We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
The Use of Pulsed Field Gel Electrophoresis in *Listeria monocytogenes* Sub-Typing – Comparison with MLVA Method Coupled with Gel Electrophoresis

Sophie Roussel et al.*

ANSES: Maisons-Alfort Laboratory for Food Safety, Paris, France

1. Introduction

Out of the several molecular methods currently available, pulsed field gel electrophoresis (PFGE) is one of the most discriminatory and reproducible methods for the sub-typing of *Listeria monocytogenes* (*L. monocytogenes*) (Kerouanton *et al*., 1998; Brosch *et al*., 1996). The combination of restriction endonucleases *AscI* and *ApaI* has shown excellent discrimination for *L. monocytogenes* (Brosch *et al*., 1996). Thus, the PFGE method, using these two enzymes, is considered to be the international standard for sub-typing (Graves and Swaminathan, 2001). However, although the protocol has been shortened to 30 hours from the time a pure culture of the bacteria has been obtained (Graves and Swaminathan, 2001), PFGE remains a manual, time-consuming and labor intensive subtyping method. It also requires highly skilled operators and does not offer standardized reagents.

ANSES Maisons-Alfort Laboratory for Food Safety has been the European Union Reference Laboratory (EURL) for *L. monocytogenes* in the food chain since 2006. One of the main EURL activities is to develop relevant subtyping methods that are faster than the reference subtyping method, PFGE and that can be easily be implemented in the National Reference Laboratories (NRLs) of European countries.

Multiple-locus variable-number tandem-repeat analysis (MLVA) is a rapid subtyping method based on (PCR) amplification and size analysis of regions of DNA containing variable numbers of tandem repeats (VNTRs). MLVA has been successfully developed for subtyping various bacterial genera. The amplification products are measured using either a capillary electrophoresis system (CE) or a simple agarose gel electrophoresis system. However, with the latter, it is necessary to select VNTR loci with repeat sizes large enough

* Marie-Léone Vignaud1, Jonass T Larsson2, Benjamin Félix1, Aurore Rossignol1, Eva Møller Nielsen2 and Anne Brisabois1
1ANSES: Maisons-Alfort Laboratory for Food Safety, Paris, France
2Statens Serum Institut (SSI), Department of Microbiological Surveillance and Research, Copenhagen, Denmark
For *L. monocytogenes*, a standardized PulseNet USA MLVA protocol has recently been developed based on the detection of nine VNTR loci, with a VNTR size between 6 and 15 bp. The panel of strains was composed of 250 epidemiologically unrelated strains and most of the tested isolates were of human origin. The clusters obtained correlate with isolate serotypes (Hyytia-Trees, 2010; Sperry et al., 2008). At the Serum Statens Institute (SSI) in Copenhagen, Larsson et al. (2010) developed another scheme using 10 VNTR loci based on the analysis of 20 genome sequences. Seven loci were common to the PulseNet protocol. For five of these loci, degenerate primers were designed to match genome diversity. The results demonstrated better discriminatory power for MLVA compared to combined *Apa*I/*Asc*I PFGE. This scheme has been successfully used for the surveillance of *L. monocytogenes* in Denmark (Larsson et al., 2010). Of the nine loci used by PulseNet, four have been previously described: Lindstedt et al. (2008) developed an MLVA scheme based on the use of five VNTR loci to characterize 140 isolates, mainly from human and environmental sources and belonging to various serotypes. The discriminatory power of MLVA is similar to that of *Asc*I-PFGE. Another MLVA scheme using only three described VNTR loci has been developed to type 60 serotype 4b isolates from various sources. Simpson’s diversity index has been shown to be higher than that of *Apa*I-PFGE, MLST, and *Eco*RI ribotyping (Miya et al., 2008).

In the MLVA schemes developed so far, fragment detection is performed by CE. Nevertheless, Murphy et al. (2007) demonstrated that it is possible to detect VNTR loci on agarose gels. However, most of the 45 isolates tested in this study had the same origin (food origin) and the same serotype (1/2a). Moreover, out of the six VNTR loci described by Murphy et al. (2007), four were excluded from the PulseNet USA MLVA protocol because two loci have low diversity and two others display sequence variability in flanking regions. The purpose of the present study was to evaluate the feasibility of a MLVA protocol coupled with conventional gel electrophoresis. The results were compared with those obtained by PFGE.

2. Materials and methods

2.1 Strain panel

This study was conducted on 72 strains (Figure 1): 45 isolated from clinical samples and 18 isolated from different food products. This panel included also nine reference strains with six CLIP strains (CLIP 74903 (1/2b), CLIP 74904 (1/2c), CLIP 74905 (3a), CLIP 74906 (3b), CLIP 74907 (3c), CLIP 74912 (4d)) and three fully sequenced strains: EGDe (1/2a), F2365 (4b) and CLIP 80459 (4b). Twenty human strains came from SSI. Twelve non-human field isolates came from the EURL and were collected from French food analysis laboratories, as part of their monitoring, surveillance sampling activities or research projects. Thirty-three strains had previously been used in the WHO international multicenter *L. monocytogenes* subtyping study (Bille & Rocourt, 1996). These strains were labeled TS (“Test study”) (Schönberg et al. (1996). Twenty of the 72 strains were related to nine different epidemiological groups (02, 03, 05, 11, 15, 16, 19, 21, 22) (Bille & Rocourt, 1996). Four strains
were represented by two duplicates each (TS32, TS72; TS56, TS77; TS35, TS75; TS63, TS73). A panel of 40 strains (20 SSI human strains, 8 ANSES food strains and 12 TS strains) was typed both at ANSES and SSI.

2.2 Methods

2.2.1 Serotyping

Species identification was performed using agar Listeria according to Ottaviani & Agosti (ALOA) plates (AES, Combourg, France) and the CAMP Test (McKellar 1994). Each strain was serotyped by agglutination using commercially available antisera (Denka, Eurobio, Les Ulis, France), after adapting the manufacturer’s instructions and using the procedures outlined by Seeliger & Hohné (1979). Our laboratory has been certified by the French Accreditation Committee (COFRAC) for this serotyping method as an internal method (accreditation no. 1-22465, Section Laboratories, www.cofrac.fr). Determination of the O-antigen was performed from a pure culture [instead of a bacterial suspension]. Determination of the H-antigen was performed using semi-liquid brain heart infusion (BHI) media with 0.5% agar [instead of 0.2%].

2.2.2 Molecular serotyping

Molecular serotyping was performed using the protocol developed by Kerouanton et al. (2010).

2.2.3 PFGE

PFGE was performed using the standard CDC PulseNet protocol (Graves & Swaminathan, 2001) with minor modifications. Each strain was grown overnight on tryptone soya agar with yeast extract (TSAYE) plates instead of BHI. For the DNA digestion step in agarose plugs using ApaI and Ascl enzymes, 10 units of enzyme were used per plug [instead of 25 units of enzyme per plug for Ascl] and 160-200 units of enzyme per plug for ApaI in the PulseNet protocol. Plugs were incubated with restriction enzymes for 4 h [instead of 5 h]. Gels were then stained with ethidium bromide and banding patterns were visualized under UV light, using the Gel Doc EQ system and Quantity One software (Bio-Rad). DNA patterns were analyzed with BioNumerics software (ver. 6.5, Applied Maths, Kortrijk, Belgium). The recommendations of Barrett et al. (2006) were followed for gel analysis: gels including partial digestions, or unclear bands were not analyzed. All bands with sizes lower than 33 kb were systematically removed. A similarity value of 97.0% was established as a cut-off to consider two profiles as indistinguishable in UPGMA dendrograms using the Dice coefficient, with a 1% tolerance limit and 1% optimization. If the similarity value was strictly less than 97%, the two profiles were considered as different. The dendrogram settings used were chosen according to PulseNet Europe recommendations (Martin et al., 2006). The similarity value taken as the cut-off was established according to the EURL database settings. Each PFGE profile was arbitrarily assigned a number. Our laboratory has been certified by COFRAC for PFGE analyses (Accreditation no. 1-22465, Section Laboratories, www.cofrac.fr).
2.2.4 MLVA

2.2.4.1 Strain isolation and DNA extraction

Bacterial cultures were revived by plating onto TSAYE plates (Humeau, La Chapelle-sur-Erdre, France). Species confirmation was performed by isolation on ALOA plates (AES, Combourg, France). DNA extraction was performed using the InstaGene kit (Bio-Rad, Marnes-la-Coquette, France) according to the manufacturer’s recommendations. Extracts were adjusted to approximately 100 ng/µl using a spectrophotometer (Biophotometer, Eppendorf, ville, France).

2.2.4.2 Locus selection

VNTR loci found in the literature with a repeat size greater than or equal to 9 bp were selected. New VNTR loci were selected from the complete genome of the three reference strains. The genomes of strains EGDe (1/2a), F2365 (4b) and CLIP 80459 (4b) were individually screened using the Tandem Repeat Finder (TRF) program (http://tandem.bu.edu/). The tandem repeat databases http://mlva.u-psud.fr and http://www.hpa-bionum.org.uk/VNTRUK/ were then used to compare the genomes.

2.2.4.3 Primer design

The primer sets were either similar to those described in the literature (Table 2), or designed in regions flanking the VNTR locus, (Table 3), using AlleleID® software (Premier Biosoft International, USA). All the primers were synthesized by Eurogentec (France).

2.2.4.4 Amplification of VNTR loci

The VNTR loci were amplified on DNA from strains EGDe and F2365. The amplification products were electrophoresed on two gels run independently.

For each primer set, the final mix contained 1 U HotStart Taq Polymerase (Roche), 2 or 3 mM MgCl₂, 0.2 mM desoxynucleotide triphosphate, 1X PCR buffer, PCR grade water, 0.3 µM each primer, and 1 µl of DNA in a 25 µl reaction mixture. PCR was performed on a thermal cycler (GeneAmp PCR System, 9700, PE, Applied Biosystems). For Lm-8, the parameters used were those described by Sperry et al. (2008): initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 94°C for 20 s, annealing at 50°C for 20 s, extension at 72°C for 20 s and a final extension at 72°C for 5 min. For LMCEB 02, 06, 12, 14 and Lm-26: initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 94°C for 20 s, annealing at 57°C for 30 s, extension at 72°C for 30 s and a final extension at 72°C for 7 min. For LMCEB 05 the annealing was performed at 54°C. For JLR-4, the parameters used were those described by Larsson et al. (2010). At SSI, amplification for JLR-4 and Lm-8 was performed according to Larson et al. (2010).

2.2.4.5 Detection of VNTR loci

Aliquots (5 µl) of amplified products were electrophoresed on 2% agarose gels (Resophor, Eurobio, France) in 1X TBE buffer (0.45 mM Tris-HCl, 0.45 mM boric acid, 1 mM EDTA, pH 8). Electrophoresis was performed in 12 cm long gels and run at 80 V for 30 min followed by 90 V for 4 h. In each run, the 20 bp DNA Ladder (Bio-Rad, France) and the PCR products from the two strains EGDe and F2365 were systematically included at least twice to facilitate the sizing of amplified DNA fragments. Each run included a negative/water control to ensure the absence of contamination.
The gels were stained in 2 µg/ml ethidium bromide for 90 min and photographed under UV illumination (Gel Doc EQR Bio-Rad, France). The length of each amplified VNTR locus was measured using Quantity One software (Bio-Rad, France). An allele number string based on the estimated number of tandem repeats at each locus was assigned to the amplified DNA fragments from each isolate. Detection of PCR products by capillary electrophoresis was performed according to Larsson et al. (2010).

2.2.4.6 Data analysis
The allele strings were imported into BioNumerics software. Dendrograms were constructed using a categorical coefficient and UPGMA clustering. Allele nomenclature was that recommended by PulseNet USA. No amplification was coded as negative (-1). Efficient amplification with no VNTR detected was coded as “zero” (0). Partial repeats were rounded down to the closest whole number.

2.2.4.7 Sequence verification
The loci and flanking regions were amplified in both directions with high-fidelity HotStart Taq Polymerase (Roche). Amplification products were sequenced by Eurofins (MWG Operon, France). The sequence analysis was performed with the CodonCode Aligner software (CodonCode Corporation, USA).

2.2.4.8 Stability determination
The stability test was performed according to Sperry et al. (2008): the strains EGDe, F2365 and CLIP 80459 were tested 45 times. All DNA were tested for MLVA.

2.2.4.9 Reproducibility
The reproducibility of the MLVA method was determined from the results obtained from the two reference strains included in each run, and with the four TS strains represented in duplicate and the epidemiologically related strains included in this study. Moreover, amplification products were systematically run on two independent gels. At least two independent PCRs were performed from a given DNA extract from the reference strains.

3. Results

3.1 Serotyping data
The agglutination serotyping distribution was as follows: 27 serotype 1/2a strains, 10 serotype 1/2b strains, 5 serotype 1/2c strains, 25 serotype 4b strains, 1 strain of each serotype 3a, 3b, 3c, 4d and 1 autoagglutinable strain.

3.2 Subtyping data
3.2.1 Development of an MLVA assay
3.2.1.1 Selection of VNTR loci from the literature
A total of 16 VNTRs have been described in the literature (Table 1). Although some VNTRs are common to different MLVA schemes, their nomenclature is different. Moreover, the primer pairs used for the amplification of a given locus can differ among studies.
The number in brackets indicates the size of the tandem repeat motif in the VNTR locus; ¹ Excluded due to low diversity (Hyttia-Trees, 2010); ² Excluded due to sequence variability in flanking region (Hyttia-Trees, 2010); ³ Excluded due to short repeat unit length (3 bp) and low diversity (Hyttia-Trees, 2010); ⁴ Degenerate primers.

PulseNet USA (Hyttia-Trees, 2010)	Sperry et al. (2008)	Larsson et al. (2010)	Lindstedt et al. (2008)	Murphy et al. (2007)	Miya et al. (2008)
LM-2 (6 bp)	Lm-2	LMV1-JLR⁴	LMV1		
LM-3 (9 bp)	Lm-3	LMV7-JLR⁴	LMV7	LMTR-1	
LM-8 (15 bp)	Lm-8				
LM-10 (12 bp)	Lm-10		LM-TR-4		
LM-11 (12 bp)	Lm-11	LM11-LR			
LM-15 (12 bp)	Lm-15	JLR2⁴			
LM-23 (6 bp)	Lm-23	JLR1		TR2	
LM-32 (6 bp)	Lm-32	JLR3⁴			
LMV09 (9 bp)	LMV9-JLR⁴	LMV9			
LMV2-JLR (9 bp)		LMV2	LMV6	TR2	
LMV6-JLR (15 bp)	JLR4 (9 bp)	LMV6	TR3 (3 bp)		

Table 1. Comparison of 16 MLVA VNTR loci described in the literature and used for subtyping *L. monocytogenes*.

In this study, VNTR loci were selected according to the following criteria: (1) a repeat size greater than or equal to 9 bp (2) diversity and (3) no sequence variability in flanking regions. For this reason, four loci used by Murphy et al. (2007), LM-TR-2, LM-TR6, LM-TR-3 and LM-
TR-5, were excluded from this study because Hyyttia-Trees (2010) demonstrated low diversity in LM-TR-2 and LM-TR-6 and sequence variability in flanking regions in LM-TR-3 and LM-TR-5.

Eight loci, Lm-3 (≡LmTR-1 for Murphy et al. (2007)), Lm-8, Lm-10 (≡LmTR-4 for Murphy et al. (2007)), Lm-11, Lm-15, JLR4, LMV6-JLR and LMV9-JLR (Table 1) were thus selected. The primers used in the present are shown in Table 2.

Locus name	Primer names	References
Lm-10	Lm-10F-Lm-10R	Sperry et al. (2008)
	LM-TR-4F-LM-TR-4R	Murphy et al. (2007)
Lm-11	Lm-11F-Lm-11R	Sperry et al. (2008)
	LM11-LR F-LM11-LR-R	Larsson et al. (2010)
Lm-3	LMV7-F ; LMV7-R	Lindstedt et al. (2008)
	LM-TR-1-F ; LM-TR-1-R	Murphy et al. (2007)
	Lm-3 F ; Lm-3 R	Sperry et al. (2008)
	LMV7-JLR F ; LMV7-JLR R	Larsson et al. (2010)
Lm-8	Lm-8F ; Lm-8R	Sperry et al. (2008)
LMV6-JLR	LMV6-JLR	Larsson et al. (2010)
	LMV6-F ; LMV6-R	Lindstedt et al. (2008)
LMV9-JLR	LMV9-JLR	Larsson et al. (2010)
	LMV9-F – LMV9-R	Lindstedt et al. (2008)
Lm-15	Lm-15F-Lm-15R	Sperry et al. (2008)
	JLR2 F-JLR2R	Larsson et al. (2010)
JLR-4	JLR4 F-JLR4R	Larsson et al. (2010)

Table 2. Primers used for amplification of the eight VNTR loci selected from the literature.

3.2.1.2 Selection of VNTR loci from a bioinformatics-based search

Following a search using TRF in MLVA databases, nine VNTR loci (LMCEB01,02,03,04,05,06,12,14, and Lm-26) were selected (Table 3). The locus Lm-26 had already been published but has not been used previously due to its low diversity (Sperry et al., 2008). For each of the nine VNTR loci, primers were designed in the regions flanking the locus (Table 4).

3.2.1.3 Amplification and detection of the selected VNTR loci from the two strains EGDé and F2365

For Lm-3, Lm-10, Lm-11, Lm-15, LMV6-JLR and LMV9-JLR, the size of the amplification products obtained with all the primer pairs tested, observed in the same run and in two different runs differed from the true length by up to 18 bp (data not shown). For this reason, other primer pairs were designed and tested. Sizing discrepancies were nevertheless observed (data not shown).
Table 3. Characteristics of the nine VNTR loci selected through a bioinformatics-based search.

VNTR locus name	Repeat motif length (bp)	Identification in EGDe	Location (nt)	Number of repeats	Identification in F2365	Location (nt)	Number of repeats	Locus tag and protein description
LMCEB01	TACAGGGTCA	173484-173534	1.8	178831-178897	2.4	2	Imo0175: peptidoglycan binding protein	
	ACCGGATCAA							Imo0320: similar to surface protein (peptidoglycan bound, LPXTG motif)
	CCGGATT							lmo0551
	GAGATGCGTG							lmo1226
	GTAGAGGTTT	345133-345213	2.4	358155-358297	3.4	2	lmo1738: similar to amino acid ABC transporter	
	GATCCGACCC							lmo1226
	CAGTAAAATCC	589559-589651	2.2	596161-596226	2.2	2	ActA: actin-assembly inducing protein precursor	
	ACAGGACTTG							DNAX: highly similar to DNA polymerase III
	ATCAAATAGA	1251475-1251565	2.7	1228575-1228632	2.7	2	lmo2705	
	CAAAGTGACT	1808069-1808118	2.0	1787712-1787762	2.0	2	lmo2705	
	AATACCTGTC							ActA: actin-assembly inducing protein precursor
	ATTT	105	2.3	215616-215754	1.3		DNAX: highly similar to DNA polymerase III	}
	TTCGAATTTC	210255-210498	2.3				DNAX: highly similar to DNA polymerase III	}
	ACCACCACTT							lmo0652 and lmo0653
	AGCGGATGAAG							lmo1738: similar to amino acid ABC transporter
	AGTAAAGCT							ActA: actin-assembly inducing protein precursor
	TCTTTTGCCCA							DNAX: highly similar to DNA polymerase III
	GAGACACCAAA							lmo2705
	TGCTTTCTGGT							lmo2705
	TTTAAATGCTCC							lmo2705
	TGCTACATCA							lmo2705
	GAACCGAGCTCA							lmo2705
	CA							lmo2705
	CTTCTGGTGT	695517-695569	2.1	701866-701977	4.2	2	argG: argininosuccinate synthase	
	TCAAGGACTTT							argG: argininosuccinate synthase
	CTGGTA							argG: argininosuccinate synthase
	AGATTTGATTT	2779641-2779814	2.3	2732284-2732373	1.2	2	argG: argininosuccinate synthase	
	GATGCTCGAT							argG: argininosuccinate synthase
	ATAAATCTGA							argG: argininosuccinate synthase
	GCAAACGGATG							argG: argininosuccinate synthase
	GATTTAAATCC							argG: argininosuccinate synthase
	TCCC							argG: argininosuccinate synthase
Lm-26 Sperry et al. (2008)	AATGTATTTTTT	2169160-2169208	2.7	2157678-2157744	3.7	2	argG: argininosuccinate synthase	
	ATTTAAAA							argG: argininosuccinate synthase

www.intechopen.com
Conversely, for Lm-8, Lm-26, JLR4, LMCEB 01,02,03,04,05,06,12,14, the size of the amplification products observed in the same run and in two different runs remained the same. Moreover, the sizes (Table 4) were identical to those predicted by genome sequence analysis. Sequencing of the amplification products demonstrated that the size differences

Primer name	Locus name	Sequence (5’-3’)	Amplicon location in F2365	Amplicon location in EGDe
LMCEB01F	LMCEB01	ATT AAA AGA AGC	178682 297 173343 279	
LMCEB01R	LMCEB01	AAA YGC AAC TGG	178978 173621	
LMCEB02F	LMCEB02	TGT ATT CTT GAT	358114 193 345088 151	
LMCEB02R	LMCEB02	CCA CCA AAA AAC	358306 345239	
LMCEB03F	LMCEB03	GTA GAA CAG TAA	596015 295 589413 295	
LMCEB03R	LMCEB03	CCW GAA GAT AAG	596290 589707	
LMCEB04F	LMCEB04	AAT CAA GGT ATY	1228488 287 1251367 287	
LMCEB04R	LMCEB04	GTT AAR CCA TCT	1228774 1251654	
LMCEB05F	LMCEB05	TAT AAT GTC TGT	1787620 210 1807952 210	
LMCEB05R	LMCEB05	ATT TGG AAT GGW	1787829 1808162	
LMCEB06F	LMCEB06	AGA AAA RTG AAG	215594 243 210233 348	
LMCEB06R	LMCEB06	TAA TAG CAY TTC	215836 210581	
LMCEB12F	LMCEB12	RAT TTT ATT TGT	701838 320 695492 308	
LMCEB12R	LMCEB12	AAG GYA CTT TTA	702100 695694	
LMCEB14F	LMCEB14	RTG GGA AGT TTT	2732111 316 2779467 393	
LMCEB14R	LMCEB14	GAT TTT TGR TTT	2732425 2779620	
LMCEB13F	Lm-26	AAT GGA AGT AGA	2157557 251 2169040 233	
LMCEB13R	Lm-26	TTA TAT TAA CAC	2157807 2169273	

Table 4. Primers and characteristics of PCR amplification products in the reference strains for each of the nine VNTR loci selected through a bioinformatics-based search.
observed on the gel of strains EGDe and F2365 were solely related to the differences in repeat number, and not nucleotide variation in the flanking regions. For each locus, the repeat number was very similar to that indicated in the databases.

3.2.1.4 Screening of VNTR loci on the total strain panel

The 11 VNTR loci (Lm-8, Lm-26, JLR4, LMCEB01,02,03,04,05,06,12,14) were tested on the total test strain panel to evaluate the polymorphism of each VNTR locus. The loci LMCEB01, 03 and 04 exhibited no diversity (Table 5) and were therefore removed from the study. The eight remaining VNTR loci displayed between two and six alleles. Locus JLR4 had the highest diversity.

VNTR locus name	No. of alleles	No. of repeats	
	Min	Max	
LMCEB01	0	2	2
LMCEB02	3	-1	3
LMCEB03	0	2	2
LMCEB04	0	3	3
LMCEB05	2	-1	2
LMCEB06	2	1	2
LMCEB12	3	1	4
LMCEB14	4	-1	4
Lm-26	3	-1	4
Lm-8	2	3	4
JLR4	6	3	12

Table 5. Numbers of alleles and repeats found at each VNTR locus.

3.2.1.5 Comparison of data obtained with conventional electrophoresis and those obtained with CE

Two loci Lm-8 and JLR-4 were tested at Serun Statens Institute on the common panel of 40 strains using CE. Except for two strains, all showed the same repeat number. For Lm-8, one strain from SSI, 20092474, had a real repeat number of 2.7 in CE and 2.4 in agarose gel electrophoresis. For JLR4, one strain from SSI, 20082357, had a real repeat number of 3 in CE and 3.56 in agarose gel electrophoresis.

3.2.1.6 MLVA stability

The stability of each locus was evaluated to determine the effect of laboratory passage. The copy number was determined to be 100% reproducible (data not shown). Each of the eight loci tested on three reference strains were stable.

3.2.1.7 MLVA reproducibility

The MLVA types were indistinguishable for the four duplicate TS strains (TS32,TS72; TS56,TS77; TS35,TS75; TS63,TS73). The MLVA types were correlated with the epidemiological groups for the 17 tested TS strains. Two strains (TS 55 and TS 21) of the
The Use of Pulsed Field Gel Electrophoresis in Listeria monocytogenes
Sub-Typing – Comparison with MLVA Method Coupled with Gel Electrophoresis

Fig. 1. Cluster analysis of 72 isolates based on MLVA type using the categorical coefficient and UPGMA. Number, origin, serotype, MLVA typing results and combined PFGE results. Each color indicates a distinct MLVA type.

www.intechopen.com
Fig. 2. Cluster analysis of 72 isolates based on combined PFGE using the categorical coefficient and UPGMA. Number, origin, serotype, MLVA typing results and combined PFGE results. The colors (including also white color) indicate distinct combined PFGE types.
same epidemiological group 16 displayed two different MLVA types, 05 and 09. The
difference was related to a repeat in the locus JLR-4. Strain TS 67 and three other strains of
group 03 displayed two different MLVA types. No amplification was observed for the strain
TS 67 at locus LMCEB05.

3.2.2 MLVA assay applied on the test panel of strains

Based on MLVA results, the 72 isolates were divided into 21 types (Figure 1). MLVA types
were clustered into two groups. All the isolates of serotypes 1/2a, 3a, 1/2c, 3c were
classified in one group, while all the isolates of serotypes 4b, 1/2b, 3b, 4d were in another
group (Figure 1). Nineteen of the 21 types contained isolates of the same serotype (Figure 1).
Type “10” contained isolates of two serotypes 1/2a and 1/2c and the autoagglutinable
strain. Type “7” contained isolates of two serotypes 4b and 1/2b and one isolate of the 1/2c
serotype (Figure 1).

3.2.3 PFGE data

For PFGE, the two-enzyme combination divided the isolates into 48 distinct profiles
(Figure 2). All the isolates of serotype 1/2a, 3a, 1/2c, 3c were classified in one group, while
all the isolates of serotypes 4b, 1/2b, 3b, 4d were in another group. Combined PFGE types
contained isolates of the same serotype, except the type “70/25”, which contained isolates of
serotypes 1/2c and 3c.

3.2.4 MLVA data compared with PFGE data

Six different MLVA types were encountered for nine distinct epidemiological groups. A
single Apal/AscI PFGE type was observed for each epidemiological group (Figure 1).
Five MLVA types (“19”, “3”, “4”, “21”, “16”) contained one unique Apal/AscI PFGE type.
The other MLVA types contained at least two different PFGE types. The five Apal/AscI PFGE
types “19/15”, “120/191”, “70/25”, “12/1”, “146/73” were divided among two MLVA types
(“9”, “5”), three MLVA types (“10”, “12”, “13”), two MLVA types (“10”, “14”), two MLVA
types (“17”, “18”) and two MLVA types (“11”, “15”), respectively (Figure 1).

4. Discussion

The objective of this work was to evaluate the feasibility of an MLVA scheme coupled with
conventional agarose gel electrophoresis for subtyping L. monocytogenes. This type of scheme
would be very useful for L. monocytogenes surveillance, because it can be implemented by
any molecular laboratory and does not require an expensive capillary electrophoresis
system.

Out of the 16 VNTRs published, only eight Lm-3, Lm-8, Lm-10, Lm-11, Lm-15, JLR4, LMV6-
JLR and LMV9-JLR were selected here because (I) their repeat length was greater than or
equal to 9 bp as demonstrated on a large panel of human and food strains (Sperry et al.,
2008; Larson et al. 2010; Lindstedt et al., 2008; Murphy et al., 2007). For six out of eight loci
(Lm-3, Lm-10, Lm-11, Lm-15, LMV6-JLR and LMV9-JLR), the size of the amplification
products observed on the agarose gels differed between the runs. This result was observed
for different primer sets, both previously published and newly designed. This result was surprising, particularly regarding loci Lm-3 and Lm-10, for which Murphy et al. (2007) observed accurate detection on agarose gels. In this study, agarose gel electrophoresis does not appear to be sufficiently accurate for determining repeat number for these six loci. In contrast, agarose gel electrophoresis was suitable for loci Lm-8 and JLR-4. The sizing discrepancies need to be normalized to develop a standardized agarose gel protocol using all the VNTRs selected here.

For Lm-8, the amplification protocol used here was as similar to that described by Sperry et al. (2008). The repeat number obtained here for the 34 “TS” strains on agarose gel was exactly the same as that obtained on the same panel on a CE Beckman Coulter CEQ 8000 genetic analyzer (Sperry et al., 2008). For Lm-8 and JLR-4, of 39 strains from a panel of 40, the repeat number on agarose gels was exactly the same as that obtained on the ABI 3130 genetic analyzer (Applied Biosystems) at SSI (Larsson et al., 2010). For only one strain, a low difference (maximum 0.56) was observed in the number of base pairs. We demonstrated here that the change in equipment used for the detection of JLR4 and Lm-8 did not affect the determination of repeat number. These data confirm the reliability of these two loci.

However, locus Lm-8 revealed low levels of diversity (2 alleles) on the tested panel of human and food strains. This result corroborates those obtained by Sperry et al. (2008) who report only two alleles from a panel of 193 isolates. Locus JLR-4 showed the highest number of alleles. Locus Lm-26 also showed low diversity (3 alleles), as previously demonstrated by Sperry et al. (2008). This locus overlaps with locus LM-TR2, included in the scheme of Murphy et al. (2007). It had the lowest diversity index in comparison to the five other VNTR loci.

The five VNTR loci found here, LM 02, 05, 06, 12, 14, were identified from the sequenced genomes of three reference strains. They have never been described before. Our results demonstrate that these loci show reliable amplification.

With 71 of 72 strains, our MLVA scheme of eight loci (Lm 02, 05, 06, 12, 14, Lm-8, Lm-26 and JLR-4) confirmed the division of *L. monocytogenes* strains into two distinct genetic lineages. One strain of the 1/2c serotype showed an MLVA type common to strains of serotype 1/2b and 4b. This strain belonged to molecular serogroup IIc and has a combined PFGE profile specific to 1/2c and IIc strains. Other molecular methods are needed to further investigate the genetic profile of this strain.

Five VNTR loci, LM 02, 05, 06, 12, 14, exhibited low diversity on the total test strain panel. These data indicate that the MLVA scheme developed here was less discriminating than *ApaI/AscI* PFGE. However, the eight VNTR loci selected in this study have proved useful and can be included in a larger MLVA scheme coupled with CE, including VNTR loci with shorter repeat motifs and with higher polymorphism. The more polymorphic loci were excluded from this study, either because they are too short to be visible on agarose gels or because sizing discrepancies were observed on agarose gels. It is absolutely necessary to normalize these sizing discrepancies for accurate and standardized detection on agarose gels. Moreover, in the future, it is necessary to compare all the data obtained in different laboratories and to harmonize VNTR loci and allele naming for a standardized *L. monocytogenes* MLVA scheme.
5. Acknowledgements

This work was conducted as part of the activities of the European Union Reference Laboratory for *Listeria monocytogenes* and was supported by a grant from the Directorate-General for Health and Consumers (DG Sanco) of the European Commission.

6. References

Barrett, T.J., Gerner-Smidt, P. & Swaminathan, B. (2006). Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. *Foodborne Pathog Dis*. 3, 20-31

Bille, J. & Rocourt, J. (1996). WHO international multicenter *Listeria monocytogenes* subtyping study- rationale and set-up of the study. *Int J Food Microbiol* 32(3), 251-62

Graves, L.M. & Swaminathan, B. (2001). PulseNet standardized protocol for subtyping *Listeria monocytogenes* by macrorestriction and pulsed-field gel electrophoresis. *Int J Food Microbiol* 65(1-2), 55-62

Hyytia-Trees, E. (2010). Genetic diversity of *Listeria monocytogenes* measured by multiple-locus VNTR analysis. *ISOPOL XVII* may 5-8th, 2010, Porto, Portugal

Kerouanton, A.; Marault, M.; Petit, L.; Grout. J.; Dao, TTD. & Brisabois, A. (2010). Evaluation of a multiplex PCR assay as an alternative method for *listeria monocytogenes* serotyping. *J Microbiol Methods* 80(2), 134-7

Larsson, JT.; Roussel, S. & Moller Nielsen,E. (2010). Better and faster typing, MLVA – shall we play together?. *ISOPOL XVII* may5-8th, 2010, Porto, Portugal

Lindstedt, BA.; Tham, W.; Danielsson-Tham, ML.; Varvund, T.; Helmersson, S. & Kapperud, G. (2008). Multiple-Locus Variable-Number Tandem-Repeats Analysis of *Listeria monocytogenes* Using Multicolour Capillary Electrophoresis And Comparison With Pulsed-Field Gel Electrophoresis Typing. *J Microbiol Methods* 72(2), 141-8

Martin, P.; Jacquet, C.; Goulet, V.; Vaillant, V. & de Valk, H. (2006). Pulsed-Field Gel Electrophoresis of *Listeria monocytogenes* Strains: The PulseNet Europe Feasibility Study. *Foodborne Pathog Dis* 3(3), 303-8

Miya, S.; Kimura, B.; Sato, M.; Takahashi. H.; Suda, T.; Takakura, C.; Fujii, T. & Wiedmann, M. (2008). Development of a Multilocus Variable-Number of Tandem Repeat Typing Method for *Listeria monocytogenes* serotype 4b strains. *Int J Food Microbiol* 124(3), 239-249

Murphy, M.; Corcoran, D.; Buckley, JF.; Mahony, M.; Whyte, P. & Fanning, S. (2007). Development and application of Multiple-Locus Variable Number of Tandem Repeat Analysis (MLVA) to subtype a collection of *Listeria monocytogenes*. *Int J Food Microbiol* 115(2), 187-94

Schönberg, A.; Bannerman, E. & Courtieu, AL. (1996). Serotyping of 80 strains from the WHO multicenter international typing study of *Listeria monocytogenes*. *Int J Food Microbiol*; 32, 279-287

Vergnaud, G. & Pourcel, C. (2006). Multiple-Locus VNTR (variable-number tandem-repeat) Analysis. Molecular Identification, Systematic, and Population Structure of Prokaryotes. E. Stackebrandt (ed.). Springer-Verlag Berlin Heidelberg 2006. chap4, 83-104
Volpe-Sperry, KE.; Kathariou, S.; Edwards, J.S. & Wolf LA. (2008). Multiple-Locus Variable-Number Tandem-Repeat Analysis As A Tool For Subtyping Listeria Monocytogenes Strains. *J Clin Microbiol* 46(4), 1435-1450
Most will agree that gel electrophoresis is one of the basic pillars of molecular biology. This coined terminology covers a myriad of gel-based separation approaches that rely mainly on fractionating biomolecules under electrophoretic current based mainly on the molecular weight. In this book, the authors try to present simplified fundamentals of gel-based separation together with exemplarily applications of this versatile technique. We try to keep the contents of the book crisp and comprehensive, and hope that it will receive overwhelming interest and deliver benefits and valuable information to the readers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sophie Roussel, Marie-Leone Vignaud, Jonass T Larsson, Benjamin Felix, Aurore Rossignol, Eva Moller Nielsen and Anne Brisabois (2012). The Use of Pulsed Field Gel Electrophoresis in Listeria monocytogenes Sub-Typing - Comparison with MLVA Method Coupled with Gel Electrophoresis, Gel Electrophoresis - Principles and Basics, Dr. Sameh Magdeldin (Ed.), ISBN: 978-953-51-0458-2, InTech, Available from: http://www.intechopen.com/books/gel-electrophoresis-principles-and-basics/feasibility-of-the-mlva-method-coupled-with-agarose-gel-electrophoresis-for-subtyping-listeria-monoc
