A perturbative approach for the study of compatibility between nonminimally coupled gravity and Solar System experiments

Orfeu Bertolami1, Riccardo March2 and Jorge Páramos3

1Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
2Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Roma, Italy, and INFN - Laboratori Nazionali di Frascati (LNF), Via E. Fermi 40 Frascati, 00044 Roma, Italy
3Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico
Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

E-mail: orfeu.bertolami@fc.up.pt, r.march@iac.cnr.it, paramos@ist.edu

Abstract. We develop a framework for constraining a certain class of theories of nonminimally coupled (NMC) gravity with Solar System observations.

1. Introduction
We consider the possibility of constraining a class of theories of nonminimally coupled gravity [1] by means of Solar System experiments. NMC gravity is an extension of $f(R)$ gravity where the action integral of General Relativity (GR) is modified in such a way to contain two functions $f^1(R)$ and $f^2(R)$ of the space-time curvature R. The function $f^1(R)$ has a role analogous to $f(R)$ gravity, and the function $f^2(R)$ yields a nonminimal coupling between curvature and the matter Lagrangian density. For other NMC gravity theories and their potential applications, see, e.g., [2, 3, 4, 5, 6].

NMC gravity has been applied to several astrophysical and cosmological problems such as dark matter [7, 8], cosmological perturbations [9], post-inflationary reheating [10] or the current accelerated expansion of the Universe [11].

In the present communication, by extending the perturbative study of $f(R)$ gravity in [12], we discuss how a general framework for the study of Solar System constraints to NMC gravity can be developed. The approach is based on a suitable linearization of the field equations of NMC gravity around a cosmological background space-time, where the Sun is considered as a perturbation. Solar System observables are computed, then we apply the perturbative approach to the NMC model by Bertolami, Frazão and Páramos [11], which constitutes a natural extension of $1/R^n$ ($n > 0$) gravity [13] to the non-minimally coupled case. Such a NMC gravity model is able to predict the observed accelerated expansion of the Universe. We show that, differently from the pure $1/R^n$ gravity case, the NMC model cannot be constrained by this perturbative method so that it remains, in this respect, a viable theory of gravity. Further details about the subject of the present communication can be found in the manuscript [14].
2. NMC gravity model
We consider a gravity model with an action functional of the type [1],

\[S = \int \left[\frac{1}{2} f^1(R) + [1 + f^2(R)] \mathcal{L}_m \right] \sqrt{-g} \, d^4x, \]

where \(f^i(R) \) (\(i = 1, 2 \)) are functions of the Ricci scalar curvature \(R \), \(\mathcal{L}_m \) is the Lagrangian density of matter and \(g \) is the metric determinant. By varying the action with respect to the metric we get the field equations

\[(f^1_R + 2f^2_R \mathcal{L}_m) R_{\mu\nu} - \frac{1}{2} f^1 g_{\mu\nu} = (1 + f^2) T_{\mu\nu} + \nabla_{\mu\nu} (f^1_R + 2f^2_R \mathcal{L}_m), \tag{1} \]

where \(f^i_R \equiv df^i/dR \) and \(\nabla_{\mu\nu} = \nabla_\mu \nabla_\nu - g_{\mu\nu} \Box \). We describe matter as a perfect fluid with negligible pressure: the Lagrangian density of matter is \(\mathcal{L}_m = -\rho \) and the trace of the energy-momentum tensor is \(T = -\rho \). We write \(\rho = \rho^{\text{cos}} + \rho^s \), where \(\rho^{\text{cos}} \) is the cosmological mass density and \(\rho^s \) is the Sun mass density.

We assume that the metric which describes the spacetime around the Sun is a perturbation of a flat Friedmann-Robertson-Walker (FRW) metric with scale factor \(a(t) \):

\[ds^2 = -[1 + 2\Phi(r,t)] dt^2 + a^2(t) \left([1 + 2\Phi(r,t)] dr^2 + r^2 d\Omega^2 \right), \]

where \(|\Phi(r,t)| \ll 1 \) and \(|\Phi(r,t)| \ll 1 \). The Ricci curvature of the perturbed spacetime is expressed as the sum

\[R(r,t) = R_0(t) + R_1(r,t), \]

where \(R_0 \) denotes the scalar curvature of the background FRW spacetime and \(R_1 \) is the perturbation due to the Sun. Following Ref. [12], we linearize the field equations assuming that

\[|R_1(r,t)| \ll R_0(t), \tag{2} \]

both around and inside the Sun. This assumption means that the curvature \(R \) of the perturbed spacetime remains close to the cosmological value \(R_0 \) inside the Sun. In GR such a property of the curvature is not satisfied inside the Sun. However, for \(f(R) \) theories which are characterized by a small value of a suitable mass parameter (see next section), condition (2) can be satisfied. For instance, the \(1/R^n \) (\(n > 0 \)) gravity model [13] satisfies condition (2), as shown in [12, 15].

Eventually, we assume that functions \(f^1(R) \) and \(f^2(R) \) admit a Taylor expansion around \(R = R_0 \) and that terms nonlinear in \(R_1 \) can be neglected in the expansion. We use the notation introduced by [12] (for \(i = 1, 2 \)):

\[f^i_0 \equiv f^i(R_0), \quad f^i_R \equiv df^i/dR(R_0), \quad f^i_{RR} \equiv d^2f^i/dR^2(R_0). \]

3. Solution of the linearized field equations
The details of the following computations can be found in the paper [14]. First we linearize the trace of the field equations (1). Using condition (2), we neglect \(O(R_1^2) \) contributions but we keep the cross-term \(R_0 R_1 \). Introducing the potential \(U = (f^1_{RR} + 2f^2_{RR} \mathcal{L}_m) R_1 \), we get

\[\nabla^2 U - m^2 U = -\frac{1}{3} (1 + f^1_0) \rho^s + \frac{2}{3} f^2_{RR} \rho^s R_0 + 2 \rho^s \Box f^2_{RR} + 2 f^2_{RR} \nabla^2 \rho^s, \]

where \(m^2 \) denotes the mass parameter

\[m^2(r,t) = \frac{1}{3} \left[\frac{f^1_{RR} - f^2_{RR} \mathcal{L}_m}{f^1_{RR} + 2f^2_{RR} \mathcal{L}_m} - R_0 - \frac{3\Box (f^1_{RR} - 2f^2_{RR} \rho^{\text{cos}}) - 6\rho^s \Box f^2_{RR}}{f^1_{RR} + 2f^2_{RR} \mathcal{L}_m} \right]. \tag{3} \]
When \(f^2(R) = 0 \) we recover the mass formula of \(f(R) \) gravity theory found in [12]. In the following we assume that \(|mr| \ll 1\) at Solar System scale. Under this assumption the solution for \(R_1 \) outside the Sun is given by

\[
R_1(r, t) = \left[\frac{-\frac{1}{3} \left(1 + f_0^2 \right) + \frac{2}{5} f_{R0}^2 R_0 + 2 \Box f_{R0}^2}{4 \pi \left(2 f_{RR0}^2 \rho^{\text{cos}} - f_{R0}^4 \right)} \right] \frac{M_S}{r},
\]

where \(M_S \) is the mass of the Sun. Then we linearize the field equations (1) obtaining

\[
\left(f_{R0}^1 + 2 f_{R0}^2 \mathcal{L}_m \right) \left(\nabla^2 \Psi + \frac{1}{2} R_1 \right) - \nabla^2 \left(\left(f_{R0}^1 + 2 f_{R0}^2 \mathcal{L}_m \right) R_1 \right) = \left(1 + f_0^2 \right) \rho^S - 2 f_{R0}^2 \nabla^2 \rho^S,
\]

\[
\left(f_{R0}^1 + 2 f_{R0}^2 \mathcal{L}_m \right) \left(-\frac{d^2 \Psi}{dr^2} + \frac{2}{r} \frac{d \Phi}{dr} \right) - \frac{1}{2} f_{R0}^1 R_1 + \frac{2}{r} f_{R0}^1 \frac{d R_1}{dr} + \frac{4}{r} f_{R0}^1 \frac{\partial (\mathcal{L}_m R_1)}{\partial r} = \frac{4}{r} f_{R0}^1 \frac{d \rho^S}{dr}.
\]

Using the divergence theorem and the solution (4) for \(R_1 \), from the first equation we obtain the function \(\Psi \) outside of the Sun:

\[
\Psi(r, t) = -\frac{2}{3r} \left(1 + f_0^2 + f_{R0}^2 R_0 + 3 \Box f_{R0}^2 \right) \int_0^{R_S} \frac{\rho^S(x)}{f_{R0}^1 + 2 f_{R0}^2 \mathcal{L}_m(x)} r^2 \, dr,
\]

where \(R_S \) is the radius of the Sun. If the following condition is satisfied,

\[
\left| 2 f_{R0}^2 \right| \rho^S(r) \ll \left| f_{R0}^1 - 2 f_{R0}^2 \rho^{\text{cos}}(t) \right|, \quad r \leq R_S,
\]

then the function \(\Psi \) is a Newtonian potential:

\[
\Psi(r, t) = -\frac{G M_S}{r}, \quad G(t) = \frac{1 + f_0^2 + f_{R0}^2 R_0 + 3 \Box f_{R0}^2}{6 \pi \left(f_{R0}^1 - 2 f_{R0}^2 \rho^{\text{cos}} \right)} \quad r \geq R_S,
\]

where \(G(t) \) is an effective gravitational constant. Since \(G \) depends on slowly varying cosmological quantities we have \(G(t) \simeq \text{constant} \), so that \(\Psi(r, t) \simeq \Psi(r) \).

The solution for the function \(\Phi \) is computed from the second of the linearized field equations, and we obtain \(\Phi(r) = -\gamma \Psi(r) \), where the PPN parameter \(\gamma \) depends on cosmological quantities and it is given by

\[
\gamma = \frac{1}{2} \left[\frac{1 + f_0^2 + 4 f_{R0}^2 R_0 + 12 \Box f_{R0}^2}{1 + f_0^2 + f_{R0}^2 R_0 + 3 \Box f_{R0}^2} \right].
\]

When \(f^2(R) = 0 \) we find the known result \(\gamma = 1/2 \) which holds for \(f(R) \) gravity theories which satisfy the condition \(|mr| \ll 1\) and condition \(|R_1| \ll R_0\), as it has been shown in [12]. The \(1/R^n \) \((n > 0)\) gravity theory [13], where \(f(R) \) is proportional to \((R + \text{constant}/R^n)\), is one of such theories that, consequently, have to be ruled out by Cassini measurement.

4. Application to a NMC cosmological model

We consider the NMC gravity model proposed in [11] to account for the observed accelerated expansion of the Universe:

\[
f^1(R) = 2\kappa R, \quad f^2(R) = \left(\frac{R}{R_n} \right)^{-n}, \quad n > 0,
\]

where \(\kappa = c^4/16\pi G_N \), \(G_N \) is Newton’s gravitational constant, and \(R_n \) is a constant. This model yields a cosmological solution with a negative deceleration parameter \(q < 0 \), and the scale factor
a(t) of the background metric follows the temporal evolution \(a(t) = a_0 (t/t_0)^{2(1+n)/3} \) where \(t_0 \) is the current age of the Universe. Using the properties of the cosmological solution found in [11] the mass parameter (3) can be computed obtaining (we refer to [14] for details of the computation):

\[
m^2 = \frac{\mu(n)\rho^{\cos} + \nu(n)\rho^8}{\rho^{\cos} + \rho^8} R_0(t), \quad R_0(t) = \frac{4(1 + 4n)(1 + n)}{3t^2},
\]

where \(\mu(n) \) and \(\nu(n) \) are rational functions of the exponent \(n \). In [14] it is shown that the condition \(|mr| \ll 1 \) imposes the extremely mild constraint \(n \gg (1/6)R_s^2R_0 \sim 10^{-25} \). Moreover, from the properties of the cosmological solution [11] we have \(f_{R_0}^2 \rho^{\cos}(t)/\kappa = -2n/(4n + 1) \), from which it follows that condition (5) is incompatible with the previous constraint \(n \gg 10^{-25} \):

\[
\left| \frac{\kappa}{f_{R_0}^2 \rho^{\cos}(t)} - 1 \right| \rho^{\cos} = \left(3 + \frac{1}{2n} \right) \rho^{\cos}(t) \gg \rho^8(r) \rightarrow n \ll \frac{\rho^{\cos}}{2\rho^8} \sim 10^{-33}.
\]

We now check the assumption \(|R_1| \ll R_0 \). The previous result shows that we can not rely on the validity of Newtonian approximation. Hence we cannot use the effective gravitational constant \(G \) defined in (6) for the estimate of the ratio \(R_1/R_0 \), so that we resort to Newton’s gravitational constant \(G_N = c^4/16\pi\kappa \). The value of this ratio outside the Sun can be computed from the exterior solution (4) for \(R_1 \), while the result for the interior solution requires a more involved computation, based on a polynomial model of the mass density \(\rho^8 \), that can be found in [14]:

\[
\frac{R_1}{R_0} \approx \frac{1 + 4n}{n(1 + n)} \frac{G_N M_S}{r} \quad \text{for } r \geq R_S, \quad \frac{R_1}{R_0} \approx \frac{1}{1 + n} \quad \text{for } r < R_S.
\]

Though \(|R_1| \ll R_0 \) for \(n \gg 1 \), the interior solution shows that non-linear terms in the Taylor expansion of \(f^2(R) \) cannot be neglected, contradicting our assumption at the end of Section 2:

\[
\frac{f^2(R)}{R_0} = f_0^2 \left[1 - n \frac{R_1}{R_0} + \frac{n(n + 1)}{2} \left(\frac{R_1}{R_0} \right)^2 - \frac{1}{6} n(n + 1)(n + 2) \left(\frac{R_1}{R_0} \right)^3 \right] + O \left(\left(\frac{R_1}{R_0} \right)^4 \right).
\]

The lack of validity of the perturbative regime leads us to conclude that the model (7) cannot be constrained by this method, so that it remains, in this respect, a viable theory of gravity.

References

[1] Bertolami O, Böhmer C G, Harko T and Lobo F S N 2007 Phys. Rev. D **75** 104016
[2] Puetzfeld D and Obukhov Y N 2013 Phys. Rev. D **87** 044045
[3] Puetzfeld D and Obukhov Y N 2013 Phys. Lett. A **377** 2447
[4] Puetzfeld D and Obukhov Y N 2013 Equations of motion in gravity theories with nonminimal coupling: a loophole to detect torsion macroscopically? Preprint arXiv:1308.3369
[5] Iorio L 2013 A Closer Earth and the Faint Young Sun Paradox: Modification of the Laws of Gravitation, or Sun/Earth Mass Losses? Preprint arXiv:1306.3166
[6] Iorio L 2013 Orbital effects induced by a certain class of modified theories of gravity with nonminimally coupled between the matter and the metric Preprint arXiv:1306.3886
[7] Bertolami O and Páramos J 2010 JCAP **03** 009
[8] Bertolami O, Frazão P and Páramos J 2012 Phys. Rev. D **86** 044034
[9] Bertolami O, Frazão P and Páramos J 2013 JCAP **05** 029
[10] Bertolami O, Frazão P and Páramos J 2011 Phys. Rev. D **83** 044010
[11] Bertolami O, Frazão P and Páramos J 2010 Phys. Rev. D **81** 104046
[12] Chiba T, Smith T L and Erickcek A L 2007 Phys. Rev. D **75** 124014
[13] Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 Phys. Rev. D **70** 043528
[14] Bertolami O, March R and Páramos J 2013 Solar System constraints to nonminimally coupled gravity Preprint arXiv:1306.1176
[15] Hentunen K, Multamäki T and Vilja I 2008 Phys. Rev. D **77** 024040