Recurrence risk after a first remote symptomatic seizure in adults: Epilepsy or not?

Johan Zelano1,2,3

1Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
2Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
3Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Gothenburg, Sweden

Abstract
The ILAE practical definition of epilepsy has a one seizure possibility to diagnose epilepsy after a first seizure if the recurrence risk is very high. The recurrence risk after a first seizure in brain disorders (first remote seizure) is often high, but varies with etiology, so more specific information is needed for clinical practice. This review describes etiology-specific recurrence risks in adults with a first remote seizure in stroke, traumatic brain injury, infections, dementia, multiple sclerosis, and tumors. Most studies are short, single center, and retrospective. Inclusion criteria, outcome ascertainment, and results vary. Few patient categories are clearly above the epilepsy threshold of recurrence risk, and there are surprisingly little data for important etiologies like brain infections. Beside stroke, severe TBI could have a sufficiently high recurrence risk for early epilepsy diagnosis, but more studies are needed, preferably prospective ones. The literature is uninformative regarding which seizures qualify as remote. The clinical implication of the low level of available evidence is that for other etiologies than stroke, seizure recurrence remains the most appropriate indicator of epilepsy for most patients with a first remote seizure. Nonetheless, there are worrying indications of a diagnostic drift, which puts patients with a preexisting brain disorder at risk of misdiagnosis. Although there are drawbacks to an intermediate term like “possible epilepsy,” it could perhaps be useful in cases when the recurrence risk is high, but epilepsy criteria are not definitely met after a first remote seizure.

KEYWORDS
diagnosis, remote seizure, seizure recurrence, unprovoked seizure

1 | INTRODUCTION

In 2014, the ILAE introduced a practical definition of epilepsy, allowing a diagnosis to be made in cases of “One unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years.”1 Previous stroke is specified as a clinical circumstance where a diagnosis can be motivated after a first remote seizure, because of the high recurrence risk demonstrated by Hesdorffer et al.2 In other preexisting brain disorders, recurrence risks after a first unprovoked
seizure (remote seizure or remote symptomatic seizure) are less well known.

Etiology stratification is a reasonable approach to recurrence risk. Population-based or prospective studies have found recurrence risks after a first remote seizure at or just above the 60% threshold, but this is a composite result, and recurrence risks seem to differ between underlying etiologies. Prior brain insults or abnormal brain imaging increase the risk of seizure recurrence twofold, but are not enough to put an individual clearly above the 60% risk threshold. The ILAE emphasizes that epilepsy should not be diagnosed after a first seizure in the absence of clear information on a >60% recurrence risk, and that “a single seizure plus a lesion” does not satisfy criteria for epilepsy. All first remote seizures cannot be treated the same.

This review aims to discuss (a) the available evidence on etiology-specific recurrence risks after a first remote seizure in adults, (b) the potential for systematic reviews or future studies, and (c) clinical implications of the current state of knowledge.

2 | MEASURING RECURRENCE RISK

This is a narrative review, focusing on studies with at least 10 adult participants, but not populations with mixed causes of remote seizures, which do not provide enough detail for the present purpose. In the literature, seizure recurrence risk is often reported as cumulative incidence (CI) or survival-adjusted risk. CI is the proportion of patients with recurrence. Survival-adjusted risk is often estimated by the Kaplan-Meier (KM) method. Both measurements have weaknesses. CI does not take participant time-at-risk into account and must be interpreted in relation to the follow-up time of each study. Risk in KM is an estimate of risk should no competing event (like death) occur. Competing risk is not a small problem in patients with brain disorders. The difference is illustrated by the pivotal Hesdorffer study cited in the ILAE epilepsy definition paper; 49% (72/148) of patients with a first remote seizure had a recurrence, but the KM risk was 65%. KM can overestimate risks toward the end of an analysis; events with fewer cases get a heavier mathematical weight. CI is sometimes advocated if competing risks are present. In this review, outcomes are presented as reported by the authors, with calculated CI if possible.

Most etiology-stratified studies of recurrence risk have shorter follow-up time than 10 years. Population-based studies are rare and antiseizure medication (ASM) treatment often not described in detail. Categorization into early and late seizures varies between studies. A common method is retrospective medical records review at a single center. This is a study design with risk of selection bias and better detection of epilepsy than single seizures. Already in 1991, Berg and Shinnar found that recurrence risks are higher in retrospective studies than prospective ones. For the purpose of this review, short or retrospective studies can still be informative, if the recurrence risk exceeds or falls short, respectively, of the ILAE epilepsy threshold.

Selected studies for non-stroke etiologies are summarized in Table 1 and stroke studies in Table 2. Reported risks in studies with more than two years of follow-up are illustrated in Figure 1.

3 | DEMENTIA

Three studies have reported quite different recurrence risks in dementia (Table 1). One is a retrospective review of autopsy-verified Alzheimer disease (AD), in which 69% of 77 patients had more than one seizure, but only 29% had more than two seizures. The second is a prospective study of persons with AD that found a CI of 29%, but it had just 14 participants and short follow-up. The third is a large register-based (but not population-wide) study that found a 32% survival-adjusted risk of epilepsy five years after a first seizure. Subgroups with higher risks were patients with dementia onset <70 years of age (48%), and early-onset AD (50%).
| **Author, year** | **Subgroup** | **Design** | **n** | **Men** | **Women** | **Age** | **Follow-up** | **n recu** | **C Inc (%)** | **Surv-adj risk (95%CI)** | **Comment** |
|-----------------|--------------|------------|-------|---------|-----------|--------|---------------|-----------|--------------|--------------------------|-------------|
| **Dementia**    |              |            |       |         |           |        |               |           |              |                          |             |
| Mendez 1994    | AD           | Retrospective, single center | 77    | 30      | 47        | 71     | ≈3 y          | 53        | 69           |                          | Only 29% had >2 sz |
| Baker 2019      | AD           | Prospective, single center   | 14    |         |           | 79     | 1 y           | 3         | 21           |                          |             |
| Mahamud, 2020   | All          | Retrospective                | 1039  | 446     | 573       |        |               |           |              |                          |             |
|                 | <70          |                         | 215   |         |           |        |               |           |              |                          |             |
|                 | >70          |                         | 824   |         |           |        |               |           |              |                          |             |
|                 | Early AD     |                         | 130   |         |           |        |               |           |              |                          |             |
| **Multiple sclerosis** | | | | | | | | | | | |
| Langenbruch, 2019 | All | Retrospective, single center | 62    | 17      | 45        | 40     | 82 mo         | 38        | 61           |                          |             |
|                  | 1-y follow-up|                        | 52    |         |           |        | >12 mo        | 31        | 60           |                          |             |
|                  | RRMS         |                        | 29    |         |           |        | >12 mo        | 17        | 59           |                          |             |
|                  | 1st sz at relapse |                    | 11    |         |           |        | >12 mo        | 6         | 55           |                          |             |
|                  | 1 st not at relapse |                  | 10    |         |           |        | >12 mo        | 1         | 10           |                          |             |
| Mahamud, 2018   | All          | Retrospective            | 289   | 92      | 197       | 48     |               |           |              | 10 y:51 (44-59)           |             |
|                  | SE           |                        | 18    |         |           |        |               |           |              | 86 (68-100)              |             |
|                  | RRMS         |                        | 121   |         |           |        |               |           |              | 46 (35-57)              |             |
|                  | SPMS         |                        | 90    |         |           |        |               |           |              | 61 (47-75)              |             |
| Cateño, 2011    | All          | Retrospective, single center | 67    | 23      | 44        | 33     | 7 y           | 38        | 57           |                          |             |
| Nyquist, 2001   | All          | Retrospective, single center | 51    |         |           | 1-8 y  | 33            | 33        | 65           |                          |             |
| Engelsen, 1997  | All          | Retrospective, population-wide | 17    | 6       | 11        | 33     | >4 y          | 16        | 94           |                          |             |
| Kinnunen, 1986  | All          | Retrospective, population-wide | 13    | 5       | 8         | 38     | 13 y          | 11        | 85           |                          |             |
| **CNS infections** | | | | | | | | | | | |
| Elafros, 2018   | HIV, all     | Prospective, multi-center | 72    |         |           | 37     | 8 mo          | 21        | 30           |                          | Death significant competing risk. |
| Survivors       |              |                        | 58    |         |           | 11 mo  | 20            | 34        |              |                          | WHO stage III or IV in most |
| Olajumoke, 2013 | HIV          | Retrospective, single center | 20    | 6       | 14        | 34     | 1 y           | 13        | 65           | Limited workup, etiology not clear |             |

(Continues)
TABLE 1 (Continued)

| Author, year | Subgroup | Design                  | n | Men | Women | Age | Follow-up | n recu | C Inc (%) | Surv-adj risk (95%CI) | Comment |
|--------------|----------|-------------------------|---|-----|-------|-----|-----------|-------|-----------|------------------------|---------|
| Chadha, 2000 | HIV      | Not clear, single center| 23| 23  | 32    | 15  | 65        |       |           |                        | 7 toxoplasmosis, 3 TB |
| Singh, 2017  | NCC      | Prospective, single center| 54| 26  | 28    | 20  | 1 y       | 13    | 24        |                        | Single calcification, all treated with OXC, KM risks 20% without edema 1 y and 65% with edema 1 y |
| Lachuriya, 2016 | NCC | Prospective, single center| 109| 77  | 32    | 19  | 1 y       | 34    | 31        | All treated with OXC   |         |
| Sharma, 2011 | NCC      | Prospective, single center| 74| 36  | 38    | 18  | 6 mo      | 13    | 18        | 6 mo ≈ 35%              | All treated with OXC. |
| Calliauw, 1984 | Abscess |                        | 21|     |       |     |           |       |           |                        |         |

TBI

| Author, year | Subgroup | Design                  | n | Men | Women | Age | Follow-up | n recu | C Inc (%) | Surv-adj risk (95%CI) | Comment |
|--------------|----------|-------------------------|---|-----|-------|-----|-----------|-------|-----------|------------------------|---------|
| Thapa, 2016  | Severe   | Prospective, single center| 14|     |       |     |           |       |           |                        | Neurosurgery inpatients, 10/14 adults |
| Haltiner, 1997 | Severe | Prospective, single center| 63| 50  | 13    | 31  | 2 y       | 49    | 78        | 2 y: 86%                | Participants selected for high risk of PTE: 1 of depressed skull fracture, penetrating head injury, cortical contusion, acute hematoma on CT, GCS ≤10, early seizure |
| Hauser, 1982  |          | Prospective, multi-center| 24|     |       |     |           |       |           | 20 mo: 46%              | LOC/amnesia 30 min, skull fracture, or intracranial bleeding |
| Hesdorffer, 2009 |      | Retrospective, population-wide| 37| 23  | 14    |     |           |       | 10 y: 47% (30-66) |                        |         |
Reported CI of recurrence after a first seizure in multiple sclerosis (MS) ranges from 57% to 94%, with lower estimates in the larger studies. In a Swedish register-based study, the survival-adjusted 10-year risk of epilepsy after a first seizure was 52%, with no difference between relapsing-remitting MS and age- and sex-matched controls. A higher risk was seen in MS patients with initial status epilepticus (86%), but the subgroup was small and the study based purely on administrative data.

| Subgroup               | Design                  | n | Men | Women | Age | Follow-up | n recu | C Inc (%) | Surv-adj risk (95%CI) | Comment                                                       |
|------------------------|-------------------------|---|-----|-------|-----|-----------|--------|-----------|-----------------------|--------------------------------------------------------------|
| Author, year           |                         |   |     |       |     |           |        |           |                       |                                                              |
| Angeleri 1999          | Prospective, single center | 18 | 15-65 | 1 y   | 18  | 100       |        |           |                       |                                                              |
| SALAZAR, 1985          | Penetrating, Retrospective, single center | 217 | 217  | 0     | 15 y | 200       | 92     |           |                       | Vietnam war injuries                                          |

* indicates read from graph. Follow-up is mean, median, or minimum/maximum as indicated by <>.

Abbreviations: 95%CI, 95% confidence interval; C Inc, cumulative incidence.
| Author, year | Subgroup | Design                  | n  | Men | Women | Age | Follow-up | N recur | C inc (%) | Surv-adj risk | Comment                  |
|-------------|----------|-------------------------|----|-----|-------|-----|-----------|---------|-----------|---------------|--------------------------|
|             |          |                         |    |     |       |     |           |         |           |               |                          |
| **Mixed stroke populations** |          |                         |    |     |       |     |           |         |           |               |                          |
| Hesdorffer, 2009<sup>2</sup> |          | Retrospective, population-wide | 101 | 101 |       |     |           |         | 10 y: 72% (60-82) |               |                          |
| Tomari, 2017<sup>28</sup> |          | Retrospective, single center | 61  | 34  | 27    | 72  |           | 25     | 41        | 3 y ≈ 70%               |                          |
| Tanaka, 2015<sup>59</sup> |          | Retrospective, single center | 104 | 71  | 33    | 74  | 1 y       | 31     | 30        | 1.6 y ≈ 33%            |                          |
| Berges, 2000<sup>30</sup> |          | Retrospective, single center | 94  | 47  |       | 54  | 47 mo     | 54     | 57        |                           |                          |
| Conrad, 2013<sup>31</sup> |          | Prospective, single center | 26  | 14  | 12    | 59  | 3 mo      | 19     | 73        |                           |                          |
| Jungehulsing, 2013<sup>32</sup> |          | Prospective, population-wide | 84  | 38  | 46    | 74  |           | 34     | 40        |                           |                          |
| Okuda, 2012<sup>33</sup> |          | Single center, retrospective | 18  | 14  | 4     | 60  | 1 y       | 31     | 30        | 1.6 y ≈ 33%            |                          |
| Alvarez-Sabin, 2002<sup>34</sup> |          | Prospective, single center | 71  | 39  | 32    | 64  | >1 y      | 13     | 18        | 2 y ≈ 15%-30%          | all treated with GBP    |
| Arntz, 2013<sup>34</sup> | Age 18-50 | Prospective, single center | 53  | 31  | 23    |     | <30 y     | 31     | 57        |                           |                          |
| **Ischemic stroke** |          |                         |    |     |       |     |           |         |           |               |                          |
| Zhang, 2020<sup>36</sup> |          | Retrospective single center | 124 | 65  |       |     | >1 y      | 4 y     | ≈ 80%     |               |                          |
| Kim, 2016<sup>37</sup> |          | Retrospective, single center | 76  | 40  | 36    | 69  |           | 30 mo   | 37        | 49           |                          |
| De Reuck, 2008<sup>38</sup> |          | Retrospective, single center | 161 |     |       |     |           | 3 y     | 86        | 53           |                          |
| Gilad, 2007<sup>39</sup> |          | Prospective, single center | 64  | 46  | 18    | 67  | 1 y       | 27     | 42        | 1 y ≈ 30%-55%          | 5 early sz, all LTG or CBZ|
| So, 1996<sup>40</sup> |          | Retrospective, population-wide | 27  |     |       |     | <16 y     | 18     | 67        | 5 y ≈ 90%             |                          |
| Louis, 1967<sup>41</sup> |          | Retrospective, single center | 27  |     |       |     | 2-4 y     | 22     | 81        |                           |                          |
| Bladin, 2000<sup>42</sup> |          | Prospective, multi-center | 62  |     |       |     |           | 34     | 55        |                           |                          |
| Zhu, 2021<sup>43</sup> |          | Prospective, single center | 45  |     |       |     | 18 mo     | 21     | 47        |                           | Trial of high-dose statin|
| Lamy, 2003<sup>44</sup> | Age 18-55 | Prospective, multi-center | 20  | 11  | 9     | 42  | 26 mo     | 11     | 55        |                           |                          |
| **Intracerebral hemorrhage** |          |                         |    |     |       |     |           |         |           |               |                          |
| Qian, 2014<sup>44</sup> |          | Retrospective, population-wide | 58  | 32  | 26    | 63  | <15 y     | 49     | 84        |                           |                          |
| Biffi, 2016<sup>45</sup> |          | Prospective, single center | 77  | 39  | 40    | 73  | 4 y       | 30     | 38        |                           |                          |
| Yang, 2009<sup>47</sup> |          | Retrospective, single center | 11  | 7   | 4     | 55  | >3 y      | 3      | 27        |                           |                          |
| **Other** |          |                         |    |     |       |     |           |         |           |               |                          |
| Sánchez v Kammen, 2020<sup>48</sup> | CSVT | Retrospective, multi-center | 123 | 83  | 42    |     | 2.6 y     | 85     | 70        |                           |                          |

* indicates read from graph. Follow-up is mean, median, or minimum/maximum as indicated by <>.

Abbreviations: 95%CI, 95% confidence interval; C Inc, cumulative incidence.
highest recurrence risk among remote etiologies, at the level of the 60% threshold. Recurrence risks probably differ between tumor types, so composite findings do not help individual prediction. Studies describing first seizure recurrence risks per tumor type are rare. Surgically treated series provide some guidance, but are not really first seizure studies and the risk of bias toward recurrence is substantial (more seizures could be an argument for surgery). One such study reported that 38% of patients with seizures before resection of meningiomas had more than one preoperative seizure. The recurrence risk after a first postoperative seizure after meningioma surgery is not well characterized. In gliomas, seizure risks are related to tumor histology and progression. In surgically treated patients with seizures in glioma, more than one preoperative seizure has been reported in >60%.

In summary, the etiology-stratified literature on recurrence risks after a first remote seizure is very heterogeneous. Retrospective single-center studies dominate, in which bias is likely.

Single centers seem to struggle to recruit significant number of participants for many etiologies.

Can more precise recurrence risk estimates be obtained through systematic reviews and meta-analyses? Judging by the studies discussed in this review, such attempts would be difficult and could be premature. Systematic reviews could perhaps be possible for stroke, severe TBI, and MS, but the low level of evidence and imprecise methodological descriptions in many studies will be a problem for meaningful syntheses of results.

Surprisingly, there are very little data on recurrence risk in adults after important CNS infections, like herpes encephalitis and bacterial meningitis. The Hesdorffer study cited in the ILAE epilepsy definition found a survival-adjusted recurrence risk of 64% after all CNS infections, but the 95% confidence interval was 21%-99% and 6/10 in the cohort were 1-19 years old. Young age is generally a risk factor for symptomatic epilepsy, so the risk estimate is not clinically useful in adult neurology. The lack of knowledge about late seizures after herpes encephalitis was noted in a review more than ten years ago. A review on bacterial meningitis in 2008 stated that “Unprovoked seizures following bacterial meningitis tend to be recurrent (Rosman et al, 1985; Annegers et al, 1988; Pomeroy et al, 1990)” but the cited articles are predominantly pediatric. Recent large studies describing seizures after brain infections combine acute symptomatic and unprovoked seizures and do not report recurrence risks after one remote seizure.

Prospective studies are needed for better information on recurrence risks. Advances in big data can perhaps facilitate generation of such knowledge. Methods allowing prediction based on multifactorial models incorporating age, lesion severity like cortical involvement in stroke (perhaps even several brain diseases?) would be ideal. Paradoxically, ASM treatment resulting from improved knowledge on the high recurrence risk after many first remote seizures will make it harder and harder to determine whether the natural course equals epilepsy. What is really needed for earlier epilepsy diagnoses are biomarkers of epilepsy.
Currently, few patient categories are clearly above the 60% threshold after a first remote seizure. Stroke is the most studied etiology. Although the findings are heterogeneous, several studies agree with the ILAE position that a remote poststroke seizure can motivate an epilepsy diagnosis. Nonetheless, clinicians should be aware of limitations in the literature. Many studies include only clinical stroke. Whether the findings extend to minor stroke or silent brain infarctions detected in the workup of a first seizure is less clear. The literature is not informative on how closely linked a seizure needs to be to a stroke in terms of timing or semiology to qualify as remote. Most late seizures after stroke occur within 1-2 years. A longer latency is more common in poststroke seizures that are not followed by recurrence. Cortical damage and stroke severity are important epilepsy risk factors after ICH or IS and can sometimes, together with timing, help link a first seizure to a previous stroke.

There are other etiologies in which many patients probably reach the ILAE threshold. Severe TBI is a strong candidate, but the injury characteristics in the studies reporting high risk limit generalizability (skull fracture/low GCS, penetrating war injuries, etc). A high recurrence risk could also exist for patients with a first unprovoked seizure after a brain abscess or new-onset status epilepticus in MS, but more studies are needed before this is taken to clinical practice.

The studies on recurrence risk in dementia have divergent results, presumably because of differences in inclusion criteria and methodology. The authors of the AD study with the highest recurrence risk commented that “The typical patient was institutionalized, had severe memory loss, was unable to solve problems, had little independent function, and required a great deal of assistance in activities of daily living.” Extrapolation to less severe AD or other forms of dementia seems difficult.

There are little or no data supporting that dementia in general, MS in general, or other CNS infections than a brain abscess would put patients with first remote seizures clearly above a 60% recurrence risk. Whether epilepsy is present or not after a first seizure in a patient with glioma is often an academic question, overshadowed by other concerns related to the neoplastic disease, managed by ASM treatment, and often resolved by seizure recurrence. This is not the case in meningiomas, for which more information is needed on recurrence risks after a first seizure. Currently, the literature does not seem to support a diagnosis of epilepsy after a first seizure simply because the workup reveals a meningioma.

Overall, there is only low-grade evidence, which is an unsatisfactory basis for a life-changing diagnosis as epilepsy. Caution is needed. Two seizures still seem like the most appropriate indicator of epilepsy for most patients.
(ILAE) Commission on Classification and Terminology has established that a diagnosis of epilepsy can be made after a single unprovoked seizure when there is high risk for recurrence, as in presence of a structural brain lesion, including a tumor.77 The authors of an article on seizure recurrence in AD refer to the ILAE definition to argue that their findings support a diagnosis of epilepsy after a first seizure. But by a recurrence risk of 70%, they mean that 38/54 patients were classified as “seizures happened in the last year or still require active management” both at baseline and at follow-up.78 This is a broad interpretation of the ILAE definition. In research, definitions of epilepsy must sometimes be sensitive rather than specific, but it would probably be beneficial with more communication from the ILAE on the level of certainty required in clinical practice.

The ILAE definition is relatively clear to epileptologists, who are aware of the damage that can be inflicted by epilepsy misdiagnosis. But the definition is also read and interpreted outside the epilepsy field. The new European Academy of Neurology guideline on dementia states that “A first seizure after a patient has been diagnosed with dementia may be interpreted as structural epilepsy (if no other competing factors which may lower the threshold of a seizure are identified), requiring consideration of institution of treatment.”79 The evidence motivating an epilepsy diagnosis after one seizure in dementia is not extensive, and linking diagnosis to ASM treatment contrasts with the ILAE view.1 The EAN guideline does not mandate an epilepsy diagnosis after a first seizure and continues with a good discussion of pros and cons of ASM treatment.79 Nonetheless, the wording illustrates how the one seizure possibility can lead to unintended diagnostic drift.

Whether the 60% threshold is appropriate or not is not the topic of this review. One elegant study found that a recurrence risk of 60% after a first remote seizure does not equal the recurrence risk after two unprovoked seizures.3 If so, the threshold for an epilepsy diagnosis could be inappropriate low for patients with preexisting brain disease.

14 | NEED FOR A NEW TERM?

A recent study examining when early ASM treatment is motivated to maximize quality of life found a recurrence risk above 40% to be a reasonable threshold.80 Many patient groups in this review reach that level; ASM treatment seems appropriate, but an epilepsy diagnosis is not motivated. Even with better data for prediction of recurrence risk, there will always be patients that fall short of the epilepsy threshold. A unifying term to capture this clinical scenario could perhaps be of value.

Has the time come for “possible epilepsy”? “Possible epilepsy” could be used for circumstances when clinicians feel that there is a high recurrence risk, but are uncertain about the 60% threshold. A possible diagnosis could be easier to remove should no recurrence occur. There are of course drawbacks. Pending more information, the ILAE should enhance education efforts to prevent an unintended widening of the epilepsy term among patients with preexisting brain disorders.

15 | CONCLUSION

There are very little robust data on recurrence risks over 60% after a first remote seizure for most patients with other preexisting brain disorders than stroke. If clinicians do not adhere strictly to the ILAE definition and reserve the epilepsy diagnosis for when recurrence risks are known to be very high—patients with brain disorders could be at risk of misdiagnosis.

CONFLICT OF INTERESTS

Dr Zelano reports speaker honoraria for non-branded educations from UCB and Eisai and being investigator in clinical trials sponsored by UCB, GW Pharma, Bial, and SK Life Science as an employee of Sahlgrenska University Hospital (no personal compensation). I confirm that I have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

ORCID

Johan Zelano https://orcid.org/0000-0001-9445-4545

REFERENCES

1. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82.
2. Hesdorffer DC, Benn EK, Cascino GD, Hauser WA. Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure. Epilepsia. 2009;50:1102–8.
3. Lawn N, Chan J, Lee J, Dunne J. Is the first seizure epilepsy—and when? Epilepsia. 2015;56:1425–31.
4. Krumholz A, Wiebe S, Gronseth GS, Gloss DS, Sanchez AM, Kabir AA, et al. Evidence-based Guideline: Management of an Unprovoked First Seizure in Adults: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2015;84(1):1705–13.
5. Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;30(18):695–706.
6. Berg AT, Shinnar S. The risk of seizure recurrence following a first unprovoked seizure: a quantitative review. Neurology. 1991;41:965–72.
7. Mendez MF, Catanzaro P, Doss RC, Arguello R, Frey WH. Seizures in Alzheimer’s disease: clinicopathologic study. J Geriatr Psychiatry Neurol. 1994;7(4):230–3.
8. Baker J, Libretto T, Henley W, Zeman A. A longitudinal study of epileptic seizures in Alzheimer's disease. Front Neurol. 2019;10:1266.

9. Mahamud Z, Mononen CP, Brigo F, Garcia-Ptacek S, Zelano J. Risk of epilepsy diagnosis after a first unprovoked seizure in dementia. Seizure. 2020;82:118–24.

10. Langenbruch L, Kramer J, Guler S, Melle N, et al. Seizures and epilepsy in multiple sclerosis: epidemiology and prognosis in a large tertiary referral center. J Neurol. 2019;266:1789–95.

11. Catenhoi X, Marignier R, Ritleng C, Dufour M, Mauguiere F, Confavreux C, et al. Multiple sclerosis and epileptic seizures. Mult Scler. 2011;17:96–102.

12. Nyquist PA, Cascino GD, Rodriguez M. Seizures in patients with multiple sclerosis seen at Mayo Clinic, Rochester, Minn, 1990–1998. Mayo Clin Proc. 2001;76:983–6.

13. Engelsen BA, Gronning M. Epileptic seizures in patients with multiple sclerosis. Is the prognosis of epilepsy underestimated? Seizure. 1997;6:377–82.

14. Kinnunen E, Wickstrom J. Prevalence and prognosis of epilepsy in patients with multiple sclerosis. Epilepsia. 1986;27:729–33.

15. Mahamud Z, Burman J, Zelano J. Risk of epilepsy after a single seizure in multiple sclerosis. Eur J Neurol. 2018;25:854–60.

16. Thapa A, Chandra SP, Sinha S, Sreenivas V, Sharma BS, Tripathi M. Post-traumatic epilepsy-A prospective study from a tertiary level trauma center in a developing country. Seizure. 2010;19:211–6.

17. Haltiner AM, Temkin NR, Dikmen SS. Risk of seizure recurrence after the first late posttraumatic seizure. Arch Phys Med Rehabil. 1997;78:835–40.

18. Angeleri F, Majkowski J, Cacchio G, Sobieszek A, D'Acunto S, Gesuita R, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia. 1999;40:1222–30.

19. Salazar AR, Schwab K, Grafman JH. Penetrating injuries in the Vietnam War. Traumatic unconsciousness, epilepsy, and psychosocial outcome. Neurosurg Clin North Am. 1995;6:715–26.

20. Hauser WA, Anderson VE, Loewenbr RB, McRoberts SM. Seizure recurrence after a first unprovoked seizure. N Engl J Med. 1982;26(307):522–8.

21. Elafros MA, Johnson BA, Siddiqi OK, Okulicz JF, Sikazwe I, Bostitis MA, et al. Toll-like receptor-4 polymorphisms and serum matrix metalloproteinase-9 in newly diagnosed patients with calcified neurocystercerosis. J Neurol Sci. 2011;301(21):21–6.
47. Yang TM, Lin WC, Chang WN, Ho JT, Wang HC, Tsai NW, et al. Predictors and outcome of seizures after spontaneous intracerebral hemorrhage. J Neurosurg. 2009;111:87–93.

48. Sanchez van Kammen M, Lindgren E, Silvis SM, Hiltunen S, Heldner MR, Serrano F, et al. Late seizures in cerebral venous thrombosis. Neurology. 2020;92(9):e1716–23.

49. van Bremen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 2007;6:421–30.

50. Chaichana KL, Pendleton C, Zaidi H, Olivi A, Weingart JD, van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with a herpes simplex virus type 1 or type 2 central nervous system infection, functioning and risk of disability in patients with a herpes simplex virus type 1 or type 2 central nervous system infection. Clin Infect Dis. 2007;1(45):875–80.

51. Phan K, Ng W, Lu VM, McDonald KL, Fairhall J, Reddy R, et al. Association between IDH1 and IDH2 mutations and preoperative seizures in patients with low-grade versus high-grade glioma. A systematic review and meta-analysis. World Neurosurg. 2018;111:e539–45.

52. Rosati A, Tomassini A, Pollo B, Ambrosi C, Schwarz A, Padovani A, et al. Epilepsy in cerebral glioma: timing of appearance and histological correlations. J Neurooncol. 2009;93:395–400.

53. Voglein J, Ricard I, Noachtar S, Kukull WA, Dieterich M, Levinson D, et al. Seizures in Alzheimer's disease are highly recurrent and associated with a poor disease course. J Neurol. 2020;267:2941–8.

54. Wang X, Loi SM, Foster E, Chen Z, Velakoulis D, Kwan P, et al. Predictors of new-onset epilepsy in people with younger-onset neurocognitive disorders. Front Aging Neurosci. 2021;13:637260.

55. Misra UK, Tan CT, Kalita J. Viral encephalitis and epilepsy. Epilepsia. 2008;49(Suppl 6):13–8.

56. Murthy JM, Prabhakar S. Bacterial meningitis and epilepsy. Epilepsia. 2008;49(Suppl 6):8–12.

57. Annegers JF, Hauser WA, Beghi E, Nicolosi A, Kurland LT. The risk of unprovoked seizures after encephalitis and meningitis. Neurology. 1988;38:1407–10.

58. Larsen F, Brandt CT, Larsen L, Klastrup V, Wiese L, Helweg-Larsen J, et al. Risk factors and prognosis of seizures in adults with community-acquired bacterial meningitis in Denmark: observational cohort studies. BMJ Open. 2019;9(9):e030263.

59. Hjalmarsson A, Blomqvist P, Skoldenberg B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin Infect Dis. 2007;1(45):875–80.

60. Hansen AE, Vestergaard HT, Dessau RB, Bodilsen J, Andersen NS, Omland LH, et al. Long-term survival, morbidity, social functioning and risk of disability in patients with herpes simplex virus type 1 or type 2 central nervous system infection, Denmark, 2000–2016. Clin Epidemiol. 2020;12:745–55.

61. Conroy G, Siler-Khodr MM, Ross PD, Hauser WA. Specific causes of stroke and epilepsy: historical, mechanistic, and therapeutic implications. Neurology. 2020;95(24):e3213–20.

62. Oto MM. The misdiagnosis of epilepsy: appraising risks and managing uncertainty. Seizure. 2017;44:143–6.

63. Burman J, Zelano J. Epilepsy in multiple sclerosis: a nationwide population-based register study. Neurology. 2017;12(89):2462–8.

64. Misra UK, Kalita J. Seizures in encephalitis: predictors and outcome. Seizure. 2009;18:583–7.

65. Singh TD, Fugate JE, Hocker SE, Rabinstein AA. Postencephalitic epilepsy: clinical characteristics and predictors. Epilepsia. 2015;56:133–8.

66. Guo J, Guo J, Li J, Zhou M, Qin F, Zhang S, et al. Statin treatment reduces the risk of poststroke seizures. Neurology. 2015;25(85):701–7.

67. Lee J, Kim H, Kim S, et al. Meta-analysis of the association between statin use and the risk of poststroke seizures. Neurology. 2015;85(9):e580–9.

68. Zelano J, Brigo F, Garcia-Patch S. Increased risk of epilepsy in patients registered in the Swedish Dementia Registry. Eur J Neurol. 2020;27:129–35.

69. Zelano J, Brigo F, Garcia-Patch S. Increased risk of epilepsy in patients registered in the Swedish Dementia Registry. Eur J Neurol. 2020;27:129–35.

70. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

71. Zelano J, Brigo F, Garcia-Patch S. Increased risk of epilepsy in patients registered in the Swedish Dementia Registry. Eur J Neurol. 2020;27:129–35.

72. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

73. Voglein C, Jardine I, Noachtar S, Kukull WA, Dieterich M, Levin J, et al. Seizures in Alzheimer's disease are highly recurrent and associated with a poor disease course. J Neurol. 2020;267:2941–8.

74. Frederiksen KS, Cooper C, Frisoni GB, Frolich L, Georges J, et al. Seizures in patients registered in the Swedish Dementia Registry. Eur J Neurol. 2018;25(8):1337–44.

75. Voglein C, Jardine I, Noachtar S, Kukull WA, Dieterich M, Levin J, et al. Seizures in Alzheimer's disease are highly recurrent and associated with a poor disease course. J Neurol. 2020;267:2941–8.

76. Frederiksen KS, Cooper C, Frisoni GB, Frolich L, Georges J, et al. Seizures in patients registered in the Swedish Dementia Registry. Eur J Neurol. 2018;25(8):1337–44.

77. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

78. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

79. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

80. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

81. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

82. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

83. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

84. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

85. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

86. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

87. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

88. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

89. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

90. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

91. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

92. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

93. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.

94. Zelano J, Westman G. Epilepsy after brain infections in adults: a register-based population-wide study. Neurology. 2020;95(24):e3213–20.