Экспоненциальный рост применения ингибиторов контрольных точек иммунного ответа (ипилимумаб, ниволумаб, пембролизумаб, атезолизумаб, дурвалумаб и авелумаб) в качестве нового стандарта лечения злокачественных опухолей приводит к увеличению случаев иммуноопосредованных нежелательных явлений (иоНЯ), обусловленных активацией иммунной системы. Эндокринные иоНЯ — трети по частоте выявления. При этом цитотоксическая железа наиболее подвержена аутоиммунной агрессии, вызванной ингибиторами контрольных точек иммунного ответа, и ассоциирована с использованием анти-PD-1-моноклональных антител. В то время как гипофизит чаще развивается на фоне терапии анти-CTLA-4-моноклональными антителами. Такие иоНЯ, как сахарный диабет, гипопаратиреоз, поражения гонад, встречаются крайне редко (около 1% случаев).

Мы представляем клинический случай пациентки с меланомой кожи, которой была назначена терапия ингибиторами контрольных точек иммунного ответа (препаратом пембролизумаб). На фоне данной терапии после 3 введений развилась иоНЯ, в том числе с поражением эндокринных органов. Наибольший интерес представляет развитие сразу двух эндокринных иоНЯ: деструктивного тиреоидита (с короткой фазой тиреотоксикоза и последующим стойким гипотиреозом) и сахарного диабета. Мы постарались наиболее полно отразить хронологию заболеваний и их особенности для привлечения внимания эндокринологов, онкологов, терапевтов, семейных врачей и врачей других смежных специальностей.

КЛЮЧЕВЫЕ СЛОВА: ингибиторы контрольных точек иммунного ответа; пембролизумаб; тиреотоксикоз; гипотиреоз; сахарный диабет; меланома; клинический случай.

DEVELOPMENT OF DESTRUCTIVE THYROIDITIS AND DIABETES MELLITUS AFTER THREE INJECTIONS OF PEMBROLIZUMAB FOR SKIN MELANOMA

© Anastasiya A. Glibka1*, Galina A. Mel’chenko1, Margarita S. Mikhina1, Natalya V. Mazurina1, Galina Yu. Kharkevich2

1Endocrinology Research Centre, Moscow, Russia
2N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia

The exponential rise in the use of immune checkpoint inhibitors (Ipilimumab, Nivolumab, Pembrolizumab, Atezolizumab, Durvalumab, and Avelumab) as the new standard for cancer treatment increase the incidence the immune-related adverse events due to immune activation. Endocrine immune-related adverse events are the third most commonly reported. Thyroid gland is most susceptible to autoimmune dysfunctions from immune checkpoint inhibitors and associated with the use of anti-PD-1 monoclonal antibodies. Hypophysitis develops more often during therapy with anti-CTLA-4 monoclonal antibodies. But such immune-related adverse events as diabetes mellitus, hypoparathyroidism are rare (about 1% of cases).

We present a clinical case of the patient with skin melanoma who was prescribed therapy with immune checkpoints inhibitors (Pembrolizumab). Immune-related adverse events developed with damage to the endocrine organs after 3 Pembrolizumab injections. Of greatest interest is the development of two endocrine immune-related adverse events at once: destructive thyroiditis (with a short phase of thyrotoxicosis and subsequent persistent hypothyroidism) and diabetes mellitus. We tried to reflect the chronology of diseases and their features as fully as possible for endocrinologists, oncologists, therapists, family doctors and other medical doctors of related specialties.

KEYWORDS: immune checkpoint inhibitors; Pembrolizumab; thyrotoxicosis; hypothyroidism; diabetes mellitus; melanoma; clinical case.
Изучение механизмов регуляции иммунного контроля привело к созданию нового класса иммунонеккологических препарата — ингибиторов контрольных точек иммунного ответа (immune checkpoint inhibitors; ИКТИО). Впервые ИКТИО были одобрены FDA в 2011 г. для лечения метастатической меланомы — анти-CTLA-4-моноклонального антитела (ипилимумаб). В 2014 г. были одобрены FDA два препарата из подгруппы анти-PD-1-моноклональных антител (ниволумаб и пембролизумаб), а уже в 2016 г. — три препарата из подгруппы анти-PD-L1-моноклональных антител (атеволумаб, авелумаб и дурвалумаб). В РФ регистрация всех этих препаратов происходила в 2016—2019 гг. [3]. Спектр онкологических заболеваний, для которых одобряется использование ИКТИО, непрерывно увеличивается.

Использование данного типа противоопухолевой имmunотерапии сопровождается риском (через модуляцию Т-лимфоцитов) развития иммуноопосредованных нежелательных явлений (иоНЯ). Эндокринные иоНЯ по частоте выявления занимают 3-е место, уступая лишь поражениями кожи и желудочно-кишечного тракта [2, 4]. Более редкими видами иоНЯ являются поражение нервной системы, печени, легких и других органов. На сегодняшний день выделяется ассоциация между определенной подгруппой ИКТИО и поражением органов эндокринной системы. Так, при использовании анти-CTLA-4-моноклонального антитела чаще встречаются гипофизиты (особенно у пожилых мужчин), а при лечении анти-PD-1-моноклональными антителами — дисфункции щитовидной железы. Такие иоНЯ, как сахарный диабет, гипопаратиреоз, поражение гонад, встречаются крайне редко, что не позволяет на данном этапе отследить их взаимосвязь с определенной подгруппой ИКТИО.

Все иоНЯ описываются в соответствии с классификацией CTCAE (Common Terminology Criteria for Adverse Events) от наиболее легкой степени (1) до крайне тяжелой (5) и регистрации летального исхода вследствие выраженного иоНЯ (5) [5]. Чаще встречаются эндокринные иоНЯ 1–2-й степени [2].

С учетом тяжести проявлений основного онкологического заболевания, стертой клинической картины иоНЯ [6, 7], быстро прогрессирующего течения (в отличие от классических аутоиммунных заболеваний эндокринной системы) [8], необходимы критерии поражения [7, 8] и, в ряде случаев, жизнеугрожающего характера (например, гипофизит с развитием вторичной надпочечниковой недостаточности, микседематозная кома, тяжелый тиреотоксикоз, фульминантный сахарный диабет, аденалит) [6], необходимо своевременное выявление эндокринных иоНЯ. Полномасштабно назначенная терапия дает возможность продолжить иммунотерапию ИКТИО основного заболевания в полном объеме, а также улучшает качество жизни пациента [6, 9].

Далее представлен клинический случай пациентки, у которой развилось несколько иоНЯ после 3 внутривенных введений лекарственного препарата из подгруппы анти-PD-1-моноклональных антител (пембролизумаб) в качестве адъювантной иммунотерапии после удаления метастазов меланомы кожи левой стопы в паховых лимфоузлах (pT2aN1aM0 St IIIa, BRAF mut).
выходила на свежий воздух, ночью спала только с открытыми окнами). После 2-го введения (200 мг) отметила ухудшение самочувствия через 16 сут: появилась сильная головная боль, тошнота, перепады в аппетите (гиперестезия, затем гиперрефлексия), изменение вкусовых ощущений (гипогефализия, затем гиперрефлексия), слабость, сонливость, переходящая в бессонницу, повышенная утомляемость, эпизоды раздражительности, смещающиеся апатией. После 3-го введения пембролизумаба (200 мг) улучшились указанные ранее симптомы: ноги больны, в ногах покалывает, в ногах появляется холодок, что приводит к ухудшению общего самочувствия. В конце 2-го месяца терапии было принято решение о прерывании курса пембролизумаба на фоне неэффективности терапии и плохого самочувствия.

В декабре 2019 г. пациентка была госпитализирована в онкологический стационар областной больницы, где выставлен диагноз «раковая опухоль 1 типа» с учетом наличия катетеров в венах, уровней гликемии в крови (гипергликемия) до 18,0 ммоль/л, в связи с чем по месту жительства назначена инсулинотерапия. Облучение пациентки не проводилось, несмотря на тяжесть состояния. УЗИ щитовидной железы: общий объем 12,9 см³, структура однородная, с единичными фолликулами (до 15 мм), эхогенность умеренно снижена, при цветном допплеровском картировании кровотока в паренхиме не изменены, узловых образований и увеличенных лимфоузлов не выявлено. Состояние было расценено как токсический зоб отсутствие узловых образований по данным УЗИ.

По данным анамнеза (анамnesis vitae) известно, что у матери — гиперплазия щитовидной железы, ожирение 2 степени, гипертоническая болезнь 2 степени, гиперкальциемия в течение дня (от 2,9 до 17,0 ммоль/л), также проведена рентгенография: ТГ 8,290 мкМЕ/мл (0,27–4,2), T4 свобод. 9,65 пмоль/л (10,8–22), T3 свобод. 3,43 пмоль/л (3,1–6,8), АТ к ТПО 12 МЕ/мл (0–34) — состояние расценено как эндемический тиреоидит, гипотиреоидная фаза. Пациентка была госпитализирована для дообследования, подбора необходимой терапии и обучения.

В течение 1 мес пациентка принимала указанную терапию. В феврале 2020 г. обратилась в НМИЦ эндокринологии амбулаторно с жалобами на значительные колебания гликемии в течение дня (от 2,9 до 17,0 ммоль/л), также предстояла рентгенография: ТГ 8,290 мкМЕ/мл (0,27–4,2), T4 свобод. 9,65 пмоль/л (10,8–22), T3 свобод. 3,43 пмоль/л (3,1–6,8), АТ к ТПО 12 МЕ/мл (0–34) — состояние расценено как деструктивный тиреоидит, гипотиреоидная фаза. Пациентка была госпитализирована для дообследования, подбора необходимой терапии и обучения.

По данным анамнеза (анамnesis vitae) известно, что у матери — гиперплазия щитовидной железы, ожирение 2 степени, гипертоническая болезнь 2 степени, гиперкальциемия в течение дня (от 2,9 до 17,0 ммоль/л), также проведена рентгенография: ТГ 8,290 мкМЕ/мл (0,27–4,2), T4 свобод. 9,65 пмоль/л (10,8–22), T3 свобод. 3,43 пмоль/л (3,1–6,8), АТ к ТПО 12 МЕ/мл (0–34) — состояние расценено как эндемический тиреоидит, гипотиреоидная фаза. Пациентка была госпитализирована для дообследования, подбора необходимой терапии и обучения.

В течение 1 мес пациентка принимала указанную терапию. В феврале 2020 г. обратилась в НМИЦ эндокринологии амбулаторно с жалобами на значительные колебания гликемии в течение дня (от 2,9 до 17,0 ммоль/л), также предстояла рентгенография: ТГ 8,290 мкМЕ/мл (0,27–4,2), T4 свобод. 9,65 пмоль/л (10,8–22), T3 свобод. 3,43 пмоль/л (3,1–6,8), АТ к ТПО 12 МЕ/мл (0–34) — состояние расценено как эндемический тиреоидит, гипотиреоидная фаза. Пациентка была госпитализирована для дообследования, подбора необходимой терапии и обучения.
Также пациентка была консультирована кардиологом. По данным ХМ-ЭКГ зарегистрировано: 18 000 одиночных мономорфных желудочковых экстрасистол (ST-T без диагностически значимой динамики), был рекомендован прием метопролола сукцината 25 мг утром.

Во время госпитализации осуществлен подбор дозы продленного инсулина, а также углеводных коэффициентов и фактора чувствительности к инсулину, проведено индивидуальное обучение основным принципам достижения целевых показателей гликемии. Благодаря тщательному мониторингу гликемии (9 раз в сутки) выявлен феномен «утренней зари» и был дополнительно назначена терапия инсулином глулизин в дозе 1 Ед (табл. 2).

Учитывая развитие СД [6, 8, 9, 13–15] как иоНЯ после терапии ИКТИО (в нашем случае пембролизумаба), было принято решение о кодировании СД по МКБ-10: Е13.9. Другие уточненные формы сахарного диабета без осложнений.

Итоговый диагноз сформулирован следующим образом:
Сахарный диабет вследствие терапии ингибиторами иммунного ответа по поводу меланомы кожи. Деструктивный тиреоидит, гипотиреоидная фаза, медикаментозная компенсация. Меланома кожи левой стопы pT2aN1aM0 St IIIa. Иссечение от 17.07.2019 г., 21.08.2019 г. — реэксцизия послеоперационной раны на коже левой стопы с комбинированной пластикой дефекта (лоскутом на сосудистой ножке и свободным кожным лоскутом) с биопсией сторожевого лимфатического узла (БСЛУ). Состояние на фоне иммунотерапии пембролизумабом с 18.10.2019 г. — 3 сеанса. Мутация BRAF V600E. Анемия легкой степени тяжести. Индивидуальный целевой уровень HbA1с<6,5%.

При выписке из стационара пациентке было рекомендовано: инсулин деглудек 23–25 Ед в 8.00; инсулин глулизин 4–12 Ед (углеводный коэффициент: 1 ХЕ:2 Ед перед завтраком, 1 ХЕ:1,5 Ед перед обедом, 1 ХЕ:1 Ед перед ужином, 1 ХЕ:1,5 Ед после 21.00; дополнительно 1 Ед в 5.00; ФЧИ (фактор чувствительности к инсулину) 2,5 ммоль/л/Ед); левотироксин натрия 50 мкг (контроль ТТГ через 4–6 нед); метопролола сукцината 25 мг утром; осуществление самоконтроля гликемии не менее 4 раз в сутки; количественная оценка углеводов по системе «хлебные единицы»; описана регулярность динамического обследования, а также дообследование по выявленной анемии и дислипидемии.

Неоднократно была консультирована онкологами на предмет необходимости возобновления адъювантной терапии пембролизумабом — с учетом отсутствия прогрессирования основного онкологического заболевания принято решение о воздержании от применения ИКТИО.

В течение 1 мес принимала метопролола сукцината 25 мг утром, затем еще через 1 мес повторно проведено ХМ-ЭКГ и зарегистрировано: 506 одиночных мономорфных желудочковых экстрасистол (ST-T без диагностически значимой динамики) — терапия отменена.

Через 4 мес после описанной нами госпитализации и через 7 мес после последней инфузии пембролизумаба у пациентки О. развилась витилигоподобная гипопигментация под нижней губой и в области промежности.

На момент написания клинического случая пациентка О. достигла околоцелевых показателей гликемии: НbА1с 7,5% (рис. 1).

Гипотиреоз медикаментозно компенсирован: ТТГ 2,1 мкМЕ/мл (0,27–4,2), T4 своб. 16,45 пмоль/л (10,8–22), T3 своб. 4,22 пмоль/л (3,1–6,8). Амбулаторно проводилась коррекция дозы левотироксина натрия (табл. 3 и рис. 2).

С целью лечения железодефицитной анемии осуществляется терапия пероральным железосодержащим препаратом: гемоглобин 120 г/л (120–180), гематокрит 34,1% (36–56), эритроциты 3,94×1012 кл/л (3,8–5,3); сывороточное железо 12,8 мкмоль/л (7–31).

Таблица 1. Антитела к β-клеткам поджелудочной железы

Показатель	Полученные данные, Ед/мл	Референтный интервал, Ед/мл
AT к IAA	2,59	0–10
AT к GAD	700	0–10
AT к IA-2	<1	0–10
AT к ICA	15	0–1
AT к ZnT-8	<10	0–15

Примечания: AT к IAA — антитела к инсулину; AT к GAD — антитела к глутаматдекарбоксилазе; AT к IA-2 — антитела к тирозинфосфатазе; AT к ICA — антитела к поверхностным антигенам; AT к ZnT-8 — антитела к транспортеру цинка. Таким образом, был подтвержден аутоиммунный генез сахарного диабета.

Таблица 2. Гликемический профиль за время нахождения в стационаре, ммоль/л

День	Перед завтраком	Через 2 ч после завтрака	Перед обедом	Через 2 ч после обеда	Перед ужином	Через 2 ч после ужина	21:00	03:00	06:00
1	9,3	4,9	7,2	6,3	4,6	4,7	6,2	10	
2	11,3	7,5	3,6	9,3	10,9	–	12,0	11,9	17,4
3	14,4	11,1	9,4	4,8	3,4	10,7	9,5	5,6	9,6
4	9,9	5,6	4,6	8,4	8,3	11,9	11,7	6,3	6,4
5	7,3	–	–	–	–	–	–	–	–
Таблица 1. Гликемический профиль за сутки

Дата	Глюкоза, ммоль/л	Углеводы, ХЕ	Болюс., Ед	Базал., Ед
24.12.2020	4,3	0,3	1	25
24.12.2020	3,8	0,3	1	25
24.12.2020	4,1	0,3	1	25

Таблица 3. Результаты гормонального исследования функции щитовидной железы до первого введения пембролизумаба и до момента описания клинического случая

Дата	ТТГ, мкМЕ/л	Т4 своб., пмоль/л	Т3 своб., пмоль/л	Лекарственная терапия
07.10.2019	0,91	17,88	-	
27.11.2019	0,016	29,09	-	
16.12.2019	0,01	28,58	6,54	Тиамазол 10 мг утром и 5 мг вечером
20.12.2019	0,01	26,13	4,36	
24.12.2019	0,005	19,52	6,13	
11.01.2020	0,068	13	3,56	Отмена тиамазола
11.02.2020	8,29	9,65	3,43	Левотироксин натрия 50 мкг
20.02.2020	7,93	-	-	
23.03.2020	2,9	-	-	Левотироксин натрия 75 мкг
13.04.2020	4,26	-	-	
26.05.2020	2,08	-	-	
08.07.2020	1,225	17,02	6,03	
11.08.2020	1,26	-	-	
19.11.2020	2,1	16,45	4,22	

Примечания: серым цветом выделено назначение терапии.

![Рисунок 1. Гликемический профиль за сутки](image1)

![Рисунок 2. Течение деструктивного тиреоидита](image2)
ОБСУЖДЕНИЕ

В описанном нами клиническом случае можно наблюдать гипергетерический иммунный ответ, который привел к развитию нескольких ионЯ с однородным манифестацией. Однако если в случае с витилиго при меланоме можно говорить о формировании хорошего ответа на ИКТИО (возможном увеличении чувствительности меланоцитов [2]), а значит, и увеличении общей и безрецидивной выживаемости [11], то причина развития эндокринных поражений неясна. Однако такая витилиго-подобная депигментация отличается от классического витилиго (последнее локализуется в фотоэкспонированных участках, и наблюдается феномен Кебнера) [12].

Медикана дебюта эндокринных ионЯ определяется в диапазоне 7–20 нед [6] от первого введения ИКТИО. У нашей же пациентки впервые выраженная гипергликемия была выявлена на 6-й неделе от начала иммунотерапии: перед каждым введением препарата проводился биохимический анализ крови и наблюдалась нормогликемия (5,0 ммоль/л). Одновременно с СД был диагностирован тиреотоксикоз. При этом до первого введения пемброкортисома функция щитовидной железы не была нарушена (ТТГ 0,91 мкМЕ/мл, Т4 своб. 17,88 пмоль/л).

Стоит отметить, что в первые полгода жизни наиболее разнообразные симптомы ИКТИО являются назначение глюкокортикостероидов. Суффразионологические дозы, необходимые для купирования побочного процесса, потенциально могут вызвать или усугубить уже имеющуюся гипергликемию. Поэтому правильным является контроль глюкозы крови при каждом введении ИКТИО и лечении по поводу любого другого ионЯ [6, 13]. Иницияция иммунотерапии у пациентов с иммунноопосредованным СД не вызывает сомнений, ведение осуществляется по принятым стандартам и клиническим рекомендациям [6].

Решение о назначении тиреостатиков таким пациентам, несмотря на лабораторно подтвержденный тиреотоксикоз, является правовым при подтверждении болезни Грейвса [6]. Наиболее частым вариантом тиреоидной патологии при использовании ИКТИО является деструктивный тиреоидит с преходящим тиреотоксикозом [6, 8, 14], и целеосообразным будет назначение тиреостатиков глюкокортикостероидами.

Назначение тиреостатиков у таких пациентов (с лабораторно выявленным тиреотоксикозом) не рекомендуется [6] до проведения визуализирующих методов диагностики (УЗИ щитовидной железы, сцинтиграфия) и подтверждения развития болезни Грейвса: возможно усиление цитополитического процесса и усугубление тиреотоксикоза.

Перед назначением левотироксина натрия у пациентов, которым проводилась или проводится терапия ИКТИО, при наличии неспецифических симптомов (выраженная слабость, сонливость, рвота и пр.) или косвенных биохимических лабораторных данных (гипонатриемия, гипогликемия) желательно определение кортизола крови в утренние часы [6, 8, 9] для исключения первичной (крайне редкой) или вторичной (более частой при развитии гипофизита) надпочечниковой недостаточности. В описываемом случае признаков гипокортицизма не наблюдалось.

Сходный клинический случай был представлен Hakami в 2019 г. [13] — развитие СД 1 типа и гипотиреозу у 52-летнего мужчины на фоне монотерапии пемброкортикумазом. При этом впервые поражение щитовидной железы (тиреотоксикоз, ТТГ 0,09 мМЕ/л) развилось после второго введения препарата с последующим формированием стойкого гипотиреоза (АТ к ТПО отрицательные) после пятого введения пемброкортикумазом. СД с тяжелым диабетическим кетоацидозом развился через 2 нед после седьмой инфузии анти-PD-1-моноклонального антитела с характерной клинической картиной (тошнота, рвота, полиурия, полиадипсия) и биохимическими параметрами (глюкоза 38,6 ммоль/л, кетоны 4,9 ммоль/л, С-пептид <0,01 мкг/л (1,1–4,4), НbА1с 8,3%), но отрицательными серологическими показателями (исследовались AT к GAD и AT к ICA). По достижении стабилизации состояния (проведение гормональной терапии), ввиду наличия метастазов и достижения хорошего ответа на препарат, терапия пемброкортикумазом была продолжена.

Использование 2 ИКТИО, направленных на разные мишени воздействия (ипилимумаб + анти-PD-1 или анти-PD-L1-моноклональное антитело), вызывает синергичный противоопухолевый ответ, а значит, и улучшение прогноза, а также встречается ионЯ могут чаще [7, 13, 14]. Так, у одного 52-летнего пациента с метастатической меланомой [11] использовалась комбинированная схема иммунотерапии (ипилимумаб + ниволумаб). Было проведено три введения данных препаратов, после чего решили отменить ИКТИО, так как у пациента развился гипофизит с формированием гипогипитуризма (дефицит ТТГ, ФСГ, ЛГ, ПРЛ, а также кортизола и тестостерона), несахарного и СД. При этом антитела к β-клеткам поджелудочной железы (исследовались AT к GAD, AT к IA-2, AT к ZnT-8) были отрицательными, С-пептид 0,05 нмоль/л (0,4–1,5), НbА1с, 7,7%.

Таким образом, с учетом вариабельности и специфичности клинических проявлений ионЯ, каждый пациент должен быть информирован о признаках наиболее грозных эндокринных ионЯ (гипофизита, СД, гипопаратиреоза), а также обращать внимание больных на необходимость информирования лечащего врача обо всех новых симптомах.

В отличие от тиреоидных поражений, которые могут развиваться с частотой до 50%, частота развития СД как ионЯ крайне невелика [8]. Тем не менее следует помнить, что возможное развитие ионЯ с поражением нескольких эндокринных желез одномоментно. Подобные клинические наблюдения должны детально анализироваться как с целью выявления возможных закономерностей, так и для создания практических рекомендаций для специалистов, сталкивающихся с данной проблемой в своей клинической практике.

ЗАКЛЮЧЕНИЕ

Возможное развитие ионЯ при использовании терапии ИКТИО диктует необходимость более внимательного отношения к таким пациентам. Ввиду тяжелого отношения к таким пациентам. Ввиду тяжести состояния клиническая картина может быть степной, а значит, привести к несвоевременной диагностике эндокринопатий.
Эндокринные иОЯ чаще соответствуют 1–2 степени по CTCAE, однако своевременно инициированная терапия не только предотвращает развитие осложнений, но и дает возможность продолжения иммунотерапии основного онкологического заболевания в полном объеме, что увеличивает общую и безрецидивную выживаемость.

Важным для практики является поиск генетических, серологических или биохимических маркеров, которые позволяют прогнозировать развитие эндокринных иОЯ, а также более полно понять механизмы влияния ИКТИО.

Дополнительная информация

Источник финансирования. Работа выполнена в рамках государственного задания «Эпидемиологические и молекулярно-клеточные характеристики опухолевых, аутоиммунных и йододефицитных тиреоидных заболеваний» (Рег. № АААА-А20-120011790180-4).

Список литературы | REFERENCES

1. NobelPrize.org. [Internet]. The Nobel Prize in Physiology or Medicine 2018. [cited 2020 Nov 30]. Available from: https://www.nobelprize.org/prizes/medicine/2018/summary/
2. Шубникова Е.В., Букатина Т.М., Вельц Н.Ю., и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противопоэпителиальных средств // Биология. 2020. — Т. 15. — № 3. — С. 49-58. [Shubnikova EV, Bukatina TM, Velyts NYu, et al. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Immuno Pharmacotherapy. 2020;15(3):49-58. (In Russ.).]
3. Gris.rosminzdrav.ru. [Internet]. [cited 2020 Nov 30]. Available from: https://gris.rosminzdrav.ru/gris.aspx.
4. Mazarico I, Capel I, Gémez-Palop O, et al. Low frequency of positive antithyroid antibodies is observed in patients with thyroid dysfunction related to immune checkpoint inhibitors. J Endocr Invest. 2019;42(12):1443-1450. doi: https://doi.org/10.1007/s40618-019-01058-x
5. CTCAE v5.0 incorporates certain elements of the MedDRA terminology. For further details on MedDRA refer to the MedDRA MSSO. [Internet]. [cited 2020 Nov 30]. Available from: https://www.meddra.org/
6. Highem CE, Olsson-Brown A, Carroll P, et al. Low frequency of positive antithyroid antibodies is observed in patients with thyroid dysfunction related to immune checkpoint inhibitors. J. Endocrinol Invest. 2019;42(12):1443-1450. doi: https://doi.org/10.1007/s40618-019-01058-x
7. Ferran SM, Fallahi P, Galetta F, et al. Thyroid disorders induced by checkpoint inhibitors. Rev Endorxi Metab Disord. 2018;19(4):325-333. doi: https://doi.org/10.1007/s11154-018-9463-2
8. Юдин Д.И., Лактионов К.К., Саранцева К.А., и др. Безопасность контрольных точек иммунного ответа: новые риски нового класса противопоэпителиальных средств // Биология. 2020. — Т. 15. — № 3. — С. 49-58. [Yudin DI, Laktionov KK, Sarantseva KA, et al. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Immuno Pharmacotherapy. 2020;15(3):49-58. (In Russ.).]
9. Глибка Анастасия Андреевна, Мельниченко Галина Афанасьевна, д.м.н., профессор, академик РАН (Galina A. Mel`nichenko, MD, PhD, Professor); ORCID: https://orcid.org/0000-0002-7324-8344; eLibrary: SPIN 3649-6340; e-mail: anastasiya_glibka@mail.ru
10. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Макурова. — 9-й выпуск (дополненный). — М.; 2019. [Standards of specialized diabetes care. Ed by Dedov II, Shestakova MV, Mayorov Alu. 9th Edition (revised). Moscow; 2019. (In Russ.).]
11. Nardin C, Jeand’heur A, Boulier K, et al. Vitiligo under anti-programmed cell death-1 therapy is associated with increased survival in melanoma patients. J Am Acad Dermatol. 2020;82(3):770-772. doi: https://doi.org/10.1016/j.jaad.2019.11.017
12. Gracia-Cazána T, Padgett E, Hernández-García A, et al. Vitiligo-like lesions located over in-transit metastases of malignant melanoma as a clinical marker of complete response to pembrolizumab. Dermatol Online J. 2019;25(12):12.
13. Hakami OA, Ioana J, Ahmad S, et al. A case of pembrolizumab-induced severe DKA and hypothyroidism in a patient with metastatic melanoma. Endocrinol Diabetes Metab Case Reports. 2019;2019:1-4. doi: https://doi.org/10.1530/EDM-18-0153
14. Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):173-182. doi: https://doi.org/10.1001/jamaoncol.2017.3064
15. Gunawan F, George E, Roberts A. Combination immune checkpoint inhibitor therapy nivolumab and ipilimumab associated with multiple endocrinopathies. Endocrinol Diabetes Metab Case Rep. 2018;17:0146. doi: https://doi.org/10.1530/EDM-17-0146.
Глибка А.А., Мельниченко Г.А., Михина М.С., Мазурина Н.В., Харкевич Г.Ю. Развитие деструктивного тиреоидита и сахарного диабета после трех введений пембролизумаба по поводу меланомы кожи // Проблемы эндокринологии. — 2021. — Т. 67. — №2. — С. 20-27. doi: https://doi.org/10.14341/probl12698

TO CITE THIS ARTICLE:
Glibka AA, Melnichenko GA, Mikhina MS, Mazurina NV, Kharkevich GY. Development of destructive thyroiditis and diabetes mellitus after three injections of pembrolizumab for skin melanoma. Problems of Endocrinology. 2021;67(2):20-27. doi: https://doi.org/10.14341/probl12698