LETTER TO THE EDITOR

Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV

V. A. Acciari1, S. Ansoldi2, L. A. Antonelli3, A. Arbet Engels4, K. Asano5, D. Baack6, A. Babić7, A. Baquero8, U. Barres de Almeida9, J. A. Barrio8, J. Becerra González1, W. Bednarek10, L. Bellizzi11, E. Bernardini12, M. Bernardos13, A. Berti14, J. Bester15, W. Bhattacharyya12, C. Bigongiari3, A. Biland4, O. Blanch16, G. Bonomi11, Z. Bošnjak7, G. Busetto17, R. Carosi18, G. Ceribella19, M. Cerutti19, Y. Chai15, A. Chilingarian20, S. Cikota7, S. M. Colak16, E. Colombo1, J. L. Contreras8, J. Cortina13, S. Covino5, G. D’Amico15, V. D’Elia3, P. Da Vela18,35, F. Dazzi3, A. De Angelis17, B. De Lotto2, M. Delfino16,36, J. Delgado16,36, C. Delgado Mendez13, D. Depaoli14, T. Di Girolamo14, F. Di Pierro14, L. Di Venere14, E. Do Souto Espinheira16, D. Dominis Prester21, A. Donini2, D. Dorner22, M. Doro17, D. Elsaesser6, V. Fallah Ramazani23, A. Fattorini6, G. Ferrara3, L. Foffano17, M. V. Fonseca8, L. Font24, C. Fruck15, S. Fukami5, R. J. García López1, M. Garczarczyk12, S. Gasparian26, M. Gaug24, N. Giglietto14, F. Giordano14, P. Glicini16, N. Godinovic26, J. G. Green3, D. Green15, D. Hadasch5, A. Hahn15, L. Heckmann15, J. Herrera1, J. Hoang6, D. Hrupec27, M. Hüttner15, T. Inada9, S. Inoue28, K. Ishio15, Y. Iwamura5, J. Jormanainen25, L. Jouvin16, Y. Kajiwara29, M. Karjalainen15, D. Kerszberg16, Y. Kobayashi5, H. Kubo29, J. Kushida30, A. Lamastra3, D. Lelas26, F. Leone3, E. Lindfors23, S. Lombardi3, F. Longo2,37, R. López-Coto17, M. López-Moya8, A. López-Oramas1, S. Loporchio14, B. Machado de Oliveira Fraga9, C. Maggio24, P. Majumdar31, M. Makarieva32, M. Mallamaci17, G. Maneva32, M. Manganaro21, K. Mannheim22, L. Maraschi13, M. Mariotti17, M. Martínez16, D. Mazin5,15, S. Mender6, S. Mičanović21, D. Miceli2, T. Miener8, M. Minev32, J. M. Miranda11, R. Mirzoyan15, E. Molina19, A. Moralejo16, D. Morcuende8, V. Moreno24, E. Moretti16, P. Munar-Adrover24, V. Neustroev33, C. Nigro16, K. Nilsson23, D. Ninci16, K. Nishijima30, K. Nozaki30, Y. Ohtani5, T. Oka29, J. Otero-Santos3, M. Palatiello2, D. Paneque15, R. Paoletti11, J. M. Paredes19, L. Pavliotis21, P. Peiří8, C. Perennes14, M. Persic3,38, P. G. Prada Moroni18, E. Prandini17, C. Priyadarshi16, I. Puljak26, W. Rhode6, M. Ribó19, J. Rico3, C. Righi3, A. Rugliancich18, L. Sahai8, N. Sahakyan25, T. Saito6, S. Sakurai8, K. Satalecka12, F. G. Saturni3, B. Schleicher22, K. Schmidt16, T. Schweizer15, J. Sitarek10, I. Śliadarczyk24, D. Sobczynska10, A. Spolony17, A. Stamerra5, D. Strom15, M. Strzys5, Y. Suda15, T. Surić4, M. Takahashi15, F. Tavecchio3, P. Temnikov32, T. Terzić21, M. Teshima15, N. Torres-Alba19, L. Tosti14, S. Truzzi11, A. Tutone3, J. van der Schellenberg15, G. Vanzo1, M. Vázquez Acosta1, S. Ventura11, V. Verguilov32, C. F. Vigorito14, V. Vitale14, I. Vovk3, M. Will15, D. Zarić26, K. Hirotani39, and P. M. Saz Parkinson40,41

(Affiliations can be found after the references)

October 1, 2020

ABSTRACT

We report the detection of pulsed gamma-ray emission from the Geminga pulsar (PSR J0633+1746) between 15 GeV and 75 GeV. This is the first time a middle-aged pulsar has been detected up to these energies. Observations were carried out with the MAGIC telescopes between 2017 and 2019 using the low-energy threshold Sum-Trigger-II system. After quality selection cuts, ~80 hours of observational data were used for this analysis. To compare with the emission at lower energies below the sensitivity range of MAGIC, 11 years of Fermi-LAT data above 100 MeV were also analysed. From the two pulses per rotation seen by Fermi-LAT, only the second one, P2, is detected in the MAGIC energy range, with a significance of 6.3σ. The spectrum measured by MAGIC is well-represented by a simple power law of spectral index Γ = 3.62 ± 0.54, which smoothly extends the Fermi-LAT spectrum. A joint fit to MAGIC and Fermi-LAT data rules out the existence of a sub-exponential cut-off in the combined energy range at the 3.6σ significance level. The power-law tail emission detected by MAGIC is interpreted as the transition from curvature radiation to Inverse Compton Scattering of particles accelerated in the northern outer gap.

Key words. gamma rays: stars - pulsars: general – pulsars: individual: PSR J0633+1746, Geminga
1. Introduction

Geminga (PSR J0633+1746) is an archetype of the radio-quiet gamma-ray pulsar population (Bignami & Caraveo 1996; Caraveo 2014). First detected by SAS-2 and COS-B (Fichtel et al. 1975; Hermen et al. 1977; Bignami & Caraveo 1992) as a bright gamma-ray source with no counterpart at any other wavelength and subsequently associated with an X-ray source (Bignami et al. 1983), it was ultimately identified as a pulsar by ROSAT and EGRET (Halpern & Holt 1992; Bertsch et al. 1992). It has a period of $P \approx 237 \text{ ms}$ and a characteristic age of $\sim 300 \text{ ky}$. Two independent measurements of the distance reported $157^{+59}_{-34} \text{ pc}$ (Caraveo et al. 1996) and $250^{+120}_{-62} \text{ pc}$ (Faherty et al. 2007), respectively. This makes Geminga one of the closest known pulsars.

The Fermi-LAT detector measured the pulsed gamma-ray spectrum of Geminga using one year of data and found that it can be described by a power law with an exponential cut-off at $2.46 \pm 0.04 \text{ GeV}$ (Abdo et al. 2010). The increase of Fermi-LAT statistics in the following years favoured a softer sub-exponential cut-off (Abdo et al. 2013; Ahnen et al. 2016). Subsequent ground-based observations by the Imaging Atmospheric Cherenkov Telescopes (IACTs) VERITAS (Aliu et al. 2015) and MAGIC (Ahnen et al. 2016) could not detect any significant emission above 100 GeV and 50 GeV, respectively. A $\sim 2 \text{ deg}$ steady halo around Geminga was first detected by the MILAGRO experiment (Abdo et al. 2009), and later reported by the HAWC (Abeysekara et al. 2017) and Fermi-LAT (Manconi et al. 2019) collaborations at energies above 5 TeV and 8 GeV, respectively.

In this paper, we report the detection of pulsed gamma-ray emission from the Geminga pulsar by the MAGIC telescopes. This makes Geminga the first middle-aged pulsar detected by IACTs and the third pulsar detected by these type of telescopes after the Crab (Aliu et al. 2008) and Vela (Abdalla et al. 2018). This detection had become possible thanks to the use of the new low-energy trigger system, dubbed Sum-Trigger-II (Dazzi et al. 2020; García et al. 2021). This comprises the reconstruction of the energy and direction of the incoming gamma rays and the suppression of the hadronic background. Boosted decision trees and look-up tables were built for these purposes, using gamma-ray simulated shower events following the trajectory of Geminga in the sky and background events from dedicated observations.

For the timing analysis, the pulsar rotational phases of the events were computed using the Tempo2 package (Hobbs et al. 2006). An ephemeris for Geminga covering the MAGIC observations was obtained from the analysis of Fermi-LAT data (Kerr et al. 2015).

3. Fermi-LAT data and analysis

To characterise the Geminga emission at energies lower than those accessible to MAGIC, we analysed 10.6 years (from MJD 54682 to 58569) of public Fermi-LAT data across the energy range from 100 MeV to 2 TeV. We processed this data set using the P8R2_SOURCE_V6 instrument response functions and the Fermi Science Tools version v11r5p3. Events were selected within a circular region of interest (ROI) of 15° centred at the pulsar position (R.A.$=06^h33^m54.29^s$, Dec.$=-17^\circ46^\prime14.88^\prime\prime$). We selected ‘Source’ class events that were recorded only when the telescope was in nominal science mode. The pulsar rotational
phase and barycentric corrections of the events were computed with Tempo2, using the same ephemeris as for the MAGIC data analysis. The pulsar light curve was produced applying an additional energy dependent angular cut, according to the approximation of the Fermi-LAT Pass8 point spread function for a 68% confinement radius (Acero et al. 2015).

For the spectral reconstruction, a binned likelihood analysis was performed making use of the pylLikelihood python module of the Fermi Science Tools. Each of the two emission peaks of the Geminga light curve, P1 and P2, were analysed separately. We started the likelihood fits by including all sources in the ROI from the third Fermi Source Catalogue (Acero et al. 2015) in the spectral-spatial model. The spectral parameters for sources with a significance higher than 5σ and located within 5 deg of the centre of the ROI were left free. Also, we let the normalisation factor of the isotropic and Galactic background models free. For the rest of the sources, all parameters were fixed to their catalogue values. In a second step, all sources with TS < 4 were removed from the model. For the calculation of the spectral points, we repeated the procedure in each energy bin using a power law with the normalisation factor free and the spectral index fixed to 2.

4. Results

4.1. Light curves

The light curves shown in Fig. 1 are produced by phase folding Fermi-LAT photons and MAGIC events using the same pulsar ephemeris. The two well-known Geminga emission peaks, P1 and P2, are clearly visible above 5 GeV in Fermi-LAT data. At higher energies, only P2 is detected by Fermi-LAT, which is in agreement with the high-energy light curves shown in Ackermann et al. (2013). To characterise each peak at energies as close as possible to the MAGIC energy range, we fit them to symmetric Gaussian functions, using Fermi-LAT events above 5 GeV for P1 and above 15 GeV for P2. The corresponding light curves are shown in Fig. 1, panels (a) and (b). The phase signal regions for the analysis of MAGIC data are then defined as the ±2σ intervals around the fitted peak positions. For estimating the background, we considered the off-pulse region between P2 and P1, where no emission is expected from the pulsar, starting 6σ away from each peak’s centre. Table 1 summarises the signal and background regions used for the MAGIC analysis.

The MAGIC light curve for events with reconstructed energies above 15 GeV is shown in Fig. 1, panel (c). It was obtained after applying energy-dependent gamma and hadron separation cuts, trained on MC simulated gamma-ray showers. The number of excess events for each emission peak and the corresponding significances were computed using Eq. 17 in Li & Ma (1983) and they are tabulated in Table 2. Emission from P2 is detected with MAGIC at a significance level of 6.25σ, corresponding to 2457 excess events over a scaled background of 112018 events. A region-independent signal test with the H-test and \(Z^p_{\text{H}} \)-test (de Jager & Büsching 2010) results in 4.8σ and 5.2σ significances, respectively. The analysis of MAGIC events in the phase region of P1 does not reveal any significant signal in this energy range.

Table 1: Definition of the signal (P1, P2) and background (OFF) regions derived from the analysis of the Fermi-LAT light curves shown in Fig. 1. The last two columns refer to the number of excess events and the significance \(\sigma \) (following the Li&Ma definition) obtained in the analysis of MAGIC data.

Phase region	Excess	\(\sigma \)	
P1	0.056 – 0.161	116.7	0.27
P2	0.550 – 0.642	2457.3	6.25
OFF	0.700 – 0.950		

Table 2: MAGIC SED points. The energy bin edges (\(E_{\text{low}} \), \(E_{\text{hi}} \)), as well as their centre position, \(E \), are in units of GeV. SED values are in TeV cm\(^{-2}\) s\(^{-1}\).

\(E_{\text{low}} \)	\(E_{\text{hi}} \)	\(\frac{E^2 \Delta N}{(dE \, dA \, dt)} \)
12.9	16.0	(2.42 ± 0.67) \(\times 10^{-12} \)
20.1	24.8	(5.77 ± 1.79) \(\times 10^{-12} \)
31.1	38.4	(1.50 ± 0.51) \(\times 10^{-12} \)
48.2	59.5	(4.30 ± 2.50) \(\times 10^{-13} \)

4.2. Energy spectrum

Figure 2 shows the Spectral Energy Distribution (SED) of Geminga for P2, obtained after the analysis of Fermi-LAT (open circles) and MAGIC data (filled circles). The spill-over effect due to the soft spectral index has been carefully taken into account by unfolding the MAGIC energy spectrum using the Tikhonov regularisation method (Albert et al. 2007), and cross-checked with a forward-folding procedure. The resulting MAGIC unfolded spectral points (filled circles in Fig. 2) are reported in Table 2. The dashed blue line shows the forward-folding power-law fit, \(F_0(E/E_0)^{−\gamma} \), performed on the distribution of MAGIC excess events. The blue butterfly represent the 1σ statistical uncertainty confidence interval of the fit. The spectrum measured by MAGIC in the energy range 15 – 75 GeV is well-represented by the power law, with an associated \(\chi^2 = 15.27 \) with 15 degrees of freedom. The obtained spectrum is in agreement with the upper limits previously reported by MAGIC (Ahnen et al. 2016). The resulting fit parameters are reported in Table 3. The spectral index \(\Gamma = 5.62 \pm 0.54 \) (statistical errors only) is the softest ever measured by MAGIC from any source.

5. Discussion

We performed a joint fit of MAGIC and Fermi-LAT spectral points in the combined energy range, from 100 MeV to 75 GeV, by using a power law with an exponential cut-off function:

\[
F(E) = F_0 (E/E_0)^{−\Gamma} \exp \left(−(E/E_0)^{\beta} \right),
\]

where \(E_0 \) is the energy scale, \(\Gamma \) the spectral index, \(E_0 \) the cut-off energy, and \(\beta \) the cut-off strength. We considered two different cases: a pure exponential cut-off, \(\beta = 1 \), and the general case in which the \(\beta \) parameter is set free. The parameters resulting from the fits are given in Table 3. The best fit is found for \(\beta = 0.738 \pm 0.013 \). In a likelihood-ratio test versus the free exponential cut-off model, the pure exponential case can be rejected with TS = −2Δ\(\log L \) = 336.6, which, according to a chi-square distribution with one degree of freedom, corresponds to a
significance of 18.3σ. Also, the sub-exponential cut-off is disfavoured by the data at the level of 3.6σ, according to a goodness-of-fit chi-square test.

In order to assess whether there is any preference for curvature in the high energy tail of the spectrum, we fitted MAGIC and Fermi-LAT spectral points above 10 GeV to a log-parabola model, $F_0(E/E_0)^{-1-\beta \log(E/E_0)}$, obtaining a best-fit value for the curvature index of $\beta = 0.99 \pm 0.07$. We performed a likelihood-ratio test between this model and a power law. This results in $TS = 1.7$ with 1 degree of freedom, corresponding to 1.3σ against the power-law model. This shows that the log-parabola model is not significantly preferred over the power-law one. The power-law index derived from the joint fit, $\Gamma = 5.18 \pm 0.15$, is compatible with the one obtained with MAGIC data alone.

The effect of systematic uncertainties on the MAGIC spectral reconstruction has been studied. A 5% change in the estimated energy of the events has little effect in the reconstructed spectral index (below 1%), but makes the MAGIC fluxes fluctuate by up to 20%. This results from the combined effect of the softness of the Geminga spectrum and the steeply falling effective collection area close to the MAGIC energy threshold. The joint fit with Fermi-LAT data in the overlapping energy range helps to constrain these uncertainties. To test this we introduced a MAGIC flux scale factor, s, as a nuisance parameter in the fits. Maximum-likelihood values of the scale parameter are always found to be compatible with unity within the uncertainties, with $s = 0.88 \pm 0.11$ and $s = 0.98 \pm 0.14$ for the sub-exponential and the log-parabolic fits, respectively. Likelihood-ratio tests versus a model with no scaling provide, in both cases, $TS < 1.0$. We conclude that the energy calibration of MAGIC with respect to Fermi-LAT is accurate.

6. Modelling the high-energy emission

Two main radiation processes are considered to be responsible for the gamma-ray emission detected in pulsars: synchro-curvature radiation or Inverse Compton Scattering (ICS), or a combination of both. The first can explain the exponential cut-offs at a few GeV seen in the vast majority of Fermi-LAT pulsars, while the second process may account for the power-law spectral tail detected in the Crab pulsar up to TeV energies (Ansoldi et al. 2016).

We compare our observational results with the predictions of the stationary three-dimensional pulsar outer gap (OG) model (Hirotani 2006, 2013). We assume that the magnetic field lines are given by the rotating vacuum dipole solution (Cheng et al. 2000; Aliu et al. 2015), and we solve Gauss’s law, the stationary Boltzmann equations for electrons and positrons, and the radiative transfer equation of the emitted photons from IR to very-high-energy (VHE) gamma rays. Accordingly, we can obtain the pulse profile and the phase-resolved spectrum of the emitted photons, by setting the following five parameters of the neutron star (NS): the rotational angular frequency, Ω_F; the surface temperature, T; the area of the star, A; the magnetic dipole moment, μ; and the angle α between the NS magnetic and rotational axes. The NS rotational period, P_F is an observable and readily gives $\Omega_F = 2\pi/P$. Using the soft X-ray data (Halpern & Wang 1997), we constrain the NS surface emission with temperature $kT = 49.74$ eV and area $A = 0.5085 \times 4\pi r_0^2$, where $4\pi r_0^2$ denotes the whole NS surface area measured by a distant observer. The distance to source is assumed to be 250 pc (Faherty et al. 2007). We also include in the seed X-ray spectrum a harder component ($kT \sim 185$ eV) associated with the heated polar cap region discussed in Caraveo et al. (2004). The value of μ will not be very different from its dipole value μ_d, which is constrained by P and its temporal derivative, \dot{P}, under the assumption of magnetic dipole radiation. Therefore, μ/μ_d, α, and the observer’s viewing angle with respect to the rotation axis, ζ,
To explain the MAGIC flux and the double-peaked pulse profile observed at lower energies by Fermi-LAT with a peak separation of 183° (Abdo et al. 2013), we find that $\mu = 1.4 \mu_4$, $\alpha \sim 30°$ and $95° < \zeta < 100°$ are necessary. A similar viewing angle of $\zeta = 90°$ was also obtained in Pierbattista et al. (2015), by fitting the Fermi-LAT light curve on the basis of the OG model. The dotted-dashed orange line in Fig. 2 shows the predicted Geminga flux from the P2 phase region defined in Table 1 for a viewing angle $\zeta = 95°$. The OG solutions predicting emission in the MAGIC energy range tend to under predict the Fermi-LAT flux at few GeV. This may indicate the limitation of stationary OG models, suggesting the need for non-stationary particle-in-cell sim-
ulations of pulsar magnetospheres. At the viewing angle of $\phi = 95^\circ$, below 40 GeV, the flux of P2 is dominated by the outward photons emitted in the northern OG via mainly the curvature process. Above 40 GeV, the P2 flux is instead dominated by the inward photons emitted via ICS in the same northern OG. The emission from the southern OG is relatively small for P2, whereas for P1, the role of northern and southern OGs are exchanged. At $\phi < 100^\circ$ the inward ICS emission dominates the outward one above 100 GeV. At $\phi \geq 105^\circ$, the ICS component becomes negligible. It also follows that the present stationary OG model predicts an extension of the ICS pulsed component above the energies reported by MAGIC.

7. Summary

In this paper, we present the detection of pulsed gamma-ray emission from the Geminga pulsar with the MAGIC telescopes. The emission coincides in pulse phase with the outer ICS component. Above 40 GeV, the MAGIC data rule out the transition from curvature radiation by outward accelerated positrons to ICS by electrons accelerated towards the star.

Acknowledgements. The authors would like to thank Matthew Kerr for helping in the production of the ephemeris used in this analysis. We would also like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish MINECO (FPA2017-87859-C2-2-P, FPA2017-87859-BMBF and MPG; the Italian INFN and INAF; the Swiss National Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science, National RI Roadmap Project DO1-268/16.12.2019 and the Croatian Science.

References

Abdalla, H., Aharonian, F., Ait Benkhali, F., et al. 2018, A&A, 620, A66
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 720, 272
Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, ApJS, 208, 17
Abdo, A. A., Allen, B. T., Aune, T., et al. 2009, ApJ, 700, L127
Ahnen, M. L., Ansoldi, S., Antonelli, L. A., et al. 2017, Science, 358, 911
Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS, 218, 23
Ackermann, M., Ajello, M., Allafort, A., et al. 2013, ApJS, 209, 34
Ahnen, M. L., Ansoldi, S., Antonelli, L. A., et al. 2016, A&A, 591, A138
Albert, J., Aliu, E., Anderhub, H., et al. 2007, Nuclear Instruments and Methods in Physics Research A, 583, 494
Aleksić, J., Ansoldi, S., Antonelli, L. A., et al. 2016a, Astroparticle Physics, 72, 61
Aleksić, J., Ansoldi, S., Antonelli, L. A., et al. 2016b, Astroparticle Physics, 72, 76
Aliu, E., Anderhub, H., Antonelli, L. A., et al. 2008, Science, 322, 1221
Aliu, E., Archambault, S., Archer, A., et al. 2015, ApJ, 800, 61
Ansoldi, S., Antonelli, L. A., Antonanz, P., et al. 2016, A&A, 585, A133
Bertsch, D. L., Brazier, K. T. S., Fichtel, C. E., et al. 1992, Nature, 357, 306
Bignami, G. F. & Caraveo, P. A. 1992, Nature, 357, 287
Bignami, G. F. & Caraveo, P. A. 1996, ARA&A, 34, 331
Bignami, G. F., Caraveo, P. A., & Lamb, R. C. 1983, ApJ, 272, L9
Brambilla, G., Kalapotharakos, C., Timokhin, A. N., Harding, A. K., & Kazanas, D. 2018, ApJ, 858, 81
Caraveo, P. A. 2014, ARA&A, 52, 211
Caraveo, P. A., Bignami, G. F., Migliori, R., & Taff, L. G. 1996, ApJ, 461, L131
Caraveo, P. A., De Luca, A., Mereghetti, S., Pellizzoni, A., & Bignami, G. F. 2004, Science, 305, 376
Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 500
Cheng, K. S., Ruderman, M., & Zhang, L. 2000, ApJ, 537, 964
Dazzi, F., Ceribella, G., Corti, D., et al. 2020, IEEE Transactions in preparation
de Jager, O. C. & Büsching, I. 2010, A&A, 517, L9
Faherty, J., Walter, F. M., & Anderson, J. 2007, Ap&SS, 308, 225
Fichtel, C. E., Hartman, R. C., Kniffen, D. A., et al. 1975, ApJ, 198, 163
Fomin, V. P., Stepanian, A. A., Lamb, R. C., et al. 1994, Astroparticle Physics, 2, 137
García, J. R., Dazzi, F., Hafner, D., et al. 2014, arXiv e-prints, arXiv:1404.4219
Halpern, J. P. & Holt, S. S. 1992, Nature, 357, 222
Halpern, J. P. & Wang, F. Y. H. 1997, ApJ, 477, 905
Hermes, W., Swansen, B. N., Bignami, G. F., et al. 1977, Nature, 269, 494
Hirokami, K. 2006, ApJ, 652, 1475
Hirokami, K. 2015, ApJ, 766, 98
Hobbs, G. B., Edwards, R. T., & Manchester. 2006, MNRAS, 369, 655
Kerr, M., Ray, P. S., Johnston, S., Shannon, R. M., & Camilo, F. 2015, ApJ, 814, 128
Li, T. P. & Ma, Y. Q. 1983, ApJ, 272, 317
Manconi, S., Di Mauro, M., & Donato, F. 2015, Physical Review D, 910, 122015
Pierbattista, M., Harding, A. K., Grenier, I. A., et al. 2015, A&A, 575, A3
Romani, R. W. & Yadigaroglu, I. A. 1995, ApJ, 438, 314
Zanin, R., Carmona, E., Sitarek, J., et al. 2013, in Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013): Rio de Janeiro, Brazil, July 2-9, 2013, 0773
1 Inst. de Astrofísica de Canarias, E-38200 La Laguna, and Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
2 National Institute for Astrophysics (INAF), I-00136 Rome, Università di Udine and INFN Trieste, I-33100 Udine, Italy
3 National Institute for Astrophysics (INAF), I-00136 Rome, Italy
4 ETH Zürich, CH-8093 Zürich, Switzerland
