Article Supplementary Materials

Upcycling phosphorus recovered from anaerobically digested dairy manure to support production of vegetables and flowers

Katherine K. Porterfield¹, Robert Joblin², Deborah A. Neher³, Michael Curtis⁴, Steve Dvorak⁶, Donna M. Rizzo⁵,⁷, Joshua W. Faulkner³,⁸, and Eric D. Roy¹,⁴*

¹Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405 USA
²Magic Dirt Horticultural Products, LLC, Little Rock, AR 72223 USA
³Department of Plant & Soil Science, University of Vermont, Burlington, VT 05405 USA
⁴Gund Institute for Environment, University of Vermont, Burlington, VT 05405 USA
⁵CDT Tech, Inc., Columbia, CT 06489 USA
⁶DVO, Inc., Chilton, WI 53014 USA
⁷Department of Civil & Environmental Engineering, University of Vermont, Burlington, VT 05405 USA
⁸Extension Center for Sustainable Agriculture, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405 USA

* Correspondence: eroy4@uvm.edu ; +1 802-656-7359
Table S1. Nutrient contents of as-is and dried fine solids, other blend ingredients, derived plant foods, and the market alternative on a dry weight basis.

	As-is Fine Solids	Dried Fine Solids	Potting Mix	Grain & Whey Permeate	Biochar	Plant Food A	Plant Food A1	Plant Food A2	Plant Food B	Market Alternative
Total N (g kg⁻¹)	50.2	19.5	5.7	39.8b	17.8b	41.6c	41.6c	40.4c	40.1c	44.9c
Organic N (g kg⁻¹)	38.8a	17.7c	5.7d	39.7d	17.5d	40.1e	40.5e	39.7e	38.8e	NA
NH₄-N (g kg⁻¹)	11.3	1.8	0.0	0.1	0.3	1.5	1.1	0.7	1.3	NA
NO₃-N (g kg⁻¹)	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA
Total P (g kg⁻¹)	18.3	17.1	0.6	5.3	8.3	16.0	17.1	17.4	16.1	19.3
Neutral NH₄ Citrate P (g kg⁻¹)	19.4	19.5	0.4	5.3	6.8	17.3	16.5	16.0	16.9	15.7
2% Citric Acid P (g kg⁻¹)	15.3	11.9	NA	NA	NA	11.8	10.8	9.7	11.8	9.9
Olsen P (g kg⁻¹)	0.8	1.8	NA	NA	NA	1.9	1.9	2.1	1.6	0.7
Water Extractable P (g kg⁻¹)	1.9	3.0	NA	NA	NA	3.2	3.4	3.4	3.5	2.3
Total K (g kg⁻¹)	14.7	12.9	1.2	7.6	31.0	13.3	14.5	14.9	13.8	19.4
Neutral NH₄ Citrate K (g kg⁻¹)	18.6	16.9	1.5	8.4	32.5	16.9	16.2	15.8	16.1	21.4
Total C (g kg⁻¹)	405	383	329	470	550	386	413	424	388	NA
Total B (g kg⁻¹)	0.02	0.02	0.03	0.00	0.04	0.02	0.02	0.02	0.02	0.00
Total Ca (g kg⁻¹)	32	32	25	2	35	22	22	22	22	56
Total Cu (g kg⁻¹)	0.64	0.66	0.04	0.00	0.03	0.67	0.70	0.69	0.68	0.04
Total Fe (g kg⁻¹)	0.83	0.83	1.85	0.22	2.50	0.82	0.79	0.78	0.80	0.25
Total Mg (g kg⁻¹)	12	12	5.1	1.6	15	12	12	12	12	3.5
Total Mn (g kg⁻¹)	0.22	0.22	0.11	0.01	0.28	0.23	0.24	0.23	0.24	0.07
Total Na (g kg⁻¹)	5.5	5.4	0.4	1.7	7.1	5.1	5.6	5.2	5.2	1.7
Total Z (g kg⁻¹)	0.35	0.35	0.08	0.06	0.14	0.29	0.32	0.32	0.32	0.28

a Partially dried to ~45% total solids at 60°C

b Total N measured by combustion analysis

c Total N calculated as sum of total Kjeldahl N and NO₃-N

d Organic N estimated as total N – (NH₄-N + NO₃-N)

e Organic N is estimated as total Kjeldahl N – NH₄-N
Table S2. Bioassay germination rates, survival rates, root dry biomass, shoot dry biomass and total dry biomass by amendment and application rate (mean ± 1 SD). Groups share a letter if the difference in means was not statistically significant ($P > 0.05$). $n = 6$ trays of 16 seedlings for germination and survival and $n = 24$ seedlings for root biomass, shoot biomass and total biomass.

Plant	Amendment	Application Rate	Germination (%)	Survival (%)	Root Biomass (mg dry)	Shoot Biomass (mg dry)	Total Biomass (mg dry)
tomato	control	0	93±5^{ab}	98±6^a	9±2^d	17±3^d	26±5^d
tomato	Market Alternative	2	84±7^b	89±9^a	51±11^a	139±38^a	190±47^a
tomato	Plant Food B	2	94±4^b	99±3^a	23±6^d	63±17^d	86±21^d
tomato	Plant Food B	4	94±0^{bc}	97±6^a	30±6^{bc}	90±19^{bc}	120±24^{bc}
tomato	Plant Food B	6	91±5^{bc}	100±0^a	38±7^{bc}	115±21^{bc}	152±27^{bc}
tomato	Plant Food B	8	97±5^a	96±8^a	37±9^{bc}	114±27^{bc}	150±35^{bc}
tomato	Plant Food B	10	96±5^a	93±0^a	37±10^{bc}	110±28^{bc}	147±38^{bc}
tomato	Plant Food B	12	91±3^{bc}	92±9^a	33±14^b	107±44^{bc}	141±57^{bc}
marigold	control	0	98±3^a	100±0^a	10±2^c	17±3^d	27±5^d
marigold	Market Alternative	2	96±5^a	80±24^{bc}	51±16^a	127±38^a	178±52^{bc}
marigold	Plant Food A	2	99±3^a	100±0^a	33±8^b	69±15^d	102±22^d
marigold	Plant Food A	4	98±3^{bc}	97±3^{bc}	44±10^{bc}	99±19^{abc}	143±26^{abc}
marigold	Plant Food A	6	99±3^a	92±5^{bc}	38±15^{bc}	88±31^{bc}	125±45^{bc}
marigold	Plant Food A	8	97±5^a	82±12^{bc}	46±13^{bc}	114±29^{bc}	160±40^{bc}
marigold	Plant Food A₁	6	99±3^a	90±7^{bc}	48±17^a	113±33^a	161±48^{bc}
marigold	Plant Food A₂	6	100±0^a	83±14^{ab}	52±12^a	121±21^{ab}	174±31^a
Figure S1. Disease suppression potential of as-is fine solids and the market alternative ($n = 5$ per amendment). Negative values represented suppressive potential.