Targeting hepatic glutaminase activity to ameliorate hyperglycemia

Russell A Miller1,2,13, Yuji Shi2,13, Wenyun Lu3,13, David A Pirman4, Aditi Jatkar2, Matthew Blatnik4, Hong Wu4, César Cárdenas5–8, Min Wan2, J Kevin Foskett9,10, Junyoung O Park3,11, Yiyi Zhang12, William L Holland12, Joshua D Rabinowitz2 & Morris J Birnbaum1,2,10,10

Glucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids1. In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition. Yet, the mechanism by which glucagon stimulates gluconeogenesis remains incompletely understood. Contrary to the prevailing belief that glucagon acts primarily on cytoplasmic and nuclear targets, we find glucagon-dependent stimulation of mitochondrial anaplerotic flux from glutamine that increases the contribution of this amino acid to the carbons of glucose generated during gluconeogenesis. This enhanced glucose production is dependent on protein kinase A (PKA) and is associated with glucagon-stimulated calcium release from the endoplasmic reticulum, activation of mitochondrial α-ketoglutarate dehydrogenase, and increased glucaminolysis. Mice with reduced levels of hepatic glutaminase 2 (GLS2), the enzyme that catalyzes the first step in glutamine metabolism, show lower glucagon-stimulated glutamine-to-glucose flux in vivo, and GLS2 knockout results in higher fasting plasma glucagon and glucose levels with lower fasting blood glucose levels in insulin-resistant conditions. As found in genome-wide association studies (GWAS), human genetic variation in the region of GLS2 is associated with higher fasting plasma glucose2,3; here we show in human cryopreserved primary hepatocytes in vitro that these natural gain-of-function missense mutations in GLS2 result in higher glucaminolysis and glucose production. These data emphasize the importance of gluconeogenesis from glutamine, particularly in pathological states of increased glucagon signaling, while suggesting a possible new therapeutic avenue to treat hyperglycemia.

Nearly 50 years ago, it was observed that glucagon-dependent increases in glucose production in perfused rat liver were associated with immediate changes in protein phosphorylation resulting from enhanced cyclic AMP (cAMP) production4. Subsequent work identified PKA-mediated phosphorylation events that work in concert to increase gluconeogenesis and glycogenolysis in response to glucagon1. While these actions of glucagon are the key drivers of acute stimulation of hepatic glucose production, during longer fasting, the glucagon-stimulated uptake and oxidation of amino acids—in concert with their release from skeletal muscle—provides access to an additional pool of gluconeogenic substrates to further support fasting glucose production and the proper maintenance of systemic glucose levels.

Whereas lactate provides the largest and most well-studied source of carbon for gluconeogenesis, amino acids also contribute to gluconeogenesis, with glutamine potentially being important given its role as a physiological nitrogen shuttle5. We therefore set out to test the impact of glucagon on the metabolic flux of lactate and glutamine in mouse primary hepatocytes. Hepatocytes isolated from fasted mice were incubated with physiologically relevant ratios of lactate and glutamine with only one of the substrates labeled with 13C[U-13C]lactate;[12C]glutamine or [12C]lactate;[U-13C]glutamine. In each of these conditions, glucagon was equally capable of stimulating an increase in glucose production from the labeled cells after 60 min of treatment (Fig. 1a,b). The isotopic distribution of extracellular glucose was analyzed under these conditions and showed a marked change with glucagon treatment (Fig. 1a–d). Glucagon treatment resulted in a reduction in the fractional contribution of lactate to glucose and an increase in the input of glutamine (Fig. 1c,d). Intracellular metabolites were also assessed over time in the same experiments to map the

Received 12 May 2014; accepted 8 February 2018; published online 26 March 2018; corrected online 12 June 2018; doi:10.1038/nm.4514
metabolic flux underlying the switch in gluconeogenic substrates. In the presence of [U-13C]lactate and [12C]glutamine, key tricarboxylic acid (TCA) metabolites showed a modest glucagon-stimulated decrease in labeling (Fig. 1f and Supplementary Fig. 1). In contrast, cells incubated in [13C]lactate and [U-13C]glutamine showed a large increase in the contribution of glutamine carbon to intracellular metabolites following glucagon treatment (Fig. 1g,h and Supplementary Fig. 2). After glucagon stimulation, there was robust generation of [13C5]-α-ketoglutarate, leading to an approximately 40% enrichment at steady state (Fig. 1g and Supplementary Fig. 2).

To obtain a quantitative view of underlying metabolic changes, we modeled the metabolic flux distribution that was consistent with the observed 13C labeling data (Fig. 1i,j, Supplementary Fig. 3, and Supplementary Table 1). Glucagon stimulated pyruvate carboxylase flux about 1.5-fold, while glutaminolysis was increased about 3-fold, resulting in a shift from lactate to glutamine as the gluconeogenic substrate. In summary, these results demonstrate that, although lactate is the greater source of gluconeogenic substrate under basal and hormone-stimulated conditions, the contribution of glutamine carbons to newly synthesized glucose is more greatly enriched in response to glucagon stimulation.

When primary hepatocytes were provided with lactate as the sole gluconeogenic substrate, glucagon elicited a reduction of α-ketoglutarate levels within 1 min that persisted for the duration of the 1-h experiment (Fig. 2a). Intracellular glutamate levels also fell in response to glucagon (Fig. 2b). In contrast, glucagon only transiently reduced α-ketoglutarate levels in the presence of [12C]lactate and [U-13C]glutamine, presumably owing to the contribution of glutamine to anaplerosis (Fig. 2c). The recovery of α-ketoglutarate levels was accompanied by an increased fraction of [13C5]-α-ketoglutarate, indicating increased formation of α-ketoglutarate from glutamine (Fig. 2d).

In the presence of glutamine, glucagon no longer caused a reduction of intracellular glutamate but instead increased the levels after 10 min (Fig. 2e,f). Glucagon treatment did not result in changes in the levels of intracellular glutamine (Supplementary Fig. 4).

The glucagon-dependent decrease in α-ketoglutarate in primary hepatocytes was confirmed using a biochemical assay; moreover, glucagon administered in vivo elicited a reduction in hepatic α-ketoglutarate (Supplementary Fig. 5a,b). Consistent with the increased α-ketoglutarate flux, mitochondria isolated from glucagon-treated cells displayed activation of α-ketoglutarate dehydrogenase (AKGDH) (Supplementary Fig. 5c). These data suggest that an immediate effect of glucagon in the liver is the stimulation of gluconeogenesis from glutamine, at least in part through activation of AKGDH. In addition to glucagon, dibutyryl-cAMP effectively reduced α-ketoglutarate levels in primary hepatocytes, indicating that, like the effects of glucagon, stimulation of AKGDH was mediated by activation of adenylate cyclase and increases in intracellular cAMP (Supplementary Fig. 5a).

To test whether PKA was required for the effects of glucagon, mice were infected with a recombinant adenovirus vector that contained a hepatocyte-specific promoter controlling the expression of a mutant PKA regulatory subunit (PKA-RiK) that is unable to bind cAMP and thus behaves like a dominant inhibitor (AV-PKA-DN)6,7. While glucagon was able to increase glucose output and lower α-ketoglutarate levels in control cells, it failed to
stimulate glucose output and reduce cellular α-ketoglutarate levels in cells infected with AAV-PKA-DN (Fig. 2g.h). In these same cells, glucagon-dependent phosphorylation of the PKA target proteins PFK1, inositol 1,4,5-trisphosphate receptor (IP3R), and CREB was significantly attenuated by AAV-PKA-DN (Supplementary Fig. 5d). Pharmacological inhibition of PKA with H89 also blocked the changes in glucose output and α-ketoglutarate levels in response to glucagon (Supplementary Fig. 5e,f). These data show that, like the cytoplasmic and nuclear actions of glucagon, hormone-dependent alterations in mitochondrial metabolism require activation of PKA.

We investigated Ca2+ as a potential mediator of the actions of glucagon on TCA cycle flux. In primary mouse hepatocytes, glucagon elicited an increase in the concentration of intracellular Ca2+ derived from intracellular stores (Supplementary Fig. 5g). PKA phosphorylates IP3R, an endoplasmic reticulum (ER) Ca2+-release channel, enhancing its sensitivity to IP3 (ref. 8). IP3R phosphorylation was absent in cells infected with AAV-PKA-DN, indicating its dependence on the cAMP–PKA signaling pathway (Supplementary Fig. 5d).

The α-1 adrenergic receptor agonist phenylephrine activates phospholipase-C and causes an IP3-dependent increase in intracellular Ca2+ concentration8. Unlike glucagon, phenylephrine did not stimulate phosphorylation of the PKA substrates PFK1, CREB, or IP3R (Supplementary Fig. 5d). Phenylephrine treatment resulted in only a modest impact on glucose output but equivalent reductions in α-ketoglutarate levels as compared to glucagon; infection with AAV-PKA-DN had no impact on the effects of phenylephrine (Fig. 2g,h). In primary hepatocytes incubated with [U-13C]glutamine and [12C]lactate, glucagon and phenylephrine similarly enhanced the fractional labeling of extracellular glucose and intracellular metabolites (Supplementary Fig. 5h–l). In contrast, glucagon more strongly stimulated glucose synthesis and the total amount of 13C incorporation from glutamine into glucose (Supplementary Fig. 5h). These data provide evidence that both glucagon and phenylephrine use Ca2+ as an intracellular signal to enhance AKGDH activity, thereby biasing substrate selection for gluconeogenesis toward glutamine.

We next tested whether engineered reduction in hepatic glutaminase by knockdown of hepatic Gls2 gene expression was sufficient to alter systemic glucose homeostasis in mice in vivo. Infection of mice with AAV2/8 virus that expressed an shRNA targeting the Gls2 gene (AAV-GLS2-sh) lowered GLS2 protein levels (Fig. 3a). We performed in vivo infusion studies with [U-13C]glutamine and either saline or glucagon, and then monitored hepatic metabolites by mass spectrometry. As was observed in primary hepatocytes, in the mice infected with the negative-control AAV-GFP, glucagon caused a ~3-fold increase in the contribution of glutamine to glucose that was absent in mice infected with the AAV-GLS2-sh virus (Fig. 3b). Glucagon also caused a glutaminase-dependent increase in the fractional labeling of glycerol-3-phosphate in control liver, although the numerical increase failed to achieve statistical significance (Fig. 3c). The TCA cycle metabolites glutamate and malate exhibited reduced labeling at baseline in AAV-PKA-DN-infected mice, indicating reduced glutamine-to-glutamate flux, but their labeling in control and glutaminase-knockdown liver was unaffected by glucagon (Supplementary Fig. 6a,b). This unexpected finding might be the result of the restricted perportal expression of GLS2 and glutamine-derived gluconeogenesis9.

We next examined the role of GLS2 knockdown on systemic glucose homeostasis. Despite a reduction in the contribution of glutamine to hepatic glucose in AAV-GLS2-sh-injected animals, there was no significant lowering of blood glucose as compared to control animals (Fig. 3d). However, the concentration of insulin was significantly reduced in plasma form AAV-GLS2-sh-injected mice, indicating enhanced insulin sensitivity (Fig. 3e). Consistent with this notion, intracellular markers of insulin action, IRβ and AKT phosphorylation, were also lower in the livers of AAV-GLS2-sh-infected mice (Fig. 3a). These data indicate that, despite the lack of change in glucose levels...
following knockdown of GLS2, the lesser requirement of insulin to maintain normoglycemia indicated enhanced insulin sensitivity.

To better understand the contribution of GLS2 to glucose homeostasis, we generated germline GLS2 knockout (KO) mice; the absence of GLS2 protein in hepatocytes was confirmed by western blot (Supplementary Fig. 6c). Primary hepatocytes were isolated from fasted GLS2-WT wild-type (WT) or GLS2-KO mice and subjected to glucose output assays (Fig. 3f). With physiological levels of glucose as the sole substrate at 1 mM, glucagon stimulated glucose production in GLS2-WT but not GLS2-KO hepatocytes. In contrast, glucose production from lactate was similar in GLS2-WT and GLS2-KO primary hepatocytes. When both lactate and glutamine were provided as substrates, GLS2-KO primary hepatocytes produced less glucose at baseline and were less responsive to glucagon. These data indicate that GLS2 is an essential enzyme for glucagon-induced flux from glutamine to glucose in primary hepatocytes.

We next examined whether systemic glucose homeostasis was altered by loss of GLS2. GLS2-KO mice showed a reduction in blood glucose levels after overnight fasting but no change 4 h after refeeding (Fig. 3g). Fasting plasma glucagon (Fig. 3h) and alanine (Fig. 3i) levels were significantly higher in GLS2-KO mice, with no change in insulin levels (Fig. 3j), indicating glucagon resistance in the liver. To investigate the underlying mechanism responsible for the elevation of glucagon in GLS2-KO mice, we measured alpha and beta cell mass in pancreatic islets from fasted mice (Fig. 3k). Pancreatic islets from GLS2-KO mice demonstrated alpha cell hyperplasia (Fig. 3l), with no significant changes in beta cell mass (Fig. 3m).

To understand the importance of GLS2 in a disease setting, mice were challenged with a 60% high-fat diet. After 17 weeks on this diet, GLS2-KO mice exhibited a significant reduction in fasting glucose levels without significant changes in body weight, insulin, or glucagon (Fig. 3n–q). Taken together, these data support an important function of GLS2 in mediating the glucose output in fasting in response to glucagon.

Common genetic variants in a locus that includes the human liver glutaminase gene (GLS2) are associated with body mass index (BMI)-adjusted fasting plasma glucose and plasma glucose levels. A common variation resulting in replacement of Leu581 by proline (p.Leu581Pro) is the polymorphism most highly associated with higher fasting plasma glucose and lower plasma insulin. To determine whether this association is the result of higher glutaminase flux, we genotyped cryopreserved human hepatocytes and identified six lots heterozygous for the allele with the p.Leu581Pro substitution (LS81/P581) and six lots homozygous for the major allele encoding Leu581 (LS81/L581) that were matched for available donor characteristics. Hepatocytes from LS81/P581 donors exhibited greater...
Glucose production than control hepatocytes under basal conditions or after treatment with glucagon (Fig. 4a). Incubation of GLS2 L581/L581 hepatocytes with [U-13C]glutamine and unlabelled lactate and pyruvate resulted in both more rapid labeling and greater enrichment at steady state than was observed for homozgyous L581/L581 hepatocytes of multiple TCA and gluconeogenic intermediates (Fig. 4b–h). This increased labeling of TCA intermediates occurred despite equivalent fractional enrichment in intracellular glutamate, implicating a higher rate of glutamine-to-glutamate flux in the L581/P581 hepatocytes. To confirm that the GLS2 mutation encoding p.Leu581Pro is a gain-of-function mutation, we overexpressed either WT or L581P GLS2 in immortalized human hepatocytes and measured intracellular glutamate levels. Consistent with previous reports10,11, exogenous expression of WT GLS2 significantly increased intracellular glutamate levels, while expression of L581P GLS2 further elevated intracellular glutamate levels (Fig. 4i). These data, in combination with the higher blood glucose levels in individuals with GLS2 p.Leu581Pro variants, provide clear evidence that the contribution of glutaminolysis to gluconeogenesis is physiologically significant and of sufficient magnitude to impact glucose homeostasis in humans. In addition to the absolute rate of gluconeogenesis, the supply of major gluconeogenic substrates is a critical factor necessary for sustained gluconeogenesis during fasting. Accelerated glutamine turnover has been observed in conditions associated with elevated glutamone levels in vivo, including fasting and exercise, physiological states that are also associated with a reduction in serum glutamine levels12–16. Preferential utilization of glutamine under these conditions is likely related to the need for a stable pool of hepatic glucose precursors and the essential transfer of nitrogen from muscle amino acids to liver for conversion to urea and excretion12,17,18. In this report, we have demonstrated a molecular mechanism by which glucagon biases hepatic metabolism toward the utilization of glutamine. Unlike glucagon’s effects on cytoplasmic enzyme activity, its mitochondrial actions serve to not only increase gluconeogenesis but also to modify substrate selection. While lactate accounted for the majority of the carbons destined for synthesis of glucose under both basal and hormone-stimulated conditions, glucagon stimulated a disproportionately greater increase in gluconeogenesis from glutamine. In this manner, glutaminolysis is responsible for the majority of the hormone-dependent increase in gluconeogenesis and probably contributes significantly to the rapid surge in mitochondrial respiration that has been long recognized as an important component of glucagon’s actions19,20. Thus, the glucagon-dependent shift to glutamine utilization is critical for the liver and organism during fasting states. The kidney is also capable of glutamine-derived gluconeogenesis21. The fractional contribution of glutamine to renal gluconeogenesis is greater than that in the liver13. However, the impact of glucagon on glutamine-derived gluconeogenesis is restricted to the liver; increases in glucagon are capable of augmenting the hepatic glutamine-derived gluconeogenic rate to a level that surpasses the rate of glutamine-derived renal gluconeogenesis13. Therefore, glucagon signaling and systemic tone result not only in a change in hepatic gluconeogenic substrate selection but also in a change in the major sites of systemic consumption of this amino acid. There have been previous indications that glucagon regulates mitochondrial metabolism. Glucagon elicits a rapid and significant enhancement of mitochondrial Ca2+ uptake, driven by glucagon-stimulated increases in cytoplasmic Ca2+ concentration due to release from intracellular stores22–25 and Ca2+ influx across the plasma membrane26,27. The former has been proposed to be due to PKA-mediated phosphorylation of IP3R (ref. 8). One consequence of activating IP3R-mediated Ca2+ release is the efficient transfer of Ca2+ into...
mitochondria, where it activates dehydrogenases and stimulates TCA cycle activity. In hepatocytes, glucagon reduces cellular α-ketoglutarate and activates AKGDH. In the current study, we have confirmed and extended these observations and can now integrate them into a coherent and quantitative model of how glucagon rapidly activates preferential flux from glutamine into glucose (Fig. 4j). Moreover, we have provided the first genetic evidence that this pathway is quantitatively significant in human liver. We propose that PKA-dependent phosphorylation of IP3R leads to Ca$^{2+}$ release from the ER, raising mitochondrial matrix Ca$^{2+}$ concentrations with consequent AKGDH activation, stimulation of mitochondrial respiration and reduction of the levels of α-ketoglutarate. The ability of both glucagon and phenylephrine to promote the anaplerotic entry of substrate into the TCA cycle as α-ketoglutarate emphasizes the critical role of Ca$^{2+}$ as a signaling intermediate. Glucagon also activates glutaminolysis, resulting in increased cellular glutamate content and 13C enrichment from glutamine in both mouse and human hepatocytes; however, the precise mechanisms for this remain unclear. Glucagon has also been shown to increase the rate of glutamine transport in conjunction with increased glutaminase activity; our work does not formally distinguish between these two points of flux control, but our data showing no increase in hepatocyte glutamine levels following glucagon treatment despite increased cellular glutamate would suggest that glutaminolysis is a minor contributor.

The absence of GLS2 protein completely blocked the flux from glutamine to glucose in primary hepatocytes. Consistent with glutamine serving as a major glucagon-stimulated gluconeogenic substrate, GLS2-KO hepatocytes had minimal glucagon stimulation when a physiological mixture of lactate and glutamine was used as substrate. Glutamine flux appears to represent a quantitatively significant contributor to systemic glucose production in mice and humans, as indicated by the increase in plasma glucose elicited by a gain-of-function polymorphism in the GLS2 gene in humans and the removal of GLS2 in mice. It is likely that the glucagon-dependent activation of hepatic glutaminolysis is an important component of both normal variation in circulating metabolites and the pathophysiology of type 2 diabetes. These studies raise the intriguing possibility that GLS2 could represent a novel, genetically validated type 2 diabetes target for improvement of glucose homeostasis.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

All data generated and analyzed within this study are presented in the article and supplementary procedures. The stable-isotope-based metabolomics work was supported by US NIH grant CA211437 to W.L. This work was also supported by FONDECYT grant 1160332 to C.C. and CONICYT/FONDAP 15150012 to C.C.

AUTHOR CONTRIBUTIONS

R.A.M. designed and performed all experiments and drafted and edited the manuscript. Y.Z. designed experiments and drafted and edited the manuscript. M.B. performed mass spectrometry experiments in human hepatocytes and edited the manuscript. M.B. performed mass spectrometry experiments in human hepatocytes and edited the manuscript. H.W. performed experiments on human hepatocytes and edited the manuscript. C.C. performed mouse hepatocyte calcification experiments and edited the manuscript. M.W. performed experiments related to GLS2 knockout and in vivo infusions and edited the manuscript. J.K.F. edited the manuscript. I.O.P. performed flux modeling experiments and edited the manuscript. Y.Z. performed pancreas histology experiments and edited the manuscript. W.L.H. designed pancreas histology experiments and edited the manuscript. J.D.R. designed experiments and drafted and edited the manuscript. M.J.B. designed experiments and drafted and edited the manuscript.

COMPETING INTERESTS

R.A.M., Y.S., D.A.P., A.J., M.B., H.W., M.W., and M.J.B. were employed by Pfizer during the reported studies.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Miller, R.A. & Birnbaum, M.J. Glucagon: acute actions on hepatic metabolism. Diabetesologia 59, 1376–1381 (2016).
2. Scott, R.A. et al. Large-scale association analyses identify new loci influencing glycaemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).
3. Suehr, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).
4. Exton, J.H. & Park, C.R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3',5'-monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243, 4189–4196 (1968).
5. Young, V.R. & Ajami, A.M. Glutamine: the emperor or his clothes? J. Nutr. 131, 2449S–2459S discussion 2486S–2475S (2001).
6. Miller, R.A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).
7. Titchenell, P.M. et al. Direct hepatic insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154–1166 (2016).
8. Williamson, J.R. et al. Mechanisms involved in receptor-mediated changes in intracellular Ca$^{2+}$ in liver. Soc. Geniol. Physiol. Ser. 42, 93–116 (1987).
9. Watford, M. & Smith, E.M. Distribution of hepatic glutaminase activity and mRNA in peripancreatic and periportal rat hepatocytes. Biochem. J. 267, 265–267 (1990).
10. Hu, W. et al. Glutamine 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA 107, 7455–7460 (2010).
11. Suzuki, S. et al. Phosphatase-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 107, 7461–7466 (2010).
12. Krishna, M.G. et al. Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. Am. J. Physiol. Endocrinol. Metab. 279, E638–E645 (2000).
13. Stumvoll, M., Meyer, C., Kreider, M., Perriello, G. & Gerich, J. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism 47, 1227–1232 (1998).
14. Battezzati, A., Simonson, D.C., Luzi, L. & Matthews, D.E. Glucagon increases glutamate uptake without affecting glutamine release in humans. Metabolism 47, 713–723 (1998).
15. Hankard, R.G., Haymond, M.W. & Darmaun, D. Role of glutamine as a glucose precursor in fasting humans. Diabetes 46, 1535–1541 (1997).
16. Stumvoll, M. et al. Glutamine and alanine metabolism in NIDDM. Diabetes 45, 863–868 (1996).
17. Periello, G. et al. Estimation of glucose–alanine–lactate–glutamate cycles in postabsorptive humans: role of skeletal muscle. Am. J. Physiol. 269, E443–E450 (1995).
18. Nurnjhan, N. et al. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Invest. 95, 272–277 (1995).
19. Haisetrap, A.P. Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c_{1} and cytochrome c by glucagon treatment of rats. Biochem. J. 172, 399–405 (1978).
20. Yamazaki, R.K. Glucagon stimulation of mitochondrial respiration. J. Biol. Chem. 250, 7924–7930 (1975).
21. Stumvoll, M., Periello, G., Meyer, C. & Gerich, J. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55, 778–792 (1999).
22. Mauger, J.P., Claret, M., Pietri, F. & Hilly, M. Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver. J. Biol. Chem. 264, 8821–8826 (1989).
23. Burgess, G.M., Bird, G.S., Ojibe, J.F. & Putney, J.W. Jr. The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate–mediated Ca$^{2+}$ mobilization without increasing the cellular levels of inositol polyphosphates. J. Biol. Chem. 266, 4772–4781 (1991).
24. Bygrave, F.L., Gamberucci, A., Fulceri, R. & Benedetti, A. Evidence that stimulation of plasma-membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes. *Biochem. J.* **292**, 19–22 (1993).

25. Fernando, K.C., Gregory, R.B. & Barritt, G.J. Protein kinase A regulates the disposition of Ca2+ which enters the cytoplasmic space through store-activated Ca2+ channels in rat hepatocytes by diverting inflowing Ca2+ to mitochondria. *Biochem. J.* **330**, 1179–1187 (1998).

26. Hughes, B.P. & Barritt, G.J. Effects of glucagon and N\textsuperscript{6-O2′-dibutyryladenosine 3′:5′-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. *Biochem. J.* **176**, 295–304 (1978).

27. Keppens, S., Vandenheede, J.R. & De Wulf, H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. *Biochim. Biophys. Acta* **496**, 448–457 (1977).

28. Denton, R.M. & McCormack, J.G. Ca2+ transport by mammalian mitochondria and its role in hormone action. *Am. J. Physiol.* **269**, E543–E554 (1985).

29. Siess, E.A. & Wieland, O.H. Glucagon-induced stimulation of 2-oxoglutarate metabolism in mitochondria from rat liver. *FEBS Lett.* **93**, 301–306 (1978).

30. Williamson, J.R., Browning, E.T., Thurman, R.G. & Scholz, R. Inhibition of glucagon effects in perfused rat liver by (+)-decanoylecarnitine. *J. Biol. Chem.* **244**, 5055–5064 (1969).

31. Lacey, J.H., Bradford, N.M., Joseph, S.K. & McGivan, J.D. Increased activity of phosphate-dependent glutaminase in liver mitochondria as a result of glucagon treatment of rats. *Biochem. J.* **194**, 29–33 (1981).

32. Joseph, S.K. & McGivan, J.D. The effect of ammonium chloride and glucagon on the metabolism of glutamine in isolated liver cells from starved rats. *Biochim. Biophys. Acta* **543**, 16–28 (1978).

33. Low, S.Y., Salter, M., Knowles, R.G., Pogson, C.I. & Rennie, M.J. A quantitative analysis of the control of glutamine catabolism in rat liver cells. Use of selective inhibitors. *Biochem. J.* **295** (Pt. 2), 617–624 (1993).
Materials. AAV-PKA-DN virus was constructed by cloning a cDNA encoding dominant inhibitory PKA-Rab8 into an AAV plasmid that contained a hepatocyte-specific promoter (thyroid-binding globulin, Tbg). An shRNA targeting the mouse Gls2 gene was created that had the 21-nucleotide sequence 5′-CTAGGATTTAGGATGTTGCAAG-3′ after the U6 promoter in an AAV vector. AAV virus was produced at the University of Pennsylvania Vector Core. Stable-isotope substrates were purchased from Cambridge Isotopes. All other chemicals were purchased from Sigma-Aldrich. Antibodies specific for phosphorylated (Ser1765; 8548) and total (8568) IP-R, phosphorylated (Ser133; 9198) and total (9197) CREB, phosphorylated (Tyr1150/1151; 3204) and total (3205) insulin receptor β, phosphorylated (Ser473; 4060) and total (4691) Akt, total GAPDH (5174) and β-actin (3700) were purchased from Cell Signaling Technology. Total PFKFB1 antibody was purchased from Abcam (ab71625). Total GLS2 antibody was purchased from Sigma (HPA038608). The antibody to phosphorylated (Ser33) PFKFB1 was produced by Cell Signaling Technology. The total Glutaminase K1 antibody was purchased from BioLegend (ab16272) from Abnova.

Glutamine depletion studies. Primary hepatocytes were incubated with 2.5 mM [12C5]glutamine. At 30 min and 1 h, medium was removed, centrifuged to remove loose cells, and an equal volume of methanol containing 0.25 mmol/kg/h [U-13C]glutamine for 1 h. After 1 h, the pump solutions were switched to include either 0.25 mmol/kg/h [U-13C]glutamine or 0.25 mmol/kg/h [U-13C]glutamine with the addition of 1 mg/kg/h of glucagon. After 1 h of infusion, animals were anesthetized with pentobarbital, liver tissue was collected and rapidly frozen in liquid nitrogen, and terminal blood was collected by cardiac stick.

Mass spectrometry. Primary hepatocytes were given the indicated gluconeogenic substrates, and reactions were stopped by rapidly removing culture medium and adding to the cells 80% methanol precooled with dry ice. Cellular debris was removed by centrifugation, and samples were dried by speedvac. The dried cell extracts were redissolved in 200 µl of HPLC-grade water and analyzed via reverse-phase ion-pairing chromatography coupled to an ExactQuadrupole mass spectrometer (Thermo Fisher Scientific). The mass spectrometer was operated in negative-ion mode with a scan rate of 1 Hz and a resolving power of 100,000, with a scanning range of m/z 85-1,000. The LC method has been described before33, using a Synergy Hydro-RP column (100 mm × 2 mm, particle size of 2.5 µm, Phenomenex) with a flow rate of 200 µl/min. The LC gradient was as follows: 0 min: 0% B; 2.5 min: 0% B; 5 min: 20% B; 7.5 min: 20% B; 13 min: 55% B; 15.5 min: 95% B; 18.5 min: 95% B; 19 min: 0% B; 25 min: 0% B. Solvent A was 97.5% water:methanol with 10 mM tributylamine and 15 mM acetic acid; solvent B was methanol. Other LC parameters were as follows: autosampler temperature, 5 °C; injection volume, 10 µl; column temperature, 25 °C.

Data analyses were performed using MAVEN software6, which performs both peak alignment and quantification (for both labeled and unlabeled forms) and allows user validation by extracted ion chromatogram visualization. All peak identities were confirmed by exact mass and retention time matching to authenticated metabolite standards. Ion signals were further processed to correct for the natural isotope abundance of the unlabeled glucose and trace unlabeled impurity in the labeled substrates.

Metabolic flux analysis. Mass isotope distribution of intracellular and extracellular metabolites were obtained using LC–MS when cells were incubated with [13C6]glutamine or [13C3]lactate. Intracellular metabolites, glucose-6-phosphate, glycero-3-phosphate (a proxy for dihydroxyacetone phosphate), 3-phosphoglycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA, α-ketoglutarate, succinate, malate, aspartate (a proxy for cytosolic oxaloacetate), and glutamate were included in the flux calculation. In addition, measured lactate and glutamine uptake rates as well as glucose and pyruvate secretion rates were input. The lactate exchange rate, that is, the rate at which [13C]lactate appeared in the medium when [13C6]glutamine and [13C3]lactate were used as carbon sources, was measured. A cumomer network encompassing TCA cycle, anaplerotic, and gluconeogenic reactions was generated using 13CFLUX2X (http://www.13cflux.net/)4,5,6. The flux distributions that minimized the variance-weighted sum of the squared residuals between measured and computed mass isotope distributions were obtained by iteratively invoking the interior-point optimization algorithm in Matlab. Subsequently, 95% confidence intervals around the optimal fluxes were calculated35.

α-Ketoglutarate assays. Primary hepatocytes were incubated with 5 mM lactate for 30 min and then treated as indicated. Reactions were stopped by removing the culture medium, and α-ketoglutarate was extracted with the addition of 80% methanol. Cellular debris was removed by centrifugation, and samples were dried by speedvac. α-Ketoglutarate and pyruvate were quantified in coupled glutamic transaminase and pyruvate oxidase reactions in the presence of horseradish peroxidase and Amplex Red26. Briefly, reactions containing 100 mM KPO4 pH 6.8, 1 mM EDTA, 1 mM MgCl2, 10 µM FAD, 200 µM TPP, 20 mM alanine, 25 µM Amplex Red, 0.5 µM horseradish peroxidase, 0.2 U/ml pyruvate oxidase, and ±0.2 units/ml glutamic pyruvic transaminase were incubated for 30 min with samples or α-ketoglutarate standards. Amplex Red fluorescence was quantified with excitation at 535-nm light, detecting emission at 587 nm, and values from samples lacking transaminase were subtracted from those for transaminase-containing samples.
α-Ketoglutarate dehydrogenase assays. For AKGDH assays, mitochondria were isolated by differential centrifugation from primary hepatocytes treated as indicated37. The assay buffer included 20 mM HEPES pH 7.4, 1 mM MgCl2, 100 μM CoA, 2.5 mM NAD+, 0.01% rotenone, 2 mM KCN, and 1 mM DTT ± 50 μM α-ketoglutarate. Assays were started by addition of mitochondria, and NADH production was monitored by the absorbance at 340 nm.

Calcium measurements. Freshly isolated primary hepatocytes from WT C57BL/6 mice were plated on collagen-coated coverslips, allowed to attach for 3 h, and loaded with Fura-2 dye. Images were acquired with a continuous flow of medium for rapid switching of treatment conditions. Fluorescence ratios were compared to standard curves to estimate total cytoplasmic calcium levels.

Human hepatocyte genotyping. Forty-one cryopreserved human hepatocyte lots were purchased from BD Biosciences and Life Technologies. Genomic DNA was extracted using the QIAamp DNA Micro kit (Qiagen) in accordance with the manufacturer's instructions. DNA was resuspended to a concentration of 5–10 ng/μl for subsequent genotyping analysis. Genotyping of rs2657879 (c.1742T>C) was performed following amplification of the 411-bp genomic sequence using the primers rs2657879F (5’-TTTGCCGAGGACAGGTGAGG-3’ and rs2657879r (5’-CTTGTCCTCCCTAAGCAGGTGAGG-3’). The PCR product was sent to Beckman Coulter Genomics for direct sequencing using the primer rs2657879seq (5’-TTTGCCGAGGACAGGTGAGG-3’).

Cryopreserved human hepatocyte culture. Cryopreserved human hepatocytes were thawed in High-Viability CryoHepatocyte Recovery Medium (454560, BD Biosciences). Nonviable cells were removed following the cell vendor’s protocol before cell plating. Viable cells were plated onto collagen-coated 48-well plates (150,000 cells/well) in Invitrogen plating medium (Celsis IVT Z99092, Bioreclamation IVT) and were allowed to attach for 6 h. After attachment, the medium was replaced with fresh low-glucose DMEM supplemented with 10% FBS and 1 μM glucagon (G3157, Sigma-Aldrich). The following day, cells were incubated in Krebs buffer for 1 h without glucose-nonsufficient substrates. At time 0, the medium was switched to medium with 5 mM [12C6]lactate, 0.5 mM [12C5]pyruvate, and 2.5 mM [13C6]glutamine. Cells were incubated for 1, 5, 15, 60, or 180 min, washed in warm PBS, and lysed with the addition of cold 80% methanol. Cells were scraped, and cellular debris was pelleted through centrifugation. Supernatants were collected, dried under vacuum, and reconstituted in 100 μl of 0.1% formic acid before LC–HMRAS analysis.

Immunofluorescence of pancreatic islets. Immunofluorescent staining for insulin and glucagon was performed as previously described on multiple, non-adjacent 5-μm sections no closer than 50 μm apart38. Antibody to glucagon was from Dako (A0564; 1:500 dilution), and antibody to insulin was from Abcam (10988; 1:1,000 dilution), and antibody to insulin was from Dako (A0564; 1:500 dilution). Images were collected using a BZ-X710 fluorescence microscope (Keyence).

LC–HMRAS analysis and workflow. Analysis of glutamine and its cellular metabolites was conducted by injecting a 10-μl sample aliquot onto an Intakt UK-Phenyl (2.1 mm × 150 mm) column (Intakt USA) using a Waters Acquity UPLC system (Waters Corp.) coupled to a Thermo Q-Exactive (Thermo Corp.) mass spectrometer. Analytes were chromatographically resolved using a linear gradient from 0% to 50% B or acetonitrile containing 0.3% formic acid, over 3 min at 500 μl/min with a column temperature of 40 °C. Mobile phase A composition was 0.1% formic acid. Metabolites were monitored using negative-ion electrospray (ESI−) in full scan mode with a resolution of 70,000 calibrated to mass accuracy <2 p.p.m. Instrument parameters were fixed: the sheath gas was 60 instrument-specific arbitrary units (AU), the auxiliary gas was 40 AU, the sweep gas was 2 AU, the ESI− spray voltage was −3 kV, the capillary temperature was 320 °C, and the S-lens was set at 50 AU. Glutamine flux was determined through measurement of expected [13C]glutaminolysis isotopomers. Cell experiments without the addition of labeled glutamine were used as negative controls to ensure that the labeled metabolites identified were unique to the samples treated with labeled substrate. Thermo LCQuan (Thermo Corp.) was used to extract out exact mass, extracted ion chromatograms using a window of 10 p.p.m. at the calculated accurate mass for each metabolite and isotopomer. Individual isotopomer percentages were normalized to the total sum of all detected isotopomers after natural isotope correction. Data analysis was performed using Microsoft Excel, and plots were generated in GraphPad Prism.

Statistics. All results are expressed as means ± s.e.m. All two-group comparisons were deemed statistically significant by unpaired two-tailed Student’s t-test if P < 0.05 or by two-way ANOVA. All experimental values were obtained from the measurement of distinct samples and non-repeated measures of the same sample. Experiments were performed multiple times as indicated in the figure legends, with representative data presented. Sample sizes were selected on the basis of previous knowledge of the variation in experimental methods and the expected effect size observed in previous studies. Variation was similar between groups being compared and exhibited apparent normal distribution.

General methods statements. No samples, mice, or studies were removed from the analyses. Experiments were not blinded and samples were not randomized in this study, except for the analysis of mass spectrometry samples, which were run agnostic of groupings. Tissue culture samples were not evaluated for mycoplasma contamination.

Life Sciences Reporting Summary. Further information on experimental design is available in the Life Sciences Reporting Summary.

Data availability. All analyses are contained within this manuscript, and source data are archived and available upon reasonable request. Uncropped images of western blots can be found in Supplementary Figure 7.

34. Lu, W. et al. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82, 3212–3221 (2010).
35. Melamed, U., Vastag, L. & Rabinowitz, J.D. Metabolomic analysis and visualization engine for LC-MS data. Anal. Chem. 82, 9818–9826 (2010).
36. Weitzel, M. et al. 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29, 143–145 (2013).
37. Wiegert, W., Mollney, M., Isermann, N., Wurzel, M. & de Graaf, A.A. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006).
Publisher Correction: Targeting hepatic glutaminase activity to ameliorate hyperglycemia

Russell A. Miller, Yuji Shi, Wenyun Lu, David A. Pirman, Aditi Jatkar, Matthew Blatnik, Hong Wu, César Cárdenas, Min Wan, J. Kevin Foskett, Junyoung O. Park, Yiyi Zhang, William L. Holland, Joshua D. Rabinowitz and Morris J. Birnbaum

Correction to: Nature Medicine https://doi.org/10.1038/nm.4514, published online 26 March 2018.

In the version of this article initially published, the “[13C2]α-ketoglutarate” label on Fig. 1g is incorrect. It should be “[13C5]α-ketoglutarate”. Additionally, in Fig. 3b, the “AAV-GFP” group is missing a notation for significance, and in Fig. 3c, the “AAV-GLS2-sh” group is missing a notation for significance. There should be a double asterisk notating significance in both panels. Finally, in the Fig. 4g legend, “[13C6]UDP-glucose” should be “[13C3]UDP-glucose”, and in the Fig. 4h legend, “[13C6]hexose” should be “[13C3]hexose”. The errors have been corrected in the HTML and PDF versions of this article.

Published online: 12 June 2018
https://doi.org/10.1038/s41591-018-0047-1