Cell Behavior in *Dictyostelium discoideum*:
Preaggregation Response to Localized Cyclic AMP Pulses

ROBERT P. FUTRELLE, J. TRAUT, and W. GEORGE McKEE

Department of Genetics and Development, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

ABSTRACT

The motion of cells in the aggregation phase of *Dictyostelium discoideum* development is complex. To probe its mechanisms we applied precisely timed (±1 s) and positioned (±2 µm) pulses of cyclic AMP to fields of cells of moderate density using a micropipette. We recorded cell behavior by time-lapse microcinematography and extracted cell motion data from the film with our Galatea computer system. Analysis of these data reveals: (a) Chemotaxis lasts only about as long as the cyclic AMP signal; in particular, brief pulses (~5 s) do not induce chemotaxis. (b) Chemotactic competence increases gradually from within an hour after the initiation of development (starvation) to full competence at ~15 h when aggregation begins under our conditions. (c) Cell motion reverses rapidly (within 20 s) when the external gradient is reversed. There is no refractory period for motion. We present a new description of the process of aggregation consistent with our results and other recent findings. (d) The behavioral response to cyclic AMP includes a phenomenon we call "cringing." In a prototypical cringe the cell speed drops within 3 s after a brief cyclic AMP stimulus, and the cell stops and rounds and then resumes motion after 25 s. (e) The development of the speed response in cringing as the cells age closely parallels the development of the cyclic AMP-induced light-scattering response of cells in suspension. (f) Cringing occurs in natural populations during weak oriented movement. The computerized analysis of cell behavior proves to be a powerful technique which can reveal significant phenomena that are not apparent to the eye even after repeated examination of the film.

The cellular slime mold, and *Dictyostelium discoideum* in particular, has gained some notoriety as a system in which to study a range of phenomena including intercellular communication, chemotaxis, cellular differentiation, and the regulation of spatial patterns in development (6, 16, 32, 56, 66, 81). Detailed mathematical models have been developed for the aggregation process in this organism (12, 13, 66, 67). One purpose of this paper is to furnish the type of detailed data necessary to evaluate the models.

D. discoideum initiates development when starved. The cells (myxamebas) go through a period of interphase, aggregation to centers, formation and migration of a slug (grex or pseudoplasmodium), and fruiting body construction. During the interphase to aggregation period the cells move as individuals, colliding at times, so they can be filmed and the behavior of each cell analyzed. During this period the cells’ behavior is coordinated on a field-wide basis—the cells behave as an integrated tissue.

Cyclic AMP appears to mediate aggregation in *D. discoideum*. Cyclic AMP (cAMP) signals from single cells or groups diffuse to neighboring cells which relay the cAMP signal and move toward the source by chemotaxis. We applied cAMP to fields of cells using a micropipette so that the position and duration of the signal were under precise control. Movies of the behavior were made and analyzed by computer. We found that the chemotactic response lasts only as long as the signal. This implies that the duration of the natural signal is ~100 s. We found that cells rapidly reorient when the cAMP source is moved to a new position. In addition, we discovered a transient response to cAMP upshifts in which cells stop, round, and then respread and continue normal locomotion. This phenomenon, which we call "cringing," has a half-width of ~25 s. We followed the development of chemotaxis and cringing from the time of starvation to the time of aggregation. The speed during the cringe response changes during development in the same way that the rapid, initial part of the light-scattering response seen in cell suspensions changes. We conclude that the fast light-scattering response is the optical correlate of cringing. (A
brief description of these results has previously appeared [28].

We discuss the previous models of D. discoideum aggregation and present a new one that embodies our results as well as those of Devreotes and co-workers (17-21, 87). A number of the important results in the paper depended critically on having a large amount of very accurate cell motion data. This was achieved by using the Galatea computerized data gathering system.

MATERIALS AND METHODS

Cell Culture

Dicyostelium discoideum/B (D. discoideum, gift of E. R. Katz, State University of New York at Stony Brook) was grown on 35 ml of SM nutrient agar in 100-mm diameter Petri dishes with E. coli B/r (86). The plates were grown in the dark at 23 ± 0.5°C and harvested at 36 h when they reached ~7 × 10^5 cells/plate. (Terminal cell growth is 2.5 to 3 × 10^6 cells/plate at 43 h under the same conditions.) The cells were washed with cold Botten's salt solution (BSS) (3), centrifuged three times at 250 g for 2 min, and resuspended in cold BSS.

Filming Chambers

Most studies were done on agar in a culture dish chamber (Fig. 1). The design allowed the plate to be scanned over the cover-slip area. Tissue culture dishes (but not Petri dishes) allow a thin agar film to be poured on them easily. The dish was warmed to ~65°C and placed on a carefully leveled surface. 10 ml of agar at 90°C was pipetted directly down onto the dish from a glass pipette filled with 12 ml of agar. The thickness of the agar is ~0.8 mm over the cover slip. (When measuring the thickness of the agar by focusing through the microscope, the actual thickness is given by t = 1.33 x d, where 1.33 is the index of refraction of water and d is the apparent depth (46).) The dish was sealed by a vaseline lid "de-nibbed" by shaving off the three protrusions on the inside with a #10 scalpel blade. A glass slide chamber (Zigmond, [92]) was used for concentration upshift/downshift experiments.

Cell Preparations

The dish chambers used 2% Noble agar (Difco Laboratories, Detroit, MI) in BSS. The agar was overlaid with BSS for at least 12 h before use to facilitate cell spreading. The BSS was drained and replaced by 0.1 ml of cell suspension, final density of 800 to 1,000 cells/mm^2. Experiments were done at this "standard" density unless noted. During the experiments, control plates were kept on the bench in the room.

Small population plates were prepared with 1% Noble agar in BSS, and chemotaxis assays were carried out as described by Konijn ([50, 51]). The assays were positive and served as an overall control. Some observations were made of cells on small population ("small drop") plates made by spraying drops of a cell suspension onto the plate. Cells were suspended in BSS in a 12 × 75 mm plastic test tube fastened to the intake pipe of a DeVilbiss #13 atomizer (DeVilbiss Co., Somerset, PA). Spraying was done three times horizontally ~20 cm above the open dish from 50 cm away. A few hundred to many thousand drops of various sizes can be deposited in a few seconds. Drops as small as 20 μm in diameter, containing one cell, can be made with no apparent damage to the cell. (In automated cell sorting, cells remain viable during drop formation and deposition [85].) For a given drop size, the number of cells is directly proportional to the concentration of cells in the suspension, not a simple function of drop size, however. A 5 × 10^5 cells/ml suspension gave ~50 cells in 120-μm Diam drops and ~150 cells in 240-μm drops. The number of cells in a given size drop depends on the condition of the agar surface (50). The smallest drops were circular; large ones were sometimes elliptical. It is also possible to spray two or more distinct cell suspensions or chemicals. The random positioning of the drops allows the plate to be scanned for desired combinations of drop size and interdrop distance.

A density of 700 cells/mm^2 was used in the bridge area for observations in the Zigmond chamber.

Stimulation

Cells in the dish chamber often deteriorated in appearance, assuming a circular shape with bright, indistinct edges, unless the agar was kept wet. For stimulus sets delivered every hour, wetting was done 20 min before the hour by injecting a small volume of BSS into the wetting tubes with a hypodermic syringe and blowiing it through with an air-filled syringe.

Figure 1 Schematic cross section of culture dish filming chamber.

A 20 × 100 mm tissue culture dish (TCD) has a 35-mm diameter hole in the bottom (cut on a lathe). The hole is covered with a 40 × 50 mm #1 cover slip (CS) (A. Thomas, Philadelphia) held on with epoxy cement. The microscope condensor (CO) is raised close to this cover slip. The dish rests on the microscope stage (MS) and is positioned by holding pins (HP) fashioned from paper clips, which are epoxied to the arms of a movable slide stage. The holding pins rest in blind holes drilled slightly into the dish. The dish is covered by a 35 mm transparent plexiglass disk (CD) 20 cm in diameter (50), coated with vaseline in the area of contact. A hole is drilled in the center of the disk to allow the objective (OB) to enter without binding. The heater (HT), which prevents freezing of the objective lens, consists of a spring-metal broom-handle holder wrapped with teflon-covered chrome alloy wire embedded in epoxy. The heater is driven with a low voltage (~12 VAC). The cells move on the agar (AG) and are stimulated by a micropipette (PI) inserted in a pipette holder (PH) mounted on a micromanipulator (E. Leitz). Three flexible tubing tubes (WT) (one behind objective not shown), which fit snugly through holes in the cover dish, are used for adding liquid to the preparation.

Micropipettes for cAMP were pulled from 1.2 mm O.D. glass tubing ("Omega-dot," Frederick Haer & Co., Brunswick, ME) to a tip O.D. of 1 to 2 μm. Filled with BSS, the pipettes gave DC resistances of 20 to 100 MΩ.

Micropipettes were filled with cAMP (Sigma Chemical Co., St. Louis, MO) in BSS. Concentrations ranged from 10^-10 M to 0.1 M cAMP. For concentrations above 10^-5 M cAMP, sodium salt was used. Experiments were done with 10^-7 M cAMP, the "standard" concentration, unless noted. Representative pipettes were calibrated by filling them with dilute 7′cAMP and allowing the cAMP to diffuse into BSS for up to 20 h (Appendix 1). The efflux varied from one pipette to the other but was never >10^-12 ml/s (equivalent flow rate). This gives an efflux rate of 6 × 10^7 molecules/s for the standard concentration, 10^-6 M. The concentration at a cell 100 μm from such a pipette was calculated to be 10^-6 M.

A micropipette was normally used to stimulate the cells by touching it to the agar just inside the filmed area. Care was taken to avoid cell contact with the pipette. Lowering a cAMP-containing pipette onto (through) a cell lysed it immediately. When a cell reached a pipette which was already resting on the agar, it would sometimes enter the pipette and might even reemerge later. To achieve uniform timing, each stimulus was begun by touching down the pipette ~2 s before a film frame exposure and lifting it immediately after a later exposure. For 5-s pulses, we attempted to center the pulse around the time of exposure.

Injection and withdrawal of liquid from the Zigmond chamber was done by Dr. Zigmond's methods (92).

Optical Microscopy and Filming

A Leitz Ortholux II microscope was used with a 32 × 6.6 mm working distance Zernike phase contrast objective. The objective was warmed 0.2°C above the chamber temperature to prevent condensation on the primary element. The temperature difference was monitored by MT-3 thermocouple microprobes attached to a Bailey Model BAT-8 digital thermometer (Bailey Instruments, Inc., Saddle Brook, NJ). The image was directly projected onto the moving film at a magnification of 40 × by a 2.5 x trinocular stage (no relay optics). The camera was adjusted to be parfocal (using a small prism in the film gate) with an eyepiece reticle in one of the oculars (which remains parfocal at all interocular settings). Subsequent focusing was done through the oculars. The field viewed was 450 μm in diameter; the field filmed was 170 × 225 μm. Constant illumination was used, limited to the field of view. The quartz-halogen source was operated at a color temperature of 3,200K and then attenuated by 16 × of neutral density filtering followed by a heat filter.

A 16-mm Bolex H-16 motion picture camera was used, driven by an Emdeco TL 320 time-lapse drive set for a 1-s exposure. Most films were made at eight
frames per min (8 fr/min) on Kodak VNF 7240, ECO 7252 or Kodachrome 40 (KMA) stock on 100-foot rolls (4,300 usable frames).

Data Extraction

The Galatea/ST computer system: Films were projected onto a drawing-board-like electronic tablet. The user followed the apparent center of a cell by guiding a cursor as the film ran, usually at 1 fr/s. The tablet sensed the cursor's x,y position and sent the data to the computer (Fig. 2). The Galatea/ST system in the computer supported the data extraction process. It allowed the user to monitor the quality and completeness of the data and to re-enter data as needed. Galatea/ST at the University of Illinois in Urbana (9) is a variant of the more graphically oriented system at the University of Chicago designed by one of us (RPF) (25, 26) and further developed there (70). A similar system was later built at MIT (2).

The movie projector was a 224A Mark IV (LW International, Woodland Hills, CA). It was interfaced so that each frame change was signaled to the computer along with the film direction. The data tablet had a 22 inch square (56 × 56 cm) working area and 0.001 in. (0.025 mm) resolution (Takos Inc., Scottsdale, AZ). The computer was a PDP-11/60 (Digital Equipment Corp., Maynard, MA) with 32,768 16 bit words of memory, 2.5 Mwords of permanent disk storage, and 1.25 Mwords of removable disk cartridge storage. Galatea/ST was written in the structured assembly language BIOMAC (by Scott Herman-Giddens, available from the Digital Equipment Company Users Society, DECUS program 11-208, DECUS, Marlboro, MA) and ran under the RT-11 operating system (Digital Equipment Corp.).

To avoid accidental destruction of valuable data, original films were archived and work prints used for data entry. The image on the data tablet was 36 × 47.5 cm, a total magnification of 2110 times. A sheet of paper was taped to the tablet for recording cell outlines and other alignment information. In each entry session, Galatea was first used in "comment mode" and a description of how the particular data were to be taken was typed in. Then Galatea was used in "moving point mode" to track selected cells. The x,y data corresponding to a given frame were automatically read from the tablet at the moment that frame changed to the next to allow the user maximum time to position the cursor accurately. Data for a single experiment were contained in a single Galatea file. Each file was further divided into "tracks." Typically, the stream of moving point data corresponding to a single cell was entered into its own track. Data entry could be done at various rates up to 24 fr/s, but the cell motion we studied could not be tracked with sufficient accuracy at the higher speeds.

Galatea gives summaries of the data, listing inadvertent gaps, and reporting the maximum difference between cell positions in successive frames to avoid accidental jumps in the data due to misalignment or misidentification of cells. Tracking by eye and hand was at best accurate to 1 mm, which corresponded to 0.5 μm in the original experiments (Appendix 3).

RESULTS

The Chemotactic Response Lasts Approximately as Long as the Stimulus

The duration of chemotactic movement is approximately as long as the applied cAMP stimulus. Fig. 4 illustrates this for the application of a 1- and 2-min cAMP signal to 9-h cells. We have seen brief responses to 20-s signals and extended responses with constant motion towards the pipette source for many hours. The long responses agree with observations that D. discoideum cells move steadily towards continuous sources (51). In Fig. 4 the second response of ~120 s requires a stimulus of the same cell were averaged together for most of the plots. The chemotaxis index was calculated from the velocity vector and the chosen source position as shown in Fig. 3. The index has a maximum of +1.0 when a cell moves directly toward the source and -1.0 when it moves directly away from the source (cf. Appendices 2 and 3).

A detailed error analysis was made (Appendix 3). The most notable result was that the errors produce a bias in the reported speeds, especially at low speeds. Speed minima shown as 2 μm/min are in fact nearer to 0.5 μm/min if corrected for all error sources. Our plots have not been so corrected because an inordinate amount of additional data collection would have been necessary.

Data Records

Besides the laboratory notebook, a six page film form (plus continuation sheets as needed) was used with ~50 specific items to be filled in for each filming session, covering the experiment from cell culture conditions to final data analysis. Each separate analysis of any subsection of a film was given a unique experiment number (shown on the data plots along with the date and time of data processing).
The data in Fig. 4 are noisy due to the modest number of cells included in the average but it is clear that the half-time to rise to the maximum and the half-time to decay are both in the neighborhood of 20 s for the response to the first (1-min) signal. The response to the 2 min signal has a half-time for the initial rise of closer to 50 s, but a half-time to decay nearer the first, \(\sim 30 \) s. We have often seen such systematic differences in the responses to sequential signals, and these vary with developmental age, pulse strength, and timing. It might be guessed from the figure, and it can be seen more clearly in data presented later, that chemotaxis begins within seconds after the stimulus onset.

To understand the response, we have to understand the stimulus. Close to the pipette (30 \(\mu \)m), the cAMP concentration and gradient build up within \(-1\) s. The signal near the edge of the field (180 \(\mu \)m) is 6-fold weaker in concentration and 36-fold weaker in its gradient. The signal build-up time near the edge is \(\sim 36\) times slower. Thus the cells in various parts of the field are exposed to different primary signals. The data from cells at various distances have been averaged together in Fig. 4, which may lead to a broadening and smoothing of the actual response. Between the two pulses the concentration of cAMP release during aggregation is probably \(\sim 10^4 \) pulse per cell (17, 37) and a duration of the delayed cAMP release of 1–3 min (17, 77, 82).

We stimulated cells with 5-s pulses using a wide range of cAMP concentrations and saw no evidence of chemotaxis by cells at any distance from the pipette. Fig. 5 shows the results of one such experiment using standard conditions. Short pulses do induce a different response, cringing, discussed in later sections of this paper.

The major differences between our approach and the “pulser” experiments are that we reliably shut off the stimulus by lifting the pipette and we analyzed the motion of individual cells rather than visually observing wave patterns in films running at 24 fr/s (39).

The result that brief pulses do not induce chemotaxis is in harmony with studies on cAMP-induced cAMP relaying (17). There, brief pulses of cAMP induced only small and equally brief relay responses rather than a full quantal release independent of the stimulus. Other micropipette experiments, only briefly described, and done on mutant strain g93 (35, 36), also suggest that the short pulse response involves a brief movement response at best and no preprogrammed step. The brief response reported by Gerisch gave a net cell movement first minute of each, when the stimuli are the same. The simplest explanation of the difference is to say that the cells are in a partially refractory state after the first stimulus, less responsive to the second stimulus—a view that originated with Shaffer (79). Refractoriness (adaptation) has been studied for the cAMP relaying response and found to be a graded phenomenon, with no absolute refractory state (20). The chemotactic response seems to be of this nature also.

Brief Pulses Do Not Induce Chemotaxis

Shaffer (79) reasoned that a caras (now known to be cAMP in *D. discoideum*) was produced and relayed in “pulses”. Cohen and Robertson (12, 13) assumed that the pulses were brief, typically a few seconds long. The response to the brief signal was assumed to be a preprogrammed step 100 s long. They reported confirmation of the theory in “pulser” experiments in which 1.5-s pulses of cAMP were released by iontophoresis (74, 75). Coordinated chemotactic motion toward the pipette was reported. Those experiments have not been replicated by any other group. In the “pulser” experiments, pulse sizes (in number of cAMP molecules) ranged from \(2 \times 10^9 \) pulse to \(1.5 \times 10^{10} \) pulse and the “leak” from the back-biased electrode between the pulses ranged from \(2 \times 10^7 / \text{s} \) to \(6 \times 10^8 / \text{s} \). Maximal cAMP release during aggregation is probably \(\sim 10^7 / \text{s} \) per cell (17, 37) and a duration of the delayed cAMP release of 1–3 min (17, 77, 82).

The data in Fig. 4 are noisy due to the modest number of cells included in the average but it is clear that the half-time to rise to the maximum and the half-time to decay are both in the neighborhood of 20 s for the response to the first (1-min) signal. The response to the 2 min signal has a half-time for the initial rise of closer to 50 s, but a half-time to decay nearer the first, \(\sim 30 \) s. We have often seen such systematic differences in the responses to sequential signals, and these vary with developmental age, pulse strength, and timing. It might be guessed from the figure, and it can be seen more clearly in data presented later, that chemotaxis begins within seconds after the stimulus onset.

To understand the response, we have to understand the stimulus. Close to the pipette (30 \(\mu \)m), the cAMP concentration and gradient build up within \(-1\) s. The signal near the edge of the field (180 \(\mu \)m) is 6-fold weaker in concentration and 36-fold weaker in its gradient. The signal build-up time near the edge is \(\sim 36\) times slower. Thus the cells in various parts of the field are exposed to different primary signals. The data from cells at various distances have been averaged together in Fig. 4, which may lead to a broadening and smoothing of the actual response. Between the two pulses the concentration of cAMP release during aggregation is probably \(\sim 10^4 \) pulse per cell (17, 37) and a duration of the delayed cAMP release of 1–3 min (17, 77, 82).

We stimulated cells with 5-s pulses using a wide range of cAMP concentrations and saw no evidence of chemotaxis by cells at any distance from the pipette. Fig. 5 shows the results of one such experiment using standard conditions. Short pulses do induce a different response, cringing, discussed in later sections of this paper.

The major differences between our approach and the “pulser” experiments are that we reliably shut off the stimulus by lifting the pipette and we analyzed the motion of individual cells rather than visually observing wave patterns in films running at 24 fr/s (39).

The result that brief pulses do not induce chemotaxis is in harmony with studies on cAMP-induced cAMP relaying (17). There, brief pulses of cAMP induced only small and equally brief relay responses rather than a full quantal release independent of the stimulus. Other micropipette experiments, only briefly described, and done on mutant strain g93 (35, 36), also suggest that the short pulse response involves a brief movement response at best and no preprogrammed step. The brief response reported by Gerisch gave a net cell movement
of a micrometer or less, which would be lost in the “noise” in Fig. 5.

Development of the Chemotactic Response

There have been few studies of the development of the chemotactic response in the cellular slime molds. The first used the Konijn assay (51) and reported the cAMP concentrations necessary to obtain a positive response in the assay at two different stages labeled vegetative and aggregating. The concentration required dropped by 100 times for the later stage (7). Another study, using pulser techniques, reported weak chemotactic response at 2 h and full response at 4 h with first cell contact (streaming?) occurring at 8 h (74). Recent work using the net movement of a dense drop of cells suggested that the chemotactic response remains low until ~6 h of development and then rises dramatically (88).

In our experiments the chemotactic response was measured each hour, from 1 through 15 h after starvation. There was strong and obvious autonomous activity after 15 h and pronounced streaming by 20 h. Each hour, we administered three consecutive 1-min cAMP pulses with 2 min between pulses (3-min period). The pulses did not appear to accelerate development; the unstimulated controls and the stimulated preparations all began aggregation between 17 and 20 h. Depending on the conditions, cAMP may accelerate (15, 34) or delay development (57).

Fig. 6 is an example showing the chemotactic response at 14 h for 13 cells. The response to the first stimulus is clear and strong, reaching \(CI = 0.6 \) at its maximum. The response has not died out by the time the second stimulus begins, and the response then reaches \(CI = 0.7 \). The second response falls off much more slowly than the first and little effect of the third stimulus can be seen. The response pattern for 14-h cells is typical of all late cells (from 10 h on): (1) strong, (2) stronger and slow to decay, (3) little effect. The sequence of responses all began aggregation between 17 and 20 h. Depending on the conditions, cAMP may accelerate (15, 34) or delay development (57).

We then compared the chemotactic responses of early (1-5 h), middle (6-10 h), and late (11-15 h) cells. This was done by averaging together the responses for the five ages in each group. To reduce variability, the responses to the three stimuli in each group have been merged to yield the average stimulus-related response for the three age groups shown in Fig. 7. In interpreting these data it is necessary to understand that the distinct responses to the individual stimuli have been lost and that some of the “pre-stimulus” behavior contains remnants of the response to the previous stimuli. The data show that the response increases almost linearly during the stimulus, reaching

its maximum abruptly at from 35 s (early cells) to 45 s (late cells). The maximum CI for late cells (0.48) is about double that for early (0.27). The slower decay of the late response is also obvious from the figure.

The chemotactic response strengthens steadily with age. It appears to be present even in 1-h cells. This is probably an accurate indication of the early cells’ competence because we have been careful to harvest growing cells two doublings short of stationary phase in an effort to avoid initiation of development on the growth plates (Materials and Methods). Early cells show no marked change in morphology during chemotaxis. They are not elongate. Chemotaxis in early cells is attributable to a tendency to alter paths taken rather than to extend noticeably specialized processes towards the cAMP source. Still photos of chemotaxing early populations gave no indication that chemotaxis was in progress unless it had been in progress so long that there was a noticeable accumulation of cells near the pipette. When the chemotaxis index was low, say 0.1, as it was in very early cells, it was not even possible to see the response to 1-min pulses by viewing the film. In such a case the net motion toward the source was 1 \(\mu \text{m} \) while the random motion was 9 \(\mu \text{m} \) in the 1-min interval. Nevertheless, the data analysis could distinguish such small differences.

Late cells appear to maintain their directed motion after stimulus removal for a longer time than early cells (Fig. 7). Analysis of this “persistence” phenomena, including additional data by Futrelle and Hunt (27), suggests that much of the change can be attributed to the fact that the mean cell speed drops with age but that the “step length” before a significant directional change remains about the same (~15 \(\mu \text{m} \)). Other data on persistence of motion in D. discoideum have shown no significant variation of persistence time with age (69). Those studies were done at extremely low cell densities (10 to 10\(^5\) cells/mm\(^2\)). At all but the highest cell densities they used, D. discoideum will not aggregate (50) and, furthermore, at the low densities the cells will not develop—their later performance when reconcentrated is delayed (unpublished experiments, quoted in reference 16, pg. 113). It is therefore not surprising that no developmental changes in persistence time were observed (69). Furthermore, the persistence times were not well-defined, varying by 2:1 for the same raw data depending on whether the data were pooled or broken into 1-h blocks.

Cell Polarity and Movement Refractoriness

As D. discoideum interphase cells age, they develop an elongate morphology. During aggregation they move unidirec-

![Figure 6](image6.jpg)
Figure 6 The average chemotaxis index of 13 cells during three consecutive 1-min cAMP pulses (gray bars) 2 min apart; 14-h cells, standard conditions. The corresponding average speed is shown in Fig. 13.

![Figure 7](image7.jpg)
Figure 7 Chemotaxis in response to 1-min cAMP pulses (gray bar) for cells in early (---, 1-5 h), middle (----, 6-10 h) and late interphase (· · · ·, 11-15 h). For each age group the average chemotaxis index is shown for 195 events (responses of 13 cells to three consecutive pulses 3 min apart repeated each hour for 5 h). The corresponding speed plots are shown in Fig. 16.

FUTRELLE, TRAUT, AND MCKEE Response of D. discoideum to Localized CAMP Pulses 811
tionally towards centers. This suggests that the cells are polar, with a true anterior-posterior distinction. There are no obvious morphological markers of polarity, so evidence was sought by looking at cell behavior. Bonner (4) moved natural (attractant) centers past the distal ends of streams and found that cells balled up and then moved toward the new center or made U-turns, rather than simply reversing with little shape change. Subsequent studies (36, 81) suggest that cells are more labile. As a question of developmental biology it is of interest to know whether cells are spatially differentiated with unique anterior, posterior, and lateral regions. Also, to understand aggregation we have to face the "back of the wave" problem (66, 67, 80). As a relayed cAMP wave approaches a cell proximally, from the attractant center, the cell sees a gradient (technically, one of negative sign) which attracts the cell towards the center. As the wave passes, the gradient must reverse and the cell, if it responds rapidly enough, could reverse and follow the "back of the wave" outwards. Cells do not reverse during natural aggregation.

We tested movement refractoriness in a number of experiments. In one experiment we studied 12-h cells, stimulating with the pipette at one position on the agar for a few minutes and then lifting and moving the pipette to a new position 50 to 100 μm away within 3 s. This was done repeatedly. Cells within 50 μm of the pipette reacted strongly, moving toward the pipette and elongating. When the pipette was repositioned, cells that were moving at a large angle (at right angles or away from the new source position) tended to project lateral lamellipods towards the source as described by Gerisch et al. (36). These projections then became the leading edge of the cell. In the most extreme case, cells that were moving directly away from the new source position simply reversed their motion (81).

Such a cell is shown in Fig. 8. The chemotactic response (Fig. 9) shows that onset is rapid, 20-s half-time, and reversal even more rapid, 15-s half-time. The speed build-up (Fig. 10) is also faster in response to the second pulse, once the cell is elongate. Though the ½-times are 15 to 20 s, the figures show that the responses begin rapidly, within a few seconds of the stimulus onset. (Since the filming frame rate was 1 fr/7.5 s, estimates to within ±3 s cannot be made reliably.) Our results complement Bonner's (4), mentioned earlier, because he studied cells attached to streams in more fully developed preparations. Our observations on such later cells showed that they responded to repositioned sources, but their behavior was complicated by cell contact.

Alcantara and Monk (1) attempted to study movement refractoriness by assuming that cells were attracted toward waves moving outwards in streams and by observing cells moving erratically between streams. Their conclusions rest on their (mostly unstated) assumptions about the changes and fluctuations in the attractant gradients—gradients which they could neither control nor measure. In addition, they assumed that the cells which moved erratically or away from the aggregation center were competent and responding to the changing gradients—again, they had no independent way of checking the cells' competency. We think their arguments are circular and therefore inconclusive in establishing any understanding of directed motion refractoriness.

A study similar to ours was done earlier on polymorphonuclear leukocytes, with similar results. On reversing the chemotaxant pipette source position, "the cell reacted within seconds and began actual displacement in the new direction within 40 sec." (73). Zigmond recently reported detailed studies of leukocyte polarity (93). It appears to us that the only notable difference between D. discoideum and leukocytes that affects their behavior is that leukocytes have a pronounced morphological polarity with a knoblike uropod (tail).

"Cringing" and the Speed Response

We have discovered that D. discoideum cells exhibit a transient response to cAMP which we call "cringing." Cringing in D. discoideum is induced by both short and long cAMP pulses. In the normal cringe response, a cell slows appreciably or stops within 20 to 30 s after the onset of the pulse. This is accompanied by a rounding and contraction of the cell. In phase microscopy the cell appears to brighten centrally as it contracts. In SEM, retraction fibers appear at the periphery and ruffles form on the dorsal surface of the rounded cell or at the leading edge of a more elongated cell (B. Storm and R. P. Futrelle, unpublished observations). After 40 to 50 s the cell respreads and continues normal locomotion. Under some not-well-understood conditions a cringe cell does not round up but instead undergoes a transient slowing or cessation of both translocation and shape changes—the cell appears momentarily paralyzed. If the cAMP signal duration is long enough to induce chemotaxis, the cell will begin to orient during the cringe—the two phenomena can occur simultaneously. Cring-
FIGURE 10 Speed of the cell shown in Fig. 8. (The speed is averaged over eight replicates of the upper cell edge and eight replicates of the lower cell edge. Both edges did not stop simultaneously, so the cell speed reported does not fall to zero during reversal.)

Fig. 11 shows the speed variation after a 5-s pulse of a pipette with $10^3 \times$ the standard cAMP concentration, giving an estimated concentration $<2 \times 10^{-7} \text{ M}$ at a cell 100 μm from the pipette. The average speed dropped from 10 $\mu\text{m}/\text{min}$ to 2 $\mu\text{m}/\text{min}$ within 15 s. (Due to inherent statistical bias the minimum speed is probably $\sim 0.5 \mu\text{m}/\text{min}$; see Appendix 3.) The speed returned to its pre-stimulus (baseline) value in 50 s and then increased an additional 50%, peaking at 15 $\mu\text{m}/\text{min}$. It then decayed to the baseline with a half-time of ~ 1 min. In Fig. 11 the response appears to precede the stimulus, but this is because a straight line has been drawn between the speed data point before the stimulus and the next speed data point 7.5 s later.

Detailed analysis of the data shows that the response is quite rapid, with most of the speed drop occurring within <3 s after the stimulus onset. The cells move only ~ 5 μm in this 3-s interval before they essentially stop.

In spite of the clarity of the response shown in Fig. 11, the cringe phenomenon is easily missed when viewed through the microscope or on film. It is most clearly seen in films when they are run backwards so that the cringe is seen before the visually disturbing appearance of the pipette. Only Gerisch appears to have noticed cringing in the cellular slime molds. He refers to it in passing as a "slight contraction" of the cell within 5 s of the pipette stimulus (38).

The cringe response for a single cell is shown in Fig. 12. The cell was one in a field of cells developing under liquid (BSS) in a glass chamber. At 16 h of development it was subjected to a rapid cAMP upshift. No substantial gradients of appreciable duration persisted for long in the chamber, as was evident from examining the rapidity of dye mixing. The lack of coordinated directional movement of the cells also indicated that no appreciable gradients existed. The final concentration was precisely known in this experiment, $7 \times 10^{-8} \text{ M}$ cAMP. This was near the reported dissociation constant K_d of $\sim 10^{-7} \text{ M}$ for the most numerous (low-affinity) cAMP binding sites on D. discoideum (40, 44, 49) and close to the maximum dose response level for cAMP relaying as measured in concentration-clamp experiments (18). It is less than the peak concentration measured in waves in situ by using isotope dilution-fluorography (87).

In Fig. 12 the anterior, leading edge of the cell is moving to the right while the posterior, trailing edge is moving up at the time of the upshift. The leading edge stops abruptly and is seen to brighten in the film (phase-contrast image) when the upshift occurs, while the motion of the trailing edge continues a bit longer. Leukocytes which are locomoting and subjected to an upshift in chemoattractant concentration behave in essentially
the same way (92). D. discoideum cells in glass chamber experiments subjected to later fixation or no fixation appeared to resume normal locomotion within 60 s. SEM study of the cell in Fig. 12 showed ruffling at the leading edge along with numerous retraction fibers around the periphery (figure not included). The ruffling and retraction fibers were less common on control cells for which BSS was injected into the chamber.

Early cells and cells subjected to strong upshifts, e.g. 1 mM cAMP, show more extreme rounding and ruffling over their entire dorsal surface when studied in SEM (see also [7]). In phase-contrast microscopy such cells appear as bright round discs, similar to the leukocytes in Fig. 5 F and D of reference 92.

Cells subjected to 1-min pipette-produced pulses recover and resume locomotion before the stimulus ends (Fig. 13). This figure shows the average speed calculated from the same cell position data used for the chemotaxis index plot of Fig. 6. By comparing Figs. 6 and 13, it is clear that the cells were orienting at the same time their speed was depressed. In Fig. 13 the cells appear to have slowed again, reaching a second minimum just after the cessation of each 1-min pulse. This later reaction appears to be independent of the pulse duration as is the primary downshift at the end of the 1-min pulse.

FIGURE 13 The average speed of 13 cells during three consecutive 1-min cAMP pulses (gray bars) 2 min apart, standard conditions. The corresponding chemotaxis index is shown in Fig. 6.

The primary cringe is most easily seen in a confluent cell population (Fig. 14). The pulse was 5-s long (Fig. 14a) and the cells showed maximal contraction 22.5 s (3 frames) later (Fig. 14b). In viewing the film it was possible to see the later event, a slight contraction of the cells, about a minute after the first, but the event is not particularly evident in individual stills from the film. The later event is discussed in the next section.

We have seen autonomous cringe phenomena in natural populations which never received external cAMP stimulation. This assures us that cringing is a normal cellular process in D. discoideum and not merely a result of the particular stimulation protocols we used. One film showed two events in which various groups of cells in the field slowed, rounded, and brightened simultaneously. The data for one event are shown in Fig. 15. Only some cells exhibited clearly visible cringing, but over 90% showed an increase in average speed from the 0- to 2-min interval to the 5.5- to 7.5-min interval. The cells showed oriented movement (towards the east). When the chemotaxis index was plotted for this direction it was seen to increase from 0 to 0.5 during the interval 2.5-3.5 min and then to decay with a half-time of ~1.5 min.

Development of the Cringe Response and Its Relation to Light-scattering Experiments

Two types of rapid responses to cAMP have been observed in stirred suspensions of D. discoideum cells: a light-scattering decrease with a half-width of ~25 s (33, 55) and a pulse of intracellular cyclic GMP which reaches a maximum at 10–20 s after stimulation (61, 89). We suggest that the change in the scattered light intensity is a manifestation of the cringe response. When cells cringe, they round. The theory of light scattering applied to cells in suspension shows that rounded cells scatter less light than more irregular cells of the same volume (54). Making the simple assumption that cell volume does not change during cringing, there should be a decrease in scattering and thus a decrease in extinction or optical density. This is what is observed (33, 35). We found that light scattering and cringing develop in the same way as the cells age. Fig. 16 is an average over a large number of events designed to show some of the more subtle details of the response. In the early cells, the response starts quickly and then recovers smoothly. In the middle cells, a small dip appears at ~1.5 min after stimulus onset. In the late cells, the dip is a pronounced response, another minimum in the speed, though not so deep as the primary cringe response. (Recall the discussion, in the previous section, of this later response in connection with Fig. 14.) For the late cells the second minimum is significantly lower than the intermediate peak at time 2.9 min, p < 0.03 (one-sided test, paired comparison). A detailed study of the development of the light-scattering response was made by Lax (55). He showed that a second rapid peak develops as the cells age and the second peak occurs from 0.8 to 1.3 min after the primary rapid response.

Sussman's "I-Cells"

In some of our films we saw a few very large, well-spread, and rapidly moving cells. They varied in area from 380 μm² to 580 μm², which is 2.5–4 times the area of a typical cell. The average speed (higher for larger cells) varied from 21 to 44 μm/min, 3 to 8 times the speed of a typical cell. These large cells were presumably the "I-cells" reported by Sussman and co-workers (23). Because the large cells were a minor and distinct subpopulation, data from them were excluded.

DISCUSSION

An Integrated View of Signal Propagation and Cell Response in Natural Aggregation

Cells move inwards in 20 μm "steps" lasting 100 s or longer (1, 20). The steps occur as often as every 2.5 min as waves of inward movement activity propagating outwards. Shaffer realigned that when an acrasin wave passes over cells, the back of the wave, closer to the center, would present cells with a reversed gradient. This might cause them to reverse their motion. But cells do not reverse after their forward step. He suggested reasons for the nonreversal including cell shape, spacing, velocity, and polarity (81), as well as, "... the cells might be less responsive because of adaptation or fatigue" (80). Some of these ideas were formulated mathematically by Cohen and Robertson (12, 13). Shaffer gave no estimate of the acrasin "pulse" duration; Cohen and Robertson assumed it was 1 s or
FIGURE 14 Phase micrographs showing the response of a field of late interphase cells to a 5-s cAMP pulse. (a) Beginning of the stimulus. The cells are tightly packed. A standard pipette, seen touching the agar surface to the left of center, was filled with $10^3 \times$ standard cAMP concentration. (b) 22.5 s later the cells have contracted, forming a bright reticulum of gaps, which disappeared after about another 30 s. (Micrographs reproduced from 16-mm movie film.)
less, giving no justification. They also assumed a delay in the relay response; this had been suggested earlier by Jaffe using estimates of diffusion times (45). To prevent reversal, Cohen and Robertson assumed that the cells became refractory for a period of time during which their motion and relaying could not be altered. This left the impression that an aggregation wave propagated outwards as a series of narrow pulses, illustrated in Fig. 17a. When the model was stimulated by Parnas and Segel (66), they discovered that the waves were a few hundred micrometers broad (Fig. 17b). The waves propagated outwards with little change in shape once well-removed from the center, rather than propagating as a series of pulses, each of which built up and decayed before the next occurred. Another difference was that on the back of the wave where the gradient was reversed, the acrasin concentration decreased with time in the simulation. Later simulations using a longer secretion, 60 s, showed even more symmetric waves (Fig. 17c).

The long secretion model of Fig. 17c is consistent with our new results for the duration of chemotaxis and with in situ measurements of cAMP concentrations (87).

Since the cells are exposed to a reversed gradient after the wave peak has passed but don't reverse, we must explain the cell motion reversal results discussed earlier. The difference between our reversal experiment and the gradient reversal in a propagating wave (Fig. 17b and c) is that in the reversal experiment the concentration at the cell rises quickly after the gradient reversal, but in the propagating wave the concentration falls after reversal. This suggests that cells may not be chemotactically sensitive to a gradient whenever the concentration is falling with time. There is a strong precedent for this type of behavior from Devreotes' results (discussed in an earlier section) that the cAMP relay response is only produced by cAMP upshifts. Cringing behaves similarly; it is a reaction to upshifts. We hypothesize that the chemotactic response can occur only in a gradient if the concentration is constant or

Figure 15 The average speed of 81 cells during an autonomous cringe 5 h after plating at 2,400 cells/mm². The arrow indicates the time at which peak brightening of cells was observed.

Figure 16 Cringing in response to 1-min cAMP pulses (gray bar) for cells in early (---, 1-5 h), middle (-----, 6-10 h) and late interphase (-----, 11-15 h). The primary speed response peaks at ~20 s after the stimulus onset. A later speed drop, occurring ~1 min after the first, develops as the cells age. The chemotaxis indices for the same data are presented in Fig. 7.

Figure 17 Schematics of three models of wave propagation. The vertical coordinate is the acrasin or cAMP concentration and the horizontal coordinate is the distance from the attractant center, assumed to be at the left. The circles represent cells, with arrows to indicate the cells that are moving inward and crosshatching to indicate cAMP secretion. (a) Pattern of activity in the "brief pulse" model. The crosshatched cell has just pulsed, producing a sharp peak in the acrasin concentration. The acrasin diffuses so that the concentration near the cell falls (down arrow) while the concentration on both sides rises (up arrows). The cells on either side see identical concentrations but reversed gradients. The "backwards wave" problem exists because this model presents cells closer to the center with a gradient which would tend to attract them outwards. This would contradict what is seen in natural aggregation where cells only move in and never reverse their motion. In this model, the "wave" moves out as a series of pulses, each of which dissipates before the next one occurs. (b) Schematic of the results obtained by a simulation of acrasin wave propagation (66, 67). Acrasin from earlier cell signals is still present to the left of the signaling cell. Due to acrasin degradation and lack of secretion, the concentration in that region falls (down arrow) rather than rises. The concentration can only rise where a source is active (up arrow). The cells to the left of the signaler still see a reversed gradient on the "back of the wave." These simulations show that the wave moves steadily outwards with little change in shape—the sharp wave front, the peak, and the back of the wave all move outwards together at the same speed \(v_{wave} \), just as a water wave does. (c) Wave propagation based on the assumption that the acrasin wave duration is comparable to the movement step duration in \(D. discoideum \) (100 s or more). This view is supported by our chemotaxis measurements and by Tomchik and Devreotes' measurements of cAMP waves in situ (87). Here the wave continues to build throughout the entire movement-secretion step (up arrow). The back of the wave has a reversed gradient. The wave moves steadily outwards with no shape change. The cells move only while the concentration is rising.
increasing with time. This leads to further questions about whether *D. discoideum* cells sense gradients by spatial mechanisms or, like bacteria, by temporal mechanisms (29, 35, 93).

"Quivering"

During normal aggregation, cells essentially stop between movement steps. The duration of stopping can be substantial, from 100 to 500 s (1). During these periods the cells do not translocate but they do actively form pseudopods; hence they appear to "quiver" in place when viewed in time-lapse. They remain chemotactically responsive. The cell in Figs. 8 and 10 is quivering in the period before the first pipette stimulus. In experiments on other late cells in which the pipette was moved at intervals, cells farther than 100 μm or so showed no translocation, with net displacements of 2 μm or less in 40 min, an average speed of <1/10 μm/min, <1% of normal.

We hypothesize that quivering serves to increase the efficiency of pattern formation during aggregation. To understand this, consider a cell that has just "stepped" and is close to but not yet in contact with a cell at the end of a stream. If the cells quiver, then the positions attained by the step would be maintained. If the cells wander off randomly they would lose their advantageous positions. If we think of the field of cells as a "tissue", then quivering stabilizes the pattern developing in this tissue by suppressing random cell motion or "mixing."

Other Systems

Chemotaxis has been discovered in a number of "crawling" cell types besides *D. discoideum*. Only leukocyte chemotaxis has been examined in comparable detail (91). Systems needing detailed study include negative chemotaxis (47) and folic acid chemotaxis (65) in *D. discoideum* as well as chemotaxis in vascular endothelial cells (8), palate mesenchymal cells (11), nerve fibers (42), fibroblasts (68), and tumor cells (76).

Our measurements suggest that cringing is the morphological and locomotory correlate of the rapid light-scattering response in *D. discoideum* cell suspensions. Mato et al. come to similar conclusions by more indirect arguments (60, 61, 62, 89). They suggest that the response is made up of two components: a rapid, transient, generalized contraction of the cell and an increase of cGMP in a localized region of the cell leading to pseudopod extension and therefore directed movement (62). A shape change alone could explain the light-scattering results but the change in cell volume that they suggest is an equally plausible mechanism.

The cringe response in *D. discoideum* is similar to transient responses in a number of other cells types. Early studies examined the responses of *Amoeba proteus* to upshifts in illumination. If a brief flash of light was given, the cell ceased locomotion within a few seconds (24, 58). After a permanent upshift in illumination, the cell ceased locomotion quickly but then resumed moving after 3 min or so (59).

Monolayers of A-431 human carcinoma cells show ruffling within 60 s of exposure to EGF and cells at the periphery of a colony begin to retract after 10 min (10). When NGF is applied to PC12 pheochromocytoma cells they show extensive ruffling on their dorsal surface within 1 min (14). When NGF is applied to growth cones of chick dorsal root ganglia in vitro, the neurites begin retraction within 2 min. This is a lengthy but ultimately transient response, because outgrowth resumes some 2 h later (41). Membrane hyperpolarization occurs in macrophages within 5 s of exposure to chemotacticantants. The responses are 10 to 30 s in duration and show desensitization to repeated stimuli (30, 31).

Studies of early chick development show organized waves of cell movement analogous to cellular slime mold waves (84). It might be possible to demonstrate this behavior in the dissociated system, allowing it to be studied by our methods.

CONCLUSIONS

It is clear from our results that no reaction of a cell to a stimulus can be viewed in isolation. A stimulus alters morphology and locomotion and, presumably, receptor function and internal pools. These in turn modulate the response to the next stimulus, leading to adaptation and facilitation. If we try to avoid these "memory" effects by waiting a few hours before applying another stimulus, then *D. discoideum* cells show developmental changes in response.

In chemotaxis, adaptation and facilitation are clearly evident in the three successive responses in Fig. 6. The second response is enhanced (facilitated). This could be a true increase in the response of each cell or simply a summation as additional cells are recruited into the well-oriented population, adding to the cells recruited by the first stimulus which persist in their motion. The third stimulus produces a weaker response. This is adaptation.

In the cell reversal experiment, the speed response (Fig. 10) shows "priming"; the rate of increase of speed (acceleration) is larger in response to the second stimulus. Again, this could be due to a shift in the rate parameters of early transduction events or due to a change in morphology. Once elongate and actively moving, the motor apparatus and membrane structures at the two ends of the cell may respond more rapidly.

The computerized approach has allowed us to see the differences in response. The approach has allowed us to analyze responses which are too weak or subtle to be picked up reliably by manual pencil and ruler methods. Compared to our approach, the classical chemotactic assays typically give far less information and are restricted in the conditions and configurations allowed (13, 51, 52, 88, 90). For *D. discoideum*, the cell populations which are used in most of these assays develop autonomous, coordinated activity as they age, and this interferes with the assays. A micropipette can locally override autonomous signals and extend the assay to aggregating populations (75).

Using the computerized approach, a weak but unambiguous chemotactic response was detected in *D. discoideum* which probably begins as early as 1 h of development. This early weak chemotaxis occurs by biased random walk (klinokinesis). As the cells age, this changes smoothly into true directed motion. Thus we see no reason to make a sharp distinction between klinokinesis and directed chemotaxis as some have suggested (48). Organized wave activity occurs by 8 h in our populations which don't aggregate for another 7 h. (Fig. 15 shows this behavior at higher than the standard cell density.) The existence of the waves shows that relaxing occurs. Aggregation and streaming are probably prevented at these early stages by the fact that chemotaxis is weak and that the cells do not stop (quiver) between waves to stabilize nascent patterns.

Cringing is a process of rapid adaptation because cell locomotion resumes within a minute even if the stimulus is maintained. Cringing is more rapid than the 2- to 3-min transient cAMP relay response (21). A series of strong cAMP pulses a few minutes apart will gradually extinguish cringing—a long term adaptation (R. P. Futrelle, unpublished observations).
and high cAMP levels, ~1 mM, can prolong the response indefinitely (78).

Confluent cells separate from one another when cringing (Fig. 14). This may be related to a phenomenon we see during aggregation: quivering (stopped) cells sometimes separate from their proximal or distal neighbors and then rejoin as the next wave begins. This process is particularly noticeable during aggregation on glass under BSS. But any hypothetical relation between cringing and quivering is not strong if cAMP is considered to be the only controlling agent, because cringing is a transient response to high cAMP levels (upshifts) and quivering is a long-lived response to low cAMP levels. It is easier to imagine that quivering is under the positive control of an additional “stopping agent.”

Many of the results of this paper are presented as averaged stimulus-related responses (stimulus-locked), in the spirit of electrophysiology. The data are presented nonparametrically, e.g. the chemotaxis index is simply displayed in detail as a function of time. A parametric approach would have forced us to choose arbitrary orientation, step size, and turn angle “bins” and to report the fraction of cells whose behavior fell within them.

Our new approach to the analysis of cell behavior can be used to analyze the results of biochemical and genetic studies on *D. discoideum* and other organisms. Such studies, coupled to computerized analysis of cell shape changes, cell contact, and aggregation, should give insight into the complex, self-regulated process of development.

We wish to thank Professor N. Alger for loan of the movie camera and drive; B. Storm and H. Richards for SEM assistance; C. Mercer for installation and modification of the Sigma system; G. Barta for installation and modification of the Galatea/ST system; W. Cheng for implementation of the Galatea/ST system; L. Contos for digitization of data; J. Yeh for digitization and text processing; G. Barta for installation and modification of the Sigma system; and Woolcott Smith for advice on the jackknife.

The research was supported by the National Science Foundation, PCM78-16128 and PCM79-04242, National Institutes of Health, the Research Corporation, and the University’s Research Board. J. Traut held a National Science Foundation Predoctoral Fellowship.

Manuscript preparation by ICE and RNF (Cyber 175) and by MINC-11 KED. Much of the writing was done (via Talenet to Urbana, IL) while R. P. Futrelle was resident at the Marine Biological Laboratories, Woods Hole, MA.

This document is Cyber File CBIF. 10/9/81.

APPENDIX 1

DIFFUSION: A conical micropipette (constant taper near the tip) delivers a constant diffusive flux. This sets up a stable concentration distribution in the agar. The diffusion flux from the pipette (71) is

\[
J_b = \pi a \phi D C_{\text{b}},
\]

(1.1)

where \(a\) is the tip inner radius, \(\phi\) is the \(1/2\)-angle (taper of the fluid-filled capillary bore), \(D\) the diffusion constant, and \(C_{\text{b}}\) the concentration of the diffusing species in the pipette. Hydrostatic pressure produces bulk flow (53) giving a molecular flux,

\[
J_b = 3 \pi a \phi ^2 C_{\text{p}} / 8 \eta ,
\]

(1.2)

where \(p\) is the net pressure and \(\eta\) the viscosity. Typical values were \(a = 0.3 \mu m\) and \(\phi = 0.05\) radians (by SEM), \(D = 10^{-6}\) cm\(^2\)/s for cAMP, \(p = 10^2\) dynes/cm\(^2\) for each 1 cm head, \(C_{\text{p}}\) the concentration of cAMP in the pipette, and \(\eta = 10^{-2}\) poise (for water). This gives:

\[
J_b = 4.7 \times 10^{-13} \text{ mol/s} \times C_{\text{p}},
\]

(1.3)

\[
J_b = 1.6 \times 10^{-10} \text{ ml/s} \times C_{\text{p}}.
\]

(1.4)

Capillary pressure must be included. It has been ignored in past theories. The glass capillaries gave a capillary rise of 5 cm of water. Usually the pipettes were not completely filled so they exerted a negative capillary pressure at the tip of ~1 to 2 cm of water, giving a net bulk influx. The theory of ioniophoretic retarding currents (71) can be applied, predicting a net diffusive efflux \(J_{\text{net}}\) in the presence of a bulk influx \(J_b\),

\[
J_{\text{net}} = J_b / (\exp[J_b/J_d] - 1) \]

(1.5)

Using values from equations (1.3) and (1.4) gives,

\[
J_{\text{net}} = 5.5 \times 10^{-12} \text{ ml/s} \times C_{\text{p}}.
\]

(1.6)

Measurements of efflux under a net positive hydrostatic pressure were nearly an order of magnitude less than equation 1.4, so we can only have modest confidence in the theory—not unusual in dealing with micropipettes! We calculated the pipette resistance \(R\),

\[
R = 1 / (\pi \sigma \alpha a),
\]

(1.7)

using a conductivity of BSS calculated to be \(\sigma = 2.7\) mho/cm. This predicted \(R = 80\) M\(\Omega\), within our measured range of 20 to 100 M\(\Omega\).

Ultimately, we relied on calibration of the pipettes by measuring efflux of \(^3\)H-cAMP. When the pipettes were partly filled and allowed to perfuse agar for several hours, no counts above background were recorded. When filled to more than a 5 cm head, significant counts were recorded. After all this, we could only place an upper bound on the efflux from the standard pipette,

\[
J_{\text{exp}} \leq 10^{-12} \text{ ml/s} \times C_{\text{p}}.
\]

(1.8)

which for \(C_{\text{p}} = 10^{-4}\) M cAMP (10\(^{-7}\) mol/ml) gives the standard flux \(J_b \leq 10^{-19}\) mol/s or \(\leq 6 \times 10^4\) molecules/s.

The concentration \(C_a\) and the gradient \(\nabla C_a\) in the agar reach a steady state when the agar is subjected to a constant flux at a point,

\[
C_a = J / (2 \pi Dr),
\]

(1.9)

\[
\nabla C_a = C_a / r .
\]

(1.10)

with \(r\) the distance from the pipette tip. The cAMP diffuses through the agar—it is not confined to the liquid surface layer. Inserting \(J_b\) into equation (1.9) gives upper bounds for typical concentrations and gradients, for \(r = 30\) \(\mu m\): \(C_a = 5.3 \times 10^{-10}\) M and \(\nabla C_a = 1.8 \times 10^{-7}\) M/cm; for \(r = 100\) \(\mu m\): \(C_a = 1.6 \times 10^{-10}\) M and \(\nabla C_a = 1.6 \times 10^{-6}\) M/cm for \(r = 180\) \(\mu m\): \(C_a = 8.9 \times 10^{-11}\) M and \(\nabla C_a = 4.9 \times 10^{-9}\) M/cm. The latter distance, 180 \(\mu m\), was the typical maximum distance between the pipette and cells visible in the field of view.

When touched to the agar, the pipette momentarily delivers more diffusive flux than given by equation (1.1). This drops to within a factor of 2 of the steady-state value in \(t_s = a^2 / D \phi \phi^2 \approx 0.01\) s, a negligible time. Then the concentration in the agar obeys,

\[
C_a(r, t) = (J / 2\pi Dr) \times \text{erfc}(r / \sqrt{4Dt}),
\]

(1.11)

where \(\text{erfc}\) is the error function complement. Therefore \(C_a\) reaches one half its final steady-state value in a time,
The averaged CI is different from MI because the ratio is taken interval, since $A = T(\Delta v(t))_{0,T}$ and $P = T(v(t))_{0,T}$, This can be written in terms of the average speeds over the interval, over an extended period of time, say 0 to T, using the net approach A and the total path P over the interval, $(CI)_{0,T} = (v(t)/\Delta v(t))_{0,T}$. (2.1)

This can be written in terms of the average speeds over the interval, since $A = T(v(t))_{0,T}$ and $P = T(v(t))_{0,T}$, MI $= A/P$. (2.1)

The averaged CI is different from MI because the ratio is taken before the averaging is done,

$$(CI)_{0,T} = \frac{(v(t))/\Delta v(t))_{0,T}}{(v(t))_{0,T}}. (2.2)$$

If the cell speed is a constant, the two quantities agree

$$(CI)_{0,T} = (CI)_{0,T} \text{ if } v(t) = \text{const.} (2.3)$$

If the speeds vary, MI may be greater or less than (CI) and may even differ in sign. For example, if a cell moved for 1 min at 18 μm/min directly towards a source and then for 9 min at 1 μm/min directly away, $(CI)_{0,10} = -1/2$ and $MI_{0,10} = +1/2$. MI can be calculated from

$$MI_{0,T} = \frac{(v(t) \times CI(t))_{0,T}}{(v(t))_{0,T}}. (2.5)$$

The $v(t)$ term in the numerator shows that MI is weighted towards higher speeds.

The CI is convenient for analyses because it can be averaged over time and over a set of cells and the order of the averaging does not affect the results. Averaged CI’s from different intervals can be further averaged, e.g.

$$(CI)_{0,T} = ((CI)_{0,T/2} + (CI)_{T/2,T})/2 (2.6)$$

An equation such as (2.6) does not hold for MI because, in general, the average of two quotients is not the quotient of the averages of the numerator and denominator.

APPENDIX 3

DATA AND ERROR ANALYSIS: The primary raw data were streams of x,y coordinate pairs, the cell “centers” as estimated by a human. The average cell area was that of a 15 μm diameter disk (30 mm projected onto the data tablet). The human tracker could consistently estimate a center for a cell to within 3%, which is $\approx 1/2 \mu$m.

Standard errors of the mean (SEM) were computed from the variation between different cells at each fixed time. The SEM include true cell-to-cell differences as well as random errors of filming, digitization, etc. The standard deviation of the speeds σ_v fell with age as the mean speed did, e.g. early cells: $(v) = 8.0 \mu$m/min, $\sigma_v = 4.3 \mu$m/min; middle cells: $(v) = 6.5 \mu$m/min, $\sigma_v = 3.3 \mu$m/min; late cells: $(v) = 5.0 \mu$m/min, $\sigma_v = 1.5 \mu$m/min (all, n = 195).

Random errors were analyzed by comparing replicate entries of a single cell’s track, giving $\sigma_v = 1.5 \mu$m/min. At 1 fr/s, the human tracking errors in successive frames were essentially independent, so we estimated the error in tracking the center position by $\sigma_v = \sigma_v \times \Delta t$, or $\sigma_v = 0.8$ mm on the data tablet.

One systematic error was a bias in the cell speeds. Even if a cell doesn’t move, errors in estimating its center in each successive frame would lead to an apparent jiggling motion, giving a positive and therefore biased speed. If the true speed is zero, the bias or error is

$$v_b \approx 1.15 \sigma_v = 1.9 \mu$m/min, (3.1)

(assuming normally distributed, independent position errors). If v_b is much greater than σ_v, it can be shown that the reported average speed $\langle v \rangle$ is

$$\langle v \rangle \approx v_o + \sigma_v^2/2v_o. (3.2)$$

Equation (3.2) shows that the bias $\sigma_v^2/2v_o$ is a relatively small effect for large v_o. The bias increases as the speed falls, reaching the limit of equation (3.1) as $v_o \rightarrow 0$. Bias effects are important in studies of cringing because cringing cells slow or stop.

To estimate the bias from the data, a number of replicates of a single cell track were again used but the average position in each frame was first computed over all the replicates and then the speed was calculated from the average positions (reversing the usual procedure). The bias term in equation (3.2) then drops from $\sigma_v^2/2v_o$ to $\sigma_v^2/2nv_o$ where n is the number of replicates. The bias can be further extrapolated to very large n (unbiased limit) using the jackknife statistic (72). This gave $v_b = 0.2 \mu$m/min for $v_o = 10 \mu$m/min and $v_b = 0.7 \mu$m/min for $v_o = 2.6 \mu$m/min.

There was also bias due to film misregistration, e.g. if there was a random error in the position of each frame of film in the camera gate of 1 part in 3,200 (5 μm), all the objects in the image will have an erroneous speed of 1 μm/min superimposed on their motion. Replicate tracking of an inert piece of debris, actual speed zero, gave an average speed of 1.6 μm/min. Removing tracking bias with the jackknife left a residual of 1 μm/min attributable to the camera errors (or related systematic errors).

In summary: The cell-to-cell speed differences, $\sigma_v = 3.5 \mu$m/min, were the primary source of variability; true random errors (hand digitization, projector registration) contributed only σ_v,
= 1.5 μm/min to the variability. A known motionless object
gave an average speed of 1.6 μm/min, of which 0.6 μm/min
was due to bias introduced by random errors and the remaining
1.0 μm/min was due to systematic “camera” errors. If we apply
this to the speed data in Appendix 3, it suggests that observed
minimum average speeds of 2 μm/min are actually ~0.5 μm/
min, so the cringing response is more extreme than the plots
suggest.

Because a cell center follows an irregular trajectory the
measured speed will always decrease when computed for longer
intervals. When the speed was recomputed from the same data
using such 1-min intervals, it dropped to ~85% of the 4 fr/min
value. This shows that the speeds in this range of frame rates
are stable and not overly sensitive to their method of definition.

Theories of the limits of chemotactic sensitivity and of pseudochemosensation. J. Cell. Biochem. 32:505-513.

50. Galstan, E. K., and J. J. Galstan. 1977. Interaction of chemotactic factors with human
macrophages: induction of transcriptional potential changes. J. Cell Biol. 75:277-289.

51. Galstan, J. J., E. K. Galstan, H. L. McLean, and E. B. Craner. 1980. Structural and sonic
evectors for leukemia chemotaxis. In: Leukocyte Chemotaxis: Methodology and
Clinical Implications. J. J. Galstan, and P. G. Que, editors. Raven Press, New York.

52. Gerisch, G. 1968. Cell aggregation and differentiation in Dictyostelium. In: Current Topics in
Developmental Biology. Vol. 3. A. Morschausen, and A. Monroy, editors. Academic Press, New York.

53. Gerisch, G., and B. Hess. 1974. Cyclic AMP-controlled oscillations in suspended Dictyos-
stellum cells: their relation to morphogenic cell interactions. Proc. Natl. Acad. Sci. U.S.A.

54. Glin, R., and M. D. Macy. 1977. The control of cell aggregation in Dictyostelium. Adv. Cyclic Nucleotides 7:69-88.

55. Gimble, A. R., and A. Robertson. 1975. The development of the delay-repulsion competence in
Dictyostelium discoideum. J. Cell. Biol. 64:231-237.

56. Green, A. A., and P. C. Newell. 1975. Evidence for the existence of two types of cAMP
binding sites in aggregates of cells of Dictyostelium discoideum. Cell 6:129-136.

57. Griffies, G. C., and P. C. Letson. 1980. Spontaneous cyclization in nucleases: a proof of the
role of dimerization in nucleases. Proc. Natl. Acad. Sci. U.S. 77:1863-1867.

58. Guonderman, R. W., and J. N. Barret. 1980. Characterization of the turning response of
Dictyostelium discoideum: IV. Effects of ions on the rate of differentiation and cellular response to cyclic
AMP. J. Cell Biology 87:823-827.

59. Hall, R. 1958. Morphogenesis in lower plants. Ann. Rev. Plant Physiol. 9:359-384.

60. James, J. 1976. Light Microscope Techniques in Biology and Medicine. Nijhoff Medical
Division, The Hague, The Netherlands.

61. Kakkar, P. J., B. J. W. de S. Dohr, and J. M. Konig. 1979. Negative chemotaxis in Dictyostelium
and Polypholyphus. Exp. Cell Res. 124:429-433.

62. Koll, H. U., P. C. Wilkens, M. A. Bruner, E. L. Becker, J. G. Hirsch, M. E. Miller, W. S. Ramirez, and S. I. Zigmund. 1977. A proposal for the definition of terms related to
chemotaxis in leukocytes and other cells. Immunol. 11:1912-1914.

63. Klein, C., and H. M. Juliai. 1985. CAMP-induced changes in CAMP binding sites on D.

cellus amoebae. Cell 39:329-335.

64. Konig, J. M., and K. B. Raper. 1961. Cell aggregation in Dictyostelium discoideum. Dev.

65. Konig, J. M. 1970. Microbiological assay of cAMP. 6:367-369.

66. Konig, J. M. 1975. Chemotaxis in the cellular slime molds. In: Primitive Sensory and
Communication Systems. M. J. Castile, editor. Academic Press, New York. 101-153.

67. Krupic, J. C. F., and J. C. Sperber. 1969. Determination of osteopontic release of acetylcholine from microplasts. J. Physiol. 165:421-436.

68. Lampt, P. 1979. Light scattering vs. microscopy for measuring average cell size and
shape. Biot. 27:117-126.

69. Las, A. J. 1979. The evolution of excitable behavior in Dictyostelium. J. Cell. Sci. 36:311-
321.

70. Loomis, W. F. 1975. Dictyostelium discoideum. Academic Press, Inc., New York.

71. Mariz, F. T., and F. G. Rothman. 1980. Regulation of development in Dictyostelium
discoideum. IV. Effects of ions on the rate of differentiation and cellular response to cyclic
AMP. J. Cell Biology 87:823-827.

72. Mass, O. 1941. Motor response in unicellular animals. In: Protozoa in Biological
Research. G. N. Calkins and F. M. Summers, editors. Columbia University Press, New York.

73. Mass, O., and N. Shizler. 1937. The relation between luminous intensity, adaptation to
light, and rate of locomotion in Amoeba proteus (Leidy). Biol. Bull. 73:126-133.

74. Mats, J. M., F. A. Krems, P. J. M. van Haastert, and T. M. Konig. 1977. Unification control
of chemotaxis and cAMP mediated cGMP accumulation by cAMP in Dictyostelium discoideum.
Biochem. Biophys. Res. Commun. 73:399-402.

75. Mats, J. M., P. J. M. van Haastert, F. A. Krems, E. H. Rijnsburger, F. C. M. Dobbe, and T. M. Konig. 1977. Cyclic AMP and cyclic AMP-mediated cGMP accumulation in
Dictyostelium discoideum. FEBS Lett. 23:109-113.

76. Mats, J. M., P. J. M. van Haastert, F. A. Krems, and T. M. Konig. 1978. Chemotaxis in
Dictyostelium discoideum: effect of concanavalin A on chemoattractant mediated cyclic
AMP accumulation and light scattering decrease. Cell Biol. Internal Reports. 2:163-170.

77. McCullough, C. M. 1946. Chemotaxis in leukocytes. Physiol. Rev. 36:319-336.

78. McCullough, C. P. 1978. Cellular communications during aggregation of Dictyostelium. J. Gen.
Microbiol. 104:1-13.

79. Pal, P., E. M. Hall, and J. T. Bonner. 1972. Determination of the active portion of the
stimulation of cell motility in ameboid cells of a rod-shaped chemoattractant. Nature

80. Parra, H., and L. A. Segel. 1977. Computer evidence concerning the chemosensitive
dictyostelium Dictyostelium discoideum. J. Cell. Biol. 87:251-294.

81. Parra, H., and L. A. Segel. 1977. Coexistence of two chemosensitive cells in Dictyostelium
discoideum. J. Theor. Biol. 64:231-237.

82. Potts, R. D. 1977. The release of drugs from interstitial pipettes. J. Theor. Biol. 67:

83. Quinnouille, M. H. 1956. Notes on bias in estimation. Biometrika 43:333-360.

84. Ramsey, W. S. 1972. Analysis of individual leucmyte behavior during Chmotaxis. Exp.

85. Roche, Z., and J. T. Bonner. 1975. Cyclic AMP and cyclic GMP accumulation in light scattering decrease. Cell Biol. Intern. Reports. 2:163-170.

86. Schmel, P., E. M. Hall, and J. T. Bonner. 1972. Determination of the active portion of the
chemoattractant mediated cyclic AMP accumulation and light scattering decrease. Cell Biol. Internal Reports. 2:163-170.
74. Robertson, A., D. J. Drage, and M. H. Cohen. 1972. Control of aggregation in *Dictyostelium discoideum* by an external periodic pulse of cyclic adenosine monophosphate. *Science (Wash. D. C.)* 175:333–335.

75. Robertson, A., and D. J. Drage. 1975. Stimulation of late interphase *Dictyostelium discoideum* amoebae with an external cyclic AMP signal. *Biophys. J.* 15:765–775.

76. Romuani, A. G. Jr., P. A. Ward, and T. Torikata. 1976. Relationship between the C5 peptides chemotactic for leukocytes and tumor cells. *J. Immunol.* 117:1762–1766.

77. Roos, W., V. Nanjundiah, D. Malchow, and G. Gerisch. 1975. Amplification of cyclic-AMP signals in aggregation cells of *Dictyostelium discoideum*. FEBS (Fed. Eur. Biochem. Soc.) *Letters* 53:139–142.

78. Ryter, A., C. Klein, and P. Brachet. 1979. *Dictyostelium discoideum* surface changes elicited by high concentrations of cAMP. *Exp. Cell Res.* 119:373–380.

79. Shaffer, B. M. 1957. Aspects of aggregation in cellular slime molds. I. Orientation and chemotaxis. *Am. Nat.* 91:19–35.

80. Shaffer, B. M. 1957. Properties of slime-mold amoebae of significance for aggregation. *Quart. J. Microscop. Sci.* 98:377–392.

81. Shaffer, B. M. 1962. The *Acrasina*. *Adv. Morphogenesis* 2:109–182.

82. Shaffer, B. M. 1975. Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mold *Dictyostelium discoideum*. *Nature (Lond.)* 253:549–552.

83. Spudich, J. L., and D. E. Koshland, Jr. 1976. Non-genetic individuality: chance in the single cell. *Nature (Lond.)* 262:467–471.

84. Stern, C. D., and B. C. Goodwin. 1975. Waves and periodic events during primitive streak formation in the chick. *J. Embryol. Exp. Morphol.* 41:15–22.

85. Stovel, R. T., and R. G. Sweet. 1979. Individual cell sorting. *J. Histochem. Cytochem.* 27:284–285.

86. Usmani, M. 1966. Biochemical and genetic methods in the study of cellular slime molds. In *Methods in Cell Physiology*. Vol. 2. D. Prescott, editor. Academic Press, New York. 397–410.

87. Tomschik, K. J., and P. N. Devreotes. 1981. Adenosine 3',5'-monophosphate waves in *Dictyostelium discoideum*: a demonstration by isotope dilution-fluorography. *Science (Wash. D. C.)* 212:443–446.

88. Varnum, B., and D. Soll. 1981. Chemotropism to cAMP and folate acid during growth, development and dedifferentiation in *Dictyostelium discoideum*. *Differentiation* 18:151–160.

89. Wurster, B., K. Shubiger, U. Wick, and G. Gerisch. 1977. Cyclic GMP in *Dictyostelium*: oscillations and pulses in response to folate acid and cyclic AMP signals. FEBS (Fed. Eur. Biochem. Soc.) *Letters* 76:141–144.

90. Zigmond, S. H. 1977. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. *J. Cell Biol.* 75:606–616.

91. Zigmond, S. H. 1978. Chemotaxis by polymorphonuclear leukocytes. *J. Cell Biol.* 77:269–287.

92. Zigmond, S. H., and S. J. Sullivan. 1979. Sensory adaptation of leukocytes to chemotactic peptides. *J. Cell Biol.* 82:517–527.

93. Zigmond, S. H., H. I. Levinsky, and B. J. Kreel. 1981. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. *J. Cell Biol.* 89:585–592.