Case Report

All that glitters is not gold: A spinal epidural empyema following epidural steroid injection

Lara Brunasso1, Luigi Basile1, Domenico Gerardo Iacopino1, Carlo Guli1, Francesca Graziano1, Maria Angela Pino1, Giovanni Federico Nicoletti1, Silvana Tumbiolo1, Rosario Maugeri1

1Department of Biomedicine Neurosciences and Advanced Diagnostic, University of Palermo, School of Medicine, Palermo, Sicily, Italy, 2Department of Neurosurgery, ARNAS Garibaldi, P.O. Garibaldi Nesima, Via Palermo, 636, Catania, Italy, 3Division of Neurosurgery, Villa Sofia Hospital, Palermo, Sicily, Italy.

E-mail: *Lara Brunasso - lara.brunasso@community.unipa.it; Luigi Basile - lbasile64@libero.it; Domenico Gerardo Iacopino - gerardo.iacopino@gmail.com; Carlo Guli - carloguli81@gmail.com; Francesca Graziano - fragraziano9@gmail.com; Maria Angela Pino - mariangapelapino@live.it; Giovanni Federico Nicoletti - gfnicoletti@alice.it; Silvana Tumbiolo - tumbiolosilvan@yahoo.it; Rosario Maugeri - rosario.maugeri1977@gmail.com

INTRODUCTION

Spinal epidural empyema (SEE), also called spinal epidural abscesses (SEA), posts a significant risk of neurological morbidity and mortality (e.g., rates of 4–31% worldwide).[16,31] Several risk factors for SEE/SEA include diabetes, intravenous drug abuse, and recent spinal surgery (most frequent cause).[22,30,31,33-35] Fever, spinal tenderness/back pain, and progressive neurological deficits are the triad of symptoms/signs traditionally seen with SEE/SEA.[8,16,17,33,34,39]

Here, we present a patient with an acute cauda equina syndrome due to an MR-documented L4-L5 SEE/SEA following a spinal epidural spinal injection (ESI).
CASE REPORT

A 45-year-old female with a symptomatic lumbar disc herniation had an ESI. Over the next few weeks, she complained constipation with increasing leg pain and the progressive inability to walk; she finally developed in acute urinary retention. On examination, she had a cauda equina syndrome; 3/5 motor function in both lower extremities, with perineal hypoesthesia. Laboratory studies showed a high white blood cell count of 19.79 × 10^3/ml, while the emergent lumbar MRI without gadolinium showed an anterior epidural L4-L5-S1 empyema/abscess (e.g., low signal on T1- and a high signal in T2-weighted images) with marked thecal sac/root compression [Figure 1]. With the diagnosis of a SEE/SEA, an emergent laminectomy/decompression was performed that revealed thick, purulent, grayish fluid compressing the thecal sac anteriorly. Several samples were obtained for culture.

The presumptive initial vancomycin and ceftazidime were changed to clindamycin and gentamicin to address the methicillin-resistant *Staphylococcus aureus* and *Streptococcus parasanguinis*. The 3-day postoperative lumbar MRI documented adequate decompression of the cauda equina [Figure 2], and the remainder of the postoperative course was uneventful; 1 month postoperatively, she had residual 4/5 motor function in the right lower extremity without any residual sphincter dysfunction [Figure 3].

DISCUSSION

Despite the lack of documented safety and efficacy[37,41] and without approval of the Food and Drug Administration, ESIs

Figure 1: Preoperative emergency MRI without gadolinium. In (a), the sagittal T1-weighted image provides suboptimal visualization of epidural abscess. In (b), the sagittal T2-weighted image demonstrates a longitudinally oriented mass-like lesion in the anterior epidural space spreading between the posterior wall of L4 and L5. In (c), the axial T2-weighted image demonstrates right side epidural abscess compressing both the cauda equina and right L5 and S1 emergent nerve roots.

Figure 2: Three days postoperative MRI without gadolinium. In (a), the sagittal T1-weighted image, in (b), the sagittal T2-weighted image, in (c), the axial T2-weighted image demonstrate marked reduction of the preoperative empyema mass at L4 and L5 level in the anterior epidural space with consensual reduction of the compression on the adjoining meningeal and neural structures.
Table 1: Summary of case reports on spinal epidural abscess following spinal epidural steroid injection.

Author, year	Patient's age, sex	Trauma history	Timing; clinical presentation	Imaging study performed	Imaging findings	Emergency surgery performed	Postop outcome	Microorganism isolated
Chan and Leung, et al. (1989)	56 yo, M	Injection of triamcinolone acetonide for low back pain and right sciatica	Two days after procedure; fever, child and rigor; then increasing back pain, bilateral sciatica, weakness of both lower limbs, and urinary retention	Lumbar spine radiography; CT scan; myelogram	CT inconclusive; complete extradural block at level C3; during myelography	T8–L4 laminectomy, then cervical laminectomy, abscess drainage	Uneventful. Improving muscle power and urinary control	Not specified
Goucke and Graziotti, et al. (1990)	65 yo, F	Three L4–5 injections of bupivacaine and methylprednisolone for resistant low back pain	Weeks later; difficult walk, increasing back pain, and then radiating to the left lower limb, progressively neurological deterioration to urinary retention 72 h later; shaking chills, stiff neck, and fever	Lumbar spine radiography; myelography; CT scan	T12–L5 extensive extradural abscess	T12–L5 laminectomy, abscess drainage	ICU needed for ventilatory failure; still bladder dysfunction, unable to walk; death 2 weeks later	S. aureus
Waldman, et al. (1991)	55 yo, M	Cervical steroid epidural nerve blocks for cervical radiculopathy	Myelography; CT scan	Mass extended to approximately the third cervical vertebral body	C6 laminectomy	Deterioration of neurological status over next hours; a second CT showed a persistent epidural mass; a second laminectomy C4–C5 was performed; a third laminectomy C6–T1 was performed; a third laminectomy T12–L5 was performed; a second drainage	S. aureus	
Mamourian et al., et al. (1993)	84 yo, F	Steroid injection for low back pain	MRI	Sharply margimated mass in the dorsal epidural space	L4–S2 pus drainage; laminectomy	Conservative antibiotic treatment	Recovered baseline neurologic function and neck pain status, still left hand hypesthesia and weakness present before sternum injection	S. aureus
Knight et al., et al. (1997)	53 yo, M	Injection of procaine hydrochloride and triamcinolone acetonide for the right buttock pain radiating into posterolateral thigh and calf	MRI; lumbar puncture	Lumbar MRI scan inconclusive; L4–5 lumbar puncture aspiration of frank pus	L4–L5 bilateral foraminal and nerve root canal decompression	Tracheal postop intubation, loss of motor function in legs with absent reflexes, and lax anal sphincter tone. The C3–C4 laminectomy and extradural and subdural pus drainage	S. aureus	
Huang et al., et al. (2003)	51 yo, M	Steroid injections for the left posterior shoulder and neck pain	Twenty-two days later; worsening back pain, leg weakness, and urinary incontinence	MRI	C4–C6 epidural abscess	C4–C6 laminectomy, irritation, and debridement	S. aureus	
Zhang et al., et al. (2017)	65 yo, F	Two C7–T1 epidural injection of lidocaine, dexamethasone, Vitamin B1 and B6, mecobalamin for neck and shoulder pain with the left arm numbness	Few days later; severe shoulder, neck and head pain, low-grade fever	Chest X-ray; cervicothoracic MRI	Epidural inflammation from C6–T8 and abscess formation	Conservative antibiotic treatment	Epidural abscess was completely absorbed, and the patient discharged from the hospital	S. aureus
Our case, 2020	45 yo, F	Steroid injection for low back and right leg pain	Few weeks later; constipation, acute urinary retention, increasing leg pain bilaterally, deeper to the right side, and inability to walk	Lumbosacral MRI	Epidural mass between posterior wall of L4–L5	Right L4 hemilaminectomy and surgical site debridement	Improvement of her neurological status, residual complaint 4/5 strength right lower extremity especially assessing hip flexion, sphincter control recovery	S. aureus
are still being performed. Nevertheless, as noted here, there are serious complications of ESIs that include spinal epidural and subdural hematomas, brain/cord infarctions (cervical ESI), and spinal epidural/subdural abscesses.

The classical triad of SEE/SEA includes fever, back pain, and neurological deficits which may rapidly progress to quadriplegia/paraplegia. Laboratory studies usually show elevated WBC counts and increased ESR, CRP, and procalcitonin levels. Enhanced MRI remains the study of choice for documenting SEE/SEA that is most frequently found in the thoracic (48%), lumbar (31%), and cervical regions. A definitive diagnosis of the offending organism is critical to choosing appropriate antibiotic therapy. Where inflammatory markers continue to rise, MR studies show worsening, and neurological deficits progress, operative decompression/drainage is warranted in a timely fashion. Notably, the majority of SEE/SEA are due to a S. aureus species.

[Table 1] summarizes reported reviewed cases of extradural abscess following extradural analgesic injection for low back and radiculopathies to our knowledge.

Following spinal ESI, patients generally present within few weeks with back pain, fever, radiculopathies, and/or myelopathy. Enhanced MRI studies are the examinations of choice as they will demonstrate show epidural infections within 2–4 weeks; X-rays and CT studies will take up to 6–10 weeks to show abnormalities.

Here, the patient presented with pain, fever, and a neurological deficit (3/5 motor function of RLE), perineal hypoesthesia, and urinary retention. Once abnormally elevated laboratory inflammatory markers and an MR confirming an anterior L4-S1 epidural empyema were obtained, an emergent decompressive hemilaminectomy was performed that largely resolved the patient’s preoperative deficits. Sample biopsy was crucial to maximize efficacy, tailored antibiotic therapy, and limit resistance.

CONCLUSION

SEE diagnosis should be suspected in a patient presenting with the classic triad of back pain, fever, and a neurological deficit, associated with elevated laboratory inflammatory markers and MRI findings of significant epidural spinal compression. This clinical picture should prompt early neurosurgical intervention/decompression to minimize long-term neurological sequelae.

Declaration of patient consent

Patient's consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Ackerman WE 3rd, Ahmad M. The efficacy of lumbar epidural steroid injections in patients with lumbar disc herniations. Anesth Analg 2007;104:1217-22.
2. Arko L, Quach E, Nguyen V, Chang D, Sukul V, Kim BS. Medical and surgical management of spinal epidural abscess: A systematic review. Neurosurg Focus 2014;37:E4.
3. Benny B, Azari P, Briones D. Complications of cervical transforaminal epidural steroid injections. Am J Phys Med Rehabil 2010;89:601-7.
4. Chan ST, Leung S. Spinal epidural abscess following steroid injection for sciatica. Case report. Spine (Phila Pa 1976) 1989;14:106-8.
5. Chou R, Huffman L. Guideline for the Evaluation and Management of Low Back Pain: Evidence Review. Glenview, IL: American Pain Society; 2009.
6. Crowest PR, Hughes PJ, Elkins A, Jackson M, Ranu H. A rare presentation of spinal epidural abscess. BMJ Case Rep 2011;2011:bcr0820114647.
7. Curry WT Jr., Hoh BL, Amin-Hanjani S, Eskandar EN. Spinal epidural abscess: Clinical presentation, management, and outcome. Surg Neurol 2005;63:364-71.
8. Darouiche RO. Spinal epidural abscess and subdural empyema. Handb Clin Neurol 2010;96:91-9.
9. Davis DP, Wold RM, Patel RJ, Tran AJ, Tokhi RN, Chan TC, et al. The clinical presentation and impact of diagnostic delays on emergency department patients with spinal epidural abscess. J Emerg Med 2004;26:285-91.

10. Duarte RM, Vaccaro AR. Spinal infection: State of the art and management algorithm. Eur Spine J. 2013;22:2787-99.

11. Epstein NE. Major risk and complications of cervical epidural steroid injections: An updated review. Surg Neurol Int 2018;9:86.

12. Euba G, Narvaez JA, Nolla JM, Maurillo O, Narvaez J, Gomez-Vaquero C, et al. Long-term clinical and radiological magnetic resonance imaging outcome of abscess-associated spontaneous pyogenic vertebral osteomyelitis under conservative management. Semin Arthritis Rheum 2008;38:28-40.

13. Friedly JL, Comstock BA, Turner JA, Heagerty PJ, Deyo RA, Sullivan SD, et al. A randomized trial of epidural glucocorticoid injections for spinal stenosis. N Engl J Med 2014;371:11-21.

14. Goucke CR, Graziotti P. Extradural abscess following local anaesthetic and steroid injection for chronic low back pain. Br J Anaesth 1990;65:427-9.

15. Govender S. Spinal infections. J Bone Joint Surg 2005;87:1454-8.

16. Greenberg MS. The Handbook of Neurosurgery. 8th ed. New York: Thieme; 2016.

17. Grieve JP, Ashwood N, O’Neill KS, Moore AJ. A retrospective study of surgical and conservative treatment for spinal extradural abscess. Eur Spine J 2000;9:67-71.

18. Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. Hematogenous pyogenic spinal infections and their surgical management. Spine 2000;25:1668-79.

19. Harrast MA. Epidural steroid injections for lumbar spinal stenosis. Curr Rev Musculoskelet Med 2008;1:32-8.

20. Huang RC, Gary SS, Lim M, Sandhu HS, Lutz GE, Herzog RJ. Cervical epidural abscess after epidural steroid injection. Spine 2004;29:E7-9.

21. Joshi SM, Hatfield RH, Martin J, Taylor W. Spinal epidural abscess: A diagnostic challenge. Br J Neurosurg 2003;17:150-3.

22. Khanna RK, Malik GM, Rock JP, Rosenblum ML. Spinal epidural abscess: Evaluation of factors influencing outcome. Neurosurgery 1996;39:958-64.

23. Knight JW, Cordingley JJ, Palazzo MG. Epidural abscess following epidural steroid and local anaesthetic injection. Anaesthesia 1997;52:576-85.

24. Kraeutler MJ, Bozzay JD, Walker MP, John K. Subdural abscess following epidural steroid injection. J Neurosurg Spine 2015;22:90-3.

25. Lener S, Hartmann S, Barbagallo GM, Certo F, Thomé C, et al. Management of spinal infection: A review of the literature. Acta Neurochir (Wien) 2018;160:487-96.

26. Leys D, Lesoin F, Viaud C, Pasquier F, Rousseaux M, Jomin M, et al. Decreased morbidity from acute bacterial spinal epidural abscesses using computed tomography and nonsurgical treatment in selected patients. Ann Neurol 1985;17:350-5.

27. Mamourian AC, Dickman CA, Drayer BP, Sonntag VK. Spinal epidural abscess: Three cases following spinal epidural injection demonstrated with magnetic resonance imaging. Anesthesiology 1993;78:204-7.

28. Mampalam TJ, Rosegay H, Andrews BT, Rosenblum ML, Pitts LH. Nonoperative treatment of spinal epidural infections. J Neurosurg 1989;71:208-10.

29. Manchikanti L, Ramsim MB, Falco FJ, Alan DK, Joshua AH. Do epidural injections provide short- and long-term relief for lumbar disc herniation? A systematic review. Clin Orthop Relat Res 2015;473:1940-56.

30. Patel AR, Alton TB, Bransford RJ, Lee MJ, Bellabarba CB, Chapman JR. Spinal epidural abscesses: Risk factors, medical versus surgical management, a retrospective review of 128 cases. Spine J 2014;14:326-30.

31. Pereira CE, Lynch JC. Spinal epidural abscess: An analysis of 24 Cases. Surg Neurol 2005;63:526-9.

32. Pilkington SA, Jackson SA, Gillett GR. Spinal epidural empyema. Br J Neurosurg 2003;17:196-200.

33. Pradilla G, Ardila GP, Hsu W, Rigamonti D. Epidural abscesses of the CNS. Lancet Neurol 2009;8:292-300.

34. Reihasa E, Waldbaur H, Seeling W. Spinal epidural abscess: A meta-analysis of 915 patients. Neurosurg Rev 2000;232:175-204.

35. Rigamonti D, Liem L, Sampath P, Knoller N, Namaguchi Y, Schreibman DL, et al. Spinal epidural abscess: Contemporary trends in etiology, evaluation, and management. Surg Neurol 1999;52:189-96.

36. Sagar S, Wilkinson JR, Erickson BJ, Temesgen Z, Boeve BF. Extensive St aureus spinal epidural empyema. Neurology 2005;65:1970.

37. Tan LA, Kasliwai MK, Deutsch H. Complications associated with epidural steroid injection. J Neurosurg Spine 2015;22:558-60.

38. Tanj HJ, Lin HJ, Liu YC, Li CM. Spinal epidural abscess-experience with 46 patients and evaluation of prognostic factors. J Infect 2002;45:76-81.

39. Vakili M, Crum-Cianflone NF. Spinal epidural abscess: A series of 101 Cases. Am J Med 2017;130:1458-63.

40. Waldman SD. Cervical epidural abscess after cervical epidural anesthesia. Anesthesiology 1993;79:2193-6.

41. Watters WC 3rd, Resnick DK, Eck JC, Ghogawala Z, Mummaneni PV, Dailey AT, et al. Guidelines update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 13: Injection therapies, low-back pain, and lumbar fusion. J Neurosurg Spine 2014;21:79-90.

42. Zhang JH, Wang ZL, Wan L. Cervical epidural analgesia under conservative management algorithm. Eur Spine J. 2013;22:2787-99.