The Assessment of Risk Factors for Long-term Survival Outcome in ypN0 Patients With Rectal Cancer After Neoadjuvant Therapy and Radical Anterior Resection

Marcin Zeman (mzeman@wp.pl)
Centrum Onkologii Instytut im Marii Sklodowskiej-Curie Oddzial w Gliwicach
https://orcid.org/0000-0002-8607-7994

Marek Czarnecki
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Ewa Chmielik
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Adam Idasiak
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Władysław Skałba
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Miroslaw Stręczyński
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Piotr J. Paul
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Agnieszka Czarniecka
Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice: Narodowy Instytut Onkologii im Marii Skłodowskiej-Curie Panstwowy Instytut Badawczy Oddzial w Gliwicach

Research

Keywords: stage migration, rectal cancer, lymph node yield, Charlson comorbidity index, late anastomotic leakage, anterior rectal resection
Abstract

Background: The main negative prognostic factors in patients with rectal cancer after radical treatment include regional lymph node involvement, lymphovascular invasion, perineural invasion, the mucinous component of the tumor and poor differentiation. However, some patients still develop cancer recurrence despite the absence of the above risk factors.

The aim of the study was to assess clinicopathological factors influencing long-term oncologic outcomes in ypN0M0 rectal cancer patients after neoadjuvant therapy and radical anterior rectal resection.

Methods: A retrospective survival analysis was performed on a group of 195 patients treated between 2008 and 2016. We assessed clinicopathological factors which included tumor regression grade, number of lymph nodes in the specimen, Charlson comorbidity index (CCI), and colorectal anastomotic leakage (AL).

Results: In the univariate analysis, AL and CCI> 3 had a significant negative impact on disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). After the division of ALs into early and late ALs, it was found that only patients with late ALs had a significantly worse survival. The multivariate Cox regression analysis showed that CCI> 3 was a significant adverse risk factor for DFS (HR:5.78, 95%CI:2.15-15.51, p<0.001), DSS (HR:7.25, 95%CI:2.25-23.39, p<0.001), and OS (HR:3.9, 95%CI:1.72-8.85, p=0.001). Similarly, late ALs had a significant negative impact on the risk of DFS (HR:5.05, 95%CI:1.97-12.93, p<0.001), DSS (HR:10.84, 95%CI:3.44-34.18, p<0.001) and OS (HR:4.3, 95%CI:1.94-9.53, p<0.001).

Conclusions: Late AL and CCI> 3 are the factors that may have an impact on long-term oncologic outcomes. The impact of lymph node yield on understaging was not demonstrated.

Background

Long-term treatment results of rectal cancer patients after the introduction of combined treatment regimens and the techniques of total mesorectal excision have significantly improved. After neoadjuvant therapy and radical surgery, negative prognostic factors include regional lymph node involvement and a number of histopathological factors related to the potential for tumor invasiveness, such as lymphovascular invasion (LVI), perineural invasion (PNI), poor differentiation or the mucinous component of the tumor [1]. However, even some ypN0M0 patients with no additional histopathological risk factors have a relapse. Several studies showed a negative impact of colorectal anastomotic leakage (AL) on long-term survival after anterior rectal resection (AR) [2, 3]. However, such findings were not confirmed in all studies [4]. Additionally, the minimum number of lymph node yield (LNY) that could allow to avoid understaging in ypN0 patients has not been established either. Research found either a negative impact [5, 6] or no impact [7, 8] of low LNY on long-term oncologic outcomes. The influence of preoperative radiotherapy on the reduction in the number of resected lymph nodes was also demonstrated [9]. Some studies found that low LNY was associated with a good response to neoadjuvant therapy [10]. Few
studies suggested that apart from the effect associated with increased mortality due to comorbidities, their direct impact on the course of the neoplastic disease was possible. However, the mechanism of this interaction has not been fully understood yet [11].

The aim of the study was to assess the selected clinicopathological factors influencing long-term oncologic outcomes in ypN0M0 rectal cancer patients after neoadjuvant therapy and radical AR in the group of patients with a good prognosis without major histological risk factors.

Methods

Between 2008 and 2016, 328 radical (R0) ARs were performed at the National Research Institute of Oncology in Gliwice, Poland in rectal cancer patients after neoadjuvant therapy without synchronous distant metastases. Metastases that occurred within 3 months after surgery were considered synchronous. Prior to treatment, all patients had been staged T3N0 or T1-3N+. Five patients who died within 30 postoperative days were excluded from further analysis. To select the group with a good prognosis, we also excluded ypN+ patients (n = 119), subjects with the mucinous component (n = 3), and with the presence of PNI and/or LVI (n = 6) found in the histopathological examination. Finally, 195 patients (82 females, 113 males) without the above risk factors were enrolled in a retrospective study. Patient characteristics are given in Table 1. All patients were given neoadjuvant therapy, i.e., radiotherapy (RT) or chemoradiotherapy (CRT). In the RT group, the total dose was 25–42 Gy, while in the CRT group it was 42–54 Gy combined with one or two cycles of 5-fluorouracil-based chemotherapy. The procedure was performed by laparotomy using the mesorectal excision technique. End-to-end intestinal anastomosis was performed with a circular stapler. According to the International Study Group of Rectal Cancer, AL was defined as a defect of the intestinal wall at the anastomotic site, which resulted in a communication between the intra- and extraluminal compartments and/or the presence of a pelvic abscess near the anastomotic site [12]. AL diagnosed within 30 days postoperatively was considered early, whereas AL diagnosed after 30 days postoperatively was regarded as late. The severity of comorbidities was assessed based on the original Charlson comorbidity index (CCI) [13]. The tumor response to preoperative treatment ranged from 0 (complete response), 1 (moderate response), 2 (poor response) to 3 (no response to treatment). The factors which were analyzed in terms of their impact on survival included sex, age, body mass index (BMI), body surface area (BSA), CCI, clinical stage prior to treatment, type of neoadjuvant therapy (RT vs CRT), time from RT to surgery, rectal tumor location, loop ileostomy (LI), G, ypT, LNY, TRG, width of the distal margin, length of the resected intestine, occurrence of AL with the division into early and late ALs, and post-surgical adjuvant chemotherapy. The survival analysis was performed using the Kaplan-Meier method with the log-rank test. The multivariate analysis was performed using the Cox regression (proportional hazard model).
Table 1
Patient characteristics

	Total (N = 195)
Sex	Females 42.1% (N = 82)
	Males 57.9% (N = 113)
Age	Mean (SD) 63.96 (10.03)
	Median (IQR) 65 (58–72)
	Range 26–84
BMI (kg/m²)	Mean (SD) 26.21 (4.03)
	Median (IQR) 25.8 (23.85–28.4)
	Range 17.5–38.5
BMI > 30 (kg/m²)	Yes 15.9% (N = 31)
	No 84.1% (N = 164)
BSA (m²)	Mean (SD) 1.85 (0.21)
	Median (IQR) 1.85 (1.68–2)
	Range 1.32–2.38
CCI	2 72.8% (N = 142)
	3 21.6% (N = 42)
	> 3 5.6% (N = 11)
Clinical stage prior to treatment	II 29.7% (N = 58)
	III 70.3% (N = 137)
Neoadjuvant therapy	RT 65.1% (N = 127)
	CRT 34.9% (N = 68)
Time RT-S ≥ 6 weeks	Yes 54.9% (N = 107)
	No 45.1% (N = 88)
Rectal tumor location, distance from the anal verge (cm)	Upper (11–15) 23.1% (N = 45)
	Middle (6–10) 47.7% (N = 93)

SD- standard deviation, IQR- interquartile range, BMI- body mass index, BSA- body surface area, CCI-Charlson comorbidity index, RT- radiotherapy, CRT- chemoradiotherapy, Time RT-S- time from completion of radiotherapy to surgery, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage
	Total (N = 195)
Loop ileostomy	
Yes	21% (N = 41)
No	79% (N = 154)
G	
1	8.2% (N = 16)
2	57.2% (N = 111)
X	34.5% (N = 67)
ypT	
0	8.7% (N = 17)
1–2	50.3% (N = 98)
3	41% (N = 80)
LNY	
Mean (SD)	12.15 (6.01)
Median (IQR)	11 (8–16)
Range	1–37
LNY groups	
1–7	23.1% (N = 45)
8–12	36.9% (N = 72)
>12	40% (N = 78)
Width of the distal margin (cm)	
Mean (SD)	2.13 (1.41)
Median (IQR)	2 (1–3)
Range	0.1–9
Width of the distal margin < 2cm	
Yes	46.7% (N = 91)
No	53.3% (N = 104)
Length of the resected intestine (cm)	
Mean (SD)	19.54 (4.81)
Median (IQR)	20 (16–22)
Range	7–35
TRG	
0–1	46.7% (N = 91)
2–3	53.3% (N = 104)

SD- standard deviation, IQR- interquartile range, BMI- body mass index, BSA- body surface area, CCI-Charlson comorbidity index, RT- radiotherapy, CRT- chemoradiotherapy, Time RT-S- time from completion of radiotherapy to surgery, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage
Results

AL was postoperatively found in 37/195 (19%) cases, including 22/37 (59.5%) early and 15/37 (40.5%) late ALs. Four patients with early ALs (4/22; 18.2%) and 2 patients with late ALs (2/15; 13.3%) underwent loop ileostomy (LI) at the time of primary surgery (Chi2 test, p = 0.7). The time from surgery to the diagnosis of early and late ALs was 3–27 days (mean 7.7 days) and 36–650 days (mean 137 days), respectively. The mean LNY was 12.15 (range 1–37, SD: 6.01) and the median was 11 (IQR: 8–16). The mean follow-up of the study group was 69 months. The 3- and 5-year DFS rates were 89% and 85.7%, 3- and 5-year DSS rates were 97.9% and 93.4%, whereas 3- and 5-year OS rates were 91.3% and 84.8%, respectively.

In the univariate analysis of survival, the occurrence of AL had a significant impact on DFS, DSS and OS, as shown by the log-rank test. After the division of ALs into early and late ALs, it was found that only patients with late ALs had a significantly worse prognosis. The probability of survival depending on the occurrence of AL is given in Fig. 1. Patients with CCI \(\leq 3 \) had a significantly better prognosis compared to patients with CCI \(> 3 \) in terms of DFS, DSS, and OS. The probability of survival depending on CCI is given in Fig. 2. Table 2 lists the 3- and 5-year survival probabilities depending on the above factors. No relationship was found between survival and other parameters, including LNY. The probability of survival depending on LNY is given in Fig. 3.
Table 2
3- and 5-year survival probabilities depending on the parameters significant in the univariate analysis

	DFS		DSS		OS	
	3-year	5-year	3-year	5-year	3-year	5-year
No AL	90.8	88.9	99.3	95.3	93.7	88.4
AL	80.9	71.2	91.5	84.3	81.1	68.6
Early AL	88.8	81.4	95.2	89.3	81.8	72.2
Late AL	70.7	56.6	85.7	77.9	80.0	63.6
CCI ≤ 3	90.2	87.4	98.3	94.7	92.4	86.0
CCI > 3	67.5	56.2	80.0	70.0	72.7	63.6

DFS- disease-free survival, DSS- disease-specific survival, OS- overall survival, AL- anastomotic leakage, CCI- Charlson comorbidity index

The results of the univariate and multivariate Cox regression analyses are presented in Table 3. In the multivariate analysis, CCI > 3 was a significant risk factor for DFS (HR:5.78, 95%CI:2.15–15.51, p < 0.001), DSS (HR:7.25, 95%CI:2.25–23.39, p < 0.001), and OS (HR:3.9, 95%CI:1.72–8.85, p = 0.001). Similarly, the occurrence of late AL had a significant negative impact on the risk of DFS (HR:5.05, 95%CI:1.97–12.93, p < 0.001), DSS (HR:10.84, 95%CI:3.44–34.18, p < 0.001) and OS (HR:4.3, 95%CI:1.94–9.53, p < 0.001). No significant influence of early AL or other factors on long-term survival was found.
DFS	CCI ≤ 3	Ref.		Univariate		Multivariate			HR	CI 2.5%	CI 97.5%	P	HR	CI 2.5%	CI 97.5%	p			
CCI > 3	5.438	2.043	14.48	<0.001	5.779	2.153	15.51	<0.001											
Female	Ref.																		
Male	2.19	0.9255	5.184	0.0744															
BMI ≤ 30	Ref.																		
BMI > 30	1.885	0.7968	4.459	0.1491															
PRETR ST II	Ref.																		
PRETR ST III	0.6896	0.3156	1.506	0.3512															
RT-S < 6weeks	Ref.																		
RT-S ≥ 6weeks	0.8681	0.4	1.884	0.7205															
Distance	Ref.																		
1-5cm																			
6-10cm	0.6141	0.2494	1.512	0.2889															
11-15cm	1.269	0.4858	3.313	0.6269															
No ileostomy	Ref.																		
Ileostomy	1.04	0.4192	2.58	0.9327															
ypT0	Ref.																		
ypT1-2	1.888	0.2451	14.55	0.5417															
ypT3	3.031	0.3978	23.1	0.2845															
LNY 1–7	Ref.																		

Bold values indicate statistical significance

DFS- disease-free survival, DSS- disease-specific survival, OS- overall survival, HR- hazard ratio, CI- confidence interval, CCI- Charlson comorbidity index, BMI- body mass index, PRETR ST- pretreatment clinical stage, RT- radiotherapy, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage, RT-S- time from completion of radiotherapy to surgery, Adj CT- adjuvant chemotherapy
	Univariate				Multivariate			
LNY 8–12	2.106	0.5791	7.66	0.2581				
LNY > 12	3.106	0.8916	10.82	0.0751				
Distal margin (cm)	1.034	0.7951	1.344	0.8051				
TRG 0–1	Ref.							
TRG 2–3	1.156	0.5409	2.469	0.7087				
No AL	Ref.							
AL	3.066	1.403	6.702	0.005				
No AL	Ref.							
Early AL	2.001	0.6725	5.953	0.2125	1.96	0.6587	5.831	0.2265
Late AL	4.753	1.87	12.08	0.0011	5.051	1.974	12.93	<0.001
No adj CT	Ref.							
Adj CT	0.695	0.1632	2.959	0.6225				
DSS	CCI ≤ 3	Ref.						
CCI > 3	5.39	1.754	16.56	0.0033	7.252	2.249	23.39	<0.001
Female	Ref.							
Male	1.543	0.54	4.41	0.418				
BMI ≤ 30	Ref.							
BMI > 30	2.141	0.7526	6.089	0.1536				
PRETR ST II	Ref.							
PRETR ST III	0.643	0.2443	1.692	0.3711				
RT-S < 6weeks	Ref.							
RT-S ≥ 6weeks	1.145	0.4126	3.175	0.7954				

Bold values indicate statistical significance

DFS- disease-free survival, DSS- disease-specific survival, OS- overall survival, HR- hazard ratio, CI- confidence interval, CCI- Charlson comorbidity index, BMI- body mass index, PRETR ST- pretreatment clinical stage, RT- radiotherapy, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage, RT-S- time from completion of radiotherapy to surgery, Adj CT- adjuvant chemotherapy
Univariate		Multivariate						
Distance	Ref.							
1-5cm								
6-10cm	0.5699	0.1834	1.771	0.3309				
11-15cm	1.458	0.4378	4.855	0.5392				
No ileostomy	Ref.							
Ileostomy	1.311	0.4259	4.037	0.6367				
ypT0	Ref.							
ypT1-2	0.7613	0.0883	6.565	0.804				
ypT3	2.153	0.2754	16.83	0.4648				
LNY 1–7	Ref.							
LNY 8–12	1.605	0.3207	8.033	0.5648				
LNY >12	2.267	0.4854	10.59	0.2979				
Distal margin (cm)	1.052	0.7511	1.473	0.7688				
TRG 0–1	Ref.							
TRG 2–3	1.202	0.4539	3.183	0.7112				
No AL	Ref.							
AL	3.218	1.222	8.476	0.018				
No AL	Ref.							
Early AL	1.245	0.2705	5.73	0.7785	1.543	0.3303	7.21	0.5812
Late AL	8.519	2.825	25.69	< 0.001	10.84	3.435	34.18	< 0.001
No adj CT	Ref.							
Adj CT	0.4898	0.0642	3.735	0.4911				
OS CCI ≤ 3	Ref.							

Bold values indicate statistical significance

DFS- disease-free survival, DSS- disease-specific survival, OS- overall survival, HR- hazard ratio, CI- confidence interval, CCI- Charlson comorbidity index, BMI- body mass index, PRETR ST- pretreatment clinical stage, RT- radiotherapy, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage, RT-S- time from completion of radiotherapy to surgery, Adj CT- adjuvant chemotherapy
	Univariate											
										CCI > 3		
						3.494	1.553	7.859	**0.0025**	3.899	1.718	**0.0011**
Female	Ref.											
Male	0.984	0.5321	1.82	0.9591								
BMI ≤ 30	Ref.											
BMI > 30	0.9914	0.441	2.229	0.9833								
PRETR ST II	Ref.											
PRETR ST III	0.6993	0.3791	1.29	0.2522								
RT-S < 6weeks	Ref.											
RT-S ≥ 6weeks	0.642	0.334	1.234	0.1836								
Distance from the anal verge	Ref.											
1-5cm	0.5456	0.281	1.06	0.0736								
6-10cm	0.7257	0.3136	1.679	0.4538								
No ileostomy	Ref.											
Ileostomy	1.113	0.5326	2.326	0.7758								
ypT0	Ref.											
ypT1-2	1.258	0.2893	5.466	0.7598								
ypT3	2.332	0.5488	9.905	0.2514								
LNY 1–7	Ref.											
LNY 8–12	0.8853	0.3847	2.037	0.7746								
LNY > 12	1.064	0.4784	2.365	0.8798								
Distal margin (cm)	1.057	0.8581	1.301	0.6039								
TRG 0–1	Ref.											

Bold values indicate statistical significance

DFS- disease-free survival, DSS- disease-specific survival, OS- overall survival, HR- hazard ratio, CI- confidence interval, CCI- Charlson comorbidity index, BMI- body mass index, PRETR ST- pretreatment clinical stage, RT- radiotherapy, LNY- lymph node yield, TRG- tumor regression grade, AL- anastomotic leakage, RT-S- time from completion of radiotherapy to surgery, Adj CT- adjuvant chemotherapy
Discussion

Despite the influence of ALs on long-term oncologic outcomes [2, 3], some reports did not confirm such a relationship [4, 14, 15]. To our knowledge, to date, no study has analyzed the significance of early and late ALs separately. There are several hypotheses explaining the possible mechanisms of AL-induced cancer relapse [16]. It was shown that during the resection procedure, exfoliated malignant cells which are present in the lumen of the colon have the potential to be implanted into the surrounding tissues. In the case of AL, these cells can penetrate beyond the lumen of the colon and initiate secondary tumor foci [17]. Another hypothesis highlights the role of acute phase factors and inflammatory mediators in tumor progression and metastasis. In vitro studies found that the peritoneal fluid collected from patients with ALs or from patients with other inflammatory processes in the abdominal cavity resulted in an increase in migration and invasion of cancer cell lines [18]. Additionally, both circulating cancer cells and immune cells show the tendency to migrate to inflammatory sites, thus enhancing the cascade of angiogenesis and proliferation. In light of the above theories, a long-term inflammatory process of low intensity which occurs in late ALs could explain their negative impact on survival as demonstrated by the authors of this study. Late ALs are an underestimated clinical problem in rectal cancer surgery. More than 50% of ALs may occur after hospital discharge, whereas 25%-40% may occur after 30 days following surgery [19, 20]. Definitions of late AL are different, depending on the authors. The common criterion is a period of over 30 days after surgery. However, a period of over 90 days and a less precise determination of AL after hospital discharge were also reported [19]. In accordance with the criterion we adopted, late ALs accounted for 40.5% of all ALs in our material. Late AL is more prevalent in patients with LI, which can be...
explained by a delay in the diagnosis of AL. However, it was not confirmed in our material. The etiopathogenesis of late AL has not yet been elucidated. According to some reports, patient-dependent factors such as the severity of comorbidities or past RT, which may adversely affect the healing process, play a role in late ALs, as opposed to early ALs, where risk factors are mainly those that influence the course of surgery [20, 21]. It was found that late ALs were more asymptomatic compared to early ALs. They were more prevalent in the form of fistulas and did not often require radical surgical intervention and became chronic over time. Chronic presacral sinus formation was more commonly found in late ALs (even in 65% of cases) [22]. The question arises whether the etiopathogenesis of early and late ALs is different, or whether all late ALs are in fact early ALs whose diagnosis was delayed in time. We are of the opinion that the results of our analysis may support the hypothesis of late ALs as early ALs that were diagnosed late with a long-term influence of the inflammatory factor.

We demonstrated a negative effect of CCI > 3 on DFS, DSS, and OS. The influence of comorbidities on the survival of cancer patients may result from several mechanisms. Comorbidities increase the risk of death during the follow-up for reasons other than cancer. They also limit the possibility of optimal treatment (e.g., adjuvant systemic treatment) and may also directly affect tumor progression. While the first two causes are evident and have an established impact on OS, the mechanism of the direct influence of comorbidities is still unclear, although the problem has been raised for a long time [23, 24]. Diabetes mellitus is the only disease in which a direct impact on DFS was confirmed in locally advanced and disseminated colorectal cancer, regardless of systemic treatment. A direct interaction between diabetes and the progression of colorectal cancer is associated with hyperinsulinemia, an increase in insulin-like growth factor, hyperglycemia, and inflammation [25]. Comorbidities may result in the exclusion of patients from adjuvant therapy. In our analysis, most patients did not require standard adjuvant therapy. Only 8.2% of patients underwent such therapy. However, we demonstrated the impact of CCI on DFS without the simultaneous influence of adjuvant chemotherapy on the probability of survival. Therefore, it seems that in ypN0 patients, the influence of CCI on DFS is the result of the direct influence of comorbidities on the course of cancer disease. However, the mechanism of this interaction remains unknown. Baretti et al. showed that the presence of comorbidities assessed by CCI had a significant negative impact on DFS and OS in stage II/III colorectal cancer patients. However, they did not perform the analysis of individual stages or locations. [11]. The influence of CCI on DFS and OS in patients with stages I-III colorectal cancer and different tumor location was demonstrated by Yamano et al. who did not find the influence of CCI on DFS in patients with stage II [26]. The mechanism by which CCI affects DSS can be complex and can be related to a direct influence of comorbidities on tumor progression.

In our analysis, we did not demonstrate the prognostic influence of LNY or its significance on understaging. LNY depends on several factors, including the response to neoadjuvant therapy, the method of surgery, and the technique and reliability of histological examination. Studies confirmed the effects of ionizing radiation on lymph nodes, including stromal atrophy and fibrosis, as well as lymphocyte count reduction [27, 28]. Preoperative radiotherapy was shown to reduce the total number of removed lymph nodes [5, 10]. Of note, studies found the reduction in the number of lymph nodes due to the response to neoadjuvant therapy associated with the response of the immune system. High levels of
CD8+ tumor infiltrating lymphocytes before treatment were associated with a good response to RCT and better DFS [29]. Studies on colon cancer patients found that despite the tendency to increase the number of removed nodes, the percentage of patients with metastatic lymph nodes did not increase [30, 31]. It was also shown that fat clearance increased the median number of retrieved lymph nodes in ypN0 rectal cancer patients from 12 to 19.5 compared to the conventional fixation method. However, it did not affect the long-term outcomes [32]. Thus, technical factors (both surgical and histological) seem to be of secondary importance in terms of understaging, particularly in centers experienced in colorectal surgery. Nevertheless, attempts are still made to determine the minimum number of lymph nodes to avoid understaging in the ypN0 group. The results of the studies are contradictory. It should be noted that most analyses reporting the cut-off point below which the understaging is found in ypN0 patients were based on single-center studies with a low (≤ 7) median number of removed lymph nodes in the entire group [33, 34] or were based on the data from the national multicenter registries. It does not offer the comparable quality of surgical treatment or the histological examination technique, and the mean LNY is the resultant of data from different centers [6, 7, 35]. In the case of analyses based on national registries, the same number of removed lymph nodes may be due to different causes, and thus the data may not be comparable [36]. Many studies indicated that LNY had no effect on understaging and thus on long-term survival in ypN0 patients. These included both single-center analyses [8, 9, 37] and two multicenter studies. One of them was based on data from 14 Italian high-volume referral centers, with the mean LNY of 12.9 [38], while the other was an American study which used the data from the California Cancer Registry and assessed DSS only [39]. Some research, including the above multicenter studies, reported total LNY without division into ypN0 and ypN+ subgroups, which further complicates the inference because LNY may be significantly different in these subgroups [40]. The results of our analysis may indicate that LNY in ypN0 patients treated in reference centers should be considered in terms of the severity of the response to neoadjuvant therapy rather than as a determinant of the quality of surgical or histological procedures. Additionally, the problem of understaging may be not related to a single patient, but to a treatment center. In our material, the analysis of the survival curves showed no understaging. However, further studies are warranted to test this hypothesis. If it was confirmed, it would be essential to establish a minimum LNY for a given center, above which understaging is excluded.

Conclusions

Late AL and CCI > 3 are the factors that may influence long-term oncologic outcomes in ypN0M0 rectal cancer patients after neoadjuvant therapy and AR. No evidence of the impact of LNY on understaging was found.

List Of Abbreviations

AL- anastomotic leakage

AR- anterior rectal resection
Declarations

Ethics approval and consent to participate

The study was approved by institutional ethics committee (KB/430-53/19)

Consent for publication

Not applicable

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files].

Competing interests
The authors declare that they have no competing interests

Funding

The authors have no financial or material support to disclose

Author's contributions

MZ, MC and AC participated in the study conception and design, MZ, MC, WS, MS and PP participated in acquisition of the data, MZ, EC and AI participated in data analysis and interpretation, MZ has drafted the manuscript, AC substantively revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We also acknowledge the translation assistance provided by Assistant Professor Arkadiusz Badziński, Ph.D., a medical translator and interpreter.

References

[Dataset]: Zeman M. Long-term outcomes ypN0. MendeleyData 2020. DOI: 10.17632/mvh47ppcxg.1

1. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J. Effector memory T cells, early metastasis and survival in colorectal cancer. N Engl J Med. 2005;353:2654-66. DOI: 10.1056/NEJMoa051424

2. Hain E, Maggiori L, Manceau G, Mongin C, Prost À la Denise J, Panis Y. Oncological impact of anastomotic leakage after laparoscopic mesorectal excision. Br J Surg. 2017;104(3):288-295. DOI: 10.1002/bjs.10332

3. Allaix ME, Rebecchi F, Famiglietti F, Arolfo S, Arezzo A, Morino M. Long-term oncologic outcomes following anastomotic leak after anterior resection for rectal cancer: does the leak severity matter? Surg Endosc. 2020;34(9):4166-4176. DOI: 10.1007/s00464-019-07189-9.

4. Jang JH, Kim HC, Huh JW., Park YA, Cho YB, Yun SH, Lee WY, Yu JI, Park HC, Park YS, Park JO. Anastomotic leak does not impact oncologic outcomes after preoperative chemoradiotherapy and resection for rectal cancer. Ann Surg. 2019;269:678-685. DOI: 10.1097/SLA.0000000000002582

5. Li X, Lu H, Xu K, Wang H, Liang X, Hu Z. Negative lymph node count is an independent prognostic factor for patients with rectal cancer who received preoperative radiotherapy. BMC Cancer. 2017;17:227. DOI: 10.1186/s12885-017-3222-8

6. Li Q, Zhuo C, Liang L, Zheng H, Li D, Cai S. Lymph node count after preoperative radiotherapy is an independently prognostic factor for pathologically lymph node-negative patients with rectal cancer.
7. Wang Y, Zhou M, Yang J, Sun X, Zou W, Zhang Z, Zhang J, Shen L, Yang L, Zhang Z. Increased lymph node yield indicates improved survival in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Cancer Medicine. 2019;8:4615-4625. DOI: 10.1002/cam4.2372

8. Klos CL, Shellito PC, Rattner DW, Hodin RA, Cusack JC, Bordeianou L, Sylla P, Hong TS, Blaszkowsky L, Ryan DP, Lauwers GY, Chang Y, Berger DL. The effect of neoadjuvant chemoradiation on the prognostic value of lymph nodes after rectal cancer surgery. Am J Surg. 2010;200:440-445. DOI: 10.1016/j.amjsurg.2010.03.013

9. Ishihara S, Fukushima Y, Akahane T, Horiuchi A, Shimada R, Nakamura K, Aoyagi Y, Hayama T, Yamada H, Nozawa K, Matsuda K, Hashiguchi Y, Watanabe T. Number of lymph nodes in rectal cancer is correlated with response to preoperative chemoradiotherapy but is not associated with patients survival. Hepatogastroenterology. 2014;61(132):1000-7.

10. Kim HJ, Jo JS, Lee SY, Kim CHm Kim YJ, Kim HR. Low lymph node retrieval after preoperative chemoradiation for rectal cancer is associated with improved prognosis in patients with a good tumor response. Ann Surg Oncol. 2015;22:2075-2081. DOI: 10.1245/s10434-014-4235-z

11. Baretti M, Rimassa L, Personeni N, Giordano L, Tronconi MC, Pressiani T, Bozzarelli S, Santoro A. Effect of comorbidities in stage II/III colorectal cancer patients treated with surgery and neoadjuvant/adjuvant chemotherapy: A single-center, observational study. Clin Colorectal Cancer. 2018;17(3):e489-98. DOI: 10.1016/j.clcc.2018.03.010

12. Rahbari NN, Weitz J, Hohenberger W et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery 2010;147(3):339-51. DOI: 10.1016/j.surg.2009.10.012

13. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis. 1987;40(5):373–83. DOI: 10.1016/0021-9681(87)90171-8

14. Crippa J, Duchalais E, Machairas N, Merchea A, Kelley SR, Larson DW. Long-term oncological outcomes following anastomotic leak in rectal cancer surgery. Dis Colon Rectum. 2020;63(6):769-777. DOI: 10.1097/DCR.0000000000001634

15. Espin E, Ciga MA, Pera M, Ortiz H. Oncological outcome following anastomotic leak in rectal surgery. Br J Surg. 2015;102:416-422. DOI: 10.1002/bjs.9748

16. Gaines S, Shao C, Hyman M, Alverdy JC. Gut microbiome influences on anastomatic leak and recurrence rates following colorectal cancer surgery. Br J Surg. 2018;105(2):e131-e141. DOI: 10.1002/bjs.10760

17. Hasegawa J, Nishimura J, Yamamoto S, Yoshida Y, Iwase K, Kawano K, Nezu R. Exfoliated malignant cells at the anastomosis site in colon cancer surgery: the impact of surgical bowel occlusion and intraluminal cleaning. Int J Colorectal Dis. 2011;26(7):875-880. DOI: 10.1007/s00384-011-1148-1
18. Salvans S, Mayol X, Alonso S, Messeguer R, Pascual M, Mojal S, Grande L, Pera M. Postoperative peritoneal infection enhances migration and invasion capacities of tumor cells in vitro: an insight into the association between anastomotic leak and recurrence after surgery for colorectal cancer. Ann Surg. 2014;260(5):939-943. DOI: 10.1097/SLA.0000000000000958

19. Jutesten H, Draus J, Frey J, Neovius G, Lindmark G, Buchwald P, Lydrup ML. Late leakage after anterior resection: a defunctioning stoma alters the clinical course of anastomotic leakage. Colorectal Dis. 2018;20:150-159. DOI: 10.1111/codi.13914

20. Lim SB, Yu CS, Kim CW, Yoon YS, Park IJ, Kim JC. Late anastomotic leakage after low anterior resection in rectal cancer patients: clinical characteristics and predisposing factors. Colorectal Dis. 2016;18:0135-0140. DOI: 10.1111/codi.13300

21. Sparreboom CL, van Groningen JT, Lingsma HF, Wouters MWJM, Menon AG, Kleinrensink GJ, Jeekel J, Lange JF, Dutch ColoRectal Audit group. Different risk factors for early and late colorectal anastomotic leakage in a nationwide audit. Dis Colon Rectum. 2018;61(11):1258-1266. DOI: 10.1097/DCR.0000000000001202

22. Borstlap WAA, Westerduin E, Aukema TS, Bemelman WA, Tanis PJ, Dutch Snapshot Research Group. Anastomotic leakage and chronic presacral sinus formation after low anterior resection. Results from a large cross-sectional study. Ann Surg. 2017;266(5):870-877. DOI: 10.1097/SLA.0000000000002429

23. Extermann M. Interaction between comorbidity and cancer. Cancer Control. 2007;14(1):13-22. DOI: 10.1177/107327480701400103

24. Sarfati D, Koczwara B, Jackson C. The impact of comorbidity on cancer and its treatment. CA Cancer J Clin. 2016;66:337-350. DOI: 10.3322/caac.21342

25. Brown JC, Zhang S, Ou FS, Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, O’Neil BH, Shaw JE, Polite BN, Denlinger CS, Atkins JN, Goldberg RM, Ng K, Mayer RJ, Blanke CD, O’Reilly EM, Fuchs CS, Meyerhardt JA. Diabetes and Clinical Outcome in Patients With Metastatic Colorectal Cancer: CALGB 80405 (Alliance). JNCI Cancer Spectr. 2019;4(1):pkz 078. DOI: 10.1093/jncics/pkz078

26. Yamano T, Yamauchi S, Kimura K, Babaya A, Hamanaka M, Kobayashi M, Fukumoto M, Tsukamoto K, Noda M, Tomita N, Sugihara K. Influence of age and comorbidity on prognosis and application of adjuvant chemotherapy in elderly Japanese patients with colorectal cancer: A retrospective multicentre study. Eur J Cancer. 2017;81:90-101. DOI: 10.1016/j.ejca.2017.05.024

27. Fajardo LF. Effects of ionizing radiation on lymph nodes. Front Radiat Ther Oncol. 1994;28:37-45. DOI: 10.1159/000423371

28. Baxter NN, Morris AM, Rothenberger DA, Tepper JE. Impact of preoperative radiation for rectal cancer on subsequent lymph node evaluation: a population-based analysis. Int J Radiation Oncology Biol Phys. 2005;61(2):426-431. DOI: 10.1016/j.ijrobp.2004.06.259

29. Akiyoshi T, Tanaka N, Kiyotani K, Gotoh O, Yamamoto N, Oba K, Fukunaga Y, Ueno M, Mori S. Immunogenomic profiles associated with response to neoadjuvant chemoradiotherapy in patients with rectal cancer. Br J Surg. 2019;106:1381-1392. DOI: 10.1002/bjs.11179
30. Parsons HM, Tuttle TM, Kuntz KM, Begun JW, McGovern PM, Virnig BA. Association between lymph node evaluation for colon cancer and node positivity over the past 20 years. JAMA. 2011;306(10):1089-97. DOI: 10.1001/jama.2011.1285

31. van Erning FN, Crolla RM, Rutten HJ, Beerepoot LV, van Krieken JH, Lemmens VE. No change in lymph node positivity rate despite increased lymph node yield and improved survival in colon cancer. Eur J Cancer. 2014;50(18):3221-9. DOI: 10.1016/j.ejca.2014.10.011

32. Chen N, Sun TT, Li ZW, Yao YF, Wang L, Wu AW. Fat clearance and conventional fixation identified ypN0 rectal cancers following intermediate neoadjuvant radiotherapy have similar long-term outcomes. World J Gastrointest Oncol. 2019;11(10):877-886. DOI: 10.4251/wjgo.v11.i10.877

33. Tsai CJ, Crane CH, Skibber JM, Rodriguez-Bigas MA, Chang GJ, Feig BW, Eng C, Krishnan S, Maru DM, Das P. Number of lymph nodes examined and prognosis among pathologically lymph node-negative patients after preoperative chemoradiation therapy for rectal adenocarcinoma. Cancer. 2011;117(16):3713-3722. DOI: 10.1002/cncr.25973

34. Beresford M, Glynne-Jones R, Richman P, Makris A, Mawdsley S, Stott D, Harrison M, Osborne M, Ashford R, Grainger J, Al-Jabbour J, Talbot I, Mitchell IC, Meyrick Thomas J, Livingstone JI, McCue J, MacDonald P, Northover JA, Windsor A, Novell R, Wallace M, Harrison RA. The reliability of lymph-node staging in rectal cancer after preoperative radiochemotherapy. Clin Oncol (R Coll Radiol). 2005;17(6):448-55. DOI: 10.1016/j.clon.2005.05.007

35. Raoof M, Nelson RA, Nfonsam VN, Warneke J, Krouse RS. Prognostic significance of lymph node yield in ypN0 rectal cancer. Br J Surg. 2016;103(12):1731-1737. DOI: 10.1002/bjs.10218

36. Xu Z, Berho ME, Becerra AZ, Aquina CT, Hensley BJ, Arsalanizadeh R, Noyes K, Monson JRT, Fleming FJ. Lymph node yield is an independent predictor of survival in rectal cancer regardless of receipt of neoadjuvant therapy. J Clin Pathol. 2017;70:584-592. DOI: 10.1136/jclinpath-2016-203995

37. Kim WR, Han YD, Cho MS, et al. Oncologic Impact of Fewer Than 12 Lymph Nodes in Patients Who Underwent Neoadjuvant Chemoradiation Followed by Total Mesorectal Excision for Locally Advanced Rectal Cancer. Medicine (Baltimore). 2015;94(28):e1133. DOI: 10.1097/MD.0000000000001133

38. Degiuli M, Arolfo S, Evangelista A, Lorenzon L, Reddavid R, Staudacher C, De Nardi P, Rosati R, Elmore U, Coco C, Rizzo G, Belluco C, Forlin M, Milone M, De Palma GD, Rega D, Delrio P, Guerrieri M, Ortenzi M, Muratore A, Marsanici P, Restivo A, Deidda S, Zuin M, Pucciarelli S, De Luca R, Persiani R, Biondi A, Roviello F, Marrelli D, Sgroi G, Turati L, Morino M. Number of lymph nodes assessed has no prognostic impact in node-negative rectal cancers after neoadjuvant therapy. Results of the "Italian Society of Surgical Oncology (S.I.C.O.) Colorectal Cancer Network" (SICO-CCN) multicentre collaborative study. Eur J Surg Oncol. 2018;44(8):1233-1240. DOI: 10.1016/j.ejso.2018.04.007

39. Gill A, Brunson A, Lara Jr. P, Khatri V, Semrad TJ. Implications of lymph node retrieval in locoregional rectal cancer treated with chemoradiotherapy: A California Cancer Registry study. Eur J Surg Oncol. 2015;41(5):647-652. DOI: 10.1016/j.ejso.2015.01.037
40. Han J, Noh GT, Yeo SA, Cheong C, Cho MS, Hur H, Min BS, Lee KY, Kim NK. The number of retrieved lymph nodes needed for accurate staging differs based on the presence of preoperative chemoradiation for rectal cancer. Medicine. 2016;95:38(e4891). DOI: 10.1097/MD.0000000000004891