Question Generation for Evaluating Cross-Dataset Shifts in Multi-modal Grounding

Arjun R Akula
University of California, Los Angeles
aakula@ucla.edu

Abstract

Visual question answering (VQA) is the multi-modal task of answering natural language questions about an input image. Through cross-dataset adaptation methods, it is possible to transfer knowledge from a source dataset with larger train samples to a target dataset where training set is limited. Suppose a VQA model trained on one dataset train set fails in adapting to another, it is hard to identify the underlying cause of domain mismatch as there could exist a multitude of reasons such as image distribution mismatch and question distribution mismatch. At UCLA, we are working on a VQG module that facilitate in automatically generating OOD shifts that facilitates in systematically evaluating cross-dataset adaptation capabilities of VQA models.

1 Background & Motivation

VQA is the challenging AI task of answering natural language questions about an input image (Antol et al., 2015; Anderson et al., 2018). Several datasets have been proposed to measure the progress on this task such as VQA 2.0 (Goyal et al., 2017), VizWiz (Gurari et al., 2018), Visual7w (Zhu et al., 2016), GQA (Hudson and Manning, 2019), to name a few. Recently, self-attention and multi-modal pre-training based methods (Tan and Bansal, 2019; Lu et al., 2019; Cao et al., 2020) demonstrated superior performance on these datasets. Despite great progress, the state-of-the-art methods are found to be less effective when the distribution of \langle image, question \rangle pairs in testing set are different from the training set (Chao et al., 2018; Akula and Zhu, 2022b; Gardner et al., 2020), necessitating the importance of developing cross-dataset adaptation methods (Akula and Zhu, 2019a; Carlson et al., 2003; Soricut and Marcu, 2003; LeThanh et al., 2004).

Through cross-dataset adaptation methods, it is possible to transfer knowledge from a source dataset with larger train samples to a target dataset where training set is limited. However, VQA datasets differ in the way they are collected, making them significantly different in the distribution of input visual and language features (Chao et al., 2018). These multi-modal distribution shifts make it difficult to measure adaptation capabilities and has yet to be well-studied. For example, consider a domain adaptation setting between VQA 2.0 (Goyal et al., 2017) vs. VizWiz (Gurari et al., 2018) datasets.

Suppose a VQA model trained on VQA 2.0 train set fails in adapting (e.g. through fine-tuning) to Vizwiz. From this observation, it is difficult to identify the real cause of domain mismatch as there could exist a multitude of reasons such as (a) image distribution mismatch (e.g. VQA 2.0 consists of high quality images compared to Vizwiz); (b) question distribution mismatch (e.g. VQA 2.0 questions are less conversational than Vizwiz questions); (c) insufficient sample size (e.g. VQA 2.0 consists of relatively large number of training samples); and (d) a combination of image and question distribution mismatches (Akula and Zhu, 2019a; Akula et al., 2020a; Akula and Zhu, 2019b; Akula et al., 2021c,d,b, 2020c; R Akula et al., 2019; Pulijala et al., 2013; Gupta et al., 2012).

2 Problem Definition

There exists two methods to generate cross-datasets shifts:

1. Human Annotations: We can ask human annotators (e.g. AMT turkers) to write VizWiz style queries for VQA 2.0 images and VQA 2.0 style questions for VizWiz images. Although, the quality of annotations will be
high, this approach is costly and cannot scale to multiple datasets (Akula et al., 2013, 2018, 2021a; Gupta et al., 2016; Akula et al., 2019b; Akula, 2021; Akula et al., 2019a, 2020b).

2. **Visual Question Generation (VQG):** In this work, instead of using human annotators, we propose a VQG module that facilitate in automatically generating OOD shifts for VQA datasets. This facilitates in systematically evaluating cross-dataset adaptation capabilities of VQA models. Specifically, using our VQG module, we generate additional test sets for source and target datasets by controlling and disentangling distribution shifts in vision and language features (Akula and Zhu, 2022a; Agarwal et al., 2018; Akula et al., 2019c; Akula, 2015; Palakurthi et al., 2015; Agarwal et al., 2017; Dasgupta et al., 2014).

For example, as shown in Figure 1, using \langle image, question \rangle pairs from source and target test sets involve shift in both visual and language features such as \langle I_{vqa}, Q_{vqa} \rangle to \langle I_{vzwz}, Q_{vzwz} \rangle. We augment these test sets to facilitate measuring adaptation capabilities of VQA models on incremental (systematic) shifts such as \langle I_{vqa}, Q_{vqa} \rangle to \langle I_{vqa}, Q_{vzwz} \rangle to \langle I_{vzwz}, Q_{vzwz} \rangle.

3 Summary of Contributions

Below we summarize our key contributions:

1. Proposing and Implementing a Visual Question Generation (VQG) module for generating questions and answers from the images.

2. Using our proposed VQG, we generate OOD test splits for VQA 2.0 and VizWiz datasets

3. We show that our generated OOD splits help in quantifying the systematic cross-dataset shifts in VQA models.

4 Approach

We will leverage state-of-the-art implementations to train an end-to-end VQG model. Specifically, we use train sets of VQA 2.0 and VizWiz datasets and train VQG model mapping input image to questions with an additional dataset source indicator specifying the source of the sample. After we train our VQG, during inference, we change the dataset indicator to generate cross-dataset image and question pairs. For example, we pick VQA 2.0 image and provide the dataset indicator as VizWiz, for generating VizWiz style questions on VQA 2.0.
images. We will experiment with several contextual features (such as adding bounding box annotations, pre-training on image captioning datasets, etc) to control the quality of the generated questions.

5 Datasets and VQA Models

We experiment with VQA 2.0 and VizWiz datasets. We use ViLBERT (Lu et al., 2019), a pretrain-then-transfer approach, as the state-of-the-art VQA model for our adaptation experiments.

6 Initial Experiments

We have first started selecting a state-of-the-art VQG model. We choose an existing implementation based on mutual information maximization (Krishna et al., 2017). We incorporated the following additional cues to the input to generate the cross-dataset splits:

1. Source of the dataset (eg: VQA, VizWiz)
2. First Three Words of Question: We found that VizWiz questions start with unique words such as “Can you please” and “Please tell me”. So, we believe providing the first three words of the question as additional guidance would further help the model to understand the distribution style of questions that we like to generate.
3. We are currently working on integrating answer categories as additional inputs to the module. The work by (Krishna et al., 2017) proposed16 categories on VQA dataset such as spatial, binary and count. We are leveraging these categories to make the generated questions more diverse.

Training VQA models on ViLBERT: We have completed training VQA models using ViLBERT architecture. This step took us more time as this takes up to 5 days to train the model. Once we get decent questions generated using VQG, we will immediately start our adaptation experiments using the VQA models trained using ViLBERT.

7 Conclusion

We performed cross-dataset evaluation with VQA 2.0 and VizWiz datasets. To do this, we proposed a Visual Question Generation (VQG) module for generating questions and answers from the images. Our experiments demonstrate that our generated OOD splits help in quantifying the systematic cross-dataset shifts in VQA models.

References

Shivali Agarwal, Vishalaksh Aggarwal, Arjun R Akula, Gargi Banerjee Dasgupta, and Giriraj Srithara. 2017. Automatic problem extraction and analysis from unstructured text in it tickets. IBM Journal of Research and Development, 61(1):4–41.

Shivali Agarwal, Arjun R Akula, Gaargi B Dasgupta, Shripad J Nadgowda, and Tapan K Nayak. 2018. Structured representation and classification of noisy and unstructured tickets in service delivery. US Patent 10,095,779.

Arjun Akula, Spandana Gella, Keze Wang, Song-chun Zhu, and Siva Reddy. 2021a. Mind the context: The impact of contextualization in neural module networks for grounding visual referring expressions. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6398–6416.

Arjun Akula, Varun Jampani, Soravit Changpinoyo, and Song-Chun Zhu. 2021b. Robust visual reasoning via language guided neural module networks. Advances in Neural Information Processing Systems, 34.

Arjun Akula, Rajeev Sangal, and Radhika Mamidi. 2013. A novel approach towards incorporating context processing capabilities in nlidb system. In Proceedings of the sixth international joint conference on natural language processing, pages 1216–1222.

Arjun Akula and Song-Chun Zhu. 2022a. Effective representation to capture collaboration behaviors between explainer and user. arXiv preprint arXiv:2201.03147.

Arjun R Akula. 2015. A novel approach towards building a generic, portable and contextual nlidb system. International Institute of Information Technology Hyderabad.

Arjun R Akula, Beer Changpinyo, Boqing Gong, Piyush Sharma, Song-Chun Zhu, and Radu Soricut. 2021c. Crossvqa: Scalably generating benchmarks for systematically testing vqa generalization.

Arjun R Akula, Gaargi B Dasgupta, and Tapan K Nayak. 2018. Analyzing tickets using discourse cues in communication logs. US Patent 10,067,983.

Arjun R Akula, Gargi B Dasgupta, Vijay Ekambaram, and Ramasuri Narayanan. 2021d. Measuring effective utilization of a service practitioner for ticket resolution via a wearable device. US Patent 10,929,264.

Arjun R Akula, Spandana Gella, Yaser Al-Onaizan, Song-Chun Zhu, and Siva Reddy. 2020a. Words aren’t enough, their order matters: On the robustness of grounding visual referring expressions. In ACL.

Arjun R Akula, Spandana Gella, Yaser Al-Onaizan, Song-Chun Zhu, and Siva Reddy. 2020b. Words
aren’t enough, their order matters: On the robustness of grounding visual referring expressions. arXiv preprint arXiv:2005.01655.

Arjun R Akula, Changsong Liu, Sari Saba-Sadiya, Hongjing Liu, Sinisa Todorovic, Joyce Y Chai, and Song-Chun Zhu. 2019a. X-torn: Explaining with theory-of-mind for gaining justified human trust. arXiv preprint arXiv:1909.06907.

Arjun R Akula, Changsong Liu, Sinisa Todorovic, Joyce Y Chai, and Song-Chun Zhu. 2019b. Explainable ai as collaborative task solving. In CVPR Workshops, pages 91–94.

Arjun R Akula, Sinisa Todorovic, Joyce Y Chai, and Song-Chun Zhu. 2019c. Natural language interaction with explainable ai models. In CVPR Workshops, pages 87–90.

Arjun R. Akula, Shuai Wang, and Song-Chun Zhu. 2020c. Cocox: Generating conceptual and counterfactual explanations via fault-lines. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2594–2601. AAAI Press.

Arjun R. Akula and Song-Chun Zhu. 2019a. Visual discourse parsing. CVPR 2019 Workshop on Language and Vision, arXiv:1903.02252.

Arjun R Akula and Song-Chun Zhu. 2019b. Visual discourse parsing. ArXiv preprint, abs/1903.02252.

Arjun R Akula and Song-Chun Zhu. 2022b. Discourse analysis for evaluating coherence in video paragraph captions. arXiv preprint arXiv:2201.06207.

Arjun Reddy Akula. 2021. Gaining Justified Human Trust by Improving Explainability in Vision and Language Reasoning Models. Ph.D. thesis, UCLA.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Le Zhang. 2018. Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6077–6086.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In Proceedings of the IEEE international conference on computer vision, pages 2425–2433.

Qingqing Cao, Harsh Trivedi, Aruna Balasubramanian, and Niranjani Balasubramanian. 2020. De-Former: Decomposing pre-trained transformers for faster question answering. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4487–4497.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. 2003. Building a discourse-tagged corpus in the framework of rhetorical structure theory. In Current and new directions in discourse and dialogue, pages 85–112. Springer.

Wei-Lun Chao, Hexiang Hu, and Fei Sha. 2018. Cross-dataset adaptation for visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5716–5725.

Gargi B Dasgupta, Tapan K Nayak, Arjun R Akula, Shivali Aggarwal, and Shripad J Nadgowda. 2014. Towards auto-remediation in services delivery: Context-based classification of noisy and unstructured tickets. In International Conference on Service-Oriented Computing, pages 478–485. Springer.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, Dheerus Dua, Yanai Elazar, Ananth Gottumukkala, et al. 2020. Evaluating nlp models via contrast sets. arXiv preprint arXiv:2004.02709.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. 2017. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6904–6913.

Abhijeet Gupta, Arjun Akula, Deepak Malladi, Puneeth Kukkadapu, Vinay Ainaulova, and Rajeev Sangal. 2012. A novel approach towards building a portable nlidb system using the computational panian grammar framework. In 2012 International Conference on Asian Language Processing, pages 93–96. IEEE.

Abhirut Gupta, Arjun Akula, Gargi Dasgupta, Pooja Aggarwal, and Prateeti Mohapatra. 2016. Desire: Deep semantic understanding and retrieval for technical support services. In International Conference on Service-Oriented Computing, pages 207–210. Springer.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham. 2018. Vizwiz grand challenge: Answering visual questions from blind people. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3608–3617.

Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6700–6709.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John- son, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. 2017. Visual Genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision, 123(1):32–73.
Huong LeThanh, Geetha Abeysinghe, and Christian Huyck. 2004. Generating discourse structures for written texts. In Proceedings of the 20th international conference on Computational Linguistics, page 329. Association for Computational Linguistics.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In Advances in Neural Information Processing Systems, pages 13–23.

Ashish Palakurthi, SM Ruthu, Arjun Akula, and Radhika Mamidi. 2015. Classification of attributes in a natural language query into different sql clauses. In Proceedings of the International Conference Recent Advances in Natural Language Processing, pages 497–506.

Vasu Pulijala, Arjun R Akula, and Azeemuddin Syed. 2013. A web-based virtual laboratory for electromagnetic theory. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013), pages 13–18. IEEE.

Arjun R Akula, Sinisa Todorovic, Joyce Y Chai, and Song-Chun Zhu. 2019. Natural language interaction with explainable ai models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 87–90.

Radu Soricut and Daniel Marcu. 2003. Sentence level discourse parsing using syntactic and lexical information. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, pages 149–156. Association for Computational Linguistics.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490.

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. 2016. Visual7w: Grounded question answering in images. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4995–5004.