Syk Activation by the Src-family Tyrosine Kinase in the B Cell Receptor Signaling

By Tomohiro Kurosaki,* † Minoru Takata,* † Yuji Yamanashi,§ Tetsuya Inazu,‖ Takanobu Taniguchi,‖ Tadashi Yamamoto,§ and Hirohei Yamamura‖

From the *Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965; the †Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut; the §Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1, Shinbanjokai, Minato-ku, Tokyo 108, Japan; and the ‖Department of Biochemistry, Fukui Medical School, Matsuoka, Fukui, 910-11, Japan

Summary

Signaling through the B cell antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Src-protein-tyrosine kinase [PTK]; Lyn, Fyn, Blk, or Lck) and Syk kinase. We have investigated the interaction between the Src-PTK and the Syk kinase in the BCR signaling. In contrast to wild-type B cells, BCR-mediated tyrosine phosphorylation of Syk and activation of its in vitro kinase activity were profoundly reduced in lyn-negative cells. The requirement of the Src-PTK to induce tyrosine phosphorylation and activation of Syk was also demonstrated by cotransfection of syk and src-PTK cDNAs into COS cells. These results suggest that the Src-PTK associated with BCR phosphorylates the tyrosine residue(s) of Syk upon receptor stimulation, enhancing the activity of Syk.

Materials and Methods

Cell Culture and DNA Transfection. COS-7 cells were cultured in DME containing 10% FCS. Wild-type and lyn-negative DT40 cells were cultured in RPMI 1640 supplemented with 10% FCS. Methods to establish lyn-negative DT40 cells were described in detail (23). Briefly, using gene targeting constructs including chicken genomic lyn and drug selection markers such as Neo, we created the lyn-negative cells by homologous recombination. Three alleles of lyn locus were sequentially disrupted and after isolating the three alleles targeted clone, we confirmed that this clone has incorporated a single copy of each construct. Transfection of lyn cDNA into the lyn-negative cells restored the normal BCR-mediated functions such as Ca2+ mobilization or overall tyrosine phosphorylation pattern (23). Mouse lyn cDNA (from R. Perlmutter, University of Washington, Seattle, WA) (24), human lyn cDNA (American Type Culture Collection, Rockville, MD) (25) were cloned into the pcEXV-3 vector. A point mutation in the ATP binding site of porcine syk cDNA (20) and lyn cDNA was created by polymerase chain reaction. Wild-type and kinase-negative syk cDNAs were cloned into the pcDL-SRc296 vector (26). DNA (15 μg each DNA/60-mm dish) was transfected into COS-7 cells using the calcium–phosphate method. For DNA transfection into DT40 cells, syk cDNA was cloned into the pApuro vector (23). DNA was linearized, transfected into wild-type and lyn-negative DT40 cells (23) by electroporation, and selected in the presence of puromycin (0.5 μg/ml). The expression of Syk in drug-resistant clones was analyzed by Western blotting.

Immunoprecipitation Analysis. DT40 cells were stimulated by a mAb, M4 (27), that recognizes chicken IgM (from C. Chen, Univer-
tyrosine phosphorylation on a number of proteins, whereas the induction of phosphorylation on many of these substrates was abolished in lyn-negative cells (23). Although endogenous Syk is expressed in DT40 cells, we transfected porcine syk cDNA into wild-type and lyn-negative cells in order to easily detect the expression of Syk. Wild-type and lyn-negative DT40 cells transfected with syk cDNA were stimulated with anti-BCR mAb M4, and immunoprecipitated with anti-Syk antibody which recognizes only porcine Syk. These immunoprecipitates were analyzed by antiphosphotyrosine mAb 4G10 and anti-Syk Ab (Fig. 1 A). Syk was tyrosine phosphorylated upon BCR stimulation in wild-type DT40 cells, with very rapid kinetics. In contrast, the induction of tyrosine phosphorylation on Syk in lyn-negative cells was barely detected; overexposure of this blot showed the weak 4G10 reactive species of Syk by 3 min stimulation of BCR. These results showed that Lyn is primarily involved in the induction of tyrosine phosphorylation of Syk through BCR signaling in DT40 cells. The antiphosphotyrosine mAb reactive species of Syk migrated a little more slowly than anti-Syk Ab reactive one. This difference probably reflects the tyrosine phosphorylation of Syk.

Syk has been already shown to be activated by cross-linking of the BCR (21, 22). To examine whether this activation is dependent on Src-PTK, we carried out in vitro kinase assay of Syk in wild-type and lyn-negative DT40 cells after BCR stimulation. As shown in Fig. 1 B, cross-linking of BCR stimulated autophosphorylation activity of Syk in wild type cells, consistent with previous reports (21, 22). This rapid activation of Syk was not observed in lyn-negative cells. However, a 5-min stimulation of BCR on lyn-negative cells resulted in about a twofold increase of autophosphorylation activity of lyn. In wild-type DT40 cells, the dominant autophosphorylated Syk after BCR stimulation migrated a little more slowly than the major Syk molecule, suggesting that the antiphosphotyrosine mAb reactive Syk corresponds to this activated autophosphorylated molecule. These results suggest that Lyn-dependent phosphorylation increases the autophosphorylation activity of Syk through BCR stimulation in DT40 cells.

Results and Discussion

Since Syk is drastically tyrosine phosphorylated upon cross-linking of the BCR (21, 22), we examined the possibility that Src-PTK phosphorylates Syk through the BCR signal transduction. To address this issue, wild-type and lyn-negative DT40 chicken B cell lines were used. RNA blot analysis of DT40 cells revealed that lyn and syk are expressed in this cell line. Transcripts of the src, lck, lyn, blk, yes, hck, or zap-70 could not be detected, showing that lyn and syk are expressed dominantly. Stimulation of BCR evoked a drastic change in
To provide more insights into the interaction between Src-PTK and Syk, we cotransfected the src-PTK and syk cDNAs into COS cells (Fig. 2). Tyrosine phosphorylation of Syk was only observed in the presence of Lyn, as judged by antiphosphotyrosine mAb reactivity. In contrast, the tyrosine phosphorylation of Lyn was not drastically changed by the presence of Syk; the increased tyrosine phosphorylation of Lyn in the presence of Syk is accounted for by the expression extent of Lyn (data not shown). Comparison of anti-Syk and antiphosphotyrosine blotting showed that the antiphosphotyrosine mAb reactive molecule is corresponding to the upper band of the anti-Syk Ab reactive species. To examine the specificity of each Src-PTK member in its capability of phosphorylation on Syk, cotransfection of lyn or ick with syk cDNAs was carried out. Similar to cotransfection with lyn and syk cDNAs, Syk was tyrosine phosphorylated in the presence of Fyn (Fig. 2) or Lck (data not shown), indicating no strict specificity for Src-PTK members.

To exclude the possibility that the observed tyrosine phosphorylation of Syk is due to the enhanced autophosphorylation activity induced by Src-PTK, cotransfection of kinase-negative syk and lyn cDNAs was carried out. The Syk kinase-negative mutant was also tyrosine phosphorylated in the presence of Lyn, suggesting that Lyn phosphorylates Syk directly, rather than affects the autophosphorylation activity of Syk. However, in the presence of Lyn, the extent of tyrosine phosphorylation of the wild-type Syk was about threefold higher than that of the kinase-negative one (Fig. 3, left). Thus, this observation suggests that tyrosine phosphorylation of Syk by Lyn may enhance Syk autophosphorylation or that Lyn may not only phosphorylate Syk, but also enhance Syk autophosphorylation activity through a phosphorylation-independent mechanism. Cotransfection experiments with kinase-negative lyn and syk cDNAs showed that kinase activity of Lyn is essential for phosphorylation of Syk (Fig. 3, right).

To determine the change in Syk activity induced by Src-PTK in COS cells, we compared the autophosphorylation activity of Syk in the absence or presence of Src-PTKs. Fig. 4 shows that the autophosphorylation activity of Syk is increased by Lyn, or Fyn, and that most of this enhanced activity corresponds to the antiphosphotyrosine mAb reactive species of Syk (Fig. 4, upper band in anti-Syk blotting; bottom left). Under these conditions, the association of Lyn or Fyn with Syk could not be detected, as judged by the appearance of phosphate-labeled Lyn or Fyn. Autophosphorylation activity of Lyn or Fyn was not changed by the presence of Syk (data not shown). The overall tyrosine phospho proteins of the COS cell extract transfected with syk alone or cotransfected with syk and lyn cDNAs, was also analyzed with an antiphosphotyrosine mAb. The tyrosine phospho proteins of the COS cell extract cotransfected with syk and lyn cDNAs was significantly increased, compared with either alone. This induction of tyrosine phosphorylation of cellular proteins is attributed to the enhanced kinase activity of Syk induced by Lyn, since the tyrosine phospho proteins of the COS cell extract cotransfected with lyn and kinase-negative syk cDNAs.
Figure 4. Stimulation of phosphorylation activity of Syk by Src-PTK in COS cells. COS cells were transfected with indicated combinations of cDNAs. Transfected COS cells were lysed by modified RIPA buffer, and immunoprecipitated by anti-Syk Ab. Immunoprecipitates were divided, and half of them were used for in vitro kinase assay (top left). The remaining half were used for Western blotting with anti-Syk Ab (bottom left). Transfected cells were dissolved in NP-40 buffer, electrophoresed on an 8% SDS-PAGE gel (same amount of protein content per lane), blotted, and incubated with antiphosphotyrosine mAb 4G10 (right).

was similar to that transfected with lyn cDNA alone (Fig. 4, right).

Analysis of wild-type and lyn-negative DT40 B cells revealed that the tyrosine phosphorylation of Syk through BCR stimulation requires Lyn in DT40 cells. However, these data do not distinguish the possibility that Syk is phosphorylated directly or indirectly by Lyn through BCR signaling. Kinase-negative Syk was tyrosine phosphorylated only in the presence of Lyn and kinase-negative Fyn was unable to phosphorylate Syk in COS cells, suggesting that Syk is directly phosphorylated by Src-PTK.

Even in the lyn-negative DT40 cells, autophosphorylation activity of Syk is about twofold stimulated by cross-linking of BCR, indicating that Syk is activated by receptor aggregation in the absence of Lyn to some extent. This result is consistent with the previous report that stimulation of the Syk chimera bearing a CD16 extracellular domain and a Syk kinase intracellular domain, induced protein tyrosine phosphorylation (29). However, in the wild-type DT40 cells, BCR-mediated autophosphorylation activity of Syk was more rapid and drastic. These results demonstrate that Lyn enhances the phosphorylation activity of Syk through BCR signaling in DT40 cells. The tyrosine phosphorylated species of Syk seems to have an activated autophosphorylation activity, judged by the gel mobility shift, implicating the correlation between phosphorylation of Syk and its activity. This is also supported by the observation that in COS cells, the tyrosine phosphorylated species of Syk induced by Lyn or Fyn has an increased autophosphorylation activity. In TCR signaling, it was already proposed that ZAP-70, which is a homologue of Syk, requires Lck or Fyn for synergistic induction of PTK activity (30). Our data using COS cells are consistent with the previous report that coexpression of Src-PTK with ZAP-70 leads to a remarkable increase in tyrosine phosphorylation (31, 32).

Although our results suggest that the phosphorylation of Syk by Src-PTK activates its kinase activity, it is still possible that Syk may be activated through another mechanism by Src-PTK. For example, the association of Src-PTK with Syk may enhance Syk activity. Thus, our observations provide the possibility that the activation of Syk through phosphorylation by Src-PTK is one of the mechanisms accounting for vast tyrosine phosphorylation through BCR stimulation.

We thank M. Kurosaki for expert technical assistance; C. Chen and M. Cooper for mAb M4; Y. Koga for anti-Lck mAb; T. Mak for kk cDNA; and R. Perlmutter for fyn cDNA. We also thank J. V. Ravetch, C. Homcy, S. Karathanasis, S. Takeda, and H. Sabe for comments and suggestions.

This work was supported in part by a grant-in-aid for International Scientific Research Program from the Ministry of Education, Science, and Culture, Japan (to H. Yamamura).

Address correspondence to Dr. Tomohiro Kurosaki, American Cyanamid Company, Lederle Laboratories, Department of Cardiovascular Molecular Biology, Bldg. 200, Room 4611, 401 North Middletown Road, Pearl River, NY 10965.

Received for publication 15 November 1993 and in revised form 14 February 1994.
References

1. Reth, M. 1992. Antigen receptors on B lymphocytes. *Ann. Rev. Immunol.* 10:97.
2. Desiderio, S.V. 1992. B-cell activation. *Curr. Opin. Immunol.* 4:252.
3. Costa, T.E., R.R. Franke, M. Sanchez, Z. Misulovin, and M.C. Nussenzweig. 1992. Functional reconstitution of an immunoglobulin antigen receptor in T cells. *J. Exp. Med.* 175:1669.
4. Sanchez, M., Z. Misulovin, A.L. Burkhardt, S. Mahajan, T. Costa, R. Franke, J.B. Bolen, and M. Nussenzweig. 1993. Signal transduction by immunoglobulin is mediated through Igα and Igβ. *J. Exp. Med.* 178:1049.
5. Kim, K., G. Alber, P. Weiser, and M. Reth. 1993. Differential signaling through the Igα and Igβ components of the B cell antigen receptor. *Eur. J. Immunol.* 23:911.
6. Gold, M.R., D.A. Law, and A.L. DeFranco. 1990. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. *Nature (Lond.)* 345:810.
7. Campbell, M.-A., and B.M. Sefon. 1990. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. *EMBO (Eur. Mol. Biol. Organ.) J.* 9:2125.
8. Gold, M.R., L. Matsuuchi, R.B. Kelly, and A.L. DeFranco. 1991. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. *Proc. Natl. Acad. Sci. USA.* 88:3436.
9. Gold, M.R., V.W.-F. Chan, C.W. Turck, and A.L. DeFranco. 1992. Membrane immunoglobulin crosslinking regulates phosphatidylinositol 3-kinase in B lymphocytes. *J. Immunol.* 148:2012.
10. Yamanashi, Y., Y. Fukui, B. Wongsasang, Y. Kinoshita, Y. Ichimori, K. Toyoshima, and T. Yamamoto. 1992. Activation of Src-like protein-tyrosine kinase Lyn and its association with phosphatidylinositol 3-kinase upon B-cell antigen receptor-mediated signaling. *Proc. Natl. Acad. Sci. USA.* 89:1118.
11. Gold, M.R., M.T. Crowley, G.A. Martin, F. McCormick, and A.L. DeFranco. 1993. Targets of B lymphocyte antigen receptor signal transduction include the p21*GTPase-activating protein* (GAP) and two GAP-associated proteins. *J. Immunol.* 150:377.
12. Bustelo, X.R., and M. Barbacid. 1992. Tyrosine phosphorylation of the *vav* proto-oncogene product in activated B cells. *Science (Wash. DC).* 256:1196.
13. Bustelo, X.R., J.A. Ledbetter, and M. Barbacid. 1992. Product of *vav* proto-oncogene defines a new class of tyrosine protein kinase substrates. *Nature (Lond.)* 356:68.
14. Margolis, B., P. Hu, S. Katzav, W. Li, J.M. Oliver, A. Ullrich, A. Weiss, and J. Schlesinger. 1992. Tyrosine phosphorylation of *vav* proto-oncogene product containing SH2 domain and transcription factor motifs. *Nature (Lond.)* 356:71.
15. Cogheshall, K.M., J.C. McHugh, and A. Altman. 1992. Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-γ2 in B lymphocytes. *Proc. Natl. Acad. Sci. USA.* 89:5660.
16. Burkhardt, A.L., M. Brunswick, J.B. Bolen, and J.J. Mond. 1991. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases. *Proc. Natl. Acad. Sci. USA.* 88:7440.
17. Yamanashi, Y., T. Kakiuchi, J. Mizuguchi, T. Yamamoto, and K. Toyoshima. 1991. Association of B cell antigen receptor with protein tyrosin kinase Lyn. *Science (Wash. DC).* 251:192.
18. Clark, M.R., K.S. Campbell, A. Kazlauskas, S.A. Johnson, M. Hertz, T.A. Potter, C. Pleiman, and J.C. Cambier. 1992. The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. *Science (Wash. DC).* 258:123.
19. Hutchcroft, J.E., M.L. Harrison, and R.L. Geahlen. 1992. Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. *J. Biol. Chem.* 267:8613.
20. Taniguchi, T., T. Kobayashi, J. Kondo, K. Takahashi, H. Nakamura, J. Suzuki, K. Nagai, T. Yamada, S. Nakamura, and H. Yamamura. 1991. Molecular cloning of a porcine gene *syk* that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. *J. Biol. Chem.* 266:15790.
21. Hutchcroft, J.E., M.L. Harrison, and R.L. Geahlen. 1991. B lymphocyte activation is accompanied by phosphorylation of a 72-kDa protein-tyrosin kinase. *J. Biol. Chem.* 266:14846.
22. Yamada, T., T. Taniguchi, C. Yang, S. Yasue, H. Sato, and H. Yamamura. 1993. Association with B-cell-antigen-receptor protein with protein-tyrosine kinase p72*syk* and activation by engagement of membrane IgM. *Eur. J. Biochem.* 213:455.
23. Takata, M., H. Sabe, A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurosaki. 1994. Tyrosine kinases Lyn and Syk regulate the B cell receptor-coupled Ca²⁺ mobilization through distinct pathway. *EMBO (Eur. Mol. Biol. Organ.) J.* In press.
24. Cooke, M.P., and R.M. Perlmutter. 1989. Expression of a novel form of the *syn* proto-oncogene in hematopoietic cells. *New Biol.* 1:66.
25. Yamanashi, Y., S. Fukushige, K. Semba, J. Suzuki, N. Miyajima, K. Matsubara, T. Yamamoto, and K. Toyoshima. 1987. The yes-related cellular gene *lyn* encodes a possible tyrosin kinase similar to p56*ck*. *Mol. Cell. Biol.* 7:237.
26. Takebe, Y., M. Seiki, J. Fujisawa, P. Hoy, K. Yokota, K. Arai, M. Yoshida, and N. Arai. 1988. SRα promoter: an efficient and versatile mammalian CDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. *Cell. Mol. Biol. 8:466.*
27. Chen, C.-L.H., J.E. Lehmeyer, and M.D. Cooper. 1982. Evidence for an IgD homologue on chicken lymphocytes. *J. Immunol.* 129:2580.
28. Sabe, H., M. Okada, H. Nakagawa, and H. Hanafusa. 1992. Activation of c-Src in cells bearing v-Crk and its suppression by Csk. *Mol. Cell. Biol.* 12:4706.
29. Kolanus, W., C. Romeo, and B. Seed. 1993. T cell activation by clustered tyrosine kinases. *Cell.* 74:171.
30. Weiss, A., and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. *Cell.* 76:263.
31. Chan, A.C., M. Iwashima, C.W. Turck, and A. Weiss. 1992. ZAP-70: A 70 kD protein-tyrosine kinase that associates with the TCR 5 chain. *Cell.* 71:649.
32. Iwashima, M., B.A. Irving, N.S.C. van Oers, A.C. Chan, and A. Weiss. 1994. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. *Science (Wash. DC).* 263:1136.

1729 Kurosaki et al. Brief Definitive Report