PCR-based Assay for the Specific Detection of *Pseudomonas syringae* pv. *tagetis* using an AFLP-derived Marker

Eun-Sung Song¹, Song-Yi Kim², Soo-Cheon Chae³, Jeong-Gu Kim¹, Heejung Cho¹, Seunghwan Kim¹ and Byoung-Moo Lee¹

¹National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea
²Department of Horticulture, Kong-Ju National University, Yesan 340-802, Korea

A PCR method has been developed for the pathovar-specific detection of *Pseudomonas syringae* pv. *tagetis*, which is the causal agent of bacterial leaf spots and apical chlorosis of several species within the Compositae family. One primer set, PSTF and PSTR, was designed using a genomic locus derived from an amplified fragment length polymorphism (AFLP) fragment produced a 554-bp amplicon from 4 isolates of *P. syringae* pv. *tagetis*. In DNA dot-blot analysis with the PCR product as probe, a positive signal was identified in only 4 isolates of *P. syringae* pv. *tagetis*. These results suggest that this PCR-based assay will be a useful method for the detection and identification of *P. syringae* pv. *tagetis*.

Keywords: AFLP, Detection, PCR, *Pseudomonas syringae* pv. *tagetis*

Introduction

Pseudomonas syringae pv. *tagetis* was first described in Denmark as a pathogen that affects marigold production (Hellmers, 1955). It is now known as a phytopathogenic bacterium that is the causal agent of bacterial leaf spots and apical chlorosis in several species within the family Compositae: African marigold (*Tagetes erecta* L.), sunflower (*Helianthus annuus* L.), common ragweed (*Ambrosia artemisiifolia* L.), Jerusalem artichoke (*Helianthus tuberosus* L.), dandelion (*Taraxacum officinale* Weber), compass plant (*Silphium perfoliatum* L) and another sunflower species (*Helianthus salicifolius* A. Diter) (Gulya et al., 1981; Hellmers, 1955; Rhodeshamel and Durbin, 1985; Rhodeshamel and Durbin, 1989a; Shane and Baumer, 1984; Syer and Durbin, 1982).

P. syringae pv. *tagetis* produces a toxin (tagetitoxin) in host leaves that is then translocated to emerging leaves, where it inhibits RNA polymerase III, thereby preventing chloroplast biogenesis and resulting in apical chlorosis (Mathews and Durbin, 1990; Steinberg et al., 1990). The pathogens are divided into three classes based on their capability to produce tagetitoxin: class 1 and 2 strains produce tagetitoxin in plants; class 3 strains do not produce the toxin (Rhodehamel and Durbin, 1989b).

There are many reports that specific detection methods for phyto toxin-producing *P. syringae* pathovars have been developed based on genes required for their production (Bereswill et al., 1994; Lydon and Patterson, 2001; Schaad et al., 1995; Sorensen et al., 1998). Recently, a PCR protocol to distinguish *P. syringae* pv. *tagetis* from other *P. syringae* pathovars and closely related species was developed based on genes required for tagetitoxin production (Kong et al., 2004). However, this approach is unable to distinguish the bacterium from other *Pseudomonas* isolates at the pathovar level. Furthermore, *Pseudomonas* species other than *P. syringae* pv. *tagetis* have been reported to induce apical chlorosis in Canada thistle and pea (Suzuki et al., 2003; Zhang et al., 2002). Therefore, a PCR-based assay that is able to unambiguously distinguish *P. syringae* pv. *tagetis* from *P. syringae* pv. *helianthi* and other apical chlorosis-inducing *Pseudomonas* species is needed.

In this study, we report the development of a pathovar-specific marker derived from the AFLP technique for detecting and distinguishing *P. syringae* pv. *tagetis* from other pathovars and species of *Pseudomonas* and *Xanthomonas*. The specificity of the PCR-based assay using pathovar-specific primers was validated by testing 47 isolates collected from various geographical
regions and host plants.

Material and Methods

Bacterial strains and DNA isolation. The bacterial strains that are listed in Table 1 were obtained from the Korean Agricultural Culture Collection (KACC) in Suwon, Korea, and the Belgian Co-ordinated Collections of Micro-organisms (BCCM) in Brussels, Belgium. The genomic DNA was isolated as described previously (Song et al., 2014).

AFLP PCR analysis. The AFLP assay was performed using a previously described method (Song et al., 2014), with minor modification. Genomic DNA (approximately 300 ng) was

Table 1. List of bacterial strains used in this study

No.	Species	Source	Geographical origin	Hosts
1	Pseudomonas syringae pv. tagetis	LMG 5090	Zimbabwe	Tagetes erecta
2	Pseudomonas syringae pv. tagetis	LMG 5684	Australia	Tagetes erecta
3	Pseudomonas syringae pv. tagetis	LMG 5685	Australia	Tagetes erecta
4	Pseudomonas syringae pv. tagetis	LMG 5686	USA	Tagetes sp.
5	Pseudomonas syringae pv. helianthi	LMG 2198	Zambia	Helianthus annuus
6	Pseudomonas syringae pv. helianthi	LMG 5067	Mexico	Helianthus annuus
7	Pseudomonas syringae pv. helianthi	LMG 5556	Canada	Helianthus annuus
8	Pseudomonas syringae pv. helianthi	LMG 5557	Germany	Helianthus annuus
9	Pseudomonas syringae pv. helianthi	LMG 5558	New Zealand	Helianthus annuus
10	Pseudomonas syringae pv. syringae	LMG 1274	UK	Zea mays
11	Pseudomonas syringae pv. syringae	LMG 5082	UK	Zea mays
12	Pseudomonas syringae pv. syringae	LMG 5494	Hungary	Prunus avium
13	Pseudomonas syringae pv. actinidiae	KACC10772		
14	Pseudomonas syringae pv. aptata	LMG 5059	USA	Beta vulgaris
15	Pseudomonas syringae pv. atrofaciens	LMG 5095	New Zealand	Triticum aestivum
16	Pseudomonas syringae pv. atrofaciens	LMG 5000	UK	Thacher wheat
17	Pseudomonas syringae pv. japonica	LMG 5068	Japan	Hordeum vulgare
18	Pseudomonas syringae pv. tomato	LMG 5093	UK	Lycopersicon esculentum
19	Pseudomonas syringae pv. tabaci	LMG 5393	Hungary	Nicotiana tabacum
20	Pseudomonas syringae pv. mori	LMG 5074	Hungary	Morus alba
21	Pseudomonas syringae pv. antirrhini	LMG 5057	UK	Antirhinum majus
22	Pseudomonas syringae pv. glycinia	LMG 5066	New Zealand	
23	Pseudomonas syringae pv. delphinii	LMG 5381	New Zealand	Delphinium sp.
24	Pseudomonas syringae pv. ericobryae	LMG 2184	USA	Erichobrya japonica
25	Pseudomonas syringae pv. lachrymans	LMG 5070	USA	Cucumis sativus
26	Pseudomonas syringae pv. morsprunorum	LMG 5075	UK	Prunus domestica
27	Pseudomonas syringae pv. morsprunorum	LMG 2222	UK	Prunus avium cv. Napoleon
28	Pseudomonas syringae pv. garcae	LMG 5064	Brazil	Coffea arabica
29	Pseudomonas syringae pv. delphinii	LMG 2177	UK	Delphinium elatum
30	Pseudomonas syringae pv. pisi	LMG 5383	Canada	Pisum sativum
31	Pseudomonas syringae pv. pisi	LMG 5384	Italy	Pisum sativum
32	Pseudomonas syringae pv. sesami	LMG 2289	Yugoslavia	
33	Pseudomonas azotofornans	KACC10302	UK	
34	Pseudomonas fuscovaginae	LMG 2158	Japan	Oryza sativa
35	Pseudomonas coronafaciens	LMG 5060	UK	Avena sativa
36	Pseudomonas citrusellolis	LMG 18378	USA	soil collected under pine trees
37	Pseudomonas oryzaehabitans	LMG 7040	Japan	rice paddy
38	Pseudomonas mucidaensis	LMG 2223	USA	
39	Pseudomonas graminis	LMG 21661	Germany	grasses
40	Pseudomonas jessenii	LMG 21605	France	
41	Pseudomonas libanensis	LMG 21606	Lebanon	
42	Pseudomonas lundensis	LMG 13517	USA	
43	Pseudomonas taetrolens	LMG 2336	USA	
44	Xanthomonas oryzae pv. oryzae	KACC10331	Korea	
45	Xanthomonas campestris pv. citri	KACC10444	Korea	
46	Xanthomonas campestris pv. glycines	KACC10445	Zambia	
47	Xanthomonas campestris pv. vesicatoria	LMG 905	Japan	

*KACC, Korean Agricultural Culture Collection, Korea (http://www.genebank.go.kr/); LMG, The Belgian Co-ordinated Collections of Micro-organisms (BCCM), Belgium; ‘-’ unknown.
digested with EcoRI and MseI enzymes and was then ligated to the ends of the restricted DNA fragments with EcoRI adaptor and MseI adaptor (Table 2). A pre-selective PCR reaction was performed with the AccuPower PCR Premix (Bioneer, Daejeon, Korea) in a 25 μl reaction mixture containing 1 μl of DNA (50 ng/μl), 10 pmol of Eco0 (5'-GACTGCGTACCAATTC-3'), and 10 pmol of Ms0 (5'-GATGAGTCCTGAGTAA-3'). The pre-selective PCR and AFLP PCR amplification were conducted as described previously (Song et al., 2014). The amplified products were resolved in a 1.2% agarose gel with a 1-kb DNA ladder (TNT Research, Seoul, Korea) as a reference, stained with ethidium bromide, and visualized on a UV transilluminator.

Primer design and PCR amplification. The specific DNA fragment was eluted as described previously (Song et al., 2014). DNA was directly used in the ligation reaction with a pGEM-T Easy Vector (Promega, Madison, WI, USA) and was then transferred into competent DH5α (RBC Bioscience, Taipei, Taiwan) cells according to the supplier's instructions. The sequencing reaction was performed with an ABI Prism 3730 DNA Sequencer (Life Technologies, Carlsbad, CA, USA). After trimming the vector sequence, one pair of primers was designed based on the obtained sequence.

The specificity of the designed primers was evaluated against *P. syringae* pv. *tagetis* and other *Pseudomonas* and *Xanthomonas* species. The PCR reaction was performed with premixed polymerase (Taq PreMix; TNT Research, Seoul, Korea) in a 20 μl reaction mixture containing 1 μl of DNA (50 ng/μl), 10 pmol of PSTF (5'-AATGAGCTGAAATTCAACGG-3'), and 10 pmol of PSTR (5'-CGACCTGGATATAAGTTGCC-3'). The PCR amplification was performed with a T100 Thermal Cycler (Bio-Rad, Hercules, CA, USA) under the following conditions: initial denaturation (5 min at 96°C), 25 cycles (15 s at 96°C; 15 s at 62°C; and 30 s at 72°C), and a final extension (5 min at 72°C). Subsequently, 5 μl of each reaction mixture was resolved in a 1.2% agarose gel, stained with ethidium bromide, and visualized on a UV transilluminator.

DNA dot-blot analysis. A DNA dot-blot analysis was performed using a previously described method (Kang et al., 2007), with some modifications. A total volume of 5 μl of genomic

Table 2. Oligonucleotide adaptors and primers used for AFLP analysis

No.	Primer name	Sequence (5’ - 3’)	No.	Primer name	Sequence (5’ - 3’)
1	EcoR-Adaptor	Forward CTCTAGAAGCTGACC	1	Mse-Adaptor	Forward TACTCAGGACTCAT
2	EcoR + 0	Reverse AATTGAGCTTACGCTTAC	2	Reverse GACGATGACTCTGAG	
3	EcoR + 3	Eco0 GACTGCGTACCAATTC	3	Mse + 0	Ms0 GATGAGTCTGAGTAA
4	Eco1	Eco1 GACTGCGTACCAATTCAG	4	Ms1	Ms2 GATGAGTCTGAGTAAAC
5	Eco2	Eco2 GACTGCGTACCAATTCAGC	5	Ms2	Ms3 GATGAGTCTGAGTAAAC
6	Eco3	Eco3 GACTGCGTACCAATTCAC	6	Ms3	Ms4 GATGAGTCTGAGTAAC
7	Eco4	Eco4 GACTGCGTACCAATTCACA	7	Ms4	Ms5 GATGAGTCTGAGTAAAC
8	Eco5	Eco5 GACTGCGTACCAATTCACC	8	Ms5	Ms6 GATGAGTCTGAGTAAAC
9	Eco6	Eco6 GACTGCGTACCAATTCAGC	9	Ms6	Ms7 GATGAGTCTGAGTAAC
10	Eco7	Eco7 GACTGCGTACCAATTCACT	10	Ms7	Ms8 GATGAGTCTGAGTAAC
11	Eco8	Eco8 GACTGCGTACCAATTCAG	11	Ms8	Ms9 GATGAGTCTGAGTAAAC
12	Eco9	Eco9 GACTGCGTACCAATTCAGA	12	Ms9	Ms10 GATGAGTCTGAGTAAAC
13	Eco10	Eco10 GACTGCGTACCAATTCAGT	13	Ms10	GATGAGTCTGAGTAAAC

Fig. 1. Agarose gel electrophoresis of PCR amplicons amplified from *Pseudomonas syringae* pv. *tagetis* isolates using the pathovar-specific PSTF/PSTR primer set. Lane M: size marker (1-kb ladder); lanes 1–47: *Pseudomonas* and *Xanthomonas* isolates (numbers 1–47, respectively, in Table 1).
DNA (approximately 250 ng) was spotted onto an Amersham Hybond-N+ nylon membrane (GE Healthcare, Little Chalfont, UK), which was then air-dried and baked at 80°C for 2 h. The PCR product from *P. syringae* pv. *tagetis* LMG 5090 was labeled with \([a-32P]\) dCTP using a random primer method according to the manufacturer’s instructions (Ladderman Labeling Kit, Takara Bio, Otsu, Japan). The pre-hybridization and hybridization were conducted as described by Sambrook and Russell (2001). The membrane was exposed to an imaging screen (Fuji, Tokyo, Japan) for 3 h, and captured radiation was visualized using a Personal Molecular Imager system (Bio-Rad).

Fig. 2. DNA dot-blot analysis using PCR amplicon with PSTF and PSTR from *Pseudomonas syringae* pv. *tagetis* LMG 5090. Lanes 1–4: *P. syringae* pv. *tagetis*; lanes 5–47: corresponding to isolates numbered in Table 1.

Discussion

The plant pathogen *P. syringae* pv. *tagetis* causes apical chlorosis and bacterial leaf spots in various Asteraceae, including the weeds common ragweed and dandelion (Gulya et al., 1981; Hellmers, 1955; Rhodehamel and Durbin, 1985; Rhodehamel and Durbin, 1989a; Shane and Baumer, 1984; Styer and Durbin, 1982). Since the isolation of this pathogen from weeds displaying apical chlorosis, it has been evaluated as a biological agent to control Canada thistle in soybean and woollyleaf bursage in cotton (Gronwald et al., 2002; Sheikh et al., 2001). Apical chlorosis-inducing *Pseudomonas* species other than this pathogen have also been reported in Canada thistle and pea (Suzuki et al., 2003; Zhang et al., 2002). However, pathovar-specific primers, which could be used for identifying a particular *P. syringae* pv. *tagetis*, are still lacking. Therefore, we utilized the AFLP technique to identify a specific polymorphic amplicons for *P. syringae* pv. *tagetis*. Polymorphic band produced only from this pathogen was cloned and sequenced. The sequence was used...
to design pathovar-specific primers that precisely distinguished \(P. syringae \) pv. \(tagetis \) from other pathovars and species of \(Pseudomonas \) and \(Xanthomonas \) (Fig. 1).

Previously, Kong \textit{et al.} (2004) described a PCR method for the identification of \(P. syringae \) pv. \(tagetis \) based on genes required for tagetitoxin production, but was unable to differentiate between \(P. syringae \) pv. \(tagetis \) and \(P. syringae \) pv. \(helianthi \) or \(P. syringae \) pv. \(atrophaciens \). In contrast, the PCR technique described in this study was able to unambiguously differentiated 4 isolates of \(P. syringae \) pv. \(tagetis \) from among other \(Pseudomonas \) and \(Xanthomonas \) isolates, including both \(P. syringae \) pathovars (Fig. 1). Furthermore, a DNA dot-blot analysis using the PCR product as a probe showed a positive signal for all the \(P. syringae \) pv. \(tagetis \) (Fig. 2), confirming that the entire 554-bp amplicon was highly conserved in this pathogen. This fragment was analyzed by a BLASTN search and showed no significant matches with known nucleotide sequences. BLASTX results revealed that the sequences showed relatively low similarity (32%) to the hypothetical protein from \(Paenibacillus \) sp. WLY78. These results suggest that the specificity of the primers for \(P. syringae \) pv. \(tagetis \) described in the present study is due to the uniqueness of the DNA sequence within the amplified region.

In conclusion, the results presented herein indicate that this PCR-based assay could be a reliable and useful method for the specific detection of \(P. syringae \) pv. \(tagetis \) strains.

Acknowledgements

This study was supported by the 2014 Post-doctoral Fellowship Program (Project No. PJ0100852014) of the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

References

Bereswill, S., Bugert, P., Volksh, B., Ullrich, M., Bender, C. L. and Geider, K. 1994. Identification and relatedness of coronaite-producing \(Pseudomonas syringae \) pathovars by PCR analysis and sequence determination of amplification products. \textit{Appl. Environ. Microbiol.} 60: 2924–2930.

Gronwald, J. W., Plaisance, K. L., Ide, D. A. and Wyse, D. L. 2002. Assessment of \(Pseudomonas syringae \) pv. \(tagetis \) as a biocontrol agent for Canada thistle. \textit{Weed Sci.} 50: 397–404.

Gulya, T. J., Urs, R. and Bantatti, E. E. 1981. Apical chlorosis of sunflower caused by \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Plant Dis.} 66: 598–600.

Hellmers, E. 1955. Bacterial leaf spot of African marigold (\textit{Tagetes erecta}) caused by \(Pseudomonas tagetis \) sp. \textit{n. Acta Agric. Scand.} 5: 185–200.

Kang, M. J., Lee, M. H., Shim, J. K., Seo, S. T., Shrestha, R., Cho, M. S., Hahn, J. H. and Park, D. S. 2007. PCR-based specific detection of \(Ralstonia solanacearum \) by amplification of cytochrome c1 signal peptide sequences. \textit{J. Microbiol. Biotechnol.} 17: 1765–1771.

Kong, H., Patterson, C. D., Zhang, W., Takikawa, Y., Suzuki, A. and Lydon, J. 2004. A PCR protocol for the identification of \(Pseudomonas syringae \) pv. \(tagetis \) based on genes required for tagetitoxin production. \textit{Biol. Control.} 30: 83–89.

Lydon, J. and Patterson, C. D. 2001. Detection of tabtoxin-producing strains of \(Pseudomonas syringae \) by PCR. \textit{Lett. Appl. Microbiol.} 32: 166–170.

Mathews, D. E. and Durbin, R. D. 1990. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and \(Escherichia coli. \) \textit{J. Biol. Chem.} 265: 493–498.

Rhodehamel, N. H. and Durbin, R. D. 1985. Host range of strains of \(Pseudomonas syringae \) pv. \(tagetis \). Plant Dis. 69: 589–591.

Rhodehamel, N. H. and Durbin, R. D. 1989a. Two new hosts of \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Plant Dis.} 73: 368. (Abstract)

Rhodehamel, N. H. and Durbin, R. D. 1989b. Toxin production by strains of \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Physiol. Mol. Plant Pathol.} 35: 301–311.

Sambrook, J. and Russell, D. W. 2001. \textit{Molecular cloning: a laboratory manual}, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Schaa, N. W., Cheong, S. S., Tamaki, S., Hatziolouka, E. and Panopoulos, N. J. 1995. A combined biological and enzymatic amplification (BIO-PCR) technique to detect \(Pseudomonas syringae \) pv. \(phaseolicola \) in bean seed extracts. \textit{Phytopathology} 85: 243–248.

Shane, W. W. and Baumer, J. S. 1984. Apical chlorosis and leaf spot of Jerusalem artichoke incited by \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Plant Dis.} 68: 257–260.

Sheik, T., Wheeler, T. A., Dotray, R. A. and Zak, J. C. 2001. Biological control of woollyleaf bursage (\textit{Ambrosia grayi}) with \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Weed Technol.} 15: 375–381.

Song, E. S., Kim, S. Y., Noh, T. H., Cho, H. J., Chae, S. C. and Lee, B. M. 2014. PCR-based assay for rapid and specific detection of the new \(Xanthomonas oryzae \) pv. \(oryzae \) K3a race using an AFLP-derived marker. \textit{J. Microbiol. Biotechnol.} 24: 732–739.

Sorensen, K. N., Kim, K. H. and Takemoto, J. Y. 1998. PCR detection of cyclic lipodepsinapeptide-producing \(Pseudomonas syringae \) pv. \(syringae \) and similarity of strains. \textit{Appl. Environ. Microbiol.} 64: 226–230.

Steinberg, T. H., Mathews, D. E., Durbin, R. D. and Burgess, R. R. 1990. Tagetitoxin: a new inhibitor of euakaryotic transcription by RNA polymerase \textit{III}. \textit{J. Biol. Chem.} 265: 499–505.

Styer, D. J. and Durbin, R. D. 1982. Common ragweed: a new host of \(Pseudomonas syringae \) pv. \(tagetis \). \textit{Plant Dis.} 66: 71. (Abstract)

Suzuki, A., Togawa, M., Ohta, K. and Takikawa, Y. 2003. Occurrence of white top of pea caused by a new strain of \(Pseudomonas syringae \) pv. \(pisi \). \textit{Plant Dis.} 87: 1404–1410.

Zhang, W., Sulz, M., Mykietiak, T., Cole, D., Andreik, R., Tewari, J. P. and Harker, N. 2002. First report on Canada thistle disease caused by a bacterium in Alberta. \textit{Can. J. Plant Pathol.} 24: 507. (Abstract)