An Effective Version of Chevalley-Weil Theorem for Projective Plane Curves

Konstantinos Draziotis and Dimitrios Poulakis

Abstract

We obtain a quantitative version of the classical Chevalley-Weil theorem for curves. Let \(\phi: \tilde{C} \to C \) be an unramified morphism of non-singular plane projective curves defined over a number field \(K \). We calculate an effective upper bound for the norm of the relative discriminant of the number field \(K(Q) \) over \(K \) for any point \(P \in C(K) \) and \(Q \in \phi^{-1}(P) \).

1 Introduction

Let \(\phi: V \to W \) be an unramified covering of projective normal varieties defined over a number field \(K \). By the classical theorem of Chevalley-Weil [2, 10, 3, Theorem 8.1, page 45], [4, page 292], there exists a finite extension \(L/K \) such that \(\phi^{-1}(W(K)) \subseteq V(L) \). In [3, Theorem 1.1], we obtained a quantitative version of the Chevalley-Weil theorem in case where \(\phi: \tilde{C} \to C \) is an unramified morphism of non-singular affine plane curves defined over \(K \). More precisely, we gave, following a new approach, an effective upper bound for the relative discriminant of the minimal field of definition \(K(Q) \) of \(Q \) over \(K \) for any integral point \(P \in C(K) \) and \(Q \in \phi^{-1}(P) \). In this paper, we consider the case where \(\phi: \tilde{C} \to C \) is an unramified morphism of non-singular projective plane curves defined over \(K \) and we obtain, extending our method, an effective upper bound for the relative discriminant of \(K(Q) \) over \(K \) for any \(P \in C(K) \) and \(Q \in \phi^{-1}(P) \).

Consider the set of absolute values on \(\mathbb{Q} \) consisting of the ordinary absolute value and for every prime \(p \) the \(p \)-adic absolute value \(|\cdot|_p \) with \(|p|_p = p^{-1} \). Let \(M(K) \) be a set of symbols \(v \) such that with every \(v \in M(K) \) there is precisely one associated absolute value \(|\cdot|_v \) on \(K \) which extends one of the above absolute values of \(\mathbb{Q} \). We denote by \(d_v \) its local degree. Let \(x = (x_0: \ldots: x_n) \) be a point of the projective space \(\mathbb{P}^n(K) \) over \(K \). We define the field height \(H_K(x) \) of \(x \) by

\[
H_K(x) = \prod_{v \in M(K)} \max\{|x_0|_v, \ldots, |x_n|_v\}^{d_v}.
\]

Let \(d \) be the degree of \(K \). We define the absolute height \(H(x) \) by \(H(x) = H_K(x)^{1/d} \). Furthermore, for \(x \in K \) we put \(H_K(x) = H_K(1 : x) \) and \(H(x) = H(1 : x) \). If \(G \in K[X_1, \ldots, X_m] \), then we define the field height \(H_K(G) \) and the absolute height \(H(G) \) of \(G \) as the field height and the absolute height of the point whose coordinates are the coefficients of \(G \). For an account of the properties of heights see [3, chapter VIII] or [5, chapter 3].
Let \overline{K} be an algebraic closure of K and O_K the ring of algebraic integers of K. If M is a finite extension of K, then we denote by $D_{M/K}$ the relative discriminant of the extension M/K and by N_M the norm from M to Q.

Let $F, \overline{F} \in K[X_1, X_2, X_3]$ be two homogeneous absolute irreducible polynomials with $N = \deg F > 1$ and $\overline{N} = \deg \overline{F} > 1$. We denote by C and \overline{C} the projective curves defined by $F(X_1, X_2, X_3) = 0$ and $\overline{F}(X_1, X_2, X_3) = 0$ respectively. Let $\phi : C \to \overline{C}$ be a nonconstant morphism of degree $m > 1$ defined by $\phi(X_1, X_2, X_3) = (\phi_1(X_1, X_2, X_3), \phi_2(X_1, X_2, X_3), \phi_3(X_1, X_2, X_3))$, where $\phi_i(X_1, X_2, X_3)$ $(i = 1, 2, 3)$ are relatively prime homogeneous polynomials in $K[X_1, X_2, X_3]$ of the same degree M. Let Φ be a point in the projective space having as coordinates the coefficients of ϕ_i $(i = 1, 2, 3)$.

Theorem 1 Suppose that C is nonsingular and the morphism $\phi : \overline{C} \to C$ unramified. Then for any point $P \in C(K)$ and $Q \in \phi^{-1}(P)$, we have

$$N_K(D_{K(Q)/K}) < \Omega(H(F)^{6N^2\overline{N}}H(\Phi_1)^{\overline{N}}H(\overline{F})^M)^{\omega/dm^3M^7N^{30}\overline{N}^{13}},$$

where Ω is an effectively computable constant in terms of N, \overline{N}, M, m and d, and ω a numerical constant.

Remarks. 1) By [3] Corollary 3, p. 120, the curve \overline{C} is nonsingular.
2) Since $m > 1$, the quantity M is > 1.
3) By Hurwitz’s formula, \overline{C} and C have positive genus and $\overline{N} > N > 3$.
4) Since $\overline{F}(X, Y, Z)$ divides $F(\phi_1(X, Y, Z), \phi_2(X, Y, Z), \phi_3(X, Y, Z))$, $H(\overline{F})$ and \overline{N} can be bounded by constants depending only on \overline{F} and ϕ.

Let $K(C)$ and $K(\overline{C})$ be the function fields of C and \overline{C}, respectively, over K, $P = (p_1: p_2: p_3)$ and $\phi^* : K(C) \to K(\overline{C})$ the field homomorphism associated to ϕ. We denote by $\phi_{j,i}$ the function on \overline{C} defined by the fraction ϕ_j/ϕ_i. The idea of the proof of Theorem 1 is as follows. For every affine view C_i, with $X_i = 1$ $(i = 1, 2, 3)$, of C we construct two primitive elements u_{is} $(s = 1, 2)$ for the field extension $K(\overline{C})/\phi^*(K(C))$ which are integral over the ring $K[\phi_{j,i}, \phi_{k,i}]$ and such that $K(u_{is}(Q)) = K(Q)$. Further, we construct polynomials $P_{is}(X, Y, U)$ $(s = 1, 2)$ representing the minimal polynomials of u_{is} over $K[\phi_{j,i}, \phi_{k,i}]$ such that the discriminants $D_{is}(X, Y)$ of $P_{is}(X, Y, U)$ $(s = 1, 2)$ have no common zero on C_i. It follows that for every prime ideal \mathfrak{p} of O_K with quite large norm there is $i \in \{1, 2, 3\}$ such that \mathfrak{p} cannot divide both $D_{is}(p_1/p_i, p_2/p_i)$ $(s = 1, 2)$ and hence cannot divide the discriminant of $K(Q)$. Thus, we determine the prime ideals of K which are ramified in $K(Q)$ and the result follows. A totally different effective approach of Chevalley-Weil theorem is given in [1] Chapter 4.

The paper is organized as follows. In section 2 we give some auxiliary results and in section 3 we obtain the proof of Theorem 1.

Notations. If C is a projective plane curve defined over \overline{K}, then we denote by $O(U)$ the ring of regular functions on an open subset U of C and by $\overline{K}(C)$ the function field of C. Let G be a homogeneous polynomial of $\overline{K}[X_1, X_2, X_3]$. We denote by $D_{C}(G)$ and $V_{C}(G)$ the set of points $P \in C(\overline{K})$ with $G(P) \neq 0$ and $G(P) = 0$ respectively. Finally, throughout the paper, we denote by $A_1(a_1, \ldots, a_s), A_2(a_1, \ldots, a_s), \ldots$ effectively computable positive numbers in terms of indicated parameters.
2 Auxiliary Results

We keep the notations and the assertions of the Introduction. The restriction of \(\phi \) on \(\phi^{-1}(D_C(X_i)) \) is a finite morphism. Thus, the associated ring homomorphism \(\phi^* : O(DC(X_i)) \to O(\phi^{-1}(DC(X_i))) \), defined by \(\phi^*(f) = f \circ \phi \), for every \(f \in O(DC(X_i)) \), is surjective and the ring \(O(\phi^{-1}(DC(X_i))) \) is finite over \(\phi^*(O(DC(X_i))) \). We denote by \(x_{j,i} \) and \(x_{j,i} \) the functions defined by \(X_j/X_i \) on \(\bar{C} \) and \(C \), respectively. The function \(\phi^*(x_{j,i}) \) is defined by the fraction \(\phi_j/\phi_i \) and so \(\phi_j = \phi^*(x_{j,i}) \). Then we have \(\phi^*(O(DC(X_i))) = \mathcal{K}[\phi_j, \phi_k, i] \). Let \(\rho \) be an integer such that for every \((z_1 : z_2 : z_3) \in V_C(X_i) \) we have \(z_k + \rho z_j \neq 0 \), where \(\{i, j, k\} = \{1, 2, 3\} \) with \(j < k \). Thus, the poles of the function \(u = x_{k,i} + \rho x_{j,i} \) are the points of \(V_C(X_i) \). Put \(\Pi_i = \phi^{-1}(DC(X_i)) \cap V_C(X_i) \).

Proposition 1 There is a monic polynomial \(f(T) \in K[T] \) such that the function \(\bar{u} = uf(\phi_j, i) \) is integral over \(K[\phi_j, i, \phi_k, i] \). We have \(\deg f \leq \bar{N} \),

\[
H(f) < A_1(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\bar{F})^{MN}H(\bar{F})^{\bar{N}},
\]

and the roots of \(f(T) \) are the elements \(\phi_j, i, i \)(\(R \)), where \(R \in \Pi_i \). Moreover, there is a polynomial of \(K[X_j, X_k] \),

\[
P(X_j, X_k, U) = U^\mu + p_1(X_j, X_k)U^{\mu-1} + \cdots + p_\mu(X_j, X_k),
\]

such that \(P(\phi_j, i, \phi_k, i, U) \) is the minimal polynomial of \(\bar{u} \) over \(K[\phi_j, i, \phi_k, i] \). We have \(\mu \leq m \), \(\deg p_l < 11MN^4N^2 \) \((l = 1, \ldots, \mu) \) and

\[
H(P) < A_2(\rho, M, N, \bar{N})H(\bar{F})^{6N^2\bar{N}}H(\bar{F})^{\bar{N}}H(\bar{F})^{240mM^3N^3N^{12}\bar{N}}.
\]

For the proof of Proposition 1 we shall need the following lemma.

Lemma 1 There is a polynomial \(G(W, X, U) \in K[W, X, U] \setminus \{0\} \) such that \(G(\rho, \phi_j, i, u) = 0 \). We have \(\deg_X G \leq NN \), \(\deg_U G \leq 2MNN \), \(\deg_W G \leq 2MN\bar{N} \) and the polynomial \(G_\rho(X, U) = G(\rho, X, U) \) satisfies

\[
H(G_\rho) < A_3(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(\bar{F})^{MN}H(\bar{F})^{\bar{N}}.
\]

Proof. We may suppose, without loss of generality, that \(j = 1, k = 2 \) and \(i = 3 \). Consider the polynomials \(\bar{F}_1(W, V, U) = \bar{F}(V, U - WV, 1) \) and

\[
E(W, X, V, U) = F(X\phi_3(V, U - WV, 1), \phi_2(V, U - WV, 1), \phi_3(V, U - WV, 1)).
\]

We have \(\bar{F}_1(\rho, \bar{x}_{1,3}, u) = \bar{F}(\rho, \phi_{1,3}, \bar{x}_{1,3}, u, \rho) = 0 \). If \(G(W, X, U) \) is the resultant of \(E(W, X, V, U) \) and \(\bar{F}_1(W, V, U) \) with respect to \(V \), then \(G(\rho, \phi_{1,3}, u) = 0 \).

Suppose that \(G(W, X, U) \) is equal to zero. Thus, since \(\bar{F}_1(W, V, U) \) is absolutely irreducible, \(\bar{F}_1(W, V, U) \) divides \(E(W, X, V, U) \). It follows that \(\bar{F}(V, U, 1) \) divides \(F(X\phi_3(V, U, 1), \phi_2(V, U, 1), \phi_3(V, U, 1)) \). Write

\[
F(X_1, X_2, X_3) = A_0(X_2, X_3)X_1^n + \cdots + A_n(X_2, X_3),
\]

where \(A_i(X_2, X_3) \) \((i = 0, \ldots, n) \) are homogeneous polynomials with \(\deg A_i = N - n + i \). If \(P = (p_1 : p_2 : 1) \in D_C(\phi_3) \), then

\[
A_0(\phi_{2,3}(P), 1)(X_1/\phi_3(P))^n + \cdots + A_n(\phi_{2,3}(P), 1) = 0.
\]
It follows that \(A_j(\phi_{2,3}(P), 1) = 0 \) \((j = 0, \ldots, n)\) which is a contradiction since \(F(X_1, X_2, X_3) \) is absolutely irreducible. Thus \(G(W, X, U) \) is not zero.

By [3] Lemma 4.2, we have \(\deg_X G \leq N \tilde{N}, \deg_U G \leq 2MN \tilde{N} \), and \(\deg_W G \leq 2MN \tilde{N} \). Further, if \(G_p(X, U) = G(\rho, X, U) \), \(E_p(X, V, U) = E(\rho, X, V, U) \) and \(\tilde{F}_p(V, U) = \tilde{F}(\rho, V, U) \), then

\[
H(G_p) < \Lambda_4(M, N, \tilde{N}) H(E_p)^N H(\tilde{F}_p)^MN.
\]

By [3] Lemma 4.4, we obtain

\[
H(\tilde{F}_p) < 2^N(\tilde{N} + 1) \max\{1, |\rho|\}^\tilde{N} H(\tilde{F}).
\]

Next, put \(\varphi_{\rho,l}(V, U) = \phi_l(V, U - \rho V) \) \((l = 1, 2)\). By [4] Lemma B.7.4, for every absolute value \(| \cdot |_v\) of \(K \),

\[
|E_p|_v \leq \max\{1, |2N|_v^2\}|F|_v \max_{0 \leq j \leq N} \{|\varphi_{\rho,2}^j|_v|\varphi_{\rho,3}^{N-j}|_v\}
\]

and for every positive number \(k \),

\[
|\varphi_{\rho,l}|_v \leq \max\{1, |2M|_v^2\}^k|\varphi_{\rho,l}|_v.
\]

Furthermore, the proof of [3] Lemma 4.4 gives

\[
|\varphi_{\rho,l}|_v \leq \max\{1, |\rho|_v\}^M \max\{1, |2|_v^2\}^M \max\{1, |M + 1|_v\} |\phi_l|_v, \quad (l = 1, 2).
\]

The above inequalities yield

\[
H(E_p) < \Lambda_5(\rho, M, N, \tilde{N}) H(F) H(\Phi)^N.
\]

Combining all theses estimates, the bound for \(H(G_p) \) follows.

Proof of Proposition 1. ByLemma 1, there is \(G_p(X, U) \in K[X, U] \) such that \(G_p(\phi_{j,i}, u) = 0 \). Write \(G_p(X, U) = g_0(X)U^\nu + \cdots + g_\nu(X) \). Thus, \(u g_0(\phi_{j,i}) \) is an integral element over \(K[\phi_{j,i}, \phi_{k,i}] \) and so \(u g_0(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i))) \).

If \(h \in \overline{K}(C) \) and \(S \in \tilde{C} \), then we denote by \(\text{ord}_S(h) \) the order of \(h \) at \(S \). Put \(B_R = \phi_{j,i}(R) \), where \(R \in \Pi_i \). Let \(m_R \) be the smallest integer such that \((\phi_{j,i} - B_R)^{m_R} u \) is defined at \(R \). Then \(m_R \leq |\text{ord}_R(\phi)| \). Set \(f(X) = \prod_{R \in \Pi_i} (X - B_R)^{m_R} \). We have \(u f(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i))) \) and since \(|\overline{K}(C) : K(u)| = \tilde{N} \), we obtain \(\deg f = \sum_{R \in \Pi_i} m_R \leq \tilde{N} \). The elements of the Galois group \(\text{Gal}(\overline{K}/K) \) permute the elements of \(\Pi_i \) and consequently the numbers \(B_R \).

For every \(\sigma \in \text{Gal}(\overline{K}/K) \), we have \(\text{ord}_R(\phi_{j,i} - B_R) = \text{ord}_{R^\sigma}(\phi_{j,i} - B_{R^\sigma}) \) and \(\text{ord}_R(u) = \text{ord}_{R^\sigma}(u) \). It follows that \(m_R = m_{R^\sigma} \). Hence \(f(X) \in K[X] \). Since \(u g_0(\phi_{j,i}) \in O(\phi^{-1}(D_C(X_i))) \), we have \(g_0(X) = f(X)l(X) \), where \(l(X) \in K[X] \).

By [3] Proposition B.7.3, \(H(f) \leq e^{N \tilde{N}} H(G_p) \). The bound for \(H(f) \) follows.

Consider the polynomial

\[
\tilde{G}_p(X, U) = l(X)U^\nu + q_1(X)U^\nu-1 + q_2(X)f(X)U^\nu-1 + \cdots + q_\nu(X)f(X)^\nu-1.
\]

We have \(\tilde{G}_p(\phi_{j,i}, u f(\phi_{j,i}) = 0 \). The estimates for \(G_p(X, U) \) and [4] Proposition B.7.4] yield

\[
H(\tilde{G}_p) < \Lambda_7(\rho, M, N, \tilde{N}) H(F)^N H(\tilde{F})^{MN} H(\Phi)^{N \tilde{N}} 2^{MN \tilde{N}}.
\]

Using [3] Proposition 2.1] and the estimates for \(\tilde{G}_p \), we obtain the existence of polynomial \(P(X_j, X_k, U) \in K[X_j, X_k, U] \) having the required properties.
Lemma 2 Let \(P \in C(K) \) and \(Q \in C(\overline{K}) \) with \(\phi(Q) = P \). Then

\[
N_K(D_{K(Q)/K}) < (e^3(M + \bar{N}))^{dM\bar{N}}(H_K(P)H_K(\Phi))^{\bar{N}}H_K(F)^{M\bar{N}}^M.
\]

Proof. We may suppose, without loss of generality, that \(Q = (q_1 : q_2 : 1) \) and \(P = (p_1 : p_2 : 1) \). Put \(G_1(X_1, U, V) = X_1\phi_3(U, V, 1) - \phi_1(U, V, 1) \). Then \(G_1(p_1, q_1, q_2) = 0 \). We denote by \(R_1(U) \) and \(R_2(V) \) the resultants of \(F(U, V, 1) \) and \(\Gamma(U, V) = G_1(p_1, U, V) \) with respect to \(V \) and \(U \). Then \(R_1(q_1) = R_2(q_2) = 0 \). By [3, Lemma 4.2] and [4, Proposition B.7.4(b)] we obtain

\[
H(R_i) \leq (M + \bar{N})!(\bar{N} + 1)^M(M + 1)^{\bar{N}}(2H(p_1)H(\Phi))^{\bar{N}}H(F)^M.
\]

Furthermore, we have \(\deg R_i \leq 2M\bar{N} \).

Let \(B_i(T) = T^{m_i} + b_1T^{m_i-1} + \cdots + b_{m_i} \), where \(m_i \leq 2M\bar{N} \), be the irreducible polynomial of \(q_i \) over \(K \). By [3] Lemma 4.1 there is a positive integer \(\beta_i \) with \(\beta_i \leq H_K(B_i)^{m_i} \) such that \(\beta_i b_1 \cdots b_{m_i} \in O_K \). Then \(\beta_i q_i \) is an algebraic integer with minimal polynomial \(B_i(T) = T^{m_i} + \beta b_1 T^{m_i-1} + \cdots + \beta b_{m_i} \). Using [4, Proposition B.7.3] we obtain

\[
H(B_i) \leq H(B_i)\beta_i^{m_i} \leq (e^{2M\bar{N}}H(R_i))^{1+2dM\bar{N}}.
\]

Let \(\Delta(B_i) \) be the discriminant of \(B_i(T) \). By [8] Lemma 5, we have

\[
N_K(\Delta(B_i)) \leq H_K(\Delta(B_i)) \leq m_i^{3dM\bar{N}}H_K(B_i)^{2m_i-2} \leq (e^{2dM\bar{N}}H_K(R_i))^{9dM^2\bar{N}^2}.
\]

Put \(K_i = K(q_i) \). Since \(b_i q_i \) is an algebraic integer, the discriminant \(D_i \) of the extension \(K_i/K \) divides the discriminant of \(1, b_i q_i, \ldots, (b_i q_i)^{m_i-1} \) which is equal to \(\Delta(B_i) \). Thus \(N_K(D_i) \leq |N_K(\Delta(B_i))| \). If \(I(T) \) is the irreducible polynomial of \(b_2 q_2 \) over \(K_1 \), then \(I(T) \) divides \(B_2(T) \) (in \(K_1[T] \)) and so the discriminant \(\Delta(I) \) of \(I(T) \) divides \(\Delta(B_2) \). Hence, \(D_{K(Q)/K_i} \) divides \(\Delta(B_2) \). Thus,

\[
N_K(D_{K(Q)/K}) \leq N_K(D_1)^{2M\bar{N}}N_K(D_{K(Q)/K_1}) \leq (N_K(\Delta(B_1))N_K(\Delta(B_2))^2M\bar{N}.
\]

Using the upper bounds for \(N_K(\Delta(B_i)) \) and \(H_K(R_i) \), the result follows.

3 Proof of Theorem 1

Let \(P = (a_1 : a_2 : a_3) \), \(Q \in \phi^{-1}(P) \) and \(L = K(Q) \). If \(a_j = 0 \) for some \(j \in \{1, 2, 3\} \), then [7, Lemma 4] gives \(H(P) < 2H(F) \). So Lemma 2 yields a sharper bound for \(N_K(D_{L/K}) \) than that of Theorem 1. Thus, we may suppose that \(a_j \neq 0 \) (\(j = 1, 2, 3 \)).

Let \(\Theta_i \) be the set of \(\rho \in \mathbb{Z} \) such that for every \((z_1 : z_2 : z_3) \in V_C(X_i) \) we have \(z_k + \rho z_j = 0 \), where \(\{i, j, k\} = \{1, 2, 3\} \) with \(j < k \). Set \(u_{\rho,i} = \bar{x}_{k,i} + \rho \bar{x}_{j,i} \), where \(\rho \notin \Theta_i \). By Proposition 1, there is a monic polynomial \(f_i \in K[T] \) such that the function \(\tilde{u}_{\rho,i} = u_{\rho,i}f_i(\phi_{j,i}) \) is integral over \(K[\phi_{j,i}, \phi_{k,i}] \), \(\deg f_i \leq \bar{N} \), the roots of \(f_i \) are the elements \(\phi_{j,i}(R) \), where \(R \in \phi^{-1}(D_{C(X_i)}) \cap V_C(X_i) \) and

\[
H(f) < \Lambda_1(\rho, M, N, \bar{N})H(F)^{\bar{N}}H(F)^{MN}H(\Phi)^{N\bar{N}}.
\]

Moreover, there is a polynomial of \(K[X_j, X_k, U] \),

\[
P_{\rho,i}(X_j, X_k, U) = U^\mu + p_{\rho,i,1}(X_j, X_k)U^{\mu-1} + \cdots + p_{\rho,i,\mu}(X_j, X_k),
\]

where
such that $P_{\rho,i}(\phi_{j,i}, \phi_{k,i}, U)$ is the minimal polynomial of $\tilde{u}_{\rho,i}$ over $K[\phi_{j,i}, \phi_{k,i}]$. We have $\mu \leq m$, $\deg p_{\rho,i} < 11MN^2N^2$ ($l = 1, \ldots, \mu$), and

$$H(P) < A_2(\rho, m, N, N\tilde{N})(H(F))^6N^2\tilde{N}H(\Phi)^{\tilde{N}}H(\tilde{F})^M240mM^3N^4N^2\tilde{N}^2.$$

Suppose that there is $i \in \{1, 2, 3\}$ such that $f_i(a_j/a_i) = 0$. By [7, Lemma 4] and [6, Lemma 7], we have

$$H(P) \leq H(a_j/a_i)H(a_k/a_i) \leq 2(N + 1)H(F)(2H(f_i))^{N+1}.$$

Using the bound for $H(f_i)$, Lemma 2 gives a sharper bound for $N_K(DL/R)$ than that of Theorem 1. Next, suppose that for every $i = 1, 2, 3$ we have $f_i(a_j/a_i) \neq 0$ and so $u_{\rho,i}$ is defined at Q.

The monomorphism $\phi^* : O(D_C(X_i)) \to O(\phi^{-1}(D_C(X_i)))$ extends to a field homomorphism $\phi^* : \overline{K}(C) \to \overline{K}(C)$. We have $\phi^*(\overline{K}(C)) = \overline{K}(\phi_{j,i}, \phi_{k,i})$. If $\sigma_1, \ldots, \sigma_m$ are all the $\overline{K}(C)$-embeddings of $\phi^*(\overline{K}(C))$ into an algebraic closure of $\phi^*(\overline{K}(C))$, then we denote by Γ_i the set of integers $\rho \notin \Theta_i$ with $\sigma_\rho(\tilde{u}_{\rho,i}) \neq \sigma_i(\tilde{u}_{\rho,i})$ for $p \neq q$. For every $\rho \in \Gamma_i$, we have $\overline{K}(C) = \phi^*(\overline{K}(C))(\tilde{u}_{\rho,i})$ and so $m = \mu$. Note that at most $m(m - 1)/2 + \tilde{N}$ integers ρ do not lie in Γ_i. Further, there are at most $m(m - 1)/2 + \tilde{N}$ integers ρ such that $K(u_{\rho,i}(Q)) \neq K(Q)$. Hence, there is $r(i) \in \mathbb{Z}$ with $r(i) \in \Gamma_i$ and $|r(i)| \leq \tilde{N} + m^2/2$ such that $K(u_{r(i),i}(Q)) = K(Q)$.

Putting $X_i = 1$ in $F(X_1, X_2, X_3)$ we obtain $F_i(X_j, X_k)$ with $j < k$. Let $D_{\rho,i}(X_j, X_k)$ be the discriminant of $P_{\rho,i}(X_j, X_k, U)$ with respect to U. We have $\deg D_{\rho,i} < (11(2m - 1))M^2N^4$. Since $P_{\rho,i}(\phi_{j,i}, \phi_{k,i}, U)$ is irreducible, F_i does not divide $D_{\rho,i}$. We denote by $J_{r(i),i}$ the set of points $(z_1 : z_2 : z_3) \in D_C(X_i)$ with $z_i = 1$ and $D_{r(i),j}(z_j, z_k) = 0$. By Bézout’s theorem, $|J_{r(i),i}| < 11(2m - 1)M^2N^4N^2$. Thus, if $B_i = J_{r(i),i} \cup \{P\}$, then there is an integer $s(i)$ with $|s(i)| \leq 11m^2N^2N^5M$ such that $B_i = \phi(V_{C}(X_k + s(i)X_j)) = 0$.

We denote by $\tilde{F}_i(Y_1, Y_2, Y_3)$ and $\phi_{i,1}(Y_1, Y_2, Y_3)$ the polynomials obtained from $\tilde{F}(X_1, X_2, X_3)$ and $\phi_1(X_1, X_2, X_3)$, respectively, using the projective change of coordinates χ defined by $Y_j = X_j, Y_k = X_j, Y_i = X_k = s(i)X_j$. Set $\tilde{Q} = \phi(Q)$. Let \tilde{C}_i be the curve defined by $\tilde{F}_i(Y_1, Y_2, Y_3) = 0$. The morphism $\psi_i : \tilde{C}_i \to C$, defined by $\psi_i(Y_1, Y_2, Y_3) = (\psi_{i,1}(Y_1, Y_2, Y_3), \psi_{i,2}(Y_1, Y_2, Y_3), \psi_{i,3}(Y_1, Y_2, Y_3))$, is unramified of degree m. We denote by Ψ_i a point in the projective space with coordinates the coefficients of $\psi_{i,s}$ ($s = 1, 2, 3$).

Let $y_{j,i}$ be the function defined by Y_j/Y_i on \tilde{C}_i. We set $v_{\tau,i} = \tau y_{j,i} + y_{k,i}$, where $\{i, j, k\} = \{1, 2, 3\}, j < k$ and $\tau \in \mathbb{Z}$. Further, we denote by $\psi_{j,i,k}$ the function defined on \tilde{C}_i by the fraction $\psi_{i,j}/\psi_{i,k}$. By Proposition 1, there is a monic polynomial $g_i(T) \in K[T]$ such that the function $v_{\tau,i} = g_i(\psi_{i,j,i}, \psi_{i,k,i})$ is integral over $K[\psi_{i,j,i}, \psi_{i,k,i}]$, deg $g_i \leq \tilde{N}$ and

$$H(g_i) < A_1(\rho, m, N, \tilde{N})H(F)^{\tilde{N}}H(\tilde{F})^MNH(\Psi_i)^{\tilde{N}}.$$

The zeros of $g_i(T)$ are the elements $\psi_{i,j,i}(R)$, where $R \in \psi_{i,j,i}^{-1}(D_C(X_i)) \cap V_{\tilde{C}_i}(Y_i)$. Moreover, there is $\Pi_{\tau,i}(X_j, X_k, U) \in K[X_j, X_k, U]$ such that $\Pi_{\tau,i}(\psi_{i,j,i}, \psi_{i,k,i}, U)$ is the minimal polynomial of $\bar{v}_{\tau,i}$ over the ring $K[\psi_{i,j,i}, \psi_{i,k,i}]$. Write

$$\Pi_{\tau,i}(X_j, X_k, U) = U^{\nu} + \pi_{\tau,i,1}(X_j, X_k)U^{\nu-1} + \cdots + \pi_{\tau,i,\nu}(X_j, X_k).$$

We have $\nu \leq m$, $\deg \pi_{\tau,i,1} < 11MN^4\tilde{N}^2$ ($l = 1, \ldots, \nu$) and

$$H(\Pi_{\tau,i}) < A_2(\tau, m, N, \tilde{N})(H(F)^{6N^2\tilde{N}}H(\Psi_i)^{\tilde{N}}H(\tilde{F})^M240mM^3N^4\tilde{N}^2).$$
By [3] Lemma 4.4, $H(\bar{F}_i) < \Lambda_0(\bar{N}, s(i))H(\bar{F})$ and $H(\Psi_i) < \Lambda_0(M, s(i))H(\Psi)$. It follows that $H(g_i)$ and $H(\Pi_{\tau,i})$ satisfy inequalities as above having $H(\bar{F}_i)$ and $H(\Psi_i)$ in place of $H(\bar{F})$ and $H(\Psi_i)$ respectively.

The points $(z_1 : z_2 : z_3) \in D_{\tau}(X_i)$ with $z_i = 1$ and $g_i(z_j) = 0$ belong to $\phi(V_C(X_k + s(i)X_j))$. On the other hand, $P \in B_i$ and $B_i \cap \phi(V_C(X_k + s(i)X_j)) = \emptyset$. Hence, $g_i(a_j/a_i) \neq 0$ and so $v_{\tau,i}$ is defined at $Q (i = 1, 2, 3)$.

Let $\psi_i^* : \mathcal{K}(C) \to \mathcal{K}(\bar{C}_i)$ be the field homomorphism associated to the morphism ψ_i. As previously, there is a set $\Delta_i \subset \mathbb{Z}$ with $|\Delta_i| \leq m(m-1)/2 + N$ such that for every integer $\tau \notin \Delta_i$ we have $\mathcal{K}(\bar{C}_i) = \psi_i^*(\mathcal{K}(C))(\bar{v}_{\tau,i})$ (so $\nu = m$) and $K(v_{\tau,i}(Q)) = K(Q)$.

Let $\Sigma_{\tau,i}(X_j, X_k)$ be the discriminant of $\Pi_{\tau,i}(X_j, X_k, U)$ with respect to U. We have $deg \Sigma_{\tau,i} \leq (2m-1)11N^2N^4M$. We denote by Ξ_i the set of points $(z_1 : z_2 : z_3) \in D_{\tau}(X_i)$ with $z_i = 1$, $D_{\tau(i),j}(z_j, z_k) = 0$ and $\Sigma_{\tau,i}(z_j, z_k) = 0$, for every $\tau \in \Delta_i$. Suppose that $(z_1 : z_2 : z_3) \in \Xi_i$ with $z_i = 1$. Then, for every $\tau \in \Xi_i$, $\Pi_{\tau,i}(z_j, z_k, U)$ has at most $m - 1$ distinct roots. If $g_i(z_j) \neq 0$, then there are m distinct points $Q_t \in \phi_i^{-1}(z_1 : z_2 : z_3)$ ($t = 1, \ldots, m$) and $\tau_0 \in \mathbb{Z}$ such that $\bar{v}_{\tau_0,i}(Q_p) \neq \bar{v}_{\tau_0,i}(Q_q)$ for $p \neq q$. Thus, $\Pi_{\tau_0,i}(z_j, z_k, U)$ has m distinct roots which is a contradiction. Hence $g_i(z_j) = 0$. Then $(z_1 : z_2 : z_3) \in \phi(V_C(X_k + s(i)X_j) \cap B_i = 0$ which is a contradiction. So, for every $(z_j, z_k) \in \mathcal{K}^2$ with $D_{\tau(i),j}(z_j, z_k) = F_i(z_j, z_k) = 0$, the polynomial in τ, $\Sigma_{\tau,i}(z_j, z_k)$, is not zero.

Since $\bar{v}_{\tau,i}$ is a root of $\Pi_{\tau,i}(\psi_{i,j,i}, \psi_{i,k,i}, U)$, $\pi_{\tau,i}(\psi_{i,j,i}, \psi_{i,k,i})$, as polynomial in τ, has degree at most l. Hence, the degree in τ of $\Sigma_{\tau,i}(\psi_{i,j,i}, \psi_{i,k,i})$ is at most $(2m - 1)m$. So, for every $(z_1, z_2, z_3) \in J_{\tau(i),i}$ with $z_i = 1$ there are at most $(2m-1)m$ integers τ, such that $\Sigma_{\tau,i}(z_j, z_k) = 0$. Thus, there is $\tau(i) \in \mathbb{Z}$ with $|\tau(i)| < 22m^3MN^2N^5$, such that $\mathcal{K}(\bar{C}_i) = \psi_i^*(\mathcal{K}(C))(\bar{v}_{\tau(i),i})$ (so $\nu = m$), $K(v_{\tau(i),i}(Q)) = K(Q)$ and for every $(z_1, z_2, z_3) \in J_{\tau(i),i}$, with $z_i = 1$ we have $\Sigma_{\tau(i),i}(z_j, z_k) \neq 0$.

Let $D_{\rho,i}^1$ and $\Sigma_{\tau,i}^1$ be two points in the projective space having as coordinates and the coefficients of $D_{\rho,i}(X_j, X_k)$ and $\Sigma_{\tau,i}(X_j, X_k)$, respectively. By [3] Lemma 4.2, we have

$$H(D_{\rho,i}^1) < m^{3m-1}(11MN^4\bar{N}^2)^{4m-2}H(P_{\rho,i})^{2m-1},$$
$$H(\Sigma_{\tau,i}^1) < m^{3m-1}(11MN^4\bar{N}^2)^{4m-2}H(\Pi_{\tau,i})^{2m-1}.$$

We may assume, without loss of generality, that one of the coefficients of F_i is 1. By [3] Lemma 4.1, there are positive integers $a_{\rho,i}, b_{\rho,i}, c$ with

$$c \leq H_K(F)^{2N^2}, \quad a_{\rho,i} \leq H_K(P_{\rho,i})^{61mM^2N^4N^8}, \quad b_{\rho,i} \leq H_K(\Pi_{\tau,i})^{61mM^2N^4N^8}$$

such that $a_{\rho,i}P_{\rho,i}(X_j, X_k, U), b_{\rho,i}\Pi_{\tau,i}(X_j, X_k, U)$ and $cF_i(X_j, X_k)$ have all their coefficients in O_K. So, $a_{\rho,i}^{2m-2}D_{\rho,i}(X_j, X_k), b_{\rho,i}^{2m-2}\Sigma_{\tau,i}(X_j, X_k) \in O_K[X_j, X_k]$. Since $D_{\tau(i),i}(X_j, X_k), \Sigma_{\tau(i),i}(X_j, X_k)$ and $F_i(X_j, X_k)$ have no common zero, [3] Lemma 2.9 implies that there are $A_{i,s} \in O_K[X_j, X_k]$ ($s = 1, 2, 3$) and $A_i \in O_K \setminus \{0\}$ such that

$$A_{i,1}a_{\tau(i),i}^{2m-1}D_{\tau(i),i} + A_{i,2}b_{\tau(i),i}^{2m-1}\Sigma_{\tau(i),i} + A_{i,3}cF_i = A_i.$$

Furthermore, for every archimedean absolute value $|.|_v$ of K we have

$$|A_i|_v \leq (\delta + 1)(\delta + 2)/2)\|E_i\|_v^{(\delta + 1)(\delta + 2)/2},$$
where $\delta = 11MN^5\bar{N}^2$ and E_1 is a point of the projective space with coordinates the coefficients of $a_{r(i),i}^{2m-1} D_{r(i),i}, b_{r(i),i}^{2m-1} \Sigma_{r(i),i}$ and $c F_i$. The bounds for $a_{r(i),i}, b_{r(i),i}, c, H(D_{r(i),i}), H(\Sigma_{r(i),i}), H(P_{r(i),i})$ and $H(\Pi_{r(i),i})$ give

$$|N_K(A_i)| < \Lambda_{11}(d, m, N, N)(H(F)^{6N^2\bar{N}} H(\Phi_i)^N H(F)^M \lambda d m^2 M N^{30} \bar{N}^{13},$$

where λ is a numerical constant.

Let $p_i = (a_j/a_i, a_k/a_i)$. Since $D_{r(i),i}(X_j, X_k), \Sigma_{r(i),i}(X_j, X_k)$ and $F_i(X_j, X_k)$ have no common zero, we have either $D_{r(i),i}(p_i) \neq 0$ or $\Sigma_{r(i),i}(p_i) \neq 0$. Let S be the set of prime ideals of O_K dividing $A_1A_2A_3$. Suppose that \wp is a prime ideal of O_K with $\wp \not\in S$. Then there is $i \in \{1, 2, 3\}$ such that $a_j/a_i, a_k/a_i \in O_{K,\wp}$. Put $L = K(Q)$ and $\xi = [L : K]$. We have $L = K(u_{r(i),i}(Q)) = K(\wp_{r(i),i}(\bar{Q}))$. We denote by $O_{K,\wp}$ the local ring at \wp, by $\bar{\wp}$ the prime ideal of $O_{K,\wp}$ generated by \wp and by D_\wp the discriminant of the integral closure of $O_{K,\wp}$ into L over $O_{K,\wp}$. Since \wp does not divide A_i, it follows that either $a_{r(i),i}^{2m-1} D_{r(i),i}(p_i)$ or $b_{r(i),i}^{2m-1} \Sigma_{r(i),i}(p_i)$ is not divisible by $\bar{\wp}$ (into $O_{K,\wp}$). If $\bar{\wp}$ does not divide $a_{r(i),i}^{2m-1} D_{r(i),i}(p_i)$, then $\bar{\wp}$ does not divide $a_{r(i),i}$ and $a_{r(i),i}^{2m-2} D_{r(i),i}(p_i)$. Thus $a_{r(i),i}$ is a unit in $O_{K,\wp}$ and so $u = u_{r(i),i}(Q)$ is integral over $O_{K,\wp}$. Then D_\wp divides the discriminant $D(1, u, \ldots, u^{\xi-1})$ of $1, u, \ldots, u^{\xi-1}$ into $O_{K,\wp}$. Further, $D(1, u, \ldots, u^{\xi-1})$ divides $a_{r(i),i}^{2m-2} D_{r(i),i}(p_i)$. Since \wp does not divide $a_{r(i),i}^{2m-2} D_{r(i),i}(p_i)$, \wp does not divide $D_{r(i),i}$. Thus, \wp is not ramified into L. If \wp does not divide $b_{r(i),i}^{2m-1} \Sigma_{r(i),i}(p_i)$, then we have the same result. By [3] Lemma 4.3,

$$N_K(D_{L/K}) < \prod_{\wp \in S} N_K(\wp)^{m-1} \exp(2m^2 d) \leq N_K(A_1A_2A_3)^{m-1} \exp(2m^2 d).$$

Using the estimates for $N_K(A_i)$, the result follows.

References

[1] Y. Bih, Effective Analysis of Integral Points on Algebraic Curves, Ph. D. Thesis, Beer Sheva, 1993.

[2] C. Chevalley, Un théorème d’arithmétique sur les courbes algébriques, C. R. Acad. Sci. Paris 195 (1932), 570-572.

[3] K. Draziotis and D. Poulakis, An Explicit Chevalley-Weil Theorem for Affine Plane Curves, Rocky Mountain Journal of Mathematics, Rocky Mountain Journal of Mathematics, 39(1) (2009), 49-70.

[4] M. Hindry - J. Silverman, Diophantine Geometry, New-York Inc.: Springer-Verlag 2000.

[5] S. Lang, Diophantine Geometry, Springer Verlag 1983.

[6] D. Poulakis, Polynomial bounds for the solutions of a class of Diophantine equations, Number Theory, 66, 2 (1997), 271-281.

[7] D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. (Series A) 63 (1997), 145-164.
[8] I. Shafarevich, Basic Algebraic Geometry, Berlin-Heidelberg-New York: Springer Verlag 1977.

[9] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag 1986.

[10] A. Weil, Arithmétique et géométrie sur les variétés algébriques, Act. Sci. et Ind. No 206, Paris: Hermann 1935.

Dimitrios Poulakis,
Aristotle University of Thessaloniki,
Department of Mathematics,
54124 Thessaloniki, Greece
Email Address: poulakis@math.auth.gr

Konstantinos Draziotis
Kromnis 33
54454 Thessaloniki, Greece
Email Address: drazioti@math.auth.gr