Sjögren syndrome: looking forward to the future

Sara Zandonella Callegher*, Ivan Giovannini*, Sabine Zenz, Valeria Manfrè, Martin H. Stradner, Alojzija Hocevar, Marwin Gutierrez, Luca Quartuccio, Salvatore De Vita and Alen Zabotti

Abstract: Primary Sjögren’s syndrome (pSS) is a heterogeneous disease characterised by a wide spectrum of manifestations that vary according to the different stages of the disease and among different subsets of patients. The aim of this qualitative literature review is to summarise the recent advances that have been reported in pSS, ranging from the early phases to the established disease and its complications. We analysed the diagnostic, prognostic, and management aspects of pSS, with a look into future clinical and research developments. The early phases of pSS, usually antedating diagnosis, allow us to investigate the pathophysiology and risk factors of the overt disease, thus allowing better and timely patient stratification. Salivary gland ultrasound (SGUS) is emerging as a valid complementary, or even alternative, tool for histopathology in the diagnosis of pSS, due to a standardised scoring system with good agreement and performance. Other promising innovations include the application of artificial intelligence to SGUS, ultrasound-guided core needle biopsy, and a wide array of novel diagnostic and prognostic biomarkers. Stratifying pSS patients through the integration of clinical, laboratory, imaging, and histopathological data; differentiating between activity-related and damage-related manifestations; and identifying patients at higher risk of lymphoma development are essential steps for an optimal management and individualised treatment approach. As new treatment options are emerging for both glandular and systemic phases, there is a need for a more reliable treatment response evaluation. pSS is a complex and heterogeneous disease, and many distinct aspects should be considered in the different stages of the disease and subsets of patients. In recent years, efforts have been made to improve our understanding of the disease, and certainly in the coming years, some of these novelties will become part of our routine clinical practice, thus improving the management of pSS patients.

Keywords: activity, biomarkers, damage, histopathology, lymphoma, pathogenesis, preclinical phase, salivary gland, Sjögren’s syndrome, treatment, ultrasonography

Received: 15 October 2021; revised manuscript accepted: 26 April 2022.

Introduction
Primary Sjögren’s syndrome (pSS) is a connective tissue disease characterised by a wide spectrum of clinical features, extending from exocrine to extra-glandular involvement.1 Over the years, growing efforts have been made to characterise the disease, focusing on its pathogenetic pathways, early diagnosis, biomarkers, imaging tools, and therapeutic strategies.1

The exact pathogenesis of pSS is currently not well understood but appears to be multifactorial.2–4 The pathogenesis is thought to be B-cell-centric, and B-cell activation, immune complex formation, and autoantibodies production are thought to be the key steps.2–4 Nevertheless, T cells (such as Th17 and Th22 cells), follicular dendritic cells, and innate immune system have been proven to participate in the development...
and persistence of inflammation in this systemic disease.5,6 In particular, inflammatory infiltrates in salivary glands (SGs) may form aggregates, organised in ectopic germinal centres (GCs), which might drive chronic stimulation and activation of B cells.7–9

The glandular damage caused by the immune-mediated destruction of exocrine glands, B-cell hyperactivation, and excessive infiltration of inflammatory cells into the gland exposes pSS patients to an increased risk of lymphoproliferative disease,10–12 the highest among various autoimmune diseases.13–15 At present, more studies are needed to address the exact pathogenesis of pSS and pSS-related lymphoproliferative disease. The aims of such studies are to identify the key pathogenetic pathways of the disease, to stratify pSS patients, and to better evaluate the activity-related and damage-related manifestations. Furthermore, the improved definition of biomarkers for lymphoproliferative disease would allow the more precise identification of patients at higher risk of developing lymphoma.

The usefulness of salivary gland ultrasound (SGUS) in patients with pSS was highlighted almost 30 years ago,16,17 and since then, it has proved to be an effective tool in the evaluation of SG structural abnormalities and parenchymal lesions in major SGs.18–20 SGUS is a simple, non-invasive, nonirradiating, and inexpensive technique,21–25 and various studies have reported that its inclusion in pSS classification criteria improves diagnostic accuracy, feasibility, and sensitivity.23,26–28(99,686),(296,774) Keeping the specificity unchanged compared to the American College of Rheumatology/European League Against Rheumatism (ACR-EULAR) criteria.29 Furthermore, ultrasound may guide biopsies for adequate histological sampling in pSS patients with suspected lymphoma, as recently proposed.30–32

The aim of this qualitative literature review is to summarise recently reported advances in pSS, ranging from the early phases to the established disease and to possible lymphoma complications. We analysed the diagnostic, prognostic, and management aspects of pSS, with a look into future clinical and research developments.

Preclinical pSS and early pSS
Preclinical Sjögren syndrome is a phase characterised by laboratory, imaging, histologic abnormalities, and clinical symptoms (e.g. sicca syndrome), although not or not yet fulfilling the pSS classification criteria.

Early Sjögren syndrome can be defined by the fulfilment of the classification criteria31,34 from a short time (i.e. less than 24 months).

Pathophysiology of pSS and new study techniques
Inflammation of the salivary and lacrimal glands (epithelitis) is a hallmark of pSS pathophysiology.35 Lymphocytes infiltrate the perivascular and periductal areas of the glands, where they interact with activated salivary gland epithelial cells (SGECs).35 The majority of lymphocytes involved have been characterised as CD4+ T helper cells and B cells by immunohistochemistry and flow cytometry.30 Individual predefined populations of infiltrating cells have been further studied in more detail.37–39 A comprehensive in-depth analysis of the functional properties and subtypes of all the cells participating in pSS epithelitis has long been hampered by technical restraints.35,40

Two studies took advantage of cytometry by time of flight (CyTOF) to address this issue.40,41 CyTOF is a flow cytometry-based technique that uses antibodies labelled with isotopically pure elements; this approach allows for the analysis of 30 or even more proteins on individual cells. Mingueneau et al.41 analysed mononucleated cells from peripheral blood and SG biopsies of pSS patients. They identified an increase in activated CD4+ and CD8+ T cells, while plasmacytoid dendritic cells were decreased compared with the peripheral blood mononuclear cells (PBMCs) of healthy individuals.41 These results were confirmed by another study comparing the PBMCs of pSS patients with those of patients suffering from systemic sclerosis or systemic lupus erythematosus.40 While CyTOF increases the potential of single-cell analysis in pSS, it is dependent on the availability of antibodies to well-characterised antigens. By contrast, methods analysing the transcriptome allow for an unbiased approach, aiding the generation of new hypotheses. cDNA microarrays have been performed on PBMCs and glandular tissue from pSS to identify the characteristic interferon signature in many patients.42,43 This pattern is most prominent in the subset of cases serologically defined by increased titres of anti-SSA and anti-SSB autoantibodies.42,43
In the near future, the more powerful technique of RNA sequencing (RNA-seq) will replace microarrays. A study analysing SGECs and sorted B cells from pSS SGs underscored the importance of SGECs for B-cell activation and survival. Furthermore, RNA-seq was employed to analyse the PBMCs of the large PRECISESADS cohort, identifying four different clusters of pSS patients that could be used to stratify pSS in the future.

Single-cell RNA-seq (scRNA-seq) combines the power of single-cell analysis with the unbiased approach of RNA-seq. The potential of this novel technique was demonstrated by a first study identifying a previously unrecognised population of peripheral blood cytotoxic CD4+ T cells in pSS patients. Other single-cell sequencing methods will allow analysis of the methylation state (single-cell DNA methylome sequencing) and accessible DNA for transcription factors (single-cell ATAC-seq) of single cells in pSS. Furthermore, tissue-based methods, such as spatial transcriptomics and imaging mass cytometry, will enable us to investigate RNA and protein expression within the SGs in unprecedented resolution. In summary, the rapid development of single-cell and single-omics techniques within the last few years will enable us to unveil a broader picture of pSS pathophysiology.

Risk factors for pSS development

To date, the risk factors for developing pSS have not been well established, primarily because sicca symptoms slowly progress over years and are often initially underestimated by both patients and physicians; therefore, the average diagnostic delay of pSS is 7 years, with most patients already showing SG damage. Furthermore, the current ACR-EULAR classification criteria can be applied if considerable impairment of the glands has occurred, since patients need to suffer from pronounced sicca symptoms to be eligible for the criteria. Thus, no extensive data exist about the early phase of pSS or the risk factors that may lead to it.

Autoantibodies in rheumatic diseases are often detectable years before the first symptoms appear, as also indicated in pSS patients. Theander et al. performed a case–control study analysing pre-disease samples of 117 pSS patients: 81% had anti-SSA or anti-SSB antibodies before manifesting any typical pSS symptoms. In a large-scale research registry for neonatal lupus, asymptomatic mothers with anti-SSA and anti-SSB antibodies of children with neonatal lupus were studied over 10 years, and the probability of an asymptomatic antibody-positive mother developing pSS was 27.9%. Interestingly, mothers with both anti-SSA and anti-SSB antibodies were nearly twice as likely to develop an autoimmune disease, with a higher probability of developing pSS than mothers with anti-SSA antibodies alone. Thus, anti-SSA and anti-SSB antibodies might be a risk factor for the development of pSS.

Furthermore, in an epidemiological study, first-degree relatives of pSS patients had an 11- to 19-fold increased risk of developing pSS, highlighting genetics as a risk factor for the development of pSS.

Established pSS

How will we diagnose pSS in the future?

The diagnosis of pSS is based on a set of clinical, laboratory, imaging, and pathological features, since no single test can alone be diagnostic per se. Minor salivary gland biopsy (MSGB) is considered the gold standard tool and plays a key role in the ACR-EULAR classification criteria for pSS, especially in seronegative patients. MSGB is not devoid of possible adverse events, particularly temporary or permanent paraesthesia (11.7% and 6% of cases, respectively), and lacks of standardisation of surgical procedure and histopathology reporting, although a consensus guidance was
recently published to this end. The strengths of MSGB are its good sensitivity (63.5–93.7%), specificity (61.2–100%) and prognostic value, since it was demonstrated that higher focus score (FS) values are related to a higher risk of more severe extra-glandular manifestations and lymphoma.

The role of SGUS in pSS diagnosis is described below (see section ‘The role of SGUS in pSS diagnosis’). Other promising innovations are ultrasound elastography, the application of artificial intelligence to automatically score SGUS, and the major SG biopsy, which is now reserved for cases of suspected SG lymphoma. Nevertheless, according to Pijpe et al., a surgical major SG biopsy has a diagnostic performance comparable to MSGB in pSS, with 93% sensitivity and 95% specificity, and is repeatable, allowing treatment response evaluation. Ultrasound-guided core needle biopsy (CNB) of major SGs may represent a valid alternative to surgical biopsy (see section ‘Ultrasound-guided core needle biopsy in the diagnosis of pSS-related lymphoma’).

In recent years, efforts have been made to identify diagnostic biomarkers in pSS in tears (i.e. increased tear osmolarity, decreased tear protein MMP-9, LACTO, LIPOC-1) and saliva (i.e. elevated levels of IgA, IgG, lactoferrin, β-2 microglobulin). Further studies are necessary to clarify the clinical utility of these novel biomarkers.

pSS prognosis and disease activity assessment

pSS is a chronic, slowly progressing, non-life-threatening disease with a 10-year cumulative survival rate of over 90%. Nevertheless, some patients have a severe disease and may have an increased risk of death, and extra-glandular manifestations are present in 30–50% of patients during the follow-up.

Studies have shown that high baseline systemic activity is associated with a worse prognosis and decreased survival. A recent meta-analysis revealed older age at diagnosis, male gender, extra-glandular and vasculitic involvement, parotid enlargement, low complement levels, and cryoglobulinaemia as factors associated with increased mortality in pSS. Moreover, among autoimmune rheumatic diseases, pSS harbours the highest risk of lymphoma (14-fold higher risk), affecting around 5% of the pSS population.

Several indices have been developed to better evaluate and monitor disease activity. The EULAR Sjögren’s syndrome disease activity index (ESSDAI) is a composite validated and sensitive to change index of systemic disease activity. It encompasses 12 domains (11 organ-specific and 1 biological domains reflecting B-cell activity). For clinical studies, ESSDAI modification was made by removing the biological domain (clinical ESSDAI).

The EULAR Sjögren’s syndrome patient reported index (ESSPRI) is a patient-reported index with the final score representing the mean grade of three subjective components (dryness, musculoskeletal pain, fatigue), each evaluated on a 0–10 scale. As the correlation between ESSPRI and ESSDAI is weak, the indices should be used complementarily.

However, ESSDAI does not completely capture pSS disease activity. It does not reflect activity in glandular limited disease (roughly representing two-thirds of all pSS patients), since glandular inflammation and lymphoproliferation contribute only to a limited extent to the final ESSDAI score, not recognising sufficiently patients at risk of developing lymphoma. Furthermore, pSS patients frequently present with overlapping features of activity and damage, both of which contribute to disease severity.

To overcome this gap, a composite endpoint, Composite of Relevant Endpoints for Sjögren’s Syndrome (CRESS), was developed and validated by the analysis of data from rituximab, tocilizumab, and abatacept trials. CRESS is composed of five complementary items: ClinESSDAI, ESSPRI, lacrimal gland item, SG item, and serological item. Such a composite response measure addressing different aspects of the disease could better appreciate treatment efficacy compared to a single target.

To this end, another composite endpoint was recently developed, the SS Tool for Assessing Response (STAR), elaborated within the multinational NECESSITY Project (https://www.necessity-h2020.eu).

The stratification of pSS patients

pSS is a clinically heterogeneous disease; therefore, stratifying pSS patients is essential to allow better patient management and the proper administration of resources.
The stratification and harmonisation of pSS patients is supported by the HarmonicSS initiative (HarmonicSS.eu; https://cordis.europa.eu), part of the Horizon 2020 project. This initiative aims to collect, evaluate, and harmonise different pSS cohorts based on shared and internationally accepted classification criteria and measures of disease activity and damage, considering health care policy, advanced statistical methods, and advanced informatic technology.

A recent analysis of the international and multicentre registry, the Sjögren Big Data Consortium, which included over 10,000 pSS patients, showed that demographic and geoepidemiological characteristics significantly determine the systemic phenotype of the disease. Male pSS patients have a higher ESSDAI and carry an increased risk of lymphoma. Early-onset pSS (age ≤35 years) is associated with clinical and biological features predictive of severe systemic disease (e.g. SG enlargement, lymphadenopathy, purpura, renal involvement, hypergammaglobulinaemia, hypocomplementemia, presence of autoantibodies) and higher ESSDAI, whereas late-onset pSS (age ≥65 years) is characterised by less frequent autoantibody positivity, lower biological activity, higher prevalence of lung involvement and lower prevalence of arthritis. Considering systemic activity, Black/African American patients exhibit the highest ESSDAI scores, followed by White, Asian and Hispanic pSS patients.

Importantly, the immunoserological profile influences the disease phenotype and represents the traditional basis for stratification of pSS patients. Alternatively, a recent study applied patient-reported symptoms in pSS stratification and conclusively recognised four different disease clusters – low symptom burden, high symptom burden, dryness dominant with fatigue and pain dominant with fatigue – with accompanying distinct serological and molecular markers and responses to immunomodulatory treatment.

SGUS may provide additional help in pSS phenotyping, as normal-appearing SGUS reflects a milder pSS phenotype with preserved salivation, negative lip biopsy and a less pronounced serological profile. Indexes of glandular involvement, such as FS and the presence of GCs, represent other options for pSS stratification, particularly as both seem to be associated with SG enlargement, lymphoma risk, systemic disease and antibody positivity. Molecular markers might, in the future, provide key baseline information for pSS clustering.

Stemming from current knowledge and considering the risk of developing systemic manifestations and poor outcomes, a phenotype-driven prognostic classification of pSS has recently been proposed. The classification distinguishes three pSS subgroups: low-risk pSS patients (with elderly onset, seronegative disease or isolated anti-SSB positivity), intermediate-risk pSS patients (early-onset disease, anti-SSA positivity, Black/African-American ancestry) and high-risk pSS subgroup (males, rheumatoid factor carriers, patients with cryoglobulinaemia and hypocomplementemia, high FS or presence of GCs in SG biopsy).

In summary, pSS is a complex multifaceted disease; nevertheless, through the integration of clinical, molecular, imaging and histopathological data, improved disease stratification is feasible and may be ultimately reflected in the individualised treatment approach.

Long-standing disease
pSS can be considered long-standing when diagnosis and classification criteria fulfilment date several years ago (e.g. at least 10 years).

How to assess damage related to pSS
Damage may occur in early disease, is always present in established disease, but is often heavier in long-standing disease. Overall, the objective glandular hypofunction in pSS could be explained by active inflammation of the gland (infiltration of immune cells), chronic damage (fibrosis and fatty lesions) with loss of functional parenchyma and functional impairment (autonomic dysfunction and receptor-mediated downregulation of saliva).

In chronic inflammatory diseases, such as pSS, the differentiation between active inflammatory lesions (reversible with therapy) and damage-related lesions (not reversible with therapy) is crucial to better stratify patients in terms of specific treatment indications and responses.

Currently, salivary flow rate, SG scintigraphy and, less frequently, sialography are used as diagnostic tools in pSS, since they are included in new and old pSS classification criteria. However, their role in patients’ follow-up is less clear. Salivary flow rate and scintigraphy might have
potential indications for objectively evaluating changes in secretory function in the course of the disease and after treatment, due to their ability to monitor SG functioning over time. However, their use is limited due to reliability issues, invasiveness and radiation exposure.22

Magnetic resonance (MR) could help to identify the changes that occur in major SGs during the different phases of the pSS, differentiating early stages (oedema caused by active inflammation resulting in glandular enlargement) and damage progression (lobular destruction associated with deposition of fibrous tissue and fat, visible as diffuse micro- and macro-cystic changes).22

For the role of SGUS in pSS, see section ‘Focus on salivary gland ultrasound’.

In recent years, two clinical composite indexes for quantifying the amount of damage related to pSS have been proposed: Sjögren’s Syndrome Disease Damage Index (SSDDI)109 and Sjögren’s Syndrome Damage Index (SSDI).110 The SSDDI is composed of a list of 18 irreversible damages affecting 6 organ domains,109 and the SSDI is an unweighted checklist of 27 items divided into 3 lists: ocular, oral and systemic damage.110 Although these two indexes are currently used in clinical practice, they have limitations, such as low external validity and cross-validation, and they may not completely cover the broad spectrum of pSS.111

The role of SGUS in pSS diagnosis

Nowadays, SGUS is gaining a central place in the diagnostic algorithm of suspected pSS,18,120 emerging as a valid complement tool to histopathology and as an alternative tool in cases where biopsy cannot be performed. A recent study reported that adding SGUS as a minor item to ACR/EULAR classification criteria improved sensitivity from 90.2% to 95.6%, with quite similar specificity.27 Furthermore, studies have reported that the combined positivity of SGUS and anti-SSA antibodies provides a high predictive value for the diagnosis of pSS, hypothetically excluding the need for MSGB. MSGB, as well as its diagnostic value, has important prognostic value, since it allows the identification of patients at higher risk of developing severe extra-glandular manifestations and lymphoma.65 By contrast, a negative SGUS with negative anti-SSA antibodies cannot reliably exclude pSS, and in these cases, MSGB is mandatory if pSS is suspected.119,121 The limitations of SGUS are mainly due to reliability issues and the lack of a
To improve the standardisation of the methodology, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) SGUS task force proposed a new four-grade semiquantitative score with good/excellent agreement results (Figure 1).

The role of SGUS in disease activity assessment
The role of SGUS as an instrument to assess pSS activity, follow disease progression or monitor treatment effectiveness has scarcely been investigated.

Cross-sectional studies found an association between SGUS scores and the presence of extra-glandular pSS manifestations, systemic disease activity (evaluated by ESSDAI) and ESSPRI. SGUS could in the future represent a surrogate marker of activity in the ESSDAI glandular domain and a marker of damage progression. Although the issue remains whether relatively robust grey scale scoring systems are sensitive enough to detect morphological changes, recent interventional studies (two rituximab studies and one ianalumab study) reported an improvement of some SG ultrasonographic characteristics, likely related to disease activity.

Recently, the possibility of using Doppler ultrasound to noninvasively assess SG inflammatory activity has been thoroughly investigated. Similar to a well-established evaluation of joint inflammation, the Sjögren ultrasound subgroup of the OMERACT ultrasound working group recently proposed a semiquantitative scoring system to evaluate SG vascularisation in pSS. Although the sensitivity to change of the proposed Doppler scoring system (a change in glandular perfusion secondary to a change in inflammation intensity) still needs to be determined in a longitudinal study, the standardisation of investigation represents the first step towards a better noninvasive evaluation of inflammation in SGs of pSS patients.

In the future, the Doppler scoring system might be combined with the consensual OMERACT grey scale scoring system, leading to a comprehensive global SGUS scoring system and allowing adequate distinction between activity and damage.

The role of SGUS in glandular damage assessment
In pSS patients, SGs show a wide range of abnormalities corresponding to different stages of the

Figure 1. Outcome Measures in Rheumatology Clinical Trials [OMERACT] four-grade semiquantitative scoring system for major salivary gland lesions in primary Sjögren’s syndrome. Ultrasound images of the parotid gland in a four-grade semiquantitative scoring system by OMERACT: (a) grade 0, normal parenchyma; (b) grade 1, minimal change: mild inhomogeneity without anechoic/hypoechoic areas; (c) grade 2, moderate change: moderate inhomogeneity with focal anechoic/hypoechoic areas but surrounded with normal tissue; and (d) grade 3, severe change: diffuse inhomogeneity with anechoic/hypoechoic areas occupying the entire gland surface but surrounded with no normal tissue.
disease, and SGUS allows the detection and characterisation of these variations, including size change, from enlargement to atrophy of the gland (Figure 2), and morphologic alterations with parenchymal heterogeneity due to the presence of hypoechoic lesions described as pseudocystic lesions, hyperechoic bands, fatty deposition and multiple calcifications (Figure 2).120

Pseudocysts in pSS are thought to be early lesions due to parenchymal inflammatory infiltration.134 Subsequently, these pseudocysts may form small punctiform aggregates that are an expression of the anatomical damage to the SGs, and fatty deposition could be present, responsible for the irregularity of the glandular margins.16 In the next stage of the disease, the SG parenchyma appears inhomogeneous due to the presence of hyperechoic bands, an expression of post-inflammatory fibrosis and chronic damage, as their presence is associated with objective SG impairment.19 Eventually, in the late stage, the SGs become atrophic.135

The SGUS scoring systems currently available were created for diagnostic purposes and are mainly focused on the heterogeneity of the SG parenchyma,16,53,122,124,135 thus, to the best of our knowledge, no SGUS scoring system to assess and quantify glandular damage in pSS is currently available.

Minor salivary gland ultrasound

To date, most pSS literature has focused on the sonographic assessment of major SGs, leaving the minor SG orphan of evidence.21 Nevertheless, in the histological evaluation of pSS, minor SGs play an important role,34,61 whereas a parotid biopsy is poorly performed in pSS.

The only representative study testing the capability of ultrasound for the diagnosis of pSS assessing labial SGs was performed by Ferro et al.136 Patients with suspected pSS, identified by the presence of sicca syndrome, and healthy controls were included. Inhomogeneity of the labial SGs was the main sonographic change characterising those patients who received a final diagnosis of pSS (42.2%).136 Interestingly, a different sonographic pattern was reported between SSA-positive subjects, both with or without anti-SSB antibodies, and SSA-negative/SSB-negative subjects, the pattern being inhomogeneous in the first group, whereas a normal pattern characterised the group with a negative antibody profile.136 Labial SG inhomogeneity pattern also showed a
significant association with the number of foci and FS of the MSGB ($p < 0.001$). To date, some issues limit the routine use of minor SG ultrasound, for example, the lack of standardised ultrasound definitions for minor SGs, standardised ultrasound technique and technical requirements needed to adequately assess the minor SGs. Due to their anatomical characteristics, minor SG ultrasound would require very high-frequency transducers (the cited work adopted a 70 MHz transducer), which are generally not available in the routine practice of rheumatologists.

New insights into pSS therapy

The management of pSS is challenging for clinicians, as the disease expresses a variable clinical profile. In recent years, researchers have focused on modifying disease outcomes, rather than controlling symptoms, to offer innovative and patient-tailored target therapies.

Topic therapy for sicca symptoms

As for dry eye and dry mouth management, interest has recently been raised by new topical medications and by new formulations of old drugs (Table 1). The ophthalmic solution Lifitegrast is a lymphocyte function-associated antigen-1 antagonist that prevents T-cell recruitment and activation. The agent AR-15512 [transient receptor potential cation channel subfamily M member 8 (TRPM8) agonist; Aerie Pharmaceuticals, Durham, NC, USA] has been studied for its possible role in restoring tear film volume. NOV03 (100% perfluorohexyloctane, Novaliq, Heidelberg, Germany) acts on Meibomian gland obstruction and lipid layer stabilisation. The topical application of chloroquine (0.03%) for 21 days showed good results on the inflammatory status of the tear film, improving dry eye symptoms, ocular staining and tear film volume. Although topical application of chloroquine showed limited retinal toxicity, further studies are needed to assess its possible side effects. A nanoemulsion solution, Cyporin N (Taejoon Pharm, Seoul, Korea), has been developed to overcome Cyclosporin A poor solubility in tear film.

In the field of nonpharmacological therapies, TrueTear® is an intranasal tear neurostimulator portable device that painlessly stimulates the anterior ethmoid nerve and increases tear production. Thermal pulsation devices such as Lipiflow® can be effective in Meibomian gland

| Table 1. Some innovative and promising therapeutic options for primary Sjögren’s syndrome. |
Topical drugs for dry eye management	Lifitegrast ophthalmic solution
	AR-15512 ophthalmic solution®
	NOV03 ophthalmic solution®
	Chloroquine 0.03% ophthalmic solution
	Cyclosporine A nanoemulsion solution
Topical drugs for dry mouth management	Topical liquid pilocarpine
Nonpharmacological therapy for dry eye management	Intranasal tear neurostimulator [e.g. TrueTear®]
	Thermal pulsation devices [e.g. Lipiflow®]
	Intense pulse light
	Intraductal Meibomian probing
Nonpharmacological therapy for dry mouth management	Neuro-electrostimulation
	Sialendoscopy with or without intraductal steroid irrigation
Biological drugs	Anti-CD40: CFZ533-Isocalimab [NCT 02291029; NCT03905525]
	Anti-BAFF Receptor: VAY736-Ianalumab [NCT 02962895]
	Anti-BAFF/anti-CD20: Belimumab/rituximab [NCT02631538]
	RNase-Fc fusion protein: RSVL-132 [NCT03247686]
	Anti-CD40 Ligand: VIB4920 [NCT04129164]
	JAK/STAT inhibitors: Tofacitinib [NCT04496960]
	BTK inhibitors: Lou64-Remibrutinib [NCT04035668]
For dryness and salivary hypofunction management, a small, nonblinded, noncontrolled study reported an improvement of xerostomia with the application of topical liquid pilocarpine, with fewer side effects compared to systemic use. Examples of nonpharmacological methods for dry mouth treatment are the application of neuro-electrostimulation or sialendoscopy with or without intraductal steroid irrigation.

Systemic therapy

Several biological drugs targeting B-cell hyperactivity, T-cell co-stimulation and abnormal pro-inflammatory cytokine production have been investigated for autoimmune and lymphoproliferative diseases in clinical trials, most of them failing to achieve primary outcomes, probably due to trial design issues (i.e. patient heterogeneity, strong placebo effect, insensitive outcome measures, efficacy only in a few disease manifestations) (Table 1).

Anti-B-cell therapy, with a drug alone (rituximab or belimumab) or with sequential or combination therapy, may prove effective in some patient’s subsets.

Ianalumab (VAY736), a monoclonal B-cell-depleting antibody that blocks the BAFF receptor, produced a statistically significant amelioration in ESSDAI score when given at high doses (300 mg) and confronted to placebo (NCT02962895). Based on the positive results of the BELISS clinical trial, and the experimental and clinical rationale of the anti-CD20 and anti-BAFF double therapeutic approach, an international clinical trial has evaluated the safety, efficacy and tolerability of belimumab plus rituximab co-administration and monotherapy in active pSS (NCT02631538). The preliminary results support the positive role of the combination therapy in sustainedly improving ESSDAI and stimulated salivary flow over time and in producing B-cell depletion in MSGB.

Recently, promising results have been shown by Iscalimab (CFZ533), a nondepleting anti-CD40 monoclonal antibody, which improved both stimulated and unstimulated salivary flow rates, patient-reported visual analogue scale assessment, disease activity and fatigue index with good safety, together with serum CXCL13 reduction (NCT 02291029). A new clinical trial on multiple doses of CFZ533 in two distinct pSS populations (moderate to severe disease versus low systemic involvement with high symptom burden) is also ongoing (NCT03905525), as well as a study on the efficacy of CD40 ligand antagonist VIB4920 (NCT04129164).

RSLV-132, a fully human RNase-Fc fusion protein, improved severe fatigue in pSS patients, with a reduction of ESSPRI and three other independent patient-reported measures (FACIT-F, ProF, DSST), while increasing the expression of selected interferon-inducible genes.

Other pathways have been evaluated to find new possible therapeutic targets in pSS. Recent clinical trials have focused on kinase pathways, such as the JAK/STAT [e.g. tofacitinib (NCT04496960)] and the BTK pathway [e.g. Lou064-Remibrutinib (NCT04035668)]. Agents directed against specific cytokines, such as IL-7 [e.g. S95011 (NCT04605978)] and IL-23 (e.g. ustekinumab, NCT04093531), have also been tested. Other potential candidates might be Fingolimod, which affects sphingosine pathways, IL-10, IL-27, or the coinhibitory molecule B7-H4. As type I interferon is fundamental in pSS pathogenesis, other rational strategies might range from blocking its receptor (e.g. anti-type I interferon receptor, anifrolumab) to targeting its production (e.g. anti-blood dendritic cell antigen 2, BIIB050). The new-generation microRNA therapeutic approach might also play a future role. Moreover, the interest should be extended to the simultaneous intervention targeting different pathogenetic pathways with biologic and conventional synthetic disease-modifying antirheumatic drugs, as supported by belimumab/rituximab double therapeutic approach and the leflunomide-hydroxychloroquine association. Efforts in this direction might be represented by trials evaluating tibulizumab, a bispecific dual-antagonist antibody that binds BAFF and IL-17 simultaneously (NCT04563195), and the combination of anti-B and T-cell drugs (hydroxychloroquine, lefunomide and mycophenolate mofetil, NCT05113004).
The main purpose of the research on lymphogenesis in pSS in recent years has been to identify epidemiological, clinical, laboratory, histological and imaging features predictive of lymphoproliferative disease (Table 2), aiming to obtain an early diagnosis, better management, and prognosis through a rational stratification of patients.172

Regarding the epidemiological aspect, men have a higher risk of lymphoma and a shorter median time from pSS diagnosis to lymphoma development than women.173,174 A higher prevalence of lymphoma was found in the early (⩽35 years) and late (≥65 years) onset patients.173,174 Younger patients demonstrate a higher frequency of B-cell-associated manifestations, which are known predictive factors of lymphoproliferative disease.10,96 Older patients have an incidence peak of lymphoma within the first 6 years from pSS diagnosis, and in this age group, male gender is the main independent risk factor for lymphoma.10

Several clinical and serological features have been used as lymphoma predictors, as specified in Table 2.172,175–177 Their usefulness has been confirmed through the years, with variable strength of association dependent on study population characteristics and methods of assessment.178–180 The correlation with ESSDAI has also been an object of debate, as the presence of specific clinical and biological manifestations (i.e. persistent major SG enlargement and cryoglobulinaemia) has proven to be useful in identifying pSS patients at a higher risk of lymphoma evolution, rather than the overall disease activity evaluated by ESSDAI.90

Regarding the histopathology of pSS, some conflicting data on the association between GC-like
Some novel biomarkers of pSS-related lymphoproliferation have been studied in recent years (Table 2), but the lack of external validation and prospective evaluation, as well as the intrinsic complexity of lymphoma pathogenesis, still limits their clinical use as single predictive factors.14,179,180,184

The SG ultrasonographic pattern might represent another predictor, due to the proven association with clinical, serological and histological features of lymphoproliferative risk and its ability to define the ESSDAI glandular domain in pSS,21,108,124,126,185 as recently reported by Lorenzon et al.186

Most awaited is the creation of a unique composite predictive model for early patient stratification supported by artificial intelligence, as mirrored by the efforts of the HarmonicSS Project.93

Ultrasound-guided core needle biopsy in the diagnosis of pSS-related lymphoma

Although the suspicion of lymphoma in pSS is mainly clinical, SGUS represents a useful aid in lymphoma diagnosis, as it can detect suspicious patterns of lymphoproliferative disease (e.g. diffuse, large-confluent, hypoechoic areas, and a focal lesion within an altered parenchyma) and guide tissue sampling of the afflicted gland30–32 (Figure 3).

Recent evidence suggests that in pSS patients with major risk factors for B-cell lymphoma,178...
ultrasound-guided CNB can provide adequate sampling for histological examination, immunohistochemical staining and flow cytometry. In the case of a parotid biopsy, ultrasound-guided CNB can be safely performed in the postero-caudal part of the gland, with respect to the facial nerve (Figure 3). In the scenery of a biopsy targeting the submandibular glands, nerve injuries are of no concern.

At present, ultrasound-guided CNB could be a precious procedure for lymphoma diagnosis in pSS patients, not only showing remarkable patient safety and tolerance but also allowing adequate glandular sampling and a definite histological diagnosis. Ultrasound-guided CNB of the major SGs may also be useful in pSS-related lymphoma for prognosis assessment, follow-up and treatment response evaluation. Hopefully, in the future, this procedure might also be used in patients without lymphoma to assess and monitor pSS disease activity and tissue damage.

Conclusion

pSS is a heterogeneous disease characterised by a wide spectrum of manifestations that vary according to the different stages of the disease and among different subsets of patients. Knowledge about the disease pathogenesis, as well as a standardised stratification of pSS patients through different biomarkers (tissue, serological, imaging), should be improved. These will help early disease diagnosis, risk assessment of systemic or lymphoproliferative complications, and identification of the degree of activity-related and damage-related manifestations, and will allow a tailored follow-up and treatment strategy (Table 3).

In recent years, many advances have been made in the field of pSS diagnosis and follow-up, such as the development of clinical indices to assess disease activity (ESSDAI, ESSPRI, CRESS), the standardisation of surgical procedures and histopathology reporting of the MSGB, the increased use of major SG biopsy, the new

Table 3. Research agenda.

Question	Answer
Elaborate a deeper knowledge of the pathogenesis of pSS.	
Construct a better definition of risk factors for pSS development.	
Encourage the use of new four-grade semiquantitative score proposed by OMERACT.	
Can the SGUS be added to the pSS classification criteria? Do we need new classification criteria for pSS?	
Can the major salivary gland biopsy be used for the diagnosis of pSS?	
Which novel biomarkers can be used in clinical practice for pSS diagnosis?	
How can we stratify pSS patients?	
Do we need a new disease activity index? Do we need new damage index?	
Can the SGUS be useful in patients’ follow-up?	
Do different subtypes of pSS patients need to be followed up differently? How should they be followed?	
Encourage the development of new therapies for pSS, both local and systemic.	
Which pSS patients need a systemic treatment?	
Construct a better definition of treatment response.	
Provide better description of the risk factors of lymphoproliferative disease linked to pSS.	
Can ultrasound-guided CNB be routinely used in pSS management?	
How could SGUS help in the assessment of salivary gland activity and damage?	

CNB, core needle biopsy; OMERACT, Outcome Measures in Rheumatology Clinical Trials; pSS, primary Sjögren’s syndrome; SGUS, salivary gland ultrasound.
OMERACT scoring system for SGUS (Figure 1)122,190 and the ongoing studies of new biomarkers.73 Hopefully, all these tools will be increasingly used in future routine clinical practice (Table 3).

New treatment options are emerging in pSS, both for glandular symptoms and for systemic manifestation,168 due to a deeper understanding of the pathophysiological bases of the disease and increasing ongoing trials, thus making a correct and objective evaluation of the response to treatment even more necessary.

However, pSS patients report an important unmet need for a successful pharmacological and nonpharmacological approach to the three greatest patient-reported disabilities: dryness, fatigue and musculoskeletal pain.191 Therefore, further research in these areas is also needed (Table 3).

In conclusion, the findings of past and recent years enable us to gain better insight into pSS. Certainly, in the coming years, some of the current novelities will become part of our routine clinical practice, thus improving the global management of pSS patients.

Author contribution(s)

Sara Zandonella Callegher: Conceptualisation; Data curation; Formal analysis; Methodology; Project administration; Writing – original draft; Writing – review & editing.

Ivan Giovannini: Conceptualisation; Data curation; Formal analysis; Methodology; Project administration; Writing – original draft; Writing – review & editing.

Sabine Zenz: Conceptualisation; Writing – original draft; Writing – review & editing.

Valeria Manfrè: Conceptualisation; Writing – original draft; Writing – review & editing.

Martin H. Stradner: Conceptualisation; Writing – original draft; Writing – review & editing.

Alojzija Hočevar: Conceptualisation; Writing – original draft; Writing – review & editing.

Marwin Gutierrez: Conceptualisation; Writing – original draft; Writing – review & editing.

Luca Quartuccio: Methodology; Supervision; Writing – review & editing.

Salvatore De Vita: Methodology; Supervision; Writing – review & editing.

Alen Zabotti: Conceptualisation; Data curation; Formal analysis; Methodology; Project administration; Writing – original draft; Writing – review & editing.

ORCID iDs

Ivan Giovannini 16 https://orcid.org/0000-0002-1110-2518

Martin H. Stradner 16 https://orcid.org/0000-0002-7884-6626

Alen Zabotti 16 https://orcid.org/0000-0002-0573-464X

Funding

The authors received no financial support for the research, authorship and/or publication of this article.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

1. Goules AV and Tzioufas AG. Primary Sjögren’s syndrome: clinical phenotypes, outcome and the development of biomarkers. *Immunol Res* 2017; 65: 331–344.

2. Amft N, Curnow SJ, Scheel-Toellner D, et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren’s syndrome. *Arthritis Rheum* 2001; 44: 2633–2641.

3. Brkic Z, Maria NI, van Helden-Meeuwsen CG, et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren’s syndrome and association with disease activity and BAFF gene expression. *Ann Rheum Dis* 2013; 72: 728–735.

4. Hansen A, Odendahl M, Reiter K, et al. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome. *Arthritis Rheum* 2002; 46: 2160–2171.

5. Fasano S, Mauro D, Macaluso F, et al. Pathogenesis of primary Sjögren’s syndrome beyond B lymphocytes. *Clin Exp Rheumatol* 2020; 38: 315–323.

6. Psianou K, Panagoulas I, Papanastasiou AD, et al. Clinical and immunological parameters of Sjögren’s syndrome. *Autoimmun Rev* 2018; 17: 1053–1064.
7. Bombardieri M, Lewis M and Pitzalis C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. *Nat Rev Rheumatol* 2017; 13: 141–154.

8. Barone F, Bombardieri M, Manzo A, et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren’s syndrome. *Arthritis Rheum* 2005; 52: 1773–1784.

9. Pontarini E, Murray-Brown WJ, Croia C, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren’s syndrome with ectopic germinal centres and MALT lymphoma. *Am Rheum Dis* 2020; 79: 1588–1599.

10. Goules AV, Argyropoulou OD, Pezoulas VC, et al. Primary Sjögren’s syndrome of early and late onset: distinct clinical phenotypes and lymphoma development. *Front Immunol* 2020; 11: 594096.

11. Quartuccio L, Isola M, Baldini C, et al. Biomarkers of lymphoma in Sjögren’s syndrome and evaluation of the lymphoma risk in prelymphomatous conditions: results of a multicenter study. *J Autoimmun* 2014; 51: 75–80.

12. Ibrahim HM. B cell dysregulation in primary Sjögren’s syndrome: a review. *Jpn Dent Sci Rev* 2019; 55: 139–144.

13. Zintzaras E, Voulgarelis M and Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. *Arch Intern Med* 2005; 165: 2337–2344.

14. Nocturne G, Pontarini E, Bombardieri M, et al. Lymphomas complicating primary Sjögren’s syndrome: from autoimmunity to lymphoma. *Rheumatology (Oxford)* 2019; 60: 3513–3521.

15. Nakamura S and Ponzoni M. Marginal zone B-cell lymphoma: lessons from western and eastern diagnostic approaches. *Pathology* 2020; 52: 15–29.

16. De Vita S, Lorenzon G, Rossi G, et al. Salivary gland echography in primary and secondary Sjögren’s syndrome. *Clin Exp Rheumatol* 1992; 10: 351–356.

17. de Clerck LS, Corthouts R, Franx L, et al. Ultrasonography and computer tomography of the salivary glands in the evaluation of Sjögren’s syndrome. *J Rheumatol* 1988; 15: 1777–1781.

18. van Ginkel MS, Glaudemans AWJM, van der Vegt B, et al. Imaging in primary sjenor’s syndrome. *J Clin Med* 2020; 9: 1–21.

19. Zabotti A, Zandonella Callegher S, Gandolfo S, et al. Hyperechoic bands detected by salivary gland ultrasonography are related to salivary impairment in established Sjögren’s syndrome. *Clin Exp Rheumatol* 2019; 37: 146–152.

20. Zandonella Callegher S, Zabotti A, Giovannini I, et al. Normal-appearing salivary gland ultrasonography identifies a milder phenotype of primary Sjögren’s syndrome. *Front Med (Lausanne)* 2020; 7: 602354.

21. Devauchelle-Pensec V, Zabotti A, Carvajal-Alegria G, et al. Salivary gland ultrasonography in primary Sjögren’s syndrome: opportunities and challenges. *Rheumatology (Oxford)* 2019: kez079.

22. Baldini C, Zabotti A, Filipovic N, et al. Imaging in primary Sjögren’s syndrome: the ‘obsolete and the new’. *Clin Exp Rheumatol* 2018; 36: 215–221.

23. van Nimwegen JF, Mossel E, Deli K, et al. Incorporation of salivary gland ultrasonography into the American College of Rheumatology/European League Against Rheumatism Criteria for Primary Sjögren’s syndrome. *Arthritis Care Res (Hoboken)* 2020; 72: 583–590.

24. Jousse-Joulin S, Milic V, Jonsson MV, et al. Is salivary gland ultrasonography a useful tool in Sjögren’s syndrome? A systematic review. *Rheumatology (Oxford)* 2016; 55: 789–800.

25. Deli K, Dijkstra PU, Stel AJ, et al. Diagnostic properties of ultrasound of major salivary glands in Sjögren’s syndrome: a meta-analysis. *Oral Dis* 2015; 21: 792–800.

26. Le Goff M, Corne D, Jousse-Joulin S, et al. Comparison of 2002 AECG and 2016 ACR/EULAR classification criteria and added value of salivary gland ultrasonography in a patient cohort with suspected primary Sjögren’s syndrome. *Arthritis Res Ther* 2017; 19: 269.

27. Jousse-Joulin S, Gatineau F, Baldini C, et al. Weight of salivary gland ultrasonography compared to other items of the 2016 ACR/EULAR classification criteria for Primary Sjögren’s syndrome. *J Intern Med* 2020; 287: 180–188.

28. Takagi Y, Nakamura H, Sumi M, et al. Combined classification system based on ACR/EULAR and ultrasonographic scores for improving the diagnosis of Sjögren’s syndrome. *PLoS ONE* 2018; 13: e0195113.

29. Geng Y, Li B, Deng X, et al. Salivary gland ultrasound integrated with 2016 ACR/EULAR classification criteria improves the diagnosis of primary Sjögren’s syndrome. *Clin Exp Rheumatol* 2020; 38: 322–328.

30. Baer AN, Grader-Beck T, Antiochos B, et al. Ultrasound-guided biopsy of suspected salivary gland lymphoma in Sjögren’s syndrome. *Arthritis Care Res (Hoboken)* 2021; 73: 849–855.
31. Zabotti A, Zandonella Callegher S, Lorenzon M, et al. Ultrasound-guided core needle biopsy compared with open biopsy: a new diagnostic approach to salivary gland enlargement in Sjögren’s syndrome? *Rheumatology* (Oxford) 2021; 60: 1282–1290.

32. Manfré V, Giovannini I, Zandonella Callegher S, et al. Ultrasound and biotic investigation of patients with primary Sjögren’s syndrome. *J Clin Med* 2021; 10: 1171.

33. Vitali C, Bombardieri S, Moutsopoulos HM, et al. Preliminary criteria for the classification of Sjögren’s syndrome. Results of a prospective concerted action supported by the European Community. *Arthritis Rheum* 1993; 36: 340–347.

34. Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: a consensus and data-driven methodology involving three international patient cohorts. *Ann Rheum Dis* 2017; 76: 9–16.

35. Manoussakis MN and Kapsogeorgou EK. The role of intrinsic epithelial activation in the pathogenesis of Sjögren’s syndrome. *J Autoimmun* 2010; 35: 219–224.

36. Christodoulou MI, Kapsogeorgou EK and Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjögren’s syndrome. *J Autoimmun* 2010; 34: 400–407.

37. Ciccia F, Guggino G, Giardina A, et al. The role of innate and lymphoid IL-22-producing cells in the immunopathology of primary Sjögren’s syndrome. *Expert Rev Clin Immunol* 2014; 10: 533–541.

38. Alunno A, Carubbi F, Bistoni O, et al. T regulatory and T Helper 17 cells in primary Sjögren’s syndrome: facts and perspectives. *Mediators Inflamm* 2015; 2015: 243723.

39. Fessler J, Fasching P, Raicht A, et al. Lymphopenia in primary Sjögren’s syndrome is associated with premature aging of naïve CD4+ T cells. *Rheumatology* 2021; 60: 588–597.

40. van der Kroef M, van den Hoogen LL, Mertens JS, et al. Cytometry by time of flight identifies distinct signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjögrens syndrome. *Eur J Immunol* 2020; 50: 119–129.

41. Mingueau M, Bouaudou S, Haskett S, et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. *J Allergy Clin Immunol* 2016; 137: 1809–1821.

42. James JA, Guthridge JM, Chen H, et al. Unique Sjögren’s syndrome patient subsets defined by molecular features. *Rheumatology* 2020; 59: 860–868.

43. Emamian ES, Leon JM, Lessard CJ, et al. Peripheral blood gene expression profiling in Sjögren’s syndrome. *Genes Immun* 2009; 10: 285–296.

44. Riviere E, Pascaud J, Tchitchek N, et al. Salivary gland epithelial cells from patients with Sjögren’s syndrome induce B-lymphocyte survival and activation. *Ann Rheum Dis* 2020; 79: 1468–1477.

45. Soret P, Le Dantec C, Desvaux E, et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. *Nat Commun* 2021; 12: 1–18.

46. Hong X, Meng S, Tang D, et al. Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjögren’s syndrome. *Front Immunol* 2020; 11: 594658.

47. Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multimetics analyses. *Exp Mol Med* 2020; 52: 1419–1427.

48. Stark R, Grzelak M and Hadfield J. RNA sequencing: the teenage years. *Nat Rev Genet* 2019; 20: 631–656.

49. Chang Q, Ornatsky OI, Siddiqui I, et al. Imaging mass cytometry. *Cytom Part J Int Soc Anal Cytol* 2017; 91: 160–169.

50. Jang C, Chen L and Rabinowitn JD. Metabolomics and Isotope tracing. *Cell* 2018; 173: 822–837.

51. Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. *J Chromatogr Sci* 2017; 55: 182–196.

52. Meulen TA, van der Vissink A, Bootsma H, et al. Microbiome in Sjögren’s syndrome: here we are. *Ann Rheum Dis*. Epub ahead of print 22 July 2020. DOI: 10.1136/annrheumdis-2020-218213.

53. Correc D, Jousse-Joulin S, Pers JO, et al. Contribution of salivary gland ultrasonography to the diagnosis of Sjögren’s syndrome: toward new diagnostic criteria. *Arthritis Rheum* 2013; 65: 216–225.

54. Vivino FB. Sjögren’s syndrome: clinical aspects. *Clin Immunol* 2017; 182: 48–54.

55. Scofield RH. Autoantibodies as predictors of disease. *Lancet Lond Engl* 2004; 363: 1544–1546.

56. Jonsson R. Autoantibodies present before symptom onset in primary Sjögren syndrome. *JAMA* 2013; 310: 1854.
57. Theander E, Jonsson R, Sjöström B, et al. Prediction of Sjögren’s syndrome years before diagnosis and identification of patients with early onset and severe disease course by autoantibody profiling. Arthritis Rheumatol 2015; 67: 2427–2436.

58. Kuo CF, Grainge MJ, Valdes AM, et al. Familial risk of Sjögren’s syndrome and co-aggregation of autoimmune diseases in affected families: a nationwide population study. Arthritis Rheumatol 2015; 67: 1904–1912.

59. Rivera TL, Izmirly PM, Birnbaum BK, et al. Disease progression in mothers of children enrolled in the Research Registry for Neonatal Lupus. Ann Rheum Dis 2009; 68: 828–835.

60. van der Woude D and van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol 2018; 32: 174–187.

61. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002; 61: 554–558.

62. French K, Fleming C, Bell C, et al. Labial gland biopsy: shared care, medicolegal and surgical considerations. Oral Surg 2019; 12: 189–197.

63. Fisher BA, Jonsson R, Daniels T, et al. Standardisation of labial salivary gland histopathology in clinical trials in primary Sjögren’s syndrome. Ann Rheum Dis 2017; 76: 1161–1168.

64. Guellec D, Corne C, Jousse-Joulin S, et al. Diagnostic value of labial minor salivary gland biopsy for Sjögren’s syndrome: a systematic review. Autoimmun Rev 2013; 12: 416–420.

65. Kroese FGM, Haacke EA and Bombardieri M. The role of salivary gland histopathology in primary Sjögren’s syndrome: promises and pitfalls. Clin Exp Rheumatol 2018; 36: 222–233.

66. Cindil E, Oktar SO, Akkan K, et al. Ultrasound elastography in assessment of salivary glands involvement in primary Sjögren’s syndrome. Clin Imaging 2018; 50: 229–234.

67. Vukicevic AM, Radovic M, Zabotti A, et al. Deep learning segmentation of Primary Sjögren’s syndrome affected salivary glands from ultrasonography images. Comput Biol Med 2021; 129: 104154.

68. Spijkervet FK, Haacke E, Kroese FG, et al. Parotid gland biopsy, the alternative way to diagnose Sjögren syndrome. Rheum Dis Clin North Am 2016; 42: 485–499.
81. Liang Y, Yang Z, Qin B, et al. Primary Sjögren’s syndrome and malignancy risk: a systematic review and meta-analysis. Ann Rheum Dis 2014; 73: 1151–1156.

82. Seror R, Ravaud P, Bowman SJ, et al. EULAR Sjögren’s syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjögren’s syndrome. Ann Rheum Dis 2010; 69: 1103–1109.

83. Seror R, Mariette X, Bowman S, et al. Accurate detection of changes in disease activity in primary Sjögren’s syndrome by the European League Against Rheumatism Sjögren’s Syndrome Disease Activity Index. Arthritis Care Res (Hoboken) 2010; 62: 551–558.

84. Seror R, Theander E, Brun JG, et al. Validation of EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann Rheum Dis 2015; 74: 859–866.

85. Seror R, Bootsma H, Saraux A, et al. Defining disease activity states and clinically meaningful improvement in primary Sjögren’s syndrome with EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Ann Rheum Dis 2016; 75: 382–389.

86. Seror R, Meiners P, Baron G, et al. Development of the ClinESSDAI: a clinical score without biological domain. A tool for biological studies. Ann Rheum Dis 2016; 75: 1945–1950.

87. Seror R, Mariette X, et al. EULAR Sjögren’s Syndrome Patient Reported Index (ESSPRI): development of a consensus patient index for primary Sjögren’s syndrome. Ann Rheum Dis 2011; 70: 968–972.

88. Seror R, Gottenberg JE, Devauchelle-Pensec V, et al. Assessment of systemic disease activity is complementary to assessment of patient’s symptoms in primary Sjögren’s syndrome. Ann Rheum Dis 2011; 70: 505.

89. Moutsopoulos HM and Skopoulis FN. Sjögren’s syndrome: disease activity indexes! Do they make us better clinicians or technicians? Clin Exp Rheumatol 2018; 36: 29–30.

90. De Vita S, Gandolfo S, Zandonella Callegher S, et al. The evaluation of disease activity in Sjögren’s syndrome based on the degree of MALT involvement: glandular swelling and cryoglobulinemia compared to ESSDAI in a cohort study. Clin Exp Rheumatol 2018; 36: 150–156.

91. Arends S, Wolff L, de Nimwegen JF, et al. Composite of Relevant Endpoints for Sjögren’s Syndrome (CRESS): development and validation of a novel outcome measure. Lancet Rheumatol 2021; 3: e553–562.

92. Brito-Zerón P, Retamozo S and Ramos-Casals M. Phenotyping Sjögren’s syndrome: towards a personalised management of the disease. Clin Exp Rheumatol 2018; 36: 198–209.

93. HarmonicSS – Harmonization and integrative analysis of regional, national and international Cohorts on primary Sjögren’s Syndrome (pSS) towards improved stratification, treatment and health policy making, https://www.harmonicss.eu/
of lymphoma. *Clin Exp Rheumatol* 2013; 31: 272–280.

103. Baer AN, Medrano L, McAdams-DeMarco M, et al. Association of anticientromere antibodies with more severe exocrine glandular dysfunction in Sjögren’s syndrome: analysis of the Sjögren’s international collaborative clinical alliance cohort. *Arthritis Care Res (Hoboken)* 2016; 68: 1554–1559.

104. Tarn JR, Howard-Tripp N, Lendrem DW, et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials. *Lancet Rheumatol* 2019; 1: e85–94.

105. Carubbi F, Alunno A, Cipriani P, et al. A retrospective, multicenter study evaluating the prognostic value of minor salivary gland histology in a large cohort of patients with primary Sjögren’s syndrome. *Lupus* 2015; 24: 315–320.

106. López-Villalobos EF, Muñoz-Valle JF, Palafoux-Sánchez CA, et al. Cytokine profiles and clinical characteristics in primary Sjögren’s syndrome patient groups. *J Clin Lab Anal* 2021; 35: e23629.

107. Ramos-Casals M and Font J. Primary Sjögren’s syndrome: current and emergent aetiopathogenic concepts. *Rheumatology (Oxford)* 2005; 44: 1354–1367.

108. Milic V, Colic J, Cirkovic A, et al. Disease activity and damage in patients with primary Sjögren’s syndrome: prognostic value of salivary gland ultrasonography. *PLoS ONE* 2019; 14: e0226498.

109. Vitali C, Palombi G, Baldini C, et al. Sjögren’s Syndrome Disease Damage Index and disease activity index: scoring systems for the assessment of disease damage and disease activity in Sjögren’s syndrome, derived from an analysis of a cohort of Italian patients. *Arthritis Rheum* 2007; 56: 2223–2231.

110. Barry RJ, Sutcliffe N, Isenberg DA, et al. The Sjögren’s Syndrome Damage Index – a damage index for use in clinical trials and observational studies in primary Sjögren’s syndrome. *Rheumatology* 2008; 47: 1193–1198.

111. Hernández-Molina G and Sánchez-Hernández T. Clinimetric methods in Sjögren’s syndrome. *Semin Arthritis Rheum* 2013; 42: 627–639.

112. Reyes-Long S, Gutierrez M, Clavijo-Cornejo D, et al. Subclinical interstitial lung disease in patients with systemic sclerosis. A pilot study on the role of ultrasound. *Reumatol Clin* 2021; 17: 144–149.

113. Vreju FA, Filippucci E, Gutierrez M, et al. Subclinical ultrasound synovitis in a particular joint is associated with ultrasound evidence of bone erosions in that same joint in rheumatoid patients in clinical remission. *Clin Exp Rheumatol* 2016; 34: 673–678.

114. Chowalloor P, Raymond WD, Cheah P, et al. The burden of subclinical intra-articular inflammation in gout. *Int J Rheum Dis* 2020; 23: 661–668.

115. Baldini C, Luciano N, Tarantini G, et al. Salivary gland ultrasonography: a highly specific tool for the early diagnosis of primary Sjögren’s syndrome. *Arthritis Res Ther* 2015; 17: 146.

116. Law ST, Jafarzadeh SR, Govender P, et al. Comparison of ultrasound features of major salivary glands in sarcoidosis, amyloidosis, and Sjögren’s syndrome. *Arthritis Care Res (Hoboken)* 2020; 72: 1466–1473.

117. Luciano N, Baldini C, Tarantini G, et al. Ultrasoundography of major salivary glands: a highly specific tool for distinguishing primary Sjögren’s syndrome from undifferentiated connective tissue diseases. *Rheumatology (Oxford)* 2015; 54: 2198–2204.

118. Shimizu M, Okamura K, Kise Y, et al. Effectiveness of imaging modalities for screening IgG4-related dacrooadenitis and sialadenitis (Mikulicz’s disease) and for differentiating it from Sjögren’s syndrome (SS), with an emphasis on sonography. *Arthritis Res Ther* 2015; 17: 223.

119. Astorri E, Sutcliffe N, Richards PS, et al. Ultrasound of the salivary glands is a strong predictor of labial gland biopsy histopathology in patients with sicca symptoms. *J Oral Pathol Med* 2016; 45: 450–454.

120. Jousse-Joulin S and Coiffier G. Current status of imaging of Sjögren’s syndrome. *Best Pract Res Clin Rheumatol* 2020; 34: 101592.

121. Mossel E, Delli K, van Nimwegen JF, et al. Video clip assessment of a salivary gland ultrasound scoring system in Sjögren’s syndrome using consensual definitions: an OMERACT ultrasound working group
reliability exercise. Ann Rheum Dis 2019; 78: 967–973.

123. Zabotti A, Zandonella Callegher S, Tullio A, et al. Salivary gland ultrasonography in Sjögren’s syndrome: a European multicenter reliability exercise for the HarmonicSS project. Front Med (Lausanne) 2020; 7: 581248.

124. Theander E and Mandl T. Primary Sjögren’s syndrome: diagnostic and prognostic value of salivary gland ultrasonography using a simplified scoring system. Arthritis Care Res (Hoboken) 2014; 66: 1102–1107.

125. Inanc N, Atähinkaya Y, Mumcu G, et al. Evaluation of salivary gland ultrasonography in primary Sjögren’s syndrome: does it reflect clinical activity and outcome of the disease? Clin Exp Rheumatol 2019; 37: 140–145.

126. Coiffier G, Martel A, Albert JD, et al. Ultrasoundographic damages of major salivary glands are associated with cryoglobulinemic vasculitis and lymphoma in primary Sjögren’s syndrome: are the ultrasoundographic features of the salivary glands new prognostic markers in Sjögren’s syndrome? Ann Rheum Dis 2021; 80: e111.

127. Fidelix T, Czapkowski A, Azjen S, et al. Salivary gland ultrasonography as a predictor of clinical activity in Sjögren’s syndrome. PLoS ONE 2017; 12: e0182287.

128. Yalcinkaya Y, Mumcu G, Özdemir FT, et al. Are salivary gland ultrasonography scores associated with salivary flow rates and oral health-related quality of life in Sjögren syndrome? J Rheumatol 2020; 47: 1774–1779.

129. Fisher BA, Everett CC, Rout J, et al. Effect of rituximab on a salivary gland ultrasound score in primary Sjögren’s syndrome: results of the TRACTISS randomised double-blind multicentre substudy. Ann Rheum Dis 2018; 77: 412–416.

130. Corneec D, Jousse-Joulin S, Costa S, et al. High-grade salivary-gland involvement, assessed by histology or ultrasonography, is associated with a poor response to a single rituximab course in primary Sjögren’s syndrome: data from the TEARS randomized trial. PLoS ONE 2016; 11: e0162787.

131. Diekhoff T, Fischer T, Schefer Q, et al. Ianalumab (VAY736) in primary Sjögren’s syndrome: assessing disease activity using multimodal ultrasound. Clin Exp Rheumatol 2020; 38: 228–236.

132. Hocevar A, Jousse-Joulin S, Perko N, et al. Assessing the vascularization of salivary glands in patients with sjögren’s syndrome – an OMERACT ultrasound group reliability exercise. Arthritis Rheumatol 2019; 71: 470–472.

133. Hocevar A, Bruyn GA, Terslev L, et al. Development of a new ultrasound scoring system to evaluate glandular inflammation in Sjögren’s syndrome: an OMERACT reliability exercise. Rheumatology 2021; 1: keab876.

134. Niemelä RK, Takalo R, Pääkkö E, et al. Ultrasonography of salivary glands in primary Sjögren’s syndrome. A comparison with magnetic resonance imaging and magnetic resonance sialography of parotid glands. Rheumatology (Oxford) 2004; 43: 875–879.

135. Salaffi F, Argalia G, Carotti M, et al. Salivary gland ultrasonography in the evaluation of primary Sjögren’s syndrome. Comparison with minor salivary gland biopsy. J Rheumatol 2000; 27: 1229–1236.

136. Ferro F, Izzetti R, Vitali S, et al. Ultra-high frequency ultrasonography of labial glands is a highly sensitive tool for the diagnosis of Sjögren’s syndrome: a preliminary study. Clin Exp Rheumatol 2020; 38: 210–215.

137. Vitali C, Minniti A, Pignataro F, et al. Management of Sjögren’s syndrome: present issues and future perspectives. Front Med (Lausanne) 2021; 8: 676885.

138. Goules AV, Exarchos TP, Pezoulas VC, et al. Sjögren’s syndrome towards precision medicine: the challenge of harmonisation and integration of cohorts. Clin Exp Rheumatol 2019; 37: 175–184.

139. Nichols KK, Donnenfeld ED, Karpecki PM, et al. Safety and tolerability of lifitegrast ophthalmic solution 5.0%: pooled analysis of five randomized controlled trials in dry eye disease. Eur J Ophthalmol 2019; 29: 394–401.
143. Greiner JV. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months. *Curr Eye Res* 2012; 37: 272–278.

144. Godin MR, Stinnett SS and Gupta PK. Outcomes of thermal pulsation treatment for dry eye syndrome in patients with Sjogren disease. *Cornea* 2018; 37: 1155–1158.

145. Craig JP, Chen YH and Turnbull PRK. Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. *Investig Ophthalmology Vis Sci* 2015; 56: 1965.

146. Sabeti S, Kheirkhah A, Yin J, et al. Management of meibomian gland dysfunction: a review. *Surv Ophthalmol* 2020; 65: 205–217.

147. Watanabe M, Yamada C, Komagata Y, et al. New low-dose liquid pilocarpine formulation for treating dry mouth in Sjögren’s syndrome: clinical efficacy, symptom relief, and improvement in quality of life. *J Pharm Health Care Sci* 2018; 4: 4.

148. Rao RS, Akula R, Satyanarayana TSV, et al. Recent advances of pacemakers in treatment of xerostomia: a systematic review. *J Int Soc Prev Community Dent* 2019; 9: 311–315.

149. Wolff A, Koray M, Campisi G, et al. Electrostimulation of the lingual nerve by an intraoral device may lead to salivary gland regeneration: a case series study. *Med Oral Patol Oral Cir Bucal* 2018; 23: e552–e559.

150. Karagozoglu KH, Vissink A, Forouzanfar T, et al. Sialendoscopy enhances salivary gland function in Sjögren’s syndrome: a 6-month follow-up, randomised and controlled, single blind study. *Ann Rheum Dis* 2018; 77: 1025–1031.

151. Capaccio P, Canzi P, Torretta S, et al. Combined interventional sialendoscopy and intraductal steroid therapy for recurrent sialadenitis in Sjögren’s syndrome: results of a pilot monocentric trial. *Clin Otolaryngol* 2018; 43: 96–102.

152. Coca KK, Gillespie MB, Beckmann NA, et al. Sialendoscopy and Sjögren’s disease: a systematic review. *Laryngoscope* 2021; 131: 1474–1481.

153. Gandolfo S and De Vita S. Emerging drugs for primary Sjögren’s syndrome. *Expert Opin Emerg Drugs* 2019; 24: 121–132.

154. De Vita S, Quartuccio L, Seror R, et al. Efficacy and safety of belimumab given for 12 months in primary Sjögren’s syndrome: the BELISS open-label phase II study. *Rheumatology (Oxford)* 2015; 54: 2249–2256.

155. Gandolfo S and De Vita S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren’s syndrome. *Clin Exp Rheumatol* 2019; 37: 199–208.

156. Dörner T, Posch MG, Li Y, et al. Treatment of primary Sjögren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. *Ann Rheum Dis* 2019; 78: 641–647.

157. Mariette X, Seror R, Quartuccio L, et al. Efficacy and safety of belimumab in primary Sjögren’s syndrome: results of the BELISS open-label phase II study. *Ann Rheum Dis* 2015; 74: 526–531.

158. Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. *J Immunol* 2005; 174: 817–826.

159. De Vita S, Quartuccio L, Salvin S, et al. Sequential therapy with belimumab followed by rituximab in Sjögren’s syndrome associated with B-cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. *Clin Exp Rheumatol* 2014; 32: 490–494.

160. Mariette X, Baldini C, Barone F, et al. Op0135 Safety And Efficacy Of Subcutaneous Belimumab And Intravenous Rituximab Combination In Patients With Primary Sjögren’s syndrome: a phase 2, randomised, placebo-controlled 68-week study. *Ann Rheum Dis* 2021; 80: 78–79.

161. Fisher BA, Szanto A, Ng WF, et al. Assessment of the anti-CD40 antibody iscalimab in patients with primary Sjögren’s syndrome: a multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. *Lancet Rheumatol* 2020; 2: e142–152.

162. Posada J, Valadkhan S, Burge D, et al. Improvement of severe fatigue following nuclease therapy in patients with primary Sjögren’s syndrome: a multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. *Lancet Rheumatol* 2020; 2: e142–152.

163. Cohen PL and McCulloch A. Fingolimod reduces salivary infiltrates and increases salivary secretion in a murine Sjögren’s model. *J Autoimmun* 2020; 115: 102549.

164. Luo D, Chen Y, Zhou N, et al. Blockade of Th17 response by IL-38 in primary Sjögren’s syndrome. *Mol Immunol* 2020; 127: 107–111.
165. Qi J, Zhang Z, Tang X, et al. IL-27 regulated CD4+IL-10+ T cells in experimental Sjögren syndrome. *Front Immunol* 2020; 11: 1699, https://www.frontiersin.org/article/10.3389/fimmu.2020.01699 (accessed 17 January 2022).

166. Zheng X, Wang Q, Yuan X, et al. B7-H4 inhibits the development of primary Sjögren’s syndrome by regulating treg differentiation in NOD/Lij mice. *J Immunol Res* 2020; 2020: 4896727.

167. Del Papa N, Minniti A, Lorini M, et al. Therapeutic Advances in Musculoskeletal Disease. 2021; 5: 102.

168. Alunno A, Leone MC, Giacomelli R, et al. Lymphoma and lymphomagenesis in primary Sjögren’s syndrome. *Clin Exp Rheumatol* 2018; 36: 121–129.

169. Zheng X, Wang Q, Yuan X, et al. IL-27 regulated CD4+IL-10+ T cells in experimental Sjögren syndrome. *Front Immunol* 2020; 11: 1699, https://www.frontiersin.org/article/10.3389/fimmu.2020.01699 (accessed 17 January 2022).

170. Zheng X, Wang Q, Yuan X, et al. B7-H4 inhibits the development of primary Sjögren’s syndrome by regulating treg differentiation in NOD/Lij mice. *J Immunol Res* 2020; 2020: 4896727.

171. Del Papa N, Minniti A, Lorini M, et al. The role of interferons in the pathogenesis of Sjögren’s syndrome and future therapeutic perspectives. *Biomolecules* 2021; 11: 251.

172. Fox RI, Fox CM, Gottenberg JE, et al. Treatment of Sjögren’s syndrome: current therapy and future directions. *Rheumatology (Oxford)* 2021; 60: 2066–2074.

173. De Benedittis G, Ciccacci C, Latini A, et al. Emerging role of microRNAs and long non-coding RNAs in Sjögren’s syndrome. *Genes* 2021; 12: 903.

174. Fox RI, Fox CM, Gottenberg JE, et al. Treatment of Sjögren’s syndrome: current therapy and future directions. *Rheumatology (Oxford)* 2021; 60: 2066–2074.

175. De Benedittis G, Ciccacci C, Latini A, et al. Emerging role of microRNAs and long non-coding RNAs in Sjögren’s syndrome. *Genes* 2021; 12: 903.

176. Cha S, Mona M, Lee KE, et al. MicroRNAs in autoimmune Sjögren’s syndrome. *Genomics Inform* 2018; 16: e19.

177. Carubbi F, Alunno A, Cipriani P, et al. Different operators and histologic techniques in the assessment of germinal center-like structures in primary Sjögren’s syndrome minor salivary glands. *PLoS ONE* 2019; 14: e0211142.

178. Retamozo S, Brito-Zerón P and Ramos-Casals M. Prognostic markers of lymphoma development in primary Sjögren syndrome. *Lupus* 2019; 28: 923–936.

179. Risselada AP, Kruize AA, Goldschmeding R, et al. The prognostic value of routinely performed minor salivary gland assessments in primary Sjögren’s syndrome. *Am Rheum Dis* 2014; 73: 1537–1540.

180. Argyriou E, Nezos A, Roussos P, et al. Leukocyte immunoglobulin-like receptor A3 (LLRRA3): a novel marker for lymphoma development among patients with young onset Sjögren’s syndrome. *J Autoimmun* 2021; 121: 102648.

181. Mossel E, van Nimwegen JF, Stel AJ, et al. Different operators and histologic techniques in the assessment of germinal center-like structures in primary Sjögren’s syndrome minor salivary glands. *PLoS ONE* 2019; 14: e0211142.

182. Chatzis L, Goules AV, Pezoulas V, et al. A biomarker for lymphoma development in primary Sjögren’s syndrome minor salivary glands. *J Clin Med* 2021; 10: 644.

183. Lorenzon M, Tulipano Di, Franco F, Zabotti A, et al. Sonographic features of lymphoma of the major salivary glands diagnosed with ultrasound-guided core needle biopsy in Sjögren’s syndrome. *Clin Exp Rheumatol* 2021; 39: 175–183.

184. Parker SH, Jobe WE, Dennis MA, et al. US-guided automated large-core breast biopsy. *Radiology* 1993; 187: 507–511.
188. Witt BL and Schmidt RL. Ultrasound-guided core needle biopsy of salivary gland lesions: a systematic review and meta-analysis. *Laryngoscope* 2014; 124: 695–700.

189. Manfrè V, Cafaro G, Riccucci I, et al. One year in review 2020: comorbidities, diagnosis and treatment of primary Sjögren’s syndrome. *Clin Exp Rheumatol* 2020; 38: 10–22.

190. Assessing the vascularization of salivary glands in patients with Sjögren’s syndrome – an OMERACT Ultrasound group reliability exercise. ACR Meeting Abstracts, https://acrabstracts.org/abstract/assessing-the-vascularization-of-salivary-glands-in-patients-with-sjogrens-syndrome-an-omeract-ultrasound-group-reliability-exercise/ (accessed 7 September 2021).

191. Romão VC, Talarico R, Scirè CA, et al. Sjögren’s syndrome: state of the art on clinical practice guidelines. *RMD Open* 2018; 4: e000789.