REVIEW

Positive and negative regulation of Shh signalling in vertebrate retinal development [version 1; referees: 3 approved]

Viviana Gallardo¹,², Paola Bovolenta¹,²

¹Centro de Biología Molecular, CSIC-UAM, Madrid, 28049, Spain
²CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain

Abstract

Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand–receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.

Keywords

Cell cell communication, Shh Signalling, retina, development, eye, patterning, regulation
Introduction

The highest functions of the nervous system are based on communication among the huge variety of cells that compose the vertebrate brain. Communication among cells is also fundamental for correct development of the nervous system. Although there are several ways in which neural cells (and cells in general) exchange information, communication mediated by families of signaling molecules such as Wnt, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Hedgehog (Hh) is one of the most common. These molecules activate specific signaling pathways that share grossly similar designs, although individual molecular components are specific to each one of the pathways. Ligands are secreted from restricted cellular sources and bind to receptor complexes on the receiving cells. Ligand–receptor binding activates a signaling cascade that ultimately leads to transcriptional regulation of target genes or, less often, to alternative non-transcriptional pathways when more immediate responses are needed. These signaling pathways are used over and over in development to regulate events as diverse as cell specification, proliferation, migration, and differentiation. It follows that their activity needs to be exquisitely controlled, ensuring that information among cells is activated where required and switched off at, or prolonged for, the appropriate time in order to obtain the required context-dependent output. There are different levels of regulation for these signaling molecules. Perhaps the most direct is the existence of classes of secreted proteins that interact with the ligand in the extracellular space, thereby preventing binding to their receptor. This occurs, for example, in the case of BMPs or Wnts, for both of which a large number of secreted antagonists exist. Signaling enhancement also depends on secreted proteins that in some cases promote ligand diffusion as described for Wnt proteins. In contrast, the currently known ligand-binding modulators of the Hh pathway are membrane-bound proteins, prompting the question of whether there is an advantage to such an organization.

Sonic hedgehog (Shh) is the most prominent member of the Hh family in vertebrates and one of the best examples of a classic morphogen, as it induces the acquisition of specific identities in the receiving cells according to the levels and the duration of its signaling. Shh activates signaling with a mechanism that has been recently defined as “double-negative”. Indeed, in the absence of the ligand, its 12-pass transmembrane receptor Patched (Ptch) inhibits the seven-pass transmembrane GPCR (G-protein-coupled receptor)-like signal transducer Smoothened (Smo). In the absence of this inhibition, Smo would constitutively repress Shh signaling pathways by controlling both ligand dispersion and the activity of the signal transducer. In vitro and in silico models have demonstrated that this organization confers robustness to the signaling gradient and thus to Shh activity as a morphogen and likely to the additional functions that Shh exerts.

So, in principle, there is an advantage to such an organization (see 11 for further discussion). However, activation of Shh signaling is modulated by other surface molecules that either contribute to Shh release from the producing cells, such as Disp (Dispatched), or, on the receiving cells, interact with Ptch or Shh or both. The latter include Cdon (cell adhesion molecule-related, downregulated on oncogenes), Boc (Brother of Cdon), Gas1 (growth arrest protein 1), and Megalin/LRP2 (Megalin/low-density lipoprotein receptor-related protein 2). The regulation of the membrane availability of Smo by the tetraspanin Atthog/Mosmo (modulator of Smo) is a recently described additional mechanism of Shh regulation. Is the presence of these membrane modulators also an advantage?

So far, no studies have formally addressed this question. Nevertheless, in this review, we will use the progressive formation of the vertebrate retina to discuss Shh functions in which some of these regulators have been implicated, pointing to potential advantages and unresolved or controversial issues.

Cdon, Boc, Gas1, and LRP2 enhance Shh signaling during optic vesicles' bilateralization

Shh is expressed along the entire axial mesoderm – anterior prechordal plate and posterior notochord – and the ventral midline of the vertebrate neural tube. This distribution prompted the use of the spinal cord as a primary model to understand the mechanism of Shh action. However, the progressive formation of the vertebrate retina offers an experimental paradigm with which to study how Shh is repurposed to shape multiple developmental aspects of the same structure, from early specification to connectivity.

The eyes are bilateral structures. Their neural component, the retina, originates from a group of cells, known as the retinal field, in the anterior neural plate. As the neural plate folds, cells of the retinal field become displaced laterally, forming two balloon-shaped optic vesicles at the side of the forming neural tube. Shh expression at the prechordal plate is critical for this initial morphogenesis: in the absence of Shh, optic vesicle bilateralism is lost and embryos form, in the most severe case, a single cyclopic eye or, in the milder cases, smaller eyes that are closer together. This phenotype, observed from humans to zebrafish, is a developmental anomaly known as holoprosencephaly (HPE), in which the ventral forebrain is not specified and the dorsal forebrain hemisphere tends to fuse together. In amniotes, there are two concomitant events that contribute to optic vesicle lateralization. The first one is the Shh-dependent specification of the neural plate overlying the prechordal plate into the hypothalamic primordium, which therefore intervenes the two vesicles. The second is the patterning of the optic vesicles along their proximal–distal axis, which involves the Shh-mediated specification of the proximal/optic stalk domain (reviewed in 17). In teleost fishes, the Shh-mediated posterior-to-anterior migration of medial cells that intercalate into the retinal field is an additional factor. Genetic inactivation of basic components of the Shh pathway in mouse or zebrafish and mutational screening in patients with HPE confirmed the importance of Shh signaling in ventral central nervous system (CNS) patterning and
thus in the proper positioning and growth of the optic vesicles. Similar studies have also shown that Cdon, Boc, Gas1, and LRP2 participate in these developmental events.

Cdon and Boc are closely related cell adhesion molecules that can form homophilic and heterophilic complexes and interact with both Shh and Ptc (reviewed in 27). Cdon/Boc interaction with Ptc increases high-affinity ligand binding, indicating their function as Ptc co-receptors and thus as positive signaling regulators. The two genes are expressed with largely overlapping patterns that include the entire dorsal neural tube and the developing eye and ear and the olfactory system. This distribution often coincides with that of Gas1, encoding a GPI (glycosylphosphatidylinositol)-linked protein that also interacts with Shh and Ptc (Figure 1A). Mouse embryos lacking Cdon, Boc, and Gas1 show a phenotype that mimics Shh loss of function, which leads to the absence of the entire ventral neural tube resulting in severe HPE and early embryonic defects.

Figure 1. Cdon, Boc, and Gas1 act as positive regulators of Shh signaling during optic vesicle formation. The diagrams represent the interaction of Cdon, Boc, and Gas1 with Ptc and Shh during Shh-mediated patterning of the ventral neural tube in wild-type embryos (A) or in embryos with genetic inactivation of either Cdon or Gas1 function (B) or lacking Cdon, Boc, and Gas1 (C). The three co-receptors interact with Ptc and the complex binds Shh with high affinity. In the presence of Shh, Smo is de-repressed (red crosses) and activates a signal transduction cascade that culminates with Gli-mediated transcription of Shh target genes. The Cdon/Ptc and Boc/Ptc interactions are mediated by the FnIIIa and FnIIIb domains (green) of Cdon and Boc, respectively. Binding of Shh to Cdon or Boc is mediated by the FnIIIc domain (pink). In the absence of either Cdon or Gas1, Shh is less activated (dotted red crosses), resulting in mild craniofacial defects. Loss of all three co-receptors prevents pathway activation, resulting in severe HPE, a phenotype that mimics Shh loss of function. Boc, Brother of Cdon; Cdon, cell adhesion molecule-related, downregulated by oncogenes; Gas1, growth arrest protein 1; HPE, holoprosencephaly; Ptch, patched; Shh, sonic hedgehog; Smo, smoothened.
lethality (Figure 1C). This indicates that the three co-receptors play positive and overlapping roles in regulating Shh pathway activation\(^{23,24}\). Furthermore, Shh signaling represses Cdon, Boc, and Gas1 expression\(^{43,45}\). This suggests that these co-receptors may serve as buffers to prevent possible defects due to abnormally low Shh signaling because, if Shh activity decreases, their upregulation could boost signaling again. However, genetic inactivation of the individual co-receptor genes reveals non-equivalent roles. Gas1 null mouse embryos present ventral neural tube defects, mild HPE, and mis-specification of the ventral retinal pigment epithelium into a neural retina-like tissue\(^{25,26}\). Cdon null embryos display a similar mild HPE (Figure 1B) with small eyes and coloboma (opened optic fissure)\(^{27,29}\). Boc null mice instead have none of these defects but, when crossed with either Cdon or Gas1 mutants, enhance their respective HPE phenotype\(^{30,32}\). Whether Boc also modifies their respective specific eye phenotype remains to be studied.

Somewhat in line with these differences, systematic genomic sequencing analysis of patients with HPE has identified causative mutations in the CDON gene\(^{24,28}\) but only sequence variations suggestive of a modifier role for BOC and perhaps for GAST\(^{26}\).

Given that these co-receptors have all been shown to foster Shh signaling, it is not obvious why their loss of function causes these phenotypic differences, especially in the case of the closely related Cdon and Boc. One possibility is that Shh signaling exerts a differential negative regulation on their expression. Alternatively (or additionally), Cdon and Boc may employ distinct mechanisms to enhance Shh signaling, as recently suggested\(^{32}\). For example, the ectodomain of Boc, but not that of Cdon, can be proteolyzed\(^{27}\). If this proteolysis occurs in vivo, which is still a matter of speculation, Boc ectodomain could enhance Shh diffusion and at the same time terminate high-affinity binding of Shh to Ptc. The two effects may compensate one another, explaining the lack of HPE phenotype in Boc mutants. Variations in Cdon, Boc, and Gas1 distribution may also underlie the observed differences in the mutants’ phenotype.

This differential expression may also offer an alternative explanation for how Cdon and Boc influence Shh signaling. Indeed, whereas the ventral neural tube and optic vesicle expression of Gas1\(^{41}\) makes it easy to understand its Ptc co-receptor function, the predominant dorsal expression of Cdon and Boc\(^{42,43}\) makes the same function less immediately understood. Boc and Cdon could be transiently expressed in the ventral neural tube right when needed for early patterning, as reported for the zebrafish Boc orthologue\(^{44}\). However, the expression of Cdon, but not Boc, in the axial midline of both mouse and zebrafish\(^{45,46}\) suggests that Cdon could have the additional role of favoring Shh release from the producing cells. The Drosophila homologue of Cdon, interference Hh (ihog), has been reported to have such an activity\(^{47}\), although motif differences between Shh and its Drosophila homologue Hh call for caution in applying directly to vertebrates what has been learned in the fly\(^{48}\). Nevertheless, the HPE phenotype of Cdon null embryos could easily be explained by an attenuated Shh release from the midline, a function in which Boc may not be implicated.

At the moment, this is only a hypothesis but it may be worth testing. It is equally unexplored whether LRP2 can functionally interact with Boc, Cdon, or Gas1 or with their possible different heterodimeric or trimeric complexes. LRP2 facilitates Shh/Ptc binding and promotes the internalization of the complex, which is required to relieve Smo inhibition. Thus, in the absence of LRP2, Shh signaling is impaired, leading to embryos with an HPE phenotype\(^{49}\). It remains an open question whether LRP2 promotes Cdon, Boc, and Gas1 internalization when bound to Ptc or instead competes with them for Ptc and Shh binding.

Cdon, Boc, and LRP2 can counteract Shh signaling during retinal development

The work we have discussed so far, independently of the still-puzzling aspects, supports a positive role of Cdon, Boc, Gas1, and LRP2 in Shh signaling and thus in the specification of the ventral CNS and eye separation. However, Cdon, Boc, and LRP2 have been shown to act as negative regulators of Shh signaling as retinal development progresses, although each one of them does so in different contexts (Figure 2).

As mentioned before, the formation of two bilateral optic vesicles implies the compartmentalization of its neuroepithelium in different domains along the different axes. One of the first subdivisions occurs along the proximo–distal axis of the vesicle and originates the prospective optic stalk proximally and the prospective retina distally (Figure 2A). The establishment of the optic stalk and retinal domains is defined by the specific and respective expression of two paired- and homeobox-containing transcription factors: paired box protein Pax-2 (Pax2) and Pax6 (reviewed in 44). The two factors cross-repress each other and thus define a sharp border between the two territories\(^{45}\) (Figure 2A). Shh signaling promotes Pax2 expression, thereby imposing optic stalk identity. When Shh is reduced or absent, the optic stalk domain is smaller or absent and the two retinal domains tend to fuse together. Shh overexpression has the opposite effect with an excess of Pax2-positive optic stalk that overtakes the retinal domain by repressing Pax6\(^{47,48}\). This means that the right amount of Shh signaling is critical to form a precise boundary between the optic stalk and the retina. Recent studies have shown that, at least in zebrafish and chick embryos, Cdon participates in the establishment of this boundary\(^{50}\). In both species, ptc is expressed in the pax2-positive optic stalk, whereas cdon, but not boc, is strongly expressed in the presumptive neural retina overlapping with pax6 distribution (Figure 2A)\(^{45}\). The complementarity between ptc and cdon expression advocates against a synergistic role. Indeed, morpholino-mediated knockdown of cdon allows for the expansion of the optic stalk, decreases eye size, and prevents optic fissure closure, indicating that Cdon counteracts Shh effect\(^{51}\). This phenotype depends on the ability of Cdon to bind Shh but not Ptc. Furthermore, it is a direct consequence of Cdon activity in the retina because targeted cdon overexpression in the zebrafish retina is sufficient to rescue the phenotype of cdon knockdown and spatiotemporal restricted interference with Cdon retinal expression in chick embryos mimics the zebrafish phenotype\(^{40}\).

The precise mechanism by which this happens is still undefined; however, when mis-expressed close to the optic recess midline (a Shh source), Cdon binds Shh with great efficacy and serves as a sink to limit ligand availability to the nearby cells\(^{40}\). This indicates that Cdon acts as a decoy receptor to protect the neural retina from Hh activity (Figure 2A).
Figure 2. Cdon, Boc, and Lrp2 antagonize Shh activity during retina development. (A) Schematic dorsal view of the optic vesicle (left) and enlarged view of the optic stalk/neural retina border (right). The expression domains of Pax2 (blue) and Pax6 (brown) are indicated in the scheme. At the border of these two domains, Cdon binds Shh, serving as a decoy receptor to protect the neural retina from midline-derived Shh activity. Note that the Ptch receptor localizes only in the Pax6-positive neural retina domain. (B) Schematic frontal view of mature retina (left) and enlarged view of the retinal periphery (right). Contralateral RGCs produce and secrete Shh. Ipsilateral projecting RGCs express the co-receptor Boc that prevents Shh diffusion and thus signal activation. Low Shh signal allows for the specification of ipsilateral program specification in RGCs of the VTC. Lrp2/Megalin instead limits Shh proliferative activity by endocytic clearance of Shh at the CMZ. Boc, Brother of Cdon; Cdon, cell adhesion molecule-related, downregulated by oncogenes; CMZ, ciliary marginal zone; Hyp, hypothalamus; Lrp2, low-density lipoprotein receptor-related protein 2; NR, neural retina; OS, optic stalk; Pax2, paired box protein Pax-2; Pax6, paired box protein Pax-6; Ptch, patched; RGC, retinal ganglion cell; Shh, sonic hedgehog; VTC, ventrotemporal crescent.
A similar function has been postulated for Boc during mouse retinogenesis\(^6\). Retinal ganglion cells (RGCs) are the first neurons to be born in the retina of all vertebrates. Newly generated RGCs express Shh, and this expression promotes the propagation of RGC specification and differentiation, the proliferation of retinal precursors, and their differentiation toward other neuronal cell types (reviewed in 47,48). In the mouse, a small proportion of RGCs located in the ventrotemporal crescent of the retina do not express Shh\(^6\) (Figure 2B). These neurons are special because, in contrast to all the Shh-positive RGCs, they project to the ipsilateral side of the brain, enabling the semilunar vision typical of rodents. These ipsilateral RGCs express Boc\(^49,50\). In these neurons, Boc is necessary to keep Shh signaling low, thereby enabling the expression of the transcription factor Zic2\(^40\), a determinant of the ipsilateral program\(^51\). Thus, in Boc null mice, part of ipsilateral RGCs are mis-specified, acquiring a contralateral projecting phenotype with a consequent alteration of the retinal projections\(^46\). In an additional and not necessarily contrasting view, Boc, present on the membrane of ipsilateral RGC growth cones, mediates guidance information provided by Shh at the optic chiasm midline, forcing the axons to enter the ipsilateral optic tract\(^50\). Notably, Shh, transported along the axons of the contralaterally projecting RGCs\(^49,52\), seems to be released at high concentrations and with a still-unknown mechanism (see 53 for discussion), right at the chiasm providing Boc-mediated repulsive information to ipsilateral axons\(^51\). Thus, in this case, Boc would act as a positive mediator of Shh. Whether the same molecule can have a double function in the same cell remains to be established, but, in a speculative view, Boc interactions at the perikaryon could be different from those existing at the growth cone.

Independently of this still-unanswered question, both Cdon and Boc can function as negative regulators of Shh activity, limiting ligand dispersion, a function that has been observed in Drosophila wing disc and ovary development\(^1,34,35\). Incidentally, both Cdon and Boc, when ectopically expressed close to a Shh source, localize predominantly at the basal side of the neuroepithelial cells, where they accumulate most of the bound Shh protein\(^40\). A recent study revisiting the function of Hhip (Hh-interacting protein)—initially defined as a membrane-bound negative regulator of HH signaling\(^36\)—showed that Hhip is secreted and localizes to the neuroepithelial basal membrane\(^37\). The basal localization of both Cdon and Hhip is interesting because it may serve to clear the ligand from the apical surface of the neuroepithelial cells, where the primary cilium localizes. This organelle is fundamental for Shh signal transduction, as it hosts the main components of the transduction machinery of this pathway\(^38\).

A negative regulation of Shh signaling, based on a different mechanism of ligand clearance, has also been proposed for LRP2. Though initially expressed in the whole optic cup, LRP2 expression becomes restricted to the peripheral margin as retina differentiation proceeds. This region, called the ciliary marginal zone (CMZ), is a source of progenitor cells in fish and amphibians\(^5\) and likely also in the mammalian embryonic retina\(^60,61\). The CMZ is normally devoid of Shh activity. Deficiency of Lrp2 in mice or zebrafish causes enlarged and exophthalmic eyes\(^62–65\), a pathological condition known as buphthalmos and observed in patients carrying LRP2 mutations\(^66\). Searching for an explanation for this phenotype, Christ et al.\(^63\) found elevated transcript levels for GLI family zinc finger 1 (Gli1) and Ptc1 genes, two Shh targets, suggesting that LRP2 protects the CMZ from the influence of RGC-derived Shh. In the absence of LRP2, Shh induces CMZ progenitor hyperproliferation, expanding the overall eye size. Mechanistically, LRP2 mediates lysosomal clearance of Shh alone, thereby maintaining the CMZ quiescent\(^68\) (Figure 2B).

Although their local function has not been explored in detail, Cdon, Boc, and Gas1 are also strongly expressed in the CMZ\(^36,40,49\), making this structure an attractive model to study possible interaction among all these Shh-binding proteins. In a speculative view, they could all concur to make the CMZ a Shh-free zone given that Gas1 has also been initially proposed to work as a Shh sink\(^34\).

In conclusion, going back to the original discussion point, “economy” could be the main advantage of controlling potent signaling molecules with membrane-bound proteins. Cdon, Boc, and Lrp2—in the specific case of Shh—seem to act as both positive and negative regulators of the signaling pathway depending on their additional interaction with other membrane-bound proteins (Ptc1). In a speculative view, an economical way of changing the role for these regulators from a positive to a negative one might be their shuttling from the apical to the basal membrane. The destiny of Shh bound to Boc or Cdon when these proteins act as negative regulators is a matter of speculation. However, in the same economical view, unwanted Shh could be recycled back to the tissue where it is needed, such as from the neural retina to the optic stalk. The observed redundancy of regulatory molecules may not fall into the view of economy, although redundancy might be the best way of ensuring the needed levels of Shh during development and homeostasis.

Abbreviations

Bmp, bone morphogenetic protein; Boc, Brother of Cdon; Cdon, cell adhesion molecule-related, downregulated by oncogenes; CMZ, ciliary marginal zone; CNS, central nervous system; Gas1, growth arrest protein 1; Hh, hedgehog; Hhip, hedgehog-interacting protein; HPE, holoprosencephaly; LRP2, low-density lipoprotein receptor-related protein 2; Ptc2, paired box protein Pax-2; Pax6, paired box protein Pax-6; Ptc1, patched; RGC, retinal ganglion cell; Shh, sonic hedgehog; Smo, smoothened

Acknowledgments

Work in our lab is currently supported by the following grants: MINECO BFU2016-75412-R with FEDER funds, BFU2016-81887-REDT, and PCIN-2015-176-C02-01/ERA-Net NeuronII; Fundación Ramón Areces-2016 and CIBERER, ISCIII (to PB). VG holds H2020-MSCA-IF-2016 grant 740916. We acknowledge an Institutional CBMSO Grant from the Fundación Ramón Areces.
Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000; 113(Pt 7): 1101–9. Published Abstract

Bovolenta PG, Gomy AK, Esteve P, et al.: Secreted Wnt Inhibitors or Modulators. Wnt Signaling in Development and Disease: Molecular Mechanisms and Biological Functions. 2014; 177–93. Publisher Full Text

Esteve P, Sandoan A, Ibañez C, et al.: Secreted frizzled-related proteins are required for Wnt9b-catenin signalling activation in the vertebrate optic cup. Devel. 2013; 138(19): 4179–84. Published Abstract | Publisher Full Text

Holly VL, Widen SA, Fumisuki JK, et al.: Strp1 and Strp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol. 2014; 388(2): 192–204. Published Abstract | Publisher Full Text

Mii Y, Taira M: Secreted Wnt inhibitors are not just inhibitors: Regulation of extracellular Wnt by secreted Frizzled-related proteins. Dev Growth Differ. 2011; 53(9): 911–23. Published Abstract | Publisher Full Text

Sugiyama Y, Shelley EJ, Wen L, et al.: Strp1 and Strp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt9b-catenin signaling in lens epithelial cells. Dev Biol. 2013; 384(2): 181–93. Published Abstract | Publisher Full Text | Free Full Text

Turing AM: The chemical basis of morphogenesis. 1953. Bull Math Biol. 1990; 52(1-2): 153–97, discussion 119–52. Published Abstract | Publisher Full Text

VanEeden L: Positional information and patterning revisited. J Theor Biol. 2011; 269(1): 359–65. Published Abstract | Publisher Full Text

Briscoe J, Small S: Morphogen rules: design principles of gradient-mediated embryo patterning. Development. 2015; 142(3): 3969–4009. Published Abstract | Publisher Full Text | Free Full Text

Li P, Markson JS, Wang S, et al.: Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science. 2018; 360(6388): 543–8. Published Abstract | Publisher Full Text | Free Full Text

Stapoumoglou KS, Salbreux G, Vincent JP: Developmental Biology: Morphogen in a Dish. Curr Biol. 2018; 28(13): R755–R757. Published Abstract | Publisher Full Text | F1000 Recommendation

Takahishy H, Kuzmickas RP, Jao CY, et al.: Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2012; 2(2): 308–20. Published Abstract | Publisher Full Text | Free Full Text

Allen BL, Song JY, Izzii L, et al.: Overlapping roles and collective requirement for the coreceptors Gas1, Cdo, and BOC in SHH pathway function. Dev Cell. 2011; 20(6): 775–87. Published Abstract | Publisher Full Text | Free Full Text

Izzii L, Lévesque M, Morin S, et al.: Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell. 2011; 20(6): 788–801. Published Abstract | Publisher Full Text | Free Full Text

Christ A, Christa A, Kuri E, et al.: LRPII is an auxiliary SHH receptor required to condition the forebrain ventral midline for inductive signals. Dev Cell. 2012; 22(2): 268–78. Published Abstract | Publisher Full Text | F1000 Recommendation

Pasapati GV, Kong JH, Patel BB, et al.: CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. Dev Cell. 2018; 44(1): 113–129.e8. Published Abstract | Publisher Full Text | Free Full Text

Marli E, Bovolenta P: Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 2002; 25(2): 89–96. Published Abstract | Publisher Full Text

Petryk A, Graf D, Marcuccio P: Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdiscip Rev Dev Biol. 2019; 5(1): 17–32. Published Abstract | Publisher Full Text | Free Full Text

Chiang C, Liingting Y, Lee E, et al.: Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature. 1996; 383(6599): 407–13. Published Abstract | Publisher Full Text

Walls DE, Muñecos M: Molecular mechanisms of holoprosencephaly. Mol Genet Metab. 1999; 68(2): 126–38. Published Abstract | Publisher Full Text

Sinn R, Wittbrodt J: An eye on eye development. Mech Dev. 2013; 130(6-8): 347–68. Published Abstract | Publisher Full Text

Solomon BD, Mercier S, Vélez JJ, et al.: Analysis of genotype-phenotype correlations in human holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010; 154C(1): 133–41. Published Abstract | Publisher Full Text | Free Full Text

Bae GU, Doemeli S, Roessler E, et al.: Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet. 2011; 88(2): 231–40. Published Abstract | Publisher Full Text | Free Full Text

Coppola M, Xavier GM, Fan CM, et al.: Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function. Biol Open. 2014; 3(8): 728–40. Published Abstract | Publisher Full Text | Free Full Text

Zhang W, Hong M, Bae GU, et al.: Boc modifies the holoprosencephaly spectrum of Cdo mutant mice. Dis Model Mech. 2011; 4(3): 368–80. Published Abstract | Publisher Full Text | Free Full Text

Christ A, Herzog K, Willnow TE: LRPII, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn. 2016; 245(5): 569–79. Published Abstract | Publisher Full Text | F1000 Recommendation

Sanchez-Arrones L, Cardozo M, Nieto-Lopez F, et al.: Cdon and Boc: Two transmembrane proteins implicated in cell-cell communication. Int J Biochem Cell Biol. 2012; 44(5): 698–702. Published Abstract | Publisher Full Text

Jang KS, Gao M, Feinberg J, et al.: CDO: An oncogene, serum, and anchorage-regulated member of the Ig/lectin family type III receptor family. J Cell Biol. 1997; 138(1): 203–13. Published Abstract | Publisher Full Text | Free Full Text

Song JY, Holz AM, Pinsky ME, et al.: Distinct structural requirements for CDON and BOC in the promotion of Hedgehog signaling. Dev Dyn. 2015; 204(2): 219–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Tenz C, Allen BL, Cole F, et al.: The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell. 2006; 10(5): 647–56. Published Abstract | Publisher Full Text

Muller PJ, Kang JS, Sassoon DA, et al.: Expression of the boc gene during murine embryogenesis. Dev Dyn. 2002; 223(3): 379–88. Published Abstract | Publisher Full Text

Muller PJ, Okada A, Sassoon DA, et al.: Developmental expression pattern of the cd gene. Dev Dyn. 2000; 218(1): 40–5. Published Abstract | Publisher Full Text

Allen BL, Tenz C, McMahon AP: The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev. 2007; 21(10): 1244–57. Published Abstract | Publisher Full Text | Free Full Text

Lee CS, Butitta L, Fan CM: Evidence that the WNT-inducible growth arrest- specific gene 1 encodes an antagonist of sonic hedgehog signaling in the somite. Proc Natl Acad Sci U S A. 2001; 98(20): 11347–52. Published Abstract | Publisher Full Text | Free Full Text

Martinelli DC, Fan CM: Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev. 2007; 21(10): 1231–43. Published Abstract | Publisher Full Text | Free Full Text

Lee CS, May NR, Fan CM: Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Dev Biol. 2001; 236(1): 17–29. Published Abstract | Publisher Full Text

Zhang W, Muller PJ, Gao U, et al.: Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo. FEBS J. 2009; 276(20): 5989–6010. Published Abstract | Publisher Full Text

Roessler E, Hu P, Marino J, et al.: Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved genes of midline development controlled by TGF-beta, hedgehog and FGF signaling. Hum Mutat. 2018; 39(10): 1416–27. Published Abstract | Publisher Full Text | F1000 Recommendation

Gengeron SA, Tyurina OV, Miller E, et al.: Brother of cdo (umleitung) is cell- autonomously required for Hedgehog-mediated ventral CNS patterning in the zebrafish. Development. 2011; 138(1): 75–85. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Cardozo MJ, Sanchez-Arrones L, Sandoan A, et al.: Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun. 2014; 5: 4272 Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Bilioni A, Sanchez-Hernandez D, Calleja A, et al.: Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol. 2013; 376(2): 198–312. Published Abstract | Publisher Full Text

Roisink H: Sonic Hedgehog is a Member of the Hh/DD-Peptidase Family That Spans the Eukaryotic and Bacterial Domains of Life. J Dev Biol. 2018; 6(2): pxi: E12. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
43. Spoelgen R, Hammes A, Arnzenberger U, et al.: LRP2/megalin is required for patterning of the ventral telencephalon. Development. 2000; 127(2): 405–14. PubMed Abstract | Publisher Full Text
44. MacDonald R, Wilson SW: Pax proteins and eye development. Curr Opin Neurobiol. 1996; 6(1): 49–56. PubMed Abstract | Publisher Full Text
45. Schwarz M, Cecconi F, Bernier G, et al.: Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development. 2000; 127(20): 4325–34. PubMed Abstract
46. Sánchez-Amonés L, Nieto-Lopez F, Sánchez-Camacho C, et al.: Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. J Neurosci. 2013; 33(20): 8596–607. PubMed Abstract | Publisher Full Text | Free Full Text
47. Amato MA, Boy S, Perron M: Hedgehog signaling in vertebrate eye development: a growing puzzle. Cell Mol Life Sci. 2004; 61(7–8): 899–910. PubMed Abstract
48. Estève P, Bovolenta P: Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol. 2006; 16(1): 13–9. PubMed Abstract | Publisher Full Text
49. Sánchez-Camacho C, Bovolenta P: Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development. 2008; 135(21): 3531–41. PubMed Abstract | Publisher Full Text
50. Fabre P, Shimogori T, Charron F: Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc. J Neurosci. 2010; 30(1): 266–75. PubMed Abstract | Publisher Full Text
51. Herrera E, Brown L, Anda J, et al.: Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell. 2003; 114(5): 545–57. PubMed Abstract | Publisher Full Text | F1000 Recommendation
52. Peng J, Fabre P, Dolique T, et al.: Sonic Hedgehog is a Remotely Produced Cue that Controls Axon Guidance Trans-axonally at a Midline Choice Point. Neuron. 2018; 97(2): 326–340 e4. PubMed Abstract | Publisher Full Text | F1000 Recommendation
53. Herrera E, Sitko AA, Bovolenta P: Shh-ushing Midline Crossing through Remote Protein Transport. Neuron. 2018; 97(2): 256–8. PubMed Abstract | Publisher Full Text
54. Hartman TR, Zinshteyn D, Schofield HK, et al.: Drosophila Boi limits Hedgehog levels to suppress follicle stem cell proliferation. J Cell Biol. 2010; 191(5): 543–52. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
55. Yan D, Wu Y, Yang Y, et al.: The cell-surface proteins Dally-like and ihog differentially regulate Hedgehog signaling strength and range during development. Development. 2010; 137(12): 2033–44. PubMed Abstract | Publisher Full Text | Free Full Text
56. Jeong J, McMahon AP: Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hipp1. Development. 2005; 132(1): 143–54. PubMed Abstract | Publisher Full Text | F1000 Recommendation
57. Holtz AM, Griffiths SC, Davis SJ, et al.: Secreted HHIP1 interacts with heparan sulfate and regulates Hedgehog ligand localization and function. J Cell Biol. 2015; 209(5): 739–57. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
58. Bangs F, Anderson KV: Primary Cilia and Mammalian Hedgehog Signaling. Curr Opin Genet Dev. 2007; 17(5): pii: e0128175. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
59. Perron M, Harris WA: Retinal stem cells in vertebrates. Bioessays. 2000; 22(6): 685–8. PubMed Abstract | Publisher Full Text
60. BéLANGER MC, Robert B, Coueyette M: Max1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Dev Cell. 2017; 40(2): 137–50. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
61. Marcucci F, Murcia-Belmonte V, Wang Q, et al.: The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells. Cell Rep. 2016; 17(12): 3153–64. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
62. Veth KN, Willer JR, Colery RF, et al.: Mutations in zebrafish ipp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet. 2011; 7(2): e1001310. PubMed Abstract | Publisher Full Text | Free Full Text
63. Storm T, Heegaard S, Christensen EI, et al.: Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice. Cell Tissue Res. 2014; 358(1): 99–107. PubMed Abstract | Publisher Full Text | Free Full Text
64. Cases O, Joseph A, Obry A, et al.: Foxg1-Cre Mediated Lrp2 Inactivation in the Primary Cilia and Mammalian Hedgehog Signaling. Dev Cell. 2017; 40(2): e1001310. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
65. Christ A, Christa A, Klippert J, et al.: LRP2 Acts as SHH Clearance Receptor to Protect the Retinal Margin from Mitogenic Stimulation. Dev Cell. 2015; 35(1): 36–48. PubMed Abstract | Publisher Full Text | F1000 Recommendation
66. Pober BR, Longoni M, Noonan KM: A review of Donnai-Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res A Clin Mol Teratol. 2009; 85(1): 76–81. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1
1 Andrew J. Waskiewicz Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
 Competing Interests: No competing interests were disclosed.
2 Michel Cayouette Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada; Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
 Competing Interests: No competing interests were disclosed.
3 Valerie A Wallace Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network and Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com