Supplementary material for the paper:
Comparative study of L_1 regularized logistic regression methods for variable selection

M. El Guide1, K. Jbilou2, C. Koukouvinos3, A. Lappa3

1International Water Research Institute,
Mohammed VI Polytechnic University,
Green City, Morocco

2 Department of Mathematics,
Université du Littoral Côte d’Opale
Calais Cedex, 62228, France

3 Department of Mathematics
National Technical University of Athens
Zografou 15773, Athens, Greece
CASE I: $n > p$

Table 3: Simulation results of mean of BIAS.

β	n	p	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.99$	$r = 0.99$ CC*
4	1000	400	IRLS	3.59	0.83	0.96	1.43	2.63	4.37	9.59	10.12
4	5000	400	IRLS	1.22	0.82	0.96	1.42	2.64	4.36	9.57	10.10
4	10000	400	IRLS	0.80	0.78	0.93	1.39	2.59	4.30	9.55	10.09
4	50000	400	IRLS	0.80	0.78	0.93	1.39	2.59	4.30	9.55	10.09

Simulation results of mean of BIAS.
β	n	p	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.95$	$r = 0.99$	$r = \cdot \cdot CC^*$
1000	4	100	IRLS	1.44	1.51	1.84	2.13	3.47	3.37	9.75	9.75	1.88
			Glmnet	0.19	0.19	0.19	0.29	0.42	0.66	0.84	1.00	0.43
	6		IRLS	2.17	2.90	2.89	2.13	3.47	3.47	9.75	9.75	1.88
			Glmnet	0.26	0.27	0.32	0.38	0.58	0.91	1.08	1.22	0.45
	8		IRLS	2.68	3.20	2.89	2.13	3.47	3.37	9.75	9.75	1.88
			Glmnet	0.29	0.33	0.39	0.49	0.65	1.04	1.33	1.46	0.56
5000	4	100	IRLS	0.44	0.65	0.50	0.67	0.78	1.71	1.71	2.11	0.82
			Glmnet	0.11	0.11	0.12	0.15	0.20	0.36	0.53	0.99	0.12
	6		IRLS	0.54	0.60	0.58	0.98	0.93	1.61	1.61	2.70	0.84
			Glmnet	0.17	0.17	0.18	0.22	0.32	0.47	0.76	1.25	0.23
	8		IRLS	0.50	0.56	0.77	1.13	1.34	2.15	2.15	3.37	0.99
			Glmnet	0.20	0.21	0.25	0.31	0.45	0.63	0.87	1.37	0.26
5000	4	400	IRLS	0.56	1.21	1.40	1.47	1.88	3.89	3.89	5.32	1.52
			Glmnet	0.11	0.10	0.12	0.16	0.21	0.41	0.60	0.96	0.36
	6		IRLS	1.12	1.52	1.71	2.10	3.49	7.23	7.23	7.28	1.86
			Glmnet	0.16	0.16	0.17	0.24	0.32	0.60	0.75	1.13	0.43
	8		IRLS	1.37	1.75	2.12	3.61	3.49	7.23	7.23	7.28	2.00
			Glmnet	0.20	0.18	0.25	0.32	0.39	0.72	0.89	1.31	0.31
10000	4	400	IRLS	1.38	0.75	0.77	1.07	1.35	2.08	2.08	2.52	2.42
			Glmnet	0.10	0.09	0.09	0.12	0.15	0.30	0.38	0.82	0.17
	6		IRLS	0.70	0.95	0.95	1.32	1.43	1.99	1.99	3.10	2.49
			Glmnet	0.14	0.14	0.13	0.18	0.23	0.42	0.57	1.11	0.38
	8		IRLS	0.91	1.22	1.10	1.94	2.51	4.22	0.42	5.44	2.48
			Glmnet	0.18	0.16	0.19	0.24	0.32	0.56	0.75	1.36	0.40

Table 4: Simulation results of standard deviation of BIAS.
Table 5: Simulation results of mean of Adjusted BIAS ($BIAS_{Adj}$).

β	n	p	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.95$	$r = 0.99$	$r = \infty$	
10000	5000	200	IRLS	0.65	0.68	0.74	0.82	1.11	1.23	2.60	2.60	1.05	
			Glmnet	0.38	0.38	0.40	0.48	0.59	0.78	1.08	1.43	0.58	
5000	5000	100	IRLS	0.66	0.67	0.80	0.82	1.11	1.21	2.60	2.60	1.05	
			Glmnet	0.42	0.43	0.45	0.52	0.64	0.90	1.08	1.38	0.59	
10000	400	100	IRLS	0.66	0.65	0.80	0.82	1.11	1.21	2.60	2.60	1.05	
			Glmnet	0.43	0.44	0.48	0.56	0.66	0.91	1.14	1.37	0.62	
10000	5000	200	IRLS	0.24	0.27	0.25	0.35	0.44	0.77	0.77	1.13	0.56	
			Glmnet	0.24	0.24	0.24	0.28	0.33	0.46	0.59	1.09	0.30	
5000	400	100	IRLS	0.25	0.31	0.30	0.35	0.44	0.74	0.74	1.15	0.48	
			Glmnet	0.25	0.26	0.27	0.31	0.38	0.49	0.64	1.15	0.33	
10000	400	100	IRLS	0.25	0.42	0.30	0.40	0.48	0.78	0.78	1.14	0.40	
			Glmnet	0.26	0.27	0.29	0.35	0.40	0.54	0.67	1.11	0.37	
10000	100	5000	IRLS	0.27	0.50	0.48	0.61	0.74	1.31	1.31	1.75	0.95	
			Glmnet	0.26	0.26	0.26	0.33	0.38	0.59	0.75	1.13	0.42	
5000	100	5000	IRLS	0.47	0.54	0.57	0.59	0.88	1.53	1.53	1.98	0.96	
			Glmnet	0.27	0.28	0.30	0.37	0.44	0.66	0.82	1.35	0.52	
10000	100	400	IRLS	0.51	0.62	0.60	0.71	0.88	1.53	1.53	1.98	0.99	
			Glmnet	0.29	0.32	0.34	0.40	0.49	0.71	0.87	1.37	0.56	
10000	400	100	IRLS	0.53	0.32	0.33	0.42	0.55	0.85	0.85	1.05	1.00	
			Glmnet	0.21	0.21	0.21	0.25	0.30	0.45	0.54	1.04	0.28	
5000	100	400	IRLS	0.29	0.39	0.39	0.43	0.50	0.77	0.77	1.03	1.00	
			Glmnet	0.22	0.23	0.24	0.29	0.35	0.50	0.63	1.14	0.37	
10000	400	100	IRLS	0.30	0.38	0.38	0.46	0.60	0.94	0.94	1.22	1.00	
			Glmnet	0.23	0.25	0.27	0.32	0.39	0.54	0.66	1.19	0.44	
β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.95$	$r = 0.99$	$r = \cdot CC^*$
-----	-----	-----	-----	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
1000	4	100	8	IRLS	0.36	0.38	0.49	0.53	0.87	0.73	2.44	2.44	0.47
		6		Glmnet	0.05	0.05	0.05	0.07	0.10	0.16	0.21	0.25	0.11
		8		IRLS	0.36	0.48	0.48	0.53	0.87	0.77	2.44	2.44	0.47
				Glmnet	0.04	0.04	0.05	0.06	0.10	0.15	0.18	0.20	0.08
	5000	100	6	IRLS	0.11	0.14	0.12	0.17	0.20	0.43	0.43	0.53	0.20
				Glmnet	0.03	0.03	0.03	0.04	0.05	0.09	0.13	0.25	0.03
		8		IRLS	0.09	0.08	0.10	0.15	0.16	0.27	0.27	0.45	0.14
				Glmnet	0.03	0.03	0.03	0.04	0.05	0.08	0.13	0.21	0.04
		8		IRLS	0.06	0.07	0.10	0.14	0.17	0.27	0.27	0.42	0.12
				Glmnet	0.03	0.03	0.03	0.04	0.06	0.08	0.11	0.17	0.03
	10000	400	6	IRLS	0.28	0.25	0.29	0.35	0.85	1.20	1.20	1.21	0.39
				Glmnet	0.03	0.03	0.03	0.04	0.05	0.10	0.15	0.24	0.09
		8		IRLS	0.23	0.21	0.26	0.45	0.58	1.20	1.20	1.21	0.40
				Glmnet	0.02	0.02	0.02	0.03	0.04	0.09	0.11	0.16	0.04
	10000	100	4	IRLS	0.17	0.19	0.19	0.27	0.34	0.52	0.52	0.63	0.38
				Glmnet	0.03	0.02	0.02	0.03	0.04	0.08	0.09	0.21	0.04
		6		IRLS	0.17	0.16	0.16	0.22	0.24	0.13	0.33	0.52	0.39
				Glmnet	0.02	0.02	0.20	0.03	0.04	0.07	0.09	0.19	0.06
		8		IRLS	0.15	0.19	0.14	0.24	0.31	0.53	0.53	0.68	0.40
				Glmnet	0.02	0.02	0.02	0.03	0.04	0.07	0.09	0.17	0.05

Table 6: Simulation results of standard deviation of $BIAS_{Adj.}$.
β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.95$	$r = 0.99$	$r = \cdot CC'$
1.00	100	4		IRLS	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.79	
		6		Glmnet	1.00	1.00	1.00	1.00	0.98	0.79	0.29	0.97	
		8		IRLS	1.00	1.00	1.00	1.00	0.91	0.72	0.29	0.96	
				Glmnet	1.00	1.00	1.00	1.00	0.87	0.61	0.27	0.95	
5.00	100	4		IRLS	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.79	
		6		Glmnet	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.79	
		8		IRLS	1.00	1.00	1.00	1.00	0.87	0.61	0.27	0.95	
				Glmnet	1.00	1.00	1.00	1.00	0.87	0.61	0.27	0.95	
10.00	100	4		IRLS	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.79	
		6		Glmnet	1.00	1.00	1.00	1.00	1.00	0.82	0.82	0.79	
		8		IRLS	1.00	1.00	1.00	1.00	0.87	0.61	0.27	0.95	
				Glmnet	1.00	1.00	1.00	1.00	0.87	0.61	0.27	0.95	

Table 7: Simulation results of mean of TPR.
Table 8: Simulation results of standard deviation of TPR.

β	n	p	q	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7	r = 0.9	r = 0.99	r = 0.99 CC				
1000	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.19	0.09	
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5000	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10000	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Note: The table continues with similar entries.
Table 9: Simulation results of mean of FPR.

β	n	p	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7	r = 0.9	r = 0.95	r = 0.99	r = CC'
0.33	100	4	IRLS	0.30	0.28	0.09	0.25	0.25	0.15	0.25	0.25	0.30
				0.01	0.02	0.03	0.06	0.08	0.08	0.09	0.07	0.09
				0.03	0.04	0.07	0.09	0.11	0.12	0.12	0.08	0.12
0.07	100	6	IRLS	0.42	0.38	0.39	0.25	0.25	0.15	0.25	0.25	0.30
				0.01	0.02	0.03	0.06	0.08	0.08	0.09	0.07	0.09
				0.03	0.04	0.07	0.09	0.11	0.12	0.12	0.08	0.12
0.17	100	8	IRLS	0.50	0.47	0.39	0.25	0.25	0.25	0.25	0.25	0.30
				0.05	0.08	0.09	0.12	0.14	0.14	0.15	0.09	0.15
	5000	100	IRLS	0.21	0.23	0.19	0.21	0.21	0.22	0.22	0.24	0.27
				0.00	0.00	0.01	0.04	0.06	0.08	0.09	0.09	0.03
				0.01	0.02	0.03	0.07	0.10	0.11	0.12	0.12	0.07
				0.02	0.04	0.07	0.11	0.13	0.17	0.15	0.14	0.12
0.10	5000	100	IRLS	0.12	0.17	0.17	0.13	0.16	0.15	0.15	0.16	0.15
				0.00	0.01	0.02	0.03	0.04	0.05	0.05	0.04	0.07
				0.01	0.02	0.03	0.04	0.05	0.06	0.06	0.06	0.09
	10000	100	IRLS	0.25	0.09	0.09	0.09	0.10	0.10	0.10	0.09	0.25
				0.00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03
				0.00	0.00	0.01	0.02	0.03	0.04	0.05	0.05	0.04
				0.01	0.02	0.03	0.04	0.05	0.06	0.06	0.06	0.08
	10000	100	IRLS	0.28	0.25	0.23	0.23	0.23	0.23	0.21	0.17	0.28
				0.01	0.01	0.02	0.05	0.07	0.08	0.09	0.09	0.06
				0.02	0.03	0.05	0.09	0.11	0.11	0.11	0.07	0.10
				0.04	0.06	0.08	0.12	0.13	0.14	0.13	0.08	0.13
	5000	100	IRLS	0.18	0.18	0.16	0.17	0.19	0.19	0.21	0.20	0.23
				0.00	0.00	0.00	0.03	0.05	0.07	0.09	0.08	0.02
				0.00	0.01	0.03	0.06	0.09	0.10	0.12	0.11	0.04
				0.01	0.03	0.05	0.09	0.12	0.13	0.14	0.13	0.08
	5000	100	IRLS	0.10	0.10	0.09	0.09	0.09	0.09	0.09	0.08	0.13
				0.00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.02
				0.16	0.15	0.14	0.13	0.14	0.13	0.14	0.10	0.17
				0.00	0.01	0.03	0.04	0.05	0.05	0.05	0.04	0.04
				0.01	0.02	0.03	0.04	0.05	0.06	0.06	0.05	0.07
	10000	100	IRLS	0.07	0.08	0.07	0.07	0.08	0.08	0.08	0.08	0.13
				0.11	0.10	0.11	0.11	0.12	0.11	0.10	0.08	0.16
				0.00	0.00	0.01	0.02	0.03	0.04	0.04	0.04	0.02
				0.15	0.14	0.15	0.14	0.14	0.13	0.13	0.08	0.18
Table 10: Simulation results of standard deviation of FPR.

\(\beta \)	\(n \)	\(p \)	\(q \)	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	\(r = 0.9 \)	\(r = 0.95 \)	\(r = 0.99 \)	\(r = ^{'}C \)
1000	100	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
5000	100	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
10000	400	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
10000	100	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
5000	100	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
10000	100	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
10000	400	6	IRLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	
			glmnet	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	

31
Table 11: Simulation results of mean of BCR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$	$r = 0.95$	$r = 0.99$	$r = \infty$ CC*
β_1	1000	100	4	IRLS	0.85	0.89	0.95	0.88	0.88	0.78	0.78	0.78	0.74
			6	Glmnet	0.99	0.90	0.97	0.95	0.95	0.85	0.85	0.84	0.81
			8	IRLS	0.99	0.89	0.97	0.88	0.84	0.78	0.78	0.78	0.74
				Glmnet	0.79	0.81	0.88	0.88	0.82	0.78	0.78	0.78	0.74
β_2	5000	100	4	IRLS	0.79	0.89	0.94	0.88	0.84	0.78	0.78	0.78	0.74
			6	Glmnet	0.98	0.90	0.96	0.88	0.84	0.78	0.78	0.78	0.74
			8	IRLS	0.75	0.96	0.95	0.93	0.87	0.73	0.59	0.90	0.90
				Glmnet	0.98	0.96	0.95	0.94	0.87	0.73	0.59	0.90	0.90
β_3	5000	400	4	IRLS	0.94	0.95	0.96	0.95	0.95	0.95	0.95	0.95	0.95
			6	Glmnet	0.99	0.99	0.99	0.98	0.98	0.98	0.98	0.98	0.98
			8	IRLS	0.86	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.95
				Glmnet	0.83	0.95	0.96	0.95	0.95	0.95	0.95	0.95	0.95
β_4	5000	400	4	IRLS	0.94	0.95	0.96	0.95	0.95	0.95	0.95	0.95	0.95
			6	Glmnet	0.99	0.99	0.99	0.98	0.98	0.98	0.98	0.98	0.98
			8	IRLS	0.93	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.95
				Glmnet	0.93	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.95

Note: The table presents the simulated mean of BCR for different values of β, n, p, and q, using IRLS and Glmnet methods. The results are given for various values of r.
Table 12: Simulation results of standard deviation of BCR

β	n	p	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7	r = 0.9	r = 0.95	r = 0.99	r = ' CC*
1000	100	4	IRLS	0.08	0.08	0.08	0.07	0.07	0.05	0.11	0.11	0.07
		6	Glmnet	0.01	0.01	0.01	0.01	0.01	0.04	0.10	0.11	0.05
		8		0.02	0.02	0.02	0.02	0.02	0.06	0.09	0.08	0.05
5000	100	4	IRLS	0.06	0.07	0.06	0.05	0.06	0.06	0.06	0.05	0.08
		6	Glmnet	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.10	0.01
		8		0.01	0.01	0.01	0.02	0.02	0.02	0.09	0.09	0.02
10000	400	4	IRLS	0.07	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
		6	Glmnet	0.00	0.00	0.00	0.00	0.01	0.01	0.12	0.03	
		8		0.00	0.00	0.00	0.00	0.01	0.02	0.09	0.05	0.03
10000	400	4	IRLS	0.07	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
		6	Glmnet	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01
		8		0.00	0.00	0.00	0.00	0.01	0.02	0.09	0.08	0.02
10000	400	4	IRLS	0.07	0.02	0.02	0.02	0.02	0.02	0.02	0.09	0.09
		6	Glmnet	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.09	0.09
		8		0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.09	0.09

Note: The table continues with similar entries for different values of β and different sample sizes.
Table 13: Simulation results of Elapsed Time (in minutes).

β	n	p	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	\(r = 0.9 \)	\(r = 0.95 \)	\(r = 0.99 \)	\(r = 0.99 \)
1000	100	4	IRLS	1.14	1.50	0.38	0.40	0.33	2.34	0.85	4.90	3.77
		4	glmnet	2.71	3.10	3.69	4.50	5.00	7.28	10.25	15.15	6.79
		6	IRLS	1.21	1.60	1.58	1.10	0.60	0.65	0.67	0.67	1.62
		6	glmnet	2.96	3.04	3.27	4.45	5.80	8.57	10.86	14.86	6.19
		8	IRLS	1.42	1.80	1.87	1.85	2.32	0.30	0.40	0.40	0.37
		8	glmnet	3.12	3.35	3.67	5.41	7.63	13.25	16.24	17.28	5.78
5000	100	4	IRLS	1.30	1.20	14.25	15.88	16.70	20.94	20.93	22.87	23.38
		4	glmnet	9.41	9.82	11.22	11.70	17.49	21.17	27.87	20.95	24.47
		6	IRLS	14.76	14.28	17.47	17.18	18.13	22.29	22.28	25.20	25.84
		6	glmnet	10.09	10.37	10.71	15.62	17.99	26.77	30.67	39.39	21.47
		8	IRLS	15.04	20.20	17.55	19.27	19.80	21.02	23.02	26.00	24.40
		8	glmnet	10.70	11.13	11.94	17.48	19.96	28.13	32.74	39.93	20.05
5000	400	4	IRLS	77.09	82.15	82.90	90.52	102.95	134.23	134.23	155.40	176.90
		4	glmnet	45.42	45.40	47.49	56.93	72.94	93.07	111.88	150.18	129.73
		6	IRLS	90.60	93.09	103.73	94.57	118.22	133.14	133.13	164.23	206.61
		6	glmnet	48.85	50.83	51.83	75.48	80.32	101.43	126.90	144.98	103.35
		8	IRLS	93.34	104.82	114.02	108.77	127.38	44.28	44.42	14.75	245.54
		8	glmnet	51.84	51.36	55.04	84.58	95.09	121.67	119.41	150.50	96.12
10000	400	4	IRLS	151.42	139.67	144.17	164.93	190.90	234.47	234.47	254.92	262.96
		4	glmnet	73.75	70.84	74.91	80.51	118.30	157.79	160.21	80.98	214.14
		6	IRLS	154.24	153.90	178.83	185.22	193.50	236.81	236.80	270.03	310.97
		6	glmnet	76.00	74.92	75.30	116.05	139.66	162.99	185.53	195.12	169.96
		8	IRLS	160.14	170.40	189.57	210.45	234.55	275.12	275.10	309.80	320.17
		8	glmnet	78.56	82.03	80.44	128.25	145.04	178.39	183.28	225.87	164.69

\[r = 0.0, r = 0.1, r = 0.2, r = 0.5, r = 0.7, r = 0.9, r = 0.95, r = 0.99 \]

\[\beta = 0, 0.25, 0.5, 0.75, 1.0 \]
CASE II: $n = p$

Table 14: Simulation results of mean of BIAS.

β_1	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.75$
100	100		4	IRLS	15.25	23.39	25.09	27.36	4.45
			6	Glmnet	3.05	3.06	3.38	3.71	4.45
			8	IRLS	27.47	23.39	25.09	27.36	6.38
				Glmnet	6.52	6.81	7.26	8.16	8.05
400	400		4	IRLS	27.47	23.39	44.71	27.36	3.86
			6	Glmnet	3.63	3.75	4.05	5.12	5.82
			8	IRLS	27.47	23.39	44.71	27.36	7.48
				Glmnet	5.09	5.59	5.97	7.25	7.48
1000	1000		4	IRLS	27.47	23.39	44.71	27.36	5.00
			6	Glmnet	1.81	1.87	2.04	2.41	3.60
			8	IRLS	27.47	23.39	44.71	27.36	5.10
				Glmnet	2.97	3.24	3.55	4.20	5.10

Table 15: Simulation results of standard deviation of BIAS.

β_2	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.75$
100	100		4	IRLS	11.20	11.14	15.40	0.46	0.60
			6	Glmnet	0.46	0.60	0.97	0.59	0.59
			8	IRLS	11.00	9.07	15.40	0.57	0.60
				Glmnet	0.59	0.59	0.63	0.63	0.63
400	400		4	IRLS	10.17	7.84	15.40	0.46	0.62
			6	Glmnet	0.59	0.59	0.75	0.75	0.84
			8	IRLS	10.17	7.84	17.99	0.40	0.33
				Glmnet	0.40	0.40	0.54	0.54	0.54
1000	1000		4	IRLS	10.17	9.27	17.99	0.46	0.46
			6	Glmnet	0.46	0.46	0.69	0.69	0.69
			8	IRLS	10.17	9.27	17.99	0.46	0.46
				Glmnet	0.46	0.46	0.69	0.69	0.69

* Blank cells denote scenarios that IRLS method could not converge.
Table 16: Simulation results of mean of $BIAS_{\text{Adj}}$.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = \infty$
4	100	100		IRLS	3.13	6.00	7.69	7.69	7.69
				Glmnet	0.65	0.67	0.75	0.75	0.75
6				IRLS	3.97	4.24	7.69	7.69	7.69
				Glmnet	0.60	0.68	0.75	0.75	0.75
8				IRLS	3.06	3.27	4.24	7.69	7.69
				Glmnet	0.65	0.64	0.69	0.77	0.77
400	100	100		IRLS	3.06	3.27	4.24	7.69	7.69
				Glmnet	0.47	0.49	0.63	0.86	0.86
6				IRLS	3.06	3.27	4.24	9.08	9.08
				Glmnet	0.48	0.52	0.67	0.82	0.82
8				IRLS	3.06	6.24	4.24	9.08	9.08
				Glmnet	0.36	0.39	0.50	0.80	0.80
1000	100	100		IRLS	3.06	6.24	4.24	9.08	9.08
				Glmnet	0.38	0.45	0.56	0.74	0.74

$*$ Blank cells denote scenarios that IRLS method could not converge.

Table 17: Simulation results of standard deviation of $BIAS_{\text{Adj}}$.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = \infty$
4	100	100		IRLS	1.72	2.79	3.85	3.85	3.85
				Glmnet	0.12	0.10	0.15	0.15	0.15
6				IRLS	1.83	1.51	2.59	2.59	2.59
				Glmnet	0.10	0.08	0.10	0.10	0.10
8				IRLS	1.27	0.98	1.51	1.51	1.51
				Glmnet	0.06	0.06	0.08	0.09	0.09
400	100	100		IRLS	1.27	0.98	1.51	1.51	1.51
				Glmnet	0.07	0.07	0.09	0.09	0.09
6				IRLS	1.27	1.16	1.51	1.51	1.51
				Glmnet	0.05	0.05	0.06	0.09	0.09
8				IRLS	1.27	1.16	1.51	1.51	1.51
				Glmnet	0.03	0.04	0.05	0.07	0.07

$*$ Blank cells denote scenarios that IRLS method could not converge.
Table 18: Simulation results of mean of TPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = CC^2$
	100	100	4	IRLS	1.00	0.99	0.99	0.97	0.58
				Glmnet	0.92	0.93	0.90	0.82	0.54
100	6		6	IRLS	1.00	0.99	0.99	0.97	0.54
				Glmnet	0.95	0.90	0.84	0.68	0.54
6	8		8	IRLS	0.99	0.99	0.93	0.97	0.53
				Glmnet	0.86	0.88	0.80	0.64	0.53

Table 19: Simulation results of standard deviation of TPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = CC^2$
	100	100	4	IRLS	0.02	0.05	0.06	0.09	0.09
				Glmnet	0.15	0.10	0.16	0.17	0.17
100	6		6	IRLS	0.02	0.05	0.06	0.09	0.09
				Glmnet	0.19	0.13	0.15	0.14	0.18
6	8		8	IRLS	0.05	0.05	0.00	0.02	0.00
				Glmnet	0.20	0.13	0.13	0.14	0.17
8	400	400	400	IRLS	0.05	0.05	0.00	0.09	0.09
				Glmnet	0.00	0.00	0.00	0.02	0.00
400	1000	1000	1000	IRLS	0.05	0.05	0.00	0.09	0.09
				Glmnet	0.00	0.00	0.00	0.02	0.00
1000	1000	1000	1000	IRLS	0.05	0.05	0.00	0.09	0.09
				Glmnet	0.00	0.00	0.00	0.02	0.00

* Blank cells denote scenarios that IRLS method could not converge.
Table 20: Simulation results of mean of FPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$
β_0	100	100	4	IRLS	0.71	0.72	0.74	0.72	0.03	0.03
				Glmnet	0.03	0.03	0.06	0.06	0.06	0.08
	400	400	4	IRLS	0.78	0.72	0.74	0.72	0.05	0.05
				Glmnet	0.05	0.05	0.07	0.10	0.10	0.09
	1000	1000	4	IRLS	0.78	0.72	0.76	0.72	0.06	0.07
				Glmnet	0.06	0.07	0.09	0.11	0.11	0.09
β_1	400	400	4	IRLS	0.78	0.72	0.60	0.72	0.01	0.02
				Glmnet	0.01	0.02	0.02	0.03	0.03	0.04
	1000	1000	6	IRLS	0.78	0.72	0.60	0.72	0.02	0.03
				Glmnet	0.02	0.04	0.05	0.05	0.05	0.06
β_2	400	400	4	IRLS	0.78	0.72	0.60	0.72	0.00	0.01
				Glmnet	0.01	0.01	0.01	0.01	0.01	0.03
	1000	1000	6	IRLS	0.78	0.72	0.60	0.72	0.01	0.02
				Glmnet	0.01	0.02	0.02	0.03	0.03	0.04

* Blank cells denote scenarios that IRLS method could not converge.

Table 21: Simulation results of standard deviation of FPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$	$r = 0.9$
β_0	100	100	4	IRLS	0.10	0.24	0.19	0.17	0.05	0.04
				Glmnet	0.07	0.05	0.04	0.03	0.04	0.03
	400	400	4	IRLS	0.14	0.24	0.26	0.17	0.06	0.05
				Glmnet	0.02	0.02	0.01	0.01	0.01	0.01
	1000	1000	6	IRLS	0.14	0.24	0.26	0.17	0.02	0.01
				Glmnet	0.03	0.02	0.01	0.01	0.01	0.01
β_1	400	400	4	IRLS	0.14	0.24	0.26	0.17	0.01	0.01
				Glmnet	0.01	0.01	0.01	0.01	0.00	0.00
	1000	1000	6	IRLS	0.14	0.24	0.26	0.17	0.01	0.01
				Glmnet	0.01	0.01	0.01	0.01	0.01	0.01
β_2	400	400	4	IRLS	0.21	0.26	0.26	0.26	0.05	0.04
				Glmnet	0.05	0.04	0.04	0.04	0.04	0.04
	1000	1000	6	IRLS	0.28	0.17	0.26	0.26	0.05	0.04
				Glmnet	0.05	0.04	0.04	0.04	0.04	0.04

* Blank cells denote scenarios that IRLS method could not converge.
Table 22: Simulation results of mean of BCR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.5$ CC\%	
---------	-----	-----	-----	--------	-----------	-----------	-----------	-----------	----------------	
	100	100			0.06	0.64	0.62	0.63	0.94	
	4			IRLS	0.94	0.95	0.92	0.88	0.75	
	6			Glmnet	0.91	0.92	0.89	0.79	0.72	
	8				0.90	0.90	0.85	0.77	0.72	
β_1	400	400			0.60	0.64	0.70	0.63	0.99	
	4			IRLS	0.99	0.99	0.99	0.98	0.85	
	6			Glmnet	0.99	0.99	0.98	0.97	0.88	
	8				0.99	0.98	0.98	0.95	0.89	
	1000	1000			0.60	0.64	0.70	0.63	0.99	
	4			IRLS	1.00	1.00	1.00	0.99	0.86	
	6			Glmnet	0.60	0.64	0.70	0.63	0.99	
	8				0.99	0.99	0.99	0.99	0.90	
β_2	400	400			0.60	0.64	0.70	0.63	0.99	
	4			IRLS	0.62	0.58	0.59	0.59	0.99	
	6			Glmnet	0.78	0.83	0.79	0.74	0.67	
	8				0.77	0.80	0.78	0.72	0.68	
	1000	1000			0.60	0.64	0.70	0.63	0.99	
	4			IRLS	0.96	0.96	0.97	0.92	0.81	
	6			Glmnet	0.97	0.97	0.96	0.91	0.82	
	8				0.97	0.96	0.94	0.89	0.82	

* Blank cells denote scenarios that IRLS method could not converge.

Table 23: Simulation results of standard deviation of BCR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.5$ CC\%	
---------	-----	-----	-----	--------	-----------	-----------	-----------	-----------	----------------	
	100	100			0.05	0.11	0.10	0.08	0.09	
	4			IRLS	0.07	0.07	0.08	0.08	0.09	
	6			Glmnet	0.05	0.11	0.10	0.08	0.08	
	8				0.06	0.06	0.07	0.07	0.08	
β_1	400	400			0.06	0.11	0.13	0.08	0.00	
	4			IRLS	0.01	0.01	0.01	0.01	0.00	
	6			Glmnet	0.06	0.11	0.13	0.08	0.03	
	8				0.06	0.11	0.13	0.08	0.03	
	1000	1000			0.06	0.11	0.13	0.08	0.00	
	4			IRLS	0.01	0.00	0.00	0.00	0.00	
	6			Glmnet	0.06	0.11	0.13	0.08	0.00	
	8				0.06	0.11	0.13	0.08	0.00	

* Blank cells denote scenarios that IRLS method could not converge.
Table 24: Simulation results of Elapsed Time (in minutes).

β	n	p	q	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = \beta \) CC*
100	4	3.38	6	IRLS	1.14	3.07	3.07	2.48	
			8		1.13	0.90	1.45	0.05	
					0.59	0.60	0.56	0.57	
					4.45	1.75	3.62	0.57	
					0.61	0.58	0.57	0.57	
200	4	3.01	6	IRLS	0.78	3.07	8.45	0.45	
					3.79	3.30	3.47	3.29	
					0.25	11.62	3.85	0.40	
					3.73	3.07	2.81	2.99	
					3.33	10.92	0.35	0.37	
					3.49	2.96	2.72	2.87	
1000	4	25.55	6	IRLS	4.18	25.55	16.72	9.20	
					22.59	19.13	16.55	15.32	
					4.83	35.63	22.83	6.43	
					21.62	16.63	13.75	14.05	
					4.88	52.13	17.33	6.08	
					20.33	14.84	12.57	15.47	

* Blank cells denote scenarios that IRLS method could not converge.
CASE III: \(n < p \)

Table 25: Simulation results of mean of BIAS.

\(\beta \)	\(n \)	\(p \)	\(q \)	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	
4	400	5000	4	IRLS	37.80	2.76	3.04	3.15	4.12	4.89
6	IRLS	37.80	4.64	5.00	5.77	6.86	8.00			
8	IRLS	37.80	6.65	7.28	8.26	9.76	10.68			
4	400	10000	6	IRLS	37.80	4.61	4.88	5.37	6.91	8.30
8	IRLS	37.80	6.80	7.43	7.53	9.93	11.05			
4	400	5000	6	IRLS	3.59	3.80	4.36	5.20	5.90	6.52
8	IRLS	5.07	5.59	6.19	7.44	8.40				
4	400	10000	6	IRLS	2.24	2.32	2.63	3.49	4.12	4.83
8	IRLS	3.53	3.83	4.17	5.47	6.35				
4	400	5000	6	IRLS	39.22	36.33	37.97	46.57		
8	IRLS	5.14	5.39	5.90	7.47	8.50				

* Blank cells denote scenarios that IRLS method could not converge.

Table 26: Simulation results of standard deviation of BIAS.

\(\beta \)	\(n \)	\(p \)	\(q \)	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	
4	400	5000	4	IRLS	10.34	0.40	0.42	0.44	0.46	0.51
6	IRLS	10.34	0.51	0.56	0.47	0.57	0.67			
8	IRLS	10.34	0.65	0.48	0.51	0.59	0.61			
4	400	10000	6	IRLS	10.34	0.41	0.41	0.48	0.45	0.50
8	IRLS	10.34	0.65	0.47	0.49	0.55	0.64			

* Blank cells denote scenarios that IRLS method could not converge.

Table 27: Simulation results of mean of BIAS_{Adj}.

\(\beta \)	\(n \)	\(p \)	\(q \)	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	
4	400	5000	4	IRLS	9.45	0.69	0.76	0.79	1.03	1.22
6	IRLS	9.45	0.77	0.96	1.14	1.33				
8	IRLS	9.45	0.83	0.91	1.04	1.22	1.34			
4	400	10000	6	IRLS	9.45	0.70	0.74	0.81	1.08	1.31
8	IRLS	9.45	0.77	0.81	0.99	1.15	1.38			
4	400	5000	6	IRLS	9.45	0.56	0.60	0.62	0.82	0.95
8	IRLS	9.45	0.63	0.73	0.87	0.98				
4	400	10000	6	IRLS	4.90	4.54	7.76			
8	IRLS	4.90	4.90	4.90	4.90	4.90	4.90			

* Blank cells denote scenarios that IRLS method could not converge.

Table 28: Simulation results of standard deviation of BIAS_{Adj}.

\(\beta \)	\(n \)	\(p \)	\(q \)	Method	\(r = 0.0 \)	\(r = 0.1 \)	\(r = 0.2 \)	\(r = 0.5 \)	\(r = 0.7 \)	
4	400	5000	4	IRLS	2.58	0.10	0.11	0.11	0.11	0.13
6	IRLS	2.58	0.09	0.09	0.08	0.09	0.11			
8	IRLS	2.58	0.08	0.06	0.06	0.07	0.08			
4	400	10000	6	IRLS	2.58	0.10	0.10	0.12	0.12	0.13
8	IRLS	2.58	0.08	0.07	0.08	0.10	0.10			
4	400	5000	6	IRLS	2.58	0.10	0.11	0.12	0.12	0.13
8	IRLS	2.58	0.08	0.06	0.06	0.07	0.08			

* Blank cells denote scenarios that IRLS method could not converge.
Table 29: Simulation results of mean of TPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$
	400	5000	6	IRLS	1.00	1.00	1.00	0.94	0.79
				Glmnet	1.00	1.00	1.00	0.92	0.51
β_1	8			IRLS	1.00	0.99	0.96	0.68	0.36
				Glmnet	1.00	0.99	0.96	0.57	0.36
	400	10000	6	IRLS	1.00	1.00	1.00	0.92	0.63
				Glmnet	1.00	1.00	1.00	0.85	0.43
β_2	8			IRLS	1.00	0.99	0.98	0.68	0.27
				Glmnet	1.00	0.98	0.98	0.57	0.27

* Blank cells denote scenarios that IRLS method could not converge.

Table 30: Simulation results of standard deviation of TPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$
	400	5000	6	IRLS	0.00	0.00	0.00	0.00	0.11
				Glmnet	0.00	0.00	0.00	0.11	0.20
β_1	8			IRLS	0.02	0.00	0.05	0.15	0.20
				Glmnet	0.02	0.03	0.07	0.15	0.15
	400	10000	6	IRLS	0.00	0.00	0.00	0.13	0.23
				Glmnet	0.00	0.06	0.00	0.13	0.18
β_2	8			IRLS	0.00	0.04	0.05	0.14	0.15
				Glmnet	0.01	0.04	0.05	0.16	0.13

* Blank cells denote scenarios that IRLS method could not converge.

Table 31: Simulation results of mean of FPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$
	400	5000	6	IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00
β_1	8			IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.01	0.01	0.01	0.01	0.01
	400	10000	6	IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00
β_2	8			IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00

* Blank cells denote scenarios that IRLS method could not converge.

Table 32: Simulation results of standard deviation of FPR.

β	n	p	q	Method	$r = 0.0$	$r = 0.1$	$r = 0.2$	$r = 0.5$	$r = 0.7$
	400	5000	6	IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00
β_1	8			IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00
	400	10000	6	IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00
β_2	8			IRLS	0.00	0.00	0.00	0.00	0.00
				Glmnet	0.00	0.00	0.00	0.00	0.00

* Blank cells denote scenarios that IRLS method could not converge.
Table 33: Simulation results of mean of BCR.

β	p	q	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7
400	5000	6	IRLS	0.97	1.00	1.00	1.00	0.89
		8	Glmnet	1.00	0.99	0.98	0.78	0.68
400	10000	6	IRLS	0.97	1.00	1.00	0.96	0.81
		8	Glmnet	1.00	1.00	1.00	0.92	0.71

*Blank cells denote scenarios that IRLS method could not converge.

Table 34: Simulation results of standard deviation of BCR.

β	p	q	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7
400	5000	6	IRLS	0.01	0.00	0.00	0.06	0.10
		8	Glmnet	0.01	0.01	0.03	0.08	0.10
400	10000	6	IRLS	0.01	0.00	0.00	0.07	0.11
		8	Glmnet	0.01	0.01	0.03	0.07	0.11

*Blank cells denote scenarios that IRLS method could not converge.

Table 35: Simulation results of Elapsed Time (in minutes).

β	p	q	Method	r = 0.0	r = 0.1	r = 0.2	r = 0.5	r = 0.7	
400	5000	6	IRLS	106.26	12.31	12.25	12.47	15.59	24.68
		8	Glmnet	13.78	11.75	12.31	15.40	32.11	
400	10000	6	IRLS	4.52	160.13	131.95			
		8	Glmnet	13.38	12.44	13.20	16.05	33.66	

*Blank cells denote scenarios that IRLS method could not converge.