Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits

JC Maranville1,2 and NJ Cox1,2

It has been suggested that pharmacogenomic phenotypes are influenced by genetic variants with larger effect sizes than other phenotypes, such as complex disease risk. This is presumed to reflect the fact that relevant environmental factors (drug exposure) are appropriately measured and taken into account. To test this hypothesis, we performed a systematic comparison of effect sizes between pharmacogenomic and non-pharmacogenomic phenotypes across all genome-wide association studies (GWAS) reported in the NHGRI GWAS catalog. We found significantly larger effect sizes for studies focused on pharmacogenomic phenotypes, as compared with complex disease risk, morphological phenotypes and endophenotypes. We found no significant differences in effect sizes between pharmacogenomic studies focused on adverse events versus those focused on drug efficacy. Furthermore, we found that this pattern persists among sample size-matched studies, suggesting that this pattern does not reflect overestimation of effect sizes due to smaller sample sizes in pharmacogenomic studies.

The Pharmacogenomics Journal (2016) 16, 388–392; doi:10.1038/tpj.2015.47; published online 7 July 2015

INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified genetic markers associated with many different phenotypes.1 In so doing, GWAS have revealed that many common and complex phenotypes (for example, disease risk) are influenced by a large number of genetic variants, each of which has a relatively small effect.2 Many of these phenotypes have high heritability, but seem to be influenced by hundreds or thousands of causative polymorphisms with modest effects (that is, polygenic architecture) rather than a few genetic variants with large effects (that is, monogenic or oligogenic architecture). As first shown for height3 and subsequently for a number of other phenotypes,4,5 the total genetic variance combined across all these variants can often explain half or more of the heritability estimated from twin and family studies, whereas highly significantly associated variants (presumably with the largest effects) explain only a small proportion of the heritability. This has complicated efforts to use genetic variants to predict disease risk,6 although polygenic risk scores built from a large number of causative variants identified through large-scale genetic studies may be a promising path towards clinically useful tests.7,8 In sharp contrast to the history of attempts to map disease risk, efforts to identify genetic variants associated with drug response (especially risk of adverse events) have been marked by the discovery of individual genetic variants with large effects.9 Indeed, there are currently 44 pharmacogenomic tests with sufficient explanatory ability to be used to guide clinical treatment decisions, as recommended by the Clinical Pharmacogenetics Implementation Consortium (that is, CPIC Level ‘A’).10 Many of these tests comprised a small number of genetic variants. Indeed, in some cases only one genetic variant is sufficient to predict treatment outcome (for example, the HLA-B*5801 allele and hypersensitivity to allopurinol11). These anecdotal observations have led some to suggest that pharmacogenomic phenotypes tend to be influenced by a relatively smaller number of genetic variants with larger effect sizes, especially compared with complex disease risk.12,13 Indeed, in 2012, Giacomini et al.14 observed that GWAS hits from pharmacogenomic studies reported in NHGRI GWAS catalog were seven times as likely to have odds ratios above 3 as compared with other traits. Similarly, Chhibber et al.15 plotted effect sizes from pharmacogenomics study against those from all studies in the NHGRI GWAS catalog to show a trend towards larger effects. Although this is an intriguing possibility, its legitimacy remains unclear as a formal comparison of effect sizes across studies with different types of phenotypes has not yet been performed. In this study, we sought to provide a systematic comparison of effect sizes between categories of phenotypes across all GWAS reported in the NHGRI GWAS catalog (www.genome.gov/gwastudies16). These categories included complex disease risk, pharmacogenetic traits (adverse events), pharmacogenetic traits (efficacy), morphological traits and endophenotypes.

MATERIALS AND METHODS

GWAS data

We obtained a list of all significant associations for all phenotypes listed in the NHGRI GWAS catalog1 (http://www.genome.gov/gwastudies/) as on 23 April 2014. These include all associations with P-values < 10−5 reported in studies included in the catalog for a total of 16 536 associations. We excluded associations if no effect size was provided, leaving 14 201 associations. We then categorized associations based into continuous and binary phenotypes. Initially, we assigned associations on the basis of keywords (‘cases’ or ‘controls’ indicated binary phenotypes). These assignments were then manually reviewed and adjusted as necessary. To allow effect sizes to be comparable across phenotypes in the form of odds ratios, we then excluded associations for continuous phenotypes. This left a total of 5376 variant-phenotype associations. These associations include 4930 (91.7%) with complex disease risk, 279 (5.2%) with pharmacogenomic phenotypes and 167 (3.1%) with endophenotypes/morphological phenotypes.

1 Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL, USA. 2 Department of Medicine, The University of Chicago, Chicago, IL, USA. Correspondence: Dr JC Maranville, Department of Medicine, The University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA.
E-mail: joseph.maranville@gmail.com
Received 11 December 2014; revised 17 April 2015; accepted 21 May 2015; published online 7 July 2015
Categorization of studies based on phenotype
We assigned each phenotype to a category on the basis of keywords. Specifically, we determined a set of keywords for each category. We then made a list of all phenotypes included in the catalog. We searched all keywords in each phenotype name. If a phenotype name contained one or more keywords from a given category, it was assigned to that category. Phenotype names that matched multiple categories were flagged and assigned to a single category through manual curation. Keywords for pharmacogenomics phenotypes were: ‘response’, ‘adverse’, ‘induced’, ‘sensitivity’, ‘exacerbated’, ‘interaction’ and ‘dosage’. Keywords for morphological phenotypes were: ‘metric’, ‘weight’, ‘color’, ‘eyes’, ‘mass’, ‘circumference’, ‘structure’, ‘size’, ‘freckling’, ‘thickness’, ‘curvature’ and ‘stiffness’. Keywords for endophenotypes were: ‘trait’, ‘antibody’, ‘biomarker’, ‘activity’ and ‘reactivity’. Some phenotypes contained keywords for multiple categories. Specifically, we observed the following: four phenotypes had both pharmacogenomics and morphological keywords, 11 phenotypes had both pharmacogenomics and endophenotype keywords, and 10 phenotypes had both morphological and endophenotype keywords. These associations were flagged and resolved through manual review. To ensure the quality of keyword-based assignment, all the phenotypes were validated, and modified as needed, through manual curation. Phenotype assignments are listed in Supplementary Table 1.

Comparison of odds ratio distribution between phenotype categories
We used a Wilcoxon rank-sum test to test for significant differences in median odds ratio between pairs of categories.

In addition, we used re-sampling analyses to estimate null distributions of summary statistics (for example, median odds ratio) and compare them between categories while controlling for specific parameters. To determine whether the median odds ratio for pharmacogenomics phenotypes was significantly different from the median odds ratio for non-pharmacogenomic phenotypes, we randomly re-sampled an equal number of studies 10 000 times. For each re-sampling, we recorded the median odds ratio. We then used the distribution of median odds ratios from these re-samplings as null distribution. As re-sampling was performed on studies, rather than individual variant–phenotype pairs, these analyses took into account the potential correlation of odds ratios within studies.

We used a similar re-sampling procedure to compare the median odds ratio between pharmacogenetic studies and complex disease risk studies while controlling for sample size. Sample size was defined as the sum of the number of cases and the number of controls used to obtain the association result. To describe the distribution of sample sizes for pharmacogenomics studies, we counted the number of studies in each of the nine bins. Bins spanned the range of observed sample sizes and were broken at regular intervals in log10 space. Specifically, the following bins, in terms of log10 sample sizes, were used: ≤ 2 (eight studies), > 2 and ≤ 2.2 (eight studies), > 2.2 and ≤ 2.4 (nine studies), > 2.4 and ≤ 2.6 (13 studies), > 2.6 and ≤ 2.8 (four studies), > 2.8 and ≤ 3 (seven studies), > 3 and ≤ 3.2 (seven studies), > 3.2 and ≤ 3.4 (three studies), and > 3.4 and ≤ 3.6 (six studies). For 10 000 iterations, we randomly sampled an equal number of complex disease risk studies with matching sample sizes for each bin and recorded the median odds ratio. The total number of available complex disease risk traits for each bin were: ≤ 2 (three studies), > 2 and ≤ 2.2 (six studies), > 2.2 and ≤ 2.4 (10 studies), > 2.4 and ≤ 2.6 (11 studies), > 2.6 and ≤ 2.8 (31 studies), > 2.8 and ≤ 3 (49 studies), > 3 and ≤ 3.2 (73 studies), > 3.2 and ≤ 3.4 (130 studies), and > 3.4 and ≤ 3.6 (120 studies). As there were too few complex disease risk studies in the bins with < 398 (10^6) samples, we excluded studies of this size from both the pharmacogenomic and complex disease risk categories. All the analyses were performed in the statistical programming language R (http://www.r-project.org).

RESULTS
Summary of included studies
We collected a set of 5376 variant–phenotype associations from the GWAS catalog corresponding to 822 published studies (summarized by phenotype category in Table 1). The vast majority

Complex disease risk	Pharmacogenomic phenotypes	Endophenotypes/morphological phenotypes	
No. of associations (%)	4930 (91.7)	279 (5.2)	167 (3.1)
No. of studies (%)	748 (91)	47 (5.7)	33 (4)
Median log10 sample size (s.d.)	3.8 (0.58)	2.53 (0.43)	3.7 (0.5)
Median minor allele frequency	0.28	0.23	0.23

Table 1. Summary of association characteristics by phenotype category
Pharmacogenetic studies report larger effect sizes than other phenotypes

We found that the distribution of odds ratios for pharmacogenomic phenotypes showed a strong skew towards larger odds ratios relative to other phenotypes (Figure 1a). Specifically, we found that pharmacogenomic phenotypes (from 47 studies) had a median odds ratio of 2.5 versus a median odds ratio of 1.25 for complex disease risk (748 studies). A Wilcoxon rank-sum test showed that these distributions were highly significantly different ($P = 7.2 \times 10^{-11}$). To account for the dependence structure between associations from the same studies, we used a resampling approach to generate a null distribution of median odds ratios expected from a random sampling of all included studies. In 10,000 permutations, none showed a median odds ratio as large as we observed for pharmacogenomics phenotypes (Figure 1b).

Distribution of effect sizes similar between adverse events and drug efficacy

Many of the strongest associations observed for pharmacogenomic traits have involved prediction of adverse events. To determine whether the tendency for large odds ratios in pharmacogenomics phenotypes was driven by adverse event phenotypes as opposed to drug efficacy phenotypes, we compared the distribution of odds ratios between studies focused on these two subcategories. We found no significant differences in effect sizes between pharmacogenetic studies focused on adverse events compared with those focused on drug efficacy (Figures 2, $P = 0.49$). Indeed, the median odds ratio for drug efficacy phenotypes (3) was slightly higher (not significantly) than for adverse events (2.39).

Pharmacogenetic studies report larger effect sizes than endophenotypes and morphological phenotypes

It has also been suggested that endophenotypes may be influenced by a smaller number of genetic variants with larger effects as compared with disease risk. In support of this hypothesis, we found that associations with endophenotypes had significantly higher odds ratios than disease risk (Figure 3, median odds ratio for endophenotypes = 1.52, $P = 6 \times 10^{-11}$). Interestingly, morphological phenotypes, which are measurements of anatomical features such as hair or eye color, tended to have slightly larger odds ratios as compared with endophenotypes.
Specifically, median odds ratio for morphological phenotypes was 1.7, which was significantly larger than that for endophenotypes (Figures 3, \(P = 6.3 \times 10^{-8}\)) and disease risk (\(P = 8.8 \times 10^{-10}\)). Still, we found that pharmacogenomic phenotypes had significantly larger odds ratios than either endophenotypes (Figures 3, \(P = 5.7 \times 10^{-13}\)) or morphological traits (Figures 3, \(P = 3.4 \times 10^{-3}\)).

Larger effect sizes in pharmacogenetic studies not explained by smaller sample size

We observed that pharmacogenetic studies tended to have much smaller sample sizes than complex disease risk studies (\(P = 8.7 \times 10^{-14}\), Table 1 and Figure 4a). It is possible that the larger odds ratios we observed could reflect systematically inflated estimates due to the tendency for smaller sample sizes. To test this hypothesis, we generated random sets of complex disease risk studies with distributions of sample sizes that mirrored those observed for pharmacogenomics phenotypes. We found that the observed median odds ratio for pharmacogenomic studies was significantly larger than the expected median odds ratio from a random sample of similarly sized complex disease risk studies (\(P = 0.047\), Figure 4b).

DISCUSSION

Analysis of association results included in the NHGRI GWAS catalog revealed a significant trend towards larger effect sizes for associations between genetic variants and pharmacogenomics phenotypes as compared with other types of phenotypes. Indeed, we found that the median odds ratio for pharmacogenomics phenotypes (2.5) was twice as large as that observed for associations with complex disease risk (1.25). Morphological and endophenotypes also showed larger effect sizes than complex disease risk, but still tended to be smaller than effect sizes for pharmacogenomic phenotypes. We also observed that pharmacogenomic studies tended to have lower sample sizes than studies of other phenotypes. Differences in sample size do not explain the observed differences in odds ratio distribution, however, as significant differences in odds ratio persist when similarly sized studies of pharmacogenomics and complex disease risk phenotypes are compared. This observation raises the intriguing possibility that additional pharmacogenomic associations may have large enough effects to be eventually translated into clinical practice. Although it is difficult to draw conclusions about clinical utility solely on the basis of odds ratio (see Manolio19 for a detailed discussion of odds ratio from GWAS and predictive ability), two prominent examples of clinically implemented pharmacogenetic tests reflect associations identified in GWAS with odds ratios well within the range observed for all pharmacogenomic associations in this study (SLCO1B1-simvastatin with odds ratio of 4.5 (ref. 20) and IL28B-peginterferon with an odds ratio of 2 (ref. 21)).

Larger effect sizes for pharmacogenomics associations may reflect inherent differences in study design for pharmacogenomics studies. Specifically, pharmacogenomic phenotypes are actually interaction effects between biological measurements (for example, adverse events or disease processes) and drug treatment. For drug efficacy studies, the phenotype is often a summary of the change in disease processes measured before and after treatment, while for adverse events, there is at least appropriate utilization of information on drug exposure, and often incorporation of information on dose to event. Consequently, the measurement and analysis of pharmacogenomic phenotypes incorporates information on the most relevant environmental factors affecting the phenotypes—drug exposure. This should reduce nongenetic variance, and as observed, increase estimates of effect size. Moreover, many of these studies were performed as a part of clinical trials for the corresponding drugs. Therefore, the tendency for larger effects sizes that we observe may be due, in part, to the use of more carefully measured and controlled phenotype data.

It has been suggested that larger effects in pharmacogenomics studies may reflect negative selection on non-pharmacogenetic phenotypes, especially disease risk. The underlying hypothesis is that drug exposure is a recent phenomenon in human evolution. As a result, alleles with large deleterious effects in the presence of drug have been able to rise to high frequency through drift. Indeed, some pharmacogenomic alleles may have increased in frequency through positive selection as a consequence of non-pharmacological phenotypic effects (for example, CYP3A drug-metabolizing enzymes and salt sensitivity25). At the very least, the intermittent nature of exposures that induce pharmacogenomics phenotypes (inadvertent through diet, or more recently purposeful through drug therapy) increases the possibility that alleles reducing activity of drug-metabolizing enzymes and transporters can rise to intermediate frequencies. Alleles with similar effect sizes, but that influence other phenotypes that may have been more
deleterious over the course of human evolution (for example, increasing risk of developing childhood cancer), would be subject to negative selection and would have a decreased probability of reaching intermediate frequency (see discussion in ref. 23).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
JCM was supported by a Clinical Therapeutics training grant to the University of Chicago (T32GM007019). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

REFERENCES
1. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 2014; 42: D1001–D1006.
2. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.
3. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.
4. Yang J, Lee T, Kim J, Cho MC, Han BG, Lee JY et al. Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans. PLoS Genet 2013; 9: e1003355.
5. Vinkhuizen AA, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu Rev Genet 2013; 47: 75–95.
6. Evans DM, Visscher PM, Wray NR. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum Mol Genet 2009; 18: 3525–3531.
7. Jostins L, Barrett JC. Genetic risk prediction in complex disease. Hum Mol Genet 2011; 20: R182–R188.
8. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet 2013; 9: e1003348.
9. Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: the genetics of variable drug responses. Circulation 2011; 123: 1661–1670.
10. Caudle KE, Klein TE, Hoffman JM, Muller DJ, Whirl-Carrillo M, Gong L et al. Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab 2014; 15: 209–217.
11. Somkrua R, Eckman EE, Saokaew S, Lohtinavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet 2011; 12: 118.
12. Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet 2010; 11: 241–246.
13. Ritchie MD. The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-GWAS era. Hum Genet 2012; 131: 1615–1626.
14. Giacomini KM, Yee SW, Ratain MJ, Weinshilboum RM, Kamatani N, Nakamura Y. Pharmacogenomics and patient care: one size does not fit all. Sci Transl Med 2012; 4: 153ps118.
15. Chhibber A, Krozet DL, Tantsisira KG, McGeachie M, Cheng C, Plenge R et al. Genomic architecture of pharmacological efficacy and adverse events. Pharmacogenomics 15: 2025–2048.
16. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA. A Catalog of Published Genome-Wide Association Studies. 2011. Available from www.genome.gov/gwastudies.
17. Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45: 501–512.
18. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2011; 13: 135–145.
19. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet 2013; 14: 549–558.
20. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med 2008; 359: 789–799.
21. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009; 41: 1100–1104.
22. Thompson EE, Kuttab-Boulos H, Witonsky D, Lang Y, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75: 1059–1069.
23. Di Rienzo A. Population genetics models of common diseases. Curr Opin Genet Dev 2006; 16: 630–636.