Gauge extension of non-Abelian discrete flavor symmetry

Florian Beye1, Tatsuo Kobayashi2 and Shogo Kuwakino3

1Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
2Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
3Department of Physics, Chung-Yuan Christian University, 200, Chung-Pei Rd.
Chung-Li, 320, Taiwan

Abstract

We investigate a gauge theory realization of non-Abelian discrete flavor symmetries and apply the gauge enhancement mechanism in heterotic orbifold models to field-theoretical model building. Several phenomenologically interesting non-Abelian discrete symmetries are realized effectively from a $U(1)$ gauge theory with a permutation symmetry. We also construct a concrete model for the lepton sector based on a $U(1)^2 \rtimes S_3$ symmetry.
1 Introduction

The flavor structure of quarks and leptons in the standard model is mysterious. Why are there three generations? Why are their masses hierarchically different from each other? Why do they show the specific mixing angles? It is challenging to try to solve this flavor mystery. A flavor symmetry could play an important role in particle physics models in order to understand the flavor structure of quarks and leptons. Since the Yukawa matrices of the standard model include many parameters, flavor symmetries are useful to effectively reduce the number of parameters and to obtain some predictions for experiments. In particular, non-Abelian discrete flavor symmetries can be key ingredients to make models with a suitable flavor structure. Indeed, there are many works of flavor models utilizing various non-Abelian discrete flavor symmetries (see [1, 2, 3] for reviews).

It is known that some non-Abelian discrete flavor symmetries have a stringy origin. In particular, in orbifold compactification of heterotic string theory [4, 5, 6, 7, 8, 9, 10, 11, 12] (also see a review [13]), non-Abelian discrete symmetries D_4 and $\Delta(54)$ respectively arise from one- and two-dimensional orbifolds, S_1/Z_2 and T_2/Z_3, as discussed in [14]. The non-Abelian discrete symmetries originate from a geometrical property of extra-dimensional orbifolds, the permutation symmetry of orbifold fixed points, and a string selection rule between closed strings. Phenomenological applications of string derived non-Abelian discrete symmetries to flavor models are analyzed, e.g. in [19].

Furthermore, in [20], it is argued that the non-Abelian discrete symmetries D_4 and $\Delta(54)$ have a gauge origin within the heterotic string theory. Namely, these symmetries are respectively enhanced to continuous gauge symmetries $U(1) \times Z_2$ and $U(1)^2 \times S_3$ at a symmetry enhancement point in the moduli space of orbifolds. After certain scalar fields which are associated with the Kähler moduli fields get vacuum expectation values, the $U(1)$ symmetries break down to Abelian discrete subgroups, and there remains a $Z_4 \times Z_2 \cong D_4$ or $(Z_3 \times Z_3) \times S_3 \cong \Delta(54)$ symmetry group, respectively. This result suggests that a non-Abelian discrete symmetry can be regarded as a remnant of a continuous gauge symmetry. Also, this result could provide us with a new insight on model building for flavor physics.

Various non-Abelian discrete symmetries other than D_4 and $\Delta(54)$ have been used in field-theoretical model building, e.g. $S_3, S_4, A_4, \Delta(3N^2), \Delta(6N^2)$ (see [1, 2, 3]). Thus, it is important to extend the stringy derivation of D_4 and $\Delta(54)$ from $U(1) \times Z_2$ and $U(1)^2 \times S_3$, by studying a field-theoretical derivation of other non-Abelian discrete flavor symmetries from $U(1)^m \rtimes S_n$ or $U(1)^m \rtimes Z_n$ (See also [21]). That is the purpose of this paper. Some of them may be reproduced from other types of string compactifications.

In this paper we consider an extension of the argument of the gauge origin in [20] to field-theoretical model building. We show that phenomenologically interesting non-Abelian discrete symmetries can be embedded into $U(1)^m \rtimes S_n$ or $U(1)^m \rtimes Z_n$ continuous gauge theory. Spontaneous symmetry breaking of $U(1)^m$ to Abelian discrete symmetries leads to non-Abelian

\[1\] Similar non-Abelian discrete symmetries including $\Delta(27)$ can appear in intersecting/magnetized D-brane models [15, 16, 17]. See also [18].
discrete flavor symmetries. In the next section we discuss a gauge theory realization of non-Abelian discrete symmetries. In section 3, we show a concrete lepton flavor model based on a $U(1)$ flavor symmetry. Section 4 is devoted to conclusions.

2 Gauge extension of non-Abelian discrete symmetry

In this section we investigate a field theoretical model building technique in which non-Abelian discrete symmetries have a continuous gauge symmetry origin. We start with a gauge theory with group structure of the form $U(1)^n \rtimes S_m$ or $U(1)^n \rtimes Z_m$. Then, by giving a suitable VEV to a scalar field, a non-Abelian discrete symmetry is realized effectively.

2.1 S_3 group

We consider a $U(1) \rtimes Z_2$ model with the field contents as in Table 1. The action of the Z_2 symmetry on the $U(1)$ charge q is given by

\[Z_2: q \rightarrow -q. \]

By this we mean that the $U(1)$ gauge field A_μ transforms as $A_\mu \rightarrow -A_\mu$, and that the oppositely charged fields in this model transform into each other, e.g. $U_1 \leftrightarrow U_2$ and $M_1 \leftrightarrow M_2$. This implies that the kinetic (and gauge interaction) terms are invariant under the Z_2.

Now, we consider VEVs for fields U_i obeying the relation

\[\langle U_1 \rangle = \langle U_2 \rangle. \]

This VEV relation maintains the original Z_2 permutation symmetry,

\[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \]

but breaks the $U(1)$ group to a discrete Z_3 subgroup since the field M_i has $U(1)$ charge $\pm 1/3$. The Z_3 charges are 1 for the field M_1 and 2 for the field M_2, so the Z_3 action is expressed by

\[\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}, \]

with the cubic root $\omega = e^{2\pi i/3}$. The combination of the two actions $[3]$ and $[4]$ gives rise to a non-Abelian discrete symmetry, which is nothing but $S_3 \cong Z_3 \rtimes Z_2$. It turns out that (M_1, M_2) forms a doublet of this S_3 group.

Next, we read off the S_3 representation of the other matter fields. First, the field M can be regarded as the trivial singlet $\mathbf{1}$ of the S_3 group. In the case of (M'_1, M'_2), we see that these fields have trivial Z_3 charges. Then we can perform a change of basis as $\tilde{M}'_1 \equiv M'_1 + M'_2$ and $\tilde{M}'_2 \equiv M'_1 - M'_2$. In this basis, the Z_2 action is given by $\tilde{M}'_1 \rightarrow \tilde{M}'_1$ and $\tilde{M}'_2 \rightarrow -\tilde{M}'_2$. Hence, (M'_1, M'_2) forms a $\mathbf{1} \oplus \mathbf{1}'$ of the S_3 group. As a result, we can reproduce all irreducible representations of the S_3 group.
Field	$U(1)$ charge	Z_3 charge	S_3 rep.
U_1, U_2	$+1, -1$	0, 0	—
M_1, M_2	$\pm \frac{2}{3}, -\frac{1}{3}$	1, 2	2
M	0	0	1
M_1', M_2'	$+1, -1$	0, 0	$1 \oplus 1'$

Table 1: Field contents of the $U(1) \rtimes Z_2$ model for the S_3 group. Besides the $U(1)$ charges, the charges under the unbroken discrete Z_3 subgroup of $U(1)$ are shown. Representations under the resulting S_3 group are also shown.

2.2 D_4 group

Now, we consider a $U(1) \rtimes Z_2$ model with the field contents as in Table 2. This model is based on a $U(1)$ symmetry and possesses an additional Z_2 symmetry which acts on the $U(1)$ charge as in the previous case (1), so the fields transform as $U_1 \leftrightarrow U_2$ and $M_1 \leftrightarrow M_2$ etc. We consider the following VEV relation

$$\langle U_1 \rangle = \langle U_2 \rangle.$$ (5)

This VEV relation maintains the original Z_2 permutation symmetry,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$ (6)

but breaks the $U(1)$ group to its discrete Z_4 subgroup. The Z_4 charges for M_1 and M_2 are 1 and 3 respectively, hence the Z_4 action is written as

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$ (7)

The combination of actions (6) and (7) leads to the non-Abelian discrete symmetry $D_4 \cong Z_4 \rtimes Z_2$. It turns out that (M_1, M_2) forms the doublet of the D_4 group.

Next, we read off the D_4 representation of the other matter fields. First, the field M can be regarded as the trivial singlet 1_{++} of D_4. In the case of a set of fields (M_1', M_2'), we make redefinitions as $\tilde{M}_1' \equiv M_1' + M_2'$ and $\tilde{M}_2' \equiv M_1' - M_2'$. In this basis, the Z_2 action acts as $\tilde{M}_1' \rightarrow \tilde{M}_1'$ and $\tilde{M}_2' \rightarrow -\tilde{M}_2'$. Thus, (M_1', M_2') forms a $1_{++} \oplus 1_{--}$ of the D_4 group. For the fields (N_1, N_2), both fields have Z_4 charge 2. Then we can take a linear combination as $\tilde{N}_1 \equiv N_1 + N_2$ and $\tilde{N}_2 \equiv N_1 - N_2$, and observe that the Z_2 action acts as $\tilde{N}_1 \rightarrow \tilde{N}_1$ and $\tilde{N}_2 \rightarrow -\tilde{N}_2$. Then $(\tilde{N}_1, \tilde{N}_2)$ forms $1_{+} \oplus 1_{-}$ of the D_4 group. As a result, we can reproduce all irreducible representations of the D_4 group by a suitable field setup.

2.3 S_4 group

We consider a $U(1)^2 \rtimes S_2$ model with the field contents as in Table 3. This model has a gauge $U(1)^2$ symmetry and fields are characterized by two $U(1)$ charges q_1 and q_2. We define the
Table 2: Field contents of the $U(1) \times Z_2$ model for the D_4 group. Besides the $U(1)$ charges, the charges under the unbroken discrete Z_4 subgroup of $U(1)$ are shown. Representations under the resulting D_4 group are also shown.

Field	$U(1)$ charge	Z_4 charge	D_4 rep.
U_1, U_2	$+1, -1$	$0, 0$	$-$
M_1, M_2	$+\frac{1}{2}, -\frac{1}{2}$	$1, 3$	2
M', M''	0	0	1_{++}
N_1, N_2	$+\frac{1}{2}, -\frac{1}{2}$	$2, 2$	$1_{++} \oplus 1_{--}$

The two dimensional $U(1)^2$ charges e_1, e_2 and e_3 used in the table as

$$e_1 \equiv (\sqrt{2}, 0), \quad e_2 \equiv (-\frac{\sqrt{2}}{2}, \sqrt{6}), \quad e_3 \equiv (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{6}}{2}). \quad (8)$$

The additional non-Abelian discrete S_3 symmetry is generated by a 120 degree rotation and a reflection on the two-dimensional $U(1)^2$ charge plane (q_1, q_2) as

Rotation : $$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix},$$

Reflection : $$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}.$$ \quad (10)

The S_3 action permutes e_1, e_2 and e_3, which corresponds to a permutation of the fields as $U_1 \leftrightarrow U_2 \leftrightarrow U_3$ and $M_1 \leftrightarrow M_2 \leftrightarrow M_3$. We consider the VEV relation as

$$\langle U_1 \rangle = \langle U_2 \rangle = \langle U_3 \rangle.$$ \quad (11)

This VEV relation maintains S_3,

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$ \quad (12)

but breaks the $U(1)^2$ group down to a discrete Z_2^2 subgroup. The Z_2 charges z_1 and z_2 in Table 3 are determined from the $U(1)^2$ charges as $z_1 = 2(q_1/\sqrt{2} - q_2/\sqrt{6}) \pmod{2}$ and $z_2 = 2(q_1/\sqrt{2} + q_2/\sqrt{6}) \pmod{2}$. Then, the Z_2^2 action is given by

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$ \quad (13)

The combination of (12) and (13) gives rise to the non-Abelian discrete symmetry $S_4 \cong (Z_2 \times Z_2) \rtimes S_3$. It turns out that (M_1, M_2, M_3) forms the triplet 3 of the S_4 group.
Next, we read off the S_4 representation of the other matter fields. First, the field M can be regarded as the trivial singlet $\mathbf{1}$ of S_4. In the case of the fields (N_1, N_2, N_3), we make redefinitions as $\tilde{N}_1 \equiv (N_1 + N_2 + N_3)/\sqrt{3}$, $\tilde{N}_2 \equiv (N_1 + \omega N_2 + \omega^2 N_3)/\sqrt{3}$ and $\tilde{N}_3 \equiv (N_1 + \omega^2 N_2 + \omega N_3)/\sqrt{3}$. In this basis, the three fields transform as the $\mathbf{1} \oplus \mathbf{2}$ of the S_3 group. After the VEV, these fields have the trivial Z_2^3 charge $(0,0)$, so they correspond to $\mathbf{1} \oplus \mathbf{2}$ of S_4. Note, that fields with opposite $U(1)^2$ charges $-e_i$ have, after $U(1)^2$ breaking, the same Z_2^3 charges as the fields M_i. Hence, such fields also lead to the $\mathbf{3}$ of S_4. As a result, we can realize the $\mathbf{1}, \mathbf{1} \oplus \mathbf{2}, \mathbf{3}$ representations of the S_4 group in this setup.

We have introduced the specific combination of $U(1)^2$ charges, e_1, e_2, and e_3 which can be interpreted as weights of the fundamental $SU(3)$ triplet (or anti-triplet) representation. Then, the action of the S_3 group on the e_i corresponds to the action of the Weyl group of $SU(3)$ on the triplet weights. Thus, one might wonder about a $SU(3)$ origin of this setup. In fact, $U(1)^2 \times S_3$ is a subgroup of $SU(3)$ where $U(1)^2$ furnishes maximal torus and S_3 is a lift of the Weyl group into $SU(3)$. Also, note that the representation matrices (12) of S_3 do not actually belong to $SU(3)$, so they give rise to genuine $U(1)^2 \times S_3$ representations. The fundamental triplet and anti-triplet of $SU(3)$ also give rise to $U(1)^2 \times S_3$ representations which we did not cover here (in these cases, the representation matrices are given by those in (12) amended by a minus sign). For a short remark on these kinds of representations please refer to the conclusion section.

Furthermore, in a stringy realization of $\Delta(54)$, the $SU(3)$ gauge symmetry appears in toroidal compactification at a symmetry enhanced point. Then, by a Z_3 orbifolding the charged root vectors are projected out [20], leaving a symmetry group $U(1)^2 \times S_3$.

To realize $\Delta(54)$, A_4 and $\Delta(27)$ in the next subsections, we also use the vectors e_1, e_2 and e_3, as well as the Weyl reflections and the Coxeter elements.

2.4 $\Delta(54)$ group

We consider a $U(1)^2 \times S_3$ model for the $\Delta(54)$ group, with field contents given as in Table 4. The difference from the previous subsection is that the matter fields now have relative $U(1)$ charges of $1/3$ when compared to the fields U_i. Then, by the VEV relation (11) for the field U_1, the S_3 symmetry remains but $U(1)^2$ is broken down to its Abelian subgroup Z_3^2.

Field	$U(1)^2$ charge	Z_2^3 charge	S_4 rep.
U_1, U_2, U_3	$-e_1, -e_2, -e_3$	$(0,0),(0,0),(0,0)$	—
M_1, M_2, M_3	$\frac{\omega}{2}, \frac{\omega}{2}, \frac{\omega}{2}$	$(1,1),(1,0),(0,1)$	$\mathbf{3}$
M	0	$(0,0)$	$\mathbf{1}$
N_1, N_2, N_3	e_1, e_2, e_3	$(0,0),(0,0),(0,0)$	$\mathbf{1} \oplus \mathbf{2}$

Table 3: Field contents of the $U(1)^2 \times S_3$ model for the S_4 group. Besides the $U(1)^2$ charges, the charges under the unbroken discrete Z_2^3 subgroup of $U(1)^2$ are shown. Representations under the resulting S_4 group are also shown.
The two Z_3 charges z_1, z_2 in Table 4 are determined as $z_1 = 3(q_1/\sqrt{2} - q_2/\sqrt{6}) \pmod{3}$ and $z_2 = 3(q_1/\sqrt{2} + q_2/\sqrt{6}) \pmod{3}$, and the Z_3^2 action is described by

$$
\begin{pmatrix}
\omega & 0 & 0 \\
0 & \omega^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
\omega & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \omega^{-1}
\end{pmatrix}.
$$

(14)

The actions (12) and (14) together generate the non-Abelian discrete symmetry $\Delta(54) \cong (Z_3 \times Z_3) \rtimes S_3$. It turns out that (M_1, M_2, M_3) forms the triplet $3_{1(1)}$ of the $\Delta(54)$ group.

Next, we read off the representation of the other matter fields under the $\Delta(54)$ group. First, the fields (M'_1, M'_2, M'_3), which have opposite $U(1)^2$ charges and Z_3^2 charges when compared to the M_i field, lead to the $3_{1(2)}$ of $\Delta(54)$. The field M can be regarded as the trivial singlet 1_+ of $\Delta(54)$. In the case of the fields (N_1, N_2, N_3), we use the linear combinations $\tilde{N}_1 \equiv (N_1 + N_2 + N_3)/\sqrt{3}$, $\tilde{N}_2 \equiv (N_1 + \omega N_2 + \omega^2 N_3)/\sqrt{3}$ and $\tilde{N}_3 \equiv (N_1 + \omega^2 N_2 + \omega N_3)/\sqrt{3}$. In this basis, one sees that they transform as a $1 \oplus 2$ of the S_3 group. After the VEV, these fields have trivial Z_3^2 charges, so they correspond to $1_+ \oplus 2_1$ of the $\Delta(54)$ group. Note, that instead of the M_i which have $U(1)^2$ charges $e_i/3$, we can also introduce fields with charges $-2e_i/3$. Since the Z_3^2 charges of such fields are identical to the M_i, they also lead to the $3_{1(1)}$ representation. As the result, we can realize $1_+ + 2_1 + 3_{1(1)} + 3_{1(2)}$ representations of the $\Delta(54)$ group in our setup.

2.5 A_4 group

We consider a $U(1)^2 \rtimes Z_3$ model with the field contents as in Table 5. There, we add fields A_i to the field contents of the model for the S_4 group (Table 3). We define the two-dimensional $U(1)^2$ charges as

$$
w_1 \equiv (\sqrt{2}/2, \sqrt{6}/6), \ w_2 \equiv (-\sqrt{2}/2, \sqrt{6}/6), \ w_3 \equiv (0, -\sqrt{6}/3).
$$

(15)

The introduction of A_i fields breaks the original S_3 symmetry to a Z_3 symmetry (under reflections, their $U(1)^2$ charges are not mapped onto each other). Then, this model has a
After the VEV, these fields have trivial charges under the unbroken discrete Z_2^n subgroup of $U(1)^2$ are shown. Representations under the resulting A_4 group are also shown.

$U(1)^2 \times Z_3$ structure, the Z_3 symmetry acting as $U_1 \rightarrow U_2 \rightarrow U_3 \rightarrow U_1$ and $M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_1$, etc. We consider a VEV relation as

$$\langle U_1 \rangle = \langle U_2 \rangle = \langle U_3 \rangle.$$ \hspace{1cm} (16)

This VEV relation maintains Z_3,

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$ \hspace{1cm} (17)

but breaks $U(1)^2$ to its Abelian subgroup Z_2^3. The two Z_2 charges z_1, z_2 in Table 5 are determined by

$$z_1 = 2(q_1/\sqrt{2} - q_2/\sqrt{6}) \pmod{2}$$

and

$$z_2 = 2(q_1/\sqrt{2} + q_2/\sqrt{6}) \pmod{2},$$

and the Z_2^3 action is given by

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$ \hspace{1cm} (18)

By combining (17) and (18), this leads to non-Abelian discrete symmetry $A_4 \cong (Z_2 \times Z_2) \times Z_3$. It turns out that (M_1, M_2, M_3) forms the triplet 3 of the A_4 group.

Next, we read off the A_4 representation of the other fields. First the field M can be regarded as the trivial singlet 1 of A_4. The fields (A_1, A_2, A_3) have a similar structure to the fields M_i, and they also lead to a 3 of A_4. In the case of the fields (N_1, N_2, N_3), we use the linear combinations $\tilde{N}_1 \equiv (N_1 + N_2 + N_3)/\sqrt{3}, \tilde{N}_2 \equiv (N_1 + \omega N_2 + \omega^2 N_3)/\sqrt{3}$ and $\tilde{N}_3 \equiv (N_1 + \omega^2 N_2 + \omega N_3)/\sqrt{3}$. In this basis, the three fields transform as $1 \oplus 1' \oplus 1''$ of Z_3. After the VEV, these fields have trivial Z_2^n charges, so they correspond to $1 \oplus 1' \oplus 1''$ of the A_4 group. Note that other fields (M'_1, M'_2, M'_3) with $U(1)^2$ charges $(2n + 1)e_i/2$, where n is an integer, also lead to 3 representation since they have same Z_2^n charges as M_i. As a result, we can realize $1, 1 \oplus 1' \oplus 1'', 3$ representations of A_4 in this setup.

2.6 $\Delta(27)$ group

We consider a $U(1)^2 \times Z_3$ model with the field contents as in Table 6. There, we have added fields A_i and B_i to the field content of the $\Delta(54)$ model (Table 4). These fields break the S_3
It turns out that \((e_1, e_2, -e_3)\) that they transform as \(\mathbf{3} \oplus \mathbf{1} \oplus \mathbf{1}^\prime\) of the \(\Delta(27)\) group. Similarly \((a_1, a_2, a_3)\) lead to \(\mathbf{3} \oplus \mathbf{1} \oplus \mathbf{1}^\prime\) of the \(\Delta(27)\) group. As a result, we can realize the representations of the \(\Delta(27)\) group in this setup.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Field} & \text{U(1)}^2 \text{ charge} & \text{Z}_3^2 \text{ charge} & \Delta(27) \text{ rep.} \\
\hline
U_1, U_2, U_3 & -(e_1, -e_2, -e_3) & (0, 0), (0, 0), (0, 0) & -- \\
M_1, M_2, M_3 & \frac{e_1}{3}, \frac{e_2}{3}, \frac{e_3}{3} & (1, 1), (2, 0), (0, 2) & \mathbf{3}_{[0][1]} \\
M_1^\prime, M_2^\prime, M_3^\prime & -\frac{e_1}{3}, -\frac{e_2}{3}, -\frac{e_3}{3} & (2, 2), (1, 0), (0, 1) & \mathbf{3}_{[0][2]} \\
M & 0 & (0, 0) & \mathbf{1}_{0,0} \\
N_1, N_2, N_3 & e_1, e_2, e_3 & (0, 0), (0, 0), (0, 0) & \mathbf{1}_{0,0} \oplus \mathbf{1}_{1,0} \oplus \mathbf{1}_{2,0} \\
A_1, A_2, A_3 & w_1, w_2, w_3 & (1, 2), (1, 2), (1, 2) & \mathbf{1}_{0,2} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,2} \\
B_1, B_2, B_3 & 2w_1, 2w_2, 2w_3 & (2, 1), (2, 1), (2, 1) & \mathbf{1}_{0,1} \oplus \mathbf{1}_{1,1} \oplus \mathbf{1}_{2,1} \\
\hline
\end{array}
\]

Table 6: Field contents of the \(\text{U(1)}^2 \times \text{Z}_3\) model for the \(\Delta(27)\) group. Besides the \(\text{U(1)}^2\) charges, the charges under the unbroken discrete \(\text{Z}_3^2\) subgroup of \(\text{U(1)}^2\) are shown. Representations under the resulting \(\Delta(27)\) group are also shown.

The generators \((17)\) and \((19)\) generate a non-Abelian discrete symmetry \(\Delta(27) \cong \text{Z}_3 \times \text{Z}_3 \times \text{Z}_3\). It turns out that \((M_1, M_2, M_3)\) forms the triplet \(\mathbf{3}_{[0][1]}\) of the \(\Delta(27)\) group.

Next we read off the representation of the other matter fields under the \(\Delta(27)\) group. First, the fields \((M_1^\prime, M_2^\prime, M_3^\prime)\) which have opposite \(\text{U(1)}^2\) charges and \(\text{Z}_3^2\) charges when compared to the fields \(M_i\) lead to a \(\mathbf{3}_{[0][2]}\) of the \(\Delta(27)\) group. The field \(M\) can be regarded as the trivial singlet \(\mathbf{1}_{0,0}\) of \(\Delta(27)\). In the case of the fields \((N_1, N_2, N_3)\), we use the linear combinations \(\tilde{N}_1 \equiv (N_1 + N_2 + N_3)/\sqrt{3}\), \(\tilde{N}_2 \equiv (N_1 + \omega N_2 + \omega^2 N_3)/\sqrt{3}\) and \(\tilde{N}_3 \equiv (N_1 + \omega^2 N_2 + \omega N_3)/\sqrt{3}\). In this basis, the three fields transform as \(1 \oplus 1' \oplus 1''\) of \(\text{Z}_3\). After the VEV, these fields have the trivial \(\text{Z}_3^2\) charges, so they correspond to \(\mathbf{1}_{0,0} \oplus \mathbf{1}_{1,0} \oplus \mathbf{1}_{2,0}\) of the \(\Delta(27)\) group. Next we consider the fields \((A_1, A_2, A_3)\). They have degenerate \(\text{Z}_3^2\) charges, so by diagonalization we observe that they transform as \(1 \oplus 1' \oplus 1''\) under \(\text{Z}_3\). Then, these fields lead to a \(\mathbf{1}_{0,2} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,2}\) of the \(\Delta(27)\) group. Similarly \((B_1, B_2, B_3)\) lead to \(\mathbf{1}_{0,1} \oplus \mathbf{1}_{1,1} \oplus \mathbf{1}_{2,1}\) of the \(\Delta(27)\) group. As a result, we can realize the representations of the \(\Delta(27)\) group in this setup.

\section{U(1)$^2 \rtimes S_3$ lepton flavor model}

In this section we present a concrete model for the lepton sector based on the \(\text{U(1)}^2 \rtimes S_3\) symmetry, which is related to the \(\Delta(54)\) discrete symmetry discussed in Section \(2.4\). Several
It is also possible to add other flavon fields, e.g. fields corresponding representations under $\Delta(54)$ are also shown in Table 7.

First, we consider the Yukawa sector of the model. By invariance under $U(1)^2 \times S_3 \times Z_2$, the superpotentials of the neutrino sector and the charged lepton sector are given by

$$W_\nu = y_1^\nu (B_1 L_e L_e + B_2 L_\mu L_\mu + B_3 L_\tau L_\tau) H_u H_u / \Lambda^2$$
$$+ y_2^\nu (A_1 (L_\mu L_\tau + L_\tau L_\mu) + A_2 (L_e L_e + L_e L_\tau) + A_3 (L_\mu L_\mu + L_\mu L_\tau)) H_u H_u / \Lambda^2$$
$$+ y_3^\nu (C_1^2 (L_\mu L_\tau + L_\tau L_\mu) + C_2^2 (L_e L_e + L_\tau L_e) + C_3^2 (L_\mu L_\mu + L_\mu L_\tau)) H_u H_u / \Lambda^3,$$

and

$$W_\ell = y_1^\ell (D_1 L_e e^c + D_2 L_\mu \mu^c + D_3 L_\tau \tau^c) H_d / \Lambda,$$
respectively. Here, we assume a UV cutoff scale Λ. Then the mass matrices are given by

$$M_\nu = \frac{v_u^2}{\Lambda^2} \begin{pmatrix} y_{\nu}^2 b_1 & y_{\nu}^2 a_3 & y_{\nu}^2 a_2 \\ y_{\nu}^3 a_3 & y_{\nu}^3 b_2 & y_{\nu}^3 a_1 \\ y_{\nu}^3 a_2 & y_{\nu}^3 a_1 & y_{\nu}^3 b_3 \end{pmatrix} + \frac{v_u^2}{\Lambda^2} \begin{pmatrix} 0 & c_2 & c_2^2 \\ c_2 & 0 & c_1^2 \\ c_2^2 & c_1^2 & 0 \end{pmatrix}, \tag{22}$$

$$M_e = \frac{y_e v_d}{\Lambda} \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}, \tag{23}$$

where we used the following definition for the VEVs of the flavon fields:

$$\langle (A_1, A_2, A_3) \rangle = (a_1, a_2, a_3), \quad \langle (B_1, B_2, B_3) \rangle = (b_1, b_2, b_3),$$
$$\langle (C_1, C_2, C_3) \rangle = (c_1, c_2, c_3),$$
$$\langle (D_1, D_2, D_3) \rangle = (d_1, d_2, d_3). \tag{27}$$

Note that the charged lepton mass matrix is diagonal. Thus, the mixing angles are determined only by the neutrino mass matrix.

3.2 Flavon potential and vacuum alignment

Next we consider the flavon sector. The superpotential up to three-point level including only flavon fields is given by

$$W_f = \lambda_1 A_1 A_2 A_3 + \lambda_2 B_1 B_2 B_3 + \lambda_3 C_1 C_2 C_3 + \lambda_4 (A_1^2 B_1 + A_2^2 B_2 + A_3^2 B_3). \tag{28}$$

The F-flatness condition for the flavon superpotential leads to (for $i \neq j \neq k \neq i$)

$$0 = \frac{\partial W_f}{\partial A_k} = \lambda_i A_i A_j + 2 \lambda_4 A_k B_k, \tag{29}$$
$$0 = \frac{\partial W_f}{\partial B_k} = \lambda_2 B_i B_j + \lambda_4 A_k^2, \tag{30}$$
$$0 = \frac{\partial W_f}{\partial C_k} = \lambda_3 C_i C_j, \tag{31}$$
$$0 = \frac{\partial W_f}{\partial D_k} = 0. \tag{32}$$

There are two branches of solutions:

(a) Let us first assume $A_i \neq 0$ and $B_i \neq 0$. Then we can solve (29) for B_k and insert the solution in to (30). Then, we obtain the condition $4 \lambda_4^3 = -\lambda_2 \lambda_1^2$, so we can choose the VEVs as:

$$\langle A_i \rangle = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \quad \langle B_i \rangle = -\frac{\lambda_1}{2 \lambda_4} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \begin{pmatrix} 0 & a_1 & a_1 \\ a_2 & 0 & a_2 \\ a_3 & a_3 & 0 \end{pmatrix}. \tag{33}$$
(b) If not all \(A_i \neq 0 \) or \(B_i \neq 0 \) then there exist solutions, and they can be brought into the following form by an \(S_3 \) transformation:

\[
\langle A_i \rangle = \begin{pmatrix} 0 \\ 0 \\ a_3 \end{pmatrix}, \quad \langle B_i \rangle = \begin{pmatrix} b_1 \\ b_2 \\ 0 \end{pmatrix},
\]

with the condition \(\lambda_2 b_1 b_2 + \lambda_4 a_3^2 = 0 \).

Furthermore, the VEVs of any two components \(C_i \) must be zero. In the following we assume

\[
\langle C_i \rangle = \begin{pmatrix} c_1 \\ 0 \\ 0 \end{pmatrix}.
\]

The \(D_i \) are not constrained from F-flatness.

3.3 Neutrino mass/mixing properties

In the following we consider only the case (a). By inserting the VEVs the mass matrix becomes

\[
M_\nu = \frac{v_u^2}{\Lambda^2} \left(\begin{array}{ccc} -y_1^\nu \frac{\lambda_1}{2 \lambda_4} a_2 a_3 & -y_2^\nu a_2 & y_2^\nu a_1 \\ y_2^\nu a_3 & y_1^\nu \frac{\lambda_1}{2 \lambda_4} a_2 a_3 & y_1^\nu a_1 \\ -y_2^\nu \frac{\lambda_1}{2 \lambda_4} a_2 a_3 & -y_1^\nu \frac{\lambda_1}{2 \lambda_4} a_2 a_3 & y_1^\nu a_1 a_3 \end{array} \right) + \frac{y_3^\nu v_u^2}{\Lambda^2} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & c_1^2 \\ 0 & c_1 & 0 \end{array} \right).
\]

For the later convenience we define the following parameters

\[
a'_2 \equiv \frac{a_2}{a_1}, \quad a'_3 \equiv \frac{a_3}{a_1}, \quad A \equiv \frac{v_u^2 y_2^\nu a_1}{\Lambda^2}, \quad B \equiv -\frac{y_1^\nu}{y_2^\nu} \frac{\lambda_1}{2 \lambda_4}, \quad C \equiv \frac{y_3^\nu}{y_2^\nu} \frac{c_1^2}{a_1}.
\]

(A, B and C not to be confused with the flavon fields \(A_i, B_i \) and \(C_i \)) and rewrite the mass matrix (36) as

\[
M_\nu = A \begin{pmatrix} B a'_2 a'_3 & a'_2 & a'_2 \\ a'_3 & B a'_2 a'_3 & 1 + C \\ a'_2 & 1 + C & B a'_2 a'_3 \end{pmatrix}.
\]

It turns out that this mass matrix has the following relations,

\[
\frac{M_{22}}{M_{11}} = \left(\frac{M_{23} - AC}{M_{13}} \right)^2, \quad \frac{M_{33}}{M_{22}} = \left(\frac{M_{13}}{M_{12}} \right)^2, \quad \frac{M_{11}}{M_{33}} = \left(\frac{M_{12}}{M_{23} - AC} \right)^2.
\]
Note that the three equations are dependent. Actually, the third equation is a consequence of the first and the second equations. The first equation \((39)\) can be solved by \(AC\) as
\[
AC = M_{23} \pm M_{13} \sqrt{\frac{M_{22}}{M_{11}}},
\]
thus if the mass matrix \(M_{\nu}\) is fixed, the parameter \(AC\) can be derived. Hence, \((40)\) is a prediction for ratios of elements of the neutrino mass matrix \(M_{\nu}\).

Now, we investigate whether this model can explain the experimental values of mass hierarchies and mixings. In our model, the charged lepton mass matrix \((23)\) already takes a diagonal form, so the PMNS mixing matrix \(U_{\text{PMNS}}\) is given by a unitary matrix \(U_{\nu}\) which diagonalizes the neutrino mass matrix \((38)\) as
\[
U_{\text{PMNS}} = U_{\nu} = R_{23}U_{13}R_{12}P_{12}.
\]
Here, the rotation matrices are defined by three mixing angles \((\theta_{12}, \theta_{23}, \theta_{13})\) and three CP phases \((\delta, \beta_{1}, \beta_{2})\) as
\[
R_{23} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{pmatrix}, \quad
U_{13} = \begin{pmatrix}
\cos \theta_{13} & 0 & \sin \theta_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-\sin \theta_{13}e^{i\delta} & 0 & \cos \theta_{13}
\end{pmatrix},
\]
\[
R_{12} = \begin{pmatrix}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad
P_{12} = \begin{pmatrix}
e^{i\beta_{1}} & 0 & 0 \\
0 & e^{i\beta_{2}} & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
For simplicity, here we consider only the case where
\[
\delta = \beta_{1} = \beta_{2} = 0.
\]
We also set the mixing angle \(\theta_{12}\) to fit the experimental value as
\[
\theta_{12} = 35.3^\circ.
\]
Then the mixing matrix \((43)\) is a real matrix. As for the neutrino mass differences, we wish to reproduce the case of the inverted hierarchy:
\[
\Delta m_{21}^2 = m_2^2 - m_1^2 = 7.60 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 = m_3^2 - m_1^2 = -2.38 \times 10^{-3} \text{ eV}^2,
\]
and regard the third family neutrino mass \(m_3\) as a parameter. These values are consistent with the global analysis in \([27]\) within 2\(\sigma\) range. The neutrino mass matrix is then obtained as
\[
M_{\nu} = U_{\text{PMNS}}M_{\nu}U_{\text{PMNS}}^T,
\]
where \(M = \text{diag}(m_1, m_2, m_3)\). In Figure 1 we show a prediction for various values of \((m_3, \theta_{13}, \theta_{23})\) from the ratio condition of this mass matrix \((40)\). In the figure we show solutions of the mixing angle \(\theta_{23}\) against the third generation neutrino mass \(m_3\) for \((40)\) with fixed \(\theta_{13}\) angles, \(\theta_{13} = 8.2^\circ, 8.7^\circ, 9.1^\circ\), which is in 2\(\sigma\) range.
Figure 1: The mixing angle θ_{23} (in degrees) against the third generation neutrino mass m_3 (in eV) for various values of the mixing angle θ_{13} (in degrees).

Actually, there exist solutions for our parameters (A, B, C, a'_2, a'_3) in (38) to realize these experimental values. For example, if we take the parameters to be

$$
A = 0.00198 \text{ eV}, \\
B = 30.5, \\
C = -5.94, \\
a'_2 = -1.09, \\
a'_3 = -1.06,
$$

we can obtain $m_3 = 0.05 \text{ eV}, \theta_{13} = 8.7^\circ, \theta_{23} = 49.1^\circ$. This solution is also consistent with the 2σ range of recent fits from neutrinoless double beta decay [28]:

$$
m_{\beta\beta} \approx 0.05 \text{ eV}, \\
\Sigma = m_1 + m_2 + m_3 \approx 0.15 \text{ eV}.
$$

3.4 Charged lepton masses

Next, we consider the charged lepton mass matrix [23]. We want to fix the charged lepton masses as

$$
m_e = \frac{y_{e}^{L} v_{d}^{L}}{\Lambda} \cdot d_1 = 0.5 \times 10^6 \text{ eV}, \\
m_{\mu} = \frac{y_{\mu}^{L} v_{d}^{L}}{\Lambda} \cdot d_2 = 105 \times 10^6 \text{ eV}, \\
m_{\tau} = \frac{y_{\tau}^{L} v_{d}^{L}}{\Lambda} \cdot d_3 = 1776 \times 10^6 \text{ eV}.
$$
The charged lepton masses are constrained from the D-flatness condition, which for this model is given by

$$\frac{7}{3}e_1|d_1|^2 + \frac{7}{3}e_2|d_2|^2 + \frac{7}{3}e_3|d_3|^2 - \frac{4}{3}e_1|b_1|^2 - \frac{4}{3}e_2|b_2|^2 - \frac{4}{3}e_3|b_3|^2$$

$$+ \frac{2}{3}e_1|a_1|^2 + \frac{2}{3}e_2|a_2|^2 + \frac{2}{3}e_3|a_3|^2 + \frac{1}{3}e_1|c|^2 = 0,$$ \hspace{1cm} (57)

or equivalently

$$+ \frac{7}{3}(e_1|m_e|^2 + e_2|m_\mu|^2 + e_3|m_\tau|^2) \cdot \left| \Lambda \right|^2 \frac{y_e^2 v_d}{y_\nu^2 v_d}$$

$$- \frac{4}{3}\left(e_1|a'_2 a'_3 A|^2 + e_2\left| A A'_2 \right|^2 + e_3\left| A A'_3 \right|^2\right) \cdot \frac{\lambda_1 \Lambda^2}{2\lambda_4 v^2 v^2}$$

$$+ \frac{2}{3}(e_1|A|^2 + e_2|A'_2|^2 + e_3|A'_3|^2) \cdot \left| \Lambda \right|^2 \frac{y_e^2 v_d}{y_\nu^2 v_d} + \frac{1}{3}e_1|AC| \cdot \frac{\Lambda^3}{y_\nu^2 v_d} = 0.$$ \hspace{1cm} (58)

After inserting the solution \((A, B, C, a'_2, a'_3)\) from (51) we can numerically solve (58) as a linear equation. Here, we only consider the simplified case where \(|\lambda_1/(2\lambda_4)| = 1\). Then, we obtain a single solution,

$$\left| \frac{y_e^2 v_d}{y_\nu^2 v_d} \right| \approx 2.10 \text{ GeV},$$ \hspace{1cm} (59)

$$\left| \frac{(y_e^2)^2 v_d^2 \Lambda}{y_\nu^2 v_d^2} \right| \approx 7.06 \times 10^{12} \text{ GeV}.$$ \hspace{1cm} (60)

Then, by taking “natural” values, \(|y_1^e| = |y_2^e| = |y_3^e| = 1\), and by imposing

$$v_u^2 + v_d^2 = (173 \text{ GeV})^2$$ \hspace{1cm} (61)

we arrive at

$$\tan \beta = \frac{v_u}{v_d} \approx 82.4,$$ \hspace{1cm} (62)

$$\Lambda \approx 4.79 \times 10^{16} \text{ GeV}.$$ \hspace{1cm} (63)

Other values of \(\tan \beta\) and \(\Lambda\) are possible by appropriately adjusting the couplings.

4 Conclusion

In this work, motivated by a gauge origin of discrete symmetries in the framework of the heterotic orbifold models, we have investigated gauge theoretical realizations of non-Abelian discrete flavor symmetries. We have shown that phenomenologically interesting discrete symmetries are realized effectively from a \(U(1)^n \times S_m\) or \(U(1)^n \times Z_m\) gauge theory. These theories
can be regarded as UV completions of discrete flavor models. The main difference between a discrete flavor model and a $U(1)$ flavor model as shown in this paper can be seen in the field interactions. Namely, some fields in a discrete flavor model can be distinguished in a $U(1)$ flavor model. For example, the $3_{(1)}$ representation field of the $\Delta(54)$ symmetry can be described by several $U(1)^2$ charges, $(e_1/3, e_2/3, e_3/3), (-2e_1/3, -2e_2/3, -2e_3/3)$ etc. Thus a superpotential in a $U(1)$ flavor model can be different from the one of the corresponding discrete flavor model. In general, $U(1)^n \times S_m$ and $U(1)^n \times Z_m$ flavor models are constrained more than flavor models with non-Abelian discrete flavor symmetries, which are subgroups of $U(1)^n \times S_m$ and $U(1)^n \times Z_m$, because symmetries are larger. Our results would provide a new insight on flavor models.

We have introduced the specific combination of $U(1)^2$ charges, $e_1, e_2,$ and $e_3,$ to realize $S_4, \Delta(54), A_4$ and $\Delta(27).$ They correspond to weights of the triplet (or anti-triplet) representation of $SU(3).$ In fact, $U(1)^2 \rtimes S_3$ is a subgroup of $SU(3)$, where S_3 is associated with the Weyl group. We also obtained genuine $U(1)^2 \rtimes S_3$ representations which are not obtained from $SU(3)$ triplets by spontaneous symmetry breaking. Also, in a stringy realization of $\Delta(54)$, the $SU(3)$ gauge symmetry appears in toroidal compactification, and the non-zero roots can be projected out by an orbifold projection [20]. This may also suggest that a similar situation can be realized field-theoretically in a higher-dimensional $SU(3)$ gauge theory with a suitable orbifold boundary condition.

Anomalies of non-Abelian discrete symmetries are important [29]. Anomalous discrete symmetries would be violated by non-perturbative effects, but its breaking effects might be small depending on dynamical scales of non-perturbative effects. By our construction, discrete Abelian symmetries originating from $U(1)^n$ of $U(1)^n \rtimes S_m$ and $U(1)^n \rtimes Z_m$ are always anomaly-free and exact symmetries, but S_m and Z_m of $U(1)^n \rtimes S_m$ and $U(1)^n \rtimes Z_m$ can include anomalous discrete symmetries depending on the model.

We have constructed a concrete flavor model for the lepton sector based on the $U(1)^2 \rtimes S_3$ continuous gauge theory. We have shown that it is possible obtain a realistic flavor structure from this model. Since the model is based on an extended symmetry the number of the parameters is relatively few. In particular, we could show a relation between the angle θ_{23} and third generation neutrino mass m_3.

We have shown six types of gauge realizations of non-Abelian discrete symmetries. However, further extensions are possible. For example, extensions to higher N, $\Delta(6N^2)$, is possible if we consider models with $U(1)$ charges $q = e_i/N$. It is also possible to include further representations of e.g. $U(1)^2 \rtimes S_3$ which we did not cover here for the sake of simplicity. The general representation theory of these semidirect groups is obtained from the little group method of Wigner, which is familiar from the representation theory of the Poincaré group. Then, e.g. in the case of $U(1)^2 \rtimes S_3$ one obtains an uncharged singlet representation which transforms as $1'$ under S_3 while being uncharged under the $U(1)^2$.

A phenomenological implication of our $U(1)$ flavor models is that there should be Z' boson(s) which originate from $U(1)$ gauge groups in the effective theory. In this framework Z' bosons and flavor structures are related. Since we assigned different $U(1)$ charges to the three-generation leptons, the Z' bosons have flavor dependent interactions. Thus, if Z' bosons
are light as e.g. the TeV scale, they can be a probe of the flavor structure. It will be interesting to investigate \(Z' \) phenomenology by extending well-known discrete flavor models.

Acknowledgement

S.K. wishes to thank Otto C.W. Kong for helpful discussions. F.B. was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture (MEXT), Japan (No. 23104011). T.K. was supported in part by the Grant-in-Aid for Scientific Research No. 25400252 from the Ministry of Education, Culture, Sports, Science and Technology of Japan. S.K. was supported by the Taiwan’s National Science Council under grant NSC102-2811-M-033-008.

References

[1] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010) [arXiv:1002.0211 [hep-ph]].

[2] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010) [arXiv:1003.3552 [hep-th]]; Lect. Notes Phys. 858, 1 (2012); Fortsch. Phys. 61, 441 (2013).

[3] S. F. King and C. Luhn, Rept. Prog. Phys. 76, 056201 (2013) [arXiv:1301.1340 [hep-ph]].

[4] L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, Nucl. Phys. B 261 (1985) 678; Nucl. Phys. B 274 (1986) 285.

[5] L. E. Ibañez, H. P. Nilles and F. Quevedo, Phys. Lett. B 187 (1987) 25; L. E. Ibañez, J. E. Kim, H. P. Nilles and F. Quevedo, Phys. Lett. B 191 (1987) 282.

[6] Y. Katsuki, Y. Kawamura, T. Kobayashi, N. Ohtsubo, Y. Ono and K. Tanioka, Nucl. Phys. B 341 (1990) 611.

[7] T. Kobayashi, S. Raby and R. J. Zhang, Phys. Lett. B 593 (2004) 262 [arXiv:hep-ph/0403065]; Nucl. Phys. B 704 (2005) 3 [arXiv:hep-ph/0409098].

[8] W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Phys. Rev. Lett. 96 (2006) 121602 [arXiv:hep-ph/0511035]; Nucl. Phys. B 785 (2007) 149 [arXiv:hep-th/0606187].

[9] J. E. Kim and B. Kyae, Nucl. Phys. B 770 (2007) 47 [arXiv:hep-th/0608086].

[10] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007) [hep-th/0611095]; Phys. Rev. D 77, 046013 (2008) [arXiv:0708.2691 [hep-th]].

[11] M. Blaszczyk, S. Nibbelink Groot, M. Ratz, F. Ruehle, M. Trapletti and P. K. S. Vaudrevange, Phys. Lett. B 683, 340 (2010) [arXiv:0911.4905 [hep-th]].
[12] S. Groot Nibbelink and O. Loukas, JHEP 1312, 044 (2013) arXiv:1308.5145 [hep-th].

[13] H. P. Nilles, S. Ramos-Sanchez, M. Ratz and P. K. S. Vaudrevange, Eur. Phys. J. C 59, 249 (2009) arXiv:0806.3905 [hep-th].

[14] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby and M. Ratz, Nucl. Phys. B 768, 135 (2007) hep-ph/0611020.

[15] H. Abe, K. -S. Choi, T. Kobayashi and H. Ohki, Nucl. Phys. B 820, 317 (2009) arXiv:0904.2631 [hep-ph]; Phys. Rev. D 80, 126006 (2009) arXiv:0907.5274 [hep-th]; Phys. Rev. D 81, 126003 (2010) arXiv:1001.1788 [hep-th].

[16] M. Berasaluce-Gonzalez, P. G. Camara, F. Marchesano, D. Regalado and A. M. Uranga, JHEP 1209, 059 (2012) arXiv:1206.2383 [hep-th]; F. Marchesano, D. Regalado and L. Vazquez-Mercado, JHEP 1309, 028 (2013) arXiv:1306.1284 [hep-th].

[17] Y. Hamada, T. Kobayashi and S. Uemura, JHEP 1405, 116 (2014) arXiv:1402.2052 [hep-th].

[18] T. Higaki, N. Kitazawa, T. Kobayashi and K. j. Takahashi, Phys. Rev. D 72, 086003 (2005) hep-th/0504019.

[19] P. Ko, T. Kobayashi, J. -h. Park and S. Raby, Phys. Rev. D 76, 035005 (2007) [Erratum-ibid. D 76, 059901 (2007)] arXiv:0704.2807 [hep-ph].

[20] F. Beye, T. Kobayashi and S. Kuwakino, Phys. Lett. B 736, 433 (2014) arXiv:1406.4660 [hep-th].

[21] H. Abe, K. -S. Choi, T. Kobayashi, H. Ohki and M. Sakai, Int. J. Mod. Phys. A 26, 4067 (2011) arXiv:1009.5284 [hep-th].

[22] C. S. Lam, Phys. Rev. D 78, 073015 (2008) arXiv:0809.1185 [hep-ph].

[23] J. A. Escobar and C. Luhn, J. Math. Phys. 50, 013524 (2009) arXiv:0809.0639 [hep-th].

[24] H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, JHEP 0904, 011 (2009) arXiv:0811.4683 [hep-ph]; JHEP 0912, 054 (2009) arXiv:0907.2006 [hep-ph].

[25] S. F. King and C. Luhn, JHEP 0910, 093 (2009) arXiv:0908.1897 [hep-ph].

[26] J. A. Escobar, Phys. Rev. D 84, 073009 (2011) arXiv:1102.1649 [hep-ph].

[27] D. V. Forero, M. Tortola and J. W. F. Valle, Phys. Rev. D 90, 093006 (2014) arXiv:1405.7540 [hep-ph].

[28] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Rotunno, Phys. Rev. D 86 (2012) 013012 arXiv:1205.5254 [hep-ph].

[29] T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P. K. S. Vaudrevange, Nucl. Phys. B 805, 124 (2008) arXiv:0805.0207 [hep-th].