GORENSTEIN COHOMOLOGY IN ABELIAN CATEGORIES

SEAN SATHER-WAGSTAFF, TIRDAD SHARIF, AND DIANA WHITE

ABSTRACT. We investigate relative cohomology functors on subcategories of abelian categories via Auslander-Buchweitz approximations and the resulting strict resolutions. We verify that certain comparison maps between these functors are isomorphisms and introduce a notion of perfection for this context. Our main theorem is a balance result for relative cohomology that simultaneously recovers theorems of Holm and the current authors as special cases.

INTRODUCTION

Let \mathcal{A} be an abelian category equipped with subcategories \mathcal{W} and \mathcal{X} such that \mathcal{X} is closed under extensions and \mathcal{W} is an injective cogenerator for \mathcal{X}. (See Section 1 for definitions and Section 2 for motivating examples from commutative algebra.) Given an object M in \mathcal{A} with finite \mathcal{X}-projective dimension, Auslander and Buchweitz’s theory of approximations [3] provides a “strict \mathcal{WX}-resolution” of M. Such a resolution enjoys good enough lifting properties to make it unique up to homotopy equivalence and, as such, yields a well-defined relative cohomology functor $\text{Ext}^n_{\mathcal{A}}(M, -)$ for each integer n. The functors $\text{Ext}^n_{\mathcal{AY}}(-, N)$ are defined dually.

These functors have been investigated by numerous authors, beginning with the fundamental work of Butler and Horrocks [6] and Eilenberg and Moore [8]. Our approach to the subject is based on a fusion of the techniques of Avramov and Martsinkovsky [5], Enochs and Jenda [10], and Holm [16].

The contents of this paper are summarized as follows. In Section 3 we present a brief study of the pertinent properties of strict resolutions. Sections 4 focuses on conditions guaranteeing that natural comparison maps are isomorphisms. In Section 5 we introduce a notion of relative perfection and establish a duality between certain classes of relatively perfect objects.

The main theorem of this paper is the following balance result, contained in Theorem 6.7. It showcases the benefit of our approach to studying these functors, as it simultaneously encompasses a result of Holm [16 (3.6)] and our own result [21 (5.7)]; see Corollary 6.11 and Remark 6.18.

Main Theorem. Let \mathcal{X}, \mathcal{Y}, \mathcal{W} and \mathcal{V} be subcategories of \mathcal{A}. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is an injective cogenerator for \mathcal{X}, \mathcal{V} is a projective generator for \mathcal{Y}, $\mathcal{W} \perp \mathcal{Y}$ and $\mathcal{X} \perp \mathcal{V}$. Assume further $\text{Ext}^{1}_{\mathcal{WA}}(T, V) = \ldots$
0 = \text{Ext}^{2,1}_A(W, U) \text{ for all objects } T \text{ and } U \text{ with } W \text{-pd}(T) < \infty \text{ and } \mathcal{V} \text{-id}(U) < \infty.

If \(M \) and \(N \) are objects of \(\mathcal{A} \) such that \(X \text{-pd}(M) < \infty \) and \(\mathcal{Y} \text{-id}(N) < \infty \), then there are isomorphisms \(\text{Ext}^n_{\mathcal{X} \mathcal{A}}(M, N) \cong \text{Ext}^n_{\mathcal{A} \mathcal{Y}}(M, N) \) for all \(n \in \mathbb{Z} \).

1. Categories and Resolutions

We begin with some notation and terminology for use throughout this paper.

Definition/Notation 1.1. Throughout this work \(\mathcal{A} \) is an abelian category. We use the term “subcategory” to mean a “full, additive, and essential (closed under isomorphisms) subcategory.” Write \(\mathcal{P} = \mathcal{P}(\mathcal{A}) \) and \(\mathcal{I} = \mathcal{I}(\mathcal{A}) \) for the subcategories of projective and injective objects in \(\mathcal{A} \), respectively.

We fix subcategories \(\mathcal{X}, \mathcal{Y}, \mathcal{W}, \) and \(\mathcal{V} \) of \(\mathcal{A} \) such that \(\mathcal{W} \) is a subcategory of \(\mathcal{X} \) and \(\mathcal{V} \) is a subcategory of \(\mathcal{Y} \). For an object \(M \in \mathcal{A} \), write \(M \perp \mathcal{Y} \) (resp., \(\mathcal{X} \perp M \)) if \(\text{Ext}^2_{\mathcal{X} \mathcal{A}}(M, Y) = 0 \) for each object \(Y \in \mathcal{Y} \) (resp., if \(\text{Ext}^2_{\mathcal{A} \mathcal{Y}}(X, M) = 0 \) for each object \(X \in \mathcal{X} \)). Write \(\mathcal{X} \perp \mathcal{Y} \) if \(\text{Ext}^2_{\mathcal{X} \mathcal{A}}(X, Y) = 0 \) for each object \(X \in \mathcal{X} \). We say that \(\mathcal{W} \) is a *cogenerator* for \(\mathcal{X} \) if, for each object \(X \in \mathcal{X} \), there exists an exact sequence

\[
0 \to X \to W \to X' \to 0
\]

with \(W \in \mathcal{W} \) and \(X' \in \mathcal{X} \). The subcategory \(\mathcal{W} \) is an *injective cogenerator* for \(\mathcal{X} \) if \(\mathcal{W} \) is a cogenerator for \(\mathcal{X} \) and \(\mathcal{X} \perp \mathcal{W} \). The terms *generator* and *projective generator* are defined dually.

Definition 1.2. An \(\mathcal{A} \)-complex is a sequence of homomorphisms in \(\mathcal{A} \)

\[
M = \cdots \xrightarrow{\partial_{n+1}^M} M_n \xrightarrow{\partial_n^M} M_{n-1} \xrightarrow{\partial_{n-1}^M} \cdots
\]

such that \(\partial_{n+1}^M \partial_n^M = 0 \) for each integer \(n \); the \(n \)th homology object of \(M \) is \(H_n(M) = \text{Ker}(\partial_n^M) / \text{Im}(\partial_{n+1}^M) \). We frequently identify objects in \(\mathcal{A} \) with complexes concentrated in degree 0. For each integer \(i \), the \(i \)th suspension (or shift) of a complex \(M \), denoted \(\Sigma^i M \), is the complex with \((\Sigma^i M)_n = M_{n-i} \) and \(\partial_n^{\Sigma^i M} = (-1)^i \partial_{n-i}^M \). The notation \(\Sigma X \) is short for \(\Sigma^1 X \).

A complex \(M \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{X}, -) \)-exact if the complex \(\text{Hom}_{\mathcal{A}}(X, M) \) is exact for each object \(X \in \mathcal{X} \). The term \(\text{Hom}_{\mathcal{A}}(-, \mathcal{X}) \)-exact is defined dually.

Definition 1.3. Let \(M, N \) be \(\mathcal{A} \)-complexes. The Hom-complex \(\text{Hom}_{\mathcal{A}}(M, N) \) is the complex of abelian groups defined as \(\text{Hom}_{\mathcal{A}}(M, N) = \prod_p \text{Hom}_{\mathcal{A}}(M_p, N_{p+n}) \) with \(\partial_n^{\text{Hom}_{\mathcal{A}}(M, N)} \) given by \(\alpha = \{ \alpha_p \} \mapsto \{ \partial_{p+n}^M \alpha_p - (-1)^n \alpha_{n-1} \partial_p^N \} \). A morphism \(M \to N \) is an element of \(\text{Ker}(\partial_0^{\text{Hom}_{\mathcal{A}}(M, N)}) \), and a morphism is null-homotopic if it is in \(\text{Im}(\partial_1^{\text{Hom}_{\mathcal{A}}(M, N)}) \). Two morphisms \(\alpha, \alpha' : M \to N \) are homotopic if \(\alpha - \alpha' \) is null-homotopic. The morphism \(\alpha \) is a homotopy equivalence if there is a morphism \(\beta : N \to M \) such that \(\beta \alpha \) is homotopic to \(\text{id}_M \) and \(\alpha \beta \) is homotopic to \(\text{id}_N \).

A morphism \(\alpha : M \to N \) induces homomorphisms \(H_n(\alpha) : H_n(M) \to H_n(N) \), and \(\alpha \) is a quasiisomorphism if each \(H_n(\alpha) \) is bijective. The mapping cone of \(\alpha \) is the complex \(\text{Cone}(\alpha) \) defined as \(\text{Cone}(\alpha)_n = N_n \oplus M_{n-1} \) and \(\partial_n^{\text{Cone}(\alpha)} = \left(\begin{array}{cc} \partial_n^N & -\partial_{n-1}^M \\ 0 & -\partial_{n-1}^M \end{array} \right) \). The morphism \(\alpha \) is a quasiisomorphism if and only if \(\text{Cone}(\alpha) \) is exact.

Definition 1.4. A complex \(X \) is bounded if \(X_n = 0 \) for \(|n| \gg 0 \). When \(X_n = 0 = H_n(X) \) for all \(n > 0 \), the natural morphism \(X \to H_0(X) \cong M \) is a quasiisomorphism. In this event, the morphism \(X \to M \) is an \(\mathcal{X} \)-resolution of \(M \) if each
X_n is in \mathcal{X}, and the exact sequence

$$X^+ = \cdots \xrightarrow{\partial^X_2} X_1 \xrightarrow{\partial^X_1} X_0 \to M \to 0$$

is the augmented \mathcal{X}-resolution of M associated to X. We write “projective resolution” in lieu of “\mathcal{P}-resolution”. The \mathcal{X}-projective dimension of M is the quantity

$$\mathcal{X}$-pd$(M) = \inf\{\sup\{n \geq 0 | X_n \neq 0\} | X \text{ is an } \mathcal{X}$-resolution of $M\}.$$ The objects of \mathcal{X}-projective dimension 0 are exactly the objects of \mathcal{X}. We let $\text{res} \hat{X}$ denote the subcategory of objects M with \mathcal{X}-pd$(M) < \infty$. One checks easily that $\text{res} \hat{X}$ is additive and contains \mathcal{X}.

The terms \mathcal{Y}-coresolution and \mathcal{Y}-injective dimension are defined dually. The augmented \mathcal{Y}-coresolution associated to a \mathcal{Y}-coresolution Y is denoted $+Y$, and the \mathcal{Y}-injective dimension of M is denoted \mathcal{Y}-id(M). The subcategory of R-modules N with \mathcal{Y}-id$(N) < \infty$ is denoted cores $\tilde{\mathcal{Y}}$; it is additive and contains \mathcal{Y}.

Definition 1.5. An \mathcal{X}-resolution X is proper if the augmented resolution X^+ is $\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)$-exact. The subcategory of objects admitting a proper \mathcal{X}-resolution is denoted res \hat{X}. One checks readily that res \hat{X} is additive and contains \mathcal{X}. Projective resolutions are \mathcal{P}-proper, and so \mathcal{A} has enough projectives if and only if res $\hat{\mathcal{P}} = \mathcal{A}$.

Proper coresolutions are defined dually, and we let cores $\tilde{\mathcal{Y}}$ denote the subcategory of objects of \mathcal{A} admitting a proper \mathcal{Y}-coresolution. Again, cores $\tilde{\mathcal{Y}}$ is additive and contains \mathcal{Y} as a subcategory. Injective coresolutions are always I-proper, and so \mathcal{A} has enough injectives if and only if cores $\tilde{I} = \mathcal{A}$.

The next lemmata are standard or have standard proofs: for [1.6] see [3] pf. of (2.3); for [1.7] see [3] pf. of (2.1); for [1.8] argue as in [5] (4.3) or [10] pf. of (8.1.3); and for the “Horseshoe Lemma” [1.9] see [5] (4.5) or [10] pf. of (8.2.1).

Lemma 1.6. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be an exact sequence in \mathcal{A}.

(a) If $M_3 \perp \mathcal{X}$, then $M_1 \perp \mathcal{X}$ if and only if $M_2 \perp \mathcal{X}$. If $M_1 \perp \mathcal{X}$ and $M_2 \perp \mathcal{X}$, then $M_3 \perp \mathcal{X}$ if and only if the given sequence is $\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)$ exact.

(b) If $\mathcal{X} \perp M_1$, then $\mathcal{X} \perp M_2$ if and only if $\mathcal{X} \perp M_3$. If $\mathcal{X} \perp M_2$ and $\mathcal{X} \perp M_3$, then $\mathcal{X} \perp M_1$ if and only if the given sequence is $\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)$ exact.

Lemma 1.7. If $\mathcal{X} \perp \mathcal{Y}$, then $\mathcal{X} \perp \text{res} \tilde{\mathcal{Y}}$ and cores $\tilde{\mathcal{X}} \perp \mathcal{Y}$.

Lemma 1.8. Let M, M', N, N' be objects in \mathcal{A}.

(a) Assume that M admits a proper \mathcal{W}-resolution $\gamma : W \to M$ and M' admits a proper \mathcal{X}-resolution $\gamma' : X' \to M'$. For each homomorphism $f : M \to M'$ there exists a morphism $\tilde{f} : W \to X'$ unique up to homotopy such that $\gamma' \tilde{f} = f \gamma$. If f is an isomorphism, then \tilde{f} is a quasiisomorphism. If f is an isomorphism and $X = W$, then \tilde{f} is a homotopy equivalence.

(b) Assume that M admits a projective \mathcal{A}-resolution $\gamma : P \to M$ and M' admits a proper \mathcal{X}-resolution $\gamma' : X' \to M'$. For each homomorphism $f : M \to M'$ there exists a morphism $\tilde{f} : P \to X'$ unique up to homotopy such that $\gamma' \tilde{f} = f \gamma$. If f is an isomorphism, then \tilde{f} is a quasiisomorphism.

(c) Assume that N admits a proper \mathcal{Y}-coresolution $\delta : N \to Y$ and N' admits a proper \mathcal{V}-coresolution $\delta' : N' \to V'$. For each homomorphism $g : N \to N'$ there exists a morphism $\tilde{g} : Y \to V'$ unique up to homotopy such that $\delta' \tilde{g} = \delta g$. If g is an isomorphism, then \tilde{g} is a quasiisomorphism. If g is an isomorphism and $\mathcal{V} = \mathcal{Y}$, then \tilde{g} is a homotopy equivalence.
Lemma 1.9. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence in \mathcal{A}.

(a) Assume that M' and M'' admit proper \mathcal{X}-resolutions $\gamma': X' \to M'$ and $\gamma'': X'' \to M''$ and that the given sequence is $\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)$-exact. Then M admits a proper \mathcal{X}-resolution $\gamma: X \to M$ such that there exists a commutative diagram whose top row is degreewise split exact.

$$
\begin{array}{cccccc}
0 & \to & X' & \to & X & \to & X'' & \to & 0 \\
\gamma' & & \gamma & & \gamma'' & & \\
0 & \to & M' & \to & M & \to & M'' & \to & 0
\end{array}
$$

(b) Assume that M' and M'' admit proper \mathcal{Y}-coresolutions $\delta': M' \to Y'$ and $\delta'': M'' \to Y''$ and that the given sequence is $\text{Hom}_{\mathcal{A}}(-, \mathcal{Y})$-exact. Then M admits a proper \mathcal{Y}-coresolution $\delta: M \to Y$ such that there exists a commutative diagram whose bottom row is degreewise split exact.

$$
\begin{array}{cccccc}
0 & \to & M' & \to & M & \to & M'' & \to & 0 \\
\delta' & & \delta & & \delta'' & & \\
0 & \to & Y' & \to & Y & \to & Y'' & \to & 0
\end{array}
$$

The final result of this section is for Corollary [22.3]. It follows from [22. (2.3)].

Lemma 1.10. For each integer $n \geq 0$, let \mathcal{X}_n and \mathcal{Y}_n be subcategories of \mathcal{A} such that \mathcal{X}_n and \mathcal{Y}_n are closed under extensions when $n \geq 2$.

(a) If \mathcal{X}_n is a cogenerator for \mathcal{X}_{n+1} for each $n \geq 0$ and $\mathcal{X}_n \perp \mathcal{X}_0$ for each $n \geq 1$, then \mathcal{X}_n is an injective cogenerator for \mathcal{X}_{n+j} for each $n, j \geq 0$.

(b) If \mathcal{Y}_n is a generator for \mathcal{Y}_{n+1} for each $n \geq 0$ and $\mathcal{Y}_0 \perp \mathcal{Y}_n$ for each $n \geq 1$, then \mathcal{Y}_n is a projective generator for \mathcal{Y}_{n+j} for each $n, j \geq 0$.

2. Categories of Interest

Much of the motivation for this work comes from module categories. In reading this paper, the reader may find it helpful to keep in mind the examples of this section, wherein R is a commutative ring. We return to these examples explicitly in Sections 5 and 6.

Notation 2.1. Let $\mathcal{M}(R)$ denote the category of R-modules. For simplicity, we write $\mathcal{P}(R) = \mathcal{P}(\mathcal{M}(R))$ and $\mathcal{I}(R) = \mathcal{I}(\mathcal{M}(R))$. Also set $\mathcal{Ab} = \mathcal{M}(\mathbb{Z})$, the category of abelian groups. If $\mathcal{X}(R)$ is a subcategory of $\mathcal{M}(R)$, then $\mathcal{X}^f(R)$ is the subcategory of finitely generated modules in $\mathcal{X}(R)$.

The study of semidualizing modules was initiated independently (with different names) by Foxby [11], Golod [15], and Vasconcelos [24].

Definition 2.2. An R-module C is semidualizing if it satisfies the following:

1. C admits a (possibly unbounded) resolution by finite rank free R-modules,
2. the natural homothety map $R \to \text{Hom}_R(C, C)$ is an isomorphism, and
(3) $\text{Ext}^3_R(C, C) = 0$.

A finitely generated projective R-module of rank 1 is semidualizing. If R is Cohen-Macaulay, then D is dualizing if it is semidualizing and $\text{id}_R(D)$ is finite.

Based on the work of Enochs and Jenda [9], the following notions were introduced and studied in this generality by Holm and Jørgensen [18] and White [25].

Definition/Notation 2.3. Let C be a semidualizing R-module. An R-module is C-projective (resp., C-injective) if it is isomorphic to $P \otimes R C$ for some projective R-module P (resp., $\text{Hom}_R(C, I)$ for some injective R-module I). The categories of C-projective and C-injective R-modules are denoted $\mathcal{P}_C(R)$ and $\mathcal{I}_C(R)$, respectively.

A complete $\mathcal{P}\mathcal{P}_C$-resolution is a complex X of R-modules satisfying the following:

1. X is exact and $\text{Hom}_R(-, \mathcal{P}_C(R))$-exact, and
2. X_n is projective when $n \geq 0$ and X_n is C-projective when $n < 0$.

An R-module G is G_C-projective if there exists a complete $\mathcal{P}\mathcal{P}_C$-resolution X such that $G \cong \text{Coker}(\partial^n)$, in which case X is a complete $\mathcal{P}\mathcal{P}_C$-resolution of G. We let $\mathcal{G}\mathcal{P}_C(R)$ denote the subcategory of G_C-projective R-modules.

The terms complete $\mathcal{I}\mathcal{C}_C$-coresolution and G_C-injective are defined dually, and $\mathcal{G}\mathcal{I}_C(R)$ is the subcategory of G_C-injective R-modules.

Fact 2.4. Let C be a semidualizing R-module. One has $\mathcal{P}(R) \cup \mathcal{P}_C(R) \subseteq \mathcal{G}\mathcal{P}_C(R)$, and $\mathcal{P}_C(R)$ is an injective cogenerator for $\mathcal{G}\mathcal{P}_C(R)$ by [25] (3.2),(3.6),(3.9)]. Dually, one has $\mathcal{I}(R) \cup \mathcal{I}_C(R) \subseteq \mathcal{G}\mathcal{I}_C(R)$, and $\mathcal{I}_C(R)$ is a projective generator for $\mathcal{G}\mathcal{I}_C(R)$.

The next definition was first introduced by Auslander and Bridger [1, 2] in the case $C = R$, and in this generality by Golod [15] and Vasconcelos [24].

Definition/Notation 2.5. Assume that R is noetherian, and let C be a semidualizing R-module. A finitely generated R-module H is totally C-reflexive if

1. $\text{Ext}^3_R(H, C) = 0 = \text{Ext}^3_R(\text{Hom}_R(H, C), C)$, and
2. the natural biduality map $H \to \text{Hom}_R(\text{Hom}_R(H, C), C)$ is an isomorphism.

Let $\mathcal{G}_C(R)$ denote the subcategory of totally C-reflexive R-modules.

Fact 2.6. Assume that R is noetherian and let C be a semidualizing R-module. One has $\mathcal{G}_C(R) = \mathcal{G}\mathcal{P}^f_C(R)$ by [25] (5.4)], and so $\mathcal{P}^f_C(R) \cup \mathcal{P}_C^f(R) \subseteq \mathcal{G}_C(R)$. Also, $\mathcal{P}^f_C(R)$ is an injective cogenerator for $\mathcal{G}_C(R)$ by [25] (3.9),(5.3),(5.4)].

Over a noetherian ring, the next categories were introduced by Avramov and Foxby [4] when C is dualizing, and by Christensen [7] for arbitrary C [1]. In the non-noetherian setting, these definitions are from [19, 25].

Definition/Notation 2.7. Let C be a semidualizing R-module. The Auslander class of C is the subcategory $\mathcal{A}_C(R)$ of R-modules M such that

1. $\text{Tor}^3_R(C, M) = 0 = \text{Ext}^3_R(C, C \otimes_R M)$, and
2. The natural map $M \to \text{Hom}_R(C, C \otimes_R M)$ is an isomorphism.

The Bass class of C is the subcategory $\mathcal{B}_C(R)$ of R-modules N such that

1. $\text{Ext}^3_R(C, N) = 0 = \text{Tor}^3_R(C, \text{Hom}_R(C, N))$, and
2. The natural evaluation map $C \otimes_R \text{Hom}_R(C, N) \to N$ is an isomorphism.

\footnote{Note that these works (and others) use the notation $\mathcal{A}_C(R)$ and $\mathcal{B}_C(R)$ for certain categories of complexes, while our categories consist precisely of the modules in these categories by [7] (4.10)].}
Definition 3.1. Fix an object M in \mathcal{A}. A bounded strict \mathcal{WX}-resolution of M is a bounded \mathcal{X}-resolution $X \xrightarrow{\sim} M$ such that X_n is an object in \mathcal{W} for each $n \geq 1$. An exact sequence in \mathcal{A}

$$0 \to K \to X_0 \to M \to 0$$

such that $K \in \text{res } \mathcal{W}$ and $X_0 \in \mathcal{X}$ is called an \mathcal{WX}-approximation of M. The term \mathcal{WX}-hull of M is used for an exact sequence in \mathcal{A}

$$0 \to M \to K' \to X' \to 0$$

such that $K' \in \text{res } \mathcal{W}$ and $X' \in \mathcal{X}$. The terms bounded strict \mathcal{YV}-coresolution, \mathcal{YV}-coapproximation and \mathcal{YV}-cohull are defined dually.

The first result of this section outlines the properness properties of certain (co)resolutions and (co)approximations.

Lemma 3.2. Assume $\mathcal{X} \perp \mathcal{W}$ and $\mathcal{V} \perp \mathcal{Y}$.

(a) Bounded \mathcal{W}-resolutions are \mathcal{X}-proper and hence \mathcal{W}-proper.

(b) If \mathcal{W} is an injective cogenerator for \mathcal{X}, then bounded strict \mathcal{WX}-resolutions are \mathcal{X}-proper and \mathcal{WX}-approximations are $\text{Hom}_\mathcal{A}(\mathcal{X}, -)$-exact.

(c) Bounded \mathcal{V}-coresolutions are \mathcal{Y}-proper and hence \mathcal{V}-proper.

(d) If \mathcal{V} is a projective generator for \mathcal{Y}, then bounded strict \mathcal{YV}-coresolutions are \mathcal{Y}-proper and \mathcal{YV}-coapproximations are $\text{Hom}_\mathcal{A}(\mathcal{Y}, \mathcal{Y})$-exact.

Proof. We prove parts (iii) and (iv); the others are proved dually.

(iii) Let M be an object in \mathcal{A} admitting a bounded \mathcal{W}-resolution $W \to M$. We need to show that $\text{Hom}_\mathcal{A}(X, W^+)$ is exact for each object X in \mathcal{X}. Set $M_n = \text{Coker}(\partial_n^W)$ and, when $n \geq 0$, consider the associated exact sequence

$$0 \to M_n \to W_n \to M_{n-1} \to 0.$$

The object M_n is in $\text{res } \mathcal{W}$ for each n. Lemma 1.7 implies $\mathcal{X} \perp \text{res } \mathcal{W}$, and so the displayed sequence is $\text{Hom}_\mathcal{A}(\mathcal{X}, -)$-exact by Lemma 1.6. It follows that W^+ is $\text{Hom}_\mathcal{A}(\mathcal{X}, -)$-exact as well, that is, the resolution is \mathcal{X}-proper.

(iv) Let $X \to M$ be a bounded strict \mathcal{WX}-resolution such that $X_i = 0$ for each $i > n$, and set $K = \text{Im}(\partial_1^X)$. The next exact sequence is a bounded \mathcal{W}-resolution

$$0 \to X_n \to \cdots \to X_1 \to K \to 0$$

and so part (iii) implies that it is $\text{Hom}_\mathcal{A}(\mathcal{X}, \mathcal{X})$-exact. The following sequence

$$0 \to K \to X_0 \to M \to 0$$

is a \mathcal{WX}-approximation. Once we show that \mathcal{WX}-approximations are $\text{Hom}_\mathcal{A}(\mathcal{X}, \mathcal{X})$-exact, we will conclude that X is \mathcal{X}-proper by splicing the sequences (iii) and (iv).
Consider a $\mathcal{W}\mathcal{X}$-approximation as in (2). Using Lemma 1.7, the assumption $\mathcal{X} \perp \mathcal{W}$ implies $\mathcal{X} \perp K$. Thus, for each $X' \in \mathcal{X}$ the long exact sequence in $\text{Ext}_A(X', -)$ associated to (2) implies that (2) is $\text{Hom}_A(\mathcal{X}, -)$-exact. □

The next two lemmata provide useful conditions guaranteeing the existence of proper (co)resolutions. Lemma 3.4 is for use in Proposition 4.10.

Lemma 3.3. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is a cogenerator for \mathcal{X}, and \mathcal{V} is a generator for \mathcal{Y}. Let M and N be objects in A.

(a) If \mathcal{X}-pd$(M) < \infty$, then M has a $\mathcal{W}\mathcal{X}$-approximation, a $\mathcal{W}\mathcal{X}$-hull, and a bounded strict $\mathcal{W}\mathcal{X}$-resolution $X \xrightarrow{\sim} M$ such that $X_i = 0$ for $i > \mathcal{X}$-pd(M).

(b) If \mathcal{W} is an injective cogenerator for \mathcal{X}, then $\text{res} \hat{\mathcal{X}}$ is a subcategory of $\text{res} \tilde{\mathcal{W}}$.

(c) If \mathcal{Y}-id$(N) < \infty$, then N has a $\mathcal{Y}\mathcal{V}$-coapproximation, a $\mathcal{Y}\mathcal{V}$-cohull, and a bounded strict $\mathcal{Y}\mathcal{V}$-coresolution $N \xrightarrow{\sim} Y$ such that $Y_{-i} = 0$ for $i > \mathcal{Y}$-id(N).

(d) If \mathcal{V} is a projective generator for \mathcal{Y}, then $\text{cores} \hat{\mathcal{Y}}$ is a subcategory of $\text{cores} \tilde{\mathcal{Y}}$.

Proof. Parts (a) and (c) follow as in [3, (1.1)]. Parts (b) and (d) follow from (a) and (c) using Lemma 3.2(b) and (d). □

Lemma 3.4. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is a cogenerator for \mathcal{X}, and \mathcal{V} is a generator for \mathcal{Y}.

(a) If \mathcal{X} is a subcategory of $\text{res} \tilde{\mathcal{W}}$, then $\text{res} \hat{\mathcal{X}}$ is a subcategory of $\text{res} \tilde{\mathcal{W}}$.

(b) If \mathcal{Y} is a subcategory of $\text{cores} \tilde{\mathcal{V}}$, then $\text{cores} \hat{\mathcal{Y}}$ is a subcategory of $\text{cores} \tilde{\mathcal{V}}$.

Proof. We prove part (a); the proof of part (b) is dual. Let M be an object in $\text{res} \hat{\mathcal{X}}$. By Lemma 3.3(a), the object M admits a $\mathcal{W}\mathcal{X}$-approximation

$$0 \rightarrow K \rightarrow X \rightarrow M \rightarrow 0.$$

Since \mathcal{X} is a subcategory of $\text{res} \tilde{\mathcal{W}}$, the object X admits a proper \mathcal{W}-resolution $W \xrightarrow{\sim} X$. Set $X' = \text{Im}(\partial^W)$). Notice that the object X' is in $\text{res} \tilde{\mathcal{W}}$ and the following natural exact sequence is $\text{Hom}_A(\mathcal{W}, -)$-exact

$$0 \rightarrow X' \rightarrow W_0 \xrightarrow{\tau} X \rightarrow 0.$$

In the following pullback diagram, each row and column is exact, the bottom row is (4), and the middle column is (4).

```
\begin{equation}
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
X' & \xrightarrow{\sim} & X' \\
\downarrow & & \downarrow \\
0 & \rightarrow & 0 \\
\end{array}
\end{equation}
```

```
\begin{equation}
\begin{array}{ccc}
0 & \rightarrow & U \\
\downarrow & & \downarrow \\
X' & \xrightarrow{\tau} & W_0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & 0 \\
\end{array}
\end{equation}
```

```
\begin{equation}
\begin{array}{ccc}
0 & \rightarrow & K \\
\downarrow & & \downarrow \\
X & \xrightarrow{\tau} & X \\
\downarrow & & \downarrow \\
0 & \rightarrow & 0 \\
\end{array}
\end{equation}
```
We will show that U is in $\text{res} \tilde{W}$ and that the middle row of (5) is Hom$_A(W, -)$-exact. It is then straightforward to see that a proper W-resolution of M can be obtained by splicing a proper W-resolution of U with the middle row of (5).

Let W' be an object in \mathcal{W}. The assumption $\mathcal{X} \perp \mathcal{W}$ implies $\mathcal{W} \perp \mathcal{W}$ and so $\text{Ext}^1_{\mathcal{A}}(W', W_0) = 0$. The long exact sequence in $\text{Ext}^{1}_{\mathcal{A}}(W', -)$ associated to the middle column of (5) includes the next exact sequence

$$\text{Hom}_A(W', W_0) \xrightarrow{\text{Hom}_A(W', \tau)} \text{Hom}_A(W', X) \to \text{Ext}^1_{\mathcal{A}}(W', X') \to 0.$$

The middle column of (5) is Hom$_A(W, -)$-exact, so the map Hom$_A(W', \tau)$ is surjective, and it follows that $\text{Ext}^1_{\mathcal{A}}(W', X') = 0$. Lemma 1.6 implies that the leftmost column of (5) is Hom$_A(W', -)$-exact. Since W' is an arbitrary object of \mathcal{W}, this column is Hom$_A(W', -)$-exact. The object K is in res\tilde{W} by Lemma 3.2. Since X' is also an object in res\tilde{W}, we may apply Lemma 1.9 to the leftmost column of (5) to conclude that U is in res\tilde{W}.

To conclude, we need to show that the middle row of (5) is Hom$_A(W', -)$-exact, that is, that Hom$_A(W', \pi)$ is surjective. Applying Hom$_A(W', -)$ to the middle and lower rows of (5) yields the next commutative diagram with exact rows.

$$\begin{array}{cccc}
0 & \longrightarrow & \text{Hom}_A(W', U) & \longrightarrow & \text{Hom}_A(W', W_0) \xrightarrow{\text{Hom}_A(W', \tau)} \text{Hom}_A(W', M) & \\
& & & & \text{Hom}_A(W', \tau) & \\
0 & \longrightarrow & \text{Hom}_A(W', K) & \longrightarrow & \text{Hom}_A(W', X) & \longrightarrow & \text{Hom}_A(W', M) & \longrightarrow & 0
\end{array}$$

Recalling that Hom$_A(W', \tau)$ is surjective, chase this last diagram to conclude that Hom$_A(W', \pi)$ is also surjective.

4. Relative Cohomology

This section contains the foundations of our relative cohomology theories based on the context of Section 3.

Definition/Notation 4.1. Let M, M', N, N' be objects in \mathcal{A} equipped with homomorphisms $f: M \to M'$ and $g: N \to N'$. Assume that M admits a proper \mathcal{X}-resolution $\gamma: X \to M$, and define the nth relative $\mathcal{X}\mathcal{A}$ cohomology group as

$$\text{Ext}^n_{\mathcal{A}\mathcal{X}}(M, N) = H_{-n}(\text{Hom}_A(X, N))$$

for each integer n. If M' also admits a proper \mathcal{X}-resolution $\gamma': X' \to M'$, then let $\overline{f}: X \to X'$ be a morphism such that $\gamma \overline{f} = f \gamma$, as in Lemma 1.8, and define

$$\begin{align*}
\text{Ext}^n_{\mathcal{A}\mathcal{X}}(f, N) & = H_{-n}(\text{Hom}_A(\overline{f}, N)): \text{Ext}^n_{\mathcal{A}\mathcal{X}}(M', N) \to \text{Ext}^n_{\mathcal{A}\mathcal{X}}(M, N) \\
\text{Ext}^n_{\mathcal{A}\mathcal{X}}(M, g) & = H_{-n}(\text{Hom}_A(X, g)): \text{Ext}^n_{\mathcal{A}\mathcal{X}}(M, N) \to \text{Ext}^n_{\mathcal{A}\mathcal{X}}(M, N').
\end{align*}$$

We write $\text{Ext}^1_{\mathcal{A}\mathcal{X}}(M, Y) = 0$ if $\text{Ext}^1_{\mathcal{W}\mathcal{A}}(M, Y) = 0$ for each object $Y \in \mathcal{Y}$. When $\mathcal{X} \subseteq \text{res} \tilde{W}$, we write $\text{Ext}^1_{\mathcal{W}\mathcal{A}}(X, Y) = 0$ if $\text{Ext}^1_{\mathcal{W}\mathcal{A}}(X, Y) = 0$ for each object $X \in \mathcal{X}$.

The nth relative $\mathcal{A}\mathcal{Y}$-cohomology group $\text{Ext}^n_{\mathcal{A}\mathcal{Y}}(-, -)$ is defined dually.

Remark 4.2. Definition/Notation 4.1 describes well-defined bifunctors

$$\begin{align*}
\text{Ext}^n_{\mathcal{A}\mathcal{X}}(-, -): \text{res} \tilde{\mathcal{Y}} \times \mathcal{A} & \to \text{Ab} \\
\text{Ext}^n_{\mathcal{A}\mathcal{Y}}(-, -): \mathcal{A} \times \text{cores} \tilde{\mathcal{Y}} & \to \text{Ab}
\end{align*}$$
by Lemma 4.3 and one checks the following natural equivalences readily.

\[
\text{Ext}_{\mathcal{H}_{\mathcal{A}}}^{n+1}(\mathcal{X}, -) = 0 = \text{Ext}_{\mathcal{A}_{\pi}}^{n+1}(-, \mathcal{Y})
\]

\[
\text{Ext}_{\mathcal{H}_{\mathcal{A}}}^{0}(\mathcal{X}, -) \cong \text{Hom}_{\mathcal{A}}(\mathcal{X}, -)|_{\text{res}\, \mathcal{X}_{\mathcal{A}}} \quad \text{Ext}_{\mathcal{P}_{\mathcal{A}}}^{n}(\mathcal{X}, -) \cong \text{Ext}_{\mathcal{A}}^{n}(\mathcal{X}, -)|_{\text{res}\, \mathcal{P}_{\mathcal{A}}}
\]

Lemma 1.9 yields the following long exact sequences as in \((8.2.3),(8.2.5)\).

Lemma 4.3. Let \(M \) and \(N \) be objects in \(\mathcal{A} \), and consider an exact sequence in \(\mathcal{A} \)

\[
\mathbf{L} = 0 \rightarrow L' \xrightarrow{f'} L \xrightarrow{f} L'' \rightarrow 0.
\]

(a) Assume that the sequence \(\mathbf{L} \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)\)-exact. If the object \(M \) is in \(\text{res} \, \mathcal{X} \), then \(\mathbf{L} \) induces a functorial long exact sequence

\[
\cdots \rightarrow \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L') \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f')} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L'') \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f'')} \cdots
\]

(b) Assume that the sequence \(\mathbf{L} \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)\)-exact. If the objects \(L', L, L'' \) are in \(\text{res} \, \mathcal{X} \), then \(\mathbf{L} \) induces a functorial long exact sequence

\[
\cdots \rightarrow \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L'', N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f, N)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L, N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f', N)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L', N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f'') \cdots}
\]

(c) Assume that the sequence \(\mathbf{L} \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{Y}, -)\)-exact. If the object \(N \) is in \(\text{cores} \, \mathcal{Y} \), then \(\mathbf{L} \) induces a functorial long exact sequence

\[
\cdots \rightarrow \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L'', N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f, N)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L, N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f', N)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(L', N) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(f'') \cdots}
\]

(d) Assume that the sequence \(\mathbf{L} \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{Y}, -)\)-exact. If the objects \(L', L, L'' \) are in \(\text{cores} \, \mathcal{Y} \), then \(\mathbf{L} \) induces a functorial long exact sequence

\[
\cdots \rightarrow \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L') \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f')} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L) \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f)} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L'') \xrightarrow{\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, f'')} \cdots
\]

To prove the next “dimension-shifting” lemma, comparable to \((8.2.4),(8.2.6)\],
use the long exact sequences from Lemma 4.3 with the vanishing from Remark 4.2

Lemma 4.4. Let \(M \) and \(N \) be objects in \(\mathcal{A} \), and consider an exact sequence in \(\mathcal{A} \)

\[
\mathbf{L} = 0 \rightarrow L' \xrightarrow{f'} L \xrightarrow{f} L'' \rightarrow 0.
\]

(a) Assume that the sequence \(\mathbf{L} \) is \(\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)\)-exact and that \(M \) is in \(\text{res} \, \mathcal{X} \). If \(\text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L) = 0 \), e.g., if \(M \) is in \(\mathcal{X} \), then the following map is an isomorphism for each \(n \geq 1\)

\[
\partial_{\mathcal{H}_{\mathcal{A}}}(M, L) : \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L') \xrightarrow{\cong} \text{Ext}_{\mathcal{H}_{\mathcal{A}}}(M, L'')
\]
(b) Assume that the sequence \(L \) is \(\text{Hom}_A(\mathcal{X},-) \)-exact and that \(L, L', L'' \) are in res \(\mathcal{X} \). If \(\text{Ext}^{n+1}_{\mathcal{X}}(L, N) = 0 \), e.g., if \(L \) is in \(\mathcal{X} \), then the following map is an isomorphism for each \(n \geq 1 \)
\[
\partial^n_{\mathcal{X}}(L, N): \text{Ext}^n_{\mathcal{X}}(L', N) \cong \text{Ext}^{n+1}_{\mathcal{X}}(L'', N).
\]

(c) Assume that the sequence \(L \) is \(\text{Hom}_A(\mathcal{Y},-) \)-exact and that \(N \) is in cores \(\mathcal{Y} \).
If \(\text{Ext}^{n+1}_{\mathcal{Y}}(L, N) = 0 \), e.g., if \(N \) is in \(\mathcal{Y} \), then the following map is an isomorphism for each \(n \geq 1 \)
\[
\partial^n_{\mathcal{Y}}(L, N): \text{Ext}^n_{\mathcal{Y}}(L', N) \cong \text{Ext}^{n+1}_{\mathcal{Y}}(L'', N).
\]

(d) Assume that the sequence \(L \) is \(\text{Hom}_A(\mathcal{Y},-) \)-exact and that \(L, L', L'' \) are in cores \(\mathcal{Y} \). If \(\text{Ext}^{n+1}_{\mathcal{Y}}(M, L) = 0 \), e.g., if \(L \) is in \(\mathcal{Y} \), then the following map is an isomorphism for each \(n \geq 1 \)
\[
\partial^n_{\mathcal{Y}}(M, L): \text{Ext}^n_{\mathcal{Y}}(M, L') \cong \text{Ext}^{n+1}_{\mathcal{Y}}(M, L').
\]

The next result is motivated by \([5, (4.2.2.a)]\).

Proposition 4.5. Let \(M \) and \(N \) be objects in res \(\mathcal{X} \) and cores \(\mathcal{Y} \), respectively, and let \(n \) be a nonnegative integer.

(a) Assume that \(\mathcal{X} \) is closed under direct summands and \(\text{Ext}^{n+1}_{\mathcal{X}}(M, -) = 0 \). If \(X \to M \) is a proper \(\mathcal{X} \)-resolution, then \(\text{Ker}(\partial^X_n) \in \mathcal{X} \) and \(\mathcal{X} \cdot \text{pd}(M) \leq n \).

(b) Assume that one of the following conditions holds:

1. \(\mathcal{X} \perp \mathcal{X} \), or
2. \(\mathcal{X} \) is closed under extensions and \(\mathcal{W} \) is an injective cogenerator for \(\mathcal{X} \).

Then \(\text{Ext}^n_{\mathcal{X}}(M, -) = 0 \) whenever \(n > \mathcal{X} \cdot \text{pd}(M) \).

(c) Assume that \(\mathcal{Y} \) is closed under direct summands and \(\text{Ext}^{n+1}_{\mathcal{Y}}(-, N) = 0 \). If \(N \to Y \) is a proper \(\mathcal{Y} \)-coresolution, then \(\text{Coker}(\partial^Y_{n}) \in \mathcal{Y} \) and \(\mathcal{Y} \cdot \text{id}(N) \leq n \).

(d) Assume that one of the following conditions holds:

1. \(\mathcal{Y} \perp \mathcal{Y} \), or
2. \(\mathcal{Y} \) is closed under extensions and \(\mathcal{V} \) is a projective cogenerator for \(\mathcal{Y} \).

Then \(\text{Ext}^n_{\mathcal{Y}}(-, N) = 0 \) whenever \(n > \mathcal{Y} \cdot \text{id}(N) \).

Proof. We prove parts (\(a \)) and (\(b \)); the proofs of (\(c \)) and (\(d \)) are dual.

(\(a \)) Let \(X \to M \) be a proper \(\mathcal{X} \)-resolution, and set \(M_j = \text{Coker}(\partial^X_j) \) for each integer \(j \). Note \(M_j \in \text{res} \mathcal{X} \) and \(M \cong M_{-1} \), and consider the exact sequences
\[
\begin{align*}
0 \to M_j &\to X_j \xrightarrow{\epsilon_j} M_{j-1} \to 0
\end{align*}
\]
when \(j \geq 0 \), which are \(\text{Hom}_A(\mathcal{X},-) \)-exact.

Assume first \(\text{Ext}^1_{\mathcal{X}}(M, -) = 0 \). An application of Lemma 3.3\((a) \) to the sequence (\(* \)) yields the following exact sequence
\[
0 \to \text{Hom}_A(M, M_0) \to \text{Hom}_A(M, X_0) \xrightarrow{\text{Hom}_A(M, \epsilon_0)} \text{Hom}_A(M, M) \to 0.
\]
Hence, there exists \(\phi \in \text{Hom}_A(M, X_0) \) such that \(\epsilon_0 \phi = \text{id}_M \). It follows that \(M \) is a direct summand of \(X_0 \), and so \(M \in \mathcal{X} \) because \(\mathcal{X} \) is closed under direct summands.

Now assume \(\text{Ext}^n_{\mathcal{X}}(M, -) = 0 \). Apply Lemma 3.3\((a) \) to each sequence (\(* \)) inductively to conclude \(\text{Ext}^2_{\mathcal{X}}(M_{n-1}, -) = 0 \). The previous paragraph now implies \(\text{Ker}(\partial^X_{n-1}) = M_{n-1} \in \mathcal{X} \). The conclusion \(\mathcal{X} \cdot \text{pd}(M) \leq n \) is now immediate.

(\(b \)) Assume without loss of generality that \(p = \mathcal{X} \cdot \text{pd}(M) \) is finite. It suffices to show that \(M \) admits a proper \(\mathcal{X} \)-resolution \(X \to M \) such that \(X_n = 0 \) when \(n > p \).
If condition (1) holds, then Lemma 3.2(c) implies that every \(\mathcal{X} \)-resolution \(X \to M \) such that \(X_n = 0 \) for each \(n > p \) is proper. On the other hand, if condition (2) holds, then Lemmas 3.2(d) and 3.3(a) yield the desired conclusion.

The rest of this section is devoted to the study of the following comparison maps.

Definition/Notation 4.6. Let \(M, N \) be objects in \(\mathcal{A} \).

(a) When \(M \) admits a proper \(\mathcal{W} \)-resolution \(\gamma: W \to M \) and a proper \(\mathcal{X} \)-resolution \(\gamma': X \to M \), let \(\tilde{id}_M: W \to X \) be a quasiisomorphism such that \(\gamma = \gamma' \tilde{id}_M \), as in Lemma 1.8(d), and set
\[
\partial^n_{\mathcal{XW},A}(M, N) = H_{-n}(\text{Hom}_A(\tilde{id}_M, N)): \text{Ext}^n_{\mathcal{X},A}(M, N) \to \text{Ext}^n_{\mathcal{W},A}(M, N).
\]
(b) When \(M \) admits a projective resolution \(\gamma: P \to M \) and a proper \(\mathcal{X} \)-resolution \(\gamma': X \to M \), let \(\tilde{id}_M: P \to X \) be a quasiisomorphism such that \(\gamma = \gamma' \tilde{id}_M \), as in Lemma 1.8(d), and set
\[
\varphi^n_{\mathcal{X},A}(M, N) = H_{-n}(\text{Hom}_A(\tilde{id}_M, N)): \text{Ext}^n_{\mathcal{X},A}(M, N) \to \text{Ext}^n_{\mathcal{A},A}(M, N).
\]
(c) When \(N \) admits a proper \(\mathcal{Y} \)-coresolution \(\delta: N \to Y \) and a proper \(\mathcal{V} \)-coresolution \(\delta': N \to V \), let \(\tilde{id}_N: N \to Y \) be a quasiisomorphism such that \(\delta' = \tilde{id}_N \delta \), as in Lemma 1.8(e), and set
\[
\varphi^n_{\mathcal{AY},V}(M, N) = H_{-n}(\text{Hom}_A(\tilde{id}_N, N)): \text{Ext}^n_{\mathcal{A},V}(M, N) \to \text{Ext}^n_{\mathcal{AY},V}(M, N).
\]
(d) When \(N \) admits a proper \(\mathcal{Y} \)-coresolution \(\delta: N \to Y \) and an injective resolution \(\delta': N \to I \), let \(\tilde{id}_N: N \to I \) be a quasiisomorphism such that \(\delta' = \tilde{id}_N \delta \), as in Lemma 1.8(d), and set
\[
\varphi^n_{\mathcal{AY},V}(M, N) = H_{-n}(\text{Hom}_A(\tilde{id}_N, N)): \text{Ext}^n_{\mathcal{A},V}(M, N) \to \text{Ext}^n_{\mathcal{AY},V}(M, N).
\]

Remark 4.7. Lemma 1.8 shows that Definition/Notation 4.6 describes well-defined natural transformations that are independent of resolutions and liftings.

\[
\begin{align*}
\varphi^n_{\mathcal{XW},A}(-, -) & : \text{Ext}^n_{\mathcal{X},A}(-, -)_{(\text{res} \mathcal{W} \backslash \text{res} \mathcal{X}) \times \mathcal{A}} \to \text{Ext}^n_{\mathcal{W},A}(-, -)_{(\text{res} \mathcal{W} \backslash \text{res} \mathcal{X}) \times \mathcal{A}} \\
\varphi^n_{\mathcal{X},A}(-, -) & : \text{Ext}^n_{\mathcal{X},A}(-, -)_{(\text{res} \mathcal{P} \backslash \text{res} \mathcal{X}) \times \mathcal{A}} \to \text{Ext}^n_{\mathcal{A},A}(-, -)_{(\text{res} \mathcal{P} \backslash \text{res} \mathcal{X}) \times \mathcal{A}} \\
\varphi^n_{\mathcal{AY},V}(-, -) & : \text{Ext}^n_{\mathcal{A},V}(-, -)_{\mathcal{A} \times (\text{cores} \mathcal{V} \backslash \text{cores} \mathcal{Y})} \to \text{Ext}^n_{\mathcal{AY},V}(-, -)_{\mathcal{A} \times (\text{cores} \mathcal{V} \backslash \text{cores} \mathcal{Y})} \\
\varphi^n_{\mathcal{AY},V}(-, -) & : \text{Ext}^n_{\mathcal{A},V}(-, -)_{\mathcal{A} \times (\text{cores} \mathcal{V} \backslash \text{cores} \mathcal{Y})} \to \text{Ext}^n_{\mathcal{AY},V}(-, -)_{\mathcal{A} \times (\text{cores} \mathcal{V} \backslash \text{cores} \mathcal{Y})}
\end{align*}
\]

The next result compares to [5] (4.2.3).

Proposition 4.8. Assume \(\mathcal{X} \perp \mathcal{W} \) and \(\mathcal{Y} \perp \mathcal{V} \), and fix objects \(M \in \text{res} \mathcal{W} \) and \(N \in \text{cores} \mathcal{V} \).

(a) The following natural transormations are isomorphisms for each \(n \)
\[
\varphi^n_{\mathcal{XW},A}(M, -) : \text{Ext}^n_{\mathcal{X},A}(M, -) \cong \text{Ext}^n_{\mathcal{W},A}(M, -).
\]
(b) The following natural transormations are isomorphisms for each \(n \)
\[
\varphi^n_{\mathcal{AY},V}(-, N) : \text{Ext}^n_{\mathcal{A},V}(-, N) \cong \text{Ext}^n_{\mathcal{AY},V}(-, N).
\]

Proof. We prove part (a); the proof of (b) is dual.

Let \(W \to M \) be a bounded \(\mathcal{W} \)-resolution. Lemma 3.2(e) implies that \(W \) is \(\mathcal{X} \)-proper and \(\mathcal{W} \)-proper, so \(\text{Ext}^n_{\mathcal{X},A}(M, -) \) and \(\text{Ext}^n_{\mathcal{W},A}(M, -) \) are defined. Further, in the notation of Definition 4.6(b), we can take \(\tilde{id}_M = \tilde{id}_W \), and so there are equalities
\[
\varphi^n_{\mathcal{XW},A}(M, -) = H_{-n}(\text{Hom}_A(\tilde{id}_M, -)) = H_{-n}(\text{Hom}_A(\tilde{id}_W, -)) = \text{id}_{H_{-n}(\text{Hom}_A(W, -))}
\]
which establish the desired result.

The next lemma is a tool for the proofs of Propositions 4.10 and 4.11. Note that we do not assume that the complexes satisfy any properness conditions.

Lemma 4.9. Let M and N be objects in \mathcal{A}, and assume $\mathcal{X} \perp \mathcal{W}$ and $\mathcal{V} \perp \mathcal{Y}$.

(a) Let $\alpha: X \to X'$ be a quasiisomorphism between bounded below complexes in \mathcal{X}. If \mathcal{W}-pd$(N) < \infty$, then the morphism $\text{Hom}_\mathcal{A}(\alpha, N): \text{Hom}_\mathcal{A}(X', N) \to \text{Hom}_\mathcal{A}(X, N)$ is a quasiisomorphism.

(b) Let $\beta: Y \to Y'$ be a quasiisomorphism between bounded above complexes in \mathcal{Y}. If \mathcal{V}-$\text{id}(M) < \infty$, then the morphism $\text{Hom}_\mathcal{A}(M, \beta): \text{Hom}_\mathcal{A}(M, Y) \to \text{Hom}_\mathcal{A}(M, Y')$ is a quasiisomorphism.

Proof. We prove part (a); the proof of part (b) is dual.

It suffices to show that $\text{Cone}(\text{Hom}_\mathcal{A}(\alpha, N))$ is exact. From the next isomorphism

$$\text{Cone}(\text{Hom}_\mathcal{A}(\alpha, N)) \cong \Sigma \text{Hom}_\mathcal{A}(\text{Cone}(\alpha), N)$$

we need to show that $\text{Hom}_\mathcal{A}(\text{Cone}(\alpha), N)$ is exact. Note that $\text{Cone}(\alpha)$ is an exact, bounded below complex in \mathcal{X}. Set $M_j = \text{Ker}(\partial_j^{\text{Cone}(\alpha)})$ for each integer j, and note $M_{j-1} \in \mathcal{X}$ for $j \ll 0$. Consider the exact sequences

$$(*)\quad 0 \to M_j \to \text{Cone}(\alpha)_j \to M_{j-1} \to 0.$$

The condition $\mathcal{X} \perp \mathcal{W}$ implies $\mathcal{X} \perp N$ by Lemma 1.7. Hence, induction on j using Lemma 1.6.3 implies $\text{Ext}_\mathcal{A}^1(M_j, N) = 0$ for each j and so each sequence $(*)_j$ is $\text{Hom}_\mathcal{A}(-, N)$-exact. It follows that $\text{Hom}_\mathcal{A}(\text{Cone}(\alpha), N)$ is exact.

The next two results compare to [10 (4.2.4)]. Note that Lemmas 3.3 and 3.4 provide conditions implying res $\tilde{\mathcal{X}} \subseteq \text{res} \tilde{\mathcal{X}} \cap \text{res} \tilde{\mathcal{W}}$ and cores $\tilde{\mathcal{V}} \subseteq \text{cores} \tilde{\mathcal{V}} \cap \text{cores} \tilde{\mathcal{Y}}$.

Proposition 4.10. Let M and N be objects in \mathcal{A}, and assume $\mathcal{X} \perp \mathcal{W}$ and $\mathcal{V} \perp \mathcal{Y}$.

(a) If M is in $\text{res} \tilde{\mathcal{X}} \cap \text{res} \tilde{\mathcal{W}}$ and N is in $\text{res} \tilde{\mathcal{W}}$, then the following natural map is an isomorphism for each n

$$\vartheta_{\mathcal{X}W\mathcal{A}}^n(M, N): \text{Ext}_{\mathcal{X}\mathcal{A}}^n(M, N) \cong \text{Ext}_{\mathcal{W}\mathcal{A}}^n(M, N).$$

(b) If M is in cores $\tilde{\mathcal{V}}$ and N is in cores $\tilde{\mathcal{Y}}$, then the following natural map is an isomorphism for each n

$$\vartheta_{\mathcal{A}Y\mathcal{V}}^n(M, N): \text{Ext}_{\mathcal{A}\mathcal{Y}}^n(M, N) \cong \text{Ext}_{\mathcal{A}\mathcal{V}}^n(M, N).$$

Proof. We prove part (a); the proof of part (b) is dual.

The object M has a proper \mathcal{W}-resolution $\gamma: \tilde{W} \to M$ and a proper \mathcal{X}-resolution $\gamma': \tilde{X} \to M$. Lemma 1.3.8 yields a quasiisomorphism $\text{id}_M: \tilde{W} \to \tilde{X}$ such that $\gamma = \gamma \text{id}_M$, and Lemma 1.4.11 implies that the morphism $\text{Hom}_\mathcal{A}(\text{id}_M, N)$ is a quasiisomorphism. The result now follows from the definition of $\vartheta_{\mathcal{X}W\mathcal{A}}^n(M, N)$.

Proposition 4.11. Let M and N be objects in \mathcal{A}, and assume $\mathcal{X} \perp \mathcal{W}$ and $\mathcal{V} \perp \mathcal{Y}$.

(a) If M is in $\text{res} \tilde{\mathcal{X}} \cap \text{res} \tilde{\mathcal{P}}$ and N is in $\text{res} \tilde{\mathcal{W}}$, then the following natural map is an isomorphism for each n

$$\vartheta_{\mathcal{X}A\mathcal{P}}^n(M, N): \text{Ext}_{\mathcal{X}\mathcal{A}}^n(M, N) \cong \text{Ext}_{\mathcal{A}\mathcal{P}}^n(M, N).$$
(b) If M is in cores \hat{V} and N is in cores $\bar{Y} \cap \text{cores} \bar{Z}$, then the following natural map is an isomorphism for each n

$$\varepsilon^j_{\mathbb{A}}(M, N) : \text{Ext}^n_{\mathbb{A}}(M, N) \to \text{Ext}^n_{\mathbb{A}}(M, N).$$

Proof. Argue as in the proof of Proposition 4.10. When invoking Lemma 4.9(a), use the category $\mathcal{X} \oplus \mathcal{P}$ whose objects are precisely those of the of the form $X \oplus P$ for some $X \in \mathcal{X}$ and $P \in \mathcal{P}$.

The next two lemmata are tools for Proposition 4.14 and Theorem 6.7.

Lemma 4.12. Let \mathcal{W} be a cogenerator for \mathcal{X} and let \mathcal{V} be a generator for \mathcal{Y}.

(a) If $\mathcal{W} \perp (\mathcal{W} \cup \mathcal{Y})$ and $\text{Ext}_{\mathbb{A}}^1(\text{res} \hat{W}, \mathcal{Y}) = 0$, then $\text{Ext}_{\mathbb{A}}^1(\text{res} \hat{W}, \mathcal{Y}) = 0$.

(b) If $(\mathcal{X} \cup \mathcal{V}) \perp \mathcal{V}$ and $\text{Ext}_{\mathbb{A}}^{1}(\mathcal{W}, \text{cores} \mathcal{V}) = 0$, then $\text{Ext}_{\mathbb{A}}^{1}(\mathcal{X}, \text{cores} \mathcal{V}) = 0$.

Proof. We prove part (a): part (b) is proved dually. Fix objects $M \in \text{res} \hat{W}$ and Y in \mathcal{Y}, and set $Y_0 = Y$. Because \mathcal{V} is a generator for \mathcal{Y} there exist exact sequences

$$0 \to Y_{n+1} \to V_n \to Y_n \to 0$$

with V_n in \mathcal{V} and Y_{n+1} in \mathcal{Y}. The assumption $\mathcal{W} \perp \mathcal{Y}$ implies that each of these sequences is $\text{Hom}_{\mathbb{A}}(\mathcal{W} \perp -)$-exact by Lemma 4.4(b). Fix an integer $j \geq 1$ and set $p = \mathcal{W} \cdot \text{pd}(M)$. The vanishing hypothesis implies $\text{Ext}_{\mathbb{A}}^{1}(M, V_n) = 0$ for each n, and so Lemma 4.14(a) inductively yields the isomorphism in the following sequence

$$\text{Ext}_{\mathbb{A}}^{1}(M, Y) = \text{Ext}_{\mathbb{A}}^{1}(M, Y_0) \cong \text{Ext}_{\mathbb{A}}^{j+p}(M, Y_0) = 0$$

where the last equality is from Proposition 4.13(b) because $\mathcal{W} \perp \mathcal{W}$.

Lemma 4.13. Assume that \mathcal{W} is a cogenerator for \mathcal{X} and \mathcal{V} is a generator for \mathcal{Y}. Let M and N be objects in \mathcal{A} with $\mathcal{W} \cdot \text{pd}(M) < \infty$ and $\mathcal{V} \cdot \text{id}(N) < \infty$.

(a) Assume $(\mathcal{X} \cup \mathcal{V}) \perp \mathcal{V}$ and $\text{Ext}_{\mathbb{A}}^{1}(\mathcal{W}, \text{cores} \mathcal{V}) = 0$. If $\alpha : X \xrightarrow{\sim} X'$ is a quasiisomorphism between bounded below complexes in \mathcal{X}, then the morphism $\text{Hom}_{\mathbb{A}}(\alpha, N) : \text{Hom}_{\mathbb{A}}(X', N) \to \text{Hom}_{\mathbb{A}}(X, N)$ is a quasiisomorphism.

(b) Assume $\mathcal{W} \perp (\mathcal{W} \cup \mathcal{Y})$ and $\text{Ext}_{\mathbb{A}}^{1}(\text{res} \hat{W}, \mathcal{V}) = 0$. If $\beta : Y \xrightarrow{\sim} Y'$ is a quasiisomorphism between bounded above complexes in \mathcal{Y}, then the morphism $\text{Hom}_{\mathbb{A}}(M, \beta) : \text{Hom}_{\mathbb{A}}(M, Y) \to \text{Hom}_{\mathbb{A}}(M, Y')$ is a quasiisomorphism.

Proof. We prove part (a); the proof of part (b) is dual.

Set $M_j = \text{Ker}(\partial_j^\text{Cone}(\alpha))$ for each j, and note $M_j \in \mathcal{X}$ for $j \ll 0$. As in the proof of Lemma 4.9 it suffices to show that each of the following exact sequences

$$(*)_j : 0 \to M_j \to \text{Cone}(\alpha)_j \to M_{j-1} \to 0$$

is $\text{Hom}_{\mathbb{A}}(-, N)$-exact. The condition $\mathcal{X} \perp \mathcal{V}$ implies $M_j \perp \mathcal{V}$ for $j \ll 0$ and $\text{Cone}(\alpha)_j \perp \mathcal{V}$ for all $j \in \mathbb{Z}$. Applying Lemma 4.10(a) to the sequences $(*)_j$ inductively implies $M_j \perp \mathcal{V}$ for all $j \in \mathbb{Z}$ and so each $(*)_j$ is $\text{Hom}_{\mathbb{A}}(-, \mathcal{V})$-exact.

Lemma 4.12(b) implies $\text{Ext}_{\mathbb{A}}^{1}(M_j, N) = 0$ for $j \ll 0$ and $\text{Ext}_{\mathbb{A}}^{1}(\text{Cone}(\alpha)_j, N) = 0$ for all $j \in \mathbb{Z}$. Applying Lemma 4.4(a) to $(*)_j$ inductively yields $\text{Ext}_{\mathbb{A}}^{1}(M_j, N) = 0$ for all $n \in \mathbb{Z}$. Thus, each sequence $(*)_j$ is $\text{Hom}_{\mathbb{A}}(-, N)$-exact, as desired.

The next result is proved like Proposition 4.10 using Lemma 4.13 in place of 4.9.

Proposition 4.14. Assume that \mathcal{W} is a cogenerator for \mathcal{X} and \mathcal{V} is a generator for \mathcal{Y}. Let M and N be objects in \mathcal{A}.

(a) Assume \((\mathcal{X} \cup \mathcal{V}) \perp \mathcal{V}\) and \(\operatorname{Ext}^1_{\mathcal{A}^1}(\mathcal{W}, \text{cores } \mathcal{W}) = 0\). If \(M\) is in \(\text{res } \mathcal{X} \cap \text{res } \mathcal{W}\) and \(N\) is in \(\text{cores } \mathcal{W}\), then the following map is an isomorphism for each \(n\)
\[
\vartheta_{\mathcal{A}_{\mathcal{W}}}(M, N) : \operatorname{Ext}^n_{\mathcal{A}}(M, N) \cong \operatorname{Ext}^n_{\mathcal{W}}(M, N).
\]
(b) Assume \(\mathcal{W} \perp (\mathcal{W} \cup \mathcal{V})\) and \(\operatorname{Ext}^1_{\mathcal{W}}(\text{res } \mathcal{W}, \mathcal{V}) = 0\). If \(M\) is in \(\text{res } \mathcal{W}\) and \(N\) is in \(\text{cores } \mathcal{V}\) and \(\text{cores } \mathcal{W}\), then the following map is an isomorphism for each \(n\)
\[
\vartheta_{\mathcal{A}_{\mathcal{V}}}(M, N) : \operatorname{Ext}^n_{\mathcal{A}}(M, N) \cong \operatorname{Ext}^n_{\mathcal{V}}(M, N).
\]

5. Relative Perfection

This section is concerned with a relative notion of perfection akin to the Gorenstein perfection of \([5]\), the quasi-perfection of \([12]\) and the generalized perfection of \([13]\). We begin with the relevant definitions.

Definition 5.1. Let \(\mathcal{A}^o\) be another abelian category with subcategory \(\mathcal{X}^o\) and let \(T\) and \(T^o\) be objects in \(\mathcal{X}\) and \(\mathcal{X}^o\), respectively. The pair \((T, T^o)\) is a relative cotilting pair for the quadruple \((\mathcal{A}, \mathcal{X}, \mathcal{A}^o, \mathcal{X}^o)\) when the next conditions are satisfied:

1. The functor \(\operatorname{Hom}_{\mathcal{A}}(-, T)\) maps \(\mathcal{A}\) to \(\mathcal{A}^o\) and \(\mathcal{X}\) to \(\mathcal{X}^o\).
2. The functor \(\operatorname{Hom}_{\mathcal{X}^o}(-, T^o)\) maps \(\mathcal{A}^o\) to \(\mathcal{A}\) and \(\mathcal{X}^o\) to \(\mathcal{X}\).
3. There are natural isomorphisms \(\operatorname{Hom}_{\mathcal{A}^o}(\operatorname{Hom}_{\mathcal{A}}(-, T), T)|_{\mathcal{X}^o} \cong \text{id}_{\mathcal{X}^o}\) and \(\operatorname{Hom}_{\mathcal{X}^o}(\operatorname{Hom}_{\mathcal{X}^o}(-, T^o), T)|_{\mathcal{X}^o} \cong \text{id}_{\mathcal{X}^o}\).

The term relative tilting pair is defined dually.

Definition 5.2. Let \(T\) be an object in \(\mathcal{A}\). An object \(M\) in \(\mathcal{A}\) with \(g = \mathcal{X}^o\text{-pd}(M) < \infty\) is \(\mathcal{X}T\)-perfect of grade \(g\) if \(\operatorname{Ext}_{\mathcal{A}^o}^n(M, T) = 0\) for each \(n \neq g\). The term \(\mathcal{Y}\text{-coperfect of cograde } g\) is defined dually.

Our motivating example comes from our categories of interest.

Example 5.3. If \(R\) is noetherian and \(C\) is a semidualizing \(R\)-module, then the pair \((C, C)\) is a relative cotilting pair for \((\mathcal{M}(R), \mathcal{G}_C(R), \mathcal{M}(R), \mathcal{G}_C(R))\). In this case, we write “\(\mathcal{G}_C\text{-perfect}\)” instead of “\(\mathcal{G}_C(R)\text{-perfect}\)”. The class of \(\mathcal{G}_C\text{-perfect}\) \(R\)-modules includes the totally \(C\)-reflexive \(R\)-modules and the perfect \(R\)-modules. When \(C = R\), this notion recovers the \(G\)-perfect modules of \([5]\) Sec. 6.

Our main result on relative perfection establishes a duality between categories of relatively perfect objects.

Proposition 5.4. Let \(M\) be an object in \(\mathcal{A}\), and let \(\mathcal{A}^o\) be an abelian category with subcategories \(\mathcal{X}^o\) and \(\mathcal{Y}^o\).

(a) Let \((T, T^o)\) be a relative cotilting pair for \((\mathcal{A}, \mathcal{X}, \mathcal{A}^o, \mathcal{X}^o)\) such that \(\mathcal{X} \perp T\) and \(\mathcal{X}^o \perp T^o\). Assume that \(\mathcal{A}\) and \(\mathcal{A}^o\) have enough projectives. If \(M\) is \(\mathcal{X}T\)-perfect of grade \(g\), then \(\operatorname{Ext}^g_{\mathcal{A}}(M, T)\) is an object of \(\mathcal{A}^o\) that is \(\mathcal{X}^oT^o\)-perfect of grade \(g\), and \(\operatorname{Ext}^g_{\mathcal{A}^o}(\operatorname{Ext}^g_{\mathcal{A}}(M, T), T)|_{\mathcal{X}^o} \cong M\).

(b) Let \((U, U^o)\) be a relative tilting pair for \((\mathcal{A}, \mathcal{Y}, \mathcal{A}^o, \mathcal{Y}^o)\) such that \(U \perp \mathcal{Y}\) and \(U^o \perp \mathcal{Y}^o\), and assume that \(\mathcal{A}\) and \(\mathcal{A}^o\) have enough injectives. If \(M\) is \(U\mathcal{Y}\)-coperfect of cograde \(g\), then \(\operatorname{Ext}^g_{\mathcal{A}^o}(U, M)\) is an object of \(\mathcal{A}^o\) that is \(U^o\mathcal{Y}^o\text{-coperfect of cograde } g\), and \(\operatorname{Ext}^g_{\mathcal{A}^o}(U^o, \operatorname{Ext}^g_{\mathcal{A}^o}(U, M)) \cong M\).

\(^2\)More generally, one may take \(C\) to be a semidualizing \(RS\)-bimodule as in \([19]\) and conclude that the pair \((RC, CS)\) is a relative cotilting pair for \((\mathcal{M}(R), \mathcal{G}_C(R), \mathcal{M}(S^o), \mathcal{G}_C(S^o))\).
Proof. We prove part (a); the proof of part (b) is dual.

The result is trivial if \(M = 0 \), so assume \(M \neq 0 \). Let \(X \to M \) be an \(\mathcal{X} \)-resolution such that \(X_n = 0 \) for each \(n > g = \mathcal{X}\-pd(M) \). By assumption, the complex \(\text{Hom}_A(X, T) \) consists of objects and morphisms in \(\mathcal{X}^\circ \).

As in the proof of Proposition 4.11, Lemma 14.9(a) yields an isomorphism

\[
H_{-n}(\text{Hom}_A(X, T)) \cong \text{Ext}^n_A(M, T)
\]

for each \(n \). Because \(M \) is \(\mathcal{X}T \)-perfect of grade \(g \), we conclude that the complex \(\Sigma^g \text{Hom}_A(X, T) \) is an \(\mathcal{X}^\circ \)-resolution of \(\text{Ext}^g_A(M, T) \) such that \((\Sigma^g \text{Hom}_A(X, T))_n = 0 \) for each \(n > g \). In particular, the object \(\text{Ext}^g_A(M, T) \cong \text{Coker}(\text{Hom}_A(\partial^X_n, T)) \) is in \(\mathcal{X}^\circ \) and \(g^g = \mathcal{X}^\circ \-pd(\text{Ext}^g_A(M, T)) \leq g < \infty \).

Similarly, we conclude that there is an isomorphism

\[
H_{g-n}(\text{Hom}_A(\text{Hom}_A(X, T), T^0)) \cong \text{Ext}^n_A(\text{Ext}^g_A(M, T), T^0)
\]

for each \(n \). Our assumptions yield the isomorphism in the next sequence

\[
\text{Hom}_A(\text{Hom}_A(X, T), T^0) \cong X \simeq M
\]

while the quasiisomorphism is by construction. These displays imply

\[
\text{Ext}^n_A(\text{Ext}^g_A(M, T), T^0) \cong \begin{cases} 0 & \text{if } n \neq g \\ M & \text{if } n = g. \end{cases}
\]

It remains to justify the equality \(g^0 = g \). We already know \(g^0 \leq g \), so suppose \(g^0 < g \). Using Lemma 14.9(a) as above, this would imply \(\text{Ext}^n_A(\text{Ext}^g_A(M, T), T^0) = 0 \) for each \(n > g \). In particular, we would have a contradiction from the next sequence

\[
0 = \text{Ext}^g_A(\text{Ext}^g_A(M, T), T^0) \cong M.
\]

We conclude this section with the special case of Proposition 5.4 for our categories of interest. The special case \(C = R \) recovers [14 (6.3.1.2)].

Corollary 5.5. Let \(R \) be a commutative noetherian ring and \(C \) finitely generated \(R \)-modules with \(C \) semidualizing and \(G_C \-\dim R(M) < \infty \).

(a) There is an inequality \(\text{grade}_R(M) \leq G_C \-\dim R(M) \), and \(M \) is \(G_C \)-perfect of grade \(g \) if and only if \(\text{grade}_R(M) = G_C \-\dim R(M) = g \).

(b) If \(M \) is \(G_C \)-perfect of grade \(g \), then so is the \(R \)-module \(\text{Ext}^g_R(M, C) \), and there is an isomorphism \(M \cong \text{Ext}^g_R(\text{Ext}^g_R(M, C), C) \).

Proof. Part (a) is established in the next sequence; the first equality is by definition

\[
\text{grade}_R(M) = \text{depth}_{\text{Ann}_R(M)}(R) = \text{depth}_{\text{Ann}_R(M)}(C) = \inf \{ n \geq 0 \mid \text{Ext}^n_R(M, C) \neq 0 \} \leq \sup \{ n \geq 0 \mid \text{Ext}^n_R(M, C) \neq 0 \} = G_C \-\dim R(M).
\]

The second equality follows from the fact that a sequence in \(R \) is \(R \)-regular if and only if it is \(C \)-regular; see [15 p. 68]. The third equality is standard, the inequality is trivial, and the last equality is in [13 (2.1)].

Part (b) follows immediately from Proposition 5.4(a); see Example 5.6. □
6. Balanced Properties for Relative Cohomology

Definition 6.1. Fix subcategories \(\mathcal{X}' \subseteq \text{res} \hat{\mathcal{X}} \) and \(\mathcal{Y}' \subseteq \text{cores} \hat{\mathcal{Y}} \). We say that \(\text{Ext}_{\mathcal{X}A} \) and \(\text{Ext}_{\mathcal{AY}} \) are balanced on \(\mathcal{X}' \times \mathcal{Y}' \) if the following condition holds: For each object \(M \in \mathcal{X}' \) and \(N \in \mathcal{Y}' \), if \(X \to M \) is a proper \(\mathcal{X} \)-resolution, and \(N \to Y \) a proper \(\mathcal{Y} \)-coresolution, then the induced morphisms of complexes

\[
\text{Hom}_A(M, Y) \to \text{Hom}_A(X, Y) \leftarrow \text{Hom}_A(X, N)
\]

are quasiisomorphisms.

Remark 6.2. Fix objects \(M \in \mathcal{X}' \) and \(N \in \mathcal{Y}' \). If \(\text{Ext}_{\mathcal{X}A} \) and \(\text{Ext}_{\mathcal{AY}} \) are balanced on \(\mathcal{X}' \times \mathcal{Y}' \), then \(\text{Ext}_{\mathcal{X}A}^n(M, N) \cong \text{Ext}_{\mathcal{AY}}^n(M, N) \) for all and all \(n \in \mathbb{Z} \).

The next four lemmata are tools for the proof of the Main Theorem of this paper.

Lemma 6.3. Assume \(\mathcal{W} \perp \mathcal{V} \).

(a) If \(\text{Ext}_{\mathcal{WA}}^{\geq 1}(\text{res} \hat{\mathcal{W}}, \mathcal{V}) = 0 \) and \(\mathcal{W} \perp \mathcal{W} \), then \(\text{res} \hat{\mathcal{W}} \perp \mathcal{V} \).

(b) If \(\text{Ext}_{\mathcal{AY}}^{\geq 1}(\mathcal{W}, \text{cores} \hat{\mathcal{Y}}) = 0 \) and \(\mathcal{V} \perp \mathcal{V} \), then \(\mathcal{W} \perp \text{cores} \hat{\mathcal{Y}} \).

Proof. We prove part (a); part (b) is verified similarly. Fix objects \(M \in \text{res} \hat{\mathcal{W}} \) and \(V \in \mathcal{V} \) and set \(n = \mathcal{W} \cdot \text{pd}(M) \). We proceed by induction on \(n \). If \(n = 0 \), then \(\text{Ext}_{\mathcal{A}}^{\geq 1}(M, V) = 0 \) since \(\mathcal{W} \perp \mathcal{V} \). So assume \(n \geq 1 \). There exists an exact sequence

\[
0 \to M' \to W \to M \to 0
\]

such that \(W \) is an object in \(\mathcal{W} \) and \(\mathcal{W} \cdot \text{pd}(M') = n - 1 \). The induction hypothesis implies \(\text{Ext}_{\mathcal{A}}^{\geq 1}(M', V) = 0 \). Fix an integer \(i \geq 1 \). Using the hypothesis \(\mathcal{W} \perp \mathcal{V} \), a standard dimension-shifting argument yields \(0 = \text{Ext}_{\mathcal{A}}^i(M', V) \cong \text{Ext}_{\mathcal{A}}^{i+1}(M, V) \), so it remains to show \(\text{Ext}_{\mathcal{A}}^1(M, V) = 0 \).

By Lemma 1.7, we know \(\mathcal{W} \perp \mathcal{W} \) implies \(\mathcal{W} \perp \text{res} \hat{\mathcal{W}} \). Hence, the sequence (6) is \(\text{Hom}_A(\mathcal{W}, -) \)-exact by Lemma 1.6(b). By assumption, we have \(\text{Ext}_{\mathcal{WA}}^{\geq 1}(M, V) = 0 \) and so the long exact sequence in \(\text{Ext}_{\mathcal{WA}}(\mathcal{W}, V) \) associated to (6) has the form

\[
0 \to \text{Hom}_A(M, V) \to \text{Hom}_A(W, V) \xrightarrow{\text{Hom}_A(\epsilon, V)} \text{Hom}_A(M', V) \to 0.
\]

Thus, the map \(\text{Hom}_A(\epsilon, V) \) is surjective. The assumption \(\mathcal{W} \perp \mathcal{V} \) implies that the long exact sequence in \(\text{Ext}_{\mathcal{A}}(\mathcal{W}, V) \) associated to (6) starts as

\[
0 \to \text{Hom}_A(M, V) \to \text{Hom}_A(W, V) \xrightarrow{\text{Hom}_A(\epsilon, V)} \text{Hom}_A(M', V) \to \text{Ext}_A^1(M, V) \to 0.
\]

Since \(\text{Hom}_A(\epsilon, V) \) is surjective, this implies \(\text{Ext}_A^1(M, V) = 0 \) as desired. \(\square \)

Lemma 6.4. Let \(\mathcal{W} \) be a cogenerator for \(\mathcal{X} \) and let \(\mathcal{V} \) be a generator for \(\mathcal{Y} \). Assume that \(\mathcal{X} \) and \(\mathcal{Y} \) are closed under extensions.

(a) If \(\mathcal{W} \perp \mathcal{W} \) and \(\mathcal{X} \perp \mathcal{V} \) and \(\text{Ext}_{\mathcal{WA}}^{\geq 1}(\text{res} \hat{\mathcal{W}}, \mathcal{V}) = 0 \), then \(\text{res} \hat{\mathcal{X}} \perp \mathcal{V} \).

(b) If \(\mathcal{V} \perp \mathcal{V} \) and \(\mathcal{W} \perp \mathcal{Y} \) and \(\text{Ext}_{\mathcal{AY}}^{\geq 1}(\mathcal{W}, \text{cores} \hat{\mathcal{Y}}) = 0 \), then \(\mathcal{W} \perp \text{cores} \hat{\mathcal{Y}} \).

Proof. We prove part (a); the proof of part (b) is dual. Fix an object \(M \in \text{res} \hat{\mathcal{X}} \) and, using Lemma 3.3(a), a \(\mathcal{W} \cdot \mathcal{X} \)-hull

\[
0 \to M \to K' \to X' \to 0.
\]

Because \(X' \) is in \(\mathcal{X} \), we have \(X' \perp \mathcal{V} \). Lemma 6.3(a) implies \(K' \perp \mathcal{V} \) and so Lemma 1.6(a) guarantees \(M \perp \mathcal{V} \), as desired. \(\square \)
Lemma 6.5. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is an injective cogenerator for \mathcal{X}, \mathcal{V} is a projective generator for \mathcal{Y}, $\mathcal{W} \perp \mathcal{Y}$ and $\mathcal{X} \perp \mathcal{V}$.

(a) Assume $\text{Ext}^{\geq 1}_{\mathcal{W}, \mathcal{A}}(\text{res} \hat{\mathcal{W}}, \mathcal{V}) = 0$. If M is an object in $\text{res} \hat{\mathcal{X}}$ with proper \mathcal{X}-resolution $X \to M$, then X^+ is $\text{Hom}_{\mathcal{A}}(-, \mathcal{Y})$-exact.

(b) Assume $\text{Ext}^{\geq 1}_{\mathcal{A}, \mathcal{V}}(\mathcal{W}, \text{cores} \hat{\mathcal{V}}) = 0$. If N is an object in $\text{cores} \hat{\mathcal{Y}}$ with proper \mathcal{Y}-coresolution $N \to Y$, then Y^- is $\text{Hom}_{\mathcal{A}}(\mathcal{X}, -)$-exact.

Proof. We prove part (a); the proof of (b) is dual. Lemma 3.3(a) yields a strict proper. Lemma 1.8(a) shows that $\text{Hom}_{\mathcal{A}}(\gamma_n, X) = 0$. It suffices to show that each of these sequences is $\text{Hom}_{\mathcal{A}}(\gamma_n, X)$-proper. Lemma 4.3(a) implies that this resolution is \mathcal{X}-proper. From Lemma 4.12(a) we conclude $\text{Ext}^{\leq 1}_{\mathcal{A}, \mathcal{V}}(\mathcal{W}, \text{cores} \hat{\mathcal{V}}) = 0$, so this sequence is $\text{Hom}_{\mathcal{A}}(\mathcal{W}, -)$-exact by Lemma 1.6(b).

Assume (a) holds. Fix an object A and \mathcal{W}-pd$(M_n) < \infty$ and we consider the exact sequences

$$0 \to M_n \xrightarrow{\gamma_n} X_n \to M_{n-1} \to 0 \tag{7}$$

It suffices to show that each of these sequences is $\text{Hom}_{\mathcal{A}}(-, \mathcal{Y})$-exact, that is, that the map $\text{Hom}_{\mathcal{A}}(\gamma_n, \mathcal{Y}) : \text{Hom}_{\mathcal{A}}(X_n, \mathcal{Y}) \to \text{Hom}_{\mathcal{A}}(M_n, \mathcal{Y})$ is surjective. Since \mathcal{V} is a generator for \mathcal{Y} and \mathcal{Y} is in \mathcal{Y}, there is an exact sequence

$$0 \to Y' \to V \xrightarrow{\tau} \mathcal{Y} \to 0 \tag{8}$$

such that Y' is an object in \mathcal{Y} and V is an object in \mathcal{V}. The assumption $\mathcal{W} \perp \mathcal{Y}$ implies that this sequence is $\text{Hom}_{\mathcal{A}}(\mathcal{W}, -)$-exact by Lemma 1.6(b).

Fix an element $\lambda \in \text{Hom}_{\mathcal{A}}(M_n, \mathcal{Y})$. The proof will be complete once we find $f \in \text{Hom}_{\mathcal{A}}(X_n, \mathcal{Y})$ such that $\lambda = f \gamma_n$. The following diagram is our guide

$$
\begin{array}{ccc}
0 & \xrightarrow{\gamma_n} & M_n \\
\downarrow{\delta} & \downarrow{\lambda} & \downarrow{f} \\
0 & \xrightarrow{\tau} & \mathcal{Y} \\
\end{array}
$$

wherein the top row is (7) and the bottom row is (8).

Since (8) is $\text{Hom}_{\mathcal{A}}(\mathcal{W}, -)$-exact, it yields a long exact sequence in $\text{Ext}^{\leq 1}_{\mathcal{W}, \mathcal{A}}(M_n, -)$ by Lemma 4.13(a). From Lemma 4.12(a) we conclude $\text{Ext}^{\leq 1}_{\mathcal{W}, \mathcal{A}}(M_n, Y') = 0$, so this long exact sequence begins as follows

$$0 \to \text{Hom}_{\mathcal{A}}(M_n, Y') \to \text{Hom}_{\mathcal{A}}(M_n, \mathcal{V}) \xrightarrow{\text{Hom}_{\mathcal{A}}(M_n, \tau)} \text{Hom}_{\mathcal{A}}(M_n, \mathcal{Y}) \to 0.$$

Hence, there exists $\sigma \in \text{Hom}_{\mathcal{A}}(M_n, \mathcal{V})$ such that $\lambda = \tau \sigma$.

Lemma 6.4(b) implies $\text{Ext}^{1}_{\mathcal{A}}(M_n, -) = 0$, so an application of $\text{Ext}^{1}_{\mathcal{A}}(-, -)$ to the sequence (7) yields the next exact sequence

$$0 \to \text{Hom}_{\mathcal{A}}(M_n, V) \to \text{Hom}_{\mathcal{A}}(X_n, V) \xrightarrow{\text{Hom}_{\mathcal{A}}(\gamma_n, V)} \text{Hom}_{\mathcal{A}}(M_n, \mathcal{Y}) \to 0.$$

Hence, there exists $\delta \in \text{Hom}_{\mathcal{A}}(X_n, V)$ such that $\sigma = \delta \gamma_n$. It follows that

$$\tau \delta \gamma_n = \tau \sigma = \lambda$$

and so $f = \tau \delta \in \text{Hom}_{\mathcal{A}}(X_n, \mathcal{V})$ has the desired property. \qed

Lemma 6.6. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is an injective cogenerator for \mathcal{X}, \mathcal{V} is a projective generator for \mathcal{Y}, $\mathcal{W} \perp \mathcal{Y}$ and $\mathcal{X} \perp \mathcal{V}$.

Let M be an object in $\text{res} \hat{X}$ with proper \mathcal{X}-resolution $\alpha : X \to M$. If Y' is a bounded above complex of objects in \mathcal{Y} and $\text{Ext}^{\geq 1}_{\mathcal{Y} A}(\text{res} \hat{W}, V) = 0$, then the induced map $\text{Hom}_A(M, Y') \to \text{Hom}_A(X, Y')$ is a quasi-isomorphism.

(b) Let N be an object in cores \hat{Y} with proper \mathcal{Y}-coresolution $\alpha : N \to Y'$. If X' is a bounded below complex of objects in \mathcal{X} and $\text{Ext}^{\geq 1}_{\mathcal{X} A}(W, \text{cores} \hat{V}) = 0$, then the induced map $\text{Hom}_A(X', N) \to \text{Hom}_A(X', Y)$ is a quasi-isomorphism.

Proof. We prove part (a); the proof of (b) is dual. Lemma 6.5.2 shows that the complex $\text{Hom}_A(X^+, Y_n)$ is exact for each n, and a standard argument demonstrates that $\text{Hom}_A(X^+, Y)$ is exact. From the following isomorphisms of complexes

$$\text{Cone}(\text{Hom}_A(\alpha, Y)) \cong \Sigma \text{Hom}_A(\text{Cone}(\alpha), Y) \cong \Sigma \text{Hom}_A(X^+, Y) \simeq 0$$

one concludes that $\text{Hom}_A(\alpha, Y)$ is a quasi-isomorphism.

The next result contains the Main Theorem from the introduction.

Theorem 6.7. Assume that \mathcal{X} and \mathcal{Y} are closed under extensions, \mathcal{W} is an injective cogenerator for \mathcal{X}, \mathcal{V} is a projective generator for \mathcal{Y}, $\mathcal{W} \perp \mathcal{Y}$, $\mathcal{X} \perp \mathcal{V}$ and $\text{Ext}^{\geq 1}_{\mathcal{W} A}(\text{res} \hat{W}, V) = 0 = \text{Ext}^{\geq 1}_{\mathcal{V} A}(\text{cores} \hat{V})$. Then $\text{Ext}_{\mathcal{X} A}$ and $\text{Ext}_{\mathcal{Y} A}$ are balanced on $\text{res} \hat{X} \times \text{cores} \hat{Y}$. In particular, there are isomorphisms $\text{Ext}^n_{\mathcal{X} A} A, N) \cong \text{Ext}^n_{\mathcal{Y} A}(M, N)$ for all objects M in $\text{res} \hat{X}$ and N in $\text{cores} \hat{Y}$ and for all $n \in \mathbb{Z}$.

Proof. Fix objects M in $\text{res} \hat{X}$ and N in $\text{cores} \hat{Y}$. Using Lemma 3.3 we have a proper \mathcal{X}-resolution $\alpha : X \to M$ and a proper \mathcal{Y}-coresolution $\beta : N \to Y$. Lemma 6.6 implies that the induced morphisms

$$\text{Hom}_A(M, Y) \xrightarrow{\text{Hom}_A(\alpha, Y)} \text{Hom}_A(X, Y) \xrightarrow{\text{Hom}_A(X, \beta)} \text{Hom}_A(X, N)$$

are quasi-isomorphisms, and hence the desired conclusion.

Remark 6.8. Under the hypotheses of Theorem 6.7 it follows almost immediately from Proposition 4.8 that $\text{Ext}_{\mathcal{W} A}$ and $\text{Ext}_{\mathcal{V} A}$ are balanced on $\text{res} \hat{W} \times \text{cores} \hat{V}$. This conclusion also follows from the weaker hypothesis $\text{Ext}^{\geq 1}_{\mathcal{W} A}(\text{res} \hat{W}, V) = 0 = \text{Ext}^{\geq 1}_{\mathcal{V} A}(\text{cores} \hat{V})$ using [10] (8.2.14)).

The next result follows from Lemma 1.10 and Theorem 6.7.

Corollary 6.9. For $n = 0, 1, 2, \ldots$, let \mathcal{X}_n and \mathcal{Y}_n be subcategories of A such that \mathcal{X}_n and \mathcal{Y}_n are closed under extensions when $n \geq 1$. Assume that \mathcal{X}_n is an injective cogenerator for \mathcal{X}_{n+1} and \mathcal{Y}_n is a projective generator for \mathcal{Y}_{n+1} for each $n \geq 0$. Assume $\mathcal{X}_n \perp \mathcal{Y}_n$ and $\mathcal{X}_0 \perp \mathcal{Y}_0$ for each $n \geq 0$. If $\text{Ext}^{\geq 1}_{\mathcal{X}_0 A}(\text{res} \hat{X}_0, \text{cores} \hat{Y}_0) = 0 = \text{Ext}^{\geq 1}_{\mathcal{Y}_0 A}(\mathcal{X}_0, \text{cores} \hat{Y}_0)$, then $\text{Ext}_{\mathcal{X}_m A}$ and $\text{Ext}_{\mathcal{Y}_n A}$ are balanced on $\text{res} \hat{X}_m \times \text{cores} \hat{Y}_n$ for each $m, n \geq 0$.

We conclude with special cases of Theorem 6.7 for our categories of interest.

Notation 6.10. We simplify our notation for certain relative cohomology functors and for some of the connecting maps from Definition/Notation 4.6:

$$
\begin{align*}
\text{Ext}^n_{\mathcal{P} A}(-, -) &= \text{Ext}^n_{\mathcal{P} C(R) R}(-, -) \\
\text{Ext}^n_{\mathcal{G} A}(-, -) &= \text{Ext}^n_{\mathcal{G} C(R) R}(-, -) \\
\text{Ext}^n_{\mathcal{P} A}(-, -) &= \text{Ext}^n_{\mathcal{G} C(R) R}(-, -) \\
\Sigma^2_{\mathcal{P} C} &= \Sigma^2_{\mathcal{P} C(R) R} \\
\Sigma^2_{\mathcal{G} C} &= \Sigma^2_{\mathcal{G} C(R) R} \\
\Sigma^2_{\mathcal{I} C} &= \Sigma^2_{\mathcal{I} C(R) R}.
\end{align*}
$$
We now show how Theorem \ref{thm:6.7} recovers \cite{10} (3.6).

Corollary 6.11. If R is a commutative ring, then $\Ext_{\mathcal{GP}}$ and $\Ext_{\mathcal{G}^*}$ are balanced on $\res \mathcal{GP}(R) \times \cores \mathcal{G}^*(R)$.

Proof. Set $\mathcal{X} = \mathcal{GP}(R)$, $\mathcal{Y} = \mathcal{G}^*(R)$, $\mathcal{W} = \mathcal{P}(R)$ and $\mathcal{V} = \mathcal{I}(R)$. From \cite{17} (2.5),(2.6) we know that \mathcal{X} and \mathcal{Y} are closed under extensions. Fact \ref{fact:2.4} implies that \mathcal{W} is an injective cogenerator for \mathcal{X} and \mathcal{V} is a projective generator for \mathcal{Y}. Clearly, we have $\mathcal{W} \perp \mathcal{V}$ and $\mathcal{X} \perp \mathcal{Y}$. The natural isomorphisms

$$\Ext^n_{\mathcal{GP}(R), \mathcal{M}(R)}(-, -) \cong \Ext^n_R(-, -) \cong \Ext^n_{\mathcal{M}(R), \mathcal{I}(R)}(-, -)$$

from Remark \ref{rem:4.2} yield

$$\Ext^2_{\mathcal{W}, \mathcal{A}}(\res \mathcal{W}, \mathcal{V}) = 0 = \Ext^2_{\mathcal{A}, \mathcal{V}}(\mathcal{W}, \cores \mathcal{V}).$$

Hence, Theorem \ref{thm:6.7} yields the desired conclusion. \hfill \Box

The next lemmata are for use in Corollary \ref{cor:6.10}

Lemma 6.12. Let R be a commutative ring and let B and B' be semidualizing R-modules. If $\Tor^B_{i+1}(B, B') = 0$, then $\mathcal{P}_B(R) \perp \mathcal{I}_{B'}(R)$.

Proof. Let P be a projective R-module and I an injective R-module. For each $i \geq 1$, the first isomorphism in the following sequence is a standard form of adjunction using the fact that P is projective and I is injective

$$\Ext^i_R(P \otimes_R B, \Hom_R(B', I)) \cong \Hom_R(\Tor^B_i(P \otimes_R B, B'), I)$$

$$\cong \Hom_R(P \otimes_R \Tor^B_i(B, B'), I)$$

$$= 0.$$

The second isomorphism follows from the fact that P is projective, and the vanishing is by assumption. \hfill \Box

The next example shows how to construct semidualizing R-modules satisfying the hypotheses of Lemma \ref{lem:6.12}

Example 6.13. Let R be a commutative ring and let B and C be semidualizing R-modules. One has $C \in \mathcal{B}_C(R)$ if and only if $B \in \mathcal{G}_C(R)$ by \cite{21} (3.14). Assume $C \in \mathcal{B}_C(R)$. From \cite{7} (2.11), we conclude that the R-module $B^{1c} = \Hom_R(B, C)$ is semidualizing, and \cite{13} (3.1.b) yields $B^{1c} \in \mathcal{A}_B(R)$ and $B \in \mathcal{A}_{B^{1c}}(R)$. In particular, we conclude $\Tor^B_{\geq 1}(B, B^{1c}) = 0$.

For example, one always has $C \in \mathcal{B}_C(R) = \mathcal{M}(R)$. If R is Cohen-Macaulay and D is dualizing, then $D \in \mathcal{B}_C(R)$. For discussions of methods for generating other semidualizing modules B and C such that $C \in \mathcal{B}_B(R)$, see \cite{13} [14] [20].

Lemma 6.14. Let R be a commutative ring and let B and C be semidualizing R-modules such that $C \in \mathcal{B}_B(R)$. With $B^{1c} = \Hom_R(B, C)$, there are containments

$$\res \mathcal{P}_B(R) \subseteq \mathcal{B}_B(R) \cap \mathcal{A}_{B^{1c}}(R) \supseteq \cores \mathcal{I}_{B^{1c}}(R).$$

Proof. We verify the first containment; the second one is dual. Fact \ref{fact:2.8} implies $\res \mathcal{P}_B(R) \subseteq \mathcal{B}_B(R)$. From Example \ref{ex:6.13} we have $B \in \mathcal{A}_{B^{1c}}(R)$, and this readily implies $\mathcal{P}_B(R) \subseteq \mathcal{A}_{B^{1c}}(R)$. Fact \ref{fact:2.8} then yields $\res \mathcal{P}_B(R) \subseteq \mathcal{A}_{B^{1c}}(R)$. \hfill \Box
Lemma 6.15. Let R be a commutative ring and let B and C be semidualizing R-modules such that $C \in B_B(R)$. If $B^{1c} = \Hom_R(B, C)$, then \Ext_{P_B} and $\Ext_{I_B^{1c}}$ are balanced on $\res P_B(R) \times \cores I_B^{1c}(R)$.

Proof. Let M and N be R-modules with \P_B-pd$_R(M) < \infty$ and $I_B^{1c} \id_R(N) < \infty$. From Lemma 6.14 we conclude $M, N \in B_B(R) \cap A_B^{1c}(R)$ and so [21 (4.1)] implies that the following natural maps are isomorphisms for each $n \in \Z$

$$\Ext^n_{P_B}(M, N) \xrightarrow{\sim} \Ext^n_{I_B^{1c}}(M, N).$$

In particular, we have

$$\Ext^n_{P_B}(\res P_B(R), I_B^{1c}(R)) = 0 = \Ext^n_{I_B^{1c}}(P_B(R), \cores I_B^{1c}(R))$$

and the desired conclusion follows from [10 (8.2.14)].

Theorem 6.7 and Lemma 6.15 yield the next result.

Corollary 6.16. Let R be a commutative ring and let B and C be semidualizing R-modules such that $C \in B_B(R)$. Set $B^{1c} = \Hom_R(B, C)$ and assume $P_B(R) \perp \GI_B^{1c}(R)$ and $\GP_B(R) \perp I_B^{1c}(R)$. Then \Ext_{\GP_B} and $\Ext_{\GI_B^{1c}}$ are balanced on $\res \GP_B(R) \times \cores \GI_B^{1c}(R)$.

Question 6.17. Let R be a commutative ring and let B and C be semidualizing R-modules such that $C \in B_B(R)$. With $B^{1c} = \Hom_R(B, C)$, must one have $P_B(R) \perp \GI_B^{1c}(R)$ and $\GP_B(R) \perp I_B^{1c}(R)$?

If the answer to this question is “yes” then the assumptions $P_B(R) \perp \GI_B^{1c}(R)$ and $\GP_B(R) \perp I_B^{1c}(R)$ can be removed from Corollary 6.16 Next we discuss one case where this is known, showing that [21 (5.7)] is a special case of Corollary 6.16

Remark 6.18. Let R be a commutative Cohen-Macaulay ring with a dualizing module D. Let B be a semidualizing R-module. The membership $D \in B_B(R)$ is in [7 (4.4)]. The conditions $P_B(R) \perp \GI_B^{1d}(R)$ and $\GP_B(R) \perp I_B^{1d}(R)$ follow from the containments $\GI_B^{1d}(R) \subseteq B_B(R)$ and $\GP_B(R) \subseteq A_B^{1d}(R)$ in [18 (4.6)]. It follows that \Ext_{\GP_C} and $\Ext_{\GI_C^{1d}}$ are balanced on $\res \GP_C(R) \times \cores \GI_C^{1d}(R)$.

The following question is from the folklore of this subject and is related to the composition question for ring homomorphisms of finite G-dimension; see [4 (4.8)]. Remark 6.20 addresses its relevance to Corollary 6.16 and Question 6.17.

Question 6.19. Let R be a commutative ring and let B and C be semidualizing R-modules such that $C \in B_B(R)$. Must the following containments hold?

$$\GP_B(R) \subseteq \GP_C(R) \quad \GI_B(R) \subseteq \GI_C(R)$$

$$A_C(R) \subseteq A_B(R) \quad B_C(R) \subseteq B_B(R)$$

Remark 6.20. Let R be a commutative Cohen-Macaulay ring with a dualizing module D. Let B and C be semidualizing R-modules such that $C \in B_B(R)$. Arguing as in [13 (3.9)], one concludes $B^{1d} \in B_B^{1c}(R)$ and $B \in B_B^{1c}(R)$. Assume that the answer to Question 6.19 is “yes”. Then there are containments

$$\GP_B(R) \subseteq A_B^{1d}(R) \subseteq A_B^{1c}(R) \quad \GI_B^{1c}(R) \subseteq B_B^{1c}(R) \subseteq B_B(R)$$
One concludes $\mathcal{P}_B(R) \perp \mathcal{GI}^*_B(R)$ and $\mathcal{GP}_B(R) \perp \mathcal{I}^*_B(R)$ and $\mathcal{A}_B^*(R) \perp \mathcal{I}^*_B(R)$ from the easily verified conditions $\mathcal{P}_B(R) \perp \mathcal{B}_B^*(R)$ and $\mathcal{A}_B^*(R) \perp \mathcal{I}^*_B(R)$.

In particular, if the answer to Question 6.19 is “yes”, then the same is true for Question 6.17 and the assumptions $\mathcal{P}_B(R) \perp \mathcal{GI}^*_B(R)$ and $\mathcal{GP}_B(R) \perp \mathcal{I}^*_B(R)$ can be removed from Corollary 6.16.

References

1. M. Auslander, *Anneaux de Gorenstein, et torsion en algèbre commutative*, Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67, Secrétariat mathématique, Paris, 1967. MR 37 #1435
2. M. Auslander and M. Bridger, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 42 #4580
3. M. Auslander and R.-O. Buchweitz, *The homological theory of maximal Cohen-Macaulay approximations*, Mém. Soc. Math. France (N.S.) (1989), no. 38, 5–37, Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044344 (91h:13010)
4. L. L. Avramov and H.-B. Foxby, *Ring homomorphisms and finite Gorenstein dimension*, Proc. London Math. Soc. (3) 75 (1997), no. 2, 241–270. MR 98d:13014
5. L. L. Avramov and A. Martsinkovsky, *Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension*, Proc. London Math. Soc. (3) 85 (2002), 393–440. MR 2003g:16009
6. M. C. R. Butler and G. Horrocks, *Classes of extensions and resolutions*, Philos. Trans. Roy. Soc. London Ser. A 254 (1961/1962), 155–222. MR 0188267 (32 #5706)
7. L. W. Christensen, *Semi-dualizing complexes and their Auslander categories*, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839–1883. MR 2002a:13017
8. S. Eilenberg and J. C. Moore, *Foundations of relative homological algebra*, Mem. Amer. Math. Soc. No. 55 (1965), 39. MR 0178036 (31 #2294)
9. E. E. Enochs and O. M. G. Jenda, *Gorenstein injective and projective modules*, Math. Z. 220 (1995), no. 4, 611–633. MR 1363858 (97c:16011)
10. , *Relative homological algebra*, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146 (2001h:16013)
11. H.-B. Foxby, *Gorenstein modules and related modules*, Math. Scand. 31 (1972), 267–284 (1973). MR 48 #6094
12. H.-B. Foxby, *Quasi-perfect modules over Cohen-Macaulay rings*, Math. Nachr. 66 (1975), 103–110. MR 0376663 (51 #12838)
13. A. Frankild and S. Sather-Wagstaff, *Reflexivity and ring homomorphisms of finite flat dimension*, Comm. Algebra 35 (2007), no. 2, 461–500. MR 2294611
14. , *The set of semi-dualizing complexes is a nontrivial metric space*, J. Algebra 308 (2007), no. 1, 124–143. MR 2290914
15. E. S. Golod, *G*-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62–66, Algebraic geometry and its applications. MR 85m:13011
16. H. Holm, *Gorenstein derived functors*, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913–1923. MR 2053961 (2004m:16009)
17. , *Gorenstein homological dimensions*, J. Pure Appl. Algebra 189 (2004), no. 1, 167–193. MR 2038564 (2004k:16013)
18. H. Holm and P. Jørgensen, *Semi-dualizing modules and related Gorenstein homological dimensions*, J. Pure Appl. Algebra 205 (2006), no. 2, 423–445. MR 2203625
19. H. Holm and D. White, *Foxby equivalence over associative rings*, J. Math. Kyoto Univ., to appear, arXiv:math.AC/0611838.
20. S. Sather-Wagstaff, *Semi-dualizing modules and the divisor class group*, Illinois J. Math., to appear, arXiv:math.AC/0408399.
21. S. Sather-Wagstaff, T. Sharif, and D. White, *Comparison of relative cohomology theories with respect to semi-dualizing modules*, preprint (2007), arXiv:math.AC/0705.3635.
22. , *Stability of Gorenstein categories*, preprint (2007), arXiv:math.AC/0703614.
23. R. Takahashi and D. White, *Homological aspects of semi-dualizing modules*, preprint (2007), arXiv:math.AC/0703643.
24. W. V. Vasconcelos, *Divisor theory in module categories*, North-Holland Publishing Co., Amsterdam, 1974, North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR 0498530 (58 #16637)

25. D. White, *Gorenstein projective dimension with respect to a semidualizing module*, preprint (2006), arXiv:math.AC/0611711.

Sean Sather-Wagstaff, Department of Mathematical Sciences, Kent State University, Mathematics and Computer Science Building, Summit Street, Kent OH 44242, USA
E-mail address: sather@math.kent.edu
URL: http://www.math.kent.edu/~sather

Tirdad Sharif, School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, P. O. Box 19395-5746, Tehran, Iran
E-mail address: sharif@ipm.ir
URL: http://www.ipm.ac.ir/IPM/people/personalinfo.jsp?PeopleCode=IP0400060

Diana White, Department of Mathematics, University of Nebraska, 203 Avery Hall, Lincoln, NE, 68588-0130 USA
E-mail address: dwhite@math.unl.edu
URL: http://www.math.unl.edu/~s-dwhite14/