Structure and electrochemical performance modulation of
LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$ cathode material by anion and cation co-doping
for lithium ion battery

Rong Lia, Yong Minga, Wei Xiangb, Chunliu Xua, Guilin Fenga, Yongchun Lia,
Yanxiao Chena, Zhenguo Wua,e, Benhe Zhonga, Xiaodong Guoa,d

a College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;

b College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China;

c State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (PR China);

d Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia;
Fig. S1 Rietveld refinement results of NCM (a), NCM/B (b), NCM/C (c) and NCM/CB (d).

Fig. S2 XPS spectra of Co for (d) NCM/C and (f) NCM/CB.
Fig. S3 cycle performance at high voltage.

Fig. S4 The Corresponding charge/discharge curves at the 1st, 5th, 50th and 100th cycle for NCM(a), NCM/C(b) and NCM/CB(c). The rate discharge curves between 0.1-10 C of NCM(d), NCM/C(e) and NCM/CB(f).