UNIVERSAL COUNTING OF
LATTICE POINTS IN POLYTOPES

IMRE BÁRÁNY
Mathematical Institute of the Hungarian Academy of Sciences,
POB 127, 1364 Budapest, Hungary
barany@math-inst.hu, and
Dept. Mathematics,
University College London,
Gower Street, WC1E 6BT London, UK

JEAN–MİCHÈL KANTOR
Institut Mathématique de Jussieu,
Université Paris 7, 4 Place Jussieu,
75252 Paris, France
kantor@math.jussieu.fr

Abstract. Given a lattice polytope P (with underlying lattice \mathbb{L}), the universal counting function $U_P(\mathbb{L}') = |P \cap \mathbb{L}'|$ is defined on all lattices \mathbb{L}' containing \mathbb{L}. Motivated by questions concerning lattice polytopes and the Ehrhart polynomial, we study the equation $U_P = U_Q$.

Mathematics Subject Classification: 52B20, 52A27, 11P21

1Partially supported by Hungarian Science Foundation Grant T 016391, and by the French–Hungarian Bilateral Project Balaton F–30/96
1. The universal counting function

We will denote by V a vector space of dimension n, by \mathbb{L} a lattice in V, of rank n. Let

$$G_L = \mathbb{L} \rtimes GL(\mathbb{L})$$

be the group of affine maps of V inducing isomorphism of V and \mathbb{L} into itself; in case

$$\mathbb{L} = \mathbb{Z}^n \subset V = \mathbb{Q}^n, G_n = \mathbb{Z}^n \rtimes GL(\mathbb{Z}^n)$$
corresponds to affine unimodular maps. An \mathbb{L}–polytope is the convex hull of finitely many points from \mathbb{L}; \mathcal{P}_L denotes the set of all \mathbb{L}–polytopes. For a finite set A denote by $|A|$ its cardinality. Finally, let \mathcal{M}_L be the set of all lattices containing \mathbb{L}.

Definition 1. Given any \mathbb{L}–polytope P, the function $U_P : \mathcal{M}_L \to \mathbb{Z}$ defined by

$$U_P(\mathbb{L}') = |P \cap \mathbb{L}'|$$

is called the *universal counting function* of P.

This is just the restriction of another function $U : \mathcal{P}_L \times \mathcal{M}_L \to \mathbb{Z}$ to a fixed $P \in \mathcal{P}_L$, where U is given by

$$U(P, \mathbb{L}') = |P \cap \mathbb{L}'|.$$

Note, further, that U_P is invariant under the group, G_{tr}, generated by \mathbb{L}–translations and the reflection with respect to the origin, but, of course, not invariant under G_L.

Example 1. Take for \mathbb{L}' the lattices $\mathbb{L}_k = \frac{1}{k} \mathbb{L}$ with $k \in \mathbb{N}$. Then

$$U_P(\mathbb{L}_k) = |P \cap \frac{1}{k} \mathbb{L}| = |kP \cap \mathbb{L}| = E_P(k)$$

where E_P is the Ehrhart polynomial of P (see [Ehr]). We will need some of its properties that are described in the following theorem (see for instance
[Ehr],[GW]). Just one more piece of notation: if F is a facet of P and H is the affine hull of F, then the relative volume volume of F is defined as

$$\text{rvol}(F) = \frac{\text{Vol}_{n-1}(F)}{\text{Vol}_{n-1}(D)}$$

where D is the fundamental parallelootope of the $(n - 1)$–dimensional sublattice of $H \cap \mathbb{L}$. For a face F of P that is at most $(n - 2)$–dimensional let $\text{rvol}(F) = 0$. Note that the relative volume is invariant under $\mathcal{G}_\mathbb{L}$ and can be computed, when $\mathbb{L} = \mathbb{Z}^n$, since then the denominator is the euclidean length of the (unique) primitive outer normal to F (when F is a facet).

Theorem 1. Assume P is an n–dimensional \mathbb{L}–polytope. Then E_P is a polynomial in k of degree n. Its main coefficient is $\text{Vol}(P)$, and its second coefficient equals

$$\frac{1}{2} \sum_{F \text{ a facet of } P} \text{rvol}(F).$$

It is also known that E_P is a $\mathcal{G}_\mathbb{L}$–invariant valuation, (for the definitions see [GW] or [McM]). The importance of E_P is reflected in the following statement from [BK]. For a $\mathcal{G}_\mathbb{L}$–invariant valuation ϕ from $P_\mathbb{L}$ to an abelian group G, there exists a unique $\gamma = (\gamma_i)_{i=0,...,n}$ with $\gamma_i \in G$ such that

$$\phi(P) = \sum \gamma_i e_{P,i}$$

where $e_{P,i}$ is the coefficient of k^i of the Ehrhart polynomial.

It is known that E_P does not determine P, even within $\mathcal{G}_\mathbb{L}$ equivalence. [Ka] gives examples lattice–free \mathbb{L}–simplices with identical Ehrhart polynomial that are different under $\mathcal{G}_\mathbb{L}$. The aim of this paper is to investigate whether and to what extent the universal counting function determines P.

We give another description of U_P. Let $\pi: V \to V$ be any isomorphism satisfying $\pi(\mathbb{L}) \subset \mathbb{L}$. Define, with a slight abuse of notation,

$$U_P(\pi) = |\pi(P) \cap \mathbb{L}| = |P \cap \pi^{-1}(\mathbb{L})|. $$
Set $\mathbb{L}' = \pi^{-1}(\mathbb{L})$. Since \mathbb{L}' is a lattice containing \mathbb{L} we clearly have

$$U_P(\pi) = U_P(\mathbb{L}').$$

Conversely, given a lattice $\mathbb{L}' \in \mathcal{M}_L$, there is an isomorphism π satisfying the last equality. (Any linear π mapping a basis of \mathbb{L} to a basis of \mathbb{L}' suffices.) The two definitions of U_P via lattices or isomorphisms with $\pi(\mathbb{L}) \subset \mathbb{L}$ are equivalent. We will use the common notation U_P.

Example 2. Anisotropic dilatations. Take $\pi : \mathbb{Z}^n \to \mathbb{Z}^n$ defined by

$$\pi(x_1, \ldots, x_n) = (k_1 x_1, \ldots, k_n x_n),$$

where $k_1, \ldots, k_n \in \mathbb{N}$. The corresponding map U_P extends the notion of Ehrhart polynomial and Example 1.

Simple examples show that U_P is not a polynomial in the variables k_i.

2. A necessary condition

Given a nonzero $z \in \mathbb{L}^*$, the dual of \mathbb{L}, and an \mathbb{L}–polytope P, define $P(z)$ as the set of points in P where the functional z takes its maximal value. As is well known, $P(z)$ is a face of P. Denote by $H(z)$ the hyperplane $z \cdot x = 0$ (scalar product). $H(z)$ is clearly a lattice subspace.

Theorem 2. Assume P, Q are \mathbb{L}–polytopes with identical universal counting function. Then, for every primitive $z \in \mathbb{L}^*$,

$$(* \quad \text{rvol } P(z) + \text{rvol } P(-z) = \text{rvol } Q(z) + \text{rvol } Q(-z).$$

The theorem shows, in particular, that if $P(z)$ or $P(-z)$ is a facet of P, then $Q(z)$ or $Q(-z)$ is a facet of Q. Further, given an \mathbb{L}–polytope P, there are only finitely many possibilities for the outer normals and volumes of the facets of another polytope Q with $U_P = U_Q$. So a well–known theorem of Minkowski implies,
Corollary 1. Assume P is an \mathbb{L}-polytope. Then, apart from lattice translates, there are only finitely many \mathbb{L}-polytopes with the same universal counting functions as P.

Proof of Theorem 2. We assume that P, Q are full-dimensional polytopes. It is enough to prove the theorem in the special case when $\mathbb{L} = \mathbb{Z}^n$ and $z = (1, 0, \ldots, 0)$. There is nothing to prove when none of $P(z), P(-z), Q(z), Q(-z)$ is a facet since then both sides of (*) are equal to zero. So assume that, say, $P(z)$ is a facet, that is, $\text{rvol } P(z) > 0$.

For a positive integer k define the linear map $\pi_k : V \to V$ by

$$\pi_k(x_1, \ldots, x_n) = (x_1, kx_2, \ldots, kx_n).$$

The condition implies that the lattice polytopes $\pi_k(P)$ and $\pi_k(Q)$ have the same Ehrhart polynomial. Comparing their second coefficients we get,

$$\sum_{F \text{ a facet of } P} \text{rvol } \pi_k(F) = \sum_{G \text{ a facet of } Q} \text{rvol } \pi_k(G),$$

since the facets of $\pi_k(P)$ are of the form $\pi_k(F)$ where F is a facet of P.

Let $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{Z}^{n*}$ be the (unique) primitive outer normal to the facet F of P. Then $\zeta' = (k\zeta_1, \zeta_2, \ldots, \zeta_n)$ is an outer normal to $\pi_k(F)$, and so it is a positive integral multiple of the unique primitive outer normal ζ'', that is $\zeta' = m\zeta''$ with m a positive integer. When k is a large prime and ζ is different from z and $\zeta_1 \neq 0$, then $m = 1$ and $\text{rvol } \pi_k(F) = O(k^{n-2})$. When $\zeta_1 = 0$, then $m = 1$, again, and the ordinary $(n - 1)$-volume of $\pi_k(F)$ is $O(k^{n-2})$. Finally, when $\zeta = \pm z$, $\text{Vol } \pi_k(F) = k^{n-1} \text{Vol } F$.

So the dominant term, when $k \to \infty$, is $k^{n-1}(\text{rvol } P(z) + \text{rvol } P(-z))$ since by our assumption $\text{rvol } P(z) > 0$. □

3. Dimension two

Let P be an \mathbb{L}-polygon in V of dimension two. Simple examples show again that \mathcal{U}_P is not a polynomial in the coefficients of π. 5
In the planar case we abbreviate \(\text{rvol} P(z) \) as \(|P(z)| \). Extending (and specializing) Theorem 1 we prove

Proposition 3. Suppose \(P \) and \(Q \) are \(\mathbb{L} \)-polygons. Then \(U_P = U_Q \) if and only if the following two conditions are satisfied:

(i) \(\text{Area}(P) = \text{Area}(Q) \),

(ii) \(|P(z)| + |P(-z)| = |Q(z)| + |Q(-z)| \) for every primitive \(z \in \mathbb{L}^* \).

Proof. The conditions are sufficient: (i) and (ii) imply that, for any \(\pi \), \(\text{Area}(\pi(P)) = \text{Area}(\pi(Q)) \) and \(|\pi(P)(z)| + |\pi(P)(-z)| = |\pi(Q)(z)| + |\pi(Q)(-z)| \).

We use Pick’s formula for \(\pi(P) \), (see [GW], say):

\[
|\pi(P) \cup \mathbb{L}| = \text{Area} \pi(P) + \frac{1}{2} \sum_{z \text{ primitive}} |\pi(P)(z)| + 1.
\]

This shows that \(U_P = U_Q \), indeed.

The necessity of (i) follows from Theorem 1 immediately, (via the main coefficient of \(E_P \)), and the necessity of (ii) is the content of Theorem 2. \(\square \)

Corollary 2. Under the conditions of Proposition 3 the lattice width of \(P \) and \(Q \), in any direction \(z \in \mathbb{L}^* \) are equal.

Proof. The lattice width, \(w(z, P) \), of \(P \) in direction \(z \in \mathbb{L}^* \) is, by definition (see [KL],[Lo]),

\[
w(z, P) = \max \{ z \cdot (x - y) : x, y \in P \}.
\]

In the plane one can compute the width along the boundary of \(P \) as well which gives

\[
w(z, P) = \frac{1}{2} \sum_e |z \cdot e|
\]

where the sum is taken over all edges \(e \) of \(P \). This proves the corollary. \(\square \)
Theorem 3. Suppose P and Q are \mathbb{L}-polygons. Then $\mathcal{U}_P = \mathcal{U}_Q$ if and only if the following two conditions are satisfied:

(i) $\text{Area}(P) = \text{Area}(Q)$,

(ii) there exist \mathbb{L}-polygons X and Y such that P resp. Q is a lattice translate of $X + Y$ and $X - Y$ (Minkowski addition).

Remark. Here X or Y is allowed to be a segment or even a single point. In the proof we will ignore translates and simply write $P = X + Y$ and $Q = X - Y$.

Proof. Note that (ii) implies the second condition in Proposition 3. So we only have to show the necessity of (ii).

Assume the contrary and let P, Q be a counterexample to the statement with the smallest possible number of edges. We show first that for every (primitive) $z \in \mathbb{L}^*$ at least one of the sets $P(z), P(-z), Q(z), Q(-z)$ is a point.

If this were not the case, all four segments would contain a translated copy of the shortest among them, which, when translated to the origin, is of the form $[0, t]$. But then $P = P' + [0, t]$ and $Q = Q' + [0, t]$ with \mathbb{L}-polygons P', Q'.

We claim that P', Q' satisfy conditions (i) and (ii) of Proposition 3. This is obvious for (ii). For the areas we have that $\text{Area} P - \text{Area} P'$ equals the area of the parallelogram with base $[0, t]$ and height $w(z, P)$. The same applies to $\text{Area} Q - \text{Area} Q'$, but there the height is $w(z, Q)$. Then Corollary 2 implies the claim.

So the universal counting functions of P', Q' are identical. But the number of edges of P' and Q' is smaller than that of P and Q. Consequently there are polygons X', Y with $P' = X' + Y$, and $Q' = X' - Y$. But then, with $X = X' + [0, t], P = X + Y$ and $Q = X - Y$, a contradiction.
Next, we define the polygons X, Y by specifying their edges. It is enough to specify the edges of X and Y that make up the edges $P(z), P(-z), Q(z), Q(-z)$ in $X + Y$ and $X - Y$. For this end we orient the edges of P and Q clockwise and set

$$P(z) = [a_1, a_2], P(-z) = [b_1, b_2], Q(z) = [c_1, c_2], Q(-z) = [d_1, d_2]$$

each of them in clockwise order. Then

$$a_2 - a_1 = \alpha t, b_2 - b_1 = \beta t, c_2 - c_1 = \gamma t, d_2 - d_1 = \delta t$$

where t is orthogonal to z and $\alpha, \gamma \geq 0$, $\beta, \delta \leq 0$ and one of them equals 0. Moreover, by condition (ii) of Proposition 3, $\alpha - \beta = \gamma - \delta$.

Here is the definition of the corresponding edges, x, y of X, Y:

$$x = \alpha t, y = \beta t \text{ if } \delta = 0,$$

$$x = \beta t, y = \alpha t \text{ if } \gamma = 0,$$

$$x = \gamma t, y = -\delta t \text{ if } \beta = 0,$$

$$x = \delta t, y = -\gamma t \text{ if } \alpha = 0.$$

With this definition, $X + Y$ and $X - Y$ will have exactly the edges needed. We have to check yet that the sum of the X edges (and the Y edges) is zero, otherwise they won’t make up a polygon. But $\sum(x + y) = 0$ since this is the sum of the edges of P, and $\sum(x - y) = 0$ since this is the sum of the edges of Q. Summing these two equations gives $\sum x = 0$, subtracting them yields $\sum y = 0$. \qed

4. An example and a question

Let X, resp. Y be the triangle with vertices $(0, 0), (2, 0), (1, 1)$, and $(0, 0), (1, 1), (0, 3)$. As it turns out the areas of $P = X + Y$ and $Q = X - Y$ are equal. So Theorem 3 applies: $U_P = U_Q$. At the same time, P and Q are not congruent as P has six vertices while Q has only five.
However, it is still possible that polygons with the same universal counting function are equidecomposable. Precisely, P_1, \ldots, P_m is said to be a subdivision of P if the P_i are \mathbb{L}-polygons with pairwise relative interior, their union is P, and the intersection of the closure of any two of them is a face of both. Recall from section 1 the group \mathcal{G}_{tr} generated by \mathbb{L}-translations and the reflection with respect to the origin. Two \mathbb{L}-polygons P, Q are called \mathcal{G}_{tr}-equidecomposable if there are subdivisions $P = P_1 \cup \cdots \cup P_m$ and $Q = Q_1 \cup \cdots \cup Q_m$ such that each P_i is a translate, or the reflection of a translate of Q_i with the extra condition that P_i is contained in the boundary of P if and only if Q_i is contained in the boundary of Q.

We finish the paper with a question which has connections to a theorem of the late Peter Greenberg [Gr]. Assume P and Q have the same universal counting function. Is it true then that they are \mathcal{G}_{tr}-equidecomposable? In the example above, as in many other examples, they are.

References

[BK] U. Betke, M. Kneser, Zerlegungen und Bewertungen von Gitterpolytopen, J. Reine ang. Math. 358 (1985), 202–208.

[Eh] E. Ehrhart, Polinomes arithmétiques et méthode des polyédres en combinatoire, Birkhauser, 1977.

[Gr] P. Greenberg, Piecewise SL_2-geometry, Transactions of the AMS, 335 (1993), 705–720.

[GW] P. Gritzmann, J. Wills, Lattice points, in: Handbook of convex geometry, ed. P. M. Gruber, J. Wills, North Holland, Amsterdam, 1988.

[KL] R. Kannan, L. Lovász, Covering minima and lattice point free convex bodies, Annals of Math. 128 (1988), 577–602.

[Ka] J–M. Kantor, Triangulations of integral polytopes and Ehrhart polynomials, Beiträge zur Algebra und Geometrie, 39 (1998), 205–218.
[Lo] L. Lovász, *An algorithmic theory of numbers, graphs and convexity*, Regional Conference Series in Applied Mathematics 50, 1986.

[McM] P. McMullen, Valuations and dissections, in: *Handbook of convex geometry*, ed. P. M. Gruber, J. Wills, North Holland, Amsterdam, 1988.