Analysis of non-newtonian fluid with phase flow model

Nadeem Abbas1*, S. Nadeem1, Anber Saleem2,3, Alibek Issakhov4, M.A. Abdel-Sattar5, Shaban Aly6

1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Mathematics and its Applications in Life Sciences Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4Al-Farabi Kazakh National University, Faculty of mechanics and mathematics, av. al-Farabi 71, Almaty, Kazakhstan
5Department of Mathematics, College of Sciences, King Khalid University, Abha 61413 Saudi Arabia.
6Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt

*Corresponding author email:(+923027122714) (nabbas@math.qau.edu.pk)

Abstract

We considered a stagnation point of Non-Newtonian fluid with phase flow model over a stretching surface with slip conditions. Two types of the nanoparticle used, namely Cu and Al2O3 with base fluid H2O. Acceptable to theoretical study, the mathematical model has been constructed through flow assumptions. Partial differential equations are made by applying the boundary layer approximations on the momentum and energy equations. The suitable similarity transformations are applied to the partial equations which are converted into ordinary differential equations. These equations are solved by numerical scheme, namely bvp4c method. The involving physical parameters effect is shown by graphs and tables. Our work shows a good agreement with decay literature. The expressions $F''(0)$ and $-\theta'(0)$ achieve fewer values by hybrid nanofluid than that of nanofluid. Moreover $F''(0)$ and $-\theta'(0)$ increase for large values of dimensionless parameter (N) where as $F'(\xi)$ and $\theta(\xi).increase$ for large values of Φ_2.

Key points: Hybrid nanofluid; Second grade fluid; Thermal slip; Stagnation flow: Numerically technique.

1. Introduction

The theoretical study of non-Newtonian fluids have achieved lots of importance due to its vast applications in science and technology. Because of complexity of non-Newtonian fluids, there is not a single fluid model exist in the literature which cover all the aspects of non-Newtonian fluid models have been proposed and studied. Due to the complexity of these models, the exact solutions in general are quite impossible. So the researchers have presented their special cases exact solution or analytical solution and numerical solutions. Rivlin and Eriksen [1] were proposed second grade fluid model early time. The simplest non-Newtonian
fluid model which exhibits many properties of the differential type fluids. Exact solutions of the second grade fluid by using the inverse method have been discussed by Labropulu [2]. Creeping flow of the second grade fluid by using the Lie group analysis have been discussed by Yürüsoy et al. [3]. Two dimensional Lagrangian flow of Euler and second grade fluid flow were discussed by Shkoller [4]. According to his study, he discussed a simple proof of global existence. Labropulu [5] was discussed the second grade fluid flow in the absence of body forces and thermal. Series solution of the second grade fluid flow over shrinking sheet under stagnation region was studied by Nadeem et al. [6]. Flow of Second grade micropolar fluids flows over stretching surface having a heat transfer has been studied by Mehmod et al. [7]. They also highlighted the effects of non orthogonal stagnation point flow. Akinbobola and Okoya [8] were analyzed the mixed effects of thermal conductivity and variable viscosity of second grade fluids at stretching the surface. In their study, the linear temperature function is inversely proportional viscosity while directly proportional to thermal conductivity. Majeed et al. [9] have been highlighted the effects of the second grade fluid flow at stretching cylinder having Dufour and Soret impacts numerically. They also considered the effects of thermal radiation with different aspects. It is seen that the impacts of Dufour and Soret on temperature find to be directly as increasing. Khan et al. [10] have been highlighted heat transfer and second grade fluid of axisymmetric at stretching sheet. Many investigators have explored the second grade fluid flow with different physical aspects (see Refs. [11-18]).

The attraction of stretching analysis have been forced to the researchers because lots of its applications in the fields of engineering namely, cooling of microelectronics, wire drawing, rapid spray, polymer extrusion, glass blowing, quenching in metal foundry etc. In the early time, the boundary layer flow at stretching surface theoretically has been analyzed by Crane [19]. Mekheimer et al. [20-21] discussed the flow behavior of Peristaltic at stretching the surface. Malvandi et al. [22] studied the nanofluid over shrinking/ stretching surface under stagnation point region. Many investigators have studied stretching surface having various assumptions [23-26].

Nanofluid is a fluid that combination of nanoparticle and base fluid. The word nanofluid introduced by Choi [27]. He introduced the nanofluid model and claimed that nanofluid achieved more heat transfer rate than that of simple fluid. This model satisfies the numerical and theatrical analysis. After this, several researchers have been focused on the heat transfer enhancement because of many applications in the fields of engineering, industrial and so on. Application of solar energy by using the nanofluid has been highlighted by Mahian et al. [28]. Heat transfer of nanofluid at rotating disk has been discussed by Turkyilmazoglu [29].
He applied the SCCCM on the boundary layer flow to discuss the flow of nanofluid. The flows of micropolar nanofluid at circular cylinder have been highlighted by Abba et al. [30]. Stagnation point flow of Maxwell nanofluid has discussed by Khan et al. [31]. Number of investigators have been studied the nanofluid model with different assumptions which reveals in Refs. [32-40].

In the shortage of energy, most of the interest of the researchers has discussed numerically, analytically and experimentally to achieve more heat transfer rate than that of decay methods. Mostly used in the real life depends on the heat transfer and coolant. The word Hybrid nanofluid introduced which mean that a type of the fluid which consists a mixture of two different nanoparticles with base fluid. This is the extended version of nanofluid. These types of the fluids help them in the fields of industrial, science and engineering. When two nanosized particles are combined with base fluid which are enhanced the thermal conductivity of the fluid more than that of nanofluid and simple fluid. At the first time, Momin [41] was worked out on the experimental results of hybrid nanofluid with mixed convection. Analytical results find, out of the hybrid nanofluid by Suresh et al. [42]. Numerous investigators have been extended the Suresh et al. [42] work to find heat transfer rate with different assumptions. Stagnation flows of hybrid nanofluid at circular cylinder have been highlighted by Nadeem and Abbas [43]. Recently, a number of the researchers are discussed the hybrid nanofluid with different significant physical parameters which see Refs. [44-51].

The purpose of this analysis to investigate the effects of phase flow model with the second grade flow of fluid over a stretching surface are considered. Slip effects and hybrid nanofluid are considered in this analysis. This system has been converted into a system of an ordinary differential equations. The transformed system is solved through a numerical scheme, namely, BVP4C Method. The impacts of involving governing parameters are highlighted by graphs and tables. No one discussed before hybrid nanofluid with second grade.

2 Mathematical formulations

We considered stagnation point flow of second grade hybrid nanofluid with slip conditions over stretching surface. \(V \) and \(W \) are the velocity components in the direction of \(X - \) and \(Y - \) axis respectively. Stagnation point flow is considered like as \(V = aX \) and \(W = aY \) and \(a \) is stretching parameter see Refs. [52-56].

\[
\frac{\partial V}{\partial X} + \frac{\partial W}{\partial Y} = 0,
\]

(1)
The equations (1-3) present continuity, momentum and energy equations respectively for the hybrid nanofluid. It is pertinent to mention here that usually the experimental data for both nanofluid and hybrid nanofluid for phase flow model are given only for Newtonian fluid. Here, we make a small substitution in such a way that if is replace with \(\frac{\mu_{nf}}{\alpha_{nf}} \), where \(\alpha \) is taken to be \(o(\delta^2) \). We see the order of approximation as \(o(V) = o(1) = o(X), \) \(o(Y) = o(\delta) = o(W) \). Now we considered \(\frac{\mu_{nf}}{\alpha_{nf}} \) in our assumptions for the mathematical point of view. This phenomenon may be exist as \(o(\delta^2) \). The physical properties are defined in the Tables [1-2]. \(\alpha_{nf}, N, \mu_{nf}, \rho_{nf}, \) and \(P \) are the thermal diffusivity, the dimensionless parameter viscosity, the density and the pressure respectively.

The boundary conditions are given as

\[
W = 0, \quad V = 0, \quad V = \omega_1 \left[\frac{\partial V}{\partial Y} + \frac{\mu_{nf}}{\rho_{nf}} \left(\frac{N - 1}{N} \right) \left(\frac{\partial V}{\partial Y} + W \frac{\partial^2 V}{\partial Y^2} + V \frac{\partial^2 V}{\partial X \partial Y} \right) \right],
\]

\[
-k_{nf} \frac{\partial T}{\partial Y} = h_w (T_w - T) \quad \text{as} \quad Y \to 0, \quad T = T_\infty, \quad V = aX, \quad W = 0, \quad Y \to \infty.
\]

Where \(\omega, h_w, T_w \) and \(T_\infty \) are velocity slip parameter, temperature slip parameter, wall temperature and the ambient temperature respectively. The non-dimensional form the suitable similarity transformation has been presented as follows, below

\[
\zeta = \left(a / v_f \right)^{1/2} Y, \quad V = aXF'(\zeta), \quad T = (T_0 - T_w) \theta(\zeta) + T_w, \quad W = -(av_f)^{1/2} F(\zeta).
\]
Applying the above equations, then the equation (1) satisfy identically and equations (2) and (3) reduced into the following form

\[
(\frac{\mu_{\text{inj}}}{\rho_{\text{inj}}})F'''(\zeta) + (\frac{\mu_{\text{inj}}}{\rho_{\text{inj}}})(N - 1)(2F''(\zeta)F'(\zeta) + F''(\zeta)F''(\zeta) - F(\zeta)F'''(\zeta)) + 1 + F'(\zeta)F''(\zeta) - F'(\zeta)F'(\zeta) = 0, \\
\alpha_{\text{inj}} \theta''(\zeta) + F(\zeta)\theta'(\zeta) = 0.
\]

Dimensionless form of the boundary conditions is presented below by using the equation (4) and equation (5)

\[
F'(\zeta) = \frac{\lambda}{3}\frac{\mu_{\text{inj}}}{\rho_{\text{inj}}}(\frac{N - 1}{N})F'(\zeta), \quad F(\zeta) = 0, \quad \theta(\zeta) - 1 = (\frac{k_{\text{inj}}}{k_f})\gamma \theta'(\zeta), \quad \text{as} \quad \zeta \to 0, \\
\theta(\zeta) = 0, \quad F'(\zeta) = 1, \quad \zeta \to \infty.
\]

The non dimensional parameters namely, thermal slip, velocity slip and non dimensional \(\gamma\), \(\lambda\) and \(\xi\). The \(Nu_X\) is defined as

\[
Nu_X = -\left(\frac{k_{\text{inj}}}{k_f}\right)(X / (T_w - T_\infty))(\frac{\partial T}{\partial Y})_{Y=0},
\]

and the skin friction coefficient

\[
C_f = \left[\frac{\partial V}{\partial Y} + \frac{\mu_{\text{inj}}}{\rho_{\text{inj}}}(\frac{N - 1}{N})\left\{\frac{\partial V}{\partial X} \frac{\partial V}{\partial Y} + W \frac{\partial^2 V}{\partial Y^2} + V \frac{\partial^2 V}{\partial Y \partial X}\right\}\right]_{Y=0},
\]

\[
Re_X = \frac{aX^2}{v_f}\]

is the local Reynolds number.

3 Solution procedure

In this analysis, we considered second grade hybrid nanofluid over stretching surface under the stagnation point region. The mathematical model has been constructed through flow assumptions. Partial differential equations are made by applying the boundary layer approximations on the Navier Stokes equations. The suitable similarity transformations are applied to the partial equations which are converted into ordinary differential equations. These equations are solved by numerical scheme, namely BVP4C method. We have to find the solution of the above system. We take three assumptions like as

- If \(K = \left(\frac{\mu_{\text{hnf}}}{\rho_{\text{hnf}}}\right)\left(\frac{N-1}{N}\right)\) and \(\Phi_1 = 0 = \Phi_2\) while \(N \in [0, 1]\) then this system becomes Second grade fluid model.
- If \(K = \left(\frac{\mu_{\text{hnf}}}{\rho_{\text{hnf}}}\right)\left(\frac{N-1}{N}\right)\) and \(\Phi_1 = 0 = \Phi_2\) while \(N \in [0, 1]\) then this system becomes a Viscoelastic fluid model. It is seen that velocity profile gains boundary layer thickness for
large values of velocity slip parameter which reveals in Fig. 1. When the thermal slip increases, which shows decline the curve of temperature profile as see in Fig. 1. Table 3 reveals the comparative results of our present results with Ariel [52]. It is seen that our present results found to be good agreement with Ariel [52].

• If $N = 1$ and rest of the physical parameters are fixed then this Model becomes Newtonian fluids model. We find the comparative present results with decay results. Table 4 shows the comparison present results of $F''(0)$ for different values of λ with Bachok al et. [54] and Wang [53]. It is found to be good agreement with Bachok al et. [54] and Wang [53] when $\Phi_1 = \Phi_2 = 0$.

Table 5 reveals the influence of velocity slip λ and nanoparticle concentration Φ_2 on the $\frac{Nu_X}{\sqrt{Re_X}}$ and $\frac{c_f}{\sqrt{Re_X}}$. Our work found to be good agreement with Yacob et al. [35] and Bachok et al. [54] which see in Table 5. Table 6 shows the effects of λ on the $F''(0)$. It is observed that the comparison with our work and Bachok et al. [54] and Malvandi et al. [55] is found to be good agreement. Let us we considered phase flow with second grade fluid on the assumption of mathematically $O(\delta^2) = \left(\frac{\mu_{hnf}}{\rho_{hnf}}\right)\left(\frac{N-1}{N}\right) = \left(\frac{\alpha}{\rho_{hnf}}\right)$. Our supposition found to be good agreement with existence literature while the order of approximation also satisfied.

4 Results and discussions

The purpose of this analysis to show the effect of involving physical parameters on temperature profile and velocity profile are discussed. The involving physical parameters are nanoparticle concentration of aluminium oxide (Φ_1), nanoparticle concentration of copper (Φ_2), velocity slip parameter (λ), dimensionless parameter (N) and thermal slip parameter (γ). The nanoparticle concentration of aluminium oxide ($\Phi_1 = 0.1$) is taken to be fixed in overall study. The range of the physical parameters are considered as $0.005 \leq \Phi_2 \leq 0.09$, $0.0 \leq \gamma \leq 0.5$, $0.0 \leq \lambda \leq 0.5$ and dimensionless parameter $N \notin [0, 1]$. The effects of physical are highlighted through graphs and tables. The comparative analysis of $Cu – Al_2O_3/H_2O$ and Cu/H_2O on the $F'(\xi)$ and $\theta(\xi)$ are highlighted in Figs. (2-3). It is noted that $F'(\xi)$ enhances for increasing in the Φ_2. Momentum boundary layer thickness achieves by $Cu – Al_2O_3/H_2O$ higher than that of Cu/H_2O. Fig. (3) shows the impacts of Φ_2 on $\theta(\xi)$. It is noted that $\theta(\xi)$ achieves larger when values of Φ_2 increases. Thermal boundary layer thickness gains higher by $Cu – Al_2O_3/H_2O$ than that of Cu/H_2O. Figs. (4-5) reveals the
effects of Φ_2 on the $\theta(\xi)$ and $F'(\xi)$. It is seen that $\theta(\xi)$ and $F'(\xi)$ increase with increasing in Φ_2 due to show high resistance to the fluid velocity. Fig. (6) shows the impact of thermal slip on $\theta(\xi)$ and velocity slip on velocity profile. It is observed that $F'(\xi)$ increases with increasing in velocity slip parameter which $\theta(\xi)$ shows decline the curve when enhance thermal slip parameter. Fig. (6) reveals the effects of dimensionless parameter on $\theta(\xi)$ and $F'(\xi)$. It is seen that $F'(\xi)$ increases with increasing in dimensionless parameter (N) and $\theta(\xi)$ reduced for higher values of dimensionless parameter which reveals in Fig. 7. Momentum boundary layer thickness increases and thermal boundary layer reduces for large values of dimensionless parameter. Table 7 reveals the impacts of different involving physical parameters Φ_2, γ, λ and N on $\theta'(0)$ and $F''(0)$. We also worked out on the comparative study like $Cu - Al_2O_3/H_2O$ and Cu/H_2O. We observed that $F''(0)$ increases with increasing in Φ_2. In case of $Cu - Al_2O_3/H_2O$, the values of $F''(0)$ less than that of Cu/H_2O. The $\theta'(0)$ reduces for higher values of Φ_2 while $Cu - Al_2O_3/H_2O$ gains less values of $\theta'(0)$ than that of Cu/H_2O. Thermal slip shows the effects on $\theta'(0)$ which reveals in Table 7. It is seen that thermal slip increases with decreasing the values of $\theta'(0)$. $Cu - Al_2O_3/H_2O$ gains less values of $\theta'(0)$ than that of Cu/H_2O. Velocity slip effects reveal on the $F''(0)$ and $\theta'(0)$ in Table 7. The velocity slip increases with increasing $\theta'(0)$ while decreasing $F'(0)$ respectively. It is observed that surprisingly $Cu - Al_2O_3/H_2O$ gains less values than that of Cu/H_2O. The dimensionless parameter increases with increasing in $\theta'(0)$ and $F''(0)$. It is also seen that surprisingly $Cu - Al_2O_3/H_2O$ gains less values than that of Cu/H_2O.

5 Final remarks

We considered a stagnation point flow of second grade hybrid nanofluid over stretching surface with slip conditions. Involving physical parameters are highlighted through tables and graphs. We find out some significant results surprisingly which mention below.

- $F''(0)$ and $-\theta'(0)$ achieves less values by $Cu - Al_2O_3/H_2O$ than that of Cu/H_2O.
- $F''(0)$ and $-\theta'(0)$ for both cases increases for large values of dimensionless parameter (N).
- $F'(\xi)$ and $\theta(\xi)$ increase for large values of Φ_2.
- Our work shows a good agreement with decay literatures.

Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under grant number G.R.P-26/1441.

Biographies
• **Nadeem Abbas** was born on September 15, 1990 in District Jhang, Punjab, Pakistan. He earned his MS degree in Mathematics in 2014 from the University of the Punjab Lahore, Pakistan and a M. Phil and Ph.D degree from Quaid-i-Azam University Islamabad, Pakistan. Now, he is working as Assistant Professor in the department of Mathematics, Riphah International University, Faisalabad Campus, Faisalabad, Pakistan. He has published more than 30 research articles in well reputed international journals, having more than 470 citations.

• **Sohail Nadeem** is working as Professor/Chairman at the Department of Mathematics at Quaid-i-Azam University, Islamabad, Pakistan. More than 25 PhD scholars and more than 100 M. Phil students have completed their respective degrees under his supervision. He has published more than 500 research articles in well reputed international journals, having more than 7000 citations. He has been awarded several national/international awards. He is also a member of several editorial boards in well reputed international journals. Nationally, he is serving on with several scientific committees throughout the country.

• **Anber Saleem** is working as Professor at the Department of 3Islamabad Medical and Dental College, Islamabad, Pakistan. She has published more than 50 research articles in well reputed international journals, having more than 500 citations. She is also a member of several editorial boards in well reputed international journals. Nationally, he is serving on with several scientific committees throughout the country.

• **Alibek Issakhov Alharbi** is working as professor in department of Mathematics Al-Farabi Kazakh National University, av. al-Farabi, Almaty, Kazakhstan. Nationally, he is serving on with several scientific committees throughout the country. He has published more than 25 research articles in well reputed international journals, having more than 1000 citations. He has been awarded several national/international awards. He is also a member of several editorial boards in well reputed international journals.

• **M.A. Abdel-Sattar** is working as professor in department of Mathematics, Faculty of Science, King Khalid university, Saudi Arabia. Nationally, he is serving on with several scientific committees throughout the country. He has published more than 27 research articles in well reputed international journals, having more than 105 citations. He has been awarded several national/international awards. He is also a member of several editorial boards in well reputed international journals.
• **Shaban Aly** is working as professor in department of Mathematics, Al-Azhar University, Assiut, Egypt. Nationally, he is serving on with several scientific committees throughout the country. He has published more than 73 research articles in well reputed international journals, having more than 883 citations. He has been awarded several national/international awards. He is also a member of several editorial boards in well reputed international journals.

References

1. Rivlin, R. S., & Ericksen, J. L. Stress-deformation relations for isotropic materials. In Collected Papers of RS Rivlin (pp. 911-1013). Springer, New York, NY (1997).
2. Labropulu, F. A few more exact solutions of a second grade fluid via inverse method. Mechanics Research Communications, 27(6), 713-720 (2000).
3. Yürüşoy, M., Pakdemirli, M., & Noyan, Ö. F. Lie group analysis of creeping flow of a second grade fluid. International Journal of Non-Linear Mechanics, 36(6), 955-960 (2001).
4. Shkoller, S. Smooth global Lagrangian flow for the 2D Euler and second-grade fluid equations. Applied Mathematics Letters, 14(5), 539-543 (2001).
5. Labropulu, F. D’Alembert motions for non-Newtonian second grade fluid. International journal of non-linear mechanics, 38(7), 1027-1036 (2003).
6. Nadeem, S., Hussain, A., Malik, M. Y., & Hayat, T. Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet. Applied Mathematics and Mechanics, 30(10), 1255 (2009).
7. Mehmood, R., Nadeem, S., & Akbar, N. S. Non-orthogonal stagnation point flow of a micropolar second grade fluid towards a stretching surface with heat transfer. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 586-595 (2013).
8. Akinbobola, T. E., & Okoya, S. S. The flow of second grade fluid over a stretching sheet with variable thermal conductivity and viscosity in the presence of heat source/sink. Journal of the Nigerian Mathematical Society, 34(3), 331-342 (2015).
9. Majeed, A., Javed, T., & Ghaffari, A. Numerical investigation on flow of second grade fluid due to stretching cylinder with Soret and Dufour effects. Journal of Molecular Liquids, 221, 878-884 (2016).
10. Khan, M., ur Rahman, M., & Manzur, M. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet. Results in physics, 7, 878-889 (2017).
11. Ghadikolaei, S. S., Hosseinazadeh, K., Yassari, M., Sadeghi, H., & Ganji, D. D. Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress, 5, 309-316 (2018).
12. Alamri, S. Z., Khan, A. A., Azeez, M., & Ellahi, R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of Cattaneo–Christov heat flux model. Physics Letters A, 383(2-3), 276-281 (2019).
13. Bilal, S., Mustafa, Z., Rehman, K. U., & Malik, M. Y. MHD Second Grade NanoFluid Flow Induced by a Rotatory Cone. Journal of Nanofluids, 8(4), 876-884 (2019).
14. Elkoumy, S. R., Barakat, E. I., & Abdelsalam, S. I. Hall and transverse magnetic field effects on peristaltic flow of a Maxwell fluid through a porous medium. *Global J. Pure Appl. Math.*, 9(2), 187-203 (2013).

15. Mekheimer, K. S., Hasona, W. M., El-Shekhpy, A. A., & Zaher, A. Z. Electrokinetics of Dielectric Non-Newtonian Bio Fluids with Heat Transfer Through a Flexible Channel: Numerical Study. *Computational Methods in Science and Technology*, 23(4), 331-341 (2017).

16. Mekheimer, K. S., Hasona, W. M., Abo-Elkhair, R. E., & Zaher, A. Z. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. *Physics Letters A*, 382(2-3), 85-93 (2018).

17. Abdelsalam, S. I., Bhatti, M. M., Zeeshan, A., Riaz, A., & Beg, O. A. Metachronal propulsion of electrically-conducting viscoelastic particle-fluid suspension in a ciliated channel under transverse magnetic field: mathematical modelling. *Physica Scripta*, 94, 115301-115314 (2019).

18. Eldesoky, I. M., Abdelsalam, S. I., El-Askary, W. A., & Ahmed, M. M. The Integrated Thermal Effect in Conjunction with Slip Conditions on Peristaltically Induced Particle-Fluid Transport in a Catheterized Pipe. *Journal of Porous Media*, 23(7) (2020).

19. Crane, L. J. Flow past a stretching plate. *Zeitschrift für angewandte Mathematik und Physik ZAMP*, 21(4), 645-647 (1970).

20. Mekheimer, K. S., Salem, A. M., & Zaher, A. Z. Peristaltically induced flow due to a surface acoustic wavy moving wall. *Chinese Journal of Physics*, 51(5), 968-982 (2013).

21. Mekheimer, K. S., Salem, A. M., & Zaher, A. Z. Peristatcally induced MHD slip flow in a porous medium due to a surface acoustic wavy wall. *Journal of the Egyptian Mathematical Society*, 22(1), 143-151 (2014).

22. Malvandi, A., Hedayati, F., & Ganji, D. D. Nanofluid flow on the stagnation point of a permeable non-linearly stretching/shrinking sheet. Alexandria Engineering Journal (2017).

23. Abdelsalam, S. I., & Mekheimer, K. S. Couple stress fluid flow in a rotating channel with peristalsis. *Journal of Hydrodynamics*, 30(2), 307-316 (2018).

24. Abdelsalam, S. I., & Bhatti, M. M. The study of non-Newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. *RSC advances*, 8(15), 7904-7915 (2018).

25. Mekheimer, K. S., Zaher, A. Z., & Hasona, W. M. Entropy of AC electro-kinetics for blood mediated gold or copper nanoparticles as a drug agent for thermotherapy of oncology. *Chinese Journal of Physics* (2020).

26. Bhatti, M. M., Marin, M., Zeeshan, A., Ellahi, R., & Abdelsalam, S. I. Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries. *Frontiers in Physics*, 8, 95 (2020).

27. Khan, M., Salahuddin, T., Tanveer, A., Malik, M. Y., & Hussain, A. Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity. *Chinese Journal of Chemical Engineering*. (2019).

28. Nadeem, S., Ahmed, Z., & Saleem, S. Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. *Microsystem Technologies*, 1-8 (2020).
29. Choi, U. S. Enhancing thermal conductivity of fluids with nanoparticles, Development and Applications of Non-Newtonian flows edited by Siginer, DA and Wang, HP, EFD-Vol. 231/MD-Vol. 66. ASME (1995).
30. Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 582-594 (2013).
31. Turkyilmazoglu, M. Nanofluid flow and heat transfer due to a rotating disk. Computers & Fluids, 94, 139-146 (2014).
32. Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9, 1224-1232 (2018).
33. Abdelsalam, S. I., & Bhatti, M. M. The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures (2018).
34. Abdelsalam, S. I., & Bhatti, M. M. The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures (2018).
35. Eldesoky, I., Abdelsalam, S., El-Askary, W., El-Refaey, A., & Ahmed, M. Joint effect of thermal energy and magnetic field on particulate fluid suspension in a catheterized tube. Bionanoscience, 9(3), 723-739 (2019).
36. Abdelsalam, S. I., & Bhatti, M. M. New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale. Scientific reports, 9(1), 1-14 (2019).
37. Bhatti, M. M., Zeeshan, A., Ellahi, R., Bég, O. A., & Kadir, A. Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese Journal of Physics, 58, 222-234 (2019).
38. Abd Elmaboud, Y., & Abdelsalam, S. I. (2019). DC/AC magnetohydrodynamic-micropump of a generalized Burger's fluid in an annulus. Physica Scripta, 94(11), 115209.
39. Abd Elmaboud, Y., Abdelsalam, S. I., Mekheimer, K. S., & Vafai, K. Electromagnetic flow for two-layer immiscible fluids. Engineering Science and Technology, an International Journal, 22(1), 237-248 (2019).
40. Sohail, M., Naz, R., & Abdelsalam, S. I. Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Physica A: Statistical Mechanics and its Applications, 537, 122753 (2020).
41. Abumandour, R. M., Eldesoky, I. M., Kamel, M. H., Ahmed, M. M., & Abdelsalam, S. I. Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Zeitschrift für Naturforschung A, 75(8), 727-738 (2020).
42. Momin, G. G. Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow. Int. J. Sci. Technol. Res, 2, 195-202 (2013).
43. Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1-3), 41-48 (2011).
44. Nadeem, S., Abbas, N., & Khan, A. U. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results in physics, 8, 829-835 (2018).
45. Nadeem, S., & Abbas, N. On both MHD and slip effect in Micropolar Hybrid nanofluid past a circular cylinder under stagnation point region. Canadian Journal of Physics, (ja) (2018).
45 Eldesoky, I. M., Abdelsalam, S. I., El-Askary, W. A., & Ahmed, M. M. Concurrent development of thermal energy with magnetic field on a particle-fluid suspension through a porous conduit. BioNanoScience, 9(1), 186-202 (2019).
46 Abdelsalam, S. I., & Bhatti, M. M. Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Applied Mathematics and Mechanics, 41(5), 711-724 (2020).
47 Abdelsalam, S. I., & Sohail, M. Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyroflock micro-organisms. Pramana: Journal of Physics, 94(1) (2020).
48 Abdelsalam, S. I., Mekheimer, K. S., & Zaher, A. Z. Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment. Chinese Journal of Physics (2020).
49 Sadaf, H., & Abdelsalam, S. I. Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions. RSC Advances, 10(26), 15035-15043 (2020).
50 Sohail, M., Naz, R., & Abdelsalam, S. I. On the onset of entropy generation for a nanofluid with thermal radiation and gyroflock microorganisms through 3D flows. Physica Scripta, 95(4), 045206 (2020).
51 Abdelsalam, S. I., Mekheimer, K. S., & Zaher, A. Z. Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: Aneurysmal/stenosed segment. Chinese Journal of Physics (2020).
52 Ariel, P. D. On extra boundary condition in the stagnation point flow of a second grade fluid. International journal of engineering science, 40(2), 145-162 (2002).
53 Wang, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43(5), 377-382 (2008).
54 Bachok, N., Ishak, A., & Pop, I. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters, 6(1), 623 (2011).
55 Malvandi, A., Hedayati, F., & Ganji, D. D. Nanofluid flow on the stagnation point of a permeable non-linearly stretching/shrinking sheet. Alexandria Engineering Journal (2017).
56 Yacob, N. A., Ishak, A., & Pop, I. Falkner–Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences, 50(2), 133-139 (2011).
Influence of Cu−Al₂O₃/H₂O and Cu/H₂O on θ(ξ) and F′(ξ).

Effects of Cu/H₂O and Cu−Al₂O₃/H₂O on F′(ξ) and θ(ξ).
Effects of Φ_2 on $F'(\xi)$ and $\theta(\xi)$.

Effects of N, γ and λ on $F'(\xi)$ and $\theta(\xi)$.
Table 1: Physical properties nanofluid and hybrid nanofluid of thermodynamics.

Properties	Nanofluid	Hybrid nanofluid
Density	\(\rho_{nf} = \Phi \rho_s + (1 - \Phi)\rho_f \)	\(\rho_{nf} = \Phi_2 \rho_{s_2} + [(\Phi_1 \rho_{s_1} + \rho_f (1 - \Phi_2) (1 - \Phi_1))] \)
Viscosity	\(\mu_{nf} = \frac{\mu_f}{(1-\Phi)^{2.5}} \)	\(\mu_{h,nf} = \frac{\mu_f}{(1-\Phi_1)^{2.5} (1-\Phi_2)^{2.5}} \)
Heat capacity	\((\rho C_p)_{nf} = \Phi (\rho C_p)_s + (1 - \Phi)(\rho C_p)_f\)	\((\rho C_p)_{h,nf} = \Phi_2 \rho (\rho C_p)_{s_2} + [(\rho C_p)_f (1 - \Phi_2) (1 - \Phi_1)] + \Phi_1 (\rho C_p)_{s_1}\)
Thermal	\(\frac{\kappa_{nf}}{\kappa_f} = \frac{\kappa_s - (n-1)\Phi (\kappa_f - \kappa_s) + (n-1)\kappa_f}{\kappa_s + \Phi(\kappa_f - \kappa_s) + (n-1)\kappa_f} \)	\(\frac{\kappa_{nf}}{\kappa_f} = \frac{k_{s_2} + (n-1)\Phi (k_{f_2} - k_{s_2})}{\kappa_s + (n-1)\Phi (k_{f_2} + k_{s_2})} \), where
conductivity		\(\kappa_{bf} = \frac{k_{s_2} + (n-1)\Phi (k_{f_2} - k_{s_2})}{k_{s_1} + (n-1)\Phi (k_{f_1} - k_{s_1})} \)

Table 2: Thermo-physical properties.

Thermo-physical properties	Base fluid (H₂O)	Al₂O₃	Cu
\(\rho \) (kg/m³)	997.1	3970	8933
\(k \) (W/mK)	0.613	40	400
\(C_p \) (j/kg)K	4179	765	385

Table 3: Numerical results of [52] compared with present results.

\(N - 1 \) \(N \)	Present solution	Approximate solution [52]	Exact solution [52]
	\(F''(0) \)	\(F''(0) \)	\(F''(0) \)
0.00	1.232479	1.232588	1.224745
0.05	1.169785	1.179830	1.185498
0.1	1.121512	1.134114	1.149241
0.2	1.078543	1.058131	1.084652
0.3	1.019854	0.996844	1.028992
0.4	0.965843	0.945869	0.980581
0.5	0.923564	0.902500	0.938083
1.0	0.778532	0.752766	0.784465
2.0	0.609856	0.596769	0.618347
3.0	0.517703	0.510703	0.526235
4.0	0.460396	0.453968	0.465812
5.0	0.413285	0.412885	0.422308
6.0	0.379865	0.381336	0.389071
7.0	0.353241	0.356110	0.362613
8.0	0.340521	0.335335	0.340905
10.0	0.306571	0.302882	0.307093
20.0	0.221324	0.218554	0.220316
50.0	0.141241	0.140077	0.140579
100.0	0.099854	0.099515	0.099701
Table 4: Numerical results of [53] and [54] compared with present results with $\Phi_1 = \Phi_2 = 0$.

λ	Present results	Bachok al et [54]	Wang [53]
	$F''(0)$	$F''(0)$	$F''(0)$
0	1.225684	1.232588	1.232588
0.5	0.712358	0.713295	0.71330
1.0	0	0	0
2.0	1.225684	-1.887307	-1.88731

Table 5: Numerical results of [54] and [56] compared with present results with $\Phi_1 = 0$.

Cu/H$_2$O	Present results	Bachok al et. [54]	Yacob et al. [56]		
	C_f	θ'	C_f		
	Nu$_{X}$	Nu$_{X}$	Nu$_{X}$		
	$\sqrt{Re_X}$	$\sqrt{Re_X}$	$\sqrt{Re_X}$		
Φ_2	λ				
0.1	0.0	1.7968	1.4043	1.8843	1.4043
0.2	0.5	2.4589	1.6421	2.6226	1.6692
0.1	0.0	1.0795	1.7895	1.0904	1.8724
0.2	0.5	1.5004	2.0987	1.5177	2.1577

Table 6: Comparative results of [55] and [54] with present results $\Phi_2 = 0.1$ and $\Phi_1 = 0$.

λ	Bachok et al.[54]	Malvandi et al. [55]	Present results
	$F''(0)$	$F''(0)$	$F''(0)$
0.0	1.4479777	1.449777471	1.3578
0.5	0.8379404	0.837940401	0.8238
1.0	0	0	0
1.5	-	-1.026658507	-1.0252
2.0	-2.217106	-2.217105947	-2.1987

Table 7: Skin frictions and Nusselt numbers of Cu – Al$_2$O$_3$/H$_2$O and Cu/H$_2$O.

Cu – Al$_2$O$_3$/H$_2$O	Cu/H$_2$O						
Φ_2	γ	λ	N	$F''(0)$	$-\theta'(0)$	$F''(0)$	$-\theta'(0)$
0.005	0.3	0.03	2.0	0.787087	0.925585	0.854221	1.0599
0.02	0.809948	0.903288	0.885582	1.03756			
0.04	0.838365	0.87378	0.923625	1.007111			
0.06	0.86466	0.844716	0.957992	0.976308			
0.08	0.888998	0.816229	0.989151	0.945545			
---	---	---	---	---	---		
0.04	0.1	0.838365	1.03848	0.923625	1.16947		
0.2	0.838365	0.949037	0.923625	1.08223			
0.3	0.838365	0.87378	0.923625	1.00711			
0.4	0.838365	0.809582	0.923625	0.941738			
0.3	0.1	1.0672	0.802870	1.13178	0.925748		
0.2	0.937379	0.842992	1.01565	0.970982			
0.3	0.838365	0.87378	0.923625	1.00711			
0.4	0.759557	0.898241	0.848211	1.03673			
0.3	0.0	0.322344	0.648421	0.348645	0.734637		
2.0	0.838365	0.87378	0.923625	1.00711			