On Quantum Markov Chains on Cayley tree II:
Phase transitions for the associated chain with XY-model on
the Cayley tree of order three

LUIGI ACCARDI
Centro Interdisciplinare Vito Volterra
II Università di Roma “Tor Vergata”
Via Columbia 2, 00133 Roma, Italy
E-mail: accardi@volterra.uniroma2.it

FARRUKH MUKHAMEDOV
Department of Computational & Theoretical Sciences,
Faculty of Science, International Islamic University Malaysia,
P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia
E-mail: far75m@yandex.ru, farrukh_m@iiu.edu.my

MANSOOR SABUROV
Department of Computational & Theoretical Sciences,
Faculty of Science, International Islamic University Malaysia,
P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia
E-mail: msaburov@gmail.com

Abstract

In the present paper we study forward Quantum Markov Chains (QMC) defined on
a Cayley tree. Using the tree structure of graphs, we give a construction of quantum
Markov chains on a Cayley tree. By means of such constructions we prove the existence
of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme.
By the phase transition we mean the existence of two quasi equivalent QMC for the
given family of interaction operators $\{K_{x,y}\}$.

Mathematics Subject Classification: 46L53, 60J99, 46L60, 60G50, 82B10, 81Q10, 94A17.
Key words: Quantum Markov chain; Cayley tree; XY-model; phase transition.

1 Introduction

One of the basic open problems in quantum probability is the construction of a theory of
quantum Markov fields, that is quantum process with multi-dimensional index set. This
program concerns the generalization of the theory of Markov fields (see [19, 25]) to non-
commutative setting, naturally arising in quantum statistical mechanics and quantum filed
theory.

The quantum analogues of Markov chains were first constructed in [1], where the notion
of quantum Markov chain on infinite tensor product algebras was introduced. Nowadays,
quantum Markov chains have become a standard computational tool in solid state physics,
and several natural applications have emerged in quantum statistical mechanics and quantum
information theory. The reader is referred to [21, 26, 27, 28, 32, 37] and the references cited
therein, for recent developments of the theory and the applications.
First attempts to construct a quantum analogue of classical Markov fields have been done in [31], [4], [6], [9]. In these papers, the notion of quantum Markov state, introduced in [8], was extended to fields as a sub-class of the quantum Markov chains introduced in [1]. In [7], it has been proposed a definition of quantum Markov states and chains, which extend a proposed one in [36], and includes all the presently known examples. Note that in the mentioned papers quantum Markov fields were considered over multidimensional integer lattice \mathbb{Z}^d. This lattice has so-called amenability property. On the other hand, there do not exist analytical solutions (for example, critical temperature) on such lattice. But investigations of phase transitions of spin models on hierarchical lattices showed that there are exact calculations of various physical quantities (see for example, [13, 38]). Such studies on the hierarchical lattices begin with the development of the Migdal-Kadanoff renormalization group method where the lattices emerged as approximants of the ordinary crystal ones. On the other hand, the study of exactly solved models deserves some general interest in statistical mechanics [13]. Therefore, it is natural to investigate quantum Markov fields over hierarchical lattices. For example, a Cayley tree is the simplest hierarchical lattice with non-amenable graph structure. This means that the ratio of the number of boundary sites to the number of interior sites of the Cayley tree tends to a nonzero constant in the thermodynamic limit of a large system, i.e. the ratio W_n/V_n (see section 2 for the definitions) tends to $(k-1)/k$ as $n \to \infty$, where k is the order of the tree. Nevertheless, the Cayley tree is not a realistic lattice, however, its amazing topology makes the exact calculation of various quantities possible. First attempts to investigate quantum Markov chains over such trees was done in [12], such studies were related to investigate thermodynamic limit of valence-bond-solid models on a Cayley tree [20]. The mentioned considerations naturally suggest the study of the following problem: the extension to fields of the notion of generalized Markov chain. In [11] we have introduced a hierarchy of notions of Markovianity for states on discrete infinite tensor products of C^\ast-algebras and for each of these notions we constructed some explicit examples. We showed that the construction of [8] can be generalized to trees. It is worth to note that, in a different context and for quite different purposes, the special role of trees was already emphasized in [31]. Note that in [20] finitely correlated states are constructed as ground states of VBS-model on a Cayley tree. Such shift invariant d-Markov chains can be considered as an extension of C^\ast-finitely correlated states defined in [21] to the Cayley trees. Note that a noncommutative extension of classical Markov fields, associated with Ising and Potts models on a Cayley tree, were investigated in [34, 35]. In the classical case, Markov fields on trees are also considered in [39, 44].

If a tree is not one-dimensional lattice, then it is expected (from a physical point of view) the existence of a phase transition for quantum Markov chains constructed over such a tree. In [10] we have provided a construction of forward QMC, such states are different from backward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions. Such a QMC depends on the boundary conditions. For by means of the provided construction we proved uniqueness QMC, associated with XY-model on a Cayley tree of order two.

Our goal, in this paper, is to establish the existence of a phase transition that XY-model on the Cayley tree of order three. Note that phase transitions in a quantum setting play an important role to understand quantum spin systems (see for example [14, 23]). In this paper, using the construction defined in [10] we shall prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we means the existence of two distinct QMC for the given family of interaction operators.
\{K_{<x,y>}\}$. Hence, results of the present paper will totally differ from [10], and show by the increasing the dimension of the tree we are getting the phase transition. We have to stress here that the constructed QMC associated with XY-model, is different from thermal states of that model, since such states correspond to \(\exp(-\beta \sum_{<x,y>} H_{<x,y>})\), which is different from a product of \(\exp(-\beta H_{<x,y>})\). Roughly speaking, if we consider the usual Hamiltonian system \(H(\sigma) = -\beta \sum_{<x,y>} h_{<x,y>}(\sigma)\), then its Gibbs measure is defined by the fraction

\[
\mu(\sigma) = \frac{e^{-H(\sigma)}}{\sum_\sigma e^{-H(\sigma)}}. \tag{1.1}
\]

Such a measure can be viewed in another way as well. Namely,

\[
\mu(\sigma) = \frac{\prod_{<x,y>} e^{\beta h_{<x,y>}(\sigma)}}{\sum_\sigma \prod_{<x,y>} e^{\beta h_{<x,y>}(\sigma)}}. \tag{1.2}
\]

A usual quantum mechanical definition of the quantum Gibbs states based on equation (1.1). In this paper, we use an alternative way to define the quantum Gibbs states based on (1.2). Note that whether or not the resulting states have a physical interest is a question that cannot be solved on a purely mathematical ground.

2 Preliminaries

Let \(\Gamma^k = (L, E)\) be a semi-infinite Cayley tree of order \(k \geq 1\) with the root \(x^0\) (i.e. each vertex of \(\Gamma^k\) has exactly \(k + 1\) edges, except for the root \(x^0\), which has \(k\) edges). Here \(L\) is the set of vertices and \(E\) is the set of edges. The vertices \(x\) and \(y\) are called nearest neighbors and they are denoted by \(l = <x, y>\) if there exists an edge connecting them. A collection of the pairs \(<x, x_1>, ..., <x_{d-1}, y>\) is called a path from the point \(x\) to the point \(y\). The distance \(d(x, y), x, y \in V\), on the Cayley tree, is the length of the shortest path from \(x\) to \(y\).

Recall a coordinate structure in \(\Gamma^k\): every vertex \(x\) (except for \(x^0\)) of \(\Gamma^k\) has coordinates \((i_1, ... , i_n)\), here \(i_m \in \{1, ... , k\}, 1 \leq m \leq n\) and for the vertex \(x^0\) we put \((0)\). Namely, the symbol \((0)\) constitutes level 0, and the sites \((i_1, ... , i_n)\) form level \(n\) (i.e. \(d(x^0, x) = n\)) of the lattice (see Fig. 1).

Let us set

\[
W_n = \{x \in L : d(x, x^0) = n\}, \quad \Lambda_n = \bigcup_{k=0}^{n} W_k, \quad \Lambda_{[n, m]} = \bigcup_{k=n}^{m} W_k, \quad (n < m)
\]
\[E_n = \{ <x, y> \in E : x, y \in \Lambda_n \}, \quad \Lambda_n^c = \bigcup_{k=n}^{\infty} W_k \]

For \(x \in \Gamma^k_+ \), \(x = (i_1, \ldots, i_n) \) denote
\[S(x) = \{(x, i) : 1 \leq i \leq k \}, \]
here \((x, i)\) means that \((i_1, \ldots, i_n, i)\). This set is called a set of \textit{direct successors} of \(x \).

The algebra of observables \(B_x \) for any single site \(x \in L \) will be taken as the algebra \(M_d \) of the complex \(d \times d \) matrices. The algebra of observables localized in the finite volume \(\Lambda \subset L \) is then given by \(B_{\Lambda} = \bigotimes_{x \in \Lambda} B_x \). As usual if \(\Lambda^1 \subset \Lambda^2 \subset L \), then \(B_{\Lambda^1} \) is identified as a subalgebra of \(B_{\Lambda^2} \) by tensoring with unit matrices on the sites \(x \in \Lambda^2 \setminus \Lambda^1 \). Note that, in the sequel, by \(B_{\Lambda^+} \) we denote the positive part of \(B_{\Lambda} \). The full algebra \(B_L \) of the tree is obtained in the usual manner by an inductive limit
\[B_L = \bigcup_{\Lambda_n} B_{\Lambda_n}. \]

In what follows, by \(S(B_{\Lambda}) \) we will denote the set of all states defined on the algebra \(B_{\Lambda} \).

Consider a triplet \(C \subset B \subset A \) of unital \(C^*\)-algebras. Recall that a \textit{quasi-conditional expectation} with respect to the given triplet is a completely positive (CP) identity preserving linear map \(\mathcal{E} : A \to B \) such that \(\mathcal{E}(ca) = c\mathcal{E}(a) \), for all \(a \in A, c \in C \).

A state \(\varphi \) on \(B_L \) is called a \textit{forward quantum \(d \)-Markov chain (QMC)}, associated to \(\{\Lambda_n\} \), on \(B_L \) if for each \(\Lambda_n \), there exist a quasi-conditional expectation \(\mathcal{E}_{\Lambda_n} \) with respect to the triplet \(B_{\Lambda_n^c} \subseteq B_{\Lambda_n^c} \subseteq B_{\Lambda_n^c} \) and a state \(\hat{\varphi}_{\Lambda_n} \in S(B_{\Lambda_n^c}) \) such that for any \(n \in \mathbb{N} \) one has
\[\hat{\varphi}_{\Lambda_n}|B_{\Lambda_n+1}\Lambda_n = \hat{\varphi}_{\Lambda_n+1} \circ \mathcal{E}_{\Lambda_n+1}|B_{\Lambda_n+1}\Lambda_n \quad (2.1) \]
and
\[\varphi = \lim_{n \to \infty} \hat{\varphi}_{\Lambda_n} \circ \mathcal{E}_{\Lambda_n} \circ \mathcal{E}_{\Lambda_{n-1}} \circ \cdots \circ \mathcal{E}_{\Lambda_1} \quad (2.2) \]
in the weak-* topology.

Note that \((2.1)\) is an analogue of the DRL equation from classical statistical mechanics \cite{10} \cite{25}, and QMC state is thus the counterpart of the infinite-volume Gibbs measure.

\textbf{Remark 2.1.} \textit{We point out that in \cite{17} a forward QMC was called a generalized quantum Markov state, and the existence of the limit \((2.2)\) under the condition \((2.1)\) was proved there as well.}

3 Construction of QMC on the Cayley tree

In this section, we recall a construction of forward quantum \(d \)-Markov chain (see \cite{10}).

Let us rewrite the elements of \(W_n \) in the following order, i.e.
\[\overline{W}^n := (x^{(1)}_{W_n}, x^{(2)}_{W_n}, \cdots, x^{(|W_n|)}_{W_n}), \quad \overline{W}^n := (x^{(|W_n|)}_{W_n}, x^{(|W_n|-1)}_{W_n}, \cdots, x^{(1)}_{W_n}). \]

Note that \(|W_n| = k^n \). Vertices \(x^{(1)}_{W_n}, x^{(2)}_{W_n}, \cdots, x^{(|W_n|)}_{W_n} \) of \(W_n \) can be represented in terms of the coordinate system as follows
\[
\begin{align*}
x^{(1)}_{W_n} &= (1, 1, \cdots, 1, 1), \\
x^{(2)}_{W_n} &= (1, 1, \cdots, 1, 2), \\
&\quad \cdots \quad x^{(k)}_{W_n} = (1, 1, \cdots, 1, k), \\
x^{(k+1)}_{W_n} &= (1, 1, \cdots, 2, 1), \\
x^{(2k)}_{W_n} &= (1, 1, \cdots, 2, 1, 2), \\
&\quad \cdots \quad x^{(2k)}_{W_n} = (1, 1, \cdots, 2, k),
\end{align*}
\]
In what follows, for the sake of simplicity, we will use notation $\{\}$ instead of (\cdot,\cdot) for every a successors of x.

Analogously, for a given vertex x, we shall use the following notation for the set of direct successors of x:

$$\overrightarrow{S}(x) := ((x, 1), (x, 2), \cdots (x, k)), \quad \overleftarrow{S}(x) := ((x, k), (x, k - 1), \cdots (x, 1)).$$

In what follows, for the sake of simplicity, we will use notation $i \in \overrightarrow{S}(x)$ (resp. $i \in \overleftarrow{S}(x)$) instead of $(x, i) \in \overrightarrow{S}(x)$ (resp. $(x, i) \in \overleftarrow{S}(x)$).

Assume that for each edge $< x, y > \in E$ of the tree an operator $K_{<x,y>} \in B_{\{x,y\}}$ is assigned. We would like to define a state on B_{Λ_n} with boundary conditions $w_0 \in B_{(0)}$, and $h = \{h_x \in B_{x,+}\}_{x \in L}$.

Let us denote

$$K_{[n-1,m]} := \prod_{x \in W_{m-1}} \prod_{y \in \overrightarrow{S}(x)} K_{<x,y>},$$

$$h_n^{1/2} := \prod_{x \in W_n} h_x^{1/2}, \quad h_n := h_n^{1/2}(h_n^{1/2})^*,$$

$$K_n := w_0^{1/2}K_{[0,1]}K_{[1,2]}\cdots K_{[n-1,n]}h_n^{1/2},$$

$$W_n := K_nK_n^*.$$

It is clear that W_n is positive.

In what follows, by $\text{Tr}_\Lambda : B_L \to B_\Lambda$ we mean normalized partial trace (i.e. $\text{Tr}_\Lambda(\mathbf{1}_L) = \mathbf{1}_\Lambda$, here $\mathbf{1}_\Lambda = \bigotimes_{y \in \Lambda} \mathbf{1}$), for any $\Lambda \subseteq \text{fin} L$. For the sake of shortness we put $\text{Tr}_n := \text{Tr}_{\Lambda_n}$.

Let us define a positive functional $\varphi_{w_0,h}^{(n,f)}$ on B_{Λ_n} by

$$\varphi_{w_0,h}^{(n,f)}(a) := \text{Tr}(W_{n+1}(a \otimes \mathbf{1}_{W_{n+1}})),$$

for every $a \in B_{\Lambda_n}$. Note that here, Tr is a normalized trace on B_L (i.e. $\text{Tr}(\mathbf{1}_L) = 1$).

To get an infinite-volume state $\varphi^{(f)}$ on B_L such that $\varphi^{(f)}|_{B_{\Lambda_n}} = \varphi_{w_0,h}^{(n,f)}$, we need to impose some constrains to the boundary conditions $\{w_0, h\}$ so that the functionals $\{\varphi_{w_0,h}^{(n,f)}\}$ satisfy the compatibility condition, i.e.

$$\varphi_{w_0,h}^{(n+1,f)}|_{B_{\Lambda_n}} = \varphi_{w_0,h}^{(n,f)}.$$

Theorem 3.1 ([10]). Assume that $K_{<x,y>}$ is self-adjoint for every $< x, y > \in E$. Let the boundary conditions $w_0 \in B_{(0)}$, and $h = \{h_x \in B_{x,+}\}_{x \in L}$ satisfy the following conditions:

$$\text{Tr}(w_0h_0) = 1$$

$$\text{Tr}_x\left[\prod_{y \in \overrightarrow{S}(x)} K_{<x,y>} \prod_{y \in \overrightarrow{S}(x)} h_y^{(y)} \prod_{y \in \overrightarrow{S}(x)} K_{<x,y>} \right] = h_x^{(x)} \text{ for every } x \in L.$$

Then the functionals $\{\varphi_{w_0,h}^{(n,f)}\}$ satisfy the compatibility condition (3.6). Moreover, there is a unique forward quantum d-Markov chain $\varphi_{w_0,h}^{(b)}$ on B_L such that $\varphi_{w_0,h}^{(f)} = w - \lim_{n \to \infty} \varphi_{w_0,h}^{(n,f)}$.

From direct calculation we can derive the following

Proposition 3.2. If (3.7) and (3.8) are satisfied then one has \(\varphi_{a_0}^{(n,f)}(a) = \text{Tr}(W_n(a)) \) for any \(a \in \mathcal{B}_n \).

Our goal in this paper is to establish the existence of phase transition for the given family \(\{K_{<x,y>}\} \) of operators. Heuristically, the phase transition means the existence of two distinct QMC for the given \(\{K_{<x,y>}\} \). Let us provide a more exact definition.

Definition 3.3. We say that there exists a phase transition for a family of operators \(\{K_{<x,y>}\} \) if (3.7), (3.8) have at least two \((u_0, \{h_x\}_{x \in L}) \) and \((v_0, \{s_x\}_{x \in L}) \) solutions such that the corresponding quantum d-Markov chains \(\varphi_{u_0,h} \) and \(\varphi_{v_0,s} \) are not quasi equivalent. Otherwise, we say there is no phase transition.

Remark 3.4. In the classical case, i.e. the interaction operators commute with each other and belong to commutative part of \(\mathcal{B}_n \), the provided definition coincides with the known definition of the phase transition for models with nearest-neighbor interactions on the tree (see for example [13, 25, 39]).

4 QMC associated with XY-model and a main result

In this section, we define the model and shall formulate the main results of the paper. In what follows we consider a semi-infinite Cayley tree \(\Gamma^3 = (L, E) \) of order 3. Our starting \(C^* \)-algebra is the same \(\mathcal{B}_L \) but with \(\mathcal{B}_x = M_2(\mathbb{C}) \) for \(x \in L \). By \(\sigma_x^{(u)}, \sigma_y^{(u)}, \sigma_z^{(u)} \) we denote the Pauli spin operators at site \(u \in L \). Here

\[
\sigma_x^{(u)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y^{(u)} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z^{(u)} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{4.1}
\]

For every edge \(< u, v > \in E \) put

\[
K_{<u,v>} = \exp\{\beta H_{<u,v>}\}, \quad \beta > 0, \tag{4.2}
\]

where

\[
H_{<u,v>} = \frac{1}{2}(\sigma_x^{(u)} \sigma_x^{(v)} + \sigma_y^{(u)} \sigma_y^{(v)}). \tag{4.3}
\]

Such kind of Hamiltonian is called *quantum XY-model* per edge \(< x, y > \).

Now taking into account the following equalities

\[
H_{<u,v>}^{2m} = H_{<u,v>}^2 = \frac{1}{2}(\mathbf{1} - \sigma_z^{(u)} \sigma_z^{(v)}), \quad H_{<u,v>}^{2m-1} = H_{<u,v>}, \quad m \in \mathbb{N},
\]

one finds

\[
K_{<u,v>} = \mathbf{1} + \sinh \beta H_{<u,v>} + (\cosh \beta - 1)H_{<u,v>}^2. \tag{4.4}
\]

The main result of the present paper concerns the existence of the phase transition for the model (4.2). Namely, we have

Theorem 4.1. Let \(\{K_{<x,y>}\} \) be given by (1.2) on the Cayley tree of order three. Then there are two positive numbers \(\beta_* \) and \(\beta^* \) such that
(i) if $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$, then there is a unique forward quantum d-Markov chain associated with (4.2).

(ii) if $\beta \in (\beta_*, \beta^*)$, then there is a phase transition for a given model, i.e. there are two distinct forward quantum d-Markov chains.

The rest of the paper will be devote to the proof the this theorem. To do it, we shall use a dynamical system approach, which is associated with the equations (3.7), (3.8).

5 A dynamical system related to (3.7), (3.8)

In this section we shall reduce equations (3.7), (3.8) to some dynamical system. Our goal is to describe all solutions $h = \{h_x\}$ and w_0 of those equations.

Furthermore, we shall assume that $h_x = h_y$ for every $x, y \in W_n$, $n \in \mathbb{N}$. Hence, we denote $h_x^{(n)} := h_x$, if $x \in W_n$. Now from (4.2), (4.3) one can see that $K_{x,u} = K_{x,v}$, therefore, equation (3.8) can be rewritten as follows

$$Tr_x(K_{x,y}K_{x,z}h_x^{(n)}h_x^{(n)}K_{x,y}K_{x,z}h_x^{(n)}K_{x,y}K_{x,z}h_x^{(n)}) = h_x^{(n-1)}, \quad (5.1)$$

for every $x \in L$.

After small calculations equation (5.1) reduces to the following system

$$\begin{align*}
&\begin{cases}
\left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right)^3 B_2 + a_{12}^{(n)} a_{21}^{(n)} \left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right) A_2 = a_{11}^{(n-1)} \\
a_{12}^{(n)} \left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right)^2 B_1 + a_{12}^{(n)} a_{21}^{(n)} A_1 = a_{12}^{(n-1)} \\
a_{21}^{(n)} \left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right)^2 B_1 + a_{12}^{(n)} a_{21}^{(n)} A_1 = a_{21}^{(n-1)} \\
\left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right)^3 B_2 + a_{12}^{(n)} a_{21}^{(n)} \left(\frac{a_{11}^{(n)} + a_{22}^{(n)}}{2}\right) A_2 = a_{22}^{(n-1)}
\end{cases}
\end{align*}$$

(5.2)

where

$$A_1 = \sinh^3 \beta \cosh \beta, \quad B_1 = \sinh \beta \cosh^2 \beta (1 + \cosh \beta + \cosh^2 \beta), \quad (5.3)$$

$$A_2 = \sinh^2 \beta \cosh^2 \beta (1 + 2 \cosh \beta), \quad B_2 = \cosh^6 \beta. \quad (5.4)$$

Here

$$h_x^{(n-1)} = \left(\frac{a_{11}^{(n-1)}}{a_{21}^{(n-1)}} \frac{a_{12}^{(n-1)}}{a_{22}^{(n-1)}} \right), \quad h_y^{(n)} = h_z^{(n)} = h_v^{(n)} = \left(\frac{a_{11}^{(n)}}{a_{21}^{(n)}} \frac{a_{12}^{(n)}}{a_{22}^{(n)}} \right).$$

From (5.2) we immediately get that $a_{11}^{(n)} = a_{22}^{(n)}$ for all $n \in \mathbb{N}$.

Self-adjointness of $h_x^{(n)}$ (i.e. $a_{12}^{(n)} = a_{21}^{(n)}$, for any $n \in \mathbb{N}$) and the representation $a_{12}^{(n)} = |a_{12}^{(n)}| \exp(i\varphi_n)$ allows us to reduce the system (5.2) to

$$\begin{align*}
\begin{cases}
B_2 a_{11}^{(n)} + A_2 a_{11}^{(n)} a_{12}^{(n)} a_{12}^{(n)} = a_{11}^{(n-1)} \\
|a_{12}^{(n)}| \left(A_1 a_{12}^{(n)} a_{12}^{(n)} + B_1 a_{12}^{(n)} a_{12}^{(n)} \right) = |a_{12}^{(n-1)}|^{n-1} \\
\varphi_n = \varphi_{n-1}
\end{cases}
\end{align*}$$

(5.5)
From (5.3) it follows that \(\varphi_n = \varphi_0 \), whenever \(n \in \mathbb{N} \). Therefore, we shall study the following system

\[
\begin{aligned}
B_2(a_{11}^{(n)})^3 + A_2a_{11}^{(n)}|a_{12}^{(n)}|^2 &= a_{11}^{(n-1)} \\
|a_{12}^{(n)}|(B_1(a_{11}^{(n)})^2 + A_1|a_{12}^{(n)}|^2) &= |a_{12}^{(n-1)}|
\end{aligned}
\]

(5.6)

Remark 5.1. Note that according to the positivity of \(h_x^{(n)} \) and \(a_{11}^{(n)} = a_{22}^{(n)} \) we conclude that \(a_{11}^{(n)} > |a_{12}^{(n)}| \) for all \(n \in \mathbb{N} \).

Now we are going to investigate the derived system (5.6). To do this, let us define a mapping \(f : (x, y) \in \mathbb{R}_+^2 \rightarrow (x', y') \in \mathbb{R}_+^2 \) by

\[
\begin{aligned}
B_2(x')^3 + A_2x'(y')^2 &= x \\
B_1(x')^2y' + A_1(y')^3 &= y
\end{aligned}
\]

(5.7)

Furthermore, due to Remark 5.1, we restrict the dynamical system (5.7) to the following domain

\[
\Delta = \{(x, y) \in \mathbb{R}_+^2 : x > y\}.
\]

Denote

\[
P_9(t) = t^9 - t^8 - t^7 - t^6 + 2t^4 + 2t^3 - t - 1,
\]

(5.8)

\[
D := \frac{A_2 - A_1}{B_1 - B_2},
\]

(5.9)

\[
E := \frac{1}{A_2 + DB_2},
\]

(5.10)

Further, we will need the following auxiliary facts.

Lemma 5.2. Let \(A_1, B_1, A_2, B_2, D \) be numbers defined by (5.3), (5.4), (5.9) and \(P_9(t) \) be the polynomial given by (5.8), where \(\beta > 0 \). Then the following statements hold true:

(i) The polynomial \(P_9(t) \) has only three positive roots \(1, t_*, \) and \(t^* \) such that \(1.05 < t_* < 1.1 \) and \(1.5 < t^* < 1.6 \). Moreover, if \(t \in (1, t_*) \cup (t^*, \infty) \) then \(P_9(t) > 0 \) and \(t \in (t_*, t^*) \) then \(P_9(t) < 0 \). Denote by \(\beta_* = \cosh^{-1} t_* \) and \(\beta^* = \cosh^{-1} t^* \).

(ii) For any \(\beta \in (0, \infty) \) we have \(A_1 < A_2 \);

(iii) If \(\beta \in (0, \beta_*) \cup [\beta^*, \infty) \) then \(B_1 \leq B_2 \) and If \(\beta \in (\beta_*, \beta^*) \) then \(B_1 > B_2 \);

(iv) For any \(\beta \in (0, \infty) \) we have \(A_1 + B_1 < A_2 + B_2 \);

(v) If \(\beta \in (\beta_*, \beta^*) \) then \(D > 1 \) and \(E > 0 \);

(vi) For any \(\beta \in (0, \infty) \) we have \(A_1A_2 < B_1B_2 \) and \(A_1B_2 < A_2B_1 \);

(vii) If \(\beta \in (\beta_*, \beta^*) \) then \(A_2B_1 < A_1A_2 + 3A_1B_2 + B_1B_2 \) and \(2A_1A_2 + 3A_1B_2 < A_2B_1 \);

(viii) For any \(\beta \in (0, \infty) \) we have \(0 < \sinh \beta(1 + \cosh \beta) < \cosh^3 \beta \).

The proof is provided in the Appendix.
6 Fixed points and asymptotical behavior of f. Existence of forward QMC

In this section we shall find fixed points of (5.7) and prove the absence of periodic points. Moreover, we investigate an asymptotical behavior of (5.7). Note that every fixed point of (5.7) defines (see Theorem 3.1) a forward QMC. Hence, the existence of the fixed points implies the existence of forward QMC.

Let us first find all of the fixed points of the system.

Theorem 6.1. Let f be a dynamical system given by (5.7). Then the following assertions hold true:

(i) If $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$ then there is a unique fixed point $(\frac{1}{\cosh \beta}, 0)$ in the domain Δ;

(ii) If $\beta \in (\beta_*, \beta^*)$ then there are two fixed points in the domain Δ, which are $(\frac{1}{\cosh \beta}, 0)$ and (\sqrt{DE}, \sqrt{E}).

Proof. Assume that (x, y) is a fixed point, i.e.

\[
\begin{align*}
B_2 x^3 + A_2 xy^2 &= x \\
B_1 x^2 y + A_1 y^3 &= y
\end{align*}
\]

(6.1)

Consider two different cases with respect to y.

CASE (A). Let $y = 0$. Then one finds that either $x = 0$ or $x = \frac{1}{\cosh \beta}$. But, only the point $(\frac{1}{\cosh \beta}, 0)$ belongs to the domain Δ.

CASE (B). Now suppose $y > 0$. Since $x > y > 0$ one finds

\[
\begin{align*}
B_2 x^2 + A_2 y^2 &= 1 \\
B_1 x^2 + A_1 y^2 &= 1,
\end{align*}
\]

hence, due to (5.3) and (5.4) we obtain

$$(B_1 - B_2)x^2 = (A_2 - A_1)y^2.$$

According to Lemma 5.2 (ii), (iii), (v) we infer that if $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$ then $B_1 \leq B_2$, $A_1 < A_2$, and if $\beta \in (\beta_*, \beta^*)$ then $B_1 > B_2$, $A_1 < A_2$, and which imply

$$\frac{x^2}{y^2} = \frac{A_2 - A_1}{B_1 - B_2} = D > 1.$$

Therefore, if $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$ then the dynamical system (5.7) has a unique fixed point $(\frac{1}{\cosh \beta}, 0)$. If $\beta \in (\beta_*, \beta^*)$ then the dynamical system (5.7) has two fixed points $(\frac{1}{\cosh \beta}, 0)$ and (\sqrt{DE}, \sqrt{E}).

To investigate an asymptotical behavior of the dynamical system on Δ we need some auxiliary facts.

Let $g_\beta : [0, 1] \to \mathbb{R}_+$ be a function given by

$$g_\beta(t) = \frac{A_1 t^3 + B_1 t}{A_2 t^2 + B_2},$$

(6.2)

where $\beta \in (0, \infty)$.

9
Proposition 6.2. Let \(g_\beta : [0, 1] \to \mathbb{R}_+ \) be the function given by (6.2) and \(\beta \in (\beta_*, \beta^*) \). Then the following assertions hold true:

(i) \(g_\beta \) is an increasing function on \([0, 1]\);

(ii) If \(t \in [0, \frac{1}{\sqrt{D}}] \), then \(g_\beta(t) \geq t \). If \(t \in [\frac{1}{\sqrt{D}}, 1] \) then \(g_\beta(t) \leq t \);

(iii) If \(0 \leq g_\beta(t) \leq \frac{1}{\sqrt{D}} \) then \(0 \leq t \leq \frac{1}{\sqrt{D}} \) and if \(\frac{1}{\sqrt{D}} \leq g_\beta(t) \leq 1 \) then \(\frac{1}{\sqrt{D}} \leq t \leq 1 \).

Proof. Let us prove (i). We know that

\[
g'_\beta(t) = \frac{A_1 A_2 t^4 + (3A_1 B_2 - A_2 B_1) t^2 + B_1 B_2}{(A_2 t^2 + B_2)^2}.
\]

Let us denote

\[
\hat{g}(t) = A_1 A_2 t^4 + (3A_1 B_2 - A_2 B_1) t^2 + B_1 B_2.
\]

It is enough to show that \(\hat{g}(t) > 0 \), for any \(t \in [0, 1] \). To do so, we will show that \(\min_{t \in [0,1]} \hat{g}(t) > 0 \).

It follows from Lemma 5.2 (vii) that \(\hat{g}(0) = B_1 B_2 > 0 \) and \(\hat{g}(1) > 0 \). It is clear that

\[
\hat{g}'(t) = 2t(2A_1 A_2 t^2 - (A_2 B_1 - 3A_1 B_2)).
\]

Since \(A_2 B_1 - 3A_1 B_2 - 2A_1 A_2 > 0 \) (see Lemma 5.2 (vii)) one has

\[
t^2 = \frac{A_2 B_1 - 3A_1 B_2}{2A_1 A_2} > 1.
\]

So, \(\min_{t \in [0,1]} \hat{g}(t) > 0 \), and hence \(\hat{g}(t) > 0 \) for any \(t \in [0, 1] \). Therefore, \(g'_\beta(t) > 0 \) for any \(t \in [0, 1] \), and this proves the assertion.

(ii). One can see that

\[
g_\beta(t) - t = -\frac{(A_2 - A_1) t(t^2 - \frac{1}{D})}{A_2 t^2 + B_2} \tag{6.3}
\]

Therefore, we find that if \(t \in [0, \frac{1}{\sqrt{D}}] \) then \(g_\beta(t) \geq t \), and if \(t \in [\frac{1}{\sqrt{D}}, 1] \) then \(g_\beta(t) \leq t \).

(iii). It follows from (6.3) that the function \(g_\beta(t) \) has two fixed points \(t = 0 \) and \(t = \frac{1}{\sqrt{D}} \). Let \(0 \leq g_\beta(t) \leq \frac{1}{\sqrt{D}} \), and suppose that \(t > \frac{1}{\sqrt{D}} \). Due to (i) and \(t = \frac{1}{\sqrt{D}} \) is fixed point, we obtain \(g_\beta(t) > \frac{1}{\sqrt{D}} \), which is impossible. Similarly, one can show that \(\frac{1}{\sqrt{D}} \leq g_\beta(t) \leq 1 \) implies \(\frac{1}{\sqrt{D}} \leq t \leq 1 \).

Let us start to study the asymptotical behavior of the dynamical system \(f : \Delta \to \mathbb{R}_+ \) given by (5.7).

Theorem 6.3. The dynamical system \(f : \Delta \to \mathbb{R}_+^2 \), given by (5.7) (with \(\beta \in (0, \infty) \)), does not have any \(k \) \((k \geq 2) \) periodic points in \(\Delta \).
Proof. Assume that the dynamical system \(f \) has a periodic point \((x^{(0)}, y^{(0)})\) with a period of \(k \) in \(\Delta \), where \(k \geq 2 \). This means that there are points

\[
(x^{(0)}, y^{(0)}), (x^{(1)}, y^{(1)}), \ldots, (x^{(k-1)}, y^{(k-1)}) \in \Delta,
\]
such that they satisfy the following equalities

\[
\begin{aligned}
&\frac{B_2(x^{(i)})^3 + A_2x^{(i)}(y^{(i)})^2}{B_1(x^{(i)})^2y^{(i)} + A_1(y^{(i)})^3} = x^{(i-1)} \\
&\frac{(A_2B_1 - A_1B_2)x^{(i)}y^{(i)}}{B_1(x^{(i)})^2 + A_1(y^{(i)})^2} = y^{(i-1)}
\end{aligned}
\]

where \(i = \overline{1,k} \), i.e. \(f(x^{(i-1)}, y^{(i-1)}) = (x^{(i)}, y^{(i)}) \), with \(x^{(k)} = x^{(0)}, y^{(k)} = y^{(0)} \).

Now again consider two different cases with respect to \(y^{(0)} \).

Case (a). Let \(y^{(0)} > 0 \). Then \(x^{(i)}, y^{(i)} \) should be positive for all \(i = \overline{1,k} \). Let us look for different cases with respect to \(\beta \).

Assume that \(\beta \in (0, \beta_*] \cup [\beta^*, \infty) \). We then have

\[
\frac{x^{(i-1)}}{y^{(i-1)}} = \frac{B_2}{B_1} \cdot \frac{x^{(i)}}{y^{(i)}} + \frac{(A_2B_1 - A_1B_2)x^{(i)}y^{(i)}}{B_1(x^{(i)})^2 + A_1(y^{(i)})^2}
\]

where \(i = \overline{1,k} \).

Due to Lemma 5.2 (vi) and \(x^{(i)}, y^{(i)} > 0 \) for all \(i = \overline{1,k} \), one finds

\[
\frac{x^{(i-1)}}{y^{(i-1)}} > \frac{B_2}{B_1} \cdot \frac{x^{(i)}}{y^{(i)}},
\]

for all \(i = \overline{1,k} \).

Iterating (6.5) we get

\[
\frac{x^{(0)}}{y^{(0)}} > \left(\frac{B_2}{B_1} \right)^k \cdot \frac{x^{(0)}}{y^{(0)}}.
\]

But, the last inequality is impossible, since Lemma 5.2 (iii) implies

\[
\frac{B_2}{B_1} \geq 1.
\]

Hence, in this case, the dynamical system (5.7) does not have any periodic points with \(k \geq 2 \).

Let \(\beta \in (\beta_*, \beta^*) \), then one finds

\[
\frac{y^{(i-1)}}{x^{(i-1)}} = g_\beta \left(\frac{y^{(i)}}{x^{(i)}} \right), \quad i = \overline{1,k}.
\]

This means that \(\frac{y^{(0)}}{x^{(0)}} \) is a \(k \) periodic point for the function \(g_\beta(t) \). But this contradicts to Proposition 6.2 (i), since the function \(g_\beta(t) \) is increasing, and it does not have any periodic point on the segment \([0,1]\).

Case (b). Now suppose that \(y^{(0)} = 0 \). Since \(k \geq 2 \) we have \(x^{(0)} \neq \frac{1}{\cosh^3 \beta} \). So, from (6.4) one finds that \(y^{(i)} = 0 \) for all \(i = \overline{1,k} \). Then again (6.4) implies that

\[
(x^{(i)})^3 \cosh^6 \beta = x^{(i-1)}, \quad \forall i = \overline{1,k},
\]
which means
\[x^{(i)} = \frac{1}{\cosh^2 \beta} 3^{(i-1)} \sqrt{x^{(i-1)}}, \quad \forall i = 1,k. \]

Hence, we have
\[x^{(0)} = \frac{1}{\cosh \beta} 3^{k+1} \sqrt{x^{(0)} \cosh \beta}. \]

This yields either \(x^{(0)} = 0 \) or \(x^{(0)} = \frac{1}{\cosh \beta} \), which is a contradiction. \(\square \)

Theorem 6.4. Let \(f : \Delta \to \mathbb{R}^2_+ \) be the dynamical system given by (5.7) and \(\beta \in (0, \beta^*) \cup [\beta^*, \infty) \). Then the following assertions hold true:

(i) if \(y^{(0)} > 0 \) then the trajectory \(\{ (x^{(n)}, y^{(n)}) \}_{n=0}^{\infty} \) of \(f \) starting from the point \((x^{(0)}, y^{(0)}) \) is finite.

(ii) if \(y^{(0)} = 0 \) then the trajectory \(\{ (x^{(n)}, y^{(n)}) \}_{n=0}^{\infty} \) starting from the point \((x^{(0)}, y^{(0)}) \) has the following form

\[
\begin{cases}
x^{(n)} = 3^n \sqrt{x^{(0)} \cosh \beta} \\
y^{(n)} = 0,
\end{cases}
\]

and it converges to the fixed point \(\left(\frac{1}{\cosh \beta}, 0 \right) \).

Proof. (i) Let \(y^{(0)} > 0 \) and suppose that the trajectory \(\{ (x^{(n)}, y^{(n)}) \}_{n=0}^{\infty} \) of the dynamical system starting from the point \((x^{(0)}, y^{(0)}) \) is infinite. This means that the points \((x^{(n)}, y^{(n)}) \) are well defined and belong to the domain \(\Delta \) for all \(n \in \mathbb{N} \). Since \(y^{(0)} > 0 \) we have \(y^{(n)} > 0 \) for all \(n \in \mathbb{N} \). Then, it follows from (5.7) that

\[\frac{x^{(n-1)}}{y^{(n-1)}} = \frac{B_2}{B_1} \cdot \frac{x^{(n)}}{y^{(n)}} + \frac{(A_2 B_1 - A_1 B_2)x^{(n)}}{y^{(n)}} \cdot \frac{x^{(n)}}{y^{(n)}} + A_1 B_1 \]

for all \(n \in \mathbb{N} \). (6.6)

It yields that

\[\frac{x^{(n-1)}}{y^{(n-1)}} > \frac{B_2}{B_1} \cdot \frac{x^{(n)}}{y^{(n)}}, \]

and

\[\frac{x^{(0)}}{y^{(0)}} > \left(\frac{B_2}{B_1} \right)^n \cdot \frac{x^{(n)}}{y^{(n)}}, \quad \text{for all } n \in \mathbb{N}. \] (6.7)

It follows from (6.7) and Lemma 5.2 (iii) that

\[\frac{x^{(n)}}{y^{(n)}} < \left(\frac{B_1}{B_2} \right)^n \cdot \frac{x^{(0)}}{y^{(0)}} \leq \frac{x^{(0)}}{y^{(0)}}, \]

for all \(n \in \mathbb{N} \). Using (6.6) and (6.8) one gets

\[\frac{x^{(n-1)}}{y^{(n-1)}} > \left(\frac{B_2}{B_1} + \frac{(A_2 B_1 - A_1 B_2)(y^{(0)})^2}{B_1^2(x^{(0)})^2 + A_1 B_1(y^{(0)})^2} \right) \cdot \frac{x^{(n)}}{y^{(n)}}, \]
and

\[\frac{x^{(n)}}{y^{(n)}} \leq \left(\frac{B_2}{B_1} + \frac{(A_2B_1 - A_1B_2)(y^{(0)})^2}{B_1^2(x^{(0)})^2 + A_1B_1(y^{(0)})^2} \right)^{-n} \cdot \frac{x^{(0)}}{y^{(0)}}. \]

We know that if \(\beta \in (0, \beta^*] \cup [\beta^*, \infty) \) then due to Lemma 5.2 (iii) one finds

\[\frac{B_2}{B_1} + \frac{(A_2B_1 - A_1B_2)(y^{(0)})^2}{B_1^2(x^{(0)})^2 + A_1B_1(y^{(0)})^2} \geq \frac{B_2}{B_1} \geq 1. \]

Therefore, we conclude that, for all \(\beta \in (0, \beta^*) \cup [\beta^*, \infty) \)

\[\frac{x^{(n)}}{y^{(n)}} \to 0 \]
as \(n \to \infty \).

On the other hand, due to \((x^{(n)}, y^{(n)}) \in \Delta\), we have

\[\frac{x^{(n)}}{y^{(n)}} \geq 1, \]
for all \(n \in \mathbb{N} \). This contradiction shows that the trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty} \) must be finite.

(ii) Now let \(y^{(0)} = 0 \), then (5.7) implies \(y^{(n)} = 0 \) for all \(n \in \mathbb{N} \). Hence, from (5.7) one finds

\[x^{(n)} \cosh^3 \beta = \sqrt[3]{x^{(n-1)} \cosh^3 \beta}. \]

So, iterating the last equality we obtain

\[x^{(n)} \cosh^3 \beta = \sqrt[3]{x^{(0)} \cosh^3 \beta}, \]

which yields the desired equality and the trajectory \(\{(x^{(n)}, 0)\}_{n=0}^{\infty} \) converges to the fixed point \(\frac{1}{\cosh^3 \beta}, 0 \). \(\square \)

Theorem 6.5. Let \(f : \Delta \to \mathbb{R}^2_+ \) be the dynamical system given by (5.7) and \(\beta \in (\beta^*, \beta^*) \).

Then the following assertions hold true:

(i) There are two invariant lines \(l_1 = \{(x,y) \in \Delta : y = 0\} \) and \(l_2 = \{(x,y) \in \Delta : y = \frac{x}{\sqrt{D}}\} \) w.r.t. \(f \);

(ii) if an initial point \((x^{(0)}, y^{(0)})\) belongs to the invariant line \(l_k \), then its trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty} \) converges to the fixed point belonging to the line \(l_k \), where \(k = 1, 2 \);

(iii) if an initial point \((x^{(0)}, y^{(0)})\) satisfies the following condition

\[\frac{y^{(0)}}{x^{(0)}} \in \left(0, \frac{1}{\sqrt{D}} \right), \]

then its trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty} \) converges to the fixed point \(\left(\frac{1}{\cosh^3 \beta}, 0 \right) \) which belongs to \(l_1 \).
(iv) If an initial point \((x^{(0)}, y^{(0)})\) satisfies the following condition
\[
\frac{y^{(0)}}{x^{(0)}} \in \left(\frac{1}{\sqrt{D}}, 1 \right),
\]
then its trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty}\) is finite.

Proof. (i). It follows from (5.7) that if \(y = 0\) then \(y' = 0\), which means \(l_1\) is an invariant line. Let \(\frac{y}{x} = \frac{1}{\sqrt{D}}\). Again from (5.7) it follows that \(\frac{1}{\sqrt{D}} = \frac{y}{x} = g_\beta \left(\frac{y'}{x'} \right)\). Since \(g_\beta(t)\) is an increasing function on segment \([0, 1]\) and \(t = \frac{1}{\sqrt{D}}\) is its fixed point, we then get \(\frac{y'}{x'} = \frac{1}{\sqrt{D}}\), which yields that \(l_2\) is an invariant line for \(f\).

(ii). Let us consider a case when an initial point \((x^{(0)}, y^{(0)})\) belongs to \(l_k\). Let \((x_k, y_k)\) be the fixed point of \(f\) belonging to \(l_k\) \((k = 1, 2)\). It follows from (5.7) that
\[
\frac{y_k}{x_k} = \frac{y^{(0)}}{x^{(0)}} = g_\beta \left(\frac{y^{(n)}}{x^{(n)}} \right).
\]
(6.9)
for all \(n \in \mathbb{N}\). Since \(g_\beta(t)\) is increasing and \(t = \frac{y_k}{x_k}\) is its fixed point, we have
\[
\frac{y_k}{x_k} = \frac{y^{(n)}}{x^{(n)}}.
\]
(6.10)
for all \(n \in \mathbb{N}\). We know that \(\frac{y_1}{x_1} = 0\) and \(\frac{y_2}{x_2} = \frac{1}{\sqrt{D}}\).

In the case when \(\frac{y_1}{x_1} = 0\), one gets
\[
\left(x^{(n)}, y^{(n)} \right) = \left(\frac{\sqrt{x^{(0)}} \cosh^3 \beta}{\cosh^3 \beta}, 0 \right),
\]
hence the trajectory converges to the fixed point \((x_1, y_1) = (\frac{1}{\cosh \beta}, 0)\). Clearly, it belongs to \(l_1\).

In the case when \(\frac{y_2}{x_2} = \frac{1}{\sqrt{D}}\), we have
\[
\left(x^{(n)}, y^{(n)} \right) = \left(\sqrt{DE} \sqrt{x^{(0)}}, \sqrt{E} \sqrt{y^{(0)}} \right),
\]
and the trajectory converges to the fixed point \((x_2, y_2) = (\sqrt{DE}, \sqrt{E})\) which belongs to the line \(l_2\).

(iii). Assume that an initial point \((x^{(0)}, y^{(0)})\) satisfies
\[
\frac{y^{(0)}}{x^{(0)}} \in \left(0, \frac{1}{\sqrt{D}} \right).
\]
(6.11)
It then follows from (5.7) that
\[
\frac{y^{(n-1)}}{x^{(n-1)}} = g_\beta \left(\frac{y^{(n)}}{x^{(n)}} \right),
\]
for all \(n \in \mathbb{N} \). Since \((6.11)\) and due to Proposition \((6.2)\) (ii), we conclude that
\[
\frac{y^{(n)}}{x^{(n)}} \in \left(0, \frac{1}{\sqrt{D}}\right),
\]
for all \(n \in \mathbb{N} \). According to Proposition \((6.2)\) (iii) we get
\[
\frac{y^{(0)}}{x^{(0)}} > \frac{y^{(1)}}{x^{(1)}} > \cdots > \frac{y^{(n)}}{x^{(n)}} > \cdots,
\]
and the sequence
\[
c_n := \frac{y^{(n)}}{x^{(n)}}
\]
converges to 0.

Let us denote
\[
b_n := \frac{1}{B_2 + c_n A_2}.
\]
From \((5.7)\), one can easily get
\[
x^{(n)} = \sqrt[3]{b_n \sqrt[3]{b_{n-1} \sqrt[3]{\cdots \sqrt[3]{b_1 x^{(0)}}}}}
\]
and
\[
\lim_{n \to \infty} x^{(n)} = \lim_{n \to \infty} b_n = \frac{1}{\sqrt{B_2}} = \frac{1}{\cosh^3 \beta}.
\]
Therefore, the trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty}\) converges to the fixed point \(\left(\frac{1}{\cosh^3 \beta}, 0\right)\) which belongs to \(l_1\).

(iv) Now assume that
\[
\frac{y^{(0)}}{x^{(0)}} \in \left(\frac{1}{\sqrt{D}}, 1\right).
\]
We suppose that the trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty}\) is infinite. This means that the points \((x^{(n)}, y^{(n)})\) are well defined and belong to the domain \(\Delta\) for all \(n \in \mathbb{N} \). Then, it follows from \((5.7)\) that
\[
\frac{y^{(n-1)}}{x^{(n-1)}} = g_\beta \left(\frac{y^{(n)}}{x^{(n)}}\right),
\]
for all \(n \in \mathbb{N} \). Since \((6.12)\) and due to Proposition \((6.2)\) (ii), we conclude that
\[
\frac{y^{(n)}}{x^{(n)}} \in \left(\frac{1}{\sqrt{D}}, 1\right),
\]
for all \(n \in \mathbb{N} \). According to Proposition \((6.2)\) (iii) one finds
\[
\frac{y^{(0)}}{x^{(0)}} < \frac{y^{(1)}}{x^{(1)}} < \cdots < \frac{y^{(n)}}{x^{(n)}} < \cdots.
\]
Since \((x^{(n)}, y^{(n)}) \in \Delta\) and the sequence \(\frac{y^{(n)}}{x^{(n)}}\) is bounded, so it converges to some point \(\tilde{t} \in \left(\frac{1}{\sqrt{D}}, 1\right)\). We know that the point \(\tilde{t}\) should be a fixed point of \(g_\beta(t)\) on \(\left(\frac{1}{\sqrt{D}}, 1\right)\). However, the function \(g_\beta(t)\) does not have any fixed points on \(\left(\frac{1}{\sqrt{D}}, 1\right)\). Hence, this contradiction shows that the trajectory \(\{(x^{(n)}, y^{(n)})\}_{n=0}^{\infty}\) must be finite. \(\square\)
7 Uniqueness of QMC

In this section we prove the first part of the main theorem (see Theorem 4.1), i.e. we show the uniqueness of the forward quantum d-Markov chain in the regime $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$.

So, assume that $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$. From Theorem 6.3, we infer that equations (3.7), (3.8) have a lot of parametrical solutions $(w_0(\alpha), \{h_x(\alpha)\})$ given by

$$w_0(\alpha) = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & 1 & 0 \\ 0 & \alpha & 1 \end{pmatrix}, \quad h_x^{(n)}(\alpha) = \begin{pmatrix} \frac{\sqrt{\alpha} \cosh^{3/2} \beta}{\cosh^{3/2} \beta} & 0 & \frac{\sqrt{\alpha} \cosh^{3/2} \beta}{\cosh^{3/2} \beta} \\ 0 & \frac{\sqrt{\alpha} \cosh^{3/2} \beta}{\cosh^{3/2} \beta} & \frac{\sqrt{\alpha} \cosh^{3/2} \beta}{\cosh^{3/2} \beta} \end{pmatrix}, \quad (7.1)$$

for every $x \in V$, here α is any positive real number.

The boundary conditions corresponding to the fixed point of (5.7) are the following ones:

$$w_0 = \begin{pmatrix} \cosh^{3} \beta & 0 & 0 \\ 0 & \cosh^{3} \beta & 0 \\ 0 & 0 & \cosh^{3} \beta \end{pmatrix}, \quad h_x^{(n)} = \begin{pmatrix} \frac{1}{\cosh^{3} \beta} & 0 & \frac{1}{\cosh^{3} \beta} \\ 0 & \frac{1}{\cosh^{3} \beta} & \frac{1}{\cosh^{3} \beta} \end{pmatrix}, \quad \forall x \in V, \quad (7.2)$$

which correspond to the value of $\alpha_0 = \frac{1}{\cosh^{3} \beta}$ in (7.1). Therefore, in the sequel we denote such operators by $w_0(\alpha_0)$ and $h_x^{(n)}(\alpha_0)$, respectively.

Let us consider the states $\varphi_{w_0(\alpha),h(\alpha)}^{(n,f)}$ corresponding to the solutions $(w_0(\alpha), \{h_x^{(n)}(\alpha)\})$. By definition we have

$$\varphi_{w_0(\alpha),h(\alpha)}^{(n,f)}(x) = \text{Tr} \left(w_0^{1/2}(\alpha) \prod_{i=0}^{n-1} K_{[i,i+1]} \prod_{x \in \overline{W}_n} h_x^{(n)}(\alpha) \prod_{i=1}^{n} K_{[n-i,n+1-i]} w_0^{1/2}(\alpha) x \right)$$

$$= \frac{(\sqrt{\beta} \cosh^{3} \beta)^{n+1}}{\alpha(\cosh^{3} \beta)^{n+1}} \text{Tr} \left(\prod_{i=0}^{n-1} K_{[i,i+1]} \prod_{i=1}^{n} K_{[n-i,n+1-i]} x \right)$$

$$= \frac{\alpha^{n+1}}{\alpha_0} \text{Tr} \left(\prod_{i=0}^{n-1} K_{[i,i+1]} \prod_{i=1}^{n} K_{[n-i,n+1-i]} x \right)$$

$$= \text{Tr} \left((w_0^{1/2}(\alpha_0) \prod_{i=0}^{n-1} K_{[i,i+1]} \prod_{x \in \overline{W}_n} h_x^{(n)}(\alpha_0) \prod_{i=1}^{n} K_{[n-i,n+1-i]} w_0^{1/2}(\alpha_0) x \right)$$

$$= \varphi_{w_0(\alpha_0),h(\alpha_0)}^{(n,f)}(x), \quad (7.3)$$

for any α. Hence, from the definition of quantum d-Markov chain we find that $\varphi_{w_0(\alpha),h(\alpha)}^{(f)} = \varphi_{w_0(\alpha_0),h(\alpha_0)}^{(n,f)}$, which yields that the uniqueness of forward quantum d-Markov chain associated with the model (1.2).

Hence, Theorem 4.1 (i) is proved.
8 Existence of phase transition

This section is devoted to the proof of part (ii) of Theorem 4.1. We shall prove the existence of the phase transition in the regime \(\beta \in (\beta^*, \beta^*) \).

In this section, for the sake of simplicity of formulas, we will use the following notations, for the Pauli matrices:

\[\sigma_0 := 1, \quad \sigma_1 := \sigma_x, \quad \sigma_2 := \sigma_y, \quad \sigma_3 := \sigma_z \]

According to Theorem 6.1 in the considered regime there are two fixed points of the dynamical system (5.7). Then the corresponding solutions of equations (3.7), (3.8) can be written as follows: \((w_0(\alpha_0), \{h_x(\alpha_0)\})\) and \((w_0(\gamma), \{h_x(\gamma)\})\), where

\[
\begin{align*}
 w_0(\alpha_0) &= \frac{1}{\alpha_0} \sigma_0, \quad h_x(\alpha_0) = \alpha_0 \sigma_0^x \\
 w_0(\gamma) &= \frac{1}{\gamma_0} \sigma_0, \quad h_x(\gamma) = \gamma_0 \sigma_0^x + \gamma_1 \sigma_1^x
\end{align*}
\]

here \(\alpha_0 = \frac{1}{\cosh^3 \beta}, \gamma = (\gamma_0, \gamma_1) \) with \(\gamma_0 = \sqrt{DE}, \gamma_1 = \sqrt{E} \).

By \(\varphi_w^{(f)}(\alpha_0, h(\gamma)) \), \(\varphi_w^{(f)}(\gamma) \) we denote the corresponding forward quantum \(d \)-Markov chains. To prove the existence of the phase transition, we need to show that these two states are not quasi-equivalent. To do so, we will need some auxiliary facts and results.

Denote

\[
A = \begin{pmatrix}
 \cosh \beta \gamma_0^2 + \sinh^2 \beta \cosh^3 \beta \gamma_1^2 & \gamma_0 \gamma_1 \sinh^2 \beta \cosh^2 \beta (1 + \cosh \beta) \\
 \gamma_0 \gamma_1 \sinh \beta \cosh^2 \beta (1 + \cosh \beta) & \sinh \beta \cosh^4 \beta \gamma_0^2 + \sinh^2 \beta \cosh \beta \gamma_1^2
\end{pmatrix}.
\]

(8.1)

Let us study some properties of the matrix \(A \). One can easily check out that the matrix \(A \) given by (8.1) can be written as follows

\[
A = \begin{pmatrix}
 \frac{\cosh \beta (\sinh \beta + \cosh^3 \beta)}{\sinh \beta (1 + \cosh \beta)^2} & \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} \\
 \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} & \frac{\sinh \beta + \cosh^3 \beta}{\cosh \beta (1 + \cosh \beta)^2}
\end{pmatrix}.
\]

(8.2)

Proposition 8.1. If \(\beta \in (\beta^*, \beta^*) \) then the following inequalities hold true

(i) \(0 < \frac{\cosh \beta (\sinh \beta + \cosh^3 \beta)}{\sinh \beta (1 + \cosh \beta)^2} < 1 \);

(ii) \(0 < \frac{\sinh \beta + \cosh^3 \beta}{\cosh \beta (1 + \cosh \beta)^2} < 1 \);

(iii) \(1 < \text{Tr}(A) < 2 \);

(iv) \(0 < \det(A) < 1 \).
Proof. (i). Since $B_2 < B_1$ (see Lemma 5.2 (iii)) one can see that

$$0 < \frac{\cosh(\sinh + \cosh^3 \beta)}{\sinh(1 + \cosh) \beta} = \frac{B_2}{\cosh^2 \beta + \cosh \beta \sinh \beta} < 1.$$

(ii). The inequality $\sinh \beta < \cosh \beta$ implies that

$$0 < \frac{\sinh \beta + \cosh^3 \beta}{\cosh(1 + \cosh) \beta} = \frac{\sinh \beta + \cosh^3 \beta}{\cosh \beta + 2 \cosh^2 \beta + \cosh^3 \beta} < 1.$$

(iii). One can see that

$$\text{Tr}(A) = \frac{(\sinh \beta + \cosh \beta)(\sinh \beta + \cosh^3 \beta)}{\sinh \beta \cosh \beta(1 + \cosh) \beta^2}. \quad (8.3)$$

Therefore, from (i), (ii) it immediately follows that $0 < \text{Tr}(A) < 2$. Now we are going to show that $\text{Tr}(A) > 1$. Indeed, since $\cosh^3 \beta > \sinh \beta(1 + \cosh) > 0$ (see Lemma 5.2 (viii)) and $\cosh \beta > 1$ one has

$$\sinh^2 \beta + \cosh^5 \beta > \sinh \beta \cosh \beta(1 + \cosh \beta) \quad (8.4)$$

Then, due to (8.4) we find

$$\text{Tr}(A) = \frac{\sinh^2 \beta + \cosh^5 \beta + \sinh \beta \cosh^2 \beta(1 + \cosh \beta)}{\sinh \beta \cosh \beta(1 + \cosh \beta) + \sinh \beta \cosh^2 \beta(1 + \cosh \beta)} > 1.$$

(iv). Let us evaluate the determinant $\det(A)$ of the matrix A given by (8.2). After some algebraic manipulations, one finds

$$\det(A) = \frac{\sinh^2 \beta + \cosh^5 \beta - \sinh \beta \cosh \beta(1 + \cosh \beta)}{\sinh \beta \cosh \beta(1 + \cosh \beta)^2}. \quad (8.5)$$

Due to (8.4) one can see that $\det(A) > 0$. We want to show that $\det(A) < 1$. Since $B_2 < B_1$ (see Lemma 5.2 (iii)) and $\sinh \beta < \cosh \beta$ we have

$$\cosh^5 \beta < \sinh \beta \cosh \beta(1 + \cosh \beta + \cosh^2 \beta), \quad (8.6)$$

$$\sinh^2 \beta < \sinh \beta \cosh \beta(1 + 2 \cosh \beta). \quad (8.7)$$

From inequalities (8.6), (8.7), one gets

$$\sinh^2 \beta + \cosh^5 \beta < \sinh \beta \cosh \beta(2 + 3 \cosh \beta + \cosh^2 \beta). \quad (8.8)$$

Therefore, we obatain

$$\det(A) = \frac{\sinh^2 \beta + \cosh^5 \beta - \sinh \beta \cosh \beta(1 + \cosh \beta)}{\sinh \beta \cosh \beta(2 + 3 \cosh \beta + \cosh^2 \beta) - \sinh \beta \cosh \beta(1 + \cosh \beta)} < 1.$$

This completes the proof. \qed

The next proposition deals with eigenvalues of the matrix A.

18
Proposition 8.2. Let A be the matrix given by \[8.2\]. Then the following assertions hold true:

(i) the numbers $\lambda_1 = 1$, $\lambda_2 = \det(A)$ are eigenvalues of the matrix A;

(ii) the vectors

\[
(x_1, y_1) = \left(\frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2}, \frac{B_1 - B_2}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} \right),
\]

\[
(x_2, y_2) = \left(\frac{B_2 - B_1}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2}, \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh^2 \beta \cosh^2 \beta (1 + \cosh \beta)^2} \right)
\]

are eigenvectors of the matrix A corresponding to the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = \det(A)$, respectively;

(iii) if $P = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}$, where the vectors (x_1, y_1) and (x_2, y_2) are defined by \[8.9\], \[8.10\] then

\[
P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}
\]

(iv) for any $n \in \mathbb{N}$ one has

\[
A^n = \begin{pmatrix} x_1^2 + \lambda_2 y_1^2 \sinh \beta & x_1 y_1 \sinh \beta(1 - \lambda_2^2) \\ x_1 x_1^2 \cosh \beta & x_1 y_1 \sinh \beta \cosh \beta \\ x_1 y_1(1 - \lambda_2^2) & x_1 y_1 \sinh \beta \cosh \beta \\ x_1^2 + y_1^2 \sinh \beta & x_1^2 + y_1^2 \sinh \beta \end{pmatrix}
\]

Proof. (i) We know that the following equation

\[
\chi^2 - \text{Tr}(A) \chi + \det(A) = 0
\]

is a characteristic equation of the matrix A given by \[8.2\]. From \[8.3\] and \[8.5\] one can easily see that

\[
\text{Tr}(A) - \det(A) = \frac{\sinh \beta \cosh^2 \beta (1 + \cosh \beta) + \sinh \beta \cosh \beta (1 + \cosh \beta)}{\sinh \beta \cosh \beta (1 + \cosh \beta)^2} = 1,
\]

this means that $\lambda_1 = 1$ and $\lambda_2 = \det(A)$ are eigenvalues of the matrix A.

(ii) The eigenvector (x_1, y_1) of the matrix A, corresponding to $\lambda_1 = 1$ satisfies the following equation

\[
\left(\frac{\cosh \beta (\sinh \beta + \cosh^3 \beta)}{\sinh \beta (1 + \cosh \beta)^2} - \lambda_1 \right) x_1 + \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} y_1 = 0.
\]

Then, one finds

\[
\begin{cases}
 x_1 = \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} \\
 y_1 = \lambda_1 - \frac{\cosh \beta (\sinh \beta + \cosh^3 \beta)}{\sinh \beta (1 + \cosh \beta)^2} = \frac{B_1 - B_2}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2}
\end{cases}
\]
Analogously, one can show that the eigenvector \((x_2, y_2)\) of the matrix \(A\), corresponding to \(\lambda_2 = \det(A)\), is equal to

\[
\begin{align*}
x_2 &= \lambda_2 - \frac{\sinh \beta + \cosh^3 \beta}{\cosh \beta(1 + \cosh \beta)^2} = \frac{B_2 - B_1}{\sinh \beta \cosh^2 \beta (1 + \cosh \beta)^2} \\
y_2 &= \frac{\sqrt{(A_2 - A_1)(B_1 - B_2)}}{\sinh^2 \beta \cosh^2 \beta (1 + \cosh \beta)^2}.
\end{align*}
\]

It is worth noting that \((x_2, y_2) = \left(-y_1, \frac{x_1}{\sinh \beta}\right)\).

(iii) Let

\[P = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix},\]

where the vectors \((x_1, y_1)\) and \((x_2, y_2)\) are defined by \((8.9), (8.10)\). We then get

\[
P^{-1}AP = \frac{1}{\det(P)} \begin{pmatrix} y_2 & -x_2 \\ -y_1 & x_1 \end{pmatrix} \begin{pmatrix} \lambda_1 x_1 & \lambda_2 x_2 \\ \lambda_1 y_1 & \lambda_2 y_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},
\]

where \(\det(P) = \frac{x_1^2}{\sinh \beta} + y_1^2 > 0\).

(iv) From \((8.11)\) it follows that

\[A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}.
\]

Therefore, for any \(n \in \mathbb{N}\) we obtain

\[
A^n = P \begin{pmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{pmatrix} P^{-1} = \frac{1}{\det(P)} \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} \begin{pmatrix} y_2 \lambda_1^n & -x_2 \lambda_1^n \\ -y_1 \lambda_2^n & x_1 \lambda_2^n \end{pmatrix} = \frac{1}{\det(P)} \begin{pmatrix} x_1 y_2 \lambda_1^n - x_2 y_1 \lambda_2^n & x_1 x_2 (\lambda_1^n - \lambda_2^n) \\ y_1 y_2 (\lambda_1^n - \lambda_2^n) & x_1 y_2 \lambda_2^n - x_2 y_1 \lambda_1^n \end{pmatrix} = \begin{pmatrix} \frac{x_1^2 + \lambda_2 y_1^2 \sinh \beta}{x_1^2 + y_1^2 \sinh \beta} & \frac{x_1 y_1 \sinh \beta (1 - \lambda_2^n)}{x_1^2 + y_1^2 \sinh \beta} \\ \frac{x_1 y_1 (1 - \lambda_2^n)}{x_1^2 + y_1^2 \sinh \beta} & \frac{\lambda_2 x_2^2 + y_2^2 \sinh \beta}{x_1^2 + y_1^2 \sinh \beta} \end{pmatrix}.
\]

This completes the proof.

Remark 8.3. In the sequel, we will frequently use the following identities for the numbers \(K_i, i = 0, 3\) given by \((8.13)\):

\[
K_0 := \frac{1 + \cosh \beta}{2}, \quad K_1 := \frac{\sinh \beta}{2}, \quad K_2 := \frac{\sinh \beta}{2}, \quad K_3 := \frac{1 + \cosh \beta}{2} \quad (8.13)
\]

In these notations, the operator \(K_{<u,v>}\) given by \((4.4)\) can be written as follows

\[
K_{<u,v>} = \sum_{i=0}^{3} K_i \sigma_i^{(u)} \otimes \sigma_i^{(v)} \quad (8.14)
\]
Proposition 8.4. Let \(K_{0,1}^2 + K_{2}^2 + K_{3}^2 = \cosh^2 \beta \);
(iii) \(2(K_0 K_1 - K_2 K_3) = \sinh \beta \cosh \beta \);
(iii) \(2(K_0 K_1 + K_2 K_3) = \sinh \beta \);
(iv) \(K_0^2 + K_1^2 - K_2^2 - K_3^2 = \cosh \beta \).

Let \(K_{<u,v>} \) be given by (8.14), \(S(x) = (1, 2, 3) \), and \(h^{(i)} = h_0^{(i)} \sigma_0^{(i)} + h_1^{(i)} \sigma_1^{(i)} \), where \(i \in S(x) \). Then we have

\[
\text{Tr}_x \left[\prod_{i \in S(x)} K_{<x,i>}^{(i)} \prod_{i \in S(x)} h^{(i)} \prod_{i \in S(x)} K_{<x,i>}^{(i)} \right] = h_0^{(x)} \sigma_0^{(x)} + h_1^{(x)} \sigma_1^{(x)} \quad (8.15)
\]

where

\[
h_0^{(x)} = h_0^{(1)} h_0^{(3)} \cosh^6 \beta + h_0^{(1)} h_1^{(2)} h_1^{(3)} \sinh^2 \beta \cosh^3 \beta
+ h_1^{(1)} h_1^{(2)} h_1^{(3)} \sinh^2 \beta \cosh^3 \beta + h_1^{(1)} h_0^{(2)} h_1^{(3)} \sinh^2 \beta \cosh^2 \beta, \quad (8.16)
\]

\[
h_1^{(x)} = h_0^{(1)} h_0^{(2)} h_1^{(3)} \sinh \beta \cosh^2 \beta + h_0^{(1)} h_1^{(2)} h_1^{(3)} \sinh \beta \cosh^2 \beta + h_1^{(1)} h_0^{(2)} h_1^{(3)} \sinh \beta \cosh \beta + h_1^{(1)} h_1^{(2)} h_1^{(3)} \sinh \beta \cosh \beta. \quad (8.17)
\]

Proof. Let us first evaluate \(g_3^{(x)} := \text{Tr}_x \left[K_{<x,3>} h^{(3)} K_{<x,3>} \right] \). From (8.14) it follows that

\[
K_{<x,3>} h^{(3)} K_{<x,3>} = \sum_{i,j=0}^3 K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \otimes \sigma_i^{(3)} \left(h_0^{(3)} \sigma_0^{(3)} + h_1^{(3)} \sigma_1^{(3)} \right) \sigma_j^{(3)}
\]

\[
= h_0^{(3)} \sum_{i,j=0}^3 K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \otimes \sigma_i^{(3)} \sigma_j^{(3)}
+ h_1^{(3)} \sum_{i,j=0}^3 K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \otimes \sigma_i^{(3)} \sigma_1^{(3)} \sigma_j^{(3)}
\]

Therefore, one gets

\[
g_3^{(x)} = g_0^{(3)} \sigma_0^{(x)} + g_1^{(3)} \sigma_1^{(x)} \quad (8.18)
\]

where

\[
g_0^{(3)} = h_0^{(3)} (K_0^2 + K_1^2 + K_2^2 + K_3^2) = h_0^{(3)} \cosh^2 \beta \quad (8.19)
\]

\[
g_1^{(3)} = 2 h_1^{(3)} (K_0 K_1 + K_2 K_3) = h_1^{(3)} \sinh \beta. \quad (8.20)
\]
Now, evaluate $g_2^{(x)} := \text{Tr}_x \left[K_{<x,2>} h^{(2)} \sigma_3^{(x)} K_{<x,2>} \right]$. Using (8.14) and (8.18) we find

$$K_{<x,2>} h^{(2)} \sigma_3^{(x)} K_{<x,2>} = g_0^{(2)} h_0^{(2)} \sum_{i,j=0}^{3} K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \sigma_i^{(2)} \sigma_j^{(2)} + g_0^{(3)} h_1^{(2)} \sum_{i,j=0}^{3} K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \sigma_i^{(2)} \sigma_j^{(2)} + g_1^{(3)} h_1^{(2)} \sum_{i,j=0}^{3} K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \sigma_i^{(2)} \sigma_j^{(2)} + g_1^{(3)} h_2^{(2)} \sum_{i,j=0}^{3} K_i K_j \sigma_i^{(x)} \sigma_j^{(x)} \sigma_i^{(2)} \sigma_j^{(2)}.$$

Hence, one has

$$g_2^{(x)} = g_0^{(2)} \sigma_0^{(x)} + g_1^{(2)} \sigma_1^{(x)} \quad (8.21)$$

where

$$g_0^{(2)} = g_0^{(3)} h_0^{(2)} (K_0^2 + K_1^2 + K_2^2 + K_3^2) + 2g_0^{(3)} h_1^{(2)} (K_0 K_1 - K_2 K_3) = g_0^{(3)} h_0^{(2)} \cosh^2 \beta + g_1^{(3)} h_1^{(2)} \sinh \beta \cosh \beta, \quad (8.22)$$

$$g_1^{(2)} = 2g_0^{(3)} h_1^{(2)} (K_0 K_1 + K_2 K_3) + g_1^{(3)} h_0^{(2)} (K_0^2 + K_1^2 + K_2^2 - K_3^2) = g_0^{(3)} h_1^{(2)} \sinh \beta + g_1^{(3)} h_0^{(2)} \cosh \beta. \quad (8.23)$$

Similarly, one can evaluate

$$g_1^{(x)} := \text{Tr}_x \left[K_{<x,1>} h^{(1)} g_2^{(x)} K_{<x,1>} \right] = g_0^{(1)} \sigma_0^{(x)} + g_1^{(1)} \sigma_1^{(x)} \quad (8.24)$$

where

$$g_0^{(1)} = g_0^{(2)} h_0^{(1)} \cosh^2 \beta + g_1^{(2)} h_1^{(1)} \sinh \beta \cosh \beta, \quad (8.25)$$

$$g_1^{(1)} = g_0^{(2)} h_1^{(1)} \sinh \beta + g_1^{(2)} h_0^{(1)} \cosh \beta. \quad (8.26)$$

We know that

$$\text{Tr}_x \left[\prod_{i \in S(x)} K_{<x,i>} \prod_{i \in S(x)} h^{(i)} \prod_{i \in S(x)} K_{<x,i>} \right] = g_1^{(x)},$$

and combining (8.19), (8.20), (8.22), (8.23), (8.25), (8.26), we get

$$g_0^{(1)} = h_0^{(1)} h_0^{(2)} h_0^{(3)} \cosh^6 \beta + h_0^{(1)} h_1^{(2)} h_1^{(3)} \sinh^2 \beta \cosh^3 \beta + h_1^{(2)} h_1^{(3)} \sinh^4 \beta + h_1^{(1)} h_0^{(2)} h_1^{(3)} \sinh^2 \beta \cosh^2 \beta,$$

$$g_1^{(1)} = h_0^{(1)} h_0^{(2)} h_1^{(3)} \sinh \beta \cosh^2 \beta + h_0^{(1)} h_1^{(2)} h_1^{(3)} \sinh \beta \cosh^3 \beta + h_1^{(1)} h_0^{(2)} h_1^{(3)} \sinh^3 \beta + h_1^{(1)} h_1^{(2)} h_1^{(3)} \sinh^4 \beta \cosh \beta.$$

This completes the proof. □
Corollary 8.5. Let $K_{<u,v>}$ be given by \([8.14]\), $S(x) = (1, 2, 3)$, and
\[
h^{(1)} = h_1 \sigma_1^{(1)} , \quad h^{(2)} = \alpha_0 \sigma_0^{(2)} , \quad h^{(3)} = \alpha_0 \sigma_0^{(3)} .
\]
Then we have
\[
\mathrm{Tr}_x \left[\prod_{i \in S(x)} K_{<x,i>} \prod_{i \in S(x)} h^{(i)} \prod_{i \in S(x)} K_{<x,i>} \right] = \alpha_0^2 h_1 \sinh \beta \cosh^4 \beta \sigma_1^{(x)} \quad (8.27)
\]

Corollary 8.6. Let $K_{<u,v>}$ be given by \([8.14]\), $S(x) = (1, 2, 3)$, and
\[
h^{(1)} = h_0 \sigma_0^{(1)} + h_1 \sigma_1^{(1)} , \quad h^{(2)} = \gamma_0 \sigma_0^{(2)} + \gamma_1 \sigma_1^{(2)} , \quad h^{(3)} = \gamma_0 \sigma_0^{(3)} + \gamma_0 \sigma_0^{(3)} .
\]
Then we have
\[
\mathrm{Tr}_x \left[\prod_{i \in S(x)} K_{<x,i>} \prod_{i \in S(x)} h^{(i)} \prod_{i \in S(x)} K_{<x,i>} \right] = \left\langle \mathbf{A h}, \sigma^{(x)} \right\rangle , \quad (8.28)
\]
where as before A is a matrix given by \([8.1]\), and here we assume that $\sigma^{(x)} = \left(\sigma_0^{(x)} , \sigma_1^{(x)} \right)$, $h = (h_0 , h_1)$ are vectors and $\left\langle \cdot , \cdot \right\rangle$ stands for the standard inner product of vectors.

Let us consider the following elements:
\[
\sigma_0^\Lambda := \bigotimes_{x \in \Lambda} \sigma_0^{(x)} \in \mathcal{B}_\Lambda , \quad \Lambda \subset \Lambda_n , \quad \sigma_0^{S(x),1} := \sigma_1^{(1)} \otimes \sigma_0^{(2)} \otimes \sigma_0^{(3)} \in \mathcal{B}_{S(x)} , \quad (8.29)
\]
\[
\sigma_1^{W_{n+1},1} := \sigma_1^{(1)} \otimes \sigma_0^{(2)} \otimes \sigma_1^{W_{n+1},1} \in \mathcal{B}_{W_{n+1}}, \quad (8.30)
\]
\[
a_{\alpha_0}^{\Lambda_n+1} := \bigotimes_{i=0}^n \sigma_0^{W_i} \otimes \sigma_1^{W_{n+1},1} \in \mathcal{B}_{\Lambda_{n+1}} . \quad (8.31)
\]

Proposition 8.7. Let $\varphi_{w_0(\alpha_0),h(\alpha_0)}^{(f)}$ be a forward quantum d–Markov chain corresponding to the model \([8.14]\) with boundary conditions $h^{(x)} = \alpha_0 \sigma_0^{(x)}$ for all $x \in L$, where $\alpha_0 = \frac{1}{\cosh^2 \beta}$. Let $a_{\alpha_0}^{\Lambda_n+1}$ be an element given by \([8.31]\) and $\beta \in (\beta^*, \beta^*)$. Then one has $\varphi_{w_0(\alpha_0),h(\alpha_0)}^{(f)}(a_{\alpha_0}^{\Lambda_n+1}) = 0$, for any $N \in \mathbb{N}$.

Proof. Due to \([3.8]\) (see Theorem 3.1) the compatibility condition holds $\varphi_{w_0(\alpha_0),h(\alpha_0)}^{(n+1,f)}(a_{\alpha_0}^{\Lambda_n+1}) = 0$. Therefore,
\[
\varphi_{w_0(\alpha_0),h(\alpha_0)}^{(f)}(a_{\alpha_0}^{\Lambda_n+1}) = w - \lim_{n \to \infty} \varphi_{w_0(\alpha_0),h(\alpha_0)}^{(n+1,f)}(a_{\alpha_0}^{\Lambda_n+1}) = \varphi_{w_0(\alpha_0),h(\alpha_0)}^{(N+1,f)}(a_{\alpha_0}^{\Lambda_n+1}) . \quad (8.32)
\]
Taking into account $w_0(\alpha_0) = \frac{1}{\alpha_0} \sigma_0^{(0)}$ and due to Proposition 3.2 it is enough to evaluate the following

\[
\varphi_{w_0, h(\alpha_0)}^{(N+1,f)} \left(a_{\sigma_1}^{\Lambda_{N+1}} \right) = \text{Tr} \left(W_{N+1} \left(a_{\sigma_1}^{\Lambda_{N+1}} \right) \right) = \frac{1}{\alpha_0} \text{Tr} \left[K_{[0,1]} \cdots K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^* \cdots K_{[0,1]} \sigma_1^{\Lambda_{N+1}} \right] = \frac{1}{\alpha_0} \text{Tr} \left[K_{[0,1]} \cdots K_{[N-1,N]} \right] \text{Tr}_N \left[K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^* \sigma_1^{\Lambda_{N+1}} \right] K_{[N-1,N]}^* \cdots K_{[0,1]}^* .
\]

Now let us calculate $\tilde{h}_N := \text{Tr}_N \left[K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^* \sigma_1^{\Lambda_{N+1}} \right]$. Since $K_{<u,v>}$ is a self-adjoint, we then get

\[
\tilde{h}_N = \text{Tr}_x^{(1)} \left[\prod_{y \in S(x_{\bar{W}_N}^{(1)})} K_{x_{\bar{W}_N}^{(1)}}^{(1)} y \prod_{y \in S(x_{\bar{W}_N}^{(1)})} h(y) \prod_{y \in S(x_{\bar{W}_N}^{(1)})} K_{<x,y>} \right] .
\]

We know that

\[
\text{Tr}_x \left[\prod_{y \in S(x)} K_{<x,y>} \prod_{y \in S(x)} h(y) \prod_{y \in S(x)} K_{<x,y>} \right] = h(x), \quad (8.33)
\]

for every $x \in \bar{W}_N \setminus x_{\bar{W}_N}^{(1)}$. Therefore, one can easily check that

\[
\text{Tr}_x^{(1)} \left[\prod_{y \in S(x_{\bar{W}_N}^{(1)})} K_{x_{\bar{W}_N}^{(1)}}^{(1)} y \prod_{y \in S(x_{\bar{W}_N}^{(1)})} h(y) \prod_{y \in S(x_{\bar{W}_N}^{(1)})} K_{<x,y>} \right] = \tilde{h}_{x_{\bar{W}_N}^{(1)}}^{(1)}, \quad (8.34)
\]

where

\[
\tilde{h}_{x_{\bar{W}_N}^{(1)}}^{(1)} = \alpha_1 \sigma_1^{(1)} \left(x_{\bar{W}_N}^{(1)} \right), \quad \alpha_1 = \sinh \beta \cosh^5 \beta.
\]

Hence, we obtain

\[
\tilde{h}_N = \tilde{h}_{x_{\bar{W}_N}^{(1)}}^{(1)} \bigotimes_{x \in \bar{W}_N \setminus x_{\bar{W}_N}^{(1)}} h(x).
\]

Therefore, one finds

\[
\varphi_{w_0, h(\alpha_0)}^{(N+1,f)} \left(a_{\sigma_1}^{\Lambda_{N+1}} \right) = \frac{1}{\alpha_0} \text{Tr} \left[K_{[0,1]} \cdots K_{[N-2,N-1]} \right. \text{Tr}_{N-1} \left[K_{[N-1,N]} \tilde{h}_N K_{[N-1,N]}^* \right] K_{[N-2,N-1]}^* \cdots K_{[0,1]}^* \right] .
\]
So, after N times applying Corollary (8.5), we get
\[
\varphi_{w_0,h(\gamma)}^{(N+1,f)}(a_{\sigma_1}^{\Lambda_{N+1}}) = \alpha_0^{2N-1} \alpha_1^N (\sinh \beta \cosh \beta)^N \text{Tr}(\sigma_1^{(0)}) = 0.
\]
This completes the proof. \(\square\)

Proposition 8.8. Let $\varphi_{w_0,h(\gamma)}^{(f)}$ be a forward quantum d–Markov chain corresponding to the model [8.11] with boundary conditions $h^{(x)} = \gamma_0 \sigma_0^{(x)} + \gamma_1 \sigma_1^{(x)}$ for all $x \in L$, where $\gamma_0 = \sqrt{DE}$ and $\gamma_1 = \sqrt{E}$. Let $a_{\sigma_1}^{\Lambda_{N+1}}$ be an element given by [8.31] and $\beta \in (\beta_*, \beta^*)$. Then one has
\[
\varphi_{w_0,h(\gamma)}^{(f)}(a_{\sigma_1}^{\Lambda_{N+1}}) = \frac{1}{\gamma_0} \left\langle A^N h_{\gamma_0,\gamma_1}, e \right\rangle \quad \forall N \in \mathbb{N}, \quad (8.35)
\]
where A is a matrix given by [8.1], $\left\langle \cdot, \cdot \right\rangle$ is the standard inner product of vectors and $e = (1, 0)$, $h_{\gamma_0,\gamma_1} = (h_0, h_1)$ are vectors with
\[
h_0 = \gamma_0^2 \beta \sinh^2 \beta \cosh \beta (1 + \cosh \beta) + \gamma_1^2 \sinh^2 \beta \cosh^2 \beta, \quad (8.36)
\]
\[
h_1 = \gamma_0^3 \sinh \beta \cosh^5 \beta + \gamma_1 \gamma_0 \sinh \beta \cosh^3 \beta (1 + \cosh \beta) + \sinh^3 \beta \cosh^2 \beta. \quad (8.37)
\]

Proof. Again the compatibility condition yields that
\[
\varphi_{w_0,h(\gamma)}^{(f)}(a_{\sigma_1}^{\Lambda_{N+1}}) = w - \lim_{n \to \infty} \varphi_{w_0,h(\gamma)}^{(n,f)}(a_{\sigma_1}^{\Lambda_{N+1}}) = \varphi_{w_0,h(\gamma)}^{(N+1,f)}(a_{\sigma_1}^{\Lambda_{N+1}}), \quad (8.38)
\]
Noting that if $h^{(0)} = \gamma_0 \sigma_0^{(0)} + \gamma_1 \sigma_1^{(0)}$ then one of the solutions of the equation $\text{Tr}(wa_0 h^{(0)}) = 1$ w.r.t. w_0 is $w_0(\gamma) = \frac{1}{\gamma_0} \sigma_0^{(0)}$, and due to Proposition 3.2 it is enough to evaluate the following
\[
\varphi_{w_0,h(\gamma)}^{(N+1,f)}(a_{\sigma_1}^{\Lambda_{N+1}}) = \text{Tr} \left(\mathcal{W}_{N+1} \left(a_{\sigma_1}^{\Lambda_{N+1}} \right) \right)
\]
\[
= \frac{1}{\gamma_0} \text{Tr} \left[K_{[0,1]} \cdots K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^{*} \cdots K_{[0,1]}^{*} a_{\sigma_1}^{\Lambda_{N+1}} \right]
\]
\[
= \frac{1}{\gamma_0} \text{Tr} \left[K_{[0,1]} \cdots K_{[N-1,N]} \right] \text{Tr}_N \left[K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^{*} \sigma_1^{\Lambda_{N+1}} \right] K_{[N-1,N]}^{*} \cdots K_{[0,1]}^{*} \right].
\]

Let us calculate $\tilde{h}_N := \text{Tr}_N \left[K_{[N,N+1]} h_{N+1} K_{[N,N+1]}^{*} \sigma_1^{\Lambda_{N+1}} \right]$. Self-adjointness of $K_{<u,v>}$ implies that
\[
\tilde{h}_N = \text{Tr}_x \left[\prod_{y \in S(x_{W_N}^{(1)})} K^{(x_{W_N}^{(1)},y)} \prod_{y \in S(x_{W_N}^{(1)})} h^{(y)} \prod_{y \in S(x_{W_N}^{(1)})} K^{(x_{W_N}^{(1)},y)} \sigma_1^{\Lambda_{N+1}} \right] \otimes \bigotimes_{x \in \bar{W}_N \setminus x_{W_N}^{(1)}} \text{Tr}_x \left[\prod_{y \in S(x)} K_{<x,y>} \prod_{y \in S(x)} h^{(y)} \prod_{y \in S(x)} K_{<x,y>} \right].
\]
It follows from (8.33) that
\[
\mathsf{Tr}_{\chi_{W_N}^{(1)}} \left[\prod_{y \in S(x_{W_N}^{(1)})} K_{\chi_{W_N}^{(1)},y} \prod_{y \in S(x_{W_N}^{(1)})} h(y) \prod_{y \in S(x_{W_N}^{(1)})} K_{\chi_{W_N}^{(1)},y} \sigma_1^{S(x_{W_N}^{(1)})} \right] = \tilde{h}(x_{W_N}^{(1)}),
\]
where
\[
\tilde{h}(x_{W_N}^{(1)}) = h_0 \sigma_0^{(x_{W_N}^{(1)})} + h_1 \sigma_1^{(x_{W_N}^{(1)})},
\]
\[
h_0 = \gamma_0^2 \gamma_1 (\sinh^2 \beta \cosh \beta (1 + \cosh \beta) + \cosh^5 \beta) + \gamma_1^3 \sinh^2 \beta \cosh^2 \beta,
\]
\[
h_1 = \gamma_0^2 \sinh \beta \cosh^5 \beta + \gamma_0 \gamma_1 (\sinh \beta \cosh^3 \beta (1 + \cosh \beta) + \sinh^3 \beta \cosh^2 \beta).
\]
Thus we obtain
\[
\tilde{h}_N = \tilde{h}(x_{W_N}^{(1)}) \bigotimes_{x \in \overline{W}_N \setminus x_{W_N}^{(1)}} h(x).
\]
Therefore, one gets
\[
\varphi_{w_0, h(\gamma)}^{(N+1,f)} (a_{\sigma_1}^{A_{N+1}}) = \frac{1}{\gamma_0} \mathsf{Tr} \left[K_{[0,1]} \cdots K_{[N-2,N-1]} \mathsf{Tr}_{N-1} \left[K_{[N-1,N]} h_N K_{[N-1,N]}^* K_{[N-2,N-1]}^* \cdots K_{[0,1]}^* \right] \right].
\]
Again applying N times Corollary (8.9), one finds
\[
\varphi_{w_0, h(\gamma)}^{(N+1,f)} (a_{\sigma_1}^{A_{N+1}}) = \frac{1}{\gamma_0} \mathsf{Tr} \left[\langle A^N h_{\gamma_0, \gamma_1}, \sigma^{(0)} \rangle \right] = \frac{1}{\gamma_0} \langle A^N h_{\gamma_0, \gamma_1}, e \rangle.
\]
here as before $e = (1,0)$, $h_{\gamma_0, \gamma_1} = (h_0, h_1)$ are vectors, and A is a matrix given by (8.1). This completes the proof.

To prove our main result we are going to use the following theorem (see [10], Corollary 2.6.11).

Theorem 8.9. Let φ_1, φ_2 be two states on a quasi-local algebra $\mathfrak{A} = \bigcup_\Lambda \mathfrak{A}_\Lambda$. The states φ_1, φ_2 are quasi-equivalent if and only if for any given $\varepsilon > 0$ there exists a finite volume $\Lambda \subset L$ such that $\|\varphi_1(a) - \varphi_2(a)\| < \varepsilon \|a\|$ for all $a \in B_\Lambda$ with $\Lambda \cap \Lambda = \emptyset$.

Now by means of the Theorem 8.9 we will show that the states $\varphi_{w_0, h(\alpha_0)}^{(f)}$ and $\varphi_{w_0, h(\gamma)}^{(f)}$ are not quasi-equivalent. Namely, we have the following

Theorem 8.10. Let $\beta \in (\beta_*, \beta^*)$ and $\varphi_{w_0(\alpha_0), h(\alpha_0)}^{(f)}, \varphi_{w_0(\gamma), h(\gamma)}^{(f)}$ be two forward quantum d–Markov chains corresponding to the model (8.14) with two boundary conditions $h(x) = \alpha_0 \sigma_0^{(x)}$, $\forall x \in L$ and $h(x) = \gamma_0 \sigma_0^{(x)} + \gamma_1 \sigma_1^{(x)}$, $\forall x \in L$, respectively, here as before $\alpha_0 = \frac{1}{\cosh \beta}$, $\gamma_0 = \sqrt{DE}$, and $\gamma_1 = \sqrt{E}$. Then $\varphi_{w_0, h(\alpha_0)}^{(f)}$ and $\varphi_{w_0, h(\gamma)}^{(f)}$ are not quasi-equivalent.
Proof. Let $a_{\sigma_1}^{N+1}$ be an element given by (8.31). It is clear that $\|a_{\sigma_1}^{N+1}\| = 1$, for all $N \in \mathbb{N}$.

If $\beta \in (\beta_*, \beta^*)$, then according to Propositions 8.7 and 8.8 we have

$$\varphi_{w_0}(\alpha_0, h_0)\left(a_{\sigma_1}^{N+1}\right) = 0, \quad \varphi_{w_0}(\gamma, h_\gamma)\left(a_{\sigma_1}^{N+1}\right) = \frac{1}{\gamma_0}\left(A^N h_{\gamma_0, \gamma_1}, \epsilon\right)$$

(8.39) (8.40)

for all $N \in \mathbb{N}$, here as before $e = (1, 0)$, $h_{\gamma_0, \gamma_1} = (h_0, h_1)$ (see (8.36), (8.37)) and Λ is given by (8.1). Then from (8.40) with Proposition 8.2 one finds

$$\varphi_{w_0}(\gamma, h_\gamma)\left(a_{\sigma_1}^{N+1}\right) = \frac{x_1^2 h_1 + x_1 y_1 \sinh \beta h_2}{\gamma_0(x_1^2 + y_1^2 \sinh \beta)} + \frac{y_1^2 \sinh \beta h_1 - x_1 y_1 \sinh \beta h_2}{\gamma_0(x_1^2 + y_1^2 \sinh \beta)} \lambda_1^N,$$

(8.41)

where λ_2 is an eigenvalue of Λ and (x_1, y_1) is an eigenvector of the matrix Λ corresponding to the eigenvalue $\lambda_1 = 1$ (see Proposition 8.2). Due to Propositions 8.1 iv) and 8.2 one has $0 < \lambda_2 < 1$, which implies the existence $N_0 \in \mathbb{N}$ such that

$$\left|\frac{x_1^2 h_1 + x_1 y_1 \sinh \beta h_2}{\gamma_0(x_1^2 + y_1^2 \sinh \beta)} + \frac{y_1^2 \sinh \beta h_1 - x_1 y_1 \sinh \beta h_2}{\gamma_0(x_1^2 + y_1^2 \sinh \beta)} \lambda_2^N\right| \geq \frac{x_1^2 h_1 + x_1 y_1 \sinh \beta h_2}{2\gamma_0(x_1^2 + y_1^2 \sinh \beta)}$$

(8.42)

for all $N > N_0$.

Now putting $\varepsilon_0 = \frac{x_1^2 h_1 + x_1 y_1 \sinh \beta h_2}{2\gamma_0(x_1^2 + y_1^2 \sinh \beta)}$ and using (8.39), (8.41), (8.42) we obtain

$$\left|\varphi_{w_0}(\alpha_0, h_0)\left(a_{\sigma_1}^{N+1}\right) - \varphi_{w_0}(\gamma, h_\gamma)\left(a_{\sigma_1}^{N+1}\right)\right| \geq \varepsilon_0 \left\|a_{\sigma_1}^{N+1}\right\|,$$

for all $N > N_0$, which means $\varphi_{w_0}(\alpha_0, h_0)$ and $\varphi_{w_0}(\gamma, h_\gamma)$ are not quasi-equivalent. This completes the proof.

From the proved theorem we immediately get the occurrence of the phase transition for the model (8.14) on the Cayley tree of order 3 in the regime $\beta \in (\beta_*, \beta^*)$. This completely proves our main Theorem 4.1.

9 Some observation

In this section we define a continuous function, depending on the model, such that its first order derivative has discontinuity at the critical values of the phase phase transition.

First denote

$$\tilde{K}_n(\beta) = K_{[0,1]} K_{[1,2]} \cdots K_{[n+1,n]} w_{[n+1]}^{1/2},$$

(9.1)

where

$$w_{[n+1]}^{1/2} := \bigotimes_{x \in \tilde{W}_{n+1}} w_{x}^{1/2}(\beta).$$

Define a function $F : \mathbb{R}_+ \to \mathbb{R}$ by the following formula

$$\beta F(\beta) = \lim_{n \to \infty} \frac{1}{|V_n|} \log \text{Tr} \left(\tilde{K}_n(\beta) \tilde{K}_n^*(\beta)\right).$$

(9.2)
In what follows, we will consider the function $F(\beta)$ given by (9.2) corresponding to the model (8.14) with mixed boundary conditions $\omega(0) = \frac{1}{\alpha_0} \sigma_0$, i.e. $h(x) = \alpha_0 \sigma_0(x)$, $\forall x \in L$ for $\beta \in (0, \beta_* \cup [\beta^*, \infty)$ and $\omega(\gamma_0) = \frac{1}{\gamma_0} \sigma_0$, $h(x) = \gamma_0 \sigma_0(x) + \gamma_1 \sigma_1(x)$, $\forall x \in L$ for $\beta \in (\beta_*, \beta^*)$, here as before $\alpha_0 = \frac{1}{\cosh^2 \beta}$, $\gamma_0 = \sqrt{DE}$, and $\gamma_1 = \sqrt{E}$.

We have the following result.

Theorem 9.1. Let $F : \mathbb{R}_+ \to \mathbb{R}$ be a function given by (9.2). Then the following assertion holds to be true:

(i) $F(\beta)$ is a continuous function on \mathbb{R}_+;

(ii) The derivative function $F'(\beta)$ has the first order discontinuity at the points β_* and β^*.

Proof. Let us evaluate the value of the function $F(\beta)$ on the ranges $\beta \in (0, \beta_* \cup [\beta^*, \infty)$ and $\beta \in (\beta_*, \beta^*)$, respectively.

Now assume that $\beta \in (0, \beta_* \cup [\beta^*, \infty)$, then using the same argument as in (7.3) one gets

$$\text{Tr} \left(\tilde{K}_n(\beta) \tilde{K}^*_n(\beta) \right) = \frac{1}{\alpha_0 \left| W_{n+1} \right|} \cdot \frac{\alpha_0}{\alpha_0 \left| W_{n+1} \right|} \varphi^{(n,f)}_{\omega(0), h(0)}(1) = \frac{\alpha_0}{\alpha_0 \left| W_{n+1} \right|}$$

(9.3)

Hence, taking into account $\lim_{n \to \infty} \frac{\left| W_{n+1} \right|}{W_n} = 2$ with (9.3), (9.2) we obtain

$$\beta F(\beta) = -4 \log \alpha_0(\beta),$$

for all $\beta \in (0, \beta_* \cup [\beta^*, \infty)$.

Let $\beta \in (\beta_*, \beta^*)$. Then in this setting, similarly as above, one derives

$$\text{Tr} \left(\tilde{K}_n(\beta) \tilde{K}^*_n(\beta) \right) = \frac{1}{\gamma_0 \left| W_{n+1} \right|} \cdot \frac{\alpha_0}{\alpha_0 \left| W_{n+1} \right|} \varphi^{(n,f)}_{\omega(0), h(0)}(1) = \frac{\alpha_0}{\alpha_0 \left| W_{n+1} \right| \gamma_0 \left| W_{n+1} \right|}$$

(9.4)

Therefore,

$$\beta F(\beta) = -2 \log (\alpha_0(\beta) \gamma_0(\beta)),$$

for all $\beta \in (\beta_*, \beta^*)$. Thus, we have

$$\beta F(\beta) = \begin{cases}
-4 \log (\alpha_0(\beta)), & \beta \in (0, \beta_* \cup [\beta^*, \infty) \\
-2 \log (\alpha_0(\beta) \gamma_0(\beta)), & \beta \in (\beta_*, \beta^*)
\end{cases}$$

(9.5)

Using (5.3)-(5.9) one can calculate that

$$\gamma_0(\beta) = \sqrt{D(\beta)E(\beta)} = \sqrt{\frac{1}{B_2(\beta)} + \frac{A_2(\beta)(B_2(\beta) - B_1(\beta))}{B_2(\beta)(A_2(\beta)B_1(\beta) - B_2(\beta)A_1(\beta))}}.$$

Due to $B_2(\beta_*) = B_1(\beta_*)$, $B_2(\beta^*) = B_1(\beta^*)$ we have

$$\lim_{\beta \to \beta_*^+} \gamma_0(\beta) = \alpha_0(\beta_*), \quad \lim_{\beta \to \beta^*-} \gamma_0(\beta) = \alpha_0(\beta^*).$$

This means that $F(\beta)$ is a continuous function on $(0, \infty)$.

28
It is clear that $\alpha_0(\beta)$ and $\gamma_0(\beta)$ are differentiable functions on $(0, \beta_*) \cup [\beta^*, \infty)$ and (β_*, β^*) respectively.

One can easily check that

$$F'(\beta) \big|_{\beta = \beta_* + 0} - F'(\beta) \big|_{\beta = \beta_* - 0} = \frac{A_2(\beta_*)(B_1'(\beta_*) - B_2'(\beta_*))}{(A_2(\beta_*) - A_1(\beta_*))B_2(\beta_*)\beta_*} \neq 0,$$

$$F'(\beta) \big|_{\beta = \beta^* - 0} - F'(\beta) \big|_{\beta = \beta^* + 0} = \frac{A_2(\beta^*)(B_1'(\beta^*) - B_2'(\beta^*))}{(A_2(\beta^*) - A_1(\beta^*))B_2(\beta^*)\beta^*} \neq 0,$$

which shows that the derivative function $F'(\beta)$ has the first order discontinuity at the points β_* and β^*.

\section{Conclusions}

It is known (see \cite{16}) if a tree is not one-dimensional lattice, then it is expected (from a physical point of view) the existence of a phase transition for quantum Markov chains constructed over such a tree. In this paper, using a tree structure of graphs, we gave a construction of quantum Markov chains on a Cayley tree, which generalizes the construction of \cite{2} to trees. By means of such constructions, we have established the existence of a phase transition for quantum Markov chains associated with XY-model on a Cayley tree of order three. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators \{\(K_{x,y}\)}\}. Note that in \cite{10} we established the uniqueness of for the same model on the Cayley tree of order two. Hence, results of the present paper totally differ from \cite{10}, and show by increasing the dimension of the tree we are getting the phase transition. In the last section we defined a thermodynamic function, and proved that such a function is continuous and has discontinuity at the critical values of β.

\section{Acknowledgement}

The present study have been done within the grant FRGS0308-91 of Malaysian Ministry of Higher Education. The authors also acknowledge the MOSTI grant 01-01-08-SF0079. This work was done while the first named author (F.M.) was visiting the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy as a Junior Associate. He would like to thank the Centre for hospitality and financial support.

\section{Appendix. Proof of Lemma 5.2}

(i) Let $P_3(t) = t^9 - t^8 - t^7 - t^6 + 2t^4 + 2t^3 - t - 1$. One can check that

$$P_3(t) = (t - 1)(t^8 - t^6 - t^5 - 2t^4 - 2t^2 + 2t + 1)$$

and $t = 1$ is a root of the polynomial $P_3(t)$. It is easy to see that $P_3(1.05) > 0$, $P_3(1.1) < 0$, $P_3(1.5) < 0$, $P_3(1.6) > 0$. This means $P_3(t)$ has two roots t_* and t^* such that $1.05 < t_* < 1.1$ and $1.5 < t_* < 1.6$. On the other hand, due to Descartes theorem, the number of positive roots of $P_3(t)$ is at most the number of exchanging signs of its coefficients (i.e. 1, $-1,-1,1,2,2,-1,-1$). So, $P_3(t)$ has exactly three roots $1, t_*, t^*$. It is evident that if $t \in (1, t_*) \cup (t^*, \infty)$ then $P_3(t) > 0$ and $t \in (t_*, t^*)$ then $P_3(t) < 0$.
(ii) Since $\beta > 0$ and $\cosh \beta > \sinh \beta > 0$, we get

$$A_2 - A_1 = \sinh^2 \beta \cosh^2 \beta (2 \cosh^2 \beta + \cosh \beta - \sinh \beta) > 0.$$

(iii) Let us denote by $t = \cosh \beta$ and $\beta_* = \cosh^{-1} t_*$, $\beta^* = \cosh^{-1} t^*$. One can check that

$$B_2 - B_1 \geq 0 \quad \iff \quad P_9(t) \geq 0,$$

and

$$B_2 - B_1 < 0 \quad \iff \quad P_9(t) < 0.$$

So, from (i) it follows that if $\beta \in (0, \beta_*] \cup [\beta^*, \infty)$ then $B_1 \leq B_2$ and if $\beta \in (\beta_*, \beta^*)$ then $B_1 > B_2$.

(iv) Let us denote by $t = \cosh \beta$, and

$$Q_{10}(t) = t^{10} + 4t^9 + 5t^8 - 4t^7 - 14t^6 - 6t^5 + 11t^4 + 8t^3 - 3t^2 - 2t + 1.$$

One can see that

$$A_2 + B_2 > A_1 + B_1 \quad \iff \quad Q_{10}(t) > 0.$$

It is clear that if $\beta > 0$ then $t > 1$. One can easily get that if $t > 1$ then

$$Q_{10}(t) = t(t-1)(t^9 + 6t^8 + 16t^7 + 22t^6 + 11t^5 + 3t(t^2 - 1) + 2(t+1)) + 1 > 0.$$

(v) If $\beta \in (\beta_*, \beta^*)$ then $B_1 - B_2 > 0$. From (iv) it follows that $A_2 - A_1 > B_1 - B_2$. This means that $D > 1$.

(vi) Since $1 + \cosh \beta + \cosh^2 \beta > 1 + 2 \cosh \beta$ and $\cosh \beta > \sinh \beta > 0$ we get

$$B_1 B_2 - A_1 A_2 = \sinh \beta \cosh^3 \beta (\cosh^5 \beta (1 + \cosh \beta + \cosh^2 \beta) - \sinh^4 \beta (1 + 2 \cosh \beta)) > 0.$$

It is easy to see that

$$A_2 B_1 - A_1 B_2 = \sinh^3 \beta \cosh^4 \beta (1 + 3 \cosh \beta + 3 \cosh^2 \beta + \cosh^3 \beta) > 0.$$

(vii) Let

$$Q_7(t) = t^7 + 2t^6 - 3t^4 - 2t^3 + t^2 + 3t + 1.$$

Then, one can easily check that

$$A_1 A_2 + 3A_1 B_2 - A_2 B_1 + B_1 B_2 = \sinh \beta \cosh^3 \beta Q_7(\cosh \beta).$$

If $\beta \in (\beta_*, \beta^*)$ then $t \in (t_*, t^*)$ and

$$Q_7(t) = t(t-1)(t^5 + 3t^4 + 2t(t^2 - 1) + t^3 - 1) + 2t + 1 > 0.$$

here $t_* > 1$.

Let

$$Q_4(t) = -t^4 - t^3 + t^2 + 5t + 2.$$

Then, we get

$$A_2 B_1 - 3A_1 B_2 - 2A_1 A_2 = \sinh^3 \beta \cosh^3 \beta Q_4(\cosh \beta).$$

One can check that $Q_4(1.7) > 0$ and $Q_4(1.8) < 0$. Due to Descartes Theorem we conclude that $Q_4(t)$ has a unique positive root \hat{t} such that $1.7 < \hat{t} < 1.8$.

30
If $\beta \in (\beta_*, \beta^*)$ then $t \in (t_*, t^*)$ and $t^* < 1.7 < t$. Then, for any $t \in (t_*, t^*)$ we have $Q_4(t) > 0$.

(viii) It is clear that, if $\beta > 0$, then
\[\sinh \beta \cosh \beta (1 + \cosh \beta) > 0. \]

Now we are going to show that
\[\sinh \beta (1 + \cosh \beta) < \cosh^3 \beta. \tag{11.1} \]

Noting
\[\sinh \beta = \frac{e^\beta - e^{-\beta}}{2}, \quad \cosh \beta = \frac{e^\beta + e^{-\beta}}{2}. \]

and letting $t = e^\beta$, we reduce inequality (11.1) to
\[t^6 - 2t^5 - t^4 + 7t^2 + 2t + 1 > 0 \tag{11.2} \]

Since $\beta > 0$, then $t > 1$. Therefore, we shall show that (11.2) is satisfied whenever $t > 1$.

Now consider several cases with respect to t.

CASE I. Let $t \geq 1 + \sqrt{2}$. Then we have
\[t^6 - 2t^5 - t^4 + 7t^2 + 2t + 1 = t^4(t - (1 + \sqrt{2}))(t - (1 - \sqrt{2})) + 7t^2 + 2t + 1 > 0 \]

CASE II. Let $2 \leq t \leq 1 + \sqrt{2}$. Then it is clear that $t < \sqrt{7}$. Therefore,
\[t^6 - 2t^5 - t^4 + 7t^2 + 2t + 1 = t^4(t - 2) + t^2(7 - t^2) + 2t + 1 > 0 \]

CASE III. Let $\sqrt{\frac{7}{2}} \leq t \leq 2$. Then one gets
\[2(t^6 - 2t^5 - t^4 + 7t^2 + 2t + 1) = 2t^4 \left(t^2 - \frac{7}{2}\right) + \frac{5}{2}t^4(2 - t) + \frac{3}{2}t^2(8 - t^3) + 2t^2 + 4t + 2 > 0 \]

CASE IV. Let $1 < t \leq \sqrt{\frac{7}{2}}$. Then we have
\[t^6 - 2t^5 - t^4 + 7t^2 + 2t + 1 = t^4(t - 1)^2 + t^2(7 - 2t^2) + 2t + 1 > 0 \]

Hence, the inequality (11.1) is satisfied for all $\beta > 0$.

References

[1] Accardi L., On the noncommutative Markov property, *Func. Anal. Appl.*, 9 (1975) 1–8.

[2] Accardi L., Cecchini’s transition expectations and Markov chains in: Quantum Probability and Applications IV Springer LNM N. 1396 (1987) 1-6

[3] Accardi L., Fidaleo F., Entangled Markov chains. *Annali di Matematica Pura e Applicata*, 184(2005), 327–346.
[4] Accardi L., Fidaleo F., Quantum Markov fields, *Inf. Dim. Analysis, Quantum Probab. Related Topics* **6** (2003) 123–138.

[5] Accardi L., Fidaleo F., Non homogeneous quantum Markov states and quantum Markov fields, *J. Funct. Anal.* **200** (2003), 324-347.

[6] Accardi L., Fidaleo F., On the structure of quantum Markov fields, Proceedings Burg Conference 15–20 March 2001, W. Freudenberg (ed.), World Scientific, QP–PQ Series 15 (2003) 1–20

[7] Accardi L., Fidaleo F. Mukhamedov, F., Markov states and chains on the CAR algebra, *Inf. Dim. Analysis, Quantum Probab. Related Topics* **10** (2007), 165–183.

[8] Accardi L., Frigerio A., Markovian cocycles, *Proc. Royal Irish Acad.* **83A** (1983) 251-263.

[9] Accardi L., Liebscher V., Markovian KMS-states for one-dimensional spin chains, *Infin. Dimens. Anal. Quantum Probab. Relat. Top.,* **2**(1999) 645-661.

[10] Accardi L., Mukhamedov, F. Saburov M. On Quantum Markov Chains on Cayley tree I: uniqueness of the associated chain with XY-model on the Cayley tree of order two. arXiv:1004.3623.

[11] Accardi L., Ohno, H., Mukhamedov, F., Quantum Markov fields on graphs, *Inf. Dim. Analysis, Quantum Probab. Related Topics* **13**(2010), 165–189.

[12] Affleck L, Kennedy E., Lieb E.H., Tasaki H., Valence bond ground states in isotropic quantum antiferromagnets, *Commun. Math. Phys.* **115** (1988), 477–528.

[13] Baxter R. J. *Exactly Solved Models in Statistical Mechanics*, London/New York: Academic, 1982.

[14] Biskup M., Chayes L., Starr Sh. Quantum spin systems at positive temperature, *Commun. Math. Phys.*, **269**(2007) 611–657.

[15] Bernardes A.T., de Oliveira M.J., Field behaviour of the XY chiral model on a Cayley tree, *J. Phys. A,*** **25**(1992) 1405–1415.

[16] Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics. 1. Texts and Monographs in Physics. Springer-Verlag, New York, 1987.

[17] Cecchini C., Stochastic couplings for von Neumann algebras, Quantum Probability and applications IV. Springer, LNM **1396** (1989) 128-142

[18] Cecchini C., Petz D., A stochastic transition for von Neumann Algebras, *Bollettino U.M.I.,* (7)-**A** (1991) 181–186.

[19] Dobrushin R.L., Description of Gibbsian Random Fields by means of conditional probabilities, *Probability Theory and Applications* **13**(1968) 201–229

[20] Fannes M., Nachtergaele B. Werner R. F., Ground states of VBS models on Cayley trees, *J. Stat. Phys.* **66** (1992) 939–973.
[21] Fannes M., Nachtergaele B. Werner R. F., Finitely correlated states on quantum spin chains, *Commun. Math. Phys.* **144** (1992) 443–490.

[22] Fidaleo F., Mukhamedov F., Diagonalizability of non homogeneous quantum Markov states and associated von Neumann algebras, *Probab. Math. Stat.* **24** (2004), 401–418.

[23] Fröhlich J., Israel R., Lieb, E., Simon B. Phase Transitions and Reflection Positivity. I. General Theory and Long Range Lattice Models, *Commun. Math. Phys.* , **62**(1978) 1–34.

[24] Fukui Y., Horiguchi T., Ground state properties of one-dimensional quantum chiral XY-model, *Interdisciplinary Inform. Sci.*, **6**(2000) 57–66.

[25] Georgi H.-O. *Gibbs measures and phase transitions*, de Gruyter Studies in Mathematics vol. 9, Walter de Gruyter, Berlin, 1988.

[26] Gudder S. Quantum Markov chains. *J. Math. Phys.* **49** (2008), 072105, 14 pp.

[27] Ibinson B., Linden N., Winter A. Robustness of quantum Markov chains. *Comm. Math. Phys.* **277** (2008) 289–304.

[28] Kümmerer B. Quantum Markov processes and applications in physics. In book: Quantum independent increment processes. II, 259–330, *Lecture Notes in Math.*, 1866, Springer, Berlin, 2006.

[29] Katsura S., Statistical mechanics of the anisotropic linear Heisenberg model, *Phys. Rev.*, **127**(1962) 1508–1518.

[30] Lieb E., Schultz T., Mattis D., Two soluble models of an antiferromagnetic chain, *Ann. Phys.*, **16**(1961) 407–466.

[31] Liebscher V., Markovianity of quantum random fields, Proceedings Burg Conference 15–20 March 2001, W. Freudenberg (ed.), World Scientific, QP–PQ Series 15 (2003) 151–159.

[32] Matsui, T., A characterization of pure finitely correlated states, *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **1** (1998) 647-661.

[33] Momma M., Horiguchi T., Finite-temperature properties of one-dimensional chiral XY-model under an external filed and uniaxial potential, *Physica A*, **251**(1998) 485–506.

[34] Mukhamedov F.M. On factor associated with the unordered phase of λ-model on a Cayley tree. *Rep. Math. Phys.* **53**(2004) 1–18.

[35] Mukhamedov F.M., Rozikov U.A. On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras I, II. *J. Stat. Phys.* **114**(2004), 825–848; **119**(2005), 427–446

[36] Ohno H., Extendability of generalized quantum Markov chains on gauge invariant C^*–algebras, *Inf. Dim. Analysis, Quantum Probab. Related Topics*, **8**(2005) 141–152.

[37] Ohya M., Petz D., Quantum entropy and its use, Springer, BerlinHeidelbergNew York, 1993.
[38] Peruggi F, Probability measures and Hamiltonian models on Bethe lattices. I, II. *J. Math. Phys* 3303; 25 (1984) *J. Math. Phys* 3316

[39] Preston C., Gibbs States on Countable Sets, Cambridge University Press, London, 1974.

[40] Spataru A., Construction of a Markov Field on an infinite Tree, *Advances in Math* 81 (1990), 105–116.

[41] Spitzer F., Markov random Fields on an infinite tree, *Ann. Prob. 3* (1975) 387-398.

[42] Yokoi C.S.O., Tang L.-H., Chou W., Ground state of the one-dimensional XY model in a field, *Phys. Rev. B*, 37 (1988) 2173–2198.

[43] Zachary S., Countable state space Markov random fields and Markov chains on trees, *Ann. Prob. 11* (1983) 894–903.

[44] Zachary S., Bounded attractive and repulsive Markov specifications on trees and on the one-dimensional lattice, *Stochastic Process. Appl. 20* (1985) 247–256.