The Comparison of Working Memory Performance in Children With and Without Stuttering

Ayşe Aydın-Uysal & Ahsen Erim

Abstract

Introduction: The aim of this study is to compare working memory performance between children with and without stuttering. The second aim of the study is to examine the relationship between stuttering frequency and working memory performance in children who stutter (CWS).

Method: The study sample included 20 children with stuttering and 20 children without stuttering and any other concomitant speech and language disorders. The participants were matched for age and gender. Working Memory Scale was used for the assessment of working memory. Data from CWS and children who do not stutter (CWNS) were compared with independent samples t-test or Mann-Whitney U test based on normality analyses. The relation between the variables in CWS was examined with Pearson correlation analysis. Also, the percentage of stuttered syllables in a speech sample was calculated in children with stuttering.

Results: There was not a significant difference in verbal and visual memory subtests scores between the children with and without stuttering. However, the verbal memory subtest scores were lower in the children with stuttering.

Discussion: Despite the insignificant results, the study attracts attention to deficits in phonological memory and phonological coding in children with stuttering. In addition, although there was not a significant difference in the visual memory subtests, the children who stutter displayed higher performance in the visual memory subtests. This could be considered as a compensatory mechanism.

Conclusion, Limitations and Suggestions: It can be suggested that further longitudinal studies having larger samples including different age groups, using different behavioral measurement tools and brain imaging techniques may shed light on the issue.

Keywords: Nonword repetition, phonological encoding, phonological memory, stuttering, verbal memory, visual memory, working memory.

To cite: Aydın-Uysal, A., & Erim, A. (2021). The comparison of working memory performance in children with and without stuttering. Ankara University Faculty of Educational Sciences Journal of Special Education, Advance Online Publication. https://doi.org/10.21565/ozelegitimdergisi.795687

1Corresponded Author: Assist. Prof., Kocaeli University, E-mail: ayse.uysal@kocaeli.edu.tr, https://orcid.org/0000-0002-3689-7628
2Res. Assist., University of Health Sciences, E-mail: ahsen.erim@sbu.edu.tr, https://orcid.org/0000-0002-3191-6236

Aydin-Uysal & Erim
Introduction

Stuttering is defined as a fluency disorder characterized by repetitions, prolongations and blocks in speech. It considerably affects psychosocial life and the quality of life (Guitar, 2014). The cause of stuttering is not clear yet; however, the contemporary models postulate that it is multidimensional in nature and that motor, psycholinguistic, cognitive and emotional factors play a role in its development and course (Smith & Weber, 2017). These views emphasize that psycholinguistic aspects and cognitive functions such as working memory, attention skills and executive functions should be investigated in both children (Anderson & Ofoe, 2019; Donaher & Richels, 2012; Druker et al., 2019; Healey & Reid, 2003; Pelczarski & Yaruss, 2016; Smith & Weber, 2017; Spencer & Weber-Fox, 2014) and adults who stutter (Alm & Risberg, 2007), which is important to understand its variations and phenotypical features. In light of this evidence, there has been an increase in the studies on the role of working memory in developmental stuttering (Oyoun et al., 2010).

Working memory is a neurocognitive system which processes information and stores it temporarily. This system is comprised of central executive, visuo-spatial sketchpad, episodic buffer and phonological loop. The phonological loop involves phonological storage and inner voice (articulatory process), has a limited capacity and temporarily holds every kind of verbal information. The verbal information is kept in the phonological store for a few seconds and then becomes vague. But, the rehearsal and recall of the information is maintained with the involvement of the inner voice (Baddeley, 2000, 2003, 2012; Türkoğlu et al., 2019). The phonological loop is reported to be predictive of academic performance and associated with verbal linguistic skills (Adams & Gathercole, 1995; Alloway et al., 2005). The visuo-spatial sketchpad processes visual information and stores it temporarily. The episodic buffer is responsible for the connection between the phonological loop and the visuospatial sketchpad. The central executive accounts for the control and coordination of the system. It also serves the transfer of information from the long-term memory to the short-term memory and vice versa (Baddeley, 2000, 2003, 2012; Bajaj, 2007).

Many theories draw attention to the relation between stuttering and linguistic skills (Guitar, 2014). Regarding stuttering, especially the theories involving psycholinguistic skills underline verbal working memory, phonological segmentation, retrieval and phonological coding of words. According to these theories, problems and delays in phonological coding may result in disfluency in speech (Howell & Au-Yeung, 2002; Perkins et al., 1991; Postma & Kolk, 1993). Cognitive models of the speech production have provided views about the atypical course of psycholinguistic skills in stuttering (Levelt et al., 1999). Most of these models have revealed that there may be deficits or delays in retrieval of semantic and/or phonological information in linguistic coding (Newman & Bernstein-Ratner, 2007; Smith & Weber, 2017; Weber-Fox et al., 2008). To exemplify, according to the covert repair hypothesis, people who stutter make more phonological mistakes and as a result need more corrections. Strategies used to correct or decrease phonological coding mistakes result in repetitions of sounds and syllables encountered in stuttering. In other words, this hypothesis proposes that the real problem in stuttering originates from the phonological loop in the language system and speech processing (Postma & Kolk, 1993). In fact, many researchers suggest that phonological coding requires usage of the phonological memory and verbal working memory (Acheson & MacDonald, 2009; Alt & Plante, 2006).

Spencer and Weber-Fox (2014) underlined the predictive role of the verbal working memory in stuttering. Several studies comparing nonword repetition performance as a measure of phonological working memory between children who stutter (CWS) and those who do not stutter (CWNS) have also revealed significantly lower scores in the stuttering group (Anderson & Wagovich, 2010; Anderson et al., 2006; Hakim & Ratner, 2004; Pelczarski & Yaruss, 2016; Spencer & Weber-Fox, 2014; Sugathan & Maruthy, 2019). However, there are other studies reporting a lack of significant difference in verbal working memory tasks between CWS and CWNS (Smith et al., 2012). In a study by Smith et al. (2012), CWS with an additional speech and language problem (language and/or phonological problem) were found to receive significantly lower scores than their typically developing peers.

Studies evaluating the verbal working memory in school-age children with and without stuttering have revealed conflicting results. Some of these studies have not shown significant differences in tasks measuring verbal working memory and its components between CWS and CWNS (Bakhtiar et al., 2007; Sasisekaran & Byrd, 2013a; Vahah et al., 2014; Weber-Fox et al., 2008). However, one study with a larger sample size by Oyoun et al. (2020) indicated a significant difference in verbal working memory performance between CWS and CWNS. Several other studies have also shown differences in some components of verbal working memory such as phonological short...
term-memory and a significantly lower performance in the stuttering group was found. (Kahramaner, 2018; Saifpanahi et al., 2015). On the other hand, Sasisekaran and Byrd (2013a) used nonword repetition and elision tasks. These authors did not discover any significant differences between school-age CWS and CWNS. However, Reilly and Donaher (2005) used a virtual program including number and letter sequences to evaluate the verbal working memory in school-age CWS and CWNS. They found out that the stuttering group had a significantly lower score for their verbal and written responses.

In most of the studies performed with adults, those with stuttering were found to have lower scores for their verbal working memory than the ones with a fluent speech (Bowers et al., 2018). In their comparative study on verbal working memory performance between adults with stuttering and those without stuttering, Sasisekaran and Weisberg (2014) emphasized that the length of a word and phonological complexity could play a critical role in stuttering. Byrd et al. (2012) also found a significant difference in repeating seven-syllable words measuring phonological short term-memory between adults with stuttering and those without stuttering. Sasisekaran (2013) compared word repeating and nonword reading skills and reported that adults who stutter had significantly lower scores for both of these skills than those who do not stutter.

To summarize, there are several studies examining the verbal working memory and/or some of its components including phonological working memory or short term memory in preschool children, school-age children and adults with conflicting evidence (Bowers et al., 2018). On the other hand, there are only a few studies focusing on the relation between the visual working memory and stuttering. Some of them underpin the weak visual working memory performance in individuals who stutter (Jones et al., 2002; Oyoun et al., 2010; Saifpanahi et al., 2015), while other studies conclude that CWS and CWNS do not show a significant difference in their visual working memory performance (Kahramaner, 2018). There are various measurement methods to evaluate visual working memory performance (Wilhelm et al., 2013). In the literature, it is suggested that using a combination of different methods to evaluate the working memory performance in individuals who stutter can provide conclusive results.

In light of the abovementioned reasons, the present study aimed to compare the working memory performance between CWS and CWNS and to examine the relationship between stuttering frequency and working memory performance in CWS. To achieve these aims, answers to the following questions were sought:

1. Does verbal working memory performance significantly differ between CWS and CWNS?
2. Does visual working memory performance significantly differ between CWS and CWNS?
3. Does total working performance significantly differ between CWS and CWNS?
4. Is there a relation between the percentage of stuttered syllables and scores for Working Memory Scale in CWS?

Method

In this study, working memory performance was compared between CWS and CWNS aged 5-9 years. Working Memory Scale was used as an assessment tool. The relation between the percentage of stuttered syllables and the subtest scores on Working Memory Scale in the CWS was also examined.

Study Sample

The study sample included a total of 40 children aged 5-9 years, of whom 20 were CWS and 20 were CWNS (Table 1). The CWS were accessed by contacting the rehabilitation centers offering speech and language therapy in Kocaeli and the CWNS were accessed by contacting schools in the same city. The CWS and CWNS groups were matched for age and gender. Inclusion criteria for all the children participating in the study were (a) not having the diagnosis of an accompanying psychiatric or neurological condition, (b) not having speech and language problems and (c) not using drugs likely to affect cognitive processes (Pellowski & Conture, 2002; Yairi & Ambrose, 1992). None of the children had received any speech and language therapy about their fluency problems before. All of them were accessed through waiting lists of the rehabilitation centers. The diagnosis for stuttering were received by a child psychiatrist. All of the participants had been stuttering for at least 1 year since onset. Information about the inclusion criteria was obtained through a demographic data form. In addition, the presence of developmental stuttering was approved by both children and their mothers. A minimum rate of stuttered syllables at 3% in a 400-syllables natural speech sample were considered as additional inclusion criteria for CWS (Yairi & Seery, 2015; Yairi et al., 1996).
The comparison of working memory performance in children with and without stuttering

Aydın-Uysal & Erim

ONLINEFIRST

Table 1
Descriptive Statistics Regarding Demographic Features of the Participants

Groups	Gender (n)	Age (months)			
	Girls	Boys	X ± SD	Min	Max
CWS	4	16	95.75 ± 19.2	60	118
CWNS	4	16	94.75 ± 18.3	60	116
Total	8	32			

*CWS = children with stuttering; CWNS = children without stuttering.

Ethical approval for the study was obtained from Üsküdar University’s Ethical Board of Noninterventional Research (Approval number: 6135/1342/2020-315). The study was designed and conducted in accordance with Helsinki Declaration. Informed consent was obtained from the parents of the children accepting to participate in the study.

Data Collection Tools

Data were collected with Working Memory Scale based on Baddeley and Hitch (1974) Model. The validity and reliability of the scale was tested for the Turkish population by Ergül et al. (2018). The scale is used to assess working memory performance in children from the preschool age to the fourth grade of primary school through two subscales; i.e., verbal memory and visual memory. Verbal memory has two subdimensions including verbal short-term memory and verbal working memory. Visual memory has two subdimensions: Visual short-term memory and visual working memory. Each subdimension has subtests. Each subtest is composed of two sample practices and offers two opportunities for each line which involves an increasing number of sequences. During administration of the subtests, after succeeding in one of the two attempts for each line, the child is allowed to continue with the next line. If the child fails in two attempts, that subtest ends and the next subtest is administered. Correct responses to each line are scored one point.

The verbal memory subscale has the subdimensions of verbal short-term memory and verbal working memory. The verbal short-term memory includes the subtests of digit-span, word recall and nonword repetition test and is composed of 15 items. The verbal working memory includes the subtests of backward digit span and recall of the first word of a serial and is composed of nine items. The visual memory subscale has the subdimensions of visual short-term memory and visual working memory. The visual short-term memory includes the subtests such as design matrix and block recall and is composed of nine items. The visual working memory includes the subtests such as the selection of visual target different options and spatial identification. It consists of ten items.

Cronbach’s alpha (CA) for the scale ranged from .69 to .85 in the first trial, from .66 to .84 in the second trial and from .68 to .99 in its real administration. These CA coefficients show that the scale has a moderate to high internal consistency. The test-retest coefficients for the scale were reported to vary from .41 to .83 (Ergül et al., 2018).

Data Collection Procedure

The tasks were applied to participants in two consecutive days and sessions in a quiet room in the Kocaeli University, Faculty of Medicine, Speech and Language Therapy Clinic. First, the informed consent form was filled in with the parents of the CWS and the CWNS. Second, the demographic data form was completed for both groups of children. Third, the form directed towards collecting information about stuttering was filled in with the parents of the CWS. Fourth, the researcher had a short conversation with the child and evaluated general speech characteristics. During the abovementioned procedures, the children who did not meet the inclusion criteria were excluded from the study. Finally, the children meeting the inclusion criteria were administered with Working Memory Scale. A spontaneous speech sample composed of minimum 400 syllables was obtained from each child with stuttering. Spontaneous speech sample was recorded with a Sony FDR-AX100e 4K Video. The frequency of the stuttering of the participants were calculated by two speech and language therapists. Inter-rater reliability was .94 which was calculated by exploring CA values between raters about the disfluency points in the speech samples. Working Memory Scale was administered in a separate session. The administration of the scale was carried out in both CWS and CWNS by an experienced speech and language therapist and a psychologist in a silent atmosphere with no distracting factors. After the verbal memory subscale was administered, a 5-minute break was given and then the visual memory subscale was administered.
Data Analyses

The data were analyzed with the Statistical Package Program for Social Sciences 21.0. Based on the results of Kolmogorov Smirnov and Shapiro-Wilk tests, data from CWS and CWNS were compared with independent samples t-test or Mann-Whitney U test. The relation between the variables in CWS was examined with Pearson correlation analysis. The results of the Kolmogorov Smirnov and Shapiro-Wilk tests from CWS and the CWNS are presented in Table 2.

Table 2
Test of Normality Results of the Groups on Working Memory Subscales

Scores	Groups	Kolmogorov-Smirnov Statistic	Shapiro-Wilk Statistic
		df	p
Verbal short term memory	CWS	.084	.974
	CWNS	.079	.861
Verbal working memory	CWS	.131	.948
	CWNS	.128	.933
Verbal part raw score	CWS	.088	.969
	CWNS	.076	.846
Verbal part standard score	CWS	.086	.979
	CWNS	.073	.765
Visual short term memory	CWS	.189	.928
	CWNS	.201	.867
Visual working memory	CWS	.115	.964
	CWNS	.108	.961
Visual part raw score	CWS	.137	.957
	CWNS	.141	.942
Visual part standard score	CWS	.082	.982
	CWNS	.091	.954
Total raw score	CWS	.106	.963
	CWNS	.123	.932
Total standard score	CWS	.070	.978
	CWNS	.089	.945

*CWS = children with stuttering; CWNS = children without stuttering; *a* indicates significance correction.

Results

The Comparison of Verbal Memory Subscales between the CWS and the CWNS

Regarding the first research question, the verbal memory performances of the CWS and the CWNS were compared. In this direction, independent samples t-test was used. The results are presented in Table 3.

Table 3
The Results of the Independent Samples t-Test for the Comparison of Verbal Memory Subtest Scores Between CWS and CWNS

Scores	Groups	n	\bar{X}	SD	t	df	p
Verbal short-term memory	CWS	20	14.55	4.2	.000	38	1.00
	CWNS	20	14.55	4.6			
Verbal working memory	CWS	20	4.55	2.0	-1.057	38	.29
	CWNS	20	5.40	3.0			
Verbal memory raw score	CWS	20	19.10	5.5	-.430	38	.67
	CWNS	20	19.95	6.9			
Visual memory standard score	CWS	20	756.00	123.5	.452	38	.65
	CWNS	20	738.00	128.4			

*CWS = children with stuttering; CWNS = children without stuttering.
As presented in Table 3, there was no significant difference in the scores for the verbal short term memory subtest of Working Memory Scale between the CWS and the CWNS. There was also no significant difference in the scores of the verbal working memory subtest of Working Memory Scale between the CWS and the CWNS. In addition, there was no significant difference in the scores of the verbal memory raw score and the verbal memory standard score of Working Memory Scale between the CWS and the CWNS.

The Comparison of Visual Memory Subscales between the CWS and CWNS

The second research question included the comparison of visual memory performances between the CWS and the CWNS. In this direction, Mann-Whitney U test and independent samples t-test were utilized. The results of Mann-Whitney U test for the comparison of visual memory subtest scores between the CWS and the CWNS are presented in Table 4. The results of the independent samples t-test are shown in Table 5.

Table 4

Scores	Groups	n	Mean rank	Sum of ranks	U	z	p
Visual short-term memory	CWS	20	21.68	433.50	176.5	-.642	.52
	CWNS	20	19.33	386.50			

*CWS = children with stuttering; CWNS = children without stuttering.

As shown in Table 4, no significant difference was found in the visual short-term memory subtest scores between the CWS and CWNS. As demonstrated in Table 5, no significant difference was detected in the visual working memory score of Working Memory Scale between the CWS and CWNS. In addition, no significant difference was found in the visual memory raw score and the visual memory standard score between the CWS and CWNS.

The Comparison of the Total Scores for Working Memory Scale between the CWS and CWNS

The third research question involved the comparison of total memory performance between the CWS and CWNS. In this direction, independent samples t-test was used. The results of the t-test for the comparison of the total scores of Working Memory Scale between the CWS and the CWNS are presented in Table 6.

Table 6

Scores	Group	n	Mean	SD	t	df	p
Total raw score	CWS	20	40.25	11.9	.104	38	.91
	CWNS	20	39.85	12.5			
Total standard score	CWS	20	638.85	92.4	.136	38	.89
	CWNS	20	634.60	104.9			

*CWS = children with stuttering; CWNS = children without stuttering.

As shown in Table 4, no significant difference was found in the visual short-term memory subtest scores between the CWS and CWNS. As demonstrated in Table 5, no significant difference was detected in the visual working memory score of Working Memory Scale between the CWS and CWNS. In addition, no significant difference was found in the visual memory raw score and the visual memory standard score between the CWS and CWNS.

As seen in Table 6, the total raw scores for the subtests of Working Memory Scale did not significantly differ between the CWS and CWNS. The total standard scores for the subtests of Working Memory Scale did not significantly differ between the CWS and CWNS.
The Relation Between the Percentage of Stuttered Syllables and the Subtest Scores on Working Memory Scale in the CWS

The fourth research question examined the relation between the percentage of stuttered syllables and scores for Working Memory Scale in CWS. In this direction, Pearson’s correlation analysis was used. The relation between the percentage of stuttered syllables and the subtest scores on Working Memory Scale in the CWS was found to be insignificant (Table 7).

Table 7
Pearson’s Correlation Analysis Findings on the Investigation of the Relationships Between the Percentage of Stuttering Syllables and Working Memory Scale Scores in CWS

Scores	R	p	N
Verbal short-term memory	-.052	.82	20
Verbal working memory	-.106	.65	20
Verbal memory raw score	-.078	.74	20
Verbal memory standard score	.206	.38	20
Visual short-term memory	-.231	.32	20
Visual working memory	-.100	.67	20
Visual memory raw score	.175	.46	20
Visual memory standard score	.156	.51	20
Total raw score	-.147	.53	20
Toplam standard score	.172	.46	20

Discussion

The aim of this study was to compare working memory performance between CWS and CWNS aged 5-9 years. The second aim of the study was to examine the relation between the percentage of stuttered syllables of CWS and the subtest scores on Working Memory Scale. Overall results of the study showed that the CWS had lower mean scores for their verbal working memory performance than the CWNS, though the difference was not statistically significant. On the other hand, the CWS had higher scores for visual short-term memory and visual working memory than the CWNS without a statistically significant difference.

While some of the results concerning the verbal working memory performance are consistent with the results of several studies assessing verbal working memory performance (Bakhtiar et al., 2007; Vahab et al., 2014), they contradict with the results of other studies (Anderson et al., 2006; Hakim & Ratner, 2004). Using different measurement tools and different sample sizes with different characteristics might have had an important effect on these findings. To explain, verbal working memory performance has generally been measured with nonword repetition which only measures phonological short-term memory. It is a component of verbal working memory. The number of syllables used in these nonwords and phonological complexities of these words (e.g. the frequency and distribution of sounds earlier or later) have differed (Graf-Estes et al., 2007). In addition, it is stated in the literature that nonword repetition interacts with auditory-perceptional and phonological coding skills in addition to the phonological short-term memory and working memory skills. It is also thought that the motor skills of speech is another factor likely to affect related performance (Archibald et al., 2013). Therefore, it is suggested that these skills should also be examined while nonword repetition is tested (Anderson et al., 2019).

Forward digit span is also another task which is thought to be responsible for short term verbal memory and especially articulatory loop while backward digit span tasks are thought to play an important role in verbal working memory and the central executive processes. The central executive is also responsible for the attention regulation and organization of information. Also, there are other working memory models that include attention skills (e.g. Baddeley, 2003; Cowan et al., 2005; Redick & Engle, 2006). Additionally, some researchers mention that working memory tasks also evaluate the attention skills (Engle & Kane, 2004; Redick & Engle, 2006). Considering the studies on the relationship between attention and working memory (Oberauer, 2019), it can be said that another important variable for working memory performance is attention skill. Many studies in the literature show that CWS differ from their fluent peers in terms of attention skills (Costelloe et al., 2019). When all these are taken into account, it will be important to consider the relationship between working memory performance and attention skills together among CWS. Indeed, Anderson and Wagovich (2010) found a significant
relationship between working memory performance and attention skills in CWNS, while they found no relationship between these skills among CWS. Therefore, it may be beneficial to investigate the working memory with related cognitive skills such as attention skill rather than considering it separately in future studies.

In studies about verbal working memory skills in individuals with stuttering, generally nonword repetition tasks have been used. However, in only a few studies, both forward and backward number/syllable recall has been utilized. Studies using both tasks have revealed lower performance in individuals who stutter than controls without a significant difference (Sasisekaran & Basu, 2017; Sasisekaran & Byrd, 2013a, 2013b; Sasisekaran et al., 2013), which is consistent with the present study. Therefore, further studies utilizing different tools in combination can contribute to the examination of the relation between working memory and developmental stuttering. In a meta-analysis, CWS have been reported to have mild, clinically insignificant limitations in their short-term and verbal working memory (having scores more than half of a standard deviation in nonword repetition tasks and one third of a standard deviation in forward digit recall tasks) (Ofoe et al., 2018).

In the current study, the higher performance in visual memory subtests demonstrated by the CWS supports the hypothesis that their performance could be a compensatory mechanism. This result conflicts with the evidence suggesting that individuals with stuttering have more limited visual-spatial working memory skills than their peers (Jones et al., 2002; Oyoun et al., 2010). In a study by Pyasik et al. (2013), visual working memory skills were assessed with computer-based neuropsychological tests. At the same time, during the computer-testing event-related potentials were also registered for the stimuli presentation. Results of the study revealed that, visual working memory capacity was significantly lower in participants with stuttering compared to control group. Additionally, ERP amplitudes differed among group with stuttering while retrieving the geometric figures but not on memorising words tasks. In a recent study, Yang et al. (2018) used magnetic resonance imaging during the administration of phonological working memory tasks and found a right lateralised, visually-oriented compensatory mechanism for a deficit during the task and neural disconnections with the central executive functions. Future longitudinal studies measuring the same abilities in the beginning and later stages of the stuttering are thought to shed light on the related mechanisms.

Conclusion, Limitations and Suggestions

Unfortunately, Working Memory Test used in this study has only norms for the age range of 5-10. It can be suggested that further longitudinal studies having larger samples including different age groups and using different behavioral measurement tools and brain imaging techniques may shed light on the issue. Conflicting findings from studies using verbal working memory tasks might have resulted from such variables as age, nonwords and sample sizes (Bowers et al., 2018). Sasisekaran and Byrd (2013a) performed a study with school-age CWS aged 7-15 years and categorized them into the age groups of 7-11 years and 11-15 years. When they compared these age groups, they obtained different results. The researchers suggested that age should be kept in mind in the evaluation of the verbal working memory. Based on this perspective, studies with larger samples of children stratified into preschoolers and school-age children may help to draw more comprehensive results.

Finally, in the present study, only the percentage of stuttered syllables was calculated. No relation was found between the percentage of stuttered syllables and the scores for Working Memory Scale. Further studies examining the relation between scores for Working Memory Scale and stuttering duration, physical concomitants and stuttering severity may provide more detailed information. Neurocognitive rehabilitation skills such as working memory or attention training can also be added among therapy goals of CWS in the future.

The present study reported that there was not a significant difference in verbal and visual memory subtests scores between the children with and without stuttering. However, the verbal memory subtest scores were lower in the children with stuttering. Despite the insignificant results, the study attracts attention to deficits in phonological memory and phonological coding in children with stuttering. Additionally, although there was not a significant difference in the visual memory subtests, the children who stutter showed higher performance in the visual memory subtests. This could be considered as a compensatory mechanism.

Authors’ Contributions

The authors contributed equally to the planning, implementation, data collection processes, analysis, writing and editing of the research.

Acknowledgment

We would like to thank all children and their parents who contributed to our study.
References

Acheson, D. J., & MacDonald, M. C. (2009). Verbal working memory and language production: Common approaches to the serial ordering of verbal information. *Psychological Bulletin, 135*(1), 50-68. https://doi.org/10.1037/a0014411

Adams, A., & Gathercole, S. (1995). Phonological working memory and speech production in preschool children. *Journal of Speech, Language, and Hearing Research, 38*(2), 403-414. https://doi.org/10.1044/jshr.3802.403

Alloway, T. P., Gathercole, S. E., Adams, A. M., Willis, C., Eaglen, R., & Lamont, E. (2005). Working memory and phonological awareness as predictors of progress towards early learning goals at school entry. *British Journal of Developmental Psychology, 23*(3), 417-426. https://doi.org/10.1348/026151005X26804

Alm, P., & Risberg, J. (2007). Stuttering in adults: The acoustic startle response, temperamental traits, and biological factors. *Journal of Communication Disorders, 40*(1), 1-41. https://doi.org/10.1016/j.jcomdis.2006.04.001

Alt, M., & Plante, E. (2006). Factors that influence lexical and semantic fast mapping of young children with specific language impairment. *Journal of Speech, Language, and Hearing Research, 49*(5), 941-954. https://doi.org/10.1044/1092-4388(2006/068)

Anderson, J., Wagovich, S., & Hall, N. (2006). Nonword repetition skills in young children who do and do not stutter. *Journal of Fluency Disorders, 31*(3), 77-199. https://doi.org/10.1016/j.jfludis.2006.05.001

Anderson, J. D., & Wagovich, S. A. (2010). Relationships among linguistic processing speed, phonological working memory, and attention in children who stutter. *Journal of Fluency Disorders, 35*(3), 216-34. https://doi.org/10.1016/j.jfludis.2010.04.003

Anderson, J. D., & Ofoe, L. C. (2019). The role of executive function in developmental stuttering. *Seminars in Speech and Language, 40*(4), 305-319. https://doi.org/10.1055/s-0039-1692965

Anderson, J. D., Wagovich, S. A., & Brown, B. T. (2019). Phonological and semantic contributions to verbal shortterm memory in young children with developmental stuttering. *Journal of Speech Language, and Hearing Research, 62*(3), 644-667. https://doi.org/10.1044/2018-JSLHR-S-18-0039

Archibald, L. M. D., Joanisse, M. F., & Munson, B. (2013). Motor control and nonword repetition in specific working memory impairment and SLI. *Topics in Language Disorders, 33*(3), 255-267. https://doi.org/10.1097/TLD.0b013e31829ef5e7

Baddeley, A. (2000). The episodic buffer: A new component of working memory? *Trends in Cognitive Sciences, 4*(11), 417-423. https://doi.org/10.1016/S1364-6613(00)01538-2

Baddeley, A. (2003). Working memory: Looking back and looking forward. *Nature Reviews Neuroscience, 4*, 829-839. https://doi.org/10.1038/nrn1201

Baddeley, A. (2012). Working memory: Theories, models, and controversies. *Annual Review of Psychology, 63*, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422

Baddeley, A. D., & Hitch, G. (1974). Working memory. *Psychology of Learning and Motivation, 8*, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1

Bajaj, A. (2007). Working memory involvement in stuttering: Exploring the evidence and research implications. *Journal of Fluency Disorders, 32*(3), 218-238. https://doi.org/10.1016/j.jfludis.2007.03.002

Bakhtiari, M., Abad-Ali, D., & Sadegh, S. (2007). Nonword repetition ability of children who do and do not stutter and covert repair hypothesis. *Indian Journal of Medical Sciences, 61*(8), 462-470. https://doi.org/10.4103/0019-5359.33711

Bowers, A., Bowers, L. M., Hudock, D., & Ramsdell-Hudock, H. L. (2018). Phonological working memory in developmental stuttering: Potential insights from the neurobiology of language and cognition. *Journal of Fluency Disorders, 58*, 94-117. https://doi.org/10.1016/j.jfludis.2018.08.006
Byrd, C. T., Vallely, M., Anderson, J. D., & Sussman, H. (2012). Nonword repetition and phoneme elision in adults who do and do not stutter. *Journal of Fluency Disorders, 37*(3), 188-201. https://doi.org/10.1016/j.jfludis.2012.03.003

Costelloe, S., Davis, S., Cavenagh, P., & Doneva, S. P. (2019). Attention levels in young children who stutter. *Applied Neuropsychology: Child, 8*(4), 355-365. https://doi.org/10.1080/21622965.2018.1493996

Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismajatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. *Cognitive Psychology, 51*(1), 42-100. https://doi.org/10.1016/j.cogpsych.2004.12.001

Donaher, J., & Richels, C. (2012). Traits of attention deficit/hyperactivity disorder in school-age children who stutter. *Journal of Fluency Disorders, 37*(4), 242-252. https://doi.org/10.1016/j.jfludis.2012.08.002

Druker, K., Hennessey, N., Mazzucchelli, T., & Beilby, J. (2019). Elevated attention deficit hyperactivity disorder symptoms in children who stutter. *Journal of Fluency Disorders, 59*, 80-90. https://doi.org/10.1016/j.jfludis.2018.11.002

Engle, R. W., & Kane, M. J. (2004). Executive Attention, Working Memory Capacity, and a Two-Factor Theory of Cognitive Control. In B. Ross (Ed.), *The psychology of learning and motivation* (Vol. 44, 1st ed., pp. 145-199). Elsevier.

Ergül, C., Yılmaz, Ç. Ö., & Demir, E. (2018). 5-10 yaş grubu çocuklara yönelik geliştirilmiş çalışma belgesi ölçüğünün geçerlik ve güvenirliği [Validity and reliability of the working memory scale for children aged 5-10 years]. *Eğitimde Karam ve Uygulama, 14*(2), 187-214. https://doi.org/10.1016/j.jfludis.2012.08.002

Graf-Estes, K., Evans, J. L., & Else-Quest, N. M. (2007). Differences in the nonword repetition performance of children with and without specific language impairment: A meta-analysis. *Journal of Speech, Language and Hearing Research, 50*(1), 177-195. https://doi.org/10.1044/1092-4388(2007/015)

Guitar, B. (2014). *Stuttering: An integrated approach to its nature and treatment* (4th ed.). Lippincott Williams & Wilkins.

Hakim, H. B., & Ratner, N. B. (2004). Nonword repetition abilities of children who stutter: An exploratory study. *Journal of Fluency Disorders, 29*(3), 179-199. https://doi.org/10.1016/j.jfludis.2004.06.001

Healey, E. C., & Reid, R. (2003). ADHD and stuttering: A tutorial. *Journal of Fluency Disorders, 28*(2), 79-93. https://doi.org/10.1016/S0094-730X(03)00021-4

Howell, P., & Au-Yeung, J. (2002). The explain theory of fluency control and the diagnosis of stuttering. *Current Issues in Linguistic Theory, 227*, 75-94. https://doi.org/10.1075/cilt.227.08how

Jones, R. D., White, A. J., Lawson, K. H., & Anderson, T. J. (2002). Visuo perceptual and visuomotor deficits in developmental stutterers: An exploratory study. *Human Movement Science, 21*(5-6), 603-619. https://doi.org/10.1016/S0167-9457(02)00165-3

Kahramaner, M. (2018). *Kekeme çocuklarda fonolojik bellek ve görsel-mekansal bellek değerlendirmesi* [Evaluation of phonological memory and visuo-spatial sketchpad in children who stutter] (Tez Numarası: 508448) [Yüksek lisans tezi, Hacettepe Üniversitesi]. Yükseköğretim Kurulu Ulusal Tez Merkezi.

Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. *Behavioral and Brain Sciences, 22*(1), 1-75. https://doi.org/10.1017/S0140525X99001776

Newman, R., & Bernstein-Ratner, N. (2007). The role of selected lexical factors on confrontation naming accuracy, speed, and fluency in adults who do and do not stutter. *Journal of Speech, Language, and Hearing Research, 50*(1), 196-213. https://doi.org/10.1044/1092-4388(2007/016)

Oberauer, K. (2019). Working memory and attention - A conceptual analysis and review. *Journal of Cognition, 2*(1), 1-23. https://doi.org/10.5334/joc.58

Ofoe, L. C., Anderson, J. D., & Ntourou, K. (2018). Short-term memory, inhibition, and attention in developmental stuttering: A meta-analysis. *Journal of Speech Language and Hearing Research, 61*(7), 1626-1648. https://doi.org/10.1044/2018_JSLHR-S-17-0372
Oyoun, H. A., El Dessouky, H., Shohdi, S., & Fawzy, A. (2010). Assessment of working memory in normal children and children who stutter. *Journal of American Science, 6*(11), 562-569. https://www.ojhas.org/issue65/2018-1-2.pdf

Pelczarski, K. M., & Yaruss, J. S. (2016). Phonological memory in young children who stutter. *Journal of Communication Disorders, 62*, 54-66. https://doi.org/10.1016/j.jcomdis.2016.05.006

Piyasik, M., Kozlovsiky, S., Vartanov, A., & Glozman, J. (2013, November 28-December 1). *Visual working memory in people with stuttering: ERP study* [Conference presentation abstract]. Australasian Cognitive Neuroscience Society Conference, Clayton, Melbourne, Australia. https://www.frontiersin.org/Community/AbstractDetails.aspx?ABS_DOI=10.3389/conf.fnhum.2013.21.2.00174&eid=&sname=

Pellowski, M. W., & Conture, E. G. (2002). Characteristics of speech disfluency and stuttering behaviors in 3- and 4-year-old children. *Journal of Speech, Language, and Hearing Research, 45*(1), 20-34. https://doi.org/10.1044/1092-4388(2002/002)

Perkins, W. H., Kent, R. D., & Curlee, R. (1991). A theory of neuropsycholinguistic function in stuttering. *Journal of Speech, Language, and Hearing Research, 34*(4), 734-752. https://doi.org/10.1044/jshr.3404.734

Postma, A., & Kolk, H. (1993). The covert repair hypothesis: Prearticulatory repair processes in normal and stuttered dysfluencies. *Journal of Speech, Language, and Hearing Research, 36*(3), 472-487. https://doi.org/10.1044/jshr.3603.472

Redick, T. S., & Engle, R. W. (2006). Working memory capacity and attention network test performance. *Applied Cognitive Psychology, 20*(5), 713-721. https://doi.org/10.1002/acp.1224

Reilly, J., & Donaher, J. (2005). Verbal working memory skills of children who stutter: A preliminary investigation. *Contemporary Issues in Communication Science and Disorders, 32*(Spring), 38-42. https://doi.org/10.1044/cicsd_32_s_38

Saifpanahi, S., Sobhani-Rad, D., Afzali, M., Izanloo, S., Mardani, N., Gholmian, M., & Farazi, M. (2015). An investigation of the correlation between phonological and visual working memory with severity of stuttering in 6-12 years-old children. *Journal of Paramedical Sciences & Rehabilitation, 4*(4), 20-26. http://eprints.mums.ac.ir/6316/1/JPSR_Volume%204_Issue%204_Pages%2020-26.pdf

Sasisekaran, J., & Basu, S. (2017). The influence of executive functions on phonemic processing in children who do and do not stutter. *Journal of Speech Language and Hearing Research, 60*(10), 2792-2807. https://doi.org/10.1044/2017_JSLHR-S-17-0033

Sasisekaran, J. (2013). Nonword repetition and nonword reading abilities in adults who do and do not stutter. *Journal of Fluency Disorders, 38*(3), 275-289. https://doi.org/10.1016/j.jfludis.2013.06.001

Sasisekaran, J., & Byrd, C. (2013a). Nonword repetition and phoneme elision skills in school-age children who do and do not stutter. *International Journal of Language & Communication Disorders, 48*(6), 625-639. https://doi.org/10.1111/1460-6984.12035

Sasisekaran, J., & Byrd, C. T. (2013b). A preliminary investigation of segmentation and rhyme abilities of children who stutter. *Journal of Fluency Disorders, 38*(2), 222-234. https://doi.org/10.1016/j.jfludis.2012.12.004

Sasisekaran, J., & Weisberg, S. (2014). Practice and retention of nonwords in adults who stutter. *Journal of Fluency Disorders, 41*, 55-71. https://doi.org/10.1016/j.jfludis.2014.02.004

Sasisekaran, J., Brady, A., & Stein, J. A. (2013). A preliminary investigation of phonological encoding skills in children who stutter. *Journal of Fluency Disorders, 38*(1), 45-58. https://doi.org/10.1016/j.jfludis.2012.12.003

Smith, A., & Weber, C. (2017). How stuttering develops: The multifactorial dynamic pathways theory. *Journal of Speech, Language, and Hearing Research, 60*(9), 2483-2505. https://doi.org/10.1044/2017_JSLHR-S-16-0343
Smith, A., Goffman, L., Sasisekaran, J., & Weber-Fox, C. (2012). Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance. *Journal of Fluency Disorders, 37*(4), 344-358. https://doi.org/10.1016/j.jfludis.2012.06.001

Spencer, C., & Weber-Fox, C. (2014). Preschool speech articulation and nonword repetition abilities may help predict eventual recovery or persistence of stuttering. *Journal of Fluency Disorders, 41*, 32-46. https://doi.org/10.1016/j.jfludis.2014.06.001

Sugathan, N., & Maruthy, S. (2019). Nonword repetition and identification skills in Kannada speaking school-aged children who do and do not stutter. *Journal of Fluency Disorders, 63*, 1-52. https://doi.org/10.1016/j.jfludis.2019.105745

Türkoğlu, S., Çetin, F. H., Tanr, Y., & Karatóprak, S. (2019). Çalışma belleği ve nörogelişimsel hastalıklar [Working memory and neurodevelopmental disorders]. *Turkish Journal of Child Adolescent Mental Health, 26*(2), 52-62. https://doi.org/10.4274/tjcamh.galenos.2019.2018.11.034

Vahab, M., Shojaei, K., Ahmadi, A., & Nasiri, M. (2014). Phonological working memory in 4-8 year-old Persian children who stutter. *Journal of Rehabilitation Science and Research, 1*(4), 92-96. https://doi.org/10.30476/JRSR.2014.41062

Weber-Fox, C., Spruill, J. E., Spencer, R., & Smith, A. (2008). Atypical neural functions underlying phonological processing and silent rehearsal in children who stutter. *Developmental Science, 11*(2), 321-337. https://doi.org/10.1111/j.1467-7687.2008.00678.x

Wilhelm, O., Hildebrandt, A. H., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? *Frontiers in Psychology, 4*, 433-454. https://doi.org/10.3389/fpsyg.2013.00433

Yairi, E., & Seery, C. H. (2015). *Stuttering: Foundations and clinical applications* (4th ed.). Pearson.

Yairi, E., Ambrose, N. G., Paden, E. P., & Throneburg, R. N. (1996). Predictive factors of persistence and recovery: Pathways of childhood stuttering. *Journal of Communication Disorders, 29*(1), 51-77. https://doi.org/10.1016/0021-9924(95)00051-8

Yairi, E. H., & Ambrose, N. (1992). A longitudinal study of stuttering in children: A preliminary report. *Journal of Speech and Hearing Research, 35*(4), 755-760. https://doi.org/10.1044/jshr.3504.755

Yang, Y., Jia, F., Fox, P. T., Siok, W. T., & Tan, L. H. (2018). Abnormal neural response to phonological working memory demands in persistent developmental stuttering. *Human Brain Mapping, 40*(1), 214-225. https://doi.org/10.1002/hbm.24366
Kekemeliği Olan ve Olmayan Çocukların Çalışma Belleği Performanslarının Karşılaştırılması

Ayşe Aydın-Uysal & Ahsen Erim

Öz

Giriş: Bu çalışmanın ilk amacı; kekemeliği olan ve olmayan çocukların çalışma belleği performanslarının karşılaştırılmasıdır. Ayrıca kekemeliği olan çocuklarda kekemelik sıkılığı ile çalışma belleği bileşenleri arasındaki ilişkinin incelenmesi amaçlanmaktadır.

Yöntem: Çalışmanın katılımcı grubu, 20 kekemeliği olan ve 20 yaş ve cinsiyete göre eşleştirilmiş herhangi bir dil ve konuşma bozukluğu olmayan çocuktan oluşmaktadır. Çalışma belleğinin değerlendirilmesi için katılımcılara Çalışma Belleği Ölçeği uygulanmıştır. Ayrıca kekemeliği olan grupta en az 400 heceden oluşan konuşma örneği üzerinden kekelenen hece yüzdesi hesaplanmıştır.

Bulgular: Yapılan analizler sonucunda; kekemeliği olan ve olmayan çocukların çalışma belleği sözel ve görsel alt test skorları arasındaki farkın istatistiksel olarak anlamlı düzeyde olmadığını görülmüştür. Ancak; kekemeliği olan grubun sözel alt test ortalaması puanlarının, kontrol grubundan daha düşük olduğu görülmüştür.

Tartışma: Çalışmanın sonuçları, kekemeliği olan çocuklarda fonolojik bellek ve fonolojik kodlama süreçlerinde farklılıklar olabileceğini düşündürmektedir. Ek olarak, kekemeliği olan çocukların görsel bellek alt test skorlarının istatistiksel olarak anlamlı olmamakla birlikte kontrol grubundan daha yüksek olması, bu durumun telifi edici bir mekanizma olabileceği savını destekler niteliktedir.

Sonuç, Şurählükler ve Öneriler: Gelecek çalışmalarda daha fazla sayıda ve daha geniş bir yaş dağılımı olan katılımcıya ulaşarak, farklı davranışsal ölçüm araçları ve beyin görüntüleme tekniklerinin birlikte kullanıldığında boylamalı yöntemlerin bu konunun aydınlatılmasına katkı sağlayacağını düşündürmektedir.

Anahtar sözcükler: Anlamsız sözcük tekrarı, fonolojik kodlama, fonolojik bellek, kekemelik, sözel bellek, çalışma belleği.

Atıf için: Aydın-Uysal, A., & Erim, A. (2021). Kekemeliği olan ve olmayan çocukların çalışma belleği performanslarının karşılaştırılması. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Özel Eğitim Dergisi, Erken Görünüm. https://doi.org/10.21565/ozelegitimdergisi.795687

Sorumlu Yazar: Dr. Öğr. Üyesi, Kocaeli Üniversitesi, E-posta: ayse.uysal@kocaeli.edu.tr, https://orcid.org/0000-0002-3689-7628
Arş. Gör., Sağlık Bilimleri Üniversitesi, E-posta: ahsen.erim@sbu.edu.tr, https://orcid.org/0000-0002-3191-6236
Giriş
Kekemeliğin gelişimindeki rolü için bir inceleme yapmadan önce konu hakkında bir genel bakış yapmak önemlidir. Kekemeliğin akıtları içinde, tekrarlar, uzatmalar, bloklar ve duraksamaların yer aldığı, konuşma uzde kekemeliğin nedeni henüz net olarak taya koymuştur (Newman & Bernstein, 2014, 2016; Smith & Weber, 2017). Bu birçok açıdan ile kekemeliği olan bireylerde çalışma bellegi, dikkat becerileri ve yürütüctü işlemler gibi bilişsel fonksiyonların araştırılmasının, kekemeliğin kendi içerisindeki çeşitliliğinin ve fenotipik özelliklerinin daha iyi anlaşılması amacıyla katkısı sağlayacağı düşünülmektedir (Alm & Risberg, 2007; Anderson & Ofoe, 2019; Donaher & Richards, 2012; Druker vd., 2019; Healey & Reid, 2003; Pelczarski & Yaruss, 2016; Smith & Weber, 2017; Spencer & Weber-Fox, 2014). Bu bilgiler doğrudan son zamanlarda çalışma belleginin kekemeliğin gelişimindeki rolü üzerine araştırma sayısı artmıştır (Oyoun vd., 2010).

Çalışma bellegi; gelen bilgilerin gerçekle olmayan depolaması ve işlemlemesini görevleri gören sınırlı kapasiteli sahip nörobilislerin bir sistemdir. Bu sistem; merkezi yönetici, görsel mekânsal kayıt defteri ve fonolojik kodlama ile birlikte birbirleriyle bağlanan ve birleşen bölgeleri oluşturur. Fonolojik döngülerin aynı zamanda analitik ve yaratılarak, fenomenolojik ve pratik olarak kullanılmaktadır. Bu bağlamda kekemeliği olan ve olmayan çocuklar arasında anlamlı düzeyde farklılıklar saptanmadığı ifade edilmektedir (Alt & Plante, 2006; Acheson & MacDonald, 2009; Anderson & Ofoe, 2019; Donaher & Richels, 2012; Druker vd., 2019; Healey & Reid, 2003; Pelczarski & Yaruss, 2016; Smith & Weber, 2017; Spencer & Weber-Fox, 2014). Bu bilgiler doğrudan son zamanlarda çalışma belleginin kekemeliğin gelişimindeki rolü üzerine araştırma sayısı artmıştır (Oyoun vd., 2010).

Çalışma bellegi: gelen bilgilerin gerçekle olmayan depolaması ve işlemlemesini görevleri gören sınırlı kapasiteli sahip nörobilislerin bir sistemdir. Bu sistem; merkezi yönetici, görsel mekânsal kayıt defteri ve fonolojik kodlama ile birlikte birbirleriyle bağlanan ve birleşen bölgeleri oluşturur. Fonolojik döngülerin aynı zamanda analitik ve yaratılarak, fenomenolojik ve pratik olarak kullanılmaktadır. Bu bağlamda kekemeliği olan ve olmayan çocuklar arasında anlamlı düzeyde farklılıklar saptanmadığı ifade edilmektedir (Alt & Plante, 2006; Acheson & MacDonald, 2009; Anderson & Ofoe, 2019; Donaher & Richels, 2012; Druker vd., 2019; Healey & Reid, 2003; Pelczarski & Yaruss, 2016; Smith & Weber, 2017; Spencer & Weber-Fox, 2014). Bu bilgiler doğrudan son zamanlarda çalışma belleginin kekemeliğin gelişimindeki rolü üzerine araştırma sayısı artmıştır (Oyoun vd., 2010).

Çalışma bellegi: gelen bilgilerin gerçekle olmayan depolaması ve işlemlemesini görevleri gören sınırlı kapasiteli sahip nörobilislerin bir sistemdir. Bu sistem; merkezi yönetici, görsel mekânsal kayıt defteri ve fonolojik kodlama ile birlikte birbirleriyle bağlanan ve birleşen bölgeleri oluşturur. Fonolojik döngülerin aynı zamanda analitik ve yaratılarak, fenomenolojik ve pratik olarak kullanılmaktadır. Bu bağlamda kekemeliği olan ve olmayan çocuklar arasında anlamlı düzeyde farklılıklar saptanmadığı ifade edilmektedir (Alt & Plante, 2006; Acheson & MacDonald, 2009; Anderson & Ofoe, 2019; Donaher & Richels, 2012; Druker vd., 2019; Healey & Reid, 2003; Pelczarski & Yaruss, 2016; Smith & Weber, 2017; Spencer & Weber-Fox, 2014). Bu bilgiler doğrudan son zamanlarda çalışma belleginin kekemeliğin gelişimindeki rolü üzerine araştırma sayısı artmıştır (Oyoun vd., 2010).
edilmiştir (Bakhtiar vd., 2007; Sasiskezkan & Byrd, 2013a; Vahab vd., 2014; Weber-Fox vd., 2008). Öte yandan, diğer çalışmalara kıyaslada örneklem grubunun daha geniş tutulduğu başka bir çalışmada her iki grup arasında, sözel çalışma belleği performansı açısından anlamlı düzeyde daha düşük performans sergiledikleri belirtilmiştir (Oyoun vd., 2010). Dünya çapında çalışmalarda da okul çapı kekemeliği olan ve olmayan çocukların fonolojik bellek yetilerini arasında farklılıklar saptanmış ve kekemeliği olan çocukların anlamlı düzeyde daha düşük performans sergiledikleri belirtilmiştir (Bowers vd., 2008; Reilly & Donaher, 2005). Yetişkinler ile yapılan çalışmaların çoğunluğunda kekemeliği olan yetişkinlerin sözel çalışma belleğini performanslarında acı kesin konuşturulmuştür (Bowers vd., 2018). Özetle kekemeliği olan bireylerde okul öncesi, okul çapı ve yetişkinlik dönemlerinde sözel çalışma belleğini inceleyen çeşitli çalışmalar bulunmaktadır; ancak bu konudaki bulguların çeşitliliği ve güvenirliği göstermektedir (Bowers vd., 2018). Anlayışında görsel çalışma belleği ve kekemeliği ilişkisini inceleyen bir çalışmanın sayısı oldukça sınırlıdır. Bu çalışmaların bir kısmı kekemeliği olan bireylerde görsel çalışma belleği performansı zayıflığına dikkat çekmektedir (Jones vd., 2002; Vahab vd., 2014; Saifpanahi vd., 2015). Diğer çalışmalarda ise kekemeliği olan ve olmayan çocukların görsel çalışma belleği performansları arasında anlamlı farklılık olduğu sonucunu ortaya koymaktadır (Kahramaner, 2018). Çalışma belleği performansının değerlendirmelemesinin çok çeşitli yöntemler kullanılarak (Kahramaner, 2018) ve kekemeliği olan bireylerde farklı ölçüm araçları ile çalışma belleğinin değerlendirilmesinin daha kapsamlı sonuçlar verebileceği düşünülmüştür.

Bu gerekçelerle bu çalışmanın amacı; kekemeliği olan ve olmayan çocukların çalışma belleği performanslarının karşılaştırılması ve gelişimsel kekemelikte çalışma belleğinin rolünün incelenmesidir. Bu kapsamda aşağıdaki sorulara yanıt aranmaktadır:

1. Kekemeliği olan ve olmayan çocukların sözel çalışma belleği performansları anlamlı bir şekilde farklılaşmaktadır mı?
2. Kekemeliği olan ve olmayan çocukların görsel çalışma belleği performansları anlamlı bir şekilde farklılaşmaktadır mı?
3. Kekemeliği olan ve olmayan çocukların toplam çalışma belleği performansları (çalışma belleği ölçeğinden elde etti oldukları toplam skorlar) anlamlı bir şekilde farklılaşmaktadır mı?
4. Kekemeliği olan çocuklardaki kekelenen hece yüzdesi ile sözel çalışma belleği ölçekteki puanlar arasında anlamlı ilişki bulunmaktadır mı?

Yöntem

Katılımcılar

Bu araştırmanın çalışma grubunu, 5-9 yaş aralığında kekemeliği olan 20 (16 erkek, ortalama yaş = 95.75 yaş; SS = 19.2) ve onlarla yaş ve cinsiyetle göre eşleştirilmiş 20 kontrol grubu (ortalama yaş = 94.9 ay, SS = 19.2) olmak üzere toplam 40 çocuk oluşturmuştur. Kekemeliği olan katılımcılara Kocaeli'de dil ve konuşma terapisi hizmeti veren rehabilitasyon mezarlığı; kekemeliği olmayan çocuklara ise okullar ile iletişimde geçiceler ulaşılmiştir. Kekemeliği olan ve olmayan grup yaş ve cinsiyet açısından eşleştirilmiştir. Çalışmanın her iki katılımcı grubun için de çocukların ek bir psikiyatric ya da nörolojik tamlamları ve dil ve konuşma problemelerinin bulunmaması ile birlikte bilişsel işlev anlayış eşlemleri ve eğitimi alıktır durumda olmaları çalışmaya dahil edilmiştir. Çalışmanın her iki katılmucu grubun için de çocukların ek bir psikiyatric ya da nörolojik tamlamları ve dil ve konuşma problemelerinin bulunmaması ile birlikte bilişsel işlev anlayış eşlemleri ve eğitimi alıktır durumda olmaları çalışmaya dahil edilmiştir. 400 heceden oluşan doğal konuşma örnekleri içerisinde araştırmacı tarafından en az %3’lik kekelenen hece yüzdesinin saptanması ise kekemeliği olan çocuk için katılmucu ölçütleri olarak belirlenmiştir (Yairi & Seery, 2015; Yairi vd., 1996).
Veri Toplama Aracı

Çalışma belleğine ilişkin verilerin toplanmasında Ergül ve diğerleri (2018) tarafından Baddeley ve Hitch (1974) modeli temel alınarak geliştirilen, çoğulculuk ve genelirilik çalışmaları yapılan Çalışma Belleği Ölçeği kullanılmıştır. Ölçeğin Cronbach alfa genelirilik katsayısı birinci deneme uygulaması için .69 ve .85 arasında; ikinci deneme uygulaması için .66 ve .84 arasında ve esas uygulama için ise .68 ile .99 arasında hesaplanmıştır. Bu değerler, ölçeğin iç tutarlılık düzeyinin orta ve yüksek olduğunu belirtmektedir. Test-tekrar test katsaylarının ise .41 ile .83 arasında olduğu belirtilmiştir (Ergül vd., 2018).

Çalışma Belleği Ölçeği, 4. sınıfından 4. sınıfa kadar olan öğrencilerin çalışma belleği performanslarını sözel ve görsel olmak üzere 2 alt alanda değerlendirilmektedir. Sözel bellek, sözel kısa süreli bellek ve sözel çalışma belleği; görsel bellek ise görsel kısa süreli bellek ve görsel çalışma belleği olmak üzere 2’şer alt boyutu bulunmaktadır. Anlamsal ve içeriksel yanıt veren bir öğrencinin alt testleri, bir alt testden devam edilmektedir. Her alt test, 2 örnek uygulamadan oluşmaktadır ve gittikçe artan sayıda dizileri içeren her madde, iki benzeri bir dilde meydana gelmektedir. Alt testlerin uygulanmasında, alt testlerden seçilen bir öğrencinin başarısına bağlı olarak, alt testlerden biriyle devam edilmektedir. Çocukların doğru yanıt vermesi durumunda her bir dizi için bir puana verilmektedir.

Ölçeğe sözel alt alan içerisinde sözel kısa süreli bellek ve sözel çalışma belleği alt boyutları bulunmaktadır. Sözel kısa süreli bellek alt boyutu; rakam hatırlama, sözcük hatırlama ve anlamsız sözcük hatırlama alt testleri ile birlikte toplamda 15 maddeye oluşturmaktadır. Sözel çalışma belleği alt boyutu ise genelirilik katsayısı .55 ile .84 arasında, iki alt testi ile birlikte toplamda 9 maddeye oluşmaktadır. Görsel belleğe 2 alt alanda değerlendirilmiştir. Görsel kısa süreli bellek alt boyutu; desen matrisi ve blok hatırlama alt testleri ile birlikte toplamda 9 maddeye oluşturmaktadır. Görsel çalışma belleği ise farklı olanı seçme ve mekânsal ayırma alt testleri ile birlikte toplamda 10 maddeye oluşmaktadır.

Veri Toplama Süreci

Mevcut çalışma için özelce Özel Üyelik Üniversiteleri, Girişimsel Olmayan Araştırmalar Değerlendirme Kurulu tarafından onay alınmıştır (Sayı: 61351342/2020-315). Çalışma, Helsinki İlkeler Deklarasyonu'na uygun biçimde planlanmıştır ve yürütülmüştür. Her iki grup için de çalışmaya katılmayı kabul eden çocukların ailelerinden bilgilendirilmiş gönüllü olur formu alınmıştır. Bu form, üç bölümden oluşmaktadır. İlk bölümde çalışma hakkında bilgiler, ikinci bölümde ebeveynin bu bilgileri anlayıp onayladığını gösteren onam formu, üçüncü kısımda ise demografik ve iletişim bilgilerinin bulunduğu kişisel bilgi formu yer almaktadır.

Verilerin Analizi

Verilerin analizi için SPSS 21.0 paket programı kullanılmıştır. Normal dağılımları olan verilerin analizi için Mann-Whitney U testi ve normal dağılım olmayan verilerin analizi için t-test kullanılmıştır. Normal dağılımları olmayan veriler için Mann-Whitney U testi kullanılmıştır. Çocukların çalışma belleği performansları açısından, Pearson korelasyon analizi hesaplanmıştır.
(t = 0.000; p = 1.00). Kemekleştirmi olan çocukların sözsel çalışma bellegi ortalama skorları (X̄ = 4.55) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının skorları (X̄ = 3.86.50) arasındaki fark istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = -1.057; p = .29), akıcı konuşan grubun ortalama skor değeriinin, kemekleştirmi olan gruptan daha yüksekti olduğu görülmuştur. Kemekleştirmi olan grubun sözsel bellek toplam ham puan ortalaması (X̄ = 19.10) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam ham puan ortalaması skoru (X̄ = 19.95) arasındaki farkın ise istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = -0.430; p = .67), akıcı konuşan grubun ortalama değerinin kemekleştirmi olan gruptan daha yüksekti olduğu görülmuştur. Buna paralel biçimde kemekleştirmi olan grupun sözsel bellek toplam standart puan ortalamaları (X̄ = 501.95) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam standart puan ortalamaları (X̄ = 518.40) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = -0.587; p = .56), akıcı konuşan grubun ortalama değerinin kemekleştirmi olan gruptan daha yüksekti olduğu görülmuştur.

Bu bulguların yanında kemekleştirmi olan çocukların görsel kısa süreli bellek skorları (X̄ = 433.50) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının skorları (X̄ = 386.50) arasındaki fark istatistiksel olarak anlamalı düzeyde olmamakta birlikte (Z = -0.642; p = .52), kemekleştirmi olan grubun ortalama değerinin yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam skorları (X̄ = 10.70) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = -0.542; p = .59), kemekleştirmi olan grubun ortalama değerinin akıcı konuşan gruptan daha yüksekti olduğu görülmuştur. Ayrıca kemekleştirmi olan çocukların görsel çalışma bellegi toplam ham puan ortalamaları (X̄ = 21.15) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının görsel çalışma bellegi ham puan ortalamaları (X̄ = 19.90) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = 0.553; p = .58), kemekleştirmi olan grupun ortalama değerinin akıcı konuşan gruptan daha yüksekti olduğu görülmüştür. Bu sonucu benzer biçimde kemekleştirmi olan grubun sözsel bellek toplam standart puan ortalamaları (X̄ = 756.00) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşma skorları (X̄ = 738.00) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakta birlikte (t(38) = -0.452; p = .65), kemekleştirmi olan grupun ortalama değerinin akıcı konuşan gruptan daha yüksekti olduğu görülmiştir.

Çalışma bellegi ölçülenin toplam ham puan ortalamaları arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakla birlikte (0.104; p = .91). Buna paralel olarak kemekleştirmi olan grubun ölçek toplam standart puan ortalamaları (X̄ = 638.85) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam standart puan ortalamaları (X̄ = 634.60) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakla birlikte (t(38) = 0.136; p = .89) Ek olarak kemekleştirmi olan grupta kekemeliği olan çocuk tablosunun hece yüzdesi ile Çalışma Bellegi Ölçüğünün tüm alt test skorları arasında istatistiksel olarak anlamalı bir korelasyon bulunmamıştır.

Tartışma

Araştırmanın sonuçları genel olarak incelemiştirdekde kemekleştirmi olan katılmcıların sözsel çalışma bellegi performans ortalamalarının, akıcı grubu göre daha düşük olduğu ortaya çıkmıştır. Kekemeliği olan katılmcıların sözel çalışma bellegi skorları (X̄ = 40.25) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam ham puan ortalamaları (M = 39.85) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakla birlikte (t(38) = 0.104; p = .91). Buna paralel olarak kemekleştirmi olan grubun ölçek toplam standart puan ortalamaları (X̄ = 638.85) ile yaş ve cinsiyetleri eşleştirilmiş akıcı konuşan akranlarının toplam standart puan ortalamaları (X̄ = 634.60) arasındaki farkın da istatistiksel olarak anlamalı düzeyde olmamakla birlikte (t(38) = 0.136; p = .89) Ek olarak kemekleştirmi olan grupta kekemeliği olan çocuk tablosunun hece yüzdesi ile Çalışma Bellegi Ölçüğünün tüm alt test skorları arasında istatistiksel olarak anlamalı bir korelasyon bulunmamıştır.

Araştırmanın sözsel çalışma bellegi bulguları, dilsellik performansları değerlendirileildiği çalışma bulgularının bir kısmının paralel geçtiğini gösterirken (Bakhtiar vd., 2007; Vahab vd., 2014), diğer araştırmalar bulgularından (Anderson vd., 2006; Hakım & Ratner, 2004) farklılıklar göstermektedir. Daha önce belirtilıldığı gibi sözsel kısa süreli bellek, anlamazsız sözücsüz tekrarı performanslarında önemli bir rol oynamaktadır. Anlamsız sözücsüz tekrarı performansını gerçekleştirilebilirken de kişinin bireyin düşünme odaklı olduğunu, düşüncede ve işleyebilirken bir süreç içinde tekrar etmesi gerektiğine (Archibald vd., 2013). Bunlara ek olarak, konuşma seslerinin akustik özelliklerini yeneril düzeyde algılayamalı, yorumlayamalı gibi yetileri içeren işitsel işlemlerle de fonolojik işlemlerle ve konuşmanın motor işlemlerleri için birer ön koşul nitelikindedir (Guitar, 2014). Bu konuyu araştırmalarergic olarak iyi olarak kullanlan değerlendirme araclarının ve örnekleme sayıyı ve özelliklerinin birbirinden farklılıklar göstermesinin önemli bir etkisinin olabileceğini düşünülmüştür. Örneğin, sözsel çalışma belleğinin ölçen araçlarda genel olarak fonolojik kısa süreli bellek ölçen anlamazsız sözücsüz tekrarı listeleri kullanılmış; ancak bu sözcüklerin hece uzunluğuna ve fonolojik karmaşıklık düzeylerinin (ör. enek edinilen sesler)
ve kısa dönem aralarındaki bilgi işlem performansına göre daha fazla sonuç vermekle birlikte, kontrol grubu ile kekemeliği olan çocukların kısa süreli bellek performanslarına göre daha fazla olduğunu bulmuştur (Sasisekaran & Basu, 2017; Sasisekaran & Byrd, 2013a, 2013b; Sasisekaran vd., 2013). Bu nedenle farklı katılmcılardaki, kekemeliği olan çocukların kısa süreli bellek performanslarının kontrol grubu ile kekemeliği olan çocukların arasında belirgin bir fark olmadığını, kekemeliği olan çocukların kısa süreli bellek performanslarının kontrol grubunun anlamlı düzeyde anlamlı olduğu bulmuştur. Bu bulgular, kekemeliği olan çocukların çalışma belleği performanslarının kontrol grubuna kıyasla anlamlı düzeyde daha düşük olduğunu, kekemeliği olan çocukların çalışma belleği performansı ve sözel işleme becerileri arasındaki ilişkiyi belirleyebilecek bir araştırmayı gerektirir (Pyasik & diğerleri, 2013).

Kekemeliği olan bireylerin görsel- CROSS REFERENCES, Şurultular ve Öneriler

Gelecek çalışmalarda daha fazla sayıda ve daha geniş bir yaş grupı alınarak, farklı dönen forme ve şekillere ait teşvik belirli özellikleri ve becerilerin yerine sırda işlet-sal ile işlemlerle ve fonolojik kodlama gibi diğer becerilerle iç içe olduğu, bu nedenle bu görevle çalıştırında bu becerilerin de ayrı testlerle kontrol edilmesi gerektiği düşünülmektedir (Anderson vd., 2019). Konusmanın motor becerileri de, ilişkili performansı etkenyebilmekle düşündülen diğer bir faktördür (Archibald vd., 2013).

Kekemeliği olan bireylerde sözel işleyen bellek yeteneklerini araştırılan çalışmalarla genellikle anlamsız sözcük tekrarı testsünün kullanıldığı; ancak küçük bir kısmında hem ileriye hem de geriye dönük rakam/hece hatırlama bolumlarının yer aldığı görülülmektedir. Sözcük tekrarı hatırlama ve tekrar etme testleri sözel belgelinin farklı boyutlarıyla ilişkilidir. İleriye-dönük sayısı testi daha çok kısa süreli bellek bileşeni ile ilişkili iken, geriye dönük sayı dizisi testinin ise daha çok sözel çalışma belgesi bileşeni ile ilişkili olduğu düşünülmektedir. Diğer bir deyişle, kısa süreli belgelinin sözel belgenin artıkluşasyon bileşeni (articulatory loop) boyutuyla der alırken, geriye-dönük rakam/hece hatırlama yeteneklerinin ise merkezi yönetici işlemlerle ilişkilili olduğu düşünülmektedir (Baddeley, 2003). Bu çalışmanın bulgularında, sözel işleyen bellek performansı açısından iki grup arasındaki farklı, sözel kısa süreli bellek performansına göre daha fazla oluşmuştur; kekeleyen bireylerde sözel kısa süreli bellekten ziyade, sözel çalışma belgesi, dikkat ve sözel işlemleme hızı gibi merkez yönetici işlemlerle problem olabilmekle en üstten araştırılmakta bulunanların estetleri keliktedir (Costelloe vd., 2019). Tüm bunlar birlikte düşündüğündekinde kekemeliği olan çocuklarda, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişkinin birliktelikle ele alınması olarak değerlendirilmiştir. Nikol Anderson ve Wagovich (2010) tarafından yürütülen bir çalışmada, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişki kekemeliği olmayan çocuklarda kekemeliği olan çocuklarda anlamlı düzeyde bir ilişki bulunmuştur. Bu nedenle bu çalışma bireylerinde çalışma belgesinin tek başına ele alınmasında ziyade dikkat becerileri ele alınmasıyla uyum sağlanması, Çalışma belgesinin de ayrı testlerle kontrol edilebilmesi düşünülmektedir.

Sonuç, Şurultular ve Öneriler

Gelecek çalışmalarda daha fazla sayıda ve daha geniş bir yaş grupı alınarak, farklı dönen forma ve şekillere ait teşvik belirli özellikleri ve becerilerin yerine sırda işlet-sal ile işlemlerle ve fonolojik kodlama gibi diğer becerilerle iç içe olduğu, bu nedenle bu görevle çalıştırında bu becerilerin de ayrı testlerle kontrol edilmesi gerektiği düşünülmektedir (Anderson vd., 2019). Konusmanın motor becerileri de, ilişkili performansı etkenyebilmekle düşündülen diğer bir faktördür (Archibald vd., 2013).

Kekemeliği olan bireylerde sözel işleyen bellek yeteneklerini araştırılan çalışmalarla genellikle anlamsız sözcük tekrarı testsünün kullanıldığı; ancak küçük bir kısmında hem ileriye hem de geriye dönük rakam/hece hatırlama bolumlarının yer aldığı görülülmektedir. Sözcük tekrarı hatırlama ve tekrar etme testleri sözel belgelinin farklı boyutlarıyla ilişkilidir. İleriye-dönük sayısı testi daha çok kısa süreli bellek bileşeni ile ilişkili iken, geriye dönük sayı dizisi testinin ise daha çok sözel çalışma belgesi bileşeni ile ilişkili olduğu düşünülmektedir. Diğer bir deyişle, kısa süreli belgelinin sözel belgenin artıkluşasyon bileşeni (articulatory loop) boyutuyla der alırken, geriye-dönük rakam/hece hatırlama yeteneklerinin ise merkezi yönetici işlemlerle ilişkilili olduğu düşünülmektedir (Baddeley, 2003). Bu çalışmanın bulgularında, sözel işleyen bellek performansı açısından iki grup arasındaki farklı, sözel kısa süreli bellek performansına göre daha fazla oluşmuştur; kekeleyen bireylerde sözel kısa süreli bellekten ziyade, sözel çalışma belgesi, dikkat ve sözel işlemleme hızı gibi merkez yönetici işlemlerle problem olabilmekle en üstten araştırılmakta bulunanların estetleri keliktedir (Costelloe vd., 2019). Tüm bunlar birlikte düşündüğündekinde kekemeliği olan çocuklarda, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişkinin birliktelikle ele alınması olarak değerlendirilmiştir. Nikol Anderson ve Wagovich (2010) tarafından yürütülen bir çalışmada, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişki kekemeliği olmayan çocuklarda kekemeliği olan çocuklarda anlamlı düzeyde bir ilişki bulunmuştur. Bu nedenle bu çalışma bireylerinde çalışma belgesinin tek başına ele alınmasında ziyade dikkat becerileri ele alınmasıyla uyum sağlanması, Çalışma belgesinin de ayrı testlerle kontrol edilebilmesi düşünülmektedir.

Sonuç, Şurultular ve Öneriler

Gelecek çalışmalarda daha fazla sayıda ve daha geniş bir yaş grupı alınarak, farklı dönen forma ve şekillere ait teşvik belirli özellikleri ve becerilerin yerine sırda işlet-sal ile işlemlerle ve fonolojik kodlama gibi diğer becerilerle iç içe olduğu, bu nedenle bu görevle çalıştırında bu becerilerin de ayrı testlerle kontrol edilmesi gerektiği düşünülmektedir (Anderson vd., 2019). Konusmanın motor becerileri de, ilişkili performansı etkenyebilmekle düşündülen diğer bir faktördür (Archibald vd., 2013).

Kekemeliği olan bireylerde sözel işleyen bellek yeteneklerini araştırılan çalışmalarla genellikle anlamsız sözcük tekrarı testsünün kullanıldığı; ancak küçük bir kısmında hem ileriye hem de geriye dönük rakam/hece hatırlama bolumlarının yer aldığı görülülmektedir. Sözcük tekrarı hatırlama ve tekrar etme testleri sözel belgelinin farklı boyutlarıyla ilişkilidir. İleriye-dönük sayısı testi daha çok kısa süreli bellek bileşeni ile ilişkili iken, geriye dönük sayı dizisi testinin ise daha çok sözel çalışma belgesi bileşeni ile ilişkili olduğu düşünülmektedir. Diğer bir deyişle, kısa süreli belgelinin sözel belgenin artıkluşasyon bileşeni (articulatory loop) boyutuyla der alırken, geriye-dönük rakam/hece hatırlama yeteneklerinin ise merkezi yönetici işlemlerle ilişkilili olduğu düşünülmektedir (Baddeley, 2003). Bu çalışmanın bulgularında, sözel işleyen bellek performansı açısından iki grup arasındaki farklı, sözel kısa süreli bellek performansına göre daha fazla oluşmuştur; kekeleyen bireylerde sözel kısa süreli bellekten ziyade, sözel çalışma belgesi, dikkat ve sözel işlemleme hızı gibi merkez yönetici işlemlerle problem olabilmekle en üstten araştırılmakta bulunanların estetleri keliktedir (Costelloe vd., 2019). Tüm bunlar birlikte düşündüğündekinde kekemeliği olan çocuklarda, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişkinin birliktelikle ele alınması olarak değerlendirilmiştir. Nikol Anderson ve Wagovich (2010) tarafından yürütülen bir çalışmada, çalışma belgesi performansı ve dikkat becerileri arasındaki ilişki kekemeliği olmayan çocuklarda kekemeliği olan çocuklarda anlamlı düzeyde bir ilişki bulunmuştur. Bu nedenle bu çalışma bireylerinde çalışma belgesinin tek başına ele alınmasında ziyade dikkat becerileri ele alınmasıyla uyum sağlanması, Çalışma belgesinin de ayrı testlerle kontrol edilebilmesi düşünülmektedir.
örneklem sayısının önemli faktör olduğu düşünülmektedir (Bowers vd., 2018). Bununla birlikte Sasisekaran ve Byrd (2013a) tarafından okul çağı çocuklar ile yürütülen bir çalışmada kekemeliği olan 7-15 yaş arası çocukların 7-11 ve 11-15 şeklinde alt sınıflara ayrıldıktan sonra karşılaştırılması da farklı sonuçlar sunması, sözel çalışma belleğinin değerlendirilmesinde yaş değişkeninin de göz önünde bulundurulmasının önemli olabileceğini düşündürmektedir. Bu açıdan bakıldığında zaman çalışmının katılımcı grubunun artırıldığı ve okul çağı çocukların şebeke incelemeler ile daha kapsamlı sonuçlara ulaşılabileceğini ön görülmektedir.

Son olarak mevcut çalışmada sadece kekelenen hece yüzdesi hesaplanmış olup kekelenen hece yüzdesi ile ölçektir puanları arasında bir ilişki bulunmamıştır. Gelecek çalışmalarda kekemeliği süresi, ikincil davranışlar ve kekemeliği alt testlerin çalışmanın kendi içerisinde karşılaştırılabilir olması, sözel çalışma belleğinin değerlendirilmesinde yaş değişkeninin de göz önünde bulundurulmasının önemli olabileceğini düşündürmektedir. Bu açıdan bakıldığında zaman çalışmının katılımcı grubunun artırılması ve okul çağı çocukların şebeke incelemeler ile daha kapsamlı sonuçlara ulaşılabileceği ön görülmektedir.

Çalışmanın sonuçunda, kekemeliği olan ve olmayan çocukların çalışma belleği sözel ve görsel alt test skorları arasındaki farkın istatistiksel olarak anlamlı düzeyde olmadığını bulunmuştur. Ancak kekemeliği olan gruba sözel alt test ortalaması puanlarının, kontrol grubundan daha düşük olduğu görülmüştür. Çalışma sonuçları, kekemeliği olan çocukların çoğunda fonolojik bellek ve fonolojik kodlama süreçlerinde farklılıklar olabileceğini düşündürmektedir. Ek olarak, kekemeliği olan çocukların görsel bellek alt test skorlarının istatistiksel olarak anlamlı olmamakla birlikte kontrol grubundan daha yüksektir, bu durumun telef edici bir mekanizma olabileceği düşünülmiştir.

Yazarların Katkı Düzeyleri

Araştırmanın planlama, uygulama, veri toplama süreçleri, analizleri, yazımı ve düzeltmelerinde yazarlar eşit katkı sağladıklarını düşünmektedir.

Teşekkür

Araştırmamızın katkı sağlayan tüm çocuklara ve ailelere teşekkür ediyoruz.