THE SET OF JUMPING CONICS OF A LOCALLY
FREE SHEAF OF DIMENSION 2 ON P^2

Dmitry Logachev

June 1981

Abstract. We consider a locally free sheaf F of dimension 2 on P^2. A conic q on P^2 is called a jumping conic if the restriction of F to q is not the generic one. We prove that the set of jumping conics is the maximal determinantal variety of a skew form. Some properties of this skew form are found. Translation from Russian; the original is published in: "Constructive algebraic geometry". Yaroslavl, 1981. N.194, p. 79 – 82.

Let V be a vector space of dimension 3 over \mathbb{C}, $P^2 = P(V)$ its projectivization, F a locally free sheaf of dimension 2 on P^2 satisfying $c_1(F) = 0$, $c_2(F) = n$, $H^0(P^2, F(1)) = 0$. Let q be a non-singular conic in P^2. We have $F|_q = O(d) \oplus O(-d)$. For a generic q we have $d = 0$, let us call these conics regular. If $d > 0$ we shall call them jumping conics, the number d is called the multiplicity of jump of F at q.

The main result of the present paper is

Theorem 1. The set of jumping conics is the maximal determinantal variety of a skew form on $H^1(F \otimes \Omega(-1))$.

For the reader’s convenience, before giving a proof we give firstly the main construction not at all variety of conics on P^2 but at a given fixed conic. The solution of the analogous problem in [B] uses a difference between the values of $h^1(F(-1)|_l)$ for an ordinary straight line l and a jumping line. It is easy to see that $\forall l$, l the numbers $h^i(F(k)|_q)$ coincide for an ordinary conic and a conic of simple jump. There is no sheaf $O(\frac{1}{2})$, so we use the sheaf $\Omega(1)$. Let us denote $E_k := H^1(F \otimes \Omega(k))$. We have $\dim E_{-1} = \dim E_1 = 2n$, and let $t : E_{-1} \otimes S^2V^* \rightarrow E_1$ be the \cup-multiplication.

Proposition 2. $\forall q \in S^2V^*$ the map $t_q : E_{-1} \rightarrow E_1$ is a skew symmetric bilinear form with respect to a duality $\langle , , \rangle : E_{-1} \otimes E_1 \rightarrow \mathbb{C}$.

Proof. The duality is defined as follows. Formulas $\lambda^2(F) = O$, $\lambda^2(\Omega) = O(-3)$ imply existence of maps $\varepsilon_1 : F \otimes F \rightarrow O$, $\varepsilon_2 : \Omega \otimes \Omega \rightarrow O(-3)$ which are skew symmetric in the following meaning: the diagrams

1991 Mathematics Subject Classification. 14A25.

Key words and phrases. locally free sheaf, jumping conic.

The author thanks his advisor A.S.Tikhomirov for the guidance, and A.N.Tyurin and V.A.Iskovskikh for many valuable remarks.
σ are transposition maps, i.e. \(\sigma(a \otimes b) = b \otimes a \) on local sections) are anti-commutative. Let us construct a map \(\varepsilon : F \otimes \Omega \otimes F \otimes \Omega \rightarrow O(-3) \) as follows:
\[
\varepsilon(f_1 \otimes \omega_1 \otimes f_2 \otimes \omega_2) = \varepsilon_1(f_1 \otimes f_2) \cdot \varepsilon_2(\omega_1 \otimes \omega_2),
\]
where \(f_i, \omega_i \) are sections. The diagram

\[
\begin{array}{ccc}
F \otimes F & \xrightarrow{\varepsilon_1} & \Omega \otimes \Omega \\
\downarrow \sigma_1 & & \downarrow \sigma_2 \\
F \otimes F & \xrightarrow{\varepsilon_1} & \Omega \otimes \Omega \\
\end{array}
\]

(\(\sigma_i \) are transposition maps, i.e. \(\sigma_i(a \otimes b) = b \otimes a \) on local sections) are anti-commutative.

To complete the proof of Proposition 2, we shall find now \(< e_{-1}, e_1 > = H^2(\varepsilon)(e_{-1} \cup e_1) \in H^2(O(-3)) = \mathbb{C} \).

Lemma 3. Skew symmetry of \(t_q \) is equivalent to the condition \(\forall e_{-1}, e'_{-1} \in E_{-1} \) we have \(< e_{-1}, t(e'_{-1} \otimes q) > = < e'_{-1}, t(e_{-1} \otimes q) > \).

Proof. We have \(< e_{-1}, t(e'_{-1} \otimes q) > = H^2(\varepsilon)(e_{-1} \cup e'_{-1} \cup q) \) and \(< e'_{-1}, t(e_{-1} \otimes q) > = H^2(\varepsilon)(e'_{-1} \cup e_{-1} \cup q) \). Cup-product in odd dimensions is anti-commutative, i.e. \(H^2(\sigma(-2))(e_{-1} \cup e'_{-1}) = -(e'_{-1} \cup e_{-1}) \), hence

\[
H^2(\sigma)(e_{-1} \cup e'_{-1} \cup q) = -(e'_{-1} \cup e_{-1} \cup q) \quad \text{and}
\]

\[
H^2(\varepsilon)(e_{-1} \cup e'_{-1} \cup q) = H^2(\varepsilon) \circ H^2(\sigma)(e_{-1} \cup e'_{-1} \cup q) = -H^2(\varepsilon)(e'_{-1} \cup e_{-1} \cup q) \quad \square
\]

Let us consider the exact sequence corresponding to the inclusion \(q \hookrightarrow P^2 \)

\[
0 \rightarrow O_{P^2}(-2) \rightarrow O_{P^2} \rightarrow i_*O_q \rightarrow 0 \quad (4)
\]
multiply it by \(F \otimes \Omega(1) \) and take cohomology:

\[
0 \rightarrow H^0(F \otimes \Omega(1)|_q) \rightarrow E_{-1} \xrightarrow{t_q} E_1 \rightarrow H^1(F \otimes \Omega(1)|_q) \rightarrow 0
\]

For regular \(q \) (resp. for \(q \) of simple jump) we have: \(F \otimes \Omega(1)|_q = O(-1)^{\oplus 4} \), resp.
\(F \otimes \Omega(1)|_q = O(-2)^{\oplus 2} \oplus O^{\oplus 2} \), hence the dimension of both first and fourth terms of (4) are 0, resp. 2. This means that the set of jumping conics is the intersection of \(P(S^2(V^*)) \) with the maximal determinantal variety of \(\text{Hom}_{\text{skew}}(E_{-1}, E_1) \). Its degree is \(n \).

Proof of Theorem 1. Let \(P^5 := P(S^2(V^*)) \) be the set of conics in \(P^2 \) and \(D \hookrightarrow P^5 \cdot P^2 \) a flag variety defined as follows: \((q, t) \in D \iff t \in q \). We have diagrams
where s is a point of P^5, q_s is the corresponding conic, it is the fibre of $\pi_5 \circ i$ at s, and $(\pi_2 \circ i) \circ u'_s$ is simply the inclusion of q_s in P^2.

The exact sequence corresponding to D is

$$0 \to \pi_5^* O_{P^5}(-1) \otimes \pi_2^* O_{P^2}(-2) \to O_{P^5 \times P^2} \to i_* O_D \to 0$$

We multiply it by $\pi_2^*(F \otimes \Omega(1))$

$$0 \to \pi_5^* O_{P^5}(-1) \otimes \pi_2^* (F \otimes \Omega(-1)) \to \pi_2^*(F \otimes \Omega(1)) \to \pi_2^*(F \otimes \Omega(1))|_D \to 0$$

and apply π_{5*}:

$$0 \to \pi_{5*}(\pi_2^*(F \otimes \Omega(1))|_D) \to E_{-1} \otimes O_{P^5}(-1) \xrightarrow{\varphi} E_1 \otimes O_{P^5} \to$$

$$\to \pi_{5*1}(\pi_2^*(F \otimes \Omega(1))|_D) \to 0$$

Since the functor of restriction to a fibre is right exact, we get that the support of the sheaf $\pi_{5*1}(\pi_2^*(F \otimes \Omega(1))|_D)$ is the set of jumping conics. The restriction of this sheaf to the set of jumping conics is an analog of the sheaf $\theta(1)$ where θ is the theta-characteristic sheaf for the case of restriction to straight lines ([T]). Its dimension is 2 at conics of simple jump. The sheaf $\pi_{5*}(\pi_2^*(F \otimes \Omega(1))|_D)$ is obviously 0, and the map φ comes from the \cup-multiplication $t : E_{-1} \otimes S^2 V^* \to E_1$. □

Let us consider some properties of this map. Its composition with the epimorphism $V^* \otimes V^* \to S^2 V^*$ gives us a map $t' : E_{-1} \otimes V^* \otimes V^* \to E_1$ which is the composition of two \cup-multiplications $E_{-1} \otimes V^* \to E_0$, $E_0 \otimes V^* \to E_1$. The map $t'' : E_{-1} \otimes V^* \to E_1 \otimes V$ — obtained from t' by moving V^* to the right hand side — can be factored via E_0 and hence has the rank $\dim E_0 = 2n + 2$. By analogy with [T] we can choose a basis $\{e_i\}$ of E_1 and a basis $\{v_i\}$ of V^* such that the matrix of the map t'' in the basis $\{e_i \otimes v_j\}$ of $E_{-1} \otimes V^*$ is given by the block matrix $A = (A_{ij})$ where $i, j = 1, 2, 3$, A_{ij} is a skew symmetric matrix of size $2n$ and $A_{ij} = A_{ji}$, hence A is skew symmetric.

References

[B] Barth W., Moduli of vector bundles on the projective line. Inventiones Math., 42 (1977), p. 63 – 91

[T] Tyurin A.N., The geometry of moduli of vector bundles. Russian Math. Surv. 1974, 29:6, p. 57 – 88.

E-mail: logachev@usb.ve

Department of Mathematics Yaroslavl State Pedagogical University Yaroslavl, Russia