Aluminium Alloys as Advanced Materials: A short communication

A.O. Emmanuel*, O.S.I. Fayomi*, I.G. Akande*

*Department of Mechanical Engineering, Covenant University, Ota, Ogun state, Nigeria
Department of Mechanical Engineering, University of Ibadan, Ibadan, Oyo state, Nigeria
Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

*josundayfayomi3@gmail.com, aigodwin2015@gmail.com, hemajesus@yahoo.co.uk

Abstract. Aluminium alloys have been one of the primary structural materials for several years due to their common mechanical behavior, design, production processes, and inspection techniques. However, it has gained much fame and occurrence in automobiles manufacturers due to its low mass and resistance to deterioration. Wrought aluminium alloys, which happen to be part of its classes from the study, have shown to be an advanced material due to its excellent extrudability, good corrosion resistance, and high strength. In the improvement of 7000 series, Al-Zn alloys have higher strength relative to other classes of aluminium alloy. Minimizing the mass to volume ratio of materials is considered one way of reducing the weight of engineering materials, especially aircraft. This paper presents a brief study on aluminum alloys and their application as advanced material for production in vehicles and ship industry. This study showed that significant improvements in aluminum aerospace alloys are due to obtain quality equilibrium of properties.

Keywords: Aluminium; Material; Advance; Alloys; Production.

1. Introduction
Alloys of aluminium have been used for years as material for military aircraft as a result of their common behaviour, ease of design, manufacturing and inspection methods [1]. The usage of aluminium and its impact cannot be quantify due availability, cost and ease of processing [2]. Infact, producer of aluminium product and component has kept putting great effort to improve aluminum and its alloy for several applications in a bid to attain superior performance for functional system [3-5]. Application such as ballister, aerospace, construction, chemical plant to mention but a few has general provided a significant use of aluminium enhance product for multidimensional component with better thermo-mechanical characteristics, corrosion, tribological and structural application in a bid to improved multifunctional usage [6-8].

More often than none, mass to volume ratio, strength, resistance to fatigue, toughness of fracture and resistance to corrosion are all important factors to be improved upon depending on the range and applications [8]. Chemical formulation and processing regulate the microstructural characteristic which includes; size and shape of grain, and material constituent have often been considered due to simplicity of process variable [9]. These characteristics influence the properties of aluminium alloys; as a result, manufacture of materials working in conjunction with the designer of aircraft could come up with various kinds of alloys having physical and mechanical properties been personalized to a particular want. For example, compression loading during flight is on the upper side of the wing which
is also open to strain during fixed loading while the reverse occurs to the bottom part of the wing, which makes optimization of tensile properties a necessity [10-14]. In this study a short communication on the aluminium material as a basis for advance manufacturing system was discussed and their structural advancement.

2. Benefits of Aluminum Alloys

Majority of the relevance of aluminum alloys compared to steel materials are in parts and vehicle assemblies’ production which includes higher vehicle power, enhanced rigidity, minimized density, enhanced properties at high temperatures, controlled thermal expansion coefficient, separate assemblies, developed and customized electrical performance, resistance to wear and improved noise attenuation [8]. Aluminium alloys are utilized more frequently in the ship-building industry despite high requirements in the scope of using special engineering materials in Construction and operation of ship which are in compliance with the Ship Construction Requirements. Those necessities have to do with appropriate level of durability, fatigue resistance as well as corrosion and local stresses, which intensify corrosion. The properties of aluminium alloys which justify is usage for manufacturing of high speed craft comprises of high relative durability R/ρ, susceptible to cold cracking in low temperatures, better resistance to deterioration in a highly aggressive natural environment. Ship made with aluminium alloys tend to be three times lighter than those made of hull steel and give room for increasing capacity, stability and speed of the ship.

In addition, positive technical properties, such as good weldability or capability of spontaneous age-hardening of welded joint high-strength have been shown by aluminium alloys to overcome the challenge faced in construction of large superstructure of 620 design Ship during the 80’s.

2.1. Wrought Aluminium alloy

Wrought aluminum alloys are utilized than cast alloys because they contain a reduced proportion of alloy components and are less susceptible to defects in the production process. Wrought alloys are appreciated for their outstanding strength and good resistance to corrosion. The chemical composition influences its Weldability, corrosion resistance, strength and ductility. Extrusion is the most prevalent manufacturing process and as these alloys can be heat-treated, they are frequently discovered in a heat-treated and artificially aged condition. Although aluminum is a homogeneous material, it influences the uniformity of mechanical characteristics by the content of alloying elements. These differences can be high if the big amount of alloys accessible throughout the world [3, 9].

2.2. Improvement in 7000 series Al–Zn aluminium alloys

Having been chosen in the manufacture of top wing skins, stringers and horizontal / vertical stabilizers, it demonstrates greater power relative to other classes of aluminum alloys. The aircraft tail, also known as the empennage, comprises of a horizontal stabilizer, a vertical or fine stabilizer, and control surfaces. The horizontal and vertical stabilizers structural design are essentially similar for the wing while the top and bottom horizontal stabilizer's surfaces are often critical in compression loading owing to twisting.

In addition, high performance aluminum alloys such as the 7075-T6 are commonly utilized in aircraft owing to its machinability and comparatively low price. These alloys are however prone to corrosion due to their compositions. Heat treatable material are the 7000 series
alloys, and the variants Al–Zn–Mg–Cu which provide the greatest strengths of all alloys of aluminum. Newer alloys launched however, have greater fatigue and resistance to deterioration. New alloys have proven to be more resistant and tolerant to harm than the previous.

The aluminum alloy 7475 (Al – Zn – Mg – Cu) is an improved 7075 alloy. The 7475 alloy is made for usage that requires strength, fracture toughness and fatigue crack propagation resistance in air and destructive environments. Reducing iron and silicon content of 7075 alloy including altering quenching and ageing situations, enhance the strength and fracture toughness characteristics. These variations in the 7075 alloy led to the emergence of 7475 alloy having a fine grain size, optimum dispersion and maximum strength amidst the available high strength alloys at a particular strength level. It is also suggested that the 7475 alloy's resistance to deterioration is outstanding. Overall, its efficiency is greater than that of commercially accessible 7050 and 7075 alloys [2].

2.3. Advancement in aluminium–lithium alloys

Minimizing the mass to volume ratio of materials is regarded to be the utmost means of limiting the structural weight of aircraft. Lithium is one of the few components with elevated aluminum solubility. This is essential because the mass to volume of an aluminum alloy is lowered by few percentages for every 1 percent added. Lithium is also unique among the more soluble alloy components as it causes the elastic module to rise considerably. Furthermore, Lithium containing aluminum alloys respond to age hardening. The Al–Li alloys 2090, 2091, 8090 and 8091 are the second generation containing 1.9–2.7% lithium, with an approximate 10% minimum density and 25% specific toughness than the alloy of 2000 and 7000 series [10]. The necessity for increased strength and enhanced fracture toughness as well as the decreased weight in aviation applications led to fresh Al–Li alloys generation which does not only offers weight savings owing to reduced density, but also overcomes the disadvantage of past corrosion resistance issues [12].

Gateway to having aluminum alloys that are well-balanced, lightweight, high-performance, good fatigue crack growth performance and excellent combination of strength, toughness and compatibility with conventional production methods [13]. In the third generation Al–Li alloys, low corrosion resistance is eliminated by optimizing alloy composition and temperature. Contemporary 2199 Al–Li alloys are utilized in sheets, plates and aircraft for bottom wing applications (Dursun & Soutis, 2014). Elongation and cold working capability of Al–Li alloys in this generation was studied by Yuan et al so as to enhance its properties and make their applications in the aviation industries possible [14].

2.4. Microstructure selection in the solidification of Aluminium alloys

Aluminum alloys show criterion in an accurate manner compared to other alloy structures, as they display: very small anisotropy of solid-liquid interfacial energy, resulting in different growth morphologies with numerous effects on nucleation and development kinetics. Most of the requirements for choice are based on growth kinetics where nucleation-controlled selection processes may fall. Most of DC Aluminum Alloys Casting structure selection processes are controlled by the maximum criterion of growth temperature [12].

3. Conclusions

Long existence of aluminum alloys as core materials for aircraft structural components has made it easy for aircraft developers to have significant experience in aluminum airframe design, manufacturing, operation and maintenance. Enhancement of structural performance,
load and cost reductions are required in order to stay appealing in the building of the airframe and to compete with presently used aluminum alloys. Recent advancement in Al–Zn and Al–Li alloys have proved positive in enhancing the static strength and deterioration resistance by controlling the composition of chemical through the use of an effective thermal treatment. This study showed that significant improvements in aluminum aerospace alloys are due to obtain quality equilibrium of properties therefore special attention should be given to enhancing the mechanical characteristics of sophisticated aluminum alloys.

Acknowledgements
The support of Covenant University toward this study is appreciated

References

[1] W. Jurczak, Study of the corrosion resistance of ship aluminium alloys. Scientific Journal of Polish Naval Academy. 206 (2016) 37-65.
[2] T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys. Materials & Design (1980-2015). 56 (2014) 862-871.
[3] T. Dokšanović, I. Džeba and D. Markulak, Variability of structural aluminium alloys mechanical properties. Structural safety. 67 (2017) 11-26.
[4] J.K. Holmen, B.H. Frodal and O.S. Hopperstad and T. Børvik, Strength differential effect in age hardened aluminum alloys. International Journal of Plasticity. 99 (2017) 144-61.
[5] J. Joel and M.A. Xavior, Aluminium alloy composites and its machinability studies; A review. Materials today: Proceedings. 5 (2018) 13556-13562.
[6] S. Zou, Y. Zhang, W. Xu, Y. Wan, C. He, C. Dong and X. Li, Galvanic Corrosion Behavior of Aluminum Alloy (2219 and ZL205A) Coupled to Carbon Fiber-Reinforced Epoxy Composites. International Journal of Electrochemical Science.11 (2016) 9625-9633.
[7] O.S.I. Fayomi and I.G. Akande, Corrosion protection effect of chitosan on the performance characteristics of A6063 alloy. Journal of Bio-and Tribo-Corrosion. 4 (2018) 73.
[8] S. Das, Development of aluminium alloy composites for engineering applications. Trans. Indian Inst. 57 (2004) 325-34.
[9] O.S.I. Fayomi, O.O. Joseph, I.G. Akande, C.K. Ohiri, K.O. Enechi, N.E. Udoye, Effect of CCBP doping on the multifunctional Al-0.5 Mg-15CCBP superalloy using liquid metallurgy process for advanced application. Journal of Alloys and Compounds. 783 (2019) 246-255.
[10] B. Stojanović and L. Ivanović, Application of aluminium hybrid composites in automotive industry. Tehnički vjesnik. 22 (2015) 247-51.
[11] R. Dasgupta, Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications. ISRN metallurgy. 2012 https://doi.org/10.5402/2012/594573
[12] J. Kristian, B. Håkon, O. Sture and T. Børvik, Strength differential effect in age hardened aluminum alloys. International Journal of Plasticity, 99 (2017) 144–161.
[13] P. Jarry and M. Rappaz, Recent advances in the metallurgy of aluminium alloys. Part I: Solidification and casting. Comptes Rendus Physique.19 (2018) 672-87.
[14] A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino and M. Lombardi, New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials.12 (2019) 1007.