Abstract

We address the reduction to compact band forms, via unitary similarity transformations, for the solution of symmetric eigenvalue problems and singular value problems. Concretely, in the first case we revisit the reduction to symmetric band form while, for the second case, we propose a similar alternative, which transforms the original matrix to (unsymmetric) band form, replacing the conventional reduction method that produces a triangular–band output. In both cases, we describe algorithmic variants of the standard Level-3 BLAS-based procedures, enhanced with look-ahead, to overcome the performance bottleneck imposed by the panel factorization. Furthermore, our solutions detach the algorithmic block size from the target bandwidth, illustrating the important performance benefits of this decision. Finally, we show that our alternative compact band form for singular value problems is key to introduce look-ahead into the corresponding reduction procedure.

1 Introduction

The reduction to tridiagonal form is a crucial operation for the computation of the eigenvalues of a dense symmetric matrix when a significant part of the spectrum is required [14]. Similarly, the reduction to bidiagonal form is the preferred option to obtain (all) the singular values of a dense matrix [14]. The standard algorithms for these two reductions in the legacy implementation of LAPACK (Linear Algebra PACKage) [1] compute these reduced forms via two-sided, fine-grained unitary transformations. Unfortunately, these routines are rich in Level-2 BLAS (Basic Linear Algebra Subroutines) [12], which are memory-bounded kernels and, therefore, deliver only a small fraction of the peak (computational) performance of recent computer architectures.

An alternative approach replaces these low-performance standard routines with “two-stage” two-sided reduction (TSR) algorithms [4]. The idea is to initially transform the dense matrix into a compact band form (first stage) to next operate on this by-product in order to yield the desired tridiagonal/bidiagonal form. For symmetric eigenvalue problems (SEVP), the by-product is a symmetric band matrix with upper and lower bandwidth \(w \). For singular value problems (SVP), the band form corresponds, by convention, to an upper triangular–band matrix with upper bandwidth \(w \). The appealing property of the TSR algorithms is that the initial reduction mainly consist of high performance, compute-bounded Level-3 BLAS [11], which explains the renewed interest in developing two-stage TSR algorithms for multicore processors as well as manycore accelerators [3, 8, 17, 18]. To conclude this brief review of two-stage TSR algorithms, in case \(w \) is small compared
with the problem dimension, or the associated eigenvectors/singular vectors are not desired, the computational cost of the second stage is negligible compared with that of the initial reduction \cite{15,9}. Furthermore, except for a few special problems, computing the eigenvalues/singular values of the tridiagonal/bidiagonal matrices contributes a minor factor to the global cost of the procedure \cite{10,13,16}.

High-performance routines for the solution of linear systems (e.g., via the LU and QR factorizations \cite{14}) as well as the initial stage of TSR algorithms usually implement a right-looking (RL) procedure that, at each iteration, factorizes the current panel of the matrix, and then applies the transformations that realized this reduction to update the trailing submatrix. On today’s multi-core platforms, the factorization of the panel is a performance bottleneck because this operation is mostly memory-bounded and, moreover, exhibits a complex set of fine-grain data dependencies. Fortunately, there exist three (to a certain extent complementary) techniques to tackle the constraint imposed by the panel factorization:

T1) exploit the fine-grain parallelism within the panel itself \cite{6};

T2) divide the factorization of the current panel into multiple operations whose execution can then be overlapped with certain parts of the trailing update, yielding the so-called algorithms-by-blocks or tile algorithms \cite{15,5,20}; and

T3) overlap the trailing update with the factorization of the “next” panel(s) \cite{21}.

Note the distinction between T2), which aims to exploit the parallelism among operations (tasks) in the same iteration of the RL algorithm; and T3), which exploits the parallelism among operations belonging to two (or more) consecutive iterations of the RL algorithm. Here it is worth pointing out that recent developments on the semi-automatic task-parallelization of dense linear algebra operations with the support of a “runtime” (such as SuperMatrix, Quark, OmpSs, StarPU, OpenMP, etc.) have partially blurred the frontier between T2) and T3). In particular, when this type of task-parallelization is applied to an algorithm-by-blocks for the solution of linear systems in order to realize T2), the result is that T3) is often obtained for free. For some TSR algorithms though, as we will discuss in the paper, this may not be possible.

In this paper we focus on T3), which is usually known as look-ahead \cite{21}. Here, as we do not rely on a runtime to exploit “inter-iteration” parallelism, we can refer more precisely to this strategy as “static” look-ahead. While this technique has been long known and exploited for the solution of linear systems via the LU and QR factorization\cite{1}, its application to TSR algorithms has not been fully discussed explicitly. In this paper we show that look-ahead can be introduced in the sophisticated TSR algorithms for SEVP and SVP, delivering remarkable performance benefits. In particular, our paper makes the following contributions:

- We explore the integration of look-ahead into the reduction of symmetric matrices to band form for SEVP via two-sided orthogonal transformations. In this line, we propose two variants of the reduction algorithm, enhanced with look-ahead, that outperform each other depending on the ratio between the algorithmic block size b (which dictates the number of columns in the panel,) and the target matrix bandwidth w. While LAPACK (version 3.7.1) and MAGMA (version 2.1.0) both include routines for SEVP to reduce the symmetric input matrix to band form, those implementations impose the restriction that the algorithmic block size must equal

\footnote{Static look-ahead is for example the technique embedded in the implementation of these factorizations in Intel MKL.}
the bandwidth, limiting performance. Furthermore, the LAPACK routine for this reduction
does not integrate look-ahead.

- We extend our analysis of look-ahead to the reduction of general matrices to band form for
SVP via two-sided orthogonal transformations. Here we depart from the conventional TSR
to band–triangular form, which does impose certain restrictions that preclude the application
of look-ahead, to advocate instead for the reduction to band form with equal lower and upper
bandwidths. This change, in turn, yields to the derivation of two variants for the reduction
algorithm for SVP analogous to those identified for SEVP.

- We demonstrate the performance benefits of static-look ahead, using the reduction to band
forms for SEVP and SVP, on an Intel-based platform equipped with 8 Haswell cores. Our
experimental analysis of the optimal block size clearly shows the importance of decoupling
the algorithmic block size from the bandwidth, and the advantages of each variant.

The introduction of look-ahead paves the road to overlapping the panel factorization on a CPU
with the execution of the (rich in Level-3 BLAS) trailing update on an accelerator (e.g., a GPU).
Furthermore, on a multicore architecture, an algorithm that explicitly decomposes the TSR to
expose look-ahead can apply this technique with variable depth, using the support of a runtime
such as OpenMP, OmpSs or StarPU. In both cases, we can expect a notable increase of performance,
as i) the panel factorization is potentially removed from the critical path of the algorithm; and ii)
the algorithmic block size is decoupled from the bandwidth.

The rest of the paper is structured as follows. In Sections 2 and 3 we describe the introduction
of look-ahead in the first stage of the TSR algorithms for SEVP and SVP, respectively. In Section 4
we assess the benefits of a flexible implementation of this technique by experimentally demonstrating
its effects for the TSR of dense matrices to the selected band forms for SEVP and SVP. Finally, in
Section 5 we close our paper with a few concluding remarks and a discussion of future work.

To close this introduction, we note that the mathematical equations, algorithms, and the eval-
uation in the remainder of the paper are all formulated for problems with real data entries, using
orthogonal transformations, but their extension to the Hermitian case, involving unitary transfor-
mations, is straight-forward.

2 TSR for SEVP

2.1 Basic algorithm

Let us first describe the algorithm that reduces a dense symmetric matrix $A \in \mathbb{R}^{n \times n}$ to symmet-
tric band form, with bandwidth w, via orthogonal similarity transformations. This procedure is
numerically stable and, moreover, preserves the eigenvalues of the matrix [14]. Consider that the
first $k - 1$ rows/columns of A have been already reduced to band form; the algorithmic block size
satisfies $b \leq w$; and assume for simplicity that $k + w + b - 1 \leq n$; see Figure 1. At this point we
note the key roles of the bandwidth w and the block size b, and their interaction. The optimal
bandwidth itself depends on the efficiency of the second stage of the reduction and, therefore, it
cannot be chosen independently. To complicate things a bit further, the optimal bandwidth also
depends on the problem dimensions and the selected block size. The take-away lesson of this short
discussion is that the best combination of bandwidth and block size depends on several factors,
some of which are external to the implementation of the first stage.

During the current iteration of the reduction procedure, b new rows/columns of the band matrix
are computed as follows:
1. **Panel Factorization.** Compute the QR factorization

\[A_0 = QR, \]

where \(A_0 \in \mathbb{R}^{j \times b} \), with \(j = n - (k + w) + 1 \); \(R \in \mathbb{R}^{j \times b} \) is upper triangular; and the orthogonal matrix \(Q \) is implicitly assembled using the WY representation [14] as \(Q = I_j + WY^T \), where \(W, Y \in \mathbb{R}^{j \times b} \) and \(I_j \) denotes the square identity matrix of order \(j \).

2. **Trailing Update.** Apply the orthogonal matrix \(Q \) to \(A_1 \in \mathbb{R}^{j \times w - b} \) from the left:

\[A_1 := Q^T A_1 = (I_j + WY^T)^T A_1 = A_1 + Y(W^T A_1); \]

and to \(A_2 \in \mathbb{R}^{j \times j} \) from both left and right:

\[A_2 := Q^T A_2 Q = (I_j + WY^T)^T A_2 (I + WY^T) = A_2 + Y W^T A_2 + A_2 W Y^T + Y W^T A_2 W Y^T. \]

During this last operation (only the lower or upper triangular part of) \(A_2 \) is updated, via the following sequence of Level-3 BLAS operations:

\[
\begin{align*}
X_1 &:= A_2 W, \\
X_2 &:= \frac{1}{2} X_1^T W, \\
X_3 &:= X_1 + Y X_2, \\
A_2 &:= A_2 + X_3 Y^T + Y X_3^T.
\end{align*}
\]

Provided \(b \) and \(w \) are both small compared with \(n \), the global cost of the reduction of a full matrix to band form is \(4n^3/3 \) floating-point arithmetic operations (flops). Furthermore, the bulk of the computation is performed in terms of the Level-3 BLAS operations in \([4]\) and \([7]\).

The problem with this basic algorithm is that the panel factorization in \([2]\) is mainly memory-bounded (at least, for the usual values of \(b \)) as well as features some complex dependencies so
that, as the number of cores performing the factorization is increased, the panel operation rapidly becomes a performance bottleneck. We next describe how to solve this problem via two algorithmic variants that implement a static look-ahead in order to overlap in time (i.e., run concurrently) the execution of the trailing update for the current iteration with the factorization of the next panel.

2.2 Introducing look-ahead

Consider the blocks A_0, A_1, A_2 involved in iteration k of the basic algorithm (see Figure 1); and let us refer to the panel that will be factorized in the subsequent iteration $\bar{k} = k + b - 1$ as A_0. The key to formulate a variant of the basic algorithm enhanced with look-ahead lies in:

1. identifying the parts of the trailing submatrix $[A_1, A_2]$ that will become \bar{A}_0 during the next iteration;
2. isolating the updates corresponding to application of the orthogonal transformations in (3) that affect A_0 from those which modify those parts of $[A_1, A_2]$ that do not overlap with A_0; and
3. during iteration k, overlapping the factorization of the subsequent panel \bar{A}_0 (look-ahead factorization) with the updates corresponding to this iteration.

At this point we distinguish two cases, leading to two variants of the TSR algorithm with look-ahead, depending on the relation between b and w:

- Variant V1: $2b \leq w$. In this case, \bar{A}_0 lies entirely within A_1, as the number of columns in the latter satisfies $w - b \geq b$. We then define the following partitioning of the trailing submatrix:

$$
\begin{bmatrix}
A_1 & A_2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
A_1^T A_1 & A_1^R A_2
\end{bmatrix}
= \begin{bmatrix}
\frac{A_1^T A_1}{A_0} & A_1^R A_2
\end{bmatrix},
$$

where A_1^T consists of b columns, $A_1^T L$ is $b \times b$, and we (use the red color to) distinguish those blocks that overlap in the column range of \bar{A}_0.

During iteration k, we can then perform the following three groups of operations (left, middle and right) concurrently:

Sequential panel factorization

$A_1^T := Q^T A_1^T$

$A_0 = \bar{Q} \bar{R}$

Parallel remainder update

$A_1^R := Q^T A_1^R$

$A_2 := Q^T A_2 Q$

Note that, with this partitioning, \bar{A}_0 is generally small compared with A_2. Therefore, we can expect that the factorization of the subsequent panel A_0 can be overlapped with the update of A_2 on the right, eliminating the former from the critical path of the reduction. On a multicore architecture, we can achieve this by dedicating a few threads/cores to the panel factorization while the remaining ones compute the trailing update. On a CPU-GPU system, the CPU can take care of the panel factorization while the GPU updates the trailing submatrix. Hereafter, we will refer to these (two groups of) computational resources, few threads/CPU and many threads/GPU, as T_S (for sequential) and T_P (for parallel) respectively.

There exists a direct dependency between the two operations on the left-hand side group, that we can denote as $A_1^T \rightarrow \bar{A}_0$. Here, the update of A_1^T is a Level-3 BLAS operation that
in general will offer low performance as the width of the panel is usually small. Due to the
dependency and this low performance, the update of A_1^T will be performed by T_S. As for
the update of A_1^R, in the middle “group”, in case this is also a narrow column panel (i.e.,
$w - 2b$ is small), we can expect low performance from it, so that it should join the group of
“sequential” operations on the left (red group), to be performed by T_S. Otherwise, it can be
merged with the “parallel” group on the right, to be computed by T_P.

• Variant V2: $2b > w$. In this case, \bar{A}_0 expands beyond the columns of A_1 to partially overlap
with A_2. Let us consider the following partitioning:

$$
\begin{bmatrix}
A_1 & A_2
\end{bmatrix} =
\begin{bmatrix}
A_1 & A_2^L & A_2^R
\end{bmatrix} =
\begin{bmatrix}
\frac{A_1^T}{\bar{A}_0} & A_2^T
\end{bmatrix},
$$

(9)

where $[A_1, A_2^L]$ consists of b columns and $[A_1^T, A_2^T]$ is $b \times b$.

During iteration k, we initially compute the following operations:

\begin{align*}
A_1 & := Q^T A_1, \quad (10) \\
X_1 & := A_2 W, \quad (11) \\
X_2 & := \frac{1}{2} X_1^T W, \quad (12) \\
X_3 & := X_1 + Y X_2, \quad (13)
\end{align*}

which correspond to the update of A_1 and part of the computations necessary for the update
of A_2; see (4)–(7). After this is completed, we can concurrently perform the following two
groups of operations:

\begin{align*}
\text{Sequential panel factorization} & & \text{Parallel remainder update} \\
A_2^L & := A_2^L + X_3 (Y_L)^T + Y (X_3^L)^T & A_2^R & := A_2^R + X_3 (Y_R)^T + Y (X_3^R)^T \\
\bar{A}_0 & = Q \bar{R}
\end{align*}

Here, $Y = [Y_L, Y_R]$ and $X_3 = [X_3^L, X_3^R]$ are partitionings conformal with $A_2 = [A_2^L, A_2^R]$.

As in the previous variant (case), this pursues the goal of overlapping the factorization of
the next panel \bar{A}_0 with a sufficiently-large Level-3 BLAS. In general, \bar{A}_0 is small compared with
the trailing submatrix A_2^R so that we can expect this is the case.

To close the discussion of Variant V2, we note the collection of dependencies appearing among
the operations identified in this case; see Figure 2. For these operations, the panel width
determines whether they involve narrow panels and, therefore, can be considered as memory-
bounded low-performance kernels. Thus, together with the dependencies, this property will
ultimately decide whether they are moved to the groups of either sequential or parallel kernels,
to be tackled by T_S or T_P, respectively. For example, one possibility is to update A_1 on T_S,
while X_1, X_2, X_3 are being computed by T_P; when all these operations are completed, we
can continue with the update of A_2^L and the factorization of \bar{A}_0 on T_S, while A_2^R is being
updated by T_P.

At this point, it is fair to ask what is the value of explicitly exposing static look-ahead if the
same effect could be obtained, in principle, with the combination of an algorithm-by-blocks and
the support of a task-parallelizing runtime. Armed with the previous discussion of look-ahead, we
can now offer several arguments in response to this question:
1. Exposing the look-ahead variant provides a better understanding of the algorithms.

2. Static look-ahead can be as efficient as or even outperform a runtime-assisted dynamic solution [7]. The reason is that, for regular dense linear algebra operations such as those in the Level-3 BLAS, dividing these kernels into fine-grain operations incurs into some packing/unpacking overheads. In addition, the use of a runtime promotes the exploitation of task-parallelism at the cost of a suboptimal use of the cache hierarchy.

3. As exposed in the next section, for the tile algorithm proposed for the reduction to triangular–band form, the application of a runtime may not allow per se the exploitation of task-parallelism among operations belonging to different iterations.

4. The look-ahead variants do not require the implementation of tuned kernels to factorize blocks with special structures as those that appear in the algorithm-by-blocks, and apply the corresponding transformations. Moreover, they do not incur the overhead due to the operation with these kernels and do not have an internal block size that needs to be tuned [5, 20].

5. For CPU-GPU platforms, static look-ahead can be the only practical means to eliminate the panel factorization from the critical path of the algorithm.

3 TSR for SVP

3.1 Triangular–band form

The conventional algorithm for the first stage of the TSR algorithm for SVP computes an upper triangular matrix with upper bandwidth w. To describe this procedure, consider a matrix $A \in \mathbb{R}^{m \times n}$, where the first k rows/columns have already been reduced to the desired triangular–band form; and assume that $k + w + b - 1 \leq m, n$, with $m \geq n$. Furthermore, let us consider initially the simpler case with $w = b$; see Figure 3. During the current iteration, the following computations thus advance the reduction by w additional rows/columns:

1. **Left Panel Factorization.** Compute the QR factorization

$$B = Q_L R,$$

where $B \in \mathbb{R}^{i \times w}$, with $i = m - k + 1$; $R \in \mathbb{R}^{i \times w}$ is upper triangular; and $Q_L = I_i + W_L Y_L^T$ is orthogonal, with $W_L, Y_L \in \mathbb{R}^{i \times w}$.

[7] We recognize that this problem can be overcome by a careful reconstruction of the orthogonal factor, but this comes at the cost of an increase in the computational cost of the panel factorization [2].
2. **Left Trailing Update.** Apply Q_L to $E = \begin{bmatrix} C \\ D \end{bmatrix} \in \mathbb{R}^{i \times j}$, with $j = n - (k + w) + 1$, from the left:

$$E := Q_L^T E = (I_i + W_L Y_L^T)^T E = E + Y_L W_L^T E.$$ \hfill (15)

3. **Right Panel Factorization.** Compute the LQ factorization

$$C = LQ_R^T,$$ \hfill (16)

where $C \in \mathbb{R}^{w \times j}$; $L \in \mathbb{R}^{w \times j}$ is lower triangular; and $Q_R = I_j + W_R Y_R^T$ is orthogonal, with $W_L, Y_L \in \mathbb{R}^{j \times w}$.

4. **Right Trailing Update.** Apply Q_R to $D \in \mathbb{R}^{(i-w) \times j}$, from the right:

$$D := DQ_R = D(I_j + W_R Y_R^T) = D + (D W_R) Y_R^T.$$ \hfill (17)

Assuming $w \ll m, n$, this algorithm requires $4(mn^2 - n^3/3)$ flops and the major part of these operations are concentrated in the trailing updates (15), (17), which correspond to high performance Level-3 BLAS.

3.2 Triangular–band form and look-ahead

Unfortunately, the two panel factorizations in (14), (16) impose the same bottleneck as that discussed for the reduction to the symmetric band form. Even worse, in the reduction to triangular–band form it is not possible to overcome this problem via a look-ahead strategy. Let us explain this in some detail. Consider that \bar{B}, \bar{C} stand for the panels that will be factorized during the next iteration, $\bar{k} = k + w - 1$. The problem is that, in an iteration of a potential look-ahead implementation, it is necessary to compute the factorizations of the next panels

$$\bar{B} = \bar{Q}_L \bar{R},$$ \hfill (18)

$$\bar{C} = \bar{L} Q_R^T,$$ \hfill (19)

as well as update the entire trailing submatrices with respect to the transformations that factorized the current panels B, C (i.e., those in Q_L and Q_R, respectively). However, before we can factorize \bar{C}, we need to propagate the transformations that factorized \bar{B} (in \bar{Q}_L) to the trailing submatrix because these transformations affect the components of \bar{C}. In consequence, this precludes the possibility of a look-ahead strategy, since in such type of variant the application of Q_L is not scheduled till the next iteration.

3.3 Triangular–band form and look-ahead, revisited

Consider again the reduction to triangular–band form for SVP, but let us decouple now the block size from the bandwidth so that $b \leq w$. Assuming the first k rows/columns have already been reduced to the desired form, and $k + w + b - 1 \leq m, n$, we have then the scenario illustrated in Figure 4.

Unfortunately, the problem remains in that, in an iteration of the look-ahead implementation, it is necessary to factorize the next panels and update the trailing submatrices with respect to the transformations that factorized the current panels. However, in order to factorize \bar{C}, we first need to propagate the transformations in \bar{Q}_L entirely (because these transformations affect the elements
Figure 3: Partitioning of the matrix during one iteration of the reduction to triangular–band form for the solution of SVP ($w = b$).

Figure 4: Partitioning of the matrix during one iteration of the reduction to triangular–band form for the solution of SVP ($b \leq w$).

of \tilde{C}, an operation that, by definition of the look-ahead strategy, should occur in the next iteration. The conclusion is that look-ahead is not possible for this type of reduction, independently of the relation between the algorithmic block size and the bandwidth.

The discussion of the reduction to triangular–band reveals a strong limitation when aiming to exploit task-parallelism among operations belonging to different iterations. We note that this algorithm is precisely the selection that was made for the message-passing implementation of TSR
to triangular–band form in [15]. It is also the choice for the tile algorithms in PLASMA that perform this reduction on multicore platforms in [17, 18]. Therefore, none of these implementations can exploit “inter-iteration parallelism”. In addition, all of them couple the algorithmic block size to the bandwidth, so that $b = w$, with a potential negative effect on performance.

3.4 Band form and look-ahead

In [15] the authors explored the triangular–band reduction as well as an alternative algorithm that reduces the dense matrix to a band form with the same upper and lower bandwidth. However, the latter algorithm was abandoned in that work as it did not offer any special advantage. In this subsection we show that this approach is actually the key to obtaining two variants for the reduction to band form for SVP, enhanced with look-ahead, which are analogous to those already presented for SEVP in subsection 2.2. Before we review this algorithm, we note that the cost of applying this procedure to reduce a dense matrix to band form, with upper and lower bandwidth $w = w'/2$, is about the same as that of reducing the matrix to triangular–band form with bandwidth w'.

The basic algorithm (i.e., without look-ahead) is very similar to the reduction to symmetric band form, with the differences stemming from the fact that A is now an unsymmetric matrix, which requires separate left and right factorizations. As usual, consider that the first $k - 1$ rows/columns of A have been already reduced to band form; select $b \leq w$; and assume for simplicity that $k + w + b - 1 \leq m, n$; see Figure 5.

During the current iteration of the reduction procedure, b new rows/columns of the band matrix are computed as follows (for brevity, we do not state explicitly the dimensions and properties of the matrix blocks/factors in the following, as they can be easily derived from the context and Figure 5):
1. **Left Panel Factorization.** Compute the QR factorization
\[B_0 = Q_L R, \quad \text{with} \quad Q_L = I_i + W_L Y_L^T. \]
(20)

2. **Left Trailing Update.** Apply \(Q_L \) to the trailing submatrix:
\[B_1 := Q_L^T B_1 = B_1 + Y_L (W_L^T B_1); \]
(21)
\[D := Q_L^T D = D + Y_L (W_L^T D); \]
(22)

3. **Right Panel Factorization.** Compute the LQ factorization
\[C_0 = LQ_R^T, \quad \text{with} \quad Q_R = I_j + W_R Y_R^T. \]
(23)

4. **Right Trailing Update.** Apply \(Q_R \) to the trailing submatrix:
\[C_1 := C_1 Q_R = A_1 + (A_1 W_R) Y_R^T; \]
(24)
\[D := D Q_R = D + (D W_R) Y_R^T. \]
(25)

From these expressions, let us now re-consider the two cases leading to Variants V1 and V2 of the look-ahead strategy:

- **Variant V1:** \(2b \leq w \). The next panels \(\bar{B}_0 \) and \(\bar{C}_0 \) lie entirely within \(B_1 \) and \(C_1 \), respectively. Therefore, the update and factorization of these panels can be overlapped with the updates performed on \(D \) from the left and right, respectively.

- **Variant V2:** \(2b > w \). Now both \(\bar{B}_0 \) and \(\bar{C}_0 \) extend to overlap with \(D \). The key to introduce look-ahead is that the left and right updates of \(D \) can be performed “simultaneously” as follows \cite{15}:

\[
Z_L := D^T W_L, \]
(26)
\[
Z_R := D W_R, \]
(27)
\[
X := Z_R + Y_L (Z_L^T W_R), \]
(28)
\[
D := Q_L^T D Q_R = D + Y_L W_L^T D + D W_R Y_R^T + Y_L W_L^T D W_R Y_R^T = D + [X, Y_L][Y_R, Z_L]^T. \]
(29)

Therefore, we can initially perform the updates of \(B_1, C_1 \) and compute \(Z_L, Z_R, X \). Next, we partition the update of \(D \) to expose those parts of the result that overlap with \(\bar{B}_0 \) and/or \(\bar{C}_0 \):

\[
D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix}, \]
(30)

where \(D_{11} \in \mathbb{R}^{(2b-w) \times (2b-w)} \). Finally, by partitioning the operands \([X, Y_L], [Y_R, Z_L]^T\) in \([29]\) conformally with \(D \) in \([30]\), we can overlap the updates of \(D_{11}, D_{21}, D_{12} \), and the small left and right panel factorizations in \(T_S \) with the update of the larger \(D_{22} \) in \(T_P \).
4 Performance Evaluation

In this section, we analyze in detail the performance benefits obtained by introducing the look-ahead strategies formulated in this paper for the TSR algorithms to compact band forms for SEVP and SVP and decoupling the algorithmic block size from the bandwidth. All experiments were performed using IEEE double-precision arithmetic on an Intel Xeon E5-2630 v3 processor (8 cores running at a nominal frequency of 2.4 GHz). The implementations were linked with BLIS (version 0.1.8) [22].

In the experiments, we employed square matrices, with random entries uniformly distributed in \((0, 1)\), and dimension \(n\) of up to 10,000 in steps of 500. We remind that the optimal bandwidth \(w\) depends not only on the implementation of the first stage, but also on that of the second stage, for which there exist multiple algorithms and tuned implementations, depending on the target architecture [8, 17, 18, 9], the problem size, etc. For this reason, we decided to test the algorithms using five different bandwidths: \(w = \{64, 128, 256, 512, 1024\}\). For these cases, the block size \(b\) was then tuned using values ranging from 32 up to \(w/2\) for Variant V1 and up to \(w\) for V2, in steps of 32. We employed one thread per core in all executions. For the look-ahead versions, we set \(T_S\) with 1 core and \(T_P\) with the remaining 7 cores; for the reference implementations without look-ahead, there is no separation of the threads into groups so that all of them participate in the execution of each BLAS.

4.1 Reference implementation

Our implementation of (the first stage of) the TSR algorithms for SEVP is based on the codes in the SBR package [4]. On the original version of these codes, we performed two relevant optimizations:

- We replaced the routine for the panel factorization in the SBR package, based on Level-2 BLAS, for an alternative that factorizes this panel using a blocked left-looking (LL) algorithmic variant that, furthermore, relies on Level-3 BLAS. The inner block size for this routine was set to 32, with this value being determined (i.e., tuned) in an independent experiment. The LL variant was selected because it offered higher performance than its RL counterpart in our experiments.
- The routine that builds the matrices \(W, Y\) in SBR, which define the orthogonal factors, was modified to assemble \(W\) as the product of \(Y\) and the triangular \(b \times b\) matrix \(T\) that is obtained from the alternative compact \(WY\) representation [14]. This modification considerably reduced the cost of building \(W\) as this can then be based entirely on Level-3 BLAS.

The implementations of the TSR algorithms for SVP re-utilized as much as possible of these building blocks, including the ideas underlying the previous two code optimizations. The legacy LAPACK (version 3.7.1) comprises routine \texttt{dsytrd dsy2sb}\) for the reduction of a symmetric matrix to symmetric band form which also features these optimizations (except for the use of the left-looking factorization). However the LAPACK routine does not include look-ahead and, furthermore, it imposes the restriction that \(b = w\). As our analysis of the optimal block size will show, this limitation severely impairs performance.

4.2 The role of the block size

In practice, the algorithmic block size \(b\) has an important impact on performance. For the particular case (of the first stage) of both TSR algorithms, the block size should balance two criteria:
1. Deliver high performance for the BLAS-3 kernels that compose the trailing update. Small values of b turn W, Y, W_L, Y_L, W_R, Y_R into narrow column panels, affecting the performance of the Level-3 BLAS, since the amount of data reuse is greatly reduced and, eventually, the kernels become memory-bounded.

2. Reduce the number of flops performed in the panel factorization. Small values of b reduce the amount of operations performed in these intrinsically-sequential operations.

Figure 6 illustrates the interplay between the block size and the bandwidth, using the reduction of symmetric matrices to a banded form (first stage of SEVP). The figure includes the reference implementation (hereafter, labeled as “Reference SEVP”) as well as the two look-ahead variants introduced in this work.

This experiment reveals that, for the small problem (two top plots in Figure 6), the optimal performance is attained for small values of the block size, since they balance the execution times of the panel factorization and the trailing update. In rough detail, for the small problem dimensions, if the block size is too large, the panel factorization will require more time to complete than the trailing update. As a consequence, many computing resources (i.e., threads/cores) will become idle during the iteration, degrading performance. At this point, we note that the degree of resource concurrency also exerts its impact on the workload balance, as this factor can change the problem size threshold from which the trailing update requires more execution time than the panel factorization.

In addition, the plots show that, regardless of the implementation, the lowest performance for the large problem (two bottom plots in Figure 6) is observed for the smallest and the largest block sizes, with the optimal choice residing in the middle range. For the smallest block size, the BLAS-3 kernels invoked from the trailing update cannot efficiently utilize all the computational potential of the platform. For largest block sizes too many flops are devoted to the panel factorization. Another aspect worth of emphasizing is that the optimal block size depends on the variant. In general, as we will demonstrate later, Variant V1 benefits more from the selection of larger block sizes than the other two implementations.

The previous analysis conforms that in [7] for the LU factorization, and exposes that choosing the optimal block size is a non-trivial task since this parameter depends on many other factors such the problem dimension n, the bandwidth w, and the degree of parallelism. To further complicate the selection of the optimal block size, as the reduction progresses, the operation is decomposed into sub-problems of dimension $n - b, n - 2b, \ldots$. This implies that the optimal block size for the initial sub-problem(s) may not be the optimal for the subsequent ones. To partially compensate for this, the computational cost of the sub-problems rapidly decreases with their dimensions.

These experiments clearly show that coupling the block size to the bandwidth, so that $b = w$, in general results into suboptimal performance. Taking into consideration the elaboration and results in this subsection, in the remainder of this paper we will perform an extensive tuning of the block size, for each problem dimension and bandwidth.

4.3 Performance of TSR to symmetric band form for SEVP

In this section, we analyze in detail the performance behavior of the multi-threaded variants with look-ahead aimed to enhance the computational throughput of the algorithms for the first stage of SEVP. Specifically, the following implementations are compared:

- **Reference SEVP**: Reference implementation from SBR with the optimizations described in subsection 4.1
Figure 6: Performance vs Block size of the SEVP implementations; The bandwidth is set to \(w = 256 \) (left) and \(w = 512 \) (right), and the problem dimension to \(n = 2,500 \) (top) and \(n = 10,000 \) (bottom).

- **Variant V1**: Look-ahead variant for problems with \(2b \leq w \). Two different mappings of the update of \(A_1^R \) to the threads/cores were considered, depending on whether this operation is performed by either \(T_S \) or \(T_P \). In both cases, the factorization of \(\bar{A}_0 \) and the update of \(A_1^L \) are performed by \(T_S \); and the update of \(A_2 \) is done by \(T_P \). Our experiments with these mappings demonstrated that the first option, which updates the full \(A_1^R \) using \(T_S \), always delivers equal or lower performance than the alternative mapping for this variant. (The reason is that, for small bandwidths, \(A_1^R \) is consequently small, and its execution time does not affect the overall execution time of the reduction; for large bandwidths, the multi-threaded execution of \(A_1^R \) is the preferred choice.) Therefore, for clarity, we removed the first mapping from the following plots.

- **Variant V2**: Look-ahead variant for problems with \(2b > w \). Two different mappings are possible, depending on which threads update \(A_1, X_1, X_2, X_3 \).
 - \(A_1 \) on \(T_S \) (while \(X_1, X_2, \) and \(X_3 \) are computed concurrently on \(T_P \)).
 - \(A_1 \) on \(T_S + T_P \) (after which, \(X_1, X_2, X_3 \) are updated by the same \(T_S + T_P \) threads).

The plots in the left-hand side of Figure 7 to Figure 11 report the GFLOPS (billions of flops/sec.) rates attained by the configurations (namely algorithms/variants/mappings) for five bandwidths.
in the range 64–1,024. All five figures include a plot, in the right-hand side, that illustrates the optimal block size for each problem dimension and configuration, showing the crucial role of this parameter.

The first conclusion that can be extracted from the plots is that the two Variants V1 and V2 enhanced with look-ahead outperform each other depending on the ratio between the algorithmic block size b (equivalent to the number of columns in the panel), the target matrix bandwidth w, and the problem dimension n.

Focusing on Variant V1, we identify a drawback due to the limitation imposed on the block size by the condition $2b \leq w$. This implies that, for small bandwidths, Variant V1 can only employ very reduced block sizes. In consequence, the invocation to the Level-3 BLAS to perform the trailing update cannot efficiently exploit all resources of the processor. To illustrate this behavior, let focus on Figure 7. The right-hand side plot there shows that, for Variant V1, the block size is always 32, which is smaller than those selected for Variant V2 and the reference implementation. In addition, the left-hand side plot in the same figure shows that, despite Variant V1 integrates look-ahead, its performance is inferior to that of the reference implementation for large problem dimensions as the overall execution time in those cases is dominated by the trailing update. In contrast, for the remaining plots we observe that the larger bandwidth enables the selection of larger block sizes, considerably improving the throughput of Variant V1, which now outperforms all other configurations.

Our implementations of Variant V2 always improve the performance of the reference routine; and also that of Variant V1 for small bandwidths. Indeed, as there are no strict restrictions on the block size for Variant V2 (other than $b \leq w$), large values can be selected for b, and the Level-3 BLAS for the trailing update tend to deliver a good fraction of the peak performance even for small bandwidths. However, the drawback of Variant V2 lies in the parts of the algorithm that may be overlapped as part of the look-ahead strategy. In particular, as $2b$ can be larger than w, the factorization of \tilde{A}_0 cannot start till the updates of A_1 and X_3 are completed (requiring a synchronization point after them). This implies that only the factorization of \tilde{A}_0 and the update of A_L^2 can be overlapped with the update of A_R^2. In contrast, for Variant V1, the factorization of \tilde{A}_0 only requires that the update of A_L^1 is completed, therefore removing this synchronization point; in consequence, the update of A_L^1 and the factorization of \tilde{A}_0 can be overlapped with the update of A_2.

4.4 Performance of TSR to band form for SVP

We next analyze in some detail the performance behavior of the multi-threaded variants with look-ahead aimed to enhance the computational throughput of the algorithms for the first stage of SVP. Specifically, the following implementations are compared:

- **Reference implementations:** These routines depart from the one presented for SEVP in that the matrix is not symmetric and, therefore, distinct left and right panel factorizations are required. In addition, two different implementations are possible for SVP, depending on how the trailing update is performed:
 - Reference SVP. This case adheres to the formulation in equations (20)–(25). At each iteration this implementation computes the QR factorization; applies the resulting orthogonal matrix Q_R to the trailing submatrix; computes the subsequent LQ factorization; and applies the resulting Q_L to the trailing submatrix.
– Reference SVP Simultaneous. This implementation performs the update of the trailing submatrix as in [20]. That is, at each iteration of the algorithm, the QR and LQ factorizations are performed first; and then the update of the trailing submatrix with Q_R and Q_L is fused in one single “step”.

- **Variant V1**: Look-ahead variant of the “Reference SVP” implementation for problems with $2b \leq w$. Similarly to Variant V1 for SEVP, two different mappings of the updates of B_1 and C_1 are possible, where these two blocks are split into two independent sub-blocks (B_1^T and $B_1^R; C_1^T$ and B_1^B). However, for similar reasons, in the experiments we only consider the case with B_1^R and C_1^R updated by T_p.

- **Variant V2**: Look-ahead variant of the “Reference SVP Simultaneous” implementation for problems with $2b > w$. Two different mappings are possible, depending on which threads update B_1, C_1, Z_L, Z_R, X.
 - B_1 and C_1 on T_s (while Z_L, Z_R, and X are computed concurrently on T_p).
Following the optimizations presented earlier for the SBR routine, all routines for SVP perform the factorization of the panels via Level-3 BLAS procedures, and compute the matrices W_L, W_R from the product of the corresponding T_L, T_R and Y_L, Y_R.

The plots in Figure 9 report the GFLOPS rates attained by the configurations for bandwidths ranging from 64 to 1,024. For brevity, the analysis of the optimal block size is not presented as it revealed a similar behavior as that observed for SEVP. Let us focus first on the implementations without look-ahead. From the plots is clear that the “Reference SVP” implementation outperforms its “Reference SVP Simultaneous” counterpart. At this point we would remark that the second implementation underlies variant V2 of the SVP algorithm with look-ahead.

Focusing on Variant V1, we detect the same drawback as that identified in Variant V1 for SEVP in that, for small bandwidths, the block size is strongly constrained. In contrast, large
performance improvements are reported, compared with all other implementations, for medium and large bandwidths.

A less pleasant case is encountered for Variant V2, which is not able to improve significantly the performance results of the “Reference SVP” implementation for any bandwidth nor problem dimension though it outperforms its baseline “Reference SVP Simultaneous” implementation. The reason for this result is that, for this implementation, the update of D_{22} cannot be fully overlapped with the execution time of the next panel factorizations (both left and right). For Variant V1, the execution of the panel factorizations is overlapped with the updates of B_1^R, C_1^B, and D; but due to the data dependencies in Variant V2, we can only overlap the execution of the panel factorizations with the update of D_{22}, which exhibits a considerably more reduced number of flops.

5 Concluding Remarks

We have analyzed in detail the impact that static look-ahead exerts on the performance of two-sided routines that perform the reduction to compact band forms for SEVP and SVP. Our study shows that a correct selection of the look-ahead variant as well as an appropriate mapping of tasks to cores are key to optimize performance. Even more important, the block size plays a crucial role in the computational throughput of these reduction routines. Decoupling this parameter from the target bandwidth is a must, and therefore we have to depart from the solution adopted in the corresponding routines included in the current versions of LAPACK, PLASMA and MAGMA, which simply set the block size to equal the bandwidth.

For SVP, our analysis also advocates for an alternative option that reduces the original dense matrix to a band form with the same upper and lower bandwidths, allowing the exploitation of inter-iteration task-parallelism. This choice thus overcomes one of the difficulties of the traditional reduction to band–triangular from that is adopted in LAPACK and MAGMA.

Acknowledgements

This research was partially sponsored by projects TIN2014-53495-R and TIN2015-65316-P of the Spanish Ministerio de Economía y Competitividad, project 2014-SGR-1051 from the Generalitat
Figure 12: Performance vs Problem dimension of the SEVP implementations with $w = 64, 128, 256, 512,$ and $1,024$.

de Catalunya, and the EU H2020 project 732631 OPRECOMP.

References

[1] Edward Anderson, Zhaojun Bai, L. Susan Blackford, James Demmel, Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, Anne Greenbaum, Alan McKenney, and Danny C.
Sorensen. *LAPACK Users’ guide.* SIAM, 3rd edition, 1999.

[2] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, N. Knight, and H. D. Nguyen. Reconstructing householder vectors from tall-skinny QR. *Journal of Parallel and Distributed Computing*, 85:3–31, 2015.

[3] Paolo Bientinesi, Francisco D. Igual, Daniel Kressner, Matthias Petschow, and Enrique S. Quintana-Ortí. Condensed forms for the symmetric eigenvalue problem on multi-threaded architectures. *Concurrency and Computation: Practice and Experience*, 23(7):694–707, 2011.

[4] C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR Toolbox—software for successive band reduction. *ACM Trans. Math. Soft.*, 26(4):602–616, 2000.

[5] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel tiled linear algebra algorithms for multicore architectures. *Parallel Computing*, 35(1):38 – 53, 2009.

[6] Anthony M. Castaldo, R. Clint Whaley, and Siju Samuel. Scaling LAPACK panel operations using parallel cache assignment. *ACM Trans. Math. Soft.*, 39(4):22:1–22:30, July 2013.

[7] Sandra Catalán, José R. Herrero, Enrique S. Quintana-Ortí, Rafael Rodríguez-Sánchez, and Robert A. van de Geijn. A case for malleable thread-level linear algebra libraries: The LU factorization with partial pivoting. *CoRR*, abs/1611.06365, 2016.

[8] D. Davidović and E. S. Quintana-Ortí. Applying OOC techniques in the reduction to condensed form for very large symmetric eigenproblems on GPUs. In *Proceedings of the 20th Euromicro Conference on Parallel, Distributed and Network based Processing – PDP 2012*, 2012. To appear.

[9] T. A. Davis and S. Rajamanickam. Algorithm 8xx: PIRO BAND, pipelined plane rotations for band reduction. *ACM Trans. Math. Soft*. Submitted.

[10] Inderjit S. Dhillon, Beresford N. Parlett, and Christof Vömel. The design and implementation of the MRRR algorithm. *ACM Trans. Math. Softw.*, 32(4):533–560, Dec. 2006.

[11] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra subprograms. *ACM Trans. Math. Softw.*, 16(1):1–17, March 1990.

[12] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of FORTRAN basic linear algebra subprograms. *ACM Trans. Math. Softw.*, 14(1):1–17, March 1988.

[13] K. Vince Fernando and Beresford N. Parlett. Accurate singular values and differential QD algorithms. *Numerische Mathematik*, 67(2):191–229, 1994.

[14] Gene H. Golub and Charles F. Van Loan. *Matrix Computations.* The Johns Hopkins University Press, Baltimore, 3rd edition, 1996.

[15] Benedikt Grosser and Bruno Lang. Efficient parallel reduction to bidiagonal form. *Parallel Computing*, 25(8):969 – 986, 1999.

[16] Ming Gu and Stanley C. Eisenstat. A divide-and-conquer algorithm for the bidiagonal SVD. *SIAM Journal on Matrix Analysis and Applications*, 16(1):79–92, 1995.
[17] A. Haidar, H. Ltaief, and J. Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In *2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)*, pages 1–11, Nov 2011.

[18] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel singular value algorithm and its implementation for multicore hardware. In *Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13*, pages 90:1–90:12, New York, NY, USA, 2013. ACM.

[19] Matthias Petschow, Elmar Peise, and Paolo Bientinesi. High-performance solvers for dense Hermitian eigenproblems. *SIAM J. Scientific Comp.*, 35(1):C1–C22, Jan. 2013.

[20] Gregorio Quintana-Ortí, Enrique S. Quintana-Ortí, Robert A. van de Geijn, Field G. Van Zee, and Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism. *ACM Trans. Math. Softw.*, 36(3):14:1–14:26, 2009.

[21] Peter Strazdins. A comparison of lookahead and algorithmic blocking techniques for parallel matrix factorization. Technical Report TR-CS-98-07, Department of Computer Science, The Australian National University, Canberra 0200 ACT, Australia, 1998.

[22] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel, John A. Gunnels, and Lee Killough. The BLIS framework: Experiments in portability. *ACM Trans. Math. Softw.*, 42(2):12:1–12:19, June 2016.