INTRODUCTION

Nipple-sparing mastectomy (NSM) is a valid option for carefully selected patients with breast cancer and for healthy, high-risk patients undergoing risk-reducing surgery. The uptake of NSM has been facilitated by advances in surgical and reconstructive techniques, as well as recognition that improved systemic therapies have markedly diminished locoregional recurrence rates.1–3 Breast reconstruction after NSM yields a superior aesthetic result compared with skin-sparing mastectomy (SSM). NSM is considered feasible both for risk reduction and for treatment of breast cancer4,5; however, the indications for NSM for breast cancer are still being debated.

The American Society of Breast Surgeons maintains an ongoing registry of NSM, and in a recent publication, they reported no recurrences in the nipple areola complex (NAC) among 833 cancer cases. In 2009, Spear et al7 had debated the controversy related to NSM and concluded that provided that certain oncologic and practical criteria are applied, it has the potential to allow less invasive surgery and improve cosmetic outcomes without increased oncologic risk in appropriately selected patients.

Two years later, he published a landmark article,8 which has since outlined the indications and contraindications for NSM.

Method: All NSM procedures performed at our institution between 2014 and 2018 were reviewed. The tumor-to-nipple distance was measured for each patient using mammography, ultrasound, or magnetic resonance imaging. All patients underwent a frozen section (FS) biopsy of the base of the nipple during surgery, and if cancer was detected, the procedure was converted to a skin-sparing mastectomy. Patients were followed for postoperative complications and cancer recurrence.

Results: Sixty-eight patients (98 breasts) underwent NSM with immediate reconstruction. Fifty-three patients (78%) underwent the procedure for breast cancer. Nipple involvement was detected on FS in 1 patient and on permanent pathology after a negative FS in 1 patient. Forty-three percent of our patients had a tumor-to-nipple distance of ≤2 cm. During a mean follow-up of 32.5 months (±19.4 months), no locoregional recurrences were observed; however, distant metastasis occurred in 3 patients.

Conclusions: When histologic examination from the base of the nipple is negative (either by FS or permanent pathology), NSM can be considered oncologically safe. Lack of nipple involvement by preoperative clinical and imaging assessment and intraoperative FS is sufficient to classify patients as suitable for NSM. (Plast Reconstr Surg Glob Open 2020;8:e2963; doi: 10.1097/GOX.0000000000002963; Published online 21 July 2020.)
for NSM. He retrospectively reviewed 162 cases of NSM: 49 for therapeutic indications and 113 for risk reduction. The majority had subareolar biopsies during surgery. In that article, the authors proposed major criteria for NSM. Oncologic criteria included tumor size <3 cm, tumor distance >2 cm from the nipple, clinically negative axillary nodes, and no skin involvement or evidence of inflammatory carcinoma or Paget’s disease. Anatomic criteria excluded very large or ptotic breasts and operative criteria included a negative intraoperative frozen section (FS) from the nipple base.

We decided to reexamine the oncologic criteria. The aim of our study was to describe our experience with NSM outside the proposed guidelines.

PATIENTS AND METHODS

All NSM procedures for breast cancer performed between the years 2014 and 2018 at our institution were included in this retrospective study. Patients were offered NSM if the nipple was free of tumors, determined by clinical examination and imaging. Patients with large and ptotic breasts who were not candidates for NSM based on anatomical features were not offered NSM; however, lymph node involvement or planned postmastectomy radiation therapy was not considered a contraindication for NSM. The NSM was carried out by 5 different breast surgeons.

FS biopsy of the tissue at the base of the nipple was performed in all cases, and if cancer was detected, the procedure was converted to SSM. All patients underwent immediate implant-based or autologous reconstruction.

For the purpose of this study, we defined a new parameter: “tumor-to-nipple distance” (TND). TND was determined after reviewing all available preoperative imaging studies by a radiologist and double checked and confirmed by a breast radiologist. The distance was defined as the shortest distance from the mass, calcifications, or enhancement to the base of the nipple as seen on any of the imaging studies (Fig. 1). The imaging modalities used were mammography, ultrasound (US), and magnetic resonance imaging (MRI). We divided the TND into 4 major groups: <1, 1–2, 2–3, and >3 cm.

If neoadjuvant therapy (NAT) was given, image analysis was conducted before and after treatment. Reasons for NAT included large tumors, lymph node involvement, Human Epidermal Growth Factor Receptor 2/Neu (HER2/Neu) positive or triple negative breast cancer, and in cases where the tumor-to-breast size ratio might dictate a large excision with a poor aesthetic result.

Data extracted from medical records included patient demographics, tumor characteristics, lymph node status, surgical risk factors (prior radiation treatment, smoking status, and diabetes), type of NAT, the surgical and reconstructive procedures performed, adjuvant treatment, and postoperative outcomes and complications. Postoperative complications recorded included: infection, wound dehiscence, seroma, skin flap necrosis, nipple–areola complex necrosis, and explantation. Reconstruction was mostly direct to implant with acellular dermal matrix. In selected cases, we performed free flap reconstruction with the deep inferior epigastric perforator flap. Two-staged breast reconstruction was conducted less frequently with insertion of a tissue expander. Follow-up was from the date of surgery to the date of last clinical follow-up. Patients were followed for locoregional recurrence, distant metastases, and death from the disease.

RESULTS

Patient Characteristics

We performed 98 nipple-sparing mastectomies in 68 patients over the study period (2014–2018): 43% (42 breasts) for risk reduction and 57% (56 breasts) for breast cancer. Fifty-three patients (78%) underwent the procedure for breast cancer and 15 (22%) for risk reduction. Only the therapeutic cases were analyzed for this report. All patients underwent immediate reconstruction (Table 1). The mean age was 47.6 (±10). Five patients (7%) were known breast cancer gene (BRACA) mutation carriers. Eleven patients (16%) were active smokers (all smokers were requested to stop smoking at least 2 weeks before surgery). Two patients (3%) had diabetes. Six patients (9%) received prior radiation to the operated breast. Twenty-three patients (43%) received NAT. NAT converted 10 patients (43%) to NSM who would otherwise not be considered appropriate. The mean follow-up was 32.5 months (±19.4 months).

Surgical and Reconstructive Procedures

The incisions used for NSM were inframammary fold (N = 23/56 breasts, 41%), lateral radial (N = 29/56 breasts, 52%), and periareolar (N = 4/56 breasts, 7%). Average specimen weight was 412 g (110–1160 g). The majority of the patients (N = 54/53, 64%) had direct to implant reconstruction. Fifteen patients (28%) had deep inferior epigastric perforator flap reconstruction. Four patients...
had cancer detected on FS from the nipple base, and the characteristics are summarized in Table 1. One patient cases (28%), there was lymph node involvement. Tumor in 26 patients (49%), had multicentric disease. In 15 according to the pathology report. Twenty-six breasts, presented and the mean size after treatment was 1 cm (±0.5) accord-
The mean tumor size before therapy was 4 cm (1.8–9 cm), data regarding tumor size of before and after treatment. Twenty patients who received neoadjuvant treatment had (tumor size of 0–1.9 cm), 10 patients had T2 (tumor size to 7 cm). For the non-neoadjuvant population, mean tumor size was divided into 3 groups: 15 patients had T1 (tumor size of 2.1–5 cm), and 5 patients had T3 (tumor size of >5 cm).

Pathologic Characteristics

Tumor size was extracted from the final pathologic report. In cases of multicentric involvement, the largest dimension of the largest tumor was used. If a patient had both invasive and in situ masses, the size of the invasive tumor was used. The mean tumor size was 1.6 cm (1 mm to 7 cm). For the non-neoadjuvant population, mean tumor size was divided into 3 groups: 15 patients had T1 (tumor size of 0–1.9 cm), 10 patients had T2 (tumor size of 2.1–5 cm), and 5 patients had T3 (tumor size of >5 cm). Twenty patients who received neoadjuvant treatment had data regarding tumor size of before and after treatment. The mean tumor size before therapy was 4 cm (1.8–9 cm), and the mean size after treatment was 1 cm (±0.5) according to the pathology report. Twenty-six breasts, presented in 26 patients (49%), had multicentric disease. In 15 cases (28%), there was lymph node involvement. Tumor characteristics are summarized in Table 1. One patient had cancer detected on FS from the nipple base, and the

Tumor-to-nipple Distance

Of the 53 who were included in this study, 50 patients had imaging studies available for review. Thirty patients had mammography images available. TN1 was measured on both the mediolateral and the craniocaudal views, and the shorter distance was recorded. Thirty-one patients had MRI and US imaging. Only 12 patients had all the 3 modalities available for review. The mean TN1 was first calculated per modality (Table 2). TN1 was divided into 4 groups (Table 3); 6 patients had a TN1 of <1 cm, and 14 patients had a TN1 between 1 and 2 cm. Of the 24 patients who received NAT, 7 patients had a complete clinical response and 3 patients showed no response to treatment. The mean TN1 at the group of <1 cm was 6 mm; the shortest distance documented was 4.3 mm.

Postoperative Complications

Overall, 19 patients (35%) had any postoperative complication. Infection rate was 11%. Nipple-areola complex necrosis occurred in 5 patients (9%) (Table 4).

DISCUSSION

The use of NSM has expanded from risk reducing to therapeutic indications; however, the question whether and when this procedure is oncologically safe is still

| Table 1. Patient Characteristics and Risk Factors, Tumor Characteristics, and Treatments |
|---------------------------------|---------------------------------|
| Patient Characteristics, N = 53 Patients (%) |
Age at diagnosis	47.6 (20-68)
Smoking	11 (20%)
Diabetes mellitus	2 (4%)
BRCA positive, N = 53 patients	5 (9%)
Tumor characteristics, N = 56 Breasts (%)	
Size	1.6 cm (1 mm to 7 cm)
Multifocal	26 (46%)
ER positive	36 (65%)
PR positive	19 (35%)
HER2/Neu positive	7 (12.5%)
Triple negative	6 (10.5%)
Axillary node involvement	15/53 (28%)
Positive FS converted to SSM	2/53 (3.7%)
Treatment, N = 53 (%)	
Prior radiation	6 (11%)
Neoadjuvant chemotherapy	23 (43%)
Adjuvant radiation	23 (43%)
Adjuvant chemotherapy	4 (8%)
Antihermoral therapy	28 (53%)
Biologic treatment	5 (9%)
BRCA, breast cancer gene; ER, estrogen receptor; HER2/Neu, human epidermal growth factor receptor/Neu; PR, progesterone receptor.	

Table 2. Mean TN1 per Modality
Imaging Modality
MMG-CC
MMG-MLO
MRI
US
CC, craniocaudal; MLO, mediolateral; MMG, mammography.

Table 3. TN1 of 50 Patients Categorized into 4 Groups
TN1
<1 cm
1–2 cm
2–3 cm
>3 cm
6/50 (12%)
14/50 (28%)
9/50 (18%)
21/50 (42%)

Table 4. Surgical Approach and Complications
Incision type N = 56 Breasts (%)
Inframammary fold
Radial
Periareolar
Method of reconstruction N = 53 patients (%)
Tissue expander
Implant
Free flap (DIEP)
Complications N = 53 patients (%)
Total complication rate
Infection
Dehiscence
Skin flap necrosis
Seroma
Explantation
Nipple areola complex necrosis
DIEP, deep inferior epigastric perforator flap.
Note: some patients had more than one complication. Overall 19 patients had any complication. Some had more than one.
debated. Initial guidelines for NSM were outlined based on the prospective experience of a single institution.9

There is an increasing interest in this technique because there is evidence that it provides a better cosmetic outcome and improved quality of life.9 Our aim in this study is to outline new guidelines for NSM that are being currently used in our institution, mainly based on the TND. We measured the TND on all available imaging modalities and found that 39% of our patients had a TND of <2cm. According to our institutional practice, we include patients with tumor that is as close as <1 cm to the nipple as long as the nipple is not involved with tumor on FS. We performed intraoperative FS of the nipple base in all cases; however, as long as the nipple base is evaluated separately, it may be done on permanent pathology as well, if FS is not available for any reason.

Overall NAC involvement in this study was 3.5% (2/56 breasts). One patient had her nipple removed within the surgery and the second due to final pathologic diagnosis. Moreover, almost half of our patients had multicentric cancer (49%), and third had lymph node involvement (28%). The overall complication rate in this series was 35%; however, the infection rate was low (11%). NAC complication rate was 9%, and surgical intervention was indicated in all cases for salvage.

Only 3 patients (6%) had any recurrence, and all recurrences were systemic only. There were no local recurrences in this series.

The safety and practicality of NSM were examined by Jensen et al.10 who followed 99 patients for 5 years. They observed 3 recurrences with no deaths and therefore concluded that the 5-year recurrence for the procedure is low when NSM margins (both frozen and permanent) are included that the 5-year recurrence for the procedure is low. According to our institutional practice, we include patients with tumor that is as close as <1 cm to the nipple as long as the nipple is not involved with tumor on FS. We performed intraoperative FS of the nipple base in all cases; however, as long as the nipple base is evaluated separately, it may be done on permanent pathology as well, if FS is not available for any reason.

Overall NAC involvement in this study was 3.5% (2/56 breasts). One patient had her nipple removed within the surgery and the second due to final pathologic diagnosis of ductal carcinoma in situ within the nipple base after a negative FS at the time of surgery.

Mean overall tumor size was 1.6 cm (1 mm to 7 cm). Half of our non-NAT patients had a tumor size of <2 cm (50%), a third of them had tumor size of 2.1–5 cm (33%), and in 17%, tumors were larger than 5 cm at the time of diagnosis. Moreover, almost half of our patients had multicentric cancer (49%), and third had lymph node involvement (28%). The overall complication rate in this series was 35%; however, the infection rate was low (11%). NAC complication rate was 9%, and surgical intervention was indicated in all cases for salvage.

Only 3 patients (6%) had any recurrence, and all recurrences were systemic only. There were no local recurrences in this series.

The safety and practicality of NSM were examined by Jensen et al.10 who followed 99 patients for 5 years. They observed 3 recurrences with no deaths and therefore concluded that the 5-year recurrence for the procedure is low when NSM margins (both frozen and permanent) are included that the 5-year recurrence for the procedure is low. According to our institutional practice, we include patients with tumor that is as close as <1 cm to the nipple as long as the nipple is not involved with tumor on FS. We performed intraoperative FS of the nipple base in all cases; however, as long as the nipple base is evaluated separately, it may be done on permanent pathology as well, if FS is not available for any reason.

Overall NAC involvement in this study was 3.5% (2/56 breasts). One patient had her nipple removed within the surgery and the second due to final pathologic diagnosis of ductal carcinoma in situ within the nipple base after a negative FS at the time of surgery.

Mean overall tumor size was 1.6 cm (1 mm to 7 cm). Half of our non-NAT patients had a tumor size of <2 cm (50%), a third of them had tumor size of 2.1–5 cm (33%), and in 17%, tumors were larger than 5 cm at the time of diagnosis. Moreover, almost half of our patients had multicentric cancer (49%), and third had lymph node involvement (28%). The overall complication rate in this series was 35%; however, the infection rate was low (11%). NAC complication rate was 9%, and surgical intervention was indicated in all cases for salvage.

Only 3 patients (6%) had any recurrence, and all recurrences were systemic only. There were no local recurrences in this series.

The safety and practicality of NSM were examined by Jensen et al.10 who followed 99 patients for 5 years. They observed 3 recurrences with no deaths and therefore concluded that the 5-year recurrence for the procedure is low when NSM margins (both frozen and permanent) are included that the 5-year recurrence for the procedure is low. According to our institutional practice, we include patients with tumor that is as close as <1 cm to the nipple as long as the nipple is not involved with tumor on FS. We performed intraoperative FS of the nipple base in all cases; however, as long as the nipple base is evaluated separately, it may be done on permanent pathology as well, if FS is not available for any reason.

Overall NAC involvement in this study was 3.5% (2/56 breasts). One patient had her nipple removed within the surgery and the second due to final pathologic diagnosis of ductal carcinoma in situ within the nipple base after a negative FS at the time of surgery.

Mean overall tumor size was 1.6 cm (1 mm to 7 cm). Half of our non-NAT patients had a tumor size of <2 cm (50%), a third of them had tumor size of 2.1–5 cm (33%), and in 17%, tumors were larger than 5 cm at the time of diagnosis. Moreover, almost half of our patients had multicentric cancer (49%), and third had lymph node involvement (28%). The overall complication rate in this series was 35%; however, the infection rate was low (11%). NAC complication rate was 9%, and surgical intervention was indicated in all cases for salvage.

Only 3 patients (6%) had any recurrence, and all recurrences were systemic only. There were no local recurrences in this series.

The safety and practicality of NSM were examined by Jensen et al.10 who followed 99 patients for 5 years. They observed 3 recurrences with no deaths and therefore concluded that the 5-year recurrence for the procedure is low when NSM margins (both frozen and permanent) are included that the 5-year recurrence for the procedure is low. According to our institutional practice, we include patients with tumor that is as close as <1 cm to the nipple as long as the nipple is not involved with tumor on FS. We performed intraoperative FS of the nipple base in all cases; however, as long as the nipple base is evaluated separately, it may be done on permanent pathology as well, if FS is not available for any reason.
prior radiation treatment (XRT) (11%), and alloplastic reconstruction (70%). In a previous publication based on an overlapping dataset, we found that alloplastic reconstruction had a higher complication rate compared with autologous reconstruction.

We included even minor events that were treated conservatively as complications. Moreover, our inclusion criteria for breast reconstruction were very liberal and we tend to operate on obese patients, smokers, and patients who received prior XRT.

In a systematic review by Piper et al., a 9.1% rate of NAC complications was reported, which is similar to the rate in this series (9%). Most of our NAC complications were treated conservatively and did not require surgical intervention.

Nipple ischemia and necrosis may be minimized by preserving major perforating vessels, elevating skin flaps in the plane between the subcutaneous fat and the breast glandular tissue, and the use of incisions that do not devascularize the NAC.

To summarize, literature review suggests strong support of the TND factor, with the minimal favorable distance ranging from 1 to 4 cm. We propose first to exclude nipple involvement by any imaging modality, and performance of a FS biopsy of the nipple base (followed by permanent pathologic evaluation) as the final determinant for nipple preservation, rather than relying on the TND alone. With this approach, the indications for NSM can be expanded to tumors that are located <2 cm from the nipple and even as close as 5 mm. The limitations of this study are its small size and retrospective nature.

CONCLUSIONS

Our results suggest that when clinical examination and preoperative studies do not suggest nipple involvement, and pathologic examination of tissue from the base of the nipple is negative (on FS or permanent histology), NSM can be considered oncologically safe. TND of <2 cm, multicentric cancer, lymph node involvement, or tumor size >3 cm should not be absolute contraindications for NSM. Larger studies and longer follow-up are needed to establish the safety of this approach.

REFERENCES

1. Krajewski AC, Boughey JC, Degnim AC, et al. Expanded indications and improved outcomes for nipple-sparing mastectomy over time. Ann Surg Oncol. 2015;22:3317–3323.
2. Petit JY, Veronesi U, Orecchia R, et al. Risk factors associated with recurrence after nipple-sparing mastectomy for invasive and intraepithelial neoplasia. Ann Oncol. 2012;23:2053–2058.
3. Lin NU, Vanderplas A, Hughes ME, et al. Clinico-pathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012;118:5463–5472.
4. Burdge EC, Yuen J, Hardee M, et al. Nipple skin-sparing mastectomy is feasible for advanced disease. Ann Surg Oncol. 2013;20:3294–3302.
5. Stanec Z, Žic R, Budí S, et al. Skin and nipple-areola complex sparing mastectomy in breast cancer patients: 15-year experience. Ann Plast Surg. 2014;73:485–491.
6. Mitchell SD, Willey SC, Beitsch P, et al. Evidence based outcomes of the American society of Breast Surgeons Nipple Sparing Mastectomy Registry. Gland Surg. 2018;7:247–257.
7. Spear SL, Hannan CM, Willey SC, et al. Nipple-sparing mastectomy. Plast Reconstr Surg. 2009;123:1665–1673.
8. Spear SL, Willey SC, Feldman ED, et al. Nipple-sparing mastectomy for prophylactic and therapeutic indications. Plast Reconstr Surg. 2011;128:1005–1014.
9. Wellisch DR, Schain WS, Noone RB, et al. The psychological contribution of nipple addition in breast reconstruction. Plast Reconstr Surg. 1987;80:699–704.
10. Jensen JA, Orringer JS, Giuliano AE. Nipple-sparing mastectomy in 99 patients with a mean follow-up of 5 years. Ann Surg Oncol. 2011;18:1665–1670.
11. Dent BL, Miller JA, Eden DJ, et al. Tumor-to-nipple distance as a predictor of nipple involvement: expanding the inclusion criteria for nipple-sparing mastectomy. Plast Reconstr Surg. 2017;140:1e–8e.
12. Ryu JM, Nam SJ, Kim SW, et al. Feasibility of nipple-sparing mastectomy with immediate breast reconstruction in breast cancer patients with tumor-nipple distance less than 2.0 cm. World J Surg. 2016;40:2028–2035.
13. de Alcantara Filho P, Capko D, Barry JM, et al. Nipple sparing mastectomy for breast cancer and risk-reducing surgery: the Memorial Sloan-Kettering Cancer Center experience. Ann Surg Oncol. 2011;18:3117–3122.
14. Coopey SB, Tang R, Lei L, et al. Increasing eligibility for nipple-sparing mastectomy. Ann Surg Oncol. 2013;20:3218–3222.
15. Boneti C, Yuen J, Santiago C, et al. Oncologic safety of nipple skin-sparing or total skin-sparing mastectomies with immediate reconstruction. J Am Coll Surg. 2011;212:686–693; discussion 693.
16. Seki H, Sakurai T, Mizuno S, et al. A novel nipple-areola complex involvement predictive index for indicating nipple-sparing mastectomy in breast cancer patients. Breast Cancer. 2019;26:808–816.
17. Byon W, Kim E, Kwon J, et al. Magnetic resonance imaging and clinicopathological factors for the detection of occult nipple involvement in breast cancer patients. J Breast Cancer. 2014;17:386–392.
18. Lesser ML, Rosen PP, Kinne DW. Multicentricity and bilaterality in invasive breast carcinoma. Surgery. 1982;91:234–240.
19. Lüttges J, Kalbfleisch H, Prinz P. Nipple involvement and multicentricity in breast cancer. A study on whole organ sections. J Cancer Res Clin Oncol. 1987;113:481–487.
20. Li W, Wang S, Guo X, et al. Nipple involvement in breast cancer: retrospective analysis of 2323 consecutive mastectomy specimens. Int J Surg Pathol. 2011;19:328–334.
21. Wang F, Koltz PF, Shitany H. Lessons learned from the American College of Surgeons National Surgical Quality Improvement Program Database: has centralized data collection improved immediate breast reconstruction outcomes and safety? Plast Reconstr Surg. 2014;134:859–868.
22. Billar JA, Dueck AC, Gray RJ, et al. Preoperative predictors of the nipple-areola complex involvement for patients undergoing mastectomy for breast cancer. Ann Surg Oncol. 2011;18:3123–3128.
23. Gulben K, Yildirim E, Berberoglu U. Prediction of occult nipple-areola complex involvement in breast cancer patients. Neoplasma. 2009;56:72–75.
24. Wang J, Xiao X, Wang J, et al. Predictors of nipple-areolar complex involvement by breast carcinoma: histopathologic analysis.
of 787 consecutive therapeutic mastectomy specimens. *Ann Surg Oncol*. 2012;19:1174–1180.

25. Mallon P, Feron JG, Couturaud B, et al. The role of nipple-sparing mastectomy in breast cancer: a comprehensive review of the literature. *Plast Reconstr Surg*. 2013;131:969–984.

26. Alsharif E, Ryu JM, Choi HJ, et al. Oncologic outcomes of nipple-sparing mastectomy with immediate breast reconstruction in patients with tumor-nipple distance less than 2.0 cm. *J Breast Cancer*. 2019;22:613–623.

27. Kracoff S, Allweis TM, Ben-Baruch N, et al. Neo-adjuvant chemotherapy does not affect the immediate postoperative complication rate after breast reconstruction. *Breast J*. 2019;25:528–530.

28. Piper M, Peled AW, Foster RD, et al. Total skin-sparing mastectomy: a systematic review of oncologic outcomes and postoperative complications. *Ann Plast Surg*. 2013;70:435–437.

29. Stolier AJ, Levine EA. Reducing the risk of nipple necrosis: technical observations in 340 nipple-sparing mastectomies. *Breast J*. 2013;19:173–179.