Biological drug and drug delivery-mediated immunotherapy

Xiao, Qingqing; Li, Xiaotong; Li, Yi; Wu, Zhenfeng; Xu, Chenjie; Chen, Zhongjian; He, Wei

Published in:
Acta Pharmaceutica Sinica B

Published: 01/04/2021

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.apsb.2020.12.018

Publication details:
Xiao, Q., Li, X., Li, Y., Wu, Z., Xu, C., Chen, Z., & He, W. (2021). Biological drug and drug delivery-mediated immunotherapy. Acta Pharmaceutica Sinica B, 11(4), 941-960. https://doi.org/10.1016/j.apsb.2020.12.018

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher’s copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Biological drug and drug delivery-mediated immunotherapy

Qingqing Xiaoa, Xiaotong Lia, Y Li, Zhenfeng Wub, Chenjie Xuc, Zhongjian Chend, Wei Hed,a,*

aSchool of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
bKey Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
cDepartment of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
dShanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China

Received 25 September 2020; received in revised form 3 November 2020; accepted 15 November 2020

Abbreviations: α1D-AR, α1D-adrenergic receptor; AAs, amino acids; ACT, adoptive T cell therapy; AHC, Chlamydia pneumonia; ALL, acute lymphoblastic leukemia; AP, ascorbyl palmitate; APCs, antigen-presenting cells; ApoA—I, apolipoprotein A—I; ApoB LPs, apolipoprotein-B-containing lipoproteins; AS, atherosclerosis; ASIT, antigen-specific immunotherapy; bDMARDs, biological DMARDs; BMPR-II, bone morphogenetic protein type II receptor; Bregs, regulatory B lymphocytes; CAR, chimeric antigen receptor; CCR9—CCL25, CC receptor 9—CC chemokine ligand 25; CD, Crohn’s disease; CETP, cholesterol ester transfer protein; CpG ODNs, CpG oligodeoxynucleotides; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; CX3CL1, CXXXC-chemokine ligand 1; CXCL 16, CXC-chemokine ligand 16; CXCR 2, CXC-chemokine receptor 2; DAMPs, danger-associated molecular patterns; DCs, dendritic cells; DDS, drug delivery system; Dex, dexamethasone; DMARDs, disease-modifying antirheumatic drugs; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine; DSS, dextran sulfate sodium; ECs, endothelial cells; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; EPR, enhanced permeability and retention effect; ET-1, endothelin-1; ETAR, endothelin-1 receptor type A; FAO, fatty acid oxidation; GM-CSF, granulocyte—macrophage colony-stimulating factor; HA, hyaluronic acid; HDL, high density lipoprotein; HER2, human epidermal growth factor-2; hsCRP, high-sensitivity C-reactive protein; ICOS, inducible co-stimulator; IBD, inflammatory bowel diseases; ICOS, inducible co-stimulator; ICP, immune checkpoint; IFN, interferon; IL, interleukin; IT-hydrogel, inflammation-targeting hydrogel; JAK, Janus kinase; LAG-3, lymphocyte-activation gene 3; LDL, low density lipoprotein; LPS, lipopolysaccharide; LTβ4, leukotriene B4; mAbs, monoclonal antibodies; MCP-1, monocyte chemotactic protein-1; MCT, monocrotaline; MDSC, myeloid-derived suppressor cell; MHCs, major histocompatibility complexes; MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine; MIF, migration inhibition factor; MM, multiple myeloma; MMP, matrix metalloproteinase; mPAP, mean pulmonary artery pressure; MOF, metal—organic framework; MPO, myeloperoxidase; MSCs, mesenchymal stem cells; nCmP, nanocomposite microparticle; NF-κB, nuclear factor κ-B; NK, natural killer; NPs, nanoparticles; NSAIDs, nonsteroidal anti-inflammatory drugs; PAECs, pulmonary artery endothelial cells; PAH, pulmonary arterial hypertension; PASMCs, pulmonary arterial smooth muscle cells; PBMCs, peripheral blood mononuclear cells; PCSK9, proprotein convertase subtilisin kexin type 9; PD-1, programmed death protein-1; PD-L1, programmed cell death-ligand 1; PLGA, poly lactic-co-glycolic acid; RA, rheumatoid arthritis; rHLR, recombinant HDL; rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein; ROS, reactive oxygen species; scFv, single-chain variable fragment; TCR, T cell receptor; T cell; Tgf-β, transforming growth factor β; TH1, TH2, TH17, T Helper cell 17; TLR, Toll-like receptor; TNF, tumor necrosis factor; Treg, regulatory T cells; UC, ulcerative colitis; VEGF, vascular endothelial growth factor; VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation; YCs, yeast-derived microparticles.

*Corresponding author.

E-mail address: weihe@cpu.edu.cn (Wei He).

These authors made equal contributions to this work.

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.

https://doi.org/10.1016/j.apsb.2020.12.018

2211-3835 © 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
KEY WORDS
Inflammatory diseases; Cancer immunotherapy; Atherosclerosis; Pulmonary artery hypertension; Biologics; Adoptive cell transfer; Immune targets; Drug delivery

Abstract The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.

1. Introduction
Inflammatory diseases including cardiovascular diseases, cancer, allergies, autoimmune, and neuropsychiatric diseases commonly feature dysregulation of immune response. For instance, atherosclerosis (AS) starting with dysfunctional alternation in the endothelium demonstrates increased recruitments of immune cells encompassing lymphocytes, antigen-presenting cells (APCs) and monocytes/macrophages. Immunotherapy refers to disease treatment through activating or inhibiting the immune system. Unlike traditional treatments, the immunotherapy exerts therapeutic efficacy through modifying the endogenous immune response, or reversing the immunosuppression conditions of diseases, always characterized by changed infiltration of immune cells and modified expression of immune factors at the allergen.

Immunotherapy possesses significant advantages over traditional treatment regimens, such as higher efficacy against disease with fewer off-target effects and more durable response. Increasing evidence demonstrates immunotherapy is potent to treat malignant diseases, and cancer immunotherapy is becoming widely accepted in the clinic. Furthermore, immunotherapy has promising potential to treat other inflammatory disorders, e.g., AS, rheumatoid arthritis (RA), intestinal inflammation, and pulmonary arterial hypertension (PAH).

To target the pathogenesis of diseases, innate or adaptive immune system, numerous biological drugs were approved, including anti-tumor necrosis factor (anti-TNF) agents (etanercept, adalimumab, infliximab), immune checkpoint (ICP) blockers (ipilimumab, tremelimumab, pembrolizumab), and interleukin (IL)-family agonists (nivolumab) or antagonists (tocilizumab). The approved immunotherapy is present in Table 1. However, the use of immunotherapies is always limited by several factors. For instance, repeated administration of the immunomodulators at high dose is always required and, as a result, may induce a series of autoimmune-mediated side effects, such as flu-like reactions, and vascular leak syndrome, and show a significant individual variation. Furthermore, most immunomodulators belong to biological drugs separated from or manufactured by biological systems and always are characterized by increased size, low stability, poor penetration into the diseased site and limited ability to cross cell membrane. Drug delivery using carriers including liposomes, hydrogels, living cells, microspheres, inorganic materials, polymeric micelles, drug crystals, and protein vehicles is robust to improve the treatment efficacy of biological drugs, owing to the advantages including extended blooded circulation, improved accumulation, promoted penetration in diseased tissues, increased uptake, and high drug-loading ability, large surface areas, and easy decoration of physicochemical properties. Especially, more than 65 nanoscale drug delivery systems (DDSs) were marked for commercial use. In this review, we summarize the immunotherapy implications in major inflammatory diseases, highlight the biopharmaceuticals and DDS utilized to improve the delivery of immunomodulators, and finally provide perspectives in this field.

2. Cancer immunotherapy
2.1. Potential targets for cancer immunotherapy
Immunotherapy of cancer is attracting huge attention for its remarkable success in the clinic. Via targeting the immune system and overcoming the acquired drug resistance, the immunologically “cold” tumors lacking immune infiltrate can be converted into “hot” tumors having dense T cell infiltrate through efficient approaches, exhibiting as mobilization of the immune cells and eliminating the cancer cells. In general, the immune response could be prompted by modulating the production of immune factors and ICPs and motivating the immune cells.

2.1.1. Cytokines and vaccines
Cytokines are potent to modulate the immune system. Three main types of cytokine are involved in cancer immunotherapy, including ILs such as IL-2, IL-12, IL-15, and IL-21, interferons (IFNs), and granulocyte–macrophage colony-stimulating factor (GM-CSF). The recombinant cytokine IFNα is the first approved for clinical use in 1986, followed by recombinant IL-2. However, a high dose of cytokines was required for effective treatment efficacy, and frequently leads to a series of unwanted effects, e.g., capillary-leak syndrome and cytokine-release syndrome. The combined use of cytokines with checkpoint inhibitors or anticancer monoclonal antibodies (mAbs) might improve anti-tumor efficacy.

Therapeutic cancer vaccines whose activities closely rely on cytotoxic T cells combat the disease via abolishing cancer cells or abnormal cells. The cancer vaccines are divided into four classes: peptide vaccines, cell-based vaccines, viral vector vaccines, and nucleic acid vaccines. APCs, especially dendritic cells (DCs), are essential to the vaccination because they are
Approved therapy	Active agent	Administration route	Manufacturer	Trade name	Therapy implication	Approved year	Ref.	
mAbs	Abciximab	IV injection	Johnson & Johnson/Lilly	Reopro[®]	Cardiovascular disease	1994	16	
	Rituximab	IV injection	Genentech Inc.	Rituxan[®]	NHL, RA	1997	16	
	Infliximab	IV injection	Johnson & Johnson	Remicade[®]	CRD, RA	1998	16	
	Trastuzumab	IV injection	Genentech Inc.	Herceptin[®]	Breast cancer	1998	16	
	Etanercept	SC injection	Amgen	Enbrel[®]	RA	1998	16	
	Gemtuzumab ozogamicin	IV injection	Wyeth	Mylotarg[®]	Leukemia	2000	16	
	Alemtuzumab	IV injection	Genzyme	Campath -1H[®]	Leukemia	2001	16	
	Adalimumab	SC injection	CAT, Abbott	Humira[®]	RA, CRD	2002	16	
	Abatacept	IV infusion	BMS	Ocrenica[®]	RA	2005	16	
	Panitumumab	IV infusion	Amgen	Vectibix[®]	Colorectal cancer	2006	16	
	Golimumab	SC injection	Centocor/Johnson & Johnson	Simponi[®]	RA	2009	16	
	Certolizumab pegol	SC injection	UCB Inc.	Cimzia[®]	RA	2009	16	
	Ofatumumab	IV injection	Novartis	Arzerra[®]	MCD, RA	2009	16	
	Iplilimumab	IV injection	Bristol-Myers Squibb	Yervoy	Metastatic melanoma	2011	17	
	Mogamulizumab	IV injection	Kyowa Hakko Kirin	POTELIGEO[®]	ATL	2012	16	
	Pertuzumab	IV injection	Genentech	Perjeta[®]	Breast cancer	2012	16	
	Ziv-aflibercept	IV injection	Sanofi/Regeneron	ZALTRAP[®]	MCRC	2012	16	
	Trastuzumab emtansine	IV injection	Roche/Genentech	Kadcyla[®]	Breast cancer	2013	16	
	Obinutuzumab	IV injection	Genentech	Gazyva[®]	CLL	2013	16	
	Pembrolizumab	IV injection	Merck Sharp & Dohme Corp.	KEYTRUDA[®]	advanced melanoma, HNSCC	2014, 2016	17,18	
	Nivolumab	IV injection	Bristol-Myers Squibb	Opdivo[®]	NSCLC, HNSCC, renal cell carcinoma	2015, 2016	17,18	
Adoptive cell therapy	Atezolizumab	IV injection	Genentech Inc	Tecentriq	NSCLC, Urothelial Carcinoma	2016	18	
	Avelumab	IV injection	Pfizer/Merk KGaA (EMD Serono)/Dyax	Bavencio™	Merkel cell carcinoma	2017	16	
	Durvalumab	IV injection	AstraZeneca UK Limited	Imfinzi	Urothelial carcinoma	2017	19	
	CAR-T therapy	IV infusion	Novartis	Kymriah[®]	B cell ALL	2017	20	
		IV infusion	Kite Pharma/Gilead Sciences	Yescarta	Large B cell lymphoma	2017	21	
		IV infusion	Kite Pharma	Yescarta[®]	Relapsed or refractory large B-cell lymphoma	2017	22	
	Cytokine-or chemokine-based therapy	Tofacitinib	Oral	Pfizer	Xeljanz	RA	2012	23
		Ruxolitinib Phosphate	Oral	Incyte corp	JAKAFI	RA	2011	24
	Dacilizumab	SC injection	Biogen	Zinbryta	Multiple sclerosis	2016	24	
	Sarilumab	SC injection	Sanofi Synthelabo	Kevzara	RA	2017	21	
	Ribociclib	Oral	Novartis	Kisqali	Breast cancer	2017	21	
	Brigatinib	Oral	Ariad Pharmaceuticals/Takeda	Alunbrig	ALK-positive NSCLC	2017	21	
	Neratinib	Oral	Puma Biotechnology	Nerlynx	HER2-overexpressed breast cancer	2017	21	
	Copanlisib dihydrochloride	IV injection	Bayer	Alisupra	Follicular lymphoma	2017	21	
	Baricitinib	Oral	Eli Lilly	OLUMIANT	RA	2017	21	
	Sarilumab	SC injection	Sanofi Synthelabo	KEVZARA	RA	2018	24	
	Tofacitinib citrate	Oral	Pfizer	XELJANZ XR	RA	2019	24	

ALL, acute lymphoblastic leukemia; ALK, anaplastic lymphoma kinase; ATL, adult T-cell leukemia/lymphoma; CLL, chronic lymphocytic leukemia; CRD, Crohn’s disease; HNSCC, head and neck squamous cell carcinoma; MCD, multicentric Castleman’s disease; MCRC, metastatic colorectal cancer; NSCLC, non-small cell lung cancer; NHL, non-hodgkin lymphoma; RA, rheumatoid arthritis; IV Injection, intravenous injection; SC Injection, scubcutaneous injection; IV Infusion, intravenous infusion.

Table 1 Approved immunotherapy for clinical use.

ALL, acute lymphoblastic leukemia; ALK, anaplastic lymphoma kinase; ATL, adult T-cell leukemia/lymphoma; CLL, chronic lymphocytic leukemia; CRD, Crohn’s disease; HNSCC, head and neck squamous cell carcinoma; MCD, multicentric Castleman’s disease; MCRC, metastatic colorectal cancer; NSCLC, non-small cell lung cancer; NHL, non-hodgkin lymphoma; RA, rheumatoid arthritis; IV Injection, intravenous injection; SC Injection, subcutaneous injection; IV Infusion, intravenous infusion.
efficient to catch, refine, and present antigens to T cells. Most reported cancer vaccines belong to the DC-based vaccines. Effective vaccine-elicited CD8+ T cells should have properties as follows: (i) efficiently binding T-cell receptor, (ii) possessing robust T-cell affinity to the major histocompatibility complexes (MHCs) on cancer cells, (iii) producing a high level of granzymes and perforin (IV) potently recruiting T cells to site of tumor, and (V) modulating the release of costimulatory and inhibitory molecules. Three cancer vaccines, Gardasil, Cervarix, and Sipuleucel-T were commercially marketed. However, the mutation of antigens is always unique to individuals and, therefore, compromises the treatment efficacy of the commonly used vaccine. The personalized vaccine is a potential route to overcome the shortage.

2.1.2. mAb and ICP suppressors

By targeting surface antigens differentially expressed on cancer cells, such as CD20, CD33, CD52, human epidermal growth factor-2 (HER2), vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), the antibody exerts cancer immunotherapy via means including the antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity. mAbs represent the most frequently employed cancer immunotherapy in the clinic, and over 30 products were approved.

ICPs are regulators often expressed on lymphocytes and classified into inhibitors and stimulators, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), programmed death protein-1 (PD-1), programmed cell death-ligand 1 (PD-L1), lymphocyte-activation gene-3 (LAG-3), OX40 (a potent costimulatory receptor), B7-H3 belonging to a member of B7 superfamily, V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA), T-cell immunoglobulin mucin 3 (TIM-3), and inducible co-stimulator (ICOS). Several inhibitors of ICPs, i.e., anti-PD-1, anti-PD-L1, and anti-CTLA-4, were approved for the clinical use. Nonetheless, their application may be limited for acquired-resistance to monotherapy.

2.1.2.1. CTLA-4

T cells are activated via binding their surface CD28 with B7-1 (CD80) or B7-2 (CD86) on the APCs. However, the CD28 homolog CTLA-4, possesses a significantly greater binding affinity toward B7 and, as a result, leads to blockade of T cell upregulation and activation. Anti-CTLA-4 acts through blocking the connection between B7 and CTLA-4. Human CTLA-4 antibodies, ipilimumab, was approved to treat advanced metastatic cancer; and while another CTLA-4 blockade, tremelimumab, is under clinical trial. The long-lasting anti-tumor response always occurs after dosing, yet accompanying unwanted effects, such as enterocolitis, inflammatory hepatitis, and dermatitis; however, it was argued these toxicities could be discounted by using corticosteroids and whereas did not reduce the anti-tumor effects.

2.1.2.2. PD-1 and PD-L1

PD-1 is categorized into the CD28 superfamily as well, whereas PD-L1 and PD-L2 are classified as the B7 family. The expression of the PD-1 was found predominantly on three immune cells in the periphery, activated CD8+ T cells and B cells. The binding with the ligand, PD-L1 or PD-L2, allow PD-1 to recruit the sarcoma gene (Src) homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) and inhibit the T-cell activities, e.g., T-cell expansion and effector functions including release of IFN-γ and cytotoxicity. It should be noteworthy that PD-1 mainly reduce effector T-cell functions at the later-phase of immune reaction while CTLA-4 engages at the early stage.

By targeting the PD-1, PD-L1, or PD-1PD-L1 axis, numerous mAbs were fabricated, including nivolumab, pembrolizumab, and...
tislelizumab, camrelizumab and sintilimab, durvalumab, avelumab, and atezolizumab. Nivolumab (Opdivo®) and pembrolizumab (Keytruda®) have been commercially marked.

Blockades of CTLA-4 or PD-1-based signaling are effective to combat cancer, however, monotherapy may induce adverse effects occasionally probably due to the individual variations. Combinatorial treatment, e.g., anti-CTLA-4 plus anti-PD-1 and PD-1 plus PD-L1 antibodies, provides the potential to eliminate or alleviate the side effects.

2.1.3. Adoptive T cell therapy (ACT)

ACT refers to the transfer of isolated T cells from the patient that are genetically engineered in vitro to the same patient, including tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR) T cells, and chimeric antigen receptor (CAR) T cells (Fig. 1). The FDA has approved CAR therapy for adult patients with leukemia and lymphoma.

For TIL therapy, the TILs are extracted from the separated tumors, sorted with endogenous TCRs, purified, and ultimately undergo a rapid expansion protocol in vitro using with IL-2 and CD3 antibody. For TCR therapy, TCR composed of an α- and a β-chains is anchored on T cells through noncovalently binding with CD3 complex. T cells become cytotoxic T cells when the anchored TCR is recognized and binds with the MHC on APCs or tumor cells. Rapoport et al. developed NY-ESO-1/LAGE-1 TCR-engineered T cells to treat multiple myeloma (MM). The engineered T cells were infused into twenty patients with MM at a cell number of 2.4 × 10^9 two days after dosing autologous stem cell. The results indicated that the engineered T cells could proliferate, move to the marrow, and kill the cancer cells selectively, with clinical response of up to 80% and median survival of 19.1 months.

To overcome the limitations of TCR therapy, e.g., the requirement of MHC expression, MHC identity, and costimulation, CAR therapy was developed via adding CAR genes on T cells comprised of an extracellular single-chain variable fragment (scFv), a transmembrane spacer, and intracellular signaling/activation domain(s). ACT therapy has demonstrated its success in the treatment of cancers and several products were approved for clinical use. However, increasing limitations of the therapy are revealed as well, *i.e.*, on-target/off-tumor toxicity, cytokine-release syndrome, neurologic toxicities, off-targeting reactivity, complicated fabrication, extremely high cost, etc.

2.2. Drug delivery-mediated cancer immunotherapy

To promote the immune response toward cancer, repeated administration of immunomodulators at a high dose is always required because most immunostimulants are unstable in physiological conditions, have the poor tumor-targeting ability, and can’t translocate the plasma membrane, etc. Such a dosing approach frequently induces side effects and compromises the patient’s compliance. As a result, dosing the immunomodulators in a controllable and safe way is highly expected. Drug carriers, e.g., liposomes and dendrimers, are effective to improve the delivery due to their well-known advantages (Fig. 1). Numerous drug carriers were reported to improve the efficacy of immunotherapeutic agents such as T cell activators, ICP inhibitors, and cytokines, via increasing their circulation time and target-ability to immune cells. Several reviews summarized the use of a drug delivery strategy to improve cancer immunotherapy. The most commonly used carriers include polymer nanoparticles (NPs), inorganic NPs, and lipid-based NPs. Recently, to lower the cost and facilitate the expansion of T lymphocytes for CAR therapy without complicated procedures, Smith et al. developed plasmid DNA-loaded polymeric nanocarriers decorated with T-cell-targeting anti-CD3ε f(ab’)2 fragments to deliver leukemia-specific CAR genes into host T cells in situ. They found that the 155-nm NPs were able to rapidly and selectively program circulating T cells in vivo and demonstrated improved leukemia regression over the treatment with conventional CAR therapy. This work represents a new use of the DDS aiming to reduce the cost of ACT and avoid complications of clinical-scale manufacturing. Furthermore, changing the basic properties of NPs, e.g., diameter, shape and surface charge, are potent to modulate the immunotherapy. For instance, smaller NPs (<50 nm) have enhanced ability to elicit the immune activities over the large NPs (>100 nm) because the smaller ones tend to traffic to lymph nodes via DCs, whereas the larger ones are difficult to move once accumulating at the diseased site. The NPs with a diameter of over 500 nm can target macrophages and are internalized via phagocytosis.

Another significant advantage of using drug carriers is the efficiency to facilitate the combinational therapy. The durable immune response is only indicated in limited cancer types when an immunostimulant is used alone. Such that immunomodulator and other anti-tumor inhibitors are always combined for use in the clinic; however, their active targets are spatio-temporally discrepant and, as a result, often leads to sub-optimized treatment efficacy. Drug carriers have a remarkable potential to deliver the agents to their respective active sites precisely by co-delivery approach or physicochemical triggering means. For example, by using nanoclew based on long-chain single-strand DNA as a carrier that could be enzymatically degraded in inflammation conditions, CpG oligodeoxynucleotides (CpG ODNs) and anti-PD-1 antibody were released in a sustained pattern. The results demonstrated that the codelivery system synergistically induced long-lasting anti-tumor T lymphocyte responses in a melanoma model.

The nanocarriers demonstrated their promising potential to promote the treatment efficacy of cancer immunotherapy. Nonetheless, few of them are translated, mainly owing to the poor reproducibility and scalability, unpredictable toxicity in vivo, etc. Several techniques such as bubble blown assembly, capillary-force-assisted assembly, electric-field-assisted assembly, and Langmuir–Blodgett assembly were developed to scale up the nanomaterials. Yet, it is difficult to acquire a commonly used approach to fabricate the devices since they always have their unique features. Furthermore, many studies for cancer immunotherapy was performed on the mouse models while there are huge discrepancy between the animal and human immune systems, the efficacy appeared on mouse may have poor correlation with human patients.

3. Immunotherapy for autoimmune disease therapy

Autoimmune diseases encompassing RA, multiple sclerosis, inflammatory bowel diseases (IBD), mainly results from dysregulation of the T cell checkpoint pathways. Especially, the helper T
cells have profound effect on the progression of these diseases, since they often affect the function of other immune cells, e.g., regulatory T cells (Tregs), monocytes and macrophages.

3.1. RA

RA is a chronic inflammation and frequently demonstrates damage of both articular cartilage and bone. The exact pathological mechanism of RA is unclear, but it is well accepted that RA is closely linked to the breakdown of immune tolerance. The immunotherapy by modulating the differentiation of lymphocytes and secretion of cytokines may combat RA (Fig. 2).

3.1.1. Implications for immunotherapy in RA

3.1.1.1. Regulation of lymphocytes. Four lymphocyte subpopulations, Tregs, T helper 17 (Th17) cells, and regulatory B lymphocytes (Bregs), affect the process of RA. Furthermore, Lamas et al. discovered that the activation extends of peripheral blood mononuclear cells (PBMCs) and the disease activity allowed for immunomodulatory effect of bone marrow-derived mesenchymal stem cells (MSCs) on T-cell activation. Accordingly, the immunotherapy should concentrate on the modulation of these lymphocytes.

A deficit of Tregs was demonstrated to promote the RA development and increasing proliferation of Tregs via anti-TNF treatment benefits to the suppression of RA. Consequently, the activation of Tregs is the potential to ameliorate RA. These activators include IL-2, T cell superagonists (CD28SAs), and non-depleting anti-CD4 mAbs. Second, the subsets of B cells, i.e., Bregs, memory B cells (CD24hiCD27 phenotype), and B10 cells, are potential targets to treat RA due to increased secretion of IL-10, improved proliferating of Tregs, or reduced expansion of Th1, Th17, TNFα+ T cells. However, it was reported that, in patients with RA, the CD24+CD27+ and the CD24hiCD38hi B cells may not enhance the Treg’s proliferation or decrease Th1 and TNFα+ T cells although the abundance of the two sets is similar to that in the healthy. In this situation, the adoptive transfer of Bregs has the potential to alleviate the symptoms of the disease. Besides, the synovial macrophages advance the process of RA via the secreting IL-6 and TNF-α and the resultant damage of the joint.

Overall, via reeducating or depleting the autoreactive cells, the process of RA can be inhibited via inducing immune tolerance to self-antigens. The antigen-specific immunotherapy (ASIT) using peptides, antibodies, vaccines, etc. is extensively employed to target the autoreactive cells, i.e., T and B cells and DCs. Recently, a pcDNA-CCOL2A1 DNA vaccine was developed to treat collagen-induced RA. The administration via intramuscular injection at 300 µg/kg pcDNA-CCOL2A1 enabled decreased percentages of CD4+CD29+ and transferred Th1 to Th2 and Tc1 to Tc2, along with the reduced level of Th1 cytokines and downregulation of proinflammatory modulators IL-10 and transforming growth factor β (TGF-β) derived from Th2 and Th3, respectively.

3.1.1.2. Cytokines and chemokines. Cytokines and chemokines have a robust ability to regulate intercellular interactions, cell activation, localization, and phenotype in the lymphoid environment. The cytokines, in particular TNF and IL-6, promote the process of RA. TNF, a multifunctional cytokine, often exacerbates inflammation via increasing T-cell proliferation and differentiation of IL-10, improved proliferating of Tregs, or reduced expansion of Th1, Th17, TNFα+ T cells. However, it was reported that, in patients with RA, the CD24+CD27+ and the CD24hiCD38hi B cells may not enhance the Treg’s proliferation or decrease Th1 and TNFα+ T cells although the abundance of the two sets is similar to that in the healthy. In this situation, the adoptive transfer of Bregs has the potential to alleviate the symptoms of the disease. Besides, the synovial macrophages advance the process of RA via the secreting IL-6 and TNF-α and the resultant damage of the joint.

Overall, via reeducating or depleting the autoreactive cells, the process of RA can be inhibited via inducing immune tolerance to self-antigens. The antigen-specific immunotherapy (ASIT) using peptides, antibodies, vaccines, etc. is extensively employed to target the autoreactive cells, i.e., T and B cells and DCs. Recently, a pcDNA-CCOL2A1 DNA vaccine was developed to treat collagen-induced RA. The administration via intramuscular injection at 300 µg/kg pcDNA-CCOL2A1 enabled decreased percentages of CD4+CD29+ and transferred Th1 to Th2 and Tc1 to Tc2, along with the reduced level of Th1 cytokines and downregulation of proinflammatory modulators IL-10 and transforming growth factor β (TGF-β) derived from Th2 and Th3, respectively.

![Figure 2](Image)

Figure 2 Immunotherapy for rheumatoid arthritis (RA) and the used DDSs.
at various stages103, i.e., single positive thymocytes and CD3/CD4/CD8 (triple-negative) T cells104, and activating the immune system via the control of secondary lymphoid organs structures105. Anti-TNF-\textit{\alpha} treatment is potent to treat RA via increasing Treg proportion and suppressing effector T cell (T\textsubscript{eff})106, affecting T peripheral helper (T\textsubscript{h}) cells that may prevent the differentiation of plasma-blasts107, decreasing activated B cells, and expanding regulatory B10 cells107.

IL-6, an activator of B and T cells, facilitates the differentiation of B cells into Ig-producing plasmablasts, directs the expansion of antigen inexperienced CD4\textsuperscript{\textit{\textplus}} T cells, as a consequence, promotes the transition of innate immunity to adaptive immunity108. IL-6 inhibitors, such as IL-6 mAbs and miRNA targeting IL-6109, toll-like receptor (TLR) 4 inhibitor109, demonstrated promising inhibition of RA109. In particular, the IL-6 mAbs exhibited outstanding efficacy against RA108.

So far, some mAbs capable of neutralizing TNF-\textit{\alpha} have been approved for the clinical use, including etanercept, infliximab, certolizumab pegol, golimumab, adalimumab, and other blockers such as mAbs IL-6 (tocilizumab) and IL-1R (anakinra)110. The turbulence of immune cells, and the immune response is closely linked to RA progression. Consequently, the regulation of immune cells or immune response is promising to alleviate RA. However, individual treatment should not be ignored, since the gene expression and sensitivities are differentiated among person to person.

3.1.1.3. Janus kinase (JAK) inhibitors. The JAK pathway also links to the development of diverse immune-dependent disorders, e.g., RA and IBD, by promoting the signal transduction of immunostimulators111. The JAK, mainly composed of JAK1, JAK2, JAK3, and TYK2, acts through the receptors of type I and II. Type-I receptor generally associates with ILs, hormones and colony-stimulating factors, whereas Type-II receptor binds with IL-10-family cytokines including IL-10, IL-19, IL-20, IL-22 and IL-26112 and IFNs. Two inhibitors of JAK, tofacitinib and baricitinib, were marked in 2018 and 2012, respectively, to treat RA113.

3.1.2. Drug delivery-mediated immunotherapy in RA

The used drugs against RA mainly consist of nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease-modifying antirheumatic drugs (DMARDs), and biological DMARDs (bDMARDs), and are always dosed via oral delivery or injection. Various DDSs were adopted to improve the delivery of modulators to the immune cells, e.g., lipid-based NPs114–116, polymeric NPs117,118, hydrogels119, gold NPs120, pH-sensitive NPs121, and biological membrane-coated NPs121–123. Surface modification with ligands or peptide modification allows for improved targeting-ability to immune cells124, and cytokines and chemokines pathways, such as nuclear factor \textkappa-B (NF-\textkappa-B), ERK signal pathway, IL related pathway, etc125. Nonetheless, the most frequently reported ligand is folate receptor \textbeta that is overexpressed on the activated macrophages126.

Liposomes or liposome-like NPs are the most widely used DDS for RA treatment due to their excellent encapsulation-ability and biocompatibility126. Recently, lipidoid-polymer hybrid NPs were designed to deliver siRNA against IL-1\beta to the activated macrophages to inhibit the pathogenesis of RA induced by collagen antibody115. Dosing via intravenous injection of the NPs enabled the efficient delivery of siRNA to macrophages inhibiting in the arthritic joints, downregulation of inflammation-induced modulators in the joints, and a significant reduction in the cartilage destruction, swelling of ankle and bone damage115. Furthermore, such DDS facilitates codelivery for combined therapy. For instance, hybrid-NPs consisted of calcium phosphate/liposomes were developed to deliver methotrexate and NF-\textkappa-B-specific siRNA to the lipopolysaccharide (LPS)-activated macrophages at the diseased site127. Egg phosphatidylcholine liposomes were used to co-load an antigen, OVA or methylated BSA, and a water-insoluble inhibitor of NF-\textkappa-B, curcumin or quercetin, and targeted APCs116, demonstrating as suppressing the response of the cells to proinflammatory pathway and promoting the proliferation of Ag-specific Foxp3+ Tregs116.

Biological membrane from living cells, e.g., red blood cells, platelet, neutrophils, and macrophages, is always rich in various biomarkers and receptors; and as a result, its coating is able to alter the biological properties of DDSs and elevate their cell-targeting ability123. Motivated by the association of platelet with RA, platelet-like NPs were fabricated to deliver the anti-inflammatory tacrolimus to the joints of a collagen-induced arthritis122. Through GVPI recognition and P-selectin, these NPs allowed for efficient drug accumulation in the joint and inhibited RA’s development122. Interestingly, drug-free neutrophil membrane-coated poly lactic-co-glycolic acid (PLGA) based NPs were developed recently123. Via neutralizing the inflammation-induced TNF-\alpha and IL-1\beta, these neutrophil-NPs exhibited synovial inflammation, robust chondroprotection against joint damage, and enhanced penetration into the cartilage matrix123. Furthermore, their anti-RA effectiveness in both human-transgenic arthritic model and collagen-induced model is comparable to that from the treatment with anti-TNF-\alpha or anti-IL-1\beta123. These biomimetic-targeting DDSs, due to their natural targeting-ability to the inflamed sites, represent a promising approach against RA and may have the potential of clinical translation because of the simple preparation process. Nevertheless, their translation is still limited by the scalability of DDS.

3.2. Intestinal inflammation

3.2.1. Potential targets for IBD immunotherapy

IBD is always characterized by long-lasting inflammation and divided into ulcerative colitis (UC) and Crohn’s disease (CD). The IBD pathogenesis has not been illustrated fully, however, is often characterized by an imbalance between the mucosal immune system and the commensal ecosystem128. The regulatory immune cells including intestinal intraepithelial lymphocytes, T and B cells, macrophages, DCs and innate lymphoid cells could affect the progression of IBD127. DCs contribute the maintaining of immune environment homeostasis in the intestine via connecting humoral and cellular immune response. Especially, Tregs play a critical role in limiting the populations of Teffs and innate inflammatory signaling129. Antigen-specific T-helper cells and natural killer (NK) cells contribute to inflammation in IBD as well and their influx can be used as a potential treatment target130. In addition, agitation in intestinal epithelial cells, in particular Paneth cells, may initiate intestinal inflammation131. The therapy strategies toward IBD are classified into anti-inflammatory treatment with mesalazine and glucocorticoids, antibiotics therapy using ciprofloxacin and metronidazole, gene therapy, and immunotherapy with immunosuppressants and anti-TNF agents7. The immunotherapy is acquired through interfering with IL-12/23 axis, JAK and TGF-\beta/Smad 7 pathways, and modulating IL-6, IL-13, chemokines and chemokine receptors CC receptor 9–CC
chemokine ligand 25 (CCR9—CCL25) and cell adhesion and leukocyte recruitment. The IBD immunotherapy can also be achieved by using adoptive cell transfer, such as MSCs and engineered Tregs. Previous reviews summarized the use of biological drugs for IBD immunotherapy. Currently, about seven mAbs were approved for IBD immunotherapy, including ustekinumab, natalizumab, infliximab, vedolizumab, golimumab, certolizumab pegol and adalimumab. The implication of immunotherapy for IBD is illustrated in Fig. 3.

3.2.2. Drug delivery-mediated immunotherapy in IBD

The mAbs are effective to treat IBD; however, the response rate to initial treatment is only 50% and their use is always limited by systemic side-effects including immunogenicity, the induction of anti-drug antibodies, serum sickness, etc., induced by administration via intravenous injection. DDS-mediated therapy may elevate treatment outcomes and reduce systemic toxicity. A previous review summarized various approaches and devices for targeting treatment of IBD using DDS, encompassing meanings of ligand-receptor-, charge-, degradation-, size- and microbiome-mediation. Another review discussed intestine targeting strategies, e.g., conventional DDS-mediated treatment, disease-mediated delivery of active agents by synthetic and biological DDS. Given that oral administration is a well-accepted delivery route for both patients and physicians, herein we mainly discuss targeted oral delivery of immunomodulators to the inflamed sites in the large intestine. The site-specific DDSs are often designed according to (i) the physiological changes in the gastrointestinal tract such as pH, microflora, transit time, pressure, and osmotic potential or (ii) disease-induced alterations, i.e., increased permeability, changes in tight junctions and mucus composition and amount, reduced antimicrobial secretions and numbers of secretory cells and loss of the area of ulcerated epithelium.

The recently reported DDSs include hydrogel platform, redox- and pH-sensitive NPs, hyaluronic-based NPs, macrophage-targeted DDSs, polyphenol-based delivery, etc.

Recently, an oral inflammation-targeting hydrogel (IT-hydrogel) assembled from ascorbyl palmitate (AP) was developed to treat IBD. IT-hydrogel microfibers encapsulating corticosteroid dexamethasone (Dex) could adhere to the inflamed mucosa from animal and human colon and exhibited increased drug release at the inflammation site due to the degradation by the enzymes secreted from active-macrophages and other immune cells. In clitic ulcerative mice administrated via a single enema with free Dex as control, dosing with the drug-loaded IT-hydrogel enabled significant reduction of colon weight, myeloperoxidase (MPO) activity, and expression of TNF in the distal colon, and lowered the systemic drug exposure. Another reactive oxygen species (ROS) responsive assemblies prepared from HA-bilirubin conjugate were fabricated to combat dextran sulfate sodium (DSS)-induced acute colitis. In vitro, the assemblies dissociated rapidly after exposure to ROS, were well taken up by macrophages and granulocytes due to the hyaluronic acid (HA)-CD44 affinity, polarized pro-inflammatory M1 macrophages into the M2 phenotype. In vivo, in contrast with treatment with clinically used drugs, the treatment had remarkably boosted efficiency to combat DSS-induced acute colitis via decreasing the impairment of colon and MPO activity, recovering the body weight, and keeping the length of colon. In addition, the treatment markedly reduced the infiltration of pro-inflammatory phenotypes, CD11b+Ly6C+Ly6G+ neutrophils and CD11b+Ly6C+Ly6G+ monocytes, in the layer of lamina propria in DSS-induced model, and increased the accumulation of anti-inflammatory phenotypes, CD3+CD4+CD25+Foxp3+ Tregs, MHCII+CD11c+CD11b+DCs and CD11b+Ly6C+Ly6G+MHCII+ tissue-resident macrophages. Overall, increasing oral DDSs against IBD is emerging, such as polymer-drug prodrug formulations, microspheric vehicles to suppress TNF-α, thermoreversible mucoadhesive polymer-drug dispersion with prolonged retention at the inflamed site, and biomimetic NPs, i.e., cell membrane-coated NPs and liposomes engineered with cell membrane proteins. These oral inflammation-targeting DDSs represent a promising strategy to treat IBD, owing to their scalability, biocompatibility, and potent therapeutic efficacy.

Figure 3 Immunotherapy for inflammatory bowel diseases (IBD) and the used DDSs.
Numerous DDSs were designed to treat IBD via targeting macrophages\(^\text{157,168}\), whereas exosomes isolated from the TGF-β1 gene-modified DCs was demonstrated to inhibit the progression of IBD via eliciting immunosuppression\(^\text{169}\). The 50–100-nm exosomes can efficiently block the advance of DSS-triggered IBD via inducing Tregs through the TGF-β1 pathway and reducing the Th17 in the inflammatory site, mesentery lymph nodes\(^\text{169}\).

4. Immunotherapy for vascular disease

4.1. AS

In AS, the immune cells encompassing monocytes, T cells, DCs, neutrophils, NK cells and innate lymphoid cells are recruited to these sites\(^\text{170–173}\), due to the elicited local inflammation by apolipoprotein-B-containing lipoproteins (ApoB LPs) that deposit in the artery wall and are liable to modification by oxidation, enzymes and aggregation\(^\text{174}\). The recruited monocytes constantly differentiate into macrophages, a major cell population in the atherosclerotic plaques, and finally become cholesterol-loaded macrophage foam cells, facilitating the plaque formation\(^\text{175,176}\). Whereas the factors, e.g., pro-inflammatory modulators, cholesterol crystals, oxidative stress, oxidized lipids, and danger-associated molecular patterns (DAMPs) predominantly stemmed from the macrophage foam cells, construct a complicated microenvironment that maintains the local inflammation\(^\text{177}\). A previous review highlighted the role of macrophages in AS development\(^1\). Here, we mainly focus on other immune cells involved in AS and related treatment approaches.

4.1.1. Implications for AS immunotherapy

According to the pathological mechanism of AS, the treatment with anti-hypertensive or cholesterol-lowering drugs is far from to cure AS. Several experimental results demonstrated the essential roles of immune activation in the AS development\(^\text{178,179}\). Always, the innate response to AS mediated by stimulating macrophages and endothelial cells (ECs) in the walls of the coronary arteries allows for adaptive immune reactions to the antigens presented to Teff by APCs, i.e., DCs\(^\text{180}\). As a result, targeting inflammation to modulate immune responses against plaque antigens may treat AS fundamentally. The potential targets and used DDSs are displayed in Fig. 4.

4.1.1.1. Cytokine-based therapy

Two types of cytokines are involved in AS progression, pro-atherogenic and anti-atherogenic cytokines\(^\text{181}\). Pro-atherogenic cytokines always promote the development of AS, including various ILs such as IL-4, IL-6, IL-8, IL-12, IL-15, IL-18, IL-20, IL-21, IL-23 and IL-32, GM-CSF, TNF-α, monocyte chemotactic protein-1 (MCP-1), IFN-α, β, and γ, etc. Whereas the anti-atherogenic ones can inhibit AS development, such as IL-5, IL-10, IL-13, IL-19, IL-27, IL-33, IL-35, IL-37, TGF-β, etc.\(^\text{181}\). In general, cytokine-based treatment drugs are mainly categorized into broad-based immunomodulatory agents, blockade of pro-inflammatory cytokines and activators to induce anti-inflammatory cytokines\(^\text{182}\). Clinical trials uncovered the administration of Canakinumab, a mAb targeting IL-1β, at 150-mg dose every 3 months reduced the inflammation and rate of cardiovascular events, though, did not lower the lipid-level\(^\text{183}\). Another clinical test demonstrated that dosing Canakinumab with the same regimen allowed for decreased levels of IL-6 and inflammatory biomarker high-sensitivity C-reactive protein (hsCRP), an indicator that the mAb works via inhibiting the IL-1β–IL-6 signaling of innate immunity\(^\text{184}\). Accordingly, pro-inflammatory cytokines can be effective targets for AS therapy and IL-1β–IL-6–CRP signaling axis is a credible AS-associated inflammatory pathway\(^\text{85}\).

4.1.1.2. ICPs. Due to a surplus of ICPs, e.g., CD27, CD28, CTLA-4, CD40, CD40L, CD70, CD80/86, Ox40, Ox40 L, PD-1, PD-L1/2, the costimulatory molecules derived from T cells, CD30 and CD137L, can be induced and facilitate atherothrombosis\(^\text{186}\). For instance, blocking the CD80/86–CD28 axis alleviates the symptoms of AS that have occurred or are about to occur in both mice and humans\(^\text{187–189}\). In addition, the dyad CD40L–CD40 is closely associated with plaque’s vulnerability and formation\(^\text{190–193}\). Treatment with anti-CD40L or CD40 allowed for plaque suppression\(^\text{191}\).

4.1.1.3. Chemokines. Over 20 chemokines produced mainly from ECs, smooth muscle cells (SMCs), leukocytes\(^\text{194}\) and their receptors are involved in AS progression\(^\text{95}\). The chemokines, CCL5, CCL2, CXC-chemokine receptor 2 (CXCR 2) and CXCR3 and their ligands, CXXXC-chemokine ligand 1 (CCL3L1) and CXC-chemokine ligand 16 (CXCL16), CXCL12/CXCR4 axis, and macrophage migration inhibitory factor (MIF), are linked to the plaque development\(^\text{196}\). The main AS-treatment strategies based on the chemokines are divided into small molecule chemokine receptor antagonists, modified chemokine, chemokine-neutralizing protein and chemokine heteromer formation-antagonists\(^\text{196}\). For example, the treatment with CCR5 antagonist enabled size reduction of plaque in ApoE\(^{-/-}\) mice\(^\text{197}\). Furthermore, inhibition of CXCL12 is promising to prevent and alleviate AS-associated diseases. CXCL12 inhibitors, AMD3100, AMD3465, and POL551, showed inhibition of CXCL12-damaged vascular wall\(^\text{198,199}\).

4.1.1.4. Metabolic regulation of immune cells. Besides the specific target substances, the altered metabolism of cells in AS may be used as therapeutic potential. The changed metabolism includes upregulated inflammatory activities, the elevated vulnerability of plaque, downregulated fatty acid oxidation (FAO), increased consumption of amino acids (AAs) and upregulated glycolysis in plaque\(^\text{200}\). Abnormal glycolysis always fosters the production of the inflammation-stimulated IL-1β and IL-6\(^\text{201,202}\). Accordingly, supplementary of FAO, during the activation of M2 macrophages\(^\text{203}\) and T cells\(^\text{204}\), may stimulate anti-inflammation signals directly or make CD8\(^{+}\) T cells exert indirect anti-inflammatory activity\(^\text{203–205}\). Reduced metabolism of AAs may decrease foam cell formation and reduce plaque size\(^\text{206,207}\).

4.1.1.5. Vaccination against low density lipoprotein (LDL) particles. AS does not belong to an autoimmune disease, however, ApoB is always known as AS antigens. As a result, auto-immune responses against ApoB via vaccination can be a potential therapeutic implication for AS\(^\text{171}\). The vaccination therapy includes using mAbs against the cholesterol ester transfer protein (CETP) or proprotein convertase subtilisin kexin type 9 (PCSK9) and induction of antigen-specific Tregs. PCSK9 is able to damage the LDL receptor and raise plasma LDL cholesterol level\(^\text{208}\), whereas CETP strengthens the change of high density lipoprotein (HDL)-LDL\(^\text{209}\). Consequently, anti-PCSK9 allows for reductions
of LDL cholesterol210,211, and vaccination with CETP could promote HDL cholesterol levels and decrease the plaque size212. In addition, Tregs can suppress the plaque development through limiting Teffs expansion, especially Th1 cells, and reduced production of inflammatory cytokine213,214. Accordingly, stimulation of the Tregs may inhibit AS progression by suppressing the activities of immune cells including T cells, NK cells, monocytes, B cells, and by inducing suppressive modulators such as IL-10, TGF-\(\beta\) and IL-35215.

4.1.2. Drug delivery-mediated immunotherapy in AS

The formation of plaque offers numerous opportunities for targeting therapy of AS by using DDS. The commonly reported DDSs are summarized in Fig. 4. The targeting approaches include enhanced accumulation of DDS in the plaque through enhanced permeability and retention effect (EPR)-like or biomimetic mechanism and promoted drug release from DDS in the plaque by microenvironment-responsive strategy. Beldman and co-workers216 used a kind of HA-NPs to investigate the EPR effect in the plaque of AS progression. They found that the endothelial junction architecture normalized at the later period of AS compared with early AS and the accumulated HA-NPs was decreased. However, the HA-NPs can enter the plaque via endothelial junctions, distribute throughout the extracellular matrix (ECM) and eventually phagocytized by plaque-associated macrophages.

A recent study indicated the unusual and condensed cell morphology and junction irregularities in arterial endothelial layer of ApoE−/− mouse observed by transmission electron microscopy216. In the endothelial junctions of AS, the distance between vascular endothelial cadherin (VEC) units is up to 3 \textmu m216. Whereas, in the normal vascular endothelial layer, the VEC units were firmly ranked and the space between the VEC units is only about 0.5 \textmu m216. Nonetheless, advanced plaques have a small recovery of endothelial junction216. Whereas, in the normal vascular endothelial layer, the VEC units were firmly ranked and the space between the VEC units is only about 0.5 \textmu m216. However, the stage of AS affects the accumulation and the trafficking pathway of NPs. In advanced plaque, the accumulation of NPs at the AS lesions was closely relied on the transcellular route and was reduced around 30% compared with that in early plaque216. Anyway, the findings rationalize the use of nanoscaled DDS for target treatment of AS. So far, DDSs have been widely utilized for AS immunotherapy, such as liposomes217,218, recombinant HDL (rHDL) NPs219, nanofiber220, membrane-coated NPs221, polymersomes222, and injectable filamentous hydrogel loaded micelles211.

Targeting macrophages are the most commonly used strategy in AS immunotherapy1,167,219. The ligand signaling of CD40–CD40L is a widely known enhancer of AS and other chronic inflammatory diseases; consequently, its inhibition allows...
for inhibition of AS. Whereas tumor necrosis factor receptor-associated factor 6 (TRAF6) is potent to boost CD40’s signaling cascade inside monocytes and macrophages. As a result, disruption of CD40-TRAF6 interactions can reduce monocyte recruitment to plaques and inhibition of the formation of plaque. Recently, to suppress the interplay between CD40 and TRAF6 in macrophages and monocytes, a CD40-TRAF6 inhibitor 6877002 was loaded into 20-nm TRAF6i-HDL NPs consisted of apolipoprotein A-II (ApoA-II), the 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC) and 1-myristoyl-2-hydroxy-sn-glycerophosphocholine (MHPC). The results demonstrated that TRAF6i-HDL NPs could bind well to monocytes and macrophages in the lesion site. The one-week treatment decreased the content of plaque macrophage content and plaque inflammation through the reduction of monocyte accumulation instead of decrement of local macrophage proliferation.

The results demonstrated that TRAF6i-HDL NPs could bind well to monocytes and macrophages in the lesion site. The one-week treatment decreased the content of plaque macrophage content and plaque inflammation through the reduction of monocyte accumulation instead of decrement of local macrophage proliferation. TRAF-STOPs enabled AS inhibition by limiting chemokine-induced accumulation of leukocyte to the plaques and suppressing release of cytokine from macrophages. Upon encapsulation in the rHDL NPs, their treatment efficacy was improved, displayed as reduced administration times and total dose over treatment with free TRAF-STOP.

Targeting Tregs or DCs are promising for AS immunotherapy. DCs have an extremely lower concentration compared with monocytes and macrophages within AS plaque, however, they have an unignored role in promoting the inflammation and AS advance.

The cytokines, e.g., unknown side effects and immunogenicity, poor scalability of DDS, high cost, and poor patient compliance because the injection is always required. AS immunotherapy obtained via oral administration benefits the translation, whereas it is challenged to prevent the degradation of the biopharmaceuticals or DDS in the gastrointestinal tract. Nonetheless, several oral formulations for AS immunotherapy have been investigated in preclinical studies, such as yeast-derived microcapsules (YCs) encapsulated an inhibitor of MCP-1/CCL2 bindarit, recombinant Mycobacterium smegmatis, a live bacterial vector, that allowed to produce cloned Chlamydia pneumonia (AHC) antigen and induce regulatory immune response to self-proteins.

4.2. PAH

PAH is characterized by an average pulmonary arterial pressure of >25 mmHg while a capillary wedge pressure of <15 mmHg. PAH is an uncommon and serious disease demonstrated as pulmonary vascular remodeling, endothelial abnormality, vasoconstriction and in situ inflammation and thrombosis. Most immune cells, i.e., T cells, DCs, NK cells, macrophages, B cells, mast cells, and eosinophils, are involved in the progression of PAH.

Accordingly, these immunity pathways can be potential targets for treat PAH. Implications of immunotherapy in PAH are illustrated in Fig. 5.

4.2.1. Implications for immunotherapy in PAH

4.2.1.1. Cell-based therapy

Increasing evidence indicates Tregs involve in all stages of PAH pathogenesis, and reducing their number and activities always execute PAH. A previous review summarized the function of Tregs in PAH. Tregs inhibit the development of PAH through producing cytokines and chemokines such as IL-10, bone morphogenetic protein type II receptor (BMPR-II) and CXCL12–CXCR4, relating with other immune cells to suppress the immune activity and, as a result, repair injured pulmonary artery endothelial cells (PAECs), control proliferation and apoptosis of pulmonary arterial smooth muscle cells (PASMCs), limit proliferation and activation of fibroblast, and stay immune homeostasis.

Consequently, Tregs is a potential treatment target against PAH. The Tregs-targeted treatment includes adoptive Treg therapy acquired by exogenous Treg transplantation and expansion of intrinsic Tregs induced by stimulators including Liver kinase B1, IL-2247, vitamin D249, and CD28 superagonist250. Of the stimulators, IL-2 is most frequently applied and is demonstrated robust ability to promote the proliferation of Tregs. Until now, approximately fifty one clinical tests using Treg therapy have been recorded in Clinical-Trials.gov.

A phase I trial demonstrated that the infused Tregs in patients with T1D could last one year, indicating safety and tolerance. Recently, adoptive Treg cell therapy was used on a patient with systemic lupus erythematosus (SLE). The results displayed that the treatment could increase activated Treg cells in inflamed skin and promote a shift from Th1 toward Th17 actions. Another clinical trial using rituximab to delete B cells for PAH immunotherapy is ongoing.

Myeloid-derived suppressor cells (MDSCs) were reported to be involved in the development of PAH and several inflammatory diseases. PD-L1 is overexpressed on MDSC from PAH patients, and PD-1/PD-L1 interactions exacerbate the inflammation in PAH in animal model. A report displayed that therapy using anti-PD-1 or PD-L1 might inhibit MDSC and alleviate the progression of PAH.

4.2.1.2. Cytokine- and chemokine-based and vaccination therapy

The cytokines, e.g., IL-6, IL-8, IL-10, IL-13, IL-18, IL-1β and TNFα, are intimately associated with development of...
The inhibition of proinflammatory cytokines is potential to treat PAH. Clinical test was performed to study the effectiveness against PAH using a IL-6 receptor antagonist, tocilizumab. The results revealed that the treatment with tocilizumab was safe and improved pulmonary hemodynamic parameters. Dosing a TNF-α antagonist, recombinant human TNF-α receptor II-IgG Fc fusion protein (rhTNFRFc), alleviated PAH via lowering mean pulmonary artery pressure (mPAP) and inhibiting pulmonary vascular remodeling. Furthermore, disruption of the IL-6/Th17/IL-21 pathway is promising to selectively treat PAH.

Numerous chemokines are involved in inflammation and pulmonary vascular remodeling, including CXCL8/CXCR1/CXCR2, CXCL10/CXCR3, CXCL12/CXCR2, CCL2/CCR2, CCL5/CCR5/CCR1, CX3CL1/CX3CR1, etc. Leukotriene B4 (LTB4) has robust ability to promote inflammatory immune response via increasing neutrophil recruitment and, as a result, induce apoptosis of ECs. Inhibition of LTB4 with bestatin allows reversing established PAH via increasing the numbers of open arterioles and reducing arteriolar wall thickness and muscularization.

Endothelin-1 (ET-1) receptor type A (ETAR) can activate the endothelin system and facilitate the initiation and development of PAH. A vaccine against ETAR was designed by conjugating an ETR-002 peptide with a Qb bacteriophage virus-like particle. The vaccination approach has potent efficacy to combat PAH in the monocrotaline (MCT)-induced- and Sugen/hypoxia-induced models by suppressing the pulmonary arterial remodeling and the RV hypertrophy through inhibition of Ca2+-dependent signal transduction events. In addition, disruption of the α1D-adrenergic receptor (α1D-AR) might be a vaccination strategy against hypertension by using ADRQ3-004 vaccine.

4.2.2. Drug delivery-mediated immunotherapy in PAH

Numerous DDSs are applied to improve immunotherapy; however, their use in PAH immunotherapy moves forward slowly. The most commonly used DDSs to elevate pulmonary delivery are liposomes and polymeric NPs dosed via intravenous injection or inhalation. Loss of endothelial BMPR-II facilitates the initiation and development of PAH, enabling BMPR-II to be a therapeutic target. Tacrolimus, an immunosuppressors, is able to activate BMPR-II and is allowed to repair the endothelial function in PAH patient cells and inhibit the remodeling of the pulmonary artery in animal model. A clinical test demonstrated that administration of tacrolimus at a low dose to three patients with advanced PAH for twelve months, which the trough concentration was 1.5–5 ng/mL, upregulated BMPR-II in PBMCs and, as a result, ameliorated PAH through elevating heart function, prolonging 6-min walk distance, and inducing N-terminal pro-brain natriuretic peptide. Another clinical trial displayed that this administration regimen was safe and could promote the expression of BMPR-II in subsets of PAH patients.

To improve the pulmonary delivery of tacrolimus, nanocomposite microparticles (nCmPs) were prepared by formulating 200-nm drug-loaded polymeric NPs into microparticles through spray drying. After administration via inhalation, the nCmP could deposit in the lung regions, penetrate through the mucus barrier, and control drug release over time. In addition, other immunomodulators, e.g., rapamycin, everolimus, anti-TNFα, TGF-β antagonist, rituximab, and tocilizumab, were used to combat PAH as well.

5. Conclusions and outlook

We summarized the potential immune targets in several major inflammatory diseases, reviewed the biological drugs and DDSs used for immunotherapy. Immunotherapy is updating the concept of disease treatment and has acquired rapid development in the past five years, evident by that several products such as mAbs and adoptive cell transfer were approved for clinical use. In particular, immunotherapy is being developed as a most effective strategy...
against cancer. For RA and IBD immunotherapy, the progression is being promoted smoothly, along with several mAbs against TNF-α and IL-6 and two JAK inhibitors, baricitinib and tofacitinib, being marked, whereas there are seven mAbs approved for IBD immunotherapy. For immunotherapy of vascular diseases such as AS and PAH, the clinical test demonstrated promising potential, e.g., the treatment efficacy against AS with a mAb targeting IL-1β can persist three months, bringing significant convenience to patients who have to take lipid-lowering drugs daily. So far, there is no report regarding clinical trials to ameliorate PAH. Always, the patients with the advanced PAH possess poor response to the frequently applied vasodilator agents probably due to the loss of elasticity in the remodeling pulmonary arteries. Such that the utilization of immunotherapy may reverse PAH; however, the rationalization is required from the physician. Overall, immunotherapy against serious vascular diseases don’t move forward smoothly compared with cancer immunotherapy, mainly owing to the factors: (1) in pathogenesis lacking sufficiently understanding toward the immune pathways involved in these diseases; (2) absence of legitimacy from the clinic; (3) the potential immune-related adverse events; (4) remarkably high cost compared with the conventionally used treatment regimens; (5) patients’ compliance because dosing via injection is always required in most immunotherapy.

In general, the strategies for immunotherapy are predominantly categorized into several types, including mAbs against cytokines or chemokines, inhibitory ICPs, JAK inhibitors, adoptive cell transfer, metabolic regulation of immune cells and vaccination. mAb-immunotherapy is the most widely applied approach and has gained huge success, evident by over seventy-four formulations have entered the market. Second, ACT, especially T cell-based transplantation, is attracting increasing attention and advances rapidly. The milestone event of this technique is the approval use for the DDS immunotherapy. These DDSs include liposomes or liposome-like NPs, degradable polymeric carriers such as PLGA-NPs or microspheres, albumin-based NPs, cell carriers like red blood cells, etc. And promising industrial perspectives may be an optional choice for the DDS immunotherapy. These DDSs include liposomes or liposome-like NPs, degradable polymeric carriers such as PLGA-NPs or microspheres, albumin-based NPs, cell carriers like red blood cells, etc. In addition, the dosing routes are of the essence to the translation, and well-accepted delivery pathways should be first choice, encompassing oral, buccal, transdermal, nasal, inhalation and subcutaneous routes.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 81872823 and 80273782), the Double First-Class (CPU2018PZQ13, China) of the China Pharmaceutical University, the Shanghai Science and Technology Committee (No. 19430741500, China), the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine (TCM-201905, China), and the Start-up Grant from City University of Hong Kong (No. 9610472, China).

Author contributions

Wei He conceived the work. Qingqing Xiao, Xiaotong Li, Yi Li, Zhengfeng Wu, Chenjie Xu, Zhongjian Chen, and Wei He cowrote the paper. Xiaotong Li prepared the figures. All of the authors discussed the results and commented on the manuscript. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

1. He W, Kapate N, IV CWS, Mitragotri S. Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2020;165-166:15–40.
2. Garn H, Bahn S, Baune BT, Binder EB, Bisgaard H, Chatila TA, et al. Current concepts in chronic inflammatory diseases: interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol 2016;138:47–56.
3. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med 2018;10:eaat7807.
4. Till SJ, Francis JN, Nouri-Aria K, Durham SR. Mechanisms of immunotherapy. J Allergy Clin Immunol 2004;113:1025–34.
5. Tan SZ, Li DP, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother 2020;124:109821.
6. Steffens S, Weber C. Immunotherapy for atherosclerosis—novel concepts. Thromb Haemost 2019;119:515–6.
7. Ahmed M, Bae Y-S. Dendritic cell-based immunotherapy for rheumatoid arthritis: from bench to bedside. Immune Netw 2016;16:44–51.
8. Catalan-Serra I, Brenna Ø. Immunotherapy in inflammatory bowel disease: novel and emerging treatments. Hum Vaccines Immunother 2018;14:2597–611.
9. Nicollis MR, Voelkel NF. The roles of immunity in the prevention and evolution of pulmonary arterial hypertension. Am J Respir Crit Care Med 2017;195:1292–9.
10. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707–23.
11. Law AMK, Lim E, Ormandy CJ, Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. *Endocr Relat Cancer* 2017;24:R123–44.

12. Silva LCR, Ortigosa LCM, Benard G. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. *Immunotherapy* 2010;2:817–33.

13. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. *Nat Rev Cancer* 2012;12:252–64.

14. Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. *Int J Antimicrob Agents* 2020;55:105954.

15. Hara Y, Nagaoka S. *Cancer Probl Perspect Biol Rheumatol* 2017;3:181–94.

16. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. *Transfus Med Hemotherapy* 2019;46:15–24.

17. Strohi WR. Current progress in innovative engineered antibodies. *Protein cell* 2018;9:86–120.

18. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. *Nat Rev Rheumatol* 2016;12:25–36.

19. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. *Nat Rev Rheumatol* 2016;12:25–36.

20. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. *Cold Spring Harb Perspect Biol* 2017;9:a022236.

21. Mullard A. 2017 FDA drug approvals. *Nat Rev Drug Discov* 2018;17:81–5.

22. Mullard A. 2012 FDA drug approvals. *Nat Rev Drug Discov* 2013;12:87–90.

23. Ahsan HO, Saeed MA, Alzharni T, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. *Front Pharmacol* 2017;8:561.

24. Agarwala SS. Practical approaches to immunotherapy in the clinic. *Semin Oncol* 2015;42:S20–7.

25. Pföhrer C, Eichler H, Burgard B, Krecké N, Müller CSL, Vogt T. A case of immune thrombocytopenia as a rare side effect of an immunotherapy with PD1-blocking agents for metastatic melanoma. *Transfus Med Hemotherapy* 2017;44:426–8.

26. Vial T, Descotes J. Immune-mediated side-effects of cytokines in humans. *Toxicology* 1995;105:51–57.

27. He W, Xing XY, Wang XL, Wu D, Wu W, Guo JL, et al. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. *Adv Funct Mater* 2020;1901566. n/a.

28. Wu W, Li TL. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. *Adv Drug Deliv Rev* 2019;143:1–2.

29. Zhao ZM, Ukide A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. *Adv Drug Deliv Rev* 2019;143:3–21.

30. Xiao QQ, Zhu X, Yuan YT, Yin LF, He W. A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. *Nanomed-Nanotechnol* 2018;14:2678–88.

31. Jin K, Luo ZM, Zhang B, Fang ZQ. Biomimetic nanoparticles for inflammation targeting. *Acta Pharmacol Sin* 2018;8:23–33.

32. Mao YS, Zou CF, Jiang XJ, Fu DL. Erythrocyte-derived drug delivery systems in cancer therapy. *Chin Chem Lett* 2021;32:909–8.

33. Donahue ND, Achar C, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. *Adv Drug Deliv Rev* 2019;143:68–96.

34. Su C, Liu YZ, Li RZ, Wu W, Fawcett JP, Gu JK. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. *Adv Drug Deliv Rev* 2019;143:97–114.

35. Zhu YF, Yu XR, Thampiwhatanada SD, Zheng Y, Pang ZQ. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. *Acta Pharmacol Sin* 2020;10:2054–74.

36. Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. *Acta Pharmacol Sin* 2016;6:106–13.

37. Corrales L, Glickman LH, McWhirter SM, Kanbe DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. *Cell Rep* 2015;11:1018–30.

38. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. *Br J Cancer* 2019;120:6–15.

39. Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. *Blood* 1986;68:493–7.

40. Rosenberg SA, IL-2: the first effective immunotherapy for human cancer. *J Immunol* 2014;192:5451–8.

41. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. *N Engl J Med* 1987;316:889–97.

42. Waldmann TA. Cytokines in cancer immunotherapy. *Cold Spring Harb Perspect Biol* 2018;10:a028472.

43. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. *Immunity* 2013;39:38–48.

44. Jahanafroz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, et al. Comparison of DNA and mRNA vaccines against cancer. *Drug Discov Today* 2020;25:552–60.

45. Kimiz-Gebeloglu I, Gulce-Iz S, Biray-Avcı C. Monoclonal antibodies in cancer immunotherapy. *Mol Biol Rep* 2018;45:2993–40.

46. Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, et al. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. *Cell Mol Life Sci* 2020;77:3693–710.

47. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy. *Nat Rev Drug Discov* 2020;19:389–430.

48. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Council A, et al. Comparison of DNA and mRNA vaccines against cancer. *Drug Discov Today* 2020;25:552–60.

49. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria J-C, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. *Eur J Cancer* 2016;82:65–76.

50. Buchbinder EI, Desai A, CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. *Am J Clin Oncol* 2016;39:98–106.

51. Chambers CA, Kahn MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. *Ann Rev Immunol* 2001;19:565–94.

52. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. *N Engl J Med* 2018;378:158–68.

53. Iwai Y, Okazaki T, Nishimura H, Kawasaki A, Yagita H, Honjo T. Microanatomical localization of PD-1 in human tonsils. *Immunol Lett* 2002;83:215–20.

54. Matsoukas N, Duke-Cohan JS, Claudhri A, Aksoyol H-I, Wang Q, Council A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM differences, and implications of their inhibition. *Nat Rev Drug Discov* 2019;18:328–37.

55. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SY, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. *Mol Cell Biol* 2005;25:9543–53.
Biological drug and drug delivery-mediated immunotherapy

57. Lee HW, Choi KJ, Park JY. Current status and future direction of immunotherapy in hepatocellular carcinoma: what do the data suggest?. Immune Netw 2020;20:811.

58. Furuki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol 2017;12:943–53.

59. O Met, Jensen KM, Chamberlain CA, Donna M, Svane IM. Principles of adoptive T cell therapy in cancer. Semin Immunopathol 2019;41:49–58.

60. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC, CAR T cell immunotherapy for human cancer. Science 2018;359:1361–5.

61. Andersen R, Borch TH, Draghi A, Gokaldass A, Rana MAH, Pedersen M, et al. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol 2018;29:1575–81.

62. Rapoport AP, Stadtmueller EA, Binder-Scholl GK, Goloibeova O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 2015;21:914–21.

63. Newick K, O’Brien S, Moon E, Albleda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017;68:139–52.

64. Zhang J, Wang L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol Cancer Res Treat 2019;18:153033819831068.

65. Barrett DM, Grupp SA, June CH. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol 2015;195:755–61.

66. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 2006;112:26–34.

67. He HS, Lu Y, Qi JP, Zhu QG, Chen ZJ, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019;9:36–48.

68. Da Silva CG, Rueda F, Löwik CW, Ossendorp F, Cruz LJ. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 2016;83:308–20.

69. Caster JM, Callaghan C, Seyedin SN, Henderson K, Sun B, Wang AZ. Optimizing advances in nanoparticle delivery for cancer immunotherapy. Adv Drug Deliv Rev 2019;144:3–15.

70. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci 2016;11:337–48.

71. Schmid D, Park CG, Hari C, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to tumor sites. Nat Commun 2017;8:1747.

72. Buabide MA, Arafa EA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res 2020;2020:9624532.

73. Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019;151:152–72.

74. Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticulate agents to tune immunity. Adv Mater 2012;24:3724–46.

75. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019;18:175–96.

76. Man F, Gawne PJ, TMDR R. Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134–60.

77. Peng JR, Yang Q, Shi K, Xiao Y, Wei XW, Qian ZY. Intratumoral fate of functional nanoparticles in response to microenvironment factor: implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019;143:37–67.

78. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ programming of leukemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 2017;12:813–20.

79. Wang C, Sun WJ, Wright G, Wang AZ, Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater 2016;28:8912–20.

80. Jia YP, Ma BY, Wei XW, Qian ZY. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 2017;28:691–702.

81. Yin JF, Huang YX, Haneed SM, Zhou RY, Xie LJ, Ying YB. Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale 2020;12:17571–89.

82. Sang W, Zhang Z, Dai YL, Chen XY. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019;48:3771–810.

83. He XS, Gershwin ME, Ansari AA. Checkpoint-based immunotherapy for autoimmune diseases — opportunities and challenges. J Autoimmun 2017;79:1–3.

84. Wraith D. Antigen-specific immunotherapy. Nature 2016;530:422–3.

85. Hilkens CM, Isaacs JD. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now?. Clin Exp Immunol 2013;172:148–57.

86. Weyand CM, Goronzy JJ. Immunomodulation in the development of rheumatoid arthritis. Immunol Rev 2020;294:177–87.

87. Salomon S, Guignant C, Morel P, Flahaut G, Brault C, Gourguechon C, et al. Th17 and CD24+CD27+ regulatory B lymphocytes are biomarkers of response to biologics in rheumatoid arthritis. Arthritis Res Ther 2017;19:53.

88. Lamas JR, Mucentres A, Lajas C, Fernández-Gutierrez B, López Y, Marco F, et al. Check-control of inflammation displayed by bone marrow mesenchymal stem cells in rheumatoid arthritis patients. Immunotherapy 2019;11:1107–16.

89. Ehrenstein MR, Evans JG, Singh A, Moore S, Wames G, Isenberg DA, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med 2004;200:277–85.

90. Xu L, Song XL, Su LL, Zheng Y, Li R, Sun J. New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int Immunopharmac 2019;72:322–9.

91. Semerano L, Minichielo E, Bessis N, Boissier M-C. Novel immunotherapeutic avenues for rheumatoid arthritis. Trends Mol Med 2016;22:214–29.

92. Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Mol Immunol 2014;62:296–304.

93. Veen Wvd, Stanic B, Witz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol 2016;138:654–65.

94. Mielle J, Audo R, Hahne M, Macia L, Combe B, Morel J, et al. IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol 2018;9.

95. Daen CI, Gailliac S, Mura T, Audo R, Combe B, Hahne M, et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheum 2014;66:2037–46.

96. Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA, et al. CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 2013;5. 173ra23-ra23.

97. Mauri C, Gray D, Mushaq N, Longe M. Prevention of arthritis by interleukin 10—producing B cells. J Exp Med 2003;197:489–501.

98. Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Adv Drug Deliv Rev 2017;13:325–37.

99. Zhao X, Long J, Liang F, Liu N, Sun YY, Xi YZ. Vaccination with a novel antigen-specific tolerizing DNA vaccine encoding CCOL2A1 protects rats from experimental rheumatoid arthritis. Hum Gene Ther 2018;30:69–78.

100. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007;7:429–42.

101. Elemam NM, Hannawi S, Maghazachi AA. Role of chemokines and chemokine receptors in rheumatoid arthritis. ImmunoTargets Ther 2020;9:43–56.
102. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis—shaping the immunological landscape. *Nat Rev Rheumatol* 2016;12:63–8.

103. Davignon JL, Rauwel B, Deghoz Y, Constantin A, Boyer J-F, Kruglov A, et al. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. *Arthritis Res Ther* 2018;20:229.

104. Baseta JG, Stutman O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3⁺CD4⁻CD8⁻) subset. *J Immunol* 2000;165:5621–30.

105. Huang ZC, Yang B, Shi YY, Cai B, Li Y, Feng WH, et al. Anti-TNF-α therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. *Cell Immunol* 2012;279:25–9.

106. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu YY, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. *Nature* 2017;542:110–4.

107. Banki Z, Pozsgay J, Gáti T, Rojkovich B, Ujfalussy I, Sarmany G. Regulatory B cells in rheumatoid arthritis: alterations in patients receiving anti-TNF therapy. *Clin Immunol* 2017;184:63–9.

108. Narazaki M, Tanaka T, Kim KS. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. *Arthritis Res Ther* 2020;22:16.

109. Olsen IC, Lie E, Vasilescu R, Wallenstein G, Stenghol S, Kvien TK. Assessments of the need in the management of patients with rheumatoid arthritis: analyses from the NOR-DMARD registry. *Rheumatology* 2019;58:481–91.

110. Yamaoka K. Janus kinase inhibitors for rheumatoid arthritis. *Curr Opin Chem Biol* 2016;32:29–33.

111. Fragoulis GE, McLanes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. *Rheumatology* 2019;58:i43–54.

112. Nakayamada S, Kubo S, Iwata S, Tanaka Y. Chemical JAK inhibitors for the treatment of rheumatoid arthritis. *Exp Opin Pharmacother* 2016;17:2215–25.

113. Pujol-Autonell I, Mansilla M-J, Rodriguez-Fernandez S, Cano-Sarabia M, Navarro-Barriuso J, Ampudia R-M, et al. Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. *Nanomedicine* 2017;12:1231–42.

114. Song P, Yang CX, Thomsen JS, Dagnæs-Hansen F, Jakobsen M, Zou SJ, Wang BL, Wang C, Wang QQ, Zhang LM. Cell membrane-coated nanoparticles: research advances. *Nanomedicine* 2020;15:603–24.

115. Mohammadi M, Li Y, Abebe DG, Xie YR, Kandil R, Kraus T, et al. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. *J Control Release* 2016;244:269–79.

116. Lee HJ, Lee JH, Bhang SH, Kim BS, Kim YS, Ju JH, et al. Hyaluronate—gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. *ACS Nano* 2014;8:4790–8.

117. Zou SJ, Wang BL, Wang C, Wang QQ, Zhang LM. Cell membrane-coated nanoparticles: research advances. *Nanomedicine* 2020;15:625–41.

118. He YW, Li RX, Liang JM, Zhu Y, Zhang SY, Zheng ZC, et al. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. *Nano Res* 2018;11:6086–101.

119. Zhang QZ, Dehaini DN, Zhang Y, Zhou JL, Chen XY, Zhang LF, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. *Nat Nanotechnol* 2018;13:1182–90.

120. Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. *Ther Deliv* 2020;11:269–84.

121. Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. *Nanomed Nanotechnol Biomed Imaging* 2016;12:1113–26.

122. Lyu YQ, Xiao QQ, Yin LF, Yang L, He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. *Signal Transduct Tar* 2019;4:26.

123. Duan WF, Li H. Combination of NF-κB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. *J Nanobiotechnol* 2018;16:58.

124. Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. *Nature* 2020;578:527–39.

125. Sun M, He C, Cong Y, Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. *Mucosal Immunol* 2015;8:969–78.

126. Malhy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. *Nature* 2011;474:298–306.

127. Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. *Gut* 2013;62:1653–64.

128. Trivedi PJ, Adams DH. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. *J Crohns Colitis* 2018;12:5641–52.

129. Raad MA, Chams NH, Sharara AI. New and evolving immuno-therapy in inflammatory bowel disease. *Inflammatory Intestinal Diseases* 2016;1:85–95.

130. Danese S, Vuitton L, Peyrin-Biroulet L. Biologic agents for IBD: practical insights. *Nat Rev Gastroenterol Hepatol* 2015;12:537–45.

131. Griffiths OR, Landon J, Coxon RE, Morris K, James P, Adams R. Chapter Five - inflammatory bowel disease and targeted oral anti-TNFz therapy. *Adv Protein Chem Mol Biol* 2020;119:157–98.

132. Zhang SF, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. *Nano Today* 2016;11:82–96.

133. Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. *Adv Drug Deliv Rev* 2014;71:58–76.

134. Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, et al. Targeted drug-delivery systems for colon-targeted oral delivery of biologics and nanomedicines. *Adv Drug Deliv Rev* 2016;78:527–55.

135. Li X, Lu C, Yang YY, Yu CH, Rao YF. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. *Biomed Pharmacother* 2020;129:110486.

136. Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. *Adv Drug Deliv Res* 2005;57:247–65.

137. Zhang YY, Thandou MY, Vilásiliu D. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease. *Eur J Pharm Biopharm* 2020;155:128–38.

138. Courtignon H, Mugnier T, Rousseaux C, Möller M, Garry R, Gabriel D. Self-assembling polymeric nanocarriers to target inflammatory lesions in ulcerative colitis. *J Control Release* 2018;275:32–9.

139. Xiao BC, Chen QB, Zhang Z, Wang LX, Kang YJ, Denning T, et al. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. *J Control Release* 2018;287:235–46.

140. Nguyen T-HT, Trinh N-T, Tran HN, Tran HT, Le PQ, Ngo D-N, et al. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. *J Control Release* 2021;331:515–24.
145. Hua SS, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease; selective targeting to diseased versus healthy tissue. *NaNoMed Nanotechnol Biomed* 2015;11:1117–32.

146. Lalour H, Dalmasso G, Nguyen HTT, Yan YT, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. *Gastroenterology* 2010;138: 843-U77.

147. Knipe JM, Strong LE, Peppas NA. Enzyme- and pH-responsive microencapsulated mangols for oral delivery of siRNA to induce TNF-alpha knockdown in the intestine. *Biomacromolecules* 2016;17: 788–97.

148. Xiao B, Xu ZG, Viennois E, Zhang YC, Zhang Z, Zhang MZ, et al. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. *Mol Ther* 2017;25: 1628–40.

149. Zhang SF, Ermann I,ucci MD, Zhou A, Hamilton MJ, Cao B, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. *Sci Transl Med* 2015;7: 300ra128.

150. Vong LB, Mo J, Abrahamsson B, Nagasaki Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. *J Control Release* 2015;210:19–25.

151. Li CW, Zhao Y, Cheng J, Guo JW, Zhang QX, Zhang XJ, et al. A proresolving peptide nanoformulation for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. *Adv Sci* 2016;3:1900610.

152. Li SS, Xie AQ, Li H, Zou X, Zhang QX. A self-assembled, ROS-responsive janus-prodrug for targeted therapy of inflammatory bowel disease. *J Control Release* 2019;316:66–78.

153. Naeem M, Oshi MA, Kim J, Lee J, Cao JF, Nurhasni H, et al. pH-sensitive nanoparticles for site-specific delivery systems for colon targeted drug delivery in inflammatory diseases. *Adv Drug Deliv Rev* 2020;157: 161–78.

154. Bengtsson A, Bengtsson L, Solfrizzi V, et al. Oral polysaccharide hydrogel reduce colitis in a mouse model. *Gastroenterology* 2015;148:286–300.

155. Zhang MZ, Xu CL, Liu DD, Han MK, Wang LX, Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. *J Crohns Colitis* 2018;12: 217–29.

156. Belouqui A, Coco R, Menuvanga PB, Ucakar B, des Rieux A, Preat V. Oral therapeutic nanoparticles for inflammatory bowel disease therapy. *Chem Mater* 2018;30:4073–80.

157. Keshwarwani SS, Ahmad R, Bakkari MA, Rajput MKS, Dachinirei R, Valiveti CK, et al. Site-directed non-covalent polymer-drug complex for inflammatory bowel disease (IBD); formulation development, characterization and pharmacological evaluation. *J Control Release* 2018;290:165–79.

158. Huang Z, Gan JJ, Jia LX, Guo GX, Wang CM, Zang YH, et al. An orally administrated nucleotide-delivery vehicle targeting colonic macromolecules for the treatment of inflammatory bowel disease. *Bio-materials* 2015;48:26–36.

159. Antonino RSCMQ, Nascimento TL, de Oliveira Junior ER, Souza LG, Batista AC, Lima EM. Thermoreversible mucoadhesive polymer-drug dispersion for sustained local delivery of budesonide to treat inflammatory disorders of the GI tract. *J Control Release* 2019;303:12–23.

160. Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. *Adv Drug Deliv Rev* 2019;140: 91–112.

161. Teng C, Lin CS, Huang FF, Xing XY, Chen SY, Ye L, et al. Intracellular co-delivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory bowel disease. *Acta Pharm Sin B* 2020;10:1521–33.
184. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ, et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391:319–28.

185. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS). Eur Heart J. 2018;39:3499–507.

186. Rouzet E, Lutgens E. 2016 Jeffrey M. Hoeg award lecture: immune checkpoints in atherosclerosis: toward immunotherapy for atherosclerosis. Arterio Thromb Vasc Biol. 2018;38:1678–88.

187. Doesch AO, Zhao L, Gleissner CA, Akhavanpoor M, Rohde D, Okuyucu D, et al. Inhibition of β7-1 (CD80) by Rhdex® decreases lipopolysaccharide-mediated inflammation in human atherosclerotic lesions. Drug Des Dev Ther. 2014;8:447.

188. Meletta R, Herde AM, Dennler P, Fischer E, Schibli R, Kramér SD. Preclinical imaging of the co-stimulatory molecules CD80 and CD86 with indium-111-labeled belatacept in atherosclerosis. EJNNMI Res. 2016;6:1.

189. Mühler A, Mu LJ, Meletta R, Beck K, Rancic Z, Drandanov K, et al. Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules. Int J Cardiol. 2014;174:503–15.

190. Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, et al. Oxidative metabolism and PGC-1α/mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 2015;12:102–15.

191. Schönbeck U, Sukhova G, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. P Natl Acad Sci USA. 2000;97:7458–63.

192. Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394:200–3.

193. Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE, et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med. 1999;5:1313–6.

194. Zernecke A, Weber C. Chemokines in atherosclerosis: proceedings. Arterioscler Thromb Vasc Biol. 2018;38:1678–88.

195. Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW, Nakahira K, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 2015;12:102–15.

196. Vats D, Mukundan L, Odøgaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metabol. 2006;4:13–24.

197. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maciver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

198. Glvd Windt, Evets B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78.

199. Ren B, Van Kampen E, Van Berkel TJ, Cruickshank SM, Van Eck M. Hematopoietic arginase 1 deficiency results in decreased leukocyte- and increased foam cell formation but does not affect atherosclerosis. Atherosclerosis. 2017;256:35–46.

200. Cole JE, Astola N, Cribbs AP, Goddard ME, Park I, Green P, et al. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. P Natl Acad Sci USA. 2015;112:13033–8.

201. Peterson AS, Fong LG, Young SG, Errata. PCSK9 function and physiology. J Lipid Res. 2008;49:1595–9.

202. Grooth GJ, Klerkx AH, Strees ES, Stalenhofen AF, Kastelein JJ, Kuivenhoven JA. A review of CETP and its relation to atherosclerosis. J Lipid Res. 2004;45:1967–74.

203. Koren MJ, Lundqvist PV, Bolognese N, Neutel JM, Monsalvo ML, Yang JY, et al. Anti-PCSK9 monotherapy for hypercholesterolaemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40.

204. Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackrerian B, et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33:5747–55.

205. Rittershaus CW, Miller DF, Thomas LJ, Picard MD, Honan CM, Emmett CD, et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Atheroscl Orvosi Theo Vias. 2000;20:2106–12.

206. Ait-Outella H, Salomon BL, Potteaux S, Robertson A-KL, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80.

207. Ts, GHV Pujivelde, Foks A, Habets K, Bot I, Gilboa E, et al. Vaccination against Fopx3+ regulatory T cells aggravates atherosclerosis. Atherosclerosis. 2010;209:74–80.

208. Ou HX, Guo BB, Liu Q, Li YK, Yang Z, Feng WJ, et al. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharm Sin. 2018;39:1249–58.

209. Beldman TJ, Malinsova TS, Desclos E, Grooteman AE, Misiak ALS, van der Velden S, et al. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano. 2019;13:1379–74.

210. Montazzi-Borjoeini AA, Jafairi MR, Badiiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.

211. Kiaie N, Gorabi AM, Pensson PE, Watts G, Johnston TP, Banach M, et al. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today. 2020;25:58–72.

212. Seijkens TTP, van Tiel CM, Kusters PJH, Atzler D, Soehnlein O, et al. Tailoring nanostructure morphology for enhanced targeting of macrophages reduces atherosclerosis. J Am Coll Cardiol. 2018;71:527–42.

213. Peters EB, Tshisil ND, Karver MR, Chin SM, Musetti B, Ledford BT, et al. Atheroma niche-responsive nanocarriers for immunotherapeutic delivery. Adv Healthc Mater. 2019;8:1801545.

214. Song YN, Huang ZY, Liu X, Pang ZQ, Chen J, Yang HB, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (Apoe-/-) mice. Nanomed-Nanotechnol. 2019;15:13–24.

215. Yi SJ, Allen SD, Liu YG, Ouyang BZ, Li X, Augsornworawat P, et al. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano. 2016;10:31290–303.

216. Schönbeck U, Libby P. CD40 signaling and plaque instability. Circ Res. 2001;89:1092–103.
224. Lameijer M, Binderup T, van Leent MMT, Senders ML, Fay F, Malkus J, et al. Efficacy and safety assessment of a TRAF6-targeted nanoinmunotherapy in atherosclerotic mice and non-human pri-mates. *Nat Biomed Eng* 2018;2:270–92.

225. Ye ZS, Zhong L, Zhu SN, Wang YN, Zheng J, Wang SJ, et al. The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. *Cell Death Dis* 2019;10:1–15.

226. Subramanian M, Thorp E, Hansson GK, Megens RT, Niessner A, Weyand CM. Dendritic cells in atherosclerotic disease. *Adv Drug Deliv Rev* 2019;143:25–32.

227. Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with restricted regulatory T cell homeostasis in mice. *J Clin Invest* 2011;121:2898–910.

228. Wei C, Meiler S, Döring Y, Koch M, Drechsler M, Megens RT, et al. CCL17-expressing dendritic cells drive atherosclerosis by regulating cholesterol efflux and contribute to the initiation of atherosclerosis. *Circ Res* 2010;106:383–90.

229. Weber C, Meiler S, Döring Y, Koch M, Drechsler M, Megens RT, et al. Using T-cell dysfunction induced by calcineurin inhibitors. *P Natl Acad Sci USA* 2017;114:7083–8.

230. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. *Nat Rev Cardiol* 2015;12:106.

231. Zhu R, Chen L, Xiong YQ, Wang NN, Xie XC, Hong YQ, et al. An upregulation of CDB5 CD25 Foxp3 T cells with suppressive function through interleukin 2 pathway in pulmonary arterial hypertension. *Exp Cell Res* 2017;358:182–7.

232. Kuo HH, He Y, Ouyang F, Jiang P, Guo SH, Guo Y. The role of regulatory T cells in pulmonary arterial hypertension. *J Am Heart Assoc* 2019;8:e014201.

233. Yaing K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. *Nature* 2017;548:602–6.

234. Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E, Yang JH, et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. *Eur J Immunol* 2017;44:1225–36.

235. Ferrera LM, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. *Nat Rev Drug Discov* 2019;18:749–69.

236. Bluestone JA, Buckner JH, Fitch M, Giltelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. *Sci Transl Med* 2015;7:315ra18.

237. Dall’Era M, Pauli ML, Remedios K, Caravati F, Sandova PM, Putnam AL, et al. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. *Arthritis Rheum* 2017;17:3158–20.

238. Zanovello V, Rosenkranz KL, Tappero H, et al. Late Breaking Abstract-Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension. *Am J Respir Crit Care Med* 2017;195:21–9.

239. Bryant AJ, Fu CH, Lu Y, Brantly ML, Mehrab D, Moldawer LL, et al. A checkpoint on innate myeloid cells in pulmonary arterial hyper- tension. *Pulm Circ* 2018;8:2045894018832528.

240. Nicolls MR, Voelkel NF. The roles of immunity in the prevention and evolution of pulmonary arterial hypertension. A perspective. *Am J Respir Crit Care Med* 2017;195:1292–9.

241. Humbert M, Monti G, Boren F, Sibson O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. *Am J Respir Crit Care Med* 1995;151:1628–31.

242. Kim KS, Jung H, Shin IK, Choi BR, Kim DH. Induction of interleukin-1 beta (IL-1β) is a critical component of lung inflammation during influenza A (H1N1) virus infection. *J Med Virol* 2015;87:1104–12.

243. Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. *Respir Res* 2014;15:47.

244. Hernández-Sánchez J, Harlow L, Church C, Gaine S, Knightbridge E, Buncle K, et al. Clinical trial protocol for TRANSFORM-UK: a therapeutic open-label study of tocilizumab in the treatment of pulmo-nary arterial hypertension. *Respir Res* 2017;8:2045893217735820.
261. Wang Q, Zao XR, Wang YY, Xie WP, Wang H, Zhang MJ. Monocrotaline-induced pulmonary arterial hypertension is attenuated by TNF-α antagonists via the suppression of TNF-α expression and NF-κB pathway in rats. *Vasc Pharmacol* 2013;58:71–7.

262. Nakaoka Y, Inagaki T, Shirai M. Inflammatory cytokines in the pathogenesis of pulmonary arterial hypertension. *Singapore: Springer Singapore*; 2020.

263. Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. *Br J Pharmacol* 2019;195:1–18.

264. Tian W, Jiang XG, Tamosiuniene R, Sung YK, Qian J, Dhillon G, et al. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. *Sci Transl Med* 2013;5:200ra117.

265. Li SJ, Zhai C, Shi WH, Feng W, Xie XM, Pan YL, et al. Leukotriene B4 induces proliferation of rat pulmonary arterial smooth muscle cells via modulating GSK-3β/b-catenin pathway. *Eur J Pharmacol* 2020;867:172823.

266. Galie N, Manes A, Branzi A. The endothelin system in pulmonary arterial hypertension. *Cardiovasc Res* 2004;61:227–37.

267. Dai Y, Chen X, Song XX, Chen XJ, Ma WR, Lin JB, et al. Immunotherapy of endothelin-1 receptor type a for pulmonary arterial hypertension. *J Am Coll Cardiol* 2019;73:2567–80.

268. Li C, Yan XL, Wu DY, Zhang K, Liang X, Pan YJ, et al. Vaccine targeted alpha 1D-adrenergic receptor for hypertension. *Springer* 2019;74:1551–62.

269. Lee W-H, Loo C-Y, Traini D, Young PM. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. *Asian J Pharm Sci* 2015;10:481–9.

270. Long L, Ormiston ML, Yang XD, Southwood M, Graff S, Machado RD, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. *Nat Med* 2015;21:777–85.

271. Tian XF, Cai J, Hopper RK, Sudheendra D, Li CG, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. *J Clin Invest* 2013;123:3600–13.

272. Spiekerkoetter E, Sung YK, Sudheendra D, Bill M, Aldred MA, van de Voorden MC, et al. Low-dose FK506 (tacrolimus) in end-stage pulmonary arterial hypertension. *Am J Respir Crit Care Med* 2015;192:254–7.

273. Spiekerkoetter E, Sung YK, Sudheendra D, Scott V, Del Rosario P, Bill M, et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. *Eur Respir J* 2017;50:160249.

274. Wang ZM, Cuddigan JL, Gupta SK, Meenach SA. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. *Int J Pharm* 2016;512:305–13.

275. Yang YC, Lin F, Xiao QZ, Sun B, Wei ZY, Liu BY, et al. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: an update. *Biomed Pharmacother* 2020;129:110355.

276. Wukey KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH. Adverse events following cancer immunotherapy: obstacles and opportunities. *Trends Immunol* 2019;40:511–23.

277. Jiang XT, Xu J, Liu MF, Xing H, Wang ZM, Huang L, et al. Adoptive CD8+ T cell therapy against cancer: challenges and opportunities. *Cancer Lett* 2019;462:23–32.

278. Qi JP, Hu XW, Dong XC, Lu Y, Lu HP, Zhao WL, et al. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. *Adv Drug Deliv Rev* 2019;143:206–25.

279. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. *Nat Rev Drug Discov* 2019;18:19–40.