HLA-Matched and HLA-Haploidentical Hematopoietic Stem Cell Transplantation for Acute Myelogenous Leukemia with \(t\ (16;21)\ (p11.2;q22)\)

Yumiko Inui\(^1,2\), Keiji Matsui\(^3\), Hisayuki Matsumoto\(^3\), Taku Nose\(^2\), Rio Shiraki\(^4\), Yuji Nakamachi\(^5\), Katsuya Yamamoto\(^2\), Atsuo Okamura\(^1,2\)

\(^1\)Department of Medical Oncology/Hematology, Kakogawa Central City Hospital, Hyogo, Japan
\(^2\)Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
\(^3\)Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
\(^4\)Department of Internal Medicine, Kakogawa Central City Hospital, Hyogo, Japan
\(^5\)BioResource Center, Kobe University Hospital, Kobe, Japan

Acute myelogenous leukemia (AML) with \(t\ (16;21)\ (p11;q22)\) is a rare leukemia subtype with a relatively high incidence in young individuals and a poor prognosis. This chromosomal rearrangement results in FUS-ERG fusion transcripts. We describe a patient with AML with \(t\ (16;21)\ (p11;q22)\) who underwent successful monitoring for FUS-ERG fusion transcripts by real-time quantitative polymerase chain reaction (RT-qPCR). We designed DNA primers based on the leukemic cells of this patient and monitored minimal residual disease by RT-qPCR. Standard multiagent chemotherapy for AML could not reduce FUS-ERG expression level to \(10^5\), whereas hematopoietic stem cell transplantation (HSCT) knocked down the expression level to 10 or lower. The patient underwent HSCT twice, and FUS-ERG expression decreased rapidly, especially after human leukocyte antigen (HLA)-haploidentical HSCT. Although the patient suffered multiple early recurrences after HSCTs, this case suggests that HLA-haploidentical HSCT is one of the options for AML with \(t\ (16;21)\ (p11;q22)\), even though the benefits are limited. Further research is needed to optimize the course of treatment including pre-transplant treatment, HSCT, and post-transplant treatment strategies (Trial registration: jRCTs051180119). (Journal of Hematopoietic Cell Transplantation 9(2): 65—69, 2020.)

Introduction

\(t\ (16;21)\ (p11;q22)\) is a rare non-random chromosomal abnormality found in approximately 1% of acute myelogenous leukemia (AML) cases.\(^1\) This chromosomal rearrangement results in FUS-ERG fusion transcripts. ERG, located at chromosome 21q22, is a member of the \(ets\) oncogene family.\(^2\) Correct \(ERG\) gene dosage is critical to maintain hematopoietic stem cell function. \(FUS\), at chromosome 16p11, encodes an RNA-binding protein with extensive amino-acid sequence homology to EWS, which is derived from Ewing sarcoma.\(^3\) The \(FUS-ERG\) gene is produced by fusion of the 5’ end of \(FUS\) to the 3’ end of \(ERG\).\(^4\) The \(FUS\) fusion domain regulates DNA-binding activity of the FUS-ERG chimeric protein, resulting in weaker transcriptional activation than that with normal \(ERG\) proteins.\(^5\) Dysregulation of normal \(ERG\) transcription by FUS-ERG fusion might contribute to the pathogenesis of AML with \(t\ (16;21)\ (p11;q22)\).

AML with \(t\ (16;21)\ (p11;q22)\) occurs more often in younger individuals for reasons not fully understood. Buchanan et al. compiled 78 cases and reported that the median age was 25 years.\(^6\) AML with \(t\ (16;21)\ (p11;q22)\) has

Submitted December 27, 2019; Accepted January 31, 2020; Published online, April 15, 2020. (Handling Editor: Masao Ogata, Oita University Hospital)
Key words: Acute myelogenous leukemia, \(FUS-ERG\), hematopoietic stem cell transplantation, reverse-transcription quantitative polymerase chain reaction

Correspondence: Yumiko Inui, Department of Medical Oncology/Hematology, Kakogawa Central City Hospital, 439 Hon-machi, Kakogawa-cho, Kakogawa, Hyogo, 675-0037, Japan. E-mail: yuinui@med.kobe-u.ac.jp
dx.doi.org/10.7889/hct-19-017 © The Japan Society for Hematopoietic Cell Transplantation.
Yumiko Inui et al.

a high risk of relapse and poor prognosis. We describe a patient with AML with t(16;21)(p11;q22) who had undergone successful monitoring of FUS-ERG fusion transcripts by real-time quantitative polymerase chain reaction (RT-qPCR) and consider the effectiveness of hematopoietic stem cell transplantation (HSCT) for AML with this chromosomal rearrangement.

Case

1. Initial therapy

A 32-year-old man presented to a urology department with complaints of fever and a right scrotal mass. A blood test revealed leukocytosis with lactase dehydrogenase elevation (Table 1). Bone marrow (BM) examination revealed an increase in abnormal myeloblasts with a low nucleus:cytoplasm ratio, accounting for 52% of nucleated cells (Figure 1A). The patient was diagnosed with AML (French-American-British Classification; M1) and received induction chemotherapy with cytarabine infusion for 7 days (100 mg/m²/day) and idarubicin for 3 days (12 mg/m²/day). Cytogenetic analysis revealed a 46,XY,-16,der(21)t(16;21)(p11.2;q22)[20] karyotype (Figure 1B).

Table 1. Laboratory data at the first visit

Peripheral Blood	Blood Chemistry	Serology
WBC 505,400/μL	TP 6.7 g/dL	CRP 0.76 mg/dL
Seg 3%	ALB 4.2 g/dL	IgG 797 mg/dL
Lym 5%	AST 27 U/L	IgA 83 mg/dL
Mono 1%	ALT 18 U/L	IgM 61 mg/dL
Eo 0%	LDH 1,813 U/L	
Baso 0%	ALP 198 U/L	
Blast 91%	T-Bil 0.41 mg/dL	
RBC 389×10⁶/μL	BUN 11.3 mg/dL	
Hb 11.8 g/dL	Cr 0.73 mg/dL	
Ht 35.9%	UA 3.1 mg/dL	
MCV 92 fl	Na 140 mmol/L	
MCH 30.3 pg	K 4 mmol/L	
MCHC 32.9%	Cl 103 mmol/L	
Plt 14.4×10⁹/μL	Ca 9 mg/dL	
PT 75%	P 3.7 mg/dL	
APTT 33.1 sec		
Fib 323 mg/dL		
FDP 9.6.μg/mL		

Bone Marrow

NCC 13.05×10⁶/μL	MgK 9/μL	
Cr 0.76 mg/dL	M/E ratio 0.94	
IgG 797 mg/dL	Myeloid 3.2%	
IgA 83 mg/dL	Erythroid 3.4%	
IgM 61 mg/dL	Eo 0.4%	
	Baso 0.2%	
	mono 1.6%	
	Ly 10.6%	
	Promono 3.8%	
	Leukemic blast 76.6%	

Figure 1. Appearance of blasts. (A) Appearance of blasts in the bone marrow (BM). (a) May–Giemsa–stained leukemic blasts with azurophilic granules and Auer bodies in the cytoplasm. (b) A total of 46% of leukemic blasts were positive for myeloperoxidase (MPO). (c) A fraction of leukemic blasts was non–specific esterase (α–naphthyl butyrate)–positive. (B) G–banded karyotype of BM cells. The karyotype was 46,XY,—16,der(21)t(16;21)(p11.2;q22). The arrow indicates rearranged chromosomes.
2. RT-qPCR

We prepared RT-qPCR primers to detect the FUS-ERG transcript to accurately evaluate minimal residual disease. The RNeasy Mini Kit (QIAGEN, Hilden, Germany) was used to extract total RNA from BM cells. From 1 μg of total RNA, cDNA was synthesized by reverse transcriptase using the SuperScript VILO cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, USA). The first PCR was performed using AmpliTaq Gold 360 Master Mix (Applied Biosystems, Foster City, CA, USA) and primers (4F1, CTATGGACAGCAGGACCGTG; 8R, CATAGTAGTAACGGAGGGCG) as previously described.7

Electrophoresis of the amplified products is shown in Figure 2. In a previous study, one major band (type B; exon 7 of FUS fused in-frame to exon 9 of ERG) and two minor bands (type A; exon 7 of FUS fused out-frame to exon 9 of ERG; type C, exon 6 of FUS fused out-frame to exon 9 of ERG) were detected in most patients with AML with t (16;21).7 Our patient also showed three chimeric transcripts, specifically type B; 380 bp, type A (424 bp), and type C (345 bp).

FUS-ERG expression was measured by RT-qPCR using Fast Advanced Master Mix (Applied Biosystems). Primers were designed to detect all three transcripts. The following PCR primers were used: 4F1, CTATGGACAGCAGGACC-GTG (forward), and ERG, CCAGGAGGAATCAGCCAAAG (reverse). The probe sequence was as follows: FAM-GTTA-CAACCACGACGATGGTGCTGTAACCCAGAT- TAMRA. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Corresponding TaqMan Assay ID: HS99999905_m1) was used as a control for the presence of amplifiable RNA.

3. First HSCT

The patient was not in complete remission (CR) after initial induction chemotherapy and received a second course including 7 days of cytarabine infusion (100 mg/m²/day) and 5 days of daunorubicin (50 mg/m²/day). Although he was in hematological CR after this, cytogenetic CR was not achieved; the karyotype was 46,XY,-16,der (21) t (16;21) (p11.2;q22) [2]/46,XY [18].

He received an allogeneic peripheral blood stem cell transplantation (allo-PBSCT) in the first remission using a graft from an HLA-matched related donor 4 months after diagnosis. Hematopoietic stem cells (CD34⁺ cells; 3.6 × 10⁶/kg) were transfused after myeloablative conditioning chemotherapy with a busulfan (BU)/cyclophosphamide (CY) regimen (3.2 mg/kg BU, days −5 to −2; 60 mg/kg CY, days −7 and −6). Ciclosporin and mycophenolate mofetil (MMF) were administered as graft-versus-host disease (GVHD) prophylaxis. He achieved cytogenetic CR for the first time after the transplant.

Changes in transcript levels are shown in Figure 3. Immunosuppressive drugs for GVHD prophylaxis were tapered to obtain the desired graft-versus-leukemia effect. However, molecular CR was never achieved. Hematological relapse was detected on day 138 after PBSCT. In addition to t (16;21), cytogenetic analysis revealed complex karyotype abnormalities at the time of relapse: 45,XY,-1,add (7)(q22),add (8)(q11.2),add (12)(q24.1),-16,der (21) ?t (16;21) (p11.2;q22),+der (?) t (?;1) (?;q21) [20].

4. Second HSCT

The patient underwent a second allo-PBSCT in the second remission using a graft from an HLA-haploidentical related donor. This HLA-haploidentical HSCT using post-transplant CY was performed as part of a clinical trial, approved by Kobe University Clinical Research Ethical Committee (approval number: jRCTs051180119) and conducted in accordance with the Declaration of Helsinki. The patient provided written informed consent prior to enrollment. Hematopoietic stem cells (CD34⁺ cells; 6.5 × 10⁶/kg) were transfused after reduced intensity conditioning (RIC) chemotherapy with a fludarabine (Flu)/CY regimen (30 mg/m² Flu, day −6 to −2; 14.5 mg/kg CY, days −6 and −5; 3.2 mg/kg BU, days −3 and −2). Post-transplant high-dose CY (50 mg/kg CY, days 3–4), tacrolimus, and MMF were administered as
Figure 3. Change in the relative expression of FUS-ERG. Change in the relative expression of FUS-ERG with treatment in the patient. We used GAPDH as the internal standard gene to standardize the expression of FUS-ERG. Multianti-gent chemotherapy did not reduce the expression level to $10^3 \times 10^{-6}$ or below. After the second hematopoietic stem cell transplantation (HSCT) with cells derived from an HLA-haploidentical donor, FUS-ERG expression decreased rapidly, despite the reduced intensity of this HSCT compared to that with the first HSCT with cells derived from the HLA-matched donor.

GVHD prophylaxis. After the second PBSCT, the patient achieved cytogenetic CR but not molecular CR; small quantities of FUS-ERG transcripts were detected by RT-qPCR. Nevertheless, treatment had a strong impact on FUS-ERG levels, which decreased more rapidly than those detected after the first HSCT with an HLA-matched related donor, despite RIC and the new complex chromosomal aberrations. The patient had mixed chimerism (91.2% second donor cells and 8.8% first donor cells) by day 63. The immunosuppressive drugs were tapered rapidly to eradicate leukemic cells with careful attention to GVHD. However, an explosive increase in FUS-ERG fusion gene levels was detected, and the patient died of primary disease 125 days after the second PBSCT.

Discussion

We describe a patient with AML with t (16;21) (p11;q22) who underwent successful monitoring of FUS-ERG fusion transcripts by RT-qPCR. Standard multiagent chemotherapy could not reduce FUS-ERG expression, whereas HSCT decreased expression to the quantitative limit of sensitivity or lower. Unfortunately, the leukemia was refractory to treatment despite prompt initiation of the first and second rounds of HSCT. However, HLA-haploidentical HSCT remarkably and instantaneously reduced FUS-ERG expression despite the disadvantageous conditions. HSCT had limited benefits, even though it was the most effective treatment.

In most cases of haploidentical SCT using post-transplant CY, fevers of over 38°C can occur from the next day after SCT and persist to approximately the fifth day. This noninfectious fever is known as "haplo-immunostorm" syndrome (HIS) because of a decline in fever following post-transplant CY.³ HIS occurs only in patients receiving at least 10^8 CD3⁺ cells/kg, and haploidentical PBSCT tends to cause HIS in comparison to haploidentical bone marrow transplantation.⁸⁹ Intriguingly, HIS was suggested to activate NK cells and might mediate tumor responses.⁹ Although the FUS-ERG transcript level decreased more rapidly after haploidentical SCT compared to that with HLA-matched SCT in our patient, we assume that HIS might be the reason.

Noort et al. performed HSCTs on 22 AML cases with t (16;21) (p11;q22), and the 4-year event-free survival (EFS) was 15%.¹⁰ Qin et al. reported that the 2-year EFS and 2-year overall survival (OS) after HSCT in 14 cases were 30.8% and 46.2%, respectively.¹¹ Although they did not analyze the 4-year EFS and OS, values of 30% and 33%, respectively, could be deduced from Kaplan-Meier curves. In a study by Qin et al., all cases except three, which received HLA-matched sibling HSCT, received HLA-haploidentical HSCT. Several studies focusing on the HSCT outcome for high-risk patients with AML have shown that HLA-haploidentical HSCT and HLA-matched sibling HSCT are equivalent in efficacy or that HLA-haploidentical HSCT might have superior antileukemia effects.¹²-¹³ Although these suggested that HLA-haploidentical HSCT may be associated with a low incidence of relapse as compared to HLA-matched sibling HSCT in high-risk AML patients, currently, it is impossible to say definitely that HLA-haploidentical HSCT is superior in terms of GVHD-free-relapse-free survival. Including improvements in the outcomes of HLA-haploidentical HSCT, the selection of donors for HSCT in high-risk AML remains a critical issue.

Interestingly, all-trans retinoic acid (ATRA) may be effective against AML with t (16;21) (p11;q22). Sotoca et al. discovered that FUS-ERG colocalizes to a similar region as the
nuclear receptor RARA, and treatment of t (16;21) (p11;q22) cells with ATRA results in cell differentiation and apoptosis, consistent with the onset of post-differentiation cell death.\(^4\) If ATRA has beneficial effects in AML with t (16;21) (p11;q22), it may become an attractive option for pre-transplant and post-transplant treatment.

Here, we describe the potential and limitation of HLA-haploidentical HSCT for the treatment of AML with t (16;21) (p11;q22), and utilities of monitoring FUS-ERG fusion transcripts by RT-qPCR. Due to the rarity of this AML subtype, it is difficult to conduct large clinical trials. However, further research is needed to optimize the course of treatment including pre-transplant treatment, HSCT, and post-transplant treatment.

Acknowledgments

We would like to thank Editage (www.editage.com) for English language editing.

Authors’ contributions

YL, the main author, wrote and revised the manuscript and provided direct care to the patient. KM, HM, and YN performed the RT-PCR. TN and RS provided direct care to the patient and collected data. KY interpreted data and revised the manuscript. AO provided direct care to the patient and revised and gave final approval of the manuscript.

Conflict of interest disclosure

The authors declare no conflict of interest.

References

1. Jekarl DW, Kim M, Lim J, et al. CD56 antigen expression and hemophagocytosis of leukemic cells in acute myeloid leukemia with t(16;21) (p11;q22). International Journal of Hematology. 2010; 92: 306–313.
2. Reddy ES, Rao VN, Papas TS. The erg gene: a human gene related to the ets oncogene. Proceedings of the National Academy of Sciences of the United States of America. 1987; 84: 6131–6135.
3. Rabbitts TH, Forster A, Larson R, Nathan P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t (12;16) in malignant liposarcoma. Nature Genetics. 1993; 4: 175–180.
4. Ichikawa H, Shimizu K, Hayashi Y, Ohki M. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t (16;21) chromosomal translocation. Cancer Research. 1994; 54: 2865–2868.
5. Prasad DD, Ouchida M, Lee L, Rao VN, Reddy ES. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t (16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene. 1994; 9: 3717–3729.
6. Buchanan J, Tirado CA. A t (16;21) (p11;q22) in acute myeloid leukemia (AML) resulting in fusion of the FUS/TLS and ERG genes: A review of the literature. Journal of the Association of Genetic Technologists. 2016; 42: 24–33.
7. Kong XT, Ida K, Ichikawa H, et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t (16;21) (p11;q22) and identification of a novel transcript. Blood. 1997; 90: 1192–1199.
8. Sugita J, Kawashima N, Fujisaki T, et al. Transplantation, HLA-haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide after busulfan-containing reduced-intensity conditioning. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2015; 21: 1646–1652.
9. Colvin GA, Berz D, Ramanathan M, et al. Nonengraftment haploidentical cellular immunotherapy for refractory malignancies: tumor responses without chimerism. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009; 15: 421–431.
10. Noort S, Zimmermann M, Reinhardt D, et al. Prognostic impact of t (16;21) (p11;q22) and t (16;21) (q24;q22) in pediatric AML: a retrospective study by the I-BFM Study Group. Blood. 2018; 132: 1584–1592.
11. Qin YZ, Chen Y, Xu LP, et al. Outcome and minimal residual disease monitoring in patients with t (16;21) acute myelogenous leukemia undergoing allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2018; 24: 163–168.
12. Salvatore D, Labopin M, Ruggeri A, et al. Outcomes of hematopoietic stem cell transplantation from unmanipulated haploidentical versus matched sibling donor in patients with acute myeloid leukemia in first complete remission with intermediate or high-risk cytogenetics: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2018; 103: 1317–1328.
13. Chang YJ, Wang Y, Liu YR, et al. Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis. Journal of Hematology & Oncology. 2017; 10: 134.
14. Sotoca AM, Prange KH, Reijnders B, et al. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t (16;21) acute myeloid leukemia. Oncogene. 2016; 35: 1965–1976.