Protein phase separation and determinants of in cell crystallization

Celestin N. Mudogo1,2 | Sven Falke1 | Hévila Brognaro1,3 | Michael Duszenko4 | Christian Betzel1

1Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
2Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
3Centre for Free-Electron-Laser Science, Hamburg, Germany
4Institute of Neurophysiology, University of Tübingen, Tübingen, Germany

Correspondence
Christian Betzel, Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany.
Email: christian.betzel@uni-hamburg.de

Peer Review
The peer review history for this article is available at https://publons.com/publon/10.1111/tra.12711/

Abstract
Liquid-liquid phase separation (LLPS) in cells is known as a complex physicochemical process causing the formation of membrane-less organelles (MLOs). Cells have well-defined different membrane-surrounded organelles like mitochondria, endoplasmic reticulum, lysosomes, peroxisomes, etc., however, on demand they can create MLOs as stress granules, nucleoli and P bodies to cover vital functions and regulatory activities. However, the mechanism of intracellular molecule assembly into functional compartments within a living cell remains till now not fully understood. In vitro and in vivo investigations unveiled that MLOs emerge after preceding liquid-liquid, liquid-gel, liquid-semi-crystalline, or liquid-crystalline phase separations. Liquid-liquid and liquid-gel MLOs form the majority of cellular phase separation events, while the occurrence of micro-sized crystals in cells was only rarely observed, however can be considered as a result of a preceding protein phase separation event. In vivo, also known and termed as in cellulo crystals, are reported since 1853. In some cases, they have been linked to vital cellular functions, such as storage and detoxification. However, the occurrence of in cellulo crystals is also associated to diseases like cataract, hemoglobin C diseases, etc. Therefore, better knowledge about the involved molecular processes will support drug discovery investigations to cure diseases related to in cellulo crystallization. We summarize physical and chemical determinants known today required for phase separation initiation and formation and in cellulo crystal growth. In recent years it has been demonstrated that LLPS plays a crucial role in cell compartmentalization and formation of MLOs. Here we discuss potential mechanisms and potential crowding agents involved in protein phase separation and in cellulo crystallization.

KEYWORDS
crowding agents, in vivo/in cellulo crystallization, liquid-liquid phase separation, membrane-less and membrane-surrounded organelles
1 | INTRODUCTION

In context of liquid-liquid phase separation (LLPS) of biomolecules into liquid condensates in cells occasionally protein crystals were observed.\(^1\) The observation of crystals in living cells, reported in the literature as in cellulo or in vivo crystallization;\(^1\)\(^-\)\(^6\) biocrystallization of the DNA-binding protein (Dps) and DNA as a response to cellular damage and stress,\(^13\)\(^-\)\(^15\) or β-hematin crystals produced as a detoxification strategy by malaria parasites.\(^16\)\(^-\)\(^19\) Although in cellulo crystallization still is a new exciting area in cell biology, many natively crystallizing proteins in living cells first function as storage such as vitellin yolk protein crystals from bullfrog oocytes,\(^20\) from leopard frogs,\(^21\) from A. aegypti oocytes,\(^22\) lipovitellin from bony fish oocytes,\(^23\) edestin from hemp plant,\(^24\) tobacco seed protein\(^25\) and Cry protein in B. thuringiensis,\(^26\)\(^27\) trichocyst matrix protein in Paramaecium\(^28\)\(^29\) and food milk protein in Diplodota punctata.\(^30\) Secondly crystals can function as rigid encapsulation such as spheroidin from B. mori.\(^31\)

Further functions are compartmentalization, such as reported for intracellular polyhedra bodies in various bacteria (eg, T. neapolitanus)\(^32\) and solid state catalysts, as reported for the urate oxidase from R. novergicus,\(^33\) alcohol oxidase from H. polymorpha\(^34\) and catalase from sunflower.\(^35\) Moreover, crystals occurrence is related to wound sealing in case of Hex-1 from Neurospora crassa, fungal crystals seal the septal core,\(^36\)\(^37\) and P-protein from V. faba.\(^38\) Those abovementioned natively occurring crystals have been detected either by powder diffraction or electron microscopy. In cellulo/in vivo crystallization or crystalline matter in cells has been observed, however the individual precise function remains widely speculative. It may be harmless or harmful and even useful like storage of proteins or peptides, or removal of toxins.

Further, in cellulo crystallization has also been associated with several diseases like cataract,\(^39\)\(^-\)\(^42\) hemoglobin C diseases,\(^43\) formation of Charcot-Leyden crystals (CLCs),\(^44\)\(^-\)\(^47\) Reinke’s crystals\(^48\)\(^-\)\(^50\) or mitochondrial myopathies,\(^51\) and more recently in cellulo crystallization was observed as a result of heterologous overexpression of genes in cell lines of bacteria,\(^26\) insect cells,\(^2\)\(^4\)\(^2\)\(^2\)\(^4\)\(^2\)\(^5\)\(^2\)\(^6\) yeast,\(^12\)\(^2\)\(^4\)\(^7\) CHO (Chinese hamster ovary) or HEK (human embryonic kidney) cells.\(^32\)\(^4\)\(^8\)\(^-\)\(^5\)\(^9\) Mostly, these protein crystals were located in different organelles (mitochondria, peroxisomes, lysosomes, or endoplasmic reticulum), as shown in Table 1.\(^1\)\(^2\)\(^4\)\(^2\)\(^4\)\(^2\)\(^5\)\(^3\)\(^6\)\(^6\) but sometimes also within the cytosol,\(^32\)\(^4\)\(^2\)\(^7\)\(^9\)\(^6\)\(^3\)\(^6\)\(^3\) or even in the nucleus,\(^42\)\(^5\)\(^6\)\(^7\) as shown in Figure 1 and Table 1.

In the context of human diseases called “crystallopathies”,\(^66\) it has been demonstrated that Galectin 10 is the major component of CLCs which plays an essential role in the pathogenicity of several

Table 1: Examples of selected in vivo crystals observed in different living cell systems

Protein	Molecular weight	Cell system	Location	Crystal morphology	TEM	References
Calcineurin (HE)	79 kDa	SF21 insect cells	Cytosol	cubic-rhomboid	Yes	Fan et al\(^59\)
Charcot-Leyden crystals (HE & DR)	15 kDa	HEK293	Cytosol and nucleus	bipyramidal	No	Hasegawa et al\(^42\)
Cypovirus polyhedra (HE)	29 kDa	SF21 insect cells	Cytosol	cubic	Yes	Coulibaly et al\(^60\)
TbcathepsinB (HE)	37 kDa	SF9 insect cells	rER	Needle-like	Yes	Koopmann et al\(^2\)
TblMPDH (HE)	57 kDa	SF9 insect cells	Cytosol	Needle-like	Yes	Nass, Duszenko et al\(^3\)
Firefly luciferase (HE)	62 kDa	SF9 insect cells	Peroxisomes	Needle-like	Yes	Schönherr et al\(^63\)
GFP-μNS (HE)	45 kDa	SF9 insect cells	Cytosol	Needle-like	No	Schönherr et al\(^63\)
Immunoglobulin G (HE)	150 kDa	CHO cells	ER lumen	Needle-like	No	Hasegawa et al\(^54\)
Coral fluorescent Xpa protein (HE)	26 kDa	HEK293 (rat neuron & mouse fibroblast)	Lysosome, cytosol and nucleus	Needle-like	Yes	Tsutsui et al\(^56\)
PAK4-Inka1 complex (HE)	41 kDa	COS 7 cells (HeLa cells and HEK 293)	Cytosol and nucleus	Needle-like	No	Baskaran et al\(^7\)
Neuraminidase (HE & DR)	36 kDa	COS/CHO/HE K cells	ER	Cubic	No	Hasegawa, Gallat et al\(^58\)
γ-Cryallin D (HE & DR)	19 kDa	CHO/HEK	Cytosol	Hexagonal	Yes	Hasegawa\(^42\)
Hydra (NP)	N/A	Hydra	Mitochondria	Orthorhombic	Yes	Davis\(^64\)
LAPs/insect sperm (NP)	N/A	Insect sperm	Mitochondria	Crystalline	Yes	Baccetti et al (1977)\(^65\)

Note: **HE**, in cellulo protein crystallization via heterologous expression; **DR**, disease-related in cellulo protein crystallization; **NP**, natural phenomenon of in cellulo protein crystallization.

Crystal lattice confirmed by transmission electron microscopy.
A recent study solved the Galectin 10 structure using CLCs from patients with rhinosinusitis and asthma. Further, CLCs bind and are dissolved by antibodies. This opens new avenues to explore disease related in vivo crystals as drug target. In cellulo protein crystallization has also gained attention as a new and alternative method to produce high amounts of micro- or nano-sized crystals which can be used to determine the 3D structure of the crystallized protein using either high brilliant X-ray free electron laser or highly brilliant micro-focused synchrotron radiation applying serial diffraction data collection. However, despite an increasing number of publications reporting in vivo crystallization, the physicochemical parameters required and the molecular mechanism of in vivo crystallization guiding crystallization in cells are up to date only poorly understood, considering that even conventional, in vitro, protein crystallization till now remains a challenge. In a first assumption, it seems reasonable to consider the process to be analogous to crystal formation in vitro, where a purified protein at relatively high concentration is used for crystallization screening experiments. By mixing the protein solution with different precipitant agents, including salts or organic polymers, the phase diagram of crystallization is systematically screened to achieve supersaturation of the protein and to reach conditions required for nucleation. Additionnally, parameters such as temperature, pH, and others are typically optimized in in vitro protein crystallization experiments. However, the identification of in vitro protein crystal nucleation conditions is till now a trial and error process, and mostly unpredictable. Therefore, today in vitro protein crystallization experiments are routinely performed by screening many conditions applying either vapor diffusion, dialysis, counter diffusion, or batch crystallization techniques. During in vitro crystallization, a protein solution is brought to supersaturation to first induce liquid dense cluster (LDC) formation as a precursor followed by nucleation and further crystal growth, which thermodynamically is a second-order transition. In this context, several in vitro investigations are focused to obtain insights about the LDC formation and nucleation pathways in order to understand protein crystallization in more detail. This data can in principle also support understanding of in vivo crystallization. Likewise, in vivo crystallization at first requires a high local concentration of the protein to render crystallization thermodynamically favorable. Therefore, protein sorting into organelles with limited space seemed originally a prerequisite for in vivo crystallization. However, occurrence of in vivo crystals within the cytosol may also reflect preceding LLPS events. To reach the required protein supersaturation for nucleation and crystal growth, phase separation is supported by crowding agents in the cell, which promote attractive protein-protein interactions and act similar to precipitants in in vitro experiments. In vivo crystallization was observed in different cells and specific organelles. However, the in vivo nucleation mechanism and the molecular components, like crowding agents, essential for phase separation and crystallization are still challenging to address experimentally.

LLPS is a phenomenon denoting the demixing of structurally different molecules in aqueous solution above a certain concentration, considering a distinct physicochemical environment. LLPS is known to be the primary process underlying, for example, the formation of stress granules, the nucleolus, or P bodies. Based on these observations investigations are ongoing, trying to understand the molecular features promoting and regulating the formation of membrane-less organelles (MLOs). For protein crystallographers the concept that proteins or macromolecules can undergo phase
separation is not a new phenomenon, as it is frequently observed during crystallization experiments. LDCs are densely assembled molecules in aqueous solution, appearing in context of LLPS, which can be considered as a mandatory precursor of a nucleation process preceding the in vitro protein crystallization process. As an example, lysozyme undergoes LLPS, gelation, and crystallization depending on certain conditions of temperature, precipitants and protein concentration. More recently it was demonstrated that oligomeric peptides can undergo LLPS when stimulated by low temperature, crowding agents such as polyethylene glycol (PEG), or a pH sometimes close to their isoelectric points. Crowding agents are used for conventional protein crystallization, but also used to investigate the formation of the nucleolus, protein stabilization and folding and formation of other MLOs in vitro. Further, molecular crowding was also noticed to promote amyloid formation. Crowding agents, such as PEGs, dextrans, and even low molecular compounds like trimethylamine N-oxide (TMAO) have been used for in vitro investigations of LLPS.

From these in vitro experiments, it can be concluded that LLPS is obviously the process that governs the formation of membrane-less compartments in cells, which can occur in all different cell organelles or in the cytosol. This assumption is supported by the fact that in vivo grown crystals were observed in different organelles, such as rough endoplasmic reticulum (rER), mitochondria, lysosomes, peroxisomes or the nucleus, as indicated in Figure 1. These facts led us to consider that LLPS might not only be linked to cell compartmentalization or disease-related protein aggregation but may also be a prerequisite for in vivo crystallization.

2 | CELL ORGANELLES, LIQUID-LIQUID PHASE SEPARATION AND IN CELL PROTEIN PHASE STATES

Cells contain membrane-surrounded functional organelles, like the nucleus, mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, peroxisomes and MLOs, such as P-bodies, stress granules, Cajal bodies, nucleoli, etc. Organelles represent a specific environment that may differ in solvent content, pH value, ionic strength, internal molecule distribution and other characteristics, to shape them specialized for defined cellular functions. Membrane-surrounded organelles have a well-defined membrane and communicate intensively by different signaling pathways and direct exchange of molecules via specific small vesicle carriers, like COPI-coated vesicles or clathrin-coated vesicles that transport cargo between organelles. In terms of biogenesis many membrane-surrounded organelles are not formed de novo compared to MLOs, which appear at early mitosis. Organelles grow and divide and are distributed between cells during cell division. For example, the membrane of the rER expands during biosynthesis of secretory proteins and becomes part of the Golgi membrane via vesicular transport. From here vesicles are released and by membrane fusion either the plasma membrane or the lysosomal membrane may expand, depending on their protein cargo. The water content of membrane-surrounded organelles is controlled by aquaporins and only to a negligible part by direct perfusion.

In cellulo MLOs are formed by LLPS. They lack a lipid boundary, can contain different types of biomolecules, have specific functions and ensure that distinct cellular functions occur in a spatiotemporally controlled manner. However, our knowledge and understanding of the dynamic assembly, partitioning of molecules and reaction kinetics of MLOs and corresponding LLPS is still limited. Also recent publications highlight the fact that protein complexes, like ribonucleoproteins can be assembled via LLPS, a process involving the concentration of molecules in a confined liquid compartment that stably coexist with the surrounding liquid environment. A number of comparative and complementary in vivo and in vitro studies revealed that phase states of intracellular compartments can be liquid-liquid, liquid-gel, solid-gel, crystalline-solid, semi-crystalline or liquid-crystalline, depending on the surrounding physicochemical conditions and spatial ordering. Also, investigations unveiled that LLPS in vivo and in vitro can particularly involve intrinsically disordered proteins (IDPs)/regions. IDPs need to reach a critical local concentration to undergo LLPS. The presence of crowding molecules, within cells potentiates the conversion of the so-called protein condensates to different transition states, such as gel, liquid-crystalline, crystalline-solid, solid-gel and even to amyloid fibers. Certainly, a more detailed understanding of the underlying control mechanisms on a molecular level and about crowding agents is required to understand phase separation within cells. The already known physicochemical phenomena evaluated from in vitro experiments about LLPS are valuable to design and perform future experiments to obtain more insights about in cellulo LLPS.

3 | IN VIVO CRYSTALS

For more than a century it has been observed that protein crystallization occurs within living cells. In Table 1 we summarize selected examples of in vivo protein crystallization together with their intracellular location inside different organism or cell systems. Further, we grouped them into naturally occurring crystals, like mitochondrial crystals in Hydra and insect sperm, human disease-related crystals (sialidosis, Charcot-Leyden, and cataract) and crystals observed during heterologous expression, such as calcineurin, polyhedra, TbCatB, etc. Interestingly, most in vivo crystals have a needle-like shape, beside a few cubic-rhomboid, hexagonal and bipyramidal morphologies reported till now and they are mainly located within the cytosol or inside membrane surrounded organelles like the endoplasmic reticulum, mitochondria, lysosomes and peroxisomes as shown in Figure 1. Details about in vivo crystallization and crystals observed in cellulo are also reported by Doye and Poon, Duszenko et al, Schönherr et al and Hasegawa.

3.1 | Location of in vivo crystals in cells

Davis, and Baccetti et al reported about naturally formed crystalline or paracrystalline structures within mitochondria in hydra cells and
insect sperm.64,65 The intramitochondrial crystals were interpreted as a result of cellular damage or storage material. The crowding agents supporting phase separation and crystal nucleation within the mitochondria are not yet known, but it was recently described that sperm-leucylaminopeptidases (LAPs) are required for male fertility and that they are significant components of mitochondrial paracrystalline material in \textit{Drosophila melanogaster} sperm.122 Fan et al described in vivo crystals of calcineurin, a well-known heterodimeric Ser/Thr phosphatase, composed of a catalytic subunit (CNA) of 60 kDa and a regulatory subunit (CNB) of 19 kDa, which crystallized by co-expressing the catalytic subunit (CNA) from \textit{Neurospora crassa} (NorfA) and the human regulatory subunit (CNB) from human using the baculovirus expression systems. Up to three crystals/cell were identified in the cytosol applying transmission electron microscopy (TEM), but till now no X-ray diffraction study has been reported.59 Coulibaly et al reported the first atomic structure of cytosolic intracellular cypovirus polyhedra crystals grown in and purified from Sf21 insect cells. Schönherr et al analyzed the in vivo protein crystallization of firefly luciferase and GFP tagged to reovirus \(\mu\)NS (GFP-\(\mu\)NS), applying the Sf9 insect cell system. They demonstrated that growth of in vivo crystals is a highly dynamic process and that these crystals were located either inside of peroxisomes or within the cytosol, respectively. So far, characterization of firefly luciferase using scanning electron microscopy (SEM) and GFP-\(\mu\)NS using X-ray powder diffraction studies have been reported.63 Tsutsui et al reported expression of an Xpa Coral protein in HEK293 cells, were crystals were encapsulated by autophagosome/lysosomal membranes (although some crystal-like structures were also found in the nucleus). The authors describe that selective autophagy engulfs the crystals into a cargo within the cells.56 Baskaran et al described in vivo crystallization and X-ray structure analysis of human PAK4 in complex with its inhibitor Inka1. PAK4-Inka 1 in vivo crystals grew in the nucleus and cytosol of human cells, respectively.57 The crystal structure refined to 2.8 Å resolution revealed details about the PAK4 catalytic domain which binds cellular ATP and the Inka1 inhibitor. Also the authors described that the hexagonal array of PAK4cat subunits can in principle accommodate a variety of other medium or low molecular weight proteins when fused either to the full-length PAK4 or fragments of Inka1, highlighting that PAK4 can act as a molecular flask and chaperon supporting in vivo crystallization of small proteins and facilitating X-ray analysis.57

FIGURE 2 Light and electron micrographs (TEM and SEM) of in vivo crystals (TbIMP DH and TbCatB). (A) Light micrograph of non-infected High five cells and (B) infected High five cells with TbIMP DH (arrows indicate needle-shaped crystals). (C) SEM image of TbIMP DH crystals (arrows) sticking outside Sf9 cell. (D) TEM image of intersected TbIMP DH crystals in the cytosol. (E) SEM micrograph of a needle-shaped TbCatB crystal (arrows) growing from in to out of a Sf9 cell. (F) TEM image of TbCatB crystal inside rER.

Abbreviations: N, nucleus; NL, nucleolus; NM, nuclear membrane; rER, rough endoplasmic reticulum; V, virus particles
A recent publication by Hasegawa reported that neuraminidase, immunoglobulin G (IgG), γ-crystallin D and CLCs appear during heterologous expression in HEK or CHO cells, respectively, where crystals were identified within ER, cytosol, or nucleus through LLPS. Till now, no structure or X-ray diffraction data were published for these proteins. The author also speculates about potential crowding agents, such as cellular proteins and especially organelle resident proteins that might support in vivo crystallization of neuraminidase, IgG, γ-crystallin D or CLC. They also emphasize the urgent need to identify intracellular crowding agents or external factors to enhance or to predict the possibility to obtain protein crystals in a cell organelle.

In terms of our own investigations, we obtained in vivo grown crystals for Trypanosoma brucei (Tb) CatB and IMPDH using the baculovirus expression system (Sf9 insect cells and High five cells). Initially, we performed a bioanalytical characterization that revealed the identity of the crystallized material and showed the homogeneity of the intracellular crystal lattices by TEM and SEM (Figure 2). Analysis of the TEM micrographs revealed that TbCatB crystals were exclusively located within the rER and TbIMPDH crystals in the cytosol (Figure 2). We applied those crystals for serial diffraction data collection and could solve and refine the structures to 2.4 and 2.8 Å resolution, respectively.

Table 2: Summary of potential in cellulo crowding agents

Crowding agents	Chemico-physical properties and functions	References
Ribonucleotides: ATP, GTP, UTP, CTP; Deoxynucleotides: dATP, dGTP, dCTP, dTTP	Source of energy, affecting protein solubility and preventing macromolecular aggregation (ATP hydrotropic activity). Dissolving LLPS droplets and amyloid fibers	Traut,127 Rice and Rosen,128 Frankel et al129
RNAs: 1. snoRNA, snRNA, 2. poly(A)mRNA, 3. rRNA, 4. mRNA, 5. tRNA	RNA species actively contribute to cellular phase separation inside MLOs: Cajal bodies (snoRNA, snRNA), nuclear speckles (poly(A)mRNA), nucleolus (rRNA, snoRNA), para speckles, stress granules (poly(A)mRNA), processing bodies (snRNA) for different cellular function: RNA modification, mRNA maturation and storage, rRNA processing and modulation of gene expression. Induction of phase separation via RNA-protein interactions and RNA-RNA interactions	Weber and Brangwynne,130 Banani et al,91 Langdon and Gladfelter,131 Faya and Anderson,132 Poudyal et al133
Cellular proteins, and oligopeptides (poly-L-arginine, poly-L-lysine, polyallylamine, etc.)	Intracellular protein-protein interactions can lead to different in cellulo phase transitions (liquid-like, aggregation, liquid-crystalline or crystal). Polyallylamine/nucleotides are involved in phase separation. Poly-L-arginine, poly-L-lysine, polyallylamine and related polymers are most abundant among prokaryotes	Poudyal et al,133 Hasegawa42
Chemical chaperones/osmolytes, and other low-molecular-weight metabolites (carbohydrates, fatty acids and sterols, etc.), inorganic ions (Mg2+, H+/OH−, etc.)	Osmolytes or molecular chaperones are known to enhance or reduce the stability of protein molecules. They can trigger non-covalent protein-protein interactions to initiate LLPS. They are used as precipitant agents in vitro protein crystallization. Metabolites and ions are required for folding and catalytic activity of many enzymes. The metabolic enzyme can be regulated through phase separation by interaction with some metabolite	Diamant et al,134 Papp and Csermely,135 Marshall et al,136 Frankel et al,129 Poudyal et al,133 Hasegawa,42 Prouteau et al140
3.2 Crowding agents triggering LLPS

To date it remains challenging to investigate in cell phase separation phenomena on a molecular level. Therefore, several investigations on LLPS and biomolecular condensates are currently performed applying well-defined in vitro systems using selected proteins and distinct crowding agents. Synthetic macromolecular crowders, such as PEG, dextran or ficoll are mainly in use to investigate their single or synergy effects to induce or enhance LLPS in vitro. The “self-assembling” of proteins, such as FUS/TDP43, α-synuclein, tau, Aβ and the huntingtin into insoluble fibers that can even further aggregate is under investigation for some years, also in context to nucleic, tau, Aβ nucleotides in early stages during the origin of life. Nucleotides in the cytoplasm of extant biological cells and is discussed to be one relevant electronegative intracellular droplets in the cytoplasm and nucleo-plasm. The observed coacervate droplets were stable over a wide range of pH values and MgCl₂ concentrations.

LLPS is also thought to explain the appearance of polyelectrolyte-rich intracellular droplets in the cytoplasm and nucleoplasm of extant biological cells and is discussed to be one relevant factor in protocellular compartmentalization of nucleic acids and nucleotides in early stages during the origin of life. Nucleotides are typically available in high micromolar or even millimolar quantities in cells, which also qualifies mono- and oligonucleotides to be potential crowding agents. Oligoribonucleotides are also highly abundant as regulatory noncoding RNAs (tRNA, rRNA, miRNA, tmRNA) and can be grouped as polyanions that maintain some chemical similarity as compared to monoribonucleotides. Beside a mostly defined secondary structure the conformational flexibility of RNAs is supporting diverse regulatory protein-RNA interactions and formation of disordered coacervates and MLOs via electrostatic interaction. These interactions are typically enhanced by bivalent cations like Mg²⁺ and are stable over a wide range of physiological pH values. Hence, RNAs, especially RNAs related to the ribosomal translation machinery, may stabilize and/or surround a homogeneous protein phase separation state. Further, RNAs were already identified to be involved in LLPS in vitro. Compared to nucleic acids, the structural diversity of proteins in cells is much higher and many site-specific proteins are available in different quantities in different cellular organelles. Individual proteins were shown to initiate fiber and amyloid formation and surface properties or catalytic activities of a protein may be required to support LLPS formation. This might be either directly or by regulating the water content, the pH value or the abundance of another crowding agent in close proximity. The involvement of proteins in such a process was initially discussed by Hasegawa. Further experimental studies in the field, for example, to identify differences in the proteome during crystal formation, remain to be performed.

Small molecules with diverse chemical and structural properties are known to influence (enhance or reduce) the stability of protein molecules. Resulting changes of the tertiary structure of a protein can trigger and essentially influence noncovalent protein-protein interactions to initiate LLPS and even crystalline lattice order. Thereby, these molecules might also act as in cellulo crowding agents and may be considered as a precipitating agent for in vitro protein crystallization. Typically those compounds are called osmolytes acting as molecular chaperones. This group of structurally diverse molecules includes sugars, amines like betaine, urea and peptides.

Prouteau et al also reviewed that metabolic enzymes can even be regulated through phase separation, which could further regulate the availability of metabolites, acting as crowding agents. Overall, next to other reasons, like local stress-response, pH value or local water content, the availability of certain metabolites most probably influences the location that is suitable to initiate clustering of a protein within a cell.

4 CONCLUSION

Based on the current status of literature and our investigations about in vivo protein crystallization via heterologous expression, we conclude that four requirements need to be fulfilled for intracellular protein crystallization. First, the target protein should be over-expressed under control of a strong promoter to ensure a high translation rate. Second, the protein should accumulate via phase separation and formation of liquid dense protein clusters within cells. Third, UPR (unfolded protein response) should be avoided, as transcriptional regulators inhibit protein biosynthesis of the target gene in the cell expression system. Fourth and most important, specific crowding agents, such as short nucleotides, RNAs or distinct cellular proteins, must be present to support phase separation in context of other factors, like intracellular pH or PTMs inducing or enhancing nucleation. Experimental investigations need to be continued to identify and characterize molecular crowding agents, as a better knowledge about their function holds a significant potential to promote new research directions and to open new avenues to a better understanding of in vivo protein phase separation and crystal nucleation. Finally, in vivo protein crystallization needs to be systematically explored further, to obtain crystals for serial diffraction data collection and in parallel in terms of drug discovery investigations to prevent diseases related to in cellulo protein crystallization.

ACKNOWLEDGMENTS

The authors acknowledge financial support by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG)—EXC 2056—project ID 390715994, by the Helmholtz Excellence Network “Structure, Dynamics and Control on the Atomic Scale,” the DFG project BE1443/29-1 in terms of the DFG priority programme SPP2191, by the German Aerospace Center (DLR) via project 1442, by BMBF via project 05K16GUA.
and by the Joachim-Herz-Stiftung Hamburg via the project Infecto-Physics.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
All authors have made direct and intellectual contribution to the manuscript and approved it for publication.

ORCID
Christian Betzel https://orcid.org/0000-0002-3879-5019

REFERENCES
1. Doye JPK, Poon WCK. Protein crystallization in vivo. Curr Opin Col- loid Interface Sci. 2006;11(1):40-46. https://doi.org/10.1016/J. C005.2005.10.002
2. Koopmann R, Cupelli K, Redecke L, et al. In vivo protein crystalliza- tion opens new routes in structural biology. Nat Methods. 2012;9(3): 259-262. https://doi.org/10.1038/nmeth.1859
3. Duszenko M, Redecke L, Mudogo CN, et al. In vivo protein crystalli- zation in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins. Acta Crystallogr Sect F. 2015;71:929-937. https://doi.org/10.1107/S2053230X15011450
4. Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem. 2018;399(7):751-772. https://doi.org/10.1515/hsz-2018-0158
5. Hartig T. Über das Klebermehl. Bot Zeitung. 1853;3:881-882.
6. Charcot JM, Robin CM. Observation de leucocytheme. CR Mem Soc Biol. 1853;5:450-454.
7. Münzt K. Deposition of storage proteins. Plant Mol Biol. 1998;38 (1/2):77-99. https://doi.org/10.1023/A:1006020208380
8. Gifford DJ, Greenwood JS, Bewley JD. Deposition of matrix and crystallloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds. Plant Physiol. 1982;69(6):1471-1478. https://doi.org/10.1104/pp.69.6.1471
9. Jiang L, Phillips T, Rogers SW, Rogers JC. SR-TJ of cell, 2000 undefined. Biogenesis of the protein storage vacuole crystalloid. FEBS Lett. 2019;593(12):1360-1371. https://doi.org/10.1002/ FEB3.2017-3468.13439
10. Olafson KN, Ketchum MA, Rimer JD, Vekilov PG. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloro-quine. Proc Natl Acad Sci. 2015;112(16):4946-4951. https://doi. org/10.1073/pnas.1501023112
11. Olafson KN, Rimer JD, Vekilov PG. Growth of large hematin crystals in biomimetic solutions. Cryst Growth Des. 2014;14(5):2123-2127. https://doi.org/10.1021/cg5002682
12. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK. The struc- ture of malaria pigment β-haematin. Nature. 2000;404(6775):307- 310. https://doi.org/10.1038/35003132
13. Dilanian RA, Streltsov V, Coughlan HD, et al. Nanocrystallography mea- surements of early stage synthetic malaria pigment. J Appl Cryst. 2017; 50(pt 5):1533-1540. https://doi.org/10.1107/S1600576717012663
14. Kachroo AH. Order in stress—lessons from the inanimate world. J Biosci. 2018;43(1):45-51.
15. Crowfoot D, Fankuchen I. Molecular weight of a tobacco seed glob- ulin. Nature. 1938;141(3568):522-523. https://doi.org/10.1038/ 141522a0
16. Sawaya MR, Cascio D, Gingrich M, et al. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proc Natl Acad Sci. 2014;111(35): 12769-12774. https://doi.org/10.1073/pnas.1413456111
17. Adalat R, Saleem F, Crickmore N, Naz S, Shakoori A. In vivo crystalli- zation of three-domain cry toxins. Toxins (Basel). 2017;9(3):80. https://doi.org/10.3390/toxins9030080
18. Bannister LH. The structure of trichocysts in Paramecium caudatum. J Cell Sci. 1972;11(3):3-4.
19. Vyssáši L, Škouri F, Sperling L, Cohen J. Molecular genetics of regulated secretion in paramecium. Biochimie. 2000;82(4):269-288. https://doi.org/10.1016/S0006-3004(00)00201-7
20. Banerjee S, Coussens NP, Gallat F-X, et al. Structure of a heteroge- neous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata. J Cell Sci. 2016;129(2):282-293. https://doi.org/10.1242/jcs.1600893
21. Takemoto Y, Mitusuhisa W, Murakami R, Konishi H, Miyamoto K. The N-terminal region of an entomopoxvirus fusolin is essential for the enhancement of peroral infection, whereas the C-terminal region is eliminated in digestive juice. J Virol. 2008;82(24):12406-12415. https://doi.org/10.1128/JVI.01605-08
22. Shively JM, Ball FL, Kline BW. Electron microscopy of the carboxyburnsomes (polychedral bodies) of Thiothrix neapolitanus. J Bacteriol. 1973;116(3):1405-1411.
23. Tsukada H, Mochizuki Y, Fujiwara S. The nucleoids of rat liver cell microbodies: fine structure and enzymes. J Cell Biol. 1966;28(3):449- 460. https://doi.org/10.1083/jcb.28.3.449
24. Vonck J, van Bruggen EF. Architecture of peroxisomal alcohol oxidase crystals from the methylotrophic yeast Hansenula polymorpha as deduced by electron microscopy. J Bacteriol. 1992;174(16):5391-5399.
25. Heinze M, Reichelt R, Kleff S, Eising R. High resolution scanning electron microscopy of protein inclusions (cores) purified from
peroxisomes of sunflower (Helianthus annuus L.) cotyledons. Cryst Res Technol. 2000;35(6–7):877-886. https://doi.org/10.1002/1521-4079(200007)35:6<7:877;AID-CRAT877>3.0.CO;2-S.

36. Yuan P, Jedd G, Kumaran D, et al. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat Struct Mol Biol. 2003;10(4):264-270. https://doi.org/10.1038/nsmb910.

37. Markham P, Collinge AJ. Woronin bodies of filamentous fungi. FEMS Microbiol Lett. 1987;46(1):1-11. https://doi.org/10.1111/j.1574-6988.1987.tb02448.x

38. Knoblauch M, Peters WS, Ehlers K, van Bel AJE. Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell. 2001;13(5):1221-1230. https://doi.org/10.1105/tpc.13.5.1221.

39. Héon E, Priston M, Schorderet DF, et al. The γ-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet. 1999;65(5):1261-1267. https://doi.org/10.1086/302619.

40. Pande A, Pande J, Asherie N, et al. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci. 2001;98(11):6116-6120. https://doi.org/10.1073/pnas.101124799.

41. Francis PJ, Berry V, Moore AT, Bhattacharya S. Lens biology: developmental and human cataractogenesis. Trends Genet. 1999;15(5):191-196. https://doi.org/10.1016/S0168-9525(99)01738-2.

42. Hasegawa H. Simultaneous induction of distinct protein phase separation events in multiple subcellular compartments of a single cell. Exp Cell Res. 2019;379:92-109. https://doi.org/10.1016/j.yexcr.2019.03.010.

43. Lawrence C, Fabry ME, Nagel RL. The unique red cell heterogeneity of SC disease: crystal formation, dense reticulocytes, and unusual morphology. Blood. 1991;78(8):2104-2112.

44. Ueki S, Tokunaga T, Melo RCN, et al. Charcot-Leyden crystal formation: eosinophil extracellular trap cell death. Blood. 2018;132(20):2183-2187. https://doi.org/10.1182/blood-2018-04-842260.

45. Ueki S, Miyabe Y, Yamamoto Y, et al. Charcot-Leyden crystals in eosinophilic inflammation: active cytolysis leads to crystal formation. Curr Allergy Asthma Rep. 2019;19(8):35. https://doi.org/10.1007/s11882-019-0686-0.

46. Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science. 2019;364(6442):eaaw4295. https://doi.org/10.1126/science.364-6442.

47. Allen JE, Sutherland TE. Crystal-clear treatment for allergic disease. Sci Am. 1996;274(5):58-60. https://doi.org/10.1038/38566.

48. Kozina V, Geist D, Kubinová L, et al. Reinke’s crystals processed as an autophagic cargo. Mol Cell. 2019;58(1):186-193. https://doi.org/10.1016/j.molcel.2015.02.007.

49. Baskaran Y, Ang KC, Anekal PV, et al. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun. 2015;6(1):8681. https://doi.org/10.1038/ncomms9681.

50. Gallat F-X, Matsugaki N, Coussens NP, et al. In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology? Phil Trans R Soc B. 2014;369(1647):20130497. https://doi.org/10.1098/rstb.2013.0497.

51. Fan GY, Maldonado F, Zhang Y, Kincaid R, Ellisman MH, Gastinel LN. In vivo calcineurin crystals formed using the baculovirus expression system. Microsc Res Tech. 1996;34(1):77-86. https://doi.org/10.1002/scti.109066051. doi:10.1002/scti.109066051.

52. Gong J, Muyal J, Bernstein FB, et al. Structural and dynamic protein crystallization in living cells. Struct Dyn. 2015;2(4):041712. https://doi.org/10.1063/1.4921591.

53. Davis LE. Intramitochondrial crystals in hydra. J Ultrastruct Res. 1967;19(1):1-133.

54. Baccetti B, Dallai R, Pallini V, Rosati F, Afzelius BA. Protein of insect sperm mitochondrial crystals crystallomin. J Cell Biol. 1977;77(2):594-600.

55. Mulay SR, Andersen H-J. Crystallopathies. N Engl J Med. 2016;374(25):2465-2476. https://doi.org/10.1056/NEJMp1610111.

56. Chapman HN. X-ray free-electron lasers for the structure and dynamics of macromolecules. Annu Rev Biochem. 2019;88(1):1-2. https://doi.org/10.1146/annurev-biochem-013118-110744.

57. Chapman HN, Fromme P, Barty A, et al. Femtosecond X-ray nanocrystallography. Nature. 2011;470(7332):73-77. https://doi.org/10.1038/nature09750.

58. Gati C, Bourenkov G, Klinge M, et al. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ. 2014;1(2):87-94. https://doi.org/10.1107/S2053229X13033939.

59. Roedig P, Ginn HM, Pakendorf T, et al. High-speed fixed-target nanocrystallography. Nature. 2017;548(7666):455-457. https://doi.org/10.1038/nature20927.

60. McPherson A, Kaviraj A. Introduction to protein crystallization. Acta Crystallogr Sect F. 2014;70(part 1):1-2. https://doi.org/10.1107/S2053230X13033141.

61. Hopcroft J, Spellman N, Zhang Y, Doughman M, Li C, Yang Z. Protein crystallization: eluding the bottleneck of X-ray crystallography. AIMS Biophys. 2017;4(4):557-575. https://doi.org/10.3934/biophy.2017.4.557.

62. Gouvad L, Chayen NE. Choosing the method of crystallization to obtain optimal results. Crystals. 2019;9(2):106. https://doi.org/10.3390/cryst9020106.
113. Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in *Drosophila*. *Dev Biol*. 2017;428(2):310-317. https://doi.org/10.1016/j.ydbio.2017.03.029

114. Gomes D, Agasse A, Théibaud P, Delrot S, Gerós H, Chaumont F. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. *Biochim Biophys Acta*. 2009;1788(6):1213-1228. https://doi.org/10.1016/j.bbabio.2009.03.009

115. Rabouille C, Alberti S. Cell adaptation upon stress: the emerging role of membrane-less compartments. *Curr Opin Cell Biol*. 2017;47:34-42. https://doi.org/10.1016/j.ceb.2017.02.006

116. Alberti S. The wisdom of crowds: regulating cell function through condensed states of living matter. *J Cell Sci*. 2013;127(17):2789-2796. https://doi.org/10.1242/jcs.200295

117. Franzmann TM, Alberti S. Protein phase separation as a stress survival strategy. *Cold Spring Harb Perspect Biol*. 2019;11:a034058. https://doi.org/10.1101/cshperspect.a034058

118. Alberti S. Phase separation in biology. *Curr Biol*. 2017;27(20):R1097-R1102. https://doi.org/10.1016/j.cub.2017.08.069

119. Nakashima KK, Vibhute MA, Spruijt E. Biomolecular chemistry in liquid-liquid phase separations in biology. *Biochemistry*. 2018;57(17):2470-2477. https://doi.org/10.1021/acs.biochem.8b00001

120. Uversky VN. Intrinsically disordered proteins and their "mysterious" (metaphysics. *Front Physiol*. 2019;7:10. https://doi.org/10.3389/fphy.2019.00010

121. Laurinyecz B, Vedelek V, Kovács AL, et al. Sperm-membrane proteins regulate molecular chaperones and potential use. *Handb Exp Pharmacol*. 2006;172:405-416.

122. Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methyamine osmolytes as cryoprotective agents for macro-molecular crystallography. *Acta Crystallogr Sect D*. 2012;68(1):69-81. https://doi.org/10.1107/S0907444911050360

123. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. *J Biol Chem*. 2001;276(43):39585-39591. https://doi.org/10.1074/jbc.M103081200

124. Petrovska I, Nüske E, Munder MC, et al. Filament formation by membraneless compartments in origins of life chemistry. *Biochim Biophys Acta*. 2009;1788(6):1213-1228. https://doi.org/10.1016/J.BBAMEM.2009.03.009

125. Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separation in biology. *Soft Matter*. 2019;15(6):1135-1154. https://doi.org/10.1039/C8SM02285B

126. Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. *Cell*. 2019;176(3):419-434. https://doi.org/10.1016/j.cell.2018.12.035

127. Elbaum-Garfinkle S. Matter over mind: liquid phase separation and RNA. *Langmuir*. 2016;32(8):2041-2049. https://doi.org/10.1021/acs.langmuir.5b04462

128. Weber SC, Brangwynne CP. Getting RNA and Protein in Phase. *Cell*. 2012;149(6):1188-1191. https://doi.org/10.1016/j.cell.2012.05.022

129. Langdon EM, Gladfelter AS. A New Lens for RNA Localization: Liquid-Liquid Phase Separation. *Annu Rev Microbiol*. 2018;72(1):255-271. https://doi.org/10.1146/annurev-micro-090817-062814

130. Poudyal RR, Pir Cakmak, Keating CD, Bevilacqua PC. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. *Biochemistry*. 2018;57(17):2509-2519. https://doi.org/10.1021/acs.biochem.8b00081

131. Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methyamine osmolytes as cryoprotective agents for macro-molecular crystallography. *Acta Crystallogr Sect D*. 2012;68(1):69-81. https://doi.org/10.1107/S0907444911050360

132. Popp E. Csermely P. Chemical chaperones: mechanisms of action and potential use. *Handb Exp Pharmacol*. 2006;172:405-416.

133. Elbaum-Garfinkle S. Matter over mind: liquid phase separation and RNA. *Langmuir*. 2016;32(8):2041-2049. https://doi.org/10.1021/acs.langmuir.5b04462

134. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. *J Biol Chem*. 2001;276(43):39585-39591. https://doi.org/10.1074/jbc.M103081200

135. Papp E. Csermely P. Chemical chaperones: mechanisms of action and potential use. *Handb Exp Pharmacol*. 2006;172:405-416.

136. Marshall H, Venkat M, Hti Lar Seng NS, Cahn J, Juers DH. The use of trimethylamine N-oxide as a primary precipitating agent and related methyamine osmolytes as cryoprotective agents for macro-molecular crystallography. *Acta Crystallogr Sect D*. 2012;68(1):69-81. https://doi.org/10.1107/S0907444911050360

137. Prouteau M, Loewth R. Regulation of cellular metabolism through phase separation of enzymes. *Biomolecules*. 2018;8(4):160. https://doi.org/10.3390/biom8040160

138. Kang J, Lin L, Song J. ATP enhances at low concentrations but dissolves at high concentrations liquid-liquid phase separation (LLPS) of ALS/FTD-causing FUS. *Biosci Rep* 2018;504(2):545-551. https://doi.org/10.1016/j.bios.2018.09.014

139. Wegmann S, Eftekharzadeh B, Tepper K, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. *EMBO J*. 2018;37(7):e98049. https://doi.org/10.15252/embj.201798049

140. Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. *Biophys J*. 1995;473(411):411-414. https://doi.org/10.1016/1006-3495(85)83932-1

141. Trovato F, Fumagalli G. Molecular simulations of cellular processes. *Biophys Rev*. 2017;9(6):941-958. https://doi.org/10.1007/s12551-017-0363-6

142. Petrovska I, Nüske E, Munder MC, et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. *Elife*. 2014;3:5-7. https://doi.org/10.7554/eLife.02409

How to cite this article: Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. *Traffic*. 2019;1–11. https://doi.org/10.1111/tra.12711