INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by hepatic steatosis with or without active inflammation (1) in patients with a negligible alcohol intake. There is growing concern about NAFLD, not only because this is a common liver disorder with a worldwide distribution, but also because it is recognized as one of the leading causes of chronic liver disease (2). In addition, a recent study has revealed that patients with nonalcoholic steatohepatitis (NASH) may progress to liver fibrosis, and approximately 8-17% progress to cirrhosis (2, 3). Although NAFLD may occur in non-obese patients (1), most cases of NAFLD are associated with obesity, type 2 diabetes mellitus (4), and hyperlipidemia (5). Weight reduction alone can improve liver function in obese patients with fatty liver (6). Moreover, insulin resistance underlies most cases of NAFLD, using the homeostasis model assessment-insulin resistance (HOMA-IR) method (7, 8), with a resultant increase in circulating insulin levels (9).

Adiponectin is a 30-kDa protein (10). In normal humans, its expression is restricted to adipose tissue (11). Plasma adiponectin levels are negatively correlated with the body mass index (BMI), fasting plasma glucose, fasting insulin, insulin resistance, and triglycerides (12). It is an anti-inflammatory adipocytokine that modulates insulin effects (13). The administration of adiponectin to mice decreased the plasma glucose (10), free fatty acid (FFA) and triglyceride levels (14), and hepatic glucose production (13). Plasma adiponectin levels are directly correlated with insulin sensitivity and, consequently, with decreases in obese and type 2 diabetic patients (11, 15). Since adiponectin appears to induce insulin sensitivity, we hypothesized that hypoadiponectinemia is associated with NAFLD. Therefore, we investigated the relationship between NAFLD and plasma adiponectin levels and insulin resistance.

MATERIALS AND METHODS

The study subjects were recruited from participants in routine health examinations at the Department of Family Medicine, Korea University Hospital, Seoul, Korea, in February 2004. The study was approved by the ethics committee of Anam Hospital, and was conducted in conformity with the
Table 1. Anthropometric and metabolic variables of NAFLD and control groups in men and women, respectively

Variables	Control	NAFLD	p value	Control	NAFLD	p value
Number (%)	15 (58)	11 (42)		38 (58)	27 (42)	
Age (yr)	45.3±11.7	51.8±6.5	0.33	49.3±8.4	54.2±8.2	0.19
BMI (kg/m²)	23.7±1.8	24.5±2.1	<0.01	26.0±2.1	27.1±3.5	<0.01
Waist circumference (cm)	85.3±5.7	81.6±6.9	0.02	83.6±12.6	88.6±8.7	0.01
Body fat mass (%)	19.0±3.2	31.5±4.3	<0.01	23.5±4.5	34.4±5.8	0.03
Systolic BP (mmHg)	122.1±21.5	118.5±10.1	0.96	122.5±13.6	124.8±14.8	0.05
Diastolic BP (mmHg)	72.5±14.1	74.5±9.9	0.15	79.6±9.25	79.3±9.1	0.05
Total cholesterol (mg/dL)	199.4±43.3	207.8±42.3	0.62	198.3±35.3	204.6±31.4	0.45
HDL-cholesterol (mg/dL)	46.6±10.4	41.1±6.7	0.12	57.1±17.1	49.4±12.9	0.04
LDL-cholesterol (mg/dL)	124.9±32.8	129.3±39.6	0.76	117.0±28.7	127.3±24.7	0.14
Triglycerides (mg/dL)	137.8±78.7	204.7±46.4	0.01	133.2±70.7	159.8±74.5	0.15
AST (U/L)	19.4±4.8	22.5±4.3	0.10	23.6±18.3	25.9±9.1	0.55
ALT (U/L)	21.4±7.3	26.7±10.1	0.05	23.2±30.5	32.0±19.0	0.15
Fasting blood glucose (mg/dL)	94.3±11.4	93.2±11.8	0.84	89.9±9.1	96.1±16.1	0.05
Fasting insulin (µU/mL)	5.92 (5.20-8.17)	8.19 (7.00-9.43)	0.04	6.61 (5.84-8.83)	9.01 (7.71-13.90)	<0.01
HOMA-IR	1.40 (1.17-1.80)	1.99 (1.56-2.40)	0.04	1.56 (1.24-2.01)	2.31 (1.69-3.23)	<0.01
Adiponectin (µg/mL)	5.58 (3.92-8.70)	2.50 (2.02-3.84)	<0.01	8.38 (5.15-12.11)	6.17 (3.69-9.52)	<0.01

Data are expressed as mean±SD for Gaussian variables and median and lower and upper quartiles for non-Gaussian variables.

NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; BP, blood pressure; HDL-cholesterol, high-density lipoprotein cholesterol; LDL-cholesterol, low density lipoprotein cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HOMA-IR, homeostasis model of assessment insulin resistance.
presence of NAFLD as the dependent variable, and adiponec-
tin, BMI, waist circumference, HOMA-IR, age, and sex as
independent variables. The level of statistical significance was
set at \(p < 0.05 \). All statistical analyses were carried out using the
SAS computer analysis program (version 8.2; SAS Institute).

RESULTS

Anthropometric and metabolic characteristics of NAFLD
and control groups in men and women, respectively, in Table
1. The study subjects were included 26 men and 65 women.
The mean age was 51.3 ± 8.8 yr and the mean BMI was 25.3
± 2.9 kg/m². There was no significant difference in plasma
adiponectin levels as well as other clinical parameters between
control group and non-participants of this study. NAFLD
subjects had significantly higher BMI, waist circumference,
fat mass, fasting insulin, and HOMA-IR, and had significantly
lower plasma adiponectin than control groups. Log levels of
plasma adiponectin were significantly lower in men than in
women (0.50 ± 0.35 and 1.34 ± 0.54, respectively, \(p < 0.001 \)).

Fig. 1 indicates plasma adiponectin levels and HOMA-IR
in the NAFLD and control groups in men and women, respecti-
vely. Plasma adiponectin levels in NAFLD group were sig-
nificantly lower than those in control group in both men and
women. HOMA-IR in NAFLD group were significantly
higher than those in control group in both men and women.

Fig. 2 graphically depicts the correlations of plasma adipon-
ectin levels with HOMA-IR and waist circumference accord-
ing to sex. Plasma adiponectin levels were significantly inverse
correlated (\(r = -0.45, p < 0.01 \)) with HOMA-IR in women. In
the other hands, the associations of plasma adiponectin levels
with waist circumference was significantly inverse correlated
in both men and women (\(r = -0.35, p = 0.03, r = -0.41, p < 0.01, \)
respectively)

The univariate correlations and partial correlation analyses
after adjusting for age, sex, and adiposity (BMI, waist circum-
ference, and fat mass) between plasma adiponectin levels and
anthropometric and metabolic parameters are shown in Table
2. Adiponectin levels correlated with waist circumference
DISCUSSION

We found that the NAFLD group had a higher insulin resistance than the control group, which is in agreement with previous studies (17, 18). NAFLD is associated with insulin resistance and hyperinsulinemia in even lean subjects with normal glucose tolerance (18). It was suggested that insulin resistance is the pathognomonic condition responsible for NAFLD. Indeed, NAFLD is considered the hepatic manifestation of metabolic syndrome.

Insulin resistance is an essential requirement of NASH, independent of the degree of obesity (12). The insulin-sensitizing drugs troglitazone (19) and metformin (20) reduce aminotransferase levels. In the insulin-resistant state, accelerated lipolysis of adipose tissue results in an increased supply of hepatic free fatty acids (FFAs) and increased lipid oxidation, this is accompanied by fat accumulation in hepatocytes. There is a good correlation between the liver fat content and liver insulin resistance in normal subjects and in type 2 diabetic patients (20).

In this study, insulin resistance was measured using the homeostasis model assessment method, although euglycemic-hyperinsulinemic clamp is the gold standard for defining insulin resistance (7, 8). However, HOMA-IR is easy to perform, and that method is highly correlated with the euglycemic-hyperglycemic clamp (r=0.83; p<0.01) (21). The HOMA method for measuring insulin resistance has been applied extensively in epidemiological investigations (7, 8, 21).

Our study confirms that hypoadiponectinemia occurs in subjects with NAFLD, after controlling for age, sex, and adiposity. Animal models have indicated that adiponectin confers protective effects against alcoholic and nonalcoholic fatty liver disease (22, 23). Recent study reported that hypoadiponectinemia is a feature of NASH independent of insulin resistance and reduced adiponectin level is associated with more extensive necroinflammation and may contribute to the development of necroinflammatory forms of NAFLD (24).

These data might also support the hypothesis that adiponectin has hepatoprotective effects in humans with NAFLD. The most likely reason for low adiponectin levels in NAFLD may be insulin resistance.

Our study found that HOMA-IR was significantly negatively correlated to adiponectin levels which were in accord with a previous report (25). Many investigators (8, 26, 27) suggest that adiponectin regulates hepatocyte metabolism.
Adiponectin in Nonalcoholic Fatty Liver Disease

directly. Long-term administration of adiponectin to diabetic mice improved the indices of insulin sensitivity, and decreased liver, muscle, and plasma triglycerides, and FFAs (22). Injection of recombinant adiponectin in mice increases fatty acid oxidation in muscle, reduces triglyceride content in muscle, and improves muscle sensitivity to insulin (14).

Raised plasma tumor necrosis factor (TNF)-α is thought to be another reason for the low adiponectin levels in NAFLD (28). Overproduction of the proinflammatory cytokine TNF-α by adipose tissue is involved in insulin resistance in obesity and TNF-α is a major cytokine contributing to liver damage in NAFLD (29).

In our study, plasma adiponectin levels were elevated more in women than in men. Similar results have been reported in several studies (29, 30), while others failed to observe a sex difference (31). The higher adiponectin expression in women, as compared to men, might be due to the fact that women tend to have less visceral fat tissue than subcutaneous fat tissue. Plasma adiponectin levels were determined predominantly by visceral fat, not by subcutaneous fat (32). Therefore, sexual dimorphism of the body fat distribution might contribute to the difference in plasma adiponectin levels in women and men.

Among the anthropometric index, waist circumference was stronger correlation with plasma adiponectin level, in our study. According to definition for metabolic syndrome suggested by the National Cholesterol Education Program Adult Treatment Panel III (33), abdominal obesity is one of the diagnostic criteria of the metabolic syndrome. Increased adiposity in the abdominal area may result in the development of insulin resistance, so abdominal obesity estimated by waist circumference is inverse correlation with plasma adiponectin levels.

This study has some limitations. One limitation of this study is that the diagnosis of NAFLD was based on ultrasound examination, but was not confirmed pathologically. It is difficult to perform extensively in subjects with NAFLD, but was not confirmed pathologically.

Another limitation is that the diagnosis of NAFLD was based on ultrasonography, but was not confirmed pathologically. It is difficult to perform extensively in subjects with NAFLD, but was not confirmed pathologically. Therefore, our study had a cross-sectional design, and there was potential bias in participation, so it cannot elucidate mechanisms or determine the direction of causality.

In conclusion, we demonstrated that hypoadiponectinemia and insulin resistance are associated with NAFLD independent of total heaviness and abdominal fat distribution. Adiponectin may be applicable in human disease as a novel agent for treating insulin resistance including NAFLD in the future. Further research is needed to identify the key determinants of circulating adiponectin and the development of NAFLD.

REFERENCES

1. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med 1997; 126: 157-45.
2. Powell EE, Cooksley WG, Hanson R, Scarle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 1990; 11: 74-80.
3. Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 1990; 12: 1106-10.
4. Marceau P, Biron S, Hould FS, Marceau S, Simard S, Thung SN, Kral JG. Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 1999; 84: 1513-7.
5. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 2003; 285: E906-16.
6. Park HS, Kim MW, Shin ES. Effect of weight control on hepatic abnormalities in obese patients with fatty liver. J Korean Med Sci 1995; 10: 414-21.
7. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-9.
8. Bonora E, Targher G, Alberiche M, Bonadonna RC, Saggian F, Zenere MB, Monanni T, Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000; 23: 57-63.
9. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107: 450-5.
10. Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 2002; 13: 84-9.
11. Dzie J, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148: 293-300.
12. Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Murasawa K, Okazaki Y, Ishii T, Nishikai K, Saruta T. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond) 2002; 103: 137-42.
13. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947-53.
14. Uebelius J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yan FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci USA 2001; 98: 2003-10.
15. Kim MJ, Lee Y, Lee BJ, Yoon JH, Shin SY, Shin YG, Chung CH. Plasma adiponectin Concentration and insulin resistance in Type 2
16. Haflaire SM, Miettinen H, Stem MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care 1997; 20: 1087-92.
17. Chauvani S, Abeeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinge D, Liddle C, Weltman M, George J. NASH and insulin resistance: Insulin hypersensitivity and specific association with the insulin resistance syndrome. Hepatology 2002; 35: 373-9.
18. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87: 3023-8.
19. Caldwell SH, Hespenheide EE, Redick JA, Zezoni JC, Battle EH, Sheppard BL. A pilot study of a thiozolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol 2001; 96: 519-25.
20. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Meformin in non-alcoholic steatohepatitis. Lancet 2001; 358: 893-4.
21. Hermans MP, Levy JC, Morris RJ, Turner RC. Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia 1999; 42: 678-7.
22. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112: 91-100.
23. Hotta K, Funahashi T, Bodkin NL, Ornerry HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50: 1126-33.
24. Hui JM, Hodge A, Farrell GC, Kench JG, Krikets A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 2004; 40: 46-54.
25. Shand BI, Scott RS, Elder PA, George PM. Plasma adiponectin in overweight, nondiabetic individuals with or without insulin resistance. Diabetes Obes Metab 2003; 5: 549-53.
26. Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 2001; 108: 1875-81.
27. Kern PA, Di Gregorio GB, Lu T, Rassoul N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003; 52: 1779-85.
28. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296-301.
29. Cnop M, Havel PJ, Utschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetes 2003; 46: 459-69.
30. Lindsay RS, Funahashi T, Fanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J, Snehalatha C, Mukes B, Simon M, Viswanathan V, Haflaire SM, Ramachandran A, Cnop M, Havel PJ, Utschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE, Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Adiponectin and development of type 2 diabetes in the Pima Indian population: Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. Lancet 2002; 360: 57-8.
31. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930-5.
32. Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, Nakai Y, Ishibashi S. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 2001; 52: 1274-8.
33. World Health Organization Western Pacific Region, International Obesity Task Force.: The Asia-Pacific perspective: redefining obesity and its treatment, Sydney: Health Communications Australia Pty Limited, 2000.
34. Brun T, Janney CD, Bisegamie AL, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999; 94: 2467-74.
35. Saverymuttu SH, Joseph AE, Maxwell JD. Ultrasound scanning in the detection of hepatic fibrosis and steatosis. Br Med J (Clin Res Ed) 1986; 292: 13-5.