Mini Review

Directional Switching Mechanism of the Bacterial Flagellar Motor

Tohru Minamino a,⁎, Miki Kinoshita a, Keiichi Namba a,b

a Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
b RIKEN Center for Biosystems Dynamic Research & Spring-8 Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan

A R T I C L E I N F O

Article history:
Received 31 May 2019
Received in revised form 26 July 2019
Accepted 27 July 2019
Available online 31 July 2019

Keywords:
Adaptive remodeling
Bacterial flagellar motor
Chemotaxis
Cooperativity
Directional switching
Motility

A B S T R A C T

Bacteria sense temporal changes in extracellular stimuli via sensory signal transducers and move by rotating flagella towards into a favorable environment for their survival. Each flagellum is a supramolecular motility machine consisting of a bi-directional rotary motor, a universal joint and a helical propeller. The signal transducers transmit environmental signals to the flagellar motor through a cytoplasmic chemotactic signaling pathway. The flagellar motor is composed of a rotor and multiple stator units, each of which acts as a transmembrane proton channel to conduct protons and exert force on the rotor. FliG, FliM and FliN form the C ring on the cytoplasmic face of the basal body MS ring made of the transmembrane protein FlilF and act as the rotor. The C ring also serves as a switching device that enables the motor to spin in both counterclockwise (CCW) and clockwise (CW) directions. The phosphorylated form of the chemotactic signaling protein CheY binds to FliM and FliN to induce conformational changes of the C ring responsible for switching the direction of flagellar motor rotation from CCW to CW. In this mini-review, we will describe current understanding of the switching mechanism of the bacterial flagellar motor.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction .. 1075
2. Structure of the C Ring ... 1076
 2.1. FliG ... 1077
 2.2. FliM ... 1077
 2.3. FliN ... 1077
 2.4. Subunit Organization in the C Ring Structure 1078
3. Structural Basis for the Rotational Switching Mechanism 1078
4. Adaptive remodeling of the C ring 1079
5. Summary and Perspectives ... 1079
Acknowledgements .. 1080
References ... 1080

1. Introduction

Many bacteria possess flagella to swim in liquid media and move on solid surfaces. Escherichia coli and Salmonella enterica serovar Typhimurium (hereafter referred to as Salmonella) are model organisms that have provided deep insights into the structure and function of the bacterial flagellum. The flagellum is composed of basal body rings and an axial structure consisting of at least three parts: the rod as a drive shaft, the hook as a universal joint and the filament as a helical propeller (Fig. 1A). The flagellar motor of E. coli and Salmonella consists of a rotor and a dozen stator units and is powered by an electrochemical potential of protons across the cytoplasmic membrane, namely proton motive force. Marine Vibrio and extremely alkalophilic Bacillus utilize sodium motive force as the energy source to drive flagellar motor rotation. The rotor is composed of the MS ring made of the transmembrane protein FlilF and the C ring consisting of three cytoplasmic proteins, FliG, FliM and FliN. Each stator unit is composed of two transmembrane proteins, MotA and MotB, and acts as a transmembrane proton channel to

* Corresponding author.
E-mail address: tohru@fbs.osaka-u.ac.jp (T. Minamino).

https://doi.org/10.1016/j.csbj.2019.07.020
2001-0370/© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
couple the proton flow through the channel with torque generation (Fig. 1B) [1–5].

The flagellar motor rotates in either counterclockwise (CCW; viewed from the flagellar filament to the motor) or clockwise (CW) direction in _E. coli_ and _Salmonella_. When all the motors rotate in the CCW direction, flagellar filaments together form a bundle behind the cell body to push the cell forward. Brief CW rotation of one or more flagellar motors disrupts the flagellar bundle, allowing the cell to tumble, followed by a change in the swimming direction. Sensory signal transducers sense temporal changes in extracellular stimuli such as chemicals, temperature and pH and transmit such extracellular signals to the flagellar motor via the intracellular chemotactic signaling network. The phosphorylated form of CheY (CheY-P), which serves as a signaling molecule, binds to FliM and FliN in the C ring to switch the direction of flagellar motor rotation from CCW to CW. Thus, the C ring acts as a switching device to switch between the CCW and CW states of the motor [2,5].

The stator complex is composed of four copies of MotA and two copies of MotB. The MotA/MotB complex is anchored to the peptidoglycan (PG) layer through direct interactions of the C-terminal periplasmic domain of MotB with the PG layer to become an active stator unit around the rotor [4]. A highly conserved aspartate residue of MotB (Asp-32 in the _E. coli_ protein and Asp-33 in the _Salmonella_ protein) is located in the MotA/MotB proton channel and is involved in the energy coupling mechanism [6,7]. The cytoplasmic loop between transmembrane helices 2 and 3 of MotA (MotA_C) contains highly conserved Arg-90 and Glu-98 residues and are important not only for torque generation but also for stator assembly around the rotor [8–10].

FliG is directly involved in torque generation [8]. Highly conserved Arg-281 and Asp-289 residues are located on the torque helix of FliG (HelixTorque) [11] and interact with Glu-98 and Arg-90 of MotA_C, respectively [8,10]. Since the elementary process of torque generation caused by sequential stator–rotor interactions in the flagellar motor is symmetric in the CCW and CW rotation, HelixTorque is postulated to rotate 180° relative to MotA_C in a highly cooperative manner when the motor switches between the CCW and CW states of the C ring [12]. This mini-review article covers current understanding of how such a cooperative remodeling of the C ring structure occurs.

2. Structure of the C Ring

FliF assembles into the MS ring within the cytoplasmic membrane [13]. The C ring consisting of a cylindrical wall and inner lobes is formed by FliG, FliM and FliN on the cytoplasmic face of the MS ring with the inner lobes connected to the MS ring (Fig. 1B) [14]. FliG requires FliF to facilitate MS ring formation in the cytoplasmic membrane [15]. FliG binds to FliF with a one-to-one stoichiometry [16]. FliM and FliN together form the FliM/FliN complex consisting of one copy of FliM and three copies of FliN [17], and the FliM/FliN complex binds to the

Fig. 1. Subunit organization in the flagellar motor. (A) Bacterial flagella. Electron micrograph of flagella purified from _Salmonella_ on the left and its schematic diagram on the right. The flagellum is composed of a basal body as a rotary motor, the hook as a universal joint and the filament as a molecular screw. (B) CryoEM image of _Salmonella_ basal body on the left and its schematic diagram on the right. The purified basal body consists of the C, MS, L and P rings and the rod. A dozen MotA/MotB stator complexes are associated with the basal body but are lost during purification. The C ring is composed of FliG, FliM and FliN. The N-terminal domain of FliG (FliG_C) forms the inner lobe along with the C-terminal cytoplasmic domain of FliF (FliF_C). The C-terminal domain of FliG (FliG_C) is located in the upper part of the C ring wall. The middle domain of FliM (FliM_M) is located between the middle domain of FliG (FliG_M) and FliN and forms a cylindrical wall of the C ring. A continuous spiral density at the bottom edge of the C ring is made of the C-terminal domains of FliM (FliM_C) and FliN.
FliG ring structure through a one-to-one interaction between FliG and FliM to form the continuous C ring wall [18–20]. Most of the domain structures of FliG, FliM and FliN have been solved at atomic resolution (Fig. 2), and possible models of their organization in the C ring have been proposed (Fig. 1B) [21,22].

2.1. FliG

FliG consists of three domains: N-terminal (FliGN), middle (FliGM) and C-terminal (FliGC) domains (Fig. 2A) [23]. FliGC is divided into two subdomains: FliGCN and FliGCC. FliGN is involved in the interaction with the C-terminal cytoplasmic domain of FliF (FliFC) (Fig. 2B) [24,25]. Inter-molecular interactions between FliGN and FliGN and between FliGM and FliGCN are responsible for the assembly of FliG into the ring structure on the cytoplasmic face of the MS ring [26–29]. FliGM provides binding sites for FliM (Fig. 2C) [18–20]. A highly conserved EHPQR motif of FliGM is involved in the interaction with FliM [18,30]. FliGCC contains HelixTorque, and highly conserved Arg-284 and Asp-292 residues of Aquifex aeolicus FliG, which corresponds to Arg-281 and Asp-289 of E. coli FliG, are located in the torque helix of FliGCC (HelixTorque) [23].

2.2. FliM

FliM consists of three domains: N-terminal (FliMN), middle (FliMM) and C-terminal (FliMC) domains [31,32]. FliMN contains a well conserved LSQXEIDALL sequence, which is responsible for the interaction with CheY-P [33]. FliMN is intrinsically disordered, and the binding of CheY-P to FliMN allows FliMN to become structured [32]. FliMM has a compactly folded domain (FliMC), which structurally looks similar to FliM [36]. FliM exists as a dimer of dimer in solution (Fig. 2E) [37] and forms the FliM1/FliN3 complex along with FliM through an interaction between FliMC and FliN [17]. CheY-P binds to FliNC in a FliM-dependent manner [38]. Leu-68, Ala-93, Val-113 and Asp-116 of E. coli FliN are responsible for the interaction with CheY-P (Fig. 2D) [38,39]. The binding of CheY-P to FliN affects interactions between FliMC and FliN, inducing the conformational change of the C ring responsible for directional switching of flagellar motor rotation [38]. FliN also provides binding sites for FliH, a cytoplasmic component of the flagellar type III protein export apparatus for efficient flagellar protein export and assembly.
part of the C ring wall is formed by FliGM and FliGC. FliGM binds to ef of the fsation in response to changes in the environment [45]. The upper FliFC and FliGN lacks the inner lobe, suggesting that FliFC and FliGN density corresponding to the GFP probe near the inner lobe [47].

The flater varies accordingly [43,44]. The C ring diameters of the CCW and rotational symmetry varying from 32-fold to 35-fold, and the diam- ring is closer in the CW motor than in the CCW motor [45]. The C and so the unit repeat distance along the circumference of the C CW motors with C34 symmetry are 416 Å and 407 Å, respectively, ring produced by a Salmonella flif–flig deletion fusion strain missing FlifC and FlifCN lacks the inner lobe, suggesting that FlifC and FlifCN together form the inner lobe (Fig. 1) [45,46]. In agreement with this, cryoEM images of the C ring containing the N-terminally green fluorescent protein (GFP) tagged Flif protein show an extra density corresponding to the GFP probe near the inner lobe [47].

The flif–flig deletion fusion results in unusual switching behavior of the flagellar motor, suggesting that the inner lobe is required for efficient and robust switching in the direction of flagellar motor rotation in response to changes in the environment [45]. The upper part of the C ring wall is formed by FligM and FligC. FligM binds to FligCN of its adjacent Flig subunit to produce a domain-swap polymer of Flig to form a ring in both CCW and CW motors [26,27,29].

Since Helixtorque of FligCC interacts with MotAC [8,10], FligCC is lo- cated at the top of the C ring wall (Fig. 1). Since FligM directly binds to FligM (Fig. 2C) [18–20], the continuous wall of the C ring with a thickness of 4.0 nm and a height of 6.0 nm is formed by side-by-side associations of the FligM domains (Fig. 1) [32].

A continuous spiral density with a diameter of 7.0 nm along the circumference at the bottom edge of the C ring is made of FligMc and FligN (Fig. 1) [17,36].

2.4. Subunit Organization in the C Ring Structure

Electron cryomicroscopy (cryoEM) image analysis has shown that the C ring structures of the purified CCW and CW motors have rotational symmetry varying from 32-fold to 35-fold, and the diameter varies accordingly [43,44]. The C ring diameters of the CCW and CW motors with C34 symmetry are 416 Å and 407 Å, respectively, and so the unit repeat distance along the circumference of the C ring is closer in the CW motor than in the CCW motor [45]. The C ring produced by a Salmonella flif–flig deletion fusion strain missing FlifC and FlifCN lacks the inner lobe, suggesting that FlifC and FlifCN together form the inner lobe (Fig. 1) [45,46]. In agreement with this, cryoEM images of the C ring containing the N-terminally green fluorescent protein (GFP) tagged Flig protein show an extra density corresponding to the GFP probe near the inner lobe [47].

The flif–flig deletion fusion results in unusual switching behavior of the flagellar motor, suggesting that the inner lobe is required for efficient and robust switching in the direction of flagellar motor rotation in response to changes in the environment [45]. The upper part of the C ring wall is formed by FligM and FligC. FligM binds to FligCN of its adjacent Flig subunit to produce a domain-swap polymer of Flig to form a ring in both CCW and CW motors [26,27,29].

Since Helixtorque of FligCC interacts with MotAC [8,10], FligCC is lo- cated at the top of the C ring wall (Fig. 1). Since FligM directly binds to FligM (Fig. 2C) [18–20], the continuous wall of the C ring with a thickness of 4.0 nm and a height of 6.0 nm is formed by side-by-side associations of the FligM domains (Fig. 1) [32].

A continuous spiral density with a diameter of 7.0 nm along the circumference at the bottom edge of the C ring is made of FligMc and FligN (Fig. 1) [17,36].

3. Structural Basis for the Rotational Switching Mechanism

In E. coli and Salmonella, the flagellar motor is placed in a default CCW state [3,5]. Mutations located in and around HelixMc of Flig, which connects FligM and FligCC, cause unusual switching behavior of the flagellar motor [48], suggesting that helixMc is involved in switching the direction of flagellar motor rotation. HelixMc is located at the FligM–FligMc interface and contributes to hydrophobic interactions between FligM and FligMc (Fig. 3A) [18,19]. In-frame deletion of three residues, Pro-Ala-Ala at positions 169 to 171 of Salmonella Flig, which are located in HelixMc, locks the motor in the CW state even in the absence of CheY-P (CW-locked deletion) [49,50]. The crystal structure of the FligM and FligC domains derived from Thermotaoga maritima (Tm-FligM) with this CW-locked deletion have shown that the conformation of HelixMc is distinct from that of the wild-type [19,50,51]. In the wild-type Tm-FligM/Tm-FligMc complex, Val-172 of HelixMc of Tm-FligM makes hydrophobic contact with Ile-130 and Met-131 of Tm-FligMc (Fig. 3A) [18,19]. In contrast, disulfate crosslinking experiments have shown that HelixMc is dissociated from Tm-FligM in the presence of the CW- locked deletion (Fig. 3A) [28]. Consistently, the CW-locked deletion of Tm-Flig reduces the binding affinity of Tm-FligMc for Tm-FligMc by about 400-fold [28]. Therefore, it seems likely that the binding of CheY-P to FligM and FligN induces conformational rearrangements of the FligM–FligMc interface, thereby causing dissociation of HelixMc from the interface to facilitate the remodeling of the Flig ring structure responsible for directional switching of the flagellar motor.

![Fig. 3](image-url) Structural basis for the switching mechanism. (A) Structural comparisons between wild-type FligM and FligC domains of T. maritima (Tm-FligM) and its CW-locked deletion variant, Tm-FligMΔΔPEV. Cx. ribbon drawing of Tm-FligM (magenta), Tm-FligMΔΔPEV (cyan) and Tm-FligMΔΔPEV (green). The FligM domain of Tm-FligMΔΔPEV (PDB ID: 3AJC) was superimposed onto that of the Tm-FligMΔΔPEV/Tm-FligM complex (PDB ID: 4HR8). HelixMc is located at an interface between FligM and FligMc. In contrast, the CW-locked deletion not only induces a distinct orientation of HelixMc relative to the FligM–FligMc interface but also goes through a 90° rotation of FligM relative to FligMc colored in blue. Arg-283 and Asp-290 of Tm-Flig correspond to Arg-281 and Asp-289 of E. coli Flig, respectively. (B) Comparisons between the 3USY (cyan) and 3USW (magenta) structures of Helicobacter pylori Flig. Conformational rearrangements of the conserved MFXF motif induce a 180° rotation of FligC relative to FligC′ to reorient Arg-293 and Glu-300 residues, which correspond to Arg-281 and Asp-289 of E. coli Flig, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
HelixMC interacts with HelixNM connecting FliG\textsubscript{N} and FliGM (Fig. 2A) [23]. The E95D, D96V/Y, T103S, G106A/C and E108K substitutions in HelixNM of Salmonella Flig result in a strong CW switch bias [52]. A homology model of Salmonella Flig built based on the crystal structure of Flig derived from A. aeolicus (PDB code: 3HJL) has suggested that Thr-103 of HelixNM may make hydrophobic contacts with Pro-169 and Ala-173 of HelixMC [45]. These observations lead to a plausible hypothesis that a change in the HelixNM-HelixNC interaction mode may be required for conformational rearrangements of the C ring responsible for directional switching of the flagellar motor. A Flif–Flig full length fusion results in a strong CW switch bias of the E. coli flagellar motor [27]. Intrageneric suppressor mutations, which improve the chemotactic behavior of the E. coli flif–flig full-length fusion strain, are located at the Flig\textsubscript{N}–Flig\textsubscript{N} interface [27], suggesting that a change in inter-molecular Flig\textsubscript{N}–Flig\textsubscript{N} interactions may be required for flagellar motor switching. Therefore, there is the possibility that conformational rearrangements of the Flig\textsubscript{GM}–Flig\textsubscript{MM} interface caused by the binding of CheY–P to the C ring influence the HelixNC–HelixNC interaction, thereby inducing conformational rearrangements of Flig\textsubscript{N} domains responsible for the switching in the direction of flagellar motor rotation.

The elementary process of torque generation by stator-rotor interactions is symmetric in CCW and CW rotation [12]. A hinge connecting Flig\textsubscript{CN} and Flig\textsubscript{CC} has a highly flexible nature at the conserved MFXF motif, allowing Flig\textsubscript{CC} to rotate 180° relative to Flig\textsubscript{CN} to reorient Arg-281 and Asp-289 residues in Helix\textsubscript{torque} to achieve a symmetric elementary process of torque generation in both CCW and CW rotation (Fig. 3B) [53–56]. Structural comparisons between Tm-Flig\textsubscript{MC} of the wild-type and Tm-Flig\textsubscript{MC} with the CW-locked deletion have shown that the CW-locked deletion induces a 90° rotation of Flig\textsubscript{CC} relative to Flig\textsubscript{CN} through the MFXF motif (Fig. 3A) [50]. Consistently, the binding of CheY–P to the C ring induces a tilting movement of Flig\textsubscript{MM}, resulting in the rotation of Flig\textsubscript{CC} relative to Flig\textsubscript{CN} [34]. Therefore, it is possible that such a tilting movement of Flig\textsubscript{MM} may promote a detachment of HelixNC from the Flig\textsubscript{CN}–Flig\textsubscript{MM} interface, resulting in the 180° rotation of Flig\textsubscript{CC} relative to Flig\textsubscript{CN}.

4. Adaptive remodeling of the C ring

Flim and Flin alternate their forms between localized and freely diffusing ones (Fig. 4), and the copy number of Flim and Flin in the CCW motor has been found to be about 1.3 times larger than that in the CW motor [57–60]. Consistently, fluorescence anisotropy techniques have shown that the CCW motor accommodate more Flim\textsubscript{I}/Flin\textsubscript{I} complexes without changing the spacing between Flim subunits [61]. Such exchanges depend on the direction of flagellar rotation but not on the binding of CheY–P to the C ring per se [58].

Switching between the CW and CCW states of the flagellar motor is highly cooperative [66]. The cooperative switching mechanism can be explained by a conformational spread model, in which a switching event is mediated by conformational changes in a ring of subunits that spread from subunit to subunit via their interactions along the ring [67–69]. The binding of CheY–P to Flim and Flin affects subunit-subunit interactions between Flim\textsubscript{I} and Flin\textsubscript{I} in the CCW motor to induce a 180° rotation of Flig\textsubscript{CC} relative to MotAC, thereby allowing the motor to rotate in CW direction [34]. Helix\textsubscript{MC} of Flig located at an interface between Flig\textsubscript{CN} and Flim\textsubscript{I} plays an important role in highly cooperative remodeling of the Flig ring structure [28]. However, it remains unknown how Helix\textsubscript{MC} coordinates cooperative rearrangements of Flig subunits with changes in the direction of flagellar motor rotation. The C ring of the CCW motor can accommodate more Flim/Flin\textsubscript{I} complexes without changing inter-subunit spacing, and directional switching of the motor induces several weakly bound Flim/Flin\textsubscript{I} complexes from the C ring [57–60]. Consistently, the CW-locked deletion weakens an interaction between Flig\textsubscript{CN} and Flim\textsubscript{I} [28]. Because there is no difference in the rotational symmetry of the C ring between the purified CCW and CW motors [45], it remains unclear how several Flim\textsubscript{I}/Flin\textsubscript{I} complexes weakly associate with the C ring when the motor spins in the CCW direction.

The elementary process of the torque-generation cycle is symmetric in CCW and CW directions [12]. However, the output characteristics of the CW motor are distinct from those of the CCW motor. Torque produced by the CW motor remains almost constant in a high-load, low-load regime of the torque-speed curve and decreases sharply to zero in a low-load, high-speed regime. In contrast, torque produced by the CW motor linearly decreases with increasing motor speed [70]. This suggests that directional switching of the flagellar motor may affect stator-rotor interactions in a load-dependent manner. However,
nothing is known about the molecular mechanism. Furthermore, the switching rate of the flagellar motor also depends on the motor speed [71,72]. A recent non-equilibrium model of the flagellar motor switching has predicted that the motor sensitivity to CheY-P increases with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).

References

[1] Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.
[2] Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biopolymers 2014;102:217–34.
[3] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015;23:267–74.
[4] Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018;109:723–34.
[5] Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biopolymes 2019;9:270.
[6] Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, et al. Function of protonatable residues with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).

References

[1] Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.
[2] Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biopolymers 2014;102:217–34.
[3] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015;23:267–74.
[4] Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018;109:723–34.
[5] Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biopolymes 2019;9:270.
[6] Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, et al. Function of protonatable residues with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).

References

[1] Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.
[2] Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biopolymers 2014;102:217–34.
[3] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015;23:267–74.
[4] Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018;109:723–34.
[5] Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biopolymes 2019;9:270.
[6] Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, et al. Function of protonatable residues with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).

References

[1] Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.
[2] Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biopolymers 2014;102:217–34.
[3] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015;23:267–74.
[4] Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018;109:723–34.
[5] Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biopolymes 2019;9:270.
[6] Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, et al. Function of protonatable residues with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).

References

[1] Berg HC. The rotary motor of bacterial flagella. Annu Rev Biochem 2003;72:19–54.
[2] Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biopolymers 2014;102:217–34.
[3] Minamino T, Imada K. The bacterial flagellar motor and its structural diversity. Trends Microbiol 2015;23:267–74.
[4] Minamino T, Terahara N, Kojima S, Namba K. Autonomous control mechanism of stator assembly in the bacterial flagellar motor in response to changes in the environment. Mol Microbiol 2018;109:723–34.
[5] Nakamura S, Minamino T. Flagella-driven motility of bacteria. Biopolymes 2019;9:270.
[6] Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S, et al. Function of protonatable residues with an increase in motor torque [73]. However, it remains unknown how stator–rotor interactions modulate the binding affinity for CheY-P. High-resolution structural analysis of the C rings in the CCW and CW states by cryoEM image analysis will be essential to advance our mechanistic understanding of the directional switching mechanism of the flagellar motor.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Acknowledgements

Our research is supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H03182 to T.M., JP18K14638 to M.K. and JP25000013 to K.N.).
Lam KH, Ip WS, Lam YW, Chan SO, Ling TK, Au SW. Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching. Structure 2012;20:315–25.

Pandini A, Mores F, Khan S. The gearbox of the bacterial flagellar motor switch. Structure 2016;24:1209–20.

Miyanosri Y, Hijiakata A, Nishino Y, Gohara M, Onoue Y, et al, Kojima M. Structural and functional analysis of the C-terminal region of FliG, an essential motor component of Vibrio Na⁺-driven flagella. Structure 2017;25:1540–8.

Nishikino T, Hijiakata A, Miyanosri Y, Onoue Y, Kojima S, Shirai T, et al. Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio. Sci Rep 2018;8:17793.

Delalez NJ, Wadams GH, Rossor G, Xue Q, Brown MT, Dobbie IM, et al. Signal-dependent turnover of the bacterial flagellar switch protein FlIM. Proc Natl Acad Sci U S A 2010;107:11347–51.

Lele PP, Branch RW, Nathan VS, Berg HC. Mechanism for adaptive remodeling of the bacterial flagellar switch. Proc Natl Acad Sci U S A 2012;109:20018–22.

Delalez NJ, Berry RM, Armitage JP. Stoichiometry and turnover of the bacterial flagellar switch protein FliN. mBio 2014;5:e01216–14.

Hosu BG, Berg HC. CW and CCW conformations of the E. coli flagellar motor C-ring evaluated by fluorescence anisotropy. Biophys J 2018;114:641–9.

Yuan J, Branch RW, Hosu BC, Berg HC. Adaptation at the output of the chemotaxis signalling pathway. Nature 2012;484:233–6.

Yuan J, Berg HC. Ultrasensitivity of an adaptive bacterial motor. J Mol Biol 2013;425:1760–4.

Dufour YS, Fu X, Hernandez-Nunez L, Emonet T. Limits of feedback control in bacterial chemotaxis. PLoS Comput Biol 2014;10:e1003694.

Lele PP, Shrivastava A, Roland T, Berg HC. Response thresholds in bacterial chemotaxis. Sci Adv 2015;1:e1500299.

Cluzel P, Surette M, Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000;287:1652–5.

Duke TA, Le Novere N, Bray D. Conformational spread in a ring of proteins: a stochastic approach to allometry. J Mol Biol 2001;308:541–53.

Bai F, Branch RW, Nicolau Jr DV, Pilizota T, Steel BC, Maini PK, et al. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 2010;327:685–9.

Bai F, Minamino T, Wu Z, Namba K, Xing J. Coupling between switching regulation and torque generation in bacterial flagellar motor. Phys Rev Lett 2012;108:178105.

Yuan J, Farner KA, Turner L, Berg HC. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. Proc Natl Acad Sci U S A 2010;107:12846–9.

Fahrner KA, Ryu WS, Biomechanics Berg HC. Bacterial flagellar switching under load. Nature 2003;423:938.

Yuan J, Fahrner KA, Berg HC. Switching of the bacterial flagellar motor near zero load. J Mol Biol 2009;380:394–400.

Wang F, Shi H, He R, Wang R, Zhang R, Yuan J. Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch. Nat Phys 2017;13:710–4.