A novel lncRNA–protein interaction prediction method based on deep forest with cascade forest structure

Xiongfei Tian, Ling Shen, Zhenwu Wang, Liqian Zhou* & Lihong Peng*

Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA–protein Interactions (LPIs) is significantly important to well characterize the biological functions and mechanisms of lncRNAs. Existing computational methods have been effectively applied to LPI prediction. However, the majority of them were evaluated only on one LPI dataset, thereby resulting in prediction bias. More importantly, part of models did not discover possible LPIs for new lncRNAs (or proteins). In addition, the prediction performance remains limited. To solve with the above problems, in this study, we develop a Deep Forest-based LPI prediction method (LPIDF). First, five LPI datasets are obtained and the corresponding sequence information of lncRNAs and proteins are collected. Second, features of lncRNAs and proteins are constructed based on four-nucleotide composition and BioSeq2vec with encoder-decoder structure, respectively. Finally, a deep forest model with cascade forest structure is developed to find new LPIs. We compare LPIDF with four classical association prediction models based on three fivefold cross validations on lncRNAs, proteins, and LPIs. LPIDF obtains better average AUCs of 0.9012, 0.6937 and 0.9457, and the best average AUPRs of 0.9022, 0.6860, and 0.9382, respectively, for the three CVs, significantly outperforming other methods. The results show that the lncRNA FTX may interact with the protein P35637 and needs further validation.
Results

We perform a series of experiments to investigate the prediction performance of our proposed LPIDF method.

Evaluation metrics. In this study, precision, recall, accuracy, F1-score, AUC and AUPR are used to evaluate the performance of LPIDF. Precision, recall, accuracy, and F1-score are defined as follows.

\[
\text{Precision} = \frac{TP}{TP + FP}
\]

\[
\text{Recall} = \frac{TP}{TP + FN}
\]

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}
\]

\[
\text{F1-score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

where TP, FN, TN, and FN denote the predicted number of true LPIs, false LPIs, true non-LPIs, and false non-LPIs. AUC and AUPR denote the average areas under the ROC curve and the precision-recall curve, respectively. The experiments are repeated for 20 times and the average performance from the 20 rounds is computed as the final performance.

Experimental settings. In the study, we conduct three different experimental settings.

Five-fold Cross Validation 1 (CV1): Cross validation on lncRNAs, that is, random rows (i.e., lncRNAs) in an LPI matrix Y are masked for testing.

Five-fold Cross Validation 2 (CV2): Cross validation on proteins, that is, random columns (i.e., proteins) in an LPI matrix Y are masked for testing.

Five-fold Cross validation 3 (CV3): Cross validation on lncRNA–protein pairs, that is, random lncRNA–protein pairs in an LPI matrix Y are masked for testing.

Under CV1, in each round, 80% of lncRNAs in an LPI network Y are screened as training set and the remaining is represented as testing set. Under CV2, in each round, 80% of proteins in Y are screened as training set and the remaining is represented as testing set. Under CV3, in each round, 80% of lncRNA–protein pairs in Y are represented as training set and the remaining is represented as testing set. The three cross validations refer to LPI identification for (1) new (unknown) lncRNAs (lncRNAs whose interaction information is unknown), (2) new proteins, and (3) lncRNA–protein pairs, respectively.

Comparison with four state-of-the-art methods. We compare our proposed LPIDF method with four state-of-the-art association identification methods to evaluate the prediction ability and robustness of LPIDF, that is, XGBoost33,34, Categorical Boosting (CatBoost)35, random forest36,37, and DRPLPI38. The above methods are classical machine learning models and obtained wide applications in various areas. XGBoost33,34 is a scalable and end-to-end tree boosting-based model. CatBoost35 is a novel gradient boosting-based technique and can effectively integrate ordered boosting and processing categorical features. Random forest36,37 is composed of multiple decision trees and each tree is independently trained on a random subset. DRPLPI38 exploited a multi-head self-attention model to extract high quality LPI features based on long short-term memory encoder-decoder mechanism. In the experiments, we randomly select the same number of negative LPIs as positive LPIs from unknown lncRNA–protein pairs to decrease the overfitting problem produced by data imbalance.

In random forest, the number of trees is set as 70, and the minimum number used to split samples is set as 5. In CatBoost, the maximum number of trees is set as 150, the maximum depth as 15, and the learning rate as
is conducted based on the scikit-learn package\(^3\). Other parameters are set as the corresponding values provided by the corresponding manuscript. XGBoost is statistically significant in identifying possible lncRNAs for a new protein.

Table 1 shows the precision, recall, accuracy, F1-score, AUC and AUPR values computed by LPIDF and other four methods under CV1. As shown in Table 1, LPIDF achieves the highest average precision, accuracy, F1-score, AUC and AUPR over all datasets, remarkably outperforming other four competing LPI prediction methods. Although XGBoost, CatBoost, random forest, and DRPLPI, respectively. Compared to AUC, AUPR is one more important measurement metric. Therefore, LPIDF can effectively find potential proteins interacting with a new lncRNA.

Table 2 gives the comparison results under CV2. In particular, LPIDF computes the best average precision, recall, accuracy, F1-score, AUC and AUPR over all datasets. Over all datasets, LPIDF investigates the best average AUPR of 0.9426 ± 0.0088, which is 0.96%, 2.10%, 0.02% and 0.63% higher than XGBoost, CatBoost, random forest, and DRPLPI, respectively. More importantly, LPIDF calculates the highest average AUPR value of 0.9564 ± 0.0033, which is 2.17% and 2.65% higher than the second-best and third-best methods, respectively. In summary, under CV2, LPIDF remarkably improves LPI prediction performance compared to the other four prediction methods and is statistically significant in identifying possible lncRNAs for a new protein.

Table 3. The performance of five LPI prediction methods on CV3. The best performance is represented in boldface in each row in each table.

The prediction results computed under CV3 are shown in Table 3. In particular, LPIDF outperforms other LPI prediction methods over all datasets in terms of all six measurements. For example, LPIDF achieves the best
Table 2. The performance of five LPI prediction methods on CV2. The best performance is represented in boldface in each row in each table.

	XGBoost	CatBoost	Random forest	DRPLPI	LPIDF
Precision					
Dataset 1	0.5630 ± 0.2187	0.2339 ± 0.1389	0.3181 ± 0.2432	0.3426 ± 0.2355	0.5673 ± 0.2705
Dataset 2	0.5214 ± 0.1701	0.4117 ± 0.2269	0.6310 ± 0.1672	0.6634 ± 0.2152	0.6374 ± 0.1278
Dataset 3	0.6444 ± 0.0759	0.5885 ± 0.1198	0.6873 ± 0.2617	0.7173 ± 0.0554	0.6248 ± 0.1310
Dataset 4	0.4502 ± 0.1057	0.5185 ± 0.1633	0.5979 ± 0.2284	0.4951 ± 0.1616	0.5100 ± 0.0385
Dataset 5	0.6798 ± 0.1338	0.7454 ± 0.1015	0.7516 ± 0.0375	0.7562 ± 0.1097	0.6976 ± 0.0768
Ave	0.5718	0.4996	0.5895	0.5949	0.6074
Recall					
Dataset 1	0.1205 ± 0.0735	0.0988 ± 0.0569	0.0956 ± 0.0886	0.0956 ± 0.0041	0.0996 ± 0.1279
Dataset 2	0.0458 ± 0.0278	0.1162 ± 0.1111	0.0136 ± 0.0687	0.0159 ± 0.0094	0.1418 ± 0.1116
Dataset 3	0.3651 ± 0.1738	0.5795 ± 0.1973	0.2578 ± 0.1301	0.3695 ± 0.1541	0.6318 ± 0.2191
Dataset 4	0.9087 ± 0.0993	0.7777 ± 0.1343	0.9899 ± 0.0123	0.8619 ± 0.1062	0.9284 ± 0.0398
Dataset 5	0.9654 ± 0.0244	0.9096 ± 0.0543	0.9545 ± 0.0287	0.9219 ± 0.0516	0.9762 ± 0.0189
Ave	0.4811	0.4946	0.4443	0.4350	0.5556
AUC					
Dataset 1	0.5499 ± 0.1385	0.4727 ± 0.1757	0.5398 ± 0.1417	0.5383 ± 0.1533	0.5631 ± 0.1793
Dataset 2	0.5386 ± 0.1497	0.5237 ± 0.1041	0.5125 ± 0.0845	0.5422 ± 0.1518	0.5596 ± 0.1162
Dataset 3	0.5822 ± 0.0747	0.5972 ± 0.1037	0.5901 ± 0.1071	0.6159 ± 0.0809	0.6187 ± 0.0812
Dataset 4	0.4516 ± 0.1335	0.5286 ± 0.1404	0.5571 ± 0.2191	0.4972 ± 0.1564	0.5147 ± 0.0313
Dataset 5	0.7353 ± 0.1020	0.7909 ± 0.0546	0.8197 ± 0.0311	0.8029 ± 0.0608	0.7736 ± 0.0546
Ave	0.5715	0.5826	0.6038	0.5993	0.6059
AUPR					
Dataset 1	0.1803 ± 0.1002	0.1181 ± 0.0905	0.0109 ± 0.0166	0.0107 ± 0.0076	0.1461 ± 0.1693
Dataset 2	0.0819 ± 0.0468	0.1680 ± 0.1460	0.0261 ± 0.0160	0.0308 ± 0.0179	0.2146 ± 0.1560
Dataset 3	0.4425 ± 0.1306	0.5465 ± 0.1386	0.3349 ± 0.1578	0.4708 ± 0.1367	0.5954 ± 0.1125
Dataset 4	0.5954 ± 0.0962	0.5970 ± 0.0707	0.6901 ± 0.1579	0.6085 ± 0.0890	0.6565 ± 0.0276
Dataset 5	0.7889 ± 0.0941	0.8146 ± 0.0656	0.8407 ± 0.0321	0.8253 ± 0.0691	0.8110 ± 0.0518
Ave	0.4178	0.4488	0.3805	0.3892	0.4847
AUC					
Dataset 1	0.6116 ± 0.1384	0.4431 ± 0.0607	0.6034 ± 0.1648	0.5407 ± 0.1431	0.6549 ± 0.1973
Dataset 2	0.5819 ± 0.0788	0.5090 ± 0.0427	0.6079 ± 0.0490	0.5938 ± 0.1076	0.5956 ± 0.1482
Dataset 3	0.6239 ± 0.0781	0.6236 ± 0.0846	0.6402 ± 0.0683	0.6698 ± 0.0811	0.7224 ± 0.1072
Dataset 4	0.5515 ± 0.1363	0.5634 ± 0.1026	0.6414 ± 0.1523	0.7190 ± 0.0665	0.5794 ± 0.1465
Dataset 5	0.8554 ± 0.0936	0.7889 ± 0.0411	0.9169 ± 0.0401	0.8998 ± 0.0563	0.9161 ± 0.0397
Ave	0.6647	0.5856	0.6820	0.6846	0.6937

average AUC value of 0.9457, which is 1.72%, 6.39%, 0.87%, and 0.97% better than XGBoost, CatBoost, random forest, and DRPLPI, respectively. In addition, for the AUPR metric, LPIDF obtains the best average AUPR of 0.9382, which is 0.88% and 1.20% superior to the second-best and third-best methods, respectively. It can be seen that the LPIDF can effectively predict potential LPIs.

Case study. After confirming the performance of our proposed LPIDF method, we further identify possible LPIs, especially predict interaction information for new lncRNAs and proteins.

Finding possible proteins interacting with new lncRNAs. In this section, we intend to find potential proteins interacting with new lncRNAs. Small Nucleolar RNA Host Gene 3 (SNHG3) and Growth Arrest-Special transcript 5 (GASS) are masked all association information and taken as new lncRNAs. LPIDF is then applied to identify possible proteins interacting with the two lncRNAs.

SNHG3 is an RNA Gene affiliated with the lncRNA class. It may have dense correlation with various cancers, for example, hepatocellular carcinoma, non-small-cell lung cancer, clear cell renal cell carcinoma, gastric cancer, hypoxic-ischemic brain damage, papillary thyroid carcinoma, ovarian cancer, bladder cancer, and acute myeloid leukemia. Table 4 shows the predicted top 5 proteins related to SNHG3 with the highest interaction probabilities on three human datasets.
Table 3. The performance of five LPI prediction methods on CV3. The best performance is represented in boldface in each row in each table.

	XGBoost	CatBoost	Random forest	DRPLIP	LPIDF
Precision					
Dataset 1	0.8508 ± 0.0115	0.8457 ± 0.0142	0.8466 ± 0.0056	0.8401 ± 0.0131	0.8589 ± 0.0115
Dataset 2	**0.8682 ± 0.0102**	0.8604 ± 0.0121	0.8549 ± 0.0065	0.8574 ± 0.0112	0.8645 ± 0.0119
Dataset 3	0.7455 ± 0.0213	0.7401 ± 0.0156	0.7438 ± 0.0171	0.7503 ± 0.0198	0.7549 ± 0.0120
Dataset 4	0.9117 ± 0.0051	0.9340 ± 0.0134	0.9261 ± 0.0171	0.9381 ± 0.0142	0.9390 ± 0.0227
Dataset 5	0.8899 ± 0.0057	0.9250 ± 0.0047	0.9223 ± 0.0017	0.9224 ± 0.0040	**0.9297 ± 0.0039**
Ave	0.8532	0.8610	0.8587	0.8617	**0.8694**

Recall					
Dataset 1	0.9293 ± 0.0079	0.9676 ± 0.0065	**0.9707 ± 0.0016**	0.9630 ± 0.0092	0.9634 ± 0.0104
Dataset 2	0.9486 ± 0.0083	0.9666 ± 0.0088	0.9745 ± 0.0041	0.9722 ± 0.0048	0.9752 ± 0.0079
Dataset 3	0.7863 ± 0.0157	0.8031 ± 0.0240	0.8061 ± 0.0134	0.7976 ± 0.0128	0.8257 ± 0.0149
Dataset 4	0.8394 ± 0.0305	0.8734 ± 0.0479	0.8803 ± 0.0235	0.8711 ± 0.0479	0.8908 ± 0.0225
Dataset 5	0.9048 ± 0.0051	0.9304 ± 0.0064	0.9282 ± 0.0034	**0.9345 ± 0.0047**	0.9307 ± 0.0047
Ave	0.8817	0.9082	0.9120	0.9077	**0.9172**

F1-score					
Dataset 1	0.8832 ± 0.0063	0.8957 ± 0.0083	0.8974 ± 0.0051	0.8899 ± 0.0080	0.9025 ± 0.0065
Dataset 2	0.9022 ± 0.0072	0.9049 ± 0.0090	0.9046 ± 0.0039	0.9051 ± 0.0064	0.9111 ± 0.0075
Dataset 3	0.7591 ± 0.0151	0.7608 ± 0.0129	0.7640 ± 0.0114	0.7660 ± 0.0136	0.7786 ± 0.0112
Dataset 4	0.8792 ± 0.0143	0.9056 ± 0.0234	0.9056 ± 0.0176	0.9066 ± 0.0214	0.9161 ± 0.0066
Dataset 5	0.9086 ± 0.0027	0.9279 ± 0.0049	0.9250 ± 0.0023	0.9283 ± 0.0037	0.9302 ± 0.0027
Ave	0.8640	0.8790	0.8793	0.8792	0.8877

AUC					
Dataset 1	0.9376 ± 0.0054	0.9855 ± 0.0046	0.9484 ± 0.0031	0.9413 ± 0.0038	0.9521 ± 0.0053
Dataset 2	0.9507 ± 0.0040	0.9649 ± 0.0083	0.9537 ± 0.0051	0.9510 ± 0.0064	0.9545 ± 0.0064
Dataset 3	0.8452 ± 0.0133	0.7755 ± 0.0099	0.8531 ± 0.0096	0.8517 ± 0.0106	0.8739 ± 0.0111
Dataset 4	0.9407 ± 0.0098	0.9054 ± 0.0228	0.9483 ± 0.0164	0.9526 ± 0.0169	0.9634 ± 0.0091
Dataset 5	0.9681 ± 0.0008	0.9279 ± 0.0050	0.9815 ± 0.0006	0.9834 ± 0.0005	0.9848 ± 0.0008
Ave	0.9285	0.8818	0.9370	0.9360	0.9457

AUPR					
Dataset 1	0.9155 ± 0.0074	0.9259 ± 0.0070	0.9279 ± 0.0101	0.9212 ± 0.0085	0.9381 ± 0.0095
Dataset 2	0.9314 ± 0.0086	0.9218 ± 0.0075	**0.9403 ± 0.0088**	0.9341 ± 0.0113	0.9384 ± 0.0101
Dataset 3	0.8213 ± 0.0204	0.8235 ± 0.0153	0.8350 ± 0.0110	0.8271 ± 0.0186	0.8562 ± 0.0135
Dataset 4	0.9532 ± 0.0083	0.9354 ± 0.0127	0.9615 ± 0.0129	0.9648 ± 0.0122	0.9726 ± 0.0043
Dataset 5	0.9789 ± 0.0012	0.9450 ± 0.0037	0.9824 ± 0.0005	0.9839 ± 0.0005	**0.9857 ± 0.0008**
Ave	0.9185	0.9103	0.9294	0.9262	0.9382

The results from Table 4 show that SNHG3-protein interaction pairs predicted by LPIDF are rank advanced in all other four methods. We predict that O00425 may interact with SNHG3 (ranked as 4) in dataset 3, which has been validated in dataset 1. In addition, we observe that Q9NUL5 and Q13148 may interact with SNHG3. Among all possible 27 proteins, the interaction between Q9NUL5 and SNHG3 is ranked as 1 by all five LPI prediction methods. The association between Q13148 and SNHG3 is ranked as 5, 7, 8, 3, and 4 by LPIDF, XGBoost, random forest, CatBoost, and DRPLIP, respectively. The facts demonstrate the powerful prediction performance of LPIDF.

GA5 can prevent glucocorticoid receptors from being activated and thus control transcriptional activities from its target genes. It is inferred as a potential tumor suppressor and has close correlations with coronary artery disease, cirrhotic livers, coronary artery disease, rheumatoid arthritis, Parkinson's disease, and primary glioblastoma.
Finding potential lncRNAs interacting with new proteins. We continue to uncover lncRNAs interacting with a new protein on three human datasets. Q13148 and Q9HCK5 are masked all associated lncRNAs and taken as new proteins. LPIDF is then used to find possible associated lncRNAs for the two proteins.

Q13148 is an RNA-binding protein involved in RNA biogenesis and processing and various neurodegenerative diseases\(^57\)–\(^60\). In addition, it also participates in the formation and regeneration of normal skeletal muscles and plays an important role in keeping the circadian clock periodicity\(^59\),\(^60\). Its second RNA recognition motif has been reported as a major promoter towards aggregation and resultant toxicity\(^61\). Frontotemporal lobar degeneration associated with Q13148 aggregation is depicted as progressive neuronal atrophy in cerebral cortex\(^62\). Table 6 illustrates the predicted top 5 lncRNAs associated with Q13148 on three human datasets. From Table 6, we can investigate that all predicted top 5 lncRNAs interacting with Q13148 are known in the three datasets.

Table 6. The predicted top 5 lncRNAs associated with Q13148.

Dataset	Proteins	Confirmed	LPIDF	XGBoost	Random forest	CatBoost	DRPLPI
Dataset1	Q15717	Yes	1	1	2	1	2
	P35637	Yes	2	5	4	7	3
	O00425	Yes	3	2	6	5	1
	Q9UKV8	Yes	4	6	1	8	6
	Q9NZI8	Yes	5	3	8	3	5
Dataset2	Q15717	Yes	1	1	2	1	1
	Q9NZI8	Yes	2	3	7	4	8
	Q9Y6M1	Yes	3	2	5	3	2
	P35637	Yes	4	4	1	5	4
	Q96PU8	Yes	5	18	16	15	17
Dataset3	Q9NLUL5	No	1	1	1	1	1
	Q9Y6M1	Yes	2	3	2	20	4
	Q9NZI8	Yes	3	4	5	7	2
	O00425	No	4	2	3	3	3
	Q13148	No	5	7	8	5	4

Finding new LPIs based on known LPIs. The number of lncRNA–protein pairs with unknown interaction information is 51,686, 71,075, 22,572, 2,867 and 49,435 on the five datasets, respectively. We rank these unknown lncRNA–protein pairs based on their interaction probabilities computed by LPIDF and list the predicted top 100 lncRNA–protein pairs. The results are shown in Fig. 1. In Fig. 1, black dotted lines and sky blue solid lines represent unknown and known LPIs predicted by LPIDF, respectively. Tan hexagons and light sky blue circu-
Yellow diamonds denote lncRNAs whose interactions with proteins are unknown and known, respectively. We observe that some identified lncRNA–protein pairs have higher interaction probabilities. For example, the interactions between NONHSAT137627 and P35637, n344749 and Q15717, NONHSAT119864 and Q15717, AthIncRNA18 and Q9LES2, and ZmaLncRNA38 and C4J594 are ranked as 33, 97, 85, 161, and 215, respectively. The lncRNA–protein pairs with advanced ranks need further experimental validation.

The lncRNA FTX (NONHSAT137627) can positively regulate the expression and function of ALG3 in AML cells, especially cell growth and apoptosis related to ADR-resistance. FTX could thus probably be applied to reduce therapeutic resistance in AML. P35637 plays a key role in RNA transport, mRNA stability and synaptic homeostasis in neuronal cells. The protein has been validated to be target of the treatment of cancers, amyotrophic lateral sclerosis, and Alzheimer’s disease. In dataset 2, it is observed that FTX interacts with Q15717, Q9NZI8, and P26599. Q15717 helps in increasing the leptin mRNA’s stability. Q9NZI8 can regulate neurite outgrowth and neuronal cell migration, promote tumor-derived cells’ adhesion and movement, and prevent infectious HIV-1 particles’ formation. P26599 can bind to the viral internal ribosome entry site and stimulate the translation mediated by the picornaviruses’ infection site. Q35637 has similar functions with Q15717, Q9NZI8, and P26599. Based on the “guilt-by-association” theory, we infer that FTX may associate with P35637.

Table 6. The predicted top 5 lncRNAs interacting with Q13148.

Dataset	lncRNAs	Confirmed	LPIDF	XGBoost	CatBoost	Random forest	DRPLPI
Dataset1	SNHG1	Yes	1	53	60	17	13
	NEAT1	Yes	2	113	52	30	199
	7SL	Yes	3	784	234	472	264
	RP11-439E19.10	Yes	4	376	14	415	55
	SFPQ	Yes	5	28	25	18	7
Dataset2	NONHSAT137627	Yes	1	14	22	7	5
	NEAT1	Yes	2	5	128	1	39
	7SL	Yes	3	61	14	4	150
	RP11-439E19.10	Yes	4	274	103	106	559
	SFPQ	Yes	5	48	13	8	66
Dataset3	RP0101_124073	Yes	1	4	1	6	59
	LINC00638	Yes	2	1	707	2	2
	LINC00338	Yes	3	28	637	4	7
	RP11-38P22.2	Yes	4	29	461	99	47
	GASS	Yes	5	110	8	13	110

Table 7. The predicted top 5 lncRNAs interacting with Q9HCK5.

Dataset	lncRNAs	Confirmed	LPIDF	XGBoost	CatBoost	Random forest	DRPLPI
Dataset1	RP0101_233996	Yes	1	468	73	31	71
	RP0101_122583	Yes	2	16	41	139	35
	RP0101_1006381	Yes	3	44	23	38	177
	RP0101_1000866	Yes	4	580	51	15	189
	RP5-10577.6	Yes	5	263	29	56	116
Dataset2	SFPQ	Yes	1	45	1	2	23
	RP0101_1015379	Yes	2	55	91	75	2
	RP0101_247329	Yes	3	126	51	22	24
	RP0101_1000866	Yes	4	18	5	36	4
	NEAT1	Yes	5	15	49	4	9
Dataset3	RP11-357C3.3	Yes	1	7	6	41	36
	RP1-140A9.1	Yes	2	6	390	15	11
	RP0101_124073	Yes	3	5	25	9	32
	RP0101_1001088	Yes	4	1	14	10	10
	AC010890.1	Yes	5	17	42	62	8

Fractions of true LPIs among the predicted top N LPIs.

In addition, we consider the fractions of true LPIs among the inferred top N LPIs. The results are shown in Table 8. N is selected as 10, 30, and 50, respectively. From Table 8, we can find that all the predicted top 10 LPIs by LPIDF have been labeled as 1 on five datasets. Similar
Figure 1. The predicted top 100 LPIs on the five datasets (a) Dataset 1, (b) Dataset 2, (c) Dataset 3, (d) Dataset 4, (e) Dataset 5.
to top 10, we can obtain the same fraction results on the predicted top 30 LPIs. For the predicted top 50 LPIs by LPIDF, although only 94% of LPIs have been labeled as 1 in dataset 1, all the top 50 LPIs are known on other four datasets. In summary, LPIDF obtains the best prediction performance based on fractions of true LPIs among the top 10, 30, and 50 LPIs.

Discussion and conclusion

lncRNAs are widely distributed in various organisms and regulate gene expression on transcriptome and post-transcriptome. However, lncRNAs are difficult to crystallize and only several lncRNAs have been investigated. Since lncRNAs play an important regulatory role in protein molecules, the discovery of proteins binding to specific lncRNAs becomes an issue to identify lncRNAs' functions and mechanisms.

In this study, first, we integrate five LPI datasets where three datasets are from human and the remaining is from plants. Second, features of lncRNAs and proteins are selected by four-nucleotide composition and BioSeq2vec based on their sequences, respectively. Finally, a deep forest model with cascade forest structure, LPIDF, is developed to predict LPI candidates. To evaluate the performance of LPIDF, we compare our proposed LPIDF method with other four LPI prediction models on five datasets under three cross validations. The results suggest that LPIDF remarkably outperforms other four competing LPI identification methods. We further conduct a series of case studies to find possible associated proteins (or lncRNAs) for new lncRNAs (or proteins) and potential LPIs. The results from case analyses again demonstrate that LPIDF is a powerful LPI identification method.

LPIDF can compute the optimal precision, recall, accuracy, F1-score, AUC and AUPR. We think that it may be attributed to the following advantages. First, LPIDF selects high quality features of lncRNAs and proteins based on four-nucleotide composition and BioSeq2vec, respectively. Second, deep forest with cascade forest structure could automatically determine the depths of cascade forest, thereby reducing prediction bias produced by parameter tuning. Finally, each layer in the cascade forest receives LPI features from the last layer and sends its result to the next layer. Since all layers are automatically generated, LPIDF need not set too many hyperparameters. The predominant experimental consequences indicate that LPIDF has a powerful ability in excavating new LPIs.

In addition, the time required for the proposed LPIDF model and other methods is investigated. The details are shown in Table 9. It can be seen that the time required for LPIDF is much lower than ones of CatBoost and DRPLPI.

However, our work has a few limitations. We only consider LPI prediction on human and plant LPI-related datasets. Indeed, other species closer human evolutionarily than plants should be investigated. In addition, the predicted LPIs with the highest interaction probabilities should be experimentally validated.

Table 8. The fractions of true LPIs among the top N interactions under CV3.

	XGBoost (%)	CatBoost (%)	Random forest (%)	DRPLPI (%)	LPIDF (%)
Dataset 1					
Top 10	60	100	90	100	100
Top 30	70	90	90	100	100
Top 50	74	88	88	94	94
Dataset 2					
Top 10	70	70	90	90	100
Top 30	77	87	87	93	100
Top 50	80	86	86	92	100
Dataset 3					
Top 10	80	90	90	100	100
Top 30	93	93	96	50	100
Top 50	88	96	98	96	100
Dataset 4					
Top 10	100	100	100	100	100
Top 30	97	100	100	100	100
Top 50	96	100	94	100	100
Dataset 5					
Top 10	100	100	100	100	100
Top 30	100	100	86	100	100
Top 50	100	100	88	100	100

Table 9. The time required for all LPI prediction methods. Where s denotes second.

	XGBoost	CatBoost	Random forest	DRPLPI	LPIDF
Dataset 1	168 s	74,120 s	20 s	74,292 s	28,174 s
Dataset 2	688 s	70,042 s	22 s	68,469 s	25,348 s
Dataset 3	527 s	63,627 s	37 s	63,711 s	26,342 s
Dataset 4	400 s	25,971 s	6 s	25,994 s	7216 s
Dataset 5	1852 s	61,998 s	197 s	62,258 s	82,022 s
In the future, first, we will integrate more biological information, for example, disease symptom information, drug chemical structure, miRNA-lncRNA interactions. Second, we will consider the prediction performance of the proposed model on other species closer human evolutionarily than plants. Third, CD-Hit is one broadly used software for reducing sequence redundancy. To improve the performance of sequence analyses algorithms, we will further remove proteins with high sequence similarity in larger datasets based on CD-Hit. Finally, we will further conduct experimental validation for the predicted RNA-binding proteins.

Materials and methods

Data preparation.

In this study, we integrate five different LPI datasets. Dataset 1 was provided by Li et al. Noncoding RNA–protein interaction data were firstly downloaded from the NPInter 2.0 database. lncRNA and protein sequences were extracted from the NONCODE database and the UniProt database, respectively. 3,487 LPIs from 938 lncRNAs and 59 proteins were obtained. We then remove lncRNAs and proteins whose sequences are unknown in the UniProt and NONCODE databases. Finally, we obtain 3,479 LPIs from 935 lncRNAs and 59 proteins.

Dataset 2 was provided by Zheng et al. Noncoding RNA–protein interaction, lncRNA and protein sequences were downloaded from NPInter, NONCODE, and UniProt, respectively. They obtained 4,467 LPIs between 1,050 lncRNAs and 84 proteins. Similar to dataset 1, we further remove the lncRNAs and proteins whose sequences are unknown in the NONCODE, UniProt, and NPInter databases and obtain 3,265 LPIs from 885 lncRNAs and 84 proteins.

Dataset 3 was provided by Zhang et al. Experimentally validated LPIs between 1,114 lncRNAs and 96 proteins were extracted based on data resources compiled by Ge et al. The sequence and expression data of lncRNAs in 24 human tissues or cell types were downloaded from the NONCODE database. The sequence data of proteins were obtained from the SUPERFAMILY database. lncRNAs without sequence or expression information and proteins without sequence information were removed. lncRNA (or protein) with only one associated protein (or lncRNA) were still removed. Finally, 4,158 LPIs from 990 lncRNAs and 27 proteins were selected.

Dataset 4 contains sequence information of lncRNAs and proteins about *Arabidopsis thaliana* from the plant lncRNA database (PlncRNADB). LPI data can be obtained from http://bis.zju.edu.cn/plncRNADB. The dataset contains 948 LPIs from 109 lncRNAs and 35 proteins.

Dataset 5 contains sequence data of lncRNAs and proteins about *Zea mays* from the PlncRNADB database. LPI data can be downloaded from http://bis.zju.edu.cn/plncRNADB. The dataset contains 22,133 LPIs from 1,704 lncRNAs and 42 proteins. Table 10 describes the details about the five datasets.

We describe an LPI network as a matrix Y:

$$Y_{ij} = \begin{cases} 1 & \text{if lncRNA}_i \text{ interacts with protein } p_j \\ 0 & \text{otherwise} \end{cases}$$

Feature selection.

Feature selection of lncRNAs. Tri-nucleotide composition is effectively applied to characterize lncRNA sequences. In this section, we use four-nucleotide composition to select lncRNA features. Given an lncRNA sequence L with the length of x where $l_i \in \{A, C, G, T\}$ and $i = 1, 2, ..., x$, we use a four-tuple letter arrangement, for example, (A, A, A, A), (A, A, A, C), (A, A, A, G), ..., (T, T, T, T), to compute the numeric matrix from L.

Feature selection of proteins. The encoder-decoder structure can better describe sequence-to-sequence features. Inspired by the sequence representation techniques provided by Sutskever et al. and Yi et al., we use Biological Sequence-to-vector (BioSeq2vec) representation learning method with encoder-decoder structure to characterize amino acids of a protein.

For a protein with sequence length of L, first, a sliding window of size K is used to divide the sequence into $L - K + 1$ segments. Second, the segments are converted into hash values. Finally, the hash values are used as input of an autoencoder. As shown in Fig. 2, an input vector composed of the hash values is first mapped into a low-dimensional feature vector by an encoder. Second, the low-dimensional feature vector is reproduced as an instance.
input vector by a decoder. Finally, the reproduced low-dimensional feature vector in the final intermediate layer is used as features of a protein.

Deep forest with cascade forest structure. In this study, we utilize a Deep Forest with cascade forest structure (LPIDF) to find new LPIs. Deep forest with cascade forest structure, integrating deep forest and ensemble learning, exploits an ensemble-ensemble architecture. In the model, deep forest conducts layer-by-layer propagation and feature transformation. Ensemble learning-based model, composed of multiple single classifiers, more effectively improves LPI prediction compared with one single classifier. For ensemble learning, larger diversities between single classifiers mean better improvement. To ensure the diversity, in this study, four different types of classifiers, logistic regression, XGBoost Classifier, random forest, and extra trees, are utilized to learn the model.

In the model, class vectors used to denote the class distribution are obtained through the four basic classifiers. For each LPI feature, the class distribution first calculated the proportions that the feature classifies an lncRNA–protein pair as two classes (positive class and negative class), respectively. Suppose that there are three trees in a random forest. As shown in Fig. 3, for a LPI feature f_i, the probabilities that f_i classify an lncRNA–protein pair as two classes (positive class and negative class) in the three trees are $(0.3750, 0.6250)$, $(0.5556, 0.4444)$, and $(1.0000, 0.0000)$, respectively. The probabilities are then summed up and averaged and thus the final class distribution $(0.6435, 0.3565)$ can be computed based on the feature f_i. That is, the probability that f_i classify the lncRNA–protein pair as positive example is $(0.3750 + 0.5556 + 1.0000) / 3 = 0.6435$ and the probability that f_i classify the lncRNA–protein pair as negative sample is $(0.6250 + 0.4444 + 0.0000) / 3 = 0.3565$.

Similarly, at each layer, for each LPI feature, logistic regression, XGBoost Classifier, random forest, and extra trees are trained. An 8-dimensional class vector is generated based on two classes and four types of classifiers.

Figure 4 shows a deep forest with cascade structure. As illustrates in Fig. 4, an 800-dimensional feature vector is used as the initial input to the cascade forest. After each layer, the generated eight-dimensional class vector with the most important information combining the old 800-dimensional features are used as the input at the next layer. The details are shown as follows. First, four different types of classifiers, logistic regression, XGBoost Classifier, random forest, and extra trees, are utilized to train the model. Second, an eight-dimensional class vector is picked and concatenated with the original 800-dimensional feature vector to generate an 808-dimensional feature vector. And another 808-dimensional class vector is applied as the input at the third layer. Finally, training on a new layer, a training set is used to tune the parameters and a validation set is utilized to evaluate the performance. The feature importance will be evaluated through the prediction difference between the original LPI features and the learned ones in the four different types of classifiers. The training process will be terminated when the performance is not significantly improved. After training, LPI features with zero importance values are removed and the features with valid importance values are kept. For a test example (an LPI feature), it will be represented by each level until the last level.

Figure 5 demonstrates the pipeline of LPIDF. First, five LPI datasets are obtained based on the existing resources. Second, for an lncRNA–protein pair, lncRNA and protein sequences are characterized and concatenated as a vector based on four-nucleotide composition and BioSeq2vec with encoder–decoder structure. Third, the concatenated vector is used as the input to the cascade forest. Finally, the most important features are selected based on layer-to-layer propagation and label of each lncRNA–protein pair is computed.
Figure 3. Computing the probability that a feature is classified as positive (or negative) sample.

Figure 4. Deep forest with cascade forest structure.
Data availability

Source codes and datasets are freely available for download at https://github.com/plhhnu/LPIDF.

Received: 5 April 2021; Accepted: 18 August 2021
Published online: 23 September 2021

References

1. Zhang, W. et al. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination. BMC Genomics 20(11), 1–12 (2019).
2. Chen, X., Zhu, C. C. & Yin, J. Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Comput. Biol. 15(7), e1007209 (2019).
3. Chen, X. et al. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform. 20(2), 515–539 (2019).
4. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341), 120–124 (2011).
5. Chen, X. et al. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 18(4), 558–576 (2017).
6. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136(4), 629–641 (2009).
7. Deng, L. et al. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinform. 19(1), 1–11 (2018).
8. Liu, H. et al. Predicting IncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized. Knowl.-Based Syst. 191, 105261 (2020).
9. Chen, X. et al. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genomics 18(1), 38–82 (2019).
10. Li, G. et al. Prediction of IncRNA-disease associations based on network consistency projection. IEEE Access 7, 58849–58856 (2019).
11. Wang B, Wang L, Zheng C H, et al. Imbalance data processing strategy for protein interaction sites prediction. in IEEE/ACM Transactions on Computational Biology and Bioinformatics (2019).
12. Zhang, Z. et al. KATZLGO: Large-scale prediction of lncRNA functions by using the KATZ measure based on multiple networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(2), 407–416 (2017).
13. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011).
14. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3), 393–407 (2018).
15. Peng, L. et al. Probing IncRNA–protein interactions: Data repositories, models, and algorithms. Front. Genet. 10, 11 (2019).
16. Ferre, E., Colantoni, A. & Helmer-Citterich, M. Revealing protein–lncRNA interaction. Brief. Bioinform. 17(1), 106–116 (2016).
17. Li, A., Ge, M., Zhang, Y., et al. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed. Res. Int. 2015 (2015).
18. Zhang, W. et al. The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions. Neurocomputing 273, 526–534 (2018).
19. Zhao, Q. et al. The bipartite network projection-recommended algorithm for predicting long non-coding RNA-protein interactions. Mol. Ther. Nucleic Acids 13, 464–471 (2018).
20. Xie, G. et al. Lpi-ibra: Long non-coding rna-protein interaction prediction based on improved bipartite network recommender algorithm. Front. Genet. 10, 349 (2019).
21. Zhu, R. et al. ACCBN: Ant-colony-clustering-based bipartite network method for predicting long non-coding RNA–protein interactions. BMC Bioinform. 20(1), 16 (2019).
22. Zheng, X. et al. Fusing multiple protein–protein similarity networks to effectively predict IncRNA–protein interactions. BMC Bioinform. 18(12), 420 (2017).
23. Deng, L., Yang, W. & Liu, H. Predpbra: Prediction of protein–rna binding affinity using gradient boosted regression trees. Front. Genet. 10, 637 (2019).
24. Zhang, T., Wang, M., Xi, J., et al. Lpgnmf: Predicting long non-coding RNA and protein interaction using graph regularized non-negative matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018).
25. Liu, H. et al. LPI-NRLMF: IncRNA–protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget 8(61), 103975 (2017).
26. Zhao, Q. et al. IRWNRPLP: Integrating random walk and neighborhood regularized logistic matrix factorization for IncRNA–protein interaction prediction. Front. Genet. 9, 239 (2018).
27. Liu, Q. et al. Hot spot prediction in protein–protein interactions by an ensemble system. BMC Syst. Biol. 12(9), 89–99 (2018).
28. Shen, C. et al. LPI-KTASLP: Prediction of IncRNA–protein interaction by semi-supervised link learning with multivariate information. IEEE Access 7, 13486–13496 (2019).
29. Hu, H. et al. HLPI-ensemble: Prediction of human IncRNA–protein interactions based on ensemble strategy. RNA Biol. 15(6), 797–806 (2018).
30. Zhang, W. et al. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting IncRNA–protein interactions. PLoS Comput. Biol. 14(12), e1006616 (2018).
31. Fan, X. N. & Zhang, S. W. LPI-BLS: Predicting IncRNA–protein interactions with a broad learning system-based stacked ensemble classifier. Neurocomputing 370, 88–93 (2019).
32. Wekesa, J. S., Meng, J. & Luan, Y. A deep learning model for plant IncRNA–protein interaction prediction with graph attention. Mol. Genet. Genomics 2020, 1–2 (2020).
33. Chen, T., Guastin, C. & Xiboost: A scalable tree boosting system. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794 (2016).
34. Hasan, M. M. et al. Meta-i6mA: An interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Brief. Bioinform. 22(3), bbaa202 (2021).
35. Prokhorenkova, L., Gusev, G., Vorobiev, A., et al. CatBoost: Unbiased boosting with categorical features. in Advances in Neural Information Processing Systems. 6638–6648 (2018).
36. Pal, M. Random forest classifier for remote sensing data classification. Int. J. Remote Sens. 26(1), 217–222 (2005).
37. Hasan, M. M. et al. HLPIpred-Fuse: Improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics 36(11), 3350–3356 (2020).
38. Wekesa, J. S., Meng, J., Luan, Y. Multi-feature fusion for deep learning to predict plant IncRNA–protein interaction. Genomics 2020, 1–2 (2020).
39. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
40. Zhang, T. et al. SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma. Tumor Biol. 37(2), 2379–2385 (2016).
41. Liu, L., Ni, J., He, X. Upregulation of the long noncoding RNA SNHG3 promotes lung adenocarcinoma proliferation. Dis. Mark. 2018 (2018).
42. Zhang, C. et al. IncRNA SNHG3 promotes clear cell renal cell carcinoma proliferation and migration by upregulating TOP2A. Exp. Cell Res. 384(1), 111595 (2019).
43. Sun, B. et al. Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cell Oncol. 44(1), 179–192 (2021).
44. Yang, Q. et al. Long non-coding RNA Snhg3 protects against hypoxia/ischemia-induced neonatal brain injury. Exp. Mol. Pathol. 112, 104343 (2020).
45. Duan, Y. et al. IncRNA SNHG3 acts as a novel tumor suppressor and regulates tumor proliferation and metastasis via AKT/mTOR/ERK pathway in papillary thyroid carcinoma. J. Cancer 11(12), 3492 (2020).
46. Hong, L. et al. Upregulation of SNHG3 expression associated with poor prognosis and enhances malignant progression of ovarian cancer. Cancer Biomark. 22(3), 367–374 (2018).
47. Li, N. A., Zhan, X. & Zhan, X. The IncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol. Oncol. 150(2), 343–354 (2018).
48. Dai, G. et al. IncRNA SNHG3 promotes bladder cancer proliferation and metastasis through miR-515-5p/GN252 axis. J. Cell Mol. Med. 24(16), 9231–9243 (2020).
49. Peng, L., Zhang, X. & Xin, H. IncRNA SNHG3 facilitates acute myeloid leukemia cell growth via the regulation of miR-758-3p/ SRGN axis. J. Cell. Biochem. 121(2), 1023–1031 (2020).
50. Yin, Q., Wu, A. & Liu, M. Plasma long non-coding RNA (IncRNA) GASS is a new biomarker for coronary artery disease. Med. Sci. Monit. 23, 6042 (2017).
51. Han, M. H. et al. Expression of the long noncoding RNA GASS correlates with liver fibrosis in patients with nonalcoholic fatty liver disease. Genes 11(5), 545 (2020).
52. Li, X. et al. Overexpression of GASS inhibits abnormal activation of Wnt/β-catenin signaling pathway in myocardial tissues of rats with coronary artery disease. J. Cell Physiol. 234(7), 11348–11359 (2019).
53. Li, H. et al. Association of genetic variants in IncRNA GASS/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population. J. Clin. Lab. Anal. 34(10), e23430 (2020).
54. Moharamoghli, M. et al. The expression of GASS, THRL, and RMRP IncRNAs is increased in T cells of patients with rheumatoid arthritis. Clin. Rheumatol. 38(11), 3073–3080 (2019).
55. Xu, W. et al. Long noncoding RNA GASS promotes microglial inflammatory response in Parkinson's disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol. 85, 106614 (2020).
56. Shen, J. et al. Serum HOTAIR and GASS levels as predictors of survival in patients with glioblastoma. Mol. Carcinog. 57(1), 137–141 (2018).
57. Salvatori, I. et al. Differential toxicity of TAR DNA-binding protein 43 isoforms depends on their sub mitochondrial localization in neuronal cells. J. Neurochem. 146(5), 585–597 (2018).
58. Kino, T. et al. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3(107), ra8 (2010).
Acknowledgements
We would like to thank all authors of the cited references.

Author contributions
X.T., L.S., Z.W., L.Z., and L.P. designed the LPIDF method. X.T. and L.S. ran LPIDE. L.P. wrote the original manuscript. L.P. and L.Z. revised the original draft. L.P. and L.Z. discussed the proposed method and gave further research. All authors read and approved the final manuscript.

Funding
This research was funded by the Natural Science Foundation of China (Grant 62072172, 61803151).

Competing interests
The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to L.Z. or L.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021