Correction to: Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP

Carlos G. Helguero, Vamiq M. Mustahsan, Sunjit Parmar, Sahana Pentyala, John L. Pfai, Imin Kao, David E. Komatsu and Srinivas Pentyala*

Correction to: J Orthop Surg Res (2017) 12: 195. https://doi.org/10.1186/s13018-017-0700-2

In the original publication of this article [1] there was an error in one of the author names. In this publication the correct and incorrect name are indicated.

Originally the author name has been published as:
- John P. Pfai

The correct name is as followed:
- John L. Pfai

The original publication has been corrected.

Author details
1Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA. 2Department of Orthopedics, Stony Brook Medical Center, Stony Brook, NY, USA. 3Department of Anesthesiology, Stony Brook Medical Center, Stony Brook, NY, USA. 4Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador.

Received: 7 February 2018 Accepted: 7 February 2018 Published online: 19 February 2018

Reference
1. Helguero CG, Mustahsan VM, Parmar S, et al. Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP. J Orthop Surg Res. 2017;12:195. https://doi.org/10.1186/s13018-017-0700-2

* Correspondence: Srinivas.pentyala@stonybrook.edu

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.