Cumulative Beam Breakup in Linear Accelerators

with Time-Dependent Parameters

J. R. Delayen

Thomas Jefferson National Accelerator Facility,
Newport News, Virginia 23606, USA

(Dated: October 11, 2004)

Abstract

A formalism presented in a previous paper for the analysis of cumulative beam breakup (BBU) with arbitrary time dependence of the beam current and with misalignment of the cavities and focusing elements [J. R. Delayen, Phys. Rev. ST Accel. Beams 6, 084402 (2003)] is extended to include time dependence of the focusing and coupling between the beam and the dipole modes. Such time dependence, which could result from an energy chirp imposed on the beam or from rf focusing, is known to be effective in reducing BBU-induced instabilities and emittance growth. The analytical results are presented and applied to practical accelerator configurations and compared to numerical simulations.

PACS numbers: 29.27.Bd, 41.75.-i, 52.35.-g

Keywords:
I. INTRODUCTION

The cumulative beam breakup instability (BBU) in linear accelerators results when a beam is injected into an accelerator with a lateral offset or an angular divergence, and couples to the dipole modes of the accelerating structures [1]. The dipole modes that are excited in a cavity by the previous bunches can further deflect the following bunches and thereby increase the excitation of the dipole modes in the downstream cavities. In this process the transverse displacement can be amplified and lead to a degradation of beam quality and possibly beam loss. This instability is cumulative since the transverse deflection of a particular bunch or particle results from the additive contributions from all the previous bunches.

Cumulative BBU has been studied in the past mostly in the context of high energy electron accelerators where the beam current profiles were comprised of periodic trains of point-like bunches [2–8] or for high-current quasi-dc beams [9–13]. Growing interest in high-current superconducting ion accelerators for spallation sources, where the bunches have a finite length, motivated an investigation of cumulative BBU in linear accelerators with periodic beam current profile [14].

More recently a general analysis of BBU with arbitrary time dependence of the beam current and injection offsets, as well as random displacement of cavities and focusing elements was developed [15, 16]. This analysis is extended here to include time dependence of the focusing and of the coupling between the beam and the dipole mode in order to control or suppress the BBU instability and the resulting emittance growth. This can be accomplished either with rf focusing or by introducing an energy spread within a single bunch as originally proposed [17], or, more recently, by introducing an energy spread between the bunches [18].

Several analysis of what is often referred to as BNS damping have been made before [19–28] usually under simplifying assumptions for the current profile, wake function, or time dependence of the parameters. We present here an analysis that provides an exact solution for arbitrary beam current profile, wakefunction, offset parameters, misalignment of cavities and focusing elements, and time dependence of focusing and BBU coupling strengths. The analytical results are compared to numerical simulations and are found to be in complete agreement.
II. FORMULATION AND GENERAL SOLUTION

In a continuum approximation, the transverse motion of a relativistic beam in a misaligned accelerator under the combined influence of focusing and coupling to the dipole modes can be modeled by

$$\frac{\partial^2}{\partial \sigma^2} x(\sigma, \zeta) + \kappa^2 [x(\sigma, \zeta) - d_f(\sigma)] = \varepsilon \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) [x(\sigma, \zeta_1) - d_c(\sigma)] d\zeta_1 \quad (1)$$

In this expression $\sigma = s/L$ is the distance from the entrance of the accelerator normalized to the accelerator length L; κ is the normalized focusing wavenumber; $\zeta = \omega \left(t - \int ds/c \right)$ is the time made dimensionless by an angular frequency ω and measured after the arrival of the head of the beam at location σ; $F(\zeta) = I(\zeta)/I$, the current form factor, is the instantaneous current divided by the average current; $\omega(\zeta)$ is the wakefunction of the dipole modes; ε is the coupling strength between the beam and the dipole modes; $d_f(\sigma)$ and $d_c(\sigma)$ are the lateral displacements of the focusing elements and the cavities, respectively, as a function of location along the accelerator.

The dimensionless BBU coupling strength ε is given by

$$\varepsilon = \frac{w_0 T e L^2}{\gamma m c^2 \omega}, \quad (2)$$

where w_0 is the wake amplitude. With these definitions the wake function $w(\zeta)$ is a dimensionless function of a dimensionless variable and includes only the functional dependence on ζ.

The continuum model assumed in Eq. (1) relies on a number of approximations that are addressed in [15]. Equation (1) also assumes a coasting beam in a uniform accelerator but, as shown in Appendix A of [15], an accelerated beam can, under general assumptions, be reduced to a coasting beam with the introduction of appropriate variable and coordinate transformations.

A. Time-independent parameters

When κ and ε are constant (independent of ζ) Eq. (1) can be solved through the use of the Laplace transform with respect to σ: $x(\rho, \zeta) = \mathcal{L}_{\sigma}[x(\sigma, \zeta)]$. The Laplace-transformed
Eq. (1) is
\[
p^2 x^\dagger(p, \zeta) - p x_0(\zeta) - x'_0(\zeta) + \kappa^2 \left[x^\dagger(p, \zeta) - d_f(p) \right] \\
= \varepsilon \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) \left[x^\dagger(p, \zeta_1) - d_f(p) \right] d\zeta_1,
\]
and the solutions for \(x^\dagger(p, \zeta)\) and \(x(\sigma, \zeta)\) are [15]
\[
x^\dagger(p, \zeta) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{(p^2 + \kappa^2)^{n+1}} \left[x_0 p h_n(\zeta) + x'_0 g_n(\zeta) \right] \\
+ \kappa^2 d_f(p) \sum_{n=0}^{\infty} \frac{\varepsilon^n}{(p^2 + \kappa^2)^{n+1}} f_n(\zeta) \\
- d_c(p) \sum_{n=0}^{\infty} \frac{\varepsilon^{n+1}}{(p^2 + \kappa^2)^{n+1}} f_{n+1}(\zeta),
\]
and
\[
x(\sigma, \zeta) = \sum_{n=0}^{\infty} \varepsilon^n \left[x_0 h_n(\zeta) j_n(\kappa, \sigma) + x'_0 g_n(\zeta) i_n(\kappa, \sigma) \right] \\
+ \kappa^2 \sum_{n=0}^{\infty} \varepsilon^n f_n(\zeta) i_n(\kappa, \sigma) * d_f(\sigma) \\
- \sum_{n=0}^{\infty} \varepsilon^{n+1} f_{n+1}(\zeta) i_n(\kappa, \sigma) * d_c(\sigma).
\]

The functions of \(f_n(\zeta), g_n(\zeta),\) and \(h_n(\zeta)\) are defined by identical recursion relations
\[
\begin{align*}
\begin{cases}
f_{n+1}(\zeta) \\
g_{n+1}(\zeta) \\
h_{n+1}(\zeta)
\end{cases} = \int_{-\infty}^{\zeta} \begin{cases}
f_n(\zeta_1) \\
g_n(\zeta_1) \\
h_n(\zeta_1)
\end{cases} F(\zeta_1) w(\zeta_1 - \zeta) d\zeta_1,
\end{align*}
\]
with
\[
\begin{align*}
f_0(\zeta) &= 1, \\
g_0(\zeta) &= x'_0(\zeta)/x'_0 = \frac{1}{x_0} \left. \frac{\partial}{\partial \sigma} x(\sigma, \zeta) \right|_{\sigma=0}, \\
h_0(\zeta) &= x_0(\zeta)/x_0 = \frac{1}{x_0} x(\sigma = 0, \zeta),
\end{align*}
\]
where \(x_0(\zeta)\) and \(x'_0(\zeta)\) are the lateral displacement and angular divergence, respectively, of the beam at the entrance of the accelerator. The normalizing constants \(x_0\) and \(x'_0\) are introduced to make the functions \(h_0(\zeta)\) and \(g_0(\zeta)\) dimensionless.
The functions $i_n(\kappa, \sigma)$ and $j_n(\kappa, \sigma)$ are defined in terms of Bessel functions of order integer plus one half

\begin{align}
 i_n(\kappa, \sigma) &= \mathcal{L}_\sigma^{-1} \left[\frac{1}{(p^2 + \kappa^2)^{n+1}} \right] = \frac{1}{n!} \left(\frac{\sigma}{2\kappa} \right)^n \frac{1}{\kappa} \sqrt{\frac{\pi \kappa \sigma}{2}} J_{n+(1/2)}(\kappa \sigma), \\
 j_n(\kappa, \sigma) &= \mathcal{L}_\sigma^{-1} \left[\frac{p}{(p^2 + \kappa^2)^{n+1}} \right] = \frac{1}{n!} \left(\frac{\sigma}{2\kappa} \right)^n \sqrt{\frac{\pi \kappa \sigma}{2}} J_{n-(1/2)}(\kappa \sigma),
\end{align}

and

\[i_n(\kappa, \sigma) * d(\sigma) = \int_0^\sigma i_n(\kappa, u) d(\sigma - u) \, du \tag{9} \]

is the convolution of $i_n(\kappa, \sigma)$ and $d(\sigma)$.

Applications of these results were presented in [15, 16].

B. Time-dependent parameters

When the strengths of the focusing and of the coupling between the beam and the dipole modes are time-dependent [$\varepsilon(\zeta)$ and $\kappa(\zeta)$] the beam displacement governed by Eq. (1) is not given by Eq. (5) any more and the procedure for solving Eqs. (1) and (3) needs to be modified. This can be done by splitting the focusing strength $\kappa(\zeta)$ in two parts, one constant and one time-dependent, such that

\[\kappa^2(\zeta) = \kappa_0^2 [1 + \Delta \kappa(\zeta)] = \kappa_0^2 + \kappa_1^2(\zeta). \tag{10} \]

As shown in the Appendix, the displacement $x(\sigma, \zeta)$ and its Laplace transform $x^\dagger(p, \zeta)$ are then given by

\[x^\dagger(p, \zeta) = \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left[p x_0 h_n^*(\zeta) + x_0' g_n^*(\zeta) \right] \]

\[+ \kappa_0^2 d_f^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} k_n^*(\zeta) \]

\[- d_c^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left\{ f_{n+1}^*(\zeta) + \kappa_0^2 [k_n^*(\zeta) - f_n^*(\zeta)] \right\}, \tag{11} \]

\[x(\sigma, \zeta) = \sum_{n=0}^{\infty} \left[x_0 j_n(\kappa_0, \sigma) h_n^*(\zeta) + x_0' i_n(\kappa_0, \sigma) g_n^*(\zeta) \right] \]

\[+ \kappa_0^2 \sum_{n=0}^{\infty} k_n^*(\zeta) i_n(\kappa_0, \sigma) * d_f(\sigma) \]

\[- \sum_{n=0}^{\infty} \{ f_{n+1}^*(\zeta) + \kappa_0^2 [k_n^*(\zeta) - f_n^*(\zeta)] \} \cdot i_n(\kappa_0, \sigma) * d_c(\sigma), \tag{12} \]
where the functions $f_n^*(\zeta), g_n^*(\zeta), h_n^*(\zeta)$, and $k_n^*(\zeta)$ satisfy identical recursion relations

\[
\begin{align*}
\left\{ \begin{array}{l}
f_{n+1}^*(\zeta) \\
g_{n+1}^*(\zeta) \\
h_{n+1}^*(\zeta) \\
k_{n+1}^*(\zeta)
\end{array} \right\} &= \varepsilon(\zeta) \int_{-\infty}^{\zeta} \left\{ \begin{array}{l}
f_{n}^*(\zeta) \\
g_{n}^*(\zeta) \\
h_{n}^*(\zeta) \\
k_{n}^*(\zeta)
\end{array} \right\} w(\zeta - \zeta_1) F(\zeta_1) \, d\zeta - \kappa_n^2(\zeta) \left\{ \begin{array}{l}
f_{n}^*(\zeta) \\
g_{n}^*(\zeta) \\
h_{n}^*(\zeta) \\
k_{n}^*(\zeta)
\end{array} \right\},
\end{align*}
\]

and

\[
\begin{align*}
f_0^*(\zeta) &= 1, \quad (14a) \\
g_0^*(\zeta) &= x_0'(\zeta) / x_0' \quad (14b) \\
h_0^*(\zeta) &= x_0(\zeta) / x_0, \quad (14c) \\
k_0^*(\zeta) &= \frac{\kappa_0^2(\zeta)}{\kappa_0^2} = 1 + \frac{\kappa_0^2(\zeta)}{\kappa_0^2} = 1 + \Delta \kappa(\zeta), \quad (14d)
\end{align*}
\]

Equation (12) gives the transverse displacement, at location σ and time ζ, of a beam of arbitrary current $F(\zeta)$, entering the accelerator with lateral offset $x_0(\zeta)$ and angular divergence $x_0'(\zeta)$, experiencing transverse forces due to coupling $\varepsilon(\zeta)$ to cavity dipole modes of wakefield $w(\zeta)$ and to focusing $\kappa(\zeta)$, and with displacement along the accelerator $d_c(\sigma)$ of the cavities and $d_f(\sigma)$ of the focusing elements.

There is some arbitrariness in the way the focusing strength $\kappa(\zeta)$ is split in two parts according to Eq. (10). For example, it could be assumed that $\kappa(\zeta)$ has no constant term ($\kappa_0 = 0$) and only a time-dependent term. In this case $x^t(p, \zeta)$ and $x(\sigma, \zeta)$ would be given by

\[
x^t(p, \zeta) = \sum_{n=0}^{\infty} \left[x_0 h_n^c(\zeta) / p^{2n+1} + x_0' g_n^c(\zeta) / p^{2n+2} \right] \\
+ \kappa^2 d_f^t \sum_{n=0}^{\infty} k_n^c(\zeta) / p^{2n+2} \\
- d_c^t(p) \sum_{n=0}^{\infty} \left[f_{n+1}(\zeta) + \kappa^2 k_n^c(\zeta) \right] / p^{2n+2},
\]

where $f_n^c(\zeta)$, $g_n^c(\zeta)$, $h_n^c(\zeta)$, and $k_n^c(\zeta)$ satisfy identical recursion relations

\[
\begin{align*}
\left\{ \begin{array}{l}
f_{n+1}^c(\zeta) \\
g_{n+1}^c(\zeta) \\
h_{n+1}^c(\zeta) \\
k_{n+1}^c(\zeta)
\end{array} \right\} = \varepsilon(\zeta) \int_{-\infty}^{\zeta} \left\{ \begin{array}{l}
f_{n}^c(\zeta) \\
g_{n}^c(\zeta) \\
h_{n}^c(\zeta) \\
k_{n}^c(\zeta)
\end{array} \right\} w(\zeta - \zeta_1) F(\zeta_1) \, d\zeta - \kappa_n^2(\zeta) \left\{ \begin{array}{l}
f_{n}^c(\zeta) \\
g_{n}^c(\zeta) \\
h_{n}^c(\zeta) \\
k_{n}^c(\zeta)
\end{array} \right\},
\end{align*}
\]

and

\[
\begin{align*}
f_0^c(\zeta) &= 1, \quad (14a) \\
g_0^c(\zeta) &= x_0'(\zeta) / x_0' \quad (14b) \\
h_0^c(\zeta) &= x_0(\zeta) / x_0, \quad (14c) \\
k_0^c(\zeta) &= \frac{\kappa_0^2(\zeta)}{\kappa_0^2} = 1 + \frac{\kappa_0^2(\zeta)}{\kappa_0^2} = 1 + \Delta \kappa(\zeta), \quad (14d)
\end{align*}
\]

The expression for $x^t(p, \zeta)$ accounts for the transverse forces due to cavity dipole modes of wakefield $w(\zeta)$, focusing $\kappa(\zeta)$, and the displacement along the accelerator $d_c(\sigma)$ of the cavities and $d_f(\sigma)$ of the focusing elements.
\[
x(\sigma, \zeta) = \sum_{n=0}^{\infty} \left[x_n \sigma^{2n} h^0_n(\zeta) + x'_0 \sigma^{2n+1} g^0_n(\zeta) \right]
+ \kappa^2 \sum_{n=0}^{\infty} k^o_n(\zeta) \frac{\sigma^{2n+1} d_f(\sigma)}{(2n+1)!} \\
- \sum_{n=0}^{\infty} \left[f^o_{n+1}(\zeta) + \kappa^2 k^o_n(\zeta) \right] \frac{\sigma^{2n+1} d_c(\sigma)}{(2n+1)!},
\]

(17)

where the functions \(f^o_n(\zeta), g^o_n(\zeta), h^o_n(\zeta), \) and \(k^o_n(\zeta) \) satisfy identical recursion relations

\[
\begin{cases}
 f^0_{n+1}(\zeta) \\
 g^0_{n+1}(\zeta) \\
 h^0_{n+1}(\zeta) \\
 k^0_{n+1}(\zeta)
\end{cases}
= \varepsilon(\zeta) \int_{-\infty}^{\zeta} \begin{cases}
 f^0_n(\zeta) \\
 g^0_n(\zeta) \\
 h^0_n(\zeta) \\
 k^0_n(\zeta)
\end{cases}
\begin{cases}
 w(\zeta - \zeta_1) F'(\zeta_1) d\zeta - \kappa^2(\zeta)
\end{cases}

\begin{cases}
 f^0_n(\zeta) \\
 g^0_n(\zeta) \\
 h^0_n(\zeta) \\
 k^0_n(\zeta)
\end{cases},
\]

(18)

and

\[
\begin{align}
 f^0_0(\zeta) &= 1, \\
 g^0_0(\zeta) &= x'_0(\zeta)/x'_0, \\
 h^0_0(\zeta) &= x_0(\zeta)/x_0, \\
 k^0_0(\zeta) &= \frac{\kappa^2(\zeta)}{\bar{\kappa}^2}.
\end{align}
\]

(19a)-(19d)

The arbitrary constant \(\bar{\kappa} \) is introduced only to make the function \(k^o_0(\zeta) \) dimensionless — similar to \(f^o_0(\zeta), g^o_0(\zeta), \) and \(h^o_0(\zeta) \) — and the final result given by Eq. (17) is independent of its choice.

While the expressions (11)–(15) and (16)–(19) for \(x^\dagger(p, \zeta) \) and \(x(\sigma, \zeta) \) look very different, they are mathematically equivalent and represent the same solutions of Eqs. (1) and (3). They differ significantly, however, in their rate of convergence, with expressions (16)–(19) converging very slowly. For expressions (11)–(15) to be of practical use, the separation of \(\kappa^2(\zeta) \) in two parts, as given by Eq. (10), needs to be done in such a way that the time-dependent part \(\Delta \kappa(\zeta) \) is kept as small as possible. Since, in practical applications, the focusing strength will change only by a small amount, natural choices for \(\kappa^2_0 \) would be the value of \(\kappa^2(\zeta) \) either at the beginning, the end, or its average value while the beam is in the accelerator.

Equations (11)–(15) are very general. For the remainder of this paper, in order to simplify the equations, we will assume that the accelerator is perfectly aligned \([d_f(\sigma) = d_c(\sigma) = 0]\),
that the injection offsets are time independent \([x'_0(\zeta) = x'_0, x_0(\zeta) = x_0]\), and that the beam was turned on at \(\zeta = 0\) \([F(\zeta < 0) = 0]\). With these assumptions \(x^+(p, \zeta)\) and \(x(\sigma, \zeta)\) are given by

\[
x^+(p, \zeta) = \sum_{n=0}^{\infty} \frac{x'_0 + px_0}{(p^2 + \kappa_0^2)^{n+1}} f_n^+(\zeta),
\]

\[
x(\sigma, \zeta) = \sum_{n=0}^{\infty} [x_0 j_n(\kappa_0, \sigma) + x'_0 i_n(\kappa_0, \sigma)] f_n^+(\zeta),
\]

\[
f_0^+(\zeta) = 1,
\]

\[
f_{n+1}^+(\zeta) = \int_0^\zeta w(\zeta - \zeta_1) F(\zeta_1) f_n^+(\zeta_1) d\zeta_1 - \kappa_1^2(\zeta) f_n^+(\zeta).
\]

From Eqs. (22) we see that

\[
f_1^+(\zeta) = \epsilon(\zeta) \int_0^\zeta w(\zeta_1 - \zeta) F(\zeta_1) d\zeta_1 - \kappa_1^2(\zeta).
\]

Thus, by choosing

\[
\kappa_1^2(\zeta) = \epsilon(\zeta) \int_0^\zeta w(\zeta - \zeta_1) F(\zeta_1) d\zeta_1,
\]

we have

\[
f_{n>0}^+(\zeta) = 0,
\]

and

\[
x(\sigma, \zeta) = x_0 j_0(\kappa_0 \sigma) + x'_0 i_0(\kappa_0 \sigma) = x_0 \cos \kappa_0 \sigma + \frac{x'_0}{\kappa_0} \sin \kappa_0 \sigma.
\]

As a result the beam progresses in the accelerator as though it was only experiencing a constant focusing force without interaction with the deflecting mode. Equation (24) is the general condition for complete suppression of BBU by imposing a time dependence on the focusing or the coupling strength. This condition is often referred to as autophasing [23].

It should be noted that the autophasing condition Eq. (24) that eliminated the BBU instability was obtained in the case of a perfectly aligned accelerator with time-independent injection offsets. As can be seen from Eq. (12), the autophasing condition would still be effective with time-independent offsets and identical displacements of cavities and focusing elements \([d_c(\sigma) = d_f(\sigma)]\) but would not be effective if the injection offsets were time-dependent, or if the misalignments were different for the cavities and the focusing elements.
III. SINGLE VERY SHORT BUNCH

The results of the previous section will be first applied to the case of a single, very short bunch. In this case the wakefunction is assumed to be linear \(\nu(\zeta) = \zeta \) and the current density along the bunch is assumed to be constant \(F(\zeta) = 1 \). We will further assume that the BBU coupling strength is constant.

If the time dependence of the focusing is assumed to be quadratic

\[
\kappa^2(\zeta) = \kappa_0^2 \left[1 + \eta \left(\frac{\zeta}{\zeta_b} \right)^2 \right],
\]

(27)

where \(\zeta_b \) is the bunch length, then the functions \(f_n^*(\zeta) \) can be easily calculated

\[
f_0^* = 1,
\]

(28a)

\[
f_n^*(\zeta) = \frac{1}{(2n)!} \left(\frac{\zeta}{\zeta_b} \right)^{2n} \prod_{k=1}^{n} \left[\varepsilon - (2k - 1)(2k)\kappa_0^2 \eta \right] .
\]

(28b)

This, together with Eq. (21), defines completely the displacement \(x(\sigma, \zeta) \).

If the focusing modulation parameter \(\eta \) is chosen such that \(\eta = \varepsilon/(2\kappa_0^2) \), then \(f_{n>0}^*(\zeta) = 0 \) and the coupling between the beam and the dipole mode is completely suppressed.

In the case of a linear time dependence of the focusing,

\[
\kappa^2(\zeta) = \kappa_0^2 \left[1 + \eta \left(\frac{\zeta}{\zeta_b} \right) \right],
\]

(29)

the functions \(f_n^*(\zeta) \) can be obtained through the recursion relations

\[
f_n^*(\zeta) = \sum_{k=n}^{2n} a_{n,k} \left(\frac{\zeta}{\zeta_b} \right)^k,
\]

(30)

\[
a_{0,0} = 1,
\]

\[
a_{n,k} = \frac{\varepsilon a_{n-1,k-2}}{k(k-1)} - \kappa_0^2 \eta a_{n-1,k-1}.
\]

In particular

\[
f_0^*(\zeta) = 1,
\]

(31a)

\[
f_1^*(\zeta) = \frac{\varepsilon}{2} \left(\frac{\zeta}{\zeta_b} \right)^2 - \kappa_0^2 \eta \left(\frac{\zeta}{\zeta_b} \right),
\]

(31b)

\[
f_2^*(\zeta) = \frac{\varepsilon^2}{24} \left(\frac{\zeta}{\zeta_b} \right)^4 - \frac{2}{3} \frac{\varepsilon \kappa_0^2 \eta}{3} \left(\frac{\zeta}{\zeta_b} \right)^3 + \kappa_0^4 \eta^2 \left(\frac{\zeta}{\zeta_b} \right)^2.
\]

(31c)
This is illustrated in Fig. 1 which shows the shape of a bunch at the exit (σ = 1) of an accelerator for quadratic (left) and linear (right) time dependence of the focusing modulation. The parameter η represents the amount of modulation from the front (ζ/ζ₀ = 0) to the tail (ζ/ζ₀ = 1) of the bunch. The focusing strength is set at κ₀ = 100.5π; this implies that, since σ = 1, the lateral displacement is due entirely to the coupling with the deflecting mode and to the focusing modulation, and not to the betatron motion without focusing modulation. The strength of the coupling to the dipole mode is assumed to be ε = 0.8. Figure 1 illustrates how the right amount of quadratic modulation can cancel the effect of the coupling to the dipole modes, while a linear modulation can reduce it but not eliminate it.

IV. FINITE TRAIN OF POINT-LIKE BUNCHES

The results of section II will be applied here to a finite train of N identical point-like bunches separated, in the laboratory frame, by τ, so that bunch M is defined by ζ = Mωτ. The displacement of bunch M is then given by

\[x_M(σ) = \sum_{n=0}^{∞} f^*_n(Mωτ) \left[x_0 j_0(κ_0, σ) + x'_0 i_0(κ_0, σ) \right], \quad (32) \]

\[f^*_{n+1}(Mωτ) = \omegaτ \varepsilon(Mωτ) \sum_{k=0}^{M} f^*_n(kωτ) w[(M - k)ωτ] - κ^2_0 \Delta κ(Mωτ) f^*_n(Mωτ). \quad (33) \]

As an example, the analytical results expressed by Eqs. (32) and (33) will be applied to a beam representative of a linear collider. For comparison we will use the same parameters as those used in [15, 16, 19, 20] and which are listed in Table I. Since this is an accelerated beam, the transformations described in Appendix A of [15] will be used. Converting the parameters in Table I to those used in this paper we have ε(0) = \(\frac{w_0 q e L^2}{\gamma(0) mc^2 \omegaτ} \) = 38.02, κ(0) = 1100 π, ζ(σ = 1) = 2/11, and ωτ = 263.014.

This example illustrates the relative effects of a finite Q of the deflecting mode and of a time-dependent focusing strength of the form

\[κ^2(Mωτ) = κ^2_0 \left[1 + \frac{ηM - 1}{N - 1} \right]. \quad (34) \]

where M is the bunch number and N is the total number of bunches.

The transverse displacement at location σ for bunch M is given by Eq. (32) where the functions \(f^*_n(Mωτ) \) are calculated using the recursion relation of Eq. (33). The transverse
FIG. 1: Bunch shape at the exit of the accelerator as a function of focusing modulation for a quadratic (left) or linear (right) time dependence of the modulation. The parameter η is the amount of focusing modulation from the head ($\zeta/\zeta_b = 0$) to the tail ($\zeta/\zeta_b = 1$) of the bunch. See text for the other parameters.
TABLE I: Nominal top-level linear-collider design parameters [15, 16, 19, 20]

Parameter	Value
Total initial energy $\gamma(0)mc^2$	10 GeV
Total final energy $\gamma(1)mc^2$	1 TeV
Linac Length \mathcal{L}	10 km
Number of betatron periods	100
Bunch charge	1 nC
Number of bunches in train N	90
Bunch spacing τ	2.8 ns
Deflecting-wake frequency $\omega/2\pi$	14.95 GHz
Deflecting-wake amplitude w_0	10^{15}VC$^{-1}$m$^{-2}$

Displacements of the bunches at the exit of the accelerator for the beam and accelerator parameters of Table I are shown in Fig. 2. The rows are (top to bottom) for a Q of the deflecting mode of ∞, 10000, 5000, and 2000. The columns are (left to right) for modulation parameter η of 0, 0.01, 0.02, and 0.03.

The top right plot in Fig. 2 ($Q = \infty$, $\eta = 0.03$), which was obtained analytically, is identical in all details to Fig. 4 of [20] which was obtained numerically by tracking successive bunches as they progress along the accelerator.

While this example assumes a linear time dependence of the focusing strength and a simple wakefunction, other more complicated profiles and wakefunctions can be as easily accommodated by the recursion relations Eq. (33).

Acknowledgments

This work was supported by the U. S. Department of Energy under contracts No. DE-AC05-84-ER40150 and No. DE-AC05-00-OR22725.
FIG. 2: Normalized lateral displacement of a finite train of point-like bunches at the exit of a representative linear collider for different values of the Q of the deflecting mode and of the modulation of the focusing strength. See Table I for the choice of parameters.
APPENDIX: GENERAL SOLUTION OF THE EQUATION OF MOTION

The equation of motion for the transverse displacement is

\[
\frac{\partial^2}{\partial \sigma^2} x(\sigma, \zeta) + \kappa^2(\zeta) [x(\sigma, \zeta) - d_f(\sigma)] = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) [x(\sigma, \zeta_1) - d_c(\sigma)] d\zeta_1. \tag{A.1}
\]

We separate the focusing in two parts, one constant and one time-dependent, such that

\[
\kappa^2(\zeta) = \kappa_0^2 [1 + \Delta \kappa(\zeta)] = \kappa_0^2 + \kappa_1^2(\zeta), \tag{A.2}
\]

and we apply the Laplace transform with respect to \(\sigma\) to obtain

\[
p^2 \dot{x}^\dagger(p, \zeta) - p x_0(\zeta) - x_0'(\zeta) + \kappa_0^2 \left[\dot{x}^\dagger(p, \zeta) - d_f^\dagger(p) \right] + \kappa_1^2(\zeta) \left[\dot{x}^\dagger(p, \zeta) - d_c^\dagger(p) \right] = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) \left[\dot{x}^\dagger(p, \zeta) - d_c^\dagger(p) \right] d\zeta_1. \tag{A.3}
\]

By analogy with the time-independent case [where \(\kappa_1^2(\zeta) = 0\)] we assume that \(\dot{x}^\dagger(p, \zeta)\) is of the form

\[
x^\dagger(p, \zeta) = \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left[p x_0 h_n^*(\zeta) + x_0' g_n^*(\zeta) \right] + \kappa_0^2 d_f^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} k_n^*(\zeta) - d_c^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} l_n^*(\zeta), \tag{A.4}
\]

where the functions \(g_n^*(\zeta), h_n^*(\zeta), k_n^*(\zeta),\) and \(l_n^*(\zeta)\), are to be determined.

To determine \(g_n^*(\zeta)\), we assume that \(x_0(\zeta) = 0\), and \(d_f(\sigma) = d_c(\sigma) = 0\), so that \(\dot{x}^\dagger(p, \zeta)\) reduces to

\[
x^\dagger(p, \zeta) = x_0' \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} g_n^*(\zeta), \tag{A.5}
\]

and must satisfy

\[
[p^2 + \kappa_0^2] x^\dagger(p, \zeta) + \kappa_1^2(\zeta) x^\dagger(p, \zeta) - x_0'(\zeta) = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) x^\dagger(p, \zeta) d\zeta_1. \tag{A.6}
\]

This implies that

\[
\sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left[g_{n+1}^*(\zeta) + \kappa_1^2(\zeta) g_n^*(\zeta) - \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) g_n^*(\zeta_1) d\zeta_1 \right] + g_0^*(\zeta) - \frac{x_0'(\zeta)}{x_0'} = 0, \tag{A.7}
\]
which leads to

\[
g_0^*(\zeta) = \frac{x_0'(\zeta)}{x_0'} \tag{A.8a}
\]

\[
g_{n+1}^*(\zeta) = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) g_n^*(\zeta_1) d\zeta_1 - \kappa_1^2(\zeta) g_n^*(\zeta) . \tag{A.8b}
\]

The functions \(h_n^*(\zeta) \) are determined in a similar fashion by assuming \(x_0'(\zeta) = 0 \), and \(d_f(\sigma) = d_c(\sigma) = 0 \). They satisfy the same recursion relation as \(g_n^*(\zeta) \) but with \(h_0^*(\zeta) = x_0(\zeta)/x_0 \).

To determine \(k_n^*(\zeta) \) we assume that \(x_0(\zeta) = x_0'(\zeta) = 0 \) and \(d_c(\sigma) = 0 \), so that \(x^\dagger(p, \sigma) \) reduces to

\[
x^\dagger(p, \sigma) = \kappa_0^2 d_f^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} k_n^*(\zeta), \tag{A.9}
\]

and must satisfy

\[
\left[p^2 + \kappa_0^2 \right] x^\dagger(p, \zeta) + \kappa_1^2(\zeta) x^\dagger(p, \zeta) - \kappa_2^2(\zeta) d_c^\dagger(p) = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) x^\dagger(p, \zeta) d\zeta_1 . \tag{A.10}
\]

This implies that

\[
\sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left[k_{n+1}(\zeta) + \kappa_1^2(\zeta) k_n^*(\zeta) - \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) k_n^*(\zeta_1) d\zeta_1 \right]
\]

\[
+ k_0^*(\zeta) - \frac{\kappa_2^2(\zeta)}{\kappa_0^2} = 0 , \tag{A.11}
\]

which leads to

\[
k_0^*(\zeta) = \frac{\kappa_2^2(\zeta)}{\kappa_0^2} = 1 + \Delta \kappa(\zeta) , \tag{A.12a}
\]

\[
k_{n+1}^*(\zeta) = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) k_n^*(\zeta_1) d\zeta_1 - \kappa_1^2(\zeta) k_n^*(\zeta) . \tag{A.12b}
\]

To determine \(l_n^*(\zeta) \) we assume that \(x_0(\zeta) = x_0'(\zeta) = 0 \) and \(d_f(\sigma) = 0 \), so that \(x^\dagger(p, \sigma) \) reduces to

\[
x^\dagger(p, \sigma) = -d_c^\dagger(p) \sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} l_n^*(\zeta) , \tag{A.13}
\]

and must satisfy

\[
\left[p^2 + \kappa_0^2 \right] x^\dagger(p, \zeta) + \kappa_1^2(\zeta) x^\dagger(p, \zeta) = \varepsilon(\zeta) \int_{-\infty}^{\zeta} w(\zeta - \zeta_1) F(\zeta_1) \left[x^\dagger(p, \zeta) - d_c^\dagger(p) \right] d\zeta_1 . \tag{A.14}
\]
This implies that
\[
\sum_{n=0}^{\infty} \frac{1}{(p^2 + \kappa_0^2)^{n+1}} \left[l_{n+2}^* (\zeta) + \kappa_1^2 (\zeta) l_{n+1}^* (\zeta) - \varepsilon (\zeta) \int_{-\infty}^{\zeta} w (\zeta - \zeta_1) F (\zeta_1) l_{n+1}^* (\zeta_1) d\zeta_1 \right] \\
+ l_1^* (\zeta) - \varepsilon (\zeta) \int_{-\infty}^{\zeta} w (\zeta - \zeta_1) F (\zeta_1) d\zeta_1 = 0, \tag{A.15}
\]
which leads to
\[
l_1^* (\zeta) = \varepsilon (\zeta) \int_{-\infty}^{\zeta} w (\zeta - \zeta_1) F (\zeta_1) d\zeta_1, \tag{A.16a}
\]
\[
l_{n+1}^* (\zeta) = \varepsilon (\zeta) \int_{-\infty}^{\zeta} w (\zeta - \zeta_1) F (\zeta_1) l_{n}^* (\zeta_1) d\zeta_1 - \kappa_1^2 (\zeta) l_{n}^* (\zeta). \tag{A.16b}
\]
If we define the functions \(f_n^* (\zeta) \) by
\[
f_0^* (\zeta) = 1, \tag{A.17a}
\]
\[
f_{n+1}^* (\zeta) = \varepsilon (\zeta) \int_{-\infty}^{\zeta} w (\zeta - \zeta_1) F (\zeta_1) f_n^* (\zeta_1) d\zeta_1 - \kappa_1^2 (\zeta) f_n^* (\zeta), \tag{A.17b}
\]
then
\[
l_1^* (\zeta) = f_1^* (\zeta) + \kappa_1^2 (\zeta) = f_1^* (\zeta) + \kappa_0^2 \left[k_0^* (\zeta) - f_0^* (\zeta) \right]. \tag{A.18}
\]
Since the functions \(f_n^* (\zeta) \), \(k_n^* (\zeta) \), and \(l_n^* (\zeta) \) satisfy the same recursion relation we obtain
\[
l_{n+1}^* (\zeta) = f_{n+1}^* (\zeta) + \kappa_0^2 \left[k_n^* (\zeta) - f_n^* (\zeta) \right]. \tag{A.19}
\]

[1] A. W. Chao, *Physics of Collective Beam Instabilities in High Energy Accelerators* (John Wiley and Sons, New York, 1993).

[2] R. L. Gluckstern, R. K. Cooper, and P. J. Channel, Part. Accel. **16**, 125 (1985).

[3] G. Decker and J. M. Wang, in *Proc. 1987 Particle Accelerator Conference, Washington D. C.* (IEEE, Piscataway, NJ, 1987), p. 1210.

[4] G. Decker and J. M. Wang, Phys. Rev. D **38**, 908 (1988).

[5] K. Yokoya, Tech. Rep., DESY No.86-084 (1986), (Unpublished).

[6] R. L. Gluckstern, F. Neri, and R. K. Cooper, Part. Accel. **23**, 53 (1988).

[7] K. A. Thompson and R. D. Ruth, Phys. Rev. D **41**, 964 (1990).

[8] F. Neri and R. L. Gluckstern, in *Proc. 1989 Particle Accelerator Conference, Chicago, IL* (IEEE, New York, 1989), p. 812.
[9] W. K. H. Panofsky and M. Bander, Rev. Sci. Instrum. 39, 206 (1968).
[10] V. K. Neil and R. K. Cooper, Part. Accel. 1, 111 (1970).
[11] V. K. Neil, L. S. Hall, and R. K. Cooper, Part. Accel. 9, 213 (1979).
[12] Y. Y. Lau, Phys. Rev. Lett. 63, 1141 (1989).
[13] K. Takayama, Phys. Rev. A 45, 1157 (1992).
[14] C. L. Bohn and J. R. Delayen, Phys. Rev. A 45, 5964 (1992).
[15] J. R. Delayen, Phys. Rev. ST Accel. Beams 6, 084402 (2003).
[16] J. R. Delayen, Phys. Rev. ST Accel. Beams 7, 074402 (2004).
[17] V. E. Balakin, A. V. Novokhatsky, and V. P. Smirnov, in Proc. 12th International Conference on High-Energy Accelerators, Batavia, IL (Fermilab, Batavia, 1983), p. 119.
[18] G. V. Stupakov, in Proc. XX International LINAC Conference, Monterey, CA, 2000 (SLAC report No. SLAC-R-561, eConf: C000821, 2000), p. 272.
[19] C. L. Bohn and K.-Y. Ng, Phys. Rev. Letters 85, 984 (2000).
[20] C. L. Bohn and K.-Y. Ng, in Proc. XX International LINAC Conference, Monterey, CA, 2000 (SLAC report No. SLAC-R-561, eConf: C000821, 2000), p. 31.
[21] D. Chernin and A. Mondelli, Part. Accel. 24, 177 (1989).
[22] R. Gluckstern, F. Neri, and J. B. J. van Zeijts, in Proc. 1990 Linear Accelerator Conference, Albuquerque, NM (LANL Report LA-12004-C, 1990), p. 309.
[23] R. L. Gluckstern, J. B. J. van Zeijts, and F. Neri, in Proc. 1991 Particle Accelerator Conference, San Francisco, CA (IEEE Catalog No 91CH3038-7, Piscataway, NJ, 1991), p. 1597.
[24] G. V. Stupakov, Tech. Rep., SLAC-AP-108 (1997), (Unpublished).
[25] D. A. Whittum, J. Phys. A: Math. Gen. 30, 8751 (1997).
[26] G. Guignard and J. Hagel, in Proc. XIX International LINAC Conference, Chicago, IL, 2000 (ANL-98/28, 2000), p. 484.
[27] G. Guignard and J. Hagel, Nucl. Instrum. Methods A 434, 179 (1999).
[28] K. Y. Ng and C. L. Bohn, in Proc. Second Asian Particle Accelerator Conference, APAC’01, Beijing, China (IHEP, Beijing, 2001), p. 372.