Topical Review

Dynamical magnetoelectric phenomena of multiferroic skyrmions

Masahito Mochizuki and Shinichiro Seki

1 Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan
2 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
3 PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan

E-mail: mochizuki@phys.aoyama.ac.jp

Received 9 June 2015, revised 15 August 2015
Accepted for publication 24 August 2015
Published 1 December 2015

Abstract

Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin–orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime.

Keywords: skyrmion, multiferroics, magnetoelectric coupling

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Magnetic Skyrmions

Noncollinear spin textures in magnets often host intriguing physical phenomena and useful device functions through coupling to charge degree of freedom, and thereby have been subject to intensive studies. For instance, it is known that magnetic domain walls and magnetic vortices can be driven by electric currents via a spin transfer torque mechanism, which points to their application for spin-electronics devices such as race track memory. Multiferroics with magnetically-induced ferroelectricity is another typical example [1–6]. Magnetic spirals in insulating magnets with frustrated interactions often induce asymmetry of charge distribution and resultant ferroelectric polarization P via relativistic spin–orbit interactions [7, 8] in compounds such as TbMnO3. The magnetoelectric coupling between spins and electric polarizations gives rise to rich cross-correlation phenomena such as magnetic-field switchings of ferroelectric polarization [9], and electric-field controls of spin chiralities [10, 11], magnetic modulation vectors [12], and magnetic domain distributions [13].
In addition to these magnetic structures, magnetic skyrmions as nanometric spin whirls are recently attracting intensive research interest [14–16]. Skyrmion was originally proposed by Tony Skyrme in 1960s to account for stability of baryons in particle physics as a topological solution of a nonlinear sigma model in three dimensions [17, 18]. In the original sense, a magnetic skyrmion comprises spins pointing in all directions wrapping a sphere similar to a hedgehog as shown in figure 1(a).

Later Bogdanov and his collaborators theoretically predicted that skyrmions should appear in ferromagnets without spatial inversion symmetry as vortex-like spin structures shown in figure 1(b), which corresponds to a projection of the original hedgehog skyrmion onto a two-dimensional plane [19–21]. They also predicted that skyrmions are often crystalized to form a triangular lattice as shown in figure 1(c), which is called skyrmion crystal.

Magnetic interactions between two neighboring magnetizations in magnets are mostly categorized into two types, i.e. $m_i \cdot m_j$ type symmetric exchange interactions and $m_i \times m_j$ type Dzyaloshinskii–Moriya interactions. In magnets with broken inversion symmetry, there exists a finite net component of the Dzyaloshinskii–Moriya interaction [22, 23], which is given in a continuum from as,

$$\mathcal{H}_{\text{DM}} \propto \int \, d^3r \, M \cdot (\nabla \times M), \quad (1)$$

where M is a classical magnetization vector. This interaction favors noncollinear alignment of magnetizations with 90° rotation with fixed handedness (spin chirality) and, thus, competes with the ferromagnetic exchange interaction which favors parallel (collinear) alignment of magnetizations. Consequently, a ground state of these chiral-lattice ferromagnets in the absence of external magnetic field is a helical state, so-called proper screw state, in which magnetizations rotate within a plane normal to the propagation vector q as shown in figure 1(d). An increase of the magnetic field at certain temperatures changes the helical phase to a skyrmion-crystal phase and eventually to a field-polarized ferromagnetic phase. A size of such skyrmions is typically 5–100 nm, which is determined by the ratio between strengths of the ferromagnetic interaction and the Dzyaloshinskii–Moriya interaction. The size becomes smaller for stronger Dzyaloshinskii–Moriya interaction.

A skyrmion is characterized by a topological invariant Q, so-called skyrmion number, which represents how many times the magnetizations wrap a sphere. The skyrmion number Q is defined as,

$$\int d^2r \left[\frac{\partial \hat{n}}{\partial x} \times \frac{\partial \hat{n}}{\partial y} \right] \cdot \hat{n} = \pm 4\pi Q, \quad (2)$$

where \hat{n} is a unit vector pointing in the local magnetization direction. The left-hand side of this equation represents a sum of solid angles spanned by three neighboring magnetizations.

This finite topological number indicates that skyrmions belong to a topological class distinct from non-topological classes, to which usual magnetic structures such as ferromagnetic states, helices and domain walls belong. This means that we cannot create a skyrmion starting from uniformly magnetized ferromagnetic state or annihilate a skyrmion through continuous modulation of the spatial magnetization alignment. Instead, a local flop of magnetization is required to create or annihilate a skyrmion, which costs rather large energy whose order is determined by the exchange interaction. Owing to this topological protection, skyrmion spin textures are very robust.

1.2. Skyrmions in metallic B20 compounds

In 2009, the realization of skyrmion crystals was discovered in a metallic B20 compound MnSi under an external magnetic field by the small-angle neutron scattering (SANS) measurements [24]. Subsequently, real-space images of skyrmion spin structures and hexagonal skyrmion crystals were obtained by a Lorentz transmission electron microscopy (LTEM) for thin-film samples of Fe1−xCo,Ge by SANS [25]. The skyrmion-crystal phase was also observed in other B20 compounds such as FeGe and Mn1−xFe,Ge by SANS [26–30] and LTEM [31–34]. These compounds have a chiral crystal structure (see figures 2(a) and (b)), which belongs to the cubic P213 space group.

In these materials, triangular skyrmion crystals appear on a plane normal to the applied magnetic field. Magnetizations in each skyrmion point antiparallel to the magnetic field at the
center and gradually rotate upon propagating along the radial directions towards the periphery at which the magnetizations are parallel to the magnetic field. Such two-dimensional vortex-like textures are stacked to form tube-like structures as shown in figure 3.

Shown in figure 4(a) is the experimental phase diagram for bulk samples of MnSi in plane of temperature T and magnetic field B [24]. The skyrmion-crystal phase is positioned in a tiny window of T and B on the verge of the phase boundary between the paramagnetic and the helical (longitudinal conical) phases. This indicates that the skyrmion-crystal phase is rather unstable in the bulk samples. However the stability of the skyrmion-crystal state essentially depends on the dimension of the system, and it attains greater stability when the sample becomes thinner [31, 35–37]. Figure 4(b) displays the experimental phase diagram for thin-film samples of MnSi [32]. The area of the skyrmion-crystal phase noticeably spreads over a wide T–B range, and is realized even at the lowest temperatures.

The enhanced stability of skyrmion crystal in thin-film samples can be understood as follows. When a magnetic field B is applied to a bulk sample, the conical spin structure propagating parallel to B with uniform magnetization component due to the spin canting towards the B direction is stabilized owing to energy gains from both the Dzyaloshinskii–Moriya interaction and the Zeeman coupling. The skyrmion-crystal state is usually higher in energy than this conical state. However, when the sample thickness becomes comparable to or thinner than the conical periodicity, the conical state can no longer benefit from the energy gain of the Dzyaloshinskii–Moriya interaction, and thus is destabilized. Instead the skyrmion-crystal state attains relative stability against the conical state. It has been argued that the uniaxial anisotropy, inhomogeneous chiral modulations, and the dipolar interaction can also stabilize skyrmions in thin-film samples [38–43].

Skyrmions in chiral-lattice ferromagnets appear not only in the crystallized form but also as isolated defects in the ferromagnetic state [25]. Such skyrmion defects are attracting a great deal of interest because they have turned out to possess numerous advantageous properties for technical application to information carriers for high-density and low-energy-consuming magnetic memories, that is, (1) topologically protected robustness, (2) small nanometric size, (3) rather high transition temperatures, and (4) ultra-low energy costs for driving their motion. Concerning the last
property, it was experimentally revealed that one can drive their motion by injection of electric currents via the spin-transfer torques, and its threshold current density is five or six orders of magnitudes smaller than that for other noncollinear magnetic textures such as domain walls and helical structures [44–47]. Subsequent theoretical study attributed this high mobility or nearly pinning-free motion of skyrmions to their particle-like nature and finite topological number [48–50]. Skyrmions in metallic system have attracted research interest also for intriguing electron-transport phenomena due to the emergent electromagnetic field induced by their topological nature [51–59]. The skyrmion number directly corresponds to the gauge flux through the quantum Berry phase which gives rise to the topological Hall effect of conduction electrons.

1.3. Skyrmions in magnetic insulator Cu2OSeO3

While the observations of skyrmions in the early stage had been limited to specific metallic magnets with chiral B20 structure such as MnSi, FeGe, and Fe1-xCoxSi, formation of the skyrmion crystal was discovered also in an insulating magnet Cu2OSeO3 via the Lorentz transmission electron microscopy for thin-film samples [60] and the small angle neutron scattering experiments for bulk samples [61, 62].

The crystal structure of Cu2OSeO3 belongs to the chiral cubic P213 space group, which is equivalent to the B20 compounds (see figure 5(a)). However the coordination of atoms in Cu2OSeO3 is quite different from that in the B20 compounds. There are two inequivalent Cu2+ sites with different oxygen coordination. One is surrounded by a square pyramid of oxygen ligands, while the other is surrounded by a trigonal bipyramid. The nominal ratio between the former and the latter Cu2+ ions is 3 : 1. The magnetic structure of Cu2OSeO3 consists of a network of tetrahedra composed of four Cu2+ (S = 1/2) ions at their apexes as shown in figure 5(b). Powder neutron diffraction [63] and nuclear magnetic resonance [64, 65] experiments suggested that three-up and one-down type ferrimagnetic spin arrangement is realized on each tetrahedron below Tc ~ 58 K.

Figures 6(a) and (b) show experimental T–B phase diagrams for bulk samples and thin-film samples of Cu2OSeO3, respectively [60]. In spite of the different origin of magnetism between metallic and insulating magnets, the phase diagrams of Cu2OSeO3 are similar to those of MnSi shown in figure 4. Whereas the skyrmion-crystal phase is restricted to a narrow T–B window just below the magnetic-ordering temperature for the bulk samples, it spreads over the wide area and even to the lowest temperatures for the thin-film samples. Real-space images of the skyrmion crystal and the helical structure obtained by the Lorentz transmission electron microscopy are also displayed. (Reproduced from [60]).

2. Magnetoelectric properties

2.1. Multiferroic nature

In usual materials, their magnetic properties are affected or manipulated by magnetic fields, while their dielectric properties are by electric fields. In contrast, the control of magnetism by electric fields and inversely the control of dielectricity by magnetic fields are called magnetoelectric effect, which was

![Figure 5](image1.png)

Figure 5. (a) Crystal structure of the chiral-lattice magnetic insulator Cu2OSeO3, which belongs to the chiral cubic P213 space group. (b) Magnetic structure of Cu2OSeO3 composed of tetrahedra of four Cu2+ ions (S = 1/2) with three-up and one-down spins. (Reproduced from [60]). Copyright 2012 AAAS.

![Figure 6](image2.png)

Figure 6. Experimental T–B phase diagrams of the copper oxoselenite Cu2OSeO3 for (a) bulk samples and (b) thin-film samples with sample thickness of ~100 nm. In spite of the different origin of magnetism between metallic and insulating magnets, the phase diagrams of Cu2OSeO3 are similar to those of MnSi shown in figure 4. Whereas the skyrmion-crystal phase is restricted to a narrow T–B window just below the magnetic-ordering temperature for the bulk samples, it spreads over the wide area and even to the lowest temperatures for the thin-film samples. Real-space images of the skyrmion crystal and the helical structure obtained by the Lorentz transmission electron microscopy are also displayed. (Reproduced from [60]).
first predicted by Curie more than a century ago \cite{66}. The electric control of magnetism is one of the key issues in the field of spintronics aiming for low-energy-consuming magnetic devices because Joule-heating energy losses due to electric currents injected for generating a magnetic field or driving magnetic domains can be overcome by employing electric fields in insulators. The first experimental observation of the magneto-electric effect was reported for \(\text{Cr}_2\text{O}_3\) where the linear magneto-electric effect \(M = \alpha H E\) shows up due to the simultaneous breaking of time-reversal and space-inversion symmetries but with a rather small coefficient \(\alpha_H\) \cite{1, 6}. In order to enhance the magnitude of the magneto-electric effect, the employment of multiferroics, that is, materials endowed with both ferroelectric and magnetic orders, is particularly promising when these two orders are strongly coupled to each other. Recently several insulating magnets with noncollinear spin texture (such as \(\text{TbMnO}_3\), \(\text{MnWO}_4\), \(\text{CuO}\), and a series of hexaferrites etc) have been reported to host ferroelectricity of magnetic origin \cite{67}. In these materials, the low-symmetry of spin texture breaks spatial inversion symmetry inherent to the original crystal lattice, and causes a polar distribution of electric charges. The strong coupling between the spin texture and the ferroelectricity in such systems enables large and versatile magneto-electric responses.

 Whereas observations of magnetic skyrmion crystal had been limited to metallic B20 alloys, its realization was discovered also in a magnetic insulator \(\text{Cu}_2\text{OSeO}_3\) (copper oxoselenite) with a chiral crystal symmetry in 2012. Noncollinear skyrmion spin textures in the insulator can induce ferroelectric polarization via relativistic spin-orbit interactions depending on the direction of external magnetic field. A presence or absence of the magnetism-induced ferroelectric polarization in the skyrmion-crystal phase and, if any, its direction can be known from the symmetry argument \cite{60, 68}. Although the spatial inversion symmetry is broken, the original crystal lattice of \(\text{Cu}_2\text{OSeO}_3\) belongs to the non-polar space group \(P2_13\), and thus does not host ferroelectricity. In addition, the skyrmion-crystal spin structure itself as well as the conical and ferromagnetic (ferrimagnetic) spin orders are not polar, either. However combination of the crystal and the magnetic symmetries renders the system polar, and allows the emergence of ferroelectric polarization.

 We discuss three cases with different \(\textbf{H}\) directions shown in figures 7(c)–(e). When a skyrmion crystal sets in under \(\textbf{H}||[1 1 0]\) (see figure 7(c)), only the \(21'\)-axis \([0 0 1]\) normal to \(\textbf{H}\) survives. Consequently the system becomes polar along \([0 0 1]\), and emergence of ferroelectric polarization \(P||[0 0 1]\) is allowed. Likewise, in the case of \(\textbf{H}||[1 1 1]\) (see figure 7(d)), only the three-fold rotation axis parallel to \(\textbf{H}\) remains unbroken. Subsequently, emergence of \(P||\textbf{H}\)||[1 1 1]\) is allowed. In contrast, in the case of \(\textbf{H}||[0 0 1]\) as shown in figure 7(e), orthogonal arrangement of screw axes along \([0 0 1]\) remains, and thus no ferroelectric polarization can be expected. This argument holds also for the helimagnetic and ferrimagnetic states, and one can expect emergence of ferroelectric polarizations \(P||[0 0 1]\) and \(P||[1 1 1]\) under \(\textbf{H}||[1 1 0]\) and \(\textbf{H}||[1 1 1]\), respectively, whereas \(P\) is zero under \(\textbf{H}||[0 0 1]\) for all these magnetic states.

 Figures 8(a)–(i) show \(H\)-dependence of \([1 1 1]\) component of net magnetization \(M_{[1 1 1]}\), ac magnetic susceptibility \(\chi'_a\), and \([1 1 1]\) component of ferroelectric polarization \(P_{[1 1 1]}\) for \(\textbf{H}||[1 1 1]\) measured at different temperatures, that is, 5 K, 55 K and 57 K \cite{60}. The system goes through several magnetic phases as the magnetic field increases. At \(T = 5\) K and 55 K, the helimagnetic state (multiple \(q\)-domain), helimagnetic state (single \(q\)-domain), and collinear ferrimagnetic state successively emerge with increasing magnetic field. On the other hand, the phase evolution at \(T = 57\) K with increasing magnetic field is as follows: helimagnetic state (multiple \(q\)-domain) \(\rightarrow\) helimagnetic state (single \(q\)-domain) \(\rightarrow\) skyrmion-crystal state \(\rightarrow\) helimagnetic state (single \(q\)-domain) \(\rightarrow\) ferrimagnetic state. Namely the skyrmion-crystal phase takes place within the helimagnetic phase at \(T = 57\) K. The profile of \(\chi'_a\) shows clear anomalies at the magnetic transition points. Note that these magnetic-phase evolutions are not affected by the \(\textbf{H}\)-direction. We find that all the magnetically ordered states can induce finite ferroelectric polarization \(P\) along \([1 1 1]\) direction under \(\textbf{H}||[1 1 1]\) in agreement with the above symmetry analysis, but they have different signs and magnitudes.

 Figures 9(d)–(l) show \(H\)-dependence of net magnetization \(M\), ac magnetic susceptibility \(\chi'_a\), and ferroelectric polarization \(P\) measured at 57 K (just below \(T_c\sim 58\) K) for different \(\textbf{H}\)-directions, that is, \(\textbf{H}||[0 0 1]\), \(\textbf{H}||[1 1 0]\), and \(\textbf{H}||[1 1 1]\) \cite{68}. A presence or absence of ferroelectric polarization \(P\) and its orientation for each \(\textbf{H}\) direction are totally consistent with the above
Figure 8. (a)–(c) Magnetic-field dependence of (a) [1 1 1] component of net magnetization $M_{[111]}$, (b) ac magnetic susceptibility χ', and (c) [1 1 1] component of ferroelectric polarization $P_{[111]}$ for bulk samples of Cu$_2$OSeO$_3$ measured under $H_{[111]}$ at $T = 5$ K. (d)–(f) Corresponding profiles at $T = 55$ K. (g)–(i) Corresponding profiles at $T = 57$ K. Letter symbols f, s, h, and h' stand for ferrimagnetic, skyrmion-crystal, helimagnetic (single q-domain), and helimagnetic (multiple q-domains) states, respectively. At zero magnetic field, the measured $P_{[111]}$ is zero because of cancellation of electric polarizations from multiple q-domains. If one could obtain a single domain by field-cooling procedure, finite values of $P_{[111]}$ should be observed as indicated by dashed red lines. (Reproduced from [60]).

Figure 9. (a)–(c) Magnetically-induced ferroelectric polarization P in Cu$_2$OSeO$_3$ for various directions of H predicted by the symmetry argument (see text). (d)–(l) Magnetic-field dependence of (a) net magnetization M, (b) ac magnetic susceptibility χ', and (c) ferroelectric polarization P for bulk samples of Cu$_2$OSeO$_3$ measured at 57 K for $H_{[111]}$. (d)–(i) Corresponding profiles for $H_{[100]}$. (g)–(i) Corresponding profiles for $H_{[110]}$. Letter symbols f, s, h, and h' stand for ferrimagnetic, skyrmion-crystal, helimagnetic (single q-domain), and helimagnetic (multiple q-domains) states, respectively. The measured P is always zero at $H = 0$ because of cancellation of contributions from multiple q-domains. Finite values of $P_{[001]}$ and $P_{[111]}$ indicated by dashed lines should be observed in a single-domain sample after field-cooling procedure. Reprinted with permission from Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. B 86 060403 [68]. Copyright 2012 by the American Physical Society.
symmetry argument (see figures 9(a)–(c)). The phase evolutions and magnetoelectric nature of Cu$_2$OSeO$_3$ discussed here have been confirmed by several experimental techniques such as electron spin resonance (ESR) measurements [69], magnetoelectric susceptibility measurements [70, 71], resonant soft x-ray scatterings [72], and muon-spin rotation measurements [73].

2.2. Spin-dependent metal-ligand hybridization mechanism

A theoretical study based on the first-principles calculation suggested a crucial role of relativistic spin–orbit interactions for magnetoelectric coupling in Cu$_2$OSeO$_3$ [74]. The electric polarizations in Cu$_2$OSeO$_3$ are microscopically induced via the so-called spin-dependent metal-ligand hybridization mechanism. Local electric polarizations p_{ij} induced by this mechanism are given by [75–77],

$$p_{ij} \propto (e_{ij} \cdot m)^2 e_{ij}. \quad (3)$$

Here i and j are indices of the transition-metal ions Cu$^{2+}$ and the oxygen O$^{2-}$ ions, respectively. This mechanism assumes a single pair of adjacent magnetic (Cu$^{2+}$) and ligand (O$^{2-}$) ions with e_{ij} and m being the unit vector along the bond connecting them and the magnetization direction at the transition-metal site, respectively (see figure 10). The covalency between these two sites is governed by the relative direction of m against the bond through the spin–orbit interaction, and the local polarization p_{ij} is induced along the bond direction e_{ij}.

By taking a summation of contributions p_{ij} given by equation (3) for all Cu–O bonds within a crystallographic unit cell, the local polarization $\mathbf{p}(r)$ from the crystallographic unit cell can be evaluated. Since the modulation period of the magnetic skyrmion lattice is much longer than the crystallographic lattice constant in Cu$_2$OSeO$_3$, the local spin structure within a crystallographic unit cell can be regarded as nearly collinear. Consequently one-by-one correspondence between the local magnetization $\mathbf{m}(r)$ and the local electric polarization $\mathbf{p}(r)$ can be obtained as shown in figures 11(a) and (b) [68].

For the collinear ferrimagnetic state with spatially uniform $\mathbf{m}(r)$ and $\mathbf{p}(r)$, one can know the dependence of ferroelectric polarization \mathbf{P} on the \mathbf{H}-direction. Shown in figures 11(c) and (d) are the \mathbf{H}-direction dependence of the [1 1 0] and [0 0 1] components of \mathbf{P} ($P_{[110]}$ and $P_{[001]}$) measured at 2 K with $H=0.5$ T, namely, in the ferrimagnetic phase. Here \mathbf{H} rotates around the [1 1 0]-axis, and θ is defined as an angle between \mathbf{H}-direction and the [0 0 1] axis (see figure 11(f)). The development of $P_{[001]}$ measured for \mathbf{H} rotating around the [0 0 1] axis is also shown in figure 11(e) where an angle between \mathbf{H} and the [0 0 1] axis is defined as ϕ (see figure 11(g)). Both of the \mathbf{P}-profiles show sinusoidal modulation with a period of 180° as a function of respective \mathbf{H}-rotation angle. On the other hand, the calculation using equation (3) predicts $P_{[110]} \propto \sin2\theta$ and $P_{[001]} \propto 1–\cos2\theta$ for the former case, while $P_{[001]} \propto \sin2\phi$ for the latter case. These behaviors are indicated by dashed lines in figures 11(c)–(e), which perfectly reproduce the experimentally observed \mathbf{P} profiles and hence strongly suggests a validity of the spin-dependent metal-ligand hybridization mechanism as an origin of the electric polarizations in Cu$_2$OSeO$_3$.

By identifying the microscopic magnetoelectric coupling given by equation (3), spatial distributions of electric...
and electric charges ((b), (e)), and calculated for the skyrmion-crystal state (see text). The background in , 001 + ⋅ ((a), (d)), H||[110] (b), (e), and H||[111] (c), (f)). The background color represents relative values of p_i (for (a)–(c) and p for (d)–(f), respectively. Here p_t stands for the out-of-plane component of p, respectively. The dashed hexagon indicates a magnetic unit cell of the skyrmion crystal or a single skyrmion. Reprinted with permission from Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. B 86 060403 [68]. Copyright 2012 by the American Physical Society.

Figure 12. Calculated spatial distributions of (a)–(c) local electric polarization vectors p_i and (d)-(f) local electric charges p for the skyrmion crystal state (see text). Magnetic field H is applied along the out-of-plane direction. They are for H||[001] (a), (d)), H||[110] (b), (e), and H||[111] (c),(f)). The background color represents relative values of p_i for (a)–(c) and p for (d)–(f), respectively. Here p_t stands for the out-of-plane component of p, respectively. The dashed hexagon indicates a magnetic unit cell of the skyrmion crystal or a single skyrmion. Reprinted with permission from Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. B 86 060403 [68]. Copyright 2012 by the American Physical Society.

p(r) and electric charges ρ(r) = −∇ ⋅ p(r) can be obtained for a single skyrmion. The spatial distribution of m(r) in the skyrmion crystal is approximately given by,

\[m(r) \propto e_i M_0 + \sum_{n=1}^{3} [e_i \cdot \cos(q_n \cdot r + \pi) + e_i \cdot \sin(q_n \cdot r + \pi)], \]

where \(q_n\) denotes three magnetic modulation vectors normal to H with relative angles of 120°, and \(e_i\) is a unit vector orthogonal to \(e_i\) and \(q_n\) defined such that all \(q_n \cdot (e_i \times e_i)\) have the same sign. Here \(M_0\) scales with relative magnitude of the net magnetization in the H-direction. Figure 12 indicates real-space distributions of \(p(r)\) and \(\rho(r)\) calculated for the skyrmion-crystal state with various directions of H. The obtained results suggest that each skyrmion texture locally carries an electric quadrupole moment under H||[001] or an electric dipole moment along the in-plane (||[001]) and out-of-plane (||[111]) directions under H||[110] and H||[111], respectively. Such a local coupling between the electric dipole and the skyrmion spin texture strongly suggests that skyrmions in an insulator can be driven by a spatial gradient of the external electric field. Note that the total charge within each skyrmion is always zero, which implies nondissipative nature of the electric-field-induced skyrmion dynamics.

A small angle neutron scattering experiment under an applied electric field for bulk sample of Cu2OSeO3 indeed reported that orientation of q vectors in the skyrmion-crystal state slightly rotates around the H-direction in a clockwise or counterclockwise manner depending on the sign of electric field [78, 79]. This experiment clearly demonstrates possible manipulation of magnetic skyrmions by applying electric fields in insulators.

2.3. Magneto-electric coupling

Because of the cubic crystal symmetry, the local electric polarization \(p_i\) for the \(i\)th crystallographic unit cell is described using the local magnetization components \(m_i = (m_{ix}, m_{iy}, m_{iz})\) as

\[p_i = \left(\begin{array}{c} p_{ia} \\ p_{ib} \\ p_{ic} \end{array} \right) = \lambda \left(\begin{array}{c} m_{ia} \\ m_{ib} \\ m_{ic} \end{array} \right), \]

where \(a, b\) and \(c\) are the Cartesian coordinates in the cubic setting [80, 81]. Although the two equations, equations (3) and (5), seem to be different from each other at first glance, it was confirmed that these two expressions give equivalent spatial distribution of the local polarizations. The magneto-electric-coupling constant \(\lambda\) is a material parameter, which is microscopically related with the relativistic spin–orbit interaction and the metal-ligand hybridization. Its value is common for all the magnetic phases as far as the same compound is concerned. Namely the value is identical in the helical, the skyrmion-crystal and the ferrimagnetic phases in Cu2OSeO3, and can be evaluated as \(\lambda = 5.64 \times 10^{-27} \text{ Cm}\) from the experimentally measured \(P_{[001]} = 16 \mu \text{C m}^{-2}\) in the ferrimagnetic phase under H||[110] at 5 K. The reason why we choose the ferrimagnetic phase is that all the tetrahedra with three-up and one-down spins give uniform contributions to the ferroelectric polarization \(P\) and the net magnetization \(M\). Thus the contributions from each tetrahedron, \(p_i\) and \(m_i\) can be easily evaluated from the experimentally measured \(P\) and \(M\) as \(p_i = P/N\) and \(m_i = M/N\) where \(N\) is the number of the tetrahedra in the unit volume. In this way, the ferrimagnetic phase provides us a unique opportunity to evaluate the coupling constant \(\lambda\).

3. Spin model and phase diagrams

3.1. Microscopic spin model

In 1980, Bak and Jensen proposed that magnetism on the chiral cubic crystal structure can be described by the following continuum spin model as long as magnetic orders with sufficiently slow spatial and temporal variations are concerned [82]:

\[\mathcal{H} = \int \text{d}r \left[\frac{J}{2a} \left(\nabla m \right)^2 + \frac{D}{a^2} m \cdot \left(\nabla \times m \right) - \frac{K_\mu_0}{a^3} H \cdot m - \frac{A_1}{a^2} \left(m_x^4 + m_y^4 + m_z^4 \right) - \frac{A_2}{2a} \left(\nabla_x m_x \right)^2 + \left(\nabla_y m_y \right)^2 + \left(\nabla_z m_z \right)^2 \right]. \]

This model describes competitions among the ferromagnetic exchange interaction (the first term), the Dzyaloshinskii–Moriya interaction (the second term), and the Zeeman coupling to an external magnetic field \(H\) (the third term). Two types of magnetic anisotropies allowed by the cubic crystal symmetry (the fourth and the fifth terms) are also incorporated,
but they turn out to play only a minor role if we consider realistic small values of \(A_1 \) and \(A_2 \). In order to treat this continuum spin model numerically, it is convenient to divide the space into cubic meshes, which gives a classical Heisenberg model on the cubic lattice [35, 36, 83]. The Hamiltonian is given by,

\[
\mathcal{H} = -J \sum_{i \neq j} \mathbf{m}_i \cdot \mathbf{m}_{i,j} - D \sum_{i \neq j} (\mathbf{m}_i \times \mathbf{m}_{i,j}) \cdot \hat{\gamma} - g\mu_B H \cdot \sum_i \mathbf{m}_i + A_1 \sum_i [(m_i^x)^2 + (m_i^y)^2 + (m_i^z)^2] + A_2 \sum_i (m_i^x m_i^y + m_i^y m_i^z + m_i^z m_i^x). \tag{7}
\]

The index \(\hat{\gamma} \) runs over \(\mathbf{x}, \mathbf{y}, \) and \(\mathbf{z} \) for the three-dimensional case, while over \(\mathbf{x} \) and \(\mathbf{y} \) for the two-dimensional case. The magnetic system of \(\text{Cu}_2\text{OSeO}_3 \) is a network of tetrahedra composed of four \(\text{Cu}^{2+} \) \((S = 1/2)\) ions, on which three-up and one-down type collinear spin arrangement is realized below \(T_C \sim 58 \text{ K} [63-65] \). This four-spin assembly as a magnetic unit can be treated as a classical magnetization vector \(\mathbf{m} \), whose norm \(m \) is unity. We choose the ratio \(D/J = 0.09 \), which gives a skyrmion diameter of \(\sim 99 \text{ sites} \) for the skyrmion-crystal phase. If we assume that the distance between adjacent tetrahedra is \(\sim 5 \text{ Å} \), this number corresponds to the skyrmion diameter of \(\sim 50 \text{nm} \) in agreement with the observation in the Lorentz transmission electron microscopy for \(\text{Cu}_2\text{OSeO}_3 \) [60]. For the slowly varying spin textures, the spins are nearly decoupled from the background lattice structure. It justifies the theoretical treatment based on the spin model on the cubic lattice for simplicity without considering the complicated crystal structure of real materials.

3.2. Theoretical phase diagrams

Although microscopic studies based on the first-principles calculations [74, 84–86] and electron spin resonance (ESR) experiments [87] have predicted complicated magnetic system with significant quantum nature, the above-introduced classical spin model has turned out to describe magnetic properties of \(\text{Cu}_2\text{OSeO}_3 \) well. Ground-state phase diagrams of the lattice spin model given by equation (7) well reproduce the experimental phase diagrams of \(\text{Cu}_2\text{OSeO}_3 \) as well as the B20 compounds. Figure 13(a) displays a theoretical phase diagram for two dimensions. We find that the skyrmion-crystal phase emerges in the range \(1.875 \times 10^{-3} < |g \mu_B H|/J < 6.3 \times 10^{-3} \) sandwiched by the helical and ferromagnetic phases. This phase evolution is in agreement with an experimental result for thin-film samples shown in figure 6(b) where the helical, skyrmion-crystal, and ferromagnetic phases successively appear as a magnetic field increases at low temperatures. For the relevant exchange parameter \(J = 3 \text{ meV} \) for \(\text{Cu}_2\text{OSeO}_3 \), these critical fields, respectively, correspond to 486 Oe and 1632 Oe, which coincide well with the experimental values of 500 Oe and 1800 Oe indicated by the phase diagram shown in figure 6.

The net magnetization \(\mathbf{M} \) and the ferroelectric polarization \(\mathbf{P} \) are given by sums of the local contributions as,

\[
\mathbf{M} = \frac{g\mu_B}{NV} \sum_{i=1}^{N} \mathbf{m}_i, \tag{8}
\]

and

\[
\mathbf{P} = \frac{1}{NV} \sum_{i=1}^{N} \mathbf{p}_i. \tag{9}
\]

Here the index \(i \) runs over the Cu-ion tetrahedra with four spin pair, \(N \) is the number of the tetrahedra, and \(V = 1.76 \times 10^{-28} \text{ m}^3 \) is the volume per tetrahedron. The calculated \([110]\) component of \(\mathbf{M} \) and the \([001]\) component of \(\mathbf{P} \) under \(\mathbf{H} || [110] \) are plotted in the lower panels as functions of \(H \).

It might seem to be surprising that the purely two-dimensional spin model can reproduce the experimentally observed phase evolutions in thin slab of materials with finite thickness. This is probably because the two-dimensional model captures well a physical mechanism for enhanced stability of skyrmion crystal due to the destabilization of conical state in thin-film samples as discussed in section 1.2. However, because phase transitions take place only at zero temperature for the two-dimensional model, consideration of the three-dimensionality is required when we study physical properties of thin-film samples at finite temperatures.

On the other hand, a ground-state phase diagram of the spin model given by equation (7) for three dimensions is displayed in figure 13(b). In this case, the skyrmion-crystal phase is absent at low temperatures, and only a phase transition from the longitudinal conical phase to the ferromagnetic phase is reproduced at \(|g \mu_B H|/J = 8.0 \times 10^{-3} \). This result again agrees with the experimental result for bulk samples shown in figure 6(a) where the skyrmion-crystal phase does not appear at low temperatures.

The critical magnetic field \(|g \mu_B H|/J = 8.0 \times 10^{-3} \) corresponds to 2073 Oe if we assume \(J = 3 \text{ meV} \) and \(m = 1 \), which is again in good agreement with the experimental value of 1900 Oe. Note that there appears a multiple-quantum \(q \) conical phase in the experimental phase diagram at low-field region owing to degeneracy of the spiral \(q \) vectors and higher-order magnetic anisotropies, whereas it is absent in the present theoretical phase diagram because we neglect magnetic anisotropies for simplicity. It should also be mentioned that a recent Monte-Carlo study demonstrated that this three-dimensional lattice spin model can reproduce whole experimental phase diagram for bulk samples of \(\text{Cu}_2\text{OSeO}_3 \) and MnSi in plane of magnetic field \(B \) and temperature \(T \) with small skyrmion-crystal phase near the paramagnetic–conical phase boundary at finite temperatures [83].

In the longitudinal conical state, the ferromagnetically ordered planes are stacked along the \(H \) direction accompanied by rotation of the in-plane magnetization components around \(H \) with a uniform turn angle \(\phi \) upon propagating along the \(H \) direction as shown in figure 13(c). In addition this state has a net magnetization parallel to \(H \). With the turn angle \(\phi \) and the
magnetization per site \(m_z = m \cos \theta \), the magnetization vector on the \(i \)th plane and that on the \((i+1)\)th plane are written, respectively, as

\[
m_i = m(\sin \theta \cos \phi_0, \sin \theta \sin \phi_0, \cos \theta),
\]

(10)

and

\[
m_{i+1} = m(\sin \theta \cos(\phi + \phi_0), \sin \theta \sin(\phi + \phi_0), \cos \theta).
\]

(11)

Then the energy per magnetization is given using \(\theta \) and \(\phi \) as,

\[
E[\theta, \phi] = -Jm^2(\sin^2 \theta \cos \phi + \cos^2 \theta) - Dm^2 \sin^2 \theta \sin \phi - g\mu_B H_0 m \cos \theta.
\]

(12)

The expressions of \(\theta \) and \(\phi \) can be derived from the saddle-point equations of the energy with respect to \(\theta \) and \(\phi \):

\[
\frac{\partial E[\theta, \phi]}{\partial \theta} = 0, \quad \frac{\partial E[\theta, \phi]}{\partial \phi} = 0.
\]

(13)

They are given by

\[
\phi = \tan^{-1}\left(\frac{D}{T}\right),
\]

(14)

\[
\cos \theta = \frac{g\mu_B H_0}{2m[J(\cos \phi - 1) + D \sin \phi]}.
\]

(15)

Note that if the magnitude of the external \(H \) is small enough, the propagation vector \(q \) for the conical state is not necessarily directed along \(H \) in reality, but could be pinned in a certain direction due to weak magnetic anisotropies. However it is assumed here that the vector \(q \) is always parallel to \(H \) for simplicity.

Figure 13. (a) Theoretical phase diagram of the lattice spin model given by equation (7) with \(D/J = 0.09 \) and \(A_1 = A_2 = 0 \) for two dimensions as a function of magnetic field \(H_z \) at \(T = 0 \). Calculated magnetic-field dependence of \([1 1 0]\) component of the net magnetization \(M_{110} \) and that of \([0 0 1]\) component of the ferroelectric polarization \(P_{001} \) under \(H = (0, 0, H_z)([1 1 0]) \) are plotted. (b) Those for three dimensions. In the middle panel, \(M_{110} \) data for the ground-state magnetic configurations obtained by numerically minimizing the energy are shown by closed circles, while the analytically obtained behavior of \(M_z = \cos \theta \) with equations (14) and (15) is shown by a solid line. They show perfect coincidence. (c) Schematic illustration of the longitudinal conical spin structure.
obtained behavior of \(M_z = \cos \theta \) with equations (14) and (15) is indicated by a solid line. They show perfect coincidence.

4. Electromagnetism in Multiferroics

4.1. Dynamical susceptibilities

Dynamical properties of resonantly oscillating magnetizations and magnetically induced polarizations of multiferroic skyrmions are captured by the following dynamical susceptibilities:

Dynamical dielectric susceptibilities:

\[
\chi_{\alpha\beta}^{\text{em}}(\omega) = \frac{\Delta P_{\alpha}}{\epsilon_0 E_{\beta}}
\]

(16)

Dynamical magnetic susceptibilities:

\[
\chi_{\alpha\beta}^{\text{mm}}(\omega) = \frac{\Delta M_{\alpha}^m}{\mu_0 H_{\beta}}
\]

(17)

Dynamical magnetoelectric susceptibilities:

\[
\chi_{\alpha\beta}^{\text{me}}(\omega) = \frac{\Delta P_{\alpha}}{\sqrt{\epsilon_0 \mu_0 E_{\beta}}} = \frac{\Delta P_{\alpha}}{H_{\beta}}
\]

(18)

Dynamical electromagnetic susceptibilities:

\[
\chi_{\alpha\beta}^{\text{me}}(\omega) = \frac{\mu_0 \Delta M_{\alpha}^m}{\epsilon_0 E_{\beta}} = \epsilon_0 \mu_0 \Delta M_{\alpha}^m
\]

(19)

The latter two susceptibilities describe cross-correlation responses, that is, responses of polarization \(P \) to the ac magnetic field \(H_{\omega} \) and responses of magnetization \(M \) to the ac electric field \(E_{\omega} \). Here the indices \(\alpha \) and \(\beta \) run over the Cartesian coordinates.

These dynamical susceptibilities are calculated numerically using the Landau–Lifshitz–Gilbert equation:

\[
\frac{dm_i}{dt} = -m_i \times B_i^{\text{eff}} + \frac{\alpha_G}{m} m_i \times \frac{dm_i}{dt}
\]

(20)

where the local magnetization \(m_i \) is defined as \(m_i = -S_i/h \) with \(S_i \) being the spin. The first term describes the gyroscopic rotation of magnetization \(m_i \). Under the effective magnetic field \(B_i^{\text{eff}} \), the second term describes the phenomenologically introduced damping effect with \(\alpha_G \) being the Gilbert-damping coefficient. After the linearization, the equation leads to:

\[
\frac{dm_i}{dt} = \frac{1}{1 + \alpha_G} \left[-m_i \times B_i^{\text{eff}} - \frac{\alpha_G}{m} m_i \times (m_i \times B_i^{\text{eff}}) \right]
\]

(21)

The effective magnetic field \(B_i^{\text{eff}} \) acting on the magnetization \(m_i \) is calculated from the derivative of the Hamiltonian with respect to \(m_i \), as:

\[
B_i^{\text{eff}} = -\partial H/\partial m_i
\]

(22)

with

\[
H = H_0 + H'(t)
\]

(23)

Here the first term \(H_0 \) depicts the magnetic system of the chiral-lattice magnet, which is given by,

\[
H_0 = \sum_{<ij>} \left[m_i \times (m_{i+j} + m_{i+j}) - D \sum_{i,j \neq 0} m_i \times m_{i+j} \right] + \sum_i g_{\mu_B} H \cdot m_i
\]

(24)

where \(H = (0, 0, H_z) \) and \(\gamma \) runs over the Cartesian coordinates \(\hat{x}, \hat{y}, \hat{z} \). The second term \(H'(t) \) represents a short rectangular pulse of magnetic field or that of electric field as a perturbation whose time width is \(\Delta t \):

\[
H'(t) = -g_{\mu_B} H_0 \sum_i \Delta H(t) \cdot m_i
\]

(25)

or

\[
H'(t) = -\sum_i \Delta E(t) \cdot m_i
\]

(26)

Time profiles of \(\Delta H(t) \) and \(\Delta E(t) \) are shown in figure 14. An advantage of utilizing short rectangular pulses is that the \(\omega \)-dependence in the Fourier components \(H^\omega \) and \(E^\omega \) shows up only in higher-order terms with respect to \(\omega \Delta t \) as,
4.2. Spin-wave modes of skyrmion crystal: theory

It was theoretically revealed that the skyrmion-crystal state has peculiar spin-wave modes with frequencies of a few gigahertz [88–94]. Shown in figures 15(a) and (b) are calculated frequency dependence of imaginary part of the dynamical magnetic susceptibility \(\text{Im} \chi^{mm}(\omega) \) for the in-plane ac magnetic field \(\mathbf{H}^c_\alpha \perp \mathbf{H}_{dc} \) and that for the out-of-plane ac magnetic field \(\mathbf{H}^c_\alpha \parallel \mathbf{H}_{dc} \), respectively [88]. The calculations are performed by numerically solving the Landau–Lifshitz–Gilbert equation with the lattice spin model given by equation (24) in two dimensions where the static magnetic field \(\mathbf{H}_{dc} \) is applied normal to the plane. We find that each spectrum in figure 15(a) has a couple of resonance peaks, while that in figure 15(b) has only one resonance peak.

In order to identify these resonant modes, numerical simulations have been performed to trace the spatiotemporal dynamics of the local magnetizations \(\mathbf{m}_i \) and the local scalar spin chiralities \(\mathbf{C}_i \) for the skyrmion-crystal state by applying a stationary oscillating ac magnetic field \(\mathbf{H}^c_\alpha \) whose frequency coincides with the resonance frequency of the corresponding mode [88]. Here the local scalar spin chirality is defined as,

\[
C_i = \mathbf{m}_i \cdot (\mathbf{m}_{i+\hat{x}} \times \mathbf{m}_{i+\hat{y}}) + \mathbf{m}_i \cdot (\mathbf{m}_{i-\hat{x}} \times \mathbf{m}_{i-\hat{y}}).
\]

Figure 16. Simulated spatiotemporal dynamics of local magnetizations (left panels) and local scalar spin chiralities \(\mathbf{C}_i \) (right panels) for three different spin-wave modes of the skyrmion crystal. Temporal waveforms of the applied ac magnetic fields are shown in the uppermost panels where inverted triangles indicate times at which we observe the snapshots shown here. (a) Lower-energy (b) higher-energy rotational mode activated by the ac magnetic field \(\mathbf{H}^c_\alpha \) normal to the static magnetic field \(\mathbf{H}_{dc} (\mathbf{H}^c_\alpha \perp \mathbf{H}_{dc}) \). Distributions of the \(m_i \) components and the spin chiralities \(\mathbf{C}_i \) circulate around the skyrmion core in a counterclockwise (clockwise) fashion. (c) Breathing mode activated the ac magnetic field \(\mathbf{H}^c_\alpha \) parallel to the static magnetic field \(\mathbf{H}_{dc} (\mathbf{H}^c_\alpha \parallel \mathbf{H}_{dc}) \). Areas of the skyrmions expand and shrink in an oscillatory manner. Reprinted with permission from Mochizuki M 2012 Phys. Rev. Lett. 108 017601 [88]. Copyright 2012 by the American Physical Society.
It is found that for every resonance mode discussed here, all of the skyrmions exhibit uniformly the same motion so that one only needs to focus on the dynamics of one skyrmion in the skyrmion crystal to identify the microwave-active eigenmodes.

In figure 16, snapshots of the simulated spatiotemporal dynamics of a skyrmion in the collectively oscillating skyrmion crystal for each mode are displayed. As shown in figures 16(a) and (b), two resonant modes under $H^\parallel H_{dc}$ are rotational modes where distribution of the out-of-plane magnetization components circulates around each skyrmion core. Interestingly such rotational motions of skyrmions are driven even by a linearly polarized H^\perp. The rotation sense of the skyrmion circulation is opposite between these two modes. It is counterclockwise with respect to the H_{dc} direction for the lower-frequency mode, while clockwise for the higher-frequency mode. The rotation sense becomes opposite when one reverses the sign of H_{dc} or the sign of the skyrmion number Q. In contrast, it is not affected by the sign of the Dzyaloshinskii–Moriya parameter or swirling direction of the magnetizations. We find that intensity of the lower-lying mode is much stronger than the higher-lying mode because the rotation sense of the lower-lying mode matches the precessional habits [88]. Numerical simulation found that irradiation of the left-handed circularly polarized microwave with resonant frequency significantly enhances the magnetization oscillation of the lower-lying counterclockwise rotational mode, whereas the right-handed circularly polarized microwave with the...
same frequency cannot activate the magnetization oscillation so much. Numerical simulations also demonstrated that melting of the skyrmion crystal can be realized when the counterclockwise rotational spin-wave mode is intensely excited in the skyrmion-crystal phase with the left-handed circularly polarized microwave. The melting occurs as the radius of the skyrmion-core rotation exceeds the lattice constant of the skyrmion crystal.

4.3. Spin-wave modes of skyrmion crystal: experiment

Since the magnon excitations are characterized by typical resonance frequencies ranging from gigahertz to terahertz, the measurement of absorption and/or transmission spectra with linearly polarized electromagnetic waves in this energy region is the most straightforward way to experimentally identify them. However the dominant contribution from the Drude response of conduction electrons often prevents the detection of pure magnetization dynamics in metallic systems. Therefore the employment of insulating materials is ideal for this purpose because of the absence of the Drude contribution. Indeed the predicted skyrmion resonant modes were detected by microwave absorption and transmission measurements for Cu2OSeO3 [95, 96]. The setup of the experiment in [95] is shown in figure 17(a).

Figure 17(b) indicates measured absorption spectra for bulk samples of Cu2OSeO3 at 57.5 K (just below Tc ~ 58 K) for various magnitudes of Hdc with a microwave polarization of H⊥Hdc. The helical spin order is realized for Hdc ≤ 400 Oe except for the region 140 Oe ≤ Hdc ≤ 320 Oe where the skyrmion-crystal phase takes place. While the helical spin state shows a magnetic resonance at around 1.5–1.7 GHz, the emergence of new absorption mode around 1 GHz is clearly observed in the latter Hdc-range. In figure 17(c), intensity of the new absorption mode is indicated by colors in plane of T and Hdc. This mode has been confirmed to appear only in the skyrmion-crystal phase, and can be assigned to the counterclockwise rotational mode of the skyrmion crystal according to the theoretically suggested selection rules with respect to the microwave polarization. Note that the existence of the clockwise rotational mode at higher frequency was also predicted for the skyrmion-crystal state, while its experimental identification is yet to be performed because of its weak absorption intensity.

Likewise the corresponding Hdc-dependence of the absorption spectra for the microwave polarization H⊥|Hdc is shown in figure 17(d). Whereas the conventional ferromagnetic resonance is active only to H∥Hdc and this selection rule holds also for the helical state, emergence of a sharp absorption peak is observed at 1.3–1.5 GHz for the region 50 Oe ≤ Hdc ≤ 150 Oe. The color plot of the spectral intensity in the H–T plane indicates that this mode uniquely appears in the skyrmion-crystal phase (figure 17(e)). Comparison with the theoretically proposed selection rules suggests that this resonant absorption corresponds to the breathing mode of the skyrmion crystal.

5. Microwave magnetolectric phenomena

5.1. Electromagnetic waves in multiferroics

Dynamical responses of multiferroic materials with net magnetization M and ferroelectric polarization P to an irradiated electromagnetic wave can be discussed starting from Maxwell’s equations,

\[
\text{rot} E = -\frac{\partial B}{\partial t},
\]

\[
\text{rot} B = \frac{\partial D}{\partial t},
\]

where

\[
B = \mu_0(\hat{\mu}\infty H + M),
\]

\[
D = \varepsilon_0\hat{\varepsilon}\infty E + P,
\]

\[
P = \varepsilon_0\hat{\varepsilon}\infty E + \chi_{\text{em}}\sqrt{\varepsilon_0\mu_0} H,
\]

\[
M = \mu_0\chi_{\text{mm}} H + \chi_{\text{me}} \frac{\varepsilon_0}{\mu_0} E.
\]

Note that because of the multiferroic nature, the magneto-electric susceptibilities \(\chi_{\text{mm}}\) and \(\chi_{\text{me}}\) become finite, and there appear a contribution proportional to \(H\) in the expression of the ferroelectric polarization \(P\) and that proportional to \(E\) in the expression of the net magnetization \(M\). Inserting the following expressions,

\[
E = E^e \exp[i(K^e \cdot r - \omega t)],
\]

\[
H = H^e \exp[i(K^e \cdot r - \omega t)],
\]

into equations (32) and (33), one obtains the following equations for Fourier components,

\[
\omega B^e = K^e \times E^e,
\]

\[
-\omega D^e = K^e \times H^e,
\]

where

\[
B^e = [\hat{\mu}\infty + \chi_{\text{mm}}(\omega)] \mu_0 H^e + \chi_{\text{me}}(\omega) \sqrt{\varepsilon_0\mu_0} E^e,
\]

\[
D^e = [\hat{\varepsilon}\infty + \chi_{\text{em}}(\omega)] \varepsilon_0 E^e + \chi_{\text{mm}}(\omega) \sqrt{\mu_0\varepsilon_0} H^e.
\]

Solving these simultaneous equations in terms of the wave vector \(K^e\) and considering the relation

\[
K^e = \alpha N(\omega)c,
\]

one obtains an expression of the complex refractive index

\[
N(\omega) = n(\omega) + i\kappa(\omega).
\]

This quantity gives us information about how the material responds to an irradiated electromagnetic wave. In particular, its imaginary part \(\kappa(\omega)\) is called extinction coefficient and describes to what extent the material absorbs the
electromagnetic wave. More concretely, the absorption coefficient $\alpha(\omega)$ is related to $\kappa(\omega)$ as,

$$\alpha(\omega) = \frac{2\omega\kappa(\omega)}{c} = \frac{2\omega}{c} \operatorname{Im}\chi(\omega),$$

(46)

and the absorption intensity $I(\omega)$ is given by,

$$I(\omega) = I_0 \exp[-\alpha(\omega)d],$$

(47)

with d being the sample thickness.

5.2. Nonreciprocal directional dichroism: theory

In the multiferroic materials with magnetically induced electric polarizations, one can expect dynamical coupling of magnetic and electric dipoles. For example, resonant oscillations of magnetizations in multiferroics are coupled to those of electric polarizations owing to the magnetoelectric coupling, and thus can be activated not only magnetically by an ac magnetic field H^z but also electrically by an ac electric field E^z [97–99]. Such simultaneous magnetic and electric activities of magnons (so-called electromagnons) cause intriguing dynamical magnetoelectric phenomena in the microwave frequency regime [80, 112]. Since the magnetic skyrmions in Cu2OSeO3 are accompanied by electric dipoles, the resonant oscillation of skyrmion crystal active to H^z can be also activated by E^z. The theoretical calculation indeed predicted that the rotational modes and the breathing mode of skyrmion crystal under $H_{dc}[110]$ has finite electric susceptibility for $E^z[110]([H_{dc}]$ and $E^z[001](\perp H_{dc})$, respectively.

For such hybridized electromagnon modes, interference between the H^z-activity and the E^z-activity often leads to unique optical and/or microwave phenomena called directional dichroism [80]. This is a kind of ‘one-way window’ effect where reversal of incident direction of an electromagnetic wave gives different absorption or emission spectrum (see schematic figure in figure 18). Since the first experimental demonstration by Rikken in 1997 [100], directional dichroism in absorption and emission has been reported for various frequency range from x-ray to visible-light to terahertz [101–109]. The directional dichroism can be considered as a direct expansion of the linear magnetoelectric effect ($P = \alpha_e H$ and $M = \alpha_m E$) into the dynamical regime and is allowed when α_e component is nonzero for the incident direction of an electromagnetic wave $K^z||z$. This condition is always satisfied when the relationship $(P \times M)||K^z$ holds, while the magnitude of directional dichroism essentially depends on nature of the absorption at the target frequency.

When one applies a static magnetic field $H_{dc}[110]$ to Cu2OSeO3, the ferroelectric polarization $P[001]$ as well as the net magnetization $M[110]$ are induced, which are orthogonal to each other as shown in figure 7(c) or figure 9(b). With this special configuration of $P \perp M$, both H^z- and E^z-components of a microwave propagating parallel or antiparallel to $P \times M$ can excite common oscillation modes.

Such a simultaneous activity of the collective modes can be seen via comparison between the dynamical magnetic susceptibilities $\chi_{mm}(\omega)$ and the dynamical dielectric susceptibilities $\chi_{ee}(\omega)$. Figures 19(a) and (b) show calculated frequency dependence of χ_{nm} and that of χ_{ee}, respectively, for the skyrmion-crystal state under $H||[110]$. We find that resonances...
Figure 20. Spatiotemporal dynamics of magnetizations \(\mathbf{m} \) (left panels) and polarizations \(\mathbf{p} \) (right panels) for electromagnon excitations in the skyrmion-crystal under the static magnetic field \(\mathbf{H}[[1\ 1\ 0]] \) in figure 19(a). (a) Counterclockwise rotational mode activated by in-plane ac magnetic field \(\mathbf{H}' \perp [1\ 1\ 0] \) or by out-of-plane ac electric field \(\mathbf{E}'[[1\ 1\ 0]] \). (b) Breathing mode activated by out-of-plane ac magnetic field \(\mathbf{H}'[[1\ 1\ 0]] \) or by in-plane ac electric field \(\mathbf{E}' \perp [1\ 1\ 0] \). Dynamical behaviors of net magnetization \(\mathbf{M} \) and ferroelectric polarization \(\mathbf{P} \) are shown for each mode in the lowest panel. The angle between \(\mathbf{M} \) and \(\mathbf{P} \) becomes larger and smaller in an oscillatory manner in the rotational mode, while in the breathing mode, elongation and shrinkage of \(\mathbf{M} \) and \(\mathbf{P} \) in length occur synchronously, keeping the angle at 90°.

active to ac magnetic fields seen as peaks in the spectrum of \(\text{Im} \chi_{\alpha\beta}^{mn} \) can be found also in the spectrum of \(\text{Im} \chi_{\alpha\beta}^{ee} \). More concretely, the spectrum of \(\text{Im} \chi_{\alpha\beta}^{mn} \) with \(y[[0\ 0\ 1]] \) in figure 19(a) has a couple of resonance peaks, and the spectrum of \(\text{Im} \chi_{\alpha\beta}^{ee} \) with \(z[[1\ 1\ 0]] \) in figure 19(b) also has peaks at the same frequencies. This indicates that the in-plane ac magnetic field \(\mathbf{H}' \perp \mathbf{H}_{dc} \) and the out-of-plane ac electric field \(\mathbf{E}' \perp \mathbf{H}_{dc} \) activate the same eigenmodes. On the other hand, both \(\text{Im} \chi_{\alpha\beta}^{mn} \) in figure 19(a) and \(\text{Im} \chi_{\alpha\beta}^{ee} \) in figure 19(b) have a single peak at the same frequency, indicating that the out-of-plane ac magnetic field \(\mathbf{H}' || \mathbf{H}_{dc} \) and the in-plane ac electric field \(\mathbf{E}' \perp \mathbf{H}_{dc} \) activate the same eigenmode.

In figures 20(a) and (b), snapshots of the simulated coupled dynamics of local magnetizations \(\mathbf{m}_i \) (left panels) and local polarizations \(\mathbf{p}_i \) (right panels) are shown for the counterclockwise rotational mode activated by \(\mathbf{H}' \perp \mathbf{H}_{dc} \) or \(\mathbf{E}' \perp \mathbf{H}_{dc} \) and the breathing mode activated by \(\mathbf{H}' || \mathbf{H}_{dc} \) or \(\mathbf{E}' || \mathbf{H}_{dc} \), respectively. Behaviors of the net magnetization \(\mathbf{M} \) and the ferroelectric polarization \(\mathbf{P} \) for these modes are shown in the bottom panels. In the rotational mode, the angle between \(\mathbf{P} \) and \(\mathbf{M} \), which is originally 90°, becomes larger and smaller oscillatory. On the other hand, in the breathing mode, simultaneous elongation and shrinkage of \(\mathbf{P} \) and \(\mathbf{M} \) occur in an oscillatory manner, while keeping the angle between them 90°.

These simultaneous electric and magnetic activities of the resonant modes cause peculiar dynamical magnetoelectric phenomena of skyrmions in the microwave-frequency regime [80]. We first discuss the case with a linearly polarized microwave with \(\mathbf{H}'[[0\ 0\ 1]] \perp \mathbf{M} \) and \(\mathbf{E}'[[1\ 1\ 0]] \perp \mathbf{P} \) as shown in figure 21(a). Starting from Maxwell’s equations, one can derive a relation for electromagnetic waves:

\[
\mathbf{H}'[[001]] \perp \mathbf{E}'[[110]] \perp \mathbf{M} \perp \mathbf{P}
\]

(Figure 21. Microwave polarization configurations with which the nonreciprocal directional dichroism occurs in the skyrmion-crystal phase with net magnetization \(\mathbf{M}[[1\ 1\ 0]] \) and ferroelectric polarization \(\mathbf{P}[[0\ 0\ 1]] \). (a) \(\mathbf{H}'[[001]] \perp \mathbf{E}'[[110]] \perp \mathbf{M} \perp \mathbf{P} \). The \(\mathbf{H}' \) and \(\mathbf{E}' \) components contribute in an additive way to the excitation of rotational modes for a microwave propagating in the negative \((-x \text{ or } [1\ 1\ 0])\) direction, while in a subtractive way for a microwave propagating in the positive \((+x \text{ or } [1\ 1\ 0])\) direction. Consequently the absorption intensity of the former microwave with \(sgn(Re\mathbf{K}') = -1 \) becomes larger than that of the latter one with \(sgn(Re\mathbf{K}') = +1 \). (b) \(\mathbf{H}'[[110]] \perp \mathbf{E}'[[001]] \perp \mathbf{M} \perp \mathbf{P} \). In this case, a microwave propagating in the \(-x\) direction is absorbed intensely through strongly exciting the breathing mode as compared to that propagating in the \(+x\) direction. Reprinted with permission from Mochizuki M and Seki S 2013 Phys. Rev. Lett. 113 107203 [80]. Copyright 2013 by the American Physical Society.)
This equation indicates that the relative relationship between $H^-\times E^-$ and $E^-\times E^-$ directions of an electromagnetic wave is determined by the sign of the wave vector K^- or the propagation direction. This relative relationship is reversed upon the sign reversal of K^-. Accordingly the H^- and E^- components of a microwave propagating in $[\bar{1}\ 1\ 0]$ (+x) direction cooperatively induce an oscillation of the angle between P and M so as to intensely activate the rotation mode [see bottom panels of figure 21(a)]. In turn, when the microwave is propagating in the opposite direction, that is, $[\bar{1}\ 1\ 0]$ (−x) direction, its H^- and E^- components work destructively to activate the rotation mode. Consequently the microwave with $K^-||−x$ strongly excites the spin wave resonance, and thereby is strongly absorbed, while the microwave with $K^-||+x$ excites the spin wave resonance only weakly, and thus is weakly absorbed. In this way, the microwave absorption intensity becomes different depending on the incident direction.

One can also expect that interference between the magnetic and electric activation processes of the breathing mode also gives rise to the nonreciprocal directional dichroism of microwave when the microwave polarization is $H^-||[1\ 1\ 0]||M$ and $E^-||[0\ 0\ 1]||P$ as shown in figure 21(b). In this case, the H^- and E^- components of a microwave propagating in the +x direction cooperatively induce length oscillations of P and M so as to intensely activate the breathing mode, whereas those of a microwave propagating in the −x direction do not [see bottom panels of figure 21(b)]. Consequently, the microwave with $K^-||+x$ is strongly absorbed, whereas the microwave with $K^-||−x$ is weakly absorbed. Again the absorption intensity becomes different depending on the incident direction of the microwave.

For quantitative discussion on these effects, one derives expressions of a complex refractive index $N(\omega)$ by solving the simultaneous equations (40) and (41) for two different cases of microwave polarizations:
Case (i): $H^0||[001]$, $E^0||[110]$(z)

$$N(\omega) \sim \sqrt{[r_{yy} + \chi_{yy}^0(\omega)] [\mu_{zz}^0 + \chi_{zz}^{\text{em}}(\omega)]}$$

$$- \text{sgn}(\text{Re}K^{-}) \chi_{yy}^{\text{me}}(\omega) + \chi_{yy}^{\text{em}}(\omega)/2,$$

Case (ii): $H^0||[110](z)$ and $E^0||[001]$(y)

$$N(\omega) \sim \sqrt{[r_{yy} + \chi_{yy}^0(\omega)] [\mu_{zz}^0 + \chi_{zz}^{\text{em}}(\omega)]}$$

$$+ \text{sgn}(\text{Re}K^{-}) \chi_{yy}^{\text{me}}(\omega) + \chi_{yy}^{\text{em}}(\omega)/2.$$ (50)

In these expressions, we find that there appears a term containing the sign of K^{-}. Since the absorption coefficient of electromagnetic waves is given by $\alpha(\omega) = (2\omega/e)\text{Im}N(\omega)$.

Figure 23. Calculated H_{dc} dependence of the resonant frequency f_R (upper panels) and the magnitude of nonreciprocal directional dichroism $\Delta \alpha/\alpha$ (lower panels) for (a) two-dimensional system (thin-film case) and (b) three-dimensional system (bulk case) under $H_{dc}||[1 1 0]$ for the microwave polarization $H^0||[001](\perp H_{dc})$ and $E^0||[1 1 0](\parallel H_{dc})$.

Figure 24. (a) Experimental setup of the measurement of microwave directional dichroism. Microwaves can propagate along the coplanar waveguide in both directions, and the difference between ΔS_{21} and ΔS_{12} is evaluated as nonreciprocal absorption spectra. (b) Electromagnetic-field distribution in the present setup using a coplanar waveguide, viewed from the direction of microwave propagation. Here the configuration of $P||[001]$, $H_{dc}||M||[1 1 0]$, and $K^{-}||[1 1 0]$ is taken for bulk Cu$_2$OSeO$_3$, and thus the relationship $P \times M||K^{-}$ is satisfied. (c) Microwave absorption spectra for the skyrmion-crystal state at $H_{dc} = 300$ Oe. A result of the two-peak fitting is also shown by broken lines in addition to the raw data (red line). The broken lines represent each component, and the blue solid line represents a sum of them. (d) The corresponding nonreciprocal absorption spectra measured for $H_{dc} = \pm 300$ Oe. (Reproduced from [112]).
the coefficient $\alpha(\omega)$ depends on the sign of K^ω or the incident direction of electromagnetic wave. Magnitude of the nonreciprocal directional dichroism or change of the absorption coefficient accompanied by reversal of the microwave incident direction, that is, $\Delta \alpha(\omega) = \alpha_+(\omega) - \alpha_-(\omega)$, is given by:

Case (i): $\mathbf{H}^-[001](\| y \rangle$ and $\mathbf{E}^-[1\ 1\ 0](\| z \rangle$)

$$\Delta \alpha(\omega) = -\text{Im}[\chi_{x\gamma}^m(\omega) + \chi_{\gamma\gamma}^m(\omega)]/2,$$

(51)

Case (ii): $\mathbf{H}^-[1\ 1\ 0](\| z \rangle$ and $\mathbf{E}^-[001](\| y \rangle$)

$$\Delta \alpha(\omega) = \text{Im}[\chi_{x\gamma}^m(\omega) + \chi_{\gamma\gamma}^m(\omega)]/2.$$

(52)

Here $\alpha_+(\omega)$ and $\alpha_-(\omega)$ are absorption coefficients for an electromagnetic wave propagating in the positive and negative x directions, respectively. We find that the magnitude of nonreciprocal directional dichroism is governed by magnetoelectric susceptibilities $\chi_{x\gamma}^m(\omega)$ and $\chi_{\gamma\gamma}^m(\omega)$.

Figures 22(a) and (b) display calculated spectra of microwave absorption coefficients $\alpha_+(\omega)$ and $\alpha_-(\omega)$ as well as their difference $\Delta \alpha(\omega)$ for the skyrmion crystal in a (two-dimensional) thin-film sample of Cu$_2$OSeO$_3$ under $H_{dc}[1\ 1\ 0]$ for several values of H_{dc}. In figure 22(a), there appear two peaks in the spectra, which correspond to the low-energy counterclockwise and the high-energy clockwise rotational modes, respectively, for the microwave polarization of $H^-[001](\| y \rangle$ and $E^-[1\ 1\ 0](\| z \rangle$). The difference of absorption coefficients $\Delta \alpha(\omega)$ increases as the magnetic field H_{dc} increases, and eventually reaches a maximum value of 0.25 cm$^{-1}$, which corresponds to the relative difference of $\Delta \alpha/\alpha_{ave} = 2(\alpha_+ - \alpha_-)/(\alpha_+ + \alpha_-) \sim 20\%$. On the other hand, in figure 22(b), a single resonance peak, which corresponds to the breathing mode appears for the microwave polarization configuration of $H^-[1\ 1\ 0](\| z \rangle$ and $E^-[001](\| y \rangle$). The difference of absorption coefficients $\Delta \alpha(\omega)$ increases as the magnetic field H_{dc} increases, and reaches 0.14 cm$^{-1}$ at maximum which corresponds to the relative difference of $\sim 10\%$.

The microwave directional dichroism can be expected also in other magnetic phases. Figure 22(c) display calculated spectra of $\alpha_+(\omega)$ and $\alpha_-(\omega)$ as well as their difference $\Delta \alpha(\omega)$ for the longitudinal conical state in a (three-dimensional) bulk sample of Cu$_2$OSeO$_3$ under $H_{dc}[1\ 1\ 0]$ for several values of H_{dc}. The magnitude of $\Delta \alpha(\omega)$ increases as H_{dc} increases, and reaches relative difference of $\sim 30\%$. In figure 23(a) and (b), calculated resonant frequency f_R (upper panels) and magnitude of directional dichroism $\Delta \alpha/\alpha_{ave}$ (lower panels) are plotted as functions of dc magnetic field H_{dc} for the two-dimensional case (thin-film sample) and the three-dimensional case (bulk sample) for the microwave polarization $H^-[001](\| y \rangle$ and $E^-[1\ 1\ 0](\| z \rangle$) under $H_{dc}[1\ 1\ 0]$. In the calculation, an isotropic dielectric tensor with $\varepsilon_\infty = \varepsilon_\infty = \varepsilon_\infty = 8$ is used according to the dielectric-measurement data [110, 111], while $\mu_\infty = \mu_\infty$ is 1 is used for permeability. The value of J is set to be $J = 1$ meV.

Note that the value of exchange parameter in Cu$_2$OSeO$_3$ is $J = 3$ meV in reality, but here we used $J = 1$ meV to reproduce critical fields at a finite temperature in order to compare the calculation and the experiment done at $T = 57.5$ K. For an exact numerical treatment, we should perform a finite-temperature calculation by taking account of thermal-fluctuation effects using the stochastic Landau–Lifshitz–Gilbert equation with a realistic exchange parameter of $J = 3$ meV. The simple reduction of the J value adopted here to mimic the thermal effects is a rather crude approximation. As a result, the calculation tends to overestimate the magnitude of directional dichroism at finite temperatures significantly. However, even with this approximation, not only qualitative behaviors of physical phenomena but also experimentally measured resonance frequencies and magnetic-field strengths can be reproduced quantitatively. Also, the predicted large microwave directional dichroism of ~ 20–30% is expected to be observed at low temperatures.

5.3. Nonreciprocal directional dichroism: experiment

The above theoretical analysis suggests that significant directional dichroism can be expected for the skyrmion resonant modes in Cu$_2$OSeO$_3$ under the experimental configuration with $H_{dc}[1\ 1\ 0]$ (eventually $P[001]$ and $K^\omega[1\ 1\ 0]$ since the condition $P \times M[K^\omega]$ is satisfied here. Figure 24(b) shows the nonreciprocal absorption spectra $\Delta \alpha(\omega) = \alpha_+(\omega) - \alpha_-(\omega)$ measured for the skyrmion-crystal phase in bulk Cu$_2$OSeO$_3$ at $T = 57$ K [112]. Two resonant modes observed at 1.0 GHz and 1.7 GHz correspond to the counterclockwise rotational mode and the breathing mode of the skyrmion crystal, respectively. Note that for the experimental setup (see figure 24(a)) with electromagnetic-field distribution shown in figure 24(b), both the rotational mode active to $\mathbf{H}^\perp \mathbf{H}_{dc}$ and the breathing mode active to $\mathbf{H}^\perp \mathbf{H}_{dc}$ are simultaneously excited (see figure 24(c)). Both modes show large directional dichroism up to $\sim 3\%$ but with opposite signs (see figure 24(d)). Here the reversal of \mathbf{H}_{dc}, which reverses the sign of \mathbf{M} but does not change the sign of \mathbf{P}, changes the sign of directional dichroism, which is consistent with the symmetry requirement of this phenomena. The experimentally and theoretically obtained \mathbf{H}_{dc}-dependence of the magnetic resonance frequency as well as the magnitude of directional dichroism for bulk Cu$_2$OSeO$_3$ are summarized in figure 25, which agree well with each other [112]. The experimental observation of the large directional dichroism inversely proves that the present skyrmion resonant modes have finite electric activity coupled with \mathbf{E}^\perp. The above results demonstrate that ultra-fast control of skyrmions by ac electric fields up to GHz frequency range is indeed possible in insulating materials, and the employment of resonant structures in the electric susceptibility as presented here may be useful to improve the efficiency of the electric manipulation of magnetic skyrmions.

5.4. Microwave magnetochiral effect

In addition to the Voigt geometry with $K^\omega \perp \mathbf{H}_{dc}$ as discussed above, one can expect the microwave directional dichroism also for the Faraday geometry with $K^\omega[\mathbf{H}_{dc}]$ [113, 114]. The directional dichroism realized with this configuration is called magnetochiral effect where the absorption or transmission intensity of an electromagnetic wave propagating parallel or
antiparallel to the external magnetic field H_{dc} differs depending on its propagation direction.

Considering the emergence of finite P_{c001} under H_{dc} and the absence of P ($P_0 = 0$) under H_{b010} as shown, respectively, in figures 9(b) and 26(a), one expects the emergence of oscillating ferroelectric polarization P_{c001} induced by the oscillation of net magnetization M with M_{a100} when the ac magnetic field H_{a100} is applied to the Cu$_2$OSeO$_3$ sample under H_{b010} (see figures 26(b) and (c)). Consequently, the interference between the H_{dc}-active and the E_{ω}-active processes of this coupled oscillation of ΔP_{c001} and ΔP_{a100}, and thereby the directional dichroism occur for microwave propagation in [0 1 0] or $b+\hat{b}$ direction cooperatively excite the above-mentioned electromagnon mode and hence is absorbed significantly, while those of an oppositely propagating microwave destructively contribute to the electromagnon excitation and hence is absorbed only weakly.

The microwave magnetochiral effect with this configuration is expected not only for the skyrmion-crystal phase but also for other magnetically ordered phases. The effect in the conical phase and the field-polarized ferromagnetic phase in the bulk Cu$_2$OSeO$_3$ sample at low temperatures was experimentally observed [113] and theoretically predicted [114] individually around the same time.

6. Summary and perspectives

In this article, we have overviewed recent theoretical and experimental studies on the multiferroic properties and the dynamical magnetoelectric phenomena of magnetic skyrmions in a chiral-lattice magnetic insulator Cu$_2$OSeO$_3$. We have first discussed that the noncollinear skyrmion spin textures in this insulating magnet induce electric polarizations via the so-called spin-dependent metal-ligand hybridization mechanism, and the system attains multiferroic nature. Resulting magnetoelectric coupling, that is, the coupling between magnetizations and
polarizations enables us to manipulate magnetic skyrmions by application of electric fields instead of injection of electric currents. Here, an important future issue is an establishment of a method to create skyrmions by electric fields. This method will be microscopically distinct from that based on spin-transfer torques from spin-polarized electric currents in metallic systems, and can be a unique technique for future skyrmion-based storage devices without energy losses due to Joule heating.

We have then argued that multiferroic skyrmions show coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active. Interference between these electric and magnetic activation processes leads to peculiar magnetoelectric effects of skyrmions in the microwave frequency regime. Significant dynamical magnetoelectric effects such as directional dichroism are rare for any frequency ranges. In particular there have been few reports on their observations in the gigahertz regime. This is because usual multiferroic materials based on simple short-period spin structures with antiferromagnetic interactions tend to have rather high resonance frequencies (typically at the terahertz regime) due to large spin-wave gaps. In turn, skyrmions and other topological spin textures with long-period spin modulations induced by the Dzyaloshinskii–Moriya interactions and ferromagnetic interactions tend to have small spin-wave gaps and specific low-lying resonant modes, which offers a unique opportunity to realize novel microwave functionalities.

For technical applications of these effects to future microwave devices, it is important to achieve enhanced cross-correlation responses or larger ferroelectric polarization. For this purpose, search for new insulating materials which exhibit skyrmions is necessary. Materials containing ions with stronger spin–orbit interactions other than Cu$^{2+}$ is one of the promising research directions. In addition, it is also promising to explore skyrmion states which induce large ferroelectric polarizations via a mechanism other than the spin-dependent hybridization mechanism such as the inverse Dzyaloshinskii–Moriya mechanism.

The insulating skyrmionic material also offers a unique opportunity to investigate skyrmion motion driven by magnon currents. It has been theoretically predicted that magnon currents can drive translational motion, subsequent Hall motion, and rotational motion of skyrmions via the spin-transfer torques. In particular, thermally-induced diffusive flows of magnons are expected to induce the skyrmion motion in the presence of temperature gradient. In the metallic magnets, a thermal gradient necessarily induces diffusive currents of conduction electrons which flow from a higher-temperature side to a lower-temperature side, and contribute to the skyrmion motion. Therefore it is difficult to identify a contribution purely from magnon currents to the skyrmion motion in metallic magnets. In turn, insulating magnets are appropriate for the research because of the absence of conduction electrons and low-lying charge excitations. The skyrmion-hosting insulating magnets offer precious playgrounds for research into several interesting issues such as optical responses and manipulations of skyrmions, skyrmion-based magnonic crystals, spin currents, spin motive forces, spin Seebeck effects in the skyrmion phases, elastic responses of skyrmions, E-field driven motion and manipulations of skyrmions, and critical and dynamical behaviors of phase transitions.

So far, magnetic skyrmions had been observed only in materials with chiral cubic $P_2_3_3$ symmetry such as B20 alloys and Cu$_2$OSeO$_3$. However, it was theoretically predicted that non-chiral but polar magnets with C_{nv} symmetry can also host skyrmions stabilized by the Dzyaloshinskii–Moriya interactions. Indeed, realization of magnetic skyrmions was recently discovered in polar magnet GaVS$_8$ with rhombohedral C_{3v} symmetry. In addition to these non-centrosymmetric ferromagnets, observations of skyrmions have been reported even for centrosymmetric ferromagnetic insulators with uniaxial anisotropy such as Y$_3$Fe$_5$O$_{12}$, RFeO$_3$, BaFe$_{11.7}$Sc$_0.16$Mg$_{0.05}$O$_{19}$, La$_{0.5}$Ba$_{0.5}$Mn$_2$O$_7$, $\text{La}_2-\text{Sr}_1-\text{Mn}_2O_7$.

Crystal structures of these materials have spatial inversion symmetry, and the Dzyaloshinskii–Moriya interaction is not active. Instead, interplay between magnetic dipole–dipole interaction and magnetic anisotropies play important roles for the realization of magnetic skyrmions. Furthermore, it was recently discovered that surfaces and interfaces of ferromagnetic monolayers host atomically small magnetic skyrmions. The space-inversion symmetry is broken, and thus the Dzyaloshinskii–Moriya interaction is
active. Now the number of known skyrmion-hosting magnetic systems is rapidly increasing. Magnetoelastic dynamics in these systems are issues of interest and should be clarified in future studies.

Acknowledgment

The authors thank Y Tokura, N Nagaosa, Y Onose, F Kagawa, X Z Yu, Y Okamura, M Kawasaki, and A Rosch for enlightening discussions. This work is partly supported by JSPS KAKENHI (Grant Numbers 25870169, 25287088, 26610109 and 15H05458) and JST PRESTO.

Appendix. Derivation of the expression of \(N(\omega) \)

In this appendix, we solve Maxwell’s equations to derive the expression of \(N(\omega) \) given by equation (49) for the following polarization configuration of electromagnetic wave as an example: \(H^\wedge (\| y \) = (0, \(H^\wedge_y \), 0), \(E^\wedge (\| z \) = (0, 0, \(E^\wedge_z \)), and \(K^\wedge (\| x \) = (K^\wedge_x, 0, 0).

Inserting equation (42) into equation (32), we obtain

\[
\omega \mu_0 \hat{\chi}^{\text{mm}} H - \omega \sqrt{\varepsilon_0 \mu_0} \hat{\chi}^{\text{me}} E = K \times E - (0, -K^\wedge_z E^\wedge_z, 0),
\]

where \(\hat{\chi}^{\text{mm}} = \hat{\rho}_\infty + \hat{\chi}^{\text{mn}}. \)

Also inserting equation (43) into equation (33), we obtain

\[
-\omega \varepsilon_0 \hat{\chi}^{\text{ee}} \omega + \omega \sqrt{\varepsilon_0 \mu_0} \hat{\chi}^{\text{em}} H = K \times H - (0, -K^\wedge_z H^\wedge_z),
\]

where \(\hat{\chi}^{\text{ee}} = \hat{\varepsilon}_\infty + \hat{\chi}^{\text{ee}}. \)

Now we have a set of equations,

\[
\omega \mu_0 H^\wedge_y \hat{\chi}^{\text{mm}} + \omega \sqrt{\varepsilon_0 \mu_0} \hat{\chi}^{\text{me}} E^\wedge_y = -K^\wedge_z E^\wedge_y,
\]

\[
\omega \varepsilon_0 \hat{\chi}^{\text{ee}} H^\wedge_z + \omega \sqrt{\varepsilon_0 \mu_0} \hat{\chi}^{\text{em}} H^\wedge_y = -K^\wedge_z H^\wedge_z.
\]

After multiplying \(\frac{c}{\omega} \) to both sides of the equations and using \(N = \frac{c}{\omega} \), the equations lead,

\[
\left(\chi^{\text{me}} + \text{sgn}(K^\wedge) N \sqrt{\frac{\mu_0}{\varepsilon_0}} \chi^{\text{mm}} \right) \left(E^\wedge_y \right) = 0.
\]

These equations have nontrivial solutions when the determinant of the matrix is zero, that is,

\[
\chi^{\text{me}} + \text{sgn}(K^\wedge) N (\chi^{\text{me}} + \chi^{\text{em}}) + \lambda^2 - \chi^{\text{ee}} \chi^{\text{mm}} = 0. \tag{A.6}
\]

Neglecting the first term of the left-hand side because \(\chi^{\text{me}} \) and \(\chi^{\text{em}} \) are small, the equation leads

\[
N^2 + \text{sgn}(K^\wedge) N (\chi^{\text{me}} + \chi^{\text{em}}) - \chi^{\text{ee}} \chi^{\text{mm}} = 0.
\]

Solving this quadratic equation, we obtain

\[
N = -\frac{\text{sgn}(K^\wedge) (\chi^{\text{me}} + \chi^{\text{em}}) \pm \sqrt{(\chi^{\text{me}} + \chi^{\text{em}})^2 + 4 \chi^{\text{ee}} \chi^{\text{mm}}}}{2}.
\]

After neglecting the second-order terms with respect to \(\chi^{\text{me}} \) and \(\chi^{\text{em}} \) again, we eventually arrive at

\[
N(\omega) = \sqrt{\chi^{\text{ee}} \chi^{\text{mm}}} - \frac{\text{sgn}(K^\wedge) (\chi^{\text{me}} + \chi^{\text{em}})}{2}. \tag{A.7}
\]

References

[1] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[2] Tokura Y 2006 Science 312 1481
[3] Khomskii D I 2006 J. Magn. Magn. Mater. 306 1
[4] Cheong S-W and Mostovoy M 2007 Nat. Mater. 6 13
[5] Tokura Y 2007 J. Magn. Magn. Mater. 310 1145
[6] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[7] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[8] Mostovoy M 2006 Phys. Rev. Lett. 96 067601
[9] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[10] Yamazaki Y, Sagayama H, Goto T, Matsuura M, Hiroki K, Arima T and Tokura Y 2007 Phys. Rev. Lett. 98 147204
[11] Seki S, Yamazaki Y, Soda M, Matsuura M, Hiroki K and Tokura Y 2008 Phys. Rev. Lett. 100 127201
[12] Murakawa H, Onose Y and Tokura Y 2009 Phys. Rev. Lett. 103 147201
[13] Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T and Tokura Y 2009 Nat. Mater. 8 558
[14] Pfleiderer C 2011 Nat. Phys. 7 673
[15] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[16] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[17] Skyrme T H R 1961 Proc. R. Soc. A 260 127
[18] Skyrme T H R 1962 Nucl. Phys. 1 356
[19] Bogdanov A N and Yablonskii D A 1989 Sov. Phys.—JETP 68 101
[20] Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255
[21] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797
[22] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[23] Moriya T 1960 Phys. Rev. 120 91
[24] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[25] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[26] Pappas C, Leieiev-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P and Farago B 2009 Phys. Rev. Lett. 102 197202
[27] Pfleiderer C et al 2010 J. Phys.: Condens. Matter 22 164207
[28] Munzer W et al 2010 Phys. Rev. B 81 041203
[29] Adams T et al 2011 Phys. Rev. Lett. 107 217206
[30] Grigoriev S V et al 2013 Phys. Rev. Lett. 110 207201
[31] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[32] Tomomura A, Yamagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S and Tokura Y 2012 Nano Lett. 12 1673
[33] Shibata K, Yu X Z, Haru T, Morikawa K, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y and Tokura Y 2013 Nat. Nanotechnol. 8 723
[105] Saito M, Taniguchi K and Arima T 2008 J. Phys. Soc. Japan \textbf{77} 013705
[106] Saito M, Ishikawa K, Taniguchi K and Arima T 2008 \textit{Phys. Rev. Lett.} \textbf{101} 117402
[107] Takahashi Y, Shiman0 R, Kaneko Y, Murakawa H and Tokura Y 2012 \textit{Nat. Phys.} \textbf{8} 121
[108] Bordacs S \textit{et al} 2012 \textit{Nat. Phys.} \textbf{8} 734
[109] Miyahara S and Furukawa N 2011 \textit{J. Phys. Soc. Japan} \textbf{80} 073708
[110] Belesi M, Rousochatzakis I, Abid M, Rößler U K, Berger H and Ansermet J-Ph 2012 \textit{Phys. Rev. B} \textbf{85} 224413
[111] Miller K H, Xu X S, Berger H, Knowles E S, Arenas D J, Meisel M W and Tanner D B 2010 \textit{Phys. Rev. B} \textbf{82} 144107
[112] Okamura Y, Kagawa F, Seki S, Kubota M, Kawasaki Y, Onose Y, Tokura Y 2013 \textit{Nat. Commun.} \textbf{4} 2391
[113] Gurevich A G and Melkov G A 1996 \textit{Magnetization Oscillation and Waves} (New York: CRC Press)
[114] Kézmári I \textit{et al} 2015 \textit{Nature Mater.} \textbf{14} 1116
[115] Koshibae W and Nagaosa N 2014 \textit{Nat. Commun.} \textbf{5} 4198
[116] Heinze S, Bode M, Kubetzka A, Pietzsch O, Nie X, Blügel S and Wiesendanger R 2000 \textit{Science} \textbf{288} 1805
[117] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 \textit{Nat. Phys.} \textbf{7} 713
[118] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 \textit{Science} \textbf{341} 636

(Original text continues and is not transcribed here.)