Packing nearly optimal Ramsey $R(3, t)$ graphs

He Guo
Georgia Tech

Joint work with Lutz Warnke
Construct pseudo-random triangle-free subgraphs of dense graphs

- Previous results only make such construction in complete graphs
- Construct via polynomial time randomized algorithm
 - Self-stabilization mechanism built into algorithm to control errors
- Approximately decompose complete graph into such Δ-free graphs
 - Solve a Ramsey theory conjecture by Fox, Liebenau, Person, Szabo et al
Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that
G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process:
 greedily add random edges that do not create a Δ

Δ-free process: add one random edge in each step
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)
All find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$
Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph
Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$
Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ
Δ-free process: add one random edge in each step
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Δ-free process: add one random edge in each step
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an \(n \)-vertex graph \(G \subseteq K_n \) such that
\(G \) is \(\Delta \)-free with independence number \(\alpha(G) \leq C \sqrt{n \log n} \)

- Construct \(G \) in the binomial random graph \(G_{n,p} \)

Kim (1995) + Bohman (2008): one nearly optimal \(R(3, t) \) graph

Both find an \(n \)-vertex graph \(G \subseteq K_n \) such that
\(G \) is \(\Delta \)-free with independence number \(\alpha(G) \leq C \sqrt{n \log n} \)

- Construct \(G \) by (semi-random variation of) \(\Delta \)-free process:
 - greedily add random edges that do not create a \(\Delta \)

\(\Delta \)-free process: add one random edge in each step
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process: greedily add random edges that do not create a Δ

Δ-free process: add one random edge in each step

![Diagram of a graph showing open and closed edges]
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that
G is Δ-free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that
G is Δ-free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process:
greedily add random edges that do not create a Δ

Δ-free process: add one random edge in each step

[Diagram with edges labeled open (can add) and closed (can not add)]
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)

All find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G in the binomial random graph $G_{n,p}$

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C \sqrt{n \log n}$

- Construct G by (semi-random variation of) Δ-free process:
 - greedily add random edges that do not create a Δ

Semi-random variation: add many random edges in each step

![Graph representation](image)
Review of previous results

Erdős (1961) + Spencer (1977) + Krivelevich (1994)
All find an \(n \)-vertex graph \(G \subseteq K_n \) such that
\(G \) is \(\Delta \)-free with independence number \(\alpha(G) \leq C \sqrt{n \log n} \)

- Construct \(G \) in the binomial random graph \(G_{n,p} \)

Kim (1995) + Bohman (2008): one nearly optimal \(R(3, t) \) graph
Both find an \(n \)-vertex graph \(G \subseteq K_n \) such that
\(G \) is \(\Delta \)-free with independence number \(\alpha(G) \leq C \sqrt{n \log n} \)

- Construct \(G \) by (semi-random variation of) \(\Delta \)-free process:
 greedily add random edges that do not create a \(\Delta \)
 * Tight up to the constant: Ajtai-Komlós-Szemerédi (1980)
 * Lead to the right order of magnitude of Ramsey number \(R(3, t) \)
 - Kim received Fulkerson Prize in 1997
Main Result: nearly optimal $R(3, t)$ graphs

Kim (1995) + Bohman (2008): one nearly optimal $R(3, t)$ graph

Both find an n-vertex graph $G \subseteq K_n$ such that G is Δ-free with independence number $\alpha(G) \leq C\sqrt{n \log n}$

- Using (semi-random variation of) Δ-free process:
 greedily add random edges that do not create a Δ

G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in I}$ with $G_i \subseteq K_n$ such that
(a) each G_i is n-vertex Δ-free with $\alpha(G_i) \leq C\varepsilon\sqrt{n \log n}$
(b) the union of the G_i contains $\geq (1 - \varepsilon)\binom{n}{2}$ edges

- Using simple polynomial-time randomized algorithm:
 sequentially choose G_i via semi-random variation of Δ-free process
 - Start with $H_0 = K_n$
 - Find $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$ and repeat
Glimpse of the proof

Main-Technical-Result: find pseudo-random Δ-free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta (\log n) / n}$ and $s := C\varepsilon \sqrt{n \log n}$. If $H \subseteq K_n$ is such that

$$e_H(A, B) \geq \varepsilon |A||B|$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with

$$e_G(A, B) = (1 \pm \delta) \varrho e_H(A, B)$$

for all disjoint A, B of size s.
Main-Technical-Result: find pseudo-random Δ-free subgraph $G \subseteq H$

Let $\varrho := \sqrt{\beta (\log n)/n}$ and $s := C\varepsilon \sqrt{n \log n}$. If $H \subseteq K_n$ is such that

$$e_H(A, B) \geq \varepsilon |A||B|$$

for all disjoint sets A, B of size s, then we can find Δ-free $G \subseteq H$ with

$$e_G(A, B) = (1 \pm \delta) \varrho e_H(A, B)$$

for all disjoint A, B of size s.

- Pseudo-randomness of G_i ensures all local parts of H_i behave similarly

Implies packing result:
- Start with $H_0 = K_n$
- Sequentially choose $G_i \subseteq H_i$ and set $H_{i+1} = H_i \setminus G_i$
 $$e_{H_i}(A, B) = (1 - (1 \pm \delta)\varrho)^i |A||B|$$
- Stop when $e_{H_i}(A, B) \approx \varepsilon |A||B|$ holds
Main-Technical-Result: find pseudo-random \(\Delta \)-free subgraph \(G \subseteq H \)

Let \(\varrho := \sqrt{\beta (\log n) / n} \) and \(s := C_\varepsilon \sqrt{n \log n} \). If \(H \subseteq K_n \) is such that

\[
e_H(A, B) \geq \varepsilon |A||B|
\]

for all disjoint sets \(A, B \) of size \(s \), then we can find \(\Delta \)-free \(G \subseteq H \) with

\[
e_G(A, B) = (1 \pm \delta) \varrho e_H(A, B)
\]

for all disjoint \(A, B \) of size \(s \).

Proof based on semi-random variation of \(\Delta \)-free process:

- Do not require degree/codegree regularity of \(H \)
- ‘Self-stabilization’ mechanism built into process (to control errors)
- Tools: Bounded-Differences-Ineq. and Upper-Tail-Ineq. of Warnke
Summary

G., Warnke (2020): almost packing of nearly optimal $R(3, t)$ graphs

Given $\varepsilon > 0$, we find edge-disjoint graphs $(G_i)_{i \in I}$ with $G_i \subseteq K_n$ such that
(a) each G_i is n-vertex Δ-free with $\alpha(G_i) \leq C\varepsilon \sqrt{n \log n}$
(b) the union of the G_i contains $\geq (1 - \varepsilon) \binom{n}{2}$ edges

Remarks
- Can find the $(G_i)_{i \in I}$ via polynomial time randomized algorithm
- Applications in Ramsey theory: solve a conjecture of Fox, Liebenau, Person, Szabo et al

Open problem
Other applications of ‘self-stabilization’ in design of randomized algorithms?

Reference
He Guo, Lutz Warnke, *Packing nearly optimal Ramsey $R(3, t)$ graphs*, Combinatorica 40, 63–103 (2020)