RESEARCH PAPER

Three classes of hemoglobins are required for optimal vegetative and reproductive growth of *Lotus japonicus*: genetic and biochemical characterization of LjGlb2-1

Irene Villar1,†, Maria C. Rubio1,†, Laura Calvo-Beguería1, Carmen Pérez-Rontome1, Estibaliz Larrainzar2, Michael T. Wilson3, Niels Sandal4, Luis A. Mur5, Longlong Wang6, Brandon Reeder3, Deqiang Duanmu6, Toshiki Uchiumi7, Jens Stougaard4 and Manuel Becana1,*

1 Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
2 Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Campus Arrosadia, Universidad Pública de Navarra, 31006 Pamplona, Spain
3 School of Life Sciences, Essex University, Wivenhoe Park, Colchester CO4 3SQ, UK
4 Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
5 Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, SY23 3DA, Wales, UK
6 State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
7 Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan

† These authors contributed equally to this work.
* Correspondence: becana@eead.csic.es

Received 15 July 2021; Editorial decision 27 July 2021; Accepted 11 August 2021

Editor: Richard Napier, University of Warwick, UK

Abstract

Legumes express two major types of hemoglobins, namely symbiotic (leghemoglobins) and non-symbiotic (phytoglobins), with the latter being categorized into three classes according to phylogeny and biochemistry. Using knockout mutants, we show that all three phytoglobin classes are required for optimal vegetative and reproductive development of *Lotus japonicus*. The mutants of two class 1 phytoglobins showed different phenotypes: *Ljglb1-1* plants were smaller and had relatively more pods, whereas *Ljglb1-2* plants had no distinctive vegetative phenotype and produced relatively fewer pods. Non-nodulated plants lacking *LjGlb2-1* showed delayed growth and alterations in the leaf metabolome linked to amino acid processing, fermentative and respiratory pathways, and hormonal balance. The leaves of mutant plants accumulated salicylic acid and contained relatively less methyl jasmonic acid, suggesting crosstalk between *LjGlb2-1* and the signaling pathways of both hormones. Based on the expression of *LjGlb2-1* in leaves, the alterations of flowering and fruiting of nodulated *Ljglb2-1* plants, the developmental and biochemical phenotypes of the mutant fed on ammonium nitrate, and the heme coordination and reactivity of the protein toward nitric oxide, we conclude that *LjGlb2-1* is not a leghemoglobin but an unusual class 2 phytoglobin. For comparison, we have also characterized a close relative of *LjGlb2-1* in *Medicago truncatula*, MtLb3, and conclude that this is an atypical leghemoglobin.

Keywords: Hemoglobins, *Lotus japonicus*, *Medicago truncatula*, mutants, nitric oxide, symbiosis.
Introduction

Legumes contain two major types of hemoglobins, namely symbiotic or leghemoglobins (Lbs) and non-symbiotic or phytoglobin (Glbs). In general, Lbs are expressed in nodules at millimolar concentrations and are present as a mixture of components, the relative proportions of which vary with nodule age and stress conditions; however, the reason for the existence of these multiple components is uncertain (see review by Larraínzar et al., 2020). The major function of Lbs is to buffer O2 in the infected cells so that bacteroids can simultaneously sustain high respiration and N2 fixation rates (Appleby, 1984; Ott et al., 2005; Wang et al., 2019). In contrast, Glbs are present at low micromolar concentrations in most plant tissues (Hill, 2012). They are categorized into three phylogenetic classes, at least two of which are present in legumes. Class 1 Glbs have a very high O2 affinity and hence are unlikely to transport and deliver O2 for metabolic reactions. Among other functions, they are involved in plant responses and adaptations to hypoxia and in nitric oxide (NO) homeostasis (Igamberdiev and Hill, 2004). These Glbs are also crucial for the onset and functioning of the legume-Rhizobium symbiosis by modulating NO levels (Shimoda et al., 2005; Fukudome et al., 2016; Berger et al., 2020). Class 2 Glbs have homology with Lbs and show moderate O2 affinity and NO-scavenging activity, which is compatible with a role in modulating O2 and/or NO levels in vivo (Hebelstrup and Jensen, 2008; Smagghe et al., 2009). Class 3 Glbs share homology with the truncated hemoglobins of prokaryotes and show low O2 affinity. They have unknown functions, although roles in the suppression of plant defense responses during rhizobial and mycorrhizal symbioses and in protection from nitrosative stress have been suggested (Vieweg et al., 2005).

Among other functions, the factors of Lbs and Glbs are associated with protein structure and the heme reactivity with physiological ligands such as O2 and NO. Class 1 and class 2 Glbs are hexacoordinate because they have the fifth (proximal) and sixth (distal) positions of the heme iron coordinated to His or, more rarely, to other amino acid residues. In contrast, Lbs and class 3 Glbs are pentacoordinate because they have a proximal His residue but lack an amino acid residue at the distal position (Watts et al., 2001; Smagghe et al., 2009). The degree of hexa- or pentacoordination of the hemes has a large effect on their reactivities, as illustrated by comparing the O2 affinities of Lbs and class 1 Glbs. The hemes of Glbs and Lbs are involved in several reactions with NO (see review by Becana et al., 2020). One of them is the oxidation of NO to NO3 by the NO dioxygenase (NOD) activity of oxyferrous hemoglobin (2+O2) (Igamberdiev and Hill, 2004), and another is the reduction of nitrite to NO by the nitrite reductase (NiR) activity of deoxyferrous hemoglobin (2+) (Sturns et al., 2011; Tiso et al., 2012). Both yield ferric hemoglobin (3+) that needs to be reduced back to the 2+ form in order to sustain the reactions.

The genomes of the model legumes Medicago truncatula and Lotus japonicus contain multiple Lb and Glb genes. A search of the latest genome version of M. truncatula ecotype A17 (MtV5.0) reveals that it may express up to twelve Lbs (MtLb1 to MtLb12), three class 1 Glbs (MtGlb1-1, MtGlb1-2, MtGlb1-3), and two class 3 Glbs (MtGlb3-1, MtGlb3-2) (Berger et al., 2020; Larraínzar et al., 2020). Similarly, a search of the latest genome version of L. japonicus ecotype Gifu (Ljv1.2; Kamal et al., 2020) shows that it encodes two class 1 Glbs (LjGlb1-1, LjGlb1-2), one putative class 2 Glb (LjGlb2-1), one uncharacterized hemoglobin (provisionally designated as LjGlb2-2), and two class 3 Glbs (LjGlb3-1, LjGlb3-2) (Larraínzar et al., 2020). The nodulation phenotypes of mutants deficient in LjGlb1-1 (Fukudome et al., 2016) or its homolog MtGlb1-1 (Berger et al., 2020) have been examined and both proteins have been found to be important for the onset of symbiosis. However, the phenotype of these mutants at the reproductive stage, as well as the phenotypes of other hemoglobin mutants, are unknown.

In the first part of this study, we provide detailed information on the symbiotic performance, from seedling to seed-producing mature plants, of L. japonicus knockout mutants for LjGlb1-1, LjGlb1-2, LjGlb2-1, and LjGlb3-2. The mutants, which bear insertions of the retrotransposon LORE1, were generated in Denmark (Urbafinski et al., 2012; Malolepszy et al., 2016) or Japan (Fukai et al., 2010). Unfortunately, there are no insertional mutants available in either of the two LORE1 collections for LjGlb2-2 and LjGlb3-1. The second part of our study focuses on characterizing LjGlb2-1 because of its peculiarity. The protein shares high sequence identity with Lbs but, unlike them, it is hexacoordinate in the 3+ form (Calvo-Begueria et al., 2017) and is expressed also in the roots (Bustos-Sanmamed et al., 2011). Finally, because MtLb3 is phylogenetically related to LjGlb2-1 (Larraínzar et al., 2020), the tissue location and biochemical properties of both proteins are compared to help determine if they are functional homologs.

Materials and methods

Biological materials and growth conditions

Plants of Lotus japonicus ecotype Gifu B–129 mutated in Glb genes were obtained from the LORE1 mutant collection (Lotus Base, https://lotus.au.dk; Mun et al., 2016) except for P0494, which was obtained from Legume Base (National BioResource Project, https://www.legumebase.au.dk; Mun et al., 2016), except for P0494, which was obtained from Legume Base (National BioResource Project, https://www.legumebase.au.dk). LORE1 is an endogenous 5-kb retrotransposon that inserts in the genome to create loss-of-function mutations. LORE1 mutants are stable, the plants are not transgenic, mutations are heritable, and mutant phenotypes are maintained through generations (Madsen et al., 2005; Urbafinski et al., 2012; Malolepszy et al., 2016). Plants of L. japonicus ecotype MG–20 mutated in the three Lb genes were generated using CRISPR/Cas9 (Wang et al., 2016).

Seeds of L. japonicus were gently scarified with sand paper, disinfected for 20 min with 2% sodium hypochlorite, washed, and imbibed overnight in the dark at room temperature. They were then transferred to 0.5 % (w/v) agar plates and kept in the dark at 4 °C for 2 d. For germination,
plates were placed vertically for 3 d in the dark at 23 °C and for 2 d more with a 16:8-h light/dark photoperiod (140 μmol photons m⁻² s⁻¹) at 23/21 °C. The seedlings were then transferred to plates with Jensen medium (Pajuelo and Stougaard, 2005) and grown with a 16-h photoperiod as indicated above.

Seeds of Medicago truncatula ecotype Jemalong A17 were scarified with sulfuric acid for 8 min, sterilized with 4% sodium hypochlorite for 2 min, washed, and imbedded for 8 h at 25 °C. Seeds were then stratified for 2 d at 4 °C on 0.5% (w/v) agar plates and germinated at 23 °C for 1 d in the dark. Nodulation and growth conditions are described below, together with the protocol for producing hairy roots.

Plant phenotyping

The genomic sequences of LjLb2 and LjGlb2-1 were amplified using gene-specific primers (2019). Plants with positive transgenic roots were identified by one-way ANOVA using Benjamini–Hochberg adjustment in order to control the false-discovery rates. The high-resolution accurate mass values of statistically significant m/z were used to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/) and the Direct Infusion Metabolite database (https://dimdb.iber.aber.ac.uk/). Identification was based on the MS Peaks to Pathways’ algorithm (Barnes et al., 2016) (tolerance = 5 ppm; reference library, Askalynopsis thaliana). This involved metabolites being annotated using the KEGG database considering the following possible adducts: [M]+, [M+H]+, [M+Na]+, [M−NH₄]+, [M−CO₂H]+, [M−H₂O]+, [M−H]−, [M−Na−2H]−, [M−Cl]−, [M+K−2H]−. Correlations between multiple adducts of a metabolite were used in the identification process.

Expression analyses

Total RNA was extracted from nodules (20–40 mg), roots (80–100 mg), and leaves (50–60 mg) using the RNAqueous isolation kit (ThermoFisher Scientific), treated with DNaseI (Roche), and cDNA was synthesized using MMLV-RT (Promega). Quantitative reverse-transcription (qRT) PCR analyses were performed using a 7500 Real-Time PCR System (Applied Biosystems) as previously described (Rubio et al., 2019). Primer sequences and efficiencies are given in Supplementary Table S1. Normalized efficiencies and values are given in Supplementary Table S1. Normalized relative quantities (NRQs) were calculated using LjUbiquitin, LjATP synthase, and LjIF4A as the reference genes. At least three biological replicates per treatment were used and reactions were carried out in triplicate. Statistical analyses were performed using log(NRQ)-transformed data and one-tailed Student’s t-tests for comparisons of means.
Repeated degassing cycles were performed to remove O₂. The NO glass tonometer connected to a supply of argon gas and a vacuum pump.

Potassium phosphate buffer (pH 7.0) and 150 mM NaCl were degassed in a for measurement of NO binding, NO dioxygenase activity, and NiR activity. UV-visible spectra of the Soret band. Performance column, cells were resuspended in 20 mM Tris (pH 8.0) containing 150 mM NaCl, then sonicated (3 × 2 min), and cleared by centrifugation. The supernatant was loaded onto a StrepTactin Sepharose High Performance column (GE Healthcare), previously equilibrated with the same buffer. After loading the protein, the column was washed with at least five volumes of buffer, and the recombinant proteins were eluted with buffer containing 2.5 mM desthiobiotin (Merck). The proteins were dialysed, concentrated, oxidized with ferricyanide, desalted through a NAP-5 mini-column (GE Healthcare) equilibrated with the same buffer without NaCl, and concentrated again. Purified proteins were quantified in the ferric form using an extinction coefficient of 150 mM−1 cm−1 for the Soret band.

The ORFs encoding LjGlb2-1, MtLb3, and MtLb3-C135S were cloned into the Champion pET11a expression vector (Novagene) and expressed in Escherichia coli C41(DE3) cells (Lucigen, Middleton, WI, USA). Cells were pre-cultured overnight in 100 ml of LB medium with 100 µg ml⁻¹ ampicillin at 37 °C with mild agitation (200 rpm). Then, 10 ml of the pre-culture was used to inoculate 1 l of Terrific Broth medium with 100 µg ml⁻¹ ampicillin, and cells were incubated at the same conditions as above until an OD at 600 nm of 0.6–0.7 was reached. Isopropyl β-D-1-thiogalactopyranoside was then added to the medium up to a concentration of 0.5 mM, and the cells were grown at 28 °C for 16 h. The cells were then washed in phosphate buffer and stored at −80 °C for no longer than 3 weeks. For the purification protocol, cells were resuspended in 20 mM Tris (pH 8.0) containing 150 mM NaCl, then sonicated (3 × 2 min), and cleared by centrifugation. The supernatant was loaded onto a StrepTactin Sepharose High Performance column (GE Healthcare), previously equilibrated with the same buffer. After loading the protein, the column was washed with at least five volumes of buffer, and the recombinant proteins were eluted with buffer containing 2.5 mM desthiobiotin (Merck). The proteins were dialysed, concentrated, oxidized with ferricyanide, desalted through a NAP-5 mini-column (GE Healthcare) equilibrated with the same buffer without NaCl, and concentrated again. Purified proteins were quantified in the ferric form using an extinction coefficient of 150 mM⁻¹ cm⁻¹ for the Soret band.

The concentration of proli-NONOate was checked by UV spectroscopy using an extinction coefficient at 252 nm of 8400 M⁻¹ cm⁻¹ (Maragos et al., 1991). Solutions containing NO were prepared by injecting into the degassed buffer using a Hamilton syringe. The degassed proteins were transferred anaerobically to a 10-ml glass Hamilton syringe and mixed with the NO donor at a 1:1 ratio using an Applied Photophysics SX20 stopped-flow instrument fitted with a diode array spectrophotometer. The final concentrations of 2+ hemoglobin and NO were 2.5 µM and 10–160 µM, respectively. Kinetics were performed at 20 °C.

To measure NO dioxygenase activity, 2+ hemoglobin (5 µM) in the same buffer as above were oxygenated by passing them through Sephadex G-25 (NAP-5) mini-columns. Complete oxygenation was checked using an Agilent 8453 diode array spectrophotometer. The degassed buffer NO donor and NO were prepared as for the NO-binding experiments. Finally, 2+O₂ hemoglobins were rapidly mixed with the NO donor (1:1) at final concentrations of 2.5 µM and 5–160 µM, respectively, using the SX20 stopped-flow instrument mentioned above pre-cooled to 10 °C.

To assay NiR activity, degassed 2+ hemoglobin was treated with NaN₃ dissolved in buffer with sodium dithionate. The final concentrations of 2+ hemoglobin and NaN₃ were 2.5 µM and 0.05–1.0 mM, respectively. Reactions were performed at room temperature. Optical spectra were recorded using an Agilent 8453 diode array spectrophotometer. Rate constants were determined from time-courses (0–200 s) by following the conversion of 2+ to 2+NO hemoglobin in the Soret band and then by fitting the data to exponential functions using the least-square method in the Microsoft Excel solver program.

Results

Lotus japonicus plants deficient in Glbs display gene-specific alterations in the vegetative and reproductive stages.

The first objective of this study was to examine the phenotypes at the vegetative and reproductive stages of L. japonicus plants lacking Glbs under nodulating conditions. To do this, we obtained homozygous seeds of mutant lines bearing exonic insertions of the LORE1 retrotransposon. Supplementary Table S2 lists the gene names, their identification numbers in the Gifu genome (Kamal et al., 2020), the line names, and the tag insertion positions. It also shows the residual LjGlb transcript levels of the mutant plants, which were 1–7% of those of the wild-type (WT) plants, confirming that all the lines used in our study are virtually null-mutants. The Ljglb1-1 mutant has previously been described by Fukudome et al. (2016). For the Ljglb1-2 and Ljglb2-1 mutants, only one line was selected for each because they bear single exonic insertions; in contrast, two independent lines were required to ascertain the phenotype of the Ljglb3-2 plants because they contain multiple exonic insertions (LotusBase; Malolepszy et al., 2016).

The mutant lines for all four genes were phenotyped under nodulating conditions. Young plants (4 weeks old) of the Ljglb1-1 and Ljglb2-1 mutants had smaller shoots and roots as well as fewer leaves and nodules than the WT plants (Fig. 1A). The older plants (8 weeks old) of both mutants had lower leaf and nodule numbers and shoot weights, and the Ljglb1-1 plants also had smaller shoots and reduced weights of roots, leaves, and nodules (Fig. 1B). In contrast, the Ljglb1-2 mutant showed a similar phenotype to the WT plants both at 4 and 8 weeks old. Nodulated young plants (5 weeks old) of the two Ljglb3-2 mutant lines had smaller shoots and fewer leaves than the WT (Fig. 1A), whereas the older plants (8 weeks old) had fewer leaves and reduced weights of shoots, roots, and leaves. Plants of line 30086451 also had shorter shoots (Fig. 1B). The young Ljglb3-2 plants had fewer nodules than the WT (Fig. 1A) but this difference was no longer present in the older plants; however, the nodules of line 30108411 weighed less than those of the WT in older plants (Fig. 1B).

The phenotypes of nodulated plants were also examined at flowering and fruiting (Table 1). Compared with the WT, all the mutant lines showed a delay of 1 or 2 weeks until they reached the maximum numbers of flowers and pods, with the exception of Ljglb1-1, which was delayed by 1 week in reaching the flowering peak but not the pod peak. The two class 1 Glb mutants showed contrasting differences in pod number, which
increased by 63% in \(\text{LjGlb1-1} \) and decreased by 31% in \(\text{LjGlb1-2} \) compared with the WT. In contrast, the \(\text{LjGlb2-1} \) plants showed no differences in the number of flowers and pods. The \(\text{LjGlb3-2} \) mutant lines had more flowers and pods than the WT plants. In addition, the \(\text{LjGlb1-1}, \text{LjGlb2-1}, \) and \(\text{LjGlb3-2} \) (30086451) mutants produced smaller pods and fewer seeds than the WT.

\(\text{LjGlb2-1} \) is also functional in non-nodulated plants and its deficiency causes alterations in the metabolome

The hemoglobin \(\text{LjGlb2-1} \) is particularly interesting because of its unusual features, as recently discussed by Larrainzar et al. (2020). \(\text{LjGlb2-1} \) shows high homology with typical Lbs but has a hexacoordinate heme (see below) and its gene expression is localized not only in nodules but also in the apex and vascular bundles of the roots (Bustos-Sanmamed et al., 2011). This prompted us to focus the rest of our study on \(\text{LjGlb2-1} \).

First, we quantified the expression of \(\text{LjGlb2-1} \) in WT plants grown for 21 d in Jensen plates supplemented with 1.5 mM NH\(_4\)NO\(_3\). Under these non-nodulating conditions, the gene was expressed at a level ~80-fold lower in the roots than in the leaves (Fig. 2A). This finding was interesting because a previous study of nodulated plants grown in hydroponics had shown that \(\text{LjGlb2-1} \) expression was highest in nodules, moderately high in roots, and very low in leaves (Bustos-Sanmamed et al., 2011). Next, we phenotyped the \(\text{LjGlb2-1} \) mutant plants under the same non-nodulating conditions that were used for transcript quantification and found that they showed decreases of 32–43% in all the measured growth parameters compared to the WT plants (Fig. 2B). We then carried out a complementation study by producing hairy roots of the \(\text{lb123} \) mutant, which is devoid of the three \(\text{LjLbs} \) (Wang et al., 2019). The roots of this mutant were transformed via \(\text{A. rhizogenes} \) with constructs bearing the \(\text{LjGlb2-1} \) gene under the control of the \(\text{LjLb2} \) promoter. As controls, we used constructs in which the \(\text{LjLb2} \) promoter was driving the \(\text{LjLb2} \) and \(\text{GUS} \) genes. The results indicated that \(\text{LjGlb2-1} \) did not complement the \(\text{lb123} \) mutant, based on the decreases in plant length.
and weight, the white color of the nodules, and the very low acetylene reduction activity compared with the lb123 roots transformed with the LjLb2 gene (Fig. 3). Consequently, the results support a hypothesis that LjGlb2-1 is not a typical Lb but instead a hemoglobin with at least some functions that are non-symbiotic.

To further investigate the phenotype of the Ljglb2-1 mutant at the biochemical level, we performed a metabolomics...
study in leaves of non-nodulated plants, where expression of \textit{LjGlb2-1} was maximal in the WT plants (Fig. 2A). This identified 1283 \(m/z \) features within the metabolite profile (Supplementary Dataset S1). Principal component analysis of these features indicated a clear separation between the WT and \textit{LjGlb2-1} plant metabolomes (Fig. 4A). The major sources of variation were identified based on one-way ANOVA, correcting for false discovery rates and using a significance level of \(P<0.05 \). Compounds found to show the highest variation between the two genotypes were identified using metabolite databases, and the relative magnitudes of these variations are indicated in the heatmap in Fig. 4B. The results suggested that most of the discriminatory metabolites were found at higher levels in \textit{LjGlb2-1}. Considering all of the metabolites, it is worth noting the changes in the contents of several amino acids and intermediates of the tricarboxylic acid and glycolytic pathways. Thus, the leaves of \textit{LjGlb2-1} plants contained higher levels of valine, alanine, threonine, serine, glutamine, and glutamate compared with the WT (Fig. 5A). The mutant also had increased levels of sucrose, glyceraldehyde-3-phosphate, lactate, ribulose 1,5-bisphosphate, and pyruvate, and lower levels of citrate, \textit{cis}-aconitate, oxaloacetate, and phosphoenolpyruvate (Fig. 5B). Metabolite profiling also revealed alterations in the hormone levels in the leaves of mutant plants, including an increase in salicylic acid (SA) and a decrease in methyl jasmonic acid (MeJA) (Fig. 6). It was also possible to identify \(m/z \) features linked to hormones in our metabolomic data that were not shown to be significantly different in our statistical pipeline. Thus, we were able to describe the levels of indoleacetic acid, abscisic acid, zeatin (and its glucoside), and polyamines in our plants. However, none of them appeared to change significantly in \textit{LjGlb2-1} compared to WT plants, except the
content of zeatin-glucoside, which decreased in the mutant plants (Fig. 6).

LjGlb2-1 and *MtLb3* are both located in roots and nodules and show different biochemical features.

The functions of hemoglobins are associated to their locations in plant tissues and their reactivities toward physiological ligands. This prompted us to characterize *LjGlb2-1*. The protein shares high sequence identity with *MtLb3* (*Medtr1g090810*), and they cluster together and clearly away from other Lbs and Glbs of the model legumes (Larrainzar *et al.*, 2020). These observations and the anomalous features of *LjGlb2-1* led us to compare the expression patterns of *LjGlb2-1* and *MtLb3* in nodulated roots and the reactivities of their proteins to ascertain if they might be functional homologs. Because *LjGlb2-1* activity has previously been localized in nodules and roots using promoter–*GUS* fusions (Bustos-Sanmamed *et al.*, 2011), we used the same procedure for *MtLb3*. Our results showed that the *MtLb3* promoter was active in the apex and vascular bundles of the primary and secondary roots (Supplementary Fig. S4). In nodules at ~2 weeks post-infection, *MtLb3* activity was predominantly found in the apex (zones I + II), and after a further 2 weeks it was also detected in the vascular bundles and, to a lesser extent, in zone III. The expression pattern of *MtLb3* in the roots was therefore similar to that of *LjGlb2-1* observed by Bustos-Sanmamed *et al.* (2011).

We then set out to compare the two proteins, together with a *MtLb3* mutant in which its single Cys was replaced by Ser (*MtLb3–C135S*). Unfortunately, we could not produce the corresponding derivative of *LjGlb2-1* (*LjGlb2-1–C65S*) in sufficient quantities for characterization, which suggested that the Cys residue is critical for protein stability (Calvo-Begueria *et al.*, 2017). Having produced purified proteins, we first obtained the UV-visible spectra of the 3+ and 2+ forms, as well as the spectra of the proteins bound to the heme ligands O₂, NO, CO, and cyanide (Supplementary Figs S1–S3). In this study, *LjGlb2-1* had a Strep-tag instead of a His-tag (Sainz *et al.*, 2013), confirming that the protein is hexacoordinate in the 3+ form (Soret at 410 nm, band at 535 nm, and shoulder at 562 nm). The 3+ protein produced the typical cyano complex with cyanide, whereas the 2+ protein was mostly pentacoordinate (Soret at 427 nm and β band at 558 nm) and yielded the expected complexes with O₂, CO, and NO (Supplementary Fig. S1). However, a small proportion of hexacoordinate protein was also detectable in the 2+ form according to the shoulder observed at ~534 nm. The spectra of *MtLb3* (Supplementary Fig. S2) and *MtLb3–C135S* (Supplementary Fig. S3) were virtually identical (±2 nm), showing pentacoordination in the 3+ form (bands at 528 and 625 nm, shoulder at 564 nm) and 2+ form (β band at 559 nm).
Next, we compared LjGlb2-1 and MtLb3 by measuring their reactivity toward NO, because this is a key signal molecule and the kinetics may give insights into the protein functions. To study the kinetics of NO binding, the 2+ hemoglobins were mixed with proli-NONOate and the appearance of the nitrosyl complex (2+NO) was followed under anaerobic conditions by stopped-flow spectroscopy (Fig. 7A, B). The reaction was fast for all three proteins, but the 2+ form was still visible after the dead-time of the instrument (1.2 ms) and the rates of formation of the 2+NO hemoglobins could be measured. There were clear differences between the proteins. The time-course of MtLb3 fitted a double-exponential function whereas that of MtLb3–C135S fitted a single-exponential function, which suggested that a second, slower reaction occurred during the last step of the NO binding to MtLb3. The observed rate constant (k_{obs}) exhibited a hyperbolic relationship with NO concentration (Fig. 7C). The initial change in k_{obs} appeared to be at least 1×10^7 M$^{-1}$ s$^{-1}$ for both MtLb3 and MtLb3–C135S, and the rate constants approached maximum values of ~ 695 s$^{-1}$, respectively. These values represent the pseudo-first-order rate constants that reflect the limitation of the rate of access of NO to the heme. In many cases they are the His off rates from the iron, but here they probably reflect the rate of movement of distal heme-pocket residues that sterically hinder the binding of NO. The NO-binding kinetics of LjGlb2-1 was slower than that of MtLb3 and was independent of NO concentration, with an estimated NO-binding rate constant (k_{NO}) of 2.5 s$^{-1}$ (Fig. 7C, inset). This indicated that the entry of NO into the heme cavity of LjGlb2-1 was somewhat limited by the presence of the distal His. This finding was unexpected because, as indicated above, the 2+ protein showed a mainly pentacoordinate spectrum.

Because all three hemoglobins were able to scavenge NO in vitro, we measured their NOD activities, which also allowed us to determine whether the Cys residue of MtLb3 plays a role in NO scavenging. To this end, the 2+O$_2$ proteins were mixed with a solution of NO and the reaction kinetics were monitored by stopped-flow spectroscopy. The first spectrum of LjGlb2-1 (taken at 1.2 ms) was almost the same as that of a 3+ protein, indicating that the reaction was already complete (Fig. 7D). It can therefore be concluded that the NOD rate constant (k_{NOD}) must be > 250 s$^{-1}$ even at very low NO concentrations (5 μM), yielding a second-order rate constant of $> 5 \times 10^7$ M$^{-1}$ s$^{-1}$. In sharp contrast, the initial spectra (again...
Hemoglobins in plant vegetative and reproductive growth

... took at 1.2 ms) of MtLb3 (Fig. 7E) and MtLb3–C135S (Fig. 7F) were typical of 2+O2 hemoglobins, whereas the spectra taken at 100 ms corresponded to 3+ pentacoordinate proteins. This meant that the reactions were slow enough to be observed even at high NO concentrations (200 µM). The two proteins showed important kinetic differences: MtLb3 showed kinetics that fitted to a second-order rate ($k_{NO}=1.5 \times 10^6 M^{-1} s^{-1}$), whereas MtLb3–C135S showed a reaction rate ~40-fold slower at low NO concentrations (5 µM) and its NOD reaction was independent of NO concentration ($k_{NOD}=20 s^{-1}$) (Fig. 7G).

We also assayed NiR reactions with 0.05–1.0 mM NO2– (at pH 7.0 and 25 °C) in the presence of excess dithionite. Under these conditions, the 2+ hemoglobin reduced NO2– to NO and generated only the 2+NO complex because the excess dithionite avoided the production of 2+O2 hemoglobin and quickly reduced the resulting 3+ form (Fig. 7H). The observed pseudo-first-order rate constant (k_{obs}) for NiR activity was plotted against NaNO2 concentration and the second-order rate constant (k_{NiR}) was calculated from the slopes (Fig. 7I).

The k_{NiR} values of LjGlb2-1 and MtLb3 were ~200 M$^{-1}$ s$^{-1}$, whereas that of MtLb3–C135S was 428 M$^{-1}$ s$^{-1}$. This indicated that the Cys residue of MtLb3 was important for NiR activity, as was also found for NOD. The observation of virtually identical k_{NiR} values of LjGlb2-1 and MtLb3 contrasted with the different responses of the proteins toward NO, as reflected by their k_{NO} and k_{NOD} values.

Discussion

Hemoglobins are widespread in plant tissues and display a considerable diversity of structures and probably of functions (see reviews by Garrocho-Villegas et al., 2007; Hoy and Hargrove, 2008; Hill, 2012; Becana et al., 2020). However, the effects of hemoglobin deficiencies on plant development have seldom been studied, with the notable exception of Arabidopsis. In the present study, we used mutant lines of L. japonicus to investigate the effects of several Glb deficiencies on plants at the vegetative and reproductive stages. The use of stable knockout mutants rather than antisense lines in hairy roots allowed us to study nodulated plants until flower and pod formation, and hence to uncover phenotypic alterations at late stages in the life cycle. To date, only Lbs (Ott et al., 2005; Wang et al., 2019) and one class 1 Glb (Fukudome et al., 2016; Berger et al., 2020) of L. japonicus and M. truncatula have been examined using transgenic approaches, but these studies were focused on plant nodulation. Our results indicated that a deficiency of LjGlb1, LjGlb2-1, or LjGlb3-2 negatively affected both nodule and plant development, with significant reductions of shoot and root size and of leaf and nodule number compared with the WT (Fig. 1). Arabidopsis possesses a single class 1 Glb (AtGlb1), and a previous study has shown that plants lacking this display aberrant development, with twisted leaves and enlarged leaf hydathodes, although these effects are not seen in plants lacking the class 2 Glb (AtGlb2; Hebelstrup et al., 2006). In our...
In the study by Villar et al., it was noted that the Glb deficiencies delayed flowering and affected pod-set, with the mutants showing variable effects. Compared with the WT, the flowering peak was delayed by 1 week in Ljglb1-1 and Ljglb1-2, and by 2 weeks in Ljglb2-1 and Ljglb3-2 (Table 1). This could be related to the observation that AtGlb1-deficient Arabidopsis plants have a delay in bolting that ultimately results in formation of aerial rosettes (Hebelstrup and Jensen, 2008). It could be argued that the delay in flowering and fruiting of L. japonicus might be a direct consequence of retarded vegetative growth; however, this hypothesis was not supported by the differences between the mutant phenotypes, such as an increase in the number of flowers in Ljglb3-2 and a decrease in the pod length in Ljglb1-1 and Ljglb2-1 (Table 1). Furthermore, the Ljglb1-2 plants had no differences in phenotype in the vegetative period (Fig. 1) but the flowering peak was delayed and the mutant produced fewer pods than the WT (Table 1). Overall, our results indicated that Glbs were involved not only in vegetative growth but also in the flowering and fruiting of plants. Because all of the mutants showed distinct phenotypes, we conclude that the three classes of Glbs have non-redundant functions and are all needed for optimal plant development.

Another intriguing finding of our study was the detection of a distinctive growth (Fig. 2) and metabolic (Figs 4–6) phenotype...
in plants deficient in LjGlb2-1 that had been fed on NH4NO3. The mutant plants were smaller and their leaves contained higher levels of sucrose and intermediates of glycolysis and the tricarboxylic acid cycle, which was suggestive of mobilization of carbon assimilates, apparently tending towards a fermentative over a bioenergetic oxidative route. The Lgglb2-1 mutant also had more SA and less MeJA in the leaves than the WT (Fig. 6). These hormones have been often considered to act antagonistically to tailor defenses against particular pathogens. Thus, Arabidopsis plants lacking AtGlb1 show an accumulation of SA and a decrease of JA in the leaves when challenged with the pathogens Pseudomonas syringae and Botryis cinerea, respectively, and these effects are linked to a modulation of NO by AtGlb1 (Mur et al., 2012). This might also be the case for LjGlb2-1 because our in vitro studies showed that the protein had a very high NOD activity (>250 s⁻¹; Fig. 7D). Consequently, its deficiency could disturb NO homeostasis, which is likely to impact on SA and JA biosynthesis (Mur et al., 2013). These hormones are also likely to influence whole-plant physiology beyond defense. High SA induces or accelerates flowering (Jin et al., 2008) and low SA can increase growth (Abreu and Munne-Bosch, 2009). In addition, jasmonates decrease plant growth by suppressing the mitotic CycB1;2 (Zhang and Turner, 2008). Hence, the relative levels of SA and JA in the Lgglb2-1 mutant plants do not explain their smaller size compared with the WT. A possible explanation to reconcile all these observations is that the growth alterations in the Lgglb2-1 mutant reflected a general defect in redox and/or NO homeostasis, which would in turn affect the levels of both hormones. Further studies will be necessary to determine whether the mechanism involves the important regulator of pathogen defense NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which mediates the crosstalk between the SA and JA/ethylene signaling pathways (Backer et al., 2019). Our metabolomic study also examined other hormones, but we were unable to detect significant changes in the leaf contents of auxin, polyamines, and gibberellin GA3 in the mutant plants and hence they were probably not involved in the reduced growth. The finding of significant LjGlb2-1 expression in the leaves of non-nodulated WT plants (Fig. 2A), together with the phenotype of the mutant plants, indicated that this hemoglobin performs at least some functions that are non-symbiotic and that it is not a Lb, in contrast to previous reports (Berger et al., 2020). Several pieces of evidence support this conclusion: LjGlb2-1 in the 3+ form was found to be hexacoordinate (Supplementary Fig. S1); it did not complement the lb123 mutant (Fig. 3); and it is known to be present at much lower concentrations than Lbs because lb123 nodules are completely white (Wang et al., 2019). Nevertheless, LjGlb2-1 also shows some discrepancies with the few class 2 Glbs that have been characterized to date: class 2 Glbs show strong hexacoordination in the 2+ form (Smagghe et al., 2009) and their NiR rate constants (k_NiR) are ~20-fold lower than those that we found for LjGlb2-1 (Sturms et al., 2011; Tiso et al., 2012; Leiva Eriksson et al., 2019). Because class 2 Glbs are the evolutionary precursors of most Lbs (Hoy et al., 2007), our future aim is to test the intriguing hypothesis that LjGlb2-1 is an intermediate between the two types of plant hemoglobins.

The LjGlb2-1 and MtLb3 proteins share high sequence homology (66% identity and 81% similarity) and have very high and almost identical k_NiR values (~200 M⁻¹ s⁻¹; Fig. 7J). Indeed, these k_NiR values are only exceeded by those reported very recently for two extremely rare class 1 Glbs encoded by MtGlb1-2 (Villar et al., 2020). The two proteins therefore have the potential to generate NO under hypoxia and this biochemical property might be important in nodules in the presence of NO3⁻, which increases the O₂ diffusion resistance of nodules and hence leads to more hypoxic conditions inside the N₂-fixing zone (Minchin et al., 1989). However, the LjGlb2-1 and MtLb3 proteins also showed some notable differences. MtLb3 was found to be pentacoordinate in the 3+ and 2+ forms (Supplementary Fig. S2), much like Lbs, but whereas its NO-binding rate constant (k_NO) was comparable to those of known Lbs, it was faster than that of LjGlb2-1 (Fig. 7). In contrast, MtLb3 had a much slower NOD rate constant (k_NOD) than that of LjGlb2-1. These features, together with its very low expression in nodules relative to typical MtLbs such as MtLb1 (Medtr1g011540) and MtLb6 (Medtr5g066070) (Gallusci et al., 1991; Larraínzar et al., 2020), support our suggestion that MtLb3 is an atypical Lb and is not involved in vivo in NO scavenging through the NOD reaction.

In conclusion, this study shows that deficiency in any of the three Glb classes in L. japonicus decreases vegetative growth and delays the flowering and fruiting of nodulated plants. The effects vary according to which Glb gene is knocked out, indicating that they have non-redundant functions and underlining the fact that all three classes (and even the two members of class 1) are required for optimal plant development. The deficiency of LjGlb2-1 in plants grown on combined nitrogen sources also results in retarded growth and changes in the leaf metabolome that are linked to amino acid processing, the fermentative and respiratory pathways, and the balance between hormones. Notably, the mutant plants showed an increase of SA and a decrease in MeJA in the leaves, indicating that LjGlb2-1 is involved in the crosstalk with the signaling pathways of these hormones during plant development. Finally, we conclude that LjGlb2-1 is not a Lb but an unusual class 2 Glb, based on the expression of LjGlb2-1 in the leaves of non-nodulated plants, the alterations of the reproductive growth of the Lgglb2-1 mutant grown under nodulating conditions, the growth and biochemical phenotype of the Lgglb2-1 mutant fed on NH4NO3, and the heme coordination and reactivity of the protein toward NO.

Supplementary data

The following supplementary data are available at JXB online.
Table S1. Primers used for qRT-PCR analyses.

Table S2. Details of the hemoglobin mutant lines used in the study.

Dataset S1. Mass-ions (m/z) obtained following flow-infusion electrospray–high resolution mass spectroscopy based on using an Exactive Plus Orbitrap MS, with each ion given as a percentage of the total ion count.

Fig. S1. UV-visible spectra of the 3+ and 2+ forms of LjGlb2-1 and their representative complexes.
Fig. S2. UV-visible spectra of the 3+ and 2+ forms of MtLb3 and their representative complexes.
Fig. S3. UV-visible spectra of the 3+ and 2+ forms of MtLb3–C135S and their representative complexes.
Fig. S4. Localization of promoter activity of MtLb3 in Medicago truncatula using a GUS reporter gene.

Acknowledgements

We thank Chris Byrne and Manfred Beckmann (Aberystwyth University) for technical support in the metabolomic experiments. This work was supported by grants AGL2017-85775-R, PID2020-113985GB-I00, and RTI2018-094623-B-C22 from the Agencia Estatal de Investigación (AEI) and by Gobierno de Aragón (group A09_20R). IV was a Formación de Personal Investigador fellow (BES-2015-073059) and EL is a Ramón y Cajal fellow (RYC2018-023867-I), both funded by AEI.

Authors contributions

IY, MCR, LCB, CPR, EL, MTW, LW, and LAM performed the experiments; NS, TU, and JS produced the homozygous mutant seeds; BR, DD, and MB designed and supervised the experiments; MB, with help of LAM and BR, wrote the original paper; all the authors revised the paper.

Data availability

All data supporting the findings of this study are available within the paper and within its supplementary materials published online.

References

Abreu ME, Munné-Bosch S. 2009. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany 60, 1261–1271.

Appleby CA. 1984. Leghemoglobin and Rhizobium respiration. Annual Review of Plant Physiology 35, 443–478.

Backer R, Schwinghammer T, Rosenbaum P, et al. 2019. Closing the yield gap for cannabis: a meta-analysis of factors determining cannabis yield. Frontiers in Plant Science 10, 495.

Barnes S, Benton HP, Casazza K, et al. 2016. Training in metabolomics research. II. Processing and statistical analysis of metabolites data, metabolite identification, pathway analysis, applications of metabolomics and its future. Journal of Mass Spectrometry 51, 535–548.

Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. 2020. Plant hemoglobins: a journey from unicellular green algae to vascular plants. New Phytologist 227, 1618–1635.

Berger A, Guinand S, Boscari A, Papou A, Brouquisse R. 2020. Medicago truncatula Phytooglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. New Phytologist 227, 84–98.

Boisson-Dernier A, Chabaud M, Garcia F, Bédard G, Rosenberg C, Barker DG. 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions 14, 695–700.

Broughton WJ, Dilworth MJ. 1971. Control of leghaemoglobin synthesis in snake beans. The Biochemical Journal 125, 1075–1080.

Bustos-Sannamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M. 2011. Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytologist 189, 765–776.

Calvo-Begueria L, Cuypers B, Van Doorsslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. 2015. Characterization of the heme pocket structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus. Frontiers in Plant Science 8, 407.

Fukai E, Umehara Y, Sato S, Endo M, Kouchi H, Hayashi M, Stougaard J, Hirochika H. 2010. Derepression of the plant Chromovirus LOREi induces germline transposition in regeneranted plants. PLoS Genetics 6, e1000888.

Fukudome M, Calvo-Begueria L, Kado T, et al. 2016. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis. Journal of Experimental Botany 67, 5275–5283.

Galluscì P, Dedieu A, Journet EP, Huguet T, Barker DG. 1991. Synchronous expression of leghaemoglobin genes in Medicago truncatula during nitrogen-fixing root nodule development and response to exogenously supplied nitrate. Plant Molecular Biology 17, 335–349.

Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R. 2007. Plant hemoglobins: what we know six decades after their discovery. Gene 398, 75–85.

Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EØ. 2006. Hemoglobin is essential for normal growth of Arabidopsis organs. Physiologia Plantarum 127, 157–166.

Hebelstrup KH, Jensen EØ. 2008. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227, 917–927.

Hill JA. 2012. Non-symbiotic haemoglobins—What’s happening beyond nitric oxide fixation? AoB Plants 2012, pls004.

Hoy JA, Hargrove MS. 2008. The structure and function of plant hemoglobins. Plant Physiology and Biochemistry 46, 371–379.

Hoy JA, Robinson H, Trent JT 3rd, Kakar S, Smagghe BJ, Hargrove MS. 2007. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport. Journal of Molecular Biology 371, 168–179.

Igamberdiev AU, Hill RD. 2004. Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. Journal of Experimental Botany 55, 2473–2482.

Jin JB, Jin YH, Lee J, et al. 2008. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. The Plant Journal 53, 530–540.

Kamal N, Mun T, Reid D, et al. 2020. Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence. DNA Research 27, dsaa015.

Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7, 193–195.

Larrainzar E, Villar I, Rubio MC, Pérez-Rontomé C, Huertas R, Sato S, Mun JH, Becana M. 2020. Hemoglobins in the legume–Rhizobium symbiosis. New Phytologist 228, 472–484.

Leiva Eriksson N, Reeder BJ, Wilson MT, Bülow L. 2019. Sugar beet hemoglobins: reactions with nitric oxide and nitrite reveal differential roles for nitrogen metabolism. The Biochemical Journal 476, 2111–2125.

Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauer L, Stougaard J. 2006. LOREi, an active low-copy-number TYS-gypsy

Dataset S1. Mass-ions (m/z) obtained following flow-infusion electrospray–high resolution mass spectroscopy based on using an Exactive Plus Orbitrap MS, with each ion given as a percentage of the total ion count.

Fig. S1. UV-visible spectra of the 3+ and 2+ forms of LjGlb2-1 and their representative complexes.
Fig. S2. UV-visible spectra of the 3+ and 2+ forms of MtLb3 and their representative complexes.
Fig. S3. UV-visible spectra of the 3+ and 2+ forms of MtLb3–C135S and their representative complexes.
Fig. S4. Localization of promoter activity of MtLb3 in Medicago truncatula using a GUS reporter gene.
retrotransposon family in the model legume *Lotus japonicus*. The Plant Journal 44, 372–381.

Malolepszy A, Mun T, Sandal N, et al. 2016. The LORE1 insertion mutant resource. The Plant Journal 88, 306–317.

Maragos CM, Morley D, Wink DA, Dunams TM, Saavedra JE, Hoffman A, Bove AA, Isaac L, Hrabie JA, Keefer LK. 1991. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. Journal of Medicinal Chemistry 34, 3242–3247.

Minchin FR, Becana M, Sprent JI. 1989. Short-term inhibition of legume N₂ fixation by nitrate. II. Nitrate effects on nodule oxygen diffusion. Planta 180, 46–52.

Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. 2016. *Lotus Base*: an integrated information portal for the model legume *Lotus japonicus*. Scientific Reports 6, 39447.

Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH. 2013. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Frontiers in Plant Science 4, 215.

Mur LA, Sivakumaran A, Mandon J, Cristescu SM, Harren FJ, Hebelstrup KH. 2012. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. Journal of Experimental Botany 63, 4375–4387.

Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology 15, 531–535.

Pajuelo E, Stougaard J. 2005. *Lotus japonicus* as a model system. In: Márquez A, ed. *Lotus japonicus* handbook. Dordrecht: Springer, 3–24.

Rubio MC, Calvo-Begueria L, Díaz-Mendoza M, et al. 2019. Phytoglobin in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with ascorbic acid. The Plant Journal 100, 38–54.

Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. 2013. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal 76, 875–887.

Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T. 2005. Symbiotic *Rhizobium* and nitric oxide induce gene expression of non-symbiotic hemoglobin in *Lotus japonicus*. Plant & Cell Physiology 46, 99–107.

Smaghe BJ, Hoy JA, Percifield R, et al. 2009. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymere 91, 1083–1096.

Sturms R, DiSpirito AA, Hargrove MS. 2011. Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. Biochemistry 50, 3873–3878.

Tiso M, Tejero J, Kenney C, Frizzell S, Gladwin MT. 2012. Nitrite reductase activity of nonsymbiotic hemoglobins from *Arabidopsis thaliana*. Biochemistry 51, 5285–5292.

Urbański DF, Malolepszy A, Stougaard J, Andersen SU. 2012. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in *Lotus japonicus*. The Plant Journal 69, 731–741.

Vieweg MF, Hohnjec N, Küster H. 2005. Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of *Medicago truncatula*. Planta 220, 757–766.

Villar I, Larraínzar E, Milazzo L, et al. 2020. A plant gene encoding one- and two-heme hemoglobins with extreme reactivities toward diatomic gases and nitrite. Frontiers in Plant Science 11, 600336.

Wang L, Rubio MC, Xin X, Zhang B, Fan Q, Wang Q, Ning G, Becana M, Duanmu D. 2019. CRISPR-Cas9 knockout of leghemoglobin genes in *Lotus japonicus* uncovers their synergistic roles in symbiotic nitrogen fixation. New Phytologist 224, 818–832.

Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D. 2016. Efficient inactivation of symbiotic nitrogen fixation related genes in *Lotus japonicus* using CRISPR-Cas9. Frontiers in Plant Science 7, 1333.

Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennnis ES. 2001. A hemoglobin from plants homologous to truncated hemoglobins from microorganisms. Proceedings of the National Academy of Sciences, USA 98, 10119–10124.

Zhang Y, Turner JG. 2008. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE 3, e3699.