Search for double beta decay of ^{136}Ce and ^{138}Ce with HPGe gamma detector

P. Bellia, R. Bernabeia,b, R.S. Boikoc, F. Cappellad,e, R. Cerullif, F.A. Danevichc, A. Incicchittid,e, B.N. Kropivyanskyc, M. Laubensteinf, D.V. Podac, O.G. Polischukc,d, V.I. Tretyakc,d

aINFN sezione Roma “Tor Vergata”, I-00133 Rome, Italy
bDipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy
cInstitute for Nuclear Research, MSP 03680 Kyiv, Ukraine
dINFN sezione Roma, I-00185 Rome, Italy
eDipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome, Italy
fINFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ)

Abstract

Search for double β decay of ^{136}Ce and ^{138}Ce was realized with 732 g of deeply purified cerium oxide sample measured over 1900 h with the help of an ultra-low background HPGe γ detector with a volume of 465 cm3 at the STELLA facility of the Gran Sasso National Laboratories of the INFN (Italy). New improved half-life limits on double beta processes in the cerium isotopes were set at the level of $\text{lim} T_{1/2} \sim 10^{17} - 10^{18}$ yr; many of them are even two orders of magnitude larger than the best previous results.

1. Introduction

Double beta (2β) decay experiments are considered to-date as an unique way to clarify the nature of the neutrino (Majorana or Dirac particle), test the lepton number conservation, determine the absolute scale of neutrino mass and establish the neutrino mass hierarchy, search for an existence of right-handed admixtures in the weak interaction and hypothetical Nambu-Goldstone bosons (Majorons) [1,2]. The neutrinoless (0ν) 2β decay is forbidden in the Standard Model due to violation of the lepton number by two

\footnote{Corresponding author. E-mail address: rita.bernabei@roma2.infn.it (R. Bernabei).}
units. However, $0\nu 2\beta$ decay is predicted in many Standard Model extensions where the neutrino is considered as a massive Majorana particle. The two neutrino (2ν) 2β decay is allowed in the Standard Model, however, being a second-order process in the weak interactions, this is an extremely rare decay with the half-lives in the range of $T_{1/2} \sim 10^{18} - 10^{20}$ yr even for the nuclei with the highest decay probability.

The progress in developments of the experimental techniques during the last two decades leads to an impressive improvement of sensitivity to the neutrinoless (0ν) mode of $2\beta^-$ decay up to $\lim T_{1/2} \sim 10^{23} - 10^{25}$ yr [4,6], while the $2\nu 2\beta$ decay was detected for 11 nuclides with the half-lives in the range of $T_{1/2} \sim 10^{18} - 10^{24}$ yr [4,7,8].

The sensitivity of experiments to search for double “plus” decay: double electron capture (2ε), electron capture with emission of positron ($\varepsilon\beta^+$), and double positron ($2\beta^+$) decay is much lower. Even the most sensitive counting experiments give only limits at the level of $\lim T_{1/2} \sim 10^{18} - 10^{21}$ yr [4,9,12].

Recently indications on the two neutrino double electron capture process in 130Ba, 132Ba [13,14] and 78Kr [15] were reported. At the same time, there is a strong motivation to develop experimental techniques to search for neutrinoless 2ε and $\varepsilon\beta^+$ decays, since the investigation of these processes could refine the mechanism of the $0\nu 2\beta$ decay, if observed: whether it appears mainly due to the Majorana mass of neutrino or due to the contribution of the right-handed admixtures in weak interactions [16].

Cerium contains three potentially 2β active isotopes: 136Ce, 138Ce and 142Ce (see Table 1). The 136Ce isotope is of particular interest because of one of the highest energy of decay which enables even $2\beta^+$ decay allowed only for six nuclei [4].

The searches for double beta decay of the cerium isotopes were realized in experiments with detectors containing cerium, namely, gadolinium orthosilicate crystal scintillator doped by cerium (GSO:Ce) [21], cerium fluoride (CeF$_3$) [22,23] and cerium chloride (CeCl$_3$) [24,25] crystal scintillators. Double beta processes in 136Ce and 138Ce should be accompanied by emission of gamma quanta (the decay schemes of 136Ce and 138Ce are presented in Figs. 1 and 2, respectively). Therefore, one could apply gamma spectrometry to search for double beta processes in the nuclei. The aim of the present work was the search for 2β processes in 136Ce and 138Ce with the help of an ultra-low background HPGe γ detector.
Transition	Energy release, keV	Isotopic abundance, %	Allowed decay channels
136Ce \rightarrow 136Ba	2378.53(27) $^{[17]}$	0.185(2)	$2\varepsilon, \varepsilon\beta^+, 2\beta^+$
	2378.49(35) $^{[18]}$		
138Ce \rightarrow 138Ba	693(10) $^{[19]}$	0.251(2)	2ε
142Ce \rightarrow 142Nd	1417.2(21) $^{[19]}$	11.114(51)	$2\beta^-$

2. Experiment

2.1. Purification of cerium oxide

Cerium oxide powder of 99.99% grade was provided by the Stanford Materials Corporation $^{[28]}$. A test of the material with the help of low-background HPGe detector GeBer at the STELLA facility of the Gran Sasso National Laboratories of the INFN (Italy) $^{[29]}$ showed a considerable contamination of the sample by potassium, radium, thorium and uranium. The results of the measurements are presented in Table 2 (see also work $^{[30]}$ where preliminary results of the cerium oxide purification were reported).

To reduce radioactive contamination, the material was purified by the liquid-liquid extraction method. As a first step, the cerium oxide was dissolved in a mixture of concentrated nitric and hydrofluoric acids (the initial amounts of CeO$_2$ and HNO$_3$ were calculated so that to obtain a solution with a 10% concentration of Ce(NO$_3$)$_4$ and 5 mol/L of nitric acid):

$$2\text{CeO}_2 + 4\text{HNO}_3 + 4\text{HF} \rightarrow \text{Ce(NO}_3)_4 + \text{CeF}_4 \downarrow + 4\text{H}_2\text{O}.$$

Then extraction of cerium from the Ce(NO$_3$)$_4$ aqueous solution was realized using pure tributyl phosphate (TBP) as exrangent:

$$\text{Ce(NO}_3)_4,aq + n\text{TBP} \rightarrow [\text{Ce\cdot}\text{nTBP}](\text{NO}_3)_4,\text{org}.$$

where sub-indexes aq and org denote cerium in aqueous or organic phase; n is a number of TBP molecules coordinated to a Ce$^{4+}$ ion. The number n can vary in a wide range from 2 to 5.
Re-extraction of cerium from the organic phase was performed into low-acidic water solution with simultaneous decreasing of the Ce oxidation level. Hydrogen peroxide was utilized as reducing agent:

\[
2\text{Ce}(ext{TBP})(\text{NO}_3)_4,\text{org} + \text{H}_2\text{O}_2 \rightarrow 2\text{Ce}(ext{NO}_3)_3,\text{aq} + 2\text{HNO}_3 + \text{O}_2 + 2\text{nTBP}.
\]

Further purification and separation of cerium was performed by adding hydrogen peroxide:

\[
2\text{Ce}(ext{NO}_3)_3,\text{aq} + 6\text{NH}_3 + \text{H}_2\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 2\text{Ce}(ext{OH})_4 + 6\text{HNO}_3.
\]

The obtained amorphous sediment of Ce(OH)$_4$ was rinsed several times by ultrapure water and placed into quartz backers for drying and annealing to obtain purified cerium oxide.

Figure 1: Simplified expected decay scheme of 136Ce [26, 27]. Energies of the excited levels and emitted γ quanta are in keV (relative intensities of γ quanta are given in parentheses).

Table 1: Energies of the excited levels and emitted γ quanta for 136Ce and 138Ce.
2.2. Low-background measurements

A sample of the purified cerium oxide with mass 732 g was used in the experiment carried out in the STELLA low background facility at the Gran Sasso National Laboratories of the INFN (Italy). The sample in a thin plastic container was placed on the end-cap of the ultra-low background HPGe detector GeCris with a volume of 465 cm3. The detector is shielded by low radioactive lead (≈ 25 cm) and copper (≈ 10 cm). The detector energy resolution (the full width at the half of maximum, FWHM, keV) can be approximated in the energy region of 239–2615 keV by function $FWHM = \sqrt{1.41(4) + 0.00197(7) \times E_\gamma}$, where E_γ is the energy of γ quanta in keV. In particular, $FWHM = 2.0$ keV at 1332.5 keV. The data with the sample were accumulated over 1900 h, while the background spectrum was taken over 1046 h. The energy spectra, normalized to the time of measurements, are presented in Fig. 3.

The counting rate of the detector with the cerium sample substantially exceeds the background of the spectrometer mainly due to the residual radioactive contamination of the sample by thorium. Numerous peaks in the spectrum are caused by γ quanta of 228Ac (daughter of 232Th, in equilibrium with 228Ra), 212Pb, 212Bi and 208Tl (daughters of 232Th, in equilibrium with 228Th) with a broken equilibrium of the 232Th chain. We have also detected presence of cosmogenic (produced by neutrons) 139Ce in the sample (gamma line with energy 165.9 keV). Activities of 228Ra, 228Th and 139Ce
Table 2: Radioactive contamination of cerium oxide before and after purification using liquid-liquid extraction method. Upper limits are given at 90% C.L., the uncertainties of the measured activities are given at ≈ 68% C.L. Radioactive contamination of CeCl₃ and of CeF₃ crystal scintillators is given for comparison.

Chain Nuclide	Activity (mBq/kg)				
	CeO₂ powder	CeCl₃ crystal	CeF₃ crystal		
	before purification	after purification	by HPGe	Scint. mode	
⁴⁰K	77(28)	≤ 9	≤ 1700	–	≤ 330
¹³⁷Cs	≤ 3	≤ 2	≤ 58	–	–
¹³⁸La	–	≤ 0.7	680 ± 50	862 ± 31	≤ 60
¹³⁹Ce	(6 ± 1)	–	–	–	–
¹⁵²Eu	–	≤ 0.5	≤ 130	–	–
¹⁵⁴Eu	–	≤ 0.9	≤ 60	–	–
¹⁷⁶Lu	–	≤ 0.5	≤ 50	–	≤ 20
²³²Th	850 ± 50	53 ± 3	≤ 210	–	890 ± 270
²²⁸Th	620 ± 30	573 ± 17	≤ 203	≤ 0.16	1010 ± 10
²³⁵U	38 ± 10	≤ 1.8	–	–	≤ 40
²³¹Pa	–	≤ 24	–	–	≤ 50
²²⁷Ac	–	≤ 3	≤ 740	284 ± 2	≤ 20
²³⁸U	≤ 870	≤ 40	–	–	≤ 70
²²⁶Ra	11 ± 3	≤ 1.5	700 ± 70	≤ 11	≤ 60

were estimated with the following formula:

\[
A = \left(\frac{S_s}{t_s} - \frac{S_{bg}}{t_{bg}} \right) \cdot \frac{1}{y \cdot \eta \cdot m}, \tag{1}
\]

where \(S_s\) (\(S_{bg}\)) is the area of a peak in the energy spectrum measured with the CeO₂ sample (background); \(t_s\) (\(t_{bg}\)) is the time of the sample (background) measurements; \(y\) is the yield of the corresponding \(\gamma\) line \[26\]; \(\eta\) is the efficiency of the full energy peak detection; \(m\) is the mass of the sample. The detection efficiencies were calculated by using the EGSnrc code \[31\] (we have performed calculations also by using GEANT4 package \[32\] with the results in good agreement within 3% with the EGSnrc simulations).
Figure 3: (Color on-line) Energy spectra accumulated with the CeO$_2$ sample over 1900 h and without sample over 1046 h by the ultra-low background HPGe γ spectrometer. Energy of γ quanta are in keV.

The counting rates in the γ peaks of 40K, 137Cs, daughters of 235U and 238U in the sample and in the background (we assume broken equilibrium of the chains): 235U, 231Pa, 227Ac, 238U, 226Ra are equal inside the statistical uncertainties. Thus, only limits on the activities of these nuclides were calculated. We have also set limits on the activity of 138La, 152Eu, 154Eu and 176Lu in the sample. The radioactive contamination of the cerium oxide before and after the purification is summarized in Table 2.

It should be stressed the difference in the contamination of the cerium oxide and CeCl$_3$ crystal scintillators by thorium. The activity of 228Th in the CeCl$_3$ crystal is three orders of magnitude lower than that in the CeO$_2$ oxide. One can expect that further purification of cerium from thorium traces is possible, for instance, by using a chemistry similar to the applied to produce the CeCl$_3$ crystal scintillators.
3. Search for double beta decay of cerium

There are no peculiarities in the spectrum accumulated with the CeO$_2$ sample which could be attributed to the 2β processes in 136Ce or 138Ce. Thus, only lower half-life limits can be estimated by using the following formula:

$$\text{lim } T_{1/2} = N \cdot \eta \cdot t \cdot \ln 2 / \text{lim } S,$$

where N is the number of 136Ce or 138Ce nuclei in the CeO$_2$ sample ($N_{^{136}\text{Ce}} = 4.74 \times 10^{21}$ and $N_{^{138}\text{Ce}} = 6.43 \times 10^{21}$, respectively), η is the detection efficiency, t is the measuring time, and $\text{lim } S$ is the number of events of the effect searched for which can be excluded at a given confidence level (C.L., all the limits in the present study are given at 90% C.L.). Also the detection efficiencies of the double beta processes in the cerium isotopes were calculated using the EGSnrc code [31] and GEANT4 code [32] with initial kinematics given by the DECAY0 event generator [33]. Both codes are again in very good agreement within few percent.

3.1. Limits on double beta processes in 136Ce

In case of the 2ν2K capture in 136Ce (138Ce) a cascade of X rays and Auger electrons with the individual energies up to 37.4 keV is expected. The most intensive X ray lines are expected in the energy region 31.8 – 37.3 keV [26]. However, the detection efficiency for the X rays is too low to derive reasonable limits on the two neutrino double electron capture in 136Ce, e.g., $\eta \approx 1.2 \times 10^{-8}$% and $\eta \approx 4.8 \times 10^{-6}$% for energies of gamma quanta 31.8 keV and 37.3 keV, respectively.

The double electron capture in 136Ce is also allowed to several excited levels of 136Ba with energy in the range 819 – 2315 keV. Gamma quanta (cascades of gamma quanta) with certain energies are expected after the de-excitation of the levels. For instance, gamma peak with energy 818.5 keV is expected in the 2ν2ε decay of 136Ce to the first excited level 2$^+$ 818.5 keV of 136Ba.

To estimate limits on the processes, the energy spectrum accumulated with the CeO$_2$ sample should be fitted in energy regions where the peaks searched for are expected. Choice of the energy region for the fit is the main source of the lim S value uncertainty. An energy interval for the fit should be large enough to describe the background precisely. From the other side, the interval should not contain peaks (or their areas should be negligible) caused by the radioactive contamination of the detector (sample), since weak
"hidden" peaks could distort background in the region of interest. In some cases, when the region of interest contains a background peak near to the peak of effect searched for, it should be included in the model of background. Besides, the energy interval should be small enough to use whenever possible a simple model to describe the background.

The energy interval 798 – 833 keV (see Fig. 4) does not contain any peaks from the radioactive nuclides detected neither in the background energy spectrum nor in the data accumulated with the cerium sample (see subsection 2.2). The fit of the experimental data was performed by a simple model constructed from a Gaussian function at the energy of 818.5 keV with the energy resolution FWHM = 1.74 keV (the γ peak searched for) and a linear function describing the background. The fits were carried out for different energy intervals with start in the range of 798 – 811 keV and end in the range of 825 – 835 keV with the step of 1 keV. The best fit by the chi-square method (χ^2/n.d.f. = 17/20 = 0.85, where n.d.f. is number of degrees of freedom), achieved in the energy interval 805 – 829 keV, results in the area of the peak searched for as $S = 32 \pm 13$ counts. The Feldman-Cousins procedure [34] gives in this case evidence for the positive effect with area in the range of 12.0 – 53.3 counts at 90% C.L.; however here we conservatively accept 53 counts as an effect which can be excluded at 90% C.L. An excluded peak with energy 818.5 keV and area 53 counts is shown in Fig. 4. Taking into account the simulated efficiency to detect 818.5 keV γ quanta (2.48%) we have obtained the following limit on the $2\nu 2\epsilon$ decay of 136Ce to the first 2$^+$ 818.5 keV excited level of 136Ba:

$$T_{1/2}^{2\nu 2\epsilon}(^{136}\text{Ce, g.s.} \rightarrow 818.5) \geq 3.3 \times 10^{17} \text{ yr.}$$

Limits on the two neutrino double electron capture to other excited levels of 136Ba were obtained by fit of the experimental spectrum in the energy

2In most of the cases background of HPGe detectors in a narrow enough energy interval can be satisfactorily approximated by a linear function.

3The only significant peak expected in the energy region is 806.2 keV γ line of 214Bi (with an intensity of 1.22%). However, its contribution, taking into account the limit on 226Ra contamination in the cerium sample (not to say for a much lower background from 214Bi) and the detection efficiency, does not exceed 2.5 counts, which is a negligible contribution to the background in the vicinity of the 818.5 keV peak searched for.

4It should be stressed, the fits give rather stable area of the effect in the range of 25 – 40 counts with the error bar in the range of 12 – 15 counts.
regions where the most intensive γ peaks are expected with the help of the procedure described above. The obtained half-life limits are presented in Table 3.

In case of $0\nu2\varepsilon$ decay of ^{136}Ce to the ground state of ^{136}Ba, we suppose that only one bremsstrahlung γ quantum is emitted to carry out the transition energy (in addition to X rays and Auger electrons from de-excitation of atomic shells). The energy of the γ quantum is expected to be equal $E_\gamma = Q_{23} - E_{b1} - E_{b2}$, where E_{b1} and E_{b2} are the binding energies of the first and of the second captured electrons of the atomic shell. The binding energies on the K and L_1, L_2, L_3 shells in barium atom are equal to $E_K = 37.4$ keV, $E_{L1} = 6.0$ keV, $E_{L2} = 5.6$ keV and $E_{L3} = 5.2$ keV, respectively [26]. Therefore, the expected energies of the γ quanta for the $0\nu2\varepsilon$ capture in ^{136}Ce to the ground state of ^{136}Ba are: $E_\gamma = 2303.7 \pm 0.3$ keV for $0\nu2K$; $E_\gamma = 2335.5 \pm 0.7$ keV for $0\nuKL$; $E_\gamma = 2367.3 \pm 1.1$ keV for $0\nu2L$. There are no evident peaks with these energies in the experimental data, and we have estimated values of $\lim T_{1/2}$ by a fit of the data with the procedure described.
Limits on neutrinoless double electron capture in 136Ce to excited levels of 136Ba were estimated similarly to the two neutrino double electron capture to the excited levels. The results are presented in Table 3.

One (two) positron(s) can be emitted in $\varepsilon\beta^+ (2\beta^+)$ decay of 136Ce. The annihilation of the positron(s) will give two (four) 511 keV γ quanta leading to an extra counting rate in an annihilation peak. The energy spectra accumulated with and without the sample in the energy interval 450 – 600 keV are presented on upper panel of Fig. 5. The area of the annihilation peak is 7786 \pm 532 counts. The area of the peak in the background spectrum (normalized to the time of measurement with the CeO$_2$ sample) is 45 \pm 14 counts. The excess of events in the data accumulated with the cerium sample can be explained by the radioactive contamination of the material by thorium. The decays of 228Ac give 22 \pm 1 counts and 228Th daughters provide 8452 \pm 253 counts (4974 counts contribute 510.8 keV gamma quanta of 208Tl, and 3478 counts come from annihilation γ quanta produced by decays of 228Th daughters). Therefore, 8474 \pm 253 counts in the annihilation peak can be ascribed to the thorium contamination of the cerium oxide sample. The difference between the observed and the expected number of counts (taking also into account the area of the annihilation peak in the background) -733 ± 590 counts gives no evidence for the effect. In accordance with the Feldman-Cousins procedure, 398 counts can be excluded at 90% C.L. Taking into account rather high efficiencies to detect annihilation γ quanta in our experiment (5.58% and 5.35% for the $2\nu\varepsilon\beta^+$ and $0\nu\varepsilon\beta^+$ decay of 136Ce to the ground state of 136Ba, respectively) we have obtained the following half-life limits:

$$T_{1/2}^{2\nu\varepsilon\beta^+} (^{136}\text{Ce, g.s.} \rightarrow \text{g.s.}) \geq 1.0 \times 10^{17} \text{ yr},$$

$$T_{1/2}^{0\nu\varepsilon\beta^+} (^{136}\text{Ce, g.s.} \rightarrow \text{g.s.}) \geq 9.6 \times 10^{16} \text{ yr}.$$

To set limits on electron capture with positron emission in 136Ce to the 2^+ 818.5 keV excited level of 136Ba, the already obtained lim S for the expected γ peak with energy 818.5 keV was used. Taking into account the calculated detection efficiency (1.84% both for the two neutrino and neutrinoless process) we have obtained the following limit:

$$T_{1/2}^{(2\nu, 0\nu)\varepsilon\beta^+} (^{136}\text{Ce, g.s.} \rightarrow 818.5 \text{ keV}) \geq 2.5 \times 10^{17} \text{ yr}.$$
Figure 5: (Color on-line) Part of the energy spectrum accumulated with the CeO$_2$ sample over 1900 h by the ultra-low background HPGe γ spectrometer (CeO$_2$) in the energy interval 450 – 600 keV (upper panel). The energy spectrum accumulated without the sample over 1046 h (BG) is also reported. Fits of the 511 keV annihilation γ peaks are shown by solid lines. The energy spectra in the energy interval 950 – 1100 keV where a peak with energy 1022 keV due to detection of two annihilation γ quanta is expected (lower panel). The excluded peak with energy 1022 keV is shown by solid line.

In case of the double positron decay the highest sensitivity was reached by analysis of the data in the vicinity of an expected peak with energy 1022 keV (detection of two annihilation γ quanta) thanks to absence of a peak with this energy in the spectrum measured with the CeO$_2$ sample (see lower panel of Fig. 5).

All the limits on the double beta processes in 136Ce are listed in Table 3.
3.2. Search for double electron capture in ^{138}Ce

As it was already discussed in section 3.1, the detection efficiency for X rays expected in two neutrino double electron capture from K shell of cerium atom is too small to obtain a competitive limits on the $2\nu 2K$ decay in ^{136}Ce. The same conclusion is valid also for the $2\nu 2K$ decay of ^{138}Ce, taking into account the same response of the detector to the process in both cerium isotopes.

To set limits on the 0ν double electron capture in ^{138}Ce from K and L shells, one should elaborate wide energy intervals taking into account the 10 keV uncertainty of the $Q_{2\beta}$ value for ^{138}Ce (the energy spectrum with the regions of interest is presented in Fig. 6). Then the peculiarity providing a maximal area of the expected peak within the interval should be accepted to estimate $\text{lim}\, S$.

To derive a limit on the $0\nu 2K$ decay of ^{138}Ce, a model of the background was built from two Gaussians (one to describe the effect, and the second one to take into account the gamma peak with energy 609.3 keV of ^{214}Bi) plus first-degree polynomial to describe the background. At the first sight,
it seems that a maximal effect could be associated with the 214Bi peak. To test this assumption, the area of the 609.3 keV peak was bounded within the interval 56 ± 13 counts (area of the peak in the background spectrum normalized on the time of measurements). The borders of the energy intervals of the fit were varied with the step of 1 keV within $(595 - 602) - (630 - 635)$ keV energy region. The best fit ($\chi^2/n.d.f. = 21.9/24 = 0.92$) achieved in the energy interval $600 - 631$ keV gives the area of the peak searched for -12 ± 19 counts (at the energy 610 keV), therefore we should take $\lim S = 20$ counts. However, there is another peculiarity in the energy interval of interest at the energy ≈ 616 keV. Thus, we bound energy of the peak searched for within $613 - 620$ keV (such a restriction is necessary since the chi-square algorithm, being applied without the bounds, finds a peak at the previous energy of 610 keV) and repeated the procedure. In this case the best fit (achieved in the energy interval $602 - 632$ keV, $\chi^2/n.d.f. = 17.2/23 = 0.75$) gives an area of the effect searched for 18 ± 18 counts, which leads to an estimation of $\lim S = 48$ counts (the excluded peak is shown in Fig. 6). Using the detection efficiency for γ quanta with energy 616 keV (2.74%) we obtained the half-life limit:

$$T_{1/2}^{0\nu 2K}(^{138}\text{Ce, g.s.} \rightarrow \text{g.s.}) \geq 5.5 \times 10^{17} \text{ yr.}$$

There are no clear peaks in the energy interval $640 - 660$ keV expected in the $0\nu KL$ process in ^{138}Ce. We have estimated value of $\lim S$ by fit of the data in the energy intervals $(625 - 633) - (669 - 680)$ keV by a model consisting of two Gaussian functions (one to describe the peak searched for, and the second one to take into account the background peak of ^{137}Cs with energy 661.7 keV5) plus polynomial function (continuous background). The best fit, achieved in the energy interval $627 - 679$ keV, gives area of the effect 31 ± 16 counts at the energy 645 keV, which conservatively provides $\lim S = 57$ counts.

Finally a fit in the energy interval $668 - 701$ keV gives the maximal value $\lim S = 63$ counts (at 690 keV) for the $0\nu 2L$ processes in ^{138}Ce. Taking into account the calculated efficiencies to detect γ quanta with energies 645 keV (2.69%) and 690 keV (2.63%), we set the following limits on the $0\nu KL$ and $0\nu 2L$ decay of ^{138}Ce:

5Despite the 661.7 keV peak does not contribute directly to the area of the peak searched for, one should include the peak to describe the background correctly.
\[T^{0\nu KL}_{1/2}(^{138}\text{Ce}, \text{g.s.} \rightarrow \text{g.s.}) \geq 4.6 \times 10^{17} \text{ yr}, \]
\[T^{0\nu 2L}_{1/2}(^{138}\text{Ce}, \text{g.s.} \rightarrow \text{g.s.}) \geq 4.0 \times 10^{17} \text{ yr}. \]

The excluded peaks for the 0\nu double electron capture processes in \(^{138}\text{Ce}\) are shown in Fig. 6.

The obtained half-life limits on the double beta processes in \(^{136}\text{Ce}\) and \(^{138}\text{Ce}\) are summarized in Table 3 together with the best previous experimental results and theoretical estimations \([16, 35–42]\). Current status of theoretical investigations of neutrinoless \(\varepsilon\beta^+\) decays is described in \([43]\).
Table 3: The half-life limits on 2β processes in 136Ce and 138Ce together with the best previous limits and theoretical predictions (the theoretical $T_{1/2}$ values for 0ν mode are given for $m_\nu = 1$ eV). The energies of the γ lines (E_γ), which were used to set the $T_{1/2}$ limits, are listed with the corresponding detection efficiencies (η) and values of $\lim S$.

Process of decay	Decay mode	Level of daughter nucleus (keV)	E_γ (keV)	η (%)	$\lim S$ (cnt) at 90% C.L.	Experimental limits, $T_{1/2}$ (yr) at 90% C.L.	Theoretical estimations, $T_{1/2}$ (yr)			
136Ce \rightarrow 138Ba	$2K$	2ν g.s.	31.8 – 37.3	-	-	$\geq 3.2 \times 10^{16}$	$^{[25]}$	(3.2 – 9600) $\times 10^{18}$	$^{[37, 39]}$	
$\epsilon\beta^+$	2ν	g.s.	511	5.58	398	$\geq 1.0 \times 10^{17}$	$^{[25]}$	(6.0 – 9.2) $\times 10^{25}$	$^{[16, 39]}$	
0ν	g.s.	511	5.35	398	$\geq 9.6 \times 10^{16}$	$^{[25]}$	(2.7 – 4.7) $\times 10^{26}$	$^{[16, 40, 42]}$		
$2\beta^+$	2ν	g.s.	1022	0.498	10	$\geq 3.5 \times 10^{17}$	$^{[21]}$	5.2 $\times 10^{34}$	$^{[16]}$	
0ν	g.s.	1022	0.499	10	$\geq 3.6 \times 10^{17}$	$^{[22]}$	(1.7 – 2.7) $\times 10^{29}$	$^{[16, 40, 42]}$		
138Ce \rightarrow 138Ba	$2K$	2ν g.s.	31.8 – 37.3	-	-	$\geq 4.4 \times 10^{16}$	$^{[25]}$	$\geq 4.4 \times 10^{16}$	$^{[36]}$	
$2K$	0ν g.s.	618 ± 10	2.74	48	$\geq 5.5 \times 10^{17}$	$^{[25]}$	$\geq 3.6 \times 10^{16}$	$^{[25]}$	$\geq 2.1 \times 10^{26}$	$^{[36]}$
KL	0ν g.s.	650 ± 10	2.69	57	$\geq 4.6 \times 10^{17}$	$^{[25]}$	$\geq 4.4 \times 10^{15}$	$^{[24]}$	-	
$2L$	0ν g.s.	681 ± 10	2.63	63	$\geq 4.0 \times 10^{17}$	$^{[25]}$	$\geq 4.6 \times 10^{15}$	$^{[24]}$	-	
4. Conclusions

Search for double beta processes in ^{136}Ce and ^{138}Ce was realized with the help of an ultra-low background HPGe γ detector and a sample of cerium oxide deeply purified by the liquid-liquid extraction method. Radioactive contamination of the sample by potassium, radium and uranium was reduced by more than one order of magnitude. However, the purification procedure was not efficient enough to remove thorium, which still is present in the material at the level of 0.6 Bq/kg and remains the main source of the background.

New improved half-life limits were set on double beta processes in ^{136}Ce and ^{138}Ce at the level of $T_{1/2} \sim 10^{17} - 10^{18}$ yr; many of them are even two orders of magnitude larger than the best previous results. At the same time, the sensitivity of the present experiment is still far from the theoretical predictions, which are at the level of $T_{1/2} \sim 10^{18} - 10^{21}$ yr even for the most probable two neutrino double electron capture in ^{136}Ce (for $2\nu\beta^+ \text{ decay of }^{136}\text{Ce}$ $T_{1/2} \sim 10^{24}$ yr), not to say for neutrinoless processes where theoretical estimations are at the level of $T_{1/2} \sim 10^{26} - 10^{29}$ yr (for the effective Majorana neutrino mass $\langle m_\nu \rangle = 1$ eV).

Further experimental progress can be achieved by deep purification of cerium from radioactive contamination (mainly by thorium), using of enriched cerium isotopes, and increase of the experiment scale.

5. Acknowledgments

The group from the Institute for Nuclear Research (Kyiv, Ukraine) was supported in part by the Space Research Program of the National Academy of Sciences of Ukraine.

References

[1] W. Rodejohann, “Neutrino-less double beta decay and particle physics”, Int. J. Mod. Phys. E 20 (2011) 1833.

[2] S.R. Elliott, “Recent progress in double beta decay”, Mod. Phys. Lett. A 27 (2012) 1230009.

[3] J.D. Vergados, H. Ejiri, F. Simkovic, “Theory of neutrinoless double-beta decay”, Rep. Prog. Phys. 75 (2012) 106301.
[4] V.I. Tretyak and Yu.G. Zdesenko, “Tables of double beta decay data”, At. Data Nucl. Data Tables 61 (1995) 43; “Tables of double beta decay data – an update”, ibid 80 (2002) 83.

[5] A. Giuliani and A. Poves, “Neutrinoless Double-Beta Decay”, Adv. High En. Phys. 2012 (2012) 857016.

[6] O. Cremonesi, M. Pavan, “Challenges in Double Beta Decay”, Adv. High En. Phys. 2014 (2014) 951432.

[7] A.S. Barabash, “Precise half-life values for two-neutrino double-β decay”, Phys. Rev. C 81 (2010) 035501.

[8] R. Saakyan, “Two-Neutrino Double-Beta Decay”, Annu. Rev. Nucl. Part. Sci. 63 (2013) 503.

[9] N.I. Rukhadze et al., “New limits on double beta decay of 106Cd”, Nucl. Phys. A 852 (2011) 197.

[10] P. Belli et al., “Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO$_4$ crystal scintillators”, J. Phys. G 38 (2011) 115107.

[11] P. Belli et al., “Search for double-β decay processes in 106Cd with the help of a 106CdWO$_4$ crystal scintillator”, Phys. Rev. C 85 (2012) 044610.

[12] P. Belli et al., “Search for 2β decays of 96Ru and 104Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results”, Phys. Rev. C 87 (2013) 034607.

[13] A.P. Meshik et al., “Weak decay of 130Ba and 132Ba: Geochemical measurements”, Phys. Rev. C 64 (2001) 035205.

[14] M. Pujol et al., “Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation”, Geochim. Cosmochim. Acta 73 (2009) 6834.

[15] Yu.M. Gavrilyuk et al., “Indications of 2ν2K capture in 78Kr”, Phys. Rev. C 87 (2013) 035501.
[16] M. Hirsch, K. Muto, T. Oda, H.V. Klapdor-Kleingrothaus, “Nuclear structure calculation of $\beta^+\beta^+$, β^+/EC and EC/EC decay matrix elements”, Z. Phys. A 347 (1994) 151.

[17] V.S. Kolhinen et al., “On the resonant neutrinoless double-electron-capture decay of 136Ce”, Phys. Let. B 697 (2011) 116.

[18] D.A. Nesterenko et al., “Double-β transformations in isobaric triplets with mass numbers $A = 124$, 130, and 136”, Phys. Rev. C 86 (2012) 044313.

[19] M. Wang et al., “The AME2012 atomic mass evaluation (II). Tables, graphs and references”, Chinese Phys. C 36 (2012) 1603.

[20] M. Berghlund and M.E. Wieser, “Isotopic compositions of the elements 2009 (IUPAC Technical Report)”, Pure Appl. Chem. 83 (2011) 397.

[21] F.A. Danevich et al., “Quest for double beta decay of 160Gd and Ce isotopes”, Nucl. Phys. A 694 (2001) 375.

[22] R. Bernabei et al., “Feasibility of $\beta\beta$ decay searches with Ce isotopes using CeF$_3$ scintillators”, Nuovo Cimento A 110 (1997) 189.

[23] P. Belli et al., “Performances of a CeF$_3$ crystal scintillator and its application to the search for rare processes”, Nucl. Instr. Meth. A 498 (2003) 352.

[24] P. Belli et al., “First limits on neutrinoless resonant 2ϵ captures in 136Ce and new limits for other 2β processes in 136Ce and 138Ce isotopes”, Nucl. Phys. A 824 (2009) 101.

[25] P. Belli et al., “Search for 2β decay of cerium isotopes with CeCl$_3$ scintillator”, J. Phys. G 38 (2011) 015103.

[26] R.B. Firestone et al., “Table of Isotopes”, 8-th ed., John Wiley, New York, 1996 and CD update, 1998.

[27] A.A. Sonzogni, “Nuclear Data Sheets for $A = 136$”, Nucl. Data Sheets 95 (2002) 837.

[28] http://www.stanfordmaterials.com
[29] C. Arpesella, “A low background counting facility at Laboratori Nazionali del Gran Sasso”, Applied Radiation and Isotopes 47 (1996) 991.

[30] O.G. Polischuk et al., “Purification of lanthanides for double beta decay experiments”, AIP Conf. Proc. 1549 (2013) 124.

[31] I. Kawrakow and D.W.O. Rogers, “The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport”, NRCC Report PIRS-701, Ottawa, 2003, 287 pp.

[32] S. Agostinelli et al., “GEANT4 – a simulation toolkit”, Nucl. Instr. Meth. A 506 (2003) 250.

[33] O.A. Ponkratenko, V.I. Tretyak, and Yu.G. Zdesenko, “Event generator DECAY4 for simulating double-beta processes and decays of radioactive nuclei”, Phys. At. Nucl. 63 (2000) 1282; V.I. Tretyak, to be published.

[34] G.J. Feldman and R.D. Cousins, “Unified approach to the classical statistical analysis of small signals”, Phys. Rev. D 57 (1998) 3873.

[35] M.I. Krivoruchenko et al., “Resonance enhancement of neutrinoless double electron capture”, Nucl. Phys. A 859 (2011) 140.

[36] J. Abad, A. Morales, R. Nunez-Lagos and A.F. Pacheco, “An estimation of the rates of (two-neutrino) double beta decay and related processes”, J. Physique 45 (1984) C3-147.

[37] J. Suhonen, “Possible detection of the double β^+/β-electron capture decay”, Phys. Rev. C 48 (1993) 574.

[38] O. Civitarese and J. Suhonen, “Is the single-state dominance realized in double-β-decay transitions?”, Phys. Rev. C 58 (1998) 1535.

[39] O.A. Rumyantsev and M.H. Urin, “The strength of the analog and Gamow-Teller giant resonances and hindrance of the $2\nu\beta\beta$-decay rate”, Phys. Lett. B 443 (1998) 51.

[40] J. Suhonen and M. Aunola, “Systematic study of neutrinoless double beta decay to excited 0$^+$ states”, Nucl. Phys. A 723 (2003) 271.
[41] J. Suhonen, “Nuclear matrix elements for the resonant neutrinoless double electron capture”, Eur. Phys. J. A 48 (2012) 51.

[42] J. Barea et al., “Neutrinoless double-positron decay and positron-emitting electron capture in the interacting boson model’, Phys. Rev. C 87 (2013) 057301.

[43] J. Maalampi, J. Sunonen, “Neutrinoless Double β^+/EC Decays”, Adv. High En. Phys. 2013 (2013) 505874.