Influenza viruses are enveloped viruses of the Orthomyxoviridae family, which are classified into four genera, which include influenza virus A–D (IAV, IBV, ICV and IDV). With regard to human health, IAVs and IBVs are of main concern; ICVs are endemic and cause only mild disease in humans, and IDVs primarily cause infection in cattle. IBVs are restricted to humans and are classified into two circulating lineages (B/Victoria and B/Yamagata). IAVs, the cause of the majority of annual epidemic and all occasional pandemic human disease, are further subtyped on the basis of two surface glycoproteins located within the host-derived lipid membrane of virions, haemagglutinin (HA) and neuraminidase (NA). Sixteen HAs and nine NAs have been described in avian species, the main natural animal reservoir of influenza viruses. HA (and to a lesser extent NA) gene segments from avian reservoirs may also reassort with contemporaneously circulating human influenza viruses to produce novel strains capable of causing pan-demics, a process termed antigenic shift. Since 1889 there have been five IAV pandemics, the most severe of which was in 1918 and the most recent of which was in 2009. IAV infection may additionally arise as an epizootic infection frequently leading to severe disease. Fortunately, thus far there has been limited human-to-human transmissibility potential demonstrated by these viruses. An example is the highly pathogenic H5N1 IAV that is associated with case fatality rates as high as 60%.

Coronaviruses are enveloped single-stranded non-segmented RNA viruses of the Coronaviridae family, subfamily Coronavirinae, which are further subdivided into four genera based on phylogenetic analyses:

Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract

Tim Flerlage1,3, David F. Boyd2,3, Victoria Meliopoulos1, Paul G. Thomas2,3 and Stacey Schultz-Cherry1,3

Abstract | Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host’s response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses.

1Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA.
2Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA.
3These authors contributed equally: Tim Flerlage, David F. Boyd.
*e-mail: paul.thomas@stjude.org; stacey.schultz-cherry@stjude.org
https://doi.org/10.1038/s41579-021-00542-7
alphacoronaviruses, betacoronaviruses, gammacoronaviruses and deltacoronaviruses. Similarly to influenza viruses, coronaviruses circulate within non-human reservoirs. Mammalian coronavirus infection is predominantly caused by alphacoronaviruses and betacoronaviruses, which share bats and rodents as natural reservoirs. Avian coronavirus infections are caused by gammacoronaviruses and deltacoronaviruses, which share birds as natural reservoirs. To date, seven coronaviruses associated with human coronavirus (HCoV) infections have been identified. Four (HCoV-NL63, HCoV-229E, HCoV-OC43 and HCoV-HKU1) tend to cause mild seasonal respiratory infections in otherwise healthy individuals. The other identified human coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV, which emerged in 2002 and was identified in 2003 (REF. 12)), Middle East respiratory syndrome coronavirus (MERS-CoV, which emerged and was identified in 2012 (REF. 13)) and the recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, which emerged in 2019 and was identified in 2020 (REF. 14)), cause more severe clinical manifestations. Coronaviruses have the largest genome of any RNA virus and use a replication strategy, including ribosomal frameshifting and generation of subgenomic RNAs, that predisposes to recombination events that confer the ability to develop novel host specificity. Indeed, after the emergence of SARS-CoV in 2003, numerous SARS-like coronaviruses were identified in bat populations. When SARS-CoV-2 was initially sequenced in bronchoalveolar lavage fluid samples from patients identified early in the pandemic in December 2019, the analysis demonstrated 96.2% sequence similarity to a bat coronavirus, Bat CoV RaTG13 (REF. 14). Human infection with a coronavirus from its natural reservoir is thought to arise after adaptation in an intermediate host, during which time the ability for efficient human infection and human-to-human transmission develops (for example, camels in the case of MERS-CoV). A number of potential intermediate hosts have been proposed for SARS-CoV-2, although none has been definitively proved to date.

In the following sections, we discuss influenza virus and coronavirus infection in humans, pathogenesis of viral infection, the contribution of the host response to severe disease and late epithelial repair mechanisms following viral infection. Although the mechanisms of SARS-CoV-2 pathogenesis are still being uncovered, throughout the Review we discuss what is known about SARS-CoV-2 and COVID-19 in the context of the wealth of knowledge of influenza virus pathogenesis, highlighting similarities and differences between these respiratory viruses.

Infection in humans

Influenza virus and disease. Human infection with influenza viruses produces a broad spectrum of clinical disease severity, which ranges from asymptomatic infection to death. Adaptive immune memory from prior exposure by either natural infection or immunization can prevent infection or limit the development of symptoms or severe complications (Table 1). Young children without prior exposure who are immunologically naive to influenza virus are at risk of severe disease.

Table 1 | Selected comparisons between influenza virus and SARS-CoV-2

Parameter	Influenza virus	SARS-CoV-2
Receptor usage	Sialic acid	ACE2
Viral surface protein processing	Haemagglutinin processing by trypsin-like proteases	Spike protein processing by host proteases, including TMPRSS2, cathepsin L and furin 1
Cellular tropism	Respiratory epithelial cells: types I and II alveolar epithelial cells; ciliated cells	Respiratory epithelial cells: type II alveolar epithelial cells, ciliated cells and secretory cells; sustentacular and horizontal basal cells of the olfactory epithelium
Tissues affected and pathology	Upper respiratory tract; lower respiratory tract (severe cases)	Upper respiratory tract; lower respiratory tract; intestinal tract; cardiovascular or endothelial system; kidneys; nervous system
Viral recognition in airway epithelial cells	TLR3; RIG-I; ZBP1	TLR3; RIG-I; MDA5
Site of viral replication	Nuclear	Cytoplasmic
Viral evasion of initial host response	NS1; PB2; PB1-F2	NSP1; ORF6; NSP13; others? (extrapolated from other coronaviruses)
Extrapulmonary complications	Limited; cardiac: myocarditis (rare); neurological: encephalitis (rare)	Extensive: olfactory; anosmia; endothelial; thrombosis; neurological: stroke, encephalitis, neuropsychiatric; gastrointestinal: nausea, vomiting, diarrhea
Viral evolution and antigenicity	Antigenic shift; antigenic drift	Antigenic drift
Prior immunity	Previous infection; vaccination; subtype specificity	No specific SARS-CoV-2 immunity prior to late 2019–2020; protective immunity from other human coronaviruses unclear; vaccination started December 2020

MDA5, melanoma differentiation-associated 5; NS1, nonstructural protein 1; PB2, polymerase basic protein 2; RIG-I, retinoic acid-inducible gene I; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TLR3, Toll-like receptor 3; TMPRSS2, transmembrane serine protease 2; ZBP1, Z-DNA binding protein 1.
The effectiveness of adaptive immune memory in preventing infection can be subtype specific, and there is evidence suggesting that the first exposure to influenza virus antigen can influence the quality of immune memory acquired over a lifetime 21. In individuals who do become infected, complex interactions between viral and host factors influence the site of replication and the corresponding immune response, which determine disease severity. As influenza virus infections are not always medically attended owing to variability in disease manifestations, only estimates are available for yearly infection burden on a global and local basis (Fig. 1a). In a meta-analysis of human volunteer challenge studies, viral shedding is detected in most individuals on the first day after inoculation. Viral titres then peak 2–3 days after inoculation and subsequently fall to undetectable levels by 6–7 days after inoculation. In some individuals, however, viral shedding persists for longer periods of time. Total symptom scores increase on day 1 after inoculation and generally peak by day 2 or 3 with a subsequent return to an asymptomatic baseline by days 8–9 after infection 22. Most commonly, upper respiratory tract (URT) signs of tracheobronchitis and pharyngitis coupled with constitutional symptoms, including fever, malaise and myalgia, are reported by symptomatic individuals 23. However, severe disease phenotypes, including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS) and death are witnessed more frequently in high-risk patient populations (Fig. 1b; Table 1). Multiple organ dysfunctions have been described in the case of...

Fig. 1 | Patient-related risk factors for severe influenza virus and SARS-CoV-2 infections. a) Estimates of yearly influenza virus infections worldwide1 and in the United States (2018–2019 season)25. b) Risk factors associated with severe influenza virus infection in epidemiological and genetic studies. c) Global estimated number of cases and deaths from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection46. d) Risk factors identified thus far to be associated with severe coronavirus disease 2019 (COVID-19). Type 2 bias, bias towards type 2 immune responses.
human H5N1 infection with evidence of viral replication outside of lung tissue, although the contribution of direct viral cytopathic effect to these extrapulmonary manifestations is unclear.

A number of risk factors for complications have been identified through epidemiological studies or genomic analyses (FIG. 1b; reviewed elsewhere38). Individuals >65 years or <6 months of age suffer severe outcomes of influenza virus more often than those not at the extremes of age39. Immunosuppression, characterized by impaired humoral responses40 and reduction in T cell receptor diversity41 and T cell function42 are thought to contribute to the increased disease severity witnessed in elderly populations. In infants, an immature immune system characterized by a bias towards type 2 immunity in response to infection is thought to contribute to increased disease severity early in life43. Individuals with obesity suffer poor outcomes compared with lean individuals when challenged with IAV, an epidemiological observation well recapitulated in murine models44. A predisposition towards severe disease in individuals with obesity is thought to be multifactorial and related to defective adaptive immune responses45, chronic dysfunction of inflammatory signalling related to adiposity46 and insufficient responses to annual epidemic influenza virus vaccination47. Pregnancy increases the risk of hospitalization48, which has been attributed to the development of immune tolerance as a mechanism to prevent the fetus from rejection. As a consequence, there is a shift to type 2 immunity characterized by a cytokine profile that suppresses cytokitic T lymphocytes and alters antibody class switching to result in less effective responses to viral infections49,50. Men appear to have disproportionate hospitalization rates compared with non-pregnant women51, presumably related to differences in immune responses mediated by sex hormones, which may be age-dependent52,53. Comorbid chronic health conditions, including metabolic syndrome54, heart failure55 and chronic obstructive pulmonary disease56, also increase an individual’s risk of severe disease. Finally, environmental factors, such as cigarette smoke exposure, contribute to disease severity57, potentially as a result of alterations in epithelial and immune cell function58 as well as in fibroblast repair responses to viral infection59.

SARS-CoV-2 and COVID-19. Since the recognition of coronavirus disease 2019 (COVID-19; the disease caused by SARS-CoV-2), a wide range of disease severity has been described, from asymptomatic infection60 (defined by the WHO as an infected individual who never eventually develops clinically apparent symptoms) to severe disease and death. Following its emergence, there have been >115 million cases identified and >2.5 million attributable deaths globally61 (FIG. 1c). Symptoms arise after a median incubation period of 4.8 days, and 95% of symptomatic individuals will display symptoms by 14 days after exposure62. A pre-symptomatic period has been defined by the WHO as an infected individual who does not presently have symptoms but who eventually manifests clinical disease. SARS-CoV-2 RNA is detected by RT-PCR in respiratory tract specimens for weeks after symptom onset63. Peak infectivity has been estimated to occur between 2 days before and 1 day after onset of symptoms in pre-symptomatic people64. The most frequently identified symptom of COVID-19 is cough, followed by fever, myalgia, dyspnoea and headache. Sore throat, diarrhoea and nausea are also reported, although less frequently65,66. Disturbances of smell and/or taste have been increasingly recognized as frequent symptoms of COVID-19 (REFS 51,52). Although loss of smell (anosmia) following viral URT infection has been recognized previously, anosmia caused by SARS-CoV-2 is potentially due to a different mechanism, which leads to clinical differences in the duration of sensory deficit53,54. As seen in MERS-CoV55 and SARS-CoV56 infection, extrapulmonary manifestations are additionally described with SARS-CoV-2 infection (TABLE 1). These include acute kidney injury67,68, skin findings69 and thrombosis70.

Several risk factors for severe disease have been identified in early reports detailing the clinical manifestations and outcome of COVID-19 (FIG. 1d). Genome-wide association and epidemiological studies have implicated blood type (A being higher risk than O, and Rhesus factor (Rh)-positive being higher risk than Rh-negative) as a potential heritable trait predisposing to SARS-CoV-2 infection and severe disease71. The mechanism of potential protection afforded by blood type identified in these large population-based studies requires further investigation. Metabolic disorders such as obesity41, diabetes42 and kidney disease43 have been associated with enhanced disease severity. Although the mechanisms remain unknown, obesity as a risk factor could be a consequence of the dampened type I interferon response found in individuals with obesity72; one study that did not include body mass index (BMI) as a factor found individuals with severe disease requiring mechanical ventilation were more likely to have decreased type I interferon levels in the plasma73. Cardiovascular conditions including hypertension, congenital heart disease and coronary artery disease74 have also been linked not only with severe disease but also with exacerbation of pre-existing conditions post-recovery75,76. Age has consistently been identified as an important risk factor for COVID-19 disease severity. Persons of advanced age are more likely to develop severe disease, including ARDS, during SARS-CoV-2 infection77. SARS-CoV-2 has been diagnosed in children and adolescents of all ages, including neonates; however, disease severity is typically milder and outcome is generally more favourable than in adult individuals68,69. Although correlations between disease severity caused by SARS-CoV-2 and certain pre-existing conditions are coming to light, it is important to consider that the novelty of the virus limits our ability to draw conclusions.

Pathological findings in infections

Influenza virus infection and pathology. Pathological analysis of IAV infection in humans is skewed towards a more thorough understanding of severe disease, especially when it occurs during pandemic influenza infection, on examination at autopsy78,79. Owing to the preferential cellular tropism of human influenza viruses, pathological changes of the tracheobronchial
epithelium are characteristic [TABLE 1]. With uncomplicated IAV infection in the absence of concurrent bacterial superinfection, the surface of the larynx, trachea and bronchi appear inflamed on visual inspection79. Early in infection, microscopic evaluation of tracheal and bronchial biopsy specimens demonstrates diffuse epithelial sloughing71. Mononuclear cells are the predominant inflammatory cells present72; neutrophils are typically absent early, but may be present with increasing degrees of epithelial necrosis with severe disease or with the presence of a concurrent bacterial superinfection72. More distally, in bronchioles, nearly complete epithelial sloughing may again be present along with bloody exudate in the airway lumen, accompanied by interstitial swelling, mixed inflammatory infiltrates and small-vessel thrombosis in the bronchiolar walls72. Alveolar involvement generates similar general findings of epithelial necrosis and sloughing to more proximal locations but requires different repair mechanisms and leads to severe disease owing to compromised gas exchange. Proteinaceous alveolar fluid, which may be bloody, develops along with cellular debris and impairs efficient diffusion of oxygen and carbon dioxide across the alveolar–capillary interface, leading to severe clinical symptomatology73,74.

SARS-CoV-2 and COVID-19. Lung pathology at autopsy following fatal SARS-CoV-2 infection frequently demonstrates diffuse alveolar damage (DAD) manifest as alveolar septal changes coupled with deposition of proteinaceous, potentially bloody, alveolar fluid, which compromises gas exchange [TABLE 1]. Reactive type II pneumocytes and interstitial oedema are additionally seen77. Neutrophils are common in the inflammatory infiltrate in the lower respiratory tract (LRT)77. Inflammation of the bronchi and bronchioles is also found at autopsy, although less frequently than DAD. Corresponding to known areas of cellular tropism by single-cell gene expression analyses, immunohistochemistry staining for SARS-CoV-2 is seen in alveolar pneumocytes and ciliated epithelial cells. Tracheitis is also witnessed at autopsy with SARS-CoV-2 staining in submucosal glands and lymphocytes77. As described above, COVID-19 is increasingly being recognized as a disease affecting not only the respiratory tract. Intracellular staining by immunohistochemistry for SARS-CoV-2 in renal epithelial cells has been demonstrated in individuals with kidney injury, but it is unclear whether pathological changes are a consequence of pre-existing renal conditions, virus-induced damage or a contribution of both77. Ultrastructural evaluation by electron microscopy has additionally found SARS-CoV-2 particles in the enterocytes of the intestine79. In autopsy specimens, SARS-CoV-2 RNA has been detected in the lung, kidney, large intestine, blood, spleen and heart, with the lowest cycle threshold (CT) values in pulmonary tissue77. Finally, lung tissue from individuals with COVID-19 exhibits unique vascular findings, including thrombosis, endothelial damage and abnormal angiogenesis patterns, compared with H1N1 infected or control lung tissue, as well as intracellular localization of SARS-CoV-2 particles within endothelial cells78.

Interstitial oedema
Fluid build-up in tissues outside of cells

Angiogenesis
Development of new blood vessels

Host defence in the respiratory tract
A fundamental challenge to all hosts facing infection is achieving a balance between clearance of the pathogen and maintenance of tissue function. A robust immune response may rapidly clear the pathogen but can also cause extensive collateral damage and compromise tissue function, as described above for influenza virus and SARS-CoV-2 infection. Achieving this balance is particularly important in the respiratory tract as the host cannot survive long without sufficient gas exchange carried out by the lungs. Hosts employ different defence strategies depending on the type of pathogen, chronicity of the infection and the tissue affected. A useful paradigm for characterizing host defence strategies is in terms of disease resistance and tolerance73–79. Disease resistance refers to the set of host processes that actively reduce the burden of the pathogen, which include both innate and adaptive immunity. Disease tolerance refers to a host response that acts to limit the damage in the affected tissue and support its function, thus ‘tolerating’ the pathogen burden. In the respiratory tract, a strategy of tolerance would maintain the essential function of gas exchange and blood oxygenation, and preserve the health of the host. The concepts of resistance and tolerance are often employed at a systems level, considering the host or a specific organ as a system of mechanisms that are connected79. The respiratory system is made up of numerous compartments, including the nasal passages, trachea, bronchioles and alveoli, which carry out distinct functions in supporting respiratory health73. Complex interactions between structural and immune cells ultimately determine the type of tissue environment — resistant or tolerant. The main structural cell types in the respiratory tract — epithelial, endothelial and mesenchymal — have distinct and integral roles in generating these tissue environments [FIG 2]. Each cell type is capable of acquiring distinct activation states that promote resistance or tolerance. Integration of activation signals at both the cellular and tissue level has consequences for innate and adaptive host immune responses, which ultimately determine the outcome of infection.

The effectiveness of the host strategy in response to influenza virus or SARS-CoV-2 infection may depend on the compartment in the respiratory tract. For example, the URT, which is typically the initial site of infection and source of replication for transmission79, may benefit from a resistant host defence that favours a robust immune response to control viral spread. Type I and type III interferons have a crucial role in initially controlling viral replication in the URT and limiting spread to the lower airways80,81. When this resistance is broken, and the virus spreads, the LRT may require a tolerant defence that favours preservation of the crucial alveolar structures that perform gas exchange. This idea is supported by studies in mouse models of influenza virus infection using strains of IAV that preferentially replicate in the URT instead of the LRT82. Numerous survival phenotypes, due to diverse mechanisms, are independent of viral burden, indicating that rapid viral clearance is not necessary to improve disease outcome83–85. In human disease, viral load in respiratory samples is neither a consistent correlate of disease severity nor a
Mechanisms of host resistance and tolerance in lung structural cells. Recent studies have identified structural cells in the lung (epithelial, endothelial and mesenchymal) as crucial regulators of host immune responses. Cells in the lower respiratory tract must effectively communicate to promote effective viral clearance while limiting damage to endothelial cells of the blood vessels (red) and epithelial cells of the alveoli (blue), which together carry out gas exchange. Each cell type, and their phenotypically distinct subsets, contributes to disease resistance and tolerance host strategies through diverse mechanisms indicated in the boxes. The balance of these resistance and tolerance mechanisms ultimately determines the outcome and long-term consequences of respiratory viral infection. AREG, amphiregulin; ECM, extracellular matrix; FGF, fibroblast growth factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; IL-6, interleukin 6.

In contrast to viral load, specific cytokines and inflammatory profiles in both serum or plasma and respiratory samples are consistently associated with the severity of infection, including in SARS-CoV-2 infection. High systemic levels of multiple cytokines, and their association with severity, have frequently been referred to as a cytokine storm. Although the term cytokine storm has become popular to describe an exuberant immune response during influenza virus infection, few studies have identified specific mechanisms regulating excessive production of inflammatory molecules that could be targeted by therapeutics. Framing the host response as a cytokine storm may be the result of a focus on systemic cytokine levels measured in serum or plasma from humans. Peripheral blood is easier to sample than the LRT and is amenable to longitudinal sampling in patients. However, it is still unclear whether specific inflammatory molecules drive lung pathology or serve as correlates of other tissue-level mechanisms. In studies that have compared respiratory compartment and peripheral blood cytokine levels, poor correlations are often observed. Interestingly, animal models, which allow for in-depth sampling of respiratory compartments, have identified tissue-resident non-immune and immune cells as crucial regulators of this exuberant response.

The following section will highlight recent studies that have begun to define the compartment-specific mechanisms that prevent or contribute to lung damage following influenza virus infection. Migrating and tissue-resident immune cells certainly have an important role in driving lung pathology, and mechanisms have been reported for many different types of cell, including neutrophils, monocytes/macrophages and T cells. Several reviews have summarized the role of immune-cell-driven lung damage during influenza virus infection. In the following section, we focus on the role of non-immune structural cells that serve as upstream regulators of the host response. Studies of structural cells, including epithelial, endothelial and fibroblast cells (Fig. 2), have primarily reported on their roles in lung function by providing structural support to the tissue or maintaining the barriers required for gas exchange. These studies have underestimated their participation in the inflammatory response. However, it is now becoming clear that these cells have crucial roles in actively coordinating the host immune response to viral infections. Lung structural cells have many of the same tools as immune cells to respond to infection, including viral sensors, cytokine or chemokine receptors, and antiviral proteins that directly inhibit replication.

Initial response of epithelial cells to influenza virus and SARS-CoV-2. Epithelial cells are the primary targets of influenza virus and are the best-studied structural cells in the context of influenza virus infection (Table 1). The type of epithelial cells present and their relative abundance change drastically moving from the trachea to the bronchioles and eventually to the alveoli. As conducting airways, the trachea and bronchioles are rich in...
mucin-producing goblet cells, mucin and antimicrobial protein-producing submucosal gland cells, secretory club cells and ciliated cells that function to move mucus along the respiratory tract18,19. The alveoli are made up of thin type I pneumocytes that facilitate gas exchange and cuboidal type II pneumocytes that produce surfactant and serve as progenitor cells20. Influenza virus cellular tropism, as well as host specificity, is determined by HA and NA, which interact with epithelial cell surface sialosaccharides that contain a sialic acid (SA) residue linked to a galactose (Gal)20. Preferences in HA binding to specific SA–Gal linkages, which predominates in the LRT, is thought to contribute to the high pathogenicity of epizootic avian IAV infections in humans. Despite the preferential binding noted in the above work, human IAVs are able to infect type I alveolar epithelial cells20.

Similarly to SARS-CoV, SARS-CoV-2 relies on angiotensin converting enzyme 2 (ACE2) and a host protease for host cell entry (Fig. 3b; TABLE 1). ACE2 is a transmembrane carboxypeptidase involved in processing angiotensin II, among other signalling proteins. It is constitutively released from the surface of airway epithelial cells as a soluble form (sACE2), which retains proteolytic activity, by the sheddases A disintegrin and metalloprotease 17 and 10 (ADAM17 and ADAM10)21. The spike (S) protein on the surface of the SARS-CoV-2 particle binds to ACE2 and requires activation by a host protease. Transmembrane serine protease 2 (TMPRSS2) is the most commonly implicated22. Other proteases may also have a role, including cathepsin L23, which is involved in SARS-CoV entry24, neuropilin 1 (REF.115) and furin25. The involvement of multiple host proteases in viral entry may broaden tropism. Single-cell gene expression analyses in both non-human primates and humans have demonstrated overlapping transcription ACE2 and TMPRSS2 throughout the body. In the respiratory tract, overlapping expression is seen in cells of the olfactory, nasal and bronchial epithelial surfaces as well as in alveolar type II epithelial cells26,27. For SARS-CoV-2, there is likely a gradient of infectivity along the respiratory tract with susceptible epithelial cells with high ACE2 and TMPRSS2 expression more abundant in the nasal epithelium of the URT than in distal regions of the lung28. Outside of the respiratory tract, sites of ACE2 and TMPRSS2 expression and potential viral replication include superficial cells of the conjunctiva, enterocytes of the ileum and colon, and the gallbladder, among others29,30, which may account for extrapulmonary clinical manifestations of SARS-CoV-2 (TABLE 1), although further work defining the mechanistic pathophysiology of this association is required.

Despite being the initial and primary cell type infected by respiratory viruses, infected epithelial cells and bystander epithelial cells initiate carefully regulated responses to both cell-intrinsic and extrinsic signals. Epithelial cells are equipped with many of the same host defence tools that professional immune cells are well known for, including viral sensors, direct antiviral molecules and inflammatory mediators, such as type I/III interferons, tumour necrosis factor, interleukin 6 (IL-6) and other chemokines (for example, CXCL10 and IL-8)31,32. Indeed, in vitro models using influenza virus infection of normal human bronchial epithelial cells have demonstrated that epithelial cells are capable of producing inflammatory cytokines in the absence of other...

Fig. 3 | **Cellular tropism of influenza virus and SARS-CoV-2.** a | The haemagglutinin (HA) protein of influenza viruses preferentially binds sialosaccharides on the surface of pulmonary epithelial cells. Whereas human influenza viruses prefer sialic acids (SAs) linked to galactose by α(2,6) linkage (SAα2,6Gal), avian influenza viruses prefer SAα2,3Gal. These are distributed in a gradient in the human respiratory tract. Immunohistochemistry staining demonstrates intracellular localization of influenza viruses in epithelial cells at three sites from mice challenged with influenza A virus. b | The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds angiotensin-converting enzyme 2 (ACE2) on the surface of certain olfactory and respiratory epithelial cells distributed along the human respiratory tract after activation by a cellular protease, such as transmembrane serine protease 2 (TMPRSS2) (other proteases, including cathepsin L, neuropilin 1 and furin are involved in activation). Histopathological images in part a courtesy of P. Vogel.
professional immune cells102. The epithelial influence on the immune response begins early. Upon infection, the influenza virus HA protein binds to surface sialosaccharides to initiate receptor-mediated endocytosis of the virion, which subsequently fuses with the endosomal membrane and releases viral ribonucleoproteins (vRNPs) into the cytoplasm. vRNPs are trafficked to the nucleus where replication occurs. Pathogen-associated molecular patterns in the form of viral nucleic acids are recognized by the pattern recognition receptors retinoic acid-inducible gene I (RIG-I) and Toll like receptor 3 (TLR3)100,121–124 (TABLE 1). TLR7 is also important for endosomal recognition of IAV in some immune cells25,126. An additional early mediator of the epithelial response to IAV infection is NLR family pyrin domain containing 3 (NLRP3), which forms a complex with other proteins termed the NLRP3 inflammasome that functions to moderate immunopathology126,127. The initial signalling cascades necessary for a coordinated host response to influenza virus enucleate in the production of hundreds of interferon-stimulated genes (ISGs) and pro-inflammatory cytokines via activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Interestingly, influenza viruses encode proteins, such as nonstructural protein (NS1)127 and polymerase basic protein 2 (PB2)128, among others, that interfere with interferon signalling at multiple steps. Although the initial epithelial response to SARS-CoV-2 requires more study, on the basis of recently published data and knowledge extrapolated from other coronaviruses, it is likely that TLR3, RIG-I and RIG-I-like receptor melanoma differentiation-associated 5 (MDA5) also participate in innate sensing of intracellular SARS-CoV-2 and are intrinsic to induction of interferon signalling pathways125–127 (TABLE 1). Recent evidence suggests that the NLRP3 inflammasome is also activated in response to SARS-CoV-2 infection in CD14+ lung cells obtained from deceased individuals as well as in peripheral blood mononuclear cells128.

Activated interferon pathways and their pleiotropic effects highlight the importance of balancing defence strategies of resistance and tolerance. As two studies recently demonstrated in mice, persistence of antiviral signalling in particular in the LRT during viral inflammation may oppose proliferation of epithelial cells, which are crucial for tissue repair and restoration of lung function90,91. Thus, compartmentalization of interferon and careful regulation of timing are likely crucial to surviving a severe respiratory infection. As in the case of other coronaviruses134, the type I interferon response to SARS-CoV-2 may be crucial. Decreased type I interferon levels in peripheral immune cells was associated with severe disease despite increased interferon-α in the lung149. Loss-of-function variants of TLR7 resulted in a decrease in type I interferon signalling and decreased levels of interferon and ISG mRNA135. Similarly, the presence of neutralizing autoantibodies targeting type I interferons was associated with onset of severe disease130. Finally, compared with individuals with influenza virus, individuals with COVID-19 demonstrate downregulation of interferon signalling pathways in subsets of peripheral blood mononuclear cells136. As in the case of influenza virus, SARS-CoV-2 also produces proteins that interfere with interferon signalling137 (TABLE 1).

In addition to an interferon and pro-inflammatory response to infection, altruistic programmed cell death (PCD) is an essential component of the initial cellular response to IAV infection. In benefit to the host, PCD serves to limit viral replication and prevent pathological immune responses138,139. However, because there appears to be a threshold of alveolar type I epithelial cell loss of 10%, beyond which gas exchange and survival are impaired140, it is imperative for host survival that PCD responses to prevent continued viral replication are contained139. PCD pathways are intertwined with various levels of crosstalk, which may lead to significantly different inflammatory outcomes with imbalances or preferential activation of one pathway over another139,140. Whereas necroptosis and pyroptosis are inflammatory forms of PCD that result in the release of damage-associated molecular patterns that serve to propagate inflammatory responses, apoptosis is a relatively anti-inflammatory form of PCD140,141. In the context of IAV infection, Z-DNA binding protein 1 (ZBP1), which recognizes Z-RNA, has an integral role in mediating PCD responses124,142–144. Immediately downstream of ZBP1 is receptor interacting protein kinase 3 (RIPK3), which contains a RIP homotypic interaction motif (RHIM) domain complementary to the ZBP1 RHIM145,146. Following ZBP1-dependent RIPK3 activation, necroptosis is mediated by mixed lineage kinase domain-like (MLKL) disruption of the plasma membrane after phosphorylation by RIPK3146,147 while apoptosis is mediated by RIPK3 interaction with a complex of proteins that includes receptor interacting protein kinase 1 (RIPK1), Fas-associated via death domain (FADD) and caspase 8 (REF.148). It was previously unclear whether both pathways were simultaneously activated in an individual cell or whether they were mutually exclusive. Recently, using a knock-in model in which caspase 8 was engineered to be unable to signal for apoptosis, but still able to carry out its other functions necessary for animal viability, it was demonstrated that necroptosis and apoptosis fates are mutually exclusive events following IAV infection within an individual cell149. Beyond influenza viruses directly activating these PCD pathways, it is important to note that interferons also lead to increased expression of many genes involved in cell death, including ZBP1 and MLKL144,150. Furthermore, proteins produced by influenza viruses themselves, such as PB1–F2, may induce apoptosis151. Early evidence suggests that SARS-CoV-2 results primarily in apoptosis of infected human airway epithelial cells152. Additionally, SARS-CoV-2 encodes the protein ORF3a, which has been shown to induce epithelial cell apoptosis dependent on caspase 8 activity, although to a lesser degree than SARS-CoV ORF3a153.

By releasing inflammatory mediators or other bioactive molecules, either as a result of PCD or by active secretion, epithelial cells help to define the tissue microenvironment. In addition, epithelial cells produce molecules that promote tissue repair and tolerance by interacting with diverse cell types in the LRT.
One of these key molecules is granulocyte–macrophage colony-stimulating factor (GM-CSF). During IAV-induced lung injury, alveolar type II epithelial cells are primary producers of GM-CSF in the distal lung\(^{154}\). GM-CSF not only has well-documented roles in promoting inflammatory responses by inducing proliferation and differentiation of myeloid cells, but also helps maintain epithelial barrier integrity by promoting the activity of alveolar macrophages, enhancing adaptive responses through dendritic cell activity, or acting directly on epithelial cells\(^{153}\). Another important molecule is amphiregulin (AREG), a member of the epidermal growth factor family of molecules, which is capable of inducing both cell proliferation and differentiation\(^{156}\). A number of studies in mice have demonstrated that AREG has a protective effect during influenza virus infection and that multiple different cell types, including both immune and parenchymal cells, can produce the molecule\(^{167,168,157-159}\). Although it is unclear which cell type is the primary source of protective AREG during influenza virus infection, epithelial cells are a likely candidate\(^{157,159}\).

Epithelial cells can also alter the tissue microenvironment through regulation of surface molecules and communication with nearby cells. One example is the upregulation of class I major histocompatibility complex (MHC) molecules that present viral peptides to CD8\(^+\) T cells. Influenza virus–specific CD8\(^+\) T cells recognize the peptide–MHC complex and release cytolytic molecules to kill the infected cell\(^{155}\). This cell killing can further amplify the immune response through the release of inflammatory molecules from the infected cell. Killing of both infected and bystander alveolar type II cells by CD8\(^+\) T cells can drive acute lung damage and compromise tissue function\(^{156,157}\).

Epithelium-derived cell adhesion and integrin molecules, which mediate cell–cell and cell–extracellular matrix (ECM) interactions and can activate other extracellular molecules, also regulate the host response during influenza infection. One example is the epithelial-specific αvβ6 integrin, which is upregulated during infection and can modulate the lung microenvironment and collagen deposition through the regulation of transforming growth factor-β and type I and III interferon signalling\(^{15,163}\). β6 integrin-deficient mice are unable to form the functional αvβ6 homodimer and as a consequence have increased interferon signalling, activated alveolar macrophages and enhanced repair, resulting in greater protection from influenza virus and other respiratory pathogens\(^{5,156}\). This protection extends to high-risk populations\(^{164}\). Although epithelial cells are the most studied structural lung cell involved in host response to influenza virus infection, other structural lung cells have important roles in the response to and, therefore, outcome of infection.

Mesenchymal cells. Mesenchymal cells define the tissue environments by generating the ECM and providing signals to nearby cells, which determine their migration, proliferation and differentiation. These functions have been well studied during lung homeostasis but have not been well defined during acute respiratory infection, despite the fact that they communicate with essentially every cell type in the lung either through direct cell–cell interactions or through the ECM. One of the crucial tools that mesenchymal cells use to define the tissue environment is ECM proteases. Mesenchymal cells produce an impressive array of proteases and glycosidases that degrade or modify specific components of the ECM, including structural proteins, cytokines or growth factors, and other proteases\(^{166}\). ECM proteases regulate each stage of lung injury or infection by degrading ECM barriers to facilitate cell migration through the tissue, activating cytokines and growth factors, and modifying the ECM during repair. Bioactive degradation products of the ECM, often referred to as matrikines, can further amplify lung inflammation by stimulating nearby cells\(^{167}\).

Several studies in mouse models of influenza virus infection have found that ECM proteases, including members of the matrix metalloproteinase (MMP) and A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family members, have both pathogenic (MMP9, MMP14 and ADAMTS4) and protective functions (ADAMTS5) by degrading diverse ECM proteins\(^{168-171}\). Studies in human cases of influenza virus infection have also established correlations between the levels of ECM proteases and the severity of disease and respiratory failure\(^{172}\). Mechanistic studies in mice have demonstrated that the activity of specific proteases can compromise lung function by directly altering the ECM structure and relatedly by regulating immune cell migration to the site of infection or damage. Although both immune and structural cells produce ECM proteases, recent evidence suggests that mesenchymal cells are the primary producers of proteases that contribute to pathogenesis. One crucial protease is the versican-degrading enzyme ADAMTS4. During influenza virus infection, inflammatory fibroblasts produce ADAMTS4, promoting robust CD8\(^+\) T cell infiltration into the lung tissue. In both paediatric and adult cases of influenza virus infection, protein levels of ADAMTS4 in the lower respiratory tract were strongly associated with respiratory failure and mortality\(^{173}\). Thus, fibroblasts serve as gatekeepers of immune cell access to the tissue and their exuberant inflammatory activity can drive lung damage and respiratory failure.

In addition to ECM remodelling activities, mesenchymal cells produce growth factors that directly stimulate epithelial cells to promote tissue repair. In mice, fibroblast growth factor 10 (FGF10), produced by lung mesenchymal cells, has a protective role following severe IAV infection by stimulating a subset of epithelial progenitor cells to undergo proliferation\(^{174}\). Taken together, these studies identify lung mesenchymal cells as crucial regulators of disease resistance and tolerance and of the transition between resolution of inflammation and initiation of tissue repair.
Endothelial cells. Pulmonary endothelial cells make up another barrier that is essential for gas exchange and lung function. The endothelium not only moves blood into the lung for oxygenation but also helps to circulate inflammatory molecules and migratory immune cells. During influenza virus infection, the endothelium becomes activated as cells upregulate surface expression of cell adhesion molecules, including P- and E-selectins. The endothelium is the entry point for immune cells migrating to the lung tissue. Migrating immune cells interact with cell adhesion molecules on endothelial cells and traverse this barrier on the way to the site of infection. Activation of the endothelium and extravasation of immune cells from blood capillaries into the alveoli can result in vascular permeability and an increase in fluid in the lungs. Thus, endothelial cells are also important decision-makers in determining resistant and tolerant tissue environments as they balance recruitment of immune cells to clear infected cells with integrity of the vasculature. Although human and avian influenza viruses can infect primary human endothelial cells in vitro, the extent to which they productively infect endothelial cells in vivo remains controversial.

Whether or not endothelial cells become productively infected in vivo, they do respond robustly to infection. In addition to upregulating adhesion molecules to recruit immune cells, endothelial cells have a crucial role in amplifying cytokine and chemokine production, which can lead to lethal immunopathology. The sphingosine 1-phosphate 1 receptor (SIP1R), which binds to lipid metabolites, regulates this excessive cytokine production, and agonism of SIP1R with small molecules can significantly reduce cytokine levels in the lung. Amplification of inflammation in endothelial cells depends on signalling through the IL-1 receptor and is independent of endosomal or cytosolic sensing of the virus. Dependence on IL-1 receptor signalling suggests that endothelial cells respond to damage signals released from epithelial cells, such as IL-1α, or those produced by professional immune cells, likely IL-1β.

Like the other major structural cell types in the lung, endothelial cells exhibit heterogeneity based on compartment (microvascular, macrovascular or lymphatic). Single-cell gene expression studies have begun to characterize this heterogeneity during influenza virus infection, identifying groups of cells with distinct transcriptional responses that are highly proliferative and involved in tissue repair. The tolerogenic potential of pulmonary endothelial cells has been largely unexplored.

As described above, SARS-CoV-2 infection appears to involve the pulmonary endothelium more than other respiratory viruses, such as influenza virus. Observations of severe COVID-19 in humans indicate extensive endothelial cell activation, thrombosis and angiogenesis. This endothelial activation and thrombosis has also been observed in a non-human primate model of SARS-CoV-2 infection. The mechanisms leading to such extensive endothelial involvement are unclear, but possibilities include direct infection of endothelial cells and microvascular complement protein deposition. During infection in humans, endothelial cells express ACE2, and the virus readily infects human blood vessel organoids.

Lung repair and recovery from infection

Tissue repair in the respiratory tract presents a challenge because of its distinct compartments, the diverse cell types affected and the heterogeneity of infection. A pair of excellent, recent reviews have detailed the contribution of different subsets of structural cells, including epithelial, endothelial and mesenchymal, to tissue repair and the complex crosstalk between these cells during both pathogen-induced and sterile lung damage.

An important theme that has emerged in studies of tissue regeneration during influenza virus infection is that the severity of infection and extent of lung damage determine which progenitor cells mobilize in response to injury and the quality of the repair that they mediate. Fortunately for the influenza virus field, severe influenza virus infection in mice has become a popular model for lung biologists to study acute lung injury and repair. In general, local proliferation of alveolar epithelial progenitor cells (AEPs), which are alveolar type II cells, mediate rapid and effective repair by differentiating into both alveolar type I and type II cells. The stemness of the AEPs is maintained by Wnt signalling in a close alveolar niche. This type of repair typically occurs when there is localized damage to the alveoli. However, when there is more extensive alveolar damage and severe influenza virus infection ablates alveolar type II cells, including the AEPs, alternative progenitor cell populations fulfill this regenerative role. In mice, several different alternative progenitor cells have been identified, termed bronchioalveolar stem cells, lineage-negative epithelial progenitors (LNEPs) — also known as distal airway stem cells (DASCs) — and another group of club-like epithelial progenitors. Several recent studies indicate that IAVs preferentially infect club-like epithelial progenitors, which express stem cell antigen 1 (SCA1) and elevated levels of MHC class I. Although these cells are able to facilitate alveolar epithelial repair following sterile lung damage, viral infection of the club-like progenitors may limit their ability to participate in effective tissue repair following severe IAV infection, requiring alternative progenitors to take on this role.
During infection with extensive tissue damage when type II alveolar cells are ablated, by self-renewing type II alveolar cells occurs during less severe infection and is efficient. Of influenza virus infection determines the quality of alveolar epithelial repair. Repair of alveolar tissue and restoration of function is essential for survival following a severe infection. Together, these exciting advances define the mechanistic basis for how the extent and severity of infection determine the quality of tissue repair following influenza virus infection and provide a foundation for developing both cellular and molecular therapies to influence the trajectory of lung regeneration.

Experimental models of SARS-CoV-2

The complexities of the host response to SARS-CoV-2 necessitate in vivo studies, and it is crucial to consider both pathogenesis and transmission when modelling a novel disease (Table 2). Initial reports have described SARS-CoV-2 infection in rodents, ferrets, non-human primates and cats\(^{205-207}\); however, it is unclear which model best recapitulates human infection. Mice are not susceptible to SARS-CoV-2 owing to the inability of murine ACE2 to bind the viral spike protein. Therefore, infection of mice requires either introduction of the human ACE2 receptor or adaptation of SARS-CoV-2 to the murine receptor\(^{208}\). Human ACE2 transgenic mouse lines have been developed with different promoters driving ACE2 expression. The tissue distribution and abundance of human ACE2 expression differ between these transgenic lines and in part determine the severity of disease being modelled\(^{209}\). In mice in which ACE2 expression is driven by the epithelial cytokeratin 18 promoter, unadapted SARS-CoV-2 causes severe pathology and respiratory distress\(^{209,210}\), however, recently reported mouse-adapted strains also cause severe disease in BALB/c mice\(^{211,212}\). Ferrets, the gold-standard model for influenza virus transmission studies, also transmit SARS-CoV-2 by both direct and respiratory contact\(^{213}\). However, disease severity is mild, and viral replication is generally restricted to the URT\(^{205,208}\). Pathogenesis in non-human primates varies by species. African green monkeys develop acute pneumonia and lung injury persisting for >1 month despite viral clearance\(^{214}\), whereas rhesus macaques manifest pulmonary infiltration similar to humans with only mild to moderate disease severity\(^{209}\). Interestingly, hamsters can efficiently transmit SARS-CoV-2 \(^{215}\) and experience severe disease including weight loss, DAD and high viral load in the alveolar space\(^{215}\). As in the human experience, aged animals, including BALB/c mice\(^{216}\) and Syrian golden hamsters\(^{216}\), demonstrate more severe clinical manifestations of infection. Because human SARS-CoV-2 disease severity is variable, in vivo systems spanning the spectrum of disease could prove invaluable.

Outlook: current and potential therapies

At both the individual and community level, annual seasonal influenza virus vaccination remains a mainstay of influenza control. However, several considerations make reliance on vaccination alone inadequate. In certain populations at high risk of severe complications from influenza virus infection (that is, elderly individuals and individuals with obesity) vaccine response is less robust. Antigenic drift may reduce vaccine efficacy at population level, placing large communities at risk. Finally, antigenic shifts resulting in pandemic influenza virus as well as epizootic infections with highly pathogenic strains of IAV are not covered by vaccines and may result in severe disease in large numbers of individuals. For these reasons, the availability of effective therapies for influenza virus is crucial. Aside from supportive care to correct physiological derangements, the currently available treatments are all antivirals. Those available are well tolerated and shorten symptom duration, although are most efficacious when given early. Currently available therapeutics for influenza virus infection are antiviral compounds (Box 1), many of which need to be started in the first 2–3 days of infection (when viral replication is at its peak) to demonstrate benefit. As described above, severe influenza (as well as COVID-19) results in profound disruption of lung integrity, which is only in part driven by viral

Fig. 4 | **Alveolar epithelial repair along the severity continuum.** The regeneration of alveolar tissue and restoration of function is essential for survival following a severe respiratory infection. Recent studies have demonstrated that the extent and severity of influenza virus infection determines the quality of alveolar epithelial repair. Repair by self-renewing type II alveolar cells occurs during less severe infection and is efficient. During infection with extensive tissue damage when type II alveolar cells are ablated, additional epithelial progenitor cells (p63+ and p63−) mobilize to mediate repair. WNT and NOTCH signalling pathways determine localized differentiation of these progenitor cells. In severe damage, mobilization of p63+ progenitors can result in dysplastic alveolar repair characterized by the formation of cyst-like structures with high expression of Krt5 leading to reduced lung function. This dysplastic repair may lead to persistent lung dysfunction.
cytopathic effect. In severe infections, deleterious immune responses and inadequate repair mechanisms contribute to disease outcomes. Given the short therapeutic window for antivirals, targeting host factors that drive excessive inflammation and immunopathology offer a promising alternative treatment strategy. Any host therapeutic aimed at reducing lung injury, however, must consider the potential negative effect of delaying viral clearance and leaving patients with severe disease vulnerable to secondary infections. Broadly immunosuppressive agents, such as corticosteroids, are frequently given to patients in other scenarios to reduce inflammation, but are not recommended as treatment for influenza infection, unless a separate indication for their use exists137. However, in the case of SARS-CoV-2 infection leading to hospitalization, dexamethasone (a corticosteroid) given for a median of 7 days (up to 10 days) has been shown to reduce mortality, which was most evident in patients requiring higher levels of support at randomization118. As broadly acting immunosuppressants do not appear efficacious in the case of influenza virus infection and have potentially harmful side effects, more targeted therapeutics are needed that modulate specific immunological pathways. Ideally, these agents would target host factors that are active at the site of infection or injury and would avoid systemic effects. Recent work on the role of lung structural cells in determining tissue resistant or tolerant states has identified several promising classes of cellular and molecular targets. Each of the main structural cell types (mesenchymal, endothelial and epithelial) has a distinct role in determining local tissue environments that could be modulated to maintain tissue function. Mesenchymal cells are professional tissue remodellers and produce key lung ECM proteases that drive immunopathology by causing direct damage to the lung structure and regulating the movement of immune cells106,107. Inhibitors that selectively target these proteases may promote tissue tolerance by preserving lung integrity for gas exchange and preventing colonization.

Table 2 | Animal models of influenza virus and SARS-CoV-2 infection and pathogenesis

Animal	Physiology and genetics	Influenza virus	SARS-CoV-2
Mouse	Popular model for acute lung injury	Diverse viral strains that recapitulate spectrum of human disease, including acute respiratory distress syndrome	Mice require introduction of human ACE2 receptor (transgenic animal or viral transduction) for infection with unadapted virus
	Key differences from humans in anatomy and respiratory cell distribution	Mouse adaptation not required for some IAVs, including avian viruses	Mouse-adapted SARS-CoV-2 does cause severe disease
	Differences in physiological responses (no fever or sneezing or coughing)	Many immunological tools to study host response	Together, diverse mouse models can recapitulate spectrum of disease in humans
	Not a model for transmission		
	Many genetic tools: knockouts, reporters and other transgenics		
Hamster	Small animal model of contact and airborne transmission for some viruses	IAVs typically infect without adaptation	Unadapted SARS-CoV-2 infects hamsters
	Limited genetic tools, but some genetic knockouts for key immune genes available	Primarily upper respiratory tract infection with limited pathology	Infection causes mild to moderate pathology in respiratory tract
	Model for transmission	Model for contact transmission and some evidence of airborne transmission	Some evidence that the model can recapitulate age- and sex-based differences in disease severity witnessed in humans
	Outbred animals	Limited immunological tools to study host response	Model for contact transmission and some evidence of airborne transmission
	Few genetic tools		
Ferret	Respiratory anatomy similar to humans	IAVs typically infect without adaptation (human and avian IAVs)	Limited studies on SARS-CoV-2 transmission and pathogenesis thus far
	Many respiratory viruses do not require adaptation for infection/pathogenesis	Reporter viruses available to trace spread (fluorescent and luciferase-based)	Unadapted SARS-CoV-2 infects ferrets
	Similarities in physiological responses (fever and sneezing)	Limited immunological tools to study host response, but many are in development	Current models do not recapitulate severe disease in humans
	Model for transmission		
	Outbred animals		
	Few genetic tools		
	Often serve as gatekeepers of vaccine candidates and therapeutics		
Non-human primate	Respiratory anatomy most similar to humans	IAVs infect without adaptation (human and avian viruses)	SARS-CoV-2 infects NHPs without adaptation of virus or manipulation of host
	Respiratory viruses do not require adaptation for infection or pathogenesis	Frequently used to study highly pathogenic IAVs	Current models do not recapitulate severe disease in humans
	Similarities in physiological response (fever and respiratory distress)	Limited immunological tools to study host response	Clinical symptoms allow for testing efficacy of therapeutics
	Outbred animals		NHPs exhibit adaptive immune responses to vaccination and infection
	Few genetic tools		

ACE2, angiotensin-converting enzyme 2; IAV, influenza A virus; NHP, non-human primate; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
Box 1 | Antiviral medications for influenza virus and SARS-CoV-2

Neuraminidase inhibitors (NAIs) were developed on the basis of rational drug design in the early 1990s222 and are influenza virus-specific antiviral medications. Oseltamivir, zanamivir, peramivir and laninamivir are available NAIs, each with different routes of administration. Of the NAIs, oseltamivir is the most studied and used. As their name suggests, these inhibit the function of viral neuraminidase (NA), which serves to limit viral progeny from being released from infected cells, thus reducing the number of cells subsequently infected. In adults with uncomplicated illness, oseltamivir has been shown to reduce the duration of symptoms by ~24 h225. Although there are no randomized controlled trials of oseltamivir for the treatment of severe influenza virus infection, which may call into question the validity of the data229, observational studies have shown that oseltamivir has also been associated with a reduced risk of mortality in hospitalized adults with H3N2 seasonal influenza A virus (IAV)222 and the 2009 pandemic H1N1 IAV223, particularly when given early in hospital admission. Oseltamivir reduces the risk of death in patients hospitalized with highly pathogenic H5N1 IAV infection225. Resistance, conferred by the amino acid substitutions H275Y in N1 viruses or R292K in N2 viruses (among others), has been described229 and may emerge in high-risk groups on prolonged courses of NAI therapy231.

Baloxavir is a newer influenza virus antiviral that inhibits the polymerase acidic (PA) cap-snatching endonuclease activity of the viral RNA-dependent RNA polymerase (RdRp) complex, halting viral replication. It has been shown to reduce the duration of symptoms by ~26 h after influenza virus infection and reduce viral load more quickly than oseltamivir232. No resistance was reported in surveillance efforts in the United States25, although resistance may emerge during treatment with baloxavir232.

Other antiviral compounds, including favipiravir, which inhibits viral RdRPs (not influenza virus specific and with some interest for potential treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)233, and pimodivir, which inhibits influenza virus polymerase basic protein 2 (PB2)234, have activity against influenza virus and have been studied in human clinical trials, but are not currently widely available (favipiravir is approved in Japan for novel or emerging influenza viruses235). Finally, monoclonal antibodies targeting influenza virus haemagglutinin have been developed and tested in human clinical trials244; however, the role that these compounds have in influenza virus treatment strategies is currently unclear.

Remdesivir (GS-5734) is a RdRp inhibitor with in vivo activity against Ebola virus237, in vitro and in vivo activity against Middle East respiratory syndrome coronavirus (MERS-CoV)238, and in vitro activity against SARS-CoV-2 (REF.239). A large randomized clinical trial using time to recovery as a primary end point demonstrated the benefit of 10 days of remdesivir over placebo in adults hospitalized with lower respiratory tract infection due to SARS-CoV-2 (REF.240). The benefit was most evident if given early in disease and in patients requiring low-flow oxygen at enrolment240. Notably, however, a recent multinational WHO effort to study ‘repurposed’ antiviral medications (including remdesivir) to treat SARS-CoV-2 infection, which used in-hospital mortality as the primary end point, found no apparent benefit of 10 days of remdesivir therapy241. Differences in treatment strategies, patient population and end points may account for variability in trial outcomes, and more study of remdesivir for SARS-CoV-2 infection may be necessary240. As above, favipiravir for the treatment of human infection with SARS-CoV-2 is being studied233. As more is learnt about viral tropism, host response and in vivo replication, additional therapeutic targets throughout the viral life cycle will likely present themselves. Finally, monoclonal antibodies against the spike protein of SARS-CoV-2 have been developed and studied in clinical trials244.

by opportunistic bacteria. Mesenchymal cells are also primary producers of IL-6, which is consistently associated with severity180,223. The IL-6 receptor antagonist tocilizumab is approved to treat chronic inflammatory diseases such as rheumatoid arthritis. Although it is unclear whether IL-6 is causal for influenza virus infection severity, as the cytokine has pleiotropic effects on the host response, there is continued interest in using tocilizumab to dampen excessive inflammation in severe respiratory infection, including influenza virus and SARS-CoV-2 infection180,223, although a recent trial result did not show a benefit of a single dose of tocilizumab over usual care in adult patients hospitalized with COVID-19 (REF.222). As potent amplifiers of cytokine or chemokine production, endothelial cells represent an attractive target to reduce inflammation that is initiated in the respiratory tract. Several agonists of the S1P receptor have been developed to dampen inflammation and could potentially be used for numerous inflammatory diseases180,223. None has yet been approved for respiratory viral infections, but their use in humans, including for COVID-19, has been proposed.

In contrast to targeting the mechanisms driving inflammation and disease resistance, an alternative approach could be to enhance directly the mechanisms of lung repair and disease tolerance. Preclinical studies in animal models of severe IAV infection described above indicate that the growth factors GM-CSF, FGF10 and AREG all have the potential to enhance epithelial cell proliferation in vivo. An added benefit of directly promoting these repair mechanisms to promote recovery from severe infection is that it is possible that the antiviral, or more generally anti-pathogen, host response could be left intact to continue clearance of an ongoing infection or protect against a secondary bacterial infection.

The past decade of research on epithelial cells during lung injury has identified numerous pathways that could be manipulated with therapeutics, from early interferon responses and integrin signalling210, to cell death mechanisms143–145, to repair mechanisms190,193. A better understanding of how these pathways function in severe human infections is needed to identify the most promising targets to advance from preclinical studies. Moreover, it is unclear how these epithelial pathways might be dysregulated in high-risk groups, such as elderly individuals and individuals with obesity. The qualitative differences in epithelial repair from heterogeneous epithelial progenitor populations provide the opportunity to target specific pathways to influence the repair process and improve both short- and long-term outcomes.

Published online 6 April 2021
Li, W. et al. Bats are natural reservoirs of SARS-like coronavirus. Cell 179, 267–278 (2019).

Jiang, N. et al. Lineage structure of the human coronavirus associated with severe acute respiratory syndrome (SARS). J. Virol. 76, 3955–4008 (2012).

Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of SARS-CoV-2. Trends Mol. Med. 26, 185–198 (2020).

Gambotto, A., Barratt-Boyce, S. M., de Jong, M. D., Neumann, G. & Kawaoka, Y. Human infection with coronavirus HKU1. Nature 432, 987–991 (2004).

T reanor, J. Influenza vaccine — outmaneuvering the pandemic virus. JAMA 288, 1155–1159 (2002).

Payne, S. in Viruses (2017).

Wood, P. C. Y. et al. Discovery of seven novel mammalian coronavirus species in a single bat. Nat. Microbiol. 5, 558–569 (2020).

Karlsson, E. A. et al. Obesity outweighs protection conferred by adjuvanted influenza vaccination. mBios 1, e00665-20 (2020).

Vazquez-Pagan, A., Hone, R. & Schultze-Church, S. Impact of influenza virus disease: focus on severity of disease to vaccine efficacy. Future Virol. 15, 441–445 (2019).

Littauer, E. O. et al. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific homeostatic regulation. PloS Pathog. 13, e1006757 (2017).

Moran, T. M., Park, H., Fernandez-Sesma, A. & Schultze-Church, S. Genetic inactivation of influenza virus can be converted to Th1 responses and facilitate recovery from heterosubtypic virus infection. J. Virol. 80, 579–585 (2016).

Wang, X.-L. et al. Age and sex differences in rates of influenza-associated hospitalizations in Hong Kong. Am. J. Epidemiol. 182, 355–354 (2015).

Rouben, M., Park, A. L., Miller, R. A. The aging immune system: primer on immunosenescence. Front. Immunol. 11, 926 (2020).

Zhu, N. et al. A novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1546–1549 (2003).

Peiris, J. M. S. et al. Coronavirus as the gene source of gammacoronavirus HKU1. Science 300, 1546–1549 (2003).

Zaki, A. M. et al. Reovirus from natural reservoirs. J. Virol. 83, 1912–1919 (2009).

Zhou, P. et al. An early characterization of SARS-CoV-2 isolated from patients with Wuhan pneumonia. Nature 579, 270–273 (2020).

An early characterization of SARS-CoV-2 isolated from patients with Wuhan, China, early in the pandemic.

Lai, M. M. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100 (1997).

Woo, P. C. Y. et al. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J. Virol. 86, 3955–4008 (2012).

Li, W. et al. Bats are natural reservoirs of SARS-like coronavirus. Cell 179, 267–278 (2019).

Zhou, P. et al. Electron tomography reveals a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).
A comprehensive discussion of the concept of tissue tolerance in the context of infectious challenge.
Reviews

145. Nogusa, S. et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza a virus. *Cell Host Microbe* **20**, 13–24 (2016).

146. Zhong, J. et al. Van Sluytman, M. N. Necroosome core machinery: MLKL. *Mol. Cell. Life Sci. 73*, 2155–2163 (2016).

147. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necroson signalling downstream of RIP5 kinase. *Cell 148*, 213–227 (2012).

148. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. *Science 345*, 1357–1360 (2014).

149. Shubaina, M. et al. Necroptosis restricts influenza A virus as a strategy to evade the host immune response. *J. Exp. Med. 217*, e20191259 (2020).

150. Sarhan, J. et al. Constitutive interferon signaling maintains clearance of influenza A virus by abolishment of MLKL expression to license necroptosis. *Cell Death Differ. 26*, 332–347 (2019).

151. Hsu, A. Y. Influenza virus: a master tactician in innate immune evasion and novel therapeutic interventions. *Front. Immunol. 9*, 743 (2018).

152. Zhu, N. et al. Morphogenesis and cytotoxic effect of SARS-CoV-2 infection in human airway epithelial cells. *Nat. Commun. 11*, 3910 (2020).

153. Ren, Y. et al. The ORF5a protein of SARS-CoV-2 induces apoptosis in vitro. *Cell. Mol. Immunol. 17*, 881–883 (2020).

154. Unkel, B. et al. Alveolar epithelial cells orchestrate DC function in pulmonary inflammation. *J. Clin. Invest. 122*, 5562–5566 (2012).

155. Rössler, B. & Herold, S. Lung epithelial GM-CSF-independent protection and epithelial repair in influenza virus pneumonia—a new therapeutic strategy? *Mol Cell Pediatr. 3*, 29 (2016).

156. Zarkos, W. S., Godfrey, W. C., Osborne, L. C. & Artis, D. Emerging functions of amphiregulin in orchestrating immune infiltration, inflammation, and tissue repair. *Immunity 42*, 21–226 (2015).

157. Hall, G. J. et al. Pristastatin-based therapy protects against influenza by promoting lung repair and recovery in females. *PLoS Pathog. 12*, e1005840 (2016).

158. Guo, X.-Z. J. et al. Lung injury response to influenza infection is greater in males than females. *Biol. Sex Differ. 9*, 24 (2018).

159. Duan, S. & Thomas, P. G. Balancing immune responses to influenza infection. *Cell 170*, 1244–1261 (2017).

160. Morgan, C. et al. Persistent pathology in influenza-192019-infected hamster as a susceptible animal model for COVID-19. *J. Virol. 94*, 8679–8690 (2020).

161. Kanegai, C. M. et al. Persistent pathology in influenza-A/H1N1-infected hamster. *J. Virol. 94*, 8679–8690 (2020).

162. Shi, J. et al. Adapting of SARS-CoV-2 in BALB/c mice as a model for COVID-19. *J. Med. Virol. 92*, 2096–2109 (2020).

163. Ye, Y. et al. Exemplifying SARS-CoV-2 infection in ferrets, cats, and dogs for disease modeling. *PLoS Pathog. 16*, e1008298 (2020).

164. McMahon, M. et al. ADAMTS5 is a critical regulator of virus-specific T cell immunity. *PloS Biol. 14*, e1002580 (2016).

165. Rojas-Quijano, J. et al. Matrix metalloproteinase-9 deficiency reduces viral titers in the airways in response to influenza virus-induced toll-like receptor signaling. *PloS Pathog. 8*, e1002641 (2012).

166. Ouyang, W. et al. Extracellular matrix proteolysis by MT1-MMP contributes to influenza-related tissue damage and mortality. *Cell Host Microbe 20*, 458–460 (2017).

167. Guo, H. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. *Nat. Immunol. 21*, 1327–1335 (2020).

168. Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. *Science 369*, 1603–1607 (2020).

169. Leid, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. *Cell 21*, 1070–1085 e12 (2020).

170. Richardson, M. et al. SARS-CoV-2 infection of ferrets in contact and via the air between ferrets. *Nat. Commun. 11*, 3496 (2020).

171. Sa, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. *Nature 583*, 834–838 (2020).

172. Chan, J. F. et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. *Clin. Infect. Dis. 71*, 2428–2446 (2020).

This study characterizes the golden Syrian hamster as a susceptible animal model for SARS-CoV-2.

173. Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2. *JCI Insight 4*, 86929 (2019).

174. Uyeo, T. M. et al. Clinical practice guidelines by the Infectious Diseases Society of America (IDSA) update 2018 on diagnosis, treatment, chemoprophylaxis, and institutional outbreak management of seasonal influenza. *Clin. Infect. Dis. 68*, 1–40 (2019).

175. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19–Preliminary Report. *Lancet. Infect. Med. 8*, 4 (2020).

176. Hagau, N. et al. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection. *Crit. Care 14*, 2023 (2010).
220. Kaiser, L., Fritz, R. S., Straus, S. E., Gubareva, L. & Hayden, F. G. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. *J. Med. Virol.* **64**, 262–268 (2001).

221. Guaraldi, G. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. *Lancet Rheumatol.* **2**, e474–e484 (2020).

222. Stone, J. H. et al. Efficacy of tocilizumab in patients hospitalized with covid-19. *N. Engl. J. Med.* **383**, 2353–2364 (2020).

223. Zhao, J. et al. Combination of sphingosine-1-phosphate receptor 1 (S1PR1) agonist and antiviral drug: a potential therapy against pathogenic influenza virus. *Sci. Rep.* **9**, 5272 (2019).

224. von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. *Nature* **363**, 418–423 (1993).

225. Dobson, J., Whitley, R. J., Pocock, S. & Monto, A. S. Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. *Lancet* **385**, 1729–1737 (2015).

226. Hurt, A. C. & Kelly, H. Debate regarding oseltamivir use for seasonal and pandemic influenza. *Emerg. Infect. Dis.* **22**, 949–955 (2016).

227. Lytras, T., Mourtadisou, E., Andreopoulou, A., Bonovas, S. & Tsiodras, S. Effect of early oseltamivir treatment on mortality in critically ill patients with different types of influenza: a multiseason cohort study. *Clin. Infect. Dis.* **69**, 1896–1902 (2019).

228. Muthuri, S. G. et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. *Lancet Respir Med* **2**, 395–404 (2014).

229. Adisasmito, W. et al. Effectiveness of antiviral treatment on mortality in critically Ill patients with influenza A/H1N1/H3N2/H1N1pdm09 viruses with reduced baloxavir susceptibility: impact on clinical and virologic outcomes in uncomplicated influenza. *J. Infect. Dis.* **221**, 346–355 (2020).

230. Finberg, R. W. et al. Phase 2b study of pidomivir (JNJ-6525872) as monotherapy or in combination with oseltamivir for treatment of acute uncomplicated seasonal influenza A: TOPAZ trial. *J. Infect. Dis.* **219**, 1026–1034 (2019).

231. Shiraki, K. & Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. *PharmacoL Ther.* **209**, 107512 (2020).

232. Ali, S. O. et al. Evaluation of MEDI8852, an anti-influenza monoclonal antibody, in treating acute uncomplicated influenza. *Antimicrob. Agents Chemother.* **62**, e00694-18 (2018).

233. Warren, T. K. et al. Therapeutic efficacy of the small molecule CS-5754 against Ebola virus in rhesus monkeys. *Nature* **531**, 381–385 (2016).

234. Sheahan, T. P. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. *Nat. Commun.* **11**, 222 (2020).

235. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res.* **30**, 269–271 (2020).

236. Beigel, J. H. et al. Remdesivir for the treatment of covid-19 - final report. *N. Engl. J. Med.* **383**, 1813–1826 (2020).

237. WHO Solidarity Trial Consortium. Repurposed antiviral drugs for covid-19 - interim WHO solidarity trial results. *N. Engl. J. Med.* **384**, 497–511 (2020).

238. McCrea, E. K. & Angus, D. C. Efficacy of remdesivir in COVID-19. *JAMA* **324**, 1041–1042 (2020).

239. Cai, Q. et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. *Engineering* **6**, 1192–1198 (2020).

240. Chen, P. et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with COVID-19. *N. Engl. J. Med.* **384**, 229–237 (2020).

Acknowledgements

This work was funded by the National Institute of Allergy and Infectious Diseases (NIAID) under HHS contract HHSN27201400006C-DFT181 for the St. Jude Center of Excellence for Influenza Research and Surveillance (P.G.T.), NIH grant RO1 AI121832 (P.G.T.), Children’s Infection Defense Center (CIDC) Award (St. Jude) (T.F.), HHS contract HHSN27220140006C for the St. Jude Center of Excellence for Influenza (S.S.C.) and ALSAC. The authors thank P. Vogel for providing the histopathological specimens of respiratory tissue from mice experimentally infected with influenza A virus displayed in Fig. 3a.

Author contributions

T.F., D.F.B. and V.M. researched data for the article. T.F., D.F.B., P.G.T. and S.S.C. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Microbiology thanks A. Wack and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2021