Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mitigating the risk of infection spread in manual order picking operations: A multi-objective approach

Ehsan Ardjmand a,∗, Manjeet Singh b, Heman Shakeri c, Ali Tavasoli d, William A. Young II a

a Department of Analytics and Information Systems, College of Business, Ohio University, OH, 45701, USA
b Solutions Design, DHL Supply Chain, Westerville, OH, USA
c School of Data Science, University of Virginia, Charlottesville, VA, USA
d Department of Mechanical Engineering, Payame Noor University, Tehran, Iran

A R T I C L E I N F O

Article history:
Received 1 July 2020
Received in revised form 20 November 2020
Accepted 25 November 2020
Available online 30 November 2020

Keywords:
Order picking
Order batching
Picker routing
Multi-objective optimization model
Multi-objective metaheuristics
Evolutionary methods
Physical distancing
Supply chain disruption

A B S T R A C T

In the aftermath of the COVID-19 pandemic, supply chains experienced an unprecedented challenge to fulfill consumers’ demand. As a vital operational component, manual order picking operations are highly prone to infection spread among the workers, and thus, susceptible to interruption. This study revisits the well-known order batching problem by considering a new overlap objective that measures the time pickers work in close vicinity of each other and acts as a proxy of infection spread risk. For this purpose, a multi-objective optimization model and three multi-objective metaheuristics with an effective seeding procedure are proposed and are tested on the data obtained from a major US-based logistics company. Through extensive numerical experiments and comparison with the company’s current practices, the results are discussed, and some managerial insights are offered. It is found that the picking capacity can have a determining impact on reducing the risk of infection spread through minimizing the picking overlap.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In December 2019, a novel coronavirus named COVID-19 (SARS-CoV-2) was first documented in Wuhan, China. By early March 2020, 114 countries reported cases of the virus contractions, and the World Health Organization declared the rapidly spreading outbreak a pandemic. While writing this article, there are more than 10,000,000 reported confirmed cases of the infection worldwide [1], and current projections anticipate approximately 175,000 deaths by the end of August 2020 in the US [2]. Promptly after the outbreak, it became evident that the supply chains will be severely disrupted, and depending on the outbreak size, demand disruption, and recovery synchronicity of the firms, the performance of the supply chains will be proportionally deteriorated [3].

In the context of supply chains, epidemic outbreaks are a form of disruption risk that impacts operational performance measures. Operational activities ordinarily involve humans and are prone to interruption if the employees are in close physical contact. Physical distancing is advocated by epidemiologists as an infection spread mitigation strategy [4–6], and can be adapted to labor-intensive operational tasks for minimizing the likelihood of personnel contracting the infection, and hence, maintaining the performance.

Manual order picking operations are highly labor-intensive, and due to their criticality, cannot be suspended during a crisis. Furthermore, since the pickers may work in close vicinity, an order picking environment may bring about an elevated risk of virus transmission among the personnel. Thus, physical distancing policies can be utilized to reduce the likelihood of virus propagation among the pickers. Depending on the type of picking environment, such policies may have different consequences and must be selected in accordance with parameters such as picking objectives and warehouse design. For example, a warehouse whose operations are centered around wave picking may need to implement physical distancing practices that have the least conflict with its picking makespan.

The objective of this paper is to revisit the well-known order picking problem in manual order picking warehouse while considering physical distancing practices and aims to investigate the performance and managerial implications of implementing such practices. For this purpose, a tri-objective formulation of the order picking problem is proposed where the total picking time, makespan, and the time over which the workers are picking closer than a minimum physical distance are to be minimized. The third objective, henceforth referred to as picking overlap, is

https://doi.org/10.1016/j.asoc.2020.106953
1568-4946/© 2020 Elsevier B.V. All rights reserved.
computed by measuring the time each pair of pickers are stationed at the proximity of each other as controlled by a distance parameter Δ. Thus, a more substantial overlap must be calculated if more than two pickers are positioned close to each other during picking. Indeed, a more congested area has a higher infection transmission potential. As defined in this study, picking overlap is mainly concerned with the picking time when the pickers have limited motions due to their physical position in relation to the pick locations. One has to draw a distinction between the picking overlap and walking overlap where at least one picker is walking. This study is primarily concerned with the picking overlap. Thus, walking pickers are exempt from the overlap computations. This assumption works best for many warehouses where the picking aisles are wide enough for the pickers to respect a physical distance while passing by each other. It is noteworthy that the picking overlap can provide the decision-makers with a proxy measure of the picking plus walking overlap. Thus, it can be utilized in warehouses with narrow aisles where the aisles’ distance does not allow for physical distancing. Additionally, the problem is parameterized by a distance constant Δ that can be adjusted to favor the situations where it is preferred to have a single picker in an aisle.

This study is modeled after the warehouse operations of a major logistics company located in the US and uses the order level data provided by the company. Moreover, the company’s order picking practices are assessed to draw a comparison between the current state of affairs and solutions that acknowledge physical distancing. The company’s current order picking operations are highly geared towards minimizing the total picking time, and as will be illustrated, improving the physical distancing measure while maintaining the status quo’s level of picking efficiency is possible. In fact, there seems to be some degree of positive synergy among picking overlap and total picking time objectives. However, makespan demonstrates intense conflict with the other two objectives. This observation has unpropitious implications for wave picking environments, where makespan is typically prioritized. In other words, physical distancing practices seem to be more challenging to implement in wave picking warehouses when compared to the warehouses, where the objective is to minimize the total picking time.

Conventionally, Order picking problems consist of several sub-problems. In order picking with physical distancing (OPPD) considerations, one is interested in batching a set of orders and devising a picking route for each batch to optimize a set of predefined objectives while minimizing picking overlap among the stationary pickers. The warehouse of this study utilizes the S-shape routing policy. Thus, the main results are derived using the same procedure. However, to explore the effect of routing policy on the results, the Midpoint policy is assessed in the numerical experiment section as well. While some evidence shows that the S-shape routing policy has anti-congestion properties [7,8], the results of applying the Midpoint policy in the context of the presented problem, does not confirm this hypothesis.

As previously shown in the literature, order batching is NP-hard and challenging to solve for large instances using exact methods [9]. This challenge is more amplified when multiple objectives are considered. This study proposes a mathematical tri-objective model along with three evolutionary algorithms, namely, Non-dominated Sorting GA-II (NSGAII) [10], strength Pareto evolutionary algorithm (SPEA2) [11], and Non-dominated Sorting GA-III (NSGAIII) [12], to tackle the problem. The primary motivation for using three evolutionary metaheuristics comes from some earlier evidence in the literature where evolutionary methods have yielded promising results for multi-objective order picking problems [13,14]. Thus, this study will delve deeper into assessing evolutionary algorithms’ applications in such problems as a side objective. There are numerous well-known approaches within the realm of multi-objective evolutionary methods, each utilizing a different strategy. While being far from being an exhaustive list of algorithms, NSGAII (with a non-dominated sorting strategy), NSGAIII (with a reference-point-based procedure), and SPEA2 (with a density estimation technique) represent three important approaches in multi-objective metaheuristics. Thus, evaluating these methods can potentially guide future direction on using multi-objective techniques in order picking. In this study, the company’s order batching method is utilized to seed the proposed metaheuristics and significantly improve the results. The proposed methods’ solutions are compared against the current practices of the studied company to draw managerial insights. This study contributes to the current body of the literature by considering a picking overlap objective whose utilization can mitigate the risk of infectious disease spread, such as the one caused by COVID-19. Additionally, this study’s methods can be applied to order picking operations during flu seasons to avoid downtime in the warehouses due to personnel sickness.

The remainder of this paper is structured as follows. In Section 2, related literature is reviewed. In Section 3, the structure of the problem is explained. Section 4 outlines the proposed optimization model. In Section 5, the order batching method of the case study’s company and the proposed metaheuristics are introduced. Section 6 is dedicated to the numerical experiments. Section 7 discusses the managerial implications of the findings, and finally in Section 8 overall conclusion is stated.

2. Literature review

The presented study’s central contribution revolves around mitigating the risk of contracting infectious diseases in warehouses by reevaluating the order picking problems and incorporating a picking overlap objective. The rationale behind the picking overlap objective is that being positioned reasonably apart while picking, abates the chance of infection spread. However, the extent of order picking performance deterioration, if any, in the presence of physical distancing is not fully investigated in the literature. Furthermore, to the best of authors’ knowledge, picking overlap has not been recognized as an independent objective previously. This section examines the existing order picking literature that is most relevant to the subject of this study.

Structurally, and from an operational standpoint, order picking problems are composed of four sub-problems of order batching, batch assignment, batch sequencing, and picker routing [15–17], among which order batching and picker routing are the subjects of this study. Order batching is primarily revolving around grouping a set of customer orders in such a manner to achieve a set of operational objectives such as total travel time or tardiness minimization [18–20]. Typically, batching alone is not sufficient to accomplish the objectives, and typically is accompanied by a routing decision. The literature offers some evidence of performance independence between batching and routing sub-problems in particular cases [21]. However, an advantageous bilateral effect between these two sub-problems has been observed in several instances [8,15,22,23].

In the picker routing problem, the objective is to form the shortest possible path for picking the batches. Warehouse routing problems are usually modeled as a special case of the traveling salesman problem (TSP), known as Steiner TSP, where each visiting node has a maximum degree of four [17]. Since it was shown that Steiner TSPs encountered in rectangular warehouses with two cross-aisles are solvable in polynomial time [24], several solvable cases of warehouse TSPs have been introduced, and efficient methodologies are developed for more general warehouse architectures [25–27]. A major disadvantage of exact routing
methods is the complexity of their produced paths for pickers to follow [8]. Thus, warehouses prefer to employ heuristic methods that generate paths with predictable patterns. The most widely used routing policies in the warehouses are S-shape, midpoint, return, and largest gap [28]. Besides exact and heuristic approaches, some studies have utilized metaheuristic methods for routing [16,29–31].

When integrated, order batching and picker routing can result in significant efficiency gains [15]. However, the integrated problem poses computational challenges. To this end, exact and scalable (both exact and heuristic) methods of order batching and picker routing are extensively studied [67,68]. To tame the complexity of the integrated problem, and replicate a more realistic scenario, some studies have concentrated on exact batching solutions in the presence of heuristic routing policies [7,9,51,61]. On the other hand, some studies have exclusively applied heuristics and metaheuristics [29,30,46,47,57,62,68], or a different combination of exact and heuristic approaches [17].

From a methodological point of view, the literature on multi-objective order picking problems is limited [68], and few studies tackle two objectives [13,14,35,70–74]. To the best of the authors’ knowledge, with the exception of NSGAII [13,14], SPEA2 and NSGAI1I1 have not been applied to multi-objective manual order picking problems before. Moreover, as discussed earlier, these three methods represent three notable approaches (i.e., non-dominated sorting, reference points, and density estimation) in the multi-objective evolutionary algorithms. Thus, their application in the context of the proposed tri-objective model and the results of numerical experiments can offer an initial investigation of utilizing these multi-objective methods in the manual order picking literature.

One distinctive feature of order picking problems is their choice of the objective function. Three objectives of total travel time, tardiness, and makespan are the most frequently utilized objectives in the literature, among which total travel time and makespan are the most and least regularly considered objectives [17]. While at least one of these objectives seem to fulfill the requirements of any warehouse, the recent supply chain disruptions pertaining to coronavirus outbreak (COVID-19/SARS-CoV-2) pandemic points to a possible gap in the order picking operational objectives. In a practical context, it is essential to protect the pickers from infectious diseases by assigning them picking tours that have less overlap and are more compliant with physical distancing recommendations. This study addresses the existing literature gap by introducing an overlap objective that acts as a measure of physical distancing practices in conjunction with total travel time and makespan objectives. This research intends to shed light on the performance implications of the overlap objective in a real setting by utilizing efficient metaheuristic designs.

There is a vast literature on order batching and picker routing, and this study does not intend to examine the existing body of research fully. Thus an interested reader is referred to [8,75,76], and Table 1 in which some of the most notable order batching and picker routing studies, sub-problems they have considered, methods applied, and the objectives utilized are summarized.

3. Problem statement

This study’s warehouse is modeled after a real warehouse belonging to a well-known logistics company in the USA. The warehouse operates in a wave picking setting where the profile of the next wave is known beforehand. Waves are ordinarily large, and each day is dedicated to picking a single wave. Warehouse’s shape is rectangular with multiple parallel aisles, and two front and rear cross aisles. The walking speed of pickers is assumed constant, and the crossing time between two sides of an aisle is negligible. Each shelf can hold multiple products, and each product is located on only one shelf. There are N orders, each consisting of multiple products, to be picked. The warehouse stocks M different products, and there are a sufficient number of pickers to pick the orders. Picking commences with batching the orders and retrieving their products using S-shape routing policy starting from origin v0. Each picker is assigned a single batch, and there are a sufficient number of pickers to manage all batches. All tours begin simultaneously and at time 0. Orders cannot split among multiple picking tours, and orders assigned to a batch must not exceed pickers’ capacity Q. Following physical distancing practices, pickers are preferred to be positioned less than Δ (i.e., minimum social distance) units of a length away while in picking position. Thus, physical distancing considerations are only applied to stationary pickers. Products’ dimensions are reasonably similar (i.e., there is no unusually large/small product), and instead of total volume, the capacity is determined as the number of items that a picker can handle. All products are located within reach of the pickers, and therefore, vertical distance is insignificant. Picking time at a location comprises the duration of searching, picking, and checking, and is estimated based on the number of units picked at the location. Fig. 1 depicts the order of operations in OPPD, in which initially a list of orders, each containing multiple items, is received and compiled. Next, the orders are grouped into batches. Finally, each batch is picked by traversing a route through the warehouse and by a picker. As presented in Fig. 1, routing depends on batching decisions, and these two create an intertwined problem.

While the presented study is primarily designed based on the logistics’ company warehouse, it can be extended to other manual order picking environments as well. This extension is mainly viable due to the structure of the overlap objective function, which is based on the time pickers operate in proximity to each other. Almost in every manual order picking system, the pickers are bound to work close to each other occasionally and, thus, are prone to the risk of infection spread. Considering the pick overlap as an assessable picking performance that estimates the time pickers are closer than a minimum physical distance, it can be universally applied to different settings in the manual order picking literature.

4. Model

In order picking, warehouse graph representation is a central modeling component. Depending on the routing policy, it is possible to exploit the warehouse graph for obtaining optimum routing. For example, if an exact routing policy is of interest, it suffices to consider the picking locations solely, and the distance between two picking nodes will be the shortest distance between the nodes. In this manner, the warehouse graph will be reduced to a considerably smaller graph that is more convenient to be manipulated by exact methods [24]. Furthermore, warehouse graphs lend them to efficient valid inequalities that are demonstrated to be highly effective for modeling order picking problems [61]. When using heuristic routing policies, it is not necessary to solve for the sequence of the picking nodes, and thus, a model does not need to obtain the nodes’ enter and exit times and hence, a less complicated model [7].

When modeling OPPD with an S-shape routing policy, the traversed distance between two nodes is not necessarily the shortest. Thus, the problem’s graph cannot be treated as in the exact methods. On the other hand, the entrance and the exit times of each picking location need to be accurately determined in the model to calculate the picking overlap. Therefore, the benefits of sequence-less models cannot be utilized. This structure of OPPD
formulation poses a unique challenge: determining the entry times of each picking node while traversing a path that is not necessarily the shortest. To resolve this issue, it is necessary to ascertain the entry times of all intermediary nodes where no picking takes place. This necessity itself poses a new challenge.

If the entry times of each node (intermediary and picking) are to be determined, then the typical sub-tour elimination constraints cannot be applied because some nodes are visited more than once. Fig. 2 depicts an S-shape picking tour where some nodes are visited twice. Typical sub-tour elimination constraints cannot
handle the situations where a location is visited more than once. Thus, the Steiner graph of a warehouse is inadequate for modeling OPPD.

To overcome the problem of multiple location visits and implement sub-tour elimination constraints, multiple connected replications of the Steiner graph, henceforth referred to as extended Steiner graph (or extended graph in short), must be utilized. In the example of Fig. 2, an extended graph where sub-tour elimination constraints are fulfilled can be obtained by connecting two replicas of a Steiner graph. In this regard, each node in the original Steiner graph is associated with two nodes (replicas) in the extended graph. The distance between the replicas of a node in the extended graph is assumed to be 0, to preserve the length of a tour. The new higher dimensional, extended graph can be used to create a tour where each node is visited at most once, and sub-tour elimination constraints can be implemented. Fig. 3 illustrates how to utilize an extended Steiner graph to transform the tour of Fig. 2 with two replicas r_1 and r_2 for each node and visit each location at most once. In Fig. 3, instead of backtracking the tour, and for avoiding a location revisitation, the tour stretches to another replica of the Steiner graph in the extended graph. Since this lateral transition has no time associated with it, it does not alter the primary duration of the tour.

Considering the extended Steiner graph representation introduced earlier, the warehouse of this study can be modeled as a graph $G = (V, E)$, where V and E are the sets of nodes, and edges of the graph. Each node $v \in V$ has R replicas, corresponding to R Steiner graphs. Storage node of the jth product is denoted by $l(j)$. In other words, l acts as a function whose input is a product and outputs a storage node in the Steiner graph (i.e., $l : M \rightarrow V$). Function $a : M \rightarrow K$ associates the location of each product
Characteristic function and between two nodes model are defined as follows:

\[\delta_{ij} = \begin{cases} 1 & \text{if order } i \text{ is assigned to batch } b, \\ 0 & \text{otherwise} \end{cases} \]

\[\phi_{ij} = \begin{cases} 1 & \text{if } \delta_{ij} = 1 \text{ and } b \text{ is visited for the } r_{ij} \text{th time right after node } v_1 \text{ is visited for the } r_{ij} \text{th time,} \\ 0 & \text{otherwise} \end{cases} \]

\[u_{ik} = \begin{cases} 1 & \text{if aisle } k \text{ is visited in batch } b, \\ 0 & \text{otherwise} \end{cases} \]

\[p_{bk} = \begin{cases} 1 & \text{if aisle } k \text{ is the rightmost aisle visited in batch } b, \\ 0 & \text{otherwise} \end{cases} \]

\[\tau_{b,v} = \text{picking time spent on node } v \text{ in batch } b \]

\[t_{b,v}^{\text{er}} = \text{time of entering node } v \text{ for the } r_{b,v} \text{th time in batch } b \]

\[t_{b,v}^{\text{e}} = \text{time of exiting node } v \text{ for the } r_{b,v} \text{th time in batch } b \]

\[C_{\text{max}} = \text{makespan} \]

\[a_{ij}^{b1,b2} = \text{earliest time of exiting node } v_1 \text{ in batch } b_1 \text{ or node } v_2 \text{ in batch } b_2 \]

\[p_{ij}^{b1,b2} = \text{latest time of entering node } v_1 \text{ in batch } b_1 \text{ or node } v_2 \text{ in batch } b_2 \]

\[\phi_{ij}^{b1,b2} = \text{picking time overlap between node } v_1 \text{ in batch } b_1 \text{ and node } v_2 \text{ in batch } b_2 \]

The proposed model \(P \) is formulated as follows:

\[\min \ F = \sum_{b \in B} f_b \] (1)

\[\min C_{\text{max}} \] (2)

\[\min \Phi = \sum_{b_1 \in B} \sum_{b_2 \in B} \sum_{v_1 \in V} \sum_{v_2 \in V} \phi_{ij}^{b1,b2} \] (3)

subject to Eqs. (4)–(35) which are given in Box I.

In model \(P \), (1) to (3) measure the total travel time, makespan and the total overlap, respectively. Constraint (4) assigns each order to exactly one batch and in order to break solution symmetries, it assigns order \(i \) to batch \(b_1 \), order \(i_2 \) to either batch \(b_1 \) or batch \(b_2 \), and so forth [61]. Batch capacity is imposed in Constraint (5). Constraint (6) ensures that picking activities take place when the first replica of a picking node is visited. Constraint (7) limits the number of nodal visits to one. Constraint (8) makes the caps the number of visiting origin node to one. Constraint (9) equates the number of entries and exits for all node replicas. Constraints (10) and (11) guarantee that there is no reversal and double traversal on the back aisle’s edges. Constraints (12) allows a movement reversal only on the rightmost aisle of each batch. Constraints (13) to (18) determine the visiting and rightmost aisles of each batch. Constraint (19) calculates the picking time on each node. Constraints (20) to (22) specifies the entry and exit time of each node and eliminates the sub-tours. Constraint (23) measures the finishing time of each batch. Constraint (24) determines the makespan, and constraints (25)–(27) determine the overlap among nodes across different batches. Finally, constraints (28) to (31) specify the type and domain of each decision variable. As can be observed, constraints (25) to (27) in model \(P \) are non-linear. However, linearizing these constraints are quite straightforward and commercial solvers such as Gurobi automatically handle them.

5. Methodology

In this section, the company’s order batching method is described. Moreover, the application of three metaheuristics, namely, NSGAI, SPEA2, and NSGAIII, in solving the proposed model, \(P \), is explained. The proposed metaheuristics use the company’s order batching schema as a seeding procedure for initializing the evolution process. As will be illustrated later, using this seeding procedure improves the results significantly. Finally, a full factorial experiment is conducted to determine the best set of parameters for each metaheuristic.
\[
\begin{align*}
\sum_{b \in \mathcal{B}(b \in \mathcal{D}_G)} x_{bi} &= 1 \\
\sum_{i \in \mathcal{N}, j \in \mathcal{M}} x_{0ij} &\leq Q \\
\sum_{r \in \mathcal{R}, (r_1, u_j) \in \mathcal{E}} y_{r_{1}, j}^1 &\geq x_0\bar{q}_j \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}, (r_1, r_2) \in \mathcal{E}} y_{r_{1}, r_{2}}^{br_{0}} &\leq 1 \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}, (r_1, r_2) \in \mathcal{E}} y_{r_{1}, r_{2}}^{br_{1}} &\leq 1 \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}, (r_1, r_2) \in \mathcal{E}} y_{r_{1}, r_{2}}^{br_{2}} - \sum_{r_1 \in \mathcal{R}, r_3 \in \mathcal{R}, (r_1, r_3) \in \mathcal{E}} y_{r_{1}, r_{3}}^{br_{2}} - \sum_{r_2 \in \mathcal{R}, r_3 \in \mathcal{R}, (r_2, r_3) \in \mathcal{E}} y_{r_{2}, r_{3}}^{br_{2}} &= 0 \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}, (r_1, r_2) \in \mathcal{E}} y_{r_{1}, r_{2}}^{br_{2}} &= 0 \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}, (r_1, r_2) \in \mathcal{E}} y_{r_{1}, r_{2}}^{br_{1}} &\leq 1 \\
\sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}} y_{r_{1}, r_{2}}^{br_{2}} + \sum_{r_1 \in \mathcal{R}, r_2 \in \mathcal{R}} y_{r_{2}, r_{1}}^{br_{2}} &\leq 1 + p_{b,a(v_1)} y_{r_{1}, r_{2}}^{br_{2}} \leq u_{b,a(v_1)} \\
\sum_{i \in \mathcal{N}, j \in \mathcal{M}} x_{0ij} &\leq u_{b,k} \\
u_{bk} &= \sum_{k' \in \{k'' \in \mathcal{K} : k'' \geq k + 1\}} u_{bk'} \leq p_{bk} \\
p_{bk} &\leq u_{bk} \\
\sum_{k \in \mathcal{K}} p_{bk} &= 1 \\
\sum_{i \in \mathcal{N}, j \in \mathcal{M}} \tau_{0ij} &\in \tau_{0u} \\
t_{b_{1}r_{1}}^{-1} + \tau_{r_{1}u} = t_{b_{1}r_{1}}^{-1} \\
t_{b_{2}r_{2}v_{2}}^{-1} = t_{b_{2}r_{2}v_{2}}^{-1} \\
t_{b_{1}r_{1}v_{1}}^{-1} + d_{r_{2}v_{2}} - \Lambda(1 - y_{r_{1}, r_{2}}^{br_{2}}) &\leq t_{b_{2}r_{2}}^{-1} \\
t_{b_{2}r_{2}v_{2}}^{-1} &\leq f_s \\
C_{\text{max}} &\geq f_s \\
\min(t_{r_{1}v_{1}}, t_{r_{2}v_{2}}) &= \alpha_{v_{1}v_{2}} \\
\max(t_{b_{1}r_{1}}, t_{b_{2}r_{2}}) &= \rho_{b_{1}b_{2}} \\
\max(\phi_{v_{1}v_{2}}, \rho_{b_{1}b_{2}}) &= \delta_{v_{1}v_{2}} \\
x_{0} &\in \{0, 1\} \\
y_{r_{1}, r_{2}}^{br_{2}} &\in \{0, 1\} \\
u_{bk}, p_{bk} &\in \{0, 1\} \\
t_{b_{0}} &\in \mathbb{R}_{\geq 0} \\
t_{b_{0}}^{-1} = t_{b_{0}}^{-1} &\in \mathbb{R}_{\geq 0}
\end{align*}
\]
5.1. Company’s order batching heuristic and seeding

The company’s order batching heuristic forms a single batch at each step. For this purpose, it starts with determining the most visited aisle by all unassigned orders. Then, it proceeds with selecting the orders that require a minimum extra distance to be traversed if selected into the batch. Selecting new orders is controlled through a penalty parameter that is updated every time a new order is added to the batch. The structure of this heuristic is designed with S-shape routing policy in mind. Parameters and variables used by the company’s order batching heuristic are as follows:

\[
\begin{align*}
i & \in \mathcal{N} = \{1, 2, \ldots, N\} & & : \text{orders} \\
K & \in \mathcal{K} = \{1, 2, \ldots, K\} & & : \text{aisles} \\
L & & : \text{aisle length} \\
H & & : \text{distance between the center of two neighbor aisles} \\
n & & : \text{number of bays per aisle} \\
N^N & & : \text{set of unassigned orders in the order pool} \\
i' & & : \text{a pseudo order for generating a batch} \\
v_{ik} & & : 1 \text{ if order } i \text{ visits aisle } k; \text{ otherwise 0} \\
v'_k & & : 1 \text{ if a batch visits aisle } k; \text{ otherwise 0} \\
\psi_{k} & & : \text{index for the most visited aisle by all unassigned orders} \\
\psi_{k} = (\psi_{1}, \psi_{2}, \ldots, \psi_{K}) & & : \text{Calibration vector where } \psi_{k} \text{ is the penalty for visiting aisle } k \text{ by a new order} \\
\phi_{\text{best}} & & : \text{order with least penalty} \\
s_{i} & & : \text{total penalty of order } i \\
k_{\text{left}} & & : \text{index of the most left aisle that a batch visits} \\
k_{\text{right}} & & : \text{index of the most right aisle that a batch visits}
\end{align*}
\]

Algorithm 1 outlines the company’s order batching steps. Batches formed by Algorithm 1 create a solution that will be used as a seed in the proposed metaheuristics. As will be discussed later, this type of seeding has a significant positive performance effect on all proposed metaheuristics.

5.2. NSGAII, SPEA2 and NSGAIII

The core components of evolutionary algorithms are its solution representation (i.e., chromosome), fitness function, and crossover, mutation, and selection operators. [77,78] In this section, elements of the proposed NSGAII, SPEA2, and NSGAIII are introduced.

5.2.1. Solution representation and fitness function

A widely-used approach to define a chromosome is by utilizing a binary matrix whose arrays show the assignment of orders to batches. However, matrix representation has two main drawbacks. First, since each order is assigned to precisely one batch, the assignment matrix will be a sizeable sparse matrix and

\[
\begin{align*}
\alpha_{b_1 b_2}, \beta_{v_1 v_2}, \varphi_{v_1 v_2} & \in \mathbb{R}_{\geq 0} \\
f_b & \in \mathbb{R}_{\geq 0} \\
C_{\max} & \in \mathbb{R}_{\geq 0}
\end{align*}
\]

\[
\forall b_1, b_2 \in B, b_1 \neq b_2; v_1, v_2 \in \mathcal{V}
\]

\[
\forall b \in B
\]

inefficient in terms of memory consumption. Second, assignment matrices can introduce symmetry and, subsequently, degenerate solutions. For example, the batches assigned to two pickers can be exchanged without altering the objective function’s value. Having degenerate solutions can create numerous optimal regions in the search space and delay the convergence of algorithms. This study utilizes a vector structure for chromosomes to evade these impediments. For this purpose, the set of chromosomes is defined as \(\Omega = \{ \Omega = (\omega_1, \omega_2, \ldots, \omega_N) : \omega_i \in \mathcal{V}, \forall i \in \mathcal{N} \} \) where \(B_i = \{ b : b \in B, b \leq i \} \). Each component of chromosome \(\Omega \) corresponds to an order \(i \in \mathcal{N} \) while its value is a batch number \(b \in B_i \). Thus, the first order \(i_1 \) can only be assigned to the batch \(B_1 \) while the last order \(i_N \) can be assigned to any of the batches. For this representation to function properly, it is necessary to have an equal number of batches and orders, i.e., \(B = N \). Moreover, this equality is necessary to satisfy the capacity constraint in case each order occupies a single batch. Fig. 4 illustrates a chromosome consisting of seven orders and the batches to which each order belongs. Additionally, Fig. 4 depicts the batch choices that each chromosome element, associated with an order, can have. While forming the initial population, each chromosome is generated in

\[
\begin{align*}
\Delta_{i} & = \{ \omega_1, \omega_2, \ldots, \omega_{i-1} \} \\
\Delta_{i} & = \{ \omega_{i+1}, \omega_{i+2}, \ldots, \omega_N \}
\end{align*}
\]

\[
\begin{align*}
Q & \in \mathbb{R}_{>0} \\
\Delta & \in \mathbb{R}_{>0} \\
F & \in \mathbb{R}_{>0} \\
C_{\max} & \in \mathbb{R}_{>0} \\
\Phi & \in \mathbb{R}_{>0} \\
CPU & \in \mathbb{R}_{>0}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccccc}
N & Q & \Delta & F & C_{\max} & \Phi & CPU (s) \\
10 & 50 & 0 & 1310 & 780 & 0 & 0.10 \\
10 & 50 & 10 & 1310 & 780 & 20 & 0.09 \\
10 & 50 & 30 & 1310 & 780 & 200 & 0.10 \\
10 & 100 & 0 & 1080 & 1080 & 0 & 0.09 \\
10 & 100 & 10 & 1080 & 1080 & 0 & 0.09 \\
10 & 100 & 30 & 1080 & 1080 & 0 & 0.10 \\
25 & 50 & 0 & 2370 & 820 & 0 & 0.21 \\
25 & 50 & 10 & 2370 & 820 & 420 & 0.21 \\
25 & 50 & 30 & 2370 & 820 & 500 & 0.21 \\
25 & 100 & 0 & 2100 & 1280 & 0 & 0.21 \\
25 & 100 & 10 & 2100 & 1280 & 0 & 0.21 \\
25 & 100 & 30 & 2100 & 1280 & 20 & 0.21 \\
50 & 50 & 0 & 6190 & 860 & 0 & 0.43 \\
50 & 50 & 10 & 6190 & 860 & 3330 & 0.41 \\
50 & 50 & 30 & 6190 & 860 & 7270 & 0.41 \\
50 & 100 & 0 & 4960 & 1350 & 0 & 0.41 \\
50 & 100 & 10 & 4960 & 1350 & 2760 & 0.40 \\
50 & 100 & 30 & 4960 & 1350 & 6000 & 0.41 \\
100 & 50 & 0 & 9950 & 1360 & 0 & 0.83 \\
100 & 50 & 10 & 9950 & 1360 & 13390 & 0.82 \\
100 & 50 & 30 & 9950 & 1360 & 22670 & 0.83 \\
100 & 100 & 0 & 9950 & 1360 & 0 & 0.83 \\
100 & 100 & 10 & 9950 & 1360 & 8880 & 0.85 \\
100 & 100 & 30 & 9950 & 1360 & 13390 & 0.82 \\
200 & 50 & 0 & 13460 & 850 & 0 & 1.64 \\
200 & 50 & 10 & 13460 & 850 & 17360 & 1.63 \\
200 & 50 & 30 & 13460 & 850 & 29590 & 1.62 \\
200 & 100 & 0 & 11660 & 1350 & 0 & 1.62 \\
200 & 100 & 10 & 11660 & 1350 & 7510 & 1.62 \\
200 & 100 & 30 & 11660 & 1350 & 12780 & 1.63 \\
500 & 50 & 0 & 36430 & 860 & 0 & 4.56 \\
500 & 50 & 10 & 36430 & 860 & 137960 & 4.58 \\
500 & 50 & 30 & 36430 & 860 & 250140 & 4.58 \\
500 & 100 & 0 & 31250 & 1370 & 0 & 4.54 \\
500 & 100 & 10 & 31250 & 1370 & 64270 & 4.57 \\
500 & 100 & 30 & 31250 & 1370 & 120190 & 4.55
\end{array}
\end{align*}
\]
such a way to ensure feasibility. Each chromosome’s fitness value is computed by measuring its total travel time, makespan, and total overlap using the S-shape routing policy. Remember that in this study, it is assumed that there are a sufficient number of pickers to pick the batches, and each batch is assigned to a separate picker.

5.2.2. Crossover, mutation, and selection

In this study, a standard two-point crossover is utilized. It is noteworthy that the two-point crossover does not violate the structure of a chromosome. Thus, after crossover, for each chromosome component \(c_{ij} \) we have \(c_{ij} \in B_i \) where \(B_i = \{b: b \in B, b \leq i\} \). In other words, each order is assigned to a batch

Table 4

Problem	N	Q	\(\Delta \)	\(F \)	\(C_{\text{max}} \)	\(\Phi \)	CPU (s)	\(F \)	\(C_{\text{max}} \)	\(\Phi \)	CPU (s)	\(F \)	\(C_{\text{max}} \)	\(\Phi \)	CPU (s)
Gurobi	10	50	0	1230	530	0	3600	1230	530	0	3600	1230	530	0	3600
NSGAII	10	50	0	1230	530	0	3600	1230	530	0	3600	1230	530	0	3600
SPEA2	10	50	0	1230	530	0	3600	1230	530	0	3600	1230	530	0	3600
NSGAIII	10	50	0	1230	530	0	3600	1230	530	0	3600	1230	530	0	3600

Fig. 5. Standardized effect of parameters on Hypervolume and CPU time for NSGAII with \(N = 50, Q = 50, \) and \(\Delta = 30 \).
Fig. 6. Company’s current practices vs. the Pareto frontier obtained by NSGAII for six problem instances.

(a) $N = 50, Q = 50, \Delta = 30$
(b) $N = 50, Q = 100, \Delta = 30$
(c) $N = 50, Q = 150, \Delta = 30$
(d) $N = 200, Q = 50, \Delta = 30$
(e) $N = 200, Q = 100, \Delta = 30$
(f) $N = 200, Q = 150, \Delta = 30$

Fig. 7. Log HV convergence plot of NSGAII, SPEA2, and NSGAIII with seeded and not seeded initialization (instance $N = 100, Q = 50, \Delta = 30$).

(a) NSGAII (b) SPEA2 (c) NSGAIII
whose index is less than the order index to break the solutions’ symmetry. To ensure feasibility and in the case of generating infeasible offspring, crossover operation is repeated up to five times. If no feasible offspring is generated after the fifth time, the crossover operation is aborted.

To perform a mutation, a chromosome’s component ω_i is randomly chosen, and its value is changed to a random value $\omega_i' \in B_i$. In case the mutant is infeasible, it is discarded, and a new mutant is generated. Similar to the crossover, this process is repeated up to a maximum of five times to find a feasible mutant, and if no feasible solution is generated after the fifth time, mutation operation is aborted. A distinctive feature of NSGAI, SPEA2, and NSGAIII is their selection process. In this study, the works of [10–12] are closely followed for implementing the selection operator.

5.3. Parameter tuning

Parameters of the metaheuristics have a determining impact on their performance. In this study, a full factorial method was utilized for tuning the parameters of the metaheuristics. Tuning parameters of the NSGAII, SPEA2, and NSGAIII include the probability of crossover p_c, probability of mutation p_m, probability of altering gene during mutation p_a, number of selected individuals for the next generation μ, and number of offsprings at each generation λ. Since a higher number of generations positively impacts the results, it was omitted from the tuning process and was set to 200 for all experiments. For each parameter, three levels were considered, as shown in Table 2, and all experiments were conducted on a test problem with $N = 50$, $Q = 50$, and $\Delta = 30$. Two response factors of Pareto frontier Hypervolume and CPU time were investigated.

The factorial experiments found no significant relationship between the parameters and their interaction with the performance of the algorithms in terms of Hypervolume. However, a significant relationship was observed when the CPU time was considered as the response variable. Fig. 5 depicts the standardized effect of parameters on Hypervolume and CPU time for NSGAII. As can be observed, none of the parameters’ standardized effect reaches the threshold to be considered significant for the Hypervolume. However, three parameters and their interaction were determined significant when considered with the CPU time. Since no performance difference was detected, the parameters were set to minimize the CPU time ($\mu + \lambda = 50 + 150$, $p_c = 0.6$, $p_m = 0.05$, and $p_a = 0.25$).

6. Numerical experiments

This section presents the results of applying NSGAII, SPEA2, and NSGAIII to a set of problems sampled from the order level data of the studied logistics company, and compares them against the company’s current practices. On average, each order contains 4.32 units of products. In the less frequent instances of orders containing unusually large numbers (i.e., larger than capacity), they are modified to fit the batches’ capacity. This modification was deemed essential to investigate the effect of batch size on the solutions. Number of orders in each problem is selected from [10, 25, 50, 100, 200, 500]. Capacity Q and minimum physical distance Δ are chosen from [50, 100] and [25, 100, 300], respectively. The maximum allowed CPU time for all instances is set to 3600 s. The warehouse structure used for numerical experiments
closely follows one of the company’s warehouses (i.e., rectangular with parallel aisles and two cross-aisles). However, the dimensions, number of aisles, and pick faces are modified to replicate a more controlled experiment environment. Note that this modification does not overtake the overall performance of the proposed algorithms or the conclusions drawn from results. Each problem is attempted five times, and the results detailed are based on the overall performance of each algorithm over the total number of trials for each problem. All algorithms are implemented in Python 3.7 and executed on a 64-bit Windows operating system with an Intel Core i9-7940X CPU and 64 GB RAM.

6.1. Company’s method

Table 3 lists the total time T, makespan C_{max}, and overlap φ obtained from applying the company’s method to the problems. As will be shown later, these results are highly efficient in terms of total travel time. However, the solutions it suggests are not efficient in terms of overlap as they are designed with a single total travel time objective in mind. As will be discussed in the remainder of this section, it is possible to maintain or minimally deteriorate the same level of total time efficiency while improving the overlap considerably. However, the same statement is not necessarily applicable to the makespan due to its negative correlation with both overlap and total travel time.

6.2. Proposed methods

Table 4 lists the best objective values and CPU times obtained by Gurobi, NSGAII, SPEA2, and NSGAIII. As can be observed, even for small instances with 25 orders, Gurobi is unable to find any feasible solution in the allotted one hour. Compared to the company’s method in Table 3, all proposed metaheuristics of Table 4 find superior or equal solutions for all instances of the problem. This higher quality is especially notable for makespan and overlap.

The results of Table 4 demonstrate the extent to which each metaheuristic has been able to improve the solutions. However, it does not reveal any information on the relative performance of the methods. A multi-objective algorithm can be examined on several fronts. Some of the deciding performance measures of a multi-objective method are the number, quality, and diversity of the solutions it finds. The following metrics are utilized to compare the performance of the proposed multi-objective algorithms from various aspects [14,79,80]:

- **Number of Pareto Solutions (NPS):** counts the number of non-dominated solutions found.
- **Mean Ideal Distance (MID):** is the average Euclidean distance between Pareto frontier solutions and the ideal point $(0,0)$, and is measured as:

$$\text{MID} = \frac{\sum_{i=1}^{n} c_i}{n}$$ \hspace{1cm} (36)

where $c_i = \sqrt{f_{i1}^2 + f_{i2}^2 + f_{i3}^2}$ and f_{i1}, f_{i2}, and f_{i3} are the value of the objective functions for the ith non-dominated solution.
- **Spread of Non-dominated Solutions (SNS):** assesses the diversity of the non-dominated solutions and is defined as:

$$\text{SNS} = \sqrt{\frac{\sum_{i=1}^{n} (\text{MID} - c_i)^2}{n - 1}}$$ \hspace{1cm} (37)
• Rate of Achievement Simultaneously to two objectives (RAS): measures the quality of the non-dominated solutions in relation with the minimum objective function, and is computed as:

$$RAS = \frac{\sum_{i=1}^{n} \left(\frac{(f_1 - F_i)}{F_i} + \frac{(f_2 - F_i)}{F_i} + \frac{(f_3 - F_i)}{F_i} \right)}{n}$$

(38)

where $F_i = \min\{f_1, f_2, f_3\}$.

• Hypervolume (HV): represents both quality and diversity of a set of solutions on a Pareto frontier (P) by calculating the hypervolume of the Pareto front in regards with a reference point, and is computed as follows:

$$HV(P) = \bigcup_{i=1}^{n} A(x_i) \mid \forall x_i \in P$$

(39)

where x_i is a solution in P, and $A(x_i)$ is the rectangular area confined between the points x_i and a reference point.

Table 5 shows the logarithm of hypervolume and CPU times of Gurobi, NSGAII, SPEA2, and NSGAIII. Log hypervolume conveys the same information as hypervolume. However, due to the large size of hypervolume numbers, log hypervolume is used in Table 5. A non-parametric Kruskal–Wallis test on the hypervolume ranks of averages was conducted to compare the results of Gurobi, NSGAII, SPEA2, and NSGAIII. At a 0.95 significance level, it was found that there is no statistically meaningful difference in terms of log HV among the metaheuristics. Due to its small sample size, Gurobi was not involved in the test. However, a general assessment of the Gurobi’s log HV results illustrates an inferior performance compared to the other proposed methods. A similar Kruskal–Wallis test was performed to compare the CPU times.
and a significant difference was observed. Subsequently, a Mann–Whitney pairwise test with significance level 0.01 was conducted to find the method with the lowest CPU time, and NSGAII was determined as the fastest approach.

Table 6 tabulates the average NPS, MID, SNS, and RAS values obtained by Gurobi, NSGAII, SPEA2, and NSGAIII rounded to the nearest integer. Similar to the log HV value in Table 5, the performance of the proposed metaheuristics was evaluated using a non-parametric Kruskal–Wallis test, and it was found there is no statistically significant difference between the algorithms. Thus, the only differentiating parameter among the algorithms is their CPU time in which NSGAII outperforms the other algorithms. While there might be several reasons as to why a method such as NSGAIII that is designed for a larger number of objectives cannot outperform NSGAII and SPEA2, one possible explanation may lie in the seeding procedure of algorithms. As was discussed earlier, the seeding process provides high-quality solutions in terms of total travel time. Thus, the algorithms find it easier to explore the feasible space for solutions with lower makespan and overlap at the start. In other words, the evolutionary force of the algorithms is mostly concentrated on the makespan and overlap, and a smaller feasible space needs to be examined. In a smaller search space, the algorithms’ performance can converge easier, and hence, equal solution quality.
Table A.7
Best no-overlap objective values obtained by Gurobi, company’s batching algorithm, NSGAI, SPEA2, and NSGAI using S-shape routing policy.

Problem	Gurobi	Company	NSGAI	SPEA2	NSGAI					
N	Q	Δ	F	cmax	F	cmax	F	cmax	F	cmax
10 50 0	1230 530	1310 780	1230 530	1230 530	1230 530					
10 50 10	1230 530	1320 790	1230 530	1230 530	1230 530					
10 50 30	1250 535	1395 780	1250 535	1230 535	1250 535					
10 100 0	1080 1080	1080 1080	1080 1080	1080 1080	1080 1080					
10 100 10	1080 1080	1080 1080	1080 1080	1080 1080	1080 1080					
10 100 30	1080 1080	1080 1080	1080 1080	1080 1080	1080 1080					
25 50 0	NA	2370	820	2370	820					
25 50 10	NA	2630	990	2575	855					
25 50 30	NA	2880	1130	2620	855					
25 100 0	NA	2100	1280	2100	820					
25 100 10	NA	2100	1280	2100	820					
25 100 30	NA	2135	1285	2135	855					
30 50 0	NA	6190	860	6100	700					
30 50 10	NA	9335	1340	7800	1010					
30 50 30	NA	14260	2240	11920	1850					
50 100 0	NA	4960	1350	4920	700					
50 100 10	NA	7750	2465	6015	1015					
50 100 30	NA	9505	2615	7315	1850					
100 50 0	NA	12800	1970	12100	1830					
100 50 10	NA	23790	2075	21230	1830					
100 50 30	NA	34210	3180	2825	2730					
100 100 0	NA	9950	1360	9940	1035					
100 100 10	NA	19735	1665	15375	1830					
100 100 30	NA	28850	2430	23700	2730					
200 50 0	NA	14660	820	13410	740					
200 50 10	NA	28295	6900	25430	2030					
200 50 30	NA	37065	3650	31340	2890					
200 100 0	NA	11660	1350	11660	740					
200 100 10	NA	17385	2430	17195	2025					
200 100 30	NA	22625	3455	21580	2370					
500 50 0	NA	36430	860	36430	770					
500 50 10	NA	129775	5415	129775	5415					
500 50 30	NA	211780	8530	18835	8250					
500 100 0	NA	31250	1370	31250	770					
500 100 10	NA	91160	6160	84495	5995					
500 100 30	NA	123035	8085	110560	7750					

6.3. Comparison with company’s solution

In this section, the results of the proposed metaheuristics are compared against the case study’s current practices. Fig. 6 depicts the current practices of the company against the Pareto frontier obtained by NSGAI. As can be observed, NSGAI offers a more diverse array of solutions. As was argued earlier, the company’s method is quite efficient in terms of total travel time. Further comparison of the Pareto and company’s solutions reveals two intriguing trends. First, when picking capacity is low, there are more solutions with lower overlap while maintaining travel time efficiency. As was argued earlier, the second observation pertains to the relationship between overlap and total travel time. When the picking capacity increases, total travel time and overlap’s correlation increases. Thus, low travel time solutions yield a lower overlap. This effect will be examined in more detail in the following sections.

6.4. Case of no pick overlap

In some circumstances, one may be interested in no overlap scenarios where the pickers avoid picking overlap by waiting until the other pickers have cleared the shelf. In this case, no pick overlap will translate into an increase in the total travel time, and the overlap objective will be eliminated. Appendix A presents a no pick overlap model P' along with the results of NSGAI, SPEA2, and NSGAI with no overlap considerations and S-shape routing procedure. To implement the no overlap policy, a first-in-first-out (FIFO) pick procedure is applied where the picker who has arrived at a pick location earlier starts picking first. At the same time, other pickers wait for the pick area to clear off. As can be observed from Appendix A, the proposed metaheuristics are quite competent for dealing with high overlap instances compared to the company’s current practice. In fact, when no overlap is allowed, the proposed metaheuristics tend to significantly improve the company’s solutions compared to the cases where the overlap is permitted. Notably, the minimum physical distance increases (and consequently waiting times increases), the percentage of the company’s total travel time improvement obtained by the metaheuristics also increases. This observation shows the superior performance of the proposed multi-objective methods when dealing with no-overlap instances.
Algorithm 1 Company’s order batching algorithm

1: \(N^- = N^+ \)
2: \(\forall k \in K \quad v_{y_k} = 0 \)
3: \(\forall k \in K \quad v'_y = 0 \)
4: \(\forall k \in K \quad k_{\max} = 1 \)
5: \(\gamma = \frac{N}{\Delta} \)
6: for \(k \in K \) do
7: if \(k \neq k_{\max} \) then
8: \(\Psi_{y_k}[k] = -(n + \gamma|k - k_{\max}|) \)
9: else
10: \(\Psi_{y_k}[k] = 0 \)
11: end if
12: end for
13: while batch capacity allows do
14: for \(i \in N^- \) do
15: \(s_i = 0 \)
16: for \(k \in K \) do
17: \(s_i = s_i + \Psi_{y_k}[k] \)
18: end for
19: end for
20: \(\text{best} = \text{argmin}_s s_i \)
21: \(N^- = N^- \setminus \text{best} \)
22: for \(k \in K \) do
23: if \(v_{y_{\text{best}}} = 1 \) and \(v'_y = 0 \) then
24: \(v'_y = 1 \)
25: end if
26: end for
27: determine \(k_{\text{left}} \) and \(k_{\text{right}} \)
28: for \(k \in \{1, 2, ..., k_{\text{left}}\} \) do
29: \(\Psi_{y_k}[k] = -(n + \gamma|k - k_{\text{left}}|) \)
30: end for
31: for \(k \in \{k_{\text{left}} + 1, ..., k_{\text{right}}\} \) do
32: if \(v'_y = 0 \) then
33: \(\Psi_{y_k}[k] = -n \)
34: end if
35: end for
36: for \(k \in \{k_{\text{right}} + 1, ..., K\} \) do
37: \(\Psi_{y_k}[k] = -(n + \gamma|k - k_{\text{right}}|) \)
38: end for
39: end while

(soft constraint) so that depending on the severity of the disease, the solutions can be adjusted. For example, during a less severe flu season, it may be reasonable to emphasize total picking time compared to overlap.

6.5. Effect of routing policy

Routing policy can impact the quality of solutions. Specifically, when an infection spread is of concern, one may prefer to use a routing policy that decreases the risk of spread. The model and main results of this study are derived using the S-shape policy as it is the current routing procedure of the study’s warehouse. The S-shape policy is hypothesized to have anti-congestion properties [8], and since picker congestion can act as an infection spread facilitator, it may be a suitable procedure for the infection risk mitigation. On the other hand, there is some evidence that the S-shape policy may lead to excessively long travel times, which could be the result of both long travel distances and frequent blocking and congestion [8,1]. To evaluate the S-shape policy’s effectiveness for the problem of this study, a Midpoint policy was implemented. Conducting statistical tests and comparisons between the policies revealed that the S-shape policy does not hold any advantage over the Midpoint policy in terms of overlap. In fact, the Hypervolumes comparison showed that the Midpoint policy offers a slightly better tradeoff between the objectives. Finding the best routing policy that minimizes the infection spread requires a comprehensive routing policy comparison that falls beyond the current study’s scope. The details of the Midpoint policy results are tabulated in Appendix B. Note that computational times are not reported in Appendix B as no significant difference was observed between S-shape and Midpoint policies in terms of CPU time. Moreover, since model \(P \) is formulated based on the S-shape policy, no exact approach result is reported in Appendix B.

6.6. Seeding and convergence

In this section, the effectiveness of the proposed seeding procedure is examined. Fig. 7 illustrates the convergence of NSGAII, SPEA2, and NSGAIII in terms of log hypervolume over the first 200 generations. As observed, when seeded, all algorithms significantly outperform their not seeded counterparts. The same effect is observed for different values of \(Q \) and \(\Delta \). However, the gap between the seeded and not seeded solutions seem to be more prevalent for more constrained instances of the problem (i.e., smaller \(Q \)). This effect may be attributed to the difficulty of finding high-quality feasible solutions in tightly constrained search spaces, and the fact that seeding can bypass this difficulty. Furthermore, the seeding procedure produces highly efficient solutions in terms of total travel time, which have little room for improvement. As a result, the proposed algorithms mostly concentrate on enhancing makespan and overlap. In other words, seeding with a superior solution in terms of one of the objectives, functions as if the objective is relaxed and thus, the algorithm has a more manageable feasible space to search.
In this section, the managerial implications of the model and considering overlap objective are discussed. As was illustrated earlier, picking capacity Q is a determining factor in the relationship between the total travel time and overlap. To investigate this observation further, the correlation between the three objectives was measured throughout NSGAII’s evolution process. Fig. 8 depicts the Pearson correlation ρ between total travel time F, makespan C_{max}, and overlap Φ for the best found solutions at each generation of NSGAII and for various picking capacities. As can be observed, correlations eventually converge for all instances. However, the limit to which the correlations converge is different for each picking capacity. When $Q = 50$, total travel time and overlap correlation $\rho_{F, \Phi}$ reaches a negative value. In other words, for tight picking capacities, total travel time and overlap act as conflicting objectives. However, as Q increases, the convergent correlation between total travel time and overlap increases. A positive correlation between total travel time and overlap suggests that the two objectives are cooperating, and one can be improved by improving the other one. Another intriguing observation is the correlation between makespan and the other two objectives. As Q increases, makespan’s correlation with other objectives points to a more conflicting state.

From a managerial standpoint, the aforementioned observations can be interpreted as follows. When a warehouse’s objective is to minimize the total travel time, it may benefit from increasing the picking capacity as it allows for reducing the overlap. In other words, for warehouses to minimize total travel time, increasing picking capacity helps with mitigating the risk of infection spread. This dynamic can be explained by considering that an increased picking capacity means fewer batches and fewer walking pickers to interact. Thus, increasing picking capacity contributes to lower overlap by reducing the number of pickers that are required to traverse the warehouse at a time.

A second managerial lesson of this study originates from the correlation between makespan and overlap. As observed in Fig. 8, makespan always correlates with the other objectives negatively. However, this correlation’s absolute value is smaller for the lower values of the picking capacity Q. Thus, a lower picking capacity provides a more favorable tradeoff between overlap and makespan. Thus, warehouse environments where the makespan is of significance, such as a wave-picking warehouse, may benefit from reducing the picking capacity to control the overlap and spread of infection. Remember that in this study, each batch is picked by a separate picker. Therefore, lower picking capacity translates into smaller waves, which means reducing the wave size can help mitigate the risk of infection spread in wave picking warehouses. It is noteworthy that reducing the wave size can potentially eliminate the benefits of picking postponement. Consequently, wave picking warehouses may find themselves at

The table below shows the best objective values obtained by NSGAII, SPEA2, and NSGAIII using Midpoint routing policy.

Problem	NSGAII	SPEA2	NSGAIII								
N	Q	Δ	F	C_{max}	Φ	F	C_{max}	Φ	F	C_{max}	Φ
10	50	0	1210	490	0	1210	490	0	1210	490	0
10	50	10	1210	490	0	1210	490	0	1210	490	0
10	50	30	1210	490	0	1210	490	0	1210	490	0
10	100	10	1060	490	0	1060	490	0	1060	490	0
10	100	30	1060	490	0	1060	490	0	1060	490	0
25	50	0	2330	810	10	2330	810	10	2330	810	10
25	50	10	2330	810	10	2330	810	10	2330	810	10
25	50	30	2330	810	10	2330	810	10	2330	810	10
25	100	10	1210	490	10	1210	490	10	1210	490	10
25	100	30	1210	490	10	1210	490	10	1210	490	10
50	50	0	6080	700	0	6080	700	0	6080	700	0
50	50	10	5900	700	2120	5900	700	2120	5900	700	2120
50	50	30	6030	700	4790	6030	700	4790	6030	700	4790
50	100	0	4970	700	0	4970	700	0	4970	700	0
50	100	10	4970	700	0	4970	700	0	4970	700	0
50	100	30	5010	700	1920	5010	700	1920	5010	700	1920
100	50	0	12210	820	0	12210	820	0	12210	820	0
100	50	10	12210	820	12350	12210	820	12350	12210	820	12350
100	50	30	12140	820	19810	12140	820	19810	12140	820	19810
100	100	0	36580	780	0	36580	780	0	36580	780	0
100	100	10	36510	780	133800	36510	780	133800	36510	780	133800
100	100	30	36580	780	229160	36580	780	229160	36580	780	229160
100	0	11790	730	0	11790	730	0	11790	730	0	
100	0	11800	730	9850	11800	730	9850	11800	730	9850	
200	0	11900	730	10250	11900	730	10250	11900	730	10250	
500	0	36580	780	0	36580	780	0	36580	780	0	
500	0	36510	780	133800	36510	780	133800	36510	780	133800	
500	0	36580	780	229160	36580	780	229160	36580	780	229160	
500	0	31550	780	0	31550	780	0	31550	780	0	
500	0	31550	780	63080	31550	780	63080	31550	780	63080	
500	0	31550	780	112540	31550	780	112540	31550	780	112540	

Table B.9
Best objective values obtained by NSGAII, SPEA2, and NSGAIII using Midpoint routing policy.

1 A second explanation of this effect arises from the structure of optimum solutions. In general, it is easier to find degenerate solutions with the same total travel time but different picking tours when the picking capacity is large. While such solutions have the same total travel time, they may have different overlap values, and thus, there is a higher chance of finding low overlap solutions among the degenerate ones. It is noteworthy that in this context, the term degeneracy is used with a more general purpose in mind, and the solutions that have the same value for one objective are also categorized as degenerate.
Table B.10

Log hypervolume of NSGAI, SPEA2, and NSGAIII using Midpoint policy.

N	Q	\(\Delta\)	NSGAI	SPEA2	NSGAIII
10	50	0	15.8292108	15.8292109	15.8292104
10	50	10	15.8292105	15.8292110	15.8292109
10	50	30	15.8292074	15.8292110	15.8292104
10	100	0	15.8293241	15.8293259	15.8293236
10	100	10	15.8293256	15.8293252	15.8293254
10	100	30	15.8293252	15.8293255	15.8293258
25	50	0	15.7962663	15.7962663	15.7962698
25	50	10	15.7962411	15.7962428	15.7962364
25	50	30	15.7962249	15.7962300	15.7962225
25	100	0	15.7964191	15.7964194	15.7964249
25	100	10	15.7964186	15.7964316	15.7964310
25	100	30	15.7964166	15.7964330	15.7964329
50	50	0	15.8042284	15.8042312	15.8042252
50	50	10	15.8039280	15.8039163	15.8039128
50	50	30	15.8035199	15.8036067	15.8035184
50	100	0	15.8050989	15.8051151	15.8050104
50	100	10	15.8049318	15.8050142	15.8049783
50	100	30	15.8047398	15.8047735	15.8048077
100	50	0	15.7865143	15.7865107	15.7865229
100	50	10	15.7846663	15.7847199	15.7846971
100	50	30	15.7836004	15.7835981	15.7836278
100	100	0	15.7828247	15.7875388	15.7867881
100	100	10	15.7867374	15.7872334	15.7862651
100	100	30	15.7864145	15.7867042	15.7866721
100	200	0	15.7945433	15.7945408	15.7944954
100	200	10	15.7920349	15.7919416	15.7920052
100	200	30	15.7908413	15.7907066	15.7907689
200	50	0	15.7954581	15.7957586	15.7951220
200	50	10	15.7942315	15.7943641	15.7942298
200	50	30	15.7937532	15.7939827	15.7939300
200	100	0	15.7683191	15.7683776	15.7682822
200	100	10	15.7482213	15.7481996	15.7481996
200	100	30	15.7333490	15.7332081	15.7330245
500	50	0	15.7705533	15.7714877	15.7700123
500	50	10	15.7601920	15.7610085	15.7609468
500	50	30	15.7518709	15.7529691	15.7528894

Operations, which seems reasonable in a normal situation. This study suggests that the risk of pickers contracting Coronavirus or any other infectious disease must be taken into account in the order picking problems. For this purpose, the well-known order batching problem was revisited and reformulated by considering the risk of infection spread due to workers picking orders in close vicinity of each other. A tri-objective model was proposed that aimed to simultaneously minimize the total travel time, makespan, and picking overlap among the pickers. Furthermore, three evolutionary methods, namely, NSGAI, SPEA2, and NSGAIII, were proposed to solve the problem. The model and the proposed methods were tested on the data of a major US-based logistics company and compared against the company’s current practices. It was found that while the company performs at an efficient level of total travel time, their method is not well suited when the pickers’ overlap is considered.

Through an extensive numerical experiment and comparison with the company’s method, it was found that reducing the picking overlap, as a proxy of infection spread, and minimizing the total travel time are not necessarily conflicting objectives. However, makespan was observed at odds with the overlap in all experiments. This study has two key takeaways for practitioners and managers. First, it is possible to maintain the order batching solutions’ travel time efficiency while minimizing the overlap. In fact, these two objectives seem to correlate positively. However, for such a correlation to be realized, it is necessary to have a sufficient picking capacity. This study showed that a low picking capacity could erode all the overlap cross-benefits obtained as a result of minimizing the total travel time. Second, it was found that minimizing the makespan has an adverse effect on the overlap, and thus, some wave-picking warehouses may find it more challenging to prepare for the pandemic situation. To surmount this hurdle, a wave size reduction was suggested for such warehouses.

The main limitation of the presented study pertains to the stochastic nature of pickers’ travel times. When batching, one typically assumes a constant picker speed and reliably uniform picking times, which makes the calculation of the objectives feasible. However, a decision-maker needs to consider the impact of a non-uniform walking speed on calculations of overlap and possibly equip the batching method with simple heuristics that regulate how pickers should behave in case of overlaps occurrence. One possible strategy to mitigate the effect of travel time uncertainty on the overlap calculation is to increase the minimum physical distance to overwhelm the importance of overlap when constructing solutions. However, this may lead to sub-optimal solutions in terms of makespan or total travel time. Thus, a robust or stochastic oriented approach to reduce the pick overlap remains an important future research direction.

Incorporation of infection risk considerations in order picking problems poses a new set of challenges in the operational level of supply chains. In this context, two future research directions are suggested. First, virtually all order picking problems can be revisited with a pandemic lens of investigation to ensure a safe environment for the pickers. Second, there are tactical problems that are directly affected by the pandemic. For example, warehouses typically prefer to locate products that are ordered together frequently in the proximity of each other. However, this route may not be entirely desirable as it may cause pickers’ routes to overlap further. Thus, it is necessary to rethink the order association among the products to ensure a safer workplace.

8. Conclusion

Being a significant source of expenses in a supply chain, order picking operations are not well-positioned to rise to pandemic challenges such as the ones posed by COVID-19. This inability is mainly due to a cost-driven mindset in the order picking process. To better visualize the Pareto front, a curve of the form \(c_{\text{max}} = c_1 F + c_2 \Phi + c_3 e^{t_{\text{def}}} + c_4 e^{t_{\text{def}}} + c_5\) is fit on the solutions of the front. This equation is adopted to capture both linear and a common nonlinear form of tradeoffs in multi-objective problems. For each curve fit, the value of \(R^2\) is exhibited on the top right of the figure.
CRediT authorship contribution statement

Ehsan Ardjmand: Conceptualization, Methodology, Software, Validation, Formal analysis, Data curation, Writing - original draft, Writing - review & editing, Visualization, Supervision, Project administration. **Manjeet Singh:** Conceptualization, Methodology, Software, Validation, Formal analysis, Data curation, Writing - original draft. **Heman Shakeri:** Software, Validation, Formal analysis, Writing - original draft. **Ali Tavassoli:** Software, Validation, Formal analysis, Writing - original draft, Writing - review & editing. **William A. Young II:** Conceptualization, Supervision, Writing - original draft, Writing - review & editing, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. No overlap model

No overlap model P', is formulated as follows:

$$\min \left(1 \right) \text{ and } \left(2 \right)$$

subject to constraints (4) to (24), (28) to (32), (34) and (35), Eqs. (A.1)–(A.4) which are given in Box II.

In model P', variable b_{ij}^{+} equals 1 if r_{t}th visit of node v_{i} in batch b_{i} is prior to the r_{t}th visit of node v_{j} in batch b_{j}. Additionally, constraints (A.1) to (A.3) ensure no picking overlap among locations that are positioned closer than the minimum physical distance (see Table A.7).

Appendix B. Midpoint policy results

See Tables B.8–B.11.
References

[1] Center for Systems Science and Engineering, Coronavirus covid-19 global cases, 2020, URL: https://coronavirus.jhu.edu/map.html.

[2] University of Washington, Covid-19 projections, 2020, URL: https://covid19.healthdata.org/united-states-of-america.

[3] D. Ivanov, Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (2019-ncov-2019) case, Transp. Res. E 136 (2020) 101922.

[4] R.J. Glass, L.M. Glass, W.E. Beveler, H.J. Min, Targeted social distancing designs for pandemic influenza, Emerg. Infect. Dis. 12 (11) (2006) 1671.

[5] T.C. Refuga, Game theory of social distancing in response to an epidemic, PLoS Comput. Biol. 6 (5) (2010).

[6] J.K. Kelso, G.J. Milne, H. Kelly, Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel strain of influenza, BMC Public Health 9 (1) (2009) 117.

[7] T. Oncan, Milp formulations and an iterated local search algorithm with tabu thresholds for the ordering batching problem, European J. Oper. Res. 243 (1) (2015) 142–155.

[8] R. De Koster, T. Le-Duc, K.J. Roodbergen, Design and control of warehouse order picking: A literature review, European J. Oper. Res. 182 (2) (2007) 481–501.

[9] N. Gademann, S. Velde, Order batching to minimize total travel time in a parallel-aisle warehouse, IIE Trans. 37 (1) (2005) 63–75.

[10] K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nega-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[11] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-report 103, Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technik, 2001.

[12] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577–601.

[13] E. Ardjmand, E.M. Youssef, A. Moyer, W.A.Y. Li, G.R. Weckman, H. Shakeri, A multi-objective algorithm for minimizing makespan and total travel time in a put-wall-based picking systems, Int. J. Logist. System. Manage. 36 (1) (2020) 138–176.

[14] E. Ardjmand, D.W. Huh, Coordinated warehouse order picking and production scheduling: A naga-ii approach, in: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2017, pp. 1–8.

[15] A. Scholz, D. Schubert, G. Wäscher, Order picking with multiple pickers and due-dates–simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems, European J. Oper. Res. 263 (2) (2017) 461–478.

[16] E. Ardjmand, H. Shakeri, M. Singh, O.S. Bajgiran, Minimizing order picking makespan with multiple pickers in a wave picking warehouse, Int. J. Prod. Econ. 206 (2018) 169–183.

[17] E. Ardjmand, I. Ghalakhorandi, W.A. Young II, A. Sadeghi, G.R. Weckman, Minimizing order picking makespan in manual picking operations, Expert Syst. Appl. (2020) 113566.

[18] I. Žulj, S. Kramer, M. Schneider, A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem, European J. Oper. Res. 264 (2) (2018) 653–664.

[19] B. Menéndez, E.G. Parido, A. Alonso-Ayuso, E. Molina, A. Duarte, Variable neighborhood search strategies for the order batching problem, Comput. Oper. Res. 78 (2017) 500–512.

[20] S. Hong, Y. Kim, A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system, European J. Oper. Res. 257 (1) (2017) 183–195.

[21] Y.-C. Cheng, Y.-Y. Chen, T.-L. Chen, Using a hybrid hybrid algorithm for batching precedence-constrained customer orders in a warehouse, Asia-Pac. J. Oper. Res. 26 (05) (2009) 653–683.

[22] S. Henn, Algorithms for on-line order batching in an order picking warehouse, Comput. Oper. Res. 39 (11) (2012) 2549–2563.

[23] S. Henn, G. Wäscher, Tabu search heuristics for the order batching problem in manual order picking systems, European J. Oper. Res. 222 (3) (2012) 484–494.

[24] S. Hong, A.L. Johnson, R.A. Peters, Large-scale order batching in parallel-aisle picking systems, IIE Trans. 44 (2) (2012) 88–106.

[25] O. Kulak, Y. Sahin, M.E. Taner, Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms, Flexible Serv. Manuf. J. 24 (1) (2012) 52–80.

[26] A.H. Azadnia, S. Taheri, P. Ghadimi, M.Z. Mat Saman, K.Y. Wong, Order batching in warehouses by minimizing total tardiness: A hybrid approach of weighted association rule mining and genetic algorithms, Sci. World J. 2013 (2013).

[27] S. Henn, V. Schmid, Metaheuristics for order batching and sequencing in manual order picking systems, Comput. Ind. Eng. 66 (2) (2013) 338–351.

[28] M. Çelik, H. Sural, Order picking under random and turnover-based storage policies in fisshbone aisle warehouses, IIE Trans. 46 (3) (2014) 283–300.

[29] M. Matusiak, R. de Koster, L. Kroon, J. Saarinen, A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse, European J. Oper. Res. 236 (3) (2014) 968–977.

[30] S. Henn, Order batching and sequencing for the minimization of the total tardiness in picker-to-part warehouses, Flexible Serv. Manuf. J. 27 (1) (2015) 86–114.

[31] I. Mutar, T. Oncan, An exact solution approach for the order batching problem, IIE Trans. 47 (7) (2015) 728–738.

[32] J.-H. Pan, P.-H. Shih, M.-H. Wu, Order batching in a pick-and-pass warehousing system with group genetic algorithm, Omega 57 (2015) 138–148.

[33] C. Iser, G. Righetto, R. Morabito, Optimizing the order picking of a scholar and office supplies warehouse, Int. J. Adv. Manuf. Technol. 87 (5–8) (2016) 2327–2336.

[34] C.-C. Lin, J.-R. Kang, C.-C. Hou, C.-Y. Cheng, Joint order batching and picker routing for a Manhattan routing problem, Comput. Ind. Eng. 95 (2016) 164–174.

[35] M. Çelik, H. Sural, Order picking in a parallel-aisle warehouse with turn penalties, Int. J. Prod. Res. 54 (14) (2016) 4340–4355.

[36] T. Chabot, L.C. Coelho, J.-F. Côté, Mathematical model, heuristics and exact method for order picking in narrow aisles, J. Oper. Res. Soc. 69 (8) (2018) 1242–1253.

[37] P. Cortés, R.A. Gómez-Montoya, J. Múñuzuri, A tabu search approach to solving the picking routing problem for large-and medium-size distribution centres considering the availability of inventory and k heterogeneous material handling equipment, Appl. Soft Comput. 55 (2017) 61–73.
[58] B. Menéndez, M. Bustillo, E.G. Pardo, A. Duarte, General variable neighborhood search for the order batching and sequencing problem, European J. Oper. Res. 263 (1) (2017) 82–93.

[59] B. Menéndez, E.G. Pardo, J. Sánchez-Oro, A. Duarte, Parallel variable neighborhood search for the min–max order batching problem, Int. Trans. Oper. Res. 24 (3) (2017) 635–662.

[60] A.H. Schrothenboer, S. Wruck, K.J. Roodbergen, M. Veenstra, A.S. Dijkstra, Order picker routing with product returns and interaction delays, Int. J. Prod. Res. 55 (21) (2017) 6394–6406.

[61] C.A. Valle, J.E. Beasley, A.S. da Cunha, Optimally solving the joint order batching and picker routing problem, European J. Oper. Res. 262 (3) (2017) 817–834.

[62] T. Bódis, J. Botzheim, Bacterial memetic algorithms for order picking routing problem with loading constraints, Expert Syst. Appl. 105 (2018) 196–220.

[63] H.-Y. Lee, C.C. Murray, Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems, Int. J. Prod. Res. (2018) 1–21.

[64] D. Schubert, A. Scholz, G. Wäscher, Integrated order picking and vehicle routing with due dates, OR Spectrum 40 (4) (2018) 1109–1139.

[65] J. Zhang, X. Wang, K. Huang, On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity, Omega 79 (2018) 104–115.

[66] T. Van Gils, A. Caris, K. Ramaekers, K. Braeckers, Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse, European J. Oper. Res. 277 (3) (2019) 814–830.

[67] Ç. Cergibozan, A.S. Tasan, Order batching operations: an overview of classification, solution techniques, and future research, J. Intell. Manuf. (2016) 1–15.

[68] J.A. Cano, A.A. Correa-Espinal, R.A. Gómez-Montoya, A review of research trends in order batching, sequencing and picker routing problems, Rev. Espac. 39 (04) (2018).

[69] E. Ardjmand, O.S. Bagiran, E. Yousef, Using list-based simulated annealing and genetic algorithm for order batching and picker routing in put wall based picking systems, Appl. Soft Comput. 75 (2019) 106–119.

[70] I.G. Lee, S.H. Chung, S.W. Yoon, Two-stage storage assignment to minimize travel time and congestion for warehouse order picking operations, Comput. Ind. Eng. 139 (2020) 106129.

[71] D. Bartini, C.H. Glock, E.H. Grosse, A. Persono, F. Sgarbossa, Human energy expenditure in order picking storage assignment: A bi-objective method, Comput. Ind. Eng. 94 (2016) 147–157.

[72] T. Djanalov, M.Z. Hadi, Implementation of an ant colony approach to solve multi-objective order picking problem in beverage warehousing with drive-in rack system, in: 2017 International Conference on Advanced Computer Science and Information Systems (ICACISS), IEEE, 2017, pp. 137–142.

[73] S. Schwerdfeger, N. Boyesen, Order picking along a crane-supplied pick face: The sku switching problem, European J. Oper. Res. 260 (2) (2017) 534–545.

[74] Ö. Özpeynirci, C. Kandemir, A pseudo-polynomial time algorithm for a special multiobjective order picking problem, Int. J. Inf. Technol. Decis. Mak. 14 (05) (2015) 1111–1128.

[75] Ç. Cergibozan, A.S. Tasan, Order batching operations: an overview of classification, solution techniques, and future research, J. Intell. Manuf. 30 (1) (2019) 335–349.

[76] M. Masae, C.H. Glock, E.H. Grosse, Order picker routing in warehouses: A systematic literature review, Int. J. Prod. Econ. 224 (2020) 107564.

[77] E. Ardjmand, W.A. Young II, G.R. Weckman, O.S. Bagiran, B. Aminipour, N. Park, Applying genetic algorithm to a new bi-objective stochastic model for transportation, location, and allocation of hazardous materials, Expert Syst. Appl. 51 (2016) 49–58.

[78] E. Ardjmand, G. Weckman, N. Park, P. Taherkhani, M. Singh, Applying genetic algorithm to a new location and routing model of hazardous materials, Int. J. Prod. Res. 53 (3) (2015) 916–928.

[79] N. Karimi, M. Zandieh, H. Karamooz, Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach, Expert Syst. Appl. 37 (6) (2010) 4024–4032.

[80] E. Zitzler, T. Thiele, M. Laumanns, C.M. Fonseca, V.G. Da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003) 117–132.

[81] T. Franzke, E.H. Grosse, C.H. Glock, R. Elbert, An investigation of the effects of storage assignment and picker routing on the occurrence of picker blocking in manual picker-to-parts warehouses, Int. J. Logist. Manage. (2017).