Petrophysical Investigation of Hydrocarbon Generation Potential of Coal from Raniganj Basin, India

D. S. Panwar¹,²*, Ram Chandra Chaurasia¹,³, V.K Saxena¹, A.K. Singh⁴, Akanksha⁵

¹Department of Fuel, Minerals and Metallurgical Engineering, IIT (ISM), Dhanbad - 826004

²Department of Chemical Engineering, P P Savani University, Surat – 394125

³Currently Not Affiliated, Jabalpur - 482001

⁴Department of Methane Emission and Degasification, CIMFR-CSIR Dhanbad – 826001

⁵Department of Chemical Engineering, NIT Rourkela-769001

*Corresponding Author Email: deepaksingh.4268@gmail.com

Abstract

Methane content in a coal seam is a necessary parameter for evaluating coal bed gas, and it is a threat to underground coal mining activities from environmental aspects. Keeping in pace with comprehensive studies of coal bed gas, the authors had selected 12 coal samples from the Sitarampur block of Raniganj Coalfield. The Petrographic examination illustrated that significant values of reactive macerals present in samples demonstrate that organic matter is dominated by kerogen Type III, making it suitable for hydrocarbon generation. “A” factor (aliphatic/aromatic bands) and “C” factor (carbonyl/carboxyl bands) value concluded that the sample has the lowest aromaticity and the highest hydrocarbon-generating potential, which also validated by the cross plot between atomic H/C and O/C. The plots between the H/C and O/C ratio in the Van Krevelen diagram indicate that the coal samples lie in the type III kerogen, and bituminous coal (gas prone zone) is present in the block, which confirmed by the cross plot between desorbed and total gas (cc/g). The in-situ gas content values are high enough to produce methane from coal beds.
The overall study concludes that the Sitarampur block from Raniganj Coalfield is suitable for hydrocarbon generation and extraction.

Keywords: Hydrocarbon generation potential; Petrographic study; *In-situ* gas content; Oil yield; Kerogen type; FTIR.

1. **Introduction:**

Natural gas has become a promising substitute for coal and plays a significant role in power generation and other alternative sources of energy in different applications in India (CEA 2019). The demand for natural gas in India steadily increasing over the past few decades from 49.10 to 59.70 billion cubic feet (BP 2020). In India, natural gas consumption grew continuously, with an annual rate of 6.2% between 2000 and 2019 (MPNG 2020). In the last few decades, natural gas production from coal beds has experienced rapid development in many countries such as the USA, Australia, China, India, and Canada (Panwar, Saxena et al. 2016, Panwar, Saxena et al. 2016, Panwar, Suman et al. 2020). When the methane is recovered simultaneously with coal during underground mining of coal is known as Coal Mine Methane (CMM). Coal mine methane mining is done to reduce methane concentration in the mines and working areas around the mines for its effective utilization of coal and CMM. Methane is the principal gas in CMM with varying concentrations from 25-60% (Karacan 2009) and must be released or vented for safety reasons. So, CMM is an unconventional form of natural gas found in association with coal seams, and it’s a clean burning fuel with a good heating value >8500 Kcal/Kg. (Ojha, Mandal et al. 2013, Panwar, Saxena et al. 2017, Panwar, Saxena et al. 2017, Panwar, Saxena et al. 2017). Literature reveals that coal is a sedimentary rock, with complex pore and fracture structure (Gao, Mastalerz et al. 2020). The macro-micro pores in coal provide extremely massive surface areas for methane, and it accumulate as free, adsorbed, and dissolved state (Kumar, Mendhe et al. 2018, Wang, Su et al.)
The different ranks of coal, maceral composition, and mineral matter significantly influence the methane sorption capacity (Moore, Bowe et al. 2014, Goraya, Rajpoot et al. 2019). Literature reveals that Fourier transform infrared spectroscopy (FTIR) is extensively employed to characterize various source rock to determine hydrocarbon generation potential (Ganz and Kalkreuth 1991, Mishra, Samad et al. 2018, Varma, Mishra et al. 2018).

The Field Emission Scanning Electron Microscopy (FE-SEM) and Electron Dispersive X-ray analysis (EDX) analysis were significantly used for organic matter association with mineral matter and coal surface structure.

A current investigation is based on twelve samples collected from five different coal seams in the Sitarampur block. Physicochemical characterization of the collected samples was conducted based on Petrographic composition, thermal maturity, kerogen type, FTIR, Proximate, and ultimate analysis, etc. Estimation of hydrocarbon generation potential was done by, Petrographic analysis, kerogen type, \textit{In-situ} gas content, FTIR, Proximate, and ultimate analysis.

\textbf{2. Methods of experiment and analysis:}

A total of 12 coal core samples were collected from one borehole during the exploratory drilling in different five coal seams present in the Sitarampur block. The Sitarampur Coal Block covering about 9.00 Sq. km. is situated in the western part of the Raniganj coalfield in Burdwan District, West Bengal, India. It is bounded by the coordinates Latitude \(N 23^\circ 43^\prime 25^\prime\prime \) to \(N 23^\circ 45^\prime 28.11^\prime\prime \) and Longitude \(E 86^\circ 51^\prime 23^\prime\prime \) to \(E 86^\circ 53^\prime 28.16^\prime\prime \) and its location have shown in Figure1. However, the methodology adopted and equipment used for the characterization of the sample was shown in Table 1.
Proximate Analysis: Proximate analysis was carried out in the Department of Fuel and Mineral Engineering, IIT (ISM), Dhanbad. The procedure of Bureau of Indian Standard [BIS Standard: 1350, Part-1, 2003] were used to determine ash content, moisture, and volatile matter of coals.

Ultimate Analysis: The elemental analysis of coal core samples collected from different seams of Sitarampur block of Raniganj coalfield has been analyzed by the elemental analyzer (Elementar Vario EL III-CHNS analyzer) in the Department of Fuel and Mineral Engineering, IIT (ISM), Dhanbad.

Petrographic Analysis: Coal petrography for collected coal samples were carried out at the Department of Applied Geology, IIT (ISM), Dhanbad. Maceral groups were identified. Subsequently, estimation of vitrinite reflectance (Goraya, Rajpoot et al.) has been done in oil medium on polished coal surface in reflectance with white light and fluorescence illumination under an advanced research polarizing microscope using Leica DMRXP-HC setup. Besides this, the Bureau of Indian Standards was followed to prepare the sample [BIS No 9127 part 2 for preparation, grinding and polishing of pellet, part 3 for maceral and mineral identification and part 5 for VRo measurement].

Fourier Transform Infrared spectrometry (FTIR) analysis:
For FTIR spectroscopy, 1 mg of fine (of -75 mm size) coal was grounded with 100 mg KBr and pressed an evacuated die to prepared pellets, following the procedures outlined by Painter et al. (Painter, Snyder et al. 1981). Freshly prepared pellets were dried in a vacuum oven for 48h to reduce the contribution of water over the spectrum. FTIR of the coal samples was carried out in a wavelength frequency range of 4000 cm\(^{-1}\) to 200 cm\(^{-1}\) in absorbance mode. A Bruker, 3000 Hyperion Microscope with Vertex 80 FTIR system instrument was used for FTIR analysis.

Measurement of Coal Seam Gas Content:
Direct Method: There are mainly three steps involved in measuring in-situ gas content of coal core samples retrieved from exploratory boreholes. Lost gas denoted by Q_1 is the amount of gas lost by the core sample since its extraction from undisturbed coal seam to its confinement in the desorption canister. The cumulative value obtained by desorbed gas volume measurement gave desorbed gas (Q_2) for the coal samples. From the measured volume of gas obtained after crushing a portion of the samples, the residual gas (Q_3) was calculated for the total weight of the samples. The total volume of gas obtained by the addition of Q_1, Q_2, and Q_3 divided by the total weight of the sample.

$$Q = Q_1 + Q_2 + Q_3$$

3. **Result and discussion:**

3.1. **Hydrocarbon Generation Potential:**
The petrographic study is predominantly used for the determination of kerogen type and its suitability for hydrocarbon generation. In previous studies, many researchers reveal that Vitrinite and liptinite macerals are generally used as an indicator for the determination of hydrocarbon generation potential (Tissot and Welte 1984, Akanksha, Singh et al. 2020, Panwar, Suman et al. 2020). The hydrocarbon generation potential of the Sitarampur block was assessed using petrographic data. The samples have significant values of reactive macerals and liptinite content in the range of 67.57 to 81.10 vol.% and 5.24 to 10.05 vol.%, respectively, make it suitable for hydrocarbon generation (Kotarba, Clayton et al. 2002, Akanksha, Singh et al. 2017, Varma, Biswas et al. 2019). The Petrographic examination illustrated that type III kerogen present in studied samples, as shown in Figure 2. The ternary plot of petrographic constituents indicates that samples are vitrinite ample and mature. It’s also deduced from the study that there also a possibility of excellent hydrocarbon (methane) generation potential in coal, as shown in Figure 3.
Literature suggested empirical equations given by Guyot (Guyot 1978, Jin and Shi 1997) are used to assess the conversion of coal into oil and oil-yield.

\[
RF = \frac{1000R_{\text{max}}}{RM}
\]

\[
\text{Conversion} \, (%) = 0.2RM + 76.6
\]

\[
\text{Oilyield} \, (%) = 0.22RM + 44.8
\]

Where Rmax is the maximum reflectance of huminite, RM is reactive macerals.

The coal samples demonstrate prominent values of conversion (%) and oil yield (%) in the range of 90.11 to 92.82 vol.% and 59.67 to 62.64 vol.%, respectively. It’s also depicted from the study that emphasis correlations were found in conversion (%) with vitrinite (%) and oil yield (%), as illustrated in Figure 4 and 5.

3.2. Petrographic investigations:

The petrographic analysis indicates the quantity of organic content, maturity, gas generation, and storage capacity in coal (Kumar, Mendhe et al. 2018, Goraya, Rajpoot et al. 2019). It’s also significantly utilized to determine coal formation and diagenesis (Moore 2012, Gao, Mastalerz et al. 2020). The macroscopic petrography of the coal seams is mainly bright coal with black colour, obvious black streaks (Moore 2012, Gao, Mastalerz et al. 2020). The studied samples are mainly bright, vitreous lustre and black in colour, amorphous in nature, and fine-grained. The quantitative distribution of different macerals like vitrinite, liptinite, and inertinite are shown in Table 2. The microphotographs of various macerals and their associated subgroups are illustrated in Figure 6. A ternary facies of various macerals and mineral matter content was plotted. The studied samples mostly fall in the E field. The ternary diagram also exemplifies that they deposited in alternating oxic (dry) moor with sudden high flooding during peat accumulation, as shown in Figure 7 (Kumar, Mendhe et al. 2018, Esen, Özer et al. 2020). The vitrinite groups of macerals are
dominantly present in samples, primarily derived from woody plant tissue, and its value varies from 59.47 to 73.39 vol.% (averaging 66.43%) on a dry ash-free basis (Varma, Biswal et al. 2015, Varma, Khatun et al. 2015). The liptinite is generally derived from waxy or resinous plant parts, and its value varies in samples from 5.24 to 10.05 vol.% (averaging 7.64%) on a dry ash-free basis. The carbon-rich inertinite groups are found in moderate quantity, and their value ranging from 16.18 to 35.31 vol.% (averaging 25.74%) on a dry ash-free basis. The moderate value of inertinite content indicates that studied samples formed under an exposed peat swamps environment (Fu, Tang et al. 2016, Wang, Su et al. 2020). It was observed in several studies that the depth, organic matter, and rank enhance the gas potential of coal seams. The vitrinite reflectance value of studied samples varies from 1.08-1.38 % and indicates the existence of bituminous with a significant quantity of methane in the block (Hou, Wang et al. 2016, Li, Zhang et al. 2020).

3.3. Assessment of Gas content:
Methane is found in coal bed as absorbed and adsorbed from the latter constitutes 90% of the total amount of gas (Yee, Seidle et al. 1993, Evans, Budwill et al. 2020). The quantity of gas present in coal is known as gas content, and it depends on coal geology, seam thickness, depth of burial, igneous intrusions, and bounding strata type (Crosdale, Beamish et al. 1998, Kiani, Sakurovs et al. 2018, Yan, Meng et al. 2020). Methane evolution in coal is a two-step process biogenic (microbial activity) and thermogenic (cracking of organic matter). Gases generated in the succeeding thermogenic stage could migrate due to high-pressure regimes and remain stored in the coal (Altowilib, AlSaihati et al. 2020). The pore and fracture systems were developed in coal during maturation. The micro-pore systems significantly control the gas's storage and flow in the coal matrix (Moore, Bowe et al. 2014, Sharma, Saxena et al. 2019). Methane is trapped in pores and fractures in the free, adsorbed, and dissolved states. Some of the microscopic images of the pore and fracture system are shown in Figure 8. The in-situ gas content measurements were performed
by following the modified USBM Direct Method. The in-situ total gas content of samples ranged from 2.09 to 11.64 (cc/g) on a dry basis. The residual gas content varies from 0.17 to 1.07 (cc/g) at standard temperature and pressure (STP). The lost gas of the coal samples of the study area varied from 0.07 to 0.52 (cc/g) on a dry basis (Table.2). The desorbed gas content varies from 1.37 to 10.18 (cc/g) on a dry basis. The study also depicted that emphasis correlations were found between desorbed gas and total gas, as illustrated in Figure 9. It is also; found in a study that total gas content value increases with desorbed gas; it may be due to the high desorption rate of studied samples in the field.

3.4. Coal quality analysis:

The gross calorific value, proximate and ultimate analyses were performed, and their results summarized in Table 3. Due to the existence of significant quantity combustible component in coal samples, calorific value high is in all samples, and it's various from 5160 to 6840 cal/gm. It can be illustrated from the various analyses that samples have lower moisture content, and it is ranging from 0.80 to 1.90%. Samples also contain a moderate to the high amount of ash percentage, and it varies from 16.90-32.60%. Similarly, organic content like volatile matter and fixed carbon vary from 7.20-22.40% and 51.70-70.50% (dry basis).

 Samples have a significant quantity of carbon and hydrogen content, and their value varies from 78.59-92.16%, 3.40-5.36% on dry ash free basis, respectively. The sulphur and nitrogen content of samples is below 1.16% and 2.71%. The Van Krevelen diagram (Van Krevelen 1993) chart represents samples' maturity, kerogen type, and nature. The cross plot between H/C and O/C shown in Figure 10 demonstrates that the samples fall in bituminous rank and lies in the category of kerogen types III.

3.5. FTIR studies:
FTIR analysis not only provides information about functional groups, but it is also significant for the determination of hydrocarbon generation potential (Kumar, Mendhe et al. 2018, Hossain, Sampei et al. 2019). “A” factor (aliphatic/aromatic bands) can evaluate the hydrocarbon-generating potential of coal, and the “C” factor primarily the ratio of carbonyl/carboxyl groups to the aromatic group and illustrate the maturity of coal. It has been seen in many studies that as the “C” factor value increases, the maturity level of coal decreases (Ganz and Kalkreuth 1987, Ganz and Kalkreuth 1991, Samad, Mishra et al. 2020).

The “A” factor and “C” factor can be easily determined by the following equation as given below (Varma, Mishra et al. 2018).

\[
A – factor = \frac{2930 \text{ cm}^{-1} + 2860 \text{ cm}^{-1}}{1630 \text{ cm}^{-1} + 2930 \text{ cm}^{-1} + 2860 \text{ cm}^{-1}} \tag{4}
\]

\[
C – factor = \frac{1710 \text{ cm}^{-1}}{1710 \text{ cm}^{-1} + 1630 \text{ cm}^{-1}} \tag{5}
\]

It was described in different studies that as the A-factor value increases, the maturity decreases and the aliphatic nature increases in coal (Durand and Espitalié 1976, Lis, Mastalerz et al. 2005, Esen, Özer et al. 2020). Identically, the C-factor value decreases with maturity, which reveals a decrease in oxygenated components in coal. A factor (>0.664) and C factor (>0.501) value of studied samples demonstrate that samples have moderate aromatic and aliphatic hydrocarbon (Yao, Zhang et al. 2011, Chen, Mastalerz et al. 2012). A factor and C factor indicate that types II and III kerogen present in investigated samples (Varma, Khatun et al. 2015, Varma, Mishra et al. 2018, Misra, Das et al. 2020). A similar result found from the plot between atomic H/C and O/C of the coal samples demonstrates that the samples lie in the kerogen types II and III consecutively (Akanksha, Singh et al. 2017, Akanksha, Singh et al. 2020).

4.0 Conclusion:

Based on the current examination, the following conclusions are drawn:
The hydrocarbon generation potential of the Sitarampur block was assessed using petrographic data. The petrographic examination illustrated that significant values of reactive macerals present in samples, and its value varies from 67.57 to 81.10 vol. % respectively. Similarly, the petrographic analysis also demonstrates that organic matter is dominated by kerogen Type III, making it suitable for hydrocarbon generation.

The petrographic analysis confirms the appearance of textinite and attrinite as a primary contributor to vitrinite macerals groups. Sporenite, cutinite, and resinite macerals were dominantly present in liptinite macerals groups. Similarly, semifusinite is the only visible maceral present in samples from the inertinite group.

Some positive correlations were also found between conversion, reactive macerals, and oil yield, which integrates the participation of various macerals during oil and gas generation in studied samples.

Fourier transforms infrared (FTIR) spectroscopy was significantly utilized in our study to determine various functional groups. “A” factor (aliphatic/aromatic bands) and “C” factor (carbonyl/carboxyl bands) value concluded that the sample has the lowest aromaticity and the highest hydrocarbon-generating potential, which also validated by the cross plot between atomic H/C and O/C.

The plots between H/C and O/C ratio in the van Krevelen diagram indicate that the coal samples were lies in the type III kerogen and bituminous coal (gas prone zone) is present in the block; which is also confirmed by the cross plot between desorbed and total gas (cc/g).

The SEM analysis reveals the occurrence of several size pores and fracture and distribution in studied samples.
• The studied samples of Sitarampur block were characterized by low moisture, high ash, and moderate volatile matter content in nature, which is suitable for methane production.

Reference

Akanksha, A. K. Singh, D. Mohanty, H. M. Jena and D. S. Panwar (2020). "Prospective evaluation of hydrocarbon generation potential of Umarsar lignite, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42(6): 664-675.

Akanksha, A. K. Singh, D. Mohantya and H. M. Jena (2017). "Characterization of lignite for underground coal gasification in India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(16): 1762-1770.

Altowilib, A., A. AlSaihati, H. Alhamood, S. Alafnan and S. Alarifi (2020). "Reserves Estimation for Coalbed Methane Reservoirs: A Review." Sustainability 12(24).

BP (2020). Statistical Review of World Energy 2020 BP London.

CEA (2019). "Central Electricity Authority, Ministry of Power, Government of India. 31 March 2019. Retrieved 31 August 2019.".

Chen, Y., M. Mastalerz and A. Schimmelmann (2012). "Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy." International Journal of Coal Geology 104: 22-33.

Crosdale, P. J., B. B. Beamish and M. Valix (1998). "Coalbed methane sorption related to coal composition." International Journal of Coal Geology 35(1): 147-158.
Durand, B. and J. Espitalié (1976). "Geochemical studies on the organic matter from the Douala Basin (Cameroon)—II. Evolution of kerogen." Geochimica et Cosmochimica Acta 40(7): 801-808.

Esen, O., S. C. Özer, A. Soylu, A. Ramazani Rend and A. Fişne (2020). "Geological controls on gas content distribution of coal seams in the Kinik coalfield, Soma Basin, Turkey." International Journal of Coal Geology 231: 103602.

Evans, C., K. Budwill and M. J. Whiticar (2020). Geological, Geochemical, and Microbial Factors Affecting Coalbed Methane. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. H. Wilkes. Cham, Springer International Publishing: 623-650.

Fu, H., D. Tang, H. Xu, T. Xu, B. Chen, P. Hu, Z. Yin, P. Wu and G. He (2016). "Geological characteristics and CBM exploration potential evaluation: A case study in the middle of the southern Junggar Basin, NW China." Journal of Natural Gas Science and Engineering 30: 557-570.

Ganz, H. and W. Kalkreuth (1987). "Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials." Fuel 66(5): 708-711.

Ganz, H. H. and W. Kalkreuth (1991). "IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics." Journal of Southeast Asian Earth Sciences 5(1): 19-28.

Gao, L., M. Mastalerz and A. Schimmelmann (2020). The origin of coalbed methane. Coal Bed Methane, Elsevier: 3-34.

Goraya, N. S., N. Rajpoot and B. Marriyappan Sivagnanam (2019). "Coal Bed Methane Enhancement Techniques: A Review." ChemistrySelect 4(12): 3585-3601.
Guyot, R. E. (1978). Influence of coal characteristics on the yields and properties of hydrogenation products. Australia.

Hossain, H. M. Z., Y. Sampei, Q. H. Hossain, T. Yamanaka, B. P. Roser and M. Sultan-Ul-Islam (2019). "Origin of organic matter and hydrocarbon potential of Permian Gondwana coaly shales intercalated in coals/sands of the Barapukuria basin, Bangladesh." International Journal of Coal Geology 212: 103201.

Hou, S., X. Wang, X. Wang, Y. Yuan, X. Zhuang and X. Wang (2016). "Geological controls on gas saturation in the Yanchuannan Coalbed Methane Field, Southeastern Ordos Basin, China." Marine and Petroleum Geology 78: 254-270.

Jin, J. and S. Shi (1997). The development and prospective application of coal direct liquefaction for Chinese coals. Proc. Internat. Symp. on Clean Coal Technology, Xiamen, China Coal Industry Publishing House.

Karacan, C. Ö. (2009). "Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines." International Journal of Coal Geology 79(4): 131-144.

Kiani, A., R. Sakurovs, M. Grigore and A. Sokolova (2018). "Gas sorption capacity, gas sorption rates and nanoporosity in coals." International Journal of Coal Geology 200: 77-86.

Kotarba, M. J., J. L. Clayton, D. D. Rice and M. Wagner (2002). "Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales." Chemical Geology 184(1): 11-35.

Kumar, J., V. A. Mendhe, A. D. Kamble, M. Bannerjee, S. Mishra, B. D. Singh, V. K. Mishra, P. K. Singh and H. Singh (2018). "Coalbed methane reservoir characteristics of coal seams of south Karanpura coalfield, Jharkhand, India." International Journal of Coal Geology 196: 185-200.
Li, P., X. Zhang, J. Li, J. Zhao, J. Huang, S. Zhang and S. Zhou (2020). "Analysis of the Key Factors Affecting the Productivity of Coalbed Methane Wells: A Case Study of a High-Rank Coal Reservoir in the Central and Southern Qinshui Basin, China." ACS Omega 5(43): 28012-28026.

Lis, G. P., M. Mastalerz, A. Schimmelmann, M. D. Lewan and B. A. Stankiewicz (2005). "FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales." Organic Geochemistry 36(11): 1533-1552.

Mishra, D. K., S. K. Samad, A. K. Varma and V. A. Mendhe (2018). "Pore geometrical complexity and fractal facets of Permian shales and coals from Auranga Basin, Jharkhand, India." Journal of Natural Gas Science and Engineering 52: 25-43.

Misra, S., S. K. Das, A. K. Varma, D. Mani, M. S. Kalpana, A. Ekblad and S. Biswas (2020). "Multi-proxy approach on the hydrocarbon generation perspective of Barjora Basin, India." Marine and Petroleum Geology 112: 104108.

Moore, T. A. (2012). "Coalbed methane: a review." International Journal of Coal Geology 101: 36-81.

Moore, T. A., M. Bowe and C. Nas (2014). "High heat flow effects on a coalbed methane reservoir, East Kalimantan (Borneo), Indonesia." International Journal of Coal Geology 131: 7-31.

MPNG (2020). Ministry of petroleum and natural gas annual report 2019-20.

Ojha, K., A. Mandal, B. Karmakar, A. K. Pathak and A. K. Singh (2013). "Studies on the Estimation and Prospective Recovery of Coal Bed Methane from Raniganj Coalfield, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35(5): 426-437.

Painter, P. C., R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn and A. Davis (1981). "Concerning the Application of FT-IR to the Study of Coal: A Critical Assessment of Band
Assignments and the Application of Spectral Analysis Programs." Applied Spectroscopy 35(5): 475-485.

Panwar, D., V. Saxena, A. Singh, Prashant and A. Yadav (2016). "Seam quality and gas resource estimation in kulti block of Raniganj coal field West Bengal India." International Journal of Engineering Research Science Technology 5: 1-9.

Panwar, D., V. Saxena, A. Singh and A. Yadav (2016). "Natural gas recovery: A case study of field scale development in Raniganj coal." International Journal of Engineering Research Science Technology 5: 51-57.

Panwar, D. S., V. K. Saxena, R. C. Chaurasia and A. K. Singh (2017). "Prospective evaluation of coal bed methane in Raniganj coal field, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(9): 946-954.

Panwar, D. S., V. K. Saxena, A. Rani, A. K. Singh and V. Kumar (2017). "Source rock evaluation of the Gondwana coals in Raniganj coalfield, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(13): 1395-1402.

Panwar, D. S., V. K. Saxena, S. Suman, V. Kumar and A. K. Singh (2017). "Physicochemical study of coal for CBM extraction in Raniganj coal field, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(11): 1182-1189.

Panwar, D. S., S. Suman, A. K. Singh, V. K. Saxena and R. C. Chaurasia (2020). "Assessment of hydrocarbon generation potential of bituminous coal from Raniganj Basin, India." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42(7): 824-834.

Samad, S. K., D. K. Mishra, R. P. Mathews, S. Ghosh, V. A. Mendhe and A. K. Varma (2020). "Geochemical attributes for source rock and palaeoclimatic reconstruction of the Auranga Basin, India." Journal of Petroleum Science and Engineering 185: 106665.
Sharma, S., A. Saxena and N. Saxena (2019). Introduction to Coal Bed Methane (CBM). Unconventional Resources in India: The Way Ahead. S. Sharma, A. Saxena and N. Saxena. Cham, Springer International Publishing: 5-10.

Tissot, B. P. and D. H. Welte (1984). From Kerogen to Petroleum. Petroleum Formation and Occurrence. B. P. Tissot and D. H. Welte. Berlin, Heidelberg, Springer Berlin Heidelberg: 160-198.

Van Krevelen, D. W. (1993). Coal: typology, physics, chemistry, constitution, Elsevier Amsterdam.

Varma, A. K., S. Biswal, B. Hazra, V. A. Mendhe, S. Misra, S. K. Samad, B. D. Singh, A. M. Dayal and D. Mani (2015). "Petrographic characteristics and methane sorption dynamics of coal and shaly-coal samples from Ib Valley Basin, Odisha, India." International Journal of Coal Geology 141-142: 51-62.

Varma, A. K., S. Biswas, D. J. Patil, D. Mani, S. Misra and B. Hazra (2019). "Significance of lithotypes for hydrocarbon generation and storage." Fuel 235: 396-405.

Varma, A. K., M. Khatun, V. A. Mendhe, B. Hazra, B. D. Singh and A. M. Dayal (2015). "Petrographic characterization and langmuir volume of shales from Raniganj coal basin, India." Journal of the Geological Society of India 86(3): 283-294.

Varma, A. K., D. K. Mishra, S. K. Samad, A. K. Prasad, D. C. Panigrahi, V. A. Mendhe and B. D. Singh (2018). "Geochemical and organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin, India." International Journal of Coal Geology 186: 97-114.
Wang, Q., X. Su, L. Su and F. Zhou (2020). "CBM geological characteristics and exploration potential in the Sunan Syncline block, southern north China basin." Journal of Petroleum Science and Engineering 186: 106713.

Yan, J., Z. Meng, K. Zhang, H. Yao and H. Hao (2020). "Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption." Journal of Petroleum Science and Engineering 189: 107041.

Yao, S., K. Zhang, K. Jiao and W. Hu (2011). "Evolution of Coal Structures: FTIR Analyses of Experimental Simulations and Naturally Matured Coals in the Ordos Basin, China." Energy Exploration & Exploitation 29(1): 1-19.

Yee, D., J. P. Seidle and W. B. Hanson (1993). Gas sorption on coal and measurement of gas content: Chapter 9, Tulsa, Oklahoma.