A decade of trends in the distribution and antimicrobial susceptibility of prevalent uropathogens among pediatric patients from Tehran, Iran during 2005–2016

Ali Reza Nateghian a, Sina Karaji b, Khosrow Zamani c,d,*

a Ali Asghar Clinical Research Development Center (AACRDC), Ali Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
b General PractitionerAli Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
c Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
d Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Received 5 November 2019; received in revised form 3 March 2020; accepted 7 March 2020
Available online 29 May 2020

Abstract Objectives: To determine changes in the distribution of uropathogens and their antimicrobial resistance in pediatric patients in a children’s hospital from 2005 to 2016.
Methods: A cross-sectional analysis of uropathogens and their antimicrobial resistance within inpatient children was performed over the 11-year period, 2005 to 2016, in Ali Asghar children’s hospital. The rate of antibiotic resistance among patients was evaluated according to demographic data including age, sex, urinary tract abnormalities and history of antibiotic consumption.
Results: In total, 958 female and 349 male positive cultures were analyzed. Escherichia coli (E. coli) (77.6%) was the most common causative agent of urinary tract infection (UTI) in children and Klebsiella pneumoniae (10.4%), Pseudomonas aeruginosa (2.4%), and Enterococcus spp (2.4%) were less frequent isolated bacteria. The resistance rates of E. coli isolates were increased against amikacin, ceftriaxone, ceftazidime, ciprofloxacin, cotrimoxazole and imipenem from 2005 to 2010. However, we observed a decreasing trend for some of antibiotics including amikacin, gentamicin, imipenem, ceftazidime and cotrimoxazole during 2014–2016. The rate of antibiotic resistance was greater in boys than in girls against many antibiotics. The rate of resistance to amikacin, gentamicin, nitrofurantoin and cotrimoxazole in patients aged <1 year was higher than other age groups (p<0.001). A higher antibiotic resistance rate was observed in patients with anatomical abnormality and those who have had a history of antibiotic consumption.

* Corresponding author. Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
E-mail address: zamanikh@yahoo.com (K. Zamani).
Peer review under responsibility of Second Military Medical University.

https://doi.org/10.1016/j.ajur.2020.05.008
2214-3882/© 2021 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urinary tract infections (UTIs) are the most common infection in the pediatric population, and a common cause of hospitalization in infancy and childhood [1,2]. UTIs are significantly caused by Gram-negative bacteria such as Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae), but Gram-positive pathogens (e.g., Staphylococcus saprophyticus and Enterococcus faecalis) may also be involved [3–5]. The disease severity and outcome of UTI can also differ significantly, and are related to various factors, including gender, age, the genetic and susceptibility of the host, type of causative organism, response to antibiotic therapy, the pattern of antibiotic resistance, and the clinical management of the patient [6,7]. Whereas, UTI clinical manifestations in neonate and children are nonspecific presentations [8]. For this reason, it should be done promptly urine analysis, culture and antimicrobial susceptibility testing on urine specimens that all of these can be an aid in the diagnosis of UTI. Furthermore, there is increasing prevalence of multidrug-resistant (MDR) organisms in pediatric hospitals, with particular concern for emerging resistance to broad-spectrum cephalosporins and carbapenems [9,10]. Although international guidelines provided empiric treatment recommendations, these empiric recommendations should be modified by specialists and microbiologists in any hospitals for bacterial infections [11]. Since we found no comprehensive study on antimicrobial resistance in this setting. Awareness and understanding of local antimicrobial resistance patterns are important for antibiotic stewardship and initiating empiric antibiotic therapy. In this study, we evaluated the frequency of uropathogens and their susceptibility to tested antibiotics over a 10-year period as well as effective factors in the incidence of UTI and antimicrobial resistance in Ali Asghar children’s hospital.

2. Material and methods

2.1. Study design and setting

The study was performed at the Ali Asghar children’s hospital, Tehran, Iran, the pediatric center in the northern end of Tehran. The source of extracted data was the hospital records of the patients regarding age, sex, date, method of urine sample collection, urine culture results, presence of urinary tract anomalies, previous antibiotic consumption and antibiogram results. The latter routinely was based on the report of the laboratory unit of Ali Asghar children’s hospital which reports antibiogram by a semi-quantitative approach based on disk diffusion method, and the available laboratory guidelines.

2.2. Inclusion criteria

In the current study, we designed a study population using simple non-random sampling to recruit all cases with the diagnosis of UTI admitted to Ali Asghar children’s hospital, Tehran, Iran in 2005–2016 period. Furthermore, UTI was defined as: I) A bacterial growth ≥10^5 CFU/mL in midstream urine culture, or ≥10^4 CFU/mL from a urine sample obtained by catheterization; II) The presence of greater than five leukocytes per high-powered field and bacteriuria or a positive nitrite test or leukocyte esterase. Specimens of bagged urines were included only if there were two specimens collected with identical results. Only the result of the first positive urine culture was extracted. In the event of two separate initial positive cultures, the result of suprapubic aspirate was taken into account.

2.3. Exclusion criteria

Those with incomplete records, including the absence of two confirmatory progress notes regarding urine sample collection method were excluded from the study. Mixed growth urine cultures denoting the growth of two or more organisms in one sample were excluded, as they were likely to represent contaminated samples. Episodes with urine samples growing fungal organisms were also excluded.

2.4. Data analysis

All extracted data entered in SPSS Ver. 22 (Armnok, NY, USA) software spreadsheets. The frequency of uropathogens and their resistance to the tested antibiotics were compared for four time periods by using the Chi-square test. In addition, we analyzed the impact of age, gender, anatomical abnormalities and previous antibiotic administration on antibiotic resistance for a period of 10 years (2005–2016).

3. Results

A total of 1307 non-duplicate urinary isolates were recovered from 958 (73.3%) girls and 349 (27.7%) boys with UTI during the study period. The biggest percentage of isolates was from children who have <1 year of age (37.0%), while the number of isolates were variable among the remaining age groups (18.8% in patients aged 1–2 years, 6.6% in patients 2–3 years, 7.1% in patients 3–4 years, 5.7% in patients 4–5 years, 6.9% in patients 5–6 years and 17.9% in patients >6 years). The most frequently recovered isolates were E. coli, 77.6%; K. pneumoniae, 10.7%; Enterococcus spp, 2.4%; and Pseudomonas aeruginosa, 2.4% (Table 1).
Furthermore, among isolates recovered from girls and boys, the distribution of microorganisms was consistent with the overall study population. Besides, the resistance rates against antimicrobial agents were summarized in Table 2 for Gram-negative and Gram-positive isolated bacteria respectively. In Gram-negative uropathogens, the rates of resistance to ampicillin, cotrimoxazole, and oral cephalosporins were very high, and to imipenem, cefepime and amikacin were lower than others. Vancomycin, nitrofurantoin and ciprofloxacin were more effective against Gram-positive bacteria. In addition, the rates of resistance to amikacin, gentamicin, nitrofurantoin and cotrimoxazole in patients aged <1 year were higher than other age groups (p<0.001). However, no significant correlation was found between aged groups with resistance to other antibiotics. Table 3 illustrated resistance rates to tested antibiotics, according to gender during the study period. Also, the rates of resistance to many antibiotics were greater in boys than in girls. As shown in Table 4, the changing of resistance was significant for amikacin, ampicillin, ceftriaxone, ceftazidime, nitrofurantoin and gentamicin during the study period (2005–2016). Although resistance to ceftriaxone increased from 30.5% in 2008 to 44.7% in 2013, the resistance rates tended to decrease in 2016. In the next section, we focused on the effects of anatomical abnormalities on the distribution of pathogens and their antibiotic resistance represented in Tables 5 and 6. The frequency of uropathogens including Enterobacter. spp and Pseudomonas aeruginosa was higher in patients with anatomical abnormalities in compared to those without anatomical abnormalities.

We next examined the effects of previous antibiotic consumption on antimicrobial resistance. For this reason, patients with anatomical abnormalities such as the neurogenic bladder, perineal stenosis, double terminal urethra were excluded and only 338 patients were included in this section. More details were represented in Table 7.

4. Discussion

Antimicrobial resistance (AMR) is a serious concern worldwide and the rising of multidrug resistance strains among inpatient and outpatient is accounted as a potential risk. At the national level, each country should promote knowledge through surveillance and investigation in the field of AMR. Throughout the study period, *E. coli* remained the most prevalent causative agent of UTI in the pediatric population, and this finding is consistent with previous studies.

Table 1 Frequency of uropathogens isolated from urine cultures.

Microorganisms	Number (%)
Gram-negative bacteria	
Escherichia coli	1014 (77.6)
Klebsiella pneumoniae	140 (10.71)
Pseudomonas aeruginosa	32 (2.44)
Proteus	15 (1.14)
Enterobacter spp	13 (1.0)
Acinetobacter spp	3 (0.23)
Other Gram-negative bacteria	8 (0.61)
Gram-positive bacteria	
Enterococcus spp	32 (2.44)
Coagulase-negative staphylococci	29 (2.21)
Staphylococcus aureus	5 (0.4)
Other streptococci	14 (1.07)
Other Gram-positive bacteria	2 (0.15)
Total	1307 (100)

Table 2 The pattern of antibiotic resistance for selected uropathogens.

Antibiotics	*Escherichia coli*	*Klebsiella pneumoniae*	*Pseudomonas aeruginosa*	Enterococcus spp
	%R, TN	%R, TN	%R, TN	%R, TN
Amikacin	6.95, 950	24.62, 130	6.9, 29	71.43, 7
Gentamicin	19.02, 936	29.46, 129	24.14, 29	85, 20
Ampicillin	78.75, 607	88.68, 106	100, 14	40.91, 22
Cefazolin	56.33, 529	76.09, 100	82.35, 17	
Cephalaxin	52.28, 329	57.14, 21	100, 7	
Cefuroxime	53.23, 387	60, 70	92.31, 13	
Ceftizoxime	29.09, 55	33.33, 3		
Ceftazidime	28.38, 613	41.94, 93	20.83, 24	
Cefotaxime	37.75, 355	55.56, 27	75.0, 12	
Ceftriaxone	36.08, 898	46.28, 121	46.15, 26	
Cefepime	15.58, 552	24.72, 89	11.11, 18	
Imipenem	13.16, 395	4.55, 44	6.25, 16	
Ciprofloxacin	19.66, 829	7.89, 114	4, 25	60, 20
Ofloxacin	31.11, 135	15.38, 13	0, 4	20, 5
Cotrimoxazole	60.24, 835	40.17, 117	81.82, 22	73.68, 19
Nitrofurantoin	2.93, 957	17.42, 132	83.87, 31	16.67, 18
Nalidixic acid	46.43, 420	18.42, 38	76.92, 13	42.86, 7
Erythromycin	–	–	–	

%R, percentage of resistance, TN, total number; –, not performed.
Although *E. coli* is one of the members of the intestines microbiota, this organism can result in various infections, including meningitis, gastroenteritis, bacteremia and UTI. In the present study, the proportion of UTI was significantly higher in females (73%) than in males (27%). Our results were consistent with other studies that showed UTI was more frequent in females. High frequency of UTI in females can be due to anatomical differences such as shortness of urethra and close space between the anus and urethral orifice. However, some studies reported that UTI at an early age (<2 years) is greater in boys than that in girls. This difference can be due to the lack of circumcision in young boys. In addition, in our study, the age distribution for UTI was similar to that in other studies from Iran and other countries.

Table 4 Antimicrobial resistance trends among *Escherichia coli* isolates from Ali Asghar Hospital, 2005 to 2016.

Antimicrobial agent	2005–2007	2008–2010	2011–2013	2014–2016	p-Value				
Amikacin	9.2%	142	13.6%	213	7.6%	249	1.4%	346	<0.001
Ampicillin	66.7%	6	90%	50	81%	211	75.9%	340	0.058
Ceftriaxone	30.5%	128	42.6%	216	44.7%	215	28.6%	339	<0.001
Ceftazidime	25.8%	62	46.3%	41	40.5%	173	20.5%	337	<0.001
Ciprofloxacin	14.1%	64	21.4%	187	23%	243	17.3%	335	0.027
Cotrimoxazole	65.5%	139	70.8%	192	70.6%	221	42.4%	283	<0.001
Gentamicin	18.4%	136	28.4%	211	24.2%	260	9.1%	329	<0.001
Imipenem	8.3%	36	18.2%	214	10.5%	86	1.7%	59	0.005
Nitrofurantoin	6.7%	134	6%	216	2.3%	263	0.0%	344	<0.001

Table 5 Distribution of UTI etiological agents in patients with and without anatomical abnormalities.

Organisms	Patients with abnormalities, n (percent of isolates, %)	Patients without anatomical abnormalities, n (percent of isolates, %)
Escherichia coli	350 (73.3)	618 (80.7)
Klebsiella pneumoniae	51 (10.6)	79 (10.3)
Pseudomonas aeruginosa	23 (4.8)	7 (0.9)
Enterococcus . spp	11 (2.3)	17 (2.2)
Enterobacter . spp	9 (1.8)	4 (0.5)
Proteus . spp	6 (1.2)	9 (1.2)
Coagulase-negative staphylococci	8 (1.6)	9 (1.2)
Others	19 (3.9)	23 (3)

UTI, urinary tract infections.

[2,12–14]. Although *E. coli* is one of the members of the intestines microbiota, this organism can result in various infections, including meningitis, gastroenteritis, bacteremia and UTI. In the present study, the proportion of UTI was significantly higher in females (73%) than in males (27%). Our results were consistent with other studies that showed UTI was more frequent in females [5,13,15,16]. High frequency of UTI in females can be due to anatomical differences such as shortness of urethra and close space between the anus and urethral orifice [17,18]. However, some studies reported that UTI at an early age (<2 years) is greater in boys than that in girls [19,20]. This difference can be due to the lack of circumcision in young boys. In addition, in our study, the age distribution for UTI was similar to that in other studies from Iran and other countries [2,15]. Overall, we found resistance rates of *E. coli* to ampicillin, cefazolin, cotrimoxazole, cefuroxime, and cephalaxin were increased during the study period. In contrast, resistance to ampicillin was 40.9% in *Enterococcus* isolates. Similarly, in Taheri and coworker’s study [21], the resistance rates of *E. coli* isolates to ampicillin, cefixime, ceftriaxone, cephalaxin, ceftazidime and gentamycin were
Furthermore, high-frequency resistance to these antibiotics was reported among *E. coli* isolates in other studies [2,13,22]. Our findings suggest that ampicillin and oral cephalosporins should be used as empiric agents only when potential benefits outweigh risks. According to the results of the present study the rates of resistance to amikacin, gentamycin and nitrofurantoin in patients aged <1 year were higher than other age groups, while resistance to cotrimoxazole was increasing in patients aged >1 year. Also, the prevalence of resistance between boys was higher than girls to antibiotics such as amikacin, gentamycin, ceftriaxone, ceftazidime and nitrofurantoin. However, the impact of gender and age in increasing antibiotic resistance is a controversial issue between researchers [23,24]. In addition, there are several main risk factors including catheterization, use of broad-spectrum antibiotics, acquisition of multidrug-resistant strains, prolonged hospitalization, presence of underlying diseases and urinary system disorders that influence UTI incidence and antibiotic resistance. In the current study, due to insufficient data, we only evaluated changes of antimicrobial resistance *E. coli* isolates. During the study period, from 2005 to 2010 resistance to amikacin, ceftriaxone, ceftazidime, ciprofloxacin, cotrimoxazole, and imipenem in *E. coli* isolates increased. In a previous study from Spain, the rate of resistance to third-generation cephalosporins and fluoroquinolones increased significantly for *E. coli* infection [25].

The increasing trends of the amikacin, ceftriaxone, ceftazidime, ciprofloxacin, cotrimoxazole, imipenem resistance rate for *E. coli* are consistent with other national antimicrobial resistance studies [26]. However, we observed decreasing antimicrobial resistance of *E. coli* between 2011 and 2016. Furthermore, resistance to nitrofurantoin significantly decreased during the study period. From 2005 to 2010, relative increasing of resistance rates can be due to various factors such as overuse or inappropriate antibiotic therapy for hospital or community-acquired infections, antimicrobial prophylaxis, poor education for combat with antimicrobial resistance, selection of patients from referral hospital, and overuse of antibiotics for prevention and therapeutic aims in livestock and poultries. However, we found the decrease in resistance rates of *E. coli* in the last years of the study period. In this

Table 6

Antimicrobial agent	Patients without anatomical abnormalities		Patients with anatomical abnormalities		p-Value
	Number (%) of resistant isolates	Total number of isolates	Number (%) of resistant isolates	Total number of isolates	
Amikacin	57 (8.9)	677	51 (12.0)	426	
Ampicillin	366 (76.3)	480	215 (79.9)	269	
Cefazolin	221 (53.3)	415	157 (72.7)	216	
Cefepime	65 (15.6)	417	55 (22.2)	248	
Cephalexin	103 (45.8)	225	95 (67.4)	141	
Ceftriaxone	208 (32.3)	644	196 (47.2)	415	
Ceftazidime	118 (26.8)	441	101 (35.4)	285	
Ciprofloxacin	94 (15.0)	627	83 (22.7)	365	
Cotrimoxazole	361 (57.6)	627	224 (57.6)	389	
Gentamicin	130 (18.6)	699	111 (26.2)	424	
Imipenem	27 (10.1)	267	28 (15.1)	185	
Nitrofurantoin	45 (6.3)	715	44 (10.1)	434	

Table 7

Antibiotics	Previous antibiotic consumption (+)		Previous antibiotic consumption (-)		p-Value
	Number (%) of resistant isolates	Total number	Number (%) of resistant isolates	Total number	
Ampicillin	16 (8.9)	180	6 (4.9)	22	
Amikacin	103 (82.4)	125	66 (68.8)	96	
Cefazolin	25 (23.4)	107	5 (5.5)	91	
Cephalaxin	36 (52.9)	68	9 (32.1)	28	
Cefotaxime	31 (43.7)	71	7 (24.1)	29	
Ceftriaxone	73 (42.2)	173	33 (27)	122	
Ceftazidime	34 (31.8)	107	14 (15.4)	91	
Ciproflaxcin	36 (21.1)	171	15 (12.9)	116	
Cotrimoxazole	102 (60.7)	168	43 (41.3)	104	
Gentamicin	40 (20.8)	192	19 (15.4)	123	
Imipenem	10 (11.4)	88	2 (4.3)	47	
Nalidixic acid	41 (49.4)	83	8 (22.9)	35	
Nitrofurantoin	16 (8.3)	193	4 (3.2)	126	
context, the management of antibiotic prescription by physicians, rising of understanding individuals for antibiotic usage and promotion of infection control policies were affected in decreasing antibiotic resistance. Previous studies indicated that various factors including the type of strains, expression of virulence factors, misuse or overuse of antibiotics in human and animal, anatomical abnormalities may influence the antimicrobial resistance rates [27–29]. According to our results, there is an association between anatomical anomalies, distribution of uropathogens and antibiotic resistance. We found that frequency of *Enterobacter* spp and *Pseudomonas aeruginosa* was higher in patients with anatomical abnormalities than those without anatomical abnormalities. Furthermore, the study results revealed that in patients with anatomical abnormalities in comparison to patients without anatomical abnormalities, the resistance rates to cefazoline, cephalexin, cefepime, ceftazidime, ceftriaxone, ciprofloxacin, gentamycin and nitrofurantoin increased (p < 0.05) while the rising rates of resistance was not significant for amikacin, ampicillin, imipenem or cotrimoxazole. Ahmed and coworkers [30] reported that the resistance rates to ampicillin and trimethoprim/sulfamethoxazole among patients with the genitourinary abnormality were more than those without such abnormalities. In another study conducted in Ontario, Ottawa, Allen et al. [31] reported that among patients with genitourinary tract abnormalities, the frequency of resistant *E. coli* isolates were almost four times more than those without such abnormalities. The result of this study shows that the previous history of antibiotic consumption appeared to be significantly influenced by *E. coli* resistance to amikacin, cefepime, ceftazidime, ceftriaxone, nalidixic acid and cotrimoxazole. In the management of patients with recurrent infections, vesicoureteral reflux, or other urological abnormalities, antibiotic prophylaxis is a central strategy for the prevention of UTI in children. In this context, Lutter and coworkers [32] reported that the resistance rates in *E. coli, Pseudomonas aeruginosa* and *Klebsiella oxytoca* isolates were increased to cefotaxime among children receiving prophylactic antibiotics. Also, Olesen et al. [27] reported that there is high association between the use of beta-lactams, cephaplorins and trimethoprim/sulfamethoxazole and quinolones and antibiotic resistance *E. coli* isolates. There are several limitations in this study, including insufficient data for uropathogens other than *E. coli*, in some cases, inconsistency of the antimicrobial susceptibility testing with clinical and laboratory standards and institute guidelines, and poor laboratory facilities. Furthermore, potential bias is that all of the samples were taken from patients in a referral hospital.

5. Conclusion

During the period of study, we found that *E. coli* isolates were the most common etiological agents among other uropathogens. Also, the prevalence of UTI was affected by different factors including gender, age, history of antibiotic exposure, and anatomical abnormalities. Furthermore, there was increasing resistance of *E. coli* isolates against some of the broad-spectrum antibiotics or first-line antibiotics between 2005 and 2010 years. Although the study found a highly significant association between risk factors UTI and antimicrobial resistance, it should be noted that many of complicated patients were referred from other hospital centers. Additionally, these patients were not the real representative of community-acquired UTIs, and more investigations should be performed for estimation of the resistance rate among common uropathogens. Therefore, we recommend that physicians should consider the increased resistance to ampicillin, oral cephaplorins and cotrimoxazole when they selected an antibiotic empirically for treatment of pediatric UTI. In this context, it’s important that local continuous studies of antimicrobial susceptibility at national and international levels are performed for the prevention of antimicrobial resistance.

Author contributions

Study concept and design: Ali Reza Nateghian.
Data acquisition: Sina Karaji.
Data analysis: Sina Karaji, Khosrow Zamani.
Drafting of manuscript: Khosrow Zamani.
Critical revision of the manuscript: Ali Reza Nateghian.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgment

We thank all the co-workers of the department of microbiology of the Ali Asghar Children Hospital, Tehran, Iran.

References

[1] Bitsori M, Maraki S, Galanakis E. Long-term resistance trends of uropathogens and association with antimicrobial prophylaxis. Pediatr Nephrol 2014;29:1053–8.
[2] Aghamahdi F, Hashemian H, Shafiei M, Akbarian Z, Rostam NM, Fallah KM. Etiologies and antibiotic resistance patterns in infants with urinary tract infections hospitalized in children medical center. Rasht IJN 2013;4:21–5.
[3] Sobel JD, Kaye D. Urinary tract infections. In: Bennett JE, Dolin R, Blaser MJ, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier saunder; 2015. P897–9.
[4] Kock R, Siemer Ph, Esser J, Kampmeier S, Berends MS, Glaser C, et al. Defining multidrug resistance of gram-negative bacteria in the Dutch–German border region—impact of national guidelines. Microorganisms 2018;6:11. https://doi.org/10.3390/microorganisms6010011.
[5] Nateghian AR, Robinson JL, Mohanddesi SH, Hooman N. Resistance pattern of breakthrough urinary tract infections in children on antibiotic prophylaxis. J Infect Public Health 2009;2:147–52.
[6] Zellweger RM, Basnyat B, Shrestha P, Prajapati KG, Dongol S, Sharma PK, et al. Changing antimicrobial resistance trends in Kathmandu, Nepal: a 23-year retrospective analysis of bacteremia. Front Med (Lausanne) 2018;5:262–70.
[7] Karchmer AW. Bloodstream infections: the problem and the challenge. Int J Antimicrob Agents 2009;34:52–4. https://doi.org/10.1016/S0924-8579(09)70596-4.
[8] Renda R. Diagnosis and antibiotic resistance distribution in children with urinary tract infection: a single center experience. Int J Pediatr 2018;6:6815–22.

[9] Tseng MH, Lo WT, Lin WJ, Teng CS, Chu ML, Wang CS. Changing trend in antimicrobial resistance of pediatric uropathogens in Taiwan. Pediatr Int 2008;50:797–800.

[10] Mutlu M, Aslan Y, Akturk Acar F, Kader S, Bayramoglu G, Yilmaz G. Changing trend of microbiologic profile and antibiotic susceptibility of the microorganisms isolated in the neonatal nosocomial sepsis: a 14-years analysis. J Matern Neonatal Med 2019;4:1–8.

[11] Wagenlehner FM, Weidner W, Perletti G, Naber KG. Emerging drugs for bacterial urinary tract infections. Expet Opin Emerg Drugs 2010;15:375–97.

[12] Armin S, Fallah F, Hoseini-Alfatemi SM. Antimicrobial susceptibility pattern of six threatening pathogens at Mofid children’s hospital, Tehran, Iran. Arch Clin Infect Dis 2018;13:e15576. https://doi.org/10.5812/archcid.15576.

[13] Saderi H, Oulia P, Jalali NM, Zaeri F, Zandieh E. A 3-year study of demographic characteristics of patients with urinary tract infection, microbial etiology, and susceptibility of isolated bacteria to antibiotics in Shaheed Mostafa Khomeini hospital. JIP 2006;1:99–104.

[14] Yilmaz G. Changing trend of microbiologic profile and antibiotic resistance patterns of uropathogens in southwest of Iran. Jundishapur J Microbiol 2013;6:e4958. https://doi.org/10.5812/jjm.4958.

[15] Erol B, Culpan M, Caskurlu H, Sari U, Cag Y, Yahaboglu H, et al. Changes in antimicrobial resistance and demographics of UTIs in pediatric patients in a single institution over a 6-year period. J Pediatr Urol 2018;14:176.e1–5. https://doi.org/10.1016/j.jspuro.2017.12.002.

[16] Gökçe I, Çiçek N, Güven S, Altuntaş Ü, Biykli N, Yildiz N, et al. Changes in bacterial resistance patterns of pediatric urinary tract infections and rationale for empirical antibiotic therapy. Balkan Med J 2017;34:432–5.

[17] Mclellan LK, Hunstad DA. Urinary tract infection: pathogenesis and outlook. Trends Mol Med 2016;22:946–57.

[18] Motamedifar M, Zamani KH, Hassanzadeh Y, Pashoustan S. Bacterial etiologies and antibiotic susceptibility pattern of urinary tract infections at the pediatric ward of Dastghieh hospital, Shiraz, Iran: a Three-Year Study (2009 - 2011). Arch Clin Infect Dis 2016;11:e28973. https://doi.org/10.5812/archcid.28973.

[19] Azimi T, Maham S, Fallah F, Azimi L, Gholinejad Z. Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid Children’s Hospital, Tehran, Iran: 2013-2018. Infect Drug Resist 2019;12:2089–102.

[20] Mirsoleymani SR, Salmi M, Sharqhi Brojeni M, Ranjarb M, Mehtapoor M. Bacterial pathogens and antimicrobial resistance patterns in pediatric urinary tract infections: a four-year Surveillance Study (2009–2012). Int J Pediatr 2014;2014:125142. https://doi.org/10.1155/2014/126142.

[21] Taheri PA, Navabi B, Khatibi E. Frequency and susceptibility of bacteria caused urinary tract infection in Neonates: eight-year study at neonatal division of Bahrami children's hospital, Tehran, Iran. Iran J Public Health 2013;42:1126–33.

[22] Grude N, Tveten Y, Kristiansen BE. Urinary tract infections in Norway: bacterial etiology and susceptibility. A retrospective study of clinical isolates. Clin Microbiol Infect 2001;7:543–7.

[23] McGregor JC, Elman MR, Bearden DT, Smith DH. Sex- and age-specific trends in antibiotic resistance patterns of Escherichia coli urinary isolates from outpatients. BMC Fam Pract 2013;14:25. https://doi.org/10.1186/1471-2296-14-25.

[24] Lee LC, Lorenzo AJ, Koyle MA. The role of voiding cystourethrogram in the investigation of children with urinary tract infections. Can Urol Assoc J 2016;10:210–4.

[25] Asensio A, Alvarez-Espejo T, Fernandez-Crehuet J, Ramos A, Vaque-Rafart J, Bishopberger C, et al. Trends in yearly prevalence of third-generation cephalosporin and fluoroquinolone resistant Enterobacteriaceae infections and antimicrobial use in Spanish hospitals, Spain, 1999 to 2010. Euro Surveill 2011;16:19983. https://doi.org/10.2807/ese.16.40.19983-en.

[26] Amini M, Ansari I, Vaseie M, Vahidian M. Pattern of antibiotic resistance in nosocomial infections with Gram-negative bacilli in ICU patients (Tehran, Iran) during the ears 2012-2014. JBCP 2018;6:23–30.

[27] Olesen SW, Barnett ML, MacFadden DR, Brownstein JS, Hernandez-Diaz S, Lipsitch M, et al. The distribution of antibiotic use and its association with antibiotic resistance. Elife 2018;18:e39435. https://doi.org/10.7554/eLife.39435.

[28] Bryce A, Hay AD, Lane IF, Thornton HV, Woottton M, Costelloe C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ 2016;352:i939.

[29] Hickling DR, Sun TT, Wu XR. Anatomy and physiology of the urinary tract: relation to host defense and microbial Infection. Microbiol Spectr 2015;3:10. https://doi.org/10.1128/microbiolspec.UTI-0016-2012.

[30] Ahmed MN, Vannoy D, Frederick A, Chang S, Lawler E. First-line antimicrobial resistance patterns of Escherichia coli in children with urinary tract infection in emergency department and primary care clinics. Clin Pediatr (Phila) 2016;55:19–28.

[31] Allen UD, MacDonald N, Fuite L, Chan F, Stephens D. Risk factors for resistance to "first-line" antimicrobials among urinary tract isolates of Escherichia coli in children. CMAJ 1999;160:1436–40.

[32] Lutter SA, Currie ML, Mitz LB, Greenbaum LA. Antibiotic resistance patterns in children hospitalized for urinary tract infections. Arch Pediatr Adolesc Med 2005;159:924–8.