Russian and Global Experience of Developing the Regulatory Framework for the Technical Regulation of Architectural Design

I P Chechel
Belgorod State Technological University named after V.G.Shoukhov, 46, Kostyukov str., Belgorod, 308012, Russia
E-mail: golden-line7@yandex.ru

Abstract. Results of construction, i.e. buildings and related structures, must conform to the public demand to the quality of newly-built objects, their physical, sanitary, and environmental safety. National technical regulation systems are intended to ensure these conditions. To be successful, a system must be legally supported, well-structured and time-tested. An adjusted system does not impose requirements onto construction players, but employs mechanisms to control compliance with such requirements and assess regulatory compliance of controlled objects and subjects. Furthermore, the system ensures favorable conditions for economic well-being of the territories where a controlled objects is constructed through the balance of public interests regarding safety of such objects and private interests regarding their cost-effectiveness. Studies of experience of technical regulation of the construction sector in economically developed countries clearly demonstrate that technical regulation objectives are the same regardless of forms of national technical regulation systems. The systems developed in different countries are mostly national phenomena and are differently structured. Each state has a unique regulation model reflecting peculiarities of establishment and development of the legal system, organization of the state structure and public administration, national traditions, level of technical development of the construction sector, and general level of qualification of human resources. National systems reflect the multitude of ways, methods and means of completing technical regulation objectives in the sphere of construction. The article describes regulatory frameworks of technical regulation systems of a range of Western and European countries and of the Russian Federation. This country covered a long way and continues to develop and improve as regards technical regulation. According to the author, new forms and principles of establishing, developing and structuring regulatory frameworks are needed, which is why there are indisputable interest and use in analyzing global experience. This will help to adapt the best global practices in the regulatory sphere to the general system of technical regulation of the Russian Federation and establish a modern regulatory platform on the new evolutionary level. Analysis and evaluation of how effectively current national technically regulation systems performs helps to present the author's point of view on the further improvement of the regulatory framework of the system of technical regulation of construction in the Russian Federation by creating a new organizational model of this structure to be developed according to the performance-based principle and contain combined blocks of normative standards enforced by different agencies and applied both to the building in whole and its elements in particular.
1. Introduction
The magnitude of the damage incurred by the state due to natural disasters, such as earthquakes, fires, floods, hurricanes, and other acts of nature, is a marker of level of the national construction culture in whole and of effectiveness of the national technical regulation system in particular.

In a state characterized by the lack of construction culture or ineffective performance of its elements, consequences of natural disasters may be catastrophic and fraught with casualties, economic damage, physical and psychological injuries among the population, and social problems haunting the disaster zone for years after the tragedy. Research into the problem demonstrates that improving effectiveness of the construction sector affects not only safety, but also the country's socioeconomic development. The social role of the construction sector may be explained by a range of factors, including complexity and multicomponent nature of construction objects, broad group of participants - specialists involved in construction, their socioeconomic status, and, without any doubt, universal nature of the final product intended for use by various social groups of users.

Successful development of the construction sector requires a complex approach including sensible legislation, progressive building regulations, freedom of professional activity accompanied by due surveillance and control, reliable mechanisms of ensuring quality of professional human resources, processes, services, materials, products, and construction objects. This enables not only improving safety, but also achieving results in other spheres:
- reduced duration of design and construction;
- reduced design, construction and operating expenses;
- more rational use of power and material resources;
- fewer constructional defects;
- higher resistance of objects to wear;
- lower rates of injuries and morbidity;
- less waste and pollution;
- better comfort and performance of the people utilizing buildings and related structures for living, working, and resting.

The global community accumulated a rather large amount of information regarding creation, maintenance, and improvement of the mechanisms ensuring high construction culture. It includes several main components - an efficient technical regulation system, production and use of safe and quality material resources, skilled human resources.

2. Main part
Systems of technical regulation of construction are developed as influenced by multiple mutually dependent factors that need to be considered in the political context and in the economic context, such as:
- the legal system of the state enforcing technical regulation in its territory;
- state regulation as manifested by the legislative proposals, executive and judicial decisions aimed at evaluating compliance of constructed objects to the requirements to regulation, standardization, technical regulations, standards;
- resourcing of construction projects, including natural, financial, material, human, and operating resources.

Among other things, the system is aimed at regulating relations between construction players - subjects of technical regulation - in the process of their activities as regards objects of technical regulation.

- The object of technical regulation in construction - buildings, related structures, objects of infrastructure [1].
- A subject of technical regulation - a natural or a juridical person as a legal person, bearer of rights and obligations in a technical regulation system.
Subjects of technical regulation are customers, contractors, city planners, architects, designers, engineers - the specialists rendering services related to the generation of documents for construction and erection of a capital construction object.

- An object of regulation in construction - an object of technical regulation, i.e. buildings, related structures, objects of infrastructure.

Technical regulation standards are provided in regulatory legal and technical documents. In the global practice, the main technical regulation documents are technical regulations and standards, as well as construction standards and regulations, building and model codes, international construction standards, regional and national standards.

- A technical regulation is a regulatory document that contains essential standards and regulations regarding safety assurance, covers a broad range of interconnected questions related to the object of regulation, and is binding [1].
- A standard is a regulatory document that contains standards and regulations, guidelines, product specifications, or product-related process and methods of production for universal multiple use, and is an optional document covering a narrow scope of an object of regulation.
- Construction standards and regulations are a combination of regulatory legal and technical documents regulating construction in a given administrative division. In the global practice, construction standards and regulations define technical specifications of objects of regulation, including stability of supporting structures, fire safety, operation of environmental control systems of buildings or related structures, internal climate, accessibility of facilities for handicapped persons and people with disabilities, and many other aspects. Construction standards and regulations include both accumulated knowledge and experience, and evidence-based requirements that ensure optimal solutions as regards safety of erected objects. For subjects of technical regulation, they constitute an acceptable method of controlling safety of buildings, related structures, and their components at the stages of design, construction, utilization and maintenance.
- Building code. In many countries, construction standards and regulations are codified - organized into a simple, clear and usable form, which is why they are referred to as the building code (or, less frequently, the construction code). Such a denomination indicates a comprehensive set of harmonized standards and regulations. A building code is a binding document for all subjects of the system, and is basically a specific form of a technical regulation. A building code is a regulatory technical document binding for all subjects of the technical regulation system effective in a given administrative division - a country, a state, a province, a region, an area, a district, a city, a town, or a village. A code is a set of harmonized codified standards and regulations. In their essence, most construction standards and regulations used in the construction sector are codes.
- Model code. Another instrument of regulation are model codes. These are documents containing typical standards and regulations. In the construction sector, they are intended to be adopted as construction standards and regulations. A model code is a standard building code intended for adoption and use as a law regulating construction in the adopting administrative division. The difference between a model code and a building code consists in their legal status: a model code is a standard sample of a building code. Model codes contain standard requirements covering the issues of design, construction, installation, utilization, renovation, remodeling, etc. concerning buildings, related structures, as well as their components, elements, and systems.
- International construction standards and regulations, for instance, Eurocodes.

The Eurocodes are intended to unify requirements to support structures of buildings in the European Union and are now being adopted at the national level by member states of the European Union. There have been no other attempts to develop common international standards yet.

Regional standards are the documents "adopted by a regional standardizing/standards organization and made available to the public" (ISO/IEC 2).

Examples of regional standards are Australian / New Zealand AUS/NZS standards; GOST standards issued under the aegis of the Euro-Asian Council for standardization, metrology and certification (EASC) - the regional standardizing/standards organization of the Commonwealth of...
Independent States; European EN standards; and standards issued by other regional standardizing/standards organizations and consortiums.

- National standards are the standards "adopted by a national standards body and made available to the public (ISO/IEC 2). In economically developed countries, standards are adopted at the national level as a result of a comprehensive analysis and evaluation of compliance of the adopted standard to documented procedural criteria of standard development approved by the national standards body. These criteria usually include transparency, openness, impartiality, effectiveness, suitability, consensus, interdepartmental and inter-sector alignment, strict compliance with democratic procedures, and a possibility to appeal. Examples of national standards are American ANS standards, British BS standards, German DIN standards.

Currently, the prescriptive regulation method is used for developing standards of all levels (international, national, regional). However, recently, there has been a tendency to use the performance-based method to develop regulatory frameworks. On the level of international standards, this transition is intended to enable use of international standards as uniform common guidelines, while at the same time national users of standards may define technical requirements of a regulated object's compliance to the declared objectives themselves, and helps to enable use of alternative solutions and ensure maximum freedom of technical creativity.

Construction standards and regulations are formulated using three methods of regulation - the prescriptive method, the performance-based method, and the target method.

- Prescriptive method the prescriptive method of regulation is based on a regulatory requirement based on the description of means to fulfill an objective using time-tested solutions. Such a regulation involves strict compliance with established standards and regulations to ensure required safety, functionality and quality of an object of regulation.

- Performance-based method the performance-based method of regulation is based on a performance-based norm and a functional requirement to a building and/or its component. It is a method of formulating a regulatory requirement by setting specific parameters that an object of regulatory control must conform to - an objective, a functional requirement, and a criterion. These parameters must define safety, functionality, and quality of a regulated object - a building; thus, essentially contain requirements of a three-pronged principle of architecture - utility, strength, beauty (architect Vitruvius, Greece). A performance-based requirement (performance-based norm) is a regulatory requirement based on the prescriptive method of regulation.

- A functional requirement is a component of a performance-based requirement qualitatively characterizing an object of regulation;

- Criteria of requirements to an object of regulation.

Performance-based method:
Regulation is focused on the objective that a given regulatory requirement is intended to fulfill. Allows for a multitude of alternative ways of completing the set objective.

The essence is to choose the most effective way to fulfill an objective. When the performance-based method of regulation is used to regulate the construction sector, self-regulatory organizations (SRO of surveyors, designers, builders) start playing a significant role [2].

- Target method The target method is a hybrid method including both the prescriptive method and the performance-based method at the same time. It must define objectives and functional requirements; requirements to working specifications of a regulated object are optional.

- Technical regulation practice of certain foreign countries Despite a multitude of forms of technical regulation around the world, there are several major trends.
In most countries, there are no uniform complex documents dedicated to the technical regulation system. It is usually formulated in multiple uncoordinated documents. There, technical regulation is performed not by the legislative power (the parliament), but by the executive power - the government or the field administrative agency;

- Most countries feature a three-tier technical regulation system: a "framework" law intended to regulate a given sphere is adopted by the legislative power, then the government adopts a resolution to develop a required technical regulation, and finally the relevant ministry drafts a required document as instructed by the government. In some countries, e.g. in the USA, the "framework" law delegates development of technical regulations not to the government, but directly to the relevant ministries and agencies;

- Requirements of international standards are considered when developing technical regulations;

- Various research forms are used in all cases to identify opinions of the concerned parties, including other ministries and agencies, as well as the enterprises whose activities will become covered by respective technical regulations. For instance, in the USA, technical regulations must be developed in the framework of the common standards established by the Administrative Procedure Act;

- In the global practice, there are two models of technical regulations - standards and directives. Standards are characterized by detailed technical descriptions, establishment of a system of agencies ensuring compliance of products (services) to established standards. Directives differ from standards in that the former formulate principles of technical solutions, expected results and requirements to safety of products (services). Currently, directives are more widely used than standards;

- Technical regulations take up the lowest tier of the hierarchy of statutory instruments. Usually, they do not contain general legal norms or require a review of the effective legislation (i.e. amendment and expansion of legal and governmental acts);

- Federative states feature a two-tier technical regulation system, which contains documents controlled on the federal level (national technical regulations) or on the level of federal subjects (regional technical regulations). They supplement each other and often compete. These documents are not clearly distinguished from each other. Mostly, legal regulation spheres are determined empirically (surveillance, description, comparison, measurement, experiment). National regulations are often supplemented with corporate regulations developed by large-scale producers of goods or services, whereas some technical regulations are developed by associations of manufacturers of goods or services and approved by relevant administrative agencies;

- In many countries, there are special agencies coordinating the sphere of technical regulation;

- Many countries copy international standards to their respective bodies of legislation or adopt technical regulations of other countries. For instance, many Latin American countries adopted the technical regulations developed or approved by US ministries and agencies;

- United States of America The American technical regulation system is a complex yet efficient self-regulating mechanism. The effective regulatory system for construction and utilization of buildings in the USA is characterized by a complex interaction of state-level and local laws and propositions, construction and fire safety standards, guidelines and standards for design, fitting and testing, registration and licensing of specialists, and governmental adoption of regulatory instruments.

The US construction regulation appeared when the United States themselves came into existence, and were heavily influenced by English construction standards. Some documents were generated even before the United States themselves appeared, for instance, requirements to construction and fire safety were obligatory in several states even before the US Constitution was adopted; they were based on the construction standards and regulations adopted in London after the Great Fire of 1666. After the United States were founded in 1776, the Constitution granted the federal government only some of the authorities, while several states remained entitled to adopt their own regulatory documents regarding construction and fire safety.
The American regulatory framework of design and construction is very extensive; it establishes technical parameters and requirements to capital construction objects, their elements, and construction materials.

![Fig. 1. New York: Park Avenue](image1)

![Fig. 2. The Trump International Hotel and Tower](image2)

The framework is based on Building Codes and Standards. Standards include all types of the regulatory documents required for design and construction to determine the needed quality of a capital construction object, as well as the construction materials and technological solutions to be used. These documents serve as a common ground for the American construction sector players and solve the key problem - mutual understanding of a consumer and a construction company; they are intended to protect health and safety of people.

It is also important that construction regulation documents were required by the US real estate insurance system. The first US construction document was the National Building Code published in 1905; it provided fire safety requirements for buildings. The Code was published to protect fire insurance companies from the problems associated with payouts to insured persons. This regulatory document for the first time formulated requirements to restrict height and total area of buildings, fire resistance of structures, and escape routes; it became a framework document for preparing fire safety instructions for buildings in respective localities.

The typical (model) standards drafted by insurance companies were to be approved by the National Institute of Standards and Technology. They are not obligatory, however, a developer opting not to follow them accepts full responsibility and risks of insured events. Utility of these standards is extremely high, as they provide free access to modern and experience-based technical requirements and solutions.

Nowadays, there are several organizations in the USA who develop and introduce standards for design and construction. They operate only in assigned territories.

In the East Coast and Midwest states (Illinois, Indiana, Ohio, Wisconsin) - BOCA (Building Officials Code Administrators International).

In the West Coast states (Arizona, Colorado, New Mexico, California) - ICBO (International Conference of Building Officials).

In Southern states (Florida, Virginia, Kentucky, Louisiana, Texas) - SBCC (State Building Code Council).

The regulatory documentation drafting procedure is the same for these territories, however, it takes into account their specific aspect - from environmental conditions to established housing types and used construction materials. In principle, they generate similar documents; however, they compete when it comes to requirements to objects and quality of used technical solutions; this results in continuous improvement of regulatory documents.

Furthermore, municipal and city construction standards are widespread in the USA. They are developed by local scientific institutions and design organizations for large and historically significant
cities and are financed by local authorities, for instance, the New York City Building Code and the Complete San Francisco Existing Building Code.

At first, all new documents were coordinated by the AESC (American Engineering Standards Committee), which was later reorganized as the American Standards Association, and then as the ANSI (American National Standards Institute).

These organizations include representatives of different groups - the government, the industry, producers, consumers, organizations, and private persons. Altogether, 170 scientific and other organizations develop standards. Around 2 thousand national standard out of 25 thousand effective documents are used in the construction sector.

Therefore, the regulatory framework of the construction sector in the United States of America is complex and differs from similar frameworks of other countries. The first difference consists in that the issues of health and safety, the resolution whereof is regulated by the regulatory framework for construction, are resolved on the state level, not the federal level. The second important difference consists in that the typical (model) construction norms and standards are developed by non-government organizations and are later adapted and approved as laws of states of localities.

The problem is that such decentralization and adoption of local regulatory documents results in the lack of unified national construction standards and allows interested parties to lobby their interests through.

- New Zealand is a unitary state, however, the technical regulation. Function is not necessarily a state function. In New Zealand, any person - a public agency or a private person - may issue permits to construct buildings and related structures and inspect construction objects after passing relevant accreditation. Accreditation is performed by the accreditation body of the Testing Laboratory Registration Council - a self-regulatory noncommercial organization financed by means of membership fees [8].

- European Union. Unlike in the USA, the technical regulation system in place in the European Union is completely centralized. The source of law of the European technical regulation system is the supranational legislation - a precedent of the transfer of a part of sovereign powers of member states of the European Union to supranational bodies unique for the contemporary legal practice. The Directives developed by common European bodies take precedence over national standards. Member states of the European Union have their own technical regulation system. The functions of coordination in the sphere of technical regulation on the national level are performed by the British Standards Institution in Great Britain, the French Standardization Association in France, the German Institute for Standardization in Germany, the Bureau of Normalization in Belgium, the Danish Standards Foundation in Denmark, the Swedish Standards Institute in Sweden, the Polish Committee for Standardization in Poland, etc.
- United Kingdom of Great Britain and Northern Ireland. Great Britain transferred to function-oriented regulation in the middle of the 1990s; it is a form of the performance-based regulation method in construction. Regulation belongs to the scope of competence of countries of the United Kingdom; they are entitled to develop and use their own regulations in their respective territories. Technical regulation is based on a typical structure and consists of two components: a statutory act adopted by the legislative body and a statutory construction regulation issued by the authorized executive body of the constituent country. The building legislation allows each country to choose a way of following the building legislation. Great Britain has a flexible and reliable mechanism of inducing innovations in construction.

![Fig. 5. 30 St Mary Axe, London, England](image)

![Fig. 6. City Hall in London, England](image)

3. Germany.
Technical regulation documents in the sphere of construction in Germany are binding and characterized by a high degree of detailed elaboration. Germany has a uniform federal document - the "Federation Construction Law" - to regulate issues of land use and real estate rights. The federal states operate according to their construction standards based on the model construction code. Model code standards represent a joint effort of states in the framework of the Council of authorized bodies in the sphere of construction. In addition to state construction standards, there are also construction orders that may be stricter than the minimal requirements of the federal legislation. The technical regulation system is characterized by delineation of the issues to be regulated by the federal, subnational, and local building legislation. Lower level standards may be stricter than higher level standards, which are minimal by default.

![Fig. 7. BMW World in Munich, Germany](image)

![Fig. 8. Porsche Museum, Germany](image)

4. Russian Federation
Technical regulation of construction in the Russian Federation is a system of legal and regulatory documents ensuring state control over the market turnover of safe and quality products. The system consists of binding and optional documents, features a wide range of legal, regulatory and technical documents developed and approved on different levels - on the federal level, the regional level, or the level of agencies.
In the Russian Federation, the state control to ensure quality and safe consumer products is performed through the technical regulation system, the key document whereof is Federal Law No. 184-FZ "On the Technical Regulation" dated December 27, 2002 (as amended in 2017). This document establishes uniform requirements to finished products and is binding for all service market participants.

The construction activity is mandatorily subject to state regulation and is covered by Federal Law No. 184-FZ "On the Technical Regulation". According to Article 3 of this Federal Law, technical regulation is enforced according to the following principles: "application of uniform rules of establishing requirements to products, or to products and the processes of design (including investigation), production, construction, installation, adjustment, utilization, storage, transportation, sale, disposal, performance of works or services associated with product requirements".

Fig. 9. Moscow City, Russian Federation

Fig. 10. The Parus apartment block in the Khodynka Field, City of Moscow, Russian Federation

Structural components of the Russian technical regulation system for construction are the regulatory framework for the construction sector, the system of surveillance and construction control, and the compliance assessment system. The technical regulation system in the Russian Federation is represented by several groups of documents:

- binding documents;
- optional documents;
- recommended documents.

Documents of the second and the third groups belong to the so called "evidential basis" of performing documents of the first group.

The binding documents are Federal Laws: they are developed on the basis and in accordance with Federal Law No. 184-FZ "On the Technical Regulation" and adopted as statutory instruments by the federal executive body for technical regulation. Some of these documents are named "technical regulation", contain a list and description of technical regulation objects, requirements to these objects and rules of identification for utilizing the regulation, as well as rules of assessing compliance to the regulation's requirements. Compliance assessment of a capital construction object to binding documented requirements is performed by state bodies in the form of state control, registration, testing, acceptance and commissioning of a finished object.

Thus, construction of capital construction objects is regulated by the following technical regulations:

- Federal Law of the Russian Federation No. 384-FZ "Technical Regulation of Safety of Buildings and Related Structures" dated December 30, 2009;
- Federal Law No. 123-FZ "Technical Regulation of Fire Safety Requirements" dated July 22, 2008;
"Technical Regulation of Lift Safety" approved by resolution No. 782 of the Government of the Russian Federation dated October 02, 2009*.

Federal Law of the Russian Federation No. 384- FZ "Technical Regulation of Safety of Buildings and Related Structures" dated December 30, 2009, is the main binding document for construction design. According to Article 3 thereof, regulated objects are constituted by buildings and related structures intended for any use, including public buildings, installations, and utility systems. Provisions thereof cover all stages of life cycle of buildings and related structures [5]. Technical regulations establish minimum requirements, the compliance therewith must ensure mechanical and fire safety of a building, its safety in the event of dangerous natural processes or man-induced impacts, safety of use and creation of safe-health conditions of living and staying in a building, accessibility for handicapped persons and other groups of population with limited ambulation capacity, energy efficiency, and safe level of environmental impact of the building.

The following laws of the Russian Federation are binding for construction of capital construction objects:

- Federal Law No. 190- FZ "Town Planning Code of the Russian Federation" dated December 29, 2004;
- Federal Law No. 136- FZ "Land Code of the Russian Federation" dated October 25, 2001;
- Federal Law No. 74- FZ "Water Code of the Russian Federation" dated June 03, 2006;
- Federal Law No. 200- FZ "Forest Code of the Russian Federation" dated December 04, 2006;
- Federal Law No. 73- FZ "On the Cultural Heritage Sites of Peoples of the Russian Federation" dated June 25, 2002;
- Federal Law No. 261- FZ "On the Energy Conservation, Improvement of Energy Efficiency, and Introduction of Changes to Certain Legal Instruments of the Russian Federation" dated November 23, 2009;
- Federal Law No. 181- FZ "On the Social Protection of Handicapped Persons in the Russian Federation" dated November 24, 1995;
- Federal Law No. 52- FZ "On the Sanitary and Epidemiological Welfare of the Population" dated March 30, 1999.

Optional and recommended documents feature a wide range of statutory instruments. They involve National Standards (Federal Agency on Technical Regulating and Metrology) and Rulebooks (Ministry of Regional Development).

The following methodology documents are recommended: BC - building code (Ministry of Regional Development), FSR - fire safety regulations (Ministry of Emergency Situations), SRS - sanitary regulations and standards (Ministry of Health and Social Development).

The evidential basis includes documents of different levels: building code of the Russian Federation (FBC), rulebooks for design, construction, and utilization of buildings and related structures (FRB), territorial construction standards (TCS), regional statutory documents, sectoral standards, and other documents.

The problem of technical regulation in the Russian Federation is caused by the fact that this system was developed in the conditions of planned economy of the USSR and continued to evolve in the modern conditions of market economy. The documents constituting the system were adopted at different times, many of them are in-house, often contradict each other, and become obsolete at different times. This considerably complicates work of designers, and their relationships with expert bodies and Customer-Investors. There is an objective need in a detailed analysis of the system's documents fit for practice both for drafting project documentation for constructing a public building in whole and for architectural design in particular.

5. Conclusion

The analysis of the global experience of organizing systems of technical regulation of construction described above helped to reveal important factors that must be taken into account to reform the national system of technical regulation of the construction sector in the Russian Federation to bring it
to correspondence with principles and practice of technical regulation in economically developed countries.

The study of the global experience of developing technical regulation systems for construction demonstrated that state regulation may not play the primary role in some countries. Currently, there is a trend for reducing participation of state structures in the management process; in some economically developed countries of Europe, Asia, the Pacific region and North America, an active process of denationalization of management of technical regulation systems and a transfer to self-regulatory systems are observed.

One and the same building may be constructed in a range of alternative ways, and each way involves use of unique "production processes and methods", and each process and method may take unique forms depending on the local construction culture, local construction traditions, availability of construction materials and devices, qualification of human resources, and many other conditions and factors. The best instrument of setting characteristics of these processes and methods in the construction sector belongs not to binding construction standards and regulations, but to the optional standards that construction standards and regulations may refer to.

In the Russian Federation, the process of transition to a self-regulatory system has already begun, too; the principles thereof are based on freedom of private initiative and increased personal responsibility of participants in the construction process. Efficient resolution of the problems associated with transition to self-regulation principles requires numerous components, one of which is improvement of the technical regulation system, and, what is especially important, its main component - regulatory framework. A transition from the prescriptive regulation method to the performance-based one is required; the latter describes the expected goal without specifying means of achieving it.

According to the author, an efficient solution to this problem may be found by creating a new model of structural organization of the regulatory framework of technical regulation documents for public buildings which must be organized according to the performance-based principle and contain combined blocks of normative standards of different levels enforced by different agencies and applied both to the building in whole and its elements in particular. To develop a system, it appears reasonable to develop regulatory framework organization model blocks for each type of public buildings. The regulatory framework organized according to this principle is much-needed by modern architects engaged in architectural design of public buildings.

Reference

[1] Federal Law "On Technical Regulation" dated December 27, 2002 No. 184 - FZ (as amended on May 9, 2005 No. 45 - FZ, dated May 1, 2007 No. 65 - FZ, dated December 1, 2007 No. 309 - FZ, dated July 18, 2007. 2009 No. 189 Federal Law, dated 30.12.2009 No. 385 - Federal Law).
[2] Town Planning Code of the Russian Federation [Electronic resource]: federal. Law of the Russian Federation of December 29, 2004 No. 190-FZ (as amended on December 30, 2015) Reference and legal system “Consultant Plus”. Inform. bank. "Version Prof." SECTION “Legislation”. Federal Law No. 384-FZ dated 12/30/2009 “Technical Regulations on the Safety of Buildings and Structures”.
[3] Vilkova S A 2017 Fundamentals of technical regulation M. Academia 208 p.
[4] Guseva T A, Chapkevich L E 2013 Commentary on the Federal Law "On Technical Regulation” M. Justicinform 168 p.
[5] Guseva T A, Chapkevich L E 2014 Article commentary on the Federal Law "On Technical Regulation” M. Justicinform 168 p.
[6] Krundyshev B L 2012 Architectural design of residential buildings adapted to the specific needs of the mobility impaired. Edition: Doe 208 p.
[7] Sinenko S A, Mamochkin S A, Zhadanovsky B V 2016 Basics of the regulatory framework in construction. M. Stroyizdat 200 p.
[8] Lafitsky V I 2006 Technical regulation in foreign countries Journal of Russian Law 9 pp. 18-27.
[9] Borkovskaya V G 2011 Quality control. Foreign experience Building materials, equipment,
technologies of the XXI century 8(151) pp. 48-49.

[10] Maenskaya M 2011 Quality management in construction companies of developed countries ITS Newspaper 7(122) pp. 3 - 14.

[11] Antonova M V, Glushko D V, Belyaeva S V, Pakrastinsh L 2014 Comparative analysis of the European and Russian technical documentation of building materials Construction of unique buildings and structures 4(19) pp. 34-50.

[12] Vinogradova O A 2014 Foreign experience in managing the quality of construction products on the example of Germany and its adaptation to Russian reality Questions of modern science and practice 1(50) pp. 153-159.

[13] Bayburin A Kh 2010 About the development of standards of self-regulatory organizations for the assessment of the quality control system of construction Engineering and Construction Journal 3 pp. 24-26.

[14] Antonova M V, Glushko D V, Belyaeva S V, Pakrastinsh L 2014 Comparative analysis of the European and Russian technical documentation of building materials Construction of unique buildings and structures 4(19) pp. 34-50.

[15] SNiP 11-01-95 “Instruction on the procedure for the development, approval, approval and composition of project documentation for the construction of enterprises, buildings and structures”.

[16] GOST R 1.0-92 "The State System of Standardization of the Russian Federation. Basic Provisions". www.nostroy.ru.

[17] GOST R 21.1001-2009 System of design documentation for construction. General Provisions.