The role of extracellular vesicles in phenotypic cancer transformation

Eva Ogorevc¹, Veronika Kralj-Iglic², Peter Veranic³

¹ Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Slovenia
² Faculty of Health Sciences, University of Ljubljana, Slovenia
³ Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

Radiol Oncol 2013; 47(3): 197-205.

Received: 22 February 2013
Accepted: 2 May 2013

Correspondence to: Prof. Peter Veranič, PhD, Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipičeva 2, Ljubljana, Slovenia. E-mail: peter.veranic@mf.uni-lj.si

Disclosure: No potential conflicts of interest were disclosed.

Background. Cancer has traditionally been considered as a disease resulting from gene mutations. New findings in biology are challenging gene-centered explanations of cancer progression and redirecting them to the non-genetic origins of tumorigenicity. It has become clear that intercellular communication plays a crucial role in cancer progression. Among the most intriguing ways of intercellular communication is that via extracellular vesicles (EVs). EVs are membrane structures released from various types of cells. After separation from the mother membrane, EVs become mobile and may travel from the extracellular space to blood and other body fluids.

Conclusions. Recently it has been shown that tumour cells are particularly prone to vesiculation and that tumour-derived EVs can carry proteins, lipids and nucleic acids causative of cancer progression. The uptake of tumour-derived EVs by noncancerous cells can change their normal phenotype to cancerous. The suppression of vesiculation could slow down tumour growth and the spread of metastases. The purpose of this review is to highlight examples of EV-mediated cancer phenotypic transformation in the light of possible therapeutic applications.

Key words: extracellular vesicles; exosomes; microvesicles; cancer progression

Introduction

Cancer has been traditionally viewed as a consequence of multistep mutations of genetic material that result in transformation of normal to malignant cells. However, nowadays the mainstream paradigms of cancer development and progression are shifting from strictly genocentric towards epigenetic and other nongenetic interpretations. It is thus relevant to explore the possibility that a normal cell could become malignant without previous genetic mutation. In this article several mechanisms of phenotypic transformation are presented mainly involving transfer of membrane attached receptors for growth factors, RNA molecules or even lipids.

It was suggested that intercellular communication plays a crucial role in cancer progression. Exchange of information is attained through release of specific soluble (or immobilized) signalling molecules and their interaction with corresponding receptors, or through direct cell-to-cell communication that includes gap junctions, cytonems and tunnelling nanotubes. In addition to these mechanisms, a highly conserved way of intercellular communication has recently been revealed - communication via extracellular vesicles (EVs).

It is considered that EVs are membrane-enclosed compartments, released into the surroundings of practically all cell types, both in vivo and in vitro. After separation from the mother membrane, vesicles with various types of cargo become mobile and may travel from the extracellular/intercellular space to blood (Figure 1). Besides in blood isolates, EVs were also found in isolates from other body fluids, i.e. urine, ascites, synovial fluid, malignant pleural effusions, bronchial lavage fluid, human semen, breast milk, pregnancy-associated...
The vesicles detectable in isolates in vitro and in vivo represent a mixed population of various sizes and origins. To date no consensus regarding their classification and nomenclature was reached to distinguish between different types of vesicles. In this work we do not consider the apoptotic bodies (usually larger than 1 µm) which are released from the cell in the final stage of programmed cell death.

The content of EVs depends on the cell of origin and the mechanism of vesicle generation. They were found to transfer surface-bound receptors and their ligands, proteins, genetic material, infectious particles, prions and probably even organelles between cells. A fascinating feature of EVs is that they present multiple epitopes to the recipient cells and therefore on one hand carry signalling molecules for phenotypic transformation and, on the other hand, serve as a cell mechanism to get rid of unwanted constituents.

Tumour-derived EVs (Figure 2) represent an important component of the tumour microenvironment, but can also take part in altering non-cancerous counterparts (cells) thus facilitating tumour growth and invasion, angiogenesis, metastasis, chemoresistance, immune evasion and escape from cell death. An increased number of circulating EVs were found in blood isolates of patients with gastrointestinal cancer. It is, however, important to bear in mind that the EVs found in blood isolates are not necessarily the native circulating vesicles but can also be formed during sampling and isolation procedures due to exposure of the cells to thermal and mechanical stress. Nevertheless, studying EVs isolated from blood and other body fluids of cancer patients is of special interest, not only because cancer cells are particularly prone to vesiculation, but also because of greater vulnerability and fragmentation of blood cells (platelets) in cancer patients, which could be reflected in a higher concentration of EVs in blood-isolates which could be used as a valuable diagnostic marker.

Formation of extracellular vesicles

The exact mechanisms underlying the formation of EVs have not yet been fully elucidated, but it seems that vesiculation can be either an extremely well regulated process, or a random, non-specific event associated with, for example, disintegration of the plasma membrane. It is important to realize that general mechanisms of membrane vesicula-
tion can also play a pivotal role in the progression of disease.

Membrane vesiculation takes place in the last phase of membrane budding when the bud is pinched off from the membrane to become a free vesicle (Figure 3A). Budding and vesiculation are essential features of the nonspecific biophysical properties of the membrane that impose local and/or global curvature on the membrane in phospholipid bilayer vesicles34,35, in erythrocytes36 and in other cells.37,38 The packing and distribution of membrane constituents creates local membrane curvature which is consistent with lateral sorting of membrane constituents.39 During budding, accumulation of molecules that energetically favour large curvature drives the formation of buds and EVs.40 Vesiculation can also be induced by nonlocal events such as an increase or a decrease in the difference between two membrane areas, as described within the bilayer couple concept.41-43

There is a codependence between membrane shape and structure; moreover, membrane curvature is determined by the shapes of membrane constituents and their interactions.44 Sphingolipids, for example, are located mainly in the outer leaflet of the plasma membrane bilayer, while glycerophospholipids such as phosphatidylserine and phosphatidylethanolamine can under normal circumstances be found only in the inner leaflet.45,46 Cholesterol is believed to occur in similar proportions in both leaflets.47 This balance is maintained by several enzymes: scramblase, flippase and translocase.48 Disruption of membrane asymmetry and consequent bending of the membrane can occur spontaneously or by an energy-requiring process. Further, the composition and configuration of membrane layer areas are affected by pathophysiological processes such as cell activation, hypoxia, irradiation, oxidative injury, exposure to complement proteins and exposure to shear stress.49 Relocation of phosphatidylinerse and phosphatidylethanolamine from the inner to the outer leaflet of the plasma membrane is associated with membrane budding and formation of EVs.49 EVs are formed in the last stage of the budding process, and thus their surfaces expose large amounts of phosphatidylycerine50 which can be used for the capture of EVs by phosphatidylserine receptors, such as Annexin V.51

Additionally EVs seem to be enriched in proteins and lipids associated with membrane rafts.50,52 Consistent with this, much experimental and theoretical evidence indicates the importance of membrane rafts in the process of membrane budding and vesiculation.48 Membrane rafts are small (10-200 nm) relatively heterogeneous dynamic structures with an increased concentration of cholesterol and sphingolipids.50,54 Potential roles of membrane rafts in membrane transport were proposed: they may serve as platforms for the inclusion of sorting receptors and cargo molecules, as sites for organizing the membrane cytoskeleton, or as sites for organizing vesicle docking and fusion processes.55

Other pathways leading to curvature and subsequent budding of membranes include an increase of intracellular Ca2+ inhibiting translocase, activating scramblase and resulting in loss of membrane asymmetry48, the reorganization of the cytoskeleton48,56, and the presence of protein and lipid driving forces since adding a protein or lipid to just one monolayer might cause asymmetry of monolayer areas and thereby increase the intrinsic curvature of the whole bilayer.57

Membrane budding can be followed by membrane fission, which is still a subject of some debate, but several ideas supporting the pivotal role of endophilin I and dynamin in this process have been suggested.58,59

EVs can also be formed in processes distinct from those already mentioned. EVs smaller than 100 nm, usually called exosomes, are formed by exocytosis after the assembly of several endosomes into a multivesicular body, exiting the endosomal pathway and fusion with the plasma membrane (Figure 3B).50,56,61 Peculiarly large EVs (1 -10 mm) can be formed as a result of nonapoptotic blebbing (Figure 3C).62 This relatively rapid process of EV-formation is caused by actomyosin contractions near the cortical cytoskeleton. The force required
for subsequent bleb retraction is generated by actin filaments.62

Interaction of extracellular vesicles with target cells

It is indicated that EVs interact with the membranes of recipient cells. The precise mechanisms of uptake of EVs are still poorly understood, yet it is becoming increasingly evident that their uptake can induce activation of specific signal transduction cascades and thereby influence the physiological or pathological state of recipient cells.23,63

Several types of interactions were proposed involving adhesion of vesicle molecules to cellular surface receptors (receptor-mediated uptake), endocytosis (phagocytosis) and fusion with the plasma membrane.23,64

Potential receptor candidates for interaction with EV-membranes are, notably, receptors for phosphatidylserine. One such receptor is the T-cell immunoglobulin and mucin-domain-containing molecule (TIM) that was described as mediating vesicle uptake.65 Segura et al.66 showed that EVs from mature dendritic cells are enriched in intercellular adhesion molecule 1 (ICAM-1), suggesting its role in either helping in capture of EVs by recipient antigen-presenting cells or in favouring T-cell binding of the recipient antigen-presenting cells bearing EVs at their surface (Figure 4A).

The phenomenon of fusion of vesicles with the plasma membrane could be explained by lipid-mediated interactions. Teissier and Pécheur described how lipid rafts, particularly sphingolipids, play a key role in the conformational changes of fusion proteins. These changes lead to interaction of the fusion peptide with the target membrane in viral interactions.68 Parolini et al. showed that exosomes preferentially fuse with the membranes of tumour cells and that in these interactions the microenvironmental pH acts as a key factor by modulating the lipid composition of the cell and exosome membranes (Figure 4B).69

It seems that phagocytosis is the most effective way of EV-uptake; moreover it has been reported that phagocytic cells have a greater ability for the uptake of EVs than non-phagocytic cells.67 Besides phagocytosis clathrin-dependent endocytosis and macropinocytosis were proposed as mechanisms for the uptake of EVs by the ovarian carcinoma cell line (Figure 4C).70

Despite all the above discoveries, it is still a question whether the vesicle cargo can be transferred to the recipient cell without the interaction with the membranes. Taraboletti et al. showed that acidic pH can induce breakdown of EVs, leading to pericellular release of their cargo and subsequent paracrine activity (Figure 4D).71 Furthermore, it has been stated that the breakdown of EVs upon shedding could represent an important signalling mechanism.72

Extracellular vesicles as vehicles in phenotypic malignant transformations

When EVs are taken up by recipient cells, they can change the cells’ state, either transitionally or in the long term (Figure 5). Transformation of recipient cells due to EV-transfered cargo was shown to be most efficient if the cell was already to some degree pretransformed or immortalized (stem cells).73 It is still unclear whether EVs may be able to exert long-term genomic changes, such as induction of mutations, but it has been brought to light not only that some oncogenes become incorporated into EV-cargo, but also that they can stimulate EV-formation.74 Consequently, EVs can act as vehi-
Extracellular vesicle-mediated protein transfer

Al Nedawi et al. showed that tumour specific growth receptor EGFRvIII can be transferred between glioma cells by EVs, leading to transfer of oncogenic activity, such as activation of transforming signalling pathways (MAPK and Akt), changes in expression of EGFRvIII-regulating genes (VEGF, Bcl-xL, p27), morphological transformation and increase in anchorage-independent growth capacity.75

Similar findings were reported in a study by Skog et al., where they detect tumour-specific EGFRvIII in serum EVs of glioblastoma patients.24 Moreover, they demonstrated that EVs are enriched in angiogenic proteins (interleukin-6, interleukin-8, VEGF) and that they stimulate tubule formation by endothelial cells.24

A mechanism that controls metastatic progression through the EV-mediated transfer of another receptor, tyrosine kinase MET, has recently been described. EVs with oncoprotein MET from highly metastatic melanomas increased the metastatic behaviour of primary tumours by permanently educating and mobilizing bone marrow progenitors.76 Another example of EV-mediated protein delivery in tumour progression has been described by Sidhu et al.77 The authors showed that extracellular matrix metalloproteinase inducer (EMMPRIN or CD147) is released from the surface of lung carcinoma cells via EVs which rapidly break down to release bioactive EMMPRIN, that stimulates matrix metalloproteinase expression in fibroblasts, thereby facilitating tumour invasion and metastasis.77

Many other proteins have been identified in EVs shed from cancer cells, including among others vascular endothelial growth factor (VEGF), tetraspanins,64 heat-shock protein 90α,75 Mart-1/MelanA, carcinoembryogenic antigen79 and HER2.79,80

Extracellular vesicle-mediated horizontal transfer of (epi)genetic information

Recently it has come to light that messenger RNA (mRNA) and various forms of non-coding RNA, such as microRNA (miRNA), act as key players in information transfer between cells.81 miRNAs are small noncoding RNA gene products believed to negatively regulate other genes’ expression. Furthermore, there is evidence that miRNA species might act as tumour suppressors and oncogenes.82,83 As RNA molecules are unstable in plasma or blood,84,85 they should be in some way protected from degradation during systemic transport. Membrane vesicles appear to be ideal candidates for this kind of protection. In fact, it seems that almost all systemically transferred RNA is stored compactly within EVs and is thereby protected from external RNAase.24,86 Additionally, more permanent modulation of recipient cells may be achieved through uptake of EVs containing nucleic acids. Interestingly, a microarray comparison of mRNA populations in EVs and their donor cells showed that specific mRNA species were detected exclusively in EVs, suggesting a specific packaging mechanism that encapsulates these mRNAs into EVs.24,86 Several groups have described the key role of EV-mediated mRNA transfer in tumour progression in various types of cancer, such as colorectal adenocarcinoma,87,88 pancreatic adenocarcinoma,89 lung carcinoma,89 and glioblastoma.24 The presence of specific miRNA species has been reported in EVs derived either from carcinoma cell-lines or from serum of cancer patients. A study showed that hepatocellular carcinoma cell-derived EVs mediate miRNA transfer and thereby enhance recipient cell growth.90 Ohshima et al. reported that metastatic gastric cancer cell line releases EVs enriched in let-7-miRNAs, known to negatively regulate Ras genes, leading to maintenance of their oncogenesis.90 Another study showed that EVs from the serum of ovarian cancer patients contain specific miRNA signatures and suggested that circu-
Extracellular vesicle-mediated lipid delivery

Sphingomyelin is a major membrane phospholipid, mostly localized in the outer leaflet of the mammalian plasma membrane. A significantly increased level of sphingomyelin in the highly metastatic adenocarcinoma cell line was reported in comparison to the lower metastatic variant of adenocarcinoma, suggesting the role of sphingomyelin not only as an important membrane component, but also as a key player in tumour metastasis.

Kim et al. showed the importance of sphingomyelin transfer in cancer progression. Namely, they indicated that sphingomyelin is a major active component in angiogenesis. They also found an increased amount of sphingomyelin in EVs derived from tumour cells compared to that from the plasma membrane.

Suppression of oncogenic transformation by extracellular vesicles

It has been shown that heparin, usually used for the treatment of thromboembolisms, also has a beneficial effect in suppressing tumour progression in some types of cancer. Interestingly, both effects of heparin can be explained by suppression of EV formation on the basis of non-specific biophysical mechanisms. The study, performed on artificial membrane models with controlled lipid composition – giant unilamellar vesicles (GUVs) - showed that budding and vesiculation of membranes can be affected by the surrounding solution. Theoretically and experimentally it was shown that molecules and ions in the solution can mediate attractive interactions between membranes and cause adhesion. Similar mechanisms may take place in cells, but it is important to note that cell membranes are of more complex composition, making the described mechanisms somewhat distinct. Nevertheless, substances which mediate attractive interaction between membranes (e.g. heparin) are suppressors of membrane vesiculation and can therefore have anticoagulant, antimitastatic and anti-inflammatory effect.

Conclusion

Recent investigations revealed that invasive tumours can be spread in the body not only by metastases travelling along tissues or being transported by body fluids and so seeding new tumours after anchoring to targeted tissues. Tumours can also be spread by much smaller carriers in the form of EVs containing genetic information or mutant growth factor receptors that are permanently active and...
Extracellular vesicles (EVs) have been recognized as powerful weapon in the battlefield of oncology. They are produced by cells during normal physiological processes and also during pathological conditions such as neoplasia. EVs can be involved in intercellular communication by transferring transforming molecules, such as microRNAs and proteins, which can change the phenotype of recipient cells and influence their behavior. These molecules can induce cell transformation, promote cancer progression, and even encourage the spread of metastases.

EVs can serve as diagnostic tools, as their presence and composition can reflect the status of the underlying disease. The study of EVs in cancer research has provided insights into their role in disease progression and has led to the development of new therapeutic strategies.

References

1. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle 2009; 8: 2014-18.
2. Rak J. Microparticles in cancer. Semin Thromb Hemost 2010; 36: 888-906.
3. Papa E. The role of microvesicles in malignancies. Adv Exp Med Biol 2011; 714: 183-199.
4. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 2011; 1: 98-110.
5. Veranic P, Lokar M, Schutz G, Wegrzyn J, Wieser S, Hagerstrand H, et al. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 2008; 95: 4416-25.
6. Sustar V, Bedina-Zavec A, Stukelj R, Frank M, Bobojivic G, Jansa R, et al. Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process. Int J Nanomedicine 2011; 6: 2737-48.
7. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13: 269-88.
8. Junkar I, Sustar V, Frank M, Jansa R, Bedina Zavec A, Rozman B, et al. Blood and synovial microparticles as revealed by atomic force and scanning electron microscope. Open Autoimmun J 2009; 1: 50-58.
9. Pistikou T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004; 101: 13368-73.
10. Gonzales P, Pistikou T, Knepper MA. Urinary exosomes: is there a future? Nephrol Dial Transplant 2008; 23: 1799-801.
11. Graves LE, Ariztia EV, Navari JR, Mattel HJ, Stack MS, Fishman DA. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 2004; 64: 7045-9.
32. Jansa R, Sustar V, Frank M, Susanj P, Bester J, Mancek-Keber M, et al. Number of microvesicles in peripheral blood and ability of plasma to induce adhesion between phospholipid membranes in 19 patients with gastrointestinal diseases. Blood Cells Mol Dis 2008; 41: 124-32.

33. Baran J, Baj-Krzyworzeka M, Weglarzczuk K, Sztakanek R, Zembala M, Barbasz J, et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 2010; 59: 841-50.

34. Lipowsky R. The conformation of membranes. Nature 1991; 349: 475-81.

35. Kralj-Iglic V. Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomedicine 2012; 7: 129-49.

36. Hagentrand H, Isoma B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with arachidoplipid. Biochim Biophys Acta 1992; 117: 26.

37. Black PH. Shedding from Normal and Cancer-Cell Surfaces. New Engl J Med 1980; 303: 1415-6.

38. Kralj-Iglic V, Babnik B, Gauker DR, May S, Iglc A. Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J Physiol 2006; 125: 727-52.

39. Ogorevc E et al. Extracellular vesicles and cancer. Radiol Oncol 2013; 47(3): 197-205.
Ogorevc E et al. / Extracellular vesicles and cancer

80. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 2005; 25: 3703-7.

81. Dinger ME, Mercer TR, Mattick JS. RNAs as extracellular signaling molecules. J Mol Endocrinol 2008; 40: 151-9.

82. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853-8.

83. Espela-Kerscher A, Slack FJ. Oncornirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-69.

84. Tsui NB, Ng K, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48: 1647-53.

85. Tsui NB, Ng K, Lo YM. Molecular analysis of circulating RNA in plasma. Methods Mol Biol 2006; 336: 123-34.

86. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-9.

87. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10: 556.

88. Baj-Krzyworzeka M, Sztanek R, Weglarzcyk K, Baran J, Urbanowicz B, Branski P, et al. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 2006; 55: 888-98.

89. Kogure T, Lin WL, Yen IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011; 54: 1237-48.

90. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. Let-7 microRNA family is selectively sequestered into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010; 5: e13247.

91. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110:13-21.

92. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 2001; 98: 6407-11.

93. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res 2006; 66: 1840-5.

94. Desler C, Marcker ML, Singh KK, Rasmussen LJ. The importance of mitochondrial DNA in aging and cancer. J Aging Res 2010; 2011: 407536.

95. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 2008; 115: 622-9.

96. Bannert N, Kurth R. Retroelements and the human genome: new perspectives. Methods Mol Biol 2006; 336: 123-34.

97. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009; 10: 691-703.

98. Wiemels JL, Hofmann J, Kang M, Selzer R, Green R, Zhou M, et al. Chromosome 12p deletions in TEL-AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally. Cancer Res 2008; 68: 9935-44.

99. Bretscher MS. Membrane structure: some general principles. Science 1973; 181: 622-9.

100. Dahiya R, Boyle B, Goldberg BC, Yoon WH, Konety B, Chen K, et al. Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines. Biochim Biophys Acta 1993; 1170: 548-54.

101. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res 2006; 66: 1840-5.

102. McGarry LI, Thompson D. Retrospective database analysis of the prevention of venous thromboembolism with low-molecular-weight heparin in acutely III medical inpatients in community practice. Clin Ther 2004; 26: 419-30.