SU(2) reductions in \(\mathcal{N} = 4 \) multidimensional supersymmetric mechanics

Stefano Bellucci\(^1\), Sergey Krivonos\(^2\) and Anton Sutulin\(^2\)

\(^1\) INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
\(^2\) Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

E-mail: bellucci@lnf.infn.it

Received 28 November 2011, in final form 15 February 2012
Published 6 March 2012
Online at stacks.iop.org/JPhysA/45/125402

Abstract

We perform an \(su(2) \) Hamiltonian reduction in the bosonic sector of the \(su(2) \)-invariant action for two free \((4, 4, 0)\) supermultiplets. As a result, we get the five-dimensional \(\mathcal{N} = 4 \) supersymmetric mechanics describing the motion of an isospin carrying a particle interacting with a Yang monopole. We provide the Lagrangian and Hamiltonian descriptions of this system. Some possible generalizations of the action to the cases of systems with a more general bosonic action, a four-dimensional system which still includes eight fermionic components and a variant of five-dimensional \(\mathcal{N} = 4 \) mechanics constructed with the help of the ordinary and twisted \(\mathcal{N} = 4 \) hypermultiplets were also considered.

PACS numbers: 12.60.Jv, 03.65.–w, 11.30.Pb

1. Introduction

The supersymmetric mechanics describing the motion of an isospin particle in the background non-Abelian gauge fields has attracted a lot of attention in the last few years [1–9], especially due to its close relation with higher dimensional Hall effects and their extensions [10], as well as with the supersymmetric versions of various Hopf maps (see e.g. [1]).

A classical description of particles with a non-Abelian charge (i.e. with isospin degrees of freedom) was given by Wong many years ago [11] in terms of equations of motion. Later on, a Lagrangian description of such particles was given by introducing a new set of variables— isospin variables [12]. Supersymmetric versions have been also considered [13–15]. In particular, the first generalization of Bargman–Michel–Telegdi as well as the Wong equations to the case of relevant superparticle models has been constructed in [16].

The description of isospin-carrying particles becomes less evident in the case of systems with extended supersymmetry, especially in the Lagrangian formulation. The problem is

\[^3\] The review of component and superfield formulations of the spinning particle and superparticle models together with a comprehensive list of references can be found in [16].
evident: the semi-dynamical isospin variables have to enter the Lagrangian together with some additional fermions. Clearly, the isospin variables have to span together with these fermions a some supermultiplet. Thus, the main question is what to do with additional fermions accompanying the isospin variables and how to invent them in the Lagrangian describing the particles with extended supersymmetry.

In [3] the additional fermions, together with isospin variables, span an auxiliary \((4, 4, 0)\) multiplet with a Wess–Zumino-type action possessing an extra \(U(1)\) gauge symmetry\(^4\). In this framework, an off-shell Lagrangian formulation was constructed, with the harmonic superspace approach [17, 18], for a particular class of four-dimensional [3] and three-dimensional [5] \(\mathcal{N} = 4\) mechanics, with a self-dual non-Abelian background. The same idea of coupling with an auxiliary ‘semi-dynamical’ supermultiplet has also been elaborated in [6], within the standard \(\mathcal{N} = 4\) superspace framework, and then it has been applied for the construction of the Lagrangian and Hamiltonian formulations of the \(\mathcal{N} = 4\) supersymmetric system describing the motion of the isospin particles in three- [7] and four-dimensional [8] conformally flat manifolds, carrying the non-Abelian fields of the Wu–Yang monopole and BPST instanton, respectively.

In both these approaches the additional fermions were completely auxiliary and they were expressed through the physical ones on the mass shell. Another approach based on the direct use of the \(SU(2)\) reduction, firstly considered on the Lagrangian level in the purely bosonic case in [1], has been used in the supersymmetric case in [9]. The key idea of this approach is to perform a direct \(su(2)\) Hamiltonian reduction in the bosonic sector of the \(\mathcal{N} = 4\) supersymmetric system, with the general \(SU(2)\) invariant action for a self-coupled \((4, 4, 0)\) supermultiplet. No auxiliary superfields are needed within such an approach, and the procedure itself is remarkably simple and automatically successful.

Concerning the interaction with the non-Abelian background, the system considered in [9] was not too illuminating, due to its small number (only one) of physical bosons. In this paper, we extend the construction of [9] to the case of the \(\mathcal{N} = 4\) supersymmetric system with five (and four in the special case) physical bosonic components. It is not, therefore, strange that the arising non-Abelian background coincides with the field of a Yang monopole (a BPST instanton field in the four-dimensional case). The very important preliminary step, we discussed in details in section 2, is to pass to new bosonic and fermionic variables, which are inert under the \(SU(2)\) group, over which we perform the reduction. Thus, the \(SU(2)\) group rotates only the three bosonic components, which enter the action through \(SU(2)\) invariant currents. Just these bosonic fields become the ‘isospin’ variables which the background field couples to. Due to the commutativity of \(\mathcal{N} = 4\) supersymmetry with the reduction \(SU(2)\) group, it survives upon reduction. In section 3, we present the corresponding supercharges and Hamiltonian, which form a standard \(\mathcal{N} = 4\) superalgebra. In section 4, we consider some possible generalizations, which include a system with more general bosonic action, a four-dimensional system which still includes eight fermionic components and the variant of five-dimensional \(\mathcal{N} = 4\) mechanics constructed with the help of ordinary and twisted \(\mathcal{N} = 4\) hypermultiplets. Finally, in the conclusion we discuss some unsolved problems and possible extensions of the present construction.

2. \((8_B, 8_F) \rightarrow (5_B, 8_F)\) reduction and Yang monopole

As the first nontrivial example of the \(SU(2)\) reduction in \(\mathcal{N} = 4\) supersymmetric mechanics, we consider the reduction from the eight-dimensional bosonic manifold to the five-dimensional

\(^4\) Note that the first realization of this idea was proposed in [4].
one. To start with, let us choose our basic $\mathcal{N}=4$ superfields to be the two quartets of real $\mathcal{N}=4$ superfields $Q^{\hat{a}}_A$ (with $i, \hat{a}, A = 1, 2$) defined in the $\mathcal{N}=4$ superspace $\mathbb{R}^{(1|4)} = (t, \theta_a)$ and subjected to the constraints

$$D^{\hat{a}A} Q^{\hat{a}}_A = 0 \quad \text{and} \quad (Q^{\hat{a}}_A)^{\dagger} = Q^{\hat{a}A}, \quad (2.1)$$

where the corresponding covariant derivatives have the form

$$D^{\hat{a}} = \frac{\partial}{\partial t} + i\theta^\hat{a} \partial_t, \quad \text{so that} \quad \{D^{\hat{a}}, D^{\hat{b}}\} = 2ie^{i\phi} \epsilon^{\hat{a}\hat{b}} \partial_t. \quad (2.2)$$

Each of these $\mathcal{N}=4$ supermultiplets describes four bosonic and four fermionic variables off-shell [18–23].

The most general action for $Q^{\hat{a}}_A$ superfields is constructed by integrating an arbitrary superfunction $\mathcal{F}(Q^{\hat{a}}_A)$ over the whole $\mathcal{N}=4$ superspace. Here, we restrict ourselves to the simplest prepotential of the form

$$\mathcal{F}(Q^{\hat{a}}_A) = Q^{\hat{a}}_A Q^{\hat{a}A}, \quad \longrightarrow \quad S = \int dt d\theta \ Q^{\hat{a}}_A Q^{\hat{a}A}. \quad (2.3)$$

The rationale for this selection is, first of all, its manifest invariance under $su(2)$ transformations acting on the `\hat{a}` index of $Q^{\hat{a}}_A$. This is the symmetry over which we are going to perform the $su(2)$ reduction. Secondly, just this form of the prepotential guarantees $SO(5)$ symmetry in the bosonic sector after reduction.

In terms of components, action (2.3) reads

$$S = \int dt \left[\dot{Q}^{\hat{a}}_A \dot{Q}^{\hat{a}A} - \frac{i}{8} \dot{\Psi}^{\hat{a}A} \Psi_{\hat{a}A} \right] \quad (2.4)$$

where the bosonic and fermionic components are defined as

$$Q^{\hat{a}}_A = Q^{\hat{a}}_A, \quad \Psi^{\hat{a}}_A = D^{\hat{a}} Q^{\hat{a}A}, \quad (2.5)$$

and, as usual, $\left\{\ldots\right\}$ denotes the $\theta_a = 0$ limit. Thus, from beginning we have just the sum of two independent non-interacting $(4, 4, 0)$ supermultiplets.

To proceed further, we define the following bosonic q^{ia}_A and fermionic ψ^{ia}_A fields:

$$q^{ia}_A = Q^{ia}_A G^{ia}, \quad \psi^{ia}_A = \Psi^{ia}_A G^{ia}, \quad (2.6)$$

where the bosonic variables G^{ia}, subjected to $G^{\hat{a}i} G_{\hat{a}i} = 2$, are chosen as

$$G^{11} = \frac{e^{-i\phi}}{\sqrt{1+\Lambda}}, \quad G^{21} = -\frac{e^{-i\phi}}{\sqrt{1+\Lambda}}, \quad G^{22} = (G^{11})^\dagger, \quad (2.7)$$

The variables G^{ia} play the role of a bridge relating two different $SU(2)$ groups realized on the indices α and \hat{a}, respectively. Thus, we split our eight bosonic variables Q^{ia}_A (2.5) into five ones in q^{ia}_A and three fields $(\phi, \Lambda, \bar{\Lambda})$ entering via G^{ia} (2.7).

Now our action (2.4) acquires the form

$$S = \int dt \left[\dot{q}^{ia}_A \dot{q}^{iaA} - 2q^{ia}_A \dot{q}^{ia}_A I_{A\beta} + \frac{g^{ia}}{2} q^{iaA} J^{\alpha\beta} J_{\beta\gamma} - \frac{i}{8} \dot{\psi}^{ia}_A \psi_{iaA} + \frac{i}{8} \dot{\psi}^{ia}_A \psi^{ia}_A I_{A\beta} \right], \quad (2.8)$$

where

$$J^{\alpha\beta} = J^{\alpha\beta} = G^{\hat{a}i} \tilde{C}^{\hat{a}}_i. \quad (2.9)$$

The new variables q^{ia}_A and ψ^{ia}_A, which, clearly, contain five independent bosonic and eight fermionic components, are inert under $su(2)$ rotations of the hatted indices. Under these $su(2)$

5 We used the following definition of the superspace measure: $d\theta = -\frac{1}{32} D^{\alpha\beta} D^{\dot{\alpha}\dot{\beta}} D_{\alpha\beta}$.

3 J. Phys. A: Math. Theor. 45 (2012) 125402 S Bellucci et al
rotations, realized now only on $G^{\bar{a}\bar{b}}$ variables in a standard way
\[\delta G^{\bar{a}\bar{b}} = \gamma (\bar{a}\bar{b}) G_{\bar{a}}^\mu, \]
the fields $(\phi, \Lambda, \bar{\Lambda})$ (2.7) transform as [23]
\[\delta \Lambda = \gamma_{11} e^{i\phi} (1 + \Lambda \bar{\Lambda}), \quad \delta \bar{\Lambda} = \gamma_{22} e (1 + \Lambda \bar{\Lambda}), \quad \delta \phi = -2i \gamma_{12} + i \gamma_{22} e^{-i\phi} \Lambda - i \gamma_{11} e^{i\phi} \bar{\Lambda}. \]
(2.10)
It is easy to check that the forms $J^\mu\nu$ (2.9) entering the action (2.8) and having the following explicit form
\[J^{11} = -\Lambda - i \Lambda \phi \quad \frac{1}{1 + \Lambda \bar{\Lambda}}, \quad J^{22} = -\bar{\Lambda} + i \bar{\Lambda} \phi \quad \frac{1}{1 + \Lambda \bar{\Lambda}} \]
and
\[J^{12} = -i \Lambda \phi \quad \frac{1}{1 + \Lambda \bar{\Lambda}} \quad \frac{\Lambda \bar{\Lambda} - \bar{\Lambda} \bar{\Lambda}}{1 + \Lambda \bar{\Lambda}} \]
are also invariant under (2.10), as is the whole action (2.8).

Next, we introduce the standard Poisson brackets
\[\{\pi, \Lambda\} = 1, \quad \{\bar{\pi}, \bar{\Lambda}\} = 1, \quad \{p_{\phi}, \phi\} = 1, \]
(2.12)
so that the generators of the transformations (2.10),
\[I_{\phi} = p_{\phi}, \quad I = e^{i\phi} [(1 + \Lambda \bar{\Lambda}) \pi - i \Lambda p_{\phi}], \quad \bar{I} = e^{-i\phi} [(1 + \Lambda \bar{\Lambda}) \bar{\pi} + i \Lambda p_{\phi}]. \]
(2.13)
will be the Noether constants of motion for action (2.8). To perform the reduction over this $SU(2)$ group, we fix the Noether constants as (cf [1])
\[I_{\phi} = m \quad \text{and} \quad I = \bar{I} = 0, \]
(2.14)
which yields
\[p_{\phi} = m \quad \text{and} \quad \pi = \frac{im \Lambda}{1 + \Lambda \bar{\Lambda}}, \quad \bar{\pi} = -\frac{im \bar{\Lambda}}{1 + \Lambda \bar{\Lambda}}. \]
(2.15)
Performing a Routh transformation over the variables $(\Lambda, \bar{\Lambda}, \phi)$, we reduce action (2.8) to
\[\bar{S} = S - \int dt \{\pi \dot{\Lambda} + \bar{\pi} \dot{\bar{\Lambda}} + p_{\phi} \dot{\phi}\} \]
(2.16)
and substitute expressions (2.15) into \bar{S}.

As the final step we have to choose the proper parametrization for bosonic components q^{α}_{β} (2.6) remembering that they contain only five independent variables. Following [1] we will choose these variables as
\[q^{1}_{1} = \frac{1}{2} e^{a} \sqrt{r + z_{3}}, \quad q^{2}_{1} = \frac{1}{2} (z_{1} + i z_{2}), \quad q^{2}_{2} = \frac{1}{2} (z_{1} - i z_{2}) \quad \text{and} \quad r^2 = \sum_{i=1}^{5} z_{i} z_{i}, \]
(2.17)
and five independent fields are z_{m}, $m = 1, \ldots, 5$. A slightly lengthy but straightforward calculations give the action
\[S_{\text{red}} = \int dt \left[\frac{1}{4r} \dot{z}_{m} \dot{z}_{m} - \frac{1}{8} \bar{\psi} A \psi + \frac{1}{4r} H^{\alpha\beta} V_{\alpha\beta} + \frac{1}{128r} H^{\alpha\beta} H_{\alpha\beta} - \frac{m^{2}}{r} - \frac{1}{4r} \bar{v}^{\bar{\alpha}} H_{\alpha\beta} + \frac{4im}{r} \bar{v}^{\bar{\alpha}} V_{\alpha\beta} + \text{Im} \left(\bar{v}^{\bar{\alpha}} \hat{v}_{\alpha} - \bar{v}^{\beta} \hat{v}_{\beta} \right) \right]. \]
(2.19)
Here
\[H^\alpha{}_{\beta} = \psi^\alpha{}_{A} \, \psi^\beta{}_{A}, \quad v^\alpha = G^\alpha{}_{1}, \quad \bar{v}^\alpha = G^\alpha{}_{2}, \quad v^\alpha \bar{v}_\alpha = 1, \] (2.20)
and to ensure that the reduction constraints (2.15) are satisfied we added Lagrange multiplier terms (last two terms in (2.19)). Finally, the variables \(V^\alpha{}_{\beta} \) entering action (2.19) are defined in a rather symmetric way to be
\[V^\alpha{}_{\beta} = 1/2 (q^\alpha{}_{A} \bar{q}^\beta{}_{A} + q^\beta{}_{A} \bar{q}^\alpha{}_{A}). \] (2.21)
To clarify the relations of these variables with the potential of Yang monopole, one has to introduce the following isospin currents (which will form \(su(2) \) algebra upon quantization):
\[T^l = v^\alpha (\sigma^l)^\alpha{}_{\beta} \bar{v}^\beta, \quad l = 1, 2, 3. \] (2.22)
Now, the ‘harmonics’ \((v^\alpha \bar{v}^\beta) \)-dependent terms in action (2.19) can be rewritten as
\[- \frac{m}{4r} v^\alpha \bar{v}^\beta H_{\alpha\beta} - \frac{4im}{r} v^\alpha \bar{v}^\beta V_{\alpha\beta} = m \, T^l \left(\frac{1}{8r} H^l + \frac{1}{r(r+z)} \eta^l_{\mu\nu} \bar{v}_\mu \bar{v}_\nu \right), \quad \mu, \nu = 1, 2, 3, 4. \] (2.23)
Here, we defined the fermionic spin currents
\[H^l = H^l_{\beta} \, (\sigma^l)^{\beta}_{\mu} \] (2.24)
and a self-dual \(t \)’Hooft symbol
\[\eta^l_{\mu\nu} = \delta^l_{\mu} \delta_{\nu4} - \delta^l_{\nu} \delta_{\mu4} + \epsilon^{l}_{\mu4}. \] (2.25)
Thus we conclude that action (2.19) describes \(\mathcal{N} = 4 \) supersymmetric five-dimensional isospin particles moving in the field of Yang monopole
\[A_{\mu} = - \frac{1}{r(z)} \eta^l_{\mu\nu} \bar{v}^\nu T^l. \] (2.26)
We stress that the \(su(2) \) reduction algebra, realized in (2.10), commutes with all \((super)symmetries \) of action (2.4). Therefore, all symmetry properties of the theory are preserved in our reduction and the final action (2.19) possesses the \(\mathcal{N} = 4 \) supersymmetry.

3. Hamiltonian and supercharges

Within our approach the construction of the supercharges is straightforward. To simplify the expressions for the supercharges, in this section we will choose a slightly different parametrization of the physical components as compared to (2.17). Namely, we will choose the physical bosonic components as follows:
\[q_{1}{}^{u} = \frac{1}{\sqrt{2}} \epsilon^{u} \psi^{1}, \quad q_{2}{}^{u}. \] (3.1)
With this parametrization, the reduced action (2.19) reads
\[S_{\text{red}} = \int dt \left[\frac{1}{4} \epsilon^{u} \epsilon^{v} (q_{1} \cdot \dot{q}_{1} + q_{2} \cdot \dot{q}_{2}) + \frac{1}{4} \epsilon^{u} \epsilon^{v} (q_{1} \cdot \dot{q}_{2})^2 + \frac{1}{128 (\epsilon^{u} + \epsilon^{v})} (H \cdot H) \right. \]
\[+ \frac{i}{4(\epsilon^{u} + \epsilon^{v})} (V \cdot H) - \frac{m^2}{4 (\epsilon^{u} + \epsilon^{v})} \epsilon^{u} \epsilon^{v} \bar{v}^\beta H_{\alpha\beta} - \frac{4im}{\epsilon^{u} + \epsilon^{v}} v^\alpha \bar{v}^\beta V_{\alpha\beta} \]
\[- \frac{1}{8} (\dot{\psi}_1 \cdot \dot{\psi}_1 + \dot{\psi}_2 \cdot \dot{\psi}_2) + im (v^u \bar{v}_u - v^u \bar{v}_u) \]. (3.2)
Here,
\[y = q_{2}{}^{u} q_{2}{}^{u}, \] (3.3)
while the currents $J^\alpha\beta$, $V^\alpha\beta$ and $H^\alpha\beta$ and the ‘harmonics’ v^a and \bar{v}_a are defined as previously in (2.9), (2.20) and (2.21).

One may check that action (3.2) is invariant under $\mathcal{N} = 4$ supersymmetry transformations (with parameters μ^a):
\[
\delta u = -\frac{1}{\sqrt{2}}e^{-i\bar{u}}\mu^a\psi_1 a, \quad \delta G^a = \frac{1}{2\sqrt{2}}e^{-i\bar{u}}(\mu^{jb}\psi_1 b)G^a - 2\mu^{ab}\psi_1 bG^a,
\]
\[
\delta \psi_1 a = -i\sqrt{2}\mu^a e^{i\bar{u}}\bar{u} - i2\sqrt{2}e^{i\bar{u}}\mu^{ba}J^b a + \frac{e^{-i\bar{u}}}{2\sqrt{2}}(\mu^{jb}\psi_1 b\psi_1 a) - 2\mu^{ab}\psi_1 b\psi_1 a^n),
\]
\[
\delta q_1^a = \frac{1}{2}\mu^{ab}\psi_2 a^a + \frac{1}{2\sqrt{2}}e^{-i\bar{u}}(\mu^{jb}\psi_1 b\bar{q}_2^a) - 2\mu^{ab}\psi_1 b\bar{q}_2^a,
\]
\[
\delta \psi_2 a = 4i\mu^a q_2^a + 4\mu^{ab}q_2^a J^b a + \frac{1}{2\sqrt{2}}e^{-i\bar{u}}(\mu^{jb}\psi_1 b\psi_2 a) - 2\mu^{ab}\psi_1 b\psi_2 a
\]

if we take into account that on the reduction constraints (2.15) the current $J^\alpha\beta$ (2.9) acquires the form
\[
J^\alpha\beta = \frac{2i}{e^u + y} \left(mK^\alpha\beta - \frac{1}{16}H^\alpha\beta - iV^\alpha\beta \right),
\]
with
\[
K^\alpha\beta = \frac{1}{2}(v^a\bar{v}_b + v_b\bar{v}_a).
\]

To construct the Hamiltonian, as usual, one should define the momenta $(p_a, p_\alpha, \pi_{1 a}, \pi_{2 a}, \bar{p}_a, \bar{p}_\alpha)$ for the variables $(u, q_2^a, \psi_1 a, \psi_2 a, v^a, \bar{v}_a)$, respectively,
\[
p_a = \frac{1}{2}e^u u, \quad p_\alpha = \frac{2}{e^u + y} (e^u q_2 a + (q_2 \cdot \bar{q}_2) q_2 a) + \frac{2\sqrt{2}}{2\sqrt{2}}e^{-i\bar{u}}(mK^\alpha\beta - \frac{1}{16}H^\alpha\beta) q_2^a,
\]
\[
\pi_{1 a} = \frac{i}{8}\psi_1 a, \quad \pi_{2 a} = \frac{i}{8}\psi_2 a, \quad p_\alpha = im\bar{v}_a, \quad \bar{p}_\alpha = -imv_\alpha.
\]

Now we introduce the canonical Poisson brackets
\[
[u, p_a] = 1, \quad [q_2^a, p_\beta] = \delta^a_\beta, \quad [v^a, p_\beta] = -\delta^a_\beta, \quad [\bar{v}_a, \bar{p}_\beta] = -\delta^a_\beta,
\]
\[
[\psi_1 a, \pi_{1 b}] = -\delta^a_\beta, \quad \{\psi_2 a, \pi_{2 b}\} = -\delta^a_\beta.
\]

From the explicit form of the fermionic ($\pi_{1 a}, \pi_{2 a}$) and bosonic (p_α, \bar{p}_α) momenta (3.8) it follows that we have a second-class constraint. In order to resolve them, one has to pass to the Dirac brackets for the canonical variables
\[
\{u, p_a\} = 1, \quad [q_2^a, p_\beta] = \delta^a_\beta, \quad [v^a, \bar{v}_a] = -\delta^a_\beta,
\]
\[
[\psi_1 a, \pi_{1 b}] = 4i\delta^a_\beta, \quad \{\psi_2 a, \pi_{2 b}\} = 4i\delta^a_\beta.
\]

Let us note, that in virtue of (3.9) the currents $K^\alpha\beta$ (3.6) obey $su(2)$ algebra:
\[
\{K^\alpha\beta, K^\gamma\rho\} = -\frac{i}{4m}(e^{\alpha\gamma}K^\rho\beta + e^{\rho\gamma}K^\alpha\beta + e^{\alpha\rho}K^\beta\gamma + e^{\beta\rho}K^\alpha\gamma).
\]

Finally, one may check that the following supercharges
\[
Q_{ia} = \frac{1}{\sqrt{2}}e^{-i\bar{u}}p_\alpha\psi_1 a + \frac{1}{2\sqrt{2}}(q_2 \cdot p_\alpha)\psi_1 a + 2p_\alpha q_2^a \bar{p}_\beta (k_i)
\]
\[
+ i\sqrt{2}e^{-i\bar{u}} \left(mK_{ij} - \frac{i}{16}H_{ij} \right) \psi_1 a
\]

From now on, the symbol $\{,\}$ stands for the Dirac brackets.
and the Hamiltonian
\[H = e^{-u} p^2 + \frac{(q_2 \cdot p)^2}{4(e^u + y)} + \frac{e^{-u}}{4(e^u + y)} \mathcal{P} \mathcal{P} \]
\[- \frac{2}{e^u + y} \left(m K_{\alpha \beta} - \frac{1}{16} H_{\alpha \beta} \right) \left(m K^{\alpha \beta} - \frac{1}{16} H^{\alpha \beta} \right), \]
(3.12)
where
\[\mathcal{P} = (e^u + y) p - q_2 \omega (q_2 \cdot p) - 4i \left(m K_{\alpha \beta} - \frac{1}{16} H_{\alpha \beta} \right) q_2 \omega^\beta, \]
(3.13)
form the standard \(\mathcal{N} = 4 \) superalgebra
\[\{ Q_{\alpha}, Q_{\beta} \} = 2i \delta_{\alpha}^{\beta} K_{\alpha \beta}. \]
(3.14)

It is interesting to note that the term with the ‘coupling constant’ \(m \), which defines the interaction with the Yang monopole, enters the supercharge \(Q_{\alpha} \) (3.11) in a simple way similar to the ones presented in [24, 25].

Another funny peculiarity of the supercharges (3.11) and Hamiltonian (3.12) is their invariance with respect to simultaneous ‘reflection’ \((q_2, p, \psi_2) \rightarrow (-q_2, -p, -\psi_2) \). This invariance means that one may immediately go to the simplest case by consistently putting \((q_2, p, \psi_2) = 0 \). The resulting supercharges and Hamiltonian will describe the one-dimensional system discussed in [4, 6, 9].

Let us note, the equations of motion for our isospin currents \(K_{\alpha \beta} \) follow from the Hamiltonian (3.12) in a standard way as
\[\frac{d}{dt} K_{\alpha \beta} = \{ H, K_{\alpha \beta} \} \]
(3.15)
with brackets (3.10) taken into account. This is just a variant of Wong equations [11] in our case. The presence of extended \(\mathcal{N} = 4 \) supersymmetry combined with a non-Abelian gauge fields makes our system a rather non-trivial.

With this, we complete the classical description of \(\mathcal{N} = 4 \) five-dimensional supersymmetric mechanics describing the isospin particle interacting with a Yang monopole. Next, we analyze some possible extensions of the present system, together with some possible interesting special cases.

4. Generalizations and the cases of a special interest

In the previous sections, we have analyzed the simplest variant of \(SU(2) \) reduction procedure applied to the free eight-dimensional system with \(\mathcal{N} = 4 \) supersymmetry. Here, we will consider its possible generalizations concentrating on the bosonic sector only, while the full supersymmetric action could be easily reconstructed, if needed.

4.1. \(SO(4) \) invariant systems

The most general system which still possesses \(SO(4) \) symmetry upon \(SU(2) \) reduction is specified by the prepotential \(\mathcal{F} \) (2.3) depending on two scalars \(X \) and \(Y \):
\[\mathcal{F} = \mathcal{F}(X, Y), \quad X = Q^0_1 \hat{Q}_1 \hat{u}, \quad Y = Q^0_2 \hat{Q}_2 \hat{u}. \]
(4.1)
Such a system is invariant under \(SU(2) \) transformations realized on the ‘hatted’ indices \(\hat{u} \) and thus the \(SU(2) \) reduction we discussed in the section 2 goes in the same manner. In addition

\[\text{Note that in virtue of (3.6) and (2.20) } K^{\hat{u}} K_{\hat{u}} = -1/2. \]

\[\text{The explicit form of these equations is not so illuminated and therefore we will not write these equations here.} \]
the full SU(2) × SU(2) symmetry realized on the superfield $Q_{2}^{a \tilde{a}}$ will survive in the reduction process. So we expected that the final system will possess SO(4) symmetry.

The bosonic sector of the system with prepotential (4.1) is described by the action

$$S = \int dt \left[\left(F_{x} + \frac{1}{2} \dot{F}_{xx} \right) Q_{1}^{a \tilde{a}} \dot{Q}_{1}^{a \tilde{a}} + \left(F_{y} + \frac{1}{2} \dot{F}_{yy} \right) Q_{2}^{a \tilde{a}} \dot{Q}_{2}^{a \tilde{a}} + 2F_{xy}Q_{2}^{\beta \tilde{\beta}}Q_{1}^{a \alpha} \dot{Q}_{2}^{\beta \tilde{\beta}} \dot{Q}_{1}^{a \alpha} \right].$$

(4.2)

Even with a such simple prepotential, the bosonic action (4.2) after reduction has a rather complicated form. Next, still meaningful simplification could be achieved with the following prepotential:

$$\mathcal{F} = \mathcal{F}(X, Y) = \mathcal{F}_{1}(X) + \mathcal{F}_{2}(Y),$$

(4.3)

where $\mathcal{F}_{1}(X)$ and $\mathcal{F}_{2}(Y)$ are arbitrary functions depending on X and Y, respectively. With a such prepotential, the third term in action (4.2) disappeared and the action acquires a readable form. With our notations (2.17), (2.18), the reduced action reads

$$S = \int dt \left[\frac{H_{x}H_{y}}{2} \left((H_{x} - H_{y})z_{5} + (H_{x} + H_{y})r \right) \dot{z}_{\mu} \dot{z}_{\mu} + \frac{(H_{x} - H_{y})^{2}}{8r^{2}} \left((H_{x} - H_{y})z_{5} + (H_{x} + H_{y})r \right) \dot{z}_{\mu} \dot{z}_{\mu} \right]$$

$$+ \frac{H_{x} - H_{y}}{4r^{2}} \left(z_{\mu} \dot{z}_{\mu} \right) \dot{z}_{5} + \frac{1}{8} \left(\frac{H_{x} - H_{y}}{r^{2}} + \frac{H_{x} + H_{y}}{r} \right) \dot{z}_{5}^{2} + \Im \left(\bar{v}^{a} \tilde{v}_{a} - v^{a} \tilde{v}_{a} \right)$$

$$- \frac{2m^{2}}{(H_{x} + H_{y})r + (H_{x} - H_{y})z_{5}} - \frac{8\Im H_{y}}{(H_{x} + H_{y})r + (H_{x} - H_{y})z_{5}} \bar{V}_{a \beta} V_{a \beta} \right].$$

(4.4)

where

$$H_{x} = F_{x}^{x}(x) + \frac{1}{2} x F_{x}^{yn}(x), \quad H_{y} = F_{y}^{x}(y) + \frac{1}{2} y F_{y}^{yn}(y).$$

(4.5)

and

$$x = \frac{1}{2} (r + z_{5}), \quad y = \frac{1}{2} (r - z_{5}).$$

(4.6)

Let us stress that the only possibility to have SO(5) invariant bosonic sector is to choose $H_{x} = H_{y} = \text{const}$. This is just the case we considered in section 2. With arbitrary potentials H_{x} and H_{y} we have a more general system with action (4.4), describing the motion of the $\mathcal{N} = 4$ supersymmetric particle in five dimensions and interacting with Yang monopole and some specific potential.

4.2. Nonlinear supermultiplet

It has been known for a long time that in some special cases one could reduce the action for hypermultiplets to the action containing one less physical bosonic component—to the action of so-called nonlinear supermultiplet [18, 23, 26]. The key idea of such reduction is replacement of the time derivative of the ‘radial’ bosonic component of hypermultiplet Log($q^{\mu a} q_{a}$) by an auxiliary component B without breaking of $\mathcal{N} = 4$ supersymmetry [27]:

$$\frac{d}{dt} \text{Log}(q^{\mu a} q_{a}) \rightarrow B.$$

(4.7)

Clearly, to perform such replacement in some action the ‘radial’ bosonic component has to enter this action only with time derivative. This condition strictly constraints the variety of the possible hypermultiplet actions in which this reduction works.

To perform the reduction from hypermultiplet to the nonlinear one, the parametrization (2.17) is not very useful. Instead, we choose the following parameterizations for independent components of two hypermultiplets $q_{1}^{a \nu}$ and $q_{2}^{a \nu}$:

$$q_{1}^{a \nu} = \frac{1}{\sqrt{2}} e^{i \alpha} z_{a}, \quad q_{2}^{a \nu} = x^{(a \nu)} - \frac{1}{\sqrt{2}} e^{i \alpha} z_{a}.$$

(4.8)
where, as before (2.18)

\[x^{12} = \frac{1}{\sqrt{2}} z_3, \quad x^{11} = \frac{1}{\sqrt{2}} (z_1 + i z_2), \quad x^{22} = \frac{1}{\sqrt{2}} (z_1 - i z_2). \]

(4.9)

Thus, the five independent components are \(u \) and \(z_\mu, \mu = 1, \ldots, 4 \), and

\[x = q_1^2 = e^{\varphi}, \quad y = q_2^2 = \sum_{\mu=1}^{4} z_\mu z_\mu \equiv r_4^2. \]

(4.10)

With this parametrization, action (4.4) acquires the form

\[
S = \int dt \left[\frac{G_1 G_2 e^{\varphi}}{e^{\varphi} G_1 + G_2 r_4^2} \dot{z}_\mu \dot{z}_\mu + \frac{G_2^2}{e^{\varphi} G_1 + G_2 r_4^2} \left(z_\mu z_\mu \right)^2 + \frac{1}{4} G_1 e^{\varphi} \dot{u}^2 + \frac{m^2}{4} \right] - \frac{2i m G_2}{e^{\varphi} G_1 + G_2 r_4^2} v^\alpha \bar{v}_\alpha \left(\alpha \right),
\]

(4.11)

where

\[
G_1 = G_1(u) = F_1(x) + \frac{i}{\sqrt{2}} x F_2(x), \quad G_2 = G_2(r_4) = F_2(y) + \frac{i}{\sqrt{2}} y F_3(y).
\]

(4.12)

From an explicit form of action (4.4) follows, that if we choose \(G_1 = e^{-\varphi} \), then the 'radial' bosonic component \(u \) will enter the action only through the kinetic term \(\dot{u}^2 \). Thus, performing replacement (4.7) and excluding the auxiliary field \(B \) by its equation of motion, we will finish with the action

\[
S = \int dt \left[\frac{G_2^2}{1 + G_2 r_4^2} \left(\dot{z}_\mu \dot{z}_\mu + G_2 (z_\mu z_\mu)^2 \right) + \frac{m^2}{1 + G_2 r_4^2} \right] - \frac{4 i m G_2}{1 + G_2 r_4^2} v^\alpha \bar{v}_\alpha \left(\alpha \right).
\]

(4.13)

Action (4.13) describes the motion of an isospin particle on four-manifold with \(SO(4) \) isometry carrying the non-Abelian field of a BPST instanton and some special potential.

4.3. Ordinary and twisted hypermultiplets

One more possibility to generalize the results we presented in the previous section is to consider simultaneously ordinary hypermultiplet \(Q^{\tilde{a}} \) obeying (2.1) together with twisted hypermultiplet \(\bar{V}^{\bar{a}} \)—a quartet of \(N = 4 \) superfields subjected to constraints [23]

\[
D^{\bar{b}a} Y^{\bar{a} b} = 0 \quad \text{and} \quad (Y^{\bar{a} b})^\dagger = V_{\bar{a} a}.
\]

(4.14)

The most general system which is explicitly invariant under \(SU(2) \) transformations realized on the 'hatted' indices is defined, similarly to (4.1), by the superspace action depending on two scalars \(X, Y \) :

\[
S = \int dt \, d^4 \theta \, \mathcal{F}(X, Y), \quad X = Q^{\tilde{a}} Q_{\tilde{a}}, \quad Y = \bar{V}^{\bar{a} b} V_{\bar{a} a}.
\]

(4.15)

The bosonic sector of action (4.15) is a rather simple

\[
S = \int dt \left[(F_x + \frac{i}{\sqrt{2}} x F_{\bar{a}}) \dot{Q}^{\tilde{a}} \bar{Q}_{\bar{a}} - (F_y + \frac{i}{\sqrt{2}} y F_x) \dot{V}^{\bar{a} b} V_{\bar{a} a} \right].
\]

(4.16)

Thus, we see that the bosonic sector is drastically simplified in the case of ordinary and twisted hypermultiplets. Clearly, the bosonic action after \(SU(2) \) reduction will have the same form (4.4), but with

\[
H_x = F_x + \frac{i}{\sqrt{2}} x F_{\bar{a}}, \quad H_y = - (F_y + \frac{i}{\sqrt{2}} y F_x).
\]

(4.17)
Here, \(F = F(x, y) \) is still function of two variables \(x \) and \(y \). The mostly symmetric situation again corresponds to the choice

\[
H_x = H_y \equiv h(x, y)
\]

with the action

\[
S = \int dt \left[\frac{h}{4r} \dot{z}_a \dot{z}_a + \frac{i}{4} \left(\bar{\theta}^a \dot{\bar{\theta}}_a - \bar{\theta}_a \dot{\bar{\theta}}^a \right) - \frac{m^2}{2r} - \frac{4im}{r} \bar{\theta}^a \bar{\theta}^b V_{ab} \right].
\]

Due to definition (4.17), (4.18) the metric \(h(x, y) \) cannot be chosen fully arbitrary. For example, looking for an \(SO(5) \) invariant model with \(h = h(x + y) \) we could find only two solutions\(^9\)

\[
h_1 = \text{const}, \quad h_2 = \frac{1}{(x + y)^2}.
\]

Both solutions describe a cone-like geometry in the bosonic sector.

Finally, let us compare actions (4.4) and (4.19). Action (4.4) is \(SO(5) \) invariant if the conditions \(H_x = H_y = \text{const} \) in (4.5) are satisfied. On the other hand, action (4.19) possesses the \(SO(5) \) invariance if, for example, we choose \(h_1 = \text{const} \). One may check that the bosonic parts of these actions coincide with such restrictions, while the fermionic sectors are different. This is just one more justification that ‘almost free’ systems could be supersymmetrized in different ways.

5. Conclusion

In this paper, starting with the non-interacting system of two \(\mathcal{N} = 4 \) hypermultiplets, we perform a reduction over the \(SU(2) \) group which commutes with supersymmetry. The resulting system describes the motion of an isospin carrying particle on a conformally flat five-dimensional manifold in the non-Abelian field of a Yang monopole and in some scalar potential. The most important step for this construction is passing to new bosonic and fermionic variables, which are inert under the \(SU(2) \) group, over which we perform the reduction. Thus, the \(SU(2) \) group rotates only three bosonic components, which enter the action through \(SU(2) \) invariant currents. Just these bosonic fields become the ‘isospin’ variables, which the background field couples to. Due to the commutativity of \(\mathcal{N} = 4 \) supersymmetry with the reduction \(SU(2) \) group, it survives upon reduction. We also presented the corresponding supercharges and Hamiltonian, which form a standard \(\mathcal{N} = 4 \) superalgebra. Some possible generalizations of the action to the cases of systems with a more general bosonic action, a four-dimensional system which still includes eight fermionic components and a variant of five-dimensional \(\mathcal{N} = 4 \) mechanics constructed with the help of the ordinary and twisted \(\mathcal{N} = 4 \) hypermultiplets were considered. The main preference of the proposed approach is its applicability to any system which possesses \(SU(2) \) invariance. If, in addition, this \(SU(2) \) commutes with supersymmetry, then the resulting system will be automatically supersymmetric.

One of the interesting peculiarities of the constructed system is a very simple dependence of the supercharges on the ‘coupling constant’. Another interesting feature is the existence of two different \(\mathcal{N} = 4 \) supersymmetrizations of the same bosonic action firstly proposed in [1].

Among possible direct applications of our construction, there is the reduction in the cases of systems with nonlinear \(\mathcal{N} = 4 \) supermultiplets [29], systems with more than two (nonlinear) hypermultiplets, in the systems with bigger supersymmetry, say for example \(\mathcal{N} = 8 \), etc. However, the most important case, which is still missing within our approach, is the construction of the \(\mathcal{N} = 4 \) supersymmetric particle on the sphere \(S^5 \) in the field of a Yang monopole. Unfortunately, the use of standard linear hypermultiplets makes the solution of this issue impractical.

\(^9\) The same metric has been considered in [28].
task impossible because the resulting bosonic manifolds have a different structure (conical geometry) to include S^5. Thus, our hopes to construct such a system are related either to less supersymmetric theories (say with $N = 2$ supersymmetry) or to nonlinear supermultiplets.

Acknowledgments

We thank Armen Nersessian and Francesco Toppan for useful discussions. SK and AS are grateful to the Laboratori Nazionali di Frascati for hospitality. This work was partially supported by the grants RFBF-09-02-01209 and 09-02-91349 by Volkswagen Foundation grant I/84 496 as well as by the ERC advanced grant no 226455, ‘Supersymmetry, Quantum Gravity and Gauge Fields’ (SUPERFIELDS).

References

[1] Gonzales M, Kuznetsova Z, Nersessian A, Toppan F and Yeghikyan V 2009 Second Hopf map and supersymmetric mechanics with Yang monopole Phys. Rev. D 80 025022 (arXiv:0902.2682[hep-th])
[2] Konyushikhin M and Smilga A 2010 Self-duality and supersymmetry Phys. Lett. B 689 95 (arXiv:0910.5162[hep-th])
[3] Ivanov E A, Konyushikhin M A and Smilga A V 2010 SQM with non-Abelian self-dual fields: harmonic superspace description J. High Energy Phys. JHEP05(2010)033 (arXiv:0912.3289[hep-th])
[4] Fedoruk S, Ivanov E and Lechtenfeld O 2009 Supersymmetric Calogero models by gauging Phys. Rev. D 79 105015 (arXiv:0812.4276[hep-th])
[5] Ivanov E and Konyushikhin M 2010 $N = 4, 3D$ supersymmetric quantum mechanics in non-Abelian monopole background Phys. Rev. D 82 085014 (arXiv:1004.4597[hep-th])
[6] Bellucci S and Krivonos S 2009 Potentials in $N = 4$ superconformal mechanics Phys. Rev. D 80 065022 (arXiv:0905.4633[hep-th])
Bellucci S, Galajinsky A, Ivanov E and Krivonos S 2003 AdS2/CFT1 canonical transformations and superconformal mechanics Phys. Lett. B 555 99 (arXiv:hep-th/0212204)
[7] Bellucci S, Krivonos S and Sutulin A 2010 Three dimensional $N = 4$ supersymmetric mechanics with Wu–Yang monopole Phys. Rev. D 81 105026 (arXiv:0911.3257[hep-th])
[8] Krivonos S, Lechtenfeld O and Sutulin A 2010 $N = 4$ supersymmetry and the BPST instanton Phys. Rev. D 81 085021 (arXiv:1001.2659[hep-th])
[9] Krivonos S and Lechtenfeld O 2009 SU(2) reduction in $N = 4$ supersymmetric mechanics Phys. Rev. D 80 045019 (arXiv:0906.2369[hep-th])
[10] Zhang S C and Hu J P 2001 A four dimensional generalization of the quantum Hall effect Science 294 823 (arXiv:cond-mat/0110572)
Bernevig B A, Hu J P, Tournbas N and Zhang S C 2003 The eight-dimensional quantum Hall effect and the octonions Phys. Rev. Lett. 91 236803 (arXiv:cond-mat/0306045)
Karabali D and Nair V P 2002 Quantum Hall effect in higher dimensions Nucl. Phys. B 641 533 (arXiv:hep-th/0203264)
Hasebe K 2008 Hyperbolic supersymmetric quantum Hall effect Phys. Rev. D 78 125024 (arXiv:0809.4885[hep-th])
[11] Wong S K 1970 Field and particle equations for the classical Yang–Mills field and particles with isotopic spin Nuovo Cimento A 65 689
[12] Balachandran A P, Salomonson P, Skagerstam B-S and Winberg J-O 1977 Classical description of a particle interacting with a non-Abelian gauge field Phys. Rev. D 15 2308
[13] Casalbuoni R 1976 The classical mechanics for Bose–Fermi systems Nuovo Cimento A 33 389
[14] Barducci A, Casalbuoni R and Lusanna L 1976 Supersymmetries and the pseudoclassical relativistic electron Nuovo Cimento A 35 377
[15] Barducci A, Casalbuoni R and Lusanna L 1977 Classical scalar and spinning particles interacting with external Yang–Mills fields Nucl. Phys. B 124 93
[16] Frydryszak A 1996 Lagrangian models of the particles with spin: the first seventy years From Field Theory to Quantum Groups ed B Jancewicz and J Sobczyk (Singapore: World Scientific) pp 151–72 (arXiv:hep-th/9601020)
[17] Galperin A S, Ivanov E A, Ogievetsky V I and Sokatchev E S 2001 *Harmonic Superspace* (Cambridge, UK: Cambridge University Press)

[18] Ivanov E and Lechtenfeld O 2003 $N = 4$ supersymmetric mechanics in harmonic superspace *J. High Energy Phys.* JHEP09(2003)073 (arXiv:hep-th/0307111)

[19] Coles R A and Papadopoulos G 1990 The geometry of the one-dimensional supersymmetric nonlinear sigma models *Class. Quantum Grav.* 7 427

[20] Gibbons G W, Papadopoulos G and Stelle K S 1997 HKT and OKT geometries on soliton black hole moduli spaces *Nucl. Phys.* B 508 623 (arXiv:hep-th/9706207)

[21] Helleman S and Polchinski J 1999 Supersymmetric quantum mechanics from light cone quantization *The Many Faces of the Supersworld* ed M A Shifman (arXiv:hep-th/9908202)

[22] Hull C M 1999 The geometry of supersymmetric quantum mechanics arXiv:hep-th/9910028

[23] Ivanov E, Krivonos S and Lechtenfeld O 2004 $N = 4$, $d = 1$ supermultiplets from nonlinear realizations of $D(2,1;\alpha)$ *Class. Quantum Grav.* 21 1031 (arXiv:hep-th/0310299)

[24] Krivonos S and Lechtenfeld O 2011 Many-particle mechanics with $D(2,1;\alpha)$ superconformal symmetry *J. High Energy Phys.* JHEP02(2011)042 (arXiv:1012.4639[hep-th])

[25] Bellucci S, Krivonos S and Sutulin A 2011 $CP(n)$ supersymmetric mechanics in $U(n)$ background gauge fields *Phys. Rev.* D 84 065033 (arXiv:1106.2435 [hep-th])

[26] Bellucci S and Krivonos S 2006 Geometry of $N = 4$, $d = 1$ nonlinear supermultiplet *Phys. Rev.* D 74 125024 (arXiv:hep-th/0611104)

Bellucci S, Krivonos S and Ohanyan V 2007 $N = 4$ supersymmetric MICZ-Kepler systems on S^3 *Phys. Rev.* D 76 105023 (arXiv:0706.1469 [hep-th])

[27] Bellucci S, Krivonos S, Marrani A and Orazi E 2006 ‘Root’ action for $N = 4$ supersymmetric mechanics theories *Phys. Rev.* D 73 025011 (arXiv:hep-th/0511249)

Bellucci S, Ivanov E and Krivonos S 2000 Partial breaking $N = 4$ to $N = 2$: hypermultiplet as a Goldstone superfield *Fortschr. Phys.* 48 19 (arXiv:hep-th/9809190)

[28] Ivanov E, Lechtenfeld O and Satulin A 2008 Hierarchy of $N = 8$ mechanics models *Nucl. Phys.* B 790 493 (arXiv:0705.3064 [hep-th])

[29] Bellucci S, Krivonos S, Lechtenfeld O and Shcherbakov A 2008 Superfield formulation of nonlinear $N = 4$ supermultiplets *Phys. Rev.* D 77 045026 (arXiv:0710.3832 [hep-th])