Database consistency models

Marc Shapiro
Sorbonne-Université & Inria, Paris, France and Pierre Sutra
Télécnum SudParis, Évry, France

Synonyms
Consistency model, data consistency, consistency criterion, isolation level.

The distributed systems and database communities use the same word, consistency, with different meanings. Within this entry, and following the usage of the distributed algorithms community, “consistency” refers to the observable behaviour of a data store.

In the database community, roughly the same concept is called “isolation,” whereas the term “consistency” refers to the property that application code is sequentially safe (the C in ACID).

Definition
A data store allows application processes to put and get data from a shared memory. In general, a data store cannot be modelled as a strictly sequential process. Applications observe non-sequential behaviours, called anomalies. The set of possible behaviours, and conversely of possible anomalies, constitutes the consistency model of the data store.

Overview

Background
A data store, or database system, is a persistent shared memory space, where different client application processes can store data items. To ensure scalability and dependability, a modern data store distributes and replicates its data across clusters of servers running in parallel. This approach supports high throughput by spreading the load, low
latency by parallelising requests, and fault-tolerance by replicating data and processing; system capacity increases by simply adding more servers (scale-out).

Ideally, from the application perspective, data replication and distribution should be transparent. Read and update operations on data items would appear to execute as in a single sequential thread; reading a data item would return exactly the last value written to it in real time; and each application transaction (a grouping of operations) would take effect atomically (all at once). This ideal behaviour is called strict serialisability, noted SSER (Papadimitriou, 1979).

In practice, exposing some of the internal parallelism to clients enables better performance. More fundamentally, SSER requires assumptions that are unrealistic at large scale, such as absence of network partitions (see Section “Fundamental results” hereafter). Therefore, data store design faces a fundamental tension between providing a strictly serialisable behaviour on the one hand, versus availability and performance on the other. This explains why large-scale data stores hardly ever provide the SSER model, with the notable exception of Spanner (Corbett et al, 2012).

Consistency models

Informally, a consistency model defines what an application can observe about the updates and reads of its data store. When the observed values of data differ from strict serialisability, this is called an anomaly. Examples of anomalies include divergence, where concurrent reads of the same item persistently return different values; causality violation, where updates are observed out of order; dirty reads, where a read observes the effect of a transaction that has not terminated; or lost updates, where the effect of an update is lost. The more anomalies allowed by a store, the weaker its consistency model. The strongest model is (by definition) SSER, the baseline against which other models are compared.

More formally, a consistency model is defined by the history of updates and reads that clients can observe. A model is weaker than another if it allows more histories.

An absolute definition of “strong” and “weak consistency” is open to debate. For the purpose of this entry, we say that a consistency model is strong when it has consensus power, i.e., any number of failure-prone processes can reach agreement on some value by communicating through data items in the store. If this is not possible, then the consistency model is said weak.

In a strong model, updates are totally ordered. Some well-known strong models include SSER, serialisability (SER), or snapshot isolation (SI). Weak models admit concurrent updates to the same data item, and include Causal Consistency (CC), Strong Eventual Consistency (SEC) and Eventual Consistency (EC) (see Table 1).

Key Research Findings

Basic concepts

A data store is a logically-shared memory space where different application
processes store, update and retrieve data items. An item can be very basic, such as a register with read/write operations, or a more complex structure, e.g., a table or a file system directory. An application process executes operations on the data store through the help of an API. When a process invokes an operation, it executes a remote call to an appropriate end-point of the data store. In return, it receives a response value. A common example of this mechanism is a POST request to an HTTP end-point.

An application consists of transactions. A transaction consists of any number of reads and updates to the data store. It is terminated either by an abort, whereby its writes have no effect, or by a commit, whereby writes modify the store. In what follows, we consider only committed transactions. The transaction groups together low-level storage operations into a higher-level abstraction, with properties that help developers reason about application behaviour.

The properties of transactions are often summarised as ACID: All-or-Nothing, Correctness, Isolation, and Durability.

All-or-Nothing ensures that, at any point in time, either all of a transaction’s writes are in the store, or none of them is. This guarantee is essential in order to support common data invariants such as equality or complementarity between two data items. Individual Correctness is the requirement that each of the application’s transactions individually transitions the database from a safe state (i.e., where some application-specific integrity invariants hold over the data) to another safe state. Durability means that all later transactions will observe the effect of this transaction after it commits. A, C and D are essential features of any transactional system, and will be taken for granted in the rest of this entry.

The I property, Isolation characterises the absence of interference between transactions. Transactions are isolated if one cannot interfere with the other, regardless of whether they execute in parallel or not.

Taken together, the ACID properties provide the serialisability model, a program semantics in which a transaction executes as if it was the only one accessing the database. This model restricts the allowable interactions among concurrent transactions, such that each one produces results indistinguishable from the same transactions running one after the other. As a consequence, the code for a transaction lives in the simple, familiar sequential programming world, and the developer can reason only about computations that start with the final results of other transactions. Serialisability allows concurrent operations to access the data store and still produce predictable, reproducible results.

Definitions

A history is a sequence of invocations and responses of operations on the data items by the application processes. It is commonly represented with timelines. For instance, in history h_1 below, processes p and q access a data store that contains two counters (x and y).

\[
\begin{align*}
\text{p} & \quad \xrightarrow{x++} \quad \xrightarrow{r(x)} \quad 0 \\
\text{q} & \quad \xrightarrow{x--} \quad \xrightarrow{r(y)} \quad 0 \\
\end{align*}
\]

(h₁)
Operations \((z++)\) and \((z--)\) respectively increment and decrement counter \(z\) by 1. To fetch the content of \(z\), a process calls \(r(z)\). A counter is initialised to 0. The start and the end of a transaction are marked using brackets, e.g., transaction \(T_1 = (x++) \cdot r(x)\) in history \(h_1\). When the transaction contains a single operation, the brackets are omitted for clarity.

As pointed above, we assume in this entry that all the transactions are committed in a history. Thus every invocation has a matching response. More involved models exist, e.g., when considering a transactional memory (Guerraoui and Kapalka, 2008).

A history induces a real-time order between transactions (denoted \(\prec_h\)). This order holds between two transactions \(T\) and \(T'\) when the response of the last operation in \(T\) precedes in \(h\) the invocation of the first operation in \(T'\). A history also induces a per-process order that corresponds to the order in which processes invoke their transactions. For instance in \(h_1\), transaction \(T_2 = (x--)\) precedes transaction \(T_3 = r(y)\) at process \(q\). This relation together with \((T_1 <_{h_1} T_2)\) and \((T_1 <_{h_1} T_3)\) also hold.

When each transaction contains a single operation, SSER boils down to linearizability (LIN) (Herlihy and Wing, 1990). The data store ensures sequential consistency (SC) (Lamport, 1979) when each transaction contains a single operation and only the per-process order is kept in the equivalent sequential history.

The above consistency models (SER, SSER, LIN and SC) are strong, as they allow the client application processes to reach consensus. To see this, observe that processes may agree as follows: The processes share a FIFO queue \(L\) in the data store. To reach consensus, each process enqueues some value in \(L\) which corresponds to a proposal to agree upon. Then, each process chooses the first proposal that appears in \(L\). The equivalence with a sequential history implies that all the application processes pick the same value.

Conversely, processes cannot reach consensus if the consistency model is weak. A widespread model in this category is Eventual Consistency (EC) (Vogels, 2008), used for instance in the Simple Storage Service (Murty, 2008).
Database consistency models

EC requires that, if clients cease submitting transactions, they eventually observe the same state of the data store. This eventually-stable state may include part (or all) the transactions executed by the clients. Under EC, processes may repeatedly observe updates in different orders. For example, if the above list \(L \) is EC, each process may see its update applied first on \(L \) until it decides, preventing agreement. In fact, EC is too weak to allow asynchronous failure-prone processes to reach an agreement (Attiya et al, 2017).

Fundamental results

In the most general model of computation, replicas are asynchronous. In this model, and under the hypothesis that a majority of them are correct, it is possible to emulate a linearizable shared memory (Attiya et al, 1990). This number of correct replicas is tight. In particular, if any majority of the replicas may fail, the emulation does not work (Delporte-Gallet et al, 2004).

The above result implies that, even for a very basic distributed service, such as a register, it is not possible to be at the same time consistent, available and tolerant to partition. This result is known as the CAP Theorem (Gilbert and Lynch, 2002), which proves that it is not possible to provide all the following desirable features at the same time: (C) strong Consistency, even for a register, (A) Availability, responding to every client request, and (P) tolerate network Partition or arbitrary messages loss.

A second fundamental result, known as FLP, is the impossibility to reach consensus deterministically in presence of crash failures (Fischer et al, 1985). FLP is true even if all the processes but one are correct.

As pointed above, a majority of correct processes may emulate a shared memory. Thus, the FLP impossibility result indicates that a shared memory is not sufficient to reach consensus. In fact, solving consensus requires the additional ability to elect a leader among the correct processes (Chandra et al, 1996).

Data stores that support transactions on more than one data item are subject to additional impossibility results. For instance, an appealing property is genuine partial replication (GPR) (Schiper et al, 2010), a form of disjoint-access parallelism (Israeli and Rappoport, 1994). Under GPR, transactions that access disjoint items do not contend in the data store. GPR avoids convoy effects between transactions (Blasgen et al, 1979) and ensure scalability under parallel workload. However, GPR data stores must sacrifice some form of consistency, or provide little progress guarantees (Bushkov et al, 2014; Saeida Ardekani et al, 2013b; Attiya et al, 2009).

A data store API defines the shared data structures the client application processes manipulate as well as their consistency and progress guarantees. The above impossibility results inform the application developer that some APIs require synchronisation among the data replicas. Process synchronisation is costly, thus there is a trade-off between performance and data consistency.
Trade-offs

In the common case, executing an operation under strong consistency requires to solve consensus among the data replicas, which costs at least one round-trip among replicas (Lamport, 2006). Sequential consistency allows to execute either read or write operations at a local replica (Attiya and Welch, 1994; Wang et al, 2014). Weaker consistency models, e.g., eventual (Fekete et al, 1999) and strong eventual consistency (Shapiro et al, 2011) enable both read and write operations to be local.

A second category of trade-offs relate consistency models to metadata (Peluso et al, 2015; Burckhardt et al, 2014). They establish lower bounds on the space complexity to meet a certain consistency models. For instance, tracking causality accurately requires $O(m)$ bits of storage, where m is the number of replicas (Charron-Bost, 1991).

Common models

The previous sections introduce several consistency models (namely, SER, SC, LIN, SSER and EC). This section offers a perspective on other prominent models. Table 1 recapitulates.

Read-Committed (RC).

Almost all existing transactional data stores ensure that clients observe only committed data (Zemke, 2012; Berenson et al, 1995). More precisely, the RC consistency model enforces that if some read r observes the state \hat{x} of an item x in history h, then the transaction T_i that wrote \hat{x} commits in h. One can distinguish a loose and a strict interpretation of RC. The strict interpretation requires that $r(x)$ takes place after transaction T_i commits. Under the loose interpretation, the write operation might occur concurrently.

When RC, or a stricter consistency model holds, it is convenient to introduce the notion of version. A version is the state of a data item as produced by an update transaction. For instance, when T_i writes to some register x, an operation denoted hereafter $w(x_i)$, it creates a new version x_i of x. Versions allow to uniquely identify the state of the item as observed by a read operation, e.g., $r(x_i)$.

Strong Eventual Consistency (SEC).

Eventual consistency (EC) states that, for every data item x in the store, if there is no new update on x, eventually clients observe x in the same state. Strong eventual consistency (SEC) further constrains the behaviour of the data replicas. In detail, a data store is SEC when it is EC and moreover, for every item x, any two replicas of x that applied the same set of updates on item x are in the same state.

Client Monotonic (CM).

Client Monotonic (CM) ensures that a client always observes the results of its own past operations (Terry et al, 1994). CM enforces the following four so-called “session guarantees”:

(i) Monotonic reads (MR): if a client executes $r(x_i)$ then $r(x_{j \neq i})$ in history h, necessarily x_j follows x_i for some version order $\leq_{h,x}$ over the updates
applied to \(x \) in \(h \). (ii) Monotonic writes (MW): if a client executes \(w(x_i) \) then \(w(x_j) \), the version order \(x_i \ll_{h,x} x_j \) holds; (iii) Read-my-writes (RMW): when a client executes \(w(x_i) \) followed by \(r(x_{j \neq i}) \), then \(x_i \ll_{h,x} x_j \) holds; and (iv) Writes-follow-reads (WFR): if a client executes \(r(x_i) \) followed by \(w(x_j) \) it is true that \(x_i \ll_{h,x} x_j \).

Most consistency models require CM, but this guarantee is so obvious that it might be sometimes omitted – this is for instance the case in Gray and Reuter (1992).

Read-Atomic (RA).

Under RA, a transaction sees either all of the updates made by another transaction, or none of them (the All-or-Nothing guarantee). For instance, if a transaction \(T \) sees the version \(x_i \) written by \(T_i \) and transaction \(T_i \) also updates \(y \), then \(T \) should observe at least version \(y_i \). If history \(h \) fails to satisfy RA, a transaction in \(h \) exhibits a fractured read (Bailis et al, 2014). For instance, this is the case of the transaction executed by process \(q \) in history \(h_2 \) below.

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

Consistent Snapshot (CS).

A transaction \(T_i \) depends on a transaction \(T_j \) when it reads a version written by \(T_j \), or such a relation holds transitively. In other words, denoting \(T_i \xrightarrow{wr} T_j \) when \(T_i \) reads from \(T_j \), \(T_j \) is in the transitive closure of the relation \(\xrightarrow{wr} \) when starting from \(T_i \).

When a transaction never misses the effects of some transaction it depends on, the transaction observes a consistent snapshot (Chan and Gray, 1985). In more formal terms, a transaction \(T_i \) in a history \(h \) observes a consistent snapshot when for every object \(x \), if (i) \(T_i \) reads version \(x_j \), (ii) \(T_k \) writes version \(x_k \), and (iii) \(T_i \) depends on \(T_k \), then version \(x_k \) is followed by version \(x_j \) in the version
order $\ll_{h,x}$. A history h belongs to CS when all its transactions observe a consistent snapshot. For instance, this is not the case of history h_3 below. In this history, transaction $T_3 = r(y).r(x)$ depends on $T_2 = r(x).(y++)$, and T_2 depends on $T_1 = (x++)$, yet T_3 does not observe the effect of T_1.

Under SI, a transaction observes a snapshot of the state of the data store at some point prior in time. Strong snapshot isolation (SSI) requires this snapshot to contain all the preceding transactions in real time (Daudjee and Salem, 2006). Two transactions may commit under SI as long as they do not write the same item concurrently. SI avoids the anomalies listed in Section “Consistency Models”, but exhibits the write-skew anomaly, illustrated in history h_4 below. In this history, an application using data items x and y wishes to maintain the invariant $x \geq y$. The invariant holds initially, and each of the two transactions T_1 and T_2 guarantees the invariant individually. As illustrated in history h_4, running them concurrently under SI may violate the invariant.

An application is robust against a consistency model M when, it produces serialisable histories (Cerone and Gotsman, 2016), despite running atop a data store providing M. It is known (Fekete et al, 2005) that an application is robust against SI when every invariant is materialised by a data item.
two concurrent transactions update the same data items. PSI requires to take a snapshot at the start of the transaction. NMSI relaxes this requirement, enabling the snapshot to be computed incrementally, as illustrated in history h_5 below.

![Diagram of h_5]

A three-dimensional view of data consistency

Shapiro et al (2016) classify consistency models along three dimensions, to better understand and compare them. Their approach divides each operation into two parts: the generator reads data and computes response values, and the effector applies side-effects to every replica. Each of the three dimensions imposes constraints on the generators and effectors. Table 2 classifies the consistency criteria of Table 1 along these three dimensions.

- **Visibility dimension.** This dimension constrains the visibility of operations, i.e., how a generator sees the updates made by effectors. The strongest class of consistency models along this dimension is external visibility, which imposes that a generator sees the effectors of all the operations that precedes it in real time. Weakening this guarantee to the per-process order leads to causal visibility. A yet weaker class is transitive visibility, which only requires visibility to hold transitively. Finally, absence of constraints on generators, for instance during the unstable period of an eventually-consistent data store, is termed rollback visibility.

- **Ordering dimension.** This dimension constrains the ordering over generators and effectors. Four classes are of interest along this dimension: The strongest class is termed total order. For every history of a model in this class, there exists an equivalent serial history of all the operations. Weaker classes, below total order, constrain only effectors. The gapless order class requires effectors to be ordered online by natural numbers with no gaps; this requires consensus and is subject to the CAP impossibility result. The capricious class admits gaps in the ordering, allowing replicas to order their operations independently. A last-writer wins protocol (e.g., (Ladin et al, 1990)) produces a consistency model in this class. This class is subject to the lost-update anomaly. The weakest class along this dimension is termed concurrent and imposes no ordering on generators and effectors.

- **Composition dimension.** This dimension captures the fact that a transaction contains one or more operations. A model in the All-Or-Nothing class preserves the A in ACID. This means that if some effector of transaction T_1 is visible to transaction T_2, then all of T_1’s effectors are visible to T_2. Typically, all the generators of a transaction read from the same set of effectors, i.e., its snapshot. The snapshot class extends the Visibility and Ordering
guarantees to all generators of the transaction. For instance, in the case of a model both in the snapshot and total order classes, all the operations of a transaction are adjacent in the equivalent serial history.

Examples of Application

A key-value store (KVS) is a distributed data store that serves as building block of many cloud applications. This type of system belongs to the larger family of NoSQL databases and is used to store uninterpreted blobs of data (e.g., marshalled objects).

A KVS implements a map, that is a mutable relation from a set of keys to a set of values. In detail, the API of a key-value store consists of two operations: Operation put\((k, v)\) adds the pair \((k, v)\) to the mapping, updating it if necessary. Depending on the KVS, this operation may return the previous value of the key \(k\), or simply nil. Operation get\((k)\) retrieves the current value stored under key \(k\).

The notions of “current” and “previous” values depend on the consistency model of the KVS. History \(h_0\) below illustrates this point for an operation get\((k_1)\) by process \(p\). When the KVS is RC, operation get\((k_1)\) returns the initial value of \(k_1\), or any value written concurrently or before this call. Denoting \(\perp\) the initial value of \(k_1\), this means that operation get\((k_1)\) may return any value in \(\{\perp, x, y, z\}\).

If the KVS guarantees RMW, at least the last value written by \(p\) should be returned. As a consequence, the set of possible values reduces to \(\{x, y, z\}\).

Now, let us consider that the KVS guarantees CC. Process \(p\) observes the operation put\((k_2, 1)\) by \(r\). This operation causally follows an observation by \(q'\) of \(y\). Therefore, \(p\) should observe either \(y\), or \(z\).

If the KVS is linearizable, the value stored under key \(k_1\) is the last value written before get\((k_1)\) in any sequential history equivalent to \(h_0\). Every such history should preserve the real-time precedence of \(h_0\). Clearly, the last update in \(h_0\) sets the value of \(k_1\) to \(z\). Thus, if the KVS is linearizable, \(z\) is the only allowed response of operation get\((k_1)\) in \(h_0\).

Future Directions for Research

Consistency models are formulated in various frameworks and using different underlying assumptions. For instance, some works (ANSI, 1992; Berenson et al, 1995) define a model in terms of the anomalies it forbids. Others rely on specific graphs to characterise a model (Adya, 1999), or predicates over histories (Viotti and Vukolić, 2016). The existence of a global time (Papadimitriou, 1979) is sometimes taken for granted. This contrasts with approaches (Lamport, 1986) that avoid to make such an assumption. A similar observation holds for concurrent operations which may (Guerraoui and Kapalka, 2008) or not (Ozsu and Valduriez, 1991) overlap in time.
This rich literature makes difficult an apples-to-apples comparison between consistency models. Works exist (Chrysanthis and Ramamritham, 1994) that attempt to bridge this gap by expressing them in a common framework. However, not all the literature is covered and it is questionable whether their definitions is equivalent to the ones given in the original publications.

The general problem of the implementability a given model is also an interesting avenue for research. One may address this question in term of the minimum synchrony assumptions to attain a particular model. In distributed systems, this approach has lead to the rich literature on failure detectors (Freiling et al, 2011). A related question is to establish lower and upper bounds on the time and space complexity of an implementation (when it is achievable). As pointed out in Section “Trade-offs”, some results already exist, yet the picture is incomplete.

From an application point of view, three questions are of particular interest. First, the robustness of an application against a particular consistency model (Fekete et al, 2005; Cerone and Gotsman, 2016). Second, the relation between a model and a consistency control protocol. These two questions are related to the grand challenge of synthesising concurrency control from the application specification (Gotsman et al, 2016). A third challenge is to compare consistency models in practice (Kemme and Alonso, 1998; Wiesmann and Schiper, 2005; Saeida Ardekani et al, 2014), so as to understand their pros and cons.

References

Adya A (1999) Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. Ph.d., MIT

Ahmad M, Neiger G, Burns JE, Kohli P, Hutto PW (1995) Causal memory: definitions, implementation, and programming. Distributed Computing 9(1):37–49

ANSI (1992) American National Standard for Information Systems – Database Language – SQL

Attiya H, Welch JL (1994) Sequential consistency versus linearizability. ACM Trans Comput Syst 12(2):91–122
Shapiro & Sutra

Attiya H, Bar-Noy A, Dolev D (1990) Sharing memory robustly in message-passing systems. Tech. Rep. MIT/LCS/TM-423, Massachusetts Institute of Technology, Lab. for Comp. Sc., Cambridge, MA (USA)

Attiya H, Hillel E, Milani A (2009) Inherent limitations on disjoint-access parallel implementations of transactional memory. In: Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures, ACM, New York, NY, USA, SPAA ’09, pp 69–78

Attiya H, Ellen F, Morrison A (2017) Limitations of highly-available eventually-consistent data stores. IEEE Trans on Parallel and Dist Sys (TPDS) 28(1):141–155

Bailis P, Davidson A, Fekete A, Ghodsi A, Hellerstein JM, Stoica I (2013) Highly available transactions: Virtues and limitations. Proc VLDB Endow 7(3):181–192

Bailis P, Fekete A, Hellerstein JM, Ghodsi A, Stoica I (2014) Scalable atomic visibility with ramp transactions. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, SIGMOD ’14, pp 27–38

Berenson H, Bernstein P, Gray J, Melton J, O’Neil E, O’Neil P (1995) A critique of ANSI SQL isolation levels. SIGMOD Rec 24(2):1–10

Blasgen M, Gray J, Mitoma M, Price T (1979) The convoy phenomenon. ACM SIGOPS Operating Systems Review 13(2):20–25

Burckhardt S, Gotsman A, Yang H, Zawirski M (2014) Replicated data types: specification, verification, optimality. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pp 271–284

Bushkov V, Dziura M, Fatourou P, Guerraoui R (2014) The pel theorem: Transactions cannot be parallel, consistent and live. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, ACM, New York, NY, USA, SPAA ’14, pp 178–187

Cerone A, Gotsman A (2016) Analysing snapshot isolation. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pp 55–64

Chan A, Gray R (1985) Implementing Distributed Read-Only Transactions. IEEE Trans Softw Eng SE-11(2):205–212

Chandra TD, Hadzilacos V, Toueg S (1996) The weakest failure detector for solving consensus. J ACM 43(4):685–722

Charron-Bost B (1991) Concerning the size of logical clocks in distributed systems. Inf Process Lett 39(1):11–16

Chrysanthis PK, Ramamritham K (1994) Synthesis of Extended Transaction Models Using ACTA. ACM Trans Database Syst 19(3):450–491

Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman J, Ghemawat S, Guibarev A, Heiser C, Hochschild P, Hsieh W, Kanyak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagele D, Quinlan S, Riao R, Rolig L, Saito Y, Szymbaniak M, Taylor C, Wang R, Woodford D (2012) Spanner: Google’s globally-distributed database. In: Symp. on Op. Sys. Design and Implementation (OSDI), Usenix, Hollywood, CA, USA, pp 251–264

Daudjee K, Salem K (2006) Lazy database replication with snapshot isolation. In: Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB Endowment, VLDB ’06, pp 715–726

Delporte-Gallet C, Fauconnier H, Guerraoui R, Hadzilacos V, Kouznetsov P, Toueg S (2004) The weakest failure detectors to solve certain fundamental problems in distributed computing. In: Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, ACM, New York, NY, USA, PODC ’04, pp 338–346

Fekete A, Gupta D, Luchangco V, Lynch N, Shvartsman A (1999) Eventually-serializable data services. Theoretical Computer Science 220:113–156, special issue on Distributed Algorithms

Fekete A, Liarokapis D, O’Neil E, O’Neil P, Shasha D (2005) Making snapshot isolation serializable. Trans on Database Systems 30(2):492–528

Fischer MJ, Lynch NA, Patterson MS (1985) Impossibility of distributed consensus with one faulty process. J ACM 32(2):374–382

Freiling FC, Guerraoui R, Kuznetsov P (2011) The failure detector abstraction. ACM Comput Surv 43(2):9:1–9:40

Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33(2):51–59
Gotsman A, Yang H, Ferreira C, Najafzadeh M, Shapiro M (2016) 'cause i'm strong enough: Reasoning about consistency choices in distributed systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, New York, NY, USA, POPL ’16, pp 371–384
Gray J, Reuter A (1992) Transaction Processing: Concepts and Techniques, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
Gray J, Reuter A (1993) Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco CA, USA
Guerraoui R, Kapalka M (2008) On the correctness of transactional memory. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ACM, New York, NY, USA, PPOPP ’08, pp 175–184
Herlihy M, Wing J (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans Program Lang Syst 12(3):463–492
Israeli A, Rappoport L (1994) Disjoint-access-parallel implementations of strong shared memory primitives. In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, ACM, New York, NY, USA, PODC ’94, pp 151–160
Kemme B, Alonso G (1998) A Suite of Database Replication Protocols based on Group Communication Primitives. In: International Conference on Distributed Computing Systems, IEEE, IEEE Comput. Soc., pp 156–163
Ladin R, Liskov B, Shira L. (1990) Lazy replication: Exploiting the semantics of distributed services. In: IEEE Computer Society Technical Committee on Operating Systems and Application Environments, IEEE, IEEE Computer Society, vol 4, pp 4–7
Lamport L (1979) How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans Comput 28(9):690–691
Lamport L (1986) On interprocess communication, part i: Basic formalism. Distributed Computing 1(2):77–85
Lamport L (2006) Lower bounds for asynchronous consensus. Distributed Computing 19(2):104–125
Murty J (2008) Programming Amazon Web Services, 1st edn. O'Reilly
Ozsu MT, Valduriez P (1991) Principles of Distributed Database Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
Papadimitriou CH (1979) The serializability of concurrent database updates. J ACM 26(4):631–653
Peluso S, Palmieri R, Romano P, Ravindran B, Quaglia F (2015) Disjoint-access parallelism: Impossibility, possibility, and cost of transactional memory implementations. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, ACM, New York, NY, USA, PODC ’15, pp 217–226
Saeida Ardekani M, Sutra P, Shapiro M (2013a) Non-Monotonic Snapshot Isolation: scalable and strong consistency for georeplicated transactional systems. In: Symp. on Reliable Dist. Sys. (SRDS), IEEE Comp. Society, Braga, Portugal, pp 163–172
Saeida Ardekani M, Sutra P, Shapiro M (2013b) On the Scalability of Snapshot Isolation. In: Proceedings of the 19th International EuroPar Conference (EUROPAR)
Saeida Ardekani M, Sutra P, Shapiro M (2014) G-DUR: A Middleware for Assembling, Analyzing, and Improving Transactional Protocols. In: Proceedings of the 15th International Middleware Conference, ACM, New York, NY, USA, Middleware ’14, pp 13–24
Schiper N, Sutra P, Pedone F (2010) P-store: Genuine partial replication in wide area networks. In: Proceedings of the 29th IEEE International Symposium on Reliable Distributed Systems (SRDS)
Shapiro M, Preguiça N, Baquero C, Zawirska M (2011) Conflict-free replicated data types. In: Défago X, Petit F, Villain V (eds) Int. Symp. on Stabilization, Safety, and Security of Dist. Sys. (SSS), Springer-Verlag, Grenoble, France, Lecture Notes in Comp. Sc., vol 6976, pp 386–400
Shapiro M, Saeida Ardekani M, Petri G (2016) Consistency in 3D. In: Desharnais J, Jagadeesan R (eds) Int. Conf. on Concurrency Theory (CONCUR), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, Québec,
Québec, Canada, Leibniz Int. Proc. in Informatics (LIPICS), vol 59, pp 3:1–3:14

Sovran Y, Power R, Aguilera MK, Li J (2011) Transactional storage for geo-replicated systems. In: Symp. on Op. Sys. Principles (SOSP), Assoc. for Computing Machinery, Cascais, Portugal, pp 385–400

Terry DB, Demers AJ, Petersen K, Spreitzer MJ, Theimer MM, Welch BB (1994) Session guarantees for weakly consistent replicated data. In: Int. Conf. on Para. and Dist. Info. Sys. (PDIS), Austin, Texas, USA, pp 140–149

Viotti P, Vukolić M (2016) Consistency in non-transactional distributed storage systems. ACM Comput Surv 49(1):19:1–19:34

Vogels W (2008) Eventually consistent. ACM Queue 6(6):14–19

Wang J, Talmage E, Lee H, Welch JL (2014) Improved time bounds for linearizable implementations of abstract data types. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp 691–701

Wiesmann M, Schiper A (2005) Comparison of database replication techniques based on total order broadcast. IEEE Transactions on Knowledge and Data Engineering 17(4):551–566

Zemke F (2012) What’s new in sql:2011. SIGMOD Rec 41(1):67–73

Cross-References

- Achieving LowLatency Transactions for Geo-Replicated Storage with Blotter
- Conflict-free Replicated Data Types (CRDTs)
- Coordination Avoidance
- Data replication and encoding
- Databases as a service
- Geo-replication Models
- Geo-scale Transaction Processing
- In-memory Transactions
- NoSQL Database Principles
- Storage hierarchies for big data
- TARDiS: A Branch-and-Merge Approach To Weak Consistency
- Transactional Middleware
- Weaker Consistency Models/Eventual Consistency.