AN ASSESSMENT ON BUCCAL MUCOADHESIVE DRUG DELIVERY SYSTEM

LEELA LAKSHMI V.1, UMASHANKAR M. S.2*, ALAGUSUNDARAM M.1
1Department of Pharmaceutics, Jagan’s College of Pharmacy, Nellore, Andhra Pradesh, India, 2Department of Pharmaceutics, SRM College of Pharmacy, Chennai, India
Email: umashans@srmist.edu.in

Received: 27 Jul 2021, Revised and Accepted: 14 Sep 2021

ABSTRACT

Buccal drug delivery system (BDDS) has won a variety of exposure and traction as it possesses plenty of advantages and benefits as evaluate to different mucosal drug delivery systems. Buccal path for systemic drug delivery, the use of mucosahesive polymers twill significantly increase the efficacy of many tablets, has been of outstanding interest over the previous couple of decades. This article affords a precis of BDDS mechanisms, consisting of a composition of the oral mucosa, delivery mechanism, numerous forms of BDDS, formulation, assessment and application of BDDS. Additionally, this text affords a precis over the patents, advertised products and destiny factors of BDDS. In this evaluation article, we’ve got tried to assemble the maximum significant reports (1988 to 2021) of formulation, assessment, application, patents of BDDS. This review will help pharmaceutical researchers to clarify the potential of BDDS to overcome the various existing drug delivery dispute like the efficiency of absorption, permeability and bioavailability of drugs.

Keywords: Buccal drug delivery, Mucoadhesive polymer, Formulation, Evaluation, Application, Patents

INTRODUCTION

Advancement and the progress made by the pharmaceutical industry that greatly contributed to treat the diseases, thus improving the quality of life [1]. With the passage of time researchers who are involved in the drug development industries focus on the alternative routes of administration of potentially capable pharmaceutical products and as well as to overcome defects that are associated with the oral route of administration. Though oral route is the most preferred route for the administration of major drugs, but it possesses certain drawbacks such as, the first pass metabolism in the liver, the local GI and enzymatic degradation inside the GI tracts [2].

In order to overcome the above mention drawbacks, one such strategy was used that is to deliver the drug through the alternative route such as Intranasal, Sublingual, Buccal, Pulmonary or Transdermal drug delivery systems [3]. Transmucosal method of drug transmission comprise of the mucosal lining of mouth, eye, vagina, rectum and nasal cavity which provides potential benefits over oral systemic drug delivery system. These features include the ability to bypass the first-pass metabolism, avoid the pre-elimination of the drug in the GI tract and dependence on the drug characters, it shows better enzymatic flora for the drug absorption [4].

Among the different mucosal pathways, the buccal mucosa has excellent accessibility, stretching of smooth muscle and relatively immobile mucosa; thus, this route of administration is suitable for controlled release of drugs from the dosage forms. By eliminating first-pass metabolism and enzymatic degradation owing to GI microbial flora, the oral mucosal drug delivery method is extensively applicable as a unique site for drug administration for immediate and controlled release action. Local and systemic action is provided through the oral mucosal medication delivery system. In addition, it exhibit great patient compliance as compare to other non-oral mucosal methods of drug administration. The Buccal drug delivery avoids acidolysis of the drug in GI system and bypasses the first-pass hepatic metabolism, which results the high bioavailability of the drug [5].

This article summarizes the advantage and disadvantages, application, evaluation, mechanism of the drug penetration, patents and marketed available pelletized drug delivery system. And also it will highlight the important terms and descriptions in the advantages, disadvantages, application, evaluation, mechanism of the drug penetration, patents and marketed available pelletized drug delivery system.

This review was conducted using Google search terms such as buccal mucoadhesive drug delivery system and articles relating to its formulation, evaluation, application and patents, which were collected from standard journals such as science direct, pubmed and scopus indexed journals.

Physiological, anatomical features of the oral cavity

The lips, hard palate (the bony front portion of the roof of the mouth), soft palate (the muscular back portion of the roof of the mouth), retromolar trigone (the area behind the wisdom teeth), front two-thirds of the tongue, gingiva (gums), buccal mucosa (the inner lining of the lips and cheeks), and floor of the mouth under the tongue are all parts of the oral cavity. In the following fig. 1 and table 1, it show the composition of the oral cavity and its respective role in drug penetration.

Fig. 1: (A) Anatomy of oral mucosa; (B) Transverse section of oral mucosa [2]
Table 1: Composition of the oral cavity and mechanism of permeation enhancers

S. No.	Composition of the oral cavity and its role	Thickness	Drug permeation enhancement mechanism	Reference
1.	Epithelium Layer as shown in fig. 1 possesses two type keratinized epithelium, It covers the soft palate, ventral surface of the tongue, inner lip, floor of the mouth and inner cheeks	500-800 µm	The pores of the protective layer can be enhanced by the addition of surfactant (Anionic: Sodium lauryl sulfate Cationic: Cetyl pyridinium chloride Nonionic: Poloxamer, Brij, Span, Myrj, Tween) by the agitation of intercellular Lipids and its protein (keratin) domain structure	[2, 3]
	Keratinized epithelium It covers the gingiva, dorsal surface of the tongue and hard palate. Role: Protective layer			
2.	Basement Membrane It forms a distinct layer between the epithelium and connective layer Role: Provides the adherence between the epithelium and connective tissue and provide mechanical support to the epithelium layer	1-2 µm	Addition of positively charged polymers like Chitosan, Cationic compounds like Poly-L-arginine, L-lysine will show an ionic interaction with the negative charge on the mucosal surface will pave the way to the enhancement of drug through the mcosa	[4, 5]
3.	Connective Tissue It consists of lamina propria and submucosa layer. The lamina propria consists of collagen fibers, supporting layers, blood vessels and smooth muscles. Role: Responsible for the blood supply to the oral cavity. The Buccal artery like facial artery and infraorbital artery are the predominant source of blood supply to cheek lining in the Buccal cavity. Which will be responsible for enhancement of drug penetration due to the predominant source of blood supply	150-500 µm	By adding a surfactant, Cyclodextrins, Chelators, anionic and cationic polymers may interfere with Ca+ ions, negative charge on the mucosal surface will leads to enhancement of drug permeability.	[6, 7]
4.	Mucus Gel like secretion which was translucent and continuous; Composition • Water insoluble glycoprotein (Mucin): 1-5% • Water: 95-99% • Proteins, enzymes, electrolytes and nucleic acids. Role: It is a visco-elastic hydrogel which act as a protective layer to the cell below.	• Buccal (Nonkeratinized)-500-600 µm with 2.40 ml/min/cm² • Sublingual (Nonkeratinized)-100-200 µm with 0.97 ml/min/cm² • Gingival (keratinized)-200 µm with 1.47 ml/min/cm² • Palatal (Keratinized)-250 µm with 0.89 ml/min/cm² • Viscosity-1.05 cP and 1.29 cP, respectively	By adding anionic and cationic surfactant, bile salts (Sodium glycocholate, Sodium tauro deoxycholate, Sodium taurocholate), Fatty acids (Oleic acid, Caprylic acid, Lauric acid), Cyclodextrin, Chelator (EDTA, Citric acid, Sodium salicylate, Methoxy salicylates) will either increase the fluidity of phospholipid domains or agitate the intercellular Lipids and its protein (keratin) domain structure	[8, 9]
5.	Saliva Role: Protective fluid, Source of mineralization for the tooth enamel, Hydrate the oral drug delivery system	By adding anionic and cationic surfactant, bile salts (Sodium glycocholate, Sodium tauro deoxycholate, Sodium taurocholate), Fatty acids (Oleic acid, Caprylic acid, Lauric acid), Cyclodextrin, Chelator (EDTA, Citric acid, Sodium salicylate, Methoxy salicylates) will either increase the fluidity of phospholipid domains or agitate the intercellular Lipids and its protein (keratin) domain structure	Drug Permeation enhancement mechanism: Will either increase the fluidity of phospholipid domains by adding bile salt, fatty acids to the BDDS	[10, 11]

Fig. 2: (A) Buccal mucoadhesive tablet [5]; (B) Administration sites of buccal mucoadhesive tablets [6]; (C) Schematic representation of bioadhesion mechanism [8]; Buccal mucoadhesive films [9]; (D) Contact of BDDS to buccal mucosa [8]; (E) Buccal patch [9]; (F) Scheme of route of permeation from BDDS through buccal mucosa [3]
Transport mechanism

Drug transport mechanism through the Buccal drug delivery is carried out by two mechanisms i.e. transcellular (intracellular) and paracellular (intercellular) as shown in fig. 2 (F). Paracellular route of permeation of the drug across the buccal epithelium is carried out through the passive diffusion. It is the most common route of permeation of the drug across the buccal epithelium is carried out by transferring the drug through the absorptive barrier i.e. cell membrane followed by the hydrophilic content of the series cell in order to reach the cytoplasmic content of the next cell. Example of the drug that penetrates via transcellular route of permeation is fentanyl [10]. Certain drugs may penetrate by using both the pathways which is possible only when the drug exhibit proper hydrophilic and lipophilic balance with a slight predominance of hydrophilic property. These drugs undergo faster penetration, apart from these pathways alternative pathway like carrier mediated transport also play an major role for the penetration of the certain drugs across the membrane [11]. The major factors that influencing the penetration and bioavailability of the drug through the Buccal drug delivery includes permeability and thickness of the epithelium, blood supply, metabolic activity, saliva and mucous, species difference and route of mechanism [12].

Novel buccal dosage formulations

S. No.	Dosage form	Description	Example	Reference
1.	Buccal mucoadhesive tablets as shown in fig. 2(A,B)	Dry dosage form	Double layer tablet	[13, 14]
2.	Buccal patches as shown in fig. 2(E) It is of two types • Reservoir type • Matrix type	Must be moistened before use prior coming in contact with the Buccal mucosa	Zilactin	[15, 16]
3.	Semisolid dosage form(ointments and gel) Powders	Consists of two laminates with adhesive polymer(aqueous form) which is glued over the backing sheet	-	[17]
4.	It is increase the residence time of the drug in oral mucosa	-	Hydroxypropyl cellulose and beclomethasone combination	[18, 19]
5.	Sprays	It is made up of Mucoadhesive suspension, especially used through nasal route	-	[17-19]

Advantages and disadvantages of Buccal drug delivery system

Advantages	Disadvantages	Reference
In contrast to the other mucosal tissues, the buccal mucosa is relatively permeable and has a good blood supply.	The total surface area of the oral cavity membranes usable for drug absorption is 170 cm², with non-keratinized tissues, such as the buccal membrane, accounting for 50 cm².	[16-20]
Bypass first pass metabolism	The mucosa’s barrier properties.	
Exhibits localized therapy	The medication is diluted as a result of the continuous secretion of saliva (0.5-2 l/day).	
Many medications would work better because they have a longer contact time with the mucosa.	The risk of choking if the delivery system is swallowed involuntarily is a concern.	
Patient acceptance is high as compared to other non-oral drug delivery methods.	Swallowing saliva may result in the loss of dissolved or suspended drugs, as well as the inadvertent removal of the dosage type.	
Lower administration frequency may result from increased residence time combined with controlled API release.		
API localization at the disease site can also result in substantial cost savings and a reduction in dose-related side effects.		
The formulation stays longer at the delivery site as a result of adhesion and personal touch, improving API bioavailability while using lower API concentrations for disease care.		
Buccal drug delivery removes the harsh environmental conditions that occur in oral drug delivery.		
It is a passive drug absorption mechanism that does not need any activation.		
In comparison to rectal or transdermal pathways, the presence of saliva guarantees a comparatively large volume of water for drug dissolution.		
Provides a various different ways to administer hormones, narcotic analgesics, steroids, enzymes, cardiovascular agents, and other medications.		
It allows for localized tissue permeability alteration, protease inhibition, and immunogenic response reduction. As a result, therapeutic agents such as peptides, proteins, and ionized species can be easily administered.		
Table 4: Types of excipients and their role in the buccal drug delivery system

S. No.	Excipient	Role	Example	Reference
1.	Mucoadhesive polymer	Mucoadhesives are synthetic or natural polymers that bind with the mucus layer that coats the mucosal epithelial surface and the major molecules that make up mucus.		
• It is the main excipients for adhesion by attracting water, swells and adheres to the mucous through forming a channel by linking to mucin polymer				
• They bind with mucin with help of H-bonding group, hydrophilic group	Semi synthetic/Natural polymer: Agarose, gelatin, Hyaluronic acid, pectin and cellulose derivatives. Synthetic polymer: Poly(acrylic acid)-based polymers i.e. poly(acrylic acid-co-thylhexylacrylate), poly(methacrylate) Water soluble polymer: PAA, Sodium CMC, Sodiumalginate Water insoluble polymer: Chitosan (soluble in dilute aqueous acids), EC, PC Cationic polymer: Chitosan, Dimethylaminoethyl (DEAE)-dextran, trimethylated chitosan Non ionic polymer: poly(ethylene oxide), PVA, PVP, scleroglucan Anionic polymer: Chitosan-EDTA, CP, CMC, pectin, PAA, PC, sodium alginate, sodium CMC, xanthan gum	[21-23]		
2.	Permeation enhancer	Permeation enhancer (<1%) enhances the permeation ability of the drug through the epithelium membrane. The permeation enhancer mechanism depends upon the fick’s first law of diffusion. Its mechanism is as follows:		
• Increasing fluidity and integrity of cell membranes				
• Extracting inter and intracellular lipids				
• Altering cellular proteins				
• Varying mucus rheology				
• Enhancing thermodynamic activity of drugs				
• Decreasing surface tension	Surfactant: Ionic: Dicetyl Sodium sulfosuccinate, Polyoxyethylene-20-cetyl ether Nonionic: Nonylphenoxypolyoxyethylene(NP-POE)(nonionic), Polyoxyethylene-9-lauryl ether (PLE) (nonionic) Fatty acids and derivatives: Acylcarnitine, Oleic acid, Caprylic acid, Mono(di)glycerides and Lauric acid Chelating agents: EDTA, Citric acid and Salicylates Polyols: Propylene glycol and Polyethylene glycol Bile salts and derivatives: Sodium deoxycholate), Sodium glycodydrofusidate and Sodium deoxycholate Sulfoxides: Dimethyl sulfoxide(DMSO) Others (non-surfactants): Urea and derivative Azone(1-dodecylazacycloheptan-2-one) (laurocapram) and cholines	[24-26]		
3.	Enzyme inhibitor	Enzyme inhibitors are used in the formulation of BDDS in order to enhance the drug absorption by decrease the affect of the enzyme over the drug by altering the structural configuration of enzyme and in order to make the drug less susceptible towards the enzyme degradation.	Aprotinin, bestatin, puromycin, bile salts stabilize and polyacrylic acid.	[27-29]

Manufacturing methods of the buccal tablets [6, 10, 26]

1. Tablet ingredients were screened through a 0.150 mm sieve before mixing to achieve a uniform particle size distribution.
2. Gildant and Lubricant were weighed carefully and mixed with a cubic mixer for 15 minutes and then added to the above powder mixture.
3. Blended for 3 minutes.
4. Buccal tablets were compressed by using a single or multiple punch tablet machine with with required mm round flat punch set.
5. Tablet weight was kept constant at 100 mg.
6.Thickness of tablets was adjusted to 2 mm.
Evaluation parameters of buccal drug delivery system

Table 5: Evaluation parameters of BDDS

S. No.	Evaluation parameter	Type of buccal dosage form	Method used	Instrument	Reference
1.	Surface pH	Patch, Tablets Films	Visual colour change	pH meter	[32-35]
2.	Morphology	Tablets, Patches Films	Microscopy	Scanning Electron Microscopy (SEM)	[36-39]
3.	Swelling index	Patches, Films Tablets, Wafers	Swelling of patch and tablet in pH 6.4 phosphate buffer	Agar gel plates	[39-43]
4.	Folding endurance	Patches, Films	Repeated folding in same point	Manually folded	[43-45]
5.	Drug compatibility	Patches, Films Tablets, Wafers	Thermal analysis, Spectral analysis	FTIR, DSC, XRD	[46-48]
6.	Thickness	Patches, Films	Standard deviation	Vernier calipers, Screw guaze, Electronic digital micrometer	[49-51]
7.	Mucoadhesive strength	Patches, Films Tablets	Tensile strength	Texture analyzer	[42, 58, 62]
8.	Water absorption capacity test	Patches Films	Agar plate technique	Desicators	[52-54]
9.	Invitro drug release	Tablets, Patches, Films	Beaker method; Dissolution method; Rotating paddle method	Kesary chein cell; Franz diffusion cell	[55-58]
10.	Mechanical properties	Patches, Films	Wilthemy plate technique	Microprocessor Modified tensile strength tester	[59-62]
11.	Residence time	Buccal hydrogels	Disintegration	Modified disintegrator	[63, 64]
12.	Palatability test	Patches Films	Grading of taste	E-taste meter	[65-68]
13.	Flatness	Patches Films	Percent constriction	Vernier calipers	[69, 70]
14.	Drug content	Tablets, Patches Films	Traction	RP-HPLC method, UV spectrophotometer	[71-74]
15.	Hardness	Tablets Wafers	Crushing force	Monsanto hardness tester	[75-78]
16.	Friability	Tablets	Weighing	Roche fri briator	[79-83]
17.	Contact angle	Films	Wetting	Optical tensiometer	[72, 84-86]
18.	Transparency	Films	Transmittance	UV spectrophotometer	[87-89]
19.	Water vapour transmission rate	Patches Films	Dressing method	Ovens	[90, 91]
20.	Drug entrapment	Patches, Films, Microspheres	Coiloal gold staining method	UV spectrophotometer	[82, 91,]
21.	Bio-adhesion	Patches Films	Floreence probe method	Dissolution cells	[92, 93]
22.	Percentage moisture loss	Patches Films	Gravimetry method	Desicator	[94, 95]
23.	Ex vivo residence time (RT)	Patches Films Tablets	Modified disintegration test apparatus	disintegration tester	[96-98]

Manufacturing methods of the buccal patches/films

Solvent casting

This method is widely used for the manufacturing of the controlled release matrix and liquid reservoir type buccal film, oral disintegrating films, pellets and granules [35, 39].

Direct milling

This method is widely used for the manufacturing of the oral buccal films and buccal wafers [54, 69].

Hot melt extrusion of films

This method is widely used for the manufacturing of the controlled release matrix tablets, oral disintegrating films, pellets and granules. The procedure of hot melts extrusion as follows [80, 97]:

Application of buccal drug delivery

Table 6: Applications of BDDS

Applications	References
Hypertension. Eg: Atenolol patches.	[86-102]
Hormone replacement therapy.	
Angina pectoris. Eg: Nitroglycerine patches.	
Cancer. Eg: Opioid analgesics.	
Smoking cessation therapy. Eg: Nicotine patches.	
Treatment of microbial infections associated with periodontitis.	
Local therapy includes oral infections, moth ulcers, dental caries, gingivitis, stomatitis.	
Patents of bdds formulations

Table 7: Patents of BDDS formulations

S. No.	Title	Author	Patent number	Year
1.	Buccal and/or sublingual therapeutic formulation	Cumming Alisthair, Kannar david, Sparrow lance	AU2016238901A	2016
2.	Bioadhesive films for oral and/or systemic delivery	Mcconville Jason Thomas, Morales Javier O, Ross Alkstart	US2016128947A	2016
3.	Buccal delivery system	Rubina Mughal	GB2568554A	2017
4.	Composition and method for Buccal administration of GNRH agonists	De groot Aldemar B, Taneya Rajneesh	WO2017208076A	2017
5.	Sublingual or Buccal administration for treatment of skin diseases	Scaife michael	WO2018051183A	2018
6.	Transmucosal delivery devices with enhanced uptake	Finn Andrew, Vasisht Niraj	US2018133210A	2018
7.	Chewable composition for rapid Buccal absorption	Purcell Marc	US2019015324A	2019
8.	Transdermal drug delivery systems for levonorgestrel and ethinyl estradiol	Liao Jun, Nguyen Viet, Patel Prashant	US10231977B2	2019
9.	Buccal swab delivery system	Azmi Nooshin, Cauley Thomas H, Cohen Bruce A, Schnipper Edward F	US2020376241A	2020
10.	Device and methods for ultrasonic delivery of an agent within an oral cavity	France Marion, Schoellhammer carl, Sheppard Norman	WO2020018866A	2020
11.	Enhancing drug activity through accentuated Buccal/sublingual administration	Banerjee Debasish, Banerjee Priyamgada	WO2021019278A	2021

Marketed products of bdds formulation

Table 8: Marketed products of BDDS formulation

S. No.	Marketed product	Active ingredient	Bioadhesive agent	Dosage form	Company/Manufacturer	Therapeutic class
1.	Buccastem®	Prochlorperazine maleate	Xanthum gum	Buccal tablet	Reckitt Benckiser	Antipsychotics
2.	Corosol® gel®	Chlorhexidine	HPMC	Oral paste	GlaxoSmith Kline	Antimicrobial
3.	Actiq	Fentanyl citrate	Magnesium stearate	Lozenge	Celltech	Analgesics
4.	Sucard	Glyceryl trinitrate	Hypermellase	Tablet	Forest laboratories	Vasodilator
5.	Corlan pellets	Hydrocortisone	Acacia	Oral mucosal pellets	Noven	Corticosteroids
6.	Fastum	Ketoprofen	PEG	Gel	AMenarini industries	NSAIDS
7.	Coreg	Carvediol	HPMC	Buccal patch	GlaxoSmith Kline	Hypertension
8.	Loramyc	Miconazole	Corn starch	Tablet	BioAlance Pharma SA	Antifungal
9.	Bonjela®	Cetabonium chloride, Choline salicylate	Hypermellose	Gel	Reckitt Benckiser	Analgesic
10.	Dentipatch®	Lidocaine	Xanthum gum	Patch	Noven	Analgesic

Future outcomes

Buccal drug delivery system offers advantages in accessibility, administration, economy, patient compliance. Novel preparations are focusing on the use of responsive polymeric system using copolymer with desirable hydrophilic/hydrophobic interaction, complexation networks, block or graft polymers from the natural edible sources. At the current global scenario, experts are finding ways to develop Buccal drug delivery with improved bioavailability of orally inefficient drugs by manipulating the formulation with enzyme inhibitors, inclusion of pH, permeation enhancers. At present solid dosage forms, liquids, patches and gels are commercially successful.

CONCLUSION

The Buccal drug delivery system predominantly serves more advantages when compared to controlled drug delivery. It was a promising area for the systemic drug delivery of orally inefficient drugs. It has significant advantages like avoidance of presystemic elimination in GIT and first pass metabolism in liver. Buccal drug delivery can be affected by thickness of mucosal layer, barrier properties of mucosa, area of absorption site and it can be enhanced by penetration enhancers, bio-adhesive agents. In this review we have concluded that with the right dosage form design, mucoadhesive polymers and ideal formulation, the permeability and the local environment of mucosa can be controlled and manipulated in order to enhance drug permeation. This review will help pharmaceutical researchers to clarify the potential of BDDS to overcome the various existing drug delivery dispute like efficiency of absorption, permeability and bioavailability of drugs.

FUNDING

There was no specific funding for this case study from any source

AUTHORS CONTRIBUTIONS

Mrs. V. L. V. Lakshmi was involved in review of literature and collection of data and preparation of the manuscript. Mr. Umashankar MS, Mr Alagusundaram M was involved in reviewing, and editing of the manuscript.

CONFLICT OF INTERESTS

There is no conflict of interest for this review.

REFERENCES

1. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151-85. doi: 10.1016/S0167-6296(02)00126-1, PMID 12606142.
2. Heamden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, Lockhart PB, Patton LL, Porter S, Thornhill MH. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev. 2012;64(1):16-28. doi: 10.1016/j.addr.2011.02.008. PMID 21371513.

3. Hoogstraten JA, Wertz PW, Wertz PW. Drug delivery via the buccal mucosa. Pharm Sci Technol Today. 1998;17(3):130-6. doi: 10.1016/S1461-5347(98)00076-5.

4. Mathias NR, Hussain MA. Non-invasive systemic drug delivery: develop ability considerations for alternate routes of administration. J Pharm Sci. 2010;99(1):1-20. doi: 10.1002/jps.21793. PMID 19949570.

5. Shojaei AH. Buccal Muco as a route for systemic drug delivery: a review. J Pharm Pharm Sci. 2018;21(1):15-30. PMID 10942969.

6. Lis Fontinele de Sa L, Nogueira NC, Da Silva Filho EC, Figueiras A, Veiga F, Nunes LCC, Lamartine Soares-Sobrinho R. Design of buccal mucoadhesive tablets: understanding and development. J Appl Pharm Sci. 2018;8(5):160-3.

7. Venkataswamy R, Lavanya Nallaguntla. Review article on pulsatile drug delivery system. Asian J Pharm Clin Res. 2021;14:48-59.

8. Patil KV, Patel ND, Dodiya HD, Shelat PK. Buccal bioadhesive drug delivery system: an overview. Int J Pharm Bio Arch. 2011;2:600-9. doi: 10.3109/10717544.2011.557786, PMID 21351826.

9. Lockhart PB, Ceymaert R, de Muynck C, Remon JP, Coomans D, Michotte Y, Stop D. Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use. J Pharm Pharmacol. 1991;43(7):457-64. doi: 10.1111/j.2042-7519.1991.tb03514.x. PMID 1682457.

10. RossI S, Sandri G, Caramella CM. Buccal drug delivery: A challenge already won? Drug Discov Today Technol. 2005;2(1):59-65. doi: 10.1016/j.dirdt.2005.05.018. PMID 24981756.

11. Junginger HE, Hoogstraten JA, Verhoef JC. Recent advances in buccal drug delivery and absorption- in vitro and in vivo studies. J Control Release. 1999;62(1-2):49-59. doi: 10.1016/s0168-3659(99)00032-2. PMID 10518646.

12. Patil KV, Patel ND, Dodiya HD, Shelat PK. Buccal bioadhesive drug delivery system. IJSR. 2011;2:719-35.

13. Naik Pankil A. A review article on muco -adhesive Buccal drug delivery technology; 2000. p. 255-65.

14. Thakur G, Wani SUD, Gautam SP. A review on recent advancement in pulsatile drug delivery systems. Int J Carr Pharm Res. 2011;2:79-89. doi: 10.1002/jcrp.2011060.

15. Wertz PW, Squier CA. Cellular and molecular basis of barrier function in oral epithelium. Crit Rev Ther Drug Carrier Syst. 1991;8(3):237-69. PMID 1954652.

16. Thakur G, Wani SUD, Gautam SP. A review on recent advancement in pulsatile drug delivery systems. Int J Carr Pharm Res. 2011;2:79-89. doi: 10.1002/jcrp.2011060.

17. Chima Reddy P, Madhusudan Rao Y. Buccal drug delivery systems. Adv Drug Deliv Rev. 2010;1:39-210.

18. Patel KV, Patel ND, Dodiya HD, Shelat PK. Buccal bioadhesive drug delivery system: an overview. Int J Pharm Bio Arch. 2011;2:600-9.

19. Patel VM, Prajapati BG. Design and in vitro characterization of eudragit containing mucoadhesive buccal patches. Int J Pharm Tech Res. 2009;1:783-9.

20. Gandhi Pankil A. A review article on muco-adhesive Buccal drug delivery system. IJPRD. 2011;3:159-73.

21. Wise Donald L. Handbook of Pharmaceutical controlled release technology. 2000. p. 255-65.

22. Khar RK, Formulation and characterization of mucoadhesive buccal films. In: Swarbrick J, Boylan JC, editors, Peptides and protein S: buccal absorption. Vol. 20. New York: Marcel Dekker Inc; 2001. p. 193-218.

23. Kaur A, Kaur G. Mucoadhesive buccal patches based on interpolymer complexes of chitosan-pectin for delivery of carvedilol. Saudi Pharm J. 2012;20(1):21-7. doi: 10.1016/j.jsps.2011.04.005. PMID 23960773.

24. Veliyil F, Kalia YN, Jacques Y, Deshasse J, Buri P. Factors and strategies for improving Buccal absorption of peptides. Eur J Pharm Biopharm. 2015;105:115-21. doi: 10.1016/j.ejpb.2015.07.003. PMID 26181364.

25. Veliyil F, Kalia YN, Jacques Y, Deshasse J, Buri P. Factors and strategies for improving Buccal absorption of peptides. Eur J Pharm Biopharm. 2015;105:115-21. doi: 10.1016/j.ejpb.2015.07.003. PMID 26181364.

26. Himabindu. Formulation and in vitro evaluation of mucoadhesive buccal patches of cyproheptadine hydrochloride. J Pharm Sci. 2012;12:196-201. doi: 10.7324/JAPS2012.2731.

27. Wong CF, Yuen KH, Peh KK. An in vitro method for buccal adhesion studies: importance of instrument variables. Int J Pharm. 1999;180(1):47-57. doi: 10.1016/s0378-5173(98)00402-5, PMID 10089291.

28. Reddy RJ, Anjum M, Hussain MA. A comprehensive review on buccal drug delivery system. AJADD. 2013;1:300-12.

29. Vani S, Kaib M, Rawat A, Saini S. An overview on Buccal drug delivery system. IJSR. 2011;2:1305-21.

30. Himabindu. Formulation and in vitro evaluation of mucoadhesive buccal patches of cyproheptadine hydrochloride. J Pharm Sci. 2012;12:196-201. doi: 10.7324/JAPS2012.2731.

31. Wong CF, Yuen KH, Peh KK. An in vitro method for buccal adhesion studies: importance of instrument variables. Int J Pharm. 1999;180(1):47-57. doi: 10.1016/s0378-5173(98)00402-5, PMID 10089291.

32. Reddy RJ, Anjum M, Hussain MA. A comprehensive review on buccal drug delivery system. AJADD. 2013;1:300-12.

33. Vani S, Kaib M, Rawat A, Saini S. An overview on Buccal drug delivery system. IJSR. 2011;2:1305-21.

34. Aungst BJ, Rogers NJ. Site dependence of absorption-promoting actions of laureth-9. Na salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res. 1988;5(5):305-8. doi: 10.1023/a:1015930826146. PMID 24690797.
Buccoadhesive drug delivery system of metoprolol tartrate. Yamagar M, Kadam V, Hirlekar R. Design and evaluation of buccoadhesive drug delivery system. J Pharm Pharm Sci. 2010;13:15-30. doi:10.4103/0973-8399.104830.

RagHAVENDRA NAO NG, SHRIVANI B, METTU SRIKANTH REDDY M. Overview on buccal drug delivery systems. J Pharm Sci. 2013;5:80-8.

DhanASHAN GAND P, KAYANI DAKALI V, SAGAR DOE. Application of thiolated chitosan in mucoadhesive Buccal drug delivery system. J Pharm Pharm Sci. 2013;5:80-8.

VasuDHA BAKSHI V, MAVYAA FARIYA MOZAMMEL F, IRIN DWAN SM, AMIRATU I. Novel approaches on buccal mucoadhesive drug delivery system with special emphasis on Buccal route: An overview. J Pharm Soc. 2011;2:600-9.

PATEL D, PATEL C, SHAH P. Formulation and evaluation of buccoadhesive drug delivery of repaglinide tablets. Asian J Pharm Sci. 2013;5:453-62.

Patel R, Patel K, Shah P. Formulation and evaluation of buccoadhesive drug delivery system of oxycodone hydrochloride. Drug Dev Ind Pharm. 2017;43(1):55-9. doi:10.1080/03665823.2015.1101673.

Reddy SUNITHA M, SUREKHA A, ANUSHA G, MALLIKARJUN REDDY S, Girish krishna M. Formulation and evaluation of buccal tablets of verapamil hydrochloride: formulation and evaluation. J Pharm Res. 2011;4:706-9.

Singh A, Singh RK, Shah JN, Mehta TA. Mucoadhesive bilayer tablets of atenolol in marketed dosage forms: an in vitro evaluation. J Pharm Res. 2010;3:335-40. doi:10.1016/j.colsurfb.2015.10.045, PMID: 26547315.

Wang Y, Lian Z, Chen M, Zhang L, Zhou C, Wei W. Biodischarge drug delivery system of diltiazem hydrochloride for improved bioavailability in cardiac therapy. Trop J Pharm Res. 2016;15(1):1375-80. doi:10.14348/tjpharm.2016.157.

NAGA RAJU K, VELMURUGAN S, DEEPIKA B, VINUSHITHA SUNDAR. Formulation and in vitro evaluation of buccal tablets of metoprolol tartrate. Int J Res Pharm Chem. 2011;1:1551-9.

Parodi B, Russo E, Caviglioli G, Califiggi B, Bignardi G. Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride. Drug Dev Ind Pharm. 1996;22(5):445-50. doi:10.3109/03665829609963953.

Madhusudan. Development of mucoadhesive patches for buccal drug delivery system. Int J Pharm Tech Res. 2013;5:80-8.

Singh Chhotec Lal, Srivastava Namita, Monga Munish Garg, Singh Amit. A review: buccal buccoadhesive drug delivery system. World J Pharm Res. 2014;2:1803-7.

Bhanja SB, ELIAH P, MURTHA SK, KAR RK, Panigrahi BB. Buccoadhesive drug delivery system of captopril formulation and in vitro evaluation. J Pharm Res. 2010;3:335-40.

Parodi B, Russo E, Caviglioli G, Calìfiggi B, Bignardi G. Development and characterization of a buccoadhesive dosage form of oxycodone hydrochloride. Drug Dev Ind Pharm. 1996;22(5):445-50. doi:10.3109/03665829609963953.

Raju KN, Velmurugan S, Deepika B, Sundar V. Formulation and in vitro Evaluation of Buccal drug delivery system of tolbutamide. Int J Pharm Sci. 2011;3:239-46.

Yamagar M, Kadam V, Hirlekar R. Design and evaluation of buccoadhesive drug delivery system of metoprolol tartrate. Int J Pharm Tech Res. 2013;5:453-62.

Yamsani Vamshi Vishnu, Gannu Ramesh, Kolli Chandrasekhar, Rao ME Bhanoji ER, Yamsani Madhusudan Rao. Development and in vitro evaluation of buccoadhesive carvedilol tablets. Acta Pharm. 2015;57(2):185-97. doi:10.2478/v10007-015-0015-7, PMID: 15707315.

Shinde Anil Kumar J, Patil Nichil S, JadHAV Pratip S, More Harinath N. Design and development of floating pulsatile drug delivery system of losartan potassium. Int J Adv Pharm. 2020;12:218-27. doi:10.22159/jiap/2020/v12i4/12437607.

Nafee NADEEM Adal, ISMAIL Fatma Ahmed, BoraiA nabila Ahmed, Mohamed, MAHMOOD. Formulation and in vitro evaluation of mucoadhesive buccal tablets of atenolol. J Pharm Res. 2010;3:335-40. doi:10.1016/j.colsurfb.2015.10.045, PMID: 26547315.

Jain NK. Controlled and novel drug delivery. 1st ed. New Delhi: CBS Publishers; 2004. p. 235-9.

Singh TP, Singh RK, Gaur A, Mehta TN. Mucoadhesive buccal patches of venamal hydrochloride: formulation development and characterization. Int J Pharm Sci. 2014;6:234-41.

Prasanth KV, Sirisha M, Mathew Sam T, Mathapan Rinku. Buccal tablet as mucoadhesive drug delivery: an over view. J Pharm Innov. 2008;70(2):175-9. doi:10.4103/0250-474X.144151. PMID: 20046708.

Mohammed FerGANY A, Khedr Hussein. Preparation and in vitro evaluation of the buccal mucoadhesive properties of...
slow-release tablets containing miconazole nitrate. Drug Dev Ind Pharm. 2003;29(3):321-37. doi: 10.1081/ddc-120018206, PMID 12741613.

90. Tiwari D, Sause R, Madan PL, Goldman D. Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations. AAPS PharmSci. 1999;1(3):50-7. doi: 10.1208/ps010313.

91. Sharmin N, Elias-Al-Mamun M, Islam MS, Jallil R. Preparation and characterization of lidocaine double layer buccal tablet using mucoadhesive carbopol® polymers. Dhaka Univ J Pharm Sci. 2011;10(1):29-34. doi: 10.3329/dujps.v10i1.10012.

92. Desai KG, Kumar TM. Preparation and evaluation of a novel buccal adhesive system. AAPS PharmSciTech. 2004;5(3):e35. doi: 10.1208/pt050335, PMID 15760069.

93. Abd-Elbary A, Makky AMA, Tadros MI, AA Alaa-eldin. Development and in vitro evaluation of mucoadhesive bilayer buccal tablets of carvedilol. Int J Pharm Pharm Sci. 2015;7:172-6.

94. Darekar SS, Khadabadi SS, Shahi SR. Formulation and evaluation of bilayer buccal tablet of sumatriptan succinate. Int J Pharm Pharm Sci. 2014;6:469-75.

95. Abouhussein DMN, El-bary AA, Shalaby SH, Nabarawi MAE. Chitosan mucoadhesive buccal films: effect of different casting solvents on their physicochemical properties. Int J Pharm Pharm Sci. 2016;8(9):206-13. doi: 10.22159/ijp.2016.v8i9.12999.

96. Muntaz AM, Ch’ng HS. Design of a dissolution apparatus suitable for in situ release study of triamcinolone acetonide from bioadhesive buccal tablets. Int J Pharm. 1995;121(2):129-39. doi: 10.1016/0378-5173(94)00406-U.

97. Peddapalli H, Chinnala KM, Banala N. Design and in vitro characterization of mucoadhesive buccal patches of duloxetine hydrochloride. Int J Pharm Pharm Sci. 2017;9(2):52-9. doi: 10.22159/ijpps.2017v9i2.13793.

98. Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. Int J Pharm Pharm Sci. 1999;2(2):53-61. PMID 10952770.

99. Han RY, Fang JY, Sung KC, Hu OYP. Mucoadhesive buccal disks for novel nalbuphine prodrug controlled delivery: effect of formulation variables on drug release and mucoadhesive performance. Int J Pharm. 1999;177(2):201-9. doi: 10.1016/s0378-5173(98)00343-3, PMID 10205614.

100. Deasy PB, O’Neill CT. Bioadhesive dosage form for peroral administration of timolol base. Pharm Acta Helv. 1989;64(8):231-5. PMID 2780757.

101. Agaiah Goud B, Kumara Swamy S, Praveen Kumar V. Formulation and evaluation of bioadhesive buccal tablets of simvastatin. Adv Pharmacol Sci. 2011;1:29-38.