New β Cephei stars in the young open cluster NGC 637
(Research Note)

G. Handler,1,2 S. Meingast2

1 Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland (gerald@camk.edu.pl)
2 Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria

Received March 14, 2011; Accepted May 16, 2011

ABSTRACT

Context. Studying stellar pulsations in open clusters offers the possibility to perform ensemble asteroseismology. The reasonable assumption that the cluster members have the same age, distance, and overall metallicity aids in the seismic modelling process and tightly constrains it. Therefore it is important to identify open clusters with many pulsators.

Aims. New pulsating stars of the β Cephei type were searched for among the members of the open cluster NGC 637.

Methods. Thirty-one hours of time resolved V filter CCD photometry were obtained.

Results. The measurements confirmed two previously known variables, and revealed three new β Cephei stars plus one more candidate. All four pulsators have amplitudes high enough for easy mode identification and are multiperiodic.

Conclusions. With four certain pulsating members, NGC 637 is now among the six open clusters richest in β Cephei stars. It is thus an excellent target for ensemble asteroseismology, and to tackle the question what separates pulsating from apparently constant stars in the β Cephei domain.

Key words. Stars: early-type - open clusters and associations: general - Techniques: photometric - Stars: oscillations - Asteroseismology

1. Introduction

Asteroseismology is the study of the interiors of pulsating stars by using their modes of oscillation as seismic waves. The mode frequencies depend on the physical conditions in the regions where the oscillations propagate. Measuring these frequencies therefore provides information about the deep inner structure of stars, impossible in any other way. An overview of asteroseismology, its methods and results can be found in the monograph by Aerts, Christensen-Dalsgaard & Kurtz (2010).

To make asteroseismic investigations possible, one needs to know the surface and interior geometries of the observed oscillation modes. This poses the problem of mode identification (e.g., see Handler 2008, Telting 2008). In addition, knowledge of the effective temperatures and luminosities of the target stars is important. However, absolute magnitudes of field stars can often only be determined with unsatisfactory accuracy.

The study of pulsating stars in clusters and associations alleviates this problem. Not only can the distances to stellar aggregates be determined accurately, but as stars belonging to open clusters have originated from the same interstellar cloud, they can be assumed to have the same age and metallicity. Consequently, the asteroseismic modelling process of pulsating stars in clusters is tightly constrained.

The potential of asteroseismology has been recognized for the β Cephei stars (e.g., Pamyatnykh, Handler, & Dziembowski 2001), that are pulsating main sequence variables with early B spectral types and typical periods of several hours (Stankov & Handler 2005, Pigulski & Pojmanski 2005). These young massive stars naturally occur in open clusters and stellar associations, and extensive observing campaigns have been organized (e.g., Saesen et al. 2010).

Searches for β Cephei stars in open clusters have increased the total number of such objects to about 50 out of a total of some 200 galactic β Cephei stars known (Pigulski 2003, Pigulski & Pojmanski 2008). The relative number of pulsators to nonpulsators is considerably lower in northern hemisphere open clusters, which has been attributed to a metallicity gradient in our Galaxy (Pigulski 2004).

NGC 637 is a young (age 10 \pm 5 Myr, Yadav et al. 2008) open cluster whose seven brightest stars are of 10^{4}th magnitude. Apart from some radial velocity measurements (Liu, Janes, & Bania 1991 and earlier papers) this cluster has only been photometrically studied. In particular, no membership information is available in the literature.

NGC 637 has been examined for stellar variability. Two of the seven brightest stars turned out to variable (Pietrukowicz et al. 2009). One has been classified as a β Cephei star, and the other was suggested to be an ellipsoidal variable. New standard $uvby\beta$ photometry (Handler 2011) puts all seven bright stars into the β Cephei instability strip (Fig. 1). Therefore, and to evaluate the prospects of NGC 637 as a target for ensemble asteroseismology, it was decided to re-examine the cluster for pulsating stars.

2. Observations and data reduction

Time series photometric measurements were carried out with the 0.8 m “vienna little telescope” (vlt) at the Institute of Astronomy of the University of Vienna. The telescope is located at an altitude of 241 m, some 5 km away...
from the city centre. It was used in combination with an SBIG STL-6303E CCD camera, with a focal reducer and a $3K \times 2K$ front-illuminated Kodak Enhanced KAF-6303E chip. The pixel size of 9×9 microns translates to $0.41''$ on the sky and gives a total field of view of $20.8' \times 13.9'$. The measured value for the gain is $2.32 \pm 0.02 e^-/ADU$ in 2 x 2 binning, the read noise was determined with $11.2 e^-$ and the dark current with $0.07 e^-/pix/s$ at 0° C; the latter values are better than the official camera specifications.

Given the typical seeing in Vienna (between $1.4'' - 6''$ FWHM, with a median of $2.8''$ during the present measurements), the chip was binned 2×2, resulting in a readout time of $8s$. Due to technical problems with the filter wheel, only the V filter was used. Integration times of 10 or 15 s were chosen, depending on seeing. NGC 637 was observed on nine nights from December 2010 to March 2011 in which a total of 4776 usable science frames was collected.

The journal of the observations is given in Table 1. Due to constraints from other observing programs, the camera was rotated twice during the project. Care was taken that after the second rotation the observed field matched the original orientation as closely as possible. The time base of the total data set is $61.2d$.

The CCD frames were reduced with standard IRAF tasks, comprising corrections for bias level, dark current and flat field. Flat field frames were obtained by exposing the CCD to the evening twilight sky. Heliocentric Julian Dates were computed for the middle of each exposure.

Photometry of the reduced frames was carried out using the MOMP (Multi-Object Multi-Frame, Kjeldsen & Frandsen 1992) package. MOMP applies combined Point-Spread Function/Aperture photometry relative to an optimal sample of comparison stars, ensuring highest-quality differential light curves of the targets.

All sets of frames, grouped by field orientation, were searched for variables as a first step. Then, the optimal apertures, in terms of minimizing the scatter in the resulting light curves, were determined for all targets of interest from the most extensive subset of data (Feb 23 – Mar 1). These apertures were then used for all data subsets, and differential magnitudes were computed for all stars. The light curves of the data subsets were combined and the relative zeropoints were adjusted between them as the comparison star sample varied with field orientation, but not between individual nights. The resulting final light curves were cleaned for statistically significant outliers and first searched for variability up to the Nyquist frequency. No evidence for periodic signals with periods between 47 s and 90 min was found. Consequently, the data were merged into 3-minute bins and subjected to variability analysis.

3. Analysis

Unless otherwise noted, frequency analyses were performed with the program package Period04 (Lenz & Breger 2005). This software uses single frequency Fourier and multifrequency nonlinear least squares fitting algorithms. Amplitude spectra were computed and the frequencies of the intrinsic and statistically significant peaks in the Fourier spectra were determined. Multifrequency fits were calculated with all detected signals, and the corresponding frequencies, amplitudes and phases were optimized. The resulting fit was subtracted from the data before residual amplitude spectra were computed. These were examined in the same way until no significant further periodicity could be detected. In what follows, this procedure is called prewhitening.

The frequency solutions derived from the new light curves are given in the consequent subsections. On suggestion by the referee, formal error estimates of the individual parameters following Montgomery & O’Donoghue (1999) are given. However, they will be systematically overoptimistic: our frequency analyses are affected by aliasing and more signals may be present in the data.

Table 1. Journal of the observations

Run start	Civil Date	Length
30/12/2010	16:19:38	0.89
06/02/2011	16:51:19	4.90
07/02/2011	17:15:29	4.34
21/02/2011	17:19:55	4.25
24/02/2011	17:09:03	1.13
25/02/2011	17:11:58	4.37
26/02/2011	17:59:19	3.02
28/02/2011	17:16:56	4.34
01/03/2011	17:17:47	4.01
Total	**31.34**	

Notes. Times of CCD rotation are identified with horizontal lines.
Table 2. Frequency solutions for the known variable cluster members.

#	ID	Frequency (d$^{-1}$)	V Amplitude (mmag)	S/N
4	f_1	5.26940 ± 0.00002	68.2 ± 0.2	64.6
5	f_2	5.28770 ± 0.00007	22.5 ± 0.2	22.6
6	f_3	4.9073 ± 0.0002	7.0 ± 0.2	6.7
2f_1		10.52690 ± 0.00004	2.3 ± 0.2	4.1
3	f_1	0.67266 ± 0.00008	9.9 ± 0.1	13.5
2f_1		1.34532 ± 0.00004	26.2 ± 0.1	36.5

Notes. # is the WEBDA identification of the stars. The error estimates are formal and should be used with caution.

3.1. Previously known variable cluster members

Pietrukowicz et al. (2006) discovered the variability of NGC 637 4 and identified it as a β Cephei pulsator. The light curves of this star from the present study are shown in the left part of Fig. 2. The light range varies from 0.1 to 0.2 mag in different nights, suggesting beating of several pulsation modes. This is confirmed by the Fourier analysis of the light curves (Fig. 2, right half). The corresponding frequency solution, leaving behind an rms residual of 3.4 mmag per single data point, is listed in Table 2 (top). The two strongest oscillations and the harmonic were previously found by Pietrukowicz et al. (2006), consistent with the present results. The third oscillation frequency is new.

NGC 637 3 was also recognized as a variable star with a main period of 0.7432 d (Pietrukowicz et al. 2006). These authors preferred an explanation as an ellipsoidal variable (with an orbital period of 2 × 0.7432 d) for the star over that as a slowly pulsating β star because of its high luminosity.

Fourier analysis of the present data set reveals the same dominant period. However, pushing it further leads to difficulties because the subharmonic of this frequency (0.673 d$^{-1}$) cannot be distinguished from its first harmonic (2.691 d$^{-1}$) due to daily aliasing. Even worse, the −2 d$^{-1}$ alias of the strongest signal is not fully resolved from the possible subharmonic. Residualgram analysis (Martinez & Koen 1994), consisting of fitting a sine wave with M harmonics to the measured time series and evaluating the residuals at each trial frequency, provides the solution (Fig. 3, upper panel). Fitting a signal with one harmonic to the data clearly shows that the base frequency is 0.673 d$^{-1}$. The resulting frequency solution is given in Table 2 (bottom); no other signal is significantly present in the light curves. The rms of the residual time series is 2.2 mmag per point.

The lower panel of Fig. 3 shows a phase diagram of the light curve with the base frequency. Unfortunately, there is only about 56% phase coverage. However, a fit to this phase diagram (cf. Fig. 3) suggests a light curve resembling an ellipsoidal variable, with equal light maxima and unequal minima. Although we cannot rule out that the variability is induced by rotation, we prefer the interpretation of ellipsoidal light variations for NGC 637 3.

1 All stars are identified with their WEBDA designations, whenever available.

3.2. New β Cephei stars

The brightest member of NGC 637, WEBDA 1, is a new β Cephei star. Its light curves (Fig. 4, left-hand side) can reach light ranges of about 0.045 mag in V. Multiperiodicity is evident from the light variations and from a Fourier analysis with prewhitening (Fig. 4, right-hand side). The frequency analysis for these data is summarized in Table 3 (top). There are aliasing uncertainties, and the residual amplitude spectrum suggests the presence of more, or unresolved, frequencies in the light variations of the star.

Most of the previous comments apply to the variability of NGC 637 7 as well. The star is also multiperiodic with slightly smaller light range (up to 0.041 mag, Fig. 5). However, although the aliasing is as severe as for the previous star, it was easier to find the most probable intrinsic frequencies (Table 3, middle) and the prewhitening residuals are lower (2.8 vs. 3.7 mmag rms per point), suggesting that this star has a simpler oscillation behaviour than NGC 637 1.

The variability of NGC 637 138 is similar to the two stars discussed above. The V light range can reach 0.045 mag (Fig. 6). Results from the frequency analysis are listed in Table 3 (bottom): the rms residual scatter is 3.4 mmag per data point. A re-analysis of the time series photometry by Pietrukowicz et al. (2006) shows the pulsations of these three stars to be marginally present, but these data alone were unfortunately insufficient for confident detections.

3.3. A β Cephei suspect and an apparently constant star in the β Cephei domain

The light curves of NGC 637 6 (Fig. 7) raise the suspicion that it is a low amplitude β Cephei star. In almost
Fig. 2. Left: light curves of the known β Cephei star NGC 637 4. Right: amplitude spectra of the data with successive prewhitening.

Fig. 4. Left: light curves of the new β Cephei star NGC 637 1. Right: amplitude spectra of these data with successive prewhitening.

Fig. 5. Left: light curves of the new β Cephei star NGC 637 7. Right: amplitude spectra of these data with successive prewhitening.

all nights, there is some variability on the time scale expected for pulsation, and the star is well separated from others in the field, implying no blending problems in the photometry. However, the Fourier analysis is inconclusive as the light curves are dominated by nightly variations of the mean stellar magnitude, most likely of instrumental origin. Still, the rms scatter per single point in this light curve is only 2.6 mmag. Individual β Cephei pulsation modes, if present, would not exceed a level of 1.5 mmag in amplitude.

Finally, NGC 637 137 did not show any sign of intrinsic variability. The star is a close double (≈ 10′′ separation) with NGC 637 138 in the very centre of the cluster. Our

\[2\] Nightly zeropoint variations at the same level are also present in the data for the other bright stars, but are small compared to their intrinsic variability.
images under best seeing suggest another faint star in between the two. In any case, the photometry of NGC 637 137 became poor under poor seeing conditions, but even taking only the best light curves (about 2/3 of the data) shows no trace of variability within a limit of 3 mmag in total or 1 mmag in the β Cephei frequency domain.

3.4. Other (claimed) variable and interesting stars in the field

There are some other objects in the field of NGC 637 that deserve special attention. These are briefly discussed here, together with newly detected variables from the present study.

NGC 637 13 is variable in the present data, with a main frequency of 2.46 d\(^{-1}\) and an amplitude of 17 mmag. Star WEBDA 18 was suggested to be variable (Huestamendia, del Rio & Mermilliod [1991]). The present measurements show no evidence for variability within a limit of 5 mmag, or 2 mmag for periods shorter than 2.5 hr.

NGC 637 27 is a Be star (Yadav et al. [2008]). As these stars often are variable, we consequently examined our data. However, no variability within a limit of 5 mmag, or within 1.4 mmag for periods shorter than 2.5 hr, was found.

WEBDA 33 in NGC 637 is also variable, with a dominant frequency of 0.703 d\(^{-1}\). The light curve is asymmetric, as also implied by the presence of a first harmonic from combining Fourier and residualgram methods, and reaches a total light range of 0.053 mag.

NGC 637 68 showed an egress from an eclipse in one night of measurement (Fig. 8). Finally, two new δ Scuti stars were discovered, GSC 04039–00930 with a dominant frequency of 14.36 d\(^{-1}\) (modulo daily aliasing) and an amplitude of about 2.5 mmag, and GSC 04040–01606 with apparent multiple frequencies between 6 and 8 d\(^{-1}\) with amplitudes around 12 mmag.

The positions of the new variables that have WEBDA identifications in a \(V \ \text{vs.} \ B-V \) colour magnitude diagram, constructed with WEBDA, are consistent with cluster membership. On the other hand, the two δ Scuti stars have no WEBDA designations and no accurate \(BV\) photometry. Their mean \(V\) magnitudes are \(≈ 12.7\) and \(≈ 13.9\) on our frames, respectively. In the following section, we will estimate a distance modulus of \(V-M_V = 13.6\) to NGC 637, implying \(M_V = -0.9\) and 0.3, respectively, if the two pulsators were cluster members. The period-luminosity-colour relation for δ Scuti stars (Breger [1979]) provides \(M_V = 1.7 \pm 0.7\) and 0±0.7, respectively. The error estimates are dominated by the unknown colours of the variables and represent the width of the instability strip. We conclude that GSC 04039–00930 is a foreground star. GSC 04040–01606 may be a cluster member, although it is some 9′ off the centre. It would then be a pre-main sequence pulsator because of its long periods and the young age of the cluster.

![Fig. 6.](image_url)

Fig. 6. Left: light curves of the new β Cephei star NGC 637 138. Right: amplitude spectra of these data with successive prewhitening.

Table 3. Frequency solutions for the new β Cephei stars in NGC 637.

#	ID	Frequency (d\(^{-1}\))	V Amplitude (mmag)	S/N
1	\(f_1\)	5.3899 ± 0.0002	9.3 ± 0.2	8.0
	\(f_2\)	3.8962 ± 0.0004	4.5 ± 0.2	4.0
7	\(f_1\)	5.1932 ± 0.0001	10.7 ± 0.2	14.1
	\(f_2\)	5.7634 ± 0.0003	4.9 ± 0.2	7.0
138	\(f_1\)	4.3664 ± 0.0002	11.5 ± 0.2	13.9
	\(f_2\)	5.7941 ± 0.0004	5.0 ± 0.2	6.9

Fig. 7. Light curves of the β Cephei suspect NGC 637 6.

Fig. 8. Some light curves of the eclipsing binary NGC 637 68.
Table 4. Parameters of the seven brightest members of NGC 637 derived from Strömgren photometry.

#	\(T_{\text{eff}}\) (kK)	\(\log g\) (dex)	\(E(b-y)\) (mag)	\(M_V\) (mag)	\(\log L\)	\(V - M_V\) (mag)
1	25.5	3.6	0.470	-3.31	4.29	13.49
3	22.6	4.2	0.470	-2.99	3.72	12.97
4	23.6	3.9	0.409	-2.93	3.89	13.71
5	25.9	3.9	0.487	-3.29	4.21	13.64
6	24.3	4.0	0.469	-2.91	4.00	13.58
137	22.4	4.4	0.451	-2.13	3.61	12.92
138	24.9	3.9	0.439	-3.06	4.08	13.22

Notes. \# is the WEBDA identification of the stars. The error on \(T_{\text{eff}}\) is about \(\pm 4\%\), and 0.2 dex in \(\log g\).

4. Discussion

The Strömgren uvby\(\beta\) photometry by Handler (2011) can be used to derive \(T_{\text{eff}}\) and \(M_V\), thus \(\log L\) of the individual stars, but also their reddenings and distance moduli. To this end, the routines by Napiwotzki et al. (1998) were employed. Bolometric corrections by Flower (1996) and a bolometric magnitude of \(M_{\text{bol}} = 4.74\) for the Sun (Livingston 2000) were used to obtain stellar luminosities. The results of this procedure are listed in Table 4 and were also used for constructing Fig. 1.

The interstellar reddening of these stars is virtually the same, suggesting they are all at the same distance and are therefore cluster members. The mean value is \(E(b-y) = 0.469 \pm 0.008\) mag, translating into \(E(B-V) = 0.65 \pm 0.01\) mag. This is in excellent agreement with the value by Yadav et al. (2008), but less consistent with Pietrukowicz et al. (2006).

Looking at the apparent distance moduli \(V - M_V\), there are considerable differences of up to 0.79 mag between individual stars. However, it must be kept in mind that the absolute magnitude calibration of Strömgren photometry treats each star as if it was single. The spread in \(V - M_V\) is very close to the absolute magnitude difference of a single star and a binary with equal components. It is therefore possible that stars WEBDA 3, 137 and 138 are members of binary systems. In fact, WEBDA 3 probably shows ellipsoidal variability. The results of this procedure are listed in Table 4 and were also used for constructing Fig. 1.

Turning to the \(\beta\) Cephei stars, NGC 637 4 is among the five highest amplitude pulsators of this type ever discovered (cf. Pigulski & Pojmanski 2001). Such high amplitude \(\beta\) Cephei stars often show a “stillstand” phenomenon in the pulsation of two previously known variable cluster members, one \(\beta\) Cephei pulsator and one probable ellipsoidal variable. Three new \(\beta\) Cephei stars were discovered in the cluster and one more star is suspected to show low amplitude oscillations of the same kind. Other variable stars in the field are also reported. The present study shows that precise relative photometry can be obtained with a small telescope at an urban site.

NGC 637 is now among the six open clusters with most \(\beta\) Cephei stars known (together with NGC 884, NGC 3209, NGC 4755, NGC 6231 and NGC 6910, Pigulski 2004, Stankov & Handler 2005). The presence of at least four pulsators within a small portion of the sky (the seven brightest stars are located within 3′ × 4′), the large amplitudes of the dominant modes and the apparent presence of nonpulsating stars within the \(\beta\) Cephei domain make NGC 637 an attractive target for ensemble asteroseismology. Time-resolved photometric observations in several filters, including an ultraviolet band, for pulsational mode detection and identification, are easily possible. Spectroscopic observations of the seven brightest cluster members are desirable for several purposes: to determine the rotational velocities, to look for binary companions and/or radial velocity variations, to derive more accurate \(T_{\text{eff}}\) and \(\log g\) values, and perhaps even to determine abundances of chemical elements.

Acknowledgements. This research is supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung under grant P20526-N16. This research has made use of the WEBDA database, operated at the Institute for Astronomy of the University of Vienna. We are grateful for the constructive comments of the referee.

5. Summary and conclusions

Thirty-one hours of time resolved \(V\) filter CCD photometry of the open cluster NGC 637 resulted in the confirmation of two previously known variable cluster members, one \(\beta\) Cephei pulsator and one probable ellipsoidal variable. Considering the seven brightest stars in this cluster and their light variability as an ensemble, four are now known as \(\beta\) Cephei stars, and one is a suspect. There are currently too few observational constraints to pinpoint the distinction between pulsators and nonpulsators. However, it is interesting to note that the two apparently pulsationally stable stars may have binary companions, as implied by the difference between their apparent and absolute magnitudes from Strömgren photometry. They would therefore be less massive than the pulsators. More evidence in this direction would be provided by confirmation of ellipsoidal variability of WEBDA 3.

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W., 2010, Asteroseismology, (Springer-Verlag, Berlin)
Breger, M., 1979, PASP, 91, 5
Flower, P. J., 1996, ApJ, 469, 355
Handler, G., 2008, Comm. Asteroseism., 157, 106
Handler, G., 2011, A&A, 528, A148
Huestamendia, G., del Rio, G., & Mermilliod, J.-C., 1991, A&AS 87, 153
Kjeldsen, H., & Frandsen, S., 1992, PASP, 104, 413
Lenz, P., & Breger, M., 2005, Comm. Asteroseism., 146, 53
Liu, T., Janes, K. A., Bania, T. M., 1991, AJ, 102, 912
Livingston, W. C., 2000, in Allen’s Astrophysical Quantities, 4th ed., ed. A. N. Cox, (Springer-Verlag, Berlin), p. 341
Montgomery, M. H., 2005, ApJ, 633, 1142
Pigulski, A., 2004, in Advances in Stellar Astrophysics and Stellar Dynamics, ed. K. A. Janes, T. M. Bania, & T. W. C. Livingston, Proc. Na 153, 121
Pigulski, A., & Pojmanski, G., 2001, A&A, 370, 503
Pigulski, A., & Pojmanski, G., 2008, Comm. Asteroseism., 157, 106
Pigulski, A., 2004, in Advances in Stellar Astrophysics and Stellar Dynamics, ed. K. A. Janes, T. M. Bania, & T. W. C. Livingston, Proc. Na 153, 121
Pigulski, A., & Koen, C., 1994, MNRAS, 267, 1039
Stankov & Handler 2005, Saesen et al. 2010. The presence of at least four pulsators within a small portion of the sky (the seven brightest stars are located within 3′ × 4′), the large amplitudes of the dominant modes and the apparent presence of nonpulsating stars within the \(\beta\) Cephei domain make NGC 637 an attractive target for ensemble asteroseismology. Time-resolved photometric observations in several filters, including an ultraviolet band, for pulsational mode detection and identification, are easily possible. Spectroscopic observations of the seven brightest cluster members are desirable for several purposes: to determine the rotational velocities, to look for binary companions and/or radial velocity variations, to derive more accurate \(T_{\text{eff}}\) and \(\log g\) values, and perhaps even to determine abundances of chemical elements.

Acknowledgements. This research is supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung under grant P20526-N16. This research has made use of the WEBDA database, operated at the Institute for Astronomy of the University of Vienna. We are grateful for the constructive comments of the referee.

References

Aerts, C., Christensen-Dalsgaard, J., & Kurtz, D. W., 2010, Asteroseismology, (Springer-Verlag, Berlin)
Breger, M., 1979, PASP, 91, 5
Flower, P. J., 1996, ApJ, 469, 355
Handler, G., 2008, Comm. Asteroseism., 157, 106
Handler, G., 2011, A&A, 528, A148
Huestamendia, G., del Rio, G., & Mermilliod, J.-C., 1991, A&AS 87, 153
Kjeldsen, H., & Frandsen, S., 1992, PASP, 104, 413
Lenz, P., & Breger, M., 2005, Comm. Asteroseism., 146, 53
Liu, T., Janes, K. A., Bania, T. M., 1991, AJ, 102, 912
Livingston, W. C., 2000, in Allen’s Astrophysical Quantities, 4th ed., ed. A. N. Cox, (Springer-Verlag, Berlin), p. 341
Montgomery, M. H., 2005, ApJ, 633, 1142
Montgomery, M. H., & O’Donoghue, D., 1999, Delta Scuti Star Newsletter 13, 28
Napiwotzki, R., Schönberner, D., & Wenske, V., 1993, A&A, 268, 653
Pamyatnykh, A. A., Dziembowski, W. A., Handler, G., & Pikall, H., 1998, A&A, 333, 141
Pamyatnykh, A. A., Handler, G., & Dziembowski, W. A., 2004, MNRAS 350, 1022
Pietrukowicz, P., Olech, A., Wiśniewski, M., et al., 2006, Acta Astron., 56, 267
Pigulski, A., 2004, Comm. Asteroseism., 145, 74
Pigulski, A., 2006, ASP. Conf. Ser., 349, 137
Pigulski, A., & Pojmanski, G., 2008, A&A 477, 917
Saesen, S., Pigulski, A., Carrier, F., et al., 2010, Astron. Nachr., 331, 1080
Stankov, A., & Handler, G., 2005, ApJS, 158, 193
Telting, J. H., 2008, Comm. Asteroseism., 157, 112
Yadav, R. K. S., Kumar, B., Subramaniam, A., Sagar, R., & Mathew, B., 2008, MNRAS, 390, 985
Zdravkov, T., & Pamyatnykh, A. A., 2008, JPhCS 118, 012079