On the equation $\nabla \phi + \phi X = 0$ and its relation to Schrödinger ground states

Kurt Pagani
pagani@scios.ch

To the memory of Joseph Hersch 1925-2012

May 14, 2013

Abstract

We present some simple relations between the absolute minimizers of the functional $||\nabla \phi + \phi X||$, where X is a vector field on \mathbb{R}^n, and ground state solutions to the (non-relativistic) Schrödinger equation. This article is a byproduct of the study of the more general functional $||A Du + F'(u)X||$.

1 Ground states

In the following let X, Y, \ldots denote vector fields on \mathbb{R}^n, and $\langle f, g \rangle$ and $||f||$ the $L^2(\mathbb{R}^n)$ scalar product and norm respectively. We will use the same notation for vector fields as well, that is $\langle X, Y \rangle = \sum \langle X_i, Y_i \rangle$ and $||X|| = \sqrt{\langle X, X \rangle}$. All vector fields and functions shall be real valued. For any $V \in L^1_{\text{loc}}(\mathbb{R}^n)$ we define the Schrödinger ground state energy as

$$E_0(V) = \inf \left\{ ||\nabla \phi||^2 + \int_{\mathbb{R}^n} V(x) |\phi(x)|^2 dx : \phi \in C^\infty_0(\mathbb{R}^n), ||\phi|| = 1 \right\}, \quad (1)$$

where $C^\infty_0(\mathbb{R}^n)$ means, as usual, the space of smooth functions having compact support. Note that we use units such that the (non-relativistic, time independent) Schrödinger equation has the form

$$-\Delta \psi + V \psi = E \psi \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^n). \quad (2)$$

The leading actor in this article is the non-coercive functional

$$\mathcal{J}_X(\phi) = \int_{\mathbb{R}^n} |\nabla \phi + \phi X|^2 dx = ||\nabla \phi + \phi X||^2, \quad (3)$$

which is well defined on $C^\infty_0(\mathbb{R}^n)$ for any locally square integrable vector field X.
Definition 1 A function ϕ_0 is called a ground state to $\mathcal{J}_X(\phi)$, if the following conditions are satisfied:

i. $\phi_0 \not\equiv 0$,

ii. $\mathcal{J}_X(\phi_0) = 0$.

iii. $\|\nabla \phi_0\| < \infty$.

Thus, when we set
\[
\Lambda(X) = \inf \left\{ \mathcal{J}_X(\phi) : \phi \in C_0^\infty(\mathbb{R}^n), \|\phi\| = 1 \right\},
\]
a necessary condition for a ground state to exist is $\Lambda(X) = 0$. Formally, the Euler equation to the minimum problem above is easily calculated to be
\[
- \Delta u + (|X|^2 - \text{div } X)u = \Lambda(X)u,
\]
revealing the connection with the Schrödinger equation (2). On the other hand, if there is a ground state to \mathcal{J}_X, say ϕ_0, it has to satisfy the first order equation (a.e.)
\[
\nabla \phi_0(x) + \phi_0(x)X(x) = 0
\]
since $\mathcal{J}_X(\phi_0) = \|\nabla \phi_0 + \phi_0 X\| = 0$. Indeed, applying the divergence operator to (6) and using the latter again in the resulting expression, gives (5) with $\Lambda(X) = 0$, as expected. It is clear that the equation (6) is generally easier to solve than (5).

Now let us state a simple proposition:

Proposition 1 Let $X \in L^2_{\text{loc}}$ such that $\text{div}(X) \in L^1_{\text{loc}}(\mathbb{R}^n)$, then for all $\phi \in C_0^\infty(\mathbb{R}^n)$ the following assertions are true:

\[
\|\nabla \phi + X\phi\|^2 = \|\nabla \phi\|^2 + \|X\phi\|^2 - \int_{\mathbb{R}^n} \text{div}(X)|\phi(x)|^2dx
\]
and
\[
\|\nabla \phi\|^2\|X\phi\|^2 \geq \frac{1}{4} \left(\int_{\mathbb{R}^n} \text{div}(X)|\phi(x)|^2dx \right)^2
\]
with equality if and only if
\[
\|\nabla \phi_0 + X\phi_0\| = 0
\]
for some functions ϕ_0 such that $\|\nabla \phi_0\| < \infty$. For any such function ϕ_0 then
\[
\|\nabla \phi_0\|^2 = \|X\phi_0\|^2 = \frac{1}{2} \int_{\mathbb{R}^n} \text{div}(X)|\phi_0(x)|^2dx
\]
holds.

Proof When expanding $\|\nabla \phi + X\phi\|^2$ one gets $\|\nabla \phi\|^2 + \|X\phi\|^2 + 2\langle \nabla \phi, X\phi \rangle$, where the scalar product $2\langle \nabla \phi, X\phi \rangle$ may be rewritten to $\langle \nabla |\phi|^2, X \rangle$. Since $\text{div}(X) \in L^1_{\text{loc}}(\mathbb{R}^n)$ by definition, the identity (7) follows by application of the divergence theorem. Inequality (8) and (9) are immediate consequences of the discriminant condition applied to $\|\nabla \phi + \lambda X\phi\|^2 = \|\nabla \phi\|^2 + \lambda^2\|X\phi\|^2 - 2\lambda\langle \phi, \phi \text{div}(X) \rangle \geq 0$ for all $\lambda \in \mathbb{R}$. Finally, (10) follows from (9) and (7). □
When we define
\[V_{X,\lambda} = |X|^2 - \text{div}(X) + \lambda, \]
for \(X \in L^2_{\text{loc}}, \text{div}(X) \in L^1_{\text{loc}}, \lambda \in \mathbb{R}, \) then (7) reads
\[
\|\nabla \phi + X\phi\|^2 = \int_{\mathbb{R}^n} |\nabla \phi|^2 dx + \int_{\mathbb{R}^n} (V_{X,\lambda}(x) - \lambda)|\phi(x)|^2 dx,
\]
and recalling (1), we get
\[
\inf_{\|\phi\|=1} \|\nabla \phi + X\phi\|^2 = E_0(V_{X,\lambda}) - \lambda \geq 0,
\]
which motivates the next proposition:

Proposition 2 For \(V \in L^1_{\text{loc}}(\mathbb{R}^n) \) and \(E_0(V) \) as defined in (1) it holds
\[
E_0(V) \geq \sup_X \left\{ \Lambda(X) + \inf_{\|\phi\|=1} \int_{\mathbb{R}^n} (V(x) - |X|^2 + \text{div} X)|\phi(x)|^2 dx \right\}. \tag{11}
\]
and
\[
E_0(V) \leq \inf_X \left\{ \Lambda(X) + \sup_{\|\phi\|=1} \int_{\mathbb{R}^n} (V(x) - |X|^2 + \text{div} X)|\phi(x)|^2 dx \right\}. \tag{12}
\]

If \(X \) and \(V \) are pointwise defined (e.g. continuous) then there is a simple lower bound to the Schrödinger ground state energy:
\[
E_0(V) \geq \inf_{\mathbb{R}^n} \{V(x) - |X|^2 + \text{div} X\},
\]
valid for any reasonable vector field. The lower bound above was was orally communicated to us by the late Joseph Hersch many years ago and, actually, we found a reference to it in one of his numerous papers [1]. Note that (11) may be simplified by taking the supremum over ground states only, because then \(\Lambda(X) = 0 \).

Proof Setting \(B_{V,X}(\phi) = \int_{\mathbb{R}^n} (V(x) - |X|^2 + \text{div} X)|\phi(x)|^2 dx \), the upper bound
\[
E_0(V) \leq \|\nabla \phi + X\phi\|^2 + B_{V,X}(\phi)
\]
follows easily from (11) and (7). Adding \(\int V|\phi|^2 dx \) to (7) and rearranging, yields
\[
\|\nabla \phi + X\phi\|^2 + B_{V,X}(\phi) = \|\nabla \phi\|^2 + \int_{\mathbb{R}^n} V(x)|\phi(x)|^2 dx.
\]
Taking the infimum over \(\{\|\phi\| = 1\} \) on both sides gives
\[
\Lambda(X) + \inf_{\|\phi\|=1} B_{V,X}(\phi) \leq E_0(V).
\]
Since the right hand side is independent of \(X \), taking the supremum over \(X \) proves (11). Now (12) follows from the upper bound: \(\inf_{\|\phi\|=1} \{E_0(V) - B_{V,X}(\phi)\} \leq \Lambda(X) \).
Indeed, \(E_0(V) + \inf_{\|\phi\|=1} (-B_{V,X}(\phi)) = E_0(V) - \sup_{\|\phi\|=1} B_{V,X}(\phi) \leq \Lambda(X). \)
Remark 1 It is intuitively obvious that not every X gives rise to a ground state, or in other terms, the equation (6) may have no (nontrivial) solutions at all. Indeed, as will be seen shortly, X must be a gradient (one would say exact in terms of differential forms). It is well known that Schrödinger ground states may be chosen positive, so that $X = -\nabla \log \psi_0$ is an admissible vector field satisfying $J_X(\psi_0) = 0$.

Noting that the linear functional

$$T_X(\phi) = \int_{\mathbb{R}^n} (\nabla \phi + \phi X, X) dx$$

satisfies

$$|T_X(\phi)| \leq \|X\|_{2,K} \|\nabla \phi\|_{2,K} + \|X\|_{2,K}^2 \|\phi\|_{\infty} \leq C_K \sup_{|\alpha| \leq 1} \|\partial^\alpha \phi\|_{\infty},$$

for any $X \in L^2_{\text{loc}}$, thus $T \in \mathcal{D}'(\mathbb{R}^n)$, so that Propostion 4 may be extended to more general potentials (e.g. measures) along the same lines.

The ground states to J_X have some nice properties.

Proposition 3 Let ϕ_0, ϕ_1 ground states to J_X, J_Y respectively, then $\phi_0 \cdot \phi_1$ is a ground state to J_{X+Y}.

Proof $\|\nabla(\phi_0 \phi_1) + (X + Y)(\phi_0 \phi_1)\| = \|\phi_0(\nabla \phi_1 + Y \phi_1) + \phi_1((\nabla \phi_0 + X \phi_0))\| = 0$ because both terms $\nabla \phi_1 + Y \phi_1 = \nabla \phi_0 + X \phi_0 = 0$ in $L^2(\mathbb{R}^n)$ by supposition. □

Proposition 4 Suppose ϕ_0 is a ground state to J_X, and let P be a harmonic, homogeneous polynomial, satisfying $2 \nabla P(x) \cdot X(x) + W(x)P(x) = 0$, then

$$\phi_P(x) = P(x)\phi_0(x)$$

is a solution of $-\Delta \phi_P + (W + |X|^2 - \text{div} X)\phi_P = 0$, in $\mathcal{D}'(\mathbb{R}^n)$.

Proof Let $\varphi \in C_0^\infty(\mathbb{R}^n)$, then

$$\langle \Delta \varphi, P\phi_0 \rangle = -\langle \nabla \varphi, \phi_0 \nabla P + P \nabla \phi_0 \rangle$$

Now, since

$$\nabla \phi_0 + \phi_0 X = 0$$

by supposition, it follows $\langle \Delta \varphi, P\phi_0 \rangle = -\langle \nabla \varphi, \phi_0 \nabla P - P \phi_0 X \rangle$, furthermore (using $\Delta P = 0$), $\langle \Delta \varphi, P\phi_0 \rangle = -\langle \varphi, \nabla \phi_0 \nabla P - \phi_0 \nabla P X - P \nabla \phi_0 X - \phi_0 P \text{div} X \rangle$, using $\nabla \phi_0 + \phi_0 X = 0$ again (two times)

$$\langle \Delta \varphi, P\phi_0 \rangle = \langle \varphi, -\phi_0 X \nabla P - \phi_0 P X - \phi_0 |X|^2 - \phi_0 P \text{div} X \rangle.$$ Then, writing $\phi_P = P\phi_0$ and using the supposition $2 \nabla P X = WP$

$$\int_{\mathbb{R}^n} \Delta \varphi \phi_P dx = \int_{\mathbb{R}^n} \varphi(W \phi_P + \phi_P |X|^2 - \phi_P \text{div} X) dx.$$ □

Now, let us look at some examples.
Example 1 Let $X(x) = \alpha \frac{x}{|x|^p}$, $\alpha, p \in \mathbb{R}$. Noticing that X is a gradient,

$$X = \nabla u = \frac{\alpha}{2-p} \nabla |x|^{2-p}$$

the equation

$$\nabla \phi(x) + \phi(x) \nabla u(x) = 0$$

is easily solved:

$$\nabla (\log \phi + u) = 0 \Rightarrow \phi(x) = Ce^{-u(x)},$$

thus we get

$$\phi_p(x) = C \exp \left[\frac{\alpha}{p-2} |x|^{2-p} \right]$$

where $C = C(n, p, \alpha)$ is a normalization constant. A straightforward computation gives

$$|X|^2 = \alpha^2 |x|^{2-2p} \in L^1_{\text{loc}}(\mathbb{R}^n) \ldots \text{if } p < 1 + \frac{n}{2},$$

$$\text{div } X = \alpha \frac{n}{|x|^p} - \alpha p \frac{1}{|x|^p} = \alpha \frac{n-p}{|x|^p} \in L^1_{\text{loc}}(\mathbb{R}^n) \ldots \text{if } p < 1 + n,$$

hence

$$V_{X, \lambda}(x) - \lambda = \frac{\alpha^2}{|x|^{2(p-1)}} - \frac{\alpha}{|x|^p} \in L^1_{\text{loc}}(\mathbb{R}^n) \ldots \text{if } p < 1 + \frac{n}{2}.$$

Inserting into equations (7), (8) gives

$$\|\nabla \phi + X \phi\|^2 = \int_{\mathbb{R}^n} |\nabla \phi|^2 dx + \int_{\mathbb{R}^n} \left(\frac{\alpha^2}{|x|^{2(p-1)}} - \frac{n-p}{|x|^p} \right) |\phi(x)|^2 dx \geq 0$$

and

$$\int_{\mathbb{R}^n} |\nabla \phi|^2 dx \int_{\mathbb{R}^n} |x|^{2-2p} |\phi(x)|^2 dx \geq \frac{(n-p)^2}{4} \left(\int_{\mathbb{R}^n} \frac{|\phi(x)|^2}{|x|^p} dx \right)^2,$$

where the equality sign holds if $\phi = \phi_p$ (provided that, of course, ϕ_p satisfies the conditions of a ground state. For instance $n \geq 2$, $\alpha > 0$, $p < 1 + n/2$.

Let us have a closer look to the cases $p = 0, 1, 2, \ldots$, revealing some old friends:

Example 2 Uncertainty, harmonic oscillator $X = \alpha x$. Setting $p = 0$ in (13) and (15) yields

$$\|\nabla \phi + X \phi\|^2 = \int_{\mathbb{R}^n} |\nabla \phi|^2 dx + \alpha^2 \int_{\mathbb{R}^n} |x|^2 |\phi(x)|^2 dx - \alpha n \int |\phi(x)|^2 dx,$$

which gives the Schrödinger ground state eigenvalue $E_0 = \alpha n$ with eigenfunction (13)

$$\phi_0(x) = C e^{-\frac{\alpha}{n} |x|^2},$$

and the well known Heisenberg uncertainty relation:

$$\int_{\mathbb{R}^n} |\nabla \phi(x)|^2 dx \int_{\mathbb{R}^n} |x|^2 |\phi(x)|^2 dx \geq \frac{n^2}{4} \left(\int_{\mathbb{R}^n} |\phi(x)|^2 dx \right)^2$$
Therefore, \(\phi_0 \) is a nice function, it is in \(S(\mathbb{R}^n) \) and real analytic (like \(X \)). Equation (5) goes to
\[
- \Delta \phi_0(x) + \alpha^2 |x|^2 \phi_0(x) = n \alpha \phi_0(x)
\]
which is Schrödinger’s equation for the harmonic oscillator.

Proposition 6 shows moreover that \(E_k = \alpha(n + 2k) \), \(k = 0, 1, 2, \ldots \) are the higher eigenvalues with eigenfunctions
\[
P_k(x) \exp \left(-\frac{\alpha}{2} |x|^2 \right),
\]
where \(P_k \) is a harmonic, homogeneous polynomial of degree \(k \).

Example 3 The one electron atom: \(X = \alpha \frac{x}{|x|} \). Setting \(p = 1 \), we get analogously
\[
\| \nabla \phi + X \phi \|^2 = \| \nabla \phi \|^2 + \int_{\mathbb{R}^n} \left(\alpha^2 - \frac{\alpha(n-1)}{|x|} \right) |\phi(x)|^2 dx,
\]
and
\[
\int_{\mathbb{R}^n} |\nabla \phi(x)|^2 dx \int_{\mathbb{R}^n} |\phi(x)|^2 dx \geq \frac{(n-1)^2}{4} \left(\int_{\mathbb{R}^n} \frac{|\phi(x)|^2}{|x|} dx \right)^2.
\]
Now, (5) goes to
\[
-\Delta \phi_0 - \frac{\alpha(n-1)}{|x|} \phi_0 = -\alpha^2 \phi_0
\]
which is, when setting \(n = 3 \), \(2\alpha = Z \), the Schrödinger equation of an electron in the field of a nucleus of charge \(Z \). The eigenfunction (13) is
\[
\phi_0 = C \exp \left(-\frac{Z}{2} |x| \right)
\]
and the corresponding eigenvalue
\[
E_0 = -\frac{Z^2}{4}
\]
so that
\[
\int_{\mathbb{R}^1} |\nabla \phi(x)|^2 dx - Z \int_{\mathbb{R}^1} \frac{|\phi(x)|^2}{|x|} \geq -\frac{Z^2}{4} \int \frac{|\phi(x)|^2}{|x|} dx
\]
with equality for the \(\phi_0 \) above.

This \(\phi_0 \) is still a nice function, but it is not in \(S(\mathbb{R}^n) \) and fails to be continuously differentiable at the origin, i.e. \(\phi_0 \in C^\omega(\mathbb{R}^n \setminus \{0\}) \) only. Again, Proposition 6 provides higher eigenvalues and eigenfunctions:
\[
E_k = - \left(\frac{2}{n-1+2k} \right)^2 \alpha^2, \ k = 0, 1, 2, \ldots
\]
\[
\phi_k(x) = P_k(x) \exp \left(-\frac{\alpha |x|}{(n-1+2k)} \right)
\]
for any harmonic, homogeneous polynomial \(P_k \) of degree \(k \).
Example 4 Hardy’s inequality: \(X = \alpha \frac{x}{|x|^p} \): this is the case \(p = 2 \), so that \(|X|^2\) and \(\text{div} \, X \) have the same exponent. The singularity at 0 causes again no problems (assuming \(n \geq 3 \)) and we get

\[
\|\nabla \phi + X \phi\|^2 = \|\nabla \phi\|^2 + \alpha (\alpha - n + 2) \int_\mathbb{R}^n \frac{|\phi(x)|^2}{|x|^2} \, dx
\]

and

\[
\int_\mathbb{R}^n |\nabla \phi(x)|^2 \, dx \geq \frac{(n - 2)^2}{4} \int_\mathbb{R}^n \frac{|\phi(x)|^2}{|x|^2} \, dx.
\]

But this time we cannot use (13). Instead, one has to solve

\[
\nabla \phi + \alpha \frac{x}{|x|^2} \phi = 0 \Rightarrow \nabla (\log \phi + \alpha \log |x|) = 0,
\]

yielding

\[
\log(\phi|x|^{\alpha}) = C \Rightarrow \phi_0(x) \sim |x|^{-\alpha}.
\]

Indeed, there is no reasonable minimizer, though formally \(J_X(\phi_0) = 0 \). Clearly, neither \(\|\nabla \phi_0\| \) nor \(\|\phi_0 \cdot X\| \) is finite.

Remark 2 Scaling behavior. Let \(\phi_\lambda = \lambda^{n/2} \phi(\lambda x) \), \(X_\lambda(x) = \lambda^{-1} X \left(\frac{x}{\lambda} \right) \) then

\[
J_X(\phi_\lambda) = \int_\mathbb{R}^n \left| \lambda \nabla \phi(y) + \phi(y) X \left(\frac{y}{\lambda} \right) \right|^2 \, dy
\]

thus

\[
J_X(\phi_\lambda) = \lambda^2 J_{X_\lambda}(\phi).
\]

The example \(X_\lambda = \lambda^{p-2} x |x|^{-p} \) shows clearly that for \(p \geq 2 \) things are going odd. The examples also show that the singularities of \(X \) decrease the regularity of the ground state. It is possible, of course, to extend Proposition (2) to punctured domains, so that the results may be extended beyond \(p = 2 \).

The reader may be puzzled by the form of the eigenfunctions (17) and (18), but this is easily resolved when recollecting the fact that a homogeneous polynomial may look quite differently if restricted to a sphere (the factor \(x_1^2 + x_2^2 + x_3^2 \ldots = 1 \) drops out). There is, by the way, an interesting connection to the fact that the Fourier transform leaves functions of the form

\[
f(x) = P_k(x) \psi(|x|)
\]

invariant, in the sense that

\[
\hat{f}(\xi) = P_k(\xi) \hat{\psi}(|\xi|).
\]

This is obvious in the case \(p = 0 \), \(\alpha = 1 \), as we then have the eigenfunctions of the Fourier transform, but not so trivial in the case \(p = 1 \).

2 Regularity

We will give here only some elementary facts and assume some smoothness of the solutions. It is well known that if \(u \) and \(F \) are continuous and

\[
\nabla u(x) = F(x) \quad \text{in} \ B_r(x_0)
\]

in the distributional sense, then it also holds in the classical sense [2].
Proposition 5 Let $\Omega \subset \mathbb{R}^n$ be an open set and $\phi \in C^1(\Omega)$ a solution of
\[
\nabla \phi(x) + \phi(x)X(x) = 0 \quad \forall x \in \Omega
\]
where X is a vector field on Ω. Then X is locally the gradient of a C^1 function (and therefore continuous) on the open set $\{x \in \Omega : \phi(x) \neq 0\}$. Moreover, if $X \in C^k(\Omega)$, $k \in \mathbb{N}$, then $\phi \in C^{k+1}(\Omega)$.

Proof Suppose $\phi(x_0) > 0$ for some point $x_0 \in \Omega$, then $\phi(x) > 0$ in the ball $B_\varepsilon(x_0)$ for some $\varepsilon = \varepsilon(x_0) > 0$ by continuity. Thus, $X(x) = -\nabla \log \phi(x)$ in $B_\varepsilon(x_0)$. If $\phi(x_0) < 0$ then apply the same argument to the function $\phi'(x) := -\phi(x)$, giving $X(x) = -\nabla \log \phi'(x)$. Since $\log \phi$ is C^1 wherever $\phi > 0$ is, the assertion follows. The regularity claim can be proved by applying Leibniz’s rule. □

Lemma 1 Let ϕ be a function defined in the ball $\{|x| < R_0\}$ satisfying
\[
|\phi(x)| \leq C|x|^\alpha \sup_{|y| \leq |x|} |\phi(y)|
\]
for some constants $C \geq 0$, $\alpha > 0$. Then $\phi \equiv 0$ in the ball $\{|x| < \min(R_0, C^{-\alpha})\}$.

Proof Let $M(r) := \sup_{|y| \leq r} |\phi(y)|$ and note that it is a non-decreasing function of r. Then we have by assumption $|\phi(x)| \leq C|x|^\alpha M(|x|)$, therefore, taking the supremum:
\[
\sup_{|x| \leq r} |\phi(x)| = M(r) \leq Cr^\alpha \sup_{|x| \leq r} M(|x|) = Cr^\alpha M(r)
\]
thus, $M(r) = 0$ for $Cr^\alpha < 1$. □

Proposition 6 Let $\phi \in C^1(\mathbb{R}^n)$ be a solution of
\[
\nabla \phi(x) + \phi(x)X(x) = 0 \quad \forall x \in \mathbb{R}^n
\]
where X is a vector field on \mathbb{R}^n. Suppose $\phi(x_0) = 0$ for a $x_0 \in \mathbb{R}^n$. If X is locally bounded then $\phi \equiv 0$ in \mathbb{R}^n.

Proof Without loss of generality let $x_0 = 0$. Since $\phi \in C^1(\mathbb{R}^n)$ it follows that
\[
\frac{d}{dt}\phi(tx) = (\nabla \phi(tx), x) = -\langle \phi(tx)X(tx), x \rangle \Rightarrow \phi(x) - \phi(0) = -\int_0^1 \langle \phi(tx)X(tx), x \rangle dt.
\]
Thus
\[
|\phi(x)| = \left|\int_0^1 \langle \phi(tx)X(tx), x \rangle dt\right| \leq |x| \sup_{|y| \leq |x|} |\phi(y)X(y)|.
\]
□

Remark 3 Local boundedness is necessary as the standard C_0^∞ function $\chi_{B_1} \frac{1}{e^{\|x\|^2} - 1}$ shows.
3 Concluding remarks

We have seen that the Schrödinger ground states and those of the function J_X are essentially the same. Moreover, ground states cannot change sign and the vector field X has (therefore) to be a gradient. Thus, they have to satisfy the simple first order equation

$$\nabla \phi(x) + \phi(x) \nabla u(x) = 0$$

with solution

$$\phi(x) = C e^{-u(x)}.$$

The qualitative properties of ϕ are determined in an essential way by the function u. For instance, the critical points of ϕ are those of u, and ϕ is log-concave if u is convex.

In a certain way the same is true for the “inhomogeneous” equation

$$\nabla \phi(x) + \phi(x) X(x) = Y(x),$$

which we have not touched here.

Now, what is the physical meaning of X? When we multiply \((19)\) by $-i$, we get

$$p\phi = -i\nabla \phi = iX\phi,$$

where p is the momentum operator. So, indeed, X indicates the momentum of the ground state. In the same sense it holds for the angular momentum,

$$L\phi = (x \wedge p) \phi = i(x \wedge X)\phi.$$

For any radial function $u(x) = u(|x|)$, for example:

$$X = \nabla u = u'(|x|) \frac{x}{|x|}$$

so that the angular momentum of the corresponding ground state has to be zero. In other words, one can prescribe the momentum ‘field’ $X = \nabla u$ (necessarily a potential field), then the (Schrödinger) ground state is completely determined. Clearly, the function $u(x)$ is closely related to the classical action function $S(x)$ and the parallels to Hamilton-Jacobi theory are quite obvious, but we have found that the deeper reason for \((19)\) stems from the quantum mechanical phase-space measure

$$d\mu_\phi = |\phi(x)|^2 |\hat{\phi}(k)|^2 dx dk,$$

which is a Radon measure generated by any normalized $L^2(\mathbb{R}^n)$ function ϕ, so that one can write for the quantum mechanical energy:

$$\mathcal{E}(\phi) = \int_\Gamma \mathcal{H}(x, \hbar k)d\mu_\phi,$$

where \mathcal{H} is the classical Hamilton function. We cannot go into details, but minimizing \mathcal{E} with respect to ϕ, gives not the usual Schrödinger equation, however, a kind of “double one” on $L^2(\Gamma)$, where $\Gamma = \mathbb{R}^n \times \mathbb{R}^n$ is the phase space. When we write \((8)\) in the form

$$\int_{\mathbb{R}^n} |k|^2 |\hat{\phi}(k)|^2 dk \int_{\mathbb{R}^n} |X|^2 |\phi(x)|^2 dx \geq \frac{1}{4} \left(\int_{\mathbb{R}^n} \text{div} X |\phi(x)|^2 dx \right)^2,$$
and rewrite it to
\[
\int_{\Gamma} |k|^2 |X|^2 d\mu_\phi \geq |\langle \hat{X}\phi, k\phi \rangle|^2
\]
the symmetry between \(k\) and \(X\) may be apparent. It might give a clue why it is the Fourier transform that connects configuration and momentum space in quantum mechanics (the way the Heisenberg group acts on \(\Gamma \times \mathbb{R}\) and the behaviour of \(d\mu_\phi\) under canonical transformations also support this).

Another way to gain some physical insight is to look at the associated energy-momentum tensors to the equations \(\text{(2)}\) and \(\text{(5)}\):
\[
T_S = \nabla \phi \otimes \nabla \phi - \mathbb{I}(|\nabla \phi|^2 + (V(x) - E)|\phi|^2)
\]
and
\[
T_X = \nabla \phi \otimes \nabla \phi - \mathbb{I}(|\nabla \phi|^2 + (|X|^2 - \text{div}(X))|\phi|^2).
\]
Now,
\[
\text{Div}(T_S) = -\nabla V(x)|\phi|^2
\]
and (think of a force \(F(x) = -\nabla V(x)\))
\[
\text{Tr}(T_S) = (2 - n)|\nabla \phi|^2 + n(V(x) - E)|\phi|^2.
\]
When we insert \(\nabla \phi = -\phi X\) into \(T_X\), it follows
\[
T_X = |\phi|^2 (X \otimes X - \mathbb{I}(2|X|^2 - \text{div}(X)),
\]
and therefore
\[
\text{Tr}(T_X) = |\phi|^2 ((2 - n)|X|^2 + n \text{div} X).
\]
The meaning of \(X\) and \(\text{div} X\) is now quite obvious as \(T_X\) and \(T_S\) are factually the same. For instance, if the potential \(V\) is homogeneous of degree \(k\), then (formally)
\[
\text{div}(T_S x) = \text{Div}(T_S) \cdot x + \text{Tr}(T_S) = -x \cdot \nabla V(x)|\phi|^2 + (2 - n)|\nabla \phi|^2 + n(V(x) - E)|\phi|^2
\]
\[
= (2 - n)|\nabla \phi|^2 + (n - k)V(x)|\phi|^2 - nE|\phi|^2,
\]
which is nothing more than the virial theorem, so that we must have
\[
\text{div}(T_X x) = \{(2 - k)|X|^2 + (k - n) \text{div} X - kE\}|\phi|^2.
\]
If, as we have seen in the examples, the ground states fall off sufficiently rapid, then
\[
\int_{\mathbb{R}^n} \text{div}(T_S x) dx = 0,
\]
hence
\[
2 \int_{\mathbb{R}^n} |\nabla \phi|^2 dx = k \int_{\mathbb{R}^n} V(x)|\phi|^2 dx.
\]

References

[1] Joseph Hersch, On the Methods of One-Dimensional Auxiliary Problems and of Domain Partitioning: Their Application to Lower Bounds for the Eigenvalues of Schrödinger’s Equation.. Journal of Mathematics and Physics, Vol. XLIII, No. 1, March 1964.

[2] Lars Hörmander, Linear Partial Differential Operators. Springer Verlag, Berlin, Fourth Printing, (Theorem 1.4.2) 1976.