A summary of approaches developed for the synthesis of stable cyclic aza-peroxides is presented.

Introduction

Now there is no doubt that cyclic organic peroxides are a promising class of compounds for the development of drugs. Stable cyclic peroxides like artemisinin for discovery of which the Nobel Prize was awarded, possess high antimalarial activity.¹ Drugs based on artemisinin are recommended by WHO for the treatment of malaria. Over the past two decades, a whole spectrum of biological activity has been identified for organic peroxides.² Furthermore, artemisinin,³ artesunate, OZ418, and OZ277 have an inhibitory ability to SARS-CoV-2.⁴ However, for a long time, aza-peroxides were kept in the shadow of organic peroxides because of their instability associated with self-oxidation due to the presence of both oxidizing and reducing moieties in one molecule. Discovery of two natural cyclic aza-peroxides verruculogen⁵ and fumitremorgin A⁶ as well as the synthesis of 6(11)-azaartemisinins, which exhibit promising antimalarial⁷ and anticancer⁸ activity, gave impetus to the development of methods for the synthesis of nitrogen-containing peroxides.⁹ However, the synthesis of stable and readily available cyclic peroxides fused with a nitrogen heterocycle is a challenge. This microreview describes recent achievements in the synthesis of cyclic aza-peroxides: 1,2,4-dioxazolidines, 1,2,4-dioxazinanes, peroxy-bridged indolizidinones, 1,2,4-dioxazepanes, 1,2,4,5,7-tetraoxazocanes, 1,2,4,5,7,8-hexaoxa-10-azacycloundecanes.

Synthesis of verruculogen

Only two bioactive natural aza-peroxides verruculogen and fumitremorgin A are known (isolated from *Aspergillus fumigatus* in the 1970s). First total synthesis of verruculogen and fumitremorgin A was developed only in 2015 by the Baran group.¹⁰ The final step included catalyzed by BF₃·Et₂O condensation of aldehyde, amine and peroxide fragments.

The Schenck ene reaction of 1-benzazepines in the presence of rose bengal as a photosensitizer provided endoperoxides with antitumor activity.¹²

Synthesis of 1,2,4-dioxazepanes

Diene was converted to the endoperoxide upon treatment with singlet oxygen (O₂, meso-tetraphenylporphyrin (TPP), UV light 500 W). Pure endoperoxide was isolated with the use of column chromatography.¹¹

The Schenck ene reaction of 1-benzazepines in the presence of rose bengal as a photosensitizer provided endoperoxides in high yields. Several obtained endoperoxides are valuable precursors for the synthesis of *d*-fused 1-benzazepines with anticancer activity.¹²
Synthesis of bridged 1,2,4-dioxazolidines

A selective and atom-efficient method for the synthesis of stable cyclic bridged 1,2,4-dioxazolidines (azaazoides) without the use of a catalyst through the three-component condensation of 1,5-diketones, hydrogen peroxide, and aqueous ammonia or ammonium salts as NH group source was described. Azaazoides were obtained in high yield (up to 96%).

\[
\text{(R^1 = Me; R^2 = H, C(O)OEt, C(O)OAc; R^2 = H, Alk, alyl, Bn, CH}_2\text{Ar; R}^4 = \text{H, Ar; NH group source = NH}_2\text{aq, (NH}_2\text{)C}_2\text{O, NH}_4\text{OAc, HCOONH}_4, N-Methoxy-1,2,4-dioxazolidines can be obtained by the ozonolysis of O-methylated dioximes.14}
\]

\[
\text{R}^1\text{, R}^2 = \text{H, Me}
\]

\[
\text{O}_3 \quad \text{CH}_2\text{Cl}_2-\text{cyclohexane, 1:1, 0°C}
\]

55% 38%

Synthesis of 1,2,4-dioxazinanines

A diastereoselective synthesis of 1,2,4-dioxazinanines based on acid-catalyzed intramolecular cyclization of the corresponding hydroperoxides was carried out. The desired products were obtained in 52–71% yields.15

\[
R = \text{Ph, 4-HalC}_6\text{H}_4, 4-\text{MeC}_6\text{H}_4, 4-\text{CyC}_6\text{H}_4, 4-\text{PhC}_6\text{H}_4
\]

\[
\text{p-TSA} \quad \text{MeCN, rt 52–71%}
\]

Synthesis of peroxy-bridged indolizidinones

Peroxyl-bridged indolizidinones were obtained by the intramolecular cyclization of cross-conjugated dienones with pendent azide side chain under the action of BF\(_3\)-Et\(_2\)O/air system. The yield of aza-peroxides was 36–72%.16

\[
\text{R}^1 = \text{Me, R}^2 = \text{H, Ph; R}^1 + \text{R}^2 = (\text{CH}_2)_b
\]

Synthesis of 1,2,4,5,7-tetraoxazocanes

An efficient synthesis of N-substituted tetraoxaspiroalkanes can be carried out on the basis of Sm(NO\(_3\))\(_3\)-H\(_2\)O-catalyzed transformation of pentaoxaspiroalkanes with primary arylamines,17 diamines,18 or amino acids.19

\[
\text{THF, rt, 6 h} \quad 70–99%
\]

Heterocyclization of terpene bishydroperoxides with N-aryl-N,N-bis(methoxymethyl)amines in the presence of EuCl\(_3/-\gamma\text{-Al}_2\text{O}_3\) as a catalyst afforded new spiro terpene aza-diperoxides.20

\[
\text{THF, rt, 6 h} \quad 70–88%
\]
Synthesis of 1,2,4,5,7,8-hexaoxa-10-azacyclodecanes

Sm salts catalyzed the reaction of heptaoxaspiroalkanes with arylamines affording N-aryloxaazaspiroalkanes.25 The reaction of heptaoxacyclodecanes with hydrazine derivatives (3-chlorophenylhydrazine, phenylhydrazine, 2,4-dinitrophenylhydrazine, and tert-butylhydrazine)24 or amino acids25 in the presence of Sm-containing catalysts gave the corresponding N-substituted hexaoxaspiroalkanes in high yields. It was found that cycloaza-triperoxide-substituted amines possessed high cytotoxicity against Jurkat, K562, and U937 tumor cell lines and normal fibroblast cell line. A useful one-pot synthesis of tetra(pirocyeloalkane)-substituted α,α-(1,2,4,5,7,8-hexaoxa-10-azacyclodecan-10-yl)-alkanes via the reaction between heptaoxacyclodecanes and α,ω-alkanediamines (1,4-butane-, 1,5-pentane-, 1,7-heptane-, 1,8-octane-, and 1,10-decanediamines) catalyzed by Sm compounds was developed. It was shown that synthesized dimeric azatriperoxides exhibited high cytotoxic activity against Jurkat, K562, and U937 tumor cultures.25

Authors are grateful for the support of the Russian Foundation for Basic Research according to the research project №18-53-50101 and Projects de Recherches Conjointes (PRC) – CNRS, PRC Russie 2017 CNRS.

References

1. (a) Kleyman, D. L. Science 1985, 228(4703), 1049. (b) Walsh, J. J.; Coughlan, D.; Heneghan, N.; Gaynor, C.; Bell, A. Bioorg. Med. Chem. Lett. 2007, 17, 3599.
2. (c) Kumari, A.; Karnatak, M.; Singh, D.; Shankar, R.; Jat, J. L.; Sharma, S.; Yadav, D.; Shrivastava, R.; Verma, V. P. Eur. J. Med. Chem. 2019, 163, 804.
3. (a) Coghi, P.; Yarenenko, I. A.; Prommara, P.; Radulov, P. S.; Syrekinlin, M. A.; Wu, Y. J.; Gao, J. Y.; Gordillo, F. M.; Mok, S.; Wong, V. K. M.; Uithaipibb, C.; Terent’ev, A. O. ChemMedChem 2018, 13, 902. (b) Yarenenko, I. A.; Coghi, P.; Prommara, P.; Qiu, C. L.; Radulov, P. S.; Qu, Y. Q.; Belyakova, Y. Yu.; Zanfelin, E.; Kokorev, V. A.; Wu, Y. J.; Fleury, F.; Uithaipibb, C.; Wong, V. K. W.; Terent’ev, A. O. ChemMedChem 2020, 15, 1118.
4. (c) Yarenenko, I. A.; Syromyatnikov, M. Y.; Radulov, P. S.; Belyakova, Y. Yu.; Fomenkov, D. I.; Popov, V. V.; Terent’ev, A. O. Molecules 2020, 25, 1954.
5. (d) Yarenenko, I. A.; Radulov, P. S.; Yaremko, Yu. Y.; Demina, A. A.; Fomenkov, D. I.; Barsakov, D. V.; Subbotina, I. R.; Fleury, F.; Terent’ev, A. O. Chem.–Eur. J. 2020, 26, 4734. (e) Vil, V. A.; Yarenenko, I. A.; Fomenkov, D. I.; Levitsky, D. O.; Fleury, F.; Terent’ev, A. O. Chem. Heterocycl. Compd. 2020, 56, 7223. [Khim. Geterotsikl. Soedin. 2020, 56, 7222.]
6. (a) Li, S.-Y.; Chen, C.; Zhang, H.-Q.; Guo, H.-Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.-N.; Yu, J.; Xiao, P.-G.; Li, R.-S.; Tan, X. Antiviral Res. 2005, 67, 18. (b) Yang, Y.; Islam, M. S.; Wang, J.; Li, Y.; Chen, X. Int. J. Biol. Sci. 2020, 16, 1708.
7. Ghosh, A. K.; Miller, H.; Knox, K.; Kundu, M.; Herrickson, K. J.; Arav-Boger, R. ACS Infect. Dis. 2021, 7, 5685.
8. (a) Cole, R. J.; Kirskey, J. W.; Moore, J. H.; Blankenship, B. R.; Diener, U. L.; Davis, N. D. Appl. Microbiol. 1972, 24(2), 248. (b) Cole, R. J.; Kirskey, J. W.; J. Agric. Food Chem. 1971, 21, 927. (c) Cole, R. J.; Kirskey, J. W.; Cox, R. H.; Clardy, J. J. Agric. Food Chem. 1975, 23, 1015. (d) Foyos, J.; Lokensgard, D.; Clardy, J.; Cole, R. J.; Kirskey, J. W. J. Am. Chem. Soc. 1974, 96, 6785.
9. (a) Yamazaki, M.; Suzuki, S.; Miyaki, K. Chem. Pharm. Bull. (Tokyo) 1971, 19, 1739. (b) Yamazaki, M.; Fujimoto, H.; Kawasaki, T. Chem. Pharm. Bull. (Tokyo) 1980, 28, 245.
10. (a) Harmse, R.; Coetzer, D.; Wong, H. N.; Smit, F. J.; van der Watt, M. E.; Reader, J.; Nondaba, S. H.; Birikholtz, L.-M.; Haynes, R. K.; NDa, D. D. ChemMedChem 2017, 12, 2086. (b) Le, T. N.; De Borggraef, W. M.; Grellier, P.; Pham, C. V.; Dehaen, W.; Nguyen, V. H. Tetrahedron Lett. 2014, 55, 4892. (c) Mekonnen, B.; Weiss, E.; Katz, E.; Ma, J. Y.; Ziffer, H.; Kyle, D. E. Bioorg. Med. Chem. 2000, 8, 1111.