RESEARCH ARTICLE

The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance

Naseh Maleki-Ravasan1, Samaneh Solhjouy-Fard2,3, Jean-Claude Beaucournu4, Anne Laudisoit5,6,7, Ehsan Mostafavi2,3*

1 Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran, 2 Research Centre for Emerging and Reemerging Infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran, 3 Department of Epidemiology and Biostatistics, Pasteur institute of Iran, Tehran, Iran, 4 University of Rennes, France Faculty of Medicine, and Western Institute of Parasitology, Rennes, France, 5 Evolutionary Biology group, University of Antwerp, Antwerp, Belgium, 6 School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom, 7 CIFOR, Jalan Cifor, Situ Gede, Sindang Barang, Bogor Bar., Jawa Barat, Indonesia

* mostafaviehsan@gmail.com

Abstract

Background

Flea-borne diseases have a wide distribution in the world. Studies on the identity, abundance, distribution and seasonality of the potential vectors of pathogenic agents (e.g. Yersinia pestis, Francisella tularensis, and Rickettsia felis) are necessary tools for controlling and preventing such diseases outbreaks. The improvements of diagnostic tools are partly responsible for an easier detection of otherwise unnoticed agents in the ectoparasitic fauna and as such a good taxonomical knowledge of the potential vectors is crucial. The aims of this study were to make an exhaustive inventory of the literature on the fleas (Siphonaptera) and range of associated hosts in Iran, present their known distribution, and discuss their medical importance.

Methodology/Principal Findings

The data were obtained by an extensive literature review related to medically significant fleas in Iran published before 31st August 2016. The flea-host specificity was then determined using a family and subfamily-oriented criteria to further realize and quantify the shared and exclusive vertebrate hosts of fleas among Iran fleas. The locations sampled and reported in the literature were primarily from human habitation, livestock farms, poultry, and rodents’ burrows of the 31 provinces of the country. The flea fauna were dominated by seven families, namely the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. The hosts associated with Iran fleas ranged from the small and large mammals to the birds. Pulicidae were associated with 73% (56/77) of identified host species. Flea-host association analysis indicates that rodents are the common hosts of 5 flea families but some sampling bias results in the reduced number of bird host sampled. Analyses of flea-host relationships at the subfamily level showed that most vertebrates hosted fleas belonging to 3 subfamilies namely Xenopsyllinae (n = 43), Ctenophthalminae (n = 20) and Amphipsyllinae (n = 17). Meriones persicus was infested by...
11 flea subfamilies in the arid, rocky, mountainous regions and Xenopsyllinae were hosted by at least 43 mammal species. These findings place the Persian jird (M. persicus) and the Xenopsyllinae as the major vertebrate and vector hosts of flea-borne diseases in Iran including Yersinia pestis, the etiological agent of plague. We found records of at least seven vector-borne pathogenic agents that can potentially be transmitted by the 117 flea species (or subspecies) of Iran.

Conclusions/Significance

Herein, we performed a thorough inventory of the flea species and their associated hosts, their medical importance and geographic distribution throughout Iran. This exercise allowed assessing the diversity of flea species with the potential flea-borne agents transmission risk in the country by arranging published data on flea-host associations. This information is a first step for issuing public health policies and rodent-flea control campaigns in Iran as well as those interested in the ecology/epidemiology of flea-borne disease.

Author Summary

The data about flea-borne emerging or re-emerging infections throughout Iran are limited. This paper showed that the flea fauna of Iran were dominated by seven families. Moreover flea-host association analysis indicates that rodents are common hosts of flea families and most vertebrates hosted fleas belonging to the subfamilies Xenopsyllinae, Ctenophthalminae and Amphipsyllinae. We showed that the Persian jird (Meriones persicus Blanford, 1875) and the Xenopsyllinae are respectively the major vertebrate and potential vectors of flea-borne diseases in Iran. Further efforts are needed to inventory and screen molecularly wild and domestic mammals flea fauna (>3kg) in order to monitor the risk of and control flea-borne infections in Iran, especially in the ecoregions with high diversity of flea and host species and in the old endemic plague foci of the country.

Introduction

Vector-borne diseases (VBDs) are globally responsible for more than 17% of all infectious diseases [1]. There are a large number of viral, rickettsial, bacterial and parasitic diseases that are transmitted by insect vectors [2]. In the last two decades, many zoonotic VBDs have emerged in areas where they previously did not occur, and the incidence of these diseases both in endemic areas and outside their known range has increased [3]. In recent years, most studies on zoonotic diseases have focused on tick- and mosquito-borne diseases, less attention has been given to flea-borne diseases[4].

Fleas (Siphonaptera) are small, bloodsucking or hematophagous ectoparasites that may transmit pathogens through several possible mechanisms, including: contaminated feces (e.g. R. typhi, B. henselae), soiled mouthparts (e.g. Y. pestis, viral pathogens), regurgitation of gut contents (e.g. Y. pestis), and infectious saliva (e.g. R. felis in salivary glands)[4].

Over 2500 flea species belonging to 16 families and 238 genera have been described worldwide [5]. Fleas are mainly ectoparasites of mammals while birds are infested by only 6% of the known species. This is partly due to reduced collection efforts and sampling bias as only few bird fleas are in close contact with humans [6]. Fleas are one of the most common insect
groups that can serve as vector and intermediate host of pathogenic zoonotic agents between vertebrate hosts, including humans [4, 7–8]. Fleas can have a direct pathogenic effect by causing allergic dermatitis [9–10] or paralysis subsequent to the injection of saliva into their hosts skin or blood [11]. Notorious human pathogens such as *Yersinia pestis* (plague), *Rickettsia typhi* (murine typhus), *Francisella tularensis* (tularemia) and *Bartonella henselae* (cat scratch disease) are transmitted by fleas [12–15].

Some fleas tend to be host specific (restricted or specialist), but others have a wide host range (permissive, opportunistic). The permissive species group are more significant than the restricted ones, because they can spread infectious agents among and within their multiple hosts and across a diverse series of habitats [6]. In order to prevent or control the occurrence and spread of flea-borne diseases, it is thus necessary to establish a taxonomical inventory of the flea fauna and their specific distribution range.

Climate changes, due to global warming and human intervention, have led to changes in the biological parameters and distribution ranges of vectors and hence of VBDs [16]. On the bases of vulnerability assessments and models, it is predicted that climate change will result in raised incidence of communicable diseases embracing VBDs; however the short and long term effects will be mitigated and will be linked to vector life cycles (e.g.: developments of preimaginal stages) and geographic area [17]. Reasonable proofs tend to suggest that changes in climatic factors may affect VBDs incidence especially acting on the off-host developmental life stages of arthropods and hence disease transmission dynamics. Insects as poikilotherm organisms have no internal control of their body temperatures, and as such depend on their host(s)—the imago as a transient habitat--, and abiotic conditions for survival, which both condition their vector capacity, as well as their reproduction rate [18]. Moreover, vector capacity is linked to the nature of the pathogen transmitted, survival rate inside its vector host—which may or may not affect vector fitness—and incubation or turnover rate that is inversely proportional to temperature [19]. Moreover, climate and human behavior changes increase human exposures to vectors and the pathogenic agents they transmit [20]. Studies of plague transmission in the U.S.A, China and Kazakhstan have found that the patterns of human or rodent plague are shifting as temperatures warms up or link to climatic oscillations (such as El Niño) and precipitation pattern [20].

Iranian physicians were familiar with the human plague for a long time. Although there are little information about the situation of plague from earlier centuries, more documented evidence are available from the 19th and 20th centuries. As a matter of fact, faunistic studies of Iranian fleas have been carried out mainly about 60 years ago in a context of plague research and most species described at the time were collected and described off plague hosts [21]. When plague research stopped, flea inventories did so too and there are no current updates on the flea fauna of Iran. However, a recent study detected antibodies against *Y. pestis* in dogs—known to be a good sentinels for plague surveillance- while human plague hasn’t been reported for 50 years [22]. This finding triggered some concern about the possible plague reemergence in the countryside, in the old plague foci and called for an update on the state-of-knowledge of the flea diversity in the country. The aims of the present study were to update by reviewing the current state of knowledge of the Iranian Siphonaptera diversity, their host range and especially the medically important species.

Methods

This review was based on a search of the online scientific databases (Scientific Information Database) PubMed and Google Scholar from 1952 through 31st August 2016. Keywords—submitted in English, French, Turkish and Russian—for the search were “flea AND fauna AND
Iran”; “Iran AND puce”, “Iran AND siphonaptera”; “Iran AND ectoparasite”. Searches were conducted in the titles, abstracts, keywords and full text. The majority of our knowledge on the Siphonaptera of Iran is derived from plague studies[23], the concept of “telluric plague” is coeval with these researches[24] and studies of two flea specialists, the Iranian Farhang-Azad and the French J.M. Klein.

In each case the flea species, its host, and location of sampling were extracted from the published papers. The flea distribution maps were prepared using ArcGIS (ArcGIS version 9.3, ESRI). An online software were used to further classify and quantify the shared and exclusive vertebrate hosts of fleas with the “family or subfamily” filtering criteria[25].

Results

Literature review

The data for this study were extracted from about 100 relevant papers in English, French, Istanbul Turkish or Russian. Faunistic reviews of the medically significant fleas showed the presence of fleas through 31 Iranian provinces (Fig 1). In the old classification of Iran provinces used by Farhang-Azad (1972b), the Khorasan province, which was the largest province of Iran in the plague research era, is currently divided in three provinces namely Razavi Khorasan, North Khorasan, and South Khorasan. This means that the spatial scale of the flea range resolution is less accurate in the old literature as it covers a larger area where the flea and their host are not homogenously found. Based on the information in the studied papers, the sampling locations mainly were human houses, animal husbandry premises, poultry farms, and rodents’ burrows.

Flea diversity

According to the literature, about 117 species or subspecies of fleas belonging to 7 families and 35 genera have been described in Iran. Most flea species reported in the studied literature belonged to the Ceratophyllidae (n = 33), Leptopsyllidae (n = 24), Pulicidae (n = 21), Ctenophthalmidae (n = 20) and Coptopsyllidae (n = 9) families. The flea species of the Ischnopsyllidae (bat-fleas) and Vermipsyllidae (carnivore-fleas) families consisted of only 6 and 4 species of the whole collection respectively (Tables 1 and 2).

The Ceratophyllidae, the more represented flea family, consisted of 33 species belonging to 6 genera comprising Callopsylla, Ceratophyllus, Citellophilus, Myoxopsylla, Nosopsyllus and Pararcera.

The Leptopsyllidae, bird and rodent fleas, consisted of 24 species consisting of 10 genera including Amphipsylla, Caenopsylla, Ctenophyllus, Frontopsylla, Leptopsylla, Mesopsylla, Ophthalmopsylla, Paradoxopsyllus, Peromyscopsylla and Phaeopsylla.

The Ctenophthalmidae consisted of 20 species belonging to 7 genera comprising Ctenophthalmus, Dorratopsylla, Neopsylla, Palaeopsylla, Rhadinopsylla, Stenoponia and Wagnerina.

The Pulicidae, a cosmopolitan family of the most notorious plague vectors (genus Xenopsylla), included 21 species distributed in 7 genera comprising Archaeopsylla, Ctenocephalides, Echidnophaga, Pulex, Synosternus, Parapulex, and Xenopsylla.

The Coptopsyllidae was limited to 9 species in the genus Coptopsylla.

In the above-mentioned five families, the most commonly reported fleas belong to the genera Nosopsyllus (Ceratophyllinae), Xenopsylla (Xenopsyllinae), Ctenophthalmus (Ctenophthalminae) Coptopsylla (Coptopsyllidae) Amphipsylla (Amphipsyllinae), Leptopsylla (Leptopsyllinae), and Mesopsylla (Mesopsyllinae). Detailed information is presented in Table 1.
Fig 1. Distribution maps of studied fleas (sub-) family in Iran.

doi:10.1371/journal.pntd.0005260.g001
Family	Subfamily	Genus	Species	Associated Host	Province/Locality
	Callopsylla aff.	Callopsylla	aff.		
		Caspia			
		Lag.:	Ochotona rufescens	Razavi Khorasan (Mashhad)	[26]
		Rod.:	Alborz Mountains		[27–28]
	Ceratophyllus fringillae	Bird	Motacilla alba; Galerida cristata, Passer domesticus	Isfahan, Tehran (Daleh Tani), Semnan (Shahrood), South Khorasan (Tabas)	[21, 26]
		Ceratophyllus sp.	Vulpes vulpes	Hamadan (Agh Bolagh Morshed)	[21, 26]
	Citellophilus trispinus	Rod.	Gerbillus nanus, Cheesmani, Tatera indica, Meriones persicus, M. crassus, Rhombomys opimus, Tatera indica, Vulpes vulpes	Tehran, Razavi Khorasan (Mashhad, Sabzevar, Ghoochan, Lotf Abad), South Khorasan (Tabas)	[21, 26]
		Rod.	Microtus irani, M. socialis, Rhombomys opimus, Cricetulus migratorius	Tehran, Razavi Khorasan (Mashhad, Sabzevar), Kerman, South Khorasan (Tabas)	[21, 26]
		Rod.	Rattus norvegicus, Mus musculus, R. rattus	Tehran, Gilan (Rasht)	[21, 26]
		Rod.	Allactaga williamsi	Tehran, Gilan (Rasht)	[21, 26]

The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance
Family	Subfamily	Associated Host	Province (Locality)	Ref.
Ctenophthalmidae	Anomiopsyllinae	Insect: T. caeca; Rod.: Apodemus sylvaticus, A. flavicollis, A. uralensis	Isfahan, Kermanshah	[26, 29]
	Ctenophthalminae	Insect: T. caeca; Rod.: Apodemus sylvaticus, A. flavicollis, A. uralensis	Isfahan, Kermanshah	[26, 29]
	Nymphomyinae	Rod. Ctenophthalmus sp.	Isfahan, Kermanshah	[26, 29]
	Stenoponinae	Rod. Ctenophthalmus sp.	Isfahan, Kermanshah	[26, 29]
Ctenophthalmidae	Palaeopsyllinae	Insect: C. fulvus; Rod.: Citellus fulvus	Mazandaran (Veysar, Dasht-Lateh), Ghilan (Assalem)	[37]
	Rhadinopsyllinae	Rod. Ctenophthalmus sp.	Mazandaran (Veysar), Ghilan (Assalem)	[37]
	Drosophilopsyllinae	Rod. Ctenophthalmus sp.	Mazandaran (Veysar, Ghilan (Assalem))	[37]

The Fleas (Siphonaptera) in Iran: Diversity, Host Range, and Medical Importance

(Continued)
Table 1. (Continued)

Family	Subfamily	Fleas species	Associated host	Province (Locality)	Ref.
Ischnopsyllidae	Ischnopsyllinae	Chirotropopsylla brockmani	Chiro. : Aselia tridens	Hormozgan (Roodan, Minab), Fars (Shiraz)	[26, 43]
		Ischnopsyllus dolosus	Chiro. : Myotis blythi, Pipistrellus pipistrellus	Azarbaijan	[47]
		I. elongates	Chiro. : Aselia tridens (acc.), Nyctalus noctula	Mazandaran (Tonekabon)	[47]
		I. octactenus	Chiro. : Pipistrellus pipistrellus, Pippitiellus kuhl	Ramsar, Ghilan (Rasht), Razavi Khorasan (Mashhad)	[21, 26, 37, 43, 48]
		I. petropolitanus	Chiro. : Plecotus macrobularis	Semnan (Gandab)	[47]
		Rhinolophostylla unipactitata	Chiro. : Rhinolophostylla blasi, Pipistrellus pipistrellus, Aselia tridens (acc.)	Razavi Khorasan (Mashhad)	[26, 47]
Leptopsyllidae	Ampipsyllinae	Ampipsylla argoi	Rod. : Calomyscus bailwardi	Isfahan (Ghaleh Tappeh)	[21, 26]
		A. parthenia	Rod. : Microtus socialis, M. anialis	Razavi Khorasan (Mashhad)	[26–28]
		A. rossata rossica	Rod. : Microtus irani, M. males males	Hamadan (Agh Bolagh Mashhad)	[21, 26]
		A. schelkovnikovi schelkovnikovici (= A. s. irana)	Rod. : Meiones persicus, M. libycus, M. Vinogradovii, Mus musculus, Cricetulus migratorius, Rattus norvegicus, Crsiticulus auratus; Carn. : Vulpes vulpes (acc.)	Hamadan (Agh Bolagh Mashhed, Akanlu), Tehran (Firoozkoh), Isfahan (Ghaleh Tappeh), Razavi Khorasan (Mashhad)	[21, 26, 29]
		Chiroptopsylla rufus	Chiro. : Ochotona rufescens, Rod. : Calomyscus bailwardi	Markazi (Mahalaf)	[21, 26, 29]
		Fiortopsylla ambigua	Rod. : Ochotona rufescens, Rod. : Calomyscus bailwardi	Semnan	[40]
		Ophthalmopsylla volgensis aroldi	Rod. : Alactaga elater, A. williamsi, Cricetulus migratorius, Meriones persicus, M. libycus, M. Vinogradovii; Insect. : Hemiechinus auritus (acc.)	Hamadan (Agh Bolagh Mashhed, Akanlu) Tehran, East Azarbaijan (Tabriz)	[21, 26, 29]
		O. volgensis impersia	Rod. : Allactaga elater	Mazandaran (Sani)	[36, 49]
		O. volgensis intermedia	Rod. : Allactaga elater	Razavi Khorasan (Mashhad)	[26]
		Paradoxopsylla genrichi	Rod. : Meriones persicus, M. vinogradovii	Hamadan (Akanlu)	[21, 26]
		P. microphthalmus	Rod. : Meriones persicus, Calomyscus bailwardi	Tehran (Firooz Koo), Razavi Khorasan (Mashhad)	[21, 26, 26, 44]
		P. tchomiriovae	Rod. : Calomyscus bailwardi, Meriones persicus	Isfahan (Ghaleh Tappeh), Kerman, Fars (Shiraz), Razavi Khorasan (Mashhad)	[21, 26]
		Phanopsylla trivoli	Rod. : Calomyscus bailwardi	Isfahan (Ghaleh Tappeh), Tehran, West Azarbaijan (Urmia)	[21, 26]
		P. kopaetskij	Rod. : Calomyscus bailwardi	Tehran, Mazandaran (Sani), Kerman, Razavi Khorasan (Mashhad)	[26]
Leptopsyllidae	Leptopsyllinae	Leptopsylla aethiopica aethiopica	Rod. : Mus musculus	Semnan	[50]
		L. putaki	Insect. : Crocidura leucodon	Tehran	[26]
		L. taschenbergi taschenbergi	Rod. : Apodemus mystacitrus, A. sykticus, Rattus rattuss, Mus musculus	Hamadan (Razan), Tehran, Gilan (Rasht), Mazandaran (Sani), East Azarbaijan (Tabriz), West Azarbaijan (Urmia), Kerman, Shek (Shiraz), Razavi Khorasan (Mashhad), Isfahan	[26, 51]
		L. segnis	Rod. : Rattus rattus, R. norvegicus, Mus musculus	Gilan (Rasht, Bandar Anzali), West Azarbaijan (Urmia), Kerman, Shek (Shiraz)	[21, 26]
		Peromyscospsylla tikkonovae	Rod. : Calomyscus bailwardi	Isfahan (Ghaleh Tappeh)	[20]
Mesopsyllinae	Caepopsisylla laptevi laptevi	Carn. : Vulpes vulpes, Rod. : Tatera indica	Carn. : Vulpes vulpes, Rod. : Tatera indica	Isfahan (Shah-Loos, Mahavi), Fars (Shiraz, Kazerun), Markazi (Mahalaf), Tehran (Hassan Abad), Kerman	[21, 26, 26, 51]
	Mesopsylla eucta tuschanien	Rod. : Alactaga elater, A. williamsi, Meriones vinogradovii, M. tristarni M. libycus, M. persicus, Cricetulus migratorius; Carn. : Vulpes vulpes (acc.)	Tehran (Kamal Abad), Hamadan (Agh Bolagh Mashhed, Akanlu), Razavi Khorasan (Fieiz Abad), Tehran (Kamal Abad)	[21, 26]	
	M. tuschanien mesa	Rod. : Alactaga elater, A. elater	Carn. : Vulpes vulpes	Razavi Khorasan (Mashhad)	[26–27]
	M. tuschanien tuschanien	Rod. : Alactaga elater, A. elater	Carn. : Vulpes vulpes	Tehran, Kerman	[26–27]
	M. eucta eucta	Rod. : Meriones libycus, M. persicus	Hamadan (Agh Bolagh Mashhed, Akanlu), Razavi Khorasan (Fieiz Abad), Tehran (Kamal Abad)	[21, 26]	
Family	Subfamily	Fleas species	Associated host	Province (Locality)	Ref.
------------	---------------	-----------------------------	--	--	------------
Pulicidae	Archaeopsyllinae	Archaeopsylla erinacei	Insect.: *Hemiechinus auritus*	Isfahan (Goloon Abad), Hamadan (Agh Bolagh Morshed), Tehran (Youssef Abad), West Azerbaijan (Maik), East Azerbaijan (Maragheh, Marand)	[21, 26, 29, 37]
				Fars (Kazerun), Qazvin, Qom, Hormozgan, Isfahan, Ilam, Karman, South Khorasan, Kohgilouyeh and Boyerahmad (Margouin, Loudab, Baksh-e Markazi), Razavi Khorasan, Lorestan (Khorram-Abad), Khuzestan (Ahvaz, Shoooh, Dezfool, Abadan), Tehran, Zanjan, Mazandaran (Tonekabon, Babolian), Hormozgan (Agh Bolagh Morshed)	[8, 21, 26, 29–30, 32, 53–56]
				West Azerbaijan, Ilam, Kurdistan, Kohgilouyeh and Boyerahmad (Margouin, Loudab, Baksh-e Markazi), Khuzestan (Shoooh, Abadan, Dezfool, Bahbahan Ahvaz), Tehran, Golestan (Bandar-Torkman), Isfahan, Gilan (Rasht), Fars (Kazerun), Razavi Khorasan (Mashtad)	[8, 21, 26, 32, 53, 57]
		Ctenocephalides canis	Carn.: *Canis lupus familiaris*, *Felis catus*, *F. silvestris*, *C. lupus ssp.*, *Vulpes vulpes*, *V. suspected*, *Canis aureus*, *Mustela nivalis*, *Herpestes edwardsi*, *Hyaena hyaena*; Rod.: *Rattus norvegicus* (acc. but not rare), Ungul.: *Ovis aries*, *Capra hircus*	Fars (Kazerun), Qazvin, Qom, Hormozgan, Isfahan, Ilam, Karman, South Khorasan, Kohgilouyeh and Boyerahmad (Margouin, Loudab, Baksh-e Markazi), Razavi Khorasan, Lorestan (Khorram-Abad), Khuzestan (Ahvaz, Shoooh, Dezfool, Abadan), Tehran, Zanjan, Mazandaran (Tonekabon, Babolian), Hormozgan (Agh Bolagh Morshed)	[21, 26, 29, 29, 32, 35, 37, 54–55]
		C. felis felis	Carn.: *Canis lupus familiaris*, *Felis catus*, *F. silvestris*, *C. lupus ssp.*, *Vulpes vulpes*, *V. suspected*, *Canis aureus*, *Mustela nivalis*, *Herpestes edwardsi*, *Hyaena hyaena*; Rod.: *Rattus norvegicus* (acc. but not rare), Ungul.: *Ovis aries*, *Capra hircus*	Fars (Kazerun), Qazvin, Qom, Hormozgan, Isfahan, Ilam, Karman, South Khorasan, Kohgilouyeh and Boyerahmad (Margouin, Loudab, Baksh-e Markazi), Razavi Khorasan, Lorestan (Khorram-Abad), Khuzestan (Ahvaz, Shoooh, Dezfool, Abadan), Tehran, Zanjan, Mazandaran (Tonekabon, Babolian), Hormozgan (Agh Bolagh Morshed)	[21, 26, 29, 32, 35, 37, 54–55]
		C. orientis	Carn.: *Canis lupus familiaris*, *Felis catus*, *F. silvestris*, *C. lupus ssp.*, *Vulpes vulpes*, *V. suspected*, *Canis aureus*, *Mustela nivalis*, *Herpestes edwardsi*, *Hyaena hyaena*; Rod.: *Rattus norvegicus* (acc. but not rare), Ungul.: *Ovis aries*, *Capra hircus*	Fars (Kazerun), Qazvin, Qom, Hormozgan, Isfahan, Ilam, Karman, South Khorasan, Kohgilouyeh and Boyerahmad (Margouin, Loudab, Baksh-e Markazi), Razavi Khorasan, Lorestan (Khorram-Abad), Khuzestan (Ahvaz, Shoooh, Dezfool, Abadan), Tehran, Zanjan, Mazandaran (Tonekabon, Babolian), Hormozgan (Agh Bolagh Morshed)	[21, 26, 29, 32, 35, 37, 54–55]
Pulicinae	Echidnophaga gallinacea	Insect.: *Hemiechinus auritus*, Carn.: *Meles meles* (acc.)		Isfahan (Goloon Abad), Golestan (Bandar Torkman), Tehran (Youssef Abad), Qazvin	[21, 26, 29]
		E. oschanini	Rod.: *Rhombomys opimus*, *Meriones persicus*, *M. libycus*	Isfahan (Yekleny, Ziar), Golestan (Dash Bonoon)	[21, 26, 29]
		E. popovi	Carn.: *Vulpes vulpes*, *Meles meles*	Hamadan (Agh Bolagh-Morshed), Tehran (Hesarak), Qazvin	[21, 29]
	Parapulex chephrenis	Acomys sp.		NS	[27]
	Pulex irritans	Prim.: *Homo sapiens*, Carn.: *Canis lupus familiaris*, *Felis catus*, *Felis silvestris*, *Canis lupus*, *Mustela nivalis*, *Hyaena hyaena*; Rod.: *Rattus norvegicus* (acc.), Insect.: *Hemiechinus auritus*, Artiodact.: *Sus scrofa*, Birds (acc.): *Gallus gallus*, *Ciconia corone*	East Azerbaijan, Fars (Shiraz, Kazerun), Ghilan (Assaleem), Golestan (Gorgan), Hamadan, Hormozgan, Isfahan (Yekleny, Ziar, Varzaneh, Shahrezaj, Kerman, Kermanshah, Khuzestan (Abadan, Shoooh, Khoramshahr, Dezfool, Izeh, Soosangerd), Kohgilouyeh and Boyerahmad, Kurdistan, Lorestan (Khorram-Abad), Markazi, Mazandaran (Marzban Abad, Tonekabon), Persian Gulf, Qazvin, Qom, Razavi Khorasan (Mashtad, Ghoochar), Samnan, South Khorasan, Tehran (Hesarak), West Azerbaijan (Akhand-Abad), Zanjan	[21, 29, 32, 35, 37, 54–55]	

(Continued)
Table 1. (Continued)

Family	Subfamily	Fleas species	Associated host	Province (Locality)	Ref.
Xenopsyllinae	Synosternus cleopatrae	Rod.: Tatera indica, Gerbillus nanus, G. cheesmani, Insect.: Hemiechinus megalotis	Sistan and Baluchestan (Chabahar, Zabol), Kerman	[26]	
S. pallidus	Rod.: Tatera indica, Insect.: Hemiechinus auritus, H. megalotis, Carn.: Vulpes vulpes, V. rueppelli, Canis lupus, Herpestes auropunctatus, Hyæna hyæna	Khoustanz (Dezfool, Abadan, Shoosh) Bushehr (Borajuzan), Tehran (Kamal Abad, Hesarak), Markazi (Malahati)	[21, 26]		
Xenopsylla astia	Rod.: Ratufa norvegica, R. rattus, Tatera indica, Calomyscus balhwardi, Meriones crassus, M. hurraneae, Citelus fulvus, Nesokia indica, Jaculus jaculus, Mus musculus, Acromys dimidiatus, Insect.: Hemiechinus auritus	Kohgiluyeh and Boyer Ahmad, Khorasan (Kabud, Azad, Dezfool, Aseman, Shoosh), Hormozgan (Bandar Abbas), Kerman (Ghazie Shrin), Fars (Kazerun), Razavi Khorasan (Mashhad), Isfahan (Ghaba Tappe)	[21, 26, 28, 32, 58–59]		
X. buxtoni	Rod.: Ratufa norvegica, R. rattus, Mus musculus, Tatera indica, Meriones persicus, M. tristati, M. libycus, M. vinogradovii, Microtus anisali, M. irani, M. socialis, Nesokia indica, Citelus migratorius, Mesocricetus auratus, Allactaga elator, A. willardi; Carn.: Vulpes vulpes (acc.), Meles meles	Kurdistan, Hormozgan, Lorestan (Khorram-Abad, Sistan and Baluchestan, Kerman, Qazvin, Maragheh, Babol)	[21, 26, 32, 26–35, 27–65]		
X. cheopis cheopis	Rod.: Ratufa norvegica, R. rattus, Mus musculus, Citelus fulvus, Citelus migratorius, Meriones persicus	Hormozgan (Bandar abbas), Khorasan (Dezfool, Shoosh), Gilan (Kaligh, Bander anzali), Zabol (Bandar Tappeh), Tehran, Isfahan, Razavi Khorasan (Darreh gaz), South Khorasan (Tabas)	[21, 26, 28–32, 32, 58]		
X. conformis conformis	Rod.: Allactaga elator, Tatera indica, Rhombomys opimus, Jaculus jaculus, J. blanfordi, Gerbillus nanus, Meriones tristati, M. crassus, M. persicus, M. vinogradovii, M. tristati, M. meridianus, M. libycus, Citelus fulvus, Nesokia indica, Citelus migratorius, Meles meles	Sistan and Baluchestan (Daman, Qasre Qand, Bampour), Kurdistan, Isfahan (Shahreza, Ghalieh tappeh), Kurdistan (Yeklaey, Ethereh darreh), Isfahan (Hasan Abad, Kerman, Najm Abad, Kamal Abad, Darreh gaz, Shoosh), Gilan (Kaligh, Bander anzali), Khuzestan (Shoosh), Sistan and Baluchestan (Bandar anzali), Hormozgan (Bandar torkman), Tehran (Hassan Abad), Razavi Khorasan (Masjed Shahr, Moghan, Khorasan), Isfahan (Shahreza, Ghalieh tappeh), Qazvin (Maragheh, Babol)	[21, 26, 28, 29, 32, 58]		
X. conformis mycentii	Rod.: Allactaga elator	Razavi Khorasan (Mashhad)	[28, 44]		
X. geblili geblili	Rod.: Rhombomys opimus	Razavi Khorasan (Darreh Gaz, Lolt Abad)	[26]		
X. hussaini	Rod.: Nesokia indica, Tatera indica, Gerbillus nanus, G. cheesmani, Meriones persicus, Insect.: Hemiechinus megalotis	Fars (Shiraz), Kerman	[26]		
X. nubica	Rod.: Allactaga elator, Jaculus jaculus, J. blanfordi	Sistan and Baluchestan (Daman, Qasre Qand, Bampour), Isfahan (Hamadan)	[26, 26–29, 58]		
X. nutalli	Rod.: Rhombomys opimus, Gerbillus nanus, G. cheesmani, Meriones persicus, M. crassus, M. meridianus, Nesokia indica, Hystricindica, Mus musculus, Calomyscus balhwardi, Tatera indica, Eotaxus fuscellipustulatus, Insect.: Hemiechinus auritus; Carn.: Vulpes vulpes; Ungul.: Ovis aries, Bos taurus, Capra hircus; Lag.: Lepus capensis, Ochotona rufescens, Chi.: Pipistrellus pipistrellus (acc.)	Kohgiluyeh and Boyer Ahmad (Bakhsh-e Markazi, Mashhad, Sistan and Baluchestan, Bordj), Shahr-e Reza, Ghaestan, South Khorasan (Tabas), Kerman (Shahreza), Razavi Khorasan (Ghahre Tappeh), Golestan (Dash Borom), Razavi Khorasan (Salzarshahar)	[21, 26, 29, 32, 61]		
X. persica	Rod.: Meriones persicus, Rhombomys opimus	Razavi Khorasan (Asi Bolyagh Ghoochan)	[5, 26]		
Vermopsyllidae	NS	Chaetopsylla gibbiceps	Carn.: Vulpes vulpes	Isfahan (Shah-Lora, Khanasr, Sharazeha) Mashhad, Fars (Shiraz)	[21, 26, 29]
C. hyaenae	Carn.: Hyaena hyaeana	Tehran	[21, 26]		
C. korobkovi	Carn.: Vulpes vulpes	Hamadan (Agh Bolagh Morshed, Akanlu) Isfahan (Shahreza, Shah-Lora), Fars (Shiraz)	[21, 26, 29]		
C. tichosa avicennii (= C. tichosa)	Carn.: Meles meles	Kurdistan	[21, 44]		

Abbreviations: Carn.: Carnivora, Rod.: Rodentia, Lag.: Lagomorpha, Insect.: Insectivora, Ungul.: Ungulate, Prim.: Primates, Chi.: Chiroptera, Artiodact.: Artiodactyla, acc.: accidental host. NS: Not Stated. * In the old classification of Iran provinces which implied by Farhang-Aazad (1972b)[62], the main cities were regarded as flea collection locality [26].

doi:10.1371/journal.pntd.0005260.t001
Host diversity and associated flea fauna

The hosts associated with Iran fleas ranged from the small mammals (Rodentia, Chiroptera, Lagomorpha, Insectivora) to the large mammals (Ungulata, Carnivora, Primates, Artiodactyla) and birds as well. On the whole, 166 vertebrate host species were reported infested by fleas in Iran in the literature including Pulicidae (n = 56), Ceratophyllidae (n = 38), Ctenophthalmidae (n = 29), Leptopsyllidae (n = 22), Coptopsyllidae (n = 11), Ischnopsyllidae (n = 7) and Vermipsyllidae (n = 3). By filtering the compiled data, we recognized 77 vertebrate host species among all seven flea families.

Eight potential mammals were hosted by ≤7 flea (sub-) family respectively; these were: *Calomyscus bailwardi* (7), *Meles meles* (7), *Mus musculus* (7), *Meriones vinogradovi* (8), *Vulpes vulpes* (8), *Cricetulus migratorius* (9), *Meriones libycus* (9) and *Meriones persicus* (11). Actually flea (sub-) families can infest 10 vertebrate hosts were Xenopsyllinae (n = 43), Ceratophyllinae (n = 29), Ctenophthalminae (n = 20), Leptopsyllinae (n = 20), Pulicidae (n = 19), Amphipsyllinae (n = 17), Stenoponiinae (n = 12) and Coptopsyllidae (n = 11). Detailed information is presented in Table 3.

At least 23, 6, 5, 5 and 1 host species are exclusively infested by Pulicidae, Ischnopsyllidae, Ceratophyllidae, Ctenophthalmidae and Leptopsyllidae respectively. However restricted host species was not found in the Coptopsyllidae and Vermipsyllidae (Table 4).
Host	Typical habitat	(sub-) family	Total flea (sub-) families per host
Acomys dimidiatus	semi-arid or dry habitats	Ce Co An Ct Do Ne Rh St Am Le Me Ar Pu Xe Ve	1
Allactaga elater	deserts and semideserts	- - - - - - - - - - - - - - - - -	3
Allactaga williamsi	steppe regions with sparse vegetation	1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
Apodemus mystacinus	forest with rocky areas	- - 1 1 1 1 1 1 1 1 1 1	4
Apodemus sylvaticus	wide variety of semi-natural habitats	- - - - - - - - - - - - - - 1	2
Bos Taurus	rangelands	- - - - - - - - - - - - - - 1	2
Calomyscus bailwardi	barren, dry and rocky mountainsides	1 1 1 - 1 1 1 1 1 1 1 -	7
Canis aureus	dry habitats	- - - - - - - - - - - 1 1	2
Canis lupus spp.	arid desert regions to dense scrub forests	- - - - - - - - - - - 1 1	2
Canis lupus familiaris	northern habitats with sufficient prey	- - - - - - - - - - - 1 1	2
Canis lupus pallipes	northern habitats with sufficient prey	- - - - - - - - - - - 1 1	2
Capra hircus	rangelands	- - - - - - - - - - - 1	3
Citellus fulvus	deserts and semi-deserts	1 1 1 1 1 1 1 1 1 1	4
Cricetulus migratorius	arid or semi-arid regions	1 1 1 1 1 1 1 1 1 1 1 1 1	9
Crocidura leucodon	moist mountainous regions	1 - 1 1 - - - - - -	3
Crocidura suaveolens	arid areas with moist vegetation	1 - 1 1 - - - - - -	3
Dryomys nitedula	broad variety of woodlands	1 - - - - - - - - - -	1
Ellobius fuscocapillus	open steppes habitat with loose soil	1 - - - - - - - - - -	2
Felis catus	cosmopolitan domestic species	- - - - - - - - - - 1	1
Felis sylvestris	areas with rocks and tall trees	- - - - - - - - - - 1	1
Gerbillius cheesmani	sandy soils and mud flats	1 - - - - - - - - - -	2
Gerbillius dasyurus	desert, semi-desert, and rocky habitats	- - - - - - - - - - 1	1
Gerbillius nanus	desert, semi-desert, arable land and gardens	1 1 1 - - - - - -	4
Hemiechinus aurota	dry steppes, semi-deserts and deserts	1 - - - - - - - - 1	1
Hemiechinus megalotis	mountainous areas	- - - - - - - - - - - 1	1
Herpestes auropunctatus	scrublands and dry forest	- - - - - - - - - - 1	3
Herpestes edwardsii	thickets, cultivated fields or broken, bushy vegetation	- - - - - - - - - - 1	1
Homo sapiens	passim	- - - - - - - - - - 1	1
Hyaena hyaena	arid to semi-arid environments	- - - - - - - - - - 1	4
Hystrix indica	broad range of habitats	- - - - - - - - - - 1	1
Jaculus balfordi	desert with clay soil	1 - - - - - - - - - - 1	2
Jaculus Jaculus	sandy or rocky deserts	1 - - - - - - - - - - 1	2
Lepus capensis	shrubs to open habitats	1 - - - - - - - - - -	2
Lepus europaeus	open fields and pastures	- - - - - - - - - - - 1	1
Meles meles	woodlands	1 1 - - - - - - - - 1	7
Meriones crassus	dry habitats in sandy deserts	1 1 - - - - - - - - 1	4
Meriones humilis	sandy plains with higher density of bushes	- - - - - - - - - - 1	1
Meriones libycus	arid or semi-arid regions	1 1 - 1 1 1 1 1 1 1	9
Meriones meridianus	sand deserts	1 1 - - - - - - - - 1	3
Meriones persicus	arid, rocky, mountainous region	1 1 1 1 1 1 1 1 1 1	11
Meriones tristani	steppe and semi-desert habitats	1 - 1 - - - - - - 1	6
Meriones vinogradovi	semi desert, bare mountains and wastelands	1 1 1 1 - 1	8
Mesocricetus auratus	arable fields with annual crops	1 1 1 - - - - - 1	6
Table 3. (Continued)

Host	Typical habitat	(sub-) family	Total flea (sub-) families per host
Microtus arvalis	moist meadows, moist and forest steppe, agricultural areas	Ce Co An Ct Do Ne Rh St Am Le Me Ar Pu Xe Ve	4
Microtus irani	mountainous ranges		5
Microtus nivalis	mountainous ranges		1
Microtus socialis	steppe habitats		5
Mus musculus	cosmopolitan domestic species		1
Mustela nivalis	wide range of habitats		1
Nesokia indica	dry deciduous forests, scrublands, grasslands, arable land, pastures, plantations		4
Ochotona rufescens	mountainous regions		3
Ovis aries	cosmopolitan domestic species		3
Pantera pardus	wide range of habitats		1
Pipistrellus pipistrellus	wide range of habitats (Gorgan city, Golestan Province)		1
Pitymys majori	mixed forests		1
Rattus norvegicus	lowland and coastal regions		5
Rattus rattus	natural and semi-natural habitats		5
Rhombomys opimus	desert to semi-desert habitats		5
Sorex minutus	wide variety of habitats		1
Sus scrofa	a wide variety of temperate and tropical habitats		1
Talpa caeca	deciduous woodland, meadows and pastures in hilly or mountainous areas		1
Talpa europaea	deep soils		1
Tatera indica	arid habitats		6
Vulpes ruepeelii	sand and stony deserts		2
Vulpes vulpes	tundra, desert and forest, as well as in city centres		8
Total host/flea (sub-) families		215 219	

Ce Ceratophyllinae, Co Coptopsyllidae, An Anomopsyllinae, Ct Ctenophthalminae, Do Doratopsyllinae, Ne Neopsyllinae, Rh Rhadinopsyllinae, St Stenoponiinae, Am Amphipsyllinae, Le Leptopsyllinae, Me Mesopsyllinae, Ar Archaeopsyllinae, Pu Pulicinae, Xe Xenopsyllinae and Ve Vermipsyllidae

doi:10.1371/journal.pntd.0005260.t003
A total of 53 vertebrate species were reported infested by six subfamilies of Ctenophthalmidae including Ctenophthalminae (n = 20), Stenoponiinae (n = 12), Rhadinopsyllinae (n = 9), Anomiopsyllinae (n = 6), Doratopsyllinae (n = 3) and Neopsyllinae (n = 3). By filtering the compiled data, 29 vertebrate host species were distinguished among all six subfamilies. Correspondingly 8, 6 and 1 host species are exclusively included in the Ctenophthalminae, Stenoponiinae and Doratopsyllinae. However there were not found any restricted vertebrate host species in the Anomiopsyllinae, Neopsyllinae and Rhadinopsyllinae (Table 5).

A total of 33 vertebrate species were reported infested by three subfamilies of Leptopsyllidae including Amphipsyllinae (n = 17), Mesopsyllinae (n = 9) and Leptopsyllinae (n = 7). By filtering the compiled data, 22 vertebrate host species were distinguished among three subfamilies. Investigation on the flea-host associations in subfamilies of the Leptopsyllidae showed that there were no common host species shared by the three subfamilies. However 6, 3 and 2 host species are exclusively included in the Amphipsyllinae, Leptopsyllinae and Mesopsyllinae respectively (Table 6).
A total of 83 vertebrate species were reported infested by three subfamilies of Pulicidae including Xenopsyllinae (n = 43), Pulicinae (n = 20) and Archaeopsyllinae (n = 20). By filtering the compiled data, 56 vertebrate host species were distinguished among three subfamilies. Exploration of flea-host associations in Pulicidae pointed out that there are eight common hosts including *Capra hircus* (Linnaeus, 1758), *Hemiechinus auritus* (Gmelin, 1770), *Herpestes auropunctatus* (Hodgson, 1836), *Hyaena hyaena* (Linnaeus, 1758), *Meles meles* (Linnaeus, 1758), *Ovis aries* (Linnaeus, 1758), *Rattus rattus* (Linnaeus, 1758) and *Vulpes vulpes* (Linnaeus, 1758) among three subfamilies. Although a number of 27, 5 and 5 host species are exclusively included in the Xenopsyllinae, Pulicinae and Archaeopsyllinae respectively (Table 7).

Flea sub family(s)	No of host(s)	Vertebrate host(s)
Anomiopsyllinae, Ctenophthalminae, Neopsyllinae, Rhadinopsyllinae and Stenoponiinae	1	Meriones persicus
Anomiopsyllinae, Ctenophthalminae, Neopsyllinae and Rhadinopsyllinae	1	Cricetulus migratorius
Anomiopsyllinae, Ctenophthalminae and Rhadinopsyllinae	2	Mesocricetus auratus and Mus musculus
Ctenophthalminae, Rhadinopsyllinae and Stenoponiinae	3	Meriones libycus, Meriones tristrami and Meriones vinogradovi
Anomiopsyllinae and Ctenophthalminae	1	Nesokia indica
Anomiopsyllinae and Stenoponiinae	1	Calomyscus bailwardi
Ctenophthalminae and Doratopsyllinae	2	Apodemus mystacinus and Crocidura russula
Ctenophthalminae and Rhadinopsyllinae	2	Microtus irani and Microtus socialis
Neopsyllinae and Stenoponiinae	1	Citellus fulvis
Ctenophthalminae	8	Allactaga williamsi, Apodemus sylvaticus, Crocidura leucodon, Microtus arvalis, Pitymys majori, Talpa caeca, Talpa europaea and Vulpes vulpes
Doratopsyllinae	1	Sorex minutus
Stenoponiinae	6	Gerbillus dasyurus, Gerbillus nanus, Meles meles, Meriones crassus, Rhombomys opimus and Tatera indica

doi:10.1371/journal.pntd.0005260.t005

A total of 83 vertebrate species were reported infested by three subfamilies of Pulicidae including Xenopsyllinae (n = 43), Pulicinae (n = 20) and Archaeopsyllinae (n = 20). By filtering the compiled data, 56 vertebrate host species were distinguished among three subfamilies. Exploration of flea-host associations in Pulicidae pointed out that there are eight common hosts including *Capra hircus* (Linnaeus, 1758), *Hemiechinus auritus* (Gmelin, 1770), *Herpestes auropunctatus* (Hodgson, 1836), *Hyaena hyaena* (Linnaeus, 1758), *Meles meles* (Linnaeus, 1758), *Ovis aries* (Linnaeus, 1758), *Rattus rattus* (Linnaeus, 1758) and *Vulpes vulpes* (Linnaeus, 1758) among three subfamilies. Although a number of 27, 5 and 5 host species are exclusively included in the Xenopsyllinae, Pulicinae and Archaeopsyllinae respectively (Table 7).

Flea sub family(s)	No of host(s)	Vertebrate host(s)
Amphipsyllinae and Leptopsyllinae	4	Apodemus mystacinus, Calomyscus bailwardi, Mus musculus and Rattus norvegicus
Amphipsyllinae and Mesopsyllinae	7	Allactaga elater, Allactaga williamsi, Cricetulus migratorius, Meriones libycus, Meriones persicus, Meriones vinogradovi and Vulpes vulpes
Amphipsyllinae	6	Hemiechinus auritus, Mesocricetus auratus, Microtus arvalis, Microtus irani, Microtus socialis and Ochotona rufescens
Leptopsyllinae	3	Apodemus sylvaticus, Crocidura leucodon and Rattus rattus
Mesopsyllinae	2	Meriones tristrami and Tatera indica

doi:10.1371/journal.pntd.0005260.t006
Table 7. Shared and exclusive vertebrate species associated with three subfamilies of Pulicidae in Iran.

Flea sub family(s)	No of host(s)	Vertebrate host(s)
Archaeopsyllinae, Pulicinae and Xenopsyllinae	8	Capra hircus, Hemiechinus auritus, Herpestes auropunctatus, Hyaena hyaena, Meles meles, Ovis aries, Rattus rattus and Vulpes vulpes
Archaeopsyllinae and Pulicinae	3	Canis aureus, Canis lupus familiaris and Canis lupus pallipes
Archaeopsyllinae and Xenopsyllinae	4	Canis lupus sp.,, Rattus norvegicus, Tatera indica and Vulpes rupPELL
Pulicinae and Xenopsyllinae	4	Bos Taurus, Meriones libycus, Meriones persicus and Rhombomys opimus
Archaeopsyllinae	5	Felis catus, Felis silvestris, Herpestes edwardsi, Lepus europaeus and Mustela nivalis
Pulicinae	5	Corvus corone, Gallus gallus, Homo sapiens, Pantera pardus and Sus scrofa
Xenopsyllinae	27	Gerbillus cheesmani, Hystrix indica, Allactaga williamsi, Calomyscus bailwardi, Microtus irani, Cricetulus migratorius, Microtus arvalis, Jaculus jaculus, Ochotona rufescens, Gerbillus nanus, Pipistrellus pipistrellus, Nesokia indica, Meriones vinogradovi, Mesocricetus auratus, Mus musculus, Meriones crassus, Allactaga elater, Elllobius fuscoCAPILLUS, Acomys dimidiatus, Hemiechinus megalotis, Meriones tristrami, Citellus fulvus, Meriones hurrINaE, Microtus socialis, Jaculus bIanfordi, Lepus capensis, and Meriones meridianus

doi:10.1371/journal.pntd.0005260.t007

Discussion

The literature inventory of the fleas of Iran showed that there are seven Siphonaptera families in this country namely Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae, Coptopsyllidae, Ischnopsyllidae and Vermipsyllidae. These flea families are distributed in all parts of the country where sampling occurred and where data were available. According to the literature reviewed, the distribution range of those families extends in Hamadan and Kurdistan (West Iran) provinces rather than in Ardabil (northwest), Northern Khorasan (northeast), Bushehr (south), Mazandaran, Golestan and Gilan provinces (north). This fact is partly due to a collection bias in plague foci during the sixties (1963–1975 Baltazard, Klein, Farhang-Azad and Mollaret) [65–70]. The distribution maps of the studied fleas showed that further sampling, especially from provinces with poor faunistical studies, is necessary, especially in a context of vector-borne disease epidemiology where known mammalian hosts of pathogenic agents are also present.

Most fleas of medical or veterinary importance belong to the Ceratophyllidae, Leptopsyllidae, Pulicidae, Ctenophthalmidae and Vermipsyllidae families [12]. Pulicidae, a family including most cosmopolitan flea species of medical importance and in particular the Xenopsylla genus, was by far the most reported family in Iran [8, 29–30, 32, 35, 53–55, 57–60]. Analysis of common mammal hosts and their flea diversity revealed that M. persicus was infested by 11 flea subfamilies and Xenopsyllinae were hosted by at least 43 mammal species.

The Persian Jird, M. persicus, is distributed from Eastern Anatolia to Afghanistan and western Pakistan. Iran is the most extensive geographical region in the distribution range of the Persian Jird; indeed five of the six subspecies are found in the country [71].

At the first, the research team of Baltazard (1952) and then Golvan & Rioux (1963) and Poland and Dennis (1999) offered initial illustrations of the role of resistant or silent enzootic reservoirs in the maintenance of Y. pestis and human plague outbreaks in the Kurdistan focus. They showed that M. vinogradovii and M. tristrami were extremely sensitive to Y. pestis while M. libycus and M. persicus were highly resistant. Tatera indica has also been associated with transmission of Y. pestis in the country. Flea densities were reported to be high on M. persicus [23, 72–73]. In that era flea species including Pulex irritans, Xenopsylla cheopis, X. astia, X. buxtoni, X. conformis, Nosopsyllus fasciatus N. iranus iranus, and Stenoponidae tripectinata were listed as favorite candidate Y. pestis vectors within and among vertebrates including man [74–79].
In 1980, Karimi et al. surveyed the Sarab focus in East Azarbaijan province where fourteen samples of *Y. pestis* were isolated from *M. persicus*, *M. vinogradovi*, and *Mesocricetus auratus* and from their fleas; *Xenopsylla conrollina* and *Nosopsylla iranus iranus* [80]. The *Y. pestis* strains isolated from the *M. persicus* in the Trans-Arax focus in Armenia were characterized by higher virulence than those that are isolated from voles in the Transcaucasus Mountainous focus [81].

In a recent serological survey carried out by Esmaeili et al., in Western Iran antibodies against *Y. pestis* F1 capsular antigen were detected in a *M. persicus* [22]. Whether *Y. pestis* strains lacking the F1 antigen naturally occur in Iran is not known but could lead to an underestimation of the current seroprevalence.

Meriones species notably *M. persicus* were reported to be main reservoir host for pathogens rather than bacterium *Y. pestis*. In the parasitological studies sandfly-borne *Leishmania* spp. including *L. major* [82], *L. infantum* [83] and *L. donovani* [84] were isolated from *M. persicus* specimens. *Meriones* species rather than *M. persicus* (*M. libycus* and *M. hurrianae*) have been reported as the major reservoir host of zoonotic cutaneous leishmaniasis in several endemic areas of Iran [85–89]. The endoparasites ranging from *Acanthocephala* to *Cestoda* and *Nematoda* were identified in *M. persicus* as well [90]. These findings place the Persian jird and the *Xenopsyllinae* as the major vertebrate and vector hosts of flea-borne diseases in Iran including *Y. pestis*, the etiological agent of plague.

Indeed, *Xenopsylla* spp. were collected from 18 provinces with a wide array of climatic conditions ranging from cold mountainous areas to warm and dry sandy plains and deserts (Table 1).

Most species of the Pulicidae family are notorious vectors of disease agents causing plague, murine typhus, and tularemia but also transmit helminths. Several species of the *Xenopsylla* genus play an important role in the transmission of *Y. pestis*, the etiological agent of plague, from rodents to human [91]; the most classical and significant vector being *X. cheopis* [92].

Indeed, *X. cheopis* accounts for 80% of the fleas collected off rodent hosts in the natural endemic plague foci of Iran [93]. *X. cheopis* is also the vector of various human pathogenic *Bartonella* species [6, 94]. The cat scratch disease, caused by *B. henselae*, has been considered as an emerging zoonotic bacterial pathogen in veterinary and human medicine. Cats are the basic source of the bacteria. Bacteria are transferred from cat to cat by the flea *Ctenocephalides felis*, another cosmopolitan flea, which have been reported in the Iranian cat population [95].

Murine typhus or endemic typhus caused primarily by *Rickettsia typhi* another rodent-borne disease that is transmitted to humans by the flea *X. cheopis* [96]. *Pulex irritans* and *Nosopsyllus fasciatus* are secondary vectors of murine typhus *Rickettsia* [97] that is endemic through coastal regions of the Caspian Sea and the Persian Gulf [98].

Rickettsia felis is the cause of another flea-borne “spotted fever group” rickettsiosis. *R. felis* is transmitted by the bite or faeces of several flea species, and transovarially in *Ctenocephalides felis felis* (and the African subspecies *C. f. strongylus*) but also in *C. orientis* present in Iran, so that they are considered as vectors and reservoir hosts of this pathogen [99].

Ctenocephalides felis, *C. canis*—that have been collected from the studied areas extensively (Table 1)—and *P. irritans* are the intermediate hosts of flatworms such as *Dipylidium caninum*, or nematodes as the filaria *Acanthocheilonema reconditum*. Hence dog, cat and rarely human infection occurs following ingestion of infected fleas [100–101]. Typically, a human is bitten more often by a cat flea (*C. felis*) than a dog flea (*C. canis*) which is very or even monospecific. Cosmopolitan fleas as helminths vector have less medical than veterinary importance, since the helminth species they transmit rarely infest humans and are virtually harmless.

Nosopsyllus fasciatus, a *Ceratophyllidae* and *Coptopsylla lamellifer*, a *Coptopsyllidae*, were collected in 14 different regions of Iran. They play a role in enzootic plague cycles, that is in
circulating the plague bacterium *Y. pestis* between rodents but since they do not readily bite humans in a natural setting, are only accidental vectors of *Y. pestis* to humans exposed [38, 41, 102–103].

Fleas are also considered vectors of *F. tularensis* the etiological agent of tularemia [104]. Vulnerable animals such as hares and rodents frequently die in large numbers during epizootics. Human infections take place through several routes, including insect bites and direct contact to an infected animal. It can affect the skin, eyes, lymph nodes, lungs and, less often, other internal organs. According to recent studies (which have shown the presence of this disease in western and eastern regions of Iran) and the previous studies (which have shown the presence of this disease in the east and north-west of the country [105]), the possibility of transmission of this agent by fleas should be considered in all parts of the country [106].

Most leptopsyllids parasitize rodents and a few birds. Species of *Frontopsylla*, *Leptopsylla*, *Mesopsylla*, *Ophthalmopsylla* and *Paradoxopsyllus* are known as main or suspected vectors of plague, murine typhus, erysipeloid, listeriosis and salmonellosis in the Central Asia [107]. In an experiment it was showed that *L. segnis* is more successful in transmitting *R. typhi* to rats than *X. cheopis* [64]. *Leptopsylla aethiopica* which transmits plague in Africa recently have been reported from Semnan province [50]; however its presence and identity in the region is very questionable.

People who travel to rural areas should consciously avoid flea bites especially in populations camping outside (herders, travelers, nomads) and avoid exposure to wild rodents and their fleas. In domestic areas, in order to prevent bites and thus disease transmission to humans, the floors and walls, as well as the rodents’ burrows around settlements, should theoretically be sprayed with insecticides. A few days later the application of rodenticides is necessary.

There were virtually no records of some flea species in a few provinces like North Khorasan (Fig 1). This is mainly due to inadequate inventories, especially in remote areas, or minorly due to the changing of geographical boundaries where the number of provinces in old classification has increased from 10 to 31 provinces.

In this paper we highlighted the geographical gaps on the Siphonaptera fauna of Iran. Generally, it shows that extensive fundamental and systematic research is still needed to determine the impact of off-host abiotic conditions and host identity (either mammal or bird) on host specificity, and on the potential for flea-borne diseases spread and transmission risk.

Co-evolution partly explains host-flea relationships which are translated into various degrees of host specificity (as shown in Tables 4–7) and morphological adaptations of the parasite [108]. Host specificity is important from the perspective of transmission of disease agents. It is more probable that, vertebrate hosts with related taxonomy or similar ecologies will have flea species that share similar pathogens. Depending on the level of infestation, flea species do not cause major problem to their hosts [108]. While some fleas species, virtually exclusively females, (*Echidnophaga* spp., *Vermipsylla* spp., *Dorcadia* spp., *Tunga* spp), spend much of their adult lives embedded or fixed in the host skin, this is far from being the rule. Indeed, most species jump on a host to feed intermittently before returning to the host dwelling place, usually a nest or burrow [6].

Den/nest making hosts (mammals or birds) display a more specific flea fauna than non roosting species [6]. It has been shown that fleas possibly appeared with mammals and speciated with rodents which still have the most speciose extant fauna (74%) [109].

Since rodent-borne, bat-borne and vector-borne diseases are the major rising concerns to health authorities, and threats to public health making inventories of the host and their ectoparasitic fauna has become as never before a priority. Although most flea-borne diseases are not classified in the 17 neglected tropical diseases (NTDs) list made by the World Health Organization, this doesn’t mean those are unimportant or not causing an underestimated morbidity
burden worldwide. The lack of recognition by major stakeholders, and the local lack of diagnostic tools and awareness are impeding improvements into flea-borne disease research. However, with about seven human or zoonotic highly pathogenic agents circulating among -possibly- the 117 flea species throughout Iran, there is an urgent need to organize and fund flea-host-pathogen ecological surveys in the face of rapid environmental and human behavioral changes.

Conclusion

The first step in identifying the risk linked to flea exposure is to make a list of the species before any public health measures can be taken. Flea-borne diseases are caused by emerging and re-emerging infectious agents which distribution, prevalence and incidence are currently increasing. However, the data about fleas and their medical significance in different geographical regions of Iran is limited. We took the first step in this paper but supplementary studies are required to i) complete the list, especially in areas where there are no report or poor faunistic studies and ii) perform molecular screening of flea pools in order to detect specific pathogen circulation in domestic fauna and wildlife in order to prevent future epidemics.

Acknowledgments

Special thanks to Ali Mohammadi for generously sharing some references.

Author Contributions

Conceptualization: EM.
Data curation: AL.
Formal analysis: NMR AL.
Funding acquisition: EM.
Investigation: NMR SSF.
Methodology: NMR.
Project administration: EM.
Resources: JCB AL NMR EM.
Software: SSF NMR.
Supervision: EM.
Validation: JCB AL.
Visualization: NMR.
Writing – original draft: SSF NMR JCB AL EM.
Writing – review & editing: JCB AL.

References

1. WHO fact sheet: Vector-borne diseases. Fact sheet #387, March 2014. http://www.who.int/kobe_centre/mediacentre/vbdfactsheet.pdf.
2. Cook GC. Manson’s Tropical Diseases. 20th, editor. London: WB Saunders; 1996.
3. Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet. 2012; 380(9857):1946–1955. doi: 10.1016/S0140-6736(12)61151-9 PMID: 23200503
4. Eisen RJ, Gage KL. Transmission of Flea-Borne Zoonotic Agents. Annu Rev Entomol. 2012; 57:61–82. doi: 10.1146/annurev-ento-120710-100717 PMID: 21888520
5. Lewis RE. Résumé of the Siphonaptera (Insecta) of the world. J Med Entomol. 1998; 35(4):377–389. PMID: 9701915
6. Bitam I, Dittmar K, Parola P, Raoult D. Fleas and flea-borne diseases. Int J Infect Dis. 2010; 14(8):e667–e676. doi: 10.1016/j.ijid.2009.11.011 PMID: 20189862
7. Krämmer F, Mencke N. Flea biology and control: the biology of the cat flea, control and prevention with imidacloprid in small animals: Springer Berlin; 2001.
8. Oliveira RP, Galvão MA, Mafra CL, Chamone CB, Calic SB, Silva SU, et al. Rickettsia felis in Ctenocephalides spp. fleas, Brazil. Emerg Infect Dis. 2002; 8(3):317–319. doi: 10.3201/eid0803.010301 PMID: 11927031
9. Hunter KW, Campbell AR, Sayles PC. Human infestation by cat fleas, Ctenocephalides felis (Siphonaptera: Pulicidae), from suburban raccoons. J Med Entomol. 1979; 16(6):547. PMID: 575164
10. Xhaxhiu D, Kusi I, Rapti D, Visser M, Knaus N, Lindner T, et al. Ectoparasites of dogs and cats in Albania. Parasitol Res. 2009; 105(6):1577–1587. doi: 10.1007/s00436-009-1591-x PMID: 19690887
11. Comer JA, Paddock CD, Childs JE. Urban zoonoses caused by Bartonella, Coxiella, Ehrlichia, and Rickettsia species. Vector Borne Zoonotic Dis. 2001; 1(2):91–118. doi: 10.1089/153036601316977714 PMID: 12653141
12. Triplehorn CA, Johnson NF. Borror and DeLong’s Introduction to the Study of Insects: Thomson Brooks/Cole Belmont; 2005.
13. Zentko DC, Richman DL. Cat Flea, Ctenocephalides felis (Bouché). Entomology and Nematology Department, UF/IFAS Extension, Gainesville; 2011. p. 1–4.
14. Townson H, Nathan M, Zaim M, Guillet P, Manga L, Bos R, et al. Exploiting the potential of vector control for disease prevention. Bull World Health Organ. 2005; 83(12):942–947. doi: S0042-9686200501200017 PMID: 16462987
15. Giltheko AK, Lindsay SW, Confalonieri UE, Patz JA. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ. 2000; 78(9):1136–1147. PMID: 11019462
16. Oshaghi MA, Ravasan NM, Javadian E, Rassi Y, Sadraei J, Enayati AA, et al. Application of predictive degree day model for field development of sandfly vectors of visceral leishmaniasis in northwest of Iran. J Vector Borne Dis. 2009; 46(4):247–255. PMID: 19959849
17. Gomez-Diaz E, Figueroa J. New perspectives in tracing vector-borne infection networks. Trends Parasitol. 2010; 26(10):470–476. doi: 10.1016/j.pt.2010.06.007 PMID: 20580608
18. Ari TB, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, et al. Plague and climate: scales matter. PLoS pathogens. 2011; 7(9):e1002160. doi: 10.1371/journal.ppat.1002160 PMID: 21946948
19. Klein J, Mofidi C, Chamas M, Karimi Y, Bahmanyar M, Seydian B. Les puces (Insecta, Siphonaptera) de l'Iran. Bull Soc Path Exot. 1963; 56:533–550. PMID: 14081711
20. Esamaeil S., Azadmanesh K., Saddaf S.R., Rajerison M., Carniel E., Mostafavi E. A serological survey of plague in animals in western Iran. Emerging infectious diseases. 2013; 19(9):1549–1551.
21. Baltazard M, Bahmanyar M, Mofidi C, Seydian B. [Kurdistan plague focus]. Bulletin of the World Health Organization. 1951; 5(4):441–472.
22. Molarete H, Karimi Y, Eftekhar M, Baltazard M. [BURROWING PLAGUE]. Bull Soc Pathol Exot Filiales. 1962; 56:1186–1193.
23. DrawVenn (http://bioinformatics.psb.ugent.be/webtools/Venn/).
24. Farhang-Azad A. Materials on the fauna of fleas of Iran. parazitologiya. 1972; 6(6):513–521.
25. Anonymous. Regional disease vector ecology profile: The Middle East. Defense Pest Management Information Analysis Center, Armed Forces Pest Management Board, Forest Glen Section, Walter Reed Army Medical Center, Washington DC 1999.
26. Farhang-Azad A. The flea fauna of Iran. II. A collection of fleas from Esfahan (Central Iran). Ann Mag Nat Hist. 1966b; 9(103–105):343–346.
30. Rahbari S, Nabian S, Nourolahi F, Arabkhazaei F, Ebrahimzadeh E. Flea infestation in farm animals and its health implication. Iran J Parasitol. 2008; 3(2):43–47.
31. Farhang-Azad A. New records and a new species of Nosopsyllus (Nosopsyllus) Jordan, 1933 (Siphonaptera: Ceratophyllidae) from Iran. J Med Entomol. 1973; 10(3):273–276. PMID: 4719292
32. Khoobdel M, Shayeghi M, Alamdar K, Piazaek N, Bazrafkan S. Diversity and Relative Abundance of Medically Important Fleas in the Rural Areas of Kohgiloye-and-Boyerahmad, Iran. J Sch Pub Health Inst Pub Health Res. 2012; 9(3):63–72.
33. Smit F. New Siphonaptera from eastern Mediterranean countries. Bull Soc Entomol. 1960; 8:337–366.
34. Klein J-M. Contribution à l’étude morphologique externe des larves de puces. Les larves de Xenopsylla buxtoni Jord., 1949. Nosopsyllus iranus iranus Wag. et Arg., 1934, et Stenoponia tripectinata iran-kana Jord., 1958 [SIPHOXAPTERA]. Bulletin de la Société entomologique de France. 1964; 69:174–196.
35. Teimadarraiy Z, Vatandoost H, Mohammad S, Akhavan A, Rafinejad J, et al. Determination of rodent ectoparasite fauna in Sarpole-Zahab district, Kermanshah Province, Iran, 2004–2005. J Vector Borne Dis. 2007; 4(1):58–62.
36. Klein J-M. Nouvelles puces (Siphonaptera, Insecta) de l'Iran: première communication. Bull Soc Pathol Exot. 1962; 55(5):900–910.
37. Peus F. Flöhe aus Anatolien und anderen Ländern des nahen Ostens: Zoologisch-Botanische Gesellschaft; 1976.
38. Farhang-Azad A. The flea fauna of Iran XI. Iranian species of the genus Coptopsylla Jordan Rothschild, 1908 (Siphonaptera: Coptopsyllidae). J Med Entomol. 1972a; 9(3):205–211.
39. Farhang-Azad A. The flea fauna of Iran. III. Two new species of Coptopsylla Jordan and Rothschild. Journal of Natural History. 1966; 9(103–105):347–355.
40. Farhang-Azad A. The flea fauna of Iran. I. A new flea of the genus Coptopsylla Jordan and Rothschild. Journal of Natural History. 1966; 9(103–105):337–341.
41. Blummer A. Experimental study of the infecting ability of the flea Coptopsylla lamellifer rostrata in the Kyzykum natural focus of plague. Parazitologiya. 2004; 38(3):261. PMID: 15272824
42. Beaucournu J-C, Lorvelec O, editors. Mise à jour taxonomique et répartition des puces du genre Ctenophthalmus Kolenati 1856 en région paléarctique occidentale (Insecta: Siphonaptera, Ctenophthalmidae). Ann Soc Entomol Fr; 2014: Taylor & Francis.
43. Farhang-Azad A. The flea fauna of Iran. IV. Notes on a small collection of Bat fleas. Bull Soc Pathol Exot Filiales. 1969; 62(1):151. PMID: 5299500
44. Klein J. Nouvelles puces (Insecta, Siphonaptera) de l'Iran. Bull Soc Pathol Exot. 1963; 56(2):251–261.
45. Kolenati FA. Beiträge zur Kenntniss der Phthirio-myiaerien: Horae Soc Ent Ross; 1862.
46. Beaucournu J-C. Contribution à une meilleure connaissance des genres Ctenophthalmus Kolenati, 1856, et Stenoponia Jordan & Rothschild, 1911 (Siphonaptera, Ctenophthalmidae). Bull Soc entomol Fr. 2011; 116:57–61.
47. Benda P, Faizoláhi K, Andreas M, Obuch J, Reiter A, ŠEVČIK M, et al. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Soc Zool Bohem. 2012; 76:163–582.
48. Farhang-Azad A. The flea fauna of Iran. VII. Iranian fleas of the genus Nosopsyllus Jordan, with descriptions of a new species and a new subspecies (Siphonaptera: Ceratophyllidae). Bull Soc Pathol Exot Filiales. 1969; 62(4):750. PMID: 5409156
49. Adams NE, Lewis RE. An annotated catalog of primary types of Siphonaptera in the National Museum of Natural History, Smithsonian Institution. Smithsonian contributions to zoology (USA). 1995.
50. Darvishi MM, Youssefi MR, Changizi E, Lima RR, Rahimi MT. A new flea from Iran. Asian Pac J Trop Dis. 2014; 4(2):85–97.
51. Youssefi A, Nosrati MRC, Karimi A, Naisi S. Leptopsylla taschenbergi taschenbergi (Siphonaptera: Leptopsyllidae), new flea from Iran. Asian Pac J Trop Dis. 2015; 5(8):606–607.
52. Beaucournu J, Collado G, Gilot B. Caenopsylla iaptevi relicta ssp. nova (Siphonaptera, Leptopsyllidae) parasite de lapin en France et en Espagne. Rev Iber Parasitol. 1975; 35(1–2):139.
53. Bahrami AM, Doosti A, Ahmady-Ashchin S. Cat and Dogs Ectoparasite Infestations in Iran and Iraq Boarder Line Area. WASJ 2012; 18(7):884–889.
54. Jamshidi S, Maazi N, Ranjar-Bahadori S, Rezaei M, Morakabtsaz P, Hosseininejad M. A survey of ectoparasite infestation in dogs in Tehran, Iran. Rev Bras Parasitol Vet. 2012; 21(3):326–329. PMID: 23070452
55. Shoorejeh SJ, Ghasrodashti AR, Tamadon A, Moghaddar N, Behzadi MA. Seasonal frequency of ectoparasite infestation in dogs from Shiraz, Southern Iran. Turk J Vet Anim Sci. 2008; 32:309–313.

56. Razmjoo M, Bahrami AM, Hosseini E. Ectoparasitic Species from Red Fox and Jackal in Western of Iran. Glob Vet. 2013; 10 (6):626–629.

57. Yakchali M, Hosseine A. Prevalence and ectoparasite fauna of sheep and goats flocks in Urmia suburb, Iran. Veterinarski arhiv. 2006; 76(5):431–442.

58. Nateghpour M, Akhavan A, Hanafi-Bojd A, Telmadarraj Z, Mavi AS, Hosseini-Vasoukolaei N, et al. Wild rodents and their ectoparasites in Baluchistan area, southeast of Iran. Trop Biomed. 2013; 30 (1):72–77. PMID: 23665710

59. Kia E, Moghddas-Sani H, Hassanpour H, Vatandoost H, Zahabian F, Akhavan A, et al. Ectoparasites of Rodents Captured in Bandar Abbas, Southern Iran. Iran J Arthropod Borne Dis 2009; 3(2).

60. Hanafi-Bojd A, Shahi M, Baghaii M, Shayeghi M, Razmand N, Pakari A. A study on rodent ectoparasites in Bandar Abbas: the main economic southern seaport of Iran. Iranian J Envir Hlth Sci Engin. 2007; 4(3):173–176.

61. Pulicidae In: The Michael Hasstriter Flea Collection [Internet]. 2012. http://flasoftheworld.byu.edu/Systematics/Databases/Pulicidae.aspx.

62. Farhang-Azad A. The flea fauna of Iran. XII. A new species of the genus Coptopsylla Jordan and Rothschild, 1908 ([Siphonaptera: Coptopsyllidae]), Bull Soc Pathol Exot Filiales. 1972b; 65(2):322.

63. Lewis RE. Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. J. Med. Entomol. 1993; 30(1):239–256. PMID: 8453333

64. Farhang-Azad A, Traub R. Transmission of murine typhus rickettsiae by Leptopsylla segnis (Siphonaptera: Leptopsyllidae). J Med Entomol. 1987; 24(6):689–693. PMID: 3121858

65. Baltazard M, Karimi Y, Eftekhari M, Chamsa M, Mollaret H. [Interepizootic Conservation of Plague in its Inverteate Foci: Working Hypoth eses]. Bull Soc Pathol Exot. 1963; 56:1230–1241.

66. Mollaret H. [Plague bacillus survival for 28 months in an artificial earth hole-experimental demonstration of interepizootic survival of plague in endemic foci]. Comptes rendus hebdomadaires des séances de l’Académie des sciences- Série D. 1968; 267(10):972–973.

67. Klein J. [Faunistic and ecological data on gerbil fleas in a natural focus of plague in Iranian Kurdistan]. Bull Soc Pathol Exot. 1964; 56(6):1202–1230.

68. Klein J, Uilenberg G. Faunistic and ecological data on the fleas of Madagascar. Cah Orstom 1967; 4 (8):31–60.

69. Klein J, Poulet A, Simonkovich E. [Ecological observations in an enzootic zone of plague in Mauritania. 1. Rodents, particularly Gerbillus gerbillus]. Cahiers ORSTOM, Serie Entomologie Medicale et Parasitologie. 1975; 13(1):13–28.

70. Klein J, Poulet A, Simonkovich E, Alonso J, Baranton G. Ecological observations in an enzootic zone of plague in Mauritania. 2. The fleas of rodents. Cahiers ORSTOM, Serie Entomologie Medicale et Parasitologie. 1975; 13(1):29–39.

71. Dianat M, Darvish J, Cornette R, Aliabadian M, Nicolas V. Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. J Zoolog Syst Evol Res. 2016:1–17.

72. Golvan Y, Rioux J. Ecology of the Meriones of Kurdistan. rectifying note. Bulletin de la Societe de pathologie exotique et de ses filiales. 1963; 56:1145. PMID: 14153918

73. Poland JD, Dennis DT. Treatment of plague. In: Plague manual: epidemiology distribution surveillance and control. Zhonghua Liu Xing Bing Xue Za Zhi/Chinese Journal of Epidemiology : Geneva Switzerland World Health Organization [WHO]; 1999. p. 55–62.

74. Seyf A. Iran and the Great Plague, 1830–1831. Stud Islam. 1989; (69):151–165. PMID: 11618186

75. Baltazard M, Bahmanyar M. Research on plague in India. Bull World Health Organ. 1960; 23:169. PMID: 13796327

76. Baltazard M, Bahmanyar M. Research on plague in Java. Bull World Health Organ. 1960; 23:217. PMID: 13796328

77. Baltazard M, Seydian B. The status of plague in the Middle East. Bull World Health Organ. 1960; 23 (2–3):157–167.

78. Baltazard M, Bahmanyar M, Mostachfi P, Eftekhari M, Mofidi C. [Research on plague in Iran]. Bull World Health Organ. 1960; 23(2–3):141.

79. Baltazard M, Bahmanyar M, Mofidi C, Seydian B. [Kurdistan plague focus]. Bull World Health Organ. 1952; 5(4):441–472. PMID: 14935785
80. Karimi Y. Discovery of a new focus of zoonotic plague in eastern Azerbaijan, Iran. Bulletin de la Societe de Pathologie Exotique et de ses Filiales. 1980; 73(1):28–35. PMID: 7418121

81. Studies CFN. Anti-Plague Service of Armenia. Center for Nonproliferation Studies Monterey; 2003.

82. Emami MM, Yazdi M, Nilforouzazadeh M. Emergence of cutaneous leishmaniasis due to Leishmania major in a new focus of central Iran. Trans R Soc Trop Med Hyg. 2009; 103(12):1257–1262. doi: 10.1016/j.trstmh.2009.04.020 PMID: 19497606

83. Mahdipoorzareh N. Study on the prevalence of visceral Leishmaniasis in rodent’s of Azarshahr district (new focus), northwest of Iran. Arch Razi Inst. 2006; 61(1):27–33.

84. Mohebali M, Javadian E, Yaghoobi Ershadi M, Akhavan A, Hajjaran H, Abaei M. Characterization of Leishmania infection in rodents from endemic areas of the Islamic Republic of Iran. East Mediterr Health J 2004; 10:591–599. PMID: 16335651

85. Yaghoobi-Ershadi M, Hanafi-Bojd A, Akhavan A, Zahraei-Ramazani A, Mohebali M. Epidemiological study in a new focus of cutaneous leishmaniasis due to Leishmania major in Ardestan town, central Iran. Acta Trop. 2001; 79(2):115–121. PMID: 11369303

86. Rassi Y, Jalali M, Javadian E, Moatazedian M. Confirmation of Meriones libycus (Rodentia; Gerbillidae) as the main reservoir host of zoonotic cutaneous leishmaniasis in arsanjan, fars province, South of Iran (1999–2000). Iran J Public Health. 2001; 30(3–4):143–144.

87. Yavar R, Abedin S, Reza AM, Ali OM, Sina R, Mehdi M, et al. Phlebotomus papatasi and Meriones libycus as the vector and reservoir host of cutaneous leishmaniasis in Qomrood District, Qom Province, central Iran. Asian Pac J Trop Dis. 2011; 4(2):97–100.

88. Kassiri H, Javadian E, Abdigoudarzi M. Natural Leishmania Infection in Meriones hurrianae and Tatera indica (Rodentia: Cricetidae: Gerbillinae) in Sistan-Baluchistan Province, South-Eastern of Iran. Adv Stud Biol. 2011; 3(6):247–256.

89. Edrissian GH, Ghorbani M, Tahvildar-Bidruni G. Meriones persicus, another probable reservoir of zoonotic cutaneous leishmaniasis in Iran. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1975; 69(5–6):517–519. PMID: 1228991

90. Kia E, Shahryary-Rad E, Mohebali M, Mahmoudi M, Mobedi I, Zahabian F, et al. Endoparasites of rodents and their zoonotic importance in Germi, Dashte-Mogan, Ardabil Province, Iran. Iran J Parasitol. 2010; 5(4):15–20. PMID: 22347261

91. Zimba M, Pfukenyi D, Loveridge J, Mukaratirwa S. Seasonal abundance of plague vector Xenopsylla brasiliensis from rodents captured in three habitat types of periurban suburbs of Harare, Zimbabwe. Vector Borne Zoonotic Dis. 2011; 11(8):1187–1192. doi: 10.1089/vbz.2010.0095 PMID: 21142965

92. Brouqui P, Raoul D. Arthropod-Borne Diseases in Homeless. Ann N Y Acad Sci. 2006; 1078(1):223–235.

93. Halvaae M. Plague Tehran 2008 [cited 2013-10-12]. http://www.pezeshk.us/?p=12734.

94. Wayangan kar S. Plague Oklahoma 2013 [updated Jul 23, 2013; cited 2013-10/21]. http://emedicine.medscape.com/article/235627-overview.

95. Oskouizadeh K, Zahraei-Salehi T, Aledavood S. Detection of Bartonella henselae in domestic cats’ saliva. Iran J Microbiol. 2010; 2(2):80–84. PMID: 22347553

96. Traub R, Wisseman C, Azad A. The ecology of murine typhus: a critical review. Trop Dis Bull. 1978; 75(4):237–317. PMID: 705902

97. Dehghani R, Seyedi H, Dehqan S, Sharifi H. Geographical distribution of mouse and mouse-borne diseases in Iran: a review article. KAUMS Journal (FEYZ). 2013; 17(2):203–219.

98. Faule DK. Vector-borne Infectious Diseases in Iran Koblenz, GERMANY: Regierungsdirektor, Zentrales Institut des Sanitätsdienstes der Bundeswehr Laborgruppe Medizinische Zoologie Postfach.

99. Parola P. Rickettsia felis: from a rare disease in the USA to a common cause of fever in sub-Saharan Africa. Clin Microbiol Infect. 2011; 17(7):996–1000. doi: 10.1111/j.1469-0691.2011.03516.x PMID: 21722253

100. Chen H. Reactions of Ctenocephalides felis to Dipylidium caninum. Z Parasitenkd. 1934; 6(5):603–637.

101. Guzman R. A survey of cats and dogs for fleas: with particular reference to their role as intermediate hosts of Dipylidium caninum. N Z Vet J. 1984; 32(5):71–73. doi: 10.1080/00480169.1984.35067 PMID: 16030160

102. Iakub V, Lazareva L, Klimov V, Maevskiĭ M, Bondarenko A. Flea Ceratophyllus fasciatus as the vector of the Altai-mountain strain of plague microbe]. Parazitologija. 1977; 11(3):268. PMID: 896271

103. Schwan TG, Thompson D, Nelson BC. Fleas on roof rats in six areas of Los Angeles County, California: their potential role in the transmission of plague and murine typhus to humans. Am J Trop Med Hyg. 1985; 34(2):372–379. PMID: 3985278
104. Orf EC, Stomatitis CP, Soremouth SM. Infections in Humans Incubation Period. 2004.

105. Arata A, Chamsa M, Farhang-Azad A, Meščerjakova I, Neronov V, Saidi S. First detection of tularemia in domestic and wild mammals in Iran. Bull World Health Organ. 1973; 49(6):597. PMID: 4548386

106. Esmaeili S, Gooya M, Shirzadi MR, Esfandiari B, Bagheri Amiri F, Yousefi Behzadi M, et al. Seroepidemiological survey of tularemia among different groups in western Iran. Int J Infect Dis. 2014; 18:27–31. doi: 10.1016/j.ijid.2013.08.013 PMID: 24145011

107. Crosskey RW, Lane RP. Medical insects and arachnids: Chapman & Hall, United Kingdom; 1993.

108. Krasnov BR. Functional and evolutionary ecology of fleas: a model for ecological parasitology: Cambridge University Press; 2008.

109. Whiting MF, Whiting AS, Hastreiter MW, Dittmar K. A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics. 2008; 24(5):677–707.