Landuse/Landcover mapping and monitoring using Remote sensing and GIS with environmental integration

Ahmed Mohammed Hamud, Husni Mobarak Prince*, Helmi Zulhaidi Shafri

Department of Civil Engineering, Faculty of Engineering, University Putra Malaysia, 43400 UPM, Serdang, Malaysia

*ganoose10@hotmail.com

Abstract: Details regarding land cover and land usage is an essential component of the organizing method as it could play a role in the controversy about the present plans, as well as patterns and also the, have to alter land use included in a regional plan. A resource improvement or even managing task, an environmental organizing exercising, or perhaps as baseline research of a region. Planners might try to find to recommend changes to land-use patterns to achieve a few social or economic effects, and as part of an environmental preservation and durability task, or to prevent a few forecasted long-term undesirable effects. Access to specific land-use maps can assist planners and the venture associated with planning. Within the paper review, land use/land cover (LULC) modelling strategies and focus on the way land use/land cover models may get over some essential limits of current techniques. We briefly review ongoing land use/land cover (LULC) modelling strategies and focus on the way land use/land cover models may get over some essential limits of current techniques. We discuss Remote Sensing (RS) and GIS in Environment Influence Assessment Accuracy assessment for LULC related with environmental research using GIS and RS, beside that we discuss Integration spatial analysis for environmental research using RS and GIS. We also discuss Analyse LULC change impact on environmental and socio-economic condition using RS and GIS. in the last we outline the Analyse LULC change impact on environmental and socio-economic condition using RS and GIS. It can be this particular context that remote sensing can lead. This paper as well applies forth various prospects for the long-term improvement: the whole trend is functionality, the environmental impact and also the social economics through land use/land cover is the research hotspots, and also the functionality of scales and also the establishment of types could be the research difficulties.

1. Introduction
Specifics regarding land cover and land use is an essential element of the planning process, as it can undoubtedly lead towards the debate around the present plans and patterns and the necessity to modify land use included in a regional plan. An origin development or management project, an ecological planning exercise, or being a baseline study with the region. Planners may aim to recommend changes to land-use patterns to attain some social or economic outcomes, or included in an environmental efficiency or durability project, to avoid some predicted long-term undesirable effects. Use of accurate land-use maps can help planners and also the enterprise of planning. It is in this particular circumstance that remote sensing can lead. The goal of this evaluation is always to produce an overview and evaluate from the developing field of remote sensing and GIS because it pertains to the mapping as well as monitoring of LULC at a variety of ecological and social economics aspects.
The capability of remote sensing and GIS to lead towards the requirements of planners as well as professionals have altered considerably more than 10 years. Satellite information is accessible that may be accustomed to map and keep track of altering from continental to local scales and more than every day to weekly environmental and social scales. Using the current start of satellites able of gathering information that's similar to aerial platforms, there's an improved functionality of figuring out alter at environmental scales. Likewise, developments in image processing, databases administration, and spatial evaluation resources have improved our capability to research this information for depicting LULC change [1].

Land use impacts land cover and modifications in land cover impact land use. Modifications in land cover by land use do not always suggest the destruction of the land. Nevertheless, much-moving land use designs pushed by a range of social leads to, lead to land cover modifications that impact biodiversity, drinking water, and the radiation budgets, trace gas emissions as well as other procedures that arrive with each other to impact local weather and biosphere [2]. Land use/cover change detectors the extremely important for much better knowledge of landscaping dynamic throughout a recognized period getting sustainable administration. Land use/cover modifications is a standard and increasing procedure, primarily driven by all-natural phenomena and anthropogenic actions, which consequently generate modifications that will influence all-natural ecosystem [3][4]. Comprehending landscaping designs, modifications, and interactions in between human actions as well as a natural phenomenon are essential for correct land administration and choice enhancement.

The fast acceptance from the utilization of remote sensing for conservation and character safety coincides using the regular reporting of intensive modification of all-natural methods and destruction of wildlife habitats throughout the previous three to four a long time. Issues concerning the rise in adverse environmental circumstances prompted the remote sensing specialists and customers to capture up using the evolving technologies rapidly. The parallel progress within the dependability of Geographic Info System (GIS) has permitted the processing of the enormous quantity of information produced via remote sensing [5]. It is now much more or much less as much as the dedication and seriousness from the international and native all-natural sources and biodiversity administration companies to create specific their institutional methods are prepared to seize this chance, to create the needed functionality of all-natural sources mapping and periodical checking.

Environmental and urban scientists make use of emissivity information and Land Surface area Temperatures (LST) for numerous functions primarily to research LST designs and associations with surface area qualities and Urban Heat Island forecasts. Additionally, the connection between Land Surface Temperature and Surface Area Power Fluxes regarding landscape qualities, methods, and designs characteristics [6]. LST may be accustomed to managing the physical, biological and chemical procedures. Also it is regarded as a great pointer of the ground's surface power [7]. LST supports to understand about spatiotemporal modifications within the condition of surface area balance [8]. Some research relies on land surface temperature imitative from satellite images, this kind of an urban heat island researches, LU classification, thermal ecosystem, hydrological study in urban development etc. [9]. Land surface temperature resulting from thermal infrared bands of space-borne imaging satellite which examines the relationship in among urbanized thermal activities, spatial construction, and surface area qualities. It is an essential RS application on urban local weather research, because it supports profession planning [10]. Land surface temperature on regional and international scales acquired thermal infrared remote sensing is a distinctive method just because of sensors within this spectral area evaluate the power that it's emitted straight from the land surface area [11].

To the Economic activity moved in the direction of the actual tertiary sector, that concentrates on rural tourism. The present socioeconomic situation has unidentified long-term implications for the land include dynamics as well as their related ecosystem solutions values. Therefore, checking of land cover modifications and ecosystem solutions is needed to advertise sustainable improvement within a region that's hugely depending on the conservation of all-natural sources and environmental solutions. This research critiques environmental and social influence within the RS and GIS for mapping and checking land use and land cover scale. Geographic Info System (GIS) is an info technology which
has utilized in community policy-making for the environmental and forest preparing and decision-making in the last two full decades [12]. GIS and associated systems offer foresters with potent resources for document maintaining, evaluation and choice generating. Remote sensing and GIS methods is a cost-effective technique of acquiring an explicit knowledge of the land cover alteration procedures because of to land use alter as well as their implications.

In this review paper, focused on land use/land cover (LULC) modeling strategies and the way land use/land cover models may get over some essential limits of current techniques. Here briefly reviewed ongoing land use/land cover modeling efforts in four research parts. Also discussed focusing Remote Sensing (RS) and GIS in Environment Impact Assessment where accuracy assessment for LULC plays an essential role for this kind of environmental research integrating spatial analysis using RS and GIS techniques. This review paper has been described the analysis of LULC and its change impact on environmental and socio-economic condition focusing RS and GIS. It can be the particular context that remote sensing can lead. This paper as well applies forth various prospects for the long-term improvement: the whole trend is functionality, the environmental impact and also the social economics with land use/land cover are the research hotspots, and also the functionality of scales and also the establishment of types could be the research difficulties.

2. RS and GIS in Environmental Impact Assessment
This particular integrated, associated with technique as well as following interdisciplinary provides highlighted through situation research of the EIE (Environmental Influence Evaluation). An EIE may have outlined because of the accurate recognition and analysis from the possible impacts of proposed tasks, ideas, programs or legal steps, concerning the physicochemical, biological, cultural and socioeconomic elements from the complete environmental [13]. GIS can offer not just the required resources for an EIA but additionally area or environmental by which to carry out this kind of research. These particular papers show the actual usefulness of GIS towards the actual ingredients of the ecological assertion, that is the important the component associated with the actual EIA procedure. The instance utilized is of the EIA procedure referring to a proposed alter of land use within a region to towards the northeast of Cambridge, through farmland to international regular rowing lake. The main environmental problems tackled problem archaeology, land use, geology, sound and ecology (Fig.1).

2.1 Use of GIS
The actual possibility of the GIS lies within the capability to evaluate information efficiently, a fundamental axiom of EIAs. As being an instrument for EIA, GIS is significantly underutilized, and also the literature relating GIS and EIAs are spare, a lot from is created proof becoming accessible only as private consultancy or authorities’ reviews [14].
Figure 1. A flowchart illustrating some environmental concerns from disciplines integrated into GIS for EIA [13]

Within the community area, from the thirteen hundred and sixty references on EIAs cited within the GEOBASE bibliographical databases in between January 1990 and February 2003, only fifty-eight (4.2%) integrated GIS.

The exact combination mixing of remotely sensed visuals right addicted to a GIS is now significantly familiar to the illustration and recognition with the regional area. The particular combination of GIS information as well informs map-like features to satellite imagery, producing understanding significantly a great deal similar as well as staff not adequately educated in picture examination, as well as an instance within catastrophe administration [15]. Nevertheless, although remotely sensed visuals could ‘capture’ transient geographical area regarding lens publicity prior a GIS is a discrete illustration from the short-term area, to compound the issues most details saved inside a GIS is a minimum of corrupted infected by mistakes [16]. Mistakes have released in measurements, spatial and temporal versions as well as issues with information accessibility. Mistakes have released in the course of the over the digitizing period [17]. A significant disadvantage of GIS is the fact that concerns are usually be replicated, ensuring is mistake spread. For instance, though an airborne picture would display a gradual change from urban towards the rural landscaping, GIS would determine a similar region as being a polygon based mostly on the prior info. Mistakes in GIS can also be impacted by a replica, transformation, generalization and restriction in polygon illustration [18]. The multiplicative mistakes using the utilization of overlays undermine the caliber of and self-confidence in outcomes. These restrictions must have regarded within the interpretation of the outcomes of the GIS.

2.2 Use of Remote Sensing
Remote sensing technologies are more and more have identified as being a useful instrument to assistance determination producing in catastrophe administration and environmental checking [19][20]. Nevertheless, consequently from the dimension as well as elevated of Earth Observation (EO) information effective and automatic imagery processing procedures are wanted for quick imagery info extraction [21]. Because operational end-users are more likely to be unfamiliar with a
few elements of the geospatial info technologies Probably the most crucial applications of satellite technologies may have found inside the situation of all-natural disasters. Correctly precisely where satellite pictures might be used to supply a warning for the particular occasion dangerous to movement up [22] [23]. To watch [the the realm of the problem, or to get a fast analysis of the harm to assistance the decision-making procedure within the functions. Simply because from the broad applicability of remotely sensed information inside fixing numerous environmental duties, the technologies may have [utilized as being a helpful help in all-natural hazard investigation, also as for functions of environmental preparing. Satellite and airborne imagery alone can provide a helpful contribution to all-natural source administration. Nevertheless; probably the most promising region appears to be the appliance of remote sensing together with geographical info systems (GIS). Satellite remote sensing exploits the natural properties and allows the acquisition of information about the scene located at considerable distance from the sensor. Satellites

Satellites are accustomed to taking over data on Earth’s surface are becoming more numerous, they are taking different types of images (Fig 2) [24].

Figure 2. Type of satellite images used in environmental impact assessment [24]

Probably the most utilized applications of remote sensing in environmental influence assessment would be the inventory and monitoring research. Therefore, satellite imagery is useful sources of information on landscape topography, land use, and land cover, quantification of regional and international alter that result in habitat destruction. Records of remote sensing play an essential role in classification, mapping and detecting changes in ecosystems, thereby achieving similar maps with predictable characteristics [25]. In most studies of environmental impact assessment, there used time-series satellite images, taken from the same area at different times [26]. The usage of time series satellite images demands particular procedures for processing of remote sensing by satellite. Within these procedures, the application of atmospheric and radiometric corrections is essential to ensure a single base of comparison [27].

3. Accuracy assessment for LULC related to environmental research using GIS and RS

Land use and also the land cover info offers required for coverage making, business, and management functions, using their spatial particulars the knowledge is similarly essential for environmental safety and spatial getting ready. Landuse distinction is crucial directly since it offers info which may have utilized as entering for modeling, particularly the one working using the environment, for example, designs offer with local weather alter and guidelines improvements [28]. Therefore, the mixed Land
Use/Land Cover (LULC) allow an extensive [indicates of comprehending the conversation of geo-
biophysical, socioeconomic methods behaviours and interactions [29]. To provide a lot much more
useful information in the land cover Remote Sensing has often paired with Geographic Info System
(GIS) technique [30]. Remote sensing will be the top supply for some kinds of thematic info essential
to GIS analyses, this kind of as info on land use and land cover qualities. Airborne and Landsat
satellite pictures can also be often accustomed to assessing the land cover distribution and also up-
date present geospatial characteristics. Utilizing the intro of remote sensing methods as well as image
processing computer software, the importance of remote sensing in Geospatial Info Method (GIS) has
extended significantly [31]. The accelerated utilization of remote sensing info and also techniques has
created the geospatial procedure quicker and durable, even though the high complexity also produces
elevated choices about mistake [32]. Previously, the truth evaluation was not essential in picture
classification study. Nonetheless, just because of the more rapid chance for mistake offered by digital
imagery, precision evaluation needs to end up to become a significant process [33].

Precision evaluation or acceptance is undoubtedly a critical stage within the producing of remote
sensing info. It establishes the information worth in the ensuing info to some consumer. Useful using
geodata is possible once the top quality of the info is acknowledged. The overall precision of the
overall image compares how every one of the pixels has categorized compared to the particular land
cover circumstances acquired from their corresponding floor truth information. Producer’s precision
actions mistakes of omission, that is a evaluate of how nicely real-world land cover kinds may be
categorized. User’s precision actions mistakes of the fee, which usually signifies the probability of the
categorized pixel matching the land cover kind of its related real-world location [33] [34] [35]. The
mistake matrix and kappa coefficient have grown to be typical indicate of evaluation of image
category precision. Furthermore, Mistake matrix continues to be utilized in many land category
research, and it was a vital element of the study. In [36], Within this research, they suggested a
precision evaluation design for remote sensing category outcome according to spatial sample this
specific design determines the sample dimension needed for precision evaluation, decides the sample
factors dispersed inside an area, and analyses the results of the precision evaluation. This particular
design considers each sampling dimension calculations as well as sample factors distribution
throughout the category precision evaluation. Their design might permit producer and also the user to
find out sample dimension rapidly. Furthermore, the design guarantees the sample factors are
uniformly dispersed within the spatial area and proportionally dispersed in numerous kinds of land
included. Therefore, the suggested design is an appropriate design for the precision evaluation of the
category results of the remote sensing picture. GIS and improvements inside the area of remote
sensing offer with much better precision and also choice creating within the scientific area. Also,
choice creating the scientific area.

4. Integration spatial analysis for environmental research using RS and GIS

Up-to-date and dependable info is crucial for the administration from the region's human and also all-
natural resources to get coping with nearby enhancement options that have a spatial context [37]. An
extensive info foundation could decrease uncertainty within improve decision-making. Professionals
within policymakers should need to combine social, financial within the environmental information to
formulate tactical improvement ideas [38]. In creating nations, nevertheless, the information obstacles
remain apparent because of to each institutional and specialized factors. As institutional problems are
offers acknowledged and authorities begin to make investments many bucks in gathering information,
the information administration and utilization remain much to an adequate degree. Info on numerous
elements of environmental improvement social, financial and environmental information - is at first
gathered for numerous functions, at numerous scales, at numerous periods with various fundamental
assumptions in regards to the character in the phenomena. They produce specific issues towards the is
integrated of social and environmental information and describes the shortage of adequate scientific
researches on environmental improvement evaluation in creating countries.
Current technological developments within the geographic information system (GIS) have created it feasible to control substantial quantities of geographic info also build the topological construction essential complex spatial phenomena. As about 80-90% of knowledge gathered and used for nearby and environmental information methods has related with geography [39], GIS offers this kind of a built-in computing environment for social and the environmental information integration. At first, social, financial and environmental information has gathered for various functions, at various scales, and with numerous fundamental assumptions in regards to the character of the phenomena. The topics of the environmental information frequently show a steady spatial variation (e.g., elevation, soils, precipitation, and temperature) while social phenomena are usually much more spatially discrete (e.g., individuals, farms, factories and management models). The spatial physio-graphic information is available inside the map kinds from numerous maps and surveying companies. With quick developments of remote sensing systems all through the last two full decades, satellite image provides right, and up-to-date information in the land surface area makes a combination remote info with the environmental and socio-economic info packages advantageous. Nevertheless, to provide regional empirical designs of urban-rural connections, social and also the environmental information should be inside a regular structure [40].

What's essential to understand before the detection procedure itself will be the worth from the alter phenomenon that is essential, i.e., it is essential to conduct the filtration from the specific changes. They can vary from one user to another, and from the purpose of change detection. There are many techniques regarding maps land cover modifications utilizing remotely sensed information regular optimum probability category, post-classification image difference and also significant elements change-detection techniques vegetative index differencing, post-classification alter differencing, multi-date without supervision category [41].

Numerous various kinds of spatial information are required to review and comprehend the rational process, as well, to make the environmental simulator models that have needed for scientific evaluation of the environmental problems and results of human interactions on higher the high environmental quality. Multi-disciplinary info sets of land surface/subsurface qualities are essential inputs to this kind of study. The multi-objective designs require info concerning the multi-temporal conduct of land surface area qualities, additionally towards the parameterization of spatially heterogeneous and complex, landscape qualities. This kind of spatial datasets has needed for numerous option help methods. Moreover, elevated use an integrated/coupled methods technique to modeling process throughout many periods, spare scales, and helps within the recognition of suitable sites regarding numerous programs. Remote sensing systems are essential in the direction of the development of various spatial info sets for the research from the environmental procedure. GIS enhances remote sensing by supplying the framework for the built-in spatial evaluation with various information constructions to help comprehend and parameterize land surface area procedures. GIS as well attributes a perform in the making and also tailoring built-in spatial info sets, this kind of as remote-sensing-derived thematic levels, for entering to designs. This research features spatial info issues involving info assortment techniques, the utilization of cartographic and remote sensing goods as resources of electronic information, electronic qualities of spatial databases, and archival resources [41].

The land cover may have established through examining satellite and airborne image. Land use cannot have established from a satellite image. Landcover maps provide information to help professionals best understand the current landscaping. To find out alter more significant than time, land cover maps for a few many decades has needed.

With this particular information, professionals could assess prior administration options also as obtain perception into the possible results of in their current options before they have applied. Seaside professionals use land cover information and map to higher comprehend the effects all-natural phenomena and human utilization of the landscaping. Maps might help professionals evaluate urban development, design water high-quality problems, forecast and evaluate effects of flooding and storm rises, monitor wetland cuts as well as possible influences from sea degree increase. Focus on locations
for conservation attempts, and evaluate land include modifications with results within the environment or to relationships in socioeconomic modifications this kind of as growing populace [42] [43][44].

Remote sensing is now a useful instrument relevant to making and comprehending the common, bodily procedures impacting the earth. Present enhancement within the utilization of satellite info could be to create probably the most of expanding quantities of geographical info available along with GIS to assist in interpretation. GIS is usually a built-in technique of computer elements and software program plan able of capturing, storing, retrieving, adjusting, examining, and exhibiting geographically referenced (spatial) information to assist development-oriented administration and decision-making procedures [45] [46] [47]. Remote sensing and GIS have covered a large selection of programs inside the fields of agriculture, environments, and built-in eco-environment evaluation. Some scientists have targeted on LU/LC study simply just because of their adverse results around the ecology of the region and vegetation [48].

Alter detectors in watersheds assisted with improving the capability regarding nearby authorities to apply audio environmental administration [49]. The concerned the event of spatial and temporal databases and evaluation methods. The effectiveness of the techniques is dependent on several elements like category strategies, spatial and spectral resolution of remote sensing information, floor reference point info also as a practical implementation of the outcome. Coastal environment modifications have reviewed via qualitative analysis methods. Methods integrated alter map based on vegetation index differencing, Picture rationing, picture differencing as well as image regression. The basic theory of changes detectors strategies had been the digital amount one date is numerous within the digital amount of the extra date [50] [51]. Remotely sensed alter detection primarily based on artificial neural networks provides a brand-new method for multispectral image classification utilizing caching algorithm. The scientific neural community detected modifications on the pixel-by-pixel foundation in real-time applications. Educated four-layered neural community supplied total categorical info concerning the character of modifications as well as detected total land-cover alter “from-to” info, that is appealing in many alter detection applications Post-classification alter detection techniques utilizing the comparing of land-cover categories of varied dates have restrictions since it doesn't allow a detection of delicate modifications within land-cover classes.

Land use and land cover change have grown to be the primary element within present methods handling all-natural sources as well as monitoring environmental modifications. The actual development within the idea with vegetation mapping offers significantly elevated study the land use land cover change supplying offering an accurate analysis from the unfold and well-being from the world's forest, grassland, and agricultural resources have become an urgent priority [52] [53]. Viewing the planet earth through the area is currently essential towards in the direction of the actual comprehending from the effect of man’s activities on their all-natural source foundation more than a period. Inside circumstances of fast and often unrecorded land use alter, observations in the earth by area offer real info of rational utilization in the landscape [54] [55]. More than the actual previous many years, information through Earth-sensing satellites is now crucial with maps an Earth’s attributes as well as infrastructures, handling all-natural sources along with learning environmental alter. For efficient mine site management; extraction techniques and the post-mine usage of the land need to be identified early in the planning process. They are to allow for the extraction and subsequent rehabilitation phase to has integrated for increased efficiency. The following are suggested classification for the types of mine sites based on their types of mines, location and surrounding land use [56].

Type I: Undeveloped mine sites which are located in forest reserves and are not suited to surface disturbance through mine. The underground method may be more suitable for the extraction of the mineral at this site with minimum surface disturbance.

Type II: This category encompasses operating mine sites where there are sufficient mineral mines and the opportunity to further expand the industry further through extending the area of the existing site lease.
Type III: This class applies to those existing on-going mine sites where a constraint exists for future expansion of the surface mine lease due to legislative requirements or proximity to urban or residential areas.

Type IV: This classification consists of old mine sites which are in an environment which does not permit further expansion or are already non-economical for further operations. The limitations for expansion could include the limits of the mine site lease being too close to residential or commercial areas. Recreational or housing development options could thus have integrated into the initial development plans on commencement of mine operations.

Type V: Mine sites which are remote or far away enough from existing urban or residential development sites could have planned for conversion into a potential commercial or industrial development site upon conclusion of operations.

5. Analyse LULC change impact on environmental and socio-economic condition using RS and GIS

Analyses of characteristics, significant driving allows and also option administration actions of land-use alter in Kunshan, Jiangsu land, China. The research used remote sensing (RS) maps and socio-economic information. Primarily according to RS-derived maps, a couple of altering matrices had built for sensing land-use alter in between 1987 and 1994, as well as in between 1994 and 2000 via pixel-to-pixel evaluations. Results established that paddy fields, dryland, as well as forested land reasonably reduced by 8.2%, 29% and 2.6% from 1987 to 1994, and by 4.1%, 7.6% and 8% from 1994 to 2000, correspondingly. Outcomes established that industrialization, urbanization, populace development, and China's financial modify actions are four significant driving forces leading to land-use alter in Kunshan. Lastly launched some feasible administration actions like urban development border (UGB) and incentive-based guidelines. The study also identified which, offered the actual rapidity from the noticed modifications, it is crucial which extra research is carried out to gauge all these recommended guidelines, concentrating on which the results may be within that area and the way all these might be applied [57].

An additional study function examines land use/cover modifications urban growth in Higher Dhaka, Bangladesh, between 1975 and 2003 utilizing satellite pictures and socio-economic information. Spatial and temporal dynamics of land use/cover modifications. Had been quantified utilizing 3 Landsat images, a monitored category algorithm criterion, as well as the post-classification, alter detectors method in GIS. The evaluation exposed which significant development of built-up locations with Higher Dhaka much more than the research period lead to substantial reduce within the actual region of water bodies, harvested land, vegetation, and swamplands. Urban land growth offers primarily operated by elevation, populace development as well as financial improvement. Fast city growth via infilling of low-lying locations and also cleaning up of vegetation occurred inside a wide selection of the environmental effects, such as habitat top quality [58].

The development of landscaping environmental, as well as fragmentation, examines inside remote sensing science offers extended the actual inferential abilities regarding this kind of study This issue provides some reports on the usage of environmental landscaping methods to discover a partnership among land cover and land use. Spatial sample and also procedure within an international, comparison circumstance. Methodologically, scientists look for to hyperlink spatial sample land use procedure by establishing geographic info systems (GIS), socio-economic, and also remote sensing methods with environmental landscaping methods. This issue delivers with each other reports in the front of this study work as well as demonstrates the variety of techniques essential to gauge complicated linkages in among sample and procedure in landscaping throughout a globe. The examines concentrate insignificant forces interacting within the earth’s surface area. Just like the interface of agricultural and urban land, agriculture and forestry, as well as other essential subjects dealing with the environmental policy and administration [59].

Land use and land-cover (LULC) info offer important info regarding ecological administration as well as preparing the study to examine the actual land-cover alter characteristics as well as their results
around the Higher Mankato Region of Minnesota utilizing picture category as well as Geographic Info Systems (GIS) modeling in high-resolution airborne pictures and QuickBird images. Outcomes display that from 1971 to 2003, urban resistant areas elevated through 183% to 32.6%, although cropland as well as grassland minimized from 54.2% to 39.1%. Remarkable urbanization brought on apparent ecological effects when it comes to run-off along with water top quality, while a yearly air pollution elimination price and also carbon storage/sequestration remained constant because city woodlands had been regular more compared to the 32-year span [60].

The target of the extra research had been to gauge the influence of quickly altering land use on erosion and sedimentation inside a combined land use watershed within the Ozark Highlands in the United States. A study brings together a geographic info system-based soil erosion which method along with land use alters detectors to evaluate an effect of altering land use on erosion danger. Five land use/land cover maps experienced have produced or obtained to get a 20-year period (1986 via 2006) at roughly 5-year times to evaluate land use alter and also to forecast an estimated (2030) land use situation for your West Fork White River watershed in Northwest Arkansas. A stream Flow Energy primarily based Erosion/Deposition design appeared to be utilized towards A noticed as well as forecasted land use to evaluate an effect of abrasion. Complete erosion from city locations appeared to be forecasted to improve through an aspect of six among 1986 as well as 2030 primarily based on the likely 2030 land use. Outcomes assistance prior reviews of high urbanization top to higher soil erosion danger this research shows a conversation with modifications in land use with soil loss possible Soil loss danger on the landscaping may have quantified with much accessible biophysical info with geographic info method and remote sensing. That could provide as being a land/watershed administration instrument the quick evaluation of the results of ecological alter on erosion danger [61].

Analysis of watersheds as well as improvement of the administration technique need the correct measurement from the previous, and current land cover/land use guidelines as modifications noticed of these guidelines figure out of hydrological as well as environmental procedures using location inside a watershed. This particular research utilized monitored classification-maximum probability algorithm in ERDAS envision to detect land cover/land use modifications noticed within Simply watershed, Pakistan utilizing multispectral satellite information acquired from Landsat 5 and Spot 5 the years 1992 and 2012 correspondingly. The watershed was categorized into five significant land cover/use groups viz. Agriculture, Bare soil/rocks, Settlements, Vegetation and Water Resulting land cover/land use and overlay maps produced in ArcGIS 10 suggested a substantial change from Vegetation and Water cover to Agriculture, Bare soil/rock, and Settlements include, which shrank by 38.2% and 743% correspondingly. These land cover/use conversions presented a severe possibility to watershed resources [62].

The fast expansion of urban locations because of the rise in population and financial development is growing extra demand for all-natural sources thereby producing land-use modifications, particularly in megacities. Consequently, severe issues related with fast improvement like other infrastructure, casual settlements, ecological pollution destruction of environmental construction as well as a shortage of all-natural sources continues to be researched cautiously utilizing remote sensing and GIS systems to get the quickly developed megacity mainly, Delhi. The current function examines the land use/land cover (LULC) modifications and city growth in Megacity Delhi and shows the significant influence of fast urbanization and also populace development around the land cover modifications. That requirements instant interest outcomes show the metropolis is increasing in the direction of its peripheral area While using the transformation of rural areas into city expansions. The growing region of Delhi witnessed a general rise through 540.7 km² to 791.96 km² or 1686% in the entire metropolis region (1490 km²) throughout the research period 1997 to 2008 that primarily came from agriculture land, wasteland, scrub-land, sandy locations as well as water bodies. A rise in forest cover of 0.5 % is usually minimal while contemplating a rise in the constructed up class to 17%. The whole region of waterbodies has reduced by 529% over a ten-year period (5826 km² in 1997 to 27.43 km² in 2008) along with low waterbodies currently obtaining a dark presence [63].
According to period sequence, Landsat MSS/TM/ETM + images as well as historical annual official population poll info, evaluation from the partnership in between land use characteristics, built-up land growth designs, as well as first driving allows through 1978 to 2008 offers carried out. Utilizing an integrated method of remote sensing (RS) as well as geographical info system (GIS) techniques and mathematical techniques to determine change detection. The outcomes showed that fast expansion of built-up land within the Hangzhou City Region (HMA) led to quicker land use transformation. The built-up land elevated through 319.3 km² in 1978 to 862.5 km² in 2008. Fast improvement associated with infrastructures, services, extensive conventional park systems, and urban as well as non-urban debt settlements along the Qiantang Lake resulted in the actual eastward as well as the southward expansion of built-up land. Therefore, from 1991 to 2008, the actual model of city growth resulted in the multi-nuclei sample [64].

6. Spatio-temporal factors drive to change environmental and socio-economic condition

Right here, the spatiotemporal characteristics as well as the development associated with land use/cover modifications and urban growth within Shanghai city region, China, throughout the transition economy interval (1979-2009) utilizing multi-temporal satellite imagery and also geographical info systems (GIS). Outcomes indicated that urbanization offers faster at an unparalleled range and price throughout the research period, top to a considerable decrease within the region associated with farmland as well as green land. Results additional revealed that waters physiques, as well as uncovered land, raised, apparently because of large-scale seaside improvement following 2000. The path associated with city growth had been together any north-south axis through 1979 to 2000, however following 2000 this particular development altered to spread through the current city region as well as together transportation paths in all directions. City growth, as well as following LULC modifications in Shanghai, possess primarily powered through coverage reform, population development, as well as financial improvement. Fast city growth by way of cleaning associated with vegetation offers led to a wide selection of eco-environmental destruction [65].

Land use and land cover alter (LUCC) research are drawing high interest because of their significance in ecosystem management. The net quantity alters much less compared to 7% from the research region, while the overall alter is much more compared to 28%, the latter because of substantial exchange modifications. Multiple-resolution evaluation unveils which about half of the overall alter is attributable to spatial reallocation from the classes more than ranges much less compared to two km. The winery offers considerable skilled modifications when it comes to fat increases as well as significant deficits, despite the little net alter. The real about three shifts: Pasture/scrubland to Winery, Vineyard to Pasture/scrubland as well as Winery to Built-up would be the orderly changes in the landscaping. The actual changeover from Winery to Built-up about the centre from the research region and also the expansion of Winery away from centre is related to tourist, that is additionally increasing into the brand new external wineries as well as winemakers. This particular in-depth evaluation has enabled all of us to assess and to imagine significant alerts associated with changes associated with LULC classes within the research area [66]. The actual urban-rural flattened improvement is not only substantial in theory, but additionally, the problematic tactical task dealing with the actual coordinated improvement associated with the city as well as non-urban China. Within this papers, all of us place ahead of a revolutionary concept associated with Red against the history associated with China's urban-rural shift. The particular spatiotemporal design, it is altered, as well as driving elements of urban-rural flattened improvement throughout 1996-2009 had been examined utilizing primary element evaluation, the actual Markov chain design as well as exploratory spatial information evaluation design according to the information about 31 Chinese provinces (autonomous regions and municipalities). It has discovered that throughout the research interval Red displayed an apparent tendency associated with “club homogenization” within China. Nevertheless, because 2003 the actual homogenization from the ured about whole China has destabilized. Furthermore, URED demonstrated a strong geographical characteristic of “polarization” throughout 1996-2003. Specifically, the actual spatial models of a higher URED degree had has focused within
far eastern China close to the shoreline, and also the spatial models of a reduced URED degree had been situated primarily within central as well as western China. Nonetheless, this particular polarized spatial framework associated with URED has demolished because 2003, and also the spatial difference in the provincial degree offers reduced [67].

Within current decades, steppe destruction in Northern China offers turned out to be a severe environmental issue. Most study on steppe degradation has performed in the degree of residential areas or the range associated with smaller regions. To much better comprehend the spatiotemporal variance as well as generating elements of grassland destruction, keeping track of, as well as evaluation from large local scales are required. This particular papers methodically explains the state as well as traits associated with steppe destruction in the Xilinhhot level, tends to make an excellent in-depth scientific evaluation from the all-natural as well as human-made leads to top to destruction. As well as evaluates just what driving elements possess affected destruction within this common step area during the last 20 years. Ten biophysical as well as socio-economic factors. Such as elevation, incline, rainfall, temperatures, dirt circumstances, range to the lake, range to the freeway, populace denseness, lambs model denseness, as well as fence coverage, had been examined on their influence on noticed designs associated with destruction. The outcomes show that all of those elements had a substantial influence on the procedure associated with steppe destruction. Throughout the initial ten years, through 1991 to 2000 steppe destruction elevated, however subsequent 2000, the actual destruction pattern offers, to some extent, corrected [68].

Land use and land cover alter as the primary associated with mixed human-environment methods has to turn out to be a possible area associated with land alter technology (LCS) within the research of worldwide ecological alter. According to remotely sensed information of land use alters having a spatial resolution of 1 km × 1 km upon nationwide size amongst five years. This particular papers developed a brand new powerful regionalization based on the complete traits associated with land use alter such as local difference, actual physical, financial, as well as macro-policy elements also. The spatial pattern associated with property make use of altering, and its generating causes offers researched within China within the earlier 21st century. To sum up, land use alters the design of this period possess characterized by fast modifications within the entire country [69].

Ordinary land-use preparing in China goals to set aside land use quantitatively on a temporal range as well as expressly on a spatial range. Consequently, about decision-making, coordinators have to know the particular land needs below various situations and their spatiotemporal characteristics. Nevertheless, it is not simple to acquire the over understanding because of the complicated as well as dominant traits from the land use method and also the restrictions associated with contemporary designs within using every the actual temporal as well as spatial generating components into consideration. Outcomes show that the actual combined design might offer information around the particular nearby land use needs below various creating situations, the actual characteristics of their spatiotemporal modifications, and also the development as well as decrease associated with the urban land as well as forestland. While the outcomes from the research happen to has applied in nearby land-use strategies, coordinators ought to note that the outcomes according to the combined design are just a “scenario” below particular circumstances [70].

Understanding of land cover characteristics as well as driving forces is a necessary application about landscaping preparing as well as management. Nonetheless, this particular knowing has frequently restricted by the scarcity associated with the correct land cover information. Within this perception, remote-sensing provides the possibility of obtaining comprehensive land cover assortments by applying various techniques of image category. Nevertheless, within heterogeneous as well as altering landscaping this information might be inadequate to detect temporal modifications and their leads to because of the due to the doubt related with misclassification and also the spatiotemporal variation associated with altering designs. Within this function, all of us existing the multi-temporal uncertainty-based technique that incorporates regression designs to establish the danger (possibility) associated with land cover alter (RLCC), as a function of a set of ecological as well as socioeconomic driving components. Contemplating just about all land cover modifications as an entire, drivers
relevant towards the real environment (i.e., soil qualities, convenience, elevation, incline, solar rays, as well as rainfall) had been much more often chosen than these associated to agriculture, society or economy. Which might be because of the inferior high quality from the accessible socioeconomic informational at the town levels Whenever analyzing modifications individually, some variations came out (e.g., woody vegetation cover has associated with fire occasions as well as water accessibility or even human being administration along with woodland growth) [71].

7. Conclusion
The article started with a set of review designed to concentrate the discovery of land use/ land model's. In the course all of us endeavoured to review although did not wholly succeed in all the aspect of the area only in the scope of environmental and social economic site within land use/ land cover using remote sensing and GIS. Ideally, the utility of the article continues to be within delineating utilizes, hurdles, benefits, and downsides related to the specific method. Here, this review paper is shown which, inside theory, land use/ land versions provide methods that can assist in improvement in understanding procedures associated with LUCC. Also delineated the type of concerns and processes which land use/ land versions may deal with and those wherever traditional methods will likely be enough where all discussed the actual thought which should consider location need to selecting modelling technique correctly, which kind of part style anticipated perform within an ecological and also societal economic? Whether outlined the crucial issues of examination as well as confirmation, observing the challenges which lay forward within realistic applications of Remote sensing and GIS for mapping as well as keeping track of land use/ land cover with environmental.

References
[1] Treitz, P., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-cover and land-use change—an introduction.
[2] Riebsame, W. E., Meyer, W. B., & Turner, B. L. (1994). Modeling land use and cover as part of global environmental change. Climatic change, 28(1-2), 45-64.
[3] Ruiz-Luna, A., & Berlanga-Robles, C. A. (2003). Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in northwest Mexico. Landscape Ecology, 18(2), 159-171.
[4] Turner, M. G., & Ruscher, C. L. (1988). Changes in landscape patterns in Georgia, USA. Landscape ecology, 1(4), 241-251.
[5] Lunetta, R. 1999. Applications, project formulation and analytical approach. In: Lunetta, R. and C. Elvidge (eds): Remote sensing Change Detection : Environmental Monitoring and Applications. Taylor & Francis. London.
[6] Weng, Q., 2009. Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 64, 335–344.
[7] Feizizadeh, B., Blaschke, T., Nazmfar, H., Akbari, E., Kohbanani, H., 2013. Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. J. Environ. Plan. Manag. 56, 1290–1315.
[8] Kerr, Y., Lagouarde, J., Nerry, F., Ottlé, C., 2000. Land surface temperature retrieval techniques and applications. In: Quattrochi, D.A., Luvall, J.C. (Eds.), Thermal Remote Sensing in Land Surface Processes. CRC Press, Boca Raton, FL, USA, pp. 33–109.
[9] Ibrahim, G., 2017. Urban land use land cover changes and their effect on land surface temperature: case study using Dohuk City in the Kurdistan region of Iraq. Climate 5 (13). http://dx.doi.org/10.3390/cli5010013.
[10] Chen, X., Zhao, H., Li, P., Yin, Z., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 104, 133–146.
[11] Rose L., Devadas M., 2009. Analysis of Land Surface Temperature and Land Use/Land Cover Types Using Remote Sensing Imagery—A Case In Chennai city, India. In: Proceedings of the
Seventh International Conference on Urban Climate, Yokohama, Japan: 1998–2001.

[12] Bassole, A., Brunner, J., and Tunstall, D., 2001: “GIS: Supporting Environmental Planning and Management in West Africa.” World Resources Institute, London.

[13] L. W. Canter: Environmental Impact Assessment; 1996, New York, NY, McGraw-Hill.

[14] E. M. Joao: ‘Use of geographic information systems in impact assessment’, in Environmental Methods Review: Retooling Impact Assessment for the New Century, (ed. A. L. Porter and J. J. Fittipaldi); 1998, Arlington, VA, Army Environmental Policy Institute.

[15] N. Kerle and C. Oppenheimer: ‘Satellite remote sensing as a tool in lahar disaster management’, Disasters, 2002, 26, 140–160.

[16] S. Openshaw: ‘Learning to live with errors in spatial databases’, in Accuracy of Spatial Databases, (ed. M. S. Goodchild and S. Gopal); 1989, London, Taylor & Francis.

[17] B. J. Keefer, J. L. Smith and T. G. Gregoire: ‘Modelling and evaluating the effects of stream mode digitising errors on map variables’, Photogrammetric Engineering and Remote Sensing, 1991, 57, 957–963.

[18] M. F. Goodchild, G. Sun and S. Yang: ‘Development and test of an error model for categorical data’, International Journal of GIS, 1992, 6, 87–104.

[19] BESSIS, J.-L., BE’ QUIGNON, J. and MAHMOOD, A., 2004, The International Charter ‘Space and Major Disasters’ initiative. Acta Astronautica, 54, pp. 183–190.

[20] ITO, A., 2005, Issues in the implementation of the International Charter on Space and Major Disasters. Space Policy, 21, pp. 141–149.

[21] INGLADA, J. and GIROS, A., 2004, On the real capabilities of remote sensing for disaster management-feedback from real cases. In Geoscience and Remote Sensing Symposium, 2004, 20–24 September 2004, 2, pp. 1110–1112 (Piscataway, NJ: IEEE).

[22] GENS, R., and VAN GENDEREN, J. L., 1996, SAR interferometry – issues, techniques, applications. International Journal of Remote Sensing, 17, 1803–1835.

[23] GUO, Z., HU, G., and QIAN, S., 2001, Spatial detection technology applied on earthquake’s independent forecast. 22nd Asian Conference on Remote Sensing, 5–10 November (Singapore: Asian Association on Remote Sensing), pp. 295–299.

http://www.crisp.nus.edu.sg/yacrs2001/pdf/192Guo.pdf.

[24] VOROVENCII, I. (2011). Satellite remote sensing in environmental impact assessment: an overview. Bull. Transilvania, 4(53), 1-8.

[25] Roudgarmi, P., Monavari, M., Feghhi, J., Nouri, J., Kharosani, N.: Environmental Impact Prediction Using Remote Sensing Images. In: Journal of Zhejiang University Science A 9 (2008) No. 3, p. 381-390.

[26] Saroglou, E., Bektas, F., Dogru, A.O., Ormeci, C., Musaoglu, N., Kaya, S.: Environmental Impact Analyses of Quarries Located on the Asian Side of Istanbul Using Remotely Sensed Data. In: XXII International Cartographic Conference (ICC), Corunna, Spain. Available at: http://www2.itu.edu.tr/~dogruahm/Dogru%20et%20al_environmental%20Impact%20Analysis.pdf. Accessed: 15.02.2011.

[27] Vorovencii, I.: Cercetări privind posibilitățile de utilizare a imaginilor satelitare în lucrările de amenajarea pădurilor (Researches Concerning the Possibilities of Using Satellite Images in Forest Planning Works). In: Ph.D. Thesis, Transilvania University of Brașov, Brașov, Romania, 2005.

[28] Disperati, L., Gonario S. and Virdis, P. (2015) Assessment of Land-Use and LandCover Changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, Central Vietnam. Applied Geography, 58, 48-64.

[29] Moran, E. F., Skole, D.L. and Turner, B.L. (2004) The Development of the International Land-Use and Land-Cover Change (LUCC) Research Program and Its Links to NASA’s Landcover and Land-Use Change (LCLUC) Initiatives. Kluwer Academic Publication, Netherlands.

[30] Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci., 8(4), 611-622.
[31] Merchant, J.W. and Narumalani, S. (2009) Integrating Remote Sensing and Geographic Information Systems. Papers in Natural Resources, Paper 216. http://digitalcommons.unl.edu/natrespapers/216
[32] Murty, P.S. and Tiwari, H. (2015) Accuracy Assessment of Land Use Classification — A Case Study of Ken Basin. Journal of Civil Engineering and Architecture Research, 2, 1199-1206
[33] Congalton, R.G. (1991) A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37, 35-46. https://doi.org/10.1016/0034-4257(91)90048-B
[34] Campbell, J.B. (2007) Introduction to Remote Sensing. 4th Edition, The Guilford Press, New York.
[35] Jensen, J.R. (2005) Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition, Pearson Prentice Hall, Upper Saddle River, NJ.
[36] Huang, D., Xu, S., Sun, J., Liang, S., Song, W., & Wang, Z. (2017). Accuracy assessment model for classification result of remote sensing image based on spatial sampling. Journal of Applied Remote Sensing, 11(4), 046023.
[37] Klosterman R.E., 1995. The appropriateness of geographic information systems for regional planning in the developing world. Computer, Environment and Urban Systems, vol. 19, No. 1, pp. 1-13.
[38] Kliskey A.D., 1995. The role and functionality of GIS as a planning tool in natural-resource management. Computer, Environment and Urban Systems, vol. 19, No. 1, pp. 15-22.
[39] Huxhold W.E., 1991. Introduction to Urban Geographic Information Systems. New York: Oxford University Press Inc.
[40] Hung, T., & Yasuoka, Y. (2000). Integration and application of socio-economic and environmental data within GIS for development study in Thailand. AARS, GISdevelopment.net (www.gisdevelopment.net).
[41] Madhu, T., Kumar, D. N., Reddy, D. N., Teja, P. R., Narayana, L., Vishal, V., ... & Shakeena, V. (2017). Spatial-Temporal Analysis of LU/LC Classification in Nirmal Mandal, Adilabad, Telangana State, India, by Using Remote Sensing and GIS. International Journal of Geosciences, 8(11), 1315.
[42] Singh, V. and Dubey, A. (2012) Land Use Mapping Using Remote Sensing & GIS Techniques in Naina-Gorma Basin, Part of Rewa District, M.P., India. International Journal of Emerging Technology and Advanced Engineering, 2, 151-156.
[43] Reddy, K.Y., Murali Krishna, K.V.S.G. and Reddy, S.I. (2016) Remote Sensing and GIS Based Topographical Mapping For Environmental Management Study. International Journal of Applied Engineering Research, 11, 1325-1334.
[44] Zubair, A.O. (2006) Change Detection in Land Use and Land Cover Using Remote Sensing Data and GIS (A Case Study of Ilorin and Its Environs in Kwara State.) Master’s Thesis, University of Ibadan, Ibadan.
[45] Prathap, S. and Reddy, S. (2015) On Spatio-Temporal Analysis of Pulivendula Mandal, Andhra Pradesh, India using Remote Sensing and GIS. International Journal of Research in Engineering and Applied Sciences, 5, 133-143.
[46] Sridhar, B., Srinivas, E., and Sakram, G. (2016) On Remote Sensing and GIS for Mapping and Monitoring Land Use/Land Cover in and around Hazira Coastal Area, Gujarat, India. International Journal of Applied Research, 2, 220-222.
[47] Tata Babu, Ch., Padma, G.V. and Prof. Suneetha, P. (2014) Geoinformatics for Spatio-Temporal Analysis of Land Use Dynamics in Bobbili Mandal, Vizianagaram District, Andhra Pradesh. International Journal of Engineering Sciences & Research Technology, 3, 401-408.
[48] Thenkabail, P.S., Gangadhara Rao, P., Biggs, T.W., Krishna, M. and Tural, H. (2007) The Spectral Matching Techniques to Determine Historical Land-Use/Land-Cover (LULC) and Irrigated Areas Using Time-Series 0.1-Degree AVHRR Pathfinder Datasets. American Society for Photogrammetry and Remote Sensing, 23, 1029-1040.
[49] Babykalpana, Y. and Dr. ThanushKodi, K. (2010) On Supervised/Unsupervised Classification of LULC Using Remotely Sensed Data for Coimbatore City, India. International Journal of Computer Applications, 2, 26-30. https://doi.org/10.5120/679-956.

[50] Areendran, G., Prakash, R., Krishna, R., Sraboni, M. and Kanchan, P. (2012) Land Use/Land Cover Change Dynamics Analysis in Mining Areas of Singrauli District in Madhya Pradesh, India. International Society for Tropical Ecology, 54, 239-250.

[51] Ashraf, D.M. and Yasushi, Y. (2009) Using Remote Sensing and GIS to Detect and Monitor Land Use and Land Cover Change in Dhaka Metropolitan of Bangladesh during 1960-2005. Environmental Monitoring and Assessment, 150, 237-249.

[52] Andrew, W.D., Anette, R. and Christian, T. (2003) Historic Footprints in Contemporary Landuse Systems: Forest Cover Changes in Savannah Woodlands in the Sudano-Sahelian Zone. Global Environmental Change, 13, 235-254.

[53] Amol, V.D. and Bharti, G.W. (2013) Analysis and Modeling of Agricultural Land Use using Remote Sensing and Geographic Information System. International Journal of Engineering Research and Applications, 3, 81-91.

[54] Hejazi, F., Ostovar, N., & Bashir, A. (2017, July). Seismic Response of Shear Wall with Viscous Damping System. In Global Civil Engineering Conference (pp. 595-607). Springer, Singapore.

[55] Anil, N.C., Jai Sankar, G., Jagannadha, R.M., Prasad, I.V.R.K.V. and Sailaja, U. (2011) Land Use/Land Cover and Change Detection from Parts of South West Godavari District. The Journal of Indian Geophysical Union, 15, 187-194.

[56] Appala, R.N., Harikrishna, K., Suneetha, P. and Sachi, S.D. (2013) Land Use/Land Cover Analysis through Remote Sensing and GIS Techniques: A Case Study of Vizianagaram District, Andhra Pradesh, India. International Journal of Emerging Technology and Advanced Engineering, 3, 274-281.

[57] Abdi, H., Hejazi, F., Jaafar, M. S., & Karim, I. A. (2016). Evaluation of response modification factor for steel structures with soft story retrofitted by viscous damper device. Advances in Structural Engineering, 19(8), 1275-1288.

[58] Robertson, A. (1998), Rehabilitation objectives and post mining land uses, Resource extractive Management, Resource extractive Managers Journal Ltd.: Nottingham, pp. 18-22.

[59] Long, H., Tang, G., Li, X., & Heilig, G. K. (2007). Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. Journal of Environmental management, 83(3), 351-364.

[60] Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390-401.

[61] Nagendra, H., Munroe, D. K., & Southworth, J. (2004). From pattern to process: landscape fragmentation and the analysis of land use/land cover change.

[62] Yuan, F. (2008). Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modelling. International Journal of Remote Sensing, 29(4), 1169-1184.

[63] Leh, M., Bajwa, S., & Chaubey, I. (2013). Impact of land use change on erosion risk: an integrated remote sensing, geographic information system and modeling methodology. Land Degradation & Development, 24(5), 409-421.

[64] Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 251-259.

[65] Mohan, M., Pathan, S. K., Narendrareddy, K., Kandya, A., & Pandey, S. (2011). Dynamics of urbanization and its impact on land-use/land-cover: a case study of megacity Delhi. Journal of Environmental Protection, 2(09), 1274.

[66] Wu, K. Y., & Zhang, H. (2012). Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008).
Applied geography, 34, 137-145.

[67] Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., & Wu, J. (2011). Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environmental monitoring and assessment, 177(1-4), 609-621.

[68] Manandhar, R., Odeh, I. O., & Pontius Jr, R. G. (2010). Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia. Agriculture, ecosystems & environment, 135(4), 336-346.

[69] Liu, Y., Lu, S., & Chen, Y. (2013). Spatio-temporal change of urban–rural equalized development patterns in China and its driving factors. Journal of Rural Studies, 32, 320-330.

[70] Li, S., Verburg, P. H., Lv, S., Wu, J., & Li, X. (2012). Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Regional Environmental Change, 12(3), 461-474.

[71] Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., ... & Jiang, N. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483-494.

[72] Zheng, X. Q., Zhao, L., Xiang, W. N., Li, N., Lv, L. N., & Yang, X. (2012). A coupled model for simulating spatio-temporal dynamics of land-use change: A case study in Changqing, Jinan, China. Landscape and Urban Planning, 106(1), 51-61.

[73] Martínez, J. M. Á., Suárez-Seoane, S., & Calabuig, E. D. L. (2011). Modelling the risk of land cover change from environmental and socio-economic drivers in heterogeneous and changing landscapes: The role of uncertainty. Landscape and Urban Planning, 101(2), 108-119.