Supplementary data

Structural Characterization and Comparison of Monovalent Cation-Exchanged Zeolite-W

Figure S1. Polyhedral representations of (a) Li-MER, (b) Na-MER, (c) Ag-MER, (d) K-MER, and (e) Rb-MER along the (001) direction. Grey sticks represent disordered Al/Si framework. Each colored beach ball represents an extra-framework cation. Equatorial, hatched, and striped red balls represent oxygens of WO(1)–WO(3), WO(4) and WO(5), respectively.
Figure S2. Comparison of channel opening area of d8r (black symbol) and pau (red symbol) along the (001) direction and sum of two areas.

Figure S3. Thermogravimetric analysis results of Li-, Na-, Ag-, and K-MER.
Table S1. Cation-exchange conditions of MERs and chemical composition from Rietveld refinement and stoichiometric analysis.

Material	Reagent	Conc. Used (M)	No. of Treatments	Treatment Duration (days)	%H₂O^a	Rietveld	EDX^b
Li-MER	LiCl, (99%)	sat.	3	1	19.7	Li₆₋₈Al₆₋₈Si₂₅₋₈O₆₋₈·26H₂O	Li₆₋₈Al₆₋₈Si₂₅₋₈O₆₋₈·26H₂O
Na-MER	NaCl, (99%)	sat.	3	1	13.3	Na₇₋₈Al₇₋₈Si₂₅₋₈O₆₋₈·20H₂O	Na₇₋₈Al₇₋₈Si₂₅₋₈O₆₋₈·17.8H₂O
Ag-MER	AgCl, (99%)	sat.	3	1	11.9	Ag₇₋₈Al₇₋₈Si₂₅₋₈O₆₋₈·22H₂O	Ag₇₋₈Al₇₋₈Si₂₅₋₈O₆₋₈·22.5H₂O
K-MER^c					11.8		
Rb-MER^d					9.82		Rb₅₋₆Al₅₋₆Si₂₅₋₆O₆₋₆·14H₂O

^a The water contents in wt%. Weight loss is measured by thermogravimetric analysis (TGA) up to ca. 800 °C; ^b Confirmed from chemical and energy-dispersive X-ray spectroscopy (EDS) and TG analysis; ^c Hydrothermal synthesis following method from Itabashi et al., 2008; ^d Results from Itabashi et al., 2008.

Table 2. Chemical composition calculated from energy-dispersive spectroscopy (EDS) method.

Li-MER

Measurement	1	2	3
Atomic percent (%)			
Al	6.1(1)	6.2(1)	6.3(1)
Si	22.7(1)	23.0(1)	23.5(1)
K	0	0	0
O	71.1(1)	70.8(1)	70.2(1)

Na-MER

Measurement	1	2	3
Atomic percent (%)			
Al	5.7(1)	5.9(1)	5.4(1)
Si	20.4(1)	21.4(1)	19.3(1)
Na	6.2(1)	6.1(1)	6.0(1)
O	67.5(1)	66.4(1)	69.2(1)

Ag-MER

Measurement	1	2	3
Atomic percent (%)			
Al	5.3(1)	5.6(1)	5.4(1)
Si	18.6(1)	20.1(1)	19.4(1)
Ag	6.0(1)	6.7(1)	6.5(1)
O	70.1(1)	67.6(1)	68.6(1)

K-MER

Measurement	1	2	3	4	5
Atomic percent (%)					
Al	6.48(5)	6.17(5)	6.25(5)	6.22(5)	6.26(5)
Si	25.25(5)	25.49(5)	24.61(5)	25.01(5)	25.34(5)
K	5.37(5)	5.39(5)	7.03(5)	6.31(5)	5.56(5)
O	62.9(5)	62.94(5)	62.11(5)	62.48(5)	62.84(5)
Table 3. Refined cell parameters and atomic coordinates of M-MER at ambient conditions (M = Li+, Na+, Ag+, K+ and Rb+).

Chemical composition	Li-MER	Na-MER	Ag-MER	K-MER	Rb-MER^a
Space group	14/mmm	14/mmm	14/mmm	14/mmm	14/mmm
a<sub>sR^s(%), X²	1.91, 8.80	1.83, 0.36	2.50, 0.67	2.08, 3.01	
Cell parameters					
V (Å³)	1995.25(14)	2005.81(25)	2005.56(28)	2005.46(15)	1996.76(7)
Li_{1.0}Si_{0.5}O₄H₂O	0.11125(19)	0.11030(7)	0.116571(2)	0.11051(10)	0.11046(14)
Na_{1.0}Si_{0.5}O₄H₂O	0.11621(18)	0.15681(18)	0.15767(13)	0.15966(15)	0.115637(14)
Ag_{1.0}Si_{0.5}O₄H₂O	0.16212(18)	0.15681(18)	0.15767(13)	0.15966(15)	0.115637(14)
K_{2.0}SiO₄H₂O	0.12054(8)	0.20902(6)	0.25875(4)	0.1200(5)	0.1243(3)
Rb_{2.0}SiO₄H₂O	0.16212(18)	0.15681(18)	0.15767(13)	0.15966(15)	0.115637(14)

^aValues are given in parentheses.
Occupancies	Materials
Esd’s	Esd’s

\[\text{Esd’s} = \frac{1}{n} \sum_{i=1}^{n} \sigma_i \]

Table 4. Selected interatomic distances (Å) and angles (°) for M-MER at ambient conditions (M = Li⁺, Na⁺, Ag⁺, K⁺, and Rb⁺).

Li-MER	Na-MER	Ag-MER	K-MER	Rb-MER*	
Si–O(1)	1.6395(12)	1.64813(29)	1.6481(4)	1.6502(7)	1.330
Si–O(2)	1.6349(13)	1.64815(28)	1.6479(4)	1.6480(7)	1.946
Si–O(3)	1.6368(13)	1.64813(28)	1.6479(4)	1.6479(8)	1.823
Si–O(4)	1.6402(13)	1.64806(27)	1.6482(4)	1.6458(7)	1.916
Mean⁴	1.6378(1)	1.64811(1)	1.6480(1)	1.6479(1)	1.753(1)
Si–O(1)–Si	159.4(6)	145.1(4)	139.02(25)	148.8(4)	119.456
Si–O(2)–Si	149.0(6)	142.35(23)	177.68(21)	144.25(31)	124.978
Si–O(3)–Si	124.5(5)	121.39(34)	119.38(15)	119.85(32)	109.975
Si–O(4)–Si	152.1(6)	177.36(27)	145.83(18)	172.1(5)	153.949

Channel opening area of pau unit along (010) direction

\[\text{M(1)–O(1)} = 3(1) \quad 3.059(13) \quad 3.295(6) \quad 3.166(7) \quad 2.850 \]

\[\text{M(1)–O(2)} = 3.062(6) \quad 3.205 \]

\[\text{M(1)–WO(3)} = 2.7(18) \quad 2.733(11) \quad 2.815(6) \]

\[\text{M(1)–WO(4)} = 2.364(17) \quad 2.59 \]

\[\text{M(1)–WO(5)} = \]

\[\text{M(2)–O(3)} = 3.114(8) \quad 2.967(8) \quad 3.1482(23) \quad 2.901(5) \quad 3.130 \]

\[\text{M(2)–WO(1)} = 2.39(5) \quad 2.478(16) \quad 2.668(7) \quad 2.607(4) \quad 2.380 \]

\[\text{M(2)–WO(2)} = 2.58(5) \quad 2.535(16) \quad 2.352(7) \quad 2.371(4) \quad 2.585 \]

\[\text{WO(1)–WO(4)} = 2.729(30) \quad 2.837(16) \quad 2.741 \]

\[\text{WO(1)–WO(5)} = 2.3995(18) \]

\[\text{WO(3)–O(4)} = 3.0902(31) \quad 3.088 \]

\[\text{WO(4)–O(1)} = 2.613(4) \]

\[\text{WO(4)–O(3)} = 2.926(6) \]

\[\text{WO(4)–WO(4)} = 2.633 \]

\[\text{WO(4)–WO(5)} = 2.382(6) \quad 2.520(17) \quad 2.3976(18) \]

Bond Valence sum

\[\text{M(1)} = 0.102 \quad 0.426 \quad 0.251 \quad 1.48 \quad 0.642 \]

\[\text{M(2)} = 0.179 \quad 0.515 \quad 0.511 \quad 1.429 \quad 1.736 \]

\[a \text{ Esd’s are in parentheses, and WO denotes oxygen site of water molecules; } b \text{ Model from Itabashi et al., 2008; } c \text{ Interatomic distance was restrained by Al/Si ratio from EDS result; } d \text{ Standard deviations computed using } \sigma = 1/n[\sum_{i=1}^{n} \sigma_i^2]^{1/2}. \]