NUMBER OF MINIMAL CYCLIC CODES WITH GIVEN LENGTH AND DIMENSION

F. E. BROCHERO MARTÍNEZ

Abstract. In this article, we count the quantity of minimal cyclic codes of length \(n \) and dimension \(k \) over a finite field \(\mathbb{F}_q \), in the case when the prime factors of \(n \) satisfy a special condition. This problem is equivalent to count the quantity of irreducible factors of \(x^n - 1 \in \mathbb{F}_q[x] \) of degree \(k \).

1. Introduction

Let \(\mathbb{F}_q \) be a finite field with \(q \) elements. A linear \([n, k; q]\) code \(C \) is a linear subspace of \(\mathbb{F}_q^n \) of dimension \(k \). \(C \) is called a cyclic code if \(C \) is invariant by a shift permutation, i.e., if \((a_0, a_1, \ldots, a_{n-1}) \in C \) then \((a_{n-1}, a_0, a_1, \ldots, a_{n-2}) \in C \). It is known that every cyclic code can be seen as an ideal of the ring \(\mathbb{F}_q[x]/(x^n - 1) \). In addition, since \(\mathbb{F}_q[x]/(x^n - 1) \) is a principal ring, every ideal is generated by a polynomial \(g(x) \) such that \(g \) is a divisor of \(x^n - 1 \). Thus, the polynomial \(g \) is called generator of the code and the polynomial \(h(x) = \frac{x^n - 1}{g(x)} \) is called the parity-check polynomial of \(C \). Observe that \(\{g, xg, \ldots, x^{k-1}g\} \), where \(k = \deg(h) \), is a basis of the linear space \((g) \in \mathbb{F}_q[x]/(x^n - 1)\), then the dimension of the code is the degree of the parity-check polynomial. A cyclic code \(C \) is called minimal cyclic code if \(h \) is an irreducible polynomial in \(\mathbb{F}_q[x] \). Thus, the number of irreducible factors of \(x^n - 1 \in \mathbb{F}_q[x] \) corresponds to the number of minimal cyclic codes of length \(n \) in \(\mathbb{F}_q \). Specifically, there exists a bijection between the minimal cyclic codes of dimension \(k \) and length \(n \) over \(\mathbb{F}_q \), that we denote by \([n, k; q]\), and the irreducible factors of \(x^n - 1 \in \mathbb{F}_q[x] \) of degree \(k \).

Irreducible cyclic codes are very interesting by its applications in communication, storage systems like compact disc players, DVDs, disk drives, two-dimensional bar codes, etc. (see [5] Section 5.8 and 5.9)). The advantage of the cyclic codes, with respect to other linear codes, is that they have efficient encoding and decoding algorithms (see [5] Section 3.7)). For these facts, cyclic codes have been studied for the last decades and many progress has been found (see [8]).

A natural question is how many minimal cyclic codes of length \(n \) and dimension \(k \) over \(\mathbb{F}_q \) does there exist? In other words, the question is: given \(n, k \) and \(\mathbb{F}_q \), find an explicit formula for the number of minimal cyclic \([n, k; q]\)-codes. This question is in general unknown, and how to construct all of them too.

In this article, we determine the number of minimal cyclic \([n, k; q]\)-codes assuming that the order of \(q \) modulo each prime factor of \(n \) satisfies some special relation.
2. Preliminaries

Throughout this article, \(\mathbb{F}_q \) denotes a finite field of order \(q \), where \(q \) is a power of a prime. For each \(a \in \mathbb{F}_q^* \), \(\text{ord}(a) \) denotes the order of \(a \) in a multiplicative group \(\mathbb{F}_q^* \), i.e. \(\text{ord}(a) \) is the least positive integer \(k \) such that \(a^k = 1 \). In the same way, we denote by \(\text{ord}_b \), the order of \(b \) in a multiplicative group \(\mathbb{Z}_q^* \) and \(\nu_q(m) \) is the maximal power of \(p \) that divides \(m \). In addition, for each irreducible polynomial \(P(x) \in \mathbb{F}_q[x] \), \(\text{ord}(P(x)) \) denotes the order of some root of \(P(x) \) in some extension of \(\mathbb{F}_q \).

It is a classical result (see, for instance, [4]) to determine the number of factors of \(x^n - 1 \) and its degree, when the order is given.

Theorem 2.1. Let \(n \) be a positive integer such that \(\gcd(n, q) = 1 \), then each factor of \(x^n - 1 \in \mathbb{F}_q[x] \) has order \(m \), where \(m \) is a divisor of \(n \). In addition, for each \(m | n \), there exist \(\frac{\varphi(m)}{\gcd(m, q)} \) irreducible factors and each of these factors has degree \(\text{ord}_m q \).

As a consequence of this theorem (see proposition 2.1 in [1]), the number of factors of degree \(k \) of \(x^n - 1 \) is \(\sum_{m | n} \frac{\varphi(m)}{\gcd(m, q)} \), and then the total number of irreducible factors is \(\sum_{m | n} \frac{\varphi(m)}{\gcd(m, q)} \). So, the number of irreducible factors of degree \(k \) is zero if any \(m \) divisor of \(n \) satisfies \(\text{ord}_m q = k \). Clearly, this formula is not really explicit, because it depends on the calculation of the orders \(\text{ord}_m q \) for every divisor of \(n \).

An equivalent approach is to use the technique of \(q \)-cyclotomic classes (see [11] page 157 or [9] Chapter 8). In fact, the \(q \)-cyclotomic class of \(j \) modulo \(n \) is the set \(\{ j, jq, jq^2, \ldots, jq^{k-1} \} \) whose elements are distinct modulo \(n \) and \(jq^k \equiv j \) (mod \(n \)). This \(q \)-cyclotomic class determines one irreducible factor of \(x^n - 1 \) of degree \(k \).

If we denote by \(C_k \) the set of numbers \(j \), with \(1 \leq j \leq n \) that have \(q \)-cyclotomic class with \(k \) elements, then

\[
C_k = \{ j \leq n; \ k \text{ is the minimum positive integer such that } jq^k \equiv j \pmod{n} \}
\]

\[
= \left\{ j \leq n; \ k \text{ is the minimum positive integer such that } q^k \equiv 1 \pmod{\frac{n}{\gcd(n, j)}} \right\}
\]

\[
= \left\{ j \leq n; \ k = \text{ord}_{\frac{n}{\gcd(n, j)}} q \right\}.
\]

Since each \(q \)-cyclotomic class determines a minimal cyclic code, then the number of minimal cyclic \([n, k; q]\)-codes is \(\frac{|C_k|}{k} \).

Using this technique, in [10] and [6], are shown explicit formulas for the total of minimal cyclic codes for some special cases.

Theorem 2.2 ([10]). Suppose that \(n = p_1^{\alpha_1} p_2 \) satisfies that \(d = \gcd(\varphi(p_1^{\alpha_1}), \varphi(p_2)) \), \(p_1 \nmid (p_2 - 1) \) and \(q \) is a primitive root \(\pmod{p_1^{\alpha_1}} \) as well as \(\pmod{p_2} \). Then the number of minimal cyclic codes of length \(n \) over \(\mathbb{F}_q \) is \(\alpha_1 (d+1) + 2 \).

Theorem 2.3 ([6] Theorem 2.6). Suppose that \(n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \) satisfies that \(\text{ord}_{p_j^{\alpha_j}} q = \varphi(p_j^{\alpha_j}) \) for every \(j \), and \(\gcd(p_j - 1, p_i - 1) = 2 \) for every \(i \neq j \). Then the number of minimal cyclic codes of length \(n \) over \(\mathbb{F}_q \) is

\[
\frac{(2\alpha_1 + 1)(2\alpha_2 + 1)\cdots(2\alpha_k + 1) + 1}{2}.
\]
Besides, some explicit formulas for the number of \([n, k; q]\)-codes for some particular values of \(n\) and \(q\) are known

Theorem 2.4 ([3, Corollary 3.3 and 3.6]). Suppose that \(n\) and \(q\) are numbers such that every prime factor of \(n\) divides \(q - 1\). Then

1. If \(8 \nmid n\) or \(q \not\equiv 3 \pmod{4}\) then the number of minimal cyclic \([n, d; q]\)-codes is
 \[
 \begin{cases}
 \varphi(d) \cdot \gcd(n, q - 1) & \text{if } d \mid \frac{n}{\gcd(n, q - 1)} \\
 0 & \text{otherwise}
 \end{cases}
 \]

 The total number of minimal cyclic codes of length \(n\) is
 \[
 \gcd(n, q - 1) \cdot \prod_{p \mid m} \left(1 + \nu_p(m) \frac{p - 1}{p}\right),
 \]
 where \(\varphi\) is the Euler Totient function.

2. If \(8 \mid n\) and \(q \equiv 3 \pmod{4}\) then the number of minimal cyclic \([n, d; q]\)-codes is
 \[
 \begin{cases}
 \frac{\varphi(d)}{d} \cdot \gcd(n, q - 1) & \text{if } d \text{ is odd and } d \mid \frac{n}{\gcd(n, q - 1)} \\
 \frac{\varphi(k)}{2k} \cdot (2^r - 1) \gcd(n, q - 1) & \text{if } d = 2k, k \text{ is odd and } k \mid \frac{n}{\gcd(n, q - 1)} \\
 \frac{\varphi(k)}{k} \cdot 2^{r-1} \gcd(n, q - 1) & \text{if } d = 2k, k \text{ is even and } k \mid \frac{n}{\gcd(n, q - 1)} \\
 0 & \text{otherwise}
 \end{cases}
 \]
 where \(r = \min\{\nu_2(n/2), \nu_2(q + 1)\}\). The total number of minimal cyclic codes of length \(n\) is
 \[
 \gcd(n, q - 1) \cdot \left(\frac{1}{2} + 2^{r-2}(2 + \nu_2(m))\right) \cdot \prod_{p \mid m} \left(1 + \nu_p(m) \frac{p - 1}{p}\right).
 \]

3. **Codes with power of a prime length**

In this section, we are going to suppose that \(n\) is a power of a prime. In order to determine the number of irreducible codes of length \(n\), we need the following lemma, that it is pretty well-known in the Mathematical Olympiads folklore and it is attributed to E. Lucas and R. D. Carmichael (see [2]).

Lemma 3.1 (Lifting-the-exponent Lemma). Let \(p\) be a prime. For all \(a, b \in \mathbb{Z}\) and \(n \in \mathbb{N}\), such that \(p \nmid ab\) and \(p|(a - b)\), the following proprieties are satisfied

1. If \(p \geq 3\), then \(\nu_p(a^n - b^n) = \nu_p(a - b) + \nu_p(n)\).
2. If \(p = 2\) and \(n\) is odd then \(\nu_p(a^n - b^n) = \nu_p(a - b)\).
3. If \(p = 2\) and \(n\) is even then \(\nu_2(a^n - b^n) = \nu_2(a^2 - b^2) + \nu_2(n) - 1\).

As a consequence of the previous lemma we obtain

Corollary 3.2. Let \(p\) be a prime and \(\rho = \text{ord}_p q\).

1. If \(q \not\equiv 3 \pmod{4}\) or \(p \neq 2\) then
 \[
 \text{ord}_p q = \begin{cases}
 1 & \text{if } \theta = 0 \\
 \rho & \text{if } \theta \leq \beta \\
 \rho p^\beta & \text{if } \theta > \beta.
 \end{cases}
 \]
 where \(\beta = \nu_p(q^\rho - 1)\).
(2) If \(q \equiv 3 \pmod{4} \) and \(p = 2 \), then
\[
\text{ord}_{2^q} q = \begin{cases}
1 & \text{if } \theta = 0 \text{ or } 1, \\
2 & \text{if } \theta \leq \beta, \\
2^{\theta - \beta + 1} & \text{if } \theta > \beta.
\end{cases}
\]

where \(\beta = \nu_2(q^2 - 1) \).

Proof: (1) Clearly, \(\text{ord}_{2^p} q = \rho \) if \(1 \leq \theta \leq \beta \). In the case \(\theta > \beta \), since \(\text{ord}_p q \) divides \(\text{ord}_{2^p} q \), then, by Lemma 3.1 item (i), we have
\[
\theta = \nu_p(q^k - 1) = \nu_p(q^\rho - 1) + \nu_p\left(\frac{k}{\rho}\right) = \beta + \nu_p\left(\frac{k}{\rho}\right).
\]

In addition to the minimality of \(k \), we obtain that \(k\rho = p^{\theta - \beta} \).

The proof of part (2) is similar by using items (ii) and (iii) of Lemma 3.1. \(\square \)

Theorem 3.3. Suppose that \(n = p^\alpha \), where \(p \) is a prime and \(\rho \) and \(\beta \) as in the previous lemma. Then

(1) If \(p \neq 2 \) or \(q \neq 3 \) (mod 4) then the number of minimal cyclic \([n,d;q] \)-codes is
\[
\begin{cases}
\gcd(n,q-1) & \text{if } d = 1, \\
\rho^{\min(\alpha,\beta)-1} & \text{if } d = \rho
eq 1, \\
\frac{\rho^{\beta - 1}}{\rho} & \text{if } d = \rho \cdot p^j \text{ and } 1 \leq j \leq \alpha - \beta, \\
0 & \text{otherwise}
\end{cases}
\]

(2) If \(n = 2^\alpha \) and \(q \equiv 3 \pmod{4} \) then the number of minimal cyclic \([n,d;q] \)-codes is
\[
\begin{cases}
2 & \text{if } d = 1, \\
1 & \text{if } d = 2 \text{ and } \alpha = 2, \\
3 & \text{if } d = 2 \text{ and } \alpha \geq 3, \\
2 & \text{if } d = 2^j \text{ and } 2 \leq j \leq \alpha - 2, \\
0 & \text{otherwise}
\end{cases}
\]

Proof: (1) In the case when \(k = 1 \), the number of \([n,1;q] \)-codes is equivalent to the number of roots of the polynomial \(x^n - 1 \) in \(\mathbb{F}_q^* \). Since every element of \(\mathbb{F}_q^* \) is root of \(x^{q-1} - 1 \), and \(\gcd(x^n - 1, x^{q-1} - 1) = x^\gcd(n,q-1) - 1 \), we conclude that the number of minimal \([n,1;q] \)-codes is \(\gcd(n,q-1) \).

Now, suppose that \(d \neq 1 \). Since \(\rho \) divides \(\text{ord}_{p^\rho} q \) for every \(s \geq 1 \) and \(\gcd(p^s - q, \rho) \) is a power of \(p \), it follows that if \(\frac{\rho}{p} \) is not a power of \(p \), then there not exist \([n,k;q] \)-codes.

In the case when \(d = \rho \), by Corollary 3.2 we know that \(\text{ord}_{p^\rho} q = \rho \) if and only if \(1 \leq s \leq \beta \) and then the number of \([n,\rho;q] \)-codes is
\[
\sum_{s=1}^{\min(\alpha,\beta)} \varphi(p^s) = \sum_{s=1}^{\min(\alpha,\beta)} \rho^s - \rho^{s-1} = \frac{\rho^{\min(\alpha,\beta)} - 1}{\rho} - 1.
\]

Finally, in the case \(d = \rho \cdot p^j \), since \(\text{ord}_{p^\rho} q = \rho p^j \) if and only if \(s = j + \beta \), and \(s \leq \alpha \), we conclude that \(j \leq \alpha - \beta \) and the number of \([n,\rho \cdot p^j;q] \)-codes is
\[
\frac{\varphi(p^s)}{\text{ord}_{p^\rho} q} = \frac{\varphi(p^{j + \beta})}{\rho p^j} = \frac{p^{\beta} - p^{\beta - 1}}{\rho}.
\]
So, this identity concludes the proof of (1).

We note that the proof of (2) is essentially the same of (1) and we omit. □

Remark 3.4. In [2], we show one way to construct the primitive idempotents of the ring $\mathbb{F}_q[x]/(x^n-1)$ where $n = p^\alpha$ and it is known that each primitive idempotent is a generator of one minimal cyclic code of length n.

4. The number of cyclic codes given an special condition

Throughout this section, $n = p_1^{\alpha_1} \cdots p_l^{\alpha_l}$ is the factorization in primes of n, where n is odd or $q \not\equiv 3 \pmod{4}$. Moreover, we put $\rho_i = \text{ord}_{p_i} q$ and $\beta_i = \nu_{p_i}(q^{\alpha_i} - 1)$.

Definition 4.1. The pair (n, q) satisfies the homogeneous order condition (H.O.C.) if $\gcd(\rho_i, n) = 1$, for every i, and there exists $\rho \in \mathbb{N}$ such that $\rho = \gcd(\rho_i, \rho_j)$, for every $i \neq j$.

Observe that every pair (n, q) considered in Theorems 2.2, 2.3, 2.4 and 3.3 satisfies H.O.C. Furthermore, if (n, q) satisfies H.O.C then

$$R := \text{lcm}(\rho_1, \rho_2, \ldots, \rho_k) = \frac{\rho_1 \rho_2 \cdots \rho_k}{\rho^{\rho-1}}$$

and, by Lemma 3.1, we have

$$\nu_{p_i}(q^R - 1) = \nu_{p_i}(q^{\rho_i} - 1) + \sum_{1 \leq j \leq k, j \neq i} \nu_{p_i}(\frac{\rho_j}{\rho}) = \beta_i.$$

Lemma 4.2. Let (n, q) be a pair which satisfies H.O.C. and $d = p_1^{\theta_1} \cdots p_l^{\theta_l}$ be a divisor of n other than 1. Then

$$\text{ord}_d q = \frac{\rho d}{\gcd(d, q^R - 1)} \prod_{i : \rho_i | d} \frac{\rho_k}{\rho}.$$

Proof: Observe that if $\theta_i \neq 0$ then

$$\text{ord}_{p_i^{\theta_i}} q = \frac{\rho_i}{\gcd(p_i^{\theta_i}, q^{\rho_i} - 1)} = \rho_i \frac{p_i^{\theta_i}}{\gcd(p_i^{\theta_i}, q^R - 1)}.$$

Thus, in the case when $d = p_1^{\theta_1} \cdots p_l^{\theta_l}$, where $\theta_i \neq 0$, we have

$$\text{ord}_d q = \gcd(\text{ord}_{p_1^{\theta_1}} q, \ldots, \text{ord}_{p_l^{\theta_l}} q)$$

$$= \rho \cdot \text{lcm} \left(\frac{\text{ord}_{p_1^{\theta_1}} q}{\rho}, \ldots, \frac{\text{ord}_{p_l^{\theta_l}} q}{\rho} \right)$$

$$= \rho \prod_{j=1}^{s} \frac{\rho_{i_j}}{\rho} \frac{p_{i_j}^{\theta_{i_j}}}{\gcd(p_{i_j}^{\theta_{i_j}}, q^R - 1)}$$

$$= \frac{\rho d}{\gcd(d, q^R - 1)} \prod_{p_i | d} \rho_i.$$

□

Corollary 4.3. Let (n, q) be a pair which satisfies H.O.C. If there exist minimal cyclic $[n, k; q]$-codes then
Furthermore, if \(\theta \) is a divisor of \(n \), then \(\theta \) divides \(k \).

(3) \(\gcd(n,k) \) divides \(\frac{n}{\gcd(n,q^R-1)} \).

Theorem 4.4. Let \(\mathbb{F}_q \) be a finite field and \(n \) be a positive integer such that the pair \((n,q)\) satisfies H.O.C. and suppose that \(n \) is odd or \(q \equiv 3 \pmod{4} \). Let \(k \) be a positive integer satisfying the conditions of the corollary \(4.3 \). Then the number of minimal cyclic \([n,k;q] \)-codes is

\[
\left\{ \begin{array}{ll}
gcd(n, q-1) & \text{if } k = 1 \\
gcd(n, q^R - 1) \frac{\varphi(\gcd(k, n))}{k} & \text{if } k \neq 1.
\end{array} \right.
\]

The total number of minimal cyclic codes of length \(n \) is

\[
\rho - 1 + \prod_{i=1}^{l} \left(\frac{\varphi(p_i^\beta)}{p_i} \left(\nu(p_i^\rho) \max\{\alpha_i - \beta_i, 0\} + p_i^{\min\{\alpha_i, \beta_i\}} \right) - 1 \right) + 1
\]

\[
\rho
\]

Proof: We are going to suppose that \(k \neq 1 \), because the case \(k = 1 \) has been proved in Theorem \(3.3 \). Let \(I \) be the set of indices \(i \) such that \(p_i^\rho \) divides \(k \), \(J = \{ i \in I | p_i \text{ divides } k \} \) and \(I_0 = I \setminus J \).

Let \(d \) be a divisor of \(n \) such that \(\operatorname{ord}_q d = k \). By Lemma \(4.2 \) it follows that \(d \mid n_\mathcal{I} \) and \(k = tR_\mathcal{I} \) where

\[
t = \gcd(k, n) = \frac{d}{\gcd(d, q^R - 1)} \quad \text{and} \quad R_\mathcal{I} = \prod_{i \in \mathcal{I}} \frac{p_i^\theta_i}{\theta_i}.
\]

Since \(t = \prod_{i \in \mathcal{I}} p_i^\theta_i \), then

\[
\theta_i = \nu_{p_i}(d) - \min\{\nu_{p_i}(d), \beta_i\} = \max\{0, \nu_{p_i}(d) - \beta_i\} \quad \text{for all } i \in \mathcal{I}.
\]

Observe that \(\theta_i \leq \max\{0, \alpha_i - \beta_i\} \) for all \(i \in \mathcal{I} \) and then \(t \) divides \(\frac{n_\mathcal{I}}{\gcd(n_\mathcal{I}, q^R - 1)} \).

Furthermore, if \(\theta_i \neq 0 \), then \(\nu_{p_i}(d) = \theta_i + \beta_i \leq \alpha_i \), and in the case \(\theta_i = 0 \), we have \(\nu_{p_i}(d) \leq \alpha_i \leq \beta_i \). If follows that \(d = d_0d_1 \), where

\[
d_1 = \prod_{i \in J} p_i^{\theta_i + \beta_i} \equiv \gcd(k, n) \cdot \gcd(n_1, q^R - 1), \quad \text{with} \quad n_1 = \prod_{i \in \mathcal{I}} p_i^{\alpha_i}.
\]

and \(d_0 \) is a divisor of \(n_0 = \prod_{i \in I_0} p_i^{\alpha_i} \). Therefore, the number of \([n,k;q] \)-codes is

\[
\frac{1}{k} \sum_{d = d_0|n_0} \varphi(d) = \frac{1}{k} \sum_{d_0|n_0} \varphi(d_0d_1) = \frac{n_0 \cdot \varphi(d_1)}{k} = \frac{n_0 \cdot \gcd(k, n) \cdot \gcd(n_1, q^R - 1)}{k} \prod_{i \in J} \left(1 - \frac{1}{p_i} \right).
\]

By using the fact that \(n_0 = \gcd(n_0, q^R - 1) \) and \(\prod_{i \in \mathcal{J}} \left(1 - \frac{1}{p_i} \right) = \frac{\varphi(\gcd(k, n))}{\gcd(k, n)} \), we conclude that the number of irreducible cyclic \([n,k;q] \)-codes is

\[
\frac{\gcd(n, q^R - 1) \varphi(\gcd(k, n))}{k}.
\]
On the other hand, by Lemma 4.2, the function \(f(d) = \begin{cases} 1 & \text{if } d = 1 \\ \frac{\rho \varphi(d)}{\text{ord}_d q} & \text{if } d \neq 1 \end{cases} \) is multiplicative for every \(d \) divisor of \(n \). So, the total number of minimal cyclic codes of length \(n \) is
\[
\sum_{d|n} \frac{\varphi(d)}{\text{ord}_d q} = 1 - \frac{1}{\rho} + \frac{1}{\rho} \sum_{d|n} f(d).
\]
In order to calculate the sum, observe that
\[
\sum_{d|p^n} f(d) = 1 + \sum_{s=1}^{\alpha_i} \frac{\rho \cdot (p_i^s - p_i^{s-1})}{\rho_i \gcd(p_i^s, q^n - 1)}
= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i}\right) \sum_{s=1}^{\alpha_i} \gcd(p_i^s, q^n - 1)
= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i}\right) \left[\min\{\alpha_i, \beta_i\} p_i^{\beta_i} + \max\{0, \alpha_i - \beta_i\} p_i^{\beta_i}\right]
= 1 + \frac{\rho}{\rho_i} \left(1 - \frac{1}{p_i}\right) \left[\min\{\alpha_i, \beta_i\} - 1 + \max\{0, \alpha_i - \beta_i\} \varphi(p_i^{\beta_i})\right].
\]
Then, by using the fact that \(\sum_{d|n} f(d) \) is a multiplicative function, we conclude the proof. \(\square \)

REFERENCES

[1] Agou, S., Factorisation sur un Corps Fini \(\mathbb{F}_{p^n} \) des Polynômes Composés \(f(x^s) \) lorsque \(f(x) \) est un Polynôme Irréductible de \(\mathbb{F}_{p^n}[x] \), L’Enseignement mathém. 22 (1976) 305-312
[2] Brochero Martínez, F.E., Giraldo Vergara, C.R., Explicit Idempotents of Finite Group Algebra Finite Fields Appl. 28 (2014) 123-131
[3] Brochero Martínez, F.E., Giraldo Vergara, C.R., Batista de Oliveira, L., Explicit Factorization of \(x^n - 1 \in \mathbb{F}_q[x] \), submitted for publication in Designs, Codes and Cryptography.
[4] Butler, M.C.R., The Irreducible factors of \(f(x^n) \) over a finite field, J. London Math. Soc, 2nd Ser. 30 (1955) 480-482.
[5] Farrell, P. G., Castieira Moreira, J., Essentials of Error-Control Coding John Wiley & Sons Ltd (2006).
[6] Kumar P, Arora, S.K. \(\lambda \)-Mapping and Primitive Idempotents in semi simple ring \(R_m \), Comm. Algebra 41 (2013) 3679-3694
[7] R. D. Carmichael, On the Numerical Factors of Certain Arithmetic Forms, Amer. Math. Monthly, 16,10 (1909), 153-159.
[8] Huffman, W.C., Pless, V., Fundamentals of Error-Correcting Codes, Cambridge University Press, (2003).
[9] MacWilliams, F.J., Sloane, N.J.A., Theory of Error-Correcting Codes, North-Holland (1977).
[10] Sahni, A., Sehgal, P. Minimal cyclic codes of length \(p^n q \), Finite Fields Appl. 18 (2012), no. 5, 1017-1036.
[11] Xambo-Descamps, S. Block Error-Correcting Codes Universitext, Springer (2003)

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE MINAS GERAIS, UFMG, BELO HORIZONTE, MG, 30123-970, BRAZIL,

E-mail address: fbrocher@mat.ufmg.br