AN ATTRACTOR FOR DARK MATTER STRUCTURES

STEEN H. HANSEN, DIANA JUNCHER, AND MARTIN SPARRE

Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark

Received 2010 May 18; accepted 2010 June 23; published 2010 July 6

ABSTRACT

Cosmological simulations of dark matter (DM) structures have identified a set of universal profiles, and similar characteristics have been seen in non-cosmological simulations. There has therefore been speculation as to whether these profiles of collisionless systems relate to accretion and merger history, or if there is an attractor for the DM systems. Here, we identify such a one-dimensional attractor in the three-dimensional space spanned by the two radial slopes of the density and velocity dispersion, and the velocity anisotropy. This attractor effectively removes 1 degree of freedom from the Jeans equation. It also allows us to speculate on a new fluid interpretation for the Jeans equation, with an effective polytropic index for the DM particles between 1/2 and 3/4. If this attractor solution holds for other collisionless structures, then it may hold the key to breaking the mass-anisotropy degeneracy, which presently prevents us from uniquely measuring the mass profiles in dwarf galaxies.

Key words: dark matter – galaxies: halos – methods: numerical

Online-only material: color figures

1. INTRODUCTION

Cosmological dark matter (DM) structures, which have been formed in an expanding universe, appear to have virtually universal profiles. This was first emphasized for the density profile through numerical simulation when Navarro et al. (1996) demonstrated that all structures from galaxies to galaxy clusters are well fitted by the same simple form

$$\rho = \frac{\rho_0}{r_s (1 + r/r_s)^2},$$

(1)

where r_s is the scale radius. Even though various theoretical attempts have been made to explain such density profile (e.g., Henriksen 2007; González-Casado et al. 2007; He & Kang 2010; Henriksen 2007; González-Casado et al. 2007; He & Kang 2010; Hjorth & Williams 2010), there is still no consensus of the underlying physical reason for this universality.

To ease the task of theoreticians, one should look for simple connections in some parameter space. One such connection was suggested by Taylor & Navarro (2001), who presented numerical evidence that the pseudo phase-space density is a power law in radius

$$\frac{\rho}{\sigma^3} \sim r^{-\alpha},$$

(2)

where $\alpha = 1.875$ is in agreement with the predictions from the spherical infall model (Bertschinger 1985). This numerical evidence was soon used in conjunction with the Jeans equation to derive density profiles in general agreement with Equation (1) (Hansen 2004; Austin et al. 2005; Dehnen & McLaughlin 2005). One problem, however, does present itself, namely that recent high-resolution simulations do not confirm that the pseudo phase-space density is a universal straight line (for recent discussions, see Schmidt et al. 2008; Knollmann et al. 2008; Ludlow et al. 2010).

In this Letter, we study the evolution of pure DM structures using numerical simulations. We find that all the various equilibrium DM structures, when perturbed in a simple but realistic manner, move toward a particular curve in the three-dimensional space of the derivatives of density and velocity dispersion, and the velocity anisotropy.

2. STRUCTURES IN EQUILIBRIUM

One of the non-trivial aspects of cosmological DM structures formed through hierarchical mergers in an expanding universe is that they are seldom in perfect equilibrium: the first moment of the collisionless Boltzmann equation, the Jeans equation, is not always exactly obeyed unless all velocity terms are included. When bulk motion can be ignored, this Jeans equation reads (see, e.g., Binney 1982a)

$$\sigma_r^2 = -\sigma_\gamma^2 (\gamma + \kappa + 2\beta),$$

(3)

where we have defined the derivatives of the density and radial velocity dispersion,

$$\gamma \equiv \frac{d\log \rho}{d\log r} \quad \text{and} \quad \kappa \equiv \frac{d\log \sigma_r^2}{d\log r},$$

(4)

the velocity dispersion anisotropy is given by

$$\beta \equiv 1 - \frac{\sigma_{\perp}^2}{\sigma_{\parallel}^2},$$

(5)

and the circular velocity is

$$v_c^2 = \frac{GM_{\text{tot}}}{r}.$$

(6)

Numerical simulations of galaxies or clusters of galaxies often have differences between the left- and right-hand sides of Equation (3), of the order 20% for large parts of the structures.

This problem can be avoided by manually setting up structures in equilibrium. There are several ways of setting up structures that obey the Jeans equation. The first is the Eddington method, which for a given assumed density profile creates a unique ergodic structure, i.e., depending only on the energy of the particles, and hence having $\beta = 0$ by definition (Eddington 1916; Binney 1982b). This method gives the exact distribution function, $f(E)$, and is therefore often stable when evolved by an N-body simulation. When we discuss stable configurations,
we refer to structures whose profiles, $\rho(r)$, $\sigma^2(r)$, and $\beta(r)$, remain unchanged when evolved for several dynamical times by an N-body code.

The other method is to make an assumption for the radial profiles of the density and velocity anisotropy, and then solve the Jeans equation to get $\sigma^2(r)$ (Hernquist 1993). In this method, the velocity distribution function is assumed to be a Gaussian, and the system will therefore not be exactly stable when evolved by an N-body simulation. However, after having run for a number of dynamical times, such structures settle down in an equilibrium configuration, which often has a fair resemblance to the original density and velocity anisotropy profiles. Below, we will use both methods of defining initial conditions.

3. FLOW TOWARD AN ATTRACTOR

The Jeans equation in Equation (3) has an infinite number of solutions: there are three unknown functions, $\rho(r)$, $\sigma^2(r)$, and $\beta(r)$, and only one equation. It is therefore no mystery that one can create a wide range of different structures, with different density and velocity profiles, which all obey the Jeans equation. The question we are posing here is, whether all these structures, if perturbed in a simple way, will flow to new points in a large volume in solution space, or whether there is one or several attractors that the structure will be drawn toward.

As solution space, it is natural to consider the four-dimensional space spanned by r, γ, κ, and β (see Equation (3)). Whereas the Jeans equation allows solutions to fill a large three-dimensional volume, then if an attractor does exist, we should expect all final structures to land on a low-dimensional sheet, potentially a line. In practice, we divide each structure into radial bins. For each radial bin, we can derive γ, κ, and β, and this radial bin thus represents a point in the three-dimensional space. In this way, we also avoid any potential problems concerning scaling different structures in radius.

During the formation of cosmological structures in the real universe, the structures are continuously being perturbed through the process of mergers. This implies that if an attractor exists in solution space, then we might expect repeated perturbations, such as those from ongoing mergers, to support the flow of the structures toward the attractor.

In order to mimic the perturbations of the mergers in a controlled way, we perturb the equilibrated structure in a simple yet fairly realistic manner. The velocity of each particle is multiplied by a random number, in such a way that any given radial bin has exact conservation of kinetic energy and angular momentum. We assure that no particles get a velocity above the escape velocity. Naturally, the potential energy is also conserved during the perturbations. Now, having perturbed each particle in the structure in this controlled manner, we start the N-body code and let the structure settle into a new equilibrium condition. We let each simulation run for a time corresponding to one dynamical time, $t_{\text{dyn}} = 1/\sqrt{G\rho}$, at radius 13 times the scale radius.

The simulations were performed with the public version of Gadget-2 (Springel 2005; Springel et al. 2001), which is a massively parallel N-body code that uses a hierarchical tree algorithm to calculate gravitational forces and gives individual time steps to all particles. A spline softening of 0.005r_s was used. We are being overly conservative in the analysis and include only regions outside of 5–10 times this softening. We also require that the bins contain at least 5000 particles.

Figure 1. Initial conditions. A two-dimensional projection in solution space to the Jeans equation. According to the Jeans equation, Equation (3), all points in this space may be populated. No stable solutions exist in the upper right corner. Our various initial conditions of equilibrated structure are created to span a large volume in the three-dimensional solution space. All the structures of this figure are in equilibrium and are stable when evolved in an N-body simulation. (A color version of this figure is available in the online journal.)

4. THE WIDE RANGE OF INITIAL CONDITIONS

In order to allow the systems to start from a large range of initial conditions, we initiate a set of significantly different systems. Using the Eddington method, we have an isotropic system, which has a density profile like a Hernquist profile (Hernquist 1990), with inner and outer density slopes of -1 and -4. We construct a cored profile, with central slope of 0 and outer slope of -4.5. We also use a hovering profile, $\rho \sim 1/(1 + (r/r_1)^2(1 + r/r_2)^2)$, where $r_1 = 0.01$ and $r_2 = 100$, which is characterized by having a large part of the central structure where the slope is -2. We also create a set of initial conditions with Osipkov–Merritt anisotropies (Osipkov 1979; Merritt 1985) with the property $\beta(r) = 1/(1 + (r/r_a)^2)$: a Hernquist density profile (slope: -1, -4) with $r_a = 1$, and a cored profile (slope: 0, -3.5) with $r_a = 1.5$. Using the Gaussian method, we create four structures, with both trivial and highly non-trivial $\beta(r)$ profiles, all with a Hernquist density profile (slope: -1, -4). All structures presented here contain 10^7 DM particles, and low-resolution runs with 10^5 particles establish that this is sufficient for our purpose. All of these initial conditions (after having run for three dynamical time at radius 13 times the scale radius) are presented in Figure 1. This figure shows that our initial conditions span a large part of the solution space of $(\beta, \gamma + \kappa)$. The Jeans equation allows all of this parameter space to be populated, however, there are no initial conditions in the upper right corner, where the inequality $\beta < -\gamma/2$ (An & Evans 2006) prevents any stable solutions (see also Ciotti & Morganti 2010).

5. THE PERTURBATIONS

All perturbations follow the repeated pattern of kick-flow. First, the structure is perturbed (kicked) and then the N-body simulation allows it to settle into (flow toward) a new equilibrium configuration. This kick-flow is repeated numerous times.

We first consider two structures, each with an initial Hernquist profile and with $\beta = 0$. These are created using the Eddington and the Gaussian method, respectively. We then perturb the
energies of each individual particle in the range \([0.75, 1.25]\) in such a way that there is energy conservation at each radial bin. The structure is then evolved with Gadget-2 for 1–3 dynamical time at 13 times the scale radius. This process is repeated approximately 20 times. The final structures are compared, and we find no significant difference after the plane \((\beta, \gamma + \kappa)\). This shows that there is virtually no dependence in the final result on the method of creating the initial conditions (Eddington versus Gaussian).

We then take the isotropic Hernquist structure, using the Eddington method, and perturb it by changing energies in the much larger range \([0.25, 1.75]\). This structure also ends in the same region \((\beta, \gamma + \kappa)\) after repeated perturbations. This demonstrates that the magnitude of the perturbation is not crucial to the final structure. We also test perturbations where we do not prevent velocities above the escape velocity: for these structures some particles do leave the structure, and these perturbations are therefore less conservative. Structures perturbed in this way also land on the same curve in solution space. We can therefore perturb all structures by changing energies in the range \([0.25, 1.75]\), irrespective of the method of creating the initial conditions.

The result of all these perturbations is presented in Figure 2, from which it is clear that all the structures end up along a one-dimensional curve in this two-dimensional parameter space. It is important to emphasize that we had initial conditions both above and below this attractor solution. When we plot in the three-dimensional space spanned by \(\gamma, \kappa, \) and \(\beta\), we still find that the attractor solution spans a non-trivial one-dimensional curve.

This curve is clearly S-shaped, but we can approximate it with a piecewise straight line, which for small \(\beta\) could be \((\gamma + \kappa) = -8\beta\), and for intermediate \(\beta\) it looks like \((\gamma + \kappa) = -0.7 - 4\beta\). It is interesting to note that the anisotropy-slope connection suggested by Hansen & Moore (2006) looks like \((\gamma) = -0.8 - 5\beta\) in the region which can be trusted, namely \(-2.5 < \gamma < -1\) (Hansen & Stadel 2006; Zait et al. 2008; Navarro et al. 2010), which is in good agreement with our findings. For very high \(\beta\), we are in the very outer region of the structures, where full equilibrium can be questioned, since a larger spread in the final points is observed. The included points have been allowed to equilibrate at least 20 dynamical times in total, however, the outermost points have only been allowed 1 dynamical time since the last perturbation. We therefore would not speculate on the form of the attractor there.

Whereas the one-dimensional attractor has a non-trivial S-shape in the space of \(\gamma, \kappa, \) and \(\beta\), it happens to lie in a simply parameterized sheet, given by one single free parameter, \(\delta = 0.15\),

\[
\beta = \frac{Y}{(1 + Y^2)^{1/2}}, \tag{7}
\]

where \(Y = -\delta \gamma - (1 - \delta) \kappa\). This means that when seen in a slightly different projection, the attractor in Figure 2 looks like a very simple curve.

With this attractor, we can effectively remove 1 degree of freedom from the Jeans equation: for a given density profile, there is now a unique connection between \(\kappa\) and \(\beta\), which allows us to calculate both.

6. AN EFFECTIVE EQUATION OF STATE

The Jeans equation describing collisionless particles is fundamentally different from the Euler equation for collisional fluids; however, a standard mapping between the two is made by setting \(\beta = 0\) and interpreting \(m \sigma^2 / 2\) as a temperature (Binney & Tremaine 1987). The non-trivial part of this interpretation is to assume that \(\beta = 0\), since numerical simulations for years have demonstrated that \(\beta\) is not generally zero (Carlberg et al. 1997; Cole & Lacey 1996).

We now allow ourselves to use our newly found connection to make a different interpretation of the Jeans equation from a fluid perspective.

Let us first consider the region with small \(\beta\), where the attractor solution approximately reads \((\gamma + \kappa) = -8\beta\). When we insert this into the Jeans equation, we get

\[
\frac{GM_{\text{tot}}}{r} = -\sigma^2 \left(\gamma + \kappa\right), \tag{8}
\]

where \(A = 3/4\). If we attempt to describe the DM by an effective equation of state (generalizing a polytropic index), we have

\[
P = b \left(\rho \sigma^2\right)^\kappa, \tag{9}
\]

where \(b\) is a constant. Thus, if we require that the Jeans equation, Equation (8), should take the form of the equation of hydrostatic equilibrium, \(GM/r^2 = \nabla P/\rho\), then we find the solution \(K_0 = 3/4\). We can therefore interpret this by the DM behaving like a fluid with an effective polytropic index of 3/4.

For intermediate \(\beta\), we found approximately the connection \((\gamma + \kappa) = -0.7 - 4\beta\). This is almost solved in the same way, finding an effective polytropic index of \(1/2\), however, the constant term \((B = -0.7)\) changes the picture. In order to solve for such an effective polytropic index, we generalize Equation (9) to \(P \sim \rho \sigma^2 \kappa - \rho \sigma^2 \kappa\), where \(b\) is a new constant. We now need to introduce an assumption about the pseudo phasespace density, namely \(\rho / \sigma^2 \sim r^{-\alpha}\). Doing this, we find the solution, \(K_1 = 1/\alpha\) and \(K_2 = 1/\alpha + B/2\alpha\).

7. WILL ANY PERTURBATION DO?

A ball will always run downhill, if kicked randomly by a group of children playing, however, if they consistently kick the
ball uphill, then the ball may appear to defy the attractiveness of gravity. We should expect the same to be possible with the above found attractor. In order to quantify this idea, we tried to perturb only the radial velocity component. When the radial component is perturbed by a random number (always obeying exact energy conservation in any radial bin), then the radial velocity distribution gets flattened out. When we subsequently let the system evolve by the N-body simulation, the high-energy tail of the distribution essentially gets cut off, and thereby the effective radial dispersion gets slightly smaller. When we repeatedly perform such a kick-flow, we even manage to get negative values of β at intermediate radii. This confirms our expectation that perturbations may be invented, which will defy the attractor. If we instead only perturb the tangential velocities, then the system flows toward the attractor.

We see from this discussion that it is relevant to consider which kind of perturbations should happen during structure formation. During merging, there will be violent relaxation. Two salient features of violent relaxation is that it changes the energy of individual particles on a timescale similar to the dynamical time (Lynden-Bell 1967), which for mergers is of the order R/v, where R is the size of the smaller merging object and v is its velocity. We are here interested in the energy exchange with specific particles in the larger structure, which has a different timescale from the equilibration of the smaller structure. The other feature is that violent relaxation acts on all particles irrespective of their orientation. In our example mentioned above, we have an instantaneous exchange of energies between the particles (reminiscent of violent relaxation) and then we let the system flow (which provides the needed phase mixing).

In our particular setup, the kicks do not change any properties of the profiles by themselves, and without the kicks there is no effect of the flow. Thus, when interpreted as violent relaxation (kick) and phase mixing (flow), we see that both are needed to move toward the attractor.

Antonov’s laws of stability state that, e.g., an isotropic Hernquist structure will remain isotropic when exposed to minor perturbations. These laws are derived under the assumption that the right-hand side of the Boltzmann equation is zero. Our perturbations act like an instantaneous non-zero term on the right-hand side of the Boltzmann equation, and we are therefore not violating Antonov’s laws of stability.

Finally, it is worth emphasizing that we find the attractor in the space of γ, κ, and β. Very specifically, we do not, in this work, identify one unique density profile, $\rho(r)$. This may be because we are constraining the perturbations to allow very little freedom in modifying the density profile, or it may be because the universality of the density profile (Navarro et al. 1996; Moore et al. 1998) really finds its origin in accretion history (González-Casado et al. 2007).

8. BREAKING THE MASS–VELOCITY ANISOTROPY DEGENERACY

Let us finally discuss what our newly found attractor may do for the mass–velocity anisotropy degeneracy. When we observe the stellar kinematics in a dwarf galaxy, we can observe the stellar density and the stellar dispersion. Then, the Jeans equation, Equation (3), tells us that for any assumed velocity anisotropy profile for the stars, $\beta(r)$, we can solve for the total gravitating mass. However, if we had assumed a different $\beta(r)$, then we would have found a different total mass profile (Strigari 2010; Wolf et al. 2010; Mamon & Boué 2010).

If we, for instance, consider a Hernquist density profile with a β profile in agreement with numerical simulations and observations (Hansen & Piffaretti 2007; Host et al. 2009; Wojtak & Lokas 2010), then the reconstructed mass is overestimated by up to 40%, if the analysis is made under the simplifying assumption $\beta = 0$. Also, the derived inner density slope (from the total mass) is systematically found to be more shallow than the true slope is, by up to 10%. This means that if the true density slope is -1, then we will measure around -0.95, if we assumed $\beta = 0$ in the analysis.

This may no longer have to be the case. If our attractor solutions also apply to stellar systems in a dwarf galaxy, or to the dynamics of the galaxies in a galaxy cluster, then we have a unique connection between the three quantities, γ, κ, and β. Therefore, if we have measured (accurately) the stellar density and dispersion profiles, then we do, in principle, know exactly what $\beta(r)$ looks like, and we can then deduce the unique total mass profile.

9. CONCLUSIONS

We have identified an attractor solution for DM structures. This implies that any DM structure, which is repeatedly perturbed (e.g., through violent relaxation during merging) and then allowed to relax (phase mix), will flow toward this one-dimensional curve in the three-dimensional space spanned by the two radial derivatives of the density and velocity dispersion, and the velocity anisotropy.

This finding provides strong support for the idea that the universalities found in cosmological DM structures are a property of gravity, and not simply a result of similar accretion and merger histories of different structures.

This attractor solution effectively removes 1 degree of freedom from the Jeans equation, giving hope that we will eventually be able to solve the Jeans equations analytically, and thereby truly understand the origin of the universal profiles.

It is a pleasure to thank Jens Hjorth for discussions. The simulations were performed on the facilities provided by the Danish Center for Scientific Computing. The Dark Cosmology Centre is funded by the Danish National Research Foundation.

REFERENCES

An, J. H., & Evans, N. W. 2006, ApJ, 642, 752
Austin, C. G., Williams, L. L. R., Barnes, E. I., Babul, A., & Dalcanton, J. J. 2005, ApJ, 634, 756
Bertschinger, E. 1985, ApJS, 58, 39
Binney, J. 1982a, ARA&A, 20, 399
Binney, J. 1982b, MNRAS, 200, 951
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)
Carlberg, R. G., et al. 1997, ApJ, 485, L13
Ciotti, L., & Morganti, L. 2010, MNRAS, 401, 1091
Cole, S., & Lacey, C. 1996, MNRAS, 281, 716
Dekhnen, W., & McLaughlin, D. 2005, MNRAS, 363, 1057
Eddington, A. S. 1916, MNRAS, 76, 572
González-Casado, G., Salvador-Solé, E., Manrique, A., & Hansen, S. H. 2007, arXiv:astro-ph/0702368
Hansen, S. H. 2004, MNRAS, 352, L41
Hansen, S. H., & Moore, B. 2006, New Astron., 11, 333
Hansen, S. H., & Piffaretti, R. 2007, A&A, 476, L37
Henriksen, R. N. 2007, arXiv:0709.0434
Hernquist, L. 1990, ApJ, 356, 359
Hernquist, L. 1993, ApJS, 86, 389
Hjorth, J., & Williams, L. 2010, submitted
Host, O., Hansen, S. H., Piffaretti, R., Morandi, A., Ettori, S., Kay, S. T., & Valdarnini, R. 2009, ApJ, 690, 358
Knollmann, S. R., Knebe, A., & Hoffman, Y. 2008, MNRAS, 391, 539
Ludlow, A. D., Navarro, J. F., Springel, V., Vogelsberger, M., Wang, J., White, S. D. M., Jenkins, A., & Frenk, C. S. 2010, MNRAS, in press (arXiv:1001.2310)
Lynden-Bell, D. 1967, MNRAS, 136, 101
Mamon, G. A., & Boué, G. 2010, MNRAS, 401, 2433
Merritt, D. 1985, AJ, 90, 1027
Moore, B., Governato, F., Quinn, T., Stadel, J., &Lake, G. 1998, ApJ, 499, 5
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
Navarro, J. F., et al. 2010, MNRAS, 402, 21
Osipkov, L. P. 1979, Sov. Astron. Lett., 5, 42
Schmidt, K. B., Hansen, S. H., & Macciò, A. V. 2008, ApJ, 689, L33
Springel, V. 2005, MNRAS, 364, 1105
Springel, V., Yoshida, N., & White, S. D. M. 2001, New Astron., 6, 79
Strigari, L. E. 2010, Adv. Astron., 2010, 1
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
Wojtak, R., & Lokas, E. L. 2010, MNRAS, submitted (arXiv:1004.3771)
Wolf, J., Martinez, G. D., Bullock, J. S., Kaplinghat, M., Geha, M., Muñoz, R. R., Simon, J. D., & Avedo, F. F. 2010, MNRAS, 778
Zait, A., Hoffman, Y., & Shlosman, I. 2008, ApJ, 682, 835