An On-Line Energy Acquisition Method for Transmission Lines Based on Impedance Matching

Xinxing Lu*, Jun Yang, Shaosheng Fan, Zheng Liu and Kang Zhang
Changsha University of Science and Technology, Changsha 410114, Hunan Province, China

*Corresponding author e-mail: 527956726@qq.com

Abstract. Aiming at the shortcomings of large starting current and small output power for induction energy acquisition methods of conventional current transformers, an on-line energy acquisition method for transmission lines based on impedance matching is proposed in this paper. In this method, parallel resonance is generated by matching the secondary winding of the open gap magnetic core with its excitation impedance, thus the equivalent impedance of the damping branch of the magnetic core is increased. So that the load can get more electric energy by more current separated by the other branch. The experiments show that the on-line energy acquisition method of power transmission line based on impedance matching can achieve more power than the conventional current transformer induction energy acquisition method at the same bus current and the same magnetic core.

1. Introduction
Taking into account the importance of transmission line operation safety and the increasing accident safety hazards, researchers have focused on transmission line status parameter monitoring and fault diagnosis[1,2], which has made rapid progress in real-time monitoring systems for high-voltage transmission lines. However, the power supply for real-time monitoring equipment is not easy to obtain, and that has always been an important issue that restricts the widespread application of online real-time monitoring equipment for transmission lines.

This paper improves the conventional method of absorbing power via current transformers, proposing an on-line power-receiving method for transmission lines based on impedance matching, and establishing an energy-harvesting model, then, deducing the relationship between circuit model parameters and acquired power.

2. Energy harvesting method based on matching impedance

2.1. The energy harvesting theory
The on-line energy harvesting device structure based on impedance matching is shown in Fig. 1. A damped branch, an energy-stripping branch and a backup energy storage power supply are included in the energy harvesting system. The transmission line, a current transformer with an air gap and the capacitors concatenated on the current transformer secondary side are included in the damped branch circuit; A shunt wire, a transformer, a rectifier circuit, a DC-DC circuit and a load are included in the
energy-stripping branch circuit; A lithium battery and a charge and discharge management circuit are included in the backup power source.

![Diagram](image)

Figure 1. The structure of on-line energy acquisition device

If the transformer, the rectifier circuit, the DC-DC circuit, and the energy loading are viewed as a whole, the input impedance and the impedance of the damping branch constitute a parallel relationship. By adjusting the capacitance value of the secondary branch of the damping branch, it can make parallel resonance with the equivalent excitation inductance of the core, increasing the equivalent impedance of the damping branch, and matching the impedance of the damping branch with the load impedance.

2.2. Power acquisition circuit model

According to the law of electromagnetic induction and the principle of transformer, the model of the circuit for taking power shown in Fig. 2a can be established. The simplified model of the on-line power-collection circuit for transmission lines based on impedance matching is shown in Figure 2b.

![Diagram](image)

Figure 2. Circuit model of on-line energy acquisition

\[I_1 \text{ is the transmission line current, } I_2 \text{ is equivalent current in the damping branch, } I_3 \text{ is equivalent current in the energy-equipping branch; } R_1, L_1 \text{ are the core primary resistance, the primary leakage inductance; } R_m, L_m, C_1 \text{ are the core excitation resistor, magnetizing inductance and matching capacitance; } R_2, L_2 \text{ are the secondary resistance of the magnetic core, and the secondary leakage inductance of the magnetic core; } R_e \text{ is the equivalent input load.} \]

When the core is not saturated, its value is generally constant and can be calculated from the magnetic hysteresis curve of the core material. The excitation inductance \(L_m \) is:

\[
L_m = \frac{u_0 \mu_2 N_1^2 S}{l} \tag{1}
\]

In the formula (1): \(u_0 \) is the vacuum permeability, \(\mu_2 \) is the relative permeability, \(N_1 \) is the number of primary turns, \(S \) is the cross-sectional area of the core, and \(l \) is the magnetic path length of the core.

The primary side of the magnetic core is the transmission line, mean \(N_1=1 \); vacuum permeability \(u_0 = 4\pi \times 10^{-7} \text{N} \cdot \text{A}^{-2} \), but the vacuum permeability of the core with an air gap is:
In the formula (2): \(\mu_{Fe} \) is the Magnetic core permeability; \(\delta \) is the core air gap length.

According to the parameters of the core magnetization curve given by the manufacturer and the iron loss per unit volume of the core material, \(R_m \approx 2.5 \Omega \) can be estimated, and the above core parameters can be substituted into equations (1) and (2) to calculate \(L_m = 30 \mu H \). Thus, the excitation impedance \(Z_m \) of the magnetic core can be calculated from equations (3). Thus, the excitation resistance \(|Z_m| = 0.0097\).

\[
Z_m = R_m + jwL_m
\]

3. Analysis of On-Line energy harvesting output power based on impedance matching

In Fig. 2b, if the damping branch has no capacitance \(C_1 \), it is the equivalent circuit model of the conventional current transformer inductive powering method. According to Fig. 2b, when the capacitance \(C_1 \) is connected in parallel across the magnetic core, the equivalent admittance \(Y \) and equivalent impedance \(Z \) of the damped branch can be calculated as:

\[
Y = \frac{1}{Z} = \frac{1}{R_m + jwL_m} + jwC_1 =
\]

\[
|Z| = \frac{\frac{L_m}{C_1}}{1 + \left(\frac{R_m}{\omega L_m}\right)^2} + \frac{1}{\omega C_1}
\]

\[\phi = \arctan\frac{wL_m - wC_1 [R_m^2 + (wL_m)^2]}{R_m}\]

Ideally, when the phase difference \(\phi = 0 \), that is, “parallel resonance” occurs in the damped branch, the entire circuit is resistive, and the equivalent impedance of the damped branch reaches a maximum value. The equivalent capacitor \(C_1 \) on the primary side is:

\[
wL_m - wC_1 [R_m^2 + (wL_m)^2] = 0
\]

\[C_1 = \frac{L_m}{[R_m^2 + (wL_m)^2]}\]

\[R_m = 2.5 \Omega \text{ and } L_m = 30 \mu H \text{ are put into formula(7), then calculating the } C_1 = 318.84 \text{mF}. \text{ And } R_m, L_m \text{ and } C_1 \text{ are put into formula(4), then calculating the damping branch equivalent impedance } Z = 0.037 \Omega. \text{ According to the principle of maximum power output:}

\[P = \frac{(I_2)^2}{2} \times R_L = \left(\frac{I_2}{2}\right)^2 \times Z\]

When transmission line current \(I_1 = 50A \), the maximum power that the load can obtain is 23W. This is much more than the power obtained by the conventional current transformer inductive powering method in the same situation.
4. Experimental analysis

4.1. Power model verification experiment
In order to verify the correctness of the theoretical analysis, the nanocrystalline magnetic core with an air gap of 1K107. The inner diameter, outer diameter, and height of the core were 40mm, 120mm, and 60mm, respectively. Its sectional area is 2400mm^2, the magnetic circuit length is 25.1cm, the secondary side turns N2 is 18, the air gap length is 0.1mm. In this paper, the no-load experiment is to be tested for the above air-gap current transformer. The voltage and bus current waveforms at both ends of the open air gap of the open-circuit test are shown in Figure 3.

\[Z_m = \frac{U}{I_1} = 0.0087 \Omega \]
\[L_m = \frac{U}{\omega I_1} \sin \theta = 27 \mu \text{H} \]
\[R_m = \frac{U}{I_1} \cos \theta = 2.1 \text{m\Omega} \]

\(\theta = 76^\circ \) is the difference between voltage and current.

The experimentally measured core excitation impedance is close to the theoretically calculated excitation resistance of 2.5m\(\Omega \) and excitation inductance of 30\(\mu \)H in the first section. This shows that the online excitation model established in the first section of the theoretical derivation is accurate.

4.2. Energy power experiment
In order to verify the correctness of the output power theoretical derivation of the conventional current transformer inductive method and the on-line power-receiving method based on the impedance matching for transmission lines, we carried out load experiments for two energy-acquisition methods. The experimental system established is shown in Figure 4.
Figure 4. On-line energy acquisition experimental system

The data can be summarized as shown in Table 1, Table 2, and finally plotted according to the measured data. As shown in Figure 5.

Table 1. Experimental data of induction energy acquisition method based on conventional current transformer

RL	LINE CURRENT	0.1Ω Load voltage	Load power	0.5Ω Load voltage	Load power	1Ω Load voltage	Load power	2Ω Load voltage	Load power	5Ω Load voltage	Load power	10Ω Load voltage	Load power
	10A	0.03V	0.01W	0.1V	0.02W	0.15V	0.02W	0.23V	0.03W	0.52V	0.05W	0.95V	0.09W
	30A	0.25V	0.63W	0.78V	1.217W	1.23V	1.51W	1.98V	1.96W	2.11V	0.89W	2.51V	0.63W
	50A	0.31V	0.96W	1.36V	3.699W	2.05V	4.2W	2.53V	3.2W	3.37V	2.27W	3.81V	1.45W
	70A	0.47V	2.21W	1.88V	7.07W	2.78V	7.73W	3.18V	5.06W	4.51V	4.07W	4.98V	2.48W

Table 2. Experimental data of on-line energy acquisition method for transmission lines based on impedance matching

| RL | LINE CURRENT | 30Ω Load voltage | Load power | 40Ω Load voltage | Load power | 50Ω Load voltage | Load power | 60Ω Load voltage | Load power | 70Ω Load voltage | Load power | 80Ω Load voltage | Load power | 90Ω Load voltage | Load power | 100Ω Load voltage | Load power | 110Ω Load voltage | Load power |
|-------|---------------|-------------------|------------|-------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|
| | 10A | 2.4V | 0.19W | 3.41V | 0.29W | 3.78V | 0.29W | 4.32V | 0.31W | 4.82V | 0.33W | 5.26V | 0.35W | 5.56V | 0.37W | 6.08V | 0.39W | 6.45V | 0.38W |
| | 30A | 7.42V | 1.83W | 10.3V | 2.65W | 12V | 2.88W | 13.1V | 2.89W | 14.8V | 3.13W | 21.2V | 5.618W | 23.2V | 7.40W | 27.2V | 7.03W |
| | 50A | 12.8V | 5.46W | 17.8V | 7.92W | 21.1V | 8.90W | 23.7V | 9.36W | 26V | 9.66W | 31V | 12W | 32.3V | 11.59W | 33.2V | 11.02W | 34V | 10.51W |
| | 70A | 18.6V | 11.53W | 24.8V | 15.38W | 28.5V | 16.25W | 30.8V | 15.8W | 32.4V | 15W | 33.8V | 14.2W | 35.1V | 13.69W | 36.7V | 13.47W | 38.1V | 13.1W |
Figure 5. The relation curve of the bus current and the maximum power of the load

It can be seen from Table 1, Table 2 and Fig. 5 that the conventional current transformer induction and power acquisition method achieves a maximum power of 1.96 W at a bus current of 30 A, a maximum power of 4.2 W at a bus current of 50 A, and a maximum power of 11.8 W at a bus current of 80 A. On the other hand, an on-line power-receiving method for transmission lines based on impedance matching achieves a maximum power of 7.4 W at a bus current of 30 A, and a maximum power of 12 W at a bus current of 50 A. This is much larger than the maximum power that a conventional current transformer can draw in the same bus current and the same core. The difference between the load resistances when the two methods obtain the maximum power is larger because the number of turns on the secondary side of the transformer connected to the load is not the same.

5. Conclusion

This paper studies the power supply of on-line monitoring equipment for high-voltage transmission lines. According to the characteristics and defects of the method of inductive sensing of conventional current transformers, an on-line energy-gathering method for transmission lines based on impedance matching is proposed. Compared with the conventional method of inductive sensing of the current transformer, the new method can effectively increase the power harvesting; and when the busbar current change is large, the power energy can be controlled by adjusting the capacitance of the capacitor on the damping branch. This method is an ideal method to solve the power supply problem of the transmission line on-line monitoring device.

References

[1] Sood V K, Fischer D, Eklund J M, et al. Developing a communication infrastructure for the smart grid [C]// IEEE Electrical Power & Energy Conference, Montreal: IEEE, 2009: 1-7.
[2] Li Peng, Huang Xinbo, Zhao Long, Zhu Yongcan. Research and design of intelligent transmission line condition monitoring agent [J]. Proceedings of the CSEE, 2013, 33 (16): 153-161+6.
[3] Kobayashi K, Matsuo H, Sekine Y. An Excellent Operating Point Tracker of the Solar-cell Power Supply System [J] IEEE Trans. on Industrial Electronics, 2006, 53 (2): 495-499.
[4] Fateh B, Govindarasu M, Ajjarapu V. Wireless Network Design for Transmission Line Monitoring in Smart Grid [J]. IEEE Transactions on Smart Grid, 2013, 4 (2): 1076-1086.
[5] Wu Y C, Cheung L F, Lui K S, et al. Efficient Communication of Sensors Monitoring Overhead Transmission Lines [J]. IEEE Transactions on Smart Grid, 2012, 3 (3): 1130-1136.
[6] Luo C, Hofmann H F. Wideband Energy Harvesting for Piezoelectric Devices with Linear Resonant Behavior [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2011, 58 (7): 1294-1301.
[7] Moser M J, Bretterklieter T, Zangl H, et al. Strong and Weak Electric Field Interfering: Capacitive Icing Detection and Capacitive Energy Harvesting on a 220-kV High-Voltage Overhead Power Line [J], IEEE Transactions on Industrial Electronics ^ 2011, 58 (7): 2597-2604.