Comment on “Fluctuations in Extractable Work Bound the Charging Power of Quantum Batteries”

In Ref. [1] the connection between the charging power of a quantum battery and the fluctuations of a “free energy operator” whose expectation value characterizes the maximum extractable work of the battery is studied using both closed- and open-system analyses. Recently, it has been shown [2] that the conclusions of Ref. [1] do not hold for open-system dynamics. Since the two analyses are physically equivalent approaches to studying the dynamics of the battery, in light of the findings of Ref. [2] we critically examine whether the conclusions of Ref. [1] hold for closed-system dynamics. In doing so, we find a few mistakes in the analysis of Ref. [1] and obtain the correct bound on the charging power. As a result, for closed-system dynamics the conclusions of Ref. [1] are in general not correct.

The starting point of our analysis is the charging power

\[P(t) = -i \text{Tr}(\rho F \otimes I_{\text{SBA}} |V|) , \]

where \(\rho \) is the full state of the closed system \(\text{SBAW} \), \(F \) is a Hermitian operator, known as the free energy operator of the battery \(W \), and \(V \) is the interaction Hamiltonian between the battery and the bath \(S \), system \(A \), and ancilla \(A \). Following Ref. [1], we define \(\delta F = F - \langle F \rangle_W \) and \(\delta V = V - \langle V \rangle \), where \(\langle F \rangle_W = \text{Tr}(\rho_W F) \) and \(\langle V \rangle = \text{Tr}(\rho V) \).

After some algebra, we obtain

\[|P(t)|^2 = |\text{Tr}(\rho |\delta F \delta V|)|^2 , \]

where for notational simplicity we will henceforth use the shorthand notation \(\delta F = \delta F \otimes I_{\text{SBA}} \). Note that Eq. (2) is an equality instead of an inequality given by Eq. (9) of Ref. [1]. It is convenient to rewrite Eq. (2) as

\[|P(t)|^2 = |\text{Tr}(\sqrt{\rho} \delta F \delta V \sqrt{\rho} - \sqrt{\rho} \delta V \delta F \sqrt{\rho})|^2 , \]

where we have used the fact that \(\rho \) is a positive operator. We note that since \(\sqrt{\rho} \delta F \delta V \sqrt{\rho} \) and \(\sqrt{\rho} \delta V \delta F \sqrt{\rho} \) are Hermitian conjugates of each other, it follows that \(\text{Tr}(\sqrt{\rho} \delta F \delta V \sqrt{\rho}) \) and \(\text{Tr}(\sqrt{\rho} \delta V \delta F \sqrt{\rho}) \) are complex conjugates of each other. As a matter of fact, this is the utmost important point that is missed in the analysis of Ref. [1]. With this point in mind, we can rewrite Eq. (3) as

\[|P(t)|^2 = |\text{Tr}(\sqrt{\rho} \delta F \delta V \sqrt{\rho})|^2 + |\text{Tr}(\sqrt{\rho} \delta V \delta F \sqrt{\rho})|^2 - 2 \text{Re}[\text{Tr}(\rho |\delta F \delta V|)] , \]

where \(\text{Re} \) denotes the real part.

To find the upper bound on \(|P(t)|^2 \), again following Ref. [1], we use the fact that for a positive operator \(A \) and Hermitian operators \(B \) and \(C \), the Cauchy-Schwarz inequality implies \(|\text{Tr}(\sqrt{ABC} \sqrt{A})|^2 \leq |\text{Tr}(AB^2)||\text{Tr}(AC^2)| \). Equation (4) then leads to

\[|P(t)|^2 \leq 2(|\text{Tr}(\rho |\delta F|^2)| \text{Tr}(\rho |\delta V|^2) - \text{Re}[\text{Tr}(\rho |\delta F \delta V|)]) = 2(\sigma_F^2 \sigma_V^2 - \text{Re} [\text{Cov}(F, V)]) . \]

Here, \(\sigma_F^2 \) is the variance of \(F \) in the battery state \(\rho_W \), \(\sigma_V^2 \) is the variance of \(V \) in the full state \(\rho \), and \(\text{Cov}(F, V) \) is the covariance between \(F \) and \(V \) in the full state \(\rho \).

Specifically, we have

\[\sigma_F^2 = \langle F^2 \rangle_W - \langle F \rangle_W^2 , \quad \sigma_V^2 = \langle V^2 \rangle - \langle V \rangle^2 , \quad \text{Cov}(F, V) = \langle (F \otimes I_{\text{SBA}}) \rangle - \langle F \rangle_W \langle V \rangle \] .

Moreover, the Cauchy-Schwarz inequality \(\sigma_F^2 \sigma_V^2 \geq |\text{Cov}(F, V)|^2 \) implies \(\sigma_F^2 \sigma_V^2 - \text{Re} [\text{Cov}(F, V)]^2 \geq 0 \) as it should be. Evidently, Eq. (5) is the corrected expression for Eqs. (9) and (12) of Ref. [1].

The last step of our analysis is to verify the case in which the battery state is an eigenstate of the free energy operator. Suppose \(\rho_W = |j \rangle \langle j | \) and \(F|j \rangle = w_j |j \rangle \) with \(w_j \) the real eigenvalue; we obtain \(\sigma_F^2 = \text{Cov}(F, V) = 0 \), which implies \(P(t) = 0 \). However, under the assumption of a very general charging process with \(\sigma_V^2 \neq 0 \), we stress that in our analysis \(\rho_W = |j \rangle \langle j | \) is only a sufficient condition for the battery to have a nonzero charging power, as opposed to a sufficient and necessary condition in the original incorrect analysis of Ref. [1]. Moreover, even though the total system is initially in a product state with the battery in an eigenstate of \(F \), the interaction \(V \) will make the battery entangled with the other subsystems, giving rise to a mixed battery state.

It is conceivable that there exist entangled full states \(\rho \) and mixed battery states \(\rho_W = \text{Tr}_{\text{SBA}}(\rho) \) with nonzero \(\sigma_F^2 \) and \(\text{Cov}(F, V) \) but \(P(t) = 0 \).

Since there is still no consensus on the notion of work in the quantum regime, the discrepancy between the conclusions of Ref. [2] and of the present work seems to suggest that the free energy operator \(F \) introduced in Ref. [1] does not properly quantify the work content of the battery in a physically consistent manner. This is certainly an important issue that deserves further investigation.

This work was supported in part by the MOST of Taiwan under grant 109-2112-M-032-009.

Shang-Yung Wang
Department of Physics
Tamkang University
New Taipei City 25137, Taiwan

[1] L. P. García-Pintos, A. Hamma, and A. del Campo, Phys. Rev. Lett. 125, 040601 (2020).
[2] S. Cusumano and L. Rudnicki, Phys. Rev. Lett. 127, 028901 (2021).