Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): A systematic review

Priyanka Kapoor¹, Nitika Monga², Om Prakash Kharbanda², Sunil Kapila³, Ragini Miglani¹, Rajeswari Moganty⁴

Objective: Orthodontic force application releases multiple enzymes in gingival crevicular fluid (GCF) for activation, resorption, reversal, deposition of osseous elements and extracellular matrix degradation. The current systematic review critically evaluated all existing evidence on enzymes in orthodontic tooth movement. Methods: Literature was searched with predetermined search strategy on electronic databases (PubMed, Scopus, Embase), along with hand search. Results: Initial search identified 652 studies, shortlisted to 52 studies based on PRISMA. Quality assessment further led to final inclusion of 48 studies (13 moderately and 35 highly sensitive studies). Primary outcomes are significant upregulation in GCF levels of enzymes-aspartate aminotransferase (AST), alkaline phosphatase (ALP), matrix metalloproteinases (MMPs), lactate dehydrogenase (LDH), β-glucuronidase (βG), tartrate resistant acid phosphatase (TRAP), acid phosphatase (ACP) and down regulation in cathepsin B (Cb). Site specificity is shown by ALP, TRAP, AST, LDH, MMP9 with levels at compression site increasing earlier and in higher quantities compared with tension site. ALP levels are higher at tension site only in retention. A positive correlation of LDH, ALP and AST is also observed with increasing orthodontic force magnitude. Conclusions: A strong evidence of variation in enzymes (ALP, AST, ACP TRAP, LDH, MMPs, Cb) in GCF is found in association with different magnitude, stages and sites of orthodontic force application.

Keywords: Tooth movement. Gingival crevicular fluid (GCF). Enzymes. Systematic review.

Objetivo: a aplicação da força ortodôntica libera múltiplas enzimas no fluido crevicular gengival (FCG), desencadeando a ativação, realimentação, reversão, deposição de elementos ósseos e degradação da matriz extracelular. A presente revisão sistemática avaliou criticamente toda a evidência disponível sobre os níveis de enzimas durante a movimentação ortodôntica. Métodos: utilizando-se estratégias predeterminadas, foram realizadas buscas em bases de dados eletrônicas (PubMed, Scopus, Embase), sendo também feitas buscas manuais. Resultados: a busca inicial identificou 652 estudos e, com base na diretriz do PRISMA, foram selecionados 52 estudos. A avaliação qualitativa resultou na inclusão final de 48 estudos (13 estudos com moderada sensibilidade e 35 com alto nível de sensibilidade). Os desfechos primários foram o aumento significativo dos níveis no FCG das enzimas aspartato aminotransferase (AST), fosfatase alcalina (FA), metaloproteinases de matriz (MMPs), lactato desidrogenase (LDH), β-glucuronidase (βG), fosfatase ácido-resistente ao tartarato (TRAP), fosfatase ácida (FAC) e baixa regulação de catépsina B (Cb). Especificidade quanto ao local foi mostrada para FA, TRAP, AST, LDH e MMP9 com os níveis no lado de compressão aumentando mais rápido e em maiores quantidades, quando comparado ao lado de tensão. Os níveis de FA foram maiores no lado de tensão somente no período de contenção. Uma correlação positiva de LDH, FA e AST também foi observada à medida que a magnitude de força ortodôntica aumentou. Conclusões: há fortes evidências indicando que as variações nas enzimas (FA, AST, FAC, TRAP, LDH, MMPs, Cb) presentes no FCG estão associadas a diferentes magnitudes, estágios e locais de aplicação da força ortodôntica.

Palavras-chave: Movimento dentário. Fluído crevicular gengival (FCG). Enzimas. Revisão sistemática.

1Jamia Millia Islamia, Faculty of Dentistry, Department of Orthodontics (New Delhi, India).
2All India Institute of Medical Sciences, Centre for Dental Education and Research, Division of Orthodontics and Dentofacial Deformities (New Delhi, India).
3University of California San Francisco, Division of Orthodontics (San Francisco/CA, USA).
4All India Institute of Medical Sciences, Department of Biochemistry (New Delhi, India).

Submitted: July 17, 2018 - Revised and accepted: November 03, 2018

How to cite: Kapoor P, Monga N, Kharbanda OP, Kapila S, Miglani R, Moganty R. Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): A systematic review. Dental Press J Orthod. 2019 Mar-Apr; 24(2):40.e1-22. DOI: https://doi.org/10.1590/2177-6709.24.2.40.e1-22.onl

Contact address: Priyanka Kapoor
E-mail: pkapoor@jmi.ac.in - drkapoorpriya@gmail.com

» The authors report no commercial, proprietary or financial interest in the products or companies described in this article.
INTRODUCTION

Orthodontic forces cause an initial inflammatory response followed by alterations in the vascular and neural envelope and perpetual bone and tissue remodelling accompanied by paracrine release of bioactive mediators.\(^1\)\(^-\)\(^3\) During orthodontic tooth movement (OTM), host-derived enzymes are released at various stages of activation, resorption, reversal and deposition of osseous elements and degradation of the extracellular matrix.\(^4\) Some of these enzymes have been identified in the periodontal (pdl) tissue of orthodontically moved teeth.\(^5\) Gingival crevicular fluid (GCF) is however a better choice for assessing biomolecules or mediators as sample collection is simple, sensitive, convenient, repetitive and non-invasive.\(^6\) Thus, the quantitative estimations of mediators in GCF reflect biochemical mechanisms associated with OTM. A systematic review (SR) by Kapoor et al\(^6\) in 2014 studied variation in GCF level of cytokines with type and magnitude of orthodontic forces and growth status of patients. It established a positive correlation of GCF activity index IL1RA (interleukin receptor antagonist)/IL-1\(\beta\) with intensity of pain and velocity of OTM and a negative correlation with growth status of patients. Besides cytokines, numerous other mediators also alter GCF during OTM, comprehensively reviewed in SR by Alhadlaq\(^7\) in 2015. This SR highlighted working mechanisms of multiple mediators but heterogeneity of studies precluded attainment of concrete conclusions. Hence, the present SR aims to assess only a single family of mechanisms of multiple mediators but heterogeneity of studies precluded attainment of concrete conclusions. Hence, the present SR aims to assess only a single family of mechanisms of multiple mediators but heterogeneity of studies precluded attainment of concrete conclusions. Hence, the present SR aims to assess only a single family of mediators, enzymes, to establish their clinical correlations on sequential release in different phases of OTM and varying magnitude of orthodontic forces.

Soluble enzymes like lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) present in cytoplasm are known to release in GCF only after cellular necrosis or hyalinization with heavy orthodontic forces.\(^4\) Tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) exhibit osteoclastic and osteoblastic activity, respectively,\(^7\) and are identified in areas of tension (TS) or compression (CS) of teeth undergoing OTM. Heavy orthopedic forces of rapid maxillary expansion accompanied by paracrine release of bioactive mediators.\(^1\)\(^-\)\(^3\) The evidence on enzymes in OTM is plenty but scattered and lacks critical appraisal. Hence, the current SR is conducted to establish associations of enzymes in GCF to the site of application, magnitude and type of force, patient’s growth status and the type of archwire ligation.

MATERIAL AND METHODS

Protocol and registration

The protocol for SR was registered in PROSPERO (www.crd.york.ac.uk/prospero, CRD42015017496) with a predetermined search strategy (Fig 1). It comprised of MeSH terms, Boolean terminology and free text terms with the keywords "enzyme" "protease", "orthodontic tooth movement" and "gingival crevicular fluid", together with several key enzymes. This search strategy was applied to key databases PubMed, Scopus and Embase in February 2018 with no language restrictions. Additional publications were identified through reference tracking and hand search of journals (Sains Malaysiana, Orthodontic Waves, Journal of Applied Sciences, APMC). The search was performed by two reviewers, followed by a cross-check by a third reviewer, in conformity with PRISMA, as shown in Figure 2.

Evaluation of risk of bias/quality of individual studies

The risk of bias, subjective to the included studies was measured by a customized Quality Assessment Instrument (QAI)\(^6\) based on QUADAS. This was objectively scored as minimally (scores of 1-12), moderately (13-20) and highly (21-29) sensitive, summarized in Table 1. No minimally sensitive studies were included in the review.

RESULTS

Were identified 102 articles in Pubmed, 460 in Scopus, 84 in Embase and 6 from hand search, in the initial search. Strict inclusion and exclusion criteria (Table 2) were applied after removing duplicates, resulting in 41 relevant articles. Five studies were further excluded: three studies whose full texts were not retrieved despite contacting the authors repeatedly through mail and academic social networking sites; one was a review on MMPs, and one had sample size smaller than inclusion criteria. Additional exclusion of three studies was done: two with QAI score smaller than 13, and one with a cross-sectional study design (Fig 2).
PRISMA finally resulted in 48 publications in total, with consensus among all reviewers. The QAI of these studies indicated 13 moderately sensitive and 35 highly sensitive studies.

Data extraction of shortlisted studies7-54 (for participant characteristics and study design are as follows (Table 3):

- Sample size: Sample size was categorized in three groups, ≤15 (n=22), 15-20 (n=15), ≥21 (n=10) and one study each having sample of five subjects27 and 99 subjects.21
 - Sex predilection: Forty-one studies mentioned sex distribution in the sample, two of which had female subjects only,24,36 and five had equal numbers of male and female subjects.10,19,23,29,43
 - Age predilection: Studies used age as either range or mean with standard deviation in all studies; one study considered two separate age groups of adolescents and adults.15

Figure 1 - Search strategy applied on databases for inclusion of studies in the review.

Figure 2 - PRISMA flow diagram for inclusion of studies in the systematic review.
Table 1 - Inclusion and Exclusion criteria applied for inclusion of studies in the systematic review.

Criteria	Sub criteria	Inclusion	Exclusion
Participants/	Type of sample	Human studies	Animal studies, in vitro studies
population	Age groups	if specified	Not mentioned
	Male to female ratio	if specified	Not mentioned
	Controls	present (either internal /external)	No controls
	Sample size (sample size, not number of teeth studied)	≥5	<5
Intervention(s),	Mediators studied	enzymes (AST, MPO, ALP, βG, LDH,	Other than enzymes (cytokines/ hormones/PGs)
exposure(s)	Exposure	CatB, Cs, cAMP RII, MMPs)	Studied in periodontal inflammation/ root resorption/ not related
	Orthodontic mechanics	Specified	Not specified
	Oral hygiene regimen	Mentioned	Not mentioned
	Use of antibiotic/anti-inflammatory drugs	Not used	Not mentioned/ used
	Medium of study	GCF	Other than GCF/ peri-implant fluid/ saliva
	GCF sample collection instrument	Periopaper/micropipette/ endodontic paper	Not mentioned

AST: aspartate transaminase, MPO: myeloperoxidase, ACP: acid phosphatase, ALP: alkaline phosphatase, βG: β glucuronidase, LDH: lactate dehydrogenase, CatB: cathepsin B, Cs: caspase, cAMP RII: cyclic adenosine monophosphate (AMP)-dependent protein kinase subunit (RII), PGs: prostaglandins, MMPs: matrix metalloproteinases.

» Number of studies reporting enzymes: Alkaline phosphatase was evaluated in maximum number of studies (n=17), closely followed by AST in 10, matrix metalloproteinases (MMPs) in eight, LDH in six, MPO in five and TRAP in four and acid phosphatase (ACP) in three studies. Two studies studied βG, cathepsin (Cp) and tissue inhibitor of MMPs (TIMPs) each. Single studies evaluated cystatin (Cys) and thrombospondin1 (TSP1). Additionally, granulocyte-macrophage colony-stimulating factor (GMCSF), epidermal growth factor (EGF), macrophage inflammatory protein-1β (MIP-1 β), methyl-accepting chemotaxis protein-1 (MCP-1), chemokine RANTES (Regulated on activation normal T cells expressed and secreted) were evaluated as secondary outcomes.

» Study duration: The duration of studies ranged from 8 hr to 24 weeks (wk) to the maximum of one year (y). One study each was done for 8hr, 1wk, 5month (m) and 1y duration, two studies for 6m, three for 2m, five each for 2wk and 3m, eight for 3wk, 15 for approximately 1m. One study did not specify duration — only completion of alignment.

» Observation intervals for GCF collection: Studies had GCF collection at repeated observation time points (OTP) ranging from 2 times²⁸ to 31 times (each day of the month).²⁹ Six OTPs were taken in 16 studies, closely followed by 4 OTPs in 15 studies, 9 OTPs in nine studies, 3 and 10 OTPs in two studies each, 2, 7, 8 and 31 OTPs in single study each.

» Site for GCF collection: Forty one studies specified mesial or distal or buccal site for GCF collection while seven studies mentioned the tooth but not the site for sample retrieval. The technique by Lamster et al.⁵⁵ utilizing six sites was used in four studies.¹⁰,¹⁹,³³,⁴⁴,⁴⁷

» Mechanics of force: Studies used continuous force both for tooth retraction (26 studies) and leveling of arches (13 studies). Retraction involved 19 studies using NiTi coil spring, two using steel ligature lacesacks, three using NiTi push coil spring, and one study each for V loop and NiTi open coil spring. Besides, nine studies used intermittent orthodontic/orthopaedic forces, employing elastomeric chain for retraction in five, Hyrax for expansion in three, and TMA spring for intrusion in one study.

» The level of force: Only 33 studies mentioned force levels for OTM. The level of forces ranged from 50g, 50-75g, 100-150g, 16N/turn, 1-1.5N, 200cN, 400g in one study each, 125g in three, 100g in six, 250g in eight and 150g in seven studies. Few studies had different treatment groups employing variable magnitudes of force.⁹,¹¹,³⁴,³⁵,³⁶

Oral hygiene regimen and gingival health assessment (Table 4)

Professional oral prophylaxis was done before treatment in 34 studies and at every OTP in 16 studies, but was not mentioned in 12 studies. Verbal edification for oral hygiene maintenance was done in 33 studies.
Nine studies advocated chlorhexidine mouthwash and two studies, benzydamine hydrochloride; but six studies refrained the use of any mouthwash during study period. Gingival and pdl health evaluation was done before treatment in 31 studies and at every OTP in 24 studies using "Quigley Hein Index" for visual plaque or its Turesky modification, Eastman interdental bleeding score, generalized probing depths <3 mm, radiographic evidence of pdl bone loss, gingival recession, full-mouth plaque score or full-mouth bleeding score (<20%).

Table 2 - Quality Assessment Instrument (QAI) customized from QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool for assessment of risk of bias for inclusion of studies in the review.

S. No.	Criteria (29)	Yes	Response	No	Unclear
1	Objective: objective clearly formulated				
2	Sample size: considered adequate				
3	Spectrum of patients representative of patients receiving the test in practice				
4	Ethical clearance mentioned				
5	Selection criteria: clearly described				
6	Randomization: stated				
7	Baseline characteristics: clearly defined				
8	Control: clearly defined				
9	Orthodontic mechanics explained in sufficient detail to permit replication of experiment				
10	Orthodontic force: clearly specified				
11	Description of execution of index test: sufficient to permit replication of test				
12	Absence of time difference between index test & control: mentioned				
13	Index test executed at specified time and environmental conditions				
14	Use of proper indices for assessment of gingival & periodontal status (pre-treatment)				
15	Use of proper indices for assessment of gingival & periodontal status (at each observation time)				
16	Oral hygiene regime: mentioned				
17	Prophylaxis done (pre-treatment)				
18	Prophylaxis done (at each observation time)				
	II. Study measurements				
1	GCF handling characteristics: explained				
2	Measurement method: appropriate to the objective				
3	Reliability: adequate level of agreement				
	III. Statistical analysis				
1	Dropouts: dropouts included in data analysis				
2	Statistical analysis: appropriate for data				
3	Confounders: confounders included in analysis				
4	Statistical significance level: P value stated				
5	Confidence intervals provided				
	IV. Study results and conclusions (3)				
1	Index test compared to baseline				
2	Index test compared to control				
3	Conclusions: specific				

*Index test: Refers to collection of GCF at each observation interval in treatment teeth.

GCF characteristics (Table 5)

- GCF collection: GCF was collected by Peripaper (OraFlow, Plainview, New York, NY, USA) in 32 studies, micropipette in seven, filter paper in two, paper point in two and endodontic paper strip in five studies. Time of sample collection, room temperature and humidity conditions were specified in three studies each.
- GCF handling: Depth of Peripaper insertion was 1mm in 21 studies, 1-2mm in two, and 2mm in one study. Duration of GCF collection was 30 seconds (s) in 21 studies, 60s in 13 studies and 10s, 3 minutes (min)
Table 3 - Participant and study characteristics table.

Reference no.	Sa	M/F	Age	Me	lx T	cT/gp	Site	Rn	ml	
7	9	5M/4F	10-18y	IL-1β, βG	1st Mo, 1st PM, CI	NM	MB & MB	N	IRE	
8	14	5M/9F	12.5 ± 1.7y	MPO	Single root T	NM	MB & DB	NM	NM	
9	12	5M/7F	16-20y (17.5 ± 2.4y)	ALP	Mx C & ct C 1st Mo	MS C & D	1st Mo	Y	Class I	
10	20	10M/10F	15-25y	ALP	Mx C ct C	MB, MB, DB, MP, MiP, DP	Y	Class I bimax		
11	19	5M/14F	16-28y	LDH, AST, TRAP, ALP	Mx C	NM	NM	Y	1st PM Ec	
12	20	5M/15F	19.1 ± 3y	MPO	Md I	NM	MB, DDB	N	crw (severe & minim)	
13	16	6M/10F	13-17y (14 ± 16 7y)	TSPI, MMP9/NGAL	Mx C ct C D	NM	1st PM Ec			
14	20 (10CIF/10 non CIF)	Cif gp: 7M/3F	Non Cif gp: 5M/5F	15-25y (19.75 ± 2.93y)	ALP, ACP, AST	Mx I, Mo of same q	NM	NM	NM	
15	20 (10 adol, 10 Ad)	ado – 3M/7F Ad - 4M/6F	ado 14.4 ± 143y Ad 28.5 ± 783y	MMP-9, RANKL, IL-1, IL-1RA	Mx I	Md I	DB	N	Class I minor crw	
16	40 (4gps)	19M/21F	12-18y	LDH	4.1, 4.3 & 4.5	11, 1.3 & 1.5	Bu	NM	Class I Md crw	
17	19	9M/7F	177y	(MMPs)-1, -2, -3, -7, -8, -12, -13	Mx C	ct C	Ms & D	Y	1st PM Ec	
18	21	NM	12-20y	GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, TNFα, MMP-9, TIMP-1 & 2, RANKL, OPG	Mx C	2nd Mo	MB & DOP	NM	1st PM Ec	
19	20	10M/10F	15-25y	LDH	Mx C	NM	MB, MB, DB, MP, MiP, DP	NM	Class I bimax	
20	14	3M/11F	12-28y (18.8 ± 4.8 y)	MMP-3, MMP-9, MMP-13, MMP-1β, MCP-1, RANTES	Mx C	NM	MiB	NM	Mix 1st PM Ec	
21	99	3 gpsi	1st: Non ortho (35M/9F) 2nd:C re (3M/14F) 3rd: (13M/25F)	gp 1: 22 ± 10m gp 2: 24 ± 10m gp 3: 32 ± 20m	C p, cys gp2: Mx C	gp1	D	NM	gp2: 1st PM Ec	
22	11	8F/3M	13-15y (13.9y)	MMP-1, MMP-2	L Mx C Ag Mx C	MB & DB	N	1st PM Ec		
23	10	5M/5F	13-15y (13.9y)	M - 22.5 ± 2.8y, F - 23.4 ± 3.9y	p-TAP & PAI -2	M X C	ct & Ag C	D	NM	1st PM Ec
24	10	8F	12-21y	ALP	Mx C	ct C	Ms & D	N	1st PM Ec	
25	9	4M/5F	14.76 ± 2.08y	ALP	Mx 1st PM	NM	MB, DB, P	N	1st PM Ec	
26	17	9F/8M	11-22y, 16.1 ± 3.8 y	LDH	1st Mx Mo	Ag & ct 1st Mx Mo	Ms & D	N	Mo dst	
27	5	3F/2M	nov/36	MMP-1 & 16β	Mx & Md CI/ Mx C	Mx & Md CI	NM	NM		
28	21	11F/10M	11.2-22.5y, 171 ± 3.3 y	ALP & AST	Mx C	Ag & ct C	Ms & D	N	1st PM Ec	
29	10	5M/5F	22.5 ± 3.9y	C p B	C	ct & Ag C	D	NM	1st PM Ec	

A - article, f-force, t/o-type of, mc-mechanics, md/mc-mode of mechanics, tm-time, a-appliance, re-re-activation, to-total, du-duration, n-number, ob-observation, B-baseline, min-minutes, g-grams, Ir-Irreupted, Cn-Continuous, Im-intermittent, Rt-retraction, sg-segmented, sp-spring, Ech-elasticomeric chain, NITI-nitinol, c-control, NM-not mentioned, y-year, d-day, m-month, h-hour, lv-leveling, se-separator, ac-activated, HG-headgear, NHG-non-headgear, bu-buccal, la-labial, RME-rapid maxillary expansion, HR-hybrid retractor, RCD-rapid canine distaliser, Sa-Sample, M/F/male/female, E-enzyme, Me-mediator, T-tooth, sc-specification, rm-randomisation, ml-malocclusion, HS-Handsearched, P-Pubmed, S-Scopus, GS-Google scholar, N-No, Y-yes, Mx-Maxilla, Md-Mandible, H-history, Is-loss, gv-gingival, if-inflammation, PD-probing depth, wk-week, R-right, L-left, C-canine, PM-premolar, M-molar, Ci-central incisor, l-lower, Ag-Antagonistic, ct-Contralateral, ip-irreproducible, op-opposing, Ex-Experimental, c-Control, aj-adjacent, Exs-Experimental site, Ec-Extraction, Ms-Mesial, D-Distal, rq-required, q-quadrant, OTM-orthodontic tooth movement, sf-surface, ado-adolescent, AST-asterisk transimanses, TRAP-phosphatase, ALP-Alkaline Phosphatase, JG-beta glucuronidase, MMP-matrix metalloproteinase, LDH-lactate dehydrogenase, Cp-Cathepsin, MPO-myeloperoxidase, CK-creatine, NO-Nitric oxide, IL-Interleukin.
F	t/o f	mc	md/mc	re	to du	No. / ob	tm/ob	B
NM	Im F	RME	Hyaax	Y	81d	10	0, 14, 25, 32, 33, 39, 46, 53, 60, 81 d	14d
NM	Cn Lv	Arch wi	N	14d	4	-7d, 0, 2h, 7, 14d	0	Y
Cn Rt	NiTi sp	NA	3 wk	4	0,1wk, 2wk, 3wk	0	N	
100/150g	Cn Rt	NiTi sp	NA	5 wk	6	0, 1, 2, 3, 4, 5 wk	0	Y
NM	Cn Lv	Arch wi	N	2 wk	4	0, 2h, 7d, 14d	0	Y
NM	Cn Rt	LB	NA	2 wk	8	-1h, +1h, 4, 8, 24, 72, 1wk, 2wk	-1h	N
150cN	Cn Lv	NiTi wi	NA	30d	5	0, 3, 9, 15, 30d	0	Y
NM	Cn Lv	NiTi wi	Y	20 wk	4	0, 3, 6, 18, 20 wk	0	Y
NM	Cn Lv	NiTi & thm wi	Y	42d	6	-2wk, 0, 1h, 7, 28, 42d	-2wk	N
150g	Cn Rt	NiTi sp	N	21d	6	0, 1, 24, 7, 14, 21d	0	N
100g	Cn Rt	NiTi sp	N	42d	4	-10wk, 0, 4h, 7d, 42d	0	N
125g	Cn Rt	NiTi sp	N	21d	5	0, 1n, 7, 14, 21d	0	Y
150g	Cn Rt	V- loop & NiTi sp	N	87d	7	-7d, 0, 1h, 24h, 14, 21, 40d	0	Y
100-150g	Imf Rt	E Ch	NM	1m	4	0, 1d, 1wk, 1m	0	N
150g	Cn Rt	NiTi sp	N	8 h	5	0, 1n, 2h, 3n, 4h, 8h	0	N
250g	Imf Rt	E Ch	NM	168h	4	0, 1, 24, 168h	0	N
100g	Cn Rt	NiTi sp	N	21d	6	-1, 0, 1, 7, 14, 21d	-1	N
50g	Imf Intr	TMA sp	Y	28d	5	0, 1, 24, 168h, 22d, 28d reac-21d	0	Y
250g	Cn Rt	NiTi sp	N	21d	4	0, 7, 14 6 21d	0	N
NM	Cn ain	NM	N	30d	31	0,1-30d,once/d for 1 m	0	N
150g	Cn Rt	NiTi sp	N	28d	2	0, 28d	0	N
250g	Imf Rlt	E ch	NM	168h	4	0, 1n, 24h, 168h	0	N

CRP- C Reactive Protein, hrm-humidity, sc-specification, ins-insertion, MB-Mesio-buccal, ML-Mesio-lingual, DP-Disto-palatal, DB- Disto-buccal, df-differentiation, gp-group, cmp-compression, kPa-kilopascal, mx-maximum, gw-growth, Oc-osteoclast, lx- Index, Bu Tp-buccal tipping, C-canine, Clf-cleft, I-incisor, NA-not applicable, wk-week, crw-crowding, mm-minimum, bimax-bimaxillary, wi-wire, lig-ligature, Ad-adult, RANKL-receptor antagonist nuclear kappa ligand, OPG-osteo-protegerin, Il- _1ra-interleukin 1 receptor antagonist, therm-thermoplastic, t-PA-plasminogen, TNFα-tumour necrosis factor, TIMP-Tissue inhibitor metalloproteinase, MCP- Methyl-accepting chemotaxis protein, MPO-myeloperoxidase, ortho-orthodontic, cys-cysteine, CN-centinewton, TSP-thrombospondin 1, NGAL-neutrophil gelatinase-associated lipocalin, ACP-acetyl carrier protein, CS-chondroitin sulphate, GM-CSF- Granulocyte-macrophage colony-stimulating factor, IFNγ-Interferon gamma, MIP-Macrophage inflammatory protein, jG-beta globulin, PAI-plasminogen activator inhibitor, EGF-Epidermal growth factor, dst-distalisation, Intr-intrusion, aln-alignment, cst-constriction, AL-after loading, BL-before loading, M contr- Maxillary constriction, Exp- Expansion, Hyr- Hyrax, LB-laceback, TB-Tie back, SE-superelastic NiTi, HANT- heat-activated NiTi, MSSS- multistranded stainless steel.
Table 3 - continuation - Participant and study characteristics table.

Ref No.	Sa	M/F	Age	Me	Ix T	cT/gp	Site	Rn	ml	gp	
30	16	10F/6M	11-21y, 15.5±3.5y	ALP	Mx 1st Mo	ct bAg 1st Mo	Ms & D	NM	Nost		
31	9	5M/4F	10-18y	IL-1β, IL-6, TNF-α, EGF, β2-µG	Mx 1st Mo, 1st PM & CI	NM	MB EMP	NM	Mx cst		
32	12	3M/9F	14.4±0.9 y	IL-1β, IL-6, TNF-α, EGF, β2-µG	C	Ag C/cD C	D	NM	1st PM Ec		
33	9	NM	13-17 y	TRAP5b, IL-10, TNF-α	Mx & MdC	ct C	MB, MIB, MP & DB, MIP, DP	NM	1st PM Ec		
34	19	13F/6M	16 – 28y	ALP, AST, TRAP	R & L Mx C	NM	D	NM	Mx 1st PM Ec		
35	12	NM	14–24 y	LDH	Mx C	BS	Ms & D	NM	Class II C		
36	12	11F/1M	14-24y	TRAP	Mx C	BS	Ms & D	NM			
37	14	4M/10F	15-27y	ALP	Mx C	NM	Ms & D	NM		crw (4-8mm)	
38	10	8F/2M	15-27y	ALP	Mx C	NM	Ms & D	NM	1st PM Ec		
39	13	NM	14.4±3.7y, 23.3±4y	AST	Mx C	ct C	Ms & D	NM	1st PM Ec		
40	13	NM	14.4±3.7y, 23.3±4y	AST	Mx PM	Ag PM	NM	1st PM Ec			
41	22	12F/10M	13-22y	AST	Mx C	NM	Ms & D	Y			
42	12	7F/5M	14±2y	ACP, ALP	Mx C	Ag C, ct C	Ms & D	Y			
43	10	5F/5M	15-20y	ALP	MxC, Mx 2nd PM	NM	D of C & Ms of 2nd PM	NM	1st PM Ec		
44	23	15F/8M	9±1.4y	ALP	Mx rt & lt 1st M	Ag ist M	MB, MIB, DB, MP, MIP, DP	NM	Mx constr		
45	10	7F/3M	14 - 27 y	ALP	Rt Mx C	Lt Mx C	Ms	D	1st PM Ec		
46	7	5F/2M	14 - 27 y	ALP	Rt Mx C	Lt Mx C	Ms	D	1st PM Ec		
47	20	9F/11M	12- 25 y	LDH	Mx C	ct C	MB, MIB, DB, MP, MIP, DP	NM	1st PM Ec		
48	18	10F/8M	nov/22	AST	Max 1st Mo	ct & Ag 1st Mo	Ms & D	N			
49	20	6F/4M	20.6 ± 3.2y	ALP	Mx C, Md C	BS	D	Y	1st PM Ec		
50	55	28F/ 27M	15.1 (1.7)	Adiponectin, Leptin, Resistin, MPO, CRP, MMP 9, TIMP1, MMP/ TIMP1, MMP9/ TIMP1, RANKL	Mand 6 anterior teeth	Normal weight children	D	NM	Non Ec		
51	22	14F/8M	11-21y	ALP	Max 1st - M rt & Lt	Mand 1st - M rt & Lt	NM	MB	Exp	4-6mm mand	crow
52	60	41F/19M	18 ± 1.5	MPO	Mand Cl	BS	NM	NM	4-6mm mand	crow	
53	45	NM	6.25, 5.6, 6.10	MPO	Mand I	BS	NM	Y			
54	30	NM	9-15y	AST	Rt Mx PM	Lt Mx PM	NM	NM			

A- article, f-force, t-type of, mc-mechanics, md/mc-mode of mechanics, tm- time, a-appliance, re-reactivation, to-total, du-duration, n-number, ob-observation, B-baseline, min- minutes, g- grams, Ir- Interrupted, Cn- Continuous, Rt-retraction, sg-segmented, sp-spring, Ech-elasticometric chain, NITI-nitinol, c-control, NM-not mentioned, y-year, d-day, m-month, h-hour, lv-levelling, se-separator, ac-activated, HG-headgear, NH- non-headgear, bu-buccal, la-labial, RME-rapid maxillary expansion, HR-hybrid retractor, RCD- rapid canine distaliser, Sa-Sample, M/F-male/female, E- enzyme, Me- mediator, T-tooth, sc-specification, m-randomisation, ml-malocclusion, HS-Handsearched, P-Pubmed, S-Scopus, G5- Google scholar, N-No, Y–yes, Mx-Maxilla, Md-Mandible, H-history, ls-loss, gvingival, if-inflammation, PD-probing depth, wk-week, R-right, L-left, C-canine, PM-premolar, Mo-molar, CI-central incisor, I-incisor, Ag- Antagonistic, ct- Contralateral, ip-interproximal, op-opposing, Ex- Experimental, c- Control, aj-adjacent, Es-Experimental site, Ec- Extraction, Ms- Mandible, D- Distal, rq-required, q- quadrant, OTM-orthodontic tooth movement, sf- surface, ado-adolescent, AST-aspartate transaminase, TRAP-Acid phosphatase, ALP-Alkaline Phosphatase, βG- beta glucuronidase, MMP-matrix metalloproteinase, LDH-lactate dehydrogenase, Cp-Cathepsin, MPO-myeloperoxidase, CK-creatinine, NO-Nitric oxide, IL-Interleukin,
Ref No.	Age	Sex	Site	Rn	ml	No. / ob	tm/ob	B	B=c
40	13	F/M							
48	18	F/M	nov/22						
49	20	F/M							
50	55	F/M							
38	10	F/M							
36	12	F/M							
43	10	F/M							
34	19	F/M							
32	12	M/F							
52	60	F/M							
53	45	F/M							
35	12	F/M							
47	20	F/M							
37	14	M/F							
41	22	F/M							
54	30	F/M							
15.5±3.5y									
23.3±4y									
23.3±4y									
β									
α									
IL-1									
β									
IL-6									
TNF-α									
Leptin									
Resistin									
TIMP1									
MMP8									
MMP9									
RANKL									
Adiponectin									
IL-10									
TNF-β									
EGF									
2-µG									
G									
MPO									
CRP									
MIP-1α									
TF-β									
MCP-1									
MPO									
PAI									
EGF									
TSP									
NGAL									
CRP									

CRP- C Reactive Protein, hm-humidity, sc-specification, ins-insertion, MB-Meso-buccal, ML-Meso-lingual, DP-Disto-palatal, DB- Disto-buccal, df-differentiation, gp-group, cmp-compression, kPa-kilopascal, mx-maximum, gw growth, Oc-osteolast, lx- Index, Bu Tp-buccal tipping, C-canine, Clf-cleft, I-incisor, NA-not applicable, wk-week, crw-crowding, mnm-minimum, bimax-bimaxillary, wi-wire, lig-ligature, Ad-adult, RANKL-receptor antagonist nuclear kappa ligand, OPG-osteoprogerin, IL-1Ra-interleukin 1 receptor antagonist, therm-thermoplastic, t-PA-plasminogen, TNF-α-tumour necrosis factor, TIMP-Tissue inhibitor metalloproteinase, MCP- Methyl-accepting chemotaxis protein, MPO-myeloperoxidase, orth-orthodontic, cys-cysteine, ch-centinewton, TSP-thrombospondin 1, NGAL-neutrophil gelatinase-associated lipocalin, ACP-acyl carrier protein, CS-chondroitin sulphate, GM-CSF- Granulocyte-macrophage colony-stimulating factor, IFN- Interferon gamma, MIP-Macrophage inflammatory protein, iG-beta globulin, PAl-plasminogen activator inhibitor, EGF-Epidermal growth factor, dst-distalisation, Intr-intrusion, aln-alignment, cstr-constriction, AL-after loading, BL-before loading, Mx constr- Maxillary constriction, Exp- Expansion, Hyr- Hyrax, LB-Retraction upset, cN-centinewton.
Table 4 - Oral hygiene regimen.

Ref No.	Oral px (Pre t/t)	Oral px (Every ob po)	Oral hy instr/ motiv	Mw	fq/o mw/d	asm for gv pd in (pre t/t)	At every ob po
7	Y	NM	Y	Cx glu	2	Y	Y
8	Y	NM	NM	NM	NM	Y	NM
9	NM	NM	Y	0.15% Benz HCL/d	1/d	NM	NM
10	Y	NM	Y	0.5 oz of 0.2% Cx glu	2/d	NM	NM
11	Y	NM	NM	NM	NM	Y	NM
12	NM	NM	NM	NM	NM	Y	NM
13	Y	Y	Y	NM	NM	NM	NM
14	Y	NM	Y	NM	NM	Y	Y
15	Y	NM	NM	NM	NM	Y	Y
16	Y	Y	Y	NM	NM	Y	Y
17	Y	Y	Y	0.5 oz of 0.2% Cx glu	2/d	Y	Y
18	NM	NM	NM	NM	NM	Y	Y
19	Y	Y	Y	0.5 oz of 0.2% Cx glu	2/d	Y	Y
20	Y	Y	Y	0.12% Cx glu	2/d for 4 wk	NM	NM
21	NM	NM	Y	NM	NM	Y	NM
22	NM	NM	Y	NM	NM	Y	NM
23	Y	Y	NM	NM	NM	Y	Y
24	Y	Y	Y	Cx glu	2/d	Y	NM
25	NM	NM	NM	Benz HCL	NM	NM	NM
26	Y	NM	Y	NM	NM	Y	Y
27	NM	NM	NM	NM	NM	Y	NM
28	Y	NM	Y	NM	NM	Y	Y
29	NM	NM	NM	NM	NM	Y	Y
30	NM	NM	Y	NM	NM	Y	Y
31	Y	NM	Y	Cx glu	NM	Y	Y
32	NM	NM	NM	NM	NM	Y	Y
33	Y	NM	Y	NM	NM	Y	Y
34	NM	NM	Y	NM	NM	Y	Y
35	Y	NM	Y	NM	NM	Y	Y
36	Y	NM	NM	NM	NM	Y	Y
37	Y	Y	Y	N	N	Y	Y
38	Y	Y	Y	N	N	Y	Y
39	Y	Y	Y	N	N	Y	Y
40	Y	Y	Y	N	N	Y	T
41	Y	Y	Y	N	N	Y	Y
42	NM	NM	Y	Cx glu	2/d	Y	Y
43	Y	NM	Y	(against it)	N	Y	NM
44	Y	Y	Y	0.012% Cx glu	2/d	Y	Y
45	Y	Y	Y	Cx glu	NM	Y	Y
46	Y	Y	Y	NM	NM	Y	Y
47	Y	NM	Y	NM	NM	Y	Y
48	Y	NM	Y	NM	NM	Y	Y
49	NM	NM	Y	NM	NM	Y	Y
50	NM	NM	NM	NM	NM	Y	Y
51	Y	Y	NM	NM	NM	Y	Y
52	Y	NM	Y	NM	NM	Y	Y
53	Y	NM	Y	NM	NM	Y	Y
54	Y	NM	NM	NM	NM	Y	Y

A—article, Mw—mouth wash, fq/o—frequency of, d—day, px—prophyaxis, t/t—treatment, ob—observation, po—point, asm—assessment, gv—gingival, pd—periodontal, in—inflammation, cx glu—chlorhexidine gluconate, Y—yes, NM—not mentioned, N—no, h—hour, Benz HCL—benzydamine hydrochloride, wk—week, hy—hygiene, instr—instructions, motiv—motivation.
Table 5 - GCF characteristics.

Ref No.	Time	tp	hm	mt/o cl	ins (in mm)	du/o mm	rep mm	i/o mm	mt/o mm	pt of st	mt/o al	pr cc
7	NM	30%	21°C	PP	NM	30s	NM	NM	PT6000	NM	ELISA	pg / 30-s
8	NM	NM	NM	PP	NM	30s	4	NM	NM	-70°C	SP	PMNs/µl
9	NM	NM	NM	PP	1mm	1min	3	1min	NM	NM	SP	IU/1 µl
10	NM	NM	NM	PP	NM	1min	NM	NM	PT 8000	-70°C	SP	IU/L
11	NM	NM	NM	PP	1-2mm	1min	3	NM	NM	-20°C	ELISA	LDH, AST-mIU/ml, TRAP-ALP-ng/ml
12	NM	NM	NM	PP	NM	30s	4	NM	NM	-70°C	SP	U/100 ml
13	NM	NM	NM	PP	NM	30s	3	1min	PT 8000	-20°C	SP	µg/ml
14	NM	NM	NM	µP	NM	5min	NM	NM	NM	-70°C	SP	µg/ml
15	NM	NM	NM	PP	NM	1min	NM	NM	NM	-80°C	QAK	pg/ml
16	NM	NM	NM	PP	1mm	30s	NM	NM	NM	-30°C	SP	µg / ml
17	NM	NM	NM	PP	NM	30s	NM	NM	-70°C	IA	pg/site	
18	NM	NM	NM	PP	NM	30s	NM	NM	PT 8000	NM	LMAT	pg/ml
19	NM	NM	NM	PP	NM	1min	5	NM	NM	NM	SP	µmol/U/L
20	NM	NM	NM	PP	1mm	NM	NM	NM	PT 8000	-80°C	SP	mb-IA
21	NM	NM	NM	PP	NM	30s	NM	NM	PT8000	-80°C	SP	cp µL/ µl, Cys, ng/µl
22	20°C	40%	PP	NM	NM	30s	NM	NM	NM	-70°C	SP	WB
23	NM	NM	PP	1mm	1min	2	1min	PT8000	-30°C	ELISA	µg/µl	
24	NM	NM	NM	PP	NM	1min	2	5s	NM	-80°C	ELISA	µmol/mg
25	NM	NM	NM	PP	1mm	30s	NM	NM	-80°C	SP	mL	
26	NM	NM	NM	PP	NM	3min	NM	NM	-20°C	WB	µg/l	
27	NM	NM	NM	PP	1mm	10s	NM	NM	NM	SP	µL/sample	
28	NM	NM	NM	PP	1mm	1min	1	30s	NM	-30°C	WB	µL/µl
29	NM	NM	NM	PP	1mm	30s	NM	NM	NM	SP	µL/sample	
30	NM	NM	NM	PP	1mm	30s	NM	NM	NM	SP	µL/sample	
31	NM	30%	21°C	PP	NM	NM	30s	PT6000	-70°C	ELISA	pg/µg	
32	NM	NM	PP	1mm	1min	1	30s	PT	-30°C	ELISA	pg/µL	
33	NM	NM	NM	PP	NM	NM	30s	PT8000	-20°C	ELISA	pg/µL	
34	NM	NM	NM	PP	1-2mm	1min	2	1min	NM	NM	SP	µmol/ min
35	NM	NM	NM	PP	1mm	NM	NM	NM	NM	SP	µL/mg	
36	NM	NM	NM	PP	1mm	1min	3	1min	NM	NM	SP	µL/mg
37	NM	NM	NM	end PP	1mm	30s	3	90s	NM	-40°C	SP	µmol/min
38	NM	NM	NM	end PP	1mm	30s	3	90s	NM	-40°C	SP	µmol/min
39	NM	NM	NM	end PP	1mm	30s	3	90s	NM	-40°C	SP	µmol/min
40	NM	NM	NM	end PP	1mm	30s	3	1min	NM	-4°C	SP	µmol/min
41	NM	NM	NM	µP	2mm	NM	NM	NM	NM	-70°C	SP	U/mg
42	NM	NM	NM	PP	1mm	30s	NM	NM	NM	-20°C	SP	NM
43	Y	NM	NM	FP	NM	1min	NM	5s	NM	-80°C	PNPP kin	NM
44	NM	NM	NM	FP	NM	30s	NM	NM	-80°C	SP	µL/sample	
45	NM	NM	NM	µP	NM	NM	NM	NM	NM	SP	U/L	
46	NM	NM	NM	µP	NM	NM	NM	NM	NM	SP	U/L	
47	NM	NM	NM	µP	NM	NM	NM	NM	NM	SP	µmol units(L)	
48	NM	NM	NM	µP	NM	NM	NM	NM	NM	SP	µL/sample	
49	NM	NM	NM	µP	NM	NM	NM	NM	NM	SP	µL/sample	
50	Y	NM	NM	PP	1mm	30s	NM	NM	NM	SP	µL/sample	
51	NM	NM	NM	end PP	1mm	30s	NM	NM	NM	-30°C	SP	µL/sample
52	NM	NM	NM	PP	1mm	30s	NM	NM	-70°C	SP	units/100 µL	
53	NM	NM	NM	PP	30s	2	30s	NM	-70°C	SP	units/100 µL	
54	NM	NM	NM	pp	1mm	1min	NM	NM	NM	SP	µL/sample	

A: article, tp: temperature, hm: humidity, mt/o cl: method of collection, sp: specification, ns: insertion, mm: millimeter, du/o: duration of, rep: repeated, i/o: interval of, st: storage, al: analysis, pr: protein, cc: concentration, NM: Not Mentioned, N- No, Y: Yes, PP: Periopaper, PT- Periotron, WB: Western Blot, ELISA: Enzyme linked immunosorbent assay, IA: Immunoassay, RIA: Radio IA, meas: measurement, pg: picogram, µg: microgram, ml: millilitre, µL: microlitre, GCF: gingival crevicular fluid, tot: total, g: gram, ng: nanogram, s: second, min: minutes, °C: degree Celsius, SP: spectrophotometry, Ar-array, As-assay, mb: multiplex bead, IL-international units, L: litre, LDH-lactate dehydrogenase, AST-aspartate transaminase, TRAP-ACid phosphatase, ALP- Alkaline Phosphatase, PMNs – polymorphonucleosides, Cp -cathepsin, Cys -cysteine, Tot -total, pmol –picomol, flr-flurometery, QA- Quantibody assay, PNPP kin- para nitrophenyl phosphate kinetic, pp- paper point.
Table 6 - Differential expression of enzymes in GCF.

Ref No.	sts al ap	cf	Drop outs	Up / down rg	Pk
7	1-tailed paired Student t	Y	NM	βG: inc	M-010
8	ANOVA, paired t test	Y	NaM	Inc at 2h, bas in 7d	2h
9	(ANOVA) Kolmogorov–Smirnov test, Paired-samples test	Y	N	Inc	2wk
10	Kolmogorov and Smirnov (ANOVA) & Tukey’s post-hoc test	Y	N	Inc	14d
11	Paired t test Pearson’s cr	Y	N	LDH inc at 2, 3; 4 wk(100 g) & 1, 2, 3 wk (150 g); AST inc at 4 & 5 wk (100 g) & 3 & 4 wk (150 g); TRAP inc at 5 wk (100 g)	AST: 1wk, TRAP: 2wk
12	Friedman test for interg & intrago, Wilcoxon test for related samples, Kruskal-Wallis test for independent samples in both gps	Y	N	inc	2h
13	Intra gp: Friedman’s test, Wilcoxon test Inter gp: Mann-Whitney U-test, Pearson’s test	Y	N	Inc	MMP9: 8h, MMP9/NGAL: 72h
14	Intergp: Mann Whitney U test. Intra gp: Students unpaired t-test	Y	N	Inc	ACP: 3d ALP, AST: 15d
15	SAS version 9.2 proc mixed subroutine	Y	N	No sts sn change	NM
16	MedCalc software Intergp: Student’s t-test, ANOVA.	Y	N	SL+ NITI wi: inc SL+ thrm wi: dec	No sts sn change
17	Luminex analysis	Y	N	MMP1,3, inc, pk at 24h MMPB: pk at 14d	24h
18	Paired non-parametric Kruskall–Walls. Spearman Rank Sum anal	Y	NM	Inc	Exp-TIMP, MMP-9.4h, cmp: TIMP-1, MMP-9.4h, TIMP-2: 7d
19	GraphPad®Instat, ANOVA, Friedman	Y	NM	Inc	14d, 21d
20	Friedman, Mann–Whitney	Y	NM	Inc	1h
21	ANOVA	Y	NM	Cp: dec Cys:inc	1d
22	ANOVA	Y	NM	Inc	MMP1-1h, MMP2-1h, 8h
23	Mann-Whitney U-tests	N	NM	Inc at 24h at lx t >CT	24h
24	ANOVA BLSD	Y	NM	Inc	14d
25	Friedman test	Y	NM	Dec	1d
26	Friedman and Bonferroni-corrected, Wilcoxon paired signed rank tests	Y	NM	Inc	14d
27	NM	Y	NM	Lvl of MMP-8 inc in lx t>c	NM
28	Friedman & Bonferroni-corrected, Wilcoxon paired signed rank tests	Y	NM	Inc	28d
29	Friedman & Bonferroni-corrected, Wilcoxon paired signed rank tests	Y	NM	Inc	tn:7d
30	Mann Whitney U-test	Y	N	Inc	24h
31	Bonferroni-corrected, 1-way repeated measures ANOVA, paired Student t test	Y	NM	Inc	14d
32	One-tailed paired Student t test	Y	N	βG -25d IL-1β	1β-
33	Student’s t test	Y	N	IL-1β, IL-6, TNF-α, EGF, β2-μG	inc

A – article, sts – statistically, al – analysis, ap – applied, cf – confounders, rg – regulation, Pk – peak, sd – secondary, oc – outcome, cr – correlation, sn – significant, Y – yes, N – no, NM – not mentioned, inc – increase, dec – decrease, fluct – fluctuated, h – hour, mon – month, d-day, wk – week, tot – total, prot – protein, conc – concentration, mg – milligram, ml – millilitre, g – gram, > – greater than, VAS – visual analogue scale, C-canine, mov-movement, b/w-between, cn-continuous, β- and, F-force, Asc-associated, gen-genetic, GCF- gingival crevicular fluid, comp–compared, B-baseline, IL– interleukin, βG-beta glucoronidase, TNFα-tumour necrosis factor alpha, SD–short duration, LD-long duration, HG– RDG–, Diff-difference, vol-volume, Rt-retraction, If-inflammation, Avg-average, cyt-cytokine, thermo-chemokine, kwn-known, MOP PI-plaque index, BOP-bleeding on probing, Exp-experimental, c-control, Avg-average, Mx-maxilla, ct-contrateral, differen-differentiation, se-separator, gp-group, cmp-compression, tr–tension, kPa-kilopascal, max-maximum, gw-growth, T-tooth, Oc-osteoclast, RDG- Rapid canine distalisation group, HG- hybrid reactor group, Rt- retraction, Aa-Actinobacillus, rd-reading, wi-wire, lg-ligature, Ad-adult, RANKL-receptor an-
sd & oc	cr	sta sn rd
IL-1β sign inc for Mo- OS to O10 for PM-O6 to O10	stronger F cause higher levels of IL-1β & βG	βG inc for Mo- O7 to O10 PM-O7, O8, O10
For Cl-04, 06, 07, 09, 010 & dec at O2 for Mo, PM, Cl	IL-1β & βG	Cl-06, 07, 010 & dec at O2 for Mo, PM, Cl
Inc MPO in saliva at 2h, B in 7d	+ve cr of lvl in GCF & saliva	Inc at 2h
NM	In crs F: lvl pk at 2wk & GCF vol inc from 0 – 21d	In gradually inc: F, Lvl pk at 3wk
Sn inc at 14d	Exp si: lvl inc on 14d cr with pk in GCF vol	Exp si: lvl pk at 14d
In saliva AST inc at 5wk, TRAP at 2wk, ALP at 1 to 5wk	Weak cr b/w enz quantity & activity	LDH inc at 2, 3 & 4 wk (100 g) b 1, 2 & 3 wk (150 g).
minm & severe crw: inc from 0 at 2h, 7d, 14d in saliva	No cr of crw with change in MPO	AST inc at 4 & 5 wk (100 g) b 3 & 4 wk (150 g)
TSP1: inc from B at 8h to 72h, dec at 1wk	Strong & sn cr b/w MMP9/NGAL & TSP1 in IxT	TRAP inc at 5wk (100 g)
Exp si: in Ad, IL-1/1L-1RA dec in 3wk aftr 1st wi lig ado, RANKL/OPG pk at 6wk & 3 wk rect wi lig	No cr in GCF vol & PI	No sts sn change in MMP
Visual pl scr dec sts sn	No cr of MMP-9 & TIMP to speed of OTM at 4h in Exp	No cr of MMP-9 & TIMP to speed of OTM at 4h in Exp
+ve cr of GCF vol & PI at 0 at tn, cmp	+ve cr of MMP-9 & TIMP to speed of OTM at 4h in Exp	+ve cr of MMP-9 & TIMP to speed of OTM at 4h in Exp
At 24h GCF vol inc in 1d, dec at 1m	+ve cr of MMP-9 & TIMP to speed of OTM at 4h in Exp	+ve cr of MMP-9 & TIMP to speed of OTM at 4h in Exp
-ve cr in Cp & Cys Lvl	Inc at 7, 14, 21d	Inc at 7, 14, 21d
GCF vol higher in cmp than tn at 21d	MMPPS inc at 3h, dec at 24h	MMPPS inc at 3h, dec at 24h
GCF vol inc in 1d, dec at 1m	Inc in MMP1 (tn)-1h, (cmp) -1h	Inc in MMP1 (tn)-1h, (cmp) -1h
GCF vol no sn diff at 24h	Inc in MMP2 (tn) -1h; (cmp) -8h	Inc in MMP2 (tn) -1h; (cmp) -8h
Dpd, osteocalcin dec	Inc in ALP -7, 14 at Ms & D	Inc in ALP -7, 14 at Ms & D
NM	Inc from 0 to 28 d, inc on 7d	Dec from 0 to 28 d, inc on 7d
NM	ct gp greater than Ag gp on 14 d & 21d	ct gp greater than Ag gp on 14 d & 21d
NM	Lvl of MMP-8 inc 12 times in Ix cx	Lvl of MMP-8 inc 12 times in Ix cx
NM	Inc at 28d in Ix T as compd to CtxT & Ag T	Inc at 28d in Ix T as compd to CtxT & Ag T
Aa colonization inc sn on 28d in ExpT & ct gp	AST: inc in Ix T & ct T as compd to Ag T, inc in IxT as compd to CtxT on tn si on 14d & on cmp on 7d & 14d	AST: inc in Ix T & ct T as compd to Ag T, inc in IxT as compd to CtxT on tn si on 14d & on cmp on 7d & 14d
NM	CpxB higher at 24h in IxT	CpxB higher at 24h in IxT
NM	Sign inc on both M & D at 1,2,3 wks	Sign inc on both M & D at 1,2,3 wks
sn inc in IL-1β level at 4d 619d to 60d AL	inc in βG at 25d to 60d AL	inc in βG at 25d to 60d AL
24h	Intergrp btw cont & Exp: IL-1β inc in 24h > BS, IL-6 inc in 24h > BS or 168h, TNF-α inc in 24h > BS or 168h	Intergrp btw cont & Exp: IL-1β inc in 24h > BS, IL-6 inc in 24h > BS or 168h
& EGF inc in 24h > BS	Integra-activity, actvn-activation, compl-completion, reactivation-reactvn, SE-superelastic Niti, HANT- heat-activated Niti, MSSS- multistranded stainless steel, vol-volume.	Integra-activity, actvn-activation, compl-completion, reactivation-reactvn, SE-superelastic Niti, HANT- heat-activated Niti, MSSS- multistranded stainless steel, vol-volume.
Table 6 - Differential expression of enzymes in GCF.

Ref No.	sts al ap	cf	Drop outs	Up / down rg	Pk
34	ANOVA	Y	NM	Inc	7d
35	Shapiro-Wilk test	Y	NM	Inc	100g gp-TRAP-3wk, 150g gp-ALP & TRAP-5wk
36	Student’s paired t test	Y	NM	Inc	M-4wk, D-1SN-2wk
37	Kruskal Wallis test.	Y	NM	Inc: at 1wk, 4wk, stabilised	4wk
38	Paired sample t-test	Y	NM	Inc: at 1wk,4wk, stabilised	4wk
39	Paired sample t-test	Y	NM	Inc: at 1wk, dec in next 3wk	1wk
40	Wilcoxon signed rank test	Y	NM	Inc: at archwi>self lig site, inc at 1wk	1wk
41	Wilcoxon signed rank test	Y	NM	Inc: at archwi>self lig site, inc at 1wk	1wk
42	ANOVA, paired t-test using SPSS	Y	NM	ALP inc in 14d, 28d, ALP at Ms>D, ACP inc in Ms ED	ALP, ACP : 14d
43	ANOVA, Student’s t-test	Y	NM	ALP dec, D of C > Ms of 2nd PM on 1, 7, 14, 21, 28d	Dec
44	Friedman test followed by a Bonferroni-corrected Wilcoxon signed rank test	Y	Y	ALP inc in 3m, 6m	inc
45	ANOVA, Tukey’s HSD Post-Hoc test, Mann-Whitney U-test	Y	NM	ALP inc 14d, 28d	28d
46	ANOVA, Independent Samples t-test, Mann-Whitney U-test	Y	NM	ACP inc both Ms & D si D si>M si at 7d, 21d	21d
47	ANOVA, Tukey HSD	Y	NM	LDH inc at TT>cT 7d, 14d,21d	28d
48	Friedman & Bonferroni-corrected Wilcoxon paired signed rank tests	Y	N	AST inc from BS in T/T gp from BS to 2wk followed by dec	14d
49	One-way ANOVA was used for multiple group and Student t test for group-wise comparisons	Y	N	Inc in ALP b/w 21d & 28d of 200% in active TB gp, of 260% in RT screw gp	TB: 21d
50	independent t tests, _2 tests, or Mann-Whitney, intraexaminer reliability - concordance correlation coefficient (CCC) & Bland-Altman method	N	Y	MMP8,9, MMP8/TIMP1, MMP9/TIMP1, resistin at BS>1m>1wk>compl of Aln	NM
51	Fisher’s PLSD followed by post hoc, Bonferroni-Dunn	Y	N	ALP on cmp site: 0>2wk>6wk>1y	tn site: 0<2wk<4wk<1y
52	paired & unpaired T test and ANOVA	Y	N	MPO inc from BS to 2h in HANT, SE, MSSS gp	2h
53	Chi-square	Y	N	MPO inc from BS to 2h in HANT, SE, MSSS gp	2h
54	Student’s t-test, and one-way analysis of variance	Y	N	MPO inc from BS to 2h in HANT, SE, MSSS gp	2h

A—article, sts—statistically, al—analysis, ap—applied, cf—confounders, rg—regulation, Pk—peak, sd—secondary, oc—outcome, cr—correlation, sn—significant, Y—yes, N—no, NM—not mentioned, inc—increase, dec—decrease, fluct—fluctuated, h—hour, mon—month, d-day, wk-week, tot—total, prot—protein, conc—concentration, mg—milligram, ml—millilitre, g—gram, >—greater than,VAS—visual analogue scale, C—canine, mov—movement, b/w-between, cn—continuous, &—and, F-force, Asc—associated, gen—genetic, GCF—gingival crevicular fluid, compd—compared, B—baseline, IL—interleukin, BS—beta glucuronidase, TNFα—tumour necrosis factor alpha, SD—short duration, LD—long duration, HG—RGD, Diff—difference, vol—volume, Rt—retraction, it—inflammation, Avg-average, cyt—cytokine, chemox—chemokine, kwn-known, MOP—PI-plaque index, BOP—bleeding on probing, Exp—experimental, c—control, Avg—average, Mx—maxilla, ct—contralateral, differen—differentiation, se—separator, gp—group, cmp—compression, tn—tension, kPa—kilopascal, max—maximum, gw—growth, T—toothing, Oc—osteoclast, RDG—Rapid canine distalisation group, HG—hybrid reactor group, Rt—retraction, Asa—Actinobacillus, rd—reading, wi—wire, lig—ligature, Ad—adult, RANKL—receptor antago.
TNF-α in D & Ms sites of TT sn higher than both sites of c, also > B, inc sn at 1 h & 24h. IL-10 dec during Exp period in c & TT

TRAP5b. Level in D & Ms sites of TT were sn higher than that at both sites of c of TT compd with B values, inc was sn at 1 h & 24h.

In 100 g gp, TRAP sn inc in 3-5 wk compd to TRAPB. ALP & AST slightly inc. In 150 g gp, ALP & TRAP slightly inc compd with their B. AST sn inc in 5 wk.

LDH at Ms site in 1.0 N & 1.5 N gp, inc sn on 4th wk. At D site, LDH with 1.5 N was higher than 1.0 N throughout 5 wk of TM. LDH with 1.5 NF inc at both Ms (wk 2) & D site (wk 3) with sn diff to 1.0 N F

Rate of OTM at 150g>100g 150g F at 3 & 4wk>100g f, +ve cr of lvl of TRAP & rate of OTM

150g gp, Ms si: inc at 3wk>BS At D si: inc at 4wk>BS TRAP at 150 gm>100gm F at 4wk (D site)

Inc at 1wk, 2wk from Bas Dec at 4wk

Inc at 1wk, 4wk, At D si=Ms si

Plk at 1wk in T/T>CT

Inc at archwi>self lig

ALP, ACP inc, ALP inc more on M si

Dec at D of C > Ms of 2nd PM on 1, 7, 14, 21, 28d

+ve corr of ALP lvl with time at tn si

ALP at 3m, 6m > CT

+ve corre of mechanical stress to AST levels, T/t>CC

sn inc in T/t>CC vs AC gp: 1, 2, 3, 4w

sn inc in T/t vs CC gp: 1, 2wk AST level in comp >tn on 1wk

-space closure rate, root resorption, Rt, anchorage loss with

Hycon screw were assessed

+ve corre of ALP in Hycon screw gp with actvn of screw

Sign diff in ALP on 21d & 28d b/w TB & Rt screw gp

Resistin at BS>1h>1wk>compl of Aln

CRP, RANKL inc from BS to compl of Aln

Adiponectin BS>1h>1wk>compl of Aln

Leptin dec from BS to compl of Aln

Mediators correll with Aln rate- MPO, RANKL, Leptin, Resistin

MPO at BS>1h>1d>compl of Aln

+ve corre of intermolar distance with ALP level in tn site

tn site: 0 (before actvn) < 4wk, 0<1y cmp site: 0>4wk, 0<3y, 2wk>4wk

MPO in HANT>SE>MSSS

sn diff in MPO b/w SE & MSSS: 2h, 2wk, b/w HANT & MSSS>2h, b/w SE & MSSS:1wk

MPO b/w SE & MSSniTi: 2h, 1, 2wk, b/w HANT & MSSniTi:2h

Levels greater in Exp than Cn gp at 1, 2, 3, 4wk

© 2019 Dental Press Journal of Orthodontics Dental Press J Orthod. 2019 Mar-Apr;24(2):40.e1-22

Kapoor P, Monga N, Kharbanda OP, Kapila S, Miglani R, Moganty R

© 2019 Dental Press Journal of Orthodontics Dental Press J Orthod. 2019 Mar-Apr;24(2):40.e1-22

Kapoor P, Monga N, Kharbanda OP, Kapila S, Miglani R, Moganty R
Table 7 - Results of quality assessment of 48 studies for inclusion of studies in the review

S. No.	Criteria (29)	Yes	No	Unclear
1	Objective: objective clearly formulated	48	-	-
2	Sample size: considered adequate	2	-	46
3	Spectrum of patients representative of patients receiving the test in practice	48	-	-
4	Ethical clearance mentioned	40	8	-
5	Selection criteria: clearly described	48	-	-
6	Randomization: stated	21	27	-
7	Baseline characteristics: clearly defined	47	1	-
8	Control: clearly defined	46	-	2
9	Orthodontic mechanics explained in sufficient detail to permit replication of experiment	45	1	2
10	Orthodontic force: clearly specified	35	12	1
11	Description of execution of index test: sufficient to permit replication of test	45	-	3
12	Absence of time difference between index test & control: mentioned	36	12	-
13	Index test executed at specified time and environmental conditions	4	44	-
14	Use of proper indices for assessment of gingival & periodontal status (Pre-treatment)	40	8	-
15	Use of proper indices for assessment of gingival & periodontal status (at each observation time)	17	29	2
16	Oral hygiene regime-mentioned	32	3	13
17	Prophylaxis done (Pre-treatment)	34	14	-
18	Prophylaxis done (at each observation time)	11	37	-

II. Study measurements (3)

	response	
1.	GCF handling characteristics: explained	47 - 1
2.	Measurement method: appropriate to the objective	48 -
3.	Reliability–adequate level of agreement	48 -

III. Statistical analysis (5)

	response	
1.	Dropouts: dropouts included in data analysis	1 47 -
2.	Statistical analysis: appropriate for data	48 -
3.	Confounders: confounders included in analysis	- 48 -
4.	Statistical significance level: P value stated	48 -
5.	Confidence intervals provided	48 -

IV. Study results and conclusions (3)

	response	
1.	Index test compared to baseline	48
2.	Index test compared to control	48
3.	Conclusions: specific	40 8

*Index test: Refers to collection of GCF at each observation interval in treatment teeth.
and 5 min in one study each. GCF measurements were repeatedly taken in 18 studies with specified number of
intervals, interval of repeat measurements were 30s (n=8), 60s (n=7), 90s (n=3) and 5s (n=2). Storage of
samples was done at -20°C (n=5), -30°C (N=4), -40°C (n=3), -70°C (n=11) and -80°C (n=9). Retrieval of
GCF from PerioPaper was done by Periotron (Ora-
Flow, PlainView, New York, NY, USA) in 11 stud-
ies, but not mentioned in 38 studies. Enzymes levels
were estimated by ELISA (n=8), spectrophotometry
(n=30), immunoassay (n=2), Luminexmultianalyte
technology (n=1), Quantibody Array kit (n=1), western blotting (n=3), fluorometry (n=1) and para-nitro-
phenol phosphate kinetic (n=1), but omitted in one
study. Protein concentration in GCF was measured
in variable units in 38 out of 42 studies.

DISCUSSION

The findings of the current review are presented in
Table 6. It depicts various enzymes released in GCF in
a time-dependent manner and also establishes correla-
tions (if any) with levels or type of force applied. In this
review, we have tried to establish associations of enzyme
levels to magnitude or type of force in each phase of
OTM, given by Burstone66 in his classic model or four
phase time/displacement modification model.57,58

An initial upregulation in enzymes for bone resorp-
tion and matrix degradation like TRAP, ACP or MMPs
and an immediate decrease in bone formative ALP
corresponded with Burstone’s initial phases of OTM.
Different MMPs responsible for extracellular matrix
(ECM) breakdown are increased at variable times in
OTM.13,15,17,18,20,22,27,50 as early as 1hr or till completion
of alignment.50 MMP-9 increased in 4hr, peaked at 8hr
using stainless steel ligatures for canine retraction in one
study, while MMP9/NGAL ratio peaked in 72hr in an
other study.13

MMPs also varied with different magnitudes of
force as MMP-9 peaked in 4hr in a study using 100g
force for canine retraction,18 compared to another
study using 150g force in which MMP3, 9 and 13
peaked in 24hr.20 The difference in peaks of various
MMPs can be explained on the basis of difference
in their roles in bone turnover and remodeling with
orthodontic forces.59 MMP-9 is responsible for cleav-
age of denatured collagen, i.e gelatin,60 MMP-13
dissolves native fibrillar collagen; MMP-1 is an in-
terstitial collagenase hydrolyzing mainly type III col-
lagen,61 and MMP-3 is responsible for activation of
MMPs 8 and 9.62 Hence peaks of MMP8 and MMP9/NGAL ratio at 14d17 and 72hr,13 respectively, occur
subsequent to peak of MMP-3 in 1hr/24hr.17,20 In vi-
tro studies also support rise in MMPs in orthodon-
tic forces, specifically MMP-1,2 mRNA and protein
production in human gingival and pdl fibroblasts63,64
and MMP-1,2, 9 in gingival tissue of dogs.60

On the other hand, no significant change in MMP
levels were seen in control teeth where no orthodontic
force was applied.17,22 This clearly supports MMPs as key
mediators of remodeling in OTM.

MMPs are also shown to vary with site (tension and
compression) in a time-dependent manner, as supported
by in vitro models on pdl fibroblasts.63,66 Current review
showed an increase in MMP1,2 in 1-3hr on tension site
(TS) of maxillary canine after activation of NiTi spring
while in compression (CS), MMP1 increased at 1hr and
MMP2 later, at 8hr.22 MMP-9 also increased from 4hr
to 7d on compression site in another study.13 This up-
surge in levels indicate initial collagen turnover and dis-
integration of ECM on both tension and compression
sites in initial phases of OTM.

Contrary to the MMPs, CS showed a significant
increase in GCF levels of MMP inhibitors, TIMP-1 at
4hr and TIMP-2 after 7d during retraction of ca-
nines, coinciding with lag phase where tooth move-
ment slows down.18,50 At TS, a significant increase in
TIMP1 and 2 levels was seen at 4hr and 42d. This
finding is in agreement with the results of a study by
Bildt et al67 where a continuous force with NiTi spring
of 150cN was applied for retraction and an increase in
MMP1 and TIMP1 was seen on pooled samples from
resorption (corresponding to compression) and apposi-
tion side (tension) but no trace of TIMP2 was found.
The mechanism of action of TIMP-1 stimulates release
of MMP1,68 an interstitial collagenase, associated with
normal tissue remodeling or stretch of pdl fibers, hy-
drolysing mainly type III collagen.64 Also, TIMP-1 in-
creases in smaller amounts on the site of compression,
while retraction due to stimulation of bone resorption
but in higher amounts on tension, it decreases bone re-
sorption.67 A study by Garlet et al.69 provided evidence
of greater expression of TIMP-1 mRNA on TS and
MMP-1 mRNA on CS and TS of experimental teeth
compared with the control.
Besides MMPs, histological studies on rats provide evidence of other enzymes for bone resorption predominant in CS in early phases of OTM followed by bone deposition in TS.70,71 In accordance, the current review also shows resorptive enzyme -ACP in initial 3-5d of tooth movement.14 Few studies on retraction with continuous forces document an initial rise in ACP both on TS and CS with a peak in 14d12 and 21d46. Initial resorption is followed by a late phase of bone deposition (7-14d) marked by an increase in bone formative ALP levels,37,45 seen both in TS and CS of alveolar wall. Increase in ALP occurs by increasing the local concentration of phosphate ions after hydrolysis of phosphomonoester bonds, thus bone mineralisation. Highest serum ALP activity in humans has been correlated with greatest osteoblastic activity during growth spurts.72,73 The current review has 17 studies evaluating ALP in association with type, site and magnitude of force. ALP levels increased at TS in continuous retraction forces by NiTi spring as well as in gradually increasing force from 50 cN to 150cN at 2wk, showing a predisposition towards bone deposition.9 A study in rats supported osteoid deposition in the lacunae on TS in 80–120d.74 The current review shows peak in ALP levels at 2wk on continuous force application of 150cN, 100g or 150g force9,10,14,24,28,45, with greater levels on TS compared to CS. This is followed by fall in ALP levels corresponding to hyalinised tissue removal and initiation of post lag phase.9,24 Magnitude of force was another determinant of variation in ALP. Decrease in ALP levels seen at 1hr, 1d after intrusion by TMA spring is believed to be caused by heavy forces leading to a hyalinised zone.25 Conversely, distalisation of molars with heavy cF of 250g31 showing high ALP levels at both TS and CS and ALP levels greater in 150g than 100g force,34 were attributed to extensive osteoblast recruitment on application of heavy forces.9 One study showing decreased ALP levels on both TS and CS of canine retraction with push coil spring was probably due to combination of bodily and tipping movement, which precludes pure compression and tension areas.38 ALP also varied with type of force: one study compared levels in Hycon8 screw with active tie-backs for retraction. A significant difference was seen at 3 and 4 wk of retraction with levels in Hycon screw group 260\% higher after one half turn twice weekly activation, compared with 200\% increase in active tie-back group.49 This may be ascribed to elastomeric force decay to 30-40\% of original force in 3 weeks. Another study on maxillary expansion by hyrax followed by retention noticed fall in ALP levels on CS and TS till four weeks of activation, followed by peak at 1yr on TS, thus indicating bone apposition during retention period.51

Contrary to ALP, TRAP or ACP facilitates dissolution of bone minerals by forming a highly acidic extracellular environment and are potent osteoclast biomarkers expressed in areas of compression.74 The present review supports rise in TRAP levels at CS more than TS to reach peak at 1wk,33 2wk11 and 4-5wk.34,36 This is supported by histochemical study by Casa et al,75 suggestive of appearance of mononuclear TRAP positive cells on application of forces at 2wk and multinucleated TRAP positive cells at 3 and 4wk. Even ACP activity was maximum at 3d, followed by its reversal, explained by natal release of enzymes from surface of osteoclasts.14 A secondary outcome of faster rate of OTM with minimal lateral and apical root resorption was noticed with higher levels of TRAP in 150g, compared with 100g force.34,36

The consummation of bone resorption occurs by resolution of organic matrix mediated by lysosomal cysteine protease cathespin B that is increased 1d after application of 100-150g or 250g retraction force by E chain,21,30 while levels of inhibitor cystatin decreases in 1d.21 In association, plasminogen activator (t-PA) and its inhibitor (PAI) responsible for extravascular fibrinolysis, reach peak at 24hr only to fall later at 7d.23

AST is another cytoplasmic enzyme released in extracellular environment after cell membrane lysis following necrosis76 and has been evaluated in 10 studies in the current SR. Peak levels of AST were seen at 1wk,31,40,41,54 2wk,14,48 and 4wk.28,39 This may be explained on the basis of increase in AST activity for 14d due to hyalinization of pdl in compression zone, decreased later upon resolution of hyalinised area by macrophages.14 The formation of hyalinised zone and cellular necrosis may cause higher levels on CS than TS in retraction cases39,48 and also in 150g force, compared to 100g.31,34 But, such sporadic evidence could not be definitive for site predilection. Rather this enzyme has been associated more with destruction of gingival tissues in experimental and chronic periodontitis77 and subgingival colonization with arch wire ligation41 than orthodontic force application.
The current review has also monitored LDH, an enzyme released from cytoplasm to extracellular space after cell death in gingivitis or periodontitis as well as in orthodontic treatment. Variation in LDH levels were recorded with type, magnitude and direction of application of force. Continuous force of 125g with NiTi spring showed increase in levels at 7d to peak at 14d, but remained higher in CS than TS at 1.5 N, thus favouring its release after cell death. Timing of increase varied with force level, with an early increase seen at 2wk in heavy force of 250g applied for molar distalisation compared with rise in 3wk in 125g force. However no significant difference in LDH levels could be correlated to high friction between self-ligating brackets and thermoelastic or superelastic Niti-nol wires, as the forces produced by frictional resistance are insufficient for LDH release. One study supporting greater LDH levels in teeth undergoing retraction compared with controls was excluded from this review because of its cross-sectional study design. It supported LDH as a sensitive marker of the pdl metabolism changes during OTM.

Other inflammatory mediators like MPO and βG were also evaluated in this review. MPO released from PMNLs (polymorphonuclear leukocytes) is a sensitive marker for inflammation and pain associated to OTM and showed an early increase at 2hr. In cases of alignment, the levels of MPO increase from baseline to 1hr to 1d till completion of alignment, correlating it with inflammation caused by NiTi wire alignment. Studies on MPO also supported superelastic NiTi wires as best alignment wires, giving low continuous force and rapid tooth movement, showing higher MPO levels at 2hr, compared with heat-activated NiTi or multistranded NiTi or stainless steel wires.

Studies also mentioned increase in lysosomal enzyme, βG released from PMNLs after 14d of heavy interrupted force for mid-palatal hyrax expansion in adolescents. However, the levels remained high till 28d in retention, probably due to elastic recoil of stretched supracrestal gingival fibers.

The risk of bias assessment in QAI though indicated all studies as moderately or highly sensitive, revealed certain strengths and weaknesses of variable study designs (Table 7). While the objectives of the studies, selection criteria and orthodontic mechanics were generally clear, they strikingly lacked sample size calculation with only one study indicating the same. The authors took 5 as the sample size for inclusion, based on statistician’s advice. Randomization of experimental teeth/patients falling into study and control group have been clearly stated in only 21 out of 48 studies, suggesting substantial bias in all studies. The present SR deals with biomarker evaluation in GCF, hence the GCF handling characteristics have been adequate in all studies. However, the specification of time, temperature and humidity at the time of GCF collection was a major shortfall, with only four studies mentioning it. The statistical significance of the results, wherever applicable, have been stated in all the studies, but none of the studies mentioned dropouts or confounders, which might influence the results.

Despite the various shortcomings noticed in the study designs, the current evidence has generated ample evidence related to enzymes in OTM and has also opened new arena for future research in this direction.

Perhaps a most exciting area of research will involve biological basis of tooth movement with different ligation modes of brackets. Further studies could be conducted with LDH as marker for high frictional resistance in different combinations of brackets and wires, as only single study in this SR found no significant change in LDH in initial OTM with self-ligating brackets and superelastic or thermoactive archwire. Another split-mouth study correlating biomarker level with microbial colonization in different ligation modes showed a significantly greater level of AST in arch wire ligation than self-ligation, associated with greater microbial count.

An interesting correlation of MPO with pain was established with an early increase in MPO within 2hr of force application, coinciding with initial pain incidence in orthodontic patients. βG has been explored for its association with the most suitable wires for alignment and could be explored further in different types and magnitudes of forces.

Based on similarity between peri-implant fluid (PIMF) and GCF, the mediators studied in GCF could also be evaluated in PICF to assess stability of contemporary orthodontic anchorage devices, micro-implants, as has been suggested by study of interleukin 1β in PIMF. Despite the heterogeneity in study design and categories of enzymes studied in literature, this SR provides an essential overview of the mechanism by which en-
zymes play a role in bone apposition, resorption as well as ECM degradation. The current SR also correlates mediator levels in GCF with phases of OTM at different magnitudes and types of forces and also ligation modes. It goes a step further in suggesting the potential areas of research in this field, based on individual studies designed for associations of mediator levels with ideal orthodontic force magnitudes, method of ligation and periodontal status, thus setting a direct implication in clinical practice.

CONCLUSIONS

1. Orthodontic force induces change in levels of multiple enzymes detectable in GCF. These are:
 a) cytoplasmic enzymes released in extracellular environment after cell lysis (LDH, AST), b) Inflammatory markers released from PMNs (MPO, βG), c) enzymes involved in bone and tissue remodelling by bone resorption (TRAP, ACP), d) bone apposition (ALP) or dissolution of organic matrix (Cp, Cys, tPA, PAI) and e) various categories of MMPs responsible for degradation of ECM (MMP1, 2, 3, 8, 9, 13).

2. Compression sites showed early increase in levels of MMP1, MMP2, TIMP1, MMP9 between 1-4hr, and late peak in TIMP2, TRAP, AST after 7d, 4-5wk and 8-12wk, respectively.

3. Tension sites showed significant increase in ALP after 7d, MMP1 between 1-3hr and TIMP 1 and 2 levels at 4hr, 7d and 42d.

4. Distinction between TS and CS could be made with levels of TRAP, AST, LDH, MMP9, being greater on CS than TS, and ALP greater on TS.

5. ALP, TRAP levels were greater in 150g force than 100g force. An early rise in AST levels was seen in 150g force at 3 and 4wk, as compared to 100g force at 4 and 5 wk.

6. Mechanical stress with continuous force of NiTi spring causes increase in MMPs 1, 3 in 24hr in CS and of ALP as early as 7d in TS.

7. No significant association between levels of MMP-9 or AST and growth status could be established as adult and adolescents, gave no significant difference in levels.

Author’s contribution (ORCID®)

Priyanka Kapoor (PK): 0000-0002-7676-9743
Nitika Monga (NM): 0000-0001-5206-1006
Om P. Kharbanda (OPK): 0000-0001-8908-4666
Sunil Kapila (SK): 0000-0003-0271-9548
Ragini Miglani (RM): 0000-0003-2553-0588
Rajeswari Moganty (RM): 0000-0001-9662-5379

Conception or design of the study: PK, NM, OPK. Data acquisition, analysis or interpretation: PK, NM, OPK, SK, RMI, RMO. Writing the article: PK, NM, OPK, SK, RMI, RMO. Critical revision of the article: PK, NM, OPK, SK, RMI, RMO. Final approval of the article: PK, NM, OPK, SK, RMI, RMO. Overall responsibility: PK.
REFERENCES

1. Meenan NA. Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol. 2013;17(1):16-20.
2. Krishman V, Davidovich Z, Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469-e1-32.
3. Ahmad AQ, Biomechanics of orthodontic tooth movement in gingival crevicular fluid: a systematic review. J Contemp Dent Pract. 2015;16(7):578-87.
4. Apuzzo F, Cappabianca S, Ciavarella D, Monsuro A, Silvestrini-Blaviati A, Perillo L. Biomarkers of periodontal tissue remodeling and clinical relevance. Sci World J. 2013 Apr 23;2013:108783.
5. Lijsa E, Lindskog S, Hammarström L. Histochemistry of enzymes associated with tissue degradation incident to orthodontic tooth movement. Am J Orthod. 1983;83(1):62-75.
6. Kapoor P, Kharbanda OP, Miglani R, Moganty R. Rhee SH, Kang J, Nahm DS. Cystatins and cathepsin B during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;133(5):699-707.
7. Marcaccini AM, Amato PA, Leão FV, Gerlach RF, Ferreira JT. Myeloperoxidase activity is increased in gingival crevicular fluid and whole saliva after fixed orthodontic appliance activation. Am J Orthod Dentofacial Orthop. 2010 Nov;138(5):613-6.
8. Alswafee H, Elkenany W, Mowafy M, Helmy M. Crevicular alkaline phosphatase activity during the application of two patterns of orthodontic forces. J Orthod. 2015;42(1):5-13.
9. Alfaeeq SA, Anil S. Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement. Oral Health Dent Manag. 2014 June;13(2):458-63.
10. Abdul Wahab RM, Abu Kasim N, Senafi S, Jemain AA, Zainol Abidin IZ, Shahidan MA, et al. Enzyme activity profiles and ELISA analysis of biomarkers from human saliva and gingival crevicular fluid during orthodontic tooth movement using self-ligating brackets. Oral Health Dent Manag. 2014 June;13(2):194-9.
11. Navarro-Palacios A, García-López E, Méza-Rios A, Armendariz-Borunda J, Sandoval-Rodríguez A. Myeloperoxidase enzymatic activity is increased in patients with different levels of dental crowding after initial orthodontic activation. Am J Orthod Dentofacial Orthop. 2014 July;146(1):92-7.
12. Suriç P, Silói I, Rauten AM, Cojocaru M, Foia L. Involvement of TSP1 and matrix metalloproteinases -1, -2, -3, -7, -8, -12, and -13 in gingival crevicular fluid during orthodontic tooth movement: a longitudinal randomized split-mouth study. Eur J Orthod. 2013;35(5):652-8.
13. Rody WJ Jr, Wijegunaratne M, Wiltshire WA, Dufault B. Differences in the gingival crevicular fluid composition between adults and adolescents undergoing orthodontic treatment. Angle Orthod. 2014;84(4):120-6.
14. Balamperi L, Montanari P, Levrini L, Foia L. The level of cathepsin B in gingival crevicular fluid during human orthodontic treatment. J Contemp Dent Pract. 2015;16(2):27-33.
15. Perinetti G, Serra E, Paolantonio M, Brüe C, Meo SD, Filippi MR, et al. Lactate dehydrogenase activity as a marker in orthodontic tooth movement: a preliminary study. J Contemp Dent Pract. 2015;16(2):27-33.
16. Perinetti G, Paolantonio M, Serra E, D’Archivio D, D’Urso F, Festa F, et al. Longitudinal monitoring of gingival colonization by Actinobacillus actinomycetemcomitans, and crevicular alkaline phosphatase and aspartate aminotransferase activities around orthodontically treated teeth. J Clin Periodontol. 2004;31(1):60-7.
17. Sugyama Y, Yamaguchi M, Kanekawa M, Yoshii M, Nozoe T, Nomura M, Kasai K. The level of cathepsin B in gingival crevicular fluid during human orthodontic tooth movement. Eur J Orthod. 2005;27(2):202-7.
18. Perinetti G, Paolantonio M, Serra E, D’Archivio D, D’Urso F, Festa F, et al. Lactate dehydrogenase activity during canine retraction (bodily tooth movement) as a marker in orthodontic tooth movement. Open Dent J. 2011;5:105-9.
19. Runcie SA, Meenan NA. Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol. 2013;17(1):16-20.
20. Krishman V, Davidovich Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 2006 Apr;129(4):469-e1-32.
21. Alfaeeq SA, Anil S. Lactate dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic tooth movement. Open Dent J. 2011;5:105-9.
22. Cantarella G, Cantarella R, Caltabiano M, Risuglia N, Bernardini R, Leonardi R. Levels of matrix metalloproteinases 1 and 2 in human gingival crevicular fluid during initial orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;130(5):568-71.
23. Hoshino-Itoh J, Kurokawa A, Yamaguchi M, Kasai K. Levels of t-PA and PAI-2 in gingival crevicular fluid during orthodontic tooth movement in adults. Aust J Orthod. 2005;21(1):31-7.
24. Batra P, Kharbanda OP, Duggal R, Singh N, Parkash H. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction. Orthod Craniofac Res. 2006;9(1):44-51.
25. Perinetti G, Paolantonio M, Serra E, D’Archivio D, D’Urso F, Festa F, et al. Longitudinal monitoring of gingival colonization by Actinobacillus actinomycetemcomitans, and crevicular alkaline phosphatase and aspartate aminotransferase activities around orthodontically treated teeth. J Clin Periodontol. 2004;31(1):60-7.
26. Sugyama Y, Yamaguchi M, Kanekawa M, Yoshii M, Nozoe T, Nomura M, Kasai K. The level of cathepsin B in gingival crevicular fluid during human orthodontic tooth movement. Eur J Orthod. 2005;27(2):202-7.
27. Perinetti G, Paolantonio M, Serra E, D’Archivio D, D’Urso F, Festa F, et al. Lactate dehydrogenase activity during canine retraction (bodily tooth movement) as a marker in orthodontic tooth movement. Open Dent J. 2011;5:105-9.
28. Perinetti G, Paolantonio M, Serra E, D’Archivio D, D’Urso F, Festa F, et al. Longitudinal monitoring of gingival colonization by Actinobacillus actinomycetemcomitans, and crevicular alkaline phosphatase and aspartate aminotransferase activities around orthodontically treated teeth. J Clin Periodontol. 2004;31(1):60-7.
29. Sugyama Y, Yamaguchi M, Kanekawa M, Yoshii M, Nozoe T, Nomura M, Kasai K. The level of cathepsin B in gingival crevicular fluid during human orthodontic tooth movement. Eur J Orthod. 2005;27(2):71-6.
30. Perinetti G, Paolantonio M, Serra E, D’Archivio D, Tripodi D, Femminella B, et al. Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2002;122(5):548-56.
31. Alswafee H, Elkenany W, Mowafy M, Helmy M. Crevicular alkaline phosphatase activity during the application of two patterns of orthodontic forces. J Orthod. 2015;42(1):5-13.
32. Alfaeeq SA, Anil S. Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement. Oral Health Dent Manag. 2014 June;13(2):458-63.
33. Abdul Wahab RM, Abu Kasim N, Senafi S, Jemain AA, Zainol Abidin IZ, Shahidan MA, et al. Enzyme activity profiles and ELISA analysis of biomarkers from human saliva and gingival crevicular fluid during orthodontic tooth movement using self-ligating brackets. Oral Health Dent Manag. 2014 June;13(2):194-9.
34. Navarro-Palacios A, García-López E, Méza-Rios A, Armendariz-Borunda J, Sandoval-Rodríguez A. Myeloperoxidase enzymatic activity is increased in patients with different levels of dental crowding after initial orthodontic activation. Am J Orthod Dentofacial Orthop. 2014 July;146(1):92-7.
35. Perinetti G, Paolantonio M, Serra E, D’Archivio D, Tripodi D, Femminella B, et al. Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2002;122(5):548-56.
36. Alfaeeq SA, Anil S. Lactate dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic tooth movement. Open Dent J. 2011;5:105-9.
Effect of orthodontic forces on levels of enzymes in gingival crevicular fluid (GCF): A systematic review

40. Rohaya MAW, Hisham ZAS, Khazlina K. Preliminary study of aspartate aminotransferase activity in gingival crevicular fluids during orthodontic tooth movement. J Appl Sci. 2009;9(7):1393-96.

41. Hassan KS, Alagi SA, Ali I. Periodontal status following self-ligature versus archwire ligation techniques in orthodontically treated patients: Clinical, microbiological and biochemical evaluation. Orthod Waves. 2010;69:164-70.

42. Farahani M, Safavi MS, Dinat O, Tusi SK, Younessian F. Acid and alkaline phosphatase levels in gcf during orthodontic tooth movement. J Dent Shiraz Univ Med Sci. 2015;16(3 Suppl): 237-45.

43. Jeyra Y, Katz AH, Vannala V, Lokanathan D, Reddy SN, Rajasigamani K. Estimation of alkaline phosphatase in the gingival crevicular fluid during orthodontic tooth movement in premolar extraction cases to predict therapeutic progression. J Nat SciBioMed. 2015;6(2):343-6.

44. Perini G, D'Azzuolo F, Contardo L, Primozić J, Rupel K, Perillo L. Gingival crevicular fluid alkaline phosphate activity during the retention phase of maxillary expansion in prepubertal subjects: A split-mouth longitudinal study. Am J Orthod Dentofacial Orthop. 2015 July;148(1):90-6.

45. Arifyezdani A. Alkaline phosphatase activity in gingival crevicular fluid: a diagnostic marker to assess human orthodontic tooth movement. Biomed Pharmacol J. 2015;8(5):293-301.

46. Arifyezdani A. Acid phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. Biomed Pharmacol J. 2015;8(5):403-8.

47. Lakshmanan P, Saltha PB, Dilip S, Srinivas S. Evaluation of lactate dehydrogenase levels in gingival crevicular fluid during orthodontic tooth movement an in-vivo study. Res J Pharmaceutical Biol Chem Sci. 2015;6(5):877-88.

48. Perinti G, Paolantoni M, D'Astitto M, D’Archivio D, Dolci M, Femmelinella B, et al. Aspartate aminotransferase activity in gingival crevicular fluid during orthodontic treatment. A controlled short-term longitudinal study. J Periodontol. 2003;74(2):145-52.

49. Kalha AS, Kashiwala VA, Gowardhan SN, McLaughlin RP, Khurshid SZ. Redefining orthodontic space closure: sequential repetitive loading of the periodontal ligament—A clinical study. World J Orthod. 2010;11(3):221-9.

50. Saloom HF, Papageorgiou SN, Carpenter GH, Cobourne MT. Impact of obesity on orthodontic tooth movement in adolescents: a prospective clinical cohort study. J Dent Res. 2017;96(5):547-54.

51. Delli Mauri A, Pettrini M, Vitale D, Tecco S, Festa F, Barbato E, et al. Alkaline phosphatase level in gingival crevicular fluid during treatment with Quad-Helix. J Biol Regul Homeost Agents. 2015 Oct-Dec;29(4):1017-23.

52. Fatima A, Talapaneni AK, Saleh A, Sana S, Hussain A. An evaluation and comparison of myeloperoxidase enzymatic activity during initial orthodontic alignment: an in vivo study. J Orthod. 2017 Sept;44(3):169-173.

53. Bhasin V, Singh M, Goutam M, Singh S, Nigam AS, Joshi A. Comparative evaluation of myeloperoxidase enzymatic activity in gingival crevicular fluid of subjects having orthodontic treatment by different aligning arch wires. J Contemp Dent Pract. 2017;18(10):977-80.

54. Haq AU, Iqbal J, Hussain K, Munir A, Irfan S, Bhasin V, Singh M, Goutam M, Singh S, Nigam AS, Joshi A. Comparative evaluation of myeloperoxidase enzymatic activity in gingival crevicular fluid during orthodontic tooth movement. J Contemp Dent Pract. 2017;18(10):977-80.

55. Lamster IB, Hartley LJ, Vogel RI. Development of a biochemical profile for gingival crevicular fluid. Methodological considerations and evaluation of collagen-degrading and ground substance degrading enzyme activity during experimental gingivitis. J Periodontol. 1985 Nov;56 Suppl 115:13-21.

56. Burkstone CJ. The biomechanics of tooth movement. In: Kraus BS, Riedel RA, editors. Vistas in Orthodontics. Philadelphia: Lea & Febiger; 1962. p. 197-213.

57. Pilon JJ, Kuipers-Jagtman AM, Mattha JC. Magnitude of orthodontic forces and rate of bodily tooth movement: an experimental study in beagle dogs. Am J Orthod Dentofacial Orthop. 1996 Jul;110(1):16-23.

58. van Leeuwen EJ, Mattha JC, Kuipers-Jagtman AM. Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur J Oral Sci. 1999 Dec;107(6):468-74.

59. Apajalaiti S, Sorsa T, Ralilavo S, Ingman T. The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res. 2003;82:1018-22.

60. Redlich M, Reichenberg E, Harari D, Zais B, Shoshan S, Palmon A. The effect of mechanical force on mRNA levels of collagenase, collagen type I, and tissue inhibitors of metalloproteases in gingiva of dogs. J Dent Res. 2001 Dec;80(12):2080-4.

61. Welgus HG, Jeffrey JJ, Eisen AZ. The collagen substrate specificity of human skin fibroblast collagenase. J Biol Chem. 1981 Sept 25;256(18):9511-5.

62. Beklen A, Tüm G, Sorsa T, Hanemaajer R, Vitamin E, Tervahartiala T, et al. Gingival tissue and crevicular fluid co-operation in adult periodontitis. J Dent Res. 2006 Jan;85(1):59-63.

63. Nahm DS, Kim HJ, Mah J, Baek SH. In vitro expression of matrix metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and transforming growth factor-beta1 in human periodontal ligament fibroblasts. Eur J Orthod. 2004 Apr;26(2):129-35.

64. Bolcato-Bellemir AL, Elkhair R, Abesiera A, Fausser JL, Hakel Y, Tenenbaum H. Expression of mRNA encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res. 2000 Sep;79(9):1712-6.

65. He Y, Macaraj EJ, Korostoff JM, Howard PS. Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res. 2004;45(5):28-39.

66. Takahashi I, Onodera K, Nishimura M, Mitani H, Saso S, Mitani H. Expression of genes for gelatinases and tissue inhibitors of metalloproteases in periodontal tissues during orthodontic tooth movement. J Mol Histol. 2006 Nov;37(9-10):333-42.

67. Biltz MM, Bloemens M, Kuipers-Jagtman AM, Von den Hoff JW. Matrix metalloproteinases and tissue inhibitors of metalloproteases in gingival crevicular fluid during orthodontic tooth movement. Eur J Orthod. 2009 Oct;31(5):529-35.

68. Clark IM, Powell LK, Cawston TE. Tissue inhibitor of metalloproteinases (TIMP-1) stimulates the secretion of collagenase from human skin fibroblasts. Biochem Biophys Res Commun. 1994 Sep 15;203(2):874-80.

69. Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. J Eur Oral Sci. 2007 Oct;115(5):355-62.

70. Keeling SD, King GJ, McCoy EA, Valdez M. Serum and alveolar bone phosphate changes reflect remodeling during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1993 Apr;103(4):320-6.

71. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994 Aug;15(4):439-61.

72. Savic L, Savic D. Serum calcium and phosphorus concentration and alkaline phosphatase activity in healthy children during growth and development. Med Pregl. 2008 July-Aug;61(7-8):393-9.

73. Christenson RH. Biochemical markers of bone metabolism: an overview. Clin Biochem. 1997;30:573-93.

74. Rody WJ Jr, King GJ, Gu G. Osteoclasts recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2001 Nov;120(5):477-89.

75. Casa MA, Faltin RM, Faltin L. An analysis of the periodontal therapeutic progression. J Clin Periodontol. 1994 Mar;21(7):497-506.

76. Yost KG, Mallatt ME, Liebman J. Interproximal gingivitis and plaque reduction by four interdental products. J Clin Dent. 2006;17(3):79-83.

77. Serra E, Perinti G, D’Attitio M, Cordella C, Paolantonio M, Festa F, et al. Lactate dehydrogenase activity in gingival crevicular fluid during orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2003 Aug;124(2):206-11.

78. Monga N, Chaurasia S, Kharbanda OP, Duggal R, Rajeswari MR. A study of interleukin-8 levels in peri-mirn screw crevicular fluid (PMCF). Prog Orthod. 2014;15(1):30-35.