L1-L2 Parallel Dependency Treebank as Learner Corpus

John Lee, Keying Li, Herman Leung

City University of Hong Kong
Outline

• Introduction
• Parallel treebanks
• Learner corpora
• L1-L2 parallel treebank as learner corpus
 – Case study
Introduction

- A learner corpus consists of text written by language learners
 - Typically indicates learner errors with:
 - Error tags
 - Target hypothesis

Example:

He <MV> null | is </MV> happy.

Error tag: M(issing) V(erb)

Target hypothesis: Corrected version of sentence
Introduction

• Learner corpora facilitate retrieval of large number of samples for quantitative studies
 – Error Analysis
 • What are the most common error categories in learner text?
 – Contrastive Interlanguage Analysis
 • What words or structures are overused or underused by learners, compared to native speakers?
Introduction

• We propose annotating a learner corpus as an *L1-L2 parallel treebank*
 – L2 treebank
 • Learner sentences, with syntactic trees
 – L1 treebank
 • Target hypotheses, with syntactic trees
 – Word alignment between L1 and L2 trees
Learner Chinese sentence (L2)

'I wake up at 7 o'clock'

Target hypothesis (L1)

Syntactic tree for L1

POS tag for L1

Word alignment

POS tag for L2

Syntactic tree for L2
Introduction

• This paper discusses:
 – Advantages of using a parallel L1-L2 treebank to analyze learner language
 • More flexible retrieval of different error types
 – Case study on word-order errors
 • Evaluation on accuracy in retrieving different types of word-order errors
 • Based on a small parallel Chinese L1-L2 treebank
Outline

• Introduction
• **Parallel Treebanks**
• Learner Corpora
• L1-L2 parallel treebank as learner corpus – Case study
Parallel treebanks

- Parallel treebanks increasingly available
 - Czech-English, English-French, English-German, English-German-Swedish, English-Swedish-Turkish (Cmejrek et al. 2003; Hansen-Schirra et al., 2006; Ahrenberg, 2007; Hearne and Way, 2006, Megyesi et al., 2010)

(Cmejrek et al., 2003; Volk & Marek, 2011)
Parallel treebanks

• Parallel treebanks support quantitative comparison between languages
 – Translation correspondence
 – Typological features
 • Copula construction, predicate structure, etc. (Sulger et al., 2013)

• An **L1-L2 parallel treebank** can similarly support comparison between a language and an interlanguage
Parallel treebanks

- Treebanks have been constructed for learner English
 - Dependency treebanks (Berzak et al., 2016; Ragheb and Dickinson, 2014)
 - Constituent treebanks (Nagata and Sakaguchi, 2016)
 - Not yet any L1-L2 parallel treebank

[Berzak et al., 2016]
Outline

• Introduction
• Parallel Treebanks
• **Learner Corpora**
• L1-L2 parallel treebank as learner corpus
 – Case study
Error tags

- **NUCLE error tagset** *(Dahlmeier et al., 2013)*

Error Type	Description
Verb tense	Noun number
Verb modal	Noun possessive
Missing verb	Pronoun form
Verb form	Pronoun reference
Subject-verb agreement	Wrong collocation
Article or determiner	Acronyms
Runons	Word form
Dangling modifiers	Tone
Parallelism	Subordinate clause
Fragment	
Error tags

- Test of Chinese as a Foreign Language Learner corpus (Lee et al., 2016)
Limitations

• Error tags impose a fixed error typology

• Limited corpus re-use
 – Difficult to develop a robust and general-purpose error typology
 – Cannot cover “all” error categories of potential interest
 – Researchers need to re-annotate for their own studies
Limitations

• Limited corpus interoperability
 – Granularity of error tagset varies among corpora
 • E.g., Learner English: NUCLE (27 tags) vs NICT Japanese Learner English Corpus (46 tags) vs Cambridge Learner Corpus (80 tags)
 – To leverage multiple corpora, one would need to map error categories from one corpus to another
 • Difficult because of differences in definition
Outline

• Introduction
• Parallel Treebanks
• Learner Corpora
 • L1-L2 parallel treebank as learner corpus
 – Case study
Tree search for error retrieval

- Many error categories can be expressed as a search query on POS tags

L2	Furniture	look	good
POS tag	NN	VB	JJ

L1	Furniture	looks	good
POS tag	NN	VBZ	JJ

Search on aligned VB-VBZ words can retrieve subject-verb agreement errors
Tree search for error retrieval

• But POS tags alone are often not sufficient
 – E.g., change in POS might be a consequence of other errors

L2	Furniture	look	good
POS tag	NNS	VB	JJ

L1	Furniture	looks	good
POS tag	NN	VBZ	JJ

Not a subject-verb agreement error, but a noun number error
Tree search for error retrieval

• More precise search is possible with dependency relations

- Both verbs have the same noun subject
- The noun subject is not changed
- Verb changed from base form (VB) to present third-person singular (VBZ)
Outline

• Introduction
• Parallel Treebanks
• Learner Corpora
• L1-L2 parallel treebank
 – Case study
Chinese word-order errors

• Types of Chinese word-order errors
 – 3 categories proposed by Ko (1997)
 • Time/Place Words
 • Modification Structures
 • Topic-comment Relations
 – 27 categories proposed by Jiang (2009)
 – Current Chinese learner corpora do not provide this granularity
 • Impossible to distinguish between these categories
Data

• Dev set: 58 sentence pairs from Jiang (2009)
 – Manually developed 30 parse tree patterns for 10 error categories
 – Annotated sentence with Universal Dependencies
 • Based on scheme proposed by Lee et al. (2017)

• Test set: 114 sentences
(a) Modifiers + V (Adverb + V)
L2: 我去第一次中國...
wo qu/VERB diyici/NOUN zhongguo
‘I’ ‘go’ ‘first time’ ‘China’
L1: 我第一次去中國...
wo diyici/NOUN qu/VERB zhongguo
‘I’ ‘first time’ ‘go’ ‘China’
“l go for the first time to China ...”

(b) Action Series (LE position)
L2: 我們去了參觀故宮
women qu/VERB le canguan/VERB gugong
‘we’ ‘go’ LE ‘visit’ ’Forbidden City’
L1: 我們去參觀了故宮
women qu/VERB canguan/VERB le gugong
‘we’ ‘go’ ‘visit’ LE ’Forbidden City’
“We went to visit the Forbidden City”

(c) Locative Expressions (Location + V)
L2: 你做什麼在這裡
ni zuo/VERB shenme zai/ADP zheli/NOUN
‘you’ ‘do’ ‘what’ ‘at’ ‘here’
L1: 你在這裡做什麼
ni zai/ADP zheli/NOUN zuo/VERB shenme
‘you’ ‘at’ ‘here’ ‘do’ ‘what’
“What are you doing here?”
Results

Error type	Precision	Recall
Time expressions	0.92	0.92
Modifiers + V	0.50	0.50
Action Series	0.65	0.85
Locative expressions	0.91	0.77
Subsidiary Relations	1.00	0.80
Beneficiary	1.00	0.56
Modifiers + N	0.89	1.00
DE position	1.00	0.38
Topic-comment	0.83	0.71
Question	1.00	0.50
Conclusion

• An L1-L2 parallel treebank offers some advantages as learner corpus
 – Corpus re-use
 – Corpus interoperability

• A case study on Chinese word-order errors demonstrates its potential