COVID-19 prevalence estimation by random sampling in population - Optimal sample pooling under varying assumptions about true prevalence

Ola Brynildsrud (✉ olbb@fhi.no)

Research article

Keywords: COVID-19, sample pooling, RT-PCR

DOI: https://doi.org/10.21203/rs.3.rs-32082/v2

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The number of confirmed COVID-19 cases divided by population size is used as a coarse measurement for the burden of disease in a population. However, this fraction depends heavily on the sampling intensity and the various test criteria used in different jurisdictions, and many sources indicate that a large fraction of cases tend to go undetected. Methods: Estimates of the true prevalence of COVID-19 in a population can be made by random sampling and pooling of RT-PCR tests. Here I use simulations to explore how experiment sample size and degrees of sample pooling impact precision of prevalence estimates and potential for minimizing the total number of tests required to get individual-level diagnostic results.

Results: Sample pooling can greatly reduce the total number of tests required for prevalence estimation. In low-prevalence populations, it is theoretically possible to pool hundreds of samples with only marginal loss of precision. Even when the true prevalence is as high as 10% it can be appropriate to pool up to 15 samples. Sample pooling can be particularly beneficial when the test has imperfect specificity by providing more accurate estimates of the prevalence than an equal number of individual-level tests.

Conclusion: Sample pooling should be considered in COVID-19 prevalence estimation efforts.

Background

It is widely accepted that a large fraction of COVID-19 cases go undetected. A crude measure of population prevalence is the fraction of positive tests at any given date. However, this is subject to large ascertainment bias since tests are typically only ordered from symptomatic cases, whereas a large proportion of infected might show little to no symptoms [1,2]. Non-symptomatic infections can still shed the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and are therefore detectable by reverse transcriptase polymerase chain reaction (RT-PCR)-based tests. It is therefore possible to test randomly selected individuals to estimate the true disease prevalence in a population. However, if the disease prevalence is low, very little information is garnered from each individual test. Under such situations it can be advantageous to pool individual patient samples into a single pool [3-5]. Pooling strategies, also called group testing, effectively increase the test capacity and reduces the required number of RT-PCR-based tests. For SARS-CoV-2 pooling has been estimated to potentially reduce costs by 69% [6], use ten-fold fewer tests [7] and clearing 20 times the number of people from isolation with the same number of tests [8]. Note that I will not discuss pooling of SARS-CoV-2 antibody-based tests, since there is currently not enough information about how pooling affects test parameters. However, sample pooling has been successfully used for seroprevalence studies for other diseases such as human immunodeficiency virus (HIV) [9-11].

Methods
Due to technological limitations, the Methods section is only available as a download in the supplementary files section.

Results

Estimates of prevalence

In the following, I use simulations to calculate the central 95% estimates of using tests with varying sensitivity (0.7 and 0.95) and specificity (0.99 and 1.0) (Figs. 2-5). These estimates are based on the initial pooled tests only, not the follow-up tests on sub-pools that allow for patient-level diagnosis. (Including results from these samples would allow the precision from the pooled test estimates to approach those of testing individually.) More samples are associated with a distribution of more narrowly centered around the true value, while higher levels of pooling are generally associated with higher variance in the estimates. The latter effect is less pronounced in populations with low prevalence. For example, if the true population prevalence is 0.001 and a total of 500 samples are taken from the population, the expected distribution of is nearly identical whether samples are run individually (k=1) or whether they are run in pools of 25 (Figs. 2 or 4, panel A). Thus, it is possible to economize lab efforts by reducing the required number of pools to be run from 500 to 20 (500 divided by 25) without any significant alteration to the expected distribution of . At this prevalence and with this pooling level, 40 tests are sufficient to get a correct patient-level diagnosis for all 500 individuals 97.5% of the time (Supplementary Table 1). With 5000 total samples, the central estimates of vary little between individual samples (95% interval 0.00021-0.0021) and a pooling level of 200 (95% interval 0.0022-0.0021). 145 reactions is enough to get patient-level diagnosis 97.5% of the time, in other words a reduction in the number of separate RT-PCR setups by a factor of 34.5. (Supplementary Table 1)

The situation changes when the test specificity is set to 0.99, that is, allowing for false positive test results (Figs. 3, 5). This could theoretically occur from PCR cross-reactivity between COVID-19 and other viruses, or from human errors in the lab. A problem with imperfect specificity tests are that false positives typically outnumber true positives when the true prevalence is low. This creates a seemingly paradoxical situation in which higher levels of sample pooling often leads to prevalence estimates that are more accurate. This is because many pools test positive without containing a single true positive sample, leading to inflated estimates of the prevalence. When the level of pooling goes up, the probability that a positive pool contains at least one true positive sample increases, which increases the total precision. The trends about appropriate levels of pooling for different sample numbers and levels of true population prevalence are similar as for the perfect specificity scenario, but with imperfect specificity, we have an added incentive for sample pooling in that prevalence estimates are closer to the true value with higher levels of pooling. Even with a moderately accurate test (sensitivity 0.7 and specificity 0.99), when the prevalence is 1%, pooling 50 together lets us diagnose 5000 individuals at the patient-level with a median of 282 tests, a 17-fold reduction in the number of tests. This has virtually no influence on our estimate of , and no significant effect on the number of wrongly diagnosed patients, which in both cases is about 1%.
Discussion

The relationship between true prevalence, total sample number and level of pooling is not always intuitive. Some combinations of parameters have serrated patterns for, which looks like Monte Carlo errors (Figs 2-5). This is particularly true for the lower sample counts. However, this is not due to stochasticity, but due to the discrete nature of each estimate of . That is, is not continuous and for small pool sizes miniscule changes in the number of positive pools can affect the estimate quite a bit.

For example, if we take 200 samples and go with a pool size of 100, there are only three potential outcomes: First, both pools are negative, in which case we believe the prevalence is 0. Second, one pool is positive and the other negative, in which case we estimate as approximately 0.007 if the test sensitivity is 0.95. Finally, both pools are positive, in which case the formula of Cowling et al. does not provide an answer because the fraction of positive pools is higher than the test sensitivity. This formula is only intended to be used when the fraction of positive pools is much lower than the test sensitivity.

In general, very high levels of pooling are not appropriate since, depending on the true prevalence, the probability that every single pool has at least one positive sample approaches 1. (Indicated by “NA” in Supplementary Table 1). In low prevalence settings however, it can be appropriate to pool hundreds of samples, but the total number of samples required to get a precise estimate of the prevalence is much higher. Thus, decisions about the level of pooling need to be informed by the prior assumptions about prevalence in the population, and there is a prevalence-dependent sweet spot to be found in the tradeoff between precision and workload.

It is worth noting that the strategy I have outlined here does present some logistical challenges. Firstly, samples must be allocated to pools in a random manner. This rules out some practical approaches such as sampling a particular sub-district and pooling these, then sampling another district the next day. Secondly, binary testing of sub-pools might be more cumbersome than it’s worth, in which case Dorfman’s method should be preferred. Finally, there are major organizational challenges related to planning and conducting such experiments across different testing sites and jurisdictions.

Conclusion

Attempts to estimate the true current prevalence of COVID-19 by PCR tests can benefit from sample pooling strategies. Such strategies have the potential to greatly reduce the required number of tests with only slight decreases in the precision of prevalence estimates. If the prevalence is low, it is generally appropriate to pool even hundreds of samples, but the total sample count needs to be high in order to get reasonably precise estimates of the true prevalence. On the other hand, if the prevalence is high there is little to be gained by pooling more than 15 samples. Pooling strategies makes it possible to get patient-level diagnostic information with only a fraction of the number of tests as individual testing. For a prevalence of 10%, pooling cut the required number of tests by about two thirds, while for a prevalence of 0.1%, the number of required tests could on average be lowered by a factor of 50.
Declarations

Ethics approval and consent to participate – Not applicable

Consent for publication – Not applicable

Availability of data and materials - Code written for this project is available at https://github.com/admiralenola/pooledsampling-covid-simulation. All simulations and plots were created in R version 3.2.3 [17].

Competing interests – Not applicable

Funding – Not applicable

Authors’ contributions – All work was done by OB

Acknowledgements – Not applicable

Abbreviations

HIV = Human immunodeficiency virus

RT-PCR = Reverse transcriptase polymerase chain reaction

SARS-CoV-2 = Severe acute respiratory syndrome coronavirus 2

References

1. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 2020. doi:10.2807/1560-7917.es.2020.25.10.2000180

2. Q&A: Similarities and differences – COVID-19 and influenza. [cited 17 Apr 2020]. Available: https://www.who.int/news-room/q-a-detail/q-a-similarities-and-differences-covid-19-and-influenza

3. Hogan CA, Sahoo MK, Pinsky BA. Sample Pooling as a Strategy to Detect Community Transmission of SARS-CoV-2. JAMA. 2020. doi:10.1001/jama.2020.5445

4. Dorfman R. The detection of defective members of large populations. The Annals of Mathematical Statistics 1943;14(4): 436-440

5. Cherif A, Grobe N, Wang X, Kotanko P. Simulation of Pool Testing to Identify Patients With Coronavirus Disease 2019 Under Conditions of Limited Test Availability. JAMA Network Open. 2020 Jun 1;3(6):e2013075-

6. Abdalhamid B, Bilder CR, McCutchen EL, Hinrichs SH, Koepsell SA, Iwen PC. Assessment of specimen pooling to conserve SARS CoV-2 testing resources. American journal of clinical pathology. 2020 May 5;153(6):715-8.
7. Verdun CM, Fuchs T, Harar P, Elbrächter D, Fischer DS, Berner J, Grohs P, Theis FJ, Krahmer F. Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies. medRxiv. 2020 May 13.

8. Gollier C, Gossner O. Group testing against Covid-19. Covid Economics. 2020 Apr;2.

9. Cahoon-Young B, Chandler A, Livermore T, Gaudino J, Benjamin R. Sensitivity and specificity of pooled versus individual sera in a human immunodeficiency virus antibody prevalence study. Journal of Clinical Microbiology. 1989 Aug;1;27(8):1893-5.

10. Kline RL, Brothers TA, Brookmeyer R, Zeger S, Quinn TC. Evaluation of human immunodeficiency virus seroprevalence in population surveys using pooled sera. Journal of clinical microbiology. 1989 Jul;1;27(7):1449-52.

11. Behets F, Bertozzi S, Kasali M, Kashamuka M, Atikala L, Brown C, Ryder RW, Quinn TC. Successful use of pooled sera to determine HIV-1 seroprevalence in Zaire with development of cost-efficiency models. Aids. 1990 Aug;1;4(8):737-42.

12. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25. doi:10.2807/1560-7917.ES.2020.25.3.2000045

13. Yelin I, Aharony N, Shaer-Tamar E, Argoetti A, Messer E, Berenbaum D, et al. Evaluation of COVID-19 RT-qPCR test in multi-sample pools. medRxiv. 2020; 2020.03.26.20039438.

14. Tu XM, Litvak E, Pagano M. Screening tests: Can we get more by doing less?. Statistics in Medicine. 1994 Oct 15;13(19-20):1905-19.

15. Cowling DW, Gardner IA, Johnson WO. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med. 1999;39: 211–225.

16. Theagarajan LN. Group Testing for COVID-19: How to Stop Worrying and Test More. arXiv preprint arXiv:2004.06306. 2020 Apr 14.

17. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

Supplementary Information

Supplementary Table 1 – Table containing prevalence estimates and, the estimated required number of tests, and the expected proportion incorrectly classified patients for all parameter combinations. Se = sensitivity. Sp = specificity. N = number of samples. k = pooling level. P = true prevalence. p 2.5%, p 50.0%, p 97.5% = 2.5, 50 and 97.5 quantile of estimated prevalence. T 2.5%, T 50.0%, T 97.5% = 2.5, 50 and 97.5 quantile of estimated number of tests required to get individual-level diagnoses. E(S) = Expected number of tests saved when compared to testing individually for this N. E(inc) = Expected percentage of patients that are diagnosed incorrectly at this parameter combination. [Excel file]

Supplementary document 1 – Testing for freedom from disease and distinguishing a disease-free population from a low-prevalence one.
Fig. S1 – Testing for freedom of disease with a test with perfect specificity. The x-axis represents different true levels of , and the colored lines represent the number of samples associated with 95% probability of having at least one positive sample at that prevalence level. For perfect specificity tests this is commonly interpreted as meaning that we can be 95% certain that the true prevalence is lower. The effects of sample pooling are explored with different color lines. Panel A: Test specificity = 1.0; Panel B: Test specificity = 0.99.

Fig. S2 – Using a test with specificity of 0.99 to discriminate a disease-free population from a population with 2743 samples from both populations. Panel A: The expected number of positive samples from the disease-free and the low-prevalence populations; Panel B: The probability mass function of the difference in the number of positive samples between the low-prevalence and the disease-free population. With 2743 samples from both populations, there is a 5% probability of getting more positive tests from the disease-free population.

Figures

Figure 1

Algorithm used to minimize the number of RT-PCR reactions in pooled sampling. Negative pools regard all constituent patient samples as negative, whereas positive pools are split in two, and the process repeated. Red circle = Pool testing positive. Grey circle = Pool testing negative. Red/grey squares = Patient samples in pool, with color indicating diseased/non-diseased status.
Figure 2

Central 95% estimates of p^* with a test with sensitivity (η) 0.95 and perfect specificity (θ=1) under different combinations of total number of samples and level of sample pooling. Panel A: $p=0.001$; Panel B: $p=0.003$; Panel C: $p=0.01$; Panel D: $p=0.03$; Panel E: $p=0.10$
Figure 3

Central 95% estimates of p^* with a test with sensitivity (η) 0.95 and a specificity (θ) of 0.99 under different combinations of total number of samples and level of sample pooling. Panel A: p=0.001; Panel B: p=0.003; Panel C: p=0.01; Panel D: p=0.03; Panel E: p=0.10
Figure 4

Central 95% estimates of \hat{p} with a test with sensitivity (η) 0.70 and perfect specificity (θ=1) under different combinations of total number of samples and level of sample pooling. Panel A: $p=0.001$; Panel B: $p=0.003$; Panel C: $p=0.01$; Panel D: $p=0.03$; Panel E: $p=0.10$
Figure 5

Central 95% estimates of \hat{p} with a test with sensitivity (η) 0.70 and a specificity (θ) of 0.99 under different combinations of total number of samples and level of sample pooling. Panel A: p=0.001; Panel B: p=0.003; Panel C: p=0.01; Panel D: p=0.03; Panel E: p=0.10

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- COVID19SUPPLMERGEDCHANGES.docx
- RESTABLE.xls
- FigS2.pdf
- FigS1.pdf
- Methods.docx