Bcl-x\textsubscript{L} regulates mitochondrial energetics by stabilizing the inner membrane potential

Ying-bei Chen,1 Miguel A. Aon,2 Yi-Te Hsu,5 Lucian Soane,6 Xinchen Teng,1,6 J. Michael McCaffery,9,10 Wen-Chih Cheng,4 Bing Qi,6 Hongmei Li,11 Kambiz N. Alavian,11 Margaret Dayhoff-Brannigan,7 Shifa Zou,6 Fernando J. Pineda,6,8 Brian O’Rourke,2 Young H. Ko,3,4 Peter L. Pedersen,3 Leonard K. Kaczmarek,12 Elizabeth A. Jonas,11 and J. Marie Hardwick1,6,7

1Department of Pharmacology and Molecular Sciences, 2Institute of Molecular Cardiobiology, 3Department of Biological Chemistry, and 4Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205
2Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
3W. Harry Feinstone Department of Molecular Microbiology and Immunology, 4Department of Biochemistry and Molecular Biology, and 5Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
4Department of Biology and 5Integrated Imaging Center, Johns Hopkins University, Baltimore, MD 21218
11Department of Internal Medicine and 12Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520

Mammalian Bcl-x\textsubscript{L} protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x\textsubscript{L} also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x\textsubscript{L} was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x\textsubscript{L} reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F\textsubscript{1}F\textsubscript{0}-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase \(\beta\) subunit in a screen for Bcl-x\textsubscript{L}-binding partners, we tested and found that Bcl-x\textsubscript{L} failed to protect \(\beta\) subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x\textsubscript{L} may contribute importantly to cell survival independently of other Bcl-2 family proteins.

Introduction

Bcl-x\textsubscript{L} is an antiapoptotic Bcl-2 family member that is required for embryonic development and can contribute to cancer cell survival (Letai, 2008; Hardwick and Youle, 2009). The traditional viewpoint is that anti- and proapoptotic Bcl-2 family proteins actively engage each other to determine cell fate after a death stimulus (Galonek and Hardwick, 2006; Youle and Strasser, 2008). The best-characterized cell survival activity of Bcl-x\textsubscript{L} is its ability to inhibit Bax-induced pores in the outer mitochondrial membrane (Billen et al., 2008). In this manner, Bcl-x\textsubscript{L} prevents release of mitochondrial cytochrome \(c\) into the cytoplasm, where cytochrome \(c\) induces apoptosome formation to trigger caspase-dependent death of mammalian cells. Attention has been focused on the functional interactions and the binding specificities between anti- and proapoptotic Bcl-2-related proteins, leading to new therapeutic strategies (Oltersdorf et al., 2005).

The evolutionary conservation of Bcl-2-like proteins cannot be uniformly linked to apoptosis regulation (for example, the Bcl-2 homologues of \textit{Drosophila melanogaster} and viruses; Bellows et al., 2002; Graham et al., 2008; Galindo et al., 2009). Many other binding partners have been reported for human Bcl-x\textsubscript{L}, linking Bcl-x\textsubscript{L} to other cellular processes including mitochondrial dynamics, energetics, and autophagy...
(Vander Heiden et al., 2001; Levine et al., 2008; Li et al., 2008). Thus, Bcl-2 proteins may have alternative biochemical functions independent of their proapoptotic Bcl-2 family binding partners, or they may participate in other machineries before engaging classical apoptosis.

One nonapoptosis role of Bcl-2 family proteins in mammals and worms is regulation of mitochondrial fission and fusion (Karbowsky et al., 2006; Berman et al., 2009; Montessuit et al., 2010; Hoppins et al., 2011). This role appears to contribute importantly to Bcl-xL–induced mitochondrial localization at neuronal synapses, neuronal activity, and seizure behaviors (Fanjiang et al., 2003; Li et al., 2008). However, regulation of fission and fusion rates is not sufficient to explain the ability of endogenous and overexpressed Bcl-xL to increase mitochondrial biomass (Berman et al., 2009). Therefore, we pursued alternative functions of Bcl-xL in mitochondria. Consistent with an evolutionarily conserved function, Bcl-2 family proteins have been linked to control of mitochondrial energetics by regulating the voltage-dependent anion channel in the outer membrane or the adenine nucleotide transporter (ANT)/adenine nucleotide carrier in the inner membrane, which are the primary conduits through which ATP and ADP are exchanged between the cytosol and the mitochondrial matrix (Vander Heiden et al., 2001; Belzacq et al., 2003; Cheng et al., 2003). The relative contributions of antiapoptotic activity versus alternative functions of Bcl-xL for overall survival are unclear.

The mitochondrial F$_1$F$_0$ ATP synthase synthesizes ATP in the mitochondrial matrix using cytosolic ADP and phosphate as substrates (Hong and Pedersen, 2004). This process requires a potential across the inner mitochondrial membrane that is generated by pumping out protons via the electron transport chain (ETC; or respiratory chain) fueled by NADH. Reentry of protons into the mitochondrial matrix via the F$_0$ ring (oligomycin-sensitive fraction) embedded in the inner membrane drives rotation of the central stalk against the catalytic F$_1$, a ring of three α and three β subunits (Walker and Dickson, 2006). In this manner, proton flux through F$_0$ is coupled to ATP synthesis. Because mitochondrial membrane potential is required for essential functions other than ATP synthesis, there are alternative strategies for building a potential. Reversal of the F$_1$F$_0$ ATP synthase hydrolyzes cytoplasmic ATP produced by glycolysis, reversing the flow of protons through F$_0$ to stabilize a potential (Nicholls and Ferguson, 2002; Abramov et al., 2007). A membrane potential is also required for mitochondrial fusion, and depolarization of the potential leads to Parkin-dependent mitophagy (Narendra et al., 2008; Twigg et al., 2008). Although mitochondrial energetics are linked to mitochondrial morphology changes, the details are complex (Benard and Rossignol, 2008).

By analyzing bcl-xL–deficient neurons, we uncovered a new function of Bcl-xL. We found that Bcl-xL can localize to the inner mitochondrial membrane/matrix, which is contrary to current opinion. Importantly, Bcl-xL is required to stabilize the membrane potential across the inner mitochondrial membrane. By decreasing excess ion flux across the inner mitochondrial membrane, Bcl-xL increases overall energetic efficiency, which is consistent with the limited reserve capacity of bcl-xL–deficient neurons and their susceptibility to cell death. This function of Bcl-xL involves the mitochondrial F$_1$F$_0$ ATP synthase.

Results

Defective control of mitochondrial membrane potential in bcl-xL–deficient neurons

To explore the function of Bcl-xL in healthy neurons, several mitochondrial parameters were analyzed by two-photon laser-scanning fluorescence microscopy, comparing control and bcl-xL conditional knockout (cKO) cortical neuron cultures (Berman et al., 2009). Both unfloxed and bcl-xL–floxed littermates express neuron-specific knockin NEX-Cre recombinase starting around embryonic day 12 (E12) to delete bcl-xL. Staining for Cre recombinase serves as a positive marker for the survival of bcl-xL–deficient (and control unfloxed) cortical neurons (Fig. 1 A; Berman et al., 2009). Mitochondrial membrane potential ($\Delta \Psi_m$) was assessed in immature cortical cultures with the potentiometric dye tetramethylrhodamine methyl ester (TMRM; nonquench mode), revealing higher fluorescence intensity in the mitochondria-enriched regions of bcl-xL knockout cortical neurons (Fig. 1, B and C [left]). This is not a result of increased mitochondrial biomass because bcl-xL–deficient neurons have lower, not higher, mitochondrial biomass in these and other cell types based on several criteria (Kowalski et al., 2002; Berman et al., 2009). Thus, it appears that bcl-xL deficiency may result in a higher mitochondrial membrane potential.

In respiring cells, three direct mechanisms (Fig. 1 D, dashed boxes) of proton flux across the inner membrane (Fig. 1 D, blue arrows) are main determinants of $\Delta \Psi_m$: (1) the ETC, (2) the F$_1$F$_0$ ATP synthase, and (3) uncoupling proteins or other molecularly undefined leak mechanisms (protons not used for ATP synthesis; Nicholls and Ferguson, 2002). To further explore these parameters in bcl-xL knockout neurons, reactive oxygen species (ROS) production by the ETC was assessed in the same mitochondrial areas where TMRM was evaluated. Unexpectedly, bcl-xL knockout neurons have lower mitochondrial ROS. This suggests either a high rate of electron flow through the respiratory chain or that bcl-xL knockout neurons are more dependent on glycolysis than on mitochondrial respiration for energy production (Fig. 1, A and B). The same mitochondrial areas of bcl-xL knockout neurons have modestly higher mitochondrial NAD(P)H levels, which is consistent with an earlier study (Schwartz et al., 2007). Higher levels of the complex I substrate NADH indicate more than adequate supplies of NADH either because the respiratory chain is inactive or other metabolic processes are altered, such as decreased anaerobiosis (Abramov et al., 2007; Cheng et al., 2011). However, no inherent defects in respiratory chain activity were detected when complexes I–IV, II–IV, and IV were assessed by measuring oxygen consumption in isolated brain mitochondria (Fig. S1, A and B). The relative contributions of glycolysis versus the mitochondrial F$_1$F$_0$ ATP synthase to the levels of total cellular ATP
Bcl-x regulates mitochondrial energetics • Chen et al.

were also similar between bcl-x knockout and control cultures. ATP levels (relative to total protein) were slightly reduced in the bcl-x knockout cortical cultures, though this was a result in part of 15% lower cell viability compared with controls (Fig. S1, C and D). In sum, no defects were detected to explain the altered mitochondrial parameters of bcl-x knockout neurons.

Localization of endogenous Bcl-xL includes mitochondrial cristae

To pursue the role of Bcl-xL in regulating mitochondrial parameters, we determined the subcellular localization of endogenous Bcl-xL protein in neurons of the brain. Endogenous Bcl-xL in HeLa cells resides predominantly in the cytosol as a homodimer and translocates to mitochondria via its C-terminal transmembrane domain after a death stimulus (Jeong et al., 2004). However, crude fractionation of mouse cortex suggests that a significant proportion of endogenous Bcl-xL localizes to mitochondria in the brain (Fig. 2 A), which is consistent with an earlier finding (Soane et al., 2008). Deletion of bcl-x (except in interneurons and glial cells where NEX-Cre is not expressed; Berman et al., 2009) did not significantly alter other mitochondrial markers (Fig. 2 A).

Immunogold EM was used to more precisely determine the subcellular localization of endogenous Bcl-xL in tissue slices of mouse brain hippocampus. Approximately 90% of gold-labeled anti–Bcl-xL (BioCarta) is associated with membranes, and at least half of these membranes (54%) can be clearly identified as mitochondria (Fig. 2, B and C). Surprisingly, most of the mitochondrial staining was inside mitochondria, where the colabeled ATP synthase β subunit was also found (Figs. 2 [B and C] and S2). The frequency of labeled mitochondria with inner membrane/matrix Bcl-xL gold label (58%) argues strongly against the possibility of contamination from the outer membrane as a result of edge skimming, folding of the slice preparation, or random background. Gold particles on mitochondria were also detected in polar clusters (Fig. 2 C, arrowheads) and on membranes adjacent to mitochondria, possibly marking mitochondrial fission/fusion sites or where the outer mitochondrial membrane may be tethered to the ER (Fig. 2 C, line arrows), though patchy staining can reflect the uneven epitope accessibility in ultrathin cryosections.
Bcl-2 has been previously reported (Hockenbery et al., 1990; Belzacq et al., 2003). Kharbanda et al., 1997; Motoyama et al., 1998; Gotow et al., 2000; Belzacq et al., 2003).

Figure 2. Submitochondrial localization of endogenous Bcl-xL. (A) Immunoblots of total cell lysates (clarified), cytosolic fractions, and heavy membranes prepared from dissected cortices pooled from three 3-d-old mice per sample. Blots were probed with antibodies to Bcl-xL (1:1,000; provided by L. Boise), cytochrome c (Cyt c; 7H8.2C12 [1:1,000]), cytochrome oxidase subunit IV (COX IV; 1:1,000; Invitrogen), SMAC (1:1,000; Invitrogen), voltage-dependent anion channel (VDAC; 1:1,000; EMD), actin (1:1,000; MP Biomedicals), and UCP-2 [6525 [1:100; Santa Cruz Biotechnology, Inc.]]. A representative of three independent experiments is shown. (B) Summary of immunogold EM staining for Bcl-xL and ATP synthase β proteins in control and cKO mouse brain representing three independent experiments. (C) EM of microdissected CA1 hippocampus (where CA1 synapses onto CA3) from mouse brains stained with gold-labeled Bcl-xL antibody detects Bcl-xL on mitochondrial inner membranes/cristae (black arrows), outer membrane polar clusters (arrowheads), and adjacent membranes (line arrows). Bars, 0.1 µm. (D) Immunogold staining of bcl-xL cKO CA1 mouse brain prepared in parallel as in C. Bars, 0.1 µm. (E) Immunoblot analysis of Percoll-purified nonsynaptic adult rat brain mitochondria. Mitochondria were incubated with the indicated proteases (for 30 min) with or without 0.01% digitonin to permeabilize the outer membrane and were blotted for Bcl-xL and TOM20, a portion of Bcl-xL subunit as the prominent binding partner of VDAC and ATP synthase. This interaction was confirmed in a secondary yeast two-hybrid screen in which the F1 subunit of the mitochondrion F1F0 ATP synthase. This interaction was confirmed in a secondary yeast two-hybrid screen in which the F1 subunit interacted with wild-type Bcl-xL and Bcl-2 but did not interact with mutants lacking antideath activity (Bcl-xL mt1; F131V/D133A), which inhibits cell death without binding prodeath family members Bax or Bak (Cheng et al., 1996), was used to screen a human B cell library (Chau et al., 2000). Among the six hits, we identified an unexpected Bcl-xL-binding partner, the β subunit of the mitochondrial F1F0 ATP synthase. This interaction was confirmed in a secondary yeast two-hybrid screen in which the β subunit interacted with wild-type Bcl-xL and Bcl-2 but did not interact with mutants lacking antideath activity (Bcl-xL mt1 and mt8) and did not interact with Bax or Bak (Fig. 3 A). Because Bcl-xL mt1 could potentially inhibit mammalian cell death by binding BH3-only proteins (Billen et al., 2008), we assayed the function of mt1 and mt8 in yeast, which lack Bcl-2 and BH3-only proteins. Bcl-xL mt1 but not mt8 protected yeast from dose-dependent cell death (Fig. 3 B).

Importantly, this staining is specific for Bcl-xL based on multiple parallel preparations of the same brain regions from bcl-xL cKO mice, in which total anti–Bcl-xL immunogold label was reduced by ~90%, and mitochondrial Bcl-xL gold was reduced ~99% (Fig. 2, B and D).

To support these findings, protease susceptibility of Bcl-xL was analyzed in purified rat brain mitochondria. Unlike the outer membrane protein Tom20, a portion of Bcl-xL (Abcam antibody) is resistant to proteases even after treatment with digitonin to permeabilize the cholesterol-containing outer membrane (Fig. 2 E). As expected, matrix-localized β subunit was protected from digestion until addition of Triton X-100 to disrupt the inner membrane, when both Bcl-xL and β subunit were completely digested. The proportion of Bcl-xL protected from proteases by the inner membrane can be higher depending on the antibody used (Fig. S3). We conclude that a portion of endogenous Bcl-xL localizes to the inner mitochondrial membrane and/or matrix. These findings are in sharp contrast to the widely held view that Bcl-2 family proteins are localized only to the cytoplasmic side of the outer, not inner mitochondrial membranes, though inner membrane localization of Bcl-xL and Bcl-2 has been previously reported (Hockenbery et al., 1990; Kharbanda et al., 1997; Motoyama et al., 1998; Gotow et al., 2000; Belzacq et al., 2003).

Biochemical purification of Bcl-xL with inner membrane components

The possibility that Bcl-xL regulates mitochondrial membrane potential by acting at the inner mitochondrial membrane led us to revisit our earlier yeast two-hybrid screen (Chau et al., 2000). Seeking to identify prosurvival functions distinct from antiapoptotic functions of Bcl-xL in an unbiased screen, the BH1 domain mutant of Bcl-xL (mt1; F131V/D133A), which inhibits cell death without binding prodeath family members Bax or Bak (Cheng et al., 1996), was used to screen a human B cell library (Chau et al., 2000). Among the six hits, we identified an unexpected Bcl-xL-binding partner, the β subunit of the mitochondrial F1F0 ATP synthase. This interaction was confirmed in a secondary yeast two-hybrid screen in which the β subunit interacted with wild-type Bcl-xL and Bcl-2 but did not interact with mutants lacking antideath activity (Bcl-xL mt1 and mt8) and did not interact with Bax or Bak (Fig. 3 A). Because Bcl-xL mt1 could potentially inhibit mammalian cell death by binding BH3-only proteins (Billen et al., 2008), we assayed the function of mt1 and mt8 in yeast, which lack Bcl-2 and BH3-only proteins. Bcl-xL mt1 but not mt8 protected yeast from dose-dependent cell death (Fig. 3 B).

An independent biochemical purification scheme also identified the β subunit as the prominent binding partner of
endogenous Bcl-xL. WEHI 7.1 membrane preparations were solubilized with CHAPS to avoid detergent-induced dimerization with Bax during extract preparation (Hsu and Youle, 1997). Bcl-xL-containing complexes were purified by sequential ion exchange and immunoaffinity chromatography followed by preparative SDS-PAGE (Fig. 3 D). The only major Coomassie-stained species copurifying with Bcl-xL was ~54 kD. Direct sequencing of two tryptic peptides derived from this extracted band yielded exact matches with the human/mouse F1;F0 ATP synthase β-subunit residues 244–253 (NDLYHEMIES) and 389–404 (IAELGIYPAVDPLDST).

A screen of 80 detergents yielded a strategy for purifying enzymatically active F1;F0 ATP synthase from mitoplasts isolated from rat liver mitochondria for the purpose of 3D structure determination (Ko et al., 2003). Immunoblot analyses of these preparations revealed monomeric Bcl-xL, which decreased in abundance with purification as a band approximately the size of Bcl-xL dimers was enriched with purification (Fig. 3 C). Detergents likely induced SDS-stable dimers of Bcl-xL, which are frequently encountered with purified Bcl-xL (O’Neill et al., 2006). On parallel blots, both Bcl-xL bands were eliminated when the antibody was preadsorbed with recombinant Bcl-xL protein, indicating that Bcl-xL is enriched in highly purified preparations of the ATP synthase from liver. To determine whether Bcl-xL is monomeric or present in larger complexes inside cells, CHAPS-solubilized lysates were separated by column chromatography, revealing that all of the Bcl-xL was in complexes >70 kD that overlap fractions containing the β subunit (Fig. 3 E). An association of Bcl-2 with the F1;F0 ATP synthase has also been observed by the laboratories of J. Downward (London Research Institute, London, England, UK), Y. Tsujimoto (Osaka University, Osaka, Japan), and S. Korsmeyer and G. Linette (Washington University in St. Louis, St. Louis, MO; personal communication).

Membrane potential fluctuations in bcl-x-deficient mitochondria

Because the mitochondrial F1;F0 ATP synthase is an important control point for proton flux across the inner mitochondrial membrane, mitochondrial membrane potential was further evaluated by time-lapse imaging (3.5-s intervals). TMRM intensity in mitochondria-enriched regions fluctuates modestly in control neurons, which is consistent with an earlier study (Vergun et al., 2003). However, bcl-x–deficient neurons exhibited a striking fluctuation in TMRM fluorescence intensity over irregular intervals in time (Fig. 4 A), across a single bcl-x knockout cell (Fig. 4 B), and in individual mitochondria (Fig. 4 C). Thus, the increase in mean mitochondrial potential in bcl-x–deficient neurons (Fig. 1 B) represents the mean of a time-varying potential that fluctuates predominantly to higher (more negative) potentials than controls. Therefore, the presence of Bcl-xL stabilizes the inner mitochondrial membrane potential.

Because Bcl-xL can bind to the inositol triphosphate receptor in the ER to regulate calcium gating by the inositol triphosphate receptor (White et al., 2005), we investigated a role for calcium in mitochondrial membrane potential fluctuation. We found that basal cytosolic calcium levels were uniformly steady in cultured bcl-x knockout and control cortical neurons (Fig. 4 D). Although compiled data indicate a small but significant calcium elevation in bcl-x knockout neurons, fluctuations in potential appear not to be controlled by paired fluctuations in cytosolic calcium.

To investigate the possibility that Bcl-xL has a direct role in stabilizing the mitochondrial membrane potential, tetramethylrhodamine ethyl ester (TMRE) fluorescence intensity was
maintained by expending energy (Nicolis and Prigogine, 1977). Moreover, the additional time-dependent flux of ions across the inner membrane that drives these fluctuations in potential can result in an overall ion flux (both inward and outward directions) that is greater than what is required simply to maintain a nonfluctuating membrane potential at a steady negative value. Thus, the fluctuations in mitochondrial membrane potential in bcl-xL knockouts imply that more energy is required to maintain ion gradients across the inner membrane. To illustrate this concept, we constructed a simple numerical model to investigate the effect of fluctuations on the dissipation of ion gradients across the mitochondrial membrane. A vesicle (1 µm in diameter) was used to represent a mitochondrion (Fig. 5A). This vesicle was equipped with active ion pumps (Fig. 5 A, b) capable of pumping out protons/ions (approximating the respiratory chain) to build a negative potential (−180 mV) and with ion channels (Fig. 5 A, a) that can partially dissipate this potential by allowing ions to reenter the vesicle (approximating the F1F0 ATP synthase and nonproductive leaks). We first modeled steady-state conditions in which the inward flux and monitored in cultured hippocampal neurons treated only briefly with ABT-737, a specific inhibitor of Bcl-xL designed to fit the binding pocket on Bcl-xL and block its antiapoptotic function (Oltersdorf et al., 2005). Individual mitochondria exhibited greater fluctuations in TMRE fluorescence intensity after only 10 min of ABT-737 (in 0.1% DMSO) compared with DMSO alone (Fig. 4, E and F). To confirm the specificity of ABT-737, fluorescence intensities were measured in small puncta (estimated to be one mitochondrion) near the soma in cultured rat hippocampal neurons (DIV14–16) stained with 5 nM TMRE. Relative fluorescence intensities (collected at 1/s) for the same puncta/mitochondria treated with 0.1% DMSO before and after addition of 1 µM ABT-737 (in 0.1% DMSO) for 10 min are shown. (F) SDs of TMRE intensity measurements as in E; data are for 30 measurements for each of 12 puncta in six cells in two independent experiments and are similar to three additional experiments with protocol variations. Paired t test was used; *, P = 0.02. (G) SD of TMRE as in F, except 4 d after transfection with shRNA vector with scrambled (n = 10) or bcl-xL-specific shRNAs (n = 17). Paired t test was used; **, P = 0.00027. (F and G) Data are presented as the mean ± SD.

Bcl-xL stabilizes the mitochondrial membrane potential to conserve energy
It is known that when any chemical system is not at thermodynamic equilibrium, as is the case for respiring mitochondria, the occurrence of persistent fluctuations or oscillations can only be maintained by expending energy (Nicolis and Prigogine, 1977). Moreover, the additional time-dependent flux of ions across the inner membrane that drives these fluctuations in potential can result in an overall ion flux (both inward and outward directions) that is greater than what is required simply to maintain a nonfluctuating membrane potential at a steady negative value. Thus, the fluctuations in mitochondrial membrane potential in bcl-xL knockouts imply that more energy is required to maintain ion gradients across the inner membrane. To illustrate this concept, we constructed a simple numerical model to investigate the effect of fluctuations on the dissipation of ion gradients across the mitochondrial membrane. A vesicle (1 µm in diameter) was used to represent a mitochondrion (Fig. 5 A). This vesicle was equipped with active ion pumps (Fig. 5 A, b) capable of pumping out protons/ions (approximating the respiratory chain) to build a negative potential (−180 mV) and with ion channels (Fig. 5 A, a) that can partially dissipate this potential by allowing ions to reenter the vesicle (approximating the F1F0 ATP synthase and nonproductive leaks). We first modeled steady-state conditions in which the inward flux and
outward flux of ions are exactly matched in time, and the membrane potential does not fluctuate in amplitude. These conditions approximate the steady-state conditions of mitochondria in wild-type cells. Next, we modeled fluctuations in membrane potential by introducing small currents across the vesicle membrane (Fig. 5 A, c). These small currents (set arbitrarily at 5 ms with a fixed amplitude between 0 and 10 pA) were allowed to occur randomly (averaging 1/s) to drive fluctuations in the potential across the vesicle membrane. To assess the effects of these external current amplitudes (Fig. 5 A, c), we measured the magnitude of total ion flux through the pumps (Fig. 5 A, a) and the channels (Fig. 5 A, b). In all cases, the total amount of ion flux (measured in picocoulombs) was increased when current fluctuations were introduced and was further increased with increasing external current amplitude (Fig. 5 B). The additional amount of ion movement (Fig. 5 A, a and b) produced by the small transient current fluctuations (Fig. 5 A, c) represents a futile dissipation of the ion gradient that has to be balanced by pump activity to restore the mean membrane potential. Thus, Bcl-xL could improve mitochondrial energetics simply by preventing futile ion flux.

Collectively, our results suggest the possibility that Bcl-xL regulates an inner mitochondrial membrane ion-conducting channel and that this channel has an increased probability of opening in the absence of Bcl-xL. This increased channel opening (analogous to point c in Fig. 5 A) could result in the increased membrane potential fluctuations observed in the bcl-xL knockout. To investigate the effects of such a Bcl-xL-regulated channel on mitochondrial membrane potential fluctuations, we made a second computational model that more closely represents known properties of the inner mitochondrial membrane. This enabled us to test explicitly the effect of very brief transient openings of a nonselective inner membrane channel on the mitochondrial membrane potential measured over time. A vesicle (1.5 µm in diameter) was equipped with a proton pump and a proton leak pathway as in Fig. 5 A (a and b). The steady-state proton concentration of the mitochondrion was further regulated by a fixed proton buffer and a proton–cation exchange pathway (Garlid and Paucek, 2003). Finally, we introduced a nonselective cation channel representing the one regulated by Bcl-xL, which is permeable to both protons and to other cations and has a reversal potential of 0 mV (Lam et al., 1998; Vander Heiden et al., 2001; Alavian et al., 2011). Opening of the nonselective cation channel (mean open time of 0.33 ms) was allowed to occur stochastically with different opening probabilities of 0–0.1. We found that opening of the nonselective channel produced fluctuations in the membrane potential that increased with increased probability of channel opening (Fig. 5, C and D). The simulation further reveals that the very brief increases in internal proton concentration produced by influx through the channel resulted in proton pump activation, resulting in an overall hyperpolarization of the membrane as the frequency of channel openings increased (Fig. 5, C and D). This is consistent with transient hyperpolarization of mitochondria in bcl-xL knockout cells as a result of overshooting by the respiratory chain after the channel opens.

Draining resources in Bcl-xL-deficient neurons

Our vesicle models predict that the increased membrane leakiness (productive and nonproductive ion flux) across the inner mitochondrial membrane in bcl-xL-deficient neurons will result in decreased energetic performance. To test this prediction, cultured bcl-xL cKO and control cortical neurons were energetically stressed by the addition of mitochondrial ATP synthase inhibitors and analyzed for ATP levels and for mitochondrial parameters by two-photon microscopy. Extensive genetic and
In contrast to controls, bcl-x−deficient cortical neurons consistently underwent delayed mitochondrial depolarization 30–45 min after the addition of oligomycin (Fig. 6, C and E). Consistent with an energy-wasting crisis unique to bcl-x−deficient neurons, oligomycin also causes mitochondrial NAD(P)H levels to decline to ∼50% of pretreatment levels in <1 h, whereas NAD(P)H levels rebound and stabilize after oligomycin treatment in controls (Fig. 6 F). These results suggest that bcl-x−deficient mitochondria continue to deplete the substrate of complex I, as would be expected for a leaky mitochondrial membrane that allows the respiratory chain to continue running.

Biochemical evidence indicates that oligomycin inhibits mitochondrial ATP synthesis by acting on F_{0} to disrupt the proton path (Walker and Dickson, 2006), and a crystal structure reveals that aurovertin B inhibits the enzymatic F_{1} subunit by binding near the ATP-binding site on β subunit (van Raaij et al., 1996). Treatment with oligomycin or with aurovertin B caused cellular ATP levels to decline similarly in control and knockout neurons (Fig. 6, A and B). Therefore, the F_{1}F_{0} ATP synthase was an important contributor to ATP production and concomitant dissipation of membrane potential in both genotypes before treatment.
Consistent with this conclusion, rates of oxygen uptake by cells decrease with overexpression of Bcl-xL and increase with shRNA knockdown of Bcl-xL (Alavian et al., 2011). NAD(P)H depletion and membrane depolarization were not simply a result of inhibition of mitochondrial ATP synthesis because NAD(P)H levels and membrane potential were sustained for at least 1 h after aurovertin B treatment, although at lower steady-state levels relative to controls (see Discussion; Fig. 6 G). To verify that depletion of NAD(P)H and mitochondrial depolarization is not simply a marker of cell death, oligomycin was washed away from depolarized bcl-xL–deficient neurons in a flow chamber. Upon washout, we observed simultaneous increases in NAD(P)H levels and TMRM intensity, indicating cell recovery (Fig. 7 A). The evidence presented suggests that Bcl-xL increases the efficiency of mitochondrial energetics by decreasing inner membrane leakiness, thereby preventing membrane potential fluctuations and the resulting energy deficits (Fig. 7 B).

Bcl-xL requires the β subunit for antideath activity in yeast

To test whether Bcl-xL increases cell survival through a functional interaction with F1F0 ATP synthase and independently of any other Bcl-2 family members, we tested the ability of human Bcl-xL to inhibit cell death of yeast lacking β subunit (Δatp2) of the F1F0 ATP synthase. Using a novel heat ramp cell death assay (Teng et al., 2011), we found that Bcl-xL failed to protect yeast in which the ATP2 gene was deleted. In contrast, Bcl-xL protected yeast with mutations in both the mitochondrial fission protein FIS1 and WHI2, which lack mitochondrial fission and have respiratory function defects (Δfis1; Figs. 7 C and S5; Fannjiang et al., 2004; Cheng et al., 2008). Yeast have no recognizable Bcl-2 family members or BH3-only proteins yet have a highly conserved F1F0 ATP synthase. Our results indicate that Bcl-xL promotes cell survival through an interaction with the ATP synthase.

Discussion

Our evidence indicates that endogenous Bcl-xL prevents a futile ion flux across the mitochondrial inner membrane, thereby preventing pronounced irregular fluctuations in mitochondrial membrane potential observed in bcl-x knockout cells. The additional energy required for fueling excessive ion flux across the mitochondrial membrane would place bcl-x–deficient cells at a distinct disadvantage during cell stress. Unable to sustain a potential across a more leaky inner membrane, bcl-x–deficient mitochondria depolarize and subsequently die. Prominent localization of endogenous Bcl-xL with the inner mitochondrial membrane is consistent with a close link between Bcl-xL and the membrane leak channels. Copurification of Bcl-xL with the F1F0 ATP synthase raises the possibility that a novel leak channel could be within the ATP synthase itself or a functionally interacting component. This function of Bcl-xL can be expected to alter many other aspects of mitochondrial and cellular physiology, though, like many mitochondrial proteins, the mechanism by which Bcl-xL enters mitochondria is not known.

Bcl-xL inhibits mitochondrial membrane leakiness

These findings are consistent with a conceptually simple mechanism in which Bcl-xL acts at the inner mitochondrial membrane to close a molecularly undefined leak, thereby Preventing large swings in membrane potential. This could be achieved if Bcl-xL directly closes the leak channel. Our computational models predict that opening of this Bcl-xL–inhibited leak channel results in membrane potential fluctuations, which is consistent with fluctuations observed in bcl-x–deficient cells. The models further predict that the large fluctuations are a result of transient overcompensations by the respiratory chain, which is consistent with the observed transient hyperpolarizations in bcl-x–deficient cells. Our numerical simulations also suggest that the greater total flux of ions across the mitochondrial inner membrane in bcl-x–deficient mitochondria requires more energy to maintain ionic homeostasis, analogous to other fluctuating or oscillating biochemical systems (Kaczmarek, 1976). Even if the additional ion flux in bcl-x–deficient mitochondria was coupled to ATP synthesis by F1F0, additional energy would be required to move ions out of the matrix when the potential is fluctuating compared with a steady state with little or no fluctuations. Our simulations are consistent with the notion that the stabilizing effect of Bcl-xL on inner mitochondrial membrane potential
contributes importantly to the efficiency of energy production. An expected negative consequence of excess ion flux is that a sudden deficit in nutrients or a sudden increase in energy demand cannot be readily satisfied by an inefficient system.

Seemingly contrary to these findings, recombinant Bcl-xL can induce ion channel activity in outer mitochondrial membranes and synthetic bilayers, although these channels are smaller than those formed by the related proapoptotic Bax protein (Lam et al., 1998; Basañez et al., 2002). Thus, the ion-conducting activity of Bcl-xL may not be related to the Bcl-xL functions under study here. However, more complex scenarios remain possible where Bcl-xL channels open to correct other ion-conducting activities in the inner membrane, thereby preventing large swings in potential. Though the detailed molecular events remain unclear, our conclusions are supported by patch clamp recordings of mitochondrial inner membrane vesicles with Bcl-xL (Alavian et al., 2011). It is conceivable that the Bcl-xL–inhibited mitochondrial leak channel is related to the Bax pores that trigger apoptosis, except Bax pores are not known to occur in inner membranes (Billen et al., 2008). The capacity of a non–Bax/Bak-binding mutant of Bcl-xL (mt1) to interact with the F1β subunit and to inhibit cell death in mammalian cells argues against this possibility. Furthermore, Bcl-xL can inhibit cell death in wild-type yeast, which lack Bcl-2 family and BH3-only proteins, but Bcl-xL cannot protect yeast lacking F1β, which shares 89% amino acid sequence homology with humans. The inner membrane function and the antideath function of Bcl-xL appear to be separable biochemical events (e.g., Fig. 7 A). However, yet unknown nonapoptotic activities of Bax/Bak could be involved, potentially those that regulate neuronal activity or inhibit neuronal cell death in vivo (Lewis et al., 1999; Fannjiang et al., 2003). Furthermore, Bcl-xL was recently reported to regulate acetyl-CoA levels in a Bax/Bak-independent manner (Yi et al., 2011).

Given the unexpected finding that mitochondrial ROS levels in bcl-xL-deficient cells are lower than controls, our data are not consistent with Bcl-xL–mediated leak closing to reduce ROS levels (Jastroch et al., 2010). To the contrary, the leakier/fluctuating membrane potential could be expected to increase oxygen consumption in bcl-xL-deficient cells, which is consistent with reduced oxygen consumption in Bcl-xL–overexpressing cells (Alavian et al., 2011).

Implications for the F1F0 ATP synthase
Because Bcl-xL is not found in the 3D structures of F1F0 ATP synthase, we considered other potential functions for partnering. Given a structural resemblance between Bcl-xL and Diphtheria toxin, a polypeptide translocator, we considered that Bcl-xL could facilitate entry of the β subunit into mitochondria. However, we found that bcl-xL-deficient mitochondria appear to have normal levels of β subunit. Bcl-xL could interact with fully assembled ATP synthase or participate in the assembly process, which requires many factors not present in active complexes (Rak et al., 2011). Alternatively, the effects of Bcl-xL on membrane curvature could influence the ATP synthase (Basañez et al., 2002; Paumard et al., 2002).

Our biochemical and pharmacological analyses are consistent with a Bcl-xL–regulated leak mechanism involving the F1F0 ATP synthase. However, the differential effects of two F1F0 inhibitors are somewhat puzzling. Both aurovertin B (acting on F1β) and oligomycin (acting on F0) block ATPase/synthase activity and proton movement through F0, because of the coupling between F1 and F0. Yet, only aurovertin B inhibited mitochondrial depolarization in bcl-xL-deficient cells, possibly by triggering closure of the leak channel by binding the β subunit (van Raaij et al., 1996). In contrast, the Bcl-xL–regulated leak channel appears to be oligomycin resistant, though it is not clear whether this is the long sought-after leak channel that explains continued mitochondrial respiration with oligomycin treatment (Nicholls and Ferguson, 2002). We speculate that the F1F0 ATP synthase is involved in leaking ions and that the regulation of this function is defective in bcl-xL–deficient neurons. These studies further extend the long-standing link between Bcl-2 family proteins and the ATP synthase (Matsuyama et al., 1998; Vander Heiden et al., 2001; Belzacq et al., 2003).

Materials and methods

Primary cortical neuron cultures
Conditional bclx knockout cortical neuron cultures were prepared separately from individual E16.5 mouse embryos as previously described (Berman et al., 2009). Wild-type and floxed bclx mice/embryos were distinguished using PCR primers 5′-GCCACCTCATCAGTGCGG-3′ and 5′-TCAGAAGCCGCGAAATCCC-3′. The NEX-CRE locus was identified with primers 5′-CTTTTTGTGCTGTACTGG-3′ and 5′-CCGCAATAC-GTGAAACAGC-3′, and the wild-type allele was identified with 5′-CAAGTGTCCCTTCCAGAAACAC-3′ and 5′-GATACAGACAGGGAAAGG-3′. All experiments were performed on density-matched cultures. All animal procedures were approved by the Animal Care and Use Committee. For immunofluorescence microscopy, cortical neuron cultures were quickly washed with Locke’s buffer (154 mM NaCl, 5.6 mM KCl, 2.3 mM CaCl2, 1.0 mM MgCl2, 5 mM Hepes, and 10 mM glucose, pH 7.4), fixed for 15 min in 4% PFA, permeabilized for 5 min with 0.2% Triton X-100, blocked for 30 min at RT with 5% normal goat serum, and incubated with primary antibodies at 4°C overnight followed by 1 h at RT with secondary antibodies.

Two-photon laser-scanning microscopy
Potentiometric dye TMRM, which accumulates in the matrix according to its Nernst potential, was used at 100 nM [the lowest workable concentration; nonaqueous mode verified with carboxyl cyanide-p-trifluoromethoxyphenylhydrazono] to monitor mitochondrial membrane potential ΔΨm. Accumulation of ROS was monitored simultaneously with 2 µM CM-H2DCFDA (5′-6′-chloromethyl-2′,7′-dichlorofluorescein diacetate). Fluorescence probes were loaded into cortical neuron cultures (3–5 days in vitro [DIV3–5]) for at least 20 min, and images were recorded using a two-photon laser-scanning microscope (MRC-1024MP; BioRad Laboratories) with an excitation at 740 nm (Tsunami Ti:Sa laser; SpectroPhysics) to measure fluorescence intensity of TMRM (605 ± 25 nm), CM-DCF (525 ± 25 nm), and intrinsic autofluorescence of endogenous NADH/NADPH (<490 nm; Aon et al., 2003). For single recordings, three to five fields per culture dish were imaged in immediate succession. For time-lapse recordings, images of the same field were captured every 3.5 s for up to 5 min using 50% laser intensity to limit photo damage to live samples. Region of interests (ROIs) were drawn and analyzed using ImageJ (National Institutes of Health) for all neurons per image. Mean fluorescence intensity per pixel in each ROI at the three emission wavelengths was calculated as arbitrary fluorescence units. Background from cell-free areas was subtracted for each wavelength. Photodamage-induced fluctuations specifically in knockout cells is unlikely, as fluctuations are evident at the earliest time points and with single-photon microscopes (Fig. 4), and treatment with antioxidant N-acetyl cysteine does not inhibit depolarization.

Mitochondrial respiration
Mouse forebrain mitochondria were isolated from littersmates of control and cKO mice (postnatal day 2–7 [P2–P7]) by modification of a standard protocol (Rosenthal et al., 1987). Mitochondria (primarily nonsynaptosomal) were
prepared as previously described for subcellular fractionation and were further washed with mannitol sucrose (MS) buffer (without EGTA). Rates of oxygen consumption by purified mitochondria (0.5 mg/mg) were measured with a Clark-type oxygen electrode (Hansatech Instruments Limited) in KCl buffer (125 mM KCl, 20 mM Trizma base, 2 mM potassium phosphate, and 1 mM MgCl$_2$, pH 7.2) plus substrates (Fig. 5A), 1 mM MgCl$_2$, and 0.25 mM EGTA and were calculated in nanomoles of O$_2$ per mg protein per minute based on a KCl medium oxygen content of 195 mmol/ml O$_2$ at 30°C.

Crude subcellular fractionation
Cerebral cortices from P3 mice were rapidly dissected, minced on ice in 2 ml MS-EGTA buffer (225 mM mannitol, 75 mM sucrose, 250 µM EGTA, 1 mg/ml fatty acid–free BSA, and 5 mM Heps, pH 7.4), and homogenized with 15 strokes in a 2 ml Dounce. The crude suspension was clarified by centrifugation (15,000 g for 8 min), gently resuspended in MS-EGTA, and recentrifuged (for 10 min). The pellet was lysed in 100 µl MS buffer plus 1% NP-40, and the supernatant was centrifuged at 100,000 g for 30 min to clarify the cytosolic fraction.

Immunoblot analyses
Mouse cerebral cortex was dissected on ice and passed 15 times through a 25-gauge needle in 3 vol of radiomunoprecipitation assay (RIPA) lysis buffer (50 mM Tris, 1% NP-40, 150 mM NaCl, and 1 mM EDTA, pH 7.4) plus 1 mM NaF, 1 mM Na$_3$VO$_4$, (sodium orthovanadate and phosphatase inhibitors), and DTT (dithiothreitol) to remove the outer mitochondrial membrane. The reactions were stopped by addition of a protease inhibitor cocktail (Thermo Fisher Scientific), and then mitochondria were collected by centrifugation (10,000 g for 10 min at 4°C), and the mitochondrial pellets were lysed in RIPA lysis buffer (30 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 1 mM EDTA, 1 mM DTT, and 2 mM MgCl$_2$) containing protease inhibitors. The sensitivity of various mitochondrial proteins to protease digestion was then examined by immunoblot analysis using the following antibodies: anti–Bcl-x$_L$ (ab25568, 1:1,000; Abcam), anti–cytochrome c (clone 7H8.2C12, 1:1,000; Thermo Fisher Scientific), anti–Tom20 (sc-1415, 1:2,000; Santa Cruz Biotechnology, Inc.), and anti–ATP synthase β subunit (ab1,000). The ATP synthase fractions used are as previously described (Ko et al., 2003) and were solubilized in lithium dodecyl sulfate for separation by SDS-PAGE.

Biochemical purification of Bcl-x$_L$-binding partners
WEHI 7.1 cells (~20 ml packed pellet) were lysed in 200 ml of hypotonic buffer (37.5 mM NaCl and 10 mM Heps, pH 7.4) plus 25 µg/ml PMSF using a Dounce homogenizer. The membrane pellet (at 23,000 g for 30 min) was solubilized in 300 ml of isonicotic buffer (150 mM NaCl and 10 mM Heps, pH 7.4) plus 1% CHAPS and was clarified by centrifugation (for 15 min at 15,000 g). The supernatant was loaded onto a 10-ml trimethylaminoethoxyl anion exchange column and washed with 10 column volumes of isonicotic buffer with 0.5% CHAPS, and bound proteins were eluted with a salt gradient (Bcl-x$_L$ eluted at 0.35 M NaCl). Bcl-x$_L$–containing fractions were immunoprecipitated with 1 ml anti–murine Bcl-x$_L$ antibody (7D9) [Hsu et al., 2003] bound to beads (2 mg antibody/ml Sepharose 4B) (Amersham Pharmacia Biotech) for 3 h at 4°C. Beads were washed with isonicotic buffer with 0.5% CHAPS, and Bcl-x$_L$–containing complexes were eluted with 3 ml of 0.1 M acetic acid + 0.3% CHAPS. The sample was neutralized with 0.4 ml of 1 M Tris (pH 8.0), concentrated (Centricon-30), and separated by preparative SDS-PAGE.

Gel filtration of membrane-associated Bcl-x$_L$
106 HeLa cells stably expressing Bcl-x$_L$ (Hsu et al., 2003) were lysed by Dounce homogenization in hypotonic buffer. The membrane pellet (at 31,000 g for 30 min) was solubilized in 3 ml of isonicotic buffer plus 1% CHAPS and clarified by centrifugation (at 31,000 g for 15 min). The supernatant (0.4 ml) was loaded onto a 38-ml Superdex 200 gel filtration column (GE Healthcare) pre-equilibrated with 250 mM NaCl, 20 mM Heps, and 24 kD chymotrypsinogen. 0.4-ml column fractions containing Bcl-x$_L$ were identified by immunoblot analysis with monoclonal 2H12 (Hsu and Youle, 1997).

TMRE fluctuation in hippocampal neurons
Dissociated rat hippocampal neurons were prepared from E18 embryos and plated on poly-l-lysine–coated dishes in Neurobasal medium with B27 (Invitrogen; Li et al., 2008). Mature (DIV4–16) cultures were incubated at 37°C in recording buffer (5 mM KCl, 110 mM NaCl, 2 mM MgCl$_2$, 10 mM glucose, 10 mM Heps, 2 mM CaCl$_2$, pH 7.4, and 310 mMosm) containing TMRE (5 mM final). Individual puncta containing mitochondria at the base of a dendrite near the soma were outlined and measured by averaging 4–5 pixels as previously described (Li et al., 2008). Fluorescent images were collected (1/s for 30 s) with fixed exposure times (300 ms) using an inverted microscope (Axiovert 200; Carl Zeiss) with a 63× objective. Background fluorescence was subtracted for each image, and data were analyzed using AxioVision software (version 4.3; Carl Zeiss). For analysis of SDs, a baseline subtraction was subtracted from each graphed line using OriginLab 8.0 software to eliminate any artifacts due to slight argon movement during imaging.

Calcium measurement
Mouse cortical neurons (DIV3–5) grown on 15-mm coverslips were loaded with 2 µM cell-permeable Fura-2 acetoxymethyl ester at 37°C for 30 min, washed with culture medium, and incubated at 37°C for 20–30 min to allow complete hydrolysis of acetoxymethyl ester. Coverslips were mounted on a AttoFluor system (Carl Zeiss) and continuously infused with Locke’s buffer. Cells were sequentially excited at 340 nm/380 nm, and fluorescence intensities (510 nm) were determined for individual neurons using a video imaging system (Intracellular Imaging Inc.) and commercial reference standards (Invitrogen) by the formula

$$[Ca^{2+}]_i = K_d \frac{[R - F_{min}]/[R - F_{max}]}{[F_{max} - F_{min}]},$$

where R equals the ratio of 510-nm emission intensities excited at 340 nm relative to 380 nm, F_{max} equals the ratio at zero free Ca$^{2+}$, F_{min} equals the ratio at saturating Ca$^{2+}$ (39 µM), F_{max} equals the fluorescence intensity excited at 380 nm for zero free Ca$^{2+}$, and F_{min} equals the fluorescence intensity excited at 380 nm in saturating Ca$^{2+}$.
Numerical simulations
To estimate the flux of ions in the model vesicle (Fig. 5 A), we integrated the equation \(\frac{dV}{dt} = I_{\text{mem}} + I_{\text{out}} \), where \(V \) is the membrane potential across the vesicle, \(I_{\text{mem}} \) represents the capacitance of the vesicle, \(I_{\text{mem}} \) is the ionic current flowing through the channel in the membrane, and \(I_{\text{out}} \) is an additional fluctuating current that is applied across the membrane. \(I_{\text{mem}} \) was defined by the equation \(I_{\text{mem}} = g_i(V_i - V) \), where \(g_i \) is the conductance of the membrane and, under steady-state conditions, provides a membrane potential of \(-180 \text{ mV (} V_i = -180 \text{ mV)}\). \(I_{\text{out}} \) was either fixed at 0 or was allowed to fluctuate from 0 to a value \(I_{\text{max}} \) for 5-ns periods. These fluctuations occurred randomly with a mean period of 1 s. In different simulations, the value of \(I_{\text{max}} \) was increased from 0.01 to 10 pA. Equations were integrated for a time span of 20 s, and the ion flux for the entire period was calculated in picocoulombs. Activity of pumps was not simulated explicitly in these models but was incorporated implicitly because the reversal potential for ion flux \((V_i = -180 \text{ mV}) \) was held fixed during the simulations. Parameters for the simulations were \(C = 0.314 \text{ pico-} \), and \(g_i = 3.14 \text{ picosiemens} \).

For the second model, we tested the effects of a nonselective cation channel on the membrane potential across the inner mitochondrial membrane. For simplicity, we included a fixed proton buffer and an electrononeutral proton–cation \((K^+)^{-}\) exchange pathway (Garlid and Paucek, 2003) such that, in the absence of any other channel activity, this model has a steady-state internal proton concentration of 20 nM (pH 7.7) and a membrane potential of \(-180 \text{ mV}\), as is typical for many mitochondria.

We integrated the following pair of coupled stochastic differential equations:

\[
\frac{dH_i}{dt} = g_i (g_{\text{CHAN}}) x + 2 \frac{dV}{C} = -k_d H_i (200 + V) + k_x (H_{\text{out}} - H_i)
\]

\[
H_{\text{in}} = -K_{eq} - B + H_{\text{out}} + \frac{K_{eq} - B - H_{\text{out}}}{2} + 4K_{eq} H_{\text{out}}
\]

Here, \(B = 5 \times 10^{-3} \) mM and \(K_{eq} = 2.3 \times 10^{-5} \) mM. The constant \(A \), which is equal to \((1.036/100)/W\), where \(W \) is the volume of the vesicle \((1.767 \text{ mm}^3)\). The capacitance of the vesicle was \(5 \times 10^{-9} \text{ nanofarads} \). The values for \(g_i \) (the basal proton leak), \(g_{\text{CHAN}} \) (the conductance of the nonselective cation channel) were 5, 5.55 \times 10^{-6}, and 5 \times 10^{-6} \text{ picosiemens, respectively. The values for } k_x \text{ (the rate constant for H+ pumping out of the vesicle) and } k_d \text{ (the rate of electrononeutral cation/H+ exchange) were 2.5 and } 5 \text{ m s}^{-1}, \text{ respectively.}

If \(x \) is a stochastic function that takes on the value of 1 or 0 depending on whether the nonselective cation channel is open or closed. The open probability, \(P_o \), of the channel was determined by the rate constants for channel opening \(k_x \) and closing \(k_b \) and was given by the following relation:

\[
P_o = \frac{k_x}{k_d + k_b}
\]

The value of \(k_d \) was fixed at 0.3 ms\(^{-1}\), which provided a mean open time of 3.33 ms. In the simulations of Fig. 5 C and D, the values of \(k_x \) were set at 0, 0.0005, 0.0010, and 0.0353 ms\(^{-1}\), providing mean open probabilities of 0, 0.0017, 0.0323, and 0.1004.

ATP measurements
Cortical cultures were harvested as for immunoblot analysis plus a phosphatase inhibitor; mouse cortex lysates were supplemented with 50 mM atracyloside. Samples were analyzed immediately, or time points were frozen instantly and analyzed together. Protein concentration/sample (BCA assay) and fresh ATP standards \((0, 25 \mu M, 5 \mu M, 500 \text{ nM}, 50 \text{ nM}, \text{ and } 5 \text{ nM}) \) were used to calibrate every experiment.

Yeast cell death assay
Overnight cultures of yeast strains \((\text{MATa, his3A1, leu2A0, met15A0, ura3A0, and ydr412Cw} \text{-}) \text{ were transformed with modified pRS413 plasmid containing MTor mutation, and transformed yeast cells were grown in SD medium with 2% galactose and 2% raffinose. Yeast cells were grown to stationary phase (48 h) before use. Cells were harvested by centrifugation and washed twice with 0.9% NaCl and PBS, and cell pellets were resuspended in 1 ml of distilled water and heated at 50°C for 2 min.

Online supplemental material
Fig. S1 shows that no respiratory defects were detected in bcl-x-deficient mitochondria. Fig. S2 shows coimmunogold EM for Bcl-xL and \(\beta \)-subunit. Fig. S3 shows protease digestion of mitochondria detected with Bcl-xL antibody. Fig. S4 shows an example of TMRE traces and Bcl-xL blots for shRNA knockdowns in Fig. 4 G. Fig. S5 shows expression levels of Bcl-xL protein in yeast. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201108059/DCC1.

We thank Dr. L. Boise (University of Miami, Miami, FL) for the Bcl-xL antibody.

This work was supported by research grants GM77875 and NS27402 (to H. Hardwick), R37 HL54592 (to B. O’Rourke), NS40932 (to T. Hsu), DC01919 and NS018492 (to L.K. Kaczmarek), NS045876 (to E.A. Jones), and CA010951 (to P.L. Pedersen) from the National Institute of Health.

Submitted: 10 August 2011
Accepted: 14 September 2011

References
Abramov, A.Y., A. Scorziello, and M.R. Duchen. 2007. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27:1129–1138. http://dx.doi.org/10.1523/JNEUROSCI.4468-06.2007
Alavian, K.L., Collis, H. Li, L. Bonanni, L. Zeng, S. Sacchetti, E. Lazrove, P. Nabil, B. Fialherty, M. Graham, et al. 2011. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. In press.
Aon, M.A., S. Cortassa, E. Marbá, and B. O’Rourke. 2003. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J. Biol. Chem. 278:44735–44744. http://dx.doi.org/10.1074/jbc.M302673200
Basalteix, G., J.C. Sharpe, J. Galanis, T.B. Brandt, J.M. Hardwick, and J. Zimmerman. 2002. Bax-type apoptotic proteins pore pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J. Biol. Chem. 277:49360–49365. http://dx.doi.org/10.1074/jbc.M206092000
Bellows, D.S., M. Howell, C. Pearson, S.A. Hazlewood, and J.M. Hardwick. 2002. Epstein-Barr virus BALF1 in. BCL-2, the antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J. Virol. 76:2469–2479. http://dx.doi.org/10.1128/jvi.76.7.2469-2479.2002
Belzaq, A.S., H.L. Vieira, F. Verrier, G. Vandecasteele, I. Cohen, M.C. Prévost, E. Larquet, F. Pariselli, P.X. Petit, A. Kahn, et al. 2003. Bcl-2 and Bax modulate adenine nucleotide translocase activity. Cancer Res. 63:541–546.
Benard, G., and R. Rossignol. 2008. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signal. 10:1313–1342. http://dx.doi.org/10.1089/ars.2007.2000
Berman, S.B., Y.B. Chen, B. Qi, J.M. McCaffrey, E.B. Rucker III, S. Goebels, K.A. Nave, H.A. Arnold, E.A. Jonas, F. Pineda, and J.M. Hardwick. 2009. Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons. J. Cell Biol. 184:707–719. http://dx.doi.org/10.1083/jcb.200809060
Billen, L.P., C.L. Kokoski, J.F. Lovell, B. Leber, and D.W. Andrews. 2008. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol. 6:e147. http://dx.doi.org/10.1371/journal.pbio.0060147
Hsu, Y.T., Q. Hou, E. Cymbalyuk, and R. Youle. 2003. Generation and metabolic analysis of transiently expressed Bcl-2: roles in cytochrome C accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. USA. 94:6939–6942. dx.doi.org/10.1073/pnas.0416274101

Hou, Q., E. Cymbalyuk, and R. Youle. 2003. Apoptosis modulatory activities of transiently expressed Bcl-2: roles in cytotoxic C accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. USA. 94:6939–6942. dx.doi.org/10.1073/pnas.0416274101

Kharbanda, S., P. Pandey, L. Scholfield, S. Israels, R. Roncinske, K. Yoshida, A. Bharti, Z.M. Yuan, S. Saxena, R. Weichselbaum, et al. 1997. Role of Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. USA. 94:6939–6942. dx.doi.org/10.1073/pnas.0416274101

Ko, Y.H., M. Delamany, J. Hullihen, W. Chiu, and P.L. Pedersen. 2003. Mitochondrial ATP synthase. Cysteine-enriched membranes and a multistep detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J. Biol. Chem. 278:12305–12309. dx.doi.org/10.1074/jbc.M207032002

Kowaltowski, A.J., R.G. Cosso, C.B. Campos, and G. Fiskum. 2002. Effect of Bcl-2 overexpression on mitochondrial structure and function. J. Biol. Chem. 277:42802–42807. dx.doi.org/10.1074/jbc.M207752002

Kristian, T., N.B. Pivoarovarova, G. Fiskum, and S.B. Andrews. 2007. Calcium-induced precipitation in brain mitochondria: composition, calcium capacity, and retention. J. Neurochem. 102:1346–1356. dx.doi.org/10.1111/j.1471-4159.2007.04626.x

Lam, M., M.B. Bhat, G. Nuñez, J. Ma, and C.W. Distelhorst. 1998. Regulation of Bcl-xL channel activity by calcium. J. Biol. Chem. 273:17307–17310. dx.doi.org/10.1074/jbc.273.28.17307

Letai, A.G. 2008. Diagnosing and exploring cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer. 8:121–132. dx.doi.org/10.1038/nrc2297

Levine, B., S. Sinha, and G. Kroemer. 2008. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy. 4:600–606. dx.doi.org/10.4161/aut.4.5.7790

Lewis, J., G.A. Oyler, K. Ueno, Y.R. Fannjiang, B.N. Chau, J. Voronj, S.J. Korsmeyer, S. Zou, and J.M. Hardwick. 1999. Inhibition of virus-induced neuronal apoptosis by Bax. Nat. Med. 5:832–835. dx.doi.org/10.1038/10556

Li, H., Y. Chen, A.F. Jones, R.H. Sanger, L.P. Collis, R. Flannery, E.C. McNay, T. Yu, R. Schwarzenbacher, B. Bossy, et al. 2008. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA. 105:2169–2174. dx.doi.org/10.1073/pnas.0711647105

Matsuyama, S., Q. Xu, J. Velours, and J.C. Reed. 1998. The mitochondrial FO1-FATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. 1:327–336. dx.doi.org/10.1016/S1097-2765(00)80033-7

McCaflrey, J.M., and M.G. Farquhar. 1995. Localization of GTPases by indirect immunofluorescence and immunoelectron microscopy. Methods Enzymol. 257:259–279. dx.doi.org/10.1016/S0076-6879(95)57031-4

Montessuit, S., S.P. Somasekharan, O. Terrones, S. Lucken-Ardjomande, S. Herzig, R. Schwarzenbacher, D.J. Mannstein, E. Bossy-Wetzel, G. Basáñez, P. Meda, and J.C. Martinou. 2010. Mitochondrial remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell. 142:889–901. dx.doi.org/10.1016/j.cell.2010.08.017

Motoyama, S., M. Kitamura, S. Saito, Y. Minamiya, H. Suzuki, R. Saito, K. Terada, J. Ogawa, and H. Inaba. 1998. Bcl-2 is located predominantly in the inner mitochondrial membrane and crista of mitochondria in rat liver. J. Cell Biol. 142:889–901. dx.doi.org/10.1016/j.cell.2010.08.017

Narendra, D., A. Tanaka, D.F. Suen, and R.J. Youle. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803. dx.doi.org/10.1083/jcb.200809125

Nicholls, D.G., and S.J. Ferguson. 2002. Bioenergetics 3. Academic Press, San Diego, CA. 297 pp.

Nicolis, G., and I. Prigogine. 1977. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York. 491 pp.

Oltersdorf, T., S.W. Elmore, A.R. Shoemaker, R.C. Armstrong, D.J. Barrell, G. Basáñez, P. Meda, and J.C. Martinou. 2010. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell. 142:889–901. dx.doi.org/10.1016/j.cell.2010.08.017

Paumard, P., J. Vaillier, B. Coulary, J. Schaeffer, V. Soubannier, D.M. Mueller, D. Bréthes, J.P. Drago, and J. Velours. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21:221–230. dx.doi.org/10.1093/emboj/21.3.221

Rak, M., S. Gokova, and A. Tzagoloff. 2011. Modular assembly of yeast mitochondrial ATP synthase. EMBO J. 30:920–930. dx.doi.org/10.1002/emboj.20100364

Rosenthal, R.E., F. Hamud, G. Fiskum, P.J. Varghese, and S. Sharpe. 1987. Cerebral ischemia and reperfusion: Reperfusion of brain mitochondrial...
injury by lidoflazine. J. Cereb. Blood Flow Metab. 7:752–758. http://dx.doi.org/10.1038/jcbfm.1987.130

Schwartz, P.S., M.K. Manion, C.B. Emerson, J.S. Fry, C.M. Schulz, I.R. Sweet, and D.M. Hockenbery. 2007. 2-Methoxy antimycin reveals a unique mechanism for Bcl-x(L) inhibition. Mol. Cancer Ther. 6:2073–2080. http://dx.doi.org/10.1158/1535-7163.MCT-06-0767

Soane, L., Z.T. Siegel, R.A. Schuh, and G. Fiskum. 2008. Postnatal developmental regulation of Bcl-2 family proteins in brain mitochondria. J. Neurosci. Res. 86:1267–1276. http://dx.doi.org/10.1002/jnr.21584

Teng, X., W.C. Cheng, B. Qi, T.-X. Yu, K. Ramachandran, M.D. Boersma, T. Hattier, P.V. Lehmann, F.J. Pineda, and J.M. Hardwick. 2011. Gene-dependent cell death in yeast. Cell Death Dis. 2:e188. http://dx.doi.org/10.1038/cddis.2011.72

Twig, G., A. Elorza, A.J. Molina, H. Mohamed, J.D. Wikstrom, G. Walzer, L. Siles, S.E. Haigh, S. Katz, G. Las, et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433–446. http://dx.doi.org/10.1038/sj.emboj.7601963

Vander Heiden, M.G., X.X. Li, E. Gottlieb, R.B. Hill, C.B. Thompson, and M. Colombini. 2001. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 276:19414–19419. http://dx.doi.org/10.1074/jbc.M101590200

van Raaij, M.J., J.P. Abrahams, A.G. Leslie, and J.E. Walker. 1996. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc. Natl. Acad. Sci. USA. 93:6913–6917. http://dx.doi.org/10.1073/pnas.93.14.6913

Vergun, O., T.V. Votyakova, and I.J. Reynolds. 2003. Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys. J. 85:3358–3366. http://dx.doi.org/10.1016/S0006-3495(03)74755-9

Walker, J.E., and V.K. Dickson. 2006. The peripheral stalk of the mitochondrial ATP synthase. Biochim. Biophys. Acta. 1757:286–296. http://dx.doi.org/10.1016/j.bbabio.2006.01.001

White, C., C. Li, J. Yang, N.B. Petrenko, M. Madesh, C.B. Thompson, and J.K. Foskett. 2005. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat. Cell Biol. 7:1021–1028. http://dx.doi.org/10.1038/ncb1302

Yi, C.H., H. Pan, J. Seebacher, I.-H. Jang, S.G. Hyberts, G.J. Heffron, M.G. Vander Heiden, R. Yang, W.-L. Li, J.W. Locasale, et al. 2011. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell. 146:607–620. http://dx.doi.org/10.1016/j.cell.2011.06.050

Youle, R.J., and A. Strasser. 2008. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9:47–59. http://dx.doi.org/10.1038/nrm2308