Impact of \textit{YTHDF1} gene polymorphisms on Wilms tumor susceptibility: A five-center case-control study

Yanfei Liu1 | Huiran Lin2 | Rui-Xi Hua3 | Jiao Zhang4 | Jiwen Cheng5 | Suhong Li6 | Haixia Zhou7 | Zhenjian Zhuo3 | Jun Bian8

1Department of Pathology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
2Faculty of Medicine, Macau University of Science and Technology, Macau, China
3Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
4Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
5Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
6Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, China
7Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
8Department of General Surgery, Xi'an Children's Hospital, Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, China

Correspondence
Jun Bian, Department of General Surgery, Xi'an Children's Hospital, Xi'an Jiaotong University Affiliated Children's Hospital, 69 Xiju Court Lane, Xi'an 710003, Shaanxi, China. Email: blandbird@126.com
Zhenjian Zhuo, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China. Email: zhenjianzhuo@163.com.

Funding information
National Natural Science Foundation of China, Grant/Award Number: 82003523 and 81803320; China Postdoctoral Science Foundation, Grant/Award Number: 2020T130132 and 2020M682668

Abstract
Background: Wilms tumor is the most frequent renal malignancy in children. \textit{YTHDF1} is associated with the development of several kinds of cancers, yet whether common variants of the \textit{YTHDF1} gene influence Wilms tumor risk is unknown. We present, here, a hospital-based case-control study specifically designed to investigate the role of \textit{YTHDF1} genetic variants on Wilms tumor.

Methods: We successfully genotyped samples of 408 Wilms tumor cases and 1198 controls which were collected from five hospitals across China. The unconditional logistic regression was adopted to analyze the contributions of \textit{YTHDF1} gene single nucleotide polymorphisms (SNPs) to the risk of Wilms tumor. The odds ratio (OR) and 95\% confidence interval (CI) were generated to evaluate the conferring risk of \textit{YTHDF1} gene SNPs (rs6011668 C>T, rs6090311 A>G).

Results: Neither of the two SNPs could contribute to the risk of Wilms tumor. A negative association was also detected in the combined effects of protective genotypes on Wilms tumor risk. The stratification analysis revealed that compared with those with CC genotype, rs6011668 CT/TT genotype was associated with increased Wilms tumor risk in those ≤18 months (OR = 1.54, 95\% CI = 1.02–2.30, p = 0.038), and with decreased Wilms tumor risk in those >18 months (OR = 0.70, 95\% CI = 0.50–0.97, p = 0.034).
1 | INTRODUCTION

Wilms tumor (nephroblastoma) is a solid kidney tumor that mainly affects children.\(^7\) It is a tumor of embryonic origin that originates from abnormal differentiation in primitive cells during fetal nephrogenesis.\(^2\) The incidence of Wilms tumor is higher in the United States compared to that of Wilms tumor in China, there being about 7 new cases per million children compared to 3.3 per million.\(^3,4\) Nearly 80% of cases are diagnosed before the age of five.\(^5\) With the advancement of medical treatment, the 5-year survival of favorable histology Wilms tumor has exceeded over 90%.\(^6\) For patients with unfavorable Wilms tumors, the prognosis is still disappointing.\(^6\)

Wilms tumor is a complex disease characterized by the broad heterogeneity of molecular genetic alterations.\(^7,8\) The WTI gene was discovered as the first identified Wilms tumor mutated gene in 1990.\(^9\) Subsequently, mutations in the genes CTNNB1, AMER1, and DROSHA were demonstrated as Wilms tumor risk factors.\(^7,10-12\) Genome-wide analysis, as well as case-control studies also identified additional Wilms tumor risk loci.\(^13-16\) However, all the identified gene mutations only explain a small portion of Wilms tumor origin. Characterization of more variants will further clarify the etiology of Wilms tumor.

N6-methyladenosine (m\(^\text{6}A\)) is one of the most seen internal modifications in mRNAs.\(^17-20\) The m\(^\text{6}A\) is a dynamic and reversible process where three groups of proteins take part in, including methyltransferases, demethylases, and m\(^\text{6}A\)-specific binding proteins.\(^21\) The binding proteins mainly include YTH-family proteins YTHDF1-3, YTHDC1-2, eukaryotic initiation factor elf3, and insulin-like growth factor 2 mRNA-binding proteins IGF2BP1-3.\(^22\) In the cytosol, YTHDF1 interacts with translation initiation factors elf3 and elf4A3 to promote the translation process of m\(^\text{6}A\)-modified mRNAs.\(^23\) YTHDF1 has been implicated in several types of cancers.\(^24-26\) However, whether YTHDF1 gene variants are related to the risk of Wilms tumor is not reported yet. The objective of our case-control study was to determine whether the YTHDF1 gene variants are associated with Wilms tumor risk.

2 | METHODS

2.1 | Sample selection

The study was approved by the Ethics Committee of Guangzhou Women and Children’s Medical Center. We carried out the entire work in accordance with the ethical guidelines of the tenets of the Declaration of Helsinki. The cases all had newly diagnosed, histologically confirmed, and previously untreated Wilms tumor. Controls were randomly selected from hospital visitors who were living in the same area and were free of Wilms tumor when being enrolled. All study participants’ guardians provided written informed consent. A total of 414 cases diagnosed with Wilms tumor and 1199 hospital-based controls were included (Table S1). They were recruited from five hospitals (Guangzhou Women and Children’s Medical Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, The First Affiliated Hospital of Zhengzhou University, Second Affiliated Hospital of Xi’an Jiao Tong University, and Shanxi Provincial Children’s Hospital) in five different cities of China. Detailed information regarding sample selection was accessible in our previous studies.\(^27,28\)

2.2 | Polymorphism selection and genotyping

We chose two SNPs of YTHDF1 gene, rs6011668 C>T and rs6090311 A>G, to genotype. The reasons for choosing these two SNPs were described in our previous study.\(^29\) To be specific, the following criteria were adopted to choose potentially functional polymorphisms: (1) the minor allele frequency (MAF) reported in HapMap was >5% for Chinese Han subjects; (2) putative functional potentials SNPs located in the 5' flanking region, exon, 5' untranslated region (5' UTR), and 3' UTR, which might affect transcription activity or binding capacity of the microRNA binding site; (3) SNPs in low linkage disequilibrium with each other (\(R^2 < 0.8\)). Both the two SNPs (rs6011668 C>T and rs6090311 A>G) are located in the transcription factor binding sites (TFBS). There is no significant linkage disequilibrium (LD) (\(R^2 < 0.8\)) between rs6011668 C>T and rs6090311 A>G in YTHDF1 gene (\(R^2 = 0.094\)). Genomic DNA was isolated from peripheral blood according to the standard protocol. Genotyping was performed by TaqMan SNP Genotyping Assay, by means of an ABI 7900HT (Applied Biosystems).\(^30\) In each genotyping plate, we inserted negative control samples (water) to ensure the quality of genotyping. 10% of randomly selected replicates from the study sample were re-genotyped. Concordance rates for the original and replicate samples were 100%.

2.3 | Statistical analysis

For the analyzed SNPs, a goodness-of-fit \(\chi^2\) test was used to test for deviations from Hardy-Weinberg equilibrium (HWE). To test the
difference in the distribution of demographic variables between cases and controls, a Chi-square test for categorical variables and a Student t-test for continuous variables were conducted. The association between the SNPs and Wilms tumor risk was determined using unconditional logistic regression computing odds ratios (ORs) and 95% confidence intervals (CIs). Stratified analyses were carried out across the strata of the following factors: age, sex, and clinical stages. In all analyses, a two-tailed p value <0.05 was considered statistically significant. Statistical calculations were done with the SAS statistical software package version 9.1 (SAS Institute Inc.).

3 | RESULTS

3.1 | Effect of YTHDF1 gene SNPs on Wilms tumor risk

Table S1 gives information on the baseline characteristics of the included cases and controls. Similar distributions of age (p = 0.118) and gender (p = 0.218) were observed between cases and controls. Of all the included samples (414 cases and 1199 controls), we successfully genotyped 408 Wilms tumor cases and 1198 controls. The genotype distribution of rs6011668 C>T and rs6090311 A>G polymorphisms and their relationship with Wilms tumor risk are listed in Table 1. As expected, the genotype distributions of rs6011668 C>T (P for HWE = 0.490) and rs6090311 A>G (P for HWE = 0.378) polymorphism in controls did not deviate from HWE. We evaluated the association of rs6011668 C>T and rs6090311 A>G with Wilms tumor risk but did not find statistical significance in all genotype models. Non-significant association results remained unchanged after adjusting by age and sex. We then allocated rs6011668 CT/TT and rs6090311 AG/GG genotypes as protective genotypes. Compared to 0 protective genotype, 1, 2, and 1-2 protective genotypes could not decrease Wilms tumor risk.

Table 1 Association between YTHDF1 gene polymorphisms and Wilms tumor susceptibility

Genotype	Cases (N = 408)	Controls (N = 1198)	p^a	Crude OR (95% CI)	p	Adjusted OR (95% CI)^b	p^b
rs6011668 C>T (HWE = 0.490)							
CC	300 (73.53)	868 (72.45)	1.00	1.00	1.00		
CT	104 (25.49)	307 (25.63)	0.98 (0.76–1.27)	0.879	0.97 (0.75–1.26)	0.826	
TT	4 (0.98)	23 (1.92)	0.50 (0.17–1.47)	0.208	0.49 (0.17–1.42)	0.189	
Additive	0.473	0.92 (0.73–1.16)	0.473	0.91 (0.72–1.15)	0.422		
Dominant	108 (26.47)	330 (27.55)	0.95 (0.74–1.22)	0.674	0.94 (0.73–1.21)	0.619	
Recessive	404 (99.02)	1175 (98.08)	0.51 (0.17–1.47)	0.211	0.49 (0.17–1.43)	0.193	
rs6090311 A>G (HWE = 0.378)							
AA	162 (39.71)	458 (38.23)	1.00	1.00	1.00		
AG	188 (46.08)	577 (48.16)	0.92 (0.72–1.18)	0.508	0.92 (0.72–1.18)	0.516	
GG	58 (14.22)	163 (13.61)	1.01 (0.71–1.43)	0.973	1.02 (0.72–1.45)	0.911	
Additive	0.767	0.98 (0.83–1.16)	0.824	0.99 (0.84–1.17)	0.875		
Dominant	246 (60.29)	740 (61.77)	0.94 (0.75–1.18)	0.597	0.94 (0.75–1.19)	0.623	
Recessive	350 (85.78)	1035 (86.39)	1.05 (0.76–1.45)	0.758	1.07 (0.77–1.47)	0.698	

Protective genotypes^c

	98 (24.02)	262 (21.87)	1.00	1.00		
1	266 (65.20)	802 (66.94)	0.89 (0.68–1.16)	0.383	0.89 (0.68–1.16)	0.376
2	44 (10.78)	134 (11.19)	0.88 (0.58–1.33)	0.536	0.87 (0.58–1.32)	0.516
0	98 (24.02)	262 (21.87)	1.00	1.00		
1-2	310 (75.98)	936 (78.13)	0.89 (0.68–1.15)	0.369	0.88 (0.68–1.15)	0.359

Abbreviations: OR, odds ratio; CI, confidence interval; HWE, Hardy-Weinberg equilibrium.

^aΧ² test for genotype distributions between Wilms tumor patients and controls.

^bAdjusted for age and sex.

^cProtective genotypes were carriers with rs6011668 CT/TT and rs6090311 AG/GG genotypes.
TABLE 2 Stratification analysis for the association between YTHDF1 gene polymorphisms and Wilms tumor susceptibility

Variables	rs6011668 (cases/controls)		rs6090311 (cases/controls)		Protective genotypes (cases/controls)					
	CC/CT/TT	AOR (95% CI)^a	p^a	AA/AG/GG	AOR (95% CI)^a	p^a	0	1-2	AOR (95% CI)^a	p^a
Age, month										
≤18	91/343	1.54 (1.02–2.30)	0.038	48/178	1.19 (0.80–1.78)	0.381	24/100	116/365	1.34 (0.82–2.20)	0.243
>18	209/525	0.70 (0.50–0.97)	0.034	114/280	0.85 (0.64–1.13)	0.274	74/162	194/571	0.75 (0.55–1.04)	0.082
Sex										
Females	140/363	0.85 (0.59–1.24)	0.401	80/207	0.92 (0.66–1.29)	0.642	47/114	145/407	0.86 (0.59–1.28)	0.463
Males	160/505	1.02 (0.72–1.45)	0.896	82/251	0.97 (0.71–1.33)	0.838	51/148	165/529	0.90 (0.63–1.30)	0.588
Clinical stages										
I	92/868	1.28 (0.87–1.87)	0.209	58/458	0.85 (0.59–1.22)	0.373	27/262	110/936	1.14 (0.73–1.77)	0.572
II	87/868	0.81 (0.51–1.27)	0.350	43/458	1.03 (0.69–1.53)	0.877	29/262	85/936	0.82 (0.53–1.28)	0.387
III	73/868	0.76 (0.46–1.25)	0.279	39/458	0.87 (0.57–1.33)	0.513	27/262	67/936	0.70 (0.44–1.12)	0.133
IV	35/868	0.89 (0.46–1.75)	0.744	18/458	1.00 (0.55–1.82)	0.993	11/262	36/936	0.92 (0.46–1.82)	0.802
I+II	179/868	1.05 (0.77–1.41)	0.777	101/458	0.92 (0.70–1.22)	0.576	56/262	195/936	0.97 (0.70–1.35)	0.857
III+IV	108/868	0.81 (0.53–1.21)	0.300	57/458	0.91 (0.64–1.30)	0.597	38/262	103/936	0.76 (0.51–1.14)	0.182

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval.

^aAdjusted for age and sex, omitting the corresponding stratify factor.
CI = 0.50–0.97, \(p = 0.034 \), in comparison to CC genotype. No significant associations were found between rs6090311 AG/GG or 1–2 protective genotypes and the risk of Wilms tumor, in all subgroups.

4 | DISCUSSION

Emerging epidemiological evidence has shown the implication of genetic variants in Wilms tumor risk. To fully unearth the genetic spectrum of Wilms tumor still is a challenge that remains. The current work provided a collection of evidence regarding the role of YTHDF1 gene polymorphisms on risk of Wilms tumor.

YTHDF1 gene resides in chromosome 20q11. Prior studies have found YTHDF1 to be associated with cancer. The up regulation of YTHDF1 is detected in ovarian cancer and associated with adverse prognosis. YTHDF1 facilitates tumorigenesis and metastasis of ovarian cancer via augmenting the translation of EIF3C.\(^{32}\) YTHDF1 is frequently amplified in hepatocellular carcinoma (HCC) tissues and significantly associated with the prognosis of HCC patients. Mechanism analysis revealed that YTHDF1 can accelerate the translational output of FZD5 mRNA in an m\(^{6}A\)-dependent manner and function as an oncogene through the WNT/\(\beta\)-catenin pathway.\(^{33}\) METTL3 facilitates oral squamous cell carcinoma tumorigenesis by strengthening the c-Myc stability via YTHDF1-mediated m\(^{6}A\) modification.\(^{34}\) Shi et al.\(^{35}\) demonstrated that deficiency of YTHDF1 inhibited non-small cell lung cancer cell proliferation and xenograft tumor formation. Unexpectedly, they observed that the high expression of YTHDF1 was related to better clinical outcomes. Nishizawa et al.\(^{36}\) found that high YTHDF1 expression was linked to a significantly more reduced overall survival rate in colorectal cancer patients. Molecular mechanism experiments revealed that c-Myc could drive YTHDF1 to facilitate cancer proliferation.

Epithelial gene reports of YTHDF1 gene SNPs and cancer risk are limited. In 2012, a genome-wide association study was carried out on Wilms tumor. The authors used cases recruited through oncology clinics in North America to identify genetic variants that confer susceptibility to Wilms tumor. They selected SNPs that demonstrated an association of a significance level of \(p < 5 \times 10^{-5} \) for the replication phase. They failed to detect YTHDF1 gene SNPs that were associated with Wilms tumor risk.\(^{12}\) Meng et al.\(^{37}\) genotyped 240 SNPs in 20 m\(^{6}A\)-modification-related genes on colorectal cancer in China. Two SNPs rs2024768 and rs6090289 in the YTHDF1 gene could not modify the risk of colorectal cancer. We also investigated the role of YTHDF1 gene SNPs on the risk of hepatoblastoma using 313 hepatoblastoma cases and 1446 controls from China.\(^{29}\) For the two SNPs analyzed, rs6011668 C>T could not impact hepatoblastoma risk, but rs6090311 G allele could decrease hepatoblastoma risk. In the current study, no significant relationships were detected between rs6011668 C>T or rs6090311 A>G and Wilms tumor risk, respectively. Thus, the role of YTHDF1 SNPs varies from types of cancers.

We admit that our study has its weakness. First, the sample size, although enrolled from several hospitals, may be too small to explain the effects of an entire population. Second, we had no access to other environmental factors, which could have biased Wilms tumor risk assessment without adequate adjustment for these covariates in the risk evaluation model. Third, all the participants were Chinese, and the applicability of the findings to other populations requires confirmation.

In conclusion, our study did not find strong evidence that YTHDF1 gene variants influence Wilms tumor risk. Our results require independent replication in larger studies, preferably with more detailed information on environmental effect analysis, functional experiments, and across other populations.

ACKNOWLEDGMENTS

This study was supported by grants from National Natural Science Foundation of China (No. 82003523, 81803320), and China Postdoctoral Science Foundation (No. 2020T130132, 2020M682668).

CONFLICT OF INTEREST

None.

DATA AVAILABILITY STATEMENT

The data used in the current study are available from the corresponding author upon reasonable request.

ORCID

Zhenjian Zhuo \(\text{https://orcid.org/0000-0003-0142-4086} \)

REFERENCES

1. Aldrink JH, Heaton TE, Dasgupta R, et al. Update on Wilms tumor. J Pediatr Surg. 2019;54(3):390–397.
2. Coorens TH, Treger TD, Al-Saadi R, et al. Embryonal precursors of Wilms tumor. Science. 2019;366(6470):1247–1251.
3. Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21(3):172–181.
4. Bao PP, Li K, Wu CX, et al. Recent incidences and trends of childhood malignant solid tumors in Shanghai, 2002–2010. Zhonghua Er Ke Za Zhi. 2013;51(4):288–294.
5. Pater L, Melchior P, Rube C, et al. Wilms tumor. Pediatr Blood Cancer. 2020;68(10):e28257.https://doi.org/10.1002/pbc.28257
6. Dome JS, Graf N, Geller JI, et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015;33(27):2999–3007.
7. Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S. The genetic changes of Wilms tumors. Nat Rev Nephrol. 2019;15(4):240–251.
8. Cresswell GD, Apps JR, Chagati T, et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine. 2016;9:120–129.
9. Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell. 1990;61(7):1257–1269.
10. Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE. WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumor. Nature. 1991;353(6343):431–434.
11. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461–470.
12. Turnbull C, Perdue E, Pernet D, et al. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nat Genet. 2012;44(6):681–684.
13. Fu W, Zhuo Z, Hua RX, et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study. Aging. 2019;11(5):1551-1563.

14. Liu GC, Zhuo ZJ, Zhu SB, et al. Associations between LMO1 gene polymorphisms and Wilms’ tumor susceptibility. Oncotarget. 2017;8(31):50665-50672.

15. Liu P, Zhuo Z, Li W, et al. TP53 rs1042522 C>G polymorphism and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biocsi Rep. 2019;39(1):BSR20181891.

16. Ferrara M, Capozzi L, Russo R. Impact of the MTHFR C677T polymorphism on risk of Wilms tumor: case-control study. J Pediatr Hematol Oncol. 2009;31(4):256-258.

17. Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic Regulation of m(6)A Modifications in Human Cancer. Mol Ther Nucleic Acids. 2020;19:405-412.

18. Zhou C, Zhang Z, Zhu X, et al. N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1. EBioMedicine. 2020;59:102955.

19. Meng Z, Yuan Q, Zhao J, et al. The m(6)A-related mRNA signature predicts the prognosis of pancreatic cancer patients. Mol Ther Oncolytics. 2020;17:460-470.

20. Xu Y, Ye S, Zhang N, et al. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 2020;40(10):484-500.

21. Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S, Liu T. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 2019;79(7):1285-1292.

22. Liu L, Wang Y, Wu J, Liu J, Qin Z, Fan H. N(6)-Methyladenosine: a potential breakthrough for human cancer. Mol Ther Nucleic Acids. 2020;19:804-813.

23. Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161(6):1388-1399.

24. Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol. 2019;9:332.

25. Pi J, Wang W, Ji M, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7. Cancer Res. 2021;81(10):2651-2665.

26. Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270-274.

27. Li S, Lin A, Han D, et al. LINC00673 rs11655237 C>T and susceptibility to Wilms tumor: a five-center case-control study. J Gene Med. 2019;21(12):e3133.

28. Hua RX, Liu J, Fu W, et al. ALKBH5 gene polymorphisms and Wilms tumor risk in Chinese children: a five-center case-control study. J Clin Lab Anal. 2020;34(6):e23251.

29. Luo Z, Li G, Wang M, et al. YTHDF1 rs6090311 A>G polymorphism reduces Hepatoblastoma risk: evidence from a seven-center case-control study. J Cancer. 2020;11(17):5129-5134.

30. He J, Zou Y, Liu X, et al. Association of common genetic variants in pre-microRNAs and neuroblastoma susceptibility: a two-center study in Chinese children. Mol Ther Nucleic Acids. 2018:11:1-8.

31. Zhuo Z, Zhou C, Fang Y, et al. Correlation between the genetic variants of base excision repair (BER) pathway genes and neuroblastoma susceptibility in eastern Chinese children. Cancer Commun (Lond). 2020;40(11):641-646.

32. Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816-3831.

33. Liu X, Qin J, Gao T, et al. YTHDF1 facilitates the progression of hepatocellular carcinoma by promoting FZD5 mRNA translation in an m6A-dependent manner. Mol Ther Nucleic Acids. 2020;22:750-765.

34. Zhao W, Cui Y, Liu L, et al. METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m6A modification. Mol Ther Nucleic Acids. 2020;20:1-12.

35. Shi Y, Fan S, Wu M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10(1):4892.

36. Nishizawa Y, Konno M, Asai A, et al. Oncogene c-Myc promotes epitranscriptome m(6)A reader YTHDF1 expression in colorectal cancer. Oncotarget. 2018;9(7):7476-7486.

37. Meng Y, Li S, Gu D, et al. Genetic variants in m6A modification genes are associated with colorectal cancer risk. Carcinogenesis. 2020;41(1):8-17.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Liu Y, Lin H, Hua R-X, et al. Impact of YTHDF1 gene polymorphisms on Wilms tumor susceptibility: A five-center case-control study. J Clin Lab Anal. 2021:00:e23875. https://doi.org/10.1002/jcla.23875