresbiano and Suarez [28]	MOEA	Pareto based Random & PS=250 Heuristi c & PS=500	Integer and real value	Uniform	Swap mutation & Rm=1%	Tournament nt	Elitism	Repair	Iteration number	
2011	Anagnostopoulos and Mamanis [29]	MOEA	Pareto based Random & PS=500	Integer and real value	Uniform	Swap mutation & Rm=1%	Tournament nt	Elitism	Repair	Iteration number	
2011	Fu et al. [31]	GA	Pareto based Random & PS=100	-	-	-	Tournament nt	-	-	-	
2011	Y Chen et al. [32]	GAs	Weighted sum Random & PS=100	nodes and edges	Node Swap & Rc=20%	Guided & Rm=3%	Tournament nt	Elitism	-	Iteration number	
2011	Kremmel et al. [33]	MOEA	Weighted sum Random & PS=500	Binary	Uniform & Rc=70%	Bit-flipping mutation & Rm=3%	Tournament nt	Repair	-	Iteration number	
2011	Woodside-Oriakhii et al. [34]	GA	Pareto based Random & PS=100	Integer and real value	Uniform & Rc=100%	Swap mutation & Rm=100%	Tournament nt	Elitism	Repair	Iteration number	
2012	Sadjadi et al. [35]	GA	Weighted sum Random & PS=10 Integer	One point crossover & Rc=80%	Rm=20%	Roulette wheel and Uniform	Ranking	Repair	-	-	
2012	Lu and Wang [16]	GA	Pareto based Integer & PS=60	Integer and real value	One point crossover & Rc=80%	Rm=77.8%	-	Penalty	Iteration number		
2013	Yi and Yang [36]	FGA	Weighted sum Random & PS=100	Real value	Heuristic & Rm=3%	Roulette wheel	Elitism	-	Iteration number		
2013	Ackora-Prah et al. [37]	GA	Pareto based Random & PS=50	Real value	Uniform & Rm=20%	Roulette wheel	Elitism	-	Iteration number		
2014	Joglekar [38]	MOEA	Weighted sum Random & PS=100	Binary and real value	Simulated Binary	Guided	Tournament nt	Repair	-	-	
2014	Liwol et al. [40]	MOEA	Pareto based Random & PS=vari able	Binary and real value	Rr=90%	Polynomial	Tournament nt	Elitism	Repair	Iteration number	
4 Acknowledgment

This research is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) with the grant number 214M224.

5 References

[1] Markowitz H. “Portfolio selection”. The Journal of Finance, 7(1), 77-91, 1952.
[2] Markowitz H. Portfolio Selection: Efficient Diversification of Investments. Yale University Press, 1959.
[3] Chang TJ, Meade N, Beasley JE, Shariha YM. “Heuristics for cardinality constrained portfolio optimisation”. Computers & Operations Research, 27(13), 1271-1302, 2000.
[4] Xia Y, Liu B, Wang S, Lai KK. “A model for portfolio selection with order of expected returns”. Computers & Operations Research, 27(5), 409-422, 2000.
[5] Chen W, Xu WJ, Yang L, Cai YM. “Genetic algorithm with an application to complex portfolio selection”. 4th International Conference on Natural Computation, (ICNC2008), Jinan, China, 25-27 August 2008.
[6] Lin CC, Liu YT. “Genetic algorithms for portfolio selection problems with minimum transaction lots”. European Journal of Operational Research, 185(1), 393-404, 2008.
[7] Soleimani H, Golmakani HR, Salimi MH. “Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm”. Expert Systems with Applications, 36(3), 5058-5063, 2009.
[8] Michael RG, David SJ. “Computers and intractability: A guide to the theory of np-completeness”. WH Free Co., San Fr, 1979.
[9] Bienstock D. “Computational study of a family of mixed-integer quadratic programming problems”. Mathematical programming, 74(2), 121-140, 1996.
[10] Metaxiotis K, Liagkouras, K. “Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review”. Expert Systems with Applications, 39(14), 11685-11698, 2012.
[11] Holland JH. Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA, The University of Michigan Press, 1975.
[12] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.
[13] Shoaf J, Foster JA. “Efficient set ga for stock portfolios”. Proceedings of the IEEE Conference on Evolutionary Computation, Anchorage, USA 04-09 May 1998.
[14] Lai KK, Yu L, Wang S, Zhou C. “A double-stage genetic optimization algorithm for portfolio selection”. 13th International Conference on Neural Information Processing (ICONIP 2006), Hong Kong, China, 3-6 October 2006.
[15] Moral-Escudero R, Ruiz-Torrubiano, R, Suarez, A. “Selection of optimal investment portfolios with cardinality constraints”. IEEE Congress on Evolutionary Computation (CEC 2006), Vancouver, Canada, 16-21 July 2006.
[16] Rong X, Lu M, Deng L. “Multi-period model of portfolio investment and adjustment based on hybrid genetic algorithm”. Transactions of Tianjin University, 15(6), 415-422, 2009.
[17] Guo Q, Li J, Zou C, Guo Y, Yan W. “A class of multi-period semi-variance portfolio for petroleum exploration and development”. International Journal of Systems Science, 43(10), 1883-1890, 2012.
[18] Lu Z, Wang X. “Improved portfolio optimization with non-convex and non-concave cost using genetic algorithms”. International Conference on Mechatronics Sciences, Electric Engineering and Computer (MEC 2013), Shengyang, China, 20-22 December 2013.
[19] hiangLin CY. “Applications of genetic algorithm to portfolio optimization with practical transaction constraints”. 9th Joint Conference on Information Sciences, (JCIS 2006), Kaohsiung, Taiwan, 8-11 October 2006.
[20] Aranha C, Iba, H. “The memetic tree-based genetic algorithm and its application to portfolio optimization”. Memetic Computing, 1(2), 139-151, 2009.
[21] Branke J, Scheckenbach B, Stein M, Deb K, Schmeck H. “Portfolio optimization with an envelope-based multi-objective evolutionary algorithm”. European Journal of Operational Research, 199(3), 684-693, 2009.
[22] Chang TJ, Yang SC, Chang, KJ. “Portfolio optimization problems in different risk measures using genetic algorithm”. Expert Systems with Applications, 36(7), 10529-10537, 2009.
[23] Li YF, Guo W. “The stock portfolios simulated annealing genetic algorithm based on raroc”. 2009 Chinese Control and Decision Conference (CCDC 2009), Guilin, China, 17-19 June 2009.

Table 3: Cont.

Year	Researcher(s)	Method	Evaluation approach	Initial population & size	Chromosome representation	Crossover type & rate (%)	Mutation type & rate (%)	Selection type	Survival type	Possibility (Repair or Penalty)	Termination criteria
2015	Adebisy Ayodele and Ayo Charles [41]	GDE	Weighted sum	-	-	-	-	-	-	-	-
2016	Hadi et al. [42]	GA	Pareto based	Random	Real value	-	-	-	-	-	Iteration number
2016	Mashayekhi and Omrani [43]	NSGA-II	Pareto based	Random & Binary and real value	Rec=80% Gaussian & Rm=10%	Tournament	-	Repair	-	Iteration number	

a: Number of stocks, MOEA: Multi objective evolutionary algorithm, SA: Simulated annealing, NSGA-K: Non-dominated sorting genetic algorithm, PESA: Pareto envelope-based selection algorithm, SPEA2: Strength pareto evolutionary algorithm 2, GRA: Genetic relation algorithm, PSO: Particle swarm optimization, FGA: Fuzzy genetic algorithm, GDE: Generalized differential evolution.
[24] Loukeris N, Donnelly D, Khuman A, Peng Y. "A numerical evaluation of meta-heuristic techniques in portfolio optimisation". *Operational Research, 9*(1), 81-103, 2009.

[25] Pai GAV, Michel T. "Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios". *IEEE Transactions on Evolutionary Computation, 13*(5), 1030-1053, 2009.

[26] Shaikh RA, Abbas, A. "Genetic algorithm and ms solver for portfolio optimization under exogenous influence". *2nd International Conference on Computer and Electrical Engineering (ICCEE 2009), Dubai, UAE*, 28-30 December 2009.

[27] Anagnostopoulos KP, Mamanis G. "A portfolio optimization model with three objectives and discrete variables". *Computers & Operations Research, 37*(7), 1285-1297, 2010.

[28] Ruiz-Torrubiano R, Suarez, A. "Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints". *IEEE Computational Intelligence Magazine, 5*(2), 92-107, 2010.

[29] Anagnostopoulos KP, Mamanis G. "The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms". *Expert Systems with Applications, 38*(11), 14208-14217, 2011.

[30] Anagnostopoulos KP, Mamanis, G. "Multiobjective evolutionary algorithms for complex portfolio optimization problems". *Computational Management Science, 8*(3), 259-279, 2011.

[31] Fu TC, Ng CM, Wong KW, Chung FL. "Models for portfolio management on enhancing periodic consideration and portfolio selection". *7th International Conference on Natural Computation (ICNC 2011), Shangai, China*, 26-28 July 2011.

[32] Chen Y, Mabu S, Hirasawa K. "Genetic relation algorithm with guided mutation for the large-scale portfolio optimization". *Expert Systems with Applications, 36*(4), 3353-3363, 2011.

[33] Kremml T, Kubalík J, Biff S. "Software project portfolio optimization with advanced multiobjective evolutionary algorithms". *Applied Soft Computing, 11*(1), 1416-1426, 2011.

[34] Woodside-Oriakhi M, Lucas C, Beasley JE. "Heuristic algorithms for the cardinality constrained efficient frontier". *European Journal of Operational Research, 213*(3), 538-550, 2011.

[35] Sadjadi SJ, Gharaikhani M, Safari E. "Robust optimization framework for cardinality constrained portfolio problem". *Applied Soft Computing, 12*(1), 91-99, 2012.

[36] Yi H, Yang J. "Multi-objective portfolio optimization based on fuzzy genetic algorithm". *9th International Conference on Computational Intelligence and Security (CIS 2013), Leshan, China*, 14-15 December 2013.

[37] Ackora-Prah J, Gyamerah SA, Andam PS. "A heuristic crossover for portfolio selection". *Applied Mathematical Sciences, 8*(65), 3215-3227, 2014.

[38] Joglekar S. "Two-stage stock portfolio construction: Correlation clustering and genetic optimization". *27th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2014), Pensacola Beach, USA*, 21-23 May 2014.

[39] Liagkouras K, Metaxiotis K. "A new probe guided mutation operator and its application for solving the cardinality constrained portfolio optimization problem". *Expert Systems with Applications, 41*(14), 6274-6290, 2014.

[40] Lwin K, Qu R, Kendall G. "A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization". *Applied Soft Computing, 24*, 757-772, 2014.

[41] Adebiyi Ayodele A, Ayo Charles K. "Portfolio selection problem using generalized differential evolution 3". *Applied Mathematical Sciences, 9*(41-44), 2069-2082, 2015.

[42] Hadi AS, El Naggar AA, Abdel Bary MN. "New model and method for portfolios selection". *Applied Mathematical Sciences, 10*(5-8), 263-288, 2016.

[43] Mashayekhi Z, Omrani H. "An integrated multi-objective markowitz–dea cross-efficiency model with fuzzy returns for portfolio selection problem". *Applied Soft Computing, 38*, 1-9, 2016.