Research Article

Solutions of Higher-Order Homogeneous Linear Matrix Differential Equations for Consistent and Non-Consistent Initial Conditions: Regular Case

Ioannis K. Dassios

Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece

Correspondence should be addressed to Ioannis K. Dassios, jdasios@math.uoa.gr

Received 7 March 2011; Accepted 20 April 2011

Academic Editor: T. Yamazaki

1. Introduction

Linear matrix differential equations (LMDEs) are inherent in many physical, engineering, mechanical, and financial/actuarial models. Having in mind such applications, for instance in finance, we provide the well-known input-output Leondief model and its several important extensions, see [1, 2]. In this paper, our long-term purpose is to study the solution of LMDEs of higher order (1.1) into the mainstream of matrix pencil theory. This effort is significant, since there are numerous applications. Thus, we consider

\[A_nX^{(n)}(t) + A_{n-1}X^{(n-1)}(t) + \cdots + A_1X'(t) + A_0X(t) = 0, \]

(1.1)

where \(A_i, i = 0, 1, \ldots, n \in \mathcal{M}(m \times m; \mathbb{F}), \) (i.e., the algebra of square matrices with elements in
the field \mathbb{F} with $X \in C^\infty(\mathbb{F}, \mathcal{M}(m \times 1; \mathbb{F}))$. For the sake of simplicity we set $\mathcal{M}_m = \mathcal{M}(m \times m; \mathbb{F})$ and $\mathcal{M}_{nm} = \mathcal{M}(n \times m; \mathbb{F})$. In the sequel we adopt the following notations:

$$
Y_1(t) = X(t),
\quad Y_2(t) = X'(t),
\quad \vdots
\quad Y_{n-1}(t) = X^{(n-1)}(t),
\quad Y_n(t) = X^{(n-1)}(t),
Y'_1(t) = X'(t) = Y_2(t),
Y'_2(t) = X''(t) = Y_3(t),
\quad \vdots
\quad Y'_{n-1}(t) = X^{(n-1)}(t) = Y_n(t),
\quad A_nY_n(t) = A_nX^{(n)}(t) = -A_{n-1}Y_{n-1}(t) - \cdots - A_1Y_2(t) - A_0Y_1(t).
$$

Or in Matrix form

$$
FY'(t) = GY(t),
$$

where $Y(t) = [Y_1^T(t) Y_2^T(t) \cdots Y_n^T(t)]^T$ (where $(\cdot)^T$ is the transpose tensor) and the coefficient matrices F, G are given by

$$
F = \begin{bmatrix}
I_m & 0 & \cdots & 0 & 0 \\
0 & I_m & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_m & 0 \\
0 & 0 & \cdots & 0 & A_n
\end{bmatrix},
G = \begin{bmatrix}
0 & I_m & 0 & \cdots & 0 \\
0 & 0 & I_m & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I_m \\
-A_0 & -A_1 & -A_2 & \cdots & -A_n
\end{bmatrix}
$$

with corresponding dimension of $F, G, \text{ and } Y(t), mn \times mn$ and $mn \times 1$, respectively. Matrix pencil theory has been extensively used for the study of linear differential equations (LDEs) with time invariant coefficients, see for instance [1–5]. Systems of type (1.1) are more general, including the special case when $A_n = I_n$, where I_n is the identity matrix of \mathcal{M}_n, since the well-known class of higher-order linear matrix differential equations of Apostol-Kolodner type is derived straightforwardly, see [6] for $n = 2, [7, 8]$.

The paper is organized as follows: in Section 2, some notations and the necessary preliminary concepts from matrix pencil theory are presented. Section 3 contains the case that system (1.1) has consistent initial conditions. In Section 4, the nonconsistent initial condition case is fully discussed. In this case, the arbitrarily chosen initial conditions which have
Definition 2.1. Given $F,G \in \mathcal{M}_{nm}$ and an indeterminate $s \in \mathbb{F}$, the matrix pencil $sF - G$ is called regular when $m = n$ and $\det(sF - G) \neq 0$. In any other case, the pencil will be called singular.

Definition 2.2. The pencil $sF - G$ is said to be strictly equivalent to the pencil $s\tilde{F} - \tilde{G}$ if and only if there exist nonsingular $P \in \mathcal{M}_n$ and $Q \in \mathcal{M}_m$ such as

$$P(sF - G)Q = s\tilde{F} - \tilde{G}. \quad (2.1)$$

In this paper, we consider the case that pencil is regular. Thus, the strict equivalence relation can be defined rigorously on the set of regular pencils as follows. Here, we regard (2.2) as the set of pair of nonsingular elements of \mathcal{M}_n

$$g := \{(P, Q) : P, Q \in \mathcal{M}_n, \ P, Q \text{ nonsingular}\} \quad (2.2)$$

and a composition rule $*$ defined on g as follows:

$$* : g \times g \text{ such that } (P_1, Q_1) * (P_2, Q_2) := (P_1 \cdot P_2, Q_1 \cdot Q_2). \quad (2.3)$$

It can be easily verified that $(g, *)$ forms a nonabelian group. Furthermore, an action \circ of the group $(g, *)$ on the set of regular matrix pencils $\mathcal{L}^{\text{reg}}_n$ is defined as $\circ : g \times \mathcal{L}^{\text{reg}}_n \to \mathcal{L}^{\text{reg}}_n$ such that

$$((P, Q), sF - G) \to (P, Q) \circ (sF - G) := P(sF - G)Q. \quad (2.4)$$

This group has the following properties:

(a) $(P_1, Q_1) \circ [(P_2, Q_2) \circ (sF - G)] = (P_1, Q_1) * (P_2, Q_2) \circ (sF - G)$ for every nonsingular $P_1, P_2 \in \mathcal{M}_n$ and $Q_1, Q_2 \in \mathcal{M}_n$.

(b) $e_g \circ (sF - G) = sF - G$, $sF - G \in \mathcal{L}^{\text{reg}}_n$ where $e_g = (I_n, I_n)$ is the identity element of the group $(g, *)$ on the set of $\mathcal{L}^{\text{reg}}_n$ defines a transformation group denoted by \mathcal{M}, see [9].

For $sF - G \in \mathcal{L}^{\text{reg}}_n$, the subset

$$g \circ (sF - G) := \{(P, Q) \circ (sF - G) : (P, Q) \in g\} \subseteq \mathcal{L}^{\text{reg}}_n \quad (2.5)$$
will be called the orbit of $sF - G$ at g. Also \mathcal{N} defines an equivalence relation on $\mathcal{L}^{\text{reg}}_n$ which is called a strict-equivalence relation and is denoted by \mathcal{L}_{s-e}.

So, $(sF - G)\mathcal{L}_{s-e}(sF - G)$ if and only if $P(sF - G)Q = s\tilde{F} - \tilde{G}$, where $P, Q \in \mathcal{M}_n$ are nonsingular elements of algebra \mathcal{M}_n.

The class of $\mathcal{L}_{s-e}(sF - G)$ is characterized by a uniquely defined element, known as a complex Weierstrass canonical form, $s\tilde{F} - \tilde{G}$, see [9], specified by the complete set of invariants of $\mathcal{L}_{s-e}(sF - G)$.

This is the set of elementary divisors (e.d.) obtained by factorizing the invariant polynomials $f_i(s, \tilde{s})$ into powers of homogeneous polynomials irreducible over field \mathbb{F}. In the case where $sF - G$ is a regular, we have e.d. of the following type:

(i) e.d. of the type s^p are called zero finite elementary divisors (z.f.e.d.),

(ii) e.d. of the type $(s - a)^x$, $a \neq 0$ are called nonzero finite elementary divisors (nz.f.e.d.),

(iii) e.d. of the type s^a are called infinite elementary divisors (i.e.d.).

Let B_1, B_2, \ldots, B_n be elements of \mathcal{M}_n. The direct sum of them denoted by $B_1 \oplus B_2 \oplus \cdots \oplus B_n$ is the block diag $\{B_1, B_2, \ldots, B_n\}$.

Then, the complex Weierstrass form $sF_w - Q_w$ of the regular pencil $sF - G$ is defined by $sF_w - Q_w := sI_p - J_p \oplus sH_q - I_q$, where the first normal Jordan type element is uniquely defined by the set of f.e.d.

$$
(s - a_1)^{p_1}, \ldots, (s - a_\nu)^{p_\nu}, \quad \sum_{j=1}^{\nu} p_j = p
$$

of $sF - G$ and has the form

$$
sI_p - J_p := sI_{p_1} - J_{p_1}(a_1) \oplus \cdots \oplus sI_{p_\nu} - J_{p_\nu}(a_\nu).
$$

And also the q blocks of the second uniquely defined block $sH_q - I_q$ correspond to the i.e.d.

$$
\tilde{s}_{1}^{q_1}, \ldots, \tilde{s}_{1}^{q_\sigma}, \quad \sum_{j=1}^{\sigma} q_j = q
$$

of $sF - G$ and has the form

$$
sH_q - I_q := sH_{q_1} - I_{q_1} \oplus \cdots \oplus sH_{q_\sigma} - I_{q_\sigma}.
$$

Thus, H_q is a nilpotent element of \mathcal{M}_n with index $\tilde{q} = \max\{q_j : j = 1, 2, \ldots, \sigma\}$, where

$$
H_{\tilde{q}}^\tilde{q} = 0,
$$

$$
H_{\tilde{q}}^2 = 0,
$$

$$
H_{\tilde{q}}^{\tilde{q}} = 0.
$$
and $I_{p_j}, J_{p_j}(a_j), H_{q_j}$ are defined as

$$
I_{p_j} = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix} \in \mathcal{M}_{p_j}, \\
J_{p_j}(a_j) = \begin{bmatrix}
a_j & 1 & 0 & \cdots & 0 \\
0 & a_j & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & a_j & 1 \\
0 & 0 & 0 & 0 & a_j
\end{bmatrix} \in \mathcal{M}_{p_j},
$$

(2.11)

$$
H_{q_j} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \in \mathcal{M}_{q_j}.
$$

In the last part of this section, some elements for the analytic computation of $e^{A(t-t_0)}, \ t \in [t_0, \infty)$ are provided. To perform this computation, many theoretical and numerical methods have been developed. Thus, the interesting readers might consult papers [7, 8, 10–12] and the references therein. In order to have computational formulas, see the following Sections 3 and 4, the following known results should firstly be mentioned.

Lemma 2.3 (see [10]). $e^{J_{p_j}(a_j)(t-t_0)} = (d_{k_1,k_2})_{p_j}$, where

$$
d_{k_1,k_2} = \begin{cases}
 e^{a_j(t-t_0)} \frac{(t-t_0)^{k_2-k_1}}{(k_2-k_1)!}, & 1 \leq k_1 \leq k_2 \leq p_j, \\
0, & \text{otherwise}.
\end{cases}
$$

(2.12)

Another expression for the exponential matrix of Jordan block, see (2.11), is provided by the following lemma.

Lemma 2.4 (see [12]).

$$
e^{J_{p_j}(a_j)(t-t_0)} = \sum_{i=0}^{p_j-1} f_i(t-t_0) \left[J_{p_j}(a_j) \right]^i,
$$

(2.13)

where the $f_i(t-t_0)$’s are given analytically by the following p_j equations:

$$
f_{p_j-1-k}(t-t_0) = e^{a_j(t-t_0)} \sum_{i=0}^{k} b_{k,i} a_j^{k-i} \frac{(t-t_0)^{p_j-i}}{(p_j-1-i)!}, \quad k = 0, 1, 2, \ldots, p_j - 1,
$$

(2.14)
where
\[b_{k,j} = \sum_{l=0}^{k-j} \binom{p_j}{l} \binom{k-l}{i} (-1)^l, \]
\[\left[J_{p_j}(a_j) \right]^i = \binom{c_{k_1,k_2}^{(j)}}{p_j}, \text{ for } 1 \leq k_1, k_2 \leq p_j, \]
\[c_{k_1,k_2}^{(j)} = \binom{i}{k_2-k_1} a_j^{i-(k_2-k_1)}. \]

3. Solution Space Form of Consistent Initial Conditions

In this section, the main results for consistent initial conditions are analytically presented for the regular case. Moreover, it should be stressed out that these results offer the necessary mathematical framework for interesting applications; see also Introduction. Now, in order to obtain a unique solution, we deal with consistent initial value problem. More analytically, we consider the system
\[A_nX^{(n)}(t) + A_{n-1}X^{(n-1)}(t) + \cdots + A_1X'(t) + A_0X(t) = 0 \]
with known initial conditions
\[X(t_0), X'(t_0), \ldots, X^{(n-1)}(t_0). \]

Analytically, we consider the system
\[FY'(t) = GY(t), \quad Y(t_0). \]
From the regularity of \(sF - G \), there exist nonsingular \(\mathcal{M}(mn \times mn, F) \) matrices \(P \) and \(Q \) such that (see also Section 2), such as
\[PFQ = F_w = I_p \oplus H_q, \]
\[PGQ = G_w = J_p \oplus I_q, \]
where \(I_p, J_p, H_q, \) and \(I_q \) are given by (2.11) where
\[I_p = I_{p_1} \oplus \cdots \oplus I_{p_v}, \]
\[J_p = J_{p_1}(a_1) \oplus \cdots \oplus J_{p_v}(a_v), \]
\[H_q = H_{q_1} \oplus \cdots \oplus H_{q_v}, \]
\[I_q = I_{q_1} \oplus \cdots \oplus I_{q_v}. \]

Note that \(\sum_{j=1}^{\nu} p_j = p \) and \(\sum_{j=1}^{\nu} q_j = q \), where \(p + q = n \).
Lemma 3.1. System (3.1) is divided into two subsystems: the so-called slow subsystem

\[Z'_p(t) = J_p Z_p(t), \quad (3.6) \]

and the relative fast subsystem

\[H_q Z'_p(t) = Z_q(t). \quad (3.7) \]

Proof. Consider the transformation

\[Y(t) = QZ(t). \quad (3.8) \]

Substituting the previous expression into (3.1) we obtain

\[FQZ'(t) = GQZ(t). \quad (3.9) \]

Whereby, multiplying by \(P \), we arrive at

\[F_wZ(t) = G_wZ(t). \quad (3.10) \]

Moreover, we can write \(Z(t) \) as \(Z(t) = \begin{bmatrix} Z_p(t) \\ Z_q(t) \end{bmatrix} \). Taking into account the above expressions, we arrive easily at (3.6) and (3.7). \(\square \)

Proposition 3.2. The sub-system (3.6) has the unique solution

\[Z_p(t) = e^{J_p(t-t_0)} Z_p(t_0), \quad t \geq t_0, \quad (3.11) \]

where \(\sum_{j=1}^n p_j = p \).

Proof. See [5, 12]. \(\square \)

Proposition 3.3. The fast subsystem (3.7) has only the zero solution.

Proof. Let \(q_* \) be the index of the nilpotent matrix \(H_q \), that is, \(H_q^{q_*} = \emptyset \), we obtain the following equations:

\[H_q Z'_q(t) = Z_q(t), \]
\[H_q L Z'_q(t) = L Z_q(t), \]
\[H_q [s Y(s) - Z_q(t_0)] = Y(s), \]
\[(sH_q - I_q) Y(s) = H_q Z_q, \quad (3.12) \]
where $Y(s) = LZ_q(t) = \int_0^\infty Z_q(t)e^{-st}dt$ is by definition the Laplace transform of Z_q. It is easy to show that $\det(sH_q - I_q) \neq 0$ and that $(sH_q - I_q)^{-1} = -\sum_{n=0}^{\max-1} (sH_q)^n$, while $H_q^n = 0$ for $n \geq q$.

$$Y(s) = (sH_q - I_q)^{-1}H_qZ_q,$$

$$Y(s) = -\sum_{n=0}^{q-1} (sH_q)^nH_qZ_q = -s\sum_{n=0}^{q-1} s^nH_q^nZ_q,$$

$$Y(s) = -\sum_{n=0}^{q-1} (sH_q)^nZ_q,$$

$$L^{-1}Y(s) = -\sum_{n=0}^{q-1} s^nH_q^nZ_q(t_0),$$

$$Z_q = -\sum_{n=0}^{q-2} \delta^n(t - t_0)H_q^nZ_q(t_0),$$

$$Z_q = 0,$$

where $\delta(t - t_0)$ is by definition the Dirac function

$$\int_{-\infty}^{\infty} \delta(t - t_0)dt = 1, \quad t = t_0,$$

$$\delta(t - t_0) = 0, \quad t \neq t_0.$$

The conclusion, that is, $Y_q(t) = \emptyset$, is obtained by repetitive substitution of each equation in the next one, and using the fact that $H_q^n = \emptyset$. \qed

Theorem 3.4. Consider the system (3.1)-(3.2). Then the solution is unique if and only if the initial conditions are consistent. Moreover the analytic solution of (3.1)-(3.2) is given by

$$X(t) = Q_p^1e^{B(t-t_0)}Z_p(t_0).$$

Proof. Let $Q = [Q_p Q_q]$ where $Q_p \in \mathcal{M}_{(mn)p}$ and $Q_q \in \mathcal{M}_{(mn)q}$; combining (3.8) and (3.17), we obtain

$$Y(t) = QZ(t) = [Q_p Q_q] \begin{bmatrix} Z_p(t) \\ \emptyset \end{bmatrix} = Q_p e^{B(t-t_0)}Z_p(t_0),$$

solution that exists if and only if $Y(t_0) = Q_pZ_p(t_0)$ or $Y(t_0) \in \text{colspan}Q_p$. The columns of Q_p are the p eigenvectors of the finite elementary divisors (eigenvalues) of the pencil $sA - B$. In that case the system has the unique solution

$$X(t) = Q_p^1 e^{B(t-t_0)}Z_p(t_0),$$

(3.17)
where Q^1_p is defined as

$$Q_p = \begin{bmatrix} Q^1_p \\ Q^2_p \end{bmatrix}$$ \hspace{1cm} (3.18)

and $Q^1_p \in \mathcal{M}_{pp}$. \hfill \square

4. Form on Nonconsistent Initial Condition

In this short section, we describe the impulse behavior of the original system (1.1), at time t_0. In that case, we reformulate Theorem 3.4, so the impulse solution is finally obtained.

Proposition 4.1. Consider the system (3.3). Then for nonconsistent initial conditions ($Y(t_0) \notin \text{colspan}Q_p$) the system has infinite solutions.

Proof. Let Q_p, Q_q be the matrices defined in Theorem 3.4. If the initial conditions are nonconsistent then $Y(t_0) \notin \text{colspan}Q_p$ and $Z_q(t_0) \neq 0$. Moreover $Y(t_0) = Q_pZ_p(t_0) + Q_qZ_q(t_0)$.

This means (3.3) is defined for $t \neq t_0$ because if $t = t_0$ then $FY'(t_0) = GY(t_0)$ and $Z_q(t_0) = \emptyset$ which is a contradiction. Let $H(t - t_0)$ be the Heaviside function and

$$f(t) = H(t - t_0) - H(t_0 - t) = \begin{cases}
1, & t > t_0, \\
0, & t = t_0,
\end{cases} $$

$$g(t) = H(t_0 - t) = \begin{cases}
1, & t = t_0, \\
0, & t \neq t_0.
\end{cases} $$. \hspace{1cm} (4.1)

Then the system can be written as

$$f(t)FY'(t) = GY(t) - g(t)GY(t_0), \hspace{0.5cm} t \geq t_0.$$ \hspace{1cm} (4.2)

This is a linear matrix differential equation of first order with $Y_h(t) = f(t)Q_pe^{\mu(t-t_0)}C$ being the solution of the homogeneous and $Y_p(t) = g(t)Y(t_0)$ a partial solution. And we obtain the general solution

$$Y(t) = f(t)Q_pe^{\mu(t-t_0)}C + g(t)Y(t_0), \hspace{0.5cm} t \geq t_0.$$ \hspace{1cm} (4.3)

where $C = [C_1C_2\cdots C_p]^T$ is constant vector and the dimension of the solution vector space is p. \hfill \square

Theorem 4.2. Consider the system (3.1)-(3.2) with nonconsistent initial conditions. Then the system has infinite solutions.
Proof. We rewrite the system (3.1) in the following form:
\[
A_{n}X^{(n)}(t) + A_{n-1}X^{(n-1)}(t) + \cdots + A_{1}X'(t) + A_{0}X(t) = \emptyset, \quad t > t_0,
\]
\[
\sum_{i=0}^{n} A_{i}X^{(i)}(t) = \emptyset, \quad t > t_0, \tag{4.4}
\]
\[
A_{0}X(t) + f(t) \sum_{i=1}^{n} A_{i}X^{(i)}(t) = g(t)A_{0} \sum_{i=1}^{n-1} \frac{(t-t_0)^i}{i!}X^{(i)}(t_0), \quad t \geq t_0,
\]
where \(f(t) \) and \(g(t) \) are the functions defined in Theorem 4.2. Combining the results of Theorem 4.2 and the above discussion the solution of the system is
\[
X(t) = f(t)Q_{p}e^{J_{p}e^{T(t-t_0)}}C + g(t)\sum_{i=1}^{n-1} \frac{(t-t_0)^i}{i!}X^{(i)}(t_0), \quad t \geq t_0. \tag{4.5}
\]
The dimension of the solution vector space is \(p \). \(\square \)

Remark 4.3. For \(t > t_0 \), it is obvious that (4.5) is satisfied. Thus, we should stress out that the system (3.1)-(3.2) has the above impulse behaviour at time instant where a non-consistent initial value is assumed, while it returns to smooth behaviour at any subsequent time instant.

5. Numerical Example

Let
\[
\begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
X''(t)
\end{bmatrix}
+ \begin{bmatrix}
2 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
X''(t)
\end{bmatrix}
+ \begin{bmatrix}
-2 & 3 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
X'(t)
\end{bmatrix}
+ \begin{bmatrix}
4 & -2 \\
-1 & -1
\end{bmatrix}
\begin{bmatrix}
X(t)
\end{bmatrix}
= \emptyset, \tag{5.1}
\]
where \(X(t) = [X_1(t)^TX_2(t)^T]^T \). We adopt the following notations:
\[
Y_1(t) = X(t),
Y_2(t) = X'(t),
Y_3(t) = X''(t),
Y_1'(t) = X'(t) = Y_2(t),
Y_2'(t) = X''(t) = Y_3(t),
A_3Y_3'(t) = A_3X''(t) = -A_2Y_3(t) - A_1Y_2(t) - A_0Y_1(t).
\]

Or in Matrix form
\[
FY'(t) = GY(t), \tag{5.3}
\]
where \(Y(t) = [Y_1^T(t) Y_2^T(t) Y_3^T(t)]^T \) (where \(()^T \) is the transpose tensor) and the coefficient matrices \(F, G \) are given by

\[
F = \begin{bmatrix} I_2 & 0 & 0 \\ 0 & I_3 & 0 \\ 0 & 0 & A_3 \end{bmatrix}, \quad G = \begin{bmatrix} 0 & I_2 & 0 \\ 0 & 0 & I_2 \\ -A_0 & -A_1 & -A_2 \end{bmatrix},
\]

\[
sF - G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
- \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -4 & 2 & 2 & -3 & -2 & -1 \\ 1 & 1 & -1 & -1 & 0 & 0 \end{bmatrix}
\]

(5.4)

\(s \) - 1, \(s \) - 2, \(s \) - 3 finite elementary divisors and \(s^3 \) the infinite elementary divisor of degree 3 of the pencil \(sF - G \). There exist matrices nonsingular \(P, Q \) such that \(PAQ = F_w \) and \(PGQ = G_w \), where

\[
F_w = \begin{bmatrix} I_3 & 0 \\ 0 & H_3 \end{bmatrix}, \quad G_w = \begin{bmatrix} J_3 & 0 \\ 0 & I_3 \end{bmatrix}.
\]

(5.5)

Let \(Y(t) = QZ(t) \) then

\[
FY'(t) = GY(t),
\]

\[
PFQZ'(t) = PGQZ(t),
\]

(5.6)

\[
F_wZ'(t) = G_wZ(t).
\]

For consistent initial conditions the solution is

\[
Y(t) = Q_3^1 e^{h(t-t_0)} Z_3(t_0) X(t) = Q_3^1 e^{h(t-t_0)} Z_3(t_0)
\]

(5.7)

and for nonconsistent initial conditions the solution is

\[
X(t) = f(t) Q_3 e^{h(t-t_0)} C + g(t) \sum_{i=0}^{2} \frac{(t-t_0)^i}{i!} X^{(i)}(t_0),
\]

(5.8)
where

\[
J_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix},
\]

\[
e^{J_3 t} = \begin{bmatrix}
e^t & 0 & 0 \\
0 & e^{2t} & 0 \\
0 & 0 & e^{3t}
\end{bmatrix}.
\] (5.9)

The columns of \(Q_p \) are the eigenvectors of the eigenvalues 1, 2, 3

\[
Q_p^T = \begin{bmatrix}
3 & -5 & 3 & -5 & 3 & -5 \\
1 & -1 & 2 & -2 & 4 & -4 \\
1 & -1 & 3 & -3 & 9 & -9
\end{bmatrix}.
\] (5.10)

Let the initial values of the system be

\[
X(0) = \begin{bmatrix}
1 \\
-3
\end{bmatrix}, \quad X'(0) = \begin{bmatrix}
-2 \\
0
\end{bmatrix}, \quad X''(0) = \begin{bmatrix}
-10 \\
8
\end{bmatrix},
\]

\[
Y(0)^T = \begin{bmatrix}
1 & -3 & 2 & 0 & -10 & 8
\end{bmatrix}^T.
\] (5.11)

Then \(Y(0) \in \text{colspan} Q_p \) (consistent initial conditions) and the solution of the system is

\[
Y(t) = Q_3 e^{J_3 t} Z_3(0)
\] (5.12)

and by calculating \(Z_p(0) \) we get

\[
Y(0) = Q_3 Z_3(0),
\]

\[
Z_3(0)^T = \begin{bmatrix}
1 & -1 & -1
\end{bmatrix}^T.
\] (5.13)
and the solution of the system is

\[
Y(t) = Q_3 e^{ht} Z_3(0),
\]

\[
Y(t) = \begin{bmatrix}
3e^t - e^{2t} - e^{3t} \\
-5e^t + e^{2t} + e^{3t} \\
3e^t - 2e^{2t} - 3e^{3t} \\
-5e^t + 2e^{2t} + 3e^{3t} \\
3e^t - 4e^{2t} - 9e^{3t} \\
-5e^t + 4e^{2t} + 9e^{3t}
\end{bmatrix},
\]

(5.14)

\[
X(t) = \begin{bmatrix}
3e^t - e^{2t} - e^{3t} \\
-5e^t + e^{2t} + e^{3t}
\end{bmatrix}.
\]

Next assume the initial conditions

\[
X(0) = \begin{bmatrix}
0 \\
0
\end{bmatrix}, \quad X'(0) = \begin{bmatrix}
0 \\
0
\end{bmatrix}, \quad X''(0) = \begin{bmatrix}
1 \\
1
\end{bmatrix},
\]

(5.15)

\[
Y(0)^T = [0 \ 0 \ 0 \ 0 \ 1 \ 1]^T.
\]

Then \(Y(0) \notin \text{colspan}Q_p \) nonconsistent initial conditions and the solution is

\[
X(t) = f(t)Q_1 e^{ht} C + g(t) \sum_{i=0}^{2} \frac{t_i}{i!} X^{(i)}(0),
\]

(5.16)

\[
X(t) = f(t) \begin{bmatrix}
3e^t c_1 + e^{2t} c_2 + e^{3t} c_3 \\
-5e^t c_1 - e^{2t} c_2 - e^{3t} c_3
\end{bmatrix} + g(t) \frac{t^2}{2} \begin{bmatrix}
1 \\
1
\end{bmatrix}, \quad t \geq 0.
\]

The dimension of the domain that describes the solutions of the system is 3.

\section{6. Conclusions}

In this paper we investigate systems of the form suggested in [1–3, 5, 7], but from another point of view. By taking into consideration that the relevant pencil is regular, we use the Weierstrass canonical form in order to decompose the differential system into two sub-systems. Afterwards, we give necessary and sufficient conditions for existence and uniqueness of solutions for that general class of linear matrix differential equations of higher order and we provide analytical formulas when we have consistent and non-consistent initial conditions. Moreover, as a further extension of the present paper, we can discuss the case where the pencil is singular. Thus, the Kronecker canonical form is required. The non-homogeneous case has also a special interest, since it appears often in applications. For all these, there is some research in progress.
Acknowledgment

The author would like to express his sincere gratitude to my supervisor Professor G. I. Kalogeropoulos for making for him available personal notes and notations that he used in Sections 1 and 2 and for his fruitful discussion that improved the paper.

References

[1] S. L. Campbell, *Singular systems of differential equations*, vol. 1, Pitman, San Francisco, Calif, USA, 1980.
[2] S. L. Campbell, *Singular systems of differential equations*, vol. 2, Pitman, San Francisco, Calif, USA, 1982.
[3] G. I. Kalogeropoulos, *Matrix pencils and linear systems*, Ph.D. thesis, City University, London, UK, 1985.
[4] A. D. Karageorgos, *Matrix pencils and linear systems*, Ph.D. thesis, City University, London, UK, 1985.
[5] D. P. Papachristopoulos, *Analysis and applications of linear control systems*, Ph.D. thesis, University of Athens, Greece, 2008.
[6] T. M. Apostol, “Explicit formulas for solutions of the second-order matrix differential equation \(Y' = AY \),” *The American Mathematical Monthly*, vol. 82, pp. 159–162, 1975.
[7] G. I. Kalogeropoulos, A. D. Karageorgos, and A. A. Pantelous, “Higher-order linear matrix descriptor differential equations of Apostol-Kolodner type,” *Electronic Journal of Differential Equations*, vol. 2009, no. 25, pp. 1–13, 2009.
[8] I. I. Kolodner, “On \(\exp(tA) \) with \(A \) satisfying a polynomial,” *Journal of Mathematical Analysis and Applications*, vol. 52, no. 3, pp. 514–524, 1975.
[9] R. F. Gantmacher, *The theory of matrices I & II*, Chelsea, New York, NY, USA, 1959.
[10] H.-W. Cheng and S. S.-T. Yau, “More explicit formulas for the matrix exponential,” *Linear Algebra and its Applications*, vol. 262, pp. 131–163, 1997.
[11] I. E. Leonard, “The matrix exponential,” *SIAM Review*, vol. 38, no. 3, pp. 507–512, 1996.
[12] L. Verde-Star, “Operator identities and the solution of linear matrix difference and differential equations,” *Studies in Applied Mathematics*, vol. 91, no. 2, pp. 153–177, 1994.
Submit your manuscripts at http://www.hindawi.com