Roq1 confers resistance to Xanthomonas, Pseudomonas syringae and Ralstonia solanacearum in tomato

Authors
Nicholas C. Thomas1,2, Connor G. Hendrich3, Upinder S. Gill4, Caitilyn Allen3, Samuel F. Hutton4, *Alex Schultink1,2

Affiliations
1. Fortiphyte Inc., 2151 Berkeley Way, Berkeley, CA 94704
2. Innovative Genomics Institute, University of California, Berkeley, CA 94720
3. Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI 53706, USA
4. University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA

Author contributions1

Funding information2

Corresponding author contact3

1 N.C.T. and A.S. wrote the manuscript and performed Pseudomonas and Ralstonia petiole infection assays. A.S. carried out Xanthomonas infection and Agrobacterium transient expression experiments. U.S.G. and S.F.H. performed Xanthomonas field experiments. C.G.H. constructed the Ralstonia knockout and performed Ralstonia soil soak assays, supervised by C.A. All authors analyzed results, edited and approved the manuscript.

2 This work was supported in part by the National Institute of Food and Agriculture, US Department of Agriculture under award number 2016-67012-25106 and the UC Berkeley Innovative Genomics Institute. CGH was supported by an NSF Predoctoral Fellowship.

3 Alex Schultink, aschult@berkeley.edu
Summary

A single immune receptor expressed in tomato confers strong resistance to three different bacterial diseases.

Abstract

Xanthomonas species, *Pseudomonas syringae* and *Ralstonia solanacearum* are bacterial plant pathogens that cause significant yield loss in many crop species. Current control methods for these pathogens are insufficient but there is significant potential for generating new disease-resistant crop varieties. Plant immune receptors encoded by nucleotide-binding, leucine-rich repeat (NLR) genes typically confer resistance to pathogens that produce a cognate elicitor, often an effector protein secreted by the pathogen to promote virulence. The diverse sequence and presence/absence variation of pathogen effector proteins within and between pathogen species usually limits the utility of a single NLR gene to protecting a plant from a single pathogen species or particular strains. The NLR protein Recognition of XopQ 1 (Roq1) was recently identified from the plant *Nicotiana benthamiana* and mediates perception of the effector proteins XopQ and HopQ1 from *Xanthomonas* and *P. syringae* respectively. Unlike most recognized effectors, alleles of XopQ/HopQ1 are highly conserved and present in most plant pathogenic strains of *Xanthomonas* and *P. syringae*. A homolog of XopQ/HopQ1, named RipB, is present in many *R. solanacearum* strains. We found that Roq1 also mediates perception of RipB and confers immunity to *Xanthomonas*, *P. syringae*, and *R. solanacearum* when expressed in tomato. Strong resistance to *Xanthomonas perforans* was observed in three seasons of field trials with both natural and artificial inoculation. The *Roq1* gene can therefore be used to provide safe, economical and effective control of these pathogens in tomato and other crop species and reduce or eliminate the need for traditional chemical controls.
Main

Bacterial pathogens from the species *Pseudomonas syringae*, *Ralstonia solanacearum*, and the genus *Xanthomonas* can infect many different crop species and inflict significant yield losses when environmental conditions favor disease. *Xanthomonas* and *P. syringae* tend to enter plant stem, leaf, or flower tissue through wounds or natural openings, such as stomata or hydathodes, whereas *R. solanacearum* is soilborne, entering roots through wounds and natural openings before colonizing xylem tissue (Vasse, Frey, and Trigalet 1995; Gudesblat, Torres, and Vojnov 2009). Once inside the host these bacteria manipulate host metabolism and suppress plant immunity using multiple strategies, including effector proteins delivered by the type III secretion system (Kay and Bonas 2009; Peeters et al. 2013; Xin, Kvitko, and He 2018). This enables the pathogens to multiply to high titers while the plant tissue is still alive and showing few or no visual symptoms. Once the bacteria reach high populations they typically cause necrosis of infected leaf tissue or wilting and eventual death of the plant.

Effective control measures for bacterial pathogens are relatively limited, particularly once plants become infected (Davis et al. 2013). Soil fumigation can reduce *R. solanacearum* populations in the soil but this is expensive, potentially hazardous to workers and the environment, and of limited efficacy (Yuliar, Nion, and Toyota 2015). Copper sulfate and antibiotics such as streptomycin have been used to control *Xanthomonas* species and *P. syringae* but have adverse environmental impacts and many strains have evolved tolerance to these chemicals (Kennelly et al. 2007; Griffin et al. 2017). Applying chemicals that induce systemic acquired resistance, such as acibenzolar-S-methyl, can provide partial control but increase production cost and can depress crop yields when used repeatedly (Pontes et al. 2016).

The most effective, economical, and safe way to control bacterial pathogens is to plant crop varieties that are immune to the target pathogen (Jones et al. 2014; Vincelli 2016). Such
Immunity is often mediated by plant immune receptor genes. Plants have large families of cell surface and intracellular immune receptor proteins that surveil for the presence of invading pathogens (Zipfel 2014; Jones, Vance, and Dangl 2016). Effector proteins delivered by the bacterial type III secretion system are common ligands for intracellular plant immune receptors encoded by intracellular nucleotide-binding domain and leucine-rich repeat containing (NLR) genes (X. Li, Kapos, and Zhang 2015; Jones, Vance, and Dangl 2016; Kapos, Devendrakumar, and Li 2019). While effector proteins contribute to virulence on a susceptible host, an immune response is activated in the plant if that plant has the cognate receptor to recognize the effector. NLR genes typically confer strong, dominant resistance to pathogens that deliver the cognate recognized effector protein (Jones and Dangl 2006; Boller and He 2009; Deslandes and Rivas 2012; X. Li, Kapos, and Zhang 2015). Disease-resistant plants can be generated by identifying the appropriate plant immune receptor genes and transferring them into the target crop species (Dangl, Horvath, and Staskawicz 2013).

We recently identified the *Nicotiana benthamiana* immune receptor gene named Recognition of XopQ 1 (*Roq1*), which appears to be restricted to the genus *Nicotiana* and is required for resistance to *Xanthomonas* spp. and *P. syringae* (Schultink et al. 2017). *Roq1* is a Toll/Interleukin-1 Receptor (TIR) NLR immune receptor that mediates recognition of the *Xanthomonas* effector protein XopQ and the homologous effector HopQ1 from *P. syringae*. XopQ is present in most species and strains of *Xanthomonas* (Ryan et al. 2011) and HopQ1 is present in 62% (290 of 467) sequenced putative pathogenic *P. syringae* strains (Dillon et al. 2019). XopQ/HopQ1 has homology to nucleoside hydrolases and has been shown to enhance virulence on susceptible hosts (Ferrante and Scortichini 2009; W. Li et al. 2013), possibly by altering cytokinin levels or interfering with the activity of host 14-3-3 proteins (W. Li et al. 2013; Giska et al. 2013; Teper et al. 2014; Hann et al. 2014). The conservation of XopQ/HopQ1 and their importance in virulence suggests that *Roq1* has widespread potential to confer resistance to these pathogens in diverse crop species. Indeed, transient expression assays demonstrated...
that Roq1 can recognize XopQ/HopQ1 alleles from Xanthomonas and P. syringae pathogens of
tomato, pepper, rice, citrus, cassava, brassica, and bean (Schultink et al. 2017). However, it
was not known if Roq1 can confer disease resistance when expressed in a crop plant.

Tomato is one of the most important vegetable crops and is highly susceptible to several
bacterial diseases. Bacterial spot, bacterial speck and bacterial wilt of tomato are caused by
Xanthomonas species, P. syringae pv. tomato and R. solanacearum, respectively. These
diseases are difficult to control, especially if the pathogens become established in a field and
environmental conditions favor disease (Rivard et al. 2012; Potnis et al. 2015). Tomato breeding
germplasm has only limited resistance against these diseases and in some cases linkage drag
has complicated introgression of resistance genes from wild relatives (Sharma and Bhattarai
2019). R. solanacearum contains a homolog of XopQ/HopQ1 called RipB, suggesting that
expressing Roq1 in tomato could also confer resistance to bacterial wilt. Like XopQ/HopQ1 in
Xanthomonas and P. syringae, RipB is highly conserved in most R. solanacearum isolates
(Sabbagh et al. 2019). Here we present laboratory and field data showing that Roq1 confers
resistance against these three pathogens in tomato and that this resistance depends on the
presence of the cognate pathogen effector.

Results

Tomatoes expressing Roq1 are resistant to Xanthomonas and P. syringae

We generated homozygous tomato plants expressing the Roq1 gene from N. benthamiana and
tested them for resistance to Xanthomonas and P. syringae by measuring bacterial growth in
planta. Population sizes of wild-type X. perforans strain 4B and X. euvesicatoria strain 85-10
were approximately 100-fold smaller in tomatoes expressing Roq1 compared to wild-type
tomatoes at six days post inoculation (Fig. 1). In contrast, XopQ deletion mutants multiplied
equally well in leaves of both wild-type and Roq1 tomato. Disease symptoms begin as small
water-soaked lesions and progress to necrosis of infected tissue. Wild-type \textit{X. perforans} and \textit{X. euvesicatoria} caused severe disease symptoms on wild-type tomato plants but failed to cause visible symptoms on \textit{Roq1} plants (Fig. 2). The XopQ mutants caused similar disease symptoms on both wild-type and \textit{Roq1} tomato. Similar results were observed for \textit{P. syringae} DC3000 and its HopQ1 mutant (Fig. 1, 2) and a Race 1 isolate of \textit{P. syringae} pv. \textit{tomato} (Supplementary Fig. 1).

Expression of \textit{Roq1} confers resistance to \textit{Xanthomonas perforans} in the field

To determine if the resistance observed in growth chamber experiments would hold up under commercial tomato production conditions, we tested the ability of \textit{Roq1} tomatoes to resist \textit{X. perforans} infection in the field. \textit{Roq1} tomatoes were grown along with the Fla. 8000 wild-type parent as well as a Fla. 8000 variety expressing the Bs2 gene from pepper as a resistant control (Kunwar et al. 2018). For each of the three growing seasons both \textit{Roq1} and the resistant \textit{Bs2} control tomatoes showed significantly lower disease severity than the parental Fla. 8000 variety (Table 1) (p < 0.05). The total marketable yield of the \textit{Roq1} plants was not significantly different from that of the susceptible parent for any of the three seasons (p > 0.05).

The \textit{R. solanacearum} RipB effector, a homolog of XopQ/HopQ1, is recognized by Roq1

RipB, considered a “core” effector of \textit{R. solanacearum}, is present in approximately 90% of sequenced strains (Sabbagh et al. 2019), making it an attractive target ligand for engineering crop plants to be resistant to this pathogen. \textit{Roq1} perceives diverse alleles of XopQ and HopQ1 and we hypothesized that it can also recognize RipB. We constructed a phylogenetic tree of RipB, XopQ, and HopQ1 alleles identified by BLAST search and observed two major clades of RipB proteins, corresponding to phylotypes I and III (strains originating in Asia and Africa) and to phylotype II (strains originating in the Americas) (Fig. 3). We selected RipB alleles from \textit{R. solanacearum} strains GMI1000 and MolK2, which are present in clades 1 and 2, respectively,
for subsequent analysis. These two RipB alleles share 71% amino acid identity with each other and approximately 52% identity with XopQ excluding the divergent N terminus containing the putative type III secretion signal. An alignment of these two RipB proteins with XopQ and HopQ1 is shown in Supplementary Fig. 2. To test for Roq1-dependent recognition of RipB, we used Agrobacterium to transiently express RipB from GMI1000 and Molk2 in leaf tissue of wild-type and roq1 mutant N. tabacum. Both RipB alleles triggered a strong hypersensitive / cell death response in wild-type N. tabacum, indicating immune activation. This response was absent in the roq1-1 mutant but could be restored by transiently expressing Roq1 along with XopQ, RipB_{GMI1000}, or RipB_{Molk2} (Fig. 4).

Roq1 tomatoes are resistant to R. solanacearum containing RipB

Our observation that Roq1 can recognize RipB in leaf transient expression assays suggested that Roq1 can mediate resistance to bacterial wilt caused by *R. solanacearum*. We tested this hypothesis by challenging wild-type and Roq1-expressing tomato plants with *R. solanacearum* strain GMI1000 using a soil soak inoculation disease assay. Wild-type plants developed severe wilting approximately seven days after inoculation, whereas Roq1 tomato plants remained mostly healthy over the two-week time course. The Roq1 tomato plants were susceptible to a deletion mutant lacking RipB (GMI1000 $\Delta ripB$) (Fig. 5a). We also challenged plants by introducing bacteria directly to the xylem by placing bacteria on the surface of a cut petiole. Wild-type plants were wilted at eight days whereas Roq1 plants remained healthy (Fig. 5b). Tomatoes expressing Roq1 were also resistant to *R. solanacearum* strain UW551, which is a Race 3 Biovar 2 potato brown rot strain that has a clade 2 RipB allele (Supplementary Fig. 3).

Occurrence of RipB in the R. solanacearum species complex
To investigate the potential for using Roq1 to protect plants from *R. solanacearum*, we investigated the occurrence of RipB alleles in select *R. solanacearum* strains. Table 2 summarizes published known hosts of several *R. solanacearum* strains along with the phylotype and identified RipB allele. All strains in Table 2 except for tobacco pathogenic strains K60, Y45, BK1002 and OE1-1 contain putative full-length and functional RipB alleles. Relative to other RipB alleles, the K60 RipB allele is truncated at residue 437 and missing approximately 65 C-terminal residues and the OE1-1 allele is truncated at residue 425, missing approximately 77 residues based on a published genome sequence (Hayes, MacIntyre, and Allen 2017). Y45 does not have a predicted RipB allele based on a draft genome sequence (Z. Li et al. 2011).

Discussion

Roq1 expression in tomato confers strong resistance to *X. perforans*, *X. euvesicatoria* and *P. syringae pv. tomato*. Its effectiveness is dependent on the presence of the recognized effector protein XopQ/HopQ1 (Fig. 1, 2). Field trials revealed that tomatoes expressing Roq1 were less susceptible to *X. perforans* than wild-type tomatoes in conditions approximating commercial production (Table 1). Roq1 conferred a similar level of resistance as the Bs2-containing resistant check variety in one season and was slightly weaker in the other two. Bacterial spot caused by *X. perforans* can cause lesions on fruits, making them unsuitable for commercial sale, and also reduce plant productivity by damaging leaf tissue. Despite showing strong disease resistance, the tested Roq1 line did not give a significantly greater total marketable yield than the susceptible parental variety. Of the three seasons, Spring 2019 had weather conditions expected to be most conducive for observing an impact of bacterial spot on marketable yield with mid-season rain promoting the early development of disease symptoms. The average marketable yield for the Roq1 tomatoes was 27% higher than wild-type in this season, although a relatively small sample size (4 replicate plots of ten plants each) and a large
variability of yield between plots resulted in a p-value of 0.08 by Student’s t-test. Although we cannot conclude that Roq1 improves marketable yield of tomatoes from this data, a larger trial under high disease pressure may reveal such a difference.

It was unclear if Roq1 could confer resistance to R. solanacearum because it colonizes different tissues than Xanthomonas and P. syringae. While Xanthomonas and P. syringae colonize tomato leaf tissue, R. solanacearum enters through the roots and colonizes xylem vessels. Although R. solanacearum’s type III secretion system is essential for virulence, it is not clear when and where the pathogen delivers effectors into host cells. It was therefore not clear if Roq1 would be able to confer resistance to this pathogen in tomato. Here we confirmed that tomato plants expressing Roq1 had strong resistance to R. solanacearum expressing RipB as measured by both soil soak and cut-petiole inoculation assays. This result is consistent with and expands on the recent report that RipB is recognized in Nicotiana species and that silencing Roq1 confers susceptibility to R. solanacearum in Nicotiana benthamiana (Nakano and Mukaihara 2019). In addition, Roq1 confers resistance to R. solanacearum Race 3 biovar 3 strain UW551, a pathogen that can overcome other known sources of bacterial wilt resistance in tomato (Milling, Babujee, and Allen 2011). Some but not all of the Roq1 tomatoes inoculated by the soil soak assay were colonized by R. solanacearum (Supplementary Fig. 4), implying that Roq1 both restricts the establishment of vascular colonization and separately reduces bacterial titers if colonization does occur. Activation of immune receptors, including Roq1, is known to induce many defense-associated genes with different putative activities (Sohn et al. 2014; Qi et al. 2018), presumably acting to inhibit pathogen virulence by distinct mechanisms. The observation that Roq1 inhibits both colonization establishment and population growth suggest that at least two independent downstream defense responses mediate the observed resistance phenotype.

The Roq1 tomatoes were fully susceptible to an R. solanacearum mutant lacking RipB, indicating that the resistance depends on the interaction between RipB and Roq1. This is
consistent with the observation that several naturally occurring \textit{R. solanacearum} strains that can infect tobacco have truncated or are missing the RipB effector (Table 2)(Nakano and Mukaihara 2019), suggesting that losing RipB can allow the pathogen to overcome the native \textit{Roq1} gene present in \textit{Nicotiana tabacum}. Tobacco-infecting strains K60 and OE1-1 contain independently truncated RipB alleles (Fig. 3) and there have likely been multiple independent gene loss events which enable strains to evade \textit{Roq1}-mediated resistance. Similarly, \textit{HopQ1} has been lost in strains of \textit{P. syringae} that can infect tobacco (Denny 2006; Ferrante and Scortichini 2009; Z. Li et al. 2011). This suggests that this effector is not essential for virulence and it would therefore be prudent to deploy \textit{Roq1} in combination with other disease resistance traits to avoid resistance breakdown due to pathogens losing XopQ/HopQ1/RipB.

No other known NLR immune receptor confers resistance against such a broad range of bacterial pathogens as \textit{Roq1}. Effectors that are recognized by NLR proteins act as avirulence factors and are under strong evolutionary pressure to diversify or be lost to evade immune activation. Therefore the effector repertoires of pathogens are often quite diverse, with relatively few “core” effectors conserved within a species and even fewer shared between different genera (Grant et al. 2006). Effectors recognized by plant NLRs are typically narrowly conserved within a single bacterial genus (Kapos, Devendrakumar, and Li 2019). One such effector is \textit{AvrBs2}, recognized by the Bs2 receptor from pepper, which is present in many \textit{Xanthomonas} strains but is absent from \textit{P. syringae} and \textit{R. solanacearum}. In contrast XopQ/HopQ1/RipB is highly conserved in most \textit{Xanthomonas}, \textit{P. syringae} and \textit{R. solanacearum} strains that cause disease in crop plants including kiwi (\textit{P. syringae} pv. \textit{actinidae}), banana (\textit{R. solanacearum} and \textit{X. campestris} pv. \textit{musacearum}), stone fruit (\textit{P. syringae}), pepper (\textit{X. euvesicatoria}), citrus (\textit{X. citri}), strawberry (\textit{X. fragariae}), brassica (\textit{X. campestris}), rice (\textit{X. oryzae}), potato (\textit{R. solanacearum}) and others. \textit{R. solanacearum} Race 3 Biovar 2 strains are of particular concern because they are cold tolerant and potentially threaten potato cultivation in temperate climates.
As a result, *R. solanacearum* Race 3 biovar 2 is a strictly regulated quarantine pathogen in Europe and North America and is on the United States Select Agent list. The ability of *Roq1* to protect tomato from the Race 3 Biovar 2 strain UW551 (Supplementary Fig. 3) suggests that *Roq1* can also protect potato from this high-concern pathogen. This work demonstrates the widespread potential of using naturally occurring plant immune receptors to manage diverse and difficult to control pathogen species safely, sustainably and economically.

Methods

Generation of tomato expressing *Roq1*

The *Roq1* coding sequence was amplified from *N. benthamiana* cDNA and cloned into the pORE E4 binary plasmid (Coutu et al. 2007). *A. tumefaciens* co-cultivation was used to transform *Roq1* into the commercial tomato variety Fla. 8000 at the University of Nebraska Plant Transformation Core Research Facility. Transformed plants were selected by resistance to kanamycin, confirmed by genotyping, and selfed to obtain homozygous lines.

Bacterial Leaf Spot and Leaf Speck disease assays

Xanthomonas spp. cultures were grown in NYG broth (0.5% peptone, 0.3% yeast extract, 2% glycerol) with rifampicin (100 μg / mL) overnight at 30 °C. *P. syringae* cultures were grown in KB broth (1% peptone, 0.15% K2HPO4, 1.5% glycerol, 5 mM MgSO4, pH 7.0) with rifampicin (100 μg / mL) overnight at 28 °C. Bacterial cultures were spun down at 5200 g, washed once with 10 mM MgCl2, and then diluted to the appropriate infiltration density with 10 mM MgCl2. Leaf tissue of tomato plants (approximately four weeks old) was infiltrated with bacterial solution using a needleless syringe. To quantify bacterial growth, leaf punches were homogenized in water, serially diluted and plated on NYG (for *Xanthomonas* spp.) or KB (for *P. syringae*) plates supplemented with 100 μg / mL rifampicin and 50 μg / mL cycloheximide to measure colony
forming units. *X. perforans* strain 4B, *X. euvesicatoria* strain 85-10, and *P. syringae* strain DC3000 and the corresponding XopQ/HopQ1 deletion mutants were described previously (Schwartz et al. 2015; Schultink et al. 2017). The *P. syringae* pv. *tomato* Race 1 strain was isolated from a field of tomatoes with the PTO resistance gene in 1993 in California.

Transient expression of RipB and XopQ

Alleles of RipB from *R. solanacearum* (NCBI Genbank accessions CAD13773.2 and WP_003278485) were synthesized and cloned into a BsaI-compatible version of the pORE E4 vector (Coutu et al. 2007). This plasmid was transformed into *A. tumefaciens* strain C58C1. *A. tumefaciens* cultures were grown on a shaker overnight at 30 °C in LB broth with rifampicin (100 μg / mL), tetracycline (10 μg / mL) and kanamycin (50 μg / mL). The cells were collected by centrifugation and resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid, 10 mM MgCl₂, pH 5.6), and diluted to an OD₆₀₀ of 0.5 for infiltration into *N. tabacum* leaf tissue.

N. tabacum roq1 mutant lines

N. tabacum roq1 mutant lines were generated by transforming *N. tabacum* with a construct coding for CAS9 and a guide RNA targeting the Roq1 gene with the sequence GATGATAAGGAGTTAAAGAG. This construct was also used for the generation of *N. benthamiana roq1* mutants published in Qi et al. 2018. Transformed *N. tabacum* plants were generated by Agrobacterium co-cultivation and selected for using kanamycin. Transformed plants were genotyped for the presence of mutations at the target site by PCR and Sanger sequencing. The *N. tabacum* mutant *roq1-1* has a single base pair A insertion at the target cut site in the *Roq1* gene.

Bacterial wilt virulence assays
R. solanacearum virulence on tomato was measured as previously described (Khokhani et al. 2018). Briefly, cells of R. solanacearum strain GMI1000 grown overnight in CPG (0.1% casein hydrolysate, 1% peptone, 0.5% glucose, pH 7.0) at 28°C were collected by centrifugation and diluted to an OD$_{600}$ of 0.1 in water (1x108 CFU/ml). 50 mL of this suspension was poured on the soil around 17-day old tomato plants. Disease was rated daily for two weeks on a 0-4 disease index scale, where 0 is no leaves wilted, 1 is 1-25% wilted, 2 is 26-50% wilted, 3 is 51-75% of wilted, and 4 is 76-100% wilted. Data represent a total of four biological replicates with ten plants per replicate. Virulence data were analyzed using repeated measures ANOVA (Khokhani et al 2018). For petiole infection, the petiole of the first true leaf was cut with a razor blade horizontally approximately 1 cm from the stem. A drop of bacterial solution (2 uL, OD$_{600}$ = 0.001) was pipetted onto the exposed cut petiole surface.

Field trial disease assays

Three field trials were conducted at the University of Florida Gulf Coast Research and Education Center in Balm during the spring seasons of 2018 and 2019 and the fall season of 2018 and under the notification process of the United States Department of Agriculture. Large-fruited, fresh market tomato lines were used in these trials and included the inbred line, Fla. 8000, and nearly-isogenic lines containing either Roq1 (event 316.4) or Bs2 (Kunwar et al. 2018); along with commercial hybrids Florida 91, Sanibel, and HM 1823 as additional, susceptible controls (data not shown). For each trial, seeds were sown directly into peat-lite soilless media (Speedling, Sun City, FL, USA) in 128-cell trays (38 cm3 cell size). Transplants were grown in a greenhouse until 5 or 6 weeks, then planted to field beds that had been fumigated and covered with reflective plastic mulch. Field trials were conducted using a randomized complete block design with four blocks and 10-plant plots. Field plants were staked and tied, and irrigation was applied through drip tape beneath the plastic mulch of each bed. A recommended fertilizer and pesticide program were followed throughout the growing season,
excluding the use of plant defense inducers, copper, or other bactericides (Freeman et al. 2018). Fruit were harvested from the inner 8 plants of each plot at the breaker stage and beyond graded for marketability according to USDA specifications. Yield data were analyzed using the PROC GLIMMIX procedure in SAS (version 9.4; SAS Institute, Cary, NC, USA), and block was considered random effects.

Field trials were inoculated with *X. perforans* race T4 (strain mixture of GEV904, GEV917, GEV1001, and GEV1063). Bacterial strains were grown on nutrient agar medium (BBL, Becton Dickinson and Co., Cockeysville, MD) and incubated at 28 °C for 24 h. Bacterial cells were removed from the plates and suspended in a 10 mM MgSO$_4$·7H$_2$O solution, and the suspension was adjusted to OD$_{600}$=0.3, which corresponds to 10^8 CFU/ml. The suspension for each strain was then diluted to 10^6 CFU/ml, mixed in equal volume, and applied along with polyoxyethylene sorbitan monolaurate (Tween 20; 0.05% [vol/vol]) for field inoculation. Field trial plants were inoculated approximately 3 weeks after transplanting.

Bacterial spot disease severity was recorded three to eight weeks after inoculation using the Horsfall-Barratt scale (Horsfall, JG and Barrat, RW 1945), and ratings were converted to midpoint percentages for statistical analysis. Disease severity data were analyzed using a nonparametric procedure for the analysis of ordinal data (Brunner and Puri 2001; Shah and Madden 2004). Analysis of variance type statistic of ranked data was conducted using the PROC MIXED procedure in SAS. Relative marginal effects (RME) were generated with the equation:
$$RME = (R - 0.5)/N;$$
where R is the mean treatment ranking, and N is the total number of experimental units in the analysis; the LD_CI macro was used to generate 95% confidence intervals (Brunner and Puri 2001; Shah and Madden 2004). Blocks were considered random effects.

Generation of the *R. solanacearum ΔripB* mutant
An unmarked ∆ripB mutant was created using sacB positive selection with the vector pUFR80 (Castañeda et al. 2005). Briefly, the regions upstream and downstream of ripB were amplified using the primers ripBupF/R and ripBdwnF/R. These fragments were inserted into pUFR80 digested with HindIII and EcoRI using Gibson Assembly (Gibson et al. 2009) (New England Biolabs, Ipswitch, MA) and this construct was incorporated into the genome of strain GMI1000 using natural transformation, with successful integrants selected on CPG + kanamycin (Coupat et al. 2008). Plasmid loss was then selected for on CPG plates containing 5% w/v sucrose. Correct deletions were confirmed using PCR and sequencing.

Phylogenetic analysis of XopQ, HopQ1 and RipB alleles

RipB alleles were identified by BLAST search of the NCBI protein database. Clustal Omega (Sievers et al. 2011) was used to generate a multiple sequence alignment with XopQ and HopQ1 alleles. To span the diversity of RipB alleles without having many redundant sequences, only a single sequence was retained if there were multiple identical or nearly identical sequences identified. A maximum likelihood tree was generated using PhyML (Guindon et al. 2010).

Acknowledgements

We thank Shirley Sato and Tom Clemente of the University of Nebraska Plant Transformation Core Research Facility for the transformation of tomato. We thank Myeong-Je Cho and Julie Pham of the UC Berkeley Innovative Genomics Institute for transformation of Nicotiana tabacum.

Competing Interests
A. S. and N.C.T. are employees of and have a financial stake in Fortiphyte Inc., which has intellectual property rights related to the Roq1 resistance gene.
Table 1. Field trial results. A field trial was conducted in Florida with disease pressure from *Xanthomonas perforans*. Disease severity was scored out of 100 using the Horsfall-Barratt scale. Harvested tomatoes were graded and sized by USDA specifications to calculate the total marketable yield. The values shown are means ± standard deviation from at least four replicate plots of ten plants each. Tomato plants expressing the Bs2 immune receptor gene were included as a resistant control.

Season / Genotype	Disease severity	Marketable yield (kg/ha)
Spring 2018		
Fla. 8000	86 ± 5	54,655 ± 9,450
Fla. 8000 Roq1	1 ± 1	52,656 ± 3,810
Fla. 8000 Bs2	1 ± 1	66,270 ± 10,309
Fall 2018		
Fla. 8000	25 ± 7	19,576 ± 11,038
Fla. 8000 Roq1	5 ± 1	18,538 ± 5,901
Fla. 8000 Bs2	0 ± 0	33,770 ± 13,176
Spring 2019		
Fla. 8000	84 ± 2	73,009 ± 15,243
Fla. 8000 Roq1	11 ± 7	92,637 ± 11,072
Fla. 8000 Bs2	5 ± 1	80,516 ± 14,531

Table 2. RipB occurrence and host range in *Ralstonia solanacearum*. The published host range of select *Ralstonia solanacearum* strains is listed along with the identified RipB allele. Truncated
indicates that the identified allele is missing conserved residues at the C terminus and is putatively non-functional. * indicates a Race 3 Biovar 2 Select Agent strain.

Figure Legends

Figure 1. Bacterial growth in tomatoes expressing Roq1. *Xanthomonas perforans* 4B (*Xp*), *Xanthomonas euvesicatoria* 85-10 (*Xe*), and *Pseudomonas syringae* DC3000 (*Ps*) were infiltrated into leaf tissue of wild-type tomato and tomato expressing Roq1 at a low inoculum (OD$_{600}$ = 0.0001 for Xe and Xp; OD$_{600}$ = 0.00005 for Ps). Bacterial abundance was quantified by homogenizing leaf punches and counting colony forming units (CFU) per square centimeter of leaf tissue at six days post infiltration for Xe and Xp; three days post infiltration for Ps. Error bars indicate standard deviation. * = p < 0.05, ** = p < 0.01 by Student’s t-test.

Figure 2. Bacterial disease symptoms on Roq1 tomato. *Xanthomonas perforans* 4B (*Xp*), *Xanthomonas euvesicatoria* 85-10 (*Xe*), and *Pseudomonas syringae* DC3000 (*Ps*) wild-type and XopQ/HopQ1 knockout strains were infiltrated into tomato leaf tissue at low inoculum and disease symptoms were imaged at twelve, thirteen and four days post infiltration for Xe, Xp and Ps respectively. The infiltration was performed using a needless syringe and circular wounds from the infiltration are visible. The distal part of region of each leaf was infiltrated and the proximal part was left untreated. Xe and Xp were infiltrated at an OD$_{600}$ of 0.0001 whereas Ps was infiltrated at an OD$_{600}$ of 0.00005.

Figure 3. Phylogenetic tree of RipB proteins. Two major clades of RipB alleles from *Ralstonia solanacearum* strains are visible in a maximum likelihood tree generated from XopQ, HopQ1 and RipB protein sequences. RipB alleles from *Ralstonia solanacearum* strains GMI1000 and MolK2 were cloned for testing in this study and are indicated by pink dots. Several alleles have truncations that may make them nonfunctional (indicated by a half circle). Abbreviations were
used for *Ralstonia* (R) and *Ralstonia solanacearum* (Rs).

Figure 4. Roq1-dependent recognition of RipB in *Nicotiana tabacum*. *Agrobacterium tumefaciens* was used to transiently expressed XopQ, RipB_{GMI1000} and RipB_{MolK2} along with either Roq1 or an empty vector (EV) control in wild-type *Nicotiana tabacum* and a *roq1* loss of function mutant. The *Agrobacterium* was infiltrated at a total OD₆₀₀ of 0.5 and the leaves were imaged at three days post infiltration.

Figure 5. Bacterial Wilt disease development in Roq1 tomatoes. (a) Wild-type and Roq1 tomatoes were infected with wild-type and RipB mutant *Ralstonia solanacearum* strain GMI1000 by soil soak inoculation. Disease symptoms were monitored over 14 days, with no wilting corresponding to a Disease Index of 0 and complete wilting corresponding to a Disease Index of 4. Error bars indicate standard error. (b) Wild-type and Roq1 tomato plants 8 days after petiole inoculation with approximately 2,000 cells of wild-type GMI1000.
References

Boller, T., and S. Y. He. 2009. “Innate Immunity in Plants: An Arms Race between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens.” Science 324 (5928): 742–44.

Brunner, Edgar, and Madan L. Puri. 2001. “Nonparametric Methods in Factorial Designs.” Statistical Papers 42 (1): 1–52.

Castañeda, Adriana, Joseph D. Reddy, Basma El-Yacoubi, and Dean W. Gabriel. 2005. “Mutagenesis of All Eight Avr Genes in Xanthomonas Campestris Pv. Campestris Had No Detected Effect on Pathogenicity, but One Avr Gene Affected Race Specificity.” Molecular Plant-Microbe Interactions: MPMI 18 (12): 1306–17.

Coupat, Bénédicte, Fanny Chaumeille-Dole, Saliou Fall, Philippe Prior, Pascal Simonet, Xavier Nesme, and Franck Bertolla. 2008. “Natural Transformation in the Ralstonia Solanacearum Species Complex: Number and Size of DNA That Can Be Transferred.” FEMS Microbiology Ecology 66 (1): 14–24.

Coutu, Catherine, James Brandle, Dan Brown, Kirk Brown, Brian Miki, John Simmonds, and Dwayne D. Hegedus. 2007. “pORE: A Modular Binary Vector Series Suited for Both Monocot and Dicot Plant Transformation.” Transgenic Research 16 (6): 771–81.

Dangl, Jeffery L., Diana M. Horvath, and Brian J. Staskawicz. 2013. “Pivoting the Plant Immune System from Dissection to Deployment.” Science 341 (6147): 746–51.

Davis, R. M., G. Miyao, K. V. Subbarao, J. J. Stapleton, and And B. J. Aegerter. 2013. “UC IPM: UC Management Guidelines - TOMATO:Diseases.” 3470. UC Davis. http://ipm.ucanr.edu/PMG/r783101611.html.

Denny, Tim. 2006. “Plant Pathogenic Ralstonia Species.” In Plant-Associated Bacteria, edited by Samuel S. Gnanamanickam, 573–644. Dordrecht: Springer Netherlands.

Deslandes, Laurent, and Susana Rivas. 2012. “Catch Me If You Can: Bacterial Effectors and
Plant Targets.” Trends in Plant Science 17 (11): 644–55.

Dillon, Marcus M., Renan N. D. Almeida, Bradley Laflamme, Alexandre Martel, Bevan S. Weir, Darrell Desveaux, and David S. Guttman. 2019. “Molecular Evolution of Pseudomonas Syringae Type III Secreted Effector Proteins.” Frontiers in Plant Science 10 (April): 418.

Ferrante, Patrizia, and Marco Scortichini. 2009. “Identification of Pseudomonas Syringae Pv. Actinidiae as Causal Agent of Bacterial Canker of Yellow Kiwifruit (Actinidia Chinensis Planchon) in Central Italy.” Journal of Phytopathology 157 (11-12): 768–70.

Freeman, J. H., E. J. McAvoy, N. S. Boyd, Kinessary R., Ozores-Hampton M., H. A. Smith, Desaeger J., J. W. Noling, and G. E. Vallad. 2018. “Tomato Production.” In Vegetable Production Handbook of Florida 2018–2019, edited by H. A. Smith, J. H. Freeman, P. J. Dittmar, M. L. Paret, and G. E. Vallad, 349–93. Lincolnshire, IL: Vance Publishing Corporation.

Gibson, Daniel G., Lei Young, Ray-Yuan Chuang, J. Craig Venter, Clyde A. Hutchison 3rd, and Hamilton O. Smith. 2009. “Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases.” Nature Methods 6 (5): 343–45.

Giska, Fabian, Malgorzata Lichocka, Marcin Piechocki, Michal Dadlez, Elmon Schmelzer, Jacek Hennig, and Magdalena Krzymowska. 2013. “Phosphorylation of HopQ1, a Type III Effector from Pseudomonas Syringae, Creates a Binding Site for Host 14-3-3 Proteins.” Plant Physiology 161 (4): 2049–61.

Grant, Sarah R., Emily J. Fisher, Jeff H. Chang, Beth M. Mole, and Jeffery L. Dangl. 2006. “Subterfuge and Manipulation: Type III Effector Proteins of Phytopathogenic Bacteria.” Annual Review of Microbiology 60: 425–49.

Griffin, Karina, Cherie Gambley, Philip Brown, and Yujuan Li. 2017. “Copper-Tolerance in Pseudomonas Syringae Pv. Tomato and Xanthomonas Spp. and the Control of Diseases Associated with These Pathogens in Tomato and Pepper. A Systematic Literature Review.” Crop Protection 96: 144–50.
Gudesblat, Gustavo E., Pablo S. Torres, and Adrián A. Vojnov. 2009. “Xanthomonas Campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor.” Plant Physiology 149 (2): 1017–27.

Guindon, Stéphane, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk, and Olivier Gascuel. 2010. “New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0.” Systematic Biology 59 (3): 307–21.

Hann, Dagmar R., Ana Domínguez-Ferreras, Vaclav Motyka, Petre I. Dobrev, Sebastian Schornack, Anna Jehle, Georg Felix, Delphine Chinchilla, John P. Rathjen, and Thomas Boller. 2014. “The Pseudomonas Type III Effector HopQ1 Activates Cytokinin Signaling and Interferes with Plant Innate Immunity.” The New Phytologist 201 (2): 585–98.

Hayes, Madeline M., April M. MacIntyre, and Caitilyn Allen. 2017. “Complete Genome Sequences of the Plant Pathogens Ralstonia Solanacearum Type Strain K60 and R. Solanacearum Race 3 Biovar 2 Strain UW551.” Genome Announcements 5 (40). https://doi.org/10.1128/genomeA.01088-17.

Horsfall, JG, and Barrat, RW. 1945. “An Improved Grading System for Measuring Plant Diseases.” Phytopathology 35: 655.

Jones, Jonathan D. G., and Jeffery L. Dangl. 2006. “The Plant Immune System.” Nature 444 (7117): 323–29.

Jones, Jonathan D. G., Russell E. Vance, and Jeffery L. Dangl. 2016. “Intracellular Innate Immune Surveillance Devices in Plants and Animals.” Science 354 (6316). https://doi.org/10.1126/science.aaf6395.

Jones, Jonathan D. G., Kamil Witek, Walter Verweij, Florian Jupe, David Cooke, Stephen Dorling, Laurence Tomlinson, Matthew Smoker, Sara Perkins, and Simon Foster. 2014. “Elevating Crop Disease Resistance with Cloned Genes.” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1639): 20130087.
Kapos, Paul, Karen Thulasi Devendrakumar, and Xin Li. 2019. “Plant NLRs: From Discovery to Application.” Plant Science: An International Journal of Experimental Plant Biology 279 (February): 3–18.

Kay, Sabine, and Ulla Bonas. 2009. “How Xanthomonas Type III Effectors Manipulate the Host Plant.” Current Opinion in Microbiology 12 (1): 37–43.

Kennelly, Megan M., Francisco M. Cazorla, Antonio de Vicente, Cayo Ramos, and George W. Sundin. 2007. “Pseudomonas Syringae Diseases of Fruit Trees: Progress Toward Understanding and Control.” Plant Disease 91 (1): 4–17.

Khokhani, Devanshi, Tuan Minh Tran, Tiffany M. Lowe-Power, and Caitilyn Allen. 2018. “Plant Assays for Quantifying Ralstonia Solanacearum Virulence.” BIO-PROTOCOL 8 (18). https://bio-protocol.org/pdf/bio-protocol3028.pdf.

Kunwar, Sanju, Fanny Iriarte, Qiurong Fan, Eduardo Evaristo da Silva, Laura Ritchie, Nghi Song Nguyen, Joshua H. Freeman, et al. 2018. “Transgenic Expression of EFR and Bs2 Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato.” Phytopathology 108 (12): 1402–11.

Li, Wei, Koste A. Yadeta, James Mitch Elmore, and Gitta Coaker. 2013. “The Pseudomonas Syringae Effector HopQ1 Promotes Bacterial Virulence and Interacts with Tomato 14-3-3 Proteins in a Phosphorylation-Dependent Manner.” Plant Physiology 161 (4): 2062–74.

Li, Xin, Paul Kapos, and Yuelin Zhang. 2015. “NLRs in Plants.” Current Opinion in Immunology 32 (February): 114–21.

Li, Zefeng, Sanling Wu, Xuefei Bai, Yun Liu, Jianfei Lu, Yong Liu, Bingguang Xiao, Xiuping Lu, and Longjiang Fan. 2011. “Genome Sequence of the Tobacco Bacterial Wilt Pathogen Ralstonia Solanacearum.” Journal of Bacteriology 193 (21): 6088–89.

Milling, Annett, Lavanya Babujee, and Caitilyn Allen. 2011. “Ralstonia Solanacearum Extracellular Polysaccharide Is a Specific Elicitor of Defense Responses in Wilt-Resistant Tomato Plants.” PloS One 6 (1): e15853.
Nakano, Masahito, and Takafumi Mukaihara. 2019. “The Type III Effector RipB from Ralstonia Solanacearum RS1000 Acts as a Major Avirulence Factor in Nicotiana Benthamiana and Other Nicotiana Species.” Molecular Plant Pathology, June. https://doi.org/10.1111/mpp.12824.

Peeters, Nemo, Sébastien Carrère, Maria Anisimova, Laure Plener, Anne-Claire Cazalé, and Stephane Genin. 2013. “Repertoire, Unified Nomenclature and Evolution of the Type III Effector Gene Set in the Ralstonia Solanacearum Species Complex.” BMC Genomics 14 (December): 859.

Pontes, Nadson de Carvalho, Abadia Dos Reis Nascimento, Adelmo Golynski, Luiz Antonio Maffia, José Rogério de Oliveira, and Alice Maria Quezado-Duval. 2016. “Intervals and Number of Applications of Acibenzolar-S-Methyl for the Control of Bacterial Spot on Processing Tomato.” Plant Disease 100 (10): 2126–33.

Qi, Tiancong, Kyungyong Seong, Daniela P. T. Thomazella, Joonyoung Ryan Kim, Julie Pham, Eunyoung Seo, Myeong-Je Cho, Alex Schultink, and Brian J. Staskawicz. 2018. “NRG1 Functions Downstream of EDS1 to Regulate TIR-NLR-Mediated Plant Immunity in Nicotiana Benthamiana.” Proceedings of the National Academy of Sciences of the United States of America 115 (46): E10979–87.

Rivard, C. L., S. O’Connell, M. M. Peet, R. M. Welker, and F. J. Louws. 2012. “Grafting Tomato to Manage Bacterial Wilt Caused by Ralstonia Solanacearum in the Southeastern United States.” Plant Disease 96 (7): 973–78.

Ryan, Robert P., Frank-Jörg Vorhölter, Neha Potnis, Jeffrey B. Jones, Marie-Anne Van Sluys, Adam J. Bogdanove, and J. Maxwell Dow. 2011. “Pathogenomics of Xanthomonas:
Understanding Bacterium-Plant Interactions.” Nature Reviews. Microbiology 9 (5): 344–55.

Sabbagh, Cyrus Raja Rubenstein, Sébastien Carrère, Fabien Lonjon, Fabienne Vailleau, Alberto P. Macho, Stephane Genin, and Nemo Peeters. 2019. “Pangenomic Type III Effector Database of the Plant Pathogenic Ralstonia Spp.” e27726v1. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27726v1.

Schultink, Alex, Tiancong Qi, Arielle Lee, Adam D. Steinbrenner, and Brian Staskawicz. 2017. “Roq1 Mediates Recognition of the Xanthomonas and Pseudomonas Effector Proteins XopQ and HopQ1.” The Plant Journal: For Cell and Molecular Biology 92 (5): 787–95.

Schwartz, Allison R., Neha Potnis, Sujan Timilsina, Mark Wilson, José Patané, Joaquim Martins Jr, Gerald V. Minsavage, et al. 2015. “Phylogenomics of Xanthomonas Field Strains Infected Pepper and Tomato Reveals Diversity in Effector Repertoires and Identifies Determinants of Host Specificity.” Frontiers in Microbiology 6 (June): 535.

Shah, D. A., and L. V. Madden. 2004. “Nonparametric Analysis of Ordinal Data in Designed Factorial Experiments.” Phytopathology 94 (1): 33–43.

Sharma, Sadikshya, and Krishna Bhattarai. 2019. “Progress in Developing Bacterial Spot Resistance in Tomato.” Agronomy 9 (1): 26.

Sievers, Fabian, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong Li, Rodrigo Lopez, et al. 2011. “Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega.” Molecular Systems Biology 7 (October): 539.
Teper, Doron, Dor Salomon, Sukumaran Sunitha, Jung-Gun Kim, Mary Beth Mudgett, and Guido Sessa. 2014. “Xanthomonas Euvesicatoria Type III Effector XopQ Interacts with Tomato and Pepper 14-3-3 Isoforms to Suppress Effector-Triggered Immunity.” The Plant Journal: For Cell and Molecular Biology 77 (2): 297–309.

Vasse, J., P. Frey, and A. Trigalet. 1995. “Microscopic Studies of Intercellular Infection and Protoxylem Invasion of Tomato Roots by Pseudomonas Solanacearum.” https://pubag.nal.usda.gov/catalog/1443867.

Vincelli, Paul. 2016. “Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making.” Sustainability: Science Practice and Policy 8 (5): 495.

Xin, Xiu-Fang, Brian Kvitko, and Sheng Yang He. 2018. “Pseudomonas Syringae: What It Takes to Be a Pathogen.” Nature Reviews. Microbiology 16 (5): 316–28.

Yuliar, Yanetri Asi Nion, and Koki Toyota. 2015. “Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum.” Microbes and Environments / JSME 30 (1): 1–11.

Zipfel, Cyril. 2014. “Plant Pattern-Recognition Receptors.” Trends in Immunology 35 (7): 345–51.
Figure 1. Bacterial growth in tomatoes expressing Roq1. *Xanthomonas perforans* 4B (Xp), *Xanthomonas euvesicatoria* 85-10 (Xe), and *Pseudomonas syringae* DC3000 (Ps) were infiltrated into leaf tissue of wild-type tomato and tomato expressing Roq1 at a low inoculum (OD$_{600}$ = 0.0001 for Xe and Xp; OD$_{600}$ = 0.00005 for Ps). Bacterial abundance was quantified by homogenizing leaf punches and counting colony forming units (CFU) per square centimeter of leaf tissue at six days post infiltration for Xe and Xp; three days post infiltration for Ps. Error bars indicate standard deviation. * = p < 0.05, ** = p < 0.01 by Student’s t-test.
Figure 2. Bacterial disease symptoms on Roq1 tomato. *Xanthomonas perforans* 4B (Xp), *Xanthomonas euvesicatoria* 85-10 (Xe), and *Pseudomonas syringae* DC3000 (Ps) wild-type and Xop/Q/HopQ1 knockout strains were infiltrated into tomato leaf tissue at low inoculum and disease symptoms were imaged at twelve, thirteen and four days post infiltration for Xe, Xp and Ps respectively. The infiltration was performed using a needless syringe and circular wounds from the infiltration are visible. The distal part of region of each leaf was infiltrated and the proximal part was left untreated. Xe and Xp were infiltrated at an OD$_{600}$ of 0.0001 whereas Ps was infiltrated at an OD$_{600}$ of 0.00005.
Figure 3. Phylogenetic tree of RipB proteins. Two major clades of RipB alleles from Ralstonia solanacearum strains are visible in a maximum likelihood tree generated from XopQ, HopQ1 and RipB protein sequences. RipB alleles from Ralstonia solanacearum strains GMI1000 and Molk2 were cloned for testing in this study and are indicated by pink dots. Several alleles have truncations that may make them nonfunctional (indicated by a half circle). Abbreviations were used for Ralstonia (R) and Ralstonia solanacearum (Rs).
Figure 4.
Roq1-dependent recognition of RipB in *Nicotiana tabacum*. Agrobacterium *tumefaciens* was used to transiently expressed XopQ, RipB_{GMI1000} and RipB_{MolK2} along with either Roq1 or an empty vector (EV) control in wild-type *Nicotiana tabacum* and a *roq1* loss of function mutant. The *Agrobacterium* was infiltrated at a total OD₆₀₀ of 0.5 and the leaves were imaged at three days post infiltration.
Figure 5.
Bacterial Wilt disease development in Roq1 tomatoes. (a) Wild-type and Roq1 tomatoes were infected with wild-type and RipB mutant *Ralstonia solanacearum* strain GMI1000 by soil soak inoculation. Disease symptoms were monitored over 14 days, with no wilting corresponding to a Disease Index of 0 and complete wilting corresponding to a Disease Index of 4. Error bars indicate standard error. (b) Wild-type and Roq1 tomato plants 8 days after petiole inoculation with approximately 2,000 cells of wild-type GMI1000.
Griffin, Karina, Cherie Gambley, Philip Brown, and Yujuan Li. 2017. "Copper-Tolerance in Pseudomonas Syringae Pv. Tomato and Xanthomonas Spp. and the Control of Diseases Associated with These Pathogens in Tomato and Pepper. A Systematic Literature Review." Crop Protection 96: 144–50.

Gudesblat, Gustavo E., Pablo S. Torres, and Adrián A. Vojnov. 2009. "Xanthomonas Campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor." Plant Physiology 149 (2): 1017–27.

Guindon, Stéphane, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk, and Olivier Gascuel. 2010. "New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0." Systematic Biology 59 (3): 307–21.

Hann, Dagmar R., Ana Domínguez-Ferreras, Vaclav Motyka, Petre I. Dobrev, Sebastian Schornack, Anna Jehle, Georg Felix, Delphine Chinchilla, John P. Rathjen, and Thomas Boller. 2014. "The Pseudomonas Type III Effector HopQ1 Activates Cytokinin Signaling and Interferes with Plant Innate Immunity." The New Phytologist 201 (2): 585–98.

Hayes, Madeline M., April M. MacIntyre, and Caitilyn Allen. 2017. "Complete Genome Sequences of the Plant Pathogens Ralstonia Solanacearum Type Strain K60 and R. Solanacearum Race 3 Biovar 2 Strain UW551." Genome Announcements 5 (40). https://doi.org/10.1128/genomeA.01088-17.

Horsfall, JG, and Barrat, RW. 1945. "An Improved Grading System for Measuring Plant Diseases." Phytopathology 35: 655.

Jones, Jonathan D. G., and Jeffery L. Dangl. 2006. "The Plant Immune System." Nature 444 (7117): 323–29.

Jones, Jonathan D. G., Russell E. Vance, and Jeffery L. Dangl. 2016. "Intracellular Innate Immune Surveillance Devices in Plants and Animals." Science 354 (6316). https://doi.org/10.1126/science.aaf6395.

Jones, Jonathan D. G., Kamil Witek, Walter Verweij, Florian Jupe, David Cooke, Stephen Dorling, Laurence Tomlinson, Matthew Smoker, Sara Perkins, and Simon Foster. 2014. "Elevating Crop Disease Resistance with Cloned Genes." Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1639): 20130087.

Kapos, Paul, Karen Thulasi Devendrakumar, and Xin Li. 2019. "Plant NLRs: From Discovery to Application." Plant Science: An International Journal of Experimental Plant Biology 279 (February): 3–18.

Kay, Sabine, and Ulla Bonas. 2009. "How Xanthomonas Type III Effectors Manipulate the Host Plant." Current Opinion in Microbiology 12 (1): 37–43.

Kennelly, Megan M., Francisco M. Cazorla, Antonio de Vicente, Cayo Ramos, and George W. Sundin. 2007. "Pseudomonas Syringae Diseases of Fruit Trees: Progress Toward Understanding and Control." Plant Disease 91 (1): 4–17.

Khokhani, Devanshi, Tuan Minh Tran, Tiffany M. Lowe-Power, and Caitilyn Allen. 2018. "Plant Assays for Quantifying Ralstonia Solanacearum Virulence." BIO-PROTOCOL 8 (18). https://bio-protocol.org/pdf/bio-protocol3028.pdf.

Kunwar, Sanju, Fanny Iriarte, Qiurong Fan, Eduardo Evaristo da Silva, Laura Ritchie, Nghi Song Nguyen, Joshua H. Freeman, et al. 2018. "Transgenic Expression of EFR and Bs2 Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato."
Li, Wei, Koste A. Yadeta, James Mitch Elmore, and Gitta Coaker. 2013. "The Pseudomonas Syringae Effector HopQ1 Promotes Bacterial Virulence and Interacts with Tomato 14-3-3 Proteins in a Phosphorylation-Dependent Manner." Plant Physiology 161 (4): 2062–74.

Li, Xin, Paul Kapos, and Yuelin Zhang. 2015. "NLRs in Plants." Current Opinion in Immunology 32 (February): 114–21.

Li, Zefeng, Sanling Wu, Xuefei Bai, Yun Liu, Jianfei Lu, Yong Liu, Bingguang Xiao, Xiuping Lu, and Longjiang Fan. 2011. "Genome Sequence of the Tobacco Bacterial Wilt Pathogen Ralstonia Solanacearum." Journal of Bacteriology 193 (21): 6088–89.

Milling, Annett, Lavanya Babujee, and Caitilyn Allen. 2011. "Ralstonia Solanacearum Extracellular Polysaccharide Is a Specific Elicitor of Defense Responses in Wilt-Resistant Tomato Plants." PloS One 6 (1): e15853.

Nakano, Masahito, and Takafumi Mukaihara. 2019. "The Type III Effector RipB from Ralstonia Solanacearum RS1000 Acts as a Major Avirulence Factor in Nicotiana Benthamiana and Other Nicotiana Species." Molecular Plant Pathology, June. https://doi.org/10.1111/mpp.12824.

Peeters, Nemo, Sébastien Carrère, Maria Anisimova, Laure Plener, Anne-Claire Cazalé, and Stephane Genin. 2013. “Repertoire, Unified Nomenclature and Evolution of the Type III Effector Gene Set in the Ralstonia Solanacearum Species Complex.” BMC Genomics 14 (December): 859.

Pontes, Nadson de Carvalho, Abadia Dos Reis Nascimento, Adem洛 Golynski, Luiz Antonio Maffia, Josй Rogйrio de Oliveira, and Alice Maria Quezado-Duval. 2016. "Intervals and Number of Applications of Acibenzolar-S-Methyl for the Control of Bacterial Spot on Processing Tomato." Plant Disease 100 (10): 2126–33.

Potnis, Neha, Sujan Timilsina, Amanda Strayer, Deepak Shanthinraj, Jeri D. Barak, Mathews L. Paret, Gary E. Vallad, and Jeffrey B. Jones. 2015. "Bacterial Spot of Tomato and Pepper: Diverse Xanthomonas Species with a Wide Variety of Virulence Factors Posing a Worldwide Challenge." Molecular Plant Pathology 16 (9): 907–20.

Qi, Tiancong, Kyungyong Seong, Daniela P. T. Thomazella, Joonyoung Ryan Kim, Julie Pham, Eunyoung Seo, Myeong-Je Cho, Alex Schultink, and Brian J. Staskawicz. 2017. "Roq1 Mediates Recognition of the Xanthomonas and Pseudomonas Effector Proteins XopQ and HopQ1." The Plant Journal: For Cell and Molecular Biology 92 (5): 787–95.

Rivard, C. L., S. O'Connell, M. M. Peet, R. M. Welker, and F. J. Louws. 2012. "Grafting Tomato to Manage Bacterial Wilt Caused by Ralstonia Solanacearum in the Southeastern United States." Plant Disease 96 (7): 973–78.

Ryan, Robert P., Frank-Jйrg Vorhйlter, Neha Potnis, Jeffrey B. Jones, Marie-Anne Van Sluys, Adam J. Bogdanove, and J. Maxwell Dow. 2011. "Pathogenomics of Xanthomonas: Understanding Bacterium-Plant Interactions." Nature Reviews. Microbiology 9 (5): 344–55.

Sabbagh, Cyrus Raja Rubenstein, Йвасстан Carrйre, Fabien Lonjon, Fabienne Vailleau, Alberto P. Macho, Stephane Genin, and Nemo Peeters. 2019. "Pangenomic Type III Effector Database of the Plant Pathogenic Ralstonia Spp." e27726v1. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.27726v1.

Schultink, Alex, Tiancong Qi, Arielle Lee, Adam D. Steinbrenner, and Brian Staskawicz. 2017. "Roq1 Mediates Recognition of the Xanthomonas and Pseudomonas Effector Proteins XopQ and HopQ1." The Plant Journal: For Cell and Molecular Biology 92 (5): 787–95.
Schwartz, Allison R., Neha Potnis, Sujan Timilsina, Mark Wilson, José Patané, Joaquim Martins Jr, Gerald V. Minsavage, et al. 2015. "Phylogenomics of Xanthomonas Field Strains Infecting Pepper and Tomato Reveals Diversity in Effector Repertoires and Identifies Determinants of Host Specificity." Frontiers in Microbiology 6 (June): 535.

Shah, D. A., and L. V. Madden. 2004. "Nonparametric Analysis of Ordinal Data in Designed Factorial Experiments." Phytopathology 94 (1): 33–43.

Sharma, Sadikshya, and Krishna Bhattarai. 2019. "Progress in Developing Bacterial Spot Resistance in Tomato." Agronomy 9 (1): 26.

Sievers, Fabian, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong Li, Rodrigo Lopez, et al. 2011. "Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega." Molecular Systems Biology 7 (October): 539.

Sohn, Kee Hoon, Cécile Segonzac, Ghanasyam Rallapalli, Panagiotis F. Sarris, Joo Yong Woo, Simon J. Williams, Toby E. Newman, Kyung Hee Paek, Bostjan Kobe, and Jonathan D. G. Jones. 2014. "The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis Thaliana." PLoS Genetics 10 (10): e1004655.

Teper, Doron, Dor Salomon, Sukumaran Sunita, Jung-Gun Kim, Mary Beth Mudgett, and Guido Sessa. 2014. "Xanthomonas Euvesicatoria Type III Effector XopQ Interacts with Tomato and Pepper 14-3-3 Isoforms to Suppress Effector-Triggered Immunity." The Plant Journal: For Cell and Molecular Biology 77 (2): 297–309.

Vasse, J., P. Frey, and A. Trigalet. 1995. "Microscopic Studies of Intercellular Infection and Protoxylem Invasion of Tomato Roots by Pseudomonas Solanacearum." https://pubag.nal.usda.gov/catalog/1443867.

Vincelli, Paul. 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making." Sustainability: Science Practice and Policy 8 (5): 495.

Xin, Xiu-Fang, Brian Kvitko, and Sheng Yang He. 2018. "Pseudomonas Syringae: What It Takes to Be a Pathogen." Nature Reviews. Microbiology 16 (5): 316–28.

Yuliar, Yanetri Asi Nion, and Koki Toyota. 2015. "Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum." Microbes and Environments / JSME 30 (1): 1–11.

Zipfel, Cyril. 2014. "Plant Pattern-Recognition Receptors." Trends in Immunology 35 (7): 345–51.