Importance of vdW and long-range exchange interactions to DFT-predicted docking energies between plumbagin and cyclodextrins

Tom Ichibha, Ornin Srihakulung, Guo Chao, Adie Tri Hanindriyo, Luckhana Lawtrakul, Kenta Hongo, and Ryo Maezono

1 School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan; mwkons1501@icloud.com (O.S.); mwkguc1704@icloud.com (G.C.); rmaezono@mac.com (R.M.)
2 School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Thailand; luckhana@siit.tu.ac.th (L.L.)
3 National Metal and Materials Technology Center, Pathumthani 12120 Thailand
4 School of Materials Science, JAIST, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan; adietri@icloud.com
5 Research Center for Advanced Computing Infrastructure, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan; kenta_hongo@mac.com
6 PRESTO, JST, Kawaguchi, Saitama 3320012, Japan
7 Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
8 Computational Engineering Applications Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

* Correspondence: ichibha@icloud.com

Received: date; Accepted: date; Published: date

Abstract: We calculated the docking energies between plumbagin and cyclodextrins, using density functional theory (DFT) with several functionals and some semi-empirical methods. Our DFT results revealed that GD3 dispersion force correction significantly improves the reliability of prediction. Also sufficient amount of long-range exchange is important to make it reliable further, agreeing with the previous work on argon dimer. In the semi-empirical methods, PM6 and PM7 qualitatively reproduce the stabilization by docking, yet under- and over-estimating the docking energies by ~ 10 kcal/mol, respectively.

Keywords: cyclodextrin; plumbagin; encapsulation; DFT; ab initio; semi-empirical method; biopharmaceutical; van der waals correction; genetic algorithm

1. Introduction

Biopharmaceuticals are manufactured, extracted, and semi-synthesized from biological sources. Compared to chemically synthesized pharmaceuticals, they have high potency at low dose and possess distinctive medical properties.[1,2] On the other hand, they often lack physical and chemical stability, which poses problems for long-lasting storage, oral ingestion, and so on. One of the most promising ways to solve the problem is host-guest docking technology.[1,2] The biopharmaceutical molecules (guest) are combined with the carrier molecules (host) and are stabilized both physically and chemically. It also allows one to control where and how fast the biopharmaceutical is released from the carrier and absorbed in human/animal body.[3]

The binding energy of the docking is of great relevance to the stability and the release rate/timing of the biopharmaceuticals. Density functional theory is expected to be able to provide theoretical prediction with high reliability beyond those of semi-empirical methods.[4] Yet, even for DFT, it is difficult to make
Table 1. List of exchange-correlation functionals we tested. We examined the reliability of common functionals, B3LYP, M06L, and M06-2X, and their relatives with GD3 and/or CAM corrections for predicting the docking energies between plumbagin and cyclodextrins.

	Plain	GD3	CAM	CAM+GD3
B3LYP	CAM-B3LYP	B3LYP-GD3	CAM-B3LYP-GD3	
M06L	M06L-GD3	–		
M06-2X	M06-2X-GD3	–		

A reliable energy estimation since multiple non-covalent forces such as hydrogen bond or dispersion force are complexly intertwined to realize the docking interaction.\cite{5} In other words, special treatments for the non-covalent forces are needed. One example is long-range correction,\cite{6,7} which enhances the proportion of the exact exchange term for long-range interactions, which can improve the description of van der Waals forces.\cite{8} Another example is using a family of Minnesota functionals, whose parameter training-set includes weak-force interaction systems and has an improved accuracy to describe such systems.\cite{9} However, they cannot describe the asymptotic decline of van der Waals forces in proportion to \(R^{-6} \) (\(R \): inter-atomic distance), since they do not explicitly contain dispersion interactions by its construction and also their internal parameters are optimized only around equilibrium geometries.\cite{10} This decline can be described by Grimmes’s dispersion correction (GD3),\cite{11} which adds an empirical function akin to the Lennard-Jones potentials\cite{12} and systematically improves the description of van der Waals systems.\cite{11,13}

For several systems, especially for host-guest docking of biopharmaceutical compounds, system size is often an insurmountable obstacle for conventional Kohn-Sham (KS)-DFT applications. On the other hand, the recent progress of DFT out of the conventional KS-DFT has shown promise to realize protein-scale DFT calculation. \cite{14,15} Therefore, it is a significantly meaningful task to study what exchange-correlation functional works for the host-guest docking in order to prepare for similar large scale calculations.

In this work, we tested eight functionals listed in Table 1, targeting the binding energy between plumbagin and cyclodextrins. This system is a representative example of the host-guest docking of biopharmaceutical compounds, providing a reasonably-sized system for the conventional KS-DFT calculation. We concluded the co-existence of vdW correction and sufficient amount of long-range exchange is essential for having a quantitatively reliable prediction. In addition to DFT, we applied semi-empirical methods PM3, PM6, and PM7,\cite{4} and found PM6 and PM7 reproduce the stabilization of docking qualitatively. Nevertheless, they under- and over-estimate the docking energy by \(\sim 10 \) kcal/mol, compared to the best DFT predictions.

2. System

Plumbagin is an organic molecule including two benzene rings,\cite{16} which is reported to be effective against prostate cancer.\cite{17,18} However, this molecule cannot exist for a long time under normal atmospheric conditions as oxidation and degradation can cause losses of up to 63.8\% in a single month.\cite{19} Docking plumbagin molecules within cyclodextrin has been considered as an effective method to extend its short shelf-life.

Cyclodextrin (CD) is a circular molecule of glucose units as shown in Figure 1. It is broadly used as a carrier of pharmaceuticals due to the following merits (other than stabilization): \cite{3}
• The ring size is adjustable to the size of guest molecule by changing the number of glucose units \(n \) (\(\geq 6 \)). For \(n \) equaling 6, 7, and 8, it is called \(\alpha-, \beta-, \) and \(\gamma-\)CD, respectively.

• Docking with CD improves drug solubility or dissolution, which is essential for drugs with poor water solubility.

• The release rate/timing is controllable by assigning different functional groups at \(R_1 \) and \(R_2 \) in Figure 1.

We selected \(\beta-\)CD (BCD) as the host molecule, since it has been experimentally used for docking with plumbagin,[16] and we obtained as well the docking energies for plain BCD and its two variants, Methyl-BCD (MBCD) and Hydroxy Propyl-BCD (HPBCD), shown in Figure 1.

Figure 1. The molecular structure of BCDs. The ring consists of glucose units. There are a variety of BCDs according to the functional groups located at \(R_1 \) and \(R_2 \). We selected BCD, MBCD, and HPBCD, shown in this figure, and calculated the binding energy when docked with plumbagin.
3. Methods

We obtained the docking structures between plumbagin and BCDs from docking analysis with Lamarckian algorithm using AutoDock 4.2.6. This algorithm is often used to predict the ligand arrangements of protein systems. A set of genes representing the ligand arrangements are optimized to get energetically stable structures. Each of the genes consists of translations, orientations, and conformations of the ligands. We optimized the arrangement of plumbagin as the ‘ligand’ of BCDs.

The molecular structures of plumbagin and BCDs are taken from the entries: PVVAQS01, BCDEXD03, BOYFOK04, and KOYYUS in the Cambridge Structural Database. We optimized their structures using semi-empirical PM7 before doing docking analysis. In the docking analysis, the translation of plumbagin is discretized on a $50 \times 38 \times 24$ grid with spacings of 0.375. We run 100 iterations for 150 of initial population of genes. At the end of each iteration, we selected only one gene with the lowest energy to "survive" to the next iteration. The energies were calculated with empirical force field, where electrostatic interaction was given based on Gasteriger charges. The other input parameters were set to be the default values of Autodock 4.2.6.

We performed DFT calculations using Gaussian09/16. We used the 6-31G++(d,p) basis set, since a family of 6-31G basis sets are often used for docking systems. We corrected the basis set superposition error by the counterpoise method. In addition to the common functionals B3LYP, M06-2X, and M06L, we compared the reliability of CAM-B3LYP with long-range exchange correction and B3LYP-GD3, M06-2X-GD3, M06L-GD3, and CAM-B3LYP-GD3 with Grimme’s dispersion correction, as shown in Table 1. GD3 correction introduces a pair-wise function akin to the Lennard-Jones potential to the original functional. Thus, the corrected functional is no longer within the framework of density functionals.

Semi-empirical methods are generally used to predict the structures of large-size systems represented by proteins. Its cost and reliability is lower than DFT but higher than the methods based on practical potentials. This method performs one-electron integrals only, so the scaling of the calculation cost is kept from rising above $O(N)$ (N: number of electrons). We employed three kinds of semi-empirical methods and calculated the docking energies using Gaussian09/16. These methods are in the orders of PM3, PM6, and PM7: PM6 improves on PM3 by refining the core-core interaction term and introducing the d-type basis function. PM7 method further improves on this by introducing corrections for dispersion and hydrogen bonding.

4. Results and Discussions

We found that the structures obtained by the docking analysis are classified into two types of conformations as shown in Figure 2. In type-I (II), the hydroxyl phenolic (methyl quinone) group of plumbagin is placed around narrow-side of the cavity in BCDs. Thus, we took both types of conformations for our benchmark.

Figure 3 shows the predictions of the docking energies between plumbagin and BCDs for type-I and II by DFT with the functionals listed in Table 1 and the semi-empirical methods. First, in comparing the DFT results from functionals without GD3 correction, we observe that M06L and M06-2X reproduce the stabilization by docking qualitatively, while B3LYP and CAM-B3LYP do not. This is recognized to be originating from the artifact of (CAM-)B3LYP, which are optimized just for covalent systems, resulting in a poor description for non-covalent forces. Similar problems have been observed for the stacking of b-DNA and the bonding of NiPc dimer.
Figure 2. Two types of stable conformations found by the docking analysis. In type-I(II), the hydroxyl phenolic (methyl quinone) group of plumbagin is placed around narrow-side of the cavity in BCDs.

DFT results for functionals with GD3 correction show that all functionals, with the notable exception of M06L-GD3, give similar predictions. It is also most surprising that the predictions from CAM-B3LYP-GD3 and M06-2X-GD3 show almost the same tendencies (see Figure 3b). It is unlikely to be a product of coincidence that two functionals based on different design concepts accidentally converge to the same results. Rather, it seems natural to conclude that the two functionals predicted very close values to the true docking energy, and resulting in the coincidence. Here, the next important question is why these functionals work better than M06L-GD3 and B3LYP-GD3. This would be attributed to their having larger amount of exact exchange used to describe long-range interactions: Kamiya et al. established in their benchmark calculations on the bonding of argon dimer that the balanced evaluation of van der Waals correlation and long-range exchange is significant to reliably describe the van der Waals interaction.[35] They observed as well that argon dimer is over-bound when the long-range exchange is lacking.[35] It is in agreement with our results, which shows M06L-GD3 without exact exchange predicts much higher docking energy than the other GD3 functionals.

Finally, we discuss here the results given by PM3, PM6, and PM7 semi-empirical methods. First, looking at PM3 and PM6, only PM6 reproduces the stabilization by docking with BCDs. This would be attributed to the refinement of the core-core interaction in PM6 compared to PM3. PM7 also reproduces the stabilization for all six patterns. However, we observe that the binding energies predicted by PM6 (PM7) are smaller (larger) by ~ 10 kcal/mol than those produced from the more rigorous \textit{ab initio} methods (DFT with CAM-B3LYP-GD3 and M06-2X-GD3). The failures of PM6 and PM7 are due to not explicitly containing the dispersion force correction and lacking exact exchange, respectively.

5. Conclusion

We have investigated various types of functionals which give a reliable estimation of the binding energy of docking between plumbagin and BCD, MBCD, and HPBCD, which are representative host-guest docking systems in the biopharmaceutical field. Comparing the predictions of non-GD3 functionals, we find functionals M06L and M06-2X reproduce the stabilization by host-guest docking while B3LYP and CAM-B3LYP do not. This is due to B3LYP and CAM-B3LYP having been optimized just
Figure 3. Comparison of the docking energies predicted by DFT with several functionals and the semi-empirical methods. Figure (a) shows all of the results and figure (b) shows the results obtained from functionals with GD3 correction, except M06L-GD3. The difference of structure types I and II are explained in Figure 2.
for covalent systems. Among functionals with GD3 corrections, we concluded that CAM-B3LYP-GD3 and M06-2X-GD3 predict the binding energies very reliably, since they give surprisingly similar predictions, which cannot be considered to be just accidental. This would be attributed to both functionals possess sufficient amount of long-range exchange to properly describe non-covalent forces. Lastly, from the semi-empirical methods, PM6 and PM7 reproduce the stabilization by host-guest docking. However, each method under- and over-estimates the binding energy by \(\sim 10 \text{kcal/mol} \), respectively.

6. Acknowledgments

The computation in this work has been performed using the facilities of the Research Center for Advanced Computing Infrastructure (RCACI) at JAIST. T.I. is grateful for financial support from Grant-in-Aid for JSPS Research Fellow (18J12653). O.S. is grateful for financially supported by SIIT-JAIST Dual degree scholarship from Thailand’s National Electronics and Computer Technology Center (NECTEC), Sirindhorn International Institute of Technology (SIIT) and Japan Advanced Institute of Science and Technology (JAIST). K.H. is grateful for financial support from a KAKENHI grant (JP17K17762), a Grant-in-Aid for Scientific Research on Innovative Areas “Mixed Anion” project (JP16H06439) from MEXT, PRESTO (JPMJPR16NA) and the Materials research by Information Integration Initiative (MI2I) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST). R.M. is grateful for financial supports from MEXT-KAKENHI (17H05478 and 16KK0097), from Toyota Motor Corporation, from I-O DATA Foundation, and from the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049). R.M. and K.H. are also grateful to financial supports from MEXT-FLAGSHIP2020 (hp170269, hp170220).

7. Author Contributions

Data curation, Tom Ichibha, Ornin Srihakulung, Guo Chao, and Ryo Maezono; Investigation, Tom Ichibha, Ornin Srihakulung and Guo Chao; Supervision, Luckhana Lawtrakul, Kenta Hongo and Ryo Maezono; Validation, Tom Ichibha, Ornin Srihakulung, Guo Chao and Adie Tri Hanindriyo; Visualization, Ornin Srihakulung; Writing - original draft, Tom Ichibha; Writing - review & editing, Tom Ichibha, Adie Tri Hanindriyo, Luckhana Lawtrakul, Kenta Hongo and Ryo Maezono

1. Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. *Nature Reviews Drug Discovery* 2014, 13, 655. Review Article.
2. George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review. *Journal of Controlled Release* 2006, 114, 1 – 14. doi:https://doi.org/10.1016/j.jconrel.2006.04.017.
3. Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. *Journal of Inclusion Phenomena and Macrocyclic Chemistry* 2008, 62, 23–42. doi:10.1007/s10847-008-9456-y.
4. Christensen, A.S.; Kubáň, T.; Cui, Q.; Elstner, M. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. *Chemical Reviews* 2016, 116, 5301–5337, [https://doi.org/10.1021/acs.chemrev.5b00584]. PMID: 27074247, doi:10.1021/acs.chemrev.5b00584.
5. Ye, R.; Nie, X.; Zhou, Y.; Wong, C.F.; Gong, X.; Jiang, W.; Tang, W.; Wang, Y.A.; Heine, T.; Zhou, B. Exploring host guest complexation mechanisms by a molecular dynamics/quantum mechanics/continuum solvent model approach. *Chemical Physics Letters* 2016, 648, 170 – 177. doi:https://doi.org/10.1016/j.cplett.2016.02.006.
6. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. *Journal of Chemical Physics* 2001, 115, 3540–3544. doi:10.1063/1.1383587.
7. Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chemical Physics Letters* **2004**, *393*, 51–57. doi:10.1016/j.cplett.2004.06.011.

8. Tsuneda, T. *Fundamentals of Density Functional Theory*; Kodansha, 2012.

9. Zhao, Y.; Truhlar, D.G. Density Functionals for Noncovalent Interaction Energies of Biological Importance. *Journal of Chemical Theory and Computation* **2007**, *3*, 289–300, [https://doi.org/10.1021/ct6002719]. PMID: 26627172, doi:10.1021/ct6002719.

10. Hongo, K.; Maezono, R. A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy. *Journal of Chemical Theory and Computation* **2017**, *13*, 5217–5230, [https://doi.org/10.1021/acs.jctc.6b01159]. PMID: 28981266, doi:10.1021/acs.jctc.6b01159.

11. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132*, 154104, [https://doi.org/10.1063/1.3382344]. doi:10.1063/1.3382344.

12. Grimme, S. Density functional theory with London dispersion corrections. *Wiley Interdisciplinary Reviews: Computational Molecular Science* **2011**, *1*, 211–228. doi:10.1002/wcms.30.

13. Burns, L.A.; Mayagoitia, L.V.; Sumpter, B.G.; Sherrill, C.D. Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. *The Journal of Chemical Physics* **2011**, *134*, 084107, [https://doi.org/10.1063/1.3545971]. doi:10.1063/1.3545971.

14. Romero-Muñiz, C.; Nakata, A.; Pou, P.; Bowler, D.R.; Miyazaki, T.; Pérez, R. High-accuracy large-scale DFT calculations using localized orbitals in complex electronic systems: the case of graphene–metal interfaces. *Journal of Physics: Condensed Matter* **2018**, *30*, 505901. doi:10.1088/1361-648x/aaec4c.

15. Mohr, S.; Ratcliff, L.E.; Genovese, L.; Caliste, D.; Boulanger, P.; Goedecker, S.; Deutsch, T. Accurate and efficient linear scaling DFT calculations with universal applicability. *Phys. Chem. Chem. Phys.* **2015**, *17*, 31360–31370. doi:10.1039/C5CP00437C.

16. Oommen, E.; Shenoy, B.D.; Udupa, N.; Kamath, R.; Devi, P.U. Antitumour Efficacy of Cyclodextrin-complexed and Niosome-encapsulated Plumbagin in Mice Bearing Melanoma B16F1. *Pharmacy and Pharmacology Communications* **1999**, *5*, 281–285, [https://onlinelibrary.wiley.com/doi/pdf/10.1211/1460899128734857]. doi:10.1211/1460899128734857.

17. Aziz, M.H.; Dreckschmidt, N.E.; Verma, A.K. Plumbagin, a Medicinal Plant–Derived Naphthoquinone, Is a Novel Inhibitor of the Growth and Invasion of Hormone-Refractory Prostate Cancer. *Cancer Research* **2008**, *68*, 9024–9032, [http://cancerres.aacrjournals.org/content/68/21/9024.full.pdf]. doi:10.1158/0008-5472.CAN-08-2494.

18. Abedinpour, P.; Baron, V.; Christina, A.; Rondeau, G.; Pelayo, J.; Welsh, J.; Borgström, P. Plumbagin improves the efficacy of androgen deprivation therapy in prostate cancer: A pre-clinical study. *The Prostate* **2017**, *77*, 1550–1562, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/pros.23428]. doi:10.1002/pros.23428.

19. Suthanurak, M.; Sakpakdeejaroen, I.; Rattarom, R.; Itharat, A. Formulation and stability test of Benjakul extract tablets: a preliminary study. *Thai J Pharmacol* **2010**, *32*.

20. Gasteiger, J.; Marsili, M. A new model for calculating atomic charges in molecules. *Tetrahedron Letters* **1978**, *19*, 3181 – 3184. doi:https://doi.org/10.1016/S0040-4039(01)94977-9.

21. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark,
M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.;
Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.;
Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.;
Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.
Gaussian 09 Revision E.01. Gaussian Inc. Wallingford CT 2009.

24. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16 Revision B.01, 2016. Gaussian Inc. Wallingford CT.

25. Bachrach, S.M. DFT Study of the ExBox Aromatic Hydrocarbon Host Guest Complex. The Journal of Physical Chemistry A 2013, 117, 8484–8491, [https://doi.org/10.1021/jp406823t]. PMID: 23927562, doi:10.1021/jp406823t.

26. Bachrach, S.M.; Andrews, A.E. All-Carbon, Neutral Analogue of ExBox4+: A DFT Study of Polycyclic Aromatic Hydrocarbon Binding. The Journal of Physical Chemistry A 2014, 118, 6104–6111, [https://doi.org/10.1021/jp504408u]. PMID: 25029611, doi:10.1021/jp504408u.

27. Bouhadiba, A.; Belhocine, Y.; Rahim, M.; Djilani, I.; Nouar, L.; Khatmi, D.E. Host-guest interaction between tyrosine and β-cyclodextrin: Molecular modeling and nuclear studies. Journal of Molecular Liquids 2017, 233, 358 – 363. doi:https://doi.org/10.1016/j.molliq.2017.03.029.

28. Deka, B.C.; Bhattacharyya, P.K. DFT study on host-guest interaction in chitosan amino acid complexes. Computational and Theoretical Chemistry 2017, 1110, 40 – 49. doi:https://doi.org/10.1016/j.comptc.2017.03.036.

29. Simon, S.l.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? The Journal of Chemical Physics 1996, 105, 11024–11031, [https://doi.org/10.1063/1.472902]. doi:10.1063/1.472902.

30. Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters 2004, 393, 51 – 57. doi:https://doi.org/10.1016/j.cplett.2004.06.011.

31. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 2010, 132, 154104, [https://doi.org/10.1063/1.3382344]. doi:10.1063/1.3382344.

32. Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling 2013, 19, 1–32. doi:10.1007/s00894-012-1667-x.

33. Marom, N.; Tkatchenko, A.; Rossi, M.; Gobre, V.V.; Hod, O.; Scheffler, M.; Kronik, L. Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. Journal of Chemical Theory and Computation 2011, 7, 3944–3951, [https://doi.org/10.1021/ct2005616]. PMID: 26598340, doi:10.1021/ct2005616.

34. Ken, Q.S.; Ichihba, T.; Hongo, K.; Maezono, R. Difficulty to capture non-additive enhancement of stacking energy by conventional ab initio methods, 2018, [arXiv:1807.04168].

35. Kamiya, M.; Tsuneda, T.; Hirao, K. A density functional study of van der Waals interactions. Journal of Chemical Physics 2002, 117, 6010–6015. doi:10.1063/1.1501132.