New Algorithms for Computing a Single Component of the Discrete Fourier Transform

G. Jerônimo da Silva Jr., R. M. Campello de Souza and H. M. de Oliveira
Dept. of Electronics & Systems
UFPE, CP7800, 50711-970 Recife PE, Brasil
E-mail: gilsonjr@gmail.com.

Abstract

This paper introduces the theory and hardware implementation of two new algorithms for computing a single component of the discrete Fourier transform. In terms of multiplicative complexity, both algorithms are more efficient, in general, than the well known Goertzel Algorithm.

1 Introduction

Discrete transforms are mathematical tools used in many applications in Engineering. A particularly significant example is the discrete Fourier transform (DFT) [1]. Let $v = (v_n)$, $n = 0, \ldots, N-1$, be a sequence of complex numbers or of real numbers. The DFT of v is the sequence of complex numbers $V = (V_k)$, $k = 0, \ldots, N-1$, defined by

$$V_k \triangleq \sum_{n=0}^{N-1} v_n W_N^{kn},$$

where $W_N = e^{-j\frac{2\pi}{N}}$ and $j = \sqrt{-1}$.

The polynomial representation for an input signal v, denoted by $v(x)$, is defined by

$$v(x) \triangleq \sum_{n=0}^{N-1} v_n x^n.$$

(2)

Therefore, the component V_k can be computed from $v(x)$ by

$$V_k = v(W_N^k).$$

(3)

From [1], the computation of a single coefficient $V_k \in \mathbb{C}$, requires $N-1$ complex multiplications, $N-1$ complex additions and the prestorage of the coefficients W_N^k. An algorithm to implement this computation, without the need for storing the coefficients, was presented in [2]. The Goertzel algorithm, as it became known, computes the component V_k via the polynomial

$$p_k(x) = (x - W_N^k)(x - W_N^{-k})$$

$$= 1 - 2 \cos \left(\frac{2\pi k}{N} \right) x + x^2,$$

which is the minimal polynomial of W_N^k over the field of real numbers. It is possible to write $v(x)$ as

$$v(x) = p_k(x)q(x) + r(x),$$

(5)

where $q(x)$ and $r(x)$ are obtained by polynomial division. Since $p_k(x)$ has a zero in W_N^k, [3] can be used to derive

$$V_k = r(W_N^k).$$

(6)

If v has real coefficients, the polynomial division by $p_k(x)$ requires $N-2$ real multiplications. Two real multiplications are necessary to compute $r(W_N^k)$, so that the Goertzel algorithm requires N real multiplications to compute one component of an N-point DFT. The polynomial division can be implemented by an autoregressive filter, as shown in Figure 1.

![Figure 1: Autoregressive filter to compute the polynomial division by $p_k(x)$](image)

Although the Goertzel algorithm can be used to compute the DFT of a given sequence, it is not a fast Fourier transform because its computational complexity, for an N-point DFT, is proportional to N^2. It is an attractive procedure for application scenarios where only a few components (not more than $\log_2 N$ of the N components) of the DFT need to be computed, such as in the detection of DTMF signals [3].

Cyclotomic polynomials play an important role in the algorithms introduced in this paper. The N-th cyclotomic polynomial, denoted by $\Phi_N(x)$, is the
monic polynomial which has as its roots all order \(N \) elements in \(\mathbb{C} \). Therefore
\[
\Phi_N(x) = \prod_{\theta | \text{ord}(\theta) = N} (x - \theta).
\]
and
\[
\prod_{d|N} \Phi_d(x) = (x^N - 1).
\]

From the Möbius inversion formula \([4]\), it can be shown that
\[
\Phi_N(x) = \prod_{d|N} (x^d - 1)^{\mu(N/d)},
\]
where \(\mu(n) \) is the Möbius function \([5]\)
\[
\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ 0, & \text{if } \exists e_i \geq 2; \\ (-1)^m, & \text{otherwise}, \end{cases}
\]
and \(n \) has the canonical factorization \(n = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m} \). The degree of \(\Phi_N(x) \) is given by \(\phi(N) \), where \(\phi(.) \) is the Euler totient function \([5]\).

In this paper, a new algorithm for computing a single DFT component, \(V_k \), using the JCO algorithm, considers the cyclotomic polynomial \(\Phi_L(x) \), where
\[
L = \text{ord}(W_N^k) = \frac{N}{\gcd(N,k)}.
\]
Then, by definition, \(\Phi_L(x) \) has a zero in \(W_N^k \) and \(v(x) \) can be written as
\[
v(x) = \Phi_L(x)Q(x) + R(x),
\]
where \(R(x) \) can be computed by an autoregressive filter and
\[
V_k = R(W_N^k).
\]

Unlike the \(p_k(x) \) polynomial, \(\Phi_L(x) \) has integer coefficients which, for \(L \) smaller than 105, are equal to 0, 1 and \(-1\)\([6]\). Therefore no multiplication is required to compute the polynomial division. The polynomial \(\Phi_L(x) \) has degree \(\phi(L) \), so that \(2|\phi(L) - 1 \) real multiplications are needed to compute \(V_k \) using the JCO algorithm.

3 The JCO-Goertzel Algorithm

The computation of \(R(x) \) from \(v(x) \) via the JCO algorithm is multiplication free. The polynomial \(R(x) \) in \([12]\) has degree \(\leq (\phi(L) - 1) \) and can be written as
\[
R(x) = p_k(x)q(x) + v(x),
\]
from which the \(V_k \) component can be computed by the Goertzel algorithm, as in \([9]\). Therefore, the number of real multiplications in the JCO-Goertzel algorithm is \(\phi(L) \). Due to the fact that
\[
\phi(L) < L \leq N,
\]
it is clear that the JCO-Goertzel algorithm is more efficient, in terms of multiplicative complexity, than the Goertzel algorithm.

Table \([1]\) shows the multiplicative complexity (real multiplications) of the Goertzel, JCO and JCO-Goertzel algorithms, for some values of \(N \) and \(k \), assuming that \(v_k \in \mathbb{R} \). When \(\phi(L) = 2 \), the cyclotomic polynomial \(\Phi_L(x) \) is equal to \(p_k(x) \) and the multiplication by the coefficient \(A = 2 \cos(2\pi k/N) \) is a trivial one. Consequently, for \(L = 3, 4, 6 \) in Table \([1]\) the algorithms present the same performance. From \([12]\), it is clear that the only case for which the Goertzel algorithm outperforms JCO is when \(L = N \) and \(N \) is a prime number, as indicated in Table \([1]\) for \(N = 83 \).

\(N \)	\(k \)	Goertzel	JCO	JCO-Goertzel	\(L \)
12	1	12	6	4	12
2	2	2	2	2	4
3	2	2	2	4	
4	2	2	2	3	
32	1	32	32	32	32
2	32	14	8	16	16
3	32	30	16	32	32
4	32	6	4	8	
48	1	48	30	16	48
2	48	14	8	24	
3	48	14	8	16	
4	48	6	4	12	
83	1	83	83	83	83
120	1	120	62	32	120
2	120	30	16	60	
3	120	30	16	40	
4	120	14	8	30	

4 Hardware Implementation

The hardware implementation of the Goertzel algorithm can be made using the autoregressive filter
\[
H(z) = \frac{1}{1 - W_N^k z^{-1}},
\]
with input v_n, $n = 0, \ldots, N - 1$ and output y_n. The filter computes

$$V_k = y_N.$$ \hspace{1cm} (17)

To derive a hardware implementation of the JCO algorithm, $H(z)$ is written as

$$H(z) = \frac{1}{\Phi_L(z^{-1})} \prod_{\text{ord}(W_k) = L, i \neq k} \left(1 - W_N^{-i} z^{-1}\right).$$ \hspace{1cm} (18)

so that, from (7) and the H algorithm, the components are all trivial. An attractive aspect of this implementation is that the v_n components are fed into the shift register circuit in arrival order, thus requiring no components storage.

The desired DFT component is obtained from the filter output as $V_{128} = y_{1024}$. The corresponding hardware implementation of the JCO algorithm is shown in Figure 3. The computation of V_{128} requires only 2 multiplications and 1027 additions, in contrast to 1024 multiplications and 2049 additions as required by the Goertzel algorithm.

Figure 3: Example 1 JCO hardware implementation, $a_1 = \frac{\sqrt{2}}{2}(1 + j)$ and $a_3 = \frac{\sqrt{2}}{2}(-1 + j) = -a_1^*$.

5 Conclusions

In this paper two new algorithms for computing a single component of the discrete Fourier transform, the JCO and the JCO-Goertzel algorithms, are proposed. Both algorithms have, in general, a better performance in terms of computational complexity, when compared to the well known Goertzel algorithm, which is the standard procedure for this type of computation. In particular, the JCO-Goertzel algorithm has the lowest multiplicative complexity, as far as we know, of the algorithms that compute a single component of an N-point DFT.

The approach presented in this paper represents a change in paradigm with respect to the Goertzel method in the sense that, instead of using a fixed polynomial of degree 2, the cyclotomic polynomial $\Phi_L(x)$ is used. L is an integer that is a function of N, the DFT length, and k, the index of the DFT component to be computed. This means that different components of the DFT will be computed with different complexities. Consequently, considering that the JCO-Goertzel algorithm requires less than N multiplications for each DFT component computed, it can be used to compute an N-point DFT with less than N^2 multiplications.

Application scenarios that use the Goertzel algorithm will benefit from the techniques introduced in this paper. In the field of real numbers, for instance, the detection of DTMF signals is a typical and important application. In the finite field context, the syndrome computation in the decoding of a BCH code can be implemented by the Goertzel algorithm. Therefore, considering that a finite field version of the results presented here can...
be derived following essentially the same approach, the proposed algorithms can be used to assist the decoding of such codes.

References

[1] A.V. Oppenheim, R.W. Schafer, and J. R. Buck, *Discrete-Time Signal Processing*, 2nd ed. Prentice Hall, 1999.

[2] G. Goertzel, An algorithm for the evaluation of Infinite trigonometric series, *The American Mathematical Monthly*, vol. 65, no. 1, pp. 34-35, 1958.

[3] R. Beck, A. Dempster, and I. Kale, Finite-precision Goertzel Filters used for signal tone detection, *Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on*, vol. 48, no. 7, pp. 691-700, Jul 2001.

[4] R. J. McEliece, *Finite Fields for Computer Scientists and Engineers*. Kluwer Academic Publishers, 1987.

[5] D. M. Burton, *Elementary Number Theory*, 6th ed. McGraw-Hill, 2007.

[6] R. E. Blahut, *Fast Algorithms for Digital Signal Processing*. Addison-Wesley Publishing Company, 1984.

[7] J. Beraldin and W. Steenaart, Overflow analysis of a fixed-point implementation of the Goertzel algorithm, *Circuits and Systems, IEEE Transactions on*, vol. 36, no. 2, pp. 322-324, Feb 1989.

[8] J. F. Chicharo and M. T. Kilani, A sliding Goertzel algorithm, *Signal Processing*, vol. 52, no. 3, pp. 283-297, 1996.

[9] R. Garcia-Reguet, S. Gonzalez, M. Funes, and S. Maestri. Implementation of a novel synchronization method using sliding Goertzel DFT, *Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on*, pp. 1-5, Oct. 2007.

[10] R. E. Blahut, *Theory and Practice of Error-Control Codes*. Addison-Wesley Publishing Company, 1984.