Beta decay of the very neutron-deficient 60Ge and 62Ge nuclei

S. E. A. Orrigo,¹,* B. Rubio,¹ W. Gelletly,¹,² P. Aguilerà,¹,³ A. Algorà,¹,⁴ A. I. Morales,¹ J. Agramunt,¹ D. S. Ahn,⁵ P. Ascher,⁶ B. Blank,⁶ C. Borcea,⁷ A. Bosò,⁸ R. B. Cakirli,⁹ J. Chiba,¹⁰ G. de Angelis,¹¹ G. de France,¹² F. Diel,¹³ P. Doornenbal,⁵ Y. Fujita,¹⁴ N. Fukuda,⁵ E. Ganioglu,⁹ M. Gerbaux,⁶ J. Giovvainazzo,⁶ S. Go,¹⁵ T. Goigoux,⁶ S. Grévy,⁶ V. Guadilla,¹ N. Inabe,¹ G. Kiss,¹ T. Kubo,¹ S. Kubono,⁵ T. Kurtukian-Nieto,⁵ D. Lubos,¹⁶ C. Magron,⁶ F. Molina,³ A. Montaner-Pizá,¹ D. Napoli,¹¹ D. Nishimura,¹⁷ S. Nishimura,¹ H. Okawa,¹⁰ Y. Shimizu,⁵ C. Sidong,⁵ P.-A. Söderström,⁵ T. Sumikama,⁵ H. Suzuki,⁵ H. Takeda,⁵ Y. Takei,¹⁰ M. Tanaka,¹⁴ P. Vi,⁵ J. Wu,⁵ and S. Yagi¹⁰

¹Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
²Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey, UK
³Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
⁴Inst. of Nuclear Research of the Hung. Acad. of Sciences, Debrecen, H-4026, Hungary
⁵RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
⁶Centre d’Études Nucléaires de Bordeaux Gradignan, CNRS/IN2P3 - Université de Bordeaux, 33175 Gradignan Cedex, France
⁷National Institute for Physics and Nuclear Engineering IFIN-HH, P.O. Box MG-6, Bucharest-Magurele, Romania
⁸INFN Sezione di Padova and Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
⁹Department of Physics, Istanbul University, Istanbul, 34134, Turkey
¹⁰Department of Physics, Tohoku University of Science, Noda, Chiba 278-8510, Japan
¹¹Laboratori Nazionali di Legnaro INFN, I-35020 Legnaro, Padova, Italy
¹²Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France
¹³Institute of Nuclear Physics, University of Cologne, D-50937 Cologne, Germany
¹⁴Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
¹⁵Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA
¹⁶Physik Department E12, Technische Universität München, D-85748 Garching, Germany
¹⁷Department of Natural Sciences, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan

We report here the results of a study of the β decay of the proton-rich Ge isotopes, 60Ge and 62Ge, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of 62Ge (73.5(1) ms), 60Ge (25.0(3) ms) and its daughter nucleus, 60Ga (69.4(2) ms). We measured individual β-delayed proton and γ emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total β-delayed proton-emission branching ratio of 67(3)% has been obtained for 60Ge. New information has been obtained on the energy levels populated in 60Ga and on the $1/2^+$ excited state in the βp daughter 59Zn. We extracted a ground state to ground state feeding of 85.3(3)% for the decay of 62Ge. Eight new γ lines have been added to the de-excitation of levels populated in the 62Ga daughter.

PACS numbers: 23.40.-s, 23.50.+z, 21.10.-k, 27.50.+e.
Keywords: β decay, decay by proton emission, 60Ge, 62Ge, 60Ga, 59Zn, proton-rich nuclei, Fermi and Gamow-Teller transitions, mass excess, isospin symmetry.

I. INTRODUCTION

The investigation of nuclear structure close to the limits of nuclear existence is one of the frontiers of modern Nuclear Physics. The study of the properties of exotic nuclei is crucial to provide tests of the predictions of nuclear models at extreme values of isospin. The experimental challenge involved with the production of such unstable nuclei has resulted in a worldwide effort to build next-generation facilities producing and accelerating radioactive ion beams (RIBs) of very high intensity. Heavy neutron-deficient nuclei can now be produced up to the proton drip-line, enabling the realization of detailed decay studies and the observation of new exotic decay modes [1–4].

The structural properties of exotic proton-rich nuclei are also important for Nuclear Astrophysics, because many of them lie on the rp-process (rapid proton-capture) reaction pathway leading to the production of the heavy elements in the Universe in explosive stellar environments [5–8].

Decay spectroscopy experiments with implanted RIBs are a powerful tool to explore the properties of exotic nuclei and provide rich spectroscopic information: β-decay half-lives, delayed emission of γ rays, particle-decay branching ratios (commonly protons are emitted in the case of proton-rich nuclei), excited states populated in the daughter nucleus, and so on. Furthermore β decay provides direct access to the absolute values of the Fermi $B(F)$ and Gamow-Teller $B(GT)$ transition strengths.

In this paper we present new results on the β decay of the neutron-deficient Ge isotopes, 62Ge and 60Ge. They were produced and implanted in unprecedented numbers at the Radioactive Ion Beam Factory (RIBF) of the
RIKEN Nishina Center (Japan) thanks to the availability of a high-intensity beam of 78Kr. 62Ge is a $T_z = -1$ nucleus about which little was known at the time of our experiment. 60Ge is a $T_z = -2$ nucleus whose decay is almost unknown, apart from a first measurement of its half-life with 28 events [9]. 60Ge is a semi-magic $N = 28$ isotope and the heaviest one for which the mirror 60Ni nucleus is stable, allowing one to explore mirror symmetry. The 60Ga daughter lies right at the proton drip-line and nothing is known of its level scheme. Hence our study provides brand new information.

In a more general context, this work is part of a systematic study of proton-rich nuclei which we have carried out at different RIB facilities [3, 4, 10–12], also in comparison with mirror charge-exchange experiments done on the mirror stable target [13]. One focus of interest for the $T_z = -2$ nuclei such as 60Ge is to explore the competition between the γ de-excitation and (isospin-forbidden) proton emission from the $T = 2$ Isobaric Analogue State (IAS), that is populated in the daughter nucleus by the β decay. This feature has been observed in all the lighter $T_z = -2$ systems already studied [3, 4]. The $T_z = -1$ nuclei such as 62Ge are also of interest to check whether the suppression of the isoscalar γ transitions between $J^z = 1^+$, $T = 0$ states (Warburton and Weneser quasi-rule [14, 15]) observed in previous $T_z = -1$ cases [12] persists.

The paper is organized as follows. Section II describes the experiment and the setup. The details of the data analysis are described in Section III. The results obtained on the β^+ decay of 60Ge are given in Section IV, together with new results on the β^+ decay of the 60Ga daughter. Section V shows the results on the β^+ decay of 62Ge. Finally, Section VI summarises the conclusions.

II. THE EXPERIMENT

The 60Ge and 62Ge proton-rich nuclei were produced with unprecedented intensity in an experiment performed at RIBF, RIKEN Nishina Center (Japan). A high-intensity (up to 250 pA) 78Kr primary beam was accelerated to 345 MeV/nucleon and fragmented on a 9Be target with thickness of 5 mm. The exotic fragments produced in this way were separated, selected and identified in the BigRIPS separator [16, 17] by means of the $B\rho - \Delta E - ToF$ method [18]. A series of parallel-plate avalanche counters (PPAC), multisampling ionization chambers (MUSIC) and plastic scintillators constitute the detection setup of BigRIPS and are employed to measure the position of the transmitted ions at different focal planes (which is related to the magnetic rigidity $B\rho$), their energy loss ΔE and time of flight ToF, respectively. Standard particle-identification procedures, together with additional off-line cuts on the BigRIPS variables to remove background events thoroughly, allow one to identify the ions by their atomic number Z and mass-to-charge ratio A/Q with high resolution [18, 19].

An example of the two-dimensional identification matrix obtained for the BigRIPS setting optimized for 60Br is shown in Fig. 1, where the positions of 60Ge and 62Ge are indicated. It should be noted that the odd 59Ge and 61Ge isotopes were also produced and their decay was studied in Refs. [19, 22].

The selected and identified fragments were then transmitted to the exit of the ZeroDegree spectrometer (ZDS) [17] where a setup for β-decay spectroscopy was installed. This setup consisted of the Wide-range Active Silicon Strip Stopper Array for Beta and ion detection (WAS3ABi) [20] and the EURoBall-RIKEN Cluster Array (EURICA) [21]. A common timestamp with a frequency of 108 Hz was used to correlate the data acquisition systems of BigRIPS, WAS3ABi and EURICA.

The WAS3ABi array was used to detect both the implanted heavy-ions and subsequent charged-particle (β particles and protons) decays, measuring their energy, position and time. WAS3ABi consisted of three 1-mm-thick Double-Sided Silicon-Strip Detectors (DSSSD), each one having a 6×4 cm2 area. Each DSSSD was segmented into 60 vertical (X) and 40 horizontal (Y) strips with a pitch of 1 mm, defining a total of 2400 pixels. Each strip was read individually by standard analogue electronics providing energy and time signals. A plastic scintillator was placed behind WAS3ABi acting as a veto, i.e., tagging the fragments that were not stopped inside WAS3ABi and also those undergoing secondary reactions in WAS3ABi.

In order to optimize the resolution for the β particles, the gain was set to achieve a full energy range of 4 MeV for the X strips, while the energy range of the Y strips was increased to 10 MeV to allow the detection of high-energy protons. Known β-delayed proton emitters (57Zn, 61Ge and 60Se) produced during the experiment, together with conversion electrons from a 207Bi source, were used for the energy calibration of WAS3ABi [22].

An implantation signal in WAS3ABi is characterised by an overflow energy signal. This is because the implanted fragments reach the array with energies well
above 1 GeV and, with the gain settings mentioned above, they saturate the electronics. Since it is not only the implantation strip that saturates, but also the neighbouring ones, the position \((X,Y)\) at which the implantation took place was determined by the fastest \(X\) and \(Y\) strips to fire.

WAS3ABi was surrounded by the EURICA array \([21]\), employed to detect both the prompt and \(\beta\)-delayed \(\gamma\) rays after the implantation event and measure their energies and times. In the present experiment EURICA used a total of 84 high-purity germanium detectors, arranged in 12 clusters containing 7 Ge crystals each. The \(\gamma\)-ray signals were acquired up to 100 \(\mu\)s after WAS3ABi provided a trigger in order to allow for the detection of the decay of isomeric states. EURICA was calibrated in energy using \(\gamma\) rays from \(^{133}\)Ba, \(^{152}\)Eu and \(^{244}\)Cm sources \([21]\). The efficiency was calibrated using the \(^{133}\)Ba and \(^{152}\)Eu sources, together with known \(\gamma\) rays from \(^{129}\)Cd and \(^{132}\)Sn observed in a previous experiment \([23]\). The array had an absolute detection efficiency of 10\% at 662 keV \([24]\).

III. THE DATA ANALYSIS

During the experimental campaign BigRIPS was optimised for different settings \([22, 24]\). In the present paper we report the analysis of data from two of them. The first was a setting optimised for \(^{65}\)Br, where both \(^{60}\)Ge and \(^{62}\)Ge were implanted. The second was optimised for \(^{64}\)Se, where only \(^{62}\)Ge was implanted. The WAS3ABi deadtime fraction \(\tau\), determined by comparing free and accepted triggers recorded for each run, was 22(3)\% for the first setting \((^{60}\)Ge) and 26(3)\% for the combination of both settings \((^{62}\)Ge).

Provided that the ions were identified in BigRIPS as explained in Section II, an implantation event had also to simultaneously satisfying the following conditions: (a) a signal in the last fast-plastic scintillator (F11) of the BigRIPS+ZDS spectrometer setup, (b) an overflow energy signal in WAS3ABi and (c) no signal in the veto plastic behind WAS3ABi. A \(\beta\)-decay event was defined as an event simultaneously satisfying the following conditions: (A) no signal in F11, (B) no overflow energy signal in the \(Y\) strips of WAS3ABi and (C) an energy signal above threshold (typically 50 keV) in WAS3ABi.

Standard techniques, extensively described in Section III of Ref. \([4]\), were employed to perform the data analysis, starting with the time correlations between implantation and decay events, the construction of the charged-particle decay-energy spectrum and the \(\beta\)-delayed \(\gamma\)-ray energy spectrum for decay events correlated with implantations of a given nuclear species and the determination of the Fermi and Gamow-Teller transition strengths.

In particular, in the present case, for a specified DSSSD in WAS3ABi each implantation event was correlated in time with any decay event occurring before and after it in the same pixel and in the 8 pixels surrounding it. This is because given the smaller size of the pixels, namely 1 mm\(^2\), the truly-correlated decay event may also occur in one of the closest pixels. This procedure accounts for the true time correlations, but at the price of introducing many random correlations. These latter will contribute to a flat background in the correlation-time spectrum which adds to the typical decay curve described by the Bateman equations \([25]\) and can easily be taken into account in the half-life fit \([4]\). Here the time correlations were performed over a period of time of \([-1\ s, +1\ s]\), where the backward-correlations part \([-1\ s, 0]\) clearly includes only random correlations and is used in the background estimation procedure. The half-life results are reported with their statistical uncertainties.

For a given nuclear species, the charged-particle decay-energy spectrum measured in WAS3ABi was obtained as the sum of the spectra from all the pixels. As in Ref. \([4]\) a clean decay-energy spectrum was formed by subtracting a background energy spectrum, constructed by setting a gate of \([-1\ s, 0]\) on the correlation time, from the decay-energy spectrum constructed in \([0, 1\ s]\).

The \(\gamma\)-ray energy spectrum correlated with implantations of a given nuclear species was obtained by summing all the Ge crystals of EURICA, producing spectra both with and without addback. It should be noted that in this paper we show those with addback. A similar background subtraction procedure was employed to obtain a clean \(\gamma\)-energy spectrum, using the same gates of \([-1\ s, 0]\) and \([0, 1\ s]\) on the correlation time. In addition, the \(\gamma\)-ray time was restricted to \([0, 800\ ns]\) with respect to the decay signal in WAS3ABi.

IV. BETA DECAY OF \(^{60}\)Ge

The exotic neutron-deficient \(^{60}\)Ge nucleus is a special system to study. It is a semi-magic \(N = 28\) isotope and the heaviest one for which the mirror nucleus \((^{60}\)Ni) is stable, which makes it easier to investigate mirror symmetry. Furthermore, the decay of \(^{60}\)Ge is almost unknown. Nothing is known about the level scheme of the \(^{60}\)Ga daughter, which is a nucleus lying right at the proton drip-line. There exists a first measurement of the half-life of \(^{60}\)Ge \([9]\) with 28 implantation events (19 of them with observation of \(\beta\)-delayed protons). The RIKEN high-intensity \(^{78}\)Kr beam allowed us to achieve the unprecedented statistics of \(1.5\times10^4\) implants of \(^{60}\)Ge. Moreover, \(^{60}\)Ge is a \(T_z = -2\) nucleus, hence its study may shed light on the possible competition between the \(\beta\)-delayed proton emission and \(\gamma\) de-excitation from the IAS in the daughter, as already observed in the decay of lighter \(T_z = -2\) systems \([3, 4, 26]\).

The charged-particle energy spectrum for decay events correlated with \(^{60}\)Ge implants is shown in Fig. 2. The bump visible in Fig. 2(a) at low energy is due to the detection of \(\beta\) particles and is fitted by an exponential function (green line). Eight peaks are observed at higher energy, corresponding to \(\beta\)-delayed proton emission. Their
fit is shown in Fig. 2(b). The best candidate for the de-excitation of the IAS of 60Ge in 60Ga is the most intense peak at $E_p = 2522$ keV which, as explained later in the text, corresponds to an excitation energy $E_X = 2612$ keV in 60Ga. As expected in this kind of experiment, the summing of the proton signals with those of the coincident β particles affects the line shape of the peaks. Following our procedure [3, 4], the line shape was determined by Monte Carlo simulations and checked by fitting the well-known 57Zn peaks. The decay energies E_p and their intensities I_p per 100 decays are shown in Table I. It should be noted that E_p is the total energy released in the proton decay including the energy of the recoiling nucleus.

Fig. 3 shows the correlation-time spectrum obtained for 60Ge selecting only the β-delayed proton decays, by setting the condition WAS3ABi energy $E_p > 1$ MeV. The half-life is determined by a least squares fit to the data including the parent activity and a linear background, fixed by a fit to the backward-correlations part, as in Ref. [4]. A value of $T_{1/2} = 25.0(3)$ ms was obtained for 60Ge. A fit using a maximum likelihood minimization method gives a consistent result. We have improved the precision on the half-life value in comparison with the only existing measured value of 20^{+7}_{-5} ms [9].

The total proton-emission branching ratio B_p is determined, as in Ref. [4], by comparing the total number of protons, N_p (obtained from the fit shown in Fig. 3), with the total number of implanted nuclei, N_{imp}, according to:

$$B_p = \frac{N_p}{N_{imp} (1 - \tau)},$$

where τ is the deadtime fraction (see Section III). A value $B_p = 67(3)%$ is obtained, where the uncertainty takes into account both the statistical and systematics ones. The latter was estimated as previously [4, 26] by repeating the determination of B_p changing the condition on the energy E_p by ±100 keV.

Fig. 4 shows the γ-ray energy spectrum from the β decay of 60Ge ($T_z = -2$) to 60Ga ($T_z = -1$). Besides the 511 keV γ line associated with the annihilation of the positrons emitted in the β decay, seven γ lines are observed at 463, 491, 837, 1004, 1332, 1775 and 3848 keV. These γ transitions belong to different nuclei in the decay chain of 60Ge, as we discuss in detail below. The γ lines which we observe for the first time are underlined in the figure. In particular, the γ lines at 837, 1332 and 1775 keV are associated with the γ de-excitation of states in the 60Ga daughter. The energies and intensities of all the γ rays observed in Fig. 4 are given in Table I. The intensities I_γ^i are obtained as:

$$I_\gamma^i = \frac{N_\gamma^i}{\epsilon_\gamma^i \epsilon_{\text{decay}} N_{imp} (1 - \tau)},$$

where N_γ^i represents the number of counts obtained from the integral of the i^{th} γ peak and ϵ_γ^i is the corresponding efficiency for γ detection (Section II). The data acquisi-
The observed \(\gamma \) lines belong to different nuclei in the decay chain of \(^{60}\text{Ge} \) (see the text).

\(\beta \)-delayed proton emission \(E_p(\text{keV}) \)	\(\beta \)-delayed \(\gamma \) de-excitation \(E_{\gamma}(\text{keV}) \)		
\(I_p(\%) \)	\(I_\gamma(\%) \)		
820(13)	2.8(4)	463.3(1)	8(1)
1076(23)	4.0(5)	491.2(2)	7(1)
1359(19)	5.1(4)	837.2(2)	9(1)
1684(17)	4.2(3)	1003.3(2)	15(2)
2067(15)*	10.2(5)	1332.3(4)	4(1)
2522(15)*	33(1)	1774.6(9)	2(1)
2981(23)	3.2(3)	3848.0(9)	13(3)
3490(22)	1.9(2)		

* IAS proton emission to the first excited state of \(^{59}\text{Zn} \).

The \(\beta \)-delayed proton emission was triggered by either an implantation event or a decay event and the \(\gamma \) rays were not included in the trigger. They were acquired in coincidence with decay events (\(\beta \) or \(\beta p \)) and thus affected by the decay detection efficiency \(\epsilon_{\text{decay}} \). This efficiency was estimated as in Ref. [4] and it was 58(2)% for \(\gamma \) rays coincident with pure \(\beta \) events, and 1 for the 463 keV \(\gamma \) ray coincident with \(\beta p \) events.

The reader may refer to Fig. 8 for a summary of the decays that intervene in the following discussions. Below we discuss in detail the origin of all the observed \(\gamma \) lines. As shown in Fig. 2, \(\beta \)-delayed proton emission takes place in the \(\beta \) decay of \(^{60}\text{Ge} \). This process, passing through proton-unbound excited states of \(^{60}\text{Ga} \), populates states in \(^{59}\text{Zn} \) \((T_z = -1/2)\). \(^{59}\text{Zn} \) then \(\beta \) decays to its mirror nucleus, \(^{59}\text{Cu} \) \((T_z = +1/2)\) with \(T_{1/2} = 182.4(4) \) ms (see below). The 491 keV \(\gamma \) line is known and is the transition connecting the 1/2\(^-\) first excited state of \(^{59}\text{Cu} \) to its 3/2\(^-\) ground state (g.s.) \([28, 29]\).

Analysing the direct implantation of \(^{59}\text{Zn} \) \((2.5 \times 10^6 \) implants\) we obtained \(T_{1/2} = 182.4(4) \) ms, that may be compared with the previous values of 210(20) \([28]\), 182.0(18) \([29]\), 173(14) \([30]\) and 174(2) \([11]\) ms. We also obtained the \(\gamma \)-ray energy spectrum correlated with \(^{59}\text{Zn} \) implants (shown in Fig. 5) where, as expected, we observe known \(\gamma \) lines de-exciting levels in \(^{59}\text{Cu} \). Comparing the \(\gamma \) lines of Figs. 4 and 5, the new \(\gamma \) lines \((463, 837\) and 1332 keV\) are not present in Fig. 5, while in both figures there is a line at 1775 keV. A known 1775-keV \(\gamma \) ray de-excites the 2267 level in the \(^{59}\text{Cu} \) daughter nucleus, populating the 491 keV level. We think that the 1775 keV line of Fig. 4 belongs to a different transition, because otherwise we should have also observed the more intense 914 keV line in Fig. 4. The proton separation energy in \(^{59}\text{Zn} \) is 2836.8(7) keV \([31]\) and the total

\(\beta \)-delayed proton-emission branching ratio is 0.023(8)% \([28]\), hence the contribution of the proton emission from \(^{59}\text{Zn} \) is negligible in the decay chain of \(^{60}\text{Ge} \).

As mentioned above, the first excited state in \(^{59}\text{Cu} \) is 1/2\(^-\) with 491 keV excitation energy and de-excites to its 3/2\(^-\) g.s. through a \(\gamma \) transition of the same energy \([28, 29]\). The g.s. of \(^{59}\text{Zn} \) is also 3/2\(^-\) \([28]\) but the energy of the expected 1/2\(^-\) excited state is not known. The isospin symmetry and the expected similarity between
^{59}Cu and ^{59}Zn suggest that the 463 keV γ line of Fig. 4 may be associated with the transition between the expected $1/2^-$ excited state of ^{59}Zn and its $3/2^-$ g.s. An additional hint at this conclusion comes from the energy difference between the proton peaks at $E_p = 2067(15)$ and $2522(15)$ keV (Table I) which agrees, within the uncertainty, with the value of 463 keV. This suggests that the two proton peaks are indeed a doublet corresponding to the transitions from the IAS in ^{60}Ga to the first excited and ground states of ^{59}Zn, respectively. It should be noted that the parent of ^{59}Zn, ^{59}Ga, is probably unbound, therefore the β-delayed proton decay from ^{60}Ge is presumably the best way to populate the first excited state of ^{59}Zn.

Table II: γ rays observed in the β^+ decay of ^{60}Ga

E_γ (keV)	I_γ (%)	E_γ (keV)a	$I_\gamma^{rel\ ab}$	I_γ^{ac} (%)
669.3(3)	0.36(9)	669.3(3)	1.00(17)	62(11)
850.8(2)	0.75(10)	850.8(2)	0.38(8)	
913.9(3)	0.3(1)	913.9(3)	1.6(1)	
1003.5(1)	62(3)	1003.5(1)	100(17)	62(11)
1028.6(3)	0.38(8)	1028.6(3)		
1188.4(2)	1.6(1)	1188.4(2)		
1201.8(3)	0.29(7)	1201.8(3)		
1413.7(3)	0.35(7)	1413.7(3)		
1442.1(3)	0.40(8)	1442.1(3)		
1481.4(3)	1.3(1)	1481.4(3)		
1554.7(3)	7.0(5)	1554.7(3)	12(5)	7.4(31)
1780.8(7)	0.2(1)	1780.8(7)		
2047.2(6)	0.7(2)	2047.2(6)		
2293.2(4)	6.3(5)	2293.2(4)	10(5)	6.2(31)
2334.2(5)	0.8(2)	2334.2(5)		
2434.2(4)	1.8(2)	2434.2(4)		
2558.7(4)	8.5(6)	2558.7(4)	13(5)	8.1(31)
2624.3(7)	0.3(1)	2624.3(7)		
2826.0(5)	1.3(2)	2826.0(5)		
2884.0(5)	0.8(2)	2884.0(5)		
2996.8(5)	2.0(3)	2996.8(5)		
3337.4(4)	7.1(6)	3337.4(4)		
3394.8(4)	7.0(6)	3394.8(4)		
3848.5(4)	38(3)	3848.5(4)	57(13)	35(8)
3889.1(5)	2.8(8)	3889.1(5)		
4000.9(5)	2.8(4)	4000.9(5)		
4805.0(5)	0.4(1)	4805.0(5)		
4850.2(6)	0.2(1)	4850.2(6)		
4891.9(5)	0.4(1)	4891.9(5)		

a From Ref. [27].
b Relative intensity.
c Absolute intensity (calculated using our measured intensity for the 1004 keV γ ray).
TABLE III: Mass excesses (in keV) of the four members of the $A = 60$, $T = 2$ mass multiplet that are used as the input for the IMME calculations. Mass excess (in keV) of the $T_z = -2$, 60Ge$_g.s.$ nucleus obtained by the IMME calculations and compared with the 2016 and 2003 AME systematics [32, 33].

$$A = 60, T = 2$$ input values

T_z	Mass Excess (keV)
$+2$	-64473.1(4)a
$+1$	-55804.5(5)a
0	-46807(24)a
-1	-37405(15)b

IMME result for $T_z = -2$: 2016 AME [32] 2003 AME [33]

-27678(22) -27090a (300a) -27770b (230b)

a From Ref. [32].
b From the present β-delayed proton emission data.

$^#$ Values obtained from systematics.

state at 463 keV in 59Zn.

On the other hand, the β decay of 60Ge populates directly states in the 60Ga daughter. The latter then β decays to 60Zn (with $T_z = 0$ and being its own mirror since $Z = N = 30$) populating its IAS at 4852 keV, which de-excites mainly by the cascade of 3848 and 1004 keV γ rays [27] that are both observed in Fig. 4. Looking at the direct implantation of 60Ga (7.6×105 implants), we obtained the γ-ray energy spectrum of Fig. 6, showing the γ de-excitation in 60Zn. In this spectrum we observe all the most intense γ transitions at 1004, 1555, 2293, 2559 and 3848 keV, already seen in Ref. [27], and several other γ lines listed in Table II. The intensities of the five known γ transitions agree with those observed in Ref. [27]. None of the new γ lines (837, 1332 and 1775 keV) of Fig. 4 is observed in Fig. 6. A value $B_p = 1.6(7)$% was obtained for the β-delayed proton emission from 60Ga [27], populating 59Cu. Thus this process could also make a minor contribution to the observed 491 keV γ line (Fig. 4), even if we do not see this line in Fig. 6. Analysing the charged-particle spectrum for decay events correlated with 60Ga implants, we found the contribution of the β-delayed proton emission from 60Ga to be of the order of 1% in comparison to that from 60Ge (Fig. 2). Last but not least, we have improved our knowledge of the 60Ga half-life, obtaining $T_{1/2} = 69.4(2)$ ms from the fit shown in Fig. 7, that may be compared with the previous values of 70(15) [27] and 76(3) ms [11].

The mass of 59Zn is known [32], but the mass of 60Ga has not been measured, which makes difficult to estimate properly the excitation energy E_X of the IAS and other nuclear levels populated in the 60Ga daughter based on the observation of the proton peaks. The mass excess of 60Ge has also not been measured. From systematics ($^#$) the most recent atomic mass evaluation (AME) [32] gives a g.s. mass excess of $-27090^#(300^#)$ keV for 60Ge and $-39590^#(200^#)$ keV for 60Ga. From these masses the value $Q_\beta = 12500^#(360^#)$ keV is obtained [31]. The proton separation energy in 60Ga is also not known experimentally. Systematics gives us $S_p = -340^#(200^#)$ keV [31], while a semiempirical estimate gives 40(70) keV [27]. A systematic value for the excitation energy of the IAS is $E_X^{\text{IAS}} = 2540^#(50^#)$ keV [32]. Ref. [9] calculated a value of 2520(280) keV based on Coulomb energy difference.

From our experimental data we can obtain the mass excess of the IAS in 60Ga. The information from the β-delayed proton emission gives us a proton energy $E_p^{\text{IAS}} = 2522(15)$ keV (Table I), remembering that $E_X = E_p + S_p$. Using our E_p^{IAS} and the measured value for the mass excess of the 59Zn$_g.s.$, -47215.6(8) keV [32], one can determine the mass excess of 60Ga$_{\beta+}$ being -37405(15) keV. Considering the latter mass together with the measured masses for the other three members of the $T = 2$ isospin multiplet (60Zn$_{IAS}$, 60Cu$_{IAS}$ and 60Ni$_{IAS}$, listed in Table III), one can apply the Isobaric Multiplet Mass Equation (IMME) [34, 35] to determine the 60Ge$_{\beta+}$ mass excess, obtaining a value of -27678(22) keV. The 2003 AME value of -27770b (230b) keV [33] agrees with our value better than the most recent AME mass excess. In Section V we observe similar behaviour for the case of 62Ge. Issues with AMEs subsequent to that in 2003 have been reported already for proton-rich nuclei in this region of the mass chart [3, 4, 36] and we believe that more mass measurements would be very useful to constrain the future AME in this mass region.

The IAS in 60Cu, which is the mirror nucleus of 60Ga, lies at 2536.0(6) keV and de-excites through a γ cascade with γ energies 1866 and 670 keV [37]. Based on mirror symmetry, together with the observed intensities for the 837 and 1775 keV γ rays (Table I), we think that the IAS in 60Ge de-excites through a γ cascade consisting of the 1775 and 837 keV γ rays, in this order. From the energies of these γ rays we can determine the excitation energy of the 60Ga$_{\beta+}$, $E_X^{\text{IAS}} = 2611.8(9)$ keV, which agrees with the expected values [9, 32]. We can also deduce other properties of 60Ga, such as the g.s. mass excess, -40016(15) keV, and $S_p = 90(15)$ keV. Finally, we calculate the value $Q_\beta = 12338(27)$ keV for the β^+ decay of 60Ge.

The quantities deduced above are used to determine the excitation energies E_X of the levels in 60Ga, the Fermi $B(F)$ and Gamow-Teller $B(GT)$ transition strengths. They are reported in Table IV together with the β feeding.

TABLE IV: Summary of the results for the β^+ decay of 60Ge. Level excitation energies E_X in 60Ga, β feedings I_β, Fermi $B(F)$ and Gamow-Teller $B(GT)$ transition strengths.

E_X (keV)	I_β (%)	$B(F)$	$B(GT)$
3580(27)	1.9(2)	0.14(1)	
3071(28)	3.2(3)	0.18(2)	
2611.8(9)a	45.3(20)	3.1(1)	
1774(23)	4.2(3)	0.11(1)	
1450(25)	5.1(4)	0.11(1)	
1166(28)	4.0(5)	0.074(9)	
910(20)	2.8(4)	0.044(6)	
837.2(2)	7(2)	0.11(3)	

a IAS.
FIG. 8: Partial decay scheme of 60Ge deduced from the results of the present experiment. Evidence is seen of population of levels in four nuclei in the decay chain of 60Ge: 60Ga, 60Zn, 59Zn and 60Cu (see the text for more details). The observed γ transitions are indicated by blue arrows, while green arrows indicate the observed proton emission. The quantities in red are deduced from the present data.
to each level, inferred from the intensities measured for both the β-delayed proton and γ emissions (Table I). The level scheme deduced from the results of the present experiment is shown in Fig. 8.

We obtain a value $B(F) = 3.1(1)$ that is smaller than the expected $B(F) = |N - Z| = 4$. From Table IV, $I^{\text{IAS}}_\beta = 45.3\%$ but we would need a feeding of 58\% in order to get the correct Fermi strength. A possible explanation could be that we are missing weak γ branches de-exciting the IAS. As a matter of fact, we do not have enough information to place the 1332 keV γ ray in the level scheme. If it de-excites the IAS, this latter would gain an additional feeding of 4\% (see Table I) out of the missing 12.7\%.

Another possible scenario would be to invert the order of the γ rays in the cascade de-exciting the IAS, i.e., first the 837 and then the 1775 keV γ rays. In this way the IAS would gain an additional feeding of 7\% and we would obtain a higher value for the strength, $B(F) = 3.6(2)$. According to this possibility, the 837 keV γ ray would populate the level at $E_X = 1774$ keV, which we already observed from the proton emission, but the balance of feeding populating and de-exciting this level would be negative (-3.0(15) \%). The 837 keV level would be removed from the decay scheme of Fig. 8 and for this reason we indicated it with a dashed line. If this second scenario is confirmed, the emission of the 837 keV γ ray followed by the emission of the proton from the 1774 keV level would be a new observation of β-delayed γ-proton decay, an exotic decay mode that we already observed in 56Zn [3]. A new experiment with higher statistics would be desirable to shed light on these aspects.

In the decay of the $T_z = -2$ nuclei the β-delayed proton emission from the IAS populated in the daughter nucleus is isospin-forbidden, but usually it is observed and this is attributed to a $T = 1$ isospin impurity in the IAS wave function [3, 4]. As in other $T_z = -2$ cases, in the decay of 60Ge we observe competition between the β-delayed proton and γ emissions from the IAS populated in 60Ga. However here the proton emission is found to be dominant, being 95\% of the observed IAS de-excitation (74.5\% if we account for the missing γ feeding). The explanation for this behaviour may lie in nuclear structure reasons.

V. BETA DECAY OF 62Ge

62Ge is a $T_z = -1$ proton-rich nucleus which was only poorly known at the time of the present experiment. The high-intensity 78Kr beam available at RIKEN made it possible to record the unprecedented statistics of 2.1×10^6 implants of 62Ge.

Fig. 9 shows the correlation-time spectrum obtained for the β decay of 62Ge. The 62Ge half-life was determined by fitting the correlation-time spectrum using the Bateman equations [25] including the β decay of 62Ge, the growth and decay of its daughter 62Ga (with $T_{1/2} = 116.121(21)$ ms [32]) and the random correlation background. A half-life of $T_{1/2} = 73.5(1)$ ms is obtained. The maximum likelihood and least squares minimization methods gave the same result. This half-life value agrees with and improves the precision of our previous measurement (76(6) ms obtained with 6.1×10^3 implants of 62Ge [11]). As already discussed in Ref. [11], there is an older measurement, 129(35) ms [30], lying inside two standard deviations mainly because of the poorer statistics. Additionally, another value of 82.9(1.4) ms is reported in Ref. [38] again with much poorer statistics.

The charged-particle energy spectrum from the decay of 62Ge is shown in Fig. 10. The bump at low energy is due to the detection of β particles, while no discrete peaks from β-delayed proton emission are observed. The proton separation energy in the 62Ga daughter is 2927(16) keV [31], above this value proton emission is allowed. From our data we estimated an upper limit of 5\% for the total proton-emission branching ratio.

The γ-ray energy spectrum from the β decay of 62Ge is shown in Fig. 11. We observed twelve γ lines at 571, 978, 1017, 1117, 1360, 1899, 2011, 2164, 2642, 2967, 3340...
and 3595 keV. Eight of them were observed for the first time, while the four most intense lines (571, 978, 1017 and 2164 keV) were also seen in Ref. [38] together with two other γ lines at 1247 and 2414 keV which we did not see. The γ lines which we observed for the first time are underlined in Fig. 11.

The decay scheme of 62Ge deduced from the results of the present experiment is shown in Fig. 12. The β⁺ decay of the Jπ = 0⁺, T = 1 g.s. of 62Ge (Tz = -1) populates the 0⁺, T = 1 IAS in the 62Ga daughter (Tz = 0) through a super-allowed Fermi transition and 1⁺, T = 0 states through Gamow-Teller transitions. According to the quasi-rule of Warburton and Weneser, namely that the M1 transitions between Jπ = 1⁺, T = 0 states are strongly suppressed [14, 15], one can expect that all the populated 1⁺, T = 0 states decay predominantly to the 0⁺, T = 1 g.s. of 62Ga. We have found evidence for this quasi-rule in other Tz = -1 cases [12]. In order to test this rule for the present case, we looked for small branches from the upper 1⁺ states to the lower 1⁺ levels. Even considering the most favourable case, i.e., a transition from the 1⁺ state at 2164 keV to the first 1⁺ state at 571 keV, the de-exciting γ ray was not observed. We set an upper limit of 1 % on its intensity.

In a fusion-evaporation-reaction study of 62Ga [39] a 2⁺ level was proposed at 1017 keV based on the observation of a weak γ ray at 446 keV in coincidence with the 571 keV γ ray, with no observation of the 1017 keV γ ray. Considering two following in-beam studies, Ref. [40] also reported the 446 keV γ ray, but Ref. [41] did not observe it; moreover in both references the 1017 keV γ ray was not observed. In the present β-decay experiment and also in those of Ref. [38] an intense γ ray was seen at 1017 keV, while the 446 keV γ ray was not observed. Hence we think that the level we see at 1017 keV is not the same level as in Ref. [39] and therefore it is a 1⁺ state, like the other levels populated in the decay. This is further supported by the non-observation of weak γ branches from the upper excited 1⁺ levels to the 1017 keV level which, if it were a 2⁺ level, would not be affected by the Warburton and Weneser quasi-rule.
TABLE V: Summary of the results for the β^+ decay of 62Ge. The first two columns show the γ-ray energies E_γ and their intensities I_γ (normalized to 100 decays). The last four columns give the level excitation energies E_X in 62Ga, β feedings I_β, Fermi $B(F)$ and Gamow-Teller $B(GT)$ transition strengths to the 62Ga levels. The $B(GT)$ values are calculated by imposing $B(F) = 2.0$ (see the discussion in the text).

E_γ(keV)	I_γ(%)	E_X(keV)	I_β(%)	$B(F)$	$B(GT)$
3594.7(5)	0.6(1)	3594.7(5)	0.6(1)	0.07(1)	
3339.6(5)	0.30(6)	3339.6(5)	0.30(6)	0.030(7)	
2966.8(5)	0.35(6)	2966.8(5)	0.35(6)	0.028(5)	
2641.8(5)	0.4(1)	2641.8(5)	0.4(1)	0.029(7)	
2164.1(4)	2.6(2)	2164.1(4)	2.6(2)	0.13(1)	
2010.9(4)	0.96(8)	2010.9(4)	0.96(8)	0.045(5)	
1899.3(4)	0.58(6)	1899.3(4)	0.58(6)	0.025(3)	
1359.7(2)	0.70(5)	1359.7(2)	0.70(5)	0.022(2)	
1117.4(2)	0.41(4)	1117.4(2)	0.41(4)	0.011(2)	
1017.1(1)	2.6(1)	1017.1(1)	2.6(1)	0.067(6)	
978.3(1)	1.8(1)	978.3(1)	1.8(1)	0.047(4)	
571.3(1)	3.4(1)	571.3(1)	3.4(1)	0.068(6)	
g.s.a	85.3(3)b	2.0			

a IAS.
b The g.s. to g.s. feeding is $I_\beta^{ASI} = (100 - \Sigma_i I_i)$.

Since there is no appreciable β-delayed proton emission from 62Ge, Eq. 2 is simplified and the intensity I_γ of each β-delayed γ ray can be calculated as follows:

$$I_\gamma = \frac{N_\gamma}{e_\gamma N_\beta},$$

with the advantage of not depending on ϵ_{decay}. Here N_β represents the total number of β events correlated with 62Ge and is obtained from the half-life fit in Fig. 9.

Table V summarises our results for 62Ge. The γ-ray energies E_γ and intensities I_γ are reported in the first two columns of the table. Assuming that all the populated 1^+ states decay directly to the 0^+ g.s. of 62Ga (as discussed above), the excitation energies E_X of the levels in 62Ga are deduced directly from the corresponding E_γ. Similarily, the β feeding I_β to each level is inferred from the respective I_γ. The third and fourth columns of Table V give E_X and I_β, respectively. Finally, the last two columns give the $B(F)$ and $B(GT)$ transition strengths, where the $B(GT)$ values are obtained by setting $B(F) = 2.0$ (see the discussion below).

The Fermi transition connects the 62Ge$_{g.s.}$ to its IAS, the 62Ga$_{g.s.}$. The IAS β feeding (g.s.-to-g.s.) is calculated by subtracting all the indirect γ feeding to the 62Ga$_{g.s.}$, $I_\beta^{ASI} = (100 - \Sigma_i I_i) = 85.3(3)\%$. Then, in order to calculate the β-decay strengths, one needs to know the mass excesses of the nuclear states involved in the transition. The mass excess of the 62Ga$_{g.s.}$ is known experimentally and has a value of -51986.9(6) keV [32]. However, the g.s. mass of 62Ge is not known. Since the $A = 62, T = 1$ isospin multiplet is a triplet (62Ge, 62Ga and 62Zn), we cannot use the IMME [34, 35] to determine the 62Ge$_{g.s.}$ mass, hence we have to rely on systematics. The most recent AME gives a value of 41740^{+90}_{-140} keV [32], which gives a Fermi strength of 1.5(1), i.e., much smaller than the expected $B(F) = |N - Z| = 2$. If we make the Fermi strength equal to 2, then we obtain a mass excess of 42258 keV for the 62Ge$_{g.s.}$ and, assuming for this mass a conservative uncertainty of 140 keV as in the mass evaluation systematics, we obtain the value $Q_2 = 9730(140)^+140^-\text{keV}$ shown in Fig. 12. The 2003 AME value of 42240^{+90}_{-140} keV [33] is in agreement with our deduced mass. In addition to the cases of 62Ge and 60Ge (Table III), similar issues with the AMEs subsequent to the 2003 AME have been already reported for proton-rich nuclei in this region of the mass chart [3, 4, 36]. More mass measurements are required in this region to constrain the future AME.

From our deduced g.s. mass excesses for 60Ge and 62Ge we can extract the two-neutron separation energy in 62Ge, $S_{2n} = 30723(142)$ keV. It should be noted that the values from both the 2016 (30970$^+330^-$ keV) [31] and 2003 (30620$^+270^-$ keV) [42] AME systematics agree well with our value.

The $B(GT)$ values shown in Table V agree with those observed in Ref. [38], confirming the absence of enhanced low-lying Gamow-Teller strength in 62Ga and, hence, the negligible role of the $T = 0$ proton-neutron pairing condensate in $A = 62$ [38].

VI. CONCLUSIONS

We have studied the β decay of the very neutron deficient 60Ge and 62Ge isotopes. We measured half-lives of $T_{1/2} = 25.0(3)$ ms for 60Ge, 69.4(2) ms for the daughter 60Ga and 73.5(1) ms for 62Ge. In all cases we have improved the precision in comparison with values in the literature [9, 11, 27, 38].

The decay of 60Ge proceeds mainly by β-delayed proton emission populating 59Zn with a total branching ratio of $67(3)\%$. Through this process we have observed for the first time the $1/2^-$ first excited state in 59Zn and determined its excitation energy as 463.3(1) keV. The β-delayed γ emission is also seen in competition, populating energy levels previously unknown in the drip-line 60Ga nucleus. Three new γ lines (837, 1332 and 1775 keV) have been observed and the level scheme deduced.

The decay of 62Ge proceeds mostly by direct population of the 62Ga ground state with a g.s. to g.s. feeding of 85.3(3)$\%$. A total of twelve γ lines have been observed, eight of them for the first time. The Warburton and Wehner quasi-rule [14, 15], already observed in previous $T_z = -1$ cases [12], has again been confirmed here. Moreover, even if there are a few differences in the observed γ rays with respect to Ref. [38], our study confirms that there is no evidence of enhanced low-lying Gamow-Teller
strength in 62Ga due to isoscalar proton-neutron pairing. Finally, the g.s. mass excesses of 60Ge. 60Ga and 62Ge have been deduced and the absolute β-decay transition strengths have been determined.

Acknowledgments

This work was supported by the Spanish MICINN grants FPA2014-52823-C2-1-P and FPA2017-83946-C2-1-P (MCIU/AEI/FEDER); Centro de Excelencia Severo Ochoa del IFIC SEV-2014-0398; Junta para la Ampliación de Estudios Programme (CSIC JAE-Doc contract) co-financed by FSE; MCIU grant LCI-2014-19172. We acknowledge the support of the Generalitat Valenciana Grant No. PROMETEO/2019/007. We acknowledge the support of STFC(UK) grant P005314/1 and ANID/CONICYT FONDECYT Regular 1171467. R.B.C. acknowledges support from the Max-Planck Partner group.

[1] B. Blank and M. J. G. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008).
[2] M. Pfützner, M. Kurny, L. V. Grigorenko, and K. Rüisager, Rev. Mod. Phys. 84, 567 (2012).
[3] S. E. A. Orrigo, B. Rubio, Y. Fujita, B. Blank, W. Gelletly, J. Agrament, A. Algora, P. Ascher, B. Bilgier, L. Cáceres, et al., Phys. Rev. Lett. 112, 222501 (2014).
[4] S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agrament, A. Algora, P. Ascher, B. Bilgier, B. Blank, L. Cáceres, et al., Phys. Rev. C 93, 044336 (2016).
[5] H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, K.-L. Kratz, et al., Phys. Rep. 294, 167 (1998).
[6] J. L. Fisker, H. Schatz, and F.-K. Thielemann, The Astroph. J. Supplement Series 174, 261 (2008).
[7] A. Parikh, J. José, G. Sala, and C. Iliadis, Prog. Part. Nucl. Phys. 69, 225 (2013).
[8] D. K. Galloway, A. Cumming, E. Kuukkers, L. Bildsten, D. Chakrabarty, and R. E. Rothschild, The Astroph. J. 601, 466 (2004).
[9] A. A. Ciennny, W. Dominik, T. Ginter, R. Grzywacz, Z. Janas, M. Kuich, C. Mazzocchi, K. Miernik, M. Pfützner, M. Pomorski, et al., Eur. Phys. J. A 52, 89 (2016).
[10] S. E. A. Orrigo, B. Rubio, W. Gelletly, B. Blank, Y. Fujita, J. Giovinazzo, J. Agrament, A. Algora, P. Ascher, B. Bilgier, et al., Phys. Rev. C 94, 044315 (2016).
[11] L. Kucuk, S. E. A. Orrigo, A. Montaner-Pizá, B. Rubio, Y. Fujita, W. Gelletly, B. Blank, Y. Oktem, T. Adachi, A. Algora, et al., Eur. Phys. J. A 53, 134 (2017).
[12] M. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agrament, A. Algora, J. Benlliure, P. Bouthakov, L. Cáceres, R. B. Cakirli, et al., Phys. Rev. C 91, 043301 (2015).
[13] Y. Fujita, B. Rubio, and W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011).
[14] G. Morpurgo, Phys. Rev. 110, 721 (1958).
[15] D. H. Wilkinson, Isospin in Nuclear Physics. SBN 7204 0155 0 (1969).
[16] T. Kubo, Nucl. Instrum. Methods B 204, 97 (2003).
[17] T. Kubo, D. Kameda, H. Suzuki, N. Fukuda, H. Takeda, Y. Yanagisawa, M. Ohtake, K. Kusaka, K. Yoshida, N. Inabe, et al., Progr. Theor. Exp. Phys. 2012, 03C003 (2012).
[18] N. Fukuda, T. Kubo, T. Ohnishi, N. Inabe, H. Takeda, D. Kameda, and H. Suzuki, Nucl. Instrum. Methods B 317, 323 (2013).
[19] B. Blank, T. Goigoux, P. Ascher, M. Gerbaux, J. Giov- inazzo, S. Grévy, T. Kurtukian Nieto, C. Magron, J. Agrament, A. Algora, et al., Phys. Rev. C 93, 061301 (2016).
[20] S. Nishimura, Progr. Theor. Exp. Phys. 2012, 03C006 (2012).
[21] P.-A. Söderström, S. Nishimura, P. Doornenbal, G. Lorusso, T. Sumikama, H. Watanabe, Z. Xu, H. Baba, F. Browne, S. Go, et al., Nucl. Instrum. Methods B 317, 649 (2013).
[22] T. Goigoux, P. Ascher, B. Blank, M. Gerbaux, J. Giov- inazzo, S. Grévy, T. Kurtukian Nieto, C. Magron, P. Doornenbal, G. G. Kiss, et al., Phys. Rev. Lett. 117, 162501 (2016).
[23] J. Taprogge, A. Jungclaus, H. Grawe, S. Nishimura, P. Doornenbal, G. Lorusso, G. S. Simpson, P.-A. Söderström, T. Sumikama, Z. Y. Xu, et al., Phys. Rev. C 91, 054326 (2015).
[24] A. I. Morales, A. Algora, B. Rubio, K. Kaneko, S. Nishimura, P. Aguilerario, S. E. A. Orrigo, F. Molina, G. de Angelis, F. Recchia, et al., Phys. Rev. C 95, 064327 (2017).
[25] H. Bateman, Proc. Cambridge Phil. Soc. 15, 423 (1910).
[26] C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caaman, et al., Nucl. Phys. A 792, 18 (2007).
[27] C. Mazzocchi, Z. Janas, J. Döring, M. Axiotis, L. Batist, R. Borcea, D. Ott, E. Caurier, G. de Angelis, E. Farnea, et al., Eur. Phys. J. A 12, 269 (2001).
[28] J. Honkanen, M. Kortelahti, K. Eskola, and K. Vierinen, Nucl. Phys. A 365, 469 (1981).
[29] Y. Arai, E. Tanaka, H. Miyatake, M. Yoshii, T. Ishimatsu, T. Shinozuka, and M. Fujikawa, Nucl. Phys. A 420, 193 (1984).
[30] M. J. López Jiménez, B. Blank, M. Chartier, S. Czajkowski, P. Dessagne, G. de France, J. Giovinazzo, D. Karamanis, M. Lewitowicz, V. Maslov, et al., Phys. Rev. C 66, 025803 (2002).
[31] M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
[32] G. Audi, F. G. Kondev, M. Wang, W. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).
[33] G. Audi, O. Bersillon, J. Blachot, and A. Wapstra, Nucl. Phys. A 729, 3 (2003).
[34] E. Wigner, Proc. Robert A. Welch Found. Conf. 1, 67 (1957).
[35] W. Benenson and E. Kashy, Rev. Mod. Phys. 51, 527 (1979).
[36] M. D. Santo, Z. Meisel, D. Bazin, A. Becerril, B. A.
Brown, H. Crawford, R. Cyburt, S. George, G. F. Grinyer, G. Lorusso, et al., Phys. Lett. B 738, 453 (2014).

[37] E. Browne and J. K. Tuli, Nucl. Data Sheets 114, 1849 (2013).

[38] E. Grodner, A. Gadea, P. Sarriguren, S. M. Lenzi, J. Grebosz, J. J. Valiente-Dobón, A. Algora, M. Görski, P. H. Regan, D. Rudolph, et al., Phys. Rev. Lett. 113, 092501 (2014).

[39] D. Rudolph, C. Andreoiu, J. Ekman, C. Fahlander, M. N. Mineva, S. M. Lenzi, E. Farnea, C. Rossi-Alvarez, C. A. Ur, M. Axiotis, et al., Phys. Rev. C 69, 034309 (2004).

[40] H. M. David, P. J. Woods, G. Lotay, D. Seweryniak, M. Albers, M. Alcorta, M. P. Carpenter, C. J. Chiara, T. Davinson, D. T. Doherty, et al., Phys. Lett. B 726, 665 (2013).

[41] T. W. Henry, M. A. Bentley, R. M. Clark, P. J. Davies, V. M. Bader, T. Baugher, D. Bazin, C. W. Beausang, J. S. Berryman, A. M. Bruce, et al., Phys. Rev. C 92, 024315 (2015).

[42] G. Audi, A. Wapstra, and C. Thibault, Nuclear Physics A 729, 337 (2003).