Physiological tests of small airways function in diagnosing asthma: a systematic review

Mohammed A Almeharsi, Nowaf Y Aloabdi, Ross G Edgar, James Stockley, Elizabeth Sapey

ABSTRACT

Background Asthma is a common, heterogeneous disease that is characterised by chronic airway inflammation and variable expiratory airflow limitation. Current guidelines use spirometric measures for asthma assessment. This systematic review aimed to assess whether the most commonly reported tests of small airways function could contribute to the diagnosis of asthma.

Methods Standard systematic review methodology was used, and a range of electronic databases was searched (Embase, MEDLINE, CINAHL, CENTRAL, Web of Science, DARE). Studies that included physiological tests of small airways function to diagnose asthma in adults were included, with no restrictions on language or date. The risk of bias and quality assessment tools used were Agency for Healthcare Research and Quality tool for cross-sectional studies and Quality Assessment of Diagnostic Accuracy Studies 2 for diagnostic test accuracy (DTA) studies.

Results 7072 studies were identified and 10 studies met review criteria. 7 included oscillation techniques and 5 included maximal mid-expiratory flow (MMF). Studies were small and of variable quality. In oscillometry, total resistance (R5) and reactance at 5 Hz (X5) was altered in asthma compared with healthy controls. The percentage predicted of MMF was lower in patients with asthma compared with controls in all studies and lower than the % predicted forced expiratory volume in 1 s (FEV1). 10 studies showed a sensitivity between 69% and 72% and specificity between 61% and 86%.

Conclusion There were differences in the results of physiological tests of small airway function in patients with asthma compared with controls. However, studies are small and heterogeneous. Further studies are needed to assess the effectiveness of these tests on a larger scale, including studies to determine which test methodology is the most useful in asthma.

BACKGROUND

Asthma is a common but heterogeneous disease characterised by chronic airway inflammation and clinically defined by the presence of respiratory symptoms that vary over time and in intensity. Physiologically, asthma is characterised by variable expiratory airflow limitation which may become persistent over time. Symptoms and airflow limitation can be extremely variable, including the age of onset, triggers for symptoms, the decline in lung function and therapeutic response.

It is estimated that 339 million people are affected by asthma globally but diagnosing asthma is often challenging as there is no gold standard test. This has led to a high burden of undiagnosed disease, especially in children and older adults. According to current guidelines, a diagnosis of asthma should be objectively supported with an assessment of forced expiratory volume in 1 s (FEV1) reversibility. However, some patients with asthma have no evidence of reversibility or airflow obstruction and reversibility are seen in patients with alternative diagnoses such as chronic obstructive pulmonary disease (COPD). Furthermore, the forced manoeuvres required for spirometry requires effort and coordination, which can be difficult for some individuals.

In the past, asthma was thought to only affect larger airways but current evidence suggests that small airways (defined as airways of ≤2 mm in diameter) are affected as well. The small airways may form a site of active disease, even in the absence of airflow limitation.
obstruction.11 If the small airways are the first to be affected in asthma, identifying small airways dysfunction (SAD) may help identify asthma earlier, enabling treatment. However, there are a large number of tests that report small airways function. Some of these are being used as secondary outcomes in experimental studies of asthma, to determine asthma phenotype and assess the response to new therapies.12 The evidence to support the use of any physiological test of small airways function in the diagnosis of asthma is unclear.

This systematic review aimed to assess the evidence to support the use of commonly reported physiological tests of small airways function to diagnose asthma in adults, and assess if the selected tests should be included in future clinical studies of the disease.

METHODS

The protocol was prospectively registered in the international registry of systematic reviews (PROSPERO) with registration number CRD42019133239. The review was prepared in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines13 and the PRISMA checklist is provided in online supplemental material file S1. Meta-analysis was considered where homogenous results were provided, otherwise data were pooled for graphical presentational purposes.

Through both scoping searches and discussion with experts, the following test were selected to be included in the search, forced oscillation technique (FOT), impulse oscillometry (IOS) and maximal mid-expiratory flow (MMEF) also known as forced expiratory flow between 25\% and 75\% of forced vital capacity (FVC) (FEF\textsubscript{25–75}%), and multiple breath washout test (MBW). These tests were selected as they represented some of the most commonly reported physiological tests of small airways function in obstructive lung disease in adults. Online supplemental figure S2 shows the Population, Intervention, Comparison and Outcome (PICO) chart with the studies selection criteria.

Eligibility criteria

Studies were considered for inclusion if they used one of the proposed physiological small airways function tests (FOT/IOS, MBW, MMEF) in diagnosing asthma in adults aged \textgreater 18 years old. Patients with either a physician diagnosis or a suspected diagnosis of asthma were considered for inclusion. FEV\textsubscript{1} was used as the comparator as it is the current standard in physiological airway assessment. Studies were excluded if they included only children (<18 years), patients with respiratory infections within 2 months of the assessment, did not assess FEV\textsubscript{1}, included patients with asthma-COPD overlap, were laboratory-based studies, animal-based studies or case series of less than 10 participants. There were no language or publication date restrictions.

Search queries were carried out in May 2019 (and the detailed search strategy is found in online supplemental material file S3) on the following electronic databases: Embase, MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (Abstracts and Proceedings) up to 5 years and DARE database for grey literature. Clinicaltrials.gov and EudraCT were also searched for active trials or published data. Hand searching of references listed in the selected articles was included. Search terms contained subject heading and terms for the selected test (IOS/FOT, MBW and MMEF) combined with terms of asthma and small airways function.

Study selection

Search results were imported into EndNote 9.1 (Clarivate Analytics) where duplicates were removed and data was uploaded to Rayyan14 (a webapp tool used for screening titles and abstracts). Abstracts were screened blindly and independently by the authors MA and NYA using the predefined inclusion and exclusion criteria. Disagreements were resolved by discussion, otherwise by the third reviewer, whose initials were RGE. Full-text articles were acquired and imported into EndNote 9.1 by author MA and similar abstract screening methodology was used in screening full texts for eligibility.

Data extraction

Data were extracted by author MA and checked by author NYA for consistency and accuracy using a custom, piloted data extraction form. Diagnostic criteria used to identify asthma, tests used to aid the diagnosis such as airway reversibility, asthma severity, phenotype, medications, the device used and comorbidities were extracted to aid narrative review and provide clinical context. Studies were categorised based on the small airways test used. In diagnostic test accuracy (DTA) studies, sensitivity and specificity values were extracted and a 2×2 contingency table was calculated.

Quality and risk of bias assessment

Quality and risk of bias were assessed using validated tools based on study design. Cross-sectional studies were assessed using the Agency for Healthcare Research and Quality (AHFQ) checklist tool.15 The Quality Assessment of Diagnostic Accuracy Studies 216 (QUADAS-2) was used in DTA. The QUADAS-2 tool assesses the risk of bias of studies over four domains: flow and timing, reference standard, index test and patient selection. The tool also assesses for applicability concerns under three domains: reference standard, index test and patient selection.

Descriptions of the tests of small airways function included in the reported studies

Here, only tests included in the analysed studies are described.
Oscillometry can be assessed using either the FOT or IOS. Oscillometry transmits oscillating sound signals of various frequencies along the bronchial tree, providing a measure of the total airway resistance (resistance at 5 Hz (R5)) and the proximal airway resistance (resistance at 20 Hz (R20)), which allows for the derivation of small airways resistance (R5–R20). Reactance at 5 Hz (X5) relates to physical properties of the lung parenchyma and its ability to expand and facilitate alveolar filling. Resonant frequency (Fres) is the point at which reactance is zero (when forces of inertia and capacitance are equal). The area of reactance (AX) is the sum of area under the reactance curve between X5 and Fres. Limitations with this technique include the lack of universal normal ranges for all populations and variance of results between different devices, which can impede interpretation.

Maximum mid-expiratory flow
The MMEF is the mean forced expiratory flow between 25% and 75% of the FVC (FEF25–75%) and is taken from the spirometric blow with the largest sum of FEV1 and FVC. The MMEF is highly dependent on the validity of the FVC measurement and the level of expiratory effort. MMEF is commonly reported in studies of small airways as it is readily accessible from spirometry reports.

Patient and public involvement
Due to the nature of the study design, patients and public were not involved in this systematic review.

RESULTS
Study selection
Initial searches identified 7072 abstracts. After the removal of duplicates, 5764 abstracts were screened of which 469 abstracts included for full text screening. Ten articles ultimately met the inclusion criteria (figure 1 shows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram). Articles excluded in the full-text screening phase are described in online supplemental material file S4 with reasons given. All included studies were cross-sectional in design and 3/10 of the included studies were DTA studies.

Study characteristics
Seven of the included articles reported oscillometry (IOS/FOT) and five reported MMEF. None of the included studies reported MBW use in diagnosing asthma. Seven studies were not designed as DTA studies and are presented in table 1. Three studies were designed as DTA studies and these are presented in table 2. The diagnostic criteria used to confirm a diagnosis of asthma

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart of included studies.
Almeshari MA, et al. BMJ Open Resp Res 2020;7:e000770. doi:10.1136/bmjresp-2020-000770

Open access
differed among studies. Four studies used Global Initiative for Asthma guidelines,24 25 28 30 one American Thoracic Society guidelines27 and one the global strategy: Joint Report of the National Institute for Heart, Lungs and Blood and WHO.29 Three studies recruited patients based on a previous diagnosis of asthma, without reporting the diagnosis criteria used.22 23 26 One study reported that patients with symptoms of asthma were included without any formal diagnosis.31 All included studies were based in different countries (the USA, UK, Japan, Korea, Turkey, Egypt, Russia, Serbia, Iran and China) from four different continents (North America, Europe, Asia and Africa) making the ethnicity of participants heterogeneous. Body mass index (BMI) was only reported in three of the included studies.23–25 Meta-analysis of the data were inappropriate due to the variety and scope of methodological design. Where appropriate, data were displayed graphically to aid the representation of results. No MMEF studies explicitly corrected for FVC, which can potentially affect interpretation.

Risk of bias
Two risk of bias and quality assessment tools were used in this systematic review, based on the design of the included studies. Seven studies were assessed using the AHRQ tool for cross-sectional studies15 (see figure 2A). This highlighted potential methodological issues around subject selection and quality assurance concerns, which may have impacted on the reliability of results and the

Table 1 The characteristics of included studies without a diagnostic test accuracy analysis
ID

Mendonça et al23
Cross-sectional
Control 34
Mori et al24
Cross-sectional
Control 13
Mousa and Kamal25
Cross-sectional
Control 20
Koruga et al22
Cross-sectional
Nair et al26
Cross-sectional
Control 61
Gulden et al20
Cross-sectional
Son et al31
Cross-sectional

Values reported in mean (SD).
*Weight in kg.
†Values reported in mean (SEM).
BMI, body mass index; FEV₁, forced expiratory volume in 1 s; FOT, forced oscillation technique; GINA, Global Initiative for Asthma; ID, study identification (authors) country, research type; IOS, impulse oscillometry; NR, not reported; SA, small airways.
reporting of study follow-up. There was an overall low risk of bias around patient recruitment (including the source of subjects), the inclusion/exclusion criteria and time periods when patients were identified. Response rates and completeness of results were all reported. A summary of all included studies using both tools is available in online supplemental material file S5.

Three studies were assessed using QUADAS-2 tool for DTA studies (see figure 2B). One study had a high risk of bias and applicability concern in the patient selection phase. Two studies had a high risk of bias in the index test.

Results of individual studies

Oscillometry

Seven studies used oscillometry. One study used FOT,24 five studies used IOS22 25–28 and one study did not reported which type of oscillometry was used.23 Five studies reported R5,22–26 which represent the total lung resistance. Only one study reported R5–R20.24 The values of the test were reported in different units with Mori et al24 and Mendonça et al23 reporting results in cmH2O/L/s, Nair et al26 and Mousa and Kamal the % predicted values and Koruga et al22 and Nikkhah et al28 in kPa/L/s.

Mori et al24 reported R5, R5–R20, X5 and MMEF in 49 asthmatic patients,13 controls and 51 COPD patients. They described differences in MMEF, R5–R20 and X5 when comparing asthma to control subjects but not R5. In addition, they reported that the coloured three-dimensional model provided by the FOT device could differentiate between asthma, COPD and healthy subjects, with a higher resistance and lower reactance observed in asthma. Asthma severity was not reported and 24 of the asthmatic subjects were ex-smokers.

Mendonça et al23 studied 35 asthmatic and 34 non-asthmatic participants but used a different technique and frequency than the commonly reported value. Oscillometry values were reported in cmH2O/L/s. The whole breath resistance at 8 Hz (R8) and the minimum resistance at maximum inhalation Rmin were both different when comparing the asthmatic (R8=2.91±0.99) and non-asthmatic group (R8=2.21±0.48). In the asthmatic patients, both the MMEF % predicted value was lower (69%±20) than healthy controls (93%±20) and a higher Rmin was observed. They also conducted a methacholine challenge test (MCT) in all participants and found that (31/35) asthmatic subject and (8/34) non-asthmatic group had a positive result. A subgroup analysis was reported including asthmatics with positive MCT (31/35) and non-asthmatic with a negative MCT (26/34) and similar results were reported to the overall analysis with a higher Rmin in positive MCT (1.41±0.42) compared with (1.02±0.24) in negative MCT. Moreover, MMEF was lower in the MCT positive group (68%±18) compared with (99%±18) in negative MCT group. The mean FEV1 was 88%±11 predicted in the asthmatic group and 95%±10 predicted in the non-asthmatic group, both
within the normal range. The authors examined the ability of MMEF, R min, and FEV 1 to predict airway hyperresponsiveness to methacholine by producing a receiver operating characteristic (ROC) curve which showed that MMEF had the highest area under the curve (AUC) of 0.87, while R min and FEV 1 had AUC of 0.85 and 0.78, respectively. R8 was not reported in the ROC curve.

Mousa and Kamal 25 recruited 25 asthmatic patients and 20 healthy controls (with differences in the mean ages of the groups: asthmatic=45 years and the controls=34 years). Mean BMI did not differ between groups. The severity of the asthmatic group was not reported. IOS was used to assess asthma, with X5 and R5 being reported. R5 was reported in % predicted, but the X5 was reported in absolute values, but did not indicate the unit used. X5 and R5 were different between the two groups (asthma: mean X5 −2.87±1.84 and R5% 245.24±109.18. Healthy controls mean X5 −0.28±0.10 and R5% 109.25±19.40). FEV1 was lower in the asthmatic group with a mean of 59.68%±23.73 predicted compared with the healthy controls mean of 89.75%±8.70 predicted.

Koruga et al 22 included 31 male military recruits in Serbia with a previous diagnosis of asthma. Histamine was used to assess bronchial hyperreactivity, recording the dose that decreased FEV 1 by 20% predicted value (PD20). X5, R5 and Ax was reported at baseline and after PD20. They found that the overall change in FEV 1 after PD20 was 25.66%, while the R5 and X5 had a change of 66.64±62.91 and 132.18±148.13, respectively. No controls were included in the study.

Similar to Koruga et al 22 and Mousa and Kamal 25 Nair et al 26 used a Masterscreen-IOS device, but reported X5 and R5 as % predicted values. Nair et al included 82 patients with previous diagnosis of asthma and 61 healthy subjects. The asthma group was older (mean age 49 years vs mean age 28 years in the control group). Weight was not reported in either group. Nineteen per cent of the asthma patients were current or previous smokers, but the controls were all never smokers. All inhaled drugs such as short acting beta-agonists and long acting beta-agonists were withheld before reversibility testing except inhaled corticosteroids. Asthma severity and comorbidities were not reported. Airways reversibility was assessed using 400 µg of salbutamol via a metered dose inhaler and spacer and reported a mean change of 6.34% of FEV 1 in the asthma group and 2.25% in the healthy controls. The mean percentage of change after administering salbutamol was −33.78±4.43 and −72.93±88.73 in R5 and X5, respectively in the asthma group. In the control group, the mean change was −14.91±2.48 in R5 and 40.09±65.64 in X5.

Maximal mid-expiratory flow

Guldent Pasaoglu et al 30 recruited 433 asthmatic patients (mean age 37 years) and 152 patients with COPD (mean age 54 years), aiming to assess differences in clinical and spirometric features of asthma and COPD. 29% of the asthma group and 64% of the COPD group were current smokers. Reversibility was assessed in both groups using 200 µg of salbutamol and defined by an increase of more than 12% and 200 mL of the FEV 1 value. 62.1% of the asthma group met criteria for reversibility compared with 39.5% in the COPD group. MMEF was the only parameter that was below the normal range in non-smoking asthmatic patients with normal auscultation, suggesting that MMEF was a physiological marker of asthma in
non-smoking asymptomatic patients. Although bronchodilator responses were measured, these were not reported.

Son et al.31 conducted a retrospective study of 125 patients with a clinical suspicion of asthma who had undergone an MCT. Patients were stratified into three groups based on their FEV₁ and MMEF response to MCT. The positive response to MCT was considered if there was a decline of 20% in FEV₁ and for MMEF, as well. Group 1 included patients with negative MCT tests for both parameters. Group 2 included patients with a negative FEV₁ and a positive MMEF. Group 3 included patients with positive test to both parameters. The mean ages of the included subjects were 45 years in group 1, 39 years in group 2 and 43 years in group 3. Eight subjects had a previous diagnosis of asthma, three in group 1 and five in group 3. Allergic rhinitis was reported in 34 subjects, 16 of them were positive to MCT in both spirometric indices, therefore included in group 3. Mean baseline MMEF in groups 1 and 2 was 97.67%±3.48 predicted and 95.08%±5.74 predicted, respectively. In group 3, mean MMEF was 70.16%±4.64 predicted. The authors suggested that MMEF may be a more sensitive marker of asthma than FEV₁ in patients with otherwise normal spirometry results.

DTA studies

Impulse oscillometry

Li et al.27 and Nikkhah et al.28 assessed the DTA of IOS for asthma. The majority of participants in Nikkhah et al study were women, while Li et al.27 had a majority of male participants. Neither study reported participants’ weight or BMI. Nikkhah et al cut-offs were not pre-specified, but were proposed after plotting an ROC curve. Li et al did not report a cut-off value. They both studied resistance at 5 Hz, but reactance was studied at different frequencies with Li et al at 35 Hz and Nikkhah et al at 5 Hz. The sensitivity of R5 was reported as 72% by Li et al and 69% by Nikkhah et al while specificity reported by Li et al at 61% and Nikkhah et al at 86%. Reactance had lower sensitivity in both studies. Both studies did not report the asthma severity of the participants or clinical comorbidities and Li et al did not report the FEV₁ results, although they performed bronchodilator response tests on all participants. Figure 3A shows the pooled data of R5 of the two studies.

Maximal mid-expiratory flow

There was only one DTA study which used MMEF in asthma compared with controls (Yartsev).29 The asthma group was older than the control group. Both the asthma and control groups had a majority of female participants. Asthma severity and comorbidities of participants were not reported. The author stratified asthma patients into three groups based on the baseline FEV₁. Group 1 included participants with FEV₁ of >80% predicted value, group 2 with FEV₁ 60%–80% predicted and group 3 with FEV₁ 25%–60% predicted. In MMEF tests, the cut-off used was 90% predicted in group 1, 70% predicted in group 2 and 50% predicted in group 3. The DTA of MMEF in group 1 was a sensitivity of 66% and specificity of 91%. Identical results were found in groups 2 and 3 with a sensitivity of 99% and specificity of 100%. The accuracy of MMEF was assessed on all groups with a cut-off value of 70% showed a sensitivity of 88% and specificity 97%. Using FEV₁, cut-off was set at 120% predicted in group 1, 90% predicted in group 2, 70% predicted in group 3. The DTA of FEV₁ in group 1 was a sensitivity of 77% and specificity of 65%. In groups 2 and 3, identical sensitivity of 100% and specificity of 100% was reported. All groups were assessed for accuracy using FEV₁, with a 70% predicted cut-off, showing a sensitivity of 92% and specificity of 88%. DTA data were pooled into the forest plot shown in figure 3B.

Synthesis of results

Small airways function in asthma were found to be different when compared with healthy controls. The % predicted MMEF value appeared consistently lower than the % predicted FEV₁, as shown in figure 4. In oscillometry, R5 was also found to be consistently higher in asthmatic when compared with healthy controls as shown in figure 5. These results highlight the presence of small airways limitation in asthmatic patients with

![Figure 3](http://bmjopenrespres.bmj.com/)

Figure 3 (A) Diagnostic test accuracy (DTA) forest plot of R5. (B) DTA forest plot of maximal mid-expiratory flow. FN, false negative; FP, false positive; TN, true negative; TP, true positive.
heterogeneous characteristics including age, ethnicity and weight.

Risk of bias across studies
There were some concerns of bias in regard to reporting outcomes. Kamal and Mousa25 reported R\textsubscript{5} as the % predicted value while X\textsubscript{5} was reported without a unit of measurement. Iartsev29 did not report how the cut-offs were determined or how subjects were recruited.

DISCUSSION
To the authors’ knowledge, this is the first systematic review to assess the use of physiological tests of small airways function in the diagnosis of asthma. Previous work has suggested that SAD is associated with asthma and that the prevalence of SAD increases with the severity of asthma.32,33 This review suggests that most published studies of small airways function tests in asthma are heterogeneous, of varying methodological quality and have primarily identified SAD rather than using measures of small airways to diagnose asthma. No studies reported the severity of asthma in the participants and participants groups were often poorly matched or characterised in terms of other comorbidities and weight.

This review focuses on MMEF and oscillometry and does not explore all potential measures to assess small airways function. MMEF and oscillometry were chosen as these represented the most commonly cited small airways measures. The clinical utility of oscillometry techniques has been described in asthma and other lung conditions such as interstitial lung diseases and COPD.19 Oscillometry has been suggested as a useful tool in diagnosing asthma in children.34 However, there remains a lack of universal reference ranges, especially in adults. Height23 and sex35 appear to alter values. Oostveen \textit{et al}35...
Conducted a multicentre study on healthy subjects in an effort to produce reference ranges for oscillometry in adults, but only one ethnicity was studied. Another study was also conducted in Japan to establish reference ranges for Japanese adults. Understanding and interpreting oscillometry remains challenging. In this review, it was unclear if oscillometry studies provided the most robust measure of small airways function. The R5–R20 (often referred to as resistance of the small airways) was only reported by Mori et al. Airways reversibility, a hallmark of asthma, was only assessed using oscillometry by Nair et al and, here, the mean percentage change in the FEV1 in the asthmatic group was 6.34%, which is less than the standard reversibility change of 12%.

The MMEF is an effort-dependent test and guidelines for reproducibility of the manoeuvre is based on FVC and FEV1. In all the included articles that studies MMEF, the % predicted of MMEF was found to be lower in asthmatic groups compared with control groups. Moreover, the % predicted value of MMEF was lower than the % predicted FEV1 in the asthmatic group, suggesting that small airways limitation might be an early marker of airways obstruction. The potential utility of MMEF in early disease was described in one study of patients with alpha-1 antitrypsin deficiency, where an MMEF less than 80% predicted, with a normal FEV1/FVC ratio, was associated with increased respiratory symptoms and a faster decline in FEV1 compared with those with an MMEF of 80% or greater and normal spirometry, suggesting a role for MMEF in early disease monitoring.

There are significant limitations to the evidence base described in this review including study heterogeneity, poor patient characterisation and differences in reported values. Not all tests of small airways function have been assessed in asthma (eg, MBW). There are no universally accepted predicted values for oscillometry, especially in adults, making the interpretation of the results more difficult. Oscillation techniques produce many parameters in both inspiratory and expiratory phases and the differences in reported values limits comparisons between studies. MMEF was not corrected for FVC in any study, and this is a limitation as MMEF is a timed/flow measurement and FVC exhalation curve changes may affect the results. Nevertheless, most studies provide at least some signal of SAD in asthma suggesting these indices could be helpful in diagnosing and monitoring asthma. To take this field forward, further research is needed. This should include standardising the assessment of small airways tests (although different tests may have greater or lesser utility in different diseases) and forming normal reference ranges to aid interpretation. Studies in asthma need to redefine how asthma was diagnosed, and report clearly which small airways tests have been measured, by what device, what units are reported and what would be considered an abnormal result or clinically meaningful change in a specified value.

CONCLUSION

Physiological tests of small airways function are feasible in diagnosing asthma and have been shown to be altered in asthma when compared with healthy adults. However, a lack of robust reference ranges and the heterogeneity of approach complicate their use.

Further studies are needed to assess small airways function in asthma, especially in early disease. Larger studies are needed to assess the impact of demographic characteristics and comorbidities such as obesity or allergic rhinitis. This systematic review of current literature suggests these tests may have promise as part of the future diagnostic criteria of asthma, but more work is needed before they can be embedded into clinical care.

Correction notice The license type of the paper has changed from CC BY-NC to CC BY.

Contributors MA and ES conceived, planned and analysed the data, and made a major contribution in writing the manuscript. MA, NYA and RGE performed abstract screening, full-text screening and quality assessment. MA and RGE planned and performed searching strategy and data synthesis. RGE and JS contributed to data analysis and writing the manuscript. All authors have read and approved the manuscript.

Funding This systematic review was part of a funded PhD by King Saud University, Riyadh, Saudi Arabia under the aegis of the Government of Saudi Arabia.

Competing interests ES reports grants from MRC, grants from Wellcome Trust, grants from NIH, grants from British Lung Foundation, grants from HDR-UK, outside the submitted work. RGE reports grants from NIH, grants from Chest Foundation, grants from Alpha 1 Foundation, outside the submitted work. All other authors report no conflict of interest.

Patient consent for publication Not required.

Data availability statement All data relevant to the study are included in the manuscript or uploaded as supplementary information. All the included data has been obtained from the included peer-reviewed articles.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 United States (CC BY 4.0) licence, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made.

ORCID iDs

Mohammed A Almeshari http://orcid.org/0000-0001-8449-9491

Nowal Y Alohabi http://orcid.org/0000-0002-0069-5771

Ross G Edgar http://orcid.org/0000-0002-5971-3035

Elizabeth Sapey http://orcid.org/0000-0003-3454-5482

REFERENCES

1. Global Initiative for Asthma. Global strategy for asthma management and prevention, 2019. Available: <https://ginasthma.org/gina-reports/>

2. Wilson DH, Appleton SL, Adams RJ, et al. Undiagnosed asthma in older people: an underestimated problem. Med J Aust 2005;183:S20–2.

3. Coffman JM, Cabana MD, Halpin HA, et al. Effects of asthma education on children’s use of acute care services: a meta-analysis. Pediatrics 2008;121:575–86.

4. NICE. Asthma: diagnosis, monitoring and chronic asthma management, 2017. Available: <https://www.nice.org.uk/guidance/>
Almeshari MA, et al. BMJ Open Resp Res 2020;7:e000770. doi:10.1136/bmjresp-2020-000770

1. Janson C, Malinovskis A, Amaral AF, et al. Bronchodilator reversibility in asthma and COPD: findings from three large population studies. *Eur Respir J* 2019;54:1900561.

2. Linke SE, Fink C, Boike A, et al. Airway responses to bronchodilators in patients with asthma and COPD: findings from the ALANTIS study. *Respir Med* 2014;108:645–51.

3. Mousa H, Kamal E. Impulse oscillation system versus spirometry in assessment of obstructive airway diseases. *Egyptian Journal of Chest Diseases and Tuberculosis* 2018;67:106–12.

4. Nair A, Ward JH, Lipworth BJ. Comparison of the measurement of bronchodilator response in patients with asthma and healthy volunteers using spirometry and impulse oscillometry. *Ann Allergy Asthma Immunol* 2011;4:A51–2.

5. Li Y, Chen Y, Wang P. Application of impulse oscillometry and bronchial dilation test for analysis in patients with asthma and chronic obstructive pulmonary disease. *Int J Clin Exp Med* 2015;8:1271–5.

6. Nikkhah M, Arma B, Eshghian A, et al. Comparison of impulse oscillometry system and spirometry for diagnosis of obstructive lung disorders. *Tanaffos* 2011;10:19–25.

7. Iartsev SS. [Analysis of diagnostic efficiency of lung ventilation parameters in patients with bronchial asthma]. *Med Tekh* 2006;40:21–4.

8. Gunduz Pasoglu K, Alzafar S, Gezgen A, et al. The decrease of FEF25–75 is more specific for asthma than COPD. *Eur J Gen Med* 2008:5:16–20.

9. Son KM, Jiang SH, Kang HR, et al. Role of Methacholine PC20 in FEF25–75% for the Diagnosis of Bronchial Asthma. *Tuberc Respir Dis* 2009;67:311–7.

10. Usmani OS, Singh D, Spinola M, et al. The prevalence of small airways disease in adult asthma: a systematic literature review. *Respir Med* 2016;116:19–27.

11. Giaconia VM,Associa CT, Baldi S, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. *Lancet Respir Med* 2019;7:402–16.

12. Starczewska-Dymek L, Bozek A, Jakalski M. The usefulness of the forced oscillation technique in diagnosing bronchial asthma in children. *Can Respir J* 2018;2018:1–7.

13. Oostveen E, Boda K, van der Grinten CP, et al. Respiratory impedance in healthy subjects: baseline values and bronchodilator response. *Eur Respir J* 2013;42:1513–23.

14. Furue W, Endo J, Otani Y, et al. Reference values of MostGraph (forced oscillation technique) for healthy Japanese adults. *Eur Respir J* 2017;50:PA2505.

15. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *Eur Respir J* 2005;26:319–38.

16. Stockley JA, Ismail AM, Hughes SM, et al. Maximal mid-expiratory flow detects early lung disease in α1-antitrypsin deficiency. *Eur Respir J* 2017;49:1602055.

17. Mirdadrae M, Boskabady MH, Attaran D. Diagnosis of chronic obstructive pulmonary disease earlier than current global initiative for obstructive lung disease guidelines using a feasible spirometry parameter (maximal-mid expiratory flow/forced vital capacity). *Chron Respir Dis* 2013;10:191–6.
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE		**Checklist item**	
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	S.3
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	n/a
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	n/a
Section/topic	#	Checklist item	Reported on page #
-----------------------------	----	--	-------------------
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	7
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	9
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	14
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	14
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	N/A
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	15
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	17
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	1

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org
PICO Table

Population
Adults >18 years old with asthma or clinical suspicion of asthma

Intervention
Physiological tests small airways function

Comparator
FEV₁

Outcome
Diagnosis of asthma

PICO chart with details of study selection criteria.
Medline:

1. exp Asthma/
2. exp Bronchial Spasm/
3. exp Bronchial Hyperreactivity/ or exp Respiratory Hypersensitivity/
4. exp Airway Resistance/ or exp Bronchoconstriction/
5. airway reactivity.ab,ti.
6. exp Respiratory Function Tests/
7. small airway*.ab,ti.
8. distal airway*.ti,ab.
9. MMEF.mp.
10. fef25*.mp.
11. FOT.mp.
12. Forced Oscillatory.mp.
13. Impulse Oscillatory.mp. or exp Oscillometry/
14. Impulse Oscillatory.mp.
15. Impulse Oscillimetry.mp.
16. Impulse Oscillation.mp.
17. (IOS and airway*).mp.
18. exp Nitric Oxide/ and asthma.mp.
19. Fractional expired nitric oxide.ti,ab.
20. Fractional exhaled nitric oxide.ti,ab.
21. FeNO.ti,ab.
22. (FeNO and asthma).ti,ab.
23. multiple breath washout.mp.
24. MBW.ti,ab.
25. MBW.ti,ab. and airway*.mp.
26. exp Spirometry/
27. (Reversibility and asthma).ti,ab.
28. exp Respiratory Function Tests/
29. exp Peak Expiratory Flow Rate/
30. exp Asthma/
31. 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25
32. 26 or 27 or 28 or 29
33. adult*.mp.
34. 1 or 2 or 3 or 4 or 5
35. 30 and 31 and 32 and 33 and 34
36. Diagnos*.ti,ab.
37. 35 and 36

Results: 1856
EMBASE:

1. exp asthma/
2. exp bronchospasm/
3. exp bronchus hyperreactivity/
4. Respiratory Hypersensitivity.mp.
5. exp airway resistance/
6. exp bronchoconstriction/
7. airway reactivity.ab,ti.
8. 1 or 2 or 3 or 4 or 5 or 6 or 7
9. exp lung function test/
10. small airway*.ab,ti.
11. distal airway*.ti,ab.
12. MMEF.mp.
13. fef25*.mp.
14. FOT.mp.
15. Forced Oscillatory.mp.
16. Impulse Oscillatory.mp. or exp Oscillometry/
17. Impulse Oscillatory.mp.
18. Impulse Oscillimetry.mp.
19. Impulse Oscillation.mp.
20. (IOS and airway*).mp.
21. exp Nitric Oxide/ and asthma.mp.
22. Fractional expired nitric oxide.ti,ab.
23. Fractional exhaled nitric oxide.ti,ab.
24. (FeNO and asthma).ti,ab.
25. multiple breath washout.ti,ab.
26. MBW.ti,ab. and airway*.mp.
27. exp spirometry/
28. (Reversibility and asthma).ti,ab.
29. exp lung function test/
30. exp peak expiratory flow/
31. exp asthma/
32. adult*.mp.
33. diagnos*.ti,ab.
34. 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26
35. 27 or 28 or 29 or 30
36. 8 and 31 and 32 and 33 and 34 and 35

Results: 2553
Web Of Science:
TS=(Asthma OR bronchospasm OR bronchus hyperreactivity OR Respiratory Hypersensitivity OR airway resistance OR bronchoconstriction OR airway reactivity)
AND
TS=(lung function test OR small airway* OR distal airway* OR Pulmonary function OR PFT OR MMEF OR fef25* OR FOT OR Forced Oscillatory OR Impulse Oscillatory OR Oscillometry OR Impulse Oscillimetry OR Impulse Oscillation OR IOS OR Nitric Oxide OR Fractional expired nitric oxide OR Fractional exhaled nitric oxide OR FeNO OR multiple breath washout OR MBW)
AND
TS=(Spirometry OR Reversibility OR lung function test* OR peak expiratory flow OR PEF*)
AND
TS=(Adult*)
AND
TS=(Diagnos*)

Up to 5 years = 975
CENTRAL (Cochrane)

#1 Asthma OR bronchospasm OR bronchus hyperreactivity OR Respiratory Hypersensitivity OR airway resistance OR bronchoconstriction OR airway reactivity
#2 lung function test OR small airway* OR distal airway* OR Pulmonary function OR PFT OR MMEF OR fef25* OR FOT OR Forced Oscillatory OR Impulse Oscillatory OR Oscillometry OR Impulse Oscillimetry OR Impulse Oscillation OR IOS OR Nitric Oxide OR Fractional expired nitric oxide OR Fractional exhaled nitric oxide OR FeNO OR multiple breath washout OR MBW
#3 Spirometry OR Reversibility OR lung function test* OR peak expiratory flow OR PEF*
#4 adult*
#5 diagnos*
#6 #1 AND #2 AND #3 AND #4 AND #5

Results: 813
CINAHL:

S1 (MH "Asthma+)
S2 (MM "Bronchial Spasm")
S3 TI bronchospasm OR AB bronchospasm
S4 "bronchus hyperreactivity"
S5 "bronchus hyperreactivity"
S6 TI bronchus hyperreactivity OR AB bronchus hyperreactivity
S7 TI bronchus hyperreactivity OR AB bronchus hyperreactivity
S8 (MH "Respiratory Hypersensitivity+)
S9 (MM "Airway Resistance")
S10 TI airway resistance OR AB airway resistance
S11 (MM "Bronchoconstriction")
S12 "airway reactivity"
S13 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12
S14 (MH "Respiratory Function Tests+")
S15 TI small airway* OR AB small airway*
S16 TI distal airway* OR AB distal airway*
S17 TI MMEF OR AB MMEF
S18 TI fef25* OR AB fef25*
S19 TI FOT OR AB FOT
S20 TI MMEF OR AB MMEF AND airway*
S21 TI Forced Oscillatory OR AB Forced Oscillatory
S22 TI Impulse Oscillimetry OR AB Impulse Oscillimetry
S23 TI Impulse Oscillimetry OR AB Impulse Oscillimetry
S24 TI Impulse Oscillation OR AB Impulse Oscillation
S25 TI (IOS and airway*) OR AB (IOS and airway*)
S26 AB (Nitric Oxide AND asthma) OR TI ((Nitric Oxide AND asthma)
S27 AB (feno AND asthma) OR TI (feno AND asthma)
S28 TI multiple breath washout OR AB multiple breath washout
S29 "MBW"
S30 S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR
S26 OR S27 OR S28 OR S29
S31 (MM "Spirometry") OR (MM "Airway Resistance") OR (MH "Respiratory Airflow+") OR (MH
"Forced Expiratory Flow Rates+") OR (MM "Peak Expiratory Flow Rate")
S32 "diagnos*"
S33 S1 AND S13 AND S30 AND S31 AND S32
S34 (MH "Asthma")
S35 (MM "Bronchial Spasm")
S36 TI bronchospasm OR AB bronchospasm
S37 "bronchus hyperreactivity"
S38 "bronchus hyperreactivity"
S39 TI bronchus hyperreactivity OR AB bronchus hyperreactivity
S40 TI bronchus hyperreactivity OR AB bronchus hyperreactivity
S41 (MH "Respiratory Hypersensitivity")
S42 (MM "Airway Resistance")
S43 TI airway resistance OR AB airway resistance
S44 (MM "Bronchoconstriction")
S45 "airway reactivity"
S46 S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41 OR S42 OR S43 OR S44 OR S45
S47 (MH "Respiratory Function Tests+")
S48 TI small airway* OR AB small airway*
S49 TI distal airway* OR AB distal airway*
S50 TI MMEF OR AB MMEF
S51 TI fef25* OR AB fef25*
S52 TI FOT OR AB FOT
S53 TI MMEF OR AB MMEF AND airway*
S54 TI Forced Oscillatory OR AB Forced Oscillatory
S55 TI Impulse Oscillimetry OR AB Impulse Oscillimetry
S56 TI Impulse Oscillimetry OR AB Impulse Oscillimetry
S57 TI Impulse Oscillation OR AB Impulse Oscillation
S58 TI (IOS and airway*) OR AB (IOS and airway*)
S59 AB (Nitric Oxide AND asthma) OR TI ((Nitric Oxide AND asthma)
S60 AB (feno AND asthma) OR TI (feno AND asthma)
S61 TI multiple breath washout OR AB multiple breath washout
S62 "MBW"
S63 S47 OR S48 OR S49 OR S50 OR S51 OR S52 OR S53 OR S54 OR S55 OR S56 OR S57 OR S58 OR S59 OR S60 OR S61 OR S62

Results: 875

Total Before duplicates removal = 7072
Excluded Articles.

Reason of Exclusion	Citations Numbers
A. Wrong Outcome	1-264
B. Wrong Population	265-304
C. Wrong Study Design	305-368
D. Abstracts Only	369-446
E. Review articles	447-449
F. Duplicates	450-457

1. Aamodt T, Lien JT, Haaversen O, et al. The effect of slow-release and microcrystalline theophylline preparations in asthmatic adults. A randomised double-blind, crossover comparison of Nuelin Depot, Nuelin and placebo. Tidsskrift for den Norske laegeforening. 1983;103(17):1397‐9+402.

2. Akamatsu T, Shirai T, Shimoda Y, et al. Forced oscillation technique as a predictor of FEV1 improvement in asthma. Respiratory Physiology & Neurobiology. 2017;236:78-83.

3. Alberts WM, Ferris MC, Brooks SM, et al. The FEF25-75% and the clinical diagnosis of asthma. Ann Allergy. 1994;73(3):221-5.

4. Ali Z, Nilas L, Ulrik CS. Determinants of low risk of asthma exacerbation during pregnancy. Clin Exp Allergy. 2018;48(1):23-8.

5. Al-Mutairi SS, Sharma PN, Al-Alawi A, et al. Impulse oscillometry: an alternative modality to the conventional pulmonary function test to categorise obstructive pulmonary disorders. Clin Exp Med. 2007;7(2):56-64.

6. Al-Shamkhi N, Alving K, Dahlen SE, et al. Important non-disease-related determinants of exhaled nitric oxide levels in mild asthma - results from the Swedish GA(2) LEN study. Clin Exp Allergy. 2016;46(9):1185-93.

7. Alvarez-Puebla MJ, Olaguibel Rivera JM, Almudevar E, et al. Cutoff point for exhaled nitric oxide corresponding to 3% sputum eosinophils. J Investig Allergol Clin Immunol. 2015;25(2):107-11.

8. Anderson SD, Charlton B, Weiler JM, et al. Comparison of mannitol and methacholine to predict exercise-induced bronchoconstriction and a clinical diagnosis of asthma. Respir Res. 2009;10:4.

9. Badnjevic A, Cifrek M, Koruga D, et al. Neuro-fuzzy classification of asthma and chronic obstructive pulmonary disease. BMC Med Inform Decis Mak. 2015;15 Suppl 3:S1.

10. Bag R, Bandi V, Fromm RE, Jr., et al. The effect of heliox-driven bronchodilator aerosol therapy on pulmonary function tests in patients with asthma. J Asthma. 2002;39(7):659-65.

11. Bajera I, Maleszka P, From S. [Analysis of ventilation parameters before and after fiber optic bronchoscopy in patients with atopic bronchial asthma and chronic obstructive pulmonary diseases]. Pol Merkur Lekarski. 1997;3(16):171-3.

12. Baltieri L, Martins LC, Cazzo E, et al. Analysis of quality of life among asthmatic individuals with obesity and its relationship with pulmonary function: cross-sectional study. Sao Paulo Medical Journal. 2017;135(4):332-8.

13. Bao WP, Zhang X, Lv CJ, et al. The Value of Fractional Exhaled Nitric Oxide and Forced Mid-Expiratory Flow as Predictive Markers of Bronchial Hyperresponsiveness in Adults with Chronic Cough. J Allergy Clin Immunol-Pract. 2018;6(4):1313-20.
14. Baptist AP, Ross JA, Clark NM. Older adults with asthma: does age of asthma onset make a difference? J Asthma. 2013;50(8):836-41.
15. Beckett WS, Marenberg ME, Pace PE. Repeated methacholine challenge produces tolerance in normal but not in asthmatic subjects. Chest. 1992;102(3):775-9.
16. Bennett GH, Carpenter L, Hao W, et al. Risk factors and clinical outcomes associated with fixed airflow obstruction in older adults with asthma. Ann Allergy Asthma Immunol. 2018;120(2):164-8 e1.
17. Berdel D, Holle JP, Hartmann V, et al. [Significance of measurement of the oscillatory resistance to respiration in children. (author's transl)]. Klin Padiatr. 1981;193(2):73-6.
18. Beretta C, Riffliart C, Evrard G, et al. Assessment of eosinophilic airway inflammation as a contribution to the diagnosis of occupational asthma. Allergy. 2018;73(1):206-13.
19. Berkman N, Avital A, Breuer R, et al. Exhaled nitric oxide in the diagnosis of asthma: comparison with bronchial provocation tests. Thorax. 2005;60(5):383-8.
20. Bernstein JA, Davis B, Alvarez-Puebla MJ, et al. Is exhaled nitric oxide a useful adjunctive test for assessing asthma? J Asthma. 2009;46(9):955-60.
21. Berry M, Hargadon B, Morgan A, et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25(6):986-91.
22. Bisshopp A, Sathyamurthy R, Manney S, et al. Biomarkers of oxidative stress and antioxidants in severe asthma: A Prospective Case-Control Study. Ann Allergy Asthma Immunol. 2017;118(4):445-51.
23. Bjørregaard A, Laing IA, Backer V, et al. High fractional exhaled nitric oxide and sputum eosinophils are associated with an increased risk of future virus-induced exacerbations: A prospective cohort study. Clin Exp Allergy. 2017;47(8):1007-13.
24. Bobolea I, Barranco P, Del Pozo V, et al. Sputum periostin in patients with different severe asthma phenotypes. Allergy. 2015;70(5):540-6.
25. Bokov P, Martin C, Grabo S, et al. Bronchodilator Response Assessment of the Small Airways Obstructive Pattern. Open Respir Med J. 2017;11:47-53.
26. Borodin Iu P, Dorogova OA. [Use of the acetylcholine inhalation test in the complex diagnosis of chronic asthmatic bronchitis and bronchial asthma]. Voen Med Zh. 1984(11):55-6.
27. Brindicci C, Ito K, Barnes PJ, et al. Differential flow analysis of exhaled nitric oxide in patients with asthma of differing severity. Chest. 2007;131(5):1353-62.
28. Broekhuizen BD, Sachs AP, Hoes AW, et al. Undetected chronic obstructive pulmonary disease and asthma in people over 50 years with persistent cough. Br J Gen Pract. 2010;60(576):489-94.
29. Brown RH, Togias A. Measurement of intraindividual airway tone heterogeneity and its importance in asthma. Journal of applied physiology (Bethesda, Md : 1985). 2016;121(1):223-32.
30. Bulac S, Cimrin A, Ellidokuz H. The effect of beclometasone dipropionate/formoterol extra-fine fixed combination on the peripheral airway inflammation in controlled asthma. J Aerosol Med Pulm Drug Deliv. 2015;28(2):82-7.
31. Burgess G, Boyce M, Jones M, et al. Randomized study of the safety and pharmacodynamics of inhaled interleukin-13 monoclonal antibody fragment VR942. EBioMedicine. 2018;35:67-75.
32. Busse WW, Holgate ST, Wenzel SW, et al. Biomarker Profiles in Asthma With High vs Low Airway Reversibility and Poor Disease Control. Chest. 2015;148(6):1489-96.
33. Butzko RP, Sotolongo AM, Helmer DA, et al. Forced oscillation technique in veterans with preserved spirometry and chronic respiratory symptoms. Respir Physiolo Neurobiol. 2019;260:8-16.
34. Byrne AL, Marais BJ, Mitnick CD, et al. Asthma and atopy prevalence are not reduced among former tuberculosis patients compared with controls in Lima, Peru. BMC Pulm Med. 19(40).
35. Calciano L, Portas L, Corsico AG, et al. Biomarkers related to respiratory symptoms and lung function in adults with asthma. J Breath Res. 2018;12(2):026012.
36. Carpio C, Villasante C, Galera R, et al. Systemic inflammation and higher perception of dyspnea mimicking asthma in obese subjects. J Allergy Clin Immunol. 2016;137(3):718-26 e4.
37. Chambers L, Finch J, Edwards K, et al. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation. Clin Exp Allergy. 2018;48(7):798-805.
38. Chen CZ, Lin CC, Lee CH, et al. Small airways obstruction syndrome in clinical practice. Respirology. 2009;14(3):393-8.
39. Chen FJ, Huang XY, Liu YL, et al. Importance of fractional exhaled nitric oxide in the differentiation of asthma-COPD overlap syndrome, asthma, and COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2385-90.
40. Cioe K, Biondi BE, Easly R, et al. A systematic review of patients' and providers' perspectives of medications for treatment of opioid use disorder. J Subst Abuse Treat. 2020;119(4):108146.
41. Cipri, i G, Schiavetti I, et al. Symptom perception and asthma control. Postgraduate Medical Journal. 2015;127(7):738-43.
42. Connolly MJ, Kelly C, Walters EH, et al. An assessment of methacholine inhalation tests in elderly asthmatics. Age Ageing. 1988;17(2):123-8.
43. Coop C, Hagan LL, Dice JP. Exhaled breath condensate pH in the evaluation of asthma. Allergy Asthma Proc. 2008;29(1):51-4.
44. Cordeiro D, Rudolphus A, Snoey E, et al. Utility of nitric oxide for the diagnosis of asthma in an allergy clinic population. Allergy Asthma Proc. 2011;32(2):119-26.
45. Crespo A, Giner J, Torrejon M, et al. Clinical and inflammatory features of asthma with dissociation between fractional exhaled nitric oxide and eosinophils in induced sputum. J Asthma. 2016;53(5):459-64.
46. Dal Negro RW, Tognella S, Micheletto C. Pharmacokinetics of the effect of nebivolol 5mg on airway patency in patients with mild to moderate bronchial asthma and arterial hypertension: a randomised, placebo-controlled study. Clinical Drug Investigation. 2002;22(3):197-204.
47. Dales RE, Cakmak S. Is residential ambient air limonene associated with asthma? Findings from the Canadian Health Measures Survey. 244:966-70.
48. David M, Chhajed PN, Tamm M, et al. Diagnostic tests for asthma in firefighters. Chest. 2007;131(6):1760-7.
49. Decramer M, Janssens W, Derom E, et al. Contribution of four common pulmonary function tests to diagnosis of patients with respiratory symptoms: a prospective cohort study. Lancet Respir Med. 2013;1(9):705-13.
50. Demange V, Bohadana A, Massin N, et al. Exhaled nitric oxide and airway hyperresponsiveness in workers: a preliminary study in lifeguards. BMC Pulm Med. 2009;9:53.
51. Deng DD, Zhou AY, Shuang QC, et al. [The value of fractionated exhaled nitric oxide in the diagnosis of asthma-chronic obstructive pulmonary disease overlap syndrome]. Zhonghua Jie He He Hu Xi Za Zhi. 2017;40(2):98-101.
52. Descatha A, Fromageot C, Ameille J, et al. Is forced oscillation technique useful in the diagnosis of occupational asthma? J Occup Environ Med. 2005;47(8):847-53.
53. Dickinson JW, Whyte GP, McConnell AK, et al. Mid-expiratory flow versus FEV1 measurements in the diagnosis of exercise induced asthma in elite athletes. Thorax. 2006;61(2):111-4.

54. Dupont LJ, Demedts MG, Verleden GM. Prospective evaluation of the validity of exhaled nitric oxide for the diagnosis of asthma. Chest. 2003;123(3):751-6.

55. Dweik RA, Sorkness RL, Wenzel S, et al. Use of Exhaled Nitric Oxide Measurement to Identify a Reactive, at-Risk Phenotype among Patients with Asthma. American Journal of Respiratory and Critical Care Medicine. 2010;181(10):1033-41.

56. Dziedziczko A, Gniazdowski R. [Occurrence of early and late asthmatic reaction after provocation with antigen and the status of pulmonary ventilation in patients with hay fever after the pollination season]. Pol Tyg Lek. 1992;47(34-35):742-4.

57. Ebner L, He M, Virgincar RS, et al. Hyperpolarized (129)Xenon Magnetic Resonance Imaging to Quantify Regional Ventilation Differences in Mild to Moderate Asthma. A Prospective Comparison Between Semiautomated Ventilation Defect Percentage Calculation and Pulmonary Function Tests. Investigative Radiology. 2017;52(2):120-7.

58. Ekroos H, Rouhos A, Pallasaho P, et al. Equally elevated concentrations of exhaled nitric oxide in nonatopic and low-sensitized atopic asthmatics. Respir Med. 2009;103(1):152-8.

59. Elbouhy MS, Fattah EBA, Hashem AEM. Effect of inhaled corticosteroids on small airways in asthmatics using impulse oscillometry. Egyptian Journal of Chest Diseases and Tuberculosis. 2018;67(3):214-20.

60. ElHalawani SM, Ly NT, Mahon RT, et al. Exhaled nitric oxide as a predictor of exercise-induced bronchoconstriction. Chest. 2003;124(2):639-43.

61. El-Khatib MF, Jamaleddine G, Kanj N, et al. Effect of heliox- and air-driven nebulized bronchodilator therapy on lung function in patients with asthma. Lung. 2014;192(3):377-83.

62. Engel J, van Kampen V, Lotz A, et al. An increase of fractional exhaled nitric oxide after specific inhalation challenge is highly predictive of occupational asthma. International Archives of Occupational and Environmental Health. 2018;91(7):799-809.

63. Fairbairn DK. Delayed Birth of the Second Twin. Ind Med Gaz. 1932;67(7):389-90.

64. Farha S, Asosingh K, Laskowski D, et al. Effects of the menstrual cycle on lung function variables in women with asthma. Am J Respir Crit Care Med. 2009;180(4):304-10.

65. Farrow CE, Salome CM, Harris BE, et al. Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma. Journal of applied physiology (Bethesda, Md : 1985). 2017;123(5):1188-94.

66. Ferrazzoni S, Scarpa MC, Guarneri G, et al. Exhaled nitric oxide and breath condensate pH in asthmatic reactions induced by isocyanates. Chest. 2009;136(1):155-62.

67. Fingleton J, Huang K, Weatherall M, et al. Phenotypes of symptomatic airways disease in China and New Zealand. Eur Respir J. 2017;50(6).

68. Fortuna AM, Feixas T, Gonzalez M, et al. Diagnostic utility of inflammatory biomarkers in asthma: exhaled nitric oxide and induced sputum eosinophil count. Respir Med. 2007;101(11):2416-21.

69. Fukuhara A, Saito J, Sato S, et al. Validation study of asthma screening criteria based on subjective symptoms and fractional exhaled nitric oxide. Ann Allergy Asthma Immunol. 2011;107(6):480-6.

70. Fukuhara M, Tsuburai T, Nakamura Y, et al. The Fraction of Exhaled Nitric Oxide (Feno) and Forced Oscillation Technique (Fot) Can Predict Bronchial Hyperresponsiveness against Acetylcholine in Treated Asthmatics. Arerugi. 2017;66(1):42-9.

71. Galvao Lucas J, Palma Carlos AG, Palma Carlos ML. [Comparative study of the instantaneous maximum expiratory flow and of the maximum secondary expiratory volume in the functional diagnosis of asthmatic patients]. Acta Allergol. 1967;22(5):378-86.
72. Gao J, Chen ZC, Jie X, et al. Both fractional exhaled nitric oxide and sputum eosinophil were associated with uncontrolled asthma. Journal of Asthma and Allergy. 2018;11:73-9.
73. Gao J, Wu F. Association between fractional exhaled nitric oxide, sputum induction and peripheral blood eosinophil in uncontrolled asthma. Allergy Asthma Clin Immunol. 2018;14.
74. Gelb AF, Taylor CF, Nussbaum E, et al. Alveolar and airway sites of nitric oxide inflammation in treated asthma. Am J Respir Crit Care Med. 2004;170(7):737-41.
75. Girdhar A, Kumar V, Singh A, et al. Systemic inflammation and its response to treatment in patients with asthma. Respir Care. 2011;56(6):800-5.
76. Gonem S, Hardy S, Buhl N, et al. Characterization of acinar airspace involvement in asthmatic patients by using inert gas washout and hyperpolarized (3)helium magnetic resonance. J Allergy Clin Immunol. 2016;137(2):417-25.
77. Greenspon LW, Gracely E. A discriminant analysis applied to methacholine bronchoprovocation testing improves classification of patients as normal, asthma, or COPD. Chest. 1992;102(5):1419-25.
78. Gronke L, Kanniss F, Holz O, et al. The relationship between airway hyperresponsiveness, markers of inflammation and lung function depends on the duration of the asthmatic disease. Clin Exp Allergy. 2002;32(1):57-63.
79. Guan WJ, Zheng JP, Gao Y, et al. Impulse oscillometry for leukotriene D4 inhalation challenge in asthma. Respir Care. 2013;58(12):2120-6.
80. Gulmez SE, Celik G, Misirligil Z, et al. Dipyrone improves small airway function in asthmatic patients with moderate obstruction. J Investig Allergol Clin Immunol. 2007;17(4):242-8.
81. Guumeniuk NI, Berezhnaia IV, Tsygankova LM. [The characteristics of postloading bronchospasm in bronchial asthma patients]. Vrach Delo. 1990(12):39-42.
82. Hara J, Fujimura M, Myou S, et al. Sputum eosinophilia, airway hyperresponsiveness and airway narrowing in young adults with former asthma. Allergology international : official journal of the Japanese Society of Allergology. 2008;57(3):211-7.
83. Hardaker KM, Downie SR, Kermode JA, et al. Predictors of Airway Hyperresponsiveness Differ Between Old and Young Patients With Asthma. Chest. 2011;139(6):1395-401.
84. Harnan S, Essat M, Gomersall T, et al. Exhaled Nitric Oxide for the Diagnosis of Asthma in Adults and Children: A Systematic Review. Value in Health. 2015;18(7):A345-A.
85. He L, Wei M, Luo J, et al. Re-evaluation of the diagnostic value of fractional exhaled nitric oxide & its impact in patients with asthma. Indian J Med Res. 2018;148(4):441-8.
86. Heffler E, Guida G, Marsico P, et al. Exhaled nitric oxide as a diagnostic test for asthma in rhinitic patients with asthmatic symptoms. Respir Med. 2006;100(11):1981-7.
87. Hewitt RS, Modrich CM, Medlicott T, et al. Supporting the diagnosis of non-specific respiratory symptoms in primary care: the role of exhaled nitric oxide measurement and spirometry. Prim Care Respir J. 2008;17(2):97-103.
88. Hewitt RS, Smith AD, Cowan JO, et al. Serial exhaled nitric oxide measurements in the assessment of laboratory animal allergy. J Asthma. 2008;45(2):101-7.
89. Hojo M, Shirai T, Hirashima J, et al. Comparison of the clinical effects of combined salmeterol/fluticasone delivered by dry powder or pressurized metered dose inhaler. Pulm Pharmacol Ther. 2016;37:43-8.
90. Hoshino M, Ohtawa J, Akitsu K. Effects of the addition of tiotropium on airway dimensions in symptomatic asthma. Allergy Asthma Proc. 2016;37(6):147-53.
91. Inoue H, Ito I, Niimi A, et al. Association of interleukin 1 receptor-like 1 gene polymorphisms with eosinophilic phenotype in Japanese adults with asthma. Respir Investig. 2017;55(6):338-47.
92. Inoue H, Niimi A, Matsumoto H, et al. A 12-week, randomized, parallel-group, proof-of-concept study of tulobuterol patch and salmeterol inhaler as add-on therapy in adult-onset mild-to-moderate asthma. Clinical and Experimental Pharmacology and Physiology. 2017;44(1):21-9.
93. Jaakkola JJK, Hernberg S, Lajunen TK, et al. Smoking and lung function among adults with newly onset asthma. BMJ Open Resp. 2019;6(377).
94. Jabbal S, Manoharan A, Lipworth J, et al. Is Gly16Arg beta(2) Receptor Polymorphism Related to Impulse Oscillometry in a Real-Life Asthma Clinic Setting? Lung. 2016;194(2):267-71.
95. Jacinto T, Malinovschi A, Janson C, et al. Evolution of exhaled nitric oxide levels throughout development and aging of healthy humans. J Breath Res. 2015;9(3):036005.
96. Jain VV, Abejie B, Bashir MH, et al. Lung volume abnormalities and its correlation to spirometric and demographic variables in adult asthma. J Asthma. 2013;50(6):600-5.
97. Jalota L, Allison DR, Prajapati V, et al. Ability of Exhaled Nitric Oxide to Discriminate for Airflow Obstruction Among Frequent Exacerbators of Clinically Diagnosed Asthma. Lung. 2018;196(4):455-62.
98. James AL, Knuiman MW, Divitini ML, et al. Risk factors for respiratory symptoms in adults: the Busselton Health Study. Respirology. 2013;18(8):1256-60.
99. Jo EJ, Song WJ, Kim TW, et al. Reference ranges and determinant factors for exhaled nitric oxide in a healthy Korean adult population. Allergy. 2013;68:76-.
100. Johansson EL, Ternesten-Hasseus E, Gustafsson P, et al. Small and large airway reactions to osmotic stimuli in asthma and chronic idiopathic cough. Pulm Pharmacol Ther. 2018;49:112-8.
101. Jones AD, Homan AC, Favell DJ, et al. Investigation of the levels of N(tau)-Methylhistidine in a range of beef cuts and offals. Meat Sci. 1985;15(3):137-47.
102. Kamada T, Kaneko M, Tomioka H. The relationship between respiratory system impedance and lung function in asthmatics: A prospective observational study. Respiratory Physiology & Neurobiology. 2017;239:41-5.
103. Kamada T, Kaneko M, Tomioka H. Comparison of respiratory system impedance in asthma and COPD: A prospective observational study. Respiriology. 2018;23(5):478-84.
104. Kampe M, Vosough M, Malinovschi A, et al. Upper airway and skin symptoms in allergic and non-allergic asthma: Results from the Swedish GA(2)LEN study. J Asthma. 2018;55(3):275-83.
105. Kasteleyn MJ, Bonten TN, de Mutsert R, et al. Pulmonary function, exhaled nitric oxide and symptoms in asthma patients with obesity: a cross-sectional study. Respir Res. 2017;18(1):205.
106. Katsoulis K, Ganavias L, Michailopoulos P, et al. Exhaled nitric oxide as screening tool in subjects with suspected asthma without reversibility. Int Arch Allergy Immunol. 2013;162(1):58-64.
107. Kauppi P, Jarvela M, Tuomi T, et al. Systemic inflammatory responses following welding inhalation challenge test. Toxicol Rep. 2015;2:357-64.
108. Kawamatawong T, Charoenwiassakul S, Rerkpattanapipat T. The asthma and chronic obstructive pulmonary disease overlap syndrome in tertiary care setting Thailand. Asia Pac Allergy. 2017;7(4):227-33.
109. Kermode JA, Brown NJ, Hardaker KM, et al. The effect of airway remodelling on airway hyper-responsiveness in asthma. Respir Med. 2011;105(12):1798-804.
110. Khalid I, Morris ZQ, DiGiovine B. Specific conductance criteria for a positive methacholine challenge test: are the American Thoracic Society guidelines rather generous? Respir Care. 2009;54(9):1168-74.
111. Khalid I, Obeid I, DiGiovine B, et al. Predictive Value of sGaw, FEF25-75, and FEV1 for Development of Asthma after a Negative Methacholine Challenge Test. J Asthma. 2009;46(3):284-90.
112. Kivity S, Souhrada JF. A new diagnostic test to assess airway reactivity in asthmatics. Bull Eur Physiopathol Respir. 1981;17(2):243-54.
113. Kjellberg S, Houltz BK, Zetterstrom O, et al. Clinical characteristics of adult asthma associated with small airway dysfunction. Respir Med. 2016;117:92-102.
114. Klein G, Ruhle KH, Matthys H. The inhalatory propranolol provocation test - a new procedure for differentiating between healthy subjects and asthmatics. Praxis und klinik der pneumologie. 1988;42:287-92.
115. Koruga D, Baletic N, Veres KT, et al. Impulse oscillometry in evaluation bronchial hyperresponsiveness in patients with persistent allergic rhinitis. Vojnosanitetski Pregled. 2018;75(1):39-45.
116. Kostikas K, Papaioannou AI, Tanou K, et al. Portable exhaled nitric oxide as a screening tool for asthma in young adults during pollen season. Chest. 2008;133(4):906-13.
117. Kowal K, Bodzenta-Lukaszyk A, Zukowski S. Exhaled nitric oxide in evaluation of young adults with chronic cough. J Asthma. 2009;46(7):692-8.
118. Kraemer R, Smith HJ, Sigrist T, et al. Diagnostic accuracy of methacholine challenge tests assessing airway hyperreactivity in asthmatic patients - a multifunctional approach. Respir Res. 2016;17(1):154.
119. Kumar R, Gupta N. Exhaled nitric oxide atopy, and spirometry in asthma and rhinitis patients in India. Adv Respir Med. 2017;85(4):186-92.
120. Laurent F, Latrabe V, Raherison C, et al. Functional significance of air trapping detected in moderate asthma. Eur Radiol. 2000;10(9):1404-10.
121. Lee DK, Fardon TC, Bates CE, et al. Airway and systemic effects of hydrofluoroalkane formulations of high-dose ciclesonide and fluticasone in moderate persistent asthma. Chest. 2005;127(3):851-60.
122. Lee JH, Lee YW, Shin YS, et al. Exercise-induced airway obstruction in young asthmatics measured by impulse oscillometry. J Investig Allergol Clin Immunol. 2010;20(7):575-81.
123. Lehtimaki L, Kankaanranta H, Saarelainen S, et al. Increased alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur Respir J. 2002;20(4):841-5.
124. Lehtimaki L, Kankaanranta H, Saarelainen S, et al. Peripheral inflammation in patients with asthmatic symptoms but normal lung function. J Asthma. 2005;42(7):605-9.
125. Levai IK, Hull JH, Loosemore M, et al. Environmental influence on the prevalence and pattern of airway dysfunction in elite athletes. Respirology. 2016;21(8):1391-6.
126. Linna A, Oksa P, Palmroos P, et al. Respiratory health of cobalt production workers. Am J Ind Med. 2003;44(2):124-32.
127. Liu JM, Hu HC, Shi MH, et al. [The significance of volumetric capnography in assessment of asthmatic acute exacerbation staging]. Zhonghua Jie He He Hu Xi Za Zhi. 2008;31(3):186-90.
128. Liu L, Li G, Sun Y, et al. Airway wall thickness of allergic asthma caused by weed pollen or house dust mite assessed by computed tomography. Respir Med. 2015;109(3):339-46.
129. Liu L, Liu W, Liu C, et al. Study on small airway function in asthmatics with fractional exhaled nitric oxide and impulse oscillometry. Clin Respir J. 2018;12(2):483-90.
130. Liu YH, Liu T, Wu JX, et al. The Correlation between FSTL1 Expression and Airway Remodeling in Asthmatics. Mediators of Inflammation. 2017;2017.
131. Lloris Bayo A, Perpina Tordera M, Martinez Perez E, et al. [Contribution of exhaled nitric oxide measurements to abbreviated bronchial challenge test protocols]. Arch Bronconeumol. 2008;44(8):402-7.

132. Lluncor M, Barranco P, Amaya ED, et al. Relationship between upper airway diseases, exhaled nitric oxide, and bronchial hyperresponsiveness to methacholine. J Asthma. 2019;56(1):53-60.

133. Lund TK, Pedersen L, Anderson SD, et al. Are asthma-like symptoms in elite athletes associated with classical features of asthma? Br J Sports Med. 2009;43(14):1131-5.

134. Malerba M, Radaeli A, Olivini A, et al. Association of PEF25-75% Impairment with Bronchial Hyperresponsiveness and Airway Inflammation in Subjects with Asthma-Like Symptoms. Respiration. 2016;91(3):206-14.

135. Malinovschi A, Backer V, Harving H, et al. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms. Respir Med. 2012;106(6):794-801.

136. Maneira Godinho Netto AC, dos Reis TG, Matheus CF, et al. Fraction of exhaled nitric oxide measurements in the diagnoses of asthma in elderly patients. Clin Interv Aging. 2016;11:623-9.

137. Maniscalco M, Calabrese C, D'Amato M, et al. Association between exhaled nitric oxide and nasal polyposis in severe asthma. Respir Med. 2019;152:20-4.

138. Manoharan A, Anderson WJ, Lipworth J, et al. Assessment of spirometry and impulse oscillometry in relation to asthma control. Lung. 2015;193(1):47-51.

139. Manoharan A, von Wilamowitz-Moellendorff A, Morrison A, et al. Effects of formoterol or salmeterol on impulse oscillometry in patients with persistent asthma. J Allergy Clin Immunol. 2016;137(3):727-33 e1.

140. Mariotta S, Sposato B, Ricci A, et al. Reversibility test in the early stages of bronchial asthma. J Asthma. 2005;42(6):487-91.

141. Martin MJ, Wilson E, Gerrard-Tarpey W, et al. The utility of exhaled nitric oxide in patients with suspected asthma. Thorax. 2016;71(6):562-4.

142. Mason P, Scarpa MC, Guarneri G, et al. Exhaled nitric oxide dynamics in asthmatic reactions induced by diisocyanates. Clin Exp Allergy. 2016;46(12):1531-9.

143. Mathov E, Jares DM. Successive effects of a vagolitic and a betadrenergic in the differential diagnosis of nonimmunologic and allergic asthma. Allergol Immunopathol (Madr). 1984;12(4):293-302.

144. Matsunaga K, Hirano T, Akamatsu K, et al. Exhaled nitric oxide cutoff values for asthma diagnosis according to rinitis and smoking status in Japanese subjects. Allergology international : official journal of the Japanese Society of Allergology. 2011;60(3):331-7.

145. Matsunaga K, Hirano T, Oka A, et al. Persistently high exhaled nitric oxide and loss of lung function in controlled asthma. Allergology international : official journal of the Japanese Society of Allergology. 2016;65(3):266-71.

146. Miedinger D, Chhajed PN, Stolz D, et al. Reliability and validity of a German asthma quality of life questionnaire. Swiss Med Wkly. 2006;136(5-6):89-95.

147. Miedinger D, Mosimann N, Meier R, et al. Asthma tests in the assessment of military conscripts. Clin Exp Allergy. 2010;40(2):224-31.

148. Mikos M, Grzanka P, Sladek K, et al. High-resolution computed tomography evaluation of peripheral airways in asthma patients: comparison of focal and diffuse air trapping. Respiration. 2009;77(4):381-8.

149. Miller ME, Levin L, Bernstein JA. Characterization of a population of monozygotic twins with asthma. J Asthma. 2005;42(5):325-30.

150. Millward D, Paul S, Brown M, et al. The diagnosis of asthma and exercise-induced bronchospasm in division I athletes. Clin J Sport Med. 2009;19(6):482-6.
151. Mirsadraee M, Forouzesh B, Rosh, et al. Accuracy of mid expiratory flow and dysanapsis parameters for evaluation of methacholine provocation test. Tanaffos. 2009;8(2):24-30.

152. Montuschi P, Santonico M, Mondino C, et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest. 2010;137(4):790-6.

153. Morris MJ, Madgwick RG, Collyer I, et al. Analysis of expiratory tidal flow patterns as a diagnostic tool in airflow obstruction. Eur Respir J. 1998;12(5):1113-7.

154. Munnik P, van der Lee I, Fijn J, et al. Comparison of eNO and histamine hyperresponsiveness in diagnosing asthma in new referrals. Respir Med. 2010;104(6):801-7.

155. Musk AW, Knuiman M, Hunter M, et al. Patterns of airway disease and the clinical diagnosis of asthma in the Busselton population. Eur Respir J. 2011;38(5):1053-9.

156. Naji N, Keung E, Kane J, et al. Comparison of changes in lung function measured by plethysmography and IOS after bronchoprovocation. Respir Med. 2013;107(4):503-10.

157. Nanchev L. A forced expiration end-segment flow rate to improve diagnosis of reversible bronchial obstruction: a spiographic examination. Respiration. 1978;36(2):73-7.

158. Nayak UB, Morakhia NV, Acharya VK, et al. A study of fraction of exhaled nitric oxide levels as a diagnostic marker in patients with bronchial asthma. Indian Academy of Clinical Medicine. 2013;14(2):123-7.

159. Neelamegan R, Saka V, Tamilarasu K, et al. Clinical Utility of Fractional exhaled Nitric Oxide (FeNO) as a Biomarker to Predict Severity of Disease and Response to Inhaled Corticosteroid (ICS) in Asthma Patients. Journal of Clinical and Diagnostic Research. 2016;10(12):Fc1-Fc6.

160. Ngajilo D, Singh T, Ratshikhopha E, et al. Risk factors associated with allergic sensitization and asthma phenotypes among poultry farm workers. Am J Ind Med. 2018;61(6):515-23.

161. Nickels AS, Lim KG. Evaluation of exhaled nitric oxide's ability to predict methacholine challenge in adults with nonobstructive spirometry. Ann Allergy Asthma Immunol. 2016;117(4):365-9 e1.

162. Nilsen K, Gove K, Thien F, et al. Comparison of two methods of determining lung de-recruitment, using the forced oscillation technique. European Journal of Applied Physiology. 2018;118(10):2213-24.

163. Novkovic D, Skuletic V, Vulin A, et al. Exercise-induced bronchoconstriction and nonspecific airway hyperreactivity in patients suffering from bronchial asthma. Vojnosanit Pregl. 2014;71(2):191-4.

164. Ntontsi P, Loukides S, Bakakos P, et al. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: Comparison with different sputum phenotypes. Allergy. 2017;72(11):1761-7.

165. Ostapkovich VE, Pankova VB. [Diagnosis of pre-asthmatic conditions in workers in chemical plants]. Vestn Otorinolaringol. 1980(6):64-7.

166. Osthoff M, Michel F, Strupler M, et al. Bronchial hyperresponsiveness testing in athletes of the Swiss Paralympic team. BMC Sports Sci Med Rehabil. 2013;5(1):7.

167. Paggiaro PL, Chan Yeung M. Pattern of specific airway response in asthma due to western red cedar (Thuja plicata): relationship with length of exposure and lung function measurements. Clin Allergy. 1987;17(4):333-9.

168. Papakosta D, Latsios D, Manika K, et al. Asthma control test is correlated to FEV1 and nitric oxide in Greek asthmatic patients: influence of treatment. J Asthma. 2011;48(9):901-6.

169. Parameswaran K, Belda J, Sears MR. Use of peak flow variability and methacholine responsiveness in predicting changes from pre-test diagnosis of asthma. Eur Respir J. 1999;14(6):1358-62.
170. Park JW, Lee YW, Jung YH, et al. Impulse oscillometry for estimation of airway obstruction and bronchodilation in adults with mild obstructive asthma. Ann Allergy Asthma Immunol. 2007;98(6):546-52.

171. Pedrosa M, Cancelliere N, Barranco P, et al. Usefulness of exhaled nitric oxide for diagnosing asthma. J Asthma. 2010;47(7):817-21.

172. Pelicaric D, Petanjek BB, Jurisic MK. Relationship between the exhaled nitric oxide and airway hyperresponsiveness in patients with asthma. [German]. Atemwegs- und Lungenkrankheiten. 2008;34(7):261-5.

173. Pereira CA, Mendonca EM, Sato T, et al. [Bronchial provocation test with carbachol in the diagnosis of asthma. Report of cases and comments]. Rev Paul Med. 1984;102(4):140-4.

174. Petanjek BB, Grle SP, Vrankovic D, et al. Variability of lung function parameters in patients with persistent allergic asthma. [German]. Atemwegs- und Lungenkrankheiten. 2010;36(8):310-6.

175. Petsky HL, Cates CJ, Kew KM, et al. Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax. 2018;73(12):1110-9.

176. Petsky HL, Kew KM, Turner C, et al. Exhaled nitric oxide levels to guide treatment for adults with asthma. Cochrane Database Syst Rev. 2016;9(9):CD011440.

177. Ponte EV, Souza-Machado A, Souza-Machado C, et al. Atopy is not associated with poor control of asthma. J Asthma. 2012;49(10):1021-6.

178. Porpodis K, Domvri K, Kontakiotis T, et al. Comparison of diagnostic validity of mannitol and methacholine challenges and relationship to clinical status and airway inflammation in steroid-naive asthmatic patients. J Asthma. 2017;54(5):520-9.

179. Porsbjerg C, Rasmussen L, Thomsen SF, et al. Response to mannitol in asymptomatic subjects with airway hyper-responsiveness to methacholine. Clin Exp Allergy. 2007;37(1):22-8.

180. Porsbjerg C, Sverrild A, Backer V. Combining the Mannitol Test and FeNO in the Assessment of Poorly Controlled Asthma. The journal of allergy and clinical immunology In practice. 2015;3(4):553-9.

181. Postma DS, Brightling C, Baldi S, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med. 2019;7(5):402-16.

182. Price OJ, Ansley L, Hull JH. Diagnosing Exercise-Induced Bronchoconstriction With Eucapnic Voluntary Hyperpnea: Is One Test Enough? The journal of allergy and clinical immunology In practice. 2015;3(2):243-9.

183. Prieto L, Bruno L, Gutierrez V, et al. Airway responsiveness to adenosine 5' monophosphate and exhaled nitric oxide measurements - Predictive value as markers for reducing the dose of inhaled corticosteroids in asthmatic subjects. Chest. 2003;124(4):1325-33.

184. Ramirez D, Patel P, Casillas A, et al. Assessment of high-sensitivity C-reactive protein as a marker of airway inflammation in asthma. Ann Allergy Asthma Immunol. 2010;104(6):485-9.

185. Rice SG, Bierman CW, Shapiro GG, et al. Identification of exercise-induced asthma among intercollegiate athletes. Ann Allergy. 1985;55(6):790-3.

186. Riley CM, Wenzel SE, Castro M, et al. Clinical Implications of Having Reduced Mid Forced Expiratory Flow Rates (FEF25-75), Independently of FEV1, in Adult Patients with Asthma. Plos One. 2015;10(12).

187. Rodriguez Paredes A, Trujillo Trujillo MJ, olfo Cano M, et al. Spirometric evolution of asthmatic patients in an allergy clinic. Alergologia e inmunologia clinica. 2001;16(1):21-5.
188. Rolla G, Guida G, Heffler E, et al. Diagnostic classification of persistent rhinitis and its relationship to exhaled nitric oxide and asthma: a clinical study of a consecutive series of patients. Chest. 2007;131(5):1345-52.

189. Rosenkranz SK, Swain KE, Rosenkranz RR, et al. Modifiable lifestyle factors impact airway health in non-asthmatic prepubescent boys but not girls. Pediatr Pulmonol. 2011;46(5):464-72.

190. Rossall M, Cadden P, Kolsum U, et al. A comparison of the clinical and induced sputum characteristics of early- and late-onset asthma. Lung. 2012;190(4):459-62.

191. Rouhos A, Ekoos H, Karjalainen J, et al. Exhaled nitric oxide and exercise-induced bronchoconstriction in young male conscripts: association only in atopics. Allergy. 2005;60(12):1493-8.

192. Saadeh C, Cross B, Saadeh C, et al. Retrospective observations on the ability to diagnose and manage patients with asthma through the use of impulse oscillometry: comparison with spirometry and overview of the literature. Pulm Med. 2014;2014:376890.

193. Sanguinetti CM, Gasparini S, Bonifazi F, et al. Exercise-induced asthma diagnosis and prevention with a metered dose aerosol formulation of sodium cromoglycate. Respiration. 1982;43(2):132-41.

194. Sano H, Tomita K, Sano A, et al. Accuracy of objective tests for diagnosing adult asthma in symptomatic patients: A systematic literature review and hierarchical Bayesian latent-class meta-analysis. Allergology international : official journal of the Japanese Society of Allergology. 2019;68(2):191-8.

195. Santos A, Faria E, Geraldes L, et al. Parameters for monitoring severe asthma - A prospective study. [Portuguese, English]. Revista Portuguesa de Imunoalergologia. 2009;17(2):135-53.

196. Sastre J, Costa C, del Garcia Potro M, et al. Changes in exhaled nitric oxide after inhalation challenge with occupational agents. J Investig Allergol Clin Immunol. 2013;23(6):421-7.

197. Sato S, Saito J, Fukuhara A, et al. The clinical role of fractional exhaled nitric oxide in asthma control. Ann Allergy Asthma Immunol. 2017;119(6):541-7.

198. Sato S, Saito J, Sato Y, et al. Clinical usefulness of fractional exhaled nitric oxide for diagnosing prolonged cough. Respir Med. 2008;102(10):1452-9.

199. Schleich FN, As, et al. Is FE(NO50) useful diagnostic tool in suspected asthma? Int J Clin Pract. 2012;66(2):158-65.

200. Schleich FN, Zanella D, Stefanuto PH, et al. Exhaled Volatile Organic Compounds are Able to Discriminate between Neutrophilic and Eosinophilic Asthma. Am J Respir Crit Care Med. 2019;11.

201. Schmekel B, Smith HJ. The diagnostic capacity of forced oscillation and forced expiration techniques in identifying asthma by isocapnic hyperpnoea of cold air. Eur Respir J. 1997;10(10):2243-9.

202. Schneider A, Faderl B, Schwarzbach J, et al. Prognostic value of bronchial provocation and FENO measurement for asthma diagnosis--results of a delayed type of diagnostic study. Respir Med. 2014;108(1):34-40.

203. Schneider A, Linde K, Reitsma JB, et al. A novel statistical model for analyzing data of a systematic review generates optimal cutoff values for fractional exhaled nitric oxide for asthma diagnosis. J Clin Epidemiol. 2017;92:69-78.

204. Schneider A, Schwarzbach J, Faderl B, et al. FENO measurement and sputum analysis for diagnosing asthma in clinical practice. Respir Med. 2013;107(2):209-16.

205. Schneider A, Tilemann L, Schermer T, et al. Diagnosing asthma in general practice with portable exhaled nitric oxide measurement--results of a prospective diagnostic study: FENO
< or = 16 ppb better than FENO < or =12 ppb to rule out mild and moderate to severe asthma
[added]. Respir Res. 2009;10(15):15.

206. Schneider A, Wagenpfeil G, Jorres RA, et al. Influence of the practice setting on
diagnostic prediction rules using FENO measurement in combination with clinical signs and
symptoms of asthma. BMJ Open. 2015;5(11):e009676.

207. Scott S, Currie J, Albert P, et al. Risk of misdiagnosis, health-related quality of life, and
BMI in patients who are overweight with doctor-diagnosed asthma. Chest. 2012;141(3):616-
24.

208. Sergeeva GR, Emelyanov AV, Korovina OV, et al. Severe asthma: Characteristics of
patients in clinical practice. [Russian]. Terapevticheskii. 2015;87(12):26-31.

209. Seys SF, Feyen L, Keirsblick S, et al. An outbreak of swimming-pool related respiratory
symptoms: An elusive source of trichloramine in a municipal indoor swimming pool. Int J
Hyg Environ Health. 2015;218(4):386-91.

210. Sharshar RS, Mohamed AS. The utility of impulse oscillometry in asthma: A
comparison of spirometry versus impulse oscillometry system. Egyptian Journal of Chest
Diseases and Tuberculosis. 2017;66(2):207-9.

211. Shi F, Qiu C, Yu J, et al. Comparison of Fractional Exhaled Nitric Oxide in Elderly
Patients with Asthma-chronic Obstructive Pulmonary Disease Overlap and Other Airway
Inflammatory Diseases. Iran J Allergy Asthma Immunol. 2018;17(3):232-9.

212. Shimoda T, Obase Y, Kishikawa R, et al. The fractional exhaled nitric oxide and serum high
sensitivity C-reactive protein levels in cough variant asthma and typical bronchial asthma.
Allergology international : official journal of the Japanese Society of Allergology. 2013;62(2):251-7.

213. Short PM, Anderson WJ, Manoharan A, et al. Usefulness of impulse oscillometry for the
assessment of airway hyperresponsiveness in mild-to-moderate adult asthma. Ann Allergy
Asthma Immunol. 2015;115(1):17-20.

214. Sin BA, Yildiz OA, Dursun AB, et al. Airway hyperresponsiveness: a comparative study
of methacholine and exercise challenges in seasonal allergic rhinitis with or without asthma. J
Asthma. 2009;46(5):486-91.

215. Siroux V, Boudier A, Dolgopoloff M, et al. Forced midexpiratory flow between 25%
and 75% of forced vital capacity is associated with long-term persistence of asthma and poor
asthma outcomes. J Allergy Clin Immunol. 2016;137(6):1709-+

216. Smith AD, Cowan JO, Filsell S, et al. Diagnosing asthma - Comparisons between
exhaled nitric oxide measurements and conventional tests. American Journal of Respiratory
and Critical Care Medicine. 2004;169(4):473-8.

217. Sood N, Turcotte SE, Wasilewski NV, et al. Small-airway obstruction, dynamic
hyperinflation, and gas trapping despite normal airway sensitivity to methacholine in adults
with chronic cough. Journal of applied physiology (Bethesda, Md : 1985). 2019;126(2):294-
304.

218. Sposato B, Mariotta S, Ricci A. When should a reversibility test be performed on
patients with early stages of asthma and normal spirometry? J Asthma. 2008;45(6):479-83.

219. Stenberg H, Diamant Z, Ankerst J, et al. Small airway involvement in the late allergic
response in asthma. Clin Exp Allergy. 2017;47(12):1555-65.

220. Stone B, Davis JR, Trudo F, et al. Characterizing patients with asthma who received
Global Initiative for Asthma steps 4-5 therapy and managed in a specialty care setting.
Allergy Asthma Proc. 2018;39(1):27-35.

221. Suzuki Y, Wakahara K, Nishio T, et al. Airway basophils are increased and activated in
eosinophilic asthma. Allergy. 2017;72(10):1532-9.

222. Svensningsen S, Nair P, Guo F, et al. Is ventilation heterogeneity related to asthma
control? Eur Respir J. 2016;48(2):370-9.
223. Sverrild A, Porsbjerg C, Thomsen SF, et al. Diagnostic properties of inhaled mannitol in the diagnosis of asthma: a population study. J Allergy Clin Immunol. 2009;124(5):928-32 e1.

224. Sverrild A, Porsbjerg C, Thomsen SF, et al. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide: a random-sample population study. J Allergy Clin Immunol. 2010;126(5):952-8.

225. Swierczynska-Machura D, Krakowiak A, Wiszniewska M, et al. Exhaled nitric oxide levels after specific inhalatory challenge test in subjects with diagnosed occupational asthma. Int J Occup Med Environ Health. 2008;21(3):219-25.

226. Thomas M, McKinley RK, Mellor S, et al. Breathing exercises for asthma: a randomised controlled trial. Thorax. 2009;64(1):55-61.

227. Thomson NC, Chaudhuri R, Spears M, et al. Poor Symptom Control Is Associated With Reduced CT Scan Segmental Airway Lumen Area in Smokers With Asthma. Chest. 2015;147(3):735-44.

228. Thorat YT, Salvi SS, Kodgule RR. Peak flow meter with a questionnaire and mini-spirometer to help detect asthma and COPD in real-life clinical practice: a cross-sectional study. NPJ Prim Care Respir Med. 2017;27(1):32.

229. Tilemann L, Gindner L, Meyer F, et al. Differences in local and systemic inflammatory markers in patients with obstructive airways disease. Prim Care Respir J. 2011;20(4):407-14.

230. Tomari S, Matsuse H, Machida I, et al. Three 20-minute interspaced salbutamol inhalations as a test for the diagnosis of reversible airflow limitation in adult asthmatics. J Asthma. 2004;41(1):43-8.

231. Tomasiak-Lozowska MM, Misztal T, Rusak T, et al. Asthma is associated with reduced fibrinolytic activity, abnormal clot architecture, and decreased clot retraction rate. Allergy. 2017;72(2):314-9.

232. Topalovic M, Derom E, Osadnik CR, et al. Airways resistance and specific conductance for the diagnosis of obstructive airways diseases. Respir Res. 2015;16(88):88.

233. Trinkmann F, Gotzmann J, Saur D, et al. Multiple breath washout testing in adults with pulmonary disease and healthy controls - can fewer measurements eventually be more? BMC Pulm Med. 2017;17.

234. Tsai JJ, Shih JT, Lee HL, et al. Bronchoprovocation test in the normal and in asthmatics. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1986;19(2):118-23.

235. Tsilogianni Z, Hillas G, Bakakos P, et al. Sputum interleukin-13 as a biomarker for the evaluation of asthma control. Clin Exp Allergy. 2016;46(7):923-31.

236. Tsolakis N, Malinovschi A, Nordvall L, et al. The absence of serum IgE antibodies indicates non-type 2 disease in young asthmatics. Clin Exp Allergy. 2018;48(6):722-30.

237. Tsuburai T, Suzuki S, Tsurikisawa N, et al. [Use of forced oscillation technique to detect airflow limitations in adult Japanese asthmatics]. Arerugi. 2012;61(2):184-93.

238. Tsuburai T, Tsurikisawa N, Taniguchi M, et al. The relationship between exhaled nitric oxide measured with an off-line method and airway reversible obstruction in Japanese adults with asthma. Allergology international : official journal of the Japanese Society of Allergology. 2015;54(5):530-6.

239. Udesen PB, Westergaard CG, Porsbjerg C, et al. Stability of FeNO and airway hyperresponsiveness to mannitol in untreated asthmatics. J Asthma. 2017;54(5):530-6.

240. Ura M, Tanaka H, Takahashi K, et al. [Value of Fractional Exhaled Nitric Oxide after Using a Beta-2 Bronchodilator in the Differential Diagnosis of Bronchial Asthma and Chronic Obstructive Pulmonary Disease]. Rinsho Byori. 2016;64(2):127-32.
242. Usmani OS, Singh D, Spinola M, et al. The prevalence of small airways disease in adult asthma: A systematic literature review. Respir Med. 2016;116:19-27.
243. Vakali S, Vogiatzis I, Florou A, et al. Exercise-induced bronchoconstriction among athletes: Assessment of bronchial provocation tests. Respiratory Physiology & Neurobiology. 2017;235:34-9.
244. van Asch CJ, Balemans WA, Rovers MM, et al. Atopic disease and exhaled nitric oxide in an unselected population of young adults. Ann Allergy Asthma Immunol. 2008;100(1):59-65.
245. Voutilainen M, Malmberg LP, Vasankari T, et al. Exhaled nitric oxide indicates poorly athlete's asthma. Clin Respir J. 2013;7(4):347-53.
246. Vukoja M, Rebic P, Lazic Z, et al. Early detection of asthma and chronic obstructive pulmonary disease in primary care patients. Med Pregl. 2013;66(1-2):46-52.
247. Wang Y, Chen P, Dai AN, et al. Intervention Studies of Inhaled Corticosteroids Combined with Long-acting Theophylline or Long-acting beta(2)-agonists in Patients with Moderate to Severe Asthma: A Randomized, Controlled Study. Clinical Therapeutics. 2016;38(12):2622-7.
248. Weatherall M, Travers J, Shirtcliffe PM, et al. Distinct clinical phenotypes of airways disease defined by cluster analysis. Eur Respir J. 2009;34(4):812-8.
249. Wei J, Ma L, Wang J, et al. Airway reversibility in asthma and phenotypes of Th2-biomarkers, lung function and disease control. Allergy Asthma Clin Immunol. 2018;14:89.
250. White EC, de Klerk N, Hantos Z, et al. Mannitol challenge testing for asthma in a community cohort of young adults. Respir Med. 2017;22(4):678-83.
251. Williamson PA, Vaidyanathan S, Clearie K, et al. Airway dysfunction in nasal polyposis: a spectrum of asthmatic disease? Clin Exp Allergy. 2011;41(10):1379-85.
252. Wolfromm R, Pouillard J, Kaufman E. [Ventilatory tests in the diagnosis of asthma in adults]. Maroc Med. 1966;45(496):706-8.
253. Wu D, Li L, Zhang M, et al. Two inflammatory phenotypes of nasal polyps and comorbid asthma. Ann Allergy Asthma Immunol. 2017;118(3):318-25.
254. Yang SY, Kim YH, Byun MK, et al. Repeated measurement of fractional exhaled nitric oxide is not essential for asthma screening. J Investig Allergol Clin Immunol. 2018;28(2):98-105.
255. Yoshikawa T, Kanazawa H. Characteristics of young atopic adults with self-reported past wheeze and airway hyperresponsiveness. Allergology international : official journal of the Japanese Society of Allergology. 2012;61(1):65-73.
256. Yuan Y, Luo Y, He T, et al. [Value of measuring resistance of airway for diagnosis of asthma]. Hua Xi Yi Ke Da Xue Xue Bao. 1996;27(3):302-5.
257. Yun KH, Chi RC, Kyung HP, et al. Clinical significance of methacholine bronchial challenge test in differentiating asthma from COPD. [Korean]. Tuberculosis and Respiratory Diseases. 2006;61(5):433-9.
258. Zapletal A, Chalupova J, Svobodova T. FEV1 - A not very sensitive parameter for the assessment of induced bronchoconstriction and bronchodilation. [Czech]. Studia Pneumologica et Phthiseologica. 2005;65(1):32-9.
259. Zhang YM, Lin JT. [The values of fractional exhaled nitric oxide in the diagnosis and treatment of chronic cough]. Zhonghua Jie He He Xi Za Zhi. 2011;34(7):504-8.
260. Zhao H, Li R, Lv Y, et al. Albuterol inhalation increases FeNO level in steroid-naive asthmatics but not COPD patients with reversibility. Clin Respir J. 2015;11(3):328-36.
261. Zhu Z, Xie Y, Guan W, et al. FeNO for detecting lower airway involvement in patients with allergic rhinitis. Exp Ther Med. 2016;12(4):2336-40.
262. Zietkowski Z, Bodzenta-Lukaszyk A, Tomasiak MM, et al. The role of measurement of exhaled nitric oxide in asthma patients. [Polish]. Pol Arch Med Wewn. 2005;113(1):35-41.
263. Zietkowski Z, Bodzenta-Lukaszyk A, Tomasiak MM, et al. Comparison of exhaled nitric oxide measurement with conventional tests in steroid-naive asthma patients. J Investig Allergol Clin Immunol. 2006;16(4):239-46.

264. Zietkowski Z, Tomasiak MM, Skiepko R, et al. RANTES in exhaled breath condensate of stable and unstable asthma patients. Respir Med. 2008;102(8):1198-202.

265. Baarnes CB, Thuesen BH, Linneberg A, et al. Determinants of airflow limitation in Danish adults - findings from the Health2006 cohort. Int J Chron Obstruct Pulmon Dis. 2019;14:713-8.

266. Baptist AP, Sengupta R, Pranathiageswaran S, et al. Evaluation of exhaled nitric oxide measurements in the emergency department for patients with acute asthma. Ann Allergy Asthma Immunol. 2008;100(5):415-9.

267. Berger KI, Kalish S, Shao YZ, et al. Isolated Small Airway Reactivity During Bronchoprovocation as a Mechanism for Respiratory Symptoms in WTC Dust-Exposed Community Members. American Journal of Industrial Medicine. 2016;59(9):767-76.

268. Buslau A, Voss S, Herrmann E, et al. Can we predict allergen-induced asthma in patients with allergic rhinitis? Clin Exp Allergy. 2014;44(12):1494-502.

269. Ciprandi G, Signori A, et al. Relationship between bronchial hyperreactivity and bronchodilation in patients with allergic rhinitis. Ann Allergy Asthma Immunol. 2011;106(6):460-6.

270. Cirillo I, Gallo F, Ciprandi G. Could routine spirometry suggest sensitisation in the military medicine setting? J R Army Med Corps. 2018;164(1):58-60.

271. Dressler M, Salzmann-Manrique E, Zilen S, et al. Exhaled NO as a predictor of exercise-induced asthma in cold air. Nitric Oxide-Biol Ch. 2018;76:45-52.

272. Drks. Assessment of small airway diseases by inert gas washout testing. Evaluation of N2-single and multiple breath washout versus a double tracer single breath technique in healthy adults and patients with small airway diseases 2012. Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01832061/full.

273. Ekstrand Y, Ternesten-Hasseus E, Arvidsson M, et al. Sensitivity to environmental irritants and capsaicin cough reaction in patients with a positive methacholine provocation test before and after treatment with inhaled corticosteroids. J Asthma. 2011;48(5):482-9.

274. Franklin PJ, Stick SM, Le Souef PN, et al. Measuring exhaled nitric oxide levels in adults: the importance of atopy and airway responsiveness. Chest. 2004;126(5):1540-5.

275. Ghani N, Tariq F, Hassan S. Respiratory and physical ailments correlated with occupational exposure among welders in Pakistan. Journal of the Pakistan Medical Association. 2017;67(12):1910-3.

276. Gilbert R, Auchincloss JH, Jr. The interpretation of the spirogram. How accurate is it for 'obstruction'? Arch Intern Med. 1985;145(9):1635-9.

277. Ibeneme S, Egbosionu V, Ibeneme G, et al. Evidence of Allergic Reactions and Cardiopulmonary Impairments among Traders Operating from Foodstuff Warehouses. Biomed Research International. 2016;2016.

278. Kjeldgaard P, Lykkegaard J, Spillemose H, et al. Multicenter study of the COPD-6 screening device: feasible for early detection of chronic obstructive pulmonary disease in primary care? Int J Chron Obstruct Pulmon Dis. 2017;12:2323-31.

279. Krantz C, Janson C, Hollsing A, et al. Exhaled and nasal nitric oxide in relation to lung function, blood cell counts and disease characteristics in cystic fibrosis. J Breath Res. 2017;11(2):026001.

280. Lai KF, Lin L, Liu BJ, et al. Eosinophilic airway inflammation is common in subacute cough following acute upper respiratory tract infection. Respirology. 2016;21(4):683-8.

281. Linkosalo L, Lehtimaki L, Laitinen J, et al. Increased bronchial hyperreactivity and bronchodilatation in patients with atopic eczema in children and adolescents. Pediatr Allergy Immunol. 2008;19(5):426-32.
282. Loymans RJB, Honkoop PJ, Termeer EH, et al. Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model. Thorax. 2016;71(9):838-46.
283. Malerba M, Damiani G, Carpagnano GE, et al. Values in Elderly People for Exhaled Nitric Oxide Study. Rejuvenation Res. 2016;19(3):233-8.
284. Malinovschi A, Janson C, Borres M, et al. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity. J Allergy Clin Immunol. 2016;138(5):1301-8 e2.
285. Medelli J, Lounana J, Messan F, et al. Testing of pulmonary function in a professional cycling team. J Sports Med Phys Fitness. 2006;46(2):298-306.
286. Milota T, Bloomfield M, Parackova Z, et al. Bronchial Asthma and Bronchial Hyperresponsiveness and Their Characteristics in Patients with Common Variable Immunodeficiency. International Archives of Allergy and Immunology. 2019;178(2):192-200.
287. Murri V, Antoniazzi F, Piazza M, et al. Lung Function in Women with Idiopathic Central Precocious Puberty: A Pilot Study. Horm Res Paediatr. 2017;87(2):95-102.
288. Ohrmalm L, Malinovschi A, Wong M, et al. Presence of rhinovirus in the respiratory tract of adolescents and young adults with asthma without symptoms of infection. Respir Med. 2016;115:1-6.
289. Pohjantahhti H, Laitinen J, Parkkari J. Exercise-induced bronchospasm among healthy elite cross country skiers and non-athletic students. Scand J Med Sci Sports. 2005;15(5):324-8.
290. Price OJ, Ansley L, Bikov A, et al. The role of impulse oscillometry in detecting airway dysfunction in athletes. J Asthma. 2016;53(1):62-8.
291. Rentzhog CH, Janson C, Berglund L, et al. Overall and peripheral lung function assessment by spirometry and forced oscillation technique in relation to asthma diagnosis and control. Clinical and Experimental Allergy. 2017;47(12):1546-54.
292. Rex CE, Eckerstrom F, Heiberg J, et al. Surgical closure of a ventricular septal defect in early childhood leads to altered pulmonary function in adulthood: A long-term follow-up. Int J Cardiol. 2019;274:100-5.
293. Ross RG. The prevalence of reversible airway obstruction in professional football players. Med Sci Sports Exerc. 2000;32(12):1985-9.
294. Rundell KW, Im J, Mayers LB, et al. Self-reported symptoms and exercise-induced asthma in the elite athlete. Med Sci Sports Exerc. 2001;33(2):208-13.
295. Tagiyeva N, Teo E, Fielding S, et al. Occupational exposure to asthmagens and adult onset wheeze and lung function in people who did not have childhood wheeze: A 50-year cohort study. Environ Int. 2016;94:60-8.
296. Tang S, Lai P, Lai M, et al. Topical anesthesia in transconjunctival sutureless 25-gauge vitrectomy for macular-based disorders. Ophthalmologica. 2007;221(1):65-8.
297. Tantilipikorn P, Juntabenjapat J, Thongngarm T, et al. Prevalence of impaired lower airway function in Thai patients with allergic rhinitis. Asian Biomed. 2016;10(1):67-74.
298. Ulrik CS, Svenningsen C. High prevalence of asthma in Danish elite canoe- and kayak athletes. Dan Med J. 2012;59(4):A4405.
299. Van der Walt A, Baatjies R, Singh T, et al. Environmental factors associated with baseline and serial changes in fractional exhaled nitric oxide (FeNO) in spice mill workers. Occup Environ Med. 2016;73(9):614-20.
300. Vedal S, Chan-Yeung M, Enarson D, et al. Symptoms and pulmonary function in western red cedar workers related to duration of employment and dust exposure. Arch Environ Health. 1986;41(3):179-83.
301. Wang W, Xian M, Xie Y, et al. Aggravation of airway inflammation and hyperresponsiveness following nasal challenge with Dermatophagoides pteronyssinus in perennial allergic rhinitis without symptoms of asthma. Allergy. 2016;71(3):378-86.
302. West AJ, Burton D, Bell A. The association of body mass index with airway obstruction in non-asthmatics: implications for the inaccurate differential diagnosis of asthma in obesity. Canadian Journal of Respiratory Therapy. 2011;47(2):11-22.
303. Zebrowska A, Gluchowska B, Jastrzebski D, et al. Endurance Training and the Risk of Bronchial Asthma in Female Cross-Country Skiers. 2015. 29-34 p.
304. Zuskin E, Kanceljak B, Schachter EN, et al. Respiratory function and immunological status in cocoa and flour processing workers. Am J Ind Med. 1998;33(1):24-32.
305. Anderson WJ, Lipworth BJ. Relationship of mannitol challenge to methacholine challenge and inflammatory markers in persistent asthmatics receiving inhaled corticosteroids. Lung. 2012;190(5):513-21.
306. Asano T, Takemura M, Kanemitsu Y, et al. Combined measurements of fractional exhaled nitric oxide and nasal nitric oxide levels for assessing upper airway diseases in asthmatic patients. J Asthma. 2018;55(3):300-9.
307. Bardsley G, Daley-Yates P, Baines A, et al. Anti-inflammatory duration of action of fluticasone furoate/vilanterol trifenatate in asthma: a cross-over randomised controlled trial. Respir Res. 2018;19(1):133.
308. Baumann JM, Rundell KW, Evans TM, et al. Effects of cysteine donor supplementation on exercise-induced bronchoconstriction. Med Sci Sports Exerc. 2005;37(9):1468-73.
309. Behndig AF, Larsson N, Brown JL, et al. Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma. Thorax. 2011;66(1):12-9.
310. Bellier M, Barnig C, Renaudin JM, et al. Importance of specific inhalation challenge in the diagnosis of occupational asthma induced by quaternary ammonium compounds. The Journal of allergy and clinical immunology In practice. 2015;3(5):819-20.
311. Bilgin G, Arslan H, Balci N, et al. Acupuncture for the Treatment of Mild or Moderate Asthma: A Randomized, Placebo-Controlled Clinical Trial. Nobel Medicus. 2016;12(2):31-7.
312. Caminati M, Caimmi C, Dama A, et al. What lies beyond Asthma Control Test: Suggestions for clinical practice. J Asthma. 2016;53(6):559-62.
313. Colak Y, Afzal S, Nordestgaard BG, et al. Combined value of exhaled nitric oxide and blood eosinophils in chronic airway disease: the Copenhagen General Population Study. Eur Respir J. 2018;52(2).
314. Crespo Lessmann A, Giner J, Torrego A, et al. Usefulness of the Exhaled Breath Temperature Plateau in Asthma Patients. Respiration. 2015;90(2):111-7.
315. Diaz-Guzman E, Khosravi M, Mannino DM. Asthma, chronic obstructive pulmonary disease, and mortality in the U.S. population. COPD. 2011;8(6):400-7.
316. Dixon AE, Subramanian M, DeSarno M, et al. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res. 2015;16:143.
317. Dressel H, Gross C, de la Motte D, et al. Educational intervention decreases exhaled nitric oxide in farmers with occupational asthma. Eur Respir J. 2007;30(3):545-8.
318. D'Souza W, Lewis S, Cheng S, et al. The prevalence of asthma symptoms, bronchial hyperresponsiveness and atopy in New Zealand adults. N Z Med J. 1999;112(1089):198-202.
319. Fujimura M, Ohkura N, Abo M, et al. Exhaled nitric oxide levels in patients with atopic cough and cough variant asthma. Respirology. 2008;13(3):359-64.
320. Gelb AF, Yamamoto A, Verbeken EK, et al. Further Studies of Unsuspected Emphysema in Nonsmoking Patients With Asthma With Persistent Expiratory Airflow Obstruction. Chest. 2018;153(3):618-29.
321. Hashimoto S, Rijssenbeek-Nouwens LH, Fieten KB, et al. Predictors of benefit from high-altitude climate therapy in adults with severe asthma. Neth J Med. 2018;76(5):218-25.
322. Hurwitz KM, Argyros GJ, Roach JM, et al. Interpretation of eucapnic voluntary hyperventilation in the diagnosis of asthma. Chest. 1995;108(5):1240-5.
323. Jerschow E, Ren Z, Hudes G, et al. Utility of low-dose oral aspirin challenges for diagnosis of aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2016;116(4):321-8 e1.
324. Kazaks AG, Uriu-Adams JY, Albertson TE, et al. Effect of oral magnesium supplementation on measures of airway resistance and subjective assessment of asthma control and quality of life in men and women with mild to moderate asthma: a randomized placebo controlled trial. J Asthma. 2010;47(1):83-92.
325. Kirsten AM, Watz H, Brindicci C, et al. Effects of beclomethasone/formoterol and budesonide/formoterol fixed combinations on lung function and airway inflammation in patients with mild to moderate asthma--an exploratory study. Pulm Pharmacol Ther. 2015;31:79-84.
326. Kjellberg S, Viklund E, Robinson PD, et al. Utility of single versus multiple breath washout in adult asthma. Clin Physiol Funct Imaging. 2018;38(6):936-43.
327. Ko FWS, Leung TF, Hui DSC, et al. Asthma Control Test correlates well with the treatment decisions made by asthma specialists. Respirology. 2009;14(4):559-66.
328. Latorre M, Baldini C, Seccia V, et al. Asthma Control and Airway Inflammation in Patients with Eosinophilic Granulomatosis with Polyangiitis. The journal of allergy and clinical immunology In practice. 2016;4(3):512-9.
329. Louhelainen N, Rytila P, Obase Y, et al. The value of sputum 8-isoprostane in detecting oxidative stress in mild asthma. J Asthma. 2008;45(2):149-54.
330. Malagrino L, Catapano G, Novelli F, et al. Markers of small airway involvement and asthma control in patients with moderate-to-severe asthma. Ann Allergy Asthma Immunol. 2014;112(6):551-2.
331. Mannix ET, Roberts M, Fagin DP, et al. The prevalence of airways hyperresponsiveness in members of an exercise training facility. J Asthma. 2003;40(4):349-55.
332. Mansournia MA, Jamali M, Mansournia N, et al. Exercise-induced bronchospasm among students of Tehran University of Medical Sciences in 2004. Allergy Asthma Proc. 2007;28(3):348-52.
333. Marsden PA, Satia I, Ibrahim B, et al. Objective Cough Frequency, Airway Inflammation, and Disease Control in Asthma. Chest. 2016;149(6):1460-6.
334. Mehrparvar AH, Hossein Davar M, Salmani Nadooshan M, et al. Assessment of bronchodilator response in various spirometric patterns. Tannafos. 2013;12(2):28-33.
335. Michils A, Haccuria A, Michiels S, et al. Airway calibre variation is a major determinant of exhaled nitric oxide's ability to capture asthma control. Eur Respir J. 2017;50(2).
336. Motomura C, Odajima H, Tezuka J, et al. Effect of Age on Relationship Between Exhaled Nitric Oxide and Airway Hyperresponsiveness in Asthmatic Children. Chest. 2009;136(2):519-25.
337. Munoz-Lopez F, Rios-Alcolea M. The interest of FEF(25-75) in evaluating bronchial hyperresponsiveness with the methacholine test. Allergol Immunopathol (Madr). 2012;40(6):352-6.
338. Nittner-Marszalska M, Dor-Wojnarowska A, Wolanczyk-Medrala A, et al. Studying allergic inflammation and spirometry over menstrual cycles in well-controlled asthmatic women: Changes in progesterone and estradiol affect neither FENO levels nor lung function. Nitric Oxide-Biol Ch. 2018;75:95-100.
339. Pepper AN, Bulkhi A, Smith CR, et al. Effects of Exposure to New Car Interiors in Patients With Asthma and Allergic Rhinitis. Allergy Rhinol (Providence). 2018;9(2):215265718800060.

340. Petsky HL, Cates CJ, Li A, et al. Tailored interventions based on exhaled nitric oxide versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev. 2009(4):CD006340.

341. Powell H, Murphy VE, Taylor DR, et al. Management of asthma in pregnancy guided by measurement of fraction of exhaled nitric oxide: a double-blind, randomised controlled trial. Lancet. 2011;378(9795):983-90.

342. Razi E, Ehteram H, Akbari H, et al. Evaluation of high-sensitivity C-reactive protein in acute asthma. Tanaffos. 2012;11(1):32-7.

343. Ricciardolo FL, Sorbello V, Bellezza Fontana R, et al. Exhaled nitric oxide in relation to asthma control: A real-life survey. Allergol Immunopathol (Madr). 2016;44(3):197-205.

344. Ritz T, Kullowatz A, Bill MN, et al. Daily life negative mood and exhaled nitric oxide in asthma. Biol Psychol. 2016;118:176-83.

345. Ritz T, Rosenfield D, Steele AM, et al. Controlling asthma by training of Capnometry-Assisted Hypoventilation (CATCH) vs slow breathing: a randomized controlled trial. Chest. 2014;146(5):1237-47.

346. Ross JA, Yang Y, Song PX, et al. Quality of life, health care utilization, and control in older adults with asthma. The journal of allergy and clinical immunology In practice. 2013;1(2):157-62.

347. Rouhos A, Ekroos H, Karjalainen J, et al. Smoking attenuates increase in exhaled nitric oxide in atopic but not in nonatopic young adults with asthma. Int Arch Allergy Immunol. 2010;152(3):226-32.

348. Prieto L, Ruiz-Jimenez L, Marin J. The effect of spirometry on bronchial and alveolar nitric oxide in subjects with asthma. J Asthma. 2012;185.

349. Sekiya K, Taniguchi M, Fukutomi Y, et al. Actual control state of intermittent asthma classified on the basis of subjective symptoms. Internal medicine (Tokyo, Japan). 2011;50(15):1545-51.

350. Selge C, Thomas S, Nowak D, et al. Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines. Respir Med. 2016;118:15-21.

351. Senna G, Passalacqua G, Schiappoli M, et al. Correlation among FEV1, nitric oxide and asthma control test in newly diagnosed asthma. Allergy. 2007;62(2):207-8.

352. Sharifi A, Ansarin K. Effect of gastroesophageal reflux disease on disease severity and characteristics of lung functional changes in patients with asthma. J Cardiovasc Thorac Res. 2014;6(4):223-8.

353. Shimoda T, Obase Y, Kishikawa R, et al. Assessment of anti-inflammatory effect from addition of a long-acting beta-2 agonist to inhaled corticosteroid. Allergy Asthma Proc. 2016;37(5):387-93.

354. Short PM, Williamson PA, Lipworth BJ. Sensitivity of impulse oscillometry and spirometry in beta-blocker induced bronchoconstriction and beta-agonist bronchodilatation in asthma. Ann Allergy Asthma Immunol. 2012;109(6):412-5.

355. Silkoff PE, Strambu I, Laviolette M, et al. Asthma characteristics and biomarkers from the Airways Disease Endotyping for Personalized Therapeutics (ADEPT) longitudinal profiling study. Respir Res. 2015;16:142.

356. Smith AD, Cowan JO, Brassett KP, et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. New England Journal of Medicine. 2005;352(21):2163-73.

357. Smith AD, Cowan JO, Taylor DR. Exhaled nitric oxide levels in asthma: Personal best versus reference values. J Allergy Clin Immunol. 2009;124(4):714-8 e4.
358. Sue-Chu M, Larsson L, Bjermer L. Prevalence of asthma in young cross-country skiers in central Scandinavia: Differences between Norway and Sweden. Respir Med. 1996;90(2):99-105.

359. Svenningsen S, Kirby M, Starr D, et al. What are ventilation defects in asthma? Thorax. 2014;69(1):63-71.

360. Sverrild A, Malinovschi A, Porsbjerg C, et al. Predicting airway hyperreactivity to mannitol using exhaled nitric oxide in an unselected sample of adolescents and young adults. Respir Med. 2013;107(1):150-2.

361. Tajiri T, Niimi A, Matsumoto H, et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113(4):470-5 e2.

362. Tang W, Zhou J, Miao L, et al. Clinical features in patients of cough variant asthma with normal and high level of exhaled fractional nitric oxide. Clin Respir J. 2018;12(2):595-600.

363. Wang Y, Li L, Han R, et al. Diagnostic value and influencing factors of fractional exhaled nitric oxide in suspected asthma patients. Int J Clin Exp Pathol. 2015;8(5):5570-6.

364. Wilson AM, Dempsey OJ, Sims EJ, et al. Subjective and objective markers of treatment response in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2000;85(2):111-4.

365. Woodcock A, Vestbo J, Bakerly ND, et al. Effectiveness of fluticasone furoate plus vilanterol on asthma control in clinical practice: an open-label, parallel group, randomised controlled trial. Lancet. 2017;390(10109):2247-55.

366. Yamamoto S, Miyoshi S, Katayama H, et al. Use of the forced-oscillation technique to estimate spirometry values. Int J Chron Obstruct Pulmon Dis. 2017;12:2859-68.

367. Yokoyama T. Diagnostic significance of arterial-alveolar nitrogen tension difference in assessment of ventilation-perfusion ratio inequality. Chest. 1972;62(2):191-8.

368. Zhang L, Gang J, Zhigang C, et al. Irreversible airway obstruction assessed by high-resolution computed tomography (HRCT), exhaled nitric oxide (FENO), and biological markers in induced sputum in patients with asthma. Wien Klin Wochenschr. 2014;126(17-18):515-23.

369. Amelink M, de Nijs S, de Groot C, et al. Nasal Polypsis Identifies An At Risk Phenotype Among Patients With Adult-Onset Asthma. American Journal of Respiratory and Critical Care Medicine. 2011;183(1).

370. Amirneni A, Roychowdhury P, Badwal J, et al. Use of Spirometry for Diagnosis and Management of Asthma in a Community Health Center. Ann Allergy Asthma Immunol. 2018;121(5):S9-S.

371. Anonymous. Airway hyperresponsiveness and airway inflammation in elite swimmers. Clin Respir J. 2009;3(1):62.

372. Arron JR, Holweg CT, Eng C, et al. Range And Distribution Of Type 2 Inflammatory Biomarkers In Children And Adolescents With And Without Asthma. American Journal of Respiratory and Critical Care Medicine. 2014;189.

373. Baccioglu A, Kalpaklioglu AF, Oyman TG. Occupational respiratory diseases in mosque workers. Allergy. 2017;72:636-7.

374. Backer V, Sverrild A, Ulrik CS, et al. Diagnosing asthma in a real life setting-which test to use? American Journal of Respiratory and Critical Care Medicine. 2014;189.

375. Badyda A, Chcialowski A, Dabrowiecki P, et al. Coal and wood burning products as a risk factor of respiratory and cardiovascular diseases - preliminary results of household PM2.5 emissions on health risk. Eur Respir J. 2017;50.

376. Basa Akdogan B, Koca Kalkan I, Koycu Buhari G, et al. What is the best way to diagnose asthma in patients without reversibility? Allergy: European Journal of Allergy and Clinical Immunology. 2018;73:523.
377. Berti A, Licini A, Lombardi C, et al. Small airway dysfunction in asthma: A real life study. Eur Respir J. 2018;52.
378. Berti A, Licini A, Lombardi C, et al. Small airway dysfunction in elderly patient with asthma: a real life study. Eur Respir J. 2018;52.
379. Brigham E, Boyce D, McCormack M. Variable Extrathoracic Obstruction Correlates With Higher Body Mass Index Among Adults With Asthma. Chest. 2013;144(4).
380. Burnett M, Wegienka G, Havstad S, et al. The Relationship of Fractional Exhaled Nitric Oxide Levels to Allergy and Asthma Biomarkers in Young Adults. J Allergy Clin Immunol. 2011;127(2):Ab58-Ab.
381. Carneiro-Leao L, Martins C, Vilela A, et al. Overweight effects in lung function and dyspnoea perception during methacoline challenge test. Allergy. 2016;71:531-.
382. Chai JJ, Cai BQ. The Normal Value Measurement of Fractional Concentration of Exhaled Nitric Oxide in Chinese Adults. Respirology. 2011;16:196-7.
383. Chen FJ, Huang XY, Lin GP, et al. Validity of FENO and small airway function indices in diagnosis of CVA. Eur Respir J. 2017;50.
384. Cottee A, Seccombe L, Thamrin C, et al. Bronchodilator Response in Asthma Using the Forced Oscillation Technique Is Comparable to Spirometry and Relates to Asthma Control. Respirology. 2019;24:74-.
385. Dales R, Cakmak S. Is residential ambient air limonene associated with asthma in the Canadian population? Eur Respir J. 2017;50.
386. De Vries R, Dagelet JWF, Frey U, et al. Assessment of repeatability of eNose (SpiroNose) measurements in healthy and asthmatic subjects. Eur Respir J. 2018;52.
387. Dey D, Paul M, Sengupta S, et al. Does FEF25-75 distinguish between airway obstruction and restriction in DPLD? Respirology. 2018;23:78-9.
388. Dey D, Saha D, Paul M, et al. Fef25-75 Is the Better Diagnostic Tool for Identifying Asthma Patients. Respirology. 2018;23:90-.
389. Dilka E, Tashi E, Nushi E, et al. The use of FENO in COPD: the relationship to pulmonary function tests and its importance in differential diagnosis. Eur Respir J. 2017;50.
390. Dummer J, Cowan J, Tewhaiti-Smith J, et al. Lung Health in New Zealand Gang Members: Results from a Health Hui. Respirology. 2018;23:208-.
391. Fingleton J, Williams M, Travers J, et al. Prevalence of Different Treatable Traits in Symptomatic Airways Disease. American Journal of Respiratory and Critical Care Medicine. 2018;197.
392. Gaudino R, Murri V, Piazza M, et al. Idiopathic central precocious puberty (ICPP), adult lung function and asthma. Horm Res Paediatr. 2013;1:174.
393. Giovannini M, Valli M, Ribuffo V, et al. Relationship between Methacholine Challenge Testing and exhaled nitric oxide in adult patients with suspected bronchial asthma. Eur Ann Allergy Clin Immunol. 2014;46(3):109-13.
394. Godnic-Cvar J. [Normal reactivity and hyperreactivity in the bronchi induced by respiratory irritants]. Plucne Bolesti. 1990;42(1-2):30-2.
395. Greulich T, Sterk PJ, Hamm D, et al. An electronic nose can distinguish between different asthma phenotypes. Eur Respir J. 2013;42.
396. Guevara-Rattray E, Garden F, Reddel HK, et al. Obstructive Lung Diseases in Australian Adults: A Latent Class Analysis. American Journal of Respiratory and Critical Care Medicine. 2018;197.
397. Guly HR. Frostbite and other cold injuries in the heroic age of Antarctic exploration. Wilderness Environ Med. 2012;23(4):365-70.
398. Habib SS. Relationship of fractional exhaled nitric oxide with asthma control test scoring in adult asthmatics. Annals of Thoracic Medicine. 2011;6:171.
399. Haines A, Davies E, Higgins B, et al. Identifying the most cost-effective way of diagnosing asthma in adults using multiple tests-a cost-utility analysis from the nice asthma guideline. Value in Health. 2015;18:A361.
400. Hayashi H, Tsuburai T, Watai K, et al. Can forced oscillation technique parameters predict airway hyperresponsiveness to histamine? Eur Respir J. 2014;44.
401. Hekking PP, Wagener AH, Sousa AR, et al. Prevalence And Phenotypic Characteristics Of Severe Adult-Onset Asthma In The U-Biopred Cohort. American Journal of Respiratory and Critical Care Medicine. 2014;189.
402. Hunter ML, Hui J, Knuiman M, et al. Predictors of Diagnosed Asthma and Symptoms in 'Baby-Boomers' - the Busselton Healthy Ageing Study. Respirology. 2012;17:48-.
403. ICTRP. A Phase IV, open-label, prospective, randomised clinical trial to evaluate the usefulness of measuring nitric oxide in exhaled air in the therapeutic management of adult patients with mild asthma: CENTRAL; 2012 [cited 25/05/2019]. Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01856594/full.
404. Khurana S, Larj M, Saatian B, et al. Correlation Of Bronchodilator Reversibility With Exhaled Nitric Oxide Levels And Asthma Severity. American Journal of Respiratory and Critical Care Medicine. 2011;183(1).
405. Kipourou M, Michailopoulos P, Ntinapogias E, et al. Small airways disease evaluation in patients with mild/moderate asthma and correlation with bronchial hyperresponsiveness and disease control. Eur Respir J. 2018;52.
406. Kirenga B, Mutamba W, Mugenyi L, et al. A Prospective Cohort Study of Severe Asthma and Its Determinants in an African Population: The African Severe Asthma Program. American Journal of Respiratory and Critical Care Medicine. 2018;197.
407. Kobayashi H. Relationship Between Co-Morbidities and Asthma Control. American Journal of Respiratory and Critical Care Medicine. 2018;197.
408. Koruga D, Hromis S, Baletic N, et al. Evaluation bronchial hyperresponsiveness in patients with persistent allergic rhinitis. Eur Respir J. 2018;52.
409. Krishnan B, Priya S. Clinical Utility of Feno Analysis in the Diagnosis of Cough-Variant Asthma. Respirology. 2017;22:7-.
410. Kulkarni T, Krishnan S, Ghosal AG, et al. DELTAFEF25-75 a surrogate marker for mild intermittent asthma: A poor man's FeNO. Eur Respir J. 2016;48.
411. Lamon T, Brouquieres D, Escamilla R, et al. Evaluation of exhaled NO measurement in the first line exploration of chronic cough in adults. Eur Respir J. 2014;44.
412. Larj MJ, Zehr L, Bhaskar J, et al. Negative Methacholine Challenge Tests In Subjects With Physician Diagnosed Asthma: Data From Soar Asthma Registry. American Journal of Respiratory and Critical Care Medicine. 2014;189.
413. Laska I, Doyle S, Jayaram L. Exploring the clinical utility of measuring reversibility in mid expiratory flow and its relationship with FEV1 reversibility in patients with asthma. Eur Respir J. 2017;50.
414. Lau CL. Use of Feno Breath Test as a Biomarker in Management of 294 Chronic Cough or Dyspnoeic Patients in a Specialist Clinic in Hong Kong. Respirology. 2017;22:91-2.
415. Leung T, Ko F, Sy H, et al. Functional ADRB2 polymorphisms are associated with asthma endophenotypes in Chinese adults but not children. Allergy: European Journal of Allergy and Clinical Immunology. 2009;90:186.
416. Luo XC, Huang WG, Liu ZJ. [Diagnostic value of measuring resistance of airway in the bronchus diastole test for asthma]. Hunan Yi Ke Da Xue Xue Bao. 2001;26(4):381-2.
417. Malinovschi A, Gislason T, Olivieri M, et al. Bronchodilator response and previous lung function decline in relation with exhaled nitric oxide levels in asthma. Eur Respir J. 2017;50.
418. Martins C, Carneiro-Leao L, Vilela A, et al. Bronchodilation assessment by oscillometry in adult asthmatic patients. Eur Respir J. 2016;48.
419. Mgaloblishvili N, Gotua M, Rukhadze M, et al. Exhaled nitric oxide and respiratory symptoms in the diagnosis of atopic asthma. Allergy. 2009;64:179-80.
420. Mohsen SM, Ben Jemaa S, El Guiche D, et al. Is Fractional exhaled nitric oxide (FeNO) test reliable in the differentiation of chronic obstructive pulmonary disease (COPD) and ACOS (asthma-COPD overlap syndrome)? Eur Respir J. 2017;50.
421. Musa O, Magzoub A, Elsany A. Prevalence of asthma symptoms in adult university students and workers in Elomega - West Sudan. Eur Respir J. 2011;38.
422. Obtulowicz K, Laczkowska T, Kolarzyk E, et al. Obstruction of the small airways in the spirometric diagnosis of occupational bronchial asthma. J Investig Allergol Clin Immunol. 1998;8(5):300-3.
423. Oostveen E, Leemans K, Backer WD, et al. The bronchodilator responsiveness in asthmatic patients: Comparison of forced expiration and forced oscillations. American Journal of Respiratory and Critical Care Medicine. 2012;185.
424. Oyama S, Ohtani Y, Koike F, et al. Cluster Analysis Of Cough Variant Asthma Using Fot And Feno. American Journal of Respiratory and Critical Care Medicine. 2017;195.
425. Paknejad O, Hojjati SA, Pazoki M. The association between methacholine challenge test and respiratory symptoms: A study on 146 patients. Tehran University Medical Journal. 2011;68(11):662-7.
426. Pedersen SK, Ustrup AS, Barnes CB, et al. Usefulness of mannitol challenge testing for diagnosing asthma in everyday clinical practice. Eur Respir J. 2018;52.
427. Pereira A, Martins C, Fonseca J. Use of CARAT and lung function tests to assess control of asthma and rhinitis. Revista Portuguesa de Imunoallergologia. 2013;21(2):103-15.
428. Pinto PCCVRL, Martins P, Peralta I, et al. Is there any association between spirometry and impulse oscillometry in asthmatic preschool children? Eur Respir J. 2018;52:532-.
429. Polivka BJ, Cavallazzi R, Jorayeva A, et al. Predicting Positive Bronchial Challenge Test in Older Adults with Asthma. American Journal of Respiratory and Critical Care Medicine. 2018;197.
430. Rashidian A, Sazgar S, Mejia JE, et al. Residual Volume Reversibility Predicts Reversible Airflow Obstruction In Asthma Better Than Fev1 Reversibility. American Journal of Respiratory and Critical Care Medicine. 2015;191.
431. Ross J, Baptista A. Factors associated with asthma quality of life and control among older adults. Ann Allergy Asthma Immunol. 2011;1:A5.
432. Ross MJ, Rodriguez J. FEF50/FEV1 as an indicator of asthma in the athlete. Clinical Journal of Sport Medicine. 2018;28:202.
433. Scott H. The Impact of Varying Exercise Training Intensity on Clinical Asthma Outcomes and Inflammation in Adults with Asthma Cochrane Central Register of Controlled Trials (CENTRAL): CENTRAL; 2017 [updated 2019; cited 25/05/2019]. Available from: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01886029/full.
434. Sharifi A, Nazemiyeh M. Methacholine challenge test with impulse oscillometry versus spirometry: Which is more sensitive in detecting airway hyper-responsiveness (AHR?). Eur Respir J. 2018;52.
435. Shirai T, Hirai K, Akamatsu T, et al. Usefulness of the forced oscillation technique in diagnosing asthma-COPD overlap syndrome. Eur Respir J. 2016;48.
436. Siebeneichler A, Nyilas S, Schumann D, et al. Multiple breath nitrogen washout and methacholine challenge test in patients with clinical suspicion of asthma and normal lung function. Chest. 2017;151(5):38a-a.
437. Simpson J, Shrimanker R, Thulborn S, et al. Identification of pulmonary treatable traits in a real-life setting. Eur Respir J. 2018;52.
438. Stoicescu IP, Strambu I, Basca N, et al. [The results of using a simplified questionnaire for determining the prevalence of bronchial asthma]. Pneumoftiziologia. 1998;47(2):89-94.
439. Tamura K, Endo Y, Masuda T, et al. Fewer Bronchodilator Responses with Forced Oscillation Technique Following Methacholine Challenge Test Predict Asthma Exacerbations. American Journal of Respiratory and Critical Care Medicine. 2018;197.

440. Titova O, Petrova M, Vakhlarovskaya M. Study of age of asthma symptom onset as a potential predictor of disease development and progression. Allergy. 2017;72:393-.

441. Toor S, Akram S, Al Mazrouei K, et al. Is it really asthma? - Appropriate assessment and testing is important for accurate diagnosis. Respiration. 2017;94:97.

442. Van Huisssted A, Elte J, Rudolphus A, et al. The association of metabolic syndrome and asthma in morbidly obese patients. Allergy: European Journal of Allergy and Clinical Immunology. 2010;92:546.

443. Van Nederveen-Bendien SA, Heijerman HGM, Van Den Ende-Van Der Velden PJW. Specific airway resistance is more sensitive in diagnosing asthma in patients with a normal bronchial challenge test (FEV1) compared to FeNO and blood eosinophilis. Allergy: European Journal of Allergy and Clinical Immunology. 2016;71:89.

444. Wardzynska A, Pawelczyk M, Rywaniak J, et al. Small airways dysfunction is associated with decreased asthma control and systemic inflammation. Allergy. 2018;73:200-.

445. Wong A, Orr D, MacKay L, et al. Audit of the impact of introducing exhaled nitric oxide (FENO) monitoring to an adult asthma clinic in a district general hospital. Eur Respir J. 2011;38.

446. Yangui F, Ayari R, Triki M, et al. The relationship between exhaled nitric oxide and body mass index in controlled an uncontrolled Tunisian asthmatics. Eur Respir J. 2016;48.

447. Dicpinigaitis PV. Chronic cough due to asthma: ACCP evidende-based clinical practice guidelines. Chest. 2006;129(1):75S-9S.

448. Ludviksdottir D, Diamant Z, Alving K, et al. Clinical aspects of using exhaled NO in asthma diagnosis and management. Clin Respir J. 2012;6(4):193-207.

449. Zitt M. Clinical applications of exhaled nitric oxide for the diagnosis and management of asthma: a consensus report. Clin Ther. 2005;27(8):1238-50.

450. Harnan SE, Essat M, Gomersall T, et al. Exhaled nitric oxide in the diagnosis of asthma in adults: a systematic review. Clin Exp Allergy. 2017;47(3):410-29.

451. Machado Carrillo F, Orea Solano M, Gomez Vera J, et al. Respiratory function tests in aspirin-induced asthma. Rev Alerg Mex. 2000;51(3):173-6.

452. Park SH, Lee SY, Kang SM, et al. Prediction of bronchodilator response by using FEF25-75%in adult patient with a normal spirometry result. [Korean]. Tuberculosis and Respiratory Diseases. 2011;71(3):188-94.

453. Pirogov AB, Kolosov VP, Pereiman YM, et al. Airway inflammation patterns and clinical and functional features in patients with severe uncontrolled asthma and cold-induced airway hyperresponsiveness. [Russian]. Pulmonologiya. 2016;26(6):701-7.

454. Rodriguez Medina R, Gasca Bauza MR, Lopez Duran JL, et al. Changes in the lung function of asthmatic adults in treatment with cromoglicate sodium and beclometasone. [Spanish]. Revista Alergia Mexico. 2000;51(5):173-6.

455. Tsurikisawa N, Oshikata C, Tsuburai T, et al. Physiologic Airway Responses to Inhaled Histamine and Acetycholne in Patients with Mild Asthma as Analyzed by Forced Oscillation. Arerugi. 2015;64(7):952-70.

456. Winkler J, Hagert-Winkler A, Wirtz H, et al. Impulse oscillometry in the diagnosis of the severity of obstructive pulmonary disease. [German]. Pneumologie. 2009;63(5):266-75.
QUADAS-2 Summary
| Study | Define the source of information | List inclusion and exclusion criteria for exposed and unexposed subjects or refer to previous publications | Indicate whether or not subjects were consecutive if not population-based | Indicate if evaluators of subjective components of study were masked to other aspects of the status of the participants | Describe any assessments undertaken for quality assurance purposes | Explain any patient exclusions from analysis | Summarize patient response rates and completeness of data collection | Clarify what follow-up, if any, was expected and the percentage of patients for which incomplete data or follow-up was obtained |
|---------------------------|---------------------------------|---|---|---|---|---|---|--|
| Gulden et al. 2011 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Koruga et al. 2017 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Mendonça et al. 2011 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Mori et al. 2011 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Mousa & Kamal 2018 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Nair et al. 2011 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Son et al. 2009 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |