SUFFICIENCY OF NON-ISOLATED SINGULARITIES

PIOTR MIGUS, TOMASZ RODAK, STANISLAW SPODZIEJA

Abstract. We give, in terms of the Łojasiewicz inequality, a sufficient condition for C^k-mappings germs of non-isolated singularity at zero to be isotopical.

1. Introduction and results

Let $F: (\mathbb{R}^n, a) \to \mathbb{R}^m$ denote a mapping defined in a neighbourhood of $a \in \mathbb{R}^n$ with values in \mathbb{R}^m. If $F(a) = b$, we put $F: (\mathbb{R}^n, a) \to (\mathbb{R}^m, b)$. By ∇f we denote the gradient of a C^1-function $f: (\mathbb{R}^n, a) \to \mathbb{R}$. By $| \cdot |$ we denote a norm in \mathbb{R}^n and $\text{dist}(x, V)$ - the distance of a point $x \in \mathbb{R}^n$ to a set $V \subset \mathbb{R}^n$ (or $\text{dist}(x, V) = 1$ if $V = \emptyset$).

By a k-jet at $a \in \mathbb{R}^n$ in the C^l class we mean a family of C^l functions $(\mathbb{R}^n, a) \to \mathbb{R}$, called C^l-realisations of this jet, possessing the same Taylor polynomial of degree k at a. The k-jet is said to be C^r-sufficient (respectively C^r-v-sufficient) in the C^l class, if for every of his C^l-realisations f and g there exists a C^r diffeomorphism $\varphi: (\mathbb{R}^n, a) \to (\mathbb{R}^n, a)$, such that $f \circ \varphi = g$ (respectively $f^{-1}(0) = \varphi(g^{-1}(0))$) in a neighbourhood of a (R. Thom [23]).

In the paper we will consider the k-jets in the class C^k and write shortly k-jets.

The classical result in the subject sufficiency of jets is the following:

Theorem 1 (Kuiper, Kuo, Bochnak-Łojasiewicz). Let w be a k-jet at $0 \in \mathbb{R}^n$ and let f be its C^k realisation. If $f(0) = 0$ then the following conditions are equivalent:

(a) w is C^0-sufficient in the C^k class,

(b) w is C^0-v-sufficient in the C^k class,

(c) $|\nabla f(x)| \geq C|x|^{k-1}$ as $x \to 0$ for some constant $C > 0$.

The implication (c)\Rightarrow(a) was proved by N. H. Kuiper [10] and T. C. Kuo [11], (b)\Rightarrow(c) - by J. Bochnak and S. Łojasiewicz [2], and the implication (a)\Rightarrow(b) is obvious (see also [13], [20]). Analogous result in the complex case was proved by S. H. Chang and Y. C. Lu [4], B. Teissier [22] and J. Bochnak and W. Kucharz [1]. Similar considerations as above are carried out for functions in a neighbourhood of infinity (see [3], [19], [16]).

Theorem 1 concerns the isolated singularity of f at 0, i.e. the point 0 is an isolated zero of ∇f. The case of non-isolated singularities of real functions was investigated...
by many authors, for instance by J. Damon and T. Gaffney [3], T. Fukui and E. Yoshinaga [7], V. Grandjean [8], Xu Xu [24] and for complex functions - by D. Siersma [17, 18] and R. Pellikaan [14].

The purposes of this article are generalisations of the above results for a C^k mappings in a neighbourhood of zero with non-isolated singularity at zero. Recall the definition of k-Z-jet in the class of functions with non-isolated singularity at zero (cf. [24]).

The set of C^k mappings $(\mathbb{R}^n, a) \to \mathbb{R}^m$ we denote by $\mathcal{C}_k^n(n, m)$. For a function $f \in \mathcal{C}_a^n(n, 1)$, by $j^k f(a)$ we denote the k-jet at a (in the C^k-class) determined by f. For a mapping $F = (f_1, \ldots, f_m) \in \mathcal{C}_a^n(n, m)$ we put $j^k F(a) = (j^k f_1(a), \ldots, j^k f_m(a))$.

Let $Z \subset \mathbb{R}^n$ be a set such that $0 \in Z$ and let $k \in \mathbb{Z}$, $k > 0$. By k-Z-jet in the class $\mathcal{C}_0^n(n, m)$, or shortly k-Z-jet, we mean an equivalence class $w \in C_0^n(n, m)$ of the equivalence relation \sim: $F \sim G$ iff for some neighbourhood $U \subset \mathbb{R}^n$ of the origin, $j^k F(a) = j^k G(a)$ for $a \in Z \cap U$ (cf. [24]). The mappings $F \in w$ we call C^k-Z-realisations of the jet w and we write $w = j^k F$. The set of all jets $j^k F$ we denote by $J^k_2(n, m)$.

The k-Z-jet $w \in J^k_2(n, m)$ is said to be C^r-Z-sufficient (resp. C^r-Z-v-sufficient) in the C^k class, if for every of its C^k-Z-realisations f and g there exists a C^r diffeomorphism $\varphi: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, such that $f \circ \varphi = g$ (resp. $f^{-1}(0) = \varphi(g^{-1}(0))$) in a neighbourhood U of 0 and $\varphi(x) = x$ for $x \in Z \cap U$.

The following Kuiper and Kuo criterion (Theorem II(c) ⇒ (a)) for jets with non-isolated singularity was proved by Xu Xu [24].

Theorem 2. Let $Z \subset \mathbb{R}^n$ be a closed set such that $0 \in Z$. If $f \in C^k(n, 1)$ such that $\nabla f(x) = 0$ for $x \in Z$, satisfies the condition

$$|\nabla f(x)| \geq C \text{ dist}(x, Z)^{k-1}$$

as $x \to 0$ for some constant $C > 0$,

then the k-Z-jet of f is C^0-Z-sufficient.

The main result of this paper is Theorem 3 below. It is a generalisation of the Theorem 2 to the case of mapping jets. Let us start with some definition. Let X, Y be Banach spaces over \mathbb{R}. Let $L(X, Y)$ denote the Banach space of linear continuous mappings from X to Y. For $A \in L(X, Y)$, A^* stands for the adjoint operator in $L(Y^*, X^*)$, where X^* is the dual space of X. For $A \in L(X, Y)$ we put

$$\nu(A) = \inf \{ \| A^* \varphi \| : \varphi \in Y^*, \| \varphi \| = 1 \},$$

where $\| A \|$ is the norm of linear mapping A (see [15]). In the case $f \in C_0^k(n, 1)$ we have $\nu(df) = |\nabla f|$, where df is the differential of f.

Theorem 3. Let $f: (\mathbb{R}^n, 0) \to (\mathbb{R}^m, 0)$, where $m \leq n$, be a C^k-Z-realisation of a k-Z-jet $w \in J^k_2(n, m)$, where $k > 1$ and $Z = \{ x \in \mathbb{R}^n : \nu(df(x)) = 0 \}$, $0 \in Z$. Assume that for a positive constant C,

$$\nu(df(x)) \geq C \text{ dist}(x, Z)^{k-1}$$

as $x \to 0$.

Then the jet w is C^0-Z-sufficient in the class C^k. Moreover for any C^k-Z-realisations f_1, f_2 of w, the deformation $f_1 + t(f_2 - f_1)$, $t \in \mathbb{R}$ is topologically trivial along $[0, 1]$. In particular the mappings f_1 and f_2 are isotopical at zero.
For the definition of isotopy and topological triviality see Subsection 2.3. By Lemmas 2 and 3 in Section 2, Theorem 3 is also true for holomorphic mappings. It is not clear to the authors if the inverse to Theorem 3 holds. In the proof of Theorem 3, given in Section 2, we use a method of the proof of Theorem 1 in [10].

In the case of nondegenerate analytic functions \(f, g \), a conditions for topological triviality of deformations \(f + tg, t \in [0, 1] \) in terms of Newton polyhedra was obtained by J. Damon and T. Gaffney [5], and for blow analytic triviality – T. Fukui and E. Yoshinaga [7] (see also [21], [25]).

From the proof of Theorem 3 we obtain a version of the theorem for functions of \(C^1 \) class with locally Lipschitz differentials.

Corollary 1. Let \(f, f_1 : (\mathbb{R}^n, 0) \to (\mathbb{R}^m, 0) \) be differentiable mappings with locally Lipschitz differentials \(df, df_1 : (\mathbb{R}^n, 0) \to L(\mathbb{R}^n, \mathbb{R}^m) \) let \(Z = \{ x \in \mathbb{R}^n : \nu(df(x)) = 0 \} \), and let \(0 \in Z \). It

\[
(4) \quad \nu(df(x)) \geq C \operatorname{dist}(x, Z),
\]

\[
(5) \quad |f(x) - f_1(x)| \leq C_1 \nu(df(x))^2,
\]

\[
(6) \quad \|df(x) - df_1(x)\| \leq C_2 \nu(df(x))
\]
as \(x \to 0 \) for some constants \(C, C_1, C_2 > 0, C_2 < \frac{1}{2} \), then the deformation \(f + t(f_1 - f) \) is topologically trivial along \([0, 1]\). In particular \(f \) and \(f_1 \) are isotopical at zero.

The proof of the above corollary is given in Subsection 2.5.

In Section 3 we prove the following theorem type of Bochnak-Łojasiewicz (cf. implication \((b) \Rightarrow (c)\) in Theorem 1), that \(C^0. Z. v\)-sufficiency of a jets implies the \(\dot{\text{Ł}}ojasiewicz \) inequality, provided \(j^{k-1}f(0) = 0 \) for \(C^k. Z\)-realisations \(f \) of the jet. Namely, we will prove the following

Theorem 4. Let \(Z \subset \mathbb{R}^n \) be a set such that \(0 \in Z \), let \(w \) be a \(k-Z\)-jet, \(k > 1 \), and let \(f \) be its \(C^k. Z\)-realisation. If \(w \) is \(C^0. Z. v\)-sufficient in \(C^k\)-class, \(j^{k-1}f(0) = 0 \) and \(V(\nabla f) \subset Z \), then

\[
(7) \quad |\nabla f(x)| \geq C \operatorname{dist}(x, Z)^{k-1} \quad \text{as} \quad x \to 0 \quad \text{for some constant} \quad C > 0.
\]

It is obvious that a \(C^0. Z\)-sufficient jet is also a \(C^0. Z. v\)-sufficient, so, Theorem 4 in a certain sense is an inverse of Theorem 2.

2. **Proof of Theorem 3**

2.1. **Differential equations.** Let us start from recalling the following

Lemma 1. Let \(G \subset \mathbb{R} \times \mathbb{R}^n \) be an open set, \(W : G \to \mathbb{R}^n \) be a continuous mapping and let \(V \subset \mathbb{R}^n \) be a closed set. If in \(G \setminus (\mathbb{R} \times V) \) system

\[
(8) \quad \frac{dy}{dt} = W(t, y)
\]

has a global unique solutions and there exist neighbourhood \(U \subset G \) of set \((\mathbb{R} \times V) \cap G \) and a positive constant \(C \) such that

\[
(9) \quad |W(t, x)| \leq C \operatorname{dist}(x, V) \quad \text{for} \quad (t, x) \in U,
\]

then the system \((8)\) in \(G \) has a global unique solutions.
2.2. The Rabier function. Let X, Y be Banach spaces over \mathbb{K}, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. Let $L(X, Y)$ denote the Banach space of linear continuous mappings from X to Y. For $A \in L(X, Y)$, A^* stands for the adjoint operator in $L(Y', X')$, where X' is the dual space of X. We begin with recalling some properties of the Rabier function (cf. [16]).

Lemma 2 ([12]). Let Σ be the set of operators $A \in L(X, Y)$ such that $A(X) \subset Y$. We have

$$\nu(A) = \text{dist}(A, \Sigma), \quad A \in L(X, Y).$$

Lemma 3 ([15]). Let $A, B \in L(X, Y)$. Then $|\nu(A) - \nu(B)| \leq \|A - B\|$. In particular $\nu : L(X, Y) \to \mathbb{R}$ is Lipschitz.

From Lemma 3 we have

Lemma 4. If $A, B \in L(X, Y)$ then

$$\nu(A + B) \geq \nu(A) - \|B\|.$$

Definition 1 ([9]). Let $a = [a_{ij}]$ be the matrix of $A \in L(\mathbb{K}^n, \mathbb{K}^m)$, $n \geq m$. By $M_I(A)$, where $I = (i_1, \ldots, i_m)$ is any subsequence of $(1, \ldots, n)$, we denote an $m \times m$ minor of a given by columns indexed by I. Moreover, if $J = (j_1, \ldots, j_{m-1})$ is any subsequence of $(1, \ldots, n)$ and $j \in (1, \ldots, m)$, then by $M_J(j)(A)$ we denote an $(m-1) \times (m-1)$ minor of a given by columns indexed by J and with deleted jth row (if $m = 1$ we put $M_J(j)(A) = 1$). Let

$$h_l(A) = \max \{|M_J(j)(A)| : J \subset I, j = 1, \ldots, m\},$$

$$g'(A) = \max_j \frac{|M_J(A)|}{h_l(A)}.$$

Here we put $0/0 = 0$. If $m = n$, we put $h_l = h$.

Lemma 5 ([9]). There exist $C_1, C_2 > 0$, such that for any $A \in L(\mathbb{K}^n, \mathbb{K}^m)$ we have

$$C_1 g'(A) \leq \nu(A) \leq C_2 g'(A).$$

Corollary 2 ([16]). The function g' is continuous.

Lemma 6 ([12]). Assume that X, Y are complex Banach spaces. Let $\Sigma_\mathbb{C}$ (resp. $\Sigma_\mathbb{R}$) be the set of nonsurjective \mathbb{C}-linear (resp. \mathbb{R}-linear) continuous maps from X to Y. Then for any continuous \mathbb{C}-linear map $A : X \to Y$,

$$\text{dist}(A, \Sigma_\mathbb{C}) = \text{dist}(A, \Sigma_\mathbb{R}).$$

2.3. Isotopy and triviality. Let $\Omega \subset \mathbb{R}^n$ be a neighbourhood of $0 \in \mathbb{R}^n$ and let $Z \subset \mathbb{R}^n$ be a set such that $0 \in Z$.

We will say, that a continuous mapping $H : \Omega \times [0, 1] \to \mathbb{R}^n$ is an **isotopy near Z at zero** if

(a) $H_0(x) = x$ for $x \in \Omega$ and $H_t(x) = x$ for $t \in [0, 1]$ and $x \in \Omega \cap Z$,

(b) for any t the mapping H_t is a homeomorphism onto $H_t(\Omega)$,

where the mapping $H_t : \Omega \to \mathbb{R}^n$ is defined by $H_t(x) = H(x, t)$ for $x \in \Omega$, $t \in [0, 1]$.

Let $f : \Omega_1 \to \mathbb{R}^n$, $g : \Omega_2 \to \mathbb{R}^m$ where $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ are neighbourhoods of $0 \in \mathbb{R}^n$ and let $Z \subset \mathbb{R}^n$ be a set such that $0 \in Z$. We call f and g **isotopical near Z at zero**
if there exists an isotopy near \(Z \) at zero \(H : \Omega \times [0, 1] \to \mathbb{R}^n, \Omega \subset \Omega_1 \cap \Omega_2, \) such that \(f(H_1(x)) = g(x), x \in \Omega. \)

Let \(h : \Omega_3 \to \mathbb{R}^m \), where \(\Omega_3 \subset \mathbb{R}^n \) is a neighbourhood of \(0 \in \mathbb{R}^n \). We say that a deformation \(f + th \), is topologically trivial near \(Z \) along \([0, 1]\) if there exists an isotopy near \(Z \) at zero \(H : \Omega \times [0, 1] \to \mathbb{R}^m, \Omega \subset \Omega_1 \cap \Omega_2, \) such that \(f(H(t, x)) + th(H(t, x)) \) do not depend on \(t \).

2.4. **Proof of Theorem** 3

By \(dP \) we denote the differential of \(P \) and \(dP(x) \) – the differential of \(P \) at the point \(x \). By \(d_x P \) we denote the differential of \(P \) with respect to the system of variables \(x \).

Let \(f, f_1 \in w \) and let \(P = f_1 - f = (P_1, \ldots, P_m) \). Then we have \(j^k P(a) = 0 \) for \(a \in Z \cap U \) for some neighbourhood \(U \subset \mathbb{R}^n \) of \(0 \). In consequence, decreasing if necessary \(U \), we may assume that

\[
|P(x)| \leq \frac{C}{3} \text{dist}(x, Z)^k \quad \text{and} \quad \|dP(x)\| \leq \frac{C}{3} \text{dist}(x, Z)^{k-1}
\]

for \(x \in U \).

Consider the mapping \(F : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^m, \)

\[
F(\xi, x) = f(x) + \xi P(x).
\]

Let us fix \(\xi \in (-2, 2) \). By \(10 \) and Lemma \(3 \) we get

\[
\nu(d_x F(\xi, x)) \geq \nu(df(x)) - \|\xi\|\|dP(x)\| \geq \frac{C}{3} \text{dist}(x, Z)^{k-1}, \quad x \in U.
\]

Thus by Lemma \(3 \) there exists \(C' > 0 \) such that

\[
g'(d_x F(\xi, x)) \geq C' \text{dist}(x, Z)^{k-1}, \quad \xi \in (-2, 2), \quad x \in U.
\]

Set \(G = \{(\xi, x) \in \mathbb{R} \times U : |\xi| < 2\} \). In the notation of Definition \(10 \) we put

\[
A_I = \left\{(\xi, x) \in G : \frac{|M_I(d_x F(\xi, x))|}{h_I(d_x F(\xi, x))} \leq \frac{C'}{2} \text{dist}(x, Z)^{k-1} \right\}.
\]

By Corollary \(2 \) the sets \(A_I \) are closed in \(G \) and \((\mathbb{R} \times Z) \cap G \subset A_I \). From \(11 \) we see that \(\{G \cap A_I : I\} \) is an open covering of \(G \setminus (\mathbb{R} \times Z) \). Let \(\{\delta_I : I\} \) be a \(C^\infty \) partition of unity associated to this covering.

Let us consider the following system of linear equations

\[
(d_x F(\xi, x))W(\xi, x)^T = -P(x)^T
\]

with indeterminates \(W(\xi, x) = (W_1(\xi, x), \ldots, W_n(\xi, x)) \) and parameters \((\xi, x) \in G \). Let us take any subsequence \(I = (i_1, \ldots, i_m) \) of the sequence \((1, \ldots, n)\). For simplicity of notation we assume that \(I = (1, \ldots, m) \). For all \((\xi, x) \in G \) such that \(M_I(d_x F(\xi, x)) \neq 0 \) we put

\[
W_I^l(\xi, x) = \sum_{j=1}^{m} (-P_j(x))(-1)^{l+j} M_{I \setminus l}(j) \frac{M_I(j) (d_x F(\xi, x))}{M_I(d_x F(\xi, x))}, \quad l = 1, \ldots, m,
\]

\[
W_I^l(\xi, x) = 0, \quad l = m + 1, \ldots, n,
\]

where \(I \setminus l = (1, \ldots, l-1, l+1, \ldots, m) \) for \(l = 1, \ldots, m \). Cramer’s rule implies

\[
(d_x F(\xi, x))W^l(\xi, x)^T = -P(x)^T.
\]
Since $k > 1$, then $\delta_{t}W^{I}$ is a C^{1} mapping on $G \setminus (R \times Z)$ (after suitable extension). Hence $W = \sum_{t} \delta_{t}W^{I}$ is also C^{1} mapping on $G \setminus (R \times Z)$. We put $W(\xi, x) = 0$ for $(\xi, x) \in (R \times Z) \cap G$. It is easy to see, that W satisfies the equation \((12)\).

Observe that

\[
\|W(\xi, x)\| \leq C'' \text{dist}(x, Z), \quad \xi \in (-2, 2), \quad x \in U,
\]

where $C'' = 2mC\sqrt{n}/(3C')$. Indeed from \((10)\) the definitions of A_{t}, the choice of P and the above construction we get

\[
\|W(\xi, x)\| \leq \sum_{(t, \delta_{t}(\xi, x) \neq 0)} \delta_{t}(\xi, x)\|W^{I}(\xi, x)\| \\
\leq \sum_{(t, \delta_{t}(\xi, x) \neq 0)} \delta_{t}(\xi, x)\sqrt{n} \max_{i=1}^{m} |W^{I}_{i}(\xi, x)| \\
\leq \sum_{(t, \delta_{t}(\xi, x) \neq 0)} \delta_{t}(\xi, x)\sqrt{n} \sum_{j \in I} |P_{j}(\xi, x)| \frac{h_{t}(d_{z}F(\xi, x))}{|M_{t}(d_{z}F(\xi, x))|} \\
\leq \sum_{(t, \delta_{t}(\xi, x) \neq 0)} \delta_{t}(\xi, x)\sqrt{n} \sum_{j \in I} C \frac{2}{3} \text{dist}(x, Z)^{k} \frac{1}{C'} \frac{1}{\text{dist}(x, Z)^{k-1}} \\
= m\sqrt{n}C \frac{2}{3} \frac{2}{C'} \text{dist}(x, Z).
\]

Let us consider the following system of differential equations

\[
y' = W(t, y).
\]

Since W is at least of class C^{1} on $G \setminus (R \times Z)$, so it is a locally lipschitzian vector field. As a consequence, the above system has a uniqueness of solutions property in $G \setminus (R \times Z)$. Hence, inequality \((13)\) and Lemma \([11]\) implies the global uniqueness of solutions of the system \((14)\) in G.

Choose $(\xi, x) \in G$ and define $\varphi(\xi, x)$ to be the maximal solution of \((14)\) such that $\varphi(\xi, x)(\xi) = x$. Set $\Omega_{0} = \{x \in R^{n} : \|x\| < r_{0}\}$, $\Omega_{1} = \{x \in R^{n} : \|x\| < r_{1}\}$, where $r_{0}, r_{1} > 0$. Since $0 \in Z$, the mapping $\varphi(0) = 0$, $\xi \in R$ is a solution of \((14)\). Hence for sufficiently small r_{0}, r_{1}, for any $x \in \Omega_{0}$, the solution $\varphi_{0}(x)$ is defined on $[0, 1]$ and $\varphi_{0}(0)(t) \in \Omega_{1}$, if $t \in [0, 1]$ and for any $x \in \Omega_{0}$, the solution $\varphi_{0}(x)$ is also defined on $[0, 1]$. Let $H, \tilde{H} : \Omega_{0} \times [0, 1] \to \Omega_{1}$ be given by

\[
H(x, t) = \varphi_{0}(x)(t), \quad \tilde{H}(y, t) = \varphi_{0}(t, y)(0).
\]

The mappings H, \tilde{H} are well defined. Moreover one can extend these mappings to continuous mappings on some open neighbourhood of $\Omega_{0} \times [0, 1]$. Put $\Omega = \Omega_{1}$, $\Omega' = \{y \in R^{n} : \tilde{H}(y, t) \in \Omega_{1}, t \in [0, 1]\}$. By uniqueness solutions of \((14)\) for any t we have $H(H(x, t), t) = x$, $H(x, 0) = x$, $x \in \Omega$, and $H(\tilde{H}(y, t)) = y$, $y \in \Omega'$. Moreover there exists a neighbourhood $\Omega' \subset R^{n}$ of 0 such that $\Omega' \subset \Omega'$ for any t.

Finally, by \((12)\) we have

\[
\frac{d}{dt}F(t, \varphi_{0}(x)(t)) = P(x)^{T} + (d_{z}F)(t, \varphi_{0}(x)(t))W(t, \varphi_{0}(x)(t))^{T} = 0,
\]

so, $F(t, \varphi_{0}(x)(t)) = f(x)$ and consequently $f(H(x, 1)) + tP(H(x, 1)) = f(x)$ for $t \in [0, 1]$ and $x \in \Omega'$. This ends the proof. \(\square\)
2.5. Proof of Corollary 1. Under notations of the proof of Theorem 3 by (11), (13) and Lemma 3 we obtain \(\nu(d_{df}(\xi, x)) = (d_{df}^k(x) + \xi d_{P}(x)) \geq \nu(d_{df}(x)) - |\xi||d_{P}(x)|| \geq C(1 - 2C_2) \text{dist}(x, Z), \; x \in U. \) Obviously \(C(1 - 2C_2) > 0. \) Then there exists \(C' > 0 \) such that

\[
(15) \quad g'(d_{df}(\xi, x)) \geq C' \text{dist}(x, Z), \quad \xi \in (-2, 2), \quad x \in U.
\]

So, we will use (15) instead of (11). By (5) we obtain (13). Moreover, the assumption that \(d_{f} \) and \(d_{f_1} \) are locally Lipschitz mappings implies that the mapping \(W \) is locally Lipschitz outside \((-2, 2) \times Z.\) Then, by the same argument as in the proof of Theorem 3 we deduce the assertion.

3. PROOF OF THEOREM 4

We will use the idea from [2]. It suffices to prove of the Theorem for \(Z = V(\nabla f). \) Suppose to the contrary that for any neighbourhood \(U \) of 0 and for any constant \(C > 0 \) there exist \(x \in U \) such that

\[
|\nabla f(x)| < C \text{dist}(x, Z)^{k-1}.
\]

Then for some sequence \((a_{\nu}) \subset \mathbb{R}^n \setminus Z \) such that \(a_{\nu} \to 0 \) when \(\nu \to \infty \) we have

\[
(16) \quad |\nabla f(a_{\nu})| \leq \frac{1}{\nu} \text{dist}(a_{\nu}, Z)^{k-1} \quad \text{for} \; \nu \in \mathbb{N}.
\]

Choosing a subsequence of \((a_{\nu}) \), if necessary, we can assume that

\[
\text{dist}(a_{\nu+1}, Z) < \frac{1}{2} \text{dist}(a_{\nu}, Z), \quad \text{for} \; \nu \in \mathbb{N}.
\]

Then

\[
B_{\nu} = \{ x \in \mathbb{R}^n : |x - a_{\nu}| \leq \frac{1}{4} \text{dist}(a_{\nu}, Z) \}, \quad \nu \in \mathbb{N},
\]

is family of pairwise disjoint balls.

Let us take sequence \((\lambda_{\nu}) \subset \mathbb{R} \) such that \(\lambda_{\nu} > 0 \) for any \(\nu \in \mathbb{N} \) and

\[
(17) \quad \frac{\lambda_{\nu}}{\text{dist}(a_{\nu}, Z)^{k-2}} \to 0, \quad \nu \to \infty.
\]

Since \(k > 1 \), we may assume that

\[
(18) \quad \lambda_{\nu} \text{ is not eigenvalue of matrix } \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(a_{\nu}) \right].
\]

Let \(\alpha : \mathbb{R}^n \to \mathbb{R} \) be function of \(C^\infty \)-class such that \(\alpha(x) = 0 \) for \(|x| \geq \frac{1}{4} \) and \(\alpha(x) = 1 \) in some neighbourhood of 0. By \(\langle \cdot, \cdot \rangle \) we denote the standard inner product in \(\mathbb{R}^n \). Consider function \(F : \mathbb{R}^n \to \mathbb{R} \) defined by the formulas

\[
F(x) = \alpha \left(\frac{x - a_{\nu}}{\text{dist}(a_{\nu}, Z)} \right) \left(f(a_{\nu}) + \langle \nabla f(a_{\nu}), x - a_{\nu} \rangle + \frac{1}{2} \lambda_{\nu} |x - a_{\nu}|^2 \right),
\]

for \(x \in B_{\nu} \) and \(F(x) = 0 \) for \(x \notin \bigcup_{\nu=1}^{\infty} B_{\nu}. \) Then \(F \) is a \(C^k \)-function and \(F(0) = 0. \) Moreover \(f(a_{\nu}) = F(a_{\nu}) \) and \(\nabla f(a_{\nu}) = \nabla F(a_{\nu}) \) so

\[
(19) \quad (f - F)(a_{\nu}) = 0 \quad \text{and} \quad \nabla (f - F)(a_{\nu}) = 0, \quad \nu \in \mathbb{N}.
\]
Let $M > 0$ be such that $|\alpha(x)| \leq M$ for $x \in \mathbb{R}^n$. Then for $x \in B_\nu$ we have
\[
\frac{|F(x)|}{\text{dist}(x, Z)^k} \leq M \frac{|f(a_\nu) + (\nabla f(a_\nu), x - a_\nu) + \frac{1}{2} \lambda_\nu |x - a_\nu|^2|}{\text{dist}(x, Z)^k}
\leq 2^k M \frac{|f(a_\nu)| + |\nabla f(a_\nu)| \text{dist}(a_\nu, Z) + \frac{1}{2} |\lambda_\nu| \text{dist}(a_\nu, Z)^2}{\text{dist}(a_\nu, Z)^k}.
\]
Since $j^{k-1}f(0) = 0$, then
\[
\frac{|f(a_\nu)|}{|a_\nu|^{k-1}} \to 0, \quad \text{when } \nu \to \infty.
\]
Hence, from the above, and from (16) and (17) we obtain
\[
\frac{|F(x)|}{\text{dist}(x, Z)^k} \to 0, \quad \text{when } x \to 0,
\]
so
\[
\frac{|F(x)|}{|x|^k} \to 0, \quad \text{when } x \to 0.
\]
Therefore $f - F$ is C^k-Z-realisation of k-Z-jet w (recall that for any $x \in Z \setminus \{0\}$ the function F vanishes in a neighbourhood of x). From (19) we have that $(f - F)$ has zeros outside the set Z, so by our assumption, f has zeros outside the set Z. By the implicit function theorem for some neighbourhood U of $0 \in \mathbb{R}^n$, we obtain that $f^{-1}(0) \cap (U \setminus Z)$ is $(n-1)$-dimensional topological manifold. Therefore $(f - F)^{-1}(0) \cap (U_1 \setminus Z)$ is also $(n-1)$-dimensional topological manifold for some neighbourhood U_1 of $0 \in \mathbb{R}^n$. On the other hand (18) gives
\[
\det \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(a_\nu) \right] \neq 0, \quad \text{dla } \nu \in \mathbb{N},
\]
hence and from (19) $(f - F)$ has Morse singularities in points a_ν, so, $(f - F)^{-1}(0)$ is not $(n-1)$-dimensional topological manifold in any neighbourhood of point a_ν. This contradiction completes the proof of Theorem 4.

References

[1] J. Bochnak, W. Kucharz, Sur les germes d’applications differentiables à singularités isolées., Trans. Amer. Math. Soc. 252, 115-131 (1979)
[2] J. Bochnak, S. Łojasiewicz, A converse of the Kuiper-Kuo Theorem. In Proceedings of Liverpool Singularities-Symposium, I., 254-261 (1969/70). Lectures Notes in Math., Vol. 192, Springer, Berlin, 1971
[3] P. Cassou-Nogues, H. H. Vui, Theoreme de Kuiper-Kuo-Bochnak-Łojasiewicz a l’infini., Ann. Fac. Sci. Toulouse Math. (6) 5, no. 3, 387–406, (1996)
[4] S. S. Chang, Y. C. Lu, On C^0-C^0-sufficiency of complex jets., Canad. J. Math. 25, 874-880 (1973)
[5] J. Damon, T. Gaffney, Topological triviality of deformations of functions and Newton filtrations. Invent. Math. 72 (1983), no. 3, 335–358.
[6] A. Van den Essen, A. Nowicki, A. Tyc, Generalizations of a lemma of Freudenburg. J. Pure Appl. Algebra., 177, no. 1, 43–47 (2003)
[7] T. Fukui, E. Yoshinaga, The modified analytic trivialization of family of real analytic functions. Invent. Math. 82 (1985), no. 3, 467–477.
[8] V. Grandjean, Finite determinacy relative to closed and finitely generated ideals. Manuscripta Math. 103, no. 3, 313–328 (2000)
[9] Z. Jelonek, On the generalized critical values of a polynomial mapping, Manuscripta Math. 110, 145–157 (2003)
[10] N. H. Kuiper, C^1-equivalence of functions near isolated critical points. In Symposium on Infinite Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967), 199-218. Ann. of Math. Studies, No. 69. Princeton Univ. Press, Princeton, N. J., 1972

[11] T. C. Kuo, On C^∞-sufficiency of jets of potential functions, Topology 8, 167-171 (1969)

[12] K. Kurdyka, P. Orro, S. Simon, Semicontinuity Sard theorem for generalized critical values, J. Differential Geom. 56, 67-92 (2000)

[13] B. Osińska-Ulrych, G. Skalski, S. Spodzieja, On C^0-sufficiency of jets. Analytic and algebraic geometry, 95–113, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.

[14] R. Pollikaaan, Finite determinacy of functions with non-isolated singularities. Proc. London Math. Soc. (3) 57, no. 2, 357–382 (1988)

[15] P. J. Rabier, Ehresmann Fibrations and Palais-Smale Conditions for Morphisms of Finsler Manifolds, The Annals of Mathematics, Second Series, 146, 647–691 (1997)

[16] T. Rodak, S. Spodzieja, Equivalence of mappings at infinity. Bull. Sci. Math. 136 (2012), no. 6, 679–686.

[17] S. Siersma, Singularities of functions on boundaries, corners, etc. Quart. J. Math. Oxford Ser. (2) 32, no. 125, 119–127 (1981)

[18] G. Skalski, C^0-equivalence of critical values of functions at infinity Bull. Sci. Math. Vol 135, 5, 517-530 (2011)

[19] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney. Singularités à Cargèse (Rencontre Singularités Géom., Inst. Études Sci., Cargèse, 1972), pp. 285–362. Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973.

[20] B. Teissier, Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces. Invent. Math. 40, no. 3, 267–292 (1977)

[21] R. Thom, La stabilité topologique des applications polynomials. Enseignement Math. (2), 8, 24-33 (1962)

[22] Xu, Xu C^0-sufficiency, Kuiper-Kuo and Thom conditions for non-isolated singularity. Acta Math. Sin. (Engl. Ser.) 23, no. 7, 1251–1256 (2007)

[23] E. Yoshinaga, Topologically principal part of analytic functions. Trans. Amer. Math. Soc. 314 (1989), no. 2, 803–814.

Piotr Migus
Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, POLAND
E-mail: migus@math.uni.lodz.pl

Tomasz Rodak
Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, POLAND
E-mail: rodakt@math.uni.lodz.pl

Stanisław Spodzieja
Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, POLAND
E-mail: spodziej@math.uni.lodz.pl