On the origin of self-oscillations in large systems.

Daniele De Martino

Institute of Science and Technology Austria,
Am Campus 1, A-3400 Klosterneuburg, Austria

January 18, 2018

Abstract

In this article is shown that large systems endowing phase coexistence display self-oscillations in presence of linear feedback between the control and order parameters, where an Andronov-Hopf bifurcation takes over the phase transition. This is simply illustrated through the mean field Landau theory whose feedback dynamics turns out to be described by the Van der Pol equation and it is then validated for the fully connected Ising model following heat bath dynamics. Despite its simplicity, this theory accounts potentially for a rich range of phenomena: here it is applied to describe in a stylized way i) excess demand-price cycles due to strong herding in a simple agent-based market model; ii) congestion waves in queuing networks triggered by users feedback to delays in overloaded conditions; iii) metabolic network oscillations resulting from cell growth control in a bistable phenotypic landscape.

Introduction

From clocks to motors [1], many musical instruments [2,3] (including our throat [4]), pumping hearts [5] & firing neurons [6], many oscillatory systems are self-sustained [1]. Despite their many applications [7] to describe natural and engineering systems, a thorough physical understanding of self-oscillations is lacking [8], in particular their emergence as a collective behavior in large systems, like the ones studied by statistical mechanics. This in turn hampers thermodynamical analysis, an aspect that started to puzzle scholars since the first seminal articles on the subject, where self oscillations were provokingly regarded as a form of perpetual motion [9]. Oscillatory collective behaviors of many interacting units have been mainly investigated from the point of view of their synchronizion where the interacting units are already assumed as linear oscillators [10] or self-oscillators [12,13]. In this work a different route is taken and a general criterion will be given for the onset of self-oscillations in large systems in a fully self-organized way, without postulating that the elementary units
are oscillators. Rigorous criteria exist for the development of self oscillations in dynamical systems [14]. From a more physical viewpoint, in particular in the context of electrical engineering, self oscillations are triggered for a workload corresponding to the “negative resistance” part of the current-voltage characteristic curve of active devices [1]. The key idea of this work is that systems with many interacting degrees of freedom that show phase coexistence, upon treating the equation of states on equal footing of characteristic curves, they develop self-oscillations in presence of feedback between the control and order parameters that try to force them on thermodynamically unstable branches. This is illustrated in a Gedankenexperiment in the next section where the feedback dynamics of the Landau mean field theory turns out to be described by the Van der Pol oscillator, a prediction that is successfully tested for the fully connected Ising model subject to heat bath dynamics. While in the Ising model the feedback is artificially introduced for illustrative purposes, in the following sections several different phenomena are considered in a stylized way in which the feedback is fully dynamically justified, namely i) excess demand-price cycles due to strong herding in a simple agent-based market model; ii) congestion waves in queuing networks triggered by users feedback to delays in overloaded conditions; iii) metabolic network oscillations resulting from cell growth control in a bistable phenotypic landscape. In the conclusions results are summarized and several interesting outlooks that stem from this work are pointed out.

Self-oscillating Ising model

Consider the gedankenexperiment depicted in figure 1. We have a magnet in equilibrium in a given external magnetic field h and thermal bath of temperature $T < T_c$ (where T_c is the critical temperature for the paramagnetic to ferromagnetic transition) and we measure its magnetization $m(T, h)$: can we control and set it to $m = 0$ by tuning the external magnetic field with a simple linear negative feedback $dh \propto -mdt$, at fixed temperature? In the following it will be shown that this is not the case at least for the

![Image of a magnet and a meter with text: Measure $m(T, h)$ and Change $dh = -m dt$.](image)

Figure 1: Gedankenexperiment: can we control and set $m = 0$ in magnet below the critical temperature $T < T_c$ using the external field h with a simple linear negative feedback?
mean field case. In order to address the question formally, we consider the Landau expansion of the free energy density in the magnetization m with parameters $\beta = 1/T$ and h:

$$f(m) \sim -\frac{1}{2}(\beta - 1)m^2 - mh + \frac{1}{12}m^4 + \ldots$$

Equilibrium relaxation dynamics follows approximately the phenomenological equation (linear response, where time unit coincides with the typical one) [16]

$$\dot{m} = -\frac{\partial f}{\partial m}.$$

(2)

The extrema of the free energy are thus equilibrium states of the system: without external magnetic field $h = 0$ we have $m = 0$ as the unique stable equilibrium point (node) as soon as $\beta < 1$, whereas for $\beta > 1$ this becomes unstable while other two nodes appears at $m = \pm \sqrt{3(\beta - 1)}$ that are stable equilibrium points (spontaneous symmetry breaking). Let us now add the linear negative feedback between the external field and the magnetization with timescale τ, i.e. $\tau h = -m$. We have the dynamical system

$$\dot{m} = h + (\beta - 1)m - \frac{m^3}{3}$$

$$\tau \dot{h} = -m$$

(3)

(4)

It is easy to see that for $\beta > 1$ this system has no stable steady states. Upon recurring to Lienard transformation we have the equivalent second order system

$$\ddot{m} - (\beta - 1 - m^2)\dot{m} + \frac{1}{\tau}m = 0$$

(5)

This is an instance of the Van der Pol equation [17], that is known to display self oscillations for $\beta > \beta_c = 1$ and the phase transition has been substituted by an Andronov-Hopf bifurcation. This prediction has been tested in the simplest microscopic setting, that is the fully connected Ising model. This is composed of N interacting spin variables $s_i = \pm 1$ whose energy E in an external magnetic field h is ($M = \sum s_i$)

$$E = -J/2NM^2 - hM$$

(6)

and whose equilibrium configurations are given by the Boltzmann-Gibbs distribution

$$P(s) \propto \exp(-\beta E)$$

(7)

We will consider a single spin flip heat bath dynamics, i.e. at each time step we choose one spin s_i uniformly at random and set its new state, given the magnetization density $m = M/N$, with probability

$$p(s_i = +1) = \frac{1}{e^{\beta(Jm+h)} + 1}$$

$$p(s_i = -1) = \frac{1}{e^{\beta(Jm+h)} + 1}.$$

(8)

(9)

and update the external field with the prescribed feedback rule ($\Delta t = 1/N$)

$$\Delta h = -m/(N\tau)$$

(10)
Montecarlo simulations as well as approximate analytical calculations obtained by a Van Kampen system size expansion (see Appendix for further details) confirm very well the predictions, in particular

- for $\beta \sim 1$, the system shows approximately harmonic oscillations where the amplitude adjusts itself making the damping term negligible, i.e. $m^2 \sim \beta - 1$.

![Graph showing weakly sinusoidal oscillations in the fully connected Ising model, $\beta = 1.2$, $\tau = 30$, $N = 10^4$. Top: Magnetization as a function of time. Bottom: Limit cycle in the plane (m, h). From Monte Carlo simulations (points) and analytical calculations (lines).](image)

Figure 2: Weakly sinusoidal oscillations in the fully connected Ising model, $\beta = 1.2$, $\tau = 30$, $N = 10^4$. Top: Magnetization as a function of time. Bottom: Limit cycle in the plane (m, h). From Monte Carlo simulations (points) and analytical calculations (lines).
- for $\beta \gg 1$ it performs relaxation oscillations: approximately, in the phase space (m, h), dynamical trajectories follow the isocline curve (where $\frac{dh}{dm} \to \infty$) up to the tipping unstable points, where they follow straight horizontal lines corresponding to sudden jumps.

![Figure 3](image.png)

Figure 3: Relaxation oscillations in the fully connected Ising model, $\beta = 3$, $\tau = 30$, $N = 10^4$. Top: Magnetization as a function of time. Bottom: Limit cycle in the plane (m, \dot{h}). From Monte Carlo simulations (points) and analytical calculations (lines).

Although the feedback has been introduced artificially here for illustrative purposes, the analyzed dynamics could be seen as an isothermal analogous of magnetic refrigeration cycles by magnetocaloric effect [18].
Excess demand-price cycle: herding in a simple agent-based model

The Ising model is a paradigm for the study of collective behaviors with applications extending beyond physics. In particular much research has been devoted in recent times in using concepts and methods from the statistical mechanics of the Ising model to analyze agent-based models for social and economics phenomena [19]. In this section we will illustrate the emergence of business cycles [20] in a simple market model of this kind as a consequence of the proposed theory. We will focus here on a simple model sharing similarity with minority games [21], where N agents shall choose one of two possible actions, i.e. the state of agent i is given by a spin variable $s_i = \pm 1$. Upon identifying in a stylized way these two states as the propensity to sell or buy a given good, the magnetization $M = N_+ - N_-$ is called the excess demand and phenomenologically price dynamics shall follow (if more agents sell than buy, the price rises and viceversa)

$$\dot{h} \propto -M$$

where the price has been called h in order to point out the analogies with the Ising model and this equation is thus equivalent to the feedback introduced in the previous section. Given a reference price that we will set for simplicity to zero, we will assume that agents update their state with a certain frequency ν stochastically with probability (bounded rationality)

$$p(s = -1)/p(s = +1) = e^{-h}$$

That takes into account the fact that agents have larger propensity to buy (sell) if they perceive that the price is below (above) the reference value. It can be easily seen that this simple model has a stable Gaussian fixed point. On the other hand, it is known that often economical and social agents can make decisions based on imitation of neighbors in their social network. The cumulative effect of this imitation (herding) it is known to provide for instabilities in the underlying dynamics [22]. We will explore this issue of network embedness and herding by recasting the aforementioned model in terms of the co-evolving network models studied in [23], where social links are created and destroyed among the agents, in turn reinforcing their beliefs, specifically:

- Links are created with rate η (per agent) among agents sharing the same state.
- Links are destroyed with rate 1.

We will consider a regime of strong herding (that is the zero temperature limit considered as well in [23]), i.e.

- Agents update their state upon looking at the price only if they are isolated.

At fixed h the equation of state of the system can be worked out approximately with the methods of [23] (see the appendix for further details)

$$h = -\eta m + \log \frac{1 + m}{1 - m}$$
that shows a second order critical point at \((\eta_c = 2, h_c = 0)\). Upon considering phenomenologically the relaxation and considering the price feedback dynamics (with timescale \(\tau\)) we have finally the system

\[
\dot{m} = \eta m + h - \log \frac{1 + m}{1 - m} \tag{14}
\]

\[
\tau \dot{h} = -m \tag{15}
\]

This prediction is tested against Monte Carlo simulations where a good agreement is found (see fig. 4). Interestingly, in this case the whole net-

\[\text{Figure 4: Top: Self oscillations in the plane (excess demand } m\text{, price } h\text{) for a simple agent-based market model in presence of herding. Bottom: social network oscillations, number of links and isolated agents as a function of time. From Monte Carlo simulations and mean field analytics, } \eta = 2.5, \tau = 10^2, N = 10^4.\]

work of interactions is oscillating in time, assuming the form of a Poissonian tree-like random graph (Erdos-Reny) whose average degree oscillates. This can be seen as an instance of a self-oscillating temporal network [24].
Congestion waves in queuing networks.

In this section we will test the theory in the context of out-of-equilibrium systems. This is a very rich topic, difficult to study given the lack of general established variational principles, like the maximum entropy, leading to the Boltzmann-Gibbs measure characterizing their equilibrium counterpart. Perhaps one of the simplest yet general class of processes displaying phase transitions in this context are the so-called zero range processes \[25\].

Broadly speaking, these are models of particles hopping among nodes in a graph whose hopping rates depend only on the number of particles present on the departure and arrival nodes. This very short range interaction permits factorization of the steady state probability that is amenable for analytical calculations \[25\]. Among them, we have queuing networks \[26\], that are known to be subject to a congestion phase transition \[27, 28\].

In these systems, used to model communication networks in engineering studies, packets of informations are injected into the network by users for processing purposes and stored in queues at the nodes. If the load that the network experiences overcomes its processing capabilities, queues will start to grow congesting the system. In a stylized way, upon calling \(n\) the number of packets in the network, \(p\) the packet injection rate ("load") and considering a function \(f(n)\) that encodes for the network processing rate we have the average rate equation:

\[
\dot{n} = p - f(n)
\]

The function \(f(n)\) depends on the chosen model, in general \(f(0) = 0\), \(f \geq 0\), \(\lim_{n \to \infty} f(n) = \mu < \infty\). If \(p > \mu\) we will have steady growing solution \(n \simeq p - \mu\), while stationary solutions are given by \(n_s = f^{-1}(p)\) and are stable if \(f'(n_s) > 0\). Generally unstable fixed points comes with coexisting stable ones in this setting.

Traditional work on queuing network theory focused on the stationary regime while recent observations of traffic in large networks spurred an increasing interest study for the congested regime. However traffic data seem to show rather more complex phenomena with respect to simple steady growing queues, including waves and intermittent behaviors \[29\], and it has been pointed out that one of the key ingredient accounting for the latters relies on the level of users feedback to overloaded conditions \[30\]. In the most simple setting this is naturally implemented within our scheme by introducing a linear feedback dynamics for the load \(p\): users have typical reaction times \(\tau\), they strive for a desired load \(p_d\) and they reduce the load if queues are longer (linear negative feedback of strength \(c\)):

\[
\begin{align*}
\dot{n} &= p - f(n) \\
\tau \dot{p} &= -(p - p_d) - cn
\end{align*}
\]

In presence of the feedback the dynamics could present no stable steady states but self-oscillations and it will be shown that this is the case in presence of a simple rule of traffic control. Previous studies have shown that traffic control, mimicking known Internet protocols like the TCP/IP can enhance the processing capabilities of the system, increasing the free flow.
region but at the price of introducing non-linearities that trigger the congestion transition in a discontinuous way, with hysteresis and coexistence \[21, 32\] that are reflected in a non-monotonous \(f(n) \). In correspondence of these points we expect the linear feedback to induce self oscillations, that shall be thus specific to cases in which traffic is controlled.

![Graph](image1)

Figure 5: Top: Number of packets as a function of time. Bottom: limit cycle in the plane \((n, p)\). From Monte Carlo simulations on an Erdos-Renyi Jackson queuing network with and without traffic control, average degree \(z = 5 \), \(N = 10^3 \). In presence of traffic control the system develops self-oscillations.

These predictions have been successfully tested on large Jackson queuing networks (see the appendix for further details). In presence of feedback dynamics for the \(p \), we would expect now that upon loading the system by crossing \(f(n) \) in its decreasing part, this enforces self-oscillations and this is verified as we show in figure 5.
Autonomous metabolic network oscillations.

In a biological context classical models in statistical physics are increasingly used to perform inference and analyze data: examples range from random walks & biopolymers [33], Ising models & neural networks [34] to continuous spin models & flocking birds [35] to cite few. Standard flux balance analysis (FBA) approaches to model cell metabolism [36] share a formal analogy with the Gardner problem in statistical mechanics [37] and it has been recently shown that maximum entropy inference schemes [38] outperform FBA in modeling flux data of the catabolic core of E.coli [39].

Metabolism is the network of enzymatic reactions that sustains the free energy needs of the cell, strongly constrained by physico-chemical laws that in turn provide for suitable modeling. Metabolic dynamics gives well-known examples of non-linear self oscillators in particular glycolytic oscillations [40], experimentally tested in living cells [41]. What about whole cell metabolism? Recent findings in yeast show indeed intrinsic whole single cell metabolic oscillations, autonomous from the cell cycle and potentially able to drive it [42]. In this section we will explore, within the proposed theory, the possibility that such oscillations are in general due to the effect of a feedback in presence of a bistable phenotypic landscape. Feedback mechanisms are needed in order to maintain cell size homeostasis [43] and a bistable landscape has been observed in E. coli [44, 45], where it is at the core of persistence phenomena [46]. Furthermore it has been recently pointed out theoretically within the framework of constraint-based models that second order moments constraints on the growth rate enable in general for bistability [47]. These are stationary models of large chemical networks including in a realistic way the stoichiometry of known pathways and a phenomenological biomass growth reaction that is function of the enzymatic fluxes \(\lambda = \lambda(v) \). Within the feasible space \(P \) it is possible to constrain the first two moments of the growth rate in the most unbiased way by recurring to the two parameters \((\beta, \gamma)\) Boltzmann distributions

\[
p(v) \propto \exp \left(\beta \lambda(v) + \gamma \lambda(v)^2 \right) \quad v \in P \tag{19}
\]

Upon counting the number of feasible states leading to the same growth rate by uniformly sampling \(P \) the marginal growth rate distribution can be recasted in terms of the rate function \(F(\lambda) \) (where we posed \(\lambda_{max} = 1 \), the maximum growth rate in the model obtainable by linear programming, and we get a simplex-like entropic term with \(a \approx 20 \) for the carbon catabolic core of E.Coli)

\[
p(\lambda) \propto e^{F(\lambda)} \tag{20}
\]

\[
F(\lambda) = \beta \lambda + \gamma \lambda^2 + a \log(1 - \lambda) \tag{21}
\]

It shall be noticed that such maximum entropy distribution can be the steady state of a suited population dynamics, that for the case \(\gamma = 0 \) has been shown to be the logistic [48]. If we consider relaxation dynamics in the linear response regime and linear control through \(\beta \), looking for a
desired λ_s, we have the dynamical system
\[
\dot{\lambda} = \frac{\partial F}{\partial \lambda} = \beta + 2\gamma \lambda - \frac{a}{1 - \lambda} \tag{22}
\]
\[
\tau \dot{\beta} = -(\lambda - \lambda_s) \tag{23}
\]
that upon Lienard trasformation is mapped into the second order system
\[
\ddot{\lambda} - (2\gamma - \frac{a}{1 - \lambda^2}) \dot{\lambda} + \frac{\lambda - \lambda_s}{\tau} = 0 \tag{24}
\]
A sufficient condition to get sel-oscillations is $\gamma > \frac{a}{2(1 - \lambda_s)}$. This is con-

Figure 6: Top: growth rate and cytochrome b activity as a function of time. Bottom: uptakes (nitrogen and phosphate) as a function of time. From Montecarlo simulations of a maximum entropy model of the carbon catabolic core of *E. coli* in presence of feedback for growth control in a bistable phenotypic landscape ($\gamma = 50$, $\tau = 100$, $\lambda_s = 0.4 h^{-1}$).

firmed by simulations on a model of the catabolic core of *E coli* (Fig 6, see appendix for further details), where growth rate oscillations entrain correlated metabolic fluxes. Here are shown the activity of the enzyme Cytochrome b oxidase and the nitrogen and phosphate uptakes.
Conclusions

In this work we gave a general prescription for the emergence of self-oscillations in large systems with many interacting units: a negative linear feedback between the control and order parameters in presence of phase coexistence. The oscillatory collective behavior emergent in this way does not depend on postulating oscillatory units, but it is fully self-organized. The key idea is that large systems endowing phase coexistence develop self-oscillations in presence of feedback that try to force them on thermodynamically unstable branches, analogously to active electrical devices controlled with a workload corresponding to “negative resistance” parts of their characteristic curve. It has been shown that the feedback maps the Landau mean-field theory into the Van-der-Pol oscillator and such behavior has been confirmed for the fully connected Ising model subject to an heat bath dynamics. Further studies are needed to test the theory on finite dimensions as well as experimentally. Preliminary numerical results on a $2d$ square lattice seem to show that self-oscillations are triggered by local feedback, while a global one triggers separation of magnetic domains. The theory is general and here it has been applied to describe in a stylized way i) excess demand-price cycles due to strong herding effects in a simple agent-based market model; ii) congestion waves in queuing networks triggered by users feedback to delays in overloaded conditions; iii) metabolic network oscillations resulting from cell growth control in a bistable phenotypic landscape. All of them would deserve further work by their own, in particular suited analysis to test them against data by means of promising ICA-based methods \[49, 50\]. The theory could open the way to explore the thermodynamics & statistical physics of self oscillations, and recent tools developed within stochastic thermodynamics could play a key role in this respect \[51, 52\]. Finally, within the framework of control theory self-oscillations can be seen as an unwanted negative side effect and this theory could help shedding light on the origin of this problem while controlling large complex networks \[53\].

Appendix

Van Kampen expansion for the fully connected Ising model

Upon considering the induced evolution for the magnetization M from the heat bath dynamics of the single spins, this performs a random walk in the interval $[-N, N]$ with stepsize $-2, 0, 2$ and the (normalized) rates

- $W(M \rightarrow M + 2) = N \frac{1-m}{2} \frac{1}{e^{\beta (Jm + h)} + 1} \theta(1 - m)$
- $W(M \rightarrow M - 2) = N \frac{1+m}{2} \frac{1}{e^{\beta (Jm + h)} + 1} \theta(1 + m)$
- $W(M \rightarrow M) = N - W(M \rightarrow M - 2) - W(M \rightarrow M + 2)$

The master equation

$$\dot{P}(M) = -P(M)(W(M \rightarrow M - 2) + W(M \rightarrow M + 2)) + P(M - 2)W(M - 2 \rightarrow M) + P(M + 2)W(M + 2 \rightarrow M)$$

(25)
can be expanded in the system size \[M = N\phi + \sqrt{N}\sigma, \] i.e., upon considering a decomposition of \(M \) under a scaling hypothesis in terms of auxiliary variables

\[M = N\phi + \sqrt{N}\sigma, \quad (26) \]

performing an expansion of the master equation in the parameter \(\frac{1}{\sqrt{N}} \) and neglecting higher order terms, one have, upon considering

\[W_+ = \frac{1 - \phi}{1 + e^{-\beta(J\phi + \eta)}}, \quad W_- = \frac{1 + \phi}{1 + e^{-\beta(J\phi + \eta)}}, \quad (27) \]

\[\alpha_1(\phi) = W_+ - W_- \quad \alpha_2(\phi) = 2(W_+ + W_-) \quad (28) \]
on one hand a deterministic equation for the \(\dot{\phi} = \alpha_1(\phi) \quad (29) \)
on the other a linear Fokker-Planck equation for the \(z \)

\[\frac{\partial P(z)}{\partial t} = -\alpha_1'(\phi) \frac{\partial(zP(z))}{\partial z} + \frac{1}{2} \alpha_2(\phi) \frac{\partial^2 P(z)}{\partial z^2} \quad (30) \]

where both depend on the external parameter \(h \), that can be considered varying in time and subject to the negative feedback

\[\tau\dot{h} = -\phi \quad (31) \]

Mean field derivation of the equation of state of the herding model.

We will recur to the mean field techniques defined in [23]. The approximate population dynamics equations for the density of agents with \(k \) connections in state \(\sigma \) read:

\[\dot{n}_{k,\sigma} = (k+1)n_{k+1,\sigma} - kn_{k,\sigma} + x_\sigma (n_{k-1,\sigma} - n_{k,\sigma}) \quad k > 0 \quad (32) \]

\[x_\sigma = \eta \sum_k n_{k,\sigma} \quad (33) \]

\[\dot{n}_{0,\sigma} = n_{1,\sigma} - x_\sigma n_{0,\sigma} + \nu_- n_{0,-\sigma} - \nu_+ n_{0,\sigma} \quad (34) \]

If we consider the generating function \(G_\sigma(s) = \sum_k n_{k,\sigma}s^k \) we have in the steady state \(G_\sigma^s(s) = n_{0,\sigma}e^{xs} \) and the self consistent equations

\[\nu_+ n_{0,\sigma} = \nu_- n_{0,-\sigma} \quad (35) \]

\[x_\sigma / \eta = n_{0,\sigma}e^{xs} \quad (36) \]

\[x_+ + x_- = \eta \quad (37) \]

If we parametrize \(\nu_- / \nu_+ = e^h \) and consider \(m = \frac{x_+ - x_-}{\eta} \) we have finally the equation of state (where \(\eta_c = 2 \))

\[h = -\eta m + \log \frac{1 + m}{1 - m} \quad (38) \]
Queuing network model

The model employed here is the Jackson or open queuing network, consisting of \(N\) nodes such that:

- each node \(i\) is endowed with a FIFO (first-in first out) queue with unlimited waiting places (it can be arbitrary long).
- The delivery of a packet from the front of \(i\) follows a poisson process with a certain frequency \(t_i\) (service rates), and
 - the packet exits the network with some probability \(\mu_i\), or
 - it goes on the “back” of another queue \(j\) with probability \(q_{ij}\).
- Packets are injected in each queue \(i\) from external sources by a Poisson stream with intensity \(p_i\).

We considered random walk routing \(q_{ij} = 1/k_j\) where \(k_j\) is the degree of the receiving node \(j\), and completely homogeneous conditions \(p_i = p\), \(\mu_i = \mu\), \(t_i = t = 1\). Traffic control has been included with the following simple rule [31]:

- The receiving node \(j\) starts to reject particles with probability \(\eta\) once its queue is longer than \(n^*\)

Results shown in Figure 5 are obtained by simulations on an Erdos-Renyi random graph (average degree \(z = 5\), size \(N = 10^3\), desired load & absorbing rate \(p_d = \mu = 0.2\), user feedback strength \(c = 2 \cdot 10^{-6}\), and traffic control parameters \(\eta = 0.75\), \(n^* = 10\).

Maximum entropy constraint based models of metabolic networks

In constraint-based modeling a metabolic system is modeled in terms of the dynamics of the concentration levels and reaction fluxes, under the assumption of well-mixing, steady state and neglecting molecular noise. For a chemical reaction network in which \(M\) metabolites participate in \(N\) reactions with the stoichiometry encoded in a matrix \(S = \{S_{\mu r}\}\), the concentrations \(c_\mu\) change in time according to mass-balance equations

\[
\dot{c} = S \cdot v
\]

(39)

where \(v_i\) is the flux of the reaction \(i\) (that is in general a function of the concentration levels \(v_\mu(c)\)). The steady state implies \(S \cdot v = 0\). In constraints-based modeling, apart from mass balance constraints, fluxes are bounded in certain ranges \(v_r \in [v_r^{\text{min}}, v_r^{\text{max}}]\) that take into account thermodynamic irreversibility, kinetic limits and physiological constraints. The set of constraints

\[
S \cdot v = 0, \quad v_r \in [v_r^{\text{min}}, v_r^{\text{max}}]
\]

(40)

defines a convex polytope \(P\) in the space of reaction fluxes. We seek for the states fixing the first two moments of the growth rate, given by the Boltzmann distributions:

\[
p(v) \propto \exp (\beta \lambda(v) + \gamma \lambda(v)^2) \quad v \in P
\]

(41)
They have been sampled by means of an hit-and-run Monte Carlo Markov chain with ellipsoidal rounding [55] on the model of the catabolic core of *E. coli* from the genome scale reconstruction [56], including glycolysis, pentose phosphate pathway, Krebs cycle, oxidative phosphorylation, nitrogen catabolism and the biomass growth reaction, for a total of \(N = 95\) reactions and \(M = 72\) compounds, simulated in a glucose limited aerobic minimal medium with a maximum glucose uptake of \(u_{g,\text{max}} = 10\text{mmol/gdwh}\).

Acknowledgments

The author thanks S.De Martino, M.Falanga, G. Tkacik & M. Lang for interesting discussions. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007 – 2013) under REA grant agreement n[291734].

References

[1] A. A. Andronov, A. A. Vitt, and S. E. Khaikin, *Theory of Oscillators*. Dover, 1966.

[2] J. W. S. B. Rayleigh, *The theory of sound*. Macmillan, 1896.

[3] E. De Lauro, S. De Martino, E. Esposito, M. Falanga, and E. Primo Tomasini, “Analogical model for mechanical vibrations in flue organ pipes inferred by independent component analysis,” *The Journal of the Acoustical Society of America*, vol. 122, no. 4, pp. 2413–2424, 2007.

[4] G. Buccheri, E. De Lauro, S. De Martino, and M. Falanga, “Experimental study of self-oscillations of the trachea–larynx tract by laser doppler vibrometry,” *Biomedical Physics & Engineering Express*, vol. 2, no. 5, p. 055009, 2016.

[5] B. Van Der Pol and J. Van Der Mark, “The heartbeat considered as a relaxation oscillation, and an electrical model of the heart,” *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, vol. 6, no. 38, pp. 763–775, 1928.

[6] E. M. Izhikevich, *Dynamical systems in neuroscience*. MIT press, 2007.

[7] F. Guerra, “Coupled self-oscillating systems: Theory and applications,” *International Journal of Modern Physics B*, vol. 23, no. 28n29, pp. 5505–5514, 2009.

[8] A. Jenkins, “Self-oscillation,” *Physics Reports*, vol. 525, no. 2, pp. 167–222, 2013.

[9] G. B. Airy, *On certain Conditions under which a Perpetual Motion is possible*. J. Smith, 1830.
[10] Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in *International symposium on mathematical problems in theoretical physics*, pp. 420–422, Springer, 1975.

[11] A. T. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,” *Journal of theoretical biology*, vol. 16, no. 1, pp. 15–42, 1967.

[12] E. De Lauro, S. De Martino, M. Falanga, and L. G. Ixaru, “Limit cycles in nonlinear excitation of clusters of classical oscillators,” *Computer Physics Communications*, vol. 180, no. 10, pp. 1832–1838, 2009.

[13] F. Di Patti, D. Fanelli, F. Miele, and T. Carletti, “Ginzburg-Landau approximation for self-sustained oscillators weakly coupled on complex directed graphs,” *arXiv preprint arXiv:1702.01952*, 2017.

[14] J. Guckenheimer and P. Holmes, *Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, vol. 42. Springer Science & Business Media, 2013.

[15] L. D. Landau and E. M. Lifshitz, *Statistical Physics: V. 5: Course of Theoretical Physics*. Pergamon press, 1969.

[16] R. Zwanzig, *Nonequilibrium statistical mechanics*. Oxford University Press, 2001.

[17] B. Van der Pol, “The nonlinear theory of electric oscillations,” *Proceedings of the Institute of Radio Engineers*, vol. 22, no. 9, pp. 1051–1086, 1934.

[18] V. K. Pecharsky and K. A. Gschneidner Jr, “Magnetocaloric effect and magnetic refrigeration,” *Journal of Magnetism and Magnetic Materials*, vol. 200, no. 1, pp. 44–56, 1999.

[19] A. De Martino and M. Marsili, “Statistical mechanics of socioeconomic systems with heterogeneous agents,” *Journal of Physics A: Mathematical and General*, vol. 39, no. 43, p. R465, 2006.

[20] J. Geanakoplos, “The leverage cycle,” *NBER macroeconomics annual*, vol. 24, no. 1, pp. 1–66, 2010.

[21] D. Challet, M. Marsili, Y.-C. Zhang, et al., “Minority games: interacting agents in financial markets,” *OUP Catalogue*, 2013.

[22] J. P. Sethna, K. A. Dahmen, and C. R. Myers, “Crackling noise,” *Nature*, vol. 410, no. 6825, pp. 242–250, 2001.

[23] G. C. Ehrhardt, M. Marsili, and F. Vega-Redondo, “Phenomenological models of socioeconomic network dynamics,” *Physical Review E*, vol. 74, no. 3, p. 036106, 2006.

[24] P. Holme and J. Saramäki, “Temporal networks,” *Physics reports*, vol. 519, no. 3, pp. 97–125, 2012.

[25] M. R. Evans and T. Hanney, “Nonequilibrium statistical mechanics of the zero-range process and related models,” *Journal of Physics A: Mathematical and General*, vol. 38, no. 19, p. R195, 2005.

[26] F. P. Kelly, “Networks of queues,” *Advances in Applied Probability*, vol. 8, no. 2, pp. 416–432, 1976.
[27] P. Echenique, J. Gómez-Gardenes, and Y. Moreno, “Dynamics of jamming transitions in complex networks,” *EPL (Europhysics Letters)*, vol. 71, no. 2, p. 325, 2005.

[28] N. Barankai, A. Fekete, and G. Vattay, “Effect of network structure on phase transitions in queuing networks,” *Physical Review E*, vol. 86, no. 6, p. 066111, 2012.

[29] R. D. Smith, “The dynamics of internet traffic: self-similarity, self-organization, and complex phenomena,” *Advances in Complex Systems*, vol. 14, no. 06, pp. 905–949, 2011.

[30] B. A. Huberman and R. M. Lukose, “Social dilemmas and internet congestion,” *Science*, vol. 277, no. 5325, pp. 535–537, 1997.

[31] D. De Martino, L. Dall’Asta, G. Bianconi, and M. Marsili, “Congestion phenomena on complex networks,” *Physical Review E*, vol. 79, no. 1, p. 015101, 2009.

[32] D. De Martino, L. Dall’Asta, G. Bianconi, and M. Marsili, “A minimal model for congestion phenomena on complex networks,” *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2009, no. 08, p. P08023, 2009.

[33] P.-G. De Gennes, *Scaling concepts in polymer physics*. Cornell university press, 1979.

[34] J. Humplik and G. Tkačik, “Probabilistic models for neural populations that naturally capture global coupling and criticality,” *PLOS Computational Biology*, vol. 13, no. 9, p. e1005763, 2017.

[35] A. Cavagna, I. Giardina, and T. S. Grigera, “The physics of flocking: Correlation as a compass from experiments to theory,” *Physics Reports*, 2017.

[36] J. D. Orth, I. Thiele, and B. Ø. Palsson, “What is flux balance analysis?,” *Nature biotechnology*, vol. 28, no. 3, pp. 245–248, 2010.

[37] E. Gardner, “The space of interactions in neural network models,” *Journal of physics A: Mathematical and general*, vol. 21, no. 1, p. 257, 1988.

[38] D. De Martino, F. Capuani, and A. De Martino, “Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli,” *Phys. Biol*, vol. 13, p. 036005, 2016.

[39] D. De Martino, A. Andersson, T. Bergmüller, C. C. Guet, and G. Tkačik, “Statistical mechanics for metabolic networks during steady-state growth,” *arXiv preprint arXiv:1703.01818*, 2017.

[40] E. Sel’Kov, “Self-oscillations in glycolysis,” *The FEBS Journal*, vol. 4, no. 1, pp. 79–86, 1968.

[41] S. Danø, P. G. Sørensen, and F. Hynne, “Sustained oscillations in living cells,” *Nature*, vol. 402, no. 6759, pp. 320–322, 1999.

[42] A. Papagiannakis, B. Niebel, E. C. Wit, and M. Heinemann, “Autonomous metabolic oscillations robustly gate the early and late cell cycle,” *Molecular cell*, vol. 65, no. 2, pp. 285–295, 2017.
[43] A. Amir, “Cell size regulation in bacteria,” Physical Review Letters, vol. 112, no. 20, p. 208102, 2014.
[44] J. B. Deris, M. Kim, Z. Zhang, H. Okano, R. Hermsen, A. Groisman, and T. Hwa, “The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria,” Science, vol. 342, no. 6162, p. 1237435, 2013.
[45] O. Kotte, B. Volkmer, J. L. Radzikowski, and M. Heinemann, “Phenotypic bistability in escherichia coli’s central carbon metabolism,” Molecular systems biology, vol. 10, no. 7, p. 736, 2014.
[46] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, “Bacterial persistence as a phenotypic switch,” Science, vol. 305, no. 5690, pp. 1622–1625, 2004.
[47] D. De Martino, “Maximum entropy modeling of metabolic networks by constraining growth-rate moments predicts coexistence of phenotypes,” Physical Review E, vol. 96, no. 6, p. 060401, 2017.
[48] D. De Martino, F. Capuani, and A. De Martino, “Quantifying the entropic cost of cellular growth control,” Phys. Rev. E, vol. 96, p. 010401, Jul 2017.
[49] E. De Lauro, S. De Martino, M. Falanga, A. Ciaramella, and R. Tagli-aferri, “Complexity of time series associated to dynamical systems inferred from independent component analysis,” Physical Review E, vol. 72, no. 4, p. 046712, 2005.
[50] A. Ciaramella, E. De Lauro, S. De Martino, M. Falanga, and R. Tagli-aferri, “Ica based identification of dynamical systems generating synthetic and real world time series,” Soft Computing, vol. 10, no. 7, pp. 587–606, 2006.
[51] U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular machines,” Reports on Progress in Physics, vol. 75, no. 12, p. 126001, 2012.
[52] Y. Zhang and A. C. Barato, “Critical behavior of entropy production and learning rate: Ising model with an oscillating field,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 11, p. 113207, 2016.
[53] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.
[54] N. v. Kampen, “A power series expansion of the master equation,” Canadian Journal of Physics, vol. 39, no. 4, pp. 551–567, 1961.
[55] D. De Martino, M. Mori, and V. Parisi, “Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding,” PloS one, vol. 10, no. 4, p. e0122670, 2015.
[56] J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist, and B. Ø. Palsson, “A comprehensive genome-scale reconstruction of escherichia coli metabolism—2011,” Molecular systems biology, vol. 7, no. 1, p. 535, 2011.