Loss of heterozygosity of CDKN2A (p16INK4a) and RB1 tumor suppressor genes in testicular germ cell tumors

Tomislav Vladusic1*, Reno Hrascan1*, Nives Pecina-Slaus2, Ivana Vrhovac1, Marija Gamulin3, Jasna Franekic1, Bozo Kruslin4

1 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
2 Laboratory of Neurooncology, Croatian Institute for Brain Research, Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
3 Department of Oncology, Rebro University Hospital Center, Zagreb, Croatia
4 Ljudevit Jurak Department of Pathology, Sisters of Mercy University Hospital, Zagreb, Croatia

Received: 17 March 2010
Accepted: 25 May 2010
* These two authors contributed to this work equally.
Disclosure: No potential conflicts of interest were disclosed.
Correspondence to: Tomislav Vladušić, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia. E-mail: tvladusic@pbf.hr

Background. Testicular germ cell tumors (TGCTs) are the most frequent malignancies in young adult men. The two main histological forms, seminomas and nonseminomas, differ biologically and clinically. pRB protein and its immediate upstream regulator p16INK4a are involved in the RB pathway which is deregulated in most TGCTs. The objective of this study was to evaluate the occurrence of loss of heterozygosity (LOH) of the CDKN2A (p16INK4a) and RB1 tumor suppressor genes in TGCTs.

Materials and methods. Forty TGCTs (18 seminomas and 22 nonseminomas) were analyzed by polymerase chain reaction using the restriction fragment length polymorphism or the nucleotide repeat polymorphism method.

Results. LOH of the CDKN2A was found in two (6%) out of 34 (85%) informative cases of our total TGCT sample. The observed changes were assigned to two (11%) nonseminomas out of 18 (82%) informative samples. Furthermore, LOH of the RB1 was detected in two (6%) out of 34 (85%) informative cases of our total TGCT sample. Once again, the observed changes were assigned to two (10.5%) nonseminomas out of 19 (86%) informative samples. Both LOHs of the CDKN2A were found in nonseminomas with a yolk sac tumor component, and both LOHs of the RB1 were found in nonseminomas with an embryonal carcinoma component.

Conclusions. The higher incidence of observed LOH in nonseminomas may provide a clue to their invasive behavior.

Key words: loss of heterozygosity; CDKN2A; RB1; seminomas; nonseminomas

Introduction

Testicular germ cell tumor (TGCT) is diagnosed mainly after puberty and is the most frequent malignancy in young adult men, however, it is also not rare in childhood. The two main histological forms, seminomas and nonseminomas, differ biologically and clinically. About 50% of TGCTs are pure seminomas and 40% pure or mixed nonseminomas. The remaining 10% containing both seminoma and nonseminoma components are classified as being nonseminoma according to the World Health Organization (WHO) classification system. The genetic alterations underlying the development of these neoplasms have not been understood fully, although much has been done to elucidate them.

The cell cycle regulatory pathway deregulated in almost all human tumors appears to be the G1 phase-controlling mechanism centered around the pRB protein. Different cancers seem to have altered different key components of that mecha-
nism, which may be connected with gene activity patterns in different target cells. The mechanism involves pRb and its immediate upstream regulators, the cyclin dependent kinases (CDK4 and CDK6), their catalytic partners (cyclin D1, cyclin D2 and cyclin D3), and the members of the INK4 family of CDK inhibitors (p16INK4a, p15INK4b, p18INK4c and p19INK4d). This mechanism seems to be a common point for various signaling pathways, serving as a growth factor dependent cell cycle switch. Deregulation of the RB pathway may be an obligatory step in oncogenesis, making tumor cells less dependent on growth stimuli.

The pRB is essential in cell cycle regulation and its function is regulated by phosphorylation. In Go and the early G1 phase, hypophosphorylated pRB is complexed with the transcription factor E2F. In late G1, a significant hyperphosphorylation of the pRB by CDK4 and CDK6 in complex with D cyclins (D1, D2, D3) occurs.

The CDKN2 locus at chromosomal region 9p21 encodes p16INK4a tumor suppressor protein involved in the RB cell cycle control pathway. p16INK4a functions as a regulator of G1/S phase transition by inhibiting the activity of CDK4 and CDK6. Thus, by inhibiting pRB phosphorylation, p16INK4a can promote the formation of a pRB-E2F repressive transcriptional complex, which blocks cell cycle progression past G1/S restriction point.

In diverse types of cancer the RB pathway becomes deregulated through alterations in one or more of its components. The most common defects of the RB pathway are mutations or deletions of RB1 and inactivating mutations or promoter methylation of the CDKN2A (p16INK4a) tumor suppressor gene, as well as the overexpression of the cyclin D2/CDK4 complex.

The objective of this study was to evaluate the occurrence of the loss of heterozygosity (LOH) of the CDKN2A and RB1 tumor suppressor genes in TGCTs.

Materials and methods

Patients and tumor material

Fouiry TGCT samples (18 seminomas and 22 non-seminomas) were collected from Sisters of Mercy University Hospital and University Hospital Center, Zagreb, Croatia. The samples were formalin-fixed and paraffin-embedded. Clinical and pathological data for 40 TGCTs according to the WHO 2004 classification are shown in Table 1.

DNA extraction

For each specimen, 20 µm paraffin-embedded section was prepared for DNA extraction. In addition, 4 µm section was stained with hematoxylin-eosin to identify the tumor and normal tissue areas which were removed separately from the microscopic slide, transferred to microtubes and extracted using QIAamp DNA Mini Kit (Qiagen, Hilden, Germany).

LOH analysis of CDKN2A gene

A previously described polymorphic microsatellite marker hMp16α-I1 consisting of a mononucleotide tract of (A)23 located close to intron 1 of the CDKN2A gene was analyzed in this study. Primers used for polymerase chain reaction (PCR) amplifications were 5’-CAATTACCACATTCTGCCTTTTGC-3’ and 5’-CAGGCAGAGAGCACTGTGAG-3’, which produced 190-210 bp fragments. PCR amplifications were performed in 25 µl reaction volume with a final concentration 0.2 mM of each dNTP, 3 mM MgCl2, 0.2 µM of each primer (Sigma-Aldrich, St. Louis, MI, USA), 1x Flexi buffer (Promega, Madison, WI, USA) and 0.5 U of GoTaq® Hot Start Polymerase (Promega, Madison, WI, USA). One hundred nanograms of DNA were used in each PCR reaction. PCR amplifications were carried out in a Eppendorf Mastercycler Personal (Hamburg, Germany), with cycling times of 96°C for 5 min (one cycle), then 45 cycles of 96°C for 30 s, 57°C for 45 s, and 72°C for 30 + 1 s. The final step was incubation at 72°C for 10 min. Amplified DNA fragments were analyzed on silver-stained 15% polyacrylamide gels. LOH of CDKN2A was considered to have occurred if one out of two alleles (heterozygous samples) of a gene marker was missing or significantly reduced in comparison to alleles from adjacent normal tissue.

LOH analysis of RB1 gene

LOH of RB1 was detected using polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Amplification with RB1 primers 5’-TCCCACCTCAGCCTCCTTAG-3’ and 5’-GTAGGCCAAAGAGTGGGCAG-3’ used in our study produced a 190 bp segment of intron 17. PCR amplifications were performed under conditions mentioned above. To generate the RFLP pattern for LOH analysis, 10 µl of PCR product was digested with 5 U of XbaI restriction enzyme (Fermentas, Vilnius, Lithuania) in a total volume of
TABLE 1. Clinical and pathological data for 40 testicular germ cell tumor cases

Patient no.*	Age	pTNM	Histology
1	26	pT1NXMX	ITGCN, S
2	26	pT1NXMX	ITGCN, S
3	37	pT1NXMX	S
4	33	pT1NXMX	ITGCN, S
5	31	pT1NXMX	ITGCN, S
6	29	pT1NXMX	ITGCN, S
7	39	pT1NXMX	ITGCN, S
8	27	pT1NXMX	S
9	41	pT1NXMX	ITGCN, S
10	48	pT1NXMX	S
11	48	pT1NXMX	S
12	34	pT1NXMX	ITGCN, S
13	60	pT1NXMX	ITGCN, S
14	29	pT1NXMX	ITGCN, S
15	60	pT1NXMX	S
16	29	pT1NXMX	ITGCN, S
17	28	pT1NXMX	ITGCN, S
18	32	pT1NXMX	ITGCN, S
19	37	pT1NXMX	EC
20	18	pT1NXMX	EC, IT, MT, S
21	24	pT1NXMX	EC, ITGCN, S
22	22	pT1NXMX	EC, YST
23	37	pT1NXMX	EC, ITGCN, S
24	28	pT1NXMX	C, EC, IT, MT
25	17	pT1NXMX	EC, MT
26	34	pT1NXMX	EC
27	19	pT1NXMX	EC, ITGCN, MT, YST
28	39	pT1NXMX	MT, YST
29	21	pT1NXMX	EC, MT, YST
30	23	pT1NXMX	EC, IT, MT
31	22	pT1NXMX	MT, YST
32	25	pT1NXMX	EC
33	45	pT1NXMX	EC, ITGCN, S, YST
34	NK	pT1NXMX	C, EC, ITGCN, S, YST
35	23	pT1NXMX	EC, IT, ITGCN, MT, YST
36	39	pT1NXMX	EC, ITGCN, S, YST
37	24	pT1NXMX	EC, ITGCN, YST
38	30	pT1NXMX	EC, ITGCN, YST
39	36	pT1NXMX	EC, ITGCN, MT, YST
40	58	pT1NXMX	EC, ITGCN, YST

*seminomas, patients no. 1-18; nonseminomas, patients no. 19-40

C = choriocarcinoma; EC = embryonal carcinoma; IT = immature teratoma; ITGCN = intratubular germ cell neoplasia; MT = mature teratoma; S = seminoma; YST = yolk sac tumor; NK = not known
Radiol Oncol 2010; 44(3): 168-173.

Vladusic T et al. / Tumor suppressor genes in testicular germ cell tumors 171

25 µl for 12 h. The restriction digestion resulted in fragments of 75 and 115 bp. DNA fragments were analyzed on silver-stained 15% polyacrylamide gels. LOH was recognized as a partial or complete loss of either the uncleaved (190 bp) or the cleaved (75 + 115 bp) allele.

Results

In this study 40 TGCTs, 18 seminomas and 22 nonseminomas, were analyzed. First, we searched for LOH of the intragenic polymorphic microsatellite marker hMp16α-I1 in the CDKN2A gene. From 40 TGCTs, 34 (85%) tumors were informative for this polymorphism, 16 (89%) seminomas and 18 (82%) nonseminomas. Our analysis revealed that two (6%) samples showed LOH of hMp16α-I1 marker. The observed changes were assigned to two nonseminomas (11%, patients no. 31 and 34, Table 2). In both tumor cases, one out of two alleles of gene marker was missing in comparison to alleles from the adjacent normal tissue (Figure 1). In addition, both LOHs of the CDKN2A were found in nonseminomas with a yolk sac tumor component. LOH of the CDKN2A gene was not observed among seminomas.

The analysis of intragenic polymorphic restriction marker of the RB1 gene showed that 34 (85%) of total TGCTs were heterozygous for this polymorphism; 15 (83%) seminomas and 19 (86%) nonseminomas. LOH was observed in two (6%) samples when looking at the total TGCTs analyzed. Once again the observed allelic losses were assigned to nonseminomas: two samples (10.5%, patients no. 20 and 25, Table 2) had one of the alleles missing in comparison to bands from the adjacent normal testis tissue. These nonseminoma samples showed loss of the cleaved allele (75- and 115-bp fragments), as the single uncleaved allele (190-bp fragment) appeared on the silver stained 15% polyacrylamide gel (Figure 2). Furthermore, both LOHs of the RB1 were found in nonseminomas with an embryonal carcinoma component. None of the seminomas demonstrated LOH of the RB1 gene.

No statistically relevant correlation between the occurrence of LOH, form of TGCT, histological type of contained components and tumor stage according to TNM classification could be determined by Fisher’s exact test.

Discussion

TGCT is associated with characteristic abnormalities in the RB pathway including upregulation of cyclin D2, and downregulation of pRB and the CDK inhibitors such as p16INK4a.7

The inactivation of the CDKN2A gene, which encodes an inhibitor of CDK4 and CDK6, is one of the most common molecular events in human neoplasms. The major mechanisms contributing to CDKN2A silencing are promoter methylation, gene mutations and hemizygous or homozygous deletions. When one CDKN2A allele is mutated or methylated, the second allele is often deleted.16

The analysis of the expression of INK4 family has pointed to a down-regulation of CDKN2A in testicular neoplasms.7,12 Honorio et al.17 demonstrated that promoter hypermethylation of that gene is not involved in the decrease of p16INK4a protein expression. In contrast, some studies have found promoter mutation, a half of analyzed TGCTs had de novo promoter methylation and approximately half of TGCTs showed hypermethylation of CDKN2A exon 1α. All that correlated with a decreased level of CDKN2A mRNA expression.1,18 However, Chaubert et al.18 have not detected any CDKN2A mutations and observed LOH of the CDKN2A
In the context of testicular germ cell tumors (TGCTs), the inactivation of tumor suppressor genes plays a crucial role in the development and progression of these tumors. One of the key genes involved in this process is the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, which is often deleted or mutated in various forms of TGCTs. This gene is crucial in regulating the cell cycle and apoptosis, and its inactivation may contribute to the aggressiveness of these tumors.

The involvement of CDKN2A in TGCTs is well-documented, with studies demonstrating that it is often deleted in nonseminomatous germ cell tumors (NSGCTs) and in yolk sac tumor components. Loosely observed loss of heterozygosity (LOH) and allelic imbalance at this region have been reported in various TGCTs, including seminomas and nonseminomas. The location of the CDKN2A gene (9p21) is frequently affected by LOH in TGCTs, with a reported frequency ranging from 5% to 42%.

The role of TP53, another important tumor suppressor gene, is also significant in TGCTs. TP53 mutations are common in TGCTs, and they contribute to the development of stage II metastatic testicular cancer. The TP53 gene is known to be involved in the regulation of apoptosis and the cell cycle, and its inactivation may result in the loss of pRB function.

In our study, we observed LOH of TP53 in nonseminomatous tumors with an embryonal carcinoma component, along with deletions of the RB1 gene. This pattern of LOH is not observed in seminomas, suggesting that TP53 inactivation is a late event in the tumorigenesis of these tumors. The LOH of TP53 gene was also demonstrated in the LOH of the TP53 gene, further supporting the role of TP53 in the development of these tumors.

The RB1 gene, located on chromosome 13q14, is another important tumor suppressor gene in TGCTs. LOH of RB1 is common in TGCTs, with a frequency of up to 50% in choriocarcinomas. In our study, we found LOH of RB1 in 11% of nonseminomas, which may reflect its deregulation by normal mechanisms in testicular germ cells. The loss of pRB function, due to the inactivation of RB1, may contribute to the development of a more aggressive tumor phenotype.

In summary, the inactivation of tumor suppressor genes such as CDKN2A, TP53, and RB1 is a hallmark of TGCTs, and it plays a critical role in the tumorigenic potential of these tumors. Further studies are needed to better understand the mechanisms underlying the inactivation of these genes and their role in the development and progression of TGCTs.
a synergistic effect, which imposes a stronger selective pressure for the cellular transformation. This may also help to explain the high proliferation rate and/or invasiveness of TGCTs with embryonal carcinoma and yolk sac tumor component. A higher incidence of LOH in nonseminomas may provide a clue to their invasive behavior, because for some of the nonseminoma types there seem to be a region of preferential loss (3q27–3q28 in embryonal carcinoma), and all of the TGCTs show gain of 12p11–12p12 sequences. Knowing the exact nature of genetic alterations associated with these tumors may provide novel treatment strategies.

However, the low frequency of observed LOHs in this study could be a consequence of genomic instability in above mentioned nonseminomas, rather than the main cause of CDKN2A and RBP1 inactivation.

Acknowledgments

This work was supported by Grant 058-0582261-2246 from Ministry of Science and Technology, Republic of Croatia.

References

1. Fombonne J, Devouassoux-Shisheboran M, Bouvier R, Droz J-P, Benahmed M, Krentic S. Analysis of p16INK4A gene promoter in male germ-cell tumors: identification of a new point mutation. Cancer Detect Prev 2005; 29: 1-7.

2. Kachanov DV, Dobrenkov KV, Shamanskaya TV, Abdulavu RT, Inushina EV, Savkova RF. Solid tumors in young children in Moscow Region of Russian Federation. Radiol Oncol 2008; 42: 39-44.

3. Elbe JN, Sauter G, Epstein JI, Sesterhenn IA. Tumours of the testis and para-testicular tissue. In: Kleihues P, Sobin LH, editors. World Health Organization Classification of Tumours: Lyon: IARC Press; 2004. p. 217-78.

4. Berghorsson JT, Agnarsson BA, Guðjartsson T, Magnússon K, Thoroddsen A, Patson B, et al. A genome-wide study of allelic imbalance in human testicular germ cell tumors using microsatellite markers. Cancer Genet Cytogenet 2006; 164: 1-9.

5. von Eyben FE. Chromosomes, genes, and development of testicular germ cell tumors. Cancer Genet Cytogenet 2004; 151: 93-138.

6. Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 1997; 237: 1-6.

7. Bartkova J, Raijert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. Deregulation of the G1/S-phase control in human testicular germ cell tumours. APMIS 2003; 111: 252-66.

8. Adams PD, Li X, Sellers WR, Baher KB, Leng X, Harper JW, et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complex. Mol Cell Biol 1995; 15: 1068-80.

9. Parry D, Mahony D, Willis K, Lees E. Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 1999; 19: 1775-83.

10. Sherr C. Cancer cell cycles. Science 1996; 274: 1672-77.

11. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53-61.

12. Bartkova J, Lukas C, Sørensen CS, Raijert-De Meyts E, Skakkebaek NE, Lukas J, et al. Deregulation of the RB pathway in human testicular germ cell tumours. J Pathol 2003; 200: 149-56.

13. Schmidt BA, Rose A, Steinhoff C, Strohmeyer T, Hartman M, Ackermann R. Up-regulation of cyclin-dependent kinase 4/cyclin D2 expression but down-regulation of cyclin-dependent kinase 2/cyclin E in testicular germ cell tumors. Cancer Res 2001; 61: 4214-21.

14. Herranz M, Urioste M, Santos J, Rivas C, Martinez B, Benitez J, et al. Analysis of the INK4a/ARF locus in non-Hodgkin's lymphomas using two new internal microsatellite markers. Leukemia 1999; 13: 808-10.

15. Xing EP, Yang GY, Wang L-D, Shi ST, Yang CS. Loss of heterozygosity of the Rb gene correlates with p16 protein expression and associates with p53 alteration in human esophageal cancer. Clin Cancer Res 1999; 5: 1231-40.

16. Jones PA, Laird PW. Cancer epigenetics comes of age. Nature Genet 1999; 21: 163-67.

17. Honorio S, Agathangelou A, Wernet N, Rothe M, Maher ER, Latif F. Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours. Oncogene 2003; 22: 461-66.

18. Chaubert P, Guillou L, Kurt A-M, Bertholet M-M, Metthez G, Leisinger H-J. Frequent p16(INK4a) (MTSI) gene inactivation in testicular germ cell tumours. Am J Pathol 1997; 151: 859-65.

19. Heidenreich A, Gaddipati JP, Moul JW, Srivastava S. Molecular analysis of P16(p15)/CDKN2 and P15(p19)/MTS2 genes in primary human testicular germ cell tumors. J Urol 1998; 159: 1725-30.

20. Faulkner SW, Leigh DA, Oosterhuis JW, Roelofs H, Looijenga LHJ, Friedlander ML. Allelic losses in carcinoma in situ and testicular germ cell tumours of adolescents and adults: evidence suggestive of the linear progression model. Br J Cancer 2000; 83: 729-36.

21. Vladusic T, Hršican R, Vrhovac I, Kruljić M, Gamulin M, Grpić M, et al. Loss of heterozygosity of selected tumor suppressor genes in human testicular germ cell tumors. Pathol Res Pract 2010; 206: 163-7.

22. Jones RH, Vassey PA. New directions in testicular cancer; molecular determinants of oncogenesis and treatment success. Eur J Cancer 2003; 39: 147-56.

23. Strohmeyer T, Reissmann P, Cordon-Cardo C, Hartmann M, Ackermann R, Slamon D. Correlation between retinoblastoma gene expression and differentiation in human testicular tumours. Proc Natl Acad Sci 1991; 88: 6622-6.

24. Heng H-Q, Bailey D, Bronson D, Goss PE, Hogg D. Loss of heterozygosity of tumor suppressor genes in testis cancer. Cancer Res 1995; 55: 2871-75.

25. Rothe M, Albers P, Wernet N. Loss of heterozygosity, differentiation, and clonality in microdissected male germ cell tumours. J Pathol 1999; 188: 389-94.

26. Heidenreich A, Sesterhenn IA, Mostof FK, Moul JW. Prognostic risk factors that identify patients with clinical stage I nonseminomatus germ cell tumors at low risk and high risk for metastasis. Cancer 1998; 83: 1002-11.

27. Bartkova J, Falck J, Raijert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. Chk2 tumor suppressor protein in human spermatogenesis and testicular germ-cell tumours. Oncogene 2001; 20: 5897-902.

28. Kamensek U, Sersa G. Targeted gene therapy in radiotherapy. Radiol Oncol 2008; 42: 115-35.