DESIGN AND ANALYSIS OF TWO-LINK DISCRETE FLEXIBLE MANIPULATOR

S Punniyawarthana¹, T Mohanraj¹*

¹Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India.

*Corresponding Author: t_mohanraj@cb.amrita.edu

Abstract. Proposed two-link flexible manipulators suit the requirement of larger work volume than the traditional flexible manipulators and handle high payloads equal to that of rigid manipulators. The simulation was performed on the Computer-Aided Design (CAD) model of the Motoman HC-10DT, a Human-Collaborative robot. During the analysis, one link of the manipulator was modified as a flexible manipulator for which static and modal analysis was done and compared the results with the actual link of the robot to validate the proposed design. The kinematic analysis was also done to find the reach of the modified robot. Total deformation on both the flexible manipulator and the actual link of the robot was 0.2mm but the maximum von Mises stress acting on the flexible manipulator was 2.97% lesser than that of the rigid link of the robot. Eventually, the safety factor of the flexible manipulator was higher compared to the rigid link. The factor of safety of the upper link is 1.41 and the lower link is 1.51 whereas the actual link of the robot has the safety factor of 1.30.

Keywords: Flexible manipulator, Design, CAD model, kinematic analysis.

1. Introduction
Robots are present in the industries for more than fifty years. Initially, they were very gigantic and operated in metal cages or any other protective safer surroundings. Evolution and some applications of the industrial robot are detailed in [1]. Primarily, they were used for spray painting and spot welding on auto assembly lines. The major aspect to be considered is the safety of human beings in the proximity of robots. This resulted in very strict protocols and the requirement of ultra-careful safety facilities such as metal cages. These restrictions prohibited the usage of robots to work in collaboration with humans in some applications where humans and robots can operate the same item in the same period. After numerous research like integrating sensors to a conventional industrial robot [50] fortunately, with the arrival of collaborative robots (or cobots), the association between robots and humans [2] is possible nowadays. The present trade demands large-scale customization, and lower lead period, therefore requiring flexible assembly lines. These requirements are remarkably popular in small and medium-sized enterprises (SMEs). Cobots will be able to solve the current issues in manufacturing sectors and assembly lines, as they can physically interrelate with humans in a shared workspace; besides, they can be effortlessly reprogrammed even by non-professionals [3]. Cobots have another advantage of controlling its functions remotely.
To upgrade the production rate in industries, it is necessary to minimize the heaviness of the robots and/or to maximize their working speed. Because of these motives, it is advisable to use flexible manipulators in robots. Flexible manipulators have advantages like larger work volume, higher operational speed, better maneuverability, better transportability, and safer operation. There are two types of flexible manipulators being used in robots. They are discrete flexible arm and continuum flexible arm. Discrete robot arms are made up of a series of small rigid links that are joined using discrete joints. If the number of rigid links increases the degree of freedom of the arm also increases which, in turn, helps the arm to move around in the desired trajectory and the motion of such robots is highly predictable. Contrastingly, continuum arms have a smoother trajectory by elastic deformations. Though the body of continuum arms is very lighter than their discrete equivalents, their motion is more uncertain [4]. The design of discrete and continuum manipulators was inspired by nature. Many organisms like monkeys, Climbing morning glory vine, Octopus, Stingray, Komodo dragon, giraffe, brittle star, basket star use the same mechanism as that of discrete and continuum manipulators for their survival [5]. The use of flexible discrete manipulators in cobots increases its efficiency in terms of production and safety. This proves that the flexible manipulator can find its application in a variety of sectors, like construction and maintenance of buildings, space applications, and agricultural applications [46]. To design a flexible arm effectively, either premeditated for a particular task or a variety of tasks, numerous factors are to be reviewed. This comprises the flexibility and strength of the manipulator, payload capacity, topmost acceleration, and speed specification, and also a worthy actuator for controlling the movement that is intended [6].

This research concerns the novel design of a flexible discrete manipulator for cobots that can be used in integration with the existing rigid manipulator. In particular, the research was done for the human-collaborative robots used for assembly, machine tending, material handling, pick and place processes. But the design is applicable for all the general applications of both industrial robots and cobots.

2. Earlier research work on the flexible manipulator

Owing to the effectiveness of this topic, scientists around the world are now working on optimizing the design and motion planning of flexible manipulators. Some investigations regarding the flexible manipulators are briefed in the following. Details about the various factors to be considered in control of weightless robots used for terrestrial and space applications have been discussed in [7]. Researchers have worked on the manipulators with larger work volume, which is used for the working in storage tanks [8]. Many have researched the contouring and collision control of robots with flexible manipulators [10], [9]. Key topics to be considered in the control and dynamic behavior of robots with flexible manipulators have been elaborated in [11]. Set of researchers have successfully modeled and studied the control of a robot comprising rigid and flexible arms [12]. Further, researchers have done similar work with slight variations [13]. Two-link manipulators were practically experimented by many researchers [14], [15], [16], [11], [18], [19], [20], [21]. Research has been done to find the frictional forces acting in a planar two-link flexible manipulator with help of innovative identification techniques [19].

Few people have experimentally analyzed the association of robots and humans in surgeries [22]. Control aspects such as feed-forward control, modal reference adaptive control, regular PID control, and self-tuning control of flexible manipulators were also studied in the past. [23], [24], [25] deals with computed torque control of two-link flexible manipulators and [26], [27], [28] deals with adaptive control of the same. Interestingly, [29] has brought up a unique controlling scheme using quasi-static deflection compensation with the help of neural networking for the motion control of two-link flexible manipulators. Researchers even analyzed the hybrid force and position control [30], [31]. Studies on the implementation of the PD controller of flexible robots are also studied [32], [33]. Still many research on flexible manipulators can be found in [34].
3. Design approach

It is evident from above that much research has been carried out only regarding the materials, motion planning, mathematical modelling, and vibration controls of flexible manipulators. But some of the main drawbacks of the existing flexible manipulators that have not been addressed to date is its low payload-carrying capacity and its use in combination with the rigid manipulators of industrial robots and cobots. The use of flexible and very lightweight materials makes it impossible to work with heavy payloads. Considering the requirement of such a lightweight flexible manipulator with high load carrying capacity and easy integration with industrial robots and cobots a novel design of a manipulator is proposed by referring [35]. The proposed design of the manipulator is discretized into two links that are made up of a rigid material such as metals. These links can have rotary or linear motion depending on the type of joint placed in between them which is operated with the help of a Permanent Magnet Synchronous Motor (PMSM) [36] [37].

The motors used to control the motion of the cobot must have enough strength to counter the labourer’s pushing forces and the inertial forces of the payload. But, high power motors may not be safe to use. However, the proposed design employs joints that provide mechanical constraints. These constraints can steadily be calibrated with the help of computer control. Thus, the motion of the cobots is essentially smooth and does not require powerful motors [38]. This manipulator will act as a single rigid entity unless the motor is operated to make the manipulator flexible. Figure 1 depicts the rigid manipulator and Figure 2 shows the flexible movement of the same manipulator.

![Figure 1. Rigid state of the manipulator.](image1)

![Figure 2. Flexible state of the manipulator](image2)

4. Experimental procedure

In the need of verifying the novel design, the proposed design was enforced in the CAD model of Yaskawa’s Human-Collaborative robot called MotomanHC-10DT [17]. Figure 3 shows the proposed design used in HC-10DT. The actual upper arm of the robot was replaced with the discrete flexible manipulator of two links joined by a revolute joint. The link above the revolute joint is called the upper arm and the one below the revolute joint is named lower arm. The dimensions of each link of the manipulator are dependent on the application of the robot. In case of the requirement of a translation motion of the flexible manipulator, the revolute joint can be altered with the prismatic joint similarly. But this paper focuses only on revolute joints as it is the favourable joint for the HC-10DT
cobot due to its applications. A separate space is allotted on the side of the lower arm to mount the PMSM and other mechanisms [47] required for the actuation of the joint. These two links make a flexible manipulator. The PMSM can be operated only when the arm is required to act as a flexible manipulator. Else, it remains as the traditional rigid manipulator. In the view of light-weighting the manipulator, cast aluminium alloy called A356 [39] was used for analysis purposes.

![Modified HC-10DT robot.](image)

5. Result and discussion
To validate the novel design, the actual rigid and the modified flexible arms of the HC-10DT human-collaborative robot were subjected to various static analysis to find the von Mises stress, total deformation, natural frequency, and Factor of Safety of both the arms and the results were compared [40]. As stated earlier, the material was chosen as T6 heat-treated A356 because of its high strength to weight ratio and other improved mechanical properties. Notable properties of Aluminium A356 are listed in Table 1. The automatic mesh was generated for the rigid link, upper arm, and lower arm are designated in Figures 4, 5, and 6 respectively, and used for further analysis. For all the analyses, the end opposite of the revolute joint is fixed in both the links. The torque acting on the upper and lower arms of the flexible manipulator is calculated as 168 Nm and 260 Nm respectively and 253 Nm acts in its rigid equivalence as shown in Figures 7, 8, and 9 respectively. The analysis results of the flexible manipulator and rigid manipulator are mentioned in Table 2. It is apparent from Table 1 and 2 that the von Mises stress acting on both the arms of the flexible manipulator is not greater than 36.91% of the yield strength of Aluminium A356 but the maximum von Mises stress acting on the actual arm is 39.88% of the yield strength of Aluminium A356. Eventually, the factor of safety of both the arms of the flexible manipulator is greater than that of the actual arm of the robot.

Resonance has become a salient point to be considered in any mechanical model. If any external frequency equals the natural frequency of a system it leads to disasters or system collapse, such an external frequency which causes failures is called resonance frequency. In absence of any external
forces, a system tends to vibrate at a particular frequency which is termed as the natural frequency of that system. The modal analysis helps in understanding the characteristics of mode shapes and natural frequencies in the real world [41]. With the same fixed constraints as mentioned above, nine natural frequencies and mode shapes of the flexible and rigid manipulators were found using their finite element model. The result of the modal analysis has been listed in Table 3. The design of the flexible manipulator and its static analysis were done in Creo Parametric 4.0 [42] and ANSYS 19.1 [43] respectively.

To check the reach of the modified robot arm, Kinematic analysis was done for the Motoman HC-10DT with a flexible manipulator. Though RoboAnalyzer [48] and MechAnalyzer [49] are one of the best tools to learn kinematics of a robot, Creo Parametric 4.0 [44] was used for this research. Initially, the 4th motor, from the base of the robot, was rotated at an angular velocity of 9.0deg/s for 10 seconds, and the 3rd motor was rotated at the angular velocity of 3.5deg/s for the next 10 seconds. Figure 10 represents the final position of the end effector after the actuation of the links. This is one of the positions that cannot be achieved with the help of a rigid manipulator in that robot. The position is calculated for the base of the robot. Figure 11 shows the graph plotted against the position of end effector versus time.

![Figure 4. Mesh of the rigid arm](image)

![Figure 5. Mesh of the lower arm](image)
Figure 6. Mesh of the upper arm

Table 1. Properties of Aluminium A356

Properties	Values
Density (kg/m³)	2670
Poisson's ratio	0.33
Elastic Modulus (GPa)	72.4
Yield Strength (MPa)	165
Tensile Strength (MPa)	234

Figure 7. Constraints in the Lower arm.
Figure 8. Constraints in Upper arm.

Figure 9. Constraints in Rigid arm

Table 2. Static analysis results

Results	Upper arm [Hz]	Lower arm [Hz]	Rigid Equivalence [Hz]
von Mises Stress	60.9MNm⁻²	57.0MNm⁻²	65.8MNm⁻²
Total deformation	0.21mm	0.20mm	0.21mm
Factor of Safety	1.41	1.51	1.30

Table 3. Modal analysis results

Arms / Modes	Frequencies of the Upper arm [Hz]	Frequencies of the Lower arm [Hz]	Frequencies of the Rigid equivalence [Hz]
1	1623.0	1300.1	55.632
2	1865.8	1803.9	93.749
3	2063.9	1809.8	509.8
4	2191.1	1988.0	629.78
All the results prove that the proposed design is better than the rigid manipulator of the robot under the same conditions. Since the proposed flexible manipulator is made of stiffer material, its
accuracy and repeatability can easily be controlled [45] also it has a longer reach when compared to other flexible manipulators. Importantly, it can also be used along with rigid manipulators. Though there are many advantages, its weight and high-power consumption when compared to traditional flexible manipulators are major disadvantages. This design can be used in any work environment and with all robots which especially demands a flexible manipulator for extended work envelopes and heavy payload carrying capacity.

6. Conclusion

From the simulation results, it is evident that the proposed design functions fairly and better than its rigid counterpart. This research proves that rigid manipulators can also be made flexible by having a joint in it. The proposed design can be utilized in all the robots where the use of actual flexible materials for the manipulators is not feasible. The novel design was implemented in the CAD model of Motoman HC-10DT human-collaborative robot and its Von Mises stress, total deformation, a factor of safety, and natural frequencies of the flexible manipulator and its equivalent rigid manipulator were compared and it was found that upper and lower links of the proposed manipulator have safety factor as 1.41 and 1.51 respectively but the actual rigid link of Motoman HC-10DT cobot had a safety factor of 1.30. The total deformation of the flexible manipulator and the rigid link was 0.2mm. Further research can be carried out in furthermore discretizing the manipulator, finding its dynamic behaviour, and light-weighting the proposed manipulator.

References

[1] Singh B, Sellappan NandKumaradhas P 2013 Evolution of industrial robots and their applicationsInternational Journal of emerging technology and advanced engineering 3(5) 763-768
[2] Bloss R 2016 Collaborative robots are rapidly providing major improvements in productivity, safety, programing ease, portability and cost while addressing many new applicationsIndustrial Robot: An International Journal 43(5) 463-468
[3] Matheson E, MintoR, Zampieri, E G, Faccio M and Rosati G 2019 Human–Robot Collaboration in Manufacturing Applications: A ReviewRobotics 8(4) 100
[4] Singh P K and Krishna C M 2014 Continuum Arm Robotic Manipulator: A ReviewUniversal Journal of Mechanical Engineering 2(6) 193-198
[5] Cowan L S and Walker I D 2013 The importance of continuous and discrete elements in continuum robotsInternational Journal of Advanced Robotic Systems 10(3) 165
[6] Tokhi M O and Azad A K 1997 Design and development of an experimental flexible manipulator systemRobotica 15(3) 283-292
[7] Shi J X, Albu-Schaffer A and Hirzinger G 1998 Key issues in the dynamic control of lightweight robots for space and terrestrial applicationsProceedings of IEEE International Conference on Robotics and Automation 1 490-497
[8] Jansen J 1992 Long reach manipulators for waste storage tank remediationWATTec’92. Innovation in the 21st century: Excellence through continuous improvement.
[9] Fukuda T and Kuribayashi Y1984Flexibility control of elastic robotic arms and its application to contouring controlProceedings of IEEE International Conference on Robotics and Automation1 540-545
[10] Fukuda T1985Flexibility control of elastic robotic armsJRoS 2 73-88
[11] Baruh H and Tadikonda SSK1989 Issues in the dynamics and control of flexible robot manipulatorsJournal of Guidance, Control and Dynamics 12(5) 659-671
[12] Dogan A and İftar A1998Modeling and control of a two-link flexible robot manipulatorProceedings of the IEEE International Conference on Control Applications2 761-765
[13] Low K H and Vidyasagar M1988A Lagrangian Formulation of the Dynamic Model for Flexible Manipulator SystemsJournal of Dynamic Systems, Measurement and Control 110(2) 175-181
[14] Khorami F and Jain S1992Experimental results on an inner/outer loop controller for a two-link flexible manipulatorProceedings of IEEE International Conference on Robotics and Automation742-743
[15] Khorrami F, Jain S and Tzes A1994Experiments on rigid body-based controllers with input preshaping for a two-link flexible manipulatorIEEE Transactions on Robotics and Automation10(1) 55-65
[16] Oakley CM and Cannon RH1988Initial experiments on the control of a two-link manipulator with a very flexible forearmAmerican Control Conference996-1003
[17] https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/he-series/hc10dt, Access drawn 27/10/2020
[18] Nagaraj BP, Nataraju BS and Ghosal A1997Dynamics of a two-link flexible system undergoing locking: mathematical modelling and comparison with experimentsJournal of Sound and Vibration 207(4) 567-589
[19] Bai M, Zhou DH and Schwarz H1999Identification of generalized friction for an experimental planar two-link flexible manipulator using strong tracking filterIEEE Transactions on Robotics and Automation 15(2) 362-369
[20] Milford RI and Asokanthan SF1999Configuration dependent eigenfrequencies for a two-link flexible manipulator: experimental verificationJournal of sound and vibration 222(2) 191-207
[21] Moaalem M, Patel RV and Khorasani K2001Nonlinear tip-position tracking control of a flexible-link manipulator: theory and experimentsAutomatica 37(11) 1825-1834
[22] Kumar R, Berkelman P, Gupta P, Barnes A, Jensen PS, Whitcomb LL and Taylor RH2000Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulationProceedings 2000 ICRA Millennium ConferenceIEEE International Conference on Robotics and AutomationSymposia Proceedings1610-617
[23] Bayo E1988Computed torque for the position control of open-chain flexible robotsProceedings of IEEE International Conference on Robotics and Automation316-321
[24] Khalil W and Boyer F1995An efficient calculation of computed torque control of flexible manipulatorsProceedings of IEEE International Conference on Robotics and Automation1609-614
[25] Cheong J, Chung WK, Yoom Y and Oh SR1997Control of two-link flexible manipulator using disturbance observer with reaction torque feedback8th International Conference on Advanced RoboticsProceedings ICAR'97227-232
[26] Skowronski JM1988Algorithms for adaptive control of two-arm flexible manipulators under uncertaintyIEEE transactions on aerospace and electronic systems 24(5) 562-570
[27] Lucibello P and Bellezza F1990Nonlinear adaptive control of a two link flexible robot arm29th IEEE Conference on Decision and Control2545-2550
[28] Chen Y and Eltimashey AH1995Hybrid adaptive control of two-link flexible manipulators grasping a payloadProceedings of International Conference on Control Applications705-710
[29] Li Y, Liu G, Hong T and Liu K2003Robust control of a two-link flexible manipulator with neural networks based quasi-static deflection compensation Proceedings of the American Control Conference65258-5263
[30] Matsuno F1992Hybrid position force control of flexible manipulators on the basis of an equivalent spring modelProceedings of the International Conference on Industrial Electronics, Control, Instrumentation and Automation664-669
[31] Matsuno F, Asano T, Asai N, and Sakawa Y1991Quasi-static hybrid position/force control of two-degree-of-freedom flexible manipulatorsProceedings IROS’91: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91984-989
[32] Yigit AS1994On the Stability of PD Control for a Two-Link Rigid-Flexible ManipulatorJournal of Dynamic Systems, Measurement and Control 116(2) 208-215
[33] Bo X, Fujimoto K and Hayakawa Y2004Control of two-link flexible manipulators via generalized canonical transformationIEEE Conference on Robotics, Automation and Mechatronics1 107-112
[34] Dwivedy SK and Eberhard P2006Dynamic analysis of flexible manipulators, a literature reviewMechanism and machine theory 41(7) 749-777
[35] Zhao J, Feng Z, Chu F and Ma N2013Advanced theory of constraint and motion analysis for robot mechanismsAcademic Press
[36] Song J, Ji N, Xu F, Jia K and Zou F2015Servomotor modeling and control for safe robots IEEE International Conference on Robotics and Biomimetics (ROBIO)1221-1226
[37] Yuan T, Wang D, Wang X, Wang X and Sun Z2019High-Precision servo control of industrial robot driven by PMSM-DTC utilizing composite active vectorsIEEE Access 7 7577-7587
[38] Peshkin M and Colgate JE1999CobotsIndustrial Robot: An International Journal
[39] Pio LY2011Effect of T6 Heat Treatment on the Mechanical Properties of Gravity Die Cast A356 Aluminium AlloyJournal of Applied Sciences 11 2048-2052
[40] Chung GJ, Kim DH, Shin H and Ko HJ2010Structural analysis of 600Kgf heavy duty handling robotIEEE Conference on Robotics, Automation and Mechatronics40-45
[41] Kumar V, Singh KK and Gaura, S2015Analysis of natural frequencies for cantilever beam with I- and T-section using ansysInt.Res.J.Eng.Technol 2 1013-1020
[42] Chang KH2018Mechanism Design and Analysis Using PTC Creo Mechanism 5.0SDC publications
[43] Lee HH2018Finite element simulations with ANSYS Workbench 18SDC publications
[44] Somani S, Jain A, Savsani V, and Savsani P2014Development of Robotics Simulation Using Creo 2.0ASME International Engineering Congress and Exposition46476 V04AT04A042
[45] Fenton RG, Benhabib B and Goldenberg AA1986Optimal Point-to-Point Motion Control of Robots With Redundant Degrees of FreedomJournal of Engineering for Industry108 (2) 120-126
[46] Megalingam RK, Vignesh N, Sivanantham V, Elamon N, Sharathkumar M S, and Rajith V2016Low cost robotic arm design for pruning and fruit harvesting in developing nations10th International Conference on Intelligent Systems and Control(ISC0)1-5
[47] Peshkin MA, Colgate JE, Wannasuphoprasit W, Moore CA, Gillespie RB, and Akella P2001Cobot architectureIEEE Transactions on Robotics and Automation 17(4) 377-390
[48] Othayoth RS, Chittawadigi RG, Joshi RP, and Saha SK 2017 Robot kinematics made easy using RoboAnalyzer software Computer Applications in Engineering Education 25(5) 669-680

[49] Hampali S, Chittawadigi RG and Saha SK 2015 Mechanalyzer: 3d model based mechanism learning software P. 14th World Congress in Mechanism and Machine Science

[50] Anand G, Rahul ES and Bhavani RR 2017 A sensor framework for human-robot collaboration in industrial robot work-cell International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) 715-720