Research progress of surface-modified graphene-based materials for tribological applications

Mingyue Wang, Ming Zhou, Xiao Li, Chaogui Luo, Shengli You, Xin Chen, Youtang Mo and Hongwei Zhu

1 School of Mechanical and Traffic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, People’s Republic of China
2 Chengdu Carbon Co., Ltd, 88 Nan’er Road, Economic and Technological Development Zone, Chengdu 610100, Sichuan, People’s Republic of China
3 Guangxi Qinglu New Material Technology Co., Ltd, 279 FeiLiu Avenue, Luzhai County, Liuzhou 545006, Guangxi, People’s Republic of China
4 School of Materials Science and Engineering, Tsinghua University, Beijing 100000, People’s Republic of China

E-mail: zhoum03@163.com

Keywords: dispersion, friction-reduction, anti-wear, surface-modification, graphene-based materials

Abstract

Graphene’s many excellent properties have cemented it as an essential research topic in materials science and beyond. It is widely used in photoelectric materials, sensors, battery electrode materials, composites, and so on. Graphene has attracted particular attention in the field of tribology. However, graphene agglomerates easily, limiting its performance when used directly. Therefore, considerable research has focused on methods of modifying the surface of graphene to improve its tribological performance, by improving the dispersion stability, friction reduction, wear resistance, or a combination of these. This paper focuses on the research progress of surface modification of graphene-based materials for tribological applications. According to the reaction principles, surface modification methods can be divided into covalent surface modification, noncovalent surface modification, and surface modification by nanoparticles doping. Herein, the typical reaction processes of these modification methods and the anti-wear mechanism of modified graphene-based materials are introduced, and current research on the surface modification of graphene used in tribology is discussed.

1. Introduction

On 5 October 2010, two physicists, Andre Geim and Kostya Novoselov, from the University of Manchester, UK, won the Nobel Prize in Physics for their outstanding achievements in the research of graphene materials. In 2005, Geim and Novoselov prepared high-quality graphene monolayers for the first time. Graphene, the thinnest material to date, is a two-dimensional (2D) honeycomb lattice composed of single carbon atoms and is the basic building unit of all other graphitic materials. A single layer of graphene, owing to its 2D structure, is only a single atom thick (0.3354 nm) [1, 2]. Graphene can be wrapped into zero-dimensional fullerene, rolled into one-dimensional carbon nanotubes, or stacked into three-dimensional graphite [3]. It has a huge specific surface area and high transparency [4, 5], as well as excellent electrical [6–8], thermal [9, 10], mechanical [2, 11], electrochemical [12, 13], and optical properties [14]. Its excellent properties have led to its wide use in optoelectronics [15–18], sensors [19, 20], battery electrodes [21, 22], composites [23–25], composite coatings [26, 27], and energy storage and conversion devices [28–31].

In addition to the above applications, graphene has attracted significant attention in the field of lubrication due to its excellent physical and chemical properties [32–34]. With great potential in tribological applications, it is considered one of the most promising and attractive lubricating nanomaterials for tribological applications [35]. As a popular solid lubricant, it has excellent mechanical properties, low friction coefficient, and good wear resistance [36]. Graphene lubricants can be applied as a protective film on a substrate [37–40], as a reinforcing...
phase in various friction composites [41–43], or as an additive in various lubricants [44–47]. Graphene’s benefits as a lubricant stem from its 2D layered structure, which provides interlayer slip that significantly lowers its coefficient of friction compared to ordinary lubricants [48–50]. Essentially, the lubrication performance of solid graphene is regulated by the low shear strength between graphene sheets.

In sliding steel surface tests, a small amount of an ethanol–graphene solution can reduce the wear of sliding steel surfaces in air by nearly four orders of magnitude and the friction coefficient by six times [51]. Berman et al [52] summarized the friction coefficient of various solid lubricants. With a graphene coating with a thickness of only 1–2 nm, the dry and wet friction coefficients were only 0.15–0.20. Zhang et al [53] studied the tribological properties of graphene oxide (GO) as an additive in lubricating oil. The friction and wear performance of the Si3N4/GCr15 sliding pair were significantly improved by adding GO to the base oil; the average friction coefficient and wear scar width were reduced by 67.37% and 28.37% respectively. Hence, the excellent friction and wear resistance of graphene have made it a popular lubricant.

In-depth research has been performed on the friction-reducing and anti-wear performance of graphene. Various experimental approaches, calculation methods, and precision instruments have been employed to explore its lubrication and friction mechanism [54–57]. Numerous studies have shown that graphene reduces friction and wear by forming a physisorbed or chemisorbed film at the contact points between friction pairs. When contact stress is applied, the dispersed graphene is deposited on the contact area, easily shearing and effectively lubricating it (figure 1) [52, 58–61]. From experimental evidence, it is evident that graphene deposition is mediated by the plastic deformation of metal contact points. The high energy release that accompanies plastic deformation is beneficial to the physisorption or chemisorption of the graphene film on the substrate surface.

When graphene is fully dispersed in lubricating oil, its structure and morphology are stable, the shear mechanism is active, and a friction film is easily formed [62, 63]. Meanwhile, when graphene is used as a lubricating additive, it is deposited on the frictional surfaces, where it fills rough asperity gaps due to its small volume and removes scars and grooves on the frictional surfaces. This kind of repair or polishing can improve the tribological performance by reducing the surface roughness [64, 65].

Although graphene is widely used in tribology, many obstacles still exist to fully utilise its excellent tribological properties. On one hand, graphene is prone to irreversible aggregation and precipitation due to its insolubility, van der Waals forces, and π–π stacking between lamellae [66, 67], leading to the loss of wear resistance and anti-friction ability [68]. On the other hand, if graphene alone is used directly in tribology, its excellent anti-wear and friction-reducing performance may not be observed, limiting its application range. Currently, these problems have been solved most effectively by modifying the surface of graphene. This is done

![Figure 1. Schematic diagram of graphene in sliding contact.](image-url)
both to solve the problem of graphene agglomeration \cite{69,70} and to improve its anti-friction and anti-wear performance. The surface modification of graphene is widely studied, and there are many reports on related applications. Yet, the research progress of surface-modified graphene in tribological applications is rarely reported.

Thus, in this review, the research progress of modified graphene-based materials in tribological applications is summarized and analysed in terms of the reaction principle of surface modification. First, the excellent properties and wide applications of graphene, especially their tribological and lubrication mechanisms, are introduced. Then, according to the different modification principles, the surface modification methods applied in tribology are divided into covalent surface modification (chemical modification), non-covalent surface modification (physical modification), and modification by nanoparticles doping. Next, the reaction principle and anti-wear mechanism of different reaction types of these three surface modification methods are analysed and summarised in detail. Finally, the existing problems in the field of surface modification of graphene-based materials for tribological applications are analysed, with a prediction of future development trends. This review has significant potential for reducing industrial energy consumption and expanding the application range of graphene-based lubricants. The dispersion stability and tribological properties of various modified graphene-based materials prepared by different surface modification methods are shown in Table 1.

2. Covalent surface modification

In covalent surface modification of graphene-based materials, the active carbon–carbon double bonds (C=C) or oxygen-containing groups on the surface of graphene or GO are used as reaction sites. Surface modification occurs by covalent bond formation between the modifier and one of these groups \cite{91-94}. Many oxygen-containing groups exist on the surface and edges of GO, including hydroxyl groups, carboxyl groups, and epoxy groups. GO also contains some incomplete lattices. These oxygen-containing functional groups and defect sites have high reactivity \cite{95}, improving the possibility of covalent surface modification. Moreover, the high specific surface area of graphene is conducive to chemical modification \cite{96}.

There are two general routes for the covalent modification of graphene-based materials: the first is the formation of a covalent bond between a free radical or amphiphilic molecule and the carbon–carbon double bonds of graphene \cite{97,98}; the other is the formation of covalent bonds between organic functional groups and oxygen-containing groups on the surface of graphene or GO \cite{99}. However, modification via carbon–carbon double bonds is rare for tribological applications, and is not analysed in this paper. Modification via oxygen-containing functional groups can be divided into two reaction types depending on the modification site: hydroxyl covalent bonds, carboxyl covalent bonds, and epoxy covalent bonds. These typical reactions are used to introduce the research progress of covalent surface modification of graphene-based materials in the following sections.

2.1. Modification of hydroxyl covalent bond

Hydroxyl groups exist on the surface of GO. At present, there are two routes to modify the surface of GO via the hydroxyl groups to form covalent bonds. The first is an esterification reaction between the hydroxyl groups of GO and the carboxyl groups of the modifier \cite{100}. The other is a substitution reaction between the hydroxyl groups of GO and the halogen atoms of the modifier.

Mu et al \cite{71} used imidazole-1-ylphosphine dichloride (or 1H-1,2,4-triazol-1-ylphosphine dichloride) to covalently modify GO. The chlorine atoms in the modifier reacted with the hydroxyl group in GO, successfully grafting the modifier molecule onto the surface of GO to obtain modified GO (mGO) (Figure 2). The modification increased the solubility of GO in an ionic liquid from 1% to 3%, while homogeneity was maintained for six months. When 1.0% of the mGO was added to the ionic liquid, the average friction coefficient and wear loss of a metal surface were reduced by 9% and 73%, respectively. Modification enhanced the hydrogen bonding between the mGO and ionic liquid and improved the dispersion stability. Furthermore, the polarity of the mGO was strengthened, boosting the adhesion between the mGO and the metal surface. Consequently, a more stable lubricating film was formed, improving the friction reduction and wear resistance.

The principle of similar compatibility states that surface modification with groups similar to those present in the dispersion medium can improve the dispersion stability. This is a common approach to improving the dispersion stability of graphene-based materials. For example, to improve the dispersion stability of graphene-based materials in a silicone resin, organosiloxanes with a long chain structure were reacted with the hydroxyl groups of GO to obtain mGO with a larger interlayer spacing \cite{72}. After modification, the mGO was effectively dispersed in the silicone resin, and the resultant silicone coating had excellent wear resistance. The mGO sheets had good dispersion and compatibility in the polysiloxane matrix, and acted as an effective buffer between stainless steel and polysiloxane on the surface of the coating, resulting in good wear resistance.
Table 1. Research results of dispersion stability and tribological properties of modified graphene-based materials prepared by different methods.

Method for modification	Substances for modification	Dispersion system	Dispersion stability	Lubricating material	COF decrease / Wear decrease	Mechanism of friction-reduction and anti-wear	References	
Covalent surface modification	Modification of hydroxyl covalent bond	1H-1,2,4-triazol-1-yl phosphonic dichloride	Ionic liquid	More than six months	Ionic liquid	9%/73%	Smooth and firm lubricating film.	[71]
	Polysiloxane oligomer	Polysiloxane matrix	Excellent dispersibility	Polysiloxane coating film	--/48%	Buffer effect between contact surfaces.	[72]	
	Silane coupling	—	—	Aromatic polyimide (PI) matrix	30.2%/71.2%	The spalling of worn surface was restrained.	[73]	
	Oleic acid	Lubricant oil	Excellent dispersibility	Lubricant oil	17%/14%	1. compact and stable lubricating film.	[74]	
	Azidodecane	Lubricant oil	More than one month	Lubricant oil	16%/30%	2. repair or polishing of friction surface.	[75]	
	Alkylamine	Hydrocarbon solvents	Excellent dispersibility	Hexadecane	26%/9%	3. the graphene sheet was continuously provided on the contact surface.	[76]	
	Dodecylamine	Commercial engine oil	More than one month	Commercial engine oil	40%/-		[77]	
	Octadecylamine	10W-40 oil	More than one month	10W-40 oil	--/36%		[78]	
	Octadecylamine and dicyclohexylcarbodiimide	PAO6 base oil	120 days(with dispersant)	PAO6 base oil	44%/90%		[79]	
	Red phosphorus (P)	PAG base oil	More than two months	PAG base oil	12%/98%	Composite chemical lubricating film.	[80]	
Modification of epoxy covalent bond	Poly(2-aminothiazole)(PAT)	—	—	Composite coating	--/69.48%	A close cross-linking network was formed in the epoxy coating.	[81]	
Non-covalent surface modification	π-π bond interaction	Sodium dodecyl benzene sulfonate(SDBS)	PAO base oil	Excellent dispersibility	PAO base oil	74.78%/28.33%	Smooth and firm lubricating film.	[82]
	Poly(2-aminothiazole)(PAT)	—	—	Composite coating	--/69.48%		[83]	
	Water							
Method for modification	Substances for modification	Dispersion system	Dispersion stability	Lubricating material	COF decrease / Wear decrease	Mechanism of friction-reduction and anti-wear	References	
-------------------------------	-----------------------------	-------------------	----------------------	----------------------	-----------------------------	---------------------------------	------------	
Hydrogen bond interaction	Poly(sodium 4-styrenesulfonate) (PSS)	More than several weeks	Multilayer ultrathin films	Good tribological properties	The stress, compression and shear between the film and substrate were reduced. Adhesion and buffering effects.	[84]		
	Polydopamine (PDA)	Water	Excellent dispersibility	Composite coating	Good tribological properties 38%/53%	Firm adsorption friction film.	[62]	
	Poly(ethylene glycol 200) (PEG200)	PEG200	Excellent dispersibility	PEG200				
Ionic bond interaction	Cu nanoparticle	—	—	Base oil	Excellent tribological properties	Thin physical friction film.	[85]	
Electrostatic action	Cluster-cored star polymers (CSPs)	Organic solvents	Excellent dispersibility	Composite coatings	Excellent tribological properties	The modified graphene had good compatibility with polymer matrix.	[86]	
ZrO2	Paraffin oil	Excellent dispersibility	Paraffin oil	20.7%/21.5%	The sliding friction changed into rolling friction	[87]		
Surface modification by element doping	Nickel nanoparticles	—	—	Paraffin oil	32%/42%	Physical deposition film	[88]	
	Silver nanoparticle	Engine oil	More than two weeks	Engine oil	30.4%/27.4%	Smooth and firm lubricating film	[35]	
	Copper nanoparticle	—	—	Paraffin oil	27.0%/52.7%	Nano copper reduced the stacking tendency of GO	[89]	
Titanium(Ti) particles	—	—	—	Aluminium Metal Matrix Composites	Excellent tribological properties	Composite chemical lubricating film.	[90]	
The similar compatibility principle can also be used to make graphene-based materials more compatible with a composite matrix, which improves the uniformity and stability of the composite. Li et al.\(^\text{[73]}\) used a silane coupling agent to modify graphene and prepared modified graphene/polyimide composites, which showed a lower friction coefficient and wear rate. The improved anti-friction and anti-wear performance was mainly attributed to the addition of modified graphene, which inhibited the spalling of large blocks on the worn surface and effectively increased the anti-deformation ability of the matrix. Therefore, only slight adhesive wear occurred.

2.2. Modification of carboxyl covalent bond

The carboxyl functional groups that exist at the edges of GO serve as another important modification site due to the high reactivity of the carboxyl group\(^\text{[101–104]}\). At present, two main methods are used to modify GO via covalent bonding to the carboxyl groups. The first is an esterification reaction between the carboxyl group of GO and the hydroxyl group of the modifier, which grafts the modifier to the GO surface\(^\text{[105]}\).

Zhang et al.\(^\text{[74]}\) studied the tribological properties of poly(\(\alpha\)-olefin) (PAO) lubricating oil prepared using oleic acid-modified graphene. Esterification of the carboxyl group in graphene with the hydroxyl group in oleic acid resulted in modified graphene with good lipophilicity. It was found that an addition of 0.02 wt\% modified graphene reduced the friction coefficient by 17\%, while the wear spot diameter decreased by 14\% with a 0.06 wt\% addition of modified graphene.

Although carboxyl groups have high reaction activity, the degree of reaction can be enhanced by activating the carboxyl groups by pre-treatment. Ismail and Bagheri\(^\text{[75]}\) first activated GO with SOCl\(_2\), then esterified 2,2-dipropyl-1,3-propanediol with the carboxyl group on the surface of GO to obtain mGO containing an alkynyl group. Azido dodecane was then connected through substitution reaction to obtain a new modified graphene material (figure 3). The results showed that the material had good lipophilicity, and the friction coefficient and wear loss were reduced by 16\% and 30\%, respectively.

The purpose of covalent modification is to react graphene-based materials with modifiers and graft desired groups. For these chemical reactions to take place, graphene-based materials must contain functional groups. Carboxyl groups are one kind of functional group that allow surface modification by chemical reaction. The chemical activity of carboxyl groups high, which facilitates the chemical reactions. Esterification is one of the chemical reactions that can occur at the carboxyl functional groups of graphene-based materials. Another method is to form amide bonds between the carboxyl groups of graphene and the amido groups of a modifier\(^\text{[106, 107]}\). For example, alkylamines with variable alkyl chain lengths are commonly used as the modifier to

![Figure 2. Process diagram of covalent bond modification of graphene oxide by imidazole-1-ylphosphine dichloride (Im) and 1H-1,2,4-triazole-1-ylphosphine dichloride (Tr). Reprinted from \([71]\), Copyright (2017), with permission from Elsevier.](image-url)
prepare alkyl-modified graphene [76, 77]. Alkylamines are excellent modifiers as they contain both amino and alkyl chains, making them compatible with hydrocarbon solvents. In this way, the modified graphene has excellent dispersion stability in hydrocarbon solvents such as lubricating oil. Furthermore, the lubricating oil has improved anti-friction and anti-wear properties.

To improve the modification efficiency, carboxyl groups can be grafted onto the surface of graphene in a directional manner without generating other interfering functional groups. Mungse and Khatri [78] first reduced GO with hydrazine hydrate, then acidified the reduced GO (rGO) with nitric acid, which selectively decorated the rGO surface with carboxyl groups. Subsequently, an amino group-containing long-chain alkyl modifier, octadecylamine, was reacted at high temperature with the carboxyl group of GO to form amide bonds (figure 4). The mGO had good dispersion stability in lubricating oil, exhibiting stability for over a month. Tribological tests showed that the surface-modified rGO was an effective additive for 10w-40 engine oil and significantly reduced the friction and wear of a steel ball.

Wu and colleagues [79] used octadecylamine and dicyclohexylcarbodiimide to modify graphene through the same chemical reaction. Combined with a dispersant, the dispersion of graphene in PAO6 base oil was stable for approximately four months. Compared with pure PAO6, the friction coefficient between sliding surfaces and the depth of wear marks on a steel plate were reduced by 44% and 90%, respectively. The researchers noted that the degree of reaction between the modifier and graphene was very low, and the modified graphene could not be stably dispersed in the lubricating oil due to fewer lipophilic groups grafted on the surface. Nevertheless, the addition of a dispersant increased the dispersed stably time to over four months. Low dispersibility and low

Figure 3. After the carboxyl group of graphene oxide was esterified with 2,2-dipropyl-1,3-propanediol, a new modified graphene resulted from substitution reaction with azido dodecane. Reprinted from [75], Copyright (2017), with permission from Elsevier.
Figure 4. Process flow chart of graphene modified by octadecylamine. (a) graphene oxide was prepared by Hummer’s method; (b) ammonia was used to reduce graphene oxide; (c) carboxylic acid was used to gently oxidise graphene; (d) after the carboxyl group was activated, graphene was modified with octadecylamine. Reprinted with permission from [78]. Copyright (2014) American Chemical Society.
degree of reaction are common problems in covalently modified graphene, making it difficult to identify suitable modification methods.

The above research mainly used modified graphene-based materials as a nano-additive to improve the friction-reducing and anti-wear performance of lubricating oil. The mechanism of lubrication involves the formation of a compact and stable lubrication film on the surfaces to prevent direct contact between friction pairs. This improves the overall lubrication performance of the oil. The dispersed graphene is easier to deposit on rough surfaces and can repair or polish rough frictional surfaces, reducing the friction coefficient and wear rate. Notably, it is important for graphene to be evenly and stably dispersed in the lubricating oil to continuously deposit graphene sheets on the contacting surfaces and therefore reduce friction and wear.

2.3. Modification of epoxy covalent bond

In addition to hydroxyl and carboxyl groups, epoxy groups (C–O–C) also exist on the surface of GO. Various researchers have studied covalent surface modification of GO via epoxy groups. The modification of graphene-based materials via epoxy groups requires a ring opening reaction to open the epoxy group and graft the modifier onto the surface of the graphene-based material.

Wu et al [80] used mechanical modification to synthesise covalently bonded phosphorus–graphene hybrids to use as a high-temperature lubricating oil additive. High-energy ball milling in a nitrogen atmosphere was used to open the epoxy groups on the graphene surface. Red phosphorus was then covalently bonded to form P–O–C bonds. The P–O–C bonds facilitated dispersion stability, and the phosphorus–graphene hybrids could be stably dispersed in a polyalkylene glycol (PAG) base oil for more than two months. As a 1.0 wt% additive the friction-reducing and anti-wear properties of the PAG base oil were improved, enhancing the wear resistance of high-temperature frictional surfaces. The improvement of tribological properties was attributed to the formation of friction films composed of FeO, Fe3O4, FeOOH, FePO4 and compounds with C–O–C and P–O bonds on the wear marks.

Zhu and colleagues [108] covalently modified GO via the epoxy groups and achieved good dispersion of mGO in water. Specifically, a novel water-dispersive graphene was synthesised by the nucleophilic ring opening reaction of the epoxy group on GO and primary amine group on 3-[1-(2-aminopropoxy)propane-2-aminopropoxy]-propane-1-sulfonate (PPS), followed by reduction with hydrazine hydrate. The PPS-modified GO nanosheets were used as a nano-reinforcing phase in a waterborne acrylic-modified alkyd resin (AMAR) coating. This improved the emulsion stability because the PPS-modified GO nanosheets adsorbed on the AMAR colloidal particles, acting as stabilisers (figure 5).

Although oxygen-containing functional groups such as epoxy groups provide great feasibility for covalent modification, it is important to note that the modification of oxygen-containing functional groups requires the use of strong acids or bases (to oxidise or reduce graphene), as well as modifying agents which may be toxic and odorous, which must be considered for practical applications.

Stable functional graphene-based materials can be prepared by covalent surface modification. Despite the benefits for dispersion stability and anti-friction and anti-wear properties, problems still exist. First, high-energy reagents or harsh reaction conditions used in covalent modification may produce vaguely defined nanoscale surface structures [109] and may destroy the conjugated π system of graphene, complicating the preparation of functional graphene-based materials. Second, the dispersion and tribological properties of modified graphene-based materials are not considerably improved due to the low degree of reaction and minimal grafting of modified materials on the surface [79]. The degree of modification of GO is limited, and a high degree of chemical reaction can only be realized by achieving complete layering [110]. Third, challenges arise in the differentiation of modification methods due to the low degree of reaction [110]. The modification degree of graphene-based materials is significantly lower than the defect degree, resulting in ambiguity of the test results [111]. Although analytical methods for product characterisation have improved in recent years, detailed analysis of the structure of covalently modified graphene-based materials is still difficult. Fourth, there have been no detailed analyses on the friction-reducing and anti-wear effect of covalently modified graphene, and the frictional processes have not been studied fully.

3. Non-covalent surface modification

Non-covalent surface modification is also widely used for the modification of graphene-based materials [112, 113]. Noncovalent modification refers to the modification of graphene-based materials through π–π bonding, hydrogen bonding, ionic bonding, and electrostatic interactions with a modifier substance to improve the dispersion stability or friction and wear resistance. Compared with covalent modification, non-covalent surface modification can ensure that the structure of graphene itself is not damaged, maintaining its unique properties.
3.1. \(\pi-\pi \) bond interaction

\(\pi-\pi \) bond interaction is the most attractive non-covalent modification route. Graphene has a \(\pi-\pi \) conjugated system, allowing it to form strong \(\pi-\pi \) bonds with substances with the same structure \([99, 114-116]\). Certain types of dispersant use this principle to achieve dispersion effects. Tong and colleagues \([81]\) modified graphene with sodium dodecylbenzene sulfonate (SDBS) and added it to PAO base oil, forming a uniform dispersion system. The benzene ring in the SDBS molecule attached via \(\pi-\pi \) bonding to the six-membered ring structure on the graphene surface. Steric hindrance of the long-chain alkyl molecules in SDBS caused repulsion between the particles, resulting in uniform dispersion of modified graphene in the lubricating oil. The lubricating oil containing modified graphene also showed excellent anti-friction and anti-wear performance; the friction coefficient was reduced by 74.78% and the wear spot size was reduced by 28.33%. This was due to the formation of a stable lubricating film on the friction surface owing to the stable dispersion of modified graphene.

The \(\pi-\pi \) interaction is used to graft modified groups on the surface of graphene to be uniformly dispersed in the epoxy system, and the crosslinking is tight. The use of poly(2-aminothiazole) (PAT) to modify exfoliated graphene sheets by \(\pi-\pi \) bonding resulted in excellent wear resistance of the modified graphene coating (figure 6) \([82]\). After 80 days of immersion, the coating with 0.5% modified graphene exhibited excellent barrier properties, reducing the wear rate by 69.48%. A denser cross-linking network formed during the epoxy curing process due to the \(-\text{NH}\) functional groups on the modified graphene. Thus, the graphene formed a stable transfer film on the worn surface, improving the hardness and wear resistance of the composite.

Most non-covalent bond modifications are used for attaching groups that are similar to the dispersion system onto the surface of the graphene-based material. Non-covalent bond modification differs from covalent bond modification as it uses weak interactions such as \(\pi-\pi \) bonds. However, there are great difficulties in distinguishing the mechanism by which graphene modification occurs by weak interactions, even though there are relatively abundant detection methods.
3.2. Hydrogen bond interaction
Strong hydrogen bonds can form between the oxygen-containing groups present on the surface of GO, such as hydroxyl and carboxyl groups, and other molecules. Thus, graphene can be modified by non-covalent hydrogen bonding. Liu et al. [83] adsorbed sodium 4-phenylene sulfonate (PSS) onto the surface of GO through hydrogen bonding and van der Waals forces. Finally, they reduced the GO using hydrazine hydrate to obtain sodium 4-phenylene sulfonate modified graphene sheet (PSS-GS). An aqueous solution of the PSS-GS maintained dispersion stability for several weeks. A film assembled with alternating layers of PSS-GS and polyethyleneimine (PEI) exhibited a low friction coefficient and long anti-wear life. This was due to the uniform and dense filling of PSS-GS in the film, which effectively reduced the stress, compression, and shear between the film and substrate.

The use of hydrogen bonding to modify graphene-based materials is also applicable in the field of wear-resistant coatings. A fluorographene composite coating was prepared by dispersing fluorographene, containing hydroxyl groups, in a mixed solution of water and ethanol, and then combining this solution with polydopamine (PDA) [84]. The fluorographene with hydroxyl groups exhibited good dispersibility. In addition, the composite coating had excellent tribological properties because it filled nano-gaps in the surface and lowered the contact roughness, effectively reducing adhesion and friction between the contact surfaces. Furthermore, the buffering effect of the PDA layer improved the tribological properties of the composite coating.

The molecules in the dispersion system were directly used to modify the graphene by non-covalent bonding to achieve a stable dispersion effect, and no other molecules are introduced. rGO was subjected to γ-ray radiolysis to form a hydrogen bond network between the residual oxygen functional groups of rGO and the oxygen atoms of poly(ethylene glycol) (PEG) [62]. The infrared spectrum of modified rGO is shown in figure 7. The modified rGO exhibited stable dispersibility. At a concentration of 0.03 mg ml⁻¹, the wear and friction coefficient of the friction surface were reduced by 55% and 38%, respectively. The uniformly dispersed modified rGO was adsorbed on the wear tracks of a steel surface, producing a low shear-strength film that acted as a solid lubricant, reducing the friction coefficient and improving the wear resistance.

3.3. Ionic bond interaction
Ionic bonding involves the electrostatic attraction between molecules with positive and negative charges. It can be used to modify graphene-based materials with other molecules, achieving non-covalent modification [117]. Zhang et al. [85] synthesised rGO/Cu nanocomposites by a chemical reduction method, whereby positively charged Cu ions were ionically bonded to the negatively charged GO nanosheets (figure 8). When the composite was added to lubricating oil, the wear resistance, load-carrying capacity, and lubrication performance were improved. The excellent tribological properties of the composites were attributed to a variety of factors, including their ability to move to the oil interface between the steel ball and matrix, where they smeared on the contact area, smoothed the surface roughness, and formed a thin physical friction film on the metal substrate.

A simple method to assist the exfoliation of dispersed graphene using ionic bonding between positively charged lithium ions and negatively charged hydroxyl groups was proposed by Wang et al. [118]. Graphene prepared by this method can be stably dispersed in water without ultrasonic treatment or surfactant. The lithium ions embedded into graphene by ionic bonding with the negatively charged hydroxyl groups, enlarge the interlayer spacing. Hydrogen bonding between the hydroxyl groups and water resulted in a hydrophilic effect, allowing for stable dispersion in water. This work inspired the preparation of hydrophilic and lipophilic graphene by ionic bond-based non-covalent surface modification; however, these methods have a weak force and weak adhesion, similarly to other types of non-covalent modification.
3.4. Electrostatic interaction

Electrostatic interaction is another non-covalent bonding method used to modify graphene-based materials. Wang et al. [86] used polyoxymethylene (POM)-cored star polymers (CSPs) as modifiers to prepare modified graphene by electrostatic interaction with rGO. The modified graphene nanosheets was stably dispersed in organic solvent, indicating that it could be compatible with polymer matrices and used as a reinforcing nanofiller to enhance the mechanical and tribological properties of composite coatings.

To take advantage of the electrostatic effect, the modifier is pre-treated to obtain an electric charge. For example, ZrO₂ nanoparticles were modified with 3-(aminopropyl)triethoxysilane (KH550) to obtain a positively charged ZrO₂-KH550 solution, which was then mixed with a negatively charged GO aqueous solution [87]. Electrostatic interaction caused the ZrO₂ nanoparticles to self-assemble onto the GO nanosheets, forming ZrO₂@GO nanocomposites. The nanocomposites exhibited good dispersion stability in liquid paraffin oil. The addition of 0.05 wt% ZrO₂@GO nanocomposites to paraffin oil reduced the friction coefficient and wear rate by 20.7% and 21.5%, respectively. The ZrO₂ nanoparticles and GO played a synergistic role in reducing friction and wear. The ZrO₂ nanoparticles bore part of the load on the friction surface and reduced the stress concentration;
in addition, they acted as ‘micro bearings’ to transform sliding friction into rolling friction. The GO layer formed a transfer film by sliding in the friction process, thus avoiding direct contact between the friction pair.

Compared with covalent modification, non-covalent modification is very attractive as the conjugated π system of graphene largely remains intact [119]. Non-covalent modification acts to adhere various chemical components to the surface of graphene-based materials through weak interaction without destroying or changing the atomic structure [120]. However, some problems still exist. First, the weak interaction between graphene-based materials and conjugates (such as surfactants) results in small and impermanent bonding forces between the substances [121]. The modification process can also introduce some unnecessary chemical components, affecting the application. Second, the detection methods need to be developed further to reduce the difficulty of distinguishing weak interactions. Third, the current research into non-covalent modification systems is incomplete, leaving many questions regarding the friction-reducing and anti-wear mechanism of modified graphene-based materials.

4. Surface modification of graphene-based hybrid materials

In addition to covalent and non-covalent modification, graphene-based hybrid materials can also be prepared by surface modification via doping. Doping with elements, compounds, or nanoparticles can improve the dispersion stability of graphene-based materials or improve the tribological properties [122]. Meng et al [88] prepared nickel nanoparticle-doped GO hybrid materials using supercritical carbon dioxide-assisted technology (ScCO₂). When used as a lubricating additive for paraffin oil with a content of 0.08%, the friction coefficient and wear zone diameter were reduced by 32% and 42%, respectively, compared to that with pure oil. These excellent results are due to the synergistic effect of the nickel nanoparticles and GO in the friction process. When deposited as a protective film, it reduces the friction effect during the wear process by preventing direct contact between the friction pairs.

The researchers also used ScCO₂ to prepare silver nanoparticle-doped graphene nanohybrids (Sc-Ag/GN) (figure 9). Lubricating oil with 0.06–0.10 wt% Sc-Ag/GN nanocomposites showed excellent lubrication performance [35]. The reduction in friction and wear were associated with the increase in interlayer spacing between the graphene nanosheets because of the silver nanoparticle decoration. This improved their dispersion stability in lubricating oil, preventing the graphene nanosheets from agglomerating during the friction process, so that it could exhibit its full lubricating activity.

Copper nanoparticles have also been used to modify GO, forming nano-Cu/GO composites, which exhibited excellent anti-wear properties [89]. Nano-copper and GO have a synergistic friction-reduction effect. GO nanosheets have a positive effect on filling voids and smoothing the interface, while copper nanoparticles reduce the accumulation tendency of GO. This reduces the blocking effect of GO at the front of the steel ball.
interface, allowing GO to form a thin protective film on the contact surface. In addition, copper nanoparticles can withstand and transmit stress, increasing the load uniformity.

Graphene hybrid materials decorated with metal nanoparticles can also be used as the reinforcing phase of metal matrix composites with a low friction coefficient and high wear resistance [90]. For the preparation of graphene hybrid materials by elemental doping, the reaction process is difficult to control quantitatively. Similarly, it is difficult to control the reaction sites. Moreover, it is difficult to distinguish this modification method from non-covalent modification. Finally, the friction mechanism needs to be studied further.

5. Friction-reduction and anti-wear mechanism of surface-modified graphene-based materials

This section summarises the mechanisms by which surface-modified graphene reduces friction and wear. There are three main mechanisms depending on the modification method.

The first mechanism involves improvements to the dispersion stability. When graphene is evenly distributed in the lubricating oil or matrix, it is more uniformly adsorbed or deposited on the friction surfaces, forming a more stable and uniform friction film. That is, the excellent tribological properties of graphene are maximised. The stable and uniform friction film prevents the direct contact of the friction pair and smooths rough surfaces. Most covalent modification methods and some non-covalent modification methods can achieve this effect. Moreover, some modification methods actually suppress wrinkling of the graphene surface during friction, which means that the friction film formed on the metal surface is smoother and has a larger contact area, thereby achieving a low friction coefficient. For example, the use of ionic liquids to modify graphene enhances its adhesion on the metal surface and reduces the impact of wrinkling [71, 123]. Cho et al [124] showed through atomic stick-slip imaging that mechanically exfoliated graphene suppresses surface wrinkling. Therefore, the graphene flakes maintain a large contact area with the substrate, resulting in low friction.

The second mechanism involves the synergistic role of the modifier and graphene in reducing friction and wear. For example, nanoparticles can convert sliding friction into rolling friction; combined with the friction film formed by graphene, this greatly improves the tribological properties of the material [87]. Some modifiers chemically react during the friction process and form a composite lubricating film with graphene. Xiao and Liu [125] revealed that, as the friction strength increases, the adsorbed or deposited graphene film between the contact surfaces breaks. A chemical reaction then takes place on the exposed surface, forming a new chemisorbed film that gradually replacing the physisorbed film. This film exists on the local contact surface, so the tribological properties are improved.

The third mechanism involves elemental doping and partial non-covalent modification methods to modify the surface of graphene to expand its application scope in composite materials. For example, when modified graphene is used as the reinforcement phase of composite friction materials, the composite reflect the excellent mechanical properties and wear resistance of graphene, improving the tribological properties.

6. Summary

Graphene’s excellent mechanical properties, low friction coefficient, and high wear resistance have placed increasing attention on graphene-based materials in tribology research. However, the unique structure of graphene reduces its solubility and dispersibility in solvents, rendering surface modification particularly important to take full advantage of the excellent properties of graphene in practical applications. While exploring the potential of graphene, scholars have also made progress in understanding the industrial applications of modified graphene. This paper reviews the various methods of modifying graphene-based nanomaterials to improve their dispersion stability or anti-wear and friction-reducing properties for tribological applications. Furthermore, the mechanisms by which these modification methods improve the anti-wear and friction-reducing performance of graphene is discussed.

The modification methods are divided according to the reaction principle, including covalent surface modification, non-covalent surface modification, and elemental and nanoparticle doping. Covalent modification methods depend on covalent bond formation between organic functional groups and GO oxygen-containing groups [99]. Non-covalent modification mainly depends on π–π bonding, hydrogen bonding, ionic bonding, and electrostatic interaction. Lastly, elemental and nanoparticle doping involves the addition of metal or compound nanoparticles to graphene-based materials to achieve the desired properties. These different modification methods expand the current tribological applications of graphene, such as its use as a lubricant additive, wear-resistant coating, wear-resistant composite, and so on. Among these categories of modification methods, it is believed that non-covalent bond surface modification is the worthiest of application. The
modification process is simple, safe, and environmentally friendly. Although non-covalently modified graphene has poor stability, it is suitable for use in a wide range of applications.

This article mainly reviews the application of surface-modified graphene-based materials in tribology. However, graphene also has many potential applications in other fields. In recent years, researchers have made considerable efforts towards materials with environmental protection functions, such as using functionalised Fe₃O₄ nanoparticles to adsorb caesium ions to reduce toxic pollution [126]. Modified graphene-based materials are also a potential adsorption material. For example, graphene–titanium dioxide hybrid materials prepared by the elemental doping modification method exhibit high-efficiency adsorption of methylene blue [127]. Similarly, covalently modified graphene-based materials using cetyltrimethylammonium bromide can selectively adsorb uranyl ions [128].

Modified graphene-based materials are also promising for electrical applications. For example, modification via covalent bonding can increase the conductivity of the graphene-based material, producing excellent electrode materials [129–131]. Element doping has been used to prepare graphene hybrid materials that can be used in energy storage and conversion devices [132, 133]. The modification of graphene-based materials can also be used to improve their suitability as catalysts for specific reactions. Covalent bonding, non-covalent bonding, and element doping have all been used for this purpose [134–136]. Covalently modified graphene-based materials have been used as nano-fillers in epoxy coatings to prepare corrosion-resistant coatings [137, 138]. The application of graphene-based materials in sensors has also attracted a lot of attention. Doped graphene-based hybrid materials have been used to make high-sensitivity flexible light detection sensors [139]. It can be seen that modified graphene-based materials have a wide range of application scenarios, reflecting huge industrial value.

Despite the progress in preparing suitable graphene-based materials for tribological applications, there are still many challenges and problems to be solved in future research. First, the three different most common modification routes each have downsides. The preparation of covalently modified graphene-based materials is complex, requiring harsh reaction conditions and dangerous reagents. In non-covalent modification, the unstable modifier is easily decomposed due to the high shear stress and high temperature of the friction surface [140]. In addition, the elemental and nanoparticle doping method requires strict reaction conditions, and the doping process is difficult to control quantitatively.

Second, the degree of modification is often low, with few methods to quantify the degree of modification [111]. This is particularly the case for covalent modification, as the content of modifier groups grafted on the surface of graphene-based materials is low, making it difficult to improve the dispersion stability or enhance the tribological properties.

Third, there are some problems in the identification of modification methods. For example, for non-covalent bond modification, the current detection methods have difficulty identifying different weak interactions. In addition, sometimes it is difficult to distinguish between modification by element doping and non-covalent bonding. Furthermore, the low modification degree makes covalent bonding modification difficult to distinguish.

Fourth, the mechanisms by which graphene modification reduces friction and wear needs to be further studied. In many studies, the mechanism is not studied in depth, relying on existing friction-reduction principles to explain the results and ignoring some possible situations.

Therefore, the current development of modified graphene in tribological applications needs further improvement. It is necessary to conduct in-depth research from the following aspects:

1. The surface modification of graphene-based materials should be scientifically optimised to develop more ideal modification methods. This includes improving the simplicity and safety, making methods more environmentally friendly, being able to control the number of groups and reaction sites, and creating more stable modified graphene. At present, some scholars have studied ways to control the reaction sites for covalent modification of graphene at the molecular scale [141]. In addition, safer and more convenient modification methods have been developed, that avoid the use of hazardous chemicals [142].

2. The degree of modification should be maximised as far as possible, and the number of modifier groups on the surface of graphene-based materials should be increased. The low degree of reaction makes it difficult to fully make use of the excellent properties of modified graphene. Therefore, it is important to consider many aspects to improve the degree of reaction, including increasing the reactivity of the surface and modifier groups, expanding the reaction area, and so on.

3. Modification methods should be clearly distinguished. The degree of modification of graphene and GO is usually much lower than the density of internal planar lattice defects, which obscures the detection results [111]. Hence, it is necessary to develop and apply new analytical tools for satisfactory structural characterisation to clearly distinguish different modification methods. In this way, we can further study the...
modification of graphene-based materials and provide insight into the optimisation of modification methods.

(4) The mechanism by which modification improves the friction-reduction and anti-wear performance should be further studied. The mechanism of friction reduction and wear resistance of modified graphene at the nanoscale can be explored through theoretical calculations and experimental research. Various physical, chemical, and structural changes may occur in the lubricating material during the friction process. Therefore, determining the mechanisms by which modification improves the frictional properties should provide insight into ways to further optimise the modification methods and further expand the application of modified graphene in tribological applications.

Acknowledgments

This research was funded by National Natural Science Foundation of China, grant number 12062002; National Science Foundation of Guangxi Province of China, grant number 2018GXNSFAA138174. We would like to thank Editage (www.editage.cn) for English language editing.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Mingyue Wang https://orcid.org/0000-0003-4068-2184
Hongwei Zhu https://orcid.org/0000-0001-6484-3371

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[2] Lee C, Wei X, Yazyev O V and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8
[3] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–9
[4] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition Nano Lett. 9 30–5
[5] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Fine structure constant defines visual transparency of graphene Science 320 1308
[6] Siberio-Pérez D Y, Kim J, Matger A J, Guo Y B, O’Keeffe M, Yaghi O M, Chae H K and Eddaoudi M 2004 A route to high surface area, porosity and inclusion of large molecules in crystals Nature 427 523–7
[7] Allen M J, Tung V C and Kaner R B 2010 Honeycomb carbon: a review of graphene Nanoscale 2 29–45
[8] Bouša D, Pumera M, Sedmidubský D, Surala J, Luxa J, Mazánek V and Sofer Z 2016 Fine tuning of graphene properties by modification with aryl halogens Nanoscale 8 1493–502
[9] Sadasivuni K K, Ponnamma D, Thomas S and Grohens Y 2014 Evolution from graphite to graphene elastomer composites Prog. Polym. Sci. 39 749–80
[10] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Superior thermal conductivity of single-layer graphene Nano Lett. 8 902–7
[11] Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W and Hone J 2010 Frictional characteristics of atomically thin sheets Science 328 76–80
[12] Kong L, Zhou X, Fan S, Li Z and Gu Z 2016 Study on the synthesis and electrochemical performance of histidine-functionalized graphene quantum Dots@Silicon composite anode material Acta Chim. Sin. 74 620
[13] Ambrosi S, Bonanni A, Sofer Z, Cross J S and Pumera M 2011 Electrochemistry at chemically modified graphenes Chemistry 17 10763–70
[14] Zhang Y, Tang T T, Girir C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 829–33
[15] Heo J, Oh J, Ahn H, Lee S, Cho S, Kim M, Lee J and Kim N 2010 Synthesis and characterization of triphenylamine-based organic dyes for dye-sensitized solar cells Synth. Met. 160 2143–50
[16] Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y and Quo L 2011 An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics Adv. Mater. 23 776–80
[17] Kosynkin D V, Higginbotham A L, Snitkii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons Nature 458 872–6
[18] Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H and Li T 2012 Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution ACS Appl. Mater. Interfaces 4 2699–708
[19] Walther B K, Dinn C Z, Guldii D M, Sergeyev V G, Creager S E, Cooke J P and Guiseppi-Elie A 2020 Nanobiosensing with graphene and carbon quantum dots: recent advances Mater. Today 39 23–46
[20] Restuccia P, Ferrario M and Righi M C 2020 Monitoring water and oxygen splitting at graphene edges and folds: insights into the lubricity of graphitic materials Carbon 156 93–103
[21] Kucinskis G, Bajars G and Kleperis J 2013 Graphene in lithium ion battery cathode materials: a review J. Power Sources 240 66–79
[22] Uchaker E and Cao G 2014 Mesocrystals as electrode materials for lithium-ion batteries Nano Today 9 499–524
[23] Sharma S, Handa A, Singh S S and Verma D 2019 Synthesis of a novel hybrid nanocomposite of AZ31Mg-graphene-MWCNT by multi-pass friction stir processing and evaluation of mechanical properties Mater. Res. Express 6 126531
[24] Muxi L, Yu Hong Z, Liwen C, Jianquan L, Ting Z and Hua H 2018 Research progress on preparation technology of graphene-reinforced aluminum matrix composites Mater. Res. Express 6 042002 M Wang
[25] Du B, Yang K, Luo R, Li H, Zhou S and Liu Y 2019 Reinforcement of bisphenol—A epoxy resin nanocomposites with noncovalent functionalized and physical adsorption modified CNTs Mater. Res. Express 6 105623
[26] Derelizade K, Venturi F, Wellman R G, Khlobystov A and Hussain T 2020 Structural changes of thermal sprayed graphene nanoplatelets film into amorphous carbon under sliding wear Appl. Surf. Sci. 528 146315
[27] Arun T et al 2019 Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect Mater. Sci. Eng. C 104 109932
[28] Xie H et al 2021 High-temperature-pulse synthesis of ultrathin–graphene–coated metal nanoparticles Nano Energy 80 105536
[29] Kumar R, Joanni E, Singh R K, Singh D P and Moshkalev S A 2018 Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage Prog. Energy Combust. Sci. 67 115–57
[30] Kumar R, Singh R K, Singh D P, Joanni E, Yadav R M and Moshkalev S A 2017 Laser-assisted synthesis, reduction and micro-pattern of graphene: recent progress and applications Coord. Chem. Rev. 342 34–79
[31] Arun T, Prabakaran K, Udayabhashkar R, Mangalaraja R V and Akbari-Fakhrabadi A 2019 Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications Appl. Surf. Sci. 485 147–57
[32] Zhao J, Mao J, Li Y, He Y and Luo J 2018 Friction-induced nano-structural evolution of graphene as a lubrication additive Appl. Surf. Sci. 434 21–7
[33] Restuccia P and Righi M C 2016 Tribochemistry of graphene on iron and its possible role in lubrication of steel Carbon 106 118–24
[34] Xu Y, Peng Y, You T, Yao L, Geng J, Deang K and Hu X 2018 Nano-MoS2 and graphene additives in oil for tribological applications Topics in Mining, Metallurgy and Materials Engineering and T Saleh Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering (Switzerland: Springer, Cham) T151–91
[35] Meng Y, Su F and Chen Y 2016 Superfluidic fluid lubrication and tribological properties of silicon nanoplatelets decorated graphene in engine oil nanofluid Sci. Rep. 6 31246
[36] Liang H, Bu Y, Zhang J, Cao Z and Liang A 2013 Graphene oxide film as solid lubricant ACS Appl. Mater. Interfaces 5 6369–75
[37] Kim H J and Kim D E 2015 Water lubrication of stainless steel using reduced graphene oxide coating Sci. Rep. 5 17034
[38] Kim H J, Shin D G and Kim D 2016 Frictional behavior between silicon and steel coated with graphene oxide in dry sliding and water lubrication conditions Int. J. of Precis. Eng. and Manuf. - Green Tech. 3 91–7
[39] Pu J, Wan S, Zhao W, Mo Y, Zhang X, Wang L and Xue Q 2011 Preparation and tribological study of functionalized graphene—IL nanocomposite ultrathin lubrication films on Si substrates J. Phys. Chem. C 115 31275–84
[40] Shen B, Hong H, Chen S, Chen X and Zhang Z 2019 Cathodic electrophoretic deposition of magnesium nitrate modified graphene coating as a macro-scale solid lubricant Carbon 145 297–310
[41] Xue B, Liu X, Shi X, Huang Y, Lu G and Wu C 2018 Effect of graphene nanoplatelets on tribological properties of titanium alloy matrix composites at varying sliding velocities Mater. Res. Express 5 066507
[42] Srivastava V K, Kumar P, Quadflieg T and Greb C 2020 Friction and wear behavior of GNP s functionalized carbon fiber reinforced polymer matrix composites under high-frequency reciprocating conditions Mater. Res. Express 6 125357
[43] Venkatesan S and Xavier M A 2019 Wear characteristics studies on graphene reinforced AA7050 based composite Mater. Res. Express 6 065601
[44] Fan X, Xia Y, Wang L and Li W 2014 Multilayer graphene as a lubricating additive in Bentone grease Tribol. Lett. 55 455–64
[45] Sarno M, Senatoro A, Cirillo C, Petrone V and Ciambelli P 2014 Oil lubricant tribological behaviour improvement through dispersion of few layer graphene oxide J. Nanosci. Nanotechnol. 14 4960–8
[46] Patel J, Pereira G, Irvine D and Kiani A 2019 Friction and wear properties of base oil enhanced by different forms of reduced graphene nanoplatelets J. Appl. Polym. Sci. 138 49503
[47] Li H, Chen L, Zhang Y, Ji X, Chen S, Song H, Li C and Tang H 2014 Synthesis of MoSe2/ reduced graphene oxide composites with improved tribological properties for oil-based additives Cryst. Res. Technol. 49 204–11
[48] Wang J, Guo X, He Y, Jiang M and Gu K 2018 Tribological characteristics of graphene as grease additive under different contact forms Tribol. Int. 127 457–69
[49] Qiao Y, Zhao H, Zhang Y, Zhang Q and Liu H 2014 Research progress of functionalization modification and applications of graphene as lubricating additive Chem. Ind. Eng. Prog. Z1 216–23
[50] Liu L, Zhou M, Li X, Lin L, Su G, Mo Y, Li L, Zha H and Tian Y 2018 Research progress in application of 2D materials in liquid-phase lubrication system Materials 11 1314
[51] Berman D, Erdermin A and Sumant A V 2013 Few layer graphene to reduce wear and friction on sliding steel surfaces Carbon 54 454–9
[52] Berman D, Erdermin A and Sumant A V 2014 Graphene: a new emerging lubricant Mater. Today 17 31–42
[53] Zhang L, Zhang X, Wu Y, Wang J and Xi D 2018 Study on the effects of graphene oxide for tribological properties and cooling in lubricating oil Mater. Res. Express 12 125609
[54] Feng X, Kwon S, Park J Y and Salmeron M 2013 Superlubric sliding of graphene nanolakes on graphite ACS Nano 7 1718–24
[55] Reguzzoni M, Fasolino A, Molinari E and Righi M C 2012 Friction by shear deformations in multilayer graphene J. Phys. Chem. C 116 2104–9
[56] Sandrie-Rosado E J, Tortuliano O A and Terrel E J 2012 An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings Carbon 50 4078–84
[57] Ramón-Raygoza E D, Rivero-Solorio C I, Giménez-Torres E, Maldonado-Cortés D, Cardenas-Alejandre E and Cué-Sampedro R 2016 Development of nanolubricant based on impregnated multilayer graphene for automotive applications: analysis of tribological properties Powder Technol. 302 363–71
[58] Gupta B, Panda K, Kumar N, Melvin A A, Dash S and Tyagi A K 2015 Chemically grafted graphite nanosheets dispersed in poly (ethylene-glycol) by γ- radiolysis for enhanced lubrication RSC Adv. 5 53766–75
[59] Chauveau V, Mazuyer D, Dassenoy F and Cayer–Barrioz J 2012 In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication Tribol. Lett. 47 467–80
Munuge H P, Kumar N and Khatri O P 2015 Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets RSC Adv. 5 25655–71

Ota J, Haid S K, Sastry M I S and Ramakumar S S V 2015 Graphene dispersion in hydrocarbon medium and its application in lubricant technology RSC Adv. 5 33526–32

Gupta B, Kumar N, Panda K, Dash S and Tyagi A K 2016 Energy efficient reduced graphene oxide additives: mechanism of effective lubrication and antitrust properties Sci. Rep. 6 18372

Lei Y, Du J, Pang X, Wang H, Yang H and Jiang J 2018 Tribological properties and lubrication mechanism of in situ graphene-nickle matrix composite impregnated with lubricating oil Mater. Res. Express 5 56512

Golzar M, Masjuki H H, Kalam MA, Varman M, Zulkillini N W M, Mufti R A and Zahid R 2016 Tribological performance of nanoparticles as lubricating oil additives J. Nanopart. Res. 18 1–25

Su Y, Gong L and Chen D 2015 An investigation on tribological properties and lubrication mechanism of graphite nanoparticles as vegetable oil based additive J. Nanomater. 2015 1–7

Georgakilas V, Tiwari N K, Kemp K C, Pernan J A, Bourlions A B, Kim K S and Zboril R 2016 Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications Chem. Rev. 116 5464–519

Wajid A S, Das S, Irin F, Ahmed H S T, Shelburne J L, Parviz D, Fullerton R J, Jankowski A F, Hedden R C and Green M J 2012 Matrix stabilized graphene dispersions at high concentrations in organic solvents for composite production Carbon 50 526–34

Lee K, Hwang Y, Chong S, Kwon M, Kim S and Lee J 2009 Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil Curr. Appl. Phys. 9 e128–31

Li D, Muller B M, Gilje S, Kaner R B and Gale G 2008 Processable aqueous dispersions of graphene nanosheets Nat. Nanotechnol. 3 101–5

Si Y and Samulski E T 2008 Synthesis of water soluble graphene Nano Lett. 8 1679–82

Mu L, Shi Y, Guo X, Zhuang W, Chen L, Ji T, Hua J, Wang H and Zhu J 2017 Graphing heteroelement-rich groups on graphite oxide: tuning polarity and molecular interaction with bio-ionic liquid for enhanced lubrication J. Colloid Interface Sci. 498 47–54

Zhang X, Ying X, Zhang M, Yu X, Sun G and You B 2019 Investigation of reinforced performance of modified graphene oxide/high solid content polysiloxane nanocomposite coatings J. Mater. Sci. 54 3052–68

Li D, Yang W, Chen Y, Xiao C and Wei M 2018 Effect of modified graphene on thermal, mechanical and tribological performance of polyimide based composites Mater. Res. Express 5 65304

Zhang W et al 2011 Tribological properties of oleic acid modified graphene as lubricant oil additives J. Phys. D: Appl. Phys. 44 205303

Ismail N A and Bagheri S 2017 Highly oil-dispersed functionalized reduced graphene oxide nanosheets as lube oil friction modifier Mater. Sci. Eng. B 222 54–42

Choudhary S, Munuge H P and Khatri O P 2012 Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications J. Mater. Chem. 22 21032

Paul G, Shit S, Hirani H, Kuila T and Murmu N C 2019 Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants Tribol. Int. 131 605–19

Munuge H P and Khatri O P 2014 Chemically functionalized reduced graphene oxide as a novel material for reduction of friction and wear J. Phys. Chem. C 118 14394–402

Wu P, Chen X, Zhang C, Zhang J, Luo J and Zhang I 2021 Modified graphene as novel lubricating additive with high dispersion stability in oil Friction 9 133–43

Wu X, Gong K, Zhao G, Lou W, Wang X and Liu W 2018 Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive RSC Adv. 8 6459–603

Tong Y, Li W, Dong J, Song X, Wang H and Zeng Y 2019 Suspension dispersibility and tribological properties of graphene-modified lubricant oil Chin. J. Mater. Res. 33 59–64

Qiu S, Liu G, Li W, Zhao H and Wang L 2018 Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance J. Alloys Compd. 747 60–70

Liu S, Ou J, Li Z, Yang S and Wang J 2012 Layer-by-layer assembly and tribological property of multilayer ultrathin films constructed by modified graphene sheets and polyethyleneimine Appl. Surf. Sci. 258 2231–6

Hou K, Gong P, Wang J, Yang Z, Ma L and Yang S 2015 Construction of highly ordered flurinized graphene composite coatings with various fluorine contents for enhanced lubrication performance Tribol. Lett. 60 6

Zhang Y, Yang H, Li X, Li C, Chen L, Zhang D, Yang X and Zhang H 2013 Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties RSC Adv. 3 26086–93

Wang S, Li H, Li D, Xu T, Zhang S, Dou X and Wu L 2015 Noncovalent functionalization of graphene nanosheets with cluster–cored star polymers and their reinforced polymer coating ACS Macro Lett. 4 974–8

Zhou S, Liu H, Wang S, Gan L, Huang J, Zhao G and Liu Y 2019 Tribological performance of electrostatic self-assembly prepared ZrO2/GO nanocomposites using as lubricant additive Mater. Res. Express 6 115073

Meng Y, Su F and Chen Y 2015 A novel nanomaterial of graphene oxide dotted with Ni nanoparticles produced by supercritical CO2-assisted deposition for reducing friction and wear ACS Appl. Mater. Interfaces 7 11604–12

Meng Y, Su F and Chen Y 2015 Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear Chem. Eng. J. 281 11–9

Rajaganapathy C, Vasudevan D and Selvakumar N 2020 Investigation on tribological and mechanical behaviour of AA6082— graphene based composites with Ti particles Mater. Res. Express 7 57651

Karlicky F, Kumera Ramanathan Datta K, Otyepka M and Zbořil R 2013 Halogenated graphenes: rapidly growing family of graphene derivatives ACS Nano 7 6434–64

Quintana M, Vazquez E and Prato M 2013 Organic functionalization of graphene in dispersions Acc. Chem. Res. 46 138–48

Engler J M, Dottori G, Yang S, Schmid M, Papp C, Gottfried J M, Steinruck H P, Schiefer E, Hauke F and Hirsch A 2011 Covalent bulk functionalization of graphene Nat. Chem. 3 279–86

Di Pietro P, Forte G, Snyders R, Satitano C, Bittencourt C and Thiry D 2020 Sulphur spincierization of graphene–frequency plasma Plasma Processes Polym. 17 2000039

Stankovich S, Piner R D, Nguyen S T and Ruoff R S 2006 Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets Carbon 44 3342–7

Kimloch J A, Suhr J, Lou J, Young R J and Ajayan P M 2018 Composites with carbon nanotubes and graphene: an outlook Science 362 547–50

Feng Y, Liu H, Luo W, Liu E, Zhao N, Yoshino K and Feng W 2013 Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage Sci. Rep. 3 3260
[98] Wang A et al 2016 Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance Sci. Rep. 6 23325

[99] Georgakilas V, Otteypka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R and Kim K S 2012 Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications Chem. Rev. 112 6156–214

[100] Yu B, Liu Z, Ma C, Sun J, Liu W and Zhou F 2015 Ionic liquid modified multi-walled carbon nanotubes as lubricant additive Tribol. Int. 81 38–42

[101] Nanda S S, Papaeftthymiou G C and Yi D K 2015 Functionalization of graphene oxide AND its biomedical applications Crit. Rev. Solid State Mater. Sci. 40 291–315

[102] Chen C S, Chen X H, Xu L S, Yang Z and Li W H 2005 Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive Carbon 43 1660–6

[103] Lin J, Wang L and Chen G 2011 Modification of graphene platelets and their tribological properties as a lubricant additive Tribol. Lett. 41 209–15

[104] Qian S, Wang H, Huang C and Zhao Y 2018 Experimental investigation on the tribological properties of modified carbon nanotubes as the additive in caster oil Ind. Lubr. Tribol. 70 499–505

[105] Zhang J, Li P, Zhang Z, Wang X, Yang J, Liu H, Shao Q, Ding T, Umar A and Guo Z 2019 Solvent-free graphene liquids: promising candidates for lubricants without the base oil J. Colloid Interface Sci. 542 159–67

[106] Samanta S, Singh S and Sahoo R R 2015 Simultaneous chemical reduction and surface functionalization of graphene oxide for efficient lubrication of steel-steel contact RSC Adv. 5 61888–99

[107] Shanmugharaj A M, Yoon J H, Yang W J and Ryu S H 2013 Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths J. Colloid Interface Sci. 401 148–54

[108] Zhu K, Li X, Wang H, Li J and Fei G 2017 Electrochemical and anti-corrosion behaviors of water dispersible graphene/ acrylic modified alkyd resin latex composites coated carbon steel J. Appl. Polym. Sci. 134 44445

[109] Park J and Yan M 2015 Covalent functionalization of graphene with reactive intermediates Acc. Chem. Res. 46 181–9

[110] Eiger S and Hirsch A 2014 Chemistry with graphene and graphite oxide–challenges for synthetic chemists Angew. Chem. Int. Ed. 53 7720–38

[111] Halbig C E, Martin O, Hauke F, Eiger S and Hirsch A 2018 Oxo-functionalized graphene—a versatile precursor for alkylated graphene sheets by reductive functionalization Chemistry 24 13348–54

[112] Hirsch A, Englert J M and Hauke F 2013 Wet chemical functionalization of graphene Acc. Chem. Res. 46 87–96

[113] Song H, Wang Z, Yang J, Ia X and Zhang Z 2017 Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance Chem. Eng. J. 324 51–62

[114] Duan W, Chen Y, Ma J, Wang W, Cheng J and Jiang Z 2020 High-performance graphene reinforced epoxy nanocomposites using benzyl glycidyl ether as a dispersant and surface modifier Compos. B Eng. 189 107878

[115] Huang X, Li R, Zeng L, Li X and Zhi W 2020 A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: a study on dispersion, electrical and mechanical properties Carbon 161 350–8

[116] Bosch–Navarro C, Laker Z P L, Marsden A J, Wilson N R and Rourke J P 2017 Non-covalent functionalization of graphene with a hydrophilic self-limiting monolayer for macro-molecule immobilization FlatChem 1 52–6

[117] Choi E Y, Han T H, Hong J, Kim J E, Lee S H, Kim H W and Kim S O 2010 Noncovalent functionalization of graphene with end-functional polymers J. Mater. Chem. 20 1907–12

[118] Wang S, Wang C, Li X and Lin M 2018 Surfactant– and sonication-free exfoliation approach to aqueous graphene dispersion Mater. Lett. 217 67–70

[119] Bottari G, Herranz M A, Wibmer L, Volland M, Rodriguez–Perez L, Guldii D M, Hirsch A, Martin A, N’Douara F and Torres T 2017 Chemical functionalization and characterization of graphene-based materials Chem. Soc. Rev. 46 446–500

[120] Kaur P, Shin M, Sharma N, Kaur N, Joshi A, Chae S, Park J, Kang M and Sekhon S S 2015 Non-covalent functionalization of graphene with poly(diallyl dimethylammonium) chloride: effect of a non-ionic surfactant Int. J. Hydr. Energy 40 1541–7

[121] Huang G, Chen Z, Li M, Yang B, Xin M, Li S and Yin Z 2016 surface functional modification of graphene and graphene oxide Acta Chim. Sin. 74 789–99

[122] Song W, Yan J and Ji H 2018 Tribological study of the SOCNTs@MoS2 composite as a lubricant additive: synergistic effect Ind. Eng. Chem. Res. 57 6878–87

[123] Liu L et al 2020 Synergistic lubricating effect of graphene/ionic liquid composite material used as an additive Friction 137 1–12

[124] Cho D H, Wang L, Kim J S, Lee G H, Kim E S, Lee S, Lee S Y, Hone J and Lee C 2013 Effect of surface morphology on friction of graphene on various substrates Nanoscale 5 3063–9

[125] Xiao H and Liu S 2017 2D nanomaterials as lubricant additive: a review Mater. Des. 135 319–32

[126] Arum T and Josepyhus R 2014 Prussian blue modified Fe3O4 nanoparticles for Cs2+ detoxification J. Mater. Sci. 49 7014–22

[127] Liu H, Gao B, Yuan W, Li H, Li Y, Li Y, Zhang B and Chen Z 2021 Modification of graphene aerogel with titania nanotubes for efficient methylene blue adsorption kinetics J. Sol-Gel Sci. Technol. 97 211–86

[128] Wang J, Fang F, Zhou Y, Yin M, Liu J, Wang J, Wu Y, Beiyuan J and Chen D 2020 Facile modification of graphene oxide and its application for the aqueous uranyl ion sequestration: insights on the mechanism Chemosphere 258 127152

[129] Xu J, Zhao X, Liu F, Jin L and Chen G 2020 Preparation of graphene via wet ball milling and in situ reversible modification with the Diels–Alder reaction New J. Chem. 44 1236–44

[130] Korivand M and Zamani M 2021 Surface modification of graphene by coupling with electron deficient radicals J. Solid State Chem. 294 121851

[131] Hou L, Hu Z, Wu H, Wang X, Xie Y, Li S, Ma F and Zhu C 2019 2-Amino-3-chloro-1,4-naphthoquinone-covalent modification of graphene nanoflakes for electrochemical energy storage Dalton Trans. 48 9234–42

[132] Kumar R, Sahoo S, Joannen N, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K and Matsuda A 2020 Heteroatom doped graphene engineering for energy storage and conversion Mater. Today 39 47–65

[133] Sousa T A S L, Santos F A, Silva T G, Araujo E N D and Plentz F 2020 Surface modification of graphene with thiolene: formation of p–n junctions Appl. Surf. Sci. 416 104437

[134] Jin M, He W, Wang C, Yu F and Yang W 2020 Covalent modification of graphene oxide and applications in polysiloxene composites React. Funct. Polym. 146 104437

[135] Phuangburee T, Solonenko D, Plainpan N, Thamyyongkit P, Zahn D R T, Unarunoot S, Tuntulani T and Leeladee P 2020 Surface modification of graphene oxide via noncovalent functionalization with porphyrins for selective photocatalytic oxidation of alcohols New J. Chem. 44 8264–72
[136] Ma J, Fei Y, Hu J, Wu N, Sun S, Xie F, Li G, Li X and Wang Y 2019 Chemical modification of vertically aligned graphene standing on SiC microspheres for selective oxidation New J. Chem. 43 514–9

[137] Huang H, Tian Y, Xie Y, Mo R, Hu J, Li M, Sheng X, Jiang X and Zhang X 2020 Modification of graphene oxide with acrylate phosphorus monomer via thiol–Michael addition click reaction to enhance the anti-corrosive performance of waterborne epoxy coatings Prog. Org. Coat. 146 105724

[138] Zhou X, Huang H, Zhu R, Sheng X, Xie D and Mei Y 2019 Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water–borne epoxy coatings Prog. Org. Coat. 136 105200

[139] Rattan S, Kumar S and Goswamy J K 2020 In-situ one pot synthesis of graphene-ZnO nanohybrid and its application to UV light detection Mater. Res. Express 7 15058

[140] Zhu C, Yan Y, Wang F, Cui J, Zhao S, Gao A and Zhang G 2019 Facile fabrication of long-chain alkyl functionalized ultrafine reduced graphene oxide nanocomposites for enhanced tribological performance RSC Adv. 9 7324–33

[141] Tahara K, Kubo Y, Hashimoto S, Ishikawa T, Kaneko H, Brown A, Hirsch B E, Feyter S and Tobe Y 2020 Porous self-assembled molecular networks as templates for chiral-position-controlled chemical functionalization of graphitic surfaces J. Am. Chem. Soc. 142 7699–708

[142] Alli U, Hettiarachchi S J and Kellici S 2020 Chemical functionalisation of 2D materials by batch and continuous hydrothermal flow synthesis Chem. Eur. J. 26 6447–60