Perfect simulation of autoregressive models with infinite memory

Emilio De Santis
Dipartimento di Matematica
La Sapienza Università di Roma
desantis@mat.uniroma1.it

Mauro Piccioni
Dipartimento di Matematica
La Sapienza Università di Roma
piccioni@mat.uniroma1.it

May 3, 2014

Abstract
In this paper we consider the problem of determining the law of binary stochastic processes from transition kernels depending on the whole past. These kernels are linear in the past values of the process. They are allowed to assume values close to both 0 and 1, preventing the application of usual results on uniqueness. More precisely we give sufficient conditions for uniqueness and non-uniqueness. In the former case a perfect simulation algorithm is also given.

keywords: Perfect simulation, Coupling, Chains with complete connections.
AMS classification: 60G99, 68U20, 60J10.

1 Introduction and main definitions
In this paper we consider processes indexed by \( \mathbb{Z} \) taking values in a finite alphabet \( G \). These processes are constructed from a transition kernel which depends on the whole past, i.e. a map \( p : G \times G^{-\mathbb{N}_+} \to [0,1] \) such that, for any choice of \( w_{-\infty}^{-1} = (w_{-1}, w_{-2}, \ldots) \in G^{-\mathbb{N}_+} \), \( p(\cdot | w_{-\infty}^{-1}) \) is a probability measure on \( G \). For the basic setting of the theory of these processes we address the reader to [CFF02] where an historical overview is also given. In particular we recall the following

Definition 1. A \( G \)-valued process \( X = \{X_n, n \in \mathbb{Z}\} \) defined on an arbitrary probability space is compatible with the transition kernel \( p \) if for any \( g \in G \)

\[
P(X_n = g | X_{n-1}^{\infty}) = p(g | X_{n-1}^{\infty}),
\]

almost surely, for any \( n \in \mathbb{Z} \).

It is clear that the compatibility condition refers only to the law of \( X \), so we are allowed to speak about compatible laws, whose set will be denoted by \( \mathcal{G}(p) \). When \( |\mathcal{G}(p)| = 1 \) the law of any compatible process \( X \) is always the same in which case we say that uniqueness holds for \( p \).

It is immediately seen that \( \mathcal{G}(p) \) is convex. Moreover, if the kernel \( p \) is continuous w.r.t. the product topology in the second coordinate, then \( \mathcal{G}(p) \) is non empty (see [FM05]). In this paper we
will establish sufficient conditions for uniqueness for a certain class of continuous kernels, giving in these cases an explicit construction for the unique compatible process.

In the sequel we will consider binary processes taking values in \( G = \{-1, +1\} \). The transition kernels we are interested in have the form

\[
p^\theta(g|w_{-\infty}) = \frac{1}{2} + \frac{g}{2} \sum_{k=1}^{\infty} \theta_k w_{-k}, \quad g \in G, \ w_{-\infty} \in G^{-\mathbb{N}_+},
\]

where \( \theta = \{\theta_k, k \in \mathbb{N}_+\} \) is a sequence of constants with the property \( \sum_{k=1}^{\infty} |\theta_k| = 1 \). A kernel of this form is clearly continuous, since by specifying some large but finite portion of \( w_{-\infty} \), the oscillation of \( p^\theta(g|\cdot) \) can be made arbitrarily small. Moreover, since \( p^\theta(g|w_{-\infty}) = p^\theta(-g|w_{-\infty}) \), \( G(p^\theta) \) is invariant under the transformation changing the sign to the whole configuration. Therefore, if \( |G(p^\theta)| = 1 \) and \( \{X_n\} \) is the unique compatible process, \( P(X_n = \pm 1) = 1/2 \) for any integer \( n \in \mathbb{Z} \).

Binary linear kernels were first introduced in [CFF02], as simple examples of transition kernels depending on the whole past. More precisely they added a “bias”, that is an extra term \( \theta_0^2 \), with \( \theta_0 \in [-1, 1] \); if a bias term is present the model is well defined provided \( \sum_{k=0}^{\infty} |\theta_k| \leq 1 \). But then they got \( \sum_{k=1}^{\infty} |\theta_k| < 1 \), in which case uniqueness always holds. In fact the unique compatible process can be constructed by means of a simple perfect simulation algorithm, to which we will briefly refer in the last section. Alternatively, as in [FM05], in this case one can prove uniqueness by means of Dobrushin’s contraction condition.

Thus only when \( \theta_0 = 0 \) the choice \( \sum_{k=1}^{\infty} |\theta_k| = 1 \) is allowed. As a consequence the convex hull of the range space of \( p^\theta(1|\cdot) \) (and of \( p^\theta(-1|\cdot) \)) is the whole interval \([0, 1]\). Therefore there is no uniform positivity condition for this kind of kernels, preventing the applicability of general criteria for uniqueness (see [FM05]). Indeed uniqueness does not always hold. The simplest situation in which uniqueness does not hold is when \( \theta_k \geq 0 \) for all \( k \in \mathbb{N}_+ \). Then it is easy to check that the two constant processes constantly equal to +1 and −1 are compatible. More generally we can establish the following

**Theorem 1.** Suppose that

a) either \( \theta_k \geq 0 \) for all \( k \in \mathbb{N}_+ \),

b) or \( \theta_k \leq 0 \) for \( k \) odd and \( \theta_k \geq 0 \) for \( k \) even.

Then uniqueness does not hold for \( p^\theta \).

On the positive side, our main result is the following sufficient condition for uniqueness, which will be supplemented by a perfect simulation algorithm producing the unique compatible process. In order to state it, we set \( A_\theta = \{k \in \mathbb{N}_+ : \theta_k \neq 0\} \).

**Theorem 2.** Suppose that all the following assumptions hold:

i) \( \gcd(A_\theta) = 1 \);

ii) there exists either an even integer \( m \in \mathbb{N}_+ \) with \( \theta_m < 0 \), or an odd integer \( m_1 \) with \( \theta_{m_1} < 0 \) and another odd integer \( m_2 \) with \( \theta_{m_2} > 0 \);
iii) $\sum_{k=1}^{\infty}(\sum_{m=k}^{\infty} |\theta_m|)^2 < +\infty$.

Then uniqueness holds for $p^\theta$.

We briefly comment the relation among Theorem 1 and Theorem 2. Condition i) in Theorem 2 is necessary for uniqueness (Proposition 1); condition ii) is the negation of assumptions a) and b) of Theorem 1. At the present time only condition iii) is preventing the statement of a set of necessary and sufficient conditions for uniqueness. We will briefly comment about this within the conclusions.

In Section 2 we will prove Theorem 1 and related results. In Section 3 we will prove Theorem 2 and related results. In Section 4 we give the simulation algorithm explicitly with a few conclusive remarks.

# 2 Coherent sequences and nonuniqueness

The set $A = A_\theta$ allows to define an oriented graph structure $\Gamma = (\mathbb{Z}, A)$ over the set of integers. There is an arc $(n, m) \in A$ if $m < n$ and $n - m \in A$. Such an arc is marked by the sign of $\theta_{n-m}$. It is clear that, by its very definition, an arc in $\Gamma$ can be always shifted, since if $(n, m) \in A$, then $(n + k, m + k) \in A$, for any $k \in \mathbb{Z}$. An oriented path is a finite sequence $\{(n_i, n_{i+1}) \in A, i = 0, \ldots, l - 1\}$. This path joins $n_0$ with $n_l$. Each oriented path has a sign, which is given by the product $\prod_{i=0}^{l-1} \text{sign}(\theta_{n_i - n_{i+1}})$ of the signs of all its arrows.

By neglecting the orientation of the arrows in $A$ we obtain the set of edges $\tilde{A}$ of the undirected graph $\tilde{\Gamma}$ which is called the symmetrization of $\Gamma$. In this framework a path is a finite sequence $\{(n_i, n_{i+1}) \in \tilde{A}, i = 1, \ldots, l\}$. The sign of the path is given by $\prod_{i=1}^{l-1} \text{sign}(\theta_{n_i - n_{i+1}})$. Here the endpoints $n_0$ and $n_l$ joined by the path could coincide, but in this case we prefer to use the word cycle rather than path. By convention for the path we always take $n_0 > n_l$, unless when specified otherwise, but we say that an edge $(n_i, n_{i+1})$ is traveled in the opposite direction when $(n_{i+1}, n_i) \in A$, therefore $n_i < n_{i+1}$. By ordering the edges of the path $\{(n_i, n_{i+1}) \in \tilde{A}, i = 1, \ldots, l\}$ by decreasing rather than increasing the index $i$ the same path is traveled in the direction which is opposite to the previous one. Finally, as arcs can be shifted in $A$, a whole path can be shifted in $\tilde{A}$ in a natural way.

By Bézout’s identity the group generated by $A$ is $\text{gcd}(A) \times \mathbb{Z}$, and the connected components of $\tilde{\Gamma}$ coincide with the congruence classes $\text{mod} \text{gcd}(A)$. In particular, when $\text{gcd}(A) = 1$ the graph $\tilde{\Gamma}$ is connected. This means that for any pair of sites $n, m \in \mathbb{Z}$ there exists a path joining them.

**Proposition 1.** The condition $\text{gcd}(A_\theta) = 1$ is necessary for $|\mathcal{G}(p^\theta)| = 1$.

**Proof.** Suppose $\text{gcd}(A) = k_0 > 1$. Define $\theta^*_k = \theta_{k k_0}$ for $k \in \mathbb{N}_+$. Let $X^*$ be any $p^{\theta^*}$-compatible process. It is easily seen that any process $X = \{X_n, n \in \mathbb{Z}\}$ such that $X^{(h)} = \{X_{n k_0 + h}, n \in \mathbb{Z}\}$ has the same law of $X^*$, for any $h = 0, 1, \ldots, k_0 - 1$, is a $p^\theta$-compatible process. Since the joint distribution of $X^{(h)}$ for $h = 0, 1, \ldots, k_0 - 1$ is arbitrary it is clear that uniqueness does not hold for $p^\theta$. In particular one can take all $X^{(h)}$’s either equal or independent, in order to produce two different elements of $\mathcal{G}(p^\theta)$.

\[\square\]
Another source of nonuniqueness comes with the following definition.

**Definition 2.** A configuration \( s \in G^Z \) is coherent with the sequence of coefficients \( \theta \in G^{N_+} \) if for any \((n, m) \in A_\theta \) it is \( s_n s_m \theta_{n-m} > 0 \).

Coherent configurations come always in pairs, since if \( s \in G^Z \) is coherent, the same is true for \(-s\).

**Proposition 2.** A configuration \( s \in G^Z \) coherent with \( \theta \) is a degenerate compatible process (i.e. \( \delta_s \in \mathcal{G}(p^\theta) \)). Thus, when a coherent configuration exists, then \(|\mathcal{G}(p^\theta)| > 1\).

**Proof.** First notice that if \( s_n s_m \theta_{n-m} > 0 \), then \( s_n s_m \theta_{n-m} = |\theta_{n-m}| \). Now, if \( X_n = s_n, n \in \mathbb{Z} \), then, for any \( n \in \mathbb{Z} \), it is obviously \( P(X_n = s_n | X_{n-1} = s_{n-1}) = 1 \). But on the other hand

\[
1 = \frac{1}{2} + \frac{1}{2} \sum_{k=1}^{\infty} \theta_k = \frac{1}{2} + \frac{s_n}{2} \sum_{k=1}^{\infty} \theta_k s_{n-k}
\]

which agrees with (2).

The following result characterizes the existence of coherent configurations in a convenient way.

**Lemma 1.** If a coherent configuration exists all the paths joining any two given sites have the same sign. Conversely, if all the oriented paths joining any two given sites have the same sign, a coherent configuration necessarily exists.

**Proof.** First notice that, if a coherent configuration exists, for any path \( \{\{n_i, n_{i+1}\} \in \tilde{A}\} \) we have \( s_{n_0} s_{n_l} \prod_{i=0}^{l-1} \theta_{|n_i - n_{i+1}|} > 0 \), from which necessarily all other paths joining \( n_0 \) and \( n_l \) must have the same sign. Conversely, choose a representative for each connected component of \( \tilde{\Gamma}_s \), and define arbitrarily the configuration \( s \) over these sites. Suppose \( n_0 \) is one of these representatives and consider any path \( \{\{n_i, n_{i+1}\} \in \tilde{A}\} \). By defining

\[
s_{n_l} = s_{n_0} \prod_{i=0}^{l-1} \text{sign}(\theta_{|n_i - n_{i+1}|}),
\]

one can extend unambiguously \( s \) to a coherent configuration. It remains to prove that if all the oriented paths between any two sites have the same sign, the same is true for all the paths. In fact, suppose that there are two paths with different signs joining two distinct sites. By following one of the two paths in the opposite direction and concatenating it with the first we get a cycle. By assumption the sign of this cycle is negative. We can now produce two oriented paths joining the same endpoints by shifting and concatenating the arcs which are traveled in the same direction. These two oriented paths necessarily have opposite signs.

By the previous result, when \( \gcd(A) = 1 \) and all the paths between any two sites have the same sign, a coherent configuration \( s \) is uniquely determined by the choice of the sign \( s_0 \) at the origin. Next observe that by shifting a coherent configuration, another coherent configuration is obtained.
Now if a configuration is invariant under the shift, it is necessarily constant. If it changes sign under the shift, it is necessarily one of the two “checkerboard” configurations alternating periodically $-1$ with $+1$. Thus we have the following result.

**Proposition 3.** When $\gcd(A_\theta) = 1$ a configuration coherent with $p^\theta$ exists only in the following two cases:

a) either $\theta_k \geq 0$, for all positive integers $k$;

b) or $\theta_k \leq 0$ for $k$ odd and $\theta_k \geq 0$ for $k$ even.

**Proof.** The two cases correspond to the two possible pairs of coherent configurations, the constants and the checkerboards. It is easily checked that the constant configurations are coherent in case a), and the checkerboards in case b).

From Propositions 1, 2 and 3 Theorem 1 immediately holds.

Before turning to discuss sufficient conditions for uniqueness we observe that any pair of configurations $\pm s \in G^\mathbb{Z}$ is equivalently described by an unordered partition of $\mathbb{Z}$ into two subsets, which are the inverse images of the two possible values $-1$ and $+1$.

If $\gcd(A) = 1$ and the checkerboard configurations are coherent, this partition has the property that each pair of sites with the same parity is joined by a positive path, and each pair of sites with different parity is joined by a negative path. If $\gcd(A) = 1$ and the constant configurations are coherent, then we have a degenerate partition with a single class: all sites are joined by a positive path. This interpretation will be useful when dealing with partitions of this kind for suitable subgraphs of $\tilde{\Gamma}$.

### 3 Random subtrees and uniqueness

We start by observing that sampling from $p^\theta$ given in (2) is realized by drawing a random variable $K$ with $P(K = k) = |\theta_k|$, for $k = 1, 2, \ldots$ and returning $X^* = \text{sign}(\theta_K)w_{-K}$. Indeed, by setting $y_k = \text{sign}(\theta_k)w_{-k}$, one has

$$P(X^* = 1 | w_{-\infty}^{-1}) = \sum_{k:y_k=+1} |\theta_k| = \frac{1}{2} \left( \sum_{k:y_k=+1} |\theta_k| + \sum_{k:y_k=-1} |\theta_k| \right) + \frac{1}{2} \sum_{k=1}^{\infty} |\theta_k|y_k,$$

and since $|\theta_k|y_k = \theta_kw_{-k}$, the statement is proved.

Thus, given a $p^\theta$-compatible process $X = \{X_n, n \in \mathbb{Z}\}$ we have the following resampling scheme, that does not change its distribution. Given any site $n \in \mathbb{Z}$, we select $K_n$ from the distribution $\{\theta_k, k = 1, 2, \ldots\}$, and then pick the arc $(n, n - K_n)$ from the set of arcs in $A$ outcoming from $n$. The resampled value $X^*_n = \text{sign}(\theta_{K_n})X_{n-K_n}$ is then obtained by sending the value at the sink $n - K_n$ of the chosen arc back to the source $n$, changing the sign if the sign of the arc is negative.
Proposition 4. The process \( X = \{X_n, n \in \mathbb{Z}\} \) defined in (7), is compatible with \( p^0 \).

Proof. It is clear that, since the origin is connected to any site almost surely, also the sign of such a site will have the same symmetric distribution. Since the unordered partition \( \{S, S^c\} \) is invariant by translation of the \( K_n \)'s, the process \( \{X_n, n \in \mathbb{Z}\} \) is certainly stationary. Thus, to verify compatibility, it is sufficient to prove that resampling the value in 1 according to (2) will not change its distribution. For this we substitute \( K_0 \) with \( K_0^\ast \) having the same distribution, independently of all the \( K_n \)'s. This means that the subtree attached to the origin, which originally is attached to the site \(-K_0\), becomes attached to the site \(-K_0^\ast\). The resulting partition is the one which would be obtained directly from \( \{K_n, n \neq 0, K_0^\ast\} \), hence it has the same distribution as before. Moreover the sign of the origin is either that of \( X_0 = X_{-K_0^\ast} \) or the opposite, depending on the sign of \( \theta_{K_0^\ast} \). But the sign of \( X_0 = X_{-K_0^\ast} \) has again a symmetric distribution, independently of all the \( \{K_n, n \neq 0, K_0^\ast\} \), because of the way \( X_0 = Y \) was defined. This ends the proof.

For proving our uniqueness result it is now necessary to introduce the processes \( X^{-n,w} \), parameterized by \( n \in \mathbb{Z} \) and \( w \in G^{-\mathbb{N}_+} \), with the “boundary conditions” \( X^{-n,w}_{-i} = w_{-i} \) for
\( i = 1, 2, \ldots \) and for all the remaining sites \( m \geq -n \) obtained by following the unique oriented path \( \{(N_i, N_{i+1}), i = 0, \ldots, L_m - 1\} \) starting from \( N_0 = m \) in \( \Gamma_r \) (which means that \( N_{i+1} = N_i - K_{N_i} \)), stopped when it “reaches a boundary site” (which means that \( L_m = \inf\{i : N_i < -n\} \)). Finally

\[
X_{-n}^{-m,w} = w_{N_{L_m}+n} \prod_{i=0}^{L_m-1} \text{sign}(\theta_{N_i-N_{i+1}}),
\]

so that \( X_{-n}^{-n,w} \) is obtained from the boundary conditions by following iteratively the sampling scheme introduced at the beginning of the section. All these processes are thus constructed on the probability space where the process \( \{K_n, n \in \mathbb{Z}\} \) lives.

Here is the promised result.

**Theorem 3.** Consider a transition kernel \( p^\theta \) of the form (2) with the following assumptions on the coefficients:

a) there exists either an even integer \( m \in \mathbb{N}_+ \) with \( \theta_m < 0 \), or an odd integer \( m_1 \) with \( \theta_m < 0 \) and another odd integer \( m_2 \) with \( \theta_m > 0 \);

b) the random graph \( \tilde{\Gamma}_r \) is a.s. connected.

In order to prove the above result, we prove first a very useful lemma.

**Lemma 2.** Under conditions a) and b)

\[
\lim_{n \to \infty} \sup_{w \in \mathcal{G}_r} \left| P(X_{-n}^{-n,w} = 1) - \frac{1}{2} \right| = 0
\]

**Proof.** First observe that assumption a) ensures that there are no coherent configurations. By Lemma [1] we know that this requires the existence of two oriented paths in \( \tilde{\Gamma} \) with the same endpoints, say 0 and \( -m_0 < 0 \), but with different sign. By excluding a common initial subpath to these paths, one can reduce \( m_0 \) to the minimum possible value. Next denote the positive path by \( \gamma^+ \) and the negative one by \( \gamma^- \). We write \( p_+ \) (resp. \( p_- \)) for the probability that \( \gamma^+ \) (resp. \( \gamma^- \)) occurs, an event which is \( \mathcal{F}_{-\infty}^0 \)-measurable.

Let us introduce the random times \( \{T_i, i \in \mathbb{N}_+\} \), defined by recursion from \( T_0 = 0 \). These random times are a subset of the endpoints of the arcs of the infinite oriented path \( \{(N_i, N_{i+1}), i \in \mathbb{N}\} \) in \( \Gamma_r \), starting from \( N_0 = 0 \). Whereas \( N_i - N_{i+1} = K_{N_i} \), for \( i \in \mathbb{N} \), the \( T_i \)'s need to have a distance not smaller than \( m_0 \), in order to give to \( \gamma^+ \) and \( \gamma^- \) a positive probability to happen. This explains the following definition.

\[
T_{i+1} = \sup\{m \leq T_i - m_0 : \text{there is a path in } \Gamma_r \text{ joining } T_i \text{ with } m\}. \tag{10}
\]

Furthermore, for \( i \in \mathbb{N}_+ \), define the marks

\[
Y_i = \begin{cases} 
+1 & \text{if } \gamma^+ \text{ joins } T_{i-1} \text{ with } T_i, \\
-1 & \text{if } \gamma^- \text{ joins } T_{i-1} \text{ with } T_i, \\
0 & \text{otherwise}.
\end{cases} \tag{11}
\]
Finally define \( J_n = \sup\{m : T_m \geq -n\} \), \( R_n^+ = |\{i \leq J_n : Y_i = +1\}| \) and \( R_n^- = |\{i \leq J_n : Y_i = -1\}| \). It is clear that \( \lim_{n \to \infty} (R_n^- + R_n^+) = \infty \) almost surely. Therefore there exists \( M_n \uparrow \infty \) and \( \varepsilon_n \downarrow 0 \) such that \( P(R_n^- + R_n^+ \geq M_n) \geq 1 - \varepsilon_n \). Then

\[
P(X_{-n,w}^0 = +1) \leq \varepsilon_n + \sum_{k=0}^{M_n} P(X_{-n,w}^0 = +1 | R_n^- + R_n^+ = k)P(R_n^- + R_n^+ = k)
\]

\[
\leq \varepsilon_n + \max_{k \geq M_n} P(X_{-n,w}^0 = +1 | R_n^- + R_n^+ = k).
\]

Since, each time that a segment which is a shift of \( \gamma^+ \) is replaced by the same shift of \( \gamma^- \) the value of \( X_{-n,w}^0 \) changes sign we can bound the previous formula by

\[
\leq \varepsilon_n + \max_{k \geq M_n} \left\{ \max\{P(R_n^- \text{ is odd} | R_n^- + R_n^+ = k), P(R_n^- \text{ is even} | R_n^- + R_n^+ = k)\} \right\}.
\]

(12)

In order to bound the previous expression we notice that \( R_n^- \) conditioned to the event \( \{R_n^- + R_n^+ = k\} \) has a binomial distribution, namely \( B(k, \frac{p}{p + p - p}) \). For any random variable \( X_k \sim B(k, p) \), with \( p \in (0, 1) \), it is easily proved that \( P(X_k \text{ is even}) \) goes to \( 1/2 \) as \( k \to \infty \). As a consequence we obtain that the expression (12) is bounded from above by

\[
\frac{1}{2} + \varepsilon_n + \delta_{M_n}
\]

where \( \lim_{k \to \infty} \delta_k = 0 \). Since the same bound can be produced for \( P(X_{-n,w}^0 = -1) \), this ends the proof of the lemma.

Notice that, since for random variables \( X \) and \( Y \) taking values in \( \{-1, +1\} \) with laws \( L(X) \) and \( L(Y) \) it holds

\[
||L(X) - L(Y)||_{TV} = \sup_{||f||_{\infty} \leq 1} |E(f(X)) - E(f(Y))| = |P(X = 1) - P(Y = 1)|,
\]

we can reformulate the above lemma as

\[
\lim_{n \to \infty} \sup_{w_i \in G^{-n,1}} ||L(X_{-n,w_1}^0) - L(X_{-n,w_2}^0)||_{TV} = 0.
\]

Proof of Theorem 3

In order to prove uniqueness let us consider two \( \theta \)-compatible processes \( X \) and \( Y \) defined on the same probability space. By using a sequence \( \{K_i, i \in Z\} \) of i.i.d. random variables with distribution \( \theta \), independent of \( X \) and \( Y \), it is possible to sample recursively all the values at sites \( m \geq -n \), according to the sampling scheme described at the beginning of the section, getting process \( X^* \) and \( Y^* \) that have the same law of \( X \) and \( Y \), and that will be identified with them from now on. Notice that the invariance of the laws under resampling allows to write

\[
X = X_{-n, X_{-n-1}}, Y = X_{-n, Y_{-n-1}}.
\]
Since \( N = 1 \) a.s., for any finite window of sites \([l, L] = \{i \in \mathbb{Z} : l \leq i \leq L\}\), with \(-\infty < l < L < \infty\), the root of the smallest subtree of \( \tilde{\Gamma}_r \) containing \([l, L]\) is a proper random variable \( T_{[l,L]} \).

For any function \( f : \mathcal{G}^{L-l+1} \to \mathbb{R} \), with \( ||f||_\infty \leq 1 \) we write
\[
E\{f(X^l_t) - f(Y^l_t)\} = E\{1_{\{T_{[l,L]} > -\frac{\varepsilon}{2}\}}(f(X^l_t) - f(Y^l_t))\} + E\{1_{\{T_{[l,L]} \leq -\frac{\varepsilon}{2}\}}(f(X^l_t) - f(Y^l_t))\}
\]
\[
\leq E\{1_{\{T_{[l,L]} > -\frac{\varepsilon}{2}\}}(f(X^l_t) - f(Y^l_t))\} + \frac{\varepsilon}{2}
\] (13)

for any \( \varepsilon > 0 \), for \( n \) sufficiently large, since \( T_{[l,L]} \) is finite a.s.

Observe that \( T_{[l,L]} \) is \( \mathcal{F}^L_{T_{[l,L]}+1} \)-measurable, and
\[
X^l_t = X_{T_{[l,L]}}, \quad Y^l_t = Y_{T_{[l,L]}},
\]
where \( Z^l_t \) is an \((L - l + 1)\)-dimensional \( \mathcal{F}^L_{T_{[l,L]}+1} \)-measurable random vector: moreover \( X_{T_{[l,L]}} \) and \( Y_{T_{[l,L]}} \) are independent of \( \mathcal{F}^L_{T_{[l,L]}+1} \). Therefore
\[
E\{1_{\{T_{[l,L]} > -\frac{\varepsilon}{2}\}}(f(X^l_t) - f(Y^l_t))\} = E\{1_{\{T_{[l,L]} > -\frac{\varepsilon}{2}\}}E(f(X^l_t) - f(Y^l_t)|\mathcal{F}^L_{T_{[l,L]}+1})\}. \quad (14)
\]

Finally, setting \( f_{Z^l_t}(g) = f(g \times Z^l_t) \), for \( g \in G \), we have
\[
E(f(X^l_t) - f(Y^l_t)|\mathcal{F}^L_{T_{[l,L]}+1}) = \mathbb{E}\{f_{Z^l_t}(X_{T_{[l,L]}}) - f_{Z^l_t}(Y_{T_{[l,L]}})\}, \quad (15)
\]
where \( \mathbb{E} \) means expectation w.r.t. to the joint law of \( X_{T_{[l,L]}} \) and \( Y_{T_{[l,L]}} \). Thus, plugging the above expression into (13), we get
\[
E\{1_{\{T_{[l,L]} > -\frac{\varepsilon}{2}\}}(f(X^l_t) - f(Y^l_t))\} = \sum_{-n/2 < i < l} E(1_{\{T_{[l,L]} = i\}}E(f_{Z^l_t}(X_i) - f_{Z^l_t}(Y_i)))
\]
\[
\leq \sum_{-n/2 < i < l} P(T_{[l,L]} = i) \sup_{w_1, w_2} ||\mathcal{L}(X_i^{-n,w_1}) - \mathcal{L}(X_i^{-n,w_2})||_{TV}. \quad (16)
\]

By Lemma 2 and the subsequent remark the total variation term can be made smaller than \( \frac{\varepsilon}{2} \) as \( n \) is large enough. Plugging (16) into (13) we thus obtain that the total variation distance between the laws of \( X^l_t \) and \( Y^l_t \) does not exceed \( \varepsilon \), proving the desired result.

The natural question is under which conditions on the sequence of coefficients \( \theta \) is it possible to ensure that \( N = 1 \) a.s. or, equivalently, that any two sites, say e.g. 0 and \(-1\), are a.s. connected by a path in \( \tilde{\Gamma}_r \). We need to follow the two infinite oriented paths in \( \Gamma_r \) starting from this two sites to check if they coalesce or not. This can be done by keeping track recursively in time of the distance between the two paths, using the rule that it is always the rightmost path which is updated with the addition of an arc. If the rightmost path reaches the site \( i \), it jumps backwards to \( i - K_i \), and so on, independently of the arcs chosen in the past. In this way the distance between the two paths follows the Markov chain
\[
Y_{n+1} = |Y_n - K_{n+1}|, \quad n \in \mathbb{N}, Y_0 = 1
\] (17)
where the $K_i, i = 1, 2, \ldots$ are i.i.d. with distribution $P(K_1 = j) = \theta_j$. This process is known in the literature as the von Schelling process (see [Fel71]). It evolves as a random walk with negative increments until it falls below zero, in which case it is reflected on the positive side. When $\gcd(A_\theta) = 1$, this process is irreducible (see [Bou86]). Moreover we have the following result.

**Proposition 5.** Consider the random graph $(\mathbb{Z}, \mathcal{B})$ with $\mathcal{B} = \{\{i, i - K_i\}, i \in \mathbb{Z}\}$, where the $K_i, i = 1, 2, \ldots$ are i.i.d. with distribution $P(K_1 = j) = \theta_j$. Assume $\gcd(k: \theta_k \neq 0) = 1$. Then the number of connected components $N$ of $(\mathbb{Z}, \mathcal{B})$ is a.s. equal to 1 if and only if the corresponding von Schelling process is recurrent.

**Proof.** It is clear that $N = 1$ a.s. if and only if the state 0 is hit a.s. when the von Schilling process is started in 1. By irreducibility, this happens if and only if the process is recurrent. \hfill \square

An invariant measure for the von Schelling process was written down in [Bou86]. Whenever it has finite total mass then the process is positive recurrent. This happens whenever $E(K_0) = \sum_{k=1}^{\infty} P(K_0 \geq k) < +\infty$. Recently some null recurrent cases have been covered by a result in [PW11], which is reported below. Incidentally, in the cited paper it is also given a class of distributions with very heavy tails for which the von Schelling process is transient.

**Theorem 4.** If $\sum_{k=1}^{\infty} P(K_0 \geq k)^2 < +\infty$, then the von Schelling process is recurrent.

By putting together the two Theorems 3 and 4 and Proposition 5 we have finally obtained the promised Theorem 2.

We finally remark that $N = 1$ can be seen as a percolation type condition. For other examples of percolation techniques applied to perfect simulation in dimensions higher than one the reader is referred to [DSP08].

### 4  Perfect simulation and conclusions

In the following we give a possible implementation of the simulation of the unique $p^\theta$-compatible process in a finite window $[l, L]$. For the sake of simplicity and without any loss of generality we have set $l = 1$.

**Simulation algorithm for producing $X = (X(1), \ldots, X(L))$**

1. For $i = 1, \ldots, L$, set $X(i) = 1, S(i) = i, Y(i) = 1$ and $Z(i, j) = \delta_{i,j}, j = 1, \ldots, L$.
2. Draw $K$ from the distribution $\theta$.
3. Compute $J = \arg\max \{S(i)Y(i)\}$.
4. Set $S(J) \leftarrow S(J) - K$ and $X(J) \leftarrow X(J) \times \text{sign}(\theta_K)$.
5. If $S(J) \neq S(i), i \neq J$ go to 2.
6. Else let $I$ s.t. $S(I) = S(J)$, set $Y(J) = 0$ and $Z(J, I) = X(J) \times X(I)$. 

10
7. If $\sum_{i=1}^{L} Y(i) > 1$, go to 2.

8. Else let $H$ such that $Y(H) = 1$, and set $X(i) = 0, i \neq H$, drawing $X(H)$ as a symmetric Bernoulli sign.

9. Output $X \leftarrow Z^L X$, the product of the matrix $Z^L$ with the column vector $X$.

A few words of explanation. The vector $S = (S(1), \ldots, S(L))$ contains the positions of particles started from the sites of the interval $[1, L]$, performing independent random walks until coalescence. These particles will be labeled with their starting sites. Their displacements are drawn from the distribution $\theta$; at each step it is always the rightmost particle which moves to the left. The vector $X = (X(1), \ldots, X(L))$ keeps track of the current sign of the paths followed by the particles. When particle $J$ lands in a site already occupied by particle $I$ we set to 0 the $J$-th value of the auxiliary vector $Y = (Y(1), \ldots, Y(L))$. This means that particle $J$ remains “freezed” in that site and does not play a further role, aside from the fact that in the auxiliary $L \times L$ matrix $Z$ the $(J, I)$-th element registers if the paths followed by the two particles until coalescence have or not the same sign. This agreement or disagreement will be kept in the final vectors of signs. When the next to the last particle lands in the site $T[1..L]$ occupied by the last one, say particle $H$, by computing the $L$-th power of the matrix $Z$ it is possible to reconstruct the agreement or disagreement of signs between all the particles. Finally we have slightly modified the construction presented in the last section by drawing from a symmetric Bernoulli the sign $X(H)$ assigned to the $H$-th particle rather than the sign of a fixed particle: this clearly will not change the final distribution at all. All the elements of the desired vector of signs can then be obtained by multiplying $Z^L$ for a column vector with all zeros except $X(H)$ in the $H$-th position.

With a few changes, the algorithm can be adapted to the biased case in which the term $\frac{\theta_0}{2}$ is added to the r.h.s. of (2). Recall that in this case $r_0 = \sum_{k=1}^{\infty} |\theta_k| < 1$ so that the mass $1 - r_0$ is placed on 0 to get a mass distribution on the integers $\theta^*$ which replaces $\theta$. Now at each step there is a positive probability that a particle “gets stuck” in a site. When the $J$-th particle stops its sign is sampled from the distribution of a binary random variable $U$ with $P(U = \pm 1) = \frac{1 - r_0 \pm \theta_0}{2(1 - r_0)}$. This is sampled independently for particles stuck in different positions. The final vector of signs is obtained by post-multiplying $Z^L$ for the column vector containing the signs drawn for the stuck particles and zeros in the other positions. Such an algorithm is a slight modification, in order to profit of coalescence, to the one described in [CFF02].

However, in the latter paper, a general purpose “coupling from the past” algorithm was described, based on general bounds on the “dependence of the kernel on the past”. For this general algorithm to work, in the case $\sum_{k=1}^{\infty} |\theta_k| < 1$, a control on the tails of the distribution $\theta^*$ is needed, which is quite stronger than that required by Theorem 4. We should also mention that in [DSP12] a modification of such an algorithm is proposed, which works also for an example in which $\theta_0 = 0$ and $\sum_{k=1}^{\infty} |\theta_k| = 1$. But such a modification was rather ad hoc, and it was not clear how to pursue the same strategy for a generic vector $\theta$ with $\sum_{k=1}^{\infty} |\theta_k| = 1$.

It is worth to mention that in the case $N > 1$ a.s. it is still possible to produce a compatible process by repeating independently for each tree of the graph $(\mathbb{Z}, \mathcal{B})$ the random assignment of sign
to the two sets of the partition described above. But the uniqueness proof as well as the perfect simulation algorithm given here obviously fails, even if uniqueness can still hold.

Finally, in dimension higher than one, the reader is referred to [GLO10, DSL12] for perfect simulation of infinite range Gibbs fields.

References

[Bou86] Mohand A. Boudiba. La chaîne de Feller $X_{n+1} = |X_n - Y_{n+1}|$ et les chaînes associées. *Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl.*, (5):91–132, 1986.

[CFF02] Francis Comets, Roberto Fernández and Pablo A. Ferrari. Processes with long memory: regenerative construction and perfect simulation. *Ann. Appl. Probab.*, 12(3):921–943, 2002.

[DSL12] Emilio De Santis and Andrea Lissandrelli. Developments in perfect simulation of Gibbs measures through a new result for the extinction of Galton-Watson-like processes. *J. Stat. Phys.*, 147(2):231–251, 2012.

[DSP08] Emilio De Santis and Mauro Piccioni. Exact simulation for discrete time spin systems and unilateral fields. *Methodol. Comput. Appl. Probab.*, 10(1):105–120, 2008.

[DSP12] Emilio De Santis and Mauro Piccioni. Backward coalescence times for perfect simulation of chains with infinite memory. *J. Appl. Probab.*, 49(2):319–337, 2012.

[Fel71] William Feller. An introduction to probability theory and its applications, vol. II, Second edition. *John Wiley & Sons Inc.*, New York, 1971.

[FM05] Roberto Fernández and Grégory Maillard. Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties. *J. Stat. Phys.*, 118(3-4):555–588, 2005.

[GLO10] Antonio Galves, Eva Löcherbach and Enza Orlandi. Perfect simulation of infinite range Gibbs measures and coupling with their finite range approximations. *J. Stat. Phys.*, 138(1-3):476–495, 2010

[PW11] Marc Peigné and Wolfgang Woess. Stochastic dynamical systems with weak contractivity properties I and II. *Colloq. Math.*, 125 (1): 31–81, 2011.