Application of laparoscopy in diagnosis and treatment of massive small intestinal bleeding: Report of 22 cases

Ming-Chen Ba, San-Hua Qing, Xiang-Cheng Huang, Ying Wen, Guo-Xin Li, Jiang Yu

Abstract

AIM: To investigate the diagnostic and therapeutic value of laparoscopy in patients with massive small intestinal bleeding.

METHODS: Twenty-two patients with massive small intestinal bleeding and hemodynamic alteration underwent laparoscopic laparotomy in our unit from December 2002 to April 2005. Post pathologic sites were found, laparoscopy- or laparoscopy-assisted part small intestinal resection including pathologic intestinal site and enterostomosis was performed in all these patients.

RESULTS: The bleeding sites were successfully detected by laparoscopy in all these 22 patients. Massive small intestinal bleeding was caused by jejunum benign stromal tumor in 8 cases, by jejunum potential malignant stromal tumor in 5 cases, by jejunum malignant stromal tumor in 1 case, by Meckel's diverticulum in 5 cases, by small intestinal vascular deformity in 2 cases, and by ectopic pancreas in 1 case. A total of 16 patients underwent laparoscopy-assisted enterectomy and enterostomosis was performed in all these patients.

CONCLUSION: Laparoscopy in diagnosis and treatment of massive small intestinal bleeding is noninvasive with less pain, short recovery time and definite therapeutic efficacy.

© 2006 The WJG Press. All rights reserved.

Key words: Small intestine; Bleeding; Laparoscopy; Meckel's diverticulum; Stromal tumor
in 3 patients, of them 1 had a jejunum tumor and 1 had the contrast medium in blood vessels of terminal ileum flowing into the intestinal cavity where pathological changes were not defined.

Surgical procedures

Before operation, shock was treated with blood transfusion until hemoglobin level reached 90 g/L or above. After the blood pressure became normal, emergency laparoscopic laparotomy was performed under general anesthesia with the patients at a head-down position. A transverse incision (1 cm) was made 0.5 cm inferior to the umbilicus to establish pneumoperitoneum with a pressure of 13 mmHg. A hole was made inferior to the umbilicus to insert the laparoscope of 10 mm at 30℃ to examine the abdominal viscera. Under the guidance of a laparoscope, a second and third holes of 5 mm were made at the level of umbilicus on the midlines of right and left clavicles. The second hole was used to check the whole small intestine from the part of the ileum and cecum to Treitz’s ligament with a non-impairing laparoscopic bowel clamp, during which the proximal segment of intestinal tract from the boundary of the hematocoele was observed and accumulated blood was squeezed out. The recurrent hematocoele showed the definite bleeding site. When failing to reach the bleeding site, two alternative methods were used: perioperative small intestine enteroscopy to check the transparency of the intestinal wall with the help of a light source at the top of the enteroscope to localize the bleeding site, thus the small intestine near the hematocoele was clamped out of the abdominal wall for incision and perioperative enteroscopy (Figure 3). After the bleeding site was localized, the third hole was dilated to make a 5 cm incision through the left rectus abdominis muscle to clamp the diseased intestinal segment, followed by resection of the diseased intestinal tract according to the laparotomy procedures (Figures 4A and B). In some cases, removal of the diseased small intestine and enteroaastomosis were performed under a laparoscope by transverse dilation of the hole inferior to the the umbilicus.

RESULTS

The bleeding sites in these 22 patients were successfully found, of them 2 received laparoscopy combined with perioperative enteroscopy, 4 underwent perioperative incision of the small intestinal tract under laparoscope combined with perioperative enteroscopy under laparoscope. Massive small intestinal bleeding was caused by benign jejunum stromal tumor in 8 cases, by potential jejunum malignant stromal tumor in 5 cases, by malignant jejunum stromal tumor in 1 case, by Mechel’s diverticulum in 5 cases, by small intestinal vascular deformity in 2 cases with 1 case having 2 sites of jejunum vascular dysplasia with concurrent intestinal mucous ulcer (the two sites were 10 cm and 40 cm from Treitz’s ligament respectively) and by ectopic pancreas in 1 case. A total of 16 patients underwent laparoscopy-assisted enterectomy
DISCUSSION

The small intestine is about 3-5 m long, occupying three fourths of the whole gastrointestinal tract. The ansa intestinalis is circuitous overlapping active peristalsis and its location varies greatly in the abdominal cavity. Since massive small intestinal bleeding lacks specific clinical symptoms and signs, it is difficult to diagnose and locate it by routine examinations. Small intestine enteroscopy is the most specific method for its diagnosis but its application is limited because this examination is time-consuming, extremely unpleasant, and causes bleeding and perforation with a high false positive rate. Recently, a capsule endoscope is under clinic experiment, but it cannot perform biopsy and make pathological diagnosis. Stromal tumor is the most frequent cause of small intestinal bleeding, Meckel’s diverticulum and vascular conditions are the second frequent cause of small intestinal bleeding. False positive tumor may not be shown on X-ray imaging of the whole alimentary tract because the bleeding foci often grows in exogenesis. During the active stage of small intestinal bleeding, DSA can find the contrast medium flowing from the tumor site into the intestinal tract, showing local shadow with a slightly high density and embolism treatment can be conducted during diagnosis. 99mTc-sestamibi is sensitive to mild intestinal bleeding, thus marking erythrocytes for gastrointestinal bleeding imaging, while it has no diagnostic value in the resting phase of bleeding or the bleeding being less than 0.05 mL/min. At present, the diagnosis of massive obscure gastro-intestinal bleeding is usually made by exposure laparoscopy, which is invasive with a false positive rate of 5%. Besides, patients with massive small intestinal bleeding are often weak with poor conditions and unstable vital signs, which prevent them from undergoing a major surgical operation. Laparoscopy can clearly, directly and conveniently observe the whole intestinal serosa and mesentery and the small intestinal conditions can be managed with its assistance. From December 2002, we have tried to use laparoscopy to manage obscure gastrointestinal bleeding in patients with massive small intestinal bleeding. The outcomes showed that laparoscopy could find the bleeding site of massive obscure gastro-intestinal bleeding. It is noninvasive with less pain and short recovery time. We believe that laparoscopy has a promising prospect in diagnosis and treatment of acute massive small intestinal bleeding and can be used as a routine method for the management of massive small intestinal bleeding. Since intestinal stromal tumor and ectopic pancreas that cause small intestinal bleeding are generally small, examination followed by laparotomy cannot find the bleeding foci. Perioperative small intestine enteroscopy in combination with removal of hematocoele can avoid the disadvantages of enteroscopy, such as time-consuming, extreme unpleasantness and complications of bleeding and perforation. Laparoscopy can find the bleeding foci, showing the advantages of noninvasive surgery. For those whose bleeding site is not defined by laparoscopy, perioperative enteroscopy of small intestine generally can reach the definite bleeding foci, deserving wide promotion.

In the present study, small intestinal bleeding occurred, leading to insufficient blood volume, the average hemoglobin level was 50.6 g/L. Once laparoscopy is accepted by patients, the laparoscope equipment and surgical appliances should be prepared as fast as possible for immediate surgery when shock takes a favorable return. The patient should lie on his/her left side at the head-down position. Firstly, parenchymatous viscera should be generally examined, followed by examination of the whole small intestine. This part of the ileum and cecum has a relatively stable location in the abdominal cavity and thus is easily exposed. Cecum should be used as the landmark during laparoscopic exploration, which starts from the terminal ileum with each 10 cm as one segment to the Treize’s ligament. One patient had 2 sites with small intestinal vascular deformity so that exploration of the whole small intestine segment by segment was emphasized to avoid missing any focus. The laparoscopic exploration of small intestinal hemangiomas or vascular deformity should be more careful. The intestinal wall should be carefully explored for local prominence, pitting, overlapping and abnormal mesentery. The suspected bleeding segment should be palpated carefully with clamps to feel its hardness, flexibility, and activity. In case of active massive bleeding, intestinal peristalsis is active and the blood often accumulates in the distal bleeding segment which is dark blue under laparoscope. The suspected foci can be confirmed if emptied, blocked and reformed.
hematocele is found. The time-consuming examination is mainly due to repeated enteroscopy. One patient with a history of 3-year bleeding had no positive laparoscopic findings. Repeated examinations had no other positive findings. A slightly hard intestinal wall of this part was touched during exploration, which was ectopic pancreas confirmed by pathological biopsy.

After the bleeding site was found by laparoscopy, laparoscopy-assisted enterectomy and enteroanastomosis were performed, during which an exploratory incision about 5 cm in length was made at the umbilicus level on the midline of the left clavicle to remove the diseased intestinal segment. The resected part of the small intestine should be 5 cm longer than the bleeding site that may result in a fast and reliable excision with light contaminations in the abdominal cavity. Enterectomy and enteroanastomosis can be performed under laparoscope in those whose bleeding sites are adjacent to the Treize’s ligament, thus the diseased segment can be conveniently removed.

In conclusion, laparoscopy in diagnosis and treatment of massive small intestinal bleeding is noninvasive with less pain, short recovery time and definite therapeutic efficacy and has rather good clinical application prospects.

REFERENCES

1. Livengood JC, Fenoglio ME. Gastrointestinal hemorrhage from a small bowel polyloid hemangioma. JSLS 2002; 6: 179-180
2. Minos A, Ogawa Y, Ishikawa T, Uchima Y, Yamazaki M, Nakamura S, Yukawa T, Matsumoto T, Arakawa T, Hirakawa K. Dieulafay’s vascular malformation of the jejunal: first case report of laparoscopic treatment. J Gastroenterol 2004; 39: 375-378
3. Romãozinho JM, Pontes JM, Lórias C, Ferreira M, Freitas D. Dieulafay’s lesion: management and long-term outcome. Endoscopy 2004; 36: 416-420
4. Sass DA, Chopra KB, Finkelstein SD, Schauer PR. jejunal gastrointestinal stromal tumor: a cause of obscure gastrointestinal bleeding. Arch Pathol Lab Med 2004; 128: 214-217
5. Bodner J, Chemelli A, Zeiger B, Kafka R. Bleeding Meckel’s diverticulum. J Am Coll Surg 2005; 200: 631
6. Martinez-Ares D, González-Conde B, Yañez J, Estévez E, Arnal F, Lorenzo J, Diz-Lois MT, Vázquez-Iglesias JL. jejunal leiomyosarcoma, a rare cause of obscure gastrointestinal bleeding diagnosed by wireless capsule endoscopy. Surg Endosc 2004; 18: 554-556
7. Nguyen NQ, Rayner CK, Schoeman MN. Push enteroscopy alters management in a majority of patients with obscure gastrointestinal bleeding. J Gastroenterol Hepatol 2005; 20: 716-721
8. Keuchel M, Hagenmüller F. Small bowel endoscopy. Endoscopy 2005; 37: 122-132
9. Warneke RM, Walser E, Faruqi S, Jafri S, Bhutani MS, Raju GS. Cap-assisted endoclips placement for recurrent ulcer hemorrhage after repeatedly unsuccessful endoscopic treatment and angiographic embolization: case report. Gastrointest Endosc 2004; 60: 309-312
10. Hartmann D, Schmidt H, Bolz G, Schilling D, Kinzel F, Eickhoff A, Huschner W, Müller K, Jakobs R, Reitzig P, Weickert U, Gellert K, Schult H, Guenther K, Hölzer H, Schoenenleben K, Schulz HJ, Riemann JF. A prospective two-center study comparing wireless capsule endoscopy with intraoperative enteroscopy in patients with obscure GI bleeding. Gastrointest Endosc 2005; 61: 826-832
11. El C, Remke S, May A, Helou L, Henrich R, Mayer G. The first prospective controlled trial comparing wireless capsule endoscopy with push enteroscopy in chronic gastrointestinal bleeding, Endoscopy 2002; 34: 685-689
12. Jones BH, Fleischer DE, Sharma VK, Heigh RI, Shiff AD, Hernandez JL, Leighton JA. Yield of repeat wireless video capsule endoscopy in patients with obscure gastrointestinal bleeding, Am J Gastroenterol 2005; 100: 1058-1064
13. Lewis BS, Swain P. Capsule endoscopy in the evaluation of patients with suspected small intestinal bleeding: Results of a pilot study. Gastrointest Endosc 2002; 56: 349-353
14. Ha HK, Shin JH, Rha SE, Lee YS, Park KB, Lee MG, Kim PN, Auh YH. Modified small-bowel follow-through: use of methylcellulose to improve bowel transradiance and prepare barium suspension. Radiology 1999; 211: 197-201
15. Yamaguchi T, Yoshikawa K. Enhanced CT for initial localization of active lower gastrointestinal bleeding. Abdom Imaging 2003; 28: 634-636
16. Rerkuspaphol S, Hutson JM, Oliver MR. Ranitidine-enhanced 99mtechnetium pertechnetate imaging in children improves the sensitivity of identifying heterotopic gastric mucosa in Meckel’s diverticulum. Pediatr Surg Int 2004; 20: 323-325
17. Lee KH, Young CK, Tam YH, Ng WT, Yip KF. Laparoscopy for definitive diagnosis and treatment of gastrointestinal bleeding of obscure origin in children. J Pediatr Surg 2003; 38: 1291-1293
18. Abbas MA, Al-Kandari M, Dashti FM. Laparoscopic-assisted resection of bleeding jejunal leiomyoma. Surg Endosc 2001; 15: 1359
19. Loh DL, Munro FO. The role of laparoscopy in the management of lower gastro-intestinal bleeding. Pediatr Surg Int 2003; 19: 266-267
20. Kok KY, Mathew VV, Yapp SK. Laparoscopic-assisted small bowel resection for a bleeding leiomyoma. Surg Endosc 1998; 12: 995-996

S-Editor Wang GP L-Editor Wang XL E-Editor Lu W