Two-dimensional transition metal dichalcogenides (TMDs) have attracted lots of interest because of their potential for electronic and optoelectronic applications. Atomically thin TMD flakes were believed capable to scroll into nanoscrolls (NSs) with distinct properties. However, limited by mechanical strength and chemical stability, production of high-quality TMD NSs remains challenging. Here, we scroll chemical vapor deposition-grown monolayer TMD flakes into high-quality NSs in situ in 5 s with a nearly 100% yield by only one droplet of ethanol solution. An obvious photoluminescence is demonstrated in NSs and the self-encapsulated structure makes NSs more insensitive to external factors in optical and electrical properties. Furthermore, based on the internal open topology, NSs hybridized with a variety of functional materials have been fabricated, which is expected to confer TMD NSs with additional properties and functions attractive for potential application.
Atomically two-dimensional (2D) transition metal dichalcogenides (TMDs), such as MoS$_2$, MoSe$_2$, WS$_2$, and WSe$_2$, display numerous exceptional electronic and optical properties arising from quantum confinement1,2. Complementary to gapless graphene, 2D TMDs with intrinsically band gaps are promising interesting field-effect transistor (FET) and optoelectronic devices. Recently, the main focus of attention has been for the production of their intrinsic or heterojunction structures, their properties, and their applications on 2D scale3-5. In addition to changes in 2D size and form, self-assembly of the atomically thin TMD flakes, as an emerging area, is largely unexplored. Assembly processes by folding and scrolling, i.e., rolling up, can transform relatively simple structures into complex topologies, such as nanoscrolls (NSs), with distinct properties as well as the original excellent characteristics. Indeed, theoretical calculations have predicted the unique topology of 2D plex topologies, such as nanoscrolls (NSs), with distinct properties as well as the original excellent characteristics. Indeed, theoretical calculations have predicted the unique topology of high-quality NSs6-12; thus these NSs have promise as building blocks in flexible electronics, microfluidics, energy storage, self-propelled micromachines, and optical resonators6-18. However, experimental realization of such high-quality NSs has only been achieved for graphene13-16 and boron nitride19, which exhibited high strength and chemical inertness. Limitations in mechanical strength and chemical stability present difficulties in producing high-quality TMD-NSs20. Recently, an argon plasma-assisted method has been demonstrated for the fabrication of amorphous MoS$_2$-NSs, but in this method MoS$_2$ sheets failed to scroll effectively, only edge region of the sheet curved while the large central area remains plane. Moreover, upon argon plasma etching, a serious damage has been brought to the original sheets, where almost half of sulfur atoms were removed. The obtained NSs exhibited low crystallinity even to be amorphous21. A high-quality TMD-NS is highly desirable for both fundamental studies and potential applications; however, its reliable experimental fabrication still remains challenging.

Here, we show a very simple method for fabricating high-quality TMD-NSs, which only requires one droplet of ethanol solution to scroll chemical vapor deposition (CVD)-grown monolayer TMD flakes in situ in 5 s with a nearly 100% yield. TMD-NSs are promising optoelectronic materials with potential applications in optoelectronic devices because of the high FET mobility. Owing to self-encapsulated structure, the optical and electrical properties of NSs are more insensitive to external factors, while the electrical performance of 2D materials flakes varies with both the underlying substrate and the environment. In addition, because of the internal open topology, the interlayer spacing of TMD-NSs can be easily expanded to accommodate a variety of functional materials, including organic small molecules, polymers, nanoparticles, and 2D materials, as well as biological substances. These features are very attractive for applications in solar cells, photodetectors, flexible logic circuits, energy storage, and sensors.

Results

Rolling up CVD-grown TMD monolayer flakes. In a typical experiment, large-area, monolayer TMD flakes were synthesized on a SiO$_2$/Si substrate by CVD. Then, the TMD flakes were scrolled into NSs in just 5 s with a nearly 100% yield by placing one drop of ethanol solution (volume ratio of ethanol:water = 2:1) on their surface. Other aqueous solutions, such as methanol, tetrahydrofuran, dimethylformamide, and N-methyl-2-pyrrolidone, can also be used for TMD flakes scrolling (Supplementary Fig. 1, 2 and Supplementary Note 1). In addition, the scrolling proceeded well for TMD flakes grown on other substrates, such as Si$_3$N$_4$ and sapphire (Supplementary Fig. 3). To clarify the TMD-NSs formation process, the entire procedure was recorded using a CCD camera equipped on an optical-microscope (Supplementary Movie 1). A series of steps that might have led to the formation of the TMD-NSs are proposed in Fig. 1. Monolayer TMD flakes were grown on a substrate at a high temperature (≥720 °C). During the process of cooling down to room temperature, a strain was introduced to the TMD flakes because of the mismatch in thermal expansion coefficients between the TMD flake and the substrate. Stable TMD flakes were achieved when the strain and substrate adhesion were balanced. When an ethanol solution spread onto the surface of TMD flakes, the liquid film intercalated into the TMD flakes and the substrate, as demonstrated by the contrast color change in the flakes (Supplementary Fig. 4). With the liquid intercalation, part of the TMD flake was first released from the substrate to become freestanding as shown in Fig. 1. Under the built-in strain, the released part of the flake curved out of the plane and continued to roll up to a complete NS in the solution. An energy analysis of the MoS$_2$ flakes before and after scrolling was presented in the Supplementary Note 2. The energy barrier required to bend the freestanding flake out of plane was proved to be relatively low, indicating the easy nucleation of a scroll. In addition, the strain energy induced from the thermal mismatch of the MoS$_2$ flake was found high enough to activate the formation of scrolls after the liquid intercalation and the adhesion energy of the MoS$_2$ flake with substrate decreasing (Supplementary Fig. 5). Strain as the stimulus to the NSs

Fig. 1 Schematic of self-scrolling of chemical vapor deposition (CVD)-based transition metal dichalcogenide (TMD) monolayer flakes. A proposed series of steps leading to the formation of TMD-NSs is shown: (I) initial TMD monolayer growth on a substrate at a high temperature (HT) (e.g., 720, 825 °C); (II) the generation of a strain, balanced with the adhesion from substrate, in the TMD monolayer while cooling down to room temperature (RT); (III) the insertion of liquid between the TMD monolayer and substrate and the disappearance of the adhesion; (IV) the TMD flakes curve out of the plane driven by the strain; (V) the final formation of TMD-NSs.
formation was also suggested by the fact. When treated with ethanol solution, freshly produced TMD flakes on substrates were more prone to scroll in the shortest time with the highest yield, while the aged samples exhibited slightly decreased scroling speed and yield. A few cracks were observed in aged samples by scanning electron microscopy (SEM, Supplementary Fig. 6), and these cracks could have partially relieved the strain.

TMD flakes were observed to prefer to scroll along one edge where the adhesion with the substrate was first relaxed upon the intercalation of the liquid. As the edges of CVD-grown TMD single crystals have a zigzag orientation4,22,23, the chirality of their NSs are defined (Supplementary Fig. 7). For large-area polycrystalline films without regular edges, the orientation and chirality of their NSs are generally random (Fig. 2a, b). Thus, the controllable scrolling of TMD films was attempted (Fig. 2c–e and Supplementary Fig. 8). Using a focused ion beam (FIB), a MoS2 polycrystalline film was patterned into parallel ribbons with defined width and direction (Fig. 2d) to produce long NS arrays (Fig. 2e). Using FIB etching a second time, long NSs were further arranged into periodic arrays with a controlled length (Fig. 2f). These NS arrays have promise for wide application, such as integrated circuits and matrix displays. We assume that horizontal TMD-NS arrays with controllable chirality could potentially be achieved by controlling the crystal orientation of the ribbon edges via etching from one large-area TMD single crystal, which is prevented by the technique to synthesize large-area TMD single crystals.

Morphology characterization. CVD-grown TMD flakes are high quality even comparable to intrinsic flakes23,24. The ethanol solution was clean and harmless; therefore, no defects or impurities were introduced into the high-quality TMD-NSs (Supplementary Fig. 9). Based on this method, several typical TMD-NSs, including those of MoS2 (Fig. 2f and Supplementary Fig. 10), WS2 (Fig. 2g), MoSe2 (Fig. 2h), and WSe2 (Fig. 2i), were successfully fabricated. Most of the NSs displayed a straight and compact appearance. High-resolution transmission electron microscopy (HR-TEM) was used to further examine the TMD-NSs microstructure, which was found to be multiwalled and tubular (Fig. 2j–m). The diameter and sidewall thickness of the TMD-NS varied with the size of the original flake. The hollow diameters were 10–40 nm. In addition, the high-magnification images of the sidewalls and the selected area electron diffraction (SAED) both showed that the TMD layers in the NSs were stacked uniformly and compactly (Fig. 2j–m inset and Supplementary Fig. 11). The distance between adjacent walls was approximately 6.21 Å, 6.41 Å, 6.35 Å, and 6.45 Å for MoS2-, WS2-, MoSe2-, and WSe2-NSs, respectively, which matched the interlayer spacing in bulk TMDs (6.15 Å, 6.36 Å, 6.45 Å, and 6.49 Å for MoS2, WS2, MoSe2, and WSe2).

Fig. 2 Transition metal dichalcogenide (TMD)-nanoscrolls (NSs) from self-scrolling chemical vapor deposition (CVD)-based TMD monolayer flakes. a Optical image of CVD-grown MoS2 monolayer flakes on a SiO2/Si substrate (the purple area represents the substrate, the green area represents the MoS2 monolayers; scale bar, 500 μm). b Optical image of MoS2-NSs on a SiO2/Si substrate (scale bar, 100 μm). c–e The fabrication process of a MoS2-NS array (scanning electron microscopy—SEM image shown, scale bars, 50 μm). d Large-area MoS2 monolayer film patterned into ribbons by focused ion beam (FIB) etching (the dark region represents MoS2 film, the bright area is bare substrate). e Long MoS2-NSs made from the controllable scrolling of the patterned MoS2 film in c. (The white parallel lines are MoS2-NSs, and the dark area represents the substrate). f–i A 12 × 6 array of MoS2-NSs fabricated via a second FIB etching of the long MoS2-NSs in d. f–i SEM images of typical TMD-NSs on SiO2/Si substrates: MoS2-NSs (f), WS2-NSs (g), MoSe2-NSs (h), and WSe2-NSs (i). (Scale bars, 5 μm in f, i and 10 μm in g, h). j–m TEM images of typical TMD-NSs: MoS2-NSs (j), WS2-NSs (k), MoSe2-NSs (l), and WSe2-NSs (m). (Scale bars, 20 nm). Inset: High-magnification images of sidewalls of TMD-NSs (scale bars, 2 nm)
WSe₂, respectively), indicating both the tight scrolling of the TMD flakes and the lack of interlayer contamination.

Optical characterization. Raman spectra of the TMD-NSs were recorded using 532 nm excitation (Fig. 3a and Supplementary Fig. 12a–c). The Raman signature of monolayer MoS₂ flakes is consistent with that of mechanically exfoliated monolayer MoS₂. A similar Raman signature was also found for MoS₂-NSs, demonstrating the good crystallinity of the MoS₂-NSs. A blue shift was observed in the A₁g mode from 385.4 cm⁻¹ for the monolayer MoS₂ to 406.7 cm⁻¹ for the MoS₂-NSs, and this shift was attributed to the van der Waals interactions between neighboring NS layers. Additionally, a red shift in the E₁²g mode was detected from 385.4 cm⁻¹ for the monolayer MoS₂ to 382.7 cm⁻¹ for the MoS₂-NSs, resulting from stacking-induced structural changes, long-range Coulombic interlayer interactions, or a slight tension owing to the bending deformation of the flake. The frequency shift behavior reflects structural changes after scrolling, and the changes were also observed for WS₂-, MoSe₂-, and WSe₂-NSs (Supplementary Fig. 12a–c).

Semiconducting TMD monolayers are direct-bandgap materials because of quantum confinement effects. The strong photoluminescence (PL) and a wide range of band gaps of the monolayer TMD semiconductors indicate their potential for use in 2D optoelectronics, such as optical energy conversion devices or photodetectors. Despite having a stacking structure similar to that of bulk TMDs, these TMD-NSs were shown to have an obvious PL in contrast with the bulk counterparts, in which PL is negligible. Red luminescence from a typical MoS₂-NS was clearly observed by fluorescence imaging, indicating that the PL was sufficiently strong to be imaged (Fig. 3b, c). In the PL spectra of Fig. 3d, A, B direct excitonic transitions from MoS₂-NSs appeared at around 1.80 eV (532 nm) and 1.95 eV (635 nm), matching their absorption resonances (Supplementary Fig. 13). Compared with monolayer MoS₂, a red shift in the A exciton transition, approximately of 30–60 meV was found for MoS₂-NSs and was accompanied by an increase in the full-width at half-maximum of 50–80 meV. The red shift of A peak, an indicator of the variation of the electronic structure, can be explained by the stacking and tension effects in the NSs, while PL peak broadening is presumably owing to the overlap of signals from several MoS₂ layers in a NS. Analogous PL behavior was also observed for the WS₂-, MoSe₂-, and WSe₂-NSs (Supplementary Fig. 12d–f).

It is well known that monolayer TMD atoms are fully exposed, making their optical and electrical properties sensitive to environmental factors. As shown in Fig. 3e, f, when exposed to NH₃, the PL intensity of monolayer MoS₂ flakes was quenched rapidly and drastically; in contrast, the PL intensity of MoS₂-NSs did not show a pronounced decrease. Apparently, the optical properties of MoS₂-NSs were less dependent on the environment, which might be attributed to the self-encapsulated structure, where most of the MoS₂ flakes were rolled up inside and sealed by the outermost layers.

FET performance. Since TMD-NSs are semiconductors, and there are no previous reports on their FET properties, it is interesting to explore this issue here. Device characterization is easy for MoS₂-NSs because the NSs have been produced on a SiO₂/Si substrate. Directly deposited on the top of MoS₂-NSs via a shadow mask. The FETs based on the MoS₂-NSs exhibited good FET behavior, and the current/voltage characteristics conformed well to conventional transistor models in both saturated and linear regimes in N₂ (Fig. 4 and Supplementary Fig. 14). According to the equation below, we calculated the mobility in the saturation regime.

\[I_D = \frac{(W/2L)C\mu(V_G - V_T)^2}{(W/L)^2} \]
where L and W are the channel length and width, respectively, C_i is the insulator capacitance per unit area (11 nF cm$^{-2}$), μ is the FET mobility, and V_T is the extrapolated threshold voltage. More than 300 devices were tested. The electron mobility of NSs was measured to be mostly in the range 200–700 cm2 V$^{-1}$ s$^{-1}$, with an on/off ratio of over 1.0 \times 105. The mobility of MoS$_2$-NSs, nearly 30-fold greater than that of monolayer MoS$_2$ flakes (10–20 cm2 V$^{-1}$ s$^{-1}$)34, should be ascribed to the high current density for compact scroll topology. Invoking an Archimedean spiral model, we quantified the change in the conduction channel widths upon scrolling (Fig. 5a). In this paper, we produced MoS$_2$-NSs hybridized with gold nanoparticles (AuNPs) (Fig. 5b), graphene oxide (GO) (Fig. 5c), pentacene (Fig. 5d), copper (II) phthalocyanine (CuPc) (Fig. 5e), poly[2,2′-[(2,5-bis(2-hexyldecyl)-5,5′-diyl}]-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyldithiophene]-5,5′-diyl-alt-thiophen-2,5-diyl (PDP3T) (Fig. 5f), DNA (Fig. 5g) and polypeptide (Fig. 5h).

In contrast with nanotubes, the lattice spacing of NSs can adjust automatically upon hybridization with foreign substances of different sizes, and this adjustment can be evaluated by HR-TEM. Figure 5b–h displayed the lattice spacing of hybrid NSs, where lattice expansion was observed for all composite NSs, and some composite components, such as AuNPs, were large enough to be directly visualized (Fig. 5b). Moreover, Raman spectroscopy was utilized to verify the presence of foreign substances. As a typical example, the intercalation of GO into NSs was verified by the emergence of the D, G, and 2D peaks of GO (around 1350, 1600, 2671 cm$^{-1}$)37, as well as vibrational modes (around 383, 406 cm$^{-1}$) for MoS$_2$ (Supplementary Fig. 17a). In addition, TMD-NSs can be conferred with additional properties and functions upon hybridization with other functional materials, such as organic small molecules, polymers, nanoparticles, and 2D materials, as well as biological substances. For example, after hybridization with PDPP3T, a new fluorescence peak appeared at about 1.42 eV (873 nm) for MoS$_2$-NSs (Supplementary Fig. 17b), indicating that the hybridization broadened MoS$_2$-NS emission spectrum and could eventually extend their optical applications. Furthermore, the intercalated NS by PDPP3T exhibited a good stability in air, due to the self-encapsulated structure (Supplementary Fig. 18).
Between the walls; the GO was approximately 5 nm in diameter were clearly observed in white walls represent the MoS2 layers in (a).

The monolayer MoS2 of the MoS2-NSs was approximately 30-fold greater than that of ethanol solution. An obvious PL was shown in TMD-NSs, with a Schematic showing the cross section and sidewalls of hybrid TMD-NSs.

In summary, we have explored a simple method for producing Hybrid transition metal dichalcogenide (TMD)-nanoscrolls (NSs). An S- H- TEM images of sidewalls of MoS2-NSs hybridized with AuNPs (b). GO (c), pentacene (d), CuPc (e), PDPPT3T (f), DNA (g) and polypeptide (h). AuNPs approximately 5 nm in diameter were clearly observed between the walls; the GO flakes were also distinguishable, as shown in c. Lattice expansion was displayed in all hybrid NSs above. The bright white walls represent the MoS2 layers in (c-h) (scale bars, 10 nm in b and 2 nm in c-h).

Discussion

In summary, we have explored a simple method for producing high-quality, tightly scrolled TMD-NSs from CVD-grown monolayer TMD flakes with the assistance of one drop of an ethanol solution. An obvious PL was shown in TMD-NSs, with a red shift in the direct excitonic transitions. The electron mobility of the MoS2-NSs was approximately 30-fold greater than that of the monolayer MoS2 flakes. This scolling strategy will be a candidate for increasing mobility of other 2D materials. Owing to their unique self-encapsulated structures, these TMD-NSs show stable optical and electrical properties in different atmospheres. The HR-TEM results show the internal open topological structure of the TMD-NSs, which serve as effective carriers for accommodating external substance of different sizes in their tunable van der Waals gaps. The hybridization with other functional materials will confer TMD-NSs with additional properties and functions attractive for potential application.

Methods

CVD growth of TMD monolayers. TMD monolayers were grown by an atmospheric pressure CVD. The growth substrates, including SiO2/Si, Si3N4 and sapphire, were cleaned in acetone, isopropanol, and deionized water and then dried under high-purity nitrogen flow.

For MoS2 monolayers, the growth substrate was placed face-down above a ceramic boat containing MoO3 powder (Sigma Aldrich, 99.998%, 20 mg). The ceramic boat was then loaded in the heating zone center of the furnace tube, where another boat containing 80 mg of sulfur (Alfa Aesar, 99.999%) was located upstream. The tube was first purged with ultrahigh-purity argon for 10 min at a flow rate of 200 sccm. Then, the furnace was heated from room temperature to 500 °C in 12 min, 500–720 °C in another 20 min, and then stayed at 720 °C for 5 min. The sulfur was heated to 130 °C with a separate heat setup as the furnace reached 720 °C. Finally, the temperature was cooled from 720 to 570 °C in 20 min before opening the furnace for rapid cooling. Argon as carrier gas was maintained at a flow rate of 10 sccm throughout the growth process.

The growth of WS2 monolayer was similar to that of MoS2, except that WO3 (Alfa Aesar, 99.998%, 10 mg) was used as one of the precursors and the highest growth temperature was set at 825 °C, with sulfur at 150 °C.

WS2 monolayers were grown on substrates with WO3 (10 mg) and selenium powders (Alfa Aesar, 99.999 %, 1–5 nm) as precursors. The growth recipe was as follows: ramp the furnace from room temperature to 825 °C in 20 min, sit 20 min at 825 °C, cool to 600 °C in 20 min, and open the furnace for rapid cooling. The selenium powders were heated to 300 °C when the furnace temperature rose to 825 °C and were maintained at this temperature for 40 min. 1.5 sccm hydrogen and 23.5 sccm argon were used during the growth process.

MoS2 monolayers were grown via a procedure similar to that used for WS2 monolayers, except that the source precursors were MoO3 and selenium, and the selenium was kept at 400 °C during the growth process.

Fabrication of TMD-NSs. TMD-NSs were fabricated by dropping an ethanol aqueous solution onto the CVD-grown TMD monolayers and allowing it to dry naturally. Rod-like NSs were then obtained on the substrate. The concentration of the ethanol aqueous solution ranged from 5:1 to 1:1 (volume ratio of ethanol: water), with an optimum ratio of 2:1.

MoS2-NSs arrays. A MoS2 polycrystalline film was first patterned into parallel ribbons with defined width and direction using a FIB. A drop of pure ethanol was dropped on the patterned film, and then a coverslip was put on top of it. A thin liquid layer of pure ethanol can be formed between the film and the coverslip. An ethanol solution (1:1) was then dropped on the edge of the coverslip. Drove by the concentration gradient, the water in the solution will slowly infiltrate into the pure ethanol under the coverslip in the gradient direction (as shown in Supplementary Fig. 8). The diffusion rate can be adjusted by the concentration of the ethanol solution. In this way one side of a ribbon was first controlled to scroll to produce a long NS. The long NS array was then fabricated and further arranged into periodic arrays with a controlled length by FIB etching a second time.

Hybrid MoS2-NSs fabrication. Pentacene/MoS2-NSs: A 1-nm-thick layer of pentacene was deposited on the MoS2 monolayers on a SiO2/Si substrate by vacuum thermal evaporation, followed by immersion into a modulated ethanol solution (5:1). After 10 min, the substrate was picked up and allowed to dry naturally. The pentacene/MoS2-NSs were obtained. The CuPc/MoS2-NSs were prepared in the same way.

PDPPT3T/MoS2-NSs: A PDPPT3T solution was prepared by dissolving 2 mg of PDPPT3T powder in 1 ml of toluene. After stirring overnight, the PDPPT3T solution was spin-coated onto the MoS2 monolayers at a speed of 5000 rpm. After annealing at 70 °C for 20 min, the PDPPT3T-coated MoS2 monolayers were then dipped into an ethanol solution (5:1). After 10 min, the MoS2 monolayers were picked up and dried naturally.

GO/MoS2-NSs: This procedure is similar to that used for PDPPT3T/MoS2-NSs. Freshly exfoliated GO sheets were dispersed in n-hexane and then spin-coated onto MoS2 monolayers. After dropping an ethanol solution (2:1) onto the samples, the GO/MoS2-NSs were obtained.

Au/MoS2-NSs: MoS2 monolayers were dipped into an ethanol solution (2:1) containing AuNPs. Ten minutes later, the MoS2 monolayers were picked up and dried naturally. Similar procedures were used for producing both DNA/MoS2- and polypeptide/MoS2-NSs.

MoS2-NS-based FET. Freshly made monolayer MoS2 flakes on a SiO2/Si substrate were kept in nitrogen for 48 h. Then the MoS2 flakes were scraped into NSs with one drop of ethanol solution (2:1) in nitrogen atmosphere. Bottom-gated transistors based on these MoS2-NSs were fabricated on the SiO2/Si substrate without additional transfer. 100 nm of Au was deposited on the top of MoS2-NSs as source and drain electrodes with a shadow mask by vacuum thermal evaporation at a rate of about 0.3 Å s−1. The electrical measurements were conducted under a nitrogen atmosphere and ambient condition, respectively.

Characterization. Raman and PL measurements were performed with a 532 nm laser under ambient conditions (inVia-Reflex). All optical images and the video were captured with a Nikon Eclipse LV100D. The fluorescence microscope characterization was performed with a mercury lamp as the excitation light source. Large-area MoS2 films and long MoS2-NSs were etched via FIB-SEM (FEI, Helios Nanolab G3 CX). SEM NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03752-5 | www.nature.com/naturecommunications
(Hitachi S-4800) and HR-TEM (JEOL JEM-2100F) were employed to image the samples. Current–voltage curves were obtained by a three-probe station under a nitrogen atmosphere and ambient conditions (Keithley 4200 SC2).

Data availability. The data that support the findings of this study are available from the corresponding author on reasonable request.

Received: 24 August 2017 Accepted: 8 March 2018
Published online: 03 April 2018

References
1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
2. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
3. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
4. Chen, J. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139, 1073–1076 (2017).
5. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).
6. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
7. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral pn junction with an atomically sharp interface. Science 349, 524–528 (2015).
8. Li, X. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2, e1501882 (2016).
9. Pan, H., Feng, Y. & Lin, J. Ab initio study of electronic and optical properties of multilayer carbon nanotube structures made up of a single rolled-up graphene sheet. Phys. Rev. B 72, 085415 (2005).
10. Chen, Y., Lu, J. & Gao, Z. Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111, 1625–1630 (2007).
11. Chang, C. & Ortiz, C. Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoribbons. Nano Lett. 17, 3076–3080 (2017).
12. Liu, Z., Gao, J., Zhang, G., Cheng, Y. & Zhang, Y. From two-dimensional nano-sheets to roll-up structures: expanding the family of nanoribbons. Nanotechnology 28, 385704 (2017).
13. Zheng, J. et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen. Adv. Mater. 23, 2460–2463 (2011).
14. Zheng, B., Xu, Z. & Gao, C. Mass production of graphene nanoribbons and their application in high rate performance supercapacitors. Nanoscale 8, 1413–1420 (2016).
15. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K. R., Erdemir, A. & Sumant, A. V. Macoscale superlubricity enabled by graphene nanoribbon formation. Science 348, 1118–1122 (2015).
16. Xie, X. et al. Controlled fabrication of high-quality carbon nanoribbons from monolayer graphene. Nano Lett. 9, 2565–2570 (2009).
17. Mpourmpakis, G., Tylhanakis, E. & Froudakis, G. E. Carbon nanoribbon: a promising material for hydrogen storage. Nano Lett. 7, 1893–1897 (2007).
18. Shi, X., Cheng, Y., Pugno, N. M. & Gao, H. A translational nanoactuator based on carbon nanoribbons on substrates. Appl. Phys. Lett. 96, 053115 (2010).
19. Chen, X., Boulos, R. A., Dobson, J. F. & Rastov, C. L. Shear induced formation of carbon and boron nitride nano-ribbons. Nanoscale 5, 498–502 (2013).
20. Thangasamy, P. & Sathish, M. Rapid, one-pot synthesis of luminescent MoS2 nanoribbons using supercritical fluid processing. J. Mater. Chem. C. 4, 1165–1169 (2016).
21. Meng, J. et al. Rolling up a monolayer MoS2 sheet. Small 12, 3770–3774 (2016).
22. Gutiérrez, H. R. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2012).
23. Van Der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide. Nat. Mater. 12, 554–561 (2013).
24. Chen, J. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27, 6722–6727 (2015).
25. Lee, C. et al. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
26. Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
27. Wieting, T. J. & Verble, J. L. Interlayer bonding and the lattice vibrations of β-GaSe. Phys. Rev. B 5, 1473–1479 (1972).
28. Rice, C. et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87, 081307 (2013).
29. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
30. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).
31. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).
32. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).
33. Seifert, G., Terrones, H., Terrones, M., Jungnickel, G. & Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146 (2000).
34. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).
35. Fu, D. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulphide on hexagonal boron nitride. J. Am. Chem. Soc. 139, 9392–9400 (2017).
36. Kim, S. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
37. Gao, L. et al. Face-to-face transfer of wafer-scale graphene films. Nature 505, 190–194 (2014).

Acknowledgements
We thank Bo Guan and Xiang Li for the assistance with FIB-SEM. We thank Bo Guan for the assistance in SAED analysis. This work was supported by the Strategic Priority Research Programme of the National Natural Science Foundation (21573253), and the Chinese Academy of Sciences (XDB2010000).

Author contributions
X.C. performed the experiments, analyzed the data, and wrote the paper. J.Z. designed the work, performed the experiments, conceptualized the work, and analyzed the data. Z.X., D.Z., Z.K., D.Z. performed some characterization experiments and analyzed data. E.G. and Z.X. performed the theoretical analysis.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-03752-5.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018