Covering lattice points by subspaces and counting point-hyperplane incidences

Martin Balko, Josef Cibulka, Pavel Valtr

Charles University and
Ben-Gurion University of the Negev

May 6, 2017
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d. We say S covers P if every point from P lies in some set from S. For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice? What if all the lines have to contain the origin?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d. What is the minimum number of lines needed to cover $n \times n$ lattice? What if all the lines have to contain the origin?
Introduction

- For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.
- We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

What if all the lines have to contain the origin?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?
• For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

• We say S covers P if every point from P lies in some set from S.

• For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

$\Theta(n)$
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

What if all the lines have to contain the origin?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

What if all the lines have to contain the origin?
Introduction

- For \(d \in \mathbb{N} \), let \(S \) be a collection of subsets in \(\mathbb{R}^d \) and let \(P \) be a set of points from \(\mathbb{R}^d \).
- We say \(S \) covers \(P \) if every point from \(P \) lies in some set from \(S \).
- For \(n \in \mathbb{N} \), what is the minimum number of lines needed to cover \(n \times n \) lattice?

\[\Theta(n) \]

- What if all the lines have to contain the origin?
For $d \in \mathbb{N}$, let S be a collection of subsets in \mathbb{R}^d and let P be a set of points from \mathbb{R}^d.

We say S covers P if every point from P lies in some set from S.

For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

What if all the lines have to contain the origin?
Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)
What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

For affine subspaces the answer is $\Theta(n^{d-k})$.

Covering by linear subspaces is more difficult. Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k = d - 1$.
They showed that the answer is $\Theta(n^{d/(d-1)})$.

Their proof works in the following more general setting.
Covering by subspaces

Let k be an integer with $1 \leq k \leq d - 1$.
Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?
Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

For affine subspaces the answer is $\Theta(n^{d-k})$.
Covering by subspaces

- Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)
What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
Covering by subspaces

Let \(k \) be an integer with \(1 \leq k \leq d - 1 \).

Problem 1 (Brass, Moser, Pach, 2005)
What is the minimum number of \(k \)-dimensional linear subspaces needed to cover the \(d \)-dimensional \(n \times \cdots \times n \) lattice?

- For affine subspaces the answer is \(\Theta(n^{d-k}) \).
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for \(k = d - 1 \).
Covering by subspaces

- Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k = d - 1$.
- They showed that the answer is $\Theta(n^{d/(d-1)})$.
Covering by subspaces

Let k be an integer with $1 \leq k \leq d - 1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta(n^{d-k})$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k = d - 1$.
 - They showed that the answer is $\Theta(n^{d/(d-1)})$.
- Their proof works in the following more general setting.
Lattices and symmetric convex bodies

For linearly independent vectors \(b_1, \ldots, b_d \in \mathbb{R}^d \), the \(d \)-dimensional lattice \(\Lambda \) with basis \(\{b_1, \ldots, b_d\} \) is the set
\[
\Lambda = \{a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z}\}.
\]

A convex body \(K \) is symmetric about 0 if \(K = -K \).

Let \(L_d \) be the set of \(d \)-dimensional lattices and \(K_d \) be the set of \(d \)-dimensional compact convex bodies in \(\mathbb{R}^d \) that are symmetric about 0.
Lattices and symmetric convex bodies

- For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the d-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$
\Lambda = \{a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z}\}.
$$
Lattices and symmetric convex bodies

For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the d-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z}\}.$$
Lattices and symmetric convex bodies

For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the d-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z}\}.$$

- $b_1 = (1, 0)$
- $b_2 = (0, 1)$
- $b'_1 = (2, 0)$
- $b'_2 = (1, 1)$
Lattices and symmetric convex bodies

- For linearly independent vectors $b_1, \ldots, b_d \in \mathbb{R}^d$, the d-dimensional lattice Λ with basis $\{b_1, \ldots, b_d\}$ is the set

$$\Lambda = \{a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z}\}.$$
Lattices and symmetric convex bodies

- For linearly independent vectors \(b_1, \ldots, b_d \in \mathbb{R}^d \), the \(d \)-dimensional lattice \(\Lambda \) with basis \(\{ b_1, \ldots, b_d \} \) is the set

\[
\Lambda = \{ a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z} \}.
\]

- A convex body \(K \) is symmetric about 0 if \(K = -K \).
Lattices and symmetric convex bodies

For linearly independent vectors \(b_1, \ldots, b_d \in \mathbb{R}^d \), the \(d \)-dimensional lattice \(\Lambda \) with basis \(\{b_1, \ldots, b_d\} \) is the set

\[
\Lambda = \left\{ a_1 b_1 + \cdots + a_d b_d : a_1, \ldots, a_d \in \mathbb{Z} \right\}.
\]

\[b_1 = (1, 0) \]
\[b_2 = (0, 1) \]
\[b'_1 = (2, 0) \]
\[b'_2 = (1, 1) \]

A convex body \(K \) is symmetric about 0 if \(K = -K \).

Let \(\mathcal{L}^d \) be the set of \(d \)-dimensional lattices and \(\mathcal{K}^d \) be the set of \(d \)-dimensional compact convex bodies in \(\mathbb{R}^d \) that are symmetric about 0.
Successive minima

For $\Lambda \in \mathbb{L}_d$ and $K \in \mathbb{K}_d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

How to measure $|\Lambda \cap K|$?

For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

$$\lambda_i(\Lambda, K) = \inf \{ \lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i \}.$$

The successive minima are achieved and $0 < \lambda_1 \leq \cdots \leq \lambda_d$.

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

$$
\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.
$$
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

 $$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$
Successive minima

Generalized problem 1
For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is
 \[\lambda_i = \lambda_i(\Lambda, K) = \inf\{ \lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i \} . \]
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

 $$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$
Successive minima

Generalized problem 1

For \(\Lambda \in \mathcal{L}^d \) and \(K \in \mathcal{K}^d \), what is the minimum number of \(k \)-dimensional linear subspaces needed to cover \(\Lambda \cap K \)?

- How to measure \(|\Lambda \cap K| \)?
- For \(i = 1, \ldots, d \), the \(i \)th successive minimum of \(\Lambda \) and \(K \) is
 \[
 \lambda_i = \lambda_i(\Lambda, K) = \inf\{ \lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i \}.
 \]

\(\lambda_1(\mathbb{Z}^2, K) = 1/3 \)
\(\lambda_2(\mathbb{Z}^2, K) = 1/3 \)
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

$$
\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.
$$

\[\begin{align*}
\lambda_1(\mathbb{Z}^2, K) &= 1/3 \\
\lambda_2(\mathbb{Z}^2, K) &= 1/3
\end{align*}\]
Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is
 \[
 \lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.
 \]
Generalized problem 1

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i = 1, \ldots, d$, the ith successive minimum of Λ and K is

$$\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.$$
Successive minima

Generalized problem 1

For \(\Lambda \in \mathcal{L}^d \) and \(K \in \mathcal{K}^d \), what is the minimum number of \(k \)-dimensional linear subspaces needed to cover \(\Lambda \cap K \)?

- How to measure \(|\Lambda \cap K| \)?
- For \(i = 1, \ldots, d \), the \(i \)th successive minimum of \(\Lambda \) and \(K \) is

\[
\lambda_i = \lambda_i(\Lambda, K) = \inf\{\lambda \in \mathbb{R} : \dim(\Lambda \cap (\lambda \cdot K)) \geq i\}.
\]

- The successive minima are achieved and \(0 < \lambda_1 \leq \cdots \leq \lambda_d \).
Covering by hyperplanes \((k = d - 1)\)
Covering by hyperplanes ($k = d - 1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^d$ and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$O\left(\min_{1 \leq j \leq d-1} (\lambda_1 \cdots \lambda_d)^{-1/(d-j)}\right)$$

$(d - 1)$-dimensional linear subspaces and this is tight if λ_d is not close to 1.
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathcal{L}^d\) and \(K \in \mathcal{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O\left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}\right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathcal{L}^d\) and \(K \in \mathcal{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O \left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.

- The assumption \(\lambda_d \leq 1\) is necessary:
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathbb{L}^d\) and \(K \in \mathbb{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O \left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.
- The assumption \(\lambda_d \leq 1\) is necessary:
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathcal{L}^d\) and \(K \in \mathcal{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O \left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.
- The assumption \(\lambda_d \leq 1\) is necessary:

\[
\lambda_1 = \varepsilon, \quad \lambda_2 = \frac{3}{2} \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}
\]
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathcal{L}^d\) and \(K \in \mathcal{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O \left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.
- The assumption \(\lambda_d \leq 1\) is necessary:

\[
\lambda_1 = \varepsilon, \lambda_2 = \frac{3}{2}, \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}
\]
Covering by hyperplanes \((k = d - 1)\)

Theorem (Bárany, Harcos, Pach, Tardos, 2001)

For \(\Lambda \in \mathcal{L}^d\) and \(K \in \mathcal{K}^d\) with \(\lambda_d \leq 1\), the set \(\Lambda \cap K\) can be covered with at most

\[
O \left(\min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \right)
\]

\((d - 1)\)-dimensional linear subspaces and this is tight if \(\lambda_d\) is not close to 1.

- For \(\Lambda = \mathbb{Z}^d\) and \(K = [-n, n]^d\), we have \(\lambda_1 = \cdots = \lambda_d = 1/n\) and thus \(j = 1\), which gives the \(\Theta(n^{d/(d-1)})\) bound.

- The assumption \(\lambda_d \leq 1\) is necessary:

\[
\lambda_1 = \varepsilon, \quad \lambda_2 = \frac{3}{2} \quad \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} = \frac{1}{\lambda_1 \lambda_2} = \frac{2}{3\varepsilon}
\]

- We consider Generalized problem 1 for general \(k\).
Our results – covering by linear subspaces

Theorem 1
For k with $1 \leq k \leq d - 1$, $\Lambda \in L_d$, and $K \in K_d$ with $\lambda_d \leq 1$, we can cover $\Lambda \cap K$ with $O\left(\alpha_d - k\right)$ (k)-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} \left(\lambda_j \cdots \lambda_d\right)^{-1} / (d - j)$.

Using probabilistic method, we can also show the following lower bound.

Theorem 2
For k with $1 \leq k \leq d - 1$, $\Lambda \in L_d$, $K \in K_d$ with $\lambda_d \leq 1$, and $\epsilon \in (0, 1)$, we need at least $\Omega\left((1 - \lambda_d) \beta \right) \left(\left(\frac{1}{d - k - \epsilon}\right)\right)$ (k)-dimensional linear subspaces to cover $\Lambda \cap K$, where $\beta = \min_{1 \leq j \leq d - 1} \left(\lambda_j \cdots \lambda_d\right)^{-1} / (d - j)$.

The bounds are not tight. The lower bound can be improved?
Our results – covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \leq j \leq k} \left(\lambda_j \cdots \lambda_d \right)^{-1/(d-j)}.$$

Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, and $\varepsilon \in (0, 1)$, we need at least $\Omega\left((1 - \lambda_d)^{\beta_{d-k}} \right)$ k-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$\beta = \min_{1 \leq j \leq d - 1} \left(\lambda_j \cdots \lambda_d \right)^{-1/(d-j)}.$$
Theorem 1

For \(k \) with \(1 \leq k \leq d - 1 \), \(\Lambda \in \mathcal{L}^d \), and \(K \in \mathcal{K}^d \) with \(\lambda_d \leq 1 \), we can cover \(\Lambda \cap K \) with \(O(\alpha^{d-k}) \) \(k \)-dimensional linear subspaces, where

\[
\alpha = \min_{1 \leq j \leq k} \left(\lambda_j \cdots \lambda_d \right)^{-1/(d-j)}.
\]

Using probabilistic method, we can also show the following lower bound.
Our results – covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

- Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, and $\varepsilon \in (0, 1)$, we need at least $\Omega(((1 - \lambda_d)\beta)^{d-k-\varepsilon})$ k-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$\beta = \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$
Our results – covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, we can cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where

$$\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

- Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, and $\varepsilon \in (0, 1)$, we need at least $\Omega(((1 - \lambda_d)\beta)^{d-k-\varepsilon})$ k-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$\beta = \min_{1 \leq j \leq d-1} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}.$$

- The bounds are not tight. The lower bound can be improved?
Our results – covering by affine subspaces

The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d - 1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O\left(\frac{n^d}{d-1} \right)^k$-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega\left(\frac{n^d}{d-1} - \varepsilon\right)^k$-dimensional linear subspaces to cover it.

We also consider the problem of covering $\Lambda \cap K$ with affine subspaces.

Theorem 3

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathbb{L}_d$, and $K \in \mathbb{K}$ with $\lambda d \leq 1$, the set $\Lambda \cap K$ can be covered with $O\left(\left(\lambda^k + \cdots + \lambda^d\right) - 1\right)^k$-dimensional affine subspaces and this is tight.
Our results – covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:
Our results – covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d - 1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.
Our results – covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d - 1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.

- We also consider the problem of covering $\Lambda \cap K$ with **affine** subspaces.
Our results – covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d - 1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O(n^{d(d-k)/(d-1)})$ k-dimensional linear subspaces and for every $\varepsilon > 0$ we need at least $\Omega(n^{d(d-k)/(d-1)-\varepsilon})$ k-dimensional linear subspaces to cover it.

- We also consider the problem of covering $\Lambda \cap K$ with affine subspaces.

Theorem 3

For k with $1 \leq k \leq d - 1$, $\Lambda \in \mathcal{L}^d$, and $K \in \mathcal{K}^d$ with $\lambda_d \leq 1$, the set $\Lambda \cap K$ can be covered with

$$O((\lambda_{k+1} \cdots \lambda_d)^{-1})$$

k-dimensional affine subspaces and this is tight.
Sketch of the proof of Theorem 1

We want to cover \(\Lambda \cap K \) with \(O(\alpha^d - k) \) \(k \)-dimensional linear subspaces, where \(\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \).

We show the result for \(K \) being the unit ball \(B^d \). The result for general \(K \) then follows by John's Lemma.

Using Second Minkowski's Theorem, we show that \(O((\lambda_k \cdots \lambda_d)^{-1}) \) \(k \)-dimensional linear subspaces are sufficient (i.e., prove the case \(j = k \)).

Then we proceed by induction on \(d-k = 1, \ldots, d-1 \).

We use the fact that the larger \(\|z\| \) is, the sparser (\(\Lambda \cap H(z) \)) \(\cap B^d \) is.
Sketch of the proof of Theorem 1

- We want to cover \(\Lambda \cap K \) with \(O(\alpha^{d-k}) \) \(k \)-dimensional linear subspaces, where \(\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)} \).

Using Second Minkowski's Theorem, we show that \(O\left((\lambda_k \cdots \lambda_d)^{-1}\right) \) \(k \)-dimensional linear subspaces are sufficient (i.e., prove the case \(j = k \)). Then we proceed by induction on \(d-k = 1, \ldots, d-1 \). We use the fact that the larger \(\|z\| \) is, the sparser \((\Lambda \cap H(z) \cap B_d) \).
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.

- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.

- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.

- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).

- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.

- We show the result for K being the unit ball B^d. The result for general $K \in K^d$ then follows by John’s Lemma.

- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).

- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.

\[
\begin{align*}
d &= 3 \\
k &= 1
\end{align*}
\]
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.

\[H(z) \]

We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_k \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.

We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k}(\lambda_j \cdots \lambda_d)^{-1/(d-j)}$.
- We show the result for K being the unit ball B^d. The result for general $K \in \mathcal{K}^d$ then follows by John’s Lemma.
- Using Second Minkowski’s Theorem, we show that $O((\lambda_d \cdots \lambda_d)^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).
- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.

- We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^d$ is.
Sketch of the proof of Theorem 1

- We want to cover $\Lambda \cap K$ with $O(\alpha^{d-k})$ k-dimensional linear subspaces, where $\alpha = \min_{1 \leq j \leq k} (\lambda_{j} \cdots \lambda_{d})^{-1/(d-j)}$.

- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John’s Lemma.

- Using Second Minkowski’s Theorem, we show that $O(((\lambda_{k} \cdots \lambda_{d})^{-1})$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j = k$).

- Then we proceed by induction on $d - k = 1, \ldots, d - 1$.

- We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^{d}$ is.
An incidence between an \(n \)-point set \(P \subseteq \mathbb{R}^d \) and a set of \(m \) hyperplanes \(H \) in \(\mathbb{R}^d \) is a pair \((p, H)\) such that \(p \in P \), \(H \in H \), and \(p \in H \).

What is the maximum number of incidences between \(P \) and \(H \) in \(\mathbb{R}^d \)?

In the plane, the Szemerédi–Trotter Theorem says that it is at most \(O((mn)^{2/3} + m + n) \) for all \(P \) and \(H \). Moreover, this is tight.

For \(d \geq 3 \) it is trivially at most \(mn \) and this is tight!

To avoid this, we forbid \(K_r^r \), for some fixed \(r \) in the incidence graph. Then the maximum number of incidences is at most \(O((mn)^{1 - 1/(d+1)} + m + n) \) (Chazelle, 1993).
Application: bounds for point-hyperplane incidences

- An incidence between an \(n \)-point set \(P \subseteq \mathbb{R}^d \) and a set of \(m \) hyperplanes \(\mathcal{H} \) in \(\mathbb{R}^d \) is a pair \((p, H)\) such that \(p \in P \), \(H \in \mathcal{H} \), and \(p \in H \).
Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d?
Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d?
Application: bounds for point-hyperplane incidences

- An incidence between an \(n \)-point set \(P \subseteq \mathbb{R}^d \) and a set of \(m \) hyperplanes \(\mathcal{H} \) in \(\mathbb{R}^d \) is a pair \((p, H)\) such that \(p \in P \), \(H \in \mathcal{H} \), and \(p \in H \).

- What is the maximum number of incidences between \(P \) and \(\mathcal{H} \) in \(\mathbb{R}^d \)?

- In the plane, the Szemerédi–Trotter Theorem says that it is at most \(O((mn)^{2/3} + m + n) \) for all \(P \) and \(\mathcal{H} \). Moreover, this is tight.
Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d?

In the plane, the Szemerédi–Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most mn.
An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.

What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d?

In the plane, the Szemerédi–Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H}. Moreover, this is tight.

For $d \geq 3$ it is trivially at most mn and this is tight!
Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes H in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in H$, and $p \in H$.
- What is the maximum number of incidences between P and H in \mathbb{R}^d?

In the plane, the Szemerédi–Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and H. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most mn and this is tight!
Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^d$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^d is a pair (p, H) such that $p \in P$, $H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^d?

In the plane, the Szemerédi–Trotter Theorem says that it is at most $O((mn)^{2/3} + m + n)$ for all P and \mathcal{H}. Moreover, this is tight.

- For $d \geq 3$ it is trivially at most mn and this is tight!
- To avoid this, we forbid $K_{r,r}$ for some fixed r in the incidence graph.
Application: bounds for point-hyperplane incidences

- An incidence between an \(n \)-point set \(P \subseteq \mathbb{R}^d \) and a set of \(m \) hyperplanes \(\mathcal{H} \) in \(\mathbb{R}^d \) is a pair \((p, H)\) such that \(p \in P \), \(H \in \mathcal{H} \), and \(p \in H \).
- What is the maximum number of incidences between \(P \) and \(\mathcal{H} \) in \(\mathbb{R}^d \)?

In the plane, the Szemerédi–Trotter Theorem says that it is at most \(O((mn)^{2/3} + m + n) \) for all \(P \) and \(\mathcal{H} \). Moreover, this is tight.
- For \(d \geq 3 \) it is trivially at most \(mn \) and this is tight!
- To avoid this, we forbid \(K_{r,r} \) for some fixed \(r \) in the incidence graph.
- Then the maximum number of incidences is at most \(O \left((mn)^{1 - 1/(d+1)} + m + n \right) \) (Chazelle, 1993).
Our results – counting point-hyperplane incidences

Theorem (Brass and Knauer, 2003)

For $d \geq 3$, $\epsilon > 0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^d and a set H of m hyperplanes in \mathbb{R}^d with no K_r, r in the incidence graph and with the number of incidences at least $\Omega\left(\left(\frac{mn}{1 - 2/d + \epsilon}\right)\right)$ if d is odd and $d > 3$, $\Omega\left(\left(\frac{mn}{1 - 2(d+1)/(d+2) - \epsilon}\right)\right)$ if d is even, $\Omega\left(\left(\frac{mn}{7/10}\right)\right)$ if $d = 3$.

For $d \geq 4$, we improve these bounds to $\Omega\left(\left(\frac{mn}{1 - (2d+3)/(d+2)(d+3) - \epsilon}\right)\right)$ if d is odd, $\Omega\left(\left(\frac{mn}{1 - (2d^2 + d - 2)/(d+2)(d^2 + 2d - 2) - \epsilon}\right)\right)$ if d is even.
Our results – counting point-hyperplane incidences

- There is no matching lower bound.
Our results – counting point-hyperplane incidences

There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For \(d \geq 3 \), \(\varepsilon > 0 \) there is an \(r \) such that for all \(n \) and \(m \) there is a set \(P \) of \(n \) points in \(\mathbb{R}^d \) and a set \(\mathcal{H} \) of \(m \) hyperplanes in \(\mathbb{R}^d \) with no \(K_{r,r} \) in the incidence graph and with the number of incidences at least

\[
\Omega \left((mn)^{1-2/(d+3)-\varepsilon} \right) \quad \text{if } d \text{ is odd and } d > 3,
\]

\[
\Omega \left((mn)^{1-2(d+1)/(d+2)^2-\varepsilon} \right) \quad \text{if } d \text{ is even},
\]

\[
\Omega \left((mn)^{7/10} \right) \quad \text{if } d = 3.
\]
Our results – counting point-hyperplane incidences

- There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For $d \geq 3$, $\varepsilon > 0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^d and a set \mathcal{H} of m hyperplanes in \mathbb{R}^d with no $K_{r,r}$ in the incidence graph and with the number of incidences at least

$$\Omega \left((mn)^{1-2/(d+3)-\varepsilon} \right)$$

if d is odd and $d > 3$,

$$\Omega \left((mn)^{1-2(d+1)/(d+2)^2-\varepsilon} \right)$$

if d is even,

$$\Omega \left((mn)^{7/10} \right)$$

if $d = 3$.

- For $d \geq 4$, we improve these bounds to

$$\Omega \left((mn)^{1-(2d+3)/((d+2)(d+3))-\varepsilon} \right)$$

if d is odd,

$$\Omega \left((mn)^{1-(2d^2+d-2)/((d+2)(d^2+2d-2))-\varepsilon} \right)$$

if d is even.
Final remarks

The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$. It is the first improvement in the last 13 years. It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:
Close the gap between estimates from Theorem 1 and Theorem 2.
For $1 < k < d-1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n,n]^d$ of size $\Omega(n^d(d-k)/(d-1))$ such that no k-dimensional linear subspace contains r points from R.

Improve the bounds for the maximum number of point-hyperplane incidences.

Thank you.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.
The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.

It is the first improvement in the last 13 years.

It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1 < k < d - 1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n, n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.

Improve the bounds for the maximum number of point-hyperplane incidences.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1 < k < d - 1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n, n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.
Final remarks

- The gap in the exponents is of order $\Theta(1/d)$ and the improvement is of order $\Theta(1/d^2)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz’s problem.

Open problems:

- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1 < k < d - 1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^d \cap [-n, n]^d$ of size $\Omega(n^{d(d-k)/(d-1)})$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.

Thank you.