A Vietnamese Dialog Act Corpus Based on ISO 24617-2 Standard

Thi-Lan Ngo¹,², Khac Linh Pham², Hiadeki Takeda³
¹University of Information and Communication Technology (ICTU), Thainguyen Vietnam
²University of Engineering and Technology (UET-VNU), Hanoi Vietnam
³National Institute of Informatics (NII), Tokyo Japan
ntl@ictu.edu.vn, 15021790@vnu.edu.vn, takeda@nii.ac.jp

Abstract
The voice-based human-machine interaction systems such as personal virtual assistants, chat-bots, and contact centers are becoming increasingly popular. In this trend, conversation mining research also is getting the attention of many researchers. Standardized data play an important role in conversation mining. In this paper, we present a new Vietnamese corpus annotated for dialog acts using the ISO 24617-2 standard (2012), for emotions using Ekman’s six primitives (1972), and for sentiment using the tags “positive”, “negative” and “neutral”. Emotion and sentiment are tagged at functional segment level. We show how the corpus is constructed and provide a brief statistical description of the data. This is the first Vietnamese dialog act corpus.

Keywords: Vietnamese corpus, dialog act corpus, ISO 24617–2 standard, conversational mining.

1. Introduction
In recent years, an extremely rapid progress in speech processing and recognition technology has led the emergence of voice-based human-machine interaction systems such as mobile virtual assistants, automatic contact centres, and chat-bots. These applications accommodate different purposes but they all need the ability to understand conversations while interacting with the user. Therefore, with the development trend of intelligent systems using the conversational interface, studies on conversation mining such as conversation structure analysis, conversation topic modelling, user intent understanding, and user emotion or satisfaction identification have attracted the attention of many researchers. In these research, standardized dialog act corpora are the foundation. It is widely accepted that dialog act annotation is very valuable in further understanding of interaction structure, and in the design of artificial spoken or text dialogue [Wrede and Shriberg, 2003; Stolcke et al., 2006]. There were several dialog act corpora available to the research community like as TRAINS [Traum, 1996], VERBMOBIL [Alexanderson et al., 1993], SWBD-DAMSL [Jurafsky et al., 1997], MRDA [Shriberg et al., 2004], AMI [McCowan et al., 2005] and so on. However, different corpora often apply a different scheme or modifying the existing scheme for dialog act annotation to serve task-specific needs. This creates a hardship in comparison of results and conclusions obtained when using different approaches due to a wide scatter of data in terms of the used annotation. Currently, ISO 24617-2 standard [ISO, 2012] is seen as “lingua franca” for dialog data in terms of the used annotation. Currently, ISO 24617-2 standard (2012) is for emotions using Ekman’s six primitives (1972), and for sentiment using the tags “positive”, “negative” and “neutral”. The differences between our work and the previous studies is that:

- First, this is the first dialog act corpus for Vietnamese. Our corpus is not only annotated all labels, dimensions, relation defined in the ISO 24617–2 standard but also annotated meta information such as gender, the dialect of participants.
- Second, this is the first corpus ever that annotate emotion, sentiment at functional segment level. The earlier corpora on emotion analysis and sentiment analysis only annotate at a sentence, turn or document level.
- Third, we create a Vietnamese dialect dictionary for Vietnamese automatic dialect/accent detection in spoken conversation systems.

To build the corpus, we use IARPA Babel Vietnamese Language Pack IARPA-babel107b-v0.7 (IARPA-babel107b Andrus, Tony, et al. 2017). A brief description of IARPA-babel107b is presented in Subsection 4.2. The process of our corpus annotation is shown in Figure 1 and detailed in Section 2. Subsection 2.2 presents the segmentation of turns in our corpus into a Functional segment. In Subsection 2.3, we introduce Vietnamese dialog act annotation based on the ISO 24617-2 standard. Subsection 2.4 describes emotion and sentiment tagging. Finally is the conclusion part of the plan for future developments of our corpus.

2. Corpus and Annotation
2.1. Dataset pre–processing
We select transcripts of Vietnamese conversations obtained by an automatic speech recognition (ASR) in the IARPA (Intelligence Advanced Research Projects Activity) Babel program for data annotation. IARPA Data is published in
IARPA-babel107b on LDC \[1\] IARPA–babel107b has about 201 hours of Vietnamese conversational and scripted telephone speech with corresponding transcripts. The data is spoken in the North, Central and Southern dialect regions in Vietnam. We randomly select 28 dialogues in this dataset with any topic where the number of dialogue with each dialect regions is balanced to build our dialog act corpus.

Data in IARPA–babel107b is made in style in which a conversation between two persons includes an inline audio file with an inline text file (corresponding transcript of the inline audio file) and an outline audio file with an outline text file (corresponding transcript of the outline audio file). We make conversational texts from the inline texts and outline texts. After that, we review the conversation texts to rearrange it to the correct order of turns in the conversation using audio files. Error words from the results of ASR are retained. There are 1823 from error words in total 23803 words (the word error rate is 7.66% WER). We also note the meta information of our data including dialect regions and gender of participants, call time, duration of the phone calls, the number of turns in a conversation (Table \[2\]).

In the pre-processing stage, we build a Vietnamese dialect dictionary includes 167 distinct Southern Vietnam dialect words, 55 distinct Central Vietnam dialect words and their translation to the “standard” North Vietnam dialect. It is useful for automatic dialect/accents detection in spoken document retrieval systems. In human-machine interaction, it can help the system understand and communicate with users better. Instead of using the standard North Vietnamese dialect words for every machine, a friendly conversation interface application can detect the user’s dialect then use that dialect to communicate with the user.

The segmentation and annotated process have done by two persons. The inter-annotator agreement score is computed by Fleiss kappa measure \[Fleiss and Cohen, 1973\].

2.2. Segmentation

Turns of conversation texts are segmented into functional segment (FS) unit, i.e., “minimal stretch of communicative behaviour that has one or more communicative functions” according to ISO 24617-2 standard. Our corpus has 28 dialogues, 2273 turns and 5065 functional segments. On average, each dialogue has 81.2 turns, 178.9 functional segments and each turn contain an average of 2.2 functional segments. The agreement score of the segmentation process is 0.62 Fleiss kappa measure.

2.3. Dialog Act Annotation based on ISO 24617-2

The ISO standard is amalgamated contributions from pre-existing schemes, and is multi-functional and multi-dimensional - several communication acts can apply to stretches within the same contribution to the conversation of a participant. The ISO scheme see a dialogue act under 8 components, includes: (1) a sender; (2) one or more addressees; (3) a communicative function; (4) a semantic content; (5) a dimension; (6) functional dependence relations; (7) feedback dependence relations; and (8) rhetorical relations. In the dialog act annotation step, we annotated dimensions and dialog act for FSs. It contains 57 dialog acts in 9 dimensions: task, auto-feedback, allo-feedback, time management functions, turn management, discourse structuring, own communication own communication management, partner communication management, and social obligation management. An example of dimensions, function and relationship between dialog act are shown in Table \[5\].

The agreement scores of our Dialog Act annotation process is 0.76 Fleiss kappa measure. The proportion of dialogue acts in different dimensions in Table \[2\] shows that there is not much difference between in Vietnamese dialogues and English dialogues.

2.4. Qualifier

Our objective is to create an annotated corpus that will be base resources for future researches in Vietnamese dialogue/conversation mining, namely such as suggestion mining, emotion mining, sentiment mining, request mining, argument mining. In this corpus, we label sentiment at functional segments level into 3 categories: positive, negative, neutral. The agreement scores of our sentiment annotation process is 0.85 Fleiss kappa measure.

Also in this corpus, we annotate emotions at functional segments level according to the Ekman’s (1972) list of basic emotions includes joy, sadness, surprise, anger, fear and disgust. We use none label for a FS does not express emotion. There are many different taxonomy for labeling the emotion, but we use Ekman’s because it is used widely, is popular among researchers and simple enough to add into
Table 1: Information of Dialogues in ViDA corpus

STT	Dialogue	Participant 1	Participant 2	Number of Turns		
		Dialect	Gener	Dialect	Gener	
1	D01,121544	North	female	Central	male	112
2	D02,013915	North	male	North	male	88
3	D03,222039	Central	female	Central	female	77
4	D04,002213	North	female	North	female	109
5	D05,165823	North	female	North	male	79
6	D06,200633	South	male	South	female	62
7	D07,225133	North	male	North	male	83
8	D08,162435	Central	female	Central	female	10
9	D09,203451	North	female	North	male	73
10	D10,202308	North	female	North	male	42
11	D13,183537	North	male	North	male	94
12	D14,014233	Central	male	Central	female	46
13	D15,182837	North	female	North	female	111
14	D16,202407	South	male	North	female	90
15	D17,023815	South	female	North	female	150
16	D18,160344	Central	male	Central	female	8
17	D19,162645	South	male	North	female	13
18	D20,151856	North	male	North	male	191
19	D22,005928	Central	female	Central	female	19
20	D24,130313	North	male	North	female	136
21	D26,120203	North	male	North	male	33
22	D27,223011	South	female	South	male	129
23	D28,003504	South	male	South	female	106
24	D29,134735	South	male	South	female	85
25	D39,173220	South	male	South	male	154
26	D47,192712	North	female	North	female	54
27	D51,002706	Central	male	Central	female	72
28	D53,010928	North	male	North	male	48

Table 2: Distribution of dialog acts in the ViDA corpus

Dimension	Number	Percent
task	3137	60.72%
autoFeedback	801	15.51%
alloFeedback	19	0.37%
turnManagement	533	10.32%
timeManagement	353	6.83%
discourseStructuring	186	3.60%
ownCommunicationManagement	100	1.94%
partnerCommunicationManagement	24	0.46%
socialObligationsManagement	13	0.25%

Table 3: Distribution of sentiment in the ViDA corpus

Sentiment	Count	Percentage
positive	489	9.76%
negative	655	13.07%
neutral	3866	77.17%

Table 4: The distribution of emotion in ViDA corpus

Emotion	Count	Percentage
anger	205	4.09%
disgust	126	2.51%
fear	129	2.57%
joy	383	7.65%
sadness	313	6.25%
surprise	358	7.15%
none	3496	69.78%

The ISO dialog act schema. The agreement scores of our emotion annotation process is 0.82 Fleiss kappa measure. Sentiment and emotion annotation at FS level has many advantages in sentiment and emotion analysis field compared to other levels. Previous studies in this field usually performed at the sentence/turn level or document level. A sentence can carry more than one emotions or sentiments. A complex sentence can include many different parts that convey context information like emotion/sentiment cause, emotion/sentiment condition. Emotion/Sentiment annotation of FS, the smallest part of sentence/turn that has the meaningful communicative function, will help us to understand emotions/sentiment more concretely. Also, because FS tend to be much shorter than turn/sentence/document, the sentiment and emotion classification at FS level can be much easier and be able to achieve higher accuracy. For example, a sentence "I was very surprised at first then started feeling sad about the results" expresses both surprise and...
sadness. We can emotion analysis of the first FS “I was very surprised at first” separate with the second FS “then started feeling sad about the results” easier than all the sentence. Similarity, it can help to extract the context part of emotion with emotion parts in a sentence “I was happy yesterday because it was my 5-year wedding anniversary. I would be excited if he gave me a small gift but he forgot it made me very sad”.

3. Conclusion

Vietnamese is a very low-resource language. With the number of almost 100 millions speakers around the world (one of the most most spoken language) and the fast growing economy, the demand for Vietnamese standardized resource is greater than ever. Our corpus is aim to provide a first base resource for a variety of potential researches in Vietnamese natural language processing: mining suggestion, request, emotion, sentiment, argument in conversation, dialogue; Vietnamese dialog act identification; detection of user’s gender, dialect. In the future, we intend to increase the size of our corpus and study deeper into the specific approaches of the these potential researches. We also intend to integrate them into real application such as personality virtual assistants, chat bots, contact center.

4. References

Alexandersson, J., Buschbeck-Wolf, B., Fujinami, T., Kipp, M., Koch, S., Maier, E., Reithinger, N., Schmitz, B., and Siegel, M. (1998). Dialogue acts in Verbmobil 2. DFKI Saarbrücken.
Amanova, D., Petukhova, V., and Klakow, D. (2016). Creating annotated dialogue resources: Cross-domain dialogue act classification. Inform, 26(11.5):36–0.
Andrus, Tony, et al. (2017). IARPA Babel Vietnamese Language Pack IARPA-babel107b-v0.7 LDC2017S01. IARPA (Intelligence Advanced Research Projects Activity) Babel program, distributed via LDC, ISLRN 401-277-958-467-7.
Bunt, H., Alexandersson, J., Choe, J.-W., Fang, A. C., Hasida, K., Petukhova, V., Popescu-Belis, A., and Traum, D. R. (2012). Iso 24617-2: A semantically-based standard for dialogue annotation. In LREC, pages 430–437.
Bunt, H. (2009). The dit++ taxonomy for functional dialogue markup. In AAMAS 2009 Workshop, pages 13–24.
Chowdhury, S. A., Stepanov, E. A., and Riccardi, G. (2016). Transfer of corpus-specific dialogue act annotation to iso standard: Is it worth it? In LREC.
Ekman, P. (1972). Universal and cultural differences in facial expression of emotion. In LREC’12, page 207283. Nebraska Symposium on Motivation.
Fleiss, J. L. and Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and psychological measurement, 33(3):613–619.
ISO. (2012). ISO 24617–2: 2012 – Language resource management – Semantic annotation framework (SemAF) - Part 2: Dialog acts. Geneva, Swizerland: International Organization for Standardization, ISLRN 401-277-958-467-7.
Table 5: Example of dialog act, emotion and sentiment annotation on ViDA

Speaker	Turn transcription	ID	FS	Dimension:function (relationship)»emotion »[sentiment]
S	Alo chào anh ạ (Alo Hi you)	da1	alo	discourseStructuring: opening
		da2	chào anh ạ (Hi you)	socialObligationsManagement: initialGreeting
A	à chào em em đào ngây khỏe không (ah hi you how are you)	da3, da4	à (ah)	autoFeedback: autoPositive (fe:da2) discourseStructuring: opening
		da5	chào em (hi you)	socialObligationsManagement: returnGreeting (fu:da2)
		da6	em đào ngây khỏe không (are you fine)	task:propositionalQuestion
S	<laugh >em khỏe lắm tháng sau ra sài gòn <breath >anh - em hứa sẽ ra thăm anh (<laugh >I’m good I’m going to Saigon next month <breath >you - I promise I will come to visit you)	da7, da8	<laugh >	turnManagement:turntake timeManagement:stalling «joy »
	da9			task:answer (fu:da6)
	da10			task:inform
	da11, da12		<breath >	turnManagement:turnKeep timeManagement:stalling
	da13			ownCommunicationManagement:retraction
	da14, da15			ownCommunicationManagement:selfCorrection (fu:da13) task: promise