The local (adjacency) metric dimension of split related complete graph

E R Albirri1,3, Dafik1,3, I H Agustin1,2, R Adawiyah1,3, R Alfarisi1,4, R M Prihandini1,4

1CGANT-University of Jember, Jember, Indonesia
2Department of Mathematics, University of Jember, Jember, Indonesia
3Department of Mathematics Education, University of Jember, Jember, Indonesia
4Department of Elementary School Education, University of Jember, Jember, Indonesia

Abstract. Let G be a simple graph. A set of vertices, called $V(G)$ and a set of edges, called $E(G)$ are two sets which form graph G. W is a local adjacency resolving set of G if for every two distinct vertices x, y and x adjacent with y then $rA(x|W) \neq rA(y|W)$. A minimum local adjacency resolving set in G is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of G ($\text{dim}_{A,l}(G)$). We present the exact value of local adjacency metric dimension of m-splitting complete and bipartite graphs.

1. Introduction
This research in this paper uses simple and connected graphs. A set of vertices, called $V(G)$ and a set of edges, called $E(G)$ are two sets which form graph G. [4], [5], [6], [7], [2] A split graph is a graph derived by adding new vertex v' in every vertex v such that v' adjacent to v in graph G. An m-splitting graph is a graph which has m v'-vertices, denoted by $m\text{-Spl}(G)$. [3] The local adjacency metric dimension is one of graph topic. Suppose there are three neighboring vertex a, b, c in path $a - c$. Path $a - c$ is called local if a, b, c where each has representation: a is not equals b and a may equals c. [1] Let’s say, $x, y \in G$. For an order set of vertices $W = \{w_1, w_2, \ldots, w_k\}$, the adjacency representation of v with respect to W is the ordered k-tuple $rA(x|W) = (dA(x, w_1), dA(x, w_2), \ldots, dA(x, w_k))$, where $dA(x, w)$ represents the adjacency distance $x - w$. $dA(x, w)$ defined by 0 if $x = w_1$, 1 if x adjacent with w, and 2 if x does not adjacent with w. W is a local adjacency resolving set of G if for every two distinct vertices x, y and x adjacent with y then $rA(x|W) \neq rA(y|W)$. A minimum local adjacency resolving set in G is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of G ($\text{dim}_{A,l}(G)$).

2. Result
2.1. m–Splitting of Complete Graph
A m–splitting of complete graph ($m\text{-Spl}(K_n)$) is a graph obtained from a complete graph (K_n) by adding new vertex v' in every vertex v as n such that v' adjacent v in K_n. m–splitting graph is graph which has the number of vertex v' as m. Let $G = m\text{-Spl}(K_n)$ with vertex set...
Figure 1. $\text{Spl}(K_4)$ Graph

$V(G) = \{u_1, u_2, \ldots, u_i\} \cup \{u^1_1, u^1_2, \ldots, u^k_i\}$, where u_i is vertex of K_n and u^k_i is copy of vertex u_i around K_n for $i \in \{1, 2, \ldots, n\}$ and $k \in \{1, 2, \ldots, m\}$. We can see at 2.1 as illustration.

Theorem 2.1: Let G be m–splitting of complete graph ($m\text{Spl}(K_n)$) with $|V(G)| = 2n$. For $n \geq 4$ and $m, n \in \mathbb{N}$, then $\dim_{A,l}(G) = n - 1$

Proof 2.1 Choose $S = \{u_1, u_2, \ldots, u_{n-1}\} \subset V(G)$. We will show that S is a local adjacency resolving set of G. The local adjacency representations of vertices from $V(G) - S$ are as follow:

- $r_A(u_i|S) = (11 \ldots 1)$
- $r_A(u^k_i|S) = (2111 \ldots 1)$
- $r_A(u^k_2|S) = (1211 \ldots 1)$
- $r_A(u^k_3|S) = (1121 \ldots 1)$
- \vdots
- $r_A(u^k_i|S) = (11 \ldots 112)$

As we see that all of the adjacency representations of adjacent vertices are distinct. So, $S = \{u_1, u_2, \ldots, u_{n-1}\}$ is a local adjacency resolving set for G. The cardinality of S, $|S| = n - 1$ is minimum, because if $|S| < n - 1$ certainly there are $a \neq b \in V(G) - S$ such that $r(a|S) = r(b|S)$.

Suppose $S_1 = \{u_1, u_2, \ldots, u_{n-2}\}$, $|S| = n - 2 < n - 1$. Then, $r_A(u_i|S) = (11 \ldots 1) = r_A(u_{i-1}|S)$ and $u_i \sim u_{i-1}$. Thus, $\dim_{A,l}(G) = n - 1$. \square

2.2. m–Splitting of Complete Bipartite Graph

A m–splitting of complete bipartite graph ($m\text{Spl}(K_{n,t})$) is a graph obtained from a complete bipartite graph ($K_{n,t}$) by adding new vertex v' in every vertex v as $n+t$ such that v' adjacent v in $K_{n,t}$. m–splitting graph is graph which has the number of vertex v' as m. Let $G = m\text{Spl}(K_{n,t})$ with vertex set $V(G) = \{u_1, u_2, \ldots, u_i\} \cup \{u^1_1, u^1_2, \ldots, u^k_i\}$, where u_i is vertex of $K_{n,t}$ and u^k_i is copy of vertex u_i around $K_{n,t}$ for $i \in \{1, 2, \ldots, n + t\}$ and $k \in \{1, 2, \ldots, m\}$. We can see at 2.2, 2.2, and as illustration.
Figure 2. $\text{1Spl}(K_{2,2})$ Graph

Figure 3. $\text{1Spl}(K_{2,3})$ Graph

Theorem 2.2: Let G be m–splitting of complete bipartite graph $(m\text{Spl}(K_{n,t}))$ with $|V(G)| = n + t$. For $n, t > 1$ and $n, t, m \in \mathbb{N}$, then $\text{dim}_{A,l}(G) = 1$

Proof 2.2 We divide the proof till some cases. We prove this theorem by see the construct of the based graph, complete bipartite graph $(K_{n,t})$ for $n, t > 1$ and $n, t, m \in \mathbb{N}$.

(i) Case 1. For $n = t$. Choose $S = \{a_1\} \subseteq V(G)$. We will show that S is a local adjacency
resolving set of G. We know that d is defined by

$$d(u, w) = \begin{cases}
0 & \text{if } v = w; \\
1 & \text{if } v \text{ adjacent with } w; \\
2 & \text{if } v \text{ does not adjacent with } w.
\end{cases}$$

Suppose we call the "inside" vertices of G is the set of vertices in $K_{n,t}$ and the "outside" vertices of G is the set of vertices outside $K_{n,t}$ (or in m–split of $K_{n,t}$). Based on the construction of $K_{n,t}$, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertice of S as much as 1. Suppose we put any vertices of S inside G. Based on the construction of $K_{n,t}$, every vertex in (v_b^k) has neighbour as (v_1). Suppose we have (v_b) for $b \in \{1, 2, \ldots, n\}$ and (v_c) for $c \in \{1, 2, \ldots, t\}$. When we put v_1 in (v_b) then every vertex in (v_c) and (v_b^k) has same r such that 1. Otherwise, every vertex in (v_b) and (v_b^k) has same r such that 2 except $r(a_1) = 0$. But every vertex in (v_c) or (v_b) is not adjacent. Then it ensures that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as much as 1. Suppose we put any vertices of S outside G. Without loss the generality, let j be even number of N. Let $v_{i+1}, v_{i+2}, \ldots, v_{i+j}$ in S. Then there must be minimum an outside vertex (v_{i+1}) adjacent to inside vertex (v_i) which have same $r = (2)$.

Based on two points above, we focus in the first point of case. As we see that all of the adjacency representations of adjacency vertices are distinct. So, $S = \{a_1\}$ is a local adjacency resolving set for G. The cardinality of S, $|S| = 1$ is minimum. Thus, $\dim_{A,l}(G) = 1$ for $n = t$.

(ii) Case 2. For n is odd and r is even and otherwise. Choose $S = \{a_1\} \subseteq V(G)$. We will show that S is a local adjacency resolving set of G. We know that d is defined by

$$d(u, w) = \begin{cases}
0 & \text{if } v = w; \\
1 & \text{if } v \text{ adjacent with } w; \\
2 & \text{if } v \text{ does not adjacent with } w.
\end{cases}$$

Suppose we call the "inside" vertices of G is the set of vertices in $K_{n,t}$ and the "outside" vertices of G is the set of vertices outside $K_{n,t}$ (or in m–split of $K_{n,t}$). Based on the construction of $K_{n,t}$, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertice of S as much as 1. Suppose we put any vertices of S inside G. Based on the construction of $K_{n,t}$, every vertex in (v_b^k) has neighbour as (v_1). Suppose we have (v_b) for $b \in \{1, 2, \ldots, n\}$ and (v_c) for $c \in \{1, 2, \ldots, t\}$. When we put a_1 in (v_b) then every vertex in (v_c) and (v_b^k) has same r such that 1. Otherwise, every vertex in (v_b) and (v_b^k) has same r such that 2 except $r(a_1) = 0$. But every vertex in (v_c) or (v_b) is not adjacent. Then it ensures that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as much as 1. Suppose we put any vertices of S outside G. Without loss the generality, let j be even number of N. Let $v_{i+1}, v_{i+2}, \ldots, v_{i+j}$ in S. Then there must be minimum an outside vertex (v_{i+1}) adjacent to inside vertex (v_i) which have same $r = (2)$.

Based on two points above, we focus in the first point of case. As we see that all of the adjacency representations of adjacency vertices are distinct. So, $S = \{a_1\}$ is a local adjacency resolving set for G. The cardinality of S, $|S| = 1$ is minimum. Thus, $\dim_{A,l}(G) = 1$ for n is odd and r is even and otherwise.
Figure 4. $\text{Spl}(K_{2,4})$ Graph

(iii) Case 3. For n and r are even or for n and r are odd. Choose $S = \{a_1\} \subseteq V(G)$. We will show that S is a local adjacency resolving set of G. We know that d is defined by

$$d(u, w) = \begin{cases}
0 & \text{if } v = w; \\
1 & \text{if } v \text{ adjacent with } w; \\
2 & \text{if } v \text{ does not adjacent with } w.
\end{cases}$$

Suppose we call the "inside" vertices of G is the set of vertices in $K_{n,t}$ and the "outside" vertices of G is the set of vertices outside $K_{n,t}$ (or in m—split of $K_{n,t}$). Based on the construction of $K_{n,t}$, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertex of S as much as 1. Suppose we put any vertices of S inside G. Based on the construction of $K_{n,t}$, every vertex in (v_i^j) has neighbour as (v_i). Suppose we have (v_b) for $b \in \{1, 2, \ldots, n\}$ and (v_c) for $c \in \{1, 2, \ldots, t\}$. When we put a_1 in (v_b) then every vertex in (v_c) and (v_b) has same r such that 1. Otherwise, every vertex in (v_b) and (v_b) has same r such that 2 except $r(a_1) = 0$. But every vertex in (v_c) or (v_b) is not adjacent. Then it ensures that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as much as 1. Suppose we put any vertices of S outside G. Without loss the generality, let j be even number of N. Let $v_{i+1}^k, v_{i+2}^k, \ldots, v_{i+j}^k$ in S. Then there must be minimum an outside vertex (v_{i+1}^k) adjacent to inside vertex (v_i) which have same $r = (2)$.

Based on two points above, we focus in the first point of case. As we see that all of the adjacency representations of adjacency vertices are distinct. So, $S = \{a_1\}$ is a local adjacency resolving set of G. We know that d is defined by

$$d(u, w) = \begin{cases}
0 & \text{if } v = w; \\
1 & \text{if } v \text{ adjacent with } w; \\
2 & \text{if } v \text{ does not adjacent with } w.
\end{cases}$$
resolving set for G. The cardinality of S, $|S| = 1$ is minimum. Thus, $\text{dim}_{A,l}(G) = 1$ for n and r are even or for n and r are odd.

\[\square \]

3. Concluding Remark
We have discussed about the local adjacency metric dimension of some m splitting related wheel graphs for several sets of value (n, t, m) in this paper. Two basic theorems are about complete graph and complete bipartite graph which has any solutions for being a basic graph of operation m splitting.

Open Problem
Find local adjacency metric of $m\text{Spl}(H_n)$ graph for any n and m where H is any graph.

Acknowledgement
This work was partially supported by the CGANT University of Jember year 2019

References
[1] Agustin I H, Dafik, Moh. Hasan, Alfarisi R, Prihandini R M 2017 Local edge Antimagic Coloring of Graphs Far East Journal of Mathematical Science \textbf{102} 1925 - 1941
[2] Albirri E R, Sugeng K A, and Aldila D 2018 On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph IOP Conf. Series: Journal of Physics: Conf. Series \textbf{1008} 012037
[3] Albirri E R, Dafik, Slamin, Agustin I H, and Alfarisi R 2018 On the local edge antimagicness of m-splitting graphs IOP Conf. Series: Journal of Physics: Conf. Series \textbf{1008} 012044
[4] Dafik, Miller M, Ryan J, and Baca M 2011 Super edge-antimagic total labelings of $mK_{n,n}$ Ars Combinatoria \textbf{101} 97-107.
[5] Dafik, Baca M, Miller M, and Ryan J 2008 On super (a, d)-edge-antimagic total labeling of caterpillars Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC) \textbf{65} 61-70.
[6] Baca M, Miller M, Ryan J, and Dafik 2009 Antimagic labeling of disjoint union of s-crowns Utilitas Mathematica \textbf{78} 193-205
[7] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group