Wild-type blocking pcr coupled with internal competitive amplified fragment improved the detection of rare mutation of KRAS

JIA PENG1,2*, KUN WEI1*, XIANG ZHAO1, KE YANG1, HUAN WANG1, YANG ZHANG1, MEI GUO1, JING HE1, HAIYAN WU1, YONGCHUAN LI1, NA ZHAO1, QING HUANG1 and WEILING FU1

1Department of Laboratory Medicine, Southwest Hospital, The Third Military Medical University, Chongqing 400038; 2Department of Laboratory Medicine, 324th Hospital of PLA, Chongqing 400020, P.R. China

Received February 2, 2017; Accepted June 8, 2017

DOI: 10.3892/mmr.2017.6883

Abstract. Mutant KRAS proto-oncogene GTPase (KRAS) serves an important role in predicting the development, diagnosis, treatment and efficacy of targeted drug therapies for colorectal cancer. To improve the detection efficacy of trace amount of mutant KRAS, the locked nucleic acid-based method was modified in the present study. Internal competitive amplification fragments were used to improve the inhibition of wild-type KRAS with a wild-type blocking (WTB) probe and specifically amplify the trace amounts of mutant KRAS. The modified method, quantitative clamp-based polymerase chain reaction technology using WTB coupled with internal competitive reference to enhance the amplification specificity, named WIRE-PCR, completely blocked the amplification of wild-type KRAS in 50-150 ng DNA templates. The added internal competitive amplified fragments were amplified together with the target gene, which were used to reduce base mismatch due to the high number of cycles in PCR and quantify the total amount of DNA. The results demonstrated that WIRE-PCR facilitated the detection of mutated alleles at a single molecular level. In the colorectal biopsies from 50 patients with suspected colorectal cancer, 18 cases (36%) contained mutant KRAS, and the amount of mutant DNA accounted for 18.6-64.2% of the total DNA. WIRE-PCR is a simple, rapid and low-cost quantitative analysis method for the detection of trace amounts of the mutant KRAS.

Introduction

Colorectal carcinoma (CRC) is one of the highest incident malignant tumors in the world. The five-year survival rate is less than 10%, and 50-60% of the CRC patients eventually progress to metastatic colorectal carcinoma (mCRC) (1,2). Although FOLFIRI, FLOFLOX, and other chemotherapy alone or in combination with anti-VGFR monoclonal antibody (e.g., Bevacizumab) can improve the prognosis of patients with mCRC, who may produce drug resistance, application of epidermal growth factor receptor (EGFR) monoclonal antibody (e.g., Panitumumab) at the moment is still effective (3,4). As a member of ErbB transmembrane tyrosine kinase receptor family, EGFR activates MEK/ERK, PI3K/AKT, and STAT signaling pathways to induce cell proliferation, dedifferentiation and blocking of apoptosis (5). Anti-EGFR monoclonal antibodies, mainly include Cetuximab and Panitumumab, have been used in the clinical therapy of mCRC (6). KRAS is a downstream EGFR-signaling pathway-core component of MAPK pathway. Previous studies have shown that its KRAS mutation leads to failure of Erbitux, Panini, or other monoclonal antibody therapy due to ineffective inhibition of EGFR signaling pathway using those monoclonal antibodies, indicating that mutant KRAS is critical for EGFR monoclonal and targeted antibody therapy (7). The European Medicines Agency requires clinicians to detect KRAS mutation in the patients before administrating monoclonal antitumor drug (8).

A variety of detection methods have been available for the screening of mutant KRAS, including sequencing, single-stranded confirmation polymorphism (SSCP), AS-PCR, TaqMan probe PCR, beads, emulsion, amplification, and magnetics (BEAMing), LigAmp assay, and clamping-based PCR (9,10). Clamping-based PCR is the most sensitive method for the detection of low abundance mutations by selectively adding the wild-type amplified nucleic acid into the reaction system to block the amplification of wild-type gene (11,12). The related techniques have been successfully applied to detect the trace amount of gene mutation in some tumors (12,13). However, the application of clamping-based PCR also has a problem: Susceptible to the interference of DNA polymerase in the reaction system, which may result
in base mismatch in PCR with high cycle number (14-16). To solve this problem, the present study modified the existing clamping-based PCR by adding internal competitive amplified fragments to enhance the inhibition of wild-type KRAS via locked nucleic acid (LNA) probe and established a method for detecting the trace amount of mutant KRAS in colorectal neoplasms. The method was applied to detect mutant KRAS from the colorectal biopsies of 50 patients with suspected colorectal cancer, followed by DNA sequencing and pathological analysis to validate the test results. The present study provided a reference for effectively predicting the therapeutic outcomes of colorectal cancer patients through our methods on mutant KRAS detection.

Materials and methods

Patients and DNA extraction from colorectal biopsies. The present study recruited Han Chinese patients from the outpatient and inpatient clinics of the Southwest Hospital (Chongqing City, China). Our study protocol was approved by the Ethics Committee of the Southwest Hospital. All patients or their guardians signed the informed consents before participating in the present study.

Fresh colorectal biopsies obtained during colonoscopy from the patients with suspected colorectal cancer were washed in PCR and subsequently placed in new Eppendorf tubes, followed by DNA extraction using Tissue DNA kit (Catalogue no. 536-050, Gene Tech Biotechnology Co., Ltd., Shanghai, China) with reference to the manufacturer's instructions and DNA quantification using Nanodrop to obtain mean value of total DNA of each sample from the triplicated measurements.

Amplification of mutant KRAS using WIRE-PCR. As shown in Table I, the PCR system in the present study contained 500 nM primer set (SW-329/330) and 100 nM fluorescent probe (SW-1294) for the detection of internal reference gene; 500 nM primer set (SW-1595/1596) and 250 nM fluorescent probe (SW-1438) for the detection of KRAS; and 500 nM LNA probe (SW-144). The PCR conditions were 50˚C for 2 min and 60 cycles of 95˚C for 2 min, 95˚C for 15 sec, and 60˚C for 1 min. The 2X SuperMix-UDG was used as the enzyme for the PCR system. To determine the sensitivity of WIRE-PCR system, a concentration gradient of mutant template was prepared by mixing increasing concentrations of plasmid (10^0, 10^1, 10^2, 10^3, 10^4, copies/μl) from the previously constructed containing mutated single nucleotides (c34G>C;G12R) with human WT-gDNA in total 50 ng. The reaction conditions were 50˚C for 2 min and 60 cycles of 95˚C for 2 min, 95˚C for 15 sec, and 60˚C for 1 min in total 20 μl.

Results

Establishment and optimization of WIRE-PCR. Given the importance of the annealing temperature in PCR system, we optimized the best anneal temperature for the primer sets used in the present study. For example, anneal temperatures for the amplification of KRAS gene using SW-1595/1596 primers were set as 60-68˚C to amplify the PCR products at eight gradient temperatures. The results of agarose gel electrophoresis separating the PCR products of different annealing temperatures, and the results showed the optimal temperature 60˚C, with good amplification efficacy and the corresponding annealing, which was suggested to be the optimal annealing temperature for the reaction system.

The mean CT values ± standard deviation in the internal reference gene, LEPTIN-involved amplification reaction using 500 and 250 nM KRAS primer set were 25.6±0.23 and 26.52±0.36, respectively. The small CT value of the reaction system using 500 nM KRAS primer set showed good reproducibility, and thus we used 500 nM KRAS primer set to optimize the KRAS amplification. Subsequent test using different concentrations of fluorescent probe of the internal reference gene (i.e., 50, 100, and 200 nM) showed that the wild-type blocking (WTB) probe in our WIRE-PCR using different concentrations of fluorescent probe of the internal reference gene could effectively block the amplification of wild-type KRAS. With reference to the results of LEPTIN and KRAS amplifications, the mean CT values of LEPTIN amplification group and KRAS amplification group were relatively large when using 200 nM fluorescent probe of the internal reference gene (Table II). Therefore, 50 nM and 100 nM fluorescence probe for the internal reference gene were considered to be the optimal concentrations in the system. Application of 100 nM fluorescent probe of the internal reference gene better enhanced the fluorescence intensity of the KRAS amplification than the other two concentrations of the probe. In addition, the fluorescence signal was stable. Therefore, a final concentration of 100 nM fluorescent probe of the internal reference gene was selected to optimize the PCR reaction, which contained 500 nM primer set (SW-329/330) and 100 nM fluorescent probe (SW-1294) for the detection of internal reference gene, LEPTIN; and 500 nM primer set (SW-1595/1596) and 250 nM fluorescent probe (SW-1438) for the detection of KRAS.

Blocking effect of different concentrations of wild-type template in the reaction system. The concentrations of most DNA samples extracted from the clinical biopsies ranged from 50 to 150 ng. Evaluation if the WTB concentration used in

Oligo ID	Oligo sequences (5'-3')
SW-329	CAGTCTCCTCCAAAACAGAAATCACA
SW-330	GTCCATCTTGGATAAGGTCAGGA
SW-1294	(Texas Red) CGGTTTGGACTTCATTCCTGGGCTCC (BHQ2)
SW-1595	TTTATATAAAGGCTGCTGAAAATGAC
SW-1596	CGTCAAGGACTCTGCTCTAC
SW-1438	(VIC) ACTACCCAAAGTTTATATTC (MGB)
SW-144	TACGCCACCAGCT

1SW-329 and SW-330 were the primer sets of the internal reference LEPTIN; SW-1294 was the fluorescent probe of internal reference LEPTIN; SW-1595 and SW-1596 were the primer sets of the KRAS gene; and SW-1438 was the fluorescent probe of KRAS. The underlined letters in SW-144 indicate the LNA.

Table I. Sequences of oligonucleotides used in the present study.
null
PENG et al: REAL-TIME WIRE-qPCR TARGETING KRAS

of the corresponding specimens under 20x magnification of light microscopy. Calculation of the changes of CT values of KRAS amplification group before and after the addition of LNA as well as the CT values of the internal competitive amplified fragment, LEPTIN, helped assess the KRAS mutation rate in each positive sample. Among the 18 biopsies with positive mutations, the KRAS mutation rate ranged from 18.6%

Figure 1. Blocking effects of the constructed WIRE-PCR system on wild-type template. Amplification curves of LEPTIN and KRAS. Green line represents KRAS and red represents LEPTIN. (A) Wild-type KRAS without WTB LNA probe. (B) Wild-type with WTB LNA probe. (C and D) LEPTIN without and with WTB LNA probe. (E and F) WIRE-PCR system without and with WTB LNA probe. Addition of WTB LNA resulted in LEPTIN amplification only (red line) but a complete blockage of wild-type KRAS amplification. NTC were not found in amplification curves. WTB, wild-type blocking; LNA, locked nucleic acid.

Figure 2. Sensitivity of real-time WIRE-PCR with internal competitive amplified fragment. Curves a to f show the amplification curves of real-time PCR with the WTB probe. Specified concentrations of template (MT-KRAS plasmid mixed with human WT-gDNA) indicated in each curve. LEPTIN gene as internal competitive amplified fragment in curve g. The amplification completed in a 20 µl reaction mixture. KRAS Plasmid (c34G>C;G12R.1R) were diluted in different concentrations (10⁵, 10⁴, 10³, 10², 10¹, 10⁰ copies/µl) spiked into samples containing WT-gDNA. WTB, wild-type blocking.

Figure 3. Quantitative curves of real-time WIRE-PCR. Standard curve was generated by plotting the average Cₚ values from real-time PCR against the log concentrations of mutant KRAS plasmid. The amplification efficiency of real-time WTB-PCR was 93.8% (slope, -3.479; R²=0.998). WTB, wild-type blocking.
to 64.2%. In the present study, the constructed WIRE-PCR effectively detected the trace amount of mutant KRAS in the clinical biopsies.

Discussion

Different proportions of KRAS mutation have been discovered in a variety of human malignancies, such as malignant melanoma, lung cancer, colorectal cancer, and thyroid cancer. The KRAS mutation rate in the patients with rectal cancer is approximately 40% that included the point mutations in codons 12, 13, 18, 61, 117, and 146 of exon 2, in which, the point mutations in codons 12 and 13 of exon 2 were common, accounting for approximately 40% (19,20). Mutant KRAS has become one of the markers affecting the prognosis of the colorectal cancer patients, and detection of mutant KRAS is particularly important (21,22).

In clinical practice, LNA has been used as a substitute for PNA. According to the high affinity binding between LNA and DNA chimeras, which closely bind with wild-type template and prevent the amplification of the wild-type template based on the high affinity binding between LNA/PNA and DNA (23). In clinical practice, LNA has been used as a substitute for PNA. According to the high affinity binding between LNA and DNA, LNA probe has been used to inhibit the wild-type PCR amplification (16). The principle is that the design of upstream and downstream primers is outside the LNA/DNA chimeras. In this reaction system, the polymerase lacking 5' to 3' end exonuclease activity ensured that LNA/DNA chimera probes were not hydrolyzed in the reaction system and LNA/DNA chimera probes were used for the inhibition of wild-type gene (24). To target the design of complementary oligonucleotide of sense strand KRAS, the present study added WTB probe into the reaction system. The added WTB probe sequence was partially overlapped with the wild-type template. KRAS and WTB probes competitively bound to the wild-type template in the same reaction system. Binding efficiency between LNA of the WTB probe and template was higher, occupying the base complementary binding region of primers and templates, thereby interfering the binding between primers and wild-type templates and inhibiting the amplification of the wild-type gene (11). In the 20 µl PCR system, the addition of polymerase and bases is often superfluous and necessary for common PCR amplification reactions. However, non-targeted mutant gene amplification occurred between LNA/DNA chimeras and template binding region in the WTB-involved PCR leads to false positive results. With increasing number of PCR cycles, the products of non-targeted mutant gene amplification are continuously increased, which seriously affects the reading in the detection of trace amount of the single-point mutant gene.

In our previous study, we found that the KRAS of the wild-type samples also amplified under the WTB reaction when PCR system near high cycles. Under the thermodynamic driving force of DNA polymerase, the single base terminal mismatch between primers and template could easily trigger the non-specific amplification of an input DNA having opposite genotype (e.g., WT genotype) (25,26). Moreover, weak-destabilization effects of terminal mismatches could
Further promote non-specific amplification (27). Although stringent reaction conditions can be used to dramatically reduce or eliminate non-specific amplification, optimization is time-consuming, and sometimes unsuccessful. Internal reference gene added as internal competitive amplified fragments in the reaction system consumed any excess DNA polymerase and free base fragments, thereby enhancing the blocking effect of WTB probe on wild-type \textsc{kras} template and improving the detection efficiency for trace amount of \textsc{kras} gene. In addition, since the internal competitive amplified fragment had no complementary binding site with WTB probe, WTB probe exclusively bound to the complementary template region but not the internal competitive amplified fragment, which did not affect the amplification of the internal competitive amplified fragment. Addition of the primer sets of internal reference gene, \textit{leptin}, massively produce the internal competitive amplified fragments, which helped consuming any excess DNA polymerase and free base fragment and reducing the likelihood of false mismatch, thereby increasing the blocking effect of LNA probe on the wild-type gene. Because this was the same reaction system amplifying the same template, this method was able to quantify the total amount of DNA template and reduce contamination by simplifying the steps of the reaction. The present study analyzed the CT values and fluorescence intensity obtained from the amplification to optimize the \textsc{wire}-\textsc{PCR} system by adjusting the final concentrations of primers of the internal reference gene and its probe, the primer for \textsc{kras} gene and its probe, and the LNA in the reaction system as follows: 500 nM of the primer sets and 100 nM of the fluorescent probe of the internal reference gene; 500 nM of the primer sets and 250 nM of the fluorescent probe of the \textsc{kras} gene; and 500 nM of the LNA probe. Subsequent evaluation of the blocking effect on the common DNA quantity in the clinical sample under the optimized reaction system showed that when the wild-type templates ranged from 50 ng to 150 ng, the WTB probe effectively blocked the amplification of the wild-type template in the reaction system. Subsequent detection of the trace amount of mutant \textsc{kras} in the 50 colorectal biopsies of the patients with suspected colorectal cancer showed that 36% of the specimens had mutant \textsc{kras}, with the mutation rate ranging from 18.6 to 64.2%.

In summary, the constructed internal competitive amplified fragment improved the detection of trace amount of mutant \textsc{kras} by WTB in a real-time fluorescence-based quantitative detection assay. Series optimization in primer concentrations, fluorescent probe concentrations, and LNA concentration effectively block the wild-type DNA templates of the specimens used in the PCR system, which in turn, effectively enriched the mutant gene. The resulted showed the sensitivity is as low as single base pair level and completely inhabited WT-alleles of \textsc{kras}. Among the 50 colorectal biopsies collected during colonoscopy, the mutation rate of detected trace amount of mutant \textsc{kras} was 36%. The wire PCR in the present study was highly sensitive and specific, easily operated and inexpensive method compared to the direct sequencing approach. It could be extensively used to monitor gene mutation in clinical practice and provide references for tumor monitoring and individualized drug therapies.

Acknowledgements

This work was supported in part by grants from the National 863 Program of China (no. 2013AA020204), and the Scientific Foundation of Chongqing (no. CSTC2014~2015LYKF110029; CSTC2015~2016JCYJA ZX0022; CSTC2015~2016JCYJA ZX0001).

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893-2917, 2010.
2. Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin 63: 11-30, 2013.
3. Venook AP: Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer 103: 2435-2446, 2005.
4. Wadlow RC, Hezel AF, Abrams TA, Blaszkowsky LS, Fuchs CS, Kulke MH, Wakel EL, Meyerhardt JA, Ryan DP, Szymonifka J, et al: Panitumumab in patients with \textsc{kras} wild-type colorectal cancer after progression on cetuximab. Oncologist 17: 14, 2012.
5. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, et al: \textsc{K-ras} mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359: 1757-1765, 2008.
6. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, et al: Wild-type \textsc{kras} is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: 1626-1634, 2008.
7. Kranenburg O: The \textsc{kras} oncogene: Past, present, and future. Biochem Biophys Acta 1756: 81-82, 2005.
8. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Pieseuxv H, et al: Association of \textsc{kras} \textsc{g13d} mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304: 1812-1820, 2010.
9. Anderson SM: Laboratory methods for \textsc{kras} mutation analysis. Expert Rev Mol Diagn 11: 635-642, 2011.
10. Lenz HJ: Testing for \textsc{ras} mutations in patients with metastatic colorectal cancer. Clin Adv Hematol Oncol 12: 48-49, 2014.
11. Oldenburg RP, Liu MS and Kolodney MS: Selective amplification of rare mutations using locked nucleic acid oligonucleotides that competitively inhibit primer binding to wild-type DNA. J Invest Dermatol 128: 398-402, 2008.
12. Huang Q, Wang YG, Huang JF, Zhang B and Fu WL: High sensitivity mutation analysis on \textsc{kras} gene using \textsc{lna/dna} chimeras as PCR amplification blockers of wild-type alleles. Mol Cell Probes 24: 376-380, 2010.
13. Dominguez PL and Kolodney MS: Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene 24: 6830-6834, 2005.
14. Huang JF, Zeng DZ, Duan GJ, Shi Y, Deng GH, Xia H, Xu HQ, Zhao N, Fu WL and Huang Q: Single-tubed wild-type blocking quantitative \textsc{pcr} assay for the sensitive detection of \textsc{codon 12} and \textsc{13} \textsc{kras} mutations. PLoS One 10: e145698, 2015.
15. Di Giusto DA and King GC: Strong positional preference in the codon 12 and 13 \textsc{kras} mutations quantitative \textsc{pcr} detection assay for the sensitive detection of \textsc{codon 12} and \textsc{13} \textsc{kras} mutations. JAMA 304: 1812-1820, 2010.
16. Lenz HJ: Testing for \textsc{ras} mutations in patients with metastatic colorectal cancer. Clin Adv Hematol Oncol 12: 48-49, 2014.
17. Oldenburg RP, Liu MS and Kolodney MS: Selective amplification of rare mutations using locked nucleic acid oligonucleotides that competitively inhibit primer binding to wild-type DNA. J Invest Dermatol 128: 398-402, 2008.
18. Huang Q, Wang YG, Huang JF, Zhang B and Fu WL: High sensitivity mutation analysis on \textsc{kras} gene using \textsc{lna/dna} chimeras as PCR amplification blockers of wild-type alleles. Mol Cell Probes 24: 376-380, 2010.
19. Dominguez PL and Kolodney MS: Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene 24: 6830-6834, 2005.
20. Huang JF, Zeng DZ, Duan GJ, Shi Y, Deng GH, Xia H, Xu HQ, Zhao N, Fu WL and Huang Q: Single-tubed wild-type blocking quantitative \textsc{pcr} assay for the sensitive detection of \textsc{codon 12} and \textsc{13} \textsc{kras} mutations. PLoS One 10: e145698, 2015.
21. Di Giusto DA and King GC: Strong positional preference in the interaction of \textsc{lncr} \textsc{oligonucleotides} with DNA polymerase and proofreading exonuclease activities: Implications for genotyping assays. Nucleic Acids Res 32: e32, 2004.
22. You Y, Moreira BG, Behlke MA and Owczarzy R: Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34: e60, 2006.
23. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al: The \textsc{miqe} guidelines: Minimum information for publication of quantitative real-time \textsc{pcr} experiments. Clin Chem 55: 611-622, 2009.
24. Custodio A and Felu J: Prognostic and predictive biomarkers for epidermal growth factor receptor-targeted therapy in colorectal cancer: Beyond \textsc{kras} mutations. Crit Rev Oncol Hematol 85: 45-81, 2013.
25. Kimura T, Okamoto K, Miyamoto H, Kimura M, Kitamura S, Takenaka H, Muguruma N, Okahisa T, Aoyagi E, Kajimoto M, et al: Clinical benefit of high-sensitivity \textsc{kras} mutation testing in metastatic colorectal cancer treated with anti-\textsc{egfr} antibody therapy. Oncology 82: 298-304, 2012.
20. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ and Bos JL: KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 16: 7773–7782, 1988.

21. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS, Ince WL, Jänne PA, Januario T, Johnson DH, et al: Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23: 5900–5909, 2005.

22. Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26: 374–379, 2008.

23. Itonaga M, Matsuzaki I, Warigaya K, Tamura T, Shimizu Y, Fujimoto M, Kojima F, Ichinose M and Murata S: Novel methodology for rapid detection of KRAS mutation using PNA-LNA mediated loop-mediated isothermal amplification. PLoS One 11: e151654, 2016.

24. Dono M, Massucco C, Chiara S, Sonaglio C, Mora M, Truini A, Cerruti G, Zoppoli G, Ballestriero A, Truini M, et al: Low percentage of KRAS mutations revealed by locked nucleic acid polymerase chain reaction: Implications for treatment of metastatic colorectal cancer. Mol Med 18: 1519–1526, 2013.

25. Chen D, Yang Z, Xia H, Huang JF, Zhang Y, Jiang TN, Wang GY, Chuai ZR, Fu WL and Huang Q: Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube. PLoS One 9: e91824, 2014.

26. Yuryev A: PCR primer design using statistical modeling. Methods Mol Biol 402: 93–104, 2007.

27. Wangkumhang P, Chaichoompu K, Ngamphiw C, Ruangrit U, Chanprasert J, Assawamakin A and Tongsima S: WASP: A Web-based Allele-Specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics 8: 275, 2007.