The adic, cuspidal, Hilbert eigenvarieties

Fabrizio Andreatta
Adrian Iovita
Vincent Pilloni

May 16, 2016

We dedicate this article to the memory of Robert Coleman, whose ideas and insights inspired it.

Contents

1 Introduction 2

2 The weight space 6
   2.1 The Iwasawa algebra ................................................................. 6
   2.2 A blow up of the formal weight space ........................................ 6
   2.3 The adic weight space ............................................................... 6
   2.4 Properties of the universal character ........................................ 7
      2.4.1 Congruence properties ....................................................... 7
      2.4.2 A key lemma .................................................................. 8
      2.4.3 Analyticity of the universal character ................................. 9

3 Hilbert modular varieties and the Igusa tower 10
   3.1 Hilbert modular varieties ....................................................... 10
   3.2 Canonical subgroups ............................................................... 10
   3.3 The partial Igusa tower ........................................................... 11
      3.3.1 Construction .................................................................. 11
      3.3.2 Ramification .................................................................. 11
      3.3.3 Frobenius .................................................................... 13
   3.4 The basic constructions .......................................................... 13
      3.4.1 Equations .................................................................... 13
## 1 Introduction

During the 1990's Robert Coleman constructed finite slope families of overconvergent, elliptic modular forms parametrized by rigid analytic subspaces of the weight space in [Col1] and [Col2]. This was an extension of Hida’s construction of ordinary families in the mid 80’s in [Hi1]. One striking difference was that while Hida’s theory was completely integral and worked over formal...
schemes, Coleman’s theory was $\mathbb{Q}_p$-rigid analytic. Nevertheless Coleman observed that the characteristic series of the $U_p$-operator acting on finite slope $p$-adic families of overconvergent modular forms had coefficients in the Iwasawa algebra (i.e. they were integral) and conjectured that there should exist an integral or positive characteristic theory of overconvergent modular forms. Following Coleman’s intuition, we obtained such a theory for elliptic modular forms in [AIPC]. The present paper is an extension of [AIPC] to the case of Hilbert modular forms.

More precisely, in the present paper we accomplish the following. Let us first fix a totally real number field $F$ of degree $g$ over $\mathbb{Q}$. Then let us recall (see for example [AIPH] or chapter §8 of the present paper) that there are two relevant algebraic groups attached to $F$, denoted by $G := \text{Res}_{F/Q} \text{GL}_2$ and $G^* := G \times \text{Res}_{F/Q} \mathbb{G}_m$.

From the point of view of automorphic forms it is useful to work with modular forms on $G$, but the Shimura variety associated to $G$ is not a moduli space of abelian varieties. Instead, the Shimura variety associated to $G^*$ is a moduli space of abelian varieties and so we first construct our modular sheaves for modular forms on $G^*$, as in [AIPH], and then we descend these sheaves to the relevant varieties associated to $G$.

a) Modular sheaves associated to $G^*$.

This construction is accomplished in chapters 1 to 7, where we work with toroidal compactifications of the moduli spaces of abelian schemes with $\mathcal{O}_F$-multiplication and we denote by $G$ the semi-abelian scheme which extends the universal abelian scheme.

To fix ideas, let $p$ denote a positive prime integer, $\mathcal{T}$ the torus $\text{Res}_{F/Q} \mathbb{G}_m$ and let $\Lambda_F := \mathbb{Z}_p[[\mathcal{T}(\mathbb{Z}_p)]]$ be the associated Iwasawa algebra. We denote by $\mathcal{W}_F$ the analytic adic space (called the weight space for modular forms on $G^*$) associated to the formal scheme $\mathfrak{M}_F := \text{Spf} \Lambda_F$ and $\kappa^{\text{un}} : \mathcal{T}(\mathbb{Z}_p) \to \Lambda_F^\times$ the universal (weight) character. In particular, we have a natural decomposition of the adic weight space $\mathcal{W}_F = \mathcal{W}_F^{\text{rig}} \cup \mathcal{W}_{F,\infty}$, where $\mathcal{W}_F^{\text{rig}}$ is the adic space associated to the rigid analytic generic fiber of $\text{Spf} \Lambda_F$ (so this is the “old, $p$-adic weight space”) and

$$\mathcal{W}_{F,\infty} = \{ x \in \mathcal{W}_F \mid \text{p}|x = 0\},$$

sometimes called the “boundary of the weight space” and consisting in points with values in characteristic $p$-rings.

Let now $N \geq 4$ be an integer relatively prime to $p$ and let $\mathfrak{M}(\mu_N, \mathfrak{c})$ be the formal scheme associated to a projective toroidal compactification of the Shimura variety for $G^*$ of level $(\mu_N, \mathfrak{c})$. Here $\mathfrak{c}$ is a fractional ideal of $F$ (see section §3 for more details.)

Our main result is the construction of an integral family of sheaves of overconvergent modular forms, parametrized by the formal spectrum of the Iwasawa algebra $\Lambda_F$. This overconvergent family extends the family of $p$-adic modular forms defined by Katz in [K] and used by Hida in [Hi2]. More precisely let us denote by $\mathfrak{M}_F^p = \text{Spf} \Lambda_F^p$ the free” component of $\mathfrak{M}_F$, where $\Lambda_F^p$ is a complete regular local ring of dimension $g + 1$ with maximal ideal $\mathfrak{m}$ and let $\mathfrak{Z} := \mathfrak{M}(\mu_N, \mathfrak{c}) \times \mathfrak{M}_F^p$. We consider, for each $r \geq 0$ the formal scheme $\mathfrak{Z}_r$, which should be thought of as a “formal neighborhood of the ordinary locus in $\mathfrak{Z}$” and which is defined as the formal scheme which represents the functor associating to every $\mathfrak{m}$-adically complete $\Lambda_F^0$-algebra $R$ the set of equivalence classes of tuples $(h, \eta_p, \eta_1, \eta_2, \ldots, \eta_g)$, where $h : \text{Spf} R \to \mathfrak{M}(\mu_N, \mathfrak{c})$ is a morphism of formal schemes and $\eta_p, \eta_i \in H^0\left(\text{Spf} R, h^*(\det \omega_A^{(1-p)^{r+1}})\right)$, $i = 1, \ldots, g$ satisfying

$$H^0\left(\mathfrak{Z}_r, \eta_p = p \mod p^2, H^0\left(\mathfrak{Z}_r, \eta_1 = T_1 \mod p^2, \ldots, H^0\left(\mathfrak{Z}_r, \eta_g = T_g \mod p^2\right)\right.\right).$$

3
See section §6.3 for the definition of the equivalence relation between such tuples. Here \( A \) is the universal semi-abelian scheme over \( \overline{\mathcal{M}}(\mu_N, c) \), denoted \( G \) in the main body of the article, and \( T_1, T_2, \ldots, T_g \) are chosen elements of \( \mathfrak{m} \), which together with \( p \) generate it (see section §2.1 for more details.) Let \( \mathcal{M}_r \) be the base-change, as formal schemes, of \( \mathfrak{Z}_r \) to \( \mathcal{M}_F \). We construct, for each \( r \geq 0 \), a coherent sheaf \( \mathcal{A}_r^{\text{un}} \) on \( \mathcal{M}_r \). Let \( \mathcal{M}_r \) denote the adic analytic space associated to \( \mathcal{M}_r \) and \( \omega_r^{\text{un}} \) the associated analytic coherent sheaf. Then \( \omega_r^{\text{un}} \) is invertible and it satisfies the following properties.

1. The restriction of \( \omega_r^{\text{un}} \) to the rigid analytic space \( \mathcal{M}_r \times_{\text{Spa}(\mathbb{Z}_p, \mathbb{Z}_p)} \text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p) \) is the sheaf defined in \([\text{AIPH}], \) Definition 3.6.

2. for all classical weights \( k \cdot \chi : \mathbb{T}(\mathbb{Z}_p) \rightarrow \mathcal{O}^*_\mathbb{C}_p \), where \( k \) is an algebraic weight and \( \chi \) a finite order character, the specialization of \( \omega_r^{\text{un}} \) to \( k \cdot \chi \) is the restriction to \( \mathcal{M}_r \) of the sheaf \( \omega_A^k(\chi) \) of classical modular forms of weight \( k \) and nebentypus \( \chi \).

3. The family of sheaves \( \{\omega_r^{\text{un}}\}_{r \geq 0} \) is Frobenius compatible.

See §6.4

\( b. \) The modular sheaves associated to \( G \)

This construction is done in chapter 8. Let \( \mathcal{W}_F^G, \kappa_G^{\text{un}} \) denote the formal weight space and respectively the universal character associated to the Iwasawa algebra \( \Lambda^G_F \) for the group \( G \) and let \( \mathcal{W}_F^G \rightarrow \mathcal{W}_F \) be the natural morphism of formal schemes. Let now \( \overline{\mathcal{M}}(\mu_N, c)_G \) denote the formal Shimura variety for the group \( G \) (i.e. the formal completion along the special fiber of a projective, toroidal compactification of the Shimura variety for \( G \)). The toroidal compactifications for the Shimura varieties for \( G^* \) and \( G \) can be chosen in such a way that we have a natural morphism of formal schemes \( \alpha : \overline{\mathcal{M}}(\mu_N, c) \rightarrow \overline{\mathcal{M}}(\mu_N, c)_G \). Moreover if \( \Delta \) denotes the quotient of the group of totally real units of \( \mathcal{O}_F \) by the square of the units congruent to 1 modulo \( N \), this finite group acts naturally on \( \overline{\mathcal{M}}(\mu_N, c) \) by multiplication on the polarizations, such that:

1. The morphism \( \alpha \) is finite, étale and Galois with Galois group \( \Delta \). It follows that \( \overline{\mathcal{M}}(\mu_N, c)_G \cong (\overline{\mathcal{M}}(\mu_N, c))/\Delta \).

2. For every \( r \geq 0 \), we have a natural action of \( \Delta \) on \( \mathcal{M}_r \times_{\mathfrak{Z}_G} \mathcal{W}_F^G \) lifting to an action on \( \mathcal{A}_r^{\text{un}} \), which is the pull-back of \( \mathcal{A}_r^{\text{un}} \) to \( \mathcal{M}_r \times_{\mathfrak{Z}_G} \mathcal{W}_F^G \). By finite, étale descent we obtain a coherent sheaf, still denoted \( \omega_r^{\text{un}} \), on \( \mathcal{M}_{r,G} := (\mathcal{M}_r \times_{\mathfrak{Z}_G} \mathcal{W}_F^G)/\Delta \).

3. If we denote by \( \mathcal{M}_{r,G} \) the analytic adic space associated to the formal scheme \( \mathcal{M}_{r,G} \) and by \( \omega_{r,G}^{\text{un}} \) the associated coherent sheaf, then \( \omega_{r,G}^{\text{un}} \) is invertible and the overconvergent modular forms for \( G \) are overconvergent sections of specializations of this modular sheaf. As in \([\text{AIPH}],\) one can show by a cohomological argument that specialization is surjective on cuspidal forms.

The spectral theory of the operator \( U_p \) on adic families of overconvergent modular forms allows us to construct an adic eigenvariety sitting over the analytic adic space associated to the Iwasawa algebra \( \Lambda^G_F \). See §8.6

Finally, this article generalizes and is crucially based on both \([\text{AIPC}],\) and \([\text{AIPH}],\) In particular for many arguments we refer to loc. cit. Let us point out what is really new here:
1. The boundary of the weight space, both for $G$ and $G^*$ are analytic spaces of dimension $g - 1$. Therefore the boundary overconvergent Hilbert modular forms (i.e. the overconvergent Hilbert modular forms in characteristic $p$) are parameterized by positive dimensional analytic spaces if $g > 1$, i.e. live in true analytic families.

2. In [AIPC], the universal integral modular sheaf $w_{\mu}^\text{un}$ was a sheaf parameterized by the formal blow-up of the formal scheme $\text{Spf} \Lambda$ with respect to the ideal $m$. Therefore the descent to the Iwasawa algebra in this paper improves [AIPC].

3. If $p$ is ramified in $O_F$ the descent of the perfect sheaves of overconvergent Hilbert modular forms to finite levels by the use of Tate traces involves new problems due to the non-smoothness of the associated Hilbert modular varieties in characteristic $p$.

Remark 1.1. In [AIPH] and also in this paper we work with toroidal compactifications $\overline{M}(\mu_N, c)$ of the integral models of the Shimura varieties associated to $G^*$ defined by P. Deligne and G. Pappas [DP], completing previous work of M. Rapoport [Ra]. These models are singular at primes dividing the discriminant of $F$. One could use one of the splitting models $\overline{M}(\mu_N, c) \to \overline{M}(\mu_N, c)$ introduced by G. Pappas and M. Rapoport in [PR]. Such models depend on some auxiliary choices, namely an ordering of the embeddings of $F$ in an algebraic closure, but they have the advantage of being smooth. The given map is an isomorphism over an open dense subscheme (the Rapoport locus, see [3]; in particular the two moduli spaces differ only at primes $p$ dividing the discriminant of $F$.

Recall that the complement of the Rapoport locus is characterized by the fact that the sheaf $\omega_G$ of invariant differentials of the versal semiabelian scheme $G$ over $\overline{M}(\mu_N, c)$ is not locally free as $O_F \otimes O_{\overline{M}(\mu_N, c)}$-module. On the other hand on a splitting model, $\omega_G$ admits a filtration by invertible $O_{\overline{M}(\mu_N, c)}$-modules, stable for the action of $O_F$. These invertible sheaves allow to define Hilbert modular forms of non-parallel weight over the whole of $\overline{M}(\mu_N, c)$.

For our purposes, i.e. the construction of modular sheaves, it makes no difference which model we choose and we prefer to work with the minimal (and more canonical) one, the Deligne-Pappas model. The main reason is the fact that the key ingredient in the construction of the modular sheaves is the introduction of a different integral structure $F$ of $\omega_G$ which is locally free as $O_F \otimes O_{\mathfrak{H}_{n, r, I}}$-module, e.g. even on the complement of the Rapoport locus in the formal scheme $\mathfrak{H}_{n, r, I}$ (see [AIPH], Proposition 4.1, or section §4.1 of the present article).

Acknowledgements. We thank the referee for the careful reading of the manuscript and his/her remarks which hopefully led to improvements. The remark 1.1 was written at his/her request.

Notations. Let $F$ be a totally real number field. Denote by $g$ the degree $[F : \mathbb{Q}]$. Fix a prime $p$. Denote by $\mathfrak{P}_1, \ldots, \mathfrak{P}_f$ the prime ideals of $O_F$ over $p$. For each $i$ let $f_i$ be the residual degree and $e_i$ the ramification index. Write $p = \mathfrak{P}_1 \cdots \mathfrak{P}_f$ for the product of all the primes of $O_F$ above $p$. Set $q = p$ if $p > 2$ and $q = 4$ if $p = 2$. 


2 The weight space

2.1 The Iwasawa algebra

Denote by $T := \text{Res}_{O/F} \mathbb{G}_m$ and by $\Lambda_F$ the completed group algebra $\mathbb{Z}_p[\mathbb{T}(\mathbb{Z}_p)]$. We write

$$\kappa^{un}: \mathbb{T}(\mathbb{Z}_p) \to \Lambda_F^*$$

for the universal character. Fix an isomorphism of topological groups

$$\rho: H \times \mathbb{Z}_p^g \to \mathbb{T}(\mathbb{Z}_p) = (O_F \otimes \mathbb{Z}_p)^*$$

where $H$ is the torsion subgroup of $\mathbb{T}(\mathbb{Z}_p)$. Write $\Lambda_F^0$ for $\mathbb{Z}_p[[\mathbb{T}_g]] = \mathbb{Z}_p[[T_1, \ldots, T_g]]$ where $1+T_i = \epsilon_i$, the $i$-th vector basis of $\mathbb{Z}_p^g$. It is a complete, regular, local ring with maximal ideal $m$. Furthermore $\Lambda_F \cong \Lambda_F^0[H]$ is a finite flat $\Lambda_F^0$-algebra. Actually, there is also a canonical projection map $\Lambda_F \to \Lambda_F^0$ obtained by sending all $h \in H$ to 1. We let $\kappa^{un}$ be the composition of $\kappa^{un}$ and the above projection. We let $\chi: H \to \Lambda_F^*$ be the composition of the inclusion $H \hookrightarrow \mathbb{T}(\mathbb{Z}_p)$ and the universal character.

We denote by $\mathcal{W}_F$, resp. $\mathcal{W}_F^0$ the $m$-adic formal scheme defined by $\Lambda_F$ resp. $\Lambda_F^0$. Then we have a natural map $\mathcal{W}_F \to \mathcal{W}_F^0$ which is finite and flat.

Remark 2.1. In [AIPH] the weight space has been defined over the ring of integers of a finite extension $K$ of $\mathbb{Q}_p$ splitting $F$. The reason is that the classical weights are defined over $K$. Here we prefer to work over $\mathbb{Z}_p$. As a consequence it will turn out that the characteristic series of the $U_p$ operator will have coefficients in the Iwasawa algebra $\Lambda_F^G$ defined in Theorem 8.4, with no need to extend scalars.

2.2 A blow up of the formal weight space

Consider the blow up $\widetilde{\mathcal{W}}_F$ of $\mathcal{W}_F$ with respect to the ideal $m$ and let $t: \widetilde{\mathcal{W}}_F \to \mathcal{W}_F$ be the associated $m$-adic formal scheme.

We describe in more detail the formal scheme $\widetilde{\mathcal{W}}_F$. Notice that by the universal property of the blow up, the ideal sheaf $I := t^{-1}(m) \subset O_{\widetilde{\mathcal{W}}_F}$ is invertible. For every element $\alpha \in m$ denote by $\mathcal{W}_\alpha = \mathcal{O}_+ (\alpha) = \text{Spf}(B_\alpha) \subset \widetilde{\mathcal{W}}_F$ the open affine formal subscheme where $I$ is generated by $\alpha$ ($\mathcal{W}_\alpha$ is empty unless $\alpha \in m \setminus m^2$). In particular the $m$-adic topology on $B_\alpha$ coincides with the $\alpha$-adic topology.

One has variants $\widetilde{\mathcal{W}}_F^0 \to \mathcal{W}_F^0$ of the spaces introduced above and associated to the subalgebra $\Lambda_F^0$ of $\Lambda_F$. We also have a natural finite and flat morphism $\widetilde{\mathcal{W}}_F \to \widetilde{\mathcal{W}}_F^0$. For every element $\alpha \in m$ we write $\mathcal{W}_\alpha^0 = \text{Spf}(B_\alpha^0) \subset \widetilde{\mathcal{W}}_F^0$ for the open affine formal subscheme defined by $\alpha$.

2.3 The adic weight space

Let $\mathcal{W}_F$ be the analytic adic space associated to $\widetilde{\mathcal{W}}_F$. For all open $\text{Spf} A$ of $\widetilde{\mathcal{W}}_F$, the associated open of $\mathcal{W}_F$ is the open subset of analytic points $\text{Spa}(A, A)^{an}$ of $\text{Spa}(A, A)$. For every element
α ∈ m, let \( W_α \) be the open subset of \( \tilde{W}_F \) consisting of the analytic points of the adic space associated to \( \mathfrak{M}_α \). Then \( W_α \) is affinoid equal to \( \text{Spa}(B_α[α^{-1}], B_α) = \text{Spa}(B_α, B_α)^{an} \).

Choosing generators \((p, T_1, \ldots, T_g)\) of \( m \) then \( \tilde{W}_F \) is covered by the affinoids

\[
W_p, W_{T_1}, \ldots, W_{T_g}.
\]

We let \( W_F \) be the analytic adic space associated to \( \mathfrak{M}_F \). Namely, \( W_F \) consists of the analytic points \( \text{Spa}(Λ_F, Λ_F)^{an} \subset \text{Spa}(Λ_F, Λ_F) \). We denote by \( t: W_F \to W_F \) the morphism of analytic adic spaces associated to \( t: \mathfrak{M}_F \to \mathfrak{M}_F \).

**Lemma 2.2.** The morphism \( t: \tilde{W}_F \to W_F \) is an isomorphism of adic spaces.

**Proof.** For all \( α ∈ m \) the subset \( \{x ∈ W_F, 0 ≠ |α|_x ≥ |β|_x, ∀ β ∈ m\} \) of \( W_F \) equals \( W_α \) by definition. Moreover, \( W_F \) is covered by the \( W_α \). The conclusion follows. 

**Remark 2.3.** Let us denote by \( W_F^{Berk} \) the subset of rank 1 points of \( W_F \). Then there is a map:

\[
\Theta: W_F^{Berk} \to \mathbb{P}^9(\mathbb{R}) \quad x \mapsto (|p|_x, |T_1|_x, \ldots, |T_g|_x)
\]

with image included in \([0, 1]^{g+1}\). This map may be helpful in order to understand \( W_F \). Let us denote by \((x_0, \ldots, x_g)\) the coordinates on \( \mathbb{P}^9(\mathbb{R}) \). Then \( \Theta^{-1}\{x_0 ≠ 0\} \) is the set of rank one points on the usual (adic) weight space over \( \text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p) \) associated to \( Λ_F \).

Let us denote by \( W_F^0 \) the analytic adic space attached to \( \mathfrak{M}_F^0 \). For every element \( α ∈ m \) we denote by \( W_α^0 \) the analytic adic space associated to \( \mathfrak{M}_α^0 \).

Finally, let us remark that the classical weights are points of the subspace of \( W_F \) where \( p \) is invertible.

### 2.4 Properties of the universal character

#### 2.4.1 Congruence properties

First of all we need to elaborate on the identification \( ρ: H × \mathbb{Z}_p^g \simeq (\mathcal{O}_F × \mathbb{Z}_p)^* \) of the previous section.

**Lemma 2.4.** (1) The group \( H \) can be realized as a quotient of \((\mathcal{O}_F × \mathbb{Z}_p)^*/(1 + q\mathcal{O}_F × \mathbb{Z}_p)\). Its prime to \( p \) part is isomorphic to \((\mathcal{O}_F × \mathbb{Z}_p)^*/(1 + p\mathcal{O}_F × \mathbb{Z}_p)\).

(2) Given \((a_1, \ldots, a_g) ∈ \mathbb{Z}_p^g\), we have \( κ(ρ(a_1, \ldots, a_g)) = \prod_{i=1}^g (1 + T_i)^{a_i} ∈ (Λ_F^0)^* \).

**Proof.** (1) The group \( H \) is finite and its prime to \( p \) part maps isomorphically onto \((\mathcal{O}_F × \mathbb{Z}_p)^*/(1 + p\mathcal{O}_F × \mathbb{Z}_p)\) via \( ρ \). Denote by \( L \) the quotient \((\mathcal{O}_F × \mathbb{Z}_p)^*/H\). The subgroup \( 1 + q\mathcal{O}_F × \mathbb{Z}_p \) of \((\mathcal{O}_F × \mathbb{Z}_p)^* \) is isomorphic to \( q(\mathcal{O}_F × \mathbb{Z}_p)/H \). The subgroup \( H \) of \((\mathcal{O}_F × \mathbb{Z}_p)^* \) injects into \((\mathcal{O}_F × \mathbb{Z}_p)^*/(1 + q\mathcal{O}_F × \mathbb{Z}_p)\). This proves the first claim.

(2) The standard basis elements \( ε_1, \ldots, ε_g \) of \( \mathbb{Z}_p^g \) map to \( 1 + T_1, \ldots, 1 + T_g \) in \( Λ_F^0 \). 

We define the following ideals in \( Λ_F^0 \):
\[ \mathfrak{m}_n = (\alpha p^{n-1}, p\alpha p^{n-2}, \ldots, p^{n-1}\alpha, \alpha \in (T_1, \ldots, T_g)) \text{ if } n \geq 1. \]

\[ \mathfrak{m}_0 = \mathfrak{m}_1 = (T_1, \ldots, T_g). \]

**Lemma 2.5.** For every \( n \in \mathbb{Z}_{\geq 1} \) we have that \( \kappa(\rho(p^{n-1}Z_p^g)) - 1 \subset \mathfrak{m}_n \). In particular we have for all \( n \in \mathbb{Z}_{\geq 1} \)

\[ \kappa(1 + qp^{n-1}O_F \otimes Z_p) - 1 \subset \mathfrak{m}_n. \]

Moreover, \( \kappa(\mathbb{T}(Z_p)) - 1 \subset \mathfrak{m}_0. \)

**Proof.** Note that \( \kappa(\rho(p^{n-1}a_1, \ldots, p^{n-1}a_g)) = \prod_{i=1}^g (1 + T_i)^{p^{n-1}a_i} \). One computes that \((1 + T_i)^{p^{n-1}} - 1\) is contained in the ideal \((T_i^{p^{n-1}}, T_i^{p^{n-2}}, \ldots, T_i^{1})\); see \([\text{AIPC}]\) Lemme 2.3.

Notice that \( \kappa \) is trivial on \( H \) so that it factors via \( \rho(Z_p^g) \cong (O_F \otimes Z_p)^{s}/H \). Furthermore \((1 + qp^{n-1}O_F \otimes Z_p) = (1 + qO_F \otimes Z_p)\) is contained in \( \rho(p^{n-1}O_F \otimes Z_p) \) via the identification above. The second claim follows. \( \square \)

### 2.4.2 A key lemma

We introduce a formalism inspired by Sen’s theory that will be repeatedly used in the paper. Let \( n \in \mathbb{Z}_{\geq 1} \) and \( A_0 \to A_1 \to \cdots \to A_n \) be a tower of \( \Lambda^0_F \)-algebras which are domains. We assume that the group \((O_F/p^nO_F)^*\) acts on \( A_n \) by automorphisms of \( \Lambda^0_F \)-algebras and that \( A_s \) is the sub-ring of \( A_n \) fixed by the kernel \( H_s \) of the map \((O_F/p^nO_F)^* \to (O_F/p^nO_F)^* \).

Let \( h \in A_0 \) and let \( p_0 = 0 \leq p_1 \leq \cdots \leq p_n \) be a sequence of integers. Let \( c_n \in h^{-p_n}A_n \) be an element. Set \( c_s = \sum_{\sigma \in H_s} \sigma c_n \). We assume that:

- \( c_s \in h^{-p_s}A_s \) for all \( s \geq 0 \),
- \( c_0 = 1 \).

Set \( b_s = \sum_{\sigma \in (O_F/p^nO_F)^*} \kappa(\bar{\sigma}) \sigma(c_s) \in h^{-p_s}A_s \) for \( s \geq 1 \) and \( b_0 = 1 \). Here \( \bar{\sigma} \in \mathbb{T}(Z_p) \) is a lift of \( \sigma \) so that \( b_s \) depends on \( c_s \) and on the choices of lifts.

**Lemma 2.6.** 1. Another system of choices of lifts \( \bar{\sigma} \) for the \( \sigma \)'s would give an element \( b'_s \) and we have

- \( b'_s - b_s \in h^{-p_s}m_sA_s \) if \( s \geq 1, p \geq 3 \),
- \( b'_s - b_s \in h^{-p_s}m_{s-1}A_s \) if \( s \geq 2, p = 2 \),
- \( b'_1 - b_1 \in h^{-p_1}m_0A_1 \) if \( p = 2 \).

2. We have the following congruence relations:

- \( b_s - b_{s-1} \in h^{-p_s}m_{s-1}A_s \) if \( s \geq 1, p \geq 3 \),
- \( b_s - b_{s-1} \in h^{-p_s}m_{s-2}A_s \) if \( s \geq 2, p \geq 3 \),
- \( b_1 - b_0 \in h^{-p_1}m_0A_0 \) if \( p = 2 \).
Proof. The first point follows from lemma 2.5. To prove the second point, assume that $s \geq 1$ and notice that

$$b_s = \sum_{\tau \in (O_F/p^{s+1}O_F)^*} \kappa(\tilde{\tau}) (\sum_{\sigma \in 1+p^{s+1}O_F/p^{s}O_F} (\kappa(\tilde{\sigma}) - 1)\sigma(c_s) + c_{s-1})$$

$$= \sum_{\tau \in (O_F/p^{s+1}O_F)^*} \kappa(\tilde{\tau}) (\sum_{\sigma \in 1+p^{s+1}O_F/p^{s}O_F} (\kappa(\tilde{\sigma}) - 1)\sigma(c_s)) + b_{s-1}$$

One concludes by applying lemma 2.5 and also using the first point.

\[ \square \]

2.4.3 Analyticity of the universal character

We now study the analytic properties of the universal character. The degree of analyticity depends on the $p$-adic valuation of $T_1, \ldots, T_g$. This motivates the following definition. For $\frac{x}{a} \in \mathbb{Q}_{\geq 1}$ we define the following rational open subsets of $W^0_F$:

- $W^0_{F, \leq \frac{x}{a}} = \{ x \in W^0_F, |\alpha^s|_F \leq |p^s|_F \neq 0, \forall \alpha \in \mathfrak{m} \}$,

- $W^0_{F, \geq \frac{x}{a}} = \{ x \in W^0_F, \exists \alpha \in \mathfrak{m}, |p^s|_F \leq |\alpha^s|_F \neq 0 \}$.

Set $W^0_{F, \leq a} := W^0_{F, \leq \frac{a}{a}}$. If $I = [a, b]$ is a closed interval with $a, b \in \mathbb{Q}_{\geq 1} \cup \{ \infty \}$, define $W^0_{F, I} = W^0_{F, \leq b} \cap W^0_{F, \geq a}$. For all $\alpha \in \mathfrak{m}$ we let $W^0_{\alpha, I} = W^0_{F, I} \cap W^0_{\alpha}$.

Remark 2.7. If $x \in W^0_{\alpha}$ is a rank one point, then $\alpha$ is a pseudo-uniformizer of the residue field $k(x)$. Let us denote by $v_\alpha : k(x) \to \mathbb{R} \cup \{ \infty \}$ the valuation on $k(x)$ normalized by $v_\alpha(\alpha) = 1$. Notice that the norm $p^{-v_\alpha(\cdot)}$ represents the equivalence class of $|.|_F$. Then $x \in W^0_{\alpha, I}$ if and only if $v_\alpha(p) \in I$.

We now construct formal models. Take an element $\alpha \in \mathfrak{m}$. We define $B^0_{\alpha, I} = H^0(W_{\alpha, I}, O^+_\mathfrak{m}_{W_{\alpha, I}})$.

Set $W^0_{\alpha, I} = \text{Spf} B^0_{\alpha, I}$. The analytic fiber of $W^0_{\alpha, I}$ is $W^0_{\alpha, I}$. For various $\alpha$’s, the $W^0_{\alpha, I}$ glue to a formal scheme $\tilde{W}^0_{F, I}$ with analytic fiber $W^0_{F, I}$. Remark that $\tilde{W}^0_{F, [1, \infty]} = \tilde{W}^0_{F}$.

If $I \subseteq [0, \infty]$, then $\tilde{W}^0_{F, I}$ is a $p$-adic formal scheme (the $\mathfrak{m}$-adic topology is the $p$-adic one). In the lemma below, $G_m, G_\alpha$ are considered as functors on the category of $p$-adic formal schemes equipped with a structural morphism to $\tilde{W}^0_F$. Let $\epsilon = 1$ if $p \neq 2$ and $\epsilon = 3$ if $p = 2$. The group $T(Z_p) \cdot (1 + p^{n+\epsilon}O_F \otimes \mathbb{G}_a)$ is a subgroup of $G_\alpha$.

Proposition 2.8. Let $n \geq 0$ be an integer. Suppose that $I \subseteq [0, p^n]$. The character $\kappa$ extends to a pairing

$$\tilde{W}^0_{F, I} \times T(Z_p) \cdot (1 + p^{n+\epsilon}O_F \otimes \mathbb{G}_a) \longrightarrow G_m.$$ 

It restricts to a pairing

$$\tilde{W}^0_{F, I} \times (1 + p^{n+\epsilon+n'}O_F \otimes \mathbb{G}_a^+) \longrightarrow 1 + qp^n \mathbb{G}_a$$

for all $n' \in \mathbb{Z}_{\geq 0}$.

Proof. Easy and left to the reader. \[ \square \]
3 Hilbert modular varieties and the Igusa tower

3.1 Hilbert modular varieties

We recall the definition of Hilbert modular varieties following [Ra] and [DP].

Fix an integer $N \geq 4$ and a prime $p$ not dividing $N$. Let $\mathfrak{c}$ be a fractional ideal of $F$ and let $\mathfrak{c}^+$ be the cone of totally positive elements. Denote by $D_{F}$ the different ideal of $\mathcal{O}_F$. Let $M(\mu_N, \mathfrak{c})$ be the Hilbert modular scheme over $\mathbb{Z}_p$ classifying triples $(\mathfrak{A}, \iota, \Psi)$ consisting of: (1) abelian schemes $A \to S$ of relative dimension $g$ over $S$, (2) an embedding $\iota : \mathcal{O}_F \subset \text{End}_S(A)$, (3) a closed immersion $\Psi : \mu_N \otimes D_F^{-1} \to A$ compatible with $\mathcal{O}_F$-actions, (4) if $P \subset \text{Hom}_{\mathcal{O}_F}(A, A^\vee)$ is the sheaf for the étale topology on $S$ of symmetric $\mathcal{O}_F$-linear homomorphisms from $A$ to the dual abelian scheme $A^\vee$ and if $P^+ \subset P$ is the subset of polarizations, then $\lambda$ is an isomorphism of étale sheaves $\lambda : (P, P^+) \cong (\mathfrak{c}, \mathfrak{c}^+)$, as invertible $\mathcal{O}_F$-modules with a notion of positivity. The triple is subject to the condition that the map $A \otimes_{\mathcal{O}_F} \mathfrak{c} \to A^\vee$ is an isomorphism of abelian schemes (the so called Deligne-Pappas condition).

We write $\overline{M}(\mu_N, \mathfrak{c})$ and $\overline{M}(\mu_N, \mathfrak{c})$ for a projective toroidal compactification, respectively the minimal or Satake compactification of $M(\mu_N, \mathfrak{c})$ (see [Ra]). Let $\overline{M}(\mu_N, \mathfrak{c})$ (resp. $\overline{M}(\mu_N, \mathfrak{c})$) be the associated formal schemes. They are endowed with a semi-abelian scheme $G$ with $\mathcal{O}_F$-action.

There exist maximal open subscheme, respectively formal subscheme $\overline{M}(\mu_N, \mathfrak{c}) \subset \overline{M}(\mu_N, \mathfrak{c})$, resp. $\overline{M}(\mu_N, \mathfrak{c}) \subset \overline{M}(\mu_N, \mathfrak{c})$ such that $\omega_G$, the conormal sheaf to the identity of $G$, is an invertible $\mathcal{O}_{\overline{M}(\mu_N, \mathfrak{c})} \otimes \mathcal{O}_F$-module, resp. $\mathcal{O}_{\overline{M}(\mu_N, \mathfrak{c})} \otimes \mathcal{O}_F$-module (the so called Rapoport condition). The complement is empty if $p$ does not divide the discriminant of $F$ and, in general, it is of codimension 2 in the characteristic $p$ special fiber of $\overline{M}(\mu_N, \mathfrak{c})$; see [DP].

We denote by $\text{Ha} \in H^0(\mathcal{M}^*(\mu_N, \mathfrak{c})_F, \text{det} \omega_G^{1-p})$ the Hasse invariant. We let $\text{Hdg} \subset \mathcal{O}_{\overline{M}(\mu_N, \mathfrak{c})}$ be the Hodge ideal defined by the Hasse invariant (see [AIPC] §A.1 for a precise definition: locally on $\overline{M}(\mu_N, \mathfrak{c})$ it is the ideal generated by $p$ and a (any) lift of a local generator of $\text{Hdg}$ det $\omega_G^{1-p}$).

3.2 Canonical subgroups

Let $A_0$ be a $\mathbb{Z}_p$-algebra and $\alpha \in A_0$ a non-zero element. We assume that $A_0$ satisfies the following:

\((*)\) $A_0$ is an integral domain, it is the $\alpha$-adic completion of a $\mathbb{Z}_p$-algebra of finite type and $p \in \alpha A_0$.

Let $\overline{M}(\mu_N, \mathfrak{c}) \times_{\text{Spec} \mathbb{Z}_p} \text{Spec} A_0$ be the base change of the toroidal compactification via $\text{Spec} A_0 \to \text{Spec} \mathbb{Z}_p$ and let $\mathfrak{Y}$ be the associated formal scheme over $\text{Spf} A_0$.

Definition 3.1. For every integer $r \in \mathbb{N}$ denote by $\mathfrak{Y}_r \to \mathfrak{Y}$ the formal scheme over $\mathfrak{Y}$ representing the functor which to any $\alpha$-adically complete $A_0$-algebra $\mathcal{R}$ without $\alpha$-torsion associates the equivalence classes of pairs $(h : \text{Spf} R \to \mathfrak{Y}, \eta \in H^0(\text{Spf} R, h^* \text{det} \omega_G^{(1-p)r+1}))$ such that

$$\text{Ha}^{r+1} \eta = \alpha \mod p^2.$$ 

Two pairs $(h, \eta)$ et $(h', \eta')$ are declared equivalent if $h = h'$ and $\eta = \eta'((1 + \frac{u^2}{p})u$ for some $u \in R$.

We also denote by $\mathfrak{Y}_r^\mathfrak{R} \subset \mathfrak{Y}_r$ the open formal subscheme where the Rapoport condition holds (see [G]).
Proposition 3.2. Assume that $p \in \alpha^{p^k}A_0$. Then for every integer $1 \leq n \leq r + k$ one has a canonical sub-group scheme $H_n$ of $G[p^n]$ over $\mathfrak{Y}_r$, and $H_n$ modulo $\text{Hdg}_{\mathbb{G}_a[p^n]}$ lifts the kernel of the $n$-th power of Frobenius. Moreover $H_n$ is finite flat and locally of rank $p^{nq}$, it is stable under the action of $O_F$, and the Cartier dual $H^D_n$ is étale locally over $A_0[\alpha^{-1}]$ isomorphic to $O_F/p^n$ (as $O_F$-module).

Proof. All claims follow from [AIPC, Appendix A]. \hfill \square

Proposition 3.3. For every $r \in \mathbb{Z}_{\geq 2}$ the isogeny given by dividing by the canonical subgroup $H_1$ of level 1 defines a finite morphism $\phi: \mathfrak{Y}_r \to \mathfrak{Y}_{r-1}$. The restriction to the Rapoport locus $\phi: \mathfrak{Y}_r^R \to \mathfrak{Y}^R_{r-1}$ is finite and flat of degree $p^{g}$. 

Proof. This is the content of [AIPC, Cor. A.2] which is written for general $p$-divisible groups. The last claim follows as relative Frobenius is finite and it is flat over the (smooth) Rapoport locus. \hfill \square

### 3.3 The partial Igusa tower

#### 3.3.1 Construction

We use the notations of the previous section. Let $A := A_0[\alpha^{-1}]$: it is a Tate ring in the sense of Huber [H1] with ring of definition $A_0$. Let $A^+ \subset A$ be the normalization of $A_0$ in $A$. The fact that $A_0$ is noetherian implies that Spa($A, A^+$) is an adic space; [H2, Thm. 2.2]. We define $\mathfrak{Y}_r := \mathfrak{Y}_r^\text{ad} \times \text{Spa}(A, A_0) \text{Spa}(A, A^+)$:

Assume that $p \in \alpha^{p^k}A_0$ and let $r \in \mathbb{N}$ and $n \in \mathbb{N}$ be an integer such that $1 \leq n \leq r + k$. It follows from Proposition 3.2 that $H^D_n$ over $\mathfrak{Y}_r$ is étale locally isomorphic to $O_F/p^nO_F$. We let $\mathcal{IG}_{n,r} \to \mathfrak{Y}_r$ be the Galois cover for the group $(O_F/p^nO_F)^*$ classifying the isomorphisms $O_F/p^nO_F \to H^D_n$, as group schemes, equivariant for the $O_F$-action.

We define $\mathfrak{IG}_{n,r} \to \mathfrak{Y}_r$ to be the formal scheme given by the normalization of $\mathfrak{Y}_r$ in $\mathcal{IG}_{n,r}$. See [AIPC §3.2] for details. Such morphism is finite and is endowed with an action of $(O_F/p^nO_F)^*$. One then gets a sequence of finite, $(O_F/p^{n+k}O_F)^*$-equivariant morphisms

\[
\mathfrak{IG}_{r+k,r} \to \mathfrak{IG}_{r+k-1,r} \to \cdots \to \mathfrak{Y}_r.
\]

The morphisms $h: \mathfrak{IG}_{n,r} \to \mathfrak{IG}_{n-1,r}$ are finite and étale over $\mathfrak{Y}_r$. In particular there is a trace map $\text{Tr}_{\mathfrak{IG}}: h_*O_{\mathfrak{IG}_n,r} \to O_{\mathfrak{IG}_{n-1,r}}$.

#### 3.3.2 Ramification

Proposition 3.4. We have

\[
\text{Hdg}^{p^{n-1}}O_{\mathfrak{IG}_{n-1,r}} \subset \text{Tr}_{\mathfrak{IG}}(h_*O_{\mathfrak{IG}_{n,r}})
\]

for every $1 \leq n \leq r + k$.

Moreover if $p$ is unramified one has $\text{Tr}_{\mathfrak{IG}}(h_*O_{\mathfrak{IG}_{1,r}}) = O_{\mathfrak{Y}_r}$. 

11
Proof. The claim for \( n \geq 2 \) follows arguing as in [AIPC, Prop. 3.4]. We recall the argument. By normality the natural map \( \mathcal{IG}_{n,r} \to H_n^D \) over \( \mathcal{Y}_r \), associating to an isomorphism \( O_F/p^nO_F \to H_n^D \) the image of \( 1 \in O_F/p^nO_F \), extends to a morphism of formal schemes \( \mathfrak{IG}_{n,r} \to H_n^D \) over \( \mathcal{Y}_r \). In particular we get a commutative diagram of formal schemes over \( \mathcal{Y}_r \):

\[
\begin{array}{ccc}
\mathfrak{IG}_{n,r} & \longrightarrow & H_n^D \\
\downarrow & & \downarrow \\
\mathfrak{IG}_{n-1,r} & \longrightarrow & H_{n-1}^D,
\end{array}
\]

which is cartesian over the analytic fiber \( \mathcal{Y}_r \). In particular \( \mathfrak{IG}_{n,r} \to \mathfrak{IG}_{n-1,r} \) is the normalization of the fpf \( (H_n/H_{n-1})^D \)-torsor over \( \mathfrak{IG}_{n-1,r} \) obtained by the fibre product of the diagram above. One reduces to prove the claimed result for the trace of the morphism \( H_n^D \to H_{n-1}^D \) (over \( \mathcal{Y}_r \)) and this follows from the relation between the different and the trace and a careful analysis of the different of \( (H_n/H_{n-1})^D \) given in [AIPC, Cor. A.2].

We are left to discuss the case \( n = 1 \). If \( p \) is unramified then the degree of \( \mathcal{IG}_{1,r} \to \mathcal{Y}_r \) is prime to \( p \) and the second claim of the proposition follows immediately. If \( p \) is ramified we let \( p \) be the product of all primes of \( O_F \) over \( p \). We introduce a variant of \( \mathcal{IG}_{1,r} \) by setting \( \mathcal{IG}_{1,r}' \) to be the adic space over \( \mathcal{Y}_r \) classifying isomorphisms \( O_F/pO_F \to H_1[p]^D \), as group schemes, equivariant for the \( O_F \)-action. Here \( H_1[p] \) is the kernel of multiplication by \( p \) on \( H_1 \).

We have a natural map of adic spaces \( \mathcal{IG}_{1,r} \to \mathcal{IG}_{1,r}' \to \mathcal{Y}_r \). Taking normalizations we get morphisms of formal schemes \( \mathfrak{IG}_{1,r} \to \mathfrak{IG}_{1,r}' \to \mathcal{Y}_r \).

The degree of \( \mathcal{IG}_{1,r}' \to \mathcal{Y}_r \) is the order of \( (O_F/pO_F)^* \) which is prime to \( p \) so that \( \text{Tr}_{\mathfrak{IG}}(h, O_{\mathfrak{IG}_{1,r}'}) = O_{\mathcal{Y}_r} \). We are left to estimate the image of the trace map associated to the morphism \( \mathfrak{IG}_{1,r} \to \mathfrak{IG}_{1,r}' \). Arguing as at the beginning of the proof we get a commutative diagram of formal schemes over \( \mathcal{Y}_r \), which is cartesian over \( \mathcal{Y}_r \):

\[
\begin{array}{ccc}
\mathfrak{IG}_{1,r} & \longrightarrow & H_1^D \\
\downarrow & & \downarrow \\
\mathfrak{IG}_{1,r}' & \longrightarrow & H_1[p]^D
\end{array}
\]

Thus \( \mathfrak{IG}_{1,r} \) is the normalization of a torsor under \( (H_1/H_1[p])^D \). We have an exact sequence \( 0 \to (H_1/H_1[p])^D \to H_1^D \to (H_1[p])^D \to 0 \). It follows that \( \text{Hdg} \) is contained in the different of \( (H_1/H_1[p])^D \) over \( \mathcal{Y}_r \) and we conclude.

\[\square\]

We immediately get the following

**Corollary 3.5.** Let \( \text{Spf } R \) be an open of \( \mathcal{Y}_r \) such that the ideal sheaf \( \text{Hdg} \) is trivial and choose a generator \( \tilde{\text{Ha}} \). For every \( 0 \leq n \leq r+k \) there exist elements \( c_0 = 1 \) and \( c_n \in \tilde{\text{Ha}} \) such that \( \text{Tr}_{\mathfrak{IG}}(c_n) = c_{n-1} \) for every \( n \geq 1 \).
3.3.3 Frobenius

Recall from Proposition 3.3 that we have a Frobenius map \( \phi : \mathcal{Y}_r \to \mathcal{Y}_{r-1} \).

**Proposition 3.6.** There exists an \((\mathcal{O}_F/p^n\mathcal{O}_F)^*\)-equivariant map \( \mathcal{IG}_{n,r} \to \mathcal{IG}_{n,r-1} \) lifting the map \( \phi : \mathcal{Y}_r \to \mathcal{Y}_{r-1} \).

**Proof.** As \( \mathcal{IG}_{n,r} \) is constructed by normalizing \( \mathcal{Y}_r \) in \( \mathcal{IG}_{n,r} \), it suffices to construct a lift \( \phi : \mathcal{IG}_{n,r} \to \mathcal{IG}_{n,r'} \) at the level of adic spaces.

Notice that \( H_{n+1}/H_1 \) is the canonical subgroup \( H'_n \) of level \( n \) of \( G' = G/H_1 \) thanks to AIPC cor. A.2. As multiplication by \( p \) on \( H_{n+1} \) defines an isomorphism \( H_{n+1}/H_1 \cong H_n \) and hence an isomorphism \( H_n \cong H'_n \) (over \( \mathcal{Y}_r \) !). Any \( \mathcal{O}_F \)-linear isomorphism map \( \mathcal{O}_F/p^n\mathcal{O}_F \to H_n^D \) defines an \( \mathcal{O}_F \)-linear isomorphism \( \Psi' : \mathcal{O}_F/p^n\mathcal{O}_F \to (H'_n)^D \). \( \square \)

3.4 The basic constructions

Recall from §2.2 that we have introduced an \( m \)-adic formal scheme \( \widehat{\mathcal{W}}_F^0 \), which is a formal model of the weight space. It is characterized by the property that the inverse image of the maximal ideal of \( \Lambda^0_F \) is an invertible ideal sheaf of \( \mathcal{O}_{\widehat{\mathcal{W}}_F^0}^\cdot \).

For every element \( \alpha \in m \) we have denoted by \( \mathcal{W}_\alpha^0 := \text{Spf} B^0_\alpha \) the open formal affine subscheme of \( \widehat{\mathcal{W}}_F^0 \) defined by \( \alpha \). We have set \( \mathcal{W}_{\alpha}^0 := \text{Spa}(B^0_\alpha[\alpha^{-1}], B^0_\alpha) \) to be the analytic adic subspace of \( \widehat{\mathcal{W}}_F^0 \) defined by \( \mathcal{W}_\alpha^0 \).

Applying the construction of section 3.2 with \( A_0 = B^0_\alpha \), one obtains a formal scheme \( \mathfrak{X}_{r,\alpha} \) over \( \mathcal{W}_\alpha^0 \), the associated analytic adic space over \( \mathcal{W}_\alpha^0 \).

For all choices of \( \alpha \), these formal schemes \( \mathfrak{X}_{r,\alpha} \) glue into a formal scheme \( \mathfrak{X}_r \to \widehat{\mathcal{W}}_F^0 \). We let \( \mathfrak{X}_r \to \mathcal{W}_\alpha^0 \) be the analytic adic space associated to \( \mathfrak{X}_r \).

Let \( I = [p^k, p^{k'}] \subset [1, \infty] \) be an interval. We defined a formal scheme \( \mathcal{W}_{F,I}^0 \to \mathcal{W}_F^0 \) and now we consider \( \mathfrak{X}_{r,I} = \mathfrak{X}_r \times_{\mathfrak{X}_F} \mathcal{W}_{F,I}^0 \) and \( \mathfrak{X}_{r,\alpha,I} = \mathfrak{X}_{r,\alpha} \times_{\mathfrak{X}_F} \mathcal{W}_{\alpha,I}^0 \).

Let \( n \in \mathbb{N} \) be an integer such that \( 1 \leq n \leq r+k \). Applying the considerations of §3.3 we obtain an étale cover of adic spaces

\[ \mathcal{IG}_{n,r,\alpha,I} \to \mathfrak{X}_{r,\alpha,I}, \]

for the group \((\mathcal{O}_F/p^n\mathcal{O}_F)^*\), classifying the isomorphisms \( \mathcal{O}_F/p^n\mathcal{O}_F \to H_n^D \), as group schemes, equivariant for the \( \mathcal{O}_F \)-action. This is a morphism of adic spaces associated to a morphism of formal schemes

\[ \mathcal{IG}_{n,r,\alpha,I} \to \mathfrak{X}_{r,\alpha,I}. \]

For various \( \alpha \in m \) these adic spaces and formal schemes glue and we obtain \( \mathcal{IG}_{n,r,I} \to \mathfrak{X}_{r,I} \) and \( \mathcal{IG}_{n,r,I} \to \mathfrak{X}_{r,I} \).

3.4.1 Equations

In this subsection we give local equations for some of the spaces defined so far. We have:

\[ B^0_\alpha = \mathbb{Z}_p[[T_1, \ldots, T_g]]\langle \frac{p}{\alpha}, \frac{T_1}{\alpha}, \ldots, \frac{T_g}{\alpha} \rangle. \]
If \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \), this is a regular ring. Otherwise this ring is 0. Consider an interval \( I = [p^k, p^h] \) with \( k \geq 0 \) an integer and \( h \geq k \) an integer or \( h = \infty \). Take \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \). If \( 1 \in I \) and \( \alpha = p \), then \( B^0_{\alpha, I} = B_\alpha \). If \( \alpha = p \) and \( 1 \notin I \), \( B^0_{\alpha, I} = 0 \). Assume now that \( \alpha \neq p \).

1. If \( h \neq \infty \) then \( B^0_{\alpha, I} = \mathbb{Z}_p[[T_1, \ldots, T_g]]/(\mathbb{Z}_p^{\times}, u, v)/((\alpha^v u - p, uv - \alpha^{v-h})�), \)

2. If \( h = \infty \) then \( B^0_{\alpha, I} = \mathbb{Z}_p[[T_1, \ldots, T_g]]/(\mathbb{Z}_p^{\times}, u)/((\alpha^u u - p). \)

In the second case \( B^0_{\alpha, I} \) is a regular ring and, in particular, it is normal. In the first case, one checks that \( B_{\alpha, I} \) is normal by verifying that it is Cohen-Macaulay and regular in codimension 1 (Serre’s criterion).

Let \( U := \text{Spf } A \) be a formal open affine subscheme of \( \mathfrak{M}(\mu_N, c) \) over which \( \omega_{\mathcal{G}} \) is trivial. Let \( \mathcal{H} \) be a lift of \( \mathcal{H} \). The inverse image of \( U \) in \( X_{r, \alpha, [p^k, \infty]} \) is \( \text{Spf } R \) with

\[
R := A \hat{\otimes}_{\mathbb{Z}_p} B^0_{\alpha}(u, w)/(w\mathcal{H}^{v+1} - \alpha, \alpha^v u - p).
\]

Similarly for integers \( 0 \leq k \leq h \) the inverse image of \( U \) in \( X_{r, \alpha, [p^k, p^h]} \) is \( \text{Spf } R' \) with

\[
R' := A \hat{\otimes}_{\mathbb{Z}_p} B^0_{\alpha}(u, v, w)/(w\mathcal{H}^{v+1} - \alpha, \alpha^v u_k - p, u_k v_h - \alpha^{v_h-k}).
\]

**Lemma 3.7.** The rings \( R \) and \( R' \) are normal.

**Proof.** The ring \( B^0_{\alpha}(u, w)/(\alpha^v u - p) \) is Cohen-Macaulay, and the algebra \( A \hat{\otimes}_{\mathbb{Z}_p} B^0_{\alpha}(u, w)/(\alpha^v u - p) \) is \( B^0_{\alpha}(u, w)/(\alpha^v u - p) \)-flat. Moreover \( A \) is Cohen-Macaulay and flat over \( \mathbb{Z}_p \), thus \( A/pA \) is also Cohen-Macaulay. As a result, \( A \hat{\otimes}_{\mathbb{Z}_p} B^0_{\alpha}(u, w)/(\alpha^v u - p) \) is Cohen-Macaulay over \( B^0_{\alpha}(u, w)/(\alpha^v u - p) \), so it is Cohen-Macaulay. Since \( R \) is a complete intersection in \( A \hat{\otimes}_{\mathbb{Z}_p} B^0_{\alpha}(u, w)/(\alpha^v u - p) \), it is Cohen-Macaulay. Let us check that \( R \) is regular in codimension 1. Let \( \mathfrak{p} \) be a codimension 1 prime ideal of \( R \). Then \( R_\mathfrak{p} \) is easily seen to be regular if \( \alpha \not\in \mathfrak{p} \). Assume that \( \alpha \) lies in \( \mathfrak{p} \). Then \( \mathfrak{p} \) is a generic point of

\[
A/pA \otimes_{\mathbb{F}_p} (B^0_{\alpha}/\alpha B^0_{\alpha})[u, w]/(w\mathcal{H}^{v+1}).
\]

Either \( \mathcal{H}^{v+1} \in \mathfrak{p} \) and in that case \( \mathfrak{p} \) maps to the generic point \( \mathfrak{p}' \) of an irreducible component of \( A/(pA, \mathcal{H}) \). By [AG] the ring \( (A/pA)_{\mathfrak{p}} \) is a DVR so let \( t \) be a generator of its maximal ideal. If \( t \) denotes a lift of \( t \) in \( R \) then \( t \) is a generator of the maximal ideal of \( R_{\mathfrak{p}} \) and we are done. Otherwise, \( w \in \mathfrak{p} \) and in that case \( \mathfrak{p} \) maps to a generic point of \( A/pA \), and \( w \) is a generator of the maximal ideal of \( R_{\mathfrak{p}} \). The normality of the ring \( R' \) follows along similar lines.

**Corollary 3.8.** The formal schemes \( X_{r, [p^k, p^h]} \) are normal.

### 4 Overconvergent modular sheaves in characteristic 0

In this section we will construct sheaves of overconvergent Hilbert modular forms over the adic space \( W_F \setminus \{ |p| = 0 \} \). This was already accomplished in [AIPH] but our goal now is to provide canonical integral models for the modular sheaves constructed in [AIPH].

14
### 4.1 A modified integral structure on $\omega_G$

Fix an interval $I = [p^k, p^{k'}]$ with $k$ and $k'$ integers such that $k' \geq k \geq 0$. Let $r \in \mathbb{Z}_{\geq 1}$ and fix a positive integer $n$ with $n \leq r + k$. Let $G$ be the semi-abelian scheme over $\mathfrak{X}_{r,I}$. It follows from Proposition 3.2 that there exists a canonical subgroup $H_n \subset G[\rho^n]$.

Let $g_n: \mathfrak{I}_{n,r,I} \to \mathfrak{X}_{r,I}$ be the partial Igusa tower defined in §3.4. Let $\omega_G$ be the sheaf of invariant differentials of $G$. It follows from [AIPC] Cor. A.2 that the kernel of the map $\omega_G/p^n\omega_G \to \omega_{H_n}$ is annihilated by $\text{Hdg}^\frac{p^n-1}{p-1}\omega_G$. We deduce that the projection map $\omega_G \to \omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G$ factors via $\omega_{H_n}$. One then has a commutative diagram of $\mathcal{F}$-sheaves of abelian groups over $\mathfrak{X}_{r,I}$:

\[
\begin{array}{c}
\omega_G \\
\downarrow \\
H_n^D \\
\downarrow \text{HT} \\
\omega_{H_n} \\
\downarrow \\
\omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G
\end{array}
\]

where all vertical arrows are surjective and the horizontal arrow is the Hodge-Tate map.

Over $\mathfrak{I}_{n,r,I}$ we have a universal section $P \in H_n^D$ which is the image of 1 via the universal morphism $\psi_n: O_F/p^nO_F \to H_n^D$.

**Proposition 4.1.** Let $\mathcal{F}$ be the inverse image in $\omega_G$ of the $\mathcal{O}_{\mathfrak{I}_{n,r,I}}$-submodule of $\omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G$ spanned by $\text{HT}(P)$. Then $\mathcal{F}$ is a locally free $\mathcal{O}_F \otimes \mathcal{O}_{\mathfrak{I}_{n,r,I}}$-module of rank 1, the cokernel of $\mathcal{F} \subset \omega_G$ is annihilated by $\text{Hdg}^\frac{1}{p-1}$ and the map $\text{HT} \circ \psi_n$ defines an isomorphism of $\mathcal{O}_F \otimes \mathcal{O}_{\mathfrak{I}_{n,r,I}}$-modules:

$$\text{HT}: \mathcal{O}_F \otimes \mathcal{O}_{\mathfrak{I}_{n,r,I}}/p^n\text{Hdg}^\frac{p^n-1}{p-1}\mathcal{O}_{\mathfrak{I}_{n,r,I}} \cong \mathcal{F}/p^n\text{Hdg}^\frac{p^n-1}{p-1}\mathcal{F}.$$

**Proof.** This is a variant of [AIPHH], Prop. 3.4. Let $U := \text{Spf } R \subset \mathfrak{I}_{n,r,I}$ be an open formal affine subscheme such that $\omega_G|_U$ is free of rank $g$ as an $R$-module. Write $\overline{M} \in M_{n \times n}(R/p^n\text{Hdg}^\frac{p^n-1}{p-1}R)$ for the matrix of the linearization of the map HT over $U$. Thanks to [AIPC] prop. A.3 it has determinant ideal equal to $\text{Hdg}^\frac{1}{p-1}$. In particular $\text{Hdg}^\frac{1}{p-1}\omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G$ lies in the span of $\text{HT}(P)$.

Let $M \in M_{n \times n}(R)$ be any lift of $\overline{M}$. Its determinant $\delta$ is $\text{Hdg}^\frac{1}{p-1}$ (up to unit). Let $S \subset \omega_G|_U$ be the submodule spanned by the columns of $M$. Then $\delta \omega_G \subset S$. Since $p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G = p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G = \text{Hdg}^\frac{1}{p-1}\cdot \delta \omega_G \subset S$ one deduces that $\mathcal{F}|_U$ coincides with the $S$. In particular it is a free $R$-module of rank $g$. By definition it is stable for the action of $\mathcal{O}_F$.

For every $x \in \mathcal{O}_F/p^n\mathcal{O}_F$ the image $y \in \text{HT}(\psi_n(x))$ lies by construction in the image of $S$ in $\omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\omega_G$. As $\text{Hdg}^\frac{p^n}{p-1} = \text{Hdg}^\frac{p^n-1}{p-1} \cdot \text{Hdg}^\frac{1}{p-1}$ and as $\omega_G/\mathcal{F}$ is annihilated by $\text{Hdg}^\frac{1}{p-1}$ it follows that any two lifts $y'$ and $y''$ in $S$ differ by an element lying in $\text{Hdg}^\frac{p^n-1}{p-1} \cdot \text{Hdg}^\frac{1}{p-1}\omega_G = \text{Hdg}^\frac{p^n-1}{p-1} \cdot S$. We then get a well defined map $\mathcal{O}_F/p^n\mathcal{O}_F \to \mathcal{F}/p^n\text{Hdg}^\frac{p^n-1}{p-1}\mathcal{F}$ inducing $\text{HT} \circ \psi_n$ when composed with the projection to $\omega_G/p^n\text{Hdg}^\frac{p^n-1}{p-1}\mathcal{F}$. This provides the
HT'. By construction its restriction to $U$ is a surjective map of free $R/p^n\text{Hdg}^{-\frac{p^n}{p-1}}R$-modules of rank $g$ and hence it is an isomorphism. It follows that $\mathcal{S} = \mathcal{F}|_U$ is a free $\mathcal{O}_F \otimes R$-module of rank 1 concluding the proof of the Proposition.

We denote by $f_n: \mathfrak{F}_{n,r,I} \to \mathfrak{G}_{n,r,I}$ the torsor for the group $1 + p^n\text{Hdg}^{-\frac{p^n}{p-1}}\text{Res}_{\mathcal{O}_F/\mathbb{Z}} \mathbb{G}_a$ defined by

$$\mathfrak{F}_{n,r,I}(R) := \{ \omega \in \mathcal{F}, \omega = \text{HT}'(1) \text{ in } \mathcal{F}/p^n\text{Hdg}^{-\frac{p^n}{p-1}}\mathcal{F} \}.$$

One has an action of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^*$ on $\mathfrak{F}_{n,r,I}$, lifting the action of $(\mathcal{O}_F/p^n\mathcal{O}_F)^*$ on $\mathfrak{G}_{n,r,I}$, given by $\lambda \cdot (\omega, 1) = (\lambda \omega, \lambda)$. We then get a well defined action of the group $(\mathcal{O}_F \otimes \mathbb{Z}_p)^* \cdot (1 + p^n\text{Hdg}^{-\frac{p^n}{p-1}}\text{Res}_{\mathcal{O}_F/\mathbb{Z}} \mathbb{G}_a)$ on $\mathfrak{F}_{n,r,I}$.

### 4.2 The sheaves of overconvergent forms

Fix an interval $I = [p^k, p^{k'}]$ with $k$ and $k'$ integers such that $k' \geq k \geq 0$. Let $r, n \in \mathbb{Z}_{\geq 0}$. We assume that $r \geq 3$, $r + k \geq n \geq k' + 2$ (resp. $r + k \geq n \geq k' + 4$ if $p = 2$). Set $n' = n - k' - 2$ (resp. $n' = n - k' - 4$ if $p = 2$).

#### Lemma 4.2.
We have $p^n\text{Hdg}^{-\frac{p^n}{p-1}} \subset \mathfrak{G}_{n,r,I}$. In particular $p^n\text{Hdg}^{-\frac{p^n}{p-1}} \subset p^{k'+1} \mathfrak{G}_{n,r,I}$ (resp. $\subset p^{k'+3} \mathfrak{G}_{n,r,I}$ if $p = 2$).

**Proof.** The claim is local on $\mathcal{H}_{n,r,I}$. Let $\alpha \in \mathfrak{m} \setminus \mathfrak{m}^2$. We prove the claim over an open $U = \text{Spf } R \subset \mathcal{H}_{n,r,I}$ over the open $\mathfrak{M}_1^0, I = \text{Spf } \mathfrak{B}_1^0, I$ of $\mathfrak{M}_1^0$. By construction we have $p/\alpha \in \mathfrak{B}_1^0$ and $\alpha \text{Hdg}^{-\frac{p^n}{p-1}} \subset R$. Hence $p^n\text{Hdg}^{-\frac{p^n}{p-1}} \subset R$. In particular $p^n\text{Hdg}^{-\frac{p^n}{p-1}} \subset R$ and the second claim follows.

Proposition 2.8 implies that the character $\kappa$ extends to a character

$$\kappa: (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \cdot (1 + p^n\text{Hdg}^{-\frac{p^n}{p-1}}\text{Res}_{\mathcal{O}_F/\mathbb{Z}} \mathbb{G}_a) \to \mathbb{G}_m$$

over $\mathfrak{M}_1^0, I$.

Define $\mathfrak{w}_1^1, I = f_n, \mathfrak{G}_{n,r,I}[\kappa^{-1}]$ as the subsheaf of $f_n, \mathfrak{G}_{n,r,I}$ of sections transforming according to the character $\kappa^{-1}$ under the action of $1 + p^n\text{Hdg}^{-\frac{p^n}{p-1}}\text{Res}_{\mathcal{O}_F/\mathbb{Z}} \mathbb{G}_a$. It is an invertible sheaf over $\mathcal{H}_{n,r,I}$. Define $\mathfrak{w}_{n,r,I} \subset g_n, \mathfrak{w}_1^1, I$ as the subsheaf of $(g_n \circ f_n), \mathfrak{G}_{n,r,I}$ of $\kappa^{-1}$-equivariant sections for the action of $(\mathcal{O}_F \otimes \mathbb{Z}_p)^* \cdot (1 + p^n\text{Hdg}^{-\frac{p^n}{p-1}}\text{Res}_{\mathcal{O}_F/\mathbb{Z}} \mathbb{G}_a)$.

#### Proposition 4.3.
The sheaf $\mathfrak{w}_{n,r,I}$ is an invertible $\mathcal{O}_{X,r,I}$-module of rank 1.

The rest of this section is devoted to the proof of Proposition 4.3. We follow closely [AIPC, §5] by starting with the following:

#### Lemma 4.4.
Let $(\mathcal{O}_{X,r,I})^0$ be the ideal of topologically nilpotent elements of $\mathcal{O}_{X,r,I}$. Suppose that $r \geq 1$ (resp. $r \geq 2$ if $p = 2$). Then $\kappa((\mathcal{O}_F \otimes \mathbb{Z}_p)^*) - 1 \subset \text{Hdg}((\mathcal{O}_{X,r,I})^0)$ and for every integer $\ell$ such that $2 \leq \ell \leq r + k$ we have

$$\kappa(1 + p^{\ell-1}\mathcal{O}_F \otimes \mathbb{Z}_p) - 1 \subset \text{Hdg}^{\frac{p^{\ell-1}}{p-1}}(\mathcal{O}_{X,r,I})^0.$$
Proof. We deal with the case \( p \neq 2 \) leaving to the reader the case \( p = 2 \). The claim is local on \( X_{r,I} \). We restrict ourselves to an open formal affine subscheme \( U = \text{Spf} R \) mapping to the open \( \mathfrak{M}^0_\alpha \) of \( \mathfrak{M}^0_F \) defined by an element \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \). By construction, \( \kappa((\mathcal{O}_F \otimes \mathbb{Z}_p)^*) - 1 \subset \alpha B^0_\alpha \) and since \( \alpha \text{Hdg}^{-1} \subset (\mathcal{O}_{X_{r,I}})^{00} \), we can conclude that the first point holds. Using lemma 2.5 we see that for \( \ell \geq 2 \), we have that \( \kappa(1 + p\ell^{-1} \mathcal{O}_F \otimes \mathbb{Z}_p) - 1 \subset (\alpha^{p\ell-2}, p)B^0_\alpha \). Arguing as in lemma 4.2 we deduce from the assumption that \( \ell \leq r + k \) that \( p\text{Hdg}^{-p\ell} \in (\mathcal{O}_{X_{r,I}})^{00} \). On the other hand as \( r \geq 1 \), then \( \alpha \in \text{Hdg}^{p^2} X_{r,I} \) so that \( \alpha^{p\ell-2} \in \text{Hdg}^{p^2} X_{r,I} \). As \( p^{\ell-1} < p^\ell \), it follows that \( \alpha^{p\ell-2} \text{Hdg}^{-p^{\ell-1}} \subset (\mathcal{O}_{X_{r,I}})^{00} \).

We also have the following:

**Lemma 4.5.** The inclusion \( \mathcal{O}_{\mathfrak{S}_{n,r,I}} \to f_{n,s} \mathcal{O}_{\mathfrak{S}_{n,r,I}} \) defines an isomorphism

\[
\mathcal{O}_{\mathfrak{S}_{n,r,I}}/qp^n \mathcal{O}_{\mathfrak{S}_{n,r,I}} \to w_{n,r,I}/qp^n w_{n,r,I}.
\]

**Proof.** Consider an open formal affine subscheme \( U = \text{Spf} R \subset \mathfrak{S}_{n,r,I} \) mapping to the open formal subscheme \( \mathfrak{M}^0_\alpha \) of \( \mathfrak{M}^0_F \) defined by some \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \). Assume that \( \omega_G|_U \) is free. The choice of an element \( \tilde{s} \in \mathcal{F}|_U \) lifting \( s := \text{HT}'(1) \) defines a section of the morphism \( \mathfrak{S}_{n,r,I}|_U \cong \mathfrak{S}_{n,r,I}|_U \) and hence an isomorphism \( f_{\tilde{s}}: w_{n,r,I}|_U \to \mathcal{O}_{\mathfrak{S}_{n,r,I}}|_U \) given by evaluating the functions at \( \tilde{s} \).

Two different lifts \( \bar{s} \) and \( \bar{\ell} \) differ by an element of \( 1 + p^n \text{Hdg}^{-p^n} \mathcal{O}_F \otimes R \) thanks to proposition 4.1. Proposition 4.2 implies that \( 1 + p^n \text{Hdg}^{-p^n} \mathcal{O}_F \otimes R \subset 1 + p^{k+1+n} \mathcal{O}_F \otimes R \) (resp. \( 1 + p^{k+1+n'} \mathcal{O}_F \otimes R \) if \( p = 2 \)). As \( I = [p^k, p^k] \) we conclude that \( \kappa(1 + p^{k+1+n} \mathcal{O}_F \otimes R) \subset 1 + p^{n+1} R \) (and similarly \( \kappa(1 + p^{k+1+n'} \mathcal{O}_F \otimes R) \subset 1 + qp^n R \) for \( p = 2 \)). Thus \( f_{\tilde{s}} \equiv f_{\bar{s}} \modulo qp^n \). This provides the inverse to the isomorphism in the lemma.

Let \( U = \text{Spf} R \) be an open affine formal subscheme of \( X_{r,I} \). Suppose that \( \omega_G \) is free over \( U \). Thanks to corollary 3.5 for every non-negative integer \( n \) such that \( 0 \leq n \leq r + k \) there exist elements \( c_0 = 1 \) and \( c_n \in \text{Hdg}^{-p^{n-1}} \mathcal{O}_{\mathfrak{S}_{n,r}}(\text{Spf} R) \) for \( n \geq 1 \) such that \( \text{Tr}_{\mathfrak{S}}(c_n) = c_{n-1} \) for every \( n \geq 1 \). If \( n \) satisfies \( r + k \geq n \geq k' + 3 \) (resp. \( n \geq k' + 4 \) if \( p = 2 \)) we define a projector:

\[
e_{cn}: g_{n,s} w_{n,r,I}(R) \to \text{Hdg}^{-p^{n-1}} w_{n,r,I}(R)
\]

\[
s \mapsto \sum_{\sigma \in (\mathcal{O}_F/p^n \mathcal{O}_F)^*} \kappa(\sigma) \sigma(c_n s)
\]

The following lemma proves proposition 4.3.

**Lemma 4.6.** Let \( s \in g_{n,s} w_{n,r,I}(R) \) be an element such that \( s \equiv 1 \mod p \) (in the sense of lemma 4.5). Then \( e_{cn}(s) \in w_{n,r,I}(R) \) and \( w_{n,r,I}(R) \) is the free \( R \)-module generated by \( e_{cn}(s) \).

**Proof.** The proof is entirely analogous to the proof of [AIPC, Lemme 5.4]. Write \( s = 1 + ph \) for a section \( h \in \mathfrak{S}_{n,r,I}(R) \). We get

\[
e_{cn}(s) = \sum_{\sigma \in (\mathcal{O}_F/p^n \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \tilde{\sigma}(c_n) + p \sum_{\sigma \in (\mathcal{O}_F/p^n \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \tilde{\sigma}(c_n h).
\]

17
In this formula, \( \tilde{\sigma} \) is an arbitrary lift of \( \sigma \) to \( T(\mathbb{Z}_p) \). Since \( p^n h^{p^{r+k+1}/p} \) and \( p^{n-1} < p^{r+k+1} \), it follows that \( p \sum_{\sigma \in \mathbb{O}_F/p^n \mathbb{O}_F} \kappa(\tilde{\sigma}) \tilde{\sigma}(c_n) h \in R^0 \mathfrak{F}_{n,r,I}(R) \) where \( R^0 \) is the ideal of topologically nilpotent elements in \( R \).

We need to show that
\[
\sum_{\sigma \in \mathbb{O}_F/p^n \mathbb{O}_F} \kappa(\tilde{\sigma}) \tilde{\sigma}(c_n) h \in 1 + R^0 \mathfrak{F}_{n,r,I}(R).
\]

This follows from lemmas 2.6 and 4.4. As a consequence, \( e_{c_n}(s) \) belongs to \( \mathbb{w}_{n,r,I}(R) \) and one checks easily that it is a generator using the normality of \( R \) as in [AIPC, Lemme 5.4].

4.3 Properties of \( \mathbb{w}_{n,r,I} \)

4.3.1 Functoriality

Fix intervals \( I' \subset I \), \( r' \) and \( r \) such that \( r' \geq r \) and integers \( n' \geq n \) so that \( (I', r', n') \) and \( (I, r, n) \) satisfy the assumptions given at the beginning of §4.2. We have the following commutative diagram:

\[
\begin{array}{ccc}
\mathfrak{F}_{n',r',I'} & \longrightarrow & \mathfrak{F}_{n,r,I} \\
\downarrow & & \downarrow \\
\mathbb{I} \mathfrak{G}_{n',r',I'} & \longrightarrow & \mathbb{I} \mathfrak{G}_{n,r,I} \\
\downarrow & & \downarrow \\
\mathbb{X}_{r',I'} & \longrightarrow & \mathbb{X}_{r,I}
\end{array}
\]

which induces a morphism of \( \mathbb{O}_{X',I'} \)-modules:

\[
\iota^* \mathbb{w}_{n,r,I} \rightarrow \mathbb{w}_{n',r',I'}.
\]

**Proposition 4.7.** The morphism above is an isomorphism.

**Proof.** Consider \( \mathbb{O}_{X',I'} \rightarrow \iota^* \mathbb{w}_{n,r,I}^{-1} \otimes \mathbb{w}_{n',r',I'} \). This last sheaf is the subsheaf of \( (g_{n'} \circ f_{n'})_* \mathbb{O}_{\mathfrak{F}_{n',r',I'}} \) consisting of sections on which \( (\mathbb{O}_{\mathbb{F}} \otimes \mathbb{Z}_p)^* \cdot (1 + p^{n'} \text{Hdg}^{-p^{r+1}} \mathbb{O}_{\mathbb{F}} \otimes \mathbb{Z}_p) \) acts trivially. This coincides with the sheaf \( \mathbb{O}_{X',I'} \) by the normality of \( \mathbb{X}_{r',I'} \). The composite map

\[
\mathbb{O}_{X',I'} \rightarrow \iota^* \mathbb{w}_{n,r,I}^{-1} \otimes \mathbb{w}_{n',r',I'} \rightarrow \mathbb{O}_{X',I'}
\]

is the identity. This proves the claim. 

We simplify the notations and write \( \mathbb{w}_I \) instead of \( \mathbb{w}_{n,r,I} \).
4.3.2 Frobenius

Propositions 3.3 and 3.6 provide compatible morphisms $\phi: \mathcal{X}_{r,I} \to \mathcal{X}_{r-1,I}$ and $\mathcal{S}_{n+1,r,I} \to \mathcal{S}_{n,r-1,I}$ obtained by composing the projection $\mathcal{S}_{n+1,r,I} \to \mathcal{S}_{n,r,I}$ and the Frobenius map $\phi: \mathcal{S}_{n,r,I} \to \mathcal{S}_{n,r-1,I}$. Let us recall the description of the morphism $\mathcal{S}_{n+1,r,I} \to \mathcal{S}_{n,r,I}$. Let $F: \mathcal{G} \to \mathcal{G}/H_1 = \mathcal{G}'$ be the canonical isogeny between the semi-abelian schemes $\mathcal{G}$ over $\mathcal{X}_{r,I}$ and $\mathcal{G}'$ over $\mathcal{X}_{r-1,I}$. This morphism induces a surjective morphism of canonical subgroups $H_{n+1} \to H_{n+1}/H_1 \cong H'_n$ of $\mathcal{G}$ and $\mathcal{G}'$ respectively. Dualizing we get an injective morphism $F^D: H'^D_n \to H^D_{n+1}$. The map $\phi: \mathcal{S}_{n+1,r,I} \to \mathcal{S}_{n,r,I}$ associates to a morphism $\psi: \mathcal{O}_F/p^n\mathcal{O}_F \to H'^D_n$ the morphism $\psi': \mathcal{O}_F/p^n\mathcal{O}_F \to H'^D_n$ making the following diagram commute:

\[
\begin{array}{ccc}
\mathcal{O}_F/p^n\mathcal{O}_F & \xrightarrow{\psi} & H'^D_n \\
\times_p \downarrow & & \downarrow \\
\mathcal{O}_F/p^n\mathcal{O}_F & \xrightarrow{\psi'} & H'^D_n
\end{array}
\]

We then get the commutative diagram:

\[
\begin{array}{ccc}
\mathfrak{S}_{n+1,r,I} & \to & \mathfrak{S}_{n,r',I} \\
\downarrow & & \downarrow \\
\mathcal{S}_{n+1,r,I} & \to & \mathcal{S}_{n,r',I} \\
\downarrow & & \downarrow \\
\mathcal{X}_{r,I} & \phi & \mathcal{X}_{r',I}
\end{array}
\]

where the morphism $\mathfrak{S}_{n+1,r,I} \to \mathfrak{S}_{n,r',I}$ is given by mapping a differential $w \in \mathcal{F}$ to $pw \in \mathcal{F}' \subset \omega_{G'}$. One checks that this is well defined by using the following commutative diagram:

\[
\begin{array}{ccc}
H'^D_n & \to & H^D_{n+1} \\
\downarrow \text{HT} & & \downarrow \text{HT} \\
\omega_{G'} & \xrightarrow{F^*} & \omega_{G}
\end{array}
\]

and thus obtains a morphism $\phi^* w_I \to w_I$.

**Proposition 4.8.** The morphism $\phi^* w_I \to w_I$ is an isomorphism.

**Proof.** The proof is analogous to the proof of Proposition 4.7. \hfill \Box

5 Perfect overconvergent modular forms

In this section we define a sheaf of perfect overconvergent Hilbert modular forms over the weight space $\mathfrak{W}_F^0$ and in the next we will show that one can undo the perfectisation.
5.1 The anti-canonical tower

Let $I = [p^k, p^{k^2}] \subset [1, +\infty]$ and $r, n \in \mathbb{Z}_{\geq 0}$ and $n \leq r + k$. As explained in §4.3.2 we have compatible morphisms

$$\mathfrak{G}_{n,r+1,I} \rightarrow \mathfrak{G}_{n,r,I} \rightarrow \mathfrak{G}_{r+1,I}$$

Taking the limits we get formal schemes $\mathfrak{G}_{n,\infty,I} \rightarrow \mathfrak{G}_{n,r,I} \rightarrow \mathfrak{X}_{r,I}$ over $\tilde{W}^0_F$. Varying $n$ we get a tower of formal schemes

$$\cdots \rightarrow \mathfrak{G}_{n+2,\infty,I} \rightarrow \mathfrak{G}_{n+1,\infty,I} \rightarrow \mathfrak{G}_{n,\infty,I}.$$ Let $\mathfrak{G}_{\infty,\infty,I}$ be the projective limit. As the index $r$ varies now, we denote by $G_r \rightarrow \mathfrak{X}_{r,I}$ the semi-abelian scheme and by $\text{Hdg}_r \subset \mathcal{O}_{\mathfrak{X}_{r,I}}$ the Hodge ideal defined by $G_r$.

Recall from §3.3 that associated to the finite morphism $\mathfrak{G}_{n,r,I} \rightarrow \mathfrak{G}_{n-1,r,I}$ we have a trace map $\text{Tr}_{\mathfrak{G}}: \mathcal{O}_{\mathfrak{G}_{n,r,I}} \rightarrow \mathcal{O}_{\mathfrak{G}_{n-1,r,I}}$. These are compatible for varying $r$ and define a trace map $\text{Tr}_{\mathfrak{G}}: \mathcal{O}_{\mathfrak{G}_{\infty,\infty,I}} \rightarrow \mathcal{O}_{\mathfrak{G}_{\infty,\infty,I}}$.

**Proposition 5.1.** We have $\text{Hdg}_s \mathcal{O}_{\mathfrak{G}_{n-1,\infty,I}} \subset \text{Tr}_{\mathfrak{G}}(\mathcal{O}_{\mathfrak{G}_{n-1,\infty,I}})$ for every $s \geq 1$.

**Proof.** Thanks to Proposition 3.4 we have $\text{Hdg}^p O_{\mathfrak{G}_{n-1,s,I}} \subset \text{Tr}_{\mathfrak{G}}(h^*_s O_{\mathfrak{G}_{n,s,I}})$. It follows from [AIPC, Cor. A.2] that $\text{Hdg}_{p+1} = \text{Hdg}_p$. Since $\text{Hdg}^p O_{\mathfrak{G}_{n-1,\infty,I}} \subset \text{Tr}_{\mathfrak{G}}(O_{\mathfrak{G}_{\infty,\infty,I}})$ and $s$ is arbitrary, the claim follows. \hfill $\Box$

5.2 Tate traces

Let $\alpha \in \mathfrak{m} \setminus \mathfrak{m}^2$. Denote by $\mathfrak{G}_{\infty,\infty,a,I} \rightarrow \mathfrak{X}_{\infty,a,I}$ the base change of the formal schemes above to $\tilde{W}^0_{a,I} \rightarrow \tilde{W}^0_F$.

Let $h_r: \mathfrak{X}_{\infty,a,I} \rightarrow \mathfrak{X}_{r,a,I}$ be the projection map onto the $r$-th factor.

**Proposition 5.2.** One has Tate traces:

$$\text{Tr}_r: (h_r)_* O_{\mathfrak{X}_{\infty,a,I}}[1/\alpha] \rightarrow O_{\mathfrak{X}_{r,a,I}}[1/\alpha]$$

such that $f = \lim_{r \rightarrow \infty} \text{Tr}_r(f)$. Moreover

$$\text{Tr}_r((h_r)_* O_{\mathfrak{X}_{\infty,a,I}}) \subset \alpha^{-1} \cdot O_{\mathfrak{X}_{r,a,I}}$$

as soon as $p^r (p-1) > 2g + 1$.

**Proof.** The proof follows closely the proof of [AIPC, Proposition 6.2]. We first provide the analogue of [AIPC, §6.3.2 & §6.3.3] which reduces the proof to [AIPC, Lemme 6.1].

For every non-negative integer $k \geq r + 1$ define $B^0_{a,I,p^{-k}} := B^0_{a,I}[\alpha^{-k}]$. One proves as in §3.4.1 that it is a normal ring. Let $\mathfrak{W}^0_{a,I,p^{-k}}$ be the associated $\alpha$-adic formal scheme and let $\mathfrak{W}_{a,I,p^{-k}} := \text{Spa}(B^0_{a,I,p^{-k}}[\alpha^{-1}], B^0_{a,I,p^{-k}})$ be the associated analytic adic space. Define $\mathfrak{X}_{r,a,I,p^{-k}}$
to be the fiber product $X_{r,\alpha,I} \times_{W_0} W'_{\alpha,I,p^{-k}}$. Define $X_{r,\alpha,I,p^{-(r+1)}}$ to be the normalization of $X_{r,\alpha,I}$ in $X_{r,\alpha,I,p^{-(r+1)}}$ (see §3.3). For general $k \geq r + 1$ let $X_{r,\alpha,I,p^{-k}}$ be the base-change of $X_{r,\alpha,I,p^{-(r+1)}}$ via the map $W_0^{\alpha,I,p^{-k}} \to W_0^{\alpha,I,p^{-(r+1)}}$. The associated analytic adic space is $X_{r,\alpha,I,p^{-k}}$ such that we have morphisms

$$X_{r,\alpha,I,p^{-k}} \to X_{r,\alpha,I,p^{-(r+1)}} \to X_{r,\alpha,I} \to \overline{M}(\mu_N, \underline{c}) \times W_0^{\alpha,I} \to \overline{M}(\mu_N, \underline{c}).$$

(1)

5.2.1 An explicit description of diagram (1) in §5.2

Let $U := \text{Spf } A \subset \overline{M}(\mu_N, \underline{c})$ be an open formal affine so that the sheaf $\omega_G$ is trivial. We will describe the fiber of the above chain of morphisms over $U$. Choose a lift of the Hasse invariant viewed as a scalar $\tilde{H}_a$.

The fiber of $U$ in $X_{r,\alpha,I,p^{-(r+1)}}$ is the formal spectrum of

$$R := A \hat{\otimes} B_0^{\alpha,I,p^{-(r+1)}}(\frac{\alpha^{1/p^r+1}}{\tilde{H}_a}) = A \hat{\otimes} B_0^{\alpha,I,p^{-(r+1)}}(u,v,w)/(wH_a - \alpha^{1/p^r+1}, \alpha^p v - p, uv - \alpha^{p^{k'-k}}).$$

Here the variable $u$ and the equation $uv - \alpha^{p^{k'-k}}$ are missing in case $k' = \infty$. Arguing as in the proof of Lemma 3.7 it follows that $R$ is a normal ring.

Set $R_k := R \otimes_{B_0^{\alpha,I,p^{-(r+1)}}} B_0^{\alpha,I,p^{-k}} = A \hat{\otimes} B_0^{\alpha,I,p^{-k}}(\frac{\alpha^{1/p^r+1}}{\tilde{H}_a})$. It is finite and free as an $R$-module with basis $\alpha^a/p^k$ for $0 \leq a \leq p^{k+1-r} - 1$. The associated formal scheme $\text{Spf } R_k$ is the open of $X_{r,\alpha,I,p^{-k}}$ over the open $U \subset \mathfrak{X}$.

Then the restriction of the diagram (1) to $U$ is given by the ring homomorphisms:

$$A \to A \hat{\otimes} B_0^{\alpha,I} \to A \hat{\otimes} B_0^{\alpha,I}(\frac{\alpha}{\tilde{H}_a}) \to R \to R_k.$$  

(2)

5.2.2 Frobenius

The Frobenius morphism of Proposition 3.3 defines a cartesian diagram

$$\xymatrix{ X_{r,\alpha,I,p^{-k}} \ar[r] \ar[d]^\phi & X_{r,\alpha,I} \ar[d]^\phi \\
X_{r-1,\alpha,I,p^{-k}} \ar[r] & X_{r-1,\alpha,I}.}$$

(3)

Due to Proposition 3.3 the morphism $X_{r,\alpha,I,p^{-k}} \to X_{r-1,\alpha,I,p^{-k}}$ is finite. Hence we get a commutative diagram

$$\xymatrix{ X_{r,\alpha,I,p^{-k}} \ar[r] \ar[d]^\phi & X_{r,\alpha,I,p^{-(r+1)}} \ar[r] \ar[d]^\phi & X_{r,\alpha,I} \ar[d]^\phi \\
X_{r-1,\alpha,I,p^{-k}} \ar[r] & X_{r-1,\alpha,I,p^{-(r+1)}} \ar[r] & X_{r-1,\alpha,I}.}$$

Over $U = \text{Spf } A$ the morphism $\mathfrak{X}_{r,\alpha,I,p^{-k}} \to \mathfrak{X}_{r-1,\alpha,I,p^{-k}}$ is given by
\[ S_k := A \widehat{\otimes}_{A, I, p} \langle \frac{\alpha^{1/p^r}}{\Ha} \rangle \to A \widehat{\otimes}_{A, I, p} \langle \frac{\alpha^{1/p^{r+1}}}{\Ha} \rangle =: R_k. \]  

It is finite and modulo \( p\alpha^{-1/p^r} \) is induced by the absolute Frobenius on \( A/pA \). Indeed this holds true modulo \( p\Ha^{-1} \) due to [AIPC, Cor. A.2] and \( p\Ha^{-1} = (p\alpha^{-1/p^r}) \cdot (\alpha^{1/p^r} \Ha^{-1}) \).

### 5.2.3 The unramified case

We first assume that \( p \) is unramified in \( F \). This implies that \( A \) is formally smooth over \( \mathbb{Z}_p \). It follows from [AIPC, Lemme 6.1] applied to the extension \( S_k \subset R_k \) that \( S_k[\alpha^{-1}] \subset R_k[\alpha^{-1}] \) is a finite and flat extension and that \( \text{Tr}(R_k) \subset p^g \alpha^{-\frac{2g+1}{r}} S_k \). This implies that for all \( r' \geq r \) and \( k \geq r' + 1 \),

\[
\text{Tr}_{\phi^{r'-r}}(\mathcal{O}_{X_{r'+s, I, p-k}}) \subset p^g \alpha^{-\frac{2g+1}{r' - r}} \mathcal{O}_{X_{r, I, p-k}}.
\]

In particular, defining

\[
\text{Tr}_r := \frac{1}{p^g} \text{Tr}_{\phi^s} : h_{r,s} \mathcal{O}_{X_{r+s, I, p}} [\alpha^{-1}] \to \mathcal{O}_{X_{r, I}} [\alpha^{-1}],
\]

we deduce that, if \( p'(p - 1) > 2g + 1 \), the image of \( h_{r,s} \mathcal{O}_{X_{r+s, I, p}} \) is contained in \( \alpha^{-1} \mathcal{O}_{X_{r, I, p-k}} \cap \mathcal{O}_{X_{r, I}} [\alpha^{-1}] \) which is \( \alpha^{-1} \cdot \mathcal{O}_{X_{r, I}} \) since \( X_{r, I, p-k} \to X_{r, I} \) is a finite and dominant morphism and \( X_{r, I} \) is normal. The Proposition follows from this.

### 5.2.4 The general case

We now drop the assumption that \( p \) is unramified in \( F \). In this situation \( \mathfrak{M}(\mu_N, \mathfrak{c}) \) is not formally smooth. Nevertheless the Rapoport locus \( \mathfrak{M}(\mu_N, \mathfrak{c})^R \subset \mathfrak{M}(\mu_N, \mathfrak{c}) \) is the smooth locus and its complement is of codimension at least 2. We let \( X_{r, I, p-k} \subset X_{r, I, p} \) be the open formal subscheme where the Rapoport condition holds.

Arguing as in the unramified case, we obtain a map \( \text{Tr}_r := \frac{1}{p^g} \text{Tr}_{\phi^s} : h_{r,s} \mathcal{O}_{X_{r+s, I, p}} \to \alpha^{-1} \mathcal{O}_{X_{r, I}} \).

**Lemma 5.3.** The formal scheme \( X_{r, I}^R \) is Zariski dense in \( X_{r, I} \).

**Proof.** This follows easily from the explicit equations. Note that we crucially use here that the complement of the Rapoport locus is of codimension 1 in the non-ordinary locus of the special fiber of \( \mathfrak{M}(\mu_N, \mathfrak{c}) \). \( \square \)

Consider the following commutative diagram:

\[
\begin{array}{ccc}
X_{r+s, I}^R & \longrightarrow & X_{r+s, I} \\
\downarrow \phi^s & & \downarrow \phi^s \\
X_{r, I}^R & \longrightarrow & X_{r, I}
\end{array}
\]

We claim that it induces a commutative diagram:
\[ \mathcal{O}_{X_{r,s,I}} \longrightarrow \mathcal{O}_{X_{r,s,I}} \]
\[ \alpha^{-1} \mathcal{O}_{X_{r,s,I}} \longrightarrow \alpha^{-1} \mathcal{O}_{X_{r,s,I}} \]

**Proof.** Indeed, let \( \text{Spf } R \) be an open formal subscheme of \( X_{r,s,I} \). Take \( f \in \mathcal{O}_{X_{r,s,I}}(R) \). Then \( \alpha \text{Tr}_s(f) \) is in \( \mathcal{O}_{X_{r,s,I}}(R) \). Moreover, as the morphism \( \phi^* : R[\frac{1}{\alpha}] \rightarrow \mathcal{O}_{X_{r,s,I}}(R)[\frac{1}{\alpha}] \) is finite flat, we deduce that \( \alpha \text{Tr}_s(f) \in R[\frac{1}{p}] \). Since \( R \) is normal, \( R = \bigcap \Omega \) where \( \Omega \) runs over all codimension 1 prime ideals in \( R \). Thus we are left to check that \( \alpha \text{Tr}_s(f) \in \mathcal{O}_{X_{r,s,I}} \) whenever \( p \in \Omega \).

If \( \alpha \not\in \Omega \) as \( w \text{Ha}^{p+1} - \alpha = 0 \), we deduce that the image of \( \Omega \) in \( \Omega(N, \epsilon) \) lies in the ordinary locus and in particular in the Rapoport locus. Thus \( \alpha \text{Tr}_s(f) \in \mathcal{O}_{X_{r,s,I}} \). If \( \alpha \in \Omega \), then \( \Omega \) is a generic point of the special fiber of \( R \) and since the Rapoport locus is Zariski dense, \( \Omega \) lies in the Rapoport locus. Thus \( \alpha \text{Tr}_s(f) \in \mathcal{O}_{X_{r,s,I}} \).

\( \square \)

### 5.3 The sheaf of perfect, overconvergent Hilbert modular forms

**Lemma 5.4.** Let \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \). The sheaf \( \mathcal{O}_{X_{\infty,\alpha,I}} \) is integrally closed in \( \mathcal{O}_{X_{\infty,\alpha,I}}[1/\alpha] \). Moreover

\[ (\mathcal{O}_{\mathfrak{G}_{\infty,\alpha,I}})^{(\mathcal{O}_F \otimes \mathbb{Z}_p)^\ast} = \mathcal{O}_{X_{\infty,\alpha,I}}. \]

**Proof.** (1) Let \( U := \text{Spf } R \) be an open formal subscheme of \( X_{\infty,\alpha,I} \). For \( s \) large enough it is the inverse image of an open formal subscheme \( \text{Spf } R_s \) of \( X_{s,\alpha,I} \). Let \( f \in R[1/\alpha] \). For \( s \) large enough we have \( f = f_s + h \) with \( f_s \in R_s[1/\alpha] \) and \( h \in R \) so that we may assume that \( f \in R_s[1/\alpha] \). Let \( f^n + f^{n-1}a_{n-1} + \cdots + a_0 = 0 \) with \( a_0, \ldots, a_{n-1} \) be an integral relation.

Applying \( \text{Tr}_s \) one gets \( f^n + f^{n-1}\text{Tr}_s(a_{n-1}) + \cdots + \text{Tr}_s(a_0) = 0 \) and as \( a_i \in R \) for \( s \) large enough we have \( \text{Tr}_s(a_i) \in R \cap \alpha^{-1}R_s \). For \( h \geq 0 \) the morphism \( R_s \rightarrow R_{s+h} \) is a finite dominant morphism of normal rings. Hence \( R_s/\alpha \rightarrow R_{s+h}/\alpha \) is injective so that \( R_s/\alpha \rightarrow R/\alpha \) is injective as well. We deduce that \( \alpha \text{Tr}_s(a_i) \in \alpha R_s \) and hence that \( \text{Tr}_s(a_i) \in R_s \). Thus \( f \) is integral over \( R_s \) and, hence, \( f \in R_s \) proving the first claim of the lemma.

(2) The inverse image of \( \text{Spf } R \) in \( \mathfrak{G}_{n,\infty,\alpha,I} \) is equal to \( \text{Spf } R_n \) with \( R_n \) integral over \( R \) and \( R[\alpha^{-1}] \subset R_n[\alpha^{-1}] \) finite and étale. In particular \( (R_n[\alpha^{-1}])^{(\mathcal{O}_F/p^n\mathcal{O}_F)^\ast} = R[\alpha^{-1}] \) so that \( R_n^{(\mathcal{O}_F/p^n\mathcal{O}_F)^\ast} \) contains \( R \) and is integral over \( R \) and, hence by the first claim, it must be equal to \( R \). Let \( R_{\infty} \) be the inverse image of \( \text{Spf } R \) in \( \mathfrak{G}_{\infty,\infty,\alpha,I} \). Consider an element \( x \in R_{\infty} \) fixed by \( (\mathcal{O}_F \otimes \mathbb{Z}_p)^\ast \). There exists \( n \) large enough and \( x_n \in R_n \) such that \( x - x_n = \alpha x' \) for some \( x' \in R_{\infty} \). In particular \( x' \) is fixed by \( 1 + p^n\mathcal{O}_F \otimes \mathbb{Z}_p \). Thanks to Proposition 5.1 for every \( n' \geq n \) there exists \( \epsilon x' \) such that \( \text{Tr}_{R_{n'}/R_n}(\epsilon x') = \alpha \). In particular the higher cohomology groups of \( (1 + p^n\mathcal{O}_F/p^{n'}\mathcal{O}_F) \) acting on \( R_{n'} \) are annihilated by \( \alpha \).

For every \( s \) there exists \( n(s) \geq n \) such that \( x' \in (R_n(s)/\alpha)^{1+p^n\mathcal{O}_F \otimes \mathbb{Z}_p} \) and hence there exists \( y_s \in R_n \) such that \( y_s \equiv \alpha x' \) modulo \( \alpha \). We deduce that \( y_s \) converges to an element \( y \) for \( s \rightarrow \infty \) such that \( \alpha x' = y \). Hence \( x \in R_n^{(\mathcal{O}_F/p^n\mathcal{O}_F)^\ast} \) which is \( R \) by the first part of the argument. \( \square \)

Define \( \mathfrak{m}_l^{\text{perf}} \) to be the subsheaf of \( \mathcal{O}_{X_{\infty,\alpha,I}} \)-modules of \( \mathcal{O}_{\mathfrak{G}_{\infty,\alpha,I}} \) consisting of those sections transforming via the character \( \kappa^{-1} \) for the action of \( (\mathcal{O}_F \otimes \mathbb{Z}_p)^\ast \). Then:
Proposition 5.5. The sheaf $\mathfrak{w}_I^{\text{perf}}$ is an invertible $O_{X_{\infty,I}}$-module. Moreover for every subinterval $J \subset I$ the pull-back of $\mathfrak{w}_I^{\text{perf}}$ via the natural morphism $\iota_{J,I}: X_{\infty,I} \to X_{\infty,I}$ coincides with $\mathfrak{w}_J^{\text{perf}}$.

Proof. We prove the first claim. Let $U := \text{Spf } R$ be an open formal subscheme of $X_{\infty,\alpha,I}$. Suppose that $\text{Hdg}_{\alpha}$ is a principal ideal over $\text{Spf } R$ with generator $\tilde{H}_a$. Let $\text{Spf } R_n$ (resp. $\text{Spf } R_\infty$) be the inverse image of $U$ in $\mathcal{I}\mathfrak{G}_{n,\alpha,I}$ (resp. in $\mathcal{I}\mathfrak{G}_{\infty,\alpha,I}$). Due to Corollary 5.4 it suffices to exhibit an invertible element $x \in R_\infty$ such that $\sigma(x) = \kappa^{-1}(\sigma)x$ for every $\sigma \in (O_F \otimes \mathbb{Z}_p)^*$.

Proposition 5.1 implies that there exist elements $c_n \in \tilde{H}_a^{-1} R_n$ such that $\text{Tr}_{R_n/R_{n-1}}(c_n) = c_{n-1}$ and $c_0 = 1$. Define $b_n := \sum_{\sigma \in (O_F / p^n O_F)}^{\kappa(\tilde{\sigma})} \kappa(\tilde{\sigma}) c_n \in \tilde{H}_a^{-1} R_n$ for $n \geq 1$. Here $\tilde{\sigma} \in T(\mathbb{Z}_p)$ is a lift of $\sigma$. It follows from Lemma 2.6 that $b_n$ converges to an element $b_\infty \in R_\infty$ such that $\sigma(b_\infty) = \kappa^{-1}(\sigma)b_\infty$ for every $\sigma \in (O_F \otimes \mathbb{Z}_p)^*$ and $b_\infty \equiv 1$ modulo $\kappa \tilde{H}_a R_\infty$ so that $b_\infty$ is invertible in $R_\infty$ as claimed.

The last claim can be proved as in Proposition 5.3.

6 Descent

In this section we prove that the sheaf $\mathfrak{w}_I^{\text{perf}}$ defined in Proposition 5.3 can be descended to some finite level.

6.1 Comparison with the sheaf $\mathfrak{w}_I$

Consider an interval $I = [p^k, p^{k'}]$ with $k$ and $k'$ non-negative integers. Thanks to Proposition 4.3 we have an invertible sheaf $\mathfrak{w}_I$ over $X_{r,I}$. Recall that we have a projection map $h_r: X_{\infty,I} \to X_{r,I}$. Then:

Proposition 6.1. There exists a canonical isomorphism $\mathfrak{w}_I^{\text{perf}} \simeq h_r^* \mathfrak{w}_I$.

Proof. Over $X_{\infty,\alpha,I}$ we have a chain of isogenies

$$\cdots G_{n+r} \to G_{n+r-1} \to \cdots G_r$$

where $G_s$ is the versal semi-abelian scheme over $X_s,I$. Denote by $C_{n,r} \to G_r[p^n]$ the kernel of $(F^n)^D: G_r[p^n]^D \to G_{r+n}[p^n]^D$. Clearly $C_{n,r} = H_n(G_{n+r})^D$. The isogeny $F: G_{r+1} \to G_r$ induces a morphism $C_{n,r+1} \to C_{n,r}$ which is generically an isomorphism. Over $\mathcal{I}\mathfrak{G}_{n,\infty,I}$ we have a universal morphism $O_F/p^n O_F \to H_n(G_s)^D$ for every $s \geq n-k$. The map $C_{n,s} \to G_s[p^n]/H_n(G_s) \simeq H_n(G_s)^D$ is generically an isomorphism as both group schemes are generically étale. Composing we then get an $O_F$-equivariant morphism $O_F/p^n O_F \to C_{n,s}$ for every $s \geq n-k$.

Using the morphisms $C_{n,r+1} \to C_{n,r}$ we get an $O_F$-equivariant morphism $O_F/p^n O_F \to C_{n,r}$ for every $n$ which is generically an isomorphism. Passing to the projective limit we get an $O_F$-equivariant map $O_F \otimes \mathbb{Z}_p \to \lim_n C_{n,r}$. Let $\text{HT}^{\text{an}}$ be the image of 1 in $\lim_n C_{n,r}$ via the Hodge-Tate map $\lim_n G_r[p^n] \to \omega_{G_r}$. Then $\text{HT}^{\text{an}}$ defines an $(O_F \otimes \mathbb{Z}_p)^*$-equivariant map:

$$\mathcal{I}\mathfrak{G}_{\infty,\infty,I} \to \mathcal{I}\mathfrak{G}_{n,r,I}$$

24
fitting in the commutative diagram:

\[
\begin{array}{ccc}
\mathcal{I}G_{\infty,\infty,I} & \longrightarrow & \mathcal{I}G_{n,r,I} \\
\downarrow & & \downarrow \\
\mathcal{I}G_{n,\infty,I} & \longrightarrow & \mathcal{I}G_{n,r,I} \\
\downarrow & & \downarrow \\
\mathcal{X}_{\infty,I} & \longrightarrow & \mathcal{X}_{r,I}
\end{array}
\]

We then get an injective homomorphism \( h^*_r w_I \to w^\text{perf}_I \). Moreover

\[
w^\text{perf}_I \otimes h^*_r w_I^{-1} \subset (O_{\mathcal{I}G_{\infty,\infty,I}})^{(O_F \otimes \mathbb{Z}_p)^*} = O_{\mathcal{X}_{\infty,I}}
\]

thanks to Corollary 5.4.

\[ \square \]

**Corollary 6.2.** We have a Tate trace map \( \text{Tr}_r : h^*_r w^\text{perf}_I \to \alpha^{-1} w_I \), which is functorial in \( I \).

### 6.2 Descent along the anti-canonical tower

Fix \( \alpha \in \mathfrak{m} \setminus \mathfrak{m}^2 \). Let \( I = [1, \infty] \).

**Lemma 6.3.** The natural morphisms of sheaves

\[
O_{X_{r,\alpha,I}} \longrightarrow \lim_{k+1 \geq k' \geq k \geq 0} O_{X_{r,\alpha,[p^k,p^{k'}]}} \quad \text{and} \quad O_{\mathcal{X}_{\infty,\alpha,I}} \longrightarrow \lim_{k+1 \geq k' \geq k \geq 0} O_{\mathcal{X}_{\infty,\alpha,[p^k,p^{k'}]}}
\]

are isomorphisms.

**Proof.** We prove the first statement. The second follows arguing as in [AIPC] Lemme 6.6 using the Tate traces constructed in Proposition 5.2.

Let \( U := \text{Spf } A \) be a formal open affine subscheme of \( \mathfrak{M}(\mu_N, c) \) over which \( \omega_G \) is trivial. Let \( \mathring{H}a \) be a lift of \( Ha \). Arguing as in the proof of Lemma 3.7 one deduces that the inverse image of \( U \) in \( X_{r,\alpha,I} \) is \( \text{Spf } R \) with \( R := A \otimes \mathbb{Z}_p B_\alpha(u, w)/(w \mathring{H}a - \alpha, \alpha u - p) \) and that for integers \( 1 \leq h < k \) the inverse image of \( U \) in \( X_{r,\alpha,[p^h,p^k]} \) is \( \text{Spf } R_{h,k} \) with \( R_{h,k} := R(u_h, v_k)/(\alpha u_h - p, u_h v_k - \alpha p^h - \alpha p^k) \).

There are maps \( R_{h,k} \to R_{h',k'} \) for \( h \leq h' \leq k \leq k' \) given by \( u_h \mapsto \alpha^{k'-k} u_{h'} \) and \( v_k \mapsto \alpha^{k'-k} v_{k'} \). The argument in [AIPC] Lemme 6.4 shows that the map \( R \to \lim_k R_{1,k} \) is an isomorphism. This proves the claim.

\[ \square \]

**Theorem 6.4.** The sheaf \( w^\text{perf}_I \) descends to an invertible sheaf \( w_I \) over \( X_{r,\alpha,I} \) for \( r \geq \sup\{4, 1 + \log_p 2g + 1\} \) if \( p \geq 3 \) and \( r \geq \sup\{6, 1 + \log_p 2g + 1\} \) if \( p = 2 \). More precisely \( w_I \) is the subsheaf of \( O_{X_{r,\alpha,I}} \)-modules of \( w^\text{perf}_I \) characterized by the fact that for every interval \( J = [p^k,p^{k'}] \) with \( k' \geq k \geq 0 \) integers and denoting \( i_{J,I} : X_{r,\alpha,I} \to X_{r,\alpha,I} \) the natural morphism, then \( i^*_J w_I \) is the sheaf \( w_J \) of Proposition 4.3 compatibly with the identification of Proposition 6.7.

Moreover \( w_I \) is free of rank 1 over every formal affine subscheme \( U \subset \mathfrak{M}(\mu_N, c) \) such that \( \omega_G|_U \) is trivial.
Proof. The proof is analogous to the proof of [AIPC Thm. 6.4]. We set
\[ \mathfrak{w}_I := \lim_{k+1 \geq k' \geq 0} \mathfrak{w}_{[p^k, p^{k'}]}, \]
where the limit is taken over integers \( k, k'. \) Let \( U := \text{Spf } A \) be a formal open affine subscheme of \( \mathcal{M}(\mu_N, C) \) where \( \omega_C \) is trivial. Let \( W := \text{Spf } B \) be the inverse image of \( U \) in \( \mathfrak{X}_{r, \alpha, I} \). We prove that \( \mathfrak{w}_I|_W \) is a free \( \mathcal{O}_W \)-module of rank 1 and it descends \( \mathfrak{w}_I^{\text{perf}}|_W \).

We prove the claim for the minimal \( r \) possible, i.e., \( r = 4 \) if \( p \geq 3 \) and \( r = 6 \) for if \( p = 2 \). Let \( \tilde{H}_r \) be a lift of the Hasse invariant over \( U \). Thanks to Corollary 3.5 and Proposition 5.1 we can find elements \( c_n \in \tilde{H}_r \mathcal{O}_{\mathfrak{X}_{n, r, \alpha, J}}(W) \) for integers \( n \leq r \) and elements \( c_n \in \tilde{H}_r \mathcal{O}_{\mathfrak{X}_{n, \infty, r, \alpha, J}}(W) \) for general \( r \leq n \) so that \( c_0 = 1 \) and \( \text{Tr}_{\mathfrak{X}}(c_n) = c_{n-1} \). Define \( b_n = \sum_{\sigma \in (\mathcal{O}_F/p^r \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \sigma(c_n) \) where \( \tilde{\sigma} \) is a lift of \( \sigma \) in \( (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \).

Using lemma 2.6 we deduce that:

- The sequence \( b_n \) converges to an element \( b_\infty \),
- \( b_\infty = 1 \mod \tilde{H}_r p^r \alpha \), and in particular \( b_\infty \) generates \( \mathfrak{w}_I^{\text{perf}}(W) \),
- \( b_\infty = b_r \mod m_{r-1} \tilde{H}_r p^r \) (resp. \( m_{r-2} \tilde{H}_r p^r \) if \( p = 2 \)).

Consider an interval \( J = [p^k, p^{k+1}] \) and the commutative diagram:

\[
\begin{array}{cccc}
\mathfrak{I}_\infty, \alpha, I & \mathfrak{I}_\infty, \alpha, J & \mathfrak{I}_{k+r, \alpha, J} & \mathfrak{I}_{k+r, \alpha, I} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\mathfrak{I}_{k+r, \infty, \alpha, I} & \mathfrak{I}_{k+r, \infty, J} & \mathfrak{I}_{k+r, \infty, \alpha, J} & \mathfrak{I}_{k+r, \infty, \alpha, I} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\mathfrak{X}_\infty, \alpha, I & \mathfrak{X}_\infty, \alpha, J & \mathfrak{X}_{k+r, \alpha, I} & \mathfrak{X}_{k+r, \alpha, J} \\
\end{array}
\]

Let \( T := \text{Spf } C \) be the inverse image of \( W \) in \( \mathfrak{X}_{r, \alpha, J} \). Then \( \mathfrak{w}_I|_T \) admits a generator \( f \) as \( C \)-module constructed as follows. For every \( 0 \leq n \leq r + k \) take \( c'_n \in \tilde{H}_r p^n \mathcal{O}_{\mathfrak{X}_{n, r, \alpha, J}}(T) \) such that \( c'_0 = 1 \), \( \text{Tr}_{\mathfrak{X}}(c'_n) = c'_{n-1} \) and \( c'_n = c_n \) if \( n \leq r \). Take a section \( s \in \mathcal{O}_{\mathfrak{X}_{k+r, r, \alpha, J}}(T) \) which is \( 1 \mod p^2 \) and which generates \( \mathfrak{w}_{r+k, r, \alpha, J}(T) \) (see lemma 4.5 and note that \( 1 = k + r - (k + 1) - 2 \) if \( p \neq 2 \) and \( 1 = k + r - (k + 1) - 4 \) if \( p = 2 \)). Let \( f = \sum_{\sigma \in (\mathcal{O}_F/p^{k+r} \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \sigma(c'_{r+k} s) \).

Then
\[
f = \sum_{\sigma \in (\mathcal{O}_F/p^{k+r} \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \sigma(c'_{r+k}) \mod \tilde{H}_r p^{n-1} p^2
\]
and it follows from 2.6 that
\[
\sum_{\sigma \in (\mathcal{O}_F/p^{k+r} \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \sigma(c'_{r+k}) = \sum_{\sigma \in (\mathcal{O}_F/p^r \mathcal{O}_F)^*} \kappa(\tilde{\sigma}) \sigma(c_r) \mod (m_{r-1} \tilde{H}_r p^{r-1}, \ldots, m_{r+k-1} \tilde{H}_r p^{r+k-1})
\]
Proposition 6.5.
The sheaves $\phi^\ast \mathcal{W}$.

Proof. Due to Theorem 6.4 the sheaf $\mathcal{W}$ over $\mathfrak{X}_{p, \alpha, I}$ is canonically determined by the sheaves $\mathcal{W}_{f, \alpha}$ and the sheaves $\mathcal{W}_J$ for $J = [p^k, p^{k+1}]$. These glue for varying $\alpha$ and have compatible Frobenius morphisms by Proposition 4.3.2. The claim follows.
6.3 Descent to the Iwasawa algebra

Let $\mathfrak{X} = \mathfrak{M}(\mu_N, \mathfrak{c}) \times \mathcal{M}_F^0$. For all $r \geq 0$, let $\mathfrak{X}_r$ be the $\mathfrak{m}$-adic formal scheme representing the functor which associates to any $\mathfrak{m}$-adically complete $\Lambda_F^0$-algebra $R$ without $\Lambda_F^0$-torsion the equivalence classes of tuples $(h: \text{Spf} R \to \mathfrak{M}(\mu_N, \mathfrak{c}), \eta_p, \eta_1, \cdots, \eta_g \in H^0(\text{Spf} R, h^* \det \omega_G^{(1-p)pr+1}))$ such that

\[ \text{Ha}^{pr+1} \eta_p \equiv p \mod p^2, \text{Ha}^{pr+1} \eta_1 = T_1 \mod p^2, \cdots, \text{Ha}^{pr+1} \eta_g = T_g \mod p^2. \]

Two tuples $(h, \eta_p, \eta_1, \cdots, \eta_g)$ and $(h', \eta_p, \eta_1, \cdots, \eta_g)$ are declared equivalent if $h = h'$ and

\[ \eta_p = \eta'_p (1 + pu_p), \eta_1 = \eta'_1 + \eta_p u_1, \cdots, \eta_g = \eta'_g + \eta_p u_g \]

for some $u_p, u_1, \cdots, u_g \in R$.

There is a cartesian diagram of formal schemes:

\[
\begin{array}{ccc}
\mathfrak{X}_r & \xrightarrow{g} & \mathfrak{X}_r\\
\downarrow & & \downarrow \\
\mathfrak{M}_F^0 & \xrightarrow{g} & \mathcal{M}_F^0
\end{array}
\]

Theorem 6.6. (1) The natural map $\mathcal{O}_{\mathfrak{X}_r} \to g_* \mathcal{O}_{\mathfrak{X}_r}$ is an isomorphism.

(2) The sheaf $g_* \mathfrak{m}_I$ (here $I = [1, \infty]$) is an invertible sheaf over $\mathfrak{X}_r$ and $g^* g_* \mathfrak{m}_I = \mathfrak{m}_I$.

Proof. Let $U := \text{Spf} A$ be a formal open affine subscheme of $\mathfrak{M}(\mu_N, \mathfrak{c})$ where $\omega_G$ is trivial. Let $W := \text{Spf} B$ be the inverse image of $U$ in $\mathfrak{X}_r$. In particular we have elements $\eta_p, \eta_1, \cdots, \eta_g$ such that $B = A[[T_1, \cdots, T_g]](\eta_p, \eta_1, \cdots, \eta_g)/(\text{Ha}^{pr+1} \eta_p - p, \text{Ha}^{pr+1} \eta_1 - T_1, \cdots, \text{Ha}^{pr+1} \eta_g - T_g)$. Arguing as in Lemma 3.7 we deduce that $B$ is normal.

1. The map $g$ is the base-change of the morphism $\mathfrak{X}_r \to \mathcal{M}_F^0$, which is the $\mathfrak{m}$-adic completion of a blow-up, therefore it is proper. Thus $C := g_* \mathcal{O}_{\mathfrak{X}_r}(W)$ is a finite $B$-module. The map $B \to C$ is an isomorphism over the ordinary locus of $U$ and, hence, it is generically an isomorphism. As $\mathfrak{X}_r$ is also normal it follows that $B = C$ as claimed.

2. Let $Z := g^{-1} W$. Thanks to (1) it suffices to prove that $\mathfrak{m}_I|_Z$ is a free $\mathcal{O}_Z$-module of rank 1. Let $Z^\text{perf}$ be the inverse image of $Z$ in $\mathfrak{X}_\infty$. We will actually prove that $\mathfrak{m}_I^\text{perf}|_{Z^\text{perf}}$ is a free $\mathcal{O}_Z^\text{perf}$-module of rank 1 and find a generator $b_\infty$ whose trace will be a generator of $\mathfrak{m}_I|_Z$.

We apply the construction of [3.3] with $A_0 = Z_p$. We thus obtain formal schemes $\mathfrak{Y}_s$ together with partial Igusa towers $\mathfrak{X}_{n,s} \to \mathfrak{Y}_s$ for $n \leq s$.

Passing to the limit over Frobenius, we obtain $\mathfrak{X}_{n,\infty} \to \mathfrak{Y}_\infty$. There is an obvious commutative diagram:

\[
\begin{array}{ccc}
\mathfrak{X}_{n,r} & \xrightarrow{g} & \mathfrak{X}_{n,r}\\
\downarrow & & \downarrow \\
\mathfrak{X}_r & \xrightarrow{g} & \mathfrak{Y}_r \\
\downarrow & & \downarrow \\
\mathfrak{M}_F^0 & \xrightarrow{g} & \mathcal{M}_F^0
\end{array}
\]

28
As in Corollary 3.5 one deduces from Proposition 3.4 the existence of elements
\[ c'_n \in \tilde{H}_r^{-\frac{n-1}{p-1}}O_{\mathfrak{Q}_{p, n}}(W) \]
for integers \( n \leq r \) and elements \( c'_n \in \tilde{H}_r^{-p}O_{\mathfrak{Q}_{p, \infty}}(W) \) for general \( r \leq n \) so that \( c'_0 = 1 \) and \( \text{Tr}(c'_n) = c'_{n-1} \). We call \( c_n \) the pull back of \( c'_n \) in \( O_{\mathfrak{Q}_{p, \infty}}(Z) \). We can now repeat the proof of Theorem 6.4 using these elements \( c_n \) to obtain a trivialization \( b_\infty \) of \( w_{I, \text{perf}}|_{Z_{\text{perf}}} \) whose trace gives the trivialization of \( w_I|_Z \).

We set \( w^\kappa = g_*w_I \).

6.4 The main theorem

Let \( H \) be the torsion subgroup of \( T(Z_p) \). Let \( \chi: H \to \Lambda_F^* \) be the restriction of the universal character to \( H \). Due to Lemma 2.4 it is a quotient of \((O_F/pO_F)^*\) and we view \( \chi \) as a character of \((O_F/p^2O_F)^*\). For all \( r \geq 0 \), let
\[ M_r := 3_r \times_{\mathfrak{Q}_p} W_F. \]

Let \( M_r \) be the analytic adic space associated to \( M_r \). In other words, \( M_r \) is the open subset of the \( M(\mu_N, \gamma) \times \text{Spec } \mathcal{O}_F \) defined by the conditions:
\[ |\tilde{H}_r| \geq \sup_{\alpha \in m} \{|\alpha|\}, \]
where \( \tilde{H}_r \) is a local lift of the Hasse invariant. Over \( M_r \) we have a canonical subgroup \( C_2 \) of level 2. Let \( \mathcal{M}_{2,r} \) be the torsor of trivializations of \( C_2^D \). Let \( \mathcal{M}_{2,r} \to M_r \) be the normalization. It carries an action of \((O_F/p^2O_F)^*\).

Let \( w^\chi \) be the subsheaf of \((h_2)_rO_{\mathfrak{Q}_{p, 2, r}} \otimes (O_F/p^2O_F)^* \) acts via the character \( \chi^{-1}: H \to \Lambda_F^* \) composed with the projection \((O_F/p^2O_F)^* \to H \). This is a coherent sheaf, invertible over the ordinary locus and over the analytic fiber \( M_r \).

We define \( w^{\kappa, \text{un}} := (s^*w^\kappa) \otimes w^\chi \) where \( s: M_r \to 3_r \) is the projection. We let \( w^{\kappa, \text{un}} \) be the associated sheaf over \( M_r \).

Theorem 6.7. The sheaf \( w^{\kappa, \text{un}} \) over \( M_r \) enjoys the following properties:

1. the restriction of \( w^{\kappa, \text{un}} \) to the classical analytic space \( M_r \times_{\mathfrak{Q}(Z_p, Z_p)} \mathfrak{Q}(Q_p, Z_p) \) is the sheaf defined in [AIPH, Def. 3.6];

2. for all locally algebraic weight \( k\chi: T(Z_p) \to O_{\mathfrak{Q}_p}^* \) where \( k \) is an algebraic weight and \( \chi \) is a finite character, then \( w^{\kappa, \text{un}}|_{k\chi} = w^k(\chi) \) is the sheaf of weight \( k \) modular forms and nebentypus \( \chi \).

3. If \( i: M_{r+1} \to M_r \) is the inclusion and \( \phi: M_{r+1} \to M_r \) is the Frobenius, then we have a canonical isomorphism \( i^*w^{\kappa, \text{un}} \simeq \phi^*w^{\kappa, \text{un}} \).
7 Overconvergent forms in characteristic $p$

Specializing the sheaf $\omega^{\text{num}}$ of Theorem 6.7 to characteristic $p$ points of $W_F$ we obtain sheaves of overconvergent Hilbert modular forms in characteristic $p$. The goal of this section is to describe them via a construction purely in characteristic $p$.

7.1 The characteristic $p$ Igusa tower

Let $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$ be the special fiber of $\overline{M}(\mu_N, c)$ and denote by $\overline{M}_{\text{ord}}(\mu_N, c)_{\mathbb{F}_p}$ the ordinary locus. It is an open dense subscheme of $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$, smooth over Spec $\mathbb{F}_p$. Fix a positive integer $n$. Over $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$ we have a canonical subgroup of level $n$, denoted by $H_n$. It is the kernel of the $n$-th power Frobenius map $F^n : G \to G^{(p^n)}$. The canonical subgroup over $\overline{M}_{\text{ord}}(\mu_N, c)_{\mathbb{F}_p}$ is of multiplicative type and its dual $H^D_n$ is étale locally isomorphic to $\mathcal{O}_F/p^n\mathcal{O}_F$. We denote by $\overline{\text{IG}}_{n,\text{ord}} \to \overline{M}_{\text{ord}}(\mu_N, c)_{\mathbb{F}_p}$ the finite, étale and Galois cover for the group $(\mathcal{O}_F/p^n\mathcal{O}_F)^*$ of trivializations of $H^D_n$. Passing to the projective limit over $n$ we get a scheme $\overline{\text{IG}}_{\infty,\text{ord}}$ over $\overline{M}_{\text{ord}}(\mu_N, c)_{\mathbb{F}_p}$. For every $n$ define $\overline{\text{IG}}_n \to \overline{M}(\mu_N, c)_{\mathbb{F}_p}$ to be the normalization of $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$ in $\overline{\text{IG}}_{n,\text{ord}}$. The scheme $\overline{\text{IG}}_n$ is finite over $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$ and carries an action of the group $(\mathcal{O}_F/p^n\mathcal{O}_F)^*$.

It is characterized by the following universal property:

**Lemma 7.1.** For every normal $\mathbb{F}_p$-algebra $R$ and every $R$-valued point $x \in \overline{M}(\mu_N, c)(R)$ such that the ordinary locus (Spec $R)_{\text{ord}}$ is dense in Spec $R$, the $R$-valued points of $\overline{\text{IG}}_n$ over $x$ consist of the $\mathcal{O}_F$-equivariant morphisms $\mathcal{O}_F/p^n\mathcal{O}_F \to H^D_{n,x}$, which are isomorphisms over $(\text{Spec } R)_{\text{ord}}$. Here $H_{n,x}$ is the pull back of the canonical subgroup to Spec $R$ via $x$.

Let $h_{n+1} : \overline{\text{IG}}_{n+1} \to \overline{\text{IG}}_n$ (with the convention $\overline{\text{IG}}_0 = \overline{M}(\mu_N, c)_{\mathbb{F}_p}$). Let us denote by

$$\text{Tr}_{\overline{IG}} : (h_{n+1})_*\mathcal{O}_{\overline{\text{IG}}_{n+1}} \to \mathcal{O}_{\overline{\text{IG}}_n}$$

the trace of this morphism.

**Lemma 7.2.** For all $n \geq 0$, we have $\text{Hdg}^{p^n} \subset \text{Tr}_{\overline{IG}}((h_{n+1})_*\mathcal{O}_{\overline{\text{IG}}_n})$.

Proof. Similar to the proof of Proposition 3.4.

**Corollary 7.3.** Let Spec $A$ be an open subset of $\overline{M}(\mu_N, c)_{\mathbb{F}_p}$ such that the sheaf $\text{Hdg}$ is trivial. Let us identify $H_n$ with a generator of $\text{Hdg}$. There is a sequence of elements $c_0 = 1$, $c_n \in \text{Hdg}^{p^n-1} \mathcal{O}_{\overline{\text{IG}}_n}(\text{Spec } A)$ for $n \geq 1$ such that $\text{Tr}_{\overline{IG}}(c_n) = c_{n-1}$.

7.2 Formal schemes attached to the Hilbert modular variety in characteristic $p$

Let $\mathfrak{m}$ be the maximal ideal $(T_1, \cdots, T_g)$ of $\Lambda^0_F/p\Lambda^0_F$. We set $\mathfrak{M}^0_{F,\{\infty\}} = \text{Spf } \Lambda^0_F/p\Lambda^0_F$. Recall that $\mathfrak{M}^0_{F,\{\infty\}}$ is the blow-up of $\mathfrak{M}^0_{F,\{\infty\}}$ along $\mathfrak{m}$.

In section 6.3 we defined an $\mathfrak{m}$-adic formal scheme $\mathfrak{Z}_r \to \mathfrak{M}^0_F$. We set $\mathfrak{Z}_{r,\{\infty\}} = \mathfrak{Z}_r \times_{\mathfrak{M}^0_F,\{\infty\}} \mathfrak{M}^0_{F,\{\infty\}}$. Its ordinary locus is $\mathfrak{Z}_{\text{ord,}\{\infty\}} = \overline{M}_{\text{ord}}(\mu_N, c)_{\mathbb{F}_p} \times_{\text{Spec } \mathbb{F}_p} \text{Spf } \mathfrak{M}^0_{F,\{\infty\}}$. 

30
In §3.4 we defined a formal scheme $X_{r,\{\infty\}}$ over $\widehat{\mathbb{M}}_{F,\{\infty\}}^0$ and it follows from the definitions that:

$$X_{r,\{\infty\}} = \mathfrak{Z}_{r,\{\infty\}} \times \mathfrak{m}^0_{F,\{\infty\}} \widehat{\mathbb{M}}_{F,\{\infty\}}^0.$$  

Let $\mathfrak{G}_{n,r,\{\infty\}} = \overline{IG}_{n} \times \text{Spec } \mathbb{F}_p \mathfrak{Z}_{r,\{\infty\}}$ be the partial Igusa tower of level $n$ over $\mathfrak{Z}_{r,\{\infty\}}$. Passing to the limit over $n$, we get an $\mathfrak{m}$-adic formal scheme $h : \mathfrak{G}_{\infty,n,r,\{\infty\}} \to \mathfrak{Z}_{r,\{\infty\}}$ which carries an action of $T(\mathbb{Z}_p)$.

**Lemma 7.4.** 1. The formal scheme $\mathfrak{G}_{n,r,\{\infty\}}$ is normal.

2. We have $\mathfrak{G}_{n,r,\{\infty\}} = \mathfrak{G}_{n,r,\{\infty\}} \times \mathfrak{Z}_{r,\{\infty\}} X_{r,\{\infty\}}$, where $\mathfrak{G}_{n,r,\{\infty\}}$ is defined in §3.4.

3. $(h_* \mathcal{O}_{\mathfrak{G}_{\infty,n,r,\{\infty\}}})^{T(\mathbb{Z}_p)} = \mathcal{O}_{\mathfrak{Z}_{r,\{\infty\}}}$.

**Proof.** Easy and left to the reader.

---

**Proposition 7.5.** For any normal, $\mathfrak{m}$-adically complete torsion free $\Lambda^0_F/p\Lambda^0_F$-algebra, the $R$-valued points $\mathfrak{G}_{n,r,\infty}(R)$ classify tuples $(x, \eta_{T_1}, \cdots, \eta_{T_g}, \psi)$ where

- $x \in \mathcal{M}(\mu_N, c)(R)$,
- $\eta_{T_1}, \cdots, \eta_{T_g} \in H^0(R, \det \omega_{G}^{(1-p)p^{r+1}})$ satisfy $Ha^{p^{r+1}} \eta_{T_i} = T_i$,
- $\psi : \mathcal{O}_F/p^n \mathcal{O}_F \to H^D_n$ is a $\mathcal{O}_F$-linear morphism of group schemes which is an isomorphism over $(\text{Spec } R)_{\text{ord}}$.

---

**7.3 Convergent Hilbert modular forms in characteristic $p$**

Let $\overline{\kappa} : (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \to (\Lambda^0_F/p\Lambda^0_F)^*$ be the reduction modulo $p$ of the character $\kappa$. Following Katz we define

$$w_{\{\infty\}} := \mathcal{O}_{\mathfrak{G}_{\infty,\text{ord},\{\infty\}}}^{\overline{\kappa}^{-1}}.$$  

It follows from loc. cit. that it is an invertible sheaf of $\mathcal{O}_{\mathfrak{G}_{\text{ord},\{\infty\}}}$-modules. Moreover the Frobenius on $\mathfrak{G}_{\infty,\text{ord},\{\infty\}}$ defines an isomorphism $\phi^*w_{\{\infty\}} \simeq w_{\{\infty\}}$.

---

**7.4 Overconvergent Hilbert modular forms in characteristic $p$**

Let $h : \mathfrak{G}_{\infty,n,r,\{\infty\}} \to \mathfrak{Z}_{r,\{\infty\}}$ be the structural morphism. As in the previous section we define the subsheaf $w_{\{\infty\}} := h_* \mathcal{O}_{\mathfrak{G}_{\infty,n,r,\{\infty\}}}^{\overline{\kappa}^{-1}}$ of $h_* \mathcal{O}_{\mathfrak{G}_{\infty,n,r,\{\infty\}}}$. It is a sheaf of $\mathcal{O}_{\mathfrak{Z}_{r,\{\infty\}}}$-modules. Our main theorem is

**Theorem 7.6.** Assume that $r \geq 2$ (resp. $r \geq 3$ if $p = 2$). Then the sheaf $w_{\{\infty\}}$ is an invertible sheaf of $\mathcal{O}_{\mathfrak{Z}_{r,\{\infty\}}}$-modules. Its restriction to $\mathfrak{Z}_{\text{ord},\{\infty\}}$ is the sheaf defined in §7.3.
Proof. The proof is local on \( \mathcal{M}(\mu_N, c)_{\overline{p}} \). Let \( \text{Spec } A \) be an open subset of \( \mathcal{M}(\mu_N, c)_{\overline{p}} \) where the Hodge ideal is trivial. We denote abusively \( \text{Ha} \) a generator. Let \( \text{Spf } R \) be the inverse image of \( \text{Spec } A \) in \( \mathcal{J}_{3,\{\infty\}} \), \( \text{Spf } R_n \) the inverse image in \( \mathcal{J}_{3,\{\infty\}} \) and \( \text{Spf } R_\infty \) the inverse image in \( \mathcal{J}_{3,\{\infty\}} \). By lemma \( \square \) \( R_\infty^{(\mathcal{O}_F \otimes \mathbb{Z}_p)^*} = R \). Thus to prove the theorem it suffices to show that there exists an invertible element \( x \in R_\infty \) such that \( \sigma(x) = \kappa^{-1}(\sigma)x \) for every \( \sigma \in (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \).

By Corollary 7.3 there exist elements \( c_n \in \text{Ha}^{-\frac{p^n-1}{p-1}}R_n \) such that \( \text{Tr}_{R_n/R_{n-1}}(c_n) = c_{n-1} \) and \( c_0 = 1 \). Define \( b_n := \sum_{\sigma \in G_n} \sigma(\tilde{c}) \sigma(c_n) \in \text{Ha}^{-\frac{p^n-1}{p-1}-p}R_n \) for \( n \geq 1 \). Here \( \tilde{c} \in (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \) is a lift of \( \sigma \in (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \). By Lemma \( \square \) we deduce that

- \( b_n - b_{n-1} \in (T_1^{p^n-1}, \cdots, T_\varphi^{p^n-1}) \text{Ha}^{-\frac{p^n-1}{p-1}}R_n \) if \( n \geq 1 \) and \( p \geq 3 \),
- \( b_n - b_{n-1} \in (T_1^{p^{n-2}}, \cdots, T_\varphi^{p^{n-2}}) \text{Ha}^{-\frac{p^n-1}{p-1}}R_n \) if \( n \geq 2 \) and \( p = 2 \),
- \( b_1 - 1 \in (T_1, \cdots, T_\varphi) \text{Ha}^{-1}R_1 \) for all \( p \).

One then concludes that \( \{b_n\}_n \) is a Cauchy sequence of elements of \( R_\infty \) converging to a unit \( b_\infty := \lim_n b_n \) of \( R_\infty \) having the property that \( \sigma(b_\infty) = \kappa^{-1}(\sigma)b_\infty \) for every \( \sigma \in (\mathcal{O}_F \otimes \mathbb{Z}_p)^* \). \( \square \)

### 7.5 Comparison with the sheaf \( \mathfrak{w}_{[1, \infty]} \)

In this section we work over \( \mathfrak{X}_{r,\{\infty\}} \) and prove that the specialization at \( \{\infty\} \) of the sheaf \( \mathfrak{w}_{[1, \infty]} \) of Theorem 6.4 equals the pull back to \( \mathfrak{X}_{r,\{\infty\}} \) of the sheaf \( \mathfrak{w}_{[1, \infty]} \) defined in \( \square \).

**Proposition 7.7.** Let \( \alpha \in \mathfrak{m} \). For every integer \( k_0 \geq 1 \), the obvious inclusion \( \mathfrak{w}_{[p^{k_0}, \infty]} \subset \mathcal{O}_{\mathfrak{J}_{\infty, \alpha, [p^{k_0}, \infty]} \text{ factors modulo } \alpha^{k_0-p_k-1-1} \text{ as a morphism} \)

\[
\mathfrak{w}_{[p^{k_0}, \infty]} \to \mathcal{O}_{\mathfrak{J}_{r+k_0, r, \alpha, [p^{k_0}, \infty]}}/\alpha^{p^{k_0}-p_k-1-1}.
\]

The restriction of \( \mathfrak{w}_f \) to \( \mathfrak{X}_{r,\alpha,\{\infty\}} \) is a subsheaf of \( \mathcal{O}_{\mathfrak{J}_{\infty, \alpha, \{\infty\}}} \) which identifies canonically to \( \mathfrak{w}_{\{\infty\}} \).

**Proof.** Fix an integer \( k_0 \geq 1 \). Let \( \text{Spf } B \) be an open affine of \( \mathfrak{X}_{r,\alpha, [p^{k_0}, \infty]} \). Assume that \( \text{Hdg} \) is trivial on \( \text{Spf } B \), generated by \( \text{Ha} \). Fix elements \( c_0 = 1 \) and, for \( 1 \leq n \leq k_0 + r \), \( c_n \in \text{Ha}^{-\frac{p^n-1}{p-1}}\mathcal{O}_{\mathfrak{J}_{n, r, \alpha, [p^{k_0}, \infty]}(\text{Spf } B)} \) such that \( \text{Tr}_{\mathfrak{J}_{n+1}}(c_n) = c_{n-1} \). Complete the sequence by choosing,

\( b_n = \sum_{\sigma \in G_n} \kappa(\tilde{c}) \sigma(c_n) \in \text{Ha}^{-\frac{p^n-1}{p-1}}\mathcal{O}_{\mathfrak{J}_{n, r, \alpha, [p^{k_0}, \infty]}(\text{Spf } B)} \).

Fix now an interval \([p^k, p^{k+1}]\) with \( k \geq k_0 \). Let \( \text{Spf } C \) be the inverse image of \( \text{Spf } B \) in \( \mathfrak{X}_{r,\alpha, [p^k, p^{k+1}]} \). Fix elements \( c_{n} \in \text{Ha}^{-\frac{p^n-1}{p-1}}\mathcal{O}_{\mathfrak{J}_{n, r, \alpha, [p^k, p^{k+1}]}(\text{Spf } C)} \) for \( r + k_0 + 1 \leq n \leq r + k \) satisfying \( \text{Tr}_{\mathfrak{J}_{n}}(c_{n}) = c_{n-1} \) for \( n \geq r + k_0 + 2 \) and \( \text{Tr}_{\mathfrak{J}_{n}}(c_{n+k_0+1}) = c_{r+k_0} \). There is a generator \( f \)
of the sheaf $w_f$ over $\text{Spf } C$ such that $f = \sum_{\sigma \in \langle \mathcal{O}/p^{r+k}\mathcal{O}\rangle^*} \kappa(\bar{\sigma})\sigma.c'_{r+k} \mod p\bar{\text{Ha}}^{-p^{r+k}}$. As in $C$ we have $\alpha^k | p$ and $\bar{\text{Ha}}^{-p^{r+k}} | \alpha^{k-1}$ it follows that $f = \sum_{\sigma \in \langle \mathcal{O}/p^{r+k}\mathcal{O}\rangle^*} \kappa(\bar{\sigma})\sigma.c'_{r+k} \mod p\alpha^{p^{r+k}-p^{k-1}}$. Using lemma 2.6 one more time, we deduce that $f = b_{r+k_0} \mod \alpha^{p^{r+k}-p^{k-1}}$. As a consequence, in $\mathcal{O}_{\mathfrak{g}_{\infty,\infty},A}[p^k,p^{k+1}]$(Spf $C$) we have $f = b_{\infty} = b_{r+k_0} \mod \alpha^{p^{r+k}-p^{k-1}}$. Using Tate’s traces, we get $f = \text{Tr}_r(b_{\infty}) = b_{\infty} \mod \alpha^{p^{r+k}-p^{k-1}}\mathcal{W}_{[p^k,p^{k+1}]}$(Spf $C$). As this relation holds on all intervals $[p^k,p^{k+1}]$, it follows that $\text{Tr}_r(b_{\infty}) = b_{\infty} \mod \alpha^{p^{r+k}-p^{k-1}}\mathcal{W}_{[p^k,p^{k+1}]}$(Spf $B$). As a result, $\text{Tr}_r(b_{\infty}) = b_{r+k_0} \mod \alpha^{p^{r+k}-p^{k-1}}\mathcal{W}_{\mathfrak{g}_{\infty,\infty},A}[p^k,p^{k+1}]$(Spf $B$).

It follows that there is a morphism $w_{[p^{k_0},\infty]} \to \mathcal{O}_{\mathfrak{g}_{\infty,\infty},A}[p^{k_0},p^{k_0+1}]/\alpha^{p^{r+k}-p^{k-1}}$ which on Spf $B$ sends $\text{Tr}_r(b_{\infty})$ on $b_{r+k_0}$. It factors the map $w_{[p^{k_0},\infty]} \to \mathcal{O}_{\mathfrak{g}_{\infty,\infty},A}[p^{k_0},\infty]/\alpha^{p^{r+k}-p^{k-1}}$. Comparing the definition of $b_{r+k_0}$ and the construction of the sheaf $w_{\{\infty\}}$ we obtain that the restriction of $w_{[1,\infty]}$ to $\mathfrak{X}_{r,\{\infty\}}$ is $w_{\{\infty\}}$.

7.6 Analytic overconvergent Hilbert modular forms in characteristic $p$

We now let $\mathcal{M}_{r,\{\infty\}} = \mathcal{M}_r \times \mathcal{W}_F \mathcal{W}_{F,\{\infty\}}$. Concretely, $\mathcal{M}_{r,\{\infty\}}$ is the open subset of $\overline{\mathcal{M}}(\mu_N, c) \times \text{Spec } F_p$ $\mathcal{W}_{F,\{\infty\}}$ where

$$|\text{Ha}^{p^{r+1}}| \geq \sup_{\alpha \in \mathfrak{a}} |\alpha|.$$  

Let us recall that we denoted by $\overline{\varphi}^\text{un} : \mathbb{T}(\mathbb{Z}_p) \to (\Lambda_F/p\Lambda_F)^*$ the universal mod $p$ character.

Let $\varphi^\text{un}$ be the pull back of $\overline{\varphi}^\text{un}$ to $\mathcal{M}_{r,\{\infty\}}$. An $r$-overconvergent Hilbert modular form of weight $\overline{\varphi}^\text{un}$ is a global section of $\varphi^\text{un}$. Here is the desired, à la Katz, description.

**Proposition 7.8.** An $r$-overconvergent modular form $f$ of weight $\overline{\varphi}^\text{un}$ is a functorial rule which associates to a tuple $((R, R^+), x : \text{Spa}(R, R^+) \to \mathcal{M}_{r,\{\infty\}}, \psi : \mathcal{O}_F \otimes \mathbb{Z}_p \simeq \lim_n x^*H^D_n)$ an element in $f(x, \psi) \in R$, where:

1. $(R, R^+)$ is a complete affinoid Tate algebra,
2. $x^*H^D_n$ is the pullback of the dual canonical subgroup of level $n$ to $\text{Spa}(R, R^+)$,
3. The isomorphism $\psi$ is $\mathbb{T}(\mathbb{Z}_p)$-equivariant,
4. For all $\sigma \in \mathbb{T}(\mathbb{Z}_p)$, $f(x, \psi \circ \sigma) = (\overline{\varphi}^\text{un})^{-1}(\sigma)f(x, \psi)$.
5. There exists a rational cover $\text{Spa}(R, R^+) = \bigcup \text{Spa}(R_i, R_i^+)$ and for each $i$ a bounded and open subring $R_{i,0} \subset R_i^+$ such that $x^*G|_{\text{Spa}(R_i, R_i^+)}$ comes from a semi-abelian scheme $G_0$ over $\text{Spf } R_{i,0}$ and the isomorphism $\psi|_{\text{Spa}(R_i, R_i^+)}$ comes from a group scheme morphism $\psi_0 : \mathcal{O}_F \otimes \mathbb{Z}_p \to \lim_n(G_0[F^n])^D$ defined over $\text{Spf } R_{i,0}$ (where $[F^n]$ means the kernel of the $n$-th power of the Frobenius isogeny).
Proof. Take \((R, R^+)\) as in the proposition. Without loss of generality, we can assume that \(R\) has a noetherian ring of definition. Using 5), we observe that the rule \(f\) defines compatible sections of \(H^0(\text{Spf } R_{i,0}, \mathcal{M}(\infty)) \otimes_{R_{i,0}} R\) which glue, by the sheaf property, to a section of \(\omega^{\text{gen}}\) on \(\text{Spa}(R, R^+)\).

\[\square\]

8 Overconvergent arithmetic Hilbert modular forms

8.1 The Shimura variety \(\overline{M}(\mu_N, c)_G\)

Consider the group \(G := \text{Res}_{F/\mathbb{Q}} \text{GL}_2\) and \(G^* := G \times \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m\), where the morphism \(G \to \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m\) is the determinant. So far we have worked on the Shimura variety associated to the group \(G^*\). From the point of view of automorphic forms it is useful to work with the Shimura variety defined by the group \(G\).

Let \(\mathcal{O}_F^{+,*}\) be the group of totally real units of \(\mathcal{O}_F\) and let \(U_N \subset \mathcal{O}_F^{+}\) be the group of units congruent to 1 modulo \(N\). Consider the finite group \(\Delta = \mathcal{O}_F^{+,*}/U_N^2\). For \(\epsilon \in \mathcal{O}_F^{+,*}\) we have an action \([\epsilon] : \overline{M}(\mu_N, c) \to \overline{M}(\mu_N, c)\) given by multiplying the polarization \(\lambda\) by \(\epsilon\). The action factors through \(\Delta\) (see \([\text{AIPH}],\) intro., p. 6).

Lemma 8.1. The group \(\Delta\) acts freely on \(\overline{M}(\mu_N, c)\). One can form the quotient \(\overline{M}(\mu_N, c)_G := \overline{M}(\mu_N, c)/\Delta\). The quotient map \(\overline{M}(\mu_N, c) \to \overline{M}(\mu_N, c)_G\) is finite étale with group \(\Delta\).

Proof. Since \(\overline{M}(\mu_N, c)\) is a projective scheme, it can be covered by open affine subschemes fixed by the action of \(\Delta\). Thus we can form the quotient \(\overline{M}(\mu_N, c)_G\). We now show that \(\Delta\) acts freely on \(\overline{M}(\mu_N, c)\). This can be proved over an algebraically closed field \(k\) where the freeness of the action amounts to proving the following:

Consider an abelian variety with real multiplication \((A, \iota, \Psi, \lambda)\) over \(k\) as in \([\mathbb{S}]\) and a totally positive unit \(\epsilon \in \mathcal{O}_F^{+,*}\). Let \(\alpha : A \to A\) be an automorphism commuting with the \(\mathcal{O}_F\)-action, the level \(N\) structure \(\Psi\) and such that \(\lambda \circ \alpha = \epsilon \alpha^\vee \circ \lambda\). Then \(\alpha \in U_N\) is a totally positive unit, congruent to 1 modulo \(N\).

As \(\alpha\) respects the level \(N\) structure, it suffices to prove that \(\alpha\) is an endomorphism lying in \(\mathcal{O}_F\). Suppose this is not the case. Then \(E := F[\alpha] \subset \text{End}^0(A)\) would be a commutative algebra of dimension at least \(2g\). It must be a field, else \(A\) would decompose as a product of at least two abelian varieties of dimension \(< g\), with real multiplication by \(F\) which is impossible. As a maximal commutative subalgebra of \(\text{End}^0(A)\) has dimension \(\leq 2g\), it follows that \(E\) is a CM field of degree 2 over \(F\). Moreover the Rosati involution associated to any \(\mathcal{O}_F\)-invariant polarization induces complex conjugation on \(E\). As the rank of the group of units in \(\mathcal{O}_E\) is equal to the rank of the group of units of \(\mathcal{O}_F\) by Dirichlet’s unit theorem, it follows that there exists an integer \(n \geq 2\) such that \(\alpha^n \in \mathcal{O}_F^\times\) and \(\alpha^{n-1} \notin \mathcal{O}_F^\times\). Hence \(\zeta = (\alpha/\bar{\alpha})\) is a primitive \(n\)-root of unity in \(\mathcal{O}_E\). It preserves every \(\mathcal{O}_F\)-equivariant polarization \(\lambda\) as \(\lambda^{-1} \circ \zeta^\vee \circ \lambda \circ \zeta = \overline{\zeta}\zeta = 1\). As \(N \geq 4\) it follows from Serre’s lemma that \(\zeta = 1\) leading to a contradiction. We are left to show that \(\Delta\) acts freely on the boundary \(D := \overline{M}(\mu_N, c)_G\setminus M(\mu_N, c)_G\). Recall that the boundary is the union of its connected components parametrized by the cusps of the minimal compactification. Each connected component of the boundary is stratified. More precisely, for each connected component, there is a polyhedral decomposition \(\Sigma\) of the cone of totally positive elements \(M^+\) inside a fractional ideal \(M \subset F\) determined by the cusp. To every cone \(\sigma \in \Sigma\) corresponds a
stratum $S_\sigma \subset D$. By construction of the toroidal compactification, if $\epsilon \in U_N$, then $S_{\epsilon^2 \sigma} = S_\sigma$. We now claim that the action of $\Delta$ on the set of all strata in $D$ is free. This follows from the fact that the stabilizer of $\sigma \in \Sigma$ is a finite subgroup of $O^+_{F} \times$, thus trivial. This concludes the proof.

\[\square\]

8.2 Descending the sheaf $w^{\kappa^{\text{un}}}$

We follow closely [AIPH]; see especially the Introduction and §4. First of all the weight space associated to $G$ is the formal scheme $W^G_F$ defined by the Iwasawa algebra $\Lambda^G_F := \mathbb{Z}_p[[O_F \otimes \mathbb{Z}_p]^* \times \mathbb{Z}_p^*]$. There is a natural map of formal schemes $W^G_F \rightarrow W_F$ defined by the group homomorphism $(O_F \otimes \mathbb{Z}_p)^* \rightarrow (O_F \otimes \mathbb{Z}_p)^* \times \mathbb{Z}_p^*$ given by $t \mapsto (t^2, \text{Nm}_{F/\mathbb{Q}}(t))$. This induces a map of analytic adic spaces $\iota : W^G_F \rightarrow W_F$. We denote by $\kappa^{\text{un}}_G := (\nu, \iota) : (O_F \otimes \mathbb{Z}_p)^* \times \mathbb{Z}_p^* \rightarrow \Lambda^G_F$ the universal character.

Let us denote by $\mathcal{M}_r \times_{\mathfrak{m}_F} W^G_F$. Let $w^{\kappa^{\text{un}}}$ be the pull-back of the universal sheaf to $\mathcal{M}_r \times_{\mathfrak{m}_F} W^G_F$.

As a consequence of lemma 8.1 the group $\Delta$ acts freely on the formal schemes $\mathcal{M}_r \times_{\mathfrak{m}_F} W^G_F$. We denote by $\mathcal{M}_{r,G}$ the quotients by the group $\Delta$. We now claim that the action of $\Delta$ on $\mathcal{M}_r \times_{\mathfrak{m}_F} W^G_F$ can be lifted to an action on the sheaf $w^{\kappa^{\text{un}}}$.

Since $w^{\kappa^{\text{un}}}$ is defined without any reference to polarization we have an isomorphism $\mu_\epsilon : [\epsilon]^{*}w^{\kappa^{\text{un}}}_G \rightarrow w^{\kappa^{\text{un}}}$ for all $\epsilon \in O^+_{F} \times$. We modify the action by multiplying $\mu_\epsilon$ by $\nu(\epsilon)$. One then verifies, see [AIPH] §4.1, that this action factors through the group $\Delta$. By finite étale descent we obtain a sheaf that we continue to denote $w^{\kappa^{\text{un}}}$ over $\mathcal{M}_{r,G}$. We let $\mathcal{M}_{r,G}$ be the analytic fiber of $\mathcal{M}_{r,G}$ and denote by $\omega^{\kappa^{\text{un}}}$ the invertible sheaf on $\mathcal{M}_{r,G}$ associated to $w^{\kappa^{\text{un}}}$.

8.3 The cohomology of the sheaf $\omega^{\kappa^{\text{un}}}(-D)$

There is an obvious map $\mathcal{M}_{r,G} \rightarrow \mathcal{M}(\mu_N, \mathfrak{c})_G$. Let $D$ denote the boundary divisor in $\mathcal{M}(\mu_N, \mathfrak{c})_G$. We also denote by $D$ its inverse image in $\mathcal{M}_{r,G}$.

Recall that $M^*(\mu_N, \mathfrak{c})$ is the minimal compactification of $M(\mu_N, \mathfrak{c})$. Certainly, the construction of $\mathcal{M}_r$ admits a variant where one uses $M^*(\mu_N, \mathfrak{c})$ as a starting point instead of $\mathcal{M}(\mu_N, \mathfrak{c})$. Let us denote by $\mathcal{M}^*_r$ the resulting formal schemes.

We also define
\[
\mathcal{M}_{r,G}^* := (\mathcal{M}^*_r \times_{\mathfrak{m}_F} W^G_F)/\Delta.
\]

Let $h : \mathcal{M}_{r,G} \rightarrow \mathcal{M}^*_r$ be the canonical projection. The main result of this section is the following cohomology vanishing theorem:

**Theorem 8.2.** We have $R^ih_*w^{\kappa^{\text{un}}}_G(-D) = 0$ for all $i > 0$.

**Proof.** This is a variant of [AIPH], Theorem 3.17. Recall that $\mathcal{M}(\mu_N, \mathfrak{c})_G$ is the quotient of $\mathcal{M}(\mu_N, \mathfrak{c})$ by $\Delta$. Let $M^*(\mu_N, \mathfrak{c})_G$ be the minimal compactification and let $M^*(\mu_N, \mathfrak{c})_G$ be its quotient by $\Delta$. We have a map $h' : \mathcal{M}(\mu_N, \mathfrak{c})_G \rightarrow M^*(\mu_N, \mathfrak{c})_G$. Let $\mathcal{L}$ be a torsion invertible sheaf on $\mathcal{M}(\mu_N, \mathfrak{c})_G$. Then we claim that $R^ih'_*\mathcal{L}(-D) = 0$ for $i > 0$. This follows from [AIPH], Prop. 6.4. Note that in that reference the proposition is stated for the trivial sheaf, but the proof works without any change for a torsion sheaf.

35
The map $h : \mathcal{M}_{r,G} \to \mathcal{M}_{r,G}^*$ is an isomorphism away from the cusps and in particular away from the ordinary locus, so we are left to prove the statement for the map $h_{\text{ord}} : \mathcal{M}_{\text{ord},G} \to \mathcal{M}_{\text{ord},G}^*$ over the ordinary locus. In this case, the sheaf $\mathfrak{w}^{\kappa \un}_G(-D)$ is invertible. Recall that the ring $\Lambda_G$ is semi-local and complete. Let $n$ be a maximal ideal of $\Lambda_G$ corresponding to a character $\eta : (\mathcal{O}_F / p \mathcal{O}_F)^* \times (\mathbb{F}_p)^* \to \mathbb{F}_q^*$ where $\mathbb{F}_q$ is a finite extension of $\mathbb{F}_p$. We are left to prove the vanishing for the sheaf $\mathcal{F} := \mathfrak{w}^{\kappa \un}_G(-D)/n$ over $\mathcal{M}_{\text{ord},G}$. This is an invertible sheaf on its support $\overline{\mathcal{M}}_{\text{ord}}(\mu_N, \chi)_G, \mathbb{F}_q \hookrightarrow \mathcal{M}_{\text{ord},G}$. Moreover $\mathcal{F}^\otimes q^{-1} = \mathcal{O}_{\overline{\mathcal{M}}_{\text{ord,aff},G}, \mathbb{F}_q}$ because the order of the character $\eta$ divides $q - 1$, and we can conclude.

**Corollary 8.3.** Let $g : \mathcal{M}_{r,G} \to \mathcal{W}_F^G$ be the projection to the weight space.

1. We have the following vanishing result: $R^i g_* \omega^{\kappa \un}_G(-D) = 0$ for all $i > 0$.
2. For every point $\kappa \in \mathcal{W}_G$,

   $$\kappa^* g_* \omega^{\kappa \un}_G(-D) = H^0(\mathcal{M}_{r,G}, \kappa^* \omega^{\kappa \un}_G(-D))$$

   is the space of $r$-overconvergent, cuspidal, arithmetic Hilbert modular forms of weight $\kappa$.
3. There exists a finite covering of the weight space $\mathcal{W}_F^G = \bigcup_i \text{Spa}(R_i, R_i^+)$ such that

   $$g_* \omega^{\kappa \un}_G(-D)(\text{Spa}(R_i, R_i^+))$$

   is a projective Banach $R_i$-module, for every $i$.

**Proof.** We have a sequence of maps

$$g : \mathcal{M}_{r,G} \xrightarrow{g_1} \mathcal{M}_{r,G}^* \xrightarrow{g_2} \mathcal{W}_F^G.$$  

The map $g_2$ is affine and therefore has no non zero higher cohomology. Moreover, Theorem 8.2 implies that $R^i(g_2)_* \omega^{\kappa \un}_G(-D) = 0$. The second point follows easily.

For the last point, fix some open $\text{Spa}(R_i, R_i^+) \subset \mathcal{W}_F^G$. Since the sheaf $\omega^{\kappa \un}_G(-D)$ is invertible, there is a finite covering $\bigcup \text{Spa}(S_i, S_i^+)$ of $\mathcal{M}_{r,G} |_{\text{Spa}(R_i, R_i^+)}$ such that the sheaf $\omega^{\kappa \un}_G(-D)$ is trivial on every open of this covering. Arguing as in [AIPC] Prop. 6.9 one proves that each $S_i$ is a projective Banach $R_i$-module. We can form the Chech complex associated to the covering $\bigcup \text{Spa}(S_i, S_i^+)$, which, by (1), is a resolution of $g_* \omega^{\kappa \un}_G(-D)(\text{Spa}(R_i, R_i^+))$. Moreover, each term appearing in the complex is a projective Banach module and thus $g_* \omega^{\kappa \un}_G(-D)(\text{Spa}(R_i, R_i^+))$ is a projective Banach module.

### 8.4 Koecher principle and $q$-expansions

Consider the open moduli scheme $\mathcal{M}(\mu_N)$ in place of $\overline{\mathcal{M}}(\mu_N)$. Correspondingly we obtain an adic open subspace $\mathcal{M}_v^o$ of the adic space $\mathcal{M}_v$ introduced in §6.4. Let $g^o : \mathcal{M}_v^o \to \mathcal{W}_F$ and $g : \mathcal{M}_v \to \mathcal{W}_F$ be the structural maps. Similarly, in the arithmetic case we have an adic open subspace $\mathcal{M}_{r,G}^o$ of the adic space $\mathcal{M}_{r,G}$ and we denote again by $g^o$, resp. $g$ the structural morphisms to $\mathcal{W}_F^G$ (see §8.2). The Koecher principle states that:
Proposition 8.4. The natural morphisms $g_\omega^0 \omega^{\kappa_{un}} \to g_\omega \omega^{\kappa_{un}}$ and $g_\omega^0 \omega^{\kappa_{IG}} \to g_\omega \omega^{\kappa_{IG}}$ are isomorphisms.

Proof. Since the complement of $M(\mu_N)$ in $\overline{M}(\mu_N)$ is contained in the ordinary locus one may restrict to proving the two assertions on ordinary loci. This is classical: unravelling the constructions one is reduced to prove the claims for the structural sheaves on the adic Igusa tower. This can be proven at the level of formal schemes and then, by devissage, reducing to the Igusa tower $\Gamma_{m}^{\text{ord},o} \subset \Gamma_{m}^{\text{ord}}$ modulo $p$ over $\overline{M}(\mu_N)^{\text{ord}}$.

Let $f_n : \Gamma_{m}^{\text{ord}} \to \overline{M}(\mu_N)^{\text{ord}}$ be the structural map. Notice that $\overline{M}(\mu_N)^{\text{ord}}$ is smooth, the minimal compactification $\bar{\mathcal{M}}(\mu_N)^{\text{ord}}$ is normal and the map $\gamma : \bar{\mathcal{M}}(\mu_N)^{\text{ord}} \to \bar{\mathcal{M}}(\mu_N)^{\text{ord}}$ is proper birational and it is an isomorphism outside a codimension 2 locus. Then $\gamma_{\ast}f_{n,\ast}\mathcal{O}_{\bar{\mathcal{M}}_{m}^{\text{ord}}}$ is a coherent $\mathcal{O}_{\overline{M}(\mu_N)^{\text{ord}}}$-module of normal rings and $\gamma_{\ast}f_{n,\ast}\mathcal{O}_{\bar{\mathcal{M}}_{m}^{\text{ord},o}}$ is the complement of a codimension 2-locus. Thus the map on global sections $\gamma_{\ast}f_{n,\ast}\mathcal{O}_{\bar{\mathcal{M}}_{m}^{\text{ord},o}} \to \gamma_{\ast}f_{n,\ast}\mathcal{O}_{\bar{\mathcal{M}}_{m}^{\text{ord},o}}$ is an isomorphism concluding the proof of the Proposition.

\[ \square \]

The restriction of our construction to the ordinary locus gives back the theory of families of $p$-adic modular forms of Katz [K] and Hida [Hi2]; see [AIPS §5.4] for details. In particular one gets $q$-expansions at the cusps.

8.5 Hecke operators

Consider a polarization module $\mathfrak{c}$ as in §3. In this section we work with the open moduli scheme $M(\mu_N, \mathfrak{c})$ in place of $\overline{M}(\mu_N, \mathfrak{c})$ in order to avoid the problem of finding toroidal compactifications preserved by the Hecke operators and we’ll use the Koecher principle to extend these operators over the cusps. Corresponding to the open subscheme $M(\mu_N, \mathfrak{c})$ of $\overline{M}(\mu_N, \mathfrak{c})$ we get an open formal scheme $\mathfrak{X}_{p}(\mathfrak{c})$ of $\mathfrak{X}_{p}(\mathfrak{c})$, proceeding as in §3.4.

Let $\ell$ be an ideal of $\mathcal{O}_F$ prime to $N$. If $\ell$ is not prime to $p$ we assume that it is either equal to $p\mathcal{O}_F$ or that it is prime. Proceeding as in [AIPH §3.7] we consider the normalization $\mathcal{S}_{\ell, \gamma} \subset \mathfrak{X}_{p}(\mathfrak{c}) \times \mathfrak{X}_{p}(\mathfrak{c})$ of the Hecke correspondence classifying isogenies $\gamma : G \to G'$, where $G$ and $G'$ are defined by points of $\mathfrak{X}_{p}(\mathfrak{c})$ and $\mathfrak{X}_{p}(\mathfrak{c})$ respectively and $\gamma$ is an isogeny of degree $|\mathcal{O}_F/\ell\mathcal{O}_F|$ compatible with $\mathcal{O}_F$-actions and polarizations, $\text{Ker}\gamma \subset G[\ell]$ and such that (1) $\text{Ker}\gamma$ is étale locally isomorphic to $\mathcal{O}_F/\ell\mathcal{O}_F$, if $\ell$ does not divide $p$ or (2) the scheme theoretic intersection of $\text{Ker}\gamma$ with the canonical subgroup $H_1$ of $G$ is trivial, if $\ell$ is prime and divides $p$ or (3) the morphism $\text{Ker}\gamma \to G[\ell]/H_1$ is an isomorphism, if $\ell = p\mathcal{O}_F$.

We have the two natural projections $p_1 : \mathcal{S}_{\ell, \gamma} \to \mathfrak{X}_{p}(\mathfrak{c})$ and $p_2 : \mathcal{S}_{\ell, \gamma} \to \mathfrak{X}_{p}(\mathfrak{c})$.

Lemma 8.5. The universal isogeny $\gamma$ induces an isomorphism $\pi_\gamma : p_1^*\mathfrak{w}_I \to p_2^*\mathfrak{w}_I$, of the pullbacks $p_1$ and $p_2$ respectively, of the invertible sheaves $\mathfrak{w}_I$ on $\mathfrak{X}_{p}(\mathfrak{c})$ and $\mathfrak{X}_{p}(\mathfrak{c})$ respectively, defined in Theorem 6.4.

Proof. Over $\mathcal{W}_F[0,1]$ this is the content of [AIPH Cor. 3.25] using the compatibility given in Theorem 6.7.

We deal with the general case. It follows from [AIPC Rmk A.1] and our assumptions on $\pi_\gamma$ that the isogeny $\pi_\gamma : G \to G'$ induces an isomorphism from the canonical subgroup of level $n$ of
\(G\) to the canonical subgroup of level \(n\) of \(G'\). This implies that \(\pi_{\ell}\) defines an isomorphism of the pull-back to \(\mathcal{G}_{\ell,r}\) via \(p_1\) and \(p_2\) of the Igusa towers. By the functoriality of the Hodge-Tate map we also get an isomorphism \(p_2^*F \rightarrow p_1^*F\) of the modified integral structures \(F\) of \(\omega_{G'}\) and \(\omega_G\) of Proposition 4.1. Thus we get an isomorphism \(p_2^*\mathfrak{F}_{n,r,I} \rightarrow p_1^*\mathfrak{F}_{n,r,I}\) of the pull-back to \(\mathcal{G}_{\ell,r}\) of the torsors \(\mathfrak{F}_{n,r,I}\) of \([4.1]\). Due to the normality of \(\mathcal{G}_{\ell,r}\) we get an isomorphism of the pull backs of the sheaves \(p_1^*\mathfrak{w}_{n,r,I} \rightarrow p_2^*\mathfrak{w}_{n,r,I}\) of overconvergent forms defined in Proposition 4.3.

Similarly, \(\pi_{\ell}\) defines an isomorphism between the pull backs of \(\mathcal{I}\mathcal{G}_{\infty,\infty,I}\) via \(p_1\) and \(p_2\) respectively (see \([5.2]\) for the definition). The analogue of Lemma 5.4 over the base \(\mathcal{G}_{\ell,r}\) provides an isomorphism between the pull-backs via \(p_1\) and \(p_2\) respectively of the sheaves \(\mathfrak{w}_I^{\text{perf}}\) of perfect overconvergent forms defined in Proposition 5.3. Thanks to the normality of \(\mathcal{G}_{\ell,r}\) we deduce the sought for isomorphism of the pull-backs via \(p_1\) and \(p_2\) of the sheaves \(\mathfrak{w}_I\).

Using the conventions of \([6.3]\) we also have the normalization of the Hecke correspondences \(p_1: \mathfrak{T}_{\ell,r} \rightarrow \mathfrak{Y}(\ell)\) and \(p_2: \mathcal{G}_{\ell,r} \rightarrow \mathfrak{Y}(\ell)\) defined over the Iwasawa algebra. As above we denote by \(\mathfrak{Y}(\ell)\) the open formal subscheme of \(\mathfrak{Y}\) associated to \(M(\mu_N, \ell)\). Following the notations of \([6.4]\) we let \(\mathcal{M}_\ell(\ell)\) be the adic analytic fiber of \(\mathfrak{Y}(\ell) \times_{\mathfrak{w}_I} \mathfrak{Y}_F\).

**Corollary 8.6.** The map \(\pi_{\ell}\) induces an isomorphism
\[
\pi_\ell^* : p_1^*\omega_{\text{un}}^{\text{un}} \rightarrow p_2^*\omega_{\text{un}}^{\text{un}}
\]
of the sheaves \(\omega_{\text{un}}^{\text{un}}\) defined over \(\mathcal{M}_\ell(\ell)\) and \(\mathcal{M}_\ell(\ell)\) respectively.

**Proof.** We have a morphism \(g: \mathcal{G}_{\ell,r} \rightarrow \mathfrak{T}_{\ell,r}\) compatible with the natural projections \(\mathfrak{Y}(\ell) \rightarrow \mathfrak{Y}(\ell)\) and \(\mathfrak{Y}(\ell) \rightarrow \mathfrak{Y}(\ell)\). As in Theorem 6.6(1) and using the normality of \(\mathfrak{T}_{\ell,r}\) one obtains that the natural morphism \(\mathcal{O}_{\mathfrak{T}_{\ell,r}} \rightarrow g_*\mathcal{O}_{\mathcal{G}_{\ell,r}}\) is an isomorphism. This implies that the isomorphism of Lemma 8.3 induces an isomorphism of the pull backs via \(p_1\) and \(p_2\) respectively of the invertible sheaves \(\mathfrak{w}_I\) defined on \(\mathfrak{Y}(\ell)\) and \(\mathfrak{Y}(\ell)\) respectively.

Taking adic analytic fibers and twisting by the invertible sheaf \(\mathfrak{w}_I\) as in \([6.4]\) we get the claimed isomorphism. \(\square\)

Let \(q_{\ell} := [\mathcal{O}_F/\ell\mathcal{O}_F]\). In order to define the Hecke operators we will need the following:

**Lemma 8.7.** (1) The morphism \(p_1\) is finite and étale of degree \(q_{\ell} + 1\) if \(\ell\) is prime to \(p\).

(2) At the level of analytic fibers the morphism \(p_1\) is finite and flat of degree \(q_{\ell}\) if \(\ell\) divides \(p\).

**Proof.** The first statement is clear. We prove the second statement: the group scheme \(\text{Ker}(\pi_{\ell}) \cong G[\ell]/H[\ell]\) is finite étale at the level of analytic fibers due to [AIPC Cor. A.2]. Since it is isomorphic to \(H[\ell]^{\vee}\) it follows from Proposition 3.2 that it is in fact étale locally on \(\mathcal{M}_\ell(\ell)\) isomorphic to \(\mathcal{O}_F/\ell\mathcal{O}_F\). Since \(p_1\) is represented over \(\mathcal{M}_\ell(\ell)\) by the \(\mathcal{O}_F\) splittings of the exact sequence of group schemes (with \(\mathcal{O}_F\)-action) \(0 \rightarrow H[\ell] \rightarrow G[\ell] \rightarrow G[\ell]/H[\ell] \rightarrow 0\), it follows that \(p_1\) is a torsor under the finite and flat group scheme \(H[\ell]\). This proves the claim. \(\square\)

Denote by \(g\) the structural maps of \(\mathcal{M}_\ell(\ell)\) and respectively \(\mathcal{M}_\ell(\ell)\) to the weight space \(\mathfrak{W}_F\) and by \(g^\circ\) their restrictions to \(\mathcal{M}_\ell(\ell)\) and respectively \(\mathcal{M}_\ell(\ell)\). Taking the global sections of the sheaves \(\omega_{\text{un}}^{\text{un}}\) over \(\mathcal{M}_\ell(\ell)\) and respectively \(\mathcal{M}_\ell(\ell)\) we get the morphism
\[ g_s^\circ \omega^{\text{un}} \rightarrow g_s^\circ (p_{1,*}(p_{2}^! \omega^{\text{un}})) \stackrel{\pi_{\ell}^{-1}}{\longrightarrow} g_s^\circ (p_{1,*}(p_{1}^! \omega^{\text{un}})) \stackrel{q_{\ell}^{-1} \text{Tr}_{p_{1}}}{\longrightarrow} g_s^\circ \omega^{\text{un}} \]

Here \( \text{Tr}_{p_{1}} \) is the trace map of the finite flat morphism \( p_{1} \). One checks on \( q \)-expansions that dividing by the normalization factor \( q_{\ell} \) is a well defined operation. Using the Koecher principle of \( \S 8.4 \) we get a map \( g_s \omega^{\text{un}} \rightarrow g_s \omega^{\text{un}} \) from the global sections of \( \omega^{\text{un}} \) over \( \mathcal{M}_{\ell}(\mathcal{c}) \) to the global sections over \( \mathcal{M}_{\ell}(\mathcal{c}) \), which are denoted \( T_{\ell} \), for \( \ell \) not dividing \( p \), and \( U_{\ell} \), for \( \ell = \mathfrak{p} \mathcal{O}_{F} \) or a prime ideal dividing \( p \). This provides the definition of the Hecke operators for the overconvergent (cuspidal) forms defined in Theorem \( 6.7 \) for the group \( G^* \). Taking the quotient under the group \( \Delta \) we define such Hecke operators also for the arithmetic overconvergent cuspidal modular forms defined in \( \S 8.2 \) for the group \( G \).

### 8.6 The adic eigenvariety for arithmetic Hilbert modular forms

In \([AIPH]\), Theorem 5.1, we constructed a cuspidal eigenvariety over \( \mathcal{W}_F^G \setminus \{ \mathfrak{p} \mid \mathfrak{p} = 0 \} \) for the \( p \)-adic, arithmetic Hilbert modular forms. We now extend it over \( \mathcal{W}_F^G \).

Let \( \text{Frac}(F)^{(p)} \) be the group of fractional ideals prime to \( p \). Let \( \text{Princ}(F)^{+, (p)} \) be the group of positive elements which are \( p \)-adic units. The quotient \( \text{Frac}(F)^{(p)}/\text{Princ}(F)^{+, (p)} = \text{Cl}^+(F) \) is the strict class group of \( F \).

For all \( \mathcal{c} \in \text{Frac}(F)^{(p)} \) we have defined an adic space \( \mathcal{M}_{\ell} \), that we now denote by \( \mathcal{M}_{\ell}(\mathcal{c}) \) in order to mark its dependance on \( \mathcal{c} \) and a sheaf \( \omega^{\text{un}}_{\mathcal{c}} \) over \( \mathcal{M}_{\ell}(\mathcal{c}) \). Let \( g_{\mathcal{c}}: \mathcal{M}_{\ell}(\mathcal{c}) \rightarrow \mathcal{W}_F^G \) be the projection. For all \( x \in \text{Princ}(F)^{+, (p)} \) we canonically identify \( (g_{\mathcal{c}})_* \omega^{\text{un}}_{\mathcal{c}} (-D) \) and \( (g_{x \mathcal{c}})_* \omega^{\text{un}}_{\mathcal{c}} (-D) \) as in \([AIPH]\), Def. 4.6.

Taking the limit over \( r \) we thus obtain a sheaf of projective Banach modules

\[ \bigoplus_{\mathcal{c} \in \text{Cl}^+(F)} (g_{\mathcal{c}})_* \omega^{\text{un}}_{\mathcal{c}} (-D). \]

Thanks to \( \S 8.5 \) this sheaf carries an action of the Hecke algebra \( \mathcal{H}_{p} \) of level prime to \( p \) as well as an action of the \( U_p \) operator and of the operators \( U_{\mathfrak{p}} \), (see \([AIPH]\), \S 4.3). Moreover, having taken the limit over \( r \) imply the \( U_{\mathfrak{p}} \)-operator is compact thanks to Proposition 3.3. Applying \([AIPC]\), Appendix B, we obtain the following theorem.

**Theorem 8.8.**

1. The characteristic series

\[ P^G(X) = \det (1 - X U_{p} \bigoplus_{\mathcal{c} \in \text{Cl}^+(F)} (g_{\mathcal{c}})_* \omega^{\text{un}}_{\mathcal{c}} (-D)) \]

takes values in \( \Lambda^G_F[[X]] \).

2. The spectral variety \( \mathcal{Z}^G = V(P^G) \rightarrow \mathcal{W}_F^G \) is locally finite, flat and partially proper over the weight space.

3. There is an eigenvariety \( \mathcal{E}^G \rightarrow \mathcal{Z}^G \), finite and torsion free over \( \mathcal{Z}^G \), which parametrizes finite slope eigensystems of overconvergent, arithmetic Hilbert modular forms.
References

[AG] F. Andreatta, E.Z. Goren: Hilbert Modular Forms: mod p and p-adic Aspects, AMS Memoirs 819 (2005).

[AIPH] F. Andreatta, A. Iovita, V. Pilloni: On overconvergent Hilbert cusp forms. To appear in Asterisque (2014).

[AIPC] F. Andreatta, A. Iovita, V. Pilloni: Le halo spectrale. Preprint (2015).

[AIPS] F. Andreatta, A. Iovita, V. Pilloni: p-Adic families of Siegel modular cuspforms, Annals of Mathematics 181, 623–697 (2015).

[AIS] F. Andreatta, A Iovita et G. Stevens, Overconvergent modular sheaves and modular forms for GL(2, F), Israel J. Math. 201, 299-359 (2014).

[Col1] R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), 215-241.

[Col2] R. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math. 127 (1997), 417-479.

[CM] R. Coleman, B. Mazur, The eigencurve, In Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254 (1998), 1-113. Cambridge Univ. Press, Cambridge.

[DP] P. Deligne, G. Pappas, Singularit´es des espaces des modules de Hilbert, en les Caract´eristiques divisant le discriminant, Compositio Math. 90, 59-79 (1994).

[Hi1] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. 19 (1986), 231-273.

[Hi2] H. Hida, Control theorems for coherent sheaves on Shimura varieties of PEL type, Jour. Inst. Math. Jussieu 1, 1-76 (2002).

[H1] R. Huber, Continuous valuations, Math. Z. 212, 455-477 (1993).

[H2] R. Huber, A generalization of formal scheme and rigid analytic varieties, Math. Z. 217, 513-551 (1994).

[K] N. Katz, P-adic properties of modular schemes and modular forms, Modular functions of one variable III, SLN, 350, 69-190.

[PR] G. Pappas, M. Rapoport, Local Models in the Ramified Case. II. Splitting Models, Duke Math. J. 127, 193-250 (2005).

[Ra] M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36, 255-335 (1978).