Abstract: Let k be an algebraically closed field of characteristic $p > 0$, and V an n-dimensional k-vector space together with a non-degenerate symmetric bilinear form. Let G denote one of the groups $G = \text{SL}(V)$ or $\text{SO}(V)$ where we assume that $p > 2$ if $G = \text{SO}(V)$. Let R denote the coordinate ring of $V_{m,q} := V^\oplus m \oplus V^* \oplus q$ (resp. $V_m := V^\oplus m$) if $G = \text{SL}(V)$ (resp. if $G = \text{SO}(V)$), V^* being the dual of V. The defining representation of G on V induces the diagonal action of G on $V_{m,q}$ (resp. V_m). Let $S = R^G$. In this paper, we show that S is Frobenius split.

1. Introduction

The concept of F-purity was introduced by Hochster-Roberts [6]; the F-purity for a noetherian ring of prime characteristic is equivalent to the splitting of the Frobenius map, when the ring is finitely generated over its subring of p-th powers. It is closely related to the Frobenius splitting property à la Mehta-Ramanathan [10] for algebraic varieties; to make it more precise, the F-split property for an irreducible projective variety X over an algebraically closed field of positive characteristic is equivalent to the F-purity of the ring $\oplus_{n \geq 0} H^0(X; L^n)$ for any ample line bundle L over X (cf.[3],[13],[14]). We feel that it is but appropriate to dedicate this paper to Professor Hochster on the occasion of his sixty-fifth birthday and thus make a modest contribution to this birthday volume.

Let k be an algebraically closed field of characteristic $p > 0$ and let X be a k-scheme. One has the Frobenius morphism (which is only
an \(\mathbb{F}_p \)-morphism) \(F: X \rightarrow X \) defined as the identity map of the underlying topological space of \(X \), the morphism of structure sheaves \(F^\#: \mathcal{O}_X \rightarrow \mathcal{O}_X \) being the \(p \)-th power map. The morphism \(F \) induces a morphism of \(\mathcal{O}_X \)-modules \(\mathcal{O}_X \rightarrow F^* \mathcal{O}_X \). The variety \(X \) is called Frobenius split (or \(F \)-split or, merely, split) if there exists a splitting \(\varphi: F^* \mathcal{O}_X \rightarrow \mathcal{O}_X \) of the morphism \(\mathcal{O}_X \rightarrow F^* \mathcal{O}_X \). Equivalently, \(X \) is Frobenius split if there exists a morphism of sheaves of abelian groups \(\varphi: \mathcal{O}_X \rightarrow \mathcal{O}_X \) such that (i) \(\varphi(f^p g) = f \varphi(g) \), \(f, g \in \mathcal{O}_X \) and (ii) \(\varphi(1) = 1 \). Basic examples of varieties that are Frobenius split are smooth affine varieties, toric varieties (cf. \([1]\)), generalized flag varieties, and Schubert varieties \([10]\). Smooth projective curves of genus greater than 1 are examples of varieties that are not Frobenius split.

Frobenius splitting is an interesting property to study. If \(X \) is Frobenius split, then it is weakly normal (cf. \([1]\), Prop 1.2.5) and reduced (cf. \([1]\), Prop. 1.2.1). Indeed, projective varieties which are Frobenius split are very special. We refer the reader to \([1]\) for further details.

If \(X = \text{Spec}(R) \), then \(X \) is Frobenius split if and only if the Frobenius homomorphism \(R \rightarrow R \) defined as \(a \mapsto a^p \) admits a splitting \(\varphi: R \rightarrow R \) such that \(\varphi(a^p b) = a \varphi(b) \), and \(\varphi(1) = 1 \).

If a linearly reductive group \(G \) acts on a \(k \)-algebra \(R \) which is Frobenius split, then the invariant ring \(R^G \) is Frobenius split (see \([1]\) Exercise 1.1.E(5))). To quote Karen Smith \([13\), p. 571], “The story of \(F \)-splitting and global \(F \)-regularity for quotients by reductive groups in characteristics \(p \) that are not linearly reductive is much more subtle and complicated”. We shall show that although the groups \(\text{SO}(n), n \geq 3 \), and \(\text{SL}(n), n \geq 2 \), are not linearly reductive, it turns out that certain rings of invariants for these groups are Frobenius split.

We state below the main results of this paper.

Let \(k \) be an algebraically closed field of characteristic \(p > 2 \) and \(V \) an \(n \)-dimensional vector space over \(k \) with a symmetric non-degenerate bilinear form. Denote by \(A_m \) the the coordinate ring of \(V_m := V^\oplus m, m \geq 1 \), and consider the action of \(\text{SO}(V) \) on \(A_m \) induced by the diagonal action of \(\text{SO}(V) \) on \(V^\oplus m \). Then

Theorem 1.1. The invariant ring \(A_m^{\text{SO}(V)} \) is Frobenius split for all \(m \geq 1 \).

The group \(\text{SL}(V) \) acts on \(V \), as well as on the dual vector space \(V^* = \text{Hom}_k(V, k) \). Now consider the diagonal action of \(\text{SL}(V) \) on the vector space \(V_{m,q} := V^\oplus m \oplus V^{*\oplus q}, m, q \geq 1 \). This leads to an action of \(\text{SL}(V) \) on the coordinate ring \(A_{m,q} \) of \(V_{m,q} \).
Theorem 1.2. The invariant ring $A_{m,q}^{SL(V)}$ is Frobenius split for any $m, q \geq n$.

We shall now sketch the proofs of the main results (assuming $m, q > n$). Let S be the invariant ring in question. Let R be the ring of invariants under the larger group $\widetilde{G} = GL(V)$ (resp. $\widetilde{G} = O(V)$), we have (cf. [2, 8]) that R is the coordinate ring of a certain determinantal variety in $M_{m,q}$, the space of $m \times q$ matrices (resp. $SymM_m$, the space of symmetric $m \times m$ matrices) with entries in k. Now a determinantal variety in $M_{m,q}$ (resp. $SymM_m$) can be canonically identified (cf. [8]) with an open subset in a certain Schubert variety in $G_{q,m+q}$, the Grassmannian variety of q-dimensional subspaces of k^{m+q} (resp. the symplectic Grassmannian variety, the variety of all maximal isotropic subspaces of a $2m$-dimensional vector space over k endowed with a non-degenerate skew-symmetric bilinear form). Hence we obtain that R is Frobenius split (since Schubert varieties are Frobenius split). Let $X = \text{Spec}(S), Y = \text{Spec}(R)$, and $\pi: X \to Y$, the morphism induced by the inclusion $R \subset S$. When $G = SO(V)$, we show that π is a double cover which is étale over a ‘large’ open subvariety – that is a subvariety whose complement has codimension at least 2. When $G = SL(n)$, we show that restricted to a large open subvariety, π is a G_m bundle. The main theorems are then deduced using normality of S.

Theorem 1.1 can also be deduced from Hashimoto’s work [4], wherein it is shown that if a reductive group G acts on a polynomial ring A over k (of positive characteristic) with good filtration, then the ring A^G of invariants is strongly F-regular. Our Theorem 1.2 does not seem to follow from the results of [4]. Granting the results of [9] and [7]—we don’t need all the results of these papers, only some of the relatively easier ones—the arguments used in our proofs are straightforward and quite elementary; the techniques used in [4] are representation theoretic.

Theorem 1.1 will be proved in §2 and Theorem 1.2 in §3.

2. Splitting $SO(n)$-invariants

Let k be an algebraically closed field of characteristic $p > 0$. Suppose that S is an affine k-algebra which is Frobenius split and that a finite group Γ acts on S as k-algebra automorphisms. Then the invariant ring $R = S^\Gamma$ is Frobenius split provided the order of Γ is not divisible by p (cf. [1] Ex. 1.1.E(5)]). We first obtain a partial converse to this statement in the case when Γ is of order 2.
Assume that char$(k) > 2$. Let S be an affine k-domain and let $\Gamma = \{1, \gamma\} \cong \mathbb{Z}/2\mathbb{Z}$ act effectively on S. Denote by R the invariant subalgebra S^Γ. Then R is an affine k-algebra and S is quadratic and integral over R. Indeed, any $b \in S$ can be expressed as $b = b_0 + b_1$ where $b_0 = (1/2)(b + \gamma(b)) \in R$ and $b_1 = (1/2)(b - \gamma(b))$ satisfies $\gamma(b_1) = -b_1$. Thus, we can choose generators u_1, \ldots, u_s for the R-algebra S to be in the -1 eigenspace of γ. Clearly $u_i^2 = -u_i\gamma(u_i) =: p_i \in R$ for all $i \leq s$. Furthermore,

$$\gamma(u_iu_j) = u_iu_j =: p_{i,j} \in R \text{ for all } i, j \leq s \text{ (with } p_{i,i} = p_i).$$

Observe that $p_{i,j}^2 = p_ip_j$.

We shall assume that S is reduced so that $p_i \neq 0$, for all i. Now let $R_i = R[1/p_i], 1 \leq i \leq n$. Let $S_i = S[1/u_i]$. We claim that $S_i = R_i[u_i]$. To see this, first observe that $R_i[u_i] \subset S[1/u_i]$, since $1/p_i = (1/u_i)^2 \in S[1/u_i]$. To show that $S[1/u_i] \subset R_i[u_i]$, it suffices to show that $u_j \in R_i[u_i]$ for all j and $(1/u_i) \in R_i[u_i]$. Indeed, $1/u_i = u_i/u_i^2 = u_i/p_i \in R_i[u_i]$ and so $u_j = p_{i,j}/u_i \in R_i[u_i]$.

Write $X = \text{Spec}(S), Y = \text{Spec}(R)$ and let $\pi : X \longrightarrow Y$ be the morphism (induced by the inclusion $R \subset S$). As above, let $S_i = S[1/u_i]$, and let $U_i = \text{Spec}(S_i) \subset X$ and let $U := \bigcup_{1 \leq i \leq s} U_i$; it is the full inverse image under π of $\bigcup_{1 \leq i \leq s} \text{Spec}(R_i)$. It is readily verified that $\pi|U : U \longrightarrow \pi(U)$ is étale. Indeed, S_i is a free R_i module with basis $\{1, u_i\}$ and $\det(u_i) = -p_i \neq 0$ and so $\pi|U_i$ is étale. Hence $\pi|U$ is étale.

On the other hand, if $y \in Y$ is a closed point such that $p_i(y) = 0$ for all $i \leq s$, then the fibre $f^{-1}(y) = \text{Spec}(S_y \otimes_{R_y} k)$ is the scheme whose coordinate ring is $S_y \otimes_{R_y} k = k[u_1, \ldots, u_s]/(u_i^2, 1 \leq i \leq s)$. Here R_y is the local ring at y. Thus $f^{-1}(y)$ is non-reduced. It follows that the ramification locus of π equals $Y \setminus \pi(U)$. (See [12], §III.10, Theorem 3.)

Proposition 2.1. Let k be an algebraically closed field of characteristic $p > 2$. Let S be an affine normal domain over k acted on by $\Gamma \cong \mathbb{Z}/2\mathbb{Z}$ and let $R := S^\Gamma$ be Frobenius split. Suppose that the ramification locus of the double cover $\pi : \text{Spec}(S) \longrightarrow \text{Spec}(R)$ has codimension at least 2 in $\text{Spec}(R)$. Then, any splitting $\varphi : R \longrightarrow R$ extends uniquely to a splitting $\psi : S \longrightarrow S$.

Proof. We use the notations introduced above.

Since X is normal and the codimension of the the ramification locus of π is at least 2, it suffices to show that $U = \bigcup_{1 \leq i \leq s} U_i$ is Frobenius split (cf. [1], Lemma 1.1.7,(iii)).
Let \(\varphi : R \to R \) be a splitting of \(Y = \text{Spec}(R) \). First, we shall extend \(\varphi \) to a splitting \(\psi_i : S_i \to S_i \) of \(U_i = \text{Spec}(S_i)(= \text{Spec}(R_i[u_i])) \) for each \(i \) and verify that these splittings agree on the overlaps \(U_i \cap U_j \) for \(1 \leq i, j \leq s \). Thus we will obtain a splitting of \(U = \bigcup_{1 \leq i \leq s} U_i \). By normality of \(X \) and the hypothesis on the codimension of the ramification locus, we will conclude that this splitting extends to a splitting of \(X \). Next, we shall establish the uniqueness of the extension.

Recall that \(\{1, u_i\} \) is an \(R_i \)-basis for \(S_i \). Since \(u_i = u_i^{-p}p_i^{(1+p)/2} \) on \(U_i \), if \(\psi_i : S_i \to S_i \) is any splitting of \(U_i \) which extends the splitting \(\varphi_i \) of \(R_i \) defined by \(\varphi \), we must have \(\psi_i(au_i) = \psi_i((1/u_i)p_i(p+1)/2) = (1/u_i)\varphi_i(p_i^{(p+1)/2}) \). By additivity, we must have

\[
\psi_i(au_i + b) = (1/u_i)\varphi_i(p_i^{(p+1)/2}) + \varphi_i(b) = (u_i/p_i)\varphi_i(p_i^{(p+1)/2}) + \varphi_i(b)
\]

where \(a, b \in R_i \). Thus the extension \(\psi_i \), if it exists, is unique.

We now define \(\psi_i \) by the above equation and claim that \(\psi_i \) is indeed a splitting of \(S_i \). First, observe that \(\psi_i(1) = 1 \), by the very definition of \(\psi_i \).

Now, for any \(x, y, a \in R_i \), we have

\[
\psi_i((xu_i + y^paui) = \psi_i(x^pp_i^{(p+1)/2}a + y^paui) = x\varphi(p_i^{(p+1)/2})a + y\varphi(aui) = x(p_i/u_i)\psi_i(aui) + y\varphi(aui) = xu_i\psi_i(aui) + y\psi(aui) = (xu_i + y)\varphi(aui)
\]

An entirely similar (and easier) computation shows that

\[
\psi_i((xu_i + y)^p) = (xu_i + y)\psi_i(b),
\]

completing the verification that \(\psi_i \) is a splitting.

We verify, by another straightforward computation, that these \(\psi_i \) agree on the overlaps \(U_i \cap U_j \). Indeed, writing \(u_j = u_ip_{i,j}/p_i \), we have

\[
\psi_i(u_j) = \psi_i(u_ip_{i,j}/p_i) = (u_i/p_i)\varphi((p_{i,j}/p_i)p_i^{(p+1)/2}) = (u_i/p_i)\varphi(p_{i,j}p_i^{(p+1)/2})
\]

Since \(p_i = p_{i,j}^2/p_j \) on \(U_i \cap U_j \), we have

\[
\varphi(p_{i,j}p_i^{(p+1)/2}) = \varphi(p_{i,j}^p(p_i/p_{i,j})^{(p-1)/2}) = p_{i,j}\varphi(p_j^{(1-p)/2}) = (p_{i,j}/p_j)\varphi(p_j^{(p+1)/2})
\]
Substituting in the above expression for \(\psi_i(u_j) \) we get

\[
\psi_i(u_j) = (u_ip_{i,j}/(p_{i}p_{j})) \varphi(p_j^{(p+1)/2}) = (u_j/p_j) \varphi(p_j^{(p+1)/2}) = \psi_j(u_j)
\]

This implies that the extensions \(\{\psi_i\} \) patch to yield a well-defined splitting on \(U \) as claimed. As observed above, the normality of \(X \) and the hypothesis on the codimension of the ramification locus implies that this splitting extends to a unique splitting \(\psi : S \to S \).

Finally, if \(\psi' \) is another splitting of \(X \) which also extends \(\varphi \), then \(\psi' \) and \(\psi \) agree on \(U_i \) (for any \(i \)) as already observed. As \(X \) is irreducible, \(U_i \) is dense in \(X \) and we conclude that \(\psi' = \psi \).

As a corollary, we obtain the following

Theorem 2.2. Let \(\pi : X \to Y \) be a double cover of a Noetherian scheme whose ramification locus has codimension at least 2. Suppose that \(X \) is reduced, irreducible and normal and that \(Y \) is Frobenius split, then \(X \) is Frobenius split.

Proof. Cover \(X \) by finitely many affine patches \(X_\alpha \). Let \(Y_\alpha := \pi X_\alpha \). Then each \(\pi|_{X_\alpha} \) satisfies the hypotheses of the above proposition. Let \(\varphi \) be a splitting of \(Y \) and let \(\psi_\alpha \) be the unique splitting of \(X_\alpha \) that extends the splitting \(\varphi|_{Y_\alpha} \). The \(\psi_\alpha \)'s agree on overlaps and hence define a unique splitting of \(X \) which 'extends' \(\varphi \).

We now turn to proof of Theorem 1.1.

Proof of Theorem 1.1. Denote by \(S \) the ring of \(\text{SO}(V) \)-invariants of \(A_m \), where \(A_m \) is the coordinate ring of \(V_m \). Let \(R \) be the ring of \(\text{O}(V) \)-invariants.

We shall assume that \(m > n \). By [2, 8] we have that \(Y := \text{Spec}(R) \) is the determinantal variety \(D_n(Sym M_m) \) consisting of all matrices in \(Sym M_m \) (the space of symmetric \(m \times m \) matrices with entries in \(k \)) of rank at most \(n \); further, we have (cf. [8]) an identification of \(D_n(Sym M_m) \) with an open subset of a certain Schubert variety in the Lagrangian Grassmannian variety (of all maximal isotropic subspaces of a \(2m \)-dimensional vector space over \(k \) endowed with a non-degenerate skew-symmetric bilinear form). Hence we obtain that \(Y \) is Frobenius split (since Schubert varieties are Frobenius split (cf. [10])).

Observe that \(\Gamma := \text{O}(n)/\text{SO}(n) \cong \mathbb{Z}/2\mathbb{Z} \) acts on \(S \) (the subring of \(\text{SO}(V) \)-invariants of \(A_m \)) and that \(S^\Gamma \) equals \(R \). As above, let \(X := \text{Spec}(S) \), and \(\pi : X \to Y \) be the morphism induced by the inclusion \(R \subset S \). We need only verify the hypotheses of Theorem 2.2. It is well-known that \(S \) is an affine normal domain. It remains to verify that
the codimension of the branch locus is at least two. This was proved in [7]. In fact, the ramification locus of Y equals the singular locus of Y, but this more refined assertion is not relevant here. Since Y is normal it follows that the codimension of the ramification locus is at least 2. Therefore, by Theorem 2.2, X is Frobenius split.

The case $m = n$ is isolated separately as Lemma 2.3 below. When $m < n$, it is easy to see that $S = R$. Again, R is a polynomial algebra over k and hence S is Frobenius split. □

Assume that $m = n$. In this case $R = k[y_{i,j} : 1 \leq i \leq j \leq n]$ is a polynomial ring, being the ring of polynomial functions on the space of $n \times n$ symmetric matrices. As an R-algebra, $S = R[u]/(u^2 - f)$, where f denotes the determinant function of the symmetric $n \times n$ matrix whose entry in position (i, j) for $1 \leq i \leq j \leq n$ is $y_{i,j}$.

Lemma 2.3. Let $m = n$. The ring S of $SO(V)$-invariants is Frobenius split in this case also.

Proof. There is a natural identification of Spec(R) with an affine patch of the symplectic Grassmannian and the vanishing locus of f under this identification becomes an open part of a Schubert variety [8, 7]. Thus by [10] (see also [1]), there exists a splitting of Spec(R) that compatibly splits Spec($R/(f)$). Let φ be such a splitting. Continue to denote by φ the restriction of φ to the open part Spec($R/(f)$). Arguing as in the proof of Proposition 2.1 above, we may ‘lift’ the restriction φ to a splitting (also denoted φ) of Spec($R[1/f]$). We claim that φ maps S to S and hence extends to a splitting of Spec(S). Indeed, a general element of S is of the form $au + b$ with a, b in R, so that $\varphi(au + b) = \varphi(\frac{au^{p+1}}{u} + b) = \frac{\varphi(a f^{(p+1)/2})}{u} + \varphi(b)$. Since φ compatibly splits the vanishing locus of f, it follows that $\varphi(a f^{(p+1)/2})$ belongs to the ideal (f). Writing $\varphi(a f^{(p+1)/2}) = c f$, we have $\varphi(au + b) = \frac{cf}{u} + \varphi(b) = cu + \varphi(b) \in S$. □

We conclude this section with the following remarks.

Remark 2.4. (i) The condition on codimension of U in Proposition 2.1 will be satisfied if S is generated over R by two or more elements u_i such that there exist u_i, u_j such that the supports D_i and D_j of the reduced scheme defined by $u_i = 0$ and $u_j = 0$ do not have any component in common.

(ii) Theorem 2.2 is not valid when the hypothesis on the codimension of the ramification locus is not satisfied. For example, if $\Gamma \cong \mathbb{Z}/2\mathbb{Z}$ is generated by the involution of a hyperelliptic curve X of genus $g \geq 2$, then the quotient is a smooth projective curve which is Frobenius
split. However, X is not split since ω_X is ample but $H^1(X; \omega) \cong k$, whereas higher cohomologies for ample line bundles over Frobenius split projective varieties vanish.

(iii) We do not know if Theorem 2.2 remains valid if Γ is any finite group whose order is prime to the characteristic p of k, even in the case when Γ is cyclic.

(iv) One has an isomorphism of $\text{SL}(2)$ with $\text{SO}(3)$ such that the $\text{SO}(3)$ action on $V = k^3$ corresponds to the conjugation action of $\text{SL}(2)$ on trace zero 2×2 matrices. In this case the Frobenius splitting property of A_m was proved by Mehta-Ramadas [11, Theorem 6]. It should be noted that when $\dim V = 3$, the completion of the stalk at the origin in A_m is isomorphic to the completion of the stalk at the point corresponding to the class of the trivial rank 2 vector bundle in the moduli space of equivalence classes of semi-stable, rank 2 vector bundles with trivial determinant on a smooth projective curve of genus $m > 2$ (see [11]).

3. Splitting $\text{SL}(n)$ invariants

In this section we shall establish Theorem 1.2. Let V be an n dimensional vector space over an algebraically closed field k of characteristic $p \geq 2$ and let V^* denote its dual. Let $V_{m,q} := V^{\oplus m} \oplus V^{\ast \oplus q}$, and let A denote the ring of regular functions on $V_{m,q}$. By fixing dual bases for V and V^*, we shall view elements of V and V^* as row and column vectors respectively, so that $V^{\oplus m}$ (resp. $V^{\ast \oplus q}$) is identified with the space $M_{m,n}$ of $m \times n$ matrices (resp. the space $M_{n,q}$ of $n \times q$ matrices) over k; further, $\text{GL}(V)$ gets identified with $\text{GL}_n(k)$ (the group of invertible $n \times n$ matrices over k). In the sequel, we shall denote $\text{GL}_n(k)$ by just $\text{GL}(n)$. Then the action of $\text{GL}(V)$ on $V^{\oplus m}$ gets identified with the multiplication on the right of $M_{m,n}$ by $\text{GL}(n)$. Similarly, the action of $g \in \text{GL}(V)$ on $V^{\ast \oplus q}$ gets identified with the multiplication on the left of $M_{n,q}$ by g^{-1}. The diagonal action of $\text{GL}(V)$ on $V^{\oplus m} \oplus V^{\ast \oplus q}$ is therefore defined as $(u, \xi).g = (ug, g^{-1}\xi)$ where $g \in \text{GL}(n)$ and $(u, \xi) \in M_{m,q} := M_{m,n} \times M_{n,q}$. We identify A with the coordinate ring of $M_{m,q}$.

We denote by R and S the rings of invariants $A^{\text{GL}(n)}$ and $A^{\text{SL}(n)}$ respectively. Let $Y = \text{Spec}(R)$ and $X = \text{Spec}(S)$. Note that Y and X are the GIT quotients $M_{m,q}/\!/ \text{GL}(n)$ and $M_{m,q}/\!/ \text{SL}(n)$ respectively.

Let $m, q \geq n$. By [2, 8] we have that Y is the determinantal variety $D_n(M_{m,q})$ consisting of all matrices in $M_{m,q}$ (the space of $m \times q$ matrices with entries in k) of rank at most n; further, we have (cf. [8])
an identification of $D_u(M_{m,q})$ with an open subset of a certain Schubert variety in the Grassmannian variety (of q-dimensional subspaces of k^{m+q}). Hence we obtain that Y is Frobenius split (since Schubert varieties are Frobenius split). The multiplication map $\mu: M_{m,q} \to M_{m,q}$ factors through Y; further, under $\pi: X \to Y$ (induced by the inclusion $R \subset S$), we have, $\pi([u, \xi]) = u\xi \in M_{m,q}$ where $[u, \xi] \in X$ is the image of $(u, \xi) \in M_{m,q}$ under the GIT quotient $M_{m,q} \to X$.

Let $I(n, m)$ denote the set of all n-element subsets I of $\{1, 2, \cdots, m\}$. Any such I determines a regular function $u_I: M_{m,q} \to k$ which maps (u, ξ) to the determinant of the $n \times n$ submatrix $u(I)$ of $u \in M_{m,n}$ with column entries given by I. Clearly u_I is invariant under the action of $\text{SL}(n)$ on $M_{m,q}$ and hence yields a regular function u_I on X.

We define $\xi(J)$ and ξ_J for $J \in I(n, q)$ analogously; ξ_J is also an $\text{SL}(n)$-invariant.

We have, $u_I\xi_J = := p_{I,J} \in R$ for all $I \in I(n, m), J \in I(n, q)$; indeed $p_{I,J}([u, \xi])$ is just the determinant of the $n \times n$ submatrix $u\xi \in M_{m,q}$ with row and column indices given by I and J respectively. It is shown in [9], among other things, that S is generated as an R-algebra by $u_I, \xi_J, I \in I(n, m), J \in I(n, q)$, the ideal of relations being generated by $u_I\xi_J - p_{I,J}$, $I \in I(n, m), J \in I(n, q)$ together with certain quadratic relations among the u_I's and certain quadratic relations among the ξ_J's. Further, in [9], a standard monomial basis is constructed for S: as a particular consequence, we have that each u_I (resp. ξ_J) is algebraically independent over R for $I \in I(n, m)$ (resp. $J \in I(n, q)$).

For $K \in I(n, m), L \in I(n, q)$, let

$$R_{K,L} = R[1/p_{K,L}], Y_{K,L} = \text{Spec}(R_{K,L})$$

For a given $I \in I(n, m), J \in I(n, q)$, let

$$Y_I = \bigcup_{J' \in I(n, q)} Y_{I,J'}, Y_J = \bigcup_{I' \in I(n, m)} Y_{I',J}$$

Note that for $I \in I(n, m)$, any $Y_{I,J'}$ is contained in Y_I; similarly, for $J \in I(n, q)$, any $Y_{I',J}$ is contained in Y_J.

Set $X_I = \pi^{-1}(Y_I) \subset X$ and $X_J = \pi^{-1}(Y_J) \subset X$. Note that u_I (resp. ξ_J) is non-zero on X_I (resp. X_J). Denote by $f_I: X_I \to Y_I \times k^*$ the morphism $f_I = (\pi|X_I, u_I|X_I)$, and by $f_J: X_J \to Y_J \times k^*$ the morphism $f_J = (\pi|X_J, \xi_J|X_J)$.

Lemma 3.1. The morphisms $f_I: X_I \to Y_I \times k^*$ and $f_J: X_J \to Y_J \times k^*$ are isomorphisms for any $I \in I(n, m), J \in I(n, q)$.
Proof. We shall prove that f_I is an isomorphism, the proof in the case of f_J being the same.

Let $X_{I,J} = \pi^{-1}(Y_{I,J})$; then $X_{I,J}$ equals $\text{Spec}(S_{I,J})$ (where $S_{I,J} = S[1/p_{I,J}]$) and $X_{I,J}$ is contained in X_I. The morphism $f_{I,J}: X_{I,J} \to Y_{I,J}$ defined by the restriction of f_I is induced by the $R_{I,J}$-algebra map $f_{I,J}^*: R_{I,J}[t, t^{-1}] \to S_{I,J}$ which maps t to u_I. Note that $p_{I,J} = u_I \xi_J$ implies that u_I is invertible in $S_{I,J}(= S[1/p_{I,J}])$.

We must show that

1. $f_{I,J}^*$ is an isomorphism of k-algebras
2. $f_{I,J}$ and $f_{I,J'}$ agree on the overlap $X_{I,J} \cap X_{I,J'}$ for any two $J, J' \in I(n,m)$.

1. Note that $u_{I'} = u_I u_{I'} \xi_J / p_{I,J} = u_I p_{I,J'} / p_{I,J} = f_{I,J}^*(p_{I,J'} / p_{I,J} t)$. Hence $u_{I'}$ is in the image of $f_{I,J}^*$ for any $I' \in I(n,m)$. Similarly $\xi_{I'}$ is also in the image of $f_{I,J}^*$ for any $J' \in I(n,m)$. Therefore $f_{I,J}^*$ is surjective. Now suppose that $P(t) \in R_{I,J}[t, t^{-1}]$ is in the kernel of $f_{I,J}^*$. We may assume that $P(t)$ is a polynomial in t and that the coefficients of $P(t)$ are actually in R. Then $0 = f_{I,J}^*(P(t)) = P(u_I)$. Since $X_{I,J}$ is open in X, which is irreducible, the we see that the equation $P(u_I) = 0$ must hold in S. This contradicts the fact that u_I is algebraically independent over R (cf. [9],Theorem 6.06,(3)). Hence $f_{I,J}^*$ is an isomorphism.

2. It is evident that $f_{I,J}^*(t) = u_I \in S_{I,J}$ and $f_{I,J'}^*(t) = u_I \in S_{I,J'}$ both restrict to the same regular function, namely $u_I|_{X_{I,J} \cap X_{I,J'}}$, on the overlap $X_{I,J} \cap X_{I,J'} = \text{Spec}(S[1/p_{I,J}, 1/p_{I,J'}])$. It follows that $f_{I,J}$ and $f_{I,J'}$ agree on $X_{I,J} \cap X_{I,J'}$. This completes the proof that f_I is an isomorphism.

Observe that, if $J, J' \in I(n,m)$, then $\xi_J / \xi_{J'} \in S[1/\xi_{J'}]$ defines a regular function on $Y_{J'}$. This is because, on $Y_{I,J'}$, $\xi_J / \xi_{J'} = (u_I \xi_J) / (u_I \xi_{J'}) = p_{I,J} / p_{I,J'}$. It is immediately seen that, on $Y_{I,J} \cap Y_{I,J'}$, the two regular functions $p_{I,J} / p_{I,J'}$ and $p_{I,J'} / p_{I,J'}$ agree. Therefore we conclude that $\xi_J / \xi_{J'}$ is a well-defined regular function on $Y_{J'}$. Clearly it is invertible on $Y_J \cap Y_{J'}$. Similar statements concerning $u_I / u_{I'}$ hold for any $I, I' \in I(n,m)$.

Notation: Let $m, q \geq n$.

Denote by \mathcal{I} the disjoint union $I(n,m) \bigsqcup I(n,q)$. We set

$$\lambda_{\beta,\alpha} = \begin{cases} u_\alpha / u_\beta & \text{if } \alpha, \beta \in I(n,m), \\ \xi_\beta / \xi_\alpha & \text{if } \alpha, \beta \in I(n,q), \\ p_{\alpha,\beta} & \text{if } \beta \in I(n,q), \alpha \in I(n,m), \\ 1 / p_{\beta,\alpha} & \text{if } \beta \in I(n,m), \alpha \in I(n,q). \end{cases}$$
Consider the covering \(\{Y_\alpha\}_{\alpha \in I} \) of the open subvariety \(Y_0 := \bigcup_{\alpha \in I} Y_\alpha \subset Y \). The cocycle condition \(\lambda_{\alpha, \beta} \lambda_{\beta, \gamma} = \lambda_{\alpha, \gamma} \) is readily verified for any \(\alpha, \beta, \gamma \in I \). Thus we obtain a \(\mathbb{G}_m \)-bundle over \(Y_0 \); call it \(E \).

Let \(X_0 := \bigcup_{\alpha \in I} X_\alpha \).

Lemma 3.3. Assume that \(m, q \geq n \). With the above notations, the total space of the \(\mathbb{G}_m \)-bundle \(E \) over \(Y_0 \) is isomorphic to the open subvariety \(X_0 := \bigcup_{\alpha \in I} X_\alpha \subset X \).

Proof. The total space of the \(\mathbb{G}_m \)-bundle corresponding to \(D \) is \(\prod_{\alpha \in I} Y_\alpha \times k^*/\sim \) where \((\pi([u, \xi]), t) \in Y_\alpha \times k^* \) is identified with \((\pi([u; \xi]), \lambda_{\beta, \alpha}(\pi([u, \xi]), t)) \in Y_\beta \times k^* \) whenever \(\pi([u, \xi]) \in Y_\alpha \cap Y_\beta \). One has the following commuting diagram for any \(\alpha, \beta \in I \):

\[
\begin{array}{ccc}
Y_\alpha \times k^* & \supset & (Y_\alpha \cap Y_\beta) \times k^* \\
X_\alpha & \supset & X_\alpha \cap X_\beta \\
& \uparrow f_\alpha & \uparrow f_\beta \\
& X_\alpha \cap X_\beta & \subset X_\beta
\end{array}
\]

where \(f_\alpha \) is the restriction of \(f_\alpha \). Since, by Lemma 3.1, the \(f_\alpha \)'s are isomorphism of varieties, it follows that that the total space of the \(\mathbb{G}_m \)-bundle over \(Y_0 \) is isomorphic to the union \(X_0 := \bigcup_{\alpha \in I} X_\alpha \subset X \).

We shall now compute the codimension of \(Z := X - X_0 \). We give the reduced scheme structure on \(Z \). It is evident that \(Z \) is defined by the equations \(p_{1,I} = 0, \forall I \in I(n,m), J \in I(n,q) \). We claim \(Z = Z_u \cup Z_\xi \) where \(Z_u \) is the closed subvariety with reduced scheme structure defined by the equations \(u_I = 0, \forall I \in I(n,m) \) and \(Z_\xi \), by the equations \(\xi_J = 0, \forall J \in I(n,q) \). Clearly \(Z_u \cup Z_\xi \subset Z \). On the other hand, if \([u, \xi] \) is not in \(Z_u \cup Z_\xi \), then \(u_I([u, \xi]) \neq 0 \) for some \(I \) and \(\xi_J([u, \xi]) \neq 0 \) for some \(J \). This implies that \(p_{1,I}([u, \xi]) \neq 0 \). Hence \([u, \xi] \in X_0 \). Thus \(Z_u \cup Z_\xi = Z \).

Lemma 3.3. Let \(m > n \) (resp. \(q > n \)). Then the codimension of \(Z_u \) (resp. \(Z_\xi \)) in \(X \) is at least 2.

Proof. Consider the closed subvariety \(M_u := D_{n-1}(M_{m,n}) \times M_{n,q} \subset \mathcal{M}_{m,q} \) (with reduced scheme structure). We have,

\[
dim M_u = (n-1)(m+1) + nq \quad \text{(note the dimension of the determinantal variety \(D_t(M_{r,s}) \) (consisting of \(r \times s \) matrices of rank at most \(t \)) equals \(t(r+s-t) \) (cf. \[8\])).}
\]

Clearly \(M_u \) is stable under the \(SL(n) \)-action and \(M_u/SL(n) = Z_u \). We shall find an open subset \(Z_{u,0} \) of \(Z_u \) such that \(SL(n) \) acts freely on the inverse image of \(Z_{u,0} \) under the quotient morphism \(\eta: M_u \longrightarrow Z_u \) and \(\eta^{-1}(Z_{u,0})/SL(n) = Z_{u,0} \). It would then follow that \(\dim(Z_u) = \dim(\eta^{-1}(Z_u)) - \dim(SL(n)) = (n-1)(m+1) + nq - (n^2 - 1) = (m+n)q - (n^2 - 1) - (m-n+1) = \dim(X) - (m-n+1) \leq \dim(X) - 2 \) (note that \(\dim X = (m+n)q - (n^2 - 1) \) (cf. \[9\])).
Define
\[W_u = D_n(M_{m,n}) \times M_{n,q}^0 \]
where \(M_{n,q}^0 := \{ \xi \in M_{n,q} \mid \xi_J(\xi) \neq 0, \text{ for some } J \in I(n,q) \} \). Then \(W_u \) is the inverse image of
\[Z_{u,0} := \{ [u, \xi] \mid \xi_J(\xi) \neq 0 \} \]
under the quotient morphism \(\eta: M_u \to Z_u \). The assertion that the \(\text{SL}(n) \)-action is free on \(W_u \) follows from the fact that the \(\text{SL}(n) \)-action on \(M_{n,q}^0 \) is free.

An entirely similar argument shows that \(Z_\xi \) has codimension at least 2, and consequently codimension of \(Z \) in \(X \) is at least 2.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let \(m, q > n \). As already observed, we have that \(Y = D_n(M_{m,q}) \) can be identified with an open subset of a certain Schubert variety in the Grassmann variety \(\text{SL}(m + q)/P_q \) of \(q \)-dimensional vector subspaces in \(k^{m+q} \). Since Schubert varieties in the Grassmann variety are Frobenius split, it follows that \(Y \) is Frobenius split. Since \(Y_0 \) is open in \(Y \), it follows that it is also Frobenius split. The variety \(X_0 \), being the total space of a \(\mathbb{G}_m \)-bundle over \(Y_0 \), is Frobenius split by [1], Lemma 1.1.11. Now \(X \) being normal and codimension of \(X_0 \) in \(X \) being at least 2, it follows that \(X \) is Frobenius split (cf. [1], Lemma 1.1.7, (iii)).

If \(m, q < n \), then \(X = Y = M_{m,q} \) and hence Frobenius split. The case \(m = n \) is isolated separately as Lemma 3.4 below.

Assume that \(q = n = m \). In this case \(Y = M_{n,n} \). Denote the \((i,j)\)-th coordinate function on \(Y \) by \(y_{i,j} \). The set \(I(n,m) \) and \(I(n,q) \) are singletons and so \(S = R[u, \xi]/(u\xi - f) \) where \(f \) is the determinant function on \(Y = M_{m,q} \).

Lemma 3.4. Let \(q = n = m \). The ring \(S \) of \(\text{SL}(V) \)-invariants is Frobenius split in this case also.

Proof. Let \(\varphi \) be a splitting of \(\text{Spec}(R) \). Continue to denote by \(\varphi \) the restriction of \(\varphi \) to the open part \(\text{Spec}(R[1/f]) \). We can ‘lift’ \(\varphi \) to the \(\mathbb{G}_m \)-bundle \(\text{Spec}(R[1/f][u, u^{-1}]) \) (over \(\text{Spec}(R[1/f]) \)) as follows: define \(\varphi(a + \sum b_iu^i + \sum c_ju^{-j}) := \varphi(a) + \sum \varphi(b_i)u^{i/p} + \sum \varphi(c_j)u^{-j/p} \), where the summations are over positive integers and \(u^{i/p} \) (respectively \(u^{-j/p} \)) is interpreted to be 0 unless \(i \) (respectively \(-j \)) is an integral multiple of \(p \). Observe that \(R[1/f][u, u^{-1}] = S[1/f] \), so we have a splitting of \(\text{Spec}(S[1/f]) \) which we still denote \(\varphi \). We claim that \(\varphi \) maps \(S \) to \(S \) and hence extends to a splitting of \(\text{Spec}(S) \). Indeed, a general element \(s \) of \(S \)
is of the form $a + \sum b_i u^i + \sum c_j \xi^j$ with a, b_i, and c_j in R, so that $\varphi(s) =
abla(a + \sum b_i u^i + \sum c_j f^j u^{-j}) = \varphi(a) + \sum \varphi(b_i) u^{i/p} + \sum \varphi(c_j f^j) u^{-j/p}$. Rewriting $\varphi(c_j f^j) u^{-j/p}$ as $\varphi(c_j) f^{j/p} u^{-j/p} = \varphi(c_j) \xi^{j/p}$, we see that $\varphi(s)$ belongs to S.

Remark 3.5. In the case when one of $\{m, q\}$ being $< n$, and the other $\geq n$, we expect the ring of invariants to be Frobenius split though at the moment, we do not have a proof of this assertion!

Acknowledgments: Part of this work was carried out at Abdus Salam International Centre for Theoretical Physics, Trieste, during the visit of all the three authors in April 2006. The authors gratefully acknowledge the financial support and the hospitality of the ICTP.

References

[1] M. Brion and S. Kumar, *Frobenius splitting methods in geometry and representation theory*, Prog. Math. 231 (2005), Birkhäuser, Basel.

[2] C. De Concini and C. Procesi *A characteristic-free approach to invariant Theory*, Adv. Math., 21 (1976), 330-354.

[3] N. Hara and K.-I. Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities J. Algebraic Geom., 11 (2002), 363–392.

[4] M. Hashimoto, Good filtrations of symmetric algebras and strong F-regularity of invariants subrings, Math. Z. 236 (2001), 605-623.

[5] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay Advances in Math., 13 (1974), 115–175.

[6] M. Hochster and J. L. Roberts, The purity of the Frobenius and local cohomology Advances in Math., 21 (1976), 117–172.

[7] V. Lakshmibai, K. N. Raghavan, P. Sankaran, and P. Shukla, Standard monomial bases, moduli spaces of vector bundles, and invariant theory. Transform. Groups 11 (2006), 673–704.

[8] V. Lakshmibai and C. S. Seshadri, Geometry of G/P–II. The work of De Concini and Procesi and the basic conjectures, Proc. Ind. Acad. Sci. A (Math. Sci.) 87 (1978), 1–54.

[9] V. Lakshmibai and P. Shukla, Standard monomial bases and geometric consequences for certain rings of invariants, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 9–36.

[10] V. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122 (1985), 27–40.

[11] V. Mehta and T.R. Ramadas, Moduli of vector bundles, Frobenius splitting, and invariant theory, Ann. Math. 144 (1996), 269–313.

[12] D. Mumford, *Red book of varieties and schemes*, LNM-1358, Springer-Verlag, Berlin.

[13] K. E. Smith, Vanishing, singularities and effective bounds via prime characteristic local algebra. *Algebraic geometry—Santa Cruz 1995*, 289–325, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.

[14] K. E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572.
DEPT. OF MATHEMATICS, NORTHEASTERN UNIV., BOSTON, MA., U.S.A

E-mail address: lakshmibai@neu.edu

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI 600113, INDIA.

E-mail address: knr@imsc.res.in

THE INSTITUTE OF MATHEMATICAL SCIENCES, CHENNAI 600113, INDIA.

E-mail address: sankaran@imsc.res.in