The effect of marrow secretome and culture environment on the rate of metastatic breast cancer cell migration in two and three dimensions

Kimberly J. Curtisa,b, Christine Maic, Hannah Martinc, Alyssa G. Obermana,b, Laura Alderfera,b, Ricardo Romero-Morenob,d, Mark Walshe,f, Stephen F. Mitrose, Scott G. Thomasg, Joseph A. Dynakog, David I. Zimmera, Laoise M. McNamarah, Laurie E. Littlepageb,d, and Glen L. Niebura,b,c,*

aBioengineering Graduate Program; bDepartment of Aerospace and Mechanical Engineering; cDepartment of Chemistry and Biochemistry; dHarper Cancer Research Institute, University of Notre Dame, IN 46556; eIndiana University School of Medicine, South Bend Campus, Notre Dame, IN 46556; fBeacon Medical Group, Trauma and Surgical Services, South Bend, IN, 46601; gMechanobiology and Medical Devices Research Group, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland H91 CF50

ABSTRACT Metastasis is responsible for over 90% of cancer-related deaths, and bone is the most common site for breast cancer metastasis. Metastatic breast cancer cells home to trabecular bone, which contains hematopoietic and stromal lineage cells in the marrow. As such, it is crucial to understand whether bone or marrow cells enhance breast cancer cell migration toward the tissue. To this end, we quantified the migration of MDA-MB-231 cells toward human bone in two- and three-dimensional (3D) environments. First, we found that the cancer cells cultured on tissue culture plastic migrated toward intact trabecular bone explants at a higher rate than toward marrow-deficient bone or devitalized bone. Leptin was more abundant in conditioned media from the cocultures with intact explants, while higher levels of IL-1\(\beta\), IL-6, and TNF\(\alpha\) were detected in cultures with both intact bone and cancer cells. We further verified that the cancer cells migrated into bone marrow using a bioreactor culture system. Finally, we studied migration toward bone in 3D gelatin. Migration speed did not depend on stiffness of this homogeneous gel, but many more dendritic-shaped cancer cells oriented and migrated toward bone in stiffer gels than softer gels, suggesting a coupling between matrix mechanics and chemotactic signals.

INTRODUCTION Breast cancer metastasis commonly targets the skeleton, with over 70% of breast cancer patients having bone metastases at death (Kennecke et al., 2010; Li et al., 2012). Although screening methods and adjuvant therapy have reduced death rates from breast cancer in the United States by 24% (Berry et al., 2005), methods of treating and preventing bone metastasis have advanced more slowly. Patients diagnosed with breast cancer metastasized to bone have a median survival of 1.6 years (Liede et al., 2016). Early detection of bone metastasis is difficult, as radiography can only detect bone lesions at advanced stages of the disease after severe bone destruction due to the opaque nature of bone (Eustace et al., 1997; Gauvain et al., 2005). Treatments for bone metastasis include radiation, chemotherapy, and surgery (Solomayer et al., 2000; Coleman, 2004). However, some patients do not respond to treatment, and recurrence is common (Cameron et al., 2017; Croker et al., 2017). Metastasized cancer cells also interact with resident bone cells, including primary bone cells—osteoblasts, osteoclasts, and osteocytes—to disrupt the normal mechanobiological control program, resulting in abnormal bone resorption and formation, which often causes osteolysis and increased fracture risk (Mundy, 2002;
Bone metastases primarily affect the axial skeleton where hematopoietic marrow is abundant (Coleman, 2006). The marrow cells are believed to express chemoattractant molecules that recruit the cancer cells and provide a suitable niche for survival (Paget, 1889; Coughlin et al., 2016a). Immune cells, which make up approximately 40% of bone marrow (Zhao et al., 2012, Curtis et al., 2020a), mediate tumor metastasis through inflammatory responses (Balkwill et al., 2005; DeNardo et al., 2008). At the same time, hematopoietic precursor cells in bone marrow prepare metastatic niches for tumor cell arrival (Kaplan et al., 2005), while blocking these cells inhibits tumor growth and angiogenesis (Lydén et al., 2001). Adipocytes, which are a major component of bone marrow (Scheller et al., 2014, Curtis et al., 2020a), lose their lipid content, become fibroblastic, and increase the invasiveness of tumor cells when cocultured with tumor cells (Dirat et al., 2011; Bochet et al., 2013; Herroon et al., 2013; Nieman et al., 2013). Mesenchymal stem cells (MSCs) in the bone marrow's central sinus also interact with breast cancer cells to support tumor proliferation by releasing supportive growth factors and adhesion molecules that promote cancer cell survival (Karnoub et al., 2007; Patel et al., 2010; Chatuvedi et al., 2014). Additionally, MSCs attract macrophages and regulatory T cells to the tumor, increasing tumor angiogenesis and decreasing the ability of the cancer cells to be recognized by the host's immune system (Patel et al., 2010; Chatuvedi et al., 2014).

It is crucial to understand how breast cancer cells migrate toward bone in a three-dimensional (3D) environment to mimic physiological conditions. Metastatic progression is accompanied by changes in the mechanical environment (Kumar and Weaver, 2009), and cancer cells that engraft in bone face a distinct environment with soft marrow interspersed between rigid bone struts (Curtis et al., 2020a). Substrate stiffness directly impacts cancer cell proliferation and migration in 2D cell cultures. For example, breast cancer cell migration and proliferation increase with either increased stiffness of polyacrylamide gels (Tilghman et al., 2010) or increased substrate degradation and traction stresses (Jerrell and Parekh, 2014). However, cancer cells in vivo must degrade and migrate through unique 3D environments of varying stiffness as they invade tissue. Breast cancer cells invade methacrylated gelatin ranging from 300 to 750 Pa (Peela et al., 2016). However, it is unknown how chemoattractant factors from bone marrow affect cancer cell migration in 3D.

We recently developed a culture system to study bone colonization by growing bone and cancer cells in culture. We identified a panel of chemokines, cytokines, and growth factors that are secreted from bones cultured with cancer cells (Romero-Moreno et al., 2019). Further analysis of Cxcl5, a chemokine identified by the study, identified Cxcl5 as sufficient to promote bone colonization of breast cancer cells, while inhibition of Cxcr2, the Cxcl5 receptor, was sufficient to inhibit colonization.

Understanding the factors that enhance migration of cancer cells to a particular niche can provide additional insight into how cancer cells select and colonize within a particular bone marrow niche. The objective of this study was to examine breast cancer cell migration toward bone in a 3D environment. First, the relative contributions of marrow cells versus osteocytes residing in the mineralized matrix to breast cancer chemotaxis were quantified in 2D. A panel of proteins found in bone and marrow were quantified in the media to identify potential chemoattractants. Second, breast cancer cell migration into human bone marrow was investigated in an in situ culture system. Finally, the bone marrow chemotaxis model was used to quantify the effects of scaffold stiffness on 3D breast cancer cell migration.

RESULTS AND DISCUSSION

2D cell migration toward human bone and marrow

We first studied whether the presence of bone marrow or live bone is necessary to induce breast cancer cell migration. To do this, we developed a bone explant culture system of human bone cocultured with human breast cancer cells that includes the heterogeneous cellular and protein components of human bone marrow, including immune cells. This system allows us to visualize and track human breast cancer cells in an intact human bone microenvironment. Human trabecular bone explants obtained from donors during total hip arthroplasty (THA) under Institutional Review Board (IRB) approval were cultured at the center of a colony of MDA-MB-231 cells in a 12-well plate (Figure 1A). We seeded MDA-MB-231 (triple negative breast cancer) cells in an annulus to observe migration toward the center of a 12-well culture plate. We affixed a 10-mm diameter circular magnet to the center of each well of a 12-well culture plate to prevent cell attachment (Figure 1A). After allowing the cells to attach for 16 h, the magnets were removed, and the cylindrical human bone explants were placed at the center of the annulus.

To delineate the role of bone marrow, osteocytes, and bone extra cellular matrix on cancer cell migration, three groups of bone explants were prepared. The first group was intact, a second group had the marrow removed by centrifugation, and the third was devitalized by repeated freeze–thaw cycles. A final group contained no bone and served as a control. Following the experiment, we verified the presence or absence of marrow with hematoxylin and eosin (H&E) histology in representative samples (Figure 1B). The marrow was successfully removed from the explants that were centrifuged (Figure 1C). Similarly, the explants that underwent repeated freeze–thaw cycles did not have osteocytes with intact nuclei in the lacunae (Figure 1D), verifying that the explants were effectively devitalized.

To determine how breast cancer cell chemotaxis was influenced by marrow cells and osteocytes residing in the mineralized matrix, we measured the migration rates of the MDA-MB-231 cells toward the human trabecular bone explants in culture by time-lapse microscopy for 24 h (Figure 1E). We chose to use the rate of cell migration as a quantitative measure of the strength of the chemoattractant signal. We used an in vitro assay to achieve greater repeatability and more precise measurements of migration rate. We did not track migration of human breast cancer cells in an animal model because we wanted to test the migration in the presence of human tissue and cytokines, which may be specific to the human cancer cell line that we studied.

The cell migration rate was highest in well-containing intact bone explants at all time points (p < 0.05) except 20 h when it was similar to bone without marrow (Figure 1, E and F). The migration rate was higher in wells containing bone without marrow than in wells with devitalized bone at all time points after 4 h (p < 0.004). The cells migrated toward the devitalized explants even more slowly than toward the empty tissue culture plastic for time periods less than 8 h (p < 0.05; Figure 1F) and at a similar rate thereafter.

We verified that the movement of the boundary of the cell colony was due to migration rather than proliferation. Breast cancer cell number was measured before and following the 24 h coculture with bone explants using a metabolic assay (CellTiter-Blue, Promega). The number of cancer cells in culture was similar whether the culture well contained intact bone, bone without marrow, or no bone.
FIGURE 1: (A) Experimental setup. MDA-MB-231 cells were seeded into 12-well plates 16 h before adding the bone to the cultures. A magnet was affixed in the center of each well to prevent cell attachment. After 16 h, the magnets were replaced with bone explants and grown in serum-free media. Cylindrical trabecular bone explants were collected from femoral head tissue samples harvested from six patients undergoing THA. Representative H&E images of human bone explants with marrow (B), without marrow (C), and devitalized bone (D). Explants were fixed and stained after culture with cancer cells. Viable osteocytes are labeled with black arrows. White arrows highlight empty osteocyte lacunae that are missing nuclei. Scale bar is 200 μm in outset and 3 mm in the inset. (E) Representative images of cancer cell boundary at 0 and 24 h when cultured with different conditions of bone. Images were enhanced for visualization. Solid line indicates cell boundary; dashed line indicates initial cell boundary. Scale bar is 100 μm. (F) Migration rate of MDA-MB-231 cells at 4-h intervals over 24 h when cultured with bone with marrow, bone without marrow, or devitalized bone. The migration rate was highest when cultured with bone with marrow at every time point (p < 0.04) except at 20 h (p = 0.08 vs. live bone). The migration rate remained nearly constant over 24 h for cancer cells cultured with bone with marrow, without marrow, or devitalized bone (p > 0.12) but decreased over time when no bone was present (p < 0.001). Each condition had six biological replicates except devitalized bone (N = 4), and each biological replicate included four technical replicates. ANOVA was used to compare migration rates between groups at each time point (*p < 0.05). (G) Cell proliferation was observed when cancer cells were cultured with bone without marrow or no bone based on a CellTiter-Blue assay. The 0 h condition represents the metabolism of the cancer cells immediately prior to the addition of bone explants to the culture. Cell number increased when cancer cells were cultured with bone without marrow or no bone compared with 0 h (ANOVA; p < 0.01). However, the cell number was similar when MDA-MB-231 cells were cultured with bone with marrow, without marrow, or no bone, indicating that there was a similar number of cancer cells in all experimental conditions and that differences in migration were not driven by proliferation of the cancer cells (ANOVA; p > 0.14). See Supplemental Video S1.
(p > 0.14; Figure 1G), indicating that the presence of the bone explants did not enhance cell proliferation in the 24 h culture period. As such, we concluded that the higher migration rate was not due to cells proliferating at the edge of the colony or migrating to provide space for new cells.

These results suggest that both bone marrow cells and osteocytes express chemokines that enhance cancer cell migration. This agrees with previous studies that found that intact trabecular bone fragments enhanced directed migration of MDA-MB-231 cells (Contag et al., 2014; Templeton et al., 2015), and that intact fragments increased proliferation of MDA-MB-231 cells compared with marrow-depleted bone (Contag et al., 2014; Templeton et al., 2015). In our experiment, we specifically showed that the presence of the marrow increases the migration rate, indicating that marrow cells release chemokines related to migration. Interestingly, we found that bone without marrow also affected cancer cell migration, suggesting a role for osteocytes, as osteocytes would make up the majority of viable cells even if some marrow cells or their remnants remained. The increasing migration rate over time is consistent with chemokines expressed by osteocytes traversing through the mineralized matrix to reach the cell culture media. These results complement an earlier study where conditioned media from osteocytes increased both proliferation and migration of MDA-MB-231 cells in 2D (Cui et al., 2016). Growth factors released from the mineralized matrix, such as TGF-β and IGF-1, have been associated with tumor progression and may also influence breast cancer cell migration (Yoneda and Hiraga, 2005). However, these growth factors are sequestered in the matrix and are normally only released during bone remodeling or in acidic solutions (Pfeilschifter et al., 1995). This is consistent with the failure of the devitalized bone to enhance the migration of the MDA cells in our experiment.

Inhibitory factors released by dying cells during the devitalization of the bone may explain the slightly lower migration rate measured relative to no bone. These factors may have defused or degraded over the first 8 h of culture, as there was no effect at later time points. We did not explore this because we were focused on positive regulators of migration in order to provide insight into which niche within the marrow was targeted by cancer cells.

Cytokine and chemokine analysis. Given the enhanced migration, we sought to identify cytokines and chemokines that might have affected cell migration. To analyze bone remodeling-related proteins that might affect both cancer cell migration and bone balance, we analyzed the protein content of the conditioned media from our cultures using a Human Bone 13-Plex assay performed by Eve Technologies (Supplemental Table S1). The cohort of proteins and hormones assayed was associated with bone remodeling (Supplemental Table S2). The conditioned media from cocultures of the MDA-MB-231 cells with 1) intact human trabecular bone, 2) human trabecular bone with marrow removed, or 3) with no bone were assayed. The devitalized bone-conditioned media was not assayed because the migration assays suggested that devitalized bone did not enhance cancer cell migration (Figure 1). To identify cross-talk, we also assayed conditioned media for each case with no cancer cells present, including media from empty culture wells. Leptin, IL-1β, IL-6, and TNFα concentrations were higher in cases where bone marrow was present compared with cases without bone marrow (p < 0.05; Figure 2A). Conditioned media from cocultures with cancer cells exhibited higher expression of DKK-1, IL-1β, IL-6, OPG, and TNFα but decreased OC expression compared with conditioned media from samples without cancer cells (p < 0.05; Figure 2A). Interestingly, higher levels of IL-1β, IL-6, and TNFα were found when both bone marrow and cancer cells were present (p < 0.05). Conditioned media from cancer cells cultured without bone explants contained elevated levels of DKK-1, OPG, and PTH compared with fresh media (Figure 2B). Levels of insulin and fibroblast growth factor 23 (FGF-23) were undetectable in any of our cultures. The latter result was unexpected, as FGF-23 is produced by osteocytes and marrow stromal cells.

Leptin was the only protein with significantly elevated levels in conditioned media from bone with marrow compared with bone without marrow regardless of the presence of the MDA-MB-231 cells. This suggests that leptin expression by adipocytes in the marrow may have increased the rate of breast cancer cell migration toward bone. The presence of leptin enhances MDA-MB-231 migration (Juárez-Cruz et al. 2019; Duan et al. 2020). To demonstrate the chemoattractant potential of leptin, we used Transwell invasion assays to quantify MDA-MB-231 migration across a Matrigel boundary. We used leptin, TNFα, and IL-1β at concentrations 10x those measured in the conditioned media in the migration experiment. We found that only leptin enhanced invasion and migration. More cells migrated toward leptin-treated media (p < 0.01) than control, serum-free media (Figure 3A). Migration toward TNFα and IL-1β media was similar to leptin, but not significantly greater than controls. To quantify the cross-talk, we compared migration toward media containing both TNFα and IL-1β to that containing all three cytokines. Leptin again enhanced migration (p < 0.001; Figure 3B).

Breast cancer cell migration has previously been reported to be associated with higher levels of leptin and IL-1β in the media (Templeton et al., 2015). However, other factors and cross-talk between the cell types could also be present in bone. For example, leptin enhances the migration and invasion potential of breast cancer cells and glioma cells through IL-8 expression by tumor-associated macrophages and MMP-13 production, respectively (Yeh et al., 2009; Li et al., 2016). Most significantly, it was recently shown that leptin enhances breast cancer cell chemotaxis through Src and FAK activation (Juárez-Cruz et al. 2019) and migration through the SDF-1/CXCR4 axis (Duan et al. 2020). Notably, we detected enhanced migration with leptin concentrations of only 5 ng/ml, compared with 100 (Juárez-Cruz et al. 2019) or 200 ng/ml (Duan et al. 2020) used in previous studies, suggesting that leptin is a more potent regulator of chemotaxis and migration than previously thought. Knockout or knockin animal models could provide more clarity regarding the role of leptin in metastasis. For example, leptin knockout rats exhibit higher bone mass compared with wild-type controls and may be a useful model to link obesity, diabetes, bone metabolism, and bone metastasis (Vaira et al., 2012).

Other cytokines detected in the conditioned media have also been associated with metastatic progression. IL-1β is secreted by adipocytes and immune cells and is associated with cancer cells homing to bone (Nutter et al., 2014; Templeton et al., 2015). IL-6 and TNFα levels were also slightly elevated in media containing intact bone samples without cancer cells. Like IL-1β, IL-6 and TNFα are inflammatory proteins produced by bone marrow cells that are known to enhance cancer metastasis. For example, IL-6 increases breast cancer aggressiveness (Dirat et al., 2011; Won et al., 2013), while TNFα stimulates the production of IL-6 in MDA-MB-231 cells (Suarez-Cuevo et al., 2003). In contrast, the inhibition of TNFα reduced bone metastases in vivo (Hamaguchi et al., 2011). The levels of IL-1β, IL-6, and TNFα increased significantly in the presence of cancer cells, suggesting that their expression was an inflammatory response by the marrow cells through cross-talk between bone and cancer cells. IL-6 and TNFα could also play a role in aberrant bone remodeling as they enhance RANKL expression by osteoblasts in
vivo (Wu et al., 2017; Luo et al., 2018). DKK-1 is also an important regulator of the WNT pathway in bone. In our cocultures, it was most highly expressed by the cancer cells. Since, DKK-1 affects the Wnt pathway to promote adipogenesis and inhibit osteogenesis of MSCs in bone marrow (Christodoulides et al., 2006), this may contribute to a positive feedback loop that enhances homing of cancer cells to bone. High levels of DKK-1 expression by the MDA-MB-231 cell line are consistent with earlier reports (Templeton et al., 2015). The relative number of MDA cells in the culture model in comparison to osteocytes is likely a factor in this finding as well.
FIGURE 3: Transwell invasion assays were used to determine whether upregulated chemokines increased invasiveness of MDA-MB-231 cells. When chemokines were added individually (A), leptin increased invasion compared with controls (**p < 0.01). When the chambers contained combinations of chemokines (B), adding leptin to TNFα and IL-1β increased invasiveness (**p < 0.01).

3D migration in human bone using bioreactor culture. We next sought to determine whether the MDA-MB-231 cells would migrate through bone marrow. Cells were seeded on the top surface of human trabecular bone explants, which were subsequently cultured in an in situ bioreactor for 4 wk (Birmingham et al., 2014; Coughlin et al., 2016b; Curtis et al., 2019, 2018). Cancer cells that have extravasated into the marrow may subsequently migrate to a preferred niche, become dormant, die, or proliferate. Our goal was to observe whether the cancer cells would migrate within the marrow. We verified that the cancer cells migrated into the bone marrow using immunohistochemistry for pan-cytokeratin (Figure 4). We imaged serial sections of the explants starting from the seeded surface and counted the percentage of positively stained cells within each section. A majority of the breast cancer cells observed were detected within 300 μm of the surface where they were initially seeded, with progressively few cells observed on sections from deeper than 300 μm in the explant (Figure 4C). We did not immunostain for specific cell surface markers that could identify individual cell types in the marrow that the cancer cells were in close proximity to. However,
most of the human marrow in these explants was comprised of adipocytes, and we found most of the cancer cells near adipocytes, complementing previous reports (Templeton et al., 2015).

The explant culture bioreactor provided a physiologically relevant human marrow microenvironment to verify 3D migration. Based on the immunostaining of pan-cytokeratin, the majority of the detected breast cancer cells were single cells, rather than multicellular colonies. This was particularly true deeper within the bone explant. The detected breast cancer cells localized to the trabecular pore space surrounded by marrow. In fact, few cancer cells resided along the bone surface, suggesting that the marrow microenvironment rather than the more rigid bone is the preferred niche for the cells.

Our goal was to determine whether the MDA-MB-231 cells seeded on the marrow would migrate within the marrow, rather than simply proliferate or become dormant at the location where they were seeded. As such, we sought to model the behavior of cells after extravasation during the early stages of colonization, without the events prior to extravasation that might also impact the results and interpretation of the data. These results are consistent with our migration experiments that indicated that marrow cells provide a stronger chemoattractant environment than the bone cells. Although cancer cells migrate more readily on stiff substrates compared with soft substrates in 2D (Tilghman et al., 2010; Lin et al., 2016), our cancer cells readily migrated within the soft marrow in 3D. The same line of cancer cells was found to migrate readily through porous collagen scaffolds, with a bimodal dependence on the scaffold stiffness and pore size (Lang et al., 2015). The cancer cells may be influenced more by marrow biochemical factors or integrin and cadherin binding sites in the marrow than by the local stiffness. Several cell types, such as adipocytes, MSCs, or hematopoietic cells, and chemokines, such as SDF-1, IL-1β, and leptin, within bone marrow may recruit the cancer cells (Müller et al., 2001; Kaplan et al., 2005; Karnoub et al., 2007; DeNardo et al., 2008; Templeton et al., 2015).

Cell migration toward human bone in 3D coculture. Given that the MDA-MB-231 cells migrated through the 3D bone marrow environment, we sought to determine whether chemoattractant gradients from the marrow also affect cancer cell migration in 3D cultures and whether the effect depends on the matrix mechanical properties as was previously found in porous scaffolds (Lang et al., 2015). We first prepared gelatin hydrogels with two different stiffnesses that were in the range reported for bone marrow by cross-linking them with 0.3 or 0.8% microbial transglutaminase (mTGase) per gram of gelatin. Increasing the mTGase concentration increased the average shear storage modulus from 376.3 to 764.9 Pa (p < 0.001; Figure 5A). The loss modulus of the stiff hydrogels was also higher than that of the soft hydrogels (p = 0.004; Figure 5B).

We prepared 3D constructs by seeding MDA-MB-231 cells in the hydrogels surrounding a human trabecular bone explant with marrow in situ, and quantified the migration of the cancer cells using time-lapse microscopy. For each gel stiffness, approximately 200 cells were monitored for migration and formation of processes. Cells migrated toward the bone explant, with 4.2% of cells in stiff hydrogels and 2.5% of cells embedded in soft hydrogels.
migrating ($p = 0.33$; Figure 5C). On average, the cells that migrated had a net speed of 60 μm/d (total distance divided by total time) and an actual speed of 84 μm/d (step distance divided by step time), regardless of the stiffness of the hydrogel ($p = 0.97$; Figure 5D and Supplemental Video S2). The average speed was about one-third of the migration rate we found on tissue culture plastic. This is likely due to the physical differences between 2D and 3D culture environments, such as the time required for cancer cells to degrade and invade the surrounding gelatin. However, migration was much faster than that detected in the bone explants, where cancer cells only migrated as far as 350 μm into the marrow after 28 d. An important difference between migration in gelatin in comparison to the bone marrow environment is that the cells in the gelatin were likely presented with a chemoattractant gradient from the bone marrow, while cells within the marrow were surrounded by cells expressing prometastatic proteins. Indeed, the cells in the gelatin preferentially migrated toward the explant (Figure 5C). Finally, the density of cells and the presence of multiple integrin and cadherin bindings within the marrow could slow the migration of cancer cells within the marrow in comparison to gelatin.

The cancer cells also formed dendritic processes in the gels, which can be precursors to cell migration (Figure 5E). Dendritic processes were defined as extrusions from the cell that measured at least 10 μm in length found on cells that did not migrate during the 24 h study. Eleven percent of the MDA-MB-231 cells formed processes in stiff hydrogels compared with only 4.4% in soft hydrogels ($p = 0.01$), and most of the dendritic processes were extended toward the explant (Figure 5F).

It has been suggested that stiff substrates trigger a malignant migratory phenotype. Consistent with this, we found that more cancer cells migrated and formed dendritic processes in stiff hydrogels than in soft hydrogels. This result complements previous studies, which found greater cancer cell spreading and migration on stiffer substrates in 2D (Tilghman et al., 2010; Sunyer et al., 2012). In another study, MDA-MB-231 cells in GelMA migrated from a stiff region, with a compressive modulus of 800 Pa, toward a region with a modulus of 300 Pa, suggesting that they home toward lower stiffness environments (Peela et al., 2016). The hydrogels we used had higher compressive moduli of 2280 and 1120 Pa based on the assumption that they were incompressible and isotropic. It is possible that using a stiffer hydrogel increased the migration rate in our study. However, the stiffnesses of our hydrogels were comparable to that of bone marrow, which has a reported shear modulus between 200 and 300 Pa (Winer et al., 2009; Shin et al., 2013). Moreover, the modulus of osteoblasts, mesenchymal stromal cells, and adipose-derived stromal cells is approximately 2.6 kPa similar to the stiffer gel we used, while mature adipocytes have an average modulus of less than 0.9 kPa, which is similar to the softer gel (Darling et al., 2008). Computational models have shown that these stiffness mismatches between cell types result in protection of smaller cells from mechanical stress during bone loading (Vaughan et al., 2015). In 3D culture models, the properties of the surrounding matrix also alter the size and the protein expression of spheroids formed by 4T1 cancer cells (Curtis et al., 2020b).

Migration in porous scaffolds fabricated from hydrogels or natural matrices could provide an additional relevant model that captures important features of the marrow environment such as vascularity and collagen or perlecan fiber structures (Curtis et al., 2020a). Stiffer matrices increased MDA-MB-231 migration rates in highly porous scaffolds, but decreased migration rate when pores were smaller than 5 μm (Lang et al., 2015). However, this cell line is quite aggressive and was found to adapt migration strategies to migrate through small pores or in the face of increased cell mechanical properties (Cóndor et al., 2019).

Since both intact and marrow-free explants enhanced cancer cell migration in 2D, both bone and marrow cells likely contributed to migration in 3D as well. We did not use a marrow-free explant in this 3D migration experiment because we primarily wanted to understand the migration behavior in 3D and the relative contributions of chemotaxis versus matrix stiffness. We observed directed cancer cell migration toward the bone explant, suggesting that chemokines diffused from the explant through the gelatin to influence cell migration.

Taken together, our results demonstrate that MDA-MB-231 cell migration is directed by chemokines expressed by cells in the bone marrow in both 2D and 3D culture. As such, the bone marrow microenvironment may provide queues that lead to cancer cell migration to prometastatic niches within the marrow and promote the early stages of colonization.

MATERIALS AND METHODS

Request a protocol through Bio-protocol.

2D cell migration toward human bone and marrow

Human bone preparation. Six human femoral heads were collected from patients undergoing THA for osteoarthritis at Memorial Hospital, South Bend, IN (IRB #15-04-2500). Patients with prior history of cancer were excluded. Sixteen cylindrical trabecular bone explants with in situ marrow were prepared from each femoral head by drilling with a diamond tip drill (Starlite Industries, PA) under constant irrigation. The cores were 8 mm in diameter and approximately 3 mm in height (Figure 1A; Supplemental Video S1). The bone explants were grown with or without marrow or as devitalized bone. Unprocessed bone explants contained bone marrow (bone with marrow). For bone grown without marrow, the marrow was removed from eight explants via centrifugation at 16,000 × g (bone without marrow) (Curtis et al., 2018). Two explants from each of four femoral heads were devitalized by freezing in liquid nitrogen and thawing at room temperature at least five times (devitalized bone). All explants were stored in serum-free, high glucose DMEM containing 1% antibiotic/antimycotic (AB/AM) (100 U/ml penicillin, 0.1 mg/ml streptomycin, and 0.25 μg/ml amphotericin B; AB/AM) for no longer than 1 h before use.

Breast cancer cell migration toward human bone. Metastatic human breast cancer cells MDA-MB-231 were cultured under standard conditions (5% CO$_2$, 37°C) with high glucose DMEM containing 10% fetal bovine serum (FBS) and 1% AB/AM. Sixteen hours before THA surgery, the cells were detached with trypsin-EDTA (Sigma), and 250,000 cells were seeded in each well of a 12-well plate. Before seeding the cells, a 12-mm circular magnet was placed at the center of each well and held in place with another magnet below the plate to prevent cells from attaching in that region, leaving an annulus of cancer cells (Figure 1A). After 16 h, the magnet was removed, and an 8-mm diameter bone explant was placed at the center of the annulus of cells. At the same time, the media in each well was replaced with serum-free media to limit cell proliferation (Figure 1A). Four bone explants with marrow, four bone explants without marrow, and four control wells containing no bone were studied for each of six donor bones. In addition, devitalized bone explants were studied for five donors (Table 1). The cells were incubated for 24 h while the cell migration toward the bone was tracked. Three positions along the cell boundary were imaged at 100× every hour by time-lapse microscopy to visualize cell migration using a Zeiss Axio Observer.Z1
inverted microscope (Carl Zeiss, NY). Cell boundaries within the images were measured manually relative to starting position using ImageJ (National Institutes of Health [NIH]) and used to quantify the mean cell velocity per well by dividing the mean distance between successive boundaries by the elapsed time between images.

Following culture, the bone explants were demineralized, processed for paraffin embedding, stained, and analyzed to verify the presence or absence of bone marrow and osteocytes. The explants were fixed in 4% paraformaldehyde (PFA) overnight at 4°C, then rinsed in phosphate-buffered saline (PBS) and demineralized in neutral buffered 10% EDTA for 7–10 d at room temperature. The demineralized explants were then processed to dehydrate, embedded in paraffin, and sectioned at 5 μm for histological staining. Sections were stained with H&E following manufacturer’s instructions (Leica) and imaged at 200x using an Aperio CT slide scanner (Aperio Technologies).

CellTiter-Blue assay for cancer cell proliferation. A metabolic assay (CellTiter-Blue, Promega) was used to measure cell numbers in order to verify that the movement of the cell boundary was due to migration rather than expansion of the colony due to proliferation. The assay was carried out following manufacturer’s instructions. Briefly, at the end of the 24-h migration experiment, the bone explants were removed from the wells and the MDA-MB-231 cells were rinsed with PBS. Media containing serum and 20% CellTiter-Blue reagent was added to each well and incubated for 3 h at 37°C. After incubation, aliquots of each supernatant were transferred in triplicate to a 96-well plate, and fluorescence was measured with 570 nm excitation and 600 nm emission. The assay was also used on cells before the magnets were replaced with bone to quantify cell proliferation over time.

Conditioned media analysis. Conditioned media from each well of the 2D migration experiments containing live bone with or without marrow was aspirated and stored at –80°C until analyzed. The media was shipped on dry ice to Eve Technologies, where it was processed according to the company’s specifications and required to measure expression levels of 13 chemokines by a human bone chemokine discovery assay (Human Bone 13-Plex, Eve Technologies, Calgary, CA). Media was analyzed from cultures containing DMEM with 10% FBS and 1% AB/AM. Media was filled to just below the top surface of the explant to enable the cancer cells to attach to the explants for 1 h before being submerged in media. The following day, the seeded bone explants were placed into a bioreactor previously described (Birmingham et al., 2014; Coughlin et al., 2016b; Curtis et al., 2018, 2019; Breuer et al., 2019). The explants were cultured for 4 wk with half of the media replaced twice per week.

Immunohistochemistry was used to identify MDA-MB-231 cells that migrated into the bone explant. Following culture, the explants were removed from the bioreactor and fixed in 4% PFA overnight at 4°C. The fixed explants were rinsed in PBS and demineralized in neutral-buffered 10% EDTA for 7–10 d at room temperature, processed, embedded in paraffin, and sectioned at 5 μm. Sections were cleared in xylene and rehydrated through decreasing concentrations of ethanol, then stained with anti-pankeratin antibody at a concentration of 1:500 (clone Ab-1 E1/AE3; Thermo). Sections were incubated with an anti-mouse HRP–conjugated polymer (Dako) and scanned by an Aperio CT slide scanner (Aperio Technologies) with a 20x objective. Image analysis of pan-cytokeratin was completed using the Aperio Cytoplasmic algorithm with customized macro parameters set to score DAB and hematoxylin chromogen intensities. The raw data generated from the cytoplasmic algorithms included the percentage of DAB positive cells, intensity of the stain, and the area of analysis. After running the customized macros, a representative markup image was generated and re-evaluated to confirm the accuracy of the algorithms (Supplemental Figure S1).

Migration toward human bone in 3D culture. Gelatin-mTGase hydrogels were prepared by mixing gelatin (type A, 175 Bloom, Sigma) in serum-free DMEM culture medium to a concentration of 6% wt/vol. The solution was heated at 80°C for 30 min, sterile-filtered through a 0.22-μm filter (Millipore), and stored at 4°C overnight. mTGase (Activa T1; containing 1% mTGase; Modernist Pantry, ME) was mixed in sterile PBS before sterile
filtration and storage at ~20°C until use. Two different concentrations of mTGase (0.3 and 0.8% mTGase per gram gelatin) were used to create soft and stiff hydrogels, respectively. Gelatin solution, mTGase solution, and cell media were mixed at a 5:4:1 (v/v/v) to yield final concentrations of 3% gelatin with either 0.3 or 0.8% mTGase per gram of gelatin; 200 μl of gel mixture was pipetted into a 8-mm mold to a height of 3.5 mm and allowed to polymerize at 4°C for 20 min. Hydrogels were allowed to come to room temperature before mechanical testing. Storage and loss moduli were measured at 1 Hz sinusoidal loading to 5% shear strain at the sample surface using a Discovery Hybrid Rheometer with flat platens (TA Instruments, New Castle, DE; N = 4 per stiffness). A strain sweep was used to determine the maximum amplitude of the loading.

To embed cancer cells within the hydrogels, the gelatin mixture was prepared as above, except that cell media was replaced with a cell suspension containing 10⁶ MDA-MB-231 cells/ml for a final cell concentration of 10⁵ cells/ml. One milliliter of mixture was added to each well of a 12-well plate (N = 6 per stiffness) and polymerized for 20 min at 4°C. After polymerization, a sterile 8-mm biopsy punch was used to create a central cylindrical hole in the hydrogel. Twelve human trabecular bone explants containing marrow collected from one patient were prepared as described previously and placed in the hole that was punched in each hydrogel. The media in each well was replaced with serum-free media to limit cell proliferation, and the cells were incubated for 24 h while five locations near the explant/hydrogel interface were imaged at 50x every 15 min to visualize cell migration by time-lapse microscopy, as described above. For each gel stiffness, approximately 200 cells were monitored for migration. Individual cell movement was quantified using ImageJ (NIH), as was the angle of cell migration relative to the bone. In addition, the length and direction of dendritic processes emanating from cells were measured. Dendritic processes were defined as extrusions from any cell that did not exhibit nuclear movement.

Statistical analysis
Statistical analysis was performed in Minitab 17 (State College, PA). Cell migration rates at each time point and cell viability were analyzed by ANOVA. The protein array data were log-transformed and analyzed using repeated measures within patients to assess which chemokine levels differed between the experimental conditions.

REFERENCES
Balkwill F, Charles KA, Mantovani A (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217.
Berry DA, Cronin KA, Plewrits SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovev AF, Habibemia JDF, Feuer EJ, Cancer Intervention and Surveillance Modeling Network (CISNET) Collaborators (2003). Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353, 1784–1792.
Birmingham E, Kreipke TC, Dolan EB, Coughlin TR, Owens P, McNamara LM, Niebur GL, McHugh PE (2014). Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann Biomed Eng 43, 1036–1050.
Bochet L, Lehaléculé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guert R, Maricq-Danna-Pari R, Le Gonidec, et al. (2013). Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmplastic reaction in breast cancer. Cancer Res 73, 5657–5668.
Breuer E-K, Fukushima-Lopes D, Dalheim A, Burnett M, Zartman J, Kaja S, Wells C, Campo L, Curtis KJ, Romero-Moreno R, et al. (2019). Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death Dis 10, 180.
Cameron D, Piccart-Gebhart MJ, Gelber RD, Proctor M, Goldberg A, de Azambuja E, Castro G, Umtch M, Smith I, Gianni L, et al. (2017). 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERcepTin Adjuvant (HERA) trial. Lancet Oncol 18, 1195–1205.
Chaturvedi P, Giles JM, takano N, Semenza GL (2014). Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci USA 111, E2120–E2129.
Christodoulides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O’Rahilly S, Sethi JK, Vidal-Puig A (2006). The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. J Cell Sci 119, 2613–2620.
Coleman RE (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12, 6243–6249.
Coleman RE (2004). Bisphosphonates: clinical experience. The Oncologist 9, 14–27.
Coleman RE, Lipton A, Roodman GD, Guise TA, Boyce BF, Brufsky AM, Clézardin P, Croucher PI, Gralow JR, Hadi P, et al. (2010). Metastasis and bone loss: advancing treatment and prevention. Cancer Treat Rev 36, 615–620.
Condor M, Mark C, Gerum RC, Grimmel RC, Baurer A, Garcia-Aznar JM, Faby B (2019). Breast cancer cells adapt contractile forces to overcome steric hindrance. Biophys J 116, 1305–1312.
Cortag CH, Lie W-R, Bamber MC, Hardy JW, Schmidt TL, Maloney WJ, King BL (2014). Monitoring dynamic interactions between breast cancer cells and human bone tissue in a co-culture model. Mol Imaging Biol 16, 158–166.
Coughlin T, Moreno RR, Mason D, Nystrom L, Boerckel J, Niebur G, Littlepage LE (2016a). Bone: a fertile soil for cancer metastasis. Curr Drug Targets 18, 1281–1295.
Coughlin TR, Schiavi J, Alexia Varsanik M, Veisin M, Birmingham E, Haugh MG, McNamara LM, Niebur GL (2016b). Primary cilia expression in bone marrow in response to mechanical stimulation in explant bioreactor culture. Eur Cell Mater 32, 111–122.
Crocker AK, Rodriguez-Torres M, Xia Y, Pardhan S, Leong HS, Lewis JD, Allan AL (2017). Differential functional roles of ALDH1A1 and ALDH1A3 in mediating metastatic behavior and therapy resistance of human breast cancer cells. Int J Mol Sci 18. https://doi.org/10.3390/ijms18102039
Cui Y-X, Evans BAJ, Jiang WG (2016). New roles of osteocytes in proliferation, migration and invasion of breast and prostate cancer cells. Anticancer Res 36, 1193–1201.
Curtis KJ, Coughlin TR, Mason D, Boerckel JD, Niebur GL (2018). Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling. Bone 107, 78–87.
Curtis KJ, Coughlin TR, Varsanik MA, Niebur GL (2019). Shear stress in bone marrow has a dose dependent effect on cFos gene expression in situ culture. Cell Mol Bioeng. https://doi.org/10.1007/s12195-019-00594-2
Curtis KJ, Oberman AG, Niebur GL (2020a). Effects of mechanobiological signaling in bone marrow on skeletal health. Ann NY Acad Sci 1460, 11–24.
Mundy GR (2002). Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2, 584–593.

Niemann KM, Romero IL, Van Houten B, Lengyel E (2013). Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 1831, 1533–1541.

Nutter F, Holen I, Brown HK, Cross SS, Evans CA, Walker M, Coleman RE, Westbook JA, Selby C, Ottewell PD (2016). Differential molecular profiles are associated with breast cancer cell homing compared with colonization of bone: evidence using a novel bone-seeking cell line. Endocr Relat Cancer 23, 321–347.

Paget S (1869). The distribution of secondary growths in cancer of the breast. The Lancet, 133, 571–573.

Patel SA, Meyer JR, Greco SJ, Corrigan KE, Bryan M, Rameshwar P (2010). Mesenchymal stem cell-based therapies for breast cancer cell colonization. J Biomech 43, 1555–1616.

Gauvain KM, Garbow JR, Song S-K, Hirbe AC, Weilbaecher K (2015). Parathyroid hormone increases the concentration of insulin-like growth factor-1 and transforming growth factor beta1 in rat bone. J Clin Invest 96, 767–774.

Romero-Moreno R, Curtis KJ, Coughlin TR, Miranda-Vergara MC, Dutta S, Natarajan A, Facchione BA, Jackson KM, Nystrom L, Li J, et al. (2019). The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis. Nat Commun 10, 4044.

Sheller EL, Triano N, Vanhouten JN, Bouxsein MA, Fretz JA, Xi Y, Nelson T, Katz G, Berry R, Church CD, et al. (2014). Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol 537, 123–139.

Shin J-W, Swift J, Ivanovska I, Spiller KR, Buxboim A, Discher DE (2013). Mechanobone of marrow stem cells: from myosin-II forces to matrix-nucleus in cell forms and fates. Differ Res Biol Divers 86, 77–86.

Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G (2000). Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat 59, 271–278.

Suarez-Cuevero C, Harris KW, Kallman L, Kalervo Väänänen H, Selanders KS (2003). Tumor necrosis factor-α induces interleukin-6 production via extracellular-regulated kinase 1 activation in breast cancer cells. Breast Cancer Res Treat 80, 71–78.

Sunyer R, Jin AJ, Nossal R, Sackett DL (2012). Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 7, e46107.

Templeton ZS, Lie W-R, Wang W, Rosenberg-Hasson Y, Alluri VR, Tamasics AJ, Ben-Tal N, Lifschutz D, Gazit S, Leitner T, et al. (2015). Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia 17, 849–861.

Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010). Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5. https://doi.org/10.1371/journal.pone.0012905

Vaira S, Yang C, McCoy A, Keys K, Xue S, Weinstein EJ, Novack DV, Cui X (2012). Creation and preliminary characterization of a leptin knockout rat. Endocrinology 153, 5622–5628.

Vaughan TJ, Voisin M, Rizzato N, Ranek LM (2015). Multiscale model of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis. J Biomech Eng 137. https://doi.org/10.1115/1.4029986

Winer JP, Janmey PA, McCormick ME, Funkai M (2009). Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15, 147–154.

Wong KJ, Choi HY, Cho KS, Lee JS, Kim JS (2013). Soluble interleukin-6 receptor is a prognostic marker for relapse-free survival of hormone receptor-positive breast cancer. Cancer Invest 31, 516–521.

Wu Q, Zhou X, Huang D, Ji Y, Yang K (2017). IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting IKK2 and RANKL activity in vitro. Cell Physiol Biochem 41, 1360–1369.

Wong WH, Zhu TF, Chan KM (2009). Leptin promotes invasion and migration of glioma cells through MMP-13 production. Glia 57, 454–464.

Yoneda T, Higara T (2005). Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochim Biophys Acta 1758, 679–687.

Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W (2012). Bone marrow and the control of immunity. Cell Mol Immunol 9, 11–19.