Abstract—This paper considers the problem of optimally balancing motion energy and communication transmission energy of a mobile robot tasked with transmitting a given number of data bits to a remote station, while navigating to a pre-specified destination in a given amount of time. The problem is cast in the setting of optimal control, where the robot has to choose its path, acceleration, and transmission rate along the path so as to minimize its energy required for transmission and motion, while satisfying various power and communication constraints. We use realistic models for the robot’s channel estimation, motion dynamics, and power and energy costs. The main contribution of the paper is to show how to co-optimize robot’s path along with other communication and motion variables. Two versions of the problem are solved: the first is defined offline by assuming that all the channel measurements are taken before the robots starts moving, while in the second the channel estimation is updated while the robot is in motion, and hence it is solved online. In both cases we utilize an in-house algorithm that computes near-optimal solutions in little time, which enables its use in the online setting. The optimization strategy is described in detail and validated by simulation of realistic scenarios.

I. INTRODUCTION

Communication-aware mobile robotics is an emergent field of enquiry whose origins are in two related areas that have been extensively researched in the past twenty years: mobile sensor networks [1], [2], [3], and networked robotics systems [4], [5], [6], [7], [8]. A central problem in communication-aware robotics is in co-optimization of sensing, communication, and navigation under physical and resource constraints. More specifically, the problem of balancing transmission energy with motion energy has been the focus of research in recent years [9], [10], [11], [12], [13], and it is also the subject of this paper.

While optimization of transmission energy and motion energy has been traditionally explored separately in the respective literatures on communications and robotics (e.g., [14], [15], [16]), only recently the problem of co-optimizing the two forms of energy has begun to attract attention. In [17], the authors propose an efficient approximate path planning algorithm that minimizes motion and communication energy costs. Ref. [18] optimizes relay configurations in data-intensive wireless sensor networks. In [19], the authors develop an algorithm for maximizing the lifetime of wireless sensor networks considering both communication and motion costs of the sensors. Ref. [20] considers a dynamic co-optimization problem in the setting of optimal control and develops a Hamiltonian-based algorithm for its solution. All of the references [17], [18], [19], [20] focus on the robotics and optimization aspects of the problem while using oversimplified models for channel and communication energy costs. Realistic models of channel fading [10] are used in [21] and [13] in designing a co-optimization strategy for balancing a robot’s speed with transmission rate, and [22] develops an effective algorithm for realizing that strategy.

Ref. [22] is the starting point of this paper. It considers a robot required to transmit a given number of bits in a given amount of time to a remote station, while traversing a predetermined path. The channel quality is variable along the path, and it is predicted by the realistic model described in [21]. The considered problem is to compute the profiles of the robot’s acceleration and spectral efficiency (transmission rate per unit bandwidth) that minimize the combined energy spent on transmission and motion. We cast the problem in the framework of optimal control, and solved it by using an in-house algorithm that is simple to code and was shown to yield fast convergence.

This paper extends the problem and methodology developed in [22] in the following two ways. First, it adds the challenging element of path planning by lifting the restriction that the robot has to follow a pre-determined path. Rather, it has to compute an optimal trajectory. Second, it considers an online scenario where the channel quality, generally obtained by measurements, is updated while the robot is in motion thereby requiring a re-evaluation of the optimal trajectory for the cost to go, in contrast to [22] which does a one-time channel prediction and co-optimization before the robot starts moving. We point out that we do not use model-predictive control or rolling horizons, but rather compute the entire trajectory of the cost-to-go performance functional to the given final time. These enhancements over the setting in [22] pose significant computational challenges. The proposed scheme handles these challenges in an effective way, as shown by satisfactory solution for the example-problems presented in the sequel.

The rest of the paper is organized as follows. Section II formulates the problem and discusses relevant existing results. Section III, considering an elaborate example, solves the problem offline, while section IV applies the online version of the algorithm. Finally, Section V concludes the
paper and points out various directions for future research.

II. PROBLEM FORMULATION

This section formulates the optimal control problem, describes the channel prediction technique employed, presents the algorithm used, and recounts results of its application to the fixed-path problem presented in [22].

A. Problem Definition.

Consider a robot that has to traverse a path between a source point $S \in \mathbb{R}^2$ and a destination point $D \in \mathbb{R}^2$. The robot is transmitting a given number of bits to a remote station in a given time horizon $[0, t_f]$. The objective is to determine the robot’s path, acceleration, and transmission rate as functions of time $t \in [0, t_f]$, that minimize the total energy required for transmission and motion. The power required for motion depends on the robot’s velocity and acceleration, while its transmission power depends on its position relative to the remote station, transmission rate, and the channel quality as will be detailed below. The channel quality is assessed by known estimation techniques that are based on spatial measurements which are performed by various devices (such as static sensors in the field or crowdsourcing) and transmitted to the robot periodically. Generally, the robot has to maintain a threshold reception quality at the receiver (remote station) which requires a larger transmission power when the channel quality is lower.

The motion dynamics of the robot follow Newton’s Law as follows,

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t), \\
\dot{x}_2(t) &= u(t),
\end{align*}
\]

where $x_1 \in \mathbb{R}^2$ is the position of the robot in the plane, $x_2 \in \mathbb{R}^2$ denotes its velocity, and $u \in \mathbb{R}^2$ is its acceleration. The initial condition of this equation is $x_1(0) = S$ and $x_2(0) = 0$.

According to Ref. [15], the power required for the robot’s motion has the form

\[
P_m(t) = k_1||u(t)||^2 + k_2||x_2(t)||^2 + k_3||x_2(t)|| + k_4 + k_5||u(t)|| + k_6||u(t)|| \cdot ||x_2(t)||, \tag{2}
\]

for given constants $k_i \geq 0, i = 1, \ldots, 6$. The power required for transmitting data to the remote station is given by

\[
P_c(t) = \frac{2R(t) - 1}{K} s(x_1(t)), \tag{3}
\]

where $R(t) \geq 0$ is the spectral efficiency of the channel at time t and position $x_1(t)$, K is a constant depending on the threshold bit error rate acceptable at the receiver, and $s(x_1(t))$ is the estimated channel quality at position $x_1(t) \in \mathbb{R}^2$; see Section II-B for details. Let Q be the total number of bits the robot has to transmit, and let B denote the channel’s bandwidth. Then the following equation represents the constraint that the robot has to transmit Q bits during its motion,

\[
\int_0^{t_f} R(t) dt = \frac{Q}{B} = c.
\]

To represent this constraint without the integral, which would be more amenable to an application of the algorithm described below, we introduce an auxiliary state variable, $x_3 \in \mathbb{R}$, defined by the equation

\[
x_3 = R(t), \tag{4}
\]

with the boundary conditions $x_3(0) = 0$ and $x_3(t_f) = c$. Other final-time constraints on the state variable (position and velocity) are $x_1(t_f) = D$ and $x_2(t_f) = 0$. We also assume upper-bound constraints on $u(t)$ and $R(t)$ of the form

\[
\begin{align*}
0 &\leq ||u(t)|| \leq u_{\text{max}}, \\
0 &\leq R(t) \leq R_{\text{max}},
\end{align*}
\]

for given $u_{\text{max}} > 0$ and $R_{\text{max}} > 0$.

The related optimal control problem is defined as follows. Its input is $(u(t), R(t)) \in \mathbb{R}^2 \times \mathbb{R}$, $t \in [0, t_f]$, its state is $(x_1(t), x_2(t), x_3(t))$, and its dynamics are given by Eqs. (1) and (2) with the initial conditions $x_1(0) = S, x_2(0) = 0$, and $x_3(0) = 0$. Its performance function, to be minimized, is

\[
J := \int_0^{t_f} \left(P_m(t) + \gamma P_c(t) \right) dt, \tag{6}
\]

where $P_m(t)$ and $P_c(t)$ are the motion power and transmission power defined, respectively, by Eqs. (2) and (3), and $\gamma > 0$ is a given constant. The problem is to minimize J subject to the above dynamic equations, the upper-bound constraints on the input as defined by Eq. (5), and the final-state constraints $x_1(t_f) = D, x_2(t_f) = 0$, and $x_3(t_f) = c$.

We handle the final-state constraints with a penalty function of the form $C_1||x_1(t_f) - D||^2 + C_2||x_2(t_f)||^2 + C_3||x_3 - c||^2$, for constants $C_1 > 0$, $C_2 > 0$, and $C_3 > 0$. The resulting optimal control problem now has the following form: Minimize the cost functional J defined as

\[
J = \int_0^{t_f} \left(\frac{2R(t) - 1}{K} s(x_1) + \gamma (k_1||u(t)||^2 + k_2||x_2(t)||^2 + k_3||x_2(t)|| + k_4 + k_5||u(t)|| + k_6||u(t)|| \cdot ||x_2(t)||) \right) dt
\]

\[
+ C_1||x_1(t_f) - D||^2 + C_2||x_2(t_f)||^2 + C_3||x_3(t_f) - c||^2, \tag{7}
\]

subject to the dynamic equations

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t), & x_1(0) &= S \\
\dot{x}_2(t) &= u(t), & x_2(0) &= 0 \\
\dot{x}_3(t) &= R(t), & x_3(0) &= 0,
\end{align*}
\]

and the constraints

\[
\begin{align*}
||u(t)|| &\leq u_{\text{max}}, \\
0 &\leq R(t) \leq R_{\text{max}}.
\end{align*}
\]

B. Online Channel Prediction

Assuming the common MQAM modulation for a robot’s communication to the remote station, the required transmit power at time t can be characterized as [23]

\[
\hat{P}_c(t) = \frac{2^{R(t)} - 1}{(KY(x_1(t)))}, \tag{8}
\]

where $Y(x_1(t))$ is the channel quality at position $x_1(t) \in \mathbb{R}^2$; see Section II-B for details.
where $K = -1.5/\ln (5p_{th,b})$, $p_{th,b}$ is the given Bit Error Rate (BER) threshold at the receiver, $R(t)$ is the spectral efficiency at time t, $x_1(t) \in \mathbb{R}^2$ is the robot’s position at time t, and $\Upsilon (x_1(t))$ the instantaneous channel-to-noise ratio (CNR) at $x_1(t)$. It is well known that the CNR can be modeled as a random process with three components: path loss, shadowing and multipath fading[23]. As shown in [10], based on a small number of a priori channel measurements, a Gaussian random variable, $\Upsilon (x_1(t))$ can best characterize the CNR (in the dB domain) at an unvisited location q, the mean and variance of which are given by

$\Upsilon (x_1(t)) = H_q \hat{\theta} + \Psi^T (q) \Phi^{-1} (Y - H_q \hat{\theta}),$

$\Sigma(q) = \hat{\Sigma}_{db} + \hat{\rho}_{db}^2 - \Psi^T (q) \Phi^{-1} \Psi(q),$

where Y is the stacked vector of m a priori gathered CNR measurements, $Q = \{q_1, ..., q_m\}$ denotes the measurement positions, $H_q = [1 - 10 \log_{10}(||q - q_b||)]$, $H_q = [H_{q_1} \ldots H_{q_m}]^T$, $\Phi = \Omega + \hat{\rho}_{db} I_m$ with $[\Omega]_{i,j} = \hat{\Sigma}_{db} \exp(-||q_i - q_j||/\hat{\eta})$, for $i, j \in \{1, ..., m\}$, and $\Psi(q) = [\hat{\xi}_{db} \exp(-||q - q_1||/\hat{\eta}) ... \hat{\xi}_{db} \exp(-||q - q_m||/\hat{\eta})]$. The terms $\hat{\theta} = [K_p, \hat{n}_{PL}]^T$, $\hat{\xi}_{db}, \hat{\eta}$ and $\hat{\rho}_{db}$ are the estimated channel parameters. See [10] for more details on the estimation of channel parameters and the performance of this framework in channel prediction.

Based on this framework, the CNR at unvisited location $x_1(t)$ can be predicted as a lognormal random variable (in the linear domain). The expected transmit power $P_c(t)$ is given by

$P_c(t) = \frac{\hat{\rho}_{db}^2}{K} - E \left[\frac{1}{\Upsilon (x_1(t))} \right]. \tag{9}$

Note that for lognormally distributed $\Upsilon (x_1(t))$, we have

$E \left[\frac{1}{\Upsilon (x_1(t))} \right] = \exp \left(\frac{\ln 10}{10} \right) \frac{\sum (x_1(t))}{2} \frac{1}{\Upsilon (x_1(t))}, \tag{10}$

where $\Upsilon (x_1(t)) = 10 \Upsilon_{db}(x_1(t))/10$. Equation (10) provides an estimate of the predicted channel quality at $x_1(t)$ and we let $s(x_1(t)) = E \left[\frac{1}{\Upsilon (x_1(t))} \right]$, substituting which in Eq. (9) leads to Eq. (3) for computing the transmit power.

This framework is suitable to a setting where the channel prediction is updated as more channel measurements become available. Assume that the robot has a few channel measurement collected a priori (e.g. by static sensors in the field), based on which an initial prediction of channel quality over the workspace can be computed. The robot travels along the path obtained from minimizing J as defined in (7) with the initial channel prediction. As the robot moves, it is provided with additional channel measurements (by gathering more samples along its path, through crowdsourcing and/or by other robots in the field), which enables it to predict the channel quality more accurately. With such additional data, it solves the problem again for the remaining path, where in Eq. (7) the starting time is the present time, say $t_0 \in [0, t_f]$, and the initial condition (state) consists of the state $x(t_0)$ that has been obtained by the motion and transmission dynamics up to time t_0. The details of this online optimization procedure will be presented in Section IV.

C. Hamiltonian-Based Algorithm

Optimization algorithms typically are based on two computed objects at a given iteration: a direction (e.g., of descent), and a step size along it. Recently we developed an algorithm which is suitable for a class of power-aware optimal control problems [20, 22] and [24]. Cumulative experience with it reveals some favorable computational properties including fast convergence towards a local minimum. This does not mean fast asymptotic convergence, which characterizes an algorithm’s behavior close to a local minimum, but rather large strides towards a region of a (local) minimum. A key innovation in the algorithm is its choice of a descent direction, which is not based on gradient descent but rather follows an alternative approach requiring little computing efforts. We next explain the structure of the algorithm and summarize its performance on the power-aware problem considered in [22].

Consider the abstract Bolza optimal control problem where the system’s dynamics are defined by the equation

$\dot{x} = f(x, u)$

with an initial condition $x(0) := x_0$, where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^k$, and $f : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}^n$ is Lipschitz continuous in x and continuous in u. Given a final time $t_f > 0$, a running cost function $L : \mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}$, and a terminal-state cost function $\phi : \mathbb{R}^n \to \mathbb{R}$, define the cost functional as

$J := \int_{0}^{t_f} L(x, u) dt + \phi(x(t_f)).$

The optimal control problem, considered, is to minimize J subject to the pointwise constraints $u(t) \in U$, where $U \subset \mathbb{R}^k$ is an input-constraint set. We make the following assumption:

Assumption 1: 1). The function $f(x, u)$ is affine in $u \in U$ for every $x \in \mathbb{R}^n$, and the function $L(x, u)$ is convex in $u \in U$ for every $x \in \mathbb{R}^n$.

2). The set U is compact and convex.

Let $p(t), t \in [0, t_f]$, denote the costate (adjoint) trajectory defined by the equation

$p = -\left(\frac{\partial f}{\partial x} (x, u) \right)^T p - \left(\frac{\partial L}{\partial x} \right)^T p$

with the boundary condition $p(t_f) = \nabla \phi(x(t_f))$, and let

$H(x, u, p) := p^T f(x, u) + L(x, u)$

denote the Hamiltonian function (see, e.g., Ref. [25]). The kind of problems for which our algorithm is suitable have the property that, for given $x \in \mathbb{R}^n$ and $p \in \mathbb{R}^n$, a minimum value of the Hamiltonian $H(x, w, p)$, over $w \in U$, can be computed via a simple, explicit formula.

Any implementation of the algorithm would require approximations associated with computations performed only at time-points t lying in a finite grid in the interval $[0, t_f]$. However, it is easier to describe the algorithm in its abstract, conceptual form where computations are performed at every
This is what we do in the present abstract description, but will specify implementation details, including the choice of a grid, when describing simulation experiments in the sequel. In the following description of the algorithm, we refer to the control function \(u(t), t \in [0, t_f] \), by the boldface notation \(\mathbf{u} \).

Algorithm

Parameters: Constants \(\alpha \in (0, 1) \) and \(\beta \in (0, 1) \). Given a control \(\mathbf{u} \), compute the next control \(\mathbf{u}_{next} \) as follows:

1. **Direction from \(\mathbf{u} \):** Compute (numerically) the state and costate trajectories \(x(t) \) and \(p(t), t \in [0, t_f] \). For every \(t \in [0, t_f] \), compute a pointwise (t-dependent) minimizer of the Hamiltonian denoted by \(u^*(t) \), namely, a point \(u^*(t) \in \mathcal{U} \) satisfying

 \[
 u^*(t) = \arg\min_{u \in \mathcal{U}} \left(H(x(t), w, p(t)) \mid w \in \mathcal{U} \right).
 \]

 Define \(u^* \) to be the function \(u^*(t), t \in [0, t_f] \). Define the direction from \(\mathbf{u} \) to be \(d(t) := u^*(t) - u(t) \), namely, in functional notation, \(\mathbf{d} = u^* - \mathbf{u} \).

2. **Step size along the direction \(\mathbf{d} \):** Define

 \[
 \theta(\mathbf{u}) = \int_0^{t_f} \left(H(x(t), u^*(t), p(t)) - H(x(t), u(t), p(t)) \right) dt.
 \]

 Compute \(k \in \{0, 1, \ldots, \} \) defined as

 \[
 k = \min \left\{ j = 0, 1, \ldots \mid J(\mathbf{u} + \mathbf{d}) - J(\mathbf{u}) \leq \alpha \beta^j \theta(\mathbf{u}) \right\},
 \]

 and set the step size, \(\lambda \), to be \(\lambda = \beta^k \).

3. **Update:** Set \(\mathbf{u}_{next} \) to be

 \[
 \mathbf{u}_{next} = \mathbf{u} + \lambda \mathbf{d}.
 \]

As we pointed out, the main innovation of the algorithm is in the choice of the direction in Step 1, while Step 2 describes a standard Armijo step size; see [26] for extensive discussions thereof.

The direction is not based on explicit gradient computations but rather comprises a form of conjugate gradient, and we believe that this plays a role in the fast convergence of the algorithm that has been noted in various simulation experiments. In particular, Fig. 2 and Table I in [22], considering a one-dimensional power-aware problem, show that the algorithm makes most of its descent towards the minimum value of \(J \) in under 10 iterations. The next section exhibits similar performance of the algorithm for the path-planning problem at hand.

III. **PATH PLANNING WITH MOTION AND COMMUNICATION CO-optimization**

In this section, we consider the application of the algorithm to the problem defined in section II. The Hamiltonian associated with the optimal control problem (7) is

\[
H(x, [u, R_1], p) = p_1^T x_2 + p_2^T u + p_3 R + \frac{2R - 1}{K} s(x_1) + \gamma (k_1 ||u||^2 + k_2 ||x_2||^2 + k_3 ||x_2|| + k_4 + k_5 ||u|| + k_6 ||u|| ||x_2||),
\]

where the costates \(p_1 \in \mathbb{R}^2 \), \(p_2 \in \mathbb{R}^2 \), and \(p_3 \in \mathbb{R} \) are defined by the adjoint equations

\[
\dot{p}_1 = -\frac{2R - 1}{K} \frac{\partial s(x_1)}{\partial x_1},
\]

\[
\dot{p}_2 = -p_1 - \gamma \left(2k_2 x_2 + k_3 \frac{x_2}{||x_2||} + k_6 ||u|| \frac{x_2}{||x_2||} \right),
\]

\[
\dot{p}_3 = 0,
\]

with terminal constraints \(p_1(t_f) = 2C_1 (x_1(t_f) - D), \)

\(p_2(t_f) = 2C_2 x_2(t_f) \) and \(p_3(t_f) = 2C_3 x_3(t_f) - c \), respectively.

In the forthcoming we assume that \(k_5 = k_6 = 0 \) in (7) as we did in [15]. The minimizer of this Hamiltonian subject to the input constraints can be seen to be given by

\[
\mathbf{u}^* = \begin{cases}
-\frac{p_2}{2\gamma k_1}, & \text{if } \frac{1}{\gamma k_1} ||p_2|| \leq u_{max} \\
-\frac{p_2}{4}, & \text{if } \frac{1}{\gamma k_1} ||p_2|| > u_{max},
\end{cases}
\]

\[
R^* = \begin{cases}
\frac{1}{\ln(2)} \ln \left(\frac{-p_3 K}{\ln(2) s(x_1)} \right), & \text{if } p_3 \leq \left(\frac{\ln(2) s(x_1)}{K} \right) \\
0, & \text{otherwise}
\end{cases}
\]

Application:

Consider a robot that is tasked to move from the initial point \(S = (20, 40) \) to the final point \(D = (10, 5) \) in the plane, and it has to transmit 150 bits/Hz to a remote station located at \(q_0 = (5, 5) \). The time budget available for the task is 40 seconds. The acceleration and spectral efficiency can take maximum values of \(u_{max} = 0.5 \text{m/s}^2 \) and \(R_{max} = 6 \text{bits/Hz sec} \), respectively. The balancing factor between motion and communication was set to \(\gamma = 0.01 \), and the constants \(C_1, C_2 \) and \(C_3 \) are set to 1, 50 and 10, respectively. The Armijo step size parameters are set to \(\alpha = 0.1 \) and \(\beta = 0.5 \). The initial controls \(u_0(t) \) and \(R_0(t) \) are both set to zero. The integration step size for the simulation is set to \(dt = 0.1 \) seconds, and the algorithm is programmed to run for 500 iterations. However, the algorithm is terminated whenever the Armijo parameter \(k \) in (17) is greater than 50, indicating that a local minimum has been approached.

This robotic operation is performed under a simulated wireless channel with realistic parameters over an area of \(50m \times 50m \). The channel parameters based on [10] and [22], are \(K_{PL} = -41.34, n_{PL} = 3.86, \xi_{dB} = 3.20, \eta = 3.09m \) and \(\rho_{dB} = 1.64 \). The receiver thermal noise is \(-110 \text{ dBM} \) and the BER threshold is set to \(p_{th} = 2 \times 10^{-6} \). This channel can be predicted with few measurements over the
field by using the methodology summarized in Section II.

To illustrate this point, Fig. 1 shows a sample simulate wireless channel generated with the parameters listed above for the 250,000 points in the plane. It is then predicted : all these points based on only 500 a priori known randomly spaced channel samples (0.2%) over the field and the result is shown in Fig. 2. The two results are quite similar.

![Simulated wireless channel over the workspace.](image1)

Fig. 1. Simulated wireless channel over the workspace.

![Predicted channel based on 500 measurements.](image2)

Fig. 2. Predicted channel based on 500 measurements.

A typical cost \(J \) vs. iteration count is depicted in Fig. 3. Evidently the algorithm reaches values close to its obtained minimum in few iterations. In fact, the computed cost is reduced from the initial value of \(2.3872 \times 10^5 \) to 799.63 after 20 iterations, while the cost after 56 iterations is 565.13 when \(k \) became greater than 50. Fig. 3 also shows the tail of the cost trajectory and evidently it starts flattening after iteration 20. The 56 steps of the algorithm took 0.83 seconds of CPU time on an Intel dual-core computer with i5 processor running at 2.7 GHz.

The total motion and communication cost \(\bar{J} \), excluding the penalty term, is \(\bar{J} = 475.10 \), and the final values of state variables are \(x_1(t_f) = (9.8, 5) \), \(x_2(t_f) = (0.2, -0.8) \), and \(x_3(t_f) = 149.7 \). We note a mild discrepancy from the desired final values of \(x_1(t_f) = (10.5) \), \(x_2(t_f) = (0, 0) \), and \(x_3(t_f) = 150 \), but it can be reduced by choosing larger penalty terms \(C_1 \), \(C_2 \), and \(C_3 \). As a matter of fact, a run of the algorithm with \(C_1 = 500 \), \(C_2 = 500 \), and \(C_3 = 500 \) gave final states of \(x_1(t_f) = (9.99, 5) \), \(x_2(t_f) = (-0.08, -0.08) \), and \(x_3(t_f) = 149.99 \); an initial cost of \(J = 1.1913 \times 10^7 \), and a final total mobility and communication cost of \(J = 497.04 \) after 500 iterations. The CPU time of the run was 7.14 seconds. It is not surprising that the initial cost is higher since the penalty terms are larger, and for the same reason, the algorithm drives the control parameters to a more restricted set and hence the final energy cost is expected to be higher as well. The CPU times often are larger in penalty-function methods with larger penalty terms.

Fig. 4 shows the log plot of predicted channel quality \(s(x_1) = E[1/\Upsilon(x, y)] \), where \(\Upsilon(x, y) \) is the received CNR at position \(x_1 = (x, y) \) and the path taken by the robot in the plane. Smaller values of \(s(x_1) \) correspond to good channel quality and vice versa. The robot starting and end positions are marked as a square and a diamond, respectively, in all the figures. Instead of following a straight line between them, the robot takes a detour towards areas with predicted relatively good channel quality. For instance, the point of best channel quality is \(q_b = (5, 5) \), namely the location of base station, and hence the robot veers towards this point before turning away towards its destination point.

Fig. 5 depicts a three-dimensional graph of the robot’s motion, where the \(t \) axis representing time and the motion is in the \(x - y \) plane. The upper, blue curve represents the flow of time from 0 to 40 seconds, and the position of the robot at time \(t \) is seen by projecting the corresponding point on the upper curve onto the \(x - y \) plane, where it is indicated by a corresponding point on the red curve. Fig. 6 shows the acceleration of the robot along its path, where lengths of the arrows represent its magnitude, and Fig. 7 shows the speed.
of the robot along its path.

The spectral efficiency of the robot is shown along its path in Figure 8, where the path is marked by filled red circles, and the magnitude of spectral efficiency at corresponding points is marked in blue. Fig. 9 shows the spectral efficiency vs time. It can be seen that the robot transmits with higher spectral efficiency and hence at a higher data rate in regions of better channel quality. This is not surprising since, in regions of higher channel quality, the robot can transmit more message bits to the base station with less communication power.

Assuming a constant available bandwidth, transmission rate is proportional to spectral efficiency.

These figures show that the robot veers towards regions of predicted better channel-quality. Within these regions the required transmission power is lower, and hence the robot slows down and increases spectral efficiency and transmission rate in order to send a larger number of message bits.

IV. ONLINE OPTIMIZATION

This section extends the algorithm to a realistic and practical online setting, where the robot obtains new channel measurements while in motion. It does not discard the older measurements, but rather appends them by the new data in order to enhance its channel estimation.

The online optimal control problem is to minimize the cost...
where \(t_0 \in [0, t_f] \) is the time at which the optimization is performed, and the terms \(a_1 \) and \(a_2 \) are the current position and velocity of the robot at time \(t_0 \), and \(\bar{c} := (c - x_3(t_0^-)) \) is the number of bits per unit frequency that remains to be transmitted in the time-interval \([t_0, t_f]\). The online approach solves this problem each time a channel estimation is performed, typically at a finite number of times during the horizon \([0, t_f]\). The initial control point of each such a run of the algorithm consists of the remaining input control computed by its previous run.

The considered problem is the one discussed in Section III except that the robot performs channel prediction every 10 seconds, and each prediction is based on 100 new channel measurements taken at random locations. Also the initial run, at \(t_0 = 0 \), solves the offline problem with 100 channel samples. The combined time for channel prediction and a run of the algorithm was about 2 seconds and took under 50 iterations of the algorithm’s run.

The results of the simulation are shown in Fig. 10 and Fig. 11 where the position of the robot at the end of each prediction and optimization cycle (10 seconds) is indicated by a circle. Fig. 10 shows the computed optimal trajectories for each prediction-optimization cycle from the current time to the final time. A concatenation of the computed trajectories, which the robot actually would traverse, is indicated by the red path in Fig. 11, while the dashed blue path indicates the trajectory computed by the offline algorithm at time \(t_0 = 0 \), based on the initial channel prediction. The total energy consumed (Eq. (6)) in the offline solution (dashed blue path Fig. 11) is \(J = 371 \), while the solution of the online problem (red path in Fig. 11) yields a lower value, \(\bar{J} = 304 \).

V. CONCLUSIONS AND FUTURE RESEARCH

We considered the problem of co-optimization of communication and motion power of a robot that is required to transmit a given number of bits to a remote station in a
pre-specified amount of time, while moving between a given starting point and an end point. The problem is to compute the robot’s optimal path, acceleration and transmission rate along this path. Both offline and online versions of the problem are considered and solved by simulation of realistic channel environments. Future work would focus on extending the results from the case of a single robot to that of multiple agents having to perform coordinated tasks while maintaining formation in the face of limited energy sources.

REFERENCES

[1] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, 2002, pp. 1327–1332.

[2] Y. Mostofi, T. Chung, R. Murray, and J. Burdick, “Communication and Sensing Trade Offs in Decentralized Mobile Sensor Networks: A Cross-Layer Design Approach,” in Proceedings of the International Conference on Information Processing in Sensor Networks, Los Angeles, CA, April 2005, pp. 118–125.

[3] N. E. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni, and R. E. Davis, “Collective motion, sensor networks, and ocean sampling,” Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[4] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1482–1504, September 2011.

[5] M. M. Zavlanos, M. B. Egerstedt, Y. C. Hu, and G. J. Pappas, “Graph-theoretic connectivity control of mobile robot networks,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1525 – 1540, July 2011.

[6] H.-L. Choi, L. Brunet, and J. How, “Consensus-based decentralized auctions for robust task allocation,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 912–926, 2009.

[7] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and sweeping in changing environments,” IEEE Transaction on Robotics, vol. 28, no. 2, pp. 410–426, April 2012.

[8] J. Marden, G. Arslan, and J. Shamma, “Cooperative control and potential games,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1393–1407, 2009.

[9] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of communication signal strength in robotic networks,” in Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, May 2010, pp. 1946–1951.

[10] M. Malmirchegini and Y. Mostofi, “On the spatial predictability of communication channels,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 964–978, March 2012.

[11] A. Ghaffarkhah and Y. Mostofi, “Communication-aware motion planning in mobile networks,” IEEE Transactions on Automatic Control, special issue on Wireless Sensor and Actuator Networks, vol. 56, no. 10, pp. 2478–2485, 2011.

[12] Y. Yan and Y. Mostofi, “Robotic router formation in realistic communication environments,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 810 – 827, August 2012.

[13] A. J. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218–1230, October 1997.

[14] P. Tokekar, N. Karnad, and V. Isler, “Energy-optimal trajectory planning for car-like robots,” Autonomous Robots, pp. 1–22, 2013.

[15] A. Ghaffarkhah and Y. Mostofi, “Cooperation-aware motion planning for robotic operation,” IEEE Transactions on Control of Network Systems, vol. 1, no. 3, pp. 218 – 231, July 2014.

[16] Y. Mei, Y.-H. Lu, Y. C. Hu, and C. S. G. Lee, “Deployment of mobile robots with energy and timing constraints,” IEEE Transaction on Robotics, vol. 22, no. 3, pp. 507–522, June 2006.

[17] C. C. Ooi and C. Schindelhauer, “Minimal energy path planning for wireless robots,” Mobile Networks and Applications, vol. 14, no. 3, pp. 309–321, January 2009.

[18] F. El-Moukaddem, E. Torg, G. Xing, and G. Xing, “Mobile relay configuration in data-intensive wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 2, pp. 261–273, 2013.

[19] C. Tang and P. McKinley, “Energy optimization under informed mobility,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 9, pp. 947–962, 2006.

[20] H. Jaleel, Y. Wardi, and M. Egerstedt, “Minimizing mobility and communication energy in robotic networks: An optimal control approach,” in Proceedings of the American Control Conference, Portland, OR, 2014, pp. 2662 – 2667.

[21] A. J. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218–1230, October 1997.

[22] A. Ghaffarkhah and Y. Mostofi, “Co-optimization of communication and motion planning of a robotic operation under resource constraints and in fading environments,” IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1562–1572, 2013.

[23] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[24] M. Hale, Y. Wardi, H. Jaleel, and M. Egerstedt, “Hamiltonian-based algorithm for optimal control of switched-mode hybrid systems,” in Technical Memorandum, Georgia Tech, 2014.

[25] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation and control. CRC Press, 1975.

[26] E. Polak, Optimization: algorithms and consistent approximations. Springer-Verlag New York, Inc., 1997.