Correlation Entropy of an Interacting Quantum Field and
H-theorem for the O(N) Model

E. A. Calzetta†∗and B. L. Hu‡†
† Departamento de Fisica, Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires- Ciudad Universitaria,
1428 Buenos Aires, Argentina
‡ Department of Physics, University of Maryland,
College Park, MD 20742, USA

(May 29, 2003, umdpp 03-050)

Abstract
Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy (of the nth
order) for an interacting quantum field, obtained by ‘slaving’ (truncation with causal factor-
ization) of the higher (n+1 th) order correlation functions in the Schwinger-Dyson system of
equations. This renders an otherwise closed system effectively open where dissipation arises.
The concept of correlation entropy is useful for addressing issues related to thermalization. As
a small yet important step in that direction we prove an H-theorem for the correlation entropy
of a quantum mechanical O(N) model with a Closed Time Path Two Particle Irreducible Effective
Action at the level of Next-to-Leading-Order large N approximation. This model may be
regarded as a field theory in 0 space dimensions.

1 Introduction
The goal of this paper is two-fold: the proposal of a correlation entropy for an interacting quantum
field, and the proof of a H-theorem for the quantum mechanical O(N) model [1, 2], which may
be regarded as a field theory in zero space dimensions. For the former, we follow the paradigm
of Boltzmann-BBGKY [3] and propose a correlation entropy (of the nth order) for an interacting
quantum field [1, 5, 6] obtained by ‘slaving’ the higher (n+1 th) order correlation functions in
the Schwinger-Dyson system of equations (See [7, 8] and below). We then derive the closed time
path (CTP) [9] two particle irreducible (2PI) [10] effective action (EA) for this model up to the
next-to-leading order (NLO) in 1/N [11]. As a useful step towards addressing issues related to the
thermalization of interacting quantum fields, we prove an H-theorem for the correlation entropy
of a quantum mechanical O(N) model at the CTP 2PI NLO level. We give an introduction to
the correlation hierarchy and the thermalization issue in this section and a short description of
different definitions for the entropy of interacting quantum fields in the next section, followed by a
derivation of the H-theorem given in the ensuing sections.1

∗Email: calzetta@df.uba.ar
†Email: hub@physics.umd.edu
1The following descriptive summary in this and the next section is adapted from Chapter 5 of [12], where a
preliminary attempt to construct a correlation entropy was made but the proof of the H-theorem for an interacting
quantum field did not materialize, and from [13].
1.1 Boltzmann-BBGKY Hierarchy and Schwinger-Dyson Equations

We begin with nonequilibrium statistical mechanics. As is well known, truncation of the BBGKY hierarchy at a finite nth order yields a closed system. The system of equations describing the n-particle distribution functions are time reversal invariant. When a causal factorization condition such as Boltzmann’s molecular chaos assumption is imposed – that is, assuming that the n+1 th correlation function can be factorized into a product of n th correlation functions initially but not finally (after the collisions) – time-irreversibility appears and an $H$-theorem obtains. This type of coarse graining of the hierarchy i.e., truncation plus causal factorization into a set of coupled equations for the n-particle distribution functions is called ‘slaving’ in the language of [7, 8]. Slaving of the n+1 -particle distribution function renders an otherwise closed system (of the n+1 th order correlation functions) an effectively open system (of nth order correlation functions) and ushers in the appearance of dissipative dynamics [6]. Noise and fluctuations [14, 15] should also appear, as required by the fluctuation-dissipation relation (FDR) [16], now manifesting not just for an open system near equilibrium (as depicted in linear response theory), but for an effectively open system [7, 8].

A familiar example is the Boltzmann equation: it is not enough to truncate the BBGKY hierarchy to include only the one-particle and two-particle distribution functions. One needs to make an additional assumption that the two-particle distribution function factorizes into a product of single-particle distribution functions before the collisions, i.e., invoking the molecular chaos hypothesis. Of course the colliding partners become correlated after interaction. This causal distinction is the origin of the macroscopic arrow of time and the appearance of dissipation in the Boltzmann paradigm. FDR calls for a rightful place for fluctuations in the Boltzmann equation, as demonstrated in the derivation of a stochastic Boltzmann equation [17, 18].

The situation in quantum kinetic field theory is completely analogous. By quantum kinetic field theory (see, e.g., [4, 5, 6]), we are referring to the hierarchy of coupled equations for the relativistic Wigner function and its higher-correlation analogs, obtainable from the variation of the master effective action [7, 8] whose variation yields the Schwinger-Dyson equations. This is a quantum analogue of the BBGKY hierarchy, expressed in a representation convenient for distinguishing between microscopic (quantum field-theoretic) and macroscopic (transport and relaxation) phenomena [3].

One may choose to work with a truncation of the hierarchy of the Wigner function and its higher correlation analogs, or one may instead perform a slaving of, for example, the Wigner-transformed four-point function, which leads (within the context of perturbation theory) directly to the relativistic Boltzmann equation [6] and the usual $H$-theorem. The truncation and subsequent slaving of the hierarchy within quantum kinetic field theory can be carried out at any desired order, as dictated by the initial conditions and relevant interactions.

1.2 Thermalization in Interacting Quantum Fields

The problem of thermalization in relativistic quantum fields has drawn much attention over time, both in the attempt to understand the origin of macroscopic irreversible behavior from microscopic theories, and for practical considerations of nonequilibrium quantum field processes in the early

---

2The truncation of the correlation hierarchy is not just an arbitrary mathematical procedure, it reflects the fact that in realistic conditions, measurement are of finite accuracy associated with limited resolution of the instruments. Thus the relevant physical degrees of freedom are often limited to the lower end of the hierarchy, namely, the mean field and two-point function.

3It should be pointed out that in order to identify the relativistic Wigner function with a distribution function for quasiparticles, one must show that the density matrix has decohered, and this is neither guaranteed nor required by the existence of a separation of macroscopic and microscopic time scales [19].
Universe and in relativistic heavy ion collisions [20].

Let us begin with a discussion of the exact meaning of thermalization. In the strictest sense an isolated system depicted by quantum field theory undergoes unitary evolution and does not thermalize. However, one can still ask meaningful questions such as whether certain correlation functions may converge to their thermal forms in some well defined physical limit. We may call this a weak thermalization condition.

In practical terms, even asking this type of questions may seem too ambitious. As described above, the system of equations for the correlation functions form an infinite hierarchy. When certain causal factorizable boundary condition is imposed, the truncated subsystem will show signs of irreversibility and a tendency to equilibrate. For interacting fields we have to deal with a truncated Schwinger-Dyson hierarchy to make the analysis possible. Moreover, nontrivial (point) field theories are plagued by divergences which can only be controlled by regularization and renormalization within some perturbative scheme. Therefore the question of even weak thermalization can make sense only within a chosen level of approximation, such as the nPI of the correlation hierarchy, the loop expansion, the $1/N$ expansion, or expansion in powers of a coupling constant, etc.

There have been recent claims based on numerical evidence [21, 22] that at the next-to-leading order (NLO) Large $N$ approximation an interacting quantum field may show signs of thermalization. In a recent report [13] we consider a $O(N)$ invariant scalar field of unbroken symmetry, develop the CTP 2PI EA [6] in powers of $1/N$, retaining up to the next-to-leading order [$O(1)$] terms, and show that the only time translation invariant solutions are thermal. Our analytic result provides support for similar claims. Here, we present an alternative approach by defining a correlation entropy and showing the existence of an H-theorem in the simpler quantum mechanical $O(N)$ model.

2 Entropy of Interacting Quantum Fields

Because entropy is of such fundamental importance, it is useful to discuss how entropy can be defined for the various ways of approximating the features and dynamics of a quantum field. First, for a unitarily evolving quantum field theory whose dynamics is a closed system (as opposed to an ‘effectively open system’) and governed by the quantum Liouville equation, it is well known that the von Neumann entropy of the density matrix,

$$S_{VN} = -Tr[\rho(t) \ln \rho(t)],$$

is exactly conserved. If there is a justifiable separation of macroscopic and microscopic time scales, one can adopt the theoretical framework of quantum kinetic field theory. If one makes the assumption of factorization (equivalently, slaving of the Wigner-transformed four-point function), one obtains the relativistic Boltzmann equation in the binary collision approximation. The Boltzmann entropy $S_B$ defined in terms of the phase space distribution $f(k, X)$ for quasiparticles can in this case be shown to satisfy a relativistic H-theorem [23, 6]. We want to generalize this to a correlation entropy for interacting quantum fields.

However, in the case where there does not exist such a separation of time scales, how does one define the entropy of a quantum field? For nonperturbative truncations of the dynamics of interacting quantum fields, this is a nontrivial question [24]. Intuitively, one expects that any coarse graining which leads to an effectively open system with irreversible dynamics will also lead to the growth of entropy. Formally these operations can be systematically expressed in terms of the projection operator techniques [25]. A projection operator $P$ projects out the irrelevant degrees of freedom (thus going over to an open system) from the total system described by the density
operator $\rho$, yielding the reduced density matrix $\rho_R$
\[ \rho_R(t) = P\rho(t), \]  
(2)

There exists a well-developed formalism for deriving the equation of motion of the relevant degrees of freedom, and in terms of it, the behavior of the coarse-grained entropy 
\[ S_{CG} = -Tr[\rho_R(t) \ln \rho_R(t)], \]  
(3)

which will in general not be conserved. The projection operator formalism can be used to express the slaving of higher correlation functions in the correlation hierarchy. From it one can define an entropy in effectively open systems (see, e.g., [24]). (So far it has only been implemented within the framework of perturbation theory.) Another equally powerful method adept to field theory is the Feynman-Vernon influence functional formalism [27, 15] which has been used to treat entropy in quantum open systems (see, e.g., [28]).

2.1 Entropy special to Choice of Basis or Representation

We now consider the entropy functions for quantum fields, beginning with the simpler yet more subtle case of a free field. Historically this issue was, to our knowledge, first raised in the context of entropy generation from particle creation for a free quantum field in an expanding Universe [24] due to the parametric amplification of vacuum fluctuations. The focal point is a wave equation with a time-dependent natural frequency for the amplitude function of a normal mode. (The same condition arises for an interacting field (such as the $\lambda \Phi^4$ theory) in the Hartree-Fock approximation or the $O(N)$ field theory at leading order in the large-$N$ expansion [11].) Since the underlying dynamics is clearly unitary and time-reversal invariant in this case, a suitable coarse graining leading to entropy growth is not trivially evident. Hu and Pavon [30] first made the observation that a coarse graining is implicitly incorporated when one chooses to depict particle numbers in the $n$-particle Fock (or “$N$”) representation or to depict phase coherence in the phase (or “$P$”) representation. Various proposals for coarse graining the dynamics of parametric oscillators have followed [31, 32, 33, 34, 35]. The language of squeezed states is particularly useful for describing entropy growth due to parametric particle creation [36, 37, 33, 28]. For our purposes, the essential features of entropy growth due to parametric particle creation which distinguish it from correlational entropy growth (to be discussed below), are that parametric particle creation depends sensitively on the choice of representation for the state space of the parametric oscillators, and the specificity of the initial conditions.

2.2 Entropy from Projecting out Irrelevant Variables

In contrast to entropy growth resulting from parametric particle creation from the vacuum, entropy growth due to particle interactions in quantum field theory [24] has a very different physical origin. A coarse graining scheme was proposed by Hu and Kandrup [24] for these processes. Expressing an interacting quantum field in terms of a collection of coupled parametric oscillators, their proposal is to define a reduced density matrix by projecting the full density operator onto each oscillator’s single-oscillator Hilbert space in turn,
\[ \gamma(\vec{k}) \equiv Tr_{\vec{k}' \neq \vec{k}} \rho, \]  
(4)

and defining the reduced density operator as the tensor product $\Pi$ of the projected single-oscillator density operators $\gamma(\vec{k})$,
\[ \rho_R \equiv \Pi_{\vec{k}} \gamma(\vec{k}). \]  
(5)
The coarse-grained (Hu-Kandrup) entropy is then just given by Eq. (3), from which we obtain

\[ S_{HK} = -\sum_{\mathbf{k}} \text{Tr}[\gamma(\mathbf{k}) \ln \gamma(\mathbf{k})]. \]  

(6)

It is interesting to observe that for a spatially translation-invariant density matrix for a quantum field theory which is Gaussian in the position basis, this entropy is just the von Neumann entropy of the full density matrix, because the spatially translation-invariant Gaussian density matrix separates into a product over density submatrices for each \( \mathbf{k} \) oscillator. This projection (Hu-Kandrup) coarse graining, like the correlation-hierarchy (Calzetta-Hu) coarse graining scheme, does not choose or depend on a particular representation for the single oscillator Hilbert space. It is sensitive to the establishment of correlations through the explicit couplings.

2.3 Entropy from Slaving the Higher Correlations: The CTP 2PI effective action

A general procedure has been presented for obtaining coupled equations for correlation functions at any order \( l \) in the correlation hierarchy, which involves a truncation of the master effective action at a finite order in the loop expansion \([7, 8]\). By working with an \( l \) loop-order truncation of the master effective action, one obtains a closed, time-reversal invariant set of coupled equations for the first \( l + 1 \) correlation functions, \( \phi, G, C_3, \ldots, C_{l+1} \). In general, the equation of motion for the highest order correlation function will be linear, and thus can be formally solved using Green’s function methods. The existence of a unique solution depends on supplying causal boundary conditions. When the resulting solution for the highest correlation function is back-substituted into the evolution equations for the other lower-order correlation functions, the resulting dynamics is not time-reversal invariant, and generically dissipative. Thus, as was described before, with the slaving of the higher-order (Wigner-transformed) correlation function in quantum kinetic field theory, we have rendered a closed system (the truncated equations for correlation functions) into an effectively open system. In addition to dissipation, one expects that an effectively open system will manifest noise/fluctuations, as shown in \([7, 8]\) for the case of the slaving of the four-point function to the two-point function in the symmetry-unbroken \( \lambda \Phi^4 \) field theory. Thus a framework exists for exploring irreversibility and fluctuations within the context of an unitary quantum field theory, using the truncation and slaving of the correlation hierarchy. The effectively open system framework is useful for precisely those situations, where a separation of macroscopic and microscopic time scales (which would permit an effective kinetic theory description) does not exist, such as is encountered in the thermalization issue.

While it is certainly not the only coarse graining scheme which could be applied to an interacting quantum field, the slaving of higher correlation functions to lower-order correlation functions within a particular truncation of the correlation hierarchy, as a particular coarse graining method, has several important benefits. It can be implemented in a truly nonperturbative fashion. This necessitates a nonperturbative resummation of daisy graphs, which can be incorporated in the truncation/slaving of the correlation hierarchy in a natural way.

In this study, we are interested in the growth of entropy due to the coarse graining of the correlation hierarchy by slaving a higher correlation function. The simplest nonperturbative truncation of the Schwinger-Dyson equations for the \( \lambda \Phi^4 \) field theory which contains the time-dependent Hartree-Fock approximation is the two-loop truncation of the master effective action, in which only the mean field \( \phi \), the two-point function \( G \), the three-point function \( C_3 \) are dynamical. All higher order correlation functions obey algebraic constraints, and can thus be expressed in terms of the three dynamical correlation functions.
While this truncation of the Schwinger-Dyson equations is well-defined and could in principle be solved, it is disadvantageous because, as stated above, without some coarse graining, the system will not manifest irreversibility and will not equilibrate. Therefore we slave the three-point function to the mean field and two-point function, and thus arrive at an effectively open system. In principle, a systematic analysis of the coarse-grained dynamics of the mean field and two-point function should include stochasticity [7, 8], but noise is not our primary concern here.

3 The H theorem for the quantum mechanical $O(N)$ model

3.1 The Next-to-Leading order Large $N$ Approximation

The number $N$ of replicas of essentially identical fields (like the $N$ scalar fields in an $O(N)$ invariant theory, or the $N^2-1$ gauge fields in a $SU(N)$ invariant non-abelian gauge theory) suggests using $1/N$ as a natural small parameter, with a well defined physical meaning. Unlike coupling constants, this is not subjected to renormalization or radiative corrections. By ordering the perturbative expansion in powers of this small parameter, several nonperturbative effects (in terms of coupling constants) may be systematically investigated.

The ability of the $1/N$ framework to address the nonperturbative aspects of quantum field dynamics has motivated a detailed study of the properties of these systems. In non-equilibrium situations, this formalism has been applied to the dynamics of symmetry breaking [11, 38, 39, 40, 41] and self-consistent semiclassical cosmological models [42, 43, 44, 45, 46, 47].

In the case of the $O(N)$ invariant theory, in the presence of a nonzero background field (or an external gravitational or electromagnetic field interacting with the scalar field) we may distinguish the longitudinal quantum fluctuations in the direction of the background field, in field space, from the $N-1$ transverse (Goldstone or pion) fluctuations perpendicular to it. To first order in $1/N$, the longitudinal fluctuations drop out of the formalism, so we effectively are treating the background field as classical. Likewise, quantum fluctuations of the external field are overpowered by the fluctuations of the $N$ scalar field. In this way, the $1/N$ framework provides a systematics and a quantitative measure of the semiclassical approximation [48].

To leading order (LO), the theory reduces to $N-1$ linear fields with a time dependent mass, which depends on the background field and on the linear fields themselves through a gap equation local in time. This depiction of the dynamics agrees both with the Gaussian approximation for the density matrix [49, 50] and with the Hartree approximation [34]. The LO $1/N$ theory is Hamiltonian [34] and time-reversal invariant. It simply does not thermalize. For example, if we set up conditions where both the background field and the self-consistent mass are space-time independent, then the particle numbers for each fluctuation mode will be conserved. The existence of these conservation laws precludes thermalization [51].

We note that the failure of the LO approximation to describe thermalization is indicative of a more general breakdown of the approximation at later times, where effects of particle interaction dominate. Both the distribution of energy among the field modes and the phase relationships (or lack thereof) among them affect the way quantum fluctuations react on the background or external fields. Therefore, from physical considerations, one can say that a theory which does not describe thermalization becomes unreliable for most other purposes as well [52].

This is where the next to leading order (NLO) approximation enters. It has been applied to quantum mechanics [11, 2], classical field theory [53, 54, 55] and quantum field theory in 1 space dimension [57], being contrasted both to exact numerical simulations of these systems, as well as against other approximations purporting to go beyond LO. The NLO has been shown to be an accurate approximation, even at moderate values of $N$. 
The $2PI$ formalism is also suitable for this question because, provided an auxiliary field is cleverly introduced, the $2PI$ CTP effective action can be found in closed form at each order in $1/N$ \[15\]. We now begin our study with a concrete model.

### 3.2 O(N) $\lambda X^4$ Theory

To fix the physical ideas, we shall discuss the problem in zero space dimensions, namely, the quantum mechanical O(N) model. The system dynamics is described by the Hamiltonian with variables $X_A$ and their conjugate momenta $P_A$, where $A,B$ are the $O(N)$ group indices, with

$$H = \frac{1}{2} \left\{ P^B P^B + M^2 X_B X_B + \frac{\lambda}{4N} (X_B X_B)^2 \right\}$$

The classical action

$$S = \int dt \frac{1}{2} \left\{ \dot{X}_B X_B - M^2 X_B X_B - \frac{\lambda}{4N} (X_B X_B)^2 \right\}$$

where $M_0^2$ and $\lambda_0$ are the mass parameter and coupling constant. We rescale $X_B \equiv \sqrt{N} x_B$

$$S = N \int dt \frac{1}{2} \left\{ \dot{x}_B x_B - M^2 x_B x_B - \frac{\lambda}{4} (x_B x_B)^2 \right\}$$

Discarding a constant term, we may rewrite the classical action as

$$S = N \int dt \frac{1}{2} \left\{ \dot{x}_B x_B - \left[ \frac{M^2}{\sqrt{\lambda}} + \frac{\sqrt{\lambda}}{2} x_B x_B \right]^2 \right\}$$

To set up the $1/N$ resummation scheme, it is customary to introduce the auxiliary field $\chi$, writing

$$S = \frac{N}{2} \int \left\{ \dot{x}_B x_B - \left[ \frac{M^2}{\sqrt{\lambda}} + \frac{\sqrt{\lambda}}{2} x_B x_B \right] \right\}$$

whence

$$S = N \int dt \left\{ \frac{1}{2} \dot{x}_B x_B - \frac{M^2}{\lambda} + \frac{x_B^2}{2} \right\}.$$  

From now on, we consider $\chi$ and $x_B$ as fundamental variables on equal footing.

Because of the $O(N)$ symmetry, the symmetric point must be a solution of the equations of motion. For simplicity, we shall assume we are within this symmetric phase, and treat $x_B$ as a quantum fluctuation. We also split the auxiliary field $\chi = \bar{\chi} + \tilde{\chi}$ into a background field $\bar{\chi}$ and a fluctuation field $\tilde{\chi}$. The action becomes

$$S = S_0 + S_1 + S_2 + S_3$$

$S_0$ is just the classical action evaluated at $x_B = 0$, $\chi = \bar{\chi}$:

$$S_0 = \frac{N}{\lambda} \int dt \left\{ \frac{1}{2} \tilde{\chi}^2 - M^2 \bar{\chi} \right\}$$

$S_1$ contains terms linear in $\tilde{\chi}$ and can be set to zero by a suitable choice of the background field $\bar{\chi}$.
\[ S_1 = \frac{N}{\lambda} \int dt \left\{ \bar{\chi} - M^2 \right\} \bar{\chi} \]  

(15)

\[ S_2 = N \int dt \left\{ \frac{1}{2} \dot{x}_B \dot{x}_B - \frac{\bar{\chi}}{2} x_B x_B + \frac{1}{2\lambda} \dot{\bar{\chi}}^2 \right\} \]  

(16)

Finally \( S_3 \) contains the bare vertex

\[ S_3 = \left( -\frac{N}{2} \right) \int d^d x \left\{ \bar{\chi} x_B x_B \right\}. \]  

(17)

To write the 2PI CTP EA we double the degrees of freedom, incorporating a branch label \( a = 1, 2 \) (for simplicity, if not explicitly written, we assume that the label \( a \) also contains the time branch, i.e., \( x^{Aa} \equiv x^{Aa}(t_a) \)). We also introduce propagators \( G^{Aa,Bb} \) for the path ordered expectation values

\[ G^{Aa,Bb} = \langle x^{Aa} x^{Bb} \rangle \]  

(18)

and \( F^{ab} \) for

\[ F^{ab} = \langle \bar{\chi}^a \bar{\chi}^b \rangle \]  

(19)

Because of symmetry, it is not necessary to introduce a mixed propagator, for \( \langle \bar{\chi}^a x^{Bb} \rangle \equiv 0 \). The 2PI CTP EA reads

\[ \Gamma = S_0 \left[ \bar{\chi}^1 \right] - S_0 \left[ \bar{\chi}^2 \right] + \frac{1}{2} \int dudv \left\{ D_{Aa,Bb}(u,v) G^{Aa,Bb}(u,v) + \frac{N}{\lambda_0} c_{ab} \delta(u,v) F^{ab} (u,v) \right\} \]

\[ - \frac{i\hbar}{2} \left[ Tr \ln G + Tr \ln F \right] + \Gamma_Q \]  

(20)

where, if the position variable is explicit, \( c_{11} = -c_{22} = 1, c_{12} = c_{21} = 0, \)

\[ D_{Aa,Bb}(u,v) = N \delta_{AB} \left[ c_{ab} \delta^2 + c_{abc} \bar{\chi}^c \right] \delta(u,v), \]  

(21)

and \( c_{abc} = 1 \) when all entries are 1, \( c_{abc} = -1 \) when all entries are 2, and \( c_{abc} = 0 \) otherwise. When we use the compressed notation, it is understood that \( c_{ab} \equiv c_{ab} \delta(t_a,t_b) \) and \( c_{abc} \equiv c_{abc} \delta(t_a,t_b) \delta(t_a,t_c) \). \( \Gamma_Q \) is the sum of all 2PI vacuum bubbles with cubic vertices from \( S_3 \) and propagators \( G^{Aa,Bb} \) and \( F^{ab} \). Observe that \( \Gamma_Q \) is independent of \( \bar{\chi}^c \).

Taking variations of the 2PI CTP EA and identifying \( \bar{\chi}^1 = \bar{\chi}^2 = \bar{\chi} \), we find the equations of motion

\[ \frac{N}{2} \delta_{AB} D_{ab} - \frac{i\hbar}{2} \left[ G^{-1} \right]_{Aa,Bb} + \frac{1}{2} \Pi_{Aa,Bb} = 0 \]  

(22)

\[ \frac{N}{2\lambda} c_{ab} - \frac{i\hbar}{2} \left[ F^{-1} \right]_{ab} + \frac{1}{2} \Pi_{ab} = 0 \]  

(23)

\[ \frac{N}{\lambda} \left\{ \bar{\chi} (t) - M^2 \right\} - \frac{N}{2} \delta_{AB} G^{A1,B1}(t,t) = 0 \]  

(24)
where \( D_{ab}(u, v) = c_{ab} \left[ \partial_z^2 - \bar{\chi}(u) \right] \delta(u, v) \),
\[
\Pi_{Aa,Bb} = 2\frac{\delta \Gamma_Q}{\delta G^{Aa,Bb}}; \quad \Pi_{ab} = 2\frac{\delta \Gamma_Q}{\delta F^{ab}} \tag{25}
\]
We shall seek a solution with the structure
\[
G^{Aa,Bb} = \frac{\hbar}{N} \delta^{AB} G^{ab}(u, v) \tag{26}
\]
which is consistent with vanishing Noether charges. Then it is convenient to write
\[
F^{ab} = \frac{\hbar}{N} H^{ab}; \quad \Pi_{Aa,Bb} = \delta^{AB} P_{ab}; \quad \Pi_{ab}(x,y) = N Q_{ab}(x,y) \tag{27}
\]
The equations become
\[
D_{ab} - i \left[ \frac{G^{-1}}{2} \right]_{ab} + \frac{1}{N} P_{ab} = 0 \tag{28}
\]
\[
\frac{1}{\lambda} c_{ab} - i \left[ \frac{H^{-1}}{2} \right]_{ab} + Q_{ab} = 0 \tag{29}
\]
\[
\frac{1}{\lambda} \left\{ \bar{\chi}(t) - M^2 \right\} - \frac{\hbar}{2} G^{11}(t,t) = 0 \tag{30}
\]
Observe that
\[
P_{ab} = \frac{2}{\hbar} \frac{\delta \Gamma_Q}{\delta G^{ab}}; \quad Q_{ab} = \frac{2}{\hbar} \frac{\delta \Gamma_Q}{\delta H^{ab}} \tag{31}
\]
These are the exact equations we must solve. The successive \(1/N\) approximations amount to different constitutive relations expressing \(P_{ab}\) and \(Q_{ab}\) in terms of the propagators.

The key observation is that in any given Feynman graph each vertex contributes a power of \(N\), each internal line a power of \(N^{-1}\), and each trace over group indices another power of \(N\). We have both \(G\) and \(H\) internal lines, but the \(G\) lines only appear in closed loops. On each loop, the number of vertices equals the number of \(G\) lines, so there only remains one power of \(N\) from the single trace over group labels. Therefore the overall power of the graph is the number of \(G\) loops minus the number of \(H\) lines. Now, since we only consider \(2PI\) graphs, there is a minimum number of \(H\) lines for a given number of \(G\) loops. For example, if there are two \(G\) loops, they must be connected by no less than 3 \(H\) lines, and so this graph cannot be higher than \(NNLO\). A graph with 3 \(G\) loops cannot have less than 5 \(H\) lines, and so on.

We conclude that \(\Gamma_Q\) vanishes at \(LO\), and therefore \(P_{ab} = Q_{ab} = 0\). There is only one \(NLO\) graph, consisting of a single \(G\) loop and a single \(H\) line. This graph leads to
\[
\Gamma_Q^{NLO} = (-i\hbar) \left( -\frac{1}{2} \right) \left( -\frac{N}{2Z_0\hbar} \right)^2 2N \left( \frac{\hbar}{N} \right)^3 c_{abc} c_{def} \int duduH^{ad}(u,v)G^{be}(u,v)G^{cf}(u,v) \tag{32}
\]
Therefore, we get
\[
P_{ab} = i\hbar c_{acd} c_{bef} H^{ce} G^{df} \tag{33}
\]
\[
Q_{ab} = \frac{i\hbar}{2} c_{acd} c_{bef} G^{ce} G^{df} \tag{34}
\]
3.3 From correlations to the reduced density matrix

The 2PIEA yields equations of motion for the (arbitrary time) two-point functions of the theory. Given a solution of these equations, in principle we may find the expectation values of a large family of composite operators at any given time. Suppose we adopt a coarse-grained description where we choose a certain number of these expectation values as the relevant variables to describe the system. Then there will be a single density matrix which has maximum von Neumann entropy with respect to the class of states reproducing the preferred expectation values. This maximum entropy density matrix is the reduced density matrix for the system, and its entropy its correlation entropy. The $H$ theorem is the statement that the correlation entropy grows in time, when the correlations themselves are evolved using the equations derived from the 2PIEA truncated to some order in the $1/N$ expansion (this statement will be qualified below).

Let us consider first the simplest case where we describe the system by specifying the values of $\langle x_B x_B \rangle$, $\langle x_B p_B + p_B x_B \rangle$ and $\langle p_B p_B \rangle$ ($p^A = N \dot{x}^A$ is the momentum conjugate to $x_B$) at every moment of time (by symmetry, we assume $\langle x_B x_C \rangle = \delta_{BC} \langle x_B x_B \rangle / N$, and similarly in the other cases). This choice of relevant variables does not utilize or display the full power of the 2PICTEA, in the sense that the 2PI CTP EA yields equations of motion which, if carried beyond LO, account for the build up of non-Gaussian correlations. However, this restriction is assumed explicitly or implicitly in most of the work on thermalization, and the focus is placed on the shape of the spectrum of the two-point functions at different times. The situation is analogous to Boltzmann theory, where the equations of motion can describe the build-up of two-particle correlation functions from an uncorrelated initial state, but the Boltzmann entropy is defined from the one-particle distribution function alone.

At every moment of time we define a maximum entropy density matrix

$$\rho(t) = Z^{-1} e^{-H_0}$$  \hspace{1cm} (35)$$

where

$$H_0 = \frac{1}{2} \left\{ \alpha p^B p^B + \beta (x_B p_B + p_B x_B) + \gamma x_B x_B \right\}$$  \hspace{1cm} (36)$$

and

$$Z = \text{Tr} \, e^{-H_0} = z^N$$  \hspace{1cm} (37)$$

$$z = \frac{1}{2 \sinh \left[ \frac{1}{2} \hbar \sigma \right]}$$  \hspace{1cm} (38)$$

where

$$\sigma^2 = \alpha \gamma - \beta^2$$  \hspace{1cm} (39)$$

(see Appendix A). The parameter $\sigma$ measures how far the system is from a pure state. To see this, observe that

$$\text{Tr} \rho^2 = \frac{\text{Tr} \, e^{-2H_0}}{Z^2} = \left[ \frac{2 \sinh^2 \left[ \frac{1}{2} \hbar \sigma \right]}{\sinh \left[ \hbar \sigma \right]} \right]^N = \left[ \tanh \left[ \frac{1}{2} \hbar \sigma \right] \right]^N$$  \hspace{1cm} (40)$$

So $\sigma \to \infty$ yields a pure state, while the state is mixed for any finite $\sigma$. Therefore, to show the $H$ theorem, we must show that $d\sigma/dt < 0$. 

10
Let us begin by showing that $\sigma$ may be written directly in terms of the expectation values for binary products of canonical variables. Indeed, we have

\[-2 \frac{\partial}{\partial \alpha} \ln Z = \langle p_B^2 p_B^2 \rangle = \frac{N\hbar}{\tanh \frac{1}{2} \hbar \sigma} \gamma \tag{41}\]

\[-2 \frac{\partial}{\partial \gamma} \ln Z = \langle x_B x_B \rangle = \frac{N\hbar}{\tanh \frac{1}{2} \hbar \sigma} \alpha \tag{42}\]

\[-2 \frac{\partial}{\partial \beta} \ln Z = \langle x_B p_B + p_B x_B \rangle = \frac{-N\hbar}{\tanh \frac{1}{2} \hbar \sigma} \beta \tag{43}\]

Therefore

\[4 \langle p_B^2 p_B^2 \rangle \langle x_B x_B \rangle - \langle x_B p_B + p_B x_B \rangle^2 = \left(\frac{N\hbar}{\tanh \frac{1}{2} \hbar \sigma}\right)^2 \tag{44}\]

As an aside, these formulae show that

\[\langle H_0 \rangle = \frac{N\hbar \sigma}{2 \tanh \frac{1}{2} \hbar \sigma} \tag{45}\]

therefore the von Neumann entropy is

\[S = - \langle \ln \rho \rangle = \langle H_0 \rangle + \ln Z = \frac{N\hbar \sigma}{2 \tanh \frac{1}{2} \hbar \sigma} - N \ln \left[ \sinh \left( \frac{1}{2} \hbar \sigma \right) \right] - N \ln 2 \tag{46}\]

Observe that

\[\frac{dS}{d\sigma} = -\frac{N\hbar^2 \sigma}{4 \sinh^2 \frac{1}{2} \hbar \sigma} < 0 \tag{47}\]

So again, to obtain a $H$ theorem we must show that $\sigma$ is non-increasing in time.

### 3.4 The physical basis of the $H$ theorem

It is clear that if we could solve the exact evolution, the $H$ theorem would be manifest: Given $\rho(t_0)$ at the initial time $t_0$, solve the exact Liouville equation up to a time $t_1$. Let $\bar{\rho}(t_1)$ be the result. We extract the new expectation values from $\bar{\rho}(t_1)$ and use them to construct the new maximum entropy density matrix $\rho(t_1)$. Then $S[\rho(t_1)] \geq S[\bar{\rho}(t_1)]$, by definition, and $S[\bar{\rho}(t_1)] = S[\rho(t_0)]$, because the exact evolution is unitary, thus the $H$ theorem.

What we need to determine is whether, given the approximate dynamics for the expectation value provided by the $1/N$ scheme, the $H$ theorem still obtain. In fact, we know to $LO$ it does not. From the angle of addressing the thermalization issue, the $LO$ approximation totally misses the point.

Physically, we expect to obtain a $H$ theorem because our description of the system is incomplete, in that it ignores higher correlations. We may rightfully call this entropy *correlation entropy*, as explained in the Introduction. The system as described by a finite order $1/N$ approximation is an open system, in the following sense: Suppose we try to reproduce it in the lab. In order to have the different correlations evolving according to the $2PI$ $1/N$ equations appropriate to the desired
order, rather than the full Schwinger - Dyson hierarchy, we must keep nudging it to conform to this artificially created condition (again, due to our inability to comprehend the complete picture). So there is energy and (in principle) entropy flow in and out of the system besides correlation entropy production. The sum of the entropy produced in the system, and that exchanged with the environment (which keeps the system on course) need not be positive.

In the $LO$ case, as the approximate evolution (described by a quantum Vlasov equation \[35\]) is unitary, there is no net entropy production and no $H$-theorem. This implies that the two sources of entropy change must cancel exactly. Note that in such a case, if one works with a Fock representation, for boson fields, the number of particles increases with time and can be used as a measure of field entropy (what Hu and Pavon \[31\] called an intrinsic measure of field entropy, as described in Sec. IIA above. See also \[34\].) However, this should not be confused with the correlation entropy of the Boltzmann kind under study for which the $H$-theorem is defined.

Of course, we expect better approximations to be closer to the exact dynamics, therefore requiring less external control of (or rather, tampering with) the system. This reduces the entropy loss to the environment. Eventually correlation entropy production becomes the dominant factor, and a $H$ theorem is obtained.

To summarize, the relevant question is not whether there is a $H$ theorem for a given choice of relevant variables, which is obvious, but rather if the $NLO$ approximation is good enough to make it manifest, or we must go even higher.

### 3.5 Statement of the $H$ theorem

To continue our investigation, first note that

$$\Delta = \frac{d}{dt} \left\{ 4 \langle p^B p^B \rangle \langle x_B x_B \rangle - \langle x_B p_B + p_B x_B \rangle^2 \right\} = - \left( \frac{N^2 \hbar^2}{\tanh \left[ \frac{1}{2} \hbar \sigma \right]} \right) \frac{1}{\sinh^2 \left[ \frac{1}{2} \hbar \sigma \right]} \frac{d\sigma}{dt}$$

(48)

So we must show that the left hand side is positive. Since the $1/N$ scheme proceeds via taking the expectation values of the canonical equations of motion, we may use them to simplify this expression. The canonical equations are (for simplicity, we use the form without the auxiliary field)

$$\dot{x}^A = \frac{p^A}{N}$$

(49)

$$\dot{p}^A = -N \left[ M^2 + \frac{\lambda}{2} \langle x_B x_B \rangle \right] x^A$$

(50)

Therefore

$$\frac{d}{dt} \langle x_B x_B \rangle = \frac{1}{N} \langle x_B p_B + p_B x_B \rangle$$

(51)

$$\frac{d}{dt} \langle p^B p^B \rangle = -N \left[ M^2 \langle x_B p_B + p_B x_B \rangle - \frac{\lambda}{2} \langle (x_C x_C) x_B p_B + p_B x_B (x_C x_C) \rangle \right]$$

(52)

Recall the canonical commutation relations

$$x_B p_B = \frac{1}{2} \langle x_B p_B + p_B x_B \rangle + \frac{i\hbar}{2}$$

(53)
\[ p_{Bx_B} = \frac{1}{2} (x_{B PB} + p_{Bx_B}) - \frac{i \hbar}{2}, \]  

so

\[
\frac{d}{dt} \langle p^B p^B \rangle = -N \left[ M^2 \langle x_{B PB} + p_{Bx_B} \rangle 
+ \frac{\lambda}{4} \langle (x_{CxC}) (x_{B PB} + p_{Bx_B}) + (x_{B PB} + p_{Bx_B}) (x_{CxC}) \rangle \right].
\]  

Finally

\[
\frac{d}{dt} \langle x_{B PB} + p_{Bx_B} \rangle = \frac{2}{N} \langle p^B p^B \rangle - 2N \left[ M^2 \langle x_{Bx_B} \rangle + \frac{\lambda}{2} \langle (x_{CxC})^2 \rangle \right],
\]  

so

\[
\Delta = \frac{d}{dt} \left\{ 4 \langle p^B p^B \rangle \langle x_{Bx_B} \rangle - \langle x_{B PB} + p_{Bx_B} \rangle^2 \right\}
= \lambda N \left\{ 2 \langle x_{B PB} + p_{Bx_B} \rangle \langle (x_{CxC})^2 \rangle 
- \langle x_{Bx_B} \rangle \langle (x_{CxC}) (x_{B PB} + p_{Bx_B}) + (x_{B PB} + p_{Bx_B}) (x_{CxC}) \rangle \right\}
\]

This may be rewritten in the following suggestive way

\[
\Delta = \lambda \left\{ 2 \langle (x_{CxC})^2 \rangle \frac{d}{dt} \langle x_{Bx_B} \rangle - \langle x_{Bx_B} \rangle \frac{d}{dt} \langle (x_{CxC})^2 \rangle \right\}
= (-\lambda) \langle x_{Bx_B} \rangle^3 \frac{d}{dt} \left[ \frac{\langle (x_{CxC})^2 \rangle}{\langle x_{Bx_B} \rangle^2} \right],
\]

so the H theorem reads

\[
\frac{d}{dt} \left[ \frac{\langle (x_{CxC})^2 \rangle}{\langle x_{Bx_B} \rangle^2} \right] \leq 0.
\]  

Or, equivalently,

\[
\frac{d}{dt} \left[ \frac{\langle (x_{CxC})^2 \rangle - \langle x_{Bx_B} \rangle^2}{\langle x_{Bx_B} \rangle^2} \right] \leq 0.
\]

Observe that this expression is invariant under a rescaling of the field.

4 Correlation entropy production in weakly coupled theories

The results from the last section may be summarized as (cfr. Eqs. (47), (48) and (59))

\[
\frac{dS}{dt} = \left( \frac{-\lambda}{4N} \right) \sigma \tanh \left[ \frac{1}{2} \frac{i \hbar \sigma}{\hbar} \right] \langle x_{Bx_B} \rangle^3 \frac{d}{dt} \left[ \frac{\langle (x_{CxC})^2 \rangle}{\langle x_{Bx_B} \rangle^2} \right].
\]
We shall not attempt to give a general proof that this quantity is non-negative, but only check that it is so in some simple cases.

We must first express the expectation value in Eq. (62) to the required order in $1/N$. Recall that the $q$–number auxiliary field $\chi$ was introduced as a formal Gaussian process with correlation functions

$$
\langle \chi(t) \rangle_{\chi} = M^2 + \frac{\lambda}{2} x_B x_B(t) \tag{63}
$$

$$
\langle \chi(t) \chi(t') \rangle_{\chi} = \left( M^2 + \frac{\lambda}{2} x_B x_B(t) \right) \left( M^2 + \frac{\lambda}{2} x_B x_B(t') \right) + \frac{i\lambda\hbar}{N} \delta(t-t') \tag{64}
$$

where $\langle \rangle_{\chi}$ denotes an expectation value with respect to the $\chi$ variable alone. Taking a further expectation value over the quantum state of the $x$ fields, we recover Eq. (30) and

$$
\frac{\hbar}{N} H^{11}(t,t') = \frac{\lambda^2}{4} \left[ \langle x_B x_B(t) x_B x_B(t') \rangle - \langle x_B x_B(t) \rangle \langle x_B x_B(t') \rangle \right] + \frac{i\lambda\hbar}{N} \delta(t-t') \tag{65}
$$

Therefore the $H$ theorem boils down to showing that

$$
\frac{4\hbar}{\lambda^2 N} \frac{d}{dt} \left[ \frac{H^{11}(t,t) - i\lambda \delta(0)}{\langle x_B x_B(t) \rangle^2} \right] \leq 0 \tag{66}
$$

It is clear that there is no correlation entropy production in free theories, so if the $H$ theorem is to hold as a categorical relationship, then it must hold already to lowest order in the coupling constant. Therefore we may expand $H^{11}(t,t)$ in powers of $\lambda$, keeping only the lowest nontrivial order. Iterating the equation of motion

$$
H^{ac}(t,t') = i\lambda c^{ac} \delta(t-t') - \lambda \int ds \ c^{ab} Q_{bd}(t,s) \ H^{dc}(s,t') \tag{67}
$$

we get

$$
H^{11}(t,t) = i\lambda \delta(0) - i\lambda^2 Q^{11}(t,t) + \frac{i\lambda^3 \hbar^2}{4} \Psi \tag{68}
$$

where

$$
\Psi = \frac{4}{\hbar^2} \int dt' \left( (Q_{11}(t,t'))^2 - (Q_{12}(t,t'))^2 \right) = \int dt' \left( (G^{12}(t,t'))^4 - (G^{11}(t,t'))^4 \right) \tag{69}
$$

We shall investigate the $H$ theorem in two limiting cases, first at early times for an arbitrary (diagonal in occupation number) initial state, and then at late time for vacuum initial conditions.

4.1 The $H$ theorem at early times

To investigate the meaning of this expression, let us expand the LO propagators in terms of mode functions

$$
f(t) = \frac{1}{\sqrt{2\omega}} e^{-i\omega t}. \tag{70}
$$

Concretely, if the initial state is diagonal in occupation number, we have
\[ G^{11} (t, t') = \frac{1}{2\omega} e^{-i\omega(t > t')} + \frac{n}{\omega} \cos \omega (t - t') \]  
\[ G^{12} (t, t') = \frac{1}{2\omega} e^{i\omega(t - t')} + \frac{n}{\omega} \cos \omega (t - t') , \]

where \( n = \langle a^\dagger a \rangle \). Therefore

\[ \Psi (t) = \frac{i}{8\omega^4} \int_0^t dt' \psi (t - t') \]  
\[ \psi (t) = 4 \left[ 2n^3 + 3n^2 - n \right] \sin 2\omega t + \left[ 2 \left( 2n^3 + 3n^2 \right) + 4n + 1 \right] \sin 4\omega t \]

(See Appendix B). Since

\[ \langle x_B x_B \rangle = \frac{1 + 2n}{2\omega} \]  

is constant, the relevant derivative is \((i d\Psi/dt)\), which is proportional to \(d(-\int \psi dt)/dt\). The \( H \) theorem \([\langle i d\Psi/dt \rangle < 0\] will obtain if \((d/dt) \int \psi dt > 0\). Now, since \( \psi (0) = 0 \)

\[ \frac{d}{dt} \int_0^t dt' \psi (t - t') = \int_0^t dt' \frac{d}{dt} \psi (t - t') = - \int_0^t dt' \frac{d}{dt'} \psi (t - t') = \psi (t) \]

which is indeed positive at short times.

### 4.2 The \( H \) theorem at late times

Let us assume vacuum initial conditions. The lowest order propagators may be written in terms of mode functions

\[ G^{11} (t, t') = F (t_>) F^* (t_<) \]  
\[ G^{12} (t, t') = F^* (t) F (t') . \]

\[ \Psi = \int_0^t dt' \left\{ F^4 (t') \left( F^* (t) F^* (t') \right) \right\} . \]

We have

\[ \langle x_B x_B \rangle = \hbar |F (t)|^2 \]

So the relevant inequality is

\[ i \frac{d}{dt} \frac{1}{|F (t)|^4} \int_0^t dt' \left\{ F^4 (t') \left( F^* (t) F^* (t') \right) \right\} \leq 0 \]

Or, equivalently,

\[ J = i \frac{d}{dt} \int_0^t dt' \left\{ \frac{F^4 (t')}{F^4 (t)} - \frac{F^* (t')}{F^* (t)} \right\} \leq 0. \]

Now
\[ J = -4i \int_{0}^{t} dt' \left\{ F'(t) \frac{F^4(t')}{F^5(t)} - F^{*}(t) \frac{F^{*4}(t')}{F^{*5}(t)} \right\} \]  

(83)

The mode functions may be expanded in terms of WKB modes

\[ F(t) = \alpha(t) f(t) + \beta(t) f^*(t) \]  

(84)

\[ F'(t) = \alpha(t) f'(t) + \beta(t) f'^*(t) \]  

(85)

At long times, the integrals will be dominated by the non-oscillatory terms

\[ F^4(t') \sim 6\alpha^2(t) \beta^2(t) |f(t)|^4 \]  

(86)

\[ J \sim \frac{-24it}{|F(t)|^{10}} |f(t)|^4 \left\{ F'(t) F^{*5}(t) \alpha^2(t) \beta^2(t) - F'^*(t) F^5(t) \alpha^2(t) \beta^2(t) \right\}. \]  

(87)

We make the analogous approximation

\[ F'(t) F^{*5}(t) = \alpha(t) f'(t) F^{*5}(t) + \beta(t) f'^*(t) F^{*5}(t) \sim 10 |f(t)|^4 \alpha^2(t) \beta^2(t) \left\{ |\alpha(t)|^2 f'(t) f^*(t) + |\beta(t)|^2 f'^*(t) f(t) \right\} \]  

(88)

and get

\[ J \sim \frac{-240it}{|F(t)|^{10}} |f(t)|^8 |\alpha(t)|^4 |\beta(t)|^4 \left\{ |\alpha(t)|^2 - |\beta(t)|^2 \right\} \left\{ f'(t) f^*(t) - f'^*(t) f(t) \right\}. \]  

(89)

But

\[ |\alpha(t)|^2 - |\beta(t)|^2 = 1 \]  

(90)

\[ f'(t) f^*(t) - f'^*(t) f(t) = -i. \]  

(91)

So

\[ J \sim \frac{-240t}{|F(t)|^{10}} |f(t)|^8 |\alpha(t)|^4 |\beta(t)|^4 < 0 \]  

(92)

\[ \text{QED.} \]

The existence of a H-theorem at the NLO is as reassuring as the absence thereof at the LO. It is also interesting to observe that entropy production is (formally) a quantity of the order of \(N^{-2}\); a strict (formal) \(1/N\) expansion would neglect such a quantity, but it would be generated in a numerical solution of the full \(1/N\) equations of motion. Therefore, it is suggestive that the statistical mechanical description of an interacting quantum field at the NLO level of approximation to a 2PI CTP effective action may permit “thermalization”, as claimed by [21, 22] based on numerical results. Note that our analysis corroborating this claim is predicated upon the restrictive conditions discussed above. Extension of this work to full field theory in conjunction with the reported results of [13] is under investigation.
Acknowledgements We thank Steve Ramsey for collaboration at the beginning stage of this work, some preliminary results were recorded in Chapter 5 of his University of Maryland Ph. D. thesis [12]. We acknowledge discussions of NLO scheme with Emil Mottola, Paul Anderson and Fred Cooper. EC is supported in part by CONICET, UBA, Fundación Antorchas and ANPCyT. BLH is supported in part by NSF grant PHY98-00967.

5 Appendix A: Computing the partition function

To compute $Z$, it is best to diagonalize $H_0$. Introduce new canonical variables

$$\xi_A = (\cosh u) p_A + (\sinh u) x_A$$

$$\eta_A = (\sinh u) p_A + (\cosh u) x_A$$

so that $[\xi_A, \eta_B] = [p_A, x_B] = (-i\hbar)\delta_{AB}$. Then

$$p_A = (\cosh u) \xi_A - (\sinh u) \eta_A$$

$$x_A = -(\sinh u) \xi_A + (\cosh u) \eta_A$$

and

$$H_0 = \left\{ \frac{1}{2} \left\{ A \xi_B \xi_B + B (\eta_B \xi_B + \xi_B \eta_B) + C \eta_B \eta_B \right\} \right\}$$

where

$$A = \alpha \cosh^2 u + \gamma \sinh^2 u - 2\beta \cosh u \sinh u$$

$$B = - (\gamma + \alpha) \cosh u \sinh u + \beta \left( \cosh^2 u + \sinh^2 u \right)$$

$$C = \alpha \sinh^2 u + \gamma \cosh^2 u - 2\beta \cosh u \sinh u$$

To diagonalize the Hamiltonian, we require $B = 0$, namely

$$\tanh 2u = \frac{2\beta}{\gamma + \alpha}$$

Now $Z$ is the usual partition function for $N$ harmonic oscillators with frequency $\omega^2 = C/A$ at inverse temperature $A$.

6 Appendix B: $\psi(t)$

$$\Psi(t) = \frac{1}{16\omega^4} \int_0^t dt' \left\{ \left[ e^{i\omega(t-t')} + 2n \cos \omega (t-t') \right]^4 - \left[ e^{-i\omega(t-t')} + 2n \cos \omega (t-t') \right]^4 \right\}$$

$$= \frac{i}{8\omega^4} \int_0^t dt' \left\{ 32n^3 \cos^3 \omega (t-t') \sin \omega (t-t') + 24n^2 \cos^2 \omega (t-t') \sin 2\omega (t-t') + 8n \cos \omega (t-t') \sin 3\omega (t-t') + \sin 4\omega (t-t') \right\}$$
\[ i \frac{\omega}{8} \int_{t_0}^{t} dt' \left\{ \begin{array}{c} 8 \left( 2n^3 + 3n^2 \right) \cos^2 \omega (t - t') \sin 2\omega (t - t') \\
+ 8n \cos \omega (t - t') \sin 3\omega (t - t') + \sin 4\omega (t - t') \end{array} \right\} \]

\[ = \frac{i}{8\omega^4} \int_{t_0}^{t} dt' \left\{ 2 \left( 2n^3 + 3n^2 \right) \left[ 2 \sin 2\omega (t - t') + \sin 4\omega (t - t') \right] \\
+ 4n \left[ \sin 4\omega (t - t') - \sin 2\omega (t - t') \right] + \sin 4\omega (t - t') \right\} \]

\[ = \frac{i}{8\omega^4} \int_{t_0}^{t} dt' \left\{ 4 \sin 2\omega (t - t') \left[ 2n^3 + 3n^2 - n \right] + \sin 4\omega (t - t') \left[ 2 \left( 2n^3 + 3n^2 \right) + 4n \right] \right\} \]

References

[1] B. Mihaila, T. Athan, F. Cooper, J. Dawson and S. Habib, Exact and approximate dynamics of the quantum mechanical $O(N)$ model, Phys. Rev. D62, 125015 (2000).

[2] B. Mihaila, J. Dawson and F. Cooper, Resumming the large-$N$ approximation for time evolving quantum systems, Phys. Rev. D63, 96003 (2001).

[3] Radu Balescu, Equilibrium and nonequilibrium statistical mechanics, (Wiley, New York, 1975)

[4] L. Kadanoff and G. Baym, Quantum Statistical Mechanics (Addison - Wesley, New York, 1962).

[5] P. Danielelewicz, Quantum Theory of Nonequilibrium Processes I, Ann. Phys. (NY) 152, 239 (1984).

[6] E. Calzetta and B. L. Hu, Nonequilibrium quantum fields, Phys. Rev. D37, 2878 (1988)

[7] E. Calzetta and B. L. Hu, “Correlations, Decoherence, Dissipation and Noise in Quantum Field Theory”, in Heat Kernel Techniques and Quantum Gravity, ed. S. Fulling (Texas A&M Press, College Station 1995); [hep-th/9501040]

[8] E. Calzetta and B. L. Hu, Stochastic dynamics of correlations in quantum field theory, Phys.Rev. D61, 025012 (2000)

[9] J. Schwinger, Brownian Motion of a Quantum Oscillator, J. Math. Phys. 2, 407 (1961).

[10] L. V. Keldysh, Diagram technique for nonequilibrium Processes, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)]

[11] P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. (N.Y.) 4, 1 (1963), ibid, 4, 12 (1963)

[12] K. Chou and Z. Su and B. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified., Phys. Rep. 118, 1 (1985).

[13] J. Cornwall, R. Jackiw and E. Tomboulis, Effective action for composite operators, Phys. Rev. D10, 2428 (1974)

[14] S. Coleman and R. Jackiw and H. D. Politzer, Spontaneous symmetry breaking in the $O(N)$ model for large $N$, Phys. Rev. D10, 2491 (1974)

R. Root, Effective potential for $O(N)$ model to order $1/N$, Phys. Rev. D10, 3322 (1974)
[12] Stephen A. Ramsey, ”Nonequilibrium Dynamics of Quantum Fields in Inflationary Cosmology” Ph.D. Dissertation, University of Maryland 1997

[13] E. Calzetta and B. L. Hu, Thermalization of an Interacting Quantum Field in the CTP-2PI Next-to-leading-order Large N Scheme [hep-ph/0205271]

[14] B. L. Hu, Physica A158, 399 (1989).

[15] B. L. Hu, “Quantum Statistical Fields in Gravitation and Cosmology” in Proc. Third International Workshop on Thermal Field Theory and Applications, eds. R. Kobes and G. Kunstatter (World Scientific, Singapore, 1994) gr-qc/9403061

[16] A. Einstein, Ann. Phys. (4), 19, 371 (1906), reprinted in Investigations on the theory of the Brownian movement, edited by R. Fürth (Dover, New York, 1956).
A. Einstein, Phys. Zs. 18, 121 (1917) (reprinted in Sources of Quantum Mechanics, edited by B. van der Waerden (Dover, New York, 1967).
H. Callen and T. Welton, Phys. Rev. 83, 34 (1951).
M. S. Green, J. Chem. Phys. 19, 1036 (1951).
R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); Rep. Prog. Phys. 29, 255 (1966).

[17] M. Kac and J. Logan, “Fluctuations”, in Fluctuation Phenomena edited by E. W. Montroll and J. L. Lebowitz (Elsevier, New York, 1979), p.1

[18] H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, Berlin, 1991)

[19] Salman Habib, Classical limit in quantum cosmology: Quantum mechanics and the Wigner function, Physical Review D42 (1990)2566–2576;
Salman Habib and Raymond Laflamme, Wigner function and decoherence in quantum cosmology, Physical Review D42 (1990) 4056–4065

[20] E. Shuryak, Two-stage equilibration in high energy heavy ion collisions, Phys. Rev. Lett 68, 3270 (1992);
T. Hirano, Is early thermalization achieved only near midrapidity in Au-Au collisions at $\sqrt{s_{NN}} = 130$ GeV?, Phys. Rev. C65, 011901(R) (2001);
U. Heinz and P. Kolb, Early thermalization at RHIC, Nucl. Phys. A702, 269 (2002);
R. Baier, A. Mueller, D. Schiff and D. Son, Bottom-up thermalization in heavy ion collisions, Phys. Lett. B502, 51 (2001).

[21] J. Berges and J. Cox, Thermalization of Quantum Fields from Time-Reversal Invariant Evolution Equations, Phys. Lett. B517, 369 (2001).

[22] J. Berges, Controlled nonperturbative dynamics of quantum fields out of equilibrium, Nucl. Phys. A699, 847 (2002).

[23] S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory, (North-Holland, Amsterdam, 1980)

[24] B. L. Hu and H. E. Kandrup, Phys. Rev. D35, 1776 (1987); H. E. Kandrup, J. Math. Phys. 28, (1987) 1398–1415.
[25] S. Nakajima, Progr. Theor. Phys. 20, 948 (1958);
   R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); and in Lectures in Theoretical Physics III, (ed.)
   W. E. Britten, B. W. Downes and J. Downs (Interscience, N.Y. 1961) pp. 106-141;
   H. Mori, Prog. Theor. Phys. 33, 1338 (1965);
   C. R. Willis and R. H. Picard, Phys. Rev. A9, 1343 (1974);
   H. Grabert, Projection Operator Techniques in Non Equilibrium Statistical Mechanics
   (Springer-Verlag, Berlin, 1982).

[26] C. Anastopoulos, Coarse graining and irreversibility in quantum field theory, Phys. Rev. D 56
   (1997) 1009–1020.

[27] R. Feynman and F. Vernon, Ann. Phys. (NY) 24, 118 (1963);
   R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, (McGraw - Hill, New
   York, 1965);
   A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983);
   H. Grabert, P. Schramm and G. L. Ingold, Phys. Rep. 168, 115 (1988);
   B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D 45, 2843 (1992); D 47, 1576 (1993).

[28] K. Koks, A. Matacz and B. L. Hu, Phys. Rev. D59, 5917 (1997).

[29] L. Parker, Phys. Rev. 183, 1057 (1969);
   R. U. Sexl and H. K. Urbantke, Phys. Rev., 179, 1247 (1969);
   Ya. B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz, 12, 443 (1970) [Sov. Phys. - JETP Lett. 12,
   307(1970)];
   Ya. Zel’dovich and A. Starobinsky, Zh. Eksp. Teor. Fiz 61, 2161 (1971) [Sov. Phys.- JETP 34,
   1159 (1971)].

[30] B. L. Hu and D. Pavon, Phys. Lett. B180, 329 (1986).

[31] H. E. Kandrup, Phys. Rev. D37, 3505 (1988); D38, 1773 (1988).

[32] R. Brandenberger and V. Mukhanov and T. Prokopec, Phys. Rev. Lett. 69, 3606 (1992); Phys.
   Rev. D 48 (1993)2443–2455.
   M. Gasperini and M. Giovannini, Entropy production in the cosmological amplification of the
   vacuum fluctuations, Phys. Lett. B 301 (1993) 334. M. Gasperini and M. Giovanni and G.
   Veneziano, Phys. Rev. D48, R439 (1993).
   Esko Keski-Vakkuri, Coarse-grained entropy and stimulated emission in curved space-time,
   Phys. Rev. D 49 (1994) 2122–2125.

[33] B. L. Hu, G. Kang and A. Matacz, Int. J. Mod. Phys. A9, 991(1994)

[34] S. Habib and Y. Kluger and E. Mottola and J. Paz, Dissipation and Decoherence in Mean
   Field Theory, Phys. Rev. Lett. 76, 4660 (1996)

[35] Y. Kruger, E. Mottola and J. M. Eisenberg, Phys. Rev. D 58, 125015 (1998)

[36] L. Grischuk and Y. V. Sidorov, Phys. Rev. D42 (1990) 3413
[37] B. L. Hu and A. Matacz, Phys. Rev. D49, 6612(1994)

[38] F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz and P. Anderson, Nonequilibrium quantum fields in the large-N expansion, Physical Review D50, 2848 (1994)

[39] F. Cooper, Y. Kluger, E. Mottola and J. P. Paz, Quantum evolution of disoriented chiral condensates, Physical Review 51, 2377 (1995)

[40] D. Boyanovsky, H. de Vega, R. Holman, S. Kumar and R. Pisarski, Non-equilibrium evolution of a 'tsunami': dynamical symmetry breaking, Physical Review D57, 3653 (1998)

[41] D. Boyanovsky, H. J. de Vega, R. Holman and J. F. J. Salgado, Nonequilibrium Bose-Einstein condensates, dynamical scaling, and symmetric evolution in the large $N$ $\Phi^4$ theory, Phys. Rev. D59, 125009 (1999).

[42] D. Boyanovsky, H. J. de Vega, R. Holman and J. F. J. Salgado, Analytic and numerical study of Preheating dynamics, Phys. Rev. D54, 7570 (1996)

[43] D. Boyanovsky, F. Cao and H. de Vega, Inflation from Tsunami waves, astro-ph/0102474

[44] S. A. Ramsey and B. L. Hu, O(N) Field theory in curved spacetime, Phys. Rev. D56, 661 (1997)

[45] S. A. Ramsey and B. L. Hu, Nonequilibrium inflaton dynamics and reheating, Phys. Rev. D56, 678 (1997)

[46] S. A. Ramsey, B. L. Hu and A. M. Stylianopoulos, Phys. Rev. D 57, 6003 (1998).

[47] P. Greene, L. Kovman, A. Linde and A. Starobinsky, Structure of resonance in preheating after inflation, Phys. Rev. D56, 6175 (1997).

[48] J. B. Hartle and G. Horowitz, Ground-state expectation value of the metic in the 1/N or semiclassical approximation to quantum gravity, Phys. Rev. D24, 257 (1981).

[49] O. Eboli, R. Jackiw and S-Y. Pi, Quantum fields out of thermal equilibrium, Phys. Rev. D37, 3557 (1988)

[50] F. D. Mazzitelli and J. P. Paz, Gaussian and 1/N approximation in semiclassical cosmology, Phys. Rev. D39, 2234 (1989)

[51] L. Bettencourt and C. Wetterich, Time evolution of correlation functions in Non-equilibrium Field Theories, Phys. Lett B430, 140 (1998).

[52] D. T. Son, Reheating and thermalization in a simple scalar model, Phys. Rev. D54, 3745 (1996)

[53] L. Bettencourt and C. Wetterich, Time evolution of correlation functions for classical and quantum anharmonic oscillators, hep-ph/9805360v2.

[54] G. Aarts, G. Bonini and C. Wetterich, Exact and truncated dynamics in nonequilibrium field theory, Phys. Rev. D63, 25012 (2000).

[55] G. Aarts, G. Bonini and C. Wetterich, On thermalization in classical field theory, Nucl. Phys. B587, 403 (2000).
[56] K. Blagoev, F. Cooper, J. Dawson and B. Mihaila, Schwinger-Dyson approach to nonequilibrium classical field theory, Phys. Rev. D64, 125003 (2001).

[57] G. Aarts and J. Berges, Classical aspects of quantum fields far from equilibrium, Phys. Rev. Lett. 88, 41603 (2002)

[58] G. Aarts, D. Ahrensmeier, R. Baier, J. Berges and J. Serreau, Far-from-equilibrium dynamics with broken symmetries from the $2PI - 1/N$ expansion, hep-ph/0201308