Predictors of Spontaneous Rupture of Hepatocellular Carcinoma and Clinical Outcomes Following Hepatectomy

Yiran Chen
Wuhan University Zhongnan Hospital

Jing Zhao
The Central Hospital of Wuhan

Deliang Guo
Wuhan University Zhongnan Hospital

Chang Xu
Eastern Hepatobiliary Surgery Hospital

Qian Zhu (✉ zhuqian@whu.edu.cn)
Wuhan University Central South Hospital: Wuhan University Zhongnan Hospital

Research

Keywords: Tumor of the liver, Rupture of hepatocellular carcinoma, Mechanism of rupture, Treatment, Prognosis.

Posted Date: November 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1003305/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Title: Predictors of spontaneous rupture of hepatocellular carcinoma and clinical outcomes following hepatectomy

Yiran Chen¹*, Jing Zhao²*, Deliang Guo¹, Chang Xu³, Qian Zhu¹#

1. Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Medicine Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.

2. Department of dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China

3. Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital of Naval Medical University, Shanghai 200438, China.

*These two authors contributed equally to the article.

#Corresponding author: Qian Zhu, Email: zhuqian@whu.edu.cn, Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
Abstract:

Objective: To explore the independent predictive factors of spontaneous tumor rupture (STR) in patients undergoing curative resection of hepatocellular carcinoma (HCC), and to evaluate the impact of STRHCC on long-term survival after hepatectomy. Methods: The clinicopathological parameters of 106 patients with STRHCC and 201 patients with nonruptured HCC who underwent hepatectomy from January 2007 to November 2011 at the Eastern Hepatobiliary Surgery Hospital and Zhongnan Hospital of Wuhan University were analyzed using propensity score matching (PSM) and logistic regression model. Results: Factors including complicated hypertension, cirrhosis, total bilirubin (TB), tumor size, and seroperitoneum were independent predictors of STR. For all 307 HCC patients, the 1-, 3- and 5-year overall survival (OS) rates were 54.0%, 37.3% and 33.8% respectively. After propensity matching scores, the 1-, 3-, and 5-year OS rates in the ruptured group remained significantly lower at 41.5%, 23.5%, and 17.5% when compared with the nonruptured group at 70.8%, 47.1%, and 37.6% respectively, while the 1-, 3-, and 5-year Disease-free survival (DFS) rates between the groups did not differ significantly (50.4%, 35.1%, 27.1% vs 55.4%, 38.2%, 27.4%). STRHCC was significant associated with increased risk of OS, but not of shorter DFS. No significant difference in postoperative morbidity or hospital death was observed between the groups. Conclusion: Factors including complicated hypertension, liver cirrhosis, higher TB levels, tumor size > 5cm, and seroperitoneum are significant predictors of STR. STR results in poorer OS but not DFS in patients undergoing curative resection for HCC. STRHCC has no impact on postoperative morbidity and mortality after hepatectomy.
Keywords: Tumor of the liver; Rupture of hepatocellular carcinoma; Mechanism of rupture; Treatment; Prognosis.
1. Introduction:

Hepatocellular carcinoma (HCC) is the fourth most commonly occurring cancer and the third commonest cause of cancer-related deaths in China. (1, 2) Spontaneous tumor rupture of HCC (STRHCC) is a rare fatal complication with an incidence of 10% to 15%. (3-5) Immediate intervention for hemostasis is the main treatment for STRHCC. Assessment should be carried out immediately when the bleeding has been arrested, which includes the overall condition of the patient, liver function, tumor stage, and resectability of the tumor (including the tumor location). Given that STRHCC is a contraindication to liver transplantation, hepatectomy remains the only potential curative intervention. The long-term survival rate of patients undergoing hepatectomy is superior to those undergoing other non-surgical treatments such as transhepatic artery embolization or chemoembolization. (4) After hemostasis of STRHCC, emergency hepatectomy or delayed hepatectomy can be performed. Our study aimed to analyze the risk factors for STR and the survival outcomes of patients undergoing curative resection following STR of HCC.

2. Materials and methods:

2.1 Patients

This was a retrospective study that included HCC patients undergoing hepatectomy in the Eastern Hepatobiliary Surgery Hospital of Naval Military Medical University and the Zhongnan Hospital of Wuhan University from April 2007 to November 2011 (Figure 1). Eligible patients were confirmed to have HCC and liver cirrhosis by histopathological results, or STRHCC by clinical manifestations, physical signs and other diagnostic methods (including...
Computed Tomography [CT], diagnostic abdominocentesis, ultrasound or angiography), and underwent hepatectomy by the same surgical team. Among the key exclusion criteria were patients with incomplete clinical data, serious complications such as severe cardiovascular disease, preoperative portal vein thrombosis, portosystemic shunting before or during hepatectomy and those undergoing palliative liver resection. Written informed consents were obtained from all patients. Finally, 307 patients were enrolled into the study. This study was conducted in accordance with the Declaration of Helsinki and approved by the Clinical Research Ethics Committee of the Eastern Hepatobiliary Surgery Hospital of Shanghai and Zhongnan Hospital of Wuhan University in China.

2.2. Treatment

For patients with a normal liver function and the TNM staging showed a locally confined liver tumor without metastasis, the liver tumor was assessed for curative resectability. For resectable STRHCC, acute hepatectomy (the main hemostatic method for STRHCC) was feasible when the liver function and the general condition of the patient met the surgical requirements. For patients not suitable for acute hepatectomy, delayed hepatectomy (delayed early hepatectomy: rupture time ≤ 8 d; delayed late hepatectomy: rupture time > 8 d) was carried out after other hemostatic interventions (included liver packing, hepatic artery ligation, suture of the liver parenchyma, and alcohol injection). For patients with unstable hemodynamics, the main treatments included close monitoring of vital signs, active anti-shock and supportive treatment. Transcatheter arterial embolization (TAE) or emergency exploratory laparotomy was carried out for those with recovered coagulation profiles and when conservative treatments
were ineffective.

Emergency hepatectomy: Pringle method was used to occlude the porta hepatis. Upon evacuation of blood clots from the abdominal cavity, the tumor was evaluated for resectability. After the operation, the abdominal cavity was rinsed with conventional hot distilled water (DWPL) and 5-fluorouracil (5-FU) particles were placed in the omentum.

Delayed hepatectomy: Before surgery, CT and magnetic resonance imaging (MRI) were used to assess the location and extent of the tumor for resectability. The Pringle method was used to occlude the porta hepatis for 15 min and released for 5 min. The liver parenchyma was dissected by the classic "clamp method", and hemostasis was achieved by suturing of the wound and using an argon knife. Anatomical hepatectomy (AH) or non-anatomical hepatectomy (NAH) were selectively performed, with the latter mainly applied to tumors located on the surface of the liver or the junction of multiple hepatic segments, or the liver with severe cirrhosis. Large-scale hepatectomy was defined as resection of three or more Couinaud hepatic segments.

2.3. Assessment

2.3.1 postoperative complications

Postoperative complications were assessed from the first day after surgery to the day of hospital discharge, including liver failure (TB level >60 μmol/L, prothrombin time >18s or hepatic encephalopathy), cardiopulmonary failure, renal failure, biliary complications, postoperative infections, seroperitoneum and pleural effusion requiring drainage.

2.3.2 Follow-up

Two clinicians who were blinded to this study carried out the follow-ups via the
combination of postoperative outpatient setting and telephone calls every 4 weeks postoperatively and every 2 months after 6 months postoperatively until 30th November 2016.

Assessments including alpha-fetoprotein (AFP), CT or MRI, chest radiographs, and positron emission tomography (PET-CT) or bone scans (ECT) were performed when indicated. Hospital death was defined as death during hospitalization or within 60 days after surgery. Overall survival (OS) was defined as from the date of surgery to death or the end of follow-up. Disease-free survival (DFS) was defined as from the date of surgery to the time of tumor recurrence or death. The diagnostic criteria for recurrence of HCC were similar to that of the first diagnosis of HCC: patients with hepatitis B (HBV) or hepatitis C (HCV), or with cirrhosis of any cause, underwent ultrasound and serum AFP examination at least every 6 months. Intrahepatic nodules were identified as lesions that were significantly strengthened during the arterial phase and the enhancement was lower than the normal liver parenchyma during the portal venous phase or equilibrium phase (typical imaging characteristic of HCC) on dynamic enhanced MRI, dynamic enhanced CT, ultrasound imaging or liver cell specificity of Gd-EOB-DTPA enhancement MRI contrast agent. HCC was clinically diagnosed when two of the above imagings showed typical imaging characteristics of HCC with the diameter of intrahepatic nodules of ≤ 2cm, or when one conformed to a typical imaging characteristic with the diameter of > 2cm. The management of recurrent HCC was according to the specific situation of recurrence, the reserved function of the liver, and the patient's general condition. Multidisciplinary treatments including recurrence resection, radiofrequency ablation, transcatheter arterial chemoembolization (TACE), radiotherapy, chemotherapy, or oral sorafenib were carried out for recurrent disease.
2.4. Statistical analysis

Measurement data or count data of patients’ baseline characteristics were expressed as mean ± SD or number of cases (percentage). Respectively, the independent sample t-test or Pearson χ^2 test was used for comparisons between the groups. Multivariate adjusted logistic regression analysis was used to explore the risk factors for STRHCC. Direct use of the Kaplan-Meier survival curve discounted the influence of confounders, which might result in errors of survival rate between the groups. However, PSM accurately evaluated the difference in survival rate between the two groups after controlling the confounders that affected the prognosis except for STRHCC. Therefore, Kaplan-Meier analysis was used after PSM, and a log-rank test was used to compare the survival rate between the groups. In addition, multivariate-adjusted Cox regression analysis and Cox regression analysis after PSM were used and mutually authenticated to determine the effect of STRHCC after hepatectomy on patients’ long-term prognosis. The process of PSM was as follows: (1) patients were divided into the ruptured and the nonruptured group, (2) rupture or non-rupture was set as the dependent variable (Y) and the other known clinical features be the independent variable (X) to build a logistic regression equation, (3) the rupture probability of each patient was calculated according to the equation, (4) the nearest neighbor matching was used with calipers as the default value to match rupture probability with $P > 0.05$ indicating data balance. Statistical analysis was conducted using the IBM SPSS Statistics 19 software (Statistical Package for the Social Sciences, Inc. Chicago, Illinois) with $P < 0.05$ indicating statistical significance.
3. Result

There were 4209 patients (3661 males and 548 females) diagnosed with HCC during our study period with the mean age of 49.4±8.7 years old. Of these, 200 (4.8%) had STRHCC. Among 774 patients who underwent liver resection, 106 (13.7%) patients had STRHCC before surgery. A total of 100 STRHCC patients did not proceed with hepatectomy due to several reasons: the tumors were considered unresectable during the preoperative evaluation (51 cases) or during the operation (4 cases); serious derangement of liver functions that were not suitable for surgery (17 cases); the general condition of the patients was poor (10 cases); rejection of surgery (3 cases); and other reasons (15 cases). For our analyses, patients were divided into the ruptured group (n=106) and the nonruptured group (n=201).

3.1. Clinical characteristics of patients with STRHCC (Table 1).

The clinical characteristics of the ruptured and the nonruptured group undergoing hepatectomy were compared (Table 1). In the rupture group, there were 99 males and 7 females with a median age of 46.7±11.3 years old. Between the 2 groups, the age difference was statistically significant ($P=0.005$) but not the gender.

The tumor diameter in the ruptured group was significantly larger than that in the nonruptured group (8.6±3.2 cm vs. 7.1±4.5 cm, t=3.393, $P=0.001$), while other tumor-related clinical features such as tumor capsule, macrovascular invasion, tumor grade, and surgical margin were comparable between the two groups. The intraoperative blood loss volume (300 [50 - 5000] mL vs. 500 [30 – 8000] mL, t=-2.74, $P=0.006$) and the proportion of patients requiring intraoperative blood transfusion (43.4% vs. 19.4%, $P < 0.0001$) of the ruptured group
were higher than those of the nonruptured group. However, no difference in the operation time was observed between the two groups ($P=0.885$). When compared with the nonruptured group, the proportion of surgical margin ≤ 1 cm was lower (6.0% vs. 29.9%, $\chi^2=7.047$, $P=0.008$) while the proportion of NAH was higher in the ruptured group (47.2% vs. 33.8%, $\chi^2=5.218$, $P=0.022$).

A patient in the rupture group died during hospitalization due to liver failure. After the PSM, there were 89 patients in the ruptured group and 89 patients in the nonruptured group. There was no significant difference in surgical complications and hospital deaths between the two groups before and after PSM.

3.2. Predictors of STRHCC.

On univariate analyses, several factors including acute onset, complicated hypertension, liver cirrhosis, Child-Pugh grade, hemoglobin (Hb), TB, serum albumin (ALB), AFP, hepatitis B virus surface antigen (HBsAg), and tumor size were potential predictors of STRHCC (Table 1). Multivariate logistic regression analysis revealed that complicated hypertension, cirrhosis, TB, tumor size and seroperitoneum were independent predictors of STRHCC (Table 2).

Table 2. Multivariate logistic analysis of predictors of STR in HCC patients (before PSM).

Variate	S. E	Wald	HR	95%CI	P value
Hypertension (Yes vs. No)	0.817	16.451	0.036	0.01-0.18	<0.001
Cirrhosis (Yes vs. No)	0.384	18.142	0.195	0.09-0.41	<0.001
Tumor diameter (\leq5 cm vs. $>$5 cm)	0.380	19.516	0.187	0.09-0.39	<0.001
TB (\leq18.8 umol/L vs. $>$18.8 umol/L)	0.314	9.866	0.373	0.20-0.69	0.002
Seroperitoneum (Yes vs. No)	0.393	27.499	0.127	0.06-0.28	<0.001

3.3. Survival curves analysis

During postoperative follow-ups, 92 (86.8%) of 106 STRHCC patients and 124 (61.7%) of
201 nonruptured HCC patients died. The 1-, 3-, and 5-year OS rates were 54.0%, 37.3%, and 33.8%, with the median survival time of 17 months (95% CI 12.0-25.0). Of the 265 patients who underwent R0 resection, 38 (7.5%) developed peritoneal metastasis, including 29 (32.6%, 29/89) in the ruptured group and 9 (5.1%, 9/176) in the nonruptured group (χ²=36.314, P<0.001). The 1-, 3- and 5-year OS rates of 265 HCC patients who underwent R0 resection were 88.8%, 64.6% and 53.7% with the median survival time of 41 months.

There were 178 HCC patients who remained after the PSM, including 89 cases in the ruptured group and 89 cases in the nonruptured group. The overall follow-up time was 1 to 104 months with a median follow-up time of 35.9 months.

3.4. The effect of STRHCC on patient survival

Before PSM, the 1-, 3- and 5-year OS rates of patients in the ruptured group (106 cases) were 37.7%, 19.6%, 14.7% and the nonruptured group (201 cases) were 82.8%, 58.3%, 43.0% (Figure 2a). Furthermore, the 1-, 3- and 5-year DFS rates of patients in the ruptured group were 44.5%, 29.7%, 19.4%, and the nonruptured group were 66.6%, 44.1%, 30.1% (Figure 2b). Cox regression analysis showed that STRHCC was an independent prognostic factor for OS (HR 0.181, 95% CI 1.324-2.694, P<0.001) but not the DFS (HR 0.945, 95% CI 0.635-1.407, P=0.782) in 307 HCC patients (Table 3).
Table 3. Cox regression analysis of prognostic factors of OS and DFS in 307 HCC patients

(before PSM)

Variates	SE	Wald	Exp(B)	95%CI	P value
OS					
Tumor diameter (≥ 5cm vs. < 5cm)	0.183	9.047	1.736	1.212-2.486	0.003
AFP (≥400μg/L vs. 400<μg/L)	0.153	9.251	1.591	1.179-2.145	0.002
The number of tumor (multiple vs. single)	0.169	9.704	1.692	1.215-2.355	0.002
Microvascular invasion (Yes vs. No)	0.208	16.134	2.302	1.533-3.459	<0.001
Child-Pugh grade (A vs. B)	0.417	4.068	0.431	0.190-0.977	0.044
STRHCC (Yes vs. No)	0.181	12.328	1.889	1.324-2.694	<0.001
DFS					
Tumor diameter (≥5 cm vs. <5 cm)	0.198	12.022	1.985	1.347-2.926	0.001
AFP (≥400μg/L vs. 400<μg/L)	0.167	4.927	1.448	1.044-2.009	0.026
Microvascular invasion (Yes vs. No)	0.225	9.622	2.009	1.293-3.121	0.002
STRHCC (Yes vs. No)	0.203	0.077	0.945	0.635-1.407	0.782

After PSM, the 1-, 3- and 5-year OS rates of patients in the ruptured group (89 cases) were 41.5%, 23.5%, 17.5% and the nonruptured group (89 cases) were 70.8%, 47.1%, 37.6% (Figure 2c). Furthermore, the 1-, 3- and 5-year DFS rates of patients in the ruptured group were 50.4%, 35.1%, 27.1%, and the nonruptured group were 55.4%, 38.2% and 27.4% (Figure 2d). Cox regression analysis showed that STRHCC was an independent prognostic factor for OS (HR 1.769, 95% CI 1.524–3.184, P=0.001) but not for DFS (P>0.05) in 178 HCC patients (Table 4).
4. Discussion

4.1. Epidemiology and clinical characteristics of STRHCC.

Previous studies have reported that the incidence of STRHCC reveals regional differences with 10%-15% in HCC patients (1, 4). However, our study showed that STRHCC was more common in HCC patients with poorly preserved hepatic function (worse than Child-Pugh grade B), especially young HCC patients with HBV infection and cirrhosis. These findings suggest the heterogeneity of the patient population with STRHCC, and the clinicopathological parameters associated with STRHCC also differ among the subgroups.

HCC patients presented with acute onset of upper abdominal pain coupled with unstable hemodynamics as a result of circulatory shock are the most common clinical manifestation and can almost always be diagnosed with STRHCC. In our study, patients in the ruptured group had more typical clinical symptoms and a significantly higher proportion with liver cirrhosis compared with patients in the nonruptured group. Also, STRHCC was associated with hypertension, seroperitoneum, higher Child-Pugh grade, lower ALB level, HBV infection and larger tumor, which were consistent with other studies. (6, 7) Contrary to the study by Yeh et al., (6) acute abdominal pain (univariate analysis, $P=0.046$) was not an independent predictor of STRHCC patients in our cohort. This might be attributed to patient selection in our study that all the included STRHCC patients were operated on by the single liver surgical team.

4.2. Risk factors and surgical treatment of STRHCC

From our analyses, complicated hypertension and liver cirrhosis were identified as independent risk factors for STRHCC. Hypertension may directly increase the pressure in the
tumor, leading to rupture of blood vessels in tumors with consequent uncontrollable massive bleeding. When bleeding is complicated by abnormal coagulative function due to cirrhosis, hemostasis will be more difficult to achieve, which potentiates the progression to STRHCC.(8)

The management of STRHCC includes hemostasis and hepatectomy. The resectability of a HCC that has ruptured is determined by the location of the tumor in relation to intrahepatic large vessels, residual liver volume, and patient factors including cirrhosis and portal hypertension. Certainly, hepatectomy for STRHCC patients complicated with cirrhosis is technically challenging. It has been reported that 60.7% ~ 97.3% of STRHCC patients are complicated with cirrhosis, and only 12.5% ~ 30.6% of patients could receive hepatectomy.(4) In our cohort, 89 (84.0%) of 106 STRHCC patients with cirrhosis underwent hepatectomy. In recent years, improvements in techniques of liver surgery have made hepatectomy feasible which provides the only chance for cure in patients with STRHCC.

4.3. Clinical prognosis of STRHCC patients

In patients with STRHCC, the favorable long-term survival following emergency hepatectomy has been long established.(9) Our study demonstrated that patients undergoing hepatectomy for STRHCC had a longer OS and DFS, although the OS appeared worse than that of nonruptured HCC patients. Although numerous studies have reported that STRHCC is an independent poor prognostic factor after hepatectomy, it remains controversial and to be validated by prospective study or large-sample clinical cohort study. (5, 6) The study by Yeh et al. (6) have indicated that the DFS of STRHCC patients was worse than that of nonruptured HCC patients, but no significant difference in the OS was observed between the two groups.
On the contrary, our findings revealed that STRHCC reduced the OS of HCC patients and predicted poor prognosis but not the DFS after hepatectomy. These differences in the findings could be attributed to surgeons in the two centers of our study having rich experience in liver resection, whereby the proportion of liver resection in our study was significantly higher than most other liver surgical centers. This has been further reflected in the superior 1-, 3-, and 5-year OS and DFS rates of STRHCC patients after hepatectomy in our cohort than the reported prognosis.

In our study, no significant differences were observed in the incidence of postoperative complications and perioperative mortality between STRHCC and nonruptured HCC patients, suggesting no increased adverse events of hepatectomy for STRHCC when performed by experienced surgeons. Intraoperative tumor spread is not uncommon in hepatectomy. To prevent abdominal tumor implantation and metastasis, we routinely rinsed the enterocoelia with DWPL and placed 5-FU tablets. DWPL removes cancer cells and thus, delaying tumor recurrence and leading to a better survival prognosis of STRHCC patients. A randomized controlled trial (RCT) has confirmed the benefits of 5-FU as postoperative adjuvant therapy, which significantly extends the OS and DFS in patients with advanced HCC. Also, the proportion of surgical margin ≤ 1cm in the ruptured group was significantly lower than that in the nonruptured group. Furthermore, intraoperative evaluation of STRHCC revealed much larger tumors than preoperative evaluations and intraperitoneal implantation metastasis was commonly found. After R0 resection, the risk of peritoneal implantation metastasis was significantly higher in the ruptured group than in the nonruptured group.

Studies have demonstrated that HCC invasion of the hepatic vein or its branches may obstruct
the outflow tract of tumor blood vessels, resulting in hepatic congestion as blood continues to
flow into the tumor through the hepatic artery, leading to increased pressure in the tumor and
rupture consequently (4). Nevertheless, our study revealed no difference in the proportion of
macrovascular invasion between the ruptured and nonruptured groups. Immunosuppression
induced by perioperative blood transfusion can shorten the DFS of HCC patients. (13)

The study by Battula et al. (14) has shown that multiple tumors and tumor size directly
predict the survival prognosis. Also, Kirikoshi et al. (15) have demonstrated that tumor size
was an independent prognostic factor for the long-term survival of STRHCC patients after TAE.
Consistently, our study revealed that tumor size was an independent prognostic factor for the
long-term survival of STRHCC patients after hepatectomy. However, we found that HBsAg (+)
was not a prognostic factor for OS and DFS of patients with HBV-associated HCC after
hepatectomy, contrary to the studies by Sun et al. and Hung et al. (16-20) The prognostic value
of HBsAg has been reported variably,(2, 20) which may be attributed to the different HBV-
DNA copy coefficients of HBsAg (+) patients.

There were several limitations to our study. Firstly, this was a retrospective study. Therefore, we applied PSM to reduce the selective bias caused by confounders and ensure balanced comparability of baseline data between the groups, which makes our results close to that of the RCT study. Secondly, the HBV infection rate in our cohort was significantly higher than that reported in the European and American countries and Japan. Therefore, external validation of our findings is required via an international multi-center collaborative study. Finally, the surgeons’ extensive experience of hepatectomy in our study may have contributed significantly to the superior clinical outcomes, which is unlikely to reflect the overall national
5. Conclusion

Factors including complicated hypertension, cirrhosis, high level TB, tumor diameter > 5cm and seroperitoneum are independent predictors of STRHCC. STRHCC itself is an independent prognostic factor for OS but not for DFS of HCC patients after hepatectomy. Hepatectomy after STRHCC is safe, given no increase in the incidence of perioperative complications and mortality.

List of Abbreviations:

STR: spontaneous tumor rupture; HCC: hepatocellular carcinoma; PSM: propensity score matching; TB: total bilirubin; OS: overall survival; DFS: disease-free survival; CT: computed tomography; TAE: transcatheter arterial embolization; DWPL: distilled water; 5-FU: 5-fluorouracil; MRI: magnetic resonance imaging; AH: anatomical hepatectomy; NAH: non-anatomical hepatectomy; AFP: alpha-fetoprotein; PET-CT: positron emission tomography; ECT: bone scans; HBV: hepatitis B; HCV: hepatitis C; TACE: transcatheter arterial chemoembolization; Hb: hemoglobin; ALB: serum albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; PLT: platelet; PT: prothrombin time; HBsAg: hepatitis B virus surface antigen; HBeAg: hepatitis B virus e antigen; T2DM: Type 2 diabetes mellitus; INR: international normalized ratio;

Funding information: This work was supported by the Program of Excellent Doctoral
(Postdoctoral) of Zhongnan Hospital of Wuhan University (Grant No. ZNYB2019007), the National Natural Science Foundation of China (Grant No. 82002589), and the Cancer Research and Transformation Platform Project of Zhongnan Hospital of Wuhan University (Grant No. ZLYNXM202004).

Acknowledgments

We acknowledge Dr. Xuefeng Lai for detailed professional statistical analysis.

Conflicts of interest

The authors who have taken part in this study declared that they do not have any conflict of interest with respect to this manuscript.

Author contribution

Conception: Qian Zhu; Study design: Yiran Chen, Jing Zhao, Deliang Guo, Chang Xu, Qian Zhu; Data collection and acquisition: Yiran Chen, Jing Zhao, Deliang Guo, Chang Xu; Data analysis: Qian Zhu; Manuscript preparation: Qian Zhu; Critical revision: Yiran Chen, Jing Zhao, Deliang Guo, Chang Xu, Qian Zhu. All the authors reviewed the paper and approved the final version.
References

1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-32.

2. Yang T, Sun YF, Zhang J, Lau WY, Lai EC, Lu JH, et al. Partial hepatectomy for ruptured hepatocellular carcinoma. Br J Surg. 2013;100(8):1071-9.

3. Aoki T, Kokudo N, Matsuyama Y, Izumi N, Ichida T, Kudo M, et al. Prognostic impact of spontaneous tumor rupture in patients with hepatocellular carcinoma: an analysis of 1160 cases from a nationwide survey. Ann Surg. 2014;259(3):532-42.

4. Lai EC, Lau WY. Spontaneous rupture of hepatocellular carcinoma: a systematic review. Archives of surgery (Chicago, Ill : 1960). 2006;141(2):191-8.

5. Liu CL, Fan ST, Lo CM, Tso WK, Poon RT, Lam CM, et al. Management of spontaneous rupture of hepatocellular carcinoma: single-center experience. J Clin Oncol. 2001;19(17):3725-32.

6. Yeh CN, Lee WC, Jeng LB, Chen MF, Yu MC. Spontaneous tumour rupture and prognosis in patients with hepatocellular carcinoma. Br J Surg. 2002;89(9):1125-9.

7. Tanaka A, Takeda R, Mukaihara S, Hayakawa K, Shibata T, Itoh K, et al. Treatment of ruptured hepatocellular carcinoma. Int J Clin Oncol. 2001;6(6):291-5.

8. Zhu Q, Li J, Yan JJ, Huang L, Wu MC, Yan YQ. Predictors and clinical outcomes for spontaneous rupture of hepatocellular carcinoma. World J Gastroenterol. 2012;18(48):7302-7.

9. Vergara V, Muratore A, Bouzari H, Polastri R, Ferrero A, Galatola G, et al. Spontaneous rupture of hepatocellular carcinoma: surgical resection and long-term survival. Eur J Surg Oncol. 2000;26(8):770-2.

10. Lin CH, Hsieh HF, Yu JC, Chen TW, Yu CY, Hsieh CB. Peritoneal lavage with distilled water during liver resection in patients with spontaneously ruptured hepatocellular carcinomas. J Surg Oncol. 2006;94(3):255-6.

11. Brundell SM, Tucker K, Chatterton B, Hewett PJ. The effect of lavage on intraabdominal cell burden. Surg Endosc. 2002;16(7):1064-7.

12. Xia Y, Qiu Y, Li J, Shi L, Wang K, Xi T, et al. Adjuvant therapy with capecitabine postpones recurrence of hepatocellular carcinoma after curative resection: a randomized controlled trial. Ann Surg Oncol. 2010;17(12):3137-44.

13. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232(1):10-24.

14. Battula N, Madanur M, Priest O, Srinivasan P, O'Grady J, Heneghan MA, et al. Spontaneous rupture of hepatocellular carcinoma: a Western experience. Am J Surg. 2009;197(2):164-7.

15. Kirikoshi H, Saito S, Yoneda M, Fujita K, Mawatari H, Uchiyama T, et al. Outcomes and factors influencing survival in cirrhotic cases with spontaneous rupture of hepatocellular carcinoma: a multicenter study. BMC Gastroenterol. 2009;9:29.

16. Sun HC, Zhang W, Qin LX, Zhang BH, Ye QH, Wang L, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. Journal of hepatology. 2007;47(5):684-90.
17. Huang S, Xia Y, Lei Z, Zou Q, Li J, Yang T, et al. Antiviral Therapy Inhibits Viral Reactivation and Improves Survival after Repeat Hepatectomy for Hepatitis B Virus-Related Recurrent Hepatocellular Carcinoma. Journal of the American College of Surgeons. 2017;224(3):283-93.e4.

18. Li Z, Lei Z, Xia Y, Li J, Wang K, Zhang H, et al. Association of Preoperative Antiviral Treatment With Incidences of Microvascular Invasion and Early Tumor Recurrence in Hepatitis B Virus-Related Hepatocellular Carcinoma. JAMA surgery. 2018;153(10):e182721.

19. Li ZL, Yan WT, Zhang J, Zhao YJ, Lau WY, Mao XH, et al. Identification of Actual 10-Year Survival After Hepatectomy of HBV-Related Hepatocellular Carcinoma: a Multicenter Study. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2019;23(2):288-96.

20. Hung IF, Poon RT, Lai CL, Fung J, Fan ST, Yuen MF. Recurrence of hepatitis B-related hepatocellular carcinoma is associated with high viral load at the time of resection. The American journal of gastroenterology. 2008;103(7):1663-73.
Figure Legends

Figure 1. The flow chart illustrated the patient selection process.

Figure 2. Overall (a, b) and Disease-free Survival curves (c, d) of nonruptured HCC patients and STRHCC patients before and after PSM.

Table 1. Comparison of clinical characteristics between HCC patients with STR and those with nonruptured tumors undergoing hepatectomy.

Variate	Before PSM		P value	After PSM		P value		
	Rupture (n=106)	No rupture (n=201)	Statistic	P value	Rupture (n=89)	No rupture (n=89)	Statistic	P value
Median age (years old)	46.7±11.3	50.6±11.3	-2.832	0.005*	50.1±7.8	50.0±7.5	0.568	0.572
Sex no. (%)					1.541	0.216	0.901	0.342
Male	99 (93.4)	179 (89.1)			81 (91.0)	77 (86.5)		
Female	7 (6.6)	22 (10.9)			8 (9.0)	12 (13.5)		
Hypertension no. (%)	10 (9.4)	6 (3.0)	5.842	0.016*	9 (10.1)	3 (3.4)	4.748	0.073
Cirrhosis no. (%)	89 (84.0)	113 (56.2)	23.737	<0.001*	76 (85.4)	80 (89.9)	0.830	0.362
Child-Pugh grade			11.008	0.001*		0.424	0.515	
Grade A	96 (90.6)	199 (99.0)			83 (93.3)	85 (95.5)		
Grade B	10 (9.4)	2 (1)			6 (6.7)	4 (4.5)		
Transfusion no. (%)			19.955	<0.0001*		1.102	0.294	
Yes	46 (43.4)	39 (19.4)			47 (52.8)	40 (44.9)		
No	60 (56.6)	162 (80.6)			42 (47.2)	49 (55.1)		
Sudden abdominal pain no. (%)	106 (100.0)	191 (95.0)	3.987	0.046*	89 (100)	84 (94.4)	3.292	0.070
Hb (g/L)	130.3±15.8	132.9±15.2	-1.378	0.169	131.0±15.2	132.3±18.6	-0.684	0.495
TB (μmol/L)	21.8±13.5	16.0±6.7	4.136	<0.001*	22.5±14.2	17.3±6.7	3.106	0.002*
ALB (g/L)	39.7±4.8	40.8±4.2	-2.083	0.039*	39.7±4.9	40.9±4.6	-1.708	0.089
ALT (U/L)	60.3±67.4	59.4±48.3	0.140	0.889	60.7±72.4	57.6±32.8	0.366	0.715
AST (U/L)	67.9±82.6	59.8±47.6	1.089	0.277	67.4±88.6	59.8±38.2	0.750	0.454
PLT (10^9/L)	160.6±74.1	148.6±64.3	1.413	0.159	159.6±70.3	139.3±57.2	2.111	0.036*
PT (s)	13.0±1.6	13.3±1.5	-1.378	0.169	13.1±1.5	13.3±1.9	-0.684	0.495
	Mean (SD)	P-value	95% CI	95% CI				
-------------------------	-----------	---------	--------	--------				
HBsAg no. (%)	6.544	0.011*	0.771	0.381				
+	98 (92.5)	164 (81.6)	79 (88.8)	75 (84.3)				
-	8 (7.5)	37 (18.4)	10 (11.2)	14 (15.7)				
HBeAg no. (%)	0.752	0.386	0.237	0.627				
+	29 (27.4)	46 (22.9)	63 (70.8)	60 (67.4)				
-	77 (72.6)	155 (77.1)	26 (29.2)	29 (32.6)				
AFP >100μg/L no. (%)	75 (70.8)	113 (56.2)	6.178	0.013*				
	60 (67.4)	49 (55.1)	2.864	0.091				
AFP >400μg/L no. (%)	68 (64.2)	93 (46.3)	8.898	0.003*				
	57 (64.0)	53 (59.6)	0.381	0.537				
Edmondson-Steiner grade no. (%)	1.092	0.296	1.304	0.254				
Grade III or IV	55 (51.9)	155 (77.1)	50 (56.2)	58 (65.2)				
Grade I or II	51 (48.1)	113 (56.2)	49 (55.1)	41 (46.1)				
Tumor capsular no. (%)	0.552	0.458	1.161	0.281				
No or part	42 (39.6)	71 (67.0)	72 (80.9)	66 (74.2)				
Intact	64 (60.4)	130 (64.7)	17 (19.1)	23 (25.8)				
Tumor diameter (cm)	8.6±3.2	7.1±4.5	3.393	0.001*				
Tumor diameter >5cm no. (%)	89 (84.0)	116 (57.4)	21.556	<0.001*				
	75 (84.3)	70 (78.7)	0.930	0.335				
Seroperitoneum no. (%)	51 (48.1)	16 (8.0)	65.583	<0.001*				
	41 (46.1)	7 (7.9)	32.976	<0.0001*				
Macrovacular invasion no. (%)	0.202	0.653	1.103	0.294				
Yes	61 (57.5)	121 (60.2)	50 (56.2)	43 (48.3)				
No	45 (42.5)	80 (39.8)	39 (43.8)	46 (51.7)				
Microvascular invasion no. (%)	46.761	0.001*	0.672	0.412				
Yes	82 (77.4)	73 (36.3)	65 (73.0)	60 (67.4)				
No	24 (22.6)	128 (63.7)	24 (27.0)	29 (32.6)				
The number of tumors no. (%)	91.913	<0.0001*	1.173	0.279				
Multiple	26 (24.5)	162 (80.6)	37 (41.6)	30 (33.7)				
Single	80 (75.5)	39 (19.4)	52 (58.4)	59 (66.3)				
Surgical margins no. (%)	7.047	0.008*	1.087	0.297				
≤1 cm	17 (16.0)	60 (29.9)	19 (21.3)	25 (28.1)				
Variable	OS	DFS						
----------------------------------	----------	-----------						
	Univariate	Multivariate	Univariate	Multivariate				
Hepatectomy range no. (%)	89 (84.0)	141 (70.1)	70 (78.7)	64 (71.9)				
Hepatic segments	44 (41.5)	100 (49.8)	7 (7.9)	11 (12.4)				
Liver lobe	62 (58.5)	101 (50.2)	82 (92.1)	78 (87.6)				
Type of hepatectomy no. (%)			5.218	0.022*				
Anatomical	56 (52.8)	133 (66.2)	20 (22.5)	24 (30.0)				
Non-anatomical	50 (47.2)	68 (33.8)	69 (77.5)	65 (70.0)				
Bleeding volume (mL)	300 (50-5000)	500 (30-8000)	-2.74	0.006*				
Operation time (min)	166.8±70.2	165.6±69.0	0.885	171±85	160±73	0.233		
T2DM no. (%)			1.709	0.191				
Yes	10 (9.4)	11 (5.5)	7 (7.9)	11 (12.4)				
No	96 (90.6)	190 (94.5)	82 (92.1)	78 (87.6)				
Hospital death no. (%)	3 (2.8)	3 (1.5)	0.138	0.710	1 (1.1)	1 (1.1)	0.000	1.000
Postoperative complications no. (%)	27 (25.5)	52 (25.9)	0.006	0.939	18 (20.2)	19 (21.3)	3.711	0.054

Table 4. Univariate and multivariate regression analysis of prognostic factors for OS and DFS in 178 HCC patients after PSM.

Hb: hemoglobin; TB: total bilirubin; ALB: serum albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; PLT: platelet; PT: prothrombin time; HBsAg: hepatitis B virus surface antigen; HBeAg: hepatitis B virus e antigen; AFP: alpha-fetoprotein; T2DM: Type 2 diabetes mellitus.

The statistical values of continuous variables and classified variables were t values of t-test and χ2 values of χ2 test, respectively. * indicated statistically significant values (*P<0.05).
Variable	Value 1	Value 2	Value 3	Value 4		
Age	1.013	0.542	1.010	0.782		
	(0.842-1.083)	(0.994-1.024)				
Sex (male vs. female)	1.546	0.008	1.199	0.397		
	(1.121-2.281)	(0.808-1.781)				
HBsAg	1.101	0.415	1.001	0.493		
	(0.763-1.379)	(0.997-1.006)				
HBeAg	1.103	0.401	1.125	0.381		
	(0.784-1.628)	(0.815-1.361)				
TB	0.991	0.231	1.046	0.104		
	(0.977-1.006)	(0.829-1.715)				
ALB	0.851	0.309	1.149	0.351		
	(0.624-1.161)	(0.902-1.218)				
ALT	1.014	0.812	0.989	0.476		
	(0.996-1.006)	(0.961-1.019)				
INR	1.073	0.103	0.992	0.529		
	(0.824-1.255)	(0.825-1.019)				
PLT	1.015	0.621	1.339	0.138		
	(0.992-1.018)	(0.941-1.905)				
AFP > 400μg/L	1.759	0.003	1.431	0.035		
	(1.251-2.738)	(1.261-1.838)	(1.231-3.306)	(0.986-1.023)		
Transfusion	1.355	0.006	1.104	0.403		
	(1.835-2.335)	(0.821-1.136)				
Edmondson-Steiner grade	1.049	0.671	1.515	0.004		
(grade III or IV)	(0.840-1.310)	(1.393-3.052)	(0.649-1.381)			
Variable	Coefficient	Standard Error	p-value	Coefficient	Standard Error	p-value
----------------------------------	-------------	----------------	---------	-------------	----------------	---------
Cirrhosis	1.219	0.017	1.126	0.105		
	(1.152-3.178)		(0.736-1.462)			
Child-Pugh grade	2.163	0.001	1.122	0.402		
	(1.680-2.786)		(0.804-1.337)			
Tumor capsular	0.742	0.183	1.441	0.037	1.117	0.236
	(0.656-1.084)		(1.274-2.783)		(0.831-1.356)	
Tumor diameter	2.262	<0.001	1.843	0.007	1.502	0.004
	(1.792-2.855)		(1.235-3.173)		(1.361-3.714)	
Macrvascular invasion	2.158	<0.001	1.425	0.014	1.967	<0.001
	(1.831-3.162)		(1.281-2.821)		(1.245-4.681)	
Microvascular invasion	1.414	0.066	1.634	0.023	1.147	0.126
	(1.106-1.807)		(1.221-2.385)		(1.012-2.142)	
The number of tumors	1.723	<0.001	1.227	0.067		
	(1.301-2.281)		(1.157-2.418)			
Type of hepatectomy	1.672	0.015	1.034	0.326		
	(1.521-2.058)		(0.856-2.217)			
Surgical margins	1.849	<0.001	1.712	0.005	1.437	0.024
	(1.621-2.109)		(1.225-3.264)		(1.127-3.013)	
T2DM	1.049	0.671	1.015	0.426		
	(0.840-1.310)		(0.956-1.735)			
STRHCC	1.842	0.002	1.058	0.456		
	(1.592-3.187)		(0.911-1.527)			

INR: international normalized ratio; AH: anatomical hepatectomy; NAH: non-anatomical hepatectomy.
Figure 1

The flow chart illustrated the patient selection process.
Figure 2

Overall (a, b) and Disease-free Survival curves (c, d) of nonruptured HCC patients and STRHCC patients before and after PSM.