PRESERVATION OF PRODUCT STRUCTURES UNDER THE RICCI FLOW WITH INSTANTANEOUS CURVATURE BOUNDS

MARY COOK

Abstract. In this note, we prove that there exists a constant \(\epsilon > 0 \), depending only on the dimension, such that if a complete solution to the Ricci flow splits as a product at time \(t = 0 \) and has curvature bounded by \(\frac{\epsilon}{t} \), then the solution splits for all time.

1. Introduction

In this note, we consider the problem of whether a solution to the Ricci flow

\[
\frac{\partial}{\partial t} g = -2Rc
\]

which splits as a product at \(t = 0 \) continues to do so for all time.

This problem is closely related, but not strictly equivalent, to the question of uniqueness of solutions to (1.1). For example, when \((\hat{M} \times \check{M}, \hat{g}_0 \oplus \check{g}_0)\), Shi’s existence theorem \([12]\) implies that there exist complete, bounded curvature solutions \((\hat{M}, \hat{g}(t))\) and \((\check{M}, \check{g}(t))\) with initial conditions \(\hat{g}_0\) and \(\check{g}_0\), respectively, which exist on some common time interval \([0, T]\). Then, \(\hat{g}(t) \oplus \check{g}(t)\) solves (1.1) on \(\hat{M} \times \check{M}\) for \(t \in [0, T]\) and is also complete and of bounded curvature. But, according to the uniqueness results of Hamilton \([5]\) and Chen-Zhu \([2]\), such a solution is unique among those which are complete and have bounded curvature. Thus, any solution in that class starting at \(\hat{g}_0 \oplus \check{g}_0\) continues to split as a product.

Outside of this class, less is known. While there are elementary examples which show that without completeness, a solution may instantaneously cease to be a product, the extent to which the uniform curvature bound can be relaxed is less well-understood. (One exception is in dimension two, where the work of Giesen and Topping \([3, 4]\) has established an essentially complete theory of existence and uniqueness for (1.1). In particular, in \([14]\), Topping shows that any two complete solutions with the same initial data must agree.)

One class of particular interest is that of solutions satisfying a curvature bound of the form \(c/t\) for some constant \(c\), which arise naturally as limits of exhaustions (see, e.g., \([1, 6, 13]\)). The purpose of this note is to prove the following.

Theorem 1.1. Let \((\hat{M}, \hat{g}_0)\) and \((\check{M}, \check{g}_0)\) be two connected Riemannian manifolds and let \(M = \hat{M} \times \check{M}\) and \(g_0 = \hat{g}_0 \oplus \check{g}_0\). Then there exists a constant \(\epsilon = \epsilon(n) > 0\), where \(n = \text{dim}(M)\), such that if \(g(t)\) is a complete solution to (1.1) on \(M \times [0, T]\) with \(g(0) = g_0\) satisfying

\[
|Rm| \leq \frac{\epsilon}{t},
\]

on \(M \times [0, T]\).
then \(g(t) \) splits as a product for all \(t \in [0,T] \), i.e., there exist \(\hat{g}(t) \), \(\tilde{g}(t) \) such that
\[
g(t) = \hat{g}(t) \oplus \tilde{g}(t),
\]
where \(\hat{g}(t) \) and \(\tilde{g}(t) \) are solutions to (1.1) on \(\hat{M} \) and \(\tilde{M} \), respectively, for \(t \in [0,T] \).

Lee [8] has already established the uniqueness of complete solutions satisfying the bound (1.2). However, his result does not directly imply Theorem 1.1: without any restrictions on the curvatures of \(\hat{g}_0 \) and \(\tilde{g}_0 \), we lack the short-time existence theory to guarantee that there are any solutions on \(\hat{M} \) and \(\tilde{M} \), respectively, with the given initial data, let alone solutions satisfying a bound of the form (1.2) for sufficiently small \(\epsilon \). Thus we are unable to construct a competing product solution on \(\hat{M} \times \tilde{M} \) to which we might apply Lee’s theorem.

Instead, we frame the problem as one of uniqueness for a related system, using a perspective similar to that of [9] and [11]. The key ingredient is a maximum principle closely based on one due to Huang-Tam [2] and modified by Liu-Székelyhidi [9]. These references establish, among other things, related results concerning the preservation of Kähler structures.

2. Tracking the product structure

Our first step toward proving Theorem 1 is to construct a system associated to a solution to Ricci flow which measures the degree to which a solution which initially splits as a product fails to remain a product. Consider a Riemannian product \((M,g_0) = (\hat{M} \times \tilde{M}, \hat{g}_0 \oplus \tilde{g}_0) \), and let \(g(t) \) be a smooth solution to the Ricci flow on \(M \times [0,T] \) with \(g(0) = g_0 \). For the time being, we make no assumptions on the completeness of \(g(t) \) or bounds on its curvature.

2.1. Extending the projections. Let \(\hat{\pi} : M \to \hat{M} \) and \(\tilde{\pi} : M \to \tilde{M} \) be the projections on each factor, and let \(\hat{H} = \ker(d\hat{\pi}) \) and \(\tilde{H} = \ker(d\tilde{\pi}) \). We define \(\hat{P}_0, \tilde{P}_0 \in \text{End}(TM) \) to be the orthogonal projections onto \(\hat{H} \) and \(\tilde{H} \) determined by \(g_0 \).

Following [11], we extend each of them to a time-dependent family of projections for \(t \in [0,T] \) by solving the fiber-wise ODEs
\[
\begin{aligned}
\partial_t \hat{P}(t) &= \text{Rc} \circ \hat{P} - \hat{P} \circ \text{Rc}, \\
\hat{P}(0) &= \hat{P}_0.
\end{aligned}
\]

From \(\hat{P} \) and \(\tilde{P} \), we construct time-dependent endomorphisms \(\mathcal{P}, \tilde{\mathcal{P}} \in \text{End}(\Lambda^2 T^* M) \) by
\[
\mathcal{P}\omega(X,Y) = \omega(\hat{P}X, \tilde{P}Y), \\
\tilde{\mathcal{P}}\omega(X,Y) = \omega(\tilde{P}X, \hat{P}Y),
\]
\[
\mathcal{T} = (\nabla \text{Rm}) \circ (\text{Id} \times \mathcal{P}), \quad \mathcal{S} = (\nabla \nabla \text{Rm}) \circ (\text{Id} \times \text{Id} \times \mathcal{P}).
\]

In order to study the evolution of \(\mathcal{R} \), it will be convenient to introduce an operator \(\Lambda^a_b \) which acts algebraically on tensors via
\[
\Lambda^a_b A^{i_1 \ldots i_k}_{i_1 \ldots i_k} = \delta^a_{i_1} A^{i_1 \ldots i_k}_{i_2 \ldots i_k} + \cdots + \delta^a_{i_k} A^{i_1 \ldots i_k}_{i_1 \ldots i_{k-1}} - \delta^a_{i_1} A^{i_1 \ldots i_k}_{i_1 \ldots i_k} - \cdots - \delta^a_{i_k} A^{i_1 \ldots i_k}_{i_1 \ldots i_k}.
\]

We will also consider the operator
\[
D_t := \partial_t + R_{ab} g^{bc} \Lambda^a_c.
\]
This operator has the property that \(D_t g = 0 \), and for any time-dependent tensor fields \(A \) and \(B \),
\[
D_t \langle A, B \rangle = \langle D_t A, B \rangle + \langle A, D_t B \rangle,
\]
where \(\langle \cdot, \cdot \rangle \) is the metric induced by \(g(t) \). Note that by construction the projections satisfy
\[
D_t \hat{P} \equiv 0, \quad D_t \hat{P} \equiv 0, \quad D_t P \equiv 0, \quad D_t \bar{P} \equiv 0.
\]

2.2. Evolution equations. In order to determine how the components of \(X \) and \(Y \) evolve, we will make use of the following commutation formulas (see [11], Lemma 4.3):
\[
[D_t, \nabla_a] = \nabla_p R_{pabc} A^b_c + R_{ac} \nabla_c,
\]
\[
[D_t - \Delta, \nabla_a] = 2 R_{abde} A^d_b \nabla_e + 2 R_{ab} \nabla_b.
\]

Additionally, we will need to examine the sharp operator on endomorphisms of two forms. For any \(A, B \in \text{End}(\Lambda^2 T^* M) \),
\[
\langle A\# B(\varphi), \psi \rangle = \frac{1}{2} \sum_{\alpha, \beta} \langle [A(\omega_\alpha), B(\omega_\beta)], \varphi \rangle \cdot \langle [\omega_\alpha, \omega_\beta], \psi \rangle,
\]
where \(\varphi, \psi \in \Lambda^2 T^* M \) and \(\{\omega_\alpha\} \) is an orthonormal basis for \(\Lambda^2 T^* M \). Recall that the curvature operator evolves according to
\[
(D_t - \Delta) R = Q(R, R),
\]
under the Ricci flow, where \(Q(A, B) = \frac{1}{2}(AB + BA) + A\# B \).

Proposition 2.1. We have the following evolution equations for the projection \(\mathcal{P} \):
\[
D_t \nabla \mathcal{P} = Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast S,
\]
\[
D_t \nabla^2 \mathcal{P} = Rm \ast \nabla^2 \mathcal{P} + \nabla Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast T + \nabla Rm \ast \mathcal{P} \ast \nabla \mathcal{P}.
\]
In particular, there exists a constant \(C = C(n) \) such that
\[
|D_t \nabla \mathcal{P}| \leq C(|Rm| |\nabla \mathcal{P}| + |S|),
\]
\[
|D_t \nabla^2 \mathcal{P}| \leq C(|Rm| |\nabla^2 \mathcal{P}| + |\nabla Rm| |\nabla \mathcal{P}| + |T|).
\]

Proof. Using equation (2.2) and the fact that \(D_t \mathcal{P} = 0 \), we can see that \(D_t \nabla \mathcal{P} = [D_t, \nabla] \mathcal{P} \). With some additional computation, we can then see (as in Propositions 4.5 and 4.6 from [11]) that
\[
D_t \nabla \mathcal{P} = Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast S.
\]
Similarly, using this equation together with (2.2) and the fact that \(\nabla S = T + \nabla Rm \ast \nabla \mathcal{P} \), we have
\[
D_t \nabla^2 \mathcal{P} = [D_t, \nabla] \nabla \mathcal{P} + \nabla (D_t \nabla \mathcal{P})
\]
\[
= Rm \ast \nabla^2 \mathcal{P} + \nabla Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast T + \nabla Rm \ast \mathcal{P} \ast \nabla \mathcal{P},
\]
as claimed. \(\square \)

In order compute similar evolution equations for \(\mathcal{R}, \mathcal{S}, \) and \(\mathcal{T} \), we will need the following lemma.
Lemma 2.2. Let \(A, B \in \text{End}(\Lambda^2 T^* M) \) be self-adjoint operators. There exists \(C = C(n) > 0 \) such that
\[
|Q(A, B) \circ P| \leq C (|A \circ P|B| + |A||B \circ P|).
\]

Proof. Clearly,
\[
|(A \circ B + B \circ A) \circ P| \leq |A \circ P||B| + |A||B \circ P|.
\]

Furthermore, for \(\eta \in \Lambda^2 T^* M \),
\[
(\langle A \# B \rangle \circ P)(\eta) = \frac{1}{2} \sum_{\alpha, \beta} (\omega_\alpha, B \omega_\beta, \mathcal{P} \eta) \cdot (\omega_\alpha, \omega_\beta)
\]
\[
= \frac{1}{2} \sum_{\alpha, \beta} (\mathcal{P} \circ A \omega_\alpha, \mathcal{P} \circ B \omega_\beta, \mathcal{P} \eta) \cdot (\omega_\alpha, \omega_\beta)
\]
\[
+ \frac{1}{2} \sum_{\alpha, \beta} (\mathcal{P} \circ A \omega_\alpha, \mathcal{P} \circ B \omega_\beta, \mathcal{P} \eta) \cdot (\omega_\alpha, \omega_\beta)
\]
\[
+ \frac{1}{2} \sum_{\alpha, \beta} (\mathcal{P} \circ A \omega_\alpha, \mathcal{P} \circ B \omega_\beta, \mathcal{P} \eta) \cdot (\omega_\alpha, \omega_\beta),
\]
where \(\{\omega_\alpha\} \) is an orthonormal basis for \(\Lambda^2 T^* M \). The final term on the right hand side is zero (see [11], Lemma 3.5); the point is that the image of \(\mathcal{P} \) is closed under the bracket and is perpendicular to the image of \(\mathcal{P} \). Moreover, \(\mathcal{P} \circ A = (A \circ \mathcal{P})^* \) and \(\mathcal{P} \circ B = (B \circ \mathcal{P})^* \), so it follows that
\[
|(A \# B) \circ P| \leq C \left(|A \circ P||B| + |A||B \circ P| + |A \circ \mathcal{P}||B \circ \mathcal{P}| \right)
\]
\[
\leq C \left(|A \circ P||B| + |A||B \circ P| \right),
\]
completing the proof. \qed

Proposition 2.3. As defined above, \(\mathcal{R}, \mathcal{S}, \) and \(\mathcal{T} \) satisfy the inequalities
\[
\|D_t - \Delta \mathcal{R}\| \leq C (|\Delta \mathcal{R}| + |\nabla \mathcal{R}||\nabla \mathcal{P}| + |\Delta \mathcal{R}|^2),
\]
\[
\|D_t - \Delta \mathcal{S}\| \leq C (|\Delta \mathcal{R}||\mathcal{R}| + |\nabla \mathcal{R}||\nabla \mathcal{S}| + |\Delta \mathcal{R}||\nabla \mathcal{S}| + |\Delta \mathcal{R}|^2),
\]
\[
\|D_t - \Delta \mathcal{T}\| \leq C (|\Delta \mathcal{R}||\mathcal{R}| + |\nabla \mathcal{R}||\mathcal{S}| + |\Delta \mathcal{R}| |\mathcal{T}| + |\nabla \mathcal{R}||\nabla \mathcal{R}| + |\nabla \mathcal{R}||\nabla \mathcal{S}| + |\nabla \mathcal{R}||\nabla \mathcal{S}| + |\nabla \mathcal{R}||\nabla \mathcal{S}| + |\nabla \mathcal{R}||\nabla \mathcal{S}| + |\nabla \mathcal{R}||\nabla \mathcal{S}|) ,
\]
where \(C = C(n) > 0 \).

Proof. Using the evolution equation for \(\mathcal{R} \), we have
\[
(D_t - \Delta) \mathcal{R} = Q(\mathcal{R}, \mathcal{R}) \circ \mathcal{P} + \mathcal{R} \circ \Delta \mathcal{P} + 2 \nabla \mathcal{R} \mathcal{R} \mathcal{P} + \nabla \mathcal{P}.
\]
The first inequality then follows immediately from Lemma 2.2.

We now compute the evolution equation for \(\mathcal{S} \). First, note that
\[
(D_t - \Delta) \mathcal{S} = (D_t - \Delta, \nabla \mathcal{R}) \circ \mathcal{P} + \nabla ((D_t - \Delta) \mathcal{R}) \circ \mathcal{P}
\]
\[
+ \nabla \mathcal{R} \mathcal{R} \mathcal{P} + \nabla \mathcal{R} \mathcal{P} + \nabla \mathcal{R} \mathcal{P}.
\]
For the first term, using the commutator \([2.3]\), we have
\[
([D_t - \Delta], \nabla_a) R_{ijkl} = 2R_{abcd} \Lambda^a_{ij} \nabla_b R_{ijkl} + 2R_{ab} \nabla_b R_{ijkl}.
\]
As in the computation in Proposition 4.13 from \([11]\), we have
\[
R_{abcd} \Lambda^a_{ij} \nabla_b R_{mnkl} P_{ijmn} = Rm \ast S + \nabla Rm \ast R \ast P,
\]
which gives us
\[
(2.7) \quad ([D_t - \Delta, \nabla] Rm) \circ P = Rm \ast S + \nabla Rm \ast R \ast P.
\]
We then compute
\[
\nabla((D_t - \Delta) Rm) = \nabla Q(Rm, Rm)
= \nabla Rm \circ Rm + Rm \circ \nabla Rm + \nabla Rm \# Rm + Rm \# \nabla Rm
= 2Q(\nabla Rm, Rm),
\]
where we regard \(\nabla Rm\) as a one form with values in \(\text{Sym}(\Lambda^2 T^* M)\). Then, applying Lemma \(2.2\) and combining the result in \(2.7\) with \(2.6\), we obtain the second inequality.

For the third inequality, we begin with the identity
\[
(D_t - \Delta) T = ((D_t - \Delta) \nabla^2 Rm) \circ P + \nabla^2 Rm \ast \nabla^2 P + \nabla^3 Rm \ast \nabla P.
\]
The first term can be rewritten as
\[
((D_t - \Delta) \nabla^2 Rm) \circ P = ([D_t - \Delta, \nabla^2 Rm] \circ P + (\nabla^2 Rm \circ (D_t - \Delta, \nabla) Rm) \circ P.
\]
Applying equation \((2.3)\) once again gives us
\[
((D_t - \Delta) \nabla_a \nabla Rm) \circ P - (\nabla_a (D_t - \Delta) \nabla Rm) \circ P = (2R_{abcd} \Lambda^a_{ij} \nabla_b \nabla Rm + 2R_{ab} \nabla_b \nabla Rm) \circ P,
\]
and we have
\[
R_{abcd} \Lambda^a_{ij} \nabla_b \nabla Rm \circ P = Rm \ast T + \nabla^2 Rm \ast R \ast P
\]
(again see \([11]\), Proposition 4.13, also \([9]\)). We can see that
\[
(\nabla [D_t - \Delta, \nabla] Rm) \circ P = \nabla (([D_t - \Delta, \nabla] Rm) \circ P) + ([D_t - \Delta, \nabla] Rm) \ast \nabla P
= \nabla Rm \ast S + Rm \ast T + Rm \ast \nabla Rm \ast \nabla P + \nabla^2 Rm \ast R \ast P + \nabla Rm \ast S \ast P
+ \nabla Rm \ast Rm \ast \nabla P + \nabla Rm \ast R \ast \nabla P + \nabla Rm \ast \nabla Rm \ast \nabla P
\]
where we again use the facts that \(\nabla R = S + Rm \ast \nabla P\) and \(\nabla S = T + \nabla Rm \ast \nabla P\). Additionally,
\[
(\nabla \nabla (D_t - \Delta) Rm) \circ P = 2Q(\nabla^2 Rm, Rm) \circ P + 2Q(\nabla Rm, \nabla Rm) \circ P.
\]
Combining the above identities and again applying Lemma \(2.2\) to the last term, we obtain the third inequality.
2.3. Constructing a PDE-ODE system. With an eye toward Theorem 1, we now organize the tensors ∇P, $\nabla^2 P$, R, S, and T into groupings which satisfy a closed system of differential inequalities. Let

$$X = T^4(T^*M) \oplus T^5(T^*M) \oplus T^6(T^*M), \quad Y = T^5(T^*M) \oplus T^6(T^*M),$$

and define families of sections $X = X(t)$ of X and $Y = Y(t)$ of Y for $t \in (0, T]$ by

$$X = \left(\frac{R}{t}, \frac{S}{t^{3/2}}, T \right), \quad Y = \left(\frac{\nabla P}{\sqrt{t}}, \nabla^2 P \right).$$

Proposition 2.4. If $g(t)$ is a smooth solution to Ricci flow on $M \times [0, T]$ with $|\text{Rm}|(x, t) < a/t$ for some $a > 0$, then there exists a constant $C = C(a, n) > 0$ depending such that X and Y satisfy

$$|(D_t - \Delta)X| \leq C \left(\frac{1}{t} |X| + \frac{1}{t^2} |Y| \right), \quad |D_t Y| \leq C \left(|X| + \frac{1}{t} |Y| \right),$$

on $M \times (0, T]$.

Remark 2.5. Inspection of the proof reveals that the constant C in fact has the form $C = aC$, where C depends only on n and $\max\{a, 1\}$.

This follows directly from Propositions 2.4 and 2.5 with the help of the following curvature bounds, which can be obtained from the classical estimates of Shi [12] with a simple rescaling argument.

Proposition 2.6. Suppose $(M, g(t))$ is a complete solution to Ricci flow for $t \in [0, T]$ which satisfies

$$|\text{Rm}|(x, t) \leq \frac{a}{t},$$

for some constant $a > 0$. Then for each $m > 0$, there exists a constant $C = C(m, n)$ such that

$$|\nabla^m \text{Rm}|(x, t) \leq \frac{aC}{m^{m/2}} (1 + a^{m/2}).$$

Proof of Proposition 2.4. Throughout this proof, C will denote a constant which may change from line to line but depends only on n and a. Using (2.4) in combination with the curvature estimates, we obtain

$$|D_t Y| \leq \frac{1}{2} t^{-3/2} |\nabla P| + t^{-1/2} |D_t \nabla P| + |D_t \nabla^2 P|$$

$$\leq Ct^{-1/2} |S| + C|T| + Ct^{-3/2} |\nabla P| + Ct^{-1} |\nabla^2 P|$$

$$\leq C |X| + \frac{C}{t} |Y|.$$

Applying the curvature estimates to the inequalities (2.4) for R, S, and T, we get

$$|(D_t - \Delta)R| \leq Ct^{-1} |R| + Ct^{-3/2} |\nabla P| + Ct^{-1} |\nabla^2 P|,$$

$$|(D_t - \Delta)S| \leq Ct^{-3/2} |R| + Ct^{-1} |S| + Ct^{-2} |\nabla P| + Ct^{-3/2} |\nabla^2 P|,$$

and

$$|(D_t - \Delta)T| \leq Ct^{-2} |R| + Ct^{-3/2} |S| + Ct^{-1} |T| + Ct^{-5/2} |\nabla P| + t^{-2} |\nabla^2 P|. $$
Combining these equations, we have
\[
| (D_t - \Delta)X | \leq t^{-1} | (D_t - \Delta)R | + t^{-2} | R | + t^{-1/2} | (D_t - \Delta)S | + \frac{1}{2} t^{-3/2} | S |
\]
\[
+ | (D_t - \Delta)T |
\]
\[
\leq Ct^{-2} | R | + Ct^{-3/2} | S | + Ct^{-1} | T | + Ct^{-5/2} | \nabla P | + Ct^{-2} | \nabla^2 P |
\]
\[
\leq Ct^{-1} | X | + Ct^{-2} | Y |,
\]
as desired.

3. A general uniqueness theorem for PDE-ODE systems

We now aim to show that \(X \) and \(Y \) vanish using a maximum principle from [7] by adapting it to apply to a general PDE-ODE system. The following theorem is essentially a reformulation of Lemma 2.3 in [7] and Lemma 2.1 in [9].

Theorem 3.1. Let \(M = M^n \) and \(\mathcal{X} \) and \(\mathcal{Y} \) be finite direct sums of \(T^k(M) \). There exists an \(\epsilon = \epsilon(n) > 0 \) with the following property: Whenever \(g(t) \) is a smooth, complete solution to the Ricci flow on \(M \) satisfying
\[
|R_m| \leq \frac{\epsilon}{t}
\]
on \(M \times (0, T] \), and \(X = X(t) \) and \(Y = Y(t) \) are families of smooth sections of \(\mathcal{X} \) and \(\mathcal{Y} \) satisfying
\[
| (D_t - \Delta)X | \leq C_t | X | + C_t^2 | Y |, \quad |D_tY| \leq C | X | + C_t | Y |,
\]
\[
D^k_t Y = 0, \quad D^k_t X = 0 \text{ for } k \geq 0 \text{ at } t = 0,
\]
and
\[
|X| \leq Ct^{-1},
\]
for some \(C > 0, l > 0 \), then \(X \equiv 0 \) and \(Y \equiv 0 \) on \(M \times [0, T] \).

The key ingredient in the proof of Theorem 3.1 is an the following scalar maximum principle due to Huang-Tam [7] (and its variant in [9]). Though the statement has been slightly changed from its appearance in [7], the proof is nearly identical. We detail here the modifications we make for completeness.

Proposition 3.2 (c.f. [7], Lemma 2.3 and [9], Lemma 2.1). Let \(M \) be a smooth \(n \)-dimensional manifold. There exists an \(\epsilon = \epsilon(n) > 0 \) such that the following holds: Whenever \(g(t) \) is a smooth complete solution to the Ricci flow on \(M \times [0, T] \) such that the curvature satisfies \(|R_m| \leq \epsilon/t \) and \(f \geq 0 \) is a smooth function on \(M \times [0, T] \) satisfying
\[
(1) \quad (\partial_t - \Delta) f(x, t) \leq at^{-1} \max_{0 \leq s \leq t} f(x, s),
\]
\[
(2) \quad \partial^k_t |_{t=0} f = 0 \text{ for all } k \geq 0,
\]
\[
(3) \sup_{x \in M} f(x, t) \leq Ct^{-l} \text{ for some positive integer } l \text{ for some constant } C,
\]
then \(f \equiv 0 \) on \(M \times [0, T] \).

Proof. For the time-being, we will assume \(\epsilon > 0 \) is fixed and that \(g(t) \) is a smooth, complete solution to Ricci flow on \(M \times [0, T] \) satisfying \(|R_m| \leq \epsilon/t \). We will then specify \(\epsilon \) over the course of the proof.
As in [7] we may assume $T \leq 1$. We will first show that for any $k > a$, there exists a constant B_k such that
\[
\sup_{x \in M} f(x, t) \leq B_k t^k.
\]

Let ϕ be a cutoff function as in [7], i.e., choose $\phi \in C^\infty([0, \infty))$ such that $0 \leq \phi \leq 1$ and
\[
\phi(s) = \begin{cases} 1 & 0 \leq s \leq 1, \\ 0 & 2 \leq s, \end{cases} \quad -C_0 \leq \phi' \leq 0, \quad |\phi''| \leq C_0,
\]
for some constant $C_0 > 0$. Then let $\Phi = \phi^m$ for $m > 2$ to be chosen later and define $q = 1 - \frac{2}{m}$. Then
\[
0 \geq \Phi' \geq -C(m)\Phi^q, \quad |\Phi''| \leq C(m)\Phi^q.
\]
where $C(m) > 0$ is a constant depending only on m (and on C_0).

Fix a point $y \in M$. As in Lemma 2.2 of [7], there exists some $\rho \in C^\infty(M)$ such that
\[
d_g(T)(x, y) + 1 \leq \rho(x) \leq C'(d_g(T)(x, y) + 1), \quad |\nabla d_g(T)\rho|_g(T) + |\nabla^2 d_g(T)\rho|_g(T) \leq C',
\]
where C' is a positive constant depending only on n and $\frac{\partial}{\partial T}$. This function then also satisfies
\[
|\nabla \rho| \leq C_1 t^{-ce}, \quad |\Delta \rho| \leq C_2 t^{-1/2 - ce},
\]
where C_1, C_2 are constants depending only on n, T and ϵ, and $c > 0$ depends only on the dimension n. We may assume ϵ is small enough so that $cc < 1/4$. Let $\Psi(x) = \Psi(x) = \Phi(\rho(x)/r)$ for $r \gg 1$. Define also $\theta = \exp(-\alpha t^1 - \beta)$, where $\alpha > 0$ and $0 < \beta < 1$. By the estimates on the derivatives of ρ, we have
\[
|\nabla \Psi| = r^{-1}\Phi'(|\rho|)\nabla|\rho| \leq r^{-1}C(m)C_1 \Phi^q(\rho) t^{-ce} \leq C(m)\Psi q t^{-1/4}
\]
and
\[
|\Delta \Psi| = |r^{-2}\Phi''(\rho/\rho)\nabla|\rho|^2 + r^{-1}\Phi'(|\rho|)\Delta|\rho|
\leq r^{-2}C(m)\Phi^q(\rho/\rho) t^{-2ce} + r^{-1}C(m)\Phi^q(\rho) t^{-1/2 - ce}
\leq C(m)\Psi q t^{-3/4}.
\]

For $k > a$, let $F = t^{-k}f$. Then F satisfies
\[
(\partial_t - \Delta) F = -kt^{-k-1}f + t^{-k}(\partial_t - \Delta)f
\leq -kt^{-k-1}f(x, t) + at^{-k-1}\max_{0 \leq s \leq t} f(x, s)
\]
and $F \leq Ct^{-l-k}$.

Let $H = \theta \Psi F$ and suppose that H attains a positive maximum at the point (x_0, t_0). Then, at this point, we have $\Psi > 0$ and both $(\partial_t - \Delta) H \geq 0$ and $\nabla H = 0$. Since $\nabla H = 0$, we have
\[
\nabla \Psi \cdot \nabla F = -F|\nabla \Psi|^2.
\]
Additionally, since Ψ is independent of time,
\[
\theta(s)F(x_0, s) \leq \theta(t_0)F(x_0, t_0)
\]
for all $s \leq t_0$. Because θ is decreasing, we have
\[
s^{-k}f(x_0, s) = F(x_0, s) \leq F(x_0, t_0) = t_0^{-k}f(x_0, t_0)
\]
for $s \leq t_0$, which in turn implies
\[
\max_{0 \leq s \leq t_0} f(x, s) = f(x, t_0).
\]
Thus, at (x_0, t_0) we have
\[
(\partial_t - \Delta) F \leq (-k + a)t_0^{-1} F \leq 0.
\]
Thus at (x_0, t_0) we have
\[
\Delta H = \theta F \Delta \Psi + \theta \Psi \Delta F + 2\theta \nabla F \cdot \nabla \Psi
= \theta F \Delta \Psi + \theta \Psi \Delta F - 2\theta F |\nabla \Psi|^2
\geq -C(m)\theta F \Psi^q t_0^{-3/4} - C(m)\theta F \Psi^{2q-1} t_0^{-3/4} + \theta \Psi \Delta F
\]
and
\[
\partial_t H = -\alpha(1 - \beta)t_0^{-\beta} \theta F \Psi + \theta \Psi \partial_t F.
\]
We can then compute
\[
0 \leq (\partial_t - \Delta) H
\leq \theta \Psi(\partial_t - \Delta) F - \alpha(1 - \beta)t_0^{-\beta} \theta F + C(m)\theta \Psi^q F t_0^{-3/4} + C(m)\theta \Psi^{2q-1} F t_0^{-3/4}
\leq -\alpha(1 - \beta)t_0^{-\beta} \theta F + C(m)\theta ((\Psi F)^q t_0^{-3/4 - (1 - q)(l + k)}
+ C(m)\theta (\Psi F)^{2q-1} t_0^{-3/4 - (2 - 2q)(l + k)}.
\]
We now choose m and β so that the powers of t_0 in the denominators of the last two terms are less than β. We take β to be $7/8$ (any $\beta \in (3/4, 1]$ will do). Recalling that $q = 1 - 2/m$, we choose m large enough so that $7/8 > 3/4 + (1 - q)(l + k)$ and $7/8 > 3/4 + (2 - 2q)(l + k)$. Then
\[
\frac{\alpha}{8} \Psi F = \alpha(1 - \beta) \Psi F \leq C(m) \left((\Psi F)^q + (\Psi F)^{2q-1}\right).
\]
Finally, we choose α large enough so that $\alpha > 16C(m)$. Then
\[
2\Psi F \leq (\Psi F)^q + (\Psi F)^{2q-2},
\]
implying that $(\Psi F)(x_0, t_0) \leq 1$, and hence $H \leq 1$ everywhere. In particular, for any $x \in \{\rho \leq r\}$, $f(x, t) = t^k F(x, t) \leq e^\alpha t^k := B_k t^k$. Sending r to infinity then proves that $f(x, t) \leq B_k t^k$.

Next, again as in (4), we define the function $\eta(x, t) = \rho(x) \exp \left(\frac{2c_2 k t^{1-b}}{1-t} \right)$ for $b > 1$. Since $|\Delta \rho| \leq C_2 t^{-b}$, we have
\[
(\partial_t - \Delta) \eta > 0, \quad \partial_t \eta > 0.
\]
Let $F = t^{-a} f$. Fix $\delta > 0$ and consider the function $F - \delta \eta - \delta t$. Note that by our previous argument, $F \leq Ct^2$, and in particular is bounded. For some $t_1 > 0$ depending on δ and c, $F - \delta t < 0$ for $t \leq t_1$ and for $t \geq t_1$, $F - \delta \eta < 0$ outside some compact set. So, if $F - \delta \eta - \delta t$ is ever positive, there must exist some $(x_0, t_0) \in M \times (0, T]$ at which it attains a positive maximum. Because $-\delta \eta - \delta t$ is decreasing in time, for any $s < t_0$ from the inequality
\[
F(x_0, s) - \delta \eta(x_0, s) - \delta s \leq F(x_0, t_0) - \delta \eta(x_0, t_0) - \delta t_0,
\]
we conclude
\[
F(x_0, s) \leq F(x_0, t_0).
\]
As in our previous argument, this implies that \(f(x_0, t_0) = \max_{0 \leq s \leq t_0} f(x_0, s) \), so that at \((x_0, t_0)\)
\[
(\partial_t - \Delta)(F - \delta \eta - \delta t) < 0,
\]
a contradiction. Thus, for any \(\delta > 0 \), \(F - \delta \eta - \delta t \leq 0 \). Taking \(\delta \to 0 \) then implies that \(F = 0 \). \(\square \)

We can now prove Theorem 3.1.

Proof of Theorem 3.1. For \(k > 0 \) to be determined later, define the functions \(F \) and \(G \) on \(M \times [0, T] \) by
\[
F = t - k |X|^2, \quad G = t - (k+1) |Y|^2,
\]
for \(t \in (0, T] \) and \(F(x, 0) = G(x, 0) = 0 \). From the assumption that \(D_l tX = D_l tY = 0 \) for all \(l \geq 0 \), it follows that both \(F \) and \(G \) are smooth on \(M \times [0, T] \) and that \(\partial_l t F = \partial_l t G = 0 \) for all \(l \geq 0 \).

We have
\[
(\partial_t - \Delta)F = -kt^{-(k+1)}|X|^2 + 2t^{-k}(\langle D_t - \Delta X, X \rangle - 2t^{-k}|\nabla X|^2
\]
\[
\leq -kt^{-(k+1)}|X|^2 + 2t^{-k}|(D_t - \Delta X)||X|
\]
\[
\leq t^{-(k+1)}(2C - k)|X|^2 + 2Ct^{-(k+2)}|X||Y|
\]
\[
\leq t^{-1}(3C - k)F + Ct^{-2}G
\]
and
\[
\partial_t G = -(k+1)t^{-(k+2)}|Y|^2 + 2t^{-(k+1)}(\langle D_t Y, Y \rangle
\]
\[
\leq (2C - k - 1)t^{-(k+2)}|Y|^2 + 2Ct^{-(k+1)}|X||Y|
\]
\[
\leq CF + t^{-1}(3C - k - 1)G.
\]
Choosing \(k > 3C \), this becomes
\[
(\partial_t - \Delta)F \leq t^{-2}CG, \quad \partial_t G \leq CF.
\]
In particular this implies that
\[
G(x, t) \leq C t \max_{0 \leq s \leq t} F(x, s),
\]
and therefore
\[
(\partial_t - \Delta)F \leq t^{-1}C^2 \max_{0 \leq s \leq t} F(x, s).
\]
By our assumption on \(X, F \leq Ct^{-2l-k} \). Thus \(F \) satisfies the hypotheses of Proposition 3.2 and must vanish identically. We then conclude that \(G \), hence \(Y \), vanishes as well. \(\square \)

4. **Proof of Theorem 1.1**

We are now almost ready to prove Theorem 1.1. We just need to first verify that \(X \) and \(Y \) satisfy the last major remaining hypothesis of Theorem 3.1, that is, that all time derivatives of \(X \) and \(Y \) vanish at \(t = 0 \).
4.1. Vanishing of time derivatives. We begin by recording a standard commutator formula, which is in fact valid (with obvious modifications) for any family of smooth metrics.

Proposition 4.1. Let $(M, g(t))$ be a smooth solution to the Ricci flow for $t \in [0, T]$. Then, for any $l \geq 1$, the formula

\[[D_t, \nabla^{(l)}]A = \sum_{k=1}^{l} \nabla^{(k-1)}[D_t, \nabla^{(l-k)}]A \]

is valid for any smooth family of tensor fields A on $M \times [0, T]$.

Proof. We proceed by induction on l. The base case, $l = 1$, is trivial. Now, suppose that (4.1) holds for $l \leq m$ for some $m \geq 1$. Then,

\[
[D_t, \nabla^{(m+1)}]A = D_t \nabla^{(m+1)}A - \nabla^{(m+1)}D_t A
\]

\[= [D_t, \nabla^{(m)}]\nabla A + \nabla^m D_t \nabla A - \nabla^{(m+1)}D_t A
\]

\[= [D_t, \nabla^{(m)}]\nabla A + \nabla^m [D_t, \nabla]A
\]

\[= \sum_{k=1}^{m} \nabla^{(k-1)}[D_t, \nabla^{(m-k)}(\nabla A)] + \nabla^{(m)}[D_t, \nabla]A
\]

\[= \sum_{k=1}^{m+1} \nabla^{(k-1)}[D_t, \nabla]A^{(m+1-k)}A,
\]

as desired. \square

Now we argue inductively that $D^k_t X = 0$ and $D^k_t Y = 0$ at $t = 0$.

Proposition 4.2. Let $M = \ddot{M} \times \ddot{M}$ be a smooth manifold and $g(t)$ be a smooth, complete solution to the Ricci flow such that $g(0)$ splits as a product. Define \mathcal{P} and \mathcal{R} as in Section 2. The following equations hold at $t = 0$ for all $k, l \geq 0$:

\[D^k_t \nabla^{(l)}\mathcal{P} = 0, \quad D^k_t \nabla^{(l+1)}\mathcal{R} = 0. \]

Proof. We proceed by induction on k, beginning with the base case $k = 0$. Because the metric splits as a product initially, at $t = 0$ we have $\nabla^{(l)}\hat{P} = \nabla^{(l)}\hat{P} = 0$ for all $l \geq 0$ and $R(\hat{P}(\cdot), \hat{P}(\cdot), \cdot) = 0$.

From this we get that, for any $X, Y, Z, W \in TM$,

\[R(X^* \wedge Y^*)(Z, W) = 2R(\hat{P}X, \hat{P}Y, W, Z) + 2R(\hat{P}X, \hat{P}Y, W, Z) = 0. \]

Combining these facts, we conclude

\[\nabla^{(l+1)}\mathcal{P} = 0, \quad \nabla^{(l)}\mathcal{R} = 0, \quad \nabla^{(l)}\mathcal{R}^* = 0, \]

at $t = 0$, where $\mathcal{R}^* = \mathcal{P} \circ \text{Rm}$ denotes the adjoint of \mathcal{R} with respect to g.

Now starting the induction step, suppose that for some $k \geq 0$, for all $l \geq 0$ and any $m \leq k$,

\[D^m_t \nabla^{(l+1)}\mathcal{P} = 0, \quad D^m_t \nabla^{(l)}\mathcal{R} = 0, \]

hence also $D^m_t \nabla^{(l)}\mathcal{R}^* = 0$. Recall that

\[(D_t - \Delta)\text{Rm} = \mathcal{Q}(\text{Rm}, \text{Rm}). \]
As in [11], Lemma 4.9, \(Q(Rm, Rm) \circ \mathcal{P} = R \ast U_1 + R \ast \ast U_2\), where \(U_1\) and \(U_2\) are smooth families of tensors on \(M\). Thus we can compute
\[
D_t \mathcal{R} = (D_t Rm) \circ \mathcal{P} + Rm \circ (D_t \mathcal{P})
\]
and thus
\[
\Delta \mathcal{R} = (\Delta Rm) \circ \mathcal{P} + Q(Rm, Rm) \circ \mathcal{P},
\]
and thus
\[
(4.2) \quad D_t^{k+1} \mathcal{R} = D_t^k ((\Delta Rm) \circ \mathcal{P}) + D_t^k (Q(Rm, Rm) \circ \mathcal{P}).
\]

Because
\[
\Delta \mathcal{R} = (\Delta Rm) \circ \mathcal{P} + Rm \circ \Delta \mathcal{P} + 2\nabla_t Rm \circ \nabla_t \mathcal{P},
\]
by the induction hypothesis \(D_t^k ((\Delta Rm) \circ \mathcal{P}) \equiv 0\) at \(t = 0\). Similarly,
\[
D_t^k (Q(Rm, Rm) \circ \mathcal{P}) = D_t^k (R \ast U_1) + D_t^k (R \ast \ast U_2) = 0.
\]
We conclude that \(D_t^{k+1} \mathcal{R} \equiv 0\), and thus \(D_t^{k+1} \mathcal{R} \ast \equiv 0\).

Now, using the commutator from equation (2.2) and Proposition 4.1 for any \(l > 0\) we have
\[
D_t \nabla^{(l)} \mathcal{R} = \sum_{m=1}^{l} \nabla^{(m-1)} [D_t, \nabla] \nabla^{(l-m)} \mathcal{R} + \nabla^{(l)} D_t \mathcal{R}
\]
and thus
\[
D_t^{k+1} \nabla^{(l)} \mathcal{R} = \sum_{m=1}^{l} D_t^k \nabla^{(m-1)} \left(\nabla Rm \ast \nabla^{(l-m)} \mathcal{R} + Rm \ast \nabla^{(l-m+1)} \mathcal{R} \right) + \nabla^{(l)} D_t \mathcal{R}.
\]
Expanding using the product rule and applying the induction hypothesis, all terms in the first sum vanish at \(t = 0\). For the remaining term, we again use the evolution equation for \(\mathcal{R}\). We have
\[
D_t^k \nabla^{(l)} D_t \mathcal{R} = D_t^k \nabla^{(l)} ((\Delta Rm) \circ \mathcal{P} + Q(Rm, Rm) \circ \mathcal{P}).
\]
As before, rewriting \(Q(Rm, Rm) \circ \mathcal{P}\) in terms of \(\mathcal{R}\) and \(\mathcal{R} \ast \) and expanding using the product rule, it follows that \(D_t^k \nabla^{(l)} D_t \mathcal{R} \equiv 0\) at \(t = 0\).

We now move on to the derivatives of \(\mathcal{P}\). Recall that
\[
D_t \nabla \mathcal{P} = [D_t, \nabla] \mathcal{P} = Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast S.
\]
Applying this in combination with Proposition 4.1, we get, for any \(l \geq 1\),
\[
D_t^{k+1} \nabla^{(l)} \mathcal{P} = \sum_{m=1}^{l} D_t^k \nabla^{(m-1)} [D_t, \nabla] \nabla^{(l-m)} \mathcal{P} + D_t^k \nabla^{(l)} D_t \mathcal{P}
\]
and thus
\[
\sum_{m=1}^{l-1} D_t^k \nabla^{(m-1)} \left(\nabla Rm \ast \nabla^{(l-m)} \mathcal{P} + Rm \ast \nabla^{(l-m+1)} \mathcal{P} \right)
+ D_t^k \nabla^{(l-1)} [D_t, \nabla] \mathcal{P} + D_t^k \nabla^{(l)} D_t \mathcal{P}.
\]
As before, every term in the first sum vanishes by the induction hypothesis, while the final term vanishes because \(D_t \mathcal{P} \equiv 0\). Finally we can see that
\[
D_t^k \nabla^{(l-1)} [D_t, \nabla] \mathcal{P} = D_t^k \nabla^{(l-1)} (Rm \ast \nabla \mathcal{P} + \mathcal{P} \ast S),
\]
and because $S = (\nabla \text{Rm}) \circ \mathcal{P} = \nabla R + \text{Rm} \ast \nabla \mathcal{P}$, $D_t^k \nabla (t^{-1}) |D_t, \nabla| \mathcal{P} \equiv 0$ at $t = 0$. This completes the proof. \hfill \square

4.2. Preservation of product structures. In the proof of Theorem 1.1 we will use the operator $\mathcal{F} : \Lambda^2 T^* M \rightarrow \Lambda^2 T^* M$ defined by

$$\mathcal{F} \omega(X, Y) = \omega(\hat{\mathcal{P}} X, \hat{\mathcal{P}} Y) - \omega(\hat{\mathcal{P}} \hat{\mathcal{P}} X, \hat{\mathcal{P}} Y).$$

(See, for example, Section 2.2 of [10].) Observe that

$$\mathcal{P} \circ \mathcal{F}(X, Y) = \mathcal{F}(\mathcal{P} \hat{\mathcal{P}} X, \mathcal{P} \hat{\mathcal{P}} Y) + \mathcal{F}(\hat{\mathcal{P}} \hat{\mathcal{P}} X, \hat{\mathcal{P}} Y) = \omega(\hat{\mathcal{P}}^2 X, \hat{\mathcal{P}} Y) + \omega(\hat{\mathcal{P}} X, \hat{\mathcal{P}} \hat{\mathcal{P}} Y) - \omega(\hat{\mathcal{P}}^2 X, \hat{\mathcal{P}} \hat{\mathcal{P}} Y) = \omega(\hat{\mathcal{P}} X, \hat{\mathcal{P}} Y) - \omega(\hat{\mathcal{P}} X, \hat{\mathcal{P}} Y).$$

Therefore $\mathcal{P} \circ \mathcal{F} = \mathcal{F}$.

Proof of Theorem 1. We have shown in Propositions 2.1 and 2.2 that the system X, Y satisfies the first two hypotheses of Theorem 3.1. Additionally, the curvature bounds from Proposition 2.3 imply that $|X| \leq Ct$. Thus, $X \equiv 0$ and $Y \equiv 0$ on $M \times [0, T]$. In particular, we know that $\mathcal{R} \equiv 0$ and $\nabla \mathcal{P} \equiv 0$ on $M \times [0, T]$.

We claim that $\nabla \hat{\mathcal{P}} \equiv \nabla \hat{\mathcal{P}} \equiv 0$ and $\partial_t \hat{\mathcal{P}} \equiv \partial_t \hat{\mathcal{P}} \equiv 0$. Similar to the proof of Lemma 7 in [10], if we define $W = \nabla \mathcal{P}$, then

$$D_t W^j_{ai} = [D_t, \nabla e_i] \hat{\mathcal{P}}^j = \nabla_p R_{pa} \hat{\mathcal{P}}^j_e - \nabla_p R_{pa}^j \hat{\mathcal{P}}^e + R^j_e W^j_{ei}.$$

Note that the first two terms combine to give

$$\langle \nabla e_p R(e_p, e_a) \hat{\mathcal{P}} e_i, \hat{\mathcal{P}} e_j \rangle = \frac{1}{2} \langle \nabla e_p \text{Rm}(e_i^* \wedge e_j^*)(e_p, e_a) - \nabla e_p \text{Rm}(e_i^* \wedge e_j^*)(e_p, e_a) \rangle = -\frac{1}{2} \nabla e_p \text{Rm} \circ \mathcal{F}(e_i^* \wedge e_j^*)(e_p, e_a).$$

But, since $\mathcal{P} \circ \mathcal{F} = \mathcal{F}$,

$$\nabla \text{Rm} \circ \mathcal{F} = \nabla \text{Rm} \circ \mathcal{P} \circ \mathcal{F} = \mathcal{S} \circ \mathcal{F} = 0,$$

so $D_t W^j_{ai} = R^j_e W^j_{ei}$. Thus, for any point $x \in M$, the function $f(t) = |\nabla \hat{\mathcal{P}}|^2(x, t)$ satisfies

$$f'(t) \leq Cf$$

for some C depending on x. Since $f(0) = 0$, f is identically zero. Thus $\hat{\mathcal{P}}$ (and similarly $\hat{\mathcal{P}}$) remain parallel.

Hence, we have

$$R(\cdot, \cdot, \hat{\mathcal{P}}(\cdot), \hat{\mathcal{P}}(\cdot)) = 0,$$

which implies that $\text{Re} \circ \hat{\mathcal{P}} = \hat{\mathcal{P}} \circ \text{Re}$ and $\text{Re} \circ \hat{\mathcal{P}} = \hat{\mathcal{P}} \circ \text{Re}$, and thus, from (2.1), $\partial_t \hat{\mathcal{P}} = \partial_t \hat{\mathcal{P}} = 0$ on $[0, T]$. Theorem 1.1 follows. \hfill \square
References

[1] E. Cabezas-Rivas and B. Wilking, How to produce a Ricci flow via Cheeger-Gromoll exhaustion, J. Eur. Math. Soc. 17 no. 12 (2015) 3153–3194.
[2] B.-L. Chen and X.-P. Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds, J. Diff. Geom. 74 no. 1 (2006), 119–154.
[3] G. Giesen and P. Topping, Existence of Ricci flows on incomplete surfaces, Comm. P. D. E. 36, no. 10 (2011), 1860–1880.
[4] G. Giesen and P. Topping, Ricci flow of negatively curved incomplete surfaces, Calc. Var. 38 (2010) 357–367.
[5] R. S. Hamilton, Three-manifolds with positive Ricci Curvature, J. Diff. Geom. 17 (1982), no. 2, 255–306.
[6] R. Hochard, Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci flow bounded from below, arXiv:1603.08726 (2016).
[7] S. Huang and L.-F. Tam, Kähler Ricci flow with unbounded curvature, Am. J. Math. 140 (2018), 189–220.
[8] M. C. Lee, On the uniqueness of Ricci flow, J. Geom. Anal. 29 (2018), 3098–3112.
[9] G. Liu and G. Székelyhidi, Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below, arXiv:1804.08587.
[10] B. Kotschwar, Kählerity of shrinking gradient Ricci solitons asymptotic to Kähler cones, J. Geom. Anal. 28 (2018), no. 3, 2609–2623.
[11] B. Kotschwar, Ricci flow and the holonomy group, J. Reine Angew. Math. 690 (2012), 133–161.
[12] W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Diff. Geom. 30 (1989), 223–301.
[13] M. Simon and P. Topping, Local control on the geometry in 3D limit flow, J. Diff. Geom. (2016).
[14] P. Topping, Uniqueness of instantaneously complete Ricci flows, Geom. Top. 19 (2015), 1477–1492.