Random triangles in random graphs

Annika Heckel

Mathematisches Institut, Ludwig-Maximilians-Universität München, München, Germany

Correspondence
Annika Heckel, Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany.
Email: heckel@math.lmu.de

Funding information
European Research Council (ERC), Grant/Award Numbers: 676632-RanDM, 772606-PTRCSP

Abstract
In a recent paper, Oliver Riordan shows that for $r \geq 4$ and p up to and slightly larger than the threshold for a K_r-factor, the hypergraph formed by the copies of K_r in $G(n, p)$ contains a copy of the binomial random hypergraph $H = H_r(n, \pi)$ with $\pi \sim p(r^2)$. For $r = 3$, he gives a slightly weaker result where the density in the random hypergraph is reduced by a constant factor. Recently, Jeff Kahn announced an asymptotically sharp bound for the threshold in Shamir’s hypergraph matching problem for all $r \geq 3$. With Riordan’s result, this immediately implies an asymptotically sharp bound for the threshold of a K_r-factor in $G(n, p)$ for $r \geq 4$. In this note, we resolve the missing case $r = 3$ by modifying Riordan’s argument. This means that Kahn’s result also implies a sharp bound for triangle factors in $G(n, p)$.

KEYWORDS
coupling, random graphs, random hypergraphs

1 | INTRODUCTION

For $r \geq 2$, $n \geq 1$, $\pi = \pi(n) \in [0, 1]$, we denote by $H_r(n, \pi)$ the binomial random r-uniform hypergraph where each of the $\binom{n}{r}$ potential hyperedges is included independently with probability π. In [3], Oliver Riordan showed that for $r \geq 4$ and p up to and slightly beyond $n^{-2/r}$, the hypergraph formed by the copies of K_r in the random graph $G(n, p) = H_2(n, p)$ contains a copy of $H_r(n, \pi)$ with almost the same density.

Theorem 1 ([3]). Let $r \geq 4$. There exists some $\epsilon = \epsilon(r) > 0$ such that, for any $p = p(n) \leq n^{-2/r + \epsilon}$, the following holds. For some $\pi = \pi(n) \sim p(r^2)$, we may couple the random graph $G = G(n, p)$ with...
the random hypergraph $H = H_r(n, \pi)$ so that, whp,\(^1\) for every hyperedge in H there is a copy of K_r in G with the same vertex set.

In particular, Theorem 1 applies when p is in the range of the threshold of a K_r-factor in $G(n, p)$, or accordingly when π is in the range of the threshold for a complete matching in $H_r(n, \pi)$, both of which were famously determined up to a constant factor by Johansson, Kahn and Vu [2]. Recently, Jeff Kahn announced a proof that the threshold for a complete matching in $H_r(n, \pi)$ is at

$$\pi \sim \left(\frac{r - 1}{r!} \right)! n^{-r+1} \log n$$

for $r \geq 4$.

For $r = 3$, the proof in [3] only gives a weaker result where π is a constant fraction of p^3. In this note, we show that Theorem 1 also holds for $r = 3$, modifying the proof in [3]. This means that Kahn’s result also implies a sharp threshold for a triangle factor in $G(n, p)$ at

$$p \sim (2 \log n)^{1/3} n^{-2/3}.$$

Theorem 2. The conclusion of Theorem 1 also holds for $r = 3$.

2 | PROOF

The original proof fails for $r = 3$ because of the presence of certain problematic configurations in H, the clean 3-cycles. These consist of three hyperedges where each pair meets in exactly one distinct vertex as shown in Figure 1. Let Γ denote the set of all potential clean 3-cycles, then we say $\gamma \in \Gamma$ is in H if the corresponding hyperedges are present. In a slight abuse of notation, we will also call an edge configuration where each such hyperedge is replaced by a triangle a clean 3-cycle, and we say that $\gamma \in \Gamma$ is in G if the corresponding edges are present.

Our strategy is to first choose which clean 3-cycles are present in G and H, coupling their distributions so that whp we pick the same 3-cycles for both G and H. Conditioning on the event that G and H contain exactly these clean 3-cycles, we run a modified version of the coupling argument from [3] where the bad case can no longer happen. For the sake of brevity, we do not repeat the entire argument from [3] but only describe the modifications.

\(^1\)We say that an event $E = E(n)$ holds with high probability (whp) if $\lim_{n \to \infty} \Pr(E) = 1$.
As in the original proof, we will show that if our coupling fails, then either the maximum degree of the final hypergraph H is too high or H contains a certain type of subhypergraph called an “avoidable configuration,” both of which only happens with probability $o(1)$. Define the avoidable configurations as in Definition 7 of the original proof, then by Lemma 8 in [3], whp H contains no avoidable configurations as long as we pick $\pi \leq n^{-2+\epsilon'}$ for some small $\epsilon' > 0$.

In [3], the proof of Lemma 9 only fails for $r = 3$ in one particular case, namely if vertices of the K_3 in question form the middle triangle of a clean 3-cycle in H. By this we mean the three vertices in which the hyperedges of the clean 3-cycle meet (which is not a hyperedge in the clean 3-cycle itself). Therefore, for $r = 3$ the proof gives the following variant of Lemma 9.

Lemma 3. Let H be a 3-uniform hypergraph, and let G be the simple graph obtained by replacing each hyperedge of H by a triangle. If G contains a triangle T and the corresponding hyperedge is not present in H, then either the vertices of T are the middle triangle of a clean 3-cycle in H, or H contains an avoidable configuration.

Let X_1 and X_2 denote the numbers of clean 3-cycles in $G = G(n, p)$ and in $H = H_3(n, \pi)$, and let $\lambda_1 = 120 \binom{n}{3} p^3 = \mathbb{E}X_1$ and $\lambda_2 = 120 \binom{n}{3} \pi^3 = \mathbb{E}X_2$. If $p \leq n^{-2/3+\epsilon}$, then $\lambda_1 = O(n^{9\epsilon})$. As in the proof of Theorem 1, we can later pick $\pi = (1 - n^{-\delta})p^3$ for some constant $\delta > 0$ (see Remark 2 in [3]). Decreasing ϵ if necessary, we can therefore assume $\lambda_1 = \lambda_2 - o(1)$. Let C_1 and C_2 be the collection of all clean 3-cycles in G and in H, respectively.

Lemma 4. C_1 and C_2 can be coupled so that whp $C_1 = C_2$.

Proof. For two random variables W, Z taking values in a countable set Ω, let

$$d_{TV}(W, Z) = \frac{1}{2} \sum_{\omega \in \Omega} |\mathbb{P}(W = \omega) - \mathbb{P}(Z = \omega)|$$

denote their total variation distance. From Theorem 4.7 in [4] (which originally appeared in [1]), the total variation distance between the distributions of X_1 and X_2 and the Poisson distributions $\text{Poi}(\lambda_1)$ and $\text{Poi}(\lambda_2)$ is $o(1)$, respectively. As $\lambda_2 = \lambda_1 - o(1)$, the total variation distance between $\text{Poi}(\lambda_1)$ and $\text{Poi}(\lambda_2)$ is also $o(1)$, and so $d_{TV}(X_1, X_2) = o(1)$.

Both in G and in H, whp all clean 3-cycles are pairwise vertex disjoint since $\lambda_1, \lambda_2 = O(n^{9\epsilon})$ (decreasing ϵ if necessary). To see this, consider the expected number of pairs of intersecting 3-cycles: it is easy to check that this is $o(1)$ if ϵ is small enough. Let $i \in \{1, 2\}$. Denote by Γ' the set of all collections of clean 3-cycles which are not pairwise vertex disjoint, then $\mathbb{P}(C_i \in \Gamma') = o(1)$. For $t \geq 0$, let Γ_t be the set of all collections of t disjoint clean 3-cycles. Conditional on $X_i = t$ and $C_i \not\in \Gamma'$, by symmetry C_i is uniformly distributed on Γ_t. Therefore,
d_{TV}(C_1, C_2) \leq \frac{1}{2} \sum_{i} \sum_{\gamma \in \Gamma_i} \left| \frac{\mathbb{P}(X_1 = i)}{|\Gamma_i|} - \frac{\mathbb{P}(X_2 = i)}{|\Gamma_i|} \right| + \mathbb{P}(C_1 \in \Gamma') + \mathbb{P}(C_2 \in \Gamma')
= d_{TV}(X_1, X_2) + o(1) = o(1).

Since the total variation distance of \(C_1 \) and \(C_2 \) is \(o(1) \), their distributions can be coupled so that whp \(C_1 = C_2 \).

We start the construction of \(G = G(n, p) \) and \(H = H_3(n, \pi) \) by choosing \(C_1 \) and \(C_2 \), coupling their distributions so that whp \(C_1 = C_2 \). (The existence of such a coupling is implied by Lemma 4; unlike in the proof in [3] we do not obtain it by checking the clean 3-cycles one by one.) If \(C_1 \neq C_2 \), we say that the coupling has failed. We assume that the clean 3-cycles in \(C_1 = C_2 \) are pairwise vertex disjoint, which holds with probability \(1 - o(1) \), otherwise we also say the coupling has failed. Let \(C_1 \) be the set of edges and \(C_2 \) be the set of hyperedges in the revealed clean 3-cycles. Let \(L_1 \) and \(L_2 \) be the events that \(G \) and \(H \) contain no other clean 3-cycles, respectively.

We now proceed with the coupling as in Algorithm 11 in [3], revealing the hyperedges of \(H \) and some triangles of \(G \) one by one (skipping those which we already included with the clean 3-cycles). At step \(j \), we calculate the conditional probability \(\pi_j \) of the triangle edge set \(E_j \) being present in \(G(n, p) \) and the conditional probability \(\pi'_j \) of the corresponding hyperedge \(\gamma_j \) being present in \(H_3(n, \pi) \), based on the information revealed so far, the edges and hyperedges in \(C_1 \) and \(C_2 \), and the events \(L_1 \) and \(L_2 \). As in [3], as long as \(\pi'_j \leq \pi_j \) we are ok: we flip a coin with success probability \(\pi'_j / \pi_j \), and in the case of success test for the triangle in \(G \), including the edge \(\gamma_j \) in \(H \) iff the coin succeeds and the triangle was included in \(G \). If \(\pi'_j > \pi_j \), we include \(\gamma_j \) in \(H \) with probability \(\pi'_j \), and if this happens the coupling fails. After we have done this for every hyperedge, \(H \) is constructed with the correct distribution, and we pick \(G \) with the conditional distribution of \(G(n, p) \) given the revealed information. It remains to show that for an appropriate choice of \(\pi = p^3(1 - o(1)) \), the probability that the coupling fails is \(o(1) \).

As in [3], we assume for notational simplicity that \(p \leq n^{-2/3+\epsilon} \), although it is clear from the proof that the argument goes through if \(p \leq n^{-2/3+\epsilon} \), for some small constant \(\epsilon > 0 \). As in [3], there is some \(\Delta = n^{\omega(1)} \) so that whp, every vertex in \(H_3(n, \pi) \) has degree at most \(\Delta/3 \). Let \(B_1 \) denote the event that some vertex in the final version of \(H \) has degree more than \(\Delta/3 \), so \(\mathbb{P}(B_1) = o(1) \). Let \(B_2 \) be the event that the final version of \(H \) contains an avoidable configuration, then \(\mathbb{P}(B_2) = o(1) \). We will see that if our coupling fails, then \(B_1 \cup B_2 \) holds. Let \(A_j \) denote the event that the triangle \(E_j \) is in \(G \).

Suppose we have reached step \(j \) of the algorithm where we test for the hyperedge \(\gamma_j \) and the event \(A_j \). First note that we always have \(\pi'_j \leq \pi \). To see this, consider the random hypergraph \(H' \) where all the revealed hyperedges and the hyperedges from \(C_2 \) are included, and all hyperedges we have found not to be present so far are excluded, and all other hyperedges are present independently with probability \(\pi \). Then \(L_2 \) is a down set in the product probability space corresponding to \(H' \), and the event that the hyperedge \(\gamma_j \) is present is an up set, so

\[
\pi'_j = \mathbb{P}(\gamma_j \in H' | L_2) \leq \mathbb{P}(\gamma_j \in H') = \pi.
\]

Next, we will show that either \(\pi_j \geq (1 - o(1))p^3 \), or that if not and the coupling fails, \(B_1 \cup B_2 \) holds. Even though this is not how we started the coupling, we can think of the state of \(G \) and \(H \) at step \(j \) as though we had started by testing for all clean 3-cycles \(\gamma \in \Gamma \) in \(G \) and in \(H \), and received the answer “yes” for \(\gamma \in C_1 \) and the answer “no” for all other \(\gamma \in \Gamma \). Then similarly as in [3], let \(R \) be the set of
edges found to be in G so far (both from the revealed triangles in the first \(j - 1 \) steps \textit{and} from \(C_1 \)). Let \(N \) denote the set of all \(i < j \) where we tested for \(A_i \) and received the answer “no,” and also add an index \(i \) to \(N \) for every \(\gamma \in \Gamma \setminus C_1 \) (i.e., we add an element to \(N \) for every clean 3-cycle we have excluded). For easier notation, we will now also write \(E_i \) for the edge set of a clean 3-cycle with index \(i \in N \). Let \(N_1 \) be the set of all \(i \in N \) such that \(E_i \cap E_j \neq \emptyset \). Now we can bound \(\pi_j \) from below exactly as in equation (4) in [3].

\[
\pi_j \geq p^3(1 - Q), \text{ where } Q = Q_j = \sum_{i \in N_1} p^{|E_i \setminus (E_j \cup R)|}.
\]

We will bound \(Q \), showing that either \(Q = o(1) \), or that if not and the coupling fails, \(B_1 \cup B_2 \) holds.

The contribution to \(Q \) from all \(i \) where \(E_i \) is a triangle (rather than a clean 3-cycle) can be bounded exactly as in [3] as long as \(B_1 \) does not hold. Crucially, the previous “bad case” is no longer a problem: suppose that \(j \) is “dangerous,” that is, there is a triangle \(E_i \) with \(i \in N_1 \) and \(E_i \subset E_j \cup R \). This means that in the previous step \(i < j \), we tested for the triangle \(E_i \) in \(G \) and received the answer “no.” But then \(E_i \) cannot be the middle triangle in any clean 3-cycle in the final version of \(H \)—we know what all the clean 3-cycles are in both \(G \) and \(H \), and if \(E_i \) were the middle triangle of one, its edges would have been included in \(G \) from the start of the coupling. But then \(\pi_i = 1 \), and if we had tested for \(E_i \) we would have received the answer “yes.” So if the coupling fails at step \(j \), as \(E_i \subset E_j \cup R \), by Lemma 3 \(H \) contains a bad configuration, so \(B_2 \) holds.

Therefore, the contribution to \(Q \) from all \(E_i \) which are triangles is either \(o(1) \), or if not and the coupling fails, \(B_1 \cup B_2 \) holds.

Now consider the contribution to \(Q \) from some \(E_i, i \in N_1 \), which is a clean 3-cycle. We want to bound \(e_i = |E_i \setminus E(S)| \) from below, where \(S \) is the graph on the vertex set of \(E_i \) with the edges from \(E_j \cup R \) on that vertex set. Suppose \(S \) has \(k + 1 \) components, where \(0 \leq k \leq 4 \) (\(S \) cannot have six components as \(E_i \cap E_j \) contains at least one edge). Then \(e_i \) is at least the number of edges in \(E_i \) between the components of \(S \). This can be bounded from below by the minimum number of edges between different parts of a clean 3-cycle if we partition its vertices into \(k + 1 \) parts—it is straightforward to check that for \(k = 1, e_i \geq 2, \text{ for } k = 2, e_i \geq 4, \text{ for } k = 3, e_i \geq 6, \text{ and for } k = 4, e_i \geq 8 \).

In the connected case where \(k = 0 \), if \(e_i = 0 \), then \(E_i \subset E_j \cup R \). Suppose this is the case and the coupling fails, then by Lemma 3, either the final version of \(H \) contains an avoidable configuration and \(B_2 \) holds, or all three triangles \(T_1, T_2, T_3 \) of \(E_i \) are each either present as hyperedges in \(H \) or the middle triangles of a clean 3-cycle in \(H \). Denote the corresponding hyperedges by \(t_1, t_2, t_3 \). At most one of them can be the middle triangle of a clean 3-cycle, because we assumed that all clean 3-cycles are vertex disjoint. Not all \(t_i, i \in \{1, 2, 3\} \) are present in \(H \) because then the clean 3-cycle corresponding to \(E_i \) would be present, but \(i \in N \). So exactly one triangle, say \(T_1 \), is the middle triangle of a clean 3-cycle, and \(t_2 \) and \(t_3 \) are present in \(H \). But then this clean 3-cycle and \(t_2 \) and \(t_3 \) form an avoidable configuration (it can easily be checked that Definition 7 in [3] applies; note that in the hypergraph \(H_0 \) under consideration, \(v(H_0) \leq 9, e(H_0) = 5, c(H_0) = 1, \text{ so } n(H_0) \geq 2 \)). Therefore, \(B_2 \) holds.

So if \(k = 0, e_i = 0 \) and the coupling fails, then \(B_2 \) holds. So suppose \(e_i \geq 1 \) for all \(E_i \) where \(k = 0 \).

As in equation (6) of the original proof, as long as \(B_1 \) does not hold, there are at most \(O(n^{k+o(1)}) \) instances \(i \) where \(S \) has \(k + 1 \) components. Therefore, either the contribution to \(Q \) from all \(E_i \) which are clean 3-cycles is at most

\[
n^o(1)(p + np^2 + n^2p^4 + n^3p^6 + n^4p^8) = o(1),
\]

or if not and the coupling fails, \(B_1 \cup B_2 \) holds.
So overall, we can choose $\pi \sim p^3$ appropriately so that at each step j, we either have $\pi_j \geq \pi \geq \pi_j'$, or if not and the coupling fails, $B_1 \cup B_2$ holds. So whp the coupling does not fail. As in the original proof, it is in fact possible to pick $\pi = p^3(1 - n^{-\delta})$ for a small constant $\delta > 0$.

ACKNOWLEDGEMENTS

Open Access funding enabled and organized by Projekt DEAL.

REFERENCES

1. R. Arratia, L. Goldstein, and L. Gordon, Two moments suffice for Poisson approximations: the Chen-Stein method, Ann. Probab. 17(1) (1989), 9–25.
2. A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Struct. Algorithms 33(1) (2008), 1–28.
3. O. Riordan, Random cliques in random graphs, arXiv preprint arXiv:1802.01948 (v2), 2018.
4. N. Ross, Fundamentals of Stein’s method, Probab. Surv. 8 (2011), 210–293.

How to cite this article: Heckel A. Random triangles in random graphs. Random Struct Alg 2021;1–6. https://doi.org/10.1002/rsa.21013