Fusarium species isolated from post-hatchling loggerhead sea turtles (*Caretta caretta*) in South Africa

Mariska R. Greeff-Laubscher & Karin Jacobs

Species in the *Fusarium solani* species complex are fast growing, environmental saprophytic fungi. Members of this genus are filamentous fungi with a wide geographical distribution. *Fusarium keratoplasticum* and *F. falciforme* have previously been isolated from sea turtle nests and have been associated with high egg mortality rates. Skin lesions were observed in a number of stranded, post-hatchling loggerhead sea turtles (*Caretta caretta*) in a rehabilitation facility in South Africa. Fungal hyphae were observed in epidermal scrapes of affected turtles and were isolated. The aim of this study was to characterise the *Fusarium* species that were isolated from these post-hatchling loggerhead sea turtles (*Caretta caretta*) that washed up on beaches along the South African coastline. Three gene regions were amplified and sequenced, namely the internal transcribed spacer region (ITS), a part of the nuclear large subunit (LSU), and part of the translation elongation factor 1 α (*tef1*) gene region. Molecular characteristics of strains isolated during this study showed high similarity with *Fusarium* isolates, which have previously been associated with high egg mortality rates in loggerhead sea turtles. This is the first record of *F. keratoplasticum*, *F. falciforme* and *F. crassum* isolated from stranded post-hatchling loggerhead sea turtles in South Africa.

The ascomycete genus *Fusarium* (*Hypocreales, Nectriaceae*) is widely distributed in nature and can be found in soil, plants and different organic substrates. This genus represents a diverse complex of over 60 phylogenetically distinct species. Some species, specifically those forming part of the *Fusarium solani* species complex (FSSC), are known pathogenic species, and have been associated with human, plant and animal infections—in both immunocompromised and healthy individuals. Phylogenetically, this group comprises three major clades, of which clade I forms the basal clade to the two sister clades II and III. Members of clade I and II are most often associated with plant infections and consequently have limited geographical distributions. Members of clade III represent the highest phylogenetic and ecological diversity and are most commonly associated with human and animal infections. Species represented in this clade are typically regarded as fast growing and produce large numbers of microconidia. This facilitates distribution within the host and its environment and promotes virulence. Clade III, further consists of three smaller clades, namely clades A, B and C. While clades A (also known as the *F. falciforme* clade) and C (also known as the *F. keratoplasticum* clade) consist predominantly of isolates from humans and animals, plant pathogens constitute most isolates represented in clade B.

Fusarium spp. have been identified in infections of marine animals including (but not limited to); bonnethead sharks (*Sphyrna tiburo*), scalloped hammerhead sharks (*Sphyna lewini*), and black spotted stingray (*Taeniura melanopsila*). Strains from this genus have been reported to cause skin and systemic infections in marine turtles, and are considered to be one of many threats to turtle populations worldwide causing egg infections and brood failure in 6 out of seven turtle species. Challenge inoculation experiments provided evidence of pathogenicity for *F. keratoplasticum*, a causative agent of sea turtle egg fusariosis (STEF) in loggerhead sea turtle populations in Cape Verde. Since then, *Fusarium* spp., or more specifically *F. falciforme* and *F. keratoplasticum* have increasingly been isolated from turtle eggs and nests. Subsequent research studies have isolated *F. falciforme* and *F. keratoplasticum* from infected eggs in turtle nests on beaches along the Atlantic, Pacific and Indian Oceans, as well as the Mediterranean and Caribbean Seas. Both *F. keratoplasticum* and *F. falciforme* are pathogenic to turtle eggs and embryos, and are able to survive independent of the hosts. In recent years, members from *F.
Falciforme and **F. keratoplasticum** of clade III, have been described as emerging animal pathogens, causing both localised and systemic infections6,16,17,23. These infections can result in mortality rates as high as 80–90% in animal populations7,17. Cafarchia and colleagues (2019) suggested that fusariosis should be included in differential diagnosis of shell and skin lesions in sea turtles and that species level identification is required to administer appropriate treatment and infection control12.

Loggerhead sea turtles nest on the beaches of Southern Africa between November and January24,25. Hatchlings that find their way into the ocean are carried south in the Aghulas current, with some turtles stranding on the South African coast, mainly between the months of March and May each year. Between 2015 and 2016, a total of 222 post-hatchling (turtles that have absorbed the yolk-sac and are feeding in open ocean but have yet to return to coastal waters to enter the juvenile stage) loggerhead sea turtles were admitted to a rehabilitation centre after stranding along the Indian and Atlantic Ocean coastline of South Africa, between Mossel Bay and False Bay (Fig. 1). During their time at the rehabilitation centre a number of these turtles developed skin lesions. Fungal dermatitis was diagnosed based on skin scrape cytology findings. Fungal strains resembling **Fusarium** were isolated from the affected areas.

The aim of this study was to characterise the strains isolated from skin lesions of post-hatchling loggerhead Sea turtles that washed up on beaches along the South African coastline, and to determine the molecular relationships between these isolates and those strains reported from literature that pose significant conservation risks to sea turtles from other geographic localities.

Materials and methods

Gross observations and Fungal isolations. Post-hatchling turtles with skin lesions were isolated from unaffected turtles. Clinical signs observed were as follows; excessive epidermal sloughing on the limbs, head and neck, where scales on the skin lifted easily and were frequently lost. A softening and sloughing of the carapace and plastron were observed, where scutes of the carapace and plastron became crumbly, soft and were frequently shed. Turtles were diagnosed with fungal skin infection if they had clinical signs of epidermal sloughing and a positive epidermal scrape. Epidermal scrapes taken from lesions of affected turtles were examined by light microscopy (20 to 50× objective) and deemed positive if significant numbers of hyphae were observed. For fungal isolation, samples (scrapings) were taken from affected areas of skin in a sterile manner and placed onto culture media. During 2015 and 2016, 10 fungal isolates were isolated from 10 clinically affected loggerhead sea turtles (**Caretta caretta**) onto marine phycomycetes isolation agar (12.0 g Agar, 1.0 g Glucose, 1.0 g Gelatin hydrolysate, 0.01 g Liver extract, 0.1 g Yeast extract, 1 000 mL Sea water) supplemented with streptomycin sul-
Phylogenetic analysis was performed using Maximum likelihood (ML) analysis, with GTR + I + G. The partitioning scheme and substitution models were selected using Partitionfinder v 2.1.1. Alignments were done in ClustalX using the L-INS-I option. The software package PAUP was used to construct the phylogenetic trees and confidence was calculated using bootstrap analysis of 1 000 replicates. A Bayesian analysis was run using MrBayes v. 3.2.6. The analysis included four parallel runs of 500 000 generations, with a sampling frequency of 200 generations. The posterior probability values were calculated after the initial 25% of trees were discarded.

DNA extractions, molecular characterisation, and phylogenetic analyses. Total genomic DNA was extracted from single spore colonies following incubation for 7 days on PDA. A heat lysis DNA extraction protocol was used. Extracted DNA were stored at −20 °C until needed. Molecular characterisation was performed based on 3 gene regions for 14 strains. The gene regions included internal transcribed spacer region (ITS), a part of the nuclear large subunit (LSU) and partial translation elongation factor 1-α (tef1) gene region. PCR reactions were performed in a total volume of 25 μL, containing 100–200 ng genomic DNA. Kapa ReadyMix (Kapa Biosystems; Catalog #KK1006) was used for PCR reactions. Conditions for the PCR amplification were as follows. Initial denaturation at 94 °C for 5 min, followed by 35 cycles at 94 °C for 45 s, 45 s annealing (see Table 1 for specific annealing temperatures) and 72 °C for 1 min, followed by a final extension at 72 °C for 7 min. Purified PCR products were sequenced by using BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) and an ABI PRISM 310 genetic analyser. Sequencing was done in one direction. Each sequence was edited in BioEdit sequence alignment editor v7.2.5. Phylogenetic analyses were conducted using the dataset from Sandoval-Denis et al. (2019) combining sequences of three loci (LSU, ITS and tef1) to identify species (Table 2 lists all the sequences included in the phylogenetic analyses). Alignments were done in ClustalX using the L-INS-I option. Phylogenetic analysis was performed using Maximum likelihood (ML) analysis, with GTR + I + G. The partitioning scheme and substitution models were selected using Partitionfinder v 2.1.1. The software package PAUP was used to construct the phylogenetic trees and confidence was calculated using bootstrap analysis of 1 000 replicates. *Geejayessia atrofusca* was used as an outgroup. A Bayesian analysis was run using MrBayes v. 3.2.6. The analysis included four parallel runs of 500 000 generations, with a sampling frequency of 200 generations. The posterior probability values were calculated after the initial 25% of trees were discarded.

Morphological observation. Agar plugs (6 mm diameter) of the selected isolates were transferred onto fresh PDA and Carnation leaf agar (CLA) plates and incubated at 26 ± 1 °C for 7 and 21 days, respectively for further morphological characterisation. Morphological characterisation was based on the taxonomic keys of Leslie and Summerell, 2006. Gross macro-morphology of all isolates was examined on PDA after 7 days, for further morphological characterisation. Agar plugs (6 mm diameter) of the chosen colonies 14 distinct isolates were identified for molecular characterisation. Agar plugs (6 mm diameter) of the chosen colonies were transferred onto PDA and incubated at 26 ± 1 °C for 7 days.

Primer name	Primer sequence (5′–3′)	Annealing temperature (°C)	Reference
ITS 1	TCC GTA GGT GAA CCT GCG G	51.1	41
ITS 4	TCC TCG CTA TTA TAC GC	42	
LSU-00021	ATT ACC GCG TGA ACT TAA GC	63.0	42
LSU-1170	GCT ATC CGG AGA ATT GCG G	65	43
E1	ATG GGT AGG GAR GAC AAG AC	53.6	41
E2	GGA RGG ACC AGT SAT CAT GTT		

Table 1. Primers used for amplification and sequencing.
Species name	Strain number	Genbank accession number	Source	Origin	Reference
Geejayessia atrofusca (outgroup)	NRRL 22316	AF178423 AF178392 AF178361	*Staphylococcus*	USA	28
F. ambrosium	NRRL 20438	AF178397 DQ236357 AF178332	*Euwallacea fornicata* on *Camellia sinensis*	India	28
	NRRL 22346 = CBS 571.94T	EU329669 EU329669 FJ240350	*Euwallacea fornicata* on *Camellia sinensis*	India	28
F. bostrychoides	CBS 130391	EU329716 HM347127	Human eye	Brazil	28
	CBS144.25NT	LR583704 LR583912 LR583597	Soil	Honduras	28
	NRRL 31169	DQ094396 DQ236438 DQ246923	Human oral wound	USA	28
F. ctenatum	CBS 143229 T = NRRL54993	KC808256 KC808256 KC808214	*Stegostoma fasciatum* multiple tissues	USA	28
	NRRL 54992	KC808255 KC808255 KC808213	*Stegostoma fasciatum* multiple tissues	USA	28
F. crassum	CBS 144386 T	LR583709 LR583917 LR583604	Unknown	France	28
	NRRL 46703	EU329712 EU329712 HM347126	Nematode egg	Spain	28
	NRRL 54722 = CBS 135854 T	JQ038014 JQ038014 JQ038007	*Euwallacea fornicata* on *Persea americana*	Israel	28
	NRRL 62626	KC691560 KC691560 KC691532	*Euwallacea fornicata* on *Persea americana*	USA	28
F. falciforme	ML16006	OM574602 ON237621 ON237635	*Carettidae* post-hatching	South Africa	This study
	ML16011	OM574607 ON237622 ON237636	*Carettidae* post-hatching	South Africa	This study
	ML16012	OM574608 ON237623 ON237637	*Carettidae* post-hatching	South Africa	This study
	033 FUS	KC573932 KC573883	*Chelonia mydas* eggshells	Ecuador	28
	078 FUS	KC573938 KC573884	*Carettidae* *embryo*	Cape Verde	7
	079 FUS	KC573939 KC573885	*Carettidae* eggshells	Cape Verde	7
	099 FUS	KC573956 KC573886	*Carettidae* *embryo*	Cape Verde	7
	142 FUS	KC573987 KC573887	*Chelonia mydas* eggshells	Ecuador	28
	181 FUS	KC573990 KC573888	*Natator depressus* eggshells	Australia	28
	182 FUS	KC573991 KC573889	*Natator depressus* eggshells	Australia	28
	209 FUS	KC574000 KC573890	*Lepidochelys olivacea* eggshells	Ecuador	28
	215 FUS	KC574002 KC573891	*Lepidochelys olivacea* eggshells	Ecuador	28
	219 FUS	KC574004 KC573892	*Lepidochelys olivacea* eggshells	Ecuador	28
	CBS 121450	JX435211 JX435211 JX435161	Declined grape vine	Syria	28
	CBS 124627	JX435184 JX435184 JX435134	Human nail	France	28
	CBS 475.67 T	MG189935 MG189915 LT906669	Human mycetoma	Puerto Rico	28
	ML16007	OM574603 ON237617 ON237631	*Carettidae* post-hatching	South Africa	This study
	ML16008	OM574604 ON237618 ON237632	*Carettidae* post-hatching	South Africa	This study
	ML16009	OM574605 ON237619 ON237633	*Carettidae* post-hatching	South Africa	This study
	NRRL 22781	DQ094334 DQ236376 DQ246849	Human cornea	Venezuela	28
	NRRL 28562	DQ094376 DQ236418 DQ246903	Human bone	USA	28
	NRRL 28563	DQ094377 DQ236419 DQ246904	Clinical isolate	USA	28
	NRRL 28565	DQ094379 DQ236421	Human wound	USA	28
	NRRL 31162	DQ094392 DQ236434	Human	Texas	1
	NRRL 32307	DQ 094405 DQ236447 DQ246935	Human sputum	Unknown	28
	NRRL 32313	EU329678 EU329678 DQ246941	Human corneal ulcer	Unknown	28
	NRRL 32331	DQ094428 DQ236470 DQ246959	Human leg wound	Unknown	28
	NRRL 32339	DQ094436 DQ236478 DQ246967	Human	Unknown	28
	NRRL 32540	DQ094471 DQ236513 DQ247006	Human eye	India	28
	NRRL 32544	DQ094475 DQ23651 DQ247010	Human eye	India	28
	NRRL 32547	EU329680 EU329680 DQ247012	Human eye	India	28
	NRRL 32714	DQ094496 DQ236538 DQ247034	Human eye	USA	28
	NRRL 32718	DQ094500 DQ236542 DQ247038	Human eye	USA	28
	NRRL 32729	DQ094510 DQ236552 DQ247049	Human eye	USA	28
	NRRL 32738	DQ094519 DQ236561 DQ247058	Human eye	USA	28
	NRRL 32754	DQ094533 DQ236575 DQ247072	Turtle nare lesion	USA	28
	NRRL 32778	DQ094549 DQ236591 DQ247088	Equine corneal ulcer	USA	28
	NRRL 32798	DQ094567 DQ236609 DQ247107	Human	USA	28

Continued
Species name	Strain number	Genbank accession number	Source	Origin	Reference
F. gamsii					
	NRRL 43441	DQ790522 DQ790522 DQ790478	Human cornea	USA	28
	NRRL 43536	EF453118 EF452966	Human cornea	USA	28
	NRRL 43537	DQ790550 DQ790550 DQ790506	Human cornea	USA	28
	NRRL 52832	GU170651 GU170651 GU170631	Human toenail	Italy	28
	NRRL 54966	KC808233 KC808233 KC808193	Equine eye	USA	28
	NRRL 54983	KC808248 KC808248 KC808206	Equine eye	USA	28
	NRRL 43443	DQ790529 DQ790529 DQ790485	Human cornea	USA	28
	NRRL 43490	EF453132 EF453132 EF452980	Human eye	USA	28
	NRRL 46437	GU170643 GU170643 GU170623	Human toenail	Italy	28
	NRRL 46438	GU170644 GU170644 GU170624	Human toenail	Italy	28
	NRRL 46443	GU170646 GU170646 GU170646	Human foot	Italy	45
	NRRL 52704	JF740908 JF740908 JF740786	Tetranychus urticae	USA	28
F. keratoplasticum					
	CBS 143207 T	DQ246462 DQ246462	Human bronchoalveolar lavage fluid	USA	28
	NRRL 32794	DQ236605 DQ247103	Humidifier coolant	USA	28
	NRRL 43502	DQ790532 DQ790532 DQ790488	Human cornea	USA	28
F. keratoplasticum (cont.)					
	001 AFUS	FR691753 IN939570	Caretta caretta embryo	Cape Verde	
	001 CFUS	FR691754 KC394706	Caretta caretta embryo	Cape Verde	
	009 FUS	FR691760 KC3973903	Caretta caretta eggshells	Cape Verde	7
	010 FUS	FR691761 KC3973904	Caretta caretta embryo	Cape Verde	
	013 FUS	FR691764 KC3973907	Caretta caretta eggshells	Cape Verde	
	014 FUS	FR691757 KC3973908	Caretta caretta eggshells	Cape Verde	
	015 FUS	FR691759 KC3973909	Caretta caretta eggshells	Cape Verde	
	016 FUS	FR691758 KC3973910	Caretta caretta eggshells	Cape Verde	
	018 FUS	FR691765 KC3973911	Caretta caretta eggshells	Cape Verde	
	019 FUS	FR691766 KC3973912	Caretta caretta eggshells	Cape Verde	
	021 FUS	FR691768 KC3973913	Caretta caretta embryo	Cape Verde	
	028 FUS	KC573927 KC573914	Chelonina mydas eggshells	Ecuador	
	029 FUS	KC573928 KC573915	Eretmochelys imbricata eggshells	Ecuador	
	030 FUS	KC573929 KC573916	Eretmochelys imbricata eggshells	Ecuador	
	034 FUS	KC573933 KC573918	Eretmochelys imbricata eggshells	Ecuador	
	036 FUS	KC573935 KC573919	Eretmochelys imbricata eggshells	Ecuador	
	223 FUS	KC574007 KC573920	Eretmochelys imbricata eggshells	Ascencion Island	
	230 FUS	KC574010 KC573922	Eretmochelys imbricata eggshells	Ascencion Island	
	CBS 490.63 T	LR583721 LR583929 LT906670	Human	Japan	28
	FMR 7989 = NRRL 46696	EU329705 EU329705 AM397219	Human eye	Brazil	28
	FMR 8482 = NRRL 46697	EU329706 EU329706 AM397224	Human tissue	Qatar	28
	FRC-S 2477 T	NR136900 JN235282 JN235712	Indoor plumbing	USA	28
	ML16001	OM574597 ON237611 ON237625	Caretta caretta post-hatching	South Africa	This study
	ML16002	OM574598 ON237612 ON237626	Caretta caretta post-hatching	South Africa	This study
	ML16003	OM574599 ON237613 ON237627	Caretta caretta post-hatching	South Africa	This study
	ML16004	OM574600 ON237614 ON237628	Caretta caretta post-hatching	South Africa	This study
	ML16005	OM574601 ON237615 ON237629	Caretta caretta post-hatching	South Africa	This study
	ML16010	OM574606 ON237620 ON237634	Caretta caretta post-hatching	South Africa	This study
	ML16013	OM574609 ON237623 ON237637	Caretta caretta post-hatching	South Africa	This study
	ML16019	OM574610 ON237624 ON237638	Caretta caretta post hatching	South Africa	This study
	NRRL 22640	DQ246842	Human cornea	Argentina	28
	NRRL 22791	DQ246853	Iguana tail	Unknown	
	NRRL 28014	DQ246872	Human	USA	28
	NRRL 28561	DQ246902	Human wound	USA	28
	NRRL 32707	DQ247027	Human eye	USA	28
	NRRL 32710	DQ247030	Human eye	USA	28
	NRRL 32780	DQ247090	Sea turtle	USA	28
	NRRL 32838	DQ247144	Sea turtle	USA	28
	NRRL 32859	DQ246718	Manatee skin	USA	28
	NRRL 43443	EF453082 EF453082 EF453082	Human	Italy	28
	NRRL 43490	DQ790529 DQ790529 DQ790485	Human eye	USA	28
	NRRL 43649	EF453132 EF453132 EF452980	Human eye	USA	28
	NRRL 46437	GU170643 GU170643 GU170623	Human toenail	Italy	28
	NRRL 46438	GU170644 GU170644 GU170624	Human toenail	Italy	28
	NRRL 46443	GU170646 GU170646 GU170646	Human foot	Italy	45
	NRRL 52704	JF740908 JF740908 JF740786	Tetranychus urticae	USA	28

Continued...
Species name	Strain number	Genbank accession number	Source	Origin	Reference
F. lichenicola	CBS 279.34 T	LR583725 LR583933 LR583615	Human	Somalia	28
	CBS 483.96	LR583728 LR583936 LR583618	Air Brazil	Brazil	28
	CBS 623.92 T	LR583730 LR583938 LR583620	Human necrotic wound	Germany	28
	NRRL 28030	DQ094355 DQ226397 DQ246877	Human	Thailand	28
	NRRL 34123	DQ094645 DQ226687 DQ247192	Human eye	India	28
F. metavorans	CBS 135789 T	LR583738 LR583946 LR583627	Human pleural effusion	Greece	28
	NRRL 28018	FJ240360 DQ246875	Human	USA	28
	NRRL 28019	FJ240361 DQ246876	Human	USA	28
F. parceramosum	CBS 115695 T	JX435199 JX435199 JX435149	Soil	South Africa	28
	NRRL 31158	DQ094389 DQ226431	Human wound	USA	28
F. petrophilum	NRRL 32304	DQ094402 DQ226444	Human nail	USA	28
	NRRL 32315	DQ094412 DQ226454	Human groin ulcer	USA	28
	NRRL 43812	EF453205 EF453205 EF453054	Contact lens solution	Unknown	28
F. pseudensiforme	CBS 241.93	JX435198 JX435198 JX435148	Human mycetoma	Suriname	28
	FRC-S 1834 = CBS 125729 T	JX435199 JX435199 JX435149	Human mycetoma	Suriname	28
F. pseudotonkinense	CBS 112101	LR583772 LR583977 LR583653	Human vocal prosthesis	Belgium	28
	NRRL 124893	JX435191 JX435191 JX435141	Human nail	France	28
	GJS 09-1466 T	KT313633 KT313633 KT313611	Solanum tuberosum	Slovenia	28
	NRRL 31168	DQ094333 DQ226375 DQ246848	Human toenail	New Zealand	28
	NRRL 32492	DQ094395 DQ226437 DQ246922	Human toe	USA	28
	NRRL 32373	EU329679 EU329679 EU329690	Human	USA	28
	NRRL 32791	DQ094518 DQ226560 DQ247057	Human eye	USA	28
	NRRL 32810	DQ094557 DQ226619 DQ247118	Human corneal ulcer	USA	28
	NRRL 43468	EF453093 EF453093 EF453094	Human eye	USA	28
	NRRL 43474	EF453097 EF453097 EF453095	Human eye	USA	28
	NRRL 44896	GU170639 GU170639 GU170619	Human toenail	Italy	28
	NRRL 46598	GU170648 GU170648 GU170628	Human toenail	Italy	28
N. solani	CBS 142481 T	LR583779 LR583984 LR583658	Compost yard debris	Belgium	28
	CBS 144388	LR583780 LR583985 LR583659	Greenhouse humic soil	Belgium	28
	CBS 260.54	LR583776 LR583981 LR583657	Unknown	Unknown	28
	NRRL 22239	LR583777 LR583982 DQ247562	Nematode egg	Germany	28
F. stericola	CBS 124892	JX435189 JX435189 JX435139	Human nail	Gabon	28
	CBS 143214 T	DQ094617 DQ226659 DQ247163	Human wound	USA	28
	NRRL 28000	DQ094348 DQ226390 DQ246866	Human	USA	28
	NRRL 32316	DQ094413 DQ226455 DQ246944	Human cornea	USA	28
	NRRL 54972	MG189940 MG189925 KC808197	Equine eye	USA	28
F. tonkinense	CBS 115.40 T	MG189941 MG189926 LT906672	Musa sapientum	Vietnam	28
	CBS 222.49	LR583783 LR583988 LR583661	Euphorbia fulgens	Netherlands	28
	NRRL 43811	EF453204 EF453204 EF453053	Human cornea	USA	28
F. vasinfecta	CBS 101957	LR583797 LR584002 LR583676	Human blood, sputum and wound	Germany	28
	CBS 446.93 T	LR583791 LR583966 LR583670	Soil	Japan	28
	NRRL 43467	EF453092 EF453092 EF453090	Human eye	USA	28
Fusarium sp. (AF1)	NRRL 22231	KC691570 KC691570 KC691542	Beetle on Hevea brasilensis	Malaysia	28
	NRRL 46518	KC691571 KC691571 KC691543	Beetle on Hevea brasilensis	Malaysia	28
	NRRL 46519	KC691572 KC691572 KC691544	Beetle on Hevea brasilensis	Malaysia	28
Fusarium sp. (AF6)	NRRL 62590	KC691574 KC691574 KC691546	Euwallacea fornicatus on Persea americana	USA	28
	NRRL 62591	KC691573 KC691573 KC691545	Euwallacea fornicatus on Persea americana	USA	28

Continued
Species name	Strain number	Genbank accession number	ITS	LSU	EF	Source	Origin	Reference
Fusarium sp. (AF7)	NRRL 62610	KC691575	KC691575	KC691547	F. euwallacea sp. on Persea americana	Australia	28	
	NRRL 62611	KC691576	KC691576	KC691548	F. euwallacea sp. on Persea americana	Australia	28	
Fusarium sp. (AF8)	NRRL 62585	KC691582	KC691582	KC691554	F. euwallacea fornicatus on Persea americana	USA	28	
	NRRL 62584	KC691577	KC691577	KC691549	F. euwallacea fornicatus on Persea americana	USA	28	
Fusarium sp. (FSSC 12)	NRRL 23642	DQ094329	DQ23671	DQ246444	Penicillus japonicus gill	Japan	28	
	NRRL 25392	EU329672	EU329672	DQ246461	American lobster	USA	28	
	NRRL 32309	DQ094407	DQ236449	DQ246937	Sea turtle	USA	28	
	NRRL 32317	DQ094414	DQ236456	DQ246945	Treefish	USA	28	
	NRRL 32821	DQ094587	DQ236629	DQ247128	Turtle egg	USA	28	

Table 2. *Fusarium* strains included in the phylogenetic analyses.

Results

Molecular characterisation and Phylogenetic analyses. Phylogenetic analyses (Figs. 2 and 3) showed 3 (*F. falciforme*, *F. keratoplasticum* and *F. crassum*) distinct species. A phylogenetic tree generated from the combined dataset of LSU, ITS and *tef1* gene regions, represented 3 lineages within the *Fusarium solani* species complex (FSSC). The maximum likelihood (ML) analysis included 135 taxa (including the outgroup). In the analyses, 14 strains isolated during this study, aligned with three species within *Fusarium*. Seven strains (ML16001; ML16013; ML16005; ML16004; ML16003; ML16002; ML16010) grouped with the *F. keratoplasticum* clade with a strong bootstrap support. Four strains (ML16007; ML16008; ML16009; ML16019) grouped within the more diverse *F. falciforme* clade. Another three strains (ML16006; ML16011; ML16012) grouped with *F. crassum*. Secondary phylogenetic analysis of the ITS and LSU gene regions, included 118 taxa (including the outgroup). These analyses confirmed the findings of primary phylogenetic analyses and showed that isolates from this study aligned with isolates that were previously associated with turtles and turtle eggs.

Morphological observation. Three strains expressed significant different morphological characteristics compared to other strains isolated during this study. These three strains were relatively fast growing on PDA, reaching a colony size of 70–75 mm diameter after 7 days of incubation at 26 ± 1 °C. White, flat floccose mycelium with light peach to yellow centre. White to pale light yellow on the reverse side. On CLA, incubated at 26 ± 1 °C, reaching a colony size of 80–90 mm diameter in 7 days. Microconidia were oval, ellipsoidal to sub-cylindrical in shape, with 0–1 septum, smooth and thin walled arranged in false heads at the tip of long monophialides. Average aseptate microconidia measured as follows for the three strains (n = 30 per strain); 11.5 µm (± 1.25) × 4.00 µm (± 0.5), 12.0 µm (± 1.0) × 4.0 µm (± 0.5) and 11.5 µm (± 2.0) × 4.25 µm (± 0.4). Microconidia with one septa measured as follows (n = 30 per strain); 15.0 µm (± 2.0) × 4.25 µm (± 0.5), 15.0 µm (± 1.5) × 4.0 µm (± 0.5) and 15.5 µm (± 5.0) × 4.5 µm (± 0.5). Microconidia were fusiform in shape with the dorsal sides more curved than the ventral sides, blunt apical cells and barely notched foot cells. Microconidia consisted of 3–4 phialides. Average aseptate microconidia measured as follows for the three strains (n = 30 per strain); 11.5 µm (± 0.5) and 30.0 µm (± 1.0) × 5.0 µm (± 0.5). Sporodochia ranged from clear to beige in colour. Chlamydospores were first observed after 14 days of incubation on CLA plates, and were globose in shape with rough walls, positioned terminally, sometimes single but mostly in pairs. Distinct hyphal coils were observed in all three strains (Fig. 4). The morphology is consistent with that described for *N. crassum* (Fig. 4).

Discussion

Fusarium infections, specifically *F. keratoplasticum* and *F. falciforme* have been reported from infected eggs and embryos of turtle species, including endangered species, at major nesting sites along the Atlantic, Pacific and Indian Oceans, as well as the Mediterranean and Caribbean Sea. Management strategies to mitigate emerging fungal diseases, like *Fusarium* infections in turtle eggs, are influenced by identifying whether a pathogen is novel or endemic and the understanding of its ecology and distribution. A novel pathogen gains access to and infects naïve hosts as a result of migration of the pathogen or the development of novel pathogenic genotypes, in contrast endemic pathogens occur naturally in the host’s environment, but shifts in environmental conditions and/or host susceptibility influence pathogenicity. Thus, effective management strategies to mitigate novel pathogens should aim at preventing pathogen introduction and expansion, while disease caused by endemic pathogens relies on an understanding of environmental and host factors that influence disease emergence and severity. Phylogenetic analysis provides important information to assist in understanding the ecology, introduction and distribution of infectious agents. The first aim of this study was to use multigene phylogenetic analyses to identify *Fusarium* strains isolated from the carapace, flippers, head, and neck area of post-hatchling loggerhead sea turtles (*Caretta caretta*) with fungal skin infections that stranded along the South African coastline and kept at a rehabilitation centre. The genus *Fusarium* was recently revised, with an attempt to standardise the taxonomy and nomenclature after a lack of formal species descriptions, Latin names and nomenclatural type...
Figure 2. Maximum likelihood analysis of *Fusarium* species isolates based on three loci, translation elongation factor 1 α (*tef1*), large subunit (LSU) and internal transcribed standard (ITS). Numbers within the tree represent the bootstrap values of 1 000 replicates, followed by the posterior probability (italics). Strains isolated during this study are marked with a red asterisk (*).
Figure 3. Maximum likelihood analysis of *Fusarium* species isolates from other marine animals based on two loci, large subunit (LSU) and internal transcribed standard (ITS). Numbers within the tree represent the bootstrap values of 1 000 replicates, followed by the posterior probability (italics). Strains isolated during this study are marked with a red asterisk (*).
specimens were identified. Strains from this study grouped with three Fusarium species of which two species, *F. keratoplasticum* and *F. falciforme*, were previously reported to occur on animal hosts, including turtles. The third species, *F. crassum* is rather surprising as this species is only known from a human toenail and nematode eggs, while the origin of the type strain is unknown. Three strains (ML16011, ML16012 and ML16006) grouped with two *F. crassum* strains. Strain identifications were confirmed with the morphological characteristics that agreed with species descriptions published in 2019, with the one exception of chlamydospore wall texture for *F. crassum*. Chlamydospore walls in this study for all three *F. crassum* strains were smooth, while previously it has been documented with a rough texture.

Turtle egg fusariosis (STEF) is a disease that has increasingly been reported over the last decade and is considered a potential conservation threat to six out of seven species of marine turtles. Skin disease and systemic infections caused by *Fusarium* species has been reported in adult and subadult turtles and in captive reared hatchlings, but has not been reported in post-hatching loggerhead sea turtles (*C. caretta*) undergoing rehabilitation. Clinical signs reported in juvenile, subadult and adult loggerhead sea turtles (*C. caretta*) with *Fusarium* infections were localised and generalised lesions of the skin and carapace, consisting of areas of discoloration and loss of shell. Clinical signs observed in post-hatching loggerhead sea turtles (*C. caretta*) in this study were similar, but generalised sloughing of scales on the limbs and head, and a soft, crumbly carapace and plastron were more common than focal lesions. Histopathology was not performed in this study to confirm the association of fungal hyphae with pathological changes in the skin, and, therefore, the role of the *Fusarium* isolates in the skin lesions cannot definitively be identified (as isolation of fungus could be from normal skin flora or the environment), however, fungal hyphae, often in dense mats, were seen in epidermal scrapes from affected turtles (Online Resource 2). Although *Fusarium* isolates (and other fungi) have been identified in the skin of healthy adult *C. caretta*, a finding of numerous hyphae (hyphal mats) in skin scrapings would not be considered a normal finding in healthy turtle skin and thus it is considered likely that the fungal elements observed, and therefore the isolates identified, were associated with the observed pathology. The epidemiology of turtle pathogenic isolates *F. keratoplasticum* and *F. falciforme* in sea turtle nesting sites are not fully understood, however, it has been suggested that tank substrates and/or biofilms forming in the water supply infrastructure or filtering systems may act as a source of infection, to traumatised and immunocompromised sea turtles.

Investigations into the source of infection were not undertaken in this study, so it is not clear if the fungal isolates originated in the rehabilitation environment or were present in the skin on admission. Cafarchia and colleagues (2019) found increased length of stay to be a risk factor for fungal colonisation, where turtles staying in a rehabilitation centre for over 20 days were more frequently colonised with *Fusarium*. Loggerhead sea turtles (*C. caretta*) in this study exhibited clinical signs around 20–30 days after admission and it is likely that most individuals experienced some degree of immunocompromise in the initial stages of rehabilitation. This, combined with physical skin trauma that may be present on admission may have provided a suitable environment for fungal colonisation. The second aim of study was to establish the phylogenetic relationship between *F. keratoplasticum* and *F. falciforme* strains isolated during this study and strains that were previously associated
with brood failure and high mortality rates17,18. Combined sequence data of the ITS and LSU regions revealed that seven of the strains formed part of the monophyletic \textit{F. keratoplasticum} clade. Strains isolated during this study showed a close phylogenetic relation with other species in this clade, consisting of species that were previously isolated from Hawksbill (\textit{E. imbricata}) and green sea turtle (\textit{C. mydas}) eggs shells from nesting beaches along the Pacific Ocean in Ecuador15,16. Furthermore, phylogenetic analyses of the \textit{F. falciforme} group showed close resemblance to strains that were previously isolated from olive ridley sea turtle (\textit{L. olivacea}), green sea turtle (\textit{C. mydas}), flatback sea turtle (\textit{N. depressus}) and loggerhead sea turtle (\textit{C. caretta}) egg shells and \textit{C. caretta} embryos on nesting beaches in Australia, Cape Verde and Ecuador, Turkey, along the Pacific, Atlantic and Indian Ocean15,17-19,21. In addition, these strains showed a close resemblance to a strain that was previously isolated from a lesion in an adult turtle nare from the USA29. Based on the ITS and LSU gene regions, a genetic relationship exists between \textit{Fusarium} species associated with turtle egg infections (also known as STEF) and \textit{Fusarium} species isolated from post-hatching loggerhead sea turtles (\textit{C. caretta}) that stranded on beaches in South Africa along the Indian ocean.

Infections caused by members of this genus have been reported in numerous other aquatic animals in the past6,9,20, but for many of these, identification has been limited and mostly based on morphological characteristics. Many reports based on morphology only identified causative agents as \textit{Fusarium} (\textit{F. solani}), lacking further identification. Accurate identification of pathogenic \textit{Fusarium} members is essential for epidemiological purposes and for assisting in management programs, however, more research is required to complete the puzzle and fully understand the ecology and distribution of these pathogens, especially amongst reptiles and aquatic animals. This is the first confirmed record of \textit{F. keratoplasticum} and \textit{F. falciforme} strains isolated from post-hatching loggerhead sea turtles (\textit{C. caretta}) from the South African coastline that were not associated with nesting sites. This is also the first record of \textit{F. crassum} to be associated with loggerhead sea turtles.

Received: 2 August 2021; Accepted: 2 February 2022
Published online: 07 April 2022

References
1. Zhang, N. et al. Members of the \textit{Fusarium solani} species complex that cause infections in both humans and plants are common in the environment. \textit{J. Clin. Microbiol.} \textbf{44}, 2186–2190 (2006).
2. O’Donnell, K. et al. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro antifungal resistance within the \textit{Fusarium solani} species complex. \textit{J. Clin. Microbiol.} \textbf{46}, 2477–2490 (2008).
3. Schroers, H. J. et al. Epitypification of \textit{Fusarium subglutinans} and its assignment to a common phylogenetic species in the \textit{Fusarium solani} species complex. \textit{Mycologia} \textbf{108}, 806–819 (2016).
4. O’Donnell, K. Molecular phylogeny of the \textit{Neotricula haematococa-} \textit{Fusarium solani} species complex. \textit{Mycologia} \textbf{92}, 919–938 (2000).
5. Gleason, F., Allerstorfer, M. & Lilje, O. Newly emerging diseases of marine turtles, especially sea turtle egg fusariosis (SEFT), caused by species in the \textit{Fusarium solani} complex (FSSC). \textit{Mycologia} \textbf{11}, 184–194 (2020).
6. Fernando, N. et al. Fatal \textit{Fusarium solani} species complex infections in elasmobranchs: the first case report for black spotted stingray (\textit{Triaenodon obesus}) and a literature review. \textit{Mycoses} \textbf{58}, 422–431 (2015).
7. Sarmiento-Ramírez, J. M. et al. Global distribution of two fungal pathogens threatening endangered Sea Turtles. \textit{PLoS ONE} \textbf{9}, e8583 (2014).
8. Mayayo, E., Pujol, I. & Guarro, J. Experimental pathogenicity of four opportunistic \textit{Fusarium} species in a murine model. \textit{J. Med. Microbiol.} \textbf{48}, 363–366 (1999).
9. Muhvic, A. G., Reimschuessel, R., Lipsky, M. M. & Bennett, R. O. \textit{Fusarium} solani isolated from newborn bonnethead sharks, \textit{Sphyraena tiburo} (L.). \textit{J. Fish Dis.} \textbf{12}, 57–62 (1989).
10. Crow, G. L., Brock, J. A. & Kaiser, S. \textit{Fusarium solani} fungal infection of the lateral line canal system in captive scalloped hammerhead sharks (\textit{Sphyraena lewini}) in Hawaii. \textit{J. Wildl. Dis.} \textbf{31}, 562–565 (1995).
11. Cabaiñas, F. J. et al. Cutaneous hyalohyphomycosis caused by \textit{Fusarium solani} in a loggerhead sea turtle (\textit{Caretta caretta} L.). \textit{J. Clin. Microbiol.} \textbf{35}, 3343–3345 (1997).
12. Cafarchia, C. et al. \textit{Fusarium} spp. in Loggerhead Sea Turtles (\textit{Caretta caretta}): From Colonization to Infection. \textit{Vet. Pathol.} \textbf{57}, 139–146 (2019).
13. García-Hartmann, M., Hennquin, C., Catteau, S., Béatini, C. & Blanc, V. Cas groupés d’infection à \textit{Fusarium solani} chez de jeunes tortues marines \textit{Caretta caretta} nées en captivité. \textit{J. Mycol. Med.} \textbf{28}, 113–118 (2017).
14. Oroz, J., Delgado, C., Fernández, L. & Jensen, H. E. Pulmonary hyalohyphomycosis caused by \textit{Fusarium} spp in a Kemp’s ridley sea turtle (\textit{Lepidochelys kempi}): An immunohistochemical study. \textit{N. Z. Vet. J.} \textbf{52}, 150–152 (2004).
15. Canadan, A. Y., Katmilş, Y. & Ergin, Ç. First report of \textit{Fusarium} species occurrence in loggerhead sea turtle (\textit{Caretta caretta}) nests and hatching success in Iztuzu Beach, Turkey. \textit{Biologia (Bratisl.).} \textit{https://doi.org/10.2478/s11756-020-00553-4} (2020).
16. Sarmiento-Ramírez, J. M., van der Voort, M., Raaijmakers, J. M. & Dieguez-Urbezondo, J. Unravelling the Microbiome of eggs of the endangered Sea Turtle \textit{Eretmochelys imbricata} identifies bacteria with activity against the emerging pathogen \textit{Fusarium falciforme}. \textit{PLoS ONE} \textbf{9}, e95206 (2014).
17. Sarmiento-Ramírez, J. M. et al. \textit{Fusarium solani} is responsible for mass mortalities in nests of loggerhead sea turtle, \textit{Caretta caretta}, in Boavista, Cape Verde. \textit{FEMS Microbiol. Lett.} \textbf{312}, 192–200 (2010).
18. Sarmiento-Ramírez, J. M., Sim, J., Van West, P. & Dieguez-Urbezondo, J. Isolation of fungal pathogens from eggs of the endangered sea turtle species \textit{Chelonia mydas} in Ascension Island. \textit{J. Mar. Biol. Assoc. United Kingdom} \textbf{97}, 661–667 (2017).
19. Hoh, D., Lin, Y., Liu, W., Sidique, S. & Tsai, I. Nest microbiota and pathogen abundance in sea turtle hatcheries. \textit{Fungal Ecol.} \textbf{47}, 109964 (2020).
20. Güçlü, Ö., Byrık, H. & Şahiner, A. Mycoflora identified from loggerhead turtle (\textit{Caretta caretta}) egg shells and nest sand at Fethiye beach, Turkey. \textit{Afr. J. Microbiol. Res.} \textbf{4}, 408–413 (2010).
21. Gambino, D. et al. First data on microflora of loggerhead sea turtle (\textit{Caretta caretta}) nests from the coastlines of Sicily. \textit{Biol. Open} \textbf{9}, bio045252 (2020).
22. Bailey, J. B., Lamb, M., Walker, M., Weed, C. & Craven, K. S. Detection of potential fungal pathogens \textit{Fusarium falciforme} and \textit{F. keratoplasticum} in unhatched loggerhead turtle egg shells using a molecular approach. \textit{Endanger. Species Res.} \textbf{36}, 111–119 (2018).
23. Summerbell, R. C. & Schroers, H.-J. Analysis of Phylogenetic Relationship of \textit{Cylindrocarpon lichenicola} and \textit{Acremonium falciforme} to the \textit{Fusarium solani} Species Complex and a Review of similarities in the spectrum of opportunistic infections caused by these fungi. \textit{J. Clin. Microbiol.} \textbf{40}, 2866–2875 (2002).

24. Nel, R., Peunt, A. E. & Hughes, G. R. Are coastal protected areas always effective in achieving population recovery for nesting sea turtles? *PLoS ONE* **8**, e63552 (2013).
25. Branch, G. & Branch, M. *Living Shores* (Pippa Parker, 2018).
26. Fuller, M. S., Fowles, B. E. & Mclaughlin, D. J. Isolation and preliminary study of marine phycomycetes. *Mycologia* **56**, 745–756 (1964).
27. Greeff, M. R., Christison, K. W. & Macey, B. M. Development and preliminary evaluation of a real-time PCR assay for *Halitocaeta noduliformans* in abalone tissues. *Dis. Aquat. Organ.* **99**, 103–117 (2012).
28. Sandoval-Denis, M., Lombard, L. & Crous, P. W. Back to the roots: a reappraisal of *Neocosmospora*. *Persoonia Mol. Phylogeny Evol. Fungi* **43**, 90–185 (2019).
29. O’Donnell, K., Cigelnik, E. & Nirenberg, H. I. Molecular systematics and phylogeography of the *Gibberella fujikuroi* species complex. *Mycologia* **90**, 465–493 (1998).
30. Geiser, D. M. et al. *FUSARIUM*-ID v. 1. 0: A DNA sequence database for identifying *Fusarium*. *Eur. J. Plant Pathol.* **110**, 473–479 (2004).
31. O’Donnell, K. et al. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via *FUSARIUM*-ID and *FUSARIUM* MLST. *Mycologia* **104**, 427–445 (2012).
32. Chehri, K., Salleh, B. & Zakaria, L. Morphological and phylogenetic analysis of *Fusarium solani* species complex in Malaysia. *Microb. Ecol.* **69**, 457–471 (2015).
33. Lanfear, R., Frandsen, P., Wright, A., Senfeld, T. & Calcott, B. PartionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Mol. Biol.* [https://doi.org/10.1093/molbev/msw260] (2016).
34. Ronquist, F. et al. Efficient Bayesian phylogenetic inference and model selection across a large model space. *Syst. Biol.* **61**, 539–542 (2012).
35. Leslie, J. F. & Summerell, B. A. *The Fusarium Laboratory manual* (Blackwell Publishing, Hoboken, 2006).
36. Fisher, N. L., Burgess, L. W., Toussoun, T. A. & Nelson, P. E. Carnation leaves as a substrate and for preserving cultures of *Fusarium* species. *Phytopathology* **72**, 151 (1982).
37. Smyth, C. W. et al. Unraveling the ecology and epidemiology of an emerging fungal disease, sea turtle egg fusariosis (STEF). *PLOS Pathog.* **15**, e1007682 (2019).
38. Rachowicz, L. I. et al. The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. *Conserv. Biol.* **19**, 1441–1448 (2005).
39. Lombard, L., Sandoval-Denis, M., Cai, L. & Crous, P. W. Changing the game: resolving systematic issues in key *Fusarium* species complexes. *Persoonia Mol. Phylogeny Evol. Fungi* **43**, i–ii (2019).
40. Short, D. P. G., Donnell, K. O., Zhang, N., Juba, J. H. & Geiser, D. M. Widespread occurrence of diverse human pathogenic types of the fungus *Fusarium* detected in plumbing drains. *J. Clin. Microbiol.* **49**, 4264–4272 (2011).
41. White, T. J., Burns, T., Lee, S. & Taylor, J. Amplification and direct identification of fungal ribosomal RNA genes for phylogenetics. *PCR Protocols: a guide to methods and applications* (eds Innis, M. A.) 315–322 (Academic Press, San Diego, 1990).
42. Smyth, C. W. et al. *PCR Protocols: a guide to methods and applications* (eds Innis, M. A. et al.) 315–322 (Academic Press, San Diego, 1990).
43. Petersen, A. B. & Rosendahl, S. O. Phylogeny of the *Peronosporomycetes* (Oomycota) based on partial sequences of the large ribosomal subunit (LSU rDNA). *Mycol. Res.* **104**, 1295–1303 (2000).
44. O’Donnell, K. et al. Phylogenetic diversity and microsphere array–based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens–associated U.S. keratitis outbreaks of 2005 and 2006. *J. Clin. Microbiol.* **45**, 2255–2248 (2007).
45. Migheli, Q. et al. Molecular phylogenetic diversity of dermatologic and other human pathogenic fusarial isolates from hospitals in Northern and Central Italy. *J. Clin. Microbiol.* **48**, 1076–1084 (2010).

Acknowledgements

Authors of this study would like to acknowledge Andre du Randt for compiling the map and the Two Oceans aquarium, South Africa for providing the samples, their co-assistance and funding.

Author contributions

MR.G.-L. – First Author, conducted all laboratory work and wrote manuscript. K.J. – Responsible for phylogeny and assisted in writing of the manuscript. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-06840-1.

Correspondence and requests for materials should be addressed to M.R.G.-L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022, corrected publication 2022