Xylem Phenology of *Fagus sylvatica* in Rarău Mountains
(Eastern Carpathians, Romania)

Anca SEMENIUC, Ionel POPA, Adrian I. TIMOFTE, Dan Marian GUREAN

Abstract

The cambium activity and the tree ring formation of European beech (*Fagus sylvatica L.*) from the Rarău Mountains was monitored during 2009, 2010 and 2011 in a beech - coniferous stand, representative for Eastern Carpathian mixed forests. Wood microcores were collected weekly from five trees and prepared in order to describe the different phases of wood formation. Four phases of tree ring development were quantified, in number of cells and phase duration: cambial phase, cell enlargement, cell wall thickening and cell maturation. The onset of the cambial activity took place in the first week of May 2009, one week later in 2010 and in the last week of April 2011. The beech tree ring development period varies between 127 days in 2009 and 137 days in 2011.

Keywords: cambial activity, cell differentiation, European beech, xylem growth rings

Introduction

The monitoring of growth activity in terms of anatomic aspects is a complex process which allows the determination of the duration of the annual tree ring formation and its correlative relationship with the environmental factors. The xylem, developed in optimal climatic conditions, presents uniformity in its structure and annual tree rings of equal size. In most cases, the process of radial growth varies from year to year, depending on the climatic fluctuations during the growing season (Rossi et al., 2006).

The beech (*Fagus sylvatica L.*) is the main forest species in Romania occupying 26% of the forest vegetation area, and 39% of the volume of standing timber (IFN, 2014). Beech forests are particularly important both from an economic and an ecological point of view (Stoicescu, 2013). Due to the high sensitivity to climatic factors, high longevity (Di Filippo et al., 2012) and the ability to grow in different sites condition, the beech is a relevant species for dendroclimatological studies at European level (Dittmar et al., 2003; Piovesan et al., 2005; Di Filippo et al., 2007) and in the Carpathian region (Roibu and Popa, 2006; Roibu, 2010). Most dendroclimatological studies are based on the analysis of the statistical relationship between the width of tree rings and the climatic factors from current and previous growing seasons (Schweingruber, 1992). Only few studies addressed the problem of intra-annual variation of the tree-ring characteristics, respectively the dynamics of beech radial growth phases (Schmitt et al., 2000; Bouriaud et al., 2004; Oladi et al., 2011; Prislan et al., 2013; Vavrick et al., 2013).

Most studies regarding the monitoring of the xylem formation processes focused on coniferous species (Rossi et al., 2006, 2008; Deslauriers et al., 2008; Gricar et al., 2009; Moser et al., 2010; Rossi et al., 2013).

The structure of beech wood is complex and inhomogeneous due to the diversity of the anatomical elements. Density, distribution and vessel wall thickness can be analyzed after evaluating the vulnerability of xylem to embolism (Cochard et al., 2001). The analysis of the connection between the phases of xylem formation and leaf phenological characteristics allowed the assessment of climatic factors influencing the radial growth processes in South Eastern and Central Europe (Cufar et al., 2008).

The objective of this study is to analyze the dynamics of the European beech cambial activity and to assess the different stages of the annual tree ring formation over the period 2009-2011 in the Eastern Carpathians beech-conifer mixtures, thus contributing to the knowledge about the growth phenology of European beech in the Carpathian area.

Materials and methods

Study area. The study was carried out on the northern slope (47°29’ N, 25°33’ E) of the Rarău Mountains in a mixed forest of beech and conifers (spruce, fir), located at an altitude of 850 m. The type of soil is eutric cambisol formed on limestone bedrock. The mean annual temperature is 2.3 °C (Rarău weather station - altitude 1536 m, 2 km from the study site) with a maximum monthly temperature in July.
Parenchymal cells and vessels, thickening of cell walls, and different phases of formation of the annual tree ring, development. Onset and cessation phases of cambial cell growth, cell differentiation, lignification (thickening of cell walls) and mature cells were assessed (Rossi et al., 2006; Prislan et al., 2011). The cross-sectional analysis included some quantitative (number of cambial cells) and qualitative observations (day of the year - DOY) on the onset and cessation phases of cambial cell growth, cell differentiation, lignification and mature cells. The cells from the cambial area (CC) were identified by the flat shape with thin cell walls. The xylem elements (vessels, fibers, radial and axial parenchyma) found in the stage of differentiation or postcambial stage (PC) present a double size and thinner cell walls (Cufar et al., 2008) in comparison to CC. The observation in polarized light allows differentiation of cells found in secondary wall deposition phase (SW) characterized by the thickening and cell wall glow. The lignification process is considered complete when the wall of mature cells (MT) is fully colored in blue as opposed to the CC, PC and SW phases, when it is colored in purple.

Results

Cambium. Mature xylem formation is a process which takes place in three successive phases during the growing season: procambial and cambial cell activity, development of parenchymal cells and vessels, thickening of cell walls, respectively completely lignified cells and vessels (Cufar et al., 2008). All stages are separated in space or time, although they partially overlap. A detailed analysis of the cells in the developing ring enables the highlighting of some cell types derived from the meristematic procambium cell division. The new cells derived from the procambium represent more rows of cambial cells of different size and layout (Larson, 1994). During the dormant season, the cambial cells are made up of 3-5 rows of cells. During the radial growth (when the cell division activity is intense) the cambial cell layer reaches about 7-8 rows of cells with thinner cell walls (Fig. 1).

In 2009, an early cambial activity was recorded, as the initially fusiform cells began to divide in early May (DOY 126), thus generating new cells (up to 6-7 cambial cells). In 2010, the cambial cells began to grow in length and diameter about a week later (DOY 131). Compared to the previous years, in 2011 an early cambial division was noticed in the last week of April (DOY 101). The maximum cambial activity was recorded in the second half of June, the differences between years being of one week maximum. Later, the cambial activity decreased and the cell division process ended in the last half of July (DOY 209 in 2010 and 191 in 2011). The duration of the cambial cell production processes ranged from 71 days in 2009 to 90 days in 2011.

Tree-ring formation. The cells derived from cambium expand themselves generating new cells, with high lumen and thin cell walls, thus marking the onset of xylem differentiation. Newly differentiated cells of different shape and size represent the postcambial area. Next to them, parenchymal cells develop, representing wood parenchyma cell clusters and forming a large part of the xylem. Medullary rays are derived from the parenchymal cells, consisting of several rows of cells showing different sizes and shapes.

On May 15, 2009 (DOY 135) the first wooden developing vessels were distinguished, with larger sizes, with thin cell walls, found in the postcambial area, the cell differentiation occurring in the initial phase. In 2010, the onset of postcambial activity took place over the same period (DOY 137) and, in 2011, it took place at the beginning of May (DOY 122) (Fig. 2). Generally, the first xylem elements appeared 1-2 weeks after the onset of the cambial activity. The duration of the cell differentiation process ranged from 40 to 80 days.

The onset of lignification occurred in late May-early June, when the first vessels undergoing lignification were observed in the polarized light; the yearly differences were of 7-14 days (DOY 143 in 2011 and 158 in 2010). Following the deposition of the lignin in the vessel walls, the side wall...
was formed and it displayed a blue color (Fig. 3). A crowded arrangement of the parenchymal cells in the storage phase of the lignin in the secondary cell wall was observed near the vessels and the wood fibers. The lignification process continued after the cessation of the cambial activity until mid-September (DOY 232–242). The duration of the lignification process was of 82–90 days.

In 2009, the appearance of the first fully lignified mature cells, was observed around June 12 (DOY 163) with a maximum at the end of June and the first week of July, when the number of cells with the walls fully formed (lignified) reached 25 (wood vessels). In 2010, the first mature vessels and the completely lignified parenchyma cells respectively were observed in mid-June (DOY 176), 9 days later than in 2011 (DOY 165). The time required for a vessel element to be fully formed (between early cell differentiation process and complete development) was 30–40 days.

The complete formation of the annual tree ring was noticed on 11/09/2009 (DOY 254), when the number of cambial cells was reduced to 3-4 cells and all anatomical elements were mature. The annual ring formation process was considered complete in September (DOY 270 in 2010 and 268 in 2011). However in 2010, the microscopic analyses revealed the presence of a few axial parenchyma cells still in the process of lignification at the end of September, a similar situation being noticed in 2011. The duration of the mature xylem development varied between 93 and 103 days. The average length of the annual ring formation process considered between the onset of the cambial division and the cessation of the lignification process ranged between 127 days in 2009 and 137 days in 2011.

Discussion and conclusions

The formation of the annual rings is under genetic control and is influenced by environmental factors (Kozlowski and Pallardy, 1997). The differentiation process of the vessels, i.e. of the main anatomical parts of the annual rings in hardwood species, may be separated in three successive phases: (1) differentiation and postcambial widening which determine the size and shape of the cell, (2) the formation of the secondary wall by the deposition of lignin on a matrix of polysaccharides, and (3) the cell death and protoplasm autolysis (Rossi et al., 2006; Gricar et al., 2005).

In the investigated area, the onset of the cambial division occurred between the last week of April and early May. Compared to other studies carried out under similar conditions, there is a delay of about 1-2 weeks (Cufar et al., 2006; Vavrčík et al., 2013; Prislan et al., 2013). The maximum production rate of xylem cells (the maximum number of cambial cells) took place between 31st of May and 21st of June, similarly to the results obtained in studies carried out in beech forests in Slovenia (Prislan et al., 2011) and the Czech Republic (Vavrčík et al., 2013). The summer solstice (June 21) represents the day with a maximum photoperiod and coincides with the maximum cell production in softwoods (Rossi et al., 2006a). The present research indicates a gap of about 1-2 weeks between the maximum cell production and the summer solstice, similar to other studies (Marion et al., 2007; Cufar et al., 2008). In their studies, Cufar et al. (2008a) found that about 76% of the annual ring was formed by the end of June, whilst, in
similar studies in Czech Republic, the percentage reached 65% (Vavrcík et al., 2013). The results showed that June had the highest importance in the radial growth, an observation that has also been confirmed by other studies (Bouriaud et al., 2004; Michelot et al., 2012; Oladi et al., 2011). However, the maturation of cells (complete lignification process) continues even after the cessation of the cambial division (Gricar et al., 2005; De Luís et al., 2007).

A significant statistical relationship was observed between the leaf phenophases and the phases of annual ring formation, especially among the unfolding process and the activation of cambium (Cufar et al., 2008; Michelot et al., 2012; Prislan et al., 2013).

The phenology of the annual ring formation varies from year to year, in direct correlation with the variation of the environmental factors. The development of some statistical models regarding the relationship between climate and bioaccumulation processes (measured by the annual tree ring) requires long-term series and the corroboration of the information derived from dendroclimatological studies with those obtained through xylological analyses (Rossi et al., 2008). The investigations of the annual ring formation at the cellular level could provide essential information that might explain the statistical links between the annual ring parameters and the dynamics of environmental factors.

Acknowledgements

This study was supported by Romanian Authority for Research in Core Program for forestry - GEDEFOR, project PN09460110, PN09460108 and partially by CNCS-UEFISCDI project number PN-II-TE-2011-3-0040. A.S. is also supported by PhD program of Stefan cel Mare University of Suceava and project POSDRU/159/1.5/S/132406.

References

Bouriaud O, Breda N, Le Moguedec G, Nepveu G (2004). Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees - Structure and Function 18:264-276.

Cochard H, Lemoine D, Améglio T, Granier A (2001). Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiology 21(1):27-33.

Cufar K, Prislan P, Gricar J (2008). Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Research 53:1-12.

Cufar K, Prislan P, Luís M, Gricar J (2008a). Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749-758.

De Luís M, Gricar J, Cufar K, Ravenstů J (2007). Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA Journal 28(4):389-391.

Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28:863-871.

Di Filippo A, Biondi F, Cufar K, De Luís M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007). Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. Journal of Biogeography 34:1873-1892.

Di Filippo A, Biondi F, Maugeri M, Schirone B, Piovesan G (2012). Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology 18:960-972.

Dittmar C, Zech W, Elling W (2003). Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. Forest Ecology and Management 173:63-78.

Gricar J, Cufar K, Oven P, Schmitt U (2005). Differentiation of terminal lateral tracheids in silver fir trees during autumn. Annals of Botany 95:959-965.

Gricar J, Krze L, Cufar K (2009). Number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba), in trees of different vitality. IAWA J. 30(2):121-133.

IFN (2014), www.roifn.ro (accessed 2014).

Kozlowski TT, Pallardy SG (1997). Growth control in woody plants. Elsevier. 641 pp.

Larson PR (1994). The Vascular Cambium: Development and Structure. Springer, Berlin. 725 p.

Marion L, Gricar J, Oven P (2007). Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25(2):97-102.

Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology 32(8):1033-1045.

Mosler L, Fonti P, Bunten U, Esper J, Luterbacher J, Franzen J, Frank D (2010). Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiology 30 (2):225-233.

Oladi R, Pourahmadi R, Eckstein D, Brauning A (2011) Seasonal dynamics of wood formation on Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hycanian forest, Iran. Trees - Structure and Function 25:425-433.

Piovesan G, Biondi F, Bernabei M, Di Filippo A, Schirone B (2005). Spatial and altitudinal bioclimatic zone of the Italian peninsula identified from a beech (Fagus sylvatica L.) grown at two different altitudes. IAWA Journal 32(4):443-459.

Prislan P, Schmitt U, Koch G, Gricar J, Cufar K (2011). Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. IAWA Journal 32(4):443-459.

Prislan P, Gričar J, de Luís M, Smith KT, Ćufar K (2013). Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 180:142-151.
Roibu CC (2010). Cercetări dendrometrice, auxologice și dendrocronologice în făgete din Podișul Sucevei aflate în limitea estică a arealului. PhD thesis, “Universitatea Ștefan cel Mare”, Suceava, 274 p.

Roibu CC, Popa I (2006). Dendrochronological series for beech (Fagus sylvatica) in Tatarusi (Iași) area. Revista Padurilor 121:18-20.

Rossi S, Anfodillo T, Menardi R (2006). Trephor: a new tool for sampling microcores from tree stems. Iawa Journal 27(1):89-97.

Rossi S, Deslauriers A, Anfodillo T (2006a). Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. Iawa Journal 27:383-394.

Rossi S, Deslauriers A, Gricar J, Seo JW, Rathgeber CWG, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol Biogeogr 17(6):696-707.

Rossi S, Anfodillo T, Ćufar K, Cuny HE, Deslauriers A, Fonti P, Rathgeber, CB (2013). A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere. Annals of Botany 112(9):1911-1920.

Rusu C (2002). Masivul Rarău - Studiu de geografie fizică. Editura Academiei Române, 417 p.

Schmitt U, Moller R, Eckstein D (2000). Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the pinning technique. J Appl Bot 74:10-16.

Schweingruber FH (1992). Wood structure and environment. Springer. 279 p.

Stoiculescu CD (2013). Virgin beech forests of Romania in the European context under the influence of climate change (in Romanian). Greenpeace Romania, Bucharest, 412 p.

Vavrecík H, Gryc V, Menšík L, Baar J (2013). Xylem formation in Fagus sylvatica during one growing season. Dendrobiology 69:69-75.