Abnormal Glucose Metabolism Leads To Severe COVID-19 Due To Hyperinflammation: A Cross-Sectional Study

Han Li
The Second Hospital of Jilin University

Bingdi Yan
The Second Hospital of Jilin University

Rong Gao
The Second Hospital of Jilin University

Jin Ren
The Second Hospital of Jilin University

Zhenzhong Su
The Second Hospital of Jilin University

Tiangang Ma
The Second Hospital of Jilin University

Junling Yang (junling@jlu.edu.cn)
The Second Hospital of Jilin University

Research Article

Keywords: COVID-19, Glycated Hemoglobin A, Glucose Metabolism Disorders, Inflammation

Posted Date: December 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1178181/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: We aimed to describe the clinical features of novel coronavirus disease 2019 (COVID-19) patients with or without diabetes, focusing on the effect of abnormal HbA1c levels on inflammatory reactions and disease severity.

Methods: A total of 190 patients with COVID-19 were included in this cross-sectional study. Clinical and laboratory characteristics were collected and compared among moderate, severe, and critical cases, as well as among diabetes, prediabetes and nondiabetes cases. Receiver operating characteristic (ROC) curves were constructed to determine the diagnostic ability of HbA1c for disease severity. Logistic regression was used to explore the relationship between HbA1c levels and worse prognosis of COVID-19.

Results: HbA1c levels at admission were significantly different in patients with moderate, severe, and critical diseases (P<0.001). The area under the curve (AUC) of HbA1c levels to distinguish between moderate and severe-critical diseases was 0.938 (95% CI 0.906–0.970). After adjustment for confounders, the results showed that the increasing odds of in-hospital deaths were associated with HbA1c levels >6.0% (42 mmol/mol) (aOR 2.971 [95% CI 1.002, 8.804], P=0.049), and the increasing odds of severe or critical COVID-19 were associated with HbA1c levels ≥5.7% (39 mmol/mol) (aOR 29.588 [95% CI 8.285, 105.457], P<0.001). In addition, HbA1c levels strongly correlated with inflammatory markers and cytokines.

Conclusions: Abnormal glucose metabolism can cause a hyperinflammatory state of COVID-19, which manifests as severe disease.

Background

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first discovered in Wuhan, China, in December 2019 [1, 2]. The clinical spectrum of COVID-19 pneumonia ranges from mild to critical cases, and the risk factors associated with the development of more severe cases and deaths include older age, neutrophilia, organ dysfunction, coagulopathy, and elevated D-dimer levels [3]. In addition, multiple studies have revealed a grim reality that diabetes is already the top three common complications of COVID-19. Among patients with confirmed COVID-19, the proportion with comorbid diabetes was 33.8% in a study of 5,700 patients [4], 16.2% in a study of 1,099 patients [2], and 8.2% in a study of 1,590 patients [5]. Notably, several studies have already suggested that diabetes constitutes a higher proportion of patients with severe and ICU-admitted cases of COVID-19 than with mild cases [6-9]. Glycated hemoglobin A1c (HbA1c) has been used as a measure of diabetes control and a parameter in relation to the risk of complications [10]. In this study, we aimed to describe the clinical features of COVID-19 patients with or without abnormal glucose metabolism, focusing on the effect of abnormal HbA1c levels on inflammatory reactions and disease severity.

Methods

Study Design and Participants

This retrospective cross-sectional study enrolled 190 patients hospitalized in the Zhongfa district of Tongji Hospital in Wuhan from January 28, 2020. Outcome data, as discharged from or died in the hospital, were updated on March 25, 2020. The lowest period of follow-up was 28 days. Definitive cases of COVID-19 were diagnosed by positive RT-qPCR results from pharyngeal swab specimens. The diagnosis was based on the criteria described in the Guidelines for Diagnosis and Treatment of COVID-19 (5th version) issued by the National Health Commission of China.

The study was approved by the Ethics Commission of the Second Hospital of Jilin University (No. 2020052). Given the urgency of the COVID-19 pandemic, the requirement for informed consent was waived by the Ethics Commission.

Data Collection

Medical records of COVID-19 patients were reviewed, and medical histories, clinical symptoms, chest computed tomography (CT) images, laboratory examinations, and outcome data were collected. Laboratory examinations included
HbA1c, routine blood tests, kidney function, liver function, tissue damage, infection (erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], procalcitonin [PCT], and serum ferritin [SF]), cytokines (interleukin-1 [IL-1], interleukin-2R [IL-2R], interleukin-6 [IL-6], interleukin-8 [IL-8], interleukin-10 [IL-10] and tumor necrosis factor-α [TNF-α]), immunoglobulins (IgA, IgG, and IgM), and complement proteins (C3 and C4). The above data were collected on the second day after admission. Two doctors independently reviewed the data collection form to ensure accuracy.

Definitions

Diabetes was defined according to the guidelines of the American Diabetes Association. Patients with HbA1c levels ≥ 6.5% (48 mmol/mol) were diagnosed with diabetes, and 5.7-6.4% (39-47 mmol/mol) were defined as prediabetes.

Disease severities were classified as mild, moderate, severe, and critical, according to the Guidelines for the Diagnosis and Treatment of COVID-19. Mild type: mild clinical symptoms and no abnormal radiological findings. Moderate type: fever, cough and other symptoms presented with pneumonia on chest CT. Severe type: one of the following conditions is met: oxygen saturation on room air at rest ≤ 93%; partial pressure of oxygen in arterial blood/fraction of inspired oxygen ≤ 300 mmHg; respiratory rate ≥ 30 per min. Critical type: one of the following conditions is met: shock occurs; patients with respiratory failure requiring mechanical ventilation; patients with other organ dysfunction requiring intensive care unit monitoring treatment. In this study, we enrolled patients with moderate, severe, and critical disease, judged at the time of admission.

Statistical Analysis

All measurements were nonnormally distributed according to the Kolmogorov–Smirnov test. Continuous and categorical variables are presented as medians (IQRs) and n (%), respectively. We used the Kruskal–Wallis test, Mann–Whitney U test, chi-square test, or Fisher’s exact test to compare differences between moderate, severe, and critical cases, as well as between diabetes, prediabetes and nondiabetes cases. The correlation between HbA1c levels and other laboratory examinations was evaluated by Spearman’s rank correlation coefficient. We constructed receiver operating characteristic (ROC) curves and calculated the area under the curve (AUC) to determine the diagnostic ability of HbA1c for disease severity. The optimal cutoff was defined as the one maximizing Youden’s index. Multivariate logistic regression was used to estimate the relationship between HbA1c levels and in-hospital deaths and severe or critical COVID-19. The adjusted odds ratio (aOR) and 95% confidence interval (95% CI) were calculated as the risk estimate. All data analyses were carried out using IBM SPSS Statistics (Version 25.0) and R software (Version 3.6.0).

Results

Demographics and Characteristics of the Study Population

A total of 190 patients with COVID-19 were included in this study, of whom 69 were moderate, 80 were severe, and 41 were critical. The median age was 59.5 years (IQR 46.8–69.0 years), ranging from 14 years to 86 years, and 102 patients (53.7%) were male. The duration from first symptoms to hospital admission was 10.0 days (IQR 6.0–14.0 days). The most common onset symptoms were fever (161 patients [84.7%]), cough (137 patients [72.1%]), and fatigue (126 patients [66.3%]). Hypertension (58 patients [30.5%]), diabetes (53 patients [27.9%]), and cardiovascular disease (21 patients [11.1%]) were the most common comorbidities. Thirty-two patients (16.8%, 2 were severe type, and 30 were critical type) died during hospitalization, and 158 patients (83.2%) were successfully treated and discharged. Among the 32 deaths, 96.9% (31 patients) had abnormal blood glucose metabolism.

Relationship Between Glucose Metabolism and Disease Severity in COVID-19

We retrospectively analyzed the clinical data of 190 confirmed COVID-19 cases with diabetes, prediabetes or nondiabetes (Table 1). We found that patients with abnormal glucose metabolism were more severely ill and had significantly higher mortality than patients with normal glucose metabolism. Furthermore, we found that patients with different severities of COVID-19 had significantly different HbA1c levels at admission (Fig. 1A). The mean HbA1c levels of patients with moderate, severe, and
critical diseases were 5.9% ([IQR 5.5–6.2%], or 41 mmol/mol [IQR 37–44]), 6.1% ([IQR 5.8–6.7%], or 43 mmol/mol [IQR 40–50]), and 6.4% ([IQR 6.0–6.8%], or 46 mmol/mol [IQR 42–51]), respectively. To test the ability of HbA1c levels to diagnose severe and critical diseases, we used the ROC curve to analyze the optimal prediction threshold of COVID-19 exacerbation. The AUC of HbA1c levels to distinguish between moderate and severe-critical diseases was 0.938 (95% CI 0.906–0.970), and the HbA1c level cut off of 6.0% (42 mmol/mol) had 80.2% sensitivity and 100% specificity (Fig. 1B). The AUC of HbA1c levels to distinguish between moderate-severe and critical diseases was 0.792 (95% CI 0.727–0.856), and the HbA1c level cutoff of 6.0% (42 mmol/mol) had 97.6% sensitivity and 61.7% specificity (Fig. 1C). Moreover, we performed logistic regression to identify risk factors associated with in-hospital deaths and severe or critical COVID-19 in this cohort. After adjustment for confounders (consolidation in CT images, PCT, IL-2R, IL-6, IL-10, C4), the results showed that increasing odds of in-hospital deaths were associated with HbA1c levels >6.0% (42 mmol/mol) (aOR 2.971 [95% CI 1.002, 8.804], P=0.049, Table 2), and increasing odds of severe or critical COVID-19 were associated with HbA1c levels ≥ 5.7% (39 mmol/mol) (aOR 29.588 [95% CI 8.285, 105.457], P<0.001, Table 3). Based on clinical experience, we conducted a subgroup analysis of different ages and sexes. The results suggested that HbA1c levels >6.0% (42 mmol/mol) were an independent risk factor for in-hospital deaths in those <60 years (aOR 16.063 [95% CI 1.172, 220.100], P=0.038, Table 2)
Table 1-Characteristics, radiological findings, outcomes and Inflammation related laboratory examinations of COVID-19 patients with different levels of HbA1c.

	Total (n=190)	Non-diabetes (n=39)	Pre-diabetes (n=98)	Diabetes (n=53)	P value
Age, years	59.5 (46.8, 69.0)	43.0 (32.0, 52.0)	62.0 (53.0, 69.0)	63.0 (55.0, 70.0)	<0.001
Gender					0.053
Male	102 (53.7)	16 (41.0)	51 (52.0)	35 (66.0)	-
Female	88 (46.3)	23 (59.0)	47 (48.0)	18 (34.0)	-
BMI, kg/m^2	24.6 (23.3, 26.5)	24.0 (22.4, 25.7)	24.6 (23.4, 26.4)	25.3 (23.6, 28.2)	0.047
SaO2, %	91.0 (89.0, 94.0)	94.0 (91.0, 95.0)	91.0 (89.0, 94.0)	90.0 (86.0, 92.5)	<0.001
Mechanical ventilation	41 (21.6)	3 (7.7)	19 (19.4)	19 (35.8)	<0.001
Disease severity					<0.001
Moderate	69 (36.3)	25 (64.1)	35 (35.7)	9 (17.0)	-
Severe	80 (42.1)	11 (28.2)	44 (44.9)	25 (47.2)	-
Critical	41 (21.6)	3 (7.7)	19 (19.4)	19 (35.8)	-
Death	32 (16.8)	1 (2.6)	16 (16.3)	15 (28.3)	0.005
Distribution					<0.001
Unilateral	20 (10.5)	12 (30.8)	7 (7.1)	1 (1.9)	-
Bilateral	170 (89.5)	27 (69.2)	91 (92.9)	52 (98.1)	-
GGO	102 (53.7)	18 (46.2)	53 (54.1)	31 (58.5)	0.500
Patch shadow	127 (66.8)	22 (56.4)	65 (66.3)	40 (75.5)	0.157
Fiber cord shadow	38 (20.0)	7 (17.9)	19 (19.4)	12 (22.6)	0.837
Consolidation	29 (15.3)	5 (12.8)	11 (11.2)	13 (24.5)	0.085
Laboratory parameters					
HbA1c level, %	6.1 (5.7, 6.6)	5.5 (5.4, 5.6)	6.0 (5.9, 6.2)	7.1 (6.7, 8.6)	<0.001
WBC, ×10^9/L	5.3 (4.0, 7.7)	4.5 (3.4, 6.2)	5.2 (3.9, 7.5)	7.0 (5.1, 7.0)	<0.001
Neutrophile ratio, %	70.4 (62.2, 83.7)	67.2 (51.5, 70.7)	70.8 (62.8, 83.3)	76.6 (66.1, 88.0)	<0.001
Lymphocyte ratio, %	19.2 (11.4, 27.3)	23.6 (17.4, 35.0)	18.9 (13.0, 27.6)	14.5 (6.9, 14.5)	<0.001
Eosinophile ratio, %	0.1 (0.0, 0.6)	0.3 (0.1, 1.1)	0.2 (0.0, 0.6)	0 (0, 0)	0.139
Inflammatory markers					
ESR, mm/H	26.5 (12.0, 34.0)	13.0 (7.0, 34.0)	25.5 (12.0, 41.0)	35.0 (21.5, 58.0)	<0.001
42.3)

Variable	Median (IQR)
CRP, mg/L	30.5 (5.4, 72.8)
	18.6 (2.1, 41.8)
	28.7 (7.9, 69.3)
	49.8 (10.5, 106.0)
PCT, ng/mL	0.1 (0.0, 0.1)
	0 (0.0, 0.1)
	0.1 (0.0, 0.1)
	0.1 (0.0, 0.2)
SF, ug/L	610.3 (289.4, 1153.1)
	320.7 (105.5, 683.4)
	617.3 (291.1, 1157.6)
	888.1 (473.9, 1268.6)
Cytokines	
IL-2R, U/ml	674.0 (459.0, 1000.8)
	429.0 (335.0, 679.0)
	663.5 (508.5, 957.5)
	805.0 (567.0, 1174.5)
IL-6, pg/mL	14.7 (4.2, 48.6)
	11.3 (2.4, 21.8)
	16.6 (3.8, 50.0)
	22.5 (6.5, 61.7)
IL-8, pg/mL	17.6 (9.6, 32.3)
	15.1 (9.4, 27.5)
	16.5 (9.5, 31.0)
	24.1 (9.4, 47.5)
TNF-α, pg/mL	8.2 (6.3, 10.3)
	7.4 (5.3, 10.7)
	7.9 (6.2, 9.9)
	8.3 (6.9, 11.6)

Data are expressed as median (IQR), n (%). Boldface P values are statistically significant (P < 0.05). BMI, Body Mass Index. GGO, Ground-glass opacity. PCT, procalcitonin. SF, serum ferritin.

Table 2-Logistic regression analysis for prediction of in-hospital deaths

Variables	Total (n=190)	Subgroup analysis by age	Subgroup analysis by gender			
		<60 y (n=95)	≥60 y (n=95)	Male (n=102)	Female (n=88)	
	aOR (95% CI)	P value	aOR (95% CI)	P value	aOR (95% CI)	P value
Hb1Ac ≥6.0%	2.971 (1.002, 8.804)	**0.049**	16.063 (1.172, 220.100)	**0.038**	1.093 (0.288, 4.144)	0.896
Consolidation in CT images	5.796 (1.774, 18.936)	0.004	5.071 (0.406, 63.396)	0.208	6.477 (1.431, 29.312)	0.015
PCT ≥0.05 ng/mL	38.464 (2.708, 546.316)	0.007	-	0.997	16.205 (1.023, 256.703)	0.048
IL-6 ≥7.0 pg/ml	10.324 (1.998, 53.348)	0.005	13.199 (0.505, 345.319)	0.121	9.372 (0.947, 92.773)	0.056
IL-10 ≥9.1 pg/ml	5.145 (1.901, 13.927)	0.001	9.639 (0.731, 127.156)	0.085	4.559 (1.295, 16.054)	0.018
Complement-C4 ≥0.16 g/L	4.037 (1.285, 12.684)	0.017	4.960 (0.489, 50.271)	0.175	3.373 (0.776, 14.658)	0.105

Variables with a p value < 0.01 in univariate analysis were included in multivariate analysis. Boldface P values are statistically significant (P < 0.05). aOR, adjusted odds ratio. CI, confidence interval. PCT, procalcitonin.
Table 3-Logistic regression analysis for prediction of severe or critical COVID-19

Variables	Total (n=190)	Subgroup analysis by age	Subgroup analysis by gender							
		≥60 y (n=95)	Male (n=102)	Female (n=88)						
	aOR (95% CI)	P value	aOR (95% CI)	P value	aOR (95% CI)	P value	aOR (95% CI)	P value		
HbA1c≥5.7%	29.588 (8.285, 105.457)	**0.001**	23.802 (4.298, 131.809)	**0.001**	49.403 (4.083, 597.703)	**0.002**	19.801 (3.140, 124.841)	**0.001**	38.074 (5.908, 245.370)	**0.001**
Consolidation in CT images	3.048 (0.776, 11.972)	0.110	1.910 (0.246, 14.848)	0.536	3.592 (0.393, 32.849)	0.257	2.971 (0.437, 20.178)	0.265	2.542 (0.354, 18.232)	0.354
PCT≥0.05 ng/mL	2.861 (1.200, 6.823)	0.018	1.669 (0.494, 5.638)	0.409	6.338 (1.707, 23.533)	0.006	4.579 (1.276, 16.436)	0.020	1.878 (0.541, 6.520)	0.321
IL-2R710 U/ml	11.138 (3.947, 31.431)	**0.001**	24.265 (4.934, 119.342)	**0.001**	4.550 (1.082, 19.133)	0.039	11.495 (2.933, 45.051)	**0.001**	11.491 (2.156, 61.248)	0.004

Variables with a p value < 0.01 in univariate analysis were included in multivariate analysis. Boldface P values are statistically significant (P < 0.05). aOR, adjusted odds ratio. CI, confidence interval. PCT, procalcitonin.

Previous studies suggested that males were more likely to have severe or critical disease than females in COVID-19, and this significant difference between genders may be related to men being more likely to be current smokers and having a higher proportion of comorbid conditions [11]. Our research also confirmed the existence of this significant difference between sexes (P=0.004). To explore the possible causes, we further compared the HbA1c levels in male and female patients. Our data showed that HbA1c levels were significantly higher in male patients (P=0.023), which may be one of the factors that causes male patients to be more seriously ill.

Because of immune dysfunction, obesity and, more importantly, disproportionate body fat distribution could cause an even higher risk of severe outcomes. We analyzed body mass index (BMI) in our cohort and found that there was no significant relationship between BMI and in-hospital deaths (P=0.195).

At the same time, our data showed that chest CT images of patients with abnormal glucose metabolism were significantly more common with bilateral lung involvement and consolidation than normal glucose metabolism. Therefore, we further compared the HbA1c levels in patients with different radiological findings, and our data showed that both patients with bilateral pneumonia (P<0.001) and with consolidation (P=0.0013) in CT images had significantly higher levels of HbA1c. Additionally, we found that the rates of bilateral lung involvement (P<0.001) and consolidation (P=0.0021) were significantly different in moderate, severe, and critical patients. Hence, we concluded that COVID-19 patients with higher levels of HbA1c often had bilateral pneumonia and consolidation in CT images, and these radiological findings were also more common in seriously ill patients.

Abnormal Glucose Metabolism Exacerbates Inflammation in COVID-19

COVID-19 can manifest as viral-induced hyperinflammation and an inflammatory cytokine storm, causing patients to experience rapid deterioration. Therefore, we analyzed inflammation-related laboratory examinations of COVID-19 patients with diabetes, prediabetes or nondiabetes (Table 1).

First, we found that diabetes patients, when compared to prediabetes patients, showed significantly increased white blood cell counts and neutrophil ratios and significantly decreased lymphocyte ratios and eosinophil ratios. This significant difference also existed between prediabetes and nondiabetes patients. At the same time, our data showed a significant difference in white blood cell counts, neutrophil ratios, lymphocyte ratios, and eosinophil ratios between patients with moderate, severe, and critical
diseases (Fig. 2A), which prompted us to further analyze the potential relation of HbA1c levels with these cells. We evaluated the correlation by Spearman's rank correlation coefficient, and we found that the HbA1c levels positively correlated with white blood cell counts and neutrophil ratios and inversely correlated with lymphocyte ratios (Fig. 2B).

Second, we found that diabetes and prediabetes patients showed significantly increased levels of ESR, CRP, PCT, and SF, and these inflammatory markers can reflect the infection and determine the risk of septic shock. We further compared the levels of inflammatory markers, including ESR, CRP, PCT, and SF, between moderate, severe, and critical patients. All the above markers were significantly different between patients with different disease severities (Fig. 3A). Correlation analysis demonstrated that HbA1c levels positively correlated with ESR, CRP, PCT, and SF levels (Fig. 3B).

Third, our data showed that the levels of IL-2R were significantly increased in diabetes and prediabetes patients. In some respects, severe COVID-19 can be regarded as a virus-induced hyperinflammatory condition due to a cytokine cascade [12], and we found that the levels of IL-2R, IL-6, IL-8, and TNF-α were significantly different in patients with moderate, severe, and critical diseases (Fig. 4A). Among these cytokines, the levels of IL-2R were positively and strongly correlated with HbA1c levels (Fig. 4B).

Discussion

Multiple studies have confirmed that people with diabetes are at risk for greater susceptibility to SARS-CoV-2 infections [8, 13-17]. At the same time, among people with diabetes, the risk of worse prognosis of COVID-19 is two- to threefold higher than among those without, even after adjustment for sociodemographic factors and comorbid conditions [18]. As early as more than 30 years ago, studies reported that hospitalization during the influenza epidemic was six times higher in people with diabetes than in those without diabetes [19]. Moreover, epidemiological studies also indicate that pre-existing diabetes is independently associated with poor outcomes for patients with Severe Acute Respiratory Syndrome [20], and type 2 diabetes is the primary comorbidity associated with severe Middle East Respiratory Syndrome Coronavirus infections [21].

A recent study involving 17 million adults has shown that HbA1c levels <7.5% (58 mmol/mol) are associated with a 30% increased risk of COVID-19-related death compared with people without abnormal glucose metabolism; moreover, HbA1c levels ≥7.5% (58 mmol/mol) are associated with a twofold increase in risk [22]. Given the urgency of finding solutions to this current crisis, the results of our research may assist in prognostication. To distinguish between moderate and severe critical COVID-19, the AUC of HbA1c levels at admission was as high as 0.938 (95% CI 0.906–0.970). Furthermore, after adjustment for confounders, increasing odds of in-hospital deaths were associated with HbA1c levels >6.0% (42 mmol/mol) (aOR 2.971 [95% CI 1.002, 8.804], P=0.049), and increasing odds of severe or critical COVID-19 were associated with HbA1c levels ≥5.7% (39 mmol/mol) (aOR 29.588 [95% CI 8.285, 105.457], P<0.001). At the same time, elevated HbA1c levels should be considered an independent risk factor for in-hospital deaths in young adults, especially for individuals younger than 60 years old. A meta-analysis has reported that the association between diabetes and a poor composite outcome is stronger in studies that included younger COVID-19 patients than in studies that included older COVID-19 patients, which is in line with our current results [23].

Several studies have examined the association of prior HbA1c level management before the onset of COVID-19 infection and the risk of poor outcomes. Population-based studies in Europe have shown that individuals with HbA1c levels of 9.0-9.9% (74.9-84.7 mmol/mol) have a one-third higher mortality rate than individuals with HbA1c levels of 6.5-7.0% (47.5-53.0 mmol/mol) measured in the months before COVID-19 hospitalization [24]. A cohort study using data from an Israeli integrated payer-provider health care organization, which includes more than 4.7 million people, suggests that a difference in HbA1c levels from 8.0% (63.9 mmol/mol) to 6.0% (42.1 mmol/mol) is associated with a 29.0% reduction in the risk of severe COVID-19 [25].

Thus, it is essential to establish the magnitude of the association between glycemic control and the severity of COVID-19 and to choose an appropriate HbA1c target for people with diabetes to reduce the risk of severe COVID-19. Except for diabetes, prediabetes (HbA1c levels 5.7-6.4% [38.8-46.4 mmol/mol]) is highly prevalent in most populations. More than half of the participants in our study had prediabetes, and 16.3% had in-hospital deaths, which was significantly higher than that of participants without abnormal glucose metabolism. Especially worrying is the fact that the majority of people globally
with prediabetes are unaware of their diagnosis [26]. Therefore, it is important to screen HbA1c levels at the time of COVID-19 hospital admission to identify those with prediabetes.

HbA1c is interpreted as an indicator of blood glucose control in the past three months, while fasting blood glucose at admission may represent a biomarker of systemic inflammation. A meta-analysis of 6386 COVID-19 patients relating hyperglycemia at admission suggests that the hyperglycemia group has increased mortality (OR = 3.45 [95% CI 2.26, 5.26]) and severe or critical complications (OR = 2.08 [95% CI 1.45, 2.99]) [27]. In addition, a large case series including 548 COVID-19 patients found that larger magnitude glucose fluctuation in the first week of admission presents a higher risk of mortality and acute respiratory distress syndrome (ARDS) incidence [28]. Unfortunately, fasting blood glucose measurements during admission were not recorded in our registry. More notably, new-onset hyperglycemia in COVID-19 patients without diabetes, which may suggest a bidirectional relationship between SARS-CoV-2 infection and diabetes, has been increasingly recognized as a common phenomenon. Recent studies suggest that newly diagnosed diabetes may confer an increased risk of poor prognosis than pre-existing diabetes in COVID-19 [29, 30]. Some case reports and in vitro experiments indicate that SARS-CoV-2 infection may promote pancreatic dysfunction, potentially leading to new-onset hyperglycemia [31-33]. Since HbA1c is not affected by acute infections, it can assist in the detection of newly diagnosed diabetes in COVID-19 patients, thereby improving the prognosis of these patients.

There is a pathophysiological explanation to support the association between diabetes and COVID-19 severity: diabetes is a proinflammatory state characterized by an exaggerated cytokine response. Previous studies have confirmed that COVID-19 patients with diabetes may have higher rates of leukocytosis, neutrophilia, lymphocytopenia, eosinopenia, and levels of IL-1β, IL-6, IL-8, TNF-α, CRP and SF than patients without diabetes [34-36]. At the same time, a meta-analysis including 10 studies of COVID-19 demonstrated that severe illness was associated with higher leukocyte counts and lower lymphocyte counts [37], and another meta-analysis including 16 studies demonstrated that severe patients had higher levels of IL-6, CRP, PCT, ESR and SF than nonsevere patients [38]. Our data confirm previous studies and show that IL-2R levels in patients with abnormal glucose metabolism are higher than those in patients with normal glucose metabolism, and these hyperinflammatory states are strongly associated with the severity of COVID-19. Moreover, there was a strong positive correlation of HbA1c levels with ESR, CRP, PCT, SF, and IL-2R levels. This indicates that patients with diabetes are more susceptible to an inflammatory cytokine storm, which leads to the rapid deterioration of COVID-19.

An interesting finding in our study is that HbA1c levels are moderately correlated with IL-6 and IL-8 levels and are not correlated with TNF-α levels. One possible explanation is that TNF-α, IL-6 and IL-8 are the main inflammatory cytokines derived from adipose tissue, and fat mass correlates significantly with TNF-α [39, 40]. In our cohort, unlike the results of other studies [41], a linear dose–response curve between BMI and severe outcomes of COVID-19 was not observed. This finding may help reveal potential mechanistic links between obesity and worsening COVID-19.

A recent study analyzing single-cell RNA sequencing datasets of COVID-19 patients showed that genetic ACE2 deletion resulted in the upregulation of proinflammatory cytokines containing IL-6 and TNF-α [42]. Another study involving 245 COVID-19 patients with chronic diseases showed that the poor prognosis of COVID-19 patients with diabetes may be due to low circulating ACE2 levels [43]. When further exploring its mechanism, other researchers found that this upregulation of ACE2 activity is driven by comorbidities but not by ACE2-Ang-(1-7)-MAS blockade [44, 45]. Moreover, a study involving 88 COVID-19 patients found a negative correlation between vitamin D and fasting blood glucose, neutrophil/lymphocyte ratio, CRP and IL-6, which suggests that vitamin D deficiency may be a potential pathophysiological mechanism of COVID-19 in patients with diabetes [46].

There are several limitations in this study. First, the study population only included 190 patients from a single hospital, which may not be sufficiently powered for all the analyses. Second, COVID-19 patients with mild disease were not admitted to our center, which may lead to a partial understanding of the disease. Third, our registry did not record fasting blood glucose measurements during admission. Last, we did not distinguish between type 1 diabetes and type 2 diabetes.

Conclusions
In conclusion, we suggest that individuals with abnormal glucose metabolism who are affected by COVID-19 present uncontrolled release of proinflammatory cytokines and have a high risk of in-hospital death. Moreover, assessing HbA1c levels to identify patients at higher risk of poor outcomes at admission may be helpful for the allocation of critically ill patients as well as a guide to improve treatment strategies for COVID-19.

List Of Abbreviations

- aOR: adjusted odds ratio
- ARDS: acute respiratory distress syndrome
- AUC: area under the receiver operating characteristic curve
- BMI: body mass index
- COVID-19: novel coronavirus disease 2019
- CRP: C-reactive protein
- CT: computed tomography
- ESR: erythrocyte sedimentation rate
- GGO: Ground-glass opacity
- HbA1c: glycated hemoglobin A1c
- IL: interleukin
- PCT: procalcitonin
- ROC: receiver operating characteristic
- SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
- SF: serum ferritin
- TNF-α: tumor necrosis factor-α

Declarations

Ethical Approval and Consent to participate: The study was approved by the Ethics Commission of the Second Hospital of Jilin University (No. 2020052). Given the urgency of the COVID-19 pandemic, the requirement for informed consent was waived by the Ethics Commission.

Consent for publication: Not applicable.

Availability of supporting data: The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Funding: This study was supported by the Department of Science and Technology of Jilin Province [grant number 20190201279JC], the Department of Education of Jilin Province [grant number JJKH20190048KJ], the Health Youth Science and Technology Backbone Training Program of Jilin Province [grant number 2019Q003], the Department of Finance of Jilin Province [grant number 20106145], and the Bethune Planned Research Project of Jilin University.
Competing interests: No potential conflicts of interest relevant to this article were reported.

Authors’ contributions: All authors contributed to this study. JY conceived and designed the study. BY, RG, JR, ZS, and TM acquired data. HL, RG, JR, ZS, and TM analyzed and interpreted data. HL, and JY wrote the article and revised it critically. JY is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgements: Not applicable.

References
1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395(10223):497-506.
2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020, 382(18):1708-1720.
3. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020.
4. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SL et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama 2020.
5. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, Li Y, Guan W, Sang L, Lu J et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern Med 2020.
6. Deng SQ, Peng HJ: Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J Clin Med 2020, 9(2).
7. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD: Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020.
8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020, 395(10229):1054-1062.
9. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj 2020, 368:m1091.
10. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA: 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008, 359(15):1577-1589.
11. Vardavas CI, Nikitara K: COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis 2020, 18:20.
12. Lipworth B, Chan R, Lipworth S, RuiWen Kuo C: Weathering the Cytokine Storm in Susceptible Patients with Severe SARS-CoV-2 Infection. J Allergy Clin Immunol Pract 2020.
13. Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C, Liu C, Xiong M, Deng A, Zhang Y et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes care 2020.
14. Shi Q, Zhang X, Jiang F, Zhang X, Hu N, Bimu C, Feng J, Yan S, Guan Y, Xu D et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. Diabetes care 2020.
15. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W et al: Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. *Cell Metab* 2020.

16. Wu Z, McGoogan JM: Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. *Jama* 2020.

17. Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J: Diabetes and infection: assessing the association with glycaemic control in population-based studies. *Lancet Diabetes Endocrinol* 2016, 4(2):148-158.

18. Gregg EW, Sophiea MK, Weldegiorgis M: Diabetes and COVID-19: Population Impact 18 Months Into the Pandemic. *Diabetes Care* 2021, 44(9):1916-1923.

19. Deng S-Q, Peng H-J: Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. *Journal of clinical medicine* 2020, 9(2).

20. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M, Derkach P et al: Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. *JAMA* 2003, 289(21):2801-2809.

21. Alqahtani FY, Aleanizy FS, Ali El Hadi Mohamed R, Alanazi MS, Mohamed N, Alrasheed MM, Abanmy N, Alhawassi T: Prevalence of comorbidities in cases of Middle East respiratory syndrome coronavirus: a retrospective study. *Epidemiol Infect* 2018, 147:e35.

22. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P et al: Factors associated with COVID-19-related death using OpenSAFELY. *Nature* 2020, 584(7821):430-436.

23. Huang I, Lim MA, Pranata R: Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression. *Diabetes Metab Syndr* 2020, 14(4):395-403.

24. Holman N, Knighton P, Kar P, O'Keefe J, Curley M, Weaver A, Barron E, Bakhai C, Khunti K, Wareham NJ et al: Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. *The lancet Diabetes & endocrinology* 2020, 8(10):823-833.

25. Hayek S, Ben-Shlomo Y, Balicer R, Byrne K, Katz M, Kepten E, Raz I, Roitman E, Zychma M, Barda N: Preinfection glycaemic control and disease severity among patients with type 2 diabetes and COVID-19: A retrospective, cohort study. *Diabetes Obes Metab* 2021, 23(8):1995-2000.

26. Sathish T, Chandrasekaran ND: Is prediabetes a risk factor for severe COVID-19? *J Diabetes* 2021, 13(6):521-522.

27. Yang Y, Cai Z, Zhang J: Hyperglycemia at admission is a strong predictor of mortality and severe/critical complications in COVID-19 patients: a meta-analysis. *Biosci Rep* 2021, 41(2).

28. Chen L, Sun W, Liu Y, Zhang L, Lv Y, Wang Q, Long D, Wang Y, Zhao S, Rong S et al: Association of Early-Phase In-Hospital Glycemic Fluctuation With Mortality in Adult Patients With Coronavirus Disease 2019. *Diabetes Care* 2021, 44(4):865-873.

29. Sathish T, Kapoor N, Cao Y, Tapp RJ, Zimmet P: Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. *Diabetes, obesity & metabolism* 2021, 23(3):870-874.

30. Sathish T, Tapp RJ, Cooper ME, Zimmet P: Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. *Diabetes & metabolism* 2021, 47(2):101204.

31. Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA et al: SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. *Cell Metab* 2021, 33(8):1565-1576.e1565.
32. Steenblock C, Richter S, Berger I, Barovic M, Schmid J, Schubert U, Jarzebska N, von Mässenhausen A, Linkermann A, Schürmann A et al: Viral infiltration of pancreatic islets in patients with COVID-19. *Nat Commun* 2021, 12(1):3534.

33. Stefan N, Birkenfeld AL, Schulze MB: Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. *Nat Rev Endocrinol* 2021, 17(3):135-149.

34. Viurcos-Sanabria R, Escobedo G: Immunometabolic bases of type 2 diabetes in the severity of COVID-19. *World J Diabetes* 2021, 12(7):1026-1041.

35. Guo W, Li M, Dong Y, Zhou H, Zhang T, Tian C, Qin R, Wang H, Shen Y, Du K et al: Diabetes is a risk factor for the progression and prognosis of COVID-19. *Diabetes/metabolism research and reviews* 2020:e3319.

36. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, Gao Y, Ma J, Zhang H, Zhang J et al: The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. *Diabetes, obesity & metabolism* 2020, 22(8):1443-1454.

37. Huang G, Kovalic AJ, Graber CJ: Prognostic Value of Leukocytosis and Lymphopenia for Coronavirus Disease Severity. *Emerg Infect Dis* 2020, 26(8):1839-1841.

38. Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, Deng G: Association of inflammatory markers with the severity of COVID-19: A meta-analysis. *Int J Infect Dis* 2020, 96:467-474.

39. Villarreal-Calderon JR, Cuellar-Tamez R, Castillo EC, Luna-Ceron E, García-Rivas G, Elizondo-Montemayor L: Metabolic shift precedes the resolution of inflammation in a cohort of patients undergoing bariatric and metabolic surgery. *Sci Rep* 2021, 11(1):12127.

40. Skurk T, Alberti-Huber C, Herder C, Hauner H: Relationship between adipocyte size and adipokine expression and secretion. *The Journal of clinical endocrinology and metabolism* 2007, 92(3):1023-1033.

41. Cao P, Song Y, Zhuang Z, Ran J, Xu L, Geng Y, Han L, Zhao S, Qin J, He D et al: Obesity and COVID-19 in Adult Patients With Diabetes. *Diabetes* 2021, 70(5):1061-1069.

42. Li XT, Zhang MW, Zhang ZZ, Cao YD, Liu XY, Miao R, Xu Y, Song XF, Song JW, Liu Y et al: Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. *Int J Cardiol* 2021, 336:123-129.

43. Zhang Y, Sun Y, Liu K, Alolga RN, Xu X, Feng G, Xiao P: Low plasma angiotensin-converting enzyme 2 level in diabetics increases the risk of severe COVID-19 infection. *Aging (Albany NY)* 2021, 13(9):12301-12307.

44. Melissa Hallow K, Dave I: RAAS Blockade and COVID-19: Mechanistic Modeling of Mas and AT1 Receptor Occupancy as Indicators of Pro-Inflammatory and Anti-Inflammatory Balance. *Clin Pharmacol Ther* 2021, 109(4):1092-1103.

45. Batchu SN, Kaur H, Yerra VG, Advani SL, Kabir MG, Liu Y, Klein T, Advani A: Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker-Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19. *Diabetes* 2021, 70(3):759-771.

46. di Filippo L, Allora A, Doga M, Formenti AM, Locatelli M, Rovere Querini P, Frara S, Giustina A: Vitamin D levels associate with blood glucose and BMI in COVID-19 patients predicting disease severity. *J Clin Endocrinol Metab* 2021.

Figures
Figure 1

(A) The HbA1c levels were significantly different in COVID-19 patients with different disease severity. (B) ROC curves between moderate and severe-critical diseases. (C) ROC curves between moderate-severe and critical diseases.

Figure 2

(A) Levels of WBC, NR, LR, and ER. (B) The HbA1c levels in COVID-19 patients positively and strongly correlated with WBC, NR, and inversely correlated with LR. HbA1c: glycated hemoglobin A1c. WBC: white blood cell counts. NR: neutrophil ratios. LR: lymphocyte ratios. ER: eosinophil ratios. Numbers in the squares are "R" values. **P<0.001, *P<0.05.
Figure 3

(A) Levels of ESR, CRP, PCT, and SF. (B) The HbA1c levels in COVID-19 patients positively correlated with ESR, CRP, PCT, and SF levels. HbA1c: glycated hemoglobin A1c. ESR: erythrocyte sedimentation rate. CRP: C-reactive protein. PCT: procalcitonin. SF: serum ferritin. Numbers in the squares are “R” values. **P<0.001.

Figure 4
(A) Levels of IL-2R, IL-6, IL-8, and TNF-α. (B) The HbA1c levels in COVID-19 patients positively and strongly correlated with IL-2R levels. HbA1c: glycated hemoglobin A1c. IL-2R: interleukin-2R. IL-6: interleukin-6. IL-8: interleukin-8. TNF-α: tumor necrosis factor-α. Numbers in the squares are “R” values. **P<0.001, *P<0.05.