POISSON STRUCTURE ON CHARACTER VARIETIES

INDRANIL BISWAS AND LISA C. JEFFREY

ABSTRACT. We show that the character variety for a \(n \)-punctured oriented surface has a natural Poisson structure.

Résumé. Nous démontrons que la variété des caractères d’une surface compacte orientée percée en \(n \) points est dotée d’une structure de Poisson naturelle.

1. Introduction

Let \(X \) be a compact connected oriented surface. Given any real or complex reductive Lie group \(G \), the character variety \(\mathcal{R}(X, G) \) parametrizes the equivalence classes of completely reducible \(G \)-homomorphisms of the fundamental group of \(X \). Alternatively, \(\mathcal{R}(X, G) \) parametrizes the isomorphism classes of completely reducible flat \(G \)-connections on \(X \). It is known that \(\mathcal{R}(X, G) \) has a natural symplectic structure; this symplectic structure was constructed by Atiyah–Bott and Goldman in [3], [8] respectively.

Fix finitely many points \(\{x_1, \ldots, x_m\} \) of \(X \), and fix a conjugacy class \(C_i \) in \(G \) for each \(x_i \). Let \(\mathcal{R}(X_0, G) \) be the character variety for \(X_0 = X \setminus \{x_1, \ldots, x_m\} \). Let \(\mathcal{R}(X_0, G)_C \subset \mathcal{R}(X_0, G) \) be the locus of all flat \(G \)-connections on \(X_0 \) for which the local monodromy around each \(x_i \) lies in the conjugacy class \(C_i \). It is known that this subset is equipped with a natural symplectic structure [5], [6]. When \(G \) is a compact group, and \(X \) is equipped with a complex structure, then \(\mathcal{R}(X_0, G)_C \) is the moduli space of semistable parabolic \(G_C \)-bundles [14], where \(G_C \) is the complexification of \(G \).

We prove that \(\mathcal{R}(X_0, G) \) has a natural Poisson structure (see Section 3.2). The above submanifolds \(\mathcal{R}(X_0, G)_C \) of it equipped with symplectic structure are the symplectic leaves for this Poisson structure.

This result has been known for many years – for example, see the proof given in M. Audin’s article ([4], Theorem 2.2.1). However Audin’s proof proceeds by using loop groups and central extensions of the Lie algebra of a loop group. Our proof is much simpler; one of the reasons for it is that we are able to use the known result that \(\mathcal{R}(X_0, G)_C \) are symplectic manifolds.

2. Tangent and cotangent bundles of character varieties

Let \(X \) be a compact connected oriented \(C^\infty \) surface. Fix a nonempty finite subset

\[D := \{x_1, \ldots, x_m\} \subset X. \]
Let $X_0 := X \setminus D$ be the complement. Fix a base point $x_0 \in X_0$. For notational convenience, the fundamental group $\pi_1(X_0, x_0)$ will be denoted by Γ.

Let G be a connected reductive algebraic Lie group, which is defined over \mathbb{R} or \mathbb{C}. This implies that the Lie algebra $\mathfrak{g} := \text{Lie}(G)$ admits a G–invariant nondegenerate symmetric bilinear form. Fix a G–invariant nondegenerate symmetric bilinear form

$$B \in \text{Sym}^2(\mathfrak{g}^*) .$$ \hfill (2.1)

Consider the character variety

$$\mathcal{R} := \mathcal{R}(X_0, G) := \text{Hom}(\Gamma, G)^0 / G ,$$ \hfill (2.2)

where $\text{Hom}(\Gamma, G)^0 \subset \text{Hom}(\Gamma, G)$ is the locus of homomorphisms with completely reducible image. We note that the points of \mathcal{R} correspond to the equivalence classes of homomorphisms $\rho : \Gamma \longrightarrow G$ such that the Zariski closure of $\rho(\Gamma)$ is a reductive subgroup of G.

Take any homomorphism $\rho : \Gamma \longrightarrow G$. Let $E_G^\rho \longrightarrow X_0$ be the corresponding principal G–bundle on X_0 equipped with a flat connection. We briefly recall the construction of the flat bundle E_G^ρ. Let $q_0 : (\tilde{X}_0, \tilde{x}_0) \longrightarrow (X_0, x_0)$ be the universal cover of X_0 for the base point x_0. The total space of E_G^ρ is the quotient of $\tilde{X}_0 \times G$, where two points (x_1, g_1) and (x_2, g_2) of $\tilde{X}_0 \times G$ are identified if there is an element $\gamma \in \Gamma$ such that $x_2 = x_1 \gamma$ and $g_2 = \rho(\gamma)^{-1} g_1$ (the fundamental group Γ acts on \tilde{X}_0 as deck transformations). The projection of E_G^ρ to X_0 is given by the map $(x, g) \longmapsto q_0(x)$. The action of G on $\tilde{X}_0 \times G$ given by the right–translation action of G on itself produces an action of G on the quotient space E_G^ρ, making E_G^ρ a principal G–bundle over X_0. The trivial connection on the trivial principal G–bundle $\tilde{X}_0 \times G \longrightarrow \tilde{X}_0$ descends to a flat connection on the principal G–bundle E_G^ρ. This flat connection on E_G^ρ will be denoted by $\tilde{\nabla}^\rho$.

The flat connection $\tilde{\nabla}^\rho$ induces a flat connection on every fiber bundle associated to the principal G–bundle E_G^ρ. In particular, it induces a flat connection on the adjoint vector bundle $\text{ad}(E_G^\rho)$ associated to E_G^ρ for the adjoint action of G on the Lie algebra \mathfrak{g}. This induced flat connection on $\text{ad}(E_G^\rho)$ will be denoted by ∇^ρ.

Let

$$\text{ad}(E_G^\rho) \longrightarrow X_0$$ \hfill (2.3)

be the locally constant sheaf on X_0 given by the sheaf of covariant constant sections of the vector bundle $\text{ad}(E_G^\rho)$ for the flat connection ∇^ρ. It is known that the tangent spaces of \mathcal{R} defined in (2.2) have the following description: For any $\rho \in \mathcal{R}$,

$$T_\rho \mathcal{R} = H^1(X_0, \text{ad}(E_G^\rho)) ,$$ \hfill (2.4)

where $\text{ad}(E_G^\rho)$ is constructed in (2.3) [3], [3]. Since X_0 is oriented, this gives the following description of the cotangent space:

$$T_\rho^* \mathcal{R} = H^1(X_0, \text{ad}(E_G^\rho))^* = H^1_c(X_0, \text{ad}(E_G^\rho))^* ,$$ \hfill (2.5)

where H^i_c is the compactly supported cohomology [6], [8], [5], and $\text{ad}(E_G^\rho)^*$ is the dual local system. The pairing between $H^1(X_0, \text{ad}(E_G^\rho))$ and $H^1_c(X_0, \text{ad}(E_G^\rho))^*$ is constructed in the following way:

$$H^1_c(X_0, \text{ad}(E_G^\rho))^* \otimes H^1(X_0, \text{ad}(E_G^\rho)) \longrightarrow H^2_c(X_0, \text{ad}(E_G^\rho)^* \otimes \text{ad}(E_G^\rho))$$
\[H^2_c(X, k) = k, \quad (2.6) \]

where \(k \) is either \(\mathbb{R} \) or \(\mathbb{C} \) depending on whether the Lie group \(G \) is real or complex.

The bilinear form \(B \) in (2.1), being \(G \)-invariant, produces a fiberwise symmetric nondegenerate bilinear form \(\tilde{B} \in C^\infty(X_0, \text{Sym}^2(\text{ad}(E^\rho_G)^*)) \). This section \(\tilde{B} \) is clearly covariant constant with respect to the flat connection on \(\text{Sym}^2(\text{ad}(E^\rho_G)^*) \) induced by the above flat connection \(\nabla^\rho \) on \(\text{ad}(E^\rho_G) \) associated to \(\rho \). In other words, we have

\[\tilde{B} \in H^0(X_0, \text{Sym}^2(\text{ad}(E^\rho_G)^*)); \]

note that \(\text{Sym}^2(\text{ad}(E^\rho_G)^*) \) coincides with the local system on \(X_0 \) defined by the sheaf of covariant constant sections of \(\text{Sym}^2(\text{ad}(E^\rho_G)^*) \). Consequently, \(\tilde{B} \) produces an isomorphism

\[\Phi^\rho : \text{ad}(E^\rho_G) \sim \text{ad}(E^\rho_G)^*. \quad (2.7) \]

Combining (2.5) and (2.7), we have

\[T^* \rho \mathcal{R} = H^1_c(X_0, \text{ad}(E^\rho_G)). \quad (2.8) \]

For any sheaf \(F \) on \(X_0 \), there is a natural homomorphism \(H^1_c(X_0, F) \to H^1(X_0, F) \) given by the inclusion homomorphism of the corresponding sheaves. In particular, we have a homomorphism

\[\Phi^\rho : H^1_c(X_0, \text{ad}(E^\rho_G)) \to H^1(X_0, \text{ad}(E^\rho_G)), \quad (2.9) \]

which, using (2.4) and (2.8), gives a homomorphism \(T^*_\rho \mathcal{R} \to T^*_\rho \mathcal{R} \). This homomorphism \(T^*_\rho \mathcal{R} \to T^*_\rho \mathcal{R} \) defines an element \(\Phi^\rho \in T^*_\rho \mathcal{R} \otimes T^*_\rho \mathcal{R} \).

Lemma 2.1. The above element \(\Phi^\rho \) lies in the subspace \(\wedge^2 T^*_\rho \mathcal{R} \subset T^*_\rho \mathcal{R} \otimes T^*_\rho \mathcal{R} \).

Proof. Take \(\alpha, \beta \in H^1_c(X_0, \text{ad}(E^\rho_G)) = T^*_\rho \mathcal{R} \). For the pairing \(\langle -, - \rangle \) in (2.6), we have

\[\langle \alpha, \tilde{\Phi}^\rho(\beta) \rangle = -\langle \beta, \tilde{\Phi}^\rho(\alpha) \rangle, \quad (2.10) \]

where \(\tilde{\Phi}^\rho \) is the homomorphism in (2.9); the isomorphism in (2.7) has been used in (2.10). The lemma follows from (2.10). \(\square \)

The above pointwise construction of \(\Phi^\rho \), being canonical, produces a section

\[\Phi \in C^\infty(\mathcal{R}, \wedge^2 T\mathcal{R}). \quad (2.11) \]

We will show, in the next section, that this \(\Phi \) defines a Poisson structure on \(\mathcal{R} \).

3. Poisson structure on \(\mathcal{R} \)

3.1. A criterion for Poisson structure

Let \(M \) be a smooth manifold. Let

\[\Theta \in C^\infty(M, \wedge^2 TM) \]

be a smooth section. For any point \(x \in M \), let

\[\Theta_x : T^*_x M \to T_x M \quad (3.1) \]

be the homomorphism defined by the equation \(w(\Theta_x(v)) = \Theta(x)(v \wedge w) \) for all \(v, w \in T^*_x M \). The image

\[V_x := \Theta_x(T^*_x M) \subset T_x M \]
is equipped with a symplectic form. To prove this, let

$$\varphi : T^*_x M \longrightarrow V^*_x$$

be the dual of the inclusion map $V_x \hookrightarrow T_x M$, so φ is surjective. We will prove that φ vanishes on the subspace $\ker(\Theta_x) \subset T^*_x M$. For any $v, w \in T^*_x M$, we have

$$w(\Theta_x(v)) + v(\Theta_x(w)) = 0,$$

(3.2)

because Θ is skew-symmetric. So if $v \in \ker(\Theta_x)$, then φ vanishes on $\ker(\Theta_x)$, and hence it descends to a homomorphism

$$\hat{\varphi}_x : \frac{T^*_x M}{\ker(\Theta_x)} = \text{image}(\Theta_x) = V_x \longrightarrow V^*_x.$$

From (3.2) it follows that $\hat{\varphi}'_x \in \wedge^2 V^*_x$, where $\hat{\varphi}'_x$ is the bilinear form on V_x defined by $\hat{\varphi}_x$. Since φ is surjective, it follows that this $\hat{\varphi}_x$ is also surjective. This implies that the bilinear form $\hat{\varphi}'_x$ is nondegenerate. So, $\hat{\varphi}'_x$ is a symplectic form on V_x.

The section Θ is called a Poisson structure if the Schouten–Nijenhuis bracket $[\Theta, \Theta]$ vanishes identically [1]. An equivalent formulation of this definition is the following: Given a pair of C^∞ functions f_1 and f_2 on M, define the function

$$\{f_1, f_2\} = \Theta((df_1) \wedge (df_2)).$$

Then Θ is Poisson if and only if

$$\{f_1, \{f_2, f_3\}\} + \{f_2, \{f_3, f_1\}\} + \{f_3, \{f_1, f_2\}\} = 0$$

(3.3)

for all C^∞ functions f_1, f_2, f_3.

Let $\hat{\Theta} : T^* M \longrightarrow TM$ be the homomorphism given by Θ, so $\hat{\Theta}(x) = \Theta_x$ for every $x \in X$.

The following proposition is in the literature already. For example, see Proposition 1.8 and Remark 1.10 of the notes [15] from E. Meinrenken’s 2017 graduate course on Poisson geometry. However we have included a proof for completeness.

Proposition 3.1. The section Θ is Poisson if and only if the following two hold:

1. The subsheaf $\hat{\Theta}(T^* M) \subset TM$ is closed under the Lie bracket operation.
2. For any leaf L of the nonsingular locus of the integrable distribution $\hat{\Theta}(T^* M)$, let $\hat{\varphi}'_L$ be the two–form on L defined by the equation

$$\hat{\varphi}'_L(x)(v_1, v_2) = \hat{\varphi}_x(v_1, v_2)$$

for all $x \in L$, and $v_1, v_2 \in T_x L$, where $\hat{\varphi}_x$ is constructed above. Then $\hat{\varphi}'_L$ is a symplectic form on L.

Proof. If Θ is Poisson, it is standard that the above two conditions hold. We shall prove the converse.

Take any point $x \in M$ where the distribution $\hat{\Theta}(T^* M)$ is nonsingular, meaning the dimension of the subspace $\hat{\Theta}(y)(T^*_y M) \subset T_y M$ is unchanged for all points y in an open neighborhood of x. Let L denote the leaf, passing through x, of the foliation restricted to
a sufficiently small open neighborhood U of x in M. For any two smooth functions f, g defined on U, consider the function

$$\{f, g\} : \mathbb{L} \mapsto \mathbb{R}, \quad y \mapsto \Theta(y)(df(y), dg(y)) \in \mathbb{R}.$$

Let h be a smooth function defined on U such that $h|_L = f|_L$. We will prove that

$$\{f, g\} = \{h, g\}.$$

(3.4)

Note that $f - h$ vanishes on \mathbb{L}. For notational convenience, denote the function $f - g$ by δ. To prove (3.4), consider the function $\{f - h, g\}$. For any $y \in \mathbb{L}$, we have

$$\{\delta, g\}(y) = dg(y)(\Theta_y(d\delta(y))) = -d\delta(y)(\Theta_y(dg(y))),$$

(3.5)

where Θ_y is constructed as in (3.1). The pullback of the 1–form $d\delta$ to the submanifold $\mathbb{L} \subset U$ vanishes identically because the restriction of δ to \mathbb{L} is identically zero. On the other hand, the tangent vector $\Theta_y(dg(y)) \in T_yU$ lies in the subspace $L_y \subset T_yU$ (recall that $L_y = \Theta_y(T^*_yM)$). Therefore, we have

$$d\delta(y)(\Theta_y(dg(y))) = 0.$$

Hence $\{\delta, g\}(y) = 0$ by (3.5). This proves (3.4).

In view of (3.4) to prove that the Poisson bracket $\{-, -\}$ satisfies the Jacobi identity in (3.3), it suffices to show that the Jacobi identity is satisfied by the Poisson bracket operation on functions on a leaf \mathbb{L}, where the Poisson bracket is defined using the nondegenerate two–form on the leaf given by $\hat{\varphi}_L$. But condition (2) in the proposition says that $\hat{\varphi}_L$ is symplectic on a leaf, and hence the Poisson bracket on a leaf satisfies the Jacobi identity. This completes the proof of the proposition. \hfill \Box

3.2. Application of the criterion. Using Proposition 3.1 it will be shown that Φ constructed in (2.11) is a Poisson structure on \mathcal{R}.

Consider the homomorphism $\Phi_1 : T^*\mathcal{R} \rightarrow T\mathcal{R}$ constructed from Φ in (2.11) as follows:

$$v(\Phi_1(\rho)(w)) = \Phi(\rho)(w \wedge v)$$

for all $v, w \in T^*_\mathcal{R} \mathcal{R}$ and $\rho \in \mathcal{R}$. So, $\Phi_1(\rho) : T^*_\mathcal{R} \mathcal{R} \rightarrow T\mathcal{R}$, $\rho \in \mathcal{R}$, coincides with the homomorphism $\hat{\Phi}_\rho$ in (2.9). Therefore, the image of Φ_1 corresponds to the foliation on \mathcal{R} given by loci with fixed conjugacy classes for the punctures $\{x_1, \cdots, x_m\}$. In particular, the distribution $\Phi_1(T^*\mathcal{R})$ is integrable; so the first condition in Proposition 3.1 is satisfied. On each leaf the two–form is symplectic [6], [5], [8]; so the second condition in Proposition 3.1 is also satisfied.

4. Extended moduli space

It is shown in [7] (Theorem 4.3) that the quotient of a symplectic manifold by a group action preserving the symplectic structure is a Poisson manifold. We may apply this to the symplectic manifold given in Section 2.3 of [13] (the extended moduli space, which is a symplectic quotient of the space of all connections on a vector bundle over an oriented 2-manifold by the based gauge group). The symplectic structure on the extended moduli space is given in Section 3.1 of [13].
In this section only, let \(G \) be a compact connected Lie group. The extended moduli space \(M_{\text{ext}} \) may be written as the push-out of the Lie algebra of \(G \) and the space of representations \(M = \text{Hom}(\Gamma, G) \) of the fundamental group \(\Gamma \) of a surface with one boundary component, where the map from the Lie algebra to \(G \) is the exponential map, and the map from the space of flat connections to \(G \) is the holonomy around the boundary component. In the case of one boundary component, this is summarized by the following commutative diagram. Let \(M \) be the space \(\text{Hom}(\Gamma, G) \). The symplectic structure is defined in [13] in terms of gauge equivalence classes of flat connections. The map Hol denotes the holonomy of the connection around the boundary component. The symplectic structure on \(\text{Hom}(\Gamma, G)/G \) is described from the point of view of representations of the fundamental group \(\Gamma \) in the work of Goldman [8], [9].

\[
\begin{array}{ccc}
M_{\text{ext}} & \rightarrow & \mathfrak{g} \\
\downarrow & & \exp \\
M & \xrightarrow{\text{Hol}} & G
\end{array}
\]

At a regular point, the extended moduli space is a cover of the representation space \(\text{Hom}(\Gamma, G) \) with fiber the integer lattice of \(G \) (the kernel of the exponential map).

For the case of multiple boundary components, we refer to Hurtubise-Jeffrey [11], Hurtubise-Jeffrey-Sjamaar [12] and Huebschmann [10].

The description in Section 3.1 of [13] establishes that \(M_{\text{ext}} \) is symplectic (where it is smooth). At points in \(\mathfrak{g} \) where the exponential map is a diffeomorphism, there is a local diffeomorphism between an open neighbourhood in \(M_{\text{ext}} \) and an open neighbourhood of \(\text{Hom}(\Gamma, G) \). Taking the quotient of \(M_{\text{ext}} \) by \(G \) we thus conclude that \(\text{Hom}(\Gamma, G)/G \) is a Poisson manifold.

REFERENCES

[1] V. I. Arnol’d, Mathematical methods of classical mechanics. Translated from the Russian by K. Vogtmann and A. Weinstein, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
[2] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
[3] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London 308 (1983), 523–615.
[4] M. Audin, Lectures on gauge theory and integrable systems. In Gauge Theory and Symplectic Geometry (J. Hurtubise, F. Lalonde, ed., Kluwer, 1997), 1–48.
[5] I. Biswas and K. Guruprasad, Principal bundles on open surfaces and invariant functions on Lie groups, Internat. Jour. Math. 4 (1993), 535–544.
[6] K. Guruprasad, J. Huebschmann, L. Jeffrey and A. Weinstein, Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. Jour. 89 (1997), 377–412.
[7] R. L. Fernandes and I. Marcut, Lectures on Poisson geometry, Springer, 2015.
[8] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200–225.
[9] W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263–302.
[10] J. Huebschmann, On the variation of the Poisson structures of certain moduli spaces, Math. Ann. 319 (2001), 267–310.
[11] J. Hurtubise and L. Jeffrey, Representations with weighted frames and framed parabolic bundles, Canadian Jour. Math. 52 (2000), 1235–1268.
[12] J. Hurtubise, L. Jeffrey and R. Sjamaar, Moduli of Framed Parabolic Sheaves, *Ann. Global Anal. Geom.* **28** (2005), 351–370.

[13] L. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces. *Math. Annalen* **298** (1) (1994), 667–692.

[14] V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, *Math. Ann.* **248** (1980), 205–239.

[15] E. Meinrenken, *Introduction to Poisson Geometry*,

http://www.math.toronto.edu/mein/teaching/MAT1341_PoissonGeometry/Poisson8.pdf

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005

E-mail address: indranil@math.tifr.res.in

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada

E-mail address: jeffrey@math.toronto.edu