Trastorno del espectro autista: Diagnóstico clínico y test ADOS

Autism spectrum disorder: Clinical diagnosis and ADOS Test

María Cecilia Gonzáleza, Macarena Vásquezb,c, Marta Hernández-Cháveza

aUnidad de Neurología Pediátrica, División de Pediatría, Pontificia Universidad Católica de Chile
bDepartamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile
cPsicóloga

Recibido el 8 de agosto de 2018; aceptado el 25 de octubre de 2018

Resumen

Introducción: El trastorno del espectro autista (TEA) es un desorden neurobiológico altamente prevalente, cuyo diagnóstico clínico es un desafío constante. Objetivos: Describir el perfil clínico, en una cohorte de niños con TEA desde su derivación al especialista hasta la realización de un test diagnóstico. Pacientes y Método: Estudio descriptivo desde los primeros síntomas pesquisados por la madre, hasta la certificación diagnóstica de una serie de 50 niños, diagnosticados clínicamente con TEA entre 2012-2016. Se incluyeron niños de 3 a 10 años al momento del Test ADOS-G, con lenguaje de al menos una palabra. Los niños fueron evaluados neuropsicológicamente (funcionalidad, intelectualidad y test ADOS). Comparamos las medianas de edad al diagnóstico neurológico, según carga de sintomatología autista y nivel cognitivo. Resultados: El test ADOS corroboró un TEA en 44 niños (88%), 93,1% eran varones. La edad promedio al diagnóstico clínico y test ADOS fue 48,2 ± 18,3 y 62,6 ± 23,3 meses. La consulta neurológica en el 72% de los casos fue motivación parental/educador por síntomas como trastorno interacción social y retraso de lenguaje. El 34,1; 47,7 y 18,2% tenían sintomatología autista leve, moderada y severa respectivamente. En 5 de 27 niños en los que se realizó la evaluación neuropsicológica se detectó déficit cognitivo. La mediana de edad al diagnóstico fue significativamente menor en niños con sintomatología autista grave vs leve-moderada (p 0,024). Conclusión: La sintomatología autista determina la precocidad de consulta, por lo que es necesario orientar a la población general, educadores y personal de salud, respecto a estos síntomas.

Abstract

Introduction: Autism Spectrum Disorder (ASD) is a neurobiological disorder of high prevalence, whose clinical diagnosis is a constant challenge. Objectives: To describe the clinical profile in a cohort of children with ASD from referral to the specialist to a diagnostic test. Patients and Method: Descriptive study from the first symptoms perceived by the mother to the diagnostic confirmation

Palabras clave: Autismo; trastorno del espectro autista; test ADOS; K-BIT; WISC IV; Escala de Vineland

Keywords: Autism; Autism Spectrum Disorders; ADOS test; K-BIT; WISC IV; Vineland Scale
Introducción

Los criterios diagnósticos del trastorno del espectro autista (TEA) han cambiado en los últimos años, respondiendo al desafío que supone la alta variabilidad clínica con la que se presenta esta condición. El DSM-V (Manual de Diagnóstico y Estadístico de los Desórdenes Mentales) define el TEA como un desorden persistente y heterogéneo del neurodesarrollo, y categoriza los síntomas en dos grupos: a) deficiencias en la comunicación e interacción social y b) patrones de comportamiento restrictivo y repetitivo. Se incluye en este espectro el Síndrome de Asperger, al trastorno desintegrativo infantil y al trastorno generalizado del desarrollo no especificado.

En el 2012, de acuerdo a lo reportado por 11 sitios de vigilancia de TEA en USA, la prevalencia fue de 14,6 por 1.000 en niños de 8 años (1 en 68), con una razón de 4,5:1 para sexo masculino. La prevalencia ha ido en aumento en las últimas décadas, posicionándose como la segunda discapacidad del desarrollo más frecuente, después de la discapacidad intelectual. El estudio descriptivo de una serie de 50 consecutivos, que se diagnostican clínicamente (examen neurológico y test ADOS-G). El diagnóstico clínico de TEA fue realizado por neurólogo pediatra según criterios de certificación diagnóstica.

Dado el continuo desarrollo en los criterios específicos del TEA, su relación con la prevalencia y otras características clínicas (sesgo en relación al sexo, edad de diagnóstico, etc.) se hace relevante una descripción detallada de la heterogeneidad del fenotipo autista en nuestra población.

Nuestro estudio tiene como objetivo describir el perfil clínico en una cohorte de niños con trastorno del espectro autista, desde su derivación a especialista hasta la realización del test ADOS-G que apoyará dicho diagnóstico. Se describirán los procesos, desde los primeros síntomas pesquisados por la madre, hasta la certificación diagnóstica.

Pacientes y Método

Este estudio fue realizado en la Unidad de Neuropediatría de la PUC entre 2012-2016. Es un estudio descriptivo de una serie de casos consecutivos que se diagnostican clínicamente (examen neurológico y test ADOS-G). El diagnóstico clínico de TEA fue realizado por neurólogo pediatra según criterios de DSM-IV y posteriormente fueron referidos a evaluación neuropsicológica para evaluación de funcionalidad, intelectualidad y Test ADOS-G.

La historia clínica incluyendo sexo, antecedentes perinatales y familiares, primeros síntomas de TEA observados por la madre, edad al momento de la consulta con neurólogo pediátrico, motivo de la consulta, quién lo derivó a especialista, comorbilidades, escolaridad, estudios solicitados, antecedentes familiares, fueron obtenidos de las fichas clínicas. Todos los niños con sospecha de autismo fueron enviados a rehabilitación multidisciplinaria o talleres de habilidades sociales, se solicitaron exámenes durante sus controles posteriores. Se les extendió un informe escolar para integración o adecuaciones curriculares. El estudio fue aprobado por el Comité de ética institucional.
Criterios de ingreso: Primera consulta por sospecha de TEA y ADOS-G compatible; edad entre 3 a 10 años al momento de la realización del Test ADOS-G; tener lenguaje hablado de al menos una palabra con significado. Criterios de exclusión: Vocalizaciones en la cual no se reconocen palabras ni aproximación a palabras; ser portador de una enfermedad genética cromosómica conocida o malformación severa o daño estructural del sistema nervioso central.

La evaluación neuropsicológica consistió en medición de la conducta adaptativa y cognitiva con el test de Vineland (Vineland Adaptive Behavior Scales Survey Form: 1-100), Kaufman Brief Intelligence (K-BIT), que provee Coeficiente intelectual (CI) (M = 100, SD = 15), para CI total, verbal y no verbal y Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV), aplicable a niños y adolescentes de edades comprendidas entre 6 años 0 meses y 16 años 11 meses, que también arrojan CI de los mismos tipos descritos anteriormente10.

El test ADOS-G, evaluó si los pacientes tenían o no sintomatología del espectro autista, y se categorizó en carga sintomática leve, moderada o severa.

La evaluación neuropsicológica fue realizado por neuropsicóloga con certificación en evaluación Test ADOS.

Análisis estadístico
Las variables demográficas categóricas se calcularon en número y porcentaje y para las variables numéricas se calcularon promedios y desviación estándar (DE) o medianas y rango intercuartil (RIC) según distribuían normal o no. La comparación de medianas de edad y RIC al inicio de síntomas (reportados por la madre), al momento de la consulta neurológica y test ADOS-G vs gravedad de sintomatología autista se realizó con la prueba U de Mann-Whitney dicotomizado en leve-moderado vs grave (p < 0,05).

Resultados
De los 50 niños testeados, 44 cumplieron criterios de inclusión por tener ADOS-G concordante. Estos 44 casos se describen según protocolo (figura 1).

El 93,2% (41/44) fueron niños, con una razón niño/niña de 13,6 /1. El promedio de edad a la evaluación neurológica y aplicación del test ADOS-G fue 48,2 (± 19,3) y 62,6 (± 23,3) meses. En 4/44 niños hubo antecedentes familiares de TEA y 13/44 tuvo morbilidad perinatal (tabla 1).

Las principales solicitudes para una primera evaluación neurológica en los 44 niños ocurrieron por consulta espontánea de los padres en 18/44 y a solicitud del establecimiento educacional en 16/44. Otras solicitudes fueron derivación de otro médico (7/44 niños) y por otro profesional de la salud (psicólogo y fonoaudiólogo) en 3/44.
En la anamnesis realizada a los 44 casos, las madres refirieron haber percibido alguna alteración del neurodesarrollo (primer síntoma), a una edad promedio de 26,23 meses (DS 14,0). De dicha sintomatología las alteraciones del lenguaje y alteraciones en la interacción social correspondieron a 26/40 y 17/40. En 6/40 casos se describió un cuadro regresivo con pérdida de lenguaje e interacción social. En los casos restantes (4 casos) relataron que “siempre” fueron distintos, sin definir el síntoma principal.

Entre los exámenes solicitados y realizados, la evaluación de la función auditiva ocurrió en 17/44 (con potenciales evocados auditivos, audiometría e impedanciometría normales en 16/17, solo 1 caso con hipacusia de conducción leve). En 15/44 (34,1%) se solicitó EEG estándar, de los cuales 3 de 15 realizados fueron anormales, 2 con actividad epileptiforme y 1 con una lentitud focal. Otros exámenes solicitados fueron neuroimágenes, estudios genéticos (cariotipo, array CGH, estudio molecular X frágil) y estudios metabólicos, pero en su mayoría no fueron realizados.

La evaluación neuropsicológica se realizó en 37/44 niños. En 10 se realizó evaluación de la conducta adaptativa (Vineland) y en 27 evaluaciones cognitivas (19 con K-BIT y 8 con WISC-IV). En el Vineland se obtuvo una mediana de 52 puntos (rango de 20-97). En los 27 niños en que se realizó una evaluación cognitiva, se obtuvo una mediana en escala verbal de 85 (58-126), ejecutiva de 82 (52-119) y total de 83 (44-126). En 5 niños se detectó un CI menor de 70 (déficit cognitivo).

El test ADOS-G definió una carga de sintomatología autista leve a moderada en 36 niños (81,8%) vs 8 (18,2%) con sintomatología autista grave y hubo diferencias significativas entre las medianas de edad en ambos grupos a la primera consulta neurológica (p 0,024) (Tabla 2).

Otras comorbididades detectadas, aparte del déficit cognitivo, fueron trastorno de aprendizaje en 27/44 (61,4%), trastornos del sueño en 14/44 (31,8%), trastorno alimentario en 12/44 (27,3%), retraso del desarrollo motor en 8/44 (18,2%) y epilepsia en 3/44 (6,8%).

En 27/44 casos, los niños asistían a jardín infantil o colegio con integración y 10 de ellos iban además a escuela de lenguaje. En 13/44 casos, solo asistían a escuela de lenguaje o colegio especial (10 y 3 niños respectivamente) y 4/44 no estaban escolarizados.

En relación a la terapia farmacológica, 12/44 recibía melatonina, risperidona, metilfenidato o sertralina, sola o combinada y antiepilépticos. Tres niños asistían a terapia alternativa de hipoterapia.

Los 6 niños cuyo ADOS no reunieron criterios de TEA, no fueron analizados en esta muestra, pero tuvieron seguimiento de al menos de 1 año y sus diagnósticos fueron mutismo selectivo y fobia social (2/6), discapacidad intelectual (2/6) y disarmonía cognitiva y fobia social (2/6).

Discusión

El impacto familiar y social del diagnóstico de TEA, asociado a la heterogeneidad de sus síntomas y a la falta de marcadores biológicos, impone una evaluación multidisciplinaria que nos permita una alta certeza diagnóstica. Un error diagnóstico asume costos emocionales y sociales evitables. Según algunos autores, el porcentaje de un diagnóstico erróneo con un examen clínico es de un 10-12%. En nuestro trabajo, tuvimos 6/50 (12%) niños cuyo Test ADOS excluyó un TEA a pesar de tener algunas conductas similares y su seguimiento a largo plazo fue compatible.

Nuestra cohorte excluyó niños portadores de una enfermedad cromosómica, malformación o daño cerebral severo conocido e incluyó niños con lenguaje (al menos una palabra o gesto con significado), por ello...
creemos que se seleccionó un subgrupo de TEA con mayores habilidades cognitivas, definidos como TEA de alto funcionamiento (TEA-AF)16,11. A pesar que el criterio de ingreso fue entre 36 meses a 10 años, creemos que la edad al diagnóstico de TEA-AF es mayor a la población general de TEA reportada por Nassar y Daniels1,2,13 y mayor a los 18-24 meses recomendados para el tamizaje de M-CHAT14. Esto hace necesario valorar los síntomas aportados por el medio que rodea al niño (padres y educadores) que es altamente sensible a las alteraciones del desarrollo.

El sorprendente predominio masculino encontrado en nuestros niños (13,6/1 vs 4/1 o 7/1 para TEA típico y TEA-AF) nos lleva a hipotetizar que tenemos un subdiagnóstico de TEA-AF en niñas15,16. Existe una creciente evidencia de un efecto de camuflaje entre las niñas con TEA, en particular entre las que no tienen discapacidad intelectual, lo que puede afectar el rendimiento en las medidas de diagnóstico estándar. Una de las hipótesis de Head et al.17 es que las niñas con TEA-AF retienen las mayores habilidades sociales y emocionales que caracterizan a la población femenina porque utilizan habilidades cognitivas para responder a situaciones sociales18. Otra teoría es el “efecto protector femenino” ya que la mujer tendría un umbral genético más alto en relación a los hombres. También se han encontrado niveles de testosterona más altos en niñas con TEA que con desarrollo normal19.

La causa más frecuente de consulta fue la falta de interacción social (43%), pilar fundamental del diagnóstico de TEA. La alteración del lenguaje o desarrollo atípico del lenguaje no está como criterio diagnóstico de TEA1 pero es descrito en el 86,4% de nuestros pacientes. Por otra parte, no se mencionaron como causa de consulta las conductas repetitivas y patrones restringidos del comportamiento, aun cuando se mencionaron a la anamnesis dirigida durante la consulta neurológica y la realización de Test ADOS. Este síntoma debe ser buscado en forma dirigida en toda consulta por alteración de lenguaje.

Con respecto a los tiempos en el proceso diagnóstico, 1 de cada 4 madres describió alteraciones del desarrollo antes del año de edad, pero la consulta o derivación a especialista ocurrió 20 meses más tarde. Esto concuerda con datos de Ozonoff y Martín20,21 que indican que el autismo puede ser diagnosticado en lactantes, basado en el informe parental y a pesar de ello la mediana de edad al diagnóstico es de 4 años22.

La discapacidad intelectual se describe en un 42% de la población con TEA16 y en nuestra cohorte evaluado en el 5 de 27 niños evaluados con K-BIT y WISC (tabla 2). No hubo correlación significativa entre el nivel de CI y la mediana de edad al momento de la consulta neurológica, al revés de lo que ocurrió con la severidad de la sintomatología de TEA. Los niños con sintomatología autista grave consultaron antes que los niños con sintomatología leve-moderada.

El TEA puede representar la expresión final de varios factores etiológicos incluyendo condiciones genéticas con herencia conocida (ej. Esclerosis tuberosa), enfermedades metabólicas (ej. fenilcetonuria), infecciones congénitas (ej. rubeola congénita), anomalías estructurales (ej. hidrocefalia, agenesia cuerpo calloso) o anomalías neuroanatómicas y bioquímicas.

Para buscar estas etiologías es fundamental un examen clínico neurológico-psiiquiátrico exhaustivo y evaluar el momento para realizar los exámenes neurofisiológicos, imagenológicos, genéticos y metabólicos adecuados. En la mayoría de los casos, estos son de gran costo y requieren sedación o anestesia general en el caso de estudios neurofisiológicos e imágenes cerebrales lo que limita aún más su realización. En nuestros casos se solicitaron una gran cantidad de exámenes que en su mayoría no se realizaron.

El estudio genético es uno de los más sugeridos en todas las cohortes de niños con autismo a nivel internacional, necesarios específicamente para consejo genético en caso de etiologías hereditarias23. En caso de regresión autista o sospecha de epilepsia, un EEG en sueño y vigilía deberá excluir un síndrome Landau-Kleffner o una encefalopatía de punta onda continua en sueño lento u otro tipo de epilepsia que deteriore la comunicación, susceptible de mejorar con tratamiento antiepiléptico24. Las neuroimágenes o estudios metabólicos se solicitarán en caso de alta sospecha de lesión intracraneana o error congénito del metabolismo.

Las comorbilidades más frecuentes fueron dificultades en el aprendizaje, trastornos del sueño y alimentarios (61,4% 31,8 y 27,3%). Por ello los fármacos más indicados fueron metilfenidato y melatonina. Destaca poco uso de risperidona17.

A pesar que 40/44 niños (90,1%) estaba asistiendo a un establecimiento educacional, (jardín, colegio, escuela de lenguaje, escuela especial) cerca del 10% (4/44) permanecían sin escolaridad. Ningún niño asistía a terapias de intervención educacional-conductual como ABA (applied behavior analysis) considerando los buenos resultados descritos por la literatura25 en programas iniciados precozmente e implementados en forma intensiva (más de 20 h por semana). Destaca la escasez de centros chilenos que realicen este tipo de terapias (comunicación personal del autor).

Entre las debilidades de nuestro trabajo están los criterios de ingreso que sesgaron la muestra hacia niños con sintomatología autista grave y no aquellos con sintomatología leve-moderada. No se incluyeron niños menores porque el instrumento de evaluación de carga autista (ADOS-G) e intelectualidad (K-BIT y WISC) es aplicable en mayores de tres años y niños con lenguaje. Creemos
necesario, realizar nuevos estudios que incluyan una muestra de mayor número y menor edad (pre-escolares) para ser evaluados con los instrumentos actuales como ADOS-2, módulo T para niños de 12 a 36 meses y pruebas psicológicas como test Leiter-R (que permite evaluar intelectualidad en niños sin lenguaje).

Conclusiones

La carga de sintomatología autista, dado por alteraciones en interacción, comunicación e intereses restringidos es el síntoma que motiva una consulta temprana en padres y educadores. A pesar que existen criterios clínicos definidos en DSM IV y DSM V, factibles de detectar clínicamente, la alta variabilidad fenotípica del TEA relacionado con carga de sintomatología autista, capacidad cognitiva y lenguaje requiere un trabajo en equipo (familia, educadores, y equipo de salud) para una detección precoz.

Responsabilidades éticas

Protección de personas y animales: Los autores declaran que los procedimientos seguidos se conformaron a las normas éticas del comité de experimentación humana responsable y de acuerdo con la Asociación Médica Mundial y la Declaración de Helsinki.

Confidencialidad de los datos: Los autores declaran que han seguido los protocolos de su centro de trabajo sobre la publicación de datos de pacientes.

Derecho a la privacidad y consentimiento informado: Los autores han obtenido el consentimiento informado de los pacientes y/o sujetos referidos en el artículo. Este documento obra en poder del autor de correspondencia.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Referencias

1. Grzadzinski R, Huerta M, Lord C. DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Mol. Autism. 2013;4(1):12-20.
2. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators, Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, US, 2010. MMWR Surveill Summ. 2014;63(2):1-21.
3. Lindsay WR, Corson D, O’Brien G, et al. A Comparison of Referrals With and Without Autism Spectrum Disorder to Forensic Intellectual Disability Services. Psychiatry, Psychology and Law. 2014;21(6):947-54.
4. Yeangin-Allsopp M, Rice C, Karapukar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in a US metropolitan area. JAMA. 2003;289(1):49-55.
5. Falkmer T, Anderson K, Falkmer M, Horlin C. Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur Child Adolesc Psychiatry. 2013;22(6):329-40.
6. Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord. 2007;37(4):613-27.
7. Lord C, Risi S, Lambrecht L, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205-23.
8. Gotham K, Pickles A, Lord C. Trajectories of autism severity in children using standardized ADOS scores. Pediatics. 2012;130(5):e1278-84.
9. Ousley O, Cermak T. Autism Spectrum Disorder: Defining Dimensions and Subgroups. Curr Dev Disord Rep. 2014;1(1):20-8.
10. Lohr WD, Daniels K, Wiemken T, et al. The Screen for Child Anxiety-Related Emotional Disorders Is Sensitive but Not Specific in Identifying Anxiety in Children With High-Functioning Autism Spectrum Disorder: A Pilot Comparison to the Achenbach System of Empirically Based Assessment Scales. Front Psychiatry. 2017;8:138.
11. Berenguer C, Miranda A, Colomer C, Baixauli I, Rosello B. Contribution of Theory of Mind, Executive Functioning, and Pragmatism to Socialization Behaviors of Children with High-Functioning Autism. J Autism Dev Disord. 2018;48(2):430-41.
12. Daniels AM, Mandell DS. Explaining differences in age at autism spectrum disorder diagnosis: a critical review. Autism. 2014;18(5):583-97.
13. Nassar N, Dixon G, Bourke J, et al. Autism spectrum disorders in young children: effect of changes in diagnostic practices. Int J Epidemiol. 2009;38(3):1245-54.
14. Cuestionario M-CHAT Revisado de detección del Autismo en Niños.
21. Ozonoff S, Heung K, Byrd R, Hansen R, Hertz-Picciotto I. The onset of autism: patterns of symptom emergence in the first years of life. Autism Res. 2008;1(6):320-8.

22. Christensen DL, Baio J, Van Naarden Braun K, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ. 2016;65(3):1-23.

23. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-64.

24. Chen XQ, Zhang WN, Hu LY, Liu MJ, Zou LP. Syndrome of Electrical Status Epilepticus During Sleep: Epileptic Encephalopathy Related to Brain Development. Pediatr Neurol. 2016;56:35-41.

25. Maglione M, Kadiyala S, Kress A, Hastings JL, O’Hanlon CE. TRICARE Applied Behavior Analysis (ABA) Benefit: Comparison with Medicaid and Commercial Benefits. Rand Health Q. 2017;6(2):10.

26. Randall M, Egberts KJ, Samtani A, et al. Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database Syst Rev. 2018, 24;7:CD009044.