A review on the CFD analysis of urban microclimate

Citation for published version (APA):
Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613-1640. https://doi.org/10.1016/j.rser.2017.05.248

Document license:
CC BY

DOI:
10.1016/j.rser.2017.05.248

Document status and date:
Published: 01/12/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Apr. 2021
A review on the CFD analysis of urban microclimate

Y. Toparlara,b,⁎, B. Blockenb,c, B. Maiheub, G.J.F. van Heijstdd

a Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands
b Environmental Modeling, Flemish Institute for Technological Research, Boeretang, 2400 Mol, Belgium
c Building Physics Section, Department of Civil Engineering, KU Leuven, Bus 2447, 3001 Leuven, Belgium
d Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands

\textbf{ARTICLE INFO}

Keywords:
Computational Fluid Dynamics (CFD)
Urban physics
Adaptation measures
Building energy consumption
Sustainability

\textbf{ABSTRACT}

Urban microclimate studies are gaining popularity due to rapid urbanization. Many studies documented that urban microclimate can affect building energy performance, human morbidity and mortality and thermal comfort. Historically, urban microclimate studies were conducted with observational methods such as field measurements. In the last decades, with the advances in computational resources, numerical simulation approaches have become increasingly popular. Nowadays, especially simulations with Computational Fluid Dynamics (CFD) is frequently used to assess urban microclimate. CFD can resolve the transfer of heat and mass and their interaction with individual obstacles such as buildings. Considering the rapid increase in CFD studies of urban microclimate, this paper provides a review of research reported in journal publications on this topic till the end of 2015. The studies are categorized based on the following characteristics: morphology of the urban area (generic versus real) and methodology (with or without validation study). In addition, the studies are categorized by specifying the considered urban settings/locations, simulation equations and models, target parameters and keywords. This review documents the increasing popularity of the research area over the years. Based on the data obtained concerning the urban location, target parameters and keywords, the historical development of the studies is discussed and future perspectives are provided. According to the results, early CFD microclimate studies were conducted for model development and later studies considered CFD approach as a predictive methodology. Later, with the established simulation setups, research efforts shifted to case studies. Recently, an increasing amount of studies focus on urban scale adaptation measures. The review hints a possible change in this trend as the results from CFD simulations can be linked up with different aspects (e.g. economy) and with different scales (e.g. buildings), and thus, CFD can play an important role in transferring urban climate knowledge into engineering and design practice.

1. Introduction

The United Nations (UN) and the World Bank anticipate a rapid increase of the percentage of the world population living in urban areas within the course of the 21st century [1,2] (Fig. 1). This change is expected to occur due to the increase in the number of cities, migration from rural to urban areas and transformation of some rural settlements into urban areas [3]. Recently, making “cities and human settlements climate resilient and sustainable” is marked as one of the sustainable development goals by the UN [4]. As a result, research on sustainable habitats and related topics is gaining importance and will continue to do so in the coming years [5].

Urban settlements are formed by replacing natural surroundings by urban environments and the latter create their own, unique microclimates.1 In his pioneering publication “the Climate of London”, Luke Howard [6] documented that urban microclimates can be substantially different from their rural counterparts as the former tend to produce and retain more heat and are therefore characterized by higher temperatures. This phenomenon is commonly known as the Urban Heat Island (UHI) effect, a term first used by Manley in 1958 [7], although Erell et al. [8] mention it might have been coined earlier.

Interpreting the impact of the UHI effect merely as an “increase of temperature inside urban areas” would be an oversimplification. The
UHI effect in particular and urban microclimate in general can yield a wide range of impacts on health and energy use and these impacts are not necessarily negative. For instance, UHIs can reduce building energy consumption [11,12] or meteorological conditions [13]. Knowledge demand depending on the city [9], location within the same city [10], not necessarily negative. For instance, UHIs can reduce building energy consumption [11,12] or meteorological conditions [13]. Knowledge demand depending on the city [9], location within the same city [10], 2011. Fig. 1. World population in urban and rural areas. The dotted line denotes the year 2011. Figure modified from reference [3].
and Haghighat [15] and Mirzaei [23] distinguish two main categories: (a) observational approaches and (b) simulation approaches. Observational approaches refer to measurement techniques such as field measurements, thermal remote sensing (e.g. satellite imagery) or small-scale physical modeling (e.g. atmospheric boundary layer wind-tunnel tests). Traditionally, observational approaches dominated urban microclimate analysis [24,25]. More recently, the increasing availability of computational resources has strongly advocated the application of numerical simulation approaches [26,27], where a distinction can be made between Energy Balance Models (EBM) and Computational Fluid Dynamics (CFD). The main advantage of the numerical simulation approaches compared with their observational counterparts is the opportunity to perform comparative analyses based on different scenarios [19,28]. In addition, while measurements are generally only performed at a limited number of points in space, numerical simulations can provide information on any investigated variable in the entire computational domain [16,24,29].

EBMs, which are based on the law of energy conservation for a control volume, have been used extensively in the past [30] and have increased in popularity with the pioneering article by Oke [31] entitled “The Energetic Basis of the Urban Heat Island”. Later, several studies utilized EBM for validation and model development purposes [32–38]. In the early 2000s, new validated models were proposed by Masson [39], Martilli et al. [40] and Kanda et al. [41]. Throughout this period of new EBM developments, the use of observational approaches, such as heat flux measurements, has continued [42–44], mostly to support the validation of newly developed models.

From an urban climate research point of view, CFD offers two advantages compared to EBM: (1) CFD is capable of performing simulations with the explicit coupling of velocity and temperature fields and if necessary, with the addition of humidity and pollution fields; (2) With CFD, it is possible to resolve the flow field at finer scales (e.g. building or even human scale) than EBM [45]. On the other hand, CFD simulations require a high-resolution representation of the urban geometry, the knowledge of boundary conditions for all relevant flow variables and adequate computational resources [15,16,19].

With the increased necessity for simulations incorporating higher spatial and modeling details and driven by the advances in computing power [27], CFD has continued to gain popularity as a tool for urban microclimate research, in particular from the 1990s. In the concluding chapters of two urban climate review papers by Souch and Grimmond [26] and Kanda [28], the increasing popularity of the CFD approach is pointed out with the following quotes:

“The development and use of CFD is a very active area of inquiry. The models are becoming more sophisticated in terms of numerical methods, mesh structures and turbulence modeling approaches.” (Souch and Grimmond [26]);

“CFD technologies that explicitly resolve urban buildings are the most complex representation of urban surfaces. Such technologies will play an important role not only in pure application studies but also in guiding the improvement of simpler models” (Kanda [28]).

Computational simulations can be employed to study urban microclimate at different spatial scales, ranging from the meteorological mesoscale over the meteorological microscale to the building scale and the indoor environment [16,19,29] (Fig. 2).

Numerical research at the meteorological mesoscale refers to climatic studies investigating atmospheric events, which occur within horizontal distances of a few to several hundred kilometers (e.g. thunderstorms) [46]. Numerical approaches at this scale are termed as Numerical Weather Prediction (NWP) models [29,47,48] or Mesoscale Meteorological Models (MMM) [49–51]. Urban climate analysis at the mesoscale can be traced back to the early 1970s and was mainly applied for 2D computational domains [52–57], investigating flow circulations occurring over urban areas, which were represented as localized heat sources. Later, mesoscale studies also included 3D applications for specific urban areas, such as St. Louis [58] and Chicago [59]. Nowadays, many urban climate studies at the meteorological mesoscale are being conducted [60–69] and some of the more recent efforts are focusing on coupling mesoscale climate models with finer scale models [50,51,70,71].

CFD at the meteorological microscale considers simulations at horizontal distances up to about 2 km [29,72]. CFD microscale simulations provide the possibility for the detailed modeling of every building and the parameterization of other obstacles within an urban area. Extensive reviews of CFD studies at the meteorological microscale were published in the past [16,19,29,73,74]. In recent years, with the advances in computational resources and the establishment of CFD best practice guidelines on the relevant topics (e.g. [19,75–79]), CFD studies at the meteorological microscale have gained popularity. CFD studies at the meteorological microscale can be used to investigate wind flow around buildings [45], pedestrian wind comfort [80–82], pedestrian thermal comfort [81], wind-driven rain [83,84], pollutant dispersion [85–90], snow drift [91,92] and other topics.

CFD can be utilized for the analysis of the microclimate around individual buildings, which is classified as the building scale with typical distances less than 100 m. There have been several review papers on CFD studies at the building scale [19,29,45,73,74,81]. Specifically, natural ventilation studies [93–96] and studies on Convective Heat Transfer Coefficients (CHTC) [97–100] are conducted at this scale. Many studies adopted a 2D modeling approach focusing on street canyons [101–118], on individual building shaped obstacles [119] or on vegetation cover [120–122]. For individual buildings, Building Energy Simulation (BES) is also employed for the analysis of indoor climate, indoor human thermal comfort and building energy consumption and recently, several studies have investigated the possibility for coupling CFD and BES models [122–126].

The smallest scale at which CFD is employed for climatic analysis in urban areas is the building indoor environment, where typical horizontal distances are around 10 m and the focus is on indoor climate. Studies at this scale have employed CFD mainly for ventilation studies [127–129] and for topics related to HVAC design and building services engineering [130]. Natural ventilation studies with CFD can also be performed at multiple scales, by combining building and indoor scales, which enables researchers to conduct coupled analyses [94,95,131–141].

Some review papers on the analysis of urban microclimate such as

![Fig. 2. Schematic representation of the spatial scales in climate modeling, with typical horizontal dimensions.](image-url)
Erell and Williamson [142], Ooka [143], Mochida et al. [51] and Lun et al. [144] have evaluated numerical models in general (including EBMs), without a specific focus on any CFD approach. Mochida and Lun [81] have reviewed CFD microclimate studies, but without focusing on the coupling of velocity and temperature fields. As CFD studies on urban microclimate are gaining popularity, it is important to document the achievements and trends in this field for future research, and this paper serves this purpose.

This paper reviews studies on the CFD analysis of urban microclimate. The scope of the review covers studies published in refereed journals, in English, with 3D computational domains and with coupling of velocity and temperature fields. To the best of our knowledge, the first study that fits to this scope is from 1998. Therefore, this review covers studies from what we consider as the first study in this field until the ones from 2015. In Section 2, the investigated studies are listed and classified based on the type of the urban area considered (generic versus real urban) and methodology followed (with or without validation study). Section 3 contains a further analysis of the reviewed studies and Section 4 presents a discussion with future perspectives. Finally, Section 5 contains the conclusions.

2. Overview of studies on the CFD analysis of urban microclimate

Within the above-mentioned scope of the review, a total of 183 studies are identified and investigated. The earliest study is from 1998 and the latest is from 2015. Fig. 3 shows the yearly distribution of the studies, indicating the increasing popularity of the field. The figure shows that the number of studies considered only in the last three years constitute more than half of all the studies (104 of 183 studies).

The papers are categorized based on the type of urban area (generic versus real) (see Fig. 4) and the methodology, without validation versus with validation. We remark that a study containing validation of at least one parameter from velocity and/or temperature is considered a study with validation. Fig. 5 shows that most studies are focused on real urban areas and are conducted without validation.

The studies are summarized in tables with the following entries:

- Author(s) and publication year;
- Reference number as listed in this paper;
- Urban setting/location
 - For studies with generic urban areas, the urban geometries are classified as follows (Fig. 6):
 a) Building blocks: Multiple building blocks, distributed with a generic structure;
 b) Street canyon: Only one street canyon;
 c) Open space: No obstructions, possibly investigating additional features such as trees, water bodies etc.;
 d) Urban street canyons: Multiple street canyons in an urban setting;
 e) Courtyard: Domains focusing on a single courtyard.
 - For studies with real urban areas, the urban location is mentioned based on the information provided in the respective papers.
- Approximate form of the governing equations solved and the turbulence model/sub-grid scale model used. The investigated studies employed either Reynolds-averaged Navier Stokes (RANS) equations or Large Eddy Simulations (LES). The turbulence models (for RANS) and sub-grid scale models (for LES) employed are:
 a) For RANS: Abe-Kondoh-Nagano (AKN) k-ε [149] (AKNE); Chen-Kim Extended k-ε (CEKE) [150]; Durbin k-ε [151] (DKE); Eddy Diffusivity [101] (ED); Low Reynolds Number k-ε [149,152] (LRKNE); Miao E-ε [153] (MEE); Modified k-ε [131] (MDKE); Realizable k-ε [154] (RKE); Re-Normalization Group (RNG) k-ε [155] (RNGKE); Shear Stress Transport (SST) k-ω [156] (SSTKW); Standard k-ε [157] (STKE); Yamada and Mellor E-ε [158] (YMEE).
 b) For LES: Deardorff Subgrid-scale [159] (DSGS); Smagorinsky-Lilly Subgrid-scale [160] (SLSGS).
- Validation/target parameters:
 a) Temperature related: Air temperature (°C) (AT); Dry-bulb temperature (°C) (DBT); Indoor air temperature (°C) (IAT); Mean radiant temperature (°C) (MRT); Surface temperature (°C) (ST); Wet bulb globe temperature (°C) (WBGT);
 b) Thermal comfort related: Physiological equivalent temperature (°C) [161] (PET); Predicted mean vote (-) [162] (PMV) and Extended PMV (-) (EPMV) [163]; Standard effective temperature (°C) [164] (SET); Temperature of equivalent perception (°C) [165] (TEP); Thermal Sensation Perception (-) [166] (TSP);
 c) Heat transfer related (includes radiation and reflectivity): Convective heat transfer coefficient (W/m²K) (CHTC); Heat flux (w/m²) (HF); Sky View Factor (-) (SVF); Solar access index (-) (SAI); Solar radiation (W/m²) (SR);
 d) Flow/ventilation related: Air change rate (1/hour) (ACH); Pressure (coefficient) (CP); Turbulent kinetic energy (m²/s²) (TKE); Turbulence dissipation rate (m²/s³) (TDR); Ventilation rate (l/minute) (VR); Wind velocity (m/s) (VV);
 e) Humidity/mass transfer related: Relative humidity (%) (RH); Water vapor fraction (%) (WVF);
 f) Dimensionless numbers/indices: Air quality index (-) (AQI); Froude number (-) (Fr); Richardson number (-) (Ri); Temperature-humidity index (-) (THI); Wind comfort index (-) (WCI);
 g) Other quantitative parameters: Building energy consumption (W) (BEC); Economy (currency) (ECN); Pollutant concentration (unit varies) (PC); Pressure distribution (PD); Statistical performance indicators (various, e.g. correlation coefficient) (SPI); Wind velocity vectors (WVV).
- Keyword categories: For every study, representative keywords are specified based on the list of keywords provided in each publication. Later, keywords with similar or interchangeable use are grouped and in total 37 keyword categories are identified.3 For papers with less than five keywords in the list of keywords, first the title and then the abstract is scanned for selecting suitable keyword categories. Referring to the title and the abstract for selecting keywords has its limitations but it was adopted due to the lack of a better alternative. Some very general keywords, such as microclimate, CFD and urban heat island (effect) are omitted from the categories. At the end, five keywords categories per study are identified. In the remainder of this paper, we will use the word “keyword” to refer to these “keyword categories”. In alphabetical order, the categories are:

3 For instance, various studies investigate the effect of building height, shape facade or roof on urban microclimate. Studies that use one of these as keywords are grouped in the keyword category called building form.
1. Adaptation/mitigation;
2. Aspect ratio (i.e. building height/street width);
3. Building form (i.e. height, roof, façade, shape);
4. Canyon (i.e. urban canyon, street canyon);
5. Case comparison/case studies (i.e. scenario analysis);
6. (Convective) heat transfer coefficient (CHTC);
7. Climate (i.e. climate scenarios, climate change, heat wave);
8. Climate sensitive design (i.e. bioclimatic design, climatic de-
9. District comparison (comparison of neighborhoods, streets, buildings in the same urban area);
10. Diurnal variation (i.e. of temperature, velocity);
11. Economy (i.e. feasibility, return of investment);
12. Energy (i.e. building energy demand);
13. Energy budget (i.e. Energy Balance Models);
14. Heat transfer (i.e. modeling, convection, conduction);
15. Human/pedestrian;
16. Materials/albedo (i.e. absorptivity, reflectivity, conductivity);
17. Model coupling (i.e. mesoscale – microscale, BES-CFD);
18. Model development (i.e. new model, tool, software);
19. Optimization (i.e. algorithms, parametric analysis);
20. Orientation;
21. Pollutant dispersion;
22. Radiation (modeling) (i.e. reflections, solar, shading, SVF);
23. Seasonal variation (i.e. temperature, relative humidity);
24. Specific forms (i.e. courtyards, squares);
25. Statistical analysis (i.e. regression, statistical performance indicators);
26. Surface heating (i.e. heated facades, heated ground surfaces);
27. Sustainable/sustainability;
28. Thermal comfort/heat stress;
29. Thermal stability/instability;
30. Turbulent heat fluxes (i.e. latent heat flux, storage heat flux, anthropogenic heat flux);
31. Urban density (i.e. area density, building density);
32. Urban design/planning (i.e. regulations, design competition, guidelines);
33. Urban forms/morphology (i.e. building distribution, urban shape);
34. Vegetation (i.e. greenery, trees, urban parks, green roofs/facades);
35. Ventilation (i.e. pedestrian level ventilation);
36. Water body (i.e. water ponds, fountains);
37. Wind/flow.

2.1. Studies for generic urban areas

CFD studies for generic urban areas typically comprise simple building shapes, such as cubes or rectangular prisms. Early CFD models employed for microclimate analysis considered generic domains for model development and validation purposes. Later studies were generally conducted to investigate generic aspects of fluid flow and/or heat transfer in urban areas that can provide basic insights that subsequently can be translated to understanding these processes in real urban areas.

Fig. 7 depicts the number of publications and the percentage of studies for generic urban areas among all the papers investigated in this review. Generic urban areas in CFD microclimate analysis were quite popular in the early years of this field. Even though the number of publications of this sub-category kept increasing, with the development of new models and successful model validations, their share among all the studies seems to have declined in time. Of all publications reviewed in this paper, 61 of 183 (33.3%) studies focus on generic urban areas.

2.1.1. Studies without validation

Most early studies on generic urban areas did not consider validation. For example, this is the case for the five of the oldest studies in this review: Bruse and Fleer in 1998 [168], Herbert et al. in 1998 [169], Herbert and Herbert in 2002 [170], Dimoudi and Nikolopoulou in 2003 [171], and Baik et al. in 2003 [172]. The sub-category “generic urban areas – without validation” contains 40
#	Authors (Year)	Ref.	Equations / Models	Keywords	Parameters
1	Bruse and Fleer (1998)	[168]	Building blocks	RANS / YMEE	Model development, vegetation, host, urban form, wind
2	Herbert et al. (1998)	[169]	Street canyon	RANS / STKE	Material (albedo), seasonal variation, canyon, energy budget, diurnal variation, photometric, radiant heat fluxes, ventilation
3	Herbert et al. (1998)	[170]	Street canyon	RANS / STKE	Material (albedo), seasonal variation, canyon, energy budget, diurnal variation, photometric, radiant heat fluxes, ventilation
4	Dimoudi and Nikolopoulou (2003)	[171]	Building blocks	Not specified	Vegetation, urban density, case comparison, radiation (SVF), orientation
5	Baik et al. (2003)	[172]	Street canyon	RANS / ED	Heat transfer, canyon, pollutant dispersion, wind (flow), turbulent heat fluxes, coupling
6	Robitu et al. (2004)	[173]	Open space (water pond)	RANS / STKE	Water body, heat transfer, building energy, turbulent heat fluxes, coupling
7	Grignaffini and Vallati (2007)	[177]	Building blocks, open space	RANS / MDKE	Vegetation, climate (scenario analysis), urban morphology, materials, wind
8	Chen et al. (2008)	[179]	Building blocks	RANS / MDKE	Optimization, vegetation, model development, thermal comfort, coupling
9	Zhao et al. (2008)	[180]	Urban street canyon	Not specified	Aspect ratio, materials, orientation, building form (facades), canyon
10	Ooka et al. (2008)	[181]	Building blocks	RANS / MDKE	Vegetation, optimization, thermal comfort, model development, economy
11	Dimitrova et al. (2009)	[182]	Urban street canyon	RANS / ED	Canyon, wind, heat transfer, model development, building form (facades)
12	Okeil (2010)	[183]	Building blocks	RANS / YMEE	Building form, energy (building), urban form, radiation (solar), vegetation
13	Hong et al. (2011)	[184]	Street canyon	RANS / STKE	Vegetation, wind, optimization, canyon, radiation (solar)
14	Park et al. (2012)	[185]	Street canyon	LES / STKE	Canyon, wind, heat transfer, building form (facades)
15	Berkovic et al. (2012)	[186]	Courtyard	RANS / YMEE	Thermal comfort, specific forms (courtyards), radiation (shading), orientation, case comparison
16	Yang et al. (2012)	[189]	Building blocks	RANS / YMEE	Energy (building), urban form, vegetation, model coupling, case comparison
17	Lee et al. (2013)	[190]	Building blocks	RANS / RKE	Building form (height), urban form, ventilation, case comparison, wind
18	Johansson et al. (2013)	[191]	Building blocks, open space	RANS / YMEE	Building form (height), vegetation, urban density, thermal comfort
19	Hong and Lin (2014)	[193]	Building blocks	RANS / STKE	Urban morphology, vegetation, thermal comfort, ventilation, case comparison, urban density, aspect ratio, ventilation, thermal comfort, case comparison

Abbreviations: AKN k-ε [149] (AKNNE); Chen-Kim Extended k-ε (CKEKE) [150]; Deardorff eddy diffusivity [101] (ED); Low Reynold Number k-ε [153] (MEE); Modified k-ω [154] (RKE); RNG k-ε [155] (RNGKE); Smagorinsky-Lilly Subgrid-scale [160]; SST k-ε [156] (SSTKW); Standard k-ω [160] (WRT); Universal thermal climate index [167] (UTCI); Ventilation rate (l/minute) (VR); Water vapor fraction (%) (WVF); Wet black globe temperature (°C) (WBGT); Wind comfort index (-) (WCI); Wind velocity (m/s) (WV); Wind velocity vectors (WVV).
#	Authors (year)	Reference	Urban setting	Equations / Models	Parameters	Validation parameter
1	Gu et al. (2010)	[216]	Open space, street canyon	LES / SLSGS	WV	AT, WV
2	Li et al. (2011)	[217]	Street canyon	LES / SLSGS	WV	AT, PC, WV
3	Mirmiri and Haghighat (2010)	[218]	Building blocks, urban street	STKE	AT	AT, ST
4	Koak et al. (2011)	[219]	Street canyon	LES / SLSGS	WV	AT, PC, WV
5	Luo and Li (2011)	[220]	Building blocks	LES / SLSGS	WV	AT, PC, WV
6	Qu et al. (2011)	[221]	Building blocks	LES / SLSGS	WV	AT, PC, WV
7	Mirzaei and Haghighat (2012)	[222]	Building blocks, urban street	STKE	AT	AT, ST
8	Pillai and Yoshie (2012)	[223]	Building blocks	RANS / RNGKE	AT	AT, ST
9	Kwak et al. (2011)	[224]	Street canyon	RANS / RNGKE	AT	AT, ST
10	Luo and Li (2011)	[225]	Street canyon	RANS / RNGKE	AT	AT, ST
11	Mirzaei and Haghighat (2013)	[226]	Building blocks, urban street	RANS / RNGKE	AT	AT, ST
12	Pillai and Yoshie (2013)	[227]	Building blocks	RANS / RNGKE	AT	AT, ST
13	Liu et al. (2013)	[228]	Street canyon	LES / SLSGS	WV	AT, PC, WV
14	Mirzaei and Haghighat (2014)	[229]	Building blocks, urban street	STKE	AT	AT, ST
15	Bomfoll and Kang (2014)	[230]	Street canyon	LES / SLSGS	WV	AT, PC, WV
16	Qu et al. (2014)	[231]	Street canyon	LES / SLSGS	WV	AT, PC, WV
17	Taleghani et al. (2014)	[232]	Street canyon	LES / SLSGS	WV	AT, PC, WV
18	Pillai and Yoshie (2014)	[233]	Street canyon	LES / SLSGS	WV	AT, PC, WV
19	Liu et al. (2014)	[234]	Street canyon	LES / SLSGS	WV	AT, PC, WV
20	Taleghani et al. (2015)	[235]	Street canyon	LES / SLSGS	WV	AT, PC, WV
21	Pillai and Yoshie (2015)	[236]	Street canyon	LES / SLSGS	WV	AT, PC, WV

Abbreviations: AKN k-
ε Subgrid-scale [159] (DSGS); Durbin k-
ε Subgrid-scale [151] (DKE); Eddy Di
usivity [101] (ED); Low Reynold Number k-
ε [149,152] (LRNKE); Miao E-
ε [153] (MEE); Modified k-
ε [131] (MDKE); Realizable k-
ε [155] (RNGKE); Smagorinsky-Lilly Subgrid-scale [160]; SST k-
ω [157] (STKE); Yamada and Mellor E-
ε [158] (YMEE). Air change rate (1/
hour) (ACH); Air quality index (-) (AQI); Air temperature (°C) (AT); Building energy consumption (W) (BEC); Convective heat transfer coefficient (W/m²K) (CHTC); Dry bulb temperature (°C) (DBT); Economy (currency) (ECN); Froude number (-) (Fn); Heat flux (W/m²) (HF); Indoor air temperature (°C) (IAT); Mean radiant temperature (°C) (MRT); Mean radiant temperature (°C) (PET); Predicted mean vote (-) (PMV); Extended PMV (-) (EPMV); Pressure distribution (Pa/m) (PD); Relative humidity (%) (RH); Richardson number (-) (Ri); Sky view factor (-) (SVF); Solar access index (-) (SAI); Solar radiation (W/m²) (SR); Standard effective temperature (°C) (SET); Statistical Performance Indicators (various, e.g. Correlation coefficient) (SPI); Temperature-humidity index (-) (THI); Temperature of equivalent perception (°C) (TEP); Thermal Sensation Perception [166] (TSP); Turbulence dissipation rate (m²/s³) (TDR); Turbulent kinetic energy (m²/s²) (TKE); Universal thermal climate index (°C) [167] (UTCI); Ventilation rate (l/minute) (VR); Water vapor fraction (%) (WVF); Wet black globe temperature (°C) (WBGT); Wind comfort index (-) (WCI); Wind velocity (m/s) (WV); Wind velocity vectors (WVV).
studies, which are summarized in Table 1.

Most early studies focused on new model developments, demonstrating the suitability of CFD for microclimate analysis. For instance, the study by Bruse and Fleer [168] focused on surface, plant and air interaction at the microscale and is considered as the original documentation of the CFD microclimate software ENVI-Met, which is a tool increasingly employed by researchers in later years.

In the late 1990s, EBM s were the main tool used for the numerical analysis of urban microclimate. In the early years of CFD microclimate analysis, the influence of EBM methodology on CFD simulations is evidenced in the following ways: (1) CFD studies have averaged most of the turbulent heat fluxes in urban canopies similar to the way they were used in EBMs [169,170,172,173]; (2) the terms, which were popular in EBMs, such as “energy budget” and “turbulent heat fluxes,” were very often used as the main keywords in these early CFD studies.

The five most commonly used keywords in this sub-category are vegetation (19 of 40 studies), thermal comfort (16 of 40 studies), case comparison (15 of 40 studies), wind (flow) (12 of 40 studies) and canyon (12 of 40 studies). Keywords such as climate sensitive design, sustainable and thermal stability do not occur as keywords in any of these studies. 7

2.1.2. Studies with validation

Validation of CFD studies for generic urban areas is typically performed with data from wind-tunnel measurements [15,19] whereas validation with field measurements is less common [206]. Many studies have been performed on the CFD validation of urban flow patterns in terms of velocity fields [29] but these studies are often conducted for isothermal conditions and as such are not within the scope of this review. As mentioned at the beginning of this section, a study is considered “with validation” as long as there is at least one parameter related to velocity or temperature fields, which is compared with measurement data. The sub-category “generic urban areas – with validation” contains 21 studies, which are summarized in Table 2.

Some of the validation studies are conducted to investigate and demonstrate the suitability and accuracy of newly developed CFD approaches [207–213]. Others focus on the CHTC of individual buildings in urban areas [210,214,215], which in turn can be used for coupling CFD with BES [210]. Validation studies on generic urban areas can be the first step towards justification of a CFD approach in modeling the cooling effect of adaptation measures, before implementing the same approach on real urban areas. Some of the studies for instance propose validated approaches for the cooling effect from vegetation sources [209] and from water bodies [213] on generic urban domains.

The five most commonly used keywords in this sub-category are wind (flow) (10 of 21 studies), canyon (9 of 21 studies), case comparison (7 of 21 studies), model development (7 of 21 studies) and surface heating (6 of 21 studies). Note however that keywords such as climate sensitive design, energy budget, optimization, seasonal variation, sustainability and urban design do not occur as keywords in any of these 21 studies. 5

2.2. Studies for real urban areas

The term “real urban areas” can cover only a few buildings to a portion of a city. CFD simulations on real urban areas are performed either as practical case studies or – in case of studies with validation – to investigate the possibilities and limitations of CFD for real urban areas that are generally characterized by a complexity that substantially exceeds that of generic urban areas.

5 Although these words might be used within the text itself, here, they are not present in the keyword categories as extracted from the abstract and the list of keywords.

6 Although these words might be used within the text itself, here, they are not present in the keyword categories as extracted from the abstract and the list of keywords.
Authors (year)	Ref.	Location (Country)	Equations / Models	Keywords	Parameters	
1	Feng et al. (2010)	[227] Foshan, Guangdong (China)	RANS / MIE	Urban planning, coupling, monsoon	ST, PMV, ST, WV	
2	Robitu et al. (2006)	[228] Pié-driven Square, Nancy (France)	RANS / STKE	Vegetation, water body, thermal comfort	model development, case comparison, orography, district comparison, case comparison,	ST, PMV, ST, WV
3	Y. and Filan (2006)	[229] National University of Singapore (Singapore)	RANS / YHME	Micrometeorology	model development, case comparison,	ST, PMV, ST, WV
4	Wong et al. (2007)	[230] Li Yan (China)	RANS / STKE	Urban planning, water body, vegetation	building form (height), model development, case comparison,	ST, PMV, ST, WV
5	Hsiao et al. (2008)	[231] Wuhan City (China)	RANS / STKE	Urban planning, water body, vegetation	building form (height), model development, case comparison,	ST, PMV, ST, WV
6	Andrade and Alcoforado (2008)	[232] Telheiras, Lisbon (Portugal)	RANS / YMEE	Thermal comfort, urban form	seasonal variation, district comparison,	ST, PMV, ST, WV
7	He and Hoyano (2009)	[233] Tonami (Japan)	RANS / AKNKE	Thermal comfort, coupling	model development, materials, vegetation	ST, PMV, ST, WV
8	Chen et al. (2009)	[234] Otemachi and Kyobashi (Japan)	RANS / STKE	Mitigation, thermal comfort	turbulent heat fluxes, district comparison, case comparison,	ST, PMV, ST, WV
9	Fahmy and Sharples (2009)	[235] 5th Community, Cairo (Egypt)	RANS / YMEE	Case comparison, vegetation, urban form	aspect ratio, building density	PMV
10	Fahmy et al. (2010)	[236] Misr Al-Gadida, Cairo (Egypt)	RANS / YMEE	Vegetation, surface fluxes, radiation	diurnal variation, district comparison, case comparison,	AT, MRT, PET
11	Hsieh et al. (2010)	[237] Tokyo (Japan)	RANS / STKE	Material (albedo), wind	vegetation, urban planning,	AT, ST, WV
12	Al-Sallal and Al-Rais (2011)	[238] Al-Ras, Dubai (United Arab Emirates)	RANS / STKE	Ventilation, urban form, canyon	thermal comfort, seasonal variation,	AT, WV
13	Ashie and Kono (2011)	[239] Nihonbashi, Tokyo (Japan)	RANS / STKE	Urban design, case comparison, wind	climate-sensitive design, coupling	AT, WV
14	Bouyer et al. (2011)	[240] Lyon (France)	RANS / STKE	Energy (building), vegetation, urban design	coupling, materials	AT, BEC
15	Fintikakis et al. (2011)	[241] Tirana (Albania)	RANS / STKE	Climate sensitive design, materials, vegetation	thermal comfort, specific forms (squares)	AT, ST, WV
16	Kaoru et al. (2011)	[242] Osaka City (Japan)	RANS / STKE	Radiation, diurnal variation	case comparison, model development,	AT, ST, WV
17	Fahmy and Sharples (2011)	[243] 5th Community, Cairo (Egypt)	RANS / YMEE	Urban design, case comparison, thermal comfort	urban form, urban density	PMV
18	Synnefa et al. (2011)	[244] Ag. Paraskevi, Athens (Greece)	RANS / CKEKE	Case comparison, materials	thermal comfort, climatic design,	AT, ST, WV
19	Boukhabla and Alkama (2012)	[245] Street of the Republic, Biskra (Algeria)	RANS / YMEE	Urban design, vegetation, sustainability	climate (dry and arid), radiation	AT, PMV, ST, WV
20	Palme and Ramirez (2013)	[246] 1866 Square, Chania (Greece)	RANS / RNGKE	Urban design, case comparison, thermal comfort	specific forms (squares)	AT, ST, PMV, ST, WV
21	Dütemeyer et al. (2013)	[247] Elisabeth-Stift Erle, Gelsenkirchen (Germany)	RANS / YMEE	Urban design, vegetation, climate (future scenarios)	adaptation, vegetation, urban planning,	AT, ST, WV
22	Taleb and Hijleh (2013)	[248] Jumairah and Bastakiyah, Dubai (United Arab Emirates)	RANS / YMEE	Urban design, case comparison, urban form	noreferrer, wind, thermal comfort,	AT, SVF, WV
23	Egerhazi et al. (2013)	[249] Szeged (Hungary)	RANS / YMEE	Seasonal variation, diurnal variation	thermal comfort,	PET, WV
24	Radhi et al. (2013)	[250] Amwaj Islands and Wadi Al-Sail (Bahrain)	RANS / RNGKE	District comparison, wind, thermal comfort, urban form	AT, PMV, ST, WV	
25	Maragkogiannis et al. (2013)	[251] Elisabeth-Stift Erle, Gelsenkirchen (Germany)	RANS / YMEE	Urban design, vegetation, climate (future scenarios)	adaptation, vegetation, urban planning,	AT, PET, WV
26	Küster et al. (2013)	[252] Thal-Latino Urban Core, Phoenix (USA)	RANS / CKEKE	Urban design, vegetation, climate (future scenarios)	adaptation, vegetation, urban planning,	AT, PET, WV
27	Taleb and Hijleh (2017)	[253] Amwaj Islands and Wadi Al-Sail (Bahrain)	RANS / RNGKE	Urban design, vegetation, climate (future scenarios)	adaptation, vegetation, urban planning,	AT, PET, WV

(continued on next page)
#	Authors (year)	Ref.	Location (Country)	Equations / Models	Keywords	Parameters
34	Miao et al. (2013)	[260]	Zhongguancun, Beijing (China)	RANS / STKE	Coupling pollutant dispersion, wind, thermal comfort, urban design	AT, TKE, WV
35	Frohlich and Matzarakis (2013)	[261]	The Place of the Old Synagougue, Freiburg (Germany)	RANS / YMEE	Radiation (SVF), case comparison, thermal comfort, urban design	AT, TKE, WV, SR
36	Egerhazi et al. (2013)	[262]	Szeged (Hungary)	RANS / YMEE	Materials, vegetation, water body, urban design, case comparison	AT, TKE, WV, SR
37	Tiwary and Kumar (2014)		Not mentioned	RANS / YMEE	Vegetation, seasonal variation, wind, materials (albedo), pollutant dispersion	AT, TKE, WV, SR
38	Taleb and Taleb (2014)	[264]	Dubai International Academic City, Dubai (United Arab Emirates)	RANS / YMEE	Thermal comfort, urban planning, orientation, case comparison, urban design	AT, TKE, WV, SR
39	Ambrosini et al. (2014)	[265]	Old town, Teramo (Italy)	RANS / YMEE	Building form (roof), vegetation, materials (albedo), case comparison, diurnal variation	AT, TKE, WV, SR
40	Gros et al. (2014)	[266]	Pin Sec district, Nantes (France)	RANS / STKE	Materials (albedo), case comparison, energy (building), coupling, model development	AT, TKE, WV, SR
41	Ketterer and Matzarakis (2014)	[267]	City center, Stuttgart (Germany)	RANS / YMEE	Thermal comfort, model development, vegetation, case comparison, urban design	AT, TKE, WV, SR
42	Ketterer and Matzarakis (2014)	[268]	Stuttgart-West, Stuttgart (Germany)	RANS / YMEE	Urban planning, case comparison, vegetation, aspect ratio, orientation	AT, TKE, WV, SR
43	Yi and Peng (2014)			RANS / YMEE	Climate (future scenarios), case comparison, energy (building), coupling, urban design	AT, TKE, WV, SR
44	Peng and Elwan (2014)			RANS / YMEE	Climate (future scenarios), energy (building), coupling, urban design	AT, TKE, WV, SR
45	Lehmann et al. (2014)			RANS / YMEE	Vegetation, urban form, adaptation, climate (change), urban design	AT, TKE, WV, SR
46	Ciaramella et al. (2014)			RANS / YMEE	District comparison, thermal comfort, urban form, seasonal variation, bioclimatic design	AT, TKE, WV, SR
47	Taleghani et al. (2014)			RANS / YMEE	Specific forms (courtyards), water body, materials (albedo), mitigation, thermal comfort	AT, TKE, WV, SR
48	Sodoudi et al. (2014)			RANS / YMEE	Materials (albedo), vegetation, case comparison, energy (building), coupling, model development	AT, TKE, WV, SR
49	Peng et al. (2015)			RANS / YMEE	Urban planning, case comparison, urban form, sustainability, thermal comfort	AT, TKE, WV, SR
50	Conry et al. (2015)			RANS / YMEE	Climate sensitive design, urban design, specific forms (squares), vegetation, case comparison, urban design	AT, TKE, WV, SR
51	Tsilini et al. (2015)			RANS / YMEE	Vegetation, case comparison, urban design, energy (building), ventilation, materials (albedo)	AT, TKE, WV, SR
52	O’Malley et al. (2015)			RANS / YMEE	Vegetation, materials (albedo), water body, case comparison, urban design	AT, TKE, WV, SR
53	Wang et al. (2015)			RANS / YMEE	Climate sensitive design, urban design, specific forms (squares), ventilation, materials (albedo)	AT, TKE, WV, SR
54	Peng et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
55	Conry et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
56	Peng et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
57	Yang et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
58	An et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
59	Wang et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR
60	Cao et al. (2015)			RANS / YMEE	Case comparison, energy (building), urban form, ventilation, materials (albedo)	AT, TKE, WV, SR

(continued on next page)
air temperature is relatively straightforward and especially in the last years, many campaigns are undertaken for measurement data, although the suitability and availability of these data for scientific use and especially for validation can be a limitation. The reason is that the complexity and inherent variability of the meteorological conditions not only require careful measurement of a large number of parameters (to be used as boundary conditions in the simulations) but also a very complete reporting of urban area, measurement set-up, measurement accuracy, etc., without which a detailed and thorough validation exercise will not be possible [296,301,306,307]. The sub-category "real urban areas – with validation" contains 57 studies, 47 of which use air temperature as one of the validation parameters. The studies belonging to this sub-category are summarized in Table 4.

Similar to the studies on real urban areas without validation, all the studies in this sub-category employed the RANS equations. However, different from the studies without validation, studies in this sub-category have radiation as a relatively popular keyword (16 of 57 studies). That is mostly because recent studies on human thermal comfort demonstrated the importance of thermal radiation (e.g. mean radiant temperature) on thermal comfort levels. Therefore, studies try to validate their CFD simulation results based on radiation parameters.

The five most commonly used keywords in this sub-category are thermal comfort/heat stress (29 of 57 studies), vegetation (28 of 57 studies), materials/albedo (19 of 57 studies), case comparison (20 of 57 studies) and radiation (16 of 57 studies). On the other hand, keywords such as energy budget, economy, optimization, surface heating and thermal stability do not occur as keywords in any of these 57 studies.

3. Comparative analysis of CFD studies on urban microclimate

3.1. Urban setting/location investigated

Considering generic urban areas, five studies in this sub-category [177,191,216,218,223] considered more than one type of urban setting. The majority of generic studies focused on generically distributed building blocks (36 of 61 studies, or 59.0%), followed by street canyons (15 of 61 studies, or 24.6%), open spaces (6 of 61 studies, or 9.8%), urban street canyons (15 of 61 studies, or 24.6%), open spaces (6 of 61 studies, or 9.8%) and courtyards (3 of 61 studies, or 4.9%).

Studies for generically distributed building blocks are mostly case comparisons without validation and they focus on the effect of different urban geometries (e.g. orientation, density) [174,176,178,189,197,223], vegetation patterns [171,193,199], building materials [188] and building forms [190,191]. Studies on building blocks that include validation are in most of the cases targeted at more fundamental fluid flow or heat transfer aspects [207,210,214,215,225]. Studies for street canyons and urban street canyons typically investigate canyon related aspects, such as the effect of aspect ratio [175,180,194,224] and wind/ventilation [172,182,184,185,195,196,222].

The majority of the studies on real urban areas are conducted for locations in mid-latitude climates and in the developed regions of the world (Fig. 9). Fig. 9 seems to indicate a lack of variety in the study locations. Although this review comprises 122 studies on real urban areas, the number of different cities in these studies is only 74 and the number of countries is only 30. Ranked according to the number of studies, the top five urban locations are Phoenix (USA) (7 studies), Hong Kong (China) and Cairo (Egypt) (both 6 studies), Tokyo (Japan) (5 studies) and Wuhan (China) (4 studies). Similarly, the top five countries are China (23 studies), Japan (12 studies), USA (11 studies), Germany (9 studies) and Greece (8 studies).

Although these words might be used within the text itself, here, they are not present in the keyword categories as extracted from the abstract and the list of keywords.
#	Authors (year)	Ref.	Location (Country)	Equations / Models	Validation	Keywords	Parameters
1	Takahashi et al. (2004)	[308]	Several locations in Kyoto City (Japan)	RANS / MDKE ST	AT, ST	Turbulent heat fluxes, heat transfer, coupling, model development, diurnal variation, turbulent heat fluxes, vegetation, urban form, materials (albedo), building form (height), district	
2	Chen et al. (2004)	[309]	Shenzhen City (China)	RANS / MDKE ST	AT, WY	Heat transfer, thermal comfort, turbulent heat fluxes, building form (height), diurnal variation, vegetation, urban form, materials (albedo), building form (height), district	
3	Emmanouil and Fernado (2007)	[310]	Shenzhen City (China)	RANS / STKE AT	AT, WY	Wind, model development, building form (height), district, materials, building form (height)	
4	Ashie et al. (2007)	[311]	Central Tokyo, Tokyo (Japan)	RANS / STKE AT	AT, WY	Wind, model development, building form (height), district, materials, building form (height)	
5	Yamaoka et al. (2008)	[312]	Mido-Suji Street, Osaka (Japan)	RANS / MDKE AT	AT, WY	Canyon, diurnal variation, thermal comfort, urban density, urban planning	
6	Priyadarsini et al. (2008)	[313]	Central Business District, Singapore (Singapore)	RANS / STKE AT	AT, WY	Building form (aspect), materials, mitigation, canyon, urban density, urban planning	
7	Kakon et al. (2009)	[314]	Motijheel, Dhanmondi, and Siddeswari, Dhaka (Bangladesh)	RANS / YMEE AT	AT, WY	Building form (aspect), materials, mitigation, canyon, urban density, urban planning	
8	Jee et al. (2010)	[315]	Suwon (South Korea)	RANS / STKE WV	WV	Vegetation, materials, coupling, turbulent heat fluxes, radiation (shading)	
9	Krüger et al. (2011)	[316]	XV de Novembro Street, Curitiba (Brazil)	RANS / YMEE WV	WV	Thermal comfort, radiation (SVF), urban planning, wind (flow)	
10	Yang et al. (2011)	[317]	The Hong Kong Polytechnic University Campus, Hong Kong (China)	RANS / RNGKE, STKE PR	PR, PMV	Ventilation, thermal comfort, orientation, seasonal variation, urban density	
11	Chow and Brazel (2012)	[318]	Tempe and West Phoenix, Phoenix (USA)	RANS / YMEE AT	AT, WY	Vegetation, case comparison, sustainability, thermal comfort	
12	Liu et al. (2012)	[319]	Downtown Beijing (China)	RANS / STKE AT	AT, WY	Climate design, materials (albedo), vegetation, thermal comfort	
13	Shahidan et al. (2012)	[320]	Persiaran Perdana, Putrajaya (Malaysia)	RANS / YMEE AT	AT, WY	Urban design, mitigation, vegetation, energy (building), specific forms (squares)	
14	Maras et al. (2013)	[321]	Aachen Central Station, Aachen (Germany)	RANS / YMEE PMV	PMV	Heat stress, vegetation, urban density, specific forms (squares)	
#	Authors (year)	Ref.	Location (Country)	Equations / Models	Validation parameter	Keywords	Parameters
----	----------------	-------	--------------------	--------------------	----------------------	---	--------------------------
27	Müller et al. (2013)	[334]	Oberhausen (Germany)	RANS / YMEE	AT, RH	Adaptation, thermal comfort, vegetation, radiation (shading), water body	AT, RH, PET
28	Goldberg et al. (2013)	[335]	Friedrichstadt and Altstadt, Dresden (Germany)	RANS / YMEE	AT, SR	Urban planning, thermal comfort, pedestrian, district comparison, case comparison	AT, SR, UTCI
29	Srivanit and Hokao (2013)	[336]	Honjo Campus of Saga University, Saga (Japan)	RANS / YMEE	AT, RH, SR, WV	Vegetation, pedestrian, case comparison, building form (roof), diurnal variation	AT, RH, SR, WV
30	Su et al. (2014)	[337]	HoHsi University Campus, Nanjing (China)	RANS / YMEE	AT	Vegetation, coupling, sustainable, urban form, district comparison	AT
31	Hedquist and Braziel (2014)	[338]	Central Phoenix, Phoenix (USA)	RANS / YMEE	AT	Thermal comfort, seasonal variation, district comparison, pedestrian, materials	AT, PMV, ST
32	Middel et al. (2014)	[339]	Central Phoenix, Phoenix (USA)	RANS / YMEE	AT, ST	Urban form, urban design, vegetation, case comparison, radiation (shading)	AT, ST
33	Maggiotto et al. (2014)	[340]	Several locations in Lecce (Italy)	RANS / YMEE	AT	Bioclimatic design, materials, thermal comfort, case comparison, radiation (reflections)	AT, ST, WV
34	Zoras et al. (2014)	[341]	Central Phoenix, Phoenix (USA)	RANS / YMEE	AT, SR, WV	Pedestrian, thermal comfort, district comparison, coupling, urban form	AT, MRT, RH, SR, ST, UTCI, WV
35	Park et al. (2014)	[342]	Nanaimo, British Columbia (Canada); Changwon (South Korea)	RANS / YMEE	SR	Pedestrian, thermal comfort, district comparison, coupling, urban form	AT, MRT, PET, WV
36	Tang et al. (2014)	[343]	Shang-gan-tang village (China)	RANS / STKE	AT	Bioclimatic design, urban planning, vegetation, sustainable, water body	AT, WV
37	Minella et al. (2014)	[344]	Railway Station, Geneva (Switzerland)	RANS / YMEE	MRT, RH, SR, WV	Thermal comfort, vegetation, case comparison, urban design, urban form	AT, MRT, RH, SPI, UTCI, WV
38	Skelhorn et al. (2014)	[345]	Several locations in Manchester (England)	RANS / YMEE	AT, ST	Vegetation, adaptation, climate (change), building form (height), district comparison	AT, ST
39	Du et al. (2014)	[346]	Shuangjiang Town, Chongqing (China)	RANS / STKE	AT, WV	Building form, thermal comfort, diurnal variation, wind, energy (building)	AT, BEC, WV
40	Dimoudi et al. (2014)	[347]	Center of Serres (Greece)	RANS / STKE	AT, ST, WV	Materials, bioclimatic design, mitigation, case comparison, radiation (reflections)	AT, ST, WV
41	Aeoero and Herranz-Pascual (2015)	[348]	Several locations in Bilbao (Spain)	RANS / YMEE	AT, MRT, WV	Thermal comfort, district comparison, diurnal variation, statistical analysis, urban form	AT, MRT, PET, WV
42	Wang et al. (2015)	[349]	Assen (Netherlands)	RANS / YMEE	AT	Radiation (shading), vegetation, diurnal variation, seasonal variation, thermal comfort	AT, PMV, SPI
43	Tominaga et al. (2015)	[350]	Central Hadano (Japan)	RANS / RNGKE	AT, RH	Water body, case comparison, model development, wind, diurnal variation	AT, RH, ST, WV
44	Tan et al. (2015)	[351]	Tsim Sha Tsui and Sham Shui Po, Hong Kong (China)	RANS / YMEE	MRT, ST	Vegetation, mitigation, urban density, urban form, radiation (SFP)	AT, HF, MRT, ST, SVF, WV
45	Salata et al. (2015)	[352]	Sapienza University, Rome (Italy)	RANS / YMEE	AT, MRT, RH, SR	Thermal comfort, case comparison specific forms (courtyards), material, mitigation	AT, MRT, RH, SR, WV
46	Emmanuel and Loon nole (2015)	[353]	Several locations in Glasgow (Scotland)	RANS / YMEE	AT	Coupling, vegetation, different districts, adaptation, climate (future scenarios)	AT, ST
47	Gracik et al. (2015)	[354]	Penn State Campus, University Park (USA)	RANS / RNGKE, RKE	AT	Urban density, diurnal variation, coupling, energy (building), wind	AT, BEC, ST
48	Toparlar et al. (2015)	[355]	Bergpolder Zuid, Rotterdam (Netherlands)	RANS / RKE	ST	Building form, adaptation, thermal comfort, model development, urban form	AT, ST, WV
49	Janicke et al. (2015)	[356]	Berlin Institute of Technology, Berlin (Germany)	RANS / YMEE	AT, MRT, RH	Vegetation, thermal comfort, case comparison, adaptation, building form (façade)	AT, MRT, RH
50	Song and Park (2015)	[357]	Several locations in Changwon City (South Korea)	RANS / YMEE	AT	Vegetation, materials, district comparison, statistical analysis, radiation (reflections)	AT, SPI, ST
51	Liu et al. (2015)	[358]	Penn State Campus, University Park (USA)	RANS / MDKE	AT	Building form, energy (building), CHTC, coupling, urban density	AT, BSC, CHTC, ST
52	Elhabawi et al. (2015)	[359]	Cairo (Egypt)	RANS / YMEE	AT, MRT, RH	Thermal comfort, climate, urban form, pedestrian, radiation	AT, MRT, RH, SR
53	Wang and Zacharis (2015)	[360]	Beijing (China)	RANS / YMEE	AT	Vegetation, mitigation, sustainability, thermal comfort, urban design	AT, ECN, MRT
Table 4 (continued)

#	Authors (year)	Ref.	Location (Country)	Equations / Models	Validation Parameters
54	Yang et al. (2015)	[359]	Singapore (Singapore)	RANS / YMEE	AT, MRT, RH, WV, aspect ratio, thermal comfort, urban form
55	Peron et al. (2015)	[360]	Venice (Italy)	RANS / YMEE	AT, MRT, PET, RH, WV, mitigation, case comparison, materials (albedo), vegetation, building form, case comparison
56	Zoras (2015)	[361]	Arta (Greece)	RANS / SSTKW	AT, ST, WV, climate sensitive design, adaptation, thermal comfort, specific forms (open space), case comparison

Abbreviations: AKN k-ε [149], Chen-Kim Extended k-ε [150], Deardorff ε Subgrid-scale [159], Durbin k-ε [151], Eddy Diffusion k-ε [154], RNG k-ε [157], Yamada and Mellor E-ε [158].

3.2. CFD equations/models

Among the investigated 183 studies, 7 of them did not specify the approximate form of the governing equations used. As for the remaining 176 studies, 169 (96.0%) used only RANS, 5 used only LES (2.8%) and 2 used both LES and RANS (1.1%) as approximate form of the governing Navier-Stokes equations.

A microclimatic CFD simulation that couples the temperature and velocity fields has a higher computational cost and the choice of LES over RANS evidently will increase this cost. It is expected that the increased computational cost and the often sufficient accuracy of RANS [146,304,363,364] are the two main reasons why the vast majority of studies was performed with RANS, even though LES is generally considered to be more accurate than RANS [19,29,73,86,89,292,300,304,363–368]. Apart from RANS and LES, the third approach often used in CFD simulations, that is Direct Numerical Simulation (DNS) is not utilized among the microclimate studies investigated here. Due to its dominant use in the investigated studies, the remainder of this section will focus on the RANS approach.

Fig. 10 shows the distribution of the use of turbulence models in these studies. Among the 171 studies using RANS, 6 of them [201,210,220,291,324,353] have considered two or more turbulence models.

The most commonly used turbulence model is the Yamada and Mellor E-ε [158] turbulence model (used in 86 studies, or 49% of total). Although this turbulence model is not explicitly recommended or adopted in the CFD best-practice guidelines [19,75–78], its popularity results from it being the only available turbulence model option in the microclimate simulation tool ENVI-Met [168]. The second most popular turbulence model is the standard k-ε [157] model (used in 45 studies – 25%). The RNG k-ε [155], Realizable k-ε [154] and Modified k-ε [131] turbulence models appear to have similar popularity compared with each other. The standard k-ε model [157] is one of the most popular turbulence models among CFD studies [76] but as argued in several publications [75,95,364], some improved models, such as the realizable k-ε model [154] can show better performance in resolving the mean flow field. Fig. 11 illustrates the use of turbulence models over the years 2010–2015 and the popularity of YMEE (the turbulence model used in ENVI-met) as mentioned before. The figure also shows that except for the year 2014, more recent CFD studies are now using turbulence models other than standard k-ε more often.

3.3. Target parameters

As shown in the foregoing tables, the majority of the studies considered more than one target parameter. Fig. 12a shows the distribution of the target parameter categories used and Fig. 12b shows the distribution of the seven most used target parameters. Most studies considered temperature related parameters, especially air temperature for comparison, evaluation or validation purposes. This parameter is followed by wind velocity, surface temperature and mean radiant temperature.

Target parameters related to fundamental fluid flow or heat transfer, such as TKE and CHTC, are mostly used in studies with generic urban areas. Among the eight studies that considered CHTC as a target parameter, seven were conducted in generic urban domains and for the TKE, this ratio is found to be 4/5. This is further evidence that studies on real urban areas do not typically consider parameters related to fundamental flow aspects, which can be explained by their larger complexity or by their difficulty for collecting measurement data. Economic parameters and statistical performance indicators can be used in communicating the results from urban microclimate studies to professionals from other disciplines, such as policy makers, as these aspects may lead to more generalized conclusions. However, although these target parameters are considered in some recent CFD urban microclimate studies, their use is still limited, with only 2 of 183
studies using economical parameters and 4 of 183 using statistical performance indicators.

As CFD has demonstrated its capability for involving multiple scales, there is an increasing interest in linking the results from microclimate analysis with building scale aspects, such as building energy consumption and indoor air temperature. Even though these parameters are not yet considered quite often (BEC 16 of 183 studies and IAT 1 of 183 studies), while the oldest study specifying one of these parameters is only from the year 2011 [182], 11 of these studies are from the last two years, demonstrating the increasing interest.

3.4. Keywords

As described in Section 2, keywords are selected either directly from the provided keywords list or from the titles and abstracts of investigated papers. Keywords with similar or interchangeable use were grouped in 37 keyword categories and five keywords per study were identified, as listed in Tables 1–4. According to this procedure, the most used three keywords in CFD urban microclimate studies are: vegetation (90 studies), case comparison (78 studies) and thermal comfort/heat stress (77 studies).

Apart from the number of studies, in this paper, we suggest and apply additional metrics for documenting the annual use of the keywords. One of them is the first year a keyword is introduced in CFD urban microclimate studies (First Year Index = FYI). A second metric called “Weighted Year Index” (WYI) is defined as the weighted average year of a particular keyword’s usage:

Fig. 9. Distribution of the locations of the CFD microclimate studies focusing on real urban areas. Every orange dot represents one study.

Fig. 10. Distribution of the turbulence models in studies with RANS simulations. Abbreviations: AKN k-ε [369] (AKNKE); Chen-Kim Extended k-ε (CKEKE) [150]; Durbin k-ε [151] (DKE); Eddy Diffusivity [101] (ED); Low Reynolds Number k-ε [149,152] (LRNKE); Miao E-ε [153] (MEE); Modified k-ε [131] (MDKE); Realizable k-ε [154] (RKE); RNG k-ε [155] (RNGKE); SST k-ω [156] (STSKW); Standard k-ε [157] (STKE); Yamada and Mellor E-ε [158] (YMEE).

Fig. 11. Percentage distribution of the turbulence models used in the last 6 years for closure in RANS studies. Remaining turbulence models include AKNKE, CKEKE, DKE, ED, LRNKE, MDKE, MEE, RKE, RNGKE and STSKW.

Fig. 12. Distribution of the studies based on the target parameters considered. a) Target parameter categories; b) Seven most used target parameters.
with y the year, y_0 the year of the earliest study, y_n the year of the latest study (as investigated in this paper), and k_y is the number of times a keyword is used in the y^{th} year. This metric indicates the year associated with a keyword’s average use. A lower WYI means that the use of a particular keyword is mainly situated in earlier years, while a higher WYI means that the keyword use is mainly situated in recent years.

According to the analysis, of all 37 keywords, the keyword with the highest FYI and WYI is “statistical analysis” (FYI = 2014, WYI = 2014.8), while that with the lowest FYI is “wind / flow” (FYI = 1998) and that with the lowest WYI is “energy budget” (WYI = 2000). The annual use of these keywords along with that of the most common keyword (vegetation) is illustrated in Fig. 13.

A more comprehensive view of the relationship between the historical use of keywords and the associated number of studies, or between the FYI and the WYI and number of studies, is given in Fig. 14. This chart graphically demonstrates the number of times each keyword is used (by size of the circle), whether a keyword is relatively new or old (indicated by FYI on horizontal axis) and whether a keyword is used more often in earlier or more recent years (indicated by the WYI on the vertical axis). The average overall metrics for the ensemble of all keywords are: average number a keyword is used: 24.7, average FYI: 2004.3 and average WYI: 2011.9. The latter two numbers define the origin of the coordinate system in Fig. 14.

Fig. 14 shows that the keyword use in CFD studies of urban microclimate has transitioned from keywords related to model development (heat energy budget, turbulent heat fluxes, model development) to keywords related to urban scale adaptation measures (e.g., adaptation, climate sensitive design) and energy (e.g., building energy, sustainable). Highly used keywords with large circles in Fig. 14, such as...
vegetation, case comparison, thermal comfort, materials/albedo and urban design/planning are keywords which are used since the early years of this research field and are still very commonly employed.

4. Discussion and future perspectives

4.1. Validation studies

According to the American Institute of Aeronautics and Astronautics (AIAA), validation is “the process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model” [370]. According to several CFD best practice guidelines [19, 75–78, 292], CFD simulations should be evaluated critically and the results should only be considered reliable after comparing with some measurement data. If measurement data are hard to obtain for a specific case, sub-configuration validation can be performed for the intended use of the model [19]. One example of a sub-configuration validation is the study by Gromke et al. [275] where the authors used a vegetation model which is validated with measurement data in separate CFD simulations and then used the same model in a real urban area. The advantage of sub-configuration validation can be relevant for complex studies with different physical models, as the classical validation of the whole simulation setup can be difficult to conduct due to the uncertainty in parameters.

According to this review, the majority of the CFD urban microclimate studies (105 of 183 studies) are conducted without validation. The percentage share of the studies without validation seems to have remained rather stable in the last years, as demonstrated in Fig. 15. However, it is imperative that CFD urban microclimate studies include validation much more often to ensure the desired reliability and predictive capability.

The most common reason for the absence of validation in CFD microclimate studies might be the lack of relevant and well-documented measurement data. Measurement campaigns on urban areas can have some challenges such as logistic difficulties, data quality issues (e.g., ventilated vs non-ventilated temperature measurements) and problems with spatial representativeness.

Although these challenges remain, difficulties in obtaining relevant data can be overcome in a much better-connected World. Internet resources can be a good alternative for measurement data as large datasets are now within reach. For instance, surface temperature data for various locations around the world can now be obtained from the National Oceanic and Atmospheric Administration’s (NOAA) satellite imagery dataset. In one of the plenary session presentations during the 9th International Conference on Urban Climate (ICUC9), Chapman [371] mentioned the possibility of using low-cost air temperature sensors with WiFi network, distributed vastly in urban areas. Such a network could have the potential of becoming a part of Internet of Things [372, 373] and consequently could provide a large amount of measurement data for microclimate researchers. In the future, researchers can investigate such resources carefully to find relevant measurement datasets to validate their CFD simulation results.

4.2. Urban locations

Fig. 9 illustrated the limited variety of studied urban locations. In the article entitled Urban Climatology: History, status and prospects, Mills [17] identifies one of the major challenges in the urban climatology field as: “acquiring information on the climates of cities in less prosperous regions, which are growing rapidly and many of which have tropical climates in which there have been few studies”.

Although this statement was made referring to urban climatology...
studies in general, CFD urban microclimate studies are following a similar route. According to the UN World Urbanization Prospects [2], most of the urbanization expected to occur in the 21st Century will take place in the developing regions of the World. Therefore, in the future, more studies are needed focusing on urban areas in these regions, especially on the ones with high/increasing populations (e.g. African continent, India, Latin America).

Another observation in the location analysis is the relation between the study location and the physical location of the respective research groups. Mostly, research groups with expertise in CFD urban microclimate studies investigate the city in which they are located or to which they are closely situated. In the future, researchers should aim at expanding the CFD knowledge to various parts of the World and should not limit themselves to their own vicinity.

Most of the reviewed papers focus on the negative consequences of the UHI effect (e.g. on heat stress, energy demand). Therefore, adaptation/mitigation measures aiming mostly at temperature reductions are proposed and scientifically tested for implementation in the various parts of the World. However, the UHI effect may not necessarily always cause negative consequences. The numerical study by Hirano and Fujita [11], focusing on the climate and building stock of Tokyo has shown that for residential buildings, the UHI effect can have a net positive effect on the building energy demand on a yearly basis. It is safe to assume that if a city is located in colder climate zones, the UHI might actually be beneficial. Future CFD studies can investigate in more detail the consequences of the UHI effect in the colder parts of the World.

Furthermore, the reviewed studies are mostly conducted for cities in the mid-latitudes and cities near the arctic circles are not considered often. Among the reviewed studies, the urban area closest to the Arctic or Antarctic Circle, was Glasgow [352]. Some higher latitude cities, such as Oslo, Stockholm or Moscow can be considered in future CFD urban microclimate studies and new information can be gained. Note that the lack of urban planning and urban microclimate studies in the arctic regions is mentioned in a recent study by Ebrahimabadi et al. [374]. Similarly, (sub)tropical regions are not often considered in CFD microclimate studies. According to Roth [375], among all the urban climate studies, studies on sub(tropical) regions constitute less than 20% and according to the present review, this ratio is 8% (15 of 183 studies).

4.3. CFD equations/models

Almost half of the investigated studies used the ENVI-Met [168] software. This software combines several physical phenomena (e.g. fluid flow, heat transfer, mass transfer, vegetation interactions) for urban microclimate analysis. Limited modeling options in the software, such as the availability of only one turbulence model (Yamada and Mellor k-$
\epsilon$ [158]), the limited options for grid generation and the lack of information about wall functions, can be considered as drawbacks. Such limitations and their possible implications on the results are mentioned in several studies which were included in this review paper [175,312,219,339,339,349].

The relevance of urban climatology for urban designers and policy makers is mentioned in several review studies [17,378–380]. Policy makers and/or professionals responsible for public resources (e.g. local municipalities) are interested in the economic consequences of planned adaptations or modifications in urban areas [381]. In the past, microclimate studies (not with CFD approach) have showed the positive economic consequences of adaptation measures on key issues such as energy demand, thermal comfort and human productivity. CFD simulations can be coupled with financial models to obtain deterministic results on the economic aspects of adaptation measures. So far, the reviewed studies showed that the economic aspects are almost never considered with a relevant target parameter. The missing link between fundamental microclimate studies and the economic consequences can be an important aspect in the near future.
4.5. Keywords

The keywords can be classified in four categories based on the quadrants in Fig. 14.
Keywords with low FYI and low WYI, such as heat transfer, model development, energy budget and turbulent heat fluxes were mainly used in the earlier studies and are not used very often in the later studies. With more validated CFD approaches, research efforts have shifted from the development of new models to case studies.

Keywords with low FYI and high WYI, such as materials/albedo and vegetation are used in CFD urban microclimate studies since the early 2000s and they are still used very often. Vegetation is the most common keyword as many studies investigated the effect of street trees, urban parks and green roofs/facades since the early years of this research field and still, similar studies are conducted for different cities.

Keywords with high FYI and high WYI are not used very often yet, because they are very recent. Among the new keywords with high FYI values, adaptation/mitigation and climate sensitive design are gaining popularity not only among the CFD studies but also among studies with different methodologies [20,382]. New keywords such as “sustainable” and “climate” demonstrate the effect of the popularized sustainable development challenge on this research field.

Keywords with high FYI but with low WYI values, such as model coupling, thermal stability and optimization refer to studies, which are recent but are not very common. Typically, studies with these keywords are very specialized. For instance, the “optimization” keyword belongs to this group and the parametric optimization of CFD results would require many simulations, with a dedicated campaign, which may have affected its FYI and WYI values.

In the future, many of the new keywords are expected to continue to increase their popularity. Among these new keywords, statistical analysis should play an important role in testing new models and simulation cases more effectively. The economic aspects of adaptation/mitigation strategies should be evaluated with new methods, possibly by linking multiple scales. Even though the effects of vegetation and materials on urban microclimate seem to be well understood, it might continue being investigated with new case studies and with studies performed on generic urban areas to provide general conclusions (or guidelines) for professionals from other disciplines. CFD is a useful tool for deterministic judgement and researchers in these other disciplines should benefit from this.

4.6. Limitations of the review

Given the large scope and large number of publications in this topic, some studies had to be omitted from this review. As denoted in Section 2, this review identified CFD microscale studies, which couple velocity field with temperature field on 3D computational domains. CFD studies on urban microscale investigating pedestrian wind comfort [82,383,384] and thermal comfort [385], are not investigated in this review if their focus was only on the modeling of velocity field, without the coupling with temperature. In addition, this review paper focused only on journal papers which are prepared in English language but surely, valuable studies on CFD urban microclimate analysis have been published in the past as conference papers (e.g. [386–388]) or in other languages (e.g. [389,390]).

5. Conclusions

Considering the trend towards urbanization and the challenge of sustainable habitats, studies on urban microclimate will continue to gain popularity in the 21st century. Numerical methods to analyze urban microclimate are essential tools for engineers, architects, urban planners and policy makers to compare urban design alternatives and to manifest guidelines. CFD is one of these numerical tools, which is frequently used in the urban climate at various spatial scales. CFD studies on the meteorological microscale, where typical spatial distances are less than 2 km, are gaining popularity due to their advantages such as the explicit modeling of urban and building geometry and resolving the flow field with high spatial resolution. Though gaining popularity, to the best of our knowledge, there has been no review paper yet that is dedicated to CFD studies on urban microclimate.

This paper presented a systematic review and analysis of the CFD urban microclimate studies that were published in peer-reviewed international journals from 1998 until the end of 2015. A total of 183 studies were identified which include 3D computational domains and couple the velocity and temperature fields. The studies were categorized based on the types of urban areas investigated, real or generic, and on the methodology followed, studies with and without validation.

For every sub-category, the studies were listed in tabular form based on their publication year, location, CFD equations/models, validation parameter (if any), keywords and target parameters. A comparative analysis was provided based on the findings.

From this review paper, the following conclusions can be made:

- CFD results should be subjected to detailed validation in the future. This review documented that 58% of the existing CFD microclimate studies have not considered any validation. In order to improve the reliability and the predictive capability of CFD simulations, future studies should collect and employ relevant measurement data to support simulation results.

- Even though CFD urban microclimate studies are gaining popularity, the urban locations investigated do not have a large variety. Among the 122 studies focusing on real urban areas, only 74 cities from 30 countries have been the subject of CFD simulations. Especially for the cities located in the developing regions and in the tropics, very few studies can be identified. CFD urban microclimate knowledge needs to be expanded to the developing regions of the World.

- The review documented that 96% of the studies considered RANS simulations only, even though LES has the potential to be more accurate in predicting flow field.

- Among the RANS simulations, 74% used either Yamada-Mellor E–ε or standard k–ε turbulence models. The choice of turbulence models can be limited with the availability of the software packages. However, detailed validation studies and the resulting increased accuracy and reliability of CFD studies will benefit from the availability and/or use of more turbulence models.

- The results from validation studies can be communicated using statistical performance indicators, which were not used in the past studies often. Moreover, the target parameters can be selected from other spatial scales (e.g. building energy demand) or from generic terms (e.g. economy, emissions) for a thorough analysis on the effect of microclimate and adaptation measures on humans, buildings and urban infrastructure.

- The themes of CFD urban microclimate studies were documented by investigating the keywords they used. According to this investigation, the early CFD urban microclimate studies had been conducted for model developments and case studies. In the past few years, more studies about urban scale adaptation measures and thermal comfort are conducted. Future studies might focus more on systematic studies with multiple scales (e.g. mesoscale, building scale) and aspects (e.g. economical) to transfer the gained knowledge from urban climatology to routine building and urban design guidelines.

These recommendations are in fact against the current trends observed among CFD urban microclimate studies. Future studies on this topic can consider these recommendations to push the boundaries of this field for acquiring new knowledge on urban climatology.
Kwak K-H, Baik J-J. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air. Atmos Environ 2014;86:120–8. http://dx.doi.org/10.1016/j.atmosenv.2013.12.029.

Schleiers PC, Jia X, Kenjeres S, de Roode SR. Breakdown of the night time urban heat island energy budget. Build Environ 2014;83:50–64. http://dx.doi.org/10.1016/j.buildenv.2014.08.012.

Tan Z, Dong J, Xiao Y, Tu J. A numerical study of diurnally varying surface temperature on floating islands and pollutant dispersion in street canyons. Atmos Environ 2015;104:217–27. http://dx.doi.org/10.1016/j.atmosenv.2015.01.027.

Asahi Y, Ca VT, Asaeda T. Building canopy model for the analysis of urban climate. J Wind Eng Ind Aerodyn 1999;81:237–48. http://dx.doi.org/10.1016/S0167-6636(99)00028-3.

Honjo T, Takakura T. Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build 1990;16:443–6. http://dx.doi.org/10.1016/0378-7788(90)90458-B.

Liu J, Chen JM, Black TA, Novak MD. E-epollion modelling of turbulent airflow downwinder of a model forest edge. Bound-Layer Meteorol 1996;77:21–44. http://dx.doi.org/10.1007/BF00121857.

Madjidi F, Bidokhti AA, Ghader S, Mansoori N. A numerical model for the study of thermal effect of grass-covered parks in a humid urban area. SOLA 2011;7:185–8. http://dx.doi.org/10.2151/sola.2011-047.

Zhai Z, Chen Q, Haves P, Kvens J. On approaches to couple energy simulation and computational fluid dynamics programs. Build Environ 2002;37:857–64. http://dx.doi.org/10.1016/S0360-1323(02)00045-8.

Bartak M, Beausoleil-Morrison I. The adaptive convection of computational fluid dynamics with whole-building thermal simulation. Energy Build 2002;34:857–71. http://dx.doi.org/10.1016/S0360-1323(02)00054-7.

Allergrii J, Orchelides M, Havumattila G, Gagos F, Dorer V, Ervins R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew Sustain Energy Rev 2015;52:1391–404. http://dx.doi.org/10.1016/j.rser.2015.07.012.

Li Y, Nielsen PV. CFD and ventilation research. Indoor Air 2011;442–53. http://dx.doi.org/10.1111/j.1600-0668.2011.0273-x.

van Hooff T, Blocken B. CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadion. Build Environ 2013;54:1–17. http://dx.doi.org/10.1016/j.buildenv.2012.11.021.

van Hooff T, Blocken B, van Heijst GJF, Janssen WDWD, van Hooijdonk Y. Stratocumulus-capped mixed layers derived from a three-dimensional CFD model of turbulence. Int J Heat Mass Transf 1972;77:248–57. http://dx.doi.org/10.1016/0017-9310(72)90430-7.

Norton T, Sun D-W, Grant J, Fallon R, Dodd V. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry. Field Crops Res 2007;98:2386–41. http://dx.doi.org/10.1016/j.fcr.2006.11.025.

Chen Q. Ventilation performance prediction for buildings: a method overview and recent applications. Build Environ 2009;44:4848–58. http://dx.doi.org/10.1016/j.buildenv.2012.02.025.

van Hooff T, Blocken B. On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium. Comput Fluids 2010;39:1146–55. http://dx.doi.org/10.1016/j.compfluid.2010.02.004.

Rampino R, Blocken B. CFD simulation of cross-ventilation flow for different isolated building configurations: validation with wind tunnel measurements and analysis of physical and numerical diffusion effects. J Wind Eng Ind Aerodyn 2012;104:406–18. http://dx.doi.org/10.1016/j.windeng.2012.02.005.

Chu C-R, Chiang B-F. Wind-driven cross ventilation with internal obstacles. Energy Build 2013;67:201–9. http://dx.doi.org/10.1016/j.enbuild.2013.07.086.

Ai ZT, Mak CM. Modeling of coupled urban wind flow and indoor airflow on a high-density near-wall sensitivity: analyses and case study for single-sided ventilation. Build Environ Model 2014;60:57–68. http://dx.doi.org/10.1016/j.bulenv.2014.06.010.

Meyer RD, Tan G. An overview of unsteady analysis techniques for natural wind turbulence and its effects on natural ventilation. Int J Vent 2014;13:65–76. http://dx.doi.org/10.1080/09668422.2013.845444.

Perin JI, van Hooff T, Leite BCC, Blocken B. CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: impact of roof angle and opening location. Build Environ 2015;85:263–76. http://dx.doi.org/10.1016/j.buildenv.2014.09.008.

Ai ZT, Mak CM. Comparison of single-sided ventilation characteristics between single-storey and multi-storey buildings due to wind effect. Int J Vent 2015;14:181–90. http://dx.doi.org/10.1080/09668422.2015.11684079.

Erell E, Williamson TJ. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station. Int J Climatol 2006;26:1671–94. http://dx.doi.org/10.1002/joc.
[171] Dimoudi A, Nikolopoulou M. Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build 2003;35:69–76. http://dx.doi.org/10.1016/S0378-7788(03)00081-6.

[172] Bai K-J, Kim J-J, Fernando HLS. A CFD model for simulating urban flow and dispersion. J Appl Meteorol 2003;42:1636–48. http://dx.doi.org/10.1175/1520-0450(2003)042<1636:ACFMFS>2.0.CO;2.

[173] Robito M, Inard C, Grocheau D, Musy M. Energy balance study of water ponds and its influence on building energy consumption. Build Serv Eng Res Technol 2004;25:171–82. http://dx.doi.org/10.1080/14660340408510660.

[174] Murakami S. Indoor/outdoor climate design by CFD based on the software platform. Int J Heat Fluid Flow 2004;25:849–63. http://dx.doi.org/10.1016/j.ijheatfluidf.2004.03.006.

[175] Gripprini S, Vollaro A, L A. A study of the influence of the vegetation on the climatic conditions in an urban environment. Sustain Dev Plan III 2007;II:175–85. http://dx.doi.org/10.2495/SDP070171.

[176] Lin B, Li X, Zhu Y, Qin Y. Numerical simulation studies of the different vegetation patterns’ effects on outdoor pedestrian thermal comfort. J Wind Eng Ind Aerodyn 2008;96:1707–18. http://dx.doi.org/10.1016/j.jweia.2008.02.006.

[177] Chen H, Ooka R, Kato S. Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction. Build Environ 2008;43:18–30. http://dx.doi.org/10.1016/j.buildenv.2006.11.039.

[178] Zhao J, Liu J, Sun J. Numerical simulation of the thermal environment of urban street canyon and a design strategy. Build Simul 2008;1:261–6. http://dx.doi.org/10.1007/s12273-011-0035-6.

[179] Ooka R, Chen H, Kato S. Study on optimum arrangement of trees for design of pleasant outdoor environment using multi-objective genetic algorithm and coupled simulation of convection, radiation and conduction. J Wind Eng Ind Aerodyn 2008;96:477–86. http://dx.doi.org/10.1016/j.jweia.2008.02.010.

[180] Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Ali-Toudert F, Mayer H. Numerical study on the influence of the vegetation on the microclimate in a hot dry climate. Build Environ 2006;41:94–108. http://dx.doi.org/10.1016/j.buildenv.2005.05.011.

[181] Murakami S. Environmental design of outdoor climate based on CFD. Fluid Dyn Res 2006;38:108–26. http://dx.doi.org/10.1080/10607880600862410.

[182] Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Okeil A. A holistic approach to energy efficiency building forms. Energy Build 2010;42:1437–44. http://dx.doi.org/10.1016/j.enbuild.2010.03.013.

[183] Hong B, Lin B, Hu L, Li S. Optimal tree design for sunshine and ventilation in residential district based on geometrical models and numerical simulation. Build Simul 2011;4:351–63. http://dx.doi.org/10.1007/s12273-011-0056-1.

[184] Park S-B, Baik J-J, Raasch S, Letzel MO. A large-eddy simulation study of thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction. J Wind Eng Ind Aerodyn 2008;96:477–86. http://dx.doi.org/10.1016/j.jweia.2008.02.010.

[185] Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Okeil A. A holistic approach to energy efficient building forms. Energy Build 2010;42:1437–44. http://dx.doi.org/10.1016/j.enbuild.2010.03.013.

[186] Stock S-B, Baik J-J, Raasch S, Letzel MO. A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J Appl Meteorol Climatol 2011;51:829–41. http://dx.doi.org/10.1175/2011JAMC2620.1.

[187] Berkovic S, Yeziro A, Bitan A. Study of thermal comfort in courtyards in a hot arid climate. Sol Energy 2012;86:1173–86. http://dx.doi.org/10.1016/j.solener.2012.01.010.

[188] Bo-ot LM, Wang Y-H, Chiang C-M, Lai C-M. Influence of trees on urban thermal environment using multi-objective genetic algorithm and coupled simulation of convection, radiation and conduction. J Wind Eng Ind Aerodyn 2008;96:1773–85. http://dx.doi.org/10.1016/j.jweia.2008.02.010.

[189] Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Dimitrova R, Sini J-F, Richards K, Schatzmann M, Weeks M, Perez García E, et al. Okeil A. A holistic approach to energy efficient building forms. Energy Build 2010;42:1437–44. http://dx.doi.org/10.1016/j.enbuild.2010.03.013.

[190] Hong B, Lin B, Hu L, Li S. Optimal tree design for sunshine and ventilation in residential district based on geometrical models and numerical simulation. Build Simul 2011;4:351–63. http://dx.doi.org/10.1007/s12273-011-0056-1.

[191] Wang Y, Zhong P, Yang Y, Norman P, Su X. Numerical simulation of solar radiation effects on flow patterns in street canyons. Eng Appl Comput Fluid Mech 2014;8:252–62. http://dx.doi.org/10.1080/19942060.2014.1105511.

[192] Kim J-J, Pardyjak E, Kim D-V, Han K-S. Kenn B-W. Effects of building-roof cooling on flow and temperature in urban street canyons. Asia-Pac J Atmos Sci 2014;50:365–75. http://dx.doi.org/10.1007/s13143-014-0023-8.

[193] Perini K, Magliocca A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Green 2013;14:495–506. http://dx.doi.org/10.1016/j.urbgreen.2013.04.003.
Hedquist BC, Brazel AJ. Seasonal variability of temperatures and outdoor human thermal sensation. Energies 2016;9:598–618. doi:10.3390/en9040598.

Müller N, Kuttler W, Bernhofer C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol Z 2012;21:739–51. doi:10.1007/s00703-012-0465-3.

Srivastav M, Hoko K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 2013;66:158–72. doi:10.1016/j.buildenv.2013.04.012.

Su WZ, Zhang Y, Yang YB, Ye GB. Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 2014;6:8799–814. doi:10.3390/su6108799.

Hedquist BC, Brazel AJ. Seasonal variability of temperatures and outdoor human thermal sensation. Energies 2016;9:598–618. doi:10.3390/en9040598.

Müller N, Kuttler W, Bernhofer C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol Z 2012;21:739–51. doi:10.1007/s00703-012-0465-3.

Srivastav M, Hoko K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 2013;66:158–72. doi:10.1016/j.buildenv.2013.04.012.

Su WZ, Zhang Y, Yang YB, Ye GB. Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 2014;6:8799–814. doi:10.3390/su6108799.

Yang X, Zhao L, Bruse M, Meng Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Build Environ 2013;60:93–104. http://dx.doi.org/10.1016/j.buildenv.2012.11.008.

Carrasco E, Zimná M. Optical and thermal characterisation of cool asphalt for mitigating urban temperatures and building cooling demand. Build Environ 2013;63:56–65. http://dx.doi.org/10.1016/j.buildenv.2012.11.004.

Peng LLH, Jim CY. Green-roof effects on neighborhood microclimate and human thermal sensation. Energies 2013;6:598–618. doi:10.3390/en60200598.

Müller N, Kuttler W, Barlag A-B. Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Climatol 2011;82:45–57. doi:10.1007/s10984-011-9280-5.

Goldberg V, Kurbjühn C, Bernhofer C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol Z 2012;21:739–51. doi:10.1007/s00703-012-0465-3.

Srivastav M, Hoko K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 2013;66:158–72. doi:10.1016/j.buildenv.2013.04.012.

Su WZ, Zhang Y, Yang YB, Ye GB. Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 2014;6:8799–814. doi:10.3390/su6108799.

Hedquist BC, Brazel AJ. Seasonal variability of temperatures and outdoor human thermal sensation. Energies 2016;9:598–618. doi:10.3390/en9040598.

Müller N, Kuttler W, Bernhofer C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol Z 2012;21:739–51. doi:10.1007/s00703-012-0465-3.

Srivastav M, Hoko K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 2013;66:158–72. doi:10.1016/j.buildenv.2013.04.012.

Su WZ, Zhang Y, Yang YB, Ye GB. Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 2014;6:8799–814. doi:10.3390/su6108799.

Hedquist BC, Brazel AJ. Seasonal variability of temperatures and outdoor human thermal sensation. Energies 2016;9:598–618. doi:10.3390/en9040598.

Müller N, Kuttler W, Bernhofer C. How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol Z 2012;21:739–51. doi:10.1007/s00703-012-0465-3.

Srivastav M, Hoko K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build Environ 2013;66:158–72. doi:10.1016/j.buildenv.2013.04.012.

Su WZ, Zhang Y, Yang YB, Ye GB. Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 2014;6:8799–814. doi:10.3390/su6108799.
Murakami S, Mochida ARO, Yoshida S, Yoshino H, Sasaki K, et al. Evaluation of the impacts of urban tree planting in Tokyo based on urban heat balance model. In: Proceedings of the 11th international conference wind eng. 2003.

Yoshida S, Murakami S, Kim S, Ooka R, Mochida A, Tominaga Y. CFD prediction of thermal comfort in microscale wind climate. Third International Symp. Comput. Eng. 2000. p. 27–30.

Oguro M, Murakami S, Morikawa Y, Mochida A, Ashie Y, Ooka R, et al. A study on design methodology for outdoor thermal environment based on CFD analyses. AIJ J Technol Des 2002;16:185–90.

Sato T, Murakami S, Ooka R, Yoshida S, Harayama K, Kondo H. Numerical study on effects of countermeasures for urban heat island in summer and winter, the characteristic of urban climate and effects of greening and high albedo surface. J Environ Eng AIJ 2004;577:55–62.