Cobimaximal Neutrino Mixing from $S_3 \times Z_2$

Ernest Maa,b

a Physics & Astronomy Department and Graduate Division, University of California, Riverside, California 92521, USA

b HKUST Jockey Club Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China

Abstract

It has recently been shown that the phenomenologically successful pattern of cobimaximal neutrino mixing ($\theta_{13} \neq 0$, $\theta_{23} = \pi/4$, and $\delta_{CP} = \pm \pi/2$) may be achieved in the context of the non-Abelian discrete symmetry A_4. In this paper, the same goal is achieved with $S_3 \times Z_2$. The residual lepton Z_3 triality in the case of A_4 is replaced here by $Z_2 \times Z_2$. The associated phenomenology of the scalar sector is discussed.
Introduction:

Present neutrino data \[1, 2\] are indicative of $\theta_{13} \neq 0$, $\theta_{23} = \pi/4$ and $\delta_{CP} = -\pi/2$. Calling this **cobimaximal** mixing \[3\], it has been shown that it may be derived in two equivalent ways. (I) The Majorana neutrino mass matrix, in the basis where charged-lepton masses are diagonal, is of the form \[4, 5, 6\]

$$
\mathcal{M}^{(e, \mu, \tau)}_\nu = \begin{pmatrix} A & C & C^* \\ C & D^* & B \\ C^* & B & D \end{pmatrix},
$$

where A, B are real. (II) The neutrino mixing matrix is of the form \[7, 8, 9, 10\]

$$
U_{\nu} = U_\omega \mathcal{O},
$$

where \[11, 12\]

$$
U_\omega = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix},
$$

with $\omega = \exp(2\pi i/3) = -1/2 + i\sqrt{3}/2$, and \mathcal{O} is any arbitrary real orthogonal matrix. This yields $|U_{\mu i}| = |U_{\tau i}|$ which leads to cobimaximal mixing. Using the fact that U_ω is derivable from A_4 \[13\], and the scotogenic generation of neutrino mass from a set of real scalars \[9, 14, 15, 16\], Eq. (2) is naturally achieved. This conceptual shift from tribimaximal \[17, 18\] to cobimaximal mixing may also be understood as the result of a residual generalized CP symmetry \[6, 19, 20, 21, 22, 23, 24\]. Here we show how cobimaximal mixing may be obtained from the soft breaking of $S_3 \times Z_2$ to $Z_2 \times Z_2$ instead of the soft breaking of A_4 to Z_3.

Soft breaking of S_3 to Z_2 with two Higgs doublets:

Let $(\Phi_1, \Phi_2) \sim 2$ under S_3, then the most general S_3 invariant scalar potential for $\Phi_{1,2}$ is given by \[25\]

$$
V_0 = \mu_0^2(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2) + \frac{1}{2} \lambda_1(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2)^2 \\
+ \frac{1}{2} \lambda_2(\Phi_1^\dagger \Phi_1 - \Phi_2^\dagger \Phi_2)^2 + \lambda_3(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1).
$$
The soft breaking of V_0 to a residual Z_2 symmetry may be accomplished in three ways, according to how the Z_2 is chosen. (1) $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$. The soft term required is then $\Phi_1^\dagger \Phi_1 - \Phi_2^\dagger \Phi_2$. (2) $\Phi_1 \to \Phi_2$, $\Phi_2 \to \Phi_1$. The soft term required is then $\Phi_1^\dagger \Phi_2 + \Phi_2^\dagger \Phi_1$. (3) $\Phi_1 \to i\Phi_2$, $\Phi_2 \to -i\Phi_1$. The soft term required is then $i(\Phi_1^\dagger \Phi_2 - \Phi_2^\dagger \Phi_1)$. In (1), the residual Z_2 symmetry corresponds to $\langle \phi_0^1 \rangle \neq 0$, $\langle \phi_0^2 \rangle = 0$. In (2), it is $\langle \phi_0^1 + \phi_0^2 \rangle \neq 0$, $\langle \phi_0^1 - \phi_0^2 \rangle = 0$. In (3), it is $\langle \phi_0^1 + i\phi_0^2 \rangle \neq 0$, $\langle \phi_0^1 - i\phi_0^2 \rangle = 0$.

Two lepton families under S_3:

Let $(\nu_1, l_1)_L, (\nu_2, l_2)_L \sim 2$ under S_3, and $l_{1R}, l_{2R} \sim \mathbf{1'}, \mathbf{1}$ under S_3. The S_3 invariant Yukawa terms for charged-lepton masses are then

$$-\mathcal{L}_Y = f_{\mu}(\bar{l}_{1L}\phi_0^1 - \bar{l}_{2L}\phi_0^2)l_{1R} + f_{\tau}(\bar{l}_{1L}\phi_0^1 + \bar{l}_{2L}\phi_0^2)l_{2R} + H.c.$$

(5)

Choosing the third option for Z_2 with $i\mu_{12}^2(\Phi_1^\dagger \Phi_2 - \Phi_2^\dagger \Phi_1)$ with $\mu_{12}^2 < 0$, so that $v/\sqrt{2} = \langle \phi_0^1 \rangle = i\langle \phi_0^2 \rangle$, the 2×2 mass matrix linking $(\bar{l}_{1L}, \bar{l}_{2L})$ to (l_{1R}, l_{2R}) is then given by

$$\mathcal{M}_l = \begin{pmatrix} f_\mu & f_\tau \\ i f_\mu & -i f_\tau \end{pmatrix} \frac{v}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} f_\mu v \\ 0 \end{pmatrix} = \begin{pmatrix} f_\mu v \\ 0 \end{pmatrix}$$

(6)

Three lepton families under $S_3 \times Z_2$:

A third lepton family may be added which transforms as $(\mathbf{1}, -)$ under $S_3 \times Z_2$, so that it couples to a third Higgs doublet which transforms as $(\mathbf{1}, +)$. The 3×3 unitary matrix linking the diagonal charged-lepton mass matrix to the neutrino mass matrix is then

$$U_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & -i/\sqrt{2} \\ 0 & i/\sqrt{2} & i/\sqrt{2} \end{pmatrix}.$$

(7)

This serves the same purpose as U_ω of Eq. (3), because

$$U_{\nu l} = U_2 O$$

(8)

also yields $|U_{\mu l}| = |U_{\tau l}|$ which leads to cobimaximal mixing. In fact, since $U_{ei} = O_{1i}$, the θ_{12} and θ_{13} angles are the same in both $U_{\nu l}$ and O.

3
More about \mathcal{O}:

The 3×3 Majorana neutrino mass matrix \mathcal{M}_ν is symmetric but also complex in general with three physical phases. It is thus not diagonalized by an orthogonal matrix. However, if the origin of this mass matrix is radiative and comes from a set of three real scalars, and there are no extraneous phases from the additional interactions, then it is possible [9, 14, 15, 16] to achieve this result.

In general \mathcal{M}_ν is diagonalized by a unitary matrix with 3 angles and 3 phases:

\[
U = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
1 & s_{13}e^{-i\delta} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1/e^{i\alpha_{21}/2} & 0 \\
0 & 0 & e^{i\alpha_{31}/2}
\end{pmatrix},
\]

(9)

where $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$. If $\delta = 0$, then it is equal to an orthogonal matrix times a diagonal matrix involving only Majorana phases. Upon multiplication on the left by U_2 of Eq. (7), it will still lead to cobimaximal neutrino mixing. Now

\[
U_2 \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\theta_{23}} & 0 \\
0 & 0 & e^{-i\theta_{23}}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1/\sqrt{2} & -i/\sqrt{2} \\
0 & -1/\sqrt{2} & -i/\sqrt{2}
\end{pmatrix}.
\]

(10)

The diagonal matrix of phases on the left may be absorbed into the charged leptons, and the remaining part of $U_2 U$ becomes

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1/\sqrt{2} & 1/\sqrt{2} \\
0 & -1/\sqrt{2} & 1/\sqrt{2}
\end{pmatrix}
\begin{pmatrix}
1 & s_{13}e^{-i\delta} & 0 \\
-s_{12} & c_{12} & 0 \\
is_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1/e^{i\alpha_{21}/2} & 0 \\
0 & 0 & -i/e^{i\alpha_{31}/2}
\end{pmatrix}.
\]

(11)

This means that if $\delta = 0$, cobimaximal mixing is achieved with $e^{-i\delta_{CP}} = e^{i\pi/2} = i$ as expected. However, even if $\delta \neq 0$, so that δ_{CP} deviates from $-\pi/2$, θ_{23} remains at $\pi/4$. This is a remarkable result and it is only true because of U_2 of Eq. (7), and does not hold for U_ω of Eq. (3). The deviation from cobimaximal mixing is model-dependent and has been calculated [26] in a specific model, showing the correlation of δ_{CP} with θ_{23}. Here only δ_{CP} deviates.
Soft breaking of S_3 to Z_2 with three Higgs doublets:

Adding $\Phi_3 \sim 1$ under S_3, the scalar potential of our model becomes

$$V = \mu_0^2(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2) + i\mu_{12}(\Phi_1^\dagger \Phi_2 - \Phi_2^\dagger \Phi_1) + \mu_3^2\Phi_3^\dagger \Phi_3 + \left[\frac{1}{2}\mu_{30}^2\Phi_3^\dagger (\Phi_1 + i\Phi_2) + H.c. \right]$$

$$+ \frac{1}{2}\lambda_1(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2)^2 + \frac{1}{2}\lambda_2(\Phi_1^\dagger \Phi_1 - \Phi_2^\dagger \Phi_2)^2 + \lambda_3(\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + \frac{1}{2}\lambda_4(\Phi_3^\dagger \Phi_3)^2$$

$$+ \lambda_5(\Phi_3^\dagger \Phi_3)(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2) + \lambda_6(\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2)\Phi_3 + [\lambda_7(\Phi_3^\dagger \Phi_1)(\Phi_3^\dagger \Phi_2) + H.c.] \quad (12)$$

The μ_{12} and μ_{30}^2 terms break S_3 softly to Z_2, under which Φ_3 and $\Phi_+ = (\Phi_1 + i\Phi_2)/\sqrt{2}$ are even and $\Phi_- = (\Phi_1 - i\Phi_2)/\sqrt{2}$ is odd. The S_3 allowed quartic term $(\Phi_3^\dagger \Phi_1)(\Phi_2^\dagger \Phi_1) + (\Phi_3^\dagger \Phi_2)(\Phi_1^\dagger \Phi_2)$ is forbidden by making Φ_3 odd under an extra Z_2 symmetry, which is then broken softly by the μ_{30}^2 term. With this modification, $(\nu_e, e)_L$ is even and e_R is odd under this softly broken extra Z_2 to allow the Yukawa coupling $f_e\bar{e}_L e_R \phi^0_3$, with $m_e = f_e v_3$. Assuming a small μ_{30}^2 term, v_3 is naturally much smaller than v. Hence $m_e << m_\mu, m_\tau$ and the charged leptons are distinguished from each other according to

$$e \sim (+, -), \quad \mu \sim (-, +), \quad \tau \sim (+, +). \quad (13)$$

The Z_3 triality $[27, 28]$ coming from A_4 has now been replaced by the above under $Z_2 \times Z_2$. This serves to forbid $\mu \rightarrow e\gamma$, etc. as in the case of Z_3 lepton triality. The odd Higgs doublet Φ_- transforms as $(-, +)$ and couples to $\bar{\mu}_L \tau_R$ and $\bar{\tau}_L \mu_R$ as in Ref. $[29]$.

Phenomenology of scalar interactions:

The leptonic Yukawa interactions are given by

$$-\mathcal{L}_Y = f_\tau(\bar{\tau}_L \phi^0_+ + \bar{\mu}_L \phi^0_-) \tau_R + f_\tau(\bar{\nu}_\tau \phi^+_+ + \bar{\nu}_\mu \phi^+_-) \tau_R$$

$$+ f_\mu(\bar{\mu}_L \phi^0_+ + \bar{\tau}_L \phi^0_-) \mu_R + f_\mu(\bar{\nu}_\mu \phi^+_+ + \bar{\nu}_\tau \phi^+_-) \mu_R$$

$$+ f_e \bar{e}_L \phi^0_3 e_R + f_e \bar{\nu}_e \phi^+_3 \nu_R + H.c. \quad (14)$$

The scalar interactions are given by

$$V = (\mu_0^2 + \mu_{12}^2)\Phi_+ \Phi_+ + (\mu_0^2 - \mu_{12}^2)\Phi_- \Phi_- + \mu_3^2\Phi_3^\dagger \Phi_3 + \left[\frac{1}{\sqrt{2}}\mu_{30}^2\Phi_3^\dagger \Phi_+ + H.c. \right]$$
\[v^2 = \frac{-3\mu_0^2}{\lambda_1 + (\lambda_3/2)}, \]
\[v_3 \simeq \frac{-\mu_{30}^2 v}{\sqrt{2} \mu_3^2 + (\lambda_5 + \lambda_6 + Im(\lambda_7))v^2}. \]

The states \(\sqrt{2}[v Im(\phi_0^0) + v_3 Im(\phi_3^0)]/\sqrt{v^2 + v_3^2} \) and \([v \phi_3^\pm + v_3 \phi_3^\mp]/\sqrt{v^2 + v_3^2} \) are the would-be massless Goldstone modes for the Z and \(W^\pm \) bosons. The states \(A = \sqrt{2}[v Im(\phi_3^0) - v_3 Im(\phi_3^0)]/\sqrt{v^2 + v_3^2} \) and \(H^\pm = [v \phi_3^\pm - v_3 \phi_3^\mp]/\sqrt{v^2 + v_3^2} \) have masses given by

\[m_A^2 = -Im(\lambda_7)(v^2 + v_3^2) - \frac{\mu_{30}^2 (v^2 + v_3^2)}{2 vv_3} \simeq \mu_3^2 + (\lambda_5 + \lambda_6 - Im(\lambda_7))v^2, \]
\[m_{H^\pm}^2 = -(\lambda_6 + Im(\lambda_7))(v^2 + v_3^2) - \frac{\mu_{30}^2 (v^2 + v_3^2)}{2 vv_3} \simeq \mu_3^2 + \lambda_5 v^2. \]

The states \(h = \sqrt{2} Re(\phi_3^0) \) and \(H = \sqrt{2} Re(\phi_3^0) \) are approximate mass eigenstates with

\[m_h^2 \simeq (2\lambda_1 + \lambda_3)v^2, \quad m_H^2 \simeq \mu_3^2 + (\lambda_5 + \lambda_6 + Im(\lambda_7))v^2, \]

and \(h - H \) mixing given by

\[\epsilon \simeq \frac{-v_3}{v} \left[\frac{\mu_3^2 - (\lambda_5 + \lambda_6 + Im(\lambda_7))v^2}{\mu_3^2 + (\lambda_5 + \lambda_6 + Im(\lambda_7))v^2} \right]. \]
The Φ^\pm_- doublet has odd Z_2 and does not mix with Φ^+_+ or Φ^3_3. The masses of its components are given by

$$m^2(\phi^\pm_-) \simeq \mu^2_0 - \mu^2_{12} + \left(\lambda_1 - \frac{1}{2}\lambda_3\right)v^2,$$

$$m^2(\sqrt{2}\text{Re}(\phi^0_-)) \simeq \mu^2_0 - \mu^2_{12} + \left(\lambda_1 - \frac{1}{2}\lambda_3 + 2\lambda_2\right)v^2,$$

$$m^2(\sqrt{2}\text{Im}(\phi^0_-)) \simeq \mu^2_0 - \mu^2_{12} + \left(\lambda_1 + \frac{1}{2}\lambda_3\right)v^2.$$

Phenomenology of lepton interactions:

From Eq. (14), the lepton interactions of this model are given by

$$-\mathcal{L}_Y = \frac{m_e}{\sqrt{2}}h\tau\tau + \frac{m_\mu}{\sqrt{2}}h\mu\mu + \frac{m_\tau}{\sqrt{2}}[(H + iA)\bar{e}_Le_R + H^+\bar{\nu}_e e_R + H.c.]$$

$$+ \left[\frac{m_\tau}{v}\left[\phi^0_\mu L\tau_R + \phi^+\nu_\mu \tau_R\right] + \frac{m_\mu}{v}\left[\phi^0_\tau L\mu_R + \phi^+\nu_\tau \mu_R\right]\right] + H.c. \quad (27)$$

to a very good approximation. Since $v_3 << v$ is assumed, the heavy H and A couple predominantly to $e^- e^+$. If they are produced, through a virtual Z for example, at the Large Hadron Collider (LHC), the $e^- e^+ e^- e^+$ final state is very distinctive and potentially measurable. In the same way, $\sqrt{2}\text{Re}(\phi^0_-) + \sqrt{2}\text{Im}(\phi^0_-)$ may be produced. They decay to $\mu^- \tau^+$ and $\mu^+ \tau^-$ which are again rather distinctive if τ^\pm can be reconstructed experimentally. On the other hand, the decay of ϕ^\pm_- is predominantly to $\tau^+ \nu_\mu$, $\tau^- \bar{\nu}_\mu$.

Conclusion:

The notion of cobimaximal neutrino mixing, i.e. $\theta_{13} \neq 0$, $\theta_{23} = \pi/4$, and $\delta_{CP} = -\pi/2$, is shown to be a consequence of the residual $Z_2 \times Z_2$ symmetry of an $S_3 \times Z_2$ model of lepton masses. This is an alternative theoretical understanding from the usual A_4 realization. It has verifiable decay signatures in its three Higgs doublets, as well as the prediction that even if δ_{CP} deviates from $-\pi/2$, θ_{23} will remain at $\pi/4$, in contrast to other models.

Acknowledgment: This work is supported in part by the U. S. Department of Energy under Grant No. [de-sc0008541].
References

[1] Particle Data Group, C. Patrignani et al., Chin. Phys. C40, 100001 (2016).

[2] K. Abe et al., (T2K Collaboration), Phys. Rev. D91, 072010 (2015).

[3] E. Ma, Phys. Lett. B752, 198 (2016).

[4] E. Ma, Phys. Rev. D66, 117301 (2002).

[5] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B552, 207 (2003).

[6] W. Grimus and L. Lavoura, Phys. Lett. B579, 113 (2004).

[7] K. Fukuura, T. Miura, E. Takasugi, and M. Yoshimura, Phys. Rev. D61, 073002 (2000).

[8] T. Miura, E. Takasugi, and M. Yoshimura, Phys. Rev. D63, 013001 (2001).

[9] E. Ma, Phys. Rev. D92, 051301(R) (2015).

[10] X.-G. He, Chin. J. Phys. 53, 100101 (2015).

[11] N. Cabibbo, Phys. Lett. 72B, 333 (1978).

[12] L. Wolfenstein, Phys. Rev. D18, 958 (1978).

[13] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001).

[14] S. Fraser, E. Ma, and O. Popov, Phys. Lett. B737, 280 (2014).

[15] S. Fraser, E. Ma, and M. Zakeri, Phys. Rev. D93, 115019 (2016).

[16] E. Ma, Phys. Lett. B755, 348 (2016).

[17] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B530, 167 (2002).
[18] E. Ma, Phys. Rev. D70, 031901(R) (2004).

[19] P. Chen, C.-Y. Yao, and G.-J. Ding, Phys. Rev. D92, 073002 (2015).

[20] R. N. Mohapatra and C. C. Nishi, JHEP 1508, 092 (2015).

[21] A. S. Joshipura and K. M. Patel, Phys. Lett. B749, 159 (2015).

[22] H.-J. He, W. Rodejohann, and X.-J. Xu, Phys. Lett. B751, 586 (2015).

[23] C. C. Nishi, Phys. Rev. D93, 093009 (2016).

[24] C.-C. Li, J.-N. Lu, and G.-J. Ding, Nucl. Phys. B913, 110 (2016).

[25] S.-L. Chen, M. Frigerio, and E. Ma, Phys. Rev. D70, 073008 (2004).

[26] E. Ma, A. Natale, and O. Popov, Phys. Lett. B746, 114 (2015).

[27] E. Ma, Phys. Rev. D82, 037301 (2010).

[28] Q.-H. Cao, A. Damanik, E. Ma, and D. Wegman, Phys. Rev. D83, 093012 (2011).

[29] E. Ma and B. Melic, Phys. Lett. B725, 402 (2013).