Anomalous Terahertz Emission in Striped Cuprates

D. Nicoletti, 1, * M. Buzzi, 1 M. Fechner, 1 P. E. Dolgirev, 2 M. H. Michael, 1,2 J. B. Curtis, 2,3 E. Demler, 4 G. D. Gu, 5 and A. Cavalleri 1, 6, 6

1 Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
2 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
4 Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
5 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
6 Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

(Dated: December 15, 2021)

Terahertz emission is observed after impulsive optical excitation only in media in which inversion or time-reversal symmetry are broken. For this reason, in centrosymmetric superconductors this phenomenon is generally not seen, unless a current bias or a magnetic field are applied. Here, we report evidence for anomalous terahertz emission in unbiased cuprates in which charge stripes coexist with superconductivity. Emission is only observed when stripes are either incommensurate with the lattice or fluctuating, such as in La$_{1.905}$Ba$_{0.095}$CuO$_4$ ($x=9.5\%$) and in La$_{1.845}$Ba$_{0.155}$CuO$_4$ ($x=15.5\%$). A sharp response at frequencies immediately below the bulk Josephson plasma resonance suggests that this radiation originates from surface Josephson plasmons, which are generally dark modes but appear to be coupled to the electromagnetic continuum in these materials. We attribute this activated anomalous emission to the fact that incommensurate stripes break inversion symmetry in the out-of-plane direction and fold the plasmon dispersion curve onto the light cone.

The emission of pulsed terahertz (THz) radiation from materials illuminated with femtosecond optical pulses [1–4] is generally enabled by two classes of mechanisms. The first mechanism, active in transparent non-centrosymmetric materials such as ZnTe or LiNbO$_3$, is based on optical rectification, where the second order nonlinear optical susceptibility causes a time dependent electrical polarization [5]. The second mechanism relies on the excitation of time dependent charge currents, and is well documented for biased high-mobility semiconductors [5]. A number of additional reports of coherent THz radiation have been made for complex materials, typically related to the perturbation of electronic and magnetic interactions. THz emission in colossal magnetoresistance manganites [4, 6, 7], magnetic and multiferroic compounds [8–17] are some of the best-known examples. Although here categorizations are less obvious, THz emission is emerging as a new probe of microscopic symmetries in these systems.

In the case of high-T_c superconductors, coherent THz emission has been reported only for situations in which time dependent supercurrents, $J_s(t)$, are set in [5]. These situations range from near-single-cycle THz pulses in biased antennas fabricated from YBa$_2$Cu$_3$O$_{7-δ}$ or Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ films [2, 18, 19], to multi-cycle narrowband emissions governed by the Josephson effect in the case of applied out-of-plane magnetic fields [20]. It has also been shown that the use of Josephson junction stacks in MESA-type resonant structures allows orders of magnitude increase in THz emission efficiency, also providing narrow bandwidths and tuneable frequency [21–23].

Here, we report anomalous THz emission in high-T_c cuprates, observed for photoexcitation with femtosecond near infrared pulses, in absence of external magnetic fields and current biases. The effect is detected only when superconductivity coexists with charge-stripe order in the Cu-O planes [24], and when these stripes, which consist of one-dimensional chains of holes separated by antiferromagnetically-ordered regions [25–27], are either incommensurate with the lattice or fluctuating.

We studied cuprates belonging to the “214” family, with one Cu-O layer per unit cell. As a prototypical “homogeneous” cuprate, we considered optimally-doped La$_{2-x}$Sr$_x$CuO$_4$ (LSCO), with a critical temperature of 38 K (see phase diagram in Fig. 1a). Although in the LSCO family fluctuating striped charge and spin orders have been reported in the underdoped region of the phase diagram [28], there is no evidence for stripes at optimal 0.16 doping [29]. This sample was compared to the response of La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), for which superconductivity coexists with charge stripes [24]. We specifically focused on three LBCO compounds: La$_{1.885}$Ba$_{0.115}$CuO$_4$ (LBCO 11.5%, $T_c = 13$ K), where the superconducting transition is highly depleted by a robust stripe phase below the charge ordering temperature $T_{CO} = 53$ K, La$_{1.845}$Ba$_{0.155}$CuO$_4$ (LBCO 15.5%, $T_c = 30$ K, $T_{CO} = 40$ K), placed at the nominal optimal doping and characterized by weak, highly fluctuating stripes [24], and La$_{1.905}$Ba$_{0.095}$CuO$_4$ (LBCO 9.5%, $T_c = T_{CO} = 33$ K), for which the stripes have an intermediate intensity and correlation length compared to the other two compounds [24], but in contrast to them are here highly incommensurate [30, 31]. The location of the three samples in the...
LBCO phase diagram is shown in Fig. 1b-1d. We note that $\text{La}_{2-x}\text{Ba}_x\text{CuO}_4$ is the same cuprate in which signatures of optically-enhanced superconductivity have been measured [32–35], and attributed to the ultrafast perturbation of the stripe order [36, 37]. In addition, a number of nonlinear optical effects, such as THz parametric amplification [38] and third harmonic generation [39], related to the resonant driving of Josephson plasma waves, have also been observed.

The main result of our experiment is summarized in Fig. 1e-1l, where the measured THz emission traces are reported for the four investigated compounds for selected temperatures, at a constant pump fluence of 2.5 mJ/cm2. The experimental geometry is shown in the insets of the lower panels. We used the output of an amplified Ti:Sa laser as pump pulses, with a duration of 100 fs and photon energy of 1.55 eV (800 nm wavelength). These were focused at normal incidence onto the sample surface. The emitted THz pulses were collimated with a parabolic mirror and refocused on a 1-mm-thick ZnTe crystal to perform electro-optic sampling directly yielding THz electric field traces in time domain.

In optimally-doped LSCO (Fig. 1e), the THz emission signal was measurable only in the superconducting state below T_c, and displayed a very small amplitude, just above the noise level of our setup. The emitted THz pulses were collimated with a parabolic mirror and refocused on a 1-mm-thick ZnTe crystal to perform electro-optic sampling directly yielding THz electric field traces in time domain.

FIG. 1. (a-d) Temperature-doping phase diagrams of the four investigated compounds. T_{CO}, T_{SO}, and T_c stand for the charge ordering, spin ordering, and superconducting critical temperature, respectively. (e-h) Time-dependent THz emission traces taken for a pump fluence of 2.5 mJ/cm2 at the temperatures indicated by full circles in (a-d). Solid lines represent multi-component fits to the data [40]. The vertical scales in the three panels are mutually calibrated. (i-l) Fourier transforms (circles) of selected time-domain traces in (e-h). Solid lines are multi-Gaussian fits. Inset: Experimental geometry. Near-infrared (NIR) pump pulses are shone at normal incidence onto an ac-oriented sample surface, with polarization parallel to the c axis. As a result of photoexcitation, c-polarized THz radiation is emitted.
FIG. 2. Pump fluence dependent THz emission in La$_{1.905}$Ba$_{0.095}$CuO$_4$ at $T = 7$ K. (a) Experimental traces taken at for different pump fluences (full circles). Solid lines are multi components fits to the data, which include a quasi-monochromatic, long-lived oscillation and a “single-cycle” component around time zero [40]. (b-d) Fluence dependent parameters of the quasi-monochromatic oscillation extracted from the fits in (a).

On the other hand, in LBCO 15.5% (weak, highly fluctuating but quasi-commensurate stripes [30, 31], Fig. 1g and Fig. 1k) the THz emission in the superconducting state acquired an appreciable amplitude, with oscillations at a frequency of 600 GHz (depending on temperature).

In the compound with incommensurate, relatively strong stripes, i.e. LBCO 9.5%, the THz emission amplitude was even higher than LBCO 15.5% and greater by a factor of \sim5-10 compared to LSCO and LBCO 11.5%. Coherent multi-cycle oscillations were observed (Fig. 1h), corresponding to a narrow spectral peak (Fig. 1l). The frequency of these oscillations shifted to the red with increasing temperature, whilst also reducing in amplitude and disappearing at T_c.

The rest of the analysis in this paper is focused on LBCO 9.5%, which yielded the largest signal and highest coherence. Firstly, we verified that the emission was entirely polarized along the out-of-plane crystallographic axis, and could be induced only for a pump polarization aligned along the same direction [40].

Figure 2a displays the pump fluence dependence measured at a constant temperature of 7 K. These experimental traces were modelled using fits in time domain (solid lines), for which we report the single components in [40]. These include a “single-cycle” pulse at early times, which was absent at the lowest fluences and grew quadratically with irradiation [40], and a quasi-monochromatic, long-lived oscillation, which grew linearly up to about 1 mJ/cm2 and tended to saturate for higher excitation fluence (see Fig. 2b). This linear trend of the main oscillation is compatible with the impulsive excitation of a coherent mode. In the fluence-dependent behavior of lifetime and oscillation frequency (Fig. 2c-d), we identify a “linear” excitation regime where these quantities are weakly dependent on fluence and seem to stabilize at constant values of \sim4 ps and \sim0.5 THz, respectively. In this weak excitation regime, the driven mode parameters are well determined.

In Fig. 3 we report the temperature dependence of this effect. We show a comparison between the oscillation frequency in the THz emission signal in LBCO 9.5% and the bulk Josephson plasma resonance measured at equilibrium with time-resolved THz spectroscopy in the same sample. In the inset of Fig. 3a we show the experimental geometry, in which we illuminated the sample with weak broadband THz pulses (generated in a 200-μm-thick GaP), polarized along the out-of-plane direction, that were then detected in another 200-μm-thick GaP crystal via electro-optic sampling after being reflected from the sample surface.

Figure 3a displays examples of reflectivities at two temperatures below T_c, normalized by the same quantity measured in the normal state. These curves evidence a Josephson plasma resonance, the exact frequency of which was determined by fitting the experimental data with a Josephson plasma model (solid lines) [32, 35]. The key result of this analysis is displayed in Fig. 3b, in which we show a comparison of the temperature dependence of the Josephson plasma frequency at equilibrium (gray) with the frequency of the emitted oscillations for two pump fluences. Notably, the emitted mode frequency hardens with decreasing fluence and approaches the equi-
In interpreting our results, we first note that in a centrosymmetric cuprate impulsive excitation of Josephson plasmons should be forbidden by symmetry. Josephson plasma modes are in fact symmetry-odd (infrared-active), while impulsive photo-excitation couples only to totally symmetric modes [41]. As discussed in a related manuscript [42], a prerequisite for the excitation of these modes is that charge order breaks inversion symmetry. However, commensurate period-four stripes, as those expected for dopings $x \leq 1/8$ [30, 31], exhibit a two-fold screw axis along the out-of-plane direction, thus retaining inversion symmetry (see Fig. 4a) [43]. This can possibly be broken, for example, in the presence of high harmonics in charge density modulation along different crystallographic axes [43] or, alternatively, due to frustrated π-Josephson couplings inherent in the pair-density-wave (PDW) state, which would give rise to a form of non-collinear phase ordering [27].

A likely scenario, which would also explain the experimental observation of coherent multi-cycle THz emission only in LBCO 9.5%, i.e. the compound with highly incommensurate stripes [30, 31], is that the incommensurability with the crystal lattice provides the necessary symmetry breaking. Another important ingredient could be the highly fluctuating character of the charge stripes in both LBCO 9.5% and LBCO 15.5%. Here, the charge order correlation length along the out-of-plane direction is of the order of one unit cell [24], possibly causing a loss of the phase relation between stripes in next-nearest-neighbouring planes (see Fig. 4b).

Once inversion symmetry is broken, electromagnetic emission at a frequency $\omega \ll \omega_{pump}$ can result from rectification of the optical pulse. We associate the optically rectified drive for plasma oscillations with the excitation of a shift current [42, 43] at the sample surface. This is expected to interact with modes at $\omega = \omega_{JPR}$, of which one finds at least two: (1) a bulk Josephson plasma polariton, sustained by tunnelling supercurrents oriented in the z (out-of-plane) direction and propagating along the x (in-plane) direction and (2) a surface Josephson plasmon, also sustained by plasma oscillations in the z direction, but localized at the surface of the material and propagating along z. The dispersion relations for these two modes are shown in Fig. 4c and Fig. 4d, respectively [44].

However, at first sight neither of these modes satisfies the observations reported here. Emission from the bulk Josephson plasma polariton (Fig. 4c), which is excited over a ~ 200 nm skin depth of the pump, is expected to be broad in frequency and overdamped. This is because excitation by the near infrared pump covers a wide range of in-plane momenta, q_x, which in the first instance is limited only by the envelope bandwidth of the pump pulse (gray shading in Fig. 4c). The spectrum of Josephson
plasmons would, in this case, also be independent of the details of the stripe order and of its correlation lengths, as is instead observed. Moreover, one would expect radiation at frequencies $\omega > \omega_{JPR}$, in contrast to the experimental observation of a slightly redshifted emission with respect to the plasma frequency (see Fig. 3b).

Emission from surface Josephson plasmons is, at a glance, equally problematic, because their dispersion lies below the light cone and, hence, they are not expected to radiate into vacuum (see Fig. 4d). Here, we argue that Bragg scattering off the stripe order induces a backfolding, defined by the stripe wave vector, into a reduced Brillouin zone (dashed horizontal line in Fig. 4d). For this reason, these surface modes can radiate, much like a situation in which a fabricated corrugation would be used to achieve the coupling [45–49].

In the right panel of Fig. 4d, we report the emission spectrum calculated for a striped superconductor through the excitation of surface Josephson plasmons [42]. Note that in order to reproduce the experimental observation of a sharp emission peak close to ω_{JPR}, we assumed that, in the presence of stripes, the pump pulse gives origin to an *Umklapp* shift current, $J_U \cos(Q_{\text{stripes}} z)$, that is modulated in space by the stripe wave vector, Q_{stripes}. This naturally drives high-momenta surface plasmons, which can radiate out due to the aforementioned backfolding mechanism. A comprehensive theory for these effects is discussed in our related manuscript [42].

In summary, we have reported the observation of coherent THz emission at the Josephson plasma frequency in cuprates for which the superconducting state coexists with stripes. We assigned this effect to the excitation of surface Josephson plasmons, which become Raman active due to the breaking of inversion symmetry induced by the stripes, and can radiate out thanks to the backfolding of their dispersion curve onto the light cone. Based on these findings, the characterization of coherent THz emission emerges as a sensitive probe for symmetries of charge-ordered states coexisting with superconductivity and their interaction with light.

The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging’ (EXC 1074 – project ID 194651731) and the priority program SFB925 (project ID 170620586). E. Demler acknowledges support from AFOSR-MURI Photonic Quantum Matter award FA95501610323, DARPA DRINQS, the ARO grant “Control of Many-Body States Using Strong Coherent Light-Matter Coupling in Terahertz Cavities”. J. B. Curtis is supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the U.S. Department of Energy (DOE), and by the Harvard Quantum Initiative. J.B.C. also acknowledges hospitality from the Max Planck Institute for Structure and Dynamics of Matter (MPSD, Hamburg), and ETH Zürich Institute for Theoretical Physics. Work at Brookhaven is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy under Contract No. DE-SC0012704.
[18] M. Tonouchi, M. Tani, Z. Wang, S. Sakai, S. Tomozawa, M. Hangyo, Y. Murakami, S. Nakashima, Jpn. J. Appl. Phys. 35, 2624 (1996).
[19] M. Tonouchi, A. Fujimaki, K. Tanabe, K. Enpuku, K. Nikawa, T. Kobayashi, Jpn. J. Appl. Phys. 44, 7735 (2005).
[20] Y. Tominari, T. Kiwa, H. Murakami, M. Tonouchi, H. Wald, P. Seidel, H. Schneidewind, Appl. Phys. Lett. 80, 3147 (2002).
[21] L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, U. Welp, Science 318, 1291 (2007).
[22] U. Welp, K. Kadowaki, and R. Kleiner, Nat. Photon. 7, 702 (2013).
[23] E. A. Borodianskyi and V. M. Krasnov, Nat. Commun. 8, 1742 (2017).
[24] M. Hücke, M. v. Zimmermann, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, U. Welp, Proc. Nat. Acad. Sci. 116, 19875 (2019).
[25] E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V. Oganessyan, J. M. Tranquada, S. C. Zhang, Phys. Rev. Lett. 99, 127003 (2007).
[26] E. Berg, E. Fradkin, S. A. Kivelson, J. M. Tranquada, New Journal of Physics 11, 115004 (2009).
[27] S. Badoux, S. A. A. Afshar, B. Michon, A. Ouellet, S. Fortier, D. LeBoeuf, T. P. Croft, C. Lester, S. M. Hayden, H. Takagi, K. Yamada, D. Graf, N. Doiron-Leyraud, Louis Taillefer, Phys. Rev. X 6, 021004 (2016).
[28] J.-J. Wen, H. Huang, S.-J. Lee, H. Kang, J. Knight, Y.S. Lee, M. Fujita, K.M. Suzuki, S. Asano, S.A. Kivelson, C.-C. Kao, J.-S. Lee, Nature Comms. 10, 3269 (2019).
[29] J. Lorenzana and G. Seibold, Phys. Rev. Lett. 89, 136401 (2002).
[30] H. Miao, R. Fumagalli, M. Rossi, J. Lorenzana, G. Seibold, F. Yakhou-Harris, K. Kummer, N. B. Brookes, G. D. Gu, L. Braicovich, G. Ghiringhelli, and M. P. M. Dean, Phys. Rev. X 9, 031042 (2019).
[31] D. Nicoletti, E. Casandruc, Y. Laplace, V. Khanna, C. R. Hunt, S. Kaiser, S. S. Dhesi, G. D. Gu, J. P. Hill, A. Cavalleri, Phys. Rev. B 90, 100503(R) (2014).
[32] E. Casandruc, D. Nicoletti, S. Rajasekaran, Y. Laplace, V. Khanna, G. D. Gu, J. P. Hill, A. Cavalleri, Phys. Rev. B 91, 174502 (2015).
[33] K. A. Cremin, J. Zhang, C. C. Homes, G. D. Gu, Z. Sun, M. M. Fogler, A. J. Mills, D. N. Basov, R. D. Averitt, Proc. Nat. Acad. Sci. 116, 19875 (2019).
[34] D. Nicoletti, D. Fu, O. Mehio, S. Moore, A. S. Disa, G. D. Gu, A. Cavalleri, Phys. Rev. Lett. 121, 267003 (2018).
[35] M. Först, R. I. Tobey, H. Bromberger, S. B. Wilkins, V. Khaanna, A. D. Caviglia, Y.-D. Chuang, W. S. Lee, W. F. Schlotter, J. J. Turner, M. P. Minitti, O. Krupin, Z. J. Xu, J. S. Wen, G. D. Gu, S. S. Dhesi, A. Cavalleri, J. P. Hill, Phys. Rev. Lett. 112, 157002 (2014).
[36] V. Khaanna, R. Mankowsky, M. Petrich, H. Bromberger, S. A. Cavill, E. Möhr-Vorobeva, D. Nicoletti, Y. Laplace, G. D. Gu, J. P. Hill, M. Först, A. Cavalleri and S. S. Dhesi, Phys. Rev. B 93, 224522 (2016).
[37] R. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksh, A. Cavalleri, Nat. Phys. 12, 1012-1016 (2016).
[38] R. Rajasekaran, J. Okamoto, L. Mathey, M. Fechner, V. Thampy, G.D. Gu, A. Cavalleri, Science 369, 575-579 (2018).
[39] See Supplemental Material.
[40] L. Dhar, J. A. Rogers, K. A. Nelson, Chem. Rev. 94, 157 (1994).
[41] P. E. Dolgirev, M. H. Michael, J. B. Curtis, D. Nicoletti, M. Buzzi, M. Fechner, A. Cavalleri, and E. Demler, arXiv:2112.05777 (2021).
[42] P. E. Dolgirev, M. H. Michael, J. B. Curtis, D. E. Parker, D. Nicoletti, M. Buzzi, M. Fechner, A. Cavalleri, and E. Demler, forthcoming (2021).
[43] H. T. Stinson, J. S. Wu, B. Y. Jiang, Z. Fei, A. S. Rodin, B. C. Chapler, A. S. McLeod, A. Castro Neto, Y. S. Lee, M. M. Fogler, and D. N. Basov, Phys. Rev. B 90, 014502 (2014).
[44] F. J. Dunmore, D. Z. Liu, H. D. Drew, S. Das Sarma, Q. Li, and D. B. Fenner, Phys. Rev. B 52, R731 (1995).
[45] D. Schumacher, C. Rea, D. Heitmann, and K. Scharnberg, Surface science 408, 203 (1998).
[46] A. Tsiafas, A. Buckingham, V. Fedotov, S. Wang, Y. Chen, P. De Groot, and N. Zheludev, Applied Physics Letters 97, 111106 (2010).
[47] A. Tsiafas, V. A. Fedotov, F. J. G. de Abajo, and N. I. Zheludev, New Journal of Physics 14, 115006 (2012).
[48] D. van der Marel, H.-U. Haberman, D. Heitmann, W. Konig, and A. Wittlin, Physica C (Amsterdam) 176, 1-18 (1991).
Supplemental Material

Anomalous Terahertz Emission in Striped Cuprates

D. Nicoletti,1,* M. Buzzi,1 M. Fechner,1 P. E. Dolgirev,2 M. H. Michael,1,2 J. B. Curtis,2,3 E. Demler,4 G. D. Gu,5 and A. Cavalleri1,6,†

1Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
4Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
5Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
6Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

(Dated: December 15, 2021)
In Figure S1 we report a polarization dependent study. Data was taken on LBCO 9.5% at $T = 7$ K after installing a tunable waveplate and an optical polarizer in the pump beam, as well as a THz polarizer in front of the detection crystal. As is evident from the traces, the multi-cycle THz emission signal at $\omega = \omega_{JPR}$ appears to be entirely polarized along the out-of-plane crystallographic axis. Moreover, it is found only upon excitation with pump pulses polarized along the same c-axis direction (see Fig. S1d).

FIG. S1. Pump and THz polarization dependence measured in La$_{1.905}$Ba$_{0.095}$CuO$_4$ at $T = 7$ K for a pump fluence of 2.5 mJ/cm2. The following configurations are reported: (a) Pump and emitted THz both polarized in-plane, (b) Pump in-plane and emitted THz out-of-plane, (c) Pump out-of-plane and emitted THz in-plane, (d) Pump and probe both polarized out-of-plane. In each panel full circles are the experimental data while solid lines are multi-component fits.
As discussed in the main text, in a centrosymmetric cuprate impulsive excitation of Josephson plasmons is forbidden by symmetry.

One possibility is that photoexcitation leads to a direct coupling with another higher frequency fully symmetric mode that, in turn, can decay into Josephson plasmons. For example, an amplification of phase modes mediated by the amplitude mode [1–4] has already been discussed in charge-density-wave materials [5]. In Fig. S2 we report additional measurements in which we studied how THz emission in LBCO 9.5% evolved as the pump pulses were made longer, at constant fluence and temperature. The emitted oscillation amplitude reduced significantly as the pulse duration exceeded 2 ps [6], pointing to a scenario in which modes at ∼0.5 THz are excited directly, rather than indirectly by a high frequency symmetric mode.

The mechanism proposed in the main text, which involves the direct excitation of surface Josephson plasmons, is compatible with these results.

FIG. S2. Pump pulse length dependence of the THz emission signal in La$_{1.905}$Ba$_{0.095}$CuO$_4$. (a) Experimental traces in time domain, taken for different pump pulse durations, $\Delta \tau_{\text{pump}}$ (full circles). All data have been taken at $T = 7$ K, for a constant pump fluence of 2.5 mJ/cm2. Solid lines are multi components fits. (b) Pulse length dependence of the THz oscillation amplitude (full circles), extracted from the fits in (a). The solid line is a guide to the eye.
S3. FITTING MODEL

All time-dependent experimental curves shown in Fig. 1 and Fig. 2 of the main text, as well as in Fig. S1 and Fig. S2 of the Supplemental material, were fitted using the formula:

\[E_{THz}(t) = A_0 e^{-\left(\frac{t}{2\tau_0}\right)^2} \cos(\omega_0 t + \phi_0) + A_1 \left[1 + \text{erf}\left(\frac{t}{\tau_1}\right)\right] e^{-\gamma_1 t} \cos\left((\omega_1 + c_1 t) t + \phi_1\right) + B(t) \] (1)

Here, \(A_0, \tau_0, \omega_0, \) and \(\phi_0 \) are the amplitude, Gaussian width, central frequency, and phase of the “single-cycle” component around time zero. \(A_1, \tau_1, \gamma_1, \omega_1, c_1 \) and \(\phi_1 \) are instead amplitude, rise time, decay rate, initial frequency, linear chirp coefficient, and phase of the quasi-monochromatic, long-lived oscillation. \(B(t) \) is a weak, slowly-varying polynomial background.

All fitting curves are displayed in Fig. 1, Fig. 2, Fig. S1, and Fig. S2 as solid lines. Note that for LSCO and LBCO 11.5% the experimental traces were reproduced using only

![Plots](image)

FIG. S3. (a) THz emission signal measured in La_{1.905}Ba_{0.095}CuO_4 at \(T = 7 \) K, for a pump fluence of 5 mJ/cm². Full circles are experimental data, while the blue solid line is the result of a multi-component fit. This included a “single-cycle” component around time zero (gray dots) and a quasi-monochromatic, long-lived oscillation (blue dashed line). (b) Fluence dependent amplitudes of both single-cycle (gray) and quasi-monochromatic (blue) components, extracted from fits as those shown in panel (a).
a “single-cycle” component and weak a slowly-varying background (first and third terms in the equation above). In contrast, for LBCO 15.5% and LBCO 9.5% it was necessary to introduce the multi-cycle oscillation, which typically had much larger amplitude, \(A_1 \), than the other terms and only a weak (\(< 2\%\)) positive linear chirp.

Figure S3a illustrates such a fit for a particular set of data taken on LBCO 9.5%. The individual fit components are explicitly shown.

As reported in Fig. S3b, the “single-cycle” pulse was absent at low fluence and grew quadratically in amplitude with irradiation. On the other hand, the quasi-monochromatic, long-lived oscillation grew linearly up to about 1 mJ/cm\(^2\) and saturated for higher excitation fluence. This linear trend of the main oscillation is compatible with the direct impulsive excitation of a coherent mode.

* daniele.nicoletti@mpsd.mpg.de
† andrea.cavalleri@mpsd.mpg.de

[1] P. B. Littlewood, C. M. Varna, Phys. Rev. B 26, 4883 (1982).
[2] R. Grasset, T. Cea, Y. Gallais, M. Cazayous, A. Sacuto, L. Cario, L. Benfatto, M.-A. Measson, Phys. Rev. B 97, 094502 (2018).
[3] R. Shimano, N. Tsuji, Annu. Rev. Condens. Matter Phys. 11, 103-124 (2020).
[4] B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M. Scarongella, M. Chergui, F. Carbone, Proc. Nac. Acad. Science 110, 4539 (2013).
[5] H. Y. Liu, I. Gierz, J. C. Petersen, S. Kaiser, A. Simoncig, A. L. Cavalieri, C. Cacho, I. C. E. Turcu, E. Springate, F. Frassetto, L. Poletto, S. S. Dhesi, Z.-A. Xu, T. Cuk, R. Merlin, A. Cavalleri, Phys. Rev. B 88, 045104 (2013).
[6] O. V. Misochko, J. Exp. And Theor. Phys. 123, 292-302 (2016).