The prognostic nutritional index on postoperative day one is associated with one-year mortality after burn surgery in elderly patients

Young Joo Seo¹, Yu-Gyeong Kong¹, Jihion Yu², Ji Hyun Park³, Su-Jin Kim³, Hee Yeong Kim³,* and Young-Kug Kim²,*

¹Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, 12, Beodeunaru-ro 7-gil, Yeongdeungpo-gu, Seoul 07247, Republic of Korea, ²Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea and ³Department of Anesthesiology and Pain Medicine, National Medical Center, 245, Euljiro, Jung-gu, Seoul 04564, Republic of Korea

*Correspondence. Hee Yeong Kim, Email: umelly98@gmail.com; Young-Kug Kim, Email: kyk@amc.seoul.kr

Received 8 July 2020; Revised 13 September 2020; Editorial decision 26 October 2020

Abstract

Background: Burn injury in elderly patients can result in poor outcomes. Prognostic nutritional index (PNI) can predict the perioperative nutritional status and postoperative outcomes. We aim to evaluate the risk factors, including PNI, for one-year mortality after burn surgery in elderly patients.

Methods: Burn patients aged ≥65 years were retrospectively included. PNI was calculated using the following equation: 10 × serum albumin level (g/dL) + 0.005 × total lymphocyte count (per mm³). Cox regression, receiver operating characteristic curve and Kaplan–Meier survival analyses were performed to evaluate the risk factors for postoperative one-year mortality.

Results: Postoperative one-year mortality occurred in 71 (37.6%) of the 189 elderly burn patients. Risk factors for one-year mortality were PNI on postoperative day one (hazard ratio (HR) = 0.872; 95% CI = 0.812–0.936; p < 0.001), Sequential Organ Failure Assessment score (HR = 1.112; 95% CI = 1.005–1.230; p = 0.040), American Society of Anesthesiologists physical status (HR = 2.064; 95% CI = 1.211–3.517; p = 0.008), total body surface area burned (HR = 1.017; 95% CI = 1.003–1.032; p = 0.015) and preoperative serum creatinine level (HR = 1.386; 95% CI = 1.058–1.816; p = 0.018). The area under the curve of PNI for predicting one-year mortality after burn surgery was 0.774 (optimal cut-off value = 25.5). Patients with PNI ≤25.5 had a significantly lower one-year survival rate than those with PNI >25.5 (32.1% vs 75.9%, p < 0.001).

Conclusions: PNI on postoperative day one was associated with postoperative one-year mortality in elderly burn patients. The postoperative one-year survival rate was lower in patients with PNI ≤25.5 than in those with PNI >25.5. These findings indicate the importance of identifying elderly burn patients with low PNI, thereby reducing the mortality after burn surgery.

Highlights

• This is the first study to assess the risk factors, including prognostic nutritional index, for one-year mortality after burn surgery in elderly patients.
• Prognostic nutritional index on postoperative day one was associated with one-year mortality after burn surgery in elderly patients.
• The postoperative one-year survival rate was lower in elderly burn patients with prognostic nutritional index ≤25.5 than in those with prognostic nutritional index >25.5.
• These results suggest that prognostic nutritional index can provide useful information for the early detection of postoperative mortality in elderly burn patients.

Key words: Burn, Elderly patients, Prognostic nutritional index, Mortality, Nutrition, Geriatric patients

Background
Burn is one of the most devastating forms of trauma [1]. Elderly patients are particularly susceptible to burn injury because of thinning of the skin, decreased sensation and physical strength, poor vision, mental alteration and coexistence of multiple medical conditions [2–5]. Moreover, burn injury in elderly patients results in poorer outcomes and higher mortality than that in younger patients [6, 7]. During hospital stay, elderly patients who survive a burn injury have higher morbidity, particularly from infectious complications [8]. They are more prone to a prolonged hospital stay and may need post-hospitalization services, such as a skilled nursing facility, nursing home or rehabilitation facility [2–4]. Clinical and therapeutic advancements in burn care, such as implementation of critical care bundles, adequate nutrition and early excision and grafting have markedly increased the lethal dose 50 (LD50) burn size (i.e. burn size associated with a 50% mortality risk) in younger burn patients: the LD50 burn size increased from 49.0% in 1950 to 85.1% in 2010 in patients under 14 years of age [9]. However, the LD50 burn size did not increase markedly in elderly patients: in patients above 65 years of age, it slightly increased from 10.0% in 1950 to 23.1% in 2010 [9]. Therefore, the associated factors for postoperative mortality in elderly burn patients should be evaluated to improve postoperative outcomes.

Prognostic nutritional index (PNI) is based on the patient’s serum albumin level and total lymphocyte count and has been proposed as a method of assessing the perioperative nutritional status, complications and mortality in patients with colorectal cancer [10]. Low PNI is associated with poor outcomes in patients with malignancy [10–14], free flap reconstruction [15], heart failure [16, 17] and kidney transplantation [18]. However, to our knowledge, no study has evaluated the association between perioperative PNI and postoperative mortality in elderly burn patients. In the present study, we aimed to evaluate the independent risk factors, including PNI, for one-year mortality after burn surgery in elderly patients aged ≥65 years.

Methods
Patients
In this retrospective study, we reviewed the data of burn patients aged ≥65 years who were admitted to the burn intensive care unit (ICU) for surgery at the Burn Center in Hangang Sacred Heart Hospital, Hallym University, from March 2010 to April 2018. The criteria for admission to the burn ICU were as follows: patients aged 10–64 years with ≥20% total body surface area burned; children aged <10 years and adults aged ≥65 years with ≥10% total body surface area burned; patients with full-thickness burn in ≥10% of the total body surface area; patients with burn involving the eyes, ears, face, hands, feet or perineum that was likely to result in cosmetic or functional impairment; patients with high-voltage electrical burn; and patients with burn complicated by inhalation injury. Patients with incomplete data were excluded. For patients who underwent several burn surgeries, data from the first burn surgery were evaluated. Computerized databases were reviewed to collect the demographic, laboratory and clinical data of the patients. This study was approved by the Institutional Review Board of Hangang Sacred Heart Hospital. The requirement for obtaining written informed consent was waived by the Institutional Review Board. All procedures were carried out in accordance with relevant guidelines and regulations.

Anaesthetic technique
General anaesthesia was induced with propofol according to our standard institutional protocol [19]. Rocuronium was administered to facilitate tracheal intubation. Anaesthesia was maintained with sevoflurane or desflurane with a mixture of 50% nitrous oxide and 50% oxygen. Mechanical ventilation was performed with a tidal volume of 8–10 ml/kg of the ideal body weight and respiratory rate of 10–14 cycles/min to maintain the end-tidal carbon dioxide tension between 30 and 35 mmHg during burn surgery. Fluid was administered depending on the patient’s mean arterial blood pressure, heart rate, blood loss and urine output [19]. In brief, crystalloid was administered at a rate of 6–10 ml/kg/h, and colloid was used when the estimated blood loss was >500 ml during burn surgery. Plasma solution A (CJ Pharmaceutical, Seoul, Korea) or lactated Ringer’s solution was used as crystalloid, and Volulyte (Fresenius Kabi, Bad Homburg, Germany) was used as synthetic colloid during burn surgery. Packed red blood cells (RBCs) were transfused when the haemoglobin concentration was <8 g/dl. The mean arterial blood pressure was maintained at >65 mmHg. If the mean arterial blood pressure was <65 mmHg for at least 5 minutes, additional fluids or vasoactive drugs,
such as phenylephrine, ephedrine or norepinephrine, were administered.

Surgical technique
Surgical planning was usually performed after the burn patient was resuscitated and haemodynamic parameters were restored to acceptable ranges. Surgeries for burn patients included escharotomy, burn wound excision and closure with a cadaveric or split-thickness skin graft. When the burn eschar circumferentially surrounded any body structure (particularly the digits, extremities, abdomen, chest or neck), emergent escharotomy was performed to release the increased interstitial pressure [20]. Depending on the burn depth, the necrotic burn site was excised to a viable depth with tangential excision for smaller burns and fascial excision for larger burns [21]. The standard surgical procedure for rapid and permanent closure of full-thickness burns is split-thickness skin grafting. However, patients with extensive burns often require temporary coverage with a cadaveric skin graft, skin substitutes or a dermal analogue (e.g. Alloderm, Epicel, Biobrane or Integra) because of unavailable or insufficient donor sites [20].

Data collection
Patient characteristics and preoperative laboratory data that were captured included age, sex, body mass index, comorbidities (diabetes mellitus, hypertension and ischaemic heart disease), Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, American Society of Anesthesiologists (ASA) physical status, total body surface area burned, burn type (flame, scalding, contact and other burns), presence of inhalation injury, preoperative laboratory data (haemoglobin level, PNI and serum creatinine level) and interval between admission and the first operation. Inhalation injury was diagnosed clinically based on the circumstances in which the burn was obtained, including a history of burn in an enclosed space, physical findings (facial burn, singed facial hairs or carbonaceous sputum), elevated carboxyhaemoglobin or bronchoscopic findings (airway oedema, mucosal necrosis, ulceration of bronchi or soot in the airway). Intraoperative variables included anaesthesia duration, surgery duration, crystalloid amount, colloid amount and RBC transfusion rate and amount. Postoperative laboratory data included the lymphocyte count, serum albumin level and PNI, which were assessed on postoperative day one.

Definition of PNI on postoperative day one
PNI on postoperative day one was defined as the value calculated on postoperative day one using the following equation: $10 \times \text{serum albumin level (g/dL)} + 0.005 \times \text{total lymphocyte count (per mm}^3) [22].$

Primary and secondary outcomes
The primary outcome was the identification of risk factors, including PNI on postoperative day one, for one-year mortality after burn surgery in elderly patients. The secondary outcome was the comparison of one-year mortality between the two groups, which were dichotomized according to the optimal cut-off PNI value on postoperative day one for predicting postoperative one-year mortality in elderly burn patients.

Statistical analysis
Continuous variables are expressed as mean ± standard deviation. They were compared between the two groups using Student’s t-test or Mann–Whitney U test, as appropriate. Categorical variables are expressed as number (percentage). They were compared between the two groups using the chi-square test or Fisher’s exact test, as appropriate. The Cox proportional hazard model was used for univariate and multivariate analyses of the risk factors associated with one-year mortality after burn surgery in elderly patients. The identified factors with a p value <0.05 in the univariate Cox logistic regression analysis were included in the multivariate Cox logistic regression analysis. The receiver operating characteristic curve analysis was performed to evaluate the predictive ability of PNI on postoperative day one for postoperative one-year mortality in elderly burn patients. The value with the highest sensitivity and specificity was set as the optimal cut-off PNI value. The Kaplan–Meier survival analysis, with a log-rank test, was performed to compare the postoperative one-year survival rates between the two groups, which were dichotomized according to the optimal cut-off PNI value on postoperative day one for predicting postoperative one-year mortality. A p value <0.05 was considered significant. All statistical analyses were performed using SPSS for Windows (version 22.0; IBM-SPSS Inc., Armonk, NY, USA).

Results
A total of 204 patients were considered for the study. Fifteen patients with incomplete data were excluded. The reasons for exclusion were a lack of preoperative or postoperative PNI data for six and nine patients, respectively. In total, 189 patients were included in the study (Figure 1). The overall mortality rate after burn surgery in elderly patients aged ≥65 years who were admitted to the burn ICU was 37.6% (71 of 189 patients).

Table 1 shows the patient characteristics and preoperative laboratory data, in which the sex, APACHE II score, SOFA score, ASA physical status, total body surface area burned, burn type, inhalation injury, platelet count, serum albumin level, PNI, serum creatinine level and interval between the admission and the first operation were significantly different between the survival and non-survival groups. For intraoperative variables, crystalloid and RBC transfusion amounts were significantly different between the two groups (Table 2). In
addition, the lymphocyte count, serum albumin level and PNI on postoperative day one were significantly different between the two groups (Table 2).

The univariate Cox logistic regression analysis revealed that the PNI on postoperative day one, sex, APACHE II score, SOFA score, ASA physical status, total body surface area burned, scalding burn, inhalation injury, preoperative serum creatinine level, interval between the admission and the first operation, crystalloid amount and RBC transfusion amount were significantly associated with postoperative one-year mortality. The multivariate Cox logistic regression analysis revealed that PNI on postoperative day one (hazard ratio (HR) = 0.872; 95% CI = 0.812–0.936; \(p < 0.001 \)), SOFA score (HR = 1.112; 95% CI = 1.005–1.230; \(p = 0.04 \)), ASA physical status (HR = 2.064; 95% CI = 1.211–3.517; \(p = 0.008 \)), total body surface area burned (HR = 1.017; 95% CI = 1.003–1.032; \(p = 0.015 \)) and preoperative serum creatinine level (HR = 1.386; 95% CI = 1.058–1.816; \(p = 0.018 \)) were significantly associated with one-year mortality after burn surgery in elderly patients (Table 3).

Figure 2 shows the predictive value of PNI on postoperative day one for postoperative one-year mortality in elderly patients. The area under the curve for PNI on postoperative day one was 0.774 (95% CI = 0.708–0.832), with a sensitivity of 54.9% and specificity of 85.6%. The optimal cut-off PNI value on postoperative day one in predicting postoperative one-year mortality was 25.5. Figure 3 shows the Kaplan–Meier survival curve in elderly burn patients with PNI >25.5 and ≤25.5. The one-year survival rate was significant lower in elderly patients with PNI ≤25.5 than in those with PNI >25.5 (32.1% vs 75.9%, \(p < 0.001 \)).

Discussion

In this study, the incidence of one-year mortality after burn surgery in elderly patients who were admitted to the burn ICU was 37.6%. Lower PNI on postoperative day one, higher SOFA score, higher ASA physical status score, greater total body surface area burned and higher preoperative serum creatinine level were associated with one-year mortality after burn surgery in elderly patients. The optimal cut-off PNI value on postoperative day one for predicting postoperative one-year mortality was 25.5. Furthermore, the one-year survival rate was significantly lower in elderly burn patients with PNI ≤25.5 than in those with PNI >25.5.

Burns can cause major multi-systemic stress because of burn injury-related fluid shift and subsequent fluid resuscitation, systemic inflammatory response and high metabolic rate [23]. Importantly, elderly patients may have limited physiological reserves and multiple significant comorbidities [1]. Consequently, burn treatment outcomes are poor in elderly patients compared to younger patients [4, 24–26]. However, burn management of elderly patients remains a challenge from clinical and rehabilitative perspectives. Therefore, perioperative risk evaluation is important to reduce poor postoperative outcomes in elderly burn patients. To the best of
Table 1. Patient characteristics and preoperative laboratory data

Variables	Survival group (n = 118)	Non-survival group (n = 71)	P value
Age, years	74.7 ± 7.2	76.0 ± 6.0	0.207
Male sex	67 (56.8)	58 (81.7)	<0.001
Body mass index, kg/m²	22.9 ± 3.2	23.2 ± 4.0	0.548
Diabetes mellitus	20 (16.9)	19 (26.4)	0.106
Hypertension	57 (48.3)	34 (47.8)	0.956
Ischaemic heart disease	13 (11.0)	10 (14.1)	0.332
APACHE II score	9.0 (7.0–11.0)	12.0 (10.0–17.0)	<0.001
SOFA score	1.0 (1.0–2.0)	3.0 (1.0–5.0)	<0.001
ASA physical status			<0.001
≤2	68 (57.6)	21 (29.6)	
≥3	50 (42.4)	50 (70.4)	
Total body surface area burned, %	20.0 (10.0–29.5)	35.0 (20.0–50.0)	<0.001
Burn type			<0.004
Flame burn	70 (59.3)	56 (78.9)	
Scalding burn	30 (25.4)	6 (8.5)	
Contact burn	18 (15.3)	7 (9.9)	
Other burns a	0 (0)	2 (2.8)	
Inhalation injury	20 (16.9)	21 (29.6)	0.041

Table 2. Intraoperative variables and postoperative laboratory data

Variables	Survival group (n = 118)	Non-survival group (n = 71)	P value
Anaesthesia duration, minutes	129 ± 52	124 ± 38	0.548
Operation duration, minutes	84 ± 50	87 ± 36	0.669
Crystalloid amount, ml/kg	16.4 (10.7–24.8)	21.0 (13.7–29.5)	0.028
Colloid amount, ml/kg	9.6 ± 5.6	10.6 ± 7.1	0.265
RBC transfusion rate	105 (89.0)	68 (95.7)	0.175
RBC transfusion amount, unit	3.0 (2.0–5.0)	4.0 (3.0–6.0)	<0.001
Laboratory data on postoperative day one			
Lymphocyte count, per mm³	795 (540–1123)	530 (400–890)	<0.001
Albumin, g/dl	2.6 (2.4–2.8)	2.3 (2.0–2.5)	<0.001
PNI	29.9 (26.5–33.7)	25.5 (23.0–28.4)	<0.001

Data are shown as number (%), mean ± standard deviation or median (interquartile range), as appropriate. APACHE Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure Assessment, ASA American Society of Anesthesiologists, PNI prognostic nutritional index

*Other burns included spark, chemical and steam burns

our knowledge, this is the first study to assess the risk factors, including PNI, for one-year mortality after burn surgery in elderly patients.

We found that lower PNI on postoperative day one was an independent risk factor for postoperative one-year mortality in elderly burn patients. The exact mechanisms by which the PNI is related to the postoperative prognosis remain incompletely understood. Several potential mechanisms have been reported. First, serum albumin level is widely used to evaluate the nutritional and systemic inflammatory aspects of patients [27–30], and it correlates with postoperative complications, including burns [31–33]. A postoperative albumin decline
Table 3. Univariate and multivariate Cox regression analyses for risk factors associated with one-year mortality after burn surgery in elderly patients

Variables	Univariate analysis	Multivariate analysis			
	HR (95% CI)	P value	HR (95% CI)	P value	
Age	1.017 (0.986–1.050)	0.288			
Male sex	2.735 (1.498–4.995)	0.001			
Body mass index	1.014 (0.949–1.083)	0.686			
Diabetes mellitus	1.629 (0.963–2.755)	0.069			
Hypertension	0.977 (0.613–1.557)	0.977			
Ischaemic heart disease	1.171 (0.600–2.286)	0.643			
APACHE II score	1.107 (1.068–1.148)	<0.001	1.112 (1.005–1.230)	0.040	
SOFA score	1.265 (1.163–1.377)	<0.001	1.112 (1.005–1.230)	0.040	
ASA physical status	≤ 2	1.0	≥ 3	1.0	
	2.739 (1.644–4.564)	<0.001	2.064 (1.211–3.517)	0.008	
Total body surface area burned	1.043 (1.030–1.056)	<0.001	1.017 (1.003–1.032)	0.015	
Burn type	Flame burn	1.0	Scalding burn	0.302 (0.130–0.700)	0.005
	Contact burn	0.530 (0.242–1.164)	0.114		
	Other burns	3.866 (0.927–16.132)	0.064		
	Inhalation injury	1.791 (1.076–2.983)	0.025		
	Preoperative haemoglobin	1.023 (0.924–1.134)	0.657		
	Preoperative creatinine	1.792 (1.452–2.211)	<0.001		
	Interval between admission	0.928 (0.879–0.981)	0.008		
	Anaesthesia duration	0.999 (0.994–1.004)	0.643		
	Crystalloid amount	1.025 (1.004–1.046)	0.020		
	RBC transfusion amount	1.246 (1.139–1.363)	<0.001		
	PNI on postoperative day one	0.805 (0.759–0.854)	<0.001		

The multivariate logistic regression analysis was performed for all factors (i.e. sex, APACHE II score, SOFA score, ASA physical status, total body surface area burned, inhalation injury, preoperative creatinine, interval between the admission and the first operation, crystallloid amount, RBC transfusion amount and PNI on postoperative day one) with p < 0.05 in univariate logistic regression analyses. HR hazard ratio, APACHE Acute Physiology and Chronic Health Evaluation, SOFA Sequential Organ Failure Assessment, ASA American Society of Anesthesiologists, RBC red blood cell, PNI prognostic nutritional index

Other burns included spark, chemical and steam burns.

Figure 2. Receiver operating characteristic curve analysis of the prognostic nutritional index on postoperative day one to predict one-year mortality after burn surgery in elderly patients aged ≥65 years. The area under the curve is 0.774, with an optimal cut-off value of 25.5. AUC area under the curve can reflect the magnitude of surgical trauma and is related to adverse clinical outcomes, such as postoperative complications and prolonged hospital stay [34]. A decrease in the albumin level is driven by a potential systemic inflammatory response [29]. Ishida et al. suggested that the serum albumin level is correlated with systemic inflammation in burn patients [30]. Aguayo-Becerra et al. reported that hypoalbuminemia was strongly associated with greater burn severity and higher mortality [31]. Second, because lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after the occurrence of sepsis and other acute injuries, such as severe trauma, extensive burns or major surgeries [35]. Lymphopenia has been reported in thermally injured patients [36]. Failure to re-establish a normal lymphocyte count after traumatic injury and sepsis has been associated with increased mortality [37–39]. Osuka et al. also reported that early decrease in the lymphocyte count was a poor prognostic factor in burn patients [40]. Based on these considerations, we hypothesized that PNI would be a prognostic factor for mortality in burn patients. We considered that PNI on postoperative day one could more effectively reflect postoperative surgical stress, including blood...
loss, catabolic inflammatory status and decreased hepatic protein synthesis, compared to preoperative PNI, particularly in burn patients [41]. In the present study, PNI, which is an immune indicator as well as a nutritional and inflammatory indicator, was assessed on postoperative day one and found to be associated with one-year mortality after burn surgery in elderly patients.

We found that the optimal cut-off PNI value on postoperative day one for predicting one-year mortality in elderly burn patients was 25.5. However, the cut-off PNI value in our study was much lower than in other studies. The cut-off PNI values for overall survival in stomach cancer patients who required gastrectomy were 49.7, 44.7 and 48 in studies by Nozoe et al., Watanabe et al. and Migita et al., respectively [42–44]. Tominaga et al. reported that the overall survival, five-year relapse-free survival and cancer-specific survival rates were significantly worse in elderly colon cancer patients with PNI <42.4 [45]. The cut-off PNI values in gastrointestinal cancer patients ranged from 40 to 49.7 [46]. These discrepancies in the cut-off values between patients with burn and those with other diseases may, at least in part, be due to the specific characteristics of burns. Thermal injury leads to tissue destruction with capillary leak, oedema formation and profound hypovolemia. Initial fluid resuscitation with a large volume of crystalloid could cause haemodilution and hypoaalbuminaemia, which frequently occur after a severe burn injury [23]. Therefore, the cut-off PNI value for predicting postoperative one-year mortality may be relatively low in our study population.

We found that a higher SOFA score was associated with one-year mortality after burn surgery in elderly patients. Consistent with our results, a previous study showed that the SOFA score was associated with inpatient mortality in severe burn injury [47]. Moreover, the SOFA score is useful to assess organ dysfunction in burn injury patients [48]. Based on these considerations, burn-induced organ dysfunction could be associated with postoperative mortality in elderly patients. Therefore, preoperative evaluation of the SOFA score could be used to predict one-year mortality after burn surgery in elderly patients.

In this study, an ASA physical status score ≥3 was associated with one-year mortality after a burn injury in elderly patients. The ASA physical status classification is a method of characterizing a patient’s operative risk on a scale of 1–6, where 1 is normal health and 5 is moribund (6 = need for organ transplant). An ASA physical status of 3 indicates “a patient with severe system disease”. The mortality rate increased with an increase in the ASA physical status score. Approximately 0.02% of patients with an ASA physical status score of 1, 0.14% with a score of 2, 1.41% with a score of 3, 11.14% with a score of 4 and 50.87% with a score of 5 died 30 days postoperatively [49]. Therefore, we believe that meticulous perioperative burn management is necessary to reduce the risk of poor postoperative outcomes in elderly patients with an ASA physical status score ≥3.

In the present study, the total body surface area burned was associated with one-year mortality after burn surgery. The average total body surface area burned was different
between the survivor and non-survivor groups (20.0% vs. 35.0%) in our population. Similarly, other studies demonstrated that the mortality rate increased in patients with burns to a higher percentage of the total body surface area [5, 50–52]. Burns to a higher percentage of the total body surface area often lead to persistent catabolic and immunocompromised states, which can increase the risks of wound infection, sepsis and multiple organ failure [53]. Furthermore, the treatment of such patients remains a challenge because of the lack of autologous skin and need for more extensive and multiple operations [54]. As the total body surface area burned increases, the rate of mortality in elderly burn patients tends to increase.

Elevated preoperative serum creatinine level increased the risk of one-year mortality in elderly burn patients. Preoperative serum creatinine level may increase because of renal damage and decreased blood flow, particularly in patients with inappropriate initial fluid resuscitation. Yang et al. reported that increased serum creatinine level at admission was associated with acute kidney injury development in patients with major burn injury [55]. Acute kidney injury is a major contributor to morbidity and mortality in patients with burns [56]. Because elevated preoperative serum creatinine and subsequent renal damage are associated with mortality after burn surgery, preoperative evaluation of serum creatinine is considered to play an important role in evaluating the postoperative outcomes of patients who have had burn surgery.

Our study had several limitations. First, it was retrospective in nature. Although the inevitable selection bias was reduced by considering all risk factors potentially influencing mortality after burn surgery, the possibility of this bias in our retrospective analysis cannot be excluded. Particularly, measurement of the frailty score in elderly patients may be useful in evaluating postoperative outcomes of burn surgery. However, we could not evaluate the frailty score because of the incomplete data on the psychological, social and functional conditions of the patients included in this retrospective study. Second, our burn patient cohort was recruited from a single experienced centre, and our results need to be interpreted accordingly.

Conclusions

PNI on postoperative day one was associated with one-year mortality after burn surgery in elderly patients. The postoperative one-year survival rate was lower in elderly burn patients with PNI ≤ 25.5 than in those with PNI > 25.5. These results suggest that PNI can provide useful information for the early detection of postoperative mortality in elderly burn patients.

Availability of data and materials

Data are available from the authors upon reasonable request.

Authors’ contributions

YJS: methodology, data curation, formal analysis, resources, writing original draft and visualisation; YGK, JY and JHP: conceptualisation, methodology and data curation; SJK: data curation; HYK: conceptualisation, methodology and data curation; YGK, JY and JHP: conceptualisation, methodology, formal analysis, writing original draft, project administration and supervision; YKK: conceptualisation, methodology, formal analysis, reviewing and editing the manuscript, project administration and supervision. All authors read and approved the final manuscript.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Hangang Sacred Heart Hospital, Seoul, Korea (approval number: HG 2019-026). The requirement for obtaining written informed consent was waived by the Institutional Review Board of Hangang Sacred Heart Hospital.

Conflicts of interest

The authors declare that they have no competing interests.

Acknowledgements

Not applicable.

References

1. Rani M, Schwacha MG. Aging and the pathogenic response to burn. Aging Dis. 2012;3:171–80.
2. Wearn C, Hardwicke J, Kitsios A, Siddons V, Nightingale P, Moiemen N. Outcomes of burns in the elderly: revised estimates from the Birmingham Burn Centre. Burns. 2015;41:1161–8.
3. Albornoz CR, Villegas J, Sylvestre M, Pena V, Bravo I. Burns are more aggressive in the elderly: proportion of deep burn area/total burn area might have a role in mortality. Burns. 2011;37:1058–61.
4. Pham TN, Kramer CB, Wang J, Rivara FP, Heimbach DM, Gibran NS, et al. Epidemiology and outcomes of older adults with burn injury: An analysis of the national burn repository. J Burn Care Res. 2009;30:30–6.
5. Mahar P, Wasiak J, Bailey M, Cleland H. Clinical factors affecting mortality in elderly burn patients admitted to a burns service. Burns. 2008;34:629–36.
6. Abu-Sittah GS, Chahine FM, Janom H. Management of burns in the elderly. Ann Burns Fire Disasters. 2016;29:249–5.
7. Pereira CT, Barrow RE, Sterns AM, Hawkins HK, Kimbrough CW, Jeschke MG, et al. Age-dependent differences in survival after severe burns: a unicentric review of 1,674 patients and 179 autopsies over 15 years. J Am Coll Surg. 2006;202:536–48.
8. Pham TN, Kramer CB, Klein MB. Risk factors for the development of pneumonia in older adults with burn injury. J Burn Care Res. 2010;31:105–10.
9. Jackson PC, Hardwicke J, Bamford A, Nightingale P, Wilson Y, Papini R, et al. Revised estimates of mortality from the Birmingham burn centre, 2001-2010: a continuing analysis over 65 years. Ann Surg. 2014;259:979–84.
10. Mohri Y, Inoue Y, Tanaka K, Hiro J, Uchida K, Kasunoki M. Prognostic nutritional index predicts postoperative outcome in colorectal cancer. World J Surg. 2013;37:2688–92.
11. Lee JY, Kim HI, Kim YN, Hong JH, Alshomimi S, An JY, et al. Clinical significance of the prognostic nutritional index for predicting short- and long-term surgical outcomes after gastrectomy: a retrospective analysis of 7781 gastric cancer patients.
12. Han-Geurts IJ, Hop WC, Tran TC, Tilanus HW. Nutritional status as a risk factor in esophageal surgery. Dig Surg. 2006;23:159–63.
13. Peng W, Li C, Wen TF, Yan LN, Li B, Wang WT, et al. Postoperative prognostic nutritional index change is an independent predictor of survival in patients with small hepatocellular carcinoma. Ann J Surg. 2016;212:122–7.
14. Yang Y, Gao P, Song Y, Sun J, Chen X, Zhao J, et al. The prognostic nutritional index is a predictive indicator of prognosis and postoperative complications in gastric cancer: a meta-analysis. Eur J Surg Oncol. 2016;42:1176–82.
15. Yu J, Hong JP, Suh HP, Park YJ, Kim DH, Ha S, et al. Prognostic nutritional index is a predictor of free flap failure in extremity reconstruction. Nutrients. 2020;12:562. https://doi.org/10.3390/nu12020562.
16. Cheng YL, Sung SH, Cheng HM, Hsu PF, Guo CY, Yu WC, et al. Prognostic nutritional index and the risk of mortality in patients with acute heart failure. J Am Heart Assoc. 2017;6:e004876. https://doi.org/10.1161/JAHA.116.004876.
17. Shirakabe A, Hata N, Kobayashi H, Matsushita M, Shibata Y, et al. The prognostic impact of malnutrition in patients with severely decompensated acute heart failure, as assessed using the prognostic nutritional index (PNI) and controlling nutritional status (CONUT) score. Heart Vessels. 2018;33:134–44.
18. Hori S, Ichikawa K, Morizawa Y, Gotoh D, Itami Y, Nakai Y, et al. Clinical significance of postoperative nutritional status as a prognostic factor in kidney transplant recipients. Transplant Proc. 2019;51:1763–72.
19. Kim HY, Kong YG, Park JH, Kim YK. Acute kidney injury after burn surgery: preoperative neutrophil/lymphocyte ratio as a predictive factor. Acta Anaesthesiol Scand. 2019;63:240–7.
20. Gacto-Sanchez P. Surgical treatment and management of the severely burned patient: review and update. Med Intensiva. 2017;41:356–64.
21. Liu HF, Zhang F, Lineaweaver WC. History and advancement of burn treatments. Ann Plast Surg. 2017;78:S2–8.
22. Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal nutritional index in malnourished cancer patients. Nihon Geka Gakkai Zasshi. 1984;85:1001–5.
23. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38:e469–81.
24. Koupil J, Breycha P, Rihova H, Kincova S. Special features of burn injuries in elderly patients. Acta Chir Plast. 2001;43:57–60.
25. Manketlow A, Meyer AA, Herzog SR, Peterson HD. Analysis of life expectancy and living status of elderly patients surviving a burn injury. J Trauma. 1989;28:203–7.
26. Keck M, Lumenta DB, Andel H, Kamolz LP, Frey M. Burn treatment in the elderly. Burns. 2009;35:1071–9.
27. Lai CC, You JF, Yeh CY, Chen JS, Tang R, Wang JY, et al. Low preoperative serum albumin level in colon cancer: a risk factor for poor outcome. Int J Colorectal Dis. 2011;26:473–81.
28. Findik O, Aydin U, Baris O, Parlar H, Alagoz GA, Ata Y, et al. Preoperative low serum albumin levels increase the requirement of renal replacement therapy after cardiac surgery. Heart Surg Forum. 2016;19:E123–7.
29. Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract. 2005;20:369–76.
30. Ishida S, Hashimoto I, Seike T, Abe Y, Nakaya Y, Nakashima H. Serum albumin levels correlate with inflammation rather than nutrition supply in burns patients: a retrospective study. J Med Invest. 2014;61:361–8.
31. Aguayo-Beccera OA, Torres-Garibay C, Macias-Amezquita MD, Fuentes-Orozco C, Chavez-Tostado Mde G, Andalon-Duenas E, et al. Serum albumin level as a risk factor for mortality in burn patients. Clinics (Sao Paulo). 2013;68:940–5.
32. Rafieezadeh Shahi H, Vahedian M, Movahedi M, Bahaadinbeigy K, Hashemian M, Mirrafzal A. Measuring serum albumin levels at 0 and 24h: effect on the accuracy of clinical evaluations in the prediction of burn-related mortality. Burns. 2018;44:709–17.
33. de Tymowski C, Pallado S, Anstey J, Depret F, Moreno N, Benyamina M, et al. Early hypoalbuminemia is associated with 28-day mortality in severely burned patients: a retrospective cohort study. Burns. 2020;46:630–8.
34. Hubner N, Mantziari S, Demartines N, Prolong F, Coti-Bertrand P, Schafer M. Postoperative albumin drop is a marker for surgical stress and a predictor for clinical outcome: a pilot study. Gastroenterol Res Pract. 2016;2016:8743187. https://doi.org/10.1155/2016/8743187.
35. Girardot T, Rimmele T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis. 2017;22:295–305.
36. Maldonado MD, Venturoli A, Franco A, Nunez-Roldan A. Specific changes in peripheral blood lymphocyte phenotype from burn patients. Probable origin of the thermal injury-related lymphocytopenia. Burns. 1991;17:188–92.
37. Heffernan DS, Monaghan SF, Thakkar RK, Machan JT, Gioffi WG, Ayala A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit Care. 2012;16:R12. https://doi.org/10.1186/cc11157.
38. Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42:383–91.
39. Inoue S, Suzuki-Utsunomiya K, Okada Y, Taira T, Iida Y, Miura N, et al. Reduction of immunocompetent t cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med. 2013;41:810–9.
40. Osuka A, Ishihara T, Shimizu K, Shintani A, Ogura H, Ueyama M. Natural kinetics of blood cells following major burn: impact of early decreases in white blood cells and platelets as prognostic markers of mortality. Burns. 2019;45:1901–7.
41. Jeschke MG, Micak RP, Finnerty CC, Herndon DN. Changes in liver function and size after a severe thermal injury. Shock. 2007;28:172–7.
42. Nozoe T, Ninomiya M, Maeda T, Matsukuma A, Nakashima H, Ezaki T. Prognostic nutritional index: a tool to predict the biological aggressiveness of gastric carcinoma. Surg Today. 2010;40:440–3.
43. Watanabe M, Iwatsuki S, Ishigami S, Ishimoto T, Baba Y, Baba H. Prognostic nutritional index predicts outcomes of gastrectomy in the elderly. World J Surg. 2012;36:1632–9.
44. Migita K, Takayama T, Sakai K, Matsutomo S, Wakatsuki K, Enomoto K, et al. The prognostic nutritional index predicts long-term outcomes of gastric cancer patients independent of tumor stage. Ann Surg Oncol. 2013;20:2647–54.
45. Tominaga T, Nonaka T, Hisanaga M, Fukuda A, Tanoue Y, Yoshimoto T, et al. Prognostic value of the preoperative prognostic nutritional index in oldest-old patients with colorectal cancer. Surg Today. 2020;50:449–59.
46. Sun K, Chen S, Xu J, Li G, He Y. The prognostic significance of the prognostic nutritional index in cancer: a systematic review and meta-analysis. *J Cancer Res Clin Oncol*. 2014;140:46–49.

47. Nguyen LN, Nguyen TG. Characteristics and outcomes of multiple organ dysfunction syndrome among severe-burn patients. *Burns*. 2009;35:937–41.

48. Lorente JA, Vallejo A, Galeiras R, Tomicic V, Zamora J, Cerda E, *et al*. Organ dysfunction as estimated by the sequential organ failure assessment score is related to outcome in critically ill burn patients. *Shock*. 2009;31:125–31.

49. Hackett NJ, De Oliveira GS, Jain UK, Kim JY. ASA class is a reliable independent predictor of medical complications and mortality following surgery. *Int J Surg*. 2015;18:184–90.

50. Wibbenmeyer LA, Amelon MJ, Morgan LJ, Robinson BK, Chang PX, Lewis R, *et al.* Predicting survival in an elderly burn patient population. *Burns*. 2001;27:583-90.

51. Rao K, Ali SN, Moiemen NS. Aetiology and outcome of burns in the elderly. *Burns*. 2006;32:802–5.

52. Harats M, Ofir H, Segalovich M, Visentin D, Givon A, Peleg K, *et al*. Trends and risk factors for mortality in elderly burns patients: a retrospective review. *Burns*. 2019;45:1342–9.

53. Strassle PD, Williams FN, Napravnik S, van Duin D, Weber DJ, Charles A, *et al*. Improved survival of patients with extensive burns: trends in patient characteristics and mortality among burn patients in a tertiary care burn facility, 2004-2013. *J Burn Care Res*. 2017;38:187–93.

54. Sheridan RL. Burn care: results of technical and organizational progress. *JAMA*. 2003;290:719–22.

55. Yang HT, Yim H, Cho YS, Kym D, Hur J, Kim JH, *et al*. Assessment of biochemical markers in the early post-burn period for predicting acute kidney injury and mortality in patients with major burn injury: comparison of serum creatinine, serum cystatin-c, plasma and urine neutrophil gelatinase-associated lipocalin. *Crit Care*. 2014;18:R151. https://doi.org/10.1186/cc13989.

56. Rehou S, Shahrokhi S, Thai J, Stanojcic M, Jeschke MG. Acute phase response in critically ill elderly burn patients. *Crit Care Med*. 2019;47:201–9.