Stage-dependent differential gene expression profiles of cranial neural crest-like cells derived from mouse-induced pluripotent stem cells

Ayano Odashima1 · Shoko Onodera2 · Akiko Saito2 · Yuuki Oghihara3 · Tatsuya Ichinohe3 · Toshifumi Azuma4

Received: 6 February 2019 / Accepted: 26 June 2019 / Published online: 11 July 2019 © The Author(s) 2019

Abstract
Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differentiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally, cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes, which may be crucial for their migration.

Keywords Cranial neural crest · Migratory neural crest · iPS cells · RNA sequencing · Adamts

Introduction
Stem cell-based tissue engineering is important in the field of oral science because it facilitates the regeneration of damaged tissues or organs [1, 2]. Various stem cell populations exhibiting regeneration potential in the craniofacial region have been identified. Of these, cranial neural crest cells (cNCCs) are considered one of the most important candidates owing to their role in craniofacial tissue organization [3]. cNCCs comprise a multipotent population of migratory cells that are unique to the vertebrate embryo and can differentiate into various craniofacial organ derivatives [4, 5]. The neural crest (NC) can form teratoma when transplanted into immunocompromised animals [6]. cNCC development involves three stages [7–10]: the neural plate border stage, the premigratory stage, and the migratory stage. During the migratory stage, cNCCs delaminate from the posterior midbrain and individual rhombomeres in the hindbrain [11] and migrate into the pharyngeal arches to form skeletal elements of the face and teeth and contribute to formation of the pharyngeal glands (the thymus, thyroid, and parathyroid) [12]. Therefore, cNCCs presumably represent a new treatment strategy for diseases of the craniofacial region [13].

Development from the premigratory to migratory stage proceeds swiftly [14]; thus, it is typically difficult to detect the precise time point of this transition [15]. A recent transcriptome analysis of pure populations of migratory cNCCs cells expressing the sex-determining region Y-box 10
(Sox10) from chicks [16] has substantially improved our understanding of cNCC characteristics. However, whether these cells are in the migratory stage and how long it takes to promote embryonic stem (ES) cell-derived NCCs from the premigratory to migratory stage remains unclear. In recent years, the use of induced pluripotent stem (iPS) cells as a revolutionary approach to treat various medical conditions has garnered much attention [17, 18], and iPS cells as a cell source have shown several evident advantages over ES cells and primary cultured cNCCs in regenerative medicine [16]. In addition, embryonic NC development depends on several environmental factors that influence the regulation of NC progenitors and timing of differentiation; therefore, it is important to elucidate the regulatory gene networks and expression profiles of mouse iPS (miPS) cell-derived cNCCs. Recent advances in next-generation RNA sequencing (RNA-seq) technologies have facilitated comprehensive analysis of gene expression profiles [19–21]. Therefore, in the present study, we used RNA-seq to investigate the gene expression landscape of cNCCs induced from miPS cells. We treated iPS-derived cells with cNCC induction medium for 14 days and performed RNA-seq experiments. Our results indicated that c-Myc; ETS proto-oncogene 1, transcription factor (Ets1); Sox10; a disintegrin and metalloproteinase domain metalloepitidase with thrombospondin motifs (Adamts) 2 and 8; protocadherin alpha (Pcdha) 2, 5, -7, -11, and -12; protocadherin alpha subfamily C,1 (Pcdhac1); and protocadherin gamma subfamily C,3 (Pcdhgc3) may be appropriate markers for migratory cNCCs induced from miPS cells.

**Materials and methods**

**miPS cell culture**

The miPS cells used in the present study (APS0001; iPSTM-EF-Ng-20D-17 mouse-induced pluripotent stem cell line) were purchased from RIKEN BRC (Ibaraki, Japan) [22]. The cells were incubated with inactivated murine embryonic fibroblast (MEF) feeder cells in Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen, Carlsbad, CA, USA) supplemented with 15% KnockOut™ Serum Replacement (Invitrogen), 1% nonessential amino acids (Chemicon, Temecula, CA, USA), 1% L-glutamine (Chemicon), 1000 U/mL penicillin–streptomycin (P/S; Invitrogen), and 0.11 mM 2-mercaptoethanol (Wako Pure Chemical Industries Ltd., Osaka, Japan); 60-mm cell culture plates were used for passaging the cells at a density of 1 × 10⁵ cells/plate. Cells were grown in 5% CO₂ at 95% humidity, and the culture medium was changed each day.

**Embryoid body (EB) formation and cNCC differentiation**

We obtained cultured cNCC cells as described previously [23] (Fig. 1). miPS cells were dissociated with 0.05% trypsin–ethylenediaminetetraacetic acid (EDTA; Invitrogen) and transferred to low-attachment, 10-mm Petri dishes at a density of 2 × 10⁶ cells/plate to generate EBs. The generated EBs were cultured in cNCC induction medium comprising a 1:1 mixture of DMEM and F12 nutrient mixture (Invitrogen) and then in Neurobasal™ medium (Invitrogen) supplemented with 0.5 × N2 (Invitrogen), 0.5 × B27 (Invitrogen), 20 ng/mL basic fibroblast growth factor (Reprocell, Yokohama, Japan), 20 ng/mL epidermal growth factor (Peprotech, Offenbach, Germany), and 1% P/S for 4 days; the medium was changed every other day. After 4 days, day 0 (d0) EBs were collected and transferred to 60-mm cell culture plates coated with 1 μg/mL collagen type I (Advanced BioMatrix, San Diego, CA, USA). The cells were then subcultured in the same medium; the medium changed every other day, and any rosette-forming cells were eliminated. After 7–10 days, d7 cells were dissociated with 0.05% trypsin–EDTA and transferred to 60-mm...
cell culture plates coated with 1 μg/mL collagen type I at a density of 1 × 10^5 cells/plate to generate d14 cells. This process was repeated three times. The cells from each of these passages were collected for RNA extraction.

**O9-1 cell culture**

O9-1 cells, a mouse cNCC line, were purchased from Milipore (Billerica, MA, USA) and cultured as a control, as previously described [24].

**RNA extraction and quantitative reverse transcription polymerase chain reaction analysis (qRT-PCR)**

The expression of representative NC markers, namely nerve growth factor receptor (Ngfr), snail family transcriptional repressor (Snai) 1 and 2, and Sox9 and 10, was analyzed using qRT-PCR analysis. Total RNA was extracted using QIAzol® reagent (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol, and RNA purity was assessed using NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Each RNA sample exhibited an A260/A280 ratio of > 1.9. Complementary DNA (cDNA) was synthesized using a high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA), and qRT-PCR analysis was performed with Premix Ex Taq™ reagent (Takara Bio Inc., Otsu, Japan) according to the manufacturer’s protocol using Applied Biosystems® 7500 Fast Real-Time PCR System; the primer sequences are presented in Table 1. All samples were normalized to 18S ribosomal RNA levels. Relative expressions of genes of interest were analyzed using the ΔΔCt method and were compared among the groups using analysis of variance, followed by the Bonferroni test when significant differences were detected among the groups. A significance level of p < 0.05 was used for all analyses, and all data were expressed as mean values and standard deviations.

**Immunohistochemistry**

The cells were fixed with 4% paraformaldehyde (Wako Pure Chemical Industries Ltd.) for 15 min followed by methanol (Wako Pure Chemical Industries Ltd) for 5 min. After washing, the nonspecific binding of antibodies was blocked by adding 5% bovine serum albumin (BSA; Wako Pure Chemical Industries Ltd.) in a phosphate-buffered saline with 0.5% Triton X-100 (PBST) for 1 h. The cells were then incubated with the primary antibodies Snai 1:50 for Rabbit polyclonal anti-Snai1 (26183-1-AP; Proteintech Group, Inc. Chicago, IL, USA.) and Sox10 1:500 for Mouse monoclonal anti-Sox10 (AMAb91297; Atlas Antibodies, Bromma, Sweden.) in PBST for 2 nights at 4 °C. We conducted that the positive control of Snai 1 was O9-1 cells (cranial neural crest cells) and the positive control of Sox10 was DP cells (dental pulp cells). The negative control of Snai1 and Sox10 was SNL cells (fetus fibroblast cells) (Fig. S1). They were then incubated in the secondary antibodies fluo-rescein isothiocyanate Alexa Flour 488-conjugated affinity purified Goat anti-Rabbit IgG (H&L) (ab150077; Abcam, Cambridge, MA, USA) and Alexa Flour 568-conjugated affinity purified Goat anti-Mouse IgG (H&L) (A-11004; Invitrogen) at a dilution of 1:500 for Sox10 in PBST for 1 h. Eventually, the cells were stained with 4,6-diamidino-2-phenylindole (DAPI; Sigma, Livonia, MI, USA) to visualize the nuclear DNA.

**RNA-seq**

Total RNA from each sample was used to construct libraries with the Illumina TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA), according to the manufacturer’s instructions. Polyadenylated mRNAs are commonly extracted using oligo-dT beads, following which the RNA is often fragmented to generate reads that cover the entire length of the transcripts. The standard Illumina approach relies on randomly primed double-stranded cDNA synthesis, followed by end-repair, dsDNA adapter ligation, and PCR amplification. The multiplexed libraries were sequenced as 125-bp paired-end reads using the Illumina Hiseq 2500 system (Illumina). Prior to performing any analysis, quality of the data was confirmed and read cleaning, such as adapter removal and simple quality filtering, was performed using Trimmomatic (ver. 0.32). Subsequently, the paired-end reads were mapped to the mouse genome reference sequence GRCh38 using the Burrows–Wheeler Table 1 Primers used for quantitative reverse transcription polymerase chain reaction (qRT-PCR)

| Gene          | Forward primer sequence | Reverse primer sequence |
|--------------|-------------------------|-------------------------|
| 18S rRNA     | CGGACAGGATTTGACAGATTG   | CGCTCACCACACTAAGAACG    |
| Ngfr (p75NTR)| ACTGACGGCCATTTGCGCG    | CTTGACCTTGTCATCCATCG    |
| Snai1 (Snai) | CTTTGTCTGCGACCTGT      | AGGGAAATGCTCCTCAACCA    |
| Snai2 (Slug) | CATTGCTCTTGTCGCAAG     | CAGTGAGGGGAAGAAAGG      |
| Sox9         | GTCGCCGATCTGCACACAC    | CTTCCACGAAAGGGGTTCTCT   |
| Sox10        | ATGTCAAGATGGGAAACCAGA  | GTCTTGGGGGTTGGAG        |

 Springer
Aligner (ver. 0.7.10). The number of sequence reads mapped to each gene domain using SAM tools (ver. 0.1.19) was counted, and the reads per kilobase of transcript per 1 million mapped reads (RPKM) for known transcripts were calculated to normalize the expression level data to gene length and library size, thereby facilitating the comparison of different samples.

**Results**

**Gene expression profiles and immunohistochemistry of cNCCs derived from miPS cells**

Expression of the NC markers Ngfr, SnaI1, SnaI2, Sox9, and Sox10 were examined by qRT-PCR in cNCCs derived from miPS cells as well as in O9-1 cells as a control. Expression of all genes except Ngfr and Sox10 was detected in O9-1 cells [24]. In contrast, expressions of all genes were detected in cNCCs, with the premigratory NC markers Ngfr, SnaI1, and SnaI2 exhibiting the highest expression levels in d7 cells and the migratory and cranial NC markers Sox9 and Sox10 exhibiting the highest expression levels in d14 cells (Fig. 2a). The strongest immunofluorescent staining was detected for SnaI1 and Sox10 in d7 and d14 cells, respectively (Fig. 2b).

**NC specifier transcription factors**

We conducted a literature search of NC specifier transcription factors identified in vivo [16, 25–80] (Tables 2, 3) and compared these reports with our RNA-seq results. The relative expressions of genes that underwent a significant change in expression are presented in Fig. 3a.

The transcription factor AP-2 alpha (Ap2) along with paired box 3 (Pax3) and zinc finger protein of the cerebellum 1 (Zic1), both of which are regulated by Ap2, were the most highly expressed genes in d7 cells (Fig. 3a). Pax6, which has been reported in human ES and iP5-derived NC cells (Tables 2, 3), was detected in both d7 and d14 cells, whereas Pax7, which has not previously been reported in the mouse NC, was detected in the d7 cells (Fig. 3a). In contrast, the homeobox genes gastrulation brain homebox 2 (Gbx2), msh homeobox 1 (Msx1), distal-less homeobox 3 (Dlx3), Zic2, and Zic3 were not detected in d7 or d14 cells, and the homeobox genes Zic1 and Dlx5 were only expressed in the d7 cells, despite these having been reported in the NC of a range of species (Table 2); however, Meis homeobox 2 (Meis2) was expressed in both d7 and d14 cells.

The MYCN proto-oncogenes, bHLH transcription factor (N-myC) and c-Myc, have been reported in NCCs (Table 3); however, c-Myc expression was detected in d7 and d14 cells (Fig. 3a), while N-myC was not. Furthermore, there was a gradual and substantial downregulation of the winged-helix transcription factor Forkhead box D3 (FoxD3) (Fig. 3a), which is an important factor for maintaining the pluripotency of ES cells and a key NC specifier that has been implicated in multiple stages of NC development and NCC migration in embryos of various species (Tables 2, 4).

The premigratory NC markers Ngfr, heart and neural crest derivatives expressed 2 (Hand2), SnaI1, and SnaI2 were only detected in the d7 cells; however, other premigratory NC markers, such as the platelet derived growth factor receptor, alpha polypeptide (Pdgfra); 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (Pfkfb4); inhibitor of DNA binding 2 (Id2), Id3, and Id4; and nestin (Nes) were detected in both d7 and d14 cells (Fig. 3a).

Expression of migratory NC markers such as Sox5, -6, -8, -9, and -10, which encode members of the sex-determining region Y (SRY)-related high mobility group (HMG)-box family of transcription factors and are crucial in several aspects of NCCs, were detected in d7 or d14 cells. Sox10, a known marker for migratory cNCCs in various species (Table 2), was only detected in d14 cells similar to the other migratory NC markers. Twist family bHLH transcription factor 1 (Twist1), which is activated via various signal transduction pathways and is crucial for E-cadherin downregulation, as well as beta-1,3-glucuronyltransferase 1 (B3gat1/Hnk1), which plays a role in the formation of CD57 epitope, was detected in both d7 and d14 cells. In contrast, the expression of the trunk NC markers lit guidance ligand 1/2 (Slit1/2), which plays an important role in trunk NC cell migration toward ventral sites, was upregulated only in d7 cells (Fig. 3a).

Finally, expressions of tenascin C (Tnc), cadherin-6 (Cdh6), and ras homolog family member B (RhoB), all of which are related to cell adhesion and motility [81–85], were significantly increased in both d7 and d14 cells (Fig. 3b).

**Metzincin superfamily zinc proteinase and protocadherin superfamily**

Members of the metzincin superfamily are proteinases that carry a zinc ion at their active site. This family includes the matrix metalloproteinases (Mmps), Adam, and Adamts, all of which have gained attention as factors involved in cancer cell invasion and migration. Mmp2, -11, -14, -15, -16, -24, and -28 were significantly upregulated in cNCCs (Fig. 4a), all of which except Mmp24 are membrane-bound. Mmp11 and -28 were only expressed in d7 cells, whereas all other Mmps were detected in both d7 and d14 cells (Fig. 4a, b).

Only Adam1a, -8, -10, and -12 were upregulated in both d7 and d14 cells (Fig. 4c, d); this is contrary to reports that the members of this family are important in NC migration and that Adam-10, -12, -15, -19, and -33 are expressed in the...
Fig. 2 Comparison between O9-1 cells and cranial neural crest cells (cNCCs) derived from mouse-induced pluripotent stem (miPS) cells using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunostaining. a Expression of the premigratory neural crest (NC) markers Ngfr, Snai1, and Snai2 and the migratory NC and cNC markers Sox9 and Sox10. Expressions of the premigratory NC markers increased in d7 (d7) cells, whereas those of the migratory markers increased in d14 cells. Sox10 was not detected in O9-1 cells. Each experiment was performed in triplicate, with values representing mean ± SD. Groups were compared using ANOVA, followed by the Bonferroni test: *p < 0.05. b Immunostaining of d7 and d14 cells. Sox10 was more highly expressed in the d14 cells, whereas Snai1 was more highly expressed in the d7 cells. Scale bar 50 μm.
mouse NC [86]. Moreover, various *Adamts* family genes, which are important for connective tissue organization and cell migration, were upregulated in either d7 or d14 cells (Fig. 4c, d). In particular, *Adamts1* expression was marked-
edly increased, whereas *Adamts2* and -8 expressions, which are presumably important in cancer cell invasion [87–89], increased in the later stages of differentiation.

Most *Pcdh* genes, which are involved in cell adhesion [90], were upregulated in d7 and d14 cells (Table 5); how-
ever, *Pcdha2*, -5, -7, -11, and -12; *Pcdhac1*; and *Pcdhgc5* were only upregulated in d14 cells.

### Discussion

In the present study, we derived cells from miPS which are closely migratory cNCCs genes. Previously, NCCs have been derived from ES or iPS cells using various approaches [91–110], and the protocol used in the present study was based on the methods outlined by Bajpai et al. [23]; however, few studies have investigated changes in the properties of cNCCs at different time points after induction.

In the present study, d7 and d14 cells expressed typical NC markers, such as *Ngfr*, *Snai1*, and *Snai2*. In contrast, O9-1 cells (controls) did not express *Ngfr*, suggesting that cNCCs derived from miPS cells are better than O9-1 cells for evaluating cNCC characteristics [24]. Moreover, unlike O9-1 cells, d14 cells expressed markedly high levels of *Sox10*, which is considered a reliable marker for migratory cNCCs. Since cNCCs are involved in craniofacial tissue organization, several reports are available on their gene expression profiles; however, these reports show varying results with species and protocols. Moreover, cNCCs rapidly differentiate in the embryo [14]; thus, it is considerably difficult to synchronize the timing of isolation to a particular point during their development. Furthermore, migratory cNCCs intermingle with other cell types in the embryo, further complicating the isolation and characterization of a pure cell population. Consequently, there have been few reports on cNCC markers [16, 25–36]. Simões-Costa et al. [16] successfully isolated *Sox10*-positive cNCCs from chicken embryos and analyzed their gene profiles. Similarly, we detected *Sox10* expression in d14 cNCCs. Reportedly, there are multiple NCC populations [11], and iPS cells can differentiate into numerous different NCC populations in the same culture. Therefore, this diversity in populations may explain the discrepancies in results; however, under the conditions used in the present study, *c-Myc*; *Eis1*; *Sox10*; *Adams2*; *Adams8*; *Pcdha2*, -5, -7, -11, and -12; *Pcdhac1*; and *Pcdhgc3* may represent useful markers for migratory cNCCs. Furthermore, our results indicated that d7 cells were in the premigratory
Table 3  Neural crest (NC) transcription factors that have previously been examined in vivo

| Gene groups | Reference | Vertebrates | Stages | RNA-seq |
|-------------|-----------|-------------|--------|---------|
|              |           | L          | Z      | Χ       | C       | M       | d7     | d14    |
| Ap2(6top2)  |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Dlx5        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Gbx2        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| N-mycD8c2   |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Mox1        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Pax3        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Pax7        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Zic1        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Zic2        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Zic3        |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Fosd5       |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Mesp2       |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Nodal/NT5BD |           |             | O      |        |         |         |        |        |
|            |           |             |        |        |         |         |        |        |
| Pdgfra      |           |             | O      |        |         |         |        |        |

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with d0 [log fold change (FC) > 1, p < 0.01, false discovery rate (FDR) < 0.05], whereas crosses indicate genes that were not upregulated.
stage despite expressing numerous NC markers. Therefore, cNCCs derived from miPS cells required >14 days to become migratory in vitro, and this duration is considerably longer than that observed in the mouse embryos in vivo under the same conditions [111].

The use of RNA-seq facilitates the normalization of expression levels of different genes, allowing comparisons between samples. In our triplicate experiments, none of the induced cNCCs expressed several homeobox genes considered to be expressed in the early stages of cNCC differentiation. In particular, we did not observe FoxD3 expression in either d7 or d14 cells, although it has been recognized as one of the key transcription factors in cNCCs [112]. These contradictory results suggest that cNCCs derived from miPS cells express distinct gene regulatory networks. FoxD3, a pluripotent stem cell marker gene that plays an important role in maintaining pluripotency, is expressed at different time points in different cells, but its expression decreases in a time-dependent manner [41], indicating that FoxD3 may not be a key regulator in iPS-derived cNCCs. However, we speculate that iPS cells express sufficient levels of FoxD3 to differentiate into cNCCs.

Protocadherins belong to the cadherin superfamily and are involved in intercellular interactions [90], whereas metzincins are key proteinases that facilitate cell migration [42]. Unfortunately, the abundances of members of these families hindered their analysis; however, because RNA-seq enabled us to comprehensively evaluate the gene expression profiles,
Table 4  Neural crest (NC) transcription factors that have previously been examined in vitro

| Reference          | Mouse (d7) | Human (d7) | Sox10 | Sox2 | Sox5 | Mesp1 | Ap2 | Pax3 | Pax5 | Pax6 | FoxD3 | FoxA2 | Zic1 | Ngn2 | Phox2B | FoxH1 | Mix2 | Ngn2 | Foxo5 | Prr3 |
|--------------------|------------|------------|-------|------|------|-------|-----|------|------|------|-------|-------|------|------|--------|-------|------|------|-------|------|
| d7                 |            |            |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| d14                |            |            |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| This study         | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Okawa T et al., 2013 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Seki D et al., 2015 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Mizusaki K et al., 2003 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Motohashi T et al., 2007 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Kawaguchi Jet al., 2010 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Aihara Y et al., 2010 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Minamino Y et al., 2014 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Lee G et al., 2010 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Wang A et al., 2012 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Kreitzer FR et al., 2013 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Tomokoya A et al., 2016 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Michael D et al., 2018 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Pomp O et al., 2005 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Lee G et al., 2007 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Lee G et al., 2010 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Li Q et al., 2012 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Nozawa P et al., 2014 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Karbalai K et al., 2015 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Avery J et al., 2016 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Zhang JT et al., 2016 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |
| Lovatt M et al., 2017 | ○          | ○          |       |      |      |       |     |      |      |      |       |       |      |      |        |       |      |      |       |      |

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with d0 (log fold change (FC) > 1, \( p < 0.01 \), false discovery rate (FDR) < 0.05), whereas crosses indicate genes that were not upregulated.
we were able to focus on expressions of all procadherin and metazincin family members. As expected, we observed that several \textit{Adam} and \textit{Adamts} genes were upregulated, with most of the \textit{Admats} genes showing significantly increased expression. The \textit{Adam} genes with increased expression in cNCCs were membrane-bound, whereas \textit{Adamts} genes which secreted proteinases, indicating that the expression of various \textit{Adamts} may allow the matrix to be digested more efficiently and that each proteinase may be capable of digesting a different type of extracellular matrix protein \[42\]. Therefore, the secretion of various \textit{Adams} and \textit{Pcdh} proteins may play a crucial role in cNCC migration.

**Conclusion**

In summary, cNCCs derived from miPS exhibited RNA expression profiles that partly overlap with previously reported profiles. These cells may be useful for the regeneration of tissue formed by NCCs (osteoblast, melanocyte, and glial cells). We observed that although the resulting cNCCs exhibited several NC specifiers, they lacked some of the specifiers, indicating that a distinct molecular network may regulate gene expression in miPS-derived cNCCs. Moreover, our results indicated that \textit{c-Myc}; \textit{Ets1}; \textit{Sox10}; \textit{Adams}2 and -8; \textit{Pcdha}2, -5, -7, -11, and -12; \textit{Pcdhac}1; and \textit{Pcdhc}3 may represent appropriate markers for migratory miPS-derived...
cNCCs. Finally, cNCCs expressed a wide spectrum of genes encoding Adamts family enzymes that may be crucial for their migration.

Acknowledgements We are grateful to Professor T. Azuma, MD, PhD, Department of Biochemistry, and Professor T. Ichinohe, DDS, PhD, Department of Dental Anesthesiology, for their guidance. We also thank S. Onodera and A. Saito, Department of Biochemistry.

Funding The funding was received by Ministry of Science and Technology (Grant nos. KIBANKENKYU(B)18H03007 and 18K09753 KIBANKENKYU(C)).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Luan X, Dangaria S, Ito Y, Walker GG, Jin T, Schmidt MK, Galang MT, Druzinsky R (2009) Neural crest lineage segregation: a blueprint for periodontal regeneration. J Dent Res 88(9):781–791
2. Malhotra N (2016) Induced pluripotent stem (iPS) cells in dentistry: a review. Int J Stem Cells 9(2):176–185
3. Knight RD, Schilling TF (2006) Cranial neural crest and development of the head skeleton. Adv Exp Med Biol 589:120–133
4. Theveneau E, Mayor R (2011) Collective cell migration of the cephalic neural crest: the art of integrating information. Genesis 49(4):164–176
5. Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soroiano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679
6. McConnell AM, Mito JK, Ablain J, Dang M, Formichella L, Fisher DE, Zon LI (2018) Neural crest state activation in NRAS

Table 5 Expression of the protocadherin superfamily based on RNA sequencing data

|          | d0 | d7 | d14 |
|----------|----|----|-----|
| Pcdha    |    | X  |     |
| Pcdhaa   | 1  | 2  |     |
| Pcdhac   | 3  | 4  |     |
| Pcdhgb   | 1  | 2  |     |

Open circles indicate genes that were upregulated on day 7 (d7) or d14 compared with d0 [log fold change (FC) > 1, \( p < 0.01 \), false discovery rate (FDR) < 0.05], whereas crosses indicate genes that were not upregulated.
driven melanoma, but not in NRAS-driven melanocyte expansion. Dev Biol 449(17):3085–30862
7. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7(3):291–299
8. Steventon B, Carmona-Fontaine C, Mayor R (2005) Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 16(6):647–654
9. Simões-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142(2):242–257
10. Martik ML, Bronner ME (2017) Regulatory logic underlying diversification of the neural crest. Trends Genet 33(10):715–727
11. Minoux M, Rijli FM (2010) Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137(16):2605–2621
12. Mayor R, Thieveneau E (2013) The neural crest. Development 457(1):2247–2251
13. Okuno H, Mihara FR, Ohta S, Fukuda K, Kurosawa K, Akamatsu W, Sanosaka TS, Kolyama J, Hayashi N, Nakajima K, Takahashi T, Wysocka J, Koseki K, Okano H (2017) CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. eLife 6:e21114
14. Simoes-Costa M, Bronner ME (2014) Transcription analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res 24(2):281–290
15. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Nakane T, Masumoto H, Tinney JP, Yuan F, Kowalski WJ, Ye F, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J (2014) Isolation of human induced pluripotent stem cell derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350
16. Nakane T, Masumoto H, Tinney JP, Yuan F, Kowalski WJ, Ye F, LeBlanc AJ, Sakata R, Yamashita JK, Keller BB (2017) Impact of cell composition and geometry on human induced pluripotent stem cells–derived engineered cardiac tissue, Sci Rep 7:45641
17. Gallego RI, Pari AA, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:42
18. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63
19. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628
20. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germ-line competent induced pluripotent stem cells. Nature 448(7151):313–317
21. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms E, Williams T, Richman JM (1997) Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds. Dev Biol 188(2):248–266
22. Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev Biol 182(2):299–313
23. Teslaa JJ, Keller AN, Nyholm MK, Grinblat Y (2013) Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev Biol 380(1):73–86
24. Das A, Crump JG (2012) Bmps and id2a act upstream of Twist1 to restrict ecomesenchyme potential of the cranial neural crest. PLoS Genet 8:e1002710
25. Machon O, Masek J, Machonova O, Krauss S, Kozmik Z (2015) Meis2 is essential for cranial and cardiac neural crest development. BMC Dev Biol 15:40
26. Pettitt PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5(1):105–119
27. Shen H, Wilke T, Ashique AM, Harvey M, Zerucha T, Savino E, Williams T, Richman JM (1997) Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds. Dev Biol 188(2):248–266
28. Luo T, Lee YH, Saint-Jeannet JP, Sargent TD (2003) Induction of neural crest in Xenopus by transcription factor AP2alpha. Proc Natl Acad Sci USA 100(2):532–537
29. Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13(3):405–420
30. Nikitina N, Sauka-Spengler T, Bronner-Fraser M (2008) Dissecting early regulatory relationships in the lamprey neural crest gene network. Proc Natl Acad Sci USA 105(51):20083–20088
31. Kudryavkov J, Bronner-Fraser M (2009) Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev Dyn 238(3):716–723
32. de Crozé N, Maczkowiak F, Monsoro-Burq AH (2011) Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci USA 108(1):155–160
33. Wang WD, Meltzve DB, Montero-Balagué M, Hatzopoulos AK, Knapik EW (2011) Ttfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev Biol 360(1):173–185
34. Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB (2013) Prdm1a directly activates foxd3 and ttfap2a
during zebrafish neural crest specification. Development 140(16):3445–3455
46. Yang L, Zhang H, Hu G, Wang H, Abate-Shen C, Shen MM (1998) An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate. J Neurosci 18(20):8322–8330
47. Luo T, Matsuo-Takasaki M, Lim JH, Sargent TD (2001) Differential regulation of Dlx gene expression by a BMP morphogenetic gradient. Int J Dev Biol 45(4):681–684
48. Li B, Kuriyama S, Moreno M, Mayor R (2009) The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136(19):3267–3278
49. Hill RE, Jones PF, Rees AR, Sime CM, Justice MJ, Copeland NJ, Jenkins NA, Graham E, Davidson DR (1998) A new family of mouse homeo box-containing genes: molecular structure, chromosomal location, and developmental expression of Hox-7.1. Genes Dev 3(1):26–37
50. Suzuki A, Ueno N, Hemmati-Brivanlou A (1997) Xenopus msx1 activation during zebrafish neural crest specification. Development 124(16):3037–3044
51. Simões-Costa M, McKeown SJ, Tan-Cabugao J, Sauka-Spengler T, Bronner ME (2012) Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome. PLoS Genet 8:e1003142
52. Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early embryogenesis. EMBO J 10(5):1135–1147
53. Bang AG, Papalopulu N, Goulding MD, Kintner C (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212(2):366–380
54. Alkobtawi M, Ray H, Barriga EH, Moreno M, Kerney R, Monsoro-Burq AH, Saint-Jeannet JP, Mayor R (2018) Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development. Dev Biol 444(17):30693–30700
55. Maczowiak F, Matéos S, Wang E, Roche D, Harland R, Monsoro-Burq AH (2010) The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, Xenopus laevis embryos. Dev Biol 340(2):381–396
56. Nakata K, Nagai T, Aruga J, Mikoshiba K (1998) Xenopus Zic family and its role in neural crest development. Mech Dev 75(1–2):43–51
57. Dottori M, Gross MK, Labosky P, Goulding M (2001) The winged helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128(21):4127–4138
58. Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128(8):1467–1479
59. Wilson YM, Richards KL, Ford-Perriss ML, Pantheri JJ, Murphy M (2004) Neural crest cell lineage segregation in the mouse neural tube. Development 131(24):6153–6162
60. Liu L, Chong SW, Balasubramaniyan NV, Kozh V, Ge R (2002) Platelet-derived growth factor receptor alpha (pdgfr-α) gene in zebrafish embryonic development. Mech Dev 116:227–230
61. Liu KJ, Harland RM (2003) Cloning and characterization of Xenopus ldf4 reveals differing roles for Id genes. Dev Biol 264(2):339–351
62. Figueiredo AL, Maczowiak F, Borday C, Pia P, Sittewelle M, Pegoraro C, Monsoro Burq AH (2017) PPKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. Development 144(22):4183–4194
63. Yang X, Li J, Zeng W, Li C, Mao B (2016) Elongator protein 3 (Elp3) stabilizes Snai1 and regulates neural crest migration in Xenopus. Sci Rep 6:26238
64. Sefton M, Sánchez S, Nieto MA (1998) Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo. Development 125(16):3111–3121
65. del Barrio MG, Nieto MA (2002) Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 129(7):1583–1593
66. Aybar MJ, Nieto MA, Mayor R (2003) Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130(3):483–494
67. Nieto MA, Sargent MG, Wilkinson DG, Cooke J (1994) Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264(5160):835–839
68. Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T (1998) The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198(2):277–285
69. Tien CL, Jones A, Wang H, Gerigk M, Nozell S, Chang C (2015) Snail1/2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. Development 142(4):722–731
70. Martin BL, Harland RM (2001) Hypaxial muscle migration during primary myogenesis in Xenopus laevis. Dev Biol 239(2):270–280
71. Cheung M, Briscoe J (2003) Neural crest development is regulated by the transcription factor Sox9. Development 130(23):5681–5693
72. Cheung M, Chaboussier MC, Mynett A, Hirst E, Schell D, Briscoe J (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8(2):179–192
73. Honoré SM, Aybar MJ, Mayor R (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260(1):79–96
74. McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG (2005) Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 232(2):430–444
75. Prasad MK, Reed X, Gorkin DU, Cronin JC, McAdow AR, Chain K, Hodonsky CJ, Jones EA, Saren J, Antonellis A, Johnson SL, Loftus SK, Pavan JW, McCallion AS (2011) SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC Dev Biol 11:40
76. Baggiozini A, Varum S, Mateos JM, Betosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16(3):314–322
77. McKinney MC, McMennan R, Kulesa PM (2016) Angiopoietin 2 signaling plays a critical role in neural crest cell migration. BMC Biol 14(1):111
78. Lee HO, Levoir JM, Shin MK (2003) The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 259(1):162–175
79. Giovannone D, Ortega B, Reyes M, El-Ghali N, Rabadi M, Sao MM, Gross MK, Labosky P, Pavan JW, McCallion AS (2011) SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC Dev Biol 11:40
80. Zuhlki N, Ortega B, Giovannone D, Ra H, Reyes M, Asención V, McNicoll I, Ma L, de Bellard ME (2012) Shh's affect the timely migration of neural crest cells via robo receptor. Dev Dyn 241(8):1274–1288
81. Chiavarro F, Chiquet-Ehrismann R, Chiquet M (2015) Transcriptional regulation of tenascin genes. Cell Adhes Migr. 9(1–2):34–47
82. Taneyhill AL, Coles EG, Bronner-Fraser M (2007) Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 134(8):1480–1490
83. Grovers M, Shoval I, Kalcheim C (2008) A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Dev 3:27
84. Vega FM, Thomas M, Reymond N, Ridley AJ (2015) The Rho GTPase RhoB regulates cadherin expression and epithelial-cell-cell interaction. Cell Commun Signal 13:6
85. Liu Q, Dalmann MR, Sarmah S, Chen S, Chen Y, Hurlbut AK, Spencer MA, Pancow L, Mars JA (2011) Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development. Dev Dyn 240(7):1716–1726
86. Tomczuk M, Takahashi Y, Huang J, Murase S, Mistretta M, Klafky E, Sutherland A, Bolling L, Coonrod S, Marcinkiewicz C, Sheppard D, Stepp MA, White JM (2003) Role of multiple beta1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res 290(1):68–81
87. Desanlis I, Felstead HL, Edwards DR, Wheeler GN (2018) ADAMTS9, a member of the ADAMTS family, in Xenopus development. Gene Expr Patterns 29:72–81
88. Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386(1):15–27
89. Hubmacher D, Apte SS (2015) ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol 47(2015):34–43
90. Chen WV, Maniatis T (2013) Clustered protocadherins. Development 140(16):3297–3302
91. Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, Kondo M, Tsunekawa S, Naruse K, Hamada Y, Ozaki N, Cheng Z, Kito T, Suzuki H, Ito S, Oiso Y, Nakamura J, Isobe K (2013) Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant 22(10):1767–1783
92. Seki D, Takeshita N, Oyanagi T, Sasaki S, Takano I, Hasegawa M, Takano-Yamamoto T (2015) Differentiation of odontoblast-like cells from mouse induced pluripotent stem cells by Pax9 and Bmp4 transfection stem cells. Transl Med 4(9):993–997
93. Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y (2003) Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 100(10):5828–5833
94. Motohashi T, Aoki H, Chiba K, Yoshimura N, Kunisada T (2007) FOXD3 regulates pluripotent human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 1(4):266–278
95. Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y (2003) Generation of neural crest-like cells from mouse induced pluripotent stem cells derived from human embryonic stem cells. Cell 111(4):593–604
96. Kawaguchi J, Nichols J, Gierl MS, Fairal T, Smith A (2010) Isolation and propagation of neural crest stem cells from mouse embryonic stem cells. Cell J 17(1):37–48
97. Minamino Y, Ohnishi Y, Kakudo K, Nozaki M (2015) Isolation and propagation of neural crest stem cells from mouse embryonic stem cells via cranial neurospheres. Stem Cells Dev 24(2):172–181
98. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5(4):688–701
99. Wang A, Tang Z, Li X, Jiang Y, Tsou DA, Li S (2012) Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 195(1–2):5–14
100. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarzaga P, Weiss WA, So PL, Conklin BR (2013) A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells 2(2):119–131
101. Tomokiyo A, Hynes K, Ng J, Menicanin D, Camp E, Arthur A, Greim J, Gromhos S, Mark Bartold P (2017) Generation of neural crest-like cells from human periodontal ligament cell-derived induced pluripotent stem cells. J Cell Physiol 232(2):402–416
102. Michael D, Wagener MD, Bohrer LR, Aldrich BT, Greiner MA, Mullins RF, Worthington KS, Tucker BA, Wiley LA (2018) Feeder-free differentiation of cells exhibiting characteristics of corneal endothelium from human induced pluripotent stem cells. Bio Open 7(5):bio032102
103. Pomp O, Brokhammer I, Ben-Dor I, Reubinoff B, Goldstein RS (2005) Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells 23(7):923–930
104. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnol 25(12):1468–1475
105. Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Hôke A, Rao MS, Zeng X (2012) Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 1(4):266–278
106. Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, Lundin K, Chokechuwattanalert H, Otonkoski T, Tuuri T, Raivio T (2014) Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells. J Cell Sci 127:2083–2094
107. Karlbalaie K, Tanhaei S, Rabiei F, Kiani-Esfahani A, Masoudi NS, Nasr-Esfahani MH, Baharvand H (2015) Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell 171(1):37–48
108. Avery J, Dalton S (2016) Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells. Methods Mol Biol 1341:197–208
109. Zhang JT, Weng ZH, Tsang KS, Tsang LL, Chan HC, Jiang XH (2016) Mync is critical for the maintenance of human embryonic stem cell-derived neural crest stem cells. PLoS One 11:e0148062
110.Lovatt M, Yam GH, Peh GS, Colman A, Dunn NR, Mehta JS (2018) Directed differentiation of periocular mesenchyme from human embryonic stem cells. Differentiation 99:62–69
111. Dennis AR, McLennan R, Jessica MT, Craig LS, Jeffrey SH, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.