The elementary 3-Kronecker modules

Claus Michael Ringel

Abstract. The 3-Kronecker quiver has two vertices, namely a sink and a source, and 3 arrows. A regular representation of a representation-infinite quiver such as the 3-Kronecker quiver is said to be elementary provided it is non-zero and not a proper extension of two regular representations. Of course, any regular representation has a filtration whose factors are elementary, thus the elementary representations may be considered as the building blocks for obtaining all the regular representations. We are going to determine the elementary 3-Kronecker modules. It turns out that all the elementary modules are combinatorially defined.

Let k be an algebraically closed field and $Q = K(3)$ the 3-Kronecker quiver

\[1 \longrightarrow 2 \]

The dimension vector of a representation M of Q is the pair $(\dim M_1, \dim M_2)$.

We denote by A the arrow space of Q, it is a three-dimensional vector space, thus $\Lambda = \left[\begin{array}{cc} k & A \\ 0 & k \end{array} \right]$ is the path algebra of Q. Note that Λ is a finite-dimensional k-algebra which is connected, hereditary and representation-infinite. The Λ-modules will be called 3-Kronecker modules. Of course, choosing a basis of A, the 3-Kronecker modules are just the representations of $K(3)$.

Elementary modules. In general, if Λ is a finite-dimensional k-algebra, we denote by $\text{mod} \Lambda$ the category of all (finite-dimensional left) Λ-modules. We denote by τ the Auslander-Reiten translation in $\text{mod} \Lambda$.

Now let Λ be the path algebra of a finite acyclic quiver. A Λ-module M is said to be preprojective provided there are only finitely many isomorphism classes of indecomposable modules X with $\text{Hom}(X, M) \neq 0$, or, equivalently, provided $\tau^t M = 0$ for some natural number t. Dually, M is said to be preinjective provided there are only finitely many isomorphism classes of indecomposable modules X with $\text{Hom}(M, X) \neq 0$, or, equivalently, provided $\tau^{-t} M = 0$ for some natural number t. A Λ-module M is said to be regular provided it has no indecomposable direct summand which is preprojective or preinjective.

A regular Λ-module M is said to be elementary provided there is no short exact sequence $0 \rightarrow M' \rightarrow M'' \rightarrow 0$ with M', M'' being non-zero regular modules (the definition is due to Crawley-Boevey, for basic results see Kerner and Lukas [L,KL,K]) and the appendix 1. Of course, any regular module has a filtration whose factors are elementary. If M is elementary, then all the modules $\tau^t M$ with $t \in \mathbb{Z}$ are elementary.

The aim of this note is to determine the elementary 3-Kronecker modules. Let α, β, γ be a basis of A. Let $X(\alpha, \beta, \gamma)$ and $Y(\alpha, \beta, \gamma)$ be the Λ-module defined by the following
Here, we draw a corresponding coefficient quiver and require that all non-zero coefficients are equal to 1. Thus, for example $X(\alpha, \beta, \gamma) = (k^2, k^2; \alpha, \beta, \gamma)$ with $\alpha(a, b) = (a, b)$, $\beta(a, b) = (b, 0)$ and $\gamma(a, b) = (0, a)$ for $a, b \in k$.

Theorem. The dimension vectors of the elementary 3-Kronecker modules are the elements in the τ-orbits of $(1, 1), (2, 1), (2, 2)$ and $(4, 2)$.

Any indecomposable representation with dimension vector in the τ-orbit of $(1, 1)$ and $(2, 1)$ is elementary.

An indecomposable representation with dimension vector $(2, 2)$ or $(4, 2)$ is elementary if and only if it is of the form $X(\alpha, \beta, \gamma)$ or $Y(\alpha, \beta, \gamma)$, respectively for some basis α, β, γ of A.

The indecomposable representations with dimension vectors in the τ-orbits of $(1, 1)$ and $(2, 1)$ have been studied in several papers. They are the even index Fibonacci modules, see [FR2,FR3,R4]. If M is indecomposable and $\text{dim } M = (1, 1)$ or $(2, 1)$, then there is a basis α, β, γ of A such that $M = B(\alpha)$ or $M = V(\beta, \gamma)$, respectively, defined as follows:

![Diagram](https://via.placeholder.com/150)

Note that $B(\alpha)$ is the unique indecomposable 3-Kronecker module of length 2 which is annihilated by β and γ, whereas $V(\beta, \gamma)$ is the unique indecomposable 3-Kronecker module of length 3 with simple socle which is annihilated by α.

The indecomposable modules with dimension vector $(1, 1)$ are called bristles in [R3]. The indecomposable representations with dimension vector $(2, 1)$ have been considered in [BR]: there, it has been shown that any arrow α of a quiver gives rise to an Auslander-Reiten sequence with indecomposable middle term say $M(\alpha)$; in this way, we obtain the sequence:

$$0 \to V(\beta, \gamma) \to M(\alpha) \to \tau^{-1}V(\beta, \gamma) \to 0.$$

The study of the τ-orbits of the indecomposable 3-Kronecker modules with dimension vectors $(1, 1)$ and $(2, 1)$ in the papers [FR2,FR3,R4,R5] uses the universal covering $\tilde{K}(3)$ of the Kronecker quiver $K(3)$. The quiver $\tilde{K}(3)$ is the 3-regular tree with bipartite orientation. Since the 3-Kronecker modules $B(\alpha)$ and $V(\beta, \gamma)$ are cover-exceptional (they are push-downs of exceptional representations of $\tilde{K}(3)$), it follows that all the modules in the τ-orbits of $B(\alpha)$ and $V(\beta, \gamma)$ are cover-exceptional, and therefore tree modules in the sense of [R2].
In general, one should modify the definition of a tree module as follows: Let Q be any quiver. For any pair of vertices x, y of Q, let $A(x, y)$ be the corresponding arrow space, this is the vector space with basis the arrows $x \to y$. If $\alpha(1), \ldots, \alpha(t)$ are the arrows $x \to y$ and $\beta = \sum a_i \alpha(i)$ with all $a_i \in k$ is an element of $A(x, y)$, we may consider for any representation $M = (M_x, M_{\alpha})_{x \in Q, \alpha \in Q_1}$ the linear combination $M_\beta = \sum a_i M_{\alpha(i)}$. Given a basis $B(x, y)$ of the arrow space $A(x, y)$, for all vertices x, y of Q as well as a basis $B(M, x)$ of the vector space M_x, for all vertices x of Q, we may write the linear maps $b \in B(x, y)$ as matrices with respect to the bases $B(M, x), B(M, y)$. Looking at these matrices, we obtain a coefficient quiver $\Gamma(B(x, y), B(M, x))$ as in [R2]. A representation M of the path algebra kQ should be called a tree module provided M is indecomposable and there are bases $B(x, y)$ of the arrow spaces $A(x, y)$ and $B(M, x)$ of the vector spaces M_x such that $\Gamma(B(x, y), B(M, x))$ is a tree. Of course, in case Q has no multiple arrows, this coincides with the definition given in [R2]. But in general, we now allow base changes in the arrow spaces. Note that such base changes in the arrow spaces do not effect the kQ-module M, but only its realization as the representation of a quiver. There is the following interesting consequence: Any indecomposable representation of the 2-Kronecker quiver is a tree module, see Appendix 2. Using this modified definition, we see immediately that all the indecomposable modules with dimension vector in the τ-orbits of $(1, 1)$ and $(2, 1)$ are tree modules. On the other hand, the modules $X(\alpha, \beta, \gamma)$ (and also $Y(\alpha, \beta, \gamma)$) are not tree modules, see Lemma 4.2.

Whereas the modules in the τ-orbits of the elementary 3-Kronecker modules with dimension vectors $(1, 1)$ and $(2, 1)$ are quite well understood, a similar study of those in the τ-orbits of modules with dimension vectors $(2, 2)$ and $(4, 2)$ is missing. It seems that any module M in these τ-orbits has a coefficient quiver with a unique cycle. A first structure theorem for these modules is exhibited in section 5.

We say that an element $(x, y) \in K_0(\Lambda) = \mathbb{Z}^2$ is non-negative provided $x, y \geq 0$. The non-negative elements in $K_0(\Lambda)$ are just the possible dimension vectors of Λ-modules. Note that $K_0(\Lambda)$ is endowed with the quadratic form q defined by $q(x, y) = x^2 + y^2 - 3xy$ (see for example [R1]). A dimension vector d is said to be regular provided $q(d) < 0$. There are precisely two τ-orbits of dimension vectors d with $q(d) = -1$, namely the τ-orbits of $(1, 1)$ and $(2, 1)$. Similarly, there are precisely two τ-orbits of dimension vectors d with $q(d) = -4$, namely the τ-orbits of $(2, 2)$ and $(4, 2)$. The remaining regular dimension vectors d satisfy $q(d) \leq -5$.

Corollary. Let $\Lambda = kK(3)$ and (x, y) a dimension vector. There exists an elementary module M with dimension vector (x, y) if and only if $q(x, y)$ is equal to -1 or -4.

Acknowledgment. The author wants to thank Daniel Bissinger, Rolf Farnsteiner and Otto Kerner for fruitful discussions which initiated these investigations.

1. **The BGP-shift σ.**

Let σ denote the BGP-shift of $K_0(\Lambda) = \mathbb{Z}^2$ given by $\sigma(x, y) = (3x - y, x)$, and let $\tau = \sigma^2$.

3
We denote by σ, σ^- the BGP-shift functors for mod Λ (they correspond to the reflection functors of Bernstein-Gelfand-Ponomarev in [BGP], but take into account that the opposite of the 3-Kronecker quiver is again the 3-Kronecker quiver). If $M = (M_1, M_2; \alpha, \beta, \gamma)$ is a representation of Q, we denote by $(\sigma M)_1$ the kernel of the map $[\alpha \beta \gamma]: M_1^3 \rightarrow M_2$ and put $(\sigma M)_2 = M_1$; the maps $\alpha, \beta, \gamma: (\sigma M)_1 \rightarrow (\sigma M)_2$ are given by the corresponding projections. Similarly, $(\sigma^- M)_2$ is the cokernel of the map $[\alpha \beta \gamma]: M_1 \rightarrow M_2^3$ and we put $(\sigma^- M)_1 = M_2$; now the maps $\alpha, \beta, \gamma: (\sigma^- M)_1 \rightarrow (\sigma^- M)_2$ are just the corresponding restrictions. Note that σ^2 is just the Auslander-Reiten translation τ (we should stress that this relies on the fact that we deal with a quiver without cyclic walks of odd length, see [G]).

Remark. The functors σ and σ^- depend on the choice of the basis α, β, γ of A, thus we should write $\sigma = \sigma_{\alpha, \beta, \gamma}$ and $\sigma^- = \sigma_{\alpha, \beta, \gamma}$.

If N is an indecomposable representation of $K(3)$ different from $S(2)$, then $\dim \sigma N = \sigma \dim N$; similarly, if N is indecomposable and different from $S(1)$, then $\dim \sigma^\ast N = \sigma \dim N$ (here, $S(1)$ and $S(2)$ are the simple representations of $K(3)$; they are defined by $\dim S(1) = (1, 0), \dim S(2) = (0, 1)$).

An indecomposable Λ-module M is regular if and only if all the modules $\sigma^n N$ and $\sigma^\ast N$ with $n \in \mathbb{N}$ are nonzero. The restriction of σ to the full subcategory of all regular modules is a self-equivalence with inverse σ^- and a regular module M is elementary if and only if σM is elementary. We say that an indecomposable representation M of $K(3)$ is of \textit{σ-type} (x, y) provided $\dim M$ belongs to the σ-orbit of (x, y).

In terms of σ, the main result can be formulated as follows:

Theorem. The elementary $kK(3)$-modules are of σ-type $(1, 1)$ and $(2, 2)$. All the indecomposable representations of σ-type $(1, 1)$ are elementary and tree modules. An indecomposable representation of σ-type $(2, 2)$ is either elementary or else a tree module.

The tree modules with dimension vector $(2, 2)$ are precisely the representations of the form

\[
\begin{array}{ccc}
\bullet & \rightarrow & \bullet \\
\bullet & \rightarrow & \bullet \\
\alpha & \downarrow & \beta & \downarrow & \gamma
\end{array}
\]

for some basis α, β, γ of A.

2. Reduction to the dimension vectors (x, y) with $\frac{2}{3}x \leq y \leq x$.

Let us denote by R the set of regular dimension vectors. As we have mentioned, σ maps R onto R. There is the additional transformation δ on $K_0(\Lambda)$ defined by $\delta(x, y) = (y, x)$. Of course, it also sends R onto R. If M is a representation of $Q(3)$, then $\delta(\dim M) = \dim M^\ast$, where M^\ast is the dual representation of M (defined in the obvious way: $(M^\ast)_1$ is the k-dual of M_2, $(M^\ast)_2$ is the k-dual of M_1, the map $(M^\ast)_\alpha$ is the k-dual of M_α, and so on).
Lemma. The subset

$$
F = \{(x, y) \mid \frac{2}{3}x \leq y \leq x\}
$$

is a fundamental domain for the action of σ and δ on \mathbb{R}.

The proof is easy. Let us just mention that $\sigma(3, 2) = (2, 3)$ and that for $(x, y) \in \mathbb{R}$ with $\sigma(x, y) = (x', y')$, we have $\frac{y}{x} > \frac{y'}{x'}$ (this condition explains why we call σ a shift). □.

It follows that for looking at an elementary module, we may use the shift σ and duality in order to obtain an elementary module M with $\dim M \in F$. Here is the set F:

![Diagram of F set](image)

In the next section 3, we first will consider the pairs $(x, y) \in F$ with $y \geq 4$, they are marked by a circle \circ. Then we deal with the three special pairs $(3, 2), (3, 3)$ and $(4, 3)$ marked by a star \star (actually, instead of $(4, 3)$ and $(3, 2)$, we will look at $(3, 4)$ and $(2, 3)$, respectively). As we will see in section 3, all these pairs cannot occur as dimension vectors of elementary modules.

As a consequence, the only possible dimension vectors in F which can occur as dimension vectors of elementary modules are $(1, 1)$ and $(2, 2)$; they are marked by a bullet \bullet and will be studied in section 4.

3. Dimension vectors without elementary modules.

Lemma 3.1. Assume that M is a regular module with a proper non-zero submodule U such that both dimension vectors $\dim U$ and $\dim M/U$ are regular. Then M is not elementary.

Proof. This is a direct consequence of the fact that M is elementary if and only if for any submodule U the submodule U is preprojective or the factor module M/U is preinjective, see the Appendix 1.

Lemma 3.2. A 3-Kronecker module M with $\dim M = (x, y)$ such that $2 \leq y \leq x + 1$ has a submodule U with dimension vector $(1, 2)$.

Proof. Let us show that there are non-zero elements $m \in M_1$ and $\alpha \in A$ such that $\alpha m = 0$. The multiplication map $A \otimes_k M_1 \to M_2$ is a linear map, let W be its kernel. Since $\dim A = 3$, we see that $\dim A \otimes_k M_1 = 3x$. Since $\dim M_2 = y$, it follows that $\dim W \geq 3x - y$. The projective space $\mathbb{P}(A \otimes M_1)$ has dimension $3x - 1$, the decomposable tensors
in $A \otimes M_1$ form a closed subvariety \mathcal{V} of $\mathbb{P}(A \otimes M_1)$ of dimension $(3 - 1) + (x - 1) = x + 1$. Since $\mathcal{W} = \mathbb{P}(V)$ is a closed subspace of $\mathbb{P}(A \otimes M_1)$ of dimension $3x - y - 1$, it follows that

$$\dim(\mathcal{V} \cap \mathcal{W}) \geq (x + 1) + (3x - y - 1) - (3x - 1) = x - y + 1.$$

By assumption, $x - y + 1 \geq 0$, thus $\mathcal{V} \cap \mathcal{W}$ is non-empty. As a consequence, we get non-zero elements $m \in V, \alpha \in A$ such that $\alpha m = 0$, as required.

Given non-zero elements $m \in M_1$ and $\alpha \in A$ such that $\alpha m = 0$, the element m generates a submodule U' which is annihilated by α, thus $\dim U' = (1, u)$ with $0 \leq u \leq 2$. Since $y \geq 2$, there is a semi-simple submodule U'' of M with dimension vector $(0, 2 - u)$ such that $U' \cap U'' = 0$. Let $U = U' \oplus U''$. This is a submodule of M with dimension vector $\dim U = \dim U' \oplus U'' = (1, 2)$.

Remark. Under the stronger assumption $2 \leq y < x$, we can argue as follows: We have $\langle (1, 2), (x, y) \rangle = x + 2y - 3y = x - y > 0$, where $\langle - , - \rangle$ is the canonical bilinear form on $K_0(\Lambda)$ (see [R1]), thus $\operatorname{Hom}(N.M) \neq 0$ for any module N with $\dim N = (1, 2)$ The image of any non-zero map $f: N \to M$ has dimension vector $(1, u)$ with $0 \leq u \leq 2$.

\textbf{Lemma 3.3.} If $(x, y) \in F$ and $y \geq 4$, then $(x - 1, y - 2)$ is a regular dimension vector.

Proof. Since $y \leq x$, we have $y - 2 \leq x - 1$. On the other hand, the inequalities $y \geq 4$ and $y \geq \frac{2}{3}x$ imply the inequality $y - 2 \geq \frac{2}{5}(x - 1)$. Thus $\frac{2}{5}(x - 1) \leq y - 2 \leq x - 1$. As a consequence, $(x - 1, y - 2)$ is a regular dimension vector.

We are now able to provide a proof for the first assertion of the Theorem: \textit{The elementary $kK(3)$-modules are of σ-type $(1, 1)$ and $(2, 2)$.}

Proof. Let M be elementary with dimension vector $\dim M = (x, y) \in F$. First, assume that $y \geq 4$. According to Lemma 3.2, there is a submodule U with the regular dimension vector $\dim U = (1, 2)$. The factor module M/U has dimension vector $(x - 1, y - 2)$ and $(x - 1, y - 1)$. According to Lemma 3.3, also $(x - 1, y - 2)$ is a regular dimension vector. Using Lemma 3.1, we obtain a contradiction.

It remains to show that the dimension vectors $(3, 2), (3, 3), (4, 3)$ cannot occur. Using duality, we may instead deal with the dimension vectors $(2, 3), (3, 3), (3, 4)$. Thus, assume there is given an elementary module N with dimension vector $(2, 3), (3, 3)$ or $(3, 4)$. According to Lemma 3.2, it has a submodule U with dimension vector $(1, 2)$. The corresponding factor module M/U has dimension vector $(1, 1), (2, 1), (2, 2)$, respectively. But all these dimension vectors are regular. Again Lemma 3.1 provides a contradiction. \qed

4. The indecomposable modules with dimension vector $(1, 1)$ and $(2, 2)$.

\textbf{Dimension vector $(1, 1)$.} \textit{Any indecomposable Λ-module M with dimension vector $(1, 1)$ is of the form}

\[
\begin{array}{c}
\bullet \\
\alpha \\
\bullet
\end{array}
\]
for some basis \(\alpha, \beta, \gamma \) of \(A \), thus a tree module. Namely, \(M = P(1)/U \), where \(P(1) \) is the indecomposable projective module corresponding to the vertex 1 and \(U \) is a two-dimensional submodule of \(P(1) \). Actually, we may consider \(U \) as a two-dimensional subspace of \(P(1) \). Let \(\alpha, \beta, \gamma \) be a basis of \(A \) such that \(U = \langle \beta, \gamma \rangle \).

Of course, any indecomposable \(\Lambda \)-module with dimension vector \((1, 1) \) is elementary.

The indecomposable \(\Lambda \)-modules with dimension vector \((2, 2) \).

Lemma 4.1. An indecomposable module with dimension vector \((2, 2) \) is elementary if and only if it is of the form \(X(\alpha, \beta, \gamma) \).

Proof. First we show: The modules \(M = X(\alpha, \beta, \gamma) \) are elementary. We have to verify that any non-zero element of \(M_1 \) generates a 3-dimensional submodule. We see this directly for the elements \((1, 0) \) and \((0, 1) \) of \(M_1 = k^2 \). If \((a, b) \) with \(a \neq 0, b \neq 0 \), then \(\beta(a, b) = (b, 0) \) and \(\gamma(a, b) = (0, a) \) are linearly independent elements of \(M_2 = k^2 \). This completes the proof.

Conversely, let \(M \) be an elementary module with dimension vector \((2, 2) \). Let us show that the restriction of \(M \) to any 2-Kronecker subalgebra has 2-dimensional endomorphism ring. Let \(\alpha, \beta, \gamma \) be a basis of the arrow space and consider the restriction \(M' \) of \(M \) to the subquiver \(K(2) \) with basis \(\beta, \gamma \). If \(M' \) has a simple injective direct summand, then either \(M' \) is annihilated by \(\alpha \), then \(M' \) is a simple injective submodule of \(M \), therefore \(M \) is not indecomposable, impossible. If \(M' \) is not annihilated by \(\alpha \), then \(M' + \alpha(M') \) is an indecomposable submodule of dimension 2, thus \(M \) is not elementary. Dually, \(M' \) has no simple projective direct summand. It remains to exclude the case that \(M' = R \oplus R \) for some simple regular representation \(R \) of \(K(2) \). Without loss of generality, we can assume that \(M' \) is annihilated by \(\gamma \). Since \(M \) is annihilated by \(\gamma \), it is just a regular representation of the 2-Kronecker quiver with arrow basis \(\alpha \) and \(\beta \). But any 4-dimensional regular representation of a 2-Kronecker quiver has a 2-dimensional regular submodule. This shows that \(M \) is not elementary. Altogether we have shown that the restriction of \(M \) to any 2-Kronecker subalgebra has 2-dimensional endomorphism ring.

If \(u \) is a non-zero element of \(M_1 \), then \(\Lambda u \) contains \(M_2 \) and \(\dim \Lambda u = 3 \). Namely, if \(\Lambda u \) is of dimension 1, then \(\Lambda u \) is simple injective, thus \(M \) cannot be indecomposable. If \(\Lambda u \) is of dimension 2, then \(\Lambda u \) is the arrow space and \(\Lambda u \) is non-elementary. It follows that \(\dim \Lambda u = 3 \) and that \(M_2 \subset \Lambda u \). Given any non-zero element \(u \in M_1 \), there is a non-zero element which annihilates \(u \), say \(0 \neq \beta \in A \). No element in \(A \setminus \langle \beta \rangle \) annihilates \(u \), since otherwise the dimension of \(\Lambda u \) is at most 2. Let \(u, v \) be a basis of \(M_1 \). Let \(\beta, \gamma \) be non-zero elements of \(A \) with \(\beta(u) = 0, \gamma(v) = 0 \). Then the elements \(\beta, \gamma \) are linearly independent, since otherwise we would have \(\gamma(u) = 0 \), thus the submodule \(\Lambda u \) would be of dimension at most 2. The elements \(\beta(v), \gamma(u) \) must be linearly independent, since otherwise the restriction of \(M \) to \(\beta, \gamma \) would be the direct sum of a simple projective and an indecomposable injective. We take \(\beta(v), \gamma(u) \) as an ordered basis of \(M_2 = k^2 \), so that \(\beta(v) = (1, 0) \) and \(\gamma(u) = (0, 1) \). Choose an element \(\alpha \in A \setminus \langle \beta, \gamma \rangle \), thus \(\alpha, \beta, \gamma \) is a basis of \(A \). Let \(\alpha(u) = (\kappa, \lambda) \) and \(\alpha(v) = (\mu, \nu) \) with \(\kappa, \lambda, \mu, \nu \) in \(k \). Since \(\alpha(u) \) cannot be a multiple of \(\gamma(u) = (0, 1) \), we see that \(\kappa \neq 0 \). Since \(\alpha(v) \) cannot be a multiple of
\[\beta(v) = (1, 0), \] we see that \(\nu \neq 0. \) Let \(\alpha' = \alpha - \mu \beta - \lambda \gamma. \) Then

\[
\begin{align*}
\alpha'(u) &= \alpha(u) - \mu \beta(u) - \lambda \gamma(u) = (\kappa, \lambda) - (0, 0) - \lambda(0, 1) = (\kappa, 0), \\
\alpha'(v) &= \alpha(v) - \mu \beta(v) - \lambda \gamma(v) = (\mu, \nu) - \mu(1, 0) - (0, 0) = (0, \nu).
\end{align*}
\]

Let \(\beta' = \kappa \beta \) and \(\gamma' = \nu \gamma. \) Then we have

\[
\begin{align*}
\beta'(u) &= (0, 0), & \beta'(v) &= (\kappa, 0), \\
\gamma'(u) &= (0, \nu), & \gamma'(v) &= (0, 0),
\end{align*}
\]

Altogether, we see that

\[
\begin{array}{ccc}
u & \gamma' & \beta' \\
\alpha' & \downarrow & \downarrow \\
(k, 0) & \alpha' & (0, \nu)
\end{array}
\]

Since both elements \(\kappa \) and \(\nu \) are non-zero, the elements \((\kappa, 0) \) and \((0, \nu) \) form a basis of \(k^2, \) and \(\alpha', \beta', \gamma' \) form a basis of \(A. \) Thus \(M \) is isomorphic to \(X(\alpha', \beta', \gamma'). \) This completes the proof.

Lemma 4.2. A tree module with dimension vector \((2, 2)\) cannot be elementary.

Proof. If \(M \) is a tree module with dimension vector \((2, 2)\), then the coefficient quiver has to be of the form

\[
\begin{array}{ccc}
\bullet & \bullet \\
\downarrow & \downarrow & \downarrow
\end{array}
\]

But then \(M \) has a submodule \(U \) such that both \(U \) and \(M/U \) have dimension vector \((1, 1)\).

Lemma 4.3. If \(M \) is indecomposable with dimension vector \((2, 2)\) and not elementary, then \(M \) is of one of the following forms

\[
\begin{array}{ccc}
\alpha & \beta & \gamma \\
\bullet & \bullet & \bullet \\
\downarrow & \downarrow & \downarrow
\end{array} \quad \begin{array}{ccc}
\alpha & \beta & \alpha \\
\bullet & \bullet & \bullet \\
\downarrow & \downarrow & \downarrow
\end{array}
\]

for some basis \(\alpha, \beta, \gamma \) of \(A. \)

Proof. Let \(M \) be indecomposable with dimension vector \((2, 2)\). If \(M \) is not faithful, say annihilated by \(0 \neq \gamma \in A, \) then \(M \) is a \(K(2) \)-module and therefore as shown on the right.

Now assume that \(M \) is faithful, and not elementary. Since \(M \) is not elementary, there is an element \(0 \neq u \in M_1 \) such that \(\Lambda u \) has dimension vector \((1, 1)\). The annihilator \(B \) of \(u \) is a 2-dimensional subspace of \(A. \) Let \(v \in M_1 \setminus \langle u \rangle. \) Since \(M \) is indecomposable, we see that \(\Lambda v \) has to be 3-dimensional and there is a non-zero element \(\alpha \in A \) with \(\alpha v = 0. \) Since \(M \) is faithful, \(\alpha(u) \neq 0. \) Also, since \(M \) is faithful, we have \(B v = M_2. \) Thus, there is \(\beta \in B \) with \(\beta(v) = \alpha(u). \) Let \(\gamma \in B \setminus \langle \beta \rangle. \) Then \(\alpha(u), \beta(\gamma) \) is a basis of \(M_2. \) With respect to the
basis α, β, γ of A, the basis u, v of M_1 and the basis $\alpha(u), \beta(\gamma)$ of M_2, the module M has the form as depicted on the left. \hfill \Box.

5. The structure of the modules $\sigma^t X(\alpha, \beta, \gamma)$.

The 3-Kroncker modules $I_i = \sigma^i S(2)$ are the preinjective modules, see [FR1].

Proposition. For $t \geq 1$, there is an exact sequence

$$0 \to X(\alpha, \beta, \gamma) \to \sigma^t X(\alpha, \beta, \gamma) \to \bigoplus_{0 \leq i < t} I_i^2 \to 0.$$

Proof. First we consider the case $t = 1$. There is an obvious embedding of $X(\alpha, \beta, \gamma)$ into $Y(\alpha, \beta, \gamma) = \sigma X(\alpha, \beta, \gamma)$, thus there is an exact sequence of the form

$$0 \to X(\alpha, \beta, \gamma) \to Y(\alpha, \beta, \gamma) \to S(2) \to 0.$$

Now we use induction. We start with the sequence

$$0 \to X(\alpha, \beta, \gamma) \to \sigma^t X(\alpha, \beta, \gamma) \to \bigoplus_{0 \leq i < t} I_i^2 \to 0,$$

for some $t \geq 1$ and apply σ. In this way, we obtain the sequence

$$0 \to \sigma X(\alpha, \beta, \gamma) \to \sigma^{t+1} X(\alpha, \beta, \gamma) \to \bigoplus_{1 \leq i \leq t} I_i^2 \to 0.$$

This shows that $M = \sigma^{t+1} X(\alpha, \beta, \gamma)$ has a submodule U isomorphic to $\sigma X(\alpha, \beta, \gamma)$, with M/U isomorphic to $\bigoplus_{1 \leq i \leq t} I_i^2$. But the case $t = 1$ shows that U has a submodule U' isomorphic to $X(\alpha, \beta, \gamma)$ with U/U' isomorphic to $S(2) = I_0^2$. The embedding of U/U' into M/U' has to split, since I_0 is injective. This completes the proof.

Appendix 1. Elementary modules.

According to [K], Proposition 4.4, a regular representation M is elementary if and only if for any nonzero regular submodule U of M, the factor module M/U is preinjective. Let us include the proof of a slight improvement of this criterion.

We deal with the general setting where Λ is a hereditary artin algebra.

Proposition. Let M be non-zero regular module M. Then M is elementary if and only if given any submodule U of M, the submodule U is preprojective or the factor module M/U is preinjective.

Proof. Let M be non-zero and regular. First, assume that for any submodule U of M, the submodule U is preprojective or the factor module M/U is preinjective. Then M cannot be a proper extension of regular modules, thus M is elementary.
Conversely, let M be elementary. Let U be a submodule which is not preprojective. Since M has no non-zero preinjective submodules, we can write $U = U_1 \oplus U_2$ with U_1 preprojective and U_2 regular. Since U is not preprojective, we know that U_2 is non-zero. Since M has no non-zero preprojective factor modules, we decompose M/U_2 as a direct sum of a regular and a preinjective module: there are submodules V_1, V_2 of M with $V_1 \cap V_2 = U, V_1 + V_2 = M$ (thus $M/U = V_1/U_2 \oplus V_2/U_2$) such that V_1/U_2 is regular, and V_2/U_2 is preinjective.

Consider V_2. First of all, $V_2 \neq 0$, since U_2 is a non-zero submodule of V_2. Second, we claim that V_2 is regular. Namely, V_2 is an extension of the regular module U_2 by the preinjective module V_2/U_2, thus is has no non-zero preprojective factor module. Thus, we can decompose $V_2 = W_1 \oplus W_2$ with W_1 regular, W_2 preinjective. But W_2 is a preinjective submodule of M, therefore $W_2 = 0$. This shows that $V_2 = W_1$ is regular.

On the other hand, W/V_2 is isomorphic to V_1/U_2, thus regular. But since M is not a proper extension of regular modules, it follows that $W/V_2 = 0$, thus $V_2 = M$. Therefore $M/U_2 = V_2/U_2$ is preinjective. But $M/U = M/(U_1 + U_2)$ is a factor module of M/U_2, and a factor module of a preinjective module is preinjective. This shows that M/U is preinjective.

\[\square \]

The definition of an elementary module implies that any regular module has a filtration by elementary modules. But such filtrations are not at all unique. This is well-known, but we would like to mention that the 3-Kronecker modules provide examples which are easy to remember. Here is the first such example M:

\[\begin{array}{c}
\circ \\
\gamma \\ \\
\beta \\ \\
\alpha \\ \\
\circ \\
\end{array} \]

On the right we see that $X(\alpha, \beta, \gamma)$ is a factor module, and the corresponding kernel is $B(\gamma)$ (it is generated by the first base vector of M_1). On the other hand, on the left we see that $V(\beta, \gamma)$ is a factor module, and the corresponding kernel has dimension vector $(1, 2)$ (it is generated by the last base vector of M_1).

Here is the second example N:

\[\begin{array}{c}
\circ \\
\beta \\ \\
\alpha \\ \\
\circ \\
\circ \\
\end{array} \]

On the right we see again that $X(\alpha, \beta, \gamma)$ is a submodule, and the corresponding factor module is $V(\alpha, \beta)$ (generated by the first two base vectors of N_1). On the other hand, going from left to right, we see that the module has a filtration whose lowest two factors are of the form $B(\beta)$, whereas the upper factor is $V(\alpha, \gamma)$ (generated by the last two base vectors of N_1).
Appendix 2: The representations of the 2-Kronecker quiver.

Proposition. Any indecomposable $K(2)$-module is a tree module (with respect to some basis of the arrow space of $K(2)$), and its coefficient quiver is of type A.

Proof. The preprojective and the preinjective modules are exceptional modules, thus they are tree modules with respect to any basis. The remaining indecomposable representations of $K(2)$ are of the form $R[t]$ where R is simple regular, and $R[t]$ denotes the indecomposable regular module of dimension $2t$ with regular socle R. We may choose a basis of the arrow space such that R is isomorphic to $(k, k; 1, 0)$. Then $R[t]$ is a tree module such that the underlying graph of the coefficient quiver is of type A_{2t}.

References

[BGP] I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev: Coxeter functors, and Gabriel’s theorem. Russian mathematical surveys 28 (2) (1973), 17–32.

[FR1] Ph. Fahr, C. M. Ringel: A partition formula for Fibonacci numbers. Journal of Integer Sequences, Vol. 11 (2008)

[FR2] Ph. Fahr, C. M. Ringel: Categorification of the Fibonacci Numbers Using Representations of Quivers. Journal of Integer Sequences. Vol. 15 (2012), Article12.2.1

[FR3] Ph. Fahr, C. M. Ringel: The Fibonacci partition triangles. Advances in Mathematics 230 (2012)

[G] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras. Spinger LNM 831 (1980), 1–71.

[K] O. Kerner: Representations of wild quivers. CMS Conf. Proc., vol. 19. Amer. Math. Soc., Providence, RI (1996), 65--107

[KL] O. Kerner, F. Lukas: Elementary Modules, Math.Z. 223(1996),21–434.

[L] F. Lukas: Elementare Moduln über wilden erblichen Algebren. Dissertation, Düsseldorf (1992).

[R1] C. M. Ringel: Representations of K-species and bimodules. Representations of K-species and bimodules. J. Algebra 41 (1976), 269–302.

[R2] C. M. Ringel: Exceptional modules are tree modules. Lin. Alg. Appl. 5-276 (1998),471–493.

[R3] C. M. Ringel: Distinguished bases of exceptional modules In Algebras, quivers and representations. Proceedings of the Abel symposium 2011. Springer Series Abel Symposia Vol 8. (2013) 253-274.

[R4] C. M. Ringel: Kronecker modules generated by modules of length 2. arXiv:1612.07679.

Claus Michael Ringel

Fakultät für Mathematik, Universität Bielefeld
D-33501 Bielefeld, Germany

Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China.

e-mail: ringel@math.uni-bielefeld.de