ON CERTAIN THREE ALGEBRAS GENERATED BY BINARY ALGEBRAS

H. AHMED1,3, M.A.A. AHMED2,3, SH.K. SAID HUSAIN1,2, WITRIANY BASRI1

1Department of Math., Faculty of Science, UPM, Selangor, Malaysia
2Institute for Mathematical Research (INSPEM), UPM, Serdang, Selangor, Malaysia
3Depart. of Math., Faculty of Science, Taiz University, Taiz, Yemen

Abstract. This paper’s central theme is to prove the existence of an n-algebra whose multiplication cannot be expressed employing any binary operation. Furthermore, to prove if two algebras are not isomorphic, this property does not hold for 3-algebras corresponding to these two algebras. The proof drives applying some results gotten early applying a new approach for the classification algebras problem, introduced recently, which showed great success in solving many classification algebras problems.
1. Introduction

In 1969 [11], Kurosh introduced the notion of multilinear operator algebra. It is known that such algebraic structures are attractive for their applications to problems of modern mathematical physics. In 1973 [14], Nambu proposed an exciting generalization of classical Hamiltonian mechanics; the Nambu bracket is a generalization of the classical Poisson bracket.

Indeed, the advance of theoretical physics of quantum mechanics and the discovery of Nambu mechanics (see [14]), together with Okubo's work on the Yang-Baxter equation (see [15]), gave impetus to significant development on triple algebra (3-algebras).

Furthermore, Carlsson, Lister, and Loos have studied triple algebra of associative type (see [9, 12, 13]). Hestenes provided the typical and founding example of totally associative triple algebra (see [10]).

In this article, we give basic definitions and examples related to general n-algebras, and we shall focus our attention on 3-algebras structures generated by binary algebras presented recently in [1]. Then, we introduce the definition of totally associative 3-algebras with examples, which show. Owing to the large size of the matrices involved in our computations of totally associative 3-algebras, we present only Mathematica's results.

2. Preliminaries

Let \mathbb{F} be any field and the product $A \otimes B$ is the Kronecker product which stands for the matrix with blocks $(a_{ij}B)$, where $A = (a_{ij})$ and B are matrices over \mathbb{F}.

Definition 2.1. A vector space \mathbb{A} over \mathbb{F} with multiplication $\cdot : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$ given by $(u, v) \mapsto u \cdot v$ such that

- $(\alpha u + \beta v) \cdot w = \alpha(u \cdot w) + \beta(v \cdot w)$,
- $w \cdot (\alpha u + \beta v) = \alpha(w \cdot u) + \beta(w \cdot v),$

whenever $u, v, w \in \mathbb{A}$ and $\alpha, \beta \in \mathbb{F}$, is said to be an algebra.

Definition 2.2. Two algebras \mathbb{A} and \mathbb{B} are called isomorphic if there is an invertible linear map $f : \mathbb{A} \to \mathbb{B}$ such that

\begin{equation}
 f(u \cdot_A v) = f(u) \cdot_B f(v) \text{ whenever } u, v \in \mathbb{A}.
\end{equation}

Definition 2.3. A vector space V over \mathbb{F} equipped by a multilinear map $f : V \times V \times \ldots \times V \to V$ is said to be a n-algebra, that means:

- $f(x_1, x_2, \ldots, x_i + x'_i, \ldots, x_n) = f(x_1, x_2, \ldots, x_i, \ldots, x_n) + f(x_1, x_2, \ldots, x'_i, \ldots, x_n)$
- $f(x_1, x_2, \ldots, \lambda x_i, \ldots, x_n) = \lambda f(x_1, x_2, \ldots, x_i, \ldots, x_n)$

where $(x_1, x_2, \ldots, x_i, \ldots, x_n) \in V$.

Example 2.4. Let $\mathbb{A} = (V, \mu)$ be an algebra over a field \mathbb{F}: Then multilinear map

\begin{equation}
 f(x_1, x_2, \ldots, x_n) = \mu(x_1, \mu(x_2, \ldots, \mu(x_{n-1}, x_n) \ldots))
\end{equation}

defines an n-algebra structure on V.

3. Classification approach of m-dimensional 3-algebras

Let \mathbb{A} be m-dimensional 3-algebra over \mathbb{F} and $e = (e^1, e^2, ..., e^m)$ its basis. Then the multilinear map \cdot is represented by a matrix $A = (\alpha_{ijk}^l) \in M(m \times m^3; \mathbb{F})$ as follows

\[(3.1) \quad u \cdot v \cdot w = eA(u \otimes v \otimes w),\]

for $u = eu, v = ev, w = ew$, where $u = (u_1, u_2, ..., u_m)^T, v = (v_1, v_2, ..., v_m)^T$ and $w = (w_1, w_2, ..., w_m)^T$ are column coordinate vectors of $u, v, \text{ and } w$, respectively. The matrix $A \in M(m \times m^3; \mathbb{F})$ defined above is called the matrix of structural constants (MSC) of \mathbb{A} with respect to the basis e. Further we assume that a basis e is fixed and we do not make a difference between the algebra \mathbb{A} and its MSC A.

If $e' = (e'^1, e'^2, ..., e'^m)$ is another basis of \mathbb{A}, $e'g = e$ with $g \in G = GL(m; \mathbb{F})$, and A' is MSC of \mathbb{A} with respect to e' then it is known that

\[(3.2) \quad A' = gA(g^{-1})^\otimes 3 \]

is valid (see [5]). Thus, we can reformulate the isomorphism of algebras as follows.

Definition 3.1. Two m-dimensional 3-algebras \mathbb{A}, \mathbb{B} over \mathbb{F}, given by their matrices of structure constants A, B, are said to be isomorphic if $B = gA(g^{-1})^\otimes 3$ holds true for some $g \in GL(m; \mathbb{F})$.

Further we consider only the case $m = 2$ then \mathbb{A} can be represented by its matrix of structural constants (MSC) $A = (\gamma^l_{ijk}) \in M(2 \times 2^3; \mathbb{F})$ where $i, j, k, l = 1, 2$ and $\gamma^l_{ijk} \in \mathbb{F}$, as follows:

\[A = \left(\begin{array}{cccc} \gamma_{111} & \gamma_{112} & \gamma_{121} & \gamma_{122} \\ \gamma_{211} & \gamma_{212} & \gamma_{221} & \gamma_{222} \end{array} \right) \]

(for more information refer to [2]).

4. 3-algebras generated by binary algebras

Due to [1] we have the following classification theorems according to $Char(\mathbb{F}) \neq 2, 3$.

Theorem 4.1. Over an algebraically closed field \mathbb{F} ($Char(\mathbb{F}) \neq 2$ and 3), any non-trivial 2-dimensional algebra is isomorphic to only one of the following algebras listed by their matrices of structure constants:

- $A_1(c) = \left(\begin{array}{cccc} \alpha_1 & \alpha_2 & 0 & 0 \\ \beta_1 & \beta_2 & 1 - \alpha_1 & 0 \end{array} \right)$, where $c = (\alpha_1, \alpha_2, 0, 0) \in \mathbb{F}^4$,
- $A_2(c) = \left(\begin{array}{cccc} \alpha_1 & 0 & 0 & 0 \\ \beta_1 & \beta_2 & 1 - \alpha_1 & 0 \end{array} \right) \simeq \left(\begin{array}{cccc} \alpha_1 & 0 & 0 & 0 \\ -\beta_1 & \beta_2 & 1 - \alpha_1 & 0 \end{array} \right)$, where $c = (\alpha_1, \beta_1, \beta_2) \in \mathbb{F}^3$,
- $A_3(c) = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ \beta_1 & 1 & 0 & 0 \end{array} \right)$, where $c = (\alpha_1, \beta_2) \in \mathbb{F}^2$,
- $A_4(c) = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ \beta_1 & 0 & \beta_2 & 0 \end{array} \right)$, where $c = (\alpha_1, \beta_2) \in \mathbb{F}^2$,
- $A_5(c) = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ \beta_1 & 0 & \beta_2 & 0 \end{array} \right)$, where $c = (\alpha_1, \beta_2) \in \mathbb{F}^2$,
- $A_6(c) = \left(\begin{array}{cccc} \alpha_1 & 0 & 0 & 0 \\ \beta_1 & 1 - \alpha_1 & 0 & 0 \end{array} \right) \simeq \left(\begin{array}{cccc} \alpha_1 & 0 & 0 & 0 \\ -\beta_1 & 1 - \alpha_1 & -\alpha_1 & 0 \end{array} \right)$, where $c = (\alpha_1, \beta_1) \in \mathbb{F}^2$,
- $A_7(c) = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ \beta_1 & 0 & 1 & 0 \end{array} \right)$, where $c = \beta_1 \in \mathbb{F}$,
- $A_8(c) = \left(\begin{array}{cccc} \alpha_1 & 0 & 0 & 0 \\ 0 & 1 - \alpha_1 & -\alpha_1 & 0 \end{array} \right)$, where $c = \alpha_1 \in \mathbb{F}$,
Example 4.2. In example 2.4, if V is 2-dimensional vector space with a fixed basis $\{e_1, e_2\}$ and (V, f) is 3-algebra structure on V. Then f and μ can be expressed by their structure constants as follows:

$$f(e_i, e_j, e_k) = \gamma_{ijk}^1 e_1 + \gamma_{ijk}^2 e_2$$

and

$$\mu(e_r, e_s) = \eta_{rs}^1 e_1 + \eta_{rs}^2 e_2.$$

Then due to (2.2) we get the system of equations

\begin{align*}
\gamma_{ijk}^1 &= \eta_{jk}^1 \eta_{i1}^1 + \eta_{jk}^2 \eta_{i2}^1 \\
\gamma_{ijk}^2 &= \eta_{jk}^1 \eta_{i1}^2 + \eta_{jk}^2 \eta_{i2}^2
\end{align*}

we get $2^4 = 16$ equations for $2^3 = 8$ unknowns (the coefficients η_{ij}^k), which cannot be solved in general, except maybe for some very special cases.

Indeed, using (4.1), we can find the 3-algebras corresponding to all algebras presented in [1] under this procedure (see Table 1).

From the table we can see

- $(1 0 0 0 0 0 0 0)$ is a 3-algebra which cannot be expressed by any algebras in the above theorem and it is not isomorphic to any B_i where $i = 1, \ldots, 11$.
- On the other hand, $A_4(1/3, -1/3)$ and $A_5(1/3)$ are not isomorphic algebras, but from these two non-isomorphic algebras, we get one 3-algebra

$$\left(\begin{array}{ccccccc}
\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3}
\end{array} \right).$$

- Also $A_4(1, -1)$ and $A_4(1, 1)$ are not isomorphic algebras but from these two algebras we get one 3-algebra

$$\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} \right).$$

5. Totally associative 3-algebras

In this section, we introduce the following definition of totally associative 3-algebra using its MSC.

Definition 5.1. A 3-algebra \mathbb{A} is a totally associative 3-algebra if

\begin{equation}
(u \cdot v \cdot w) \cdot x \cdot y = u \cdot (v \cdot w \cdot x) \cdot y = u \cdot v \cdot (w \cdot x \cdot y)
\end{equation}

for all $u, v, w, x, y \in \mathbb{A}$.

Example 5.2. Let $\{e_1, e_2\}$ be a basis of a 2-dimensional 3-algebra \mathbb{A}, the multilinear map "\cdot" given by:

$$e_1 \cdot e_1 \cdot e_1 = e_1, \quad e_1 \cdot e_1 \cdot e_2 = e_2$$

defines a totally associative 3-algebra.

According to (5.1) and (3.1), we can reformulate Definition 5.1 as follows.
Table 1. 2-dimensional 3-algebras generated by binary algebras (where \(\mathbf{c} = (\alpha_1, \alpha_2, \alpha_4, \beta_1) \))
Definition 5.3. A 2-dimensional 3-algebra \(A \) with multiplication \(\cdot \) over a field \(\mathbb{F} \) is said to be a totally associative 3-algebra if all of the following conditions are met:

\[
\begin{align*}
(5.2a) & \quad A (A \otimes I \otimes I - I \otimes A \otimes I) = 0, \\
(5.2b) & \quad A (A \otimes I \otimes I - I \otimes I \otimes A) = 0, \\
(5.2c) & \quad A (I \otimes A \otimes I - I \otimes I \otimes A) = 0,
\end{align*}
\]

where \(I \) is the identity \(2 \times 2 \) matrix.

Using a computation program (here, we use Mathematica), it is easy to verify that the 3-algebras from the list in Table (1) satisfying the system (5.2) are:

(i) \(B_{2}(\alpha_{1}, \beta_{1}, \beta_{2}) \) when

- \(\alpha_{1} = 0, \beta_{1} = 0, \beta_{2} = 0, \)
- \(\alpha_{1} = \frac{1}{2}, \beta_{1} = 0, \beta_{2} = -\frac{1}{2}, \)
- \(\alpha_{1} = \frac{1}{2}, \beta_{1} = 0, \beta_{2} = \frac{1}{2}. \)

(ii) \(B_{4}(\alpha_{1}, \beta_{2}) \) when

- \(\alpha_{1} = 0, \beta_{2} = 0, \)
- \(\alpha_{1} = \frac{1}{2}, \beta_{2} = -\frac{1}{2}, \)
- \(\alpha_{1} = \frac{1}{2}, \beta_{2} = \frac{1}{2}, \)
- \(\alpha_{1} = 1, \beta_{2} = -1, \)
- \(\alpha_{1} = 1, \beta_{2} = 0, \)
- \(\alpha_{1} = 1, \beta_{2} = 1. \)

That means from the above list we get the following totally associative 3-algebras:

(i) \(B_{2}(0,0,0) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \)

(ii) \(B_{2}(\frac{1}{2},0,-\frac{1}{2}) = \begin{pmatrix} \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & -\frac{1}{2} \end{pmatrix}, \)

(iii) \(B_{2}(\frac{1}{2},0,\frac{1}{2}) = \begin{pmatrix} \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{4} \end{pmatrix}, \)

(iv) \(B_{4}(\frac{1}{2},-\frac{1}{2}) = \begin{pmatrix} \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4} & -\frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 \end{pmatrix}, \)

(v) \(B_{4}(\frac{1}{2},0) = \begin{pmatrix} \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 \end{pmatrix}, \)

(vi) \(B_{4}(\frac{1}{2},\frac{1}{2}) = \begin{pmatrix} \frac{1}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & 0 \end{pmatrix}, \)

(vii) \(B_{4}(1,-1) = B_{4}(1,1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \)

(viii) \(B_{4}(1,0) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \)

According to (\[5\]), over an algebraically closed field, \(\mathbb{F} \) of characteristic, not 2, 3 every nontrivial 2-dimensional associative algebra is isomorphic to only one algebra listed below by

(i) \(A_{2}(\frac{1}{2},0,\frac{1}{2}) = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}, \)
(ii) \(A_4(1,0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \),

(iii) \(A_4(1,1) = \begin{pmatrix} 1 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1 & 0 \end{pmatrix} \),

(iv) \(A_4(1,1) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \),

(v) \(A_4(1,2) = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \end{pmatrix} \),

(vi) \(A_{12} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \).

We conclude that there are totally associative 3-algebras, \(B_2(0,0,0) \), \(B_2(1/2,0,-1/2) \), \(B_4(1/2,-1/2) \), \(B_4(1,-1) \), are generated by non-associative algebras, \(A_2(0,0,0) \), \(A_2(1/2,0,-1/2) \), \(A_4(1/2,-1/2) \), \(A_4(1,-1) \), respectively.

Conclusion

Depending on the approach introduced in [8] and applied in [1], one can study the classification of \(n \)-algebras and then study some identities of \(n \)-algebras (refer to [2, 4, 5, 6, 7]).

Acknowledgement

This research was funded by Grant 01-01-18-2032FR Kementerian Pendidikan Malaysia.

References

[1] H. Ahmed, U. Bekbaev, I. Rakhimov, 2017. Complete classification of two-dimensional algebras, AIP Conference Proceedings, 1830, 070016, 1-11.
[2] H. Ahmed, U. Bekbaev, I. Rakhimov (2018) The Automorphism Groups and Derivation Algebras of Two-Dimensional Algebras. J Generalized Lie Theory Appl 12: 290, 1-9.
[3] H. Ahmed, U. Bekbaev and I. Rakhimov, 2018. Classification of Two-Dimensional Jordan Algebras over R, Malaysian Journal of Mathematical Sciences 12:287-303.
[4] H. Ahmed, U. Bekbaev and I. Rakhimov, 2019. On two-dimensional power associative algebras over algebraically closed fields and R. Lobachevskii Journal of Mathematics 40:1-13.
[5] H. Ahmed, U. Bekbaev, I. Rakhimov, 2020. Identities on two-dimensional Algebras, Lobachevskii Journal of Mathematics, 41(9), 1615-1629.
[6] H. Ahmed, U. Bekbaev, I. Rakhimov, 2020. Subalgebras, idempotents, left (right) ideals and left quasi units of two-dimensional algebras, International Journal of Algebra and Computation, 30(5), 903–929.
[7] H. Ahmed, U. Bekbaev, I. Rakhimov, 2020. Two-dimensional left (right) unital algebras over algebraically closed fields and R. Journal of Physics: Conference Series, 1489, 012002 (2020).
[8] U. Bekbaev, 2015. On classification of finite dimensional algebras, arXiv: 1504.01194, 1–8.
[9] R. Carlsson, 1980. N-ary algebras, Nagoya Math. J., 78, 45-56.
[10] M.R. Hestenes, 1973. On ternary algebras. Scripta Math., 29, 253-272.
[11] A.G. Kurosh, 1969. Multioperator rings and algebras. Russ Math Surv, 24(1),1-13.
[12] W.G. Lister, 1971. Ternary rings, Trans. Amer. Math. Soc., 154, 37-55.
[13] O. Loos, 1972. Assoziative tripelsysteme, Manuscripta Math., 7, 103-112.
[14] Y. Nambu, 1973. Generalized Hamiltonian mechanics. Phys. Rev., D, 2405-2412.
[15] S. Okubo, 1993. Triple products and Yang-Baxter equation (I): Octonionic and quaternionic triple systems, J. Math.Phys., 34, 3273-3291.