Radiation Damage Studies and Operation of the DØ Luminosity Monitor

Jesus Orduna
Rice University

For the DØ Luminosity Group
Outline

• Basics of the DØ luminosity monitor.
• Damage to the scintillator.
• How to compensate for damage.
• Summary.
The LM Measures Tevatron instantaneous luminosity at the DØ interaction point by detecting inelastic collisions.

Also provides information about beam halos, both proton and antiproton.
Individual Channel

- Saint–Gobain BC–408: Polyvinyl toluene + Anthracene.
- Peak output wavelength of BC–408 is 425 nm.

- **HAMAMATSU** R7494 (custom made*): 1” diameter fine mesh PMT with quartz windows (to improve radiation hardness) run under negative voltage.
- Operating in an ~ 1.25 T magnetic field.
- Sensitivity between 400 to 500 nm.

Scintillator dimensions in inches.
An individual channel consist of a PMT glued to a scintillator wedge.

Twelve channels form a single enclosure.

Two enclosures are mounted around the beam pipe to provide an array of 24 channels on either side.

Two arrays (one north + one south) make the Luminosity Monitor or LM (total: 48 channels).
Operational Environment

- Tevatron produces pp collisions at 1.96 TeV in the center of mass.
- Aside from Tevatron shutdowns or long downtimes, the LM is bombarded practically around the clock by ionizing radiation from beam interactions.
- Just few opportunities to perform maintenance in LM enclosures.
- The damage is not uniform.
- A large fraction of this damage is permanent due to changes in the scintillator at a molecular level.
Scintillator Damage

- The light yield decreases with time as the scintillator accumulates radiation damage.
- There are ways to compensate to some degree in order to provide a stable luminosity measurement:
 - Annealing,
 - HV adjustment,
 - Scintillator/PMT replacement.
Annealing

- The LM is continuously purged with gas to retard helium infiltration.
- Until the summer of 2007, the gas used was nitrogen.
- Annealing occurs when the scintillator is not exposed to radiation —preparation for beam collisions, shutdowns, etc.— partially recovering its properties.
- Nitrogen was replaced with dry air to allow the scintillator to anneal.
- Good improvement in light yield was seen (right).

![Typical channel behavior (Ch. 9)](image)
Scintillator Replacement

- Tevatron shutdowns. Time to do maintenance and upgrade both the accelerator and the detectors.
- For the LM generally means work in a confined space and have the scintillator replaced as safely and efficiently as possible.
- The scintillator was completely replaced in shutdowns: 2006, 2007, 2009 and 2010.
- 2010: quickest replacement (2 weeks out and in), also replacement of 14 PMT.
Spectrophotometry

- Spectrophotometry of the scintillator motivated by a longevity study of the Luminosity System for an extended period of run without shutdowns.

- Deuterium light source integrated over a 2 s exposure.

- Wavelengths on the range from ~200 nm to 800 nm (2 nm steps in 2009 and 1 nm step in 2010).

- Great opportunity for students to get involved in detector activities.

Thanks to Anna Pla–dalmau from Lab 6!
Spectrophotometry

- Transmittance is measured perpendicular to the scintillator surface.
- Different positions on the scintillator.
- Available data for scintillator replaced on shutdowns 2009 and 2010.
- Data includes different positions for all the pieces and sets of different dates for a few of them.

\[T = \frac{I_0}{I} \]
Spectrophotometry

For the same wedge on different positions: the most damage is observed at the point closest to the beam pipe.

All the pieces are consistent with this behavior.
Spectrophotometry

- 2010 Spectrophotometry measurements taken within 5 days of last beam.
- This is the fastest luminosity scintillator has ever been taken out of the detector.
- On the 1st day, only 5 pieces were measured due to laboratory time constraints.
- Measurements for these five pieces allow to see some annealing effect (According to literature, the maximum amount of annealing takes place on a time scale of hours to days).
- All 48 pieces measured on the next days.
Annealing

- In all analyzed samples: transmittance show increase with time.
- However, the annealing seen in these measurements is not a large effect.
- Annealing has a limit (separation from the “unused” curve gives an idea of the real damage).
- Not the only way to keep a healthy luminosity measurement.
Annealing

Sample 1 – NW01

Sample 2 – NW02

Sample 3 – NW 03

Sample 4 – NW05
HV Adjustment

- When the drop in the light yield has reached some limit, it is compensated by a HV adjustment.
- Increases the gain in the PMT.
- Individually set for every channel.
HV Adjustment

Typical channel behavior (Ch. 9)

Light Yield (arbitrary units)

Integrated Luminosity (fb$^{-1}_{\text{Delivered}}$)
Summary

• The switch to the dry air purge has allowed the scintillator to anneal in the LM during periods without beam.

• Spectrophotometry results show that the worst damage to the scintillator is near the beam pipe, as expected, and that most annealing has occurred before the earliest measurements were made.

• The Luminosity Monitor is bombarded by radiation but maintenance keeps the luminosity measurement within a 0.5% stability range.