Functional analysis of petunia floral homeotic MADS box gene pMADS1

Alexander R. van der Krol, Alan Brunelle, Suguru Tsuchimoto, and Nam-Hai Chua

Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10021 USA

The petunia mutant green petal (gp, line PLV) shows a homeotic effect in one floral whorl, that is, the conversion of petal to sepal. We demonstrate that this mutant contains a chromosomal deletion, including the petunia MADS box gene pMADS1. Second whorl petal development in this null mutant can be restored with a CaMV 35S–pMADS1 transgene, demonstrating the essential role of pMADS1 in this process. Because gp (PLV) shows only a minor effect on stamen development, the homeotic effects of pMADS1 are different from those of B-type genes in Antirrhinum and Arabidopsis. Two other MADS box genes, pMADS2 and fbpl (Angenent et al. 1992), require pMADS1 to maintain expression in the second whorl. However, in the absence of pMADS1 these two genes continue to be expressed in the third whorl. The functions assigned to pMADS1 are further supported by experiments in which we phenocopy gp by cosuppression of pMADS1 gene expression. The flowers, obtained through cosuppression and phenotype restoration, display different degrees of sepal to petal conversion. Analysis of these flowers indicate that pMADS1 controls growth under the zone of petal and stamen initiation, which causes the corolla tube and stamen filaments to emerge as a congenitally fused structure.

[Key Words: Petunia; homeotic mutant; MADS box; flower development; cosuppression]

Received February 25, 1993, revised version accepted April 13, 1993.

The flower is the reproductive structure of angiosperms and consists of sepal, petal, stamen, and carpel, which are usually organized in four concentric whors. To generate this arrangement, the cells of the organ primordia in each of the whors must be spatially defined to execute the correct developmental program. Recent genetic studies on floral development in both Arabidopsis and Antirrhinum have led to a model explaining the roles of floral homeotic genes in determining floral organ identity (for review, see Coen and Meyerowitz 1991). The model proposes three gene functions, A, B and C, that are active in partly overlapping fields [A and B or B and C] or complementing fields [A and C] within the floral meristem. Gene function A is active in whors one and two, gene function B is active in whors two and three, and C is active in whors three and four. When only A is active, as in the first whorl, the organs will develop into petals. In the second whorl the combination of A and B functions determines petal formation. In the third whorl, B and C produce stamens, and in the central fourth whorl, C alone leads to carpel formation. The model was derived from the observation that a single floral homeotic mutation produces an effect in two adjacent whors and it successfully predicts the phenotypes of double and triple mutants of gene functions A, B, and C in Arabidopsis [Bowman et al. 1991a]. The recent cloning and expression studies of some of the B-function genes, like the Antirrhinum genes Deficiens-A (DEFA) [Sommer et al. 1990] and Globosa [GLO] [Treber et al. 1992] and the Arabidopsis gene AP3 [Jack et al. 1992], have shown that these are expressed in the second and third whors as predicted by the genetic model. Similarly, investigation of the expression profile of the C-type gene Agamous (AG) from Arabidopsis confirmed that it is expressed only in the inner two whors [Yanoofsky et al. 1990]. Sequence analysis of the B- and C-type-encoded proteins shows that they contain a putative DNA-binding domain, the MADS box [MCM1, AG, DEFA, and SRF], which is similar to the DNA-binding domain of the yeast transcription factor MCM1 [Dubois et al. 1987; Christ and Tye 1991] and the human transcription factor SRF [Norman et al. 1988]. This indicates that DEFA, GLO, AP3, and AG are likely to be plant transcription factors that regulate the genes that determine floral organ identity.

Although the analysis of Antirrhinum and Arabidopsis flower development resulted in a common genetic model, it is not known to what extent this model can be applied to other plant species. For example, in the case of the Petunia hybrida, the mutant green petal (gp), the second whorl organs are sepaloid instead of petals, whereas the first, third, and fourth whorl organs are mostly unaffected in their structure. Thus, analysis of petunia floral development should give additional insight into the principles that govern floral organ identity.

1Present address: Department of Plantphysiology, Agricultural University Wageningen, Wageningen, The Netherlands.
2Corresponding author.
The isolation of some of the Antirrhinum and Arabidopsis floral homeotic genes has made it possible to initiate floral development studies in other plant species, and floral-specific MADS box genes have now been isolated from tomato (Penueli et al. 1991), Brassica (Mandel et al. 1993) and petunia (Angenent et al. 1992, Kush et al. 1993). Here, we describe the wild-type petunia flower and the flower of the homeotic mutant gp [line PLV], and we show that the latter contains a deletion for the petunia MADS box gene pMADS1. Moreover, we demonstrate the role of pMADS1 in second whorl petal and third whorl stamen development, through both phenotypic restoration and cosuppression studies. With these experiments we created a series of flowers with different endpoints of second whorl petal development, thus enabling us to dissect the differentiation pathway for the conversion of a sepaloid structure into a petal. By analyzing the expression patterns of five MADS box genes from P. hybrida during wild-type and mutant flower development, we addressed the question why gp [PLV] is mainly affected in one whorl. Our results indicate that the components for floral development are similar in different plant species, but their different interactions may lead to differences in floral organ determination.

Results

The wild-type flower

Flower development in petunia has been described in detail (Prior 1957; Natarella and Sink 1971; Sink 1984; Turlier and Alabouvette 1988). Because the P. hybrida line V26 was used for transformations described here, we will give a short description of the essential features of the V26 flower for the purpose of comparison with mutant or transgenic flowers. The mature flower of V26 (Figs. 1 and 2A) has five sepals in the first whorl that are fused at the base to form a calyx tube (Fig. 2B). Regions in the calyx tube contain cells that make less chlorophyll, as judged from the white color of the parenchyma cells. Growth of the corolla tube and of the filaments occurs in part under the zone of interpetalous initiation, resulting in congenital fusion of the filaments to the corolla tube (Figs. 1 and 2C). Figure 2D shows a stained cross section near the base of a 10-mm-long floral bud illustrating the fusion of the filament to the tube. From the point of separation the filaments become a smooth, round structure with flat, elongated epidermal cells that are lightly pigmented near the anther sacs (Fig. 2E).

The lower and upper epidermal cell layer of the sepal appear similar morphologically, consisting of jigsaw-shaped epidermal cells, stomata, and trichomes (Fig. 2F). The inner and outer epidermal cell layer of the corolla tube are comprised of flat, elongated cells that may be pigmented (Fig. 2G), and trichomes are only present on the outside of the corolla tube [see Fig. 2C]. On the limb, trichomes are only found on the lower epidermis and are mainly associated with the main vascular bundles. At the upper epidermal cell layer of the limb, the cells are round, cone-shaped, and pigmented with anthocyanins (Fig. 2H). In contrast, the epidermal cells at the lower side of the limb vary from jigsaw-shaped to round [Fig. 2I, J] and may have the characteristic cone shape of the upper epidermal cells. Near the main vein the lower epidermal cells are not always pigmented [Fig. 2J].

The gp (PLV) flower

The petunia gp mutant is characterized by a homeotic conversion of the second whorl petal into sepal. The gp phenotype was obtained in plants by a spontaneous mutation (line M64), by ethylmethane sulfonate (EMS) treatment (line R100), and by gamma radiation mutagenesis (line PLV). All of these mutations are recessive. Here, we describe the flowers of the gp line PLV (de Vlamling et al. 1984). Sections of young flower buds [up to 3 mm long, measured from the base to the tip of the first whorl sepals] of V26 and gp [PLV] are almost indistinguishable morphologically (Fig. 3, cf. A with B). In both V26 and gp [PLV], trichomes begin to develop on the abaxial face of the second whorl organs when the flower buds are ~2 mm long. When the gp [PLV] floral buds are ~4 mm long, the formation of trichomes can be detected at the adaxial face of the second whorl organs, whereas no trichomes are detected on the adaxial face of the V26 second whorl petal at this or any later stage of flower development. Figure 3, C and D, shows a cross section through a 15-mm-long flower bud of V26 and of gp [PLV], respectively. The parenchyma cells of the second whorl organ in gp [PLV] are not as large as those of the first whorl sepal but smaller than those of the petal, and the cell wall staining is more like that of sepal than petal (Fig. 3E, F).

Figure 4A shows the mature flower of gp [PLV]. The
first whorl sepals are fused at their base, as in V26, and near the base, show only a very slight reduction in chlorophyll pigmentation as compared with the V26 sepals (cf. Fig. 4B with Fig. 1B). The upper and lower epidermal cell layers of the gp [PLV] first whorl sepal are similar to those of the V26 sepal [not shown]. The gp [PLV] second whorl sepals are slightly thinner than the first whorl sepal tissue and show no marked reduction of chlorophyll synthesis near their base [Fig. 4C]. Figure 4, D and E, shows an epidermal peel from the abaxial and adaxial face of the second whorl sepal, respectively. The epidermal cells on both faces resemble those of the V26 sepal [jigsaw-shaped cells, stomata, and trichomes]. Thus, the second whorl organs of gp [PLV] are sepals by virtue of their green pigmentation, cell size and shape, and the presence of trichomes and stomata on both faces.

Although stamen development in the gp [PLV] mutant is similar to that in wild-type petunia and leads to the formation of anther sacs that produce viable pollen, some developmental differences are apparent. In contrast to V26, the stamen filaments of gp [PLV] are not fused to the second whorl [Fig. 4F; see also cross section in Fig. 3D]. Sepalloid structures, however, often emerge from the third whorl stamens [Fig. 4G], or additional sepalloid third whorl organs are initiated between the stamen filaments [Fig. 4H, I]. Upon maturation of the gp [PLV] flower [after anthesis has occurred], these green sepalloid structures develop regions with petaloid characteristics: cone-shaped epidermal cells with anthocyanins [Fig. 4H]. Also, frequently, petaloid epidermal cells and/or trichomes are detected on the stamen filaments [Fig. 4J], which clearly differ from the long, elongated epidermal cells found on wild-type stamen filaments [Fig. 2E]. The occurrence of the extra sepalloid structures and sepal/petaloid stamens in the third whorl may vary throughout the plant life cycle and may be influenced by growth conditions.

Four P. hybrida MADS box genes

In this paper we describe the expression pattern in V26 and gp [PLV] flowers of four petunia MADS box genes that were isolated in our laboratory [Kush et al. 1993; S. Tsuchimoto, A. van der Krol, and N.-H. Chua, in prep.]
and *fbpl*, a petunia MADS box gene isolated by Angenent et al. (1992). pMADS1 has a 693-bp open reading frame encoding a protein that shows 93% identity to the *Antirrhinum DEFA* MADS box region and 77% identity outside of the MADS box region (SOMMER et al. 1990). pMADS2 is 972 bp long and encodes a protein of 213 amino acids. This gene shares 87% identity with the *Antirrhinum GLO* gene MADS box region and 60% amino acid homology outside the MADS box region (TROBNER et al. 1992). *fbpl* also shares homology to GLO (87% identity within the MADS box and 66% identity outside of the MADS box). Both *fbpl* and pMADS2 genes are present in the hybrid lines W115 (used to isolate pMADS1–4) and R27 (used to isolate *fbpl*), as well as in the different presumed ancestor lines of petunia (see Materials and methods; Southern analysis not shown). The two other petunia MADS box genes that were sequenced, pMADS3 and pMADS4, show homology to the *Arabidopsis AGAMOUS* gene (YANOFSKY et al. 1990) and the *AGL6* gene (MA et al. 1991), respectively. Sequence analysis of these genes will be presented elsewhere (S. Tsuchimoto, A. van der Krol, and N.-H. Chua, in prep.).

MADS box gene expression

We analyzed the expression pattern of the five petunia MADS box genes and found that pMADS1, pMADS2, and pMADS3 are expressed in flowers but not in vegetative organs, whereas pMADS4 is expressed in leaves as well as in flowers (S. Tsuchimoto, unpubl.). The expression pattern of *fbpl* in petunia has been reported previously by Angenent et al. (1992). Initial experiments showed that the steady-state mRNA levels in the different floral organs vary throughout development. We therefore show expression levels at early and late stages of development (for a description of stages, see Materials and methods). These initial studies also showed that the steady-state mRNA levels of some pMADS box genes

Figure 3. Sections of V26 and *gp* (PLV) flowers. (A) A longitudinal section of a V26 inflorescence. The numbers indicate the whorl. (L) Leaf. (B) A longitudinal section of a *gp* (PLV) inflorescence. The numbers indicate the whorl. (C) A transverse section of a V26 flower. (D) A transverse section of a *gp* (PLV) flower. (Note that the stamen filaments are not fused to the second whorl sepal tube [cf. Fig. 2D].) (E) Close-up of a transverse section of a V26 flower, showing sepal and petal tissue. (F) Close-up of transverse section of a *gp* (PLV) flower, showing first and second whorl sepals. Numbers refer to the floral whorl. (L) Leaf; (Se) sepal; (Pe) petal; (St) style; (Ov) ovary; (An) anther; (Fi) filament. Vertical bar, 1 cm; thick horizontal bar, 1 mm; thin horizontal bar, 0.1 mm.
Figure 4. The flower of gp [PLV]. (A) A mature gp [PLV] flower. (B) Two sepals from the first whorl. (Note that the sepals are fused near the base.) (C) Two sepals from the second whorl. (Note that the sepals are fused for half of their length.) (D) An upper epidermal peel from the second whorl sepal. (E) A lower epidermal peel from the second whorl sepal. (F) A longitudinal section of a mature gp [PLV] flower. (Note that the stamen filaments are not fused to the second whorl sepals.) (G) A sepaloid stamen often found in gp [PLV] flowers. (H) A gp [PLV] flower at a late stage of development. (Note that the extra third whorl sepaloid organs can develop regions with petaloid characteristics [arrow].) (I) Close-up of gp [PLV] flower with the first and second whorl sepals removed. (Note the stamen filaments [not fused to the second whorl organs] and a sepaloid sixth organ, initiated between the stamen [arrow].) (J) Close-up of a gp [PLV] stamen filament, showing petaloid cells and trichomes. Vertical bar, 1 cm; thick horizontal bar, 1 mm; thin horizontal bar, 0.1 mm. For abbreviations, see legend to Fig. 2.

may vary at similar stages of floral development among different lines, presumably reflecting the different rates at which floral organs mature in different genetic backgrounds. Two processes that are specifically associated with petal development are suppression of chlorophyll synthesis and enhancement of anthocyanin pigmentation in the petals. To monitor these events we also analyzed the expression of the chlorophyll a/b binding protein (CAB) gene and the chalcone synthase (CHS) gene.

fbp1 In V26 the fbp1 gene, like pMADS2, is expressed in the second and third whorls (Fig. 5C). In gp [PLV], fbp1 expression is only detected in the second whorl at a very low level in early stages of development, whereas no expression is detected at the late stage of second whorl development. However, in the third whorl of gp [PLV], fbp1 expression is elevated both in young and mature flower buds compared with that in V26 (Fig. 5C, middle panel).

pMADS3 Figure 5D shows that this gene is expressed in the third and fourth whorls of V26 (Fig. 5D, top panel) as well as in gp [PLV] (Fig. 5D, middle panel). In the fourth whorl of gp [PLV] the mRNA level is slightly higher than in the wild-type V26.

pMADS4 The expression of this gene is mainly detected in the first, second, and fourth whorls of V26 flowers (Fig. 5E, top panel). Expression in the mature second whorl is lower and in the mature fourth whorl is higher in gp [PLV], compared with V26 (Fig. 5E, cf. top and middle panels).

CHS CHS expression is detected in all four whorls of the V26 flower, but the expression is elevated in the mature petal tissue. In the mutant gp [PLV] the CHS gene is also expressed in all four whorls (Fig. 5F, middle
pMADS1 controls petunia petal development

To prove that pMADS1 is an essential gene for petunia petal development, it was necessary to show that the gp phenotype can be restored to the wild-type phenotype by the pMADS1 gene function. Because of regeneration problems associated with gp [PLV], we performed a cross between this mutant and V26. A plant (GP/gp) from the progeny was used for leaf disc transformation to introduce a 35S-pMADS1 gene (J84; see Materials and methods). One of the resulting transgenic plants, carrying three independent inserts of J84 and showing an overexpression phenotype (U. Halfter, N. Ali, L. Ren, A. Kush, and N.-H. Chua, in prep.; Fig. 7A), was backcrossed to gp/gp [PLV] plants. The progeny plants were analyzed for the presence of the wild-type pMADS1 gene and the 35S-

pMADS1 restores petal development in gp (PLV)

The lack of any pMADS1 expression in gp [PLV] prompted us to analyze its genomic DNA for the state of the pMADS1 gene. Figure 6 shows the hybridization profile of a pMADS1 probe to genomic DNA of three wild-type hybrid lines (V26, V30, and W115) and a segregating population of gp mutant and wild-type plants (4 of 20 plants analyzed are shown). We found that DNA isolated from gp plants did not hybridize to the pMADS1 probe, demonstrating that this gene is deleted from the genome. Therefore, gp [PLV] is a null mutant for pMADS1. This is not surprising because the mutation in gp [PLV] was induced by gamma radiation treatment, which is known to cause chromosomal deletions. Using the pMADS1 probe and under low stringency hybridization conditions, we did not detect any additional band that is present in the wild type and absent from the gp mutant, indicating that no other pMADS1-related gene is deleted from the gp genome. The other four petunia MADS box genes are present and intact in the mutant genome, as confirmed by Southern and Northern blot analyses (see above). The gp [PLV] phenotype is a phenotypic marker for chromosome IV of P. hybrida, thus placing the pMADS1 gene on chromosome IV (de Vlaming et al. 1984).

Figure 5. Expression of MADS box genes and CAB in floral organs of V26, gp [PLV], and cosuppression plants. Total RNA was isolated from young and mature flower buds of V26 (top), PLV (middle), and SD15c (bottom). Filters containing 7 μg of RNA per lane were hybridized to specific probes derived from the genes indicated: (A) pMADS1; (B) pMADS2; (C) fbp1; (D) pMADS3; (E) pMADS4; (F) CHS; (G) CAB. The panels within one box were derived from one filter; therefore, the strength of the hybridization signal can be compared directly within a box. Lanes 1, 2, 3, and 4 represent RNA isolated from whorls 1, 2, 3, and 4, respectively. (H) Total RNA was isolated from young and mature flowers of transgenic line SD15d. Lane 2/3 represents RNA isolated from the combined second and third whorl tissues. Lanes 1 and 4 represent RNAs isolated from whorls 1 and 4, respectively.

Figure 6. Southern blot analysis of wild-type and gp [PLV] genomic DNA. Genomic DNAs were digested with HindIII, size fractionated on an agarose gel, and blotted onto a GeneScreen Plus filter. The blot was hybridized to a full-length pMADS1 cDNA (see Materials and methods), and after hybridization it was washed under high-stringent conditions. The three pMADS1 gene fragments are indicated by arrows. (Lane 1) V26; (lane 2) V30; (lane 3) W115; (lanes 4–7) a segregating population of wild-type and gp [PLV] plants; (lanes 4, 6) wild-type plants; (lane 5, 7) gp [PLV] plants.

Panel: however, its up-regulation in the mature second whorl is no longer detected. In contrast, in the third whorl of the gp [PLV] flowers, the CHS expression level is higher compared with that of mature stamens of V26.

CAB. The CAB gene expression is high in the first two whorls of both V26 (Fig. 5G, top panel) and gp [PLV] (Fig. 5G, middle panel). In the mature wild-type flower the CAB gene expression level diminishes in petals and carpels and the mRNA is not detected in mature stamens.

pMADS1 is deleted from the genome of gp (PLV)

The lack of any pMADS1 expression in gp [PLV] prompted us to analyze its genomic DNA for the state of the pMADS1 gene. Figure 6 shows the hybridization pro-
pMADS1 transgene by Southern blot hybridization and for their floral phenotype. Among the 33 progeny plants analyzed, three plants were identified that neither contained a wild-type pMADS1 gene nor a 35S–pMADS1 transgene in their genome, and these plants had a gp phenotype. Ten other plants did not contain any wild-type pMADS1 gene but had one or more copies of the 35S–pMADS1 transgene. Four of these still exhibit the gp phenotype, suggesting a lack of phenotypic restoration [M1a]. One plant showed small red sectors on a sepaloid second whorl [M1b, Fig. 7B], indicating a partial restoration by the 35S–pMADS1 transgene. At a later stage this same plant showed a very weak restoration [Fig. 7C,D], before and after anthesis, respectively). Figure 7, G and H, shows that the late differentiation into petal tissue in the second whorl tissue of M1b resulted in the presence of trichomes on the upper epidermal layer of the petal limb. Three plants showed nearly complete (e.g., M1c Fig. 7E) and two showed complete (e.g., M1d Fig. 7F) petal development in the second whorl. In these plants the maturation rate of the petal was clearly slower compared with that of V26 (Fig. 7,K). The late restoration resulted in trichomes being present on the adaxial face of the petal tube in M1c [cf. inner face of wild-type tube (Fig. 7L) with that of the M1c tube (Fig. 7M)]. Figure 7I shows that the cells constituting the second whorl sepal structure in the gp flowers can still be recognized in flowers of plants that showed partial restoration [M1c]. In plants that showed no or weak restoration of the pMADS1 gene function in the second whorl, the ectopic expression of the 35S–pMADS1 gene in the third whorl did not suppress the development of extra organs. However, these extra organs in the third whorl and structures on the stamen, which in gp [PLV] showed only partial petal characteristics, then developed into full petaloid tissue [Fig. 7N]. Unlike the filaments of the gp [PLV] flowers, the base of the filaments of the M1c and M1d flowers were fused to the second whorl tissue, as in V26.

Figure 8A shows a Northern blot analysis of RNA isolated from mature flowers of M1a plants and M1c plus M1d plants. In both sets of plants, the pMADS1 transcript shows high expression in the first two whorls and low expression in the inner two whorls. The expression of the transgene in M1a is very low (expression in the third and fourth whorls is only visible after prolonged exposure), which correlates with the lack of restoration in petal development in these transgenic plants. In the M1c and M1d plants, the restoration of petal development correlated with a high expression level of the 35S–pMADS1 transgene, as well as an up-regulation of pMADS2 and fbpl expression in the second whorl, indicating that the expression of these two genes in this whorl is controlled by pMADS1. Overexpression in petunia gp [PLV] of a similar pMADS2 gene construct (see Materials and methods) did not result in any restoration of petal development nor did it affect expression of fbpl (Fig. 8B).

Phenocopy of gp (PLV) by cosuppression of pMADS1

Supporting evidence for the function of pMADS1 in flower development was obtained from V26 transgenic plants in which introduction of a m35S–pMADS1 chimera gene resulted in the cosuppression of pMADS1 expression, in some cases leading to a complete phenocopy of gp. The cosuppression of pMADS1 was manifested in a gradation of phenotypes ranging from a decrease in petal pigmentation (5 of 20 transgenic plants, SD15; see Fig. 9A), reduced petal growth (1 of 20, SD6; see Fig. 9B), and reduced growth and differentiation (1 of 20, SD12; see Fig. 9C) to a complete lack of petal differentiation, resulting in sepaloid structures in the second whorl (1 of 20, SD3; see Fig. 9D). A partial petal differentiation of the second floral whorl in SD3 plants could occur with the aging of the plant (mainly after anthesis), resulting in slightly pigmented, sepaloid second whorl structures [SD3, Fig. 9E]. In all of the transgenic plants mentioned above, cosuppression resulted in the formation of third whorl stamens with filaments that were not fused to the second whorl (e.g., see SD12, Fig. 9F). Also, in the case of a strong cosuppression phenotype, the third whorl organ number was often altered by the appearance of small additional sepaloid structures between the stamen filaments [arrow, Fig. 9F]. The partial petal differentiation in SD3, SD6, and SD12 in the second whorl differed by cell layer and could occur in sharply defined sectors [SD3, Fig. 9G]. Figure 9, H–J, shows the different

Figure 7. Phenotypic analyses of flowers of pMADS1 restoration plants. Leaf tissue from hybrid GP/gp for their floral phenotype. Among the 33 progeny plants analyzed, three plants were identified that neither contained a wild-type pMADS1 gene nor a 35S–pMADS1 transgene in their genome, and these plants had a gp phenotype. Ten other plants did not contain any wild-type pMADS1 gene but had one or more copies of the 35S–pMADS1 transgene. Four of these still exhibit the gp phenotype, suggesting a lack of phenotypic restoration [M1a]. One plant showed small red sectors on a sepaloid second whorl [M1b, Fig. 7B], indicating a partial restoration by the 35S–pMADS1 transgene. At a later stage this same plant showed a very weak restoration [Fig. 7C,D], before and after anthesis, respectively). Figure 7, G and H, shows that the late differentiation into petal tissue in the second whorl tissue of M1b resulted in the presence of trichomes on the upper epidermal layer of the petal limb. Three plants showed nearly complete (e.g., M1c Fig. 7E) and two showed complete (e.g., M1d Fig. 7F) petal development in the second whorl. In these plants the maturation rate of the petal was clearly slower compared with that of V26 (Fig. 7,K). The late restoration resulted in trichomes being present on the adaxial face of the petal tube in M1c [cf. inner face of wild-type tube (Fig. 7L) with that of the M1c tube (Fig. 7M)]. Figure 7I shows that the cells constituting the second whorl sepal structure in the gp flowers can still be recognized in flowers of plants that showed partial restoration [M1c]. In plants that showed no or weak restoration of the pMADS1 gene function in the second whorl, the ectopic expression of the 35S–pMADS1 gene in the third whorl did not suppress the development of extra organs. However, these extra organs in the third whorl and structures on the stamen, which in gp [PLV] showed only partial petal characteristics, then developed into full petaloid tissue [Fig. 7N]. Unlike the filaments of the gp [PLV] flowers, the base of the filaments of the M1c and M1d flowers were fused to the second whorl tissue, as in V26.

Figure 8A shows a Northern blot analysis of RNA isolated from mature flowers of M1a plants and M1c plus M1d plants. In both sets of plants, the pMADS1 transcript shows high expression in the first two whorls and low expression in the inner two whorls. The expression of the transgene in M1a is very low (expression in the third and fourth whorls is only visible after prolonged exposure), which correlates with the lack of restoration in petal development in these transgenic plants. In the M1c and M1d plants, the restoration of petal development correlated with a high expression level of the 35S–pMADS1 transgene, as well as an up-regulation of pMADS2 and fbpl expression in the second whorl, indicating that the expression of these two genes in this whorl is controlled by pMADS1. Overexpression in petunia gp [PLV] of a similar pMADS2 gene construct (see Materials and methods) did not result in any restoration of petal development nor did it affect expression of fbpl (Fig. 8B).

Phenocopy of gp (PLV) by cosuppression of pMADS1

Supporting evidence for the function of pMADS1 in flower development was obtained from V26 transgenic plants in which introduction of a m35S–pMADS1 chimera gene resulted in the cosuppression of pMADS1 expression, in some cases leading to a complete phenocopy of gp. The cosuppression of pMADS1 was manifested in a gradation of phenotypes ranging from a decrease in petal pigmentation (5 of 20 transgenic plants, SD15; see Fig. 9A), reduced petal growth (1 of 20, SD6; see Fig. 9B), and reduced growth and differentiation (1 of 20, SD12; see Fig. 9C) to a complete lack of petal differentiation, resulting in sepaloid structures in the second whorl (1 of 20, SD3; see Fig. 9D). A partial petal differentiation of the second floral whorl in SD3 plants could occur with the aging of the plant (mainly after anthesis), resulting in slightly pigmented, sepaloid second whorl structures [SD3, Fig. 9E]. In all of the transgenic plants mentioned above, cosuppression resulted in the formation of third whorl stamens with filaments that were not fused to the second whorl (e.g., see SD12, Fig. 9F). Also, in the case of a strong cosuppression phenotype, the third whorl organ number was often altered by the appearance of small additional sepaloid structures between the stamen filaments [arrow, Fig. 9F]. The partial petal differentiation in SD3, SD6, and SD12 in the second whorl differed by cell layer and could occur in sharply defined sectors [SD3, Fig. 9G]. Figure 9, H–J, shows the different
Figure 7. (See facing page for legend.)
end stages of petal development that can be detected in these second whorl floral organs. In the epidermal peels the petaloid cells could be seen next to nonpigmented sepaloid cells, indicating that petal differentiation is cell autonomous (Fig. 9I). On the plants with mild to strong cosuppression phenotype, the filaments of the stamen showed regions with petaloid cells, pigmented with anthocyanins, and occasionally a trichome (Fig. 9K).

We attributed the changed phenotype of the transgenic flowers to a cosuppression of the pMADS1 gene because the pMADS1 mRNA steady-state level was substantially reduced in these transgenic lines (see below). The cosuppression phenotype was stably inherited to the next generation for lines SD12 and SD3. The progeny from the selfed transgenic line SD15 showed a segregating population of plants among which petal development varied from wild-type (SD15a), medium petal development (SD15b) to sepaloid petals (SD15c). This was the result of the segregation of three independent inserts of the m35S–pMADS1 transgene [Southern blot analysis not shown]. Of 20 progeny plants, 3 showed a floral phenotype that was not consistent with a suppression of just the pMADS1 gene function. In these flowers the second whorl petals often did not develop or were fused to the third whorl stamens to form petaloid stamen [e.g., SD15d; see Fig. 9L,M].

RNA analysis of two cosuppression plants

To demonstrate that the phenotype in the transgenic lines carrying the m35S–pMADS1 transgene was the result of cosuppression of pMADS1 expression, we analyzed the steady-state mRNA levels of the different pMADS genes during floral development in SD15c, a transgenic line that showed a gp phenotype [Fig. 5A–G, bottom panels], and in SD15d, a transgenic line that showed a limited second whorl development and petaloid stamens [Fig. 5H]. Because there was no clear separation between second and third whorl in SD15d, we combined tissue of these two whorls for RNA analysis. In SD15c the pMADS1 mRNA steady-state levels were much reduced both in the second as well as in the third whorl, indicating a cosuppression of the pMADS1 trans- and endogenous gene [Fig. 5A, cf. lanes 2 and 3 of top and bottom panels]. The transgenic line SD15d had a much reduced pMADS1 steady-state mRNA level in young floral buds, but the pMADS1 gene was not suppressed in later stages of floral development [Fig. 5G, top panel]. The lack of a significant high level of pMADS1 mRNA steady-state level in SD15c indicates that the change in flower phenotype in these plants was caused by a cosuppression of the pMADS1 trans- and endogenous gene.

To see whether the cosuppression effect was specific

Figure 8. Northern blot analysis of gp transgenic plants expressing pMADS1 or pMADS2. Total RNA was isolated from mature flower buds of gp (PLV) transgenic plants expressing the 35S–pMADS1 transgene [A] or the 35S–pMADS2 transgene VIP186 [B]. Equal amounts (7 μg) of RNA were analyzed on identical Northern blots using gene-specific probes. Lanes 1, 2, 3, and 4 represent RNA isolated from whorls 1, 2, 3, and 4, respectively. The signal for pMADS2 and fbp1 in B can be compared directly with the signal in Fig. 5, B and C, respectively (same hybridization). [A] In M1(a) the expression of the 35S–pMADS1 transgene is very low and can only be detected in the third and fourth whorls upon prolonged exposure [not shown]. In these transgenic plants the expression of pMADS2 and fbp1 is primarily in the mature third whorl. In M1(c+d) the average expression of the 35S–pMADS1 transgene is higher in all four whorls. In these plants the expression of pMADS2 and fbp1 is up-regulated in the second whorl, compared with nontransformed gp plants (cf. Fig. 5, B and C). [B] Transgenic gp plants that express the 35S–pMADS2 transgene (M2). Tissue from five independent transgenic flowers was combined for Northern analysis. The average expression of pMADS2 in the first, second, and fourth whorls is low (presumably from the transgene) and has no effect on the expression of fbp1 (cf. Fig. 5C).

Figure 9. Phenotypic analysis of pMADS1 cosuppression plants. Wild-type petunia plants (V26) were transformed with a 35S–pMADS1 chimeric gene construct [VIP162]. Transgenic plant SD15 was selfed, and flowers of progeny plants (SD15a–d), showing different degrees of cosuppression, were analyzed. [A] SD15a. Although the effect on second whorl petal development is mild, the third whorl stamen filaments are not fused to the petal tube of this flower. [B] SD12. The tube and petal tissue of this flower are not fully developed. [C] SD15b. The second whorl tube is much reduced, and in the limb, sectors of petal or petaloid tissue have developed. [D] SD15c. The flowers from this line are an almost complete phenocopy of gp (PLV) flowers. [E] SD15d. Same flower as D, but 1 week later. After anthesis the second whorl can develop some petaloid characteristics. [F] Inside of a SD15b flower. Part of the first and second whorl organs were removed to show that the stamen filaments are not fused to the second whorl organs and that extra, third whorl sepaloid organs develop in this flower [arrow]. [G] Second whorl sepaloid structure of SD3, showing sectors of petaloid tissue. [H] Close-up of second whorl sepaloid structure of SD3, showing sectors of green cells, white cells, and cells pigmented with anthocyanins. [I, J] An epidermal peel from SD3 second whorl tissue [see H], showing small, fully pigmented petal cells next to nonpigmented and slightly pigmented jigsaw-shaped epidermal cells. [K] Close-up of a stamen filament of a SD3 flower, showing petaloid cells and trichomes. [L] SD15d. Most of the second whorl organs in these flowers do not develop or are fused to the stamens. [M] SD15d. All of the organs of the second/third whorl that are produced in one flower. Vertical bar, 1 cm; thick horizontal bar, 1 mm; thin horizontal bar, 0.1 mm.
pMADS1 controls petunia petal development

Figure 9. [See facing page for legend.]
for the pMADS1 gene, we also analyzed the expression of pMADS2, pMADS3, pMADS4, and fbpl. In young sepaloid tissue of the second whorl of SD15c, the pMADS2 and fbpl steady-state mRNA level was very low but similar to that of V26. Upon maturation of this tissue, expression of both genes remained low, in sharp contrast with the increase in pMADS2 and fbpl steady-state mRNA level in mature petals of untransformed V26 flowers (Fig. 5B, C, cf. lane 2 of top and bottom panels). In line SD15d, pMADS2 and fbpl expression in the second/third whorl increased upon maturation (Fig. 5H).

RNA analysis of V26 and gp [PLV] and the pMADS1 restoration plants indicated that both pMADS2 and fbpl are regulated by pMADS1 (see above). Therefore, the lack of pMADS2 and fbpl expression in the second whorl of SD15c is likely the result of the reduced pMADS1 gene expression in this whorl, rather than a nonspecific cosuppression effect of the 35S–pMADS1 transgene. In the mature third floral whorl of gp [PLV], the expression of pMADS2 and fbpl is elevated (Fig. 5B, C, middle panels). However, Northern analysis of SD15c showed that the pMADS2 gene expression is very low in the mature third whorl organs. This indicates that pMADS2 may also be a target for cosuppression by the pMADS1 transgene. Also, the phenotype of plant SD15d is stronger than that of gp [PLV], a pMADS1 null mutant, suggesting that genes other than just pMADS1 are being suppressed at an early stage of flower development in SD15d. The cosuppression effect has little or no influence on pMADS3 and pMADS4 expression levels (Fig. 5D, E, bottom panel, and Fig. 5H).

Analyses of petunia petal development

With the cosuppression of pMADS1 function and the restoration of gp [PLV], we created a series of (mature) flowers with different stages of petal development. These flowers not only help to define the function of pMADS1 but also to analyze the actual process of petal growth and differentiation in petunia. Figure 10A shows the different end stages of second whorl organ development, starting with the gp sepal [Fig. 10A(1)], V26 partial cosuppression [Fig. 10A(2) and (3)], gp partial restoration, and ending with wild-type petal. Similar end stages of petal development are shown schematically in Figure 10B. The petal differentiation in the epidermal cell layer suppresses trichome and stomata formation and promotes longitudinal and lateral cell divisions in the tube and the limb. The fully differentiated petaloid epidermal cell is a small, round, and cone-shaped cell with a high level of pigmentation by anthocyanins. The parenchyma cells of the inner cell layers of mature petal tissue are smaller than those in mature sepal tissue and do not show any green pigmentation. Because the (macro) surface area of mature petal tissue is approximately twice that of sepal tissue while the parenchyma cells and epidermal cells of the petal are up to fivefold smaller than those of the sepal, petal development consists of many additional cell divisions besides those that are necessary to make up the (default) sepal structure. The transgenic line SD15c, which shows a sepaloid second whorl in the mature flower, can still develop petal-like tissue [SD15c before anthesis (Fig. 9D), as well as after anthesis (Fig. 9E)]. The same can be seen in the restoration experiment [petal sector (Fig. 7B) and petal development (Fig. 7C, D) in M1c]. How far a cell can differentiate into a complete petaloid cell depends on when the genes of the petal differentiation pathway are activated. A mature sepaloid cell may not be able to change its shape but can become pigmented with anthocyanins, whereas a young sepaloid cell may change its shape and/or divide to give rise to a fully differentiated petaloid cell.

The growth patterns that transform a sepaloid organ into a petal are illustrated in Figure 10C. The sepal growth (S; Fig. 10C) includes a congenital fusion at the base of the five sepaloid organs, leading to a tube structure. This tube structure corresponds to the fused part of the corolla limb, the corolla tube has no real equivalent in gp [see below]. When the petal differentiation pathway is activated, S growth is transformed into C growth (Fig. 10C) and extended by additional lateral cell divisions (Fig. 10C, C1), additional longitudinal cell divisions at the base, which make up a part of the corolla tube (Fig. 10C, C2), and additional cell divisions under the base of the sepal and the stamen (Fig. 10C, C3 and F2), which make up the part of the corolla tube with the fused stamen filaments. The C3 and F2 growth are affected most easily by pMADS1 cosuppression and restored least easily by pMADS1 expression in gp [PLV] plants. Under conditions of partial cosuppression (SD15a) or partial restoration (M1b) of the pMADS1 function, the tube and filament growth only occurs above the petal and stamen initiation zone (Fig. 10C, C2 and F1), resulting in separate (nonfused) stamen filaments and corolla tube. The differentiation of the sepaloid second whorl organ into petal is mainly responsible for the corolla limb structure (Fig. 10C, C and C1). This is, for instance, illustrated by flowers of M1b (Fig. 7D, G, H), which show petal tissue (C1 growth) at the fringes of the otherwise sepaloid second whorl organs, and in flowers of M1c (Fig. 7I), where the sepaloid structure that forms in gp [PLV] flowers can still be seen within the corolla limb that has formed by pMADS1 restoration. The corolla tube is formed by C2 and C3 growth (Fig. 10C), and equivalent growth is either extremely limited or absent in the sepaloid organs of gp.

Discussion

The functions of pMADS1 in determining floral organ identity

Here, we provide evidence that the mutant gp [PLV] suffers a chromosomal deletion that includes the pMADS1 locus. Moreover, petal development in gp can be restored by a 35S–pMADS1 transgene, and the gp phenotype can be obtained by pMADS1 cosuppression. These combined results indicate that the pMADS1 gene can be designated as GP. Although pMADS1 does not control stamen growth in the third whorl, it does have minor effects in this whorl by suppressing formation of petaloid cells and
Figure 10. Different end stages of petal development in petunia. (A) Hand-made tissue sections from mature second whorl organs of the following. (1) gp (PLV) sepal. The upper and lower epidermal cell layer are translucent, trichomes are present on both faces, and the inner parenchyma cells are green. (2) pmADS1 cosuppression (SD15b). The upper and lower epidermal cell layer shows sectors of petaloid cells, pigmented with anthocyanins. (3) pmADS1 cosuppression (SD12). There is a reduction in trichome number in larger patches of petaloid epidermal cells. The parenchyma cells show only weak green pigmentation. (4) pmADS1 restoration (Mlc). The upper epidermal cell layer is almost completely petaloid, with only a few trichomes on the adaxial face. The inner parenchyma cells are small although still pigmented green. (5) V26 petal. The upper and lower epidermal cell layer consist of small cone-shaped cells, pigmented with anthocyanins. The parenchyma cells are small and white. (B) A schematic presentation of the different end stages of petal development in petunia. The default state of the second whorl organ is sepaloid, characterized by jigsaw-shaped epidermal cells, trichomes, stomata, and large, green parenchyma cells. Petal differentiation suppresses the formation of trichomes and stomata, whereas the epidermal cells can become pigmented and lose their characteristic jigsaw shape (more round). Full petal differentiation results in small, white parenchyma cells and epidermal cells that are small, cone-shaped, and pigmented purple with anthocyanins. (C) A schematic presentation of the growth stages that transform a sepaloid organ into a petal. The sepal is formed by growth S. When petal differentiation is activated, this growth is transformed into C and additional growth occurs (C1, C2, and C3), leading to the petal structure. F1 is the growth of the filament that occurs above the zone of stamen initiation. The growth of C3 and F2 occurs under the zone of petal and stamen initiation, resulting in a congenital fusion of stamen filament to the corolla tube.

Additional organs. The petal differentiation pathway appears to be dosage dependent, because the degree of restoration is correlated with the expression level [Fig. 8A] and copy number of the 35S–pmADS1 transgene [Fig. 7E,F]. Partial restoration by the 35S–pmADS1 transgene could occur in defined sectors [Fig. 7B]. Such a sector is phenotypically similar to a sector in the DEFA (def-621) mutant in which somatic reversion has occurred during
second whorl development, resulting in the restoration of DEFA expression (Carpenter and Coen 1990). However, the sector in M1b is genetically different because in this tissue the pMADS1 gene is under control of the "constitutive" CaMV 35S promoter. This result suggests that a weakly expressed pMADS1 transgene can activate petal differentiation in a cell at a low frequency, and, subsequently, feedback mechanisms might re-enforce this differentiation process. In this connection it should also be noted that a putative MADS box DNA-binding site (CCAAAGATGGG) is present in the CaMV 35S promoter. Therefore, expression from this promoter might also be subject to regulation by MADS box genes.

pMADS1 regulates the expression of pMADS2 and fbpl in the second whorl

Because pMADS box gene expression varies throughout floral development and at similar stages among different P. hybrida lines, caution should be exercised in interpreting differences in expression levels among plants with different genetic backgrounds. The effect of the absence of pMADS1 on pMADS2 and fbpl expression, however, was observed consistently (Figs. 5B, C and 8A). In the second whorl, pMADS1 up-regulates, whereas in the third whorl it down-regulates pMADS2 and fbpl expression [cf. expression in V26 and gp (PLV), (Fig. 5A–C)]. pMADS1 has also been shown to up-regulate its own and pMADS2 expression in first whorl tissue of transgenic plants in which the ectopic expression of pMADS1 resulted in the homeotic conversion of sepals to petals (U. Halfter, N. Ali, L. Ren, A. Kush, and N.-H. Chua, in prep.). The expression of fbpl in another gp mutant (M68) has been reported previously (Angelent al. 1992), but the pMADS1 expression in this line has not been described. Also, in these analyses the effect of floral development on the expression levels of fbpl was not considered. The expression of pMADS3 was largely unaffected by the presence or absence of pMADS1 gene expression, as was pMADS4 gene expression.

Our observation that petaloid cells can develop in a pMADS1 null mutant (Fig. 4 H, J) suggests that pMADS1 controls petal cell differentiation indirectly. For example, it might regulate the expression of regulatory factors in the second whorl that directly interact with petal-specific genes. These downstream transcription factors apparently do not need the pMADS1 gene for their expression in cells of the third whorl. We note that the expression profiles of both pMADS2 and fbpl fit that of the above described petal-specific downstream genes.

Cosuppression of pMADS1

The phenomenon of cosuppression was first described by Napoli et al. (1990) and van der Krol et al. (1990) and occurs when a transgene somehow represses its own expression as well as that of other homologous genes, either wild-type genes or other transgenes, present in the plant genome (Napoli et al. 1990). Although cosuppression has now been observed with many different types of genes in transgenic plants, its molecular mechanism remains unknown (for review, see Jorgensen 1990). A cosuppression phenotype was observed with pMADS1 but not with a similar pMADS2 gene construct (A.R. van der Krol, unpubl.). In the pMADS1 cosuppression plants, expression of the transgene was not detected in sepals of line SD15c and SD15d (Fig. 5A, bottom panel, and Fig. 5H, top panel), indicating that in both of these lines the pMADS1 transgenes are already in a suppressed state. This has also been observed for other cases of cosuppression [e.g., CHS and the dihydro-flavonol reductase genes; van der Krol et al. 1990]. Most pMADS1 cosuppression plants showed a phenotype varying from wild type to that of gp, indicating that the changes can be ascribed to alterations in pMADS1 expression level. However, there is some evidence suggesting that the cosuppression may not always be specific for pMADS1. The changes in fbpl expression in the cosuppression plant SD15c are comparable with the changes in fbpl expression in gp; however, the changes in pMADS2 expression are not. It could be that pMADS2 is also a target for the cosuppression in this transgenic line. Moreover, the SD15d flowers show a phenotype more severe than gp flowers, indicating cosuppression of gene functions other than those of pMADS1.

Differences between petunia and Antirrhinum and Arabidopsis flower development

The deduced function of pMADS1 in second whorl organ development agrees with that of DEFA and AP3. Mutation of one of these genes produces a homeotic conversion of petal into sepal. Both pMADS2 and fbpl show a very low level of expression at early stages of second whorl organ development, and in the absence of pMADS1 this expression fails to increase to the high level detected in the wild-type mature petal. This expression pattern is similar to that described for DEFA and GLO in Antirrhinum. [Sommer et al. 1990; Trobner et al. 1992] and AP3 and Pistillata [Pi] in Arabidopsis [Jack et al. 1992]. Both set of B-type genes are induced independently at early stages of flower development but show an interdependency for maintenance and increase of expression at later stages of petal development. Sommer et al. [1990] and Trobner et al. (1992) reported that only the DEF/GLO heterodimer can bind to DNA target sites located in the promoter regions of DEFA and GLO. This result suggests that both genes are involved in up-regulating their own expression (Trobner et al. 1992).

In contrast to DEFA and AP3, the petunia pMADS1 is genetically redundant for third whorl stamen development. A minor effect of pMADS1 in the third whorl is the suppression of petaloid cell formation on the stamen filaments. A similar third whorl function would be masked in DEFA and AP3 mutants because they do not develop stamens. In petunia, stamen development in the absence of pMADS1 coincides with the up-regulation of pMADS2 and fbpl expression. This is in sharp contrast to the situation in Antirrhinum and Arabidopsis where, as in the second whorl, both sets of B-type genes show an interdependency for maintenance of expression in the third whorl organs [Jack et al. 1992; Trobner et al. 1992].
Thus, pMADS2 and fbpl proteins can function without the pMADS1 protein, indicating a different type of interaction between the petunia proteins pMADS1 and pMADS2/fbpl on one hand, and between the Anthirrinum proteins DEFA and GLO and the Arabidopsis proteins AP3 and PI on the other hand. Future analysis will have to show whether these different interactions between B-type genes in petunia and Anthirrinum and Arabidopsis is reflected in different DNA-binding and dimerization properties of the respective gene products.

Materials and methods

Plant material and transformations

Petunia plants were grown under standard greenhouse conditions. The pMADS1 and pMADS2 cDNAs were isolated from P. hybrida line W115. The fbpl gene was isolated from P. hybrida line R27 by Angenent et al. [1992]. The petunia gp mutant line PLV was obtained by gamma-ray treatment and was kindly provided by Dr. E. Farcy (INRA, Dijon, France). Other hybrid lines used in our experiments were P. hybrida line V26 and V30. The (presumed) ancestor petunia lines used were P. axillaris [S1 and S2, the different S numbers designate different origins], P. inflata [S6 and S14], P. parviflora [S4], P. violacea [S9 and S10], P. integrifolia [S12 and S13], and P. parodi [S8]. These lines were kindly provided by Dr. R. Koes [Free University, Amsterdam, The Netherlands]. Plant transformations were performed as described by Horsch et al. [1985] using leaf discs from V26 [construct VIP162], a hybrid of V26 and PLV [construct J84], or PLV [construct VIP186].

DNA cloning strategies

The overexpression construct J84 was made by cloning pMADS1 cDNA fragment into a vector containing the CaMV 35S promoter and rbcS-E9 poly(A) addition signal [U. Haller, N. Ali, L. Ren, A. Kush, and N.-H. Chua, in prep.]. The pMADS1 cosuppression construct VIP162 was made by cloning the cDNA as an Xbal–KpnI fragment downstream of a modified 35S [m35S] promoter in the vector pBSII (Stratagene) to generate clone VIP160. The modified 35S promoter contains the −90 to +8 fragment of the CaMV 35S promoter [AS10]. Benfey and Chua 1990] with four copies of the B3 domain [Benfey and Chua 1990] and four copies of an optimized AS-1-binding site (Katagiri et al. 1989) placed upstream. The m35S promoter has been shown to direct the expression of a β-glucuronidase reporter gene in all cell layers of the petunia petal [A.R. van der Krol, unpubl.]. The m35S promoter plus pMADS1 coding sequence was isolated from VIP160 as a partial HindIII–KpnI fragment and cloned between the HindIII–KpnI site of the binary vector VIP26 [van der Krol and Chua 1991] to generate clone VIP162. The pMADS2 gene construct was made by inserting the EcoRI fragment of the pMADS2 cDNA into a binary vector that contains both the mCaMV 35S promoter and the rbcS-E9 poly(A) addition signal to form VIP186. The following chimeric gene constructs were introduced into the petunia genome:

- **CaMV 35S**
 - **ATG** pMADS1 cDNA
 - **TAG** rbcSE9
- **mCaMV 35S**
 - **pMADS1 cDNA**
- **mCaMV 35S**
 - **pMADS1 cDNA**
 - **pMADS2 cDNA**
 - **rbcSE9**

Southern and Northern analysis

Genomic plant DNA, isolated from ~1 gram of leaf tissue, was digested with restriction endonucleases, size-fractionated on agarose gels, and blotted onto GeneScreen Plus membrane [DuPont]. The hybridization and washing conditions were similar as were the Northern blots (see below). Total RNA was isolated from plant tissue using the RNAid isolation procedure [BIO 101]. Flower buds were dissected into first, second, third, and fourth whorl tissue. The young flower bud material that was used measured, from the base to the tip of the first whorl sepal, 5–15 mm for V26 and V30, 5–20 mm for W115, and 5–10 mm for PLV. In all lines, at this stage, the second whorl tissue is mainly light green in color and covers the third and fourth whorl organs, and the third whorl stamen filaments have not yet elongated. The mature flower bud material consisted of closed flower buds 5–6 cm long for V26 and V30 [measured from the base to the tip of the second whorl petal], closed flower buds 6–7 cm long for W115, and for PLV, open flowers with stamen filaments fully elongated, but before anthesis. For V30, V26, and W115, the mature floral bud stage coincides with the peak of CHS gene expression in the second whorl [Koes et al. 1989].

Equal amounts [7 µg] of total RNA were fractionated on 1.2% agarose gels containing 6% formaldehyde. Gels were blotted onto GeneScreen Plus [DuPont] according to the manufacturer’s instructions and hybridized to random primed labeled DNA [Boehringer Mannheim] in 20% formamide, 5× SSC, 1% SDS, 5× Denhardt’s solution, and 10 µg/ml of salmon sperm DNA at 42°C. Blots were either washed under nonstringent conditions [0.5 hr, 2× SSC, 65°C] or stringent conditions [0.5 hr, 0.2× SSC, 65°C]. Gene-specific probes (cDNA fragments without the MADS box region) were used for each of the genes. The fbpl probe, covering nucleotides 494–760 [Angenent et al. 1992], was generated by PCR amplification using R27 genomic DNA as a template.

Phenotypic analysis and imaging

Flowers and hand-made tissue sections were photographed under a Nikon SMA-U stereomicroscope. Epidermal peels taken from sepals or petal tissue were vacuum infiltrated with water to remove air pockets before photographing. Microscopic sections were made and stained as described by Natarella and Sink [1971] and photographed in bright field either under a Nikon SMZ-U stereo microscope or a Nikon optiphot microscope. All images were processed in an Adobe photoshop and assembled in an Al- dus Pagemaker. The Northern images were compressed vertically [20%].

Acknowledgments

We thank Shan-Ping Wong and Chun-Hai Dong for plant tissue sections, Hong Hong for transformation, and Mengdai Xu for plant care. E. Farcy [INRA, Dijon, France], R. Koes [Free University, Amsterdam, The Netherlands], and T Holthorp [Goldsmith Seeds Inc., California] kindly provided us with the plant material used in this work. We also thank R. Strauss for his four last songs. This work was supported in part by a Human Science Frontier Program grant.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.
van der Krol et al.

References

Angenent, G.C., M. Busscher, J. Franken, J.N.M. Mol, and A.J. van Tunen. 1992. Differential Expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983–993.

Benfey, P.N. and N.-H. Chua. 1990. The cauliflower mosaic virus 35S promoter: Combinatorial regulation of transcription in plants. Science 250: 959–966.

Bowman, J.L., M.F. Yanofsky, and E.M. Meyerowitz. 1988. Arabidopsis thaliana: A review. In Oxford surveys of molecular and cell biology (ed. B.J. Millin), Vol. 5, pp. 57–87. Oxford University Press, New York.

Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1: 37–52.

———. 1991a. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.

Bowman, J.L., G.N. Drews, and E.M. Meyerowitz. 1991b. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3: 749–758.

Carpenter, R. and E.S. Coen. 1990. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes & Dev. 4: 1483–1493.

Christ, C. and B.-K. Tye. 1991. Functional domains of the yeast transcription/replication factor MCM1. Genes & Dev. 5: 751–763.

Coen, E.S. and E.M. Meyerowitz. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353: 3137.

Coen, E.S., J.M. Romero, S. Doyle, R. Elliott, G. Murphy, and R. Carpenter. 1990. floricaula: A homeotic gene required for flower development in Arabidopsis thaliana. Cell 63: 1311–1322.

de Vlaming, P., A.G.M. Gerats, H. Wiering, and H.J.W. Wijsman. 1984. Petunia hybrida: A short description of the action of 91 genes, their origin and their map location. Plant Mol. Biol. Reporter 2: 21–42.

Doughty, E., J. Bercy, F. Descamps, and F. Messenguy. 1987. Characterization of two new genes essential for vegetative growth in Saccharomyces cerevisiae, nucleotide sequence determination and chromosome mapping. Gene 55: 265–275.

Evans, P.T. and R.L. Malmberg. 1989. Alternative pathways of tobacco placental development: Time of commitment and analysis of a mutant. Dev. Biol. 136: 273–283.

Horsch, R.B., J.E. Fry, N.L. Hoffmann, D. Eichholz, S.G. Rogers, and R.T. Fraley. 1985. A simple and general method for transferring genes into plants. Science 227: 1299–1321.

Jack, T., L.L. Brockman, and E.M. Meyerowitz. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683–697.

Jorgensen, R. 1990. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol. 8: 340–344.

Katagiri, F., E. Lam, and N.-H. Chua. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340: 727–730.

Koes, R.E., C.E. Spelt, and J.N.M. Mol. 1989. The chalcone synthase family of Petunia hybrida (V30): Differential light-regulated expression during lower development and UV light induction. Plant Mol. Biol. 12: 213–225.

Kush, A., A. Brunelle, D. Shevelle, and N.-H. Chua. 1993. The cDNA nucleotide sequence of two MADS box proteins in Petunia. Plant Physiol. [in press].

Ma, H., M.F. Yanofsky, and E.M. Meyerowitz. 1991 AGL-1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Dev. 5: 484–495.

Mandel, M.A., J.L. Bowman, S.A. Kempin, H. Ma, E.M. Meyerowitz, and M.F. Yanofsky. 1993. Manipulation of flower structure in transgenic tobacco. Cell 71: 133–143.

Napoli, C., C. Lemeiche, and R. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2: 279–289.

Natarella, N.J. and K.C. Sink. 1971. The morphogenesis of double flowering in Petunia hybrida. Hortic. J. Am. Soc. Hortic. Sci. 96: 600–602.

Norman, C., M. Runswick, R. Pollock, and R. Treisman. 1988. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55: 989–1003.

Penuel, L., M. Abu-Abid, D. Zamir, W. Nacken, Z. Schwarz-Sommer, and E. Lishtsch. 1991. The MADS box gene family in tomato: Temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Arabidopsis and Antirrhinum. Plant J. 1: 255–266.

Prior, P.V. 1957. Alterations in the shoot apex of Petunia hybrida Vilm. at flowering. In Proceedings of the Iowa Academy of Science 64, The State of Iowa, Des Moines.

Schwarz-Sommer, Z., P. Huisinger, W. Nacken, H. Saedler, and H. Sommer. 1990. Genetic control of flower development: Homeotic genes in Arabidopsis thaliana. Science 250: 931–936.

Sink, K.C. 1984. Petunia. Monographs on theoretical and applied genetics 9 (ed K.C. Sink). Springer-Verlag, New York.

Sommer, H., J.-P. Bellrann, P. Huisinger, H. Pape, W.-E. Lonnig, H. Saedler, and Z. Schwarz-Sommer. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J. 9: 605–613.

Tobner, W., L. Ramirez, P. Motte, I. Hue, P. Huisinger, W.-E. Lonnig, H. Saedler, H. Sommer, and Z. Schwarz-Sommer. 1992. GLOBOSA: A homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693–4704.

Turlur, M.-F and J. Alabouvette. 1988. La morphogenese florale chez le petunie. II. La fleur normale. Can. J. Bot. 67: 1985–1997.

Vallade J., D. Maizonnier, and A. Cornu. 1986. La morphogenese florale chez le petunia. I. Analyze d’un mutant a corolle staminodee. Can. J. Bot. 65: 761–764.

van der Krol, A.R. and N.-H. Chua. 1991. The basic domain of plant BZIP proteins facilitates import of a reporter protein into the plant nuclei. Plant Cell 3: 667–675.

van der Krol, A.R., L.A. Mur, M. Beld, J.N.M. Mol, and A.R. Stuitje. 1990. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299.

Yanofsky, M.F., H. Ma, J.L. Bowman, G.N. Drews, K. Feldmann, and E.M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346: 35–39.
Functional analysis of petunia floral homeotic MADS box gene pMADS1.

A R van der Krol, A Brunelle, S Tsuchimoto, et al.

Genes Dev. 1993, 7:
Access the most recent version at doi:10.1101/gad.7.7a.1214

References This article cites 31 articles, 13 of which can be accessed free at: http://genesdev.cshlp.org/content/7/7a/1214.full.html#ref-list-1

License

Email Alerting Service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genesdev.cshlp.org/content/7/7a/1214.full.html#ref-list-1).