Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5–10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor’s electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.
ntuitive expectations, based on a framework of non-interacting particles, suggest that reducing the length of a nanoscale system’s confining potential gradually induces the emergence of quantum confinement effects in its spectroscopic response. This crossover is expected to be smooth, without the appearance of a critical length. However, the presence of interactions fundamentally alters this picture of dimensional crossover in many-particle systems. Several low-dimensional systems, in fact, show interaction-induced phases of matter absent in higher dimensions. They include fractional quantum Hall states in two dimensions, Tomonaga–Luttinger liquids in one-dimension (1D) and Kondo effects in zero-dimensional (0D) quantum dots (QDs). Here we demonstrate that analogous many-particle distributions rely on photoluminescence inhomogeneous broadening due to inherent size-and-shape dimensions. Several low-dimensional systems, in fact, show interaction-induced phases of matter absent in higher dimensions. This crossover is expected to be smooth, without the appearance of a critical length at which 1D nanostructures become 0D.

Results

Spectroscopic observations. Figure 2a shows the absorption spectrum of an individual CdSe NW from a diameter (d) 6.8 ± 1.2 nm (b ≥ 5 μm) ensemble. Figure 2b,c illustrate corresponding absorption spectra of single CdSe NRs from d = 6.7 ± 1.1 nm (length; b = 160 ± 55 nm) and d = 6.8 ± 0.7 nm (b = 30.4 ± 2.6 nm) ensembles (Supplementary Note 2 and Supplementary Fig. 2). Three to four transitions (labelled α, β, γ, and δ) are apparent in each spectrum and are excitonic in nature as predicted by a model which explicitly accounts for both spatial confinement and enhanced electrostatic interactions in NRs. These states can be explicitly linked to analogous α, β, γ, and δ transitions in individual CdSe NWs. The data in Fig. 2 therefore represent the first direct measurements of single CdSe NR absorption spectra.

Most notable is an overall ∼ 30 meV average α blueshift in b ∼ 30 nm NRs (Fig. 2c) relative to those of longer, equi-diameter particles (Fig. 2a,b) (b ∼ 30 nm: α = 1.904 ± 0.025 eV; b ∼ 160 nm, α = 1.872 ± 0.016 eV; NW: α = 1.874 ± 0.022 eV). In fact, probing 25 individual b ∼ 30 nm NRs reveals α blueshifts up to 64 meV. Figure 3 illustrates this, showing absorption spectra of three different b ∼ 30 nm NRs.

The simplest explanation for this behaviour stems from an increase in electronic confinement as NR lengths decrease. In particular, carriers experience additional confinement along the NR z-axis, adding to the radial (ρ) confinement present exclusively in NWs. To assess such confinement effects, we have constructed a modified version of an effective mass model previously used to explain absorption spectra of individual CdSe NWs.

Effective mass model. In the model, NW/NR electron wavefunctions are given by

\[
\Psi_{n}(x, y, z) = \frac{\mu^{1/2}}{a \sqrt{2 \pi J_{m}(\alpha x)}} \sin(\frac{\alpha x}{b}) e^{-i m \beta}.
\]

Figure 1 | One-dimensional to zero-dimensional crossover of a semiconductor nanowire’s electronic structure.

Top row: structural evolution of a nanowire into a quantum dot. Middle row: corresponding evolution of nanowire and nanorod electron and hole wavefunctions. Bottom row: a plot depicting the interplay between aspect ratio-dependent carrier confinement, \(E_b(b)\) and dielectric contrast/dielectric confinement electrostatic energies, \(|U|\).
Figure 2 | Absorption spectra of individual CdSe nanowires and nanorods. Absorption spectrum of an individual (a) nanowire from a $d = 6.8 \pm 0.7\,\text{nm}$ ($b \geq 5\,\mu\text{m}$) ensemble; (b) nanorod from a $d = 6.7 \pm 1.1\,\text{nm}$ ($b = 160 \pm 55\,\text{nm}$) ensemble; and (c) nanorod from a $d = 6.8 \pm 0.7\,\text{nm}$ ($b = 30.4 \pm 2.6\,\text{nm}$) ensemble. Blue open symbols represent measured extinction values plotted as a function of wavelength (λ). Corresponding peak extinction cross-sections are $\sigma_{\text{ext}} \approx 2 \times 10^{-12}\,\text{cm}^2$ ($b \geq 5\,\mu\text{m}$), $\sigma_{\text{ext}} \approx 2 \times 10^{-13}\,\text{cm}^2$ ($b \sim 160\,\text{nm}$), and $\sigma_{\text{ext}} \approx 8 \times 10^{-14}\,\text{cm}^2$ ($b \sim 30\,\text{nm}$). Spectra are fit to a sum of Gaussians (black dashed line) from where individual transitions (grey dashed lines) are extracted. Each sample's sizing histogram is inset in (a-c). S.d. reported.

Figure 3 | Absorption spectra of individual CdSe nanorods. Three individual CdSe nanorod absorption spectra obtained from the same ensemble ($d = 6.8 \pm 0.7\,\text{nm}$, $b = 30.4 \pm 2.6\,\text{nm}$). The solid (red, green and blue) circles are experimental data points with corresponding (red, green and blue) dashed lines as their sum of Gaussians fit. The dashed vertical line represents the average α energy of 25 individual $b \sim 30\,\text{nm}$ rods.

$\alpha \pm 1/2$ is the electron Bloch function, a is the NW/NR radius, b is the corresponding length, $J_{m}(x)$ are Bessel functions of the first kind and $\gamma_{n,m}$ is the nth root of the mth order Bessel function. Parameters (n, n_{z}, m) are radial, longitudinal and angular quantum numbers, respectively. Hole wavefunctions are linear combinations of effective heavy-hole ($|HH\rangle_{1(2)}$) and light-hole ($|LH\rangle_{1(2)}$) states, given by

$$\Psi_{b_{i}}^{(F_{i},n_{i})} = A|HH\rangle_{1} + B|HH\rangle_{2} + C|LH\rangle_{1} + D|LH\rangle_{2}$$

with A, B, C and D their relative weights; F_{i} is the angular momentum projection onto the NW/NR z-axis. Importantly, longitudinal kinetic energy terms are not assumed to be negligible in comparison to radial confinement (that is, $k_{L} \neq 0$)9,13,18. Full expressions and derivations can be found in Supplementary Note 3.

Corresponding quantum size level energies for $b \sim 30\,\text{nm}$ NRs only increase $\sim 3\,\text{meV}$ over the $k_{L} = 0$ case, consistent with previous modelling9 (Supplementary Fig. 3). Clearly, simply accounting for longitudinal carrier confinement cannot explain the $\sim 30\,\text{meV}$ average blueshift seen in Figs 2 and 3. Additionally, even though Supplementary Fig. 4 shows that obtained $b \sim 30\,\text{nm}$ NR spectra are blueshifted ($\sim 18\,\text{meV}$) relative to α of the corresponding ensemble spectrum, the residual $\sim 12\,\text{meV}$ blueshift cannot be explained via confinement alone.
Supply Figue 2).

between a nanoparticle and its immediate surroundings12,15,19. The second is dielectric confinement, which arises due to

dielectric contrast outweighs repulsive 'mirror' forces at the particle/medium dielectric

Figure 4 | Evolution of CdSe nanoparticle optical properties across
dimensionality. Extracted (average) \(\alpha \) energies plotted as a function of aspect ratio (b/d) for all three wire/rod samples (solid red circles) as well as tabulated quantum dot literature values (open square)

(d = 6.8 nm)22,23. S.D. reported. The open red triangle is the b ~ 30 nm ensemble spectrum \(\alpha \) energy. Superimposed over the data are theory lines for the first (1\(\Sigma_{1/2} \)\(\Sigma_{e} \) solid blue line) and second (1\(\Sigma_{1/2} \)\(\Sigma_{e} \) dashed green line) one-dimensional excitons15. Relative transition strengths for each are indicated by the transparency of the lines. Average nanowire and

\(b \sim 160 \) nm nanorod \(\alpha \) energies were obtained using weighted individual wire/rod energies with weighting factors obtained from a literature-compiled sizing curve and transmission electron microscopy-derived diameter distributions (Supplementary Note 5, Supplementary Note 6 and Supplementary Fig. 2).

Electrostatic contributions. A more complete explanation must therefore consider the dimensional evolution of carrier electrostatic effects wherein two contributions exist. The first is dielectric contrast, which stems from dielectric constant (\(\epsilon \)) differences between a nanoparticle and its immediate surroundings12,15,19. The second is dielectric confinement, which arises due to repulsive 'mirror' forces at the particle/medium dielectric interface12,15. In 1D systems, dielectric contrast outweighs dielectric confinement, lowers \(\alpha \)'s predicted energy by ~60 meV and leads to the formation of 1D-excitons in CdSe NWs12,15,16,20. In QDs, electrons/holes effectively screen each other at every point such that their electrostatic contributions to overall carrier energies are vanishingly small15,21. Aspect ratio-dependent electrostatic effects therefore rationalize average \(\alpha \) shifts observed in Figs 2 and 3.

To explicitly account for how CdSe's electronic structure transitions from 1D-to-0D, we model these electrostatic effects as functions of NW/NR aspect ratio (b/d). In practice, this entails solving Poisson's equation inside a finite length (b) dielectric cylinder to find the potential \((V(\textbf{r}, r_0)) \) at an arbitrary point \(\textbf{r} \) due to a point charge at \(r_0 \). The corresponding electrostatic energy is given by15

\[
U(\textbf{r}, r_0) = -\frac{q^2}{4\epsilon_0 |\textbf{r} - \textbf{r}_0|} - qV(\textbf{r}, r_0) + \frac{q}{2} V(\textbf{r}, \textbf{r}_0) + \frac{q}{2} V(\textbf{r}_0, \textbf{r}_0)
\]

(3)

where \(\textbf{r}_0 = (\rho_0, \phi_0, z_0) \) (\(\textbf{r}_0 = (\rho_0, \theta_0, z_0) \)) is the electron (hole) position, and \(q \) is the elementary charge. The first two terms in equation (3) represent direct and indirect attractive forces between an electron and a hole in a NR. The last two terms correspond to repulsive forces induced by mirror charges at NR/medium dielectric boundaries. Equation (3) is spatially averaged over electron/hole wavefunctions, reducing \(U(\textbf{r}, r_0) \) to a 1-dimensional potential. This representation is subsequently used to calculate exciton binding and self-interaction energies which, together with quantum size levels, describe the evolution of CdSe's electronic structure across dimensionality (Supplementary Note 4).

Figure 4 shows calculated transition energies for the first (1\(\Sigma_{1/2} \)\(\Sigma_{e} \)) and second (1\(\Sigma_{1/2} \)\(\Sigma_{e} \)) 1D-excitons as functions of NR aspect ratio. Superimposed are extracted (average) \(\alpha \)-energies, as well as tabulated equi-diameter QD literature values22,23. 1\(\Sigma_{1/2} \)\(\Sigma_{e} \) is predicted to be bright under parallel (perpendicular) polarized light. Consequently, we have previously assigned \(\alpha \) in CdSe NWs to the 1\(\Sigma_{1/2} \)\(\Sigma_{e} \) exciton12,14,16. In QDs, \(\alpha \) arises from 1\(\Sigma_{3/2} \)\(\Sigma_{e} \) (1\(\Sigma_{3/2} \)\(\Sigma_{e} \) in QD literature)13,24. The \(\alpha \) assignment therefore shifts from 1\(\Sigma_{1/2} \)\(\Sigma_{e} \) to 1\(\Sigma_{3/2} \)\(\Sigma_{e} \) with decreasing aspect ratio due to a (b/d)-dependent transition strength. Figure 4 denotes this through 1\(\Sigma_{1/2} \)\(\Sigma_{e} \)/1\(\Sigma_{3/2} \)\(\Sigma_{e} \) curve transparencies.

Predicted transition energies are in excellent agreement with experimental NW, \(b \sim 160 \) nm NR and QD results. Of note is that average \(b \sim 30 \) nm NR \(\alpha \) energies are higher than theoretically-derived energies. This stems from sampling slightly smaller rods within the ensemble’s residual size-distribution (Supplementary Note 6). Figure 4 plots \(\alpha \) obtained from the \(b \sim 30 \) nm NR ensemble spectrum relative to the single NR \(\alpha \)-average. Approximations in the model14 also potentially contribute to deviations between experiment and theory (Supplementary Note 7). In general though, observed experimental and theoretical trends are in qualitative and, in some cases, quantitative agreement.

Discussion

Given that the general evolution of a semiconductor’s dimensionality is described by (Fig. 4), at what point does the 1D-to-0D transition occur? Since the only aspect ratio-dependent energies contributing to a nanostructure’s overall \(E_B \) are its longitudinal confinement (\(E_B(b) \)) and electrostatic (\(|U| \)) energies, the 1D-to-0D evolution is characterized by the interplay between these two terms (Fig. 1). Supplementary Fig. 6 plots \(E_B(b) \) and \(|U| \) as functions of aspect ratio. From it, we determine where \(E_B(b) \) balances \(|U| \) and define this to be the critical point where a 1D-to-0D transition occurs (Supplementary Note 8). In \(d \sim 6.8 \) nm CdSe, this length is \(b \sim 8.5 \) nm, which is just above its bulk exciton Bohr radius (\(a_0 = 5.6 \) nm)25. The transition point is additionally sensitive to diameter and occurs at \(b \sim 6 \) nm (\(b \sim 11 \) nm) for \(d = 4 \) nm (\(d = 10 \) nm) NRs. These findings differ from previous studies which suggest transition lengths of \(b \geq 30 \) nm for \(d = 3–6 \) nm CdSe NRs7. The discrepancy exists because experimental blueshifts in NR absorption spectra arise from both carrier and dielectric confinement (Supplementary Fig. 6). At large \(b \), dielectric confinement is the predominant source of blueshifts to NR extinction spectra. Hence, only at lengths below \(b \sim 2a_0 \) (ref. 26) does carrier confinement matter, and where a crossover in nanostructure dimensionality occurs.

In summary, we directly probe the 1D-to-0D transition in CdSe using single NW/NR absorption spectroscopy. These measurements expand the limits of conventional single particle microscopies by providing the first direct absorption spectra of individual CdSe NRs. Beyond this, they clearly show how excitonic blueshifts in the linear absorption depend exquisitely on the delicate balance between confinement and dielectric
Methods

Sample synthesis. CdSe NWs (d = 6.8 ± 1.2 nm) and NRs (d = 6.7 ± 1.1 nm; b = 160 ± 55 nm and d = 6.8 ± 0.7 nm; b = 30.4 ± 2.6 nm) were made using previously established wet chemical syntheses. A detailed description of these methods, as well as information on sample characterization can be found in Supplementary Note 2.

NW/NR absorption spectroscopy. Individual CdSe NWs and NRs were probed on a homebuilt system constructed around a commercial inverted microscope body (Nikon). A schematic of the experimental setup is provided in Supplementary Fig. 1. Samples were prepared by drop casting dilute NW/NR-toluene suspensions onto methanol cleaned, flame-fused silica microscope coverslips (40/20 scratch/dig; UQG Optics). The suspensions were allowed to dry with sample coverages of ~1 particle per ~5 μm².

Loaded coverslips were then affixed to an open-loop 3-axis piezo stage (Nanonics) coupled to a closed-loop 3-axis piezo stage (Physik Instrumente) and a 2-axis mechanical stage (Semprex) for fine and coarse particle positioning, respectively. The open-loop piezo stage supplied the spatial modulation of individual particles (peak-to-peak particle displacement ~360 nm) at 750 Hz. A 2D survey (x-, y-) was performed to identify and locate single NWs/NRs. This was accomplished by scanning the sample through the focused excitation point-by-point over an x-y grid (400 nm increments) while simultaneously detecting the corresponding absorption signal (lock-in constant, t = 30 ms; integration time, t_int = 100 ms). These ~25 × 25 μm survey absorption images were then used to locate individual particles from where likely candidates were positioned in the laser focus by maximizing the signal from the lock-in amplifier. Absorption spectra were subsequently acquired by scanning the excitation wavelength (λ) through the visible (450–750, 2 nm steps) while synchronously detecting the absorption signal (t = 1 s and t_int = 10 s). Data acquisition, particle positioning, and waveform scanning were all controlled using home-written software (C +).

Identification of individual NWs/NRs was established through a three-point viewing process. First, the absorption image was examined to ensure that no extraneous absorbers were within ~3 μm of the particle. Next, the absorption signal was converted into σ_abs and compared with expected extinction cross-sections. Finally, the absorption spectrum was obtained and examined for the presence of clear transitions.

Data availability. The data that support the findings of this study are available from the corresponding author (M.K.) upon request.

Acknowledgements

We thank P. Tongay for assistance in synthesizing nanorod samples. We also thank A. Shaev and A. L. Efros for fruitful discussions. M.K. acknowledges the National Science Foundation (grant no. CHE 1208091) for financial support. We also thank the Notre Dame College of Science and Departments of Chemistry/Biochemistry and Physics for financial support.

Author contributions

M.K. and M.P.M. conceived and designed the experiments; M.P.M. and R.C. performed the experiments; M.P.M. and R.C. analysed the data; M.P.M., J.S. and R.C. developed the theoretical model under the supervision of B.J. and M.K. M.P.M., R.C., B.J. and M.K. co-wrote the paper.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: McDonald, M. P. et al. Dimensional crossover in semiconductor nanostuctures. Nat. Commun. 7:12726 doi: 10.1038/ncomms12726 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/