THE BOGOMOLOV-TIAN-TODOROV THEOREM OF CYCLIC A_{∞}-ALGEBRAS

JUNWU TU

Abstract. Let A be a finite-dimensional smooth unital cyclic A_{∞}-algebra. Assume furthermore that A satisfies the Hodge-to-de-Rham degeneration property. In this short note, we prove the non-commutative analogue of the Bogomolov-Tian-Todorov theorem: the deformation functor associated with the differential graded Lie algebra of Hochschild cochains of A is smooth. Furthermore, the deformation functor associated with the DGLA of cyclic Hochschild cochains of A is also smooth.

1. The non-commutative Bogomolov-Tian-Todorov Theorem

Let X be a Calabi-Yau manifold, i.e. a compact complex manifold with trivial canonical bundle. It is a classical result of Bogomolov-Tian-Todorov [11][12] that the formal deformation functor associated with the differential graded Lie algebra (DGLA)

$$\mathfrak{g}_X := \bigoplus_{p,q} A^{0,q}(\Lambda^p T_X)$$

of the Dolbeault resolution of holomorphic poly-vector fields is smooth. In order to prove this, the key observation was the existence of a BV operator $\Delta : \Lambda^* T_X \to \Lambda^{*-1} T_X$, which “trivializes” the Lie bracket by the Tian-Todorov identity

$$[\alpha, \beta] = \Delta(\alpha \wedge \beta) - \Delta(\alpha) \wedge \beta - (-1)^{||\alpha||} \alpha \wedge \Delta(\beta).$$

With the above formula, the smoothness of the deformation functor follows easily from the classical $\partial\bar{\partial}$-Lemma in Hodge theory.

Following Kontsevich-Soibelman [8] and Katzarkov-Kontsevich-Pantev [7], one can formulate the compactness, smoothness, and the Calabi-Yau property purely in terms of the differential graded category of coherent sheaves on X. Thus, a natural question is whether the analogues of the Bogomolov-Tian-Todorov’s theorem holds for any smooth and proper Calabi-Yau categories. This question might have been a folklore theorem for experts in the field. The purpose of this note is to fill some of the missing details in the literature.

A large class of dg categories of interests is compactly generated by a single object. For this reason, instead of considering formal deformations of dg categories (whatever that means), we shall consider deformations of A_{∞}-algebras which is also much more tractable. To state the non-commutative version of the Bogomolov-Tian-Todorov theorem precisely, we first fix some notations and conventions. Throughout the paper, we use the homological degree of chain complexes. If A is a chain complex, its suspension is denoted by sA with $(sA)_n := A_{n-1}$. For

Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China, 201210. E-mail: tujw.at.shanghaitech.edu.cn.
a unital A_∞-algebra A, denote by $C^{-\bullet}(A)$ ($C_*(A)$) its reduced Hochschild cochain complex (chain complex respectively). The minus sign is due to that we use homological degree. Let A be a cyclic unital A_∞-algebra, denote by $C^\lambda(A) \subset C^{-\bullet}(A)$ the sub-complex consisting of cyclic cochains with respect to the pairing on A.

Theorem 1.1. Let A be a $\mathbb{Z}/2\mathbb{Z}$-graded, finite-dimensional smooth unital cyclic A_∞-algebra. Assume furthermore that A satisfies the Hodge-to-de-Rham degeneration property. Then we have

(A.) The deformation functor $\text{Def}_{sC^{-\bullet}(A)}$ associated with the DGLA $sC^{-\bullet}(A)$ of Hochschild cochains is smooth.

(B.) The deformation functor $\text{Def}_{sC^\lambda(A)}$ associated with the DGLA $sC^\lambda(A)$ of cyclic Hochschild cochains is also smooth.

(C.) The natural transformation $f : \text{Def}_{sC^\lambda(A)} \rightarrow \text{Def}_{sC^{-\bullet}(A)}$ associated with the canonical inclusion map $sC^\lambda(A) \hookrightarrow sC^{-\bullet}(A)$ is smooth. In particular, every deformation of the A_∞ structure of A lifts to a deformation of the cyclic A_∞ structure of A.

Remark 1.1. The assumption of the Hodge-to-de-Rham degeneration property automatically holds for any \mathbb{Z}-graded smooth and proper A_∞-algebra by Kaledin [6]. In the general $\mathbb{Z}/2\mathbb{Z}$-graded case, this remains an open conjecture by [8] [7]. Part (A.) of the above Theorem was proved by Isamu Iwanari [5] with a different method.

2. BV$_\infty$-algebra structure on $C^{-\bullet}(A)$

To prove the above Theorem 1.1, one follows the same idea as in the proof of Bogomolov-Tian-Todorov’s Theorem. However, the key identity Equation 1 fails to hold. It only holds up to homotopy. Also, the cup product on $C^{-\bullet}(A)$ is only commutative up to homotopy. Thus it is natural to work with a homotopy version of the underlying algebraic structures.

In this section, we first exhibit a homotopy BV algebra structure, or BV$_\infty$-algebra structure on $C^{-\bullet}(A)$. The definition of BV$_\infty$-algebras used in this paper is from the article [3]. In fact, it was argued in Loc. Cit. that combining a TCFT structure defined by [1] [8] and the formality of the operad BV, one easily deduces the existence of a BV$_\infty$-algebra structure on $C^{-\bullet}(A)$ with A as in Theorem 1.1. However, to make such structure useful in order to deduce Theorem 1.1, one needs to say a bit more about this BV$_\infty$ structure. For example, its underlying Lie$_\infty$ algebra is in fact given by the differential graded Lie algebra $(C^{-\bullet}(A), \delta, [-,-]_C)$. For this purpose, we need to use a construction of Tamarkin in his proof of the Deligne’s conjecture [10]. We introduce the following notations:

- **Lie** — The Lie operad.
- **Lie$_\infty$** — The homotopy Lie operad.
- **E_2** — The operad whose representation gives Gerstenhaber algebras.
- **G_∞** — The homotopy E_2 operad.
- **BV** — The operad whose representation gives BV algebras.
- **BV$_\infty$** — The homotopy BV operad.
- **B$_\infty$** — The brace operad [4, Section 5.2].
- **\mathcal{F}** — The operad defined by Tamarkin in [10, Section 6].
- **$C_{comb}^s(FD)$** — The operad of black-and-white ribbon trees defined by Kontsevich-Soibelman [8, Section 11.6], see also Wahl-Westerland [14, Section 2]. This operad gives a combinatorial model for the framed little disk operad.
• \mathcal{X} — A cofibrant replacement of $C^\text{comb}_*(FD)$.

For an operad O, denote by $O\{1\}$ its shifted version so that an $O\{1\}$-algebra structure on a chain complex A is equivalent to an O-algebra structure on sA. The endomorphism operad of a chain complex is denoted by $\text{End}(-)$.

The starting point to construct a BV_∞ structure on $C^{*-}(A)$ is that the operad $C^\text{comb}_*(FD)$ naturally acts on $C^{*-}(A)$:

\[(2)\]

$C^\text{comb}_*(FD) \to \text{End}\left(C^{*-}(A)\right)$.

We refer to Kontsevich-Soibelman [8] and Wahl-Westerland [14] for details of this action. Here we illustrate this action with a few examples. Indeed, the following black-and-white ribbon tree

\[\begin{array}{c}
\times \\
\cdots
\end{array}\]

inside $C^\text{comb}_*(FD)(1)$ gives the pull-back of the Connes operator $B : C_*(A) \to C_*(A)$ under the isomorphism $C^{*-}(A) \cong (C_*(A))^\vee$. Denote it by $\Delta : C^{*-}(A) \to C^{*-}(A)$.

There are also binary operators associated with trees in $C^\text{comb}_*(FD)(2)$. For example, consider the following two black-and-white ribbon trees:

\[T = \begin{array}{c}
\times \\
\cdots
\end{array}\quad R = \begin{array}{c}
\times \\
\cdots
\end{array}\]

The graph T gives the familiar cup product on $C^{*-}(A)$, while the graph R gives the first brace operator \circ on $C^{*-}(A)$ whose commutator (after shift) is the Gerstenhaber Lie bracket $[-,-]_G$.

Lemma 2.1. There is a morphism of operad $h : B_\infty \to C^\text{comb}_*(FD)$ defined by

\[
h(m_k) := T_k,\; k \geq 2 \\
h(m_{1,k}) := W_k,\; k \geq 1, \\
h(m_{p,k}) := 0,\; p \geq 2.
\]

Here T_k and W_k are given by the following black-and-white ribbon trees:

\[T_k := \begin{array}{c}
\times \\
\cdots
\end{array}\quad W_k := \begin{array}{c}
\times \\
\cdots
\end{array}\]

Proof. This is a straight-forward check. □

In [10], Tamarkin constructed morphisms $s : G_\infty \to \mathcal{F}$ and $t : \mathcal{F} \to B_\infty$. 3
Lemma 2.2. There exists a commutative diagram:

\[
\begin{array}{ccc}
F & \xrightarrow{t} & B_{\infty} \\
\downarrow & & \downarrow h \\
X & \xrightarrow{\sim} & C_{\ast}^{\text{comb}}(FD)
\end{array}
\]

Proof. This follows the lifting property since \(X \to C_{\ast}^{\text{comb}}(FD)\) is a trivial fibration, while \(F\) by construction is cofibrant. \(\square\)

The framed little disk operad is known to be formal with cohomology the \(BV\) operad, which implies that \(BV \cong C_{\ast}^{\text{comb}}(FD)\) in the homotopy category of differential graded operads. Since the operad \(X\) is cofibrant, and \(BV\) is fibrant (as any dg operad is fibrant), we obtain a morphism \(X \to BV\) such that the roof diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\sim} & BV \\
C_{\ast}^{\text{comb}}(FD) & \xrightarrow{\sim} & BV
\end{array}
\]

represents an isomorphism in the homotopy category of differential graded operads.

Lemma 2.3. The following diagram is commutative:

\[
\begin{array}{ccc}
\text{Lie}_{\infty}\{1\} & \xrightarrow{\sim} & G_{\infty} & \xrightarrow{\sim} & F & \xrightarrow{\sim} & X \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{BV}_{\infty} & \xrightarrow{\sim} & BV & & & & \text{BV}
\end{array}
\]

Proof. It is clear that the left composition factors as

\[
\text{Lie}_{\infty}\{1\} \to \text{Lie}\{1\} \to BV.
\]

For the right composition, consider the following composition

\[
\text{Lie}_{\infty}\{1\} \to F \to X \to C_{\ast}^{\text{comb}}(FD).
\]

By Lemma 2.2 above, it is equal to

\[
\text{Lie}_{\infty}\{1\} \to F \to B_{\infty} \to C_{\ast}^{\text{comb}}(FD),
\]

which by [10] can be factored as

\[
\text{Lie}_{\infty}\{1\} \to \text{Lie}\{1\} \to B_{\infty} \to C_{\ast}^{\text{comb}}(FD).
\]

This shows that both compositions vanish on generators \(l_k\) of \(\text{Lie}_{\infty}\{1\}\) with \(k \geq 3\). For \(k = 2\), this is a direct check by definition. \(\square\)
By definition of X, the right vertical map in the above diagram is a trivial fibration since BV is minimal. The left vertical map is a cofibration. Thus by the lifting property, we obtain a map $BV_\infty \to X$:

\[
\text{Lie}_\infty \{1\} \to G_\infty \to \mathcal{F} \to X
\]

We define a BV_∞-algebra structure on $C^{-*}(A)$ via the composition:

(3) $\rho : BV_\infty \to X \to C^*_{\text{comb}}(FD) \to \text{End}(C^{-*}(A))$.

Corollary 2.1. Let $C^{-*}(A)$ be endowed with the BV_∞-algebra structure defined by the Equation 3. Then its underlying Lie_∞ structure on the suspension of $C^{-*}(A)$ is given by the differential graded Lie algebra $(sC^{-*}(A), \delta, [-, -]_G)$.

Proof. This follows from Lemma 2.2 and Tamarkin’s commutative diagram:

\[
\text{Lie}_\infty \{1\} \to G_\infty \to \mathcal{F} \\
\text{Lie} \{1\} \to B_\infty
\]

Consider a subset of generating operators of a BV_∞ structure given by

\[
\{t^d_k | k \geq 1, d \geq 0\}
\]

which label a basis of the convolution between the Koszul dual cooperad of Lie and that of the operad generated by the circle operator Δ. We denote the sub-operad generated by t^d_k in BV_∞ by $q\text{Lie}_\infty \{1\}$. The notation is because that a $q\text{Lie}_\infty \{1\}$-algebra structure on a chain complex V is equivalent to an Lie_∞ structure on $sV [[u]]$ (with u a degree 2 formal variable), which may be thought of as a “quantum” $\text{Lie}_\infty \{1\}$ structure.

Corollary 2.2. The induced $q\text{Lie}_\infty \{1\}$ structure on $C^{-*}(A)$ is of the form

(4) $t^0_1 = \delta, t^0_2 = [-, -]_G, t^d_k = 0 \forall k \geq 3$,

(5) $t^1_1 = \Delta, t^1_k(\alpha_1 \cdots \alpha_k) = 0, \forall \alpha_1, \cdots, \alpha_k \in \text{Ker} \Delta, \forall k \geq 2$,

(6) $t^d_k = 0, \forall d \geq 2$.

Proof. Property (3) is proven in the previous Corollary 2.1. To prove Property (4) and (5), observe that the degree of the operator t^d_1 is equal to $2d + 2k - 3$. But, the top dimensional chains in the chain complex $C^*_{\text{comb}}(FD)(k)$ is equal to $2k - 1$, and
which implies the vanishing in (5). The operator $l^1_1 = \Delta$, since the black-and-white graph

\[\begin{array}{c}
\end{array} \]

is the unique degree one graph representing the fundamental class in the homology group $H_1(C_{\text{comb}}^*(FD)(1)) \cong H_1(S^1)$. For $k \geq 2$, since the degree of the operator l^1_k is $2k - 1$ which is top dimensional in the chain complex $C_{\text{comb}}^*(FD)(k)$. Thus l^1_k is a linear combination of operators coming from black-and-white ribbon trees with k white vertices, and of degree $2k - 1$. One can show (easy combinatorics) that any such tree must contain at least one white vertex of the form:

\[\begin{array}{c}
\end{array} \]

If we input any $\alpha \in \text{Ker} \Delta$ at this type of white vertex, the result gives zero by definition of the action of ribbon trees on $C^{-\ast}(A)$ (by Equation 2).

\[\square \]

3. Proof of Theorem 1.1

As explained in the previous section, via the composition in Equation 3, we have a BV$_\infty$ structure on $C^{-\ast}(A)$. Thus, we may form its bar-cobar resolution:

\[\Omega BC^{-\ast}(A) \cong C^{-\ast}(A), \]

which yields a differential graded BV algebra homotopy equivalent to $C^{-\ast}(A)$. At this point, we use the following theorem due to Katzarkov-Kontsevich-Pantev [7] and Terilla [13].

Theorem 3.1. Let S be a differential graded BV algebra. Assume that the spectral sequence associated with the complex $(S[[u]], d + u\Delta)$ endowed with the u-filtration is degenerate at the first page. Then both the DGLA’s $(S, d, [-, -])$ and $(S[[u]], d + u\Delta, [-, -])$ are homotopy abelian.

Since the degeneration of the spectral sequence is a homotopy invariant property (see [2]), we may use the above theorem to deduce the homotopy abelian property of the DGLA $sC^{-\ast}(A)$. Note that here it is essential that the BV$_\infty$ structure on $C^{-\ast}(A)$ extends the DGLA structure of $sC^{-\ast}(A)$ by Corollary 2.1.

Similarly, we may also restrict the BV$_\infty$ structure on $C^{-\ast}(A)$ to the sub-operad qLie$_\infty$ {1}. Then theorems above implies that the following Lie$_\infty$-algebra

\[(sC^{-\ast}(A)[[u]], \delta + u\Delta, [-, -], u \cdot l^2_2, u \cdot l^k_1 (k \geq 3)) \]

is homotopy abelian. Here the structure maps l^k_1 are as in Corollary 2.2. The following lemma then finishes the proof of (B.) in Theorem 1.1, using the homotopy invariance of deformation functors.

Lemma 3.1. The canonical inclusion map

\[\iota : sC^\Lambda(A) \rightarrow sC^{-\ast}(A)[[u]] \]

is a quasi-isomorphism of Lie$_\infty$-algebras.

Proof. This inclusion is a quasi-isomorphism is a classical result, see for example [9]. By Corollary 2.2, the higher brackets l^k_1 vanish on elements inside $\text{Ker} \Delta$ while we certainly have that $\text{Im} \iota \subset \text{Ker} \Delta$. This shows that

\[l^k_1(\alpha_1, \ldots, \alpha_k) = 0, \quad \forall \alpha_1, \ldots, \alpha_k \in sC^\Lambda(A), \]

implies that ι is a morphism of Lie$_\infty$-algebras. \[\square \]
Denote by $\pi : sC^{-*}(A)[[u]] \to sC^{-*}(A)$ the projection map defined by setting $u = 0$. Part $(C.)$ of Theorem 1.1 easily follows from $(A.)$ and $(B.)$. Indeed, since both functors are smooth, it suffices to check that the inclusion map

$$\pi \circ \iota : sC^\Lambda(A) \hookrightarrow sC^{-*}(A)$$

induces a surjection on the tangent space of the associated deformation functors. This is clear as ι is a quasi-isomorphism, and π is a surjective on cohomology by the Hodge-to-de-Rham degeneration assumption.

References

[1] Costello, K. Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210 (2007), no. 1, 165-214.
[2] Dotsenko, V.; Shadrin, S.; Vallette, B. De Rham cohomology and homotopy Frobenius manifolds. J. Eur. Math. Soc. (JEMS) 17 (2015), no. 3, 535-547.
[3] Galvez-Carrillo, I.; Tonks, A.; Vallette, B. Homotopy Batalin-Vilkovisky algebras. J. Noncommut. Geom. 6 (2012), no. 3, 539-602.
[4] Getzler, E.; Jones., J. D. S. Operads, Homotopy algebra, and iterated integrals for double loop spaces, hep-th/9403055.
[5] Iwanari, I. Period mappings for noncommutative algebras. arXiv:1604.08283.
[6] Kaledin, D. Non-commutative Hodge-to-de-Rham degeneration via the method of Deligne-Illusie. Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov. Part 2, 785-875.
[7] Katzarkov, L.; Kontsevich, M.; Pantev, T., Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT tt*-geometry, 87-174, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
[8] Kontsevich, M., Soibelman, Y., Notes on A-infinity algebras, A-infinity categories and noncommutative geometry. I, Homological mirror symmetry, 153-219, Lecture Notes in Phys., 757, Springer, Berlin, 2009.
[9] Loday, J.-L. Cyclic homology. Appendix E by Maria O. Ronco. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301. Springer-Verlag, Berlin, 1992. xviii+454 pp. ISBN: 3-540-53339-7.
[10] Tamarkin, D. Another proof of M. Kontsevich formality theorem for \mathbb{R}^n. arXiv:math/9803025.
[11] Tian, G. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. Mathematical aspects of string theory (San Diego, Calif., 1986), 629-646, Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987.
[12] Todorov, A. The Weil-Petersson geometry of the moduli space of $SU(n \geq 3)$ (Calabi-Yau) manifolds. I, Comm. Math. Phys., 1989, vol. 126, pp. 325-346.
[13] Terilla, J. Smoothness theorem for differential BV algebras. J. Topol. 1 (2008), no. 3, 693-702.
[14] Wahl, N.; Westerland, C. Hochschild homology of structured algebras. Adv. Math. 288 (2016), 240-307.