Bidirectional associations between treatment-resistant depression and general medical conditions

Kathrine Bang Madsen, Natalie C. Momen, Liselotte Vogdrup Petersen, Oleguer Plana-Ripoll, Bartholomeus C.M. Haarman, Hemmo Drexhage, Preben Bo Mortensen, John J. McGrath, Trine Munk-Olsen

Abstract
Depression is associated with general medical conditions (GMCs), but it is not known if treatment-resistant depression (TRD) affects GMC risk and vice versa. We estimated bidirectional associations between TRD and GMCs (prior and subsequent). All individuals aged 18–69 years, born and living in Denmark, with a first-time prescription for an antidepressant between 2005 and 2012 were identified in the Danish Prescription Registry (N = 154,513). TRD was defined as at least two shifts in treatment regimes. For prior GMCs, we estimated odds ratios...
1. Introduction

Extensive evidence has shown that general medical conditions (GMCs) are associated with an increased risk for developing depression (Egede 2007; Patten 2001) and, vice versa, depression is associated with an increased risk for developing GMCs (Momen et al., 2020; Scott et al., 2016; Tegtehfo et al., 2016). The co-occurrence of depression and GMCs suggests bidirectional associations between the two, further hinting at a shared aetiology. This has been proposed for depression and cardiovascular disorder, chronic obstructive pulmonary disease, rheumatoid arthritis and diabetes type 1 and 2, explained by inflammatory and oxidative / nitrosative stress pathways (Maes et al., 2011; Miller et al., 2009). Despite not knowing what develops first (temporality of events), the co-occurrence of depression with other medical conditions is associated with greater depression symptom severity and GMC severity, decreased treatment adherence and lower remission rates compared to individuals suffering from depression without GMCs (Ishak et al., 2018; Kronish et al., 2006; Moussavi et al., 2007; Rush et al., 2008).

Both depression severity as well as treatment-resistant depression (TRD) influence the complexity of the biderocolocational association between depression and GMCs (Amital et al., 2013; Niles et al., 2015). TRD is broadly defined as the occurrence of an insufficient clinical response to at least two adequate regimes of antidepressants (Gaynes et al., 2019), and has a poor prognosis in terms of increased mortality and disability (Bang Madsen et al., 2020a, Madsen et al., 2020b). As of yet, it is unknown why some people respond to antidepressant treatment and why some people do not, and no specific set of neurobiological markers or genetic profile have proven useful in predicting response or nonresponse (Berlim and Turecki 2007). However, medical conditions related to the immune system and metabolism as well as some types of medications such as immunosuppressants, steroids and sedatives have been considered a potential contributing factor to the occurrence of TRD (Berlim and Turecki 2007; Fagiolini and Kupfer 2003; Keitner et al., 1991). Nevertheless, studies have yielded inconsistent results. Co-morbid depression and hypercholesterolemia has been found to be associated with poor response to antidepressant treatment (Papakostas et al., 2003; Sonawalla et al., 2002), and arthritis and cardiovascular problems to be associated with a worse outcome of depression (Osln et al., 2002). In contrast, a study assessing the effect of GMC comorbidity on response to next-step antidepressant treatments among TRD patients showed that medical conditions were not associated with the likelihood of remission, but the sample included only 97 subjects and medical conditions were examined with a combined score (Perlis et al., 2004). Also, another study found no significant difference between TRD and non-TRD patients with regards to the prevalence of any ICD-10 category of GMCs, this study also included only a relatively limited number of patients (N = 702), limiting statistical power to detect GMCs (Amital et al., 2013).

So far, studies conducted on TRD and medical conditions have mainly been clinical studies based on data sources with insufficient information on the sequence of the events studied, as well as limited sample sizes and follow-up time. As a direct consequence, no studies have been positioned to enlighten the bidirectional association between TRD and GMC and, more importantly, have not answered the overarching questions: i) Do previous medical conditions influence the treatment outcome of a depressive episode and ii) does TRD increase the risk of subsequent medical conditions? To specifically investigate the outlined bidirectional associations, the aim of this study was twofold: first, to examine any potential difference in prior medical conditions between TRD and non-TRD patients and second, to estimate the difference in risk of subsequent medical conditions between those with TRD and non-TRD following their first depressive episode.
(Mors et al., 2011), and the Danish National Patient Register (Lyngé et al., 2011). We identified the study population in the Danish National Prescription Registry, including all individuals born and living in Denmark who filled their first prescription for an antidepressant drug (ATC-code N06A) with the indication “for depression” or “for prevention of depression” (indication codes 168 and 270) aged 18-69 years between January 1, 2005 and December 31, 2012 (N = 175,639).

In order to capture only first-time antidepressant users, a set of four exclusion criteria were applied: 1) Individuals were excluded if they had filled a prescription for a potential add-on medication for depression, including lithium (N05AN01), risperidone (N05AX08), olanzapine (N05AH03), aripiprazole (N05AX12) and quetiapine (N05AH04), before their first prescription for an antidepressant drug (n = 430; 0.2%). 2) Linking each individual to the Danish Psychiatric Central Research Registry and the Danish National Patient Registry, individuals were excluded if they had a hospital in- or outpatient contact before filling their first antidepressant prescription for one of the following disorder categories: Organic, including symptomatic, mental disorders (ICD-10: F00-09, ICD-8: 290.09, 290.10, 290.11, 290.18, 290.19, 292.x9, 293.x9, 294.x9, 309.x9), Schizophrenia, schizotypal and delusional disorders (ICD-10: F20-29, ICD-8: 295.x9, 296.89, 297.x9, 298.29-298.99, 299.04, 299.05, 299.09, 301.83), and Bipolar disorders (ICD-10: F30-31, ICD-8: 296.19, 296.39, 298.19) (n = 2991; 1.7%) (Pedersen et al., 2014). 3) Individuals were excluded if they had a hospital in- or outpatient contact with a diagnosis of single or recurrent depressive episode (ICD-10: F32, F33, ICD-8: 296.09, 296.29, 298.09, 300.49) more than 30 days prior to their first antidepressant (n = 3374; 1.9%); otherwise they were included in the sample with follow-up beginning on the date of their first prescription. 4) Individuals were excluded if their first treatment regime lasted less than four weeks (n = 14,331; 8.2%). The final study population included 154,513 individuals with depression.

To answer the two aims, two different approaches were used resulting in two different subsets of the population, which are shown in Figure 1 and described in detail in the following.

2.2. Ethics

According to Danish law, informed consent is not required for register-based studies. The Danish Data Protection Agency and the Danish Health Data Authority approved the current study. All data were de-identified and not recognizable at an individual level.

2.3. Definition of treatment-resistant depression

We defined TRD based on the established definition of at least two shifts in treatment regimes, which has been used in recent studies of TRD (Bang Madsen et al., 2020a; Conway et al., 2017; Gaynes et al., 2019; Madsen et al., 2020b). Shifts were identified and defined using three criteria: 1) Shift in medication out of class, e.g. from selective serotonin reuptake inhibitors (SSRI) to serotonin-norepinephrine reuptake inhibitors (SNRI). 2) Augmentation with other psychotropic drugs; lithium, risperidone, olanzapine, aripiprazole and quetiapine or a combination of two different antidepressant drug classes at the same time. 3) In- or outpatient contact with single or recurrent depressive episode. Shifts were only counted if they occurred within the same episode of continuous medical treatment within two years from first antidepressant prescription (Bang Madsen et al., 2020a; Kubitz et al., 2013, Madsen et al., 2020b). Hence, patients were classified as having TRD if they e.g., had two shifts in medication class or one shift in medication class AND augmentation/combination OR a hospital diagnosis of single or recurrent depressive episode. TRD was classified on the date that the criteria were met. For further information, the definition of depressive episode and medication shifts using dispensed prescriptions from The Danish National Prescription Registry have been described in detail elsewhere (Bang Madsen et al., 2020a, Madsen et al., 2020b).

2.4. General medical conditions

Information about GMCs was obtained using criteria based on previous Danish research on coexisting conditions going back to 1995 (the year prescription data became complete) (Momen et al., 2020; Prior et al., 2016). As described in Momen et al., the criteria focus on 31 medical conditions, within nine broad categories: cardiovascular, endocrine, pulmonary, gastrointestinal, urogenital, musculoskeletal, hematologic, neurologic and oncologic conditions (Momen et al., 2020). We identified individuals with GMCs by combining data from three sources: diagnoses made during inpatient admissions and outpatient and emergency visits from the Danish National Patient Registry (Lyngé et al., 2011), prescriptions for disease-specific medications in the Danish National Prescription Registry (Kildehoes et al., 2011), and diagnoses recorded as causes of death in the Danish Register of Causes of Death (only for incident GMCs) (Helweg-Larsen 2011). For example, chronic pulmonary disease was identified by the ICD-10 diagnosis J40–J47 and by prescriptions for obstructive airway disease drugs (ATC code R03). The diagnoses (ICD-10 codes) and drugs (Anatomical Therapeutic Chemical classification system codes) that were included in the definition of each medical condition are provided in Supplementary Table 1. The diagnosis date of the medical condition of interest was the date of first hospital diagnosis, the date of the relevant repeat prescription, or the date of death from the medical condition, whichever occurred first.

2.5. Covariates

Covariates included GMCs other than the GMC of interest and number of other GMCs (0,2,3,4+) defined and categorized as above. Age at first antidepressant prescription was obtained from the Danish National Prescription Registry (Kildehoes et al., 2011) and date of birth, sex and migration status were obtained from the Danish Civil Registration System (Pedersen 2011).
2.6. Statistical analyses

Characteristics of TRD and non-TRD patients were summarized by the use of descriptive statistics.

Prior medical conditions (aim 1): We estimated associations between prior medical conditions and TRD by comparing medical conditions going back to 1995 between TRD cases and a matched reference group of depression patients (non-TRD) (Fig. 1). For each TRD case, five controls were randomly selected from the study population matching on date of birth (+/− 60 days), sex and age at first antidepressant prescription fill (+/− 6 months). Example: a patient was defined treatment-resistant on August 20, 2008, he/she was matched with five patients of same age and sex, who redeemed their first antidepressants on the same date as the case, and who on August 20, 2008 had not become TRD. From this date and backward we look to see if they between 1995 and the index date have had any of the GMCs. Associations were examined using conditional logistic regression models. Models were unadjusted and adjusted for other prior GMCs and number of other prior GMCs and estimates are presented as odds ratios (OR) for each sex.

Subsequent medical conditions (aim 2): To evaluate the association between TRD and subsequent medical conditions, individuals with a prior medical condition of interest were excluded (Fig. 1). We compared incidence rates of a diagnosis of a medical condition according to the presence or absence of TRD using Cox proportional hazards models with age as the underlying time scale. Patients were followed from the date of first antidepressant prescription until emigration, death, the GMC of interest or December 31, 2015, whichever came first. Patients were censored if they, after their first prescription and within two years, had a hospital contact with the ICD-10 diagnoses organic mental disorders (F00-09), schizophrenia, schizotypal and delusional disorders (F20-29), manic episode (F30), and bipolar disorder (F31) on the date of admission. TRD was treated as a time-varying variable, meaning that an individual moved from the unexposed (non-TRD) to the exposed group (TRD) when they fulfilled the requirements for the definition of TRD. Models were adjusted for birth year, age at first antidepressant prescription, other previous GMCs, and number of previous GMCs. Hazard ratios (HR) are presented for each sex.

Statistical analyses were performed in Stata 15.1 (StataCorp, College Station, TX, USA).

3. Results

In the period from 2005 to 2012, 154,513 patients with first-time depression redeemed an antidepressant prescription at ages 18-69 years. Of the total study population, 8294 (5.4%) met the defined criteria for TRD during the follow-up. There were more women in both groups; TRD (60%), non-TRD (58%), and a larger proportion of the TRD group were between 18 and 29 years at the time of their first antidepressant prescription fill compared to non-TRD (37% vs. 26%) and fewer were between 50 and 69 years (21% vs. 31%), Table 1.

The temporal associations of TRD and the nine broad categories of GMCs are shown in Fig. 2. Detailed results for each of the 31 medical conditions are provided in Tables 2 (prior GMCs) and 3 (subsequent GMCs).

3.1. Prior medical conditions occurring before TRD - Women

For women with TRD, the prevalence of musculoskeletal disorders before they became treatment-resistant was larger
Fig. 2 Temporal associations of treatment-resistant depression and nine broad categories of general medical conditions in women and men. To the left is shown the odds for patients with TRD of having had a medical condition before they became treatment-resistant compared with matched non-TRD controls, presented as odds ratios adjusted for other GMCs and number of other GMCs. To the right is shown the risk for patients with TRD of subsequent GMCs compared to all non-TRD patients, presented as hazard ratios adjusted for birthyear, age at first prescription, previous GMCs and number of previous GMCs (patients with prior medical conditions were excluded).

compared to matched non-TRD controls (aOR: 1.35, 95% CI: 1.26-1.46) (Table 2). This was driven by painful conditions (aOR: 1.38, 95% CI: 1.28-1.48) and connective tissue disorder (aOR: 1.23, 95% CI: 1.00-1.51). The prevalence of prior pulmonary disorders was slightly larger (aOR: 1.08, 95% CI: 1.01-1.15) among women with TRD, but the associations of any of the disorders in the category were not significantly increased individually. Larger prevalence of prior neurological disorders (aOR: 1.19, 95% CI: 1.09-1.29) was mainly driven by migraine (aOR: 1.22, 95% CI: 1.09-1.36), while for multiple sclerosis the prevalence was smaller (aOR: 0.46, 95% CI: 0.24-0.88). For endocrine disorders, associations were in opposite directions; diabetes was more prevalent (aOR: 1.23, 95% CI: 1.03-1.46), and thyroid disorder was less prevalent (aOR: 0.87, 95% CI: 0.75-1.00). Prior oncological disorders were more prevalent in non-TRD versus TRD patients (aOR: 0.76, 95% CI: 0.62-0.93).

3.2. Subsequent medical conditions occurring after first medically treated depressive episode - Women

For women with TRD, the risk was increased for subsequent cardiovascular disorders (aHR: 1.43, 95% CI: 1.32-1.54), mainly hypertension (aHR: 1.47, 95% CI: 1.40-1.52) and dyslipidemia (aHR: 1.42, 95% CI: 1.27-1.58); and for endocrine disorders (aHR: 1.52, 95% CI: 1.37-1.67), where the risks of diabetes (aHR: 1.63, 95% CI: 1.42-1.87) and thyroid disorder (aHR: 1.38, 95% CI: 1.21-1.58) were increased (Table 3). The risk of subsequent neurological disorders (aHR: 1.24, 95% CI: 1.13-1.35) was mainly driven by migraine (aHR: 1.22, 95% CI: 1.08-1.39), epilepsy (aHR: 1.70, 95% CI: 1.25-2.30) and neuropathies (aHR: 1.19, 95%CI: 1.03-1.37). In addition, for women with TRD the risk of subsequent pulmonary disorders was slightly increased (aHR. 1.12, 95%
Table 1 Demographic characteristics of TRD and non-TRD patients (N = 154,513).

	TRD n = 8294	Non-TRD n = 146,219
Sex		
Female	4938 (60)	85,522 (58)
Birthyear		
1936–1944	345 (4)	10,469 (7)
1945–1954	916 (11)	24,743 (17)
1955–1964	1414 (17)	28,318 (19)
1965–1974	1826 (22)	31,934 (22)
1975–1984	1945 (24)	29,506 (20)
1985–1994	1848 (22)	21,246 (15)
Year of first AD prescription (years)		
2005–2006	1934 (24)	36,580 (25)
2007–2008	2077 (25)	37,594 (26)
2009–2010	2349 (28)	40,620 (28)
2011–2012	1934 (23)	31,425 (21)
Age at first AD prescription (years)		
18–29	3044 (37)	38,446 (26)
30–49	3495 (42)	62,352 (43)
50–69	1755 (21)	45,421 (31)

CI: 1.02-1.24). Finally, the risk of ulcer/chronic gastritis (aHR: 1.55, 95% CI: 1.22-1.98) and painful condition (aHR: 1.23, 95% CI: 1.15-1.32) was increased.

3.3. Prior medical conditions occurring before TRD - men

For men with TRD, the prevalence of musculoskeletal disorders at the time they became treatment-resistant was larger compared to matched controls (aOR: 1.30, 95% CI: 1.19-1.42), driven by painful conditions (aOR: 1.32, 95% CI: 1.20-1.43) (Table 2). While no association was found for cardiovascular disorders as a category (aOR: 1.00, 95% CI: 0.90-1.12), a negative association was found for peripheral artery occlusion (aOR: 0.64, 95%CI: 0.45-0.92) and stroke (aOR: 0.68, 95% CI: 0.55-0.86). For neurological disorders (aOR: 1.03, 95% CI: 0.92-1.16), the prevalence of migraine (aOR: 1.25, 95% CI: 1.00-1.56) and neuropathies (aOR: 1.27, 95% CI: 1.07-1.52) were larger in men with TRD versus non-TRD.

3.4. Subsequent medical conditions occurring after first medically treated depressive episode - Men

For men with TRD, the risk was increased for cardiovascular disorders (aHR: 1.31, 95% CI: 1.19-1.43), mainly hypertension (aHR: 1.36, 95% CI: 1.22-1.51) and dyslipidemia (aHR: 1.24, 95% CI: 1.10-1.40); and for endocrine disorders (aHR: 1.24, 95% CI: 1.07-1.44), driven by diabetes (aHR: 1.36, 95% CI: 1.15-1.60) (Table 3). The increased risk of musculoskeletal disorders (aHR: 1.48, 95% CI: 1.08-2.04) was due to connective tissue disorder (aHR: 1.95, 95% CI: 1.43-2.65) and painful condition (aHR: 1.12, 95% CI: 1.02-1.22), and the increased risk of hematological disorders (aHR: 1.38, 95% CI: 1.10-1.74) was due to anemias (aHR: 1.39, 95% CI: 1.10-1.77). For neurological disorders (aHR: 1.19, 95% CI: 1.07-1.34), Parkinson’s disease (aHR: 2.15, 95% CI: 1.34-3.43), multiple sclerosis (aHR: 2.07, 95% CI: 1.04-4.13) and hearing problems (aHR: 1.28, 95% CI: 1.03-1.59) were the primary causes.

4. Discussion

To our knowledge, this is the first study to investigate the bidirectional associations between TRD and a broad and comprehensive range of GMCs. We found that for both women and men with TRD the prevalence of prior musculoskeletal disorders (connective tissue disorder in women and painful conditions in both) and migraine before TRD onset was larger than in matched controls with depression. We further found differences between sexes; for women with TRD, prior diabetes was more prevalent and neurological disorders were less prevalent, while for men with TRD, prior neuropathies were more prevalent. For subsequent medical conditions where we explored risk of GMCs after first depressive episode, cardiovascular (hypertension and dyslipidemia), endocrine (diabetes), neurological (mainly epilepsy in women and Parkinson’s disease in men) and musculoskeletal disorders (connective tissue disorder in men and painful condition in both) were increased for both sexes with TRD. In addition, for women with TRD, subsequent chronic pulmonary disease and gastric ulcers were increased, while for men with TRD, increased subsequent hematological disorders (anemias) was found.

The current study is exploratory and offers an overview of the bidirectional associations between TRD and GMCs, and can be used to generate hypotheses for future studies that consider the associations in detail. We do not propose a causal relationship between TRD and medical conditions. The presence of both TRD and a medical condition may be confounded by previous exposures (e.g., childhood abuse, socioeconomic factors, and shared environmental risk factors) or shared genetic factors. However, we speculate that specific explanations for our observations may include several factors related to the metabolism, the immune system, and potential shared genetic vulnerability.

Our observed associations should be considered in light of previous studies suggesting that a poorer outcome and response to treatment characterize depressed patients with concurrent illness irrespective of the coexisting diagnosis. This suggests that any additional burden, rather than the burden caused by specific illness, is the determining factor in predicting a poorer prognosis (Black et al., 1987; Coryell et al., 1985; Keitner et al., 1991). However, other studies suggest that only certain somatic disorders, such as neurological disorders and connective tissue disorders, play a role in the treatment response of depression (Berlim and Turecki 2007; Oslin et al., 2002), which is in accordance with our results.

Cardiovascular problems such as heart disease, hypertension and dyslipidemia have been reported to be accompanied by co-morbid depression and some studies have even found that co-occurring cardiovascular disorders are associated with poor response to antidepressant treatment in pa-
patients with depression (Oslin et al., 2002; Papakostas et al., 2003; Sonawalla et al., 2002). In contrast, we found no associations between TRD and prevalent cardiovascular disorders, which is in line with the study by Amital et al. (2013), but patients with TRD had an increased risk of both subsequent hypertension and dyslipidemia. This finding might suggest that although cardiovascular conditions may not necessarily have an impact on the likelihood to respond to treatment, untreated/insufficiently treated depression might play a role in the occurrence of certain cardiovascular conditions. However, caution should be exercised regarding directionality of this association, because cardiovascular diseases can remain indolent for a prolonged duration before symptoms manifest (Li et al., 2020). Also, given that we restricted on first-time depressive episode, this finding might be due to an effect of age, since the population is relatively young at time of first treatment and cardiovascular conditions have a later onset.

Migraine shares common genetic variant risks with depression (de Boer, van den Maagdenberg, and Terwindt, 2019), and several studies have demonstrated that migraine is often associated with depression (Minen et al., 2016; Oedegaard et al., 2006), and that this may be a bidirectional association (Breslau et al., 1991). We found that for both women and men with TRD, migraine was more prevalent. This is in line with the study by Amital, who found that patients with TRD were more likely to experience prevalent migraine, but the study included a very small sample and the association was not statistically significant (Amital et al., 2013). Evidence suggest that migraineurs who
Condition	WOMEN	MEN								
	N of obs	Risktime (years)	n of TRD failures	aHR*	aHR** 95% CI	N of obs	Risktime (years)	n of TRD failures	aHR*	aHR** 95% CI
Cardiovascular	70,386	439,688	720	1.51	(1.32;1.54)	47,252	281,713	491	1.35	(1.19;1.43)
Hypertension	73,726	472,566	532	1.47	(1.40;1.52)	51,868	319,49	367	1.39	(1.22;1.51)
Dyslipidemia	85,531	545,613	356	1.42	(1.27;1.58)	55,456	339,416	281	1.26	(1.10;1.40)
Ischemic heart disease	88,481	603,656	80	1.11	(0.84;1.32)	60,495	389,954	108	1.09	(0.88;1.29)
Atrial fibrillation	89,778	616,331	30	0.87	(0.59;1.23)	62,632	407,671	57	0.98	(0.74;1.26)
Heart failure	90,071	619,584	26	1.39	(0.94;2.07)	63,200	412,509	38	0.98	(0.69;1.32)
Peripheral artery occlusive	89,601	614,868	40	1.14	(0.83;1.56)	62,865	409,266	48	0.97	(0.71;1.26)
Endocrine	82,670	548,338	419	1.57	(1.13;1.67)	59,563	381,487	186	1.33	(1.07;1.44)
Diabetes	87,431	593,064	218	1.75	(1.42;1.87)	60,659	391,143	151	1.45	(1.15;1.60)
Thyroid disorder	85,345	574,311	235	1.41	(1.21;1.58)	63,178	411,453	41	1.19	(0.84;1.57)
Gout	NA	NA	NA	NA	NA	63,509	415,036	14	0.81	(0.43;1.24)
Pulmonary	59,809	381,377	438	1.17	(1.02;1.24)	48,328	299,501	253	1.07	(0.92;1.19)
Chronic pulmonary disease	72,853	484,837	259	1.19	(1.01;1.30)	55,821	357,450	160	1.14	(0.94;1.29)
Allergy	70,332	458,639	368	1.15	(0.98;1.22)	53,4	335,965	165	0.99	(0.82;1.12)
Gastrointestinal	87,369	592,700	152	1.18	(0.96;1.33)	60,883	392,025	147	1.23	(0.99;1.38)
Ulcer/chronic gastritis	89,329	612,094	71	1.67	(1.22;1.98)	62,707	408,560	56	1.40	(0.99;1.71)
Chronic liver disease	89,949	618,597	24	1.08	(0.69;1.59)	63,187	412,385	45	1.10	(0.79;1.43)
Inflammatory bowel disease	89,334	613,324	38	1.19	(0.82;1.58)	63,305	413,35	23	1.36	(0.86;2.00)

(continued on next page)
Table 3 (continued)

Condition	WOMEN	MEN								
	N of obs	Risktime (years)	n of TRD failures	aHR*	aHR** 95% Cl	N of obs	Risktime (years)	n of TRD failures	aHR*	aHR** 95% Cl
Diverticular disease of intestine	89,798	615,395	46	1.01	0.98 (0.73;1.32)	63,419	412,771	48	1.13	1.09 (0.81;1.45)
Urogenital	90,096	619,993	19	1.12	1.02 (0.65;1.63)	61,703	397,144	104	1.03	1.02 (0.84;1.24)
Chronic kidney disease	90,096	619,993	19	1.12	1.02 (0.65;1.63)	63,59	415,673	29	1.18	1.11 (0.77;1.62)
Prostate disorders	NA	NA	NA	NA	NA	62,021	399,849	83	0.99	0.99 (0.79;1.23)
Musculoskeletal	65,190	396,952	157	1.16	1.15 (0.93;1.43)	47,781	284,558	74	1.48	1.48 (1.08;2.04)
Connective tissue disorder	88,544	604,017	78	1.28	1.22 (0.97;1.54)	63,309	413,315	44	2.02	1.95 (1.43;2.65)
Osteoporosis	88,790	604,017	87	1.04	1.03 (0.83;1.28)	63,602	414,580	40	1.23	1.18 (0.86;1.62)
Painful condition	66,573	408,861	840	1.27	1.23 (1.15;1.32)	48,187	287,864	475	1.13	1.12 (1.02;1.22)
Hematological	89,224	611,281	96	1.29	1.19 (0.97;1.47)	63,118	411,894	77	1.42	1.38 (1.10;1.74)
HIV/AIDS	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anemias	89,248	611,458	96	1.29	1.19 (0.97;1.46)	63,241	412,925	143	1.39	1.39 (1.10;1.77)
Oncological	86,659	596,091	122	1.07	1.06 (0.88;1.27)	61,204	403,031	104	1.01	0.99 (0.82;1.21)
Neurological	76,858	495,416	537	1.29	1.24 (1.13;1.35)	56,669	352,833	306	1.24	1.19 (1.07;1.34)
Vision problem	89,375	609,747	76	1.15	1.15 (0.91;1.44)	63,198	410,625	52	1.00	0.99 (0.75;1.31)
Hearing problem	88,403	604,020	75	1.22	1.19 (0.95;1.51)	61,777	399,459	87	1.29	1.28 (1.03;1.59)
Migraine	83,462	560,191	257	1.33	1.22 (1.08;1.39)	62,522	406,252	55	1.39	1.27 (0.96;1.67)
Epilepsy	89,526	614,966	45	1.83	1.70 (1.25;2.30)	63,270	412,361	39	1.24	1.18 (0.85;1.62)
Parkinson’ s disease	90,341	622,017	7	1.85	1.85 (0.87;4.00)	63,872	417,661	19	2.22	2.15 (1.34;3.43)
Multiple sclerosis	89,982	619,029	16	1.18	1.13 (0.68;1.87)	63,770	417,459	9	2.07	2.08 (1.04;4.13)
Neuropathies	86,982	586,562	205	1.28	1.19 (1.03;1.37)	61,590	396,219	121	1.20	1.12 (0.94;1.35)

NA where there are less than 5 observations or if it is possible to calculate the number in row line based on the numbers in the other rows.

*adjusted for birth year and age at first prescription.

**adjusted for birth year, age at first prescription, other GMCs and number of other GMCs.
suffer from depression are more likely to be refractory to migraine treatments (Minen et al., 2016). Our study suggest that this may also be the case for antidepressant treatment.

Autoinflammatory diseases such as arthritis and diabetes have been associated with a worse outcome of depression (Oslin et al., 2002). As for connective tissue disorder, including arthritis, compared to those with non-TRD, we found that prior diabetes was more prevalent in women with TRD, and for both women and men with TRD the risk of subsequent diabetes was increased. Although certain health behaviors and risk factors partially explain the association of depression and diabetes, mechanisms acting on a cellular level (presence of a proinflammatory state/immune dysregulation) may contribute to this association proposing a shared aetiology (Gibney and Drexhage 2013; Malhi and Mann 2018). TRD has been linked to a state of increased low-grade-inflammation (Arteaga-Henriquez et al., 2019; Benedetti et al., 2017), while the glucose intolerance of type 2 diabetes (the most prevalent form of diabetes) is considered to be due to the state of low-grade-inflammation induced by obesity, more specifically by the increased production of pro-inflammatory cytokines by the adipose tissue (Baldeón et al., 2014). Also, connective tissue disorders are characterized by an increased state of low-grade-inflammation, more speciﬁcally by a state of low-grade-inflammation induced by a high production of type II interferons (IFNs) (Maria et al., 2016). The IFNs not only induce the expression of a multitude of pro-inflammatory compounds, but also the expression of the enzyme IDO-1 affecting the tryptophan catabolism and serotonin levels (Maria et al., 2016).

Several studies have found a higher incidence of a number of medical conditions in patients with depression (Momen et al., 2020; Scott et al., 2016; Tegethoff et al., 2016). Our study adds to the existing knowledge by showing that compared to depression patients, patients with TRD have an increased risk of subsequent diseases related to the cardiovascular, endocrine, pulmonary, musculoskeletal and neurological systems suggesting that poor response to antidepressant treatment might have an influence on the broad spectrum of later GMCs. However, another possibility is that some medical conditions had been present before depression onset, but first diagnosed after depression onset. For instance, the risk of prevalent connective tissue disorder was increased for women with TRD, while for men with TRD only incident connective tissue disorder was increased. For both men and women with TRD the use of analgesics, which is used for musculoskeletal conditions, was increased both before and after depression onset. This might reflect sex differences in help-seeking behavior or differences in onset of depression between men and women. However, it may also be explained by differences in sex hormones, where estrogens are known for their collagen-increasing effect in connective tissue (Chidi-Ogbolu and Baar 2018) and depression-preventive properties (Keyes et al., 2013). Estrogens also regulate basal and stimulated HPA axis activity (Weiser and Handa 2009). The effects of a prolonged high stress state on bodily systems has repeatedly been reported as a confounding factor, increasing both the risk of medical conditions as well as depression (Menke 2019). The mechanisms underlying these effects are slowly unraveled. Just recently, it was found that chronic stress and HPA axis regulation was linked with epigenetic signatures at immune-related genes, thereby providing a possible explanation how aberrant HPA axis function may contribute to heightened inflammation and disease risk (Palma-Gudiel et al., 2020).

4.1. Strengths and limitations

Our study has several strengths, including the large sample size and use of nationwide register data which is collected on a uniform basis and without any loss to follow-up. In addition, the register information allows us to study the temporality of the medical conditions as we have the exact dates for medication use and diagnoses given, which also ensures that there are no problems caused by recall or self-reporting bias. Also, we are able to pick up fatal GMCs, which is not possible in survey studies of GMCs.

The proportion of patients with TRD (5.4%) in our study was similar to what has been reported in US Claims data (6%) (Kubitz et al., 2013) but was smaller than what has recently been reported in register-based Scandinavian studies (13-14%) (Gronemann et al., 2018; Hägg et al., 2020; Reutfors et al., 2018) and international studies (9-20%) (Fife et al., 2017; Li et al., 2019). The main reason for this are the criteria by which the populations are drawn from the registers. The above-mentioned studies investigate populations of patients who were all diagnosed with depression in specialized care. This restriction might be necessary when the indication for the prescription of antidepressants is not available and may increase the validity of the diagnosis (a diagnosis in primary care vs. a diagnosis in specialized psychiatric care). However, the restriction reduces generalizability to the majority of depressive patients who are first treated for depression in primary care (Musliner et al., 2019). Our study included all first-time pharmacologically treated depressive patients, including those who never had contact to specialized care, improving the generalizability to the broader population of individuals with depression. Another reason may be that different TRD definitions were applied in the studies. A recent study by Gronemann et al. examining treatment patterns in patients with a hospital diagnosis of MDD showed that those who switched treatment most often switched within ATC class (to another SSRI or SNRI) (Gronemann et al., 2021). In contrast to the studies by Gronemann et al. and Reutfors et al. we chose not to include medication switches within the same ATC class (e.g. from one SSRI to another SSRI) to avoid misclassifying patients as treatment-resistant when in fact the switch could have been made in response to side effects (Boyce et al., 2020).

A number of limitations should also be acknowledged. In registers, data is primarily collected for administrative purposes and therefore the data does not inform on whether the patients adhere to treatment, whether the treatment reduces depressive symptoms, or the reasons for which the patients shift medication (Taijale and Tiilhonen, 2021). Therefore, we use shifts in treatment trials as a proxy of failed regimes. Similarly, the exact dose of medication was not available in the registers. Instead, we used each patient’s purchase pattern to estimate the individual duration of trials for recording of shifts in medication class as applied
in our previous study (Madsen et al., 2020a) and described in the study by Tanskanen et al. (2014). Further, there are no standard methods for defining TRD, but in our previous studies, we have evaluated our TRD definition by restricting the inclusion of TRD patients and the pattern of associations with outcomes remained robust (Bang Madsen et al., 2020a, Madsen et al., 2020b). We also reduced the possibility that patients with more severe psychopathology were included in our study by excluding individuals with a diagnosis of organic mental disorder, severe mood disorder or schizophrenia before the inception of our study, and censoring individuals who received the diagnoses after start of follow-up. Also, GMC categories comprise a range of diagnoses, and ascertainment of GMCs relies on patients seeking treatment, all of which jointly can limit generalizability to specific disorders in specific populations. In addition, there could be a potential risk for surveillance bias as patients with TRD are followed up more frequently, which subsequently can lead to the detecting of other illnesses. However, in our previous study, we found a higher all-cause mortality in patients with TRD which is in line with our findings that patients with TRD have an increased risk of a broad spectrum of GMC’s (Madsen et al., 2020a). Finally, when using register information, we had no information on potential confounders such as smoking, alcohol consumption, diet, BMI, and physical activity.

Overall, the present study contributes with a broad overview of comorbid medical conditions in patients with TRD and demonstrated that patients with TRD show a distinct pattern of co-occurrence with both prevalent and incident medical conditions compared with non-TRD patients.

Women and men with TRD had higher prevalence of conditions related only to the immune or neurological systems, while the risk of subsequent medical conditions was related to a much broader spectrum of disorders. Future research is needed to determine the exact mechanisms behind the bidirectional associations between TRD and general medical conditions.

Contributors

KBM, TMO and LVP designed the study. KBM, LVP, NM and OPR conducted the analysis and KBM wrote the first draft of the manuscript. OPR, NM, JJMG, BCMH, HD, LVP, PBM and TMO made significant contributions to interpretation of the analysis and writing of the study. All authors share responsibility for the content of the manuscript. The manuscript has been approved by all authors.

Declaration of Competing Interest

The authors declare no conflicts of interest.

Acknowledgement

None

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.euroneuro.2021.04.021.

References

Amital, D., Fostick, L., Silberman, A., Calati, R., Spindelegger, C., Serretti, A., Juven-Wetzel, A., Souery, D., Mendlewicz, J., Montgomery, S., Kasper, S., Zohar, J., 2013. Physical co-morbidity among treatment resistant vs. treatment responsive patients with major depressive disorder. Eur. Neuropsychopharmacol. 23 (8), 895-901.

Arteaga-Henriquez, G., Simon, M.S., Burger, B., Weidinger, E., Wijkhuys, A., Arolt, V., Birkenhager, T.K., Musil, R., Müller, N., Drexhage, H.A., 2019. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD Patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOOD-INFLAME consortium. Front Psychiatry 10, 458.

Baldeón, R., Lucy, K.W., Wit, H.de, Ozczan, B., Oudenaren, A.van, Sempérgéugi, F., Sjibbrands, E., Grosse, L., Freire, W., Drexhage, H.A., Leenen, P.J.M., 2014. Decreased serum level of MIR-146a as sign of chronic inflammation in Type 2 diabetic patients. PLoS ONE 9 (12), e115209.

Benedetti, F., Poletti, S., Hoogenboezem, T.A., Locatelli, C., de Wit, H., Wijkhuys, A.J.M., Collombo, C., Drexhage, H.A., 2017. Higher baseline proinflammatory cytokines mark poor antidepressant response in bipolar disorder. J. Clin. Psychiatry 78 (8), e986-e993.

Berlim, M.T., Turecki, G., 2007. Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can. J. Psychiatry 52 (1), 46-54.

Black, D.W., Winokur, G., Nasrallah, A., 1987. Treatment and outcome in secondary depression: a naturalistic study of 1087 patients. J. Clin. Psychiatry 48 (11), 438-441.

de Boer, I., Maagdenberg, A.J.M.van den, Terwindt, G.M., 2019. Advance in genetics of migraine. Curr. Opin. Neurol. 32 (3), 413-421.

Boyce, P., Hopwood, M., Morris, G., Hamilton, A., Bassett, D., Baune, B.T., Mulder, R., Porter, R., Parker, G., Singh, A.B., Outhred, T., Das, P., Malhi, G.S., 2020. Switching antidepressants in the treatment of major depression: when, how and what to switch to? J. Affect. Disord. 261, 160-163.

Breslau, N., Davis, G.C., Andreski, P., 1991. Migraine, psychiatric disorders, and suicide attempts: an epidemiologic study of young adults. Psychiatry Res. 37 (1), 11-23.

Chidi-Ogbolu, N., Baar, K., 2018. Effect of estrogen on musculoskeletal performance and injury risk. Front. Physiol. 9, 1834.

Conway, C.R., George, M.S., Sackeim, H.A., 2017. Toward an evidence-based, operational definition of treatment-resistant depression: when enough is enough. JAMA Psychiatry 74 (1), 9-10.

Coryell, W., Zimmerman, M., Pfohl, B., 1985. Short-term prognosis in primary and secondary major depression. J. Affect. Disord. 9 (3), 265-270.

Egede, L.E., 2007. Major depression in individuals with chronic medical disorders: prevalence, correlates and association with health resource utilization, lost productivity and functional disability. Gen. Hosp. Psychiatry 29 (5), 409-416.

Fagioliini, A. and D.J. Kupfer, 2003. “Is treatment-resistant depression a unique subtype of depression?” 3223(03).

Fife, D., Feng, Y., Wang, M.Y.-H., Chang, C.-J., Liu, C.-Y., Juang, H.-T., Furbach, W., Singh, J., Wang, B., 2017. Epidemiology of pharmaceutically treated depression and treatment resistant depression in Taiwan. Psychiatry Res. 252, 277-283.
Gaynes, B.N., Lux, L., Gartlehner, G., Asher, G., Forman-Hoffman, V., Green, J., Boland, E., Weber, R.P., Randolph, C., Bann, C., Coker-Schwimmer, E., Viswanathan, M., Lohr, K.N., 2019. Defining treatment-resistant depression. Depress Anxiety.

Gibney, S.M., Drexhage, H.A., 2013. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J. Neurommune Pharmacol. Off J. e Soc. Neurommune Pharmacol. 8 (4), 900-920.

Gronemann, F.H., Jorgensen, M.B., Nordentoft, M., Andersen, P.K., Osler, M., 2018. Incidence of, risk factors for, and changes over time in treatment-resistant depression in Denmark: a registerto-basis cohort study. Clin. Psychi. 79 (4).

Gronemann, F.H., Petersen, J., Alulis, S., Jensen, K.J., Riise, J., Ankarfeldt, M.Z., Solem, E.J., Badker, N., Osler, M., 2021. "Treatment patterns in patients with treatment-resistant depression in Danish patients with major depressive disorder. J. Affect. Disord. 287, 204-213.

Hägg, D., Brenner, P., Reutfors, J., Li, G., DiBernardo, A., Bodén, R., Brandt, L., 2020. A register-based approach to identifying treatment-resistant depression-comparison with clinical definitions. PLoS One 15 (7), e0236434.

Helweg-Larsen, K., 2011. The Danish register of causes of death. Scand. J. Public Health 39 (7 Suppl), 26-29.

Ishak, W.W., Steiners, A.J., Klomovicz, A., Kauzor, K., Dang, J., Vanle, B., Elzahaby, C., Reid, M., Sumner, L., Danovitch, I., 2018. Major depression comorbid with medical conditions: analysis of quality of life, functioning, and depressive symptom severity. Psychopharmacol. Bull. 48 (1), 8-25.

Keitner, G.I., Ryan, C.E., Miller, I.W., Kohr, R., Epstein, N.B., 1991. 12-month outcome of patients with major depression and co-morbid psychiatric or medical illness (compound depression). Am. J. Psychiatry 148 (3), 345-350.

Keyes, K.M., Chieslack-Postava, K., Westhoff, C., Heim, C.M., Halloostim, M., Walsh, K., Koenen, K., 2013. Association of hormonal contraceptive use with reduced levels of depressive symptoms: a national study of sexually active women in the United States. Am. J. Epidemiol. 178 (9), 1378-1388.

Kildemoes, H.W., Sørensen, H.T., Hallas, J., 2011. The Danish national prescription registry. Scand. J. Public Health 39 (7 Suppl), 38-41.

Kronish, l.M., Rieckmann, N., Halm, E.A., Shimbo, D., Vorchheimer, D., Haas, D.C., Davidson, K.W., 2006. Persistent depression affects adherence to secondary prevention behaviors after acute coronary syndromes. J. Gen. Intern. Med. 21 (11), 1178-1183.

Kubitz, N., Mehra, M., Potluri, R.C., Garg, N., Cosroor, N., 2013. Characterization of treatment resistant depression episodes in a cohort of patients from a US commercial claims database. PLoS One 8 (10), e76882.

Li, C.H., Woo, T., Ganancesanthan, S., 2020. What is the association between depression and cardiovascular disease? JAMA Psychiatry.

Li, G., Fiffe, D., Wang, G., Sheehan, J.J., Boden, R., Brandt, L., Brenner, P., Reutfors, J., DiBernardo, A., 2019. All-cause mortality in patients with treatment-resistant depression: a cohort study in the US population. Ann. Gen. Psychiatry 18, 23.

Lyne, E., Sandegaard, J.L., Rebolj, M., 2011. The danish national patient register. Scand. J. Public Health 39 (7 Suppl), 30-33.

Madsen, B., Kathrine, Petersen, L.V., Plan-ripon, O., Musliner, K.L., Debot, J.C.P., Gronemann, F.H., Mortensen, P.B., Munk-Olsen, T., 2020a. Early labor force exits in patients with treatment-resistant depression: an assessment of work years lost in a danish nationwide register-based cohort study. Ther. Adv. Psychopharmacol. 10, 2045125302973791.

Madsen, K.B., Plan-ripon, O., Musliner, K.L., Debot, J.-C.P., Petersen, L.V., Munk-Olsen, T., 2020b. Cause-specific life years lost in individuals with treatment-resistant depression: a danish nation-wide register-based cohort study. J. Affect. Disord. 280 (Pt A), 250-257.

Maes, M., Kubera, M., Obuchowiczwa, E., Goehler, L., Brzeszcz, J., 2011. Depression’s multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuro Endocrinol. Lett. 32 (1), 7-24.

Malhi, G.S., Mann, J.J., 2018. “Depression.” Lancet (London, Engl.) 392 (10161), 2299-2312.

Maria, N.I., Helden-Meeuwesen, C.G.V., Bricz, Z., Paulissen, S. M.J., Steenwijk, E.C., Dalm, V.A., Daele, P.L.V., Martin van Hagen, P., Kroese, F.G.M., Roon, J.A.G.V., Harkin, A., Dik, W.A., Drexhage, H.A., Lubberts, E., 2016. Association of increased treg cell levels with elevated indoleamine 2,3-dioxygenase activity and an imbalanced kynurenine pathway in interferon-positive primary sjogren’s syndrome. Arthritis Rheumatol. 68 (7), 1688-1699.

Menke, A., 2019. Is the CPA axis as target for depression outdaded, or is there a new hope? Front. Psychiatry 10, 101.

Miller, G., Chen, E., Cole, S.W., 2009. Health psychology: developing biologically plausible models linking the social world and physical health. Annu. Rev. Psychol. 60, 501-524.

Minen, M.T., Dhaem, O.B.D., Diet, A.K.Y., Powers, S., Schwedt, T.J., Lipton, R., Silbersweig, D., 2016. Migraine and its psychiatric comorbidities. J. Neurol. Neurosurg. Psychiatr. 87 (7), 741-749.

Momen, N.C., Plana-Ripoll, O., Agerbo, E., Benros, M.E., Berglum, A.D., Christensen, M.K., Dalsgaard, S., Degenhardt, L., Jone, P.de, Debost, J.-C.P.G., Fenger-Gran, M., Gunn, J.M., Iburg, K.M., Kessing, L.V, Kessler, R.C., Laursen, T.M., Lim, C.C.W., Mors, O., Mortensen, R.P., Musliner, K.L., Nordentoft, M., Pedersen, C.B., Petersen, L.V, Ribe, A.R., Roest, A.M., Saha, S., Schork, A.J., Scott, K.M., Sievert, C., Sorensen, H.J., Stedman, T.J., Vestergaard, M., Vilhjalmsson, B., Werge, T., Weye, N., Whiteford, H.A., Prior, A., McGrath, J.J., 2020. Association between mental disorders and subsequent medical conditions. N. Engl. J. Med. 382 (18), 1721-1731.

Mors, O., Perto, G.P., Mortensen, P,Bo, 2011. The Danish psychiatric central research register. Scand. J. Public Health 39 (7 Suppl), 54-57.

Moussavi, S., Chatterji, S., Verdes, E., Tandon, A., Patel, V., Ustun, B., 2007. Depression, chronic diseases, and decrements in health: results from the world health surveys. Lancet 370 (9600), 851-858.

Musliner, K.L., Liu, X., Gasse, C., Christensen, K.S., Wimberley, T., Munk-Olsen, T., 2019. Incidence of medically treated depression in Denmark among individuals 15-44 years old: a comprehensive overview based on population registers. Acta Psychiat. scand. 139 (6), 548-557.

Niles, A.N., Dour, H.J., Stanton, A.L., Roy-Byrne, P.P., Stein, M.B., Sullivan, G., Sherbourne, C.D., Rose, R.D., Craske, M.G., 2015. Anxiety and depressive symptoms and medical illness among adults with anxiety disorders. J. Psychosom. Res. 78 (2), 109-115.

Oedegaard, K.J., Neckelmann, D., Myklebust, A., Dahl, A.A., Zwart, J.A., Hagen, K., Fasmor, O.B., 2006. Migraine with and without aura: association with depression and anxiety disorder in a population-based study. The HUNT study. Cephalalgia : Int. J. Headache 26 (1), 1-6.

Osln, D.W., Datto, C.J., Kallan, M.J., Katz, I.R., Edell, W.S., Ten, H., 2002. Association between medical comorbidity and treatment outcomes in late-life depression. J. Am. Geriatr. Soc. 50 (5), 823-828.

Palma-Gudiel, H., Prather, A.A., Lin, J., Oxendine, J.D., Guinutilo, J., Xio, K., Rubinow, D.R., Wolkowitz, O., Epe, E.S., Zannas, A.S., 2020. HPA axis regulation and epigenetic programming of immune-related genes in chronically stressed and non-stressed mid-life women. Brain Behav. Immun.
Papakostas, G.I., Petersen, T., Sonawalla, S.B., Merens, W., losifescu, D.V, Alpert, J.E., Fava, M., Nierenberg, A.A., 2003. Serum cholesterol in treatment-resistant depression. Neuropsychobiology 47 (3), 146-151.

Patten, S.B., 2001. Long-term medical conditions and major depression in a Canadian population study at waves 1 and 2. J. Affect. Disord. 63 (1-3), 35-41.

Pedersen, C.B., 2011. The Danish civil registration system. Scand. J. Public Health 39 (7 Suppl), 22-25.

Pedersen, C.B., Mors, O., Bertelsen, A., Waltorf, B.L., Agerbo, E., McGrath, J.J., Mortensen, P.B., Eaton, W.W., 2014. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry 71 (5), 573-581.

Perlis, R.H., losifescu, D.V, Alpert, J., Nierenberg, A.A., Rosenbaum, J.F., Fava, M., 2004. Effect of medical comorbidity on response to fluoxetine augmentation or dose increase in outpatients with treatment-resistant depression. Psychosomatics 45 (3), 224-229.

Prior, A., Fenger-Grøn, M., Larsen, K.K., Larsen, F.B., Robinson, K.M., Nielsen, M.G., Christensen, K.S., Mercer, S.W., Vestergaard, M., 2016. The association between perceived stress and mortality among people with multimorbidity: a prospective population-based cohort study. Am. J. Epidemiol. 184 (3), 199-210.

Reutfors, J., Andersson, T.M.L., Brenner, P., Brandt, L., DiBernardo, A., Li, G., Hagg, D., Wingard, L., Boden, R., 2018. Mortality in treatment-resistant unipolar depression: a register-based cohort study in Sweden. J. Affect. Disord. 238, 674-679.

Rush, A.J., Wisniewski, S.R., Warden, D., Luther, J.F., Davis, L.L., Fava, M., Nierenberg, A.A., Trivedi, M.H., 2008. Selecting among second-step antidepressant medication monotherapies: predictive value of clinical, demographic, or first-step treatment features. Arch. Gen. Psychiatry 65 (8), 870-880.

Scott, K.M., Lim, C., Al-Hamzawi, A., Alonso, J., Bruffaerts, R., Caldas-de-Almeida, J.M., Florescu, S., Girolamo, G.D., Hu, C., Juye, P.d., Kawakami, N., Medina-Mora, M.E., Moskalewicz, J., Navarro-Mateu, F., O’Neill, S., Piazza, M., Posada-Villa, J., Torres, Y., Kessler, R.C., 2016. Association of mental disorders with subsequent chronic physical conditions: world mental health surveys from 17 countries. JAMA Psychiatry 73 (2), 150-158.

Sonawalla, S.B., Papakostas, G.I., Petersen, T.J., Yeung, A.S., Smith, M.M., Sickinger, A.H., Gordon, J., Israel, J.A., Tedlow, J.R., Lamon-Fava, S., Fava, M., 2002. Elevated cholesterol levels associated with nonresponse to fluoxetine treatment in major depressive disorder. Psychosomatics 43 (4), 310-316.

Taipale, H., Tihonen, J., 2021. Registry-based studies: what they can tell us, and what they cannot. Eur. Neuropsychopharmacol. : J. Eur. Coll. Neuropsychopharmacol. 45, 35-37.

Tanskanen, A., Taipale, H., Koponen, M., Tolpanen, A.-M., Hartikainen, S., Ahonen, R., Tihonen, J., 2014. From prescriptions to drug use periods - things to notice. BMC Res. Notes 7, 796.

Tegdthoff, M., Stalujanis, E., Belardi, A., Meinschmidt, G., 2016. Chronology of onset of mental disorders and physical diseases in mental-physical comorbidity - a national representative survey of adolescents. PLoS One 11 (10), e0165196.

Weiser, M.J., Handa, R.J., 2009. Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscience 159 (2), 883-895.