Characterization of microsatellite markers for the endangered *Daphne rodriguezii* (Thymelaeaceae) and related species

Carlos García-Verdugo1,5, Juan Carlos Illera1 and Anna Traveset4

PREMISE: The endangered shrub *Daphne rodriguezii* (Thymelaeaceae) is endemic to the Balearic island of Menorca, where fragmentation and severe population decline are ongoing threats to this taxon. We developed a set of microsatellite markers to analyze the fine-scale genetics of its few extant populations.

METHODS AND RESULTS: Fifteen microsatellite markers were obtained through Illumina high-throughput sequencing and tested in two populations. Twelve of these loci showed no evidence of null alleles and were highly polymorphic, with a mean number of 8.3 alleles per locus. Levels of observed and expected heterozygosity ranged from 0.100 to 0.952 and from 0.095 to 0.854, respectively. Seven to nine of these loci were successfully amplified in five other *Daphne* species.

CONCLUSIONS: This set of markers provides a useful tool for investigating the factors driving fine-scale population structure in this threatened species, and it represents a novel genetic resource for other European *Daphne* species.

KEYWORDS: *Daphne rodriguezii*; fine-scale genetic structure; island genetic diversity; paternity analysis; Thymelaeaceae.
Population B (n = 20)

Locus	Population A (n = 22)	Population B (n = 20)
Dro012	20 6 0.750 0.772	20 6 0.750 0.772
Dro019	20 3 0.450 0.359	20 3 0.450 0.359
Dro028	20 1 0.000 0.000	20 1 0.000 0.000
Dro034	19 8 0.700 0.791	19 8 0.700 0.791
Dro035	20 1 0.000 0.000	20 1 0.000 0.000
Dro041	20 7 0.750 0.741	20 7 0.750 0.741
Dro042	20 10 0.750 0.821	20 10 0.750 0.821
Dro046	20 3 0.450 0.563	20 3 0.450 0.563
Dro048	20 7 0.500 0.593	20 7 0.500 0.593
Dro073	21 1 0.000 0.000	21 1 0.000 0.000
Dro078	20 10 0.550 0.826	20 10 0.550 0.826
Dro113	20 5 0.600 0.728	20 5 0.600 0.728
Dro114	20 11 0.801 0.441	20 11 0.801 0.441

Note: A = number of alleles detected across D. rodriguezi samples; \(H_e \) = expected heterozygosity; \(H_o \) = observed heterozygosity; \(N \) = number of samples tested; \(N \) = number of samples with successful amplifications.

Local haplotypes are provided in Appendix 1.

Asterisks indicate significant deviation from Hardy–Weinberg equilibrium after Bonferroni correction (* * * \(P < 0.05 \), *** \(P < 0.001 \)).

Presence of null alleles.

In examining the levels of variability revealed by each SSR locus, we were constrained by the conservation status (EN) of the study species. However, we were able to obtain permissions to sample leaf material from two populations representing size extremes (Calvito-Cancela et al., 2012): (1) the only population with more than 300 mature individuals (population A) and (2) a population with <50 individuals (population B) (Appendix 1).
Genomic DNA was extracted using the NucleoSpin Plant II kit (Macherey-Nagel, Düren, Germany) following the cetyltrimethylammonium bromide (CTAB)–lysis method. PCRs for SSR amplification were set up in 10-μL reactions, including 1.5 μL of DNA (2–10 ng/μL), 5 μL of 2× Multiplex PCR Master Mix (QIAGEN, Hilden, Germany), and 0.3 μL (0.3 μM) of each primer, with the forward primer labeled with a fluorescent dye (Table 1). Reactions were performed on a G-Storm GS2 thermal cycler (Somerton Biotechnology Centre, Somerset, United Kingdom) under the following conditions: initial denaturation at 95°C for 15 min; followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 56°C for 45 s, and extension at 72°C for 45 s; and a final extension at 60°C for 30 min.

To test cross-species amplification of *D. rodriguezii* primers, all 15 SSR loci were amplified in closely related *Daphne* species (Alonso and Herrera, 2011), including leaf material freshly collected from one population of *D. laureola* L. and two to three replicates from herbarium samples for *D. cneorum*, *D. mezereum*, and *D. oleoides* Schreb. (Appendix 1). Rather than collected from one population of *D. laureola* and two to three replicates from herbarium samples for *D. cneorum*, *D. mezereum*, and *D. oleoides* Schreb. (Appendix 1), including leaf material freshly collected from one population of *D. laureola* L. and two to three replicates from herbarium samples for *D. cneorum*, *D. mezereum*, and *D. oleoides* Schreb. (Appendix 1). Rather than collected from one population of *D. laureola* and two to three replicates from herbarium samples for *D. cneorum*, *D. mezereum*, and *D. oleoides* Schreb. (Appendix 1), including leaf material freshly collected from one population of *D. laureola* L. and two to three replicates from herbarium samples for *D. cneorum*, *D. mezereum*, and *D. oleoides* Schreb. (Appendix 1).

Locus	*D. laureola* (*N* = 5)	*D. cneorum* (*N* = 2)	*D. gnidium* (*N* = 2)	*D. mezereum* (*N* = 1)	*D. oleoides* (*N* = 2)
Dro012		279	255	251	257,271
Dro019			247		
Dro025	156	136,151,163	152,156,168	156	154,156,162,164
Dro028	190	235,239,253,289	192	204,206	204,206
Dro034					
Dro035	204,206	205,207	192	204,206	204,206
Dro041	181,184	184	184		184
Dro042	314,317,320		164	290	180
Dro046	266		173,179		
Dro048					
Dro073	205,217	205	205,217	205,217	205
Dro078		148,157,173			
Dro113					
Dro114					
Dro124	155				233,253

Note: — = unsuccessful amplification; *N* = number of samples tested for each species.

Voucher and locality information are provided in Appendix 1.

At the population level, the number of alleles per locus ranged from one to 11 (Table 2). The level of observed heterozygosity ranged from 0.000 to 0.952, and the level of expected heterozygosity ranged from 0.000 to 0.854 (Table 2). Three loci (Dro025, Dro035, Dro073) were fixed, or nearly so, for a single allele per population. The remaining 12 loci showed substantial levels of polymorphism, with a mean of 8.3 alleles per locus. Only one locus (Dro078) showed significant deviation from Hardy–Weinberg equilibrium after sequential Bonferroni correction in population B, most probably because this was the only combination of locus and population for which null alleles were clearly identified by MICRO-CHECKER. Significant (*P* < 0.001) linkage disequilibrium was found between loci Dro046 and Dro124, but only for population B.

In addition, this panel of microsatellites rendered positive amplifications in a minimum of seven loci per species (Table 3). The limited availability of herbarium samples per species precluded a clear assessment of the levels of polymorphism detected with these markers, but for some species (*D. laureola, D. cneorum, D. oleoides*), even relatively low sample sizes revealed that at least half of the amplified loci exhibited more than one allele (Table 3).

CONCLUSIONS

The set of microsatellites characterized for *D. rodriguezii* is a powerful, cost-effective tool for detecting substantial levels of genetic variation using a relatively low number of multiplexed reactions, even in small populations. Such a genetic resolution will allow us to assess population genetic studies with these markers could be easily extended to other closely related *Daphne* species.

ACKNOWLEDGMENTS

The authors thank J. P. González-Varo for field assistance, and L. Viesca and E. Cires for laboratory assistance. The department of Servei de Protecció d’Espècies (Gover de les Illes Balears) provided...
legal permission for population sampling. J.C.I. was funded by a GRUPIN research grant from the Regional Government of Asturias (Ref.: IDI/2018/000151), and C.G.-V. was supported by a Vicenç Mut postdoctoral fellowship awarded by the Govern de les Illes Balears–Conselleria d’Innovació, Recerca i Turisme. The study was funded by the Ministerio de Economía, Industria y Competitividad (project Islet-Foodwebs CGL2017-88122-P).

AUTHOR CONTRIBUTIONS

C.G.-V. and A.T. planned the study and collected plant tissue, J.C.I. and C.G.-V. conducted laboratory work and allele scoring, and C.G.-V. performed the analyses and wrote the manuscript, with input from J.C.I. and A.T.

DATA ACCESSIBILITY

The primers and microsatellite sequences developed in this study have been deposited in GenBank (accession numbers MK507747–MK507761; Table 1). Raw sequence library data were deposited in the Short Read Archive of the National Center for Biotechnology Information (NCBI) (BioProject accession number: PRJNA523502).

LITERATURE CITED

Alonso, C., and C. M. Herrera. 2011. Back-and-forth hermaphroditism: Phylogenetic context of reproductive system evolution in subdioecious Daphne laureola. Evolution 65: 1680–1692.

Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data. Website http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [accessed 17 July 2018].

Belkhir, K., P. Borsa, J. Goudet, L. Chikhi, and F. Bonhomme. 2001. GENETIX, Logiciel sous Windows™ pour la genetique des populations. Laboratoire Genetique et Populations, Universite de Montpellier II, Montpellier, France.

van Oosterhout, C., W. F. Hutchison, D. P. M. Wills, and P. Shipley. 2004. Genetic analysis of microsatellite data. Molecular Ecology Resources 4: 269–280.

APPENDIX 1. Voucher and location information for species and populations used in the characterization of microsatellite markers for Daphne rodriguezii and related species.

Taxon (Population)	Voucher specimen accession no.*	Collection locality	Geographic coordinates	N
Daphne rodriguezii Texidor (popA)	JBAG8300	Colorn, Menorca	39°57.5’N, 04°16.9’E	22
Daphne rodriguezii (popB)	JBAG8301	Menorca	39°54.5’N, 04°17.0’E	20
Daphne cneorum L.	JBAG656	Valle del Soba, Cantabria	43°09.5’N, 03°34’1’W	3
Daphne gnidium L.	JBAG877	Dumbria, La Coruña	43°00.9’N, 09°07.4’W	3
Daphne lauruela L.	JBAG8299	Ponga, Asturias	43°12.7’N, 05°05.5’W	5
Daphne mezereum L.	JACA78470	Canfranc, Huesca	42°42.2’N, 00°34’1’W	2
Daphne oleoides Schreb.	JBAG384	La Rapa, Granada	37°20.1’N, 02°50.2’W	2

Note: N = number of individuals initially assayed (some herbarium samples did not provide clear amplifications and were not used for polymorphism testing; see Table 3).

*All herbarium specimens are deposited at the Jardín Botánico Atlántico herbarium (JABG), Asturias, Spain, including one donation from the Instituto Pirenaico de Ecología herbarium (IPIE), Jaca, Spain.

APPENDIX 2. Optimal PCR annealing temperatures °C used for cross-species amplification of microsatellite markers developed for Daphne rodriguezii in five closely related species.

Locus	D. cneorum	D. gnidium	D. lauruela	D. mezereum	D. oleoides
Dro012	55.7	52.6	MB	52.6	60.2
Dro019	—	55.7	—	—	—
Dro025	59.0	59.0	59.0	59.0	59.0
Dro028	50.0	60.0	—	60.0	50.0

(Continues)
APPENDIX 2. (Continued)

Locus	*D. cneorum*	*D. gnidium*	*D. laureola*	*D. mezereum*	*D. oleoides*
Dro034	—	—	MB	—	—
Dro035	63.6	59.0	59.0	59.0	59.0
Dro041	51.0	50.0	50.0	—	50.1
Dro042	—	55.7	60.0	51.2	51.2
Dro046	—	51.2	50.1	—	—
Dro048	—	—	—	—	—
Dro073	59.0	59.0	59.0	59.0	59.0
Dro078	50.1	—	MB	—	—
Dro113	—	—	—	59.1	60.2
Dro124	—	—	52.6	—	55.7

Note: — = unsuccessful amplification; MB = multiple bands.