THE BRIN–THOMPSON GROUPS sV ARE OF TYPE F_{∞}

MARTIN G. FLUCH, MARCO MARSCHLER, STEFAN WITZEL,
AND MATTHEW C. B. ZAREMSKY

Abstract. We prove that the Brin–Thompson groups sV, also called higher dimensional Thompson’s groups, are of type F_{∞} for all $s \in \mathbb{N}$. This result was previously shown for $s \leq 3$, by considering the action of sV on a naturally associated space. Our key step is to retract this space to a subspace sX which is easier to analyze.

Recall that a group is of type F_{∞} if it admits a classifying space with finitely many cells in each dimension. Well-known examples of groups of type F_{∞} include Thompson’s groups F, T, and V. Some generalizations of V were introduced by Brin [Bri04, Bri05] and shown to be simple. We denote these groups sV, for $s \in \mathbb{N}$, with $1V = V$. These groups are usually termed higher-dimensional Thompson’s groups or Brin–Thompson groups. All of the groups sV are known to be finitely presented [HM12], and Kochloukova, Martínez-Pérez, and Nucinkis [KMPN10] showed that $2V$ and $3V$ are of type F_{∞}. We prove that this result extends to all dimensions.

Main Theorem. The Brin–Thompson group sV is of type F_{∞} for all s.

Fix some s. There is a natural poset P_1 associated to sV. The realization $|P_1|$ of this poset is contractible and the action of sV is proper but not cocompact. To prove the Main Theorem it suffices to produce a cocompact filtration of $|P_1|$ whose connectivity tends to infinity. The tool to study relative connectivity is discrete Morse theory. This was carried out for $s = 2, 3$ in [KMPN10]. However, for larger s this space quickly becomes cumbersome.

We therefore consider a subspace sX of $|P_1|$ which we call the Stein space for sV. As before, the Stein space is contractible and the action is not cocompact. The advantage of the Stein space is that the Morse theory becomes much easier to handle.

The paper is organized as follows. In Section 1 we recall the definition of sV. The Stein space sX is defined in Section 2 and some basic properties are verified. In Section 3 we analyze the connectivity of the subspaces in the filtration and deduce the Main Theorem.

Acknowledgments. We would like to thank Kai-Uwe Bux for suggesting this project and for many helpful discussions. We also gratefully acknowledge support through the SFB 701 in Bielefeld (first, second, and fourth author) and the SFB 878 in Münster (third author). The research for this article was carried out during the 2012 PCMI Summer Session in Geometric Group Theory and we thank the organizers and the PCMI for this opportunity. Finally, we thank Matt Brin for his helpful suggestions and remarks.

Date: May 5, 2014.

2010 Mathematics Subject Classification. Primary 20F65; Secondary 57Q12.

Key words and phrases. Thompson’s groups, finiteness properties.
1. The Brin–Thompson Groups

The elements of the Brin–Thompson group sV can be described as dyadic self-maps of s-dimensional cubes. We will first give a brief intuition for these maps, and then delve into some formalism.

To get an intuition for the elements of sV for arbitrary s, recall first that elements of Thompson’s group $V = 1V$ can be thought of as left-continuous, piecewise linear maps from the unit interval $[0,1]$ to itself, where the slope of any linear piece is a positive dyadic rational. An equivalent description of such an element is obtained as follows: first divide the unit interval representing the domain into two halves and iterate this procedure by further subdividing some of the resulting pieces. Then similarly cut up the unit interval representing the codomain into the same number of pieces as the domain, and finally identify the pieces of the domain and codomain via a permutation. Note that the intervals identified in the last step will usually have different lengths. For more details see [CFP96].

To describe elements of sV, we no longer think of the unit interval but the unit s-cube $[0,1]^s$. The unit s-cube can be halved by dyadic hyperplanes in s different directions, as can any iterated piece obtained this way. As with V, an element of sV can be described as a sequence of halvings of the domain and codomain and an identification of the resulting pieces by a permutation. Again the identification will affinely deform the individual pieces. Alternatively we can describe an element by a dyadic map from the s-cube to itself. A sequence of halvings of the s-cube will be modeled by “dyadic coverings”. To get an intuition, the reader might want to look at Figure 1 (the map f_1 represents an element of $2V$). It may also be helpful to read Section 1 of [BC10], which additionally details the paired trees model for elements of sV.

1.1. Dyadic maps and the group sV. We now describe more formally the notions needed to define the group sV, and also a certain poset P_1, which will then be used to define the space sX for our main argument.

A real number is called dyadic if it is of the form $2^n/2^m$ for some $k \in \mathbb{Z}$ and $\ell \in \mathbb{N}_0$. We denote by I the subspace of $[0,1]$ of non-dyadic numbers. By a dyadic interval we mean a set of the form $\left[\frac{k}{2^\ell}, \frac{k+1}{2^\ell}\right] \cap I$ with $k, \ell \in \mathbb{N}_0$, and the length of the dyadic interval is defined to be $1/2^\ell$. A bijection $A \rightarrow B$ between dyadic intervals is called a simple dyadic map if it is affine of positive slope. Note that this slope will necessarily be a power of two.

In general we consider the unit s-cube I^s (or rather, the set of non-dyadic points in the unit s-cube), which is the s-fold product of I. A brick is a subset C of I^s that is a product of s dyadic intervals, called the edges of C, and the volume of C is the product of the lengths of its edges. Note that the volume of a brick is always a power of two. A dyadic covering is a finite set of bricks that disjointly cover I^s (note that by our definition the set I does not contain any dyadic numbers).

For a natural number m, denote by $I^s(m)$ the disjoint union

$I^s(m) := B_1 \sqcup \cdots \sqcup B_m$

where each B_i is a copy of I^s. Note that I^s is the same as $I^s(1)$. We call B_i the i^{th} block of $I^s(m)$. A covering \mathcal{U} of $I^s(m)$ is called dyadic if it is a disjoint union $\mathcal{U} = U_1 \sqcup \cdots \sqcup U_m$ where U_i is a dyadic covering of the block B_i. We denote by $\mathcal{T}_m := \{B_1, \ldots, B_m\}$ the trivial dyadic covering of $I^s(m)$, in which the bricks are just the blocks themselves.

Observation 1.1. The set of dyadic coverings of $I^s(m)$ is a lattice with respect to the refinement relation.
THE BRIN–THOMPSON GROUPS sV ARE OF TYPE F_∞

Figure 1. An example of dyadic map $f_1: I^2(1) \to I^2(1)$ and a dyadic map $f_2: I^2(1) \to I^2(2)$. Note that f_2 is obtained from f_1 by splitting along a horizontal line. The map f_2 is equivalent in P_1 to the one where the blocks on the right are interchanged.

Proof. Existence of joins (that is, coarsest common refinements) as well as existence of a unique minimum (namely, \mathcal{T}_m) are clear. The statement now follows from standard order theory.

Let U and V be dyadic coverings of $I^s(m)$ and $I^s(n)$, respectively, and let $f: I^s(m) \to I^s(n)$ be a map. We say that the pair of dyadic coverings (U, V) is compatible with f if for every $C \in U$, $f|_C$ is a product of simple dyadic maps and $f(C) \in V$. Less formally, this means that every brick in the domain maps in an affine way to a brick in the codomain. If such a pair of dyadic coverings exists, then we say that f is a dyadic map. It is easy to see that composition of two dyadic maps is again a dyadic map, that every dyadic map is invertible, and that the inverse of a dyadic map is dyadic.

There is a combinatorial description of dyadic maps. If $f: I^s(m) \to I^s(n)$ is a dyadic map and (U_1, U_2) is a compatible covering, then f induces a bijection of dyadic coverings $U_1 \to U_2$. Conversely, every bijection of dyadic coverings $U_1 \to U_2$ induces a dyadic map $I^s(m) \to I^s(n)$.

Note that two bijections $U_1 \to V_1$ and $U_2 \to V_2$ induce the same map $I^s(m) \to I^s(n)$ if and only if there are common refinements U and V such that the induced bijections $U \to V$ coincide.

Definition 1.2. The Brin–Thompson group sV is the group of all dyadic self maps of I^s with the multiplication given by composition, $gh := g \circ h$.

1.2. The poset \mathcal{P}_1. In order to define the poset \mathcal{P}_1 on which sV acts we need some more notation.

Denote by $\mathcal{P}_{m,n}$ the set of all dyadic maps $f: I^s(m) \to I^s(n)$, so for example $\mathcal{P}_{1,1} = sV$. Let \mathcal{P} be the union of the $\mathcal{P}_{m,n}$ where m and n range over all positive integers. Also denote by \mathcal{P}_m the subset of \mathcal{P} where the domain of the maps consists of m blocks.

There is a natural action of sV on \mathcal{P}_1 given by precomposition: $g^o := f \circ g$ for $g \in sV$ and $f \in \mathcal{P}_1$. For each positive n there is also an action of the symmetric group S_n on $\mathcal{P}_{m,n}$ by permuting the blocks of the codomain. We denote the quotient $\mathcal{P}_{m,n}/S_n$ by $\mathcal{P}_{m,n}$. In other words, an element of $\mathcal{P}_{m,n}$ is obtained from $\mathcal{P}_{m,n}$ by forgetting
the order of the blocks in the codomain. We set
\[\mathcal{P} := \bigcup_{n,m \geq 1} \mathcal{P}_{m,n} \quad \text{and} \quad \mathcal{P}_1 := \bigcup_{n \geq 1} \mathcal{P}_{1,n}. \]

Note that \(\mathcal{P}_{1,n} \) is an \(sV \)-invariant subset of \(\mathcal{P}_1 \), and the action of \(sV \) on \(\mathcal{P}_{1,n} \) commutes with the action of the symmetric group \(S_n \), so we get an action of \(sV \) on \(\mathcal{P}_{1,n} \) for every \(n \). In particular the \(sV \)-action on \(\mathcal{P}_1 \) induces an action of \(sV \) on \(\mathcal{P}_1 \).

Definition 1.3. The function \(t : \mathcal{P} \to \mathbb{N} \) assigns to each \(x \in \mathcal{P} \) the number of blocks in the codomain of \(x \), that is, if \(x \in \mathcal{P}_{m,n} \) for some \(m \), then \(t(x) = n \).

Next we define a poset structure on \(\mathcal{P} \) using the notion of “splitting”. A dyadic map \(z : I^d(m) \to I^d(n) \) is called a splitting (along \(\mathcal{U} \)) if \(z \) is compatible with a pair of dyadic coverings of the form \((\mathcal{U}, T_n)\). The splitting \(z \) is called non-trivial if \(n > m \). Colloquially then, as the name implies, a non-trivial splitting is given by splitting up some cubes (and then not sticking any resulting cubes together). The inverse of a splitting (along \(\mathcal{U} \)) is called a merging (along \(\mathcal{U} \)).

We define an order \(\leq \) on \(\mathcal{P} \) by saying that \(x < y \) if there exists a non-trivial splitting \(z \) such that \(y = z \circ x \), that is, if \(y \) is obtained from \(x \) by non-trivial splitting. We also denote the induced order on \(\mathcal{P} \) by \(\leq \). In particular, \(\mathcal{P}_1 \) is ordered by \(\leq \). See Figure 1 for an example of dyadic maps and splitting.

The poset \(\mathcal{P}_1 \) is filtered by the \(t \)-sublevel sets
\[\mathcal{P}_{1}^{\leq n} = \bigcup_{1 \leq k \leq n} \mathcal{P}_{1,k}. \]

We make the following easy observations.

Observation 1.4. The poset \(\mathcal{P}_1 \) is directed (that is, any two elements have a common upper bound). Therefore, \(|\mathcal{P}_1| \) and \(|\mathcal{P}_1| \) are contractible.

Observation 1.5. The action of \(sV \) on \(\mathcal{P}_1 \) is free. Thus, for any vertex \(x \in |\mathcal{P}_1| \), the stabilizer \(\text{Stab}_{sV}(x) \) is finite. Hence all cell stabilizers are finite and of type \(F_\infty \).

Observation 1.6. The action of \(sV \) on \(\mathcal{P}_1^{\geq 1} \) is transitive, and for each \(n \geq 1 \) the sublevel set \(|\mathcal{P}_1^{\leq n}| \) is locally finite. Hence \(|\mathcal{P}_1^{\leq n}| \) is finite modulo \(sV \).

These observations suggest that the filtration \((|\mathcal{P}_1^{\leq n}|)_n\) of \(|\mathcal{P}_1| \) could be used to show that \(sV \) is of type \(F_\infty \), using Brown’s Criterion.

Brown’s Criterion. [Bro87, Corollary 3.3] Let \(G \) be a group and \(X \) a contractible \(G \)-CW-complex such that the stabilizer of every cell is of type \(F_\infty \). Let \(\{X_j\}_{j \geq 1} \) be a filtration of \(X \) such that each \(X_j \) is finite mod \(G \). Suppose that the connectivity of the pair \((X_{j+1}, X_j)\) tends to \(\infty \) as \(j \) tends to \(\infty \). Then \(G \) is of type \(F_\infty \).

It would suffice now to show that the connectivity of the pair \((|\mathcal{P}_1^{\leq n+1}|, |\mathcal{P}_1^{\leq n}|)\) tends to \(\infty \) as \(n \) tends to \(\infty \). This was proved by Kochloukova, Martínez-Pérez, and Nucinkis [KMP16] for the cases \(s = 2,3 \). However, it becomes increasingly difficult to verify for higher \(s \). The main difference of our approach here is that we consider a certain subcomplex \(sX \) of \(|\mathcal{P}_1| \). Analyzing the relative connectivity in \(sX \) turns out to be substantially easier than in \(|\mathcal{P}_1| \).

2. The Stein space for \(sV \)

The idea of passing to what we are calling a “Stein space” was first introduced by Stein [Ste92], and in particular was used to obtain a new proof that \(F \) is of type \(F_\infty \). This construction generalizes nicely to deal with some complicated versions of Thompson’s groups. For example Stein spaces were used in [BFM*12] to
prove that braided Thompson’s groups are of type F_{∞}. The key idea is that the splitting establishing a relation $x \leq y$ can be obtained from “elementary splittings” that give rise to elementary relations $x \preceq x_1 \preceq \ldots \preceq x_r \preceq y$, and these small steps are much easier to understand locally. Heuristically, an elementary splitting amounts to halving an s-cube at most once in any given direction. We now describe more rigorously the construction of the Stein space.

Definition 2.1. Call a brick C **elementary** if every edge of C has length at least $1/2$. Call an elementary brick **very elementary** if it has volume at least $1/2$. A dyadic covering U is called (very) **elementary** if every brick in U has this property. Likewise, a splitting or merging along U is (very) **elementary** if U is.

For $x, y \in P$, if y can be obtained from x by an elementary splitting, write $x \preceq y$; if moreover $x \neq y$ then we write $x \prec y$. If y is obtained from x by a very elementary splitting, write $x \subseteq y$; if moreover $x \neq y$, then we write $x \sqsubset y$. Note that the relations \preceq and \subseteq are not transitive. In particular, the length of a chain of very elementary splittings is bounded by the number of blocks. However, if $x_1 \leq x_2 \leq x_3$ and $x_1 \preceq x_2$ and $x_2 \preceq x_3$, and analogously for \subseteq. It is clear that the action of sV respects the relations \preceq, \subseteq and \sqsubseteq.

Clearly $I^s(m)$ has a unique maximal elementary covering E by $m \cdot 2^s$ bricks all of which have volume 2^{-s}. A covering is elementary if and only if E is a refinement of it.

The closed interval $[x, y]$ in P_1 is defined to be $[x, y] := \{ w \in P_1 \mid x \leq w \leq y \}$; the open and half-open intervals are defined analogously. Call an interval $[x, y]$ in $[P_1]$ **elementary** if $x \preceq y$, and **very elementary** if $x \subseteq y$. A simplex of $[P_1]$ is **elementary** if there is a (very) elementary interval that contains all of its vertices.

Definition 2.2. The Stein space for sV, denoted sX, is the subcomplex of $|P_1|$ consisting of elementary simplices.

The following statement is the key to showing the contractibility of the Stein space.

Lemma 2.3. Let $x, y \in P_1$ with $x \leq y$. There exists a unique $y_0 \in [x, y]$ such that $x \preceq y_0$ and for any $z \leq w \leq y$, we have $w \leq y_0$. If $x < y$, then $x < y_0$.

Proof. Set $m := t(x)$ and $n := t(y)$. Let \tilde{x} be a representative in \tilde{P}_1 for x. Let U be the dyadic covering of $I^s(m)$ such that y is obtained from \tilde{x} by splitting along U. Let E be the maximal elementary covering of $I^s(m)$. The element y_0 is obtained from \tilde{x} by splitting along the finest common coarsening $E \cap U$. The desired properties follow from Observation 1.1

For $x \leq y$, call the y_0 from the lemma the **elementary core of y with respect to x**, and denote it $\text{core}_x(y) := y_0$. When x is understood we omit the subscript. Observe that if $y_1 \leq y_2$ then $\text{core}(y_1) \subseteq \text{core}(y_2)$, that is, taking elementary cores respects the poset relation. Figure 2 gives an example of an elementary core.

Lemma 2.4. For $x < y$ with $x \neq y$, $|(x, y)|$ is contractible.

Proof. If $w \in (x, y]$, then $\text{core}(w) \in [x, y]$ because $x \neq y$, and $\text{core}(w) \in (x, y)$ because $x < w$. So in fact $\text{core}(w) \in (x, y)$. Also, $\text{core}(w) \preceq \text{core}(y)$ by the previous discussion. The inequalities $w \preceq \text{core}(w) \preceq \text{core}(y)$ provide a contraction of $|(x, y)|$, by Section 1.5 of [Qui78].

As was done in [Bro92] for the Stein space of V, we can build up from sX to $|P_1|$ to show that sX is contractible.
without changing the homotopy type.

Lemma 3.1. Let X be a simplicial complex and let $f : X^{(0)} \to \mathbb{Z}$ be such that $f(x) \neq f(y)$ for adjacent vertices x and y of X. If $\text{lk}_j(x)$ is $(k-1)$-connected for every vertex $x \in X^{=n}$, then the pair $(X^{\leq n}, X^{<n})$ is k-connected, that is, the inclusion $X^{<n} \hookrightarrow X^{\leq n}$ induces an isomorphism in $\pi_j, j < k$ and an epimorphism in π_k.

Fix a vertex x in sX and consider $L(x) := \text{lk}_j(x)$. As a subcomplex of $|P_1|$, $L(x)$ is the collection of simplices given by chains $y_k < \ldots < y_0 < x$ with $y_k \prec x$. We first consider the subcomplex $L_0(x)$ of $L(x)$ consisting of such chains with $y_k \subset x$.

The complex $L_0(x)$ naturally projects onto a matching complex.

Corollary 2.5. The Stein space sX is contractible for all s.

Proof. By Observation 1.4, $|P_1|$ is contractible. We build up from sX to $|P_1|$ without changing the homotopy type.

Given a closed interval $[x, y]$, define $r([x, y]) := t(y) - t(x)$. We attach the contractible subcomplexes $|[x, y]|$ for $x \prec y$ to sX in increasing order of r-value. When we attach $|[x, y]|$, then, we attach it along $|[x, y]| \cup |(x, y)|$. But this is the suspension of $|(x, y)|$, and so is contractible by the previous lemma. We conclude that attaching $|[x, y]|$ does not change the homotopy type, and since $|P_1|$ is contractible, so is sX. \qed

For each $n \geq 1$ let $sX^{\leq n}$ be the full subcomplex of sX spanned by vertices x with $t(x) \leq n$. Similarly define $sX^{\leq n}$, and let $sX^{=n}$ be the set of vertices x with $t(x) = n$. Note that all of these sets are invariant under the action of sV. We will show that the filtration $(sX^{\leq n})_n$ of sX satisfies the assumptions of Brown’s Criterion.

Thanks to Observations 1.5 and 1.6 and Corollary 2.5, the only remaining feature of the filtration $(sX^{\leq n})_n$ of sX that we need to verify is that the connectivity of the pair $(sX^{\leq n+1}, sX^{\leq n})$ tends to ∞ as n tends to ∞. This is exactly the condition that proved difficult to verify for the filtration of $|P_1|$ in [KMPN10].

We will verify the relative connectivity in the next section using discrete Morse theory. The idea is to treat t as a height function on sX and inspect descending links.

3. Connectivity of the Descending Links and Proof of the Main Theorem

We will use the following Morse-theoretic tools. Fix a vertex x in sX, say with $t(x) = n$, and call n the **height** of x. The **descending link** $\text{lk}_j^\downarrow(x)$ of x is defined to be the intersection of $\text{lk}(x)$ with $sX^{\leq n}$. The fact that vertices with equal heights cannot share an edge means that we can obtain $sX^{\leq n}$ from $sX^{<n}$ by "gluing in" each vertex at height n along its descending link. This is made rigorous by the Morse lemma (cf. Corollary 2.6 of [BB97]):

Lemma 3.1. Let X be a simplicial complex and let $f : X^{(0)} \to \mathbb{Z}$ be such that $f(x) \neq f(y)$ for adjacent vertices x and y of X. If $\text{lk}_j(x)$ is $(k-1)$-connected for every vertex $x \in X^{=n}$, then the pair $(X^{\leq n}, X^{<n})$ is k-connected, that is, the inclusion $X^{<n} \hookrightarrow X^{\leq n}$ induces an isomorphism in $\pi_j, j < k$ and an epimorphism in π_k.
Theorem 3.2. Let Γ be a graph. The matching complex $M(\Gamma)$ of Γ is the simplicial complex with a k-simplex for every collection $\{e_0, \ldots, e_k\}$ of $k+1$ pairwise disjoint edges, with the face relation given by inclusion. If we consider oriented edges, we get the oriented matching complex $M^o(\Gamma)$.

The specific graphs that we will need are generalizations of complete graphs. For $s \in \mathbb{N}$, let sK_n be the graph with n nodes and s edges between any two distinct nodes. In particular $1K_n$ is just K_n, the complete graph on n nodes. Color the edges from 1 to s so that any two distinct nodes have precisely one edge of each color between them. For a fixed labeling 1 through n of the nodes of each sK_n, we have a projection $s:\pi: sK_n \rightarrow K_n$ for each s, given by sending an edge with endpoints i and j to the unique edge of K_n with endpoints i and j. Since disjoint edges map to disjoint edges, this induces a map $M(s:\pi): M(sK_n) \rightarrow M(K_n)$.

For any $\ell \in \mathbb{Z}$, define $\nu(\ell) := \left\lceil \frac{\ell^2}{4} \right\rceil$.

Lemma 3.3. $M(sK_n)$ is $(\nu(n) - 1)$-connected, as is $M^o(sK_n)$.

Proof. It is well known that $M(K_n)$ is $(\nu(n) - 1)$-connected, see for example [Ath94, BFM+12, BLV09]. For any k-simplex σ in $M(K_n)$, the fiber $M(s:\pi)^{-1}(\sigma)$ is the join of the fibers of the vertices of σ, so in particular is homotopy equivalent to a wedge of spheres of dimension k. Moreover, it is clear that links in $M(K_n)$ are themselves matching complexes of complete graphs. Therefore the hypotheses of Theorem 9.1 in [Qui78] are satisfied, and we conclude that $M(sK_n)$ is $(\nu(n) - 1)$-connected. We also have an obvious map $M^o(sK_n) \rightarrow M(sK_n)$ obtained by forgetting the orientation on the edges. The fibers of this map are similarly spherical of the right dimension, so again using Theorem 9.1 of [Qui78] we conclude that $M^o(sK_n)$ is $(\nu(n) - 1)$-connected. \square

Every vertex $y \in L_0(x)$, say with $t(y) = m$, is obtained from x by applying a non-trivial very elementary merging. The merging is given by a very elementary covering U of m blocks whose n blocks are indexed by the blocks of x. Two such mergings define the same element y if and only if they differ by a permutation of the blocks. Consequently, denoting by VE_n the set of very elementary coverings by n labeled bricks up to permutation of the blocks, we get a one-to-one correspondence between $L_0(x)$ and VE_n. We obtain a partial order VE_n from the partial order on P_1 via this identification.

Corollary 3.4. VE_n, and therefore $L_0(x)$, is isomorphic to $M^o(sK_n)$. Hence, both are $(\nu(n) - 1)$-connected.

Proof. Consider a non-trivial very elementary dyadic covering U of $I^*(m)$ with n bricks labeled 1 to n. Since U is very elementary, each block consists of at most two bricks. If it does consist of two bricks, then it defines an oriented edge in the graph sK_n as follows. The two bricks are

$$I^{k-1} \times \left(I \cap \left[0, \frac{1}{2}\right]\right) \times I^{s-k} \quad \text{and} \quad I^{k-1} \times \left(I \cap \left[\frac{1}{2}, 1\right]\right) \times I^{s-k}$$

for some $1 \leq k \leq s$. Say the first brick is labeled i and the second brick is labeled j. Then the edge in sK_n defined by this block points from i to j and has color k.

See Figure 4 for an example.

This procedure defines an isomorphism of ordered sets $VE_n \rightarrow M^o(sK_n)$. The connectivity statement now follows from Lemma 3.3 \square

The next step is to show that $L(x)$ is highly connected by building up from $L_0(x)$ to $L(x)$ along highly connected links. If $s = 1$, then $L_0(x) = L(x)$ so we may assume $s > 1$ in what follows.
We start by giving a combinatorial description of $L(x)$ similar to the one given for $L_0(x)$ before. Every vertex in $L(x)$ is obtained from x via a non-trivial elementary merging. We can therefore replace “very elementary” by “elementary” in the discussion of $V E_n$ above. We get that the poset E_n of elementary mergings of n labeled bricks up to permutation of blocks is isomorphic to $L(x)$.

We now describe the Morse function that determines in which order we build up from $L_0(x)$ to $L(x)$. For any $U \in E_n$, the volume of any brick in U is at least $1/2^s$. For each $0 \leq i \leq s$ define c_i to be the number of bricks in U with volume $1/2^i$. Then define c to be the lexicographically ordered function $c = (c_s, c_{s-1}, \ldots, c_3, c_2)$. Note that we do not include c_1 or c_0 in this tuple; this will be crucial to our arguments. Denote by b the number of blocks of U. The height h of U is now defined to be $h = (c, b)$, ordered lexicographically.

Observation 3.5. Let \mathcal{X} and \mathcal{Y} be vertices in E_n with $\mathcal{X} < \mathcal{Y}$. Then $c(\mathcal{X}) \geq c(\mathcal{Y})$ and $b(\mathcal{X}) < b(\mathcal{Y})$, so in particular $h(\mathcal{X}) < h(\mathcal{Y})$ if and only if $c(\mathcal{X}) = c(\mathcal{Y})$, and $h(\mathcal{X}) > h(\mathcal{Y})$ if and only if $c(\mathcal{X}) > c(\mathcal{Y})$.

Fix a vertex U in $E_n \setminus V E_n$. The descending link of U with respect to h will be denoted $\text{lk}_h(U)$. There are two types of vertices V in $\text{lk}_h(U)$. First, we could have $U > V$ and $h(U) > h(V)$, which by the above observation implies that $c(U) = c(V)$. The full subcomplex of $\text{lk}_h(U)$ spanned by such vertices will be called the (descending) down-link. Second, we could have $U < V$ and $h(U) > h(V)$, which implies that $c(U) > c(V)$. The full subcomplex of $\text{lk}_h(U)$ spanned by these vertices will be called the (descending) up-link.

Observation 3.6. Vertices V in the down-link and W in the up-link automatically satisfy $V < W$. Therefore $\text{lk}_h(U)$ is a join of the down-link and the up-link.

This allows us to study the up-link and the down-link separately.

Lemma 3.7. If U has a block with precisely two bricks, then the up-link of U is contractible, and hence so is $\text{lk}_h(U)$.

Proof. Let B be a block in U with two bricks. Note that splitting only B does not yield a vertex with lower height. For a vertex V of the up-link we define a vertex V_0 as follows (see Figure 4). Since V is in the up-link, it is obtained from U by splitting. Let V_0 be the covering obtained from U by doing all the same splittings as for V, except that B is not split (whether or not it was split for V). Then $V_0 > U$, since V was obtained by splitting more than just B, as observed above. It is also clear that $c(V_0) < c(U)$, and so V_0 is again in the up-link of U. Now let Z_B be the maximal elementary splitting of U that does not split B. Then for all V in the

![Figure 3](Image)

Figure 3. An example of $\pi: V E_n \to \mathcal{M}^n(sK_n)$ in the case $n = 5$ and $s = 2$. The solid arrow corresponds to a merge along a vertical face, and the dashed arrow corresponds to a merge along a horizontal face.
up-link, we have $\mathcal{V}_0 \leq \mathcal{Z}_B$. Hence we have the inequalities $\mathcal{V} \geq \mathcal{V}_0 \leq \mathcal{Z}_B$, which provide a contraction of the up-link of \mathcal{U}, by Section 1.5 of [Qui78]. □

For $\ell \in \mathbb{Z}$, define $\eta(\ell) := \lfloor \frac{\ell - 2}{2s} \rfloor$. Note that, for a fixed s, as $n \to \infty$, $\eta(n)$ increases monotonically to ∞.

Lemma 3.8. If \mathcal{U} has no block with precisely two bricks, then $\text{lk}_{\downarrow} h(U)$ is at least $(\eta(n) - 2)$-connected.

Proof. Call a block in \mathcal{U} with more than two bricks big, and a block with only one brick small. Let k_b be the number of big blocks and k_s the number of small blocks. By assumption $k_b + k_s$ is the number m of blocks in \mathcal{U}.

The up-link of \mathcal{U} is clearly at least $(k_b - 2)$-connected, since splitting a big block in any way produces a vertex with lower height, and so each big block contributes a non-empty join factor to the up-link. The down-link of \mathcal{U} is isomorphic to $VE_{E_{k_s}}$, and therefore is $(\nu(k_s) - 1)$-connected by Corollary 3.4. This implies that $\text{lk}_{\downarrow} h(U)$ is $(k_b + \nu(k_s) - 1)$-connected. Also, n is the number of bricks in \mathcal{U}, so $n \leq 2^s k_b + k_s$.

Since $s > 1$, $2^s > 3$, so we have

$$k_b + \nu(k_s) - 1 \geq k_b + \left\lfloor \frac{k_s - 2}{2^s} \right\rfloor - 1 \geq k_b + \frac{k_s - 2}{2^s} - 2 = \frac{2^s k_b + k_s - 2}{2^s} - 2 \geq \frac{n - 2}{2^s} - 2 \geq \eta(n) - 2.$$

We conclude that $\text{lk}_{\downarrow} h(U)$ is at least $(\eta(n) - 2)$-connected. □

Corollary 3.9. If $s = 1$ then E_n, and hence $L(x)$ is $(\nu(n) - 1)$-connected. If $s > 1$, then E_n, and hence $L(x)$ is $(\eta(n) - 1)$-connected.

Proof. The $s = 1$ case is already done, since then $E_n = VE_n$. Now suppose $s > 1$. Then $\eta \leq \nu$, so VE_n is at least $(\eta(n) - 1)$-connected. Also, for $\mathcal{U} \in E_n \setminus VE_n$, $\text{lk}_{\downarrow} h(U)$ is $(\eta(n) - 2)$-connected by Lemmas 3.7 and 3.8. It follows from Lemma 3.1 that E_n is at least $(\eta(n) - 1)$-connected. □

Proposition 3.10. For each $n \geq 1$, the pair $(sX^{\leq n}, sX^{< n})$ is $\eta(n)$-connected for $s > 1$, and the pair $(1X^{\leq n}, 1X^{< n})$ is $\nu(n)$-connected.
Proof. Let x be a vertex in sX^n. By Corollary 3.9, the descending link $lk_{\downarrow}(x)$ of x in sX is at least $(\eta(n) - 1)$-connected for $s > 1$, or $(\nu(n) - 1)$-connected for $s = 1$. The result now follows from Lemma 3.1.

We are now in a position to apply Brown’s Criterion.

Proof of Main Theorem. Consider the action of sV on sX. By Corollary 2.5, sX is contractible, by Observation 1.5, the stabilizer of every cell is finite, and by Observation 1.6, each $sX^{\leq n}$ is finite modulo sV. By Proposition 3.10, the connectivity of the pairs $(sX^{\leq n}, sX^{<n})$ tends to ∞ as n tends to ∞. Hence, sV is of type F_∞ by Brown’s Criterion.

References

[Ath04] C. A. Athanasiadis. Decompositions and connectivity of matching and chessboard complexes. Discrete Comput. Geom., 31(3):395–403, 2004.

[BB97] M. Bestvina and N. Brady. Morse theory and finiteness properties of groups. Invent. Math., 129(3):445–470, 1997.

[BC10] J. Burillo and S. Cleary. Metric properties of higher-dimensional Thompson’s groups. Pacific J. Math., 248(1):49–62, 2010.

[BFM+12] K.-U. Bux, M. Fluch, M. Marschler, S. Witzel, and M. Zaremsky. The braided Thompson’s groups are of type F_∞. arXiv:1210.2931, 2012. To appear in J. Reine Angew. Math.

[BLV94] A. Björner, L. Lovász, S. T. Vrećica, and R. T. Živaljević. Chessboard complexes and matching complexes. J. London Math. Soc. (2), 49(1):25–39, 1994.

[Bro04] M. G. Brin. Higher dimensional Thompson groups. Geom. Dedicata, 108:163–192, 2004.

[Bro05] M. G. Brin. Presentations of higher dimensional Thompson groups. J. Algebra, 284(2):520–558, 2005.

[Bro87] K. S. Brown. Finiteness properties of groups. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 45–75, 1987.

[Bro92] K. S. Brown. The geometry of finitely presented infinite simple groups. In Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), volume 23 of Math. Sci. Res. Inst. Publ., pages 121–136. Springer, New York, 1992.

[CFP96] J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s groups. Enseign. Math. (2), 42(3-4):215–256, 1996.

[HM12] J. Hennig and F. Matucci. Presentations for the higher dimensional Thompson’s groups nV. Pacific J. Math., 257(1):53–74, 2012.

[KMP10] D. H. Kochloukova, C. Martínez-Pérez, and B. E. A. Nucinkis. Cohomological finiteness properties of the Brin-Thompson-Higman groups $2V$ and $3V$. Proc. Edinburgh Math. Soc. (2), 56(3):777–804, 2013.

[Qui78] D. Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math., 28(2):101–128, 1978.

[Ste92] M. Stein. Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc., 332(2):477–514, 1992.