UCD CANDIDATES IN THE HYDRA CLUSTER

ELIZABETH M. H. WEHNER1,2 and WILLIAM E. HARRIS1,3

Accepted for publication in ApJ Letters

ABSTRACT

NGC 3311, the giant cD galaxy in the Hydra cluster (A1060), has one of the largest globular cluster systems known. We describe new Gemini GMOS (\(g', i'\)) photometry of the NGC 3311 field which reveals that the red, metal-rich side of its globular cluster population extends smoothly upward into the mass range associated with the new class of Ultra-Compact Dwarfs (UCDs). We identify 29 UCD candidates with estimated masses \(> 6 \times 10^6 M_\odot\) and discuss their characteristics. This UCD-like sequence is the most well defined one yet seen, and reinforces current ideas that the high-mass end of the globular cluster sequence merges continuously into the UCD sequence, which connects in turn to the E galaxy structural sequence.

Subject headings: galaxies: star clusters — galaxies: elliptical — galaxies: cD — galaxies: individual (NGC 3311)

1. INTRODUCTION

Ultra-Compact Dwarfs (UCDs) are a recently discovered type of old stellar system, lying between the classic globular clusters and dwarf elliptical galaxies in luminosity and scale size. Initially discovered in the Fornax cluster (Hilker 1998; Hilker et al. 1999; Drinkwater et al. 2001; Phillips et al. 2001; Mieske et al. 2002). UCDs and UCD candidates have since been discovered in Abell 1689 (Mieske et al. 2004) and the Virgo Cluster (Hasegan et al. 2005; Jones et al. 2006; Evstigneeva et al. 2007). Transitional objects on the lower-mass end of the UCD range that connect closely with the high-mass end of the globular cluster sequence, have also been found in NGC 5128 (Rejkuba et al. 2007; Mieske et al. 2007).

Because UCDs have scale radii typically \(r_{c, ff} \lesssim 30\) pc (not much different from extended, luminous GCs, or the nuclei of dE,Ns), they are extremely hard to find by morphology or image structure alone at galaxy distances much beyond the Virgo or Fornax clusters. Thus as yet, we know of very few UCDs. To understand what sorts of galaxy environments are most likely to produce them, we need to use a wider variety of search methods in many more locations. One such method is to employ their photometric similarity to the most luminous GCs and dE nuclei. If large numbers of UCDs are present in a cluster of galaxies, then they might show up as high-luminosity extensions of the normal, bimodal GC sequences that we conventionally find around giant galaxies (Harris et al. 2006; Peng et al. 2006). These candidates can then be followed up via spectroscopy to determine their cluster membership properties, such as metallicity, mass and age (e.g. Evstigneeva et al. 2007).

The cD galaxy NGC 3311 is the centrally dominant elliptical in the nearby Hydra cluster (Abell 1060) at \(d=54\) Mpc \((H_0 = 73\) km/s/Mpc, \(\Omega_M = 0.27, \Omega_A = 0.73\) from NED) and is an excellent candidate for UCD-based searches of this type. The Hydra cluster \((v = 3777\) km/s) with 157 galaxy members listed by Struble et al. (1999) is perhaps twice as rich as the Fornax Cluster \((v = 1379\) km/s) in which the largest numbers of UCDs have been detected thus far. Previous photometric studies of NGC 3311 show that it contains one of the richest globular cluster (GC) systems in the local universe (Smith & Weedman 1976; Harris et al. 1983; Secker et al. 1995; McLaughlin et al. 1995; Brodie et al. 2000), making it an excellent target to search for unusually massive clusters and stripped dE nuclei.

As part of a new imaging program to investigate globular cluster systems (GCSs) around cD galaxies, we obtained deep \((g', i')\) photometry of NGC 3311 to investigate the nature of the new “mass/metallicity relation” recently discovered to affect the metal-poor GC sequence (Harris et al. 2006; Strader et al. 2006; Mieske et al. 2006). Our results have revealed an extension of the red, metal-rich branch of the globular cluster system up to unusually high luminosities \((\sim 10 > M_{g'} > -12)\), into the UCD regime. In \S 2 we present our observations and data reduction. In \S 3 we examine the radial distributions and masses of our candidate UCDs, and we discuss the implications of our results in \S 4.

2. OBSERVATIONS AND REDUCTIONS

We obtained deep \((g', i')\) images of NGC 3311 using the GMOS imager on Gemini South, which has a \(5.5' \times 5.5'\) field of view (FOV) and a scale of \(0.146'^{\prime}/pix\) after \(2 \times 2\) binning. Data were taken on the nights of February 8 and March 23, 2006, under dark, photometric conditions, with an average seeing of \(0.5'^{\prime}\). The total integration time in each of \((g', i')\) was 3900s. The data were reduced with the GEMINI package in IRAF4, calibrated with Landolt standard stars (Landolt 1992), and transformed to \((g', i')\) with the equations of Fukugita et al. (1996)5. For the

4 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

5 A complete set of the Landolt (1992) standard stars transformed from the Johnson-Cousins system into the Sloan filter set has been compiled by the authors and is available online at http://www.elizabethwehner.com/astro/sloan.html
photometric calibration, we used standard stars (with a very limited range in airmass) to measure a zero point for single (g′, i′) exposures taken at the same airmass as our NGC 3311 images. The small amount of fringing in i′ was successfully removed with a calibration fringe frame from the Gemini archives. Our photometry reached limiting magnitudes (50% detection completeness) of g′(lim) = 26.7 and i′(lim) = 26.2, deep enough to reach near the GC luminosity function turnover point.

3. PHOTOMETRIC RESULTS

Once the final image and calibration were obtained, we used the stand-alone version of DAOPHOT (daophot4) to obtain photometric measurements in g′ and i′ of each object in our 5.5′ FOV. In total, we detected 8108 star-like objects, the vast majority of which clearly belong to the globular cluster population. The color-magnitude diagram (CMD) is shown in Figure 1.6

The CMD shows the GC population in the expected color range 0.4 ≤ g′ − i′ ≤ 1.2 as well as field contamination at faint levels on both the redder and bluer sides. Although this CMD is interesting in several ways (to be discussed in our upcoming Paper II), perhaps the most unusual feature can be found at the brightest magnitudes where we note the presence of an extension up to very high luminosities on the red (metal-richer) side of the GC population. This distribution is unlike any we have seen before in other giant E galaxies (e.g. Harris et al. 2006). We find 29 objects brighter than i′ = 22.15, the point where the blue side of the GC distribution reaches its top end. Intriguingly, it is only the red branch of the GC population that extends toward still higher luminosities. At M_{i′} ≤ −11.7, these are very luminous GCs. Few such objects appear even in the composite sample of many thousands of GCs in eight cD galaxies studied

6 Our FOV contains the Hydra gE NGC 3309, which has been found to contribute < 10% of the GC population in the field (McLaughlin et al. 1994; Brodie et al. 2000). Nevertheless, we exclude only those objects in the inner r = 120 pixels around the centers of both giant galaxies.
UCD Candidates in the Hydra Cluster

Fig. 3.—Radial distribution of UCD candidates (dotted line) and globular clusters (dashed line) relative to the center of NGC 3311. The distributions are plotted in cumulative form, as the fraction of the total population lying within projected radius R.

4. DISCUSSION

The masses of these high-end GCs are all above $6 \times 10^6 M_\odot$ and extend to almost $3 \times 10^7 M_\odot$. From their radial distribution, they are clearly within the Hydra cluster (and possibly specifically associated with its cD galaxy, NGC 3311). Structurally, they are very compact: A normal dwarf-galaxy scale length of 300 pc (Deady et al. 2002) would give $FWHM \sim 2''$ on our GMOS images, whereas our “superluminous GCs” are completely unresolved at the 0.5'' resolution of our GMOS images, implying that their scale radii are $r_{eff} \lesssim 50$ pc. A better limit on their scale sizes would, however, come from HST imaging with its 0''1 resolution. Ten of our UCD candidates fall within the WFPC2 field near NGC 3311 studied by Brodie et al. (2000) and two additional UCD candidates fall on the WFPC2 archival data for NGC 3309. We extracted these images from the HST Archive and measured them. We find that the 12 candidates, all on the undersampled WF frames, have $FWHMs$ ranging from 0''204 to 0''250, averaging 0''222 \pm 0''006. By comparison, the unresolved PSF on WF2,3,4 has a measured $FWHM = 0''208 \pm 0''004$. The UCD candidates are therefore marginally resolved (at the $2 - \sigma$ level). Subtracting $FWHM_{UCD}$ in quadrature from $FWHM_{PSF}$, we can then estimate very roughly that our candidates have scale sizes equivalent to an effective diameter of ≈ 20 pc. This is only a crude estimate but is precisely in the r_{eff} range occupied by the known Fornax UCDs, most of the Virgo UCDs, and the DGTOs (Efstigseeva et al. 2007; Hasegan et al. 2005). In Table 1, we list the V and $(V-I)$ measurements of the 12 overlapping candidates as obtained from the WFPC2 data. They average $(V-I)_0 = 1.1$, entirely similar to normal red-sequence GCs.

There are now three main scenarios to explain UCDs. One possibility is that UCDs are the nuclei of dE,N galaxies that have been stripped of their envelopes via galaxy “threishing,” on multiple passes through a larger galaxy (Bekki et al. 2001; Fellhauer & Kroupa 2002) suggest that UCDs may also form from the agglomeration of young massive star clusters in locations of ongoing, violent star formation. A third possibility is that UCDs are simply high-mass extensions of globular clusters and share a common formation mechanism with their lower mass counterparts. Evidence can be found for each of these formation scenarios (e.g. Hasegan et al. 2005), suggesting that UCDs may not be a homogenous population; rather, objects can end up as UCDs in different ways. Rejkuba et al. (2007) and Barmby et al. (2007) provide strong new evidence from M/L ratios and structural sizes of the most massive known GCs in NGC 5128 and M31 that they may form the beginning of the long-missing bridge between the GC and dwarf-E sequence.
It has long been thought that GCs had a constant scale size $r_h \sim 3$ pc independent of mass, whereas $r_h \sim M_0^{0.6}$ for E galaxies (e.g. Hasegan et al. 2003; Barmby et al. 2007). This new evidence suggests that massive star clusters ($10^7 M_\odot$ and above) must somehow form at increasingly larger scale size regardless of their environment. Recent work by Evstigneeva et al. (2007) on the Fornax and Virgo UCDs in the range of $10^7 - 10^8 M_\odot$ further traces out a continuous sequence between globular clusters, UCDs, dE nuclei and deNs, and giant ellipticals in velocity dispersion and magnitude space. A clear sequence also exists in the $\kappa_1 - \kappa_3$ plane of κ-space, a fundamental plane for dynamically hot systems originally defined by Bender et al. (1992).

The UCD candidates in NGC 3311 mark out the clearest connection of such objects with GCs yet found within any one galaxy. This result is consistent with the idea that there may be a smooth bridge in structural parameters between these and the high-mass UCDs. Indeed, given that evidence has been presented to support a) the idea that UCDs can form via diverse mechanisms, rather than a single, evolutionary path (e.g. Hasegan et al. 2003; Evstigneeva et al. 2007), and b) the existence of a continuous sequence between these objects in structural parameter space, it seems that regardless of how a compact stellar system is assembled, it will strongly converge to a structure that falls within this unified sequence. The sequence in NGC 3311 provides an excellent opportunity to further trace this “bridge” of intermediate-mass old stellar systems. A logical next step would be radial velocity measurements, which would help decide whether they belong more to NGC 3311 (and thus formed along with its GCs) or to the general Hydra cluster.

EHW and WEH would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for their funding of this project. The authors also thank Kyle Johnston for his help with world coordinate systems and the anonymous referee for his helpful comments. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Barmby, P. G., McLaughlin, D. E., Harris, W. E., Harris, G. L. H., & Forbes, D. A. 2007, AJ, 133, 2764
Bekki, K., Couch, W. J., & Drinkwater, M. J. 2001, ApJ, 552, L105
Bender, R., Burstein, D., & Faber, S. M. 1992, ApJ, 399, 462
Brodie, J. P., Larsen, S. S., & Kissler-Patig, M. 2000, ApJ, 543, L19
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Deadly, J. H., Boyce, P. J., Phillipps, S., Drinkwater, M. J., Karick, A., Jones, J. B., Gregg, M. D., & Smith, R. M 2002, MNRAS, 336, 851
Drinkwater, M. J., et al. 2000, A&A, 355, 900
Evstigneeva, E. A., Gregg, M. D., Drinkwater, M. J., & Hilker, M. 2007, AJ, 133, 1722
Fellhauer, M. & Koupta, P. 2002, MNRAS, 360, 642
Fellhauer, M. & Koupta, P. 2006, MNRAS, 367, 1577
Fukugita, M., Ichikawa, T., Gunn, J. E., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748
Harris, W. E., Smith, M. G., & Myra, E. S. 1983, ApJ, 272, 456
Harris, W. E., Whitmore, B. C., Karakla, D., Okon, W, Baum, W. A., Hanes, D. A., & Kavelaars, J. J. 2006, ApJ, 636, 90
Harris, W. E., Harris, G. L. H., Layden, A. C., & Stetson, P. B. 2007, AJ, 134, 43
Hasegan, M. et al. 2005, ApJ, 627, 203
Hilker, M., Infante, L., & Richtler, T. 1999, A&A, 138, 55
Hilker, M. 1998, PhD thesis, Univ. Bonn
Hilker, M., Baumgardt, H., Infante, L., Evstigneeva, E., & Gregg, M. 2007, å, 463, 119
Jones, J. B., et al. 2006, AJ, 131, 312
Landolt, A. U. 1992, AJ, 104, 340
McLaughlin, D. E., Secker, J., Harris, W. E., & Geisler, D. 1995, AJ, 109, 1033
Mieske, S., Hiller, M., & Infante, L. 2002, A&A, 383, 823
Mieske, S., et al. 2004, AJ, 128, 1529
Mieske, S. et al. 2006, ApJ, 653, 193
Mieske, S., Hiller, M., Jordan, A., Infante, L., & Kissler-Patig, M. 2007, astro-ph/0706.2724v1
Peng, E. W., et al. 2006 ApJ, 639, 95
Phillipps, S., Drinkwater, M. J., Gregg, M. D., & Jones, J. B. 2001, ApJ, 560, 201
Rejkuba, M., Dubath, P., Minniti, D., & Meylan, G. 2007, astro-ph/0703385
Secker, J., Geisler, D., McLaughlin, D. E., & Harris, W. E. 1995, AJ, 109, 1019
Smith, M. G. & Weedman, D. W. 1976, ApJ, 205, 709
Strader, J., Brodie, J. P., Spitler, L., & Beasley, M. A. 2006, AJ, 132, 2333
Struble et al. 1999, ApJS, 125, 35
Yasuda, N., et al. 2001, AJ, 122, 1104
UCD	M_g'	Mass ($10^6 M_\odot$)	i'	$(g' - i')_0$	V	$V - I$	RA	Dec	D (Kpc)
1	-12.3	27.1	20.67	0.84	-	-	10:36:43.320	-27:29:24.19	36.1
2	-11.9	17.9	21.16	0.80	-	-	10:36:32.456	-27:29:24.88	51.0
3	-11.5	12.4	21.37	0.99	-	-	10:36:41.360	-27:31:21.90	7.6
4	-11.5	12.6	21.43	0.91	22.24	1.15	10:36:47.481	-27:31:10.59	18.3
5	-11.4	11.7	21.46	0.96	-	-	10:36:44.923	-27:34:20.21	42.6
6	-11.3	10.5	21.55	0.99	22.54	1.28	10:36:40.639	-27:32:06.42	10.1
7	-11.4	11.2	21.55	0.92	-	-	10:36:50.016	-27:31:57.35	25.7
8	-11.2	9.8	21.71	0.91	-	-	10:36:34.899	-27:29:44.90	41.3
9	-11.1	8.9	21.81	0.91	-	-	10:36:43.487	-27:30:26.04	19.9
10	-11.0	9.2	21.81	0.87	-	-	10:36:49.500	-27:30:48.07	27.3
11	-11.1	8.3	21.82	0.97	-	-	10:36:42.354	-27:31:00.00	10.9
12	-11.0	8.2	21.87	0.94	-	-	10:36:41.249	-27:31:07.80	10.3
13	-11.3	10.4	21.87	0.68	-	-	10:36:43.186	-27:29:59.72	26.8
14	-10.9	7.5	21.89	1.01	22.84	1.27	10:36:43.578	-27:32:17.43	10.0
15	-11.0	8.1	21.90	0.92	22.81	1.18	10:36:48.133	-27:32:26.02	22.1
16	-11.0	8.2	21.92	0.89	23.03	1.22	10:36:36.203	-27:32:19.59	25.2
17	-11.0	7.9	21.94	0.91	-	-	10:36:40.978	-27:30:20.10	22.3
18	-11.0	8.2	21.97	0.84	-	-	10:36:41.290	-27:31:35.55	5.5
19	-11.0	8.0	21.98	0.86	22.65	1.07	10:36:48.321	-27:30:42.38	24.8
20	-11.1	8.3	22.00	0.79	22.78	1.12	10:36:45.606	-27:31:30.90	10.2
21	-10.8	6.7	22.01	1.02	-	-	10:36:42.100	-27:31:05.70	9.6
22	-10.9	7.3	22.05	0.89	22.96	1.22	10:36:45.055	-27:31:53.86	8.6
23	-10.9	7.2	22.09	0.86	23.05	1.23	10:36:50.646	-27:32:02.50	28.1
24	-10.8	6.9	22.10	0.89	-	-	10:36:47.876	-27:29:19.14	41.4
25	-10.9	7.2	22.10	0.85	-	-	10:36:41.556	-27:31:23.32	6.4
26	-10.7	6.2	22.10	1.01	-	-	10:36:39.316	-27:30:53.73	17.4
27	-10.8	6.6	22.10	0.94	23.04	1.16	10:36:44.577	-27:34:48.54	15.2
28	-10.7	6.2	22.11	1.01	23.24	1.33	10:36:39.024	-27:31:22.96	14.0
29	-10.8	6.7	22.15	0.88	23.05	1.16	10:36:48.803	-27:31:53.72	21.3