Effect of *in-ovo* feeding of iron nanoparticles and methionine hydroxy analogue on broilers chickens small intestinal characteristics

Masoumeh Abbasinezhad Laledashti¹, Ali Asghar Saki¹*, Amir Abbas Rafati² and Mansoureh Abdolmaleki¹

¹Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. ²Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran. *Author for correspondence. E-mail: alisaki34@yahoo.com

ABSTRACT. The experiment was conducted with 644 Ross fertilized egg by 7 treatments 4 replicates and 23 eggs in each. Seven treatments included two control with and without injection, iron sulfate, iron sulfate nanoparticles, Alimet, Alimet + iron sulfate, Alimet + iron sulfate nanoparticles. After hatching 2 mg iron nanoparticles were applied as new treatment. The highest increased in the intestinal relative weight (p < 0.05) was observed by iron+Alimet in late feeding at day old of age. Also similar trend was found in cecum and duodenum length by iron control 2 and late feeding (18 hours’ after hatching). The highest cecum length was found among all treatments by *in ovo* injection of iron nanoparticles in early feeding at 21 days of age (p < 0.05). Significantly increased the duodenum length was found by iron sulfate in early feeding at 42 days of age (p < 0.05). *In ovo* injection of Alimet in late feeding was resulted in decrease jejunum crypt depth at 21 days of age (p < 0.05). The results of this study have shown that the highest jejenum villi width and surface area were recorded in dietary iron sulfate nanoparticles in late feeding at 21 and 42 days of age (p < 0.05).

Keywords: broiler chicken; *in-ovo* injection; iron nanoparticles; methionine; small intestine.

Introduction

A large number of experiments have shown that deficiencies of some amino acids and micronutrients such as minerals particularly could affect not only on production but also in intestinal status (Klasing, 2007; Kogut & Klasing, 2009).

Iron-deficiency anaemia is as a public health problem (Stoltzfus, 2001). One of the strategies to overcome in this problem is add to food iron supplementary. Mineral elements such as iron are the vital components of poultry nutrition. Iron is necessary for transfer, reserve and use of oxygen (Richards, 1997). In addition, iron is a constituent of hemoglobin, transferrin, myoglobin, cytochromes, and many enzyme systems including catalase, peroxidase, and phenylalanine hydroxylase (Harvey, 2000). Hemoglobin and myoglobin are important determinant agents of the meat quality. Much of the organic iron in the body is found in the structure of hemoglobin, in muscles as myoglobin, and in liver, it is in the form of reserved ferritin and hemosiderin (Suttle, 2010). Many researches have supported the role of mineral elements in low consumption such as iron in the development of chicken embryo (McFarlane & Milne, 1934; Richards, 1997).

Sulphureted amino acids such as, methionine and cysteine, are important in the poultry diet (Grimble, 2006). The components of the poultry diet are often poor of sulphureted amino acids and, to compensate this lack, since synthetic methionine is needed to add in their diet (Al-Mayah, 2006).

The gastrointestinal tract (GIT) constitutes is the first barrier to nutrient metabolism in animals (Iji, Saki, & Tivey, 2001). The development of the digestive tract after the hatching plays crucial role in chickens in expression to the high genetic potential of growth rate. After hatching and initiation of feeding, the relative weight of the whole digestive tract increases by approximately 20% during the first 5 days, in fasting chickens there is almost no change during this time (Jin, Corless, & Sell, 1998). The rapid development of
the gastrointestinal tract post hatch is necessary. Intestinal villi are small, finger-like projections that protrude from the epithelial lining of the small intestine’s walls. Each villus is approximately 0.5-1.6 mm in length, and has many microvilli projecting from the enterocytes of its epithelium which collectively form the striated or brush border. The intestinal villi are much smaller than any of the circular folds in the intestine. In parallel with these morphological changes, the ability of the intestinal tissue to digest and absorb nutrients increased steadily during in first week of post hatch (Uni, Noy, & Sklan, 1999; Uni, Tako, Gal-Garber, & Sklan, 2003). Uni, Ganot, and Sklan (1998) have reported that delaying access to feed in chickens after hatching resulted in retardation in growth in all intestinal segments. Therefore, in early growth period, nutrition and applications of feeding have increased their importance due to high relationship between nutrition and growth of the digestive tract (Uni et al., 1998).

After hatching, the gastrointestinal tract undergoes morphological and physiological changes, including increased surface area for digestion and absorption. The morphological changes involve increases in intestinal length, villus height, density and, consequently, in the number of enterocytes and goblet and enteroendocrine cells (Imondi & Bird, 1966). The presence of nutrients in the intestinal lumen is able to stimulate villus and crypt growth (Moran Junior, 1985).

It is probable that the in ovo injection of iron especially in the form of nanoparticles of iron increases the absorption and methionine in embryonic period function effectively to provide oxygen to muscles and gastrointestinal sites. Therefore, the purpose of the present study was to evaluate the effect of in ovo feeding of iron sulfate nanoparticles and methionine hydroxy analogue on small intestinal characteristics in broilers chickens.

Material and methods

Birds, housing, and diets

The field operations of the study were carried out in the hall for the broiler research in Faculty of Agricultural in, Bu Ali Sina University, Hamadan, Iran. Experimental was arranged in poultry farm and Nutrition Laboratory.

The embryo experiment was conducted with 644 Ross fertilized eggs in 7 treatments, 4 replicates and 23 eggs in each: (1) control treatment (receiving no injection); (2) second control treatment (receiving injection of physiological serum); (3) iron sulfate: 25 ppm; (4) iron sulfate nanoparticles: 25 ppm; (5) methionine hydroxy analogue: 100 ppm; (6) chelate iron sulfate + methionine hydroxy analogue: 150 ppm (7) iron sulfate + methionine hydroxy analogue: 100 ppm.

In the first day of incubation, yolk was identified through candling and 0.3 mL of solutions was injected into eggs yolk. After hatching, all chickens were transferred to the rearing hall, they were fed by the starter and grower diet up to 42 days of age.

Chickens were fed 6 and 18 hours after hatching. The post-hatch chicks were allocated to 16 treatments (8×2 factorial design with 4 replicates in each) consisted of two factors of additives: (1) control (non-injected); (2) control (injected); (3) iron sulfate; (4) iron sulfate nanoparticle; (5) methionine hydroxy analogue; (6) iron sulfate bounded to methionine hydroxy analogue; (7) iron sulfate nanoparticle; (8) iron sulfate nanoparticle in diet.

Intestinal morphology

At the one, 21 and 42 days, two birds were randomly selected per replicate and slaughtered by cervical dislocation, then relative weight of small intestine was measured. Also, about 2-3 cm segment from midpoint of duodenum, jejunum, ileum and cecum were removed. The intestinal samples were washed with phosphate buffer solution (PBS) and fixed in 10% neutral buffered formalin solution at least in 24 hours. The fixed tissue samples were processed in an automatic tissue processor (Leica TP 1020 Tissue processing) and embedded in paraffin. Embedded samples were subsequently sectioned sagittal with a Rotary Microtome at 5μm. Morphometric indices were determined using computer-aided light microscope image analysis as described by Bird et al. (1994). The tissue sections on the slides were stained using Harris’s haematoxylin and eosin stains. The morphometric variables analysed included: villus height (from the tip of the villus to the villus crypt junction), crypt depth (defined as the depth of the invagination between adjacent villi), villus width, ratio of villus length to crypt depth and villus surface area. Values are means from 12 different villi and only vertically oriented villi and crypts were measured (Uni et al., 1999).
For analysis under a scanning electron microscope, the intestinal contents were removed with saline solution buffered with 0.1 M phosphate, pH 7.4, and the tissue samples were fixed in 2% glutaraldehyde in phosphate buffer for 24 h at 4°C. Subsequently, the tissue was washed in phosphate buffer and post fixed for 2 h in 1% osmium tetroxide. Next, the material was washed again with the same buffered solution and dehydrated in increasing ethanol series (30, 50, 70, 90, and 100% for 15 min each). Samples were dried in a critical point drier with liquid carbon dioxide. The material was then placed in an appropriate specimen tray, covered with a 30-nm layer of gold, and observed under a scanning electron microscope (EM3200 model).

Statistical analyse

Data were analyzed by the GLM procedure Statistical Analysis Software (SAS, 2004). Duncan’s multiple range tests was used for comparison of means (p < 0.05).

Results

Intestinal relative weight and length

One day-old chicken

In day-old chickens the highest increase in intestinal relative weight (p < 0.05) was obtained by treatment iron+Alimet with late feeding. Small intestinal length was increased by treatment control 1 and 2 (p < 0.05). Small intestinal and ileum length were increased by early feeding as well as increased cecum length by treatment control 2 and late feeding period (p < 0.05) (Tables 1, 2, 3).

Treatments	Effects	Relative Weight (%)	Length (cm)			
		Small intestinal	Duodenum	Jejunum	Ileum	Cecum
Control 1	6.5<ab	44.0a	8.8a	17.6a	17.6a	8.0a
Control 2	6.8<	43.9a	8.8a	17.8b	17.5<ab	8.0<
Sulfate Fe	6.1<	42.0<	8.2<	17.1<bc	16.8<bc	8.0<
Iron nanoparticles	6.5<bc	41.9<	8.2<	17.6<	16.2<bc	7.5<
Alimet	5.9<bc	41.4<	8.1<bc	16.8<	16.5<bc	7.9<
Iron+Alimet	6.2<bc	41.2<	7.9<bc	17.0<	16.3<bc	7.5<
Iron nanoparticles+Alimet	5.8<	40.2<	7.7<	16.3<	16.2<bc	7.3<
Iron nanoparticles in diet	5.3<	39.7<	7.9<bc	16.4<	15.4<	7.5<
P value	0.0002	<0.0001	<0.0001	0.0001	<0.0001	<0.0001
SEM	0.19	0.34	0.15	0.19	0.29	0.10

Post hatch fasting time

6 h	5.9<	42.1<	8.2	17.1	16.8<	7.8
18 h	6.1<	41.5<	8.2	17.0	16.2<	7.7
P value	<0.0001	0.03	0.8	0.47	0.005	0.13
SEM	0.09	0.17	0.08	0.09	0.14	0.05

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.

Twenty one days of age

The intestine length was decreased by control 2 compared with all other treatments (p < 0.05). The highest caecum length was found between all treatments by in ovo injection of iron nanoparticles in early feeding at 21 days of age (p < 0.05) (Tables 4, 5, 6).

Forty two days of age

Increased jejunum and intestine length were found by treatment control 1 in late feeding (p < 0.05). Significantly increased the duodenum length was achieved by iron sulfate with early feeding at 42 days of age (p < 0.05) (Tables 7, 8, 9).

Duodenum, jejunum and ileum morphology

One day-old chicken

The results in day-old chickens have indicated that no significant differences were shown with the main and interactions effects of treatments in duodenum intestinal morphology (p < 0.05) (Tables 10, 11). In exception of...
early feeding could increase the ratio of duodenum villus length to crypt depth and duodenum villus surface area (p < 0.05). In addition, jejunal villus length and ratio villus length to crypt depth were increased by early feeding (p < 0.05). In contrast the lowest crypt depth was obtained by dietary iron sulfate nanoparticles (p < 0.05).

Treatments	Length (cm)	Small intestinal	Duodenum	Jejunum	Ileum
Control 1+6 h	44.2	8.9	17.5	17.8	
Control 2+6 h	44.5	8.8	17.7	17.8	
Sulfate Fe+6 h	44.5	8.0	17.2	17.2	
Iron nanoparticles+6h	42.2	8.1	17.0		
Aliment+6 h	40.7	7.9	16.7	16.1	
(Iron+Aliment)+6h	40.4	7.5	16.2	16.8	
Iron nanoparticles+Aliment+6h	39.6	8.0	16.5	15.2	
Iron nanoparticles in diet+6h	39.6	8.0	16.5	15.2	
Control 1+18h	43.8	8.7	17.8	17.3	
Control 2+18h	43.6	8.9	18.0	16.8	
Sulfate Fe+18h	41.6	8.4	16.9	16.3	
Iron nanoparticles+18h	41.0	7.8	17.6	15.7	
Aliment+18 hours	40.7	8.1	16.7	15.9	
(Iron+Aliment)+18h	41.8	8.0	17.4	16.5	
Iron nanoparticles+Aliment+18h	39.9	7.9	16.4	16.7	
Iron nanoparticles in diet+18h	39.8	7.8	16.5	15.7	

P-value interactions 0.12 0.22 0.5 0.22
P-value treatments <0.0001 <0.0001 <0.0001 0.0002
SEM 0.49 0.22 0.27 0.41

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.

Table 4. Effect of treatments on intestinal relative weight and length in 21 days of age chickens.

Treatments	Relative Weight (%)	Length (cm)				
	Small intestinal	Duodenum	Jejunum	Ileum	Cecum	
Control 1	14.0	124.3	12.0	66.7^a	45.5	16.7
Control 2	13.9	112.5^b	12.0	57.4^a	43.1	16.7
Sulfate Fe	13.2	126.6	12.4	68.7^b	46.2	16.8
Iron nanoparticles	13.3	125.8^b	12.3	64.9^b	48.7	17.0
Aliment	13.6	153.4^a	12.9	71.6^a	48.9	16.3
Iron+Aliment	13.1	125.3	12.3	65.7^b	45.0	16.5
Iron nanoparticles+Aliment	13.9	124.3^a	12.4	66.0^b	46.5	16.5
Iron nanoparticles in diet	13.2	125.6^b	12.1	67.9^b	45.5	16.7
P value	0.75	0.01	0.47	0.0002	0.57	0.33
SEM	0.46	3.38	0.28	1.78	2.08	0.21

Post hatch fasting time
6 h 14.0^a | 123.9 | 12.6^a | 65.7 | 44.8 | 16.6 |
18 h 13.1^b | 125.9 | 12.0^b | 66.4 | 47.6 | 16.7 |

| P value | 0.007 | 0.25 | 0.002 | 0.60 | 0.06 | 0.87 |
| SEM | 0.2 | 1.69 | 0.14 | 0.89 | 1.04 | 0.1 |

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.

Twenty one days of age

The main effects of duodenum crypt depth were increased by in ovo injection of Alimet+iron sulfate. Ratio of duodenum villus length to crypt depth was increased by control 1 and Alimet+iron sulfate nanoparticles comparison to Alimet, iron sulfate nanoparticles and Alimet+iron sulfate (p < 0.05). Significantly increased jejunal villus length was observed by Alimet+iron sulfate nanoparticles compared with all two controls, sulfate iron and iron sulfate nanoparticles (p < 0.05). Also significantly increased ratio jejunal villus lengths to crypt depth compared to all treatments were found by dietary iron nanoparticles (p < 0.05). The highest jejunal villi width and surface area were recorded in dietary iron nanoparticles with late feeding (p < 0.05). In ovo injection of Alimet with late feeding resulted in decrease jejunal crypt depth (p < 0.05) (Tables 12, 13).
Broilers affected by in-ovo feeding

Table 5. Effect of treatments on intestinal relative weight and length in 21 days of age

Treatments	Cecum (cm)
Control 1+6 h	16.7b
Control 2+6 h	16.7b
Sulfate Fe+6 h	16.9b
Iron nanoparticles+6h	17.5a
Alimet+6 h	15.7c
(Iron+Alimet)+6h	16.0bc
(Iron nanoparticles+Alimet)+6h	16.5bc
Iron nanoparticles in diet+6h	16.8bc
Control 1+18h	16.7b
Control 2+18h	16.6bc
Sulfate Fe+18h	16.7b
Iron nanoparticles+18h	16.3bc
Alimet+18h	16.9bc
(Iron+Alimet)+18h	16.9bc
(Iron nanoparticles+Alimet)+18h	16.5bc
Iron nanoparticles in diet+18h	16.6bc

P-value interactions 0.005

P-value treatments 0.02

SEM 0.5

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.

Table 6. Effect of treatments on intestinal relative weight and length in 21 days of age chickens.

Treatments	Relative Weight (%)	Length (cm)			
	Small intestinal	Duodenum	Jejunum	Ileum	
Control 1+6 h	14.9	126.0	12.1	67.4	46.5
Control 2+6 h	15.7	116.2	12.6	59.9	43.7
Sulfate Fe+6 h	14.0	125.3	12.5	68.3	44.5
Iron nanoparticles+6h	13.1	121.1	12.1	65.8	45.2
Alimet+6 h	13.9	135.4	13.6	71.5	49.6
(Iron+Alimet)+6h	13.0	116.0	12.7	61.8	41.6
Iron nanoparticles in diet+6h	14.1	122.4	15.1	65.5	45.8
Control 1+18h	13.3	122.5	12.3	66.8	43.5
Control 2+18h	15.1	122.7	11.9	66.1	44.6
Sulfate Fe+18h	12.1	108.9	11.5	54.9	42.6
Iron nanoparticles+18h	12.5	127.9	12.3	67.7	47.9
Alimet+18h	13.4	130.1	12.4	66.0	52.1
(Iron+Alimet)+18h	13.3	131.2	12.2	71.0	48.3
Iron nanoparticles in diet+18h	17.7	127.2	17.1	66.4	49.1

P-value interactions 0.06

P-value treatments 0.06

SEM 0.66

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.

Forty two days of age

No significant differences in duodenum villus length were indicated by all treatments (p > 0.05). In the main effects, significantly increased duodenum villus width was shown by treatment containing Alimet+iron sulfate compared to other treatments in exception of dietary iron nanoparticles and Alimet+iron sulfate nanoparticles (p < 0.05). Recorded lowest duodenum crypt depth and highest ratio duodenum villus length to crypt depth were shown by dietary iron sulfate and nanoparticles (p < 0.05). Significantly increased duodenum villus width by combination of Alimet+iron sulfate and delayed feeding. Combination of Alimet+iron sulfate nanoparticles and delayed feeding was the best treatment in regard to jejunal villus height. In ovo injection of Alimet with early feeding, Alimet+iron sulfate nanoparticles and delayed feeding in 42 days of age resulted the lowest jejunal crypt depth was recorded with sulfate iron and delayed feeding (p < 0.05). The highest jejunal villi surface area was found by dietary iron sulfate nanoparticles and late feeding (p < 0.05). Figures 1 shows scanning electron micrographs of the jejunal villus in 42 days of age (Tables 14, 15).
Changes in the empty. However, early feeding has influenced in this trend, because apart from Alimet, size or protein synthesis could leads to decreases pathogens (Gunal, Yayli, Kaya, Karahan, & Sulak, 2006). Changes in dietary composition. Furthermore, crypt depth and villous height are effective factors determining the primary site of nutrient absorption (Zhu, Zhong, Pandya, & Joerger, 2002). The innermost layer in small intestine is mucosa which includes absorption surface of villi. Enterocytes are the most important cells in villi which is responsible for absorption reactions. Their number is high in the villous head. Therefore, their higher number is associated with higher correlation coefficients of absorption. Bedford (1996) has reported that small intestine displayed changes in its absorptive surface in response to changes in dietary composition. Furthermore, crypt depth and villous height are effective factors determining the mucosal length and thus the nutrient absorption (Sharma, Schumacher, Ronaasen, & Coates, 1995).

Table 7. Effect of treatments on intestinal relative weight and length in 42 days of age chickens.

Treatments	Relative Weight (%)	Length (cm)				
	Small intestinal	Duodenum	Jejunum	Ileum	Cecum	
Control 1	24.0^a	155.3^a	13.9^{ab}	67.1	74.3^a	18.1^a
Control 2	23.8^b	150.2^b	14.4^{ab}	64.8	71.0^b	18.1^b
Sulfate Fe	22.4^c	147.2^c	14.5^c	64.1	68.6^c	17.7^c
Iron nanoparticles^a	25.2^a	147.3^a	14.1^b	65.7	69.5^a	17.6^a
Alimet^b	22.4^b	146.1^b	14.2^b	65.5	68.3^b	17.8^b
Iron+Alimet	21.0^c	145.8^c	13.7^{cd}	62.6	67.4^c	17.3^c
Iron nanoparticles+Alimet	21.1^b	144.5^b	13.5^{de}	63.7	67.5^b	17.4^b
Iron nanoparticles in diet	21.4^d	145.3^d	13.9^{cd}	62.6	66.7^d	17.3^d

SEM: standard error of the means.

Discussion

Results have shown that, Alimet increased intestine length in 21 and 42 days of age through improving protein synthesis, which in turn, increased protein in the intestinal tissues, metabolism and growth of epithelial cells. As organic acid, Alimet can also improve intestinal tissue, since its supplementation to diets could leads to decreases pathogens (Gunal, Yayli, Kaya, Karahan, & Sulak, 2006). Changes in the empty weight of visceral organs are generally due to variation in rate of cell proliferation, cell size or protein synthesis (Jii et al., 2001). However, early feeding has influenced in this trend, because apart from Alimet, feeding in 6 hours post-hatch increased intestine length.

Small intestine serves as the primary site of nutrient absorption (Zhu, Zhong, Pandya, & Joerger, 2002). The innermost layer in small intestine is mucosa which includes absorption surface of villi. Enterocytes are the most important cells in villi which is responsible for absorption reactions. Their number is high in the villous head. Therefore, their higher number is associated with higher correlation coefficients of absorption. Bedford (1996) has reported that small intestine displayed changes in its absorptive surface in response to changes in dietary composition. Furthermore, crypt depth and villous height are effective factors determining the mucosal length and thus the nutrient absorption (Sharma, Schumacher, Ronaasen, & Coates, 1995).

Table 8. Effect of treatments on intestinal relative weight and length in 42 days of age chickens.

Treatments	Relative Weight (%)	Length (cm)		
	Small intestinal	Jejunum	Ileum	Cecum
Control 1+6 h	151.6^{abcd}	66.0^{abc}	71.1^{ab}	
Control 2+6 h	150.1^{abcd}	65.6^{abcd}	70.2^{bc}	
Sulfate Fe+6 h	155.8^b	68.2^b	72.8^b	
Iron nanoparticles+6 h	143.9^{de}	62.9^{gde}	66.8^{bc}	
Aliment+6 h	151.9^{de}	67.2^b	69.8^{bc}	
(Iron+Aliment)+6h	144.2^{de}	67.8^{gde}	66.8^{bc}	
(Iron nanoparticles+Aliment)+6h	149.6^{ef}	65.5^{gde}	70.5^c	
Iron nanoparticles in diet+6h	140.4^d	61.8^{gde}	64.2^c	
Control 1+18h	159.0^b	64.1^{gde}	77.5^b	
Control 2+18h	150.3^{cd}	60.0^b	71.9^b	
Sulfate Fe+18h	138.7^c	64.4^{gde}	64.4^c	
Iron nanoparticles+18h	150.7^{cd}	59.9^b	72.3^b	
Aliment+18 hours	140.5^c	61.5^{de}	66.9^{bc}	
(Iron+Aliment)+18h	143.4^{de}	61.9^{gde}	68.1^c	
(Iron nanoparticles+Aliment)+18h	139.4^c	61.9^{gde}	64.5^c	
Iron nanoparticles in diet+18h	146.1^d	65.5^{gde}	69.2^c	

SEM: standard error of the means.
Broilers affected by in-ovo feeding

Table 9. Effect of treatments on intestinal relative weight and length in 42 days of age chickens.

Treatments	Relative Weight (%)	Duodenum (cm)	Cecum (cm)
Control 1+6 h	24.0	14.5	18.3
Control 2+6 h	23.5	14.4	18.1
Sulfate Fe+6 h	22.9	14.7	17.7
Iron nanoparticles+6h	23.8	14.5	17.9
Alimet+6 h	21.6	14.9	17.6
(Iron+Alimet)+6h	22.2	15.6	17.7
Iron nanoparticles in diet+6h	21.8	15.6	17.5
Control 1+18h	24.0	14.4	17.3
Control 2+18h	24.1	13.5	17.9
Sulfate Fe+18h	21.8	14.3	17.7
Iron nanoparticles+18h	22.6	14.0	17.5
Alimet+18 hours	23.1	13.6	18.1
(Iron+Alimet)+18h	19.8	13.8	16.9
Iron nanoparticles in diet+18h	20.4	13.1	17.3
Iron nanoparticles in diet+18h	20.9	13.4	17.3
p-value interactions	0.63	0.16	0.24
p-value treatments	0.072	0.002	0.04
SEM	0.51	0.15	0.14

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the means.
Table 10. Effect of treatments on intestinal morphology at one day old chickens.

Effects	Duodenum	Jejunum									
	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area	
	(μm)	(μm)	(mm²)		(μm)	(μm)	(mm²)		(μm)	(μm)	(mm²)
Control 1 (without injection)	355.0	72.1	64.0	5.44	4.58	231.6	67.6	6.18b	3.79	16.0	
Control 2 0.3 mL of NaCl 0.9%	328.0	79.3	64.1	5.25	5.11	216.5	64.1	50.3c	4.37	15.9	
Sulfate iron (Uni et al., 1998)	550.4	79.1	67.4	5.37	5.43	235.4	66.7	51.2c	4.58	15.6	
Iron nanoparticles + 18h	592.0	81.0	67.1	5.86	5.36	276.2	69.8	57.7c	4.79	19.8	
Alimet + 6h	386.2	76.8	58.3	6.68	4.55	290.4	65.3	50.4c	5.94	18.4	
Iron nanoparticles + Alimet + 6h	358.8	83.4	66.3	6.14	5.46	284.0	70.6	65.8a	4.54	20.9	
Iron nanoparticles in diet	591.5	71.3	62.0	6.85	4.46	272.9	69.9	57.2c	5.21	19.4	
Iron nanoparticles in diet + 6h	401.0	71.2	64.7	6.24	4.73	287.7	71.5	47.9c	6.13	20.4	
P value	0.34	0.24	0.93	0.13	0.78	0.15	0.89	0.02	0.07	0.38	
SEM	26.8	4.1	5.1	0.46	0.53	0.52	4.7	5.62	0.55	2.45	

Post hatch fasting time

	6 h	18 h								
	369.6	79.1	67.7	6.39a	5.38c	388.2a	67.3	54.5	5.36c	16.2b
SEM	273.7	42.7	60.2	5.56b	4.58b	235.3c	68.6	66.0	4.48c	19.9b
P value	0.85	0.1	0.06	0.02	0.04	0.002	0.7	0.49	0.05	0.04
SEM	15.4	2.1	2.6	0.23	0.27	11.45	2.34	1.81	0.27	1.22

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b, Means with common superscripts in same column are not significantly different (p < 0.05); SEM: standard error of the means.

Table 11. Effect of treatments on intestinal morphology at one day old chickens.

Treatments	Duodenum	Jejunum									
	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area	
	(μm)	(μm)	(mm²)		(μm)	(μm)	(mm²)		(μm)	(μm)	(mm²)
Control 1 + 6h	527.7	78.6	65.6	5.39	5.15	190.5	62.1	58.3	3.46	11.6	
Control 2 + 6h	530.7	82.5	63.6	5.22	5.30	201.8	64.5	53.5	3.86	13.0	
Sulfate Fe + 6h	546.5	86.3	70.0	4.97	6.05	203.7	67.0	49.2	4.15	15.8	
Iron nanoparticles + 6h	411.1	84.3	68.3	6.00	5.70	243.1	57.3	57.1	4.26	15.6	
Alimet + 6h	385.1	77.8	60.4	6.35	4.80	244.3	69.2	54.1	4.55	17.4	
Iron nanoparticles + Alimet + 6h	568.1	83.3	74.9	4.92	6.22	254.7	68.7	57.7	4.47	18.8	
Iron nanoparticles in diet + 6h	570.9	72.6	72.1	5.55	5.53	276.7	69.5	60.0	5.48	19.7	
P-value interactions	0.97	0.6	0.8	0.23	0.92	0.84	0.08	0.57	0.63	0.45	
P-value treatments	0.8	0.31	0.81	0.05	0.74	0.08	0.36	0.1	0.25	0.25	

SEM: standard error of the means.

As indicated by our findings, in-ovo injection of Alimet + iron sulfate nanoparticles, sulfite iron and Alimet with early feeding and dietary iron nanoparticles had desirable performance in almost all intestinal mucosal morphology parameters of duodenum and jejunum (villus width, villous surface area, and villous height to crypt depth ratio). Changes in villous properties are associated with intestinal performance and broiler growth rate. Treatments which resulted in higher villus width also scored high in body weight gain and feed conversion ratio (FCR). Crypt is considered as the villous factory and larger crypt is associated with more rapid tissue turnover and higher demand for more tissue (Zhu et al., 2002). Thus, higher crypt depth with injected materials has higher potentials to cell proliferation (Iji et al., 2001). Rapid increases in villous surface area and height take place in broilers 1-2 days post hatch (Uni et al., 1999). Two days post hatch (Uni et al., 1998) and in 12 days of age (Geyra, Uni, & Sklan, 2001). Different structures have been reported in duodenum, jejunum, and ileum, particularly the development rate of jejunum was far more rapid than others (Iji et al., 2001). During hatching, all three parts of the intestine show equal
surface area and show similar development until 3 days post hatching. Jejunum and ileum, villi surface displays an increase beginning in 4 days of age. This followed by an increase in jejunal surface area which is more pronounced than others. While duodenum and ileum showed slower rates of increase in surface area.

Table 12. Effect of treatments on intestinal morphology in 21 days of age chickens.

Effects	Control	Control 2	Sulfate Fe	Alimet	Iron nanoparticles	Iron nanoparticles+Alimet	Iron nanoparticles in diet	P value		
	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area	Villus length	Villus width	Crypt depth	Ratio	Villus Surface Area
μm	(mm²)	μm	(mm²)	μm	(mm²)	μm	(mm²)	μm	(mm²)	
Control 1	917.0	109.9	135.5	7.07	101.3	569.2	128.3	35.0	4.94	73.3
Control 2	911.7	131.1	155.6	5.97	119.9	574.1	129.4	33.4	5.32	74.2
Sulfate Fe	913.3	131.4	155.2	6.09	120.3	569.4	137.9	48.3	8.84	78.8
Iron nanoparticles	931.5	138.5	173.2	5.45	129.6	600.3	134.5	51.3	5.24	80.9
Alimet	900.6	135.9	164.2	5.53	125.4	612.9	144.9	51.9	5.32	89.3
Iron nanoparticles+Alimet	843.6	140.8	179.0	4.75	117.5	709.8	140.4	51.0	5.51	100.9
Iron nanoparticles in diet	981.6	138.7	147.5	6.84	136.8	704.0	123.0	51.4	4.72	86.9
P value	0.25	0.02	0.02	0.003	0.14	<0.0001	0.045	0.0001	0.03	0.004
SEM	39.7	5.9	8.27	0.4	8.2	64.3	5.1	6.3	0.22	6.4

Post hatching fasting time

Post hatching fasting time	Control	Control 2	Sulfate Fe	Alimet	Iron nanoparticles	Iron nanoparticles+Alimet	Iron nanoparticles in diet	P value		
6 h	907.8	129.3	150.0	6.25	117.7	650.4	154.3	122.8	5.17	84.6
18 h	940.0	134.7	156.7	5.77	126.8	650.7	156.0	125.4	5.24	89.8
P value	0.25	0.02	0.006	0.1	0.13	0.38	0.62	0.63	0.26	
SEM	19.8	2.96	4.15	0.2	4.11	3.22	2.56	3.16	0.11	6.4

Control 1 (without injection), control 2 injected with 0.5 mL of NaCl 0.9%; a, b, Means with common superscripts in same column are not significantly different (p < 0.05); SEM: standard error of the mean.

Table 13. Effect of treatments on intestinal morphology in 21 days of age chickens.

Treatments	Control 1+6 h	Control 2+6 h	Sulfate +6 h	Alimet+6 h	Iron nanoparticles+6h	(Iron+Alimet)+6h	Iron nanoparticles in diet+6h	P-value interactions
Villus length	905.5	110.8	127.8	7.38	101.6	592.6	125.4	4.81
Villus width	948.7	140.1	170.2	5.65	135.4	571.3	145.2	5.48
Crypt depth	915.3	120.4	129.6	7.15	110.3	585.5	155.4	4.78
Villus Surface Area	847.7	130.8	156.0	5.55	114.8	585.2	139.6	5.61
Ratio	925.9	126.6	160.3	5.55	114.8	660.8	144.5	6.12
	830.4	138.9	170.8	4.89	114.1	619.9	129.9	5.24
	943.6	145.3	157.2	7.21	137.8	682.2	109.7	4.87
	927.8	121.7	140.1	6.35	113.1	745.9	124.6	5.54
	929.9	109.1	145.2	6.76	101.0	545.7	131.3	5.06
	847.6	122.2	141.1	6.30	106.5	576.8	113.3	5.12
	911.3	142.4	180.9	5.05	130.4	553.4	120.3	4.09
	939.1	150.4	186.2	5.07	142.3	615.4	129.5	4.87
	935.3	141.0	172.4	5.52	132.0	561.5	144.0	9.79
	856.8	142.8	187.3	4.57	121.0	799.7	150.8	5.79
	1019.7	132.0	157.9	6.47	135.9	725.9	156.2	4.56
	1058.9	138.1	164.3	6.44	142.5	825.3	156.1	5.98
P-value interactions	0.47	0.04	0.005	0.01	0.24	0.12	<0.0001	0.004
P-value treatments	0.87	0.12	0.11	0.4	0.26	<0.0001	0.0006	0.0013
SEM	56.1	3.88	11.7	0.57	11.6	22.7	7.25	8.94

Control 1 (without injection), control 2 injected with 0.5 mL of NaCl 0.9%; a, b, Means with common superscripts in same column are not significantly different (p < 0.05); SEM: standard error of the mean.

Villi surface area grows more uniformly in duodenum, while their growth in jejunal and ileum is slow after 4 days of age (Geyra et al., 2001). Study of small intestinal morphology at 0-21 days of age indicates that villous height multiplied in jejunal and duodenum, but developed slower in ileum. Villous volume and crypt depth increased but with little changes in enterocyte accumulation with the aging (Uni et al., 1998; Uni et al., 1999). Over all, there have been drastic changes in intestinal morphology with aging, which was especially well pronounced after 7 days of age (Iji et al., 2001). Bohórquez, Bohórquez, and Ferket (2011) have studied small intestinal epithelium using electron and light microscopy and reported that embryonic...
or early post hatch feeding chickens could bring about development in intestinal morphology and higher performance. Silva et al. (2007) have examined the surface area of the tip of the enterocytes in small intestine mucosa of Cobb broilers affected 30 per cent limitation in feeding and glutamine deprivation and found that enterocyte surface area and microvilli volume and width were improved in jejunum due to glutamine effect.

Table 14. Effect of treatments on intestinal morphology in 42 days of age chickens.

Treatments	Duodenum	Jejunum								
	Villus length (μm)	Villus width (μm)	Crypt depth (μm)	Ratio	Villus length (mm²)	Villus width (mm²)	Crypt depth (mm²)	Ratio	Villus Surface Area (μm)	Jejunum Surface Area (μm)
Control 1	946.9	130.6d	179.5ab	5.28bc	123.2d	780.9d	215.6d	179.5ab	5.22	123.2d
Control 2	952.2	142.1cd	192.8a	4.94	135.5cd	755.6d	228.4cd	192.8a	4.95	135.5cd
Sulfate Fe +6h	1001.1	151.1bc	197.0a	5.10	150.7bced	802.1cd	234.3cd	197.0a	5.10	150.7bced
Iron nanoparticles +18h	1014.3	154.8bc	195.1a	5.20	157.4abc	776.1d	239.0bcd	195.1a	5.20	157.4abc
Alimet +18h	1007.7	157.7d	178.7ab	5.75abc	160.8abc	870.4bc	262.9ab	178.8ab	5.75	160.8abc
Iron nanoparticles + Alimet +6h	1005.5	178.3d	194.1a	5.21	181.2abd	862.5bc	250.2abc	194.1a	5.21	181.2abd

Comparison between Control 1 (without injection) and Control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the mean.

Table 15. Effect of treatments on intestinal morphology in 42 days of age chickens.

Treatments	Duodenum	Jejunum								
	Villus length (μm)	Villus width (μm)	Crypt depth (μm)	Ratio	Villus length (mm²)	Villus width (mm²)	Crypt depth (mm²)	Ratio	Villus Surface Area (μm)	Jejunum Surface Area (μm)
Control 1 +6 h	946.0	130.2d	188.0	5.13	125.5	739.6e	226.2b	167.8ab	4.86	181.5def
Control 2 +6 h	954.7	125.0d	200.2	4.77	119.3	764.4ef	237.7bc	155.7abde	5.05	182.8f
Sulfate Fe +6 h	1040.9	122.9d	204.6	5.07	128.6	800.7def	247.9bc	183.5	4.37	198.9def
Iron nanoparticles +6h	1014.5	121.7d	204.0	4.96	123.8	746.7f	226.2bc	164.4abc	4.58	169.2de
Alimet +6 h	981.9	150.7d	180.0	5.52	129.5	895.0b	287.0a	175.2abc	5.13	157.1def
(Iron + Alimet) +6h	978.3	161.4bc	196.0	5.01	170.0	747.4f	239.9bc	153.0abde	4.92	191.5abcde
Iron nanoparticles in diet +6h	1059.6	162.3bc	184.7	5.74	185.4	877.2bcde	223.7bcd	156.4bcde	5.71	195.2abcde
Control 1 +18h	929.9	131.1d	171.1	5.51	125.2	768.2f	205.1	151.3de	5.96	181.3ef
Control 2 +18h	949.6	159.2bc	185.4	5.12	135.5	746.8f	219.2c	151.8bdc	5.05	194.4def
Sulfate Fe +18h	961.3	179.2ab	189.4	5.13	150.7	805.4def	220.7bc	120.8	6.73	247.7bdc
Iron nanoparticles +18h	1014.1	187.9ab	186.2	5.45	157.4	805.4def	251.8abc	157.5abdc	5.24	157.4abc
Alimet +18 hours	1035.3	184.7ab	177.4	5.98	160.8	845.8def	238.7bc	144.7cde	5.95	164.1abc
(Iron + Alimet) +18h	1051.8	195.3a	192.3	5.41	181.2	977.7ab	260.4abc	158.7abde	6.19	177.6ab

Control 1 (without injection), control 2 injected with 0.3 mL of NaCl 0.9%; a, b. Means with common superscripts in same column are not significantly different (p < 0.05). SEM: standard error of the mean.

Conclusion

In ovo feeding can provide the embryo injection necessary to its optimum post-hatch growth. Despite the dependence of embryo growth on nutrients especially iron, data on the mineral content of the egg during incubation is limited. The injection of methionine was an important amino acid effective on performance. Iron sulfate nanoparticles alone and with methionine (Alimet) used to increase the growth during
embryonic and post-hatch periods. It was concluded that in-ovo injection of Alimet+iron sulfate nanoparticles, sulfate iron and Alimet with early feeding and dietary iron sulfate nanoparticles had desirable performance in almost all intestinal mucosal morphology parameters of duodenum and jejunum (villus width, villous surface area, and villous height to crypt depth ratio).

Acknowledgements

Thanking for scientific collaborations of department of animal science medical university and chemical department of Bu-Ali Sina University.

References

Al-Mayah, A. A. S. (2006). Immune response of broiler chicks to DL-methionine supplementation at different ages. *International Journal of Poultry Science*, 5(2), 169-172.

Bedford, M. R. (1996). Interaction between ingested feed and the digestive system in poultry. *Journal of Applied Poultry Research*, 5(1), 86-95.

Bird, A. R., Croom Junior, W. J., Fan, Y. K., Daniel, L. R., Black, B. L., McBride, B. W., ... Taylor, I. L. (1994). Jejunal glucose absorption is enhanced by epidermal growth factor in mice. *The Journal of Nutrition*, 124(2), 231-240. doi: 10.1093/jn/124.2.231

Bohórquez, D. V., Bohórquez, N. E., & Ferket, P. R. (2011). Ultrastructural development of the small intestinal mucosa in the embryo and turkey poult: A light and electron microscopy study. *Poultry Science*, 90(4), 842-855. doi: 10.3382/ps.2010-00939

Geyra, A., Uni, Z., & Sklan, D. (2001). Enterocyte dynamics and mucosal development in the posthatch chick. *Poultry Science*, 80(6), 776-782.

Grimble, R. F. (2006). The effects of sulfur amino acid intake on immune function in humans. *The Journal of Nutrition*, 136(6), 1660S-1665S.

Gunal, M., Yayli, G., Kaya, O., Karahan, N., & Sulak, O. (2006). The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. *International Journal of Poultry Science*, 5(2), 149-155.

Harvey, J. W. (2000). Microcytic anemia. In B. F. Feldman, J. G. Zinkl & N. C. Jain (Eds.), *Schalm’s veterinary hematology* (p. 201-220). Philadelphia, PA: Lippincott, Williams and Wilkins.

Iji, P. A., Saki, A. A., & Tivey, D. R. (2001). Intestinal development and body growth of broiler chicks on diets supplemented with non-starch polysaccharides. *Animal Feed Science and Technology*, 89(3), 175-188.

Imondi, A. R., & Bird, F. H. (1966). The turnover of intestinal epithelium in the chick. *Poultry Science*, 45(1), 142-147. doi: 10.3382/ps.0450142

Jin, S.-H., Corless, A., & Sell, J. L. (1998). Digestive system development in post-hatch poultry. *World’s Poultry Science Journal*, 54(4), 355-345. doi: 10.1079/WPS19980023Published

Klasing, K. C. (2007). Nutrition and the immune system. *British Poultry Science*, 48(5), 525-537. doi: 10.1080/00071660701671336

Kogut, M. H., & Klasing, K. (2009). An immunologist’s perspective on nutrition, immunity, and infectious diseases: Introduction and overview. *Journal of Applied Poultry Research*, 18(1), 103-110. doi: 10.3382/japr.2008-00080

McFarlane, W. D., & Milne, H. I. (1934). Iron and copper metabolism in the developing chick embryo. *Journal of Biological Chemistry*, 107, 509-319.

Moran Junior, E. T. (1985). Digestion and absorption of carbohydrates in fowl and events through perinatal development. *The Journal of Nutrition*, 115(5), 665-674.

Richards, M. P. (1997). Trace mineral metabolism in the avian embryo. *Poultry Science*, 76(1), 152-164.

Statistical Analysis Software [SAS]. (2004). SAS/STAT User guide, Version 9.1.1. Cary, NC: SAS Institute Inc.

Sharma, R., Schumacher, U., Ronaasen, V., & Coates, M. (1995). Rat intestinal mucosal responses to a microbial flora and different diets. *Gut*, 36(2), 209-214.

Silva, A. V., Maiorka, A., Borges, S. A., Santin, E., Boleti, I. C., & Macari, M. (2007). Surface area of the tip of the enterocytes in small intestine mucosa of broilers submitted to early feed restriction and...
supplemented with glutamine. *International Journal of Poultry Science, 6*(1), 31-35. doi: 10.3923/ijps.2007.31.35

Stoltzfus, R. J. (2001). Defining iron-deficiency anemia in public health terms: a time for reflection. *The Journal of Nutrition, 131*(2), 565S-567S. doi: 10.1093/jn/131.2.565S

Suttle, N. F. (2010). *The mineral nutrition of livestock*. New York, NY: CABI Publishing.

Uni, Z., Ganot, S., & Sklan, D. (1998). Posthatch development of mucosal function in the broiler small intestine. *Poultry Science, 77*(1), 75-82.

Uni, Z., Noy, Y., & Sklan, D. (1999). Posthatch development of small intestinal function in the poult. *Poultry Science, 78*(2), 215-222.

Uni, Z., Tako, E., Gal-Garber, O., & Sklan, D. (2003). Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. *Poultry Science, 82*(11), 1747-1754.

Zhu, X. Y., Zhong, T., Pandya, Y., & Joerger, R. D. (2002). 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. *Applied and Environmental Microbiology, 68*(1), 124-137. doi: 10.1128/AEM.68.1.124-137.2002