Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer

D. Wang, J.Th.M. Plukker, R.P. Coppes

ABSTRACT

Esophageal cancers (EC) are highly aggressive tumors, commonly presented in a locally advanced stage with a poor prognosis and survival. Up to 50% of the patients are eligible for treatment with curative intent and receive the standard treatment with neoadjuvant chemoradiation (nCRT) and surgery. Currently, pathologic complete response to nCRT is 20–30%, with a partial or no response in about 50% and 20%, respectively. EC recurrences occur frequently even after successful anti-cancer treatment, suggesting high aggressiveness with increased metastatic potential. A tumor sub-population of so-called cancer stem cells (CSCs), is known to display a high metastatic potential and resistance to conventional anti-cancer therapy, hereby being responsible for the unbenevolent clinical features. In this review, a concise overview will be given of the current literature on esophageal CSCs and related metastases. Esophageal CSC markers will be discussed followed by the pathways that initiate and sustain these cells. In addition, the cellular processes, epithelial-mesenchymal transition (EMT), hypoxia and autophagy, known to contribute to cancer stemness and metastasis will be explained. Finally, potential options for treatment also related to cancer genome atlas (TCGA) data on EC will be discussed.

1. Introduction

Esophageal cancer (EC) is currently the 8th most common malignancy worldwide and the 6th leading cause of cancer related death, accounting for more than 490,000 new cases and 400,000 deaths in 2014 (world cancer report 2014). The 5-year survival of this highly aggressive tumor is approximately 20% (www.cancer.org). At diagnosis, patients often present with locally advanced tumors, including lymph node involvement in more than 75%. Usually symptoms occur when the tumor has infiltrated over half of the circumference of the esophagus or has spread by direct local growth in the adventitial tissues, via lymph vessels to surrounding nodes and distantly through hemogenous dissemination. Distant metastases are frequently observed in the liver, lungs, bones, adrenal glands, kidney and brain [1]. There are two typical esophageal cancers, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC, predominantly present in the Eastern and Central Asian world, derives from dysplastic squamous cell epithelium that usually occurs in the upper two-third of the esophagus. EAC mainly develops in the distal esophagus, where ongoing gastroesophageal reflux esophagitis potentially transforms squamous epithelium into columnar intestinal epithelium that further evolves through low and high grade dysplasia into EAC [1,2]. Alcohol and tobacco are the most important risk factors of ESCC whereas EAC is associated with obesity, smoking and chronic gastroesophageal reflux disease (GERD) with premalignant Barrett's esophagus [3,4].

MARK

Funding

This work was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMW) (Grant number: 600000251).

Keywords:
Cancer stem cells
Metastases and esophageal cancer
markers to further characterize CSCs and investigate mechanisms involved in the regulation of cancer stemness [10,11]. CSCs are, in contrast to non-CSCs, thought to be dormant or quiescent [12,13] and therefore therapy resistant but when re-entering the cell cycle are able to form recurrences or metastases [11,13,14]. In vitro cancer sphere forming potential and in vivo tumor initiating potential are often used as read-outs for cancer stemness [15–17]. It is believed that CSCs represent a small percentage of all EC cells with the majority part consist of more differentiated cells [18], albeit this has recently been challenged by studies showing plasticity of differentiated tumor cells [19,20].

This review will focus on EC CSCs as a target for eliminating resistant and highly metastatic cell populations and the role of tumor microenvironment in facilitating this process.

2. Markers to identify esophageal CSCs

Although the use of markers to select CSC enriched populations is disputed due to the lack of universal markers owing to tumor heterogeneity, it tremendously contributed to current knowledge, including that of EC [20–22] (Fig. 1).

CD44, a lymphocyte homing receptor that has a role in adhesion, motility, proliferation and cell survival [23] has extensively been studied both as a single and combined marker for CSCs. Interestingly, several CD44 variants were suggested to be a prognostic marker for adenocarcinoma of Barrett’s esophagus [24] and ESCC [25]. Li et al. [26] first suggested tumor stem-like cells to express CD44, being enriched in culture and highly expressed after irradiation. Next, Zhao et al. [27] showed increased colony formation, drug resistance and ESCC tumor initiation of CD44 cells. Regrettfully, CD44 is being expressed by the majority of ESCCs in KYSE30 cells [28]. Combining CD44 with other markers greatly enhances its discriminative properties. As such, we [17] identified a CD44+/CD24− subpopulation with CSC-like characteristics in esophageal cell lines OE33 (EAC), OE21 (ESCC), and in EC tumor biopsies. CD24, a heat-stable cell surface antigen, has a role in cell–matrix and cell–cell interactions [17,29], albeit this has recently been challenged by studies showing plasticity of differentiated tumor cells [19,20].

Another cell surface marker potentially identifying EC CSCs is ABCG2, member of group G in the ATP-binding cassette (ABC) transporter family [41]. In healthy tissue ABCG2 transporter functions as a first line defense mechanism against cytotoxic substances. In the gastrointestinal tract, including the esophagus, ABCG2 is abundantly

Fig. 1. Overview of markers and pathways defining esophageal CSC populations. Cell surface markers ABCG2, CD90, ITGA7 and CD44 are used as single markers while CD44 can be used in combination with CD24 (CD44+/CD24−), CD133 (CD44+/CD133+), the intracellular marker ALDH1 (CD44+/ALDH1+ ) and ICAM1 (CD44+/ICAM1+) to identify CSCs. ALDH1 can also be used as a single marker. CD44 can be used alone or in combination with ABCG2 and CXCR4. CD271 is another CSC marker. Other read-outs for cancer stemness are the transcription factors Bmi-1, Nanog, Sox2 and Oct4. Hedgehog, Notch, WNT, PI3K/mTOR and Hippo pathways are implicated to regulate CSC populations leading to more proliferation, invasiveness, therapy resistance and higher metastatic potential.
expressed in the apical membrane of epithelial cells [42]. ABCG2 seems to play a role in the proliferation tumor initiation [43,44] and treatment resistance supported by reduced proliferation and migration potential of ABCG2 knockdown cells [45]. Moreover, high ABCG2 expression in ESCC surgical material correlated with the pathological tumor grading, TNM stages and with metastatic lymph nodes [43]. This suggests that ABCG2 may be an excellent marker for EC CSCs.

Additionally, CD90 or Thy-1 marked cells of EC cell lines showed increased sphere forming potential after serial passaging, efficiently generated tumors, were chemotherapy resistant, had increased invasiveness, migration and lung metastatic potential, when compared to CD90− cells, all indicative of CSC properties [46]. Integrin α7 (ITGA7), critical for modulating cell-matrix interactions, positive cells, co-express CD90 and has been suggested to mark EC CSCs with high metastatic potential [47]. Moreover, ITGA7 overexpressing cells highly expressed stemness genes (including Sox2, Oct-4 and Nanog), showed EMT features, had increased self-renewal and differentiation ability and showed chemotherapy resistance. Knock down of ITGA7 reduced all these characteristics indicating that ITGA7 could be a CSC marker and a potential therapeutic target [47]. CD133 (promin-1) has been identified as an EC CSC marker [48] and was suggested to be of prognostic value alone [49] or in combination with ABCG2 [48] or CXRC4 [50]. Finally, CD271 (p75 neurotropin receptor) expressing ESCC cells possessed CSC characteristics like self-renewal and chemotherapy resistance [51], metastatic capacity and could potential act as prognostic marker for ESCC [52]. Less usable for characterization and more general expressed in CSCs characteristic which express markers that might be of prognostic or predictive value. However, most data are derived from long established cell lines and tumor tissue biopsies. Patient specific organoids such as those of human metaplastic epithelia of Barrett’s esophagus by Sato et al. [15] could improve our insight in CSC of EC and related stem cells markers.

3. EC CSC signaling pathways

Wnt/β-catenin, Notch, Hedgehog and Hippo pathways play an important role in proliferation, differentiation, and self-renewal of stem cells, have been implicated in the regulation of EC CSCs and are potential therapeutic targets (Fig. 1). WNT10A, an activator of the Wnt/β-catenin pathway, was highly expressed in ESCC tissue which corresponded with poor outcome. WNT10A expressing cells, showed enrichment for CD44+/CD24− cells, increased self-renewal, invasive and metastatic potential shown by sphere forming assays and Boyden chamber assays, respectively [58]. Interestingly, Notch seems to co-drive cancer stemness in EC as inhibition of the Notch pathway using γ-secretase inhibitors downsized patient derived xenograft tumors, whereas the level of Notch activity in EC biopsies may predict response...
to nCRT [59]. The Hedgehog pathway activation has been shown to be associated with distant metastases, advanced tumor stage and higher TNM stage [60–62]. Moreover, Hedgehog pathway activation may lead to stimulation of EMT [11,61,63]. The PI3K/mTOR pathway integrates a variety of signals and has been shown to interact with the Hedgehog pathway [61,64,65]. Interestingly, mTOR inhibition enhances the cytotoxic effects of Hedgehog inhibition, suggesting a rational to combine both mTOR inhibitor and Hedgehog inhibitor in future therapy [64]. Recently, the Hippo pathway, that controls organ size during development has been linked to cancer stemness EC [11,12,64,66]. Expression of YAP1, Hippo coactivator, elevated SOX9 expression accompanied by the acquisition of CSC properties, whereas knockdown of YAP1 or the use of YAP1 inhibitor Verteporfin abolished CSC phenotypes [66]. Moreover, YAP1 mediates EGFR and confers chemoresistance [67]. Interference with all these pathways using small molecules could have therapeutic benefits.

4. Epithelial-mesenchymal transition (EMT)

During cancer progression, a fraction of cancer cells may reactivate EMT, originally necessary for the dissemination of different primitive cells to various parts of the embryo [68]. Cancer cells hijack this mechanism to invade and develop metastasis [69] (Fig. 2). EMT is characterized by loss of epithelial characteristics while transforming into a multipolar, more motile and spindle-like mesenchymal phenotype [14,69–71]. Cancer cells that have undergone EMT are able to cross the endothelium, enter the blood and the lymphatic system, to regain the epithelial phenotype via a reversed process called mesenchymal-epithelial transition once the proper niche is reached and regrow [70]. EC cells that have undergone EMT through tumor microenvironment initiated activation of WNT, TGF-β and Hedgehog pathway acquired hallmarks of CSCs such as increased invasiveness, metastases and poor survival [56,63,72–78]. Radiation may induce EMT through stimulation of TGF-β1 and HIF-1α signaling increasing CD44 expression and upregulation of transcription factors such as Slug, Snail and Twist or downregulation of PTEN [79,80].

5. Hypoxia

Hypoxia is a common characteristic in locally advanced solid tumors. Poor tumor vasculature creates intratumoral hypoxic areas, inducing neovascularization as a response to oxygen and nutrition deprivation [81,82]. Hypoxia activates hypoxia-inducible factor (HIF) 1 & 2 that modulates metabolism, deregulates stem cell proliferation, enhances aggressiveness and metastatic potential [81,82] (Fig. 2), reduces radiosensitivity [83,84] induced EMT, and changes cell cycle in EC [85,86]. Interestingly, inhibition of HIF1α suppresses tumorigenicity of ESCC both in vitro and in vivo [87]. Indeed, pretreatment biopsy levels of hypoxia and HIF1α correlate with therapy resistance and poor prognosis [77,88–90]. Although not shown in EC, hypoxia targets Notch, Wnt/β-catenin, Hedgehog, PI3K/mTOR and unfolded protein response (UPR) pathways to regulate EMT and CSC stemness [91] and is activated by a number of oncogenes or loss of tumor suppressor genes [81]. Inhibition of the PI3K/mTOR pathway or a hypoxic environment leads to activation of autophagy [91] and may also be of interest in EC. mTOR pathway is a master regulator of cellular growth, proliferation, survival and metabolism and negatively regulates autophagy in response to changes in oxygen level and energy status [92].

6. Autophagy

Autophagy is an evolutionarily conserved process of eukaryotic cells designed to serve as a survival mechanism in which cell components are captured by intracellular membrane structures, degraded and recycled [91]. Upon starvation, hypoxia, pathogen invasion and chemoradiation autophagy is upregulated to maintain cellular homeostasis and to provide energy [93]. Autophagy may be a protective mechanism in the early phases of tumorigenesis requiring high levels of protein synthesis for the tumor to grow rather than protein degradation [94]. As such, inhibition of autophagy could contribute to tumor growth [94]. However, established tumors hijack autophagy to promote survival in response to cellular stress during starvation, hypoxia and therapy [94] and activate EMT, increasing invasiveness, metastatic potential and CSCs [95] (Fig. 2).

For EC it was shown that chemotherapeutic resistant cells activated autophagy which made them able to recover after therapy in contrast to chemosensitive EC cells [96]. In addition, inhibition of autophagy in resistant cell lines induced sensitization to chemotherapy [96] whereas enhancing autophagy led to higher survival in EC [97,98]. Furthermore, whereas radiation can induce autophagy and promote cell survival, combination of autophagy inhibitors with radiation enhances its deleterious effects on the tumor [99,100]. Interestingly, autophagy related markers LC3II positively and p62 negatively correlated to poor prognosis in EC patients [101–104]. Altogether, also autophagy seems to contribute greatly to the gain of EC cancer stemness by increasing drug resistance, invasiveness and the development of metastases, and may offer great potential for interference strategies.

7. The Cancer Genome Atlas (TCGA)

In the search for potential novel targets to eradicate highly metastatic CSC populations in EC, data from the TCGA network can be used. In the TCGA for gastroesophageal cancer, four subsets of genetic alterations have been identified; Epstein-Barr virus (EBV) related tumors with PIK3CA mutations/PI3K-L1/2 amplifications, microsatellite-instability-high (MSI-H) tumors, genomic stable tumors (GS) and tumors with chromosomal instability (CIN) [105].

Moreover, in the TCGA analyses, a pattern of multiple genetic alterations has been detected with significant different molecular changes between the two main histologic types of esophageal cancer [106]. In EAC, ERBB2, VEGFA, GATA4 and GATA6 may be altered more frequently than in ESCC [105,106]. Reversely, alterations in the mTOR pathway genes PIK3CA/ACT and PTEN, TP63/SOX2 amplification and mutations in NOTCH1 are more frequently observed in ESCC [105,106]. TCGA analyses may be used in EC CSC derived organoids in both identification and validation of potentially novel biomarkers. Moreover, genome guided trials with stratification based on patient tumor derived CSC containing organoids using the TCGA distinct subsets of genetic alterations seem promising and should be developed in the near future.

8. Clinical perspectives

Although successful EC cancer therapy is measured mainly by the level of downsizing the primary tumor and minimizing metastases [107], CSCs may survive therapy and subsequently re-enter cell cycle. Therefore, future therapies should consider CSCs. Due to the anecdotal nature of the current knowledge, CSC markers have not been implemented in EC for prognosis or to monitor disease progression. Interestingly, enrichment of CSCs could result from current anti-cancer therapies due to death of bulk tumor cells and the dedifferentiation of EC cells e.g. activating EMT and autophagy [79,80,99,100]. Dedifferentiation of non-CSCs to CSCs induced by tumor microenvironment remains a huge challenge as it is not simply targeting a static population [107]. Following this notion, future anti-cancer therapy should be based on 1) eliminating the existing CSC population, by e.g. inhibitors of aberrant activated signaling pathways and 2) prevent dedifferentiation, hereby pushing the cancer cells into differentiation and making them more susceptible to conventional chemoradiation. Patient’s specific aberrant activation of e.g. HH, WNT, Notch pathways, hypoxia and autophagy can be exploited to find new personalized therapeutic approaches...
target.

8.1. HH inhibitors

Although HH inhibitors are explored extensively in clinical trials for different solid tumors, clinical trials on EC are limited. Vismodegib, a Ptc1 and SMO inhibitor regretfully did not show a survival benefit in gastroesophageal junction tumors in combination with chemotherapy (FOLFOX) [108]. Currently, Vismodegib combined with nCRT is under investigation in a clinical trial in HH activated EAC (www.NIH.com). In our hands, Vismodegib did reduce the CSC pool in EC cell lines (unpublished). Another SMO inhibitor, BMS-833923 combined with chemotherapy is currently under investigation in inoperable metastatic EC patients [109], whereas the use of SMO inhibitors sonidegib and taladegib are being explored currently [109,110].

8.2. WNT, Notch and YAP1 inhibitors

A few WNT inhibitors, PRI-724, LGK-974, Vantictumab and OMP-54F28 as a single agent or in combination with conventional therapy, are currently in clinical trial in solid cancers [109]. Unfortunately, trials on EC still need to be conducted [109]. The γ-secretase inhibitors, RO4929097, LY900009, PF-03084014, BMS-906024 and BMS-986115, and MED10039 (anti-DLL4), OMP-59R5 (anti-Notch2/3), OMP-52M51 (anti-Notch1), Demecizumab (anti-DLL4) and Enotucizumab (anti-DLL4) all inhibiting Notch signaling have made it to clinical studies in solid cancers [109]. Unfortunately, so far to our knowledge none of these drugs have been used on EC yet [109]. YAP1, the major effector target of the Hippo pathway, can also be inhibited by the small molecule Verteporfin. However, its significance is yet to be validated in clinical trials.

8.3. Hypoxia and autophagy

Smit and colleagues showed that CD44+/CD24− cells reside in hypoxic niches of EC xenograft derived tumors [17]. Preliminary data from our lab show increases in EC CSCs under low oxygen conditions, whereas the use of SMO inhibitors sonidegib and taladegib are being explored currently [109,110].

eradicated leading to a more satisfactory outcome for EC patients.

Conflict of interest

The authors declare that there are no conflicts of interest.

Acknowledgement

We would like to thank E. Booxem for the design of both figures.

References

[1] K.J. Napier, M. Scheerer, S. Mista, Esophageal cancer: a review of epidemiology, pathogenesis, staging workup and treatment modalities, World J. Gastrointest. Oncol. 6 (May (5)) (2014) 112–120.
[2] M. Hong, Y. Naganaki, T. Shoji, Epidemiology of esophageal cancer: orient to occident. Effects of chronology, geography and ethnicity, J. Gastroenterol. Hepatol. 24 (May (5)) (2009) 729–735.
[3] J. Lagergren, R. Bergstrom, A. Lindgren, O. Nyren, The role of tobacco, snuff and alcohol use in the etiology of cancer of the oesophagus and gastric cardia, Int. J. Cancer 85 (February (3)) (2000) 340–346.
[4] M.D. Gannon, J.B. Schoonberg, H. Asahan, H.A. Risch, T.L. Vaughan, W.H. Chow, et al., Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia, J. Natl. Cancer Inst. 89 (September (17)) (1997) 1277–1284.
[5] F. Lordick, H.J. Stein, C. Peschel, J.R. Siewert, Neoadjuvant therapy for oesophageogastric cancer, Br. J. Surg. 91 (May (5)) (2004) 540–551.
[6] P.P. van Hagen, Preoperative chemoradiotherapy for oesophageal or junctional cancer, N. Engl. J. Med. 366 (22) (2012) 2074–2084. 2012-5-31.
[7] N.A. Lobo, Y. Shimosono, D. Qian, M.F. Clarke, The biology of cancer stem cells, Annu. Rev. Cell Dev. Biol. 23 (2007) 675–699.
[8] J. Gil, A. Stembalska, K.A. Pesz, M.M. Sastiadek, Cancer stem cell: the theory and perspectives in cancer therapy, J. Appl. Genet. 49 (2) (2008) 193–199.
[9] B.J. Huntly, D.G. Gilliland, Leukaemia stem cells and the evolution of cancer-stem-cell research, Nat. Rev. Cancer 5 (April (4)) (2005) 311–321.
[10] J.N. Rich, S. Bao, Chemotherapy and cancer stem cells, Cell Stem Cell 1 (October (4)) (2007) 353–355.
[11] Z. Yu, T.G. Pestell, M.P. Lisiamp, R.G. Pestell, Cancer stem cells, Int. J. Biochem. Cell Biol. 44 (12) (2012) 2144–2151.
[12] W. Chen, J. Dong, J. Haiech, M.C. Kilhoffer, M. Zeniou, Cancer stem cell quiescence and plasticity as major challenges in cancer therapy, Stem Cells Int. 2016 (2016) 1740936.
[13] S. Takeishi, K. Nakayama, To wake up cancer stem cells, or to let them sleep, that is the question, Cancer Sci. 107 (July (7)) (2016) 875–881.
[14] T. Ishiwhata, Cancer stem cells and epithelial-mesenchymal transition: a novel therapeutic targets for cancer, Pathol. Int. 66 (November (11)) (2016) 601–608.
[15] T. Sato, D.E. Stange, M. Ferrante, R.G. Vries, J.H. Van Es, S. Van den Brink, et al., Long-term expansion of epithelial organoids from human colon adenoma, adenocarcinoma, and Barrett’s epithelium, Gastroenterology 141 (November (5)) (2011) 1762–1772.
[16] A.D. DeWard, J. Cramer, E. Lagasse, Cellular heterogeneity in the mouse esophagus implicates the presence of a non-quiescent epithelial stem cell population, Cell Rep. 9 (October (2)) (2014) 701–711.
[17] T. Zeller, H. Faber, M. Niemantvertriet, M. Bananar, J. Busink, H. Hollema, et al., Prediction of response to radiotherapy in the treatment of esophageal cancer using stem cell markers, Radiother. Oncol. 107 (June (3)) (2013) 434–441.
[18] M. Moghhibi, F. Moghhibi, M.M. Forghamdarfl, M.R. Abbaszadegan, Cancer stem cell detection and isolation, Med. Oncol. 31 (September (3)) (2014) 69-1-0069-6. Epub 2014 Jul 27.
[19] J.A. Magee, E. Piskouanova, S.J. Morrison, Cancer stem cells: impact, heterogeneity, and uncertainty, Cancer Cell 21 (March (3)) (2012) 283–296.
[20] E. Vlashi, F. Pajonk, Cancer stem cells, cancer cell plasticity and radiation therapy, Semin. Cancer Biol. 31 (April (5)) (2015) 28–35.
[21] T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Caceres-Cortes, A. Cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature 367 (February (6464)) (1994) 645–648.
[22] D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med 3 (July (7)) (1997) 730–737.
[23] M. Zoller, CD44: can a cancer-initiating cell phenotype be identified or only a progenitor cell be affected by an exogenous stimulus, Emerg. Oncol. 8 (2009) 4–10.
[24] C.T. Bottinger, V. Youssef, P. Dutkowski, H. Maschek, W. Bremer, T. Junginger, Expression of CD44 variant proteins in adenocarcinoma of Barrett’s esophagus and its relation to prognosis, Cancer 83 (September (6)) (1998) 1074–1080.
[25] T. Gotoda, Y. Matsumura, H. Kondo, H. Ono, A. Kanamoto, H. Kato, et al., Expression of CD44 variants and prognosis in oesophageal squamous cell carcinoma, Gut 46 (January (1)) (2000) 1080.
[26] M. Zoller, CD44: can a cancer initi
A Rhodaminelabeled antibody was associated with poor prognosis in patients with esophageal squamous cell carcinoma, Ann. Surg. Oncol. 20 (January (1)) (2013) 209–217.

Y. Ji, X. Li, Y. Zhong, J. Cao, R. Xu, et al., Aldehyde dehydrogenase-1 expression predicts unfavorable outcomes in patients with esophageal squamous cell carcinoma, Anticancer Res. 36 (January (1)) (2016) 343–349.

X. Zhang, M. Takezawa, A. Okaya, J. Kitakaze, N. Kitakura, M. Takekura, et al., Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP, Am. J. Pathol. 163 (July (1)) (2003) 3–9.

Z. Xi, H. Guang-Rong, H. Pin, Over-expression of oct4 in human esophageal cancer, Dis. Esophagus 25 (September (3)) (2012) 638–644.

Y. Ji, X. Li, Y. Zhong, J. Cao, R. Xu, et al., Aldehyde dehydrogenase-1 expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma, Ann. Surg. Oncol. 20 (January (1)) (2013) 209–217.

Y. Ji, X. Li, Y. Zhong, J. Cao, R. Xu, et al., Aldehyde dehydrogenase-1 expression predicts unfavorable outcomes in patients with esophageal squamous cell carcinoma, Anticancer Res. 36 (January (1)) (2016) 343–349.

X. Zhang, M. Takezawa, A. Okaya, J. Kitakaze, N. Kitakura, M. Takekura, et al., Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP, Am. J. Pathol. 163 (July (1)) (2003) 3–9.

Z. Xi, H. Guang-Rong, H. Pin, Over-expression of oct4 in human esophageal cancer, Dis. Esophagus 25 (September (3)) (2012) 638–644.
D. Wang et al.

60–66

[80] E. He, F. Pan, G. Li, J. Li, Fractionated ionizing radiation promotes epithelial-mesenchymal transition in human esophageal cancer cells through PTEN deficiency-Mediated akt activation, PLoS One 10 (May (5)) (2015) e0126149.

[81] A. Carrero, M. Leonart, The hypoxic microenvironment: a determinant of cancer stem cell evolution, Bioessays 38 (July (Suppl. 1)) (2016) S65–S74.

[82] D.T. Marie-Egyptienne, I. Lobos, R.P. Hill, Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioreistance: potential role of hypoxia, Cancer Lett. 341 (November (1)) (2013) 63–72.

[83] D. Wang, Q. Qin, Q.J. Jiang, D.F. Wang, Bortezomib sensitizes esophageal squamous cancer cells to radiotherapy by suppressing the expression of HIP-1alpha and apoptosis proteins, J. Xray Sci. Technol. 24 (April (4)) (2016) 639–646.

[84] Y. Kondo, T. Kanzawa, R. Sawaya, S. Kondo, The role of autophagy in cancer development and response to therapy, Nat. Rev. Cancer 5 (September (9)) (2005) 667–677.

[85] X. Wu, B. Qiao, Q. Liu, W. Zhang, Upregulation of extracellular matrix metalloproteinase inducer promotes hypoxia-induced epithelial-mesenchymal transition in esophageal cancer, Mol. Med. Rep. 12 (November (5)) (2015) 7419–7424.

[86] S.W. Jing, Y.D. Wang, M. Kuroda, J.W. Su, G.G. Sun, Q. Liu, et al., HIF-1alpha contributes to hypoxia-induced invasion and metastasis of esophageal carcinoma via inhibiting E-cadherin and promoting MMP-2 expression, Acta Med. Okayama 66 (5) (2012) 399–407.

[87] H. Zha, Y. Feng, J. Zhang, X. Zhou, B. Han, G. Zhang, et al., Inhibition of hypoxia inducible factor 1alpha expression suppresses the progression of esophageal squamous cell carcinoma, Cancer Biol. Ther. 11 (June (11)) (2011) 981–987.

[88] W. Ping, W. Sun, Y. Zu, Chen, X. Fu, Clinicopathological and prognostic significance of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma: a meta-analysis, Tumour Biol. 35 (May (5)) (2014) 4401–4409.

[89] M. Sohda, H. Ishikawa, N. Masuda, H. Kato, T. Miyazaki, M. Nakajima, et al., Pretreatment evaluation of combined HIP-1alpha, p53 and p21 expression is a useful and sensitive indicator of response to radiation and chemotherapy in esophageal cancer, Int. J. Cancer 110 (July (6)) (2004) 838–844.

[90] M.I. Koukourakis, A. Giatromanolaki, J. Skarlatos, L. Corti, S. Blandamura, M. Piazza, et al., Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy, Cancer Res. 61 (March (5)) (2001) 1830–1832.

[91] B.G. Wouters, M. Kozitkinzy, Hypoxia signalling through mTOR and the unfolded protein response in cancer, Nat. Rev. Cancer 8 (November (11)) (2008) 851–864.

[92] M. Laplante, D.M. Sabatini, mTOR signaling at a glance, J. Cell Sci. 122 (October (Pt. 20)) (2009) 3589–3594.

[93] R. Ojha, S. Bhattacharyya, S.K. Singh, Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis, Biochem. Open Access 4 (January (1)) (2015) 97–108.

[94] Y. Kondo, T. Kanzawa, R. Sawaya, S. Kondo, The role of autophagy in cancer development and response to therapy, Nat. Rev. Cancer 5 (September (9)) (2005) 726–734.

[95] E.E. Mowers, M.N. Sharifi, K.F. Macleod, Autophagy in cancer metastasis, Oncogene (September) (2016).

[96] T.R. O’Donovan, G.C. O’Sullivan, S.L. McKenna, Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics, Autophagy 7 (May (5)) (2011) 509–524.

[97] K.M. Weh, A.B. Howell, L.A. Kresty, Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma, Mol. Carcinog. 55 (November (11)) (2016) 1876–1885.

[98] K. Zheng, Y. Li, S. Wang, X. Wang, C. Xiao, X. Hu, et al., Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ERK2-NCFI-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint, Autophagy 12 (September (9)) (2016) 1593–1613.

[99] C. Lu, C. Xie, Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway, Oncol. Rep. 35 (June (6)) 2016 3559–3565.

[100] Y. Chen, X. Li, L. Guo, X. Wu, C. He, S. Zhang, et al., Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer, Mol. Med. Rep. 12 (August (2)) (2015) 1645–1652.

[101] O. Adams, B. Dzirlich, S. Berezowska, A.M. Schlaff, C.A. Seiler, D. Kroell, et al., Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas, Oncotarget 7 (June (26)) (2016) 39241–39255.

[102] H.L. Chen, H.P. Tsai, Y.T. Chen, S.C. Tsao, C.Y. Chai, Autophagy and apoptosis play opposing roles in overall survival of esophageal squamous cell carcinoma, Pathol. Oncol. Res. 22 (October (4)) (2016) 699–705.

[103] S. El-Mash, T.R. O’Donovan, E.W. Kay, A.R. Abdallah, M.C. Cathcart, J. O’Sullivan, et al., LC3 B gloubular structures correlate with survival in esophageal adenocarcinoma, BMC Cancer 12 (August (15)) (2012) 582–015–1574–5.

[104] Y. Chen, X. Li, X. Wu, C. He, L. Guo, S. Zhang, et al., Autophagy-related proteins LC3 and Beclin-1 impact the efficacy of chemoradiation on esophageal squamous cell carcinoma, Pathol. Res. Pract. 209 (September (9)) (2013) 562–567.

[105] Cancer Genome Atlas Research Network, Analysis Working Group: Azan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University, et al., Integrated genomic characterization of oesophageal carcinoma, Nature 541 (January (7636)) (2017) 169–175.

[106] D.C. Lin, J.J. Hao, Y. Nagata, L. Xu, L. Shang, X. Meng, et al., Genomic and molecular characterization of esophageal squamous cell carcinoma, Nat. Genet. 46 (May (5)) (2014) 467–473.

[107] M. Fan, Y. Lin, J. Pan, W. Yan, L. Dai, L. Shen, et al., Survival after neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for resectable esophageal carcinoma: a meta-analysis, Thorac. Cancer 7 (March (2)) (2016) 173–181.

[108] N. Takebe, L. Miele, P.J. Harris, W. Jeong, H. Bandi, M. Kahn, et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update, Nat. Rev. Clin. Oncol. (April) (2015).

[109] D.J. Cohen, P.J. Christos, J.A. Sparano, H.L. Kindler, D.V.T. Catenacci, T.B. Bekaiji-Saab, S. Tahiri, Y.Y. Janjigian, K.B. Michael, D. Kroell, et al., Paclitaxel/Paclitaxel (P1)-based phase II study of vismodegib (V), a hedgehog (HH) pathway inhibitor, combined with FOLOFOX in patients (pts) with advanced gastric and gastroesophageal junction (GEJ) carcinoma: a New York Cancer Consortium led study (abstract), J. Clin. Oncol. 31 (suppl 4) (2013) (abstr 67).

[110] T.K. Rimmuk, R.L. Carpenter, S. Qasem, M. Chan, H.W. Lo, Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors, Cancers (Basel) 8 (February (2)) (2016) http://dx.doi.org/10.3390/cancers8020022.

[111] W.R. Wilson, M.P. Hay, Targeting hypoxia in cancer therapy, Nat. Rev. Cancer 11 (June (6)) (2011) 393–410.