A relationship between the ideals of \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}] \) and the Fibonacci numbers

José Manuel Rodríguez Caballero
Université du Québec à Montréal, Montréal, QC, Canada
rodriguez_caballero.jose_manuel@uqam.ca

Abstract. Let \(C_n(q) \) be the number of ideals of codimension \(n \) of \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}] \), where \(\mathbb{F}_q \) is the finite field with \(q \) elements. Kassel and Reutenauer [1] proved that \(C_n(q) \) is a polynomial in \(q \) for any fixed value of \(n \geq 1 \). For \(q = \frac{3 + \sqrt{5}}{2} \), this combinatorial interpretation of \(C_n(q) \) is lost. Nevertheless, an unexpected connexion with Fibonacci numbers appears.

Let \(f_n \) be the \(n \)-th Fibonacci number (following the convention \(f_0 = 0 \), \(f_1 = 1 \)). Define the series\n\[
F(t) = \sum_{n \geq 1} f_{2n} t^n.
\]

We will prove that for each \(n \geq 1 \),\n\[
C_n \left(\frac{3 + \sqrt{5}}{2} \right) = \lambda_n \left(f_{2n} \frac{3 + \sqrt{5}}{2} - f_{2n-2} \right),
\]
where the integers \(\lambda_n \geq 0 \) are given by the following generating function\n\[
\prod_{m \geq 1} (1 + F(t^m)) = 1 + \sum_{n \geq 1} \lambda_n t^n.
\]

Keywords: Fibonacci numbers, ideals, polynomials.

1 Introduction

Let \(\mathbb{F}_q \) be the finite field with \(q \) elements. We recall that the codimension of the ideal \(I \) of the algebra \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}] \) is the dimension of the quotient \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}]/I \) viewed as a vector space over \(\mathbb{F}_q \). Kassel and Reutenauer [1] computed the number of ideals of codimension \(n \) of \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}] \), denoted \(C_n(q) \). The ideals of codimension \(n \) of \(\mathbb{F}_q[x, y, x^{-1}, y^{-1}] \) are the \(\mathbb{F}_q \)-points of the Hilbert scheme\n\[
H^n = \text{Hilb}^n \left(\mathbb{A}_F^1 \times \mathbb{A}_F^1 \setminus \{0\} \right)
\]
of \(n \) points of the two-dimensional torus (i.e., of the affine plane minus two distinct straight lines). This scheme is smooth and quasi-projective (see [2]).
The local zeta function of H^n, denoted $Z_{H^n/F_q}(t)$, is related to $C_n(q)$ by means of the formula
\[
C_n(q) = \frac{d}{dt} \left. \frac{Z_{H^n/F_q}(t)}{Z_{H^n/F_q}(q)} \right|_{t=0}.
\]

Kassel and Reutenauer [2] computed $Z_{H^n/F_q}(t)$, obtaining that $C_n(q)$ is a self-reciprocal polynomial of degree $2n$, satisfying several number-theoretical properties, e.g.,

\[
\lim_{q \to 1} \frac{C_n(q)}{(q - 1)^2} = \sum_{d|n} d,
\]
\[
C_n(-1) = \# \{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 = n\},
\]
\[
|C_n(\sqrt{-1})| = \# \{(x, y) \in \mathbb{Z}^2 : x^2 + 2y^2 = n\}.
\]

The aim of this paper is to show a rather unexpected relationship between $C_n(q)$ and the Fibonacci numbers. Let f_n be the nth Fibonacci number (following the convention $f_0 = 0$, $f_1 = 1$). Consider the series
\[
F(t) = \sum_{n \geq 1} f_{2n} t^n
\]
and the sequence of integers $\lambda_n \geq 0$ given by
\[
\prod_{m \geq 1} (1 + F(t^m)) = 1 + \sum_{n \geq 1} \lambda_n t^n.
\]

We will prove the following result.

Theorem 1. For each integer $n \geq 1$,
\[
C_n \left(\frac{3 + \sqrt{5}}{2} \right) = \lambda_n \left(f_{2n} \frac{3 + \sqrt{5}}{2} - f_{2n-2} \right).
\]

Furthermore, we will derive a formula for λ_n in terms of the distribution of the divisors of n on short intervals.

2 Proof of the main result

The main ingredient in the proof of Theorem 1 will be the identity
\[
\prod_{m \geq 1} \frac{(1 - t^m)^2}{1 - (q + q^{-1}) t^m + t^{2m}} = 1 + \sum_{n \geq 1} \frac{C_n(q)}{q^n},
\]
due to Kassel and Reutenauer (see Corollary 1.4 in [1]).
A relationship between the ideals... 3

Proof (Proof of Theorem 1). It is well-known that the generating function of \(f_{2n} \) is

\[
F(t) = \frac{t}{1 - 3t + t^2}.
\]

(5)

Using the identity

\[
\frac{(1 - t^m)^2}{1 - (q + q^{-1}) t^m + t^{2m}} = 1 + \frac{(q + q^{-1} - 2) t^m}{1 - (q + q^{-1}) t^m + t^{2m}},
\]

(6)

computing

\[
\left(\frac{3 + \sqrt{5}}{2} \right) + \left(\frac{3 + \sqrt{5}}{2} \right)^{-1} = 3
\]

(7)

and applying (5), we obtain that

\[
\prod_{m \geq 1} \frac{(1 - t^m)^2}{1 - (q + q^{-1}) t^m + t^{2m}} \Bigg|_{t = \frac{3 + \sqrt{5}}{2}} = \prod_{m \geq 1} (1 + F(t^m)).
\]

(8)

Combining (8) and (1), we conclude that

\[
C_{\ell_n}\left(\frac{3 + \sqrt{5}}{2} \right)^n = \lambda_n.
\]

(9)

Applying the identity \(\left(\frac{3 + \sqrt{5}}{2} \right)^n = f_{2n}\frac{3 + \sqrt{5}}{2} - f_{2n-2} \) to (9) we obtain (3).

3 Applications

Let \(\ell_n \) be the \(n \)-th Lucas number, i.e. \(\ell_0 = 2, \ell_1 = 1 \) and \(\ell_n = \ell_{n-1} + \ell_{n-2} \). The following result can be used to compute \(\lambda_n \) in terms of the divisors of \(n \).

Corollary 2. For each \(n \geq 1 \),

\[
\lambda_n = a_{n,0} + \sum_{k=1}^{n-1} a_{n,k} \ell_{2k},
\]

(10)

where \(a_{n,k} \) the number of \(d | n \) satisfying

\[
k + \sqrt{k^2 + 2n} < d \leq k + \sqrt{k^2 + 2n}.
\]

Proof. It follows by Theorem 1.2. in [2] that

\[
\frac{C_n(q)}{q^n} = (q + q^{-1} - 2) \left(a_{n,0} + \sum_{k=1}^{n-1} a_{n,k} (q^k + q^{-k}) \right).
\]

(11)
The identity
\[
\left(\frac{3 + \sqrt{5}}{2}\right)^k + \left(\frac{3 + \sqrt{5}}{2}\right)^{-k} = \ell_{2k}.
\] (12)
is well-known. Combining (11), (12), (7) and (9) we obtain (10).

Acknowledge

The author thanks S. Brlek and C. Reutenauer for they valuable comments and suggestions concerning this research.

References

1. C. Kassel and C. Reutenauer, “Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables”, https://arxiv.org/abs/1505.07229 2015.
2. C. Kassel and C. Reutenauer, “Complete determination of the zeta function of the Hilbert scheme of \(n\) points on a two-dimensional torus”, https://arxiv.org/abs/1610.07793 2016.
3. C. Kassel and C. Reutenauer, “The Fourier expansion of \(\eta(z)\eta(2z)\eta(3z)/\eta(6z)\)”, *Archiv der Mathematik* 108.5 (2017): 453-463.