Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor

Eva Liebhaber¹, Lisa M. Rütten¹, Gaël Reecht¹, Jacob F. Steiner², Sebastian Rohlf³, Kai Rossnagel³,⁴, Felix von Oppen² & Katharina J. Franke¹

Magnetic adatom chains on surfaces constitute fascinating quantum spin systems. Superconducting substrates suppress interactions with bulk electronic excitations but couple the adatom spins to a chain of subgap Yu-Shiba-Rusinov (YSR) quasiparticles. Using a scanning tunneling microscope, we investigate such correlated spin-fermion systems by constructing Fe chains adatom by adatom on superconducting NbSe₂. The adatoms couple entirely via the substrate, retaining their quantum spin nature. In dimers, we observe that the deepest YSR state undergoes a quantum phase transition due to Ruderman-Kittel-Kasuya-Yosida interactions, a distinct signature of quantum spins. Chains exhibit coherent hybridization and band formation of the YSR excitations, indicating ferromagnetic coupling. Longer chains develop separate domains due to coexisting charge-density-wave order of NbSe₂. Despite the spin-orbit-coupled substrate, we find no signatures of Majoranas, possibly because quantum spins reduce the parameter range for topological superconductivity. We suggest that adatom chains are versatile systems for investigating correlated-electron physics and its interplay with topological superconductivity.
Ever since the early days of quantum mechanics, chains of coupled quantum spins have been a paradigm of strongly interacting quantum systems. Magnetic adatoms on surfaces have been an attractive platform for realizing assemblies of interacting spins, also because atom manipulation allows for designing a wide variety of structures and couplings. On normal-metal substrates, the adatom spins couple to and relax via the particle–hole continuum of the conduction electrons. This relaxation can be suppressed on superconducting substrates as a consequence of their excitation gap. The gap effectively decouples the adatom chain from the bulk electronic excitations of the substrate, while retaining the spin–spin coupling due to the Ruderman–Kittel–Kasuya–Yosida (RKKY) and Dzyaloshinsky–Moriya interactions, which are mediated by virtual higher-energy states of the quasiparticle continuum.

Despite the decoupling from bulk excitations of the substrate, chains of magnetic adatoms remain intertwined with localized fermionic subgap excitations. Exchange coupling an adatom spin to the substrate electrons induces discrete Bogoliubov quasiparticles within the superconducting gap, known as Yu–Shiba–Rusinov (YSR) excitations. Due to this exchange coupling, the adatom binds localized quasiparticles which (partially) screen the adatom spin. Chains of magnetic adatoms on superconductors are thus intriguing many-body systems, which couple quantum spins to an associated chain of well-defined localized fermionic quasiparticles. Such coupled spin–fermion systems are paradigmatic for correlated-electron physics, underlying the physics of Kondo lattice systems and of high-\(T_c\) superconductors. Unlike these settings, magnetic adatoms on superconductors provide a coupled spin–fermion system which is amenable to bottom-up design in a multitude of geometries.

Chains of magnetic adatoms on superconductors are highly versatile as a result of quantum phase transitions between states with different numbers of bound quasiparticles. These transitions arise from the competition between superconducting pairing and the exchange coupling between adatom spin and substrate, and are associated with discrete changes in the effective adatom spin due to Kondo-like screening. In chains of magnetic adatoms, different screening states have different spin–spin interaction energies, leading to rich magnetic phase diagrams as a function of the binding energy of screening YSR quasiparticles and spin–spin interactions. The competition between screening and spin–spin interactions is specific to quantum spins and absent in models based on classical spins. Intriguingly, the magnetic phase diagrams can be probed directly by tunneling experiments at subgap bias voltages. Tunneling locally binds or unbinds a quasiparticle, introducing a sudden change of the local effective adatom spin. The response to this local perturbation provides signatures in the tunneling spectra which are characteristic of the magnetic ordering.

Here, we report experiments on magnetic chains built Fe adatom by Fe adatom on a 2H-NbSe\(_2\) substrate, a layered superconductor. Due to the quasi-two-dimensional structure, the YSR resonances have a larger spatial extent, which facilitates coupling along the chain even for well-separated Fe adatoms. We track the spatially resolved excitation spectra all the way from the monomer to longer chains. Quantum phase transitions induced by the RKKY coupling reveal the intimate coupling of the quantum spins of the adatoms to the fermionic subgap quasiparticles. The YSR excitations hybridize coherently along the chain and the resulting formation of band-like subgap excitations with increasing chain length suggests ferromagnetic coupling between adatom spins. Longer chains are affected by the charge-density-wave (CDW) order of the 2H-NbSe\(_2\) substrate that coexists with superconductivity.

Previous studies of magnetic chains on superconducting substrates were motivated by the search for topological superconductivity and Majorana bound states. These experiments relied on densely packed adatoms, formed either by self assembly or by atom manipulation. The theoretical description of these chains assumes classical spin structures and bands of hybridizing adatom \(d\) orbitals, which cross the Fermi level. Importantly, the chains investigated here are in a very different regime, previously studied only for \(d\) dimers. We construct magnetic adatom chains in the dilute limit, in which the adatoms are spaced sufficiently far that direct hybridization of their \(d\) orbitals is negligible. The adatoms couple only via spin–spin interactions mediated by the substrate as well as hybridization of their YSR excitations. In this limit, subgap bands emerge from correlated spin–fermion dynamics and are in general not of single-particle nature.

Dilute chains of magnetic adatoms have also been predicted to host topological superconductivity and Majorana end states. These studies assumed classical spin textures, neglecting the quantum nature of the adatom spin. Quantum spins, however, can have dramatically reduced parameter space exhibiting topological superconductivity, and we do not observe signatures of Majorana end states in any of our chains. In general, one can realize a wide variety of quantum spin chains by tuning the effective adatom spins, the magnetic anisotropy, or the sign and magnitude of the RKKY coupling. While higher-spin adatoms promise more extensive topological superconducting phases, lower-spin adatoms promise more pronounced signatures of correlated electron physics. This makes dilute adatom chains exciting model systems for correlated electron physics, for topological superconductivity, and for their interplay.

**Results**

We build chains on the van der Waals-layered superconductor 2H-NbSe\(_2\) starting with a single Fe atom and continuing all the way to a 51-atom chain. The NbSe\(_2\) substrate forms a CDW which is reflected in periodic height modulations superimposed on the atomic corrugation (see STM image in Fig. 1a). The CDW is weakly incommensurate with a period of \(2a\) (here, \(a\) is the lattice constant of NbSe\(_2\)), so that the CDW shifts slowly relative to the atomic lattice. When the CDW maximum is centered on the hollow site (hollow centered, HC), the topography exhibits a three-petaled shape (yellow area in Fig. 1a), while the Se-atom centered configuration (chalogen centered, CC) exhibits a petalless pattern (red area). Superconductivity appears below a critical temperature of 7.2 K. The anisotropic superconducting gap of about 1 meV results in two-humped coherence peaks in the \(d/dV\) spectra (see gray spectrum in Fig. 2a).

As deposited, Fe atoms adsorb in the two distinct hollow sites of the terminating Se layer, with or without Nb atom underneath (metal centered and hollow centered, respectively). The two kinds of Fe adatoms exhibit distinct YSR spectra, reflecting different crystal-field splittings as well as exchange and potential scatterings. To maximize YSR hybridization, we assemble shorter chains such that all Fe atoms are positioned on identical (hollow-centered) sites (Fig. 1b, c).

For individual Fe atoms, local variations associated with the CDW shift the energy and modify the wave functions of the YSR states. Consequently, effective hybridization of YSR states requires not only that the adatoms are located at identical adsorption sites of the atomic lattice, but also at comparable positions with respect to the CDW. For this reason, we place hollow-centered Fe adatoms on a sequence of maxima of the CDW, resulting in a dilute chain with an adatom distance of \(3a\). We show that with this choice, the YSR excitations of adjacent Fe atoms are sufficiently similar that they hybridize into...
symmetric and antisymmetric linear combinations (see sketch in Fig. 1c). Successively placing Fe atoms at a distance of 3 \( a \) (Fig. 1b), we find that chains with up to about ten adatoms remain essentially uniform. Longer chains become inhomogeneous due to the incommensurate nature of the CDW (Fig. 1d).

Monomer. We begin with an analysis of the monomer. YSR states have been observed in NbSe\(_2\) for magnetic atoms located in the bulk\(^{23,57}\) and on the surface\(^{24,56,58}\). A differential conductance (dI/dV) spectrum of a Fe monomer at the specified adsorption site and recorded with a superconducting Nb tip is shown in Fig. 2a (black line; tip gap indicated in gray). We resolve four pairs of subgap YSR resonances labeled \( \alpha - \delta \) at symmetric bias voltages. These emerge from exchange coupling four half-filled \( d \) orbitals to corresponding conduction electron channels\(^{18,59}\), indicating that the Fe atom is in a spin-2 state. Due to the Kondo-like screening, the effective spin \( S_{\text{eff}} \) of the monomer depends on the number \( Q \) of bound quasiparticles. Depending on the strength of the exchange coupling within the channel, each channel can bind a quasiparticle or not, with the two ground states separated by a quantum phase transition (see also Supplementary Note 1). Each bound quasiparticle partially screens the bare impurity spin \( S = 2 \). We can deduce the screening state of the four channels by tracking how the energies of the YSR states shift as a function of the adsorption site relative to the CDW\(^{56}\). Our analysis indicates that for Fe on the maximum of the CDW, three YSR resonances (\( \alpha - \gamma \)) are in the screened state. For the fourth resonance (\( \delta \)), the assignment is less definitive, with the unscreened state being more likely and assumed in the following. With three channels binding a quasiparticle at the impurity site, the spin of the monomer is effectively reduced to \( S_{\text{eff}} = \frac{1}{2} \) and the monomer is in a (\( Q = 3 \), \( S_{\text{eff}} = \frac{1}{2} \)) ground state. (Indications against the less likely assignment of four screened channels are provided in the Supplementary Note 2).

The small effective spin \( S_{\text{eff}} = \frac{1}{2} \) of the adatoms indicates that the spin needs to be treated quantum mechanically. Direct evidence for the quantum spin nature is provided by a Kondo resonance which the Fe atoms induce, when the substrate is in the normal state (see Supplementary Note 4 and Supplementary Fig. 4). We will see below that a description in terms of quantum spins is also strongly suggested by the spectra of adatom dimers on the superconducting substrate.
We can obtain fingerprints of the YSR resonances through their wave-function patterns, which will allow us to track how YSR resonances shift and hybridize as adatoms are assembled into chains. As a result of the quantum phase transitions, one must take some care when interpreting YSR patterns. In the unscreened state (no bound quasiparticle), the electron-like wave function is observed at positive bias voltage and the hole-like wave function at negative biases. In contrast, the assignments are reversed in the screened state. Theoretically, the screened (\(E_{\text{YSR}} < 0\)) and unscreened (\(E_{\text{YSR}} > 0\)) states are characterized by different signs of the YSR energies, and we use this representation when interpreting our data, see, e.g., Fig. 3e.

Throughout this paper, we plot the hole-like YSR wave function. (The maps of the electron-like components are shown in the Supplementary Figs. 7–12.) Specifically, we focus on the YSR states \(\alpha\) and \(\beta\), which lie deepest inside the gap and are most easily disentangled from the background. Corresponding spectra taken across the Fe atom along the high-symmetry direction of the substrate display long-range oscillations of the YSR wave functions (color plot in Fig. 2b), which have their highest intensity slightly away from the center of the Fe atom. Differential conductance maps of the \(\alpha\) and \(\beta\) resonances exhibit overall \(D_3\) symmetry of the YSR wave functions (brownish plots in Fig. 3a) reflecting the anisotropic Fermi surface of NbSe\(_2\), the local crystal field, and the symmetry of the CDW.

Dimer. We realize dimers by placing a second hollow-centered Fe atom an adjacent maximum of the CDW at a distance of 3.4 Å. Taking \(dI/dV\) spectra at the centers of the two atoms (black and blue lines in Fig. 2c), we now find two states each in the energy regions of the original \(\alpha\) and \(\beta\) states. The doubling of the YSR states persists all along the dimer axis with oscillatory intensity distribution and overall mirror symmetry about the center of the dimer (Fig. 2d). This doubling can be naturally understood in terms of hybrid YSR excitations, which are symmetric and antisymmetric combinations of the monomer excitations.

We corroborate this interpretation by \(dI/dV\) maps of the YSR wave functions taken at the corresponding peak energies in Fig. 3b. Two maps (2.03 and 1.86 mV) can be assigned to the hybridized \(\beta\) states. This assignment is supported by the shapes of the YSR wave functions, see close-ups in Fig. 3d. The \(\beta\) state exhibits intensity at the sides and vertices of a triangular shape. Both features reappear in the patterns of the dimer, albeit with characteristic modifications due to hybridization. The map at 2.03 mV shows increased intensity in between the Fe atoms and is identified with the symmetric combination. The map at 1.86 mV exhibits a nodal line of suppressed intensity perpendicular to the dimer axis (dashed line in Fig. 3b), consistent with the antisymmetric combination. We label these dimer (\(d\)) states as \(\beta^n\), where \(n\) counts the number of nodal planes.

We also identify symmetric and antisymmetric combinations of the \(\alpha\) states, which appear as a peak with a shoulder in spectra taken directly above the Fe atoms (Fig. 2c) and can be disentangled as two distinct resonances by the corresponding modulations along the dimer axis (Fig. 2d). For this assignment of the symmetric and antisymmetric combination, we inspect the corresponding \(dI/dV\) maps at positive and negative bias voltage (shown in Fig. 3b and Supplementary Fig. 7, respectively). \(dI/dV\) maps of \(\alpha^0\) and \(\alpha^1\) indeed lack or exhibit a nodal line perpendicular to the dimer axis.

Surprisingly, we observe that the characteristic spatial shapes have switched bias polarity. Inspection of the \(dI/dV\) pattern probed at negative bias in the close vicinity of the Fe atoms reveals shapes which are strikingly similar to the monomer’s \(\alpha\) state at positive bias voltage. This is seen most clearly from the close-ups of \(\alpha\) as well as \(\alpha^0\) and \(\alpha^1\) shown in Fig. 3d. (Note that for \(\alpha^0\), we present the \(dI/dV\) map recorded at the energy of the corresponding thermal peak as indicated by the asterisk in \(\alpha^0\), because the map at \(\alpha^0\) is strongly influenced by the negative differential conductance of \(\alpha^1\), see Supplementary Fig. 7). This reflects that the \(\alpha\) state has crossed the quantum phase transition upon dimer formation. In the monomer, the \(\alpha\) state is screened and its hole-like wave function is observed at positive bias. In the dimer, the \(\alpha\)-derived hole-like wave functions appear at negative bias voltage and are therefore unscreened. The quantum phase transition in the \(\alpha\) states from screened to unscreened is associated with an increase of the effective spin of each Fe atom from \(S_{\text{eff}} = \frac{3}{2}\) to \(S_{\text{eff}} = 1\).

The crossing of the quantum phase transition between monomer and dimer requires a substantial shift of the \(\alpha\) state, in addition to the hybridization splitting. Moreover, this shift is opposite to that of the \(\beta\) state, which moves toward the gap edge in the dimer (see Fig. 3e for a quantitative analysis of the shift (C) and splitting (D) based on deconvoluted \(dI/dV\) spectra shown in Supplementary Fig. 5). Previous works\(^{39,42}\) have analyzed these shifts and splittings in terms of a classical-spin model. However, neither shifts larger than the splitting nor shifts in opposite directions for different YSR states appear naturally in this model. While both shift and splitting emerge from the hybridization between the YSR excitations of the two adatoms, the splitting appears in first order in the coupling, while the shift appears only in second order\(^{11}\) (see theoretical considerations in Supplementary Note 1 for further discussion).

In contrast, a large shift can appear naturally for quantum spins. In this case, unbinding the quasiparticle bound in the \(\alpha\) channel costs YSR energy, but also increases the effective spin of the Fe adatom from \(S_{\text{eff}} = \frac{3}{2}\) to \(S_{\text{eff}} = 1\). This increase in the adatom spins implies that the dimer gains a larger RKKY energy. On balance, it can thus be energetically favorable for the dimer to unbind the quasiparticles, as we observe for the \(\alpha\)-derived states.

This is further illustrated in the schematic level diagram shown in Fig. 3f, which emphasizes the effects of RKKY coupling and hybridization by showing the states of the uncoupled dimer on the left and of the coupled dimer on the right. In the ground state of the uncoupled dimer, both adatoms are in the \((Q = 3, S_{\text{eff}} = \frac{3}{2})\) state. Exciting the \(\alpha\) or \(\beta\) resonance of one of the adatoms excites it into \((Q = 2, S_{\text{eff}} = 1)\) states. When only one of the two adatoms is excited, there are two degenerate states of the uncoupled dimer, which are split in the coupled dimer by the YSR hybridization. Such a splitting does not exist for states in which both adatoms are in the same state, resulting in a nondegenerate configuration. In addition to the splittings, there is a downward shift of the energies of the coupled dimer due to the RKKY interaction.
This shift is larger for larger S$_{tot}$. Thus, as illustrated in Fig. 3f, the ground state of the coupled dimer can emerge from an excited state of the uncoupled dimer, consistent with our observation of a quantum phase transition of the α resonance from the monomer to the dimer.

The essential difference between models of classical and quantum spins is that in quantum models, the quantum phase transitions are associated with Kondo-like screening of the adatom spin. Thus, binding a quasiparticle changes the spin state of the uncoupled dimer, consistent with our observation of a quantum phase transition of the α resonance from the monomer to the dimer. The CDW-induced energetic evolution of the monomer YSR states suggests α and β to be in the screened-spin regime, hence, implying a negative ground state energy (of the monomer states). The position of the α and β states were determined from deconvoluted spectra, which were fit by the appropriate number of Gaussian peaks. The error bars were determined from the standard deviation of the fit.

Trimer. Forming a trimer by deliberately adding a third atom at a distance of 3a, we now identify three states each in the α and β regions (see spectra in Fig. 2e, f). We can again disentangle the underlying hybrid states based on energy considerations, the intensity modulations of the split states along the trimer axis (see close-ups in Fig. 2g, h), and their corresponding dI/dV maps (Fig. 3c; in addition to the number n of nodal planes, we label the trimer by $I_n$). Despite the complexity of the patterns, the oscillatory nature of the YSR wave functions, we tentatively identify the number of nodal planes perpendicular to the trimer axis in the individual maps of the YSR resonances. In the maps at 1.57 and 1.84 mV, we find a single nodal plane at the center of the trimer marked by a dotted line. Two nodal planes between the Fe atoms, marked by dashed lines, are clearly seen in the map at 2.02 mV and less pronounced at 1.79 mV (see also maps at negative bias in Supplementary Fig. 7). The latter state is very close in energy to the state at 1.84 mV and may thus be partially obscured. The maps at 2.11 and −1.65 mV lack clear evidence of nodal planes. We can now assign resonances to α and β (see Fig. 3c) based on their energy, supported by a comparison of spectral elements of their maps to monomer and dimer. In particular, the near field of β$^{α1}$ closely resembles the ones of β$^{α0}$ and β$^{α1}$. We note that we assign the binding energy of the resonance α$^{α10}$ to have opposite sign relative to the others. This assignment is corroborated by the observation that during band formation with increasing chain length, α-derived states appear near zero energy (see below).

Our tentative assignments allow us to track the energy shifts and splittings from deconvoluted data, which we find to be consistent with the scenario of quantum spins subject to RKKY interactions and hybridization (Fig. 3e). While the RKKY interaction leads to further shifts, hybridization increases the number of states. Importantly, the energy of the hybrid β states is not monotonous with the number of nodal planes as we find the β$^{α1}$ state in the energetic center of the respective triplet structure. This change in energetic order can be rationalized by accounting for strong next-nearest-neighbor RKKY interactions which arise naturally in a quantum spin model.

**Evolution of YSR bands in Fe atom chains.** Figure 4a–h shows chains made up of N = 4–11 Fe atoms (the atom added last is marked in red) and corresponding dI/dV spectra along their entire lengths. Neighboring atoms are placed on hollow sites with...
a distance of $3a$, and all adsorption sites remain close to the CDW maximum. We note that the adatoms may help to lock the CDW to the underlying atomic lattice over longer distances than for the pristine surface (cf. Fig. 1a, d).

In the following, we will discuss the modifications of the subgap spectra when increasing the length of the chain by the addition of individual Fe atoms. While our energy resolution no longer allows us to resolve all hybrid states derived from the individual $\alpha-\delta$ resonances, we find that the addition of single adatoms leads to changes of the states along the entire chain. Additional evidence for the delocalized nature of the subgap excitations can be obtained from the preservation of symmetries about the center of the chain as well as the convergence of spectral weight to certain energies with increasing chain length.

For the shorter chains, we observe strong modifications of the subgap spectra with the addition of every atom. These modifications become less pronounced with increasing chain length. In the presence of next-nearest-neighbor interactions, the
two outermost atoms at either end of the chain are subject to different interactions from the central atoms (Fig. 4i). Thus, beginning only with \(N=5\) atoms, the chains develop a uniform central region which eventually leads to the formation of band-like YSR excitations. (We do not preclude even longer-range interactions, but do not identify corresponding signatures within our resolution.)

Consistent with this picture, the subgap structure of the quadrumer (Fig. 4a) differs drastically from that of the trimer (Fig. 2f). The \(\alpha\) and \(\beta\) states of the monomer are now expected to form four hybrid states each. However, a detailed assignment becomes difficult as the states begin to overlap. Attaching a fifth atom causes yet another strong modification of the subgap structure (Fig. 4b). For instance, unlike for \(N=4\), we now observe a delocalized state of a character at zero energy (i.e., at a bias of \(\pm1.55\) mV corresponding to the tip gap). Apart from the atomic corrugation, this state has a nodeless intensity distribution exhibiting highest spectral weight at the center of the chain and falling off toward both ends (left red arrow, Fig. 4b, \(d/dV\) maps are provided in Supplementary Fig. 8). Furthermore, there are several resonances around \(\pm1.7\) mV which are absent for \(N=4\) such as the prominent state with strong intensity at the chain ends (right red arrow).

Further collective changes appear upon addition of another Fe atom (\(N=6\)). Now, the zero-energy state is shifted to slightly higher energies. At \(\pm1.7\) mV there is a very weak resonance with different spatial fingerprints (no intensity at the chain terminations) as opposed to \(N=5\) (Fig. 4c). The concerted variation of the subgap structure along the entire chain indicates coherent coupling of all YSR excitations. This persists for the longer chains. Within the uniform center of the chain (horizontal dashed lines in panels g, h), the principal features converge into specific energy intervals as indicated by vertical dotted lines (Fig. 4). This behavior is consistent with the formation of band-like YSR excitations originating from the original \(\alpha\) and \(\beta\) excitations of the monomer. Once the band-like behavior is fully developed, the associated van Hove singularities become the strongest features in the \(d/dV\) spectra. The interpretation of coherent band formation is further supported by the overall mirror symmetry about the center of the chain (cf. dashed lines in Fig. 4a–f).

The van Hove singularities allow one to extract information on the bandwidths. Each resonance of the monomer contributes an electron-like and a hole-like band of the chain. We suggest that the \(\beta\)-derived bands extend from the edge of the superconducting gap approximately halfway to the center (solid and dashed blue lines in the sketch of Fig. 4j for electron-like and hole-like bands, respectively). This assignment is based on following the uppermost and lowermost hybrid states of \(\beta\)-character in the \(d/dV\) maps (see Supplementary Note 8 and Supplementary Figs. 8 and 9). We find that the electron-like band appears at negative energies, as the \(\beta\)-derived states do not undergo a phase transition with increasing chain length.

Determining the width of the \(\alpha\)-derived band requires tracking of its parent states for the entire sequence of chain lengths. For intermediate chain lengths, we observe \(\alpha\)-derived states close to zero energy (e.g. for \(N=5\), see Fig. 4b). This implies that the \(\alpha\)-derived band crosses zero energy, so that the upper van Hove singularity of the electron-like band appears at \(\pm1.7\) mV, i.e., at positive energies. The identification of the lower band edge is less unequivocal. We observe only three van Hove singularities (at fixed bias polarity), while four would be generically expected for two bands. Thus, the \(\alpha\)-derived band may either lie symmetrically around the Fermi level with band edges at \(\pm1.7\) mV (in which case, its two van Hove singularities would be observed at the same bias voltage), or reach down to the upper van Hove singularity of the \(\beta\)-derived band (in which case, the second van Hove singularity of the \(\alpha\) band would coincide with a van Hove singularity of the \(\beta\) band). The latter scenario (red line in Fig. 4j) is more natural in view of the large observed splitting of the \(\alpha\) states in the trimer (cf. Fig. 3e; note that even in the trimer, the lowest-energy \(\beta\) state is already close to the highest-energy \(\alpha\) state). (To demonstrate the \(\alpha\)-like character of the bands, we present several \(d/dV\) maps in Supplementary Figs. 8 and 9.)

It is interesting to note that as a result of the reduced hybridization, the bandwidths of the YSR bands in our dilute chains are considerably smaller than in densely spaced chains25, confining bands to lie within the superconducting gap. This precludes the observation of individual states as recently done for dense chains of Mn adatoms on Nb(110), giving patterns reminiscent of particle-in-a-box states60.

Crossing of YSR bands through the Fermi level—as we observe for the \(\alpha\)-derived band—s a necessary requirement for realizing topological superconductivity and Majorana end states35. Here, we neither find signatures of Majoranas nor of the required opening of a \(p\)-wave gap around the Fermi energy. The observation of a zero-energy state localized at the chain ends for \(N=10\) (Fig. 4g, red ellipses) disappears upon addition of another Fe atom (Fig. 4h) and should thus be attributed to small spectral changes at the terminations of finite chains (see Supplementary Fig. 9 for \(d/dV\) maps).

We emphasize that the formation of bands is not a priori obvious for chains of quantum spins. Coupling of the quantum spins along with the associated subgap YSR quasiparticles in general constitutes a many-body problem13. Exciting a YSR resonance by tunneling into the quantum spin chain locally modifies the effective spin13. For instance, exciting the (screened) \(\beta\) resonance increases the effective spin of the local adatom by \(1/2\), introducing a mobile defect into the spin chain. For a ferromagnetic spin background, the mobile defect effectively leads to a band-like spectral function with van Hove singularities. As illustrated by model calculations for a spin-\(1/2\) chain shown in Supplementary Note 2, other spin orders typically exhibit more involved excitation spectra. Our observation of YSR bands and van Hove singularities therefore suggests that the adatom spins couple ferromagnetically. (We note that strictly speaking, we cannot distinguish ferromagnetic coupling from weak spiral modulations as discussed for instance in ref. 81.) We also note that consistent with the data, our model calculations reveal strong spectral variations as a function of \(N\) for short chains which eventually evolve into band-like behavior in longer chains.

Longer Fe chains and CDW. For longer chains beyond \(N=11\), the incommensurate nature of the CDW becomes increasingly relevant and the atoms can no longer all sit on maxima of the CDW. \(d/dV\) spectra recorded along a 27-atom chain (Fig. 5a) reveal spatial variations of the YSR band structure. In the center of the chain (region B), the spectra are similar to those of the 11-atom chain (original 11-atom chain is indicated by yellow circles). However, the YSR bands that fall within the coherence peaks in region B (indicated in Fig. 5a) shift continuously toward the Fermi level at both ends of the chain (more pronounced in region C than in region A; for an assignment of the character of the bands, see Supplementary Figs. 10 and 11). The effect of the CDW is also reflected in the loss of overall mirror symmetry about the center of the chain, which was present in shorter chains (cf. horizontal dashed lines in Fig. 4a–f).

The bending of the YSR bands can be correlated with changes of the CDW along the chain (Fig. 5b, c). The CDW appears as apparent height modulations in the STM topography, which are superimposed on the atomic corrugation (see Fig. 5b). To highlight the CDW, we remove the atomic lattice from the STM image by Fourier filtering (Fig. 5c) and connect maxima of the CDW by black dashed lines (shown only to the left of the chain for clarity). In region A, the CDW is distorted by the dark defect visible at the top. In region B, the CDW runs parallel to the chain and appears locked.
to the atomic lattice, with all Fe atoms located on CDW maxima. In region C, the CDW does not run parallel to the chain (see additional dashed line), resulting in variations in the adsorption sites of the Fe atoms with respect to the CDW. As shown previously\(^5\), such changes in the adsorption site shift the YSR states of individual Fe atoms due to variations in the density of states and the potential scattering. Correspondingly, the CDW imposes a smoothly varying potential onto the YSR bands, which causes the YSR bands to bend. Interestingly, the YSR bands close to the superconducting gap edge appear to be more strongly affected. The bands eventually shift to zero energy at one end of the chain (region C). The apparent near-zero-energy state (see Supplementary Figs. 10 and 11) should not be interpreted as a Majorana mode and arises from the effective band bending.

The robustness of the band bending can be probed by further increasing the chain length. Figure 6 shows a 51-atom chain, which was created by adding Fe atoms to the 27-atom chain in regions D-E. While the dI/dV spectra along the chain remain unchanged in regions A and B, the CDW in region C changes during manipulation (see also dI/dV maps in Supplementary Fig. 12). Moreover, the dI/dV spectra in regions D and E differ significantly from those in region B. Here, the Fe atoms are located on CDW minima as indicated by yellow triangles in the Fourier-filtered topography in Fig. 6b, where the YSR spectrum of the monomers is characterized differently. Slow variations of the bands along the chain can again be attributed to changes in the relative alignment with respect to the CDW, with the Fourier-filtered image revealing local distortions of the CDW pattern (most pronounced distortions encircled by black dashed lines).

**Discussion**

Dilute chains of magnetic adatoms on superconductors are qualitatively distinct from dense adatom chains which were previously investigated in searches for topological superconductivity and Majorana bound states and in which bands of adatom \(d\) orbitals are believed to cross the Fermi energy of the substrate superconductor. In dilute chains, the quantum spins associated with magnetic adatoms induce subgap quasiparticle excitations, and the substrate-induced coupling between adatoms involves spin–spin coupling via the RKKY and Dzyaloshinsky–Moriya interactions as well as hybridization of subgap quasiparticle excitations. As a result, dilute chains provide an intriguing model system probing the correlated dynamics of the quantum spins of the adatoms and the fermionic subgap quasiparticles.

We have realized such chains using atom manipulation with the STM tip, placing Fe atoms such that they reside on maxima of the CDW, and have probed the spatially resolved excitation spectra all along these chains. By carefully analyzing the subgap spectra exploiting both the YSR energies and YSR wave functions, we uncover evidence for the interactions between quantum spins and fermionic subgap excitations. In particular, we find that RKKY interactions are instrumental in inducing a quantum phase transition. The underlying competition between the energy of the YSR excitation and the RKKY coupling between adatom spins exists only for quantum spins and is absent for classical-spin models. Moreover, our observation of hybridization extending throughout longer chains and the ensuing formation of band-like subgap excitations suggests that the coupling between adatom spins is ferromagnetic. Our results therefore confirm that dilute chains of magnetic adatoms are not only interesting as potential platforms for the observation of Majorana bound states, but also as highly flexible realizations of a broad class of correlated spin–fermion systems. The adatom spacing as well as the orientation relative to the crystallographic axes constitute interesting parameters to be explored.

Clearly, this is not restricted to chains, but could be readily extended to two-dimensional arrangements. In both cases, it might be particularly interesting to realize antiferromagnetic RKKY coupling by judiciously adjusting the inter-adatom distance.
The incommensurate nature of the CDW in NbSe₂ does not play a significant role up to intermediate chain lengths (≤10 nm) as the Fe atoms help to lock the phase of the CDW into registry with the chain. It is only for yet longer chains that the energy stored in these distortions of the CDW can no longer be sustained, triggering an abrupt change of the CDW into a different phase. Adatom chains extending across CDW domain walls exhibit significantly different band structures. In regions of smooth changes of the CDW, the YSR bands shift continuously in energy. More generally, one can exploit substrates structured by charge density waves or by moiré lattices to investigate domain walls between different parameter regimes of the adatom chain. Another intriguing substrate property may be a pair-density wave as putatively observed for NbSe₂. This might, however, require a different substrate as its effect is presumably negligible for NbSe₂, where it modulates the superconducting gap with the same wave vector as the CDW and by <1%. NbTi wire into a Nb(111) substrate. The superconducting tip effectively increases the energy resolution beyond the temperature-limited Fermi-Dirac distribution. The convolution of tip and sample density of states leads to a shift of all spectral features by the tip’s energy gap. To determine the precise position of the subgap states, we deconvolve the spectra and fit them by the appropriate number of Gaussian peaks.

### Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Information. The STM data generated in this study have been deposited in the Refubium database under accession code https://doi.org/10.17169/refubium-34026.

### Code availability
The code for the theoretical calculations shown in the Supplementary Information has been deposited in the Refubium database under accession code https://doi.org/10.17169/refubium-34026.

Received: 3 November 2021; Accepted: 1 April 2022;
Published online: 20 April 2022

### References
1. Bethe, H. Zur Theorie der Metalle. Z. Phys. 71, 205–226 (1931).
2. Choi, D.-J. et al. Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019).
3. Heinrich, B. W., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nat. Phys. 9, 765–768 (2013).
4. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
5. Kasuya, T. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).
6. Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29879-0.

Correspondence and requests for materials should be addressed to Katharina J. Franke.

Peer review information Nature Communications thanks Koen Bastiaans, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.