Negative pressure wound therapy versus conventional wound care in cancer surgical wounds: A meta-analysis of observational studies and randomised controlled trials

Indri Lakhsmi Putri1,2 | Lavonia Berlina Adzalika2 | Rachmaniar Pramanasari2 | Citrawati Dyah Kencono Wungu3

1Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
2Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
3Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

Correspondence
Indri Lakhsmi Putri, MD, PhD, Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University Surabaya, East Java, Indonesia.
Email: indrilakhsmiputri@fk.unair.ac.id

Abstract
The application of negative pressure wound therapy (NPWT) in cancer surgical wounds is still controversial, despite its promising usage, because of the risks of increased tumorigenesis and metastasis. This study aimed to review the risks and benefits of NPWT in surgical wounds with the underlying malignant disease compared with conventional wound care (CWC). The first outcome was wound complications, divided into surgical site infection (SSI), seroma, hematoma, and wound dehiscence. The secondary outcome was hospital readmission. We performed a separate meta-analysis of observational studies and randomised controlled trials (RCTs) with CI 95%. Thirteen observational studies with 1923 patients and seven RCTs with 1091 patients were included. NPWT group showed significant decrease in the risk of SSI (RR = 0.45) and seroma (RR = 0.61) in observational studies with P value <0.05, as well as RCTs but were not significant (RR = 0.88 and RR = 0.68). Wound dehiscence (RR = 0.74 and RR = 1.15) and hospital readmission (RR = 0.90 and RR = 0.62) showed lower risks in NPWT group but were not significant. Hematoma (RR = 1.08 and RR = 0.87) showed no significant difference. NPWT is not contraindicated in cancer surgical wounds and can be considered a beneficial palliative treatment to promote wound healing.

KEYWORDS
cancer wound, malignant wound, medical care, negative pressure wound therapy, vacuum-assisted closure

Key Messages
• negative pressure wound therapy (NPWT) reduces postoperative complications of various surgeries, but its application in cancer surgical wounds is still controversial
• a meta-analysis of observational studies and RCTs was conducted to review postoperative wound complications and hospital readmission

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. International Wound Journal published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd.
1 INTRODUCTION

One of the leading causes of death globally is malignancy, which is a wound associated with cancer. According to a 2019 research by the World Health Organization (WHO), cancer ranks first and second as the foremost cause of death in 112 of 183 countries and fourth in 23 others. Most patients with cancer have a combination of treatment, such as surgery with chemotherapy and/or radiation therapy. However, despite the disease itself, chemotherapy and radiation therapy can delay postoperative wound healing. Wounds that are slow to heal can turn into chronic wounds, which can easily increase complications including seroma, wound dehiscence, infection, hematoma, or other problems that can reduce the quality of life.

Negative pressure wound therapy (NPWT), also recognised as vacuum-assisted closure (VAC), is a system used to close large and complicated wounds by applying sub-atmospheric pressure. The mechanism of NPWT involves wound contraction, extracellular fluid removal, and wound environment stabilisation, which results in a decrease of tissue edema and bacterial colonisation, increase in blood flow, angiogenesis, granulation formation, and faster wound healing. NPWT decreases the biological destruction caused by local harmful substances to the body. Meanwhile, the continuous negative pressure significantly increases the flow rate of local microcirculation and the diameter of microvessels. This technique is applied to promote the formation of granulation tissue in open wounds, clean surgical incisions, and cover skin grafts. NPWT gave advantages by reducing the wound healing time and the risk of surgical complications, including surgical site infection (SSI), seroma, haematoma, and wound dehiscence.

Despite its promising clinical usage, previously, NPWT was an absolute contraindication for wounds with underlying malignant diseases because of risks of increased tumorigenesis and metastasis. This belief is derived from the study of normal tissues, and to the authors’ knowledge, there has been no literature that directly supports the hypothesis that NPWT regulates tumour progression. However, with the development of new research, regarding its benefits for the palliative treatment of malignant wounds, the NPWT use in cancer wounds has changed from absolute contraindications to relative contraindications. In patients with malignancy, the normal wound healing process is often interrupted, influenced by both the malignancy itself and the treatment’s course, which resulted in consideration of NPWT use.

Presently, there is no substantial evidence that prevents the use of NPWT on wounds with underlying malignant diseases. Therefore, we aim to conduct a meta-analysis assessing the risks and benefits of NPWT in surgical wounds with the underlying malignant disease compared with conventional wound care (CWC); thus, NPWT can be considered as a beneficial palliative treatment to promote wound healing.

2 MATERIALS AND METHODS

2.1 Study selection

Three reviewers (L.B. Adzalika, R. Pramanasari, IL. Putri) searched for observational studies and randomised controlled trials (RCTs) that compared NPWT with CWC for wounds with the underlying malignant diseases and compared postoperative wound complications after interventions between the two groups. Only human studies reported in English with full-text availability were included. Any disagreement was solved by negotiation or a consensus meeting with the fourth investigator (CDK. Wungu).

The main outcome was wound complications divided into SSI, seroma, haematoma, and wound dehiscence. The secondary outcome was hospital readmission. We eliminated studies with unspecific wound complications and studies without comparators.

2.2 Literature search

This systematic study was carried out with the meta-analysis appropriate with the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), as shown in Figure 1.

Some of the keywords used to carry out this study are negative pressure wound therapy, NPWT, VAC, vacuum-assisted closure, cancer, malignant/malignancy, wound, included their synonyms and controlled vocabulary (MeSH or Emtree terms) when ready. The search term was such as (“negative pressure wound therapy” OR “vacuum-assisted closure” OR “NPWT” OR “VAC”) AND (malignant* OR cancer) wound.

Figure 1 illustrates the search strategy in detail. Three researchers identified relevant studies from PubMed, ScienceDirect, Web of Science, ProQuest, and the registry trial (www.clinicaltrials.gov) from July 15, 2021, to July
28, 2021. All studies were then exported to Mendeley to be sorted out.

2.3 Data extraction

We independently selected data on authors, publication year, country, study design, population, mean age, follow-up periods, type of cancer, type of surgery, NPWT pressure, mode, length of use, the occurrence of SSI, seroma, haematoma, dehiscence, and readmission (Tables 1, 2). Data were extracted from preliminary studies and cross-checked to eliminate discrepancies.

2.4 Risk of bias and quality assessment

The observational studies' quality, such as case-control and cohort studies, was evaluated applying the Jadad scale for RCT studies (Table 3), and the Newcastle-Ottawa scale (NOS) (Tables 4, 5). The score is considered high quality if the score is 7 or higher for the NOS score and 3 or higher for the Jadad scale.

2.5 Statistical analysis

RevMan 5.4 statistical software (Cochrane Collaboration) was used to determine statistical analysis with a relative risk ratio (RR) of 95% confidence intervals (CIs) applied to analyse the random- or fixed-effect models. Furthermore, the significant outcome of the two-sided statistical tests was determined with a P value <0.05. This study uses the inconsistency index statistic (I^2) to assess heterogeneity, and the value of the I^2 statistic also reflects the level of heterogeneity. If I^2 was >50% and P value <0.05, the trials were used to determine the heterogeneous, and random-effects models. Otherwise, the fixed-effects model was chosen. A funnel plot was performed to estimate publication bias.

3 RESULTS

3.1 Study selection and characteristics

A total of 4074 studies were retrieved from various databases: 471 studies from PubMed; 1207 studies from ScienceDirect; 230 studies from Web of Science; 2144...
Author, y, country, design	Population	Mean age (y)	Follow-up (d)	Malignancy	Surgery	NPWT pressure (mmHg), mode, duration (d)
Blackham, 2013, USA, CC	N: 104 C: 87	N: 57.1 C: 57.1	30	Colorectal cancer Peritoneal cancer Pancreatic cancer	Right colectomy Left colectomy Subtotal colectomy Low anterior resection Abdominoperitoneal resection Cytoreduction/HIPEC with colon resection Cytoreduction/HIPEC without colon resection Pancreatoduodenectomy Distal pancreatectomy	−125, continuous, 4
Burkhart, 2017, USA, CC	N: 120 C: 274	n/a	30	Pancreatic cancer	Pancreatoduodenectomy	−125, continuous, 4
Chadi, 2014, Canada, CC	N: 27 C: 32	N: 62 C: 61	30	Rectal cancer SCC of anus	Abdominoperineal resection + proctocolectomy Pelvic exenteration	−125, continuous, 5
Chambers, 2020, USA, CC	N: 64 C: 192	N: 59 C: 60.9	n/a	Cervical cancer Ovarian cancer Fallopian tube cancer Peritoneal cancer Uterine cancer	Hysterectomy Radical hysterectomy and/or-bloc resection Small bowel surgery Large bowel surgery Ileostomy Colostomy Splenectomy Pelvic lymphadenectomy Paraaortic lymphadenectomy	−125, continuous, 7
De Rooij, 2021, Netherland, CC	N: 50 C: 111	N: 65.4 C: 65.1	90	Breast cancer	Mastectomy + sentinel node Mastectomy + axillary lymph node dissection	−80, continuous, 4
Gupta, 2017, USA, CC	N: 25 C: 36	N: 61.1 C: 64.1	n/a	Pancreatic cancer	Pancreatoduodenectomy	−80, continuous, 7–10
Joice, 2020, Italy, CC	N: 104 C: 54	N: 69.7 C: 70.5	90	Urothelial carcinoma	Radical cystectomy	−125, continuous, 3
Jorgensen, 2019, Denmark, CC	N: 14 C: 41	N: 59.93 C: 57.88	90	Melanoma	Inguinal lymph node dissection Abdominoperineal resection	−125, continuous, 5–7
Kaneko, 2021, Japan, CC	N: 51 C: 95	N: 67 C: 64.25	n/a	Rectal cancer Anal cancer Melanoma Gynaecological cancer Peritoneal cancer	Pancreatoduodenectomy Subtotal pancreatectomy Distal pancreatectomy Total pancreatectomy	−125, continuous, 5

(Continues)
studies from ProQuest; 22 studies from ClinicalTrials.gov, of which 1505 were included after filtering by full-text availability, English language, human study, research articles, scholarly journal, completed and available study results. These studies were then exported to Mendeley. A total of 1154 studies were excluded for not being relevant: duplication (n = 144); animal studies (n = 212); studies other than observational studies or RCT (n = 798). Based on the screening criteria for the relevance in titles and abstracts, 318 studies were removed. After full-text reviews, we eliminated 13 studies. Finally, 20 eligible studies were selected for a qualitative review, including 13 observational studies and 7 RCTs. The flow chart of the study selection process can be seen in Figure 1.

3.1.1 | Observational studies

The 13 observational studies, including 11 case-control studies and two cohort studies, encompassed 1923 patients between the years 2013 and 2021, 662 patients were using NPWT and 1261 patients were in the CWC group. All of the included studies were from developed countries according to International Statistical Institute in 2020. The mean age ranged from 53.2 to 72.1 years, and the follow-up ranged from 30 to 90 days. The malignancy type varies from skin cancer, breast cancer, pancreatic cancer, colorectal cancer, peritoneal cancer, gynaecological cancer, urothelial carcinoma to spinal cancer, as well as the surgery types. More details can be seen in Table 1. The most widely used amount of pressure for NPWT use was −125 mmHg, all used continuously, ranging from 2 to 9 days, with the most number of days used was 4 days.

3.1.2 | RCTs

The seven RCTs included 1091 patients between the years 2017 and 2021, with 543 patients underwent surgery with NPWT and 548 patients underwent surgery without NPWT. Only one study was from a developing country, China, a study by Yang et al in 2020. The mean age ranged from 56.25 to 73.18 years, and the follow-ups were all in 30 days. The malignancy type also varies from gastrointestinal cancer, pancreatic cancer, colorectal cancer, peritoneal cancer, gynaecological cancer, as well as the surgery types. The most widely used amount of pressure for NPWT use was −125 mmHg, most of them were used continuously, ranging from 3 to 7 days, with the most number of days used was 7 days. More details can be seen in Table 2.
Author, y, country, design	Population	Mean age (y)	Follow-up (d)	Malignancy	Surgery	NPWT pressure (mmHg), mode, duration (d)
Andrianello, 30 2021, Italy, RCT	N: 32 C: 40	N: 69 C: 64	30	Ampullary cancer Cystic Distal bile duct cancer Duodenal cancer Neuroendocrine tumour Pancreatic ductal adenocarcinoma	Pancreatectoduodenectomy Total pancreatectomy	n/a, intermittent, 3–7
Kuncewitch, 31 2019, USA, RCT	N: 36 C: 37	N: 64.75 C: 61.5	30	Pancreatic cancer	Laparotomy	−125, continuous, 4
Leitao, 32 2021, USA, RCT	N: 254 C: 251	N: 56.25 C: 58	30	Ovarian cancer Fallopian tube cancer Peritoneal cancer Uterine cancer Cervical cancer	Laparotomy	−125, continuous, 7
Shen, 33 2017, USA, RCT	N: 132 C: 133	N: 57.25 C: 58.75	30	Gastrointestinal cancer Pancreatic cancer Peritoneal cancer	Bowel resection Colorectal resection Pancreatectoduodenectomy Distal pancreatectomy Total pancreatectomy Cytoreduction/HIPEC	−125, continuous, 4
Teoh, 54 2020, USA, RCT	N: 43 C: 38	N: 59.6 C: 58.4	30	Gynaecologic cancer	Laparotomy	n/a
Wierdak, 55 2021, Poland, RCT	N: 35 C: 36	N: 61.6 C: 62.4	30	Colorectal cancer	Ileostomy reversal Hemicolecotomy Colectomy Anterior resection of rectum Intersphincter resection Transanal total mesorectum excision	n/a
Yang, 56 2020, China, RCT	N: 11 C: 13	N: 73.18 C: 69.85	30	Rectal carcinoma	Abdominoperineal resection	n/a

Abbreviations: C, conventional wound care; HIPEC, hyperthermic intraperitoneal chemotherapy; N, negative pressure wound therapy; RCT, randomised controlled trial.
3.2 | Studies’ quality assessment and bias risk

The mean NOS score was 7.3/9, indicating high quality of the included observational studies, and the mean Jadad scale was 2.3/5 for RCT studies, indicating low quality. Table 3 presents the quality of RCT studies evaluated by the Jadad scale. Meanwhile, Tables 4 and 5 presents the quality of 11 included case-control and two cohort studies evaluated by NOS.

Funnel plot analysis of included observational studies showed no significant publication bias (Figure 2). We identified an outlier by De Rooij 2021. After temporarily excluding the study, there was no significant effect. Funnel plot analysis of included RCT studies was not performed because of the limited studies.

Most of the studies were considered representative and were in line with the studies we included, as most malignant tumours are treated in medical centres. All included studies reported SSI, and some studies reported other complications, ie, seroma, haematoma, dehiscence. Most of the studies reported hospital readmission, therefore we added it as the secondary outcome.

3.3 | The primary outcomes

3.3.1 | Surgical site infection

Observational studies

Thirteen observational studies reported the data on the SSI risk after NPWT use or CWC. The SSI rate in the NPWT group was 10.27% and in the CWC was 25%. The use of NPWT was associated with a significant decrease in the risk of SSI in patients with cancer compared with CWC (RR = 0.45; 95% CI 0.35–0.57; P < 0.00001). There was no statistical heterogeneity among the evaluated studies (I^2 = 46%; P = 0.03) (Figure 3).
Study	Selection	Comparability based on design or analysis (2)	Exposure	Same method of ascertainment for cases and controls (1)	Non-response rate (1)	Total score
Blackham 2013	1	1	2	1	1	8
Burkhart 2017	1	1	2	1	1	8
Chadi 2014	1	1	1	0	1	8
Chambers 2020	1	1	2	0	1	7
De Rooij 2021	1	1	1	0	1	7
Gupta 2017	1	1	2	0	1	7
Joice 2020	1	1	2	0	1	7
Jørgensen 2019	1	1	2	0	1	7
Kaneko 2021	1	1	2	0	1	7
Lynam 2016	1	1	2	1	1	8
Marti 2021	1	1	2	1	1	8
Seven RCTs reported the data on the risk of SSI after NPWT use or CWC. The SSI rate in the NPWT group was 12.89% and in the CWC was 15.32%. The NPWT occurred because of the decrease in risk of SSI in cancer patients, which is insignificant (RR = 0.88; 95% CI 0.67–1.16; P = 0.38). There was no statistical heterogeneity among the evaluated studies (I² = 0%; P = 0.66) (Figure 3).

3.3.2 | Seroma

Observational studies

Six observational studies reported the data on the seroma risk after NPWT use or CWC. The seroma rate in the NPWT group was 5.12% and in the CWC group was 10%. The significant decrease in the occurrence of seroma in patients suffering from cancer was associated with CWC (RR = 0.61; 95% CI 0.38–0.98; P = 0.04). Furthermore, the evaluated studies have no statistical heterogeneity (I² = 53%; P = 0.06) (Figure 4).

RCTs

Five RCTs reported the data on the risk of seroma after NPWT use or CWC. The seroma rate in the NPWT group was 4.7% and in the CWC group was 7.04%. The use of NPWT was correlated with a decrease in the SSI risk in patients with cancer compared with CWC, but was not significant (RR = 0.68; 95% CI 0.41–1.13; P = 0.14). There was no statistical heterogeneity among the evaluated studies (I² = 0%; P = 0.68) (Figure 4).

3.3.3 | Hematoma

Observational studies

Approximately four observational studies were used to analyse the data associated with the hematoma risk after NPWT or CWC. The haematoma rate in the NPWT group was 1.6% and in the CWC was 1.74%. The use of NPWT was correlated with a decrease in the SSI risk in patients with cancer compared with CWC, but was not significant (RR = 0.68; 95% CI 0.41–1.13; P = 0.14). There was no statistical heterogeneity among the evaluated studies (I² = 36%; P = 0.20) (Figure 5).

RCTs

Four RCTs reported the data on the risk of haematoma after NPWT use or CWC. The NPWT and CWC groups had haematoma rates of 0.88% and 1.08%. The use of NPWT also showed no significant difference in decreasing the risk of hematoma (RR = 0.87; 95% CI 0.27–2.84; P < 0.82). Furthermore, there was no statistical
heterogeneity associated the evaluated studies ($I^2 = 0\%; P = 0.47$) (Figure 5).

3.3.4 Wound dehiscence

Observational studies

A total of seven observational studies were used to determine the data associated with the risk of wound dehiscence after the occurrence of NPWT and CWC. The dehiscence rate in the NPWT group was 5.33% and in the CWC was 10%. The use of NPWT was correlated with a decrease in the wound dehiscence risk in patients with cancer compared with CWC, but was not significant (RR = 0.74; 95% CI 0.45–1.19; P = 0.21). There was no statistical heterogeneity among the evaluated studies ($I^2 = 21\%; P = 0.27$) (Figure 6).

RCTs

Five RCTs reported the data on the risk of wound dehiscence after NPWT use or CWC. The wound dehiscence rate in the NPWT group was 7.56% and in the CWC was 6.56%. CWC is correlated with a reduction in the risk of wound dehiscence in patients suffering from cancer compared with NPWT, but was not significant (RR = 1.15; 95% CI 0.73–1.81; P = 0.54). Furthermore, there was no statistical heterogeneity inherent in the evaluated studies, as shown in Figure 6 ($I^2 = 0\%; P = 0.94$).

3.4 Secondary outcome

3.4.1 Hospital readmission

Observational studies

Four observational studies reported the data on the hospital readmission risk after NPWT use or CWC. The hospital readmission rate in the NPWT group was 10% and in the CWC group was 11.2%. The possibility of readmitting patients with cancer decreases with NPWT use compared with CWC (RR = 0.90; 95% CI 0.61–1.32;
$P = 0.58$). Figure 7 shows there was no statistical heterogeneity associated with the evaluated studies ($I^2 = 0\%; P = 0.97$).

RCTs
Three RCTs reported the data on the risk of hospital readmission after NPWT use or CWC. The hospital
readmission rate in the NPWT group was 4.06% and in the CWC group was 6.18%. NPWT is associated with a decrease in the rate at which patients with cancer are readmitted into the hospital (RR = 0.62; 95% CI 0.25–1.52; *P* = 0.30). There was no statistical heterogeneity among the evaluated studies (*I²* = 0%; *P* = 0.40) (Figure 7).
According to Mendez-Eastman, the use of NPWT is inappropriate with malignancy because when the mechanical stretch is performed to normal cells, it leads to increased proliferation. Furthermore, in malignancy, cancerous cells often are not anchored because of their inability to respond to the stimuli, thereby making NPWT ineffective. However, several studies have been done using NPWT in cancer surgical wounds and gave interesting results.

This research summarised the available evidence associated with the effects of NPWT for cancer surgical wounds. Almost all of the studies included were from developed countries. Only one study, an RCT, was from a developing country, China. Nevertheless, that did not correlate with the completeness of the data. The ratio of subjects treated with NPWT and CWC in observational studies was 1:2, demonstrating that the use of NPWT in malignancies was lower may be because of its high cost, less availability, fear of harming patients, and risk of accelerated metastasis, although none have provided solid evidence to support this hypothesis. A recent meta-analysis consisted of six observational studies that evaluated local oncological recurrence of NPWT use in cancer surgical wounds without residual malignancy and its complications showed that there was no significant difference between NPWT and CWC. The differences with our study were that we performed a meta-analysis of observational studies consisted of 13 studies and RCTs consisted of 7 studies, and evaluated more detailed postoperative wound complications divided into SSI, seroma, haematoma, wound dehiscence, and hospital readmission. Overall, our analysis showed a better result in SSI and seroma rates in observational studies and no significant difference in other parameters.

As a risk factor for cancer in 2021, the National Cancer Institute stated that the median age of patients diagnosed with cancer was 66 years, which means half of all cancers occur in people older than this age and half in people younger than this age for several common cancers, such as breast cancer, colorectal cancer, prostate cancer, and lung cancer. Meanwhile, a study that analysed the incidence and mean age at diagnosis for global cancer stated that the average age of cancer incidence in the world was 65.73 years. In this study, the patients’ mean age was 60.96 years, ranging between 53.2 and 73.18 years.

The follow-up period of all included studies lasted for a minimum of 30 days, as the postoperative wound complication can take place up to 30 days after the surgery, particularly for SSI, and influencing the incision or deep tissue at the operation site. Another study showed a similar postoperative follow-up ranged from 28 to 42 days but was most commonly limited to a 30-day-follow-up as advised by the CDC guidelines.

Most of the included studies were using NPWT with the pressure of -125 mmHg with a continuous mode that lasted for 2 to 10 days. Two observational studies were using -80 mmHg and one study was using -100 mmHg pressure. This corresponds to the meta-analysis done by Borgquist in 2010, which stated the clinical standard pressure for treating wounds with NPWT is -125 mmHg. Kairinos (2008) carried out a research to determine the standard pressure on wounds and the clinical inconsistencies associated with the use of NPWT.

According to Kairinos, higher magnitudes inflict pain on the patient as opposed to negative pressure, which lowers it from -125 to -50 mmHg. Secondly, care need to be taken when determining the vascularity of compromised tissue because the high levels of negative pressure cause ischaemia. According to preliminary studies, NPWT contradicts because of inconsistency in vascularity. Miller and Lowery stated that the specific suction pressures universally accepted is -125 mmHg. Contrary to complete data of NPWT in observational studies, four out of seven RCTs did not state the pressure, mode, and duration of NPWT. This could lead to immeasurable results of the study.

Observational studies indicated a significant SSI risk reduction in the NPWT group, which is consistent with the results of several previous reviews in other surgical wounds. NPWT is suggested to reduce the infection rate for the following reasons: For wound care, NPWT systems reduce the frequency of dressings, the wound site could be ensured. Moreover, the infection rate was low in both analyses but was most commonly limited to a 30-day-follow-up as advised by the CDC guidelines.

The seroma rate was also significantly lower in the NPWT group in observational studies, which is in accordance with several past studies. It is not fully understood how NPWT leads to a reduced seroma formation in the wound. Horch et al. suggested that NPWT leads to a significant increase in tissue perfusion and oxygenation.

Both haematoma rates in observational studies and RCTs did not show significant differences, while a study done by Ge in 2018 showed a significant result in reducing haematoma risk on various surgical wounds. Nevertheless, the incidence rate was low in both analyses (1.6% and 0.88%) because NPWT application was done in the operating room so that excellent wound haemostasis could be ensured.

We found that the wound dehiscence rate in observational studies favoured the NPWT group. Contrary to
that, RCTs showed a trend towards a lower wound dehiscence rate in patients treated with CWC. Nonetheless, there was not much difference in the incidence of wound dehiscence in the two groups (7.56% and 6.56%). This could be because of the low quality of the included RCT studies, which also did not show significant results in all analyses. Some of the studies did not include the pressure, mode, and duration of the installed NPWT, so a thorough look could not be done.

The hospital readmission rate in both analyses favoured towards NPWT group, which indicated fewer complications in the NPWT group compared with CWC only, therefore no need for re-hospitalisation. A study also stated that patients who smoked or patients with alcohol/drug abuse had a higher hospital readmission rate.

Overall, the NPWT groups showed a better improvement in decreasing the complications rate in both observational studies and RCTs. However, all of these RCT analysis results may require more exploration with a higher number and better quality of RCTs.

5 | LIMITATION

Our study has some limitations. Because the number of RCTs performed was limited compared with observational studies, and the included RCT studies were low in quality because of the nature of inability to double-blind the intervention, coupled with the large number of patients who dropped out, led to the ratio of poor quality to good quality RCTs into 4:3. Another limitation was this study did not analyse the tumour recurrence, but only the postoperative wound complications and hospital readmission.

6 | CONCLUSION

Our meta-analysis showed the best results in the risk of SSI and seroma in cancer surgical wounds. The NPWT use was correlated with fewer complications such as SSI, seroma, haematoma, wound dehiscence, and hospital readmission. Therefore, NPWT is not contraindicated in cancer surgical wounds and can be considered a beneficial palliative treatment to promote wound healing.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data available on request due to privacy/ethical restrictions.

ORCID

Indri Lakhsmi Putri © https://orcid.org/0000-0001-6668-6496

REFERENCES

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
2. World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. WHO; 2020. Accessed September 6, 2021. who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
3. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. doi:10.7150/ijms.3635
4. Drake DB, Oishi SN, Wound healing considerations in chemotherapy and radiation therapy. Clin Plast Surg. 1995;22(1):31-37.
5. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560-582. doi:10.1089/wound.2015.0635
6. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563-576. discussion 577.
7. Orgill DP, Manders EK, Sumpio BE, et al. The mechanisms of action of vacuum assisted closure: more to learn. Surgery. 2009;146(1):40-51. doi:10.1016/j.surg.2009.02.002
8. Malmsjö M, Ingemansson R, Martin R, Huddleston E. Wound edge microvascular blood flow: effects of negative pressure wound therapy using gauze or polyurethane foam. Ann Plast Surg. 2009;63(6):676-681. doi:10.1097/SAP.0b013e318191ae01b
9. Goldstein JA, Iorio ML, Brown B, Attinger CE. The use of negative pressure wound therapy for random local flaps at the ankle region. J Foot Ankle Surg. 2010;49(6):513-516. doi:10.1053/j.jfas.2010.07.001
10. Li HZ, Xu XH, Wang DW, Lin YM, Lin N, Lu HD. Negative pressure wound therapy for surgical site infections: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect. 2019;25(11):1328-1338. doi:10.1016/j.cmi.2019.06.005
11. Ge D. The safety of negative-pressure wound therapy on surgical wounds: an updated meta-analysis of 17 randomized controlled trials. Adv Skin Wound Care. 2018;31(9):421-428. doi:10.1097/01.ASW.0000542530.71686.5c
12. Riot S, de Bonnecaze G, Garrido I, Ferron G, Grolleau JL, Chaput B. Is the use of negative pressure wound therapy for a malignant wound legitimate in a palliative context? “the concept of NPWT ad vitam”: a case series. Palliat Med. 2015;29(5):470-473. doi:10.1177/0269216315560009
13. Ford-Dunn S. Use of vacuum assisted closure therapy in the palliation of a malignant wound. Palliat Med. 2006;20(4):477-478. doi:10.1191/0269216306pm1117cr
14. Santos DA, Alseidi A, Shannon VR, et al. Management of surgical challenges in actively treated cancer patients. Curr Probl Surg. 2017;54(12):612-654. doi:10.1067/j.cpsurg.2017.11.003
15. Horch RE, Münchow S, Dragu A. Erste Zwischenergebnisse der Perfusionsbeeinflussung durch Prevena: Gewebsperfusionsmessung. Z Wundheilk. 2011;A 16:19-20.
16. Osterhoff G, Zwolak P, Krüger C, Wilzek V, Simmen HP, Jukema GN. Risk factors for prolonged treatment and hospital readmission in 280 cases of negative-pressure wound therapy. J Plast Reconstr Aesthet Surg. 2014;67(5):629-633.

17. Blackburn AU, Farrah JP, McCoy TP, Schmidt BS, Shen P. Prevention of surgical site infections in high-risk patients with laparotomy incisions using negative-pressure therapy. Am J Surg. 2013;205(6):647-654. doi:10.1016/j.amjsurg.2012.06.007

18. Burkhardt RA, Javed AA, Ronneklev-Kelly S, et al. The use of prophylactic incisional negative pressure wound therapy to prevent post-operative surgical site infections following pancreaticoduodenectomy. HPB (Oxford). 2017;19(9):825-831. doi:10.1016/j.hpb.2017.05.004

19. Chadi SA, Kidane B, Britto K, Brackstone M, Ott MC. Incisional negative pressure wound therapy decreases the frequency of postoperative perineal surgical site infections: a cohort study. Dis Colon Rectum. 2014;57(8):999-1006. doi:10.1097/DCR.0000000000000161

20. Chambers LM, Morton M, Lampert E, et al. Use of prophylactic closed incision negative pressure therapy is associated with reduced surgical site infections in gynecologic oncology patients undergoing laparotomy. Am J Obstet Gynecol. 2020;223(5):731.e1-731.e9. doi:10.1016/j.ajog.2020.05.011

21. De Rooij I, van Kuijk SM, van Haaren ER, et al. Negative pressure wound therapy does not decrease postoperative wound complications in patients undergoing mastectomy and flap fixation. Sci Rep. 2021;11(1):1-7.

22. Gupta R, Darby GC, Imagawa DK. Efficacy of negative pressure wound treatment in preventing surgical site infections after Whipple procedures. Am Surg. 2017;83(10):1166-1169.

23. Joice GA, Tema G, Semerjian A, et al. Evaluation of incisional negative pressure wound therapy in the prevention of surgical site occurrences after radical cystectomy: a new addition to enhanced recovery after surgery protocol. Eur Urol Focus. 2020;6(4):698-703.

24. Jørgensen MG, Toyserkani NM, Thomsen JB, Sørensen JA. Prophylactic incisional negative pressure wound therapy shows promising results in prevention of wound complications following inguinal lymph node dissection for melanoma: a retrospective case-control series. Int Wound J. 2019;16(8):1178-1183.

25. Kaneko T, Funahashi K, Ushigome M, et al. Incisional negative pressure wound therapy to reduce perineal wound infection after abdominoperineal resection. Int Wound J. 2021;18(1):103-111.

26. Lynam S, Mark KS, Temkin SM. Primary placement of incisional negative pressure wound therapy at time of laparotomy for gynecologic malignancies. Int J Gynecol Cancer. 2016;26(8):1525–1529.

27. Marti MT, Fernandez-Gonzalez S, Marti MD, Pla MJ, Barahona M, Ponce J. Prophylactic incisional negative pressure wound therapy for gynaecologic malignancies. Int Wound J. 2021;1–6.

28. Mueller KB, D’Antuono M, Patel N, et al. Effect of incisional negative pressure wound therapy vs standard wound dressing on the development of surgical site infection after spinal surgery: a prospective observational study. Neurosurgery. 2021;88(5):E445-E451.

29. Quercia V, Saccone G, Raffone A, et al. Use of negative pressure wound therapy systems after radical Vulvectomy for advanced vulvar cancer. Cancer Investig. 2020;38(8-9):531-534.

30. Andrianello S, Landoni L, Bortolato C, et al. Negative pressure wound therapy for prevention of surgical site infection in patients at high risk after clean-contaminated major pancreatic resections: a single-center, phase 3, randomized clinical trial. Surgery. 2021;169(5):1069-1075.

31. Kuncewicz MP, Blackham AU, Clark CJ, et al. Effect of negative pressure wound therapy on wound complications post-prostatectomy. Am Surg. 2019;85(1):1-7.

32. Leitao MM Jr, Zhou QC, Schiavone MB, et al. Prophylactic negative pressure wound therapy after laparotomy for gynecologic surgery: a randomized controlled trial. Obstet Gynecol. 2021;137(2):334-341.

33. Shen P, Blackham AU, Lewis S, et al. Phase II randomized trial of negative-pressure wound therapy to decrease surgical site infection in patients undergoing laparotomy for gastrointestinal, pancreatic, and peritoneal surface malignancies. J Am Coll Surg. 2017;224(4):726-737.

34. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-605. doi:10.1007/s10654-010-9491-z

35. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12. doi:10.1016/0197-2456(95)00134-4

36. International Statistical Institute. Developing Countries. [internet] The Netherlands: International Statistical Institute; [updated October 31, 2020; cited September 22, 2021]. Available from: https://www.isi-web.org/capacity-building/developing-countries.

37. Mendez-Eastman S. Guidelines for Using Negative Pressure Wound Therapy. Adv Skin Wound Care. 2001;14(6):314-323.

38. United Nations. World Economic Situation Prospects. [internet] USA: United Nations New York; [updated 2020; cited September 22, 2021]. Available from: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_Annex.pdf.

39. Wang YJ, Yao XF, Lin YS, Wang JY, Chang CC. Oncologic feasibility for negative pressure wound therapy application in surgical wounds: a meta-analysis. Int Wound J. 2021. doi: 10.1111/iwj.13654

40. National Cancer Institute. Age and Cancer Risk. [internet] USA: National Institute of Health; [updated 2021 March 5, 2021; cited September 22, 2021]. Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/age.

41. Lin HN, Gu XY, Zhang SW, Zeng HM, Wei WW, Zheng RS. Analysis on incidence and mean age at diagnosis for global cancer. Zhonghua Zhong Liu Za Zhi. 2018;40(7):543-549. doi:10.3760/cma.j.issn.0195-6701(08)00017-1

42. Owens CD, Stoesel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008;70(Suppl 2):3-10. doi:10.1016/S0195-6701(08)00017-1

43. Wells CI, Ratnayake CBB, Perrin J, Pandanaboyana S. Prophylactic negative pressure wound therapy in closed abdominal incisions: a meta-analysis of randomised controlled trials. World J Surg. 2019;43(11):2779-2788. doi:10.1007/s00268-019-05116-6

44. National Healthcare Safety Network. Surgical Site Infection Event (SSI). [internet] USA: Centers for Disease Control and Prevention; [updated 2021 January; cited September 23, 2021].
45. Borgquist O, Ingemansson R, Malmströ M. Wound edge microvascular blood flow during negative-pressure wound therapy: examining the effects of pressures from −10 to −175 mmHg. *Plast Reconstr Surg.* 2010;125(2):502-509. doi: 10.1097/PRS.0b013e3181c82e1f

46. Kairinos N, Solomons M, Hudson DA. The paradox of negative pressure wound therapy--in vitro studies. *J Plast Reconstr Aesthet Surg.* 2010;63(1):174-179. doi: 10.1016/j.bjps.2008.08.037

47. Miller MS, Lowery CA. Negative pressure wound therapy: “A rose by any other name.”. *Ostomy Wound Manage.* 2005;51:44-46, 48–49.

48. Kantak NA, Mistry R, Varon DE, Halvorson EG. Negative pressure wound therapy for burns. *Clin Plast Surg.* 2017;44:671-677.

49. Norman G, Goh EL, Dumville J, et al. Negative pressure wound therapy for surgical wounds healing by primary closure. *Cochrane Database Syst Rev.* 2020;5(5):CD009261.

50. Meloni M, Izzo V, Vainieri E, Giurato L, Ruotolo V, Uccio L. Management of negative pressure wound therapy in the treatment of diabetic foot ulcers. *World J Orthop.* 2015;6:387-393.

51. Hyldig N, Birke-Sorensen H, Kruse M, et al. Meta-analysis of negative-pressure wound therapy for closed surgical incisions. *Br J Surg.* 2016;103(5):477-486. doi: 10.1002/bjs.10884

52. Zwanenburg PR, Tol BT, Obdeijn MC, Lapid O, Gans SL, Boermeester MA. Meta-analysis, meta-regression, and GRADE assessment of randomized and nonrandomized studies of incisional negative pressure wound therapy versus control dressings for the prevention of postoperative wound complications. *Ann Surg.* 2020;272(1):81-91. doi: 10.1097/SLA.0000000000003644

53. Stannard JP, Volgas DA, Stewart RL, Alonso JE. Incisional negative pressure wound therapy as a treatment for draining hematoma: a prospective randomized study. *Ota.* 2009 Session VI-Basic Science/Injury Prevention/Spine, Paper #72. https://ota.org/sites/files/legacy_abstracts/ota09/otapu/OTA090672.html

54. Teoh DG. Negative Pressure Wound Therapy in Obese Gynecologic Oncology Patients. Identifier NCT02309944. https://clinicaltrials.gov/ct2/show/results/NCT02309944

55. Wierdak M, Pisarska-Adamczyk M, Wysoki M, et al. Prophylactic negative-pressure wound therapy after ileostomy reversal for the prevention of wound healing complications in colorectal cancer patients: a randomized controlled trial. *Tech Coloproctol.* 2021;25(2):185-193.

56. Yang YP, Yu LY, Wang M, et al. A new surgical approach of direct perineal wound full-thick closure for perineal wound of abdominopereineal resection for rectal carcinoma: a prospective cohort trial. *Int Wound J.* 2020;17(6):1817-1828.

How to cite this article: Putri IL, Adzalika LB, Pramanasari R, Wungu CDK. Negative pressure wound therapy versus conventional wound care in cancer surgical wounds: A meta-analysis of observational studies and randomised controlled trials. *Int Wound J.* 2022;19(6):1578-1593. doi: 10.1111/twj.13756