Spin-orbit decomposition of *ab initio* wavefunctions

Calvin W. Johnson
Department of Physics, San Diego State University,
5500 Campanile Drive, San Diego, CA 92182-1233 and
Computational Sciences Research Center, San Diego State University,
5500 Campanile Drive, San Diego, CA 92182-1245

Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum \(J \), leading to \(j-j \) coupling, phenomenological models suggested decades ago that for \(0p \)-shell nuclides a simpler picture can be realized via coupling of total spin \(S \) and total orbital angular momentum \(L \). I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern *ab initio* two-body interactions, and dissect the resulting wavefunctions into their component \(L \)- and \(S \)-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest \(L-S \) may be a useful tool for analyzing *ab initio* wavefunctions of light nuclei, for example in the case of rotational bands.

PACS numbers: 21.60.Cs, 21.60.De, 27.20.+n, 21.10.Re

I. INTRODUCTION

Microscopic theories of low-energy nuclear structure arguably began with the realization that one could base nuclear wavefunctions on an independent particle model (IPM), with the crucial proviso that one has a strong spin-orbit force. The IPM was motivated by filled shells (‘magic numbers’) and by the magnetic moments of nuclei with one particle outside or one hole in a closed shell \[1\,\rightarrow\,3\]. Even today many high-end methods for *ab initio* nuclear structure, such as Green’s Function Monte Carlo \[4,\,5\], coupled-clusters \[6,\,7\], and the no-core shell model \[8\], use the IPM as a starting point, although each go far beyond it.

Because the nuclear Hamiltonian is rotationally invariant, total angular momentum \(J \) is a good quantum number (as is the third or \(z \) component, \(M \)). In the nuclear IPM, despite the lack of a core as in atomic physics, one uses an average or mean potential, one which typically is rotationally invariant, to construct the single-particle states. These single-particle states have good orbital angular momentum \(l \) and intrinsic spin \(s \), which for electrons and for nucleons is \((1/2)\hbar\), and following the rules for addition of quantized angular momentum \[9\], symbolized by \(\oplus \), one can combine these into the total angular momentum for a single particle,

\[
j = l \oplus s.
\]

(1)

Single particle states which are degenerate or nearly so are grouped together into shells, and the IPM is often called the non-interacting shell model.

For atoms, with weak coupling between orbital angular momentum and spin, single-particle states with the same \(l \) but different \(j \) are nearly degenerate. In that case it makes sense, to follow \(L-S \) or Russell-Saunders coupling and couple together all the individual orbital angular momenta for \(A \) particles,

\[
L = l_1 \oplus l_2 \oplus l_3 \oplus \ldots \oplus l_A,
\]

and similarly for the total spin \(S \), and then construct

\[
J = L \oplus S.
\]

(3)

Indeed, such \(L-S \) coupling could be found in the first approaches to the IPM for nuclei \[10,\,11\]. With the understanding of a strong nuclear spin-orbit coupling, however, it was seen as advantageous to adopt \(j-j \) coupling \[12,\,13\], by first coupling up \(l \) and \(s \) for each particle as in \[10\] and then summing the \(j \)s:

\[
J = j_1 \oplus j_2 \oplus j_3 \oplus \ldots \oplus j_A.
\]

(4)

Nowadays the IPM has been superseded by the interacting or configuration-interaction (CI) shell model \[14,\,16\] and other many-body methods. Nonetheless one can consider how good the IPM is as a starting point by looking at semi-magic shells. For example, using the phenomenological interaction KB3G (which is a monopole-adjusted version \[17\] of the Kuo-Brown interaction \[18\]) in the \(pf \)-shell, one finds the full configuration-interaction wavefunction of \(^{48}\text{Ca}\) is 90\% a filled \((0f_{7/2})^8\) configuration; and in the \(sd \)-shell, using the phenomenological USDB (universal \(sd \)-shell interaction,
version B) interaction, the ground state of ^{24}O is 91% filled $(0d_{5/2})^2(1s_{1/2})^2$ configuration, and the ground state of ^{22}O is 75% filled $(0d_{5/2})^6$ configuration.

This simple success is not universal. In the sd-shell, with the same USDB phenomenological interaction, ^{28}Si is only 21% a filled $(0d_{5/2})^2$ configuration, and in the p-shell, using the Cohen-Kurath interaction, the ground state of ^8He is only 37% a filled $(0p_{3/2})^2$ configuration while ^{12}C is about 51% a filled $(0p_{3/2})^4$ configuration. In fact, it was known long ago, at least phenomenologically, that p-shell nuclei are intermediate between j- and L-S coupling. In some p-shell cases the latter leads to a simpler description: the ground state of ^8He is 96% $L=0$ and ^{12}C is 82% $L=0$. For heavier nuclei, with stronger spin-orbit forces, L-S coupling is less satisfactory: for the sd-shell cases given above have grounds states which are roughly only 35% $L=0$ components, and the ^{48}Ca ground state has only about 20% $L=0$ component. (How these decompositions are carried out will be described in more detail below.) Nonetheless, L-S decomposition can be a tool to investigate theoretical wavefunctions, even if it is not directly experimentally measurable. This is especially true for p-shell nuclei where phenomenological interactions suggest strong dominance by a few L-S components. But what about more “realistic” interactions? The past two decades have seen tremendous advances in $ab\ initio$ calculations of nuclear structure, mostly for p-shell nuclides.

As I will show below, both the phenomenological and $ab\ initio$ wavefunctions, despite separated by six orders of magnitude in the basis dimensions, and over four decades in the origin of the interactions, show remarkable congruence in their L-S decompositions. While L-S composition is not directly measureable, it does have an effect on transitions such as Gamow-Teller, M1, and so on; furthermore this congruence suggests that both the old and the new calculations are probably doing something right.

Of course, any spin-orbit force will play a big role in the L-S decomposition, and it is well-known that $ab\ initio$ three-body forces strongly influence spin-orbit interactions, for example to get the correct ground zone spin for some p-shell nuclei. In this paper, intended as an introduction to and demonstration of the method, I only look at two-body interactions, but in the near future will examine how these results change with the addition of three-body forces.

II. METHODS

The tools used for this investigation come in three parts: the many-body method; the interactions used; and decomposition of the wavefunctions into L and S components.

The many-body method I use is configuration-interaction (CI) diagonalization of the many-body Hamiltonian in a shell-model basis, using the BIGSTICK code. Here one defines a finite single-particle space and has as input single-particle energies and two-body matrix elements; three-body interactions can also be used, but will be investigated in future work. The calculations are carried out in occupation space, with occupation-representation of Slater determinants built from single-particle states as the many-body basis states. In brief, one chooses a finite set of single particle orbits with good orbital angular momentum l (and thus good parity) and good angular momentum j and z-component m; with that it easy to build basis states with fixed total M; thus BIGSTICK is termed an M-scheme code. BIGSTICK computes the many-body Hamiltonian in this basis from the input interaction matrix elements, i.e., it computes

$$ H_{ab} = \langle \Psi_a | \hat{H} | \Psi_b \rangle, $$

where $|\Psi_a\rangle$ is an occupation representation of a Slater determinant with fixed M, and finds the low-lying eigenpairs

$$ \hat{H} \tilde{\psi}_\lambda = E\tilde{\psi}_\lambda $$

by the Lanczos algorithm.

Within this framework I use two different model spaces and interactions. First is the phenomenological Cohen-Kurath interaction, which works entirely within the $0p_{3/2}-0p_{1/2}$ space; it has two single-particle energies and 15 unique two-body matrix elements. Because the matrix elements were fitted to spectra, the radial component of the single-particle wavefunctions have not been rigorously defined; fortunately for my purpose they are not needed. For a given number of valence protons and neutrons, and for fixed total M, all possible configurations are used.

The second are $ab\ initio$ interactions in the so-called no-core shell model (NCSM) framework. Here one uses harmonic oscillator single-particle states with a fixed frequency Ω, and utilizes the N_{\max} truncation on the many-body states: one allows only many-body harmonic oscillator configurations which are a maximum of $N_{\max} \hbar \Omega$ in energy above the lowest harmonic oscillator configuration. This allows one to exactly decouple the relative wavefunction from center-of-mass motion, although that is not important to this study.

High-precision $ab\ initio$ interactions are fitted to low-energy nucleon-nucleon scattering phase shifts (and to the deuteron). Among the first was the Argonne V18, while more recent ones, such as the one used in this study, are derived from chiral effective field theory.
These interactions generally have a large coupling between high- and low-momentum components, which is often interpreted as a ‘hard core;’ such a hard core can be seen directly in local interactions fitted to scattering data such as the Argonne V18 and related potentials. While such interactions can be used directly in coupled-cluster (CC) calculations \[6, 7\] and, when local or nearly so, in Green’s function Monte Carlo (GFMC) calculations \[4, 5\], both of those very powerful methodologies favor the ground state. Finding excited states are challenging, though not impossible, for CC and GFMC calculations, and the technology for projecting out the \(L\) and \(S\) components in those methods has not yet been developed.

For configuration-interaction (CI) calculations, on the other hand, obtaining excited states and decomposition into \(L\) and \(S\) components is nearly trivial. On the other hand, unlike CC calculations, CI calculations include unlinked diagrams \[36\], and because of the strong coupling between low- and high-momentum states, the basis for CI grows exponentially and convergence with the size of the space is very slow in all but the smallest nuclides. Therefore for \(\textit{diagrams} [36]\), and because of the strong coupling between low- and high-momentum states, the basis for CI grows and \(L\) whereby the Hamiltonian is evolved by a flow equation:

\[
\frac{d\hat{H}(s)}{ds} = [\hat{\eta}(s), \hat{H}(s)],
\]

where one commonly chooses the generator of the flow to be \(\hat{\eta}(s) = [\hat{T}, \hat{H}(s)]\), with \(\hat{T}\) the kinetic energy; this drives the Hamiltonian in momentum space towards the diagonal and weakens the coupling between low- and high-momentum states. Because the transformation is unitary, any quantity represented by an eigenvalue, such as scattering phase shifts or the on-shell T-matrix elements if evolved in free space, remains unchanged. What does change are, for example, the off-shell T-matrix elements, but exploring that topic further is beyond the focus of this paper; furthermore, 3-body forces are induced by the evolution \[41, 42\]. I follow the convention of parameterizing the evolution not by \(\lambda = (m_s^2/h^4 s)^{1/4}\), with \(m_N\) the nucleon mass; then \(\lambda\) has units of \(\text{fm}^{-1}\). Other authors follow \(s\), which is sometimes written as \(\alpha\).

A. \(L\)-\(S\) decomposition

It is worth describing in a little detail how the \(L\)-\(S\) decomposition is carried out. Suppose one wants to find the fraction of a CI wavefunction with a given \(L\), that is, to expand

\[
|\Psi\rangle = \sum_L c(L)|L\rangle
\]

but in general, the dimension of the subspace of states with a given \(L\) is greater than one. One naive method then is to generate all many-body states of a given \(L\) or \(S\), that is, \(|\{L; a\}\rangle\) where \(a\) carries any additional information needed to label such states. Then the fraction of a state with that \(L\) is

\[
|\langle L|\Psi\rangle|^2 = \sum_{a \in L} |\langle L; a|\Psi\rangle|^2.
\]

This presupposes it is easy to generate all the \(|\langle L; a\rangle\rangle\), for example by diagonalize the operator \(\hat{L}^2\), but that is easy only in small spaces.

Instead I turn to a modification of the ‘Lanczos trick’, invented for generating strength functions \[43 - 45\] and which has been previously used to analyze phenomenological states in terms of their SU(3) irreps \[40\].

Let \(|\Psi\rangle\) be a CI wavefunction I wish to decompose in components labeled by the eigenvalues of a Hermitian operator, in this case \(\hat{L}^2\). I carry out the Lanczos algorithm with \(|\Psi\rangle\) as my \textit{pivot}, that is the starting vector \(|v_1\rangle\):

\[
\hat{L}^2|v_1\rangle = \alpha_1|v_1\rangle + \beta_1|v_2\rangle
\]
\[
\hat{L}^2|v_2\rangle = \beta_1|v_1\rangle + \alpha_2|v_2\rangle + \beta_2|v_3\rangle
\]
\[
\hat{L}^2|v_3\rangle = \beta_2|v_2\rangle + \alpha_3|v_3\rangle + \beta_3|v_4\rangle
\]

\[
\ldots
\]

As is well-known for the Lanczos algorithm \[26\], this procedure generates a Krylov subspace and the eigenvalues of the tridiagonal matrix given by \(\alpha_i, \beta_i\) will converge to the extremal eigenpairs of \(\hat{L}^2\), of which the eigenvectors are a linear combination of the Lanczos vectors,

\[
|L\rangle = \sum_i d_i(L)|v_i\rangle.
\]
which is an inversion of (8). In fact the Krylov space is exhausted by the eigenvectors of \(\hat{L}^2 \) contained in the pivot, so that to get the fraction of \(|\Psi\rangle = |v_1\rangle \) with orbital angular momentum \(L \), it is just

\[
|\langle L|\Psi\rangle|^2 = |d_1(L)|^2
\]

(12)

so that no sum is needed and one can simply read off the amplitude.

One can decompose using any Hermitian operator, and the procedure for decomposition with spin \(S \) is identical to the above. One can do joint decomposition, that is decompose a wavefunction into states of specific \(L \) and \(S \), but I do not carry out such fine-grained analysis here.

III. RESULTS

I give results for four nuclides from roughly the middle of the \(p \)-shell: \(^9\)Be, \(^{10,11}\)B, and \(^{12}\)C. In particular I look at states in \(^{12}\)C known to be problematic, and at rotational bands in \(^9\)Be. For all NCSM calculations I used \(N_{\text{max}} = 6 \) (chosen so all the calculations could be easily carried out on a desktop computer using the BIGSTICK code; larger calculations can be performed on parallel supercomputers), an oscillator frequency \(\hbar \Omega = 20 \text{ MeV} \) for \(^9\)Be and 22 MeV for the other nuclides for the single-particle basis, which roughly minimized the ground state energies, and an SRG evolution parameter of \(\lambda = 2.0 \text{ fm}^{-1} \). Because the phenomenological calculations with the Cohen-Kurath force only include “normal” parity states, i.e., the same parity as the ground state, I only show those, although there is no barrier to dissecting unnatural parity states using the method described in Section II A.

In standard NCSM procedures one carefully finds the variational minimum as a function of \(\hbar \Omega \) and studies the convergence as a function of the model space parameter \(N_{\text{max}} \). Instead, I demonstrate selected \(^{12}\)C results are relatively robust under variation of both \(\hbar \Omega \) and \(\lambda \). Using a fifth light nuclide, \(^7\)Li, I demonstrate robustness as \(N_{\text{max}} \) is varied from 6 to 12. Thus one can have good confidence in the general results obtained here.

A. \(^{10}\)B

Let’s begin with an odd-odd nuclide. Fig. 1 compares the low-lying excitation energies from experiment, from the Cohen-Kurath interaction in the 0\(p \) space, with a dimension of 84, and a NCSM calculation, with a dimension of 12 million, using \(\lambda = 2 \text{ fm}^{-1} \) and \(\hbar \Omega = 22 \text{ MeV} \); the latter choice approximately minimizes the ground state energy in this space. The experimental spectra, here and for all cases in this paper, are taken from the database at the National Nuclear Data Center [47].

Figure 2 shows the decomposition of selected states into their components with good \(L \). Of particular interest are the first and second 0\(^+ \); 1 states, which show contrasting patterns (0\(^+ \); 1\(_1 \) is dominated by \(L = 0 \) while 0\(^+ \); 1\(_2 \) is dominated by \(L = 2 \)), with both the the Cohen-Kurath and NCSM wavefunctions giving good agreement, even in minor components, despite the vast difference in model space sizes and the origin of the forces. Other low-lying states show similar agreement. The decomposition according to spin \(S \) is of similar quality and not shown.

Agreement between the Cohen-Kurath and the \textit{ab initio} NCSM calculations does not mean they are both \textit{right}, but it does certainly bolster confidence in the calculations. Below, in the case of \(^{12}\)C, I will show some cases where there are discrepancies, which happen to occur in states known to be problematic.

B. \(^{11}\)B

\(^{11}\)B has a dimension of 62 in the 0\(p \) shell and 20 million in the \(N_{\text{max}} = 6 \) space. For the latter I kept a harmonic oscillator basis frequency of \(\hbar \Omega = 22 \text{ MeV} \). All the low-lying states have \(T = 1/2 \), exactly in the case of Cohen-Kurath; the NCSM interaction includes isospin breaking terms but for all the cases in this paper the isospin assignments are very good. The excitation spectra are shown for comparison in Fig. 3 and the \(L \)-decomposition in Fig. 4. Here both the first and second 3/2\(^- \) and first and second 1/2\(^- \) state show contrasting patterns, with agreement between Cohen-Kurath and the NCSM. I also show the spin \(S \)-decomposition in Fig. 5 which displays good qualitative agreement.

C. \(^{12}\)C

Of particular interest is \(^{12}\)C, in part because it is so difficult to get its spectrum correct. As seen in Figure 6 neither the phenomenological Cohen-Kurath calculation nor the NCSM calculations get the second 0\(^+ \) state and the
FIG. 1: Low-lying excitation spectrum of 10B, comparing experiment, the Cohen-Kurath interaction, and the no-core shell model (NCSM) using an chirual two-body force evolve d via SRG to $\lambda = 2.0$ fm$^{-1}$, with the harmonic

oscillator basis frequency $\bar{\hbar} \Omega = 22$ MeV.

FIG. 2: (Color online) Decomposition of low-lying states of 10B into components of good L (total orbital angular momentum), comparing wavefunction computed from the Cohen-Kurath interaction (black/dark shaded), and from the NCSM (red/cross-hatched).

subsequent band. This is the famous Hoyle state [48] and is known to have predominantly four-particle, four-hole structure, with similar states found in 16O. Recent calculations have suggested the Hoyle state mixes in many states of high N [49], making it difficult to access in standard CI shell-model calculations.

The Hoyle state is far from the only problem, not least because recent calculations [50] get the excitation energy of the first $1^+; 0$ state wrong while obtaining a good value of the $B(M1)$ from the first $1^+; 1$ state to the ground state. This problem in particular inspired this work.

Fig. 2 shows the L-decomposition of the ground state band 0^+ and 2^+ states, as well as the excited band 0^+_2 and 2^+_2 and the first $1^+; 0$ and $1^+; 1$ states. While the ground state band finds agreement between Cohen-Kurath and NCSM, and is rather simple (the 4^+_1 state continues this trend), the excited band does not show as much agreement; and given the above problem with the Hoyle state, one cannot be certain which, if either, calculation is better. For
FIG. 3: (Color online) Low-lying excitation spectrum of 11B, comparing experiment, the Cohen-Kurath interaction, and the no-core shell model (NCSM) using a chiral two-body force evolved via SRG to $\lambda = 2.0$ fm$^{-1}$. All the states have $T = \frac{1}{2}$.

FIG. 4: (Color online) Decomposition of low-lying states of 11B into components of good L (total orbital angular momentum), comparing wavefunction computed from the Cohen-Kurath interaction (black/dark shaded), and from the NCSM (red/cross-hatched). All the states have $T = \frac{1}{2}$.

the 1^+ states, the $1^+; 1$ has good agreement between Cohen-Kurath and the NCSM, while the troublesome $1^+; 0$ does not. It will be particularly interesting to examine how the latter changes when an $ab\text{~initio}$ 3-body force is included in the calculation.

Given the importance and difficulty of this nuclide, I also show the S-decomposition in Fig. 8. The decomposition for the 0^+ states must perforce mirror the L-decomposition, so I do not show those. For the remaining states, the S-decomposition echoes that of the L-decomposition: the $2^+; 0_1$ and $1^+; 1$ show good agreement, while there are significant discrepancies for the $2^+; 2_2$ and $1^+; 1$ states.

Again, agreement does not mean the calculations are correct, nor does a discrepancy make any calculation illegitimate. After all, the L-S decomposition is not something directly measurable by experiment. On the other hand, it is striking that the states with the clearest discrepancy between the two calculations are states known to be problem-
FIG. 5: (Color online) Decomposition of low-lying states of ^{11}B into components of good S (total spin), comparing wavefunction.

FIG. 6: (Color online) Low-lying excitation spectrum of ^{12}C, comparing experiment, the Cohen-Kurath interaction, and the no-core shell model (NCSM) using an chiral two-body force evolved via SRG to $\lambda = 2.0$ fm$^{-1}$, with a harmonic oscillator basis frequency of $\hbar\Omega = 22$ MeV.

atic in CI calculations, particular for the ab initio NCSM. Thus I suggest that L-S decompositions can be useful in comparing and contrasting calculations.

D. ^9Be and rotational bands

There have been recent studies of rotational band structure in NCSM calculations of light nuclides [51]. Rather than looking at B(E2) strengths as they did, I use L-S decomposition to analyze rotational bands. Fig. 8 compares the low-lying excitation energies of ^9Be from experiment, from the Cohen-Kurath interaction in the $0p$ space, with a dimension of 62, and a NCSM calculation, with a dimension of 5.2 million, using $\lambda = 2$ fm$^{-1}$ and $\hbar\Omega = 20$ MeV. The experimental spectra, here and for all cases in this paper, are taken from the database at the National Nuclear Data Center [47]. All the low-lying states have $T = 1/2$. Following [51], the states are plotted with $J(J+1)$ along...
FIG. 7: (Color online) Decomposition of low-lying states of 12C into components of good L (total orbital angular momentum), compared, and from

FIG. 8: (Color online) Decomposition of low-lying states of 12C into components of good S (total intrinsic spin, comparing wavefunction computed from the Cohen-Kurath interaction (black/dark shaded), and from the NCSM (red/cross-hatched).

the x-axis and excitation energy along the y-axis, to better pick out rotational bands; I include lines for the reader’s convenience.

Figs. 10 and 11 show the L- and S-decomposition for the ground-state and excited-state bands, respectively. The top rows of plots are for the NCSM calculation, while the bottom rows are for the Cohen-Kurath calculations; one can see they are qualitatively indistinguishable. The left-hand columns of plots are the L-decomposition. All these states have negligible $L = 0$ fraction. I show the fraction of the wavefunction with $L = 1$ (red circles), $L = 2$ (blue squares), $L = 3$ (green diamonds), and $L = 4$ (violet triangles). There is a clear evolution, as one would expect for a rotational band: in the ground-state band, $3/2^-$ is dominated by $L = 1$, the $5/2^-$ is dominated by $L = 2$, and so on, while for the excited state band $1/2^+$ is dominated by $L = 1$, $3/2^-$ is dominated by $L = 2$, and so on. The right-hand columns of plots are the S-decomposition, showing the fraction of the wavefunction with $S = 1/2$ (black solid line),
FIG. 9: (Color online) Low-lying excitation spectrum for 9Be, plotting excitation energy versus $J(J+1)$ to better illustrate rotational bands. Shown are experimental data (blue diamonds) [47], phenomenological Cohen-Kurath calculations (red squares), and NCSM calculations (black circles); the latter were calculated with an SRG evolution parameter $\lambda = 2$ fm$^{-1}$ and a harmonic oscillator basis frequency of $\Omega = 20$ MeV. In order to guide the eye, I have added solid lines for the ground state NCSM band and dashed lines for the excited state NCSM band.

$S = 3/2$ (red dashed line), and $S = 5/2$ (blue dotted line, only for the NCSM). The $S = 1/2$ consistently dominates. These patterns are consistent with a particle-rotor picture.

The reader will note the excited-state band contains the $7/2^-$ state, not the $7/2^+$ state. Caprio et al. determined this on the basis of $B(E2)$s [51], but here it becomes clear on the basis of the L-S decomposition. Although I do not plot it, the $7/2^-$ state is dominated by $S = 3/2$ for both NCSM and Cohen-Kurath, and by $L = 2$ for the NCSM and by a roughly equal mixture of $L = 1$ and 2 for Cohen-Kurath wavefunctions, a clear violation of the rotational band pattern.

Once again, the qualitative agreement between the NCSM and Cohen-Kurath calculations is striking. I propose L-S decomposition as another tool for disentangling calculations of band structures.

E. Robustness

In the above I chose specific values of $\hbar \Omega$ for the harmonic oscillator basis, N_{max} for the truncation of the many-body basis, and for the SRG evolution parameter λ. These results are not very sensitive to the choice of these parameters, as I demonstrate here. For most of these studies I chose 12C with $N_{\text{max}} = 6$ and a baseline of $\lambda = 2$ fm$^{-1}$ and $\hbar \Omega = 22$ MeV.

First, I studied the dependence on the basis scaling. Fig. [12] shows how the low-lying excitation energies vary with the basis frequency Ω as it is varied from $\hbar \Omega = 12$ to 28 MeV. Although this corresponds to scaling the basis by a factor of 1.5, the decomposition is mostly robust, as shown in Fig. [13]. The decomposition which changes the most is the second 0; 0 state; in fact, what has happened is that the third 0; 0 state has lowered in energy and in fact switched places.

The second study was the dependence on the SRG evolution parameter λ, as it goes from 10 fm$^{-1}$, which is almost the bare interaction, down to 1.8 fm$^{-1}$. Values in the range 1.8 to 2.2 fm$^{-1}$ are typically used for NCSM calculations. Although there is some evolution in the excitation spectra, as shown in Fig. [14] as λ goes below 4-5 fm$^{-1}$, the evolution in the L-decomposition, in Fig. [15] is more modest.

Finally, I studied how well the L-decomposition had converged in N_{max}. For this I chose a lighter system, 7Li, where I could compute models spaces up from N_{max} (dimension =663,527) up to $N_{\text{max}} = 12$ (dimension =252 million) on a desktop computer. Fig. [16] shows the excitation spectrum does not vary much with N_{max}, although the ground state binding energy does. Fig. [17] shows the L-decomposition does not change much even as the model space increases nearly three orders of magnitude.
FIG. 10: (Color online) Decomposition of the ground-state rotation band for 9Be, for NCSM calculation (top row), with the parameters the same as in Fig. 9 and for Cohen-Kurath calculation (bottom row). For the L-decomposition plots on the left, for each of the members of the rotational band $3/2^+, 5/2^-, 7/2^-, \text{and } 9/2^-$, I give the fraction of the wavefunction with $L = 1$ (red circles), $L = 2$ (blue squares), $L = 3$ (green diamonds), and $L = 4$ (violet triangles). For the S-decomposition plots on the right, I give the fraction of the wavefunction with $S = 1/2$ (black solid line), $S = 3/2$ (red dashed line), and $S = 5/2$ (blue dotted line).

IV. CONCLUSIONS AND ACKNOWLEDGEMENTS

I have taken NCSM wave functions computed with $ab\; initio$ two-body interactions from chiral effective field theory, softened with SRG, and decomposed them into their L (total orbital angular momentum) components, and for some cases, did the same with the S (total spin) components, for selected p-shell nuclides. Somewhat remarkably, there is rather good agreement with the decomposition of wavefunctions for the same nuclides using the phenomenological Cohen-Kurath force, despite vastly different origins and nearly six orders of magnitude difference in the dimensions of the model spaces. I think this helps assure us, if we need such assurance, that both the old guard and the new have mostly captured the correct physics.

As examples of the utility of L-S decomposition, I looked at states in 12C known to be difficult to calculate, where the strongest discrepancies between the NCSM and Cohen-Kurath wavefunctions showed up (it is my guess that neither is quite correct), and also showed how in 9Be rotational band structure showed with a clear pattern consistent with a particle-rotor model.

The results are fairly robust even when the basis is changed, and not very sensitive to the SRG evolution—although there is some sensitive at the end of SRG evolution. It will be very interesting therefore to use three-body forces, both “true” three-body forces and those induced by SRG. The former are known to affect spin-orbit coupling, and it will be interesting to see if it brings the NCSM results closer to or further apart from the Cohen-Kurath; the latter should decrease sensitivity to SRG evolution. In principal of course, one should also evolve the \hat{L}^2 and \hat{S}^2 operators which should also decrease sensitivity to SRG evolution $^{[52]}$.

Therefore an important future step will be to look at chiral interactions including $ab\; initio$ three-body forces $^{[41][42]}$, and at alternate $ab\; initio$ approaches such as the JISP16 interaction $^{[53]}$ which has off-shell matrix elements tuned to best match binding energies, and thus reduce or eliminate the need for three-body forces. This will be done in the near future.

I thank P. Navrátil and R. Roth for helpful and encouraging discussions, and P. Navrátil for the code generating and evolving via SRG the N3LO nucleon-nucleon matrix elements.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear
FIG. 11: (Color online) Decomposition of the excited-state rotation band for 9Be, for NCSM calculation (top row), with the parameters the same as in Fig. 9 and for Cohen-Kurath calculation (bottom row). For the L-decomposition plots on the left, for each of the members of the rotational band $1/2^+_1, 3/2^+_2, 5/2^+_2,$ and $7/2^+_3,$ I give the fraction of the wavefunction with $L = 1$ (red circles), $L = 2$ (blue squares), $L = 3$ (green diamonds), and $L = 4$ (violet triangles). For the S-decomposition plots on the right, I give the fraction of the wavefunction with $S = 1/2$ (black solid line), $S = 3/2$ (red dashed line), and $S = 5/2$ (blue dotted line).

FIG. 12: (Color online) The ab initio excitation spectrum of 12C for $N_{\text{max}} = 6$ as a function of the basis oscillator frequency Ω, with SRG parameter $\lambda = 2.0$ fm$^{-1}$ fixed.

Physics, under Award Number DE-FG02-96ER40985.

[1] M. Mayer, Phys. Rev. 74, 235 (1948); Phys. Rev. 75, 1969 (1949).
[2] O. Haxel, J. H. D. Jensen, and H. E. Suess Phys. Rev. 75, 1766 (1949).
[3] E. Feenberg, K. C. Hammack, and L. W. Nordheim, Phys. Rev. 75, 1968 (1949).
[4] J. Carlson, Phys. Rev. C 36, 2026 (1987); Nucl. Phys. A 508, 141 (1990).
FIG. 13: (Color online) The L-decomposition for selected 12C NCSM states as a function of the harmonic oscillator basis frequency Ω. The states are (a) $0;0^1$, (b) $1;0^1$, (c) $0;0^2$, and (d) $1;1^1$. Shown are the fraction of the wavefunctions for $L=0$ (black circles), $L=1$ (red squares), and $L=2$ (blue diamonds).

FIG. 14: The ab initio excitation spectrum of 12C for $N_{\text{max}} = 6$ as a function of the SRG evolution parameter λ, with basis oscillator frequency fixed at $\Omega = 22$ MeV.

[5] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci 51, 53 (2001).
[6] D. J. Dean and M. Hjorth-Jensen, Phys. Rev. C 69, 054320 (2004).
[7] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).
[8] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62, 054311 (2000).
[9] A. R Edmonds, Angular momentum in quantum mechanics (Princeton University Press, Princeton, 1960).
[10] E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937).
[11] E. Feenberg and M. Phillips, Phys. Rev. 51, 597 (1937).
[12] B. H. Flowers, Proceedings of the Royal Society of London, A 212, 248 (1952).
[13] D. Kurath, Phys. Rev. 88, 804 (1952).
[14] P.J. Brussard and P.W.M. Glaudemans, Shell-model applications in nuclear spectroscopy (North-Holland Publishing Com-
FIG. 15: (Color online) The L-decomposition for selected 12C NCSM states as a function of the SRG evolution parameter λ. The states for $L = 0$, (black straight line), $L = 1$ (red dotted line), $L = 2$ (blue dashed line) and $L = 3$ (violet dot-dashed line).

FIG. 16: The \textit{ab initio} excitation spectrum of 7Li as a function of N_{max}, with basis oscillator frequency fixed at $\Omega = 22$ MeV and SRG evolution parameter λ fixed at 2 fm$^{-1}$. All states have $T = 1/2$.

[15] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).
[16] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).
[17] A. Poves, J. Sanchez-Solano, E. Caurier, and F. Nowacki, Nucl. Phys. A694, 157 (2001).
[18] T. T. S. Kuo and G. E. Brown, Nucl. Phys. A114, 235 (1968).
[19] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[20] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
[21] D. Kurath, Phys. Rev. 101, 216 (1956).
[22] D. R. Inglis, Rev. Mod. Phys. 25, 390 (1953).
[23] P. Navrátil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
[24] C. W. Johnson, W. E. Ormand, and P. G. Krastev, Comp. Phys. Comm. 182, 2235 (2013).
FIG. 17: (Color online) The L-decomposition for selected 7Li NCSM states as a function of model space truncation N_{max}, with SRG evolution parameter λ fixed at 2 fm$^{-1}$ and the harmonic oscillator basis frequency fixed at 22 MeV. All states have $T = \frac{1}{2}$. The states are (a) $\frac{7}{2}^-_2$, (b) $\frac{5}{2}^-_1$; (c) $\frac{7}{2}^-_1$, and (d) $\frac{5}{2}^-_2$. Shown are the fraction of the wavefunctions for $L = 1$ (red dotted line), $L = 2$ (blue dashed line), $L = 3$ (violet dot-dashed line), and $L = 4$ (black solid line).