On Eigenvalues of Random Complexes

Anna Gundert, † Uli Wagner‡

November 19, 2014

Abstract

We consider higher-dimensional generalizations of the normalized Laplacian and the adjacency matrix of graphs and study their eigenvalues for the Linial–Meshulam model $X^k(n,p)$ of random k-dimensional simplicial complexes on n vertices. We show that for $p = \Omega(\log n / n)$, the eigenvalues of each of the matrices are a.a.s. concentrated around two values. The main tool, which goes back to the work of Garland, are arguments that relate the eigenvalues of these matrices to those of graphs that arise as links of $(k-2)$-dimensional faces.

The same arguments apply to other models of random complexes which allow for dependencies between the choices of k-dimensional simplices. In the second part of the paper, we apply this to the question of possible higher-dimensional analogues of the discrete Cheeger inequality, which in the classical case of graphs relates the eigenvalues of a graph and its edge expansion. It is very natural to ask whether this generalizes to higher dimensions and, in particular, whether the eigenvalues of the higher-dimensional Laplacian capture the notion of coboundary expansion — a higher-dimensional generalization of edge expansion that arose in recent work of Linial and Meshulam and of Gromov; this question was raised, for instance, by Dotterrer and Kahle. We show that this most straightforward version of a higher-dimensional discrete Cheeger inequality fails, in quite a strong way: For every $k \geq 2$ and $n \in \mathbb{N}$, there is a k-dimensional complex Y^k_n on n vertices that has strong spectral expansion properties (all nontrivial eigenvalues of the normalised k-dimensional Laplacian lie in the interval $[1 - O(1/\sqrt{n}), 1 + O(1/\sqrt{n})]$) but whose coboundary expansion is bounded from above by $O(\log n / n)$ and so tends to zero as $n \to \infty$; moreover, Y^k_n can be taken to have vanishing integer homology in dimension less than k.

1 Introduction

Eigenvalues of graphs are a classical and well-studied subject, which goes back to a fundamental paper of Kirchhoff [50], in which he used the combinatorial graph Laplacian to analyze electrical networks and formulated his celebrated Matrix-Tree Theorem for the number of spanning trees of a graph (which includes, as the special case of the complete graph, Cayley’s [9] famous formula n^{n-2} for the number of labeled trees on n vertices).

The eigenvalues of a graph G encode many important properties of G, in particular regarding connectivity and expansion properties of G (the mixing rate of a random walk on G) as well as other quasirandomness properties of G. Because of this, eigenvalues of graphs also play a major role in the design and analysis of algorithms, including heuristic and approximation algorithms for hard graph partitioning problems (spectral partitioning) and Markov Chain Monte Carlo approximation algorithms for hard counting problems. We cannot hope to survey the relevant literature here and refer the reader to the survey articles and monographs [12, 17, 53, 42, 54, 18, 68] for background and further references.

†Research supported by the Swiss National Science Foundation (SNF Projects 200021-125309 and 200020-138230).

‡Universität zu Köln, Weyertal 86–90, 50923 Köln, Germany. anna.gundert@uni-koeln.de. Work on this paper was conducted at the Institut für Theoretische Informatik, ETH Zürich.

§IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria. uli@ist.ac.at.
In the present paper, we consider eigenvalues of higher-dimensional simplicial complexes and, in a nutshell, prove two results: First, generalizing well-known results about random graphs \(G(n,p)\), we show (Theorem 2) that the Linial–Meshulam \(k\)-dimensional random complexes are a.a.s. strongly spectrally expanding (their eigenvalues are strongly concentrated around two values). Second, we give a probabilistic construction (Theorem 3) of \(k\)-dimensional complexes that are strong spectral expanders but that fail to have the property of coboundary expansion — a generalization of edge expansion that arose in the recent work of Linial and Meshulam [55] and of Gromov [36]. This shows that the most straightforward attempt of generalizing the discrete Cheeger–Buser inequalities to higher-dimensional complexes fails and answers a question raised, e.g., by Dotterrer and Kahle [23]. Before stating these results more precisely, we first recall the basic definitions and terminology.

Adjacency Matrix and Laplacians of Graphs

We recall the three \((n \times n)\)-matrices commonly associated with a graph \(G = (V,E)\) on \(n\) vertices. The **adjacency matrix** \(A = A(G) \in \{0,1\}^{V \times V}\) has entries defined by \(A_{u,v} = 1\) iff \(\{u,v\} \in E\). The **combinatorial Laplacian** is defined as \(L = L(G) := D - A\), where \(D = D(G) \in \mathbb{R}^{V \times V}\) is the diagonal matrix with entries \(D_{v,v} = \deg_G(v)\), the degrees of the vertices. Both of these are symmetric matrices and hence have a multiset of \(n\) real eigenvalues, called the **spectrum**.

The eigenvalues of \(A\) and of \(L\) turn out to be quite sensitive to the maximum and minimum degree of \(G\). For graphs with very non-uniform degree distributions, it is often more convenient to consider the **normalized Laplacian**, which is defined as \(\Delta = \Delta(G) := D^{-1}L = I - D^{-1}A\), where \(I \in \mathbb{R}^{V \times V}\) is the identity matrix.

The normalized Laplacian is not symmetric but corresponds to a self-adjoint operator on \(\mathbb{R}^n\) with respect to a weighted inner product (see Section 2) and so also has \(n\) real eigenvalues. Both versions of the Laplacian are positive semidefinite relative to their respective inner products and so have nonnegative eigenvalues, typically listed in increasing order \(\lambda_1(L) \leq \ldots \leq \lambda_n(L)\) and \(\lambda_1(\Delta) \leq \ldots \leq \lambda_n(\Delta)\). The “all-1” vector \(1 = (1,\ldots,1)^T\) satisfies \(L1 = \Delta 1 = 0\), hence \(\lambda_1(L) = \lambda_1(\Delta) = 0\), which is called the **trivial eigenvalue**. For the adjacency matrix, the eigenvalues are typically listed in decreasing order as \(\mu_1(A) \geq \ldots \geq \mu_n(A)\). Define \(\mu(G) := \max\{\mu_2(A),|\mu_4(A)|\}\).

The graph \(G\) is connected iff \(\lambda_2(L) > 0\) iff \(\lambda_2(\Delta) > 0\). More generally, the multiplicity of 0 as an eigenvector of either Laplacian equals the number of connected components of \(G\), and if \(G\) is connected, then the second eigenvalue \(\lambda_2\) of either Laplacian controls the **edge expansion** of the graph (see the discussion below).

Eigenvalues of Random Graphs

Let \(G(n,p)\) be the binomial random graph on \(n\) vertices, for which every edge is included independently with probability \(p = p(n)\), and let \(d = p(n - 1)\) be the expected average degree. We summarize known concentration results on the spectra of \(G(n,p)\) as follows. See Section 2.2 for a more detailed account.

Theorem 1 (26, 16). For every \(c > 0\) there exist constants \(C > 0\) and \(c' > 0\) such that for \(p \geq C \cdot \log n/n\) and \(d = p(n - 1)\) the following statements hold with probability at least \(1 - n^{-c}\):

1. Throughout this paper, we will assume that \(G\) is simple, i.e., we do not consider loops or multiple edges.

2. Strictly speaking, \(D^{-1}\) is defined only if there are no isolated vertices, i.e., if \(\deg_G(v) > 0\) for all \(v \in V\), which will be the case of primary interest to us. If there are isolated vertices, we adopt the convention that \(D_{v,v}^{-1} = 0\) whenever \(\deg_G(v) = 0\) and retain the definition \(\Delta = D^{-1}L\). (The second equation \(\Delta = I - D^{-1}A\) no longer holds in this case, since \(\Delta\) has zero diagonal entries at isolated vertices.)

Sometimes, (e.g., in 13, 12, 16) a slightly different matrix is referred to as the normalized Laplacian, namely \(\mathcal{L} := I - D^{-1/2}AD^{-1/2}\). Assuming that there are no isolated vertices, \(\Delta\) and \(\mathcal{L}\) have the same spectra, since \(\Delta x = \lambda x\) for some \(\lambda \in \mathbb{R}\) and \(x \in \mathbb{R}^V\) iff \(\mathcal{L} y = \lambda y\), where \(y = D^{1/2}x\).
(ii) \(1 - \frac{c}{\sqrt{d}} \leq \lambda_2(\Delta(G(n,p))) \leq ... \leq \lambda_n(\Delta(G(n,p))) \leq 1 + \frac{c}{\sqrt{d}} \).

One type of application of such results is the analysis of spectral heuristics for algorithms that deal with random instances of NP-hard graph partitioning and related problems, see the discussions in [20] [16].

Higher-Dimensional Laplacians

Eckmann [25] introduced a generalization of the graph Laplacian \(L \) to higher-dimensional simplicial complexes \(X \) to study discrete boundary value problems on such complexes.

More precisely, let \(X \) be a finite simplicial complex and let \(C^i(X; \mathbb{R}) \), \(i \in \mathbb{Z} \), be the vector space of \(i \)-dimensional simplicial cochains with real coefficients (we refer to Section 2 for the necessary definitions). Eckmann defines three linear operators \(L^\text{down}_i(X) \), \(L^\text{up}_i(X) \) and \(L_i(X) = L^\text{down}_i(X) + L^\text{up}_i(X) \) on the space \(C^i(X; \mathbb{R}) \) and proves a discrete analogue of Hodge theory [39], which implies, in particular, that the subspace \(\mathcal{H}_i(X) := \ker L_i(X) \) of so-called harmonic cochains on \(X \) is isomorphic to \(\tilde{H}^i(X; \mathbb{R}) \), the \(i \)-th reduced cohomology.

In the case of a 1-dimensional simplicial complex (graph) \(G \), \(L^\text{up}_0(G) \) coincides with the usual graph Laplacian \(L(G) \) discussed previously.

Subsequently, combinatorial Laplacians were applied in a variety of contexts. Dodziuk [19] and Dodziuk and Patodi [21] showed how the continuous Laplacian of a Riemannian manifold can be approximated by the combinatorial Laplacians of a suitable sequence of successively finer triangulations of the manifold.

Kalai [49] used combinatorial Laplacians to prove a higher-dimensional generalization of Cayley’s formula for the number of labeled trees, and further results in this direction, including a generalization of the Matrix-Tree Theorem, were obtained in [1] [24]. For further combinatorial applications, see, e.g., [30] [29] [51] [22]. For further background and references regarding combinatorial Laplacians, see also [43].

We will mostly work with a normalized version of the Laplacian, \(\Delta_i(X) = \Delta^\text{down}_i(X) + \Delta^\text{up}_i(X) \) (see Section 2 for the definition) and focus on the operator \(\Delta^\text{up}_{k-1}(X) \). Again, for graphs, \(\Delta^\text{up}_0(G) \) agrees with the normalized graph Laplacian \(\Delta(G) \) discussed above.

Random Complexes

Linial and Meshulam [55] introduced a higher-dimensional analogue of the binomial random graph model \(G(n,p) \). By definition, the random \(k \)-dimensional complex \(X^k(n,p) \) has \(n \) vertices, a complete \((k-1) \)-skeleton (i.e., every subset of \(k \) of fewer vertices form a face of the complex), and every \((k+1) \)-element set of vertices is taken as a \(k \)-face independently with probability \(p \), which may be constant or, more generally, a function \(p(n) \) depending on \(n \).

This model has been studied extensively, and threshold probabilities for several basic topological properties of \(X^k(n,p) \) have been determined quite precisely, see e.g. [61] [7] [6] [11] [52] [67].

Our first result is a higher-dimensional analogue of Theorem 1. The adjacency matrix of a \(k \)-dimensional complex \(X \) is denoted by \(A_{k-1} \) (see Section 2.6 for the precise definition). Both \(A_{k-1} \) and the normalized up-Laplacian \(\Delta^\text{up}_{k-1} \) have rows and columns indexed by the \((k-1) \)-faces of \(X \); we assume that \(X \) has \(n \) vertices and a complete \((k-1) \)-skeleton, so the matrices have dimension \(\binom{n}{k} \times \binom{n}{k} \). \(A_{k-1} \) has entries in \(\{0, \pm 1\} \), and \((A_{k-1})_{F,G} = \pm 1 \) (with appropriate signs) if \(F \cup G \) is a \(k \)-face of \(X \).

Theorem 2. For all \(c > 0 \) and \(k \geq 1 \) there exists a constant \(C = C(c,k) > 0 \) with the following property: Assume \(p \geq C \frac{\log(n)}{n} \) and let \(d := p(n-k) \). Then there exist \(\gamma_A = O(\sqrt{d}) \) and \(\gamma_{\Delta} = O(1/\sqrt{d}) \) such that the following statements hold with probability at least \(1 - n^{-c} \):

\[d \text{ is the expected degree of any } (k-1)\text{-face } F \text{ in } X^k(n,p), \text{i.e., the expected number of } k\text{-faces incident to } F.]
Theorem 3 (Discrete Cheeger Inequality) on Riemannian manifolds.

Let \(\lambda \) be a \((n-1) \)-regular graph, and let \(\lambda_2 = \lambda_2(\Delta(G)) \) be the second-smallest eigenvalue of its normalized Laplacian. Then the edge expansion \(\varepsilon(G) \) satisfies

\[
\lambda_2 \leq \varepsilon(G) \leq \sqrt{8\lambda_2}.
\]

Both concentration results are achieved by reducing the higher-dimensional problem to estimates for the eigenvalues of random graphs, i.e., to Theorem 1. For the Normalized Laplacian this is done by applying a fundamental estimate due to Garland [34] (see Section 3). For the generalized adjacency matrix we develop a similar result to this estimate.

Theorem 2 also applies to any other random model for simplicial complexes with \(n \) vertices and complete \((k-1) \)-skeleton in which the links of \((k-2) \)-faces are random graphs with distribution \(G(n-k+1,p) \). We use this for our second result, a probabilistic construction of a conjectural higher-dimensional discrete Cheeger inequality (Theorem 4 below).

Edge Expansion and Cheeger’s Inequality for Graphs

For a graph of arbitrary density, its *edge expansion* can be defined as follows. Let \(\varepsilon > 0 \) be a parameter. We say that \(G = (V,E) \) is \(\varepsilon \)-edge expanding if for every \(S \subseteq V \),

\[
\frac{|E(S,V \setminus S)|}{|E|} \geq \varepsilon \cdot \frac{\min\{|S|,|V \setminus S|\}}{|V|},
\]

where \(E(S,V \setminus S) = \{\{u,v\} \in E : u \in S, v \in V \setminus S\} \) is the set of edges across the cut \((S,V \setminus S) \). Moreover, we call the best possible constant \(\varepsilon \) the *edge expansion* of \(G \) and denote it by \(\varepsilon(G) \).

For a survey of the numerous applications of graph expansion in theoretical computer science and connections to other branches of mathematics, we refer to [42].

As mentioned above, the edge expansion of a graph is controlled by the second-smallest eigenvalue of its Laplacian. Here, we state this fact in its simplest form, for \(d \)-regular graphs (due to Dodziuk [20], Alon and Milman [4, 3]: Cheeger [10] proved an analogous result for Laplacians on Riemannian manifolds):

Theorem 3 (Discrete Cheeger Inequality). Let \(G = (V,E) \) be a \(d \)-regular graph, and let \(\lambda_2 = \lambda_2(\Delta(G)) \) be the second-smallest eigenvalue of its normalized Laplacian. Then the edge expansion \(\varepsilon(G) \) satisfies

\[
\lambda_2 \leq \varepsilon(G) \leq \sqrt{8\lambda_2}.
\]

The inequality on the left-hand side is proved fairly easily by expressing the characteristic function \(1_S \in \mathbb{R}^V \) of a subset \(S \subseteq V \) as a linear combination of eigenvectors of the Laplacian \(\Delta \). We will refer to this as “the easy part of Cheeger’s inequality.” The harder part is the inequality on the right-hand side. For a short proof see, e.g., [5].

We remark that even the easy part of Cheeger’s inequality is very useful. For instance, essentially all explicit constructions of constant-degree expanders [38, 33, 57, 59, 65] prove a lower bound on the edge expansion of the constructed graphs by analyzing their eigenvalues.

Note that [1] is equivalent, to the more common condition that \(|E(S,V \setminus S)| \geq \frac{d}{2} \cdot |S| \) for all \(S \subseteq V \) with \(|S| \leq |V|/2 \), where \(d = 2|E|/|V| \) is the average degree. Thus, \(\varepsilon(G) = 2h(G) \), where \(h(G) := \min\{\frac{|E(S,V \setminus S)|}{|S|} : S \subseteq V, |S| \leq |V|/2\} \) is the (normalized) Cheeger constant of \(G \).
Higher-Dimensional Expansion

Recently, a higher-dimensional analogue of edge-expansion of graphs, *coboundary expansion* (more precisely, \mathbb{Z}_2-coboundary expansion), arose in the recent work of Gromov [33] and of Linial, Meshulam and Wallach [55, 61]. The precise definition will be given in Section 2 (For further related results, see, also [27, 49, 62, 60, 23].)

It is natural to ask whether there is a higher-dimensional analogue of Cheeger’s inequality; this question was raised explicitly, e.g., by Dotterrer and Kahle [23]. As our second result we show, by a simple probabilistic construction, that the most straightforward attempt at a higher-dimensional Cheeger Inequality fails, even for the “easy part”. In higher dimensions, *spectral expansion* (an eigenvalue gap for the Laplacian) does not imply \mathbb{Z}_2-coboundary expansion:

Theorem 4. For every $k > 1$ there is an infinite family of k-dimensional complexes $(Y^k_n)_{n \in \mathbb{N}}$, where Y^k_n has n vertices, that is spectrally but not coboundary expanding in dimension k.

More precisely, all nontrivial eigenvalues of $\Delta^\uparrow_{k-1}(Y^k_n)$ are $1 \pm O(1/\sqrt{n})$, but every Y^k_n contains a cochain $\alpha \in C^{k-1}(Y^k_n; \mathbb{Z}_2)$ of normalized Hamming weight $||\alpha|| \geq 1/2 - o(1)$ with $\|\delta a\| = O(\log n/n)$. Furthermore, Y^k_n can be chosen such that $H_k(Y^k_n; \mathbb{Z}) = 0$ for all $i \leq k - 1$.

For a graph G and any abelian group \mathbb{G}, $\tilde{H}^0(G; \mathbb{G}) = 0$ iff G is connected. In higher dimensions, however, it is well-known that the vanishing of a cohomology group may depend on the choice of coefficients. A basic example for this is the real projective plane $\mathbb{R}P^2$ for which $H^1(\mathbb{R}P^2; \mathbb{R}) = 0$ but $H^1(\mathbb{R}P^2; \mathbb{Z}_2) = \mathbb{Z}_2$. In general, $\tilde{H}^1(Y; \mathbb{G}) = 0$ iff Y is ε-expanding, with respect to a given norm on \mathbb{G}-cochains, for some small $\varepsilon > 0$ that may depend on Y. Thus, the point of Theorem 4 is that there is an infinite family of examples whose coboundary expansion tends to zero (as fast as $\log n/n$) while the spectral expansion is bounded away from zero (in fact, equal to $1 \pm O(1/\sqrt{n})$).

Compared to the extended abstract [38] of this paper, the probabilistic construction behind Theorem 4 has been adapted to also allow for $H_k(Y^k_n; \mathbb{Z})$ to be trivial. To influence the random behaviour we choose two probabilities $p, q \geq C \cdot \log(n)/n$ for suitably large C with $q = o(p)$. The construction then covers a whole range of parameters:

$$|f_k(Y^k_n) - \frac{p}{2}(\frac{n}{k+1})| \leq o(1)\frac{p}{2}(\frac{n}{k+1}), \quad \|\delta a\| = O\left(\frac{q}{p}\right),$$

while all nontrivial eigenvalues $\Delta^\uparrow_{k-1}(Y^k_n)$ lie in the interval $[1 - \gamma, 1 + \gamma]$ with $\gamma = O(1/\sqrt{(p/2)n})$.

The concentration of eigenvalues is essentially optimal, as one can show that $\Delta^\uparrow_{k-1}(X)$ always has a non-trivial eigenvalue λ with $1 - \lambda \geq \sqrt{k/d_{\max}} \cdot (n - d_{\max})/(n - k)$, where d_{\max} is the maximal degree of a k-face in X, and the expected degree in Y^k_n is $O((p/2)n)$.

In the extremal case $q = C \cdot \log(n)/n$ and $p = 1$, we achieve a coboundary expansion of order $O(\log(n)/n)$ and eigenvalue concentration in $[1 - O(1/\sqrt{n}), 1 + O(1/\sqrt{n})]$.

Related Work

A recent article by Steenbergen, Klivans and Mukherjee [66] also presents a class of counterexamples for the most straightforward attempt at a higher-dimensional Cheeger Inequality – an explicit construction for an infinite family of simplicial k-balls X_n whose spectral expansion is bounded away from zero, while the coboundary expansion tends to zero. Here, the non-trivial eigenvalues of $\Delta^\uparrow_{k-1}(X_n)$ are bounded below by a constant depending on the dimension k, while the coboundary expansion of X_n is of order $1/\Theta(\log(n))$.

Chung [11] studies a higher Laplacian for hypergraphs that is closely related to the combinatorial Laplacian $L_{k-1} = L^\uparrow_{k-1} + L^\downarrow_{k-1}$. In [11] Section 7, she proves a somewhat weaker

5This can be shown analogously to the corresponding bound [2] for graphs, see Preliminaries.

6One difference is that Chung’s Laplacian operates not just on cochains, i.e., skew-symmetric functions on oriented simplices, but on arbitrary real-valued functions.
concentration result for eigenvalues of random hypergraphs, namely, essentially, that for constant p and any $\varepsilon > 0$, the eigenvalues of $L_{k-1}(X^k(n,p))$ are concentrated in an interval of width $O(n^{1/2+\varepsilon})$. She also states, without proof, that the proof methods for random graphs can be extended to yield the sharp bound of $O(\sqrt{mp})$.

The probabilistic construction of the examples in Theorem 1 is well-known in the study of quasirandomness for hypergraphs, see, e.g., the discussion in [35] Section 5. In [11] Section 8, it is asserted, again without proof, that the eigenvalues of the combinatorial Laplacian of these examples are concentrated in an interval of width $O(\sqrt{mp})$, but we are not aware of a proof appearing in the literature.

After submitting the original manuscript of the present paper, we became aware of a preprint by Hoffman, Kahle and Paquette [10], who prove closely related results. Specifically, following the basic approach of [33], they show that for any $\varepsilon > 0$ and $p \geq (k+\varepsilon) \frac{\ln n}{n}$, $\lambda_2(\Delta(G(n,p))) > 1/2$ with probability $1-o(n^{-k})$ (thus, compared to the known results, they trade precise information about the constant factor in front of $\ln n/n$ for weaker concentration). Using a result by Žuk [39], which is a strengthening of Garland’s estimate, they obtain as an immediate corollary that for $p \geq (2+\varepsilon) \frac{\ln n}{n}$, the fundamental group of the random 2-complex $X^2(n,p)$ a.a.s. has Property (T).

Using a weaker combinatorial notion of higher-dimensional expansion, but the same notion of Laplacian spectra, Parzanchevski, Rosenthal and Tessler show a version of a higher-dimensional Cheeger Inequality in their preprint [64]. While \mathbb{Z}_2-coboundary expanding complexes also possess this weaker notion of expansion, the converse is not true (see, e.g., [37], where an extension of their result is presented).

In another recent preprint, Lu and Peng [56] study a rather different kind of Laplacian for random complexes. Specifically, given a k-dimensional complex X on a vertex set V and a parameter $s \leq \frac{k+1}{2}$, they consider an auxiliary weighted graph on the vertex set $\binom{V}{s}$ in which $I, J \in \binom{V}{s}$ are connected by an edge of weight w if $I \cap J = \emptyset$ and I and J are contained in precisely w common k-faces of X. Lu and Peng study the normalized Laplacian of this auxiliary weighted graph. However, this Laplacian seems to capture the topology of X only in a limited way. For instance, in the case $k=2$ and $s=1$, any two 2-dimensional complexes on n vertices that have a complete 1-skeleton and are d-regular (every edge is contained in d triangles) yield the same auxiliary graph, even though the topologies of these complexes (as measured by real cohomology groups and the usual Laplacian, say) may be very different.

2 Preliminaries

2.1 Bounds on the Spectra of General Graphs

It is known that the spectrum of the normalized Laplacian Δ is contained in the interval $[0, 2]$, and that $\lambda_n(\Delta) = 2$ iff G has a nontrivial bipartite connected component [12, Lemma 1.7]. Moreover, if G has no isolated vertices then $\lambda_{n-1}(\Delta) \geq \frac{n}{n-1}$.

If G is d-regular, i.e., $\deg_G(v) = d$ for all $v \in V$ (where d may depend on n), then $L = d \cdot I - A = d \cdot \Delta$, and so the spectra of A, L, and Δ are equivalent (up to scaling and linear shifts): $\lambda_i(L) = d \cdot \lambda_i(\Delta)$ and $\mu_i(A) = d - \lambda_i(L)$, $1 \leq i \leq n$. In particular, $\mu_1(A) = d$, $\mu_2(A) < d$ iff G is connected, and $\mu_n(A) = -d$ iff G has a nontrivial bipartite connected component.

For $\mu(G) = \max\{\mu_2(A), |\mu_n(A)|\}$, it is not hard to show that for every d-regular graph

$$\mu(G) \geq \sqrt{d \cdot (n - d)}/(n-1)$$

(see, e.g., [42, Claim 2.8]). Hence $\mu(G) \geq \Omega(\sqrt{d})$ for $d \leq 0.99n$, say, which shows that the concentration results for the eigenvalues of random graphs are essentially optimal. For constant d, one has the sharper Alon-Boppana bound $\mu(G) \geq 2\sqrt{d-1} \cdot (1 - O(1/\log^2 n))$, see [63, 28].

A d-regular graph G is called a Ramanujan graph if it meets this bound for the spectral gap, i.e., if $\mu(G) \leq 2\sqrt{d-1}$. It is a deep result due to Lubotzky, Phillips and Sarnak [57] and
independently to Margulis \cite{Margulis} that for every fixed number \(d \) with \(d - 1 \) prime, there exist Ramanujan graphs on \(n \) vertices for infinitely many \(n \) (and moreover, these graphs can be explicitly constructed).

\[\text{2.2 Eigenvalues of Random Graphs} \]

In the introduction, Theorem 1 summarizes known results on the concentration of eigenvalues for random graphs \(G(n, p) \). Here we explain the corresponding references in more detail. For the normalized Laplacian, the situation is simple: Building on the results for the adjacency matrix and relating the spectrum of \(\Delta(G(n, p)) \) to that of \(A(G(n, p)) \), Coja-Oghlan \cite{CojaOghlan} proved the result for the normalized Laplacian. For \(p \gg (\log n)^2/n \) this was also shown by Chung, Lu and Vu \cite{Chung}. For the adjacency matrix the situation in the literature is more involved: Different ranges of \(p \) are covered in several references. Füredi and Komlós \cite{Furedi} showed for constant \(p \) that asymptotically almost surely (a.a.s.), i.e., with probability tending to 1 as \(n \to \infty \), \(\mu(G(n, p)) = O(\sqrt{d}) \), where \(d = p(n - 1) \) is the expected average degree. Their method of proof, the so-called trace method, can be adapted to cover the range \(\frac{\ln(n)^7}{n} \leq p \leq 1 - \frac{\ln(n)^7}{n} \). Feige and Ofek \cite{Feige} extended the result to values of \(p \) as small as \(C \cdot \log n/n \), but their proof requires an upper bound on \(p \). They used methods of Friedman, Kahn, and Szemerédi \cite{Friedman}, who proved that \(\mu(G) = O(\sqrt{d}) \) holds a.a.s. for random \(d \text{-regular graphs} \) with constant \(d \). Below, we explain the situation in yet more detail and give a a more precise statement than the one of Theorem 1, which we will need for our proof of the corresponding statement on the generalized adjacency matrix for simplicial complexes (Theorem 2).

We remark that both parts of Theorem 1 can be extended to very sparse random graphs \(G(n, p) \) with \(p = \Theta(1/n) \) (for which they fail to hold as stated) by passing to a suitable large core subgraph, see \cite{Feige}. Moreover, analogous results are also known for other random graph models, including random \(d \text{-regular graphs} \) (see above) and random graphs with prescribed expected degree sequences \cite{Chung}.

Adjacency Matrix Concentration results on the spectrum of \(A(G(n, p)) \) are usually proven using one of the two following sufficient (and equivalent) conditions:

Lemma 5. For \(A = A(G(n, p)) \) with \(d := (n - 1)p \) the following two conditions are equivalent:

\[(i) \text{ There is } \gamma = O(\sqrt{d}) \text{ such that for } u = \frac{1}{\sqrt{m}} \mathbf{1}:\]
\[\langle Au, u \rangle \in [d - \gamma, d + \gamma] \text{ and } |\langle Aw, w \rangle|, |\langle Au, w \rangle| \leq \gamma \text{ for all } w \perp \mathbf{1} \text{ with } \|w\| = 1; \]

\[(ii) \|pJ - A\| = O(\sqrt{d}), \text{ where } J \text{ is the all-ones matrix.} \]

Both (i) and (ii) imply

\[\mu_1(A) \in [d - \gamma, d + \gamma] \text{ and } \mu_2(A), \ldots, \mu_n(A) \in [-\gamma, \gamma] \text{ for some } \gamma = O(\sqrt{d}). \]

Proof. We first show that (ii) implies (i). Let \(M = pJ - A \) and choose some \(w \perp \mathbf{1} \) with \(\|w\| = 1 \). As \(M\mathbf{1} = np\mathbf{1} - A\mathbf{1} \), we have \(|\langle Au, u \rangle - np| = |\langle Mu, u \rangle| \leq \|M\| \) and \(|\langle Au, w \rangle| = |\langle Mu, w \rangle| \leq \|M\| \). Furthermore, as \(Ju = 0 \), \(|\langle Aw, w \rangle| = |\langle Mu, w \rangle| \leq \|M\| \).

To show that (ii) follows from (i), we fix some \(x \neq 0 \) with \(\|x\| = 1 \) and show \(|\langle Mx, x \rangle| = O(\sqrt{d}) \).

We can find \(\alpha, \beta \in [-1, 1] \) with \(\alpha^2 + \beta^2 = 1 \) and a \(w \perp \mathbf{1} \), \(\|w\| = 1 \) such that \(x = \alpha u + \beta w \). Then

\[|\langle Mx, x \rangle| = |\alpha^2 \langle Mu, u \rangle + 2\alpha\beta \langle Mu, w \rangle + \beta^2 \langle Mw, w \rangle| \]
\[\leq \alpha^2 |np(u, u) - \langle Au, u \rangle| + 2|\alpha\beta| |\langle Au, w \rangle| + \beta^2 |\langle Aw, w \rangle| = (\alpha^2 + 2|\alpha\beta| + \beta^2)O(\sqrt{d}) = O(\sqrt{d}). \]

That (i) implies (iii) is shown in \cite{Feige} Lemma 2.1 of which we show a generalization, Lemma 15. \(\square \)
We now argue why condition \([iii]\) holds for \(p \geq C \cdot \log n/n\):

Theorem 6. For every \(c > 0\) there exist constants \(C > 0\) and \(c' > 0\) with the following property: Suppose \(p \geq C \cdot \log n/n\) and let \(A = A(G(n, p))\) and \(d = p(n-1)\). Then \(\|pJ - A\| = O(\sqrt{d})\) with probability at least \(1 - n^{-c}\). Here, \(J\) denotes the all-ones matrix.

For \(C \frac{\ln(n)}{n} \leq p \leq \frac{\ln(n)^{5/3}}{n}\), Feige and Ofek show that for all \(c > 0\) there is \(c' > 0\) such that condition \([i]\) of Lemma \(5\) with \(\gamma = c' \sqrt{d}\) holds with probability \(1 - n^{-c}\).

For the range \(\frac{\ln(n)^7}{n} \leq p \leq 1 - \frac{\ln(n)^7}{n}\), Coja-Oghlan [32], adapting the original proof by Füredi and Komlós [32], shows that

\[
\|pJ - A\| \leq (2 + o(1))\sqrt{np(1-p)}
\]

holds with probability \(1 - O(n^{-4})\). Note that we ask for a probability of \(1 - n^{-c}\) for a given \(c > 0\) but only for a concentration of \(O(\sqrt{d})\). Coja-Oghlan’s proof can be adapted to yield this.

For \(p \geq 1 - \frac{\ln(n)^{7}}{n}\), it is not hard to see that the desired concentration result holds in this range: For a graph \(G\) consider its complement graph \(\bar{G}\) := \(\langle \bar{V} \rangle \setminus E(G)\). Then

\[
\|pJ - A(G)\| = \|J - A(K_n) - (1-p)J + A(\bar{G})\| \leq \|J - A(K_n)\| + \|(1-p)J - A(\bar{G})\|.
\]

As \(\|J - A(K_n)\| = \|I\| = 1\) we can hence consider \(G(n, 1-p)\) instead and there show a concentration of \(O(\sqrt{mp})\). Thus, it suffices to prove Lemma \(7\) below.

Lemma 7. Let \(p \leq \frac{\ln(n)^7}{n}\). Then for all \(c > 0\) there is \(c' > 0\) such that \(\|pJ - A\| \leq c' \sqrt{n - \ln(n)^7}\) with probability at least \(1 - n^{-c}\).

Proof. By a simple argument (or, alternatively, the Gershgorin circle theorem) any eigenvalue \(\lambda\) of \(pJ - A\) satisfies \(|\lambda| \leq np + \max\deg(G)(1 - 2p) \leq \ln(n)^7 + \max\deg(G)\). It remains to show that with probability at least \(1 - n^{-c}\) all vertex degrees are at most \(c' \sqrt{n - \ln(n)^7}\) for some \(c' > 0\). This is done by a straightforward application of Chernoff bounds and a union bound.

\(\square\)

2.3 Simplicial Complexes and Cohomology

A (finite, abstract) simplicial complex \(X\) is a finite set system that is closed under taking subsets, i.e. \(F \subseteq G \in X\) implies \(F \in X\). The sets in \(X\) are called simplices or faces of \(X\). The dimension of a face \(F\) is \(\dim(F) := |F| - 1\). We denote the set of \(i\)-dimensional faces of \(X\) by \(X_i\). The dimension of \(X\) is the maximum dimension of any of its faces. The 0-dimensional faces are called vertices. Formally, these are singletons (one-element sets) but in this context we will usually identify the singleton \(\{v\}\) with its unique element \(v\).

A \(k\)-dimensional simplicial complex is pure if all maximal simplices in \(X\) have dimension \(k\). We define the degree of a face \(F\) as \(\deg(F) = |\{G \in X_k : F \subseteq G\}|\). The link of \(F\) in \(X\) is \(\text{lk}(F, X) := \{G \in X : F \cup G \in X, F \cap G = \emptyset\}\). We denote by \(K^k_n\) the complete \(k\)-dimensional complex on \(n\) vertices, i.e. \(K^k_n = \{F \subseteq [n] : |F| \leq k + 1\}\).

** Orientations and Incidence Numbers**

Throughout we assume that we have fixed a linear ordering on the vertex set \(V := X_0\) of \(X\), and we consider the faces of \(X\) with the orientations given by the order of their vertices. Formally, consider an \(i\)-simplex \(F = \{v_0, v_1, \ldots, v_i\} \in X_i\), where \(v_0 < v_1 < \ldots < v_i\). For an \((i - 1)\)-simplex \(G \in X_{i-1}\), we define the oriented incidence number \([F : G]\) by setting \([F : G] := (-1)^j\) if \(G \subseteq F\) and \(F \setminus G = \{v_j\}\), \(0 \leq j \leq i\), and \([F : G] := 0\) if \(G \not\subseteq F\). In particular, for every vertex \(v \in X_0\) and the unique empty face \(\emptyset \in X_{-1}\), we have \([v : \emptyset] = 1\).
Cohomology

Let X be a finite simplicial complex and let \mathbb{G} be an Abelian group (we will mostly be concerned with the cases $\mathbb{G} = \mathbb{Z}_2$ and $\mathbb{G} = \mathbb{R}$, respectively). We denote by $C^i(X; \mathbb{G})$ the group \mathbb{G}^{X_i} of functions from X_i to \mathbb{G}, which are called i-dimensional cochains of X with coefficients in \mathbb{G}. In particular, since \emptyset is the unique empty face of X, we have $C^{-1}(X; \mathbb{G}) \cong \mathbb{G}$. It is convenient to define $C^i(X; \mathbb{G}) := 0$ for $i < -1$ or $i > \dim X$. The characteristic functions e_F of faces $F \in X_i$ form a basis of $C^i(X; \mathbb{G})$. They are called elementary cochains.

The coboundary map $\delta_i : C^i(X; \mathbb{G}) \to C^{i+1}(X; \mathbb{G})$ is the linear map given by

$$(\delta_i f)(F) := \sum_{G \in X_i} [F : G] \cdot f(G)$$

for $f \in C^i(X; \mathbb{G})$, $-1 \leq i < \dim X$, and $\delta_i = 0$ otherwise.

It is an easy but central observation that the composition $\delta_i \circ \delta_{i-1} = 0$, which means that $B^i(X; \mathbb{G}) := \text{im} \delta_{i-1} \subseteq Z^i(X; \mathbb{G}) := \ker \delta_i$. The elements of $B^i(X; \mathbb{G})$ and $Z^i(X; \mathbb{G})$ are called i-dimensional coboundaries and cocycles, respectively. Since $B^i(X; \mathbb{G}) \subseteq Z^i(X; \mathbb{G})$, we can form the quotient group $H^i(X; \mathbb{G}) := Z^i(X; \mathbb{G})/B^i(X; \mathbb{G})$, the i-th (reduced) cohomology group of X with coefficients in \mathbb{G}.

2.4 Norms on Cochains and Expansion

We now describe a very general definition of expansion for simplicial complexes, which was introduced in [36] (with a slightly different normalization and under the name inverse (co)filling norm).

Let X be a finite simplicial complex. Assume that every cochain group $C^i(X; \mathbb{G})$ is equipped with a pseudonorm $\| \cdot \|$, taking real values and satisfying $\| f \| = \| - f \|$ and $\| f + g \| \leq \| f \| + \| g \|$ for all $f, g \in C^i(X; \mathbb{G})$. We will focus on the following two cases.

1. \mathbb{R}-cochains with weighted ℓ_2-norm: Assume that we are given a weight function w with nonnegative real values on the simplices of X. Define by $\langle f, g \rangle := \sum_{F \in X_i} w(F) f(F) g(F)$ a weighted inner product on $C^i(X; \mathbb{R})$. Observe that the inner products obtained in this way are characterized by the condition that the elementary cochains be pairwise orthogonal.

We then consider the corresponding weighted ℓ_2-norm $\| f \| := \| f \|_2 := \sqrt{\langle f, f \rangle}$.

2. \mathbb{Z}_2-cochains with weighted Hamming norm: Let w be as before and define the weighted Hamming norm on $C^i(X; \mathbb{Z}_2)$ by $\| f \| := \sum_{F \in X_i : f(F) = 1} w(F)$.

The idea is to define a notion of i-dimensional expansion that provides lower bounds for the norm of the coboundary $\delta_{i-1}(f) \in C^i(X; \mathbb{G})$ of $(i - 1)$-dimensional cochains $f \in C^{i-1}(X; \mathbb{G})$. However, we cannot define such a lower bound in terms of the norm $\| f \|$ of f, since the set $B^{i-1}(X; \mathbb{G})$ is always contained in the kernel of the coboundary operator $\delta = \delta_{i-1}$. Thus, the right comparison measure is the distance of a cochain f from this trivial part of the kernel. That is, we define, for $f \in C^{i-1}(X; \mathbb{G})$,

$$\| [f] \| := \min \{ \| f + \delta_{i-2} g \| : g \in C^{i-2}(X; \mathbb{G}) \}.$$

Coboundary Expansion for Arbitrary Coefficients

Suppose every cochain group $C^i(X; \mathbb{G})$ is equipped with a pseudonorm $\| \cdot \|$ as above. We say that X is ε-expanding in dimension i (with respect to \mathbb{G} and the given norm) if

$$\| \delta f \| \geq \varepsilon \cdot \| [f] \|$$

for all $f \in C^{i-1}(X; \mathbb{G})$. The best possible ε is called the i-dimensional expansion of X. Note that, in particular, $\tilde{H}^{i-1}(X; \mathbb{G}) = 0$ if X has i-dimensional expansion $\varepsilon > 0$.

9
For an infinite family of k-dimensional complexes $(X_n)_{n \in \mathbb{N}}$ (where k is fixed and independent of n) we say that the family (X_n) is \textit{expanding in dimension} i (with respect to G and the given norm) if the i-dimensional expansion of all X_n is bounded away from zero.

\mathbb{Z}_2-Coboundary Expansion

Now we focus on the case of \mathbb{Z}_2-coefficients. Define a weight function by $w(F) := 1/|X_i|$ for $F \in X_i$ (whenever $|X_i| > 0$). In this setting, the normalized Hamming weight of a \mathbb{Z}_2-cochain $f \in C^{i-1}(X; \mathbb{Z}_2)$ is just the number of faces in the support of f divided by the number of all $(i-1)$-faces of X.

If X is ε-expanding in dimension i with respect to this norm, we also say that X is \mathbb{Z}_2-\textit{coboundary ε-expanding} in dimension i.

Note that in the case $i = 1$ of graphs, there are just two 0-dimensional cochains, namely the constant functions 0 and 1 on the set $V = X_0$ of vertices. Moreover, a 0-dimensional cochain $f \in C^0(X; \mathbb{Z}_2)$ is in bijective correspondence with its support $S = \{v \in V : f(v) = 1\} \subseteq V$, and $\|[f]\| = \min(|S|, |V\setminus S|)$. Thus, 1-dimensional \mathbb{Z}_2-coboundary expansion corresponds precisely to the definition \textbf{1} of edge expansion discussed in the introduction.

A basic observation in this context is that complete complexes are \mathbb{Z}_2-coboundary expanding in all dimensions. This was observed independently by Gromov [36], Linial, Meshulam and Wallach [55, 61] and Newman and Rabinovich [62]:

Proposition 8. The complete complex K^n_k has i-dimensional \mathbb{Z}_2-coboundary expansion 1 for all $i \in \{0, 1, \ldots, k\}$.

From this, standard Chernoff bounds immediately imply that a.a.s., $X_k(n, p)$ is \mathbb{Z}_2-coboundary expanding in dimension k and $H^{k-1}(X_k(n, p); \mathbb{Z}_2) = 0$ if $p > C \log n/n$ for a suitable constant C. Much of the work in [55, 61] is devoted to refining this argument to obtain the optimal constant $C = k$ for the threshold.

Dotterrer and Kahle [23] prove results analogous to Proposition 8 for some other complexes, specifically for skeleta of crosspolytopes and for complete multipartite complexes. They also explicitly raise the question whether there is some higher-dimensional analogue of Cheeger’s inequality. The most straightforward attempt at such an inequality would be to relate \mathbb{Z}_2-coboundary expansion and eigenvalue gaps of higher-dimensional Laplacians, which we discuss next.

2.5 Matrices and their spectra

A symmetric real $(n \times n)$-matrix has a multiset of n real eigenvalues, called its \textit{spectrum}, and \mathbb{R}^n has an orthonormal basis of corresponding eigenvectors.

We recall the variational characterization of eigenvalues:

Theorem 9 (Courant-Fischer Theorem, see e.g. [44, Theorem 4.2.11]). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$, and let k be a given integer with $1 \leq k \leq n$. Then

$$
\lambda_k = \min_{w_1, w_2, \ldots, w_{n-k} \in \mathbb{R}^n} \max_{x \perp w_1, w_2, \ldots, w_{n-k}} \frac{\langle Mx, x \rangle}{\langle x, x \rangle}
$$

and

$$
\lambda_k = \max_{w_1, w_2, \ldots, w_{k-1} \in \mathbb{R}^n} \min_{x \perp w_1, w_2, \ldots, w_{k-1}} \frac{\langle Mx, x \rangle}{\langle x, x \rangle}.
$$

For a matrix M we denote its ℓ_2-norm by $\|M\| = \max_{x \neq 0} \|Mx\|/\|x\|$, which for a symmetric matrix M equals the in absolute value largest eigenvalue of M.

10
2.6 Higher-Dimensional Laplacians and Adjacency Matrices

We introduce generalizations of the graph Laplacians and the adjacency matrix for a \(k \)-dimensional complex in all dimensions \(0 \leq i \leq k - 1 \). Later on, we will only be concerned with these matrices in dimension \(k - 1 \).

Adjacency matrices

For a finite \(k \)-dimensional simplicial complex \(X \) and \(0 \leq i \leq k - 1 \) we define the adjacency matrix \(A_i = A_i(X) \) by

\[
(A_i(X))_{F,G} = \begin{cases}
-|[F \cup G : F][F \cup G : G]| & \text{if } F \sim G, \\
0 & \text{otherwise,}
\end{cases}
\]

where \(F, G \in X_i \) and we write \(F \sim G \) if \(F \) and \(G \) share a common \((i - 1)\)-face \(F \cap G \) and \(F \cup G \in X_{i+1} \). Figure 1 illustrates the case \(i = 1 \). An entry \(A_1(X)_{e,e'} \) is non-zero exactly if the two edges \(e \) and \(e' \) share a common vertex and the triangle \(e \cup e' \) is contained in \(X \). The sign of \(A_1(X)_{e,e'} \) is then determined by the orientations of the two edges.

![Figure 1: Signs of non-zero entries \(A_1(X)_{e,e'} \). The arrows represent the orientations of edges.](image)

Note that the matrix \(A_0(X) \) agrees with the adjacency matrix of the graph \((X_0, X_1)\) because \([\{u, v\} : u][\{u, v\} : v] = -1\) for all vertices \(u, v \in X_0 \). The motivation for the signs in higher dimensions will hopefully become clear later on.

Weighted Laplacians

Following the exposition in [43], we begin by defining a general weighted Laplacian. Suppose we are given a nonnegative weight function \(w \) on the faces of a finite simplicial complex \(X \) and that the spaces \(C^i(X; \mathbb{R}) \) are equipped with the weighted inner product and the corresponding weighted \(\ell_2 \)-norm as described above.

The elementary cochains \(e_F, F \in X_i \), form an orthogonal basis of \(C^i(X; \mathbb{R}) \). With respect to these bases, the coboundary map \(\delta_i : C^i(X; \mathbb{R}) \to C^{i+1}(X; \mathbb{R}) \) is given by the following \(|X_{i+1}| \times |X_i|-\text{matrix (for which we abuse notation and again use the symbol } \delta)\):

\[
(\delta_i(X))_{F,G} = \begin{cases}
[F : G] & \text{if } G \subsetneq F, \\
0 & \text{otherwise.}
\end{cases}
\]

Consider the transpose map \(\delta^*_i : C^{i+1}(X; \mathbb{R}) \to C^i(X; \mathbb{R}) \) of \(\delta_i(X) \) with respect to the given inner product. This transpose is determined by the condition that \(\langle \delta^*_i f, g \rangle = \langle f, \delta_i g \rangle \) for all \(f \in C^{i+1}(X; \mathbb{R}) \) and \(g \in C^i(X; \mathbb{R}) \). More explicitly,

\[
(\delta_i^* f)(G) = \sum_{F \in X_{i+1}} \frac{w(F)}{w(G)} [F : G] f(F)
\]

for \(f \in C^{i+1}(X; \mathbb{R}) \) and \(G \in X_i \).
For example, in the case of unit weights \(w(F) = 1 \) for all \(F \in X \), we get the standard inner product on \(C^i(X; \mathbb{R}) \), and \(\delta_i^* = \partial_{i+1} \) coincides with the usual boundary map given on elementary cochains by \(\partial_{i+1}(e_F) = \sum_{G \in X_i} [F : G] e_G \), \(F \in X_{i+1} \).

In general, for arbitrary weights \(w \) on \(X \), we define the weighted Laplacian by

\[
\mathcal{L}^\text{down}_i := \partial_{i-1} \delta^*_i, \quad \mathcal{L}^\text{up}_i := \delta^*_i \partial_i, \quad \mathcal{L}_i := \mathcal{L}^\text{down}_i + \mathcal{L}^\text{up}_i.
\]

Note that all three maps \(\mathcal{L}^\text{down}_i \), \(\mathcal{L}^\text{up}_i \), \(\mathcal{L}_i \) are self-adjoint and positive semidefinite (with respect to the given weighted inner product) linear operators on \(C^i(X; \mathbb{R}) \).

In general, setting \(\mathcal{H}_i = \mathcal{H}_i(X; \mathbb{R}) := \ker \mathcal{L}_i = \ker \mathcal{L}^\text{down}_i \cap \ker \mathcal{L}^\text{up}_i = \ker \delta^*_i \cap \ker \partial_i \), one gets a Hodge decomposition (4) of \(C^i(X; \mathbb{R}) \) into pairwise orthogonal subspaces

\[
C^i(X; \mathbb{R}) = \mathcal{H}_i \oplus (\partial^i(X; \mathbb{R}) \oplus \im(\delta^*_i)) \quad \text{(see [25, 43])},
\]

in particular, \(\mathcal{H}_i \cong H^i(X; \mathbb{R}) \).

Spectra of \(\mathcal{L}^\text{up}_i \) and Spectral Expansion

Observe that, trivially, \(B^i(X; \mathbb{R}) \subseteq \ker \mathcal{L}^\text{up}_i \). Thus, every \(f \in B^i(X; \mathbb{R}) \) is an eigenvector of \(\mathcal{L}^\text{up}_i \) with eigenvalue zero. We call these the trivial eigenvectors of \(\mathcal{L}^\text{up}_i \) and the trivial part of its spectrum. Thus, the nontrivial eigenvalues of \(\mathcal{L}^\text{up}_i \) are, by definition, the eigenvalues of the restriction of \(\mathcal{L}^\text{up}_i \) to the orthogonal complement (with respect to the given weighted inner product) \((B^i(X; \mathbb{R}))^\perp \).

By the variational definition of eigenvalues, the minimal nontrivial eigenvalue of \(\mathcal{L}^\text{up}_i \) is given by

\[
\min_{f \perp B^i(X; \mathbb{R})} \frac{\langle \mathcal{L}^\text{up}_i f, f \rangle}{\langle f, f \rangle} = \min_{f \perp B^i(X; \mathbb{R})} \frac{\|\delta_i f\|^2}{\|f\|^2}.
\]

Thus, we see that the minimal nontrivial eigenvalue of \(\mathcal{L}^\text{up}_i \) is at least \(\varepsilon^2 \) iff \(X \) has \((i+1) \)-dimensional expansion at least \(\varepsilon \) with respect to the given weighted \(\ell_2 \)-norms on real cochains. In this case, we will also say that \(X \) is spectrally expanding in dimension \(i \).

We focus on the operator \(\mathcal{L}^\text{up}_i \), more precisely we consider \(\mathcal{L}^\text{up}_{k-1} \) for \(k \)-dimensional complexes because it corresponds to to coboundary expansion with respect to real coefficients and the \(\ell_2 \)-norm.

The spectra of the other two maps are related: By the Hodge decomposition (4) the spectrum of \(\mathcal{L}_i \) is determined by the spectra of \(\mathcal{L}^\text{down}_i \) and \(\mathcal{L}^\text{up}_i \). For any linear map \(A \), the spectra of \(AA^* \) and \(A^*A \) differ only in the multiplicity of 0; in particular, this holds for the spectra of \(\mathcal{L}^\text{up}_i \) and \(\mathcal{L}^\text{down}_{i+1} \). Nevertheless, as we cover only \(\mathcal{L}^\text{up}_{k-1} \) for \(k \)-dimensional complexes, our results do not yield corresponding statements on \(\mathcal{L}_{k-1} \).

Combinatorial Laplacians

The combinatorial Laplacian \(L_i = \mathcal{L}^\text{down}_i + \mathcal{L}^\text{up}_i \) corresponds to the special case of the standard inner product \(\langle f, g \rangle = \sum_{f \in X_i} f(F)g(F) \), that is, the case of unit weights \(w(F) = 1 \) for all \(F \in X \). Thus, \(\mathcal{L}^\text{up}_i = \mathcal{L}^\text{up}_i(X) = \partial_{i+1} \delta_i \).

Recall that the matrix corresponding to the coboundary map \(\delta_i \) with respect to the orthogonal basis of elementary cochains is, by abuse of notation, also denoted by \(\delta_i = \delta_i(X) \), and its transpose \(\delta_i^T \) corresponds to the boundary map \(\partial_{i+1} \). The combinatorial Laplacian \(\mathcal{L}^\text{up}_i \) can be expressed as the matrix \(\delta_i^T \delta_i \).

We can now motivate the signs in the definition of the adjacency matrix \(A_i(X) \): Recall that for a graph \(G \) the combinatorial Laplacian satisfies \(L(G) = D(G) - A(G) \). If we let \(D_i(X) \) denote the diagonal matrix with entry \(D_{i,F,F} = |\{H \in X_{i+1} : F \subset H\}| \) for \(F \in X_i \), we also have \(\mathcal{L}^\text{up}_i(X) = D_i(X) - A_i(X) \).
Normalized Laplacians

Suppose that X is a pure k-dimensional simplicial complex. The normalized Laplacian $\Delta_i = \Delta^{\text{down}}_i + \Delta^{\text{up}}_i$ is the special case of the weighted Laplacian obtained by taking the weight function $w(F) := \deg(F)$. That is, the corresponding weighted inner product is

$$\langle f, g \rangle = \sum_{F \in \mathcal{X}_i} \deg(F)f(F)g(F).$$

Let δ_i^* be the adjoint of δ_i with respect to this weighted inner product. Thus,

$$(\delta_i^*)'(G) = \sum_{F \in \mathcal{X}_{i+1}} \frac{\deg(F)}{\deg(G)} [F : G]f(G).$$

Note that we have $\deg(F) > 0$ for every $F \in X$, since we assume that X is pure. The normalized Laplacian is then $\Delta_i^{\text{up}} = \Delta_i^{\text{up}}(X) = \delta_i^*\delta_i$.

With respect to the basis of elementary cocycles, the map Δ_i^{up} corresponds to the matrix $W_i^{\text{-1}}\delta_i^{\text{adj}}W_{i+1}\delta_i$, where $W_i(X)$ denotes the diagonal matrix with entry $W_i,F,F = \deg(F)$. As $W_{k-1} = D_{k-1}$ and $W_k = I$, for $i = k-1$ we can write $\Delta_i^{\text{up}} = \Delta_i^{\text{up}} = I - D_{k-1}^{-1}K_{k-1}$.

Eigenvalues of the Complete Complex

As an example we consider the spectra of the three matrices $L^{\text{up}}_{k-1}(K_n^k)$, $\Delta^{\text{up}}_{k-1}(K_n^k)$ and $A_{k-1}(K_n^k)$ for the complete complex K_n^k. First recall the following well-known (and easily verifiable) lemma:

Lemma 10. For a complex X with complete $(k-1)$-skeleton, the space $B^{k-1}(X) = \text{im} \delta_{k-2}$ has dimension $\binom{n-1}{k-1}$. A basis is given by $\{\delta_{k-2}e_F : 1 \notin F \in \binom{[n]}{k-1}\}$. For the complete complex K_n^k, the space $\text{im} \delta_{k-1}^*(K_n^k)$ is $\binom{n-1}{k}$-dimensional and has $\{\delta_{k-1}^*e_F : 1 \in F \in \binom{[n]}{k+1}\}$ as a basis.

Lemma 11. The eigenvalues of the combinatorial Laplacian $L^{\text{up}}_{k-1}(K_n^k)$ are 0 with multiplicity $\binom{n-1}{k-1}$ and n with multiplicity $\binom{n-1}{k}$. The normalized Laplacian $\Delta^{\text{up}}_{k-1}(K_n^k)$ has eigenvalues 0 with multiplicity $\binom{n-1}{k-1}$ and $\frac{n}{n-k}$ with multiplicity $\binom{n-1}{k}$. The eigenvalues of $A_{k-1}(K_n^k)$ are $n-k$ with multiplicity $\binom{n-1}{k-1}$ and $-k$ with multiplicity $\binom{n-1}{k}$.

Proof. Because K_n^k is $(n-k)$-regular, it suffices to consider the spectrum of $L^{\text{up}}_{k-1}(K_n^k)$. The following equality is contained implicitly in [33] and follows from a straightforward calculation using the matrix representations of the Laplacians:

$$L^{\text{up}}_{k-1}(K_n^k) + L^{\text{down}}_{k-1}(K_n^k) = nI.$$

Any non-zero element of $\ker L^{\text{down}}_{k-1}(K_n^k) = \ker \delta_{k-2}(K_n^k) = \text{im} \delta_{k-1}^*(K_n^k)$ is hence an eigenvector of L^{up}_{k-1} with eigenvalue n. Naturally, any non-zero element of $\ker L^{\text{up}}_{k-1}(K_n^k) = Z^{k-1}(K_n^k) = B^{k-1}(K_n^k)$ is an eigenvector of L^{up}_{k-1} with eigenvalue 0. By Lemma 10, $\text{im} \delta_{k-1}^*(K_n^k)$ and $B^{k-1}(K_n^k)$ have dimensions $\binom{n-1}{k-1}$ and $\binom{n-1}{k}$, respectively. As these add up to $\binom{n}{k}$, the dimension of $C^{k-1}(K_n^k)$, we have determined the complete spectrum. \qed

3 Garland’s Estimate Revisited

In [33] Garland studies the normalized Laplacian $\Delta^{\text{up}}_i(X)$. His main result regards a conjecture of Serre’s on the cohomology of certain groups. As a technical lemma, he proves a bound for the nontrivial eigenvalues of $\Delta^{\text{up}}_i(X)$ in terms of the eigenvalues of the Laplacian on links of lower-dimensional faces (see also [3] for a very clear exposition).
We state the result for the case of $\Delta_{k-1}^{up}(X)$ and the links of $(k-2)$-dimensional faces $F \in X_{k-2}$. In this case, $\text{lk} F = \text{lk}(F, X)$ is a graph and the normalized Laplacian $\Delta_0^{up}(\text{lk} F)$ agrees with the usual normalized graph Laplacian $\Delta(\text{lk} F)$. Furthermore, we show an analogous result for the generalized adjacency matrix $A_{k-1}(X)$.

For a combinatorial application of Garland’s ideas (to clique complexes of graphs) see [2]. Garland’s estimate was subsequently further strengthened and extended. In particular, Žuk [69] proved that if a 2-dimensional complex X satisfies $\lambda_2(\Delta(\text{lk}(v, X))) > 1/2$ for all vertex links, then the fundamental group of X has Kazhdan’s Property (T).

Normalized Laplacian

Theorem 12 ([34], see also [8] Theorem 1.5,1.6). Let X be a pure k-dimensional complex and let $\Delta_{k-1}^{up} = \Delta_{k-1}^{up}(X)$ be its normalized Laplacian. Denote by \langle , \rangle the weighted inner product on $C^{k-1}(X; \mathbb{R})$ that is defined by $\langle f, g \rangle = \sum_{F \in X_{k-1}} \text{deg}(F) f(F) g(F)$. Assume that for all $F \in X_{k-2}$

$$
\lambda_{\text{min}} \leq \lambda_2(\Delta(\text{lk} F)) \leq \lambda_{n-k+1}(\Delta(\text{lk} F)) \leq \lambda_{\text{max}}.
$$

Then for all $f \in B^{k-1}(X)^\perp$ (where the orthogonal complement is taken with respect to \langle , \rangle)

$$(1 + k\lambda_{\text{min}} - k) \langle f, f \rangle \leq \langle \Delta_{k-1}^{up} f, f \rangle \leq (1 + k\lambda_{\text{max}} - k) \langle f, f \rangle.$$

Hence, all nontrivial eigenvalues of Δ_{k-1}^{up} on $B^{k-1}(X)^\perp$ lie in $[1 + k\lambda_{\text{min}} - k, 1 + k\lambda_{\text{max}} - k]$.

We remark that Garland only states the lower bound. The upper bound follows directly from the proof, which we reproduce here in our notation. The main idea of the proof is to present the normalized Laplacian as a sum of matrices each of which has non-zero entries only on the link of some $(k-2)$-face. These matrices then correspond to the Laplacians of the links.

For a pure k-dimensional simplicial complex X, fix a face $F \in X_{k-2}$ of dimension $k-2$. Let ρ_F be the diagonal $|X_{k-1}| \times |X_{k-1}|$-matrix defined by

$$(\rho_F)_{G,H} = \begin{cases} 1 & \text{if } G = H \text{ and } F \subset G, \\ 0 & \text{otherwise}. \end{cases}$$

We set $\Delta_{k-1}^{up,F}(X) := \rho_F \Delta_{k-1}^{up}(X) \rho_F$ and for $f \in C^{k-1}(X)$ furthermore define $f_F \in C^0(\text{lk} F)$ by $f_F(\{u\}) = [F \cup \{u\}] f(F \cup \{u\})$.

Lemma 13. Let X be a pure k-dimensional complex.

a) $\sum_{F \in X_{k-2}} \Delta_{k-1}^{up,F}(X) = \Delta_{k-1}^{up}(X) + (k-1)I$.

b) For $u, v \in V(\text{lk} F)$ let $F_u = F \cup \{u\}$ and $F_v = F \cup \{v\}$. Then $(\Delta_{k-1}^{up,F}(X))_{F_u,F_v} = [F_u:F][F:F](\Delta(\text{lk} F))_{u,v}$. So, for $f \in C^{k-1}(X)$, $\langle \Delta_{k-1}^{up,F}(X) f, f \rangle = \langle \Delta(\text{lk} F) f_F, f_F \rangle$.

c) If $f \in B^{k-1}(X)^\perp$ then $f_F \in 1^\perp$.

Proof.

a) Observe that $\Delta_{k-1}^{up,F}(X)$ is obtained by replacing by 0 all entries of $\Delta_{k-1}^{up}(X)$ that are contained in a row or column corresponding to some G with $F \nsubseteq G$. The non-zero entries of $\Delta_{k-1}^{up}(X)$ lie on the diagonal or correspond to faces $G, H \in X_{k-1}$ that share a common $(k-2)$-face and for which $G \cup H \in X_k$. Hence, every non-zero entry $(\Delta_{k-1}^{up}(X))_{G,H}$ with $G \neq H$ is contained in exactly one summand and the diagonal entries, which are 1, are each contained in exactly k summands.
b) First consider \(u \neq v \) with \(F \cup \{u,v\} \in X \). Straightforward calculations show that \(\deg_X(F_u) = \deg_{\text{LK}} F(u) \) and that furthermore \([F_u, v : F_u][F_u, v : F] = -[F_u : F][F_v : F] \) where \(F_u, v \) stands for \(F \cup \{u,v\} \). Hence,

\[
(\Delta_{k-1}^{up,F}(X))_{F_u, F_v} = \frac{[F_u, v : F_u][F_u, v : F]}{\deg_X(F_u)} = -\frac{[F_u : F][F_v : F]}{\deg_{\text{LK}} F(u)} = [F_u : F][F_v : F](\Delta(\text{lk} F))_{u,v}.
\]

If \(F \cup \{u, v\} \notin X \), the corresponding entry is 0 in both matrices. For the diagonal entries we get

\[
(\Delta_{k-1}^{up,F}(X))_{F_u, F_u} = 1 = [F_u : F][F_u : F]\Delta(\text{lk} F)_{u,u}.
\]

c) Let \(f \in B^{k-1}(X)^\perp \). Then \(\sum_{G \in X_{k-1}} \deg(G)f(G)[G : F] = \langle f, \delta_{k-2}\epsilon_F \rangle = 0 \) and therefore

\[
\langle f, 1 \rangle = \sum_{v \in V(\text{lk} F)} \deg_{\text{lk}} F(v)f(\{v\}) = \sum_{v \in V(\text{lk} F)} \deg(F_v)[F_v : F]f(F_v) = 0.
\]

The statements of Lemma \[13\] can easily be combined to prove Garland’s estimate:

Proof of Theorem \[12\] Let \(f \in B^{k-1}(X)^\perp \). Then

\[
\langle \sum_{F \in X_{k-2}} \Delta_{k-1}^{up,F}(X)f, f \rangle = \sum_{F \in \mathcal{F}_f} \langle \Delta(\text{lk} F)f, f \rangle,
\]

where \(\mathcal{F}_f = \{F \in X_{k-2} : F \subseteq G \text{ for some } G \text{ with } f(G) \neq 0\} \). Now, since \(f \in B^{k-1}(X)^\perp \), we have \(f_F \in 1^\perp \) and \(f_F \neq 0 \) for \(F \in \mathcal{F}_f \). As furthermore \(\sum_{F \in \mathcal{F}_f} \langle f_F, f_F \rangle = \langle f, f \rangle \),

\[
k\lambda_{\min}(f, f) \leq \langle \sum_{F \in X_{k-2}} \Delta_{k-1}^{up,F}(X)f, f \rangle \leq k\lambda_{\max}(f, f).
\]

By Lemma \[13\] we have furthermore

\[
(\Delta_{k-1}^{up,F}(X)f, f) = \langle \sum_{F \in X_{k-2}} \Delta_{k-1}^{up,F}(X)f, f \rangle - (k-1)(f, f),
\]

which concludes the proof. \(\square \)

Adjacency Matrix

We now turn to the generalized adjacency matrix \(A_{k-1}(X) \). The same methods as above can be applied to achieve a result of similar nature (Proposition \[16\]). However, this only enables us to cover vectors from \(B^{k-1}(X)^\perp \). Controlling the behaviour on this space sufficed for the normalized Laplacian, where \(B^{k-1}(X) \) is always a subspace of the eigenspace of zero. For the generalized adjacency matrix we know much less about its eigenspaces, in particular we do not know of any trivial eigenvalues.

This is analogous to the situation for graphs, where \(1 \), the all-ones vector, which is known to be the first eigenvector of the Laplacian (with eigenvalue 0), is not necessarily an eigenvector of the adjacency matrix. In \[25\] Feige and Ofek, considering the adjacency matrix of random graphs \(G(n, p) \), show that for \(p \) large enough the first eigenvector can in some sense be replaced by \(1 \). Following their strategy, we show that controlling the behaviour of the generalized adjacency matrix \(A_{k-1}(X) \) on the two spaces \(B^{k-1}(X) \) and \(B^{k-1}(X)^\perp \) suffices to give concentration results for the spectrum of \(A_{k-1}(X) \).

The results of this section together will yield the following theorem which can be considered as an analogue of Garland’s Theorem \[12\] for the generalized adjacency matrix \(A_{k-1}(X) \).
Theorem 14. Let X be a k-dimensional simplicial complex with n vertices and complete $(k - 1)$-skeleton and let $A_{k-1} = A_{k-1}(X)$ be its generalized adjacency matrix. Fix a positive value d and let $u = (1/\sqrt{n-k+1}) \mathbf{1}$. Suppose that we have for all $F \in X_{k-2}$:

(i) $|\langle A(lk F)u, u \rangle - d| \leq f(n)$,

(ii) $|\langle A(lk F)u, w \rangle| \leq g(n)$ for all $w \perp \mathbf{1}$ with $\|w\| = 1$ and

(iii) $|\langle A(lk F)w, w \rangle| \leq h(n)$ for all $w \perp \mathbf{1}$ with $\|w\| = 1$.

Let $\varphi(n) = f(n) + g(n) + h(n)$. Then:

(a) $|\langle A_{k-1}b, b \rangle - d| \leq k \cdot \varphi(n)$ for all $b \in B^{k-1}(X)$ with $\|b\| = 1$,

(b) $|\langle A_{k-1}b, z \rangle| \leq k \cdot \varphi(n)$ for all $z \in B^{k-1}(X)$ and $b \in B^{k-1}(X)$ with $\|b\| = \|z\| = 1$ and

(c) $|\langle A_{k-1}z, z \rangle| \leq k \cdot h(n)$ for all $z \in B^{k-1}(X)$ with $\|z\| = 1$.

Hence, the largest \((n-1)\) \(_{k-1}\) eigenvalues of A_{k-1} lie in the interval $[d - k \cdot \varphi(n), d + 2k \cdot \varphi(n) + kh(n)]$, and the remaining \((n-1)\) \(_{k-1}\) eigenvalues lie in the interval $[-k(\varphi(n) + h(n)), kh(n)]$.

The following lemma explains the connection of Conclusions \((a)\), \((b)\) and \((c)\) with the spectrum of $A_{k-1}(X)$. It is a generalization of [20] Lemma 2.1, which gives the a corresponding statement for graphs and deals with a single vector u, here replaced by the subspace \mathcal{B}, and is then used with $u = \frac{1}{\sqrt{n-k+1}} \mathbf{1}$. We will use $\mathcal{B} = B^{k-1}(X)$. Note that $B^{k-1}(X) = B^{k-1}(K^n_k)$ if X has a complete $(k - 1)$-skeleton.

Lemma 15. Let X be a k-dimensional simplicial complex with n vertices and complete $(k - 1)$-skeleton, let $A_{k-1} = A_{k-1}(X)$ be its generalized adjacency matrix and let \mathcal{B} be an \((n-1)\) \(_{k-1}\)-dimensional subspace of $C^{k-1}(X)$. Suppose we have:

(i) $0 \leq f_1(n) \leq \langle A_{k-1}b, b \rangle \leq f_2(n)$ for all $b \in \mathcal{B}$ with $\|b\| = 1$,

(ii) $|\langle A_{k-1}b, z \rangle| \leq g(n)$ for all $z \in \mathcal{B}^\perp$ and $b \in \mathcal{B}$ with $\|b\| = \|z\| = 1$ and

(iii) $|\langle A_{k-1}z, z \rangle| \leq h(n)$ for all $z \in \mathcal{B}^\perp$ with $\|z\| = 1$.

Then the largest \((n-1)\) \(_{k-1}\) eigenvalues of A_{k-1} lie in the interval $[f_1(n), f_2(n) + g(n) + h(n)]$, and the remaining \((n-1)\) \(_{k-1}\) eigenvalues lie in the interval $[-(g(n) + h(n)), h(n)]$.

Proof of Lemma 15. Write $A = A_{k-1}$. Let v be an arbitrary unit vector. Then there are unit vectors $b \in \mathcal{B}, z \in \mathcal{B}^\perp$ and $-1 \leq \alpha, \beta \leq 1$ such that $v = \alpha b + \beta z$ and $\alpha^2 + \beta^2 = 1$. Because A is symmetric, we get

\[\langle Av, v \rangle = \alpha^2 \langle Ab, b \rangle + 2\alpha \beta \langle Ab, z \rangle + \beta^2 \langle Az, z \rangle. \]

Using \((i)\) \((ii)\) and \((iii)\) as well as $\alpha, \beta \leq 1/2$ and $0 \leq \alpha, \beta \leq 1$, we can conclude that

\[-g(n) - h(n) \leq \langle Av, v \rangle \leq f_2(n) + g(n) + h(n). \]

Hence, all eigenvalues of A are contained in $[-g(n) - h(n), f_2(n) + g(n) + h(n)]$. Now, let $\mu_1 \leq \mu_2 \leq \ldots \leq \mu_{n-1}$ be the eigenvalues of A. Applying \((i)\) and \((iii)\) we get

\[\mu_{n-1} \leq \max_{z \in \mathcal{B}^\perp, \|z\| = 1} \langle Az, z \rangle \leq h(n) \quad \text{and} \quad \mu_{n-1} + 1 \geq \min_{b \in \mathcal{B}, \|b\| = 1} \langle Ab, b \rangle \geq f_1(n), \]

by the variational characterization of eigenvalues (Theorem 9), since $\dim \mathcal{B}^\perp = \binom{n-1}{k}$.

The proof of Theorem 14 makes up the remainder of this section and is divided into two parts. We first deal with Conclusion \((c)\) and then turn to Conclusions \((a)\) and \((b)\).
Conclusion \([\textbf{c}]\) - Behaviour on \(B^{k-1}(X)\)

We address Conclusion \([\textbf{c}]\) with the same methods that we used to prove Garland’s Theorem \([\textbf{12}]\).

Proposition 16. Let \(X\) be a \(k\)-dimensional complex and let \(A_{k-1} = A_{k-1}(X)\) be its generalized adjacency matrix. Assume that for all \(F \in X_{k-2}\) and for all \(w \in C^0(\text{lk } F)\) with \(w \perp 1\)

\[|\langle A(\text{lk } F)w, w \rangle| \leq h(n)\langle w, w \rangle.\]

Then for all \(z \in B^{k-1}(X)\) (where the orthogonal complement is taken with respect to the standard, non-weighted inner product)

\[|\langle A_{k-1}z, z \rangle| \leq k \cdot h(n)\langle z, z \rangle.\]

Proof. For any face \(F \in X_{k-2}\) set \(A^{F}_{k-1} := \rho_F A_{k-1} \rho_F\), the matrix obtained from \(A_{k-1}\) by replacing all rows and columns corresponding to \((k-1)\)-faces not containing \(F\) by all-zero rows/columns. Similar as in Lemma \([\textbf{13}]\), straightforward calculations show:

a) \(\sum_{F \in X_{k-2}} A^{F}_{k-1} = A_{k-1}\),

b) \((A^{F}_{k-1})_{F \cup \{u\}, F \cup \{v\}} = [F \cup \{u\} : F][F \cup \{v\} : F]A(\text{lk } F)_{u,v}\) for \(F \in X_{k-2}\) and \(u, v \in V(\text{lk } F)\) and hence \((A^{F}_{k-1}1, f) = \langle A(\text{lk } F)F, f \rangle\) for any \(f \in C^{k-1}(X)\).

As \(z \in B^{k-1}(X)\) implies \(z_F \in 1^d\) also with respect to the non-weighted inner product, this proves the proposition:

\[|\langle A_{k-1}z, z \rangle| = |\sum_{F \in X_{k-2}} A^{F}_{k-1}z, z \rangle| \leq \sum_{F \in X_{k-2}} |\langle A(\text{lk } F)z_F, z_F \rangle| \leq k \cdot h(n)\langle z, z \rangle.\]

\[\square\]

As explained above, in contrast to the Laplacian, for the adjacency matrix we are also interested in the behaviour on \(B^{k-1}(X)\). For this space, we can not apply a proof similar to the one above because \(f \in B^{k-1}(X)\) does not imply that \(f^F\) is constant for every \(F \in X_{k-2}\). (For a \(k\)-dimensional complex with complete \((k-1)\)-skeleton, the basis vectors \(\delta_{k-2}e_F\) are a simple counterexample.)

Conclusions \([\textbf{a}]\) and \([\textbf{b}]\) - Behaviour on \(B^{k-1}(X)\)

For \(b \in B^{k-1}(X)\) we have \(A_{k-1}(X)b = D_{k-1}(X)b\). If the complex \(X\) was regular, i.e. all \((k-1)\)-faces would have the same degree \(d\), \(B^{k-1}(X)\) would be a subspace of the eigenspace of \(d\).

The random complex \(X^F(n,p)\) is not regular but with high probability the degrees of all \((k-1)\)-faces lie close to the expected average degree \(d = p(n-1)\). For an arbitrary complex we can fix any positive value \(d\) and study the divergences of the degrees from \(d\) by considering the diagonal matrix \(E(X) = D_{k-1}(X) - dI\) which has entries \(E(X)_{F,F} = \text{deg}_X(F) - d\). Then \(A_{k-1}(X)b = E(X)b + db\) for \(b \in B^{k-1}(X)\).

It will turn out that our main task is to control the behaviour of \(\|E(X)b\|\) for all \(b \in B^{k-1}(X)\). We manage to reduce this to a question on the links of \((k-2)\)-faces: Proposition \([\textbf{17}]\) relates \(\|E(X)b\|\) for every \(b \in B^{k-1}(X)\) to the values \(\|E(X)\delta_{k-2}e_F\|\) for \(F \in X_{k-2}\), to the behaviour of \(E(X)\) on the coboundaries of elementary cochains. These values in turn match the values \(\|E(\text{lk } F)1\|\) on the corresponding links.

Proposition 17. Let \(X\) be a \(k\)-dimensional complex with vertex set \([n]\) and complete \((k-1)\)-skeleton. Fix some positive value \(d\) and let \(E = E(X) = D_{k-1}(X) - dI\). Assume that for all \(F \in X_{k-2}\) we have

\[\|E\delta e_F\| \leq f(n)\|\delta e_F\|.\]

Then for all \(b \in B^{k-1}(X)\)

\[\|Eb\| \leq k \cdot f(n)\|b\|.\]
Remark 18. Proposition 17 also holds if E is replaced by any diagonal $|X_{k-1}| \times |X_{k-1}|$-matrix.

The proof of Proposition 17 is deferred to the end of this section. Here is how we use it to address Conclusions (a) and (b).

Proposition 19. Let X be a k-dimensional simplicial complex with n vertices and complete $(k-1)$-skeleton. Fix some positive value d and suppose that we have

$$\sum_{v \in V(\mathcal{lk} F)} (\deg(\mathcal{lk} F)(v) - d)^2 = \|E(\mathcal{lk} F)\|_2^2 \leq f(n)^2(n-k+1)$$

for all $F \in X_{k-2}$. Then

(i) $|\langle A_{k-1} b, b \rangle - d| \leq k \cdot f(n)$ for all $b \in B^{k-1}(X)$ with $\|b\| = 1$ and

(ii) $|\langle A_{k-1} b, z \rangle| \leq k \cdot f(n)$ for all $b \in B^{k-1}(X)$, $z \in B^{k-1}(X)^\perp$ with $\|b\| = \|z\| = 1$.

Proof. As $\deg(F \cup \{v\}) = \deg \mathcal{lk}_F(v)$ for $v \notin F$, we have

$$\|E\delta e\|^2 = \sum_{H \supset F}(\deg(H) - d)^2 = \sum_{v \in F}(\deg \mathcal{lk}_F(v) - d)^2 \leq f(n)^2(n-k+1).$$

By Proposition 17 we hence have $\|E b\| \leq k \cdot f(n)\|b\|$ for all $b \in B^{k-1}(X)$. Now, let $b \in B^{k-1}(X)$ and $z \in B^{k-1}(X)^\perp$. As $A_{k-1} b = D_{k-1} b = db + Eb$, we get

$$|\langle A_{k-1} b, b \rangle - d\|b\|^2| \leq \|b\| \cdot \|E b\| \leq k \cdot f(n)\|b\|^2$$

and

$$|\langle A_{k-1} b, z \rangle| \leq |\langle E b, z \rangle| \leq \|z\| \cdot \|E b\| \leq k \cdot f(n)\|z\|\|b\|.$$

To conclude the proof of Theorem 14 we are missing a small lemma:

Lemma 20. Let G be a graph with n vertices with adjacency matrix $A = A(G)$ and let $u = \frac{1}{\sqrt{n}}1$. Fix a positive value d. Assume that

(i) $|\langle Au, u \rangle - d| \leq f(n),$

(ii) $|\langle Au, w \rangle| \leq g(n)$ for all $w \perp 1$ with $\|w\| = 1$ and

(iii) $|\langle Aw, w \rangle| \leq h(n)$ for all $w \perp 1$ with $\|w\| = 1$.

Then $\|E(G)1\|^2 = \sum_{v \in V}(\deg(v) - d)^2 \leq (f(n) + g(n) + h(n))^2n$.

Proof. We have $\|E(G)1\| = \|(\frac{d}{n}J - A)1\| \leq \|(\frac{d}{n}J - A)\| \cdot \|1\|$ and the conditions above imply $\frac{d}{n}J - A \leq f(n) + g(n) + h(n)$. This can be seen by arguments similar to the ones used in Lemma 5.

Proof of Proposition 17

The proof of Proposition 17 is based on the observations in the following lemma. Its proof will use the following simple consequence of the Cauchy-Schwarz inequality:

$$\left(\sum_{i \in I} a_i \right)^2 \leq |I| \sum_{i \in I} a_i^2. \quad (5)$$
Lemma 21. Let X be a k-complex with vertex set $[n]$ and complete $(k-1)$-skeleton and let $b \in B^{k-1}(X)$. For every $(k-2)$-face $F \in X_{k-2}$ define

$$h_b(F) := \sum_{v \not\in F} [F \cup \{v\} : b(F \cup \{v\})].$$

Then

a) $b(H) = \frac{1}{n} \sum_{F \subset H, F \in X_{k-2}} [H : F] h_b(F)$ for $H \in X_{k-1}$,

b) $\langle Eb, Eb \rangle \leq \frac{k}{n^2} \sum_{F \in X_{k-2}} h_b(F)^2 \langle E\delta e_F, E\delta e_F \rangle$,

c) $\sum_{F \in X_{k-2}} h_b(F)^2 \leq k(n-k+1)(b,b)$.

Proof. a) As X has a complete $(k-1)$-skeleton, we have $b \in B^{k-1}(X) = B^{k-1}(K_n^k)$ and $\delta_{k-1}(K_n^k)b = 0$. Thus, for any $H \in X_{k-1}$ and $v \not\in H$:

$$0 = (\delta_{k-1}(K_n^k)b)(H \cup \{v\}) = [H \cup \{v\} : H] b(H) + \sum_{F \subset H} [H \cup \{v\} : F \cup \{v\}] b(F \cup \{v\}).$$

Note that $-[H \cup \{v\} : H][H \cup \{v\} : F \cup \{v\}] = [H : F][F \cup \{v\} : F]$. Thus, we can rearrange:

$$b(H) = -[H \cup \{v\} : H] \sum_{F \subset H} [H \cup \{v\} : F \cup \{v\}] b(F \cup \{v\}) = \sum_{F \subset H} [H : F][F \cup \{v\} : F] b(F \cup \{v\}).$$

Summing over all $v \not\in H$ and adding additional multiples of $b(H)$, we get

$$n \cdot b(H) = \sum_{v \not\in H} \sum_{F \subset H} [F : F\cup \{v\}] b(F \cup \{v\}) + k \cdot b(H)$$

$$= \sum_{F \subset H} [H : F] \sum_{v \not\in F} [F \cup \{v\} : F] b(F \cup \{v\}) = \sum_{F \subset H} [H : F] h_b(F).$$

b) By a) and inequality [3] and because $\langle E\delta e_F, E\delta e_F \rangle = \sum_{H \supset F} E(H)^2$ for $F \in X_{k-2}$:

$$\langle Eb, Eb \rangle = \sum_{H \in X_{k-1}} E(H)^2 b(H)^2 = \frac{1}{n^2} \sum_{H \in X_{k-1}} E(H)^2 \left(\sum_{F \subset H} [H : F] h_b(F)\right)^2$$

$$\leq \frac{k}{n^2} \sum_{H \in X_{k-1}} E(H)^2 \sum_{F \subset H} h_b(F)^2 = \frac{k}{n^2} \sum_{F \in X_{k-2}} h_b(F)^2 \langle E\delta e_F, E\delta e_F \rangle.$$

c) Again by inequality [3]:

$$\sum_{F \in X_{k-2}} h_b(F)^2 \leq \sum_{F \in X_{k-2}} (n-k+1) \cdot \sum_{v \not\in F} b(F \cup \{v\})^2$$

$$= (n-k+1) \cdot \sum_{H \in X_{k-1}} k \cdot b(H)^2 = k(n-k+1)(b,b).$$

The statements of Lemma 21 together yield Proposition 17.

Proof of Proposition 17. Let $b \in B^{k-1}(X)$. As $\|\delta e_F\| = \sqrt{n-k+1}$ for $F \in X_{k-2}$, by Lemma 21

$$\langle Eb, Eb \rangle \leq \frac{k}{n^2} \sum_{F \in X_{k-2}} h_b(F)^2 \langle E\delta e_F, E\delta e_F \rangle \leq \frac{k}{n^2} \sum_{F \in X_{k-2}} h_b(F)^2 f(n) \langle \delta e_F, \delta e_F \rangle$$

$$\leq k^2 \cdot \left(\frac{n-k+1}{n}\right)^2 \cdot f(n) (b,b) \leq k^2 \cdot f(n) (b,b).$$
4 The Spectra of Random Complexes

In this section, we prove Theorem 2, the concentration result on the spectra of the normalized Laplacian and the generalized adjacency matrix of random complexes $X^k(n, p)$. The basic idea is to reduce the statement to a question on the links of $(k-2)$-faces by applying Theorems 12 and 14. Since for every $(k-2)$-face F, the link $\text{lk}(F, X^k(n, p))$ is a random graph with the same distribution as $G(n-k+1, p)$, we can then apply results on the eigenvalues of random graphs. For convenience, we repeat Theorem 2:

Theorem 2. For all $c > 0$ and $k \geq 1$ there exists a constant $C = C(c, k) > 0$ with the following property: Assume $p \geq C \log(n)/n$ and let $d := p(n-k)$. Then there exist $\gamma_A = O(\sqrt{d})$ and $\gamma_\Delta = O(1/\sqrt{d})$ such that the following statements hold with probability at least $1 - n^{-c}$:

(i) The largest (n_{k-1}) eigenvalues of $A_{k-1}(X^k(n, p))$ lie in the interval $[d - \gamma_A, d + \gamma_A]$, and the remaining (n_{k-1}) eigenvalues lie in the interval $[-\gamma_A, +\gamma_A]$.

(ii) The smallest (n_{k-1}) eigenvalues of $\Delta_{k-1}^p(X^k(n, p))$ are (trivially) zero, and the remaining (n_{k-1}) eigenvalues lie in the interval $[1 - \gamma_\Delta, 1 + \gamma_\Delta]$. In particular, $\tilde{H}^{k-1}(X^k(n, p); \mathbb{R}) = 0$.

Observe that $B^{k-1}(K_{n}^k) \subseteq \ker \Delta_{k-1}^p(X^k(n, p))$ because $X^k(n, p)$ has a complete $(k-1)$-skeleton, so the multiplicity of 0 as an eigenvalue of $\Delta_{k-1}^p(X^k(n, p))$ is at least (n_{k-1}).

Proof of Theorem 2. Let $c > 0$. For $F \in \binom{[n]}{k-1}$, the link $\text{lk} F = \text{lk}(F, X^k(n, p))$ is a random graph $G(n-k+1, p)$. By Theorems 1 and 3 we can hence choose constants $C > 0$ and $c', c'' > 0$ such that for $p \geq C \log(n)/n$ the following holds with probability at least $1 - n^{-c-k+1}$: We have $\|pJ - A(\text{lk} F)\| < c'\sqrt{d}$ and furthermore all nontrivial eigenvalues of $\Delta(\text{lk} F)$ are contained in the interval $[1 - c'', (k\sqrt{d}), 1 + c''/(k\sqrt{d})]$.

We first focus on the adjacency matrix: A union bound yields that for $p \geq C \log(n)/n$

$$\Pr \left[\exists F \in X_{k-2} : \|pJ - A(\text{lk} F)\| > c'\sqrt{d} \right] \leq n^{-c}.$$

By Lemma 5 this implies that the conditions of Theorem 14 with $f(n), g(n), h(n) = O(\sqrt{d})$, and hence the desired concentration bounds, are fulfilled with probability at least $1 - n^{-c}$.

Now, consider the normalized Laplacian. Again, with a union bound we get for $p \geq C \log(n)/n$

$$\Pr \left[\forall F \in X_{k-2} : 1 - c''/(k\sqrt{d}) \leq \lambda_2(\Delta(\text{lk} F)) \leq \lambda_{n-k+1}(\Delta(\text{lk} F)) \leq 1 + c''/(k\sqrt{d}) \right] \geq 1 - n^{-c}.$$

For every $(k-1)$-face $H \in \binom{[n]}{k-1}$ of $X^k(n, p)$, the random variable $\text{deg}(H)$ is binomially distributed with parameters $(n - k)$ and p. By making C slightly larger, if necessary, we can ensure that for $p \geq C \cdot \log n/n$, the complex $X^k(n, p)$ is pure with probability at least $1 - n^{-c}$. Hence, also the conditions of Theorem 12 are fulfilled with probability at least $1 - n^{-c}$. \hfill \Box

Remark 22. Note that the preceding proof works for any random distribution $\mathcal{X}_k(n, p)$ on k-dimensional simplicial complexes with n vertices and complete $(k-1)$-skeleton with the property that the link $\text{lk}(F, \mathcal{X}_k(n, p))$ of every $F \in \binom{[n]}{k-1}$ is a random graph with distribution $G(n-k+1, p)$.

5 Spectral vs. Coboundary Expansion

In this section, we prove Theorem 4. As mentioned in the introduction, the examples are obtained by a probabilistic construction.
Basic Construction

Denote by $Y^k(n, p)$ the random k-dimensional simplicial complex with vertex set $V = [n]$ and complete $(k - 1)$-skeleton obtained as follows: Randomly choose a map $a : (\binom{V}{k}) \to \mathbb{Z}_2$ by setting $a(F) = 1$ with probability $1/2$ and $a(F) = 0$ otherwise, independently for each $F \in \binom{V}{k}$. Thus, the support of a has the same distribution as the $(k - 1)$-faces of the Linial-Meshulam random complex $X^{k-1}(n, 1/2)$.

Call $H \in \binom{V}{k+1}$ “good” iff H contains an even number of $(k - 1)$-faces F with $a(F) = 1$. Every good H is added as a k-face to $Y^k(n, p)$ independently with probability p. Note that, by construction, a is a \mathbb{Z}_2-cocycle in the complex $Y^k(n, p)$, i.e., $a \in Z^{k-1}(Y^k(n, p); \mathbb{Z}_2)$.

For any fixed $b \in C^{k-1}(Y^k(n, p); \mathbb{Z}_2) = \mathbb{Z}_2(\binom{V}{k})$, the expected normalized Hamming distance between b and the randomly chosen a equals $1/2$. Since there are fewer than $2^{(k-1)}$ coboundaries $b \in B^{k-1}(Y^k(n, p); \mathbb{Z}_2)$ and $\binom{V}{k}$ independent random choices for the entries of a, a straightforward application of a Chernoff bound (see, e.g., [13, Theorem 1], [16, Theorem 2.1]) plus a union bound implies that, a.a.s., a has normalized Hamming distance $1/2 - o(1)$ from any coboundary, i.e.,

$$||a|| \geq 1/2 - o(1).$$

In particular, that for $H \in \binom{V}{k+1}$, the probability that H is a k-face of $Y^k(n, p)$ equals $p/2$. However, in contrast to the model $X^k(n, p/2)$, the decisions for different k-faces that share some $(k-1)$-face are not independent. Nevertheless, we can still easily analyze the links of $(k-2)$-faces in $Y^k(n, p)$:

Lemma 23. For every $(k-2)$-face $H \in (Y^k(n, p))_{k-2} = \binom{V}{k-1}$, the random graph $\operatorname{lk}(H, Y^k(n, p))$ has the distribution $G(n - k + 1, p/2)$.

Proof. First note that it suffices to consider the case $p = 1$, because $\operatorname{lk}(H, Y^k(n, p))$ carries the distribution attained by taking every edge in $\operatorname{lk}(H, Y^k(n, 1))$ independently with probability p.

For simplicity, we write Y instead of $Y^k(n, 1)$. Let $U := V \setminus H$. For $e \in \binom{U}{2}$, consider the event that $e \in \operatorname{lk}(H, Y)$, i.e., that $H \cup e \in Y$. We need to show that these events are mutually independent. To see this, choose and fix, for each $e \in \binom{U}{2}$, an arbitrary $(k - 1)$-simplex F_e with $e \subseteq F_e \subseteq H \cup e$; we call these the “undecided” $(k - 1)$-simplices, and let $D := \binom{V}{k} \setminus \{F_e : e \in \binom{U}{2}\}$ be the set of remaining, “decided” $(k - 1)$-simplices. Note that, by construction, each k-simplex of the form $H \cup e$, $e \in \binom{U}{2}$, contains exactly one undecided $(k - 1)$-simplex F_e and that these are pairwise distinct. Fix a map $r : D \to \mathbb{Z}_2$ and condition upon the event that r is the restriction of a to D. For each $e \in \binom{U}{2}$, we have $e \in \operatorname{lk}(H, Y)$ iff $a(F_e) = \sum_{F \in D, F \supseteq H \cup e} r(F)$. For a fixed r, the (conditional) probability of this happening is $1/2$, and the values $a(F_e)$ are mutually independent since the F_e are pairwise distinct. Thus, for any set of edges $e_1, \ldots, e_\ell \in \binom{U}{2}$ and for any fixed r, we get the conditional probability $\Pr[\forall i : e_i \in \operatorname{lk}(H, Y) \mid a[p] = r] = (1/2)^\ell$. Since this holds for all choices of r, it also holds unconditionally, which proves the lemma.

For $p \geq C \cdot \log(n)/n$ we can thus, by this lemma and Remark 22, proceed as in the proof of Theorem 2 to show that there exists a constant $c > 0$ such that a.a.s. the nontrivial part of the spectrum of $\Delta_{k-1}^\sup(Y^k(n, p))$ lies in the interval $[1 - \gamma_\Delta, 1 + \gamma_\Delta]$ with $\gamma_\Delta = O(1/\sqrt{n})$.

Modification

We have so far shown the existence of an infinite family of k-dimensional complexes that is spectrally but not \mathbb{Z}_2-coboundary expanding. However, the complexes constructed have nontrivial cohomology groups $\tilde{H}^{k-1}(Y, \mathbb{Z}_2)$, and hence also $\tilde{H}_{k-1}(Y, \mathbb{Z}) \neq 0$, because a is a \mathbb{Z}_2-cocycle by construction.

To change this we can add a second round to our experiment and randomly add possible further k-simplices as follows: After constructing $Y^k(n, p)$, we add each $H \in \binom{V}{k+1}$ independently with some probability q. We denote the obtained random complex by $Z^k(n, p, q)$. Thus,
$Z^k(n, p, q)$ is the union of $Y^k(n, p)$ and the Linial-Meshulam random complex $X^k(n, q)$. We assume that $p, q \geq C \cdot \log(n)/n$ for some suitably chosen C.

To analyze the \mathbb{Z}_2-coboundary expansion of $Z = Z^k(n, p, q)$, we first argue that Z, a.a.s., contains at least $\frac{1}{2}(1 - o(1))(\binom{n}{k+1})$ many k-faces:

$$f_k(Z^k(n, p, q)) \geq \frac{2}{3}(1 - o(1))(\binom{n}{k+1}).$$

Applying the second moment method it is not hard to see that the number of good k-faces, after choosing a, is at least $\frac{1}{2}(1 - o(1))(\binom{n}{k+1})$ with probability tending to 1. A Chernoff bound then tell us that a.a.s. $f_k(Y^k(n, p)) \geq \frac{2}{3}(1 - o(1))(\binom{n}{k+1})$. As $Y^k(n, p)$ is a subcomplex of Z, this yields the desired bound. With a similar argument, also applying a Chernoff bound, we get that a.a.s.

$$|\delta a| \leq \frac{q}{2}(1 - o(1))\left(\binom{n}{k+1}\right).$$

As we have $||a|| \geq 1/2 - o(1)$ with the same probability as before, we see that a.a.s.

$$\varepsilon(Z) \leq \frac{||\delta a||}{||a||} = O\left(\frac{q}{p}\right) = o(1),$$

if $q = o(p)$. In the extremal case $q = C \cdot \log(n)/n$ and $p = 1$, we achieve $\varepsilon(Z) = O(\log(n)/n)$.

Furthermore, since Z has $X^k(n, q)$ as a subcomplex, we know that the groups $H_{k-1}(Z, \mathbb{Z}_2)$ and $H_{k-1}(Z, \mathbb{Z}_2)$ are a.a.s. trivial if $q \geq C \cdot \log n/n$ for C sufficiently large (see [41, 55, 61]).

For the analysis of the spectrum of $\Delta^\text{up}_{k-1}(Z)$, we can again consider the links of $(k-2)$-faces. For $H \in \binom{V}{k-1}$, the random graph $lk(H, Z)$ is the union of $lk(H, Y^k(n, p/2))$ and $lk(H, Z^k(n, q))$. Hence, it has the distribution $G(n-k+1, r)$ with $r = p/2 + q - pq/2$, the union of $G(n-k+1, p/2)$ and $G(n-k+1, q)$. As $r \geq p/2$, we see that also for this construction, a.a.s., the nontrivial part of the spectrum of the normalized Laplacian $\Delta^\text{up}_{k-1}(Z)$ lies in the interval $[1 - \gamma, 1 + \gamma]$ with $\gamma = O(1/\sqrt{m})$.

Acknowledgements

The second author is grateful to Roy Meshulam for helpful discussions during which, in particular, he learned about Garland’s results.

References

[1] R. M. Adin. Counting colorful multi-dimensional trees. *Combinatorica*, 12(3):247–260, 1992.
[2] R. Aharoni, E. Berger, and R. Meshulam. Eigenvalues and homology of flag complexes and vector representations of graphs. *Geom. Funct. Anal.*, 15(3):555–566, 2005.
[3] N. Alon. Eigenvalues and expanders. *Combinatorica*, 6(2):83–96, 1986.
[4] N. Alon and V. D. Milman. λ_1, Isoperimetric inequalities for graphs, and super concentrators. *J. Combin. Theory Ser. B*, 38(1):73–88, 1985.
[5] N. Alon, O. Schwartz, and A. Shapira. An elementary construction of constant-degree expanders. *Combin. Probab. Comput.*, 17(3):319–327, 2008.
[6] L. Aronshtam, N. Linial, T. Luczak, and R. Meshulam. Collapsibility and vanishing of top homology in random simplicial complexes. *Discrete Comput. Geom.*, 49:317–334, 2013.
[7] E. Babson, C. Hoffman, and M. Kahle. The fundamental group of random 2-complexes. *J. Amer. Math. Soc.*, 24(1):1–28, 2011.
[8] A. Borel. Cohomologie des certains groupes discrets et Laplacien p-adique. In *Séminaire Bourbaki*, Exposé 437, volume 431 of *Lecture Notes in Math.*, pages 12–35. Springer, 1973.

[9] A. Cayley. A theorem on trees. *Quart. J. Pure Appl. Math.*, 23:376–378, 1889. Collected Mathematical Papers Vol. 13, Cambridge Univ. Press, 1897, 26–28.

[10] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In *Problems in analysis (Papers dedicated to Salomon Bochner, 1969)*, pages 195–199. Princeton Univ. Press, Princeton, N. J., 1970.

[11] F. Chung. *The Laplacian of a Hypergraph*, volume 10 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 21–36. Amer. Math. Soc., 1993.

[12] F. Chung. *Spectral graph theory*, volume 92 of CBMS Reg. Conf. Ser. Math. Amer. Math. Soc., 1997.

[13] F. Chung, L. Lu, and V. Vu. The spectra of random graphs with given expected degrees. *Internet Math.*, 1(3):257–275, 2003.

[14] D. Cohen, A. Costa, M. Farber, and T. Kappeler. Topology of random 2-complexes. *Discrete Comput. Geom.*, 47:117–149, 2012.

[15] A. Coja-Oghlan. Spectral techniques, semidefinite programs, and random graphs. Habilitationsschrift, 2005.

[16] A. Coja-Oghlan. On the Laplacian eigenvalues of $G_{n,p}$. *Combin. Probab. Comput.*, 16(6):923–946, 2007.

[17] A. Coja-Oghlan and A. Lanka. The spectral gap of random graphs with given expected degrees. *Electron. J. Combin.*, 16(1):R138, 2009.

[18] D. Cvetković, P. Rowlinson, and S. Simić. *An introduction to the theory of graph spectra*, volume 75 of London Math. Soc. Stud. Texts. Cambridge Univ. Press, Cambridge, 2010.

[19] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms. *Amer. J. Math.*, 98(1):79–104, 1976.

[20] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks. *Trans. Amer. Math. Soc.*, 284(2):787–794, 1984.

[21] J. Dodziuk and V. K. Patodi. Riemannian structures and triangulations of manifolds. *J. Indian Math. Soc. (N.S.*), 40(1-4):1–52 (1977), 1976.

[22] X. Dong and M. L. Wachs. Combinatorial Laplacian of the matching complex. *Electron. J. Combin.*, 9(1):Research Paper 17, 11, 2002.

[23] D. Dotterrer and M. Kahle. Coboundary expanders. *J. Topol. Anal.*, 4(4):499–514, 2012.

[24] A. M. Duval, C. J. Klivans, and J. L. Martin. Simplicial matrix-tree theorems. *Trans. Amer. Math. Soc.*, 361(11):6073–6114, 2009.

[25] B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Komplex. *Comment. Math. Helv.*, 17:240–255, 1945.

[26] U. Feige and E. Ofek. Spectral techniques applied to sparse random graphs. *Random Structures Algorithms*, 27(2):251–275, 2005.

[27] J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach. Overlap properties of geometric expanders. *J. Reine Angew. Math.*, 671:49–83, 2012.
[28] J. Friedman. Some geometric aspects of graphs and their eigenfunctions. *Duke Math. J.*, 69(3):487–525, 1993.

[29] J. Friedman. Computing Betti numbers via combinatorial Laplacians. *Algorithmica*, 21(4):331–346, 1998.

[30] J. Friedman and P. Hanlon. On the Betti numbers of chessboard complexes. *J. Algebraic Combin.*, 8(2):193–203, 1998.

[31] J. Friedman, J. Kahn, and E. Szemerédi. On the second eigenvalue of random regular graphs. In *Proc. 21st Ann. ACM Symp. Theor. Comput.*, STOC ’89, pages 587–598, New York, 1989. ACM.

[32] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. *Combinatorica*, 1(3):233–241, 1981.

[33] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. *J. Comput. System Sci.*, 22(3):407–420, 1981.

[34] H. Garland. p-adic curvature and the cohomology of discrete subgroups of p-adic groups. *Ann. of Math. (2)*, 97(3):375–423, 1973.

[35] W. T. Gowers. Quasirandomness, counting and regularity for 3-uniform hypergraphs. *Combin. Probab. Comput.*, 15(1-2):143–184, 2006.

[36] M. Gromov. Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. *Geom. Funct. Anal.*, 20(2):416–526, 2010.

[37] A. Gundert and M. Szedlák. Higher Dimensional Discrete Cheeger Inequalities. Preprint, arXiv:1401.2290, 2014.

[38] A. Gundert and U. Wagner. On Laplacians of random complexes. In *Proc. 28th Ann. Symp. Comput. Geom.* (SoCG), pages 151–160, 2012.

[39] W. V. D. Hodge. *The Theory and Applications of Harmonic Integrals*. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge, 1989.

[40] C. Hoffman, M. Kahle, and E. Paquette. Spectral gaps of random graphs and applications to random topology. Preprint, arXiv:1201.0425, 2012.

[41] C. Hoffman, M. Kahle, and E. Paquette. The threshold for integer homology in random d-complexes. Preprint, arXiv:1308.6232, 2013.

[42] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. *Bull. Amer. Math. Soc. (N.S.)*, 43(4):439–561 (electronic), 2006.

[43] D. Horak and J. Jost. Spectra of combinatorial Laplace operators on simplicial complexes. *Advances in Mathematics*, 244:303 – 336, 2013.

[44] R. A. Horn and C. R. Johnson. *Matrix Analysis*. Cambridge University Press, 1985.

[45] S. Janson. On concentration of probability. In B. Bollobás, editor, *Contemporary Combinatorics*, volume 10 of *Boly. Soc. Math. Stud.*, pages 289–301. Springer, 2002.

[46] S. Janson, T. Łuczak, and A. Ruciński. *Random Graphs*. Wiley-Interscience Ser. in Discrete Math. Optim. Wiley, 2000.

[47] M. Jerrum. *Counting, sampling and integrating: algorithms and complexity*. Lectures Math. ETH Zürich. Birkhäuser, Basel, 2003.
[48] G. Kalai. Enumeration of Q-acyclic simplicial complexes. Israel J. Math., 45:337–351, 1983.

[49] R. N. Karasev. A Simpler Proof of the Boros-Füredi-Bárány-Pach-Gromov Theorem. Discrete Comput. Geom., 47(3):492–495, 2012.

[50] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys., 148(12):497–508, 1847.

[51] W. Kook, V. Reiner, and D. Stanton. Combinatorial Laplacians of matroid complexes. J. Amer. Math. Soc., 13(1):129–148, 2000.

[52] D. Kozlov. The threshold function for vanishing of the top homology group of random d-complexes. Proc. Amer. Math. Soc., 138(12):4517–4527, 2010.

[53] M. Krivelevich and B. Sudakov. Pseudo-random graphs. In More sets, graphs and numbers, volume 15 of Bolyai Soc. Math. Stud., pages 199–262. Springer, 2006.

[54] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. Amer. Math. Soc., 2009.

[55] N. Linial and R. Meshulam. Homological connectivity of random 2-complexes. Combinatorica, 26(4):475–487, 2006.

[56] L. Lu and X. Peng. Loose Laplacian spectra of random hypergraphs. Random Structures Algorithms, 41(4):521–545, 2012.

[57] A. Lubotzky, R. S. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[58] G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–80, 1973.

[59] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1):51–60, 1988.

[60] J. Matoušek and U. Wagner. On Gromov’s Method of Selecting Heavily Covered Points. Discrete Comput. Geom., 52(1):1–33, 2014.

[61] R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes. Random Structures Algorithms, 34(3):408–417, 2009.

[62] I. Newman and Y. Rabinovich. On multiplicative λ-approximations and some geometric applications. In Proc. 23rd Ann. ACM-SIAM Symp. Discrete Algorithms. SIAM, 2011.

[63] A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991.

[64] O. Parzanchevski, R. Rosenthal, and R. J. Tessler. Isoperimetric Inequalities in Simplicial Complexes. Preprint, arXiv:1207.0638, 2012.

[65] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157–187, 2002.

[66] J. Steenbergen, C. Klivans, and S. Mukherjee. A Cheeger-type inequality on simplicial complexes. Adv. in Appl. Math., 56:56–77, 2014.

[67] U. Wagner. Minors in random and expanding hypergraphs. In Proc. 27th Ann. Symp. Comput. Geom. (SoCG), pages 351–360, 2011.
[68] X.-D. Zhang. The Laplacian eigenvalues of graphs: a survey. Preprint, arXiv:1111.2897v1, 2011.

[69] A. Žuk. La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres. C. R. Acad. Sci. Paris, 323:453–458, 1996.