Trends in ecology and conservation over eight decades

Sean C Anderson1*, Paul R Elsen2,3†, Brent B Hughes4†, Rebecca K Tonietto5†, Molly C Bletz6, David A Gill7, Meredith A Holgerson8‡, Sara E Kuebbing9, Caitlin McDonough MacKenzie10, Mariah H Meek11, and Diogo Veríssimo12,13

The fields of ecology and conservation have evolved rapidly over the past century. Synthesizing larger trends in these disciplines remains a challenge yet is critical to bridging subdisciplines, guiding research, and informing educational frameworks. Here, we provide what we believe is the largest full-text culturomic analysis of ecology and conservation journals, covering 80 years, 52 journals, and half a billion words. Our analysis illuminates the boom-and-bust of ecological hypotheses and theories; the adoption of statistical, genetic, and social-science approaches; and the domination of terms that have emerged in recent decades (e.g., climate change, invasive species, ecosystem services, meta-analysis, and supplementary material, which largely replaced unpublished data). We track the evolution of ecology from a largely descriptive field focused on natural history and observational studies to a more data-driven, multidisciplinary field focused on applied environmental issues. Overall, our analysis highlights the increasing breadth of the field, illustrating that there is room for more diversity of ecologists and conservationists today than ever before.

In a nutshell:

- We analyzed the full text (over half a billion words) of papers published in 52 ecology and conservation journals to assess how the fields have changed over the past eight decades.
- Many common terms today, including climate change, phylogenetics, and biodiversity, were coined only in recent decades, whereas several terms common in the early 1900s, such as agriculture and cell biology terms, are used only rarely today.
- Ecology and conservation have broadened from local field studies to include global issues, and increasingly feature advanced statistical modeling.
- Conservation science is one of the fastest growing subdisciplines, demonstrating the growing valuation of human dimensions of ecology.

1Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada (sean.anderson@dfo-mpo.gc.ca); 2Department of Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, CA; 3Wildlife Conservation Society, Global Conservation Program, Bronx, NY; 4Department of Biology, Sonoma State University, Rohnert Park, CA; 5Department of Biology, University of Michigan–Flint, Flint, MI; 6Department of Biology, University of Massachusetts Boston, Boston, MA; 7Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC; 8Department of Biology, University of California–Berkeley, Berkeley, CA; 9Department of Environmental Science, Policy, and Management, University of California–Berkeley, Berkeley, CA; 10Department of Biology, University of Michigan–Flint, Flint, MI; 11Department of Biology, University of Massachusetts Boston, Boston, MA; 12Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada; 13Department of Biology, University of California–Berkeley, Berkeley, CA.
2-gram (hereafter, we denote n-gram terms in italics). We standardized n-gram frequency by total words per year published across all included journals and analyzed trends over time for a selection of n-grams. We derived our n-gram selection through both algorithmic and hand-curated approaches: (1) drawing on the most frequent and rapidly growing/declining n-grams in various decades and (2) developing logical groupings of terms that fall under key ecology and conservation themes (WebPanel 1).

Results

Broad trends in popularity

Between 1930 and 2020, the most commonly used 1- and 2-grams in ecology shifted from fundamental- to more applied-ecology terms (Figure 1, a–d; WebFigures 8–16). Of the nine 1-grams that were most common in the 1940s, only the top three – species, plant, and area – remained the same in the 2000s. However, the remaining most-common 1-grams in the 1940s (eg time, water, number) and nearly all top-nine 2-grams from that era (eg oxygen consumption, soil moisture) declined in use over time (Figure 1, a and b), whereas many of the most popular 2-grams in the 2000s barely appeared in the corpus until after 1970 (Figure 1d). By far, the n-grams with the greatest rise in use over time were climate and climate change (Figure 1, e–f; eg Li et al. 2011; Scheffers et al. 2016; Staples et al. 2019). The 1- and 2-grams with the most rapid increases from 1980–2010 reflected a strong trend toward applied ecological research (eg conservation, impact, biodiversity, ecosystem service, invasive species; Figure 1, e and f).

Changes in popular terms from the 1940s to the 2000s reflected both shifts in science culture and changing societal needs. In the 1940s, popular terms such as time, number, and day (Figure 1a) referenced descriptive data. Popular data-related terms in the modern era included model, effect, and data (Figure 1c). This shift likely represented both a replacement of terminology and a transition from a descriptive discipline to a more quantitative one (Ríos-Saldaña et al. 2018). Popular terms in the 1940s included blue grama (Bouteloua gracilis) and wheat grass (Agropyron spp) (Figure 1b), which likely had greater importance during and after the Dust Bowl drought experienced in the North American prairies in the 1930s (Worster 2004). This focus on agricultural research – in an era that culminated in the formation of the Food and Agriculture Organization of the UN (Yates 1946) – was supported by other 2-grams from the 1940s, such as organic matter, soil moisture, and fresh water (Figure 1b).

We examined trends in 2-gram terms associated with scales in ecology (species, population, community, and ecosystem) by using a fill-in-the-blank algorithmic approach (Figure 2, left-most and central columns). We found that species richness and plant species were the dominant adjective and noun uses of the term species (Figure 2, a and b). The term native rose in popularity around 2000 to become the third most common term preceding species as of 2010 (Figure 2b). As an adjective, the term population was primarily associated with size, growth, dynamics, and density, with population growth following approximately exponential growth itself (Figure 2d). Conversely, natural population was the dominant noun form of population, but was surpassed by human population as of 2010 (Figure 2e). Ecologists wrote about community structure and community composition more than any other adjective form of community and about plant communities, within our corpus, over three times more often than other community forms (Figure 2, g and h). The term ecosystem existed as a noun long before it was used as an adjective starting around 1970 (Figure 2, j and k). As a noun, ecosystem was most commonly...
associated with forest, terrestrial, and marine, with the latter seeing an uptick after 2000 (Figure 2k). As an adjective, ecosystem service and ecosystem function were the dominant 2-grams (Figure 2j), with the former showing a rapid increase after the UN Millennium Ecosystem Assessment championed the concept in the early 2000s (MA 2005).

Using the same fill-in-the-blank approach, we examined adjectives associated with conservation, diversity, experiment, and analysis (Figure 2, rightmost column). Biodiversity conservation did not appear until the mid-1980s in our corpus (the term biodiversity was not coined until 1985; Wilson 1988) (Figure 1e) but by 2010 was being used more than twice as often as the next most common conservation term, nature conservation (Figure 2c). Genetic diversity ascended in the early 1990s to make genetic the dominant adjective associated with diversity (Figure 2f). References to field and laboratory experiment peaked around 1990 and declined thereafter (Figure 2i). Statistical, the only top adjective associated with analysis that appeared in the corpus in the 1930s, continued to grow in usage as of 2010 (Figure 2l); however, data analysis, which did not appear until 1950, surpassed statistical analysis around 2000 (Figure 2l). Meta-analysis, which first appeared in the late 1980s in our corpus, became the most common adjective associated with analysis as of 2010 (Figure 2l).

Ecological scale and community ecology

From the onset, ecologists and conservation biologists studied organisms at the species level, reflected by the frequent mention and sustained growth of species in the corpus over time (Figure 3a; WebFigure 3). Although reference to the cellular level was initially the next most common, interest within the field of ecology then transitioned to populations, followed by communities and ecosystems (Figure 3b). It is perhaps unsurprising that ecosystem was the least common term given that it is also the youngest scale; while the term ecosystem was first described by Tansley (1935), ecosystem ecology was not formalized until Odum (1953). The way in which populations and communities are studied appears to have changed over time.
Lotka-Volterra models emerged in the 1920s (Lotka 1920; Volterra 1928) and functional response models in the 1950s (Holling 1959) to examine competition and predator–prey dynamics; *competition* and *predation* were the interactions most commonly included in the corpus (Figure 3c). Yet, both *competition* and *predation* experienced steep declines in use after the 1980s and early 2000s, respectively (Figure 3c), perhaps reflecting that initial models, while simple, marked the beginning of ecology moving beyond one or two species to explain more complex community dynamics, such as food-web structure and ecological niche modeling. To that end, the 2000s saw a revival of niche-related terms (e.g., ecological niche, niche model, niche conservatism, niche breadth) after a long decline from a previous peak in the 1970s (WebFigure 5).

Perhaps the clearest example of terminology evolution was with ecological hypotheses and theories (Figure 3, e and f). We examined the top eight ecological hypotheses and theories using the fill-in-the-blank approach from Figure 2. We found no dominant hypothesis but a number of changing patterns around the hypotheses related to predicting biodiversity. For example, one of the earliest hypotheses stemming from Darwin’s finches was the *competition hypothesis*, which peaked in the 1980s and was surpassed by the intermediate *disturbance hypothesis* (Figure 3e; Connell 1978). Yet the intermediate *disturbance hypothesis* itself peaked in the early 2000s, perhaps due to later critiques (Figure 3e; Fox 2013). Population and community ecologists may now favor asking what drives biodiversity. Indeed, metrics of *diversity*, which incorporate both *abundance* and *richness*, have increased in use since 1990 (Figure 3d). In terms of theories, 2-grams with large historical peaks included the *theory of natural selection*, the *theory of island* biogeography, and *equilibrium theory* (Figure 3f). By 2010, *neutral theory* (Hubbell 2001), *game theory*, and *evolutionary theory* were the most frequently referenced theories, although all were declining in frequency of use (Figure 3f).

Conservation and applied ecology

Terms related to *conservation* and applied ecology represented some of the fastest growing n-grams in modern ecology (Figure 1e). *Conservation* as a field originated alongside the formation of the Society for Conservation Biology in 1985 (Meine et al. 2006), prior to which the term *preservation* was used as frequently (Figure 4a; WebFigure 4). Ecologists increasingly studied major threats to biodiversity loss: *habitat loss*, *invasive species*, *pollution*, *overexploitation*, and *climate change* (Figure 4b). Despite *overexploitation* being considered one of the most prevalent causes of species extinctions (e.g., Díaz et al. 2019), the term itself received relatively little attention in our corpus (Figure 4b), although frequencies of terms associated with specific modes of exploitation (e.g., *hunting*, *fishing*, and *logging*) all grew steadily (Figure 4e). Up until the early 1990s, *pollution* was the leading term in the context of threats to biodiversity; its use peaked in the mid-1970s (Figure 4b). Frequencies of the term *ozone*, typically associated with studies of pollution, displayed a trend similar to that of *pollution*, but with a lag of approximately 15 years (Figure 4c) and peaked in frequency around 1985 with the announcement of an ozone hole over Antarctica (Farman et al. 1985). The term *pollution* was then surpassed by *climate change* and subsequently by *invasive species*, two terms that as of 2010 vastly outweighed all other threats in their frequency of use (Figure 4b) and two of the top three fastest growing terms in all of ecology (Figure 1f).
A multitude of concepts originated alongside the proliferation of studies of climate change, habitat loss, and overexploitation (Figure 4, c–e). For example, terms related to climate change, such as ocean acidification, range shifts, and climate extremes saw sharp upticks after the mid-2000s (Figure 4c). Other concepts exhibited more complex patterns. For example, sea-level rise spiked in frequency in the mid-1990s, declined in frequency by 2000, but then increased thereafter (Figure 4c). Fragmentation rose sharply following the common use of the related term habitat loss around 1990, but its use was in decline after about 2000 (Figure 4d). In terms of modes of species exploitation and resource extraction, fishing was the leading term as of 2010, followed by hunting and logging (Figure 4e). Historically, hunting and fishing exchanged positions of dominance every decade (Figure 4e). Modes of exploitation of non-animal resources, such as logging, harvesting, and mining, were consistently discussed less frequently than modes of animal exploitation (Figure 4e).

The concept of protection has long been a pillar of biodiversity conservation (eg Watson et al. 2014). Until roughly 2000, park was the most commonly used term related to forms of geographic protection (Figure 4f). References to protected areas have increased steadily since 1930, with the growth in marine protected areas displaying a similar pattern but lagging by several decades (Figure 4f). These patterns of usage approximately mirrored the growth rate of actual protected terrestrial and marine areas globally (Watson et al. 2014). Many of the key forms of geographic protection, including parks, reserves, protected areas, and preserves, predated the frequent usage of the term conservation (Figure 4, a and f), although this could be due in part to several of these terms also frequently being used as verbs.

Statistics and data analysis

Ecology has increasingly become a data- and model-centric discipline (Figures 1 and 5; WebFigure 6). Regression, an overarching term encompassing many statistical approaches, saw continued and rapid growth in use since the 1950s, approaching correlation by 2005 (Figure 5a). References to ANOVA and t tests both peaked around 2000, while mentions of generalized linear models (GLMs) steadily increased in frequency, surpassing t tests in 2004 (Figure 5a). In terms of how such models were fit, least-squares, formerly the dominant paradigm, was rapidly surpassed by Bayesian, maximum likelihood, and information theoretic (AIC) terms around 2000; as of 2010, the term Bayesian was used over twice as often as maximum likelihood (Figure 5b). The Markov chain Monte Carlo sampling method (MCMC) first appears in the corpus in 1994 (Thompson 1994), 24 years after Hastings (1970) initially described the concept. Combined with modern computing power, MCMC has been responsible for much of the boom in applied Bayesian data analysis (Gelman et al. 2014).

Such statistical approaches and paradigms have been associated with endless debates about the role of hypothesis testing in ecology (eg Quinn and Dunham 1983; Burnham and Anderson 2002). To that end, use of the phrase null hypothesis peaked in the 1980s, and the phrase significant difference peaked around 1990 and declined thereafter (Figure 5c). The associated terms P value and confidence interval appeared in approximately equal frequency as of 2010 (Figure 5c), although both are often referred to by abbreviations missed in our corpus (eg “P =” or “CI”). Power analysis remained rarely used as of 2010 despite numerous calls for its increased use (eg Nakagawa and Cuthill 2007; Smith et al. 2011). The increased frequency of so many data- and model-centric terms, along with the advent of online publishing, coincided with the meteoric rise of supplementary material n-grams since around 2000 – the 2-gram itself had the second most rapid increase across all 2-grams from 2000–2010 (Figure 1f) – and a concomitant decline in unpublished data and personal communication (Figure 5d; WebFigure 6; Federer et al. 2018).
Genetics

The focus on genetics in ecology-related research increased markedly over the past several decades (Figure 2f; Figure 5, e and f; WebFigure 6). Phylogenetics remained the most referenced genetics term from 1930 to 2010 and increased in use after the late 1980s (Figure 5e). By 2010, phylogenetic was the fourth most common adjective associated with analysis (Figure 2l) and the third most common adjective associated with hypothesis (Figure 3e). A strong interest in genetic variation and diversity began to emerge in the ecological literature in the 1980s, with the terms genetic variation, gene flow, and evolutionary biology all appearing in the top 144 2-grams for the years 1980–1999 (WebFigure 15) and genetic diversity showing up in the 2000–2010 range (WebFigure 16). In terms of genetics tools, microsatellites and mtDNA (mitochondrial DNA) were the most commonly referenced terms as of 2010, but next-generation sequencing (Sanger et al. 1977) nearly overtook microsatellites, and may have done so since 2010. We also saw an increase in sequencing-based approaches to studying genetic diversity, particularly a rise in references to single nucleotide polymorphisms (Figure 5f). Since 2010, there has likely been a continued increase in references to next-generation sequencing given that it is now widely adopted in both macro- and microecological research of many species and communities – not just model systems (Andrews et al. 2016).

Social sciences

Over the past several decades, ecologists have paid increasing attention to the human dimensions of ecology (Figure 6; WebFigure 7; Bennett et al. 2017). Since the 1990s, references to market or community-based management interventions gained traction – particularly environmental certification programs and payment for ecosystem services schemes, such as the Reducing Emissions from Deforestation and Forest Degradation (REDD) program (Figure 6a). We also observed an increased focus on human well-being (Figure 6b), with a spike of references to human health in the 1970s and more recently an overall growth in references to poverty, food security, and overall human well-being since the 1990s. This trend is paralleled by the rise in frequency of the terms ecosystem service and ecosystem function (Figure 2l), two terms that explicitly focus on ecological processes based on the benefits they impart to humans. Given the increased focus on the human dimensions of conservation over the past few decades (Bennett et al. 2017), it makes sense that methods involving interviews and questionnaires would become more common (Figure 6c). Ecology is only just beginning to acknowledge different ways of knowing; however, qualitative methods, such as focus groups, ethnography, or participant observation, remain scarcely referenced, supporting the assertion that ecology and conservation continue to rely primarily on quantitative approaches (Figure 6c; Moon et al. 2016). Parallel to the increased focus on human well-being since the 1970s, we observed an increased frequency of n-grams related to stakeholders, local communities, and Indigenous people (Figure 6d).

Discussion

The ecology and conservation lexicons have expanded and evolved considerably over the past 80 years. The most frequently used terms in the 1930s were derived from the breadth of disciplines that inspired early ecologists, but by the 2000s had been largely replaced by terms that reflected the emergence of a data-driven scientific field focused mainly on applied environmental issues. The turnover in terminology demonstrates how ecologists and conservationists have embraced many newly coined terms (eg biodiversity, climate change, meta-analysis) that did
Figure 6. Social-science n-grams relevant to ecology from 1930 to 2010. Details are otherwise the same as for Figure 3. REDD: Reducing Emissions from Deforestation and Forest Degradation.

not exist in the early 20th century and signifies the evolution of ecology and conservation into fully independent research disciplines. Our results illustrate that ecologists and conservationists are working on increasingly complex and specialized topics at broader spatial scales (Estes et al. 2018) and higher levels of taxonomic and hierarchical organization (Kim et al. 2018), and are increasingly incorporating the human dimensions of conservation (Bennett et al. 2017).

There has been a shift in how ecologists and conservationists describe analytical techniques, demonstrating the evolution of ecological research into a more quantitative and data-driven field of study (Figures 1 and 5). In particular, ecologists and conservationists have adopted many statistical paradigms (eg Bayesian, AIC, and MCMC) and genetic analytical techniques (eg phylogenetics and omics) over the past three decades. The increased use of these terms highlights the importance of advanced training in statistics, genetic techniques, and computer programming. This shift toward analytical techniques does not appear to have come about at the expense of natural history (Figure 4a) – a loss that has been mourned and debated (Tewksbury et al. 2014; Able 2016; Barrows et al. 2016). Instead, our results suggest there is room for both natural history and rigorous quantitative analysis. In terms of preparing students to publish their work, our results reinforce the call to refocus ecological statistical education from declining recipe-based approaches (eg ANOVAs) to probability theory, programming, and simulation-based approaches (eg McElreath 2015).

There are caveats to consider when interpreting our results. First, our analysis tracks frequency of term use in the ecological and conservation literature, but frequency does not necessarily correspond to the importance of related concepts to the field. For example, some terms may be commonly mentioned in paper introductions but appear less often as the core topic of research. Other terms, such as conservation, are linked to journal titles like Conservation Biology and appear in the bibliographic section of some papers. Second, the journals included in the corpus are not a random sample across the field of ecology. Our corpus excluded several prominent journals that do not focus solely on ecological or conservation research (eg Science, Nature) as well as taxonomic-specific journals (eg American Journal of Botany, Journal of Wildlife Management), which were intentionally omitted to reduce taxonomic bias (WebPanel 1). Third, the quality of the corpus improved through time – data from the earlier years in our analysis were based on much smaller sample sizes than more recent data (WebFigures 1 and 2), and the data from the earlier years are mostly based on optical character recognition, a process in which scanned PDF files are converted into text, at times with errors.

Conclusions

Our analyses allow ecologists and conservationists to reflect on the past, present, and future of their field. Within eight decades, the field has evolved from focusing on natural history and observational field studies to a multidisciplinary field more applied and quantitative in scope. Undoubtedly, ecology and conservation have and will continue to grow and adopt approaches developed elsewhere, such as analyses of increasingly large datasets and the use of deep learning (Christin et al. 2019). These new tools will empower researchers to answer questions that were previously unanswerable and create niches for more types of ecologists and conservationists. Yet, while quantitative and meta-analysis-style research (this paper included) are valuable (Osenberg et al. 1999), if ecology wishes to maintain its natural-history and fundamental-science roots, the field needs to prioritize such a focus through research funding bodies and educational curricula. As we see it, elements of ecology today are almost unrecognizable from the field 90 years ago; only time will tell if this rate of evolution will continue, leaving ecologists in 2100 with a similar sentiment.

Acknowledgements

We thank the JSTOR Data for Research team for their work maintaining the JSTOR n-gram database and their help with data extraction. We thank the David H Smith Conservation Research Fellowship, which supported all of the authors financially at some point during this project. We thank MP Dombeck, SG Foster, T Chang, NK

Front Ecol Environ doi:10.1002/fee.2320
Dulvy, BJ Harvey, MA Nocco, SM O’Regan, and T Young for their support and helpful discussions. The full-text corpus is available through consultation with the JSTOR Data for Research team (https://jstor.org). All code to conduct our analysis is available at https://github.com/seanandersen/education-trends and https://doi.org/10.5281/zenodo.4602334.

References

Able KW. 2016. Natural history: an approach whose time has come, passed, and needs to be resurrected. ICES J Mar Sci 73: 2150–55.

Andrews KR, Good JM, Miller MR, et al. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17: 81–92.

Barrows CW, Murphy-Mariscal ML, and Hernandez RR. 2016. At a crossroads: the nature of natural history in the twenty-first century. BioScience 66: 592–99.

Beale CM. 2018. Trends and themes in African ornithology. Ostrich 89: 99–108.

Bennett NJ, Roth R, Klain SC, et al. 2017. Mainstreaming the social sciences in conservation. Conserv Biol 31: 56–66.

Burnham KP and Anderson DR. 2002. Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. New York, NY: Springer.

Carmel Y, Kent R, Bar-Massada A, et al. 2013. Trends in ecological research during the last three decades – a systematic review. PLoS ONE 8: e59813.

Christin S, Hervet É, and Lecomte N. 2019. Applications for deep learning in ecology. Methods Ecol Evol 10: 1632–44.

Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–10.

Díaz S, Settele J, and Brondizio ES, et al. (Eds). 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES.

Estes L, Elsen PR, Treuer T, et al. 2018. The spatial and temporal domains of modern ecology. Nature Ecol Evol 2: 819–26.

Farman JC, Gardner BG, and Shanklin JD. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOxNOx interaction. Nature 315: 207–10.

Federer LM, Belter CW, Joubert DJ, et al. 2018. Data sharing in PLoS ONE: an analysis of data availability statements. PLoS ONE 13: e0194768.

Fox JW. 2013. The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28: 86–92.

Gelman A, Carlin JB, Stern HS, et al. 2014. Bayesian data analysis. Boca Raton, FL: Chapman & Hall.

Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.

Hintzen RE, Papadopoulou M, Mounce R, et al. 2019. Relationship between conservation biology and ecology shown through machine reading of 32,000 articles. Conserv Biol 34: 721–32.

Holling CS. 1959. Some characteristics of simple types of predation and parasitism. Can Entomol 91: 385–98.

Hubbell SP. 2001. The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.

Kim JY, Joo G-J, and Do Y. 2018. Through 100 years of Ecological Society of America publications: development of ecological research topics and scientific collaborations. Ecosphere 9: e02109.

Ladle RJ, Correia RA, Do Y, et al. 2016. Conservation culturology. Front Ecol Environ 14: 269–75.

Li J, Wang M-H, and Ho Y-S. 2011. Trends in research on global climate change: a Science Citation Index Expanded-based analysis. Global Planet Change 77: 13–20.

Lotka AJ. 1920. Analytical note on certain rhythmic relations in organic systems. P Natl Acad Sci USA 6: 410–15.

MA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being: synthesis. Washington, DC: Island Press.

Margles SW, Peterson RB, Ervin J, and Kaplin BA. 2010. Conservation without borders: building communication and action across disciplinary boundaries for effective conservation. J Environ Manage 45: 1–4.

McCallen E, Knott J, Nunez-Mir G, et al. 2019. Trends in ecology: shifts in ecological research themes over the past four decades. Front Ecol Environ 17: 109–16.

McElreath R. 2015. Statistical rethinking: a Bayesian course with examples in R and Stan. London, UK: Chapman and Hall/CRC.

Meine C, Soulé M, and Noss RF. 2006. “A mission-driven discipline”: the growth of conservation biology. Conserv Biol 20: 631–51.

Michel J-B, Shen YK, Aiden AP, et al. 2011. Quantitative analysis of culture using millions of digitized books. Science 331: 176–82.

Moon K, Brewer TD, Januchowski-Hartley SR, et al. 2016. A guideline to improve qualitative social science publishing in ecology and conservation journals. Ecol Soc 21: art17.

Nakagawa S and Cuthill IC. 2007. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82: 591–605.

Odum EP. 1953. Fundamentals of ecology. Philadelphia, PA: Saunders.

Osenberg CW, Sarnelle O, Cooper SD, and Holt RD. 1999. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80: 1105–17.

Quinn JF and Dunham AE. 1983. On hypothesis testing in ecology and evolution. Am Nat 122: 602–17.

Reiners WA, Lockwood JA, Reiners DS, and Prager SD. 2017. 100 years of ecology: what are our concepts and are they useful? Ecol Monogr 87: 260–77.

Rios-Saldaña CA, Delibes-Mateos M, and Ferreira CC. 2018. Are fieldwork studies being relegated to second place in conservation science? Global Ecol Conserv 14: e00389.

Sanger F, Nicklen S, and Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. P Natl Acad Sci USA 74: 5463–67.

Scheffers BR, Meester LD, Bridge TCL, et al. 2016. The broad footprint of climate change from genes to biomes to people. Science 354: aaf7671.

Smith DR, Hardy ICW, and Gammell MP. 2011. Power rangers: no improvement in the statistical power of analyses published in Animal Behaviour. Anim Behav 81: 347–52.
Staples TL, Dwyer JM, Wainwright CE, and Mayfield MM. 2019. Applied ecological research is on the rise but connectivity barriers persist between four major subfields. *J Appl Ecol* 56: 1492–98.

Tansley AG. 1935. The use and abuse of vegetational concepts and terms. *Ecology* 16: 284–307.

Tewksbury JJ, Anderson JGT, Bakker JD, *et al.* 2014. Natural history’s place in science and society. *BioScience* 64: 300–10.

Thompson EA. 1994. Monte Carlo likelihood in the genetic mapping of complex traits. *Philos T Roy Soc B* 344: 345–51.

Volterra V. 1928. Variations and fluctuations of the number of individuals in animal species living together. *ICES J Mar Sci* 3: 3–51.

Watson JEM, Dudley N, Segan DB, and Hockings M. 2014. The performance and potential of protected areas. *Nature* 515: 67–73.

Wilson EO. 1988. Biodiversity. Washington, DC: National Academy Press.

Worster D. 2004. *Dust Bowl: the Southern Plains in the 1930s*. Oxford, UK: Oxford University Press.

Yates PL. 1946. Food and Agriculture Organization of the United Nations. *J Farm Econ* 28: 54–70.

Consumption of insect and plant exudates by mouse lemurs

While exploring Isalo National Park in southcentral Madagascar, we observed numerous nymphs and adults of the endemic flatid leaf bug (*Phromnia rosea*). As in many other hemipterans (including aphids, scale insects, and leafhoppers), nymphs of these leaf bugs feed on phloem and expel a liquid endearingly termed “honeydew” from their anuses. This sugary substance drops onto leaves and stems.

In northwestern Madagascar, the gray mouse lemur (*Microcebus murinus*), golden-brown mouse lemur (*Microcebus ravelobensis*), Madame Berthe’s mouse lemur (*Microcebus berthae*, the world’s smallest primate, found only in a small area in western Madagascar), and ring-tailed lemur (*Lemur catta*, which are in a different family from the others) mostly consume honeydew and plant-based exudates such as gums during the dry season. Honeydew could be a critical resource during periods of food scarcity (Joly-Radko and Zimmerman 2010; doi.org/10.1007/978-1-4419-6661-2_7), and lemurs are the only mammals ever documented to eat honeydew.

Precious little is known about most of the mouse lemurs, and until the late 20th century only one species was recognized – now, more than 20 are known. However, collecting field data on flatid leaf bugs and mouse lemurs is challenging. Future studies could determine whether exudates account for a substantial fraction of their calories in the dry season, and if dietary shifts are accompanied by changes in the lemurs’ gut microbiota.

John F Mull and Sam Zeveloff
Department of Zoology, Weber State University, Ogden, UT
doi:10.1002/fee.2354

Supporting Information

Additional, web-only material may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/fee.2320/suppinfo