Challenges of diagnostic exome sequencing in an inbred founder population

Dimitar N. Azmanov1,a, Teodora Chamova2,a, Rick Tankard3, Vladimir Gelev4, Michael Bynevelt5,6, Laura Florez1, Dochka Tzoneva7, Dora Zlatareva8, Velina Guergueltcheva2, Melanie Bahlo3,9, Ivailo Tournev2,10,a & Luba Kalaydjieva1,a

1Laboratory for Molecular Genetics, Centre for Medical Research/Western Australian Institute for Medical Research, The University of Western Australia, Perth, WA, Australia
2Department of Neurology, Medical University, Sofia, Bulgaria
3Bioinformatics Division, The Walter and Eliza Hall Institute, Melbourne, VIC, Australia
4Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
5Department of Surgery, School of Medicine, The University of Western Australia, Perth, WA, Australia
6Neurological Intervention and Imaging Service (WA), Sir Charles Gairdner Hospital, Perth, WA, Australia
7Department of Anesthesiology and Intensive Care, University Hospital “Alexandrovska”, Sofia, Bulgaria
8Department of Diagnostic Imaging, University Hospital “Alexandrovska”, Sofia, Bulgaria
9Department of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
10Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria

Abstract

Exome sequencing was used as a diagnostic tool in a Roma/Gypsy family with three subjects (one deceased) affected by lissencephaly with cerebellar hypoplasia (LCH), a clinically and genetically heterogeneous diagnostic category. Data analysis identified high levels of unreported inbreeding, with multiple rare/novel “deleterious” variants occurring in the homozygous state in the affected individuals. Step-wise filtering was facilitated by the inclusion of parental samples in the analysis and the availability of ethnically matched control exome data. We identified a novel mutation, p.Asp487Tyr, in the VLDLR gene involved in the Reelin developmental pathway and associated with a rare form of LCH, the Dysequilibrium Syndrome. p.Asp487Tyr is the third reported missense mutation in this gene and the first example of a change affecting directly the functionally crucial β-propeller domain. An unexpected additional finding was a second unique mutation (p.Asn494His) with high scores of predicted pathogenicity in KCNV2, a gene implicated in a rare eye disorder, retinal cone dystrophy type 3B. This result raised diagnostic and counseling challenges that could be resolved through mutation screening of a large panel of healthy population controls. The strategy and findings of this study may inform the search for new disease mutations in the largest European genetic isolate.
A Roma/Gypsy family with three subjects (one deceased) (Fig. S1) affected by a defect in brain development was referred for diagnostic investigations. The clinical features (Table S1) included global developmental delay, moderate to severe intellectual deficit, nonprogressive severe truncal ataxia, dysarthric speech, gaze-evoked nystagmus, mild intention tremor, and pyramidal signs. Neuroimaging (Fig. S2) showed global small brain, ponsopontocerebellar hypoplasia, and mild to moderate cortical thickening with gyral simplification more pronounced in the frontal and temporal regions. The phenotype was classified broadly as lissencephaly with cerebellar hypoplasia (LCH), a heterogeneous diagnostic category of cortical malformations where some patients have defects in the Reelin neuronal migration pathway but a significant proportion of cases remain unexplained (reviewed in Ross et al. 2001; Barkovich 2012). LCH genetic heterogeneity prompted us to choose exome sequencing as an efficient diagnostic approach. The analysis included the two living patients and one set of parents (Fig. S1). Written informed consent was obtained from the parents; the study complies with the ethical guidelines of the institutions involved.

Exome capture (Illumina TrueSeq) and sequencing (Illumina HiSeq 2000, Illumina Inc., San Diego, CA) were performed by Axeq Technologies (Seoul, South Korea). After initial quality control, data analysis included alignment to the hg19 reference genome (Li and Durbin 2009), variant calling in SAMtools (Li et al. 2009) using default parameters, and identification of variants in dbSNP135 (http://www.ncbi.nlm.nih.gov/projects/SNP/). Variants were annotated using ANNOVAR (Wang et al. 2010) version 23 October 2012, and ANNOVAR-formatted databases based on the UCSC Known Gene (“hg19_knownGene”), the 1000 Genomes project (http://www.1000genomes.org/) (“hg19_ALLsites.2012_02”), and the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/; “hg19_esp6500_all”). From the exome sequencing data, a set of 5521 polymorphic markers (intermarker distance ≥ 0.15 cM, in approximate linkage equilibrium, average heterozygosity 0.42) were extracted (Smith et al. 2011) and used to estimate inbreeding coefficients (Leutenegger et al. 2003). The search for the disease-causing mutation focused on rare variants (<1% in public databases) including nonsense, exonic indels, affecting splicing sites, and missense variants predicted to be deleterious by PolyPhen2 (Adzhubei et al. 2010) (ANNOVAR database “hg19_ljb_pph2”) and SIFT (Ng and Henikoff 2001) (ANNOVAR database “hg19_avsift”).
Figure 1. Two unique missense variants identified by exome sequencing in the affected family. (a) Integrative Genomics Viewer snapshot of the short reads alignment from the exome sequencing (upper panel) and confirmatory Sanger sequencing (lower panel); left G>T (hg19 chr9:2645720) in \textit{VLDLR}, right A>C (hg19 chr9:2729569) in \textit{KCNV2}. (B, C) UCSC and Multalin (Corpet 1988) analysis of the evolutionary conservation of \textit{VLDLR} Asp487 (b) and \textit{KCNV2} Asn494 (c) interspecies (upper panel) and protein family members (lower panel) comparisons. The \textit{VLDLR} mutation affects a strictly conserved amino acid residue in the consensus repeat motif of the second blade in the \textit{\beta}-propeller structure of the protein. The deleteriousness prediction scores in PolyPhen-2 equaled 1.00 for both mutations; SIFT scores were 0.00 for the \textit{VLDLR} and 0.05 for the \textit{KCNV2} change. \textit{VLDLR}, very low-density lipoprotein receptor; UCSC, University of California, Santa Cruz, genome browser; SIFT, sorting intolerant from tolerant algorithm.
release and receptor recycling in the closely related LDL receptor (Rudenko et al. 2002; Beglova and Blacklow 2005). The pathogenic effect may involve protein misfolding and impaired trafficking, as proposed for another VLDLR mutation, p.Asp521His (Boycott et al. 2009) or, alternatively, may interfere with ligand dissociation upon internalization (Fig. 2).

In contrast to the VLDLR mutation, which was an obvious candidate accounting for the brain malformation and ensuing phenotype, the KCNV2 change was an unexpected finding of unknown clinical significance and counseling implications. Retinal cone dystrophy type 3B is a slowly progressing disorder of variable severity, whose diagnosis relies on specific electroretinographic findings (Robson et al. 2010). The sustained cooperation required during electroretinography was unachievable in our patients in view of their mental retardation, and no relevant information could be obtained from the care providers, leading us to resort to mutation screening in ethnically matched controls as the feasible approach to plausibility assessment. A panel of healthy Roma controls from a range of subisolates (Kalaydjieva et al. 2005) was tested using custom-designed TaqMan® SNP Genotyping Assays (Applied Biosystems, Mulgrave, VIC, Australia) (Table S2). The VLDLR p.Asp487Tyr variant was not detected in 566 control subjects, suggesting that it is a private mutation confined to this consanguineous family. By contrast, the KCNV2 variant was very common across subisolates, with 101 carriers (14%) and 8 homozygotes (1.1%) identified among 721 controls. This unusually high frequency, with an improbable prevalence of ~1/100 of presumably affected individuals (under the assumption of complete penetrance) indicated that, contrary to bioinformatics predictions, the KCNV2 change was a polymorphism, not a pathogenic mutation.

The population genetic characteristics of the Roma population, with strong founder effects, genetic drift, and limited diversity, have been described in previous studies.
(reviewed in Kalaydjieva et al. 2005). What has become apparent from recent exome sequencing data is a surprisingly high level of inbreeding (this study and Guergueltcheva et al. 2012) that could be due to unrecognized consanguinity and the cumulative effects of historical endogamy and small population size. As a result, Roma exomes present with a large absolute number and proportion of all high quality exome variants per individual of homozygous “deleterious” variants, significantly in excess of the proportion observed in outbred Caucasian samples available in-house (one sided t-test, unequal variance, \(P = 4e^{-6}, \text{df} = 4.548 \) (Table S3). The findings emphasize the need for custom-designed family- and population-based approaches to diagnostic exome sequencing in inbred founder populations. In our study, filtering out the plethora of “candidate mutations” was made possible by the inclusion of parental data and comparison to other Roma exomes. The additional challenge of a second unique “pathogenic” mutation, not found in over 6500 exomes in public databases, would have remained unresolved if population-specific data were unobtainable or ambiguous, highlighting the medical and ethical dilemmas in this type of analyses and the need for ethnically matched controls, as well as for further improvement of bioinformatics predictions.

Acknowledgments

We are grateful to the affected family and control individuals participating in this study. D. N. A. is supported by NHMRC Training Fellowship 634551. The study of D. N. A., L. F., and L. K. is supported by Medical and Health Research Infrastructure Fund, Western Australia and by the Western Australian Institute for Medical Research. M. B. is supported by Australian Research Council Future Fellowship FT100100764 and NHMRC Program Grant 490037. The study of M. B. and R. T. is supported by Victorian State Government Operational Infrastructure Support and the Australian Government NHMRC Independent Research Institute Infrastructure Support Scheme.

Conflict of Interest

None declared.

References

Adzhubei, I. A., S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7:248–249.

Ali, B. R., J. L. Silhavy, M. J. Gleeson, J. G. Gleeson, and L. Al-Gazali. 2012. A missense founder mutation in VLDLR is associated with Dysequilibrium Syndrome without quadrapedal locomotion. BMC Med. Genet. 13:80.

Barkovich, A. J. 2012. Developmental disorders of the midbrain and hindbrain. Front. Neuroanat. 6:7.

Beglová, N., and S. C. Blacklow. 2005. The LDL receptor: how acid pulls the trigger. Trends Biochem. Sci. 30:309–317.

Boycott, K. M., C. Bonnemann, J. Herz, S. Neuert, C. Beaulieu, J. N. Scott, et al. 2009. Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J. Child Neurol. 24:1310–1315.

Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16:10881–10890.

D’Arcangelo, G., G. G. Miao, S. C. Chen, H. D. Soares, J. I. Morgan, and T. Curran. 1995. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.

D’Arcangelo, G., R. Homayouni, L. Keshvara, D. S. Rice, M. Sheldon, and T. Curran. 1999. Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479.

Duit, S., H. Mayer, S. M. Blake, W. J. Schneider, and J. Nimpf. 2010. Differential functions of ApoER2 and very low density lipoprotein receptor in Reelin signaling depend on differential sorting of the receptors. J. Biol. Chem. 285:4896–4908.

Guergueltcheva, V., D. N. Azmanov, D. Angelicheva, K. R. Smith, T. Chamova, L. Florez, et al. 2012. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am. J. Hum. Genet. 91:553–564.

Kalaydjieva, L., B. Morar, R. Chaix, and H. Tang. 2005. A newly discovered founder population: the Roma/Gypsies. Bioessays 27:1084–1094.

Kolb, L. E., Z. Arlier, C. Yalcinkaya, A. K. Ozturk, J. A. Moliterno, O. Erturk, et al. 2010. Novel VLDLR microdeletion identified in two Turkish siblings with pachygyria and pontocerebellar atrophy. Neurogenetics 11:319–325.

Leutenegger, A. L., B. Prum, E. Genin, C. Verny, A. Lemaïnque, F. Clerget-Darpoux, et al. 2003. Estimation of the inbreeding coefficient through use of genomic data. Am. J. Hum. Genet. 73:516–523.

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

Ng, P. C., and S. Henikoff. 2001. Predicting deleterious amino acid substitutions. Genome Res. 11:863–874.

Reddy, S. S., T. E. Connor, E. J. Weeber, and W. Rebeck. 2011. Similarities and differences in structure, expression, and functions of VLDLR and ApoER2. Mol. Neurodegener. 6:30.
Robson, A. G., A. R. Webster, M. Michaelides, S. M. Downes, J. A. Cowing, D. M. Hunt, et al. 2010. “Cone dystrophy with supernormal rod electroretinogram”: a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology. Retina 30:51–62.

Ross, M. E., K. Swanson, and W. B. Dobyns. 2001. Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics 32:256–263.

Rudenko, G., L. Henry, K. Henderson, K. Ichtchenko, M. S. Brown, J. L. Goldstein, et al. 2002. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298:2353–2358.

Smith, K. R., C. J. Bromhead, M. S. Hildebrand, A. E. Shearer, P. J. Lockhart, H. Najmabadi, et al. 2011. Reducing the exome search space for mendelian diseases using genetic linkage analysis of exome genotypes. Genome Biol. 12:R85.

Trommsdorff, M., M. Gotthardt, T. Hiesberger, J. Shelton, W. Stockinger, J. Nimpf, et al. 1999. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701.

Wang, K., M. Li, and H. Hakonarson. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Pedigree affected by lissencephaly with cerebellar hypoplasia. The family belonged to a young, strictly endogamous Roma/Gypsy subisolate structured into multiple small clans (Kalaydjieva et al. 2005). The family reported a single consanguineous marriage at 3rd cousin level, between II-3 and II-4 (not shown), in contrast to the high inbreeding coefficients estimated using FEstim and SNPs extracted from the exome sequencing data: 0.038 (I-1), 0.062 (I-2), 0.05 (II-2), and 0.057 (III-1). Exome sequencing identified two unique variants, in VLDLR and KCNV2, that satisfied all filtering criteria.

Figure S2. Brain MRI (magnetic resonance imaging) of subject II-2. (A) Sagittal T1W and (B) Coronal T1 Inversion recovery demonstrating marked cerebellar hypoplasia, particularly affecting the inferior hemispheres and vermis as a whole. The pons is also notably small. (C) Axial T2W showing mild to moderate cortical thickening (pachgyria) with simplification of the gyral architectural folding.

Figure S3. Step-wise filtering of the variants identified by exome sequencing in the affected individuals. The search for the disease mutation was based on the assumption of a rare/unique variant homozygous in both patients, heterozygous in the parents, and not homozygous in 25 Roma exomes available in-house. *Primary quality control retained for further analysis variants with quality scores ≥20 and coverage ≥4×, excluding changes located in segmental duplications and simple repeats; ^Variants defined as deleterious included nonsynonymous amino acid substitutions with a Polyphen2 score >0.8 and SIFT score ≤0.05, splice-site (±15 nucleotides), nonsense and nonstop changes, as well as small in-frame or frameshift insertion/deletions.

Table S1. Clinical and neuroimaging findings in the affected subjects.

Table S2. Primers, PCR conditions, and TaqMan® probes used in the analysis of VLDLR c.1459G>T and KCNV2 c.1480A>C. (A) Primers and PCR conditions for fragment amplification and Sanger sequencing. (B) TaqMan® assay primers and probes used in the population screening.

Table S3. (A) Proportion of homozygous “deleterious” variants relative to all high-quality variants observed in individuals from the Roma family studied and in 28 outbred exomes after filtering. (B) Boxplot of homozygous “deleterious” variants relative to all high-quality variants observed in individuals from the Roma family studied and in 28 outbred exomes after filtering. The circle represents an outlier, as determined by the “boxplot” function in the statistical software R (http://www.r-project.org/).
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Azmanov, DN; Chamova, T; Tankard, R; Gelev, V; Bynevelt, M; Florez, L; Tzoneva, D; Zlatareva, D; Guergueltcheva, V; Bahlo, M; Tournev, I; Kalaydjieva, L

Title:
Challenges of diagnostic exome sequencing in an inbred founder population.

Date:
2013-07

Citation:
Azmanov, D. N., Chamova, T., Tankard, R., Gelev, V., Bynevelt, M., Florez, L., Tzoneva, D., Zlatareva, D., Guergueltcheva, V., Bahlo, M., Tournev, I. & Kalaydjieva, L. (2013). Challenges of diagnostic exome sequencing in an inbred founder population.. Mol Genet Genomic Med, 1 (2), pp.71-76. https://doi.org/10.1002/mgg3.7.

Persistent Link:
http://hdl.handle.net/11343/258096

File Description:
Published version

License:
CC BY