More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings

Sabir Hussain* and Shahid Qaisar2

Abstract
Our aim in this article is to incorporate the notion of “strongly s-convex function” and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder’s inequality are considered.

Keywords: Simpson’s inequality, Strongly s-convex function, Integral identity, Holder’s integral inequality

Mathematics Subject Classification: 26D15, 26E60, 41A55

Background
The following definition is well known in the literature as convex function:

Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function defined on the interval I of real numbers. Then f is called convex, if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$, for all $x, y \in I$ and $\lambda \in [0, 1]$. Geometrically, this means that if P, Q and R are three distinct points on graph of f with Q between P and R, then Q is on or below chord PR.

Hudzik and Maligrada (1994) defined s-convex function as: A function $f : [0, \infty) \rightarrow \mathbb{R}$ is said to be s-convex function in the first sense, if $f(\mu x + \nu y) \leq \mu^s f(x) + \nu^s f(y)$, for all $x, y \in [0, \infty)$ and $\mu, \nu \geq 0$, with $\mu^s + \nu^s = 1$. We denote this by K_{μ}^s, for some fixed $s \in (0, 1]$. Also $f : [0, \infty) \rightarrow \mathbb{R}$ is said to be s-convex function in the second sense, if above condition holds for all $x, y \in [0, \infty)$ and $\mu, \nu \geq 0$, with $\mu + \nu = 1$.

The following is very important and well known in the literature, as Simpson’s inequality:

$$\left| \int_a^b f(x)dx - \frac{(b-a)}{3} \left(f(a) + f(b) + 2f\left(\frac{a+b}{2}\right) \right) \right| \leq \frac{1}{2880} \left\| f^{(4)} \right\|_{\infty} (b-a)^5, \quad (1)$$

where the mapping $f : [a, b] \rightarrow \mathbb{R}$ is supposed to be a four times continuously differentiable on the interval (a, b) and having the fourth derivative bounded on (a, b), that is

$$\left\| f^{(4)} \right\|_{\infty} = \sup_{x \in (a,b)} |f^{(4)}(x)| < \infty.$$

© 2016 Hussain and Qaisar. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Dragomir et al. (2000) proved that: Let \(f : [a, b] \rightarrow R \) be a differentiable function on \(I^0 \) (interior of \(I \)) \(a, b \in I \) with \(a < b \). If the mapping \(|f'| \) is convex on \([a, b] \), then we have the following inequality:

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{(b - a)(|f'(a)| + |f'(b)|)}{8}.
\]

(2)

Sarikaya et al. (2010) showed that: Let \(f : [a, b] \rightarrow R \) be a differentiable function on \(I^0 \) (interior of \(I \)) such that \(f' \in L_1[a, b] \) where \(a, b \in I \) with \(a < b \). If the mapping \(|f'| \) is \(s \)-convex on \([a, b] \), for some fixed \(s \in (0, 1] \), then we have the following inequality

\[
\frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b - a} \int_a^b f(x)dx
\leq \frac{(s - 4)6^{s+1} + 2 \times 5^{s+2} - 2 \times 3^{s+2} + 2}{6^{s+2}(s + 1)(s + 2)}(b - a)(|f'(a)| + |f'(b)|).
\]

(3)

Alomari et al. (2011) established that: Let \(f : I \subset R \rightarrow R \) be a differentiable function on \(I^0 \) (interior of \(I \)) \(a, b \in I \) with \(a < b \). If the mapping \(|f'| \) is \(s \)-convex on \([a, b] \), for some \(s \in (0, 1] \), then we have the following inequality:

\[
\frac{f \left(\frac{a + b}{2} \right)}{2} - \frac{1}{b - a} \int_a^b f(x)dx
\leq \frac{b - a}{4(s + 1)(s + 2)} \left\{ |f'(a)| + |f'(b)| + 2(s + 1) \left| f' \left(\frac{a + b}{2} \right) \right| \right\}
\leq \frac{(2^{s+1} + 1)(b - a)}{4(s + 1)(s + 2)} \left[|f'(a)| + |f'(b)| \right].
\]

(4)

For utilizing different kinds of convexities, additional findings relating to the Simpson's type inequality, readers are directed to Dragomir et al. (2000), Qaisar et al. (2013), Hussain and Qaisar (2014), Dragomir (1999), Wang et al. (2013), Xi and Qi (2013) and Pearce and Pecarić (2000).

Main results

To prove our main result, we need the following definition and lemma.

Definition 1 (Polyak 1996) Let \(f : I \subset R \rightarrow R \) is said to be strongly \(s \)-convex with modulus \(c > 0 \) and for some fixed \(s \in (0, 1] \), if

\[
f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) - c\lambda(1 - \lambda)(x - y)^2,
\]

for all \(x, y \in I \) and \(\lambda \in [0, 1] \).

Observation 2 It is clear that, any strongly \(s \)-convex function is a strong convex function but the converse is not true in general.
Now we prove the following lemma:

Lemma 3 Let \(f : I = [a, b] \subset \mathbb{R} \to \mathbb{R} \) be such that \(f' \) is absolutely continuous and \(f'' \in L^1([a, b]) \). Then the following inequality holds:

\[
\left| \frac{1}{b-a} \left[\frac{1}{6} \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right] \right| \leq \frac{(b-a)^2}{96}
\]

\[
\times \int_0^1 \psi(1 - \psi) \left[\psi' \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) + \psi' \left(\frac{1 + \psi}{4} + \frac{3 - \psi}{4} a \right) + \psi' \left(\psi + \frac{1 - \psi}{4} a \right) \right] d\psi.
\]

Proof Using integrating by parts, we have

\[
\int_0^1 \psi(1 - \psi)f'' \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) d\psi
\]

\[
= -\frac{4}{b-a} \left[(1 - \psi)f' \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) \Big|_0^1 - \int_0^1 (1 - 2\psi)f' \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) d\psi \right]
\]

\[
= -\frac{16}{(b-a)^2} \left[(1 - 2\psi)f \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) \Big|_0^1 + \int_0^1 f \left(\frac{3 + \psi}{4} + \frac{1 - \psi}{4} b \right) d\psi \right]
\]

\[
= \frac{16}{(b-a)^2} \left[f(a) + f \left(\frac{3a + b}{4} \right) - \frac{96}{(b-a)^3} \int_a^{(3a+b)/4} f(x) dx \right].
\]

Analogously,

\[
\int_0^1 \psi(1 - \psi)f'' \left(\frac{1 + \psi}{4} + \frac{3 - \psi}{4} a \right) d\psi
\]

\[
= \frac{16}{(b-a)^2} \left[f \left(\frac{3a + b}{4} \right) + f \left(\frac{a + 3b}{4} \right) - \frac{96}{(b-a)^3} \int_a^{(a+3b)/4} f(x) dx \right].
\]

And

\[
\int_0^1 \psi(1 - \psi)f'' \left(\frac{\psi}{4} a + \frac{4 - \psi}{4} b \right) d\psi
\]

\[
= \frac{16}{(b-a)^2} \left[f \left(\frac{a + 3b}{4} \right) + f(b) - \frac{96}{(b-a)^3} \int_a^{(a+3b)/4} f(x) dx \right].
\]

This proves as required.
Theorem 4 Let \(f : I = [a, b] \subset R \rightarrow R \) be such that \(f' \) is absolutely continuous and \(f'' \in L_1([a, b]). \) If the mapping \(|f''|\) is strongly s-convex on \([a, b], \) for \(q \geq 1 \) and for some fixed \(s \in (0, 1], \) then we have the following inequality:

\[
\left| \frac{1}{b} \left[f(a) + 2f\left(\frac{3a+b}{4} \right) + 2f\left(\frac{a+3b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq \frac{6^{1/q}(b-a)^2}{576} \left\{ \begin{array}{l}
\frac{(5s)^{12} + (s+9)^{3s^{12}}}{17c(b-a)^2} f''(a) \left[q + \frac{1}{(a+2)(a+3)^q} \right]^{1/q} \\
+ \frac{(s-1)^{12} + (s+5)^{3s^{12}}}{12c(b-a)^2} f''(b) \left[q - \frac{1}{(b-1)(b+3)q} \right]^{1/q}
\end{array} \right.
\]

Proof Using Lemma 3 and strongly s-convexity of \(|f''|^q,\) we have

\[
\left| \frac{1}{b} \left[f(a) + 2f\left(\frac{3a+b}{4} \right) + 2f\left(\frac{a+3b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq \frac{(b-a)^2}{96} \left[\begin{array}{l}
\int_{0}^{1} \psi(1-\psi) f''\left(\frac{3+s}{4}a + \frac{1-\psi}{4} b \right) d\psi \\
+ \int_{0}^{1} \psi(1-\psi) f''\left(\frac{1+s}{4}a + \frac{3-\psi}{4} b \right) d\psi \\
+ \int_{0}^{1} \psi(1-\psi) f''\left(\frac{3-s}{4}a + \frac{1-\psi}{4} b \right) d\psi
\end{array} \right] \left\{ \begin{array}{l}
\int_{0}^{1} \psi(1-\psi) \left(\frac{1+s}{4} \right)^{q} f''(a) + \left(\frac{3-s}{4} \right)^{q} f''(b) d\psi \\
+ \int_{0}^{1} \psi(1-\psi) \left(\frac{1-s}{4} \right)^{q} f''(b) + \left(\frac{3+s}{4} \right)^{q} f''(a) d\psi
\end{array} \right\}^{1/q}
\]

\[
= \frac{6^{1/q}(b-a)^2}{576} \left\{ \begin{array}{l}
\frac{(5s)^{12} + (s+9)^{3s^{12}}}{17c(b-a)^2} f''(a) \left[q + \frac{1}{(a+2)(a+3)^q} \right]^{1/q} \\
+ \frac{(s-1)^{12} + (s+5)^{3s^{12}}}{12c(b-a)^2} f''(b) \left[q - \frac{1}{(b-1)(b+3)q} \right]^{1/q}
\end{array} \right.
\]

Corollary 5 Under the conditions of Theorem 4,
1. If $q = 1$, then

$$\frac{1}{6} \left| \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{96} \left[\frac{(s-3)4^{s+2} + (2s+6)(3^{s+2} + 1)}{(s+1)(s+2)(s+3)4^s} \left(|f''(a)| + |f''(b)| \right) - \frac{71c(b-a)^2}{960} \right].$$

2. If $q = 1$ and $s = 1$, then

$$\frac{1}{6} \left| \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{96} \left[\left(|f''(a)| + |f''(b)| \right) - \frac{71c(b-a)^2}{960} \right].$$

Theorem 6 Let f be defined as in Theorem 4 and the mapping $|f''|^q$ is strongly s-convex on $[a, b]$, for $q > 1$ and for some fixed $s \in (0, 1]$ then we have the following inequality:

$$\frac{1}{6} \left| \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{(b-a)^2}{96} \left[B\left(\frac{2q-1}{q-1}, \frac{2q-1}{q-1}\right) \right]^{1-1/q} \left(\frac{1}{4^q(s+1)} \right)^{1/q}$$

$$\times \left\{ \left[4^{s+1} - 3^{s+1} \right] |f''(a)|^q + |f''(b)|^q - \frac{5c(b-a)^2(s+1)4^s}{11} \right\}^{1/q}$$

where $B(\alpha, \beta)$ is the classical Beta function which may be defined by

$$B(\alpha, \beta) = \int_0^1 \psi^{\alpha-1} (1 - \psi)^{\beta-1} \, d\psi, \quad s, \beta > 0.$$

Proof Using Lemma 3, strong s-convexity of $|f''|^q$ and Holder’s inequality, we have
\[\left| \frac{1}{6} \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + 2f \left(\frac{a + 3b}{4} \right) + f(b) \right] - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \]

\[\leq \frac{(b - a)^2}{96} \left[\frac{1}{0} \left(\psi (1 - \psi) |f''(\frac{3\psi a + 3\psi b}{4})| \right) d\psi \right. \\
\left. + \frac{1}{0} \psi (1 - \psi) |f''(\frac{3\psi a + 3\psi b}{4})| d\psi \right. \\
\left. + \frac{1}{0} \psi (1 - \psi) |f''(\frac{3\psi a + 3\psi b}{4})| d\psi \right] \]

\[\leq \frac{(b - a)^2}{96} \left[\frac{1}{0} \left((1 - \psi)(3 + \psi) d\psi \right) \right]^{1-1/q} \]

\[\times \left\{ \left[\left(\frac{1}{0} \left((\psi ')^q + (1 - \psi) \right) \right) d\psi \right]^{1/q} + \left[\left(\frac{1}{0} \left((\frac{1}{4})^q + (1 - \psi) \right) \right) d\psi \right]^{1/q} \\
\left. + \left[\left(\frac{1}{0} \left((\psi ')^q + (1 - \psi) \right) \right) d\psi \right]^{1/q} \right\} \]

This completes the proof.

Theorem 7 Let \(f \) be defined as in Theorem 4 and the mapping \(|f''|^q \) is strongly \(s \)-convex on \([a, b]\), for \(q > 1 \) and for some fixed \(s \in (0, 1) \) then we have the following inequality:

\[\left| \frac{1}{6} \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + 2f \left(\frac{a + 3b}{4} \right) + f(b) \right] - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \]

\[\leq \frac{(b - a)^2}{96} \left[\left(\frac{q - 1)^2}{4(q + 1)(q - 1)(q - 2)} \right) \right]^{1-1/q} \]

\[\times \left\{ \left[(s - 2)^q + (s^q) \right] f''(a) + f''(b) \right\}^{1/q} \\
\left. + \left[(s + 1) |f''(a)| + (s^q) \right] f''(b) \right\}^{1/q} \]

\[\left. + \left[(s + 1) |f''(a)| + (s^q) \right] f''(b) \right\}^{1/q} \]
Proof. Using Lemma 3, Holder’s inequality and strongly s- convexity of $f''|^q$, we have

$$\left| \frac{1}{b-a} \int_0^b \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + 2f \left(\frac{a + 3b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_0^b f(x)dx \right| \leq \frac{(b-a)^2}{96} \left[\int_0^1 \left| \psi(1-\psi) \right|^q \left| f''(a) \right|^q + \left| f''(b) \right|^q \right]^{1/q}$$

$$\times \left[\frac{(s-2)4^{s+1} + 3^{s+2}}{4^s(s+1)(s+2)} \right]^{1/q}$$

or

$$\left| \frac{1}{b-a} \int_0^b \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + 2f \left(\frac{a + 3b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_0^b f(x)dx \right| \leq \frac{(b-a)^2}{96} \left[\frac{(q-1)^2}{(2q-1)(3q-2)} \right]^{1-1/q} \left[\frac{1}{4^q} \left(\frac{1}{s+1} + \frac{1}{s+2} \right) \right]^{1/q}$$

$$\times \left\{ \left[(s-2)4^{s+1} + 3^{s+2} \right] \left| f''(a) \right|^q + \left| f''(b) \right|^q - \frac{7c(b-a)^2(s+1)(s+2)d^4}{192} \right\}^{1/q}$$

This completes the proof.

Theorem 8. Let f be defined as in Theorem 4 and the mapping $f''|^q$ is strongly s-convex on $[a, b]$, for $q > 1$ and for some fixed $s \in (0, 1)$, then we have the following inequality:

$$\left| \frac{1}{b-a} \int_0^b \left[f(a) + 2f \left(\frac{3a + b}{4} \right) + 2f \left(\frac{a + 3b}{4} \right) + f(b) \right] - \frac{1}{b-a} \int_0^b f(x)dx \right| \leq \frac{(b-a)^2}{96} \left[\frac{(q-1)^2}{(2q-1)(3q-2)} \right]^{1-1/q} \left[\frac{1}{4^q} \left(\frac{1}{s+1} + \frac{1}{s+2} \right) \right]^{1/q}$$

$$\times \left\{ \left[(s-2)4^{s+1} + 3^{s+2} \right] \left| f''(a) \right|^q + \left| f''(b) \right|^q - \frac{7c(b-a)^2(s+1)(s+2)d^4}{192} \right\}^{1/q}$$

$$\times \left[\left[(s-2)4^{s+1} + 3^{s+2} \right] \left| f''(a) \right|^q + \left| f''(b) \right|^q - \frac{7c(b-a)^2(s+1)(s+2)d^4}{192} \right\}^{1/q}$$

$$\times \left[\left[(s-2)4^{s+1} + 3^{s+2} \right] \left| f''(a) \right|^q + \left| f''(b) \right|^q - \frac{7c(b-a)^2(s+1)(s+2)d^4}{192} \right\}^{1/q}$$
Proof Using Lemma 3, Holder inequality and strongly s- convexity of \(f''\) we have

\[
\frac{1}{a^2} \left| \int_a^b f(a) + 2f \left(\frac{3a+b}{4} \right) + 2f \left(\frac{a+3b}{4} \right) + f(b) - \frac{1}{b-a} \int_a^b f(x)dx \right| \\
\leq \frac{(b-a)^2}{96} \left[\int_0^1 \varphi(1-\psi) f' \left(\frac{1+\varphi}{2} a + \frac{1-\varphi}{2} b \right) d\psi \\
+ \int_0^1 \varphi(1-\psi) f' \left(\frac{1+\varphi}{2} a + \frac{1-\varphi}{2} b \right) \psi d\psi \right] \\
\leq \frac{(b-a)^2}{96} \left[\int_0^1 (1-\psi) \psi^{(q-1)} d\psi \right]^{1-1/q} \left[\frac{\int_0^1 (1-\psi) \left(\left(\frac{1+\varphi}{2} a + \frac{1-\varphi}{2} b \right) f''(a) \right)^q + \left(\frac{1-\varphi}{2} b \right) f''(b) \right]^{1/q} \right]
\]

or

\[
\frac{1}{a^2} \left| \int_a^b f(a) + 2f \left(\frac{3a+b}{4} \right) + 2f \left(\frac{a+3b}{4} \right) + f(b) - \frac{1}{b-a} \int_a^b f(x)dx \right| \\
\leq \frac{(b-a)^2}{96} \left[\frac{(q-1)^2}{(2q-1)(3q-2)} \right]^{1-1/q} \left[\frac{1}{4^q(s+1)(s+2)} \right]^{1/q} \\
\times \left\{ \left[\left(4s^2 - 3q + 1 \right) f''(a) \right]^q + \left(3s^2 - 1 \right) f''(b) \right\}^{1/q} \\
\leq \frac{(b-a)^2}{96} \left[\frac{(q-1)^2}{(2q-1)(3q-2)} \right]^{1-1/q} \left[\frac{1}{4^q(s+1)(s+2)} \right]^{1/q} \left[\left(4s^2 - 3q + 1 \right) f''(a) \right]^q + \left(3s^2 - 1 \right) f''(b) \right\}^{1/q} \\
\leq \frac{7c(b-a)^2(s+1)(s+2)^{4q}}{192} \left[\left(4s^2 - 3q + 1 \right) f''(a) \right]^q + \left(3s^2 - 1 \right) f''(b) \right\}^{1/q} \\
\]

This completes the proof. \(\square\)

Conclusion

We incorporated notion of “strongly s-convex function” and proved a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder’s inequality are also considered. These results give better estimates as presented earlier in the literature.

Authors’ contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details

1. Department of Mathematics, College of Science, Qassim University, P. O. Box 6644, Buraydah 51452, Saudi Arabia.
2. Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal, Pakistan.

Acknowledgements

The authors are thankful to the reviewers for their fruitful comments towards the improvement of the paper.

Competing interest

The authors declare that they have no competing interests.

Received: 27 August 2015 Accepted: 6 January 2016
Published online: 26 January 2016
References
Alomari MW, Darus M, Kirmaci US (2011) Some inequalities of Hermite–Hadamard type for s-convex functions. Acta Math Sci Ser B Engl Ed 31(1,2):1643–1652. doi:10.1016/S0252-9602(11)60350-0
Alomari M, Darus M, Dragomir SS (2009) New inequalities of simpsons type for s-convex functions with applications. RGMIA Res Rep Coll 12(4):Art 9. http://www.staff.vu.edu.au/RGMIA/v12n4.asp
Dragomir SS (1999) On Simpson’s quadrature formula for Lipschitzian mappings and applications. Soochow J Math 2:175–180
Dragomir SS, Agarwal RP, Cerone P (2000) On Simpson’s inequality and applications. J Inequal Appl 5(6):533–579
Hudzik H, Maligrada L (1994) Some remarks on s-convex functions. Aequ Math 48:100–111
Hussain S, Qaisar S (2014) Generalization of Simpson’s type inequality through preinvexity and prequasiinvexity. Punjab Univ J Math 46(2):1–9
Liu Z (2005) An inequality of Simpson type. Proc R Soc London Ser A 461:2155–2158
Pearce CEM, Pecarić J (2000) Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl Math Lett 13(2):51–55
Polyak BT (1996) Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math Dokl 7:72–75
Qaisar S, He C, Hussain S (2013) A generalization of simpson’s type inequality for differentiable functions using (α, m)-convex function and applications. J Inequal Appl 158:13. doi:10.1186/1029-242X-2013-158
Qaisar S, He C, Hussain S (2014) New integral inequalities through invexity with applications. Int J Anal Appl 5(2):115–122
Qi F, Xi BY (2013) Some integral inequalities of Simpson type for GA-ε-convex functions. Georgian Math J 20(1–2):775–788. doi:10.1515/gmj-2013-0043
Sarikaya MZ, Set E, Özdemir ME (2010) On new inequalities of Simpson’s type for s-convex functions. Comput Math Appl 60(8):2191–2199. doi:10.1016/j.camwa.2010.07.033
Wang Y, Wang SH, Qi F (2013) Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Univ Ser Math Inform 28(2):151–159
Xi BY, Qi F (2013) Integral inequalities of Simpson type for logarithmically convex functions. Adv Stud Contemp Math (Kyungshang) 23(1–2):559–566

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com