Linear Properties of Generalized n-step Fibonacci Numbers

Kunle Adegoke
adegoke00@gmail.com

Department of Physics and Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Abstract
We present numerous interesting, mostly new, results involving the n-step Fibonacci numbers and n-step Lucas numbers and a generalization. Properties considered include recurrence relations, summation identities, including binomial and double binomial summation identities, partial sums and ordinary generating functions. Explicit examples are given for small n values.

1 Introduction
For $n \geq 2$, the n-step Fibonacci numbers, $U_r (r \geq n)$, satisfy the linear recurrence relation \[U_r = U_{r-1} + U_{r-2} + U_{r-3} + \cdots + U_{r-n} = \sum_{i=1}^{n} U_{r-i}, \] (1.1) with n initial terms \[U_k = 0, \quad -n + 2 \leq k \leq 0, \quad U_{-n+1} = 1. \] (1.2)

Well-known members of this number family include the Fibonacci numbers $F_r (n = 2, U = F)$, the Tribonacci numbers $T_r (n = 3, U = T)$, the Tetranacci numbers $M_r (n = 4, U = M)$. The reader is referred to Table 1 for notation and nomenclature.

By writing $U_{r-1} = U_{r-2} + U_{r-3} + U_{r-4} + \cdots + U_{r-n-1}$ and substracting this from relation (1.1), we see that the n-step Fibonacci numbers also obey the following recurrence relation:

\[U_r = 2U_{r-1} - U_{r-n-1}. \] (1.3)

Extension of the definition of n-step Fibonacci numbers to negative subscripts $r < -n + 2$ is provided by writing the recurrence relation (1.3) as

\[U_{-r} = 2U_{-r+n} - U_{-r+n+1}. \] (1.4)

From (1.1), (1.2), (1.3) and (1.4), we have the following special values:

\[U_1 = 1, \quad U_k = \sum_{j=1}^{k-1} U_j, \quad 2 \leq k \leq n-1, \quad U_{-1} = \delta_{n,2}, \quad U_{-n} = -1, \quad U_{-n-1} = 2\delta_{n,2}, \] (1.5)
where $\delta_{i,j}$ is Kronecker delta, equals 1 when $i = j$ and equals 0 otherwise.

We also have
\[U_n = 2^{n-2}, \quad U_{n+1} = 2^{n-1}, \quad U_{n+2} = 2^n - 1, \quad \text{(1.6)} \]
and, in fact,
\[U_{n+k} = 2^{n+k-2} - \sum_{j=1}^{k} 2^{j-1}U_{n-j}, \quad k \in \mathbb{Z}. \quad \text{(1.7)} \]

We remark that identity (1.7) is equivalent to Theorem 3.1 of Howard and Cooper [6] without a restriction on k. Note that identity (1.7) is a special case of identity (3.20).

Like the n-step Fibonacci numbers, the n-step Lucas numbers [8] obey an nth order recurrence relation
\[V_r = V_{r-1} + V_{r-2} + V_{r-3} + \cdots + V_{r-n} = \sum_{i=1}^{n} V_{r-i}, \quad \text{(1.8)} \]
but with the initial terms
\[V_k = -1, \quad -n + 1 \leq k \leq -1, \quad V_0 = n. \quad \text{(1.9)} \]

The most well-known members of the n-step Lucas numbers are the Lucas numbers ($n = 2$), $(L_r)_{r \in \mathbb{Z}}$, and the Tribonacci-Lucas numbers ($n = 3$), $(K_r)_{r \in \mathbb{Z}}$.

The n-step Lucas numbers also obey the three-term recurrence relation
\[V_r = 2V_{r-1} - V_{r-n-1}. \quad \text{(1.10)} \]

Extension of the definition of n-step Lucas numbers to integers $r < -n + 1$ is provided through
\[V_{-r} = 2V_{-r+n} - V_{-r+n+1}. \quad \text{(1.11)} \]

Noe and Post [8] noted that the n-step Fibonacci numbers and the n-step Lucas numbers are connected through the identity
\[V_r = U_r + 2U_{r-1} + \cdots + (n-1)U_{r-n+2} + nU_{r-n+1} = \sum_{j=1}^{n} jU_{r-j+1}. \quad \text{(1.12)} \]

From identities (1.1), (1.3) and (1.12), we can derive the following four-term relation
\[V_r = V_{r-1} - (n + 1)U_{r-n} + 2U_r, \quad \text{(1.13)} \]
which can also be written in the alternative form
\[V_r = V_{r-1} - nU_{r-n} + U_{r+1} \quad \text{(1.14)} \]
or
\[V_r = V_{r-1} - 2nU_r + (n + 1)U_{r+1}. \quad \text{(1.15)} \]

From (1.8), (1.9), (1.10), (1.11) and (1.14), we also have the following special values for the n-step Lucas numbers:
\[V_1 = 1, \quad V_{-n} = 2n - 1, \quad V_{-n-1} = -n - 2, \quad V_n = 2^n - 1. \quad \text{(1.16)} \]
The first few sequences of the n-step Fibonacci numbers and the n-step Lucas numbers are presented in Table 1.

The generalized n-step Fibonacci numbers, W_r, satisfy the same recurrence equation given in (1.1) but with arbitrary initial values. Thus,

$$W_r = W_{r-1} + W_{r-2} + W_{r-3} + \cdots + W_{r-n} = \sum_{i=1}^{n} W_{r-i}, \quad (1.17)$$

for $r \geq n$ but $W_0, W_1, \ldots, W_{n-1}$ are arbitrary. Analogous to (1.3) and (1.4), we have

$$W_r = 2W_{r-1} - W_{r-n-1} \quad (1.18)$$

and

$$W_{-r} = 2W_{-(r-n)} - W_{-(r-n-1)}. \quad (1.19)$$

n	Name	Symbol	n	Name	Symbol
2	Fibonacci	F	6	Sextanacci	S
	Fibonacci-Lucas	L		Sextanacci-Lucas	
	Generalized Fibonacci	F		Generalized Sextanacci	S
3	Tribonacci	T	7	Heptanacci	H
	Tribonacci-Lucas	K		Heptanacci-Lucas	
	Generalized Tribonacci	T		Generalized Heptanacci	H
4	Tetranacci	M	8	Octanacci	O
	Tetranacci-Lucas	R		Octanacci-Lucas	
	Generalized Tetranacci	M		Generalized Octanacci	O
5	Pentanacci	P	9	Nanonacci	N
	Pentanacci-Lucas	Q		Nanonacci-Lucas	
	Generalized Pentanacci	P		Generalized Nanonacci	N

Table 1: Notation and nomenclature for the first few members of the n-step Fibonacci numbers, n-step Lucas numbers and the generalized n-step Fibonacci numbers.

n	Name	r	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
2	Fibonacci	F_r	-3	2	-1	1	0	1	1	2	3	5	8	13	21	34	55
	Lucas	L_r	7	-4	3	-1	2	1	3	4	7	11	18	29	47	76	123
3	Tribonacci	T_r	0	-1	1	0	0	1	1	2	4	7	13	24	44	81	149
	Trib-Lucas	K_r	-5	5	-1	-1	3	1	3	7	11	21	39	71	131	241	443
4	Tetranacci	M_r	-1	1	0	0	0	1	1	2	4	8	15	29	56	108	208
	Tetra-Lucas	R_r	7	-1	-1	-1	4	1	3	7	15	26	51	99	191	367	708
5	Pentanacci	P_r	1	0	0	0	0	1	1	2	4	8	16	31	61	120	236
	Penta-Lucas	Q_r	-1	-1	-1	-1	5	1	3	7	15	31	57	113	223	439	863

Table 2: The first few sequences of the n-step Fibonacci numbers and n-step Lucas numbers.
Our aim in writing this paper is to discover various properties of the generalized \(n \)-step Fibonacci numbers, \(W_r \). Specifically we will develop recurrence relations, ordinary, binomial and double binomial summation identities, partial sums and generating functions.

2 Recurrence relations

Theorem 1. The following identity holds, where \(r \) and \(s \) are integers:

\[
W_{r+s} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{s-j+1} \right) W_{r-i}.
\]

In particular, we have

\[
U_{r+s} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{s-j+1} \right) U_{r-i} \tag{2.1}
\]

and

\[
V_{r+s} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{s-j+1} \right) V_{r-i} \tag{2.2}
\]

Proof. We will keep \(r \) fixed and use induction on \(s \).

The identity is true for \(s = 0 \) because

\[
\sum_{j=0}^{n-i} U_{-j+1} = \sum_{j=i}^{n} U_{-n+j+1} = \sum_{j=i}^{n-1} U_{-n+j+1} + 1 = 1,
\]

for \(1 \leq i \leq n \), by virtue of the initial terms (1.2).

Assume that the identity is true for some integer \(s = k \in \mathbb{Z}^+ \). Let

\[
P_{k} : \left(W_{r+k} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{k-j+1} \right) W_{r-i} \right) \tag{2.3}
\]

We wish to prove that

\[
P_{k+1} : \left(W_{r+k+1} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{k+1-j+1} \right) W_{r-i} \right) \tag{2.4}
\]

and

\[
P_{k-1} : \left(W_{r+k-1} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{k-1-j+1} \right) W_{r-i} \right) \tag{2.5}
\]

are true whenever \(P_{k} \) holds.

By the identity (1.17) and the induction hypothesis \(P_{k} \) (identity (2.3)) we have

\[
W_{r+k+1} = \sum_{\lambda=1}^{n} W_{r+k+1-\lambda} = \sum_{\lambda=1}^{n} \left\{ \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} U_{k+1-\lambda-j+1} \right) W_{r-i} \right\}
\]

\[
= \sum_{i=1}^{n} \sum_{j=0}^{n-i} \left(\sum_{\lambda=1}^{n} U_{k+1-\lambda-j+1} \right) W_{r-i} \tag{2.6}
\]
By the recurrence relation (1.1) we have

\[\sum_{\lambda=1}^{n} U_{k+1-\lambda-j+1} = U_{k+1-j+1}. \]

(2.7)

Using (2.7) in (2.6) yields (2.4) and therefore \(P_k \Rightarrow P_{k+1} \). Following the same procedure, it is readily established that \(P_k \Rightarrow P_{k-1} \).

We remark that Gabai [4, Theorem 6] earlier proved the equivalent of Theorem 1. His proof, however, placed a restriction on the integers \(r \) and \(s \), consistent with his definition of the generalized \(n \)-step numbers.

Corollary 2. The following identity holds, where \(r \) and \(s \) are integers:

\[W_{r+s} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} W_{s-j+1} \right) U_{r-i}. \]

In particular,

\[V_{r+s} = \sum_{i=1}^{n} \left(\sum_{j=0}^{n-i} V_{s-j+1} \right) U_{r-i}. \]

(2.8)

Proof. We require the following summation identities:

\[\sum_{j=a}^{k-a} f_j = \sum_{j=a}^{k-a} f_{k-j} \]

(2.9)

and

\[\sum_{i=a}^{n} \sum_{j=0}^{n-i} A_{i,j+i} = \sum_{i=a}^{n} \sum_{j=a}^{i} A_{j,i}. \]

(2.10)

Now,

\[W_{r+s} = \sum_{i=1}^{n} \sum_{j=0}^{n-i} U_{s-j+1} W_{r-i} = \sum_{i=1}^{n} \sum_{j=0}^{n-i} W_{r-i} U_{s-j+1} = \sum_{i=1}^{n} \sum_{j=0}^{n-i} W_{r-i} U_{s-n+i+j+1}, \]

(2.11)

by application of identity (2.9) to the \(j \) summation. Using identity (2.10) to re-write the sum in (2.11) gives

\[W_{r+s} = \sum_{i=1}^{n} \sum_{j=1}^{i} W_{r-j} U_{s-n+i+1}, \]

(2.12)

in which the application of identity (2.9) to the \(i \) summation gives

\[W_{r+s} = \sum_{i=1}^{n} \sum_{j=1}^{n-i} W_{r-j} U_{s-n+i+1-j+1} = \sum_{i=1}^{n} \sum_{j=1}^{n-i} W_{r-j} U_{s-i+2} = \sum_{i=1}^{n} \sum_{j=0}^{n-i} W_{r-j-1} U_{s-j+2}. \]

(2.13)

Finally, setting \(r = s + 2 \) and \(s = r - 2 \) in (2.13) gives the identity of Corollary 2.

We now give explicit examples of the identities of Theorem 1 and Corollary 2 for low \(n \) \(n \)-step generalized Fibonacci numbers.
2.1 Recurrence relations for the generalized Fibonacci numbers

With \(n = 2 \) in the identity of Theorem 1, we have

\[
F_{r+s} = F_{s+2}F_{r-1} + F_{s+1}F_{r-2},
\]

which is a variant of Formula (8) of Vajda [10], with particular instances

\[
F_{r+s} = F_{s+2}F_{r-1} + F_{s+1}F_{r-2}
\]

and

\[
L_{r+s} = F_{s+2}L_{r-1} + F_{s+1}L_{r-2}.
\]

2.2 Recurrence relations for the generalized Tribonacci numbers

Choosing \(n = 3 \) in the identity of Theorem 1 gives

\[
T_{r+s} = T_{s+2}T_{r-1} + (T_{s+1} + T_s)T_{r-2} + T_{s+1}T_{r-3},
\]

with the particular cases

\[
T_{r+s} = T_{s+2}T_{r-1} + (T_{s+1} + T_s)T_{r-2} + T_{s+1}T_{r-3}
\]

and

\[
K_{r+s} = T_{s+2}K_{r-1} + (T_{s+1} + T_s)K_{r-2} + T_{s+1}K_{r-3}.
\]

The identity (2.18) was also proved by Feng [3] and by Shah [9].

Since \(T_{-17} = 0, T_{-18} = -103 \) and \(T_{-19} = 159 \), setting \(s = -19 \) in identity (2.17) produces another three-term recurrence for the generalized Tribonacci numbers, namely

\[
T_{r-19} = 56T_{r-2} - 103T_{r-3},
\]

in addition to the relation

\[
T_r = 2T_{r-1} - T_{r-4},
\]

obtained at \(n = 3 \) in identity (1.18).

Choosing \(n = 3 \) in the identity of Corollary (2) with \(W = K, U = T \) gives

\[
K_{r+s} = K_{s+2}T_{r-1} + (K_{s+1} + K_s)T_{r-2} + K_{s+1}T_{r-3}.
\]

Setting \(s = -4 \) in identity (2.22) gives a three-term identity connecting the Tribonacci-Lucas numbers and the Tribonacci numbers:

\[
K_{r-4} = -T_{r-1} + 5T_{r-3},
\]

since \(K_{-3} = -K_{-4} = 5 \).
2.3 Recurrence relations for the generalized Tetranacci numbers

The choice \(n = 4 \) in the identity of Theorem 1 gives

\[
\mathcal{M}_{r+s} = M_{s+2}M_{r-1} + (M_{s+1} + M_s + M_{s-1})M_{r-2} + (M_{s+1} + M_s)M_{r-3} + M_{s+1}M_{r-4},
\]

(2.24)

with the special cases

\[
M_{r+s} = M_{s+2}M_{r-1} + (M_{s+1} + M_s + M_{s-1})M_{r-2} + (M_{s+1} + M_s)M_{r-3} + M_{s+1}M_{r-4}
\]

(2.25)

and

\[
R_{r+s} = M_{s+2}R_{r-1} + (M_{s+1} + M_s + M_{s-1})R_{r-2} + (M_{s+1} + M_s)R_{r-3} + M_{s+1}R_{r-4}
\]

(2.26)

Choosing \(n = 4 \) in the identity of Corollary (2) with \(W = R, U = M \) gives

\[
R_{r+s} = R_{s+2}M_{r-1} + (R_{s+1} + R_s + R_{s-1})M_{r-2} + (R_{s+1} + R_s)M_{r-3} + R_{s+1}M_{r-4}.
\]

(2.27)

Setting \(s = -9, s = -5 \) and \(s = -4 \), respectively, in (2.27), yields, in each case, a four-term relation expressing a Tetranacci-Lucas number in terms of Tetranacci numbers:

\[
R_{r-9} = -M_{r-1} - 4M_{r-3} + 15M_{r-4},
\]

(2.28)

\[
R_{r-5} = -M_{r-1} + M_{r-3} + 7M_{r-4},
\]

(2.29)

\[
R_{r-4} = -M_{r-1} + 6M_{r-3} - M_{r-4}.
\]

(2.30)

3 Summation identities

Lemma 1. Let

\[
Z_r = \sum_{j=1}^{\lceil n/2 \rceil} W_{r-2j+1} = \begin{cases} W_{r-1} + W_{r-3} + W_{r-5} + \cdots + W_{r-n+1}, & \text{if } n \text{ is even;} \\ W_{r-1} + W_{r-3} + W_{r-5} + \cdots + W_{r-n}, & \text{if } n \text{ is odd}, \end{cases}
\]

where \(\lceil q \rceil \) is the smallest integer greater than \(q \). Then

\[
Z_r + Z_{r-1} = W_r + (n \mod 2)W_{r-n-1}
\]

\[
= \begin{cases} W_r, & \text{if } n \text{ is even;} \\ 2W_{r-1}, & \text{if } n \text{ is odd}. \end{cases}
\]

(3.1)

Lemma 2 ([1, Lemma 1]). Let \(\{X_r\} \) and \(\{Y_r\} \) be any two sequences such that \(X_r \) and \(Y_r, \)
\(r \in \mathbb{Z}, \) are connected by a three-term recurrence relation \(X_r = f_1X_{r-a} + f_2Y_{r-b}, \) where \(f_1 \)
and \(f_2 \) are arbitrary non-vanishing complex functions, not dependent on \(r, \) and \(a \) and \(b \) are integers. Then,

\[
f_2 \sum_{j=0}^{k} \frac{Y_{r-ka-b+aj}}{f_1^j} = \frac{X_r}{f_1^k} - f_1X_{r-(k+1)a},
\]

for \(k \) a non-negative integer.
The next theorem follows directly from Lemma 1 and Lemma 2.

Theorem 3. The following identity holds, where \(r \) and \(k \) are integers:

\[
\sum_{j=0}^{k} (-1)^j W_{r-k+j} + n \mod 2 \sum_{j=0}^{k} (-1)^j W_{r-k-n-1+j} = (-1)^k \sum_{j=1}^{\lceil n/2 \rceil} W_{r-2j+1} + \sum_{j=1}^{\lceil n/2 \rceil} W_{r-2j-k}.
\]

In particular,

\[
\sum_{j=0}^{k} (-1)^j U_{r-k+j} + n \mod 2 \sum_{j=0}^{k} (-1)^j U_{r-k-1+j} = (-1)^k \sum_{j=1}^{\lceil n/2 \rceil} U_{r-2j+1} + \sum_{j=1}^{\lceil n/2 \rceil} U_{r-2j-k} \quad (3.2)
\]

and

\[
\sum_{j=0}^{k} (-1)^j V_{r-k+j} + n \mod 2 \sum_{j=0}^{k} (-1)^j V_{r-k-1+j} = (-1)^k \sum_{j=1}^{\lceil n/2 \rceil} V_{r-2j+1} + \sum_{j=1}^{\lceil n/2 \rceil} V_{r-2j-k} \quad (3.3)
\]

Thus, if \(n \) is even, we have

\[
\sum_{j=0}^{k} (-1)^j W_{r-k+j} = (-1)^k \sum_{j=1}^{n/2} W_{r-2j+1} + \sum_{j=1}^{n/2} W_{r-2j-k} \quad (3.4)
\]

while if \(n \) is odd, we have

\[
2 \sum_{j=0}^{k} (-1)^j W_{r-k+j-1} = (-1)^k \sum_{j=1}^{(n+1)/2} W_{r-2j+1} + \sum_{j=1}^{(n+1)/2} W_{r-2j-k} \quad (3.5)
\]

We give explicit examples with small \(n \) values.

\[
\sum_{j=0}^{k} (-1)^j F_{r-k+j} = (-1)^k F_{r-1} + F_{r-k-2} \quad (3.6)
\]

\[
2 \sum_{j=0}^{k} (-1)^j T_{r-k-1+j} = (-1)^k (T_{r-1} + T_{r-3}) + T_{r-k-2} + T_{r-k-4} \quad (3.7)
\]

\[
\sum_{j=0}^{k} (-1)^j M_{r-k+j} = (-1)^k (M_{r-1} + M_{r-3}) + M_{r-k-2} + M_{r-k-4} \quad (3.8)
\]
\[2 \sum_{j=0}^{k} (-1)^j P_{r-k-1+j} = (-1)^k (P_{r-1} + P_{r-3} + P_{r-5}) + P_{r-k-2} + P_{r-k-4} + P_{r-k-6}. \] (3.9)

In particular,
\[\sum_{j=0}^{k} (-1)^j F_j = (-1)^k F_{k-1} + F_{-2}, \] (3.10)
\[2 \sum_{j=0}^{k} (-1)^j T_j = (-1)^k (T_k + T_{k-2}) + T_{-1} + T_{-3}, \] (3.11)
\[\sum_{j=0}^{k} (-1)^j M_j = (-1)^k (M_{k-1} + M_{k-3}) + M_{-2} + M_{-4}, \] (3.12)
\[2 \sum_{j=0}^{k} (-1)^j P_j = (-1)^k (P_k + P_{k-2} + P_{r-4}) + P_{-1} + P_{-3} + P_{-5}. \] (3.13)

Lemma 3 ([1, Lemma 2]). Let \(\{X_r\} \) be any arbitrary sequence, where \(X_r, \ r \in \mathbb{Z} \), satisfies a three-term recurrence relation \(X_r = f_1 X_{r-a} + f_2 X_{r-b} \), where \(f_1 \) and \(f_2 \) are arbitrary non-vanishing complex functions, not dependent on \(r \), and \(a \) and \(b \) are integers. Then, the following identities hold for integer \(k \):
\[f_2 \sum_{j=0}^{k} \frac{X_{r-ka-b+aj}}{f_1^j} = \frac{X_r}{f_1^k} - f_1 X_{r-(k+1)a}, \] (3.14)
\[f_1 \sum_{j=0}^{k} \frac{X_{r-kb+a+bj}}{f_2^j} = \frac{X_r}{f_2^k} - f_2 X_{r-(k+1)b} \] (3.15)
and
\[\sum_{j=0}^{k} \frac{X_{r-(a-b)k+b+(a-b)j}}{(-f_1/f_2)^j} = \frac{f_2 X_r}{(-f_1/f_2)^k} + f_1 X_{r-(k+1)(a-b)}. \] (3.16)

The next theorem is a consequence of identity (1.18) and Lemma 3.

Theorem 4. The following identities hold, where \(r \) and \(k \) are integers:
\[\sum_{j=0}^{k} 2^{k-j} W_{r-k-n-1+j} = 2^{k+1} W_{r-k-1} - W_r, \] (3.17)
\[2 \sum_{j=0}^{k} (-1)^j W_{r-nk-k-1+(n+1)j} = (-1)^k W_r + W_{r-(k+1)(n+1)} \] (3.18)
and
\[\sum_{j=0}^{k} 2^j W_{r-nk+1+nj} = 2^{k+1} W_r - W_{r-(k+1)n}. \] (3.19)
In particular,
\begin{equation}
\sum_{j=0}^{k} 2^{k-j} W_j = 2^{k+1} W_n - W_{k+n+1},
\end{equation}
(3.20)
\begin{equation}
2 \sum_{j=0}^{k} (-1)^j W_{(n+1)j} = (-1)^k W_{k(n+1)+1} + 2W_0 - W_1
\end{equation}
(3.21)
and
\begin{equation}
\sum_{j=0}^{k} 2^j W_{nj} = 2^{k+1} W_{kn-1} - 4W_{n-1} + 2W_n + W_0.
\end{equation}
(3.22)

We now illustrate Theorem 4 for small values of \(n \).

3.1 Summation identities involving the generalized Fibonacci numbers, \((n = 2)\)
\begin{equation}
\sum_{j=0}^{k} 2^{k-j} F_{r-k-3+j} = 2^{k+1} F_{r-k-1} - F_r,
\end{equation}
(3.23)
\begin{equation}
2 \sum_{j=0}^{k} (-1)^j F_{r-2k-1+3j} = (-1)^k F_r + F_{r-3(k+1)}
\end{equation}
(3.24)
and
\begin{equation}
\sum_{j=0}^{k} 2^j F_{r-2k+1+2j} = 2^{k+1} F_r - F_{r-2(k+1)}.
\end{equation}
(3.25)

In particular,
\begin{equation}
\sum_{j=0}^{k} 2^{k-j} j = 2^{k+1} F_2 - F_{k+3},
\end{equation}
(3.26)
\begin{equation}
2 \sum_{j=0}^{k} (-1)^j F_{3j} = (-1)^k F_{3k+1} + 2F_0 - F_1
\end{equation}
(3.27)
and
\begin{equation}
\sum_{j=0}^{k} 2^j F_{2j} = 2^{k+1} F_{2k-1} - 4F_1 + 2F_2 + F_0.
\end{equation}
(3.28)

3.2 Summation identities involving the generalized Tribonacci numbers, \((n = 3)\)
\begin{equation}
\sum_{j=0}^{k} 2^{k-j} T_{r-k-4+j} = 2^{k+1} T_{r-k-1} - T_r,
\end{equation}
(3.29)
\begin{equation}
2 \sum_{j=0}^{k} (-1)^j T_{r-4k-1+4j} = (-1)^k T_r + T_{r-4(k+1)}
\end{equation}
(3.30)
and
\[\sum_{j=0}^{k} 2^j T_{r-3k+1+3j} = 2^{k+1} T_r - T_{r-3(k+1)}. \]
(3.31)

In particular,
\[\sum_{j=0}^{k} 2^j T_j = 2^{k+1} T_3 - T_{k+4}, \]
(3.32)

\[2 \sum_{j=0}^{k} (-1)^j T_{4j} = (-1)^k T_{4k+1} + 2T_0 - T_1 \]
(3.33)

and
\[\sum_{j=0}^{k} 2^j T_{3j} = 2^{k+1} T_{3k-1} - 4T_2 + 2T_3 + T_0. \]
(3.34)

3.3 Summation identities involving the generalized Tetranacci numbers, \((n = 4)\)

\[\sum_{j=0}^{k} 2^{k-j} M_{r-k-5+j} = 2^{k+1} M_{r-k-1} - M_r, \]
(3.35)

\[2 \sum_{j=0}^{k} (-1)^j M_{r-4k-k-1+5j} = (-1)^k M_r + M_{r-5(k+1)} \]
(3.36)

and
\[\sum_{j=0}^{k} 2^j M_{r-4k+1+4j} = 2^{k+1} M_r - M_{r-4(k+1)}. \]
(3.37)

In particular,
\[\sum_{j=0}^{k} 2^{k-j} M_j = 2^{k+1} M_4 - M_{k+5}, \]
(3.38)

\[2 \sum_{j=0}^{k} (-1)^j M_{5j} = (-1)^k M_{5k+1} + 2M_0 - M_1 \]
(3.39)

and
\[\sum_{j=0}^{k} 2^j M_{4j} = 2^{k+1} M_{4k-1} - 4M_3 + 2M_4 + M_0. \]
(3.40)

3.4 Further summation identities involving the generalized Fibonacci numbers

In addition to the summation identities (3.23) – (3.28), we also have the results stated in the next theorem, on account of identity (2.14) and Lemma 3.
Theorem 5. The following identities hold, where \(r \) and \(s \) are integers:

\[
F_s \sum_{j=0}^{k} F_{s+1}^{k-j} F_{r-1+s+j} = F_{r+s(k+1)} - F_{s+1}^{k+1} F_{r}, \quad (3.41)
\]

\[
\sum_{j=0}^{k} (-1)^j F_s^{k-j} F_{s+1}^{j} F_{r-k+s+j} = (-1)^k F_{s+1}^{k+1} F_{r} + F_{s}^{k+1} F_{r-k-1} \quad (3.42)
\]

and

\[
F_s \sum_{j=0}^{k} F_{s+1}^{k-j} F_{r-s-k+s+1+j} = F_{r} - F_{s+1}^{k+1} F_{r-(k+1)s}. \quad (3.43)
\]

In particular,

\[
F_s \sum_{j=0}^{k} F_{s+1}^{k-j} F_{s}^{j} = F_{s+1}^{k+1} F_{s} - F_{s+1}^{k+1} F_{1}. \quad (3.44)
\]

\[
\sum_{j=0}^{k} (-1)^j F_s^{k-j} F_{s+1}^{j} F_{j} = (-1)^k F_{s+1}^{k+1} F_{k-s} + F_{s}^{k+1} F_{-s-1} \quad (3.45)
\]

and

\[
F_s \sum_{j=0}^{k} F_{s+1}^{k-j} F_{s}^{j} = F_{s+1}^{k+1} F_{-1}. \quad (3.46)
\]

When identity (2.14) is written as

\[
F_{s-1} F_r = -F_s F_{r+1} + F_{r+s} \quad (3.47)
\]

and the identifications \(X = F \) and \(Y = F \) are made in Lemma 2 we have the result stated in the next theorem.

Theorem 6. The following identity holds where \(r, s \) and \(k \) are integers:

\[
\sum_{j=0}^{k} (-1)^j F_{s-1}^{k-j} F_{s}^{j} F_{r+s+j} = F_r F_{s+1}^{k+1} - (-1)^{k+1} F_{r+k+1} F_{s}^{k+1}. \quad (3.48)
\]

In particular,

\[
\sum_{j=0}^{k} (-1)^j F_{s-1}^{k-j} F_{s}^{j} F_{j} = (-1)^{s-1} F_s F_{s-1}^{k+1} - (-1)^{k-1} F_{k-s+1} F_{s}^{k+1}. \quad (3.49)
\]

3.5 Further summation identities involving the generalized Tribonacci numbers

The next theorem, expressing a summation involving Tribonacci-Lucas numbers in terms of Tribonacci numbers, follows from identity (2.23) and Lemma 2.

Theorem 7. The following identity holds, where \(r \) and \(k \) are integers:

\[
\sum_{j=0}^{k} 5^{k-j} K_{r-2k-3+2j} = T_r - 5^{k+1} T_{r-2k-2}. \quad (3.50)
\]
In particular,
\[\sum_{j=0}^{k} 5^{k-j} K_{2j} = T_{2k+3} - 5^{k+1}. \]
(3.50)

Further summation identities are obtained from identity (2.20) and Lemma 3. These are presented in the next theorem.

Theorem 8. The following identities hold, where \(r \) and \(k \) are integers:

\[103 \sum_{j=0}^{k} 56^j \mathcal{T}_{r+16+17j} = 56^{k+1} \mathcal{T}_{r+17k+17} - \mathcal{T}_r, \]
(3.51)

\[56 \sum_{j=0}^{k} (-1)^j 103^j \mathcal{T}_{r+17+16j} = \mathcal{T}_r - (-103)^{k+1} \mathcal{T}_{r+16k+16}, \]
(3.52)

and

\[\sum_{j=0}^{k} 103^{k-j} 56^j \mathcal{T}_{r-16+j} = -103^{k+1} \mathcal{T}_r + 56^{k+1} \mathcal{T}_{r+k+1}. \]
(3.53)

In particular,

\[103 \sum_{j=0}^{k} 56^j \mathcal{T}_{17j} = 56^{k+1} \mathcal{T}_{17k+1} - \mathcal{T}_{-16}, \]
(3.54)

\[56 \sum_{j=0}^{k} (-1)^j 103^j \mathcal{T}_{16j} = \mathcal{T}_{-17} - (-103)^{k+1} \mathcal{T}_{16k-1}, \]
(3.55)

and

\[\sum_{j=0}^{k} 103^{k-j} 56^j \mathcal{T}_j = -103^{k+1} \mathcal{T}_{16} + 56^{k+1} \mathcal{T}_{k+17}. \]
(3.56)

4 Binomial summation identities

Lemma 4 ([1, Lemma 3]). Let \(\{X_r\} \) be any arbitrary sequence. Let \(X_r, r \in \mathbb{Z} \), satisfy a three-term recurrence relation \(X_r = f_1 X_{r-a} + f_2 X_{r-b} \), where \(f_1 \) and \(f_2 \) are non-vanishing complex functions, not dependent on \(r \), and \(a \) and \(b \) are integers. Then,

\[\sum_{j=0}^{k} \binom{k}{j} \left(\frac{f_1}{f_2} \right)^j X_{r-(b-a)j} = \frac{X_r}{f_2^k}, \]
(4.1)

\[\sum_{j=0}^{k} \binom{k}{j} \frac{X_{r+(a-b)k+bj}}{(-f_2)^j} = \left(\frac{-f_1}{f_2} \right)^k X_r, \]
(4.2)

and

\[\sum_{j=0}^{k} \binom{k}{j} \frac{X_{r+(b-a)k+a_j}}{(-f_1)^j} = \left(\frac{-f_2}{f_1} \right)^k X_r, \]
(4.3)

for \(k \) a non-negative integer.
The next theorem is a consequence of identity (1.18) and Lemma 4.

Theorem 9. The following identities hold, where k is any non-negative integer and r is any integer:

\[
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 2^j W_{r-(n+1)k+nj} = (-1)^k W_r ,
\]

\[
\sum_{j=0}^{k} \binom{k}{j} W_{r-nk+(n+1)j} = 2^k W_r
\]

and

\[
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 2^{k-j} W_{r+nk+j} = W_r .
\]

In particular,

\[
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 2^j W_{nj} = (-1)^k W_{(n+1)k} ,
\]

\[
\sum_{j=0}^{k} \binom{k}{j} W_{(n+1)j} = 2^k W_{nk}
\]

and

\[
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 2^{k-j} W_j = W_{-nk} .
\]

We remark that identity (4.9) proves Conjecture 2 (equation (15)) of Hisert [5].

4.1 Further binomial summation identities involving generalized Fibonacci numbers

In addition to the summation identities obtained by setting $n = 2$ in identities (4.4) – (4.9) of Theorem 9, we also have the results stated in the next theorem, on account of identity (2.14) and Lemma 4.

Theorem 10. The following identities hold, where k is any non-negative integer and r and s are any integers:

\[
\sum_{j=0}^{k} (-1)^j \binom{k}{j} F_{s-1}^{k-j} F_{r-k+s+j} = (-1)^k F_s^k F_r ,
\]

\[
\sum_{j=0}^{k} \binom{k}{j} F_{s-1}^{k-j} F_s^j F_{r-sk+j} = F_r
\]

and

\[
\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} F_{s+1}^{k-j} F_{r+k+s+j} = F_s^k F_r .
\]
In particular,
\begin{equation}
\sum_{j=0}^{k} (-1)^j \binom{k}{j} F_{s+1-j}^k F_{s+j} = (-1)^k F_{s}^k, \tag{4.13}
\end{equation}
\begin{equation}
\sum_{j=0}^{k} \binom{k}{j} F_{s+1-j}^k F_{s-j} = F_{s}^k, \tag{4.14}
\end{equation}
and
\begin{equation}
\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} F_{s+1-j}^k F_{s+j} = F_{s}^k. \tag{4.15}
\end{equation}

4.2 Further binomial summation identities involving generalized Tribonacci numbers

In addition to the summation identities obtained by setting \(n = 3 \) in identities (4.4) – (4.9) of Theorem 9, we also have the results stated in the next theorem, on account of identity (2.20) and Lemma 4.

Theorem 11. The following identities hold, where \(k \) and \(r \) are integers:
\begin{equation}
\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} 103^{k-j} 56^j T_{r+16k+j} = T_r, \tag{4.16}
\end{equation}
\begin{equation}
\sum_{j=0}^{k} 103^j \binom{k}{j} T_{r-17k+16j} = 56^k T_r \tag{4.17}
\end{equation}
and
\begin{equation}
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 56^j T_{r-16k+17j} = (-103)^k T_r. \tag{4.18}
\end{equation}

In particular,
\begin{equation}
\sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} 103^{k-j} 56^j T_{j} = T_{-16k}, \tag{4.19}
\end{equation}
\begin{equation}
\sum_{j=0}^{k} 103^j \binom{k}{j} T_{16j} = 56^k T_{17k} \tag{4.20}
\end{equation}
and
\begin{equation}
\sum_{j=0}^{k} (-1)^j \binom{k}{j} 56^j T_{17j} = (-103)^k T_{16k}. \tag{4.21}
\end{equation}

5 Double binomial summation identities

Lemma 5 ([2, Lemma 5]). Let \(\{X_r\} \) be any arbitrary sequence, \(X_r \) satisfying a four-term recurrence relation \(X_r = f_1 X_{r-a} + f_2 X_{r-b} + f_3 X_{r-c} \), where \(f_1 \), \(f_2 \) and \(f_3 \) are arbitrary nonvanishing functions and \(a \), \(b \) and \(c \) are integers. Then, the following identities hold:
\begin{equation}
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_2}{f_3} \right)^j \left(\frac{f_1}{f_2} \right)^s X_{r-ck+(c-b)j+(b-a)s} = \frac{X_r}{f_3^k}, \tag{5.1}
\end{equation}
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_3}{f_2} \right)^j \left(\frac{f_1}{f_3} \right)^s \left(\frac{f_1}{f_2} \right)^{(c-a)s} = \frac{X_r f_2^k}{f_2^k}, \tag{5.2}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_3}{f_1} \right)^j \left(\frac{f_2}{f_3} \right)^s \left(\frac{f_1}{f_2} \right)^{(c-b)s} = \frac{X_r f_1^k}{f_1^k}, \tag{5.3}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_2}{f_3} \right)^j \left(\frac{f_1}{f_2} \right)^s \left(\frac{f_1}{f_3} \right)^{(c-a)s} = \frac{X_r f_3^k}{f_3^k}, \tag{5.4}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_3}{f_1} \right)^j \left(\frac{f_1}{f_3} \right)^s \left(\frac{f_1}{f_2} \right)^{(c-b)s} = \frac{X_r f_2^k}{f_2^k}, \tag{5.5}
\]
\[
\] and
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} \binom{k}{j} \binom{j}{s} \left(\frac{f_3}{f_2} \right)^j \left(\frac{f_1}{f_3} \right)^s \left(\frac{f_1}{f_2} \right)^{(b-a)s} = \frac{X_r f_3^k}{f_3^k}. \tag{5.6}
\]
Evaluating identities (3.17)–(3.19) at \(k = 1 \) produces the following recurrence relations:
\[
W_r = 4W_{r-2} - W_{r-n-1} - 2W_{r-n-2}, \tag{5.7}
\]
\[
W_r = 2W_{r-1} - 2W_{r-n-2} + W_{r-2n-2} \tag{5.8}
\]
and
\[
2W_r = 4W_{r-1} - W_{r-n} - W_{r-2n-1}. \tag{5.9}
\]
Evaluating identities (4.4)–(4.6) at \(k = 2 \) gives the following recurrence relations:
\[
W_r = 4W_{r-2} - 4W_{r-n-2} + W_{r-2n-2} \tag{5.10}
\]
\[
W_r = 4W_{r-2} - 2W_{r-n-1} - W_{r-2n-2} \tag{5.11}
\]
and
\[
W_r = 4W_{r-1} - 4W_{r-2} + W_{r-2n-2}. \tag{5.12}
\]
Each of identities (5.7)–(5.12) has six double binomial summation identities associated with it. In the next theorem we give the double binomial summation identities resulting from identity (5.12).

Theorem 12. The following identities hold for nonnegative integer \(k \) and any integer \(r \):
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-1)^{j+s} \binom{k}{j} \binom{j}{s} 4^j W_{r-(2n+2)k+2nj+s} = W_r, \tag{5.13}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-4)^{k-j} \binom{k}{j} \binom{j}{s} 4^s W_{r-2k-2nj+(2n+1)s} = W_r, \tag{5.14}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-1)^{s} \binom{k}{j} \binom{j}{s} 4^{k-j+s} W_{r-(2n+1)j+2ns} = W_r, \tag{5.15}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-1)^{j-k} \binom{k}{j} \binom{j}{s} 4^{j-k-s} W_{r-(2n+1)k+2nj+2s} = W_r, \tag{5.16}
\]
\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-1)^s \binom{k}{j} \binom{j}{s} 4^{j-s-k} W_{r-2nk+s} = W_r
\]
(5.17)

and

\[
\sum_{j=0}^{k} \sum_{s=0}^{j} (-1)^{j+s} \binom{k}{j} \binom{j}{s} 4^{k-s} W_{r+2nk+j+s} = W_r .
\]
(5.18)

6 Partial sums and generating function

Lemma 6 ([2, Lemma 2] Partial sum of a n-term sequence). Let \(\{X_j\}\) be any arbitrary sequence, where \(X_j, j \in \mathbb{Z}\), satisfies a n-term recurrence relation \(X_j = f_1 X_{j-c_1} + f_2 X_{j-c_2} + \cdots + f_n X_{j-c_n} = \sum_{m=1}^{n} f_m X_{j-c_m}\), where \(f_1, f_2, \ldots, f_n\) are arbitrary non-vanishing complex functions, not dependent on \(j\), and \(c_1, c_2, \ldots, c_n\) are fixed integers. Then, the following summation identity holds for arbitrary \(x\) and non-negative integer \(k\):

\[
\sum_{j=0}^{k} x^j X_j = \frac{\sum_{m=1}^{n} \left\{ x^c m f_m \left(\sum_{j=1}^{c_m} x^{-j} X_j - \sum_{j=k-c_m+1}^{k} x^j X_j \right) \right\}}{1 - \sum_{m=1}^{\sum} x^c m f_m} .
\]

We note that a special case of Lemma 6 was proved in [11].

The next theorem follows directly from Lemma 6 on account of identity (1.18).

Theorem 13. The following identity holds for \(k\) an integer and any \(x\):

\[
(1 - 2x + x^{n+1}) \sum_{j=0}^{k} x^j W_j = 2W_{-1} - 2x^{k+1} W_k + x^{n+1} \sum_{j=k-n}^{k} x^j W_j - x^{n+1} \sum_{j=1}^{n+1} x^{-j} W_{-j} .
\]

We now work out the special cases of the identity of Theorem 13 for the \(n\)-step Fibonacci and \(n\)-step Lucas numbers.

Now,

\[
\sum_{j=1}^{n+1} x^{-j} U_{-j} = x^{-1} U_{-1} + x^{-2} U_{-2} + \cdots + x^{-n+2} U_{-n+2}
\]

\[+ x^{-n+1} U_{-n+1} + x^{-n} U_{-n} + x^{-n-1} U_{-n-1} .
\]
(6.1)

All except the last three terms on the right hand side of the above expression vanish on account of the initial terms as given in equation (1.2). Thus,

\[
\sum_{j=1}^{n+1} x^{-j} U_{-j} = x^{-n+1} U_{-n+1} + x^{-n} U_{-n} + x^{-n-1} U_{-n-1}
\]

\[= x^{-n+1} - x^{-n} + 2 \delta_{n,2} x^{-n-1} , \quad \text{by (1.2) and (1.5)} .
\]

Using (6.2) in the identity of Theorem 13 with \(W = U\) we have

\[
(1 - 2x + x^{n+1}) \sum_{j=0}^{k} x^j U_j = x - x^2 - 2x^{k+1} U_k + x^{n+1} \sum_{j=k-n}^{k} x^j U_j .
\]
(6.3)
Next, we find
\[\sum_{j=1}^{n+1} x^{-j}V_{-j} = x^{-1}V_{-1} + x^{-2}V_{-2} + \cdots + x^{-n+1}V_{-n+1} + x^{-n}V_{-n} + x^{-n+1}V_{-n-1} \]
\[= -(x^{-1} + x^{-2} + \cdots + x^{-n+1}) + (2n - 1)x^{-n} - (n + 2)x^{-n-1}; \]
so that,
\[x^{n+1} \sum_{j=1}^{n+1} x^{-j}V_{-j} = -(x^n + x^{n-1} + \cdots + x^3 + x^2) + (2n - 1)x - (n + 2) \]
\[= -\frac{x^{n+1} - x^2}{x - 1} + (2n - 1)x - (n + 2). \]

Putting (6.5) in the identity of Theorem 13 with \(W = V \) we have
\[(1 - x)(1 - 2x + x^{n+1}) \sum_{j=0}^{k} x^jV_j = n - (3n - 1)x + 2nx^2 - x^{n+1} \]
\[- (1 - x)x^{k+1}2V_k + (1 - x)x^{n+1} \sum_{j=k-n}^{k} x^jV_j. \]

Note that the identity of Theorem 13 cannot be used directly to compute \(\sum_{j=0}^{k} W_j \) because
\[\sum_{j=k-n}^{k} W_j = \sum_{j=0}^{n} W_{j+k-n} = \sum_{j=0}^{n} W_{k-j} = W_k + \sum_{j=1}^{n} W_{k-j} = 2W_k \]
and
\[\sum_{j=1}^{n+1} W_{-j} = \sum_{j=1}^{n} W_{-j} + W_{-n-1} = W_0 + W_{-n-1} = 2W_{-1}; \]
so that both sides of the identity of Theorem 13 evaluates to zero at \(x = 1 \). Nevertheless, the said sum can be evaluated if we divide both sides of the identity by \(1 - 2x + x^{n+1} \) and then use L'Hospital’s rule to take the limit at \(x = 1 \), giving
\[(n - 1) \sum_{j=0}^{k} W_j = 2(n - k)W_k - 2(n + 1)W_{-1} + \sum_{j=k-n}^{k} jW_j + \sum_{j=1}^{n+1} jW_{-j}. \]

Since
\[\sum_{j=1}^{n+1} jU_{-j} = \sum_{j=1}^{n-2} jU_{-j} + (n - 1)U_{-n+1} + nU_{-n} + (n + 1)U_{-n-1} \]
\[= 2(n + 1)\delta_{n,2} - 1; \]
and
\[\sum_{j=1}^{n+1} jV_{-j} = \sum_{j=1}^{n-1} jV_{-j} + nV_{-n} + (n + 1)V_{-n-1} \]
\[= -\sum_{j=1}^{n-1} j + nV_{-n} + (n + 1)V_{-n-1} \]
\[= \frac{n^2}{2} - \frac{7n}{2} - 2, \]
we obtain the following results for the sum of the first \(k + 1 \) terms of the \(n \)-step Fibonacci numbers and the first \(k + 1 \) terms of the \(n \)-step Lucas numbers:

\[
(n - 1) \sum_{j=0}^{k} U_j = -1 + 2(n - k)U_k + \sum_{j=k-n}^{k} jU_j \tag{6.12}
\]

and

\[
2(n - 1) \sum_{j=0}^{k} V_j = n(n - 3) + 4(n - k)V_k + 2 \sum_{j=k-n}^{k} jV_j . \tag{6.13}
\]

Lemma 7 ([2, Lemma 3](Generating function). Under the conditions of Lemma 6, if additionally \(x^kX_k \) vanishes in the limit as \(k \) approaches infinity, then

\[
G_X(x) = \sum_{j=0}^{\infty} x^jX_j = \frac{\sum_{m=1}^{n} \left(x^{c_m}f_m \sum_{j=1}^{c_m} x^{-j}X_{-j} \right)}{1 - \sum_{m=1}^{n} x^{c_m}f_m},
\]

so that \(G_X(x) \) is a generating function for the sequence \(\{X_j\} \).

Theorem 14. The generalized \(n \)-step Fibonacci numbers have the following generating function:

\[
G_W(x; n) = \sum_{j=0}^{\infty} x^jW_j = \frac{2W_{-1} - x^{n+1} \sum_{j=1}^{n+1} x^{-j}W_{-j}}{1 - 2x + x^{n+1}} .
\]

In particular, from (6.3) and (6.6), we see that the \(n \)-step Fibonacci and \(n \)-step Lucas numbers are generated, respectively, by

\[
G_U(x; n) = \sum_{j=0}^{\infty} x^jU_j = \frac{x(1 - x)}{1 - 2x + x^{n+1}} \tag{6.14}
\]

and

\[
G_V(x; n) = \sum_{j=0}^{\infty} x^jV_j = \frac{n - (3n - 1)x + 2nx^2 - x^{n+1}}{(1 - x)(1 - 2x + x^{n+1})} . \tag{6.15}
\]

References

[1] K. Adegoke, Weighted sums of some second-order sequences, *arXiv:1803.09054 [math.NT]* (2018).

[2] K. Adegoke, Weighted Tribonacci sums, *arXiv:1804.06449 [math.CA]* (2018).

[3] J. Feng, More identities on the Tribonacci numbers, *Ars Combinatoria C* (2011), 73–78.

[4] H. Gabai, Generalized Fibonacci \(k \)-sequences, *The Fibonacci Quarterly* 8:1 (1970), 31–38.

[5] G. A. Hisert, Unchained \(r \)-sequences and a generalized Cassini formula, *Integers* 15 (2015), 1–9, Article #A40.
[6] F. T. Howard and C. Cooper, Some identities for r-Fibonacci numbers, *The Fibonacci Quarterly* 49:3 (2011), 231–242.

[7] E. P. Miles and Jr., Generalized Fibonacci numbers and associated matrices, *The American Mathematical Monthly* 67:8 (1960), 745–752.

[8] T. D. Noe and J. V. Post, Primes in Fibonacci n-step and Lucas n-step sequences, *Journal of Integer Sequences* 8 (2005), Article 05.4.4.

[9] D. V. Shah, Some Tribonacci identities, *Mathematics Today* 27 (2011), 1–9.

[10] S. Vajda, *Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications*, Dover Press, (2008)

[11] D. Zeitlin, On the sums $\sum_{k=0}^{n} k^p$ and $\sum_{k=0}^{n} (-1)^k k^p$, *Proceedings of the American Mathematical Society* 2 (1964), 105–107.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.

Keywords: n-step Fibonacci number, n-step Lucas number, Fibonacci number, Tribonacci number, Tetranacci number, Pentanacci number, summation identity, recurrence relation, generating function, partial sum.