THE QUASI-BIENNIAL PERIODICITY AS A WINDOW ON THE SOLAR MAGNETIC DYNAMO CONFIGURATION

R. Simoniello1,2, K. Jain3, S. C. Tripathy4, S. Turck-Chièze5, C. Baldner6, W. Finsterle4, F. Hill3, and M. Roth5

1 Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, CEA, IRFU, SAp, Centre de Saclay, F-91191 Gif-sur-Yvette, France; rosaria.simoniello@cea.fr
2 PMOD/WRC Physikalisch-Meteorologisches Observatorium Davos-World Radiation Center, 7260 Davos Dorf, Switzerland
3 National Solar Observatory, Tucson, AZ 85719, USA
4 W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085, USA
5 Kiepenheuer Institute for Solar Physics, Freiburg, Germany

Received 2012 October 24; accepted 2013 January 18; published 2013 February 21

ABSTRACT

Manifestations of the solar magnetic activity through periodicities of about 11 and 2 years are now clearly seen in all solar activity indices. In this paper, we add information about the mechanism driving the 2-year period by studying the time and latitudinal properties of acoustic modes that are sensitive probes of the subsurface layers. We use almost 17 years of high-quality resolved data provided by the Global Oscillation Network Group to investigate the solar cycle changes in \(p \)-mode frequencies for spherical degrees \(\ell \) from 0 to 120 and 1600 \(\mu \text{Hz} \leq v \leq 3500 \mu \text{Hz} \). For both periodic components of solar activity, we locate the origin of the frequency shift in the subsurface layers and find evidence that a sudden enhancement in amplitude occurs in just the last few hundred kilometers. We also show that, in both cases, the size of the shift increases toward equatorial latitudes and from minimum to maximum solar activity, but, in agreement with previous findings, the quasi-biennial periodicity (QBP) causes a weaker shift in mode frequencies and a slower enhancement than that caused by the 11-year cycle. We compare our observational findings with the features predicted by different models, that try to explain the origin of this QBP and conclude that the observed properties could result from the beating between a dipole and quadrupole magnetic configuration of the dynamo.

Key words: dynamo – Sun: activity – Sun: helioseismology

Online-only material: color figures

1. INTRODUCTION

Long-term time series open a new perspective into the study of stellar activity cycles as they reveal the existence of complex scenario. In fact, stars can give rise to all types of periodicities from none to multiple cycles (Baliunas et al. 1995; Brandenburg et al. 1998; Messina & Guinan 2002; Oláh & Strassmeier 2002; Böhm-Vitense 2007). Beating between the dipolar and quadrupolar components of a dynamo’s magnetic configuration might explain the apparent multiple periods observed in some stars (Moss 1999, 2002; Fluri & Berdyugina 2004).

The Sun also shows several periodicities on different timescales that are longer and shorter than the sunspot cycle (Bai 2003; Usoskin et al. 2007; Kolláth & Oláh 2009). The quasi-biennial periodicity (QBP) has recently received a great deal of interest, as it appears in all solar activity proxies. Its amplitude is particularly strong near the solar maximum, although it does not seem to characterize every solar cycle (Krivova & Solanki 2002; Vecchio & Carbone 2008). Several mechanisms have been proposed so far to explain the origin of the QBP, such as a second dynamo mechanism generated by the strong rotational shear extending from the surface down to 5\% below it (Benevolenskaja 1998a, 1998b) or the instability of magnetic Rossby waves in the tachocline (Zaqarashvili et al. 2010, 2011). However, a separate mechanism is not the only possibility, as spatiotemporal fragmentation may also be responsible for this periodicity (Covas et al. 2000).

Recently the discovery of the shortest cycle of 1.6 years so far measured has also been reported in a solar-type star (Metcalfe et al. 2010). This phenomenon could be related to the mid-timescale magnetic variations recently identified in HD 49933 from asteroseismic observations (García et al. 2010) and to the solar QBP clearly visible in helioseismic measurements of low-degree modes (Broomhall et al. 2009; Salabert et al. 2009; Simoniello et al. 2012a).

The helioseismic changes in \(p \)-mode parameters are strongly correlated to the cyclic behavior of solar magnetic activity. The mode amplitude is linked to the excitation of the mode (Chaplin et al. 2000; Komm et al. 2000) and its solar-cycle-related changes are likely due to mode conversion (Simoniello et al. 2010). The mode frequency shift results from the effect of the magnetic field on the acoustic cavity extension. The seismic signatures of the solar QBP have been interpreted to be the result of a second dynamo mechanism by Fletcher et al. (2010) and Broomhall et al. (2012). Jain et al. (2011) and Simoniello et al. (2012a) discussed other scenarios, such as the signature of a relic solar magnetic field, different dynamo modes, or a mechanism separate from the main dynamo.

With the hope to better understand the origin of the solar QBP, we investigate the temporal variation in \(p \)-mode frequency of low- and intermediate-degree modes over solar cycle 23 and the ascending phase of solar cycle 24 using data provided by the Global Oscillation Network Group (GONG). We perform a detailed study of the 2-year signal extracted by the total shifts by investigating its properties as a function of mode frequency, penetration depth, and latitude. When scaled by their mode inertia all the modes with different degrees vary in the same way, so looking simultaneously at numerous modes within the selected frequency bands should let the smaller effect of time variabilities emerge. We will afterward confine our study to the subsurface layers, selecting only modes whose lower turning point is above 0.90 solar radius and by tuning the ratio \(m/\ell \), we will select modes sensitive to specific latitudes. The characterization of the shift with frequency, penetration depth, and latitude will provide
the chance to verify whether or not the origin of the shift over the 2-year cycles could differ from the one induced over the 11-year cycle. Finally, the properties of the 2-year signal will be also compared with the features predicted by different models, and this should allow us to gain information on the mechanism driving the cyclic behavior of solar magnetic activity.

2. DATA ANALYSIS

2.1. Mode Frequency Determination

The GONG has provided nearly continuous and stable velocity images of the Sun since 1995 May. It consists of six instruments deployed worldwide, based on a Michelson interferometer using the Ni line at 676.8 nm. Mode parameters (frequency, full width, and amplitude) for each \((n, \ell, m)\) are estimated up to \(\ell = 150\) by applying the standard GONG analysis (Anderson et al. 1990). The peak-fitting algorithm has two criteria to judge the quality of the fit to a mode (Hill et al. 1998) and based on these quality flags, we removed few outliers from the analysis. The individual \(p\)-mode parameters are afterward made publicly available (http://gong2.nso.edu/archive/). In this work, we analyze the temporal variations of \(p\)-mode frequencies covering almost 17 years of observations starting from 1995 May up to 2012 January.

2.2. Central Frequency of the Multiplets

The spatial structure of the acoustic modes in the Sun can be described by associated Legendre functions \(P_{\ell}^{m}(x)\), where \(\ell\) is the degree, \(m\) is the azimuthal order running from \(-\ell\) to \(\ell\), and \(x\) is the cosine of the colatitude \(\theta\). The degeneracy among the modes of the same \(\ell\) and \(m\) is broken by rotation and asphericity. The labeling of a mode is completed by the radial order \(n\) (number of radial intersections or harmonics). The frequencies of a mode of a specific \(n\), \(\ell\) multiplet are given using the following polynomial expansion:

\[
v_{n,\ell,m} = v_{n,\ell} + \sum a_j(n, \ell) P_{\ell}^{j}(m),
\]

where the basic functions are polynomials related to the Clebsch–Gordon coefficients \(C_{j\ell 0 lm}\) (Ritzwoller & Lavelle 1991) by

\[
P_{\ell}^{j}(m) = \frac{\ell \sqrt{2(l - 1)(2l + 1)}}{(2\ell)!\sqrt{2\ell + 1}} C_{j\ell 0 lm}.
\]

The frequency \(v_{n,\ell}\) is the so-called central frequency of the multiplet, and we will also use this parameter as it provides a measure of the global activity of the Sun.

2.3. Frequency Shift Determination

In this work, we look for temporal variations in \(p\)-mode frequencies caused by changes in magnetic activity levels. Within this context the frequency shift can be defined as the difference between the frequencies of the corresponding modes observed at different epochs and the reference values taken as average over the minimum phase of solar activity (\(\delta v \equiv v_1 - v(B_0)\)) or as the difference between the mode frequency at certain date and its temporal mean (\(\delta v_1 \equiv v(B) - \bar{v}_1\)) (Howe et al. 2002). We choose the first approach as it provides the advantage of directly comparing the shift with other publications, because it does not depend on the inclusion of new data sets. Since the frequency shifts have a well-known dependency on frequency and mode inertia (Jain et al. 2000), we consider only those modes that are present in all data sets, and the shifts are scaled by the mode inertia (Christensen-Dalsgaard & Berthomieu 1991). The mean frequency shift is calculated from the following relation:

\[
\delta v(t) = \frac{\sum_{n,\ell,m} Q_{\ell,m} \delta v(t)}{\sum_{n,\ell,m} Q_{\ell,m}}.
\]

The weighted averages of these frequency shifts were then calculated in two different frequency bands:

1. low-frequency band 1600 \(\mu\)Hz \(\leq v \leq 2500 \mu\)Hz;
2. high-frequency band 2500 \(\mu\)Hz \(\leq v \leq 3500 \mu\)Hz.

This frequency dependence analysis will tell us to which depths the 2-year signal is the most sensitive. In fact, the mode frequency determines the position of the upper turning point (UTP) of the waves since the mode frequency increases as the UTP approaches the solar surface. Seismic observations over the 11-year cycle have already shown that the increase in the magnitude of the shift is predominantly a subsurface phenomenon as it strongly increases in the upper few hundred kilometers (Chaplin et al. 2001).

3. ANALYSIS OF THE QBP SIGNATURES IN \(p\)-MODE FREQUENCY SHIFT

3.1. Frequency Dependence

We investigate the solar cycle changes in \(p\)-mode central frequency averaged over spherical degree \(\ell = 0\)–120. In order to extract the quasi-biennial signal from the total shifts, we subtracted the 11-year envelope by using a boxcar average of 2.5-year width (Fletcher et al. 2010). Figure 1 compares the temporal changes in \(p\)-mode frequency in the two frequency bands over solar cycle 23 (left panel) and more specifically for the 2-year period (right panel). The error in shifts is of the order of \(10^{-3}\) \(\mu\)Hz for both frequency bands. The presence of a quasi-biennial modulation is clearly visible in both frequency bands and over the whole period of observation. There are several interesting features to underline in the magnitude of the shift over the 2-year cycle and to which one can compare to previous studies on low-degree modes:

1. it is rather weak;
2. it increases by a factor of \(\approx 3\) from a low- to high-frequency band. This enhancement is smoother compared to the stronger increase over the 11-year cycle;
3. it becomes faint over the descending phase of solar cycle 23 and the low- and high-frequency bands are identical in this descending phase.

The other interesting feature is that over the ascending phase of solar cycle 23, the signal is stronger in the high-frequency band, while this does not occur over the ascending phase of solar cycle 24. This might imply that the ongoing cycle 24 will be weaker compared to solar cycle 23.

3.2. Assessing the Significance

We investigate the significance of the QBP signal in \(p\)-mode central frequency averaged over spherical degree \(\ell = 0\)–120 and in the two frequency bands by applying the wavelet analysis developed by Torrence & Compo (1998). The upper panels of Figure 2 show the temporal evolution of \(p\)-mode frequency shifts over the period 1996–2012, while the lower panels
identify periods in which the signal reaches 90% confidence level for both frequency bands. This occurs during periods around the solar maximum (1998–2004) with several significant periodicities in the range of 1.99 years $\leq T \leq 3.9$ years in both frequency bands. This shorter cyclic component characterizes different phases of solar magnetic activity, in contrast with activity proxies where the QBP signal is mainly prominent over periods coinciding with solar maximum. This peculiar feature seems to further confirm the persistent nature of the QBP signal, in agreement with previous findings based on the analysis of low-degree modes (Simoniello et al. 2012a). This finding is important to advance in dynamo theories that already take into account both periodic components of solar magnetic activity. Understanding the 2-year signal might give further constraints to these models.

3.3. Depth and Latitudinal Dependence

The p-mode spatial configuration can be described by spherical harmonics with each mode characterized by its spherical harmonic degree ℓ and azimuthal order m. The spherical degree defines the penetration depth through the following relation (Christensen-Dalsgaard & Berthomieu 1991):

$$r_t = \frac{c(r_t) \sqrt{\ell(\ell + 1)}}{2\pi \nu},$$

where c is the sound speed and r_t is the LTP radius. A higher value of $\nu/\sqrt{\ell(\ell + 1)}$ denotes a smaller value of r_t and hence a greater depth. We carried out a depth dependence analysis in four different regions of the Sun’s interior (core, radiative zone, tachocline, and convection zone) to verify that the shifts we discuss are independently confined. Then we used the ratio $\nu/\sqrt{\ell(\ell + 1)}$ to select only the modes having their LTP between $0.90 \leq (r_t/R) \leq 1$ solar radius. This would verify the frequency dependence of the shift in the subsurface layers and exclude different behaviors over the two cycles due, for example, to the presence of a second dynamo mechanism. Simultaneously, we used the ratio m/ℓ to select the acoustic modes more sensitive to lower or to higher latitudes. We decided to select three different latitudinal bands corresponding to equatorial latitudes ($0^\circ \leq \theta \leq 30^\circ$), mid-latitudes ($30^\circ \leq \theta \leq 60^\circ$), and high
Figure 3. Latitudinal dependence of p-mode frequency shift in the subsurface layer. The color legend is the same as in Figure 1.

(A color version of this figure is available in the online journal.)

The Astrophysical Journal, 765:100 (8pp), 2013 March 10
Simoniello et al.

latitudes ($60^\circ \leq \theta \leq 90^\circ$). Some authors have speculated that the QBP signal might be induced by a second dynamo mechanism located at 0.95 solar radius (Benevolenskaja 1998a, 1998b). It is known that the strong shear present in the subsurface layers increases toward latitudes higher than 60° (Schou et al. 1998). If this layer is acting as a second dynamo mechanism and it is causing the QBP, we might find an increase of the 2-year signal at higher latitudes. Figure 3 shows the changes during solar cycle 23 as a function of latitude for the three ranges.

The figures present several interesting features:

1. the magnitude of the shift decreases with increasing latitudes over both periodic components characterizing solar magnetic activity. This might indicate that the larger magnitude of the signal at equatorial latitudes could be due to the presence of strong toroidal fields located between $-45^\circ \leq \theta \leq 45^\circ$ (de Toma et al. 2000) during the course of the 11-year cycle;
2. the size of the shift is larger at equatorial latitudes and over periods coinciding with solar maximum at all latitudes and over both periodic components, in agreement with previous findings averaged over all ℓ values (Simoniello et al. 2012b);
3. the 11-year envelope over the 2-year cycle is clearly visible at all latitudes.

All these features clearly show that the QBP signal is highly coupled to the main dynamo driving the 11-year cycle.

4. ORIGIN OF THE OBSERVED FREQUENCY SHIFT

4.1. Magnitude of the Shift Versus the Subsurface Layers

The characterization of the shift with frequency, depth, and latitude over the 11- and 2-year cycles has shown differences in the enhancement rate of the magnitude of the shift. We now attempt to provide an explanation for it. Figure 4 shows the frequency dependence of the frequency shifts taken over 2001 August 8–2001 October 19 (top panels). This period corresponds to the maximum amplitude of the shift for both components of solar activity cycles. It shows that the enhanced amplitude follows an exponential behavior over solar cycle 23, in agreement with previous findings, and a slower enhancement rate over the 2-year cycle. The bottom panels in Figure 4 show the magnitude of the shift as a function of the position of the upper turning point. Those values have been calculated from model S of Christensen Dalsgaard (Chaplin et al. 2001). A sudden increase in the size of the shift is clearly visible in the last few hundred kilometers beneath the solar surface for both periodic components, although it is reduced over the 2-year period. The acoustic time of the modes is larger in these layers as the sound speed is smaller so any change of magnetic field strength in these layers is amplified.

4.2. Variation of β in the Subsurface Layers

The solar magnetic signature along solar cycle 23 has been extracted from the even-order splitting coefficients of the high-degree acoustic modes observed with MDI at 0.996 and 0.999 R_\odot. This study shows that poloidal and toroidal magnetic field strengths decrease toward the solar surface (Baldner et al. 2009). Figure 5 shows the strength of these two magnetic field components along solar cycle 23 and also deduces the 2-year cycle components at (r_i/R_\odot) = 0.999 and (r_i/R_\odot) = 0.996. Signatures of the 2-year signal reach 90% confidence level around the solar maximum (1998–2004) with a period of 2.3 years for both components. This periodicity agrees reasonably well with our findings. We now attempt to interpret our findings by taking into account the magnetic field strength

4
behavior in the subsurface layers and the increase of the amplitude of the modes near the solar surface. We have been misleading if one has deduced that the magnetic field strength should also increase. This is not the appropriate interpretation. In the Sun’s interior, $\beta = (P_{\text{gas}}/P_{\text{mag}}) \gg 1$, as the gas pressure is extremely large compared to the magnetic pressure. Only very close to the surface does this value become smaller (Kosovichev 2008). The gas pressure undergoes a strong decay near the surface, while the magnetic pressure, over the same range of depths, undergoes a slower decay (B^2). As a consequence, β reduces dramatically at the vicinity of the surface, so the magnetic pressure plays a direct role on the mode frequency in

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure4}
\caption{Top panels show the frequency dependence of the shifts obtained at the maximum of the solar cycle over 2001 August 8–2001 October 19 for the 11-year (left panels) and the 2-year cycles (right panels). The bottom panels show the same amplitudes of the shifts as a function of depth from the surface of the Sun. The color legend is the same as in Figure 1.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure5}
\caption{Decomposition of the magnetic field strength in poloidal (blue filled circles) and toroidal (red filled triangles) fields along solar cycle 23 (left panels) based on Baldner et al. (2009). Extraction of the components for the 2-year cycle (right panels) at 0.999 (upper panels) and 0.996 solar radius (lower panels). We introduced a vertical offset between the poloidal and toroidal components of the magnetic field when extracting the 2-year signal in order to better show the temporal variations.}
\end{figure}
very close layers near the surface, inciting, consequently, the observed shift. The rapid enhancement in the size of the shift is, therefore, a combination of the β ratio and longer acoustic time of the modes in these layers. The reduced enhancement size over the 2-year cycle may be interpreted in terms of magnetic field strength or topology (see Section 6.3).

4.3. Magnetic Field in the Subsurface Layers from 3D Simulation

The order of magnitude of the magnetic field deduced from splitting values of the subsurface layers (Baldner et al. 2009) gives a first insight into what phenomenon can influence the shifts that is discussed in this paper. In parallel to this classical approach, dedicated to secular 1D models of the Sun in agreement with deeper helioseismic observations, 3D hydro and magnetohydrodynamic simulations have been developed by Stein & Nordlund (1998) through the code STAGGER. They have shown that the order of magnitude of the turbulent pressure represents about 10% of the gas pressure in the simulations of the subsurface layers of the Sun (Nordlund & Stein 2000). Even more interesting, they have shown evidence that this turbulent term concerns a larger region than previously thought in 1D model, typically at least 1000 km in depth (Rosenthal et al. 1999). Magnetohydrodynamical simulations 48 Mm large and 20 Mm deep have been performed recently, using a horizontal magnetic field chosen at the bottom of this box compatible with values extracted from Baldner et al. (2009) and shown in Figure 5. Two complementary effects are visible in the simulations: a slow reduction of the turbulence by the deeper magnetic field in the lower part of the box and a direct effect of the magnetic pressure in the last 500 km just below the surface (see also Piau et al. 2011). These simulations agree reasonably well with what we observe in the present study, in the sense that the turbulent pressure plays a role in the absolute values of all the acoustic mode frequencies and the magnetic effect is directly connected to the small temporal variations that we study here. Of course, this last effect is clearly connected to the near surface region for all the acoustic mode frequencies.

5. DISCUSSION ON THE PHYSICAL MECHANISM BEHIND THE QBP

Seismic signatures of the 11- and 2-year cycle in p-mode frequency shifts might provide a deeper insight into the mechanism behind the cyclic behavior of solar activity. In this section, we will interpret our observational findings to shed light on the mechanism behind the 2-year signal.

5.1. Second Dynamo Mechanism

In agreement with earlier findings, we note that the size of the shift, over the 11-year cycle, undergoes a sudden and strong enhancement ≈ 200 km below the photosphere, while over the same range of depths we found a reduced gain over the 2-year cycle. Because of this, some authors invoked the action of a second dynamo mechanism (Fletcher et al. 2010; Broomhall et al. 2012) due to the subsurface rotational shear extending 5% below the solar surface (Schou et al. 1998). It is worth noting that dynamos with separate generation regions could have either a common period or two distinct periods, as shown in Moss & Sokoloff (2007). Therefore, a shallower dynamo does not imply a different periodicity from the 11-year one. However, we do not want to address this issue, as we aim to look for observational evidences pointing to a separate and/or different mechanism from the main dynamo behind the 2-year periodicity. In Section 3.4, we have shown that the origin and the behavior of the shift for both periodic components of solar magnetic activity in the subsurface layers is due to the sudden and stronger decrease of β. Therefore, we do not visualize a need to invoke a further dynamo mechanism to explain the origin of the shift induced by the 2-year cycle. Moreover, the latitudinal dependence of the size of the shift does not differ over the two cycles and the 11-year envelope clearly modulates the amplitude of the 2-year signal at all latitudes, suggesting that the two periodicities are intimately coupled. Thus, our seismic analysis does not exclude the possibility that the strong rotational shear layer might have a role in the generation of toroidal fields (Pipin & Kosovichev 2011), since our analysis indicates that a dynamo independent of its location is behind both components of solar magnetic activity.

5.2. Instability of Magnetic Rossby Waves

The instability of magnetic Rossby waves in the tachocline might enhance the 2-year periodicity when the magnetic field strength is greater than 10^5 G (Zaqarashvili et al. 2010). It is difficult for such strong magnetic fields to exist in the tachocline. In fact using the splitting of modes with their lower turning points around the base of the convective zone gave an upper limit of 0.3 MG (Basu 1997), in good agreement with similar upper values of 0.3–0.4 MG found by other investigators (Antia & Basu 2000). Furthermore, it is still an ongoing investigation how the magnetic Rossby waves vary with latitude in slow rotator stars. In order to fit with our results, it should be proven that the Rossby waves are smoothly redistributed along the latitudes with a maximum at low latitude and the poloidal wave number should be such that no nodes will rise from the equator toward the polar regions. However, recently it has been shown that specific magnetic field configurations can deplete the Rossby waves near the equator in favor of Alfvén waves (Tobias et al. 2011).

5.3. Spatiotemporal Fragmentation

Helioseismic observations have shown contradictory results in the temporal variations of the rotation rates at the tachocline. In fact, while Howe et al. (2000) found periodic variations of almost 1.3 years, others cast some doubts on these findings (Antia & Basu 2000). Therefore, it is still an open debate if temporal variations of the rotation rates indeed exist and if they differ with depths. To verify whether or not the spatiotemporal fragmentation indeed occur in the Sun’s interior, the investigation should be carried out by using the even- and odd-order Clebsch Gordon coefficients, as they provide information on the rotation rates and magnetic fields at different depths. The odd-order splitting coefficients are caused by the rotation of the Sun, while the even-order coefficients are caused by second-order effects of rotation and by the effects of magnetic fields or any other departure from spherical symmetry in the solar structure. Therefore, it would be extremely important to look for periodicities at different depths in the temporal evolution of both orders of splitting coefficients. If signatures of the 2-year periodicity occur only in the even-order coefficients and it is present at all depths, this finding might provide further evidences in favor of the link between the 2-year periodicity and the dynamo magnetic field configuration (see next sections).
5.4. Flip-flop Cycle

We noticed that the largest active regions tend to always appear at similar longitudes, which are called active longitudes. These are persistent during many cycles, but it can suddenly shift by 180° to the other side of the star (Berdyugina & Usoskin 2003). This phenomenon is known as the flip-flop cycle (Jetsu et al. 1991) and it seems to be rather common in stars (Berdyugina 2006; Usoskin 2007). The origin of the flip-flop cycle is not yet fully understood, but it could be explained to be the result of the excitation of a global non-axisymmetric (quadrupole-like) dynamo mode (Moss et al. 1995; Tuominen et al. 2002; Moss 2004). Such a field configuration plausibly exists in the Sun along with the dipole-like one as inferred by solar dynamo models (Moss & Brooke 2000). The relative strengths of the two dynamo modes should define the amplitudes of the observed cycles. Within this formalism it is also predicted that the amplitude of the secondary cycle, in general, is expected to have a lower amplitude, as part of the energy is transferred from the primary magnetic configuration (dipolar) to the secondary one (quadrupolar). This feature agrees well with our findings, as we have shown that the secondary cycle in the Sun is an additive contribution to the main cycle, whose signal strength is rather weak. The period of the oscillations of the axisymmetric mode should, instead, define the lengths of the observed cycles. Therefore, the full flip-flop cycle is expected to have the same length as the axisymmetric mode (Berdyugina et al. 2002). In the Sun the major spot activity switches between the active longitudes in about 1.8–1.9 years and on average it has been observed to make six switches of the active longitude during the 11-year sunspot cycle. These values have been obtained by analyzing solar cycles 18 up to 22 whose lengths were shorter than 11 years. Our findings seem to fit well with predictions and observations of flip-flop cycles. We found a significant periodicity at ≈2 years, a bit higher than the usual flip-flop findings, but solar cycle 23 lasted longer than usual (about 12.6 years). We, then, might expect that all periodicities between 1.5 years ≤ T ≤ 4 years (corresponding to individual periods of one longitude’s dominance) might be seen as the visible manifestation of the same physical mechanism. Recently, some other authors also concluded that the non-constant period length is the manifestation of a unique quasi-biennial cycle (Vecchio & Carbone 2008). Furthermore, the magnitude of the shift increases toward equatorial latitudes over both periodic components of solar magnetic activity, and this feature comes up naturally within this formalism.

6. CONCLUSION AND FURTHER PERSPECTIVE

The analysis of the QBP signal in ℓ = 0–120 acoustic mode frequency shifts shows that this signal was persistent over the whole solar cycle 23 and in the ongoing cycle 24. The significant reduction in the QBP signal strength over the ascending phase of solar cycle 24 might be interpreted to be signatures of a weaker subsurface magnetic field. The current dynamo models struggle to predict the basic parameters such as duration and strength of the activity cycle and therefore the idea of using acoustic waves as precursor of solar cycle is fascinating. To reach this aim, it will be fundamental to identify the physical mechanism behind it. Our detailed analysis seems to suggest that the QBP might be the result of beating between different dynamo modes. Dynamo models have been developed in order to investigate the effect of symmetry breaking on the amplitude of stellar cycles as generic features of nonlinear stellar dynamos (Beer et al. 1998; Knobloch et al. 1998). In particular two distinct types of behavior have been identified. The first (Type 1) is associated predominantly with symmetry changes, while the second (Type 2) corresponds to changes of amplitude without significant changes in symmetry (Tobias 1997; Weiss & Tobias 1997). It might be that the second type of behavior is what we observe in the Sun, where significant modulation of the amplitude of the magnetic cycles can be detected while the toroidal field stays nearly antisymmetric about the equator. Some authors, in fact, have speculated that since the end of the Maunder Minimum the solar field has been dipolar (Tobias 1996, 1998), while some others stated that a significant quadrupolar component is still present (Pulkkinen et al. 1999). Furthermore, it has also been shown that the presence of the quadrupolar component in dynamos is especially important when the field is weak, such as when the field is entering or leaving a Grand Minimum or periods of reduced activity (Ribes & Nesme-Ribes 1993). We wonder, then, if the current solar dynamics is indicative that we may soon be entering a period of reduced activity. It would be interesting if this were the case. To answer this question it will be important to investigate the north–south asymmetry and to quantify it in order to understand if the degree of asymmetry is an indicator of either the Type 1 or Type 2 modulation described above. This finding should also allow us to find out if indeed we are entering a period of reduced activity. It is not a simple task, but within this context the investigation of the seismic properties of the QBP signal might play a key role. For example, some authors found the periodicity from the northern hemisphere to differ from the one in the southern hemisphere (Vecchio & Carbone 2008; Berdyugina & Usoskin 2003). It will be worth checking if the analysis of p-mode frequency shift or other p-mode parameters in the two hemispheres might also spot asymmetries. Solar cycle 24 could be a good candidate to look for asymmetry. In fact, we have already shown the signatures of the 2-year cycle over its ascending phase. Furthermore, it will be equally important to investigate magnetic activity on other solar-type stars using the long-term data provided, for example, by asteroseismology missions (such as COROT, Kepler). The availability of a sample of solar analogs selected at different stages of their evolution will give us the opportunity to infer accurate relations between activity quantities, such as the length and amplitude of cycles and stellar properties such as rotation, age, and convective envelope depth. Solar and stellar activity requires more systematic and detailed studies to advance, observationally and theoretically, our understanding of the dynamo.

This work utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. The author would also thank Prof. S. Tobias and Dr. T. Zaqarashvili for useful tips and discussion.

REFERENCES

Anderson, E. R., Duvall, T. L. J., & Jefferies, S. M. 1990, ApJ, 364, 699
Antia, H. M., & Basu, S. 2000, ApJ, 541, 442
Bai, T. 2003, ApJ, 585, 1114
Baldrner, C., Antia, H. M., Basu, S., & Larson, T. M. 2009, ApJ, 705, 1704
Baliunas, S. L., Donahue, R. A., Soon, W. H., et al. 1995, ApJ, 438, 269

7
