Bis(2-aminobenzimidazolium) sulfate monohydrate

Adrian Peña Huesoa, Adriana Esparza Ruizb and Angelina Flores Parra*a*

aDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14-740, Ciudad de Mexico, CP 07000, Mexico, and bFacultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km 33.5, Tablaje Catastral 13615, Chuburna de Hidalgo Inn, Mérida, Yucatan, C.P 97203, Mexico.
*Correspondence e-mail: aflores@cinvestav.mx

In the title hydrated molecular salt, $2\text{C}_7\text{H}_8\text{N}_3^+\cdot\text{SO}_4^{2-}\cdot\text{H}_2\text{O}$, the components are linked by numerous $\text{N}—\text{H}—\text{O}$ and $\text{O}—\text{H}—\text{O}$ hydrogen bonds.

3D view

Chemical scheme

Structure description

2-Aminobenzimidazole has been used for the synthesis of a series of sulfur heterocycles such as $9\text{H}-3\text{-thia}-1,4\text{a,9-triaza-fluorene-2,4-dithione}$ (1): its potassium thiolate salt was used to prepare metal coordination compounds (Peña-Hueso et al., 2008), and is the precursor of the title compound. When compound 1 is dissolved in dimethyl sulfoxide and strong acids are added, instead of producing the protonated derivative, the thia-diazine ring breaks down, producing 2-aminobenzimidazolium sulfate (2): its crystal structural features are the subject of the present paper.

Compound 2 is formed by the transfer of two protons from sulfuric acid to the heterocycle: the crystal has two 2-aminobenzimidazolium cations, one sulfate anion and one water molecule in its asymmetric unit (Fig. 1). There is a small asymmetry in the $\text{S}—\text{O}$ bond lengths of the SO_4^{2-} ion from 1.4596 (16) to 1.4723 (15) Å, probably caused by the hydrogen bonds around the anion (Gagné & Hawthorne, 2018). Two benzimidazolium cations are stacked in a head-to-tail way, with a distance between C_9 of one molecule and C_{18} of another of 3.441 (3) Å.

The sulfate ion accepts seven $\text{N}—\text{H}—\text{O}$ hydrogen bonds from four adjacent benzimidazolium cations and one $\text{O}—\text{H}—\text{O}$ link from a water molecule (Table 1, Fig. 2). The water molecule accepts one $\text{N}—\text{H}—\text{O}$ hydrogen bond and forms two $\text{O}—\text{H}—\text{O}$ links to two SO_4^{2-} ions (Fig. 3). In the extended structure, the benzimidazolium cations form parallel ribbons propagating in the [010] direction (Fig. 4).
The first crystal structure of a 2-aminobenzimidazolium salt was reported with the nitrate anion (Bats et al., 1999) and a related structure with hydrogen sulfate as the counter-ion is also known (You et al., 2009).

Table 1
Hydrogen-bond geometry (Å, °).

	D—H—A	D—H	H—A	D—A	D—H—A
N1—H1—O25"	0.81 (4)	2.25	3	2.946	144 (3)
N3—H3—O22"	0.83 (3)	1.93	3	2.749	172 (3)
N11—H11—O23	0.85 (4)	1.96	4	2.786	166 (3)
N13—H13—O24"	0.83 (4)	1.91	4	2.720	165 (3)
N10—H101—O23"	0.87 (4)	2.03	4	2.894	169 (3)
N10—H102—O25"	0.89 (3)	2.00	3	2.890	175 (3)
N20—H202—O22"	0.94 (3)	2.09	4	2.973	157 (3)
O26—H261—O24"	0.80 (7)	2.22	7	2.983	160 (7)
O26—H262—O24"	0.80 (7)	2.14	7	2.860	150 (6)
C17—H17—O22	0.95	2.56	2	3.272	152

Symmetry codes: (i) x, y + 1/2, z; (ii) x + 1, y + 1, z; (iii) x + 2, y + 1/2, z; (iv) x + 2, y, z + 1/2; (v) x, y + 3/2, z.

Table 2
Experimental details.

Crystal data	
Chemical formula	2C7H8N3⁺·SO4⁻·H2O
Mr	382.4
Crystal system, space group	Monoclinic, P21/c
Temperature (K)	293
a, b, c (Å)	12.1115 (2), 10.6282 (2), 17.4772 (3)
β (°)	127.723 (1)
V (Å³)	1779.48 (6)
Z	4
Radiation type	Mo Kα
μ (mm⁻¹)	0.22
Crystal size (mm)	0.25 × 0.25 × 0.17

Figure 1
The molecular structure of 2 showing displacement ellipsoids drawn at the 50% probability level.

Figure 2
Hydrogen-bond environment around the sulfate anion.

Figure 3
Network of hydrogen bonds (dashed lines) involving the water molecules and sulfate ions.

Figure 4
The unit-cell packing showing [010] ribbons of cations linked by sulfate anions.

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHEXL97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003) and CAMERON (Watkin et al., 1996).
Synthesis and crystallization

The decomposition of 9H-3-thia-1,4a,9-triaza-fluorene-2,4-di-thione with dilute aqueous H$_2$SO$_4$ in DMSO afforded the title compound 2, m.p. 287–289°C. IR (KBr), ν (cm$^{-1}$): 3285 (N—H), 1682 (C≡N), 1520 (C=C), 1478 (C—N). NMR (DMSO-$_d_6$, p.p.m.) δ 1H: 7.27 (H4, H7); 7.09 (H5, H6); 13.18 (N1—H, N3—H); 8.70 (NH$_2$); δ 13C: 152.1 (C2); 111.8 (C4, C7); 123.4 (C5, C6); 130.4 (C8, C9). δ 15N: −257.1 (N1, N3); −312.9 (N10). Analysis calculated (%) for C$_{16}$H$_{16}$N$_6$SO$_5$: C, 43.97; H, 4.74; N, 21.98. Found: C, 43.50; H, 4.80; N, 21.80. The chemical shifts of C2 (152.1 p.p.m.), C8 and C9 (130.4 p.p.m.) in the 13C NMR spectrum indicate that the endocyclic nitrogen atoms are protonated, in agreement with the crystal structure.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

The authors thank Cinvestav for financial support.

References

Bats, J. W., Gördes, D. & Schmalz, H.-G. (1999). Acta Cryst. C55, 1325–1328.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96.
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. https://doi.org/10.1016/S0076-6879(97)76066-X
Peña-Hueso, A., Esparza-Ruiz, A., Ramos-García, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492–504.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, University of Oxford, England.
You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.
full crystallographic data

IUCrData (2022). 7, x220172 [https://doi.org/10.1107/S2414314622001729]

Bis(2-aminobenzimidazolium) sulfate monohydrate

Adrian Peña Hueso, Adriana Esparza Ruiz and Angelina Flores Parra

Bis(2-aminobenzimidazolium) sulfate monohydrate

Crystal data

2C7H8N3+·SO42−·H2O

Mr = 382.4

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 12.1115 (2) Å

b = 10.6282 (2) Å

c = 17.4772 (3) Å

β = 127.723 (1)°

V = 1779.48 (6) Å³

Z = 4

F(000) = 800

D, = 1.427 Mg m⁻³

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 4784 reflections

θ = 1–29°

µ = 0.22 mm⁻¹

T = 293 K

Prism, colourless

0.25 × 0.25 × 0.17 mm

Data collection

Nonius KappaCCD
diffractometer

Radiation source: Enraf Nonius FR590

Graphite monochromator

Detector resolution: 9 pixels mm⁻¹

φ & ω scans

9132 measured reflections

4563 independent reflections

2429 reflections with I > 2σ(I)

R(int) = 0.04

θ(max) = 28.7°, θ(min) = 2.1°

h = −15→16

k = −14→14

l = −23→23

Refinement

Refinement on F

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.041

wr(F²) = 0.050

S = 1.03

2429 reflections

265 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent and constrained refinement

Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A₀*T₀(x) + A₁*T₁(x) + ··· + Aₙ₋₁*Tₙ₋₁(x)]

where Aᵢ are the Chebychev coefficients listed below and x = F / Fmax

Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)²]² Aᵢ are: 0.914 0.838 0.564 0.170 0.849E−01

(Δ/σ)max = 0.0002

Δρmax = 0.25 e Å⁻³

Δρmin = −0.31 e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The positions of all NH and OH hydrogen atoms were refined, and all CH were placed at ideal positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Atom	x	y	z	U_{eq}/U_{eq}					
C2	0.5660 (3)	0.1533 (2)	−0.12552 (17)	0.0484					
C4	0.5449 (3)	0.1836 (2)	0.0688 (2)	0.0626					
C5	0.6271 (4)	0.1200 (3)	0.1556 (2)	0.0725					
C6	0.7293 (3)	0.0372 (3)	0.1756 (2)	0.0728					
C7	0.7524 (3)	0.0132 (3)	0.1090 (2)	0.0682					
C8	0.6705 (3)	0.0761 (2)	0.0224 (18)	0.0503					
C9	0.5691 (2)	0.1616 (2)	0.00250 (16)	0.047					
C12	0.9604 (2)	0.2887 (2)	0.21087 (16)	0.047					
C14	0.8306 (3)	0.3839 (3)	−0.0275 (2)	0.0719					
C15	0.7199 (4)	0.4642 (3)	−0.0859 (2)	0.0819					
C16	0.6467 (4)	0.5164 (3)	−0.0557 (2)	0.0786					
C17	0.6837 (3)	0.4930 (3)	0.03457 (18)	0.0617					
C18	0.7951 (2)	0.4131 (2)	0.09334 (16)	0.0479					
C19	0.8659 (3)	0.3583 (2)	0.06268 (17)	0.0521					
H1	0.700 (3)	0.023 (3)	−0.073 (2)	0.0781*					
H3	0.440 (3)	0.256 (3)	−0.122 (2)	0.0603*					
H4	0.476	0.2396	0.0553	0.0818*					
H5	0.6134	0.1333	0.2013	0.0945*					
H6	0.7819	−0.0041	0.2343	0.0851*					
H7	0.82	−0.0425	0.1215	0.0843*					
H11	0.830 (3)	0.384 (3)	0.220 (2)	0.0595*					
H13	1.021 (3)	0.235 (3)	0.136 (2)	0.0682*					
H14	0.8797	0.3482	−0.0463	0.0925*					
H15	0.6943	0.4849	−0.1462	0.0986*					
H16	0.5679	0.568	−0.0992	0.0857*					
H17	0.6367	0.5309	0.0569	0.0697*					
H101	0.580 (3)	0.137 (3)	−0.227 (2)	0.0811*					
H102	0.472 (3)	0.237 (3)	−0.247 (2)	0.0806*					
H201	1.041 (3)	0.247 (3)	0.339 (2)	0.07*					
H202	1.115 (3)	0.183 (3)	0.301 (2)	0.0698*					
H261	0.979 (7)	0.918 (6)	0.069 (5)	0.1811*					
H262	0.925 (6)	0.838 (6)	0.005 (5)	0.1804*					
N1	0.6657 (2)	0.0745 (2)	−0.05947 (16)	0.0562					
N3	0.5078 (2)	0.20819 (19)	−0.08953 (14)	0.0477					
N10	0.5301 (3)	0.1737 (2)	−0.21296 (17)	0.0601					
N11	0.85749 (19)	0.3685 (2)	0.18649 (14)	0.0479					
N13	0.9688 (2)	0.2826 (2)	0.13810 (14)	0.0539					
N20	1.0417 (2)	0.2263 (2)	0.29315 (16)	0.0582					
	x	y	z	U11	U22	U33	U12	U13	U23
---	-------	-------	-------	------	------	------	------	------	------
O22	0.72767 (16)	0.64914 (16)	0.21275 (11)	0.0506					
O23	0.72874 (19)	0.44104 (15)	0.26788 (13)	0.0584					
O24	0.8960 (2)	0.5933 (2)	0.37860 (12)	0.0746					
O25	0.6554 (2)	0.61476 (17)	0.31313 (14)	0.0657					
O26	0.9603 (4)	0.8443 (3)	0.06107 (18)	0.1136					
S21	0.75054 (6)	0.57563 (5)	0.29273 (4)	0.0431					

Atomic displacement parameters (Å²)

	U11	U22	U33	U12	U13	U23
C2	0.0604 (14)	0.0435 (12)	0.0537 (13)	0.0027 (10)	0.0411 (12)	−0.0021 (10)
C4	0.0850 (19)	0.0550 (15)	0.0668 (16)	0.0109 (13)	0.0563 (16)	0.0013 (12)
C5	0.109 (2)	0.0657 (17)	0.0641 (17)	0.0001 (17)	0.0640 (18)	0.0001 (14)
C6	0.087 (2)	0.0733 (18)	0.0555 (15)	0.0049 (16)	0.0420 (16)	0.0142 (14)
C7	0.0703 (17)	0.0651 (17)	0.0705 (17)	0.0194 (14)	0.0436 (15)	0.0185 (14)
C8	0.0577 (14)	0.0464 (12)	0.0551 (14)	0.0050 (11)	0.0388 (12)	0.0017 (11)
C9	0.0580 (13)	0.0411 (11)	0.0484 (12)	0.0015 (10)	0.0358 (11)	−0.0010 (10)
C12	0.0421 (11)	0.0541 (13)	0.0449 (12)	−0.0005 (10)	0.0266 (11)	−0.0062 (11)
C14	0.086 (2)	0.087 (2)	0.0555 (16)	0.0163 (16)	0.0498 (16)	−0.0027 (14)
C15	0.107 (3)	0.085 (2)	0.0498 (15)	0.0272 (19)	0.0461 (17)	0.0063 (14)
C16	0.090 (2)	0.0757 (19)	0.0485 (15)	0.0291 (17)	0.0315 (15)	−0.0001 (14)
C17	0.0615 (15)	0.0649 (16)	0.0475 (14)	0.0171 (13)	0.0277 (12)	−0.0065 (12)
C18	0.0467 (12)	0.0520 (13)	0.0425 (12)	0.0014 (10)	0.0261 (11)	−0.0085 (10)
C19	0.0542 (14)	0.0561 (14)	0.0480 (13)	0.0051 (11)	0.0322 (12)	−0.0054 (11)
N1	0.0716 (14)	0.0522 (12)	0.0658 (13)	0.0182 (11)	0.0527 (12)	0.0089 (10)
N3	0.0555 (11)	0.0470 (10)	0.0480 (11)	0.0102 (9)	0.0356 (10)	0.0018 (9)
N10	0.0807 (16)	0.0608 (13)	0.0583 (13)	0.0140 (11)	0.0525 (13)	0.0042 (10)
N11	0.0440 (10)	0.0592 (12)	0.0450 (10)	0.0050 (9)	0.0296 (9)	−0.0045 (9)
N13	0.0522 (12)	0.0660 (13)	0.0499 (11)	0.0139 (10)	0.0345 (10)	−0.0004 (10)
N20	0.0551 (12)	0.0685 (14)	0.0502 (12)	0.0098 (11)	0.0318 (11)	0.0020 (11)
O22	0.0481 (9)	0.0669 (10)	0.0421 (8)	0.0040 (7)	0.0302 (8)	0.0120 (7)
O23	0.0752 (12)	0.0507 (9)	0.0791 (12)	−0.0031 (8)	0.0624 (11)	−0.0046 (8)
O24	0.0619 (11)	0.1028 (15)	0.0410 (9)	−0.0251 (11)	0.0223 (9)	0.0111 (9)
O25	0.0948 (14)	0.0562 (10)	0.0907 (13)	0.0093 (9)	0.0796 (12)	0.0092 (9)
O26	0.144 (2)	0.148 (3)	0.0652 (14)	−0.069 (2)	0.0725 (17)	−0.0286 (16)
S21	0.0483 (3)	0.0508 (3)	0.0396 (3)	−0.0046 (3)	0.0317 (3)	0.0008 (2)

Geometric parameters (Å, °)

	C2—N1	C15—H15	C16—C17	C17—C18	C17—H17	C18—C19	C18—N11	C19—N13	H1—N1
C2	1.336 (3)	C15	1.374 (4)	C16	0.95				
C2	1.333 (3)	C16	0.931	C18	1.387 (3)				
C2	1.326 (3)	C16	0.92	C19	1.389 (3)				
C4	1.380 (4)	C17	1.379 (3)	C19	0.80 (3)				
C6—H6 0.922
C7—C8 1.373 (4)
C7—H7 0.921
C8—C9 1.390 (3)
C8—N1 1.396 (3)
C9—N3 1.386 (3)
C12—N11 1.343 (3)
C12—N13 1.338 (3)
C12—N20 1.321 (3)
C14—C15 1.376 (4)
C14—C19 1.385 (4)
C14—H14 0.919
C15—C16 1.394 (4)

N1—C2—N3 109.0 (2)
N1—C2—N10 125.7 (2)
N3—C2—N10 125.2 (2)
C5—C4—C9 117.5 (2)
C5—C4—H4 121.5
C9—C4—H4 121
C4—C5—C6 121.5 (3)
C4—C5—H5 119.2
C6—C5—H5 119.3
C5—C6—C7 121.3 (3)
C5—C6—H6 119.3
C7—C6—H6 119.4
C6—C7—C8 117.2 (3)
C6—C7—H7 122
C8—C7—H7 120.8
C7—C8—C9 121.8 (2)
C7—C8—N1 132.3 (2)
C9—C8—N1 106.0 (2)
C8—C9—C4 120.7 (2)
C8—C9—N3 106.76 (19)
C4—C9—N3 132.5 (2)
N11—C12—N13 109.0 (2)
N11—C12—N20 126.2 (2)
N13—C12—N20 124.8 (2)
C15—C14—C19 116.6 (2)
C15—C14—H14 122.8
C19—C14—H14 120.7
C14—C15—C16 121.6 (3)
C14—C15—H15 119.2
C16—C15—H15 119.3
C15—C16—C17 121.7 (3)
C15—C16—H16 119.2
C17—C16—H16 119.1
C16—C17—C18 116.8 (2)
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
NC1—H1···O25	0.81 (4)	2.25 (3)	2.946 (3)	144 (3)
NC3—H3···O22	0.83 (3)	1.93 (3)	2.749 (3)	172 (3)
NC11—H11···O23	0.85 (4)	1.96 (4)	2.786 (4)	166 (3)
NC13—H13···O24	0.83 (4)	1.91 (4)	2.720 (3)	165 (3)
NC10—H101···O23	0.87 (4)	2.03 (4)	2.894 (5)	169 (3)
NC10—H102···O25	0.89 (3)	2.00 (3)	2.890 (3)	175 (3)
NC20—H201···O26	0.84 (3)	2.04 (3)	2.853 (4)	165 (3)
NC20—H202···O22	0.93 (4)	2.09 (4)	2.973 (4)	157 (3)
OC26—H261···O24	0.80 (7)	2.22 (7)	2.983 (4)	160 (7)
OC26—H262···O24	0.80 (7)	2.14 (7)	2.860 (4)	150 (6)
CC17—H17···O22	0.95	2.56	3.272 (3)	132

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x, −y+3/2, z−1/2.