Supplementary Methods and Information:

Direct Solution Exome Capture and Sequencing and Mapping:

Exome design

Five (PD2125, PD2126, PD2144, PD2147, PD3441) of the matched clinical sample ccRCC pairs (normal + tumour) enrichment was performed using the Agilent SureSelect Human Exon Kit (Agilent, G3362) corresponding to the exons annotated within the CCDS database. For the remaining 2 clinical sample matched pairs (PD2126, PD3295), a custom in-house design was submitted and baits synthesized and supplied by Agilent (Agilent Technologies Inc, Santa Clara, CA, USA). The custom design included additional exonic regions over those present in CCDS and comprised a total of 288,654 unique exons from 46,275 transcripts of 20,921 Ensembl protein-coding genes, 33,621 transcripts of 13,772 manually annotated protein-coding genes, and 1635 miRNA genes (Coffey et al, manuscript in preparation). Baits for both exomes were provided in a single tube solution format.

Genomic library preparation

Genomic DNA (5ug) was fragmented by Adaptive Focused Acoustics on a Covaris E120 (Covaris Inc, Woburn, MA, USA) for 90 sec with a duty cycle of 20%, intensity of 5 and cycles per burst of 200. The fragmented DNA was purified using a Qiaquick PCR purification column (Qiagen, 28104) and quantified on a Bioanalyser using the Agilent DNA 1000 kit (Agilent, 5067-1504). The resulting DNA ranged in size from ~100-400bp, with a modal fragment size of ~250bp. Genomic libraries were prepared using the Illumina Paired End Sample Prep Kit following the manufacturer’s instructions (Illumina, San Diego CA, USA). Adapter-ligated DNA was purified using AMPure beads (Agencourt BioSciences Corporation, Beverly, MA, USA) following the manufacturer’s protocol, and eluted in 40ul of nuclease-free water. The prepared library was used directly in the subsequent enrichment procedure without prior size-selection or PCR amplification.

Exon enrichment

The genomic library (500ng) was mixed with 7.5ug human C_{0}t1 DNA, lyophilized in a speedvac for 30 min at 45°C and rehydrated in 3.4ul of nuclease-free water. Enrichment of the genomic DNA was performed using the Agilent SureSelect kit with minor modifications to the manufacturer’s protocol. Briefly, the genomic DNA library (3.4ul) was combined with 2.5ul of
Block reagent 1, 2.5ul of Block reagent 2 and 0.6ul of Block reagent 3 and transferred to a well of a microtitre plate. The sample was denatured by incubating the plate on a thermocycler at 95°C for 5 min then snap-cooled on ice. A hybridization mix was prepared comprising 25ul of Hyb reagent 1, 1ul of Hyb reagent 2, 10ul of Hyb reagent 3 and 13ul of Hyb reagent 4. A 13ul aliquout of this mastermix was added to the denatured DNA, and the sample incubated at 95°C for 5 min, then 65°C for 5 min. In a separate microtitre plate, the baits were prepared by combining 5ul of SureSelect capture library with 1ul of nuclease free water and 1ul of RNAse block, and the plate incubated at 65°C for 3 min. The pre-warmed DNA (22ul) was transferred to the pre-warmed bait mix and the solution incubated for 24h at 65°C. Following hybridization, the captured DNA was isolated using streptavidin-coated magnetic Dynabeads, (Invitrogen, 653.05) and washed following the standard Agilent SureSelect protocol. The isolated DNA was purified using a Qiagen MinElute purification column, eluted in 15ul of elution buffer and PCR-amplified for 14 cycles as previously described1.

Substitution variant calling:

Mapping of paired-end read data to the human genome (Build 37) was done using BWA². An average of 5 gigabases of uniquely mapping and 3.7 gigabases of uniquely mapping reads on target were obtained per sample, with an average of 74% of all reads mapping on target. Sixty-percent of target bases had 20X or greater coverage and 50 percent had 40X or greater coverage.

CaVEMan (Cancer Variants through Expectation Maximisation), a bespoke Java application using a simple expectation maximisation algorithm implementation³ was used to call single nucleotide substitutions. Through comparison of reads from both tumour and normal with the reference genome, CaVEMan calculates a probability for each possible genotype per base (given tumour and normal copy number). In order to provide more accurate estimates of sequence error rates within the algorithm, thus aid identification of true variants, variables such as base quality, read position, lane, and read orientation are incorporated into the calculations. Once CaVEMan was run, several post processing filters were applied in order to further increase the specificity of somatic mutation calls.

1. At least 1/3 of mutant alleles in tumour reads are of quality >= 25.
2. At least 1 mutant allele in a tumour read must fall in the middle third of the read, unless the tumour read depth is less than 10, when a mutant allele the first third is acceptable.
3. There is no more than 1 high quality (>= 20) mutant allele in a normal read.
Insertion/Deletion variant calling:

A modified version of Pindel\(^4\) was used to call insertions and deletions. By modifying the input file generation process we were able to increase sensitivity and increase confidence in events detected by BWA which was used as the initial mapping tool. The accepted approach for generating input for Pindel is to provide all read pairs where one end is unmapped and the other is confidently mapped to the genome, an anchor read. We found that by including read pairs where both ends map to the genome but allowing for one of the pair to have mismatches, insertions or deletions we could greatly increase coverage over smaller events (in some cases both ends are used as an anchor, creating two input records). The majority of these small events are detected by the BWA mapping algorithm, however, this increases confidence that the events are worth investigating. A second modification to the input generation was included to help identify small events close to large scale deletions or repetitive regions. In regions such as these we would not be able to capture any of the smaller events that can be detected within a single end of a read that is confidently mapped but with some form of mismatch, insertion or deletion. In these cases we generated an artificial anchor co-ordinate so that Pindel can attempt a realignment of these reads. Software that can generate input files of this form can be obtained by contacting the authors.

Once Pindel was run several post processing filters were applied. We considered there to be 2 classes of event in our data, large events > 4 b.p. and small events <= 4 b.p. which are detectable by BWA (non-SW). For many of the filters the mapping depths within the BAM file are used to aid filtering of poor confidence calls.

For both classes the following filters were applied to the raw output:

1. Event must occur in tumour reads
2. >3 tumour reads must support call
3. <5% of calls must occur in wildtype
4. When no wildtype coverage in BAM, Pindel must not call event in wildtype

For small events these filters were applied:

1. Tumour with BAM depth of < 200 reads must have variant call in >=8% of reads
2. Tumour with BAM depth of >= 200 reads must have variant call in >=4% of reads
3. Wildtype BAM must have >5 reads spanning the region
4. Pindel calls in wildtype reads must be <= 5% of the wildtype BAM depth
5. If the tumour BAM depth > wildtype BAM depth, normalise the Pindel wildtype calls against this, discarding if new value is >= 5% reference
6. Apply poly nucleotide tract filter for events with repetitive region > 9 repeats
7. Wildtype BAM depth must be >=8% of tumour BAM depth
8. Tumour BAM bust have <8% BWA reference calls vs BWA variant calls.

Further, for large events no wildtype reads should be called as part of an event by Pindel and exome data results must annotate to coding regions of the genome. Novel germline variants (verified by PCR based capillary sequencing) not previously reported in dbSNP or found in other sequencing screens are given in Supplementary Table 7.

PBRM1 mutation screening.

The coding exons of PBRM1 were sequenced via PCR-based capillary sequencing as previously described. Data were analysed semi-automated mutation detection followed by visual inspection of sequencing traces as previously described. The primer sequences for PBRM1 amplification and sequencing are given in Supplemental Table 8.

Missense mutation analyses

In order to evaluate the functional effects of the found missense mutations we fixed a scoring system using protein domain alignments from Pfam. The gene PBRM1 contains three kinds of functional domains: six copies of the Bromo domain (Pfam entry PF00439), two copies of the BAH domain (PF01426) and one copy of the HMG-box domain (PF00505). For each domain, we have used the Pfam seed alignment to construct a HMM-profile. In the Pfam full alignments all reported observations of this domain are aligned to this HMM-profile. We have extended these full alignments by the (6/2/1) hits within PBRM1 to fix the coordinate system. We denote the counts of amino acid a in the alignment column i by $n_i(a)$ and compare this observation to a null distribution $p_o(a)$ (overall genomic frequencies of amino acids). Taking the log odds ratio of the amino acid frequencies within the alignment column and the null gives a so called position specific score.
\[s_i(a) = \log \frac{q_i(a)}{p_0(a)} = \log \frac{n_i(a) + p_0(a)}{(N_i + 1)p_0(a)} \quad (1) \]

where \(N_i \) is the total number of residues in the column. The above construct of the observed distribution uses pseudo-counts\(^8,9\) proportional to \(p_0 \) to account for non-observed residues in the finite sample. The two extreme cases are columns that are highly conserved - where the most prevalent letter receives a large positive score and all others large negative ones - and columns that are highly variable and close to neutral - where all letters receive scores close to zero. For similar conservation based scoring schemes for disease related variation see e.g. the recent review\(^10\) and in the context of cancer mutations\(^11,12\). For a given missense mutation (falling onto alignment column \(i \)), we can now record the score difference between the final and the initial residue:

\[\Delta s_i = s_i(a_{\text{final}}) - s_i(a_{\text{initial}}) \quad (2) \]

Out of the 9 missense mutations we could score 3 using the Pfam alignments (T232P \(\Delta s = -7.78 \), A597D \(\Delta s = -9.69 \), H1204P \(\Delta s = -2.76 \)). In order to assess if these three somatic mutations differ significantly from random mutations we generated \textit{in silico} all possible point events in PBRM1 (transcript ENST00000337303) that result in a missense mutation which falls onto our scoring system (i.e. mutational opportunity space). From this set we drew 10,000 sets of 3 mutations randomly and evaluated the mean score for each set - the resulting distribution is shown together with the somatic value in Figure 2 in the main paper. Somatic mutations are significantly different from the null set (p-value 0.01). More specifically, the somatic mutation set has a lower mean negative score (i.e. they are predicted to be more deleterious on average) than the null model - thus making them interesting candidates for follow up functional studies.
Confirmation of exon trapping by RT-PCR in mouse pancreatic tumours

Total RNA (1 μg) from tumors with transposon insertions in Pbrm1 was reverse transcribed into single stranded cDNA using Reverse Transcriptase III (Invitrogen) and Random Hexamers (Invitrogen) following the manufacturer protocol. 1 μL of the resulting cDNA was used as a template in a first round of PCR using specific primers corresponding to exon 23 of Pbrm1 (5’-TGGCTGAAGGTTGGTGATTG-3’) and Carp-β-Actin Splice acceptor sequence (5’-TAAATTCCCGCGAATCCATC-3’). The product of this reaction was used as a template in a second round of nested PCR using specific primers corresponding to Pbrm1 exon 24 (5’-TTGAGAAAGTATGGGTCCGAGA-3’) and a second external primer corresponding to Carp-β-Actin Splice acceptor sequence (5’-CATACCGCTACGTTGCTAA-3’). The resulting bands were capillary sequenced.

PBRM1 knockdown and functional analyses

Cell lines and Transfections

Cell lines tested including ACHN, 786-O, SN12C, U031 A704 Caki-1 and TK10 were cultured in complete medium supplemented with 10% FBS (v/v) under 37°C and 5% CO2. PBRM1 or scrambled control siRNAs (Santa Cruz, CA) were transfected into renal cell lines using Lipofectamine 2000 (Invitrogen, CA) according to the manufacturer's conditions.

siRNA sequences, which detect all three PBRM1 splice forms corresponding to NM_018165, NM_018313 AND NM_181042, were as follows:

C CCAUAGUUGUAGCUACAAA
C GAAAGCAUCACUUCUUUA
C GCACUCAGCUAUACCACAA
Real-time PCR

Total RNA was extracted from 48 hour post-transfected cells using TriPure (Roche, pIN). cDNA synthesis was carried out by using iScript™ cDNA Synthesis Kit (Bio-Rad, CA). Real-time PCR was performed to determine expression level of PBRM1 and β-actin by SsoFast EvaGreen Supermix using CFX96™ Real-Time PCR Detection System (Bio-Rad, CA). Primers used for amplification were: PBRM1-F (5'-GTGTGATGAACCAAGGAGTGGC-3'); PBRM1-R (5'-GATATGGAGGTGGTGCCTGCTG-3'); β-actin-F (5'-GATCAGCAAGCAGGAGTATGACG-3') and β-actin-R (5'-AAGGGTTGAACGCAACTAAGTCATAG-3'). Relative expression of PBRM1 was normalized with β-actin expression level.

Western blot analysis

Cellular proteins were extracted with phosphate buffered saline (PBS) containing 0.1% (v/v) Triton X-100 (Sigma, LA) in the presence of protease inhibitors. Proteins resolved by SDS-PAGE were electroblotted to a nitrocellulose membrane (Amersham, Buckinghamshire) and the membrane was incubated overnight at 4°C with blocking buffer (PBS containing 5% (w/v) skim milk and 0.05% (v/v) Tween-20). Primary and secondary antibody incubations were done in
blocking buffer. Anti-PBRM1 antibody was purchased from Bethyl Laboratories (TX) and anti-β-actin antibody was from Sigma (LA). The membranes were washed with PBS containing 0.05% (v/v) Tween-20 followed by analysis using the Supersignal Chemiluminescent kit (Pierce, IL) according to the manufacturer’s recommendations.

Proliferation assay

After 48 hour transfection, 2×10^3 cells were plated per well in 96-well plate. Growth of PBRM1 siRNA- and scramble siRNA-transfected cells was determined using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-(4-sulfophenyl)-2H-tetrazolium assay according to the manufacturer’s protocol (MTS; Promega, WI). The assay was performed in triplicate.

Migration assay

After 48 hour transfection, 2.0×10^5 cells in serum-free medium were seeded into the upper chamber of BioCoat inserts containing filters with 8 μm pores for migration assay (BD Pharmingen, CA). The lower chamber was filled with 10% (v/v) serum-containing medium as attractant. Cells that did not migrate through the filters after 22 hours post-incubation were removed with cotton swabs. Cells that traversed through the filter were fixed and stained by Diff-Quik Solution (Dade Behring, DE). After staining, cells were taken photos.

Soft Agar Assay

SN12C cells were cultured in a two-layer agar system to prevent their attachment to the plastic surface. After transfection, cells (4×10^4) were trypsinized to single-cell suspensions, resuspended in 0.4% agar (Sigma, LA), and added to a preset 1% bottom agar layer in six-well plates. The top agar cell layers were covered with culture medium. Cells were incubated in 5% CO$_2$ at 37°C for 14 days, and colonies were counted under ×2.5 object. Experiments were performed in triplicate.

PBRM1 knockdown expression phenotype analyses

Gene expression data generation and processing. RNA was isolated from 786-O, SN12C, and TK10 cells that were either transfected with scrambled siRNA or transfected with PBRM1
targeting siRNA. Single color gene expression data was generated using the HG-U133 Plus 2.0 chipset (Affymetrix, Santa Clara, CA) as described13 and deposited in the Gene Expression Omnibus (GEO22316). Gene expression analysis was performed using R/BioConductor version 2.0 software14. Summary expression values were computed using the RMA method as implemented in the \textit{affy} package using updated probe set mappings (hgu133plus2hsentrezgcf version 12) such that a single probe set is associated with each well measured gene15,16.

Gene expression analysis. Gene set enrichment analysis was performed using curated gene sets obtained from MSigDB (http://www.broadinstitute.org/gsea/msigdb/) and using additional curated gene sets obtained from the \textit{PGSEA} package. Log-transformed relative expression values derived from comparison of targeted versus scrambled siRNA were computed for each cell line. For each cell line, gene sets that were significantly enriched in up-regulated genes were identified using the mean-rank method with permutation (n=10,000) as implemented in the \textit{limma} package17. Gene sets that were significantly deregulated (P < 0.05) in all three cell lines were identified and sorted based on the lowest average p-value. Individual genes that were deregulated within specific gene sets were identified using a moderated t-statistic and significance values adjusted to control for multiple testing using the Benjamini & Hochberg approach as implemented in the \textit{limma} package.

Gene expression data generated from renal cell carcinoma samples and non-diseased kidney samples were obtained from the Gene Expression Omnibus (GSE17895) as previously described5. The set of samples that displayed the hypoxic phenotype (n=90) were isolated and correlations between PBRM1 expression and other genes computed using Pearson's correlation.

1. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. \textit{Nat Meth} 7, 111-118.
2. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **26**, 589-595 (2010).

3. Do, C.B. & Batzoglou, S. What is the expectation maximization algorithm? *Nat Biotech* **26**, 897-899 (2008).

4. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. *Bioinformatics* **25**, 2865-2871 (2009).

5. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. *Nature* **463**, 360-363 (2010).

6. Finn, R.D. et al. The Pfam protein families database. *Nuc Acids Res* **38**, D211-222 (2010).

7. Eddy, S.R. Profile hidden Markov models. *Bioinformatics* **14**, 755-763 (1998).

8. Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. *Biological sequence analysis: probabilistic models of proteins and nucleic acids*, (Cambridge University Press, Cambridge 1998).

9. Lawrence, C.E. et al. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. *Science* **262**, 208-214 (1993).

10. Jordan, D.M., Ramensky, V.E. & Sunyaev, S.R. Human allelic variation: perspective from protein function, structure, and evolution. *Current Opinion in Structural Biology* **20**, 342-350.

11. Dixit, A. et al. Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases. *PLoS ONE* **4**, e7485 (2009).

12. Yue, P. et al. Inferring the functional effects of mutation through clusters of mutations in homologous proteins. *Human Mutation* **31**, 264-271 (2010).

13. Yang, X.J. et al. A molecular classification of papillary renal cell carcinoma. *Cancer Res* **65**, 5628-37 (2005).

14. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol* **5**, R80 (2004).

15. Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. *Nuc Acids Res* **33**, e175 (2005).

16. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* **4**, 249-64 (2003).

17. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol* **3**, Article3 (2004).
Supplementary Table 1 - Clinical Samples in exome sequencing

Sample	Sex	Age	Grade	Histology	VHL mutation^	SETD2 mutation	UTX mutation
PD2125a	M	82	4	Clear Cell			
PD2126a	F	74	1	Clear Cell	c.236_241delGCAGTC; p.R79_P81>P	c.1801T>A; p.R601*	
PD2127a	F	59	4	Clear Cell			
PD2144a	F	63	4	Clear Cell	c.525delC; p.Y175*		
PD2147a	F	50	2	Clear Cell		c.4161_4162delTG; p.Y1387fs*1	
PD3295a	M	62	4	Clear Cell			
PD3441a	M	69	1	Clear Cell	c.223_225delATC; p.F76_C77>C		

^ VHL mutations in PD2126a and PD3441a were not "re-discovered" in exome sequencing due to poor coverage of the highly GC-rich first exon.
Sample	Chromosome	Position	Gene	Annotated Transcript	WT base	Mut Base	Mutation Type	Protein Annotation	cDNA Annotation	
PD2127a	16	20855285	AC004381.2	ENST00000261377	A	C	SYNONYMOUS	p.L552L	c.1656A>C	
PD2127a	2	179449098	AC010680.2	ENST00000356127	C	A	MISSENSE	p.G19157V	c.57470G>T	
PD2126a	2	51028374	AC012100.1	ENST00000261854	C	T	MISSENSE	p.E286K	c.856G>A	
PD2147a	7	158529750	AC19084.2	ENST00000435514	C	T	MISSENSE	p.V258V	c.774G>A	
PD2147a	4	25677963	AC092436.2	ENST00000382051	G	C	SYNONYMOUS	p.L555L	c.1665G>C	
PD2147a	17	43214437	ACBD4	ENST00000321854	T	-	FRAMESHIFT	p.F116fs*7	c.347DelT	
PD2147a	5	80643677	ACOT12	ENST00000307624	A	T	MISSENSE	p.L190H	c.569T>A	
PD2144a	2	148680563	ACVR2A	ENST00000241416	G	A	MISSENSE	p.A367T	c.1099G>A	
PD2144a	2	9683393	ADAM17	ENST00000497134	G	C	NONSENSE	p.S40*	c.119G>C	
PD2127a	2	100625295	AFF3	ENST00000409579	A	G	SYNONYMOUS	p.S76S	c.228T>C	
PD2147a	5	133220253	AFF4	ENST00000378595	A	T	MISSENSE	p.S757T	c.2269T>A	
PD2147a	10	45498936	AL353801.1	ENST00000298299	C	T	SYNONYMOUS	p.D40D	c.120C>T	
PD2126a	12	45803231	ANO6	ENST00000441406	A	G	MISSENSE	p.M640V	c.1918A>G	
PD2127a	11	55258787	AP001998.1	ENST00000314657	A	G	SYNONYMOUS	p.T23T	c.699G>A	
PD2125a	19	45451775	APOC2	ENST00000252490	C	T	SYNONYMOUS	p.L141L	c.40C>T	
PD2125a	13	111944635	ARHGEF7	ENST00000375737	A	G	MISSENSE	p.T612A	c.1834A>G	
PD2126a	1	27094351	ARID1A	ENST00000457599	G	A	MISSENSE	p.R1020K	c.3059G>A	
PD2127a	1	27106656	ARID1A	ENST00000457599	T	C	MISSENSE	p.L1872P	c.5615T>C	
PD2127a	10	63850639	ARID5B	ENST00000297873	A	T	NONSENSE	p.K473*	c.1417A>T	
PD2147a	17	42249629	ASB16	ENST00000293414	A	C	MISSENSE	p.T173P	c.517A>C	
PD2127a	1	119976966	ASTN2	ENST00000373996	G	A	MISSENSE	p.A229V	c.686C>T	
PD2127a	10	96794874	ATG2B	ENST00000359933	T	A	ESSENTIAL_SPLICE	p.---	c.-A>T	
PD2126a	22	46085613	ATXN10	ENST00000252934	C	A	SYNONYMOUS	p.I46L	c.138C>A	
PD3295a	1	171506448	BAT2D1	ENST00000367742	-	N-FRAME DELETION	p.P782_S787delPNSES	c.2340delGTACCGAAAGTCTGA		
PD2125a	6	31630173	BAT4	ENST00000375896	G	T	MISSENSE	p.T314N	c.941C>A	
PD2127a	6	38142761	BTBD9	ENST00000419706	T	A	STOP_LOST	p.*S83Y	c.1749A>A	
PD2125a	10	124457732	C10orf120	ENST00000329446	C	G	SYNONYMOUS	p.R175R	c.525G>C	
PD2147a	15	24922328	C15orf2	ENST00000329468	C	A	SYNONYMOUS	p.I438I	c.1314C>A	
PD2125a	5	43388447	CCL28	ENST00000361115	ATAGAAA -	FRAMESHIFT	p.I218fs*379	c.652delATAGAAA		
---------	-----	----------	-------	------------------	----------	------------	-------------	----------------		
PD2127a	5	137686950	COL5A1	ENST00000371817	C T	MISSENSE	p.P908L	c.2723C>T		
PD2127a	6	158272284	CYTIP	ENST00000377833	G A	MISSENSE	p.S2020A	c.6058A>T		
PD2127a	7	23018596	DDX53	ENST00000327968	T C	MISSSE	p.I64fs*17	c.190delATgtgag		
PD2127a	8	43483790	CCND3B	ENST00000395813	A C	MISSENSE	p.S878R	c.2634C>G		
PD2127a	9	10239283	FAM173B	ENST00000280330	A G	SYNONYMOUS	p.R259R	c.777G>A		
PD2127a	10	10829496	GPR68	ENST000003357776	G A	SYNONYMOUS	p.L170L	c.510G>A		
PD2127a	11	176272328	FBN2	ENST00000327968	A C	MISSSE	p.N141T	c.422A>C		
PD2127a	12	42979966	FAM173B	ENST00000327968	A C	MISSSE	p.I2048V	c.6142A>G		
PD2127a	13	7132566	COL5A1	ENST00000332930	A G	MISSSE	p.P908L	c.2723C>T		
PD2127a	14	36900169	EIF3D	ENST00000397224	T A	MISSSE	p.P908L	c.2723C>T		
PD2127a	15	53416352	EIF4B	ENST00000430205	C G	MISSSE	p.P203R	c.608C>G		
PD2127a	16	23297290	ENTPD4	ENST00000417069	T C	MISSSE	p.I333V	c.997A>G		
PD2127a	17	42979966	FAM173B	ENST00000327968	A C	MISSSE	p.L170L	c.510G>A		
PD2127a	18	127627328	FBN2	ENST00000327968	A C	MISSSE	p.N141T	c.422A>C		
PD2127a	19	95657584	DYN1C1	ENST00000359388	A T	MISSSE	p.I282T	c.845T>C		
PD2127a	20	39376176	DAB2	ENST00000339788	G T	MISSSE	p.L506M	c.1516C>A		
PD2127a	21	36900169	EIF3D	ENST00000397224	T A	MISSSE	p.P908L	c.2723C>T		
PD2127a	22	53416352	EIF4B	ENST00000430205	C G	MISSSE	p.P203R	c.608C>G		
PD2127a	23	23297290	ENTPD4	ENST00000417069	T C	MISSSE	p.I333V	c.997A>G		
PD2127a	24	10239283	FAM173B	ENST00000327968	A C	MISSSE	p.I282T	c.845T>C		
PD2127a	25	42979966	FAM173B	ENST00000327968	A C	MISSSE	p.I282T	c.845T>C		
PD2127a	26	127627328	FBN2	ENST00000327968	A C	MISSSE	p.I282T	c.845T>C		
PD2127a	27	42979966	FAM173B	ENST00000327968	A C	MISSSE	p.I282T	c.845T>C		
PD2127a	28	127627328	FBN2	ENST00000327968	A C	MISSSE	p.I282T	c.845T>C		
PD2144a	20	23345310	GZF1	ENST00000377051	C	T	MISSENSE	p.A97V	c.290C>T	
---	---	---	---	---	---	---	---	---	---	
PD2127a	7	18914186	HDAC9	ENST00000401921	C	A	MISSENSE	p.P880T	c.2638C>A	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
PD2127a	5	149386186	HMGXB3	ENST00000261804	A	C	MISSENSE	p.K245N	c.735A>C	
PD2126a	9	21077581	IFNB1	ENST00000380232	A	G	SYNONYMOUS	p.S96S	c.288T>C	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
PD2127a	5	149386186	HMGXB3	ENST00000261804	A	C	MISSENSE	p.K245N	c.735A>C	
PD2126a	9	21077581	IFNB1	ENST00000380232	A	G	SYNONYMOUS	p.S96S	c.288T>C	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
PD2127a	5	149386186	HMGXB3	ENST00000261804	A	C	MISSENSE	p.K245N	c.735A>C	
PD2126a	9	21077581	IFNB1	ENST00000380232	A	G	SYNONYMOUS	p.S96S	c.288T>C	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
PD2127a	5	149386186	HMGXB3	ENST00000261804	A	C	MISSENSE	p.K245N	c.735A>C	
PD2126a	9	21077581	IFNB1	ENST00000380232	A	G	SYNONYMOUS	p.S96S	c.288T>C	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
PD2127a	5	149386186	HMGXB3	ENST00000261804	A	C	MISSENSE	p.K245N	c.735A>C	
PD2126a	9	21077581	IFNB1	ENST00000380232	A	G	SYNONYMOUS	p.S96S	c.288T>C	
PD2147a	10	96352065	HELLS	ENST00000441434	A	G	MISSENSE	p.H568R	c.1703A>G	
PD3441a	7	92848502	HEPACAM2	ENST00000394468	G	T	MISSENSE	p.F114L	c.342C>A	
PD3441a	21	38269279	HLCS	ENST00000399120	C	T	SYNONYMOUS	p.E444E	c.1332G>A	
Genbank Accession	CHNS	ENST	NCBI NR ID	Gene	Gene ID	Description	Chromosome	Position	Chromosome Start Position	Chromosome End Position
-------------------	------	------	-------------	------	---------	-------------	------------	----------	--------------------------	------------------------
PD3295a 13	109777493	MYO16	ENST00000356711	T	A	MISSENSE	p.L1168H	c.3503T>A		
PD2126a 6	76589831	MYO6	ENST00000369985	T	A	SYNONYMOUS	p.P760P	c.2280T>A		
PD3295a 8	90958403	NBN	ENST00000265433	A	G	MISSENSE	p.Y679H	c.2035T>C		
PD3441a 16	4519450	NMRAL1	ENST00000404295	G	T	SYNONYMOUS	p.S19S	c.57C>A		
PD2126a 16	77759415	NUDT7	ENST00000268533	C	T	SYNONYMOUS	p.S41S	c.123C>T		
PD2127a X	70779127	OGT	ENST00000415630	T	C	MISSENSE	p.L412P	c.1235T>C		
PD2144a 19	15198065	OR1I1	ENST00000209540	C	G	SYNONYMOUS	p.L63L	c.189C>G		
PD2127a 1	248309179	OR2M5	ENST00000369985	T	A	MISSENSE	p.H244N	c.730C>A		
PD2127a 17	3195189	OR3A1	ENST00000397187	C	T	SYNONYMOUS	p.L235L	c.705G>A		
PD2127a 11	56409040	OR5AP2	ENST00000302981	A	-	FRAMESHIFT	p.N26fs*13	c.76delA		
PD3441a 6	29323566	OR5V1	ENST00000377151	A	G	MISSENSE	p.L136P	c.407T>C		
PD2147a 1	158687308	OR6K3	ENST00000368146	C	T	MISSENSE	p.V216M	c.646G>A		
PD2126a 11	57798938	OR6Q1	ENST00000302622	T	A	MISSENSE	p.F172I	c.514T>A		
PD3441a 3	125266296	OSBPL11	ENST00000393455	T	C	MISSENSE	p.S218G	c.652A>G		
PD2147a 20	49366431	PAR6B	ENST00000371610	C	T	SYNONYMOUS	p.D175D	c.525T>C		
PD3441a 3	52613158	PBRM1	ENST00000394830	C	A	MISSENSE	p.E1124*	c.3370C>A		
PD2126a 3	52649441	PBRM1	ENST00000337303	-	T	FRAMESHIFT	p.K621fs*9	c.1862insT		
PD2127a 3	52678768	PBRM1	ENST00000337303	T	-	FRAMESHIFT	p.K284fs*16	c.851delA		
PD3295a 3	52613132	PBRM1	ENST00000337303	GC	-	FRAMESHIFT	p.W1157fs*23	c.3471_3472delGC		
PD2126a 12	96692721	PCTK2	ENST00000261211	G	A	MISSENSE	p.T214I	c.641C>T		
PD2126a 10	95422894	PDE6C	ENST00000371447	T	G	MISSENSE	p.I826S	c.2477T>G		
PD2127a 10	75675107	PLAU	ENST00000446342	A	G	MISSENSE	p.T340A	c.1018A>G		
PD2144a 17	37263687	PLXDC1	ENST00000444435	G	A	MISSENSE	p.D12V	c.35C>T		
PD2127a 11	74329770	POLD3	ENST00000263681	G	T	MISSENSE	p.G194V	c.581G>T		
PD2127a 11	74329772	POLD3	ENST00000263681	A	T	MISSENSE	p.M195L	c.583A>T		
PD2127a 2	46313388	PRKCE	ENST00000306156	A	-	FRAMESHIFT	p.D493fs*33	c.1479delIC		
PD2125a 12	50027318	PRPF40B	ENST00000261897	G	A	MISSENSE	p.D162N	c.484G>A		
PD3295a 14	73673169	PSEN1	ENST00000394164	A	G	MISSENSE	p.Y311C	c.932A>G		
PD2144a 21	30342888	RN160	ENST00000361371	C	T	SYNONYMOUS	p.T387T	c.1161G>A		
PD2147a 22	39710171	RPL3	ENST00000401609	G	T	MISSENSE	p.L246M	c.736C>A		
PD2127a 3	38768438	SCN10A	ENST00000449082	G	A	MISSENSE	p.R916W	c.2746C>T		
PD2125a 7	83634829	SEMA3A	ENST00000265362	G	A	MISSENSE	p.P396S	c.1186C>T		
PD2126a 3	47164325	SETD2	ENST00000409792	T	A	NONSENSE	p.R601*	c.1801T>A		
Gene	Ensembl ID	Chromosome	Position	Transcript ID	Coding Region	Change	Mutation Type	Protein Change	Reference 1	Reference 2
---------	------------	------------	----------	---------------	---------------	--------	---------------	----------------	-------------	-------------
SHPRH	ENST00000275233	6	146243853	PD3295a	A	T	MISSENSE	p.V1222D	c.3665T>A	
SIGLEC8	ENST00000440804	19	51958879	PD3295a	C	G	MISSENSE	p.V282L	c.844G>C	
SLC44A3	ENST00000446120	1	95330381	PD2125a	G	T	MISSENSE	p.G405W	c.1213G>T	
SLC4A4	ENST00000340595	4	72420907	PD2127a	A	G	SYNONYMOUS	p.A871A	c.2613A>G	
SLC6A16	ENST00000454748	19	49813078	PD2127a	C	T	MISSENSE	p.E236K	c.706G>A	
SIGLEC8	ENST00000374299	X	70147450	PD2127a	A	T	MISSENSE	p.M356K	c.1067T>A	
SLC8A1	ENST00000408028	2	40656752	PD2125a	C	G	MISSENSE	p.G405W	c.1213G>T	
SLC6A16	ENST00000454748	X	70147450	PD2127a	C	T	MISSENSE	p.E236K	c.706G>A	
SLC7A3	ENST00000374299	X	70147450	PD2127a	A	T	MISSENSE	p.M356K	c.1067T>A	
SMYD4	ENST00000305513	17	1690187	PD2127a	C	G	MISSENSE	p.G405W	c.1213G>T	
SPAM1	ENST00000413927	7	123593637	PD3441a	A	C	MISSENSE	p.K5Q	c.13A>C	
STOX1	ENST00000399162	19	49398324	PD2127a	T	C	MISSENSE	p.S119P	c.35T>C	
TCHH	ENST00000368804	1	152081494	PD2144a	C	G	MISSENSE	p.R1400P	c.4199G>C	
TCL6	ENST00000357168	14	96136875	PD2147a	T	C	MISSENSE	p.S119P	c.35T>C	
TCTN	ENST00000441824	20	58011759	PD2127a	C	T	SYNONYMOUS	p.G68G	c.204C>T	
TMEM97a	ENST00000443106	3	111782388	PD2125a	T	A	SYNONYMOUS	p.S476S	c.1428T>A	
TNFRSF13B	ENST00000261652	17	16855793	PD2127a	G	T	MISSENSE	p.H56N	c.166C>A	
TOX	ENST00000361421	8	59750765	PD2127a	C	T	MISSENSE	p.A267T	c.799G>A	
TSHR	ENST00000298171	14	81606140	PD2147a	T	G	SYNONYMOUS	p.L270L	c.810T>G	
TULP2	ENST0000021399	19	49398324	PD2125a	C	T	MISSENSE	p.V149I	c.445G>A	
UFP3B	ENST00000276201	X	118979153	PD2147a	tactgt	-	SPLICE	p.---	c.---	
USH2A	ENST00000366942	1	216497008	PD3295a	G	A	MISSENSE	p.T453I	c.1358C>T	
UTX	ENST00000377967	4	44969479	PD2147a	TG	-	FRAMESHIFT	p.Y1387fs*1	c.4161_4162delTG	
VHL	ENST00000256474	3	101915134	PD2144a	G	-	FRAMESHIFT	p.Y175*	c.525delC	
WDR52	ENST00000393845	3	113060702	PD3295a	G	T	MISSENSE	p.T257N	c.770C>A	
WNT1	ENST00000293549	12	49373404	PD3441a	G	T	SYNONYMOUS	p.L86L	c.258G>T	
YWHAB	ENST00000353703	20	43530469	PD2127a	G	A	MISSENSE	p.V99I	c.295G>A	
ZNF442	ENST00000420150	19	12460630	PD2127a	T	A	MISSENSE	p.H590L	c.1769A>T	
ZNF507	ENST00000355898	19	32845488	PD295a	C	T	SYNONYMOUS	p.S584S	c.1752C>T	
Sample	Sex	Age	Grade	Histology						
----------	-----	-----	-------	-------------						
PD1580a	F	61	3	clear cell						
PD1582a	F	47	2	clear cell						
PD1590a	M	64	2	clear cell						
PD1593a	M	59	4	clear cell						
PD1753a	M	67	3	clear cell						
PD1754a	F	42	3	clear cell						
PD1759a	M	76	3	clear cell						
PD1767a	F	80	2	clear cell						
PD1769a	M	43	3	clear cell						
PD2125a	M	82	4	clear cell						
PD2126a	F	74	1	clear cell						
PD2127a	F	59	4	clear cell						
PD2129a	M	75	4	clear cell						
PD2130a	F	67	2	clear cell						
PD2131a	F	63	4	clear cell						
PD2133a	M	52	3	clear cell						
PD2134a	F	83	3	clear cell						
PD2135a	M	73	4	clear cell						
PD2136a	M	67	3	clear cell						
PD2138a	M	74	4	clear cell						
PD2139a	F	62	2	clear cell						
PD2140a	M	48	3	clear cell						
PD2142a	M	49	3	clear cell						
PD2144a	F	63	4	clear cell						
PD2145a	M	63	2	clear cell						
PD2146a	M	64	3	clear cell						
PD2147a	F	50	2	clear cell						
PD2148a	F	77	2	clear cell						
PD2149a	M	66	4	clear cell						
PD2154a	F	64	4	clear cell						
PD2155a	M	50	3	clear cell						
PD2157a	M	32	2	clear cell						
PD2160a	M	73	3	clear cell						
PD2161a	F	42	2	clear cell						
PD2163a	M	54	3	clear cell						
PD2167a	M	59	2	clear cell						
PD2168a	M	53	4	clear cell						
PD2170a	M	60	4	clear cell						
PD2172a	M	67	3	clear cell						
PD2173a	F	83	1	clear cell						
PD2174a	F	65	2	clear cell						
PD2177a	M	49	2	clear cell						
PD2180a	F	45	2	clear cell						
PD2181a	F	71	2	clear cell						
PD2183a	F	66	1	clear cell						
PD2185a	F	71	1	clear cell						
PD2186a	M	50	2	clear cell						
PD2187a	F	49	2	clear cell						
PD2190a	F	61	2	clear cell						
Patient ID	Sex	Age	Stage	Histology						
------------	-----	-----	-------	----------------------------						
PD2191a	M	68	3	clear cell						
PD2192a	M	78	3	clear cell						
PD2193a	M	61	3	clear cell						
PD2194a	M	74	3	clear cell						
PD2198a	M	70	3	clear cell						
PD2199a	M	58	2	clear cell						
PD2203a	F	60	2	clear cell						
PD2207a	M	66	2	clear cell						
PD2208a	F	65	2	clear cell						
PD2209a	F	69	3	clear cell						
PD2213a	M	60	4	clear cell						
PD2217a	M	44	4	clear cell						
PD2219a	M	47	2	clear cell						
PD2222a	F	54	N/D	clear cell						
PD3284a	M	56	3	clear cell						
PD3285a	F	80	3	clear cell						
PD3286a	F	71	4	clear cell						
PD3287a	M	61	2	clear cell						
PD3290a	F	58	2	clear cell						
PD3292a	M	76	3	papillary						
PD3293a	M	80	3	clear cell						
PD3294a	F	60	3	clear cell						
PD3295a	M	62	4	clear cell						
PD3296a	M	72	3	clear cell						
PD3306a	F	80	2-3	Clear Cell w/ minor granular component						
PD3307a	F	64	4	clear cell						
PD3308a	M	43	3	clear cell						
PD3309a	M	67	4	clear cell						
PD3312a	F	81	3	clear cell						
PD3313a	F	48	2	clear cell						
PD3314a	F	58	3	clear cell						
PD3316a	M	44	3	clear cell						
PD3317a	M	62	2	clear cell						
PD3318a	M	74	2	papillary						
PD3324a	M	51	3	clear cell						
PD3332a	M	65	1-2	Papillary (Chromophil)						
PD3333a	M	48	2	papillary						
PD3336a	F	74	2	clear cell						
PD3337a	F	71	2	clear cell						
PD3340a	M	49	2	clear cell						
PD3342a	M	65	3	clear cell						
PD3343a	M	69	2	papillary 1						
PD3348a	M	57	2	clear cell						
PD3349a	F	56	3	clear cell						
PD3350a	M	51	2	clear cell						
PD3351a	M	65	3	clear cell						
PD3355a	F	59	2	clear cell						
PD3363a	F	72	2	clear cell						
PD3364a	M	70	3	clear cell						
ID	Gender	Age	Tumor Type	Description						
------	--------	-----	------------	---------------------------						
PD3365a	F	54	3	chromophobe						
PD3368a	M	54	3	clear cell						
PD3371a	F	56	2	clear cell						
PD3372a	F	67	4	clear cell/Sarcomatoid						
PD3375a	F	57	2	clear cell						
PD3376a	F	82	2	clear cell						
PD3378a	F	52	3	clear cell						
PD3379a	M	62	2	clear cell						
PD3381a	M	66	3	clear cell						
PD3382a	M	56	2	clear cell						
PD3385a	M	71	4	clear cell						
PD3388a	F	73	4	clear cell/sarcomatoid						
PD3389a	M	48	3-4	clear cell						
PD3390a	F	67	4	clear cell						
PD3391a	M	54	2	clear cell						
PD3392a	M	50	2	clear cell						
PD3393a	F	54	3	clear cell						
PD3394a	M	61	4	clear cell						
PD3395a	M	74		Mucinous Tubular and Spindle Cell Carcinoma						
PD3397a		47	1 (focally 2-3)	clear cell						
PD3399a	F	58	1-2	clear cell						
PD3400a	M	51	3	clear cell						
PD3402a	M	53	2	clear cell						
PD3403a	M	63	3	papillary						
PD3404a	F	55	2	clear cell						
PD3405a	M	55	4	clear cell						
PD3408a	F	78	2	clear cell						
PD3409a	M	69	2	clear cell						
PD3410a	F	54	4	clear cell						
PD3411a	F	58	3	clear cell						
PD3413a	F	51	3	clear cell						
PD3420a	M	58	2	clear cell						
PD3421a	M	65	3	clear cell						
PD3422a	M	68	1-2	clear cell						
PD3423a	M	61	2	papillary 1						
PD3424a	M	66	3	clear cell						
PD3425a	M	48	3	clear cell						
PD3426a	M	51	2	chromophobe						
PD3427a	M	50	2	clear cell						
PD3436a	M	38	2	clear cell						
PD3437a	F	68	2	clear cell						
PD3438a	M	51	3	clear cell						
PD3439a	M	59	3	clear cell						
PD3440a	M	70	2	clear cell						
PD3441a	M	69	1	clear cell						
PD3442a	M	73	2	Papillary w/ focal clear cell						
PD3443a	F	48	4	clear cell						
PD3446a	M	72	3	NOS						
PD3449a	M	69	4	Clear Cell						
Patient ID	Gender	Age	Tumor Type							
------------	--------	-----	---------------------							
PD3452a	M	68	Clear Cell							
PD3453a	F	64	clear cell							
PD3454a	M	70	clear cell							
PD3455a	F	42	clear cell/Sarcomatoid							
PD3456a	M	36	clear cell							
PD3457a	M	39	clear cell							
PD3458a	F	69	chromophobe							
PD3459a	F	52	3 (focal areas of 4) clear cell							
PD3467a	F	72	clear cell							
PD3468a	M	41	#N/A							
PD3469a	F	85	clear cell							
PD3470a	F	58	clear cell							
PD3471a	F	57	clear cell							
PD3472a	M	66	clear cell							
PD3473a	F	73	clear cell							
PD3474a	M	62	papillary 1							
PD3475a	M	69	papillary							
PD3476a	F	46	clear cell							
PD3479a	M	76	oncocytoma							
PD3481a	F	80	clear cell							
PD3483a	M	67	clear cell							
PD3484a	M	72	clear cell							
PD3485a	M	69	clear cell							
PD3486a	M	70	papillary							
PD3487a	M	44	clear cell							
PD3488a	F	69	clear cell							
PD3489a	F	58	clear cell							
PD3490a	F	59	clear cell							
PD3491a	M	87	clear cell							
PD3492a	M	42	clear cell							
PD3493a	F	78	clear cell							
PD3494a	M	42	clear cell							
PD3495a	M	71	clear cell							
PD3497a	M	63	clear cell							
PD3499a	M	55	clear cell							
PD3500a	M	49	clear cell							
PD3501a	F	83	clear cell							
PD3502a	M	84	chromophobe							
PD3503a	M	60	clear cell							
PD3504a	F	37	clear cell							
PD3505a	M	54	clear cell							
PD3506a	F	62	clear cell							
PD3507a	M	57	clear cell							
PD3508a	F	71	clear cell							
PD3509a	M	58	clear cell							
PD3510a	F	89	clear cell							
PD3511a	F	58	clear cell							
PD3512a	M	83	clear cell							
PD3513a	M	69	clear cell							
PD3514a	F	43	clear cell							
PatientID	Gender	Age	Stage	Histology						
-----------	--------	------	--------	---------------						
PD3515a	M	80	2	clear cell						
PD3516a	F	68	3	clear cell						
PD3518a	M	74	2	chromophobe						
PD3519a	F	85	3	NOS						
PD3520a	M	64	2-3	clear cell						
PD3521a	M	54	3	clear cell						
PD3522a	M	64	3	clear cell						
PD3523a	F	47	3	clear cell						
PD3524a	M	66	3	clear cell						
PD3525a	F	74	1	clear cell						
PD3526a	M	59	2	papillary						
PD3528a	F	50	2	clear cell						
PD3529a	M	56	2	clear cell						
PD3530a	M	69	3	clear cell						
PD3532a	M	41	2	clear cell						
PD3534a	M	55	2	clear cell						
PD3536a	F	71	3	Clear Cell						
PD3538a	M	73	3	clear cell						
PD3539a	M	78	3	NOS						
PD3540a	F	52	2	clear cell						
PD3541a	M	61	2	clear cell						
PD3542a	F	59	2	clear cell						
PD3543a	M	55	2	clear cell						
PD3544a	F	50	3	papillary						
PD3545a	M	54	2	chromophobe						
PD3546a	F	57	2	clear cell						
PD3547a	F	63	2	papillary						
PD3548a	M	66	2	clear cell						
PD3550a	M	44	2	clear cell						
PD3552a	M	54	2	clear cell						
PD3554a	F	55	3	clear cell						
PD3555a	F	66	1	clear cell						
PD3556a	M	69	2	clear cell						
PD3557a	F	49	1	clear cell						
PD3558a	M	55	2	clear cell						
PD3559a	F	74	2	clear cell						
PD3560a	F	78	2	clear cell						
PD3561a	M	72	3-4	clear cell						
PD3562a	F	73	1	oncocyntoma						
PD3563a	M	57	3	clear cell						
PD3564a	F	68	3	clear cell						
PD3565a	M	65	3	clear cell						
PD3566a	M	44	3	clear cell						
PD3567a	M	75	high	Papillary Urothelial Carcinoma						
PD3568a	F	52	N/D	Urothelial Carcinoma						
PD3569a	F	N/D	3	clear cell						
PD3570a	M	51	2	papillary						
PD3571a	M	72	3	papillary 2						
PD3572a	F	46	N/D	oncocyntoma						
PD3573a	M	65	2	clear cell						
Patient ID	Gender	Age	Stage	Pathological Diagnosis						
------------	--------	-----	-------	------------------------------						
PD3574a	M	38	3	clear cell						
PD3575a	F	62	N/D	inflammatory myofibroblastic tumor						
PD3576a	M	69	2	papillary						
PD3577a	F	53	3	chromophobe						
PD3578a	M	67	2-3	clear cell						
PD3581a	M	66	3	clear cell						
PD3582a	M	56	2	clear cell						
PD3587a	M	N/D	2	clear cell						
PD3588a	F	77	1	clear cell						
PD3589a	M	91	3	clear cell						
PD3590a	M	43	3	papillary 2						
PD3591a	M	79	high	Urothelial Carcinoma						
PD3592a	F	49	2	clear cell						
PD3594a	M	44	2	clear cell						
PD3596a	M	54	3	Clear Cell						
PD3597a	M	60	2	clear cell						
PD3598a	M	70	3	clear cell						
Supplementary Table 4 - PBRM1 somatic mutations

Sample	Chr	Position	WT allele	Mut Allele	Annotated Trascript	Protein annotation	cDNA annotation	Type			
PD1580a	3	52662980	T	-	ENST00000337303	p.N458fs*17	c.1373delTA	INDEL			
PD1590a	3	52712590	AT	-	ENST00000337303	p.Y54fs*1	c.162_163delTA	INDEL			
PD1754a	3	52712583	GAT	-	ENST00000337303	p.I57del	c.169_171delATC	INFRAME DEL			
PD1759a	3	52620608	T	A	ENST00000337303	p.K1074*	c.3220A>T	NONSENSE			
PD1767a	3	52702550	GCTGG	A	ENST00000337303	p.Q117fs*56	c.348_352>T	INDEL			
PD2127a	3	52643913	T	A	ENST00000337303	p.K661N	c.1983A>T	MISSENSE			
PD2129a	3	52643561	G	A	ENST00000337303	p.Q779*	c.2335C>T	NONSENSE			
PD2130a	3	52696193	C	-	ENST00000337303	p.D162fs*12	c.484delG	INDEL			
PD2131a	3	52620701	TTAAGTA	-	ENST00000337303	p.Y1043fs*9	c.3127_3134delTACTTTAA	INDEL			
PD2135a	3	52597493	G	A	ENST00000337303	p.Q1298*	c.3892C>T	NONSENSE			
PD2140a	3	52637682	T	-	ENST00000337303	p.E878fs*37	c.2634delA	INDEL			
PD2145a	3	52651277	C	T	ENST00000337303	p.?	Exon 14 +1 G>A	ESSENTIAL_SPLICE			
PD2146a	3	52677884	T	-	ENST00000337303	p.I279fs*4	c.835delA	INDEL			
PD2154a	3	52712548	AG	-	ENST00000337303	p.C69fs*1	c.204_205delCT	INDEL			
PD2155a	3	52668646	T	A	ENST00000337303	p.K425*	c.1273A>T	NONSENSE			
PD2163a	3	52678763	C	A	ENST00000337303	p.E286*	c.856G>T	NONSENSE			
PD2170a	3	52595987	G	C	ENST00000337303	p.?	Exon 25 -3 C>G	INTRONIC			
PD2172a	3	52584514	G	C	ENST00000337303	p.S1500*	c.4499C>G	NONSENSE			
PD2174a	3	52651306	G	T	ENST00000337303	p.A597D	c.1790C>A	MISSENSE			
PD2181a	3	52597493	G	A	ENST00000337303	p.Q1298*	c.3892C>T	NONSENSE			
PD2183a	3	52621485	ATGTTTC	-	ENST00000337303	p.E1003fs*9	c.3007_3013delGAAACAT	INDEL			
PD2186a	3	52610623	TTCTTTTGTAGAACA	-	ENST00000337303	p.M1209_E1214delMFYKKE	c.3625_3642delATGTTCTACAAAAA	INFRAME DEL			
PD2186a	3	52610637	T	G	ENST00000337303	p.H1204P	c.3611A>C	MISSENSE			
PD2190a	3	52643742	TGG	-	ENST00000337303	p.Y718_Q719>*	c.2154_2156delCCA	INDEL			
PD2192a	3	52651294	TCAT	AT	ENST00000337303	p.N601fs*8	c.1802_1805delTA	INDEL			
PD2193a	3	52696194	A	-	ENST00000337303	p.D161fs*13	c.483delT	INDEL			
PD2194a	3	52643755	A	-	ENST00000337303	p.M714fs*17	c.2141delT	INDEL			
PD2199a	3	52595782	C	A	ENST00000337303	p.?	Exon 25 +1 G>T	ESSENTIAL_SPLICE			
PD2203a	3	52663050	T	-	ENST00000337303	p.T435fs*3	c.1303delA	INDEL			
PD2207a	3	52661375	T	-	ENST00000337303	p.E486fs*14	c.1455delA	INDEL			
PD2208a	3	52668757	G	A	ENST00000337303	p.Q388*	c.1162C>T	NONSENSE			
PD2209a	3	52702591	T	-	ENST00000337303	p.M103fs*10	c.307delA	INDEL			
Sample ID	Gene ID	Reference	cDNA Change	protein Change	Type						
-----------	---------	-----------	-------------	----------------	------						
PD2217a	ENST00000337303	p.I279fs*4	c.835delA	INDEL							
PD2219a	ENST00000337303	p.D589fs*2	c.1764delA	INDEL							
PD2222a	ENST00000337303	p.?	Exon 6-5 T>G	INTRONIC							
PD2222a	ENST00000337303	p.S652*	c.1955C>G	NONSENSE							
PD3284a	ENST00000337303	p.G646fs*4	c.1937_1955delGCATTTCTCCTAAAA	AATC	INDEL						
PD3290a	ENST00000337303	p.S652*	c.1955C>G	NONSENSE							
PD3312a	ENST00000337303	p.?	Exon 6 -1 G>A	ESSENTIAL_SPLICE							
PD3313a	ENST00000337303	p.?	Exon 22 -1 del(TTATATTTTCTCCCCAAG)	ESSENTIAL_SPLICE							
PD3314a	ENST00000337303	p.K708fs*14	c.2124_2125delAA	INDEL							
PD3317a	ENST00000337303	p.R540S	c.1620A>C	MISSENSE							
PD3336a	ENST00000337303	p.?	Exon 15 -1 G>C	ESSENTIAL_SPLICE							
PD3340a	ENST00000337303	p.K644fs*9	c.1930_1939delAAGAGTGGCA	INDEL							
PD3349a	ENST00000337303	p.?	c.232_236delCGAAG	INDEL							
PD3355a	ENST00000337303	p.?	c.2873_2879delACCATGT	INDEL							
PD3363a	ENST00000337303	p.?	c.3892C>T	NONSENSE							
PD3371a	ENST00000337303	p.?	c.1186delT	INDEL							
PD3375a	ENST00000337303	p.R1185*	c.3553C>T	NONSENSE							
PD3382a	ENST00000337303	p.Q1298*	c.3892C>T	NONSENSE							
PD3385a	ENST00000337303	p.?	c.2240_2246delAAAGATGGCA	INDEL							
PD3391a	ENST00000337303	p.?	c.363_364delCA	INDEL							
PD3400a	ENST00000337303	p.?	c.3695delA	INDEL							
PD3411a	ENST00000337303	p.?	c.307delA	INDEL							
PD3413a	ENST00000337303	p.?	c.363_364delCA	INDEL							
PD3422a	ENST00000337303	p.?	c.3695delA	INDEL							
PD3438a	3	52582134	-	A	ENST00000337303	p.L1565fs*>19	c.4694_4695insT	INDEL			
PD3457a	3	52623136	T	-	ENST00000337303	p.N972fs*42	c.2915delA	INDEL			
PD3467a	3	52649441	A	T	ENST00000337303	p.L617*	c.1850T>A	NONSENSE			
PD3469a	3	52620607	TT	-	ENST00000337303	p.K1074fs*32	c.3221_3222delAA	INDEL			
PD3470a	3	52649469	A	-	ENST00000337303	p.Y608fs*34	c.1822delT	INDEL			
PD3472a	3	52637691	A	-	ENST00000337303	p.R876fs*39	c.2625delT	INDEL			
PD3476a	3	52696289	TATTCAGGAGAATC	-	ENST00000337303	p.D130fs*1	c.388_401delGATTCTCCTGAATA	INDEL			
PD3487a	3	52620611	T	-	ENST00000337303	p.I1073fs*86	c.3217delA	INDEL			
PD3490a	3	52712586	-	T	ENST00000337303	p.T56fs*6	c.166_167insA	INDEL			
PD3492a	3	52677318	G	T	ENST00000337303	p.K621E	c.1861A>G	NONSENSE			
PD3501a	3	52649430	T	C	ENST00000337303	p.K621E	c.1861A>G	MISSENSE			
PD3506a	3	52712614	C	-	ENST00000337303	p.?	c.1318C>T	NONSENSE			
PD3511a	3	52623085	TTAC	-	ENST00000337303	p.?	c.1318C>T	NONSENSE			
PD3524a	3	52663053	T	A	ENST00000337303	p.?	c.1318C>T	NONSENSE			
PD3529a	3	52685778	T	G	ENST00000337303	p.T232P	c.694A>C	MISSENSE			
PD3536a	3	52584541	G	-	ENST00000337303	p.P1491fs*14	c.4472delC	INDEL			
PD3538a	3	52610715	C	A	ENST00000337303	p.?	c.1318C>T	NONSENSE			
PD3540a	3	52643510	C	-	ENST00000337303	p.E796fs*9	c.2386delG	INDEL			
PD3541a	3	52613210	T	-	ENST00000337303	p.E1132fs*27	c.3393delA	INDEL			
PD3543a	3	52582239	T	-	ENST00000337303	p.D1530fs*17	c.4589delA	INDEL			
PD3548a	3	52682460	T	C	ENST00000337303	p.?	c.1318C>T	NONSENSE			
PD3550a	3	52663035	G	A	ENST00000337303	p.Q440*	c.1318C>T	NONSENSE			
PD3554a	3	52597340	G	-	ENST00000337303	p.L1349fs*35	c.4045delC	INDEL			
PD3555a	3	52702645	T	-	ENST00000337303	p.Y85fs*2	c.253_254insT	INDEL			
PD3556a	3	52696272	GTTTGCAAGCGGCT	-	ENST00000337303	p.K135fs*11	c.405_418delAGCCGCTTGGAAAC	INDEL			
PD3559a	3	52643974	TTTTTCATTTTTAGGAAATGCCAATCCTCTCTCCTA	-	ENST00000337303	p.?	c.405_418delAGCCGCTTGGAAAC	INDEL			
PD3563a	3	52589125	T	-	ENST00000337303	p.G1273fs*2	c.3816delA	INDEL			
PD3573a	3	52712587	A	-	ENST00000337303	p.N55fs*40	c.165delT	INDEL			
PD3582a	3	52668716	C	-	ENST00000337303	p.Q402fs*2	c.1203delG	INDEL			
PD3587a	3	52651439	T	A	ENST00000337303	p.K553*	c.1657A>T	NONSENSE			
PD3588a	3	52613142	TCAT	-	ENST00000337303	p.N1154fs*4	c.3461_3464delATGA	INDEL			
PD3596a	3	52610766	T	-	ENST00000337303	p.E1214fs*4	c.3639delA	NONSENSE			
Sample	Tissue	Histology	Zygosity	Cff	Position	WT allele	Mut Allele	Annotated Transcript	cDNA Annotation	Protein Annotation	Type
------------	-------------	---------------------------------------	------------	-----	----------	-----------	------------	----------------------	----------------	--------------------	--------
NCI-H1793	Lung	Adenocarcinoma	Heterozygous	3	52692313	T	A	ENST00000337303	c.547A>T	p.R183*	Nonsense
OCI-314	Ovary	Serous micro papillary carcinoma	Heterozygous	3	52676277	G	A	ENST00000337303	c.892C>T	p.R296*	Nonsense
PANC-10-05	Pancreas	Ductal carcinoma	Heterozygous	3	52651496	G	A	ENST00000337303	c.1600C>T	p.R534*	Nonsense
ESS-1	Endometrium	Carcinosarcoma-malignant mesodermal mixed tumour	Heterozygous	3	52643768	G	A	ENST00000337303	c.2126C>T	p.R710*	Nonsense
HCC2998	Large intestine, colon	Adenocarcinoma	Heterozygous	3	52637678	G	A	ENST00000337303	c.2126C>T	p.R710*	Nonsense
ACHN	Kidney	Renal cell carcinoma	Heterozygous	3	52620674	G	A	ENST00000337303	c.3154C>T	p.R11052*	Nonsense
NCI-H226	Lung	Squamous cell carcinoma	Heterozygous	3	52584766	G	A	ENST00000337303	c.435C>T	p.Q1452*	Nonsense
TALL-1	Haematopoietic and lymphoid tissue	Lymphoid leukenoma, acute lymphoblastic T cell leukaemia	Heterozygous	3	52584629	G	A	ENST00000337303	c.4384C>T	p.Q1462*	Nonsense
CW-2	Carcinoma	Carcinoma	Heterozygous	3	52678784	T	-	ENST00000337303	c.835delA	p.I279fs*4	INDEL
NCI-SNU-1	Stomach	Carcinoma	Heterozygous	3	52678784	T	-	ENST00000337303	c.835delA	p.I279fs*4	INDEL
A704	Kidney	Renal cell carcinoma	Heterozygous	3	52651383	-	AA	ENST00000337303	c.1713_1714insTT	p.E572fs*16	INDEL
NCI-H2196	Lung	Small cell carcinoma	Heterozygous	3	52637580	T	-	ENST00000337303	c.2736delA	p.E913fs*2	INDEL
TGBC24TKB	Biliary tract, bile duct	Carcinoma	Heterozygous	3	52613114	-	A	ENST00000337303	c.3489_3490insT	p.V1164fs*17	INDEL
SUP-T1	Haematopoietic and lymphoid tissue	Lymphoid leukenoma, acute lymphoblastic T cell leukaemia	Heterozygous	3	52597340	G	-	ENST00000337303	c.4045delC	p.L1349fs*35	INDEL
HCC2998	Large intestine, colon	Adenocarcinoma	Heterozygous	3	52582255	A	C	ENST00000337303	Exon 28 -4 T>G	p.?	INTRONIC
NCI-H378	Lung	Small cell carcinoma	Heterozygous	3	52623082	C	T	ENST00000337303	Exon 17 +4 G>A	p.?	INTRONIC
NCI-H650	Lung	Bronchioloalveolar adenocarcinoma	Heterozygous	3	52712607	C	G	ENST00000337303	c.145G>C	p.V49L	MISSENSE
8-MG-BA	Central nervous system, frontal lobe	Glioma, astrocytoma Grade IV, glioblastoma multiforme	Heterozygous	3	52712586	T	C	ENST00000337303	c.166A>G	p.T566A	MISSENSE
SW1417	Large intestine, colon	Adenocarcinoma	Heterozygous	3	52712556	T	C	ENST00000337303	c.196A>G	p.R666G	MISSENSE
647-V	Urinary tract, bladder	Transitional cell carcinoma	Heterozygous	3	52702630	G	C	ENST00000337303	c.268C>G	p.Q90E	MISSENSE
A4-Fuk	Skin	Malignant melanoma	Heterozygous	3	52696246	T	A	ENST00000337303	c.431A>T	p.Y114F	MISSENSE
A4-Fuk	Skin	Malignant melanoma	Heterozygous	3	52696198	T	G	ENST00000337303	c.479A>C	p.E160A	MISSENSE
SNG-M	Endometrium	Adenocarcinoma	Heterozygous	3	52692256	G	A	ENST00000337303	c.604C>T	p.H202C	MISSENSE
CCRF-CEM	Haematopoietic and lymphoid tissue	Haematopoietic leukenoma, acute lymphoblastic leukaemia	Heterozygous	3	52692244	C	T	ENST00000337303	c.616G>A	p.E206K	MISSENSE
CTV-1	Haematopoietic and lymphoid tissue	Haematopoietic leukenoma, acute myeloid leukaemia, M5	Heterozygous	3	52680795	T	C	ENST00000337303	c.677A>G	p.E226G	MISSENSE
MDA-MB-231	Breast	Carcinoma	Heterozygous	3	52685790	T	C	ENST00000337303	c.682A>G	p.G228V	MISSENSE
OS-RC-2	Kidney	Renal cell carcinoma	Heterozygous	3	52685774	A	G	ENST00000337303	c.696T>C	p.R233T	MISSENSE
OVCA-R-5	Ovary	Carcinoma	Heterozygous	3	52682407	C	T	ENST00000337303	c.766G>A	p.A256T	MISSENSE
IGR-1	Skin	Malignant melanoma	Heterozygous	3	52676038	C	G	ENST00000337303	c.1019G>C	p.G340A	MISSENSE
A388	NS	Carcinoma	Heterozygous	3	52643864	G	A	ENST00000337303	c.2032C>T	p.T678C	MISSENSE
LC4-1	Haematopoietic and lymphoid tissue	Haematopoietic leukenoma, acute lymphoblastic leukaemia	Heterozygous	3	52637638	T	C	ENST00000337303	c.2678A>G	p.Y993C	MISSENSE
TCGA ID	Tissue Type	Tumor Type	Genomic Change	Gene Symbol	Coding Change	Mutation Type					
---------	-------------	------------	----------------	-------------	--------------	--------------					
SBC-1	Lung	Small cell carcinoma	Homozygous	3	52637638 T C	ENST00000337303 c.2678A>G	p.Y893C	MISSENSE			
SNU-449	Liver	Hepatocellular carcinoma	Heterozygous	3	52637638 T C	ENST00000337303 c.2678A>G	p.Y893C	MISSENSE			
NCI-H446	Lung	Small cell carcinoma	Heterozygous	3	52637633 T A	ENST00000337303 c.2663A>T	p.Y893S	MISSENSE			
ZR-75-30	Breast	Ductal carcinoma	Heterozygous	3	52637552 C G	ENST00000337303 c.2764G>C	p.E922Q	MISSENSE			
HCC2998	Liver	Small cell carcinoma	Heterozygous	3	52637543 T G	ENST00000337303 c.2773A>C	p.K925Q	MISSENSE			
NCI-SNU-1	Stomach	Carcinoma	Heterozygous	3	52589082 C T	ENST00000337303 c.3859G>C	p.E1287Q	MISSENSE			
MDA-MB-415	Breast	Carcinoma	Homozygous	3	52589082 C T	ENST00000337303 c.3859G>C	p.E1287Q	MISSENSE			
RKO	Large intestine, colon	Carcinoma	Heterozygous	3	52637638 T C	ENST00000337303 c.3859G>C	p.E1287Q	MISSENSE			
HCE-T	Upper aerodigestive tract, sinonasal and nasal cavity, sinus	Squamous cell carcinoma	Heterozygous	3	52637638 T C	ENST00000337303 c.3859G>C	p.E1287Q	MISSENSE			
Supplemental Table X. Deregulated Gene Sets in PBRM1 Knockdown Cellines

Gene Set Descriptiona,b	Significance of enrichment		
	786-O	SN12C	TK10
CHROMOSOME_INSTABILITY - PMID: 16921376	0.0001	0.0001	0.0001
ZHAN_MM_CD138_PR_VS_REST	0.0002	0.0004	0.0001
IDX_TSA_UP_CLUSTERS3	0.0001	0.0022	0.0001
SERUM_FIBROBLAST_CELLCYCLE	0.0001	0.0301	0.0002
DOX_RESIST_GASTRIC_UP	0.0001	0.0332	0.0003
P21_P53_ANY_DN	0.0054	0.0032	0.0001
CROONQUIST_IL6_STARVE_UP	0.0058	0.0078	0.0001
CROONQUIST_IL6_RAS_DN	0.0025	0.0322	0.0001
DNA_REPLICATION_REACTOME	0.0060	0.0418	0.0002
ADIP_DIFF_CLUSTER4	0.0038	0.0083	0.0016
GAY_YY1_DN	0.0011	0.0297	0.0028
HSA00240_PYRIMIDINE_METABOLISM	0.0015	0.0038	0.0189
LEE_TCELLS3_UP	0.0377	0.0161	0.0002
OLDAGE_DN	0.0001	0.0287	0.0460
PYRIMIDINE_METABOLISM	0.0012	0.0153	0.0196
IGF_VS_PDGF_DN	0.0016	0.0267	0.0295
GOLDRATH_CELLCYCLE	0.0087	0.0262	0.0096
P21_ANY_DN	0.0160	0.0173	0.0098
P21_P53_MIDDLE_DN	0.0043	0.0249	0.0412
GERY_CEBP_TARGETS	0.0085	0.0190	0.0382

Pathways were obtained from the MSigDB with the exception of the CHROMOSOME_INSTABILITY gene set that was obtained from the BioConductor PGSEA package.

Comparisons between PBRM1 targeting and scrambled siRNA.
Sample	Chromosome	Position	WT base	Mut Base	Gene	Annotated Transcript	Type	Protein Annotation	cDNA Annotation
PD2125a	1	14507757	G	A	PDE4DIP	ENST00000369359	MISSENSE	p.P30S	c.88C>T
PD2125a	4	19090439	T	C	AF146191.1	ENST00000248151	SILENT	p.A196A	c.588A>G
PD2126a	11	76954792	G	T	GDPD4	ENST00000376217	MISSENSE	p.N396K	c.1188C>A
PD2127a	2	10847927	A	G	RGPD4	ENST00000408999	SILENT	p.P781P	c.2343A>G
PD2127a	6	31238942	G	T	HLA-C	ENST00000423188	SILENT	p.A176E	c.527C>A
PD2127a	11	76954792	G	T	GDPD4	ENST00000376217	MISSENSE	p.N396K	c.1188C>A
PD2127a	12	66679	T	C	WASH4P	ENST00000326592	SILENT	p.P260P	c.780A>G
PD2144a	1	16973996	A	G	RP5-1182A14.1	ENST00000334429	MISSENSE	p.I97V	c.289A>G
PD2144a	9	33385235	T	G	AQP7	ENST00000379507	MISSENSE	p.Y265S	c.794A>C
PD2147a	4	79792166	C	G	POTED	ENST00000299443	MISSENSE	p.E172Q	c.514G>C
PD2147a	5	14056385	T	C	PCDHB16	ENST00000361016	SILENT	p.T573T	c.1719T>C
PD2147a	9	33386167	G	C	AQP7	ENST0000047660	MISSENSE	p.Q13E	c.37C>G
PD2147a	9	67968287	G	T	ANKRD20A3	ENST00000377477	MISSENSE	p.A616S	c.1846G>T
PD2147a	9	67968295	G	T	ANKRD20A3	ENST00000377477	SILENT	p.S618S	c.1854C>T
PD2147a	11	66444273	T	A	RBM4B	ENST00000310046	MISSENSE	p.E93V	c.278A>T
PD2147a	17	45219620	G	A	CDC27	ENST00000066544	SILENT	p.A451A	c.1353C>T
PD3295a	10	51225281	C	G	AGAP8	ENST00000420018	MISSENSE	p.R100C	c.298C>T
PD3295a	17	14095383	T	A	COX10	ENST00000261643	MISSENSE	p.L258H	c.773T>A
PD3441a	17	16068340	C	T	NCCR1	ENST00000417028	MISSENSE	p.E50K	c.148G>A
STS	Forward Primer	Reverse Primer							
--------------	-----------------------	------------------------							
stCE03-616895	AAACAAGGAAGTCCAGGGC	AAAAAATGGAGATGGCCTTGC							
stCE03-616896	TTGGAAGCGGAGTTTGGGA	GGCACAGGTGTCAGACGAT							
stCE03-616897	TTTTCTGCTGCTCTTACCT	GTTTCAAGCAGACTTGGTTAG							
stCE03-616898	CCCCCTAGTACTGAGTGCTG	ATCTTCCTTCGCTGTTCCAA							
stCE03-616899	CCCAAAATGTGACCTTCTG	AAGAGATTTCAATTGGTCTTACC							
stCE03-616900	AAGATATTTCCATGATTTTA	AAAAAAGCACAATACCTACAG							
stCE03-616901	CCATAGCAGCAGAAGGTAGGC	AACATGCAGAAAGACTCCAAA							
stCE03-616902	GAATACTGCTGAGAATTTTGT	TGGAGATTGACTTTAAAGTTGTC							
stCE03-616903	AAGTACGTCTCAAGGTCCAGA	TAAAAATCATGAGATGTCAGTC							
stCE03-616904	GGTCTGTTTTGAATTAGCCTCA	CAACATCCTCCTTTGAACTTATT							
stCE03-616905	ATGTCTGTAGTATATTGAATT	TATATCGAAAGATCGTACCA							
stCE03-616906	TTAAGCTTGTTGTTAAAGGAGCA	AAAAAGCTTCCACTACAGCTTGA							
stCE03-616907	AAACATCTCGTGTTGTTGTTG	GTTTGTTTTGCTAAGGTTT							
stCE03-616908	CCTCTTACATGCTGTTTGGTC	CAGGAAAATACGAAATCTCTTT							
stCE03-616909	TGCCTTTGAGTTGCTGTTGTC	AAGCTTCCCTAAACCTACCTACTCC							
stCE03-616910	ATTGTCCTGAGTTGCTTGAAC	TATATGCAATCCCTACCTCTTC							
stCE03-616911	GTAAGATGTATTTTGGAAGCTTGT	AGACATTTCTCTCAACCTACCTACTC							
stCE03-616912	GGAACGTTTATCTTTATAATGTA	GGAACGTTTCTGTTCATTGACTGC							
stCE03-616913	CAACTTGCCGAAAAGATTCAGTCTTCA	TTCCATCTCATGGCTGACTC							
stCE03-616914	GTGTTCCTGGCTTCTGAAAAA	TTGAAATGTTAGATTATTTGAGG							
stCE03-616915	TTTGGAATGTAGGTTTATAATGATC	GGTTCAGGGTTCTGTTGAAGGC							
stCE03-616916	CCAAACTTGCTGATTTTTGGA	TATATGCAATCCCTACCTCTTC							
stCE03-616917	CCTTAAATCTTCCAGCAGATGTT	CTATAGTACCCCTCTCAGC							
stCE03-616918	GGTAAAACCATACAAAAGAAGGA	GGAACGTTTCTGTTCATTGACTGC							
stCE03-616919	GGAACAATGTTATTTGGAAGATC	GGAACGTTTCTGTTCATTGACTGC							
stCE03-616920	GTGTTCCTGGCTTCTGAAAAA	TTGAAATGTTAGATTATTTGAGG							
stCE03-616921	CAGGACTTTTGTAAAACCTTGTGGAAGGAGGAC	GGTTCAGGGTTCTGTTGAAGGC							
stCE03-616922	CAGGACTTTTGTAAAACCTTGTGGAAGGAGGAC	GGTTCAGGGTTCTGTTGAAGGC							
stCE03-616923	GTACAGGCTTCTCTGGTCGTCTC	GGTTCAGGGTTCTGTTGAAGGC							
stCE03-616924	GTATAGTACCCCTCTCAGC	CAGGACTTTTGTAAAACCTTGTGGAAGGAGGAC							
stCE03-616925	GTAAGATGTATTTTGGAAGCTTGT	AGACATTTCTCTAACCTACCTACTC							
stCE03-616926	GTATAGTACCCCTCTCAGC	CAGGACTTTTGTAAAACCTTGTGGAAGGAGGAC							
stCE03-616927	GTAAGATGTATTTTGGAAGCTTGT	AGACATTTCTCTAACCTACCTACTC							
stCE03-616928	GTATAGTACCCCTCTCAGC	CAGGACTTTTGTAAAACCTTGTGGAAGGAGGAC							