DIVISION BY 2 ON HYPERELLPTIC CURVES AND JACOBIANS

YURI G. ZARHIN

1. Introduction

Let K be an algebraically closed field of characteristic different from 2. If n and i are positive integers and $r = \{r_1, \ldots , r_n\}$ is a sequence of n elements in K then we write

$$s_i(r) = s_i(r_1, \ldots , r_n) \in K$$

for the ith basic symmetric function in r_1, \ldots , r_n. If we put $r_{n+1} = 0$ then $s_i(r_1, \ldots , r_n) = s_i(r_1, \ldots , r_n, r_{n+1})$.

Let $g \geq 1$ be an integer. Let C be the smooth projective model of the smooth affine plane K-curve

$$y^2 = f(x) = \prod_{i=1}^{2g+1} (x - \alpha_i)$$

where $\alpha_1, \ldots , \alpha_{2g+1}$ are distinct elements of K. It is well known that C is a genus g hyperelliptic curve over K with precisely one infinite point, which we denote by ∞. In other words,

$$C(K) = \{(a, b) \in K^2 \mid b^2 = \prod_{i=1}^{2g+1} (a - \alpha_i)\} \sqcup \{\infty\}.$$

Clearly, x and y are nonconstant rational functions on C, whose only pole is ∞. More precisely, the polar divisor of x is $2(\infty)$ and the polar divisor of y is $(2g+1)(\infty)$. The zero divisor of y is $\sum_{i=1}^{2g+1} (2\mathcal{W}_i)$ where

$$\mathcal{W}_i = (\alpha_i, 0) \in C(K) \; \forall i = 1, \ldots , 2g + 1.$$

We write ι for the hyperelliptic involution

$$\iota : C \to C, \; (x, y) \mapsto (x, -y), \; \infty \mapsto \infty.$$

The set of fixed points of ι consists of ∞ and all $2\mathcal{W}_i$. It is well known that for each $P \in C(K)$ the divisor $(P) + \iota(P) - 2(\infty)$ is principal. More precisely, if $P = (a, b) \in C(K)$ then $(P) + \iota(P) - 2(\infty)$ is the divisor of the rational function $x - a$ on C. If D is a divisor on C then we write $\text{supp}(D)$ for its support, which is a finite subset of $C(K)$.

We write J for the jacobian of C, which is a g-dimensional abelian variety over K. If D is a degree zero divisor on C then we write $\text{cl}(D)$ for its linear equivalence class, which is viewed as an element of $J(K)$. We will identify C with its image in J with respect to the canonical regular map $C \hookrightarrow J$ under which ∞ goes to the zero of group law on J. In other words, a point $P \in C(K)$ is identified with $\text{cl}((P) - (\infty)) \in J(K)$. Then the action of ι on $C(K) \subset J(K)$ coincides with
multiplication by -1 on $J(K)$. In particular, the list of points of order 2 on C consists of all \mathfrak{M}_i.

Recall [21, Sect. 13.2, p. 411] that if D is an effective divisor of (nonnegative) degree m, whose support does not contain ∞, then the degree zero divisor $D - m(\infty)$ is called semi-reduced if it enjoys the following properties.

- If \mathfrak{M}_i lies in supp(D) then it appears in D with multiplicity 1.
- If a a point Q of $C(K)$ lies in supp(D) and does not coincide with any of \mathfrak{M}_i then $\iota(P)$ does not lie in supp(D).

If, in addition, $m \leq g$ then $D - m(\infty)$ is called reduced.

It is known ([9, Ch. 3a], [21, Sect. 13.2, Prop. 3.6 on p. 413]) that for each $a \in J(K)$ there exist exactly one nonnegative m and (effective) degree m divisor D such that the degree zero divisor $D - m(\infty)$ is reduced and $\text{cl}(D - m(\infty)) = a$. (E.g., the zero divisor with $m = 0$ corresponds to $a = 0$.) If $m \geq 1$, $D = \sum_{j=1}^{m} (Q_j)$ where $Q_j = (b_j, c_j) \in C(K) \forall j = 1, \ldots, m$ (here Q_j do not have to be distinct) then the corresponding

$$a = \text{cl}(D - m(\infty)) = \sum_{j=1}^{m} Q_j \in J(K).$$

The Mumford’s representation ([9, Sect. 3.12], [21, Sect. 13.2, pp. 411–415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7] of $a \in J(K)$ is is the pair $(U(x), V(x))$ of polynomials $U(x), V(x) \in K[x]$ such that

$$U(x) = \prod_{j=1}^{r}(x - a_j)$$

is a degree r monic polynomial while $V(x)$ has degree $m < \deg(U)$, the polynomial $V(x)^2 - f(x)$ is divisible by $U(x)$, and $D - m(\infty)$ coincides with the gcd (i.e., with the minimum) of the divisors of rational functions $U(x)$ and $y - V(x)$ on C. This implies that each Q_j is a zero of $y - V(x)$, i.e.,

$$b_j = V(a_j), \ Q_j = (a_j, V(a_j)) \in C(K) \forall j = 1, \ldots, m.$$

Such a pair always exists, it is unique, and (as we’ve just seen) uniquely determines not only a but also divisors D and $D - m(\infty)$. (The case $\alpha = 0$ corresponds to $m = 0, D = 0$ and the pair $(U(x) = 1, V(x) = 0)$.)

Conversely, if $U(x)$ is a monic polynomial of degree $m \leq g$ and $V(x)$ a polynomial such that $\deg(V) < \deg(U)$ and $V(x)^2 - f(x)$ is divisible by $U(x)$ then there exists exactly one $a = \text{cl}(D - m(\infty))$ where $D - m(\infty)$ is a reduced divisor such that $(U(x), V(x))$ is the Mumford’s representation of $\text{cl}(D - m(\infty))$.

Let $P = (a, b)$ be a K-point on C, i.e.,

$$a, b \in K, \ b^2 = f(a) = \prod_{i=1}^{n}(a - \alpha_i).$$

The aim of this note is to divide explicitly P by 2 in $J(K)$, i.e., to give explicit formulas for the Mumford’s representation of all 2^{2g} divisor classes $\text{cl}(D - g(\infty))$ such that $2D + \iota(P)$ is linearly equivalent to $(2g + 1)\infty$, i.e.,

$$2\text{cl}(D - g(\infty)) = P \in C(K) \subset J(K).$$
(It turns out that each such D has degree g and its support does not contain any of \mathcal{G}_1.)

The paper is organized as follows. In Section 2 we obtain auxiliary results about divisors on hyperelliptic curves. In particular, we prove (Theorem 2.4) that if $g > 1$ then the only point of $\mathcal{C}(K)$ that is divisible by two in $\mathcal{C}(K)$ (rather than in $J(K)$) is ∞ (of course, if $g > 1$). We also prove that $\mathcal{C}(K)$ does not contain points of order n if $2 < n \leq 2g$. In Section 3 we describe explicitly for a given $P = (a, b) \in \mathcal{C}(K)$ the Mumford’s representation of 2^g divisor classes $\text{cl}(D - g(\infty))$ such that D is an effective degree g reduced divisor on \mathcal{C} and

$$2\text{cl}(D - g(\infty)) = P \in \mathcal{C}(K) \subset J(K).$$

The description is given in terms of square roots $\sqrt{a - \alpha_i}$’s ($1 \leq i \leq 2g + 1$), whose product is $-b$. (There are exactly 2^{2g} choices of such square roots.) In Section 4 we discuss the rationality questions, i.e., the case when $f(x), \mathcal{C}, J$ and P are defined over a subfield K_0 of K and ask when dividing P by 2 we get a point of $J(K_0)$.

Sections 5 and 6 deal with torsion points on certain naturally arised subvarieties of J containing \mathcal{C}. In particular, we discuss the case of a generic hyperelliptic curve in characteristic zero, using as a starting point results of B. Poonen - M. Stoll [11] and of J. Yelton [22]. Our approach is based on ideas of J.-P. Serre [17] and F. Bogomolov [4].

This paper is a follow up of [24, 3] where the (more elementary) case of elliptic curves is discussed.

Acknowledgements. I am deeply grateful to Bjorn Poonen for helpful stimulating discussions. This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri Zarkhin). I’ve started to write this paper during my stay in May-June 2016 at the Max-Planck-Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged.

2. Divisors on hyperelliptic curves

Lemma 2.1 (Key Lemma). Let D be an effective divisor on \mathcal{C} of degree $m > 0$ such that $m \leq 2g + 1$ and supp(D) does not contain ∞. Assume that the divisor $D - m(\infty)$ is principal.

1. Suppose that m is odd. Then:
 (i) $m = 2g + 1$ and there exists exactly one polynomial $v(x) \in K[x]$ such that the divisor of $y - v(x)$ coincides with $D - (2g + 1)(\infty)$. In addition, deg$(v) \leq g$.
 (ii) If \mathcal{G}_1 lies in supp(D) then it appears in D with multiplicity 1.
 (iii) If b is a nonzero element of K and a K-point $P = (a, b) \in \mathcal{C}(K)$ lies in supp(D) then $v(P) = (a, -b)$ does not lie in supp(D).

2. Suppose that $m = 2d$ is even. Then there exists exactly one monic degree d polynomial $u(x) \in K[x]$ such that the divisor of $v(x)$ coincides with $D - m(\infty)$. In particular, every point $Q \in \mathcal{C}(K)$ appears in $D - m(\infty)$ with the same multiplicity as $v(Q)$.

Proof. Let h be a rational function on \mathcal{C}, whose divisor coincides with $D - m(\infty)$. Since ∞ is the only pole of h, the function h is a polynomial in x, y and therefore may be presented as

$$h = s(x)y - v(x), \text{ with } u, v \in K[x].$$
If $s = 0$ then h has at ∞ the pole of even order $2\deg(v)$ and therefore $m = 2\deg(v)$.

Suppose that $s \neq 0$. Clearly, $s(x)y$ has at ∞ the pole of odd order $2\deg(s) + (2g+1) \geq (2g+1)$. So, the orders of the pole for $s(x)y$ and $v(x)$ are distinct, because they have different parity and therefore the order m of the pole of $h = s(x)y - v(x)$ coincides with $\max(2\deg(s) + (2g+1), 2\deg(v)) \geq 2g + 1$. This implies that $m = 2g + 1$; in particular, m is even. It follows that m is even if and only if $s(x) = 0$, i.e., $h = -v(x)$; in addition, $\deg(v) \leq (2g+1)/2$, i.e., $\deg(v) \leq g$. In order to finish the proof of (2), it suffices to divide $-v(x)$ by its leading coefficient and denote the ratio by $u(x)$. (The uniqueness of monic $u(x)$ is obvious.)

Let us prove (1). Since m is odd,

$$m = 2\deg(s) + (2g+1) > 2\deg(v).$$

Since $m \leq 2g + 1$, we obtain that $\deg(s) = 0$, i.e., s is a nonzero element of K and $2\deg(v) < 2g + 1$. The latter inequality means that $\deg(v) \leq g$. Dividing h by the constant s, we may and will assume that $s = 1$ and therefore $h = y - v(x)$ with

$$v(x) \in K[x], \quad \deg(v) \leq g.$$

This proves (i). (The uniqueness of v is obvious.) The assertion (ii) is contained in Proposition 13.2(b) on pp. 409-10 of [21]. In order to prove (iii), we just follow arguments on p. 410 of [21] (where it is actually proven). Notice that our $P = (a, b)$ is a zero of $y - v(x)$, i.e. $b - v(a) = 0$. Since, $b \neq 0$, $v(a) = b \neq 0$ and $y - v(x)$ takes on at $i(P) = (a, -b)$ the value $-b - v(a) = -2b \neq 0$. This implies that $i(P)$ is not a zero of $y - v(x)$, i.e., $i(P)$ does not lie in $\text{supp}(D)$. \qed

Remark 2.2. Lemma 2.1(1)(ii,iii) asserts that if m is odd the divisor $D - m(\infty)$ is semi-reduced. See [21, the penultimate paragraph on p. 411].

Corollary 2.3. Let $P = (a, b)$ be a K-point on C and D an effective divisor on C such that $m = \deg(D) \leq g$ and $\text{supp}(D)$ does not contain ∞. Suppose that the degree zero divisor $2D + \iota(P) -(2m + 1)(\infty)$ is principal. Then:

(i) $m = g$ and there exists a polynomial $v_D(x) \in K[x]$ such that $\deg(v) \leq g$ and the divisor of $y - v_D(x)$ coincides with $2D + \iota(P) -(2g + 1)(\infty)$. In particular, $-b = v(a)$.

(ii) If a point Q lies in $\text{supp}(D)$ then $\iota(Q)$ does not lie in $\text{supp}(D)$. In particular,

1. none of \mathfrak{W}_i lies in $\text{supp}(D)$;
2. $D - g(\infty)$ is reduced.

(iii) The point P does not lie in $\text{supp}(D)$.

Proof. One has only to apply Lemma 2.1 to the divisor $2D + \iota(P)$ of odd degree $2m+1 \leq 2g+1$ and notice that $\iota(P) = (a, -b)$ is a zero of $y - v(x)$ while $\iota(\mathfrak{W}_i) = \mathfrak{W}_i$ for all $i = 1, \ldots, 2g + 1$. \qed

Let $d \leq g$ be a positive integer and $\Theta_d \subset J$ be the image of the regular map

$$C^d \to J, \quad (Q_1, \ldots, Q_d) \mapsto \sum_{i=1}^d Q_i \subset J.$$

It is well known that Θ_d is a closed d-dimensional subvariety of J that coincides with C for $d = 1$ and with J if $d \geq g$; in addition, $\Theta_d \subset \Theta_{d+1}$ for all d. Clearly, each Θ_d is stable under multiplication by -1 in J. We write Θ for the $(g-1)$-dimensional theta divisor Θ_{g-1}.

Theorem 2.4. Suppose that \(g > 1 \) and let
\[
C_{1/2} := 2^{-1}C \subset J
\]
be the preimage of \(C \) with respect to multiplication by 2 in \(J \). Then the intersection of \(C_{1/2}(K) \) and \(\Theta \) consists of points of order dividing 2 on \(J \). In particular, the intersection of \(C \) and \(C_{1/2} \) consists of \(\infty \) and all \(\mathcal{M}_i \)'s.

Proof. Suppose that \(m \leq g - 1 \) is a positive integer and we have \(m \) (not necessarily distinct) points \(Q_1, \ldots, Q_m \) of \(C(K) \) and a point \(P \in C(K) \) such that in \(J(K) \)
\[
2 \sum_{j=1}^{m} Q_j = P.
\]
We need to prove that \(P = \infty \), i.e., it is the zero of group law in \(J \) and therefore \(\sum_{j=1}^{m} Q_j \) is an element of order 2 (or 1) in \(J(K) \). Suppose that this is not true. Decreasing \(m \) if necessary, we may and will assume that none of \(Q_j \) is \(\infty \) (but \(m \) is still positive and does not exceed \(g - 1 \)). Let us consider the effective degree \(m \) divisor \(D = \sum_{j=1}^{m} (Q_j) \) on \(C \). The equality in \(J \) means that the divisors \(2[D - m(\infty)] \) and \((P) - (\infty) \) on \(C \) are linearly equivalent. This means that the divisor \(2D + (\iota(P)) - (2m + 1)(\infty) \) is principal. Now Corollary 2.3 tells us that \(m = g \), which is not the case. The obtained contradiction proves that the intersection of \(C_{1/2} \) and \(\Theta \) consists of points of order 2 and 1.

Since \(g > 1 \), \(C \subset \Theta \) and therefore the intersection of \(C \) and \(C_{1/2} \) also consists of points of order 2 or 1, i.e., lies in the union of \(\infty \) and all \(\mathcal{M}_i \)'s. Conversely, since each \(\mathcal{M}_i \) has order 2 in \(J(K) \) and \(\infty \) has order 1, they all lie in \(C_{1/2} \) (and, of course, in \(C \)).

Remark 2.5. It is known [16, Ch. VI, last paragraph of Sect. 11, p. 122] that the curve \(C_{1/2} \) is irreducible. (Its projectiveness and smoothness follow readily from the projectiveness and smoothness of \(C \) and the ´etaleness of multiplication by 2 in \(J \).) See [7] for an explicit description of equations that cut out \(C_{1/2} \) in a projective space.

Corollary 2.6. Suppose that \(g > 1 \). Let \(n \) an integer such that \(3 \leq n \leq 2g \). Then \(C(K) \) does not contain a point of order \(n \) in \(J(K) \). In particular, \(C(K) \) does not contain points of order 3 or 4.

Proof. Suppose that such a point say, \(P \) exists. Clearly, \(P \) is neither \(\infty \) nor one of \(\mathcal{M}_i \), i.e., \(P \neq \iota(P) \).

Suppose that \(n \) is odd. Then we have \(n = 2m + 1 \) with \(1 \leq m < g \). This implies that \(mP \in \Theta \) and
\[
2(mP) = 2mP = -P = \iota(P) \in C(K).
\]
It follows from Theorem 2.4 that either \(mP = 0 \) in \(J(K) \) or \((2m)P = (2mP) = 0 \) in \(J(K) \). However, the order of \(P \) in \(J(K) \) is \(n = 2m + 1 > m \geq 1 \) and we get a desired contradiction.

Assume now that \(n \) is even. Then we have \(n = 2m \) with \(1 \leq m \leq g \). Then \(mP \) has order 2 in \(J(K) \). It follows that
\[
mP = -mP = m(-P) = m \iota(P).
\]
This means that the degree zero divisors \(mP - m(\infty) \) and \(m(\iota(P)) - m(\infty) \) belong to the same linear equivalence class. Since both divisors are reduced, they must...
coincide (see [21, Ch. 13, Prop. 13.6 on p. 413]). This implies that \(P = \iota(P) \), which is not the case and we get a desired contradiction. \(\square \)

Remark 2.7. If \(\text{char}(K) = 0 \) and \(g > 1 \) then the famous theorem of M. Raynaud (conjectured by Yu.I. Manin and D. Mumford) asserts that an arbitrary genus \(g \) smooth projective curve over \(K \) embedded into its jacobian contains only finitely many torsion points [12]. Using a \(p \)-adic approach, B. Poonen [10] developed and implemented an algorithm that finds all complex torsion points on genus 2 hyperelliptic curves \(C : y^2 = f(x) \) such that \(f(x) \) has rational coefficients. (See also [11].)

Theorem 2.8. Suppose that \(g > 1 \) and let \(N > 1 \) be a positive integer. Suppose that \(N \leq 2g - 1 \) and let us put

\[
d(N) = \left\lceil \frac{2g}{N + 1} \right\rceil.
\]

Let \(K_0 \) be a subfield of \(K \) such that \(f(x) \in K_0[x] \). Let \(a \) be a \(K \)-point on \(\Theta_{d(N)} \). Suppose that there is a field automorphism \(\sigma \in \text{Aut}(K/K_0) \) such that \(\sigma(a) = N\overline{a} \) or \(-N\overline{a} \). Then \(a \) has order 1 or 2 in \(J(K) \).

Proof. Clearly, \((N + 1) \cdot d(N) < 2g + 1 \). Let us assume that \(2a \neq 0 \) in \(J(K) \). We need to arrive to a contradiction. Then there is a positive integer \(r \leq d(N) \) and a sequence of points \(P_1, \ldots, P_r \) of \(C(K) \setminus \infty \) such that \(\tilde{D} := \sum_{j=1}^r (P_j) - r(\infty) \) is the Mumford’s representation of \(a \) while (say) \(P_1 \) does not coincide with any of \(W_i \) (here we use the assumption that \(2a \neq 0 \)); we may also assume that \(P_1 \) has the largest multiplicity say, \(M \) among \(\{P_1, \ldots, P_r\} \). (In particular, none of \(P_j \)’s coincides with \(\iota(P_1) \).) Then \(\sigma(\tilde{D}) = \sum_{j=1}^r (\sigma(P_j)) - r(\infty) \) is the Mumford’s representation of \(\sigma a \). In particular, the multiplicity of each \(\sigma(P_j) \) in \(\sigma(\tilde{D}) \) does not exceed \(M \); similarly, the multiplicity of each \(\iota\sigma(P_j) \) in \(\iota\sigma(\tilde{D}) \) does not exceed \(M \).

Suppose that \(\sigma(a) = N\overline{a} \).

\[
N\tilde{D} + \iota\sigma(\tilde{D}) = N \left\lceil \sum_{j=1}^r (P_j) \right\rceil + \left\lceil \sum_{j=1}^r (\iota\sigma(P_j)) \right\rceil - r(N + 1)(\infty)
\]

is a principal divisor on \(C \). Since \(m := r(N + 1) \leq (N + 1) \cdot d(N) < 2g + 1 \), we are in position to apply Lemma 2.1, which tells us right away that \(m \) is even and there is a monic polynomial \(u(x) \) of degree \(m/2 \), whose divisor coincides with \(N\tilde{D} + \iota\sigma(\tilde{D}) \). This implies that a point \(Q \in C(K) \) appears in \(N\tilde{D} + \iota\sigma(\tilde{D}) \) with the same multiplicity as \(uQ \). It follows that \(\iota P_1 \) is (at least) one of \(\iota\sigma(P_j) \)’s. Clearly, the multiplicity of \(P_1 \) in \(N\tilde{D} + \iota\sigma(\tilde{D}) \) is, at least, \(NM \) while the multiplicity of \(\iota(P_1) \) is, at most, \(M \). This implies that \(NM \leq M \). Taking into account that \(N > 1 \), we obtain the desired contradiction.

If \(\sigma(a) = -N\overline{a} \) then literally the same arguments applied to to the principal divisor

\[
N\tilde{D} + \sigma(\tilde{D}) = N \left\lceil \sum_{j=1}^r (P_j) \right\rceil + \left\lceil \sum_{j=1}^r (\sigma(P_j)) \right\rceil - r(N + 1)(\infty)
\]

also lead to the contradiction. \(\square \)
3. Division by 2

Suppose we are given a point

\[P = (a, b) \in C(K) \subseteq J(K). \]

Since \(\dim(J) = g \), there are exactly \(2^g \) points \(a \in J(K) \) such that

\[P = 2a \in J(K). \]

Let us choose such an \(a \). Then there is exactly one effective divisor

\[D = D(a) \]

of positive degree \(m \) on \(C \) such that \(\text{supp}(D) \) does not contain \(\infty \), the divisor \(D - m(\infty) \) is reduced, and

\[m \leq g, \quad \text{cl}(D - m(\infty)) = a. \]

It follows that the divisor \(2D + (\iota(P)) - (2m + 1)(\infty) \) is principal and, thanks to Corollary 2.3, \(m = g \) and \(\text{supp}(D) \) does not contain \(W_i \). (In addition, \(D - g(\infty) \) is reduced.) Then the degree \(g \) effective divisor

\[D = D(a) = \sum_{j=1}^{g} (Q_j) \]

with \(Q_i = (c_j, d_j) \in C(K) \). Since none of \(Q_j \) coincides with any of \(W_i \),

\[c_j \neq \alpha_i \quad \forall i, j. \]

By Corollary 2.3, there is a polynomial \(v_D(x) \) of degree \(\leq g \) such that the degree zero divisor

\[2D + (\iota(P)) - (2g + 1)(\infty) \]

is the divisor of \(y - v_D(x) \). Since the points \(\iota(P) = (a, -b) \) and all \(Q_j \)'s are zeros of \(y - v_D(x) \),

\[b = -v_D(a), \quad d_j = v_D(c_j) \quad \forall j = 1, \ldots, g. \]

It follows from Proposition 13.2 on pp. 409–410 of [21] that

\[\prod_{i=1}^{2g+1} (x - \alpha_i) - v_D(x)^2 = f(x) - v_D(x)^2 = (x - a) \prod_{j=1}^{g} (x - c_j)^2. \]

In particular, \(f(x) - v_D(x)^2 \) is divisible by

\[u_D(x) := \prod_{j=1}^{g} (x - c_j). \]

Remark 3.1. Summing up:

\[D = D(a) = \sum_{j=1}^{g} (Q_j), \quad Q_j = (c_j, v_D(c_j)) \quad \forall j = 1, \ldots, g \]

and the degree monic polynomial \(u_D(x) = \prod_{j=1}^{g} (x - c_j) \) divides \(f(x) - v_D(x)^2 \).

By Prop. 13.4 on p. 412 of [21], this implies that reduced \(D - g(\infty) \) coincides with the gcd of the divisors of \(u_D(x) \) and \(y - v_D(x) \). Therefore the pair \((u_D, v_D) \) is the Mumford’s representation of \(a \) if

\[\deg(v_D) < g = \deg(u_D). \]
This is not always the case: it may happen that \(\deg(v_D) = g = \deg(u_D) \) (see below). However, if we replace \(v_D(x) \) by its remainder with respect to the division by \(u_D(x) \) then we get the Mumford’s representation of \(a \) (see below).

If in (3) we put \(x = \alpha_i \) then we get

\[
-v_D(\alpha_i)^2 = (\alpha_i - a) \left(\prod_{j=1}^{g} (\alpha_i - c_j) \right)^2,
\]
i.e.,

\[
v_D(\alpha_i)^2 = (a - \alpha_i) \left(\prod_{j=1}^{g} (c_j - \alpha_i) \right)^2 \quad \forall \ i = 1, \ldots, 2g + 1.
\]

Since none of \(c_j - \alpha_i \) vanishes, we may define

\[
r_i = r_{i,D} := \frac{v_D(\alpha_i)}{\prod_{j=1}^{g} (c_j - \alpha_i)} \quad (5)
\]

with

\[
r_i^2 = a - \alpha_i \quad \forall \ i = 1, \ldots, 2g + 1 \quad (6)
\]

and

\[
\alpha_i = a - r_i^2, \quad c_j - \alpha_i = r_i^2 - a + c_j \quad \forall \ i = 1, \ldots, 2g + 1; \ j = 1, \ldots, g.
\]

Clearly, all \(r_i \)'s are distinct elements of \(K \), because their squares are obviously distinct. (By the same token, \(r_{j_1} \neq \pm r_{j_2} \) if \(j_1 \neq j_2 \). Notice that

\[
\prod_{i=1}^{2g+1} r_i = \pm b, \quad (7)
\]
because

\[
b^2 = \prod_{i=1}^{2g+1} (a - \alpha_i) = \prod_{i=1}^{2g+1} r_i^2. \quad (8)
\]

Now we get

\[
r_i = \frac{v_D(a - r_i^2)}{\prod_{j=1}^{g} (r_i^2 - a + c_j)}
\]
i.e.,

\[
r_i \prod_{j=1}^{g} (r_i^2 - a + c_j) - v_D(a - r_i^2) = 0 \quad \forall \ i = 1, \ldots, 2g + 1.
\]

This means that the degree \((2g + 1)\) monic polynomial (recall that \(\deg(v_D) \leq g \))

\[
h_r(t) := t \prod_{j=1}^{g} (t^2 - a + c_j) - v(a - t^2)
\]
has \((2g + 1)\) distinct roots \(r_1, \ldots, r_{2g+1} \). This means that

\[
h_r(t) = \prod_{i=1}^{2g+1} (t - r_i).
\]
Clearly, \(t \prod_{j=1}^{2g+1} (t^2 - a + c_j) \) coincides with the odd part of \(h_r(t) \) while \(-v_D(a - t^2) \) coincides with the even part of \(h_r(t) \). In particular, if we put \(t = 0 \) then we get

\[
(-1)^{2g+1} \prod_{i=1}^{2g+1} r_i = -v_D(a) = b,
\]
i.e.,

\[
\prod_{i=1}^{2g+1} r_i = -b. \quad (9)
\]

Let us define

\[r = r_D := (r_1, \ldots, r_{2g+1}) \in K^{2g+1}. \]

Since

\[s_i(r) = s_i(r_1, \ldots, r_{2g+1}) \]

is the \(i \)th basic symmetric function in \(r_1, \ldots, r_{2g+1} \),

\[h_r(t) = t^{2g+1} + \sum_{i=1}^{2g+1} (-1)^i s_i(r) t^{2g+1-i} = \left[t^{2g+1} + \sum_{i=1}^{2g} (-1)^i s_i(r) t^{2g+1-i} \right] + b. \]

Then

\[
t \prod_{j=1}^{g} (t^2 - a + c_j) = t^{2g+1} + \sum_{j=1}^{g} s_{2j}(r) t^{2g+1-2j},
\]

\[-v_D(a - t^2) = \left[- \sum_{j=1}^{g} s_{2j-1}(r) t^{2g-2j+2} \right] + b.
\]

It follows that

\[
\prod_{j=1}^{g} (t - a + c_j) = t^g + \sum_{j=1}^{g} s_{2j-1}(r) t^{g-j},
\]

\[v_D(a - t) = \sum_{j=1}^{g} s_{2j-1}(r) t^{g-j+1} - b. \]

This implies that

\[
v_D(t) = \left[\sum_{j=1}^{g} s_{2j-1}(r)(a - t)^{g-j+1} \right] - b. \quad (10)
\]

It is also clear that if we consider the degree \(g \) monic polynomial

\[U_r(t) := u_D(t) = \prod_{j=1}^{g} (t - c_j) \]

then

\[
U_r(t) = (-1)^g \left[(a - t)^g + \sum_{j=1}^{g} s_{2j}(r)(a - t)^{g-j} \right]. \quad (11)
\]

Recall that \(\deg(v_D) \leq g \) and notice that the coefficient of \(v(x) \) at \(x^g \) is \((-1)^g s_1(r) \). This implies that the polynomial

\[V_r(t) := v_D(t) - (-1)^g s_1(r) U_r(t) = \]
formulas (11) and (12) give us an explicit construction of \(D \) square roots.

On the other hand, in light of (6)-(8), there is exactly the same number 2 of pairs \((u, v)\) such that \(u \) corresponds to an element of \(\mathbb{J}(K) \) and \(v \) corresponds to an element of \(\mathbb{J}(K) \). Theorem 3.2.

There is a natural bijection between \(\mathcal{R}_{1/2, P} \) and \(M_{1/2, P} \) such that \(\mathcal{R}_{1/2, P} \) corresponds to \(\mathcal{M}_{1/2, P} \) with Mumford’s representation \((U_\mathcal{R}, V_\mathcal{R}) \). More explicitly, if \(\{c_1, \ldots, c_g\} \) is the list of \(g \) roots (with multiplicities) of \(U_\mathcal{R}(x) \) then \(\mathcal{R} \) corresponds to \(\alpha_\mathcal{R} = \text{cl}(D - g(\infty)) \in J(K), \ 2\alpha_\mathcal{R} = P \)

\[
\left[\sum_{j=1}^{g} s_{2j-1}(r)(a - t)^{g-j+1} \right] - b - s_1(r) \left[(a - t)^g + \sum_{j=1}^{g} s_{2j}(r)(a - t)^{g-j} \right] \quad (12)
\]

has degree < \(g \), i.e.,

\[
\text{deg}(V_\mathcal{R}) < \text{deg}(U_\mathcal{R}) = g.
\]

Clearly, \(f(x) = V_\mathcal{R}(x)^2 \) is still divisible by \(U_\mathcal{R}(x) \), because \(u_D(x) = U_\mathcal{R}(x) \) divides both \(f(x) - v_D(x)^2 \) and \(v_D(x) - V_\mathcal{R}(x) \). On the other hand,

\[
d_j = v_D(c_j) = V_\mathcal{R}(c_j) \forall j = 1, \ldots, g,
\]

because \(U_\mathcal{R}(x) \) divides \(v_D(x) - V_\mathcal{R}(x) \) and vanishes at all \(b_j \). Actually, \(\{b_1, \ldots, b_g\} \) is the list of all roots (with multiplicities) of \(U_\mathcal{R}(x) \). So,

\[
D = D(a) = \sum_{j=1}^{g} (Q_j), \quad Q_j = (c_j, v_D(c_j)) = (c_j, V_\mathcal{R}(c_j)) \forall j = 1, \ldots, g.
\]

This implies (again via Prop. 13.4 on p. 412 of [21]) that reduced \(D - g(\infty) \) coincides with the gcd of the divisors of \(U_\mathcal{R}(x) \) and \(y - V_\mathcal{R}(x) \). It follows that the pair \((U_\mathcal{R}(x), V_\mathcal{R}(x))\) is the Mumford’s representation of \(\text{cl}(D - g(\infty)) = a \). So, the formulas (11) and (12) give us an explicit construction of \((D(a) \text{ and } a) \) in terms of \(r = (r_1, \ldots, r_{2g+1}) \) for each of \(2^{2g} \) choices of \(a \) with \(2a = P \in J(K) \). On the other hand, in light of (6)-(8), there is exactly the same number \(2^{2g} \) of choices of square roots \(\sqrt{a - \alpha_i} \) \((1 \leq i \leq 2g)\), whose product is \(-b \). Combining it with (9), we obtain that for each choice of square roots \(\sqrt{a - \alpha_i} \)'s with \(\prod_{i=1}^{2g+1} \sqrt{a - \alpha_i} = -b \) there is precisely one \(a \in J(K) \) with \(2a = P \) such that the corresponding \(r_i \) defined by (5) coincides with chosen \(\sqrt{a - \alpha_i} \) for all \(i = 1, \ldots, 2g + 1 \), and the Mumford’s representation \((U_\mathcal{R}(x), V_\mathcal{R}(x))\) for this \(a \) is given by explicit formulas (11)-(12). This gives us the following assertion.

Theorem 3.2. Let \(P = (a, b) \in C(K) \). Then the \(2^{2g} \)-element set

\[
M_{1/2, P} := \{ a \in J(K) \mid 2a = P \in C(K) \subset J(K) \}
\]

can be described as follows. Let \(\mathcal{R}_{1/2, P} \) be the set of all \((2g + 1)\)-tuples \(r = (r_1, \ldots, r_{2g+1}) \) of elements of \(K \) such that

\[
v_i = a - \alpha_i \quad \forall \ i = 1, \ldots, 2g + 1; \quad \prod_{i=1}^{2g+1} v_i = -b.
\]

Let \(s_i(r) \) be the \(i \)-th basic symmetric function in \(r_1, \ldots, r_{2g+1} \). Let us put

\[
U_\mathcal{R}(x) = (-1)^g \left[(a - x)^g + \sum_{j=1}^{g} s_{2j}(r)(a - x)^{g-j} \right],
\]

\[
V_\mathcal{R}(x) = \left[\sum_{j=1}^{g} s_{2j-1}(r)(a - x)^{g-j+1} \right] - b - s_1(r) \left[(a - x)^g + \sum_{j=1}^{g} s_{2j}(r)(a - x)^{g-j} \right].
\]

Then there is a natural bijection between \(\mathcal{R}_{1/2, P} \) and \(M_{1/2, P} \) such that \(\mathcal{R} \in \mathcal{R}_{1/2, P} \) corresponds to \(a_\mathcal{R} \in M_{1/2, P} \) with Mumford’s representation \((U_\mathcal{R}, V_\mathcal{R}) \). More explicitly, if \(\{c_1, \ldots, c_g\} \) is the list of \(g \) roots (with multiplicities) of \(U_\mathcal{R}(x) \) then \(a_\mathcal{R} = \text{cl}(D - g(\infty)) \in J(K), \ 2a_\mathcal{R} = P \).
where the divisor

\[D = D(a_r) = \sum_{j=1}^{g} (Q_j), \quad Q_j = (b_j, V_\xi(b_j)) \in \mathcal{C}(K) \ \forall \ j = 1, \ldots, g. \]

In addition, none of \(\alpha_i \) is a root of \(U_\xi(x) \) (i.e., the polynomials \(U_\xi(x) \) and \(f(x) \) are relatively prime) and

\[\tau_i = s_1(\tau) + (-1)^g \frac{V_\xi(\alpha_i)}{U_\xi(\alpha_i)} \forall \ i = 1, \ldots, 2g + 1. \]

Proof. Actually we have already proven all the assertions of Theorem 3.2 except the last formula for \(\tau_i \). It follows from (4) and (5) that

\[\tau_i = (-1)^g \frac{v_D(a_r)(\alpha_i)}{u_D(a_r)(\alpha_i)} = (-1)^g \frac{v_D(a_r)(\alpha_i)}{U_\xi(\alpha_i)}. \]

It follows from (12) that

\[v_D(a_r)(x) = (-1)^g s_1(\tau)U_\xi(x) + V_\xi(x). \]

This implies that

\[\tau_i = (-1)^g \left((-1)^g s_1(\tau)U_\xi(\alpha_i) + V_\xi(\alpha_i) \right) \frac{U_\xi(\alpha_i)}{U_\xi(\alpha_i)} = s_1(\tau) + (-1)^g \frac{V_\xi(\alpha_i)}{U_\xi(\alpha_i)}. \]

\[\square \]

Example 3.3. Let us take as \(P = (a, b) \) the point \(\mathcal{M}_{2g+1} = (\alpha_{2g+1}, 0) \). Then \(b = 0 \) and \(\tau_{2g+1} = 0 \). We have 2g arbitrary independent choices of (nonzero) square roots \(\tau_j = \sqrt{\alpha_{2g+1}} - \alpha_j \) with \(1 \leq j \leq 2g \) (and always get an element of \(\mathcal{R}_{1/2,p} \)). Now Theorem 3.2 gives us (if we put \(a = \alpha_{2j+1}, b = 0 \)) all \(2^{2g} \) points \(\alpha_r \) of order 4 in \(J(K) \) with \(2\alpha_r = \mathcal{M}_{2j+1} \).

4. **Rationality Questions**

Let \(K_0 \) be a subfield of \(K \) and \(K_0^{\text{sep}} \) its separable algebraic closure in \(K \). Recall that \(K_0^{\text{sep}} \) is separably closed. Clearly,

\[\text{char}(K_0) = \text{char}(K_0^{\text{sep}}) = \text{char}(K) \neq 2. \]

Let us assume that \(f(x) \in K_0[x] \), i.e., all the coefficients of \(f(x) \) lie in \(K_0 \). However, we don’t make any additional assumptions about its roots \(\alpha_i \); still, all of them lie in \(K_0^{\text{sep}} \), because \(f(x) \) has no multiple roots. Recall that both \(\mathcal{C} \) and \(J \) are defined over \(K_0 \); the point \(\infty \in \mathcal{C}(K_0) \) and therefore the embedding \(\mathcal{C} \hookrightarrow J \) is defined over \(K_0 \); in particular, \(\mathcal{C} \) is a closed algebraic \(K_0 \)-subvariety of \(J \).

Let us assume that our \(K \)-point \(P = (a, b) \) of \(\mathcal{C} \) lies in \(\mathcal{C}(K_0^{\text{sep}}) \), i.e., \(a, b \in K_0^{\text{sep}} \) and

\[P = (a, b) \in \mathcal{C}(K_0^{\text{sep}}) \subset J(K_0^{\text{sep}}) \subset J(K). \]

In the notation of Theorem 3.2, for each \(\tau \in M_{1/2,p} \) all its components \(\tau_i \) lie in \(K_0^{\text{sep}} \), because \(\tau_i^2 = a - \alpha_i \in K_0^{\text{sep}} \). This implies that the monic degree \(2g + 1 \) polynomial

\[h_\tau(t) = \prod_{i=1}^{2g+1} (t - \tau_i) = t^{2g+1} + \sum_{i=1}^{2g} (-1)^i s_i(\tau)t^{2g+1-i} \in K_0^{\text{sep}}[t], \]
i.e., all \(s_i(t) \in K_0^{\text{sep}} \). It follows immediately from the explicit formulas above that the Mumford representation \((U_\ell, V_\ell)\) of \(a_\ell = \text{cl}(D(a_\ell) - g(\infty)) \) consists of polynomials \(U_\ell \) and \(V_\ell \) with coefficients in \(K_0^{\text{sep}} \). In addition, \(a_\ell \) lies in \(J(K_0^{\text{sep}}) \), because \(2a_\ell = P \in J(K_0^{\text{sep}}) \), the multiplication by 2 in \(J \) is an étale map and \(K_0^{\text{sep}} \) is separably closed.

Lemma 4.1. Suppose that either \(K_0 \) is a perfect field (e.g., \(\text{char}(K) = 0 \) or \(K_0 \) is finite) or \(\text{char}(K_0) > g \). Suppose that

\[
P = (a, b) \in \mathcal{C}(K_0^{\text{sep}}) \subset J(K_0^{\text{sep}}).
\]

Then for all \(\ell \in \mathfrak{R}_{1/2,P} \) the Mumford representation \((U_\ell, V_\ell)\) of \(a_\ell = \text{cl}(D(a_\ell) - g(\infty)) \) enjoys the following properties.

(i) The polynomial \(U_\ell(x) \) splits over \(K_0^{\text{sep}} \), i.e., all its roots \(b_j \) lie in \(K_0^{\text{sep}} \).

(ii) The divisor

\[
D = D(a_\ell) = \sum_{j=1}^{\text{deg}(U_\ell)} (Q_j)
\]

where

\[
Q_j = (c_j, V_\ell(c_j)) \in \mathcal{C}(K_0^{\text{sep}}) \quad \forall j = 1, \ldots, g.
\]

Proof. If \(K_0 \) is perfect then \(K_0^{\text{sep}} \) is algebraically closed and there is nothing to prove. So, we may assume that \(\text{char}(K_0^{\text{sep}}) = \text{char}(K_0) > g \). In order to prove (i), recall that \(\text{deg}(U_\ell) = g \). Every root \(c_j \) of \(U_\ell(x) \) lies in \(K \) and the algebraic field extension \(K_0^{\text{sep}}(b_j)/K_0^{\text{sep}} \) has finite degree that does not exceed

\[
\text{deg}(U_\ell) = g < \text{char}(K_0^{\text{sep}})
\]

and therefore this degree is not divisible by \(\text{char}(K_0^{\text{sep}}) \). This implies that the field extension \(K_0^{\text{sep}}(b_j)/K_0^{\text{sep}} \) is separable. Since \(K_0^{\text{sep}} \) is separably closed, the overfield \(K_0^{\text{sep}}(c_j) = K_0^{\text{sep}} \), i.e., \(c_j \) lies in \(K_0^{\text{sep}} \). This proves (i). As for (ii), since \(V_\ell(x) \in K_0^{\text{sep}} \) and all \(c_j \in K_0^{\text{sep}} \), we have \(V_\ell(c_j) \in K_0^{\text{sep}} \) and therefore \(Q_j = (c_j, V_\ell(c_j)) \in \mathcal{C}(K_0^{\text{sep}}) \). This proves (ii). \(\square \)

Remark 4.2. If \(g = 2 \) then the conditions of Lemma 4.1 do not impose any additional restrictions on \(K_0 \). (The case \(\text{char}(K) = 2 \) was excluded from the very beginning.)

Remark 4.3. If \(P = (a, b) \in \mathcal{C}(K_0) \) then for each \(\ell \in \mathfrak{R}_{1/2,P} \)

\[
s_{2g+1}(t) = (-1)^{2g+1} \prod_{i=1}^{2g+1} \frac{2g+1}{2g+1} t_i = - \prod_{i=1}^{2g+1} t_i = -(b) = b \in K_0.
\]

This observation (reminder) explains the omission of \(i = 2g + 1 \) in the following statement.

Theorem 4.4. Suppose that a point

\[
P = (a, b) \in \mathcal{C}(K_0) \subset J(K_0),
\]

i.e.,

\[
a, b \in K_0, \quad b^2 = f(a).
\]

If \(\ell \) is an element of \(\mathfrak{R}_{1/2,P} \) then \(a_\ell \) lies in \(J(K_0) \) if and only if \(h_\ell(t) \) lies in \(K_0[t] \), i.e.,

\[
s_i(t) \in K_0 \quad \forall i = 1, \ldots, 2g.
\]
Proof. Let \(\bar{K}_0 \) be the algebraic closure of \(K_0 \). Clearly, \(\bar{K}_0 \) is algebraically closed and

\[
K_0 \subset K_0^{\text{sep}} \subset \bar{K}_0 \subset K.
\]

In the course of the proof we may and will assume that \(K = \bar{K}_0 \).

Let \(r \) be an element of \(\mathfrak{P}_{1/2, \mathcal{P}} \). We know that \(a_r \in J(K_0^{\text{sep}}) \) and the corresponding polynomials \(U_r(x) \) and \(V_r(x) \) have coefficients in \(K_0^{\text{sep}} \). This means that there is a finite Galois field extension \(E/K_0 \) with Galois group \(\text{Gal}(E/K) \) such that

\[
K_0 \subset E \subset K_0^{\text{sep}}
\]

such that

\[
a_{rr} \in J(E); \quad U_r(x), V_r(x) \in E[x].
\]

Let \(\text{Aut}(K/K_0) \) be the group of all field automorphisms of \(K \) that leave invariant every element of \(K_0 \). Clearly, the (sub)field \(E \) is \(\text{Aut}(K/K_0) \)-stable and the natural (restriction) group homomorphism

\[
\text{Aut}(K/K_0) \to \text{Gal}(E/K_0)
\]

is surjective. Since the subfield \(E^{\text{Gal}(E/K_0)} \) of Galois invariants coincides with \(K_0 \), we conclude that the subfield of invariants \(E^{\text{Aut}(K/K_0)} \) also coincides with \(K_0 \). It follows that

\[
U_r(x), V_r(x) \in K_0[x].
\]

Taking into account that \(a, b \in K_0 \), we obtain from the formulas in Theorem 3.2 that

\[
s_i(r) \in K_0 \quad \forall \; i = 1, \ldots, 2g.
\]

Conversely, let us assume that for a certain \(r \in \mathfrak{P}_{1/2, \mathcal{P}} \)

\[
s_i(r) \in K_0 \quad \forall \; i = 1, \ldots, 2g.
\]

(We know that \(s_{2g+1}(r) \) also lies in \(K_0 \).) This implies that both \(U_r(x) \) and \(V_r(x) \) lie in \(K_0[x] \). In other words,

\[
\sigma U_r(x) = U_r(x), \quad \sigma V_r(x) = V_r(x) \quad \forall \; \sigma \in \text{Aut}(K/K_0).
\]

This means that for every \(\sigma \in \text{Aut}(K/K_0) \) both \(a_r \) and \(\sigma a_r \) have the same Mumford representation, namely, \((U_r, V_r) \). This implies that

\[
\sigma a_r = a_r \quad \forall \; \sigma \in \text{Aut}(K/K_0),
\]

i.e.,

\[
a_r \in J(E)^{\text{Aut}(K/K_0)} = J(K_0).
\]

\(\square \)
Theorem 4.5. Suppose that a point
\[P = (a, b) \in C(K_0) \subset J(K_0), \]
i.e.,
\[a, b \in K_0, \quad b^2 = f(a). \]
Then the following conditions are equivalent.
(i) \(\alpha_i \in K_0 \) and \(a - \alpha_i \) is a square in \(K_0 \) for all \(i \) with \(1 \leq i \leq 2g + 1 \).
(ii) All \(2^{2g} \) elements \(a \in J(K) \) with \(2a = P \) actually lie in \(J(K_0) \).

Proof. Assume (i). Then \(a = a_r \) for a certain \(r \in \mathfrak{R}_{1/2,p} \). Our assumptions imply that all \(\tau_i = \sqrt{a - \alpha_i} \) lie in \(K_0 \) and therefore
\[s_i(t) \in K_0 \quad \forall \ i = 1, \ldots, 2g. \]
Now Theorem 4.4 tells us that \(a_r \in J(K_0) \). This proves (ii).
Assume (ii). It follows from Theorem 4.4 that \(s_i(t) \in K_0 \) for all \(r \in \mathfrak{R}_{1/2,p} \) and \(i \) with \(1 \leq i \leq 2g + 1 \). In particular, for \(i = 1 \)
\[\sum_{i=1}^{2g+1} r_i = s_1(t) \in K_0 \quad \forall \ r \in \mathfrak{R}_{1/2,p}. \]
Pick any \(r \in \mathfrak{R}_{1/2,p} \) and for any index \(l \) (\(1 \leq l \leq 2j + 1 \)) consider \(r^{(l)} \in \mathfrak{R}_{1/2,p} \) such that
\[r^{(l)} = r_i, \quad r^{(l)}_i = -r_i \quad \forall \ i \neq l. \]
We have
\[s_1(t) \in K_0, \quad -2s_1(t) + 2r_i = s_1(t^{(l)}) \in K_0. \]
This implies that \(r_i \in K_0 \). Since \(r_i^2 = a - \alpha_i \) and \(a \in K_0 \), we conclude that \(\alpha_i \) lies in \(K_0 \) and \(a - \alpha_i \) is a square in \(K_0 \). This proves (i). \(\square \)

Remark 4.6. In the case of elliptic curves \((i.e., \text{when } g = 1) \) Theorem 4.5 is well known, see, e.g., [5, p. 269–270].

The following assertion was inspired by results of Schaefer [14].

Theorem 4.7. Let us consider the \((2g + 1) \)-dimensional commutative semisimple
\(K_0 \)-algebra \(L = K_0[x]/f(x)K_0[x] \).
A \(K_0 \)-point \(P = (a, b) \) on \(C \) is divisible by 2 in \(J(K_0) \) if and only if
\[(a - x) + f(x)K_0[x] \in K_0[x]/f(x)K_0[x] = L \]
is a square in \(L \).

Proof. For each \(q(x) \in K_0[x] \) we write \(\overline{q(x)} \) for its image in \(K_0[x]/f(x)K_0[x] \).
For each \(i = 1, \ldots, 2g + 1 \) there is a homomorphism of \(K_0 \)-algebras
\[\phi_i : L = K_0[x]/f(x)K_0[x] \rightarrow K_0^{\text{sep}}, \quad \overline{q(x)} = q(x) + f(x)K_0[x] \rightarrow q(\alpha_i); \]
the intersection of the kernels of all \(\phi_i \) is \(\{0\} \). Indeed, if \(\overline{q(x)} \in \ker(\phi_i) \) then \(q(x) \) is divisible by \(x - \alpha_i \) and therefore if \(\overline{q(x)} \) lies in \(\ker(\phi_i) \) for all \(i \) then \(q(x) \) is divisible by \(\prod_{i=1}^{2g+1} (x - \alpha_i) = f(x), \) i.e., \(
\overline{q(x)} = 0 \) in \(K_0[x]/f(x)K_0[x] \). Clearly,
\[\phi_i(\overline{x}) = \alpha_i, \quad \phi_i(a - x) = a - \alpha_i. \]
Since \(f(x) \) lies in \(K_0[x] \), the set of its roots \(\{\alpha_1, \ldots, \alpha_{2g+1}\} \) is a Galois-stable subset of \(K_0^{\text{sep}} \). This implies that for each \(q(x) \in K_0[x] \) and
\[Z = \overline{q(x)} \in K_0[x]/f(x)K_0[x] \]
the product
\[H_Z(t) = H_{q(x)}(t) := \prod_{i=1}^{2g+1} \left(t - \phi_i(q(x)) \right) = \prod_{i=1}^{2g+1} \left(t - q(\alpha_i) \right) \]
is a degree \((2g+1)\) monic polynomial with coefficients in \(K_0\). In particular, if \(q(x) = a - x\) then
\[H_{a-x}(t) = H_{a-x}(t) = \prod_{i=1}^{2g+1} \left(t - (a - \alpha_i) \right). \]

Assume that \(P\) is divisible by \(2\) in \(J(K_0)\), i.e., there is \(a \in J(K_0)\) with \(2a = P\). It follows from Theorems 3.2 and 4.4 that there is \(r \in \mathcal{R}_{1/2 \ P}\) such that \(a_r = a\) and all \(s_i(r)\) lie in \(K_0\). This implies that both polynomials \(U_\gamma(x)\) and \(V_\gamma(x)\) have coefficients in \(K_0[x]\). Recall (Theorem 3.2) that \(f(x)\) and \(U_\gamma(x)\) are relatively prime. This means that \(\overline{U_\gamma(x)} = U_\gamma(\bar{x})\) is a unit in \(K_0[x]/f(x)K_0[x]\). Therefore we may define
\[\mathcal{R} = s_1(x) + (-1)^g \frac{V_\gamma(\bar{x})}{U_\gamma(\bar{x})} \in K_0[x]/f(x)K_0[x]. \]
The last formula of Theorem 3.2 implies that for all \(i\) we have \(\phi_i(\mathcal{R}) = r_i\) and therefore
\[\phi_i(\mathcal{R})^2 = r_i^2 = a - \alpha_i = \phi_i(a - \bar{x}). \]
This implies that \(\mathcal{R}^2 = a - \bar{x}\). It follows that
\[a - \bar{x} = (a - x) + f(t)K_0[t] \in K_0[x]/f(x)K_0[x] \]
is a square in \(K_0[x]/f(x)K_0[x]\).
Conversely, assume now that there is an element \(\mathcal{R} \in L\) such that
\[\mathcal{R}^2 = a - \bar{x} = a - \bar{x}. \]
This implies that
\[\phi_i(\mathcal{R})^2 = \phi_i(a - \bar{x}) = a - \alpha_i, \]
i.e.,
\[\phi_i(\mathcal{R}) = \sqrt{a - \alpha_i} \forall i = 1, \ldots, 2g + 1. \]
This implies that
\[\prod_{i=1}^{2g+1} \phi_i(\mathcal{R}) = \sqrt{f(a)} = \pm b. \]
Since \((-1)^{2g+1} = -1\), replacing if necessary, \(\mathcal{R}\) by \(-\mathcal{R}\), we may and will assume that
\[\prod_{i=1}^{2g+1} \phi_i(\mathcal{R}) = -b. \]
Now if we put
\[r_i = \phi_i(\mathcal{R}) \forall i = 1, \ldots, 2g + 1: r = (r_1, \ldots, r_{2g+1}) \]
then \(r \in \mathcal{R}_{1/2 \ P}\) and
\[h_\epsilon(t) = \prod_{i=1}^{2g+1} (t - r_i) = \prod_{i=1}^{2g+1} (t - \phi_i(\mathcal{R})) = H_\mathcal{R}(t). \]
Since $\delta_R(t)$ lies in $K_0[t]$, the polynomial $h_r(t)$ also lies in $K_0[t]$. It follows from Theorem 4.4 that $a_r \in J(K_0)$. Since $2a_r = P$, the point P is divisible by 2 in $J(K_0)$.

\[\square\]

Remark 4.8. If one assumes additionally that $\text{char}(K_0) = 0$ and P is none of W_i (i.e., $a \neq \alpha_i$ for any i) then the assertion of Theorem 4.7 follows from [14, Th. 1.2 and the first paragraph of p. 224].

5. Torsion Points on Θ_d

We keep the notation of Section 4. In particular, K_0 be a subfield of K such that

$$f(x) \in K_0[x].$$

Notice that the involution ι is also defined over K_0, the absolute Galois group $\text{Gal}(K_0)$ leaves invariant ∞ and permutes points of $C(K_0^{\text{sep}})$; in addition, it permutes elements of $J(K_0^{\text{sep}})$, respecting the group structure on $J(K_0^{\text{sep}})$.

If n is a positive integer that is not divisible by $\text{char}(K)$ then we write $J[n]$ for the kernel of multiplication by n in $J(K)$. It is well known that $J[n]$ is a free $\mathbb{Z}/n\mathbb{Z}$-module of rank $2g$ that lies in $J(K_0^{\text{sep}})$; in addition, it is a $\text{Gal}(K_0)$-stable subgroup of $J(K_0^{\text{sep}})$, which gives us the (continuous) group homomorphism

$$\rho_{n,J} : \text{Gal}(K_0) \to \text{Aut}_{\mathbb{Z}/n\mathbb{Z}}(J[n])$$

that defines the Galois action on $J[n]$. We write \bar{G}_{n,J,K_0} for the image

$$\rho_{n,J}(\text{Gal}(K_0)) \subset \text{Aut}_{\mathbb{Z}/n\mathbb{Z}}(J[n]).$$

Let Id_n be the identity automorphism of $J[n]$. The following assertion was inspired by a work of F. Bogomolov [4] (where the ℓ-primary part of the Manin-Mumford conjecture was proven).

Theorem 5.1. Suppose that $g > 1$ and $n \geq 3$ is an integer that is not divisible by $\text{char}(K)$. Let $N > 1$ be an integer that is relatively prime to n and such that $N \leq 2g - 1$ and \bar{G}_{n,J,K_0} contains either $N \cdot \text{Id}_n$ or $-N \cdot \text{Id}_n$. Let us put $d(N) := [2g/(N + 1)]$.

Then $\Theta_{d(N)}(K)$ does not contain nonzero points of order dividing n except points of order 1 or 2. In particular, if n is odd then $\Theta_{d(N)}(K)$ does not contain nonzero points of order dividing n.

Proof. Clearly, $(N + 1) \cdot d(N) < 2g + 1$. Suppose that b is a nonzero point of order dividing n in $\Theta_{d(N)}(K)$. We need to prove that $2b = 0$.

Indeed, $b \in J[n] \subset J(K_0^{\text{sep}})$ and therefore

$$b \in \Theta_d(K) \cap J(K_0^{\text{sep}}) = \Theta_d(K_0^{\text{sep}}).$$

By our assumption, there is $\sigma \in \text{Gal}(K)$ such that $\sigma(a) = Na$ or $-Na$ for all $a \in J[n]$. This implies that $\sigma(b) = Nb$ or $-Nb$. It follows from Theorem 2.8 that $2b = 0$ in $J(K)$.

\[\square\]

Example 5.2. Suppose that K is the field \mathbb{C} of complex numbers, $g = 2$ and C is the genus 2 curve

$$y^2 = x^5 - x + 1.$$

Let us put $N = 2$. Then $d(N) = 2$. Let $n = \ell$ be an odd prime. Then $\mathbb{Z}/n\mathbb{Z}$ is the prime field \mathbb{F}_ℓ. Results of L. Dieulefait [6, Th. 5.8 on pp. 509–510] and Serre's
Modularity Conjecture [18] that was proven by C. Khare and J.-P. Wintenberger [8] imply that \tilde{G}_{ℓ,J,K_0} is “as large as possible”; in particular, it contains all the homotheties $\mathbb{F}_\ell^* \cdot \text{Id}_\ell$. This implies that \tilde{G}_{ℓ,J,K_0} contains $2 \cdot \text{Id}_\ell$, since ℓ is odd. It follows from Corollary 5.1 that $\Theta_1 = \mathcal{C}(\mathbb{C})$ does not contain points of order ℓ for all odd primes ℓ.

Actually, using his algorithm mentioned above, B. Poonen had already checked that the only torsion points on this curve are the Weierstrass points \mathcal{W}_i (of order 2) and ∞ (of order 1) [10, Sect. 14].

Notice that the Galois group of $x^5 - x + 1$ over \mathbb{Q} is the full symmetric group S_5. This implies that the ring of \mathbb{C}-endomorphisms of J coincides with \mathbb{Z} [23]. In particular, J is an absolutely simple abelian surface.

Theorem 5.3. Suppose that $g > 1$, $K_0 = \mathbb{Q}$, $K = \mathbb{C}$ and $\alpha_1, \ldots, \alpha_{2g+1} \in \mathbb{C}$ are algebraically independent (transcendental) elements of \mathbb{C} (i.e.,

$$\mathcal{C} : y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i)$$

is a generic hyperelliptic curve). Then:

(i) $\Theta_{[2g/3]}(\mathbb{C})$ does not contain nonzero points of odd order.

(ii) All 2-power torsion points in $\Theta_{[g/2]}(\mathbb{C})$ have order 1 or 2.

We will prove Theorems 5.3 in Section 6.

Remark 5.4. Let $K_0, K = \mathbb{C}$ and \mathcal{C} be as in Theorem 5.3.

(i) B. Poonen and M. Stoll [11, Th. 7.1] proved that the only torsion points on this generic curve are the Weierstrass points \mathcal{W}_i (of order 2) and ∞ (of order 1).

(ii) Let $s_1, \ldots, s_{2g+1} \in \mathbb{C}$ be the corresponding basic symmetric functions in $\alpha_1, \ldots, \alpha_{2g+1}$ and let us consider the (sub)field

$$L := \mathbb{Q}(s_1, \ldots, s_{2g+1} \subset \mathbb{Q}(\alpha_1, \ldots, \alpha_{2g+1}) = K_0.$$

Then $f(x)$ lies in $L[x]$ and its Galois group over L is the full symmetric group S_{2g+1}. This implies that the ring of \mathbb{C}-endomorphisms of J coincides with \mathbb{Z} [23]. In particular, J is an absolutely simple abelian variety. (Of course, this result is well known.) It follows from the generalized Manin-Mumford conjecture (also proven by M. Raynaud [13]) that the set of torsion points on $\Theta_d(\mathbb{C})$ is finite for all $d < g$.

6. **Abelian varieties with big ℓ-adic Galoid images**

We need to recall some basic facts about fields of definition of torsion points on abelian varieties.

Recall that a positive integer n is not divisible by $\text{char}(K)$ and the rank $2g$ free $\mathbb{Z}/n\mathbb{Z}$-module $J[n]$ lies in $J(K^{\text{sep}})$. Clearly, all nth roots of unity of K lie in K^{sep}. We write μ_n for the order n cyclic multiplicative group of nth roots of unity in K^{sep}. We write $K(\mu_n) \subset K^{\text{sep}}$ for the nth cyclotomic field extension of K and

$$\chi_n : \text{Gal}(K) \to (\mathbb{Z}/n\mathbb{Z})^*$$

for the nth cyclotomic character that defines the Galois action on all nth roots of unity. The Galois group $\text{Gal}(K(\mu_n)/K)$ of the abelian extension $K(\mu_n)/K$ is
canonically isomorphic to the image
\[\chi_n(\Gal(K)) \subset (\mathbb{Z}/n\mathbb{Z})^* = \Gal(\mathbb{Q}(\mu_n)/\mathbb{Q}); \]
the equality holds if and only if the degree \([K(\mu_n) : K]\) coincides with \(\phi(n)\) where \(\phi\) is the Euler function. For example, if \(K\) is the field \(\mathbb{Q}\) of rational numbers then for all \(n\)
\[\mathbb{Q}(\zeta_n) : \mathbb{Q} = \phi(n), \quad \chi_n(\Gal(\mathbb{Q})) = (\mathbb{Z}/n\mathbb{Z})^*. \]

The Jacobian \(J\) carries the canonical principal polarization that is defined over \(K_0\) and gives rise to a nondegenerate alternating bilinear form (Weil-Riemann pairing)
\[\bar{e}_n : J[n] \times J[n] \to \mathbb{Z}/n\mathbb{Z} \]
such that for all \(\sigma \in \Gal(K)\) and \(a_1, a_2 \in J[n]\) we have
\[\bar{e}_n(\sigma a_1, \sigma a_2) = \chi_n(\sigma) \cdot \bar{e}_n(a_1, a_2). \]
(Such a form is defined uniquely up to multiplication by an element of \(\mathbb{Z}/n\mathbb{Z}\) and depends on a choice between of an isomorphism between \(\mu_n\) and \(\mathbb{Z}/n\mathbb{Z}\).

Let
\[\Gp(J[n], \bar{e}_n) \subset \Aut_{\mathbb{Z}/n\mathbb{Z}}(J[n]) \]
be the group of symplectic similitudes of \(\bar{e}_n\) that consists of all automorphisms \(u\) of \(J[n]\) such that there exists a constant \(c = c(u) \in (\mathbb{Z}/n\mathbb{Z})^*\) such that
\[\bar{e}_n(ua_1, ua_2) = c(u) \cdot \bar{e}_n(a_1, a_2) \quad \forall a_1, a_2 \in J[n]. \]
The map
\[\mult_n : \Gp(J[n], \bar{e}_n) \to (\mathbb{Z}/n\mathbb{Z})^*, \quad u \mapsto c(u) \]
is a surjective group homomorphism, whose kernel coincides with the symplectic group
\[\Sp(J[n], \bar{e}_n) \cong \Sp_{2g}(\mathbb{F}_l) \]
of \(\bar{e}_n\). Both \(\Sp(J[n], \bar{e}_n)\) and the group of homotheties \((\mathbb{Z}/n\mathbb{Z})\text{Id}_n\) are subgroups of \(\Gp(J[n], \bar{e}_n)\). The Galois-equivariance of the Weil-Riemann pairing implies that
\[\tilde{G}_{n,J,K_0} \subset \Gp(J[n], \bar{e}_n) \subset \Aut_{\mathbb{Z}/n\mathbb{Z}}(J[n]). \]
It is also clear that for each \(\sigma \in \Gal(K)\)
\[\chi_n(\sigma) = c(\rho_{n,J,K_0}(\sigma)) = \mult_n(\rho_{n,J,K_0}(\sigma)) \in (\mathbb{Z}/n\mathbb{Z})^*. \]
Since \(\Sp(J[n], \bar{e}_n) = \ker(\mult_n)\), we obtain the following useful assertion.

Lemma 6.1. Let us assume that \(\chi_n(\Gal(K)) = (\mathbb{Z}/n\mathbb{Z})^*\) (E.g., \(K = \mathbb{Q}\) or the field \(\mathbb{Q}(t_1, \ldots, t_d)\) of rational functions in \(d\) independent variables over \(\mathbb{Q}\).)

Suppose that \(\tilde{G}_{n,J,K_0}\) contains \(\Sp(J[n], \bar{e}_n)\). Then \(\tilde{G}_{n,J,K_0} = \Gp(J[n], \bar{e}_n)\). In particular, \(\tilde{G}_{n,J,K_0}\) contains the whole group of homotheties \((\mathbb{Z}/n\mathbb{Z})^* \cdot \text{Id}_n\).

Example 6.2. Let \(K_0\), \(K = \mathcal{C}\) and \(\mathcal{C}\) be as in Theorem 5.3, i.e., \(\mathcal{C}\) is a generic hyperelliptic curve.

(i) B. Poonen and M. Stoll proved [11, Proof of Th. 7.1] that if \(n\) is odd then \(\tilde{G}_{n,J,K_0}\) contains \(\Sp(J[n], \bar{e}_n)\). It follows from Lemma 6.1 that \(\tilde{G}_{n,J,K_0} = \Gp(J[n], \bar{e}_n)\) for all odd \(n\). In particular, it contains \((\mathbb{Z}/n\mathbb{Z})^* \cdot \text{Id}_n\) and therefore contains \(2 \cdot \text{Id}_n\).
Proof of Theorem 5.3. Recall that 2 is a power of 2. J. Yelton [22] proved that G_{n,J,K_0} contains the level 2 congruence subgroup $\Gamma(2)$ of $Sp(J[n],\bar{\epsilon}_n)$ defined by the condition

$$\Gamma(2) = \{g \in Sp(J[n],\bar{\epsilon}_n) \mid g \equiv Id_n \mod 2\} \triangleleft Sp(J[n],\bar{\epsilon}_n).$$

Let us consider the level 2 congruence subgroup $GT(2)$ of $Gp(J[n],\bar{\epsilon}_n)$ defined by the condition

$$GT(2) = \{g \in Gp(J[n],\bar{\epsilon}_n) \mid g \equiv Id_n \mod 2\} \triangleleft Gp(J[n],\bar{\epsilon}_n).$$

Clearly, $GT(2)$ contains $3\cdot Id_n$ while the intersection of $GT(2)$ and $Sp(J[n],\bar{\epsilon}_n)$ coincides with $\Gamma(2)$. The latter means that $\Gamma(2)$ coincides with the kernel of the restriction of mult_n to $GT(2)$. In addition, one may easily check that

$$\text{mult}_n(GT(2)) = (\mathbb{Z}/n\mathbb{Z})^* = \text{mult}_n(Gp(J[n],\bar{\epsilon}_n),$$

since

$$(\mathbb{Z}/n\mathbb{Z})^* = \{c \in \mathbb{Z}/n\mathbb{Z} \mid c \equiv 1 \mod 2\}.$$

This implies that G_{n,J,K_0} contains $GT(2)$. In particular, G_{n,J,K_0} contains $3\cdot Id_n$. (See also [11, Proof of Th. 7.1].)

Proof of Theorem 5.3. Recall that $d(2) = [2g/3]$. Combining Theorem 5.1 (with $N = 2$ and any odd n) with Example 6.2(i), we conclude that $\Theta_{[2g/3]}(\mathbb{C})$ does not contain nonzero points of odd order n. This proves (i).

Recall that $d(3) = [2g/4] = [g/2]$. Combining Theorem 5.1 (with $N = 3$ and $n = 2^e$) with Example 6.2(ii), we conclude that all 2-power torsion points in $\Theta_{[g/2]}(\mathbb{C})$ are points of order 1 or 2.

The rest of this paper is devoted to the proof of the following result.

Theorem 6.3. Let K_0 be the field \mathbb{Q} of rational numbers, $K = \mathbb{C}$ the field of complex numbers. Suppose that $g > 1$. Let S be a non-empty set of odd primes such that for all $\ell \in S$ the image $G_{\ell,J,K_0} = Gp(J[\ell],\bar{\epsilon}_\ell)$.

If $n > 1$ is a positive odd integer, all whose prime divisors lie in S then $\Theta_{[2g/3]}(\mathbb{C})$ does not contain nonzero points of order dividing n.

Let us start with the following elementary observation on Galois properties of torsion points on J.

Remark 6.4.

(i) Let G_n be the derived subgroup $[G_{n,J,K_0},G_{n,J,K_0}]$ of G_{n,J,K_0}. Then G_n is a normal subgroup of finite index in G_{n,J,K_0}. Let $K_{0,n} \subset K_0^{\text{sep}}$ be the finite Galois extension of K_0 such that the absolute Galois (sub)group $\text{Gal}(K_{0,n}) \subset \text{Gal}(K_0)$ coincides with the preimage

$$\rho_{n,J}(G_n) \subset \rho_{n,J}(G_{n,J,K_0}) = \text{Gal}(K).$$

We have

$$G_{n,J,K_0,n} = \rho_{n,J}(\text{Gal}(K_{0,n})) = G_n = [G_{n,J,K_0},G_{n,J,K_0}] \subset [Gp(J[n],\bar{\epsilon}_n),Gp(J[n],\bar{\epsilon}_n)] \subset Sp(J[n],\bar{\epsilon}_n).$$

This implies that

$$G_{n,J,K_0,n} \subset Sp(J[n],\bar{\epsilon}_n).$$
Let \(m > 1 \) be an integer dividing \(n \). The inclusion of Galois modules \(J[m] \subset J[n] \) induces the surjective group homomorphisms
\[
\tilde{G}_{m, J, K_0} \to \tilde{G}_{m, J, K_0}, \tilde{G}_{n, J, K_0, n} \to \tilde{G}_{m, J, K_0, n} \subset \tilde{G}_{m, J, K_0};
\]
the latter homomorphism coincides with the restriction of the former one to the (derived) subgroup \(\tilde{G}_{m, J, K_0, n} \subset \tilde{G}_{n, J, K_0} \). This implies that
\[
\tilde{G}_{m, J, K_0, n} = [\tilde{G}_{m, J, K_0}, \tilde{G}_{m, J, K_0}]
\]
is the derived subgroup of \(\tilde{G}_{m, J, K_0} \). In addition,
\[
\tilde{G}_{m, J, K_0, n} = [\tilde{G}_{m, J, K_0}, \tilde{G}_{m, J, K_0}] \subset [\text{Sp}(J[m], \bar{e}_m), \text{Sp}(J[m], \bar{e}_m)] \subset \text{Sp}(J[m], \bar{e}_m).
\]

(ii) Recall that \(g \geq 2 \). Now assume that \(m = \ell \) is an odd prime dividing \(n \). Then \(\text{Sp}(J[\ell], \bar{e}_\ell) \) is perfect, i.e., coincides with its own derived subgroup. Assume also that \(\tilde{G}_{\ell, J, K_0} \) contains \(\text{Sp}(J[\ell], \bar{e}_\ell) \). Then
\[
\text{Sp}(J[\ell], \bar{e}_\ell) \supset \tilde{G}_{\ell, J, K_0, n} = \tilde{G}_{\ell, J, K_0, n} \subset [\text{Sp}(J[\ell], \bar{e}_\ell), \text{Sp}(J[\ell], \bar{e}_\ell)] = \text{Sp}(J[\ell], \bar{e}_\ell)
\]
and therefore
\[
\tilde{G}_{\ell, J, K_0, n} = \text{Sp}(J[\ell], \bar{e}_\ell).
\]

We will also need the following result about closed subgroups of symplectic groups over the ring \(\mathbb{Z}_\ell \) of \(\ell \)-adic integers ([17, pp. 52–53], [20, Th. 1.3]).

Lemma 6.5. Let \(g \geq 2 \) be an integer and \(\ell \) an odd prime. Let \(G \) be a closed subgroup of \(\text{Sp}(2g, \mathbb{Z}_\ell) \) such that the corresponding reduction map \(G \to \text{Sp}(2g, \mathbb{Z}/\ell\mathbb{Z}) \) is surjective. Then \(G = \text{Sp}(2g, \mathbb{Z}_\ell) \).

Proof. The result follows from [20, Theorem 1.3 on pp. 326–327] applied to
\[
p = q = \ell, k = F_\ell, W(k) = \mathbb{Z}_\ell, G = \text{Sp}_{2g}.
\]

Corollary 6.6. Let \(g \geq 2 \) be an integer and \(\ell \) an odd prime. Then for each positive integer \(i \) the group \(\text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z}) \) is perfect.

Proof. The case \(i = 1 \) is well known. Let \(i \geq 1 \) be an integer. It is also well known that the reduction modulo \(\ell^i \) map
\[
\text{red}_i : \text{Sp}_{2g}(\mathbb{Z}_\ell) \to \text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z})
\]
is a surjective group homomorphism. This implies that the reduction modulo \(\ell \) map
\[
\overline{\text{red}}_{i,1} : \text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/\ell\mathbb{Z})
\]
is also a surjective group homomorphism. Clearly, \(\text{red}_i \) coincides with the composition \(\overline{\text{red}}_{i,1} \circ \text{red}_i \).

Suppose that \(\text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z}) \) is not perfect and let
\[
H := [\text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z}), \text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z})]
\]
be the derived subgroup of \(\text{Sp}_{2g}(\mathbb{Z}/\ell^i\mathbb{Z}) \). Since \(\text{Sp}(2g, \mathbb{Z}/\ell\mathbb{Z}) \) is perfect, i.e., coincides with its derived subgroup,
\[
\overline{\text{red}}_{i,1}(H) = \text{Sp}(2g, \mathbb{Z}/\ell\mathbb{Z}).
\]
Now the closed subgroup
\[G := \text{red}_i^{-1}(H) \subset \text{Sp}_{2g}(\mathbb{Z}_\ell) \]
maps surjectively on \(\text{Sp}_{2g}(\mathbb{Z}/\ell) \) but does not coincide with \(\text{Sp}_{2g}(\mathbb{Z}_\ell) \), because \(H \) is a proper subgroup of \(\text{Sp}_{2g}(\mathbb{Z}/\ell') \) and \(\text{red}_{i,1} \) is surjective. This contradicts to Lemma 6.5, which proves the desired perfectness. \(\Box \)

The following lemma will be proven at the end of this section.

Lemma 6.7. Suppose that \(g > 1 \). Suppose that \(n > 1 \) is an odd integer that is not divisible by \(\text{char}(K) \). If for all primes \(\ell \) dividing \(n \) the image \(\tilde{G}_{\ell,n,K_0} \) contains \(\text{Sp}(J[n], \bar{e}_\ell) \) then \(\tilde{G}_{\ell,n,K_0,0} \) contains \(\text{Sp}(J[n], \bar{e}_n) \).

In addition, if \(K_0 \) is the field \(\mathbb{Q} \) of rational numbers then \(\tilde{G}_{\ell,n,K_0} = \text{Gp}(J[n], \bar{e}_n) \).

Remark 6.8. Thanks to Lemma 6.1, the second assertion of Lemma 6.7 follows from the first one.

Proof of Theorem 6.3. Recall that \(\text{Gp}(J[\ell], \bar{e}_\ell) \) contains \(\text{Sp}(J[\ell], \bar{e}_\ell) \). It follows from Lemma 6.7 that \(\tilde{G}_{\ell,n,K_0} = \text{Gp}(J[n], \bar{e}_n) \).

This implies that \(\tilde{G}_{\ell,n,K_0} \) contains \(2 \cdot \text{Id}_n \), because it contains the whole \((\mathbb{Z}/n\mathbb{Z})^* \cdot \text{Id}_n \).

It follows from Corollary 5.1 that \(\mathcal{C}(K) \) does not contain points of order \(n \). \(\Box \)

Proof of Lemma 6.7. First, let us do the case when \(n \) is a power of an odd prime \(\ell \).

Let \(\ell \neq \text{char}(K) \) be a prime. Let \(T_\ell(J) \) be the \(\ell \)-adic Tate module of \(J \) that is the projective limit of \(J[\ell^i] \) where the transition maps \(J[\ell^{i+1}] \to J[\ell^i] \) are multiplications by \(\ell \). It is well known that \(T_\ell(J) \) is a free \(\mathbb{Z}_\ell \)-module of rank \(2g \), the Galois actions on \(J[\ell^i] \)'s are glued together to the continuous group homomorphism
\[\rho_{\ell,n,K_0} : \text{Gal}(K) \to \text{Aut}_{\mathbb{Z}_\ell}(T_\ell(J)) \]
such that the canonical isomorphisms of \(\mathbb{Z}_\ell \)-modules
\[T_\ell(J)/\ell^i T_\ell(J) = J[\ell^i] \]
become isomorphisms of Galois modules. (Recall that \(\mathbb{Z}/\ell^i \mathbb{Z} = \mathbb{Z}_\ell/\ell^i \mathbb{Z}_\ell \).) The polarization \(\lambda \) gives rise to the alternating perfect/unimodular \(\mathbb{Z}_\ell \)-bilinear form
\[e_\ell : T_\ell(J) \times T_\ell(J) \to \mathbb{Z}_\ell \]
such that for each \(\sigma \in \text{Gal}(K) \)
\[e_\ell(\rho_{\ell}(\sigma)(v_1), \rho_{\ell}(\sigma)(v_2)) = \chi_\ell(\sigma) \cdot e_\ell(v_1, v_2) \quad \forall \, v_1, v_2 \in T_\ell(J). \]

Here
\[\chi_\ell : \text{Gal}(K) \to \mathbb{Z}_\ell^* \]
is the (continuous) cyclotomic character of \(\text{Gal}(K) \) characterized by the property
\[\chi_\ell(\sigma) \mod \ell^i = \bar{\chi}_{\ell^i}(\sigma) \quad \forall \, i. \]

This implies that
\[G_{\ell,n,K_0} = \rho_{\ell,n,K_0} \text{Gal}(K) \subset \text{Gp}(T_\ell(J), e_\ell) \]
where
\[\text{Gp}(T_\ell(J), e_\ell) \subset \text{Aut}_{\mathbb{Z}_\ell}(T_\ell(J)) \]
is the group of symplectic similitudes of e_ℓ. Clearly, $\text{Gp}(T_\ell(J), e_\ell)$ contains the corresponding symplectic group

$$\text{Sp}(T_\ell(J), e_\ell) \cong \text{Sp}_{2g}(\mathbb{Z}_\ell)$$

and the subgroup of homotheties/scalars \mathbb{Z}_ℓ^*. It is also clear that the derived subgroup $[\text{Gp}(T_\ell(J), e_\ell), \text{Gp}(T_\ell(J), e_\ell)]$ lies in $\text{Sp}(T_\ell(J), e_\ell)$.

For each $n = \ell^i$ the reduction map modulo ℓ^i sends $\text{Gp}(T_\ell(J), e_\ell)$ onto $\text{Gp}(J[\ell^i], \bar{e}_\ell)$, $\text{Sp}(T_\ell(J), e_\ell)$ onto $\text{Sp}(J[\ell^i], \bar{e}_\ell)$ and \mathbb{Z}_ℓ^* onto $(\mathbb{Z}/\ell^i\mathbb{Z})^*$. In particular, if ℓ is odd then the scalar $2 \in \mathbb{Z}_\ell^*$ goes to

$$2 \cdot \text{Id}_{\ell^i} \in \text{Gp}(J[\ell^i], \bar{e}_\ell).$$

As for G_{ℓ,J,K_0}, its image under the reduction map modulo ℓ^i coincides with \bar{G}_{ℓ,J,K_0}. It is known [15] that G_{ℓ,J,K_0} is a compact ℓ-adic Lie subgroup in $\text{Gp}(T_\ell(J), e_\ell)$ and therefore is a closed subgroup of $\text{Sp}(T_\ell(J), e_\ell)$ with respect to ℓ-adic topology. Clearly, the intersection

$$G_\ell := G_{\ell,J,K_0} \cap \text{Sp}(T_\ell(J), e_\ell)$$

is a closed subgroup of $\text{Sp}(T_\ell(J), e_\ell)$. In addition, the derived subgroup of G_{ℓ,J,K_0}

$$[G_{\ell,J,K_0}, G_{\ell,J,K_0}] \subset G_{\ell,J,K_0} \cap \bigcap \text{Gp}(T_\ell(J), e_\ell), \text{Gp}(T_\ell(J), e_\ell) \bigg\} \subset G_{\ell,J,K_0} \cap \bigcap \text{Sp}(T_\ell(J), e_\ell) = G_\ell,$$

i.e.,

$$[G_{\ell,J,K_0}, G_{\ell,J,K_0}] \subset G_\ell.$$

Let us assume that ℓ is odd and G_{ℓ,J,K_0} contains $\text{Sp}(J[\ell], \bar{e}_\ell)$. Then the reduction modulo ℓ of $[G_{\ell,J,K_0}, G_{\ell,J,K_0}]$ contains the derived subgroup $[\text{Sp}(J[\ell], \bar{e}_\ell), \text{Sp}(J[\ell], \bar{e}_\ell)]$. Since our assumptions on g and ℓ imply that the group $\text{Sp}(J[\ell], \bar{e}_\ell)$ is perfect, i.e.,

$$[\text{Sp}(J[\ell], \bar{e}_\ell), \text{Sp}(J[\ell], \bar{e}_\ell)] = \text{Sp}(J[\ell], \bar{e}_\ell),$$

the reduction modulo ℓ of $[G_{\ell,J,K_0}, G_{\ell,J,K_0}]$ contains $\text{Sp}(J[\ell], \bar{e}_\ell)$. This implies that the reduction modulo ℓ of G_ℓ also contains $\text{Sp}(J[\ell], \bar{e}_\ell)$. Since G_ℓ is a (closed) subgroup of $\text{Sp}(T_\ell(J), e_\ell)$, its reduction modulo ℓ actually coincides with $\text{Sp}(J[\ell], \bar{e}_\ell)$. It follows from Lemma 6.5 that

$$G_\ell = \text{Sp}(T_\ell(J), e_\ell).$$

In particular, the reduction of G_ℓ modulo ℓ^i coincides with $\text{Sp}(J[\ell^i], \bar{e}_\ell)$ for all positive integers i. Since G_{ℓ,J,K_0} contains G_ℓ, its reduction modulo ℓ^i contains $\text{Sp}(J[\ell^i], \bar{e}_\ell)$. This means that \bar{G}_{ℓ,J,K_0} contains $\text{Sp}(J[\ell^i], \bar{e}_\ell)$ for all positive i. This proves Lemma 6.7 for all n that are powers of an odd prime ℓ.

Now let us consider the general case. So, $n > 1$ is an odd integer. Let S be the (finite nonempty) set of prime divisors ℓ of n and $n = \prod_{\ell \in S} \ell^{d(\ell)}$ where all $d(\ell)$ are positive integers. Using Remark 6.4, we may replace if necessary K_0 by $K_{0,n}$ and assume that

$$\bar{G}_{\ell,J,K_0} = \text{Sp}(J[\ell], \bar{e}_\ell)$$

for all $\ell \in S$. The already proven case of prime powers tells us that

$$\bar{G}_{\ell^{d(\ell)}, J,K_0} = \text{Sp} \left(J \left[\ell^{d(\ell)} \right], \bar{e}_\ell \right)$$

for all $\ell \in S$. On the other hand, we have

$$\mathbb{Z}/n\mathbb{Z} = \oplus_{\ell \in S} \mathbb{Z}/\ell^{d(\ell)}\mathbb{Z}, \quad J[n] = \oplus_{\ell \in S} J \left[\ell^{d(\ell)} \right],$$

where
\[\text{Gp}(J[n], \bar{e}_n) = \prod_{\ell \in S} \text{Gp}\left(J \left[\ell^d(\ell) \right], \bar{e}_{\ell^d(\ell)} \right), \quad \text{Sp}(J[n], \bar{e}_n) = \prod_{\ell \in S} \text{Sp}\left(J \left[\ell^d(\ell) \right], \bar{e}_{\ell^d(\ell)} \right), \]

\[\check{G}_{n,J,K_0} \subseteq \prod_{\ell \in S} \check{G}_{\ell^d(\ell),J,K_0} = \prod_{\ell \in S} \text{Sp}(J[\ell^d(\ell)], \bar{e}_{\ell^d(\ell)}). \]

Recall that the group homomorphisms

\[\check{G}_{n,J,K_0} \rightarrow \check{G}_{\ell^d(\ell),J,K_0} = \text{Sp}\left(J \left[\ell^d(\ell) \right], \bar{e}_{\ell^d(\ell)} \right) \]

(induced by the inclusion of the Galois modules \(J \left[\ell^d(\ell) \right] \subseteq J[n] \)) are surjective. We want to use Goursat’s Lemma and Ribet’s Lemma [19, Sect. 1.4], in order to prove that the subgroup

\[\check{G}_{n,J,K_0} \subseteq \prod_{\ell \in S} \text{Sp}(J[\ell^d(\ell)], \bar{e}_{\ell^d(\ell)}) \]

coincides with the whole product. In order to do that, we need to check that simple finite groups that are quotients of \(\text{Sp}(J[\ell^d(\ell)]) \)'s are mutually nonisomorphic for different \(\ell \). Recall that

\[\text{Sp}\left(J \left[\ell^d(\ell) \right], \bar{e}_{\ell^d(\ell)} \right) \cong \text{Sp}_{2g} \left(\mathbb{Z}/\ell^d(\ell)\mathbb{Z} \right) \]

and therefore is perfect. Therefore, all its simple quotients are also perfect, i.e., are finite simple nonabelian groups. Clearly, the only simple nonabelian quotient of \(\text{Sp}_{2g} \left(\mathbb{Z}/\ell^d(\ell)\mathbb{Z} \right) \) is

\[\Sigma_{\ell} := \text{Sp}_{2g} \left(\mathbb{Z}/\ell\mathbb{Z} \right)/\{\pm1\}. \]

However, the groups \(\Sigma_{\ell} \) are perfect and mutually nonisomorphic for distinct \(\ell \) [1, 2]. This ends the proof. \(\square \)

Remark 6.9. Remark 6.4, Lemmas 6.1 and 6.7, and their proofs remain true if one replaces the Jacobian \(J \) by any principally polarized \(g \)-dimensional abelian variety \(A \) over \(K_0 \) with \(g \geq 2 \).

References

[1] E. Artin, *The orders of the linear groups*. Comm. Pure Appl. Math. 8 (1955), 355–365.
[2] E. Artin, *The orders of the classical simple groups*. Comm. Pure Appl. Math. 8 (1955), 455–472.
[3] B.M. Bekker, Yu.G. Zarhin, *The divisibility by 2 of rational points on elliptic curves*. Max-Planck-Institut für Mathematik Preprint Series 2016-32, Bonn.
[4] F.A. Bogomolov, *Points of finite order on an Abelian variety*. Math. USSR-Izv., 17:1 (1981), 55–72.
[5] J.W.C. Cassels, *Diophantine equations with special reference to elliptic curves*. J. London Math. Soc. 41 (1966), 193–291.
[6] L. Dieulefait, *Explicit determination of the images of the Galois representations attached to abelian surfaces with \(\text{End}(A) = \mathbb{Z} \).* Experimental Math. 11:4 (2002/03), 503–512.
[7] N. Bruin, E.V. Flynn, *Towers of 2-covers of hyperelliptic curves*. Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347.
[8] C. Khare and J.-P. Wintenberger, *Serre’s modularity conjecture. I.* Invent. Math. 178 (2009), 485–586.
[9] D. Mumford, *Tata Lectures on Theta. II.* Progress in Math. 43, Birkhäuser, Boston Basel Stuttgart, 1984.
[10] B. Poonen, *Computing torsion points on curves*. Experimental Math. 10 (2001), no. 3, 449–465.
[11] B. Poonen, M. Stoll, *Most odd degree hyperelliptic curves have only one rational point*. Annals of Math. 180 (2014), Issue 3, 1137–1166.
[12] M. Raynaud, *Courbes sur une variété abélienne et points de torsion*. Invent. Math. 71 (1983), no. 1, 207–233.
[13] M. Raynaud, Sous-variétés sur une variété abélienne et points de torsion. In: Arithmetic and Geometry (Shafarevich Festschrift) I, pp. 327–352. Progress in Math. 35 (1983), Birkhäuser, Boston Basel Stuttgart.
[14] E. Schaefer, 2-descent on the Jacobians of hyperelliptic curves. J. Number Theory 51 (1995), no. 2, 219–232.
[15] J.-P. Serre, Abelian \(\ell \)-adic representations and elliptic curves, 2nd edition. Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.
[16] J.-P. Serre, Algebraic groups and class fields. Graduate Texts in Math. 117, Springer-Verlag, New York, 1988.
[17] J.-P. Serre, Lettre à Marie-France Vignéras. Collected papers. IV:137, Springer-Verlag, New York, 2000, pp. 38–55.
[18] J.-P. Serre, Sur le repré sentations modulaires de degré 2 de \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \). Duke Math. J. 54 (1987), 179–230.
[19] J.-P. Serre, Finite Groups: An Introduction. International Press, Boston, 2016.
[20] A. Vasiu, Surjectivity criteria for \(p \)-adic representations. I. Manuscripta Math. 112 (2003), no. 3, 325–355.
[21] L.C. Washington, Elliptic Curves: Number Theory and Cryptography. Second edition. Chapman & Hall/CRC Press, Boca Raton London New York, 2008.
[22] J. Yelton, Images of 2-adic representations associated to hyperelliptic jacobians. J. Number Theory 151 (2015), 7–17.
[23] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Research Letters 7 (2000), 123–132.
[24] Yu. G. Zarhin, Division by 2 on elliptic curves. arXiv:1507.08238 [math.AG].

Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA
E-mail address: zarhin@math.psu.edu