Association of SOX2 and Nestin DNA amplification and protein expression with clinical features and overall survival in non-small cell lung cancer: A systematic review and meta-analysis

Qingbao Li1, Fang Liu2, Yuan Zhang3, Lei Fu4, Cong Wang5, Xuan Chen5, Shanghui Guan5, Xiangjiao Meng4

1Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
2Department of Image, Shandong Medical College, Jinan, 250002, China
3Department of Laboratory Medicine, Shandong Medical College, Jinan, 250002, China
4Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, 250117, China
5Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, China

Correspondence to: Xiangjiao Meng, email: sdxjmeng@163.com

Keywords: meta-analysis, SOX2, Nestin, clinical outcome, non-small cell lung cancer

Received: January 04, 2016 Accepted: April 16, 2016 Published: May 02, 2016

ABSTRACT

Up to now, the prognosis of non-small cell lung cancer (NSCLC) is poor. With progress of cancer biology, a number of genes have been investigated for predicting prognosis of NSCLC, such as cancer stem cell markers SRY (sex determining region Y)-box 2 (SOX2) and Nestin. Recently, a series of studies have been performed to examine the associations of SOX2 and Nestin with clinical parameters and prognosis in NSCLC, however, the results were not consistent. In the present study, we conducted a systematic review and meta-analysis to summarize the associations. Four English databases (PubMed, ISI web of science, Embase, and Ovid) were used to search the relevant studies with the last date of November 10, 2015. The pooling analyses were stratified by DNA amplification and protein expression. The pooling ORs or HRs were used to assess the strength of the associations. Finally, we included 19 articles for SOX2 and six articles for Nestin according to the inclusion and exclusion criteria. The pooling analyses revealed that there were significant associations between SOX2 DNA amplification and clinical features of NSCLC, gender, smoking status, squamous cell carcinoma (SCC) histology, and differentiations. And significant associations were also identified between SOX2 protein expression and clinical parameters, smoking status and SCC histology. For Nestin, its protein expression was correlated with lymph node metastasis and stage. Simultaneously, we found that high/positive SOX2 alterations, either DNA amplification or protein expression, were favorable for overall survival (OS) in NSCLC. On the contrary, high/positive Nestin protein expression was poor for OS.

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide and its 5-year relative survival rate is low [1]. Traditionally, it is classified into two major subtypes, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). The latter can be subdivided into adenocarcinoma (ADC), squamous cell carcinoma (SCC), and large cell carcinoma (LCC) [2].

In recent years, some activated oncogenes such as Epidermal Growth Factor Receptor (EGFR) mutations and Anaplastic Lymphoma Kinase (ALK) rearrangements have been found and used as novel therapeutic targets [3–5]. All these progresses encourage the researchers to identify new biomarkers or therapeutic targets. Of which, the cancer stem cell markers such as SRY (sex determining region Y)-box 2 (SOX2) and Nestin have gotten researchers interested.
SOX2 locates on chromosome 3q26.33 and encodes a transcription factor of 317 amino acids [6, 7]. It has been reported to be involved in pluripotency regulation in embryonic stem cells and the morphogenesis and homoeostasis of tracheobronchial epithelia [8]. Recently, SOX2 aberrant DNA amplification and protein expression have been found in various types of tumors. Functional experiments suggest that SOX2 is responsible for cellular proliferation, tumor invasion and migration, self-renewal, maintenance in cancer stem cell populations, and lung tumorigenesis [6, 9–12]. It also has been reported that DNA amplification and protein expression of SOX2 are associated with clinicopathological features and prognosis in lung cancers, however, the results are not always consistent [13–16]. Although a meta-analysis in the year of 2013 has been performed to summarize the associations, the included studies were relatively rare and the authors do not distinguish SOX2 DNA amplification, mRNA expression, and protein expression [17].

Nestin is a member of the intermediate filament (IF) family and serves as a potential proliferative and muti-potency marker in progenitor and stem cells [18, 19]. Nestin has been also found to have an anti-apoptotic function through inhibiting caspase activation [20]. Recent observations have revealed a link between Nestin aberrant expression and malignant characteristics and poor prognosis in different cancers [21–25].

In the present study, we performed a systematic review and meta-analysis to investigate the associations of DNA amplification and protein expression of SOX2 and Nestin with clinicopathological features and overall survival in NSCLC.

RESULTS

Study characteristics

The literature selection process was shown in Figure 1. Four English databases were used and a total of 1442 documents were initially identified. After excluding those duplicated records, animal experiments or cellular studies, non-NSCLC related studies, and non-original articles, 36 full texts were left for further evaluation. Subsequently, six articles were excluded due to insufficient data [26–31], and one was excluded because it contained other type of lung cancer besides NSCLC [32]. Here, we only focused on DNA amplification and protein expression. Then another four studies were excluded due to only reporting the SOX2 or Nestin mRNA related data [33–36]. Finally, 25 papers were included in the present study [13–16, 21, 37–56]. Of which, 19 articles reported SOX2 DNA amplification and/or protein expression [13–16, 37–51], six articles reported Nestin protein expression, and none reported Nestin DNA amplification [21, 52–56]. In addition, Velcheti et al. [46] and Iijima et al. [50] reported two independent cohorts, respectively, and each cohort was considered as independent study in the meta-analysis. The included studies were published from 2010 to 2015 and the sample size ranged from 33 to 758. In the original studies, the DNA amplification was determined by PCR or FISH (n = 3 and 6) and the protein expression was determined by IHC or IF (n = 19 and 2). The detailed characteristics of the included studies were shown in Table 1.

Meta-analysis results

SOX2

Significant associations were identified between high/positive SOX2 DNA amplification and clinicopathological features, gender (OR = 1.969, 95% CI = 1.050–3.693, P = 0.035), smoking status (OR = 2.830, 95% CI = 1.269–6.310, P = 0.011), histology (OR = 8.136, 95% CI = 2.136–30.997, P = 0.000), differentiation (OR = 1.644, 95% CI = 1.119–2.415, P = 0.011), and OS (HR = 0.732, 95% CI = 0.593–0.904, P = 0.004) (Figure 2 and Table 2). For SOX2 protein expression, its associations with smoking status (OR = 2.245, 95% CI = 1.008–5.001, P = 0.048), histology (OR = 5.437, 95% CI = 2.344–12.610, P = 0.000), and OS (HR = 0.579, 95% CI = 0.359–0.934, P = 0.025) were found (Figure 2 and Table 2).

Nestin

There was no study reporting Nestin DNA amplification in NSCLC and then only Nestin protein expression was analyzed. The pooling analyses revealed significant associations of Nestin protein expression with lymph node metastasis (OR = 2.732, 95% CI = 1.393–5.376, P = 0.004), stage (OR = 1.996, 95% CI = 1.157–3.445, P = 0.013), and OS (HR = 2.166, 95% CI = 1.437–3.263, P = 0.000) (Figure 3 and Table 2).

Heterogeneity and sensitivity analysis

SOX2

The heterogeneity and sensitivity were analyzed by subgroup analysis according to ethnicity, histology, and sample size or excluding single individual study. The results indicated that the heterogeneity existed in evaluating the associations of SOX2 DNA amplification with gender (F = 55.6%), smoking status (F = 62.2%), histology (F = 89.7%), and differentiation (poor vs. well/moderate, F = 68.2%) (Table 2). For gender, heterogeneity decreased to 31.4% after excluding Wilbertz et al’s study and the pooling OR was not influenced. For smoking status, after grouping by China and non-China studies, heterogeneity of both subgroups decreased to 0% and the associations were still significant. For histology, the heterogeneity could not be removed by subgroup analyses or excluding single individual study. For differentiation, the heterogeneity decreased (F = 19.3%) by excluding the study of Zhang et al. 2015 and the pooling
OR was not influenced. Meanwhile, there were significant heterogeneity in assessment of the associations of SOX2 protein expression with gender ($I^2 = 55.1\%$), age ($I^2 = 90.3\%$), smoking status ($I^2 = 58.9\%$), histology ($I^2 = 68.7\%$), and OS ($I^2 = 84.9\%$). The heterogeneity deceased significantly when deleting single individual studies of Chou et al. 2013 (gender, $I^2 = 38.7\%$), Chen et al. 2012 (age, $I^2 = 15.0\%$), Zheng et al. 2015 (smoking status, $I^2 = 0\%$), and Li et al. 2012 (histology, $I^2 = 34.5\%$), respectively. And the pooled ORs were not influenced, suggesting the results were stable. For OS, the heterogeneity still existed when excluding single individual study one by one. In subgroup analysis stratified by histology (SCC, $n = 4$; ADC, $n = 1$; and SCC/ADC, $n = 4$), heterogeneity was 29.7% in SCC, and 90.3% in SCC/ADC. And the association was significant in SCC but not SCC/ADC.

Nestin

As shown in Table 2, there was heterogeneity in assessment of the associations of Nestin protein expression with smoking status ($I^2 = 60.7\%$), histology ($I^2 = 92.0\%$), differentiation ($I^2 = 94.6\%$), and OS ($I^2 = 68.4\%$). When the studies of Chen et al. 2010, Ryuge et al. 2011, and Janikova et al. 2012 were excluded, respectively, the heterogeneity significantly decreased (smoking status, $I^2 = 0\%$; differentiation, $I^2 = 0\%$; and OS, $I^2 = 48.2\%$) and the pooling ORs were not influenced except differentiation. As for histology, subgroup analysis suggested that the heterogeneity among the studies performed in China was decreased ($I^2 = 0\%$) and a significant association was presented. But the heterogeneity still existed in Japan group ($I^2 = 95.5\%$).
Table 1: Characteristics of the included studies

Reference	Country	Patient No.	Age (year)	Method	Cut-off value	Protein/Amplification	Positive/Negative
SOX2							
Yuan et al. 2010	USA	57	IHC	SCC (high > 270, low < 140); ADC (high > 193, low < 10)	Protein	37/19	
Lu et al. 2010	USA	40	IHC	4 copy Amplification	Protein	19/21	
Sholl et al. 2010	USA	104	IHC	5%	Protein	52/52	
Sholl et al. 2010	USA	66	IHC	5%	Protein	41/25	
Wilbertz et al. 2011	Switzerland/USA	758	FISH	30%	Amplification	224/534	
Cai et al. 2011	China	115	PCR	Ratio > M + 2SD	Amplification	30/85	
Koji et al. 2011	Japan	309	IHC	5%	Protein	79/71	
Sasaki et al. 2012	Japan	127	PCR	4 copy Amplification	Protein	42/85	
Brcic et al. 2012	American	147	IHC	5%	Protein	14/52	
Li et al. 2012	China	44	IHC	10%	Protein	31/13	
Velcheti et al. 2013	Greek	340	IF	Score > 193	Protein	418/229	
Chou et al. 2013	China	175	IHC	No stain in nuclear	Protein	51/124	
Yusuke et al. 2015	Japan	282	FISH	Mean value	Amplification	34/244	
Toschi et al. 2015	Italy	447	FISH	4 copy or presence of gene cluster	Amplification	105/340	
Iijima et al. 2015	China cohort	57	IHC	H-score > 0	Protein	40/17	
Zheng et al. 2015	China	162	FISH	H-score > 0	Protein	45/21	
Zheng et al. 2015	China	162	FISH	100 score	Protein	85/65	
Nestin							
Chen et al. 2010	China	52	IHC	8.4(median histoscore of Nestin)	Protein	25/27	
Janikova et al. 2010	Czech	121	IHC	10%	Protein	74/38	
Ryuge et al. 2011	Japan	173	IHC	5%	Protein	27/144	
Skarda et al. 2012	Czech & Israel	115	IHC	H-score > 0	Protein	40/74	
Chen et al. 2014	China	71	IHC	8.4(median histoscore of Nestin)	Protein	35/36	
Sterlacci et al. 2014	Austria	215	IHC	Median % positive staining cell	Protein	57/269	
Figure 2: Forest plot for associations of SOX2 with clinicopathological features and overall survival in NSCLC.
Table 2: Meta-analysis results

Clinical parameters	N	OR/HR	OR/HR 95% CI	P OR	Model	F	P hetero	P Egger	P Egger
SOX2 Amplification									
Gender (male vs. female)	8	1.969	1.050–3.693	0.035	R	55.6	0.027	0.711	0.652
Age (≤ 60 vs. > 60 or ≤ 65 vs. > 65)	3	0.857	0.507–1.448	0.563	F	0.6	0.365	1.000	0.367
Smoking status (yes vs. no)	7	2.830	1.269–6.310	0.011	R	62.2	0.014	0.368	0.052
Histology (SCC vs. ADC)	6	16.530	5.134–53.221	0.000	R	89.7	0.000	0.707	0.885
Differentiation (moderate+poor vs. well)	5	1.644	1.119–2.415	0.011	F	0.0	0.935	0.462	0.629
Differentiation (poor vs. well+moderate)	3	0.807	0.317–2.054	0.654	R	68.2	0.041	1.000	0.796
Lymph node metastasis (N0 vs. N1,2)	5	0.943	0.678–1.312	0.728	F	0.0	0.650	0.806	0.688
Lymph nodemetastasis (N0,1 vs. N2,3)	3	0.903	0.468–1.743	0.761	F	0.0	0.418	0.308	0.168
Stage (I vs. II–IV)	5	1.222	0.860–1.737	0.263	F	0.0	0.855	0.221	0.363
Stage (I–II vs. III–IV)	4	1.226	0.877–1.714	0.232	F	0.0	0.849	0.734	0.690
OS	6	0.732	0.593–0.904	0.004	F	0.0	0.949	0.707	0.794
SOX2 Protein expression									
Gender (male vs. female)	9	1.345	0.726–2.493	0.558	R	55.1	0.023	0.917	0.738
Age (≤ 60 vs. > 60 or ≤ 65 vs. > 65)	6	0.439	0.104–1.857	0.263	R	90.3	0.000	0.368	0.199
Smoking status (yes vs. no)	5	2.245	1.008–5.001	0.048	R	58.9	0.045	0.806	0.537
Histology (SCC vs. ADC)	7	5.437	2.344–12.610	0.000	R	68.7	0.004	1.000	0.749
Differentiation (moderate+poor vs. well)	6	1.082	0.695–1.685	0.726	F	0.0	0.694	1.000	0.471
Differentiation (poor vs. well+moderate)	9	0.723	0.517–1.011	0.058	F	14.2	0.316	1.000	0.496
Lymph node metastasis (N0 vs. N1,2)	3	1.078	0.649–1.789	0.772	F	0.0	0.693	1.000	0.952
Lymph nodemetastasis (N0,1 vs. N2,3)	1								
Stage (I vs. II–IV)	4	1.288	0.807–2.057	0.289	F	18.4	0.298	0.734	0.959
Stage (I–II vs. III–IV)	3	0.818	0.327–2.044	0.667	F	5.3	0.348	1.000	0.648
OS	9	0.579	0.359–0.934	0.025	R	84.9	0.000	0.466	0.109
Nestin Protein expression									
Gender (male vs. female)	4	0.932	0.569–1.527	0.780	F	11.7	0.334	0.734	0.478
Age (≤ 60 vs. > 60 or ≤ 65 vs. > 65)	3	1.111	0.650–1.897	0.701	F	5.1	0.349	0.294	0.174
Smoking status (yes vs. no)	3	1.237	0.486–3.151	0.655	R	60.7	0.078	1.000	0.145
Histology (SCC vs. ADC)	4	2.378	0.420–13.462	0.327	R	92.0	0.000	0.734	0.542
Differentiation (well+moderate vs. poor)	3	2.671	0.170–41.861	0.484	R	94.6	0.000	1.000	0.335
Lymph node metastasis (N1,2 vs. N0)	2	2.732	1.393–5.376	0.004	F	0.0	0.694		
Stage (II–IV vs. I)	3	1.966	1.157–3.445	0.013	F	0.0	0.981	1.000	0.534
OS	5	2.166	1.437–3.263	0.000	R	68.4	0.013	0.806	0.534

Publication bias

Furthermore, publication bias was also assessed by Begg’s test and Egger’s test. Symmetrical Begg’s funnel plots and Egger’s test results revealed no publication bias in all comparisons (Figure 4 and Table 2).

DISCUSSION

A number of studies have been performed to explore the associations of cancer cell stem cell markers, such as SOX2 and Nestin, with clinical parameters and prognosis in various types of cancers including NSCLC. However, the results in the studies were not consistent.

Up to now, there were two meta-analyses trying to investigate the associations of SOX2 with clinicopathological features and/or overall survival in NSCLC [17, 57]. Chen et al. [17] only searched relevant studies in PubMed, up to May 2013 and included eight studies. Shao et al. [57] pooled seven studies published from 2010 to 2013. Neither of the studies distinguished SOX2 DNA amplification, mRNA expression, and protein expression. In the present study, we analyzed SOX2 DNA amplification and protein expression, respectively,
unlike with the above reports. We searched in more English database and included more articles than the previous meta-analysis (19 vs. 8 and 7) although we did not combined the mRNA related studies. Pooling analyses suggested that both of the DNA amplification and the protein expression of SOX2 were associated with smoking status, histology, and OS. In addition, SOX2 DNA amplification was also associated with gender and differentiation. The discrepancy between DNA amplification and protein expression might be caused by the heterogeneity among studies and the inconsistency between amplification and protein expression. More studies examining amplification and protein expression of SOX2 at the same time should be performed to confirm the conclusions. For Nestin, there was only one meta-analysis examining the associations of Nestin protein expression with TNM in regardless of cancer types. And the authors found that Nestin was positively associated

Figure 3: Forest plot for associations of Nestin with clinicopathological features and overall survival in NSCLC.
with cancer stage and lymph node [58]. In the present meta-analysis, we summarized the associations of Nestin with clinicopathological features and OS in a single type of cancer, NSCLC. The pooling analyses suggested that high/positive Nestin was an indicator of poor prognosis in NSCLC, not as well as SOX2, which was a favorable factor for OS in NSCLC. This might bring us confusion when understanding the role of the two genes in molecular pathogenesis of NSCLC. Because both of them were cancer stem cell markers and mechanisms studies suggested that they all had proliferative and anti-apoptotic effects in vitro and animal model. Combined the results of the previous reports and the present meta-analysis, we proposed a mechanism model that SOX2 was an oncogene and promoted tumorigenesis. Meanwhile, the tumors with SOX2 up-regulation might exhibit a clearer squamous cell differentiation and were associated with better prognosis.

Although we pooled all the potential studies according to the inclusion and exclusion criteria, some limitations existed. Firstly, the number and sample size of Nestin related studies were small. Secondly, the studies of the subgroup of ADC for SOX2 were rare. As the original studies suggested that SOX2 was more frequently upregulated in SCC than ADC, the predictive role of SOX2 in SCC and ADC might be not consistent. Then the impact of SOX2 on prognosis in SCC and ADC should be compared in more studies with larger sample size.

In summary, we got a comprehensive result from the current meta-analysis that SOX2 DNA amplification and protein expression were associated with smoking status and histology, and were favorable for prognosis in NSCLC. And Nestin was associated with cancer stage, lymph node, and poor outcome.

Figure 4: Begg’s funnel plot for publication bias analysis.
MATERIALS AND METHODS

Publication search

A systematic search was performed in four English databases (PubMed, EMBASE, OVID, and Web of science) for published articles on the associations of SOX2 and Nestin with clinical features and/or overall survival (OS) in NSCLC up to November 10, 2015. The following keywords were used: “lung OR pulmonary”, “cancer OR tumor OR carcinoma”, and “Nestin OR Sex determining region Y box-2 OR SRY box-2 OR SOX2”. Two independent investigators screened the retrieved documents by reviewing the article titles, abstracts, or full texts according to the inclusion and exclusion criteria. The review articles and the references of selected articles were also screened to identify additional eligible studies.

Inclusion and exclusion criteria

Inclusion criteria: (1) the histologic type of the tumors was NSCLC and if one study containing multiple types of lung cancer, only the data related to NSCLC was included; (2) evaluating the associations of SOX2 and Nestin DNA amplification and/or protein expression with clinicopathological features and OS; (3) peer reviewed papers that have been published as full texts; (4) the language was limited as English; (5) if multiple studies contained overlap or duplicated data, only the study with larger sample size was included. Exclusion criteria: (1) the frequency of patients with positive/negative/high/low DNA amplification and protein expression was not specific to clinicopathological features; (2) study with insufficient data; (3) abstracts, letters, or review articles.

Data extraction

Two independent investigators collected related data carefully and the following characteristics were extracted from included studies: first author name, year of publication, country, ethnicity, patient number, gender, age, protein expression/amplification, method, cut-off value, smoking status, histologic type, differentiation, lymph node metastasis, stage, and OS.

Statistical analysis

All the statistical analyses were carried out with the software Stata 12.0 (StataCorp, College Station, TX, USA). The crude odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to estimate the associations of DNA amplification and protein expression of SOX2 and Nestin with clinicopathological features of NSCLC. The crude hazard ratios (HRs) with 95%CIs were used to assess their clinical significance in predicting prognosis of NSCLC. The statistical significant level was determined by Z-test with P value less than 0.05. If the prognosis was only presented by a Kaplan-Meier plot curve, HR and its 95%CI were calculated according to previous reports [59, 60]. Briefly, the KM plot curves were read by Engauge Digitizer version 2.11 and HR was estimated by the calculation spreadsheet. The spreadsheet could be freely downloaded from http://www.trialsjournal.com/content supplementary/1745-6215-8-16-s1.xls. Inconsistency was solved by discussion. The heterogeneity among studies was explored using the chi-square based on Q statistic test. If P > 0.1 or I² < 50%, fixed effects model was used to calculate the pooled OR/HR. Otherwise, random-effects model was used [61]. Sensitivity analysis was also conducted to evaluate stabilities of pooling results by omitting studies that brought heterogeneity or publication bias. Potential publication bias was checked by Begg’s funnel plots and Egger’s test [62, 63].

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This study was supported by the grants from National Natural Science Foundation of China (No.81301868) and Higher Educational Science and Technology Program of Shandong Province (No.J15LK04).

Authors’ contributions

Designed the study: Q. L., F. L., and X. M. Searched databases and collected full-text papers: Q. L. and F. L. Extracted and analyzed the data: Y. Z. and L. F. Statistical analyses: Q. L., C. W., X. C., and S. G. Wrote the main manuscript text: Q. L. and X. M. All authors reviewed the manuscript.

REFERENCES

1. Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. Adv Exp Med Biol. 2016; 893:1–19.
2. Travis WD. Pathology of lung cancer. Clin Chest Med. 2011; 32:669–692.
3. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Srirasanupong V, Chao TY, Nakagawa K, Chu DT, Saito N, Duffield EL, Rukazenkov Y, Speake G, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011; 29:2866–2874.
4. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palermo R, Garcia-Gomez R, Pallares C, Sanchez JM, Porta R, Cobo M, Garrido P, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer.
(EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012; 13:239–246.

5. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010; 363:1693–1703.

6. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner SG, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009; 41:1238–1242.

7. Boyer LA, Lee TI, Levine SS, Cole MF, Johnstone SE, Kumar RM, Jaenisch R, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005; 122:947–956.

8. Dacic S. Morphologic and Clinicopathologic Features of Sox2 Protein Expression is an Independent Poor Prognostic Indicator in Stage I Lung Adenocarcinoma. Am J Surg Pathol. 2010; 34:1193–1198.

9. Freier K, Knoepfle K, Flechtenmacher C, Pungs S, Devens F, Staebler A, Bass AJ, et al. SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol. 2011; 24:944–953.

10. Maier S, Wilbertz T, Cranenbroek RM, Murray HL, Jiang MJ, Wu HL, Yang HY, Watanabe H, Verhaak RG, Maisonpierre CP, Hoffman RM. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003; 100:9958–9961.

11. Huang YL, Wu CM, Shi GY, Wu GC, Lee H, Jiang MJ, Xiang AP. Expression of nestin in lymph node metastasis and lymphangiogenesis in non-small cell lung cancer patients. Hum Pathol. 2010; 41:737–744.

12. Boyer LA, Lee TI, Levine SS, Cole MF, Johnstone SE, Kumar RM, Jaenisch R, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005; 122:947–956.

13. Freier K, Knoepfle K, Flechtenmacher C, Pungs S, Devens F, Toedt G, Hofele C, Joos S, Lichter P, Radrwimmer B. Recurrent copy number gain of transcription factor SOX2 and corresponding high protein expression in oral squamous cell carcinoma. Genes Chromosomes Cancer. 2010; 49:9–16.

14. Maier S, Wilbertz T, Cranenbroek RM, Murray HL, Jiang MJ, Wu HL, Yang HY, Watanabe H, Verhaak RG, Maisonpierre CP, Hoffman RM. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003; 100:9958–9961.

15. Maier S, Wilbertz T, Cranenbroek RM, Murray HL, Jiang MJ, Wu HL, Yang HY, Watanabe H, Verhaak RG, Maisonpierre CP, Hoffman RM. Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci U S A. 2003; 100:9958–9961.
29. Maier S, Wilbertz T, Braun M, Scheble V, Reischl M, Mikut R, Menon R, Nikolov P, Petersen K, Beschomer C, Moeh H, Kakies C, Protzel C, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol. 2011; 42:1078–1088.

30. Hussenet T, da Manoia S. SOX2 in squamous cell carcinoma Amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle. 2010; 9:1480–1486.

31. Xu C, Xie D, Yu SC, Yang XJ, He LR, Yang J, Ping YF, Wang B, Yang L, Xu SL, Cui W, Wang QL, Fu WJ, et al. betacatenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Res. 2013; 73:3181–3189.

32. Tatsunori T, Tsuta K, Masai K, Kinno T, Taniyama T, Yoshida A, Suzuki K, Tsuda H. p40 is the Best Marker for Diagnosing Pulmonary Squamous Cell Carcinoma: Comparison With p63, Cytokeratin 5/6, Desmocollin-3, and Sox2. Appl Immunohistochem & Mol Morphol. 2014; 22:377–382.

33. Cortes-Dericks L, Galetta D, Spaggiari L, Schmid RA, Karoubi G. High expression of octamer-binding transcription factor 4A, prominin-1 and aldehyde dehydrogenase strongly indicates involvement in the initiation of lung adenocarcinoma resulting in shorter disease-free intervals. Eur J Cardiothorac Surg. 2012; 41:e173–e181.

34. Han SS, Kim WJ, Hong Y, Hong SH, Lee SJ, Ryu DR, Lee W, Cho YH, Lee S, Ryu YJ, Won YJ, Rhee H, Park JH, et al. RNA sequencing identifies novel markers of non-small cell lung cancer. Lung Cancer. 2014; 84:240–250.

35. Ahmed MB, Nabih ES, Louka ML, Abdel Motaleb FI, El Sayed MA, Elwakiel HM. Evaluation of nestin in lung adenocarcinoma: Relation to VEGF and Bcl-2. Biomarkers. 2014; 19:29–33.

36. Chiou GY, Cherng JY, Hsu HS, Wang ML, Tsai CM, Lu KH, Chien Y, Hung SC, Chen YW, Wong CI, Tseng LM, Huang PI, Yu CC, et al. Cationic polyurethanes-short branch PEI-mediated delivery of Mir145 inhibited epithelial-mesenchymaltransdifferentiation and cancer stem-like properties and in lung adenocarcinoma. J Control Release. 2012; 159:240–250.

37. Yuan P, Kadara H, Behrens C, Tang X, Woods D, Solis LM, Huang J, Spinola M, Dong W, Yin G, Fujimoto J, Kim E, Xie Y, et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PLoS One. 2010; 5:e9112.

38. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One. 2010; 5:e11022.

39. Sholl LM, Long KB, Hornick JL. Sox2 Expression in Pulmonary Non-small Cell and Neuroendocrine Carcinomas. Appl Immunohistochem & Mol Morphol. 2010; 18:55–61.

40. Cai YR, Zhang HQ, Qu Y, Mu J, Zhao D, Zhou LJ, Yan H, Ye JW, Liu Y. Expression of MET and SOX2 genes in non-small cell lung carcinoma with EGFR mutation. Oncol Rep. 2011; 26:877–885.

41. Cai YR, Zhang HQ, Zhang ZD, Mu J, Li ZH. Detection of MET and SOX2 amplification by quantitative real-time PCR in non-small cell lung carcinoma. Oncol Lett. 2011; 2:257–264.

42. Tsuta K, Tanabe Y, Yoshida A, Takahashi F, Maemehama AM, Asamura H, Tsuda H. Utility of 10 Immunohistochemical Markers Including Novel Markers (Desmocollin-3, Glypican 3, S100A2, S100A7, and Sox-2) for Differential Diagnosis of Squamous Cell Carcinoma from Adeno-carcinoma of the Lung. J Thorac Oncol. 2011; 6:1190–1199.

43. Sasaki H, Yokota K, Hikosaka Y, Moriyama S, Yano M, Fujii Y. Increased Sox2 copy number in lung squamous cell carcinomas. Exp Ther Med. 2012; 3:44–48.

44. Li X, Wang J, Xu Z, Ahmad A, Li E, Wang Y, Qin S, Wang Q. Expression of Sox2 and Oct4 and Their Clinical Significance in Human Non-Small-Cell Lung Cancer. Int J Mol Sci. 2012; 13:7663–7675.

45. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D, Li N. SOX2 Gene Regulates the Transcriptional Network of Oncogenes and Affects Tumorigenesis of Human Lung Cancer Cells. Plos One. 2012; 7.

46. Velcheti V, Schalper K, Yao X, Cheng H, Kocoglu M, Dhodapkar K, Deng Y, Gettner S, Rimm DL. High SOX2 Levels Predict Better Outcome in Non-Small Cell Lung Carcinomas. Plos One. 2013; 8.

47. Inoue Y, Matsuura S, Kurabe N, Kahyo T, Mori H, Kawase A, Karayama Y, Inui N, Funai K, Shinmura K, Suda T, Sugimura H. Clinicopathological and Survival Analysis of Japanese Patients with Resected Non-Small-Cell Lung Cancer Harboring NKX2–1, SETDB1, MET, HER2, SOX2, FGFR1, or PIK3CA Gene Amplification. J Thorac Oncol. 2015; 10:1590–1600.

48. Toschi L, Finocchiaro G, Nguyen TT, Skokan MC, Giordano L, Gianoncelli L, Perrino M, Siracusano L, Di Tommaso L, Infante M, Alloisio M, Roncalli M, Scorsetti M, et al. Increased SOX2 Gene Copy Number Is Associated with FGFR1 and PIK3CA Gene Gain in Non-Small Cell Lung Cancer and Predicts Improved Survival in Early Stage Disease. Plos One. 2014; 9.

49. Yoon H, Park KH, Lee EJ, Keum KC, Lee CG, Kim CH, Kim YB. Overexpression of SOX-2 is Associated with Better Overall Survival in Squamous Cell Lung Cancer Patients Treated with Adjuvant Radiotherapy. Cancer Res Treat. 2016; 48:473-82. doi: 10.4143/crt.2015.116.

50. Iijima Y, Seike M, Noro R, Ibi T, Takeuchi S, Mikami I, Koizumi K, Usuda J, Gemma A. Prognostic significance of PIK3CA and SOX2 in Asian patients with lung squamous cell carcinoma. Oncotarget. 2015; 6:13711-13720.

51. Zhao D, Zhou LJ, Yan H, Ye JW, Liu Y. Expression of MET and SOX2 genes in non-small cell lung carcinoma with EGFR mutation. Oncol Rep. 2011; 26:877–885.
Klein J, Grygarkova I, Kolek V. IDENTIFICATION OF CD133(+)NESTIN+ PUTATIVE CANCER STEM CELLS IN NON-SMALL CELL LUNG CANCER. Biomed Pap Olomouc. 2010; 154:321–326.

53. Ryuge S, Sato Y, Wang GQ, Matsumoto T, Jiang SX, Katono K, Inoue H, Satoh Y, Masuda N. Prognostic Significance of Nestin Expression in Resected Non-small Cell Lung Cancer. Chest. 2011; 139:862–869.

54. Skarda J, Kolar Z, Janikova M, Radova L, Kolek V, Fridman E, Kopolovic J. Analysis of the prognostic impact of nestin expression in non-small cell lung cancer. B Biomed Pap Olomouc. 2012; 156:135–142.

55. Chen Z, Wang J, Cai L, Zhong B, Luo H, Hao Y, Yu W, Wang B, Su C, Lei Y, Bella AE, Xiang AP, Wang T. Role of the Stem Cell-Associated Intermediate Filament Nestin in Malignant Proliferation of Non-Small Cell Lung Cancer. Plos One. 2014; 9.

56. Sterlacci W, Savic S, Fiegl M, Obermann E, Tzankov A. Putative Stem Cell Markers in Non-Small-Cell Lung Cancer A Clinicopathologic Characterization. J Thorac Oncol. 2014; 9:41–49.

57. Shao W, Chen H, He J. The role of SOX-2 on the survival of patients with non-small cell lung cancer. J Thorac Dis. 2015; 7:1113–1118.

58. Zhong B, Wang T, Zou J, Zheng F, Huang R, Zheng X, Yang W, Chen Z. Association of the intermediate filament nestin with cancer stage: a meta-analysis based on 223 positive/high nestin cases and 460 negative/low case-free controls. Oncotarget. 2015; 6:22970–22977. doi: 10.18632/oncotarget.4042.

59. Wang Y, Zeng T. Response to: Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2013; 14:391.

60. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials. 2007; 8:16.

61. R. D, N. L. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177–188.

62. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994; 50:1088–1101.

63. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629–634.