1. Supplementary Material and Methods 2
 1.1 Study patients 2
 1.2 DNA extraction and genome-wide genotyping in the discovery and validation patients 2
 1.3 Imputation of genetic variants associated with SLE risk 4
 1.4 Pathway-based association analysis 5
 1.5 Differential expression analysis of VEGF pathway genes after topical immunotherapies 5

2. Supplementary Tables 7
 2.1 Table S1. Association of SLE risk genes with SLE clinical phenotypes in the discovery cohort 7
 2.2 Table S2. Genome-wide pathway associations obtained analyzing the 11 SLE clinical phenotypes in the discovery cohort 8
 2.3 Table S3. Association results of the SNPs from the VEGF pathway associated with oral ulcers in SLE 105
 2.4 Table S4. Statistical significance of the differential expression analysis performed on the VEGF pathway genes after immunotherapy 106
 2.5 Table S5. Statistical significance of the VEGF genetic pathway perturbation after topical immunotherapy 107
 2.6 Table S6. Established genetic variants for SLE risk 108
 2.7 Table S7. Reference biological pathways selected for the present study 109

3. Supplementary Figures 117
 3.1 Figure S1. Principal components of the SLE discovery cohort 117

4. References 118
1. Supplementary Material and Methods

1.1 Study patients

In the discovery stage, a total of 482 SLE patients were recruited. SLE patients were collected from the outpatient’s clinics of the rheumatology departments of 15 Spanish University Hospitals belonging to the Immune-Mediated Inflammatory Disease (IMID) Consortium [1]. The IMID Consortium is a Spanish network of researchers working on the genetic basis of IMIDs. All SLE patients were diagnosed using the 1982 revised ACR diagnosis criteria [2]. All patients included in this study were >16 years old at the time of sample collection and had >3 years of evolution from the diagnosis date. SLE patients with psoriasis, inflammatory bowel disease (Crohn’s disease or ulcerative colitis) or other rheumatic diseases like rheumatoid arthritis, or multiple sclerosis were excluded from the study. All SLE patients were Caucasian European with all four grandparents born in Spain.

In the validation stage, an independent cohort of 425 SLE patients was used to replicate the genetic pathways that were significantly associated with the SLE phenotypes in the discovery stage. All patients from the validation cohort fulfilled the ACR diagnostic criteria for SLE and were also collected from the IMID Consortium, following the same inclusion and exclusion criteria as for the discovery cohort.

1.2 DNA extraction and genome-wide genotyping in the discovery and validation patients

Whole blood samples (5 mL) were collected from all SLE patients from the discovery and replication cohorts. Genomic DNA was then isolated using the Chemagic Magnetic Separation Module I (PerkinElmer, Waltham, MA).
In the discovery stage, the genome-wide genotyping of the 482 SLE patients was performed using the Illumina Quad610 Beadchips (Illumina, San Diego, California, USA) at the Centro Nacional de Genotipado (CeGen, Madrid, Spain). Genotype calling was performed using the GenomeStudio data analysis software v2011.1 (Illumina, San Diego, California, USA). The genotyping quality control analysis was performed using PLINK software [3]. From the 598,258 SNPs available in the Illumina genotyping array, a total of 582,539 autosomal SNPs were selected for the quality control analysis. The SNPs included in the association analysis had a minor allele frequency >0.05 and <5% of missing data (94.17% SNPs). Using an additional cohort of 1,558 healthy controls from the same population, we tested the deviation of the SNPs from the Hardy-Weinberg equilibrium [4]. Those SNPs that were not in Hardy-Weinberg equilibrium in this cohort (0.03% SNPs, $P<1e^{-4}$) were subsequently removed. To evaluate the presence of potential population stratification in the SLE patient cohorts, we used the principal component analysis (PCA) implemented in EIGENSOFT (v4.2) software [5]. Using the first 10 PCs of variation over 10 iterations we identified 14 samples showing an outlier genetic background and were excluded from downstream analysis. After the quality control analysis, a final data set of 507,051 SNPs and 395 SLE patients was available for the GWPA.

The validation of the two genetic pathways associated in the discovery stage required the genotyping and analysis of a total 1,347 SNPs. Given the relatively large number of variants and the utility of genome-wide data for accurate ancestry outlier identification, the 425 SLE patients of the validation cohort were also genotyped using Illumina Quad610 microarray (Illumina, San Diego, California, USA) at the HudsonAlpha Institute for Biotechnology (Huntsville, Alabama, USA). For the pathway-based analysis, we excluded all non-autosomal SNPs, SNPs with a minor allele frequency
<0.05, >5% of missing data (85.01%) as well as those SNPs that were not in Hardy-Weinberg equilibrium (0.03% SNPs, \(P<1\times10^{-4} \)) in a cohort of 1,558 controls from the same population [4]. All 1,347 SNPs from the two genetic pathways associated in the discovery stage passed the quality control. In order to estimate the principal components (PCs) of variation, we analyzed the genome-wide genetic variation using the EIGENSOFT (v4.2) software. Based on the first 10 PCs of variation over 10 iterations, we identified 4 samples showing an outlier genetic background that were subsequently discarded from the pathway-based analysis. A total of 394 SLE patients and all 1,347 SNPs from the two genetic pathways passed the quality control and were available for the pathway-based analysis of the validation stage.

1.3 Imputation of genetic variants associated with SLE risk

From the established autosomal SLE risk SNPs (N=41 SNPs), the genetic variants that were not directly genotyped by the GWAS Quad610 genotyping array (N=17 SNPs) were imputed. SHAPEIT V2-644 (Oxford, UK) software was used to pre-phase the haplotypes of the SNPs that passed the genotyping quality control analysis [6], and these haplotypes were subsequently analyzed using IMPUTE V2 (Oxford, UK) software [7] to impute the missing SLE risk SNPs. The reference genotyping data used for imputation was obtained from the European cohort (N=379 samples) of the latest release of the 1000 Genomes Project (phase 1, version 3) [8]. In the imputation quality control analysis, we excluded those SNPs that had an IMPUTE2 info quality metric < 0.8 (N=1 SNP). After the imputation quality control, a total of 40 SLE risk SNPs were finally available for the association analysis with SLE phenotypes in the discovery cohort. In the validation cohort, the same procedure was followed to obtain the genotypes of the risk variants to be tested for replication.
1.4 Pathway-based association analysis

The set- or pathway-based association analysis implemented in the PLINK software is composed by four steps. In the first step, the raw genotype data is used to compute the linkage disequilibrium (r^2) between pathway SNPs in order to identify truly independent SNPs ($r^2<0.2$). In the second step, the association between each SNP and SLE clinical phenotype is tested using the allelic χ^2 test. The independent SNPs that are nominally associated with the SLE phenotype are then selected for each genetic pathway. In the third step, the pathway statistic is computed as the average of the χ^2 statistics of the selected SNPs. In the last step, the statistical significance of the pathway association with the SLE phenotype is computed using a permutation-based approach. In the permutation procedure, the SLE phenotype is randomly assigned to the patient cohort and the χ^2 statistic is subsequently computed for each pathway. This analysis is then repeated multiple times (n=1,000,000 permutations). Finally, the empirical P-value of each pathway is computed as the proportion of permuted χ^2 statistics that are higher than the observed χ^2 statistic.

1.5 Differential expression analysis of VEGF pathway genes after topical immunotherapies

Cutaneous and mucocutaneous phenotypes in SLE are treated with a diverse group of immunotherapies. Given the observed genetic association between VEGF and oral ulcers, we hypothesized that the topical immunotherapies commonly prescribed for cutaneous SLE should induce significant transcriptional changes in the VEGF pathway genes. In order to test this hypothesis, we used transcriptional data from microarray experiments at the NCBI Gene Expression Omnibus microarray database (GEO, http://www.ncbi.nlm.nih.gov/geo/) [9]. In this database, we searched for whole genome expression profiling datasets from cutaneous/mucocutaneous human samples collected
from non-cancer individuals or cellular cultures (5th November 2015). From these, we looked for tissue or cell cultures treated with any of the common steroid and non-steroid topical immunotherapies most widely used in SLE. The former group was composed by 6 drugs (betamethasone valerate, clobetasol propionate, flucinolone acetonide, fluocinonide, hydrocortisone butirate and triamcinolone acetonide) [10] and the latter group included a total of 12 drug (ABT-281, anthralin, calcipotriol, diphencyprone, imiquimod, intralesional interferon, pimecrolimus, sirolimus, squartic acid dibutyl ester, tacrolimus, topical interferon and topical zinc) [11]. Given that sample size is one of the major concerns to confidently identify differentially expressed genes between two experimental groups [12], small datasets were excluded from the search. We found a total of three gene expression datasets generated after treatment with four common immunotherapies for cutaneous SLE: betamethasone valerate and pimecrolimus (GSE32473), diphencyprone (GSE52360) and imiquimod (GSE68182). For each gene expression dataset, we performed quality control analysis and subsequent normalization on the log2-scale using the quantile normalization method (Figure S3) [13]. The differential expression analysis for the VEGF pathway genes between treated and non-treated samples was performed using Student’s t-test. The statistical significance of the global perturbation of the VEGF pathway was assessed using the Binomial test. All analyses were performed using the R statistical software [14].
2. Supplementary Tables

2.1 Table S1. Association of SLE risk genes with SLE clinical phenotypes in the discovery cohort.

SNP	CHE	POS	GENE	NUCLEOTIDE	BASE
euch29495	1	16375762	ATG5	5,2E-09	5,2E-09
euch29573	1	16379598	PRDM1	7,9E-09	7,9E-09
euch29605	1	16379604	DISCOID RASH	2,3E-09	2,3E-09
euch29665	1	16379651	IKZF3	1,5E-09	1,5E-09
euch29715	1	16379717	MHC class III	1,3E-09	1,3E-09
euch29763	1	16379769	IRF5	1,0E-09	1,0E-09
euch29825	1	16379829	Nucleotide Polymorphism		
euch29885	1	16379885	OR (95% CI)		
euch29935	1	16379935	OR (95% CI)		

Abbreviations:
- Chr: chromosome
- CI: confidence interval
- OR: odds ratio
- NA: odds ratio was not estimated due to the presence of zero-cell counts
- Position: SNP base pair in build GRCh37/hg19
- P: P-value obtained from the association analysis
- SNP: Single-Nucleotide Polymorphism
2.2 Genome-wide pathway associations obtained analyzing the 11 SLE clinical phenotypes in the discovery cohort.
rs12413938 | rs1144171 | rs1019033 | rs9896052 | rs708030 | rs2871444 | rs17090708 |
rs1714594 | rs1466447 | rs2041120 | rs17785945 | rs873592 | rs2194051 | rs10493211 |
rs878066 | rs2397446 | rs12207548 | rs9295464 | rs624797 | rs1468934 | rs3820028 |
rs1872568 | rs6878196 | rs6770805 | rs4702473 | rs4701780 | rs10421422 | rs13168690 |
rs7206142 | rs17360897 | rs10228945 | rs2327162 | rs2287778 | rs7623679 | rs1477031 |
rs1108386 | rs11610288 | rs11611796 | rs9458157 | rs2305913 | rs9534844 | rs10970427 |
rs11893686 | rs7600094 | rs955358 | rs1946741 | rs2970358 | rs1554668 | rs2160517 |
rs371043 | rs174532 | rs4671408 | rs1053079 | rs633742 | rs6928843 | rs9615025 |
rs306090 | rs6807740 | rs9447579 | rs4685165 | rs8081512 | rs208147 | rs4884479 |
rs1484197 | rs10153006 | rs809942 | rs1205357 | rs2039585 | rs220988 | rs12021681 |
rs9328355 | rs13133050 | rs11063954 | rs9287095 | rs4671408 | rs870777 | rs12517345 |
rs970969 | rs9534844 | rs10970427 | rs11893686 | rs7600094 | rs955358 | rs1946741 |
rs2970358 | rs1554668 | rs2160517 | rs12191179 | rs372334 | rs12901499 | rs12915039 |
rs59 | rs333968 | rs773878 | rs6681035 | rs12318072 | rs1714594 | rs1466447 |

Antinuclear Antibodies

ARGININE_AND_PROLINE_METABOLISM
VEGF_PATHWAY
CSK_PATHWAY
POST_TRANSLATIONAL_PROTEIN_MODIFICATION
MCALPAIN_PATHWAY
THROMBOXANE_SIGNALLING_THROUGH_TP_RECEPTOR
PHOSPHORYLATION_OF_THE_APC_C
COMPLEMENT_AND_COAGULATION_CASCADES
PKA_MEDIATED_PHOSPHORYLATION_OF_CREB
SIGNALING_BY_FGFR1_MUTANTS
REGULATION_OF_INSULIN_SECRETION
ETS_PATHWAY
G_BETA_GAMMA_SIGNALLING_THROUGH_PI3KGAMMA
NTHI_PATHWAY
BIOCARTA
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME

10
null
rs6533710	rs422437	rs1534131	rs885244	rs2005219	rs851010	rs12652661
rs16854131	rs10841952	rs2302600	rs6605	rs660489	rs693293	rs12608960
rs7721613	rs1499368	rs1397829	rs701078	rs4817754	rs7689213	rs2823209
rs17237251	rs00901	rs4554825	rs2229032	rs760782	rs10818964	rs7153386
rs6503113	rs2291782	rs8852	rs1369450	rs1534131	rs885244	rs1396980
rs583720	rs291353	rs7531583	rs2224957	rs17514846	rs958937	rs9323731
rs12323801	rs230632	rs7955100	rs4259245	rs13190668	rs1509844	rs2207317
rs6039211	rs1554465	rs42417	rs4404878	rs880183	rs7169544	rs10505528
rs1468727	rs7703433	rs2005219	rs490	rs1149	rs554	rs1322
rs1388	rs2313	rs1617	rs1102	rs435	rs753	rs1296
rs1134	rs691	rs682	rs27			

Gene Networks

- **Arthritis**
- **GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES**
- **AUTODEGRADATION_OF_CDH1_BY_CDH1_APC**
- **G2_PATHWAY**
- **REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1**
- **RAS_PATHWAY**
- **ERK5_PATHWAY**
- **AMINO_ACID_SYNTHESIS_AND_INTERCONVERSION_TRANSAMINATION**
- **ECM_PATHWAY**
- **KEGG**
- **BIOCARTA**
- **REACTOME**

Pathways and Related Genes

- **rs12129768**
- **rs2287047**
- **rs12026714**
- **rs1921082**
- **rs735563**
- **rs3844279**
- **rs785512**
- **rs2302234**
- **rs121133609**
- **rs10515086**
- **rs559**
- **rs4078830**
- **rs1652583**
- **rs1959011**
- **rs3134942**
- **rs1007637**
- **rs12274970**
- **rs2906142**
- **rs1887735**
- **rs17677652**
- **rs4417522**
- **rs1514254**
- **rs891398**
| rs12045689 | rs17221851 | rs10475030 | rs2872821 | rs11630961 | rs7530853 | rs7551550 |
| rs9955719 | rs7931895 | rs12969349 | rs2301226 | rs777709 | rs2160919 | rs17554245 |
| rs1865288 | rs13209604 | rs12957142 | rs518345 | 1464459 | rs4938440 | rs17476583 |
| 1464459 | rs2805434 | rs9293478 | rs1405331 | rs7254601 | rs6700222 | 52661 |
| rs12129709 | rs9913908 | rs198182 | rs2322376 | rs3796944 | rs7721613 | rs7149441 |
| rs2005219 | rs2854028 | rs6470648 | rs10490823 | rs2938395 | rs11196146 | rs592412 |
| 3298230 | rs6460004 | rs17193211 | rs1636874 | rs12711539 | rs6438549 | rs718939 |
| 1998762 | rs2235366 | rs2168043 | rs2017750 |

KEGG

1326

1253

817

679

662

1021

728

3083

335

1018

1863

BIOCARTA

15

41

39

29

27

31

18

29

43

38

32

20

10

17

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20
| rs16974808 | rs10955078 | rs8055955 | rs2722639 | rs11185438 | rs2516614 | rs353639 | 723 | rs106203397101 | rs1331683 | rs9972635 | rs12606601 | rs4867023 | rs13153654 | rs4403186 | rs2963711 | 462800 | rs10017353 | rs7442627 | rs269853 | 2561944 | 01096 | rs785512 | rs10147042 | rs7986346 | rs336209 | rs230530 | rs17237251 | rs2494738 | 5089 | rs633891 | rs6463716 | rs3737147 | rs653844 | rs9540055 | rs6499137 | rs226981 |
|------------|------------|------------|------------|------------|------------|------------|-----|----------------|
| Arthritis | Arthritis | Arthritis | Arthritis |

Pathways:
- NUCLEOTIDE EXCISION REPAIR
- GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE
- ASPARAGINE N-LINKED GLYCOSYLATION
- POST TRANSLATIONAL MODIFICATION SYNTHESIS OF GPI ANCHORED PROTEINS
- DOWNREGULATION OF TGF BETA RECEPTOR SIGNALING
- GLYCINE SERINE AND THREONINE METABOLISM
- HISTIDINE METABOLISM
- PYK2 PATHWAY
- OXYGEN DEPENDENT PROLINE HYDROXYLATION OF HYPOXIA INDUCIBLE FACTOR ALPHA

Database Source:
- KEGG
- BIOCARTA
- REACTOME

Gene IDs:
- rs16974808
- rs10955078
- rs8055955
- rs2722639
- rs11185438
- rs2516614
- rs353639
- rs723
- rs106203397101
- rs1331683
- rs9972635
- rs12606601
- rs4867023
- rs13153654
- rs4403186
- rs2963711
- 462800
- rs10017353
- rs7442627
- rs269853
- 2561944
- 01096
- rs785512
- rs10147042
- rs7986346
- rs336209
- rs230530
- rs17237251
- rs2494738
- 5089
- rs633891
- rs6463716
- rs3737147
- rs653844
- rs9540055
- rs6499137
- rs226981

Additional Notes:
- Certain gene IDs are repeated, indicating multiple entries or references.
- The pathway interactions and relationships are complex and involve various biological processes.
| Gene ID | Description |
|---------|-------------|
| rs2716121 | Photosensitivity |
| rs904453 | Photosensitivity |
| rs33344 | Photosensitivity |
| rs10515068 | Photosensitivity |
| rs6452735 | Photosensitivity |
| rs7193148 | Photosensitivity |
| rs1423236 | Photosensitivity |
| rs7984951 | Photosensitivity |
| rs2357291 | Photosensitivity |
| rs17567 | Photosensitivity |
| rs17491036 | Photosensitivity |
| rs1982837 | Photosensitivity |
| rs9574595 | Photosensitivity |
| rs11604757 | Photosensitivity |
| rs2808787 | Photosensitivity |
| rs7782469 | Photosensitivity |
| rs7089663 | Photosensitivity |
| rs10952049 | Photosensitivity |
| rs6722598 | Photosensitivity |
| rs134174 | Photosensitivity |
| rs10484565 | Photosensitivity |
| rs2286670 | Photosensitivity |
| rs11687619 | Photosensitivity |
| rs5610865573 | Photosensitivity |
| rs6516498 | Photosensitivity |
| rs990309 | Photosensitivity |
| rs1977298 | Photosensitivity |
| rs267131 | Photosensitivity |
| rs7622781 | Photosensitivity |
| rs12480230 | Photosensitivity |
| rs1542568 | Photosensitivity |
| rs1415879 | Photosensitivity |
| rs918167 | Photosensitivity |
| rs2348182 | Photosensitivity |
| rs4745514 | Photosensitivity |
| rs4239343 | Photosensitivity |
| rs8044109 | Photosensitivity |
| rs7206380 | Photosensitivity |
| rs3815076 | Photosensitivity |
| rs1613070 | Photosensitivity |
| rs6817487 | Photosensitivity |
| rs1283614 | Photosensitivity |
| rs12878503 | Photosensitivity |
| rs12655172 | Photosensitivity |
| rs7429360 | Photosensitivity |
| rs6952793 | Photosensitivity |
| rs10787899 | Photosensitivity |
| rs3825073 | Photosensitivity |
| rs162202 | Photosensitivity |
| rs6059703 | Photosensitivity |
| rs1211975 | Photosensitivity |
| rs11217129 | Photosensitivity |
| rs5845 | Photosensitivity |
| rs6181 | Photosensitivity |
| rs1094 | Photosensitivity |
| rs3203 | Photosensitivity |
| rs1298 | Photosensitivity |
| rs3006 | Photosensitivity |
| rs1900 | Photosensitivity |
| rs2264 | Photosensitivity |
| rs1564 | Photosensitivity |
| rs999 | Photosensitivity |
| rs7429360 | Photosensitivity |
| rs6952793 | Photosensitivity |
| rs10787899 | Photosensitivity |
| rs3825073 | Photosensitivity |
| rs162202 | Photosensitivity |
| rs6059703 | Photosensitivity |
| rs1211975 | Photosensitivity |
| rs11217129 | Photosensitivity |
| rs5845 | Photosensitivity |
| rs6181 | Photosensitivity |
| rs1094 | Photosensitivity |
| rs3203 | Photosensitivity |
| rs1298 | Photosensitivity |
| rs3006 | Photosensitivity |
| rs1900 | Photosensitivity |
| rs2264 | Photosensitivity |
| rs1564 | Photosensitivity |
| rs999 | Photosensitivity |
null
| rs1801516 | rs1321311 | rs6989591 | rs653079 | rs4980335 | rs2597189 | | | | | | | | | | |
| 319 | rs10819283 | rs9036 | rs7971218 | rs4976178 | rs7530862 | rs13103835 | rs1728803 |
| 5833 | rs1045288 | rs3859192 | rs17477673 | rs11543947 | rs10868558 | rs7169989 | rs11023238 |
| 9930 | rs2178603 | rs10516713 | rs1490752 | rs1899745 | rs4147452 | rs6768674 | rs4794756 |
| 512 | rs2608654 | rs4863687 |
| 0305 | rs6118062 | rs8078231 | rs2179798 | rs9927848 | rs11646540 | rs4816089 | rs17192160 |
| 97854 | rs10500175 | rs6973683 | rs2221513 | rs6942446 | rs3135363 | rs2591454 | rs9348863 |
| 11218954 | rs2227956 | rs3115673 | rs7745906 | rs11672983 | rs7322307 | rs1242105 |
| 8062 | rs3729877 | rs2179798 | rs316689 | rs4816089 | rs7755078 | rs1983635 | rs6055748 |
| 411 | 538723 | rs494340 | rs39502 | rs17074679 | rs1884839 | rs9550565 | rs5743291 | rs3130283 |
| 71594 | rs311572 | rs4151374 | rs3789724 | rs4150667 | rs2020892 | rs4669463 | rs1467464 | rs2584624 | rs1045288 | rs133416 | rs3859192 | rs690705 | rs11543947 |
| 176 | rs12024682 | rs6142711 | rs8009527 | rs13245967 | rs5758168 | rs4150454 | rs1420426 |
| 192469 | rs17766515 | rs9345126 | rs230530 | rs5743942 | rs9345117 | rs4326648 | rs538723 | rs7019909 | rs1888363 | rs1702956 | rs765614 | rs2532100 | rs3130320 | rs10484160 | rs8003146 |

Oral Ulcers

GAP_JUNCTION_ASSEMBLY

CELL_ADHESION_MOLECULES_CAMS

CTNNB1_PHOSPHORYLATION_CASCADE

LIPOPROTEIN_METABOLISM

CHEMICAL_PATHWAY

DC_PATHWAY

NCAM1_INTERACTIONS

RNA_POL_I_TRANSCRIPTION_INITIATION

NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY

ANTIGEN_PROCESSING_AND_PRESENTATION

PYK2_PATHWAY

ARAP_PATHWAY

ATRBRCA_PATHWAY

GLUTATHIONE_CONJUGATION

CHEMOKINE_RECEPTORS_BIND_CHEMOKINES

TYPE_I_DIABETES_MELLITUS

REACTOME

BIOCARTA

KEGG

REACTOME

BIOCARTA

REACTOME

REACTOME

REACTOME

REACTOME

REACTOME

REACTOME

KEGG

BIOCARTA

REACTOME
Gene ID	Name	NUM		
rs7594007	rs2958522	2.79E-03	0.001	0.001
rs7719763	rs12896325	2.96E-03	0.001	0.001
rs6985681	rs12594750	2.96E-03	0.001	0.001
rs10070379	rs4554825	2.96E-03	0.001	0.001
rs10940145	rs7255657	2.96E-03	0.001	0.001
rs6987802	rs3810168	2.96E-03	0.001	0.001
rs10225279	rs4558175	2.96E-03	0.001	0.001

Hematopoietic Cell Lineage

IGF1-MTOR Pathway

GSK3 Pathway

EIF4 Pathway

IL-1 Receptor-SHC Signaling

HER2 Pathway

Natural Killer Cell-Mediated Cytotoxicity

Reactome

KEGG

BIOCARTA

Discoid Rash
rs569647 | rs221725 | rs4964005 | rs2192724 | rs715305 | rs7972342 | rs7629595
rs6593011 | rs7045845 | rs8891 | rs10521121 | rs1038378 | rs7280485 | rs4878805
rs696 | rs2501657 | rs7163945 | rs3773650 | rs9342261 | rs7169592 | rs968088
rs10889011 | rs9291117 | rs4425665 | rs4668631 | rs7893330 | rs3019260 | rs6678588
rs4310569 | rs2051920 | rs669669 | rs12580394 | rs3739809 | rs12911091 | rs6804202 | rs2720662

Malar Rash

TGF_BETA_SIGNALING_PATHWAY
G_PROTEIN_ACTIVATION
KINESINS
AMINO_ACID_AND_OLIGOPEPTIDE_SLC_TRANSPORTERS
VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION
SMALL_CELL_LUNG_CANCER
NTHI_PATHWAY
ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES
PANCREATIC_CANCER
PLATELET_HOMEOSTASIS

KEGG
REACTOME
BIOCARTA

2,25E-01
9,17E-09
2,06E-01
1,95E-01
1,87E-01
1,74E-01
1,60E-01
1,58E-01
1,45E-01

9,17E-09
9,17E-09
9,17E-09
9,17E-09
9,17E-09
9,17E-09
9,17E-09
9,17E-09
9,17E-09

1,74E-01
1,60E-01
1,58E-01
1,45E-01
1,32E-01
1,29E-01
1,25E-01
1,21E-01
1,17E-01

null
rs4641872	rs6550146	rs10512889	rs730424	rs8049212	rs1432295	rs17630822
rs6871452	rs178255	rs12251654	rs2017750	rs17822304	rs4234512	rs383542
rs16897109	rs16897180	rs17350527	rs2867316	rs4673260	rs4976028	rs7618747
rs12153515	rs2013573	rs11135312	rs6738678	rs17608022	rs316144	rs10874814
21	rs4834779	rs703505	rs934803	rs10898864	rs6443558	rs7077665
2	101	20	15	20	11	20
20	20	20	20	20	20	20

Serositis

NA_CL_DEPENDENT_NEUROTRANSMITTER_TRANSPORTERS

REGULATION_OF_SIGNALING_BY_CBL

SIGNALLING_TO_RAS

PLATELET_HOMEOSTASIS

RNA_POL_III_TRANSCRIPTION

DESTABILIZATION_OF_MRNA_BY_BRF1

REACTOME

BIOCARTA

KEGG

737

1,09E-01
rs17464037	rs11465990	rs1366315	rs6871452	rs1531846	rs178255	rs9895159
rs4952147	rs1900448	rs895344	rs16878220	rs1921874	rs4819329	rs2269423
rs1930762	rs1558909	rs1594485	rs4952147	rs1900448	rs895344	rs16878220
rs714158	rs7973701	rs2026628	rs12671372	rs7536180	rs747020	rs10872893
rs2049051	rs7751192	rs8190645	rs701492	rs2815736		
rs12342878	rs9298935	rs17470048	rs7024321	rs6015032	rs2647168	rs1536002
rs54809	rs747020	rs6885261	rs383542	rs12142335	rs1636808	rs764605
rs10232489	rs541425	rs2302984	rs2020902	rs12544147	rs4859540	rs10209471
rs3783754	rs7290191	rs6018627	rs12495548	rs3744550	rs1734852	rs4689001

Serositis

ANTIGEN_PROCESSING_AND_PRESENTATION

TGF_BETA_RECEPTOR_SIGNALING_IN_EMT_EPITHELIAL_TO_MESENCHYMAL_TRANSITION

BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS

TELOMERE_MAINTENANCE

DARPP_32_EVENTS

FATTY_ACID_METABOLISM

CITRATE_CYCLE_TCA_CYCLE

RESOLUTION_OF_AP_SITES_VIA_THE_MULTIPLE_NUCLEOTIDE_PATCH_REPLACEMENT_PATHWAY

CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL

INTRINSIC_PATHWAY_FOR_APOPTOSIS

ACTINY_PATHWAY

REACTOME

BIOCARTA

KEGG

REACTOME

BIOCARTA

REACTOME

BIOCARTA

REACTOME

REACTOME

BIOCARTA

BIOCARTA

BIOCARTA

REACTOME

BIOCARTA

BIOCARTA

REACTOME

REACTOME

REACTOME

BIOCARTA

BIOCARTA

BIOCARTA

BIOCARTA

BIOCARTA

BIOCARTA
null
INTEGRATION_OF_ENERGY_METABOLISM

CELLCYCLE_PATHWAY

RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2+

FOCAL_ADHESION

SIGNALING_BY_RHO_GTPASES

RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY

ALPHA_LINOLENIC_ACID_METABOLISM

MRNA_SPLICING_MINOR_PATHWAY

GLUCAGON_SIGNALING_IN_METABOLIC_REGULATION

DNA_REPLICATION

EXTRACELLULAR_MATRIX_ORGANIZATION

NCAM1_INTERACTIONS

NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX

XENOBIOTICS

G_ALPHA1213_SIGNALLING EVENTS

GROWTH_HORMONE_RECEPTOR_SIGNALING

INITIAL_TRIGGERING_OF_COMPLEMENT

EIF_PATHWAY

REACTOME

KEGG

BIOCARTA

REACTOME

REACTOME
rs4432229	rs4726499	rs10857733	rs2181874	rs98866628	rs1128864	rs6743777	rs4672803	rs2917779	rs4599669	rs137602	rs1406334
rs1251465	rs3928852	rs2945770	rs538977	rs10784585	rs7814358	rs29128	rs996009	rs6796803	rs698951	rs2283333	996009
rs1422884	rs11859534	12201680	rs6543716	rs7177101	rs1782808	rs1010650	rs13031237	rs10788819	rs2141484	rs1572507	rs6108237
rs2239093	rs2239041	rs11048455	rs7008202	rs7651990	rs6766238	rs757911	rs6965030	rs6955791	rs895479	rs12155027	

| POST_TRANSLATIONAL_PROTEIN_MODIFICATION | GLUCOSE_TRANSPORT | MUSCLE_CONTRACTION | DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR | REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC | ENOS_ACTIVATION_AND_REGULATION | CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX | ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX | SMOOTHE_MUSCLE_CONTRACTION | RENAL_TRANSPORT | INTESTINAL_CELLULAR_TRANSPORT | INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS |
|--------------------------------------|------------------|------------------|---|---|------------------|---|---|------------------|------------------|------------------|---|------------------|---|---|---|------------------|---|------------------|---|
| POST_TRANSLATIONAL_PROTEIN_MODIFICATION | GLUCOSE_TRANSPORT | MUSCLE_CONTRACTION | DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR | REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC | ENOS_ACTIVATION_AND_REGULATION | CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX | ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX | SMOOTHE_MUSCLE_CONTRACTION | RENAL_TRANSPORT | INTESTINAL_CELLULAR_TRANSPORT | INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS |
| POST_TRANSLATIONAL_PROTEIN_MODIFICATION | GLUCOSE_TRANSPORT | MUSCLE_CONTRACTION | DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR | REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC | ENOS_ACTIVATION_AND_REGULATION | CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX | ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX | SMOOTHE_MUSCLE_CONTRACTION | RENAL_TRANSPORT | INTESTINAL_CELLULAR_TRANSPORT | INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS |
| POST_TRANSLATIONAL_PROTEIN_MODIFICATION | GLUCOSE_TRANSPORT | MUSCLE_CONTRACTION | DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR | REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC | ENOS_ACTIVATION_AND_REGULATION | CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX | ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX | SMOOTHE_MUSCLE_CONTRACTION | RENAL_TRANSPORT | INTESTINAL_CELLULAR_TRANSPORT | INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | FORMATION_OF_TUBULIN_FOLDING_INTERMEDIATES_BY_CCT_TRIC | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS | TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS | INTERACTIONS_OF_VPN_WITH_HOST_CELLULAR_PROTEINS |
null
rs419588 | rs785437 | rs3731828 | rs35684 | rs1555772 | rs7213960 | rs4075688 | rs770082
rs24079 | rs11251588 | rs9268911 | rs10907192 | rs10243170 | rs13243079 | rs5439
rs61116 | rs2830076 | rs8132767 | rs2906766 | rs1510470 | rs12419174 | rs9294511 | rs204991
rs281389 | rs3815341 | rs9276711 | rs181997
rs6541017 | rs2684806 | rs541682 | rs2110290 | rs17392492 | rs6586116 | rs534182 | rs3806929
rs618956 | rs11658645 | rs7691016 | rs2167239 | rs7069860 | rs10148024 | rs2303147 | rs7018784
rs73704 | rs2235360 | rs9805578 | rs12220387 | rs11953134 | rs1924210 | rs10477181 | rs140504
rs90 | rs3802727 | rs491675 | rs11599360 | rs7126210 | rs2448343 | rs13209654 | rs3027267
rs79158 | rs12454712 | rs12901358 | rs4637783 | rs6995630 | rs4791032 | rs2395851 | rs7162314
rs934967 | rs2269429 | rs3823717 | rs2299893 | rs11126361 | rs3742377 | rs2899472 | rs9309462

Hematologic Disorder

GAP_JUNCTION_ASSEMBLY
ELONGATION_ARREST_AND_RECOVERY
YAP1_AND_WWTR1_TAZ_STIMULATED_GENE_EXPRESSION
SEMA4D_INDUCED_CELL_MIGRATION_AND_GROWTH_CONE_COLLAPSE
VEGF_SIGNALING_PATHWAY
SIGNALING_BY_FGFR
MPR_PATHWAY
DRUG_METABOLISM_OTHER_ENZYMES
EICOSANOID_LIGAND_BINDING_RECEPTORS
SPHINGOLIPID_METABOLISM
ERK_PATHWAY
SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS
SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21
CHONDROITIN_SULFATE_DERMATAN_SULFATE_METABOLISM

REACTOME

KEGG

REACTOME

REACTOME
rs17631340|rs1427988|rs9295312|rs13320527|rs12554375|rs954241|rs1155876|rs7307700|rs12503593|rs316738|rs2107232|rs221725|rs11945064|rs12789511|rs1805775|rs8049025|rs4544229|9627|rs3829078|rs902130|rs370476|rs4312645|rs10215237|rs340|rs10790921|rs7972214|rs12318072|rs6537883|rs10846670|rs1110904|rs870844|rs764190|rs706725|rs10781329|rs10000770|rs11078772|rs228271|rs2667096|rs3756121|rs706725|rs3765141|rs6449947|rs12536419|rs3829078|rs2161529|rs11153318|rs7025162|rs7582020|rs12294732|rs1075405|57742|rs5996534|rs9642880|rs3009935|rs1125467|rs2834906|rs266335|rs13320527|51|rs639622|rs236504|rs13264567|rs4832505|rs17230421|rs7552646|rs1883767|1398|rs3135363|rs9469310|45045|rs1678002|rs730830|rs2094405|rs10506210|rs17152433|rs9299346|rs1997696|6|rs1007482|rs6434036|rs457372|rs8078165|rs11902670|rs773546|rs1115882

Immunologic Disorder

ENERGY_DEPENDENT_REGULATION_OF_MTOR_BY_LKB1_AMPK
ERK_MAPK_TARGETS
WNT_SIGNALING_PATHWAY
SIGNALING_BY_FGFR1_FUSION_MUTANTS
GLUCOSE_TRANSPORT
TRAFFICKING_OF_AMPA_RECEPTORS
METAL_ION_SLC_TRANSPORTERS
HYPERTROPHIC_CARDIOMYOPATHY_HCM
RENAL_CELL_CARCINOMA
ION_CHANNEL_TRANSPORT
SIGNALLING_TO_ERKS
EIF4_PATHWAY
BASE_EXCISION_REPAIR
APOPTOSIS
PI3K_AKT_ACTIVATION
TGFB_PATHWAY
NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY
POTASSIUM_CHANNELS
PROTEIN_FOLDING
ERK_PATHWAY
PI_METABOLISM

KEGG
REACTOME
BIOCARTA
rs16902328	rs920293	rs7351039	rs4464148	rs7652697
0.0004	0.0030	0.0053	0.0058	0.0036

rs1322487	rs9933029	rs11670126	rs981257	rs1376091	rs470168	rs17782215	rs2475193
0.0033	0.0015	0.0019	0.0060	0.0016	0.0012	0.0061	

rs2038712	rs10870911	rs10908200	rs10495929	rs9922362	rs10743591	rs3782309	rs3787011
0.0002	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001	

rs6981247	rs2282128	rs12602230	rs4943189	rs3786136	rs2033098	rs764190	rs1832265
0.0071	0.0024	0.0001	0.0001	0.0001	0.0001	0.0001	

rs2362	rs10743591	rs3782309	rs10794486	rs4629562	rs13190668	rs6736093	rs2177640
0.0012	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	

rs64190	rs16963394	rs4148412	rs1235805
0.0001	0.0001	0.0001	

rs7707082	rs4544229
0.0001	

rs64190	rs13173003	rs31309	rs4150196	rs11731252	rs706725	rs3804357	rs10781329
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	

rs560718	rs16972457	rs22827151	rs4401921	rs752503	rs1105168	rs7311469	rs3770705
0.0001	0.0001	0.0001	0.0001				

rs11644646	rs13173003	rs17793122	rs2261612	rs1064825	rs10798106	rs706725	rs3804357
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

rs10258834	rs2025448	rs1124275	rs2051547	rs7357092	rs886420	rs17195683	rs21671
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

rs11083384	rs428340
0.0001	

Immunologic Disorder	GLYCOSPHINGOLIPID_METABOLISM	AT1R_PATHWAY	FORMATION_OF_INCISION_COMPLEX_IN_GG_NER	RNA_POL_II_TRANSCRIPTION_PRE_INITIATION_AND_PROMOTER_OPENING	IL2_PATHWAY	CREB_PATHWAY	RNA_POL_I_TRANSCRIPTION_INITIATION	MEF2D_PATHWAY	CELL_CYCLE	TRANSCRIPTION	STATHMIN_PATHWAY	PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA	TRANSCRIPTION_COUPLED_NER_TC_NER	PLATELET_SENSITIZATION_BY_LDL	TPO_PATHWAY
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Gene ID	Gene Symbol	Description													
---------	-------------	-------------													
rs2583194															
rs965078															
rs174556															
rs2293464															
rs2686187															
rs1462529															
rs3809335															
rs8006358															
rs2882359															
rs12407294															
rs4585434															
rs1012178															
rs1548687															
rs4513489															
rs1341458															
rs1557399															
rs78040															
rs2602218															
rs3738043															
rs9474314															
rs7497607															
rs12580698															
rs2514051															
rs2287396															
rs3268															
rs7536947															
rs446304															
s3025643															
rs16837945															
rs9906150															
rs6674438															
rs7221237															
rs1999498															
rs9983351															
rs978708															
rs3010681															
rs10493889															
rs4775749															
rs290826															
rs1253795															
rs517483															
rs1934272															
rs2669429															
rs7916268															
rs40760903															
rs2006564															
rs910534															
rs920293															
rs469999															
rs319264															
rs1605888															
rs1165641															
rs4515788															
rs9841706															
rs280737															
rs1005805															
rs10381															
rs1982473															
rs1462529															
rs3809335															
rs8006358															
rs2882359															
rs12407294															
rs4585434															
rs1012178															
rs1548687															
rs4513489															
rs1341458															
rs1557399															
rs78040															
rs2602218															
rs3738043															
rs9474314															
rs7497607															
rs12580698															
rs2514051															
rs2287396															
rs3268															
rs7536947															
rs446304															
s3025643															
rs16837945															
rs9906150															
rs6674438															
rs7221237															
rs1999498															
rs9983351															
rs978708															
rs3010681															
rs10493889															
rs4775749															
rs290826															
rs1253795															
rs517483															
rs1934272															
rs2669429															
rs7916268															
rs40760903															
rs2006564															
rs910534															
rs920293															
rs469999															
rs319264															
rs1605888															
rs1165641															
rs4515788															
rs9841706															
rs280737															
rs1005805															
rs10381															
rs1982473															
rs1462529															
rs3809335															
rs8006358															
rs2882359															
rs12407294															
rs4585434															
rs1012178															
rs1548687															
rs4513489															
rs1341458															
rs1557399															
rs78040															
rs2602218															
rs3738043															
rs9474314															
rs7497607															
rs12580698															
rs2514051															
rs2287396															
rs3268															
rs7536947															
rs446304															
s3025643															
rs16837945															
rs9906150															
rs6674438															
rs7221237															
rs1999498															
rs9983351															
rs978708															
rs3010681															
rs10493889															
rs4775749															
rs290826															
rs1253795															
rs517483															
rs1934272															
rs2669429															
rs7916268															
rs40760903															
rs2006564															
rs910534															
rs920293															
rs469999															
rs319264															
rs1605888															
rs1165641															
rs4515788															
rs9841706															
rs280737															
rs1005805															
rs10381															
rs1982473															
rs1462529															
rs3809335															
rs8006358															
rs2882359															
rs12407294															
rs4585434															
rs1012178															
rs1548687															
rs4513489															
rs1341458															
rs1557399															
rs78040															
rs2602218															
rs3738043															
rs9474314															
rs7497607															
rs12580698															
rs2514051															
rs2287396															
rs3268															
rs7536947															
rs446304															
rs7281786	rs6443552	rs7303830	rs1879417	rs10505867	rs3819902	rs1143960									
-----------	-----------	-----------	-----------	-----------	-----------	-----------									
5169	rs2184778	rs1459590	rs10490697	rs2025880	rs2292867	rs16975294	rs12602314								
59169	rs13023787	rs1962515	rs843346	rs11204910	rs7204987	rs660442	rs1947372								
58	rs9506807	rs516391	rs1368406	rs13312770	rs9318729	rs4435493	rs10796853								
72935	rs563649	9153	rs11226342	rs771941	rs2128650	rs1962515	rs3741403								
381755	rs1340343	rs4331688	rs3774051	rs7611269	rs6083725	rs17022214	rs4489814								

Genomic Variants

rs2938769	rs2219556	rs3779972	rs518558	rs4751955	rs4747345	rs4842157	rs4963857
rs2761367	rs16942	rs4435493	rs9634672	rs11157432	rs3934711	rs17049508	rs3761034
rs4698855	rs566416	rs461970	rs4963857	rs10907192	rs465531	rs2423356	rs3753242
rs6918969	rs11130040	rs650229	rs4382556	rs1613070	rs3740526	rs3890801	rs1229568
rs4839797	rs11612284	rs363512	rs170290	rs8066734	rs11938486	rs4747345	rs10907192
rs11650230	rs218378	rs2300267	rs2924149	rs20	rs34719083	rs3771254	rs10495717
rs312049	rs1373656	rs7605009	rs2242062	rs1363518	rs12708616	rs6854637	rs1352062
rs5022631	rs3922855	rs6892782	rs4695	92			

Gene Enrichment Analysis

- **Neurologic Disorder**
- **MEIOTIC RECOMBINATION**
- **CHEMOKINE_SIGNALING_PATHWAY**
- **TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES**
- **SIGNALING_BY_RHO_GTPASES**
- **TNFR1_PATHWAY**
- **HUNTINGTONS_DISEASE**

Reactome and KEGG Pathways

- **Reactome**
- **KEGG**

Pathway Description	Pathway ID	Gene Count
1261		14
1529		38
1605		39
522		32
5407		44
699		31
9089		26
6096		2

Additional Gene Information

- **rs01**
- **01**
- **9,90E**
- **-**

Note: The table above represents a selection of genomic variants and their associated gene enrichment analysis results. Further details and context are provided in the integrated pathways and pathways with overlapping genes.
rs228935	rs10993754	rs651933	rs308195	rs6916861	rs3846211	rs17043569	rs2488809	rs1534166	rs9561932	rs10490815	rs1545033	rs6503691	rs13023787	rs1962515	rs6003709	rs445775	rs11048776	rs2268833	rs4573621	rs1800627	rs10486056	rs776686	rs1337988	rs36631	rs11046483	
72986																										

Neurologic Disorder

- SPHINGOLIPID_METABOLISM
- INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION
- UNFOLDED_PROTEIN_RESPONSE
- GLYCOSPHINGOLIPID_METABOLISM
- CK1_PATHWAY
- GABA_B_RECEPTOR_ACTIVATION
- SPLICEOSOME
- GLUCONEOGENESIS

REACTOME

- 1153
- 752
- 3710
- 742
- 788
- 2702
- 195
- 1072
- 874
- 1557
- 3434

KEGG

- 30
- 18
- 38
- 21
- 38
- 35
- 20
- 20
- 20
- 14
- 20
- 20
- 20
- 20
- 20
- 20

93
Gene ID	Symbol	Description				
rs3770387	rs2183124	rs4732025	rs4485425	rs2388268	rs12257705	rs7089499
rs2282735	rs958766	rs525007	rs7274475	rs6958081	rs12962644	rs11167020
rs2254883	rs12544882	rs9880553	rs2075355	rs9561932	rs10480450	
rs2207067	rs1430004	rs10510302	rs16830230	rs4821901	rs1707113	rs3784730
rs1119864	rs6114527	rs4981468	rs11749500	rs178323	rs11606866	rs9695993
rs2075555	rs306962	rs12419365	rs17749288	rs1160798	rs265454	
rs10748834	rs2439321	rs306962	rs12611955	rs9390184		
rs262498	rs10970923	rs752409	rs9526420	rs6025639		
rs7070744	rs17593512	rs12577790	rs1229976	rs9378878		
rs6692958	rs10973770	018228	rs7099767	rs2580		
rs1119864	rs6114527	rs4981468	rs11749500	rs178323	rs11606866	rs9695993
rs2075555	rs306962	rs12419365	rs17749288	rs1160798	rs265454	
rs10748834	rs2439321	rs306962	rs12611955	rs9390184		
rs262498	rs10970923	rs752409	rs9526420	rs6025639		
rs7070744	rs17593512	rs12577790	rs1229976	rs9378878		
rs6692958	rs10973770	018228	rs7099767	rs2580		
rs1119864	rs6114527	rs4981468	rs11749500	rs178323	rs11606866	rs9695993
rs2075555	rs306962	rs12419365	rs17749288	rs1160798	rs265454	
Gene ID	Description					
---------	--					
rs6667880	FGFR2 Ligand Binding Pathway					
rs4790838	FGFR2 Ligand Binding Pathway					
rs236106	FGFR2 Ligand Binding Pathway					
rs2303744	FGFR2 Ligand Binding Pathway					
rs3004318	FGFR2 Ligand Binding Pathway					
rs9898519	FGFR2 Ligand Binding Pathway					
rs1995785	FGFR2 Ligand Binding Pathway					
rs918842	FGFR2 Ligand Binding Pathway					
rs2877260	FGFR2 Ligand Binding Pathway					
rs6018257	FGFR2 Ligand Binding Pathway					
rs11760524	FGFR2 Ligand Binding Pathway					
rs7009399	FGFR2 Ligand Binding Pathway					
rs4603211	FGFR2 Ligand Binding Pathway					
rs10023724	FGFR2 Ligand Binding Pathway					
rs9362786	FGFR2 Ligand Binding Pathway					
rs484754	FGFR2 Ligand Binding Pathway					
rs12173146	FGFR2 Ligand Binding Pathway					
rs5166	FGFR2 Ligand Binding Pathway					
rs11877878	FGFR2 Ligand Binding Pathway					
rs16972457	FGFR2 Ligand Binding Pathway					
rs16960774	FGFR2 Ligand Binding Pathway					
rs2716605	FGFR2 Ligand Binding Pathway					
rs2230571	FGFR2 Ligand Binding Pathway					
rs425594	FGFR2 Ligand Binding Pathway					
rs6950715	FGFR2 Ligand Binding Pathway					
rs2311552	FGFR2 Ligand Binding Pathway					
rs1064576	FGFR2 Ligand Binding Pathway					
rs1002170	FGFR2 Ligand Binding Pathway					
rs133431	FGFR2 Ligand Binding Pathway					
rs7332652	FGFR2 Ligand Binding Pathway					
rs1994189	FGFR2 Ligand Binding Pathway					
rs576040	FGFR2 Ligand Binding Pathway					
rs918842	FGFR2 Ligand Binding Pathway					
rs6539125	FGFR2 Ligand Binding Pathway					
rs1015166	FGFR2 Ligand Binding Pathway					
rs9275582	FGFR2 Ligand Binding Pathway					
rs938486	FGFR2 Ligand Binding Pathway					
rs28009721	FGFR2 Ligand Binding Pathway					
rs13164947	FGFR2 Ligand Binding Pathway					
rs3785690	FGFR2 Ligand Binding Pathway					
rs17666787	FGFR2 Ligand Binding Pathway					
rs11248060	FGFR2 Ligand Binding Pathway					
rs9643302	FGFR2 Ligand Binding Pathway					
rs8039131	FGFR2 Ligand Binding Pathway					
rs6713082	FGFR2 Ligand Binding Pathway					
rs104103	FGFR2 Ligand Binding Pathway					
rs7142869	FGFR2 Ligand Binding Pathway					
rs2120823	FGFR2 Ligand Binding Pathway					
rs12208181	FGFR2 Ligand Binding Pathway					
rs4678200	FGFR2 Ligand Binding Pathway					
rs10490578	FGFR2 Ligand Binding Pathway					
rs1994174	FGFR2 Ligand Binding Pathway					
rs2552346	FGFR2 Ligand Binding Pathway					
rs10112596	FGFR2 Ligand Binding Pathway					
rs4338396	FGFR2 Ligand Binding Pathway					
rs849430	FGFR2 Ligand Binding Pathway					
rs17153698	FGFR2 Ligand Binding Pathway					
rs1881735	FGFR2 Ligand Binding Pathway					
rs13173003	FGFR2 Ligand Binding Pathway					
rs853812	FGFR2 Ligand Binding Pathway					
rs3327	FGFR2 Ligand Binding Pathway					
rs12832680	FGFR2 Ligand Binding Pathway					
rs10495431	FGFR2 Ligand Binding Pathway					
rs946637	FGFR2 Ligand Binding Pathway					
rs6731427	FGFR2 Ligand Binding Pathway					
rs8016905	FGFR2 Ligand Binding Pathway					
rs2357960	FGFR2 Ligand Binding Pathway					

Abbreviations: Database, database from the Molecular Signatures Databases (MSigDB) containing the indicated genetic pathway; FDR, False Discovery Rate; P, empirical set-based P-value; Pathway, genetic pathways tested for association with the 11 SLE clinical phenotypes of systemic lupus erythematosus; SNPs_PATH, number of SNPs mapping to a particular pathway; SLE phenotype, clinical phenotypes of systemic lupus erythematosus tested for association with each pathway; SNPs_PASS, list of SNPs passing the pathway analysis thresholds; SNPs_TOTAL, total number of SNPs below the P-value threshold; SNPs_SIGNIF, number of significant SNPs also passing the LD criteria.
2.3 Table S3. Association results of the SNPs from the VEGF pathway associated with oral ulcers in SLE.

POPULATION	SNP	CHR	POSITION	A1	A2	OR	P	GENE
Discovery	rs2373929	7	150714812	A	G	1.91	2.64E-5	NOS3
Discovery	rs1709898	4	55957723	G	A	0.53	1.50E-4	KDR
Discovery	rs743507	7	150707488	G	A	0.53	2.61E-4	NOS3
Discovery	rs10940145	5	67290972	G	A	0.55	3.26E-4	PIK3R1
Discovery	rs1396875	11	551405	G	A	2.01	7.16E-4	HRAS
Discovery	rs7726943	5	67815851	G	A	1.68	7.80E-4	PIK3R1
Discovery	rs10461535	5	67218216	G	A	2.17	1.30E-3	PIK3R1
Discovery	rs227913	17	64607394	C	A	0.62	2.67E-3	PRKCA
Discovery	rs2372183	5	67197955	A	G	2.06	2.98E-3	PIK3R1
Discovery	rs4976028	5	67290733	G	A	1.70	3.46E-3	PIK3R1
Discovery	rs904132	4	55802108	G	A	0.40	5.78E-3	KDR
Discovery	rs11133360	4	55982752	G	A	0.67	7.40E-3	KDR
Discovery	rs9892886	17	64382588	G	A	1.73	8.06E-3	PRKCA
Discovery	rs11860367	16	24011167	G	A	0.66	8.25E-3	PRKCB
Discovery	rs10515068	5	67450499	C	A	1.61	1.02E-2	PIK3R1
Discovery	rs7719763	5	67681425	A	G	1.47	1.38E-2	PIK3R1
Discovery	rs8051034	16	23925134	C	G	0.40	1.53E-2	PRKCB
Discovery	rs863818	5	67554023	A	G	0.69	1.65E-2	PIK3R1
Discovery	rs10515059	5	67241677	A	C	0.65	2.22E-3	PIK3R1
Discovery	rs6504424	17	64387328	G	A	1.49	2.27E-2	PRKCA
Replication	rs1762553	13	28968770	G	A	0.43	2.35E-4	FLT1
Replication	rs1324057	13	28925435	G	A	0.52	2.56E-4	FLT1
Replication	rs11959164	5	180096972	G	A	1.61	1.44E-3	FLT4
Replication	rs10515077	5	67613801	C	A	2.26	2.86E-3	PIK3R1
Replication	rs6129760	20	39746403	G	A	1.61	3.29E-3	PLCG1
Replication	rs1744801	5	67301383	C	A	0.56	3.56E-3	PIK3R1
Replication	rs7202459	16	24039013	G	A	0.64	4.25E-3	PRKCB
Replication	rs6842830	4	55873926	G	A	0.65	4.31E-3	KDR
Replication	rs3844278	3	10211918	A	G	0.52	5.15E-3	VHL
Replication	rs9550377	13	29101681	A	G	2.03	8.17E-3	FLT1
Replication	rs2228246	20	39792063	G	A	0.59	8.75E-3	PLCG1
Replication	rs1708609	13	28929711	G	A	1.50	1.02E-2	FLT1
Replication	rs10067755	5	67307462	G	A	1.46	1.15E-2	PIK3R1
Replication	rs6947821	7	150729212	G	A	1.48	1.21E-2	NOS3
Replication	rs4290512	17	64395039	A	C	0.43	1.39E-3	PRKCA
Replication	rs2283540	16	24130770	A	G	0.68	1.53E-2	PRKCB
Replication	rs708030	3	10212494	G	A	1.43	1.83E-2	VHL
Replication	rs10283368	8	141679817	A	G	0.70	2.00E-2	PTK2
Replication	rs4791036	17	64797135	G	A	0.62	2.29E-2	PRKCA
Replication	rs2125489	4	55953483	A	G	0.55	2.39E-2	KDR

Abbreviations: A1, minor allele; A2, major allele; Chr, chromosome; Position, SNP base pair in build GRCh37/hg19; OR, Odds Ratio; P, P-value obtained from the single-marker association analysis; SNP, Single-Nucleotide Polymorphism.
2.4 Table S4. Statistical significance of the differential expression analysis performed on the VEGF pathway genes after immunotherapy.

GENE	\(P_{\text{BETAMETHASONE VALERATE}} \)	\(P_{\text{IMIQUIMOD}} \)	\(P_{\text{DIPHENCYPRONE}} \)	\(P_{\text{PIMECROLIMUS}} \)
ARNT	1.10E-02	5.26E-03	1.22E-01	2.63E-02
EIF1	4.93E-02	2.65E-06	6.68E-04	3.31E-01
EIF1AX	6.93E-02	2.88E-03	1.33E-01	5.56E-01
EIF2B1	6.82E-01	6.49E-03	9.26E-01	7.20E-01
EIF2B2	1.87E-02	2.99E-01	4.66E-01	1.86E-01
EIF2B3	3.57E-01	5.91E-01	4.15E-02	8.83E-01
EIF2B4	8.87E-03	7.67E-01	1.25E-01	3.33E-01
EIF2B5	8.20E-01	4.92E-01	3.61E-01	8.41E-01
EIF2S1	2.37E-03	7.54E-03	1.20E-01	1.16E-02
EIF2S2	1.20E-01	7.64E-06	2.18E-03	2.63E-01
EIF2S3	2.57E-01	1.69E-02	1.64E-01	5.93E-01
ELAVL1	5.34E-03	6.83E-03	4.95E-02	1.61E-01
FLT1	4.86E-03	1.70E-02	6.32E-02	5.89E-02
FLT4	3.05E-01	2.73E-01	2.11E-01	2.91E-01
HIF1A	1.76E-01	2.46E-02	9.17E-02	6.53E-01
HRAS	1.04E-03	1.21E-08	5.19E-01	2.78E-02
KDR	1.80E-01	6.39E-02	3.55E-01	2.94E-01
NOS3	6.31E-01	6.32E-01	3.96E-01	3.21E-01
PIK3CA	9.54E-02	1.42E-08	1.09E-01	1.62E-01
PIK3CG	2.08E-01	1.95E-01	1.85E-01	5.18E-01
PIK3R1	1.12E-04	4.70E-06	2.76E-04	1.66E-01
PLCG1	2.44E-01	2.06E-01	1.74E-02	1.91E-01
PRKCA	1.84E-01	2.50E-01	1.75E-01	1.82E-01
PRKCB	3.19E-01	5.34E-02	1.56E-01	3.53E-01
PTK2	3.01E-04	6.72E-09	7.51E-02	1.44E-01
PXN	2.18E-01	8.53E-02	4.97E-01	1.08E-01
SHC1	4.17E-04	9.64E-03	2.94E-01	9.82E-02
VEGFA	2.24E-04	2.20E-11	3.34E-02	2.88E-02
VHL	6.66E-02	7.61E-02	2.64E-01	5.51E-01

Abbreviations: Gene, gene from the VEGF genetic pathway (only the most significant probe was considered for those genes mapped by more than one probe); \(P_{\text{BETAMETHASONE VALERATE}} \), P-value obtained from the differential expression analysis comparing samples before (N=10) and after (N=10) betamethasone valerate treatment; \(P_{\text{DIPHENCYPRONE}} \), P-value obtained from the differential expression analysis comparing samples before (N=22) and after (N=22) diphencyprone treatment; \(P_{\text{IMIQUIMOD}} \), P-value obtained from the differential expression analysis comparing samples before (N=6) and after (N=54) imiquimod treatment; \(P_{\text{PIMECROLIMUS}} \), P-value obtained from the differential expression analysis comparing samples before (N=10) and after (N=10) pimecrolimus treatment.
Table S5. Statistical significance of the VEGF genetic pathway perturbation after topical immunotherapy.

VEGF PATHWAY	BETAMETHASONE VALERATE	IMIQUIMOD	DIPHENCYPRONE	PIMECROLIMUS
DEG (n)	12	16	7	4
NDEG (n)	17	13	22	25
Total Genes (n)	29	29	29	29
P-value	5.69E-9	5.38E-14	4.59E-4	5.50E-2

Abbreviations: DEG, number of VEGF pathway genes that were differentially expressed comparing untreated and treated samples (P<0.05); NDEG, number of VEGF pathway genes that were not differentially expressed comparing untreated and treated samples (P>0.05); P-value, statistical significance of the VEGF genetic pathway perturbation (Binomial test); Total Genes, total number of genes mapping to the VEGF genetic pathway; VEGF pathway, features of the VEGF genetic pathway related with the differential gene expression analysis.
2.6 Table S6. Established genetic variants for SLE risk.

SNP	CHR	POSITION	LOCUS	RISK ALLELE
rs2476601	1	14437588	PTPN22	A
rs1801274	1	161479745	FCGR2A	C
rs704840	1	173226195	TNFSF4	G
rs17849501	1	183542323	SMG7-NCF2	T
rs3024505	1	206939904	IL10	T
rs9782955	1	236039877	LYST	C
rs2111485	2	163110536	IFIH1	G
rs3768792	2	213871709	IKZF2	C
rs6740462	2	65667272	SPRED2	A
rs11889341	2	191943742	STAT4	T
rs9311676	3	58470351	ABHD6-PXK	C
rs564799	3	159728987	IL12A	C
rs10028805	4	102737250	BANK1	G
rs7726414	5	133431834	TCF7-SKP1	T
rs10036748	5	150458146	TNIP1	T
rs2431697	5	159879978	MIR146A	T
rs9462027	6	34797241	UHRF1BP1	A
rs6568431	6	106588006	PRDM1-ATG5	A
rs6932056	6	138242437	TNFAIP3	C
rs1270942	6	31918860	MHC class III	C
rs849142	7	28185891	JA2F1	A
rs4917014	7	50305863	IKZF1	T
rs10488631	7	128594183	IRF5	C
rs2736340	8	11343973	BLK	T
rs2663052	10	50069395	WDFY4	C
rs4948496	10	63005617	ARID5B	C
rs3794060	11	71187679	DHR7-NADSYN1	C
rs2732549	11	35083999	CD44	T
rs7941765	11	128499000	ETS1-FLH1	C
rs12802200	11	566936	IRF7	C
rs10774625	12	111910219	SH2B3	A
rs1059312	12	129278864	SLC15A4	C
rs4902562	14	68731458	RAD51B	A
rs2289583	15	75311036	CSK	A
rs0652601	16	11174365	CHIA-SOCS1	G
rs34572943	16	31272353	ITGAM	A
rs11644034	16	85972612	IRF8	G
rs2286672	17	4712617	PLD2	T
rs2941509	17	37921194	IKZF3	A
rs2304256	19	10475652	TYK2	C
rs7444	22	21976934	UBE2L3	C
rs887369	X	30577846	CXorf21	C
rs1734787	X	153325446	IRAK1-MECP2	C

Abbreviations: Chr, chromosome; Position, SNP base pair in build GRCh37/hg19; SNP, Single-Nucleotide Polymorphism.
2.7 Table S7. Reference biological pathways selected for the present study.

PATHWAY	DATABASE	GENES
RELA_PATHWAY	BIOCARTA	16
BCELLSURVIVAL_PATHWAY	BIOCARTA	16
CAGAME_PATHWAY	BIOCARTA	16
COMA2_PATHWAY	BIOCARTA	16
CST13_PATHWAY	BIOCARTA	16
IL23BP_PATHWAY	BIOCARTA	16
LPS_PATHWAY	BIOCARTA	16
MHC_CLASSI_PATHWAY	BIOCARTA	16
NFKB_PATHWAY	BIOCARTA	16
P53_PATHWAY	BIOCARTA	16
ACH_PATHWAY	BIOCARTA	16
CDC42RAC_PATHWAY	BIOCARTA	16
SHH_PATHWAY	BIOCARTA	16
LRRK2_PATHWAY	BIOCARTA	17
BCELLSURVIVAL_PATHWAY	BIOCARTA	17
CACAM_PATHWAY	BIOCARTA	16
CDMAC_PATHWAY	BIOCARTA	16
EIF_PATHWAY	BIOCARTA	16
GATA3_PATHWAY	BIOCARTA	17
IL22BP_PATHWAY	BIOCARTA	16
P53_PATHWAY	BIOCARTA	16
ACH_PATHWAY	BIOCARTA	16
CDC42RAC_PATHWAY	BIOCARTA	16
SHH_PATHWAY	BIOCARTA	16
LAIR_PATHWAY	BIOCARTA	17
HCMV_PATHWAY	BIOCARTA	17
IL17_PATHWAY	BIOCARTA	17
IL10_PATHWAY	BIOCARTA	17
IL7_PATHWAY	BIOCARTA	17
NO2IL12_PATHWAY	BIOCARTA	17
PHI_PATHWAY	BIOCARTA	17
IFN_PATHWAY	BIOCARTA	17

109
Term	KEGG
AMINOACYL_TRNA_BIOSYNTHESIS	41
FATTY_ACS_METABOLISM	42
TYROSINE_METABOLISM	42
ALDOSTERONE_REGULATED_SODIUM_REABSORPTION	42
BLADDER_CANCER	42
GRAFT_VERSUSHOST_DISEASE	42
VALINE_LEUCINE_AND_Isoleucine_DEGRADATION	44
LYSINE_DEGRADATION	44
AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM	44
ABC_TRANSPORTERS	44
NUCLEOTIDE_EXCISION_REPAIR	44
TYPE_1_DIABETES_MELLITUS	44
TYPE_2_DIABETES_MELLITUS	45
FERMENTATION_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	48
GLYCEROLOID_METABOLISM	49
GLUTAMATE_METABOLISM	50
DRUG_METABOLISM_OTHER_ENZYMES	51
STARCH_AND_SUCROSE_METABOLISM	52
TASTE_TRANSDUCTION	52
ENDOMETRIAL_CANCER	52
AMYOTROPHIC_LATERAL_SCLEROSIS_ALS	53
AUTOMUNE_THYROID_DISEASE	53
ARGinine_AND_PROLINE_METABOLISM	54
INOSITOL_PHOSPHATE_METABOLISM	54
NON_SMALL_CELL_LUNG_CANCER	54
STEROID_HORMONE_BIOSYNTHESIS	55
BASAL_CELL_CARCINOMA	55
CYTOKININ_SIGNALING_PATHWAY	56
CYTOSOLIC_CNA_SENSING_PATHWAY	56
DIMERO_CHLORIDE_INFECTION	56
ARACHIDONIC_ACIDS_METABOLISM	58
PROTEASOME	59
PATHOGENIC_ESCHERICHIA_COLI_INFECTION	59
ACUTE_MYLIOID_LEUKAEMIA	60
GLYCEROLYSIS_GLUONGLUCONEogenesis	62
NOC1_LIKE_RECEPTOR_SIGNALING_PATHWAY	62
COLORECTAL_CANCER	62
METABOLISM	64
GLOMMA	65
ADIPOCYTOKINE_SIGNALING_PATHWAY	67
EPITHELIAL_CELL_SIGNALING_IN_Helicobacter_PYLORI_INFECTION	68
IP3AR_SIGNALING_PATHWAY	69
P2Y1_SIGNALING_PATHWAY	69
COMPLEMENT_AND_COAGULATION_CASCADES	69
METABOLISM_OF_BENZENES BY_CYTOCHROME_P450	70
LONG_TERM_POTENTIATION	70
LONG_TERM_DEPRESSION	70
RENAL_CELL_CARCINOMA	70
PANCREATIC_CANCER	70
B_R1_LIKE_RECEPTOR_SIGNALING_PATHWAY	71
MELANOMA	71
DRUG_METABOLISM_CYTOCHROME_P450	72
LEISHMANIA_INFECTION	72
CHRONIC_MYELOID_LEUKAEMIA	73
VIRAL_MYOCARDITIS	73
ADHESION_JUNCTION	75
B_CELL_RECEPTOR_SIGNALING_PATHWAY	75
PHOSPHOAMINOGLYCOSIT_SIGNALING_SYSTEM	75
ALKALOID_BIOSYNTHESIS	76
ARRHENOGENIC_RIGHT_VENTRICULAR_CAR Diomyopath_AVC	76
GLYCEROPHOSPHOLIPID_METABOLISM	77
PEROXISOME	78
PC_EPSILON_III_SIGNALING_PATHWAY	79
CARDIO_MUSCLE_CONTRACTION	80
ECM_RECEPTOR_INTERACTION	84
SMALL_CELL_LUNG_CANCER	84
HYPERTRHOSIC_CARDiomyopathy_HCM	85
TGF_BETA_SIGNALING_PATHWAY	86
PROGESTERONE_MEDIATED_GYOCYTE_MATURATION	86
ERBB SIGNALING_PATHWAY	87
HIBOSOME	88
APOPTOSIS	88
HEMATOPOIETIC_CELL_LINEAGE	88
ANTIGEN_PROCESSING_AND_PRESENTATION	89
PROSTATE_CANCER	89
GAP_JUNCTION	90
DELATED_CARDiomyopathy	92
PC_GAMMA_MEDIATED_PHAGOCYTOSIS	97
PYRIMIDINE_METABOLISM	98
CMP SIGNALING_PATHWAY	101
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY	102
MELOGENESIS	102
T_CELL_RECEPTOR_SIGNALING_PATHWAY	108
CYTOSOME_MISOSIS	114
VASCULAR_SMOOTH_MUSCLE_CONTRACTION	115
LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION	115
LYSOSOME	121
NEUROTROPHIN_SIGNALING_PATHWAY	125
GPCR_JUNCTION	128
CELL_CYCLE	128
ALEN_SUGARANCE	129
PARKINSONS_DISEASE	133
CELL_ACHESION_MOLECULES_CAMS	134
TIGHT_JUNCTION	134
DIDGEITIVE_PHOSPHORYLATION	135
NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	137

111
Biochemical Pathway	Reactome ID
Formation of RNA POL II elongation complex	45
G2/M checkpoint	45
NOTCH1 intracellular domain regulated transcription	46
Activation of CHAPERONE GENES BY NPXR	46
Lipid digestion, mobilization and transport	46
Nucleotide binding domain, leucine rich repeat containing, receptor NLR signaling pathways	46
Pyruvate metabolism and citric acid cycle	48
Cross-presentation of soluble exogenous antigens, endosomes	48
P.53 metabolism	48
CDK mediated phosphorylation and removal of CDKs	48
Muscle contraction	48
Senescence dependent, MPA decay	48
Packaging of telomere ends	48
Metabolism of non-coding RNA	49
D-chondroitin sulfate, dermatan sulfate, metabolism	49
Regulation of ornithine decarboxylase, ODC	49
Nuclear receptor, transcription pathway	49
AMPK, ACO1, and diaphorase SLC, transportants	49
MAPK kinase activation, mTOR, cascade	50
Metabolism of vitamins and cofactors	51
Defensins	51
P53-independent, G1-S DNA damage checkpoint	51
Cytochrome P450, cytochrome by substrate type	51
Nucleotide excision, repair	51
Autodegradation of the E3 ubiquitin ligase cop1	51
Aquaporin mediated, transport	51
SCF, beta, Trcp, mediated degradation of EMI	51
Heparin sulfate, heparin HS, GAG metabolism	52
SARK, receptor activation	52
DFR, mediated degradation of APOPCSG	52
Protein folding	53
Golgi-associated, vesicle, biogenesis	53
Carcinoembryonic antigen	53
Activation of IkB alpha by ACP1, IKK, NF-kB	53
Transport of mature, transcribed to cytoplasm	54
Phosphatidylserine, C-mediated cascade	54
Apoptotic execution, phase	54
Ion channel transport	55
Cell cycle, cell organization	56
CDK1 association, with the CDK1, ORC, ORC, complex	56
P53, CASPASE	56
SCF, beta, mediated degradation of P3, P5	56
Chk2, kinase, receptors, BIM, CHK2, CHK1	57
P53 dependent, G1-S DNA damage response	57
Mitochondrial protein, import	58
Collagen formation	58
Regulation of apoptosis	58
D-linked, glycosylation, of mucins	58
Loss of NF-κB, from mitotic, centrosomes	59
Tran, doug, network, vesicle, budding	59
Cell death, signaling, VIA, NAG, MRP, and NAC	60
BR, phosphoglucomutase	61
RNA POL II, pre-transcription events	61
RNA POL II promoter, opening	62
Costimulation, by the COX2, family	63
Interferon, gamma, signaling	63
Signaling, by TGF, beta, receptor, receptor complex	63
Activation of NF-kB, KAP2, in B, cells	64
NCAM signaling, for neutroph, out growth	64
Disposition of new, chima, containing nucleosides, at the centrosome	64
Interferon, alpha, beta, signaling	64
Autodegradation of CDK1, by CDK1, APC-2	64
Signaling, by UNI	65
Cyclin E, associated, events, during G1-S transition,	65
Assembly of the pre, replicative, complex	65
Antiviral, mechanism, by IFN, stimulated, genes	66
Recruitment of mitotic, centrosome, proteins, and complexes	66
Orc1, removal, from chromatin	67
Senapin, interactions	68
Rhinoglycolipid, metabolism	69
Glucose metabolism	69
Immunoregulatory, interactions, between A, lymphoid and A, non-lymphoid cell	70
Signaling, by Ndt-1	70
Phagosome, functionalization, of compounds	70
Phage, c, conjugation	70
Phagosome, c, conjugation	70
Pum, cascade	71
Metabolism, of nucleotides	72
NFκB and MAP kinases, activation, mediated by TLR signaling, receptor repertoire	72
Transcriptional, regulation of white adipocyte, differentiation	72
APC C, CDH1, mediated, degradation of CD28 and other, APC C, CDH1, targeted, proteins in, late, mitosis, early G1	72
H2a, I, NEAS, mediated, induction of, IFN, alpha, beta, pathway	72
APC C, CD26, mediated, degradation of mitotic, proteins	73
NER, stimulation	73
Formation of the tetrapyr, complex and subsequently, the 43S complex	74
Tnf, mediated, tumor signaling	74
G, alpha,h2a,132, signaling events	74
Telomere, maintenance	75
Antigen, processing, droves, presentation	76
TNF, mediated, induction of, NFκB, and MAP kinases, upon, tumor, I, or, II, activation	77
Signaling, by SCF, kit	78
Vector, signaling	78
Cell junction, organization	78
Platelet, homeostasis	78
Integrin, cell, surface, interactions	79
Respiratory, election, transport	79
Unfolded, protein, response	80
P53, NTR, receptor, mediated, signaling	81
M, G1, transition	81
NITRIC, G2-M, PHAGES	81
ASPARAGINE, N, LINKED, GLYCOSYLATION	81
3. Supplementary Figures

3.1 Figure S1. Principal components of the SLE discovery cohort.

Figure S1. Principal components of the SLE discovery cohort. The SLE patients (blue dots) and control patients (red dots) are plotted according to their first (PC1) and second (PC2) principal components estimated in EIGENSTRAT using the genome-wide data. In the present figure, samples showing an outlier genetic background (i.e. samples with >6 standard deviations in any of the 10 principal components of variation) were excluded.
4. References

1. Julia A, Tortosa R, Hernanz JM, Canete JD, Fonseca E, Ferrandiz C, Unamuno P, Puig L, Fernandez-Sueiro JL, Sanmarti R et al: Risk variants for psoriasis vulgaris in a large case-control collection and association with clinical subphenotypes. *Hum Mol Genet* 2012, 21(20):4549-4557. Epub 2012 Jul 4519.

2. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ: The 1982 revised criteria for the classification of systemic lupus erythematosus. *Arthritis Rheum* 1982, 25(11):1271-1277.

3. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al: PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* 2007, 81(3):559-575. Epub 2007 Jul 2025.

4. Aterido A, Julia A, Ferrandiz C, Puig L, Fonseca E, Fernandez-Lopez E, Dauden E, Sanchez-Carazo JL, Lopez-Estebaran JL, Moreno-Ramirez D et al: Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis. *J Invest Dermatol* 2016, 136(3):593-602. doi: 10.1016/j.jid.2015.1011.1026. Epub 2015 Dec 1029.

5. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* 2006, 38(8):904-909. Epub 2006 Jul 2023.

6. Delaneau O, Zagury JF, Marchini J: Improved whole-chromosome phasing for disease and population genetic studies. *Nature methods* 2013, 10(1):5-6.

7. Howie B, Marchini J, Stephens M: Genotype imputation with thousands of genomes. *G3 (Bethesda, Md)* 2011, 1(6):457-470.

8. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. *Nature* 2012, 491(7422):56-65.

9. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. *Nucleic Acids Res* 2002, 30(1):207-210.

10. Chang AY, Werth VP: Treatment of cutaneous lupus. *Curr Rheumatol Rep* 2011, 13(4):300-307. doi: 310.1007/s11926-11011-10180-z.

11. Khandpur S, Sharma VK, Sumanth K: Topical immunomodulators in dermatology. *J Postgrad Med* 2004, 50(2):131-139.

12. Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. *Nat Rev Genet* 2006, 7(1):55-65.

13. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. *Bioinformatics* 2003, 19(2):185-193.

14. Ihaka R, Gentleman G: R: A language for data analysis and graphics. *Journal of Computational and Graphical Statistics* 1996, 5(5):299-314.