Development and Validation of UV-Visible Method to Determine Gallic Acid in Hydroalcoholic Extract of *Erythrina fusca* Leaves

Shivkanya Fuloria\(^1\), Lau Tiew Wei\(^1\), Sundram Karupiah\(^1\), Vetrivel Subramaniyan\(^2\), Christina Gellknight\(^3\), Yuan Seng Wu\(^2\), Saminathan Kayarohanam\(^4\), Neeraj Kumar Fuloria*\(^1\)

\(^1\)Faculty of Pharmacy, AIMST University, Kedah 08100, Malaysia
\(^2\)Faculty of Medicine, MAHSA University, Kuala Lumpur 42610, Malaysia
\(^3\)Faculty of Medicine, AIMST University, Kedah 08100, Malaysia
\(^4\)Faculty of Bio-economy and Health Sciences, Geomatika University College, Malaysia

Article History:
Received on: 15 Aug 2020
Revised on: 13 Sep 2020
Accepted on: 15 Sep 2020

Keywords:
Erythrina Fusca, Method Development, Total Phenolic Content, Validation, Gallic Acid

ABSTRACT
Gallic acid (GA) inhibitory potential against oxidative stress and associated diseases, creates the importance for GA standardization in plant medicines. The present investigation was intended to quantify the amount of GA in *Erythrina fusca* leaves hydro-alcoholic extract (EFLHE) by the development of UV/Visible-spectrophotometric method and its validation. The study involved EFLHE preparation via ethanolic maceration, followed by estimation of total phenolic content (TPC) or GA through the development of Folin-Ciocalteu reagent-based UV/Visible-spectrometric method and standard GA calibration curve. Developed method to estimate GA was validated using linearity, accuracy, precision, repeatability and ruggedness studies. The TPC analysis of EFLHE in concentration of 0.5, 1.0, 2.5, 3.0, 5.0, 10.0 \(\mu\)g/ml exhibited amount of GA as 98.0\(^\pm\)8.71, 117.0\(^\pm\)1.73, 217.1\(^\pm\)3.45, 276.0\(^\pm\)0.80, 289.1\(^\pm\)1.11 and 295.2\(^\pm\)1.19 GA equivalent (mg/g, dry weight) respectively. The linearity study revealed the range of GA from 0.5-10 \(\mu\)g/ml. The correlation coefficient for GA was found as 0.997 at 212 nm. Recovery analysis (accuracy) showed that little change in drug concentration could be accurately estimated. The precision study revealed low %RSD with the highest value of 0.43%, indicating substantial precision. The present study concludes that advanced method to estimate GA in EFLHE is rapid, simple, accurate, precise, and economic; and validated for linearity, accuracy, precision, repeatability and ruggedness. The study recommends that this method can be used for GA estimation in *Erythrina fusca* leaves extract.

INTRODUCTION
The expense of health care is rising at an alarming rate across the globe. The world market for phytopharmaceutical is also growing steadily. An estimation of the World Bank shows that trade in medicinal plants, raw materials and botanical drug products are growing at an annual rate of 5-15% (Patwardhan et al., 2005). Around 75-80% of the world population use herbal medicines (Pan et al., 2014). Standardization is considered as the critical factor to assure herbal drug quality. Access to herbal drug quality is attributed to active constituent concentration. Phytochemical constituents are crucial for...
the pharmacological action of herbal formulation. Thus, it is essential to set up a system of standardization for every plant medicine in the market (Kumar et al., 2011; Sitapara et al., 2011). It is very challenging for investigators to develop various authentic and accurate analytical protocols that could screen the phyto composition, including quantitative analysis of marker/bio active compounds is a significant challenge for scientists (Rasheed et al., 2012).

Studies revealed that Erythrina fusca contains gallic acid (GA) that possess significant antioxidant, anti-diabetic, antimicrobial property and high efficacy against periodontitis (Fuloria et al., 2019). Facts suggest many methods for the determination of GA as total phenolic content (TPC) individually and in combination with other drugs (Fernandes and Salgado, 2016). Various studies reported quantification and validation of GA in different plant extracts using Folin-Ciocalteu reagent based UV spectrophotometric method. This is because GA shows maximum absorption near 272 nm (Blainski et al., 2013; Kamboj et al., 2015). The study suggests Erythrina fusca plant possess high antioxidant potential (Subal et al., 2010; Innok et al., 2009). But till date, none of the studies performed the validation and development of estimation of GA in Erythrina fusca hydro-alcoholic extract (EFLHE). Hence, the present study was intended to quantify the amount of gallic acid (GA) in EFLHE using UV-Visible spectrophotometric method (Folin-Ciocalteu reagent method).

MATERIALS AND METHODS

The solvents, reagents and consumable were procured from Sigma Aldrich, SD Fine, Merck, and R&M chemicals. The glassware was cleaned using deionised H2O and dried at 160 °C for 2 hours before the experiment. The spectrophotometric analysis was done using Shimadzu double beam UV-Visible spectrophotometer, model U-2800 (200-800 nm).

Preparation of EFLHE

The E. fusca leaves were collected (from the campus of AIMST University, Malaysia), washed (with H2O to remove dust), air-dried (until crispy) and powdered (coarse). The preparation of EFLHE was based on established maceration protocol with slight modification (Anjum and Chandra, 2015). Briefly, in a 500 ml conical flask 100 g of EFL and mixture of ethanol and distilled H2O (1:1) were added with 1:10 w/v sample to solvent ratio. The obtained mixture was swirled for seven days on mechanical shaker maintained at 100 rpm. After seven days, the supernatant liquid was filtered, and the filtrate was dried using rotavapor at 70 °C. Next, the EFLHE was air-dried (for completely drying), kept in a desiccator (to remove moisture) and finally stored in a refrigerator.

Development of UV-Visible spectrometric method

Solvent Selection

The procedure for the selection of solvents for UV-Visible analytical method development was based on standard protocol with slight modification (Bhardwaj et al., 2017). In the protocol, various solvents were tested for the UV-Visible analytical method development, out of which Methanol and H2O (1:9) was selected based on solubility, peak quality, and non-interference at a specified wavelength.

Preparation of Stock Solution and Standard Curve

Accurately weighed quantity of GA (10 mg) was transferred into the 10 ml of volumetric flask and dissolved by diluting up to mark using Methanol and deionised H2O (1:9) to get a concentration of 1000 μg/ml. From this stock solution, the aliquots of working standard solution of GA were formulated using methanol and deionised H2O (1:9) solution to get a concentration in a range of 0.5-10 μg/ml for GA (Bueno et al., 2012). The absorbance value for each concentration of the standard solution of GA was measured at λmax of 212 nm. A calibration curve between concentrations versus absorbance was built to study the Beer-Lambert’s Law and regression equation.

Figure 1: Calibration curve for GA

Wavelength Selection

A representative spectrum of GA solution (10 μg/ml) in Methanol and deionised H2O (1:9) was obtained by scanning them in the UV range (200-400 nm) in 10 nm cell against blank solvent. Current protocol was founded on the established procedure with small variation (Bhardwaj et al., 2017).
Table 1: TPC (mg GAE/g) of EFLHE.

Conc (µg/ml)	Abs	Amount of GA as TPC, mg GAE/g	Mean±SD
0.5	0.194	92.0	98.0±8.71
0.5	0.196	94.0	
0.5	0.195	108.0	
1.0	0.203	118.0	117.0±1.73
1.0	0.208	115.0	
1.0	0.210	118.0	
2.5	0.280	214.0	217.1±3.45
2.5	0.281	216.4	
2.5	0.283	220.8	
3.0	0.305	276.0	276.0±0.80
3.0	0.306	276.8	
3.0	0.310	275.2	
5.0	0.439	289.0	289.1±1.11
5.0	0.440	290.2	
5.0	0.438	288.0	
10.0	0.703	295.6	295.2±1.19
10.0	0.700	293.9	
10.0	0.704	296.2	

Total Phenolic Content

Accurately 10 mg of EFLHE was dissolved ad diluted with Methanol and deionised H₂O (1:9) to get a concentration of 1000 µg/ml. From this stock solution, aliquots of EFLHE solution were prepared with Methanol and deionised H₂O (1:9) to get a concentration in the range of 0.5-10 µg/ml (Guideline, 2005). The reaction mixtures were prepared by mixing 0.5 ml of each EFLHE solution with 2.5 ml of 1% Folin-Ciocalteu reagent dissolved in distilled H₂O and 2.5 ml of sodium bicarbonate. Next, the reaction mixtures were incubated at 45 °C for 15 minutes. The prepared solutions absorbances were measured at 212 nm against Methanol in triplicate. The absorbance was measured against water blank (Guideline, 2005).

According to GA standard curve, TPC of EFLHE was estimated and expressed as mg of GA equivalent (GAE) per gram of plant extracts.

Method Validation

The developed analytical protocol validation was based on linearity, accuracy, precision, repeatability and ruggedness, using ICH guidelines Q2 (R1) (Guideline, 2005).

Linearity

The 0.5 ml of each GA standard solution (0.5-10 µg/mL) was mixed with 2.5 ml of 1% Folin-Ciocalteu reagent (dissolved in distilled H₂O) and 2.5 ml of sodium bicarbonate. Each reaction mixture was incubated at 45 °C for 15 minutes and scanned at 212 nm against Methanol and H₂O (1:9) as blank in triplicate. A calibration curve was constructed by plotting concentration against absorbance (Figure 1).

Accuracy

Analytical method accuracy was estimated by carrying out a recovery analysis of 80%, 100% and 120% of EFLHE concentration as per ICH guidelines in triplicate. Percentage recovery was determined using the following expression:

\[
\% \text{ Recovery} = \frac{A \times 100}{A^T}
\]

Where, ‘A’ is EFLHE absorbance after addition of standard, and ‘A^T’ is theoretical absorbance (sum of...
Table 2: Linearity data of standard gallic acid and gallic acid in EFLHE.

Parameters	Gallic Acid	Gallic acid in EFLHE
Detection wavelength	212 nm	212 nm
Linearity range	0.5-10 μg/ml	0.5 - 10
Slope	0.1747	0.0547
Intercept	0.1865	0.1545
Correlation Coefficient	0.997	0.997
Regression Equation	\(y=0.1747x+0.1865 \)	\(y = 0.0547x + 0.1545 \)

Table 3: Accuracy data.

Pre-analysed sample solution μg/ml	Amount of GA Added, %	Amount recovered (mg GAE/g)	Mean ± SD	%Recovery	%RSD
10	80	405	404.3±3.05 86.80±0.49	0.56	
10	100	424	426±2.00 87.60±0.36	0.41	
10	120	452	453±1.73 89.07±0.24	0.27	

Table 4: Intraday precision data.

Conc. of extract (μg/ml)	Absorbance	Intraday precision	Mean ± SD
10	0.705	297.0	296.3 ± 1.2
	0.701	295.0	
	0.706	297.0	
15	0.981	303.3	303.1 ± 0.3
	0.980	302.7	
	0.981	303.3	
20	1.331	327.5	326.7 ± 0.8
	1.328	326.5	
	1.325	326.0	

The absorbance of GA standard and expected absorbance of GA in sample extract based on calibration curve).

Precision

The developed analytical protocol was tested for precision founded on intraday and interday variations. Intraday precision was established by analyzing the 10, 15 and 20 μg/ml of EFLHE for three times on the same day. Interday precision was calculated by analyzing the 10, 15, and 20 μg/ml of EFLHE daily for three days.

Repeatability

The proposed protocol was validated for repeatability by analyzing 10 μg/ml of sample extract solution for six times.

Ruggedness

The analytical protocol ruggedness was determined by spiking the standard six times with different analyst using the same instrument.

RESULTS AND DISCUSSION

Facts suggest GA possess a significant antioxidant potential and protects the human body from free radicals harmful actions (Rasool et al., 2010).
Investigation suggests GA extracted from grape seeds induced the programmed death of prostate cancer cells (Kaur et al., 2009). Besides, GA is beneficial for diabetes patients as they can trigger the release of insulin by the pancreatic cells (Sameer-mahmood et al., 2010). These biological activities indicate the potential use of GA (Masoud et al., 2012; Phiriyawirut and Phachamud, 2011). Based on the facts over GA to exhibit its absorption in UV region, various researchers performed GA estimation and validation studies over plant extracts involving Folin-Ciocalteu reagent based spectrophotometric analysis (Singh and Avupati, 2017; Purohit et al., 2014).

However, to date, none of the studies suggested GA estimation and validation in Erythrina fusca ethanolic extract (EFLHE). Based on these facts present study was intended to quantify the amount of GA in EFLHE using UV-Visible spectrophotometry (Folin-Ciocalteu reagent method). Application of given formula estimated associated with E. fusca leaves was found to be 32%. The per cent yield of EFLHE was estimated based on the dry weight of EFLHE (X) and EFLHE soaked (Y) using the given formula:

\[\text{%Yield} = \frac{X}{Y} \]

Method

The earlier study suggests that solvents substantially affects the quality of the spectrophotometric signals (Bhardwaj et al., 2017). Hence, in the present study, the selection of solvents for UV-Visible method development was made by testing different solvents based on solubility, peak quality, and non-interference at a specified wavelength. Solvent optimization study revealed Methanol and H\textsubscript{2}O (1:9) as the most suitable solvent for the current protocol. For wavelength optimisation, a representative spectrum of GA solution (10 \(g/ml \)) in Methanol and deionised H\textsubscript{2}O (1:9) was scanned from 200 to 400 nm. The UV-Visible spectrum revealed well-defined \(\lambda_{max} \) at 212 nm for GA. The analysis of EFLHE for GA as TPC was carried out as per the protocol given in the experimental part of the present study. The resultant data for the same is given in Table 1.

Method Validation

Linearity

The analytical protocol for linearity is protocol ability to deliver results in a specified range directly or through mathematical expression, proportional to analyze concentration (Jain et al., 2011). The linearity results for EFLHE were derived from the calibration curve of GA (0.5-10 \(\mu g/ml \)).
Table 7: Ruggedness data

Conc. of extract (µg/ml)	Analyst 1	Mean ± SD	Analyst 2	Mean ± SD
	Amount of GA as TPC, mg GAE/g		Amount of GA as TPC, mg GAE/g	
20	326.0	327.1 ± 0.74	318.0	324.5
20	327.5	321.5	322.0	
20	326.5	322.5	322.5	
20	328.0	322.0	322.5	
20	327.0	318.5	324.5	
20	327.5	324.5		

The correlation coefficient (r^2) from the calibration curve was found to be 0.997 (Figure 1) and expressed in GAE per gram dry EFLHE weight. The content of phenolic compounds in EFLHE extracts ranged from 98 to 295.2 mg GAE/g, representing an approximate four-fold variation (Table 1). The linearity results are shown in Table 2. The linear regression data for calibration curves showed good linear relationship over the concentration range of 0.5-10 µg/ml. A linear regression equation was found to be $y=0.0547x+0.1547$. It has a slope of 0.0547 and y-intercept of 0.1545. The coefficient of correlation or value for GA in EFLHE at 212 nm is 0.997. As per the study done by Kaur et al. when the value is greater than 0.99, then the regression line from linearity studies exhibits accuracy (Kaur et al., 2009).

Accuracy

Generally, the accuracy of the analytical protocol is the closeness of practical result to theoretical value (Bhardwaj et al., 2017). Accuracy study was conducted as per the experimental protocol and resulted in data for the same is given in Table 3. The results of the accuracy study revealed percentage recovery of 86.80±0.49, 87.60±0.36 and 89.07±0.24 respectively, for the 80 %, 100 % and 120 % of the test concentration. As per the report of Andressa Blainski et al. these percentages were within the range of 85%-115% which indicate that the method has good accuracy for quantification of GA from EFLHE (Blainski et al., 2013).

Precision

The precision of an analytical protocol is a degree of repeatability under the normal operation conditions. Precision studies of the developed method were conducted as per the intraday and interday experimental protocol of the present study. The results for precision study are reported in Tables 4 and 5. Both intra and the inter-day precision study revealed quiet low % RSD with the highest value of 0.43%. A study claimed that %RSD less than 2% indicates good precision (Pawar and Salunkhe, 2013).

Repeatability

Repeatability study of the developed method was conducted as per the experimental protocol of the present study and resulted in data given in Table 6. The 10 µg/ml of EFLHE were analyzed for six times, and amount of GA as TPC found was of little difference with a standard deviation of 1.6, which indicates good repeatability. Amount of GA as TPC found in 10 µg/ml of sample extract (n=6) found was 295±1.6 GAE (mg/g).

Ruggedness

Ruggedness study over-developed analytical method was performed according to the present study experimental protocol, and results are given in data given in Table 7. The ruggedness of the method was assessed by spiking the standard six times with different analyst by using the same equipment. The results showed that for 20 µg/ml of sample extract, both analyst 1 and analyst 2 obtain an amount of Gallic Acid of 327.1±0.74 GAE (mg/g) and 321.2±2.48 GAE (mg/g) respectively. Both analysts had %RSD less than 2 %, which are 0.22 % and 0.77 % respectively. As the percentage RSD value is less than 2 %, so the variation of analysts will not affect the UV method in the quantification of GA in EFLHE (Pawar and Salunkhe, 2013). Based on resultant data, the present study reveals that quantification of GA in EFLHE through UV-Spectrophotometer is an economical and straightforward method. The validation of the analytical protocol developed in this study has been proven to be linear, specific, precise, accurate, reproducible, rugged, and easy.

CONCLUSIONS

This is the first-time study to develop and validate the method for quantification the amount of gallic acid in Erythrina fusca hydro-alcoholic extract
using UV-Visible spectrophotometric method (Folin-Ciocalteu reagent method). Based on the experimental results of the present study, it can be concluded that quantification of gallic acid in a hydro-alcoholic extract of *Erythrina fusca* leaves can be carried out by UV-spectrophotometric technique. The developed method is quite simple and less time-consuming. Besides, this method requires less labor cost and less sophisticated and less expensive equipment. Apart from it, this method has been validated as required by ICH guidelines. The current study recommends that in the future estimation of gallic acid in other parts of *Erythrina fusca* plant such as bark or stem can also be done. Moreover, variant extraction methods may also be used to replace simple maceration to compare the amount of gallic acid.

ACKNOWLEDGEMENT

The authors are sincerely thankful to AIMST and MAHSA University, Malaysia, for providing necessary facilities and support for the successful completion of the present study.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Anjum, N., Chandra, R. 2015. Endophytic bacteria: optimisation of isolation procedure from various medicinal plants and their preliminary characterisation. *Asian Journal of Pharmaceutical and Clinical Research*, 8(2):233–238.

Bhardwaj, P., Kaur, M., Sharma, A., Singh, N., Kumar, M., Katual, R. K. 2017. Development and Validation of UV Spectrophotometric Method for Estimation of Catechin in Acacia catechu Methanolic Extract against Marker Compound. *Development*, 36(11):238–245.

Blainski, A., Lopes, G., de Mello, J. 2013. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. *Molecules*, 18(6):6852–6865.

Bueno, F. G., Machareth, M. A. D., Panizzon, G. P., Lopes, G. C., Mello, J. C. P., Leite-Mello, E. V. S. 2012. Development of a UV/Vis spectrophotometric method for analysis of total polyphenols from Caesalpinia peltophoroides Benth. *Química Nova*, 35(4):822–826.

Fernandes, F. H. A., Salgado, H. R. N. 2016. Gallic acid: a review of the methods of determination and quantification. *Critical reviews in analytical chemistry*, 46(3):257–265.

Fuloria, N. K., Fuloria, S., Chia, K. Y., Karupiah, S., Sathasivam, K. 2019. The response of green synthesised drug blended silver nanoparticles against periodontal disease triggering pathogenic microbiota. *Journal of Applied Biology and Biotechnology*, 7(04):46–56.

Guideline 2005. I H T Validation of analytical procedures: . *Text and methodology. Q2 (R1)*, 1:1–15.

Innok, P., Rukachaisirikul, T., Suksamrarn, A. 2009. Flavonoids and Pterocarpans from the Bark of *Erythrina fusca*. *Chemical and Pharmaceutical Bulletin*, 57(9):993–996.

Jain, P. S., Chaudhari, A. J., Patel, S. A., Patel, Z. N., Patel, D. T. 2011. Development and validation of the UV-spectrophotometric method for determination of terbinafine hydrochloride in bulk and in formulation. *Pharmaceutical Methods*, 2(3):198–202.

Kamboj, A., Rana, A., Kaur, R., Jain, U. 2015. Application and Analysis of the Follin Ciocalteu Method for the Determination of the Total Phenolic Content from Leaves, Stems and Seeds of Cucumis sativus L. *Journal of Pharmacy Research*, 9(5):323–329.

Kaur, M., Velmurugan, B., Rajamanickam, S., Agarwal, R., Agarwal, C. 2009. Gallic Acid, an Active Constituent of Grape Seed Extract, Exhibits Anti-proliferative, Pro-apoptotic and Anti-tumorigenic Effects Against Prostate Carcinoma Xenograft Growth in Nude Mice. *Pharmaceutical Research*, 26(9):2133–2140.

Kumar, T., Chandrashekar, K. S., Tripathi, D. K., Nagori, K., Puri, S., Agrawal, S., Tamsil, A. J. 2011. Standardisation of “Gokshuradi Churna”: An ayurvedic polyherbal formulation. *Journal of Chemical and Pharmaceutical Research*, 3(3):742–749.

Masoud, M. S., Hagagg, S. S., Ali, A. E., Nasr, N. M. 2012. Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes. *Journal of Molecular Structure*, 1014:17–25.

Pan, S. Y., Litscher, G., Gao, S. H., Zhou, S. F., Yu, Z. L. 2014. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. *Evidence-Based Complementary and Alternative Medicine*, 2014.

Patwardhan, B., Warude, D., Pushpangadan, P., Bhatt, N. 2005. Ayurveda and traditional Chi-
nesmedicine: a comparative overview. *Evidence-Based Complementary and Alternative Medicine*, 2.

Pawar, N. P., Salunkhe, V. R. 2013. Development and validation of UV spectrophotometric method for simultaneous estimation of rutin and gallic acid in a hydro-alcoholic extract of Triphala churna. *International Journal of PharmTech Research*, 5(2):724–729.

Phiriyawirut, M., Phachamud, T. 2011. Suitable electrospinning condition for gallic acid-loaded cellulose acetate fibre. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 2(3):975–8585.

Purohit, P. J., Kapupara, P. P., Shah, K. V. 2014. Development and validation of an analytical method for simultaneous estimation of curcumin and gallic acid in different polyherbal formulations by HPLC. *Research Journal of Pharmacy and Technology*, 7(7):749–753.

Rasheed, A., Reddy, S., Roja, C. 2012. A review on standardisation of herbal formulation. *International Journal of Phytotherapy*, 2(2):74–88.

Rasool, M. K., Sabina, E. P., Ramya, S. R., Preety, P., Patel, S., Mandal, N., Mishra, P. P., Samuel, J. 2010. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. *Journal of Pharmacy and Pharmacology*, 62(5):638–643.

Sameermahmood, Z., Raji, L., Saravanan, T., Vaidya, A., Mohan, V., Balasubramanyam, M. 2010. Gallic acid protects RINm5F β-cells from glucolipotoxicity by its antiapoptotic and insulin-secretagogue actions. *Phytotherapy Research*, 24(S1):S83–S94.

Singh, A., Avupati, V. R. 2017. Development and Validation of UV-Spectrophotometric method for the Estimation of Curcumin in Standardised Polyherbal Formulations. *Journal of Young Pharmacists*, 9(4):491–495.

Sitapara, N., Buch, P., Dudhrejia, A., Sheth, N. R. 2011. Standardisation of Caturjata Churna-An Ayurvedic Polyherbal Formulation. *Journal of Pharmaceutical Herbal Formulation*, (4):1–1.

Subal, D., Kannadasan, M., Arghya, A., Chiranjib, B., Kumar, C. S., Kumar, G. G. 2010. Antioxidant activity of the hydro-alcoholic extract of Erythrina fusca Lour. Bark against the animal models of epilepsy. *Journal of Chemical and Pharmaceutical Research*, 2(5):379–383.