Corrigendum

On vector potential of the Coulomb gauge
Valery P Dmitriyev Eur. J. Phys. 25 L23–27

The inference (43) made in this comment substituting (42) into equation (30) is wrong since equation (30) has the infinite value of the coefficient c_g. The last paragraph of section 4 should read as follows.

Using (16)–(18) and (40) in the continuity equation for ρ we obtain

$$j_g = \frac{1}{4\pi} \frac{\partial \nabla \phi}{\partial t}.$$ (43)

Putting (42) into (8) and (43) into (16) we get

$$A_r = A_r$$ and $$j_r = j - \frac{1}{4\pi} \frac{\partial \nabla \phi}{\partial t}.$$ (44)

Substituting (44) into equation (24) gives

$$\frac{\partial^2 A}{\partial t^2} - c^2 \nabla^2 A = 4\pi cj - c \frac{\partial \nabla \phi}{\partial t}.$$ (45)

Equation (45) indicates that in the Coulomb gauge (38) the vector potential A propagates at speed c.
