Case Report

Rapid Progression of Heterotopic Ossification in Severe Variant of Fibrodysplasia Ossificans Progressiva with p.Arg258Gly in ACVR1: A Case Report and Review of Clinical Phenotypes

Kosei Hasegawa,1 Hiroyuki Tanaka,2 Natsuko Futagawa,1,3 Hiroyuki Miyahara1,3 and Hirokazu Tsukahara3

1Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
2Department of Pediatrics, Okayama Saiseikai General Hospital, 1-7-1 Ifuku-Cho, Kita-Ku, Okayama 700-8511, Japan
3Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan

Correspondence should be addressed to Kosei Hasegawa; haseyan@md.okayama-u.ac.jp

Received 8 July 2022; Accepted 28 July 2022; Published 25 August 2022

1.Introduction

Fibrodysplasia ossificans progressiva (FOP; OMIM #135100) is characterized by congenital malformation of the great toes and progressive heterotopic ossification [1]. Additional clinical features of FOP include joint dysplasia, osteochondroma formation, growth plate dysplasia, and cervical vertebrae fusion [1].

FOP is caused by pathogenic variants of the ACVR1 gene, which encodes Activin A receptor type 1 [2]. The heterozygous p.Arg206His variant of ACVR1 located in the glycine/serine-rich domain (GS domain) is typically found in classical FOP patients [2].

ACVR1 is one of the receptors for bone morphogenetic proteins (BMPs). The p.Arg206His variant causes constitutive activation of the basal and ligand-dependent canonical BMP signaling pathway and enhances the potential for osteogenic/chondrogenic differentiation [3]. In addition to BMPs as the main ligands for ACVR1, increased sensitivity to Activin A, a ligand in the TGFβ pathway, was proposed as one of the causes of FOP [4], and anti-Activin A antibodies are now focused upon as a novel therapeutic strategy for FOP [5].

In classical FOP patients with p.Arg206His, heterotopic ossification generally begins during childhood and rarely
occurs during infancy. It is often preceded by a “flare-up,” presenting as painful inflammatory soft tissue swelling. Such flare-ups can be induced by trauma, surgery, intramuscular immunization, mandibular opening for dental work, and flu-like infection, but the precise mechanism remains unknown [1].

Recently, some atypical FOP cases associated with genomic variants other than p.Arg206His have been documented [6]. In atypical FOP cases, heterotopic ossification can occur at any time after childhood or adolescence and can affect not only the great toes but also other toes as well as fingers. Herein, we describe a girl with atypical FOP caused by the heterozygous p.Arg258Gly ACVR1 variant, which has previously been reported in only two severe FOP patients [7]. She exhibited syndactyly of the hands and feet, nail agenesis, and patent ductus arteriosus (PDA) at birth. Heterotopic ossification was first observed at 9 months of age and occurred frequently thereafter. We present the time-series changes in heterotopic ossification in our patient and compare her clinical manifestations with those of the previously reported patients with p.Arg258Gly.

2. Clinical Data and Medical History

A 9-month-old Japanese girl was referred to our hospital because of multiple congenital anomalies (Figures 1(a)–1(d)) and recurrent tumorous lesions in her occipital region and back that had occurred from 7 months of age (Figures 1(e) and 1(f)).

She was born at 39 weeks of gestational age from non-consanguineous parents. Her parents had no past history of congenital anomalies or heterotopic ossification. Her birth weight was 2804 g and asphyxia was not observed. Her multiple congenital anomalies included soft tissue syndactyly of the hands and feet without nails, low-set ears, auricular anomaly, and hypoplastic mandible (Figures 1(a)–1(d)). PDA was identified after birth and closed by a catheter device at 1 year 6 months of age. Her chromosomal karyotype was 46, XX.

At the first visit to our hospital, small malformed teeth, thin eyebrows, shallow umbilicus (Figure 1(a)), and sparse hair (Figure 1(e)) were observed in addition to the anomalies found at birth. Radiologic analysis revealed multiple symmetrical abnormalities of the phalanges and metacarpal bones in the hands and feet and heterotopic ossification of the sternocleidomastoid muscle (Figures 1(g)–1(i)). Head CT analysis at 6 years of age revealed enlargement of the lateral and third ventricles, which was not progressive, lack of septum pellucidum, hypoplastic corpus callosum, and deformed brain stem including bulging dorsal pons (Figures 1(j)–1(l)).

From the heterotopic ossification and abnormalities of the great toes, we suspected FOP. After informed consent was obtained from her parents, a genetic analysis of the ACVR1 gene was conducted. The genetic analysis was approved by the Ethical Committee of Okayama University Hospital (2016.6.29:1606-021). All the procedures in the study were performed in accordance with the 1964 Helsinki Declaration and 2003 Japanese Ethical Guidelines for Clinical Research, as well as their later amendments. The sequence reads were aligned with reference sequences from GenBank (NM_001105.4). As a result, a heterozygous single base substitution, c.772 A > G, in the coding region of ACVR1, resulting in p.Arg258Gly, was identified in our patient, while other known pathogenic variants, including p.Arg206His, were absent (Figure 1(m)). The identified substitution was not present in either of her parents, indicating that the variant had occurred de novo. The p.Arg258Gly variant was not found in SNP databases, including the dbSNP (https://www.ncbi.nlm.nih.gov/snp/) and Genome Aggregation Database (https://gnomad.broad institute.org). The underlying variant for p.Arg258-Gly was located in the kinase domain of ACVR1. Upon analysis with three online software programs, SIFT (https://provean.jcvi.org/index.php), PolyPhen-2 (https://genetics.bwh.harvard.edu/pph2/), and MutationTaster (https://www.mutationtaster.org), p.Arg258Gly was predicted to be a disease-causing or damaging variant, and p.Arg258 was found to be maintained in various species. The CADD (https://cadd.gs.washington.edu) score for this substitution was 29.5. The variant was previously reported in two patients with severe FOP and multi-system involvement [7]. Taken together, the p.Arg258Gly variant is considered “pathogenic (PS1, PS2, PP3, and PP4)” based on the ACMG criteria [8]. The data for the variant were deposited to the Global Variome shared LOVD (https://databases.lovd.nl/shared/variants/0000828134#00002047).

After the genetic diagnosis of FOP, oral prednisolone was administered when a flare-up occurred. However, heterotopic ossification following the frequent flare-ups was not suppressed (Figure 2). The patient is currently 12 years of age and is healthy. However, her hair has been almost completely lost except for the forehead region, and her limbs except for the right leg cannot be moved due to joint contracture caused by the broad heterotopic ossification.

3. Discussion

The skeletal abnormalities found in patients with p.Arg258Gly ACVR1 were atypical and more severe than those reported in classical FOP patients and other atypical FOP patients in the following points: (1) heterotopic ossification occurred at an earlier age and was more frequent and (2) the feet and hands were both affected, presenting with short fingers and toes and lack of nails [7]. Through ACVR1, BMP signaling contributes to not only ossification but also large and small joint formation [1, 9]. In FOP with pathogenic ACVR1 variants, abnormally increased BMP signaling causes heterotopic ossification, joint dysplasia, growth plate dysplasia, and osteochondroma formation. The severe clinical phenotypes found in patients with p.Arg258Gly suggest that this variant causes the strongest exacerbation in BMP signaling among the pathogenic variants found in classical and atypical FOP patients. The pathogenic ACVR1 variants p.Arg206His and p.Arg258Gly found in FOP patients were also identified in tissues from patients with diffuse pontine glioma (DPG), a lethal pediatric brain tumor [10]. However, the degree of SMAD1/5
phosphorylation in tissues with p.Arg258Gly varied according to the experimental conditions: stronger than or similar to other pathogenic variants found in FOP patients and DPG patients with p.Arg206His, with or without a ligand (BMPs or Activin A), and cell type-dependent [4, 10]. In ACVR1, p.Arg258 is a highly conserved amino acid. p.Arg258Ser [6] and p.Arg258Trp [11] also cause FOP, but the clinical phenotypes are milder than that of p.Arg258Gly.

Responses to ligands such as BMPs and Activin A in not only the canonical BMP pathway but also the non-canonical BMP pathway may be involved in the different phenotypes among the ACVR1 variants.

Brain anomalies are one of the clinical manifestations in FOP patients. Our patient had a brainstem anomaly and non-progressive ventricular enlargement, as reported previously [12], but also lacked the septum pellucidum and had a hypoplastic corpus callosum. Hypoplasia of the corpus callosum was also found in one of the reported patients with p.Arg258Gly (Table 1). Spatiotemporal control of BMP signaling is important for brain development [13]. Therefore, dysregulated BMP signaling may lead to the lack of septum pellucidum and hypoplastic corpus callosum, although the detailed mechanisms and relationships remain to be clarified.

BMP signaling is also implicated in development of the heart [14]. Clinically, some variants of ACVR1 were reported to cause congenital heart defects, but not FOP [15]. However, these variants showed loss of function. In classical FOP patients, congenital heart disease has rarely been reported. Specifically, only one classical FOP patient with ventricular septum defects has been described, but the direct relationship with FOP was unknown [16]. Our patient and one of the reported patients with p.Arg258Gly had PDA (Table 1). Before birth, prostaglandin E2 (PGE2) not only causes vasodilation of the ductus arteriosus (DA) but also activates DA intima.
thickening during mid-to-late pregnancy, leading to the narrowing of the DA vascular lumen [17]. After birth, the decrease in PGE2 causes vasospasms and DA closure. It is unknown whether constitutively activated BMP signaling affects PGE2-EP4 receptor signaling during infancy. However, one of the reported patients with p.Arg258Gly

| Table 1: Clinical characteristics of severe FOP patients with the heterozygous p.Arg258Gly variant of ACVR1. |
|--|------------------|------------------|------------------|
| Variant/mode of inheritance | Heterozygous c.772G>A; p.Arg258Gly/de novo |
| Chromosome | 46, XX | 46, XY | 46, XX |
| Age at onset of heterotopic ossification | 16 months | 11 months | 9 months |
| Heterotopic ossification-induced multiple joint contracture | + | + | + |
| Fusion of cervical vertebra | + | + | + |
| Four-limb digit reduction anomalies with no nails and soft tissue syndactyly | + | + | + |
| Dysmorphic facial features | | | |
| Microretrognathia | + | + | + |
| Low-set dysmorphic ears | + | + | + |
| Hypertelorism | + | + | + |
| Depressed nasal bridge | + | + | + |
| Sparse hair | + | + | + |
| Small malformed teeth | + | + | + |
| Hypoplasia of brainstem | + | n.a. | + |
| Brain anomalies | | | |
| Hydrocephalus | + | n.a. | + |
| Agenesis/hypoplasia of corpus callosum | + | + | + |
| Craniostenosis | n.a. | + | - |
| Patent ductus arteriosus | + | + | + |
| Genital anomalies | + | + | + |
| Sensorineural hearing loss | + | n.a. | + |
| Gross motor delay | + | + | + |
| Other malformations | | | |
| Patent ductus arteriosus | + | + | + |
| Genital anomalies | + | + | + |
| Sensorineural hearing loss | + | n.a. | + |
| Gross motor delay | + | + | + |
| Other malformations | | | |

Figure 2: Time-course series of heterotopic ossification (HO). (a–d) Front chest and upper limbs. (e–h) Back chest. (a, e) At 10 months of age, HO was not observed. (c, g) At 106 months of age, HO was observed from the bilateral axillary and humerus. (c, g) At 26 months of age, HO was observed from the bilateral axillary and humerus. (c, g) At 42 months, HO was observed between the humerus and radius and between the humerus and thoracic cage. (d, h) Scoliosis due to multiple HO occurrences was observed at 106 months. (i–m) Lumbar spine and pelvis. (i) At 78 months of age, HO was not observed. (j) At 42 months of age, HO was observed from the left transverse process of the lumbar spine. (k) At 78 months of age, HO was observed from the neck of the left femur and connected the left transverse process and left femur thereafter. (l) At 106 months of age. (m) At 121 months of age.
had PDA that required a surgical intervention at 15 days of age. We believe that there may be a direct or indirect relationship between DA closure and abnormally activated BMP signaling during certain fetal periods.

During dental development, BMP signaling forms a signaling network with Wnt, Fgf, Shh, and Eda [18]. However, dental abnormalities are rare clinical symptoms in FOP patients. Nevertheless, all three patients with p.Arg258Gly, comprising our patient and the two reported patients, had small malformed teeth (Table 1). Thus, the dental abnormalities observed in these patients may be specific symptoms caused by p.Arg258Gly.

Diffuse thinning of the hair that occurred in middle age was previously observed in FOP patients [19]. However, it was unclear whether this thinning was a primary feature or a secondary feature to nutritional deficiency caused by lockjaw. BMP signaling has also been implicated in quiescence of hair follicle stem cells (HFSCs) and the hair cycle [20]. Reduced BMP signaling leads to activation of quiescent HFSCs and disruption of the hair cycle. In our patient, thinning of the hair and eyebrows was present from 9 months of age and her hair was almost completely lost at 12 years of age. The other two patients with p.Arg258Gly also exhibited thinning of their hair at an early age (Table 1). Although it remains unknown why thinning of the hair occurs in FOP patients, we consider that increased BMP signaling may abolish the quiescence of HFSCs and accelerate the hair cycle. We also believe that hair thinning and early hair loss are some of the primary clinical symptoms of FOP.

In conclusion, we identified the p.Arg258Gly variant of ACVR1 in a patient with severe atypical FOP. It remains to be clarified how dysregulated BMP signaling caused her atypical and very severe clinical findings. Our results broaden the clinical and radiological features of severe FOP with p.Arg258Gly ACVR1 and provide the important insight that FOP is not only a skeletal disease but also a systemic disease that affects many organs.

Data Availability
The data that support the findings of this study are openly available in Global Variome shared LOVD at https://databases.lovd.nl/shared/variants/0000828134#00002047.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
KH and HTa designed the study. KH performed the genetic analysis. KH, NF, and HM collected and analyzed the clinical and radiological data. KH drafted the manuscript. HTa and HTTs reviewed and finalized the manuscript. All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Acknowledgments
This study was supported by grants from the Ministry of Health, Labour and Welfare, Japan.

References
[1] F. S. Kaplan, M. Al Mukaddam, A. Stanley, O. W. Towler, and E. M. Shore, “Fibrodysplasia ossificans progressiva (FOP): a disorder of osteochondrogenesis,” Bone, vol. 140, Article ID 115539, 2020.
[2] E. M. Shore, M. Xu, G. J. Feldman et al., “A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva,” Nature Genetics, vol. 38, pp. 525–527, 2006.
[3] T. Fukuda, M. Kohda, K. Kanomata et al., “Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva,” Journal of Biological Chemistry, vol. 284, pp. 7149–7156, 2009.
[4] K. Hino, M. Ikeya, K. Horigome et al., “Neofunction of ACVR1 in fibrodysplasia ossificans progressiva,” Proceedings of the National Academy of Sciences of the USA, vol. 112, pp. 15438–15443, 2015.
[5] S. J. Hatsell, V. Idone, D. M. Wolken et al., “ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A,” Science Translational Medicine, vol. 7, 2015.
[6] D. de Brasi, F. Orlando, V. Gaeta et al., “Fibrodysplasia ossificans progressiva: a challenging diagnosis,” Genes, vol. 12, 2021.
[7] F. S. Kaplan, J. A. Kobori, C. Orellana et al., “Multi-system involvement in a severe variant of fibrodysplasia ossificans progressiva (ACVR1 c.772G>A; R258G): a report of two patients,” American Journal of Medical Genetics, vol. 167, pp. 2265–2271, 2015.
[8] S. Richards, N. Aziz, S. Bale et al., “Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology,” Genetics in Medicine, vol. 17, pp. 405–424, 2015.
[9] O. W. Towler and E. M. Shore, “BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP),” Developmental Dynamics, vol. 251, pp. 164–177, 2022.
[10] G. Wu, A. K. Diaz, B. S. Paugh et al., “The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma,” Nature Genetics, vol. 46, pp. 444–450, 2014.
[11] S. Cappato, R. Traberg, J. Gintautiene, F. Zara, and R. Bocciardi, “A case of fibrodysplasia ossificans progressiva associated with a novel variant of the ACVR1 gene,” Molecular Genetics & Genomic Medicine, vol. 9, Article ID e1774, 2021.
[12] M. Bertamino, M. Severino, M. C. Schiaffino et al., “New insights into central nervous system involvement in FOP: case report and review of the literature,” American Journal of Medical Genetics, vol. 167, pp. 2817–2821, 2015.
[13] A. M. Bond, O. G. Bhala, and J. A. Kessler, “The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation,” Developmental Neurobiology, vol. 72, pp. 1068–1084, 2012.
[14] L. Feulner, P. P. van Vliet, M. Puceat, and G. Andelfinger, “Endocardial regulation of cardiac development,” Journal of Cardiovascular Development and Disease, vol. 9, 2022.
[15] K. A. Smith, I. C. Joziasse, S. Chocron et al., “Dominant-negative ALK2 allele associates with congenital heart defects,” *Circulation*, vol. 119, pp. 3062–3069, 2009.

[16] L. Marseglia, G. D’Angelo, S. Manti et al., “Fibrodysplasia ossificans progressiva in a newborn with cardiac involvement,” *Pediatrics International*, vol. 57, pp. 719–721, 2015.

[17] U. Yokoyama, “Prostaglandin E-mediated molecular mechanisms driving remodeling of the ductus arteriosus,” *Pediatrics International*, vol. 57, pp. 820–827, 2015.

[18] Y. Lan, S. Jia, and R. Jiang, "Molecular patterning of the mammalian dentition," *Seminars in Cell & Developmental Biology*, vol. 25-26, pp. 61–70, 2014.

[19] A. Morales-Piga, J. Bachiller-Corral, M. J. Trujillo-Tiebas et al., “Fibrodysplasia ossificans progressiva in Spain: epidemiological, clinical, and genetic aspects,” *Bone*, vol. 51, pp. 748–755, 2012.

[20] M. V. Plikus, J. A. Mayer, D. de la Cruz et al., “Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration,” *Nature*, vol. 451, pp. 340–344, 2008.