Variation of incoming solar radiation flux during a partial eclipse episode: an improved model simulation

Boyan Petkov 1,2
Claudio Tomasi 1
Vito Vitale 1
Christian Lanconelli 1
Mauro Mazzola 1

1Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR), Via Gobetti 101, I-40129 Bologna, Italy

2International Centre for Theoretical Physics (ICTP), TRIL Programme, Strada Costiera 11, I-34014 Trieste, Italy

April 29, 2013

Abstract

Model simulations of solar irradiance reaching the Earth’s surface during a solar eclipse constitute a useful tool for studying the impact of this phenomenon on the radiance propagation through the atmosphere. A simple approach to extend the use of an algorithm already adopted for evaluating the variations in the extraterrestrial solar radiation during a total eclipse is proposed for a partial eclipse case. The application is based on the assessment of the distance between the apparent solar and lunar disk centers on the celestial hemisphere, using the local circumstances and the ratio between the Sun and Moon radii as input parameters. It was found that during the eclipse of March 29, 2006, the present approach led to an estimate of the surface UV solar irradiance trend differing by no more than ±5% from the corresponding trend observed at Bologna (Italy).

1 Introduction

A solar eclipse is a good opportunity for studying the interaction between solar radiation and the Earth’s atmosphere, \cite{1, 2, 3, 4, 5}, and for testing radiative transfer models \cite{6}. Together with ground-based measurements, modeling of the incoming solar irradiance at the surface during an eclipse episode can provide useful information for those investigating such interaction processes \cite{5}.

Möllman and Vollmer \cite{7} proposed an approach aimed to evaluate the broadband solar irradiance during a solar eclipse, in which the limb darkening effect was neglected. An accurate procedure for calculating the spectral variations in the extraterrestrial solar radiation occurring during a total eclipse was developed by Koepke et al. \cite{8}. The approach takes into account the limb darkening and determines the radiance changes in terms of normalized spectral irradiance $I_{\text{norm}, \lambda}$ expressed as the ratio between the radiation coming from the part of the solar disk uncovered by the Moon and the radiation emitted by the entire solar disk. The parameter $I_{\text{norm}, \lambda}$ characterizes the variations in solar irradiance at the top of the atmosphere during an eclipse episode and, therefore, it can be used as a correction factor for evaluating the extra-terrestrial irradiance in the radiative transfer models. The main parameter describing the eclipse geometry in the method is the distance between the apparent solar and lunar disks, which was evaluated in the total eclipse case. The present study aims to extend the approach developed by Koepke et al. \cite{8} to a partial eclipse case, assessing the length of segment defined by the Sun and Moon centers as a function of the ratio between the corresponding radii and local eclipse circumstances.

2 Assessment of the solar-moon apparent distance during a partial solar eclipse

In case of total eclipse, the apparent path of the lunar disk center on the celestial hemisphere, crosses the corresponding center of the solar disk, and pa-
Parameter $I_{\text{norm},\lambda}$ can be determined as a function of the distance X between the Sun and Moon centers, which is assumed to follow a linear time-dependent trend for a constant velocity v of the Moon with respect to the Sun. However, in the case of a partial solar eclipse, the Moon disk center does not cross the corresponding solar center, as is shown in Fig. 1 and, therefore, parameter X does not vary linearly in time. The graph represents the relative movements of the apparent solar and lunar disks of radii R_S and R_M, respectively, during an eclipse episode starting at time t_0, reaching its maximum at time t_m and finishing at time t_e. All the distances shown in Fig. 1 are considered to be normalized to parameter R_S, so that the apparent Sun disk radius is considered as unit ($R_S = 1$). In addition, the solar disk has been assumed to have a fixed position. Due to the specific geometry of the problem, the time-interval between t_0 and t_m is usually slightly different from the corresponding time-interval between t_m and t_e. This is why the eclipse episode is arbitrarily subdivided into two parts, the former of which is taken between times t_0 and t_m and labeled with apex ($'$), and the latter between times t_m and t_e with apex ($''$). According to Fig. 1, parameter X' can therefore be expressed as:

$$X' = \sqrt{D^2 + S'^2}. \quad (1)$$

Parameter D is the distance between the centers of apparent Sun and Moon disks at the maximum eclipse time and can be determined in terms of the following equation,

$$D = R_S + R_M^0 - M = 1 + R_M^0 - M, \quad (2)$$

where R_M^0 is the Moon radius at time t_m. Segment M, which represents the part of solar radius R_S covered by the Moon at the maximum eclipse time t_m, can be expressed in terms of the eclipse magnitude M_g for the considered site in the following form:

$$M = 2R_SM_g = 2M_g. \quad (3)$$

At the eclipse start time t_0, parameter X'_0 is equal to $R_S + R_M^0$ and, hence, during the period $[t_0, t_m]$, the Moon disk center describes the path S'_0 shown in Fig. 1 whose length is given by

$$S'_0 = \sqrt{(R_S + R_M^0)^2 - D^2} = \sqrt{(1 + R_M^0)^2 - D^2}. \quad (4)$$

Assuming nearly constant velocity v'_0 of the Moon with respect to the Sun during the first phase of the eclipse, it can be stated that

$$v'_0 = \frac{S'_0}{t_m - t_0}. \quad (5)$$

Therefore, parameter S' can be defined at each time $t \in [t_0, t_m]$ in the explicit form,

$$S' = S'_0 - v'_0(t - t_0). \quad (6)$$

Thus, the distance X' can be defined using Eqs (1) – (5). Similarly, the corresponding parameter S'' can be expressed as equal to the difference:

$$S'' = S''_0 - v''_0(t_e - t), \quad (7)$$

where $t \in (t_m, t_e]$ and parameters S''_0 and v''_0 are defined according to the following pair of equations:

$$S''_0 = \sqrt{(1 + R_M^0)^2 - D^2} \quad (8)$$

and

$$v''_0 = \frac{S''_0}{t_e - t_m}. \quad (9)$$
assuming again that velocity v'_o is nearly constant.

Finally, the distance X'' between the apparent solar and lunar disk centers during the second phase of the eclipse is defined according to Eq (11), as

$$X'' = \sqrt{D^2 + S''^2}. \quad (10)$$

Equations (11) – (10) provide an algorithm suitable for determining the time-patterns of parameter X, denoted as X' during the first half of the event and as X'' during the second half, knowing the local circumstance times, eclipse magnitude M_g and behavior of the ratio R_M/R_S during the eclipse. In fact, the present procedure takes into account the ratio R_M/R_S only at the start time t_o of the event, at the maximum eclipse time t_m, and at the final time t_e, which correspond to parameters R'_M, R'_o and R'_M, respectively, assuming $R_S = 1$ as established above. Since the variations in ratio R_M/R_S usually do not exceed 1-2%, the error made in estimating parameter X when considering such a ratio at three fixed times only, will be around 1%. In case of total eclipse, parameter D is equal to zero and the above approach gives a linear trend of distance X, as assumed by Koepke et al. [8]. It is also worth noting that Koepke et al. [8] normalized the parameter X by $R_M + R_S$ in their procedure, while such a step was avoided in the present procedure for sake of simplicity. The above algorithm is similar to that proposed by Möllman and Vollmer [7] to evaluate the illuminance during a solar eclipse. The main difference is the subdivision of the event into two periods, before the maximum phase and after that, while Möllman and Vollmer [7] assumed a symmetry of the eclipse episode evolutionary features with respect to the maximum. On the other hand they assessed the broad-band irradiance and, hence, the limb darkening was not taken into account. Conversely, the Koepke et al. [8] method considers this effect: based on these concepts, the present algorithm is suitable to estimate the spectral variations of surface solar irradiance during a partial solar eclipse.

Table 1: Parameters of the solar eclipse of 29 March 2006 estimated by Espenak and Anderson [12] for Bologna, Italy. The values of ratio R_M/R_S are taken from physical ephemeris of the umbral shadow (Table 4 in [12]).

Contact	Time (UTC)	R_M/R_S ($R_S = 1$)	Magnitude M_g
I	09:33:01 (t_o)	1.0500 (R'_M)	0.532
Maximum eclipse	10:38:03 (t_m)	1.0509 (R'_o)	
IV	11:44:11 (t_e)	1.0375 (R'_M)	

Table II presents the input parameters, as provided by Espenac and Anderson [12]. Figure 2 shows the time-patterns of normalized solar irradiance $I_{norm,325}$ at the 325 nm wavelength, as calculated following the Koepke et al. [8] procedure, together with those of distance X evaluated through Eqs (11) – (10). Parameter $I_{norm,325}$ defines the relative variations of the radiance entering the atmosphere at the 325 nm wavelength, occurring at Bologna during the event. It is suitable for use as a correction factor for extra-terrestrial solar radiation in a radiative transfer model used to evaluate the surface solar irradiance. To perform such an evaluation, the widely used TUV model [13] was applied for the 325 nm spectral component of solar irradiance, keeping constant the daily mean value of columnar ozone amount equal to 390 DU, as determined by UV-RAD on March 29, 2006. Since the eclipse day was characterized by stable clear-sky conditions, cloud effects were not considered in the present assessment. On the basis of ground-level visibility evaluations made on the eclipse day...
an aerosol volume extinction coefficient was assumed at the 550 nm wavelength varying between less than 0.04 and 0.05 km\(^{-1}\). Consequently, assuming a particle scale height close to 1.25 km according to the Penndorf \[14\] evaluations (confirmed by the estimates of 1.0 - 1.5 km made by Tomasi \[15\] in the Po Valley on early spring days), aerosol optical depth (AOD) at visible wavelengths can be evaluated to range between 0.04 and 0.07, for meteorological and atmospheric transparency conditions similar to those of the eclipse day. Thus, an AOD value equal to 0.05 was given as input to the code, together with the Elterman \[16\] vertical distribution of the volume extinction coefficient of aerosol particles. The winter Mid-latitude temperature profile determined by Anderson et al. \[17\] was used in the code calculations for surface albedo equal to 0.08, leading to the best agreement between evaluated and measured irradiances during the part of the day in which perturbations due to the eclipse were not observed.

![Figure 3](image-url)
Figure 3: Upper part: time-patterns of surface UV solar irradiance at the 325 nm wavelength, measured during the partial solar eclipse of 26 March 2006 at Bologna (open circles). The thick grey curve represents the corresponding model evaluations. Lower part: time-patterns of the ratio between UV-RAD measured and model-evaluated irradiances, respectively. The contact times and the maximum eclipse time (see Table \[B\]) are indicated by vertical dotted lines.

In the upper part of Fig. 3 the results of the simulation are presented, showing a comparison between the theoretical and observed variations in solar irradiance. The lower part of Fig. 3 presents the time-patterns of the ratio between measured and calculated irradiance values, providing evidence of the good agreement between the two variables. Except for the times of maximum eclipse and last contact, when discrepancies of about -5% were found, all the other cases exhibit similar differences within ±3%. The comparatively higher deviations between evaluated and measured values at times \(t_m\) and \(t_e\) can be reasonably attributed to the presence of sparse *cumulus congestus* clouds moving around the Sun on 29 March 2006, causing, together with the eclipse event, appreciable changes in the surface solar irradiance that cannot be represented with good precision by using a monodimensional radiative transfer model.

4 Conclusions

A simple algorithm has been proposed suitable for extending the method of Koepke et al. \[8\], developed to correct the trend of extra-terrestrial solar radiation during a total solar eclipse to a partial eclipse case. To do this, the evolution of the distance between the apparent Moon and Sun disk centers was evaluated as a function of local eclipse circumstances and the ratio between the lunar and solar radii. The estimation allows the calculation of the variations in the solar irradiance entering the terrestrial atmosphere, where the surface irradiance time-patterns are simulated using a radiative transfer model. It was found that the procedure provides a satisfactory assessment of the evolutionary patterns characterizing the UV solar irradiance during the partial eclipse of March 29, 2006 computed by the TUV model applied to the Bologna (Italy) site.

References

[1] M. A. Penaloza-Murillo, Optical response of the atmosphere during the Caribbean total solar eclipse of 26 February 1998 and of 3 February 1916 at Falcy, State, Venezuela. Earth Moon Planets 91, (2002), 125-159.
[2] W. N. Abbott, On certain radiometric effects during the partial eclipse of February 25, 1952. Geofis. Pura Appl. (Milan), 39, 186-193 (1956).
[3] R. C. Anderson, D. R. Keefer, and O. E. Myers, Atmospheric pressure and temperature changes during the 7 March 1970 solar eclipse. Jour. Atmos. Sci., 29, 583-587 (1972).
[4] C. Zerefos, D. S. Bais, C. Meleti, A. F. Bais, K. Tourpali, K. Kourtidis, K. Vanicek, F. Cappellani, U. Kaminski, T. Colombo, R. Stubi, L. Manea, P. Formenti, M. O. Andreae, Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999. J. Geophys. Res., 105, 26463-26473 (2000).

[5] S. Kazadsis, A. Bais, M. Blumthaler, A. Webb, N. Kouremeti, R. Kift, B. Schallhart, and A. Kazantzidis, Effects of total solar eclipse of 29 March 2006 on surface radiation. Atmos. Chem. Phys. Discuss., 7, 9235-9258, (2007).

[6] C. Ende, and B. Mayer, Simulation of solar radiation during a total eclipse: a challenge for radiative transfer. Atmos. Chem. Phys., 7, 2259-2270 (2007).

[7] K.-P. Möllmann and M. Vollmer, Measurements and predictions of the illuminance during a solar eclipse. Eur. J. Phys., 27, 1299-1314 (2006).

[8] P. Koepke, J. Reuder, and J. Schween, Spectral variation of the solar radiation during an eclipse. Meteorol. Zeitschrift, 10, 179-186 (2001).

[9] P. Duffett-Smith, Astronomy with your personal computer, 2nd edn. (Cambridge University Press, Cambridge, 1990), p. 179.

[10] B. Petkov, C. Tomasi, V. Vitale, A. di Sarra, P. Bonasoni, C. Lanconelli, E. Benedetti, D. Sferlazano, H. Dimox, G. Agnesod, R. Santaguida, "Ground-based observations of solar radiation at three Italian sites, during the eclipse of 29 March, 2006. Signs of the environment impact on incoming global irradiance," Atmos. Res. 96, 131-140 (2010).

[11] B. Petkov, V. Vitale, C. Tomasi, U. Bonafé, S. Scaglione, D. Flori, R. Santaguida, M. Gausa, G. Hansen, and T. Colombo, Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Appl. Opt. 45, 4383-4395 (2006).

[12] F. Espenak and J. Anderson, Total Solar Eclipse of 2006 March 29, NASA/TP-2004-212762, 2004 (available in http://eclipse.gsfc.nasa.gov/SEmono/TSE2006/TSE2006.html).

[13] S. Madronich, UV radiation in the natural and perturbed atmosphere, in "Environmental Effects of UV (Ultraviolet) Radiation" (M. Tevini, ed), pp. 17-69. Lewis, Boca Raton (1993).

[14] R. Penndorf, The vertical distribution of Mie particles in the troposphere. J. Meteorol. 11, 245-247 (1954).

[15] C. Tomasi, Features of the scale height for particulate extinction in hazy atmospheres. J. Appl. Meteor. 21, 931-944 (1982).

[16] L. Elterman, UV, visible, and IR attenuation for altitudes to 50 km. Environmental Research Papers, 285, Report 68-0153, Air Force Cambridge Research Laboratories (1968).

[17] G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, AFGL Atmospheric Constituent Profiles (0 - 120 km). Environ. Res. Pap. 954, Opt. Phys. Div., Air Force Geophys. Lab., Hanscom Air Force Base, Mass. (1986).