Whether duration of the recovery phase of magnetic storm depends on the development rate of storm at its main phase?

Yuri I. Yermolaev

1Space Plasma Physics Department,
Space Research Institute, Russian Academy
of Sciences, Profsoyuznaya 84/32, Moscow
117997, Russia. (yermol@iki.rssi.ru)
We compare dependences between the storm development rate $|D_{st_{min}}|/\Delta T$ (ΔT is the durations of main phase) and the duration of recovery phase of magnetic storms generated by three various types of interplanetary drivers: (1, 2) compression regions CIR and Sheath, and (3) body of interplanetary CME (magnetic clouds and Ejecta). Our analyze shows that the duration of recovery phase correlates with the storm development rate for CIR- and Sheath-induced storms, and does not correlate for ICME- induced storms.
1. Introduction

As has been shown by numerous papers, the dynamics of the magnetosphere during the development of magnetic storms significantly depends on the type of interplanetary driver (see, e.g., [Huttunen et al., 2002, 2006; Borovsky and Denton, 2006; Pulkkinen et al., 2007; Yermolaev et al., 2010, 2012a; Guo et al., 2011; Liemohn and Katus, 2012; Nikolaeva et al., 2013; Cramer et al., 2013] and references therein). These types of drivers are following: body of interplanetary CME (ICME) including magnetic cloud (MC) and Ejecta, and compression regions before high-speed solar wind stream (corotating interplanetary region – CIR) and before ICME (Sheath) (see, e.g., [Gosling, 1993; Gonzalez et al., 1999; Yermolaev et al., 2005]). Recently we showed that the dynamics of recovery phase of magnetic storms depends on the interplanetary driver types [Yermolaev et al., 2014]. In particular we found that the durations of the main phase and the recovery phase correlate for CIR- and Sheath-induced storms and there is no dependence for these durations for MC- and Ejecta-induced storms. In this brief paper we will analyze data in details and give a physical interpretation of this result.

2. Methods

We use the same data set that we used in our previous papers [Yermolaev et al., 2012b, 2014]: the measurements of Dst index (see http://wdc.kugi.kyotou.ac.jp/index.html) and our catalog of large-scale interplanetary events for the period of 1976–2000 (see the web site ftp://www.iki.rssi.ru/pub/omni and paper by Yermolaev et al. [2009]), prepared on the basis of OMNI dataset of interplanetary plasma and magnetic field parameters (see http://omniweb.gsfc.nasa.gov) and paper by King and Pap-
The detailed description of the technique of the solar wind classification and comparison to magnetic storms is provided in several papers [Yermolaev et al., 2009, 2010, 2012a, b].

Method of determination of durations of the main and recovery phases is schematically shown in Figure 1. To consider the existence of fast (initial) and slow (second) parts of the recovery (see, e.g., [Gonzalez et al., 1994]), we calculate two durations: the initial time interval from the minimum of the Dst index up to \((1/2)D_{\text{st}}\min\) \((\Delta t_{1/2} = t((1/2)D_{\text{st}}\min) - t(D_{\text{st}}\min))\) and \((1/3)D_{\text{st}}\min\) \((\Delta t_{1/3} = t((1/3)D_{\text{st}}\min) - t(D_{\text{st}}\min))\), respectively. Analysis of the two durations \(\Delta t_{1/2}\) and \(\Delta t_{1/3}\) allows us to compare the durations of the fast and slow parts of the recovery phase.

3. Results

In our previous paper [Yermolaev et al., 2014] we studied the durations of main \(\Delta T\) and recovery \(\Delta t_{1/2}\) and \(\Delta t_{1/3}\) phases of storms induced by different interplanetary drivers and found the anticorrelation for CIR- and Sheath-induced storms. It is naturally to suggest that all durations depend on the magnitude of storms. However, the selection of data on the storm magnitude decreases the number of events and accuracy of analyze, and did not allow us to make reliable conclusions. So, we study a new variable \(|D_{\text{st}}\min|/\Delta T\) which includes both duration \(\Delta T\) and storm magnitude \(D_{\text{st}}\min\), and is an average temporal derivation of Dst index or a storm development rate.

Figure 2 presents the dependence between the storm development rate \(D_{\text{st}}\min/\Delta T\) and the fast and slow durations of recovery phase \((\Delta t_{1/2}\) and \(\Delta t_{1/3}\)) for different drivers. Three lower panels (from the bottom panel up) show individual events for Sheath-, CIR- and
ICME-induced storms, left and right coulombs present data for fast and slow durations. The straight lines through the data are linear fits to the points in the two-logarithmic scale (i.e., power law approximations of data). The top panels represent results of data fitting for the lower panels and allow one to compare them for various drivers. The correlation coefficients r for all panels are presented in Table. To emphasize the statistical significance of the results, we present the parameter

$$w = 0.5\sqrt{(N - 3)\ln[(1+r)/(1-r)]}$$

and probability P [Bendat and Piersol, 1971].

Sheath-induced storms have the most deep dependence between the storm development rate and both fast and slow durations. Despite a wide spread of points, these dependences possess rather high statistical significance (Probability $P = 90$ and 95 %). CIR-induced storms have similar parameters for fast duration $\Delta t_{1/2}$ but for slow durations $\Delta t_{1/3}$ the fitting line inclination decreases with simultaneous decreasing correlation coefficient r and probability P. ICME-induced storms have low values of line inclination, correlation coefficient and probability for both types of recovery durations, i.e. there is no dependence between the storm development rate and both fast and slow durations.

4. Discussion

In accordance with formula by Burton et al. [1975] in the case of neglecting the term related to the decay of the ring current at the main phase and numerous papers (see, e.g., Kane [2010]; Ontiveros [2010]; Yermolaev et al. [2010]; Weigel [2010]; Nikolaeva et al. [2013, 2014]), for various interplanetary drivers the measured and density-corrected Dst and Dst^* indexes may be approximated by a linear function of the integral of interplanetary convective electric field E_y with high accuracy (the correlation coefficients are
0.98-0.99), i.e. derivative of Dst index is proportional to electric field $E_y : dDst/dt = CE_y$.

As approximate equality $Dst_{min}/\Delta T \approx dDst/dt = CE_y$ is fair, the obtained results give the indirect indications in favor of a hypothesis that the durations of recovery for magnetic storms induced by CIR and Sheath correlate with the average electric field during main phase $<E_y>$.

Reduction of correlation for slow recovery duration $\Delta t_{1/3}$ for CIR-induced storms can be explained by the fact that at the second part of recovery phase the external factors start prevailing over internal magnetospheric processes, and the high-speed solar wind after CIR is characterized by higher level of disturbances of plasma and magnetic field parameters (see, e.g., [Hajra et al., 2014]), than in the ICMEs after Sheath.

As we showed earlier ([Nikolaeva et al., 2013]), the interplanetary-magnetospheric coupling coefficient between the derivative of Dst index and average electric field $<E_y>$ depends on the driver type. Therefore the lower correlation in Figure 2 for ICME-induced storms than for CIR/Sheath-induced storms can be connected with lower coupling coefficients for MC/Ejecta-induced storms in comparison with coupling coefficients for CIR/Sheath-induced storms.

5. Conclusions

We analyzed the temporal profiles of Dst index for magnetic storms induced by various types of interplanetary drivers: compression regions CIR (85 storms) and Sheath (71), and bodies of interplanetary CME (158). In addition to our previous paper [Yermolaev et al., 2014] where we compared the durations of main phase ΔT and the short and long durations of recovery phase $\Delta t_{1/2}$ and $\Delta t_{1/3}$ (respectively, at the levels of $1/2Dst_{min}$
and $1/3 Dst_{min}$, here we study the dependences of the development rate $Dst_{min}/\Delta T$ on recovery phase durations $\Delta t_{1/2}$ and $\Delta t_{1/3}$. Obtained results allows us to make following conclusions.

1. The storm development rate $Dst_{min}/\Delta T$ correlates with both short $\Delta t_{1/2}$ and long $\Delta t_{1/3}$ durations for Sheath-induced storms.

2. The storm development rate $Dst_{min}/\Delta T$ correlates with only short duration $\Delta t_{1/2}$ and does not correlate with long $\Delta t_{1/3}$ duration for CIR-induced storms. The absence of correlation with long duration may be connected with high variability of solar wind and IMF parameters in the high-speed streams after CIR regions (see, e.g., [Hajra et al., 2014]), in contrast with smooth changing parameters in ICME bodies after Sheath regions.

3. These results allow us to suggest that the physical processes of formation and decay of storm activity in the magnetosphere are similar for CIR- and Sheath-induced storms.

4. There is no correlation between the storm development rate $Dst_{min}/\Delta T$ and short and long durations of recovery phase for ICME-induced storms.

5. The magnetosphere processes, which are responsible for storm activity, are suggested to be different for ICME- and CIR/Sheath-induced storms. This may be connected with various interplanetary-magnetospheric coupling coefficients for different interplanetary drivers ([Nikolaeva et al., 2013]).

Acknowledgments. The author is grateful for the opportunity to use the OMNI database. The OMNI data were obtained from GSFC/SPDF OMNIWeb (http://omniweb.gsfc.nasa.gov). This work was supported by the Russian Foundation
for Basic Research, project 13–02–00158, and by Program 22 of Presidium of the Russian Academy of Sciences.

References

Bendat, J. S. and Piersol, A. G., (1971) Measurement and Analysis of Random Data, Wiley-Interscience.

Borovsky, J. E. and Denton, M.H. (2006), Differences between CME-Driven Storms and CIR-Driven Storms, J. Geophys. Res., 28, 121–190.

Burton, R. K., McPherron, R. L., and Russell, C. T (1975), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214.

Cramer, W. D., N. E. Turner, M.-C. Fok, and N. Y. Buzulukova (2013), Effects of different geomagnetic storm drivers on the ring current: CRCM results, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50138

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. and Vasyliunas, V. M. (1994), What is a Geomagnetic Storm?, J. Geophys. Res. 99, 5771.

Gonzalez, W. D., Tsurutani, B. T. and Cla de Gonzalez, A. L. (1999) Interplanetary origin of geomagnetic storms, Space Science Reviews, Volume 88, Issue 3-4, pp 529-562

Gosling, J. T. (1993), The solar flare myth, J. Geophys. Res., 98(A11), 1893718949, doi:10.1029/93JA01896.

Guo, J., X. Feng, B. A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song (2011), Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 116, A05106,
YERMOLAEV: DURATIONS OF STORM PHASES

doi:10.1029/2011JA016490

Hajra, R., E. Echer, B. T. Tsurutani, and W. D. Gonzalez (2014), Solar wind-magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019646.

Huttunen K.E.J., Koskinen H.E.J., Schwenn R. (2002), Variability of magnetospheric storms driven by different solar wind perturbations, J. Geophys. Res., vol. 107, A7, p. 1121.

Huttunen, K.E.J., Koskinen, H.E.J., Karinen, A., and Mursula, K. (2006), Asymmetric Development of Magnetospheric Storms during Magnetic Clouds and Sheath Regions, Geophys. Res. Lett., vol. 33, p. L06107. doi: 10.1029/2005GL024894.

Kane, R.P. (2010), Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined, Ann. Geophys., 2010, vol. 28, pp. 479–489

King, J.H. and Papitashvili, N.E., (2004), Solar Wind Spatial Scales in and Comparisons of Hourly Wind and ACE Plasma and Magnetic Field Data, J. Geophys. Res.,vol. 110, no. A2, p. A02209. doi: 10.1029/2004JA010804.

Liemohn, M. W., and R. Katus (2012), Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent?, J. Geophys. Res., 117, A00L03, doi:10.1029/2011JA017389.

Nikolaeva, N. S., Yu. I. Yermolaev, and I. G. Lodkina, (2013), Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Research, 2013, Vol. 51, No. 6, pp. 401–412 (Kosmicheskie Issle-
Nikolaeva, N. S., Yu. I. Yermolaev, and I. G. Lodkina, (2014), Dependence of Geomagnetic Activity during Magnetic Storms on the Solar Wind Parameters for Different Types of Streams: 4. Simulation for Magnetic Clouds, Geomagnetism and Aeronomy, 2014, Vol. 54, No. 2, pp. 152-161

Ontiveros, V. (2010) Geomagnetic storms caused by shocks and ICMEs, J. Geophys. Res., 2010, vol. 115, A10244. doi: 10.1029/2010JA015471

Pulkkinen, T. I., Partamies, N., Huttunen, K. E. J., Reeves, G. D., and Koskinen, H. E. J.: Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions, Geophys. Res. Lett., 34, L02105, doi:10.1029/2006GL027775, 2007

Weigel, R.S.(2010) Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 2010, vol. 115, A09201. doi: 10.1029/2009JA015062.

Yermolaev, Yu. I., Yermolaev, M. Yu., Zastenker, G. N., Zelenyi, L. M., Petrukovich, A. A., and Sauvaud, J.-A. (2005), Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review, Planetary and Space Science, Volume 53, Issues 13, Pages 189196

Yermolaev, Yu. I., et al., (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976–2000, Kosm. Issled., vol. 47, no. 2, pp. 99–113. [Cosmic Research, pp. 81–94].

Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev, (2010), Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177–2186.
Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2012a), Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms, J. Geophys. Res., 117, A00L07, doi:10.1029/2011JA017139

Yermolaev, Y. I., I. G. Lodkina, N. S. Nikolaeva, and M. Y. Yermolaev (2012b), Recovery phase of magnetic storms induced by different interplanetary drivers, J. Geophys. Res., 117, A08207, doi:10.1029/2012JA017716

Yermolaev, Y. I., I. G. Lodkina, N. S. Nikolaeva, and M. Y. Yermolaev (2014), Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms, J. Geophys. Res. Space Physics, 119, 8126-8136, doi:10.1002/2014JA019826.
Figure 2. Relations between the storm development rate $Dst_{min}/\Delta T$ and recovery phase durations $\Delta t_{1/2}$ and $\Delta t_{1/3}$ for magnetic storms generated by CIR, Sheath and ICME (MC+Ejecta).
Table 1. The correlation coefficients r, probability P and fitting lines for relations between the storm development rate $D_{st\text{min}}/\Delta T$ and recovery phase durations $\Delta t_{1/2}$ and $\Delta t_{1/3}$ for magnetic storms generated by CIR, Sheath and ICME (MC+Ejecta) in Figure 2.

Type	N	$\Delta t_{1/2}^a$	$\Delta t_{1/3}^b$						
		r	P	W	Fitting equation	r	P	W	Fitting equation
Sheath	71	0.20	0.90	1.67	$\ln y = 0.23 \ln x + 2.15$	0.23	0.95	1.97	$\ln y = 0.24 \ln x + 1.99$
CIR	85	0.21	0.94	1.90	$\ln y = 0.20 \ln x + 1.90$	0.15	0.73	1.10	$\ln y = 0.10 \ln x + 2.08$
ICMEc	158	0.05	0.49	0.66	$\ln y = 0.07 \ln x + 2.28$	0.09	0.72	1.09	$\ln y = 0.10 \ln x + 2.15$

$^a\Delta t_{1/2} = t(1/2D_{st\text{min}}) - t(D_{st\text{min}})$

$^b\Delta t_{1/3} = t(1/3D_{st\text{min}}) - t(D_{st\text{min}})$

c ICME is MC + Ejecta