Causes of death and estimated life expectancy among people with diabetes: A retrospective cohort study in a diabetes clinic

Atsushi Goto1, Toshiko Takao2, Yoko Yoshida2, Shoji Kawazu2, Yasuhiro Iwamoto2, Yasuo Terauchi3

1Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, 2Division of Diabetes and Metabolism, Institute for Adult Diseases, Asahi Life Foundation, Tokyo, and 3Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan

Keywords
Causes of deaths, Life expectancy, Mortality

*Correspondence
Yasuo Terauchi
Tel: +81-45-787-2638
Fax: +81-45-784-3012
E-mail address: terauchi@yokohama-cu.ac.jp

J Diabetes Investig 2020; 11: 52–54
doi: 10.1111/jdi.13077

ABSTRACT
We sought to estimate the exact causes of death, mortality rate and life expectancy of diabetes patients by analyzing death records in a diabetes specialist clinic in Japan. Of the 6,140 participants included in our analysis, the average age was 58.1 years and 77% were men. A total of 261 deaths were recorded during the total follow-up period of 24,079 total person-years. The leading causes of death were cancer, heart diseases and cerebrovascular diseases. Using a life table prepared from the mortality rates estimated with the exponential distribution model, a life expectancy at 40 years was 39.2 years (95% confidence interval 37.9–40.2 years) for men and 43.6 years (95% confidence interval 41.8–45.3 years) for women. Although the present results must be interpreted with caution, compared with populations with diabetes surveyed during similar periods by the Japan Diabetes Society, our diabetes patients had similar ranking of the causes of death.

INTRODUCTION
The prevalence of diabetes is increasing steadily in Japan mainly due to population aging1. It is important for clinicians to be aware of the causes of death, mortality rate and life expectancy of diabetes patients to determine the optimal medical approaches for this population. A pooled analysis of prospective cohort studies found that 50-year-old individuals with diabetes had a reduction in life expectancy of 6 years compared with their non-diabetic counterparts. However, this analysis was based on the life expectancy of mixed populations, and the generalization of the results to the Japanese population is questionable2.

The Japan Diabetes Society has formed a “Committee on Causes of Death in Diabetes Mellitus,” which has published four reports3–6. The tabulated results (years 2001–2010) ranked malignant neoplasm (38.3%) as the most prevalent cause of death, followed by infectious disease (17.0%) and vascular diseases (overall 14.9%; renal failure 3.5%, ischemic heart disease 4.8%, cerebral vascular disease 6.6%), with average ages at death of 71.4 years for men and 75.1 years for women. However, only cases of death were investigated, and the mortality rate or life expectancy was not considered.

Attending physicians at the Institute for Adult Diseases, Asahi Life Foundation, a single hospital in Tokyo, Japan, recorded death reports for many years, which might help to clarify life expectancies as well as causes of death among patients with diabetes. Therefore, the current study sought to estimate the exact causes of death, mortality rate and life expectancy of patients with diabetes.

METHODS
Study population
During 1995–2001, medical staff at our hospital sent letters every year to patients with no recent medical follow up, and asked about their health conditions and survival. The attending physicians at the hospital recorded deaths of patients during the period. Of the 6,777 persons who visited the hospital, after 1985 to the end of 2001, 6,140 had a glycated hemoglobin level of ≥6.5% between 1 January 1995 and the end of 2001. The follow-up phase was defined according to the earliest of the following events: from the day at which glycated hemoglobin ≥6.5% was observed to the date of the outcome occurrence (i.e., date of death) or the last day of observation (i.e., the last date of an outpatient visit).

The present study was carried out after approval from the ethics committee of the Institute for Adult Diseases, Asahi Life
Foundation and the National Cancer Center. The committee approved the use of the opt-out approach for consent in the hospital.

Data collection
The death reports contain information about each patient’s date of death, cause of death and place of death. Additionally, information collected during the study period, including the date of the first medical examination, birth date, sex and glycated hemoglobin data, was obtained from the electronic database of our hospital.

Statistical analysis
The number of deaths and causes of death were summed based on information included in the death reports. We assumed an exponential distribution, and used the exponential model with age and sex included as covariates to estimate the sex- and age-specific mortality rates (modeled mortality). The sex-specific life expectancy at 40 years was calculated using a life table prepared from the mortality rates. The Monte Carlo method was used to calculate the 95% confidence interval of life expectancy and thus account for uncertainties in mortality estimations.

RESULTS
Of the 6,140 participants included in the present analysis, the average age was 58.1 years (range 30–93 years, standard deviation 10.2), and 77% were men. A total of 261 deaths during the total follow-up period of 24,079 total person-years (median follow-up period 4.1 years, interquartile range 1.5–6.7 years). The leading causes of death were cancer, heart diseases and cerebrovascular diseases (Table 1). According to the results from exponential models, the sex-specific analyses yielded comparatively higher mortality rates in men than in women (Figure 1). Additionally, a life expectancy at 40 years was 39.2 years (95% confidence interval 37.9–40.2 years) for men and 43.6 years (41.8–45.3 years) for women (Table 2).

DISCUSSION
In the present study, we observed similar ranking of the causes of death compared with populations with diabetes surveyed during similar periods by the Japan Diabetes Society. However, the frequency of infections including pneumonia in the present study was much lower than the Japan Diabetes Society report, possibly because our study participants were younger than the general population with diabetes in Japan (mean [standard deviation] 58.1 [10.2] vs 67.6 [9.8]). Furthermore, the present population had a comparatively better life prognosis than a population with diabetes reported by a previous study carried

Cause of death	Frequency (%)	No. deaths
Cancer	31.8	83
Heart diseases	20.7	54
Cerebrovascular diseases	8.4	22
Pneumonia	6.5	17
Interstitial pneumonia	1.5	4
Other	31.0	81
Total	100	261

Table 1 | Number of deaths according to causes of deaths during 1996–2001

![Figure 1](image-url) | Observed (dots) and exponential distribution model-based sex-specific mortality rates (line).
Table 2 | Life expectancy at age 40 years in the present study and NIPPON DATA

Present study year	Study year: 1995–2001
NIPPON DATA80	32.3
Study year: 1980–1999	40.9

The 95% confidence interval derived using the Monte Carlo method.

In conclusion, although the present results must be interpreted with caution, because a healthy survivor bias might exist, our diabetes patients had similar ranking of the causes of death compared with populations with diabetes surveyed during similar periods by the Japan Diabetes Society.

ACKNOWLEDGMENTS
We thank Ms Yuki Inoue for technical assistance; and Dr Naohito Yamaguchi, Dr Kota Katanoda and Dr Megumi Hori for their helpful comments. This study was supported by Grants for Young Researchers from the Japan Association for Diabetes Education and Care, and the Practical Research for Innovative Cancer Control (18ck0106370h0002) from the Japan Agency for Medical Research and Development.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. The 2016 Summary of the National Health Nutrition Survey Results. Available from: http://www.mhlw.go.jp/file/04-Houdouhappyou-10904750-Kenkouyoku-Gantaisakuke.pdf. Accessed April 9, 2019.
2. The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. New Engl J Med 2011; 364: 829–841.
3. Sakamoto N, Hotta N, Kakuta H, et al. The features of causes of death in Japanese diabetics during the period 1971–1980. Tohoku J Exp Med 1983; 141(Suppl): 631–638.
4. Sakamoto N, Hotta N, Toyata T, et al. Causes of death in Japanese diabetics based on survey results among 11,648 diabetics during 1981–1990. Report of Committee on Cause of Death in Diabetes Mellitus. J Japan Diabet Soc 1996; 39: 221–236 (Japanese).
5. Hotta N, Nakamura J, Iwamoto Y, et al. Causes of death in Japanese diabetics: a questionnaire survey of 18,385 diabetics over a 10-year period. J Diabetes Invest 2010; 1: 66–76.
6. Nakamura J, Kamiya H, Haneda M, et al. Causes of death in Japanese patients with diabetes based on the results of a survey of 45,708 cases during 2001-2010: report of the Committee on Causes of Death in Diabetes Mellitus. J Diabetes Invest 2017; 8: 391–410.
7. Chiang CL. The Life Table and its Applications. Malabar, FL: Krieger Publishing, 1984.
8. Goto M, Goto A, Ikeda N, et al. Factors associated with untreated diabetes: analysis of data from 20,496 participants in the Japanese National Health and Nutrition Survey. PLoS ONE 2015; 10: e0118749.
9. Turin TC, Murakami Y, Miura K, et al. Diabetes and life expectancy among Japanese - NIPPON DATA80. Diabetes Res Clin Pract 2012; 96: e18–e22.