Some Investigations on a Class of Analytic and Univalent Functions Involving q-Differentiation

Ayotunde Olajide Lasode*, Timothy Oloyede Opoola

Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria

lasode_ayo@yahoo.com, opoola.to@unilorin.edu.ng

*Correspondence: lasode_ayo@yahoo.com

ABSTRACT. We use the concept of q-differentiation to define a class $E_q(\beta, \delta)$ of analytic and univalent functions. The investigations thereafter includes coefficient estimates, inclusion property and some conditions for membership of some analytic functions to be in the class $E_q(\beta, \delta)$. Our results generalize some known and new ones.

1. Introduction and Definitions

We let $\mathcal{U} = \{z : z \in \mathbb{C}, |z| < 1\}$ represent the unit disk and \mathcal{A} represent the class of normalized analytic functions of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m, \quad z \in \mathcal{U}$$

where $f(0) = 0 = f'(0) - 1$. Also, let \mathcal{S} represent a subset of \mathcal{A} containing functions univalent in \mathcal{U}. A function f in \mathcal{S} is a member of class $BT(\delta)$ of bounded turning functions of order δ if it satisfies the geometric condition

$$\mathcal{R}e f'(z) > \delta \in [0, 1), \quad z \in \mathcal{U}.$$

Let $BT(0) = BT$ represent the class of bounded turning functions. It is known (see [1]) that $f \in BT$ are univalent functions. Also, a function f in \mathcal{S} is a member of class $CV(\delta)$ of convex functions of order δ if it satisfies the geometric condition

$$\mathcal{R}e \left(z \frac{f''(z)}{f'(z)} + 1 \right) > \delta \in [0, 1), \quad z \in \mathcal{U}.$$

Let $CV(0) = CV$ represent the class of convex functions.

The importance of operators in geometric function theory cannot be underrated. For instance see [2, 13, 15] for some known ones.

In 1908, Jackson [7] (see also [3, 4, 8–11]) initiated the concept of q-calculus as follows.
Definition 1.1. For $q \in (0, 1)$, the q-differentiation of function $f \in \mathcal{A}$ is defined by

$$D_qf(0) = f'(0), \quad D_qf(z) = \frac{f(z) - f(qz)}{z(1-q)} \quad (z \neq 0) \quad \text{and} \quad D_q^2f(z) = D_q(D_qf(z)). \tag{2}$$

Obviously, applying (2) in (1) gives us

$$D_qf(z) = 1 + \sum_{m=2}^{\infty} [m]_q a_m z^{m-1} \quad \text{and} \quad zD_q^2f(z) = \sum_{m=2}^{\infty} [m-1]_q [m]_q a_m z^{m-1} \tag{3}$$

where $[m]_q = \frac{1-q^m}{1-q}$ and $\lim_{q\uparrow 1}[m]_q = m$.

For example if $f(z) = z^m$, then by using (2),

$$D_qf(z) = D_q(z^m) = \frac{1-q^m}{1-q} z^{m-1} = [m]_q z^{m-1}$$

and observe that

$$\lim_{q\uparrow 1} D_qf(z) = \lim_{q\uparrow 1} ([m]_q z^{m-1}) = mz^{m-1} = f'(z)$$

where $f'(z)$ is the classical differentiation.

In this work, the q-differential operator was used to define a class of analytic functions and generalize some results.

2. Relevant Lemmas

We represent by \mathcal{P} the well-known class of analytic functions of the form

$$p(z) = 1 + \sum_{m=1}^{\infty} c_m z^m, \quad \Re p(z) > 0, \ z \in \mathcal{U}D \tag{4}$$

and by $\mathcal{P}(\delta) \subseteq \mathcal{P}(0) = \mathcal{P}$ the class whose members are of the form

$$p_\delta(z) = 1 + \sum_{m=1}^{\infty} (1-\delta)c_m z^m, \quad \Re p(z) > \delta \in [0, 1), \ z \in \mathcal{U}D. \tag{5}$$

The following lemmas shall be required to proof our results.

Lemma 2.1 ([14]). Let $g(z) = \sum_{m=1}^{\infty} a_m z^m < G(z) = \sum_{m=1}^{\infty} b_m z^m, \ z \in \mathcal{U}D$ where $G(z)$ is univalent in $\mathcal{U}D$ and $G(\mathcal{U}D)$ is a convex domain, then $|a_m| \leq |b_1|, \ m \in \mathbb{N}$. Equality holds for the function $g(z) = G(\tau z^m), \ |	au| = 1$.

The lemmas that follow are the q-analogous versions of the original ones as referenced.

Lemma 2.2 ([6]). Let $p(z)$ be analytic in $\mathcal{U}D$ such that $p(0) = 1$. If

$$\Re \left(\frac{zD_q(p(z))}{p(z)} + 1 \right) > \frac{3\delta - 1}{2\delta}, \ z \in \mathcal{U}D,$$

then for $\alpha = (\delta - 1)/\delta$ $(\delta \in [1/2, 1)), \ \Re p(z) > 2^\alpha$. The constant 2^α is the best possible.

Lemma 2.3 ([5]). Let $u = u_1 + u_2i$ and $v = v_1 + v_2i$ such that $\gamma(u, v) : \mathbb{C}^2 \longrightarrow \mathbb{C}$ is a complex-valued function such that

$$...$$
(1) \(\gamma(u, v) \) is continuous in \(\Pi \subset \mathbb{C}^2 \),
(2) \((1, 0) \in \Pi \) and \(\Re(\gamma(1, 0)) > 0 \) and
(3) \(\Re(\gamma(\xi + (1 - \xi)u_2i, v_1)) \leq \xi \) (0 \(\leq \xi < 1 \)) if \((\xi + (1 - \xi)u_2i, v_1) \in \Pi \) and
\(v_1 \leq -\frac{1}{2}(1 - \xi)(1 + u_2^2) \) and \(\Re(\gamma(\xi + (1 - \xi)u_2i, v_1)) \geq \xi \) (\(\xi > 1 \)) if \((\xi + (1 - \xi)u_2i, v_1) \in \Pi \) and
\(v_1 \geq \frac{1}{2}(1 - \xi)(1 + u_2^2) \).

If \(p(z) \in \mathcal{P} \) for \((p(z), zD_q p(z)) \in \Pi \) and \(\Re(\gamma(p(z), zD_q p(z))) > \xi \), \(z \in \mathcal{U} \mathcal{D} \), then \(\Re p(z) > \xi \) in \(\mathcal{U} \mathcal{D} \).

3. Main Results

The definition of the investigated class is as follows.

A function \(f(z) \in \mathcal{A} \) is a member of the class \(\mathcal{E}_q(\beta, \delta) \) if the condition
\[
\Re \left(D_q f(z) + \frac{1 + e^{i\beta}}{2} zD_q^2 f(z) \right) > \delta, \quad \delta \in [0, 1), \ \beta \in (-\pi, \pi], \ z \in \mathcal{U} \mathcal{D} \tag{6}
\]
holds.

When parameters in (6) are varied, the class \(\mathcal{E}_q(\beta, \delta) \) reduces to some well-known classes of analytic functions that have been studied by some authors. These are cited in our corollaries and remarks.

The following are the proved results.

Theorem 3.1. Let \(\beta \in (-\pi, \pi] \) and \(\delta \in [0, 1) \), if condition (6) holds, then
\[
\mathcal{E}_q(\beta, \delta) \subset \mathcal{B}T_q(\delta).
\]

\(\mathcal{B}T_q(\delta) \) is the class of \(q \)-bounded turning function of order \(\delta \).

Proof. Let \(p(z) = D_q f(z) \) so that \(D_q p(z) = D_q^2 f(z) \) and for \(\kappa = (1 + e^{i\beta})/2 \), then (6) can be expressed as
\[
\Re(p(z) + \kappa zD_q p(z)) > \delta. \tag{7}
\]
In view of the conditions in Lemma 2.3 and for \(p(z) \) in (7), we define the function
\[
\gamma(u, \nu) = u + \kappa \nu
\]
on the domain \(\Pi \) of \(\mathbb{C}^2 \), then
(i) clearly, \(\gamma(u, \nu) \) satisfies the condition (1) in Lemma 2.3,
(ii) for \((1, 0) \in \Pi \), \(\gamma(1, 0) = 1 \implies \Re(\gamma(1, 0)) > 0 \) and
(iii) \(\gamma(\delta + (1 - \delta)u_2i, \nu_1) = \delta + \frac{1 + \cos \delta}{2} \nu_1 + \left((1 - \delta)u_2 + \frac{\sin \delta}{2} \nu_1 \right) i \), thus,
\[
\Re(\gamma(\delta + (1 - \delta)u_2i, \nu_1)) = \delta + \frac{1 + \cos \beta}{2} \nu_1 \leq \delta
\]
for \(\nu_1 \leq -\frac{1}{2}(1 - \delta)(1 + u_2^2) \).
Now since $\gamma(u, \nu)$ satisfies all the conditions $(1-3)$ in Lemma 2.3, then it implies that

$$\Re e(p(z)) = \Re e(\Delta_q f(z)) > \delta, \quad z \in \mathcal{U}$$

hence the proof is complete. \(\square\)

Corollary 3.2 ([1]). Since class $\mathcal{B}_q(\delta)$ is well-known to consist of univalent functions, then $\mathcal{E}_q(\beta, \delta) \subset \mathcal{B}_q(\delta)$ consists of univalent functions.

Corollary 3.3. $\lim_{q \uparrow 1} \mathcal{E}_q(\beta, \delta) \subset \mathcal{B}_q(\delta), \ z \in \mathcal{U}$.\(\mathcal{D}_q\)

Theorem 3.4. If $f \in \mathcal{A}$ is such that

$$\Re e(\Delta_q f(z) + \kappa \Delta_q^2 f(z)) > \delta - \frac{1}{2\delta}, \quad \delta \in [1/2, 1), \ z \in \mathcal{U}$$

and $\kappa = (1 + e^{i\beta})/2$.

Proof. From (6), let $p(z) = \Delta_q f(z) + \kappa \Delta_q^2 f(z)$, then by logarithmic q-differentiation we obtain

$$z \Delta_q p(z) + 1 = z \Delta_q (\Delta_q f(z) + \kappa \Delta_q^2 f(z)) \Delta_q f(z) + \kappa \Delta_q f(z) + 1.$$

Now applying Lemma 2.2 gives

$$\Re e \left(\frac{z \Delta_q p(z)}{p(z)} + 1 \right) = \Re e \left(\frac{z \Delta_q (\Delta_q f(z) + \kappa \Delta_q^2 f(z)) \Delta_q f(z) + \kappa \Delta_q f(z) + 1}{\Delta_q f(z) + \kappa \Delta_q^2 f(z)} + 1 \right) > \frac{3\delta - 1}{2\delta}$$

implies that

$$\Re e \left(\frac{z \Delta_q (\Delta_q f(z) + \kappa \Delta_q^2 f(z)) \Delta_q f(z) + \kappa \Delta_q f(z) + 1}{\Delta_q f(z) + \kappa \Delta_q^2 f(z)} \right) > \frac{\delta - 1}{2\delta}$$

and by the same Lemma 2.2 the proof in complete. \(\square\)

Corollary 3.5. If $f \in \mathcal{A}$ satisfies condition (8), then $f \in \mathcal{E}_q(\beta, 2^{(\delta-1)/\delta})$.

Corollary 3.6. If $f \in \lim_{q \uparrow 1} \mathcal{E}_q(\beta, 1/2)$ is such that

$$\Re e \left(\frac{z(1 + \kappa) f''(z) + \kappa z^2 f'''(z)}{f'(z) + \kappa z f''(z)} \right) > -\frac{1}{2},$$

then

$$\Re e(f'(z) + \kappa z f''(z)) > 1/2, \quad z \in \mathcal{U}.$$
Corollary 3.7. If $f \in E_q(\pi, 1/2)$ is such that
\[\Re \left(\frac{zD_q(D_q f(z))}{D_q f(z)} \right) > -\frac{1}{2}, \] (9)
then
\[\Re(D_q f(z)) > \frac{1}{2}. \]
This means that if condition (9) holds, then f is a q-bounded turning function of order $1/2$. Now if $q \uparrow 1$, then
\[\Re \left(\frac{zf''(z)}{f'(z)} \right) > -\frac{1}{2}, \] (10)
implies
\[\Re(f'(z)) > \frac{1}{2}, \quad z \in \mathcal{U} \mathcal{D}. \]
This means that if condition (10) holds, then f is a bounded turning function of order $1/2$.

Corollary 3.8. If $f \in E_q(0, 1/2)$ is such that
\[\Re \left(\frac{zD_q(D_q f(z) + zD_q^2 f(z))}{D_q f(z) + zD_q^2 f(z)} \right) > -\frac{1}{2}, \] (11)
then
\[\Re(D_q f(z) + zD_q^2 f(z)) > \frac{1}{2} \]
and if $q \uparrow 1$,
\[\Re \left(\frac{2zf''(z) + z^2 f'''(z)}{f'(z) + zf''(z)} \right) > -\frac{1}{2} \]
implies that
\[\Re(f'(z) + zf''(z)) > 1/2, \quad z \in \mathcal{U} \mathcal{D}. \]

Theorem 3.9. Let $\beta \in (-\pi, \pi]$ and $\delta \in [0, 1)$, then the function
\[f(z) = z + a_m z^m \in E_q(\beta, \delta), \quad m = \{2, 3, \ldots\} \] (12)
if
\[|a_m| \leq \frac{2}{[m]_q \{ |X_m| - ((2 + [m - 1]_q) \cos \theta + [m - 1]_q \cos(\beta + \theta_0)) \}} \] (13)
where
\[X_m = 2 + [m - 1]_q (1 + e^{i\beta}) \]
\[|X_m| = \sqrt{2 \left\{ 2 + [m - 1]_q (2 + [m - 1]_q(1 + \cos \beta)) \right\}} \geq 2 \] (14)
and θ_0 attains minimum at
\[\theta_0 = \pi + \arctan \left(-\frac{[m - 1]_q \sin \beta}{2 + [m - 1]_q (1 + \cos \beta)} \right). \] (15)
Proof. Firstly, applying (2) in (12) gives
\[
D_q f(z) = 1 + [m]_q a_m z^{m-1} \\
zD_q^2 f(z) = [m-1]_q [m]_q a_m z^{m-1}
\] (16)
Note that it suffices to study the condition that for \(|z| = 1\),
\[
\left| D_q f(z) + \frac{1 + e^{i\beta}}{2} zD_q^2 f(z) - 1 \right| < \Re \left\{ D_q f(z) + \frac{1 + e^{i\beta}}{2} zD_q^2 f(z) \right\}
\] (17)
so that by putting (16) into (17) we obtain
\[
\left| [m]_q a_m z^{m-1} + \frac{1}{2} [m-1]_q [m]_q (1 + e^{i\beta}) a_m z^{m-1} \right| < \Re \left\{ 1 + [m]_q a_m z^{m-1} + \frac{1}{2} [m-1]_q [m]_q (1 + e^{i\beta}) a_m z^{m-1} \right\}.
\]
Now letting \(|a_m| = r, a_m z^{m-1} = r e^{i\theta}\) and using (14) we obtain
\[
\left| \frac{1}{2} [m]_q r e^{i\theta} X_m \right| < \Re \left\{ 1 + [m]_q r e^{i\theta} + \frac{1}{2} [m-1]_q [m]_q (1 + e^{i\beta}) r e^{i\theta} \right\}
\] (18)
so that
\[
\frac{1}{2} [m]_q r |X_m| \leq \Re F
\] (19)
where
\[
F = 1 + [m]_q r \cos \theta + \frac{1}{2} [m-1]_q [m]_q r \cos \theta + \frac{1}{2} [m-1]_q [m]_q r \cos(\beta + \theta) + \Re F
\]
in (18). Further simplification gives
\[
F = 1 + [m]_q r \cos \theta + \frac{1}{2} [m-1]_q [m]_q r \cos \theta + \frac{1}{2} [m-1]_q [m]_q r \cos(\beta + \theta) + \Im F
\]
so that
\[
\Re F = 1 + \frac{1}{2} [m]_q r \{ 2 \cos \theta + [m-1]_q \cos \theta + [m-1]_q \cos(\beta + \theta) \} = \psi.
\] (20)
Now (19) becomes
\[
\frac{1}{2} [m]_q r |X_m| \leq 1 + \frac{1}{2} [m]_q r \{ (2 + [m-1]_q) \cos \theta + [m-1]_q \cos(\beta + \theta) \}
\]
and by simplification we obtain (13).

To know the values of \(\theta\) where (20) attains minimum implies that
\[
\frac{\partial \psi}{\partial \theta} = -\frac{r [m]_q}{2} \left\{ (2 + [m-1]_q) \sin \theta + [m-1]_q \sin(\beta + \theta) \right\}
\]
implies that
\[
(2 + [m-1]_q) \sin \theta + [m-1]_q \sin(\beta + \theta) = 0
\]
so that
\[
\tan \theta = \frac{-[m-1]_q \sin \beta}{2 + [m-1]_q (1 + \cos \beta)}
\]
which simplifies to (15). □
Corollary 3.10. Let \(f(z) = z + a_m z^m \in \mathcal{E}_q(0, \delta) \) and \(m = \{2, 3, \ldots \} \), then

\[
|a_m| \leq \frac{1}{[m]_q \left\{ \sqrt{1 + 2[m - 1]_q + [m - 1]^2_q + 1 + [m - 1]_q} \right\}}
\]

and if \(q \uparrow 1 \), then

\[
|a_m| \leq \frac{1}{2m^2}.
\]

Corollary 3.11. Let \(f(z) = z + a_m z^m \in \mathcal{E}_q(\pi, \delta) \) and \(m = \{2, 3, \ldots \} \), then

\[
|a_m| \leq \frac{1}{2[m]_q}
\]

and if \(q \uparrow 1 \), then

\[
|a_m| \leq \frac{1}{2m}.
\]

Remark 3.12. Let \(q \uparrow 1 \), then Theorem 3.9 becomes the result in [18].

Theorem 3.13 (Coefficient Estimates). Let \(\beta \in (-\pi, \pi], \delta \in [0, 1) \) and let \(G(z) = 1 + b_1 z + b_2 z^2 + \cdots \in CV(\delta) \). If \(f \in \mathcal{A} \) belongs to \(\mathcal{E}_q(\beta, \delta) \), then

\[
|a_m| \leq \frac{2(1 - \delta) |b_1|}{[m]_q |X_m|}, \quad m = \{2, 3, \ldots \}
\]

(21)

where \(|X_m| \) is defined in (14).

Proof. Let \(f(z) \in \mathcal{E}_q(\beta, \delta) \), therefore from (6) and using (5),

\[
D_q f(z) + \frac{1 + e^{i\beta}}{2} z D_q^2 f(z) = \delta + (1 - \delta)p(z), \quad z \in UD.
\]

(22)

Now putting (3) and (4) into (22) and simplifying gives

\[
1 + \sum_{m=2}^{\infty} \left\{ 1 + [m - 1]_q \left(\frac{1 + e^{i\beta}}{2} \right) \right\} [m]_q a_m z^{m-1} = 1 + \sum_{m=2}^{\infty} (1 - \delta) c_{m-1} z^{m-1}
\]

which implies that

\[
\{2 + [m - 1]_q(1 + e^{i\beta})\} [m]_q a_m = (1 - \delta) c_{m-1}, \quad m = \{2, 3, \ldots \}
\]

where by applying (14) we obtain

\[
X_m \frac{[m]_q}{2(1 - \delta)} a_m = c_{m-1}, \quad m = \{2, 3, \ldots \}.
\]

(23)

Since \(G(UD) \) is a convex domain, then from Lemma 2.1, (23) becomes

\[
\left| X_m \frac{[m]_q}{2(1 - \delta)} a_m \right| = |c_{m-1}| \leq |b_1|
\]

and simplifying further we obtain (21).
Corollary 3.14. Let $f(z) \in \mathcal{E}_q(0, \delta)$, then
\[|a_m| \leq \frac{(1 - \delta)|b_1|}{\sqrt{1 + 2[m - 1]_q + [m - 1]^2_q}} \]
and if $q \uparrow 1$, then
\[|a_m| \leq \frac{(1 - \delta)|b_1|}{m}, \quad m = \{2, 3, \ldots\}. \]

Corollary 3.15. Let $f \in \mathcal{E}_q(\pi, \delta)$, then
\[|a_m| \leq \frac{(1 - \delta)|b_1|}{[m]_q} \]
and if $q \uparrow 1$, then
\[|a_m| \leq \frac{(1 - \delta)|b_1|}{m}, \quad m = \{2, 3, \ldots\}. \]

Remark 3.16. Let $p(z) \in \mathcal{P}$ and $\phi(z) = 1 + \frac{2}{\pi^2} \left(\ln \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2$. If $q \uparrow 1$,
1. $\beta = \pi$ and $G(z) = p(z)$, then Theorem 3.13 becomes the result in [12].
2. and $G(z) = p(z)$, then Theorem 3.13 becomes the result in [16].
3. and $G(z) = \phi(z)$, then Theorem 3.13 becomes the result in [18].
4. and $\beta = 0$, then Theorem 3.13 becomes the result in [17].

Acknowledgment. The authors would like to thank the referees for their careful reading of this manuscript and their valuable suggestions.

References

[1] J.W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. Second Ser. 17 (1915) 12–22. https://doi.org/10.2307/2007212.
[2] F.M. Al-Oboudi, On univalent functions defined by a generalized differential operator, Intern. J. Math. Math. Sci. 27 (2004) 1429–1436. https://doi.org/10.1155/S0161171204108090.
[3] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag Inc., New York, 2012. https://doi.org/10.1007/978-3-642-30898-7.
[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer-Verlag Inc., New York, 2013. https://doi.org/10.1007/978-1-4614-6946-9_1.
[5] K.O. Babalola, T.O. Opoola, Iterated integral transforms of Carathéodory functions and their application to analytic and univalent functions, Tamkang J. Math. 135 (2006) 429–446. https://doi.org/10.5556/j.tkjm.37.2006.149.
[6] K.O. Babalola, λ-pseudo-starlike functions, J. Class. Anal. 3 (2013) 137–147. https://doi.org/10.7153/jca-03-12.
[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinb. 46 (1908) 253–281. https://doi.org/10.1017/S0080456800002751.
[8] F.H. Jackson, On q-difference, Amer. J. Math. 32 (1910) 305–314. https://doi.org/10.2307/2370183.
[9] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag Inc., New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7.
[10] A.O. Lasode, T.O. Opoola, Fekete-Szegő estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by \(q \)-differential operator, Gulf J. Math. 11 (2021) 36–43. https://gjom.org/index.php/gjom/article/view/583.

[11] A.O. Lasode, T.O. Opoola, On a generalized class of bi-univalent functions defined by subordination and \(q \)-derivative operator, Open J. Math. Anal. 5 (2021) 46–52. https://doi.org/10.30538/psrp-oma2021.0092.

[12] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532–537. https://doi.org/10.1090/S0002-9947-1962-0140674-7.

[13] T.O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, Int. J. Math. Anal. 11 (2017) 869–876. https://doi.org/10.12988/ijma.2017.7232.

[14] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. 48 (1945) 48–82. https://doi.org/10.112/plms/s2-48.1.48.

[15] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes Math. 1013 (1983) 362–372. https://doi.org/10.1007/BFb0066543.

[16] H. Silverman, E.M. Silvia, Characterizations for subclasses of univalent functions, Sci. Math. Jpn. 50 (1999) 103–109. https://www.jams.jp/notice/mj/50-1.html.

[17] H.M. Srivastava, D. Răducanu, P. Zaprawa, A certain subclass of analytic functions defined by means of differential subordination, Fac. Sci. Math. Univ. Niš, Serbia 30 (2016) 3743–3757. https://doi.org/10.2298/FIL1614743S.

[18] L. Trojnar-Śpelina, Characterizations of subclasses of univalent functions, Demonstr. Math. 38 (2005) 35–42. https://doi.org/10.1515/dema-2005-0106.