Effect of mulching and subsurface drip irrigation on soil water status under arid environment

Ahmed A. Al-Othman (Al-Othman, AA)1, Mohamed A. Mattar (Mattar, MA)1,2 and Mohammed A. Alsamhan (Alsamhan, MA)1

1 King Saud University, College of Food and Agriculture Sciences, Agricultural Engineering Dept., P. O. Box 2460, Riyadh 11451, Saudi Arabia
2 Agricultural Engineering Research Institute (AEEnRI), Agricultural Research Center, P. O. Box 256, Giza, Egypt

Abstract

Aim of study: We investigated water evaporation of the soil surface and the soil water distribution under different mulching techniques using subsurface drip irrigation (SDI) system.

Area of study: The experiment was conducted at the Agricultural Research and Experimental Farm in Dirab, Riyadh, Saudi Arabia, locating 24.4195° N, 46.65° E, and 552 m altitude.

Material and methods: The two types of soil surface mulching were black plastic film (BPF) and palm tree waste (PTW), with no mulching (NM) as control. The two drip line depths from the soil surface (D_L) were 15 cm and 25 cm, and surface drip irrigation (DI) was the control.

Main results: In SDI, the use of BPF or PTW mulching resulted in enhanced water retention capacity of the soil and an approximately 6% water saving, compared with NM. The amounts of water saved at D_L of 15 cm (19-24 mm) were greater than those at D_L of 25 cm (15-20 mm), whereas the DI used the highest amount of applied water. The distribution of soil water content for BPF and PTW were found to be more uniform than NM.

Research highlights: It is advised to mulch the soil with PTW due to lower costs and through a D_L of 15 cm.

Introduction

A weak water management system causes the highest water loss during irrigation (Al-Amoud, 2010), having a significant influence on the limited resources of water and on agriculture (Al-Shayaa et al., 2012). Therefore, drip irrigation methods have been adopted because it is believed to be the most efficient and worthwhile source for stabilizing the use of water when compared to other methods. In surface drip irrigation (DI), water loss can be decreased because of less water evaporation and deep percolation (Al-Amoud, 2010). Despite these advantages, several disadvantages have been observed in the application of the DI system owing to its traditional...
methodology including the risk of destruction, direct exposure of the drip lines to the sun, and the occurrence of salinity. Thus, subsurface drip irrigation (SDI) has been suggested as a more useful method because it used less water than that of DI due to decrease the level of evaporation from the soil surface (Ayars et al., 1995; Çolak et al., 2018). SDI can be used to manage the amount of added water without causing any severe effects on the environment as a result of flow removal and deep penetration (Zin El-Abedin et al., 2015). Overall, this method is able to enhance the production of crops by reducing water waste (Dukes & Scholberg, 2005; Enciso et al., 2005; Soussa, 2010). SDI is a more efficient irrigation tool than the DI system because it provides water to the root zone (Irmak et al., 2016). However, the efficiency of this system can be disturbed depending on the distance between the emitters and the lined depth of the drip lines (Enciso et al., 2005).

Some precautionary measures should be followed when applying an SDI system. Bryla et al. (2003) suggested that for an efficient installment of an SDI system, the drip line depth under the soil surface is the most important factor that must be considered during the design process. There are several studies on SDI carried out in different crops. Patel & Rajput (2009) studied the effect of the buried depth of the drip lines and the different irrigation levels on the production of onions under an SDI system in sandy loamy soil. The best result was achieved at a buried drip line depth of 10 cm. Çolak et al. (2017) showed that SDI received slightly less water than the DI due to reduced evaporation losses in eggplant. Al-Ghobari & Dewidar (2018) reported that soil water contents in SDI were greater than those in DI during growth stages of the tomato.

In the field of agriculture, apart from the SDI system, which plays a vital role in the reduction of water usage, several other techniques have been explored to enhance water absorption, such as mulching at the soil surface (Hapeman & Durham, 2003). These techniques have been widely used to hinder the water evaporation rate from the soil surface and improve crop growth environments, thereby increasing crop yields (Dukes & Scholberg, 2005; Zhang et al., 2009; Bu et al., 2013; Li R et al., 2013; Li S et al., 2013; Haque et al., 2018). In last years, the crop straw is one technique for mulching of the soil surface that can reduce evaporation loss from the soil surface, improve physicochemical properties of soil, and enhance biological activity (Blanco-Canqui & Lal, 2007; Jordán et al., 2010; Sharma et al., 2011; Jiménez et al., 2017). Li R et al. (2013) and Li S et al. (2013) found that straw mulching has saved about 35% of all water sources during maize growth period. Presently, plastic film mulching is a well-evolved technique for agriculture in arid, semiarid and sub-humid areas, especially where irrigation is not available (Dong et al., 2009). Plastic film mulching has been shown to improve thermal conditions and increase topsoil water storage (Wang et al., 2015; Liang et al., 2018) promoting crop growth and water use efficiency (Fan et al., 2016; Wu et al., 2017). Ma et al. (2018) showed that plastic film mulching increased soil moisture in topsoils (0-20 cm) and yields of spring maize and potato in Northwestern China. A combination of SDI and plastic film mulching has been the best method to produce vegetables (Coelho et al., 2009) and melons (Baghani et al., 2010).

Under an arid climate, the application of an SDI system with mulching can potentially minimize the evaporation rate. Therefore, the aims of the present study were to: (1) explore the reduction of evaporation using different soil surface mulching, e.g. black plastic film (BPF) and palm tree waste (PTW), in combination with SDI; (2) analyze the status of the volumetric soil water content (θ) under an SDI, being a functional unit in the variation of drip line depth and soil surface mulching.

Material and methods

Field conditions

The experiment was conducted at the Agricultural Research and Experimental Farm in Dirab, Riyadh, Saudi Arabia (lat. 24.4195° N, long. 46.65° E, and 552 m above sea level elevation) from June to September 2018. Monthly averages of climatic data during experimental period are described in Table 1. The average air temperatures recorded were between 34.6 and 37.4°C, whereas the means of relative humidity recorded were between 10.1% and 13.7%. The recorded intermediate maximum wind speeds fall approximately between 6.6 and 5.6 m s⁻¹, and the recorded mean

Table 1. Climatic parameters (average) during the experimental months in 2018

Month	Air temperature (°C)	Relative humidity (%)	Wind speed (m s⁻¹)	Solar radiation (MJ m⁻² day⁻¹)
June	36.6	10.1	5.6	24.7
July	37.4	11.8	6.1	24.8
August	35.8	13.7	6.6	23.4
September	34.6	13.5	5.6	23.2
solar radiations fall between 23.2 and 24.8 MJ m$^{-2}$ day$^{-1}$. Finally, there was no rainfall during the experimental months.

To investigate the physical and chemical properties of the soil, three samples were collected from different depths in various plots. Table 2 presents the values of the soil texture, field capacity (FC), wilting point, soil bulk density, and initial water content at different soil depth levels from the experimental locations. Finally, the chemical properties of the soil samples from different experimental sites are given in Table 3. The chemical properties of the irrigation water were analyzed by knowing an electrical conductivity value of 2.5 mS cm$^{-1}$, pH of 7.48, and total dissolved solids of 2880 mg L$^{-1}$. Both the soil and water present in the experimental samples were of reasonable quality to conduct the present study.

Table 2. Physical properties of three soil samples from the experimental site

Soil depth (cm)	Particle size distribution (%)	Soil texture	Initial water content (%)	Field capacity (%)	Wilting point (%)	Soil bulk density (g cm$^{-3}$)																		
	Clay	Silt	Sand		Clay	Silt	Sand		Clay	Silt	Sand		Clay	Silt	Sand		Clay	Silt	Sand		Clay	Silt	Sand	
Plot 1	0-25	3.2	22.5	74.3	Loamy sand	1.22	14.58	3.04	1.51															
	25-50	3.2	22.5	74.3	Loamy sand	1.36	15.99	3.39	1.41															
Plot 2	0-25	3.2	15	81.8	Loamy sand	1.22	14.86	3.05	1.52															
	25-50	1.95	16.25	81.8	Loamy sand	1.15	15.15	2.45	1.40															
Plot 3	0-25	4.45	16.25	79.3	Loamy sand	1.37	17.57	3.05	1.50															
	25-50	0.7	12.5	86.8	Sand	0.93	14.81	2.06	1.40															

Plots 1, 2, 3: drip line depth = 0 cm, 15 cm, and 25 cm, respectively.

Table 3. Chemical properties of soil samples from experimental site

Soil depth (cm)	Electrical conductivity (dS m$^{-1}$)	pH	Calcium carbonate (%)	Sodium (mg L$^{-1}$)	Potassium (mg L$^{-1}$)	Phosphorus (mg L$^{-1}$)	
Plot 1	0-25	1.47	7.85	25.54	61	116	31.1
	25-50	2.4	7.73	27.04	181	115	21.8
Plot 2	0-25	3.4	7.8	25.37	237	109	12.5
	25-50	2.37	7.87	24.75	139	110	9.3
Plot 3	0-25	3.09	7.81	24.75	330	81	24.9
	25-50	2.05	7.91	23.34	218	70	34.2

Plots 1, 2, 3: drip line depth = 0 cm, 15 cm, and 25 cm, respectively.
Figure 1. Experimental layout.
The irrigation time was changeable owing to the planned irrigation treatment. The sensors were used to monitor the θv before and after irrigation. Scheduling consisted of applying the right amount of water at the right time. Its purpose was to maximize the irrigation efficiency by applying the appropriate amount of water needed to replenish the soil water to the desired level. In the present study, because there were no crops planted, the applied water was controlled based on the FC of the soil. The water depth was calculated for each soil depth from 10 to 50 cm and cumulated. The depth of water added to reach the soil FC (Dw) was calculated using Eq. (1):

\[D_w = \sum_{i=1}^{n} D_i (F_{Ci} - \theta_{vi}) \]

where Dw is in mm, n is the number of sensors, Di is the soil depth at the ith sensor, FCi is field capacity of the soil at the ith sensor and \(\theta_{vi} \) is soil water content at the ith sensor.

Measurement of soil water content

For constant monitoring of the water content in the soil, EasyAG probes (Sentek Sensor Technologies, Stepney, Australia) were installed, which provide a θv profile for irrigation and management applications. These probes include several sensors that measure the soil water at multiple depths. The probes create a high-frequency electrical field around each sensor that extends through the assessment tube into the soil. The electrical capacitance from the probe provided a θv. This was converted from a scaled frequency reading (Eq. 2) using a calibration equation (Eq. 3), which was based on field data:

\[SF = \frac{(F_A - F_S)}{(F_A - F_W)} \]

\[SF = A\theta^v + C \]

where, FA, FS, and FW are frequency readings in the air, soil, and water, respectively, and A, B, and C are constants (Table 4). The \(\theta^v \) can be directly obtained from the constants A, B, and C from Eq. (4):

\[\theta_v = \left(\frac{SF - C}{A} \right)^{\frac{1}{B}} \]

Each plot had three probes planted to record the values of \(\theta_v \) at soil depths of 10, 20, 30, 40, and 50 cm. The first probe was placed directly at the emitter, the second was at 15 cm spacing from the drip line (S), and the third was at S of 30 cm, as shown in Fig. 2. The SURFER 13 software program was used to display \(\theta_v \) distribution in soil profiles by contour maps using the Kriging method. A total of 15 data points were used to develop \(\theta_v \) lines for each treatment. The contour maps were derived considering that there was symmetry around the emitter for both left and right sides.

Table 4. Constants of Equation (3) for three sensors after calibration

Sensor location	A	B	C	R²
Directly on drip line	60.619	0.109	-71.356	0.942
At spacing of 15 cm from drip line	476.132	0.014	-485.695	0.844
At spacing of 30 cm from drip line	507.365	0.011	-513.789	0.751

Figure 2. Installation of EasyAG probes in the plot: (a) buried drip line; (b) drip line on the soil surface.
Statistical analysis

An analysis of variance following a RCBD was conducted on the average θ_v using the SAS statistical package to determine the effects of treatment (D_l and mulching type, M) on the measured parameters. The treatment means were separated through a least significant difference (LSD) test with a level of statistical significance of 0.05.

Results and discussion

Applied water

Fig. 3 shows that 89.45% and 94.04% of water in NM treatment were applied in the BPF and PTW treatments, respectively, at the DI ($D_l = 0$ cm). The BPF and PTW treatments at D_l of 15 cm are 6.79% and 4.94% water savings, respectively, whereas approximately 69 mm of water was applied in the NM treatment. At D_l of 25 cm, the quantity of water applied in the NM treatment was ~ 73 mm; 7.02% and 5.26% water savings were achieved in the BPF and PTW treatments, respectively. As shown in Fig. 3, under any type of mulching, the amount of water was higher when the DI was used (i.e., $D_l = 0$ cm) because of higher evaporation rates from the soil surface (Al-Ghobari & El-Marazky, 2012; Colak et al., 2018). SDI (i.e., D_l of 15 cm and 25 cm) under any type of mulching was saved along with the applied water. The amounts of applied water at D_l of 15 cm were 5.26%, 5.03%, 4.94%, respectively, lower than those at D_l of 25 cm for NM, BPF, and PTW mulching. Therefore, a BPF or PTW mulching combined with SDI retains the moisture and decreases the required water amount to prevent water evaporation from the soil surface (Gan et al., 2013). However, it is better to use PTW mulch, because it does not require any additional costs, at D_l of 15 cm.

Effect of mulching type on soil water content

Figure 4 shows the average θ_v values in the soil depths for DI, D_l of 15 cm and D_l of 25 cm under NM, BPF, and PTW treatments. The BPF treatment had higher θ_v values than that of the NM and PTW treatments in both the DI and SDI systems. The θ_v values for the DI with BPF mulching, the θ_v values were approximately 14.79%, 13.69%, and 13.27% directly at the emitter (S of 0 cm), S of 15 cm, and S of 30 cm, respectively (Fig. 4). The θ_v values for the PTW treatment were 14.55%, 13.63%, and 13.15%, at S of 0 cm, S of 15 cm, and S of 30 cm, respectively. The θ_v values for the BPF treatment were 4.08%, 1.33%, and 1.76% higher than that of the NM treatment at S of 0 cm, S of 15 cm, and S of 30 cm, respectively. The θ_v values for the PTW treatment were 2.39%, 0.89%, and 0.84% higher than that of the NM for S of 0 cm, S of 15 cm, and S of 30 cm, respectively.

For D_l of 15 cm, the θ_v values for the BPF treatment were also higher than those of the NM and PTW treatments (Fig. 4). The θ_v values at S of 0 cm were approximately 15.05% and 14.72% for the BPF and PTW treatments, respectively (i.e., the θ_v values were 3.65% and 1.38% higher, respectively, than that of the NM treatment). The θ_v values for the BPF and PTW treatments were 1.02% and 0.58% higher, respectively, at S of 15 cm than that of the NM treatment, whereas the θ_v values increased by 1.58% and 0.75%, respectively, at S of 30 cm. For D_l of 25 cm, the θ_v values at S of 0 cm were 2.74% and 1.13% higher for the BPF and PTW treatments, respectively, than that of the NM treatment. The θ_v values for the BPF and PTW treatments were 1.02% and 0.58% higher, respectively, at S of 15 cm than that of the NM treatment, whereas the θ_v values increased by 1.58% and 0.75%, respectively, at S of 30 cm. For D_l of 25 cm, the θ_v values at S of 0 cm were 2.74% and 1.13% higher for the BPF and PTW treatments, respectively, than that of the NM treatment (Fig. 4). Additionally, the θ_v values increased by 3.97% and 2.91%, respectively, at S of 15 cm, and the θ_v values increased by 3.15% and 2.20%, respectively, at S of 30 cm.

The comparison of θ_v values average across the experimental treatments is summarized in Table 5. The M had very significant ($p < 0.01$) effects on the average θ_v values when measured at S of 0 cm and S of 15 cm and significant ($p < 0.05$) effect at S of 30 cm, irrespective of the D_l treatments. The BPF treatment provided a higher average θ_v value than that of the NM treatment, with a significant increase of 3.50%, 2.18%, and 2.25% at S of 0 cm, S of 15 cm and S of 30 cm, respectively. This was because that BPF mulching stopped the move-
Effect of mulching and subsurface drip irrigation on soil water status under arid environment

Dong et al. (2018) studied the effect of mulching on soil water status. When the PTW covered the soil, the increase in θ_v was significant (1.65% and 1.45%, respectively) at S of 0 cm and S of 15 cm and insignificant at S of 30 cm, comparing with NM treatment, consistent with the results of Liu et al. (2018). This was because the rate of water vapor flux through covered PTW was slow compared to the rate of water loss from wet soil surface (Li R et al., 2013; Li S et al., 2013). BPF treatment showed significant increases (1.82%) in θ_v compared to PTW at S of 0 cm, but significant difference were not observed at S of 15 cm and S of 30 cm. Thus M, which had an effect in the covered soil, retained higher moisture levels, leading to better root growth than that of the uncovered soil. Although it is cost-effective to purchase BPF, this type of mulching system can be replaced by PTW, which is available to farms at no extra cost.

Effect of depth of drip line on soil water content

Figure 4 shows that the D_i of 25 cm for the NM treatment had the highest average θ, value (14.98%) at S of 0 cm, which was 5.42% and 3.17% higher than that at DI and D_i of 15 cm, respectively. The θ, values at S of 15 cm for the NM treatment were approximately 13.79% and 14.09% for D_i of 15 cm and 25 cm, respectively, i.e., the θ, values were 2.07% and 4.29% higher, respectively, than that of the DI system. The θ, values at S of 30 cm for DI were 2.03% and 4.54% lower than that of the D_i of 15 cm and 25 cm, respectively. This result is consistent with Mokh et al. (2014), who explained that the D_i in SDI system influenced θ, values during the two cropping periods of potato, and increasing the D_i lead to increased θ, values.

For BPF and PTW treatments, Fig. 4 shows that the θ, values for the DI system were lower than those of the SDI system. A D_i of 25 cm with the BPF treatment produced the highest θ, value of 15.39% at S of 0 cm compared to the DI and D_i of 15 cm, which was 4.06% and 2.26% higher, respectively, whereas at S of 15 cm θ, values increased by 7.01% and 5.17%, and at S of 30 cm values increased by 6.18% and 4.22%. The θ, values in the PTW treatment under different D_i showed a similar trend, being 4.12%, 6.38%, and 6.16% higher for D_i of 25 cm than those of DI at S of 0 cm, S of 15 cm, and S of 30 cm, respectively. The θ, values for D_i of 15 cm were 2.84%, 4.34%, and 3.94% lower than those of D_i of 25 cm at S of 0 cm, S of 15 cm, and S of 30 cm, respectively.

Irrespective of M treatments, Table 5 shows that D_i had a significant ($p < 0.01$) effects on the average θ.

![Figure 4](image-url)
values at different S, being D_{L} of 25 cm the treatment showing the highest value, unlike in the DI. Significant differences between D_{L} treatments were observed at S of 0 cm, S of 15 cm and S of 30 cm, the average θ_{v} value at D_{L} of 25 cm were 4.27%, 5.95%, and 5.78% higher than those of the DI, while 2.57%, 4.04%, and 3.73% higher than those of the DL of 15 cm, respectively. The θ_{v} values’ variance between D_{L} of 15 cm and D_{L} of 25 cm treatments are only small. So, the D_{L} should be at 15 cm to reduce the cost of drilling. The deepening of the drip line away from the sun results in increasing θ_{v} value due to a lack of moisture loss (Solomon, 1993).

Soil water distribution

Figure 5 show that the θ_{v} distribution was affected by M and D_{L} under different S. The best uniformity of θ_{v} distribution contour lines throughout the soil profile was obtained under SDI (D_{L} of 15 cm and D_{L} of 25 cm). However, the distribution of the θ_{v} for different M treatments indicated that the D_{L} of 15 cm and D_{L} of 25 cm had more uniform bulb distribution at S of 0 cm. In contrast, the θ_{v} distribution in S of 15 cm and S of 30 cm was similar and more uniform than that obtained with the DI. The θ_{v} bulb’s spread decrease as S increases horizontally under any M and any D_{L}. Similarly, Assouline (2002), Grabow et al. (2006), Badr (2007), Shirahatti et al. (2007), and Nasrabad et al. (2013) showed that the θ_{v} value decreased horizontally as the S increased. In sandy soil, the emitters need to be closer together because the water does not move as far horizontally (Arbat et al., 2010). Moreover, in an SDI system, the vertical movement of the θ_{v} level was found to be higher than the horizontal movement (Bajracharya & Sharma, 2005; Al-Ghobari & El-Marazky, 2012; Douh et al., 2013).

Table 5 shows that binary interactions between the M and D_{L} had (p < 0.05) significant effect on the θ_{v} values at S of 15 cm only. BPF and PTW mulching at 0-20 cm soil layer increased θ_{v} values by 0.96% and 1.25%, respectively, more than that of NM in DI (Fig. 5). The corresponding values of θ_{v} were increased by 3.05% and 2.91% for D_{L} of 15 cm while 5.56% and 5.41% for D_{L} of 25 cm. This agrees with Wang et al. (2009) and Liu et al. (2014). Ma et al. (2018) found that plastic film mulching increased the θ_{v} significantly (12.9%) for the 0-20 cm soil layer, compared with traditional approach. Using mulching (e.g., BPF and PTW) holds water evaporation and encourages water movement to the topsoil layers promoting θ_{v} during initial stage of crop growth (Gan et al., 2013). With SDI, the surface soil layer is not completely wetted (i.e. lower moisture) as in the case of DI. Therefore, with SDI the upper soil layers remain relatively dry, thereby reducing the direct soil evaporation as compared to DI (Solomon, 1993). At the 0-40 cm soil layer, being the normal root depth for most crops, the average θ_{v} value in S of 15 cm was 13.87% for the D_{L} of 15 cm and 14.13% for the D_{L} of 25 cm under NM treatment (Fig. 5a). This observation agrees with the results reported by Badr & Abuarab (2011), who suggested that a D_{L} of 30 cm is deemed the active root zone in vegetable crops, and the improved activity was attributed to the enhanced capacity to restore water, particularly for sandy soils. In contrast, a D_{L} of greater than 10 cm is advisable to prevent the wetting of the soil surface dur-

Table 5. Results of variance analysis of θ_{v} values under mulching type (M), drip line depth from the soil surface (D_{L}) at different spacing from the drip line (S).

Treatments	S = 0 cm	S = 15 cm	S = 30 cm
M			
No mulching	14.57 c	13.79 b	13.33 b
Black plastic film	15.08 a	14.09 a	13.63 a
Palm tree waste	14.81 b	13.99 a	13.51 ab
LSD0.05	0.17	0.11	0.19
D_{L}			
Surface drip	14.52 c	13.61 c	13.15 c
Subsurface drip at 15 cm depth	14.76 b	13.86 b	13.41 b
Subsurface drip at 25 cm depth	15.14 a	14.42 a	13.91 a
LSD0.05	0.17	0.11	0.20
M × D_{L}	ns	*	ns

Mean values in columns followed with different letters are significantly different based on LSD test at p < 0.05. *: Significant at the 5% of probability level (p ≤ 0.05). **: Significant at the 1% of probability level (p ≤ 0.01). ns: non-significant.
Effect of mulching and subsurface drip irrigation on soil water status under arid environment

Figure 5. Soil water distribution through the emitter at different drip line depths after irrigation for 24 h: (a) no mulching; (b) black plastic film mulching; (c) palm tree waste mulching.
ing irrigation in loamy soil (Rodriguez-Sinobas et al., 2012). The corresponding values were 14.02% and 14.63% under BPF treatment (Fig. 5b), while 13.97% and 14.54% under PTW treatment (Fig. 5c). The increased moisture retention capacity of BPF and PTW treatments could be attributed to less non-productive water losses from the soil, which play a vital role in the management and growth of crop (Zhao et al., 2014; Dong et al., 2018; Li et al., 2018). Because of vapors, the water was further trapped within the mulch, resulting in fog, which again dropped into the upper soil layer, as reported byAshrafuzzaman et al. (2011). The θ_v distribution contours show a saturation bulb under the emitters that moves downward as the D_i increases (Fig. 5). Clearly, the θ_v distribution became more controllable moving downward when applying BPF and PTW mulching were used. BPF mulching at D_i of 25 cm largely allowed the downward movement of θ_v (Fig. 5b). Fig. 5c shows similar results but with less θ_v, moved downward when the PTW mulching was applied at D_i of 25 cm. It is better to use D_i at 15 cm and PTW mulching, that is less expensive to install, giving slightly less θ_v values than those of BPF mulching at D_i of 25 cm.

In summary, the present study illustrated the influence of the D_i under different M in a SDI system for the θ_v distribution in a soil profile. The inclusion of BPF or PTW mulching on the soil surface was found to enhance the water retention capacity of the soil. The SDI system reduced the required water amount when compared to when the drip line was mulched with PTW. Therefore, it is recommended that the methodology of an SDI system would provide a useful method for treating soil through the installation of a D_i at 15 cm and by mulching the soil with PTW where no additional cost is required. Such treatment will provide an active zone of soil to the roots of vegetables crops. Therefore, we believe that the soil treatment strategy outlined in the present study could restore high levels of water resources in the loamy land of Saudi Arabian farms at a significantly low cost.

References

Al-Amoud AI, 2010. Subsurface drip irrigation for date palm trees to conserve water. ISHS Acta Hortic 88: 103-114. https://doi.org/10.17660/ActaHortic.2010.882.11

Al-Ghobari HM, El-Marazky MA, 2012. Surface and subsurface irrigation systems wetting patterns as affected by irrigation scheduling techniques in an arid region. Afr J Agric Res 7: 5962-5976. https://doi.org/10.5897/AJAR11.2194

Al-Ghobari HM, Dewidar AZ, 2018. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric Water Manag 209: 55-61. https://doi.org/10.1016/j.agwat.2018.07.010

Al-Shayaa S, Baig MB, Straquadine GS, 2012. Agricultural extension in the Kingdom of Saudi Arabia: difficult present and demanding future. J Anim Plant Sci 22: 239-246.

Arbat GP, Lamm FR, Abou Kheira AA, 2010. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity. Appl Eng Agric 26: 391-399. https://doi.org/10.13031/2013.29959

Ashrafuzzaman M, Abdul-Halim M, Ismail MR, Shahidullah SM, Hosain MA, 2011. Effect of plastic mulch on growth and yield of chilli (Capsicum annuum L.). Braz Arch Biol Technol 54: 321-330. https://doi.org/10.1590/S1516-89132011000200014

Assouline S, 2002. The effects of microdrip and conventional drip irrigation on water distribution and uptake. Soil Sci Soc Am J 66: 1630-1636. https://doi.org/10.2136/sssaj2002.1630

Ayars JE, Phene CJ, Schoneman RA, Meso B, Dale F, Penland J, 1995. Impact of bed location on the operation of subsurface drip irrigation systems. Proc. 5th Int Microirrigation Congr, ASABE, pp: 68-174.

Badr AE, Abuarab ME, 2011. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Irrig Sci 31: 317-332. https://doi.org/10.1007/s00271-011-0306-0

Badr MA, 2007. Spatial distribution of water and nutrients in root zone under surface and subsurface drip irrigation and cantaloupe yield. World J Agric Sci 3: 747-756.

Baghani J, Dehghani SH, Sadrghaiini SH, 2010. Study the effects of plastic mulches and different irrigation water level on qualitative and quantitative yield of melon in surface and subsurface drip irrigation systems. Iran J Irrig Drain 4: 175-181.

Bajracharya RM, Sharma S, 2005. Influence of drip-irrigation method on performance and yields of cucumber and tomato. Int J Appl Sci Eng Tech 1: 1-7.

Blanco-Canqui H, Lal R, 2007. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141: 355-362. https://doi.org/10.1016/j.geoderma.2007.06.012

Bryla DR, Banuelos GS, Mitchell JP, 2003. Water requirements of subsurface drip-irrigated faba bean in California. Irrig Sci 22: 31-37. https://doi.org/10.1007/s00271-003-0065-7

Bu L, Liu J, Zhu L, Luo S, Chen X, Li S, Hill RL, Zhao Y, 2013. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric Water Manag 123: 71-78. https://doi.org/10.1016/j.agwat.2013.03.015

Coelho RD, Monteiro ROC, Chaves SWP, Shirahige FH, 2009. Effects of subsurface drip irrigation (SDI) and plastic
Effect of mulching and subsurface drip irrigation on soil water status under arid environment

Jiménez MN, Pinto JR, Ripoll MA, Sánchez-miranda A, Navarro FB, 2017. Impact of straw and rock-fragment mulches on soil moisture and early growth of holm oaks in a semiarid area. Catena 152: 198-206. https://doi.org/10.1016/j.catena.2017.01.021

Jordán A, Zavala LM, Gil J, 2010. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81: 77-85. https://doi.org/10.1016/j.catena.2010.01.007

Li R, Hou X, Jia Z, Han Q, Ren X, Yang B, 2013. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainy season of the Loess Plateau, China. Agric Water Manag 116: 101-109. https://doi.org/10.1016/j.agwat.2012.10.001

Li S, Wang Z, Li S, Gao Y, Tian, X, 2013. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on soil loss by evaporation in dryland areas of China. Agric Water Manag 116: 39-49. https://doi.org/10.1016/j.agwat.2012.10.004

Li S, Li Y, Lin H, Feng H, Dyck M, 2018. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agric Water Manag 201: 309-318. https://doi.org/10.1016/j.agwat.2017.10.025

Liang SM, Cai R, Wang PJ, Wang XT, LiYS, Xu FH, Wang Y, Yan QD, Lei Z, Li XP, Kang Z, Yang QF, Sui QI, 2018. Improvements of emergence and tuber yield of potato in a seasonal spring arid region using plastic film mulching only on the ridge. Field Crops Res 223: 57-65. https://doi.org/10.1016/j.fcr.2018.03.012

Liu J, Bu L, Zhu L, 2014. Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas. Agron J 106 (4): 1138-1146. https://doi.org/10.2134/agronj13.0582

Liu T, Wang B, Xiao H, Wang R, Yang B, Cao Q, Cao Y, 2018. Differentially improved soil microenvironment and seedling growth of Amorpha fruticosa by plastic, sand and straw mulching in a saline wasteland in northwest China. Ecol Eng 122: 126-134. https://doi.org/10.1016/j.ecoleng.2017.07.030

Ma D, Chen L, Qu H, Wang Y, Missetbrook T, Jiang R, 2018. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis. Agric Water Manag 202: 166-173. https://doi.org/10.1016/j.agwat.2018.02.001

Mokh F, Nagaz K, Masmoudi MM, Mechlia NB, 2014. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia. J Agron Environ Int Dev 108: 227-246.

Nasrabad GG, Rajput TBS, Patel N, 2013. Soil water distribution and simulation under subsurface drip irrigation in cotton (Gossypium hirsutum). Ind J Agric Sci 83: 63-70. Patel N, Rajput TBS, 2009. Effect of subsurface drip irrigation on onion yield. Irrig Sci 2: 97-108. https://doi.org/10.1007/s00271-008-0125-0

Rodríguez-Sinobas L, Gil M, Sánchez R, Benítez J, 2012. Evaluation of drip and subsurface drip irrigation in a uniform loamy soil. Soil Sci 177: 147-152. https://doi.org/10.1097/SS.0b013e3182411317

Grabow GL, Huffman RL, Evans R, Jordan D, Nuti RC, 2006. Water distribution from a subsurface drip irrigation system and drip line spacing effect on cotton yield and water use efficiency in a coastal plain soil. T ASABE 49: 1138-1146. https://doi.org/10.13031/2013.0582
Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y, Wang J, 2009. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid loess plateau, China. Agric Water Manag 96 (3): 374-382. https://doi.org/10.1016/j.agwat.2008.09.012

Wu Y, Huang F, Jia Z, Ren X, Cai T, 2017. Response of soil water, temperature, and maize (Zea mays L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till Res 166: 113-121. https://doi.org/10.1016/j.still.2016.10.012

Zhang S, Lövdahl L, Grip H, Tong Y, Yang X, Wang Q, 2009. Effects of mulching and catch cropping on soil temperature: soil moisture and wheat yield on the Loess Plateau of China. Soil Till Res 102: 78-86. https://doi.org/10.1016/j.still.2008.07.019

Zhao H, Wang RY, Ma BL, Xiong YC, Qiang, SC, Wang CL, Liu CA, Li FM, 2014. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res 161: 137-148. https://doi.org/10.1016/j.fcr.2014.02.013

Zin El-Abedin TK, Mattar MA, Alazba AA, 2015. Soil wetting pattern from subsurface drip irrigation as affected by application of a polyacrylamide layer. Irrig Drain 64: 609-618. https://doi.org/10.1002/ird.1937