Cancer immunotherapy strategies that target the cGAS-STING pathway

Zhuoying Tian¹,², Yue Zeng¹, Yurong Peng¹, Junqi Liu¹ and Fang Wu¹,³,⁴,⁵*

¹Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China, ²Xiangya School of Medicine, Central South University, Changsha, China, ³Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China, ⁴Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China, ⁵Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China

Activation of the cGAS-STING pathway by cytoplasmic DNA induces the production of Type-1 interferons. Recent advances in research suggest that the cGAS-STING pathway is involved in different parts of the cancer-immunity cycle (CIC) to promote or suppress antitumor immune responses. Combination therapy of STING agonists has made certain progress in preclinical as well as clinical trials, but the selection of combination therapy regimens remains a challenge. In this review, we summarize the role of the cGAS-STING in all aspects of CIC, and focus on the combination immunotherapy strategies of STING agonists and current unsolved challenges.

KEYWORDS
cGAS, STING, cancer-immunity cycle, immunotherapy, tumor

1 Introduction

Cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytoplasmic double-stranded DNA sensor that plays a key role in Type-1 interferon and inflammatory responses via a Stimulator of Interferon Genes (STING)-dependent signaling pathway (1). This pathway has been demonstrated to have a regulatory role in metabolic endocrine diseases (2–5), viral infections (6, 7), autoimmune diseases (8, 9), and neurological disorders (10, 11). In recent years, there is increasing evidence that the cGAS-STING pathway is closely related to the occurrence, development and regression of cancer. The cGAS-STING pathway regulates various aspects of the Cancer-Immunity Cycle (CIC), including tumor antigen release (12), antigen presentation (13), the priming and activation of T cells (14), the trafficking and infiltration of T cells into tumor tissues
and the recognition and killing of tumor cells by T cells. The cGAS-STING pathway plays an anti-tumor or pro-tumor role.

In this review, we summarize the role of the cGAS-STING in all aspects of CIC, and focus on the combination immunotherapy strategies of STING agonists and current unsolved challenges.

2 Overview of the cGAS–STING signaling

cGAS is a cytosolic DNA receptor activated by double-stranded DNA (dsDNA) in a sequence-independent but length-dependent manner. cGAS catalyzes the conversion of GTP and ATP to 2',3'-Cyclic GMP-AMP (2',3'-cGAMP), which binds to STING and promotes its translocation from the endoplasmic reticulum (ER) to Golgi. STING recruits and activates TANK binding kinase-1 (TBK1), which in turn promotes the translocation of interferon regulatory factor 3 (IRF3) into the nucleus where it promotes the production of Type-1 interferon and the transcription of interferon-stimulated genes (ISGs). STING also binds and stimulates IkB kinase (IKK), which mediates the activation of canonical and non-canonical NF-kB pathways. After signal transduction is terminated, STING is transferred to endolysosomes for degradation.

3 The cGAS-STING pathway regulates the cancer-immunity cycle

Mounting evidence has demonstrated that the cGAS-STING pathway plays an important regulatory role in all stages of the cancer-immunity cycle, either activating or suppressing anti-tumor immune responses, depending on the strength and timing of the activation of the cGAS-STING pathway and the type and state of the tumors.

3.1 The cGAS-STING pathway increases tumor antigen release by promoting apoptosis

During normal mitosis, cGAS has a higher affinity for nucleosomes compared to dsDNA, thus preventing cGAS dimerization and activation. However, when Taxane drugs interfere with mitosis leading to mitotic arrest, the accumulation of phosphorylated IRF3 which is induced by the cGAS inhibits the expression of the anti-apoptotic protein BCL-xL, triggering apoptosis via mitochondrial outer membrane permeabilization (MOMP). In addition, Type-1 interferon and TNFα produced by the cGAS-STING activation can stimulate the expression of the pro-apoptotic molecule, NOXA, in neighboring cells via paracrine secretion. This induces apoptotic priming, meaning the cancer cells undergo MOMP. Analysis of The Cancer Genome Atlas (TCGA) datasets showed that lung and ovarian cancer patients with high cGAS expression were more sensitive to paclitaxel treatment. The 2',3'-cGAMP analogue, c-di-AMP, activates the STING pathway to induce apoptosis in estrogen receptor-negative breast cancer cells, resulting in the release of tumor antigens (TAs) and propagation of the cancer-immunity cycle.

3.2 The cGAS-STING pathway facilitates the processing and presentation of tumor antigens

Dendritic cells (DCs) are considered to be the main antigen-presenting cells (APCs) responsible for the priming of anti-tumor T cells. Type-1 IFN production promotes DC maturation, upregulates the expression of molecules such as MHCI, MHCII, CD40, CD80, CD86 on the DCs surface, enhancing DC migration to tumor draining lymph nodes (TDLNs). Although T cell activation occurs mainly in TDLNs, STING signaling has been reported to induce the formation of intra-tumor tertiary lymphoid structures (TLS) in a mouse model of melanoma, where DCs may activate T cells, thereby skipping the need for migration to TDLNs. In addition, it has been reported that in the tumor microenvironment (TME), cancer cells transfer cGAMP into tumor-associated DCs via gap junctions, leading to the activation of pathways downstream of the cGAS-STING.

3.3 The cGAS-STING pathway has a dichotomous effect on the priming and activation of T cells

Although it is well known that the cGAS-STING pathway plays a key role in the regulation of T cell priming and activation, the strength and timing of the activation of this signaling pathway may have opposing effects.

Moderate activation of the cGAS-STING pathway upregulates the expression of the TA–MHC I complex on the cell surface of DCs, which is recognized by TCRs, leading to the
activation of CD8+ cytotoxic T cells (CTLs) (31). Moreover, by increasing the expression of the transcription factor TCF1, the cGAS-STING pathway-mediated Type-1 interferon increases the activity of stem-like CD8+ T cells (36), which are capable of self-renewal, persistence, and differentiation potential (37–39). It has been reported that the cGAS agonist Manganese (40), low-dose STING agonists ADU-S100 (S100) (14), Vadimezan (DMXAA) (41), and STINGV155M (a constitutively activating mutation of STING) (42) all have the ability to enhance the activity of CTLs thereby producing durable antitumor immunity. Consistent with these findings, STING-deficiency reduces CD8+ T cell activity in mice (43).

However, high doses of ADU-S100 lead to substantial T cell death and impaired antitumor immunity (14). This may be attributed to the activation of the non-type I IFN domain of STING that disrupts calcium homeostasis, thereby stimulating T cells to be highly responsive to TCR signaling-induced endoplasmic reticulum stress, leading to T cell death (26, 27).

3.4 Activation of the cGAS-STING pathway promotes the trafficking and infiltration of T cells

CTLs need to leave TDLNs and enter the tumor tissue via blood vessels in order to recognize and kill cancer cells (44). The cGAS-STING pathway-induced Type-1 interferon response drives the expression of multiple chemokines such as CXCL9, CXCL10, and CCL5, that act as chemical gradients to direct CTLs into the tumor tissue (45–47). IFN I signaling also increases the expression of E selectin, VCAM-1, and ICAM-1 in endothelial cells, enhances vascular permeability, and facilitates immune cell extravasation, thus enhancing the antitumor effect (15).

The tumor vasculature is disorganized and immature, with loose connections and low pericyte coverage. In addition, this vascular system does not provide a continuous blood supply to the tumor tissue, thus increasing the distant metastasis of tumor cells and decreasing the tropism of CTLs to TME (48–51). The cGAS-STING pathway-induced activation of Type-1 interferon upregulates the vascular normalization genes such as Cdh5, Angpt1, Pdgfrb, Mcam, and Col4a. These genes induce the normalization of tumor vasculature with increased pericyte coverage and more intact basement membrane, facilitating infiltration of CTLs into tumor tissue (33, 52, 53). Consistent with these findings, STING deficiency reduces the expression of these genes (53). However, vascular endothelial growth factor (VEGF)/VEGFR2 can negatively regulate Type-1 interferon signaling through ubiquitin-mediated IFNAR degradation, leading to the inhibition of Type-1 interferon action in VEGF-rich tumor tissues (53). Combining STING agonists with VEGFR2 blockers not only attenuates the negative effects of VEGF, but also synergistically promotes tumor vascular normalization (53).
promoting brain metastasis and chemoresistance (81). Since TBK1 and STING inhibitors do not block non-canonical STING, NF-kB inhibitors may be an option to reduce the pro-tumorigenic response (79).

4 The mechanism underlying the inhibition of the cGAS-STING pathway in tumor

An increasing number of investigations have indicated that the activity of the cGAS-STING pathway is inhibited in several tumors due to the regulation of multiple mechanisms. Mutant p53 inhibits the activation of the cGAS-STING-TBK1-IRF3 pathway and promotes tumor progression by interacting with and inhibiting TBK1 activity (82). Mutant NF2 is induced by activated IRF3 to form cellular condensates, which inhibit TBK1 activity, particularly in human vestibular nerve sheath tumors (83). As a hydrolase of cGAMP, ecto-nucleotide pyrophosphatases 1 (ENPP1) impedes the antitumor immune response by blocking cGAMP transfer from tumor cells to immune cells to trigger the STING pathway (84). Hypoxia, a feature of solid cancers, upregulates RNASEH2A via HIF2α, which may limit activation of the cGAS-STING signaling by reducing nuclear DNA release. Hypoxia is associated with poor prognosis of hepatocellular carcinoma (85). In a mouse model of ovarian cancer, the SETDB1-TRIM28 complex inhibited the formation of micronuclei in the cytoplasm, thereby inhibiting the activity of the cGAS-STING pathway and suppressing antitumor immunity (86). TIM-3 may inhibit the activation of the cGAS-STING pathway by suppressing the uptake of extracellular DNA by DCs, which has been demonstrated in breast cancer models (87).

Thus, blocking the mechanism underlying the inhibition of the cGAS-STING pathway may be an option for the treatment of tumors with suppressed activity of the cGAS-STING, though the existing intervention methods remain immature. In contrast, using agonists to activate the cGAS-STING signaling pathway, thereby antagonizing the inhibitory signals of this pathway and reversing the immunosuppressive state, may be a more feasible approach, which is expected to break the resistance bottleneck of these tumor immunotherapies.

5 Immune combination therapy of the cGAS-STING

As previously mentioned, the regulation of tumor immunity by the cGAS-STING pathway is dichotomous; therefore, STING agonists applied alone may carry the side effect of immunosuppression. However, combined STING agonists with other suitable antitumor therapies can mechanically synergize, as demonstrated in clinical and preclinical models (Figure 1).

5.1 Combination therapy to promote tumor antigen release and presentation

Due to the low mutational burden and low expression of antigen-presentation markers, “immune cold tumors” lack infiltration of CTLs both inside and at the margins of the tumor, which respond poorly to immune checkpoint inhibitors (ICIs) and are often associated with poor prognosis (88–90). Therefore, such combination therapies are essential to overcome the immune deficiency and convert cold tumors into hot tumors.

5.1.1 STING agonists in combination with chemotherapy

STING agonists in combination with chemotherapy have shown promising efficacy in preclinical trials. The combination of cisplatin and cGAMP showed effective CXCR3-dependent antitumor effects in a mouse model of head and neck squamous cell carcinoma (HNSCC) (91). However, several clinical trials of STING agonists in combination with chemotherapy have been completed without achieving expected efficacy. The poor performance of the STING agonist ASA404 in clinical trials may be due to the fact that ASA404 selectively binds to mice, but not to human STING. Therefore, STING agonists with higher affinity for humans need to be rationally designed to enhance antitumor efficacy.

5.1.2 STING agonists in combination with DNA damage response inhibitors

Homologous recombination repair (HRR)-deficient tumors result in a higher tumor mutational load, including KEAP1-mutated non-small cell lung cancer (NSCLC) (92), BRCA1/2-deficient tumors (93, 94), microsatellite instability (MSI) colorectal cancer (CRC) (95), and small cell lung cancer (SCLC) (66) characterized by widespread deletion of two key regulators of the cell cycle checkpoint pathway, TP53 and RB1. Such tumors exhibit sensitivity to DDR inhibitors, and persistent high levels of DNA damage in their cells contribute to activation of the cGAS-STING pathway. It was revealed that combination therapy of DDR inhibitors (including PARP inhibitor olaparib and CHK1 inhibitor prexasertib) and STING agonists demonstrated beneficial therapeutic effects in such tumors, superior to both drugs monotherapy (66, 92–95). Thus, combination therapy with DDR inhibitors and STING agonists is expected to be a promising treatment for HRR-deficient tumors.

5.1.3 STING agonists as vaccine adjuvants

Recently, several studies have demonstrated that STING agonists can serve as adjuvants for tumor vaccines and exert beneficial effects in antitumor therapy. Matteo Rossi et al. (96) discovered that the combination of STING agonists with therapeutic protein vaccines significantly reduced the rate of tumor growth and improved the efficacy of therapeutic
vaccination, which was demonstrated in a variety of mouse tumor models. CDGSF, a novel STING agonist that induces a “hot” tumor microenvironment to inhibit melanoma progression, has been shown to induce a robust adaptive immune response as an adjuvant to SARS-CoV-2 stinger protein and has great potential to be an adjuvant for cancer vaccines (97).

5.2 STING agonists combined with VEGFR blockers to promote the trafficking and infiltration of T cells

The combination of STING agonists and VEGFR blockers collaboratively drives the infiltration of CTLs into the tumor core, which is essential for “immune excluded tumors”. In immune excluded tumors, CTLs aggregate at the tumor border but cannot invade the tumor interior, possibly due to the lack of T-cell chemokines or abnormal tumor vascular formation barriers (69). Anlotinib, a tyrosine kinase inhibitor (TKI), inhibits tumor angiogenesis by blocking multiple targets such as VEGFR, PDGFR, and FGFR. A recent study revealed that the antitumor effects of anlotinib were also associated with activation of the cGAS-STING pathway, which was confirmed in a mouse model of gastric cancer (98). Another study confirmed that triple immunotherapy with STING agonists, anti-VEGFR2 antibodies, and anti-PD-1 or anti-CTLA-4 antibodies was more potent and durable in mouse models of lung and colon cancer, extending survival in mice resistant to ICIs or anti-angiogenic therapy (53).

5.3 Combination therapy to facilitate the recognition and killing of tumor cells by T cells

5.3.1 STING agonists in combination with chimeric antigen receptor -T cell therapy

CAR-T cell therapy is one of the promising anti-cancer therapies that has achieved excellent efficacy in treating
hematologic tumors (99), but has a lower success rate in treating patients with solid tumors, which may be due to insufficient infiltration of CAR T cells into tumor tissue, immunosuppression TME-induced functional suppression, and CAR T cell exhaustion (100, 101).

In situ mouse mammary tumor model, administration of STING agonists DMXAA or cGAMP at sites distant from the tumor significantly enhanced the efficacy of Th/Tc17 CAR T cells, which may be related to the upregulation of chemokines CXCL9 and CXCL10 by STING agonists to promote the infiltration of CAR T cells into the tumor tissue. Furthermore, sustained tumor regression was only achieved in combination with anti-PD-1 monoclonal antibodies, possibly due to anti-PD-1 antibodies reversing CAR T-cell exhaustion (102). Feng Ji et al. also confirmed that PARPi can activate the cGAS-STING pathway to enhance the efficacy of CD70 CAR-T cells on renal cancer (103).

5.3.2 STING agonists in combination with immune checkpoint inhibitors

“Hot tumors” already contain large numbers of infiltrating T cells that were once activated but are depleted or malfunctioning due to the expression of a range of immunosuppressive receptors, including CTLA4 and PD-1 (69). As mentioned previously, activation of the cGAS-STING pathway promotes the infiltration of CTLs into tumor tissue and upregulates the expression of PD-L1 on the surface of cancer cells. While the therapeutic efficacy of immune checkpoint inhibitors (ICIs) correlates with the baseline infiltration level of CTLs in tumor tissue. Therefore, the combination of STING agonists and ICIs for the treatment of immune hot tumors may synergize.

The combination of STING agonists and ICIs is currently achieving some efficacy in clinical trials. A multicenter Phase 2 clinical trial demonstrated a complete response of 16.7% and a partial response of 83.3% (NCT03937141) when ADU-S100 (a STING agonist) and pembrolizumab were used together in the treatment of recurrent or metastatic head and neck cancer. An open-label phase 1 clinical trial for patients with advanced metastatic solid tumors showed that Mn2+, which can activate cGAS in combination with anti-PD-1 antibodies, has promising efficacy, with an objective response rate of 45.5% and a disease control rate of 90.9% (NCT03991559) (40). In preclinical model of HPV + oral cancer, intratumoral injection of STING agonist combined with systemic treatment with anti-PD-1 antibodies and anti-CTLA-4 antibodies resulted in sustained tumor regression in 71% of mice, significantly higher than the efficacy of PD-1blocker alone (104). In mouse melanoma models with B16F10 and BRAF mutations, the combination use of LP-cGAMP and anti-PD-L1 antibody achieved stronger and more durable efficacy than LP-cGAMP or anti-PD-L1 alone (105).

5.3.3 STING agonists in combination with IDO inhibitors

In immunosuppressed tumors, immune infiltration is present in the tumor lesion, but the degree of infiltration is not high (69). As previously mentioned, while activation of the cGAS-STING pathway promotes immune infiltration, it also upregulates the expression of the immunosuppressive factor IDO. Therefore, combining STING agonists with IDO inhibitors may be a promising option to reverse immunosuppression and promote immunosuppressed tumors to become hot tumors, thereby improving the efficacy of ICIs.

The combination of STING agonist and IDO inhibitor is currently in preclinical. In a mouse colorectal cancer model, the STING agonist diABZI in combination with the IDO inhibitor 1-MT significantly inhibited tumor growth, promoting the recruitment of CTLs and inhibiting the infiltration of MDSCs (75).

6 Conclusion and perspectives

The cGAS-STING pathway mediates various aspects of the cancer immune cycle (CIC) to enhance or attenuate anti-tumor immune responses. Combination therapy of STING agonists can target different steps of the cancer-immunity cycle and contribute to solving immunotherapy challenges in the corresponding tumor immune-phenotype. In addition, the activity of the cGAS-STING pathway is inhibited in several tumors due to negative regulation by multiple mechanisms such as TIM-3, ENPP1.

However, the following challenges need to be solved for STING agonists to be clinically applied on a large scale. First, for specific patients, whether STING agonists are immunopromoting or immunosuppressive is unclear and may be related to their tumor type and immune microenvironmental characteristics, which need to be further explored. Second, STING agonists with higher affinity for humans need to be rationally designed to enhance antitumor efficacy. Third, more potential STING agonist combination therapy strategies need to be explored, such as STING agonist in combination with TIM-3 inhibitor, ENPP1 inhibitors.

In summary, we believe that the cGAS-STING pathway manipulation will have a promising future in tumor immunotherapy.
Author contributions

ZT wrote the manuscript. ZT, YZ, YP, JL and FW revised the paper. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by: 1) Hunan Provincial Science Fund for Excellent Young Scholars (Grant No. 2021JJ20088); 2) Changsha Municipal Science and Technology Bureau (Grant No. kq1907077).

Acknowledgments

The authors sincerely thank Dr. Feng Liu providing language help and valuable discussion points. The authors sincerely thank the multidisciplinary team (MDT) of thoracic oncology, the Second Xiangya Hospital, Central South University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Bai J, Liu F. Nuclear cGAS: sequestration and beyond. Protein Cell (2021) 13 (2):90–101. doi: 10.1007/s13238-021-00869-0
2. Bai J, Liu F. cGAS–STING signaling and function in metabolism and kidney diseases. J Mol Cell Biol (2021) 13:728–38. doi: 10.1093/jmcb/mjab066
3. Bai J, Liu F. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism. Diabetes (2019) 68:1099–108. doi: 10.2337/db18-0052
4. Bai J, Cervantes C, He S, He J, Plasko GR, Wen J, et al. Mitochondrial stress-activated cGAS-STING pathway inhibits thermogenic program and contributes to overnutrition-induced obesity in mice. Commun Biol (2020) 3:257. doi: 10.1038/s42003-020-0896-1
5. Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B, et al. DsbA-l prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc Natl Acad Sci U.S.A. (2017) 114(46):12196–201. doi: 10.1073/pnas.1707844114
6. Xu G, Liu C, Zhou S, Li Q, Feng Y, Sun P, et al. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Mol Cell (2021) 81:2823–2837.e2829. doi: 10.1016/j.molcel.2021.05.002
7. Jin M, Shiwasu H, Tanaka H, Obita S, Ouchi S, Yoshikawa Y, et al. Tau activates microglia via the FQBPI-cGAS-STING pathway to promote brain inflammation. Nat Commun (2021) 12:6665. doi: 10.1038/s41467-021-28651-2
8. Chen B, Du J, Zhu H, Ling Q. The role of cGAS-STING signaling in liver diseases. J Mol Cell Biol (2021) 9:1208. doi: 10.1016/j.jmcb.2021.05.002
9. Motwani M, McGowan J, Antonovitch J, Gao KM, Jiang Z, Sharma S, et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front Immunol (2021) 12:605930. doi: 10.3389/fimmu.2021.605930
10. Chen K, Lai C, Su Y, Bao WD, Yang LN, Xu PP, et al. cGAS-STING-mediated IFN-I response in host defense and neuroinflammation. Curr Neuropharmacol (2022) 20:362–71. doi: 10.2174/1570159X19666210924110144
11. Jiang GL, Yang XL, Zhou HJ, Long J, Liu B, Zhang LM, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Brain Res Bull (2021) 171:183–95. doi: 10.1016/j.brainresbull.2021.03.010
12. Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell (2019) 178:302–315.e232. doi: 10.1016/j.cell.2019.05.035
13. Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X. cGAS-STING pathway in cancer therapy. Mol Cancer (2020) 19(1):136. doi: 10.1186/s12943-020-01247-w
14. Sivick KE, Desbiens AL, Glickman LH, Reiner GL, Corradas L, Surh YH, et al. Magnitude of therapeutic STING activation determines CD8(+T) cell-mediated anti-tumor immunity. Cell Rep (2018) 25:3074–3085.e3075. doi: 10.1016/j.celrep.2018.11.047
15. Campisi M, Sundaraman SK, Shelton SE, Knelson EH, Mahadevan NR, Yoshida R, et al. Tumor-derived cGAMP regulates activation of the vasculature, frontiers in immunology. Front Immunol (2020) 11. doi: 10.3389/fimmu.2020.02090
16. Chabannon RM, Muirhead G, Krastev DB, Adam J, Morel D, Garrido M, et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J Clin Invest (2019) 129:1211–28. doi: 10.1172/JCI123319
17. Hopfer KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signaling. Nature reviews Molecular cell biology (2020) 21(9):501–21. doi: 10.1038/s41580-020-0244-x
18. Scenazy J, Goreczny CJ, Wilson K, Morrow S, DeCristo MJ, Ubellacker JM, et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discovery (2019) 9:1208–27. doi: 10.1158/2159-8290.CD-18-1454
19. Decout A, Katz JD, Venkatraman S, Ablaser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol (2021) 21:548–69. doi: 10.1038/s41577-021-00524-z
20. Shang G, Zhang C, Chen ZJ, Bai X-C, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature (2019) 567:389. doi: 10.1038/s41586-019-09985-8
21. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, et al. A conserved PLPLRT/ SD motif of STING mediates the recruitment and activation of TBK1. Nature (2019) 569:718. doi: 10.1038/s41586-019-1228-x
22. Kwon J, Bakhous SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discovery (2020) 10:26–39. doi: 10.1158/2159-8290.CD-19-0761
23. Murthy AV, Robinson N, Kumar S. Crosstalk between cGAS-STING signaling and cell death. Cell Death Differentiation (2020) 27:2989–3003. doi: 10.1038/s41418-020-00624-8
24. Bai J, Liu F. Nuclear cGAS: sequestration and beyond. Protein Cell (2022) 13:90–101. doi: 10.1007/s13238-021-00869-0
25. Zheng C, Song Q, Zhao H, Kong Y, Sun L, Liu X, et al. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. Journal of controlled release : official journal of the Controlled Release Society (2021) 339:403–15.doi: 10.1016/j.jconrel.2021.10.011
26. Wu J, Dobbs N, Yang K, Yan N. Interferon-independent activities of IFNα as a therapeutic target in inflammatory diseases. J Exp Med (2019) 216:887–83. doi: 10.1084/jem.20182192
for the optimal effect of cancer immunotherapy.

Nature

for antitumor immune responses

Critical for antitumor immune responses

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.

Frontiers in Immunology

Cancer-Cell-Intrinsic cGAS expression mediates tumor immunogenicity.

Lymph nodes.

Sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy.

The cGAS-STING signaling axis in cancer development and immunotherapy.
and CDB6 expression in bone marrow-derived professional antigen-presenting cells polarizing NOD mice T cells to a Treg profile. Cytokine (2022) 152:155882. doi: 10.1016/j.cytok.2022.155882

72. Lynch KT, Gradecki SE, Kwak M, Meneneau MO, Wagens GA, Gru AA, et al. IDO1 expression in melanoma metastases is low and associated with improved overall survival. Am J Surg Pathol (2021) 45:787–95. doi: 10.1097/PAS.0000000000001622

73. Cheng AN, Cheng LC, Kuo CL, Lo YK, Chou HY, Chen CH, et al. Mitochondrial Ion-induced mtDNA leakage contributes to PD-L1-mediated immunoneuromes via STING-IFN signaling and extracellular vesicles. J Immunother Cancer (2020) 8(2). doi: 10.1136/jitc-2020-001372

74. Chen B, Alvarado DM, Ilicicovici M, Kau NS, Park H, Parikh PJ, et al. Interferon-induced IDO1 mediates radiation resistance and is a therapeutic target in colorectal cancer. Cancer Immunol Res (2020) 8:454–61. doi: 10.1158/2326-6066.CIR-19-0282

75. Shi J, Liu C, Luo S, Cao T, Lin B, Zhou M, et al. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol (2021) 366:104384. doi: 10.1016/j.cellimm.2021.364384

76. An X, Zhu Y, Zheng T, Wang G, Li J, et al. An Analysis of the Expression and Association with Immune Cell Infiltration of the cGAS-STING Pathway in Pan-Cancer. Molecular therapy Nucleic acids (2019) 14:80–9. doi: 10.1016/j.mtna.2018.11.003

77. Mohamed E, Sierra RA, Trillo-Tinoco J, Cao Y, Innamorato P, Payne KK, et al. The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immuno Mol Cell Biol (2018) 56:688–697. doi: 10.1007/s12025-018-00003-3

78. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, et al. Extracellular Phosphodiesterase of the Immunotransmitter cGAMP. Cytokine (2022) 152:155832. doi: 10.1016/j.cyto.2022.155832

79. Al-Asmari SS, Rajapakse A, Ullah TR, Pe et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and CAF1 mediates NF-KB signaling after nuclear DNA damage. Mol Cell (2018) 71:745–760. doi: 10.1016/j.molcel.2018.07.034

80. Bittencourt B, et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING Pathway in inflammatory macrophages. Mol Biol Cell (2012) 23:6065–75. doi: 10.1091/mbc.E11-12-1367

81. Carozza JA, Brown JA, Böhnert V, Fernandez D, AlSaif Y, Mardjuki RE, et al. Induced phase transition of the cGAS/STING Pathway in inflamed tumor microenvironment. Biochim Biophys Acta Mol Basis Dis (2021) 2021:205009. doi: 10.1016/j.bbagen.2021.10.003

82. Ghosh M, Saha S, Bettke J, Nagar R, Parrales A, Iwakuma T, et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell (2021) 39:494–508.e495. doi: 10.1016/j.ccell.2021.01.003

83. Meng F, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, et al. Activating the cGAS-STING pathway. Nature (2020) 576:1–4. doi: 10.1038/s41586-020-2461-1

84. Groelly FJ, Porrut M, Zimmer J, Benainous H, De Visser Y, Kosova AA, et al. cGAS controls the anti-tumour activity of the G-quadruplex ligand pyridostatin against BRCA1/2-deficient tumours. EMBO Mol Med (2021) 14:e15463. doi: 10.15252/emmm.202114501

85. Ji F, Zhang F, Zhang M, Long K, Xia M, Lu F, et al. Targeting the DNA repair mechanism Rad51 as a potential therapeutic strategy for liver cancer. Hepatol (Baltimore Md) (2022). doi: 10.1002/hep.32335

86. Xu N, Palmer DC, Robeson AC, Shou P, Bommiasamy H, Laurie SJ, et al. Anti-tumoural activity of the G-quadruplex ligand pyridostatin against BRCA1/2-deficient tumours. EMBO Mol Med (2021) 14:e15463. doi: 10.15252/emmm.2022114501

87. Nogués L, et al. The role of cGAS-STING in regulating the tumor-immune microenvironment in disseminated colorectal cancer. Cancer Immunol Res (2022) 10:1171–9. doi: 10.1158/2326-6066.CIR-21-0754

88. Yuan M, Guo XL, Chen JH, He Y, Liu ZQ, Zhang HP, et al. Anlotinib suppresses proliferation, migration, and immune escape of gastric cancer cells by activating the cGAS-STING/ IFN-β pathway. Cancer Cell (2022) 69(4):807–19. doi: 10.1016/j.ccell.2022.02.016

89. Sauter CS, Senechal B, Rivière I, Ni A, Bernal Y, Wang X, et al. CD19 CAR T cell non-Hodgkin lymphoma. Blood (2019) 134:626–35. doi: 10.1182/blood.2018883421

90. Depl C, Duchateau P, Grupp S, Mutti G, Pointet L. Off-the-shelf allogeneic CAR T cells: development and challenges. Nat Rev Drug Discovery (2020) 19:185–95. doi: 10.1038/s41573-019-0051-2

91. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J (2021) 11:69. doi: 10.1038/s41408-021-00459-7

92. Xu N, Palmer DC, Robeson AC, Shou P, Bommasamy H, Laurie SJ, et al. STING agonist promotes CAR T cell trafficking and persistence in breast. The journal of experimental medicine (2021) 218(23):e20210844. doi: 10.1084/jem.20210844

93. Ji F, Zhang F, Zhang M, Long K, Xia M, Liu F, et al. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway. J Hematol Oncol (2021) 14:152. doi: 10.1186/s10053-021-01168-1

94. Doria-Entremata S, Hegde VL, Slav SB, Run RA, Yanamandra AV, Nicholas C, et al. Targeting interferon signaling and CTLA-4 enhances the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV(+)+ oral cancer. J Immunother Cancer (2019) 7:252. doi: 10.1002/immu.2019017084

95. Li K, Ye Y, Liu L, Sha Q, Wang X, Jiao T, et al. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma. Biomater Sci (2021) 9:765–73. doi: 10.1039/d0bm00870b

96. Wu JJ, Zhao L, Han BB, Hu HG, Zhang BD, Li WH, et al. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Cancer Commun (Cambridge, England) (2021) 57:504–7. doi: 10.1038/D0006598K

97. Yuan M, Guo XL, Chen JH, He Y, Liu ZQ, Zhang HP, et al. Anlotinib suppresses proliferation, migration, and immune escape of gastric cancer cells by activating the cGAS-STING/IFN-β pathway. Nooplasma (2022) 69(4):807–19. doi: 10.1149/neu_2022_211012N1441

98. Sauter CS, Senechal B, Rivière I, Ni A, Bernal Y, Wang X, et al. CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory b-cell non-Hodgkin lymphoma. Blood (2019) 134:626–35. doi: 10.1182/blood.2018883421

99. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J (2021) 11:69. doi: 10.1038/s41408-021-00459-7

100. Xu N, Palmer DC, Robeson AC, Shou P, Bommasamy H, Laurie SJ, et al. STING agonist promotes CAR T cell trafficking and persistence in breast. The journal of experimental medicine (2021) 218(23):e20210844. doi: 10.1084/jem.20210844

101. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J (2021) 11:69. doi: 10.1038/s41408-021-00459-7