Among the many eclectic interests of Conway figures the classical topic of incidence theorems in projective geometry. Together with Alex Ryba, Conway published two papers [1, 2] in this magazine on what they called the *Pascal Mysticum*. The Pascal Mysticum stems from a family of six distinct points on an ellipse. Each pair A, B of points defines a line AB, two pairs of points A, B and C, D define two lines that intersect at a point $AB \cdot CD$. Pascal’s theorem below indicates that if A, B, C, D, E, F are the six points considered on an ellipse, then $AB \cdot CD, AB \cdot EF,$ and $CD \cdot EF$ lie on a line. The different permutations of the six points therefore give rise in this manner to 60 different “Pascal lines.” But these Pascal lines themselves have remarkable incidence properties: Steiner proved in 1828 that the 60 Pascal lines intersect by groups of three in 20 “Steiner nodes,” and the next year, Plücker proved that those Steiner nodes lie in groups of four on 15 “Plücker lines.” The description of the incidence relations stemming from the Pascal lines was further expanded by contributions by Kirkman, Cayley, and Salmon (see [1] for a complete description and suitable references). The *Pascal Mysticum*, or *mysticum hexagrammaticum*, is this family of 95 lines and 95 points exhibiting those intricate yet beautiful incidence relations.

Conway and Ryba provide in [1] a full description of the incidence relations of the 95 lines and 95 points associated with six distinct points on an ellipse. They introduce a beautifully crafted notation for those lines and points, together with short and self-contained proofs of their incidence properties. In [2], they further extend their analysis of the Pascal Mysticum and discover (or sometimes rediscover) additional striking properties, for instance subfamilies with pentagonal or heptagonal symmetry.

As already mentioned, the Pascal Mysticum arises from repeated applications of Pascal’s theorem, which we can now state more formally. Pascal called this theorem the *hexagrammum mysticum*, one of the motivations for the name *mysticum hexagrammaticum* given by Conway and Ryba to the whole set of configurations of lines and points it gives rise to. Pascal’s theorem can be stated as follows; see Figure 1.

Theorem 1. (Pascal’s theorem) Let $ABCDEF$ be a cyclic hexagon. Let X be the intersection point of AB and DE, Y the intersection point of BC and EF, and Z the intersection point of CD and FA. Then $X, Y,$ and Z are aligned.
Blaise Pascal (1623–1662) is a towering intellectual figure of the seventeenth century. He is credited with inventing and building the first mechanical calculator, the *Pascaline*, and with laying the foundations of probability theory, in particular in his correspondence with Fermat; he came up, for instance, with Pascal's triangle. He is also known for his work on hydrostatics and Pascal's law (as well as the invention of the syringe), and for discovering the variation of air pressure with altitude—the SI unit of pressure is called the pascal. However, he was most influential in his time as a philosopher and theologian, and well known for “Pascal’s wager.”

Pascal was raised and educated by his father, Étienne Pascal, who had a strong interest in the intellectual developments of his time and was an active member of a group of scientists meeting around Marin Mersenne, including Desargues, Descartes, and others. According to contemporary sources [8, p. 176], Blaise was extraordinarily precocious, and so passionate in studying mathematics that when he was 11, his father forbade him to read any mathematics book before he turned 15 and knew Latin and Greek. Blaise therefore continued studying geometry by himself and in secret, and at 16, published his first article on projective geometry, the *Essay pour les coniques* [6], which contained Theorem 1.

The main goal of this note is to provide a simple proof, based on hyperbolic geometry, of Pascal's theorem, and of an extension of this theorem discovered by Möbius two centuries later (see Theorem 3 below).

Theorem 1 has a natural setting in the projective plane. Instead of considering a cyclic hexagon, one then considers a hexagon with vertices on a conic. Every nondegenerate conic is projectively equivalent to a circle, while the statements for degenerate conics can be obtained by a limiting argument in which a hexagon with vertices on a degenerate conic is obtained as a limit of hexagons with vertices on nondegenerate conics.

There are many proofs of Theorem 1, using a wide variety of tools. A proof using algebraic geometry is sketched by Conway and Ryba in [1]. Other proofs involve cross-ratios and symmetries of the projective plane, as in [7], or Euclidean lengths and Menelaus's theorem, as in [3, p. 77].

The proof given here, based on hyperbolic geometry, is not really novel (it can be deduced easily from [7, p. 436]), but it brings to light a striking link between Pascal's theorem and elementary hyperbolic geometry. A recent and similar link is exhibited by Drach and Schwarz in [4], where they revisit the seven-circles theorem in Euclidean geometry in terms of hyperbolic geometry. Even if those links between hyperbolic geometry and results on projective or Euclidean geometry do not lead to novel results, they give a beautiful perspective to them.

A Hyperbolic Statement of Pascal’s Theorem

We are going to use the Klein model of the hyperbolic plane. Consider an open disk A in the projective plane, bounded by a circle Γ. The hyperbolic plane is defined as A endowed with the Hilbert distance, defined as follows.

Definition 1. Let $P, Q \in A$, and let A, B be the intersection points of the line PQ with Γ. Then

$$d(P, Q) = \frac{1}{2} \log \left(\frac{BP}{BQ} \cdot \frac{AQ}{AP} \right).$$

This distance induces a complete Riemannian metric on A, and thus notions of angles and lengths. A key property of this Hilbert distance is that it is invariant under projective transformations that leave A invariant. The geodesics are precisely the straight lines, but the angles are not the Euclidean ones. The circle Γ is then the boundary at infinity of the hyperbolic plane, and its points are called ideal points. The model is very rich, but we focus here on only a few points related to the polarity in the projective plane and orthogonality in the hyperbolic plane.

Given a circle in the projective plane, one can define a polarity relation between points and lines: there is a polar line for each point, and a pole for each line. By definition, given points $P \in A$ and $Q \notin A$, Q is in the polar line of P, and conversely, if and only if

$$\frac{BP}{BQ} \cdot \frac{AQ}{AP} = -1,$$

where A and B are again the intersections of the line PQ with Γ. We will denote the polar line of P by P^\ast. The polarity relation is also invariant under projective transformations that leave A invariant.

It follows from the definition that if $P, Q \in A$, then P and Q are both in the polar line of $P^\ast \cap Q^\ast$, the intersection point of the polar lines P^\ast and Q^\ast. It follows that the line PQ is the polar line of $P^\ast \cap Q^\ast$. As a consequence, the polarity relation preserves the incidence: three points are aligned if and only if their polar lines are concurrent.

This last fact allows us to have dual statements. For example, the dual statement of Pascal's theorem is Brianchon's theorem: if a conic is inscribed in a hexagon, then the three diagonals joining the opposite vertices of the hexagon are concurrent.

Returning to hyperbolic geometry, the link between polarity and the Klein model that we are going to use is the following proposition.

Proposition 1. Two lines l_1 and l_2 in the hyperbolic plane are orthogonal if and only if the pole of l_1 is contained in the extension of l_2 to the projective plane.

In particular, if l_1 and l_2 are two lines that do not intersect in the hyperbolic plane, then they have a unique common perpendicular that is the polar line of their intersection point in the projective plane.

The proposition follows from the projective invariance of the hyperbolic metric and the polarity relation under projective transformations leaving A invariant, since one can always find such a projective transformation leaving A
invariant and bringing the intersection of \(l_1\) and \(l_2\) to the center of \(A\); in this case, the proposition is easy to check.

We can now restate Pascal's theorem in terms of hyperbolic geometry. Considering the polar lines \(l_1\), \(l_2\), and \(l_3\) of the points \(X, Y,\) and \(Z\) of the statement of Theorem 1, we obtain the following equivalent statement.

Proposition 2. Let ABCDEF be an ideal hyperbolic hexagon. Let \(l_1\) be the common perpendicular to \(AB\) and \(DE\), \(l_2\) the common perpendicular to \(BC\) and \(EF\), and \(l_3\) the common perpendicular to \(CD\) and \(FA\). Then \(l_1, l_2,\) and \(l_3\) are concurrent.

Proof of Proposition 2
The proof of Proposition 2 is based on the hyperbolic version of an elementary statement on triangles; the hyperbolic case is shown in Figure 2.

Theorem 2. Let PQR be a triangle. Then the angle bisectors of PQR are concurrent.

Remark 1. Theorem 2 holds for Euclidean, spherical, and hyperbolic triangles. The proof is, in all three cases, elementary. A point of a triangle is in the bisector of an angle if and only if it is at equal distance from the two corresponding edges. Therefore, the intersection point of two angle bisectors is at equal distance from all three edges, and is therefore contained in the third bisector.

Lemma 1. Let ABDE be an ideal hyperbolic quadrilateral. Then the common orthogonal to AB and DE is the angle bisector of the lines AD and BE.

Proof. Let \(l\) be the angle bisector of the lines AD and BE. The hyperbolic reflection on \(l\) exchanges \(A\) and \(B\), so the line \(AB\) is preserved by the reflection. Thus, the angle bisector of the two lines is orthogonal to \(AB\). Similarly, \(l\) is also perpendicular to \(DE\), so it is precisely the common perpendicular to \(AB\) and \(DE\).

Proof of Proposition 2. If the diagonals \(AD, BE,\) and \(CF\) are concurrent at a point \(P\), then Lemma 1 implies that \(l_1, l_2,\) and \(l_3\) contain \(P,\) and are therefore concurrent.

Now suppose that the diagonals \(AD, BE,\) and \(CF\) are not concurrent. We call \(P\) the intersection point of \(BE\) and \(CF, Q\) the intersection point of \(AD\) and \(CF,\) and \(R\) the intersection point of \(AD\) and \(BE\).

It follows from Lemma 1 that the angle bisector of \(PQR\) at \(P\) is the common perpendicular \(l_1\) to \(AB\) and \(DE,\) while the angle bisector of \(PQR\) at \(Q\) is the common perpendicular \(l_2\) to \(BC\) and \(EF,\) and the angle bisector of \(PQR\) at \(R\) is the common perpendicular \(l_3\) to \(CD\) and \(FA\).

By Theorem 2 applied to the triangle \(PQR,\) the lines \(l_1, l_2,\) and \(l_3\) are concurrent, and the result follows.

The Möbius Generalization
In 1847, Möbius proved a generalization of Pascal's theorem for \((4n + 2)\)-gons [5].

Theorem 3 (Möbius). Let \(A_1A_2\ldots A_{4n+2}\) be a cyclic \((4n + 2)\)-gon. Let \(X_1, \ldots, X_{2n+1}\) be the intersection points of the pairs of opposite sides of \(A_1A_2\ldots A_{4n+2}.\) If \(X_1, \ldots, X_{2n}\) are aligned, then \(X_{2n+1}\) lies on the same line as \(X_1, \ldots, X_{2n}\).

By considering the polar lines \(l_1, \ldots, l_{2n+1}\) of \(X_1, \ldots, X_{2n+1},\) we obtain the corresponding hyperbolic statement, for which the proof of Proposition 2 extends easily.

Proposition 3. Let \(A_1A_2\ldots A_{4n+2}\) be a hyperbolic ideal \((4n + 2)\)-gon. Let \(l_1, \ldots, l_{2n+1}\) be the common perpendicular to the pairs of opposite sides of \(A_1A_2\ldots A_{4n+2}.\) If \(l_1, \ldots, l_{2n}\) are concurrent, then the common intersection point belongs also to \(l_{2n+1}\).

For each \(i \in \{1, \ldots, 2n + 1\},\) let \(m_i\) be the line joining \(A_i\) and \(A_{i+2n+1}.\) Let \(R_i\) be the union of the two quadrants defined by \(m_i\) and \(m_{i+1}\) that contain the sides \(A_iA_{i+1}\) and \(A_{i+2n+1}A_{i+2n+2,}\) as in Figure 3, where the indices are taken modulo \(2n + 1.\) Observe that by Lemma 1, the line \(l_i\) is the set of points of \(R_i\) that are at the same distance from \(m_i\) and \(m_{i+1}.\) If \(l_1, \ldots, l_{2n}\) are concurrent at a point \(P,\) then \(P\) is at the same distance from all the lines \(m_i,\) so in particular, it is at the same distance from \(m_{2n+1}\) and \(m_1.\) The only remaining point to complete the proof (and the reason the statement is false for \(4n\)-gons) is given by the following lemma.

Lemma 2. If \(P \in R_1 \cap \cdots \cap R_{2n},\) then \(P \in R_1 \cap \cdots \cap R_{2n+1}.

Proof. Consider Cartesian equations for the lines \(m_i,\) which we still denote by \(m_i\), so \(m_i(A_i) = m_i(A_{i+2n+1}) = 0.\)
Up to changing signs, we can suppose that $m_i(A_i+1) > 0$. Thus, for each $i \in \{1, \ldots, 2n\}$, the region R_i is defined by the inequality $m_im_{i+1} < 0$, but the region R_{2n+1}, bounded by m_{2n+1} and m_1, is defined by $m_{2n+1}m_1 > 0$. Now, if $P \in R_1 \cap \cdots \cap R_{2n}$, then
$$m_1(P)m_2(P) < 0, \ldots, m_{2n}(P)m_{2n+1}(P) < 0.$$ On multiplying this even number of inequalities, we obtain $m_{2n+1}(P)m_1(P) > 0$, so $P \in R_{2n+1}$.

Since he first met Pascal’s Mysticum, Conway had resolved to understand it all someday. We hope that the link between Pascal’s theorem and hyperbolic geometry presented in this note offers a slightly different point of view on this beautiful piece of mathematics and will encourage others to go down the same path of complete understanding.

ACKNOWLEDGMENTS

The authors are grateful to Arseniy Akopyan for pointing out Reference [7]. Both authors were partially supported by FNR grant AGoLoM OPEN/16/11405402.

Miguel Acosta
Department of Mathematics
Université du Luxembourg
Maison du Nombre, 6, Avenue de la Fonte L-4364 Esch-sur-Alzette
Luxembourg
e-mail: miguel.acosta@normalesup.org

Jean-Marc Schlenker
Department of Mathematics
Université du Luxembourg
Maison du Nombre, 6, Avenue de la Fonte L-4364 Esch-sur-Alzette
Luxembourg
e-mail: jean-marc.schlenker@uni.lu

REFERENCES

[1] John Conway and Alex Ryba. The Pascal Mysticum Demystified.
Mathematical Intelligencer 34:3 (2012), 4–8.

[2] John Conway and Alex Ryba. Extending the Pascal Mysticum.
Mathematical Intelligencer 35:2 (2013), 44–51.

[3] H. S. M. Coxeter and S. L. Greitzer. *Geometry Revisited*,
New Mathematical Library vol. 10. Random House, 1967.

[4] Kostiantyn Drach and Richard Evan Schwartz. A hyperbolic view of the seven circles theorem.
Mathematical Intelligencer 42:2 (2020), 61–65.

[5] A. F. Möbius. Verallgemeinerung des Pascalschen Theorems,
das in einen Kegelschnitt beschriebene Sechseck betreffend.
Journal für die Reine und Angewandte Mathematik 1848:36
(January 1848), 216–220.

[6] Blaise Pascal. *Essay pour les coniques*, 1640. OEuvres, edited by
Brunschvigg et Boutroux. Available at
https://www.larousse.fr/encyclopedia/images/Pascal_Essai_pour_les_coniques/1314099.

[7] Jürgen Richter-Gebert. *Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry*. Springer, 2011.

[8] Gédéon Tallemant des Réaux. *Les Historiettes de Tallemant*.
Nabu Press, 2011.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.