High-fidelity transmission of entanglement over a high-loss freespace channel

Alessandro Fedrizzi 1, Rupert Ursin 1, Thomas Herbst 1, Matteo Nespoli 1, Robert Prevedel 1, Thomas Scheidl 1, Felix Tiefenbacher 1, Thomas Jennewein 1, and Anton Zeilinger 1, 2

1 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien, Austria

2 Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria*

Electronic address: zeilinger-office@exp.univie.ac.at

(Dated: February 13, 2009)
независимого анализатора и, кроме того, классические протоколы пост-обработки, т.е. коррекция ошибки и усиление секретности.

СХЕМА ЭКСПЕРИМЕНТА

Рисунок 1: Экспериментальная схема, использующая спутник (NASA World Wind), на Канарских островах Тенерифе и Ла Пальма. На о. Ла Пальма (слева на схеме) источник Саньяка на основе параметрической конверсии создавал узкополосные фотонные пары. Для выравнивания поляризации использовались ручные контроллеры поляризации (PCO) и вспомогательный лазерный диод (ALD). Фотонные пары передавались с помощью двух телескопов, смонтированных на врачающейся платформе, на удаленный (на расстояние 144 км) приемник (OGS), расположенный на о. Тенерифе. Платформа передающего телескопа регулировалась с помощью 532 нм сигнального лазера, связанного с OGS (BLD-B). Аналогично, приемный телескоп OGS отслеживал виртуальное положение 532 нм сигнального лазера, связанного с передатчиком (BLD-A). На OGS перекрывающиеся фотонные пучки собирались и направлялись в детектирующий модуль с помощью системы зеркал. Этот модуль состоял из кубического 50/50 светоделителя (BS), двух полуволновых пластинок (HWPA, HWPB), двух поляризационных кубических светоделителей (PBS) и четырех однофотонных кремниевых туннельных фотодиодов \(\{D^T_A, D^R_A, D^T_B, D^R_B\} \), где нижний символ обозначает поляризационный анализатор (A, B), образованный полуволновой пластинкой (A, B) и PBS, а верхний символ – соответствующий детектор (R - приемник, T-передатчик) в каждом анализаторе.
Рисунок 2: Гистограммы соответствия и соответствующие накопленные числа совпадений при измерении двух различных состояний Белла.
(a) Распределение задержки во времени для двух выходных из четырех каналов совпадения $C_{TR}(\tau)$ и $C_{TT}(\tau)$ между детекторами $D_A^T-D_B^R$ (верх) и $D_A^T-D_B^R$ (низ) для $|\Psi^\rightarrow\rangle$-состояния (черная линия) и $|\Psi^+\rangle$-состояния (пунктирная красная линия). Волновые пластинки HWP_A и HWP_B анализатора в детектирующем модуле были настроены на $(\pi/8, \pi/8)$. Для каждой комбинации детектирования имели место два пика совпадений при ± 50 нс, что уверенно отличает их от случайного фона.
(b) Счетчики суммарного соответствия и пуассоновские стандартные отклонения для всех четырех релевантных каналов совпадения с интегрированием во временном окне 1.25 нс с центровкой на положение пиков. Они показывают различные сигнатуры для $|\Psi^\rightarrow\rangle$ (верх) и $|\Psi^+\rangle$ (низ). Полностью закрашенные столбцы показывают совместные результаты четырех соответствующих комбинаций детекторов, необходимых для полной характеристики состояния. Защитрихованные столбцы показывают идеальные значения ожидания. Полное время для каждого измерения составляло 900 секунд.

Ссылки
[1] N. Gisin and R. Thew, Nat Photon 1, 165 (2007).
[2] H. Takesue, S. W. Nam, Q. Zhang, R. H. Had_eld, T. Honjo, K. Tamaki, and Y. Yamamoto, Nature Photonics 1, 343 (2007).
[3] H. Hübel, M. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, Optics Express 15, 7853 (2007).
[4] T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, Optics Express 15, 13957 (2007).
[5] Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, M. M. Fejer, and Y. Yamamoto, Optics Express 15, 10288 (2007).
[6] M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger, Selected Topics in Quantum Electronics, IEEE Journal of 9, 1541 (2003).
[7] C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, Nature 419, 450 (2002).
[8] W. Buttler, R. Hughes, S. Lamoreaux, G. Morgan, J. Nordholt, and C. Peterson, Physical Review Letters 84, 5652 (2000).
[9] J. G. Rarity, P. R. Tapster, and P. M. Gorman, Journal of Modern Optics 48, 1887 (2001).
[10] J. Bienfang, A. Gross, A. Mink, B. Hershman, A. Nakassis, X. Tang, R. Lu, D. Su, C. Clark, C. Williams, et al., Optics Express 12, 2011 (2004).
[11] M. Aspelmeyer, H. R. Böhm, T. Gyahtso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, et al., Science 301, 621 (2003).
[12] C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, et al., Physical Review Letters 94, 150501 (2005).
[13] K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, et al., Optics Express 13, 202 (2005).
[14] I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, Applied Physics Letters 89, 101122 (2006).
[15] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, et al., Nature Physics 3, 481 (2007).
[16] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Physical Review Letters 23, 880 (1969).
[17] K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Physical Review Letters 76, 4656 (1996).
[18] J. W. Pan, S. Gasparoni, R. Ursin, G. Weis, and A. Zeilinger, Nature 423, 417 (2003).
[19] D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, 2001).
[20] J. Boileau, D. Gottesman, R. Laammme, D. Poulin, and R. Spekkens, Physical Review Letters 92, 17901 (2004).
[21] X. Ma, C. Fung, and H. Lo, Physical Review A 76, 12307 (2007).
[22] T. Kim, M. Fiorentino, and F. Wong, Physical Review A 73, 12316 (2006).
[23] A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, Opt. Express 15, 15377 (2007).
[24] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, et al., Physical Review Letters 98, 10504 (2007).
[25] C. H. Bennett, G. Brassard, and N. D. Mermin, Physical Review Letters 68, 557 (1992).