p53 is required for both radiation-induced differentiation and rescue of \(V(D)J \) rearrangement in scid mouse thymocytes

Molly A. Bogue, 1 Chengming Zhu, 1 Estuardo Aguilar-Cordova, 2 Lawrence A. Donehower, 3 and David B. Roth 1, 4

1Department of Microbiology and Immunology, 2Department of Pediatrics, and 3Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030 USA

The murine scid mutation affects both \(V(D)J \) recombination and DNA repair. This mutation has been mapped to the gene encoding the catalytic subunit of the DNA-dependent protein kinase (DNA-PK), which is activated by DNA damage in normal cells. In scid mice, antigen receptor gene rearrangements are initiated normally, but impaired joining of coding ends prevents assembly of functional receptor genes, resulting in arrest of B- and T-cell development. Others have shown that exposure of scid mice to genotoxic agents such as \(\gamma \)-irradiation rescues rearrangement at the T-cell receptor (TCR) \(\beta \) locus and promotes thymocyte development. Here we demonstrate that irradiation rescues rearrangements at multiple TCR loci, suggesting a general effect on the recombination mechanism. Furthermore, our data show that p53 is required for irradiation-mediated rescue of both thymocyte development and \(V(D)J \) recombination. We also find that thymocyte proliferation and differentiation in the absence of DNA damage do not require p53 and are not sufficient to rescue \(V(D)J \) recombination. These results suggest that exposure to ionizing radiation facilitates a partial bypass of the scid defect, perhaps by inducing p53-dependent DNA damage response pathways.

[Key Words: p53; scid; ionizing radiation; \(V(D)J \) recombination; thymocyte differentiation; DNA repair]

Received November 22, 1995; revised version accepted January 23, 1996.

The mechanisms of \(V(D)J \) recombination and DNA repair are intimately connected (Pergola et al. 1993; Taccioli et al. 1993, 1994; Blunt et al. 1995; Roth et al. 1995). This relationship was first suggested by the observation that the mouse scid mutation impairs both \(V(D)J \) recombination and double-strand break repair (Fulop and Phillips 1990; Biedermann et al. 1991; Hendrickson et al. 1991). The discovery that irradiation of scid mice promotes both thymocyte development and rescue of rearrangements at the T-cell receptor \(\beta \) (TCR\(\beta \)) locus [Danska et al. 1994; Murphy et al. 1994] provides a valuable model system for investigating the connections among DNA repair, \(V(D)J \) recombination, and T-cell development. Here we investigate the mechanisms of irradiation-mediated rescue of TCR rearrangement and thymocyte differentiation in scid mice.

Our understanding of the intricate process of thymocyte development has advanced considerably in the past few years (for review, see Anderson and Perlmutter 1995; Levelt and Eichmann 1995). A simplified view of early intrathymic a\(\beta \) thymocyte development can be summarized as follows: immature precursor cells that express little or no CD4 or CD8, termed double-negative (DN) cells, migrate to the thymus. TCR\(\beta \) rearrangement initiates in DN cells [Godfrey et al. 1993], and differentiation to the subsequent developmental stage normally proceeds when a functional TCR\(\beta \) chain has been expressed. Signaling of this event is thought to be mediated by the association of the TCR\(\beta \) chain with members of the CD3 complex and with the surrogate TCR\(\alpha \)L chain, pT\(\alpha \L \) [Groettrup et al. 1993; Saint-Ruf et al. 1994; Fehling et al. 1995]. Signaling through this complex results in rapid proliferation and differentiation to the CD4+ CD8+ double-positive (DP) stage [Godfrey et al. 1993, 1994], where most TCR\(\alpha \) rearrangements are thought to occur [Groettrup and von Boehmer 1993; Wilson et al. 1994]. Productive rearrangement of a TCR\(\alpha \) allele allows replacement of the surrogate TCR\(\alpha \) chain and surface expression of the mature a\(\beta \) TCR/CD3 complex, which is required for further maturation to single-positive (SP) CD4+ or CD8+ thymocytes.

\(V(D)J \) recombination plays a critical role in normal thymocyte development, as expression of functional TCR chains is required for both the DN to DP and the DP to SP developmental transitions. \(V(D)J \) recombination is initiated by the introduction of double-strand breaks (DSB) at specific sequences, termed recombination signal sequences, that are situated adjacent to the V, D, and J coding elements [Roth et al. 1992b]. This site-
specific cleavage, mediated by the RAG-1 and RAG-2 proteins [McBlane et al. 1995; van Gent et al. 1995], produces two kinds of broken DNA intermediates: coding ends, which are covalently sealed in the form of hairpins [Roth et al. 1992a; McBlane et al. 1995; Ramsden and Gellert 1995; van Gent et al. 1995; Zhu and Roth 1995] and signal ends, which are blunt [Roth et al. 1993; Schlissel et al. 1993; Zhu and Roth 1995]. Joining of coding ends assembles the V, D, or J gene segments, producing coding joints. Signal ends are joined to form the reciprocal junction, termed a signal join.

Mice homozygous for the scid mutation are able to join signal ends, but they fail to generate significant numbers of functional immunoglobulin and TCR gene rearrangements [Schuler et al. 1986, 1990] because of a severe defect in coding joint formation [Lieber et al. 1988; Malynn et al. 1988]. In thymocytes of these mice, recombination is initiated normally but unresolved hairpin coding ends accumulate [Roth et al. 1992a; Zhu and Roth 1995], indicating that the scid factor is required for the joining of coding ends. Scid cells are also hypersensitive to ionizing radiation [Fulop and Phillips 1990; Biedermann et al. 1991; Hendrickson et al. 1991] and are deficient in the repair of chromosomal DSB [Biedermann et al. 1991; Hendrickson et al. 1991]. The scid mutation has been mapped to the gene encoding the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) [Blunt et al. 1995; Hartley et al. 1995; Kirchgessner et al. 1995; Peterson et al. 1995], and scid cells do not express detectable DNA-PK activity [Blunt et al. 1995; Boubnov and Weaver 1995]. DNA-PK is activated by binding DNA lesions, including DSB [Gottlieb and Jackson 1993; Malynn et al. 1988] and is capable of phosphorylating a variety of substrates in vitro, including a number of transcription factors and the tumor suppressor protein p53 [Lees-Miller et al. 1992; Gottlieb and Jackson 1994]. The precise roles of DNA-PK in V(D)J recombination and DSB repair remain elusive, although one obvious scenario involves phosphorylation of downstream target molecules in response to DNA lesions [Gottlieb and Jackson 1994]. It has been suggested that DNA-PK may regulate the accessibility of hairpin coding ends to the hairpin opening machinery [Blunt et al. 1995; Roth et al. 1995; Zhu and Roth 1995].

Thymocytes of scid mice are arrested at the DN stage [Shores et al. 1990] because of the scid defect in coding joint formation that precludes the formation of functional TCR rearrangements. This early block in thymocyte development can be partially relieved by treatment with agents that cause DSB, including y-irradiation [Danska et al. 1994; Murphy et al. 1994]. Within 1–2 weeks after treatment, roughly normal proportions of DP thymocytes are observed, and the cellularity of the thymus is increased. DP cells persist in the thymus for months; however, further developmental progression either does not occur or is very rare, as distinct SP populations are not observed [Danska et al. 1994; Murphy et al. 1994]. Polyclonal TCR8 rearrangements are also detected within 1–2 weeks after the irradiation of newborn scid mice; furthermore, sequence analysis revealed that 90% of the TCR8 transcripts are in-frame and appear normal [Danska et al. 1994], lacking the structural anomalies associated with aberrant rearrangements isolated from scid mice [Kienker et al. 1991; Schuler et al. 1991]. These data indicate that DNA-damaging agents may induce “bypass” DNA repair processes that can alleviate, at least partially, the block in coding joint formation conferred by the scid mutation.

Because p53 is involved in early responses to DNA damage, we considered the possibility that p53 might play a critical role in irradiation-induced rescue of V(D)J rearrangement and development in scid thymocytes. p53 binds to a variety of DNA lesions [Bakalkin et al. 1994; Lee et al. 1995] and accumulates rapidly in response to genotoxic insults such as y-irradiation [Lu and Lane 1993; Nelson and Kastan 1994]. p53 in turn stimulates transcription of a variety of genes responsible for cell cycle arrest or apoptosis [Clarke et al. 1993; Lowe et al. 1993; Kastan et al. 1995]. Interestingly, the transcriptional activation domain of p53 contains DNA-PK consensus phosphorylation sites and is phosphorylated in vitro by DNA-PK [Lees-Miller et al. 1992]. The proposed link between DNA-PK and p53 is further supported by the observation that a mutation in one of the phosphorylation consensus sites impairs p53-dependent inhibition of cell cycle progression [Fiscella et al. 1993]. However, the physiological relevance of p53 phosphorylation by DNA-PK has not been determined.

We have used scid and p53-deficient scid mice to demonstrate the following. (1) p53 is required for irradiation-induced rescue of both rearrangement at multiple TCR loci and proliferation and differentiation to the DP stage in scid thymocytes. (2) p53 is not required for anti-CD3e induction of proliferation and differentiation in scid thymocytes, underscoring the specific role of p53 in the irradiation response. (3) Whereas treatment with antibodies to CD3e causes significant proliferation and differentiation of scid thymocytes, rescue of TCR8 rearrangements is not observed, indicating that rescue of rearrangement and differentiation can be dissociated. (4) p53-Dependent responses are not impaired in scid thymocytes, indicating that DNA-PK activity is not required for activation of p53.

Results

Absence of p53 prevents irradiation-induced rescue of thymocyte development and V(D)J recombination

How does irradiation induce differentiation and the rescue of TCR gene rearrangement in scid mice? One obvious possibility is that the signal for both events is provided by irradiation-induced DSB. This hypothesis is supported by the observation that treatment of newborn scid mice with bleomycin, which induces DSB, also promotes the appearance of DP thymocytes [Danska et al. 1994]. Because p53 is thought to play a key role in orchestrating the early cellular response to DNA damage [Kastan et al. 1995], we asked whether the irradiation-induced rescue of either thymocyte development or
p53-dependent responses in irradiated scid mice

V(D)J recombination in scid mice is affected by the lack of functional p53.

Scid mice were crossed to p53-deficient mice (Donehower et al. 1992), generating animals that were homozygous for the scid defect and homozygous or heterozygous for the mutated p53 allele. Newborn mice were treated with 100 centiGrays (cGy) of γ-irradiation within the first 24 hr after birth, and thymocytes were harvested and analyzed 11–16 days after irradiation. Figure 1a shows representative CD4/CD8 profiles of thymocyte preparations from individual unirradiated or irradiated scid p53 + / - and scid p53 – / – littermates. Irradiation of scid p53 + / - mice promotes increased thymic cellularity, with DP cells reaching wild-type proportions. These results are consistent with previous reports (Danska et al. 1994; Murphy et al. 1994). However, after irradiation of scid p53–null mice, no significant increase in thymic cellularity or in numbers of DP thymocytes was observed in comparison to unirradiated scid p53–null mice, as shown in the bottom set of profiles in Figure 1a. Data from a number of independent experiments are summarized in Figure 1b. These results demonstrate that p53 is required for irradiation-induced rescue of thymocyte development in scid mice.

Another interesting feature of the data shown in Figure 1 is the presence of DP thymocytes in unirradiated scid p53-/- mice. This irradiation-independent DP population increases with age from 8% of total thymocytes at day 9 to 45%–50% by 6 weeks of age (M. Bogue, C. Zhu, L. Donehower, and D. Roth, unpubl.). A similar phenomenon has also been observed in mice deficient for both RAG-1 and p53 (Mombaerts et al. 1995). Taken together, these results suggest that in the absence of p53, limited developmental progression to the DP stage can occur in rearrangement-deficient mice. We are currently investigating this phenomenon in more detail.

We have shown that p53 is required for irradiation-induced rescue of thymocyte proliferation and differentiation [Fig. 1]. We next asked whether the lack of p53 also prevents irradiation-induced rescue of V(D)J recombination in scid mice. As shown in Figure 2 there is no detectable rearrangement at the TCRβ locus in scid p53–/– thymocytes after irradiation [lane 3] as compared with irradiated scid p53 + / - mice [lane 4]. [The non-germ-line fragments visible in unirradiated scid thymus DNA result from DSB at Dβ1; see legend to Fig. 2 for details.] These data indicate that p53 is required for the irradiation-induced rescue of TCRβ rearrangements in scid thymocytes.

Previous studies examined TCRα and TCRβ rearrangement and found consistent rescue only of TCRβ rearrangements in irradiated scid mice [Danska et al. 1994; Murphy et al. 1994], suggesting that the irradiation effect might be locus specific. We therefore examined other loci for irradiation-induced rearrangements. Figure 3 shows a highly diverse pattern of rearrangement at the TCRα locus in thymocytes from irradiated scid p53 + / - mice [lane 5, cf. with the pattern obtained from unirradiated scid mice shown in lane 2]. Irradiation also rescues rearrangement at the TCRγ locus, as shown below.

As we have shown for the TCRβ locus, p53 is also required for irradiation-mediated rescue of TCRβ rearrangements, as rearrangement is not observed in irradiated scid p53–null mice [lane 4]. These data indicate that irradiation promotes rearrangement at multiple TCR loci by a p53-dependent mechanism.

Figure 1. p53 is required for irradiation-induced rescue of thymocyte development in scid mice. (a) CD4–PE/CD8–FITC profiles are shown from thymocytes of individual unirradiated or irradiated scid p53 + / - and scid p53 – / – littermates. The number in the second quadrant is the percentage of DP cells, and the number below the histogram denotes thymic cellularity (x 106). (b) Accumulated data from CD4/CD8 profiles and thymic cellularity are shown from several individual unirradiated and irradiated scid 1353 + / - and scid p53 – / – mice. The number in the second quadrant is the percentage of DP cells, and the number below the histogram denotes the cellularity of the thymus (x 106). Numbers below the bars indicate the average thymic cellularity (with standard deviation). Number of mice tested.
accompanied by an increase in thymic cellularity (up to 15-fold), although total cell numbers remain substantially lower than wild-type animals. The timing of the appearance of rearrangements at TCRβ is illustrated in Figure 5a. Rescue of TCRβ rearrangement is not apparent prior to day 9, at which time diverse rearrangements are detected. By day 10, consider-

Figure 2. p53 is required for irradiation-induced rescue of rearrangement at TCRβ in scid mice. (Top) TCRβ Southern blot analysis of unirradiated or irradiated scid p53+/− and scid p53−/− thymocyte DNAs digested with EcoRI. For comparison, unirradiated wild-type (WT) thymus and testis DNAs are also shown. (The same wild-type DNA samples were used for both blots, the slight difference in the appearance of the patterns is attributable to different electrophoresis conditions.) The TCRβ map (bottom) shows the location of the probe (heavy line spanning Dβ1) in relation to Dβ1 and Jβ1 coding gene segments [open boxes] and their recombination signal sequences [solid triangles]. This probe primarily detects germ-line and D to J rearrangements, but also detects Dβ1 coding and signal ends in scid thymocyte DNA (C. Zhu, M. Bogue, F. McBlane, L. Donehower, and D. Roth, in prep.). The TCRβ map (bottom) shows the location of the probe [heavy line spanning Dβ1] in relation to Dβ1 and Jβ1 coding gene segments [open boxes] and their recombination signal sequences [solid triangles]. This probe primarily detects germ-line and D to J rearrangements, but also detects Dβ1 coding and signal ends in scid thymocyte DNA (C. Zhu, M. Bogue, F. McBlane, L. Donehower, and D. Roth, in prep.).

Figure 3. p53 is required for irradiation-induced rescue of rearrangement at TCRδ in scid mice. (Top) TCRδ Southern blot analysis of irradiated scid p53+/− and scid p53−/− thymocyte DNA digested with EcoRI. For comparison, unirradiated scid, wild-type (WT) thymus and testis DNAs are also shown. Unirradiated scid p53−/− (not shown) is similar in pattern to unirradiated scid [see Fig. 7b, lane 5, for unirradiated scid p53−/−]. The TCRδ map (bottom) shows the location of the probe [heavy line spanning Dβ1] in relation to Dδ2 and Jβ1 coding gene segments [open boxes] and their recombination signal sequences [solid triangles]. This probe detects germ-line (GL) and D to D, D to J, V to L, and V to DJ rearrangements (Chien et al. 1987a, b; Carroll and Bosma 1991; Roth et al. 1992b). This probe also detects D and J coding ends (CE) in thymocyte DNA from scid mice (Roth et al. 1992a), as illustrated in the map. Non-germ-line fragments of 4.0 and 4.9 kb that have been identified previously as hairpin coding ends (Roth et al. 1992a) are prominent in DNA from unirradiated scid thymocytes. Previous work has established that these coding ends accumulate in scid, but not wild-type, thymocytes [Roth et al. 1992a], presumably because they are resolved quickly into coding joints in wild-type cells [Ramsden and Gellert 1995]. Another non-germ-line fragment of 6.6 kb, which is derived from Dδ2 to Jβ1 rearrangement [R], is seen in unirradiated scid thymocytes [Carroll and Bosma 1991].

As shown above, irradiation of newborn scid mice triggers several events, including thymocyte proliferation, differentiation, and rescue of rearrangement at multiple TCR loci. To define the nature of the irradiation response more carefully, we examined the time course of these events in scid mice. Profiles of cell surface staining for CD4 and CD8 on thymocytes from individual mice are shown in Figure 4. A distinct DP population is first evident at day 8. By day 11, the DP population is predominant at ~90% of total thymocytes, persisting until at least day 25. The appearance of DP thymocytes is seen in scid.

Time course of irradiation-induced development and rearrangement at multiple TCR loci

As shown above, irradiation of newborn scid mice triggers several events, including thymocyte proliferation, differentiation, and rescue of rearrangement at multiple TCR loci. To define the nature of the irradiation response more carefully, we examined the time course of these events in scid mice. Profiles of cell surface staining for CD4 and CD8 on thymocytes from individual mice are shown in Figure 4. A distinct DP population is first evident at day 8. By day 11, the DP population is predominant at ~90% of total thymocytes, persisting until at least day 25. The appearance of DP thymocytes is seen in scid.
p53-dependent responses in irradiated scid mice

Figure 4. Time course of irradiation-induced proliferation and differentiation. CB.17 scid/scid mice were irradiated and harvested at various times. CD4-CyChrome/CD8-PE thymic profiles are shown for individual irradiated scid mice from days 3–25. Unirradiated wild-type (WT) and scid are shown for comparison. The age of the mouse is indicated above each profile; the number in the second quadrant corresponds to the percentage of DP cells, and the number below the profile indicates the thymic cellularity (×10⁶).

Figure 5. Irradiation rescues rearrangement at multiple TCR loci in scid mice. (a) TCRδ Southern blot analysis of EcoRI-restricted DNA from thymocytes of irradiated scid mice from days 5, 7, 9, and 10. Thymocyte DNA from unirradiated wild-type (WT) and adult and newborn scid are shown for comparison (see Fig. 3 for map and probe details). Germ-line (GL), DJ2 to Jβ1 rearrangement (R), and Dβ2 (D), and Jβ1 (J) coding ends are indicated. (b) PCR analysis of Vβ8–Jβ2.6 and Vγ2–Jγ1 rearrangements in unirradiated and irradiated day 10 scid thymocyte DNA (100 ng). Amplification of wild-type [WT] thymocyte DNA (10 ng) is shown for size comparison. The negative control contained all reagents used for amplification except DNA. Markers (radiolabeled 1-kb ladder) are shown in the left-most lane; pertinent sizes are indicated.

Irradiation activates recombination at TCRδ

The data reported here show that irradiation of newborn scid mice rescues rearrangement at three of the four TCR loci. However, previous studies did not detect significant TCRδ rearrangement or cell surface expression in irradiated scid mice [Danska et al. 1994; Murphy et al. 1994]. We wondered whether the differential effects of irradiation might be dependent on the recombinational activity of the locus at the time of irradiation. Because rescue of rearrangements presumably involves bypass of the scid block to joining hairpin coding ends, one would expect only actively rearranging loci to be available for rescue.

Figure 4. Time course of irradiation-induced proliferation and differentiation. CB.17 scid/scid mice were irradiated and harvested at various times. CD4-CyChrome/CD8-PE thymic profiles are shown for individual irradiated scid mice from days 3–25. Unirradiated wild-type (WT) and scid are shown for comparison. The age of the mouse is indicated above each profile; the number in the second quadrant corresponds to the percentage of DP cells, and the number below the profile indicates the thymic cellularity (×10⁶).

Irradiation activates recombination at TCRδ

The data reported here show that irradiation of newborn scid mice rescues rearrangement at three of the four TCR loci. However, previous studies did not detect significant TCRδ rearrangement or cell surface expression in irradiated scid mice [Danska et al. 1994; Murphy et al. 1994]. We wondered whether the differential effects of irradiation might be dependent on the recombinational activity of the locus at the time of irradiation. Because rescue of rearrangements presumably involves bypass of the scid block to joining hairpin coding ends, one would expect only actively rearranging loci to be available for rescue.

Figure 4. Time course of irradiation-induced proliferation and differentiation. CB.17 scid/scid mice were irradiated and harvested at various times. CD4-CyChrome/CD8-PE thymic profiles are shown for individual irradiated scid mice from days 3–25. Unirradiated wild-type (WT) and scid are shown for comparison. The age of the mouse is indicated above each profile; the number in the second quadrant corresponds to the percentage of DP cells, and the number below the profile indicates the thymic cellularity (×10⁶).

Irradiation activates recombination at TCRδ

The data reported here show that irradiation of newborn scid mice rescues rearrangement at three of the four TCR loci. However, previous studies did not detect significant TCRδ rearrangement or cell surface expression in irradiated scid mice [Danska et al. 1994; Murphy et al. 1994]. We wondered whether the differential effects of irradiation might be dependent on the recombinational activity of the locus at the time of irradiation. Because rescue of rearrangements presumably involves bypass of the scid block to joining hairpin coding ends, one would expect only actively rearranging loci to be available for rescue.
The TCRα locus is presumed to be recombinationally inactive in scid thymocytes. Germ-line transcripts, which are an indicator of recombinational accessibility, are conspicuously absent from the TCRα locus, whereas TCRβ, TCRδ, and TCRγ transcripts are detected easily in scid thymocytes [Schuler et al. 1988].

We examined the status of the TCRα locus in unirradiated and irradiated scid mice by Southern blotting. Since detection of rearrangements at this locus is somewhat problematic because of its large size (see Fig. 6 legend), we first established the normal rearrangement pattern using wild-type thymocytes that should be active for TCRα recombination. Thymocyte DNA from wild-type mice shows a notable decrease in germ-line intensity along with the appearance of several non-germ-line fragments [Fig. 6a, lane 2]. Both of these phenomena provide evidence for TCRα rearrangement [Livak et al. 1995]. [To ensure that lanes were loaded equally, we reprobed the blot with a probe that hybridizes to a gene (RAG-1) that does not undergo rearrangement [Fig. 6a, bottom]] The situation in unirradiated scid thymocyte DNA is quite different, as there is only a single, intense germ-line fragment (Figure 6a, lane 1). Thus, as suggested by the germ-line transcription data [Schuler et al. 1988], we do not detect TCRα rearrangement in unirradiated scid mice.

In contrast, in thymocytes of irradiated scid mice, several non-germ-line fragments appear that are not observed in wild-type or unirradiated animals [Fig. 6a,b, lanes 3]. The sizes of these novel EcoRI fragments suggest that they might be derived from α coding ends, as illustrated in the map shown in Figure 6c. To map these putative coding ends with higher resolution, DNA samples were digested with SphI. This digest generates novel fragments whose sizes are consistent with the presence of coding ends at Jα50 and Jα49, as shown in Figure 6c. This interpretation is further supported by ligation-mediated PCR analysis [Zhu and Roth 1995], which confirmed the presence of Jα50 and Jα49 hairpin coding ends in thymocyte DNA preparations from irradiated but not from unirradiated scid mice [C. Zhu, M. Bogue, F. McBlane, L. Donchower, and D. Roth, in prep.].

These results indicate that initiation of TCRα rearrangement (as measured by the formation of coding ends) is induced by irradiation, perhaps as a consequence of differentiation to the DP stage. This hypothesis is consistent with the observation that TCRα germ-line transcription can be induced in RAG-deficient mice follow-
p53-dependent responses in irradiated scid mice

...ing a treatment that induces developmental progression to the DP stage (Levelt et al. 1995). Although our data show that irradiation promotes the appearance of hairpin coding ends at TCR Jκ gene segments, we have not detected completed TCRκ rearrangements by Southern blotting, and others have failed to detect significant levels of TCRκ rearrangement in irradiated scid mice using more sensitive PCR-based techniques (Danska et al. 1994). These results imply that irradiation-induced effects on rearrangement in scid mice may be transient and may not persist for the several days that elapse between irradiation and the appearance of DP thymocytes.

Rescue of thymocyte development can be dissociated from rescue of TCR gene rearrangement

Because rescue of V(D)J rearrangement and thymocyte development both require p53 and occur with similar timing after irradiation, we wondered whether these two processes might be interdependent. An initial assessment of our results suggests that rescue of TCR rearrangement might be responsible for the rescue of development, as a substantial fraction of thymocytes—most of which are DP cells—have rearrangements at one or more TCR loci (see diverse rearrangements and diminished germ-line bands in irradiated scid samples in Fig. 2, lane 4, Fig. 3, lane 5, and Fig. 5, days 9 and 10). However, this simplistic view is clouded by the fact that irradiation also promotes the appearance of DP thymocytes in RAG-deficient mice (Züniga-Pflücker et al. 1994; Guidos et al. 1995). Therefore, rescue of thymocyte development can clearly occur in the absence of TCR rearrangements.

Another way in which rescue of development might be linked to rescue of rearrangements is the possibility that rearrangements are somehow promoted by irradiation-induced proliferation and differentiation. The underlying mechanism of such an effect could be related to the well-documented "leakiness" of the scid defect. A substantial fraction of older scid mice are leaky, and TCR rearrangements are readily detected (Bosma et al. 1988; Petrimi et al. 1990). Even in newborn scid mice some rearrangements occur normally, most notably D82–J81 coding joints [Carroll and Bosma 1991], which can be detected by Southern blotting (for example, see Figure 3, lane 2). We therefore considered the possibility that the irradiation-induced developmental progression might somehow enhance this intrinsic leakiness, perhaps through proliferation and amplification of cells containing rare rearrangements.

To address this possibility, we sought a means to induce proliferation/developmental progression without introducing DNA damage. Development to the DP stage is promoted in thymocytes of scid or RAG-deficient mice or fetal thymic organ culture by treatment with antibodies to CD3ε (Levelt et al. 1993; Jacobs et al. 1994; Shinkai and Alt 1994). This treatment cross-links surface CD3 molecules, presumably mimicking the signal that is normally made through the pre-TCR/CD3 complex. Anti-CD3ε treatment of scid p53 +/− mice resulted in proliferation and appearance of DP thymocytes, as shown in Figure 7a. Thymic cellularity was increased to a level comparable to that induced by irradiation treatment. Similar results were obtained with anti-CD3ε treated scid p53 −/− mice [Fig. 7a], indicating that p53 is not required for rescue of thymocyte development in response to anti-CD3ε treatment. This observation supports the hypothesis that p53 is specifically involved in the response to irradiation, as differentiation and proliferation triggered by anti-CD3ε treatment can proceed efficiently in the absence of p53.

To assess the effects of anti-CD3ε treatment on V(D)J recombination, we examined the rearrangement status of the TCRδ locus. TCRδ was chosen because it exhibits the most striking pattern of rearrangements in response to irradiation (e.g., see Fig. 3, lane 5). Although treatment with anti-CD3ε promotes the appearance of DP thymocytes and increased cellularity as efficiently as irradiation, no rescue of TCRδ rearrangements was observed in scid p53 +/− mice (Fig. 7b, left panel). As expected,
anti-CD3ε treated scid p53-null mice failed to exhibit rescue of rearrangements [Fig. 7b, right]. These data suggest that relief of the developmental block in the absence of irradiation is not sufficient to promote rescue of rearrangements. This argues against the possibility that rearrangement is merely a consequence of thymocyte proliferation or differentiation. Instead, this result strongly suggests that DNA damage has a specific effect on the rearrangement process. One simple explanation would be that irradiation-induced DNA damage initiates DNA repair pathways that are somehow able to promote joining of stalled recombination intermediates, as discussed below.

Discussion

The experiments presented here demonstrate that γ-irradiation is capable of promoting rearrangement and thymocyte development in scid mice and that these events are dependent on the presence of functional p53. We have shown that exposure of newborn scid mice to ionizing radiation rescues rearrangement at the TCRβ, TCRγ, and TCRδ loci, initiates TCRα rearrangement, and rescues thymocyte development to the DP stage. Our data also demonstrate that rescue of thymocyte development can be uncoupled from rescue of V(D)J recombination in scid mice treated with anti-CD3ε antibodies [Table 1]. Therefore, thymocyte proliferation and differentiation in the absence of DNA damage are not sufficient to relieve the block to coding joint formation conferred by the scid mutation. These results suggest that irradiation may specifically affect the processing of stalled V(D)J recombination intermediates that accumulate in scid thymocytes, perhaps by inducing DNA damage response pathways. Possible mechanisms of irradiation-induced rescue of thymocyte development and V(D)J recombination are discussed below.

Although it has long been recognized that mammalian cells are capable of responding to many different types of DNA lesions, surveillance proteins capable of sensing DNA damage have been identified only recently. Candidates include DNA–PK, ATM, p53, and poly[ADP-ribose] polymerase (for review, see Enoch and Norbury 1995; Jackson and Jeggo 1995; Lindahl et al. 1995). Irradiation-induced DNA lesions are presumably detected by one of these proteins or by some other unidentified sensing mechanism, resulting in a direct or indirect activation of p53. In vitro studies have shown that DNA–PK is capable of phosphorylating the trans-activation domain of p53, suggesting that DNA–PK is upstream of p53. That this is physiologically relevant has not been established. Our observation of p53-dependent responses to irradiation in scid mice indicates that DNA–PK activity is not absolutely required for DNA damage response pathways involving p53. p53 is also not essential for normal V(D)J recombination, as there is no obvious deficiency in T- or B-cell development in p53–null mice [Donehower et al. 1992] nor is there discernible impairment in rearrangement (even after irradiation) or in processing of DSB recombination intermediates in these animals [C. Zhu, M. Bogue, F. McBlane, L. Donehower, and D. Roth, in prep.]. Although these data suggest that there is no absolute requirement for p53 in DNA–PK-mediated end-processing events, the possibility remains that p53 plays a redundant role that is revealed in the absence of DNA–PK activity.

Our results indicate that a p53-dependent DNA damage response pathway promotes V(D)J rearrangement in irradiated scid mice. Although the mechanisms responsible for this phenomenon remain undefined, several possibilities will be discussed in the context of our current knowledge about the scid V(D)J recombination defect. Because hairpin coding ends, which are normal intermediates in V(D)J recombination [McBlane et al. 1995; Ramsden and Hellert 1995; van Gent et al. 1995], accumulate in thymocytes of scid mice [Roth et al. 1992a, Zhu and Roth 1995], functional DNA–PK may be required for hairpin opening. Perhaps the kinase activity of DNA–PK is required to activate or recruit hairpin opening nucleases or to regulate the accessibility of hairpin coding ends to the hairpin opening machinery [Blunt et al. 1995; Roth et al. 1995; Zhu and Roth 1995]. DNA damage could provide signals that might somehow restore DNA–PK activity or bypass the requirement for DNA–PK in scid mice. For example, irradiation might induce DNA repair activities capable of facilitating the opening and joining of hairpin coding ends.

An alternative possibility is that irradiation of scid mice rescues rearrangement by inducing cell cycle arrest. In this case, perhaps activation of a p53-dependent DNA damage checkpoint substitutes for a checkpoint function normally performed by DNA–PK. It is currently not known whether the presence of hairpin coding ends activates a cell cycle checkpoint in scid thymocytes. The joining of these ends, which is thought to occur quite rapidly in normal cells, may require an extended period of time in scid thymocytes [Roth et al. 1992a, Ramsden and Hellert 1995; Zhu and Roth 1995]. Experiments in normal diploid human fibroblasts have shown that low doses of irradiation induce a prolonged p53-dependent

Treatments	scid p53+/−	scid p53−/−		
	rearrangement	development	rearrangement	development
Untreated	−	+	−	+
Irradiated	+	+	−	−
Anti-CD3ε	−	+	−	+
G1 arrest (Di Leonardo et al. 1994). If this response also occurs in irradiated DN thymocytes, the arrest could provide time for "dead-end" recombination complexes containing sequestered hairpins to fall apart, allowing hairpin opening and joining.

Irradiation can promote thymocyte development from the DN to DP stage in scid mice by several potential mechanisms, as illustrated in Figure 8. One possibility is that a functional TCR chain, produced by successful joining of coding ends, could be directly involved in signaling developmental progression. On the other hand, irradiation-mediated rescue of development can also proceed in a TCR-independent manner, as shown by induction of DP cells in irradiated RAG-deficient mice, which do not undergo TCR rearrangement (Guidos et al. 1995). The mechanism responsible for this effect is unclear, although it is conceivable that the DNA damage response and thymocyte activation cascades are interconnected at some point, so that DNA damage mimics signaling through the CD3 complex (Fig. 8). Thus, in scid mice both rearrangement-dependent and -independent mechanisms might be responsible for irradiation-induced development of DP thymocytes. However, it is likely that functional rearrangements confer a selective growth advantage, as ~90% of TCRβ rearrangements arising in irradiated scid mice are in-frame (Danska et al. 1994).

Regardless of the nature of the signal that initiates proliferation, the developmental program in this transition not only involves the expression of CD4 and CD8 but also initiates events leading to accessibility of the TCRα locus (Levelt et al. 1995) and to expression of a second wave of V(D)J recombinase activity (Wilson et al. 1994). Although we have shown that hairpin coding ends at the TCRα locus are induced by irradiation of scid mice, significant levels of completed TCRα rearrangements have not been observed (Danska et al. 1994). These observations suggest DP thymocytes that proliferate in response to irradiation still express the scid defect and are not phenotypic revertants (Petrini et al. 1990). These data also indicate that the effect of irradiation on rescue of rearrangement is transient, affecting loci that are recombinationally active at the time of irradiation, and does not persist for the several days that elapse before the TCRα locus becomes accessible in rescued DP thymocytes.

Several aspects of the irradiation-mediated rescue of V(D)J recombination remain particularly puzzling. Whereas one might expect rearrangements to occur soon after irradiation, they are not detected until day 8–9 after irradiation. Rearrangements are detectable at about the same time as the thymus increases in cellularity and DP cells appear. Perhaps rearrangements occur in a relatively small fraction of thymocytes, and amplification by proliferation is required to allow their detection. The time delay in detection of irradiation-induced rearrangements in scid mice is similar to the time required for thymic regeneration in normal mice following irradiation (Kadish and Basch 1975).

Another puzzling facet of these results is the reported absence of an irradiation effect on rearrangement in B-cell precursors of scid mice (Danska et al. 1994; Murphy et al. 1994). The differential effects of irradiation in B cells versus T cells may be related to the different cellular requirements for proliferation and differentiation. For example, Bcl-2 levels are low in pre-B cells (Merino et al. 1994), which is the stage at which rearrangement occurs; in contrast, Bcl-2 levels are quite high in DN thymocytes (Veis et al. 1993). Because pre-B cells are low in Bcl-2, they may undergo irradiation-induced apoptosis, which would preclude rearrangement and proliferation.

Figure 8. Models for p53-mediated differentiation and TCR gene rearrangement in irradiated scid mice. Two signaling mechanisms—one is TCR dependent and the other TCR independent—can promote thymocyte development in irradiated scid mice (see text).
Bogue et al.

The absence of a functional p53 allele presumably results in reduced ability to eliminate those cells containing unrepaired DNA lesions. Although p53-deficient mice have no gross abnormality in the assembly of antigen receptor genes, these animals show a high incidence of thymic lymphoma (Donehower et al. 1992). It is noteworthy that the thymocyte-specific effects of irradiation on proliferation, developmental progression, and rescue of V(D)J recombination parallel the characteristics of irradiation-induced neoplasms. Both in scid and wild-type mice, γ-irradiation frequently induces neoplasms of T-cell, but not B-cell, lineage (Danska et al. 1994, Murphy et al. 1994; Sen-Majumdar et al. 1994). A role for V(D)J recombination in tumorigenesis is supported by the failure to observe irradiation-induced T-cell neoplasms in RAG-deficient animals (Guidos et al. 1995). Unraveling the connections between the cellular response to irradiation and the mechanism of both normal and abnormal V(D)J recombination should aid our understanding of irradiation-induced lymphomagenesis.

Materials and methods

Mice and treatment

CB.17 scid/scid [Bosma et al. 1983] and p53-deficient mice [Donehower et al. 1992] were maintained in microisolator cages in our animal facility at Baylor College of Medicine. Matings of these two strains provided offspring that were backcrossed to obtain mice that were scid p53+/− and scid p53−/−. Animals were typed as scid based on serum immunoglobulin levels, which were determined by ELISA. Mice were screened for wild-type and mutant alleles of p53 by Southern blotting or PCR analysis (Timme and Thomp- san Rich, Sharon Roth, and Sharri Steen for their critical comment on the manuscript. Larissa Gomelsky and Mary Lowe provided steadfast technical and secretarial assistance, respectively. These studies were supported by grants from the American Cancer Society [IRG-199 and DB-118] to D.B.R., and grants from the National Cancer Institute [CA54897] and the Council for Tobacco Research to L.A.D.D.B.R. is a Charles E. Culpeper Medical Scholar.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Aguilar, L.K. and J.W. Belmont. 1991. Vγ3 T cell receptor rearrangement and expression in the adult thymus. J. Immunol. 146: 1348–1352.

Anderson, S.J. and R.M. Perlmutter. 1995. A signaling pathway governing early thymocyte maturation. Immunol. Today 16: 99–105.

Bakalkin, G., T. Yakovleva, G. Selivanova, K.P. Magnusson, L. Szekely, E. Kiseleva, G. Klein, L. Terenius, and K.G. Wiman. 1994. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. 91: 413–417.

DNA was prepared as described previously (Roth et al. 1992b). Briefly, thymic cell suspensions were subjected to lysis buffer containing SDS and proteinase K, phenol extracted, and ethanol precipitated. For Southern analysis, DNA from 11- to 16-day thymocytes was used unless otherwise indicated. DNA (5–10 μg) was digested with restriction enzymes, separated by agarose gel electrophoresis, and transferred to GeneScreen Plus nylon membranes as described previously (Roth et al. 1992b). Membranes were hybridized with the following random primed 32P-labeled probes: the 400-bp TCRβ locus probe includes and flanks DB1 as shown in Figure 2; the TCRβ locus probe (Carroll and Bosma 1991) is a 2-kb SacI fragment between β1 and β2 as shown in Figure 3; the TCRα locus probe (probe 10; Livak et al. 1995), is derived from a 400-bp fragment between jα49 and jα48 gene segments, as shown in Figure 6; and the RAG-1 probe (Schatz et al. 1989) is a 3.2-kb SalI– BamHI cDNA fragment.

For PCR analysis, products were amplified from DNA with the following primers: Vβ8.1, 1, 2, 3, 5'-GAGCAAAGGCTGACATGTGAGC (Chou et al. 1987); Vβ2.6, 5'-CCCTGTCGCTCGACGGAAGTA [Malissen et al. 1984]; Vγ2, 5'-AAGGAATTCATCCAGAAGCCTTAGGAG (Garman et al. 1986); Jβ1, 5'-CCCTGCGCTTTGTTCCTTCTGAAATAC [Aguilar and Belmont 1991]. One round of 30 cycles (94°C for 15 sec, 60°C for 30 sec, and 72°C for 30 sec) was performed with 2 mM MgCl2 and 1 unit of Taq polymerase. Products were separated on a 6% polyacrylamide gel, blotted onto GeneScreen Plus nylon membrane, and hybridized to internal oligonucleotide probes that were 32P-end-labeled. (Vβ8 probe, 5'-GGGCTGAGGCTGATCCA (Chou et al. 1987); Vγ2 probe, 5'-ACCATACTGGTACCGGCA [Garman et al. 1986].

Radiolabeled products from Southern and PCR blotting were detected and analyzed using a Molecular Dynamics PhosphorImager.

Acknowledgments

We thank Clarence Sams and Helen Huls for their help during the early phases of this work, and R. Frank Ramig for use of his mouse facility. David Schatz and Pamela Nakajima generously provided TCRα hybridization probes. We thank members of the Baylor College of Medicine Flow Cytometry Core Facility for technical assistance. We are grateful to Melvin Bosma, Stephen Elledge, Martin Gellert, Mark Landree, Victoria Lundblad, Susan Rich, Sharon Roth, and Sharrir Steen for their critical comments on the manuscript. Larissa Gomelsky and Mary Lowe provided steadfast technical and secretarial assistance, respectively. These studies were supported by grants from the American Cancer Society [IRG-199 and DB-118] to D.B.R., and grants from the National Cancer Institute [CA54897] and the Council for Tobacco Research to L.A.D. D.B.R. is a Charles E. Culpeper Medical Scholar.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.
Biedermann, K.A., J. Sun, A.J. Giaccia, L.M. Tosto, and J.M. Brown. 1991. Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sci. 88: 1394–1397.

Blunt, T., N.J. Finnie, G.E. Taccioli, G.C.M. Smith, J. Denengeot, T.M. Gottlieb, R. Mizuta, A.J. Varghese, F.W. Aft, P.A. Jeggo, and S.P. Jackson. 1995. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80: 813–823.

Bosma, G.C., R.P. Custer, and M.J. Bosma. 1983. A severe combined immunodeficiency mutation in the mouse. Nature 301: 527–530.

Bosma, G.C., M. Fried, R.P. Custer, A. Carroll, D.M. Gibson, Boubnov, N.V. and D.T. Weaver. 1995.

Carroll, A.M. and M.J. Bosma. 1991. T-lymphocyte development.

Chien, Y.-H., M. Iwashima, K.B. Kaplan, J.F. Elliott, and M.M. Davis. 1987b. T cell receptor 8 alpha locus and expressed early in T cell differentiation. J. Exp. Med. 167: 1016–1033.

Chien, Y.-H., M. Iwashima, D.A. Wettstein, K.B. Kaplan, J.F. Elliott, W. Born, and M.M. Davis. 1987a. A new T cell receptor gene located within the alpha locus and expressed early in T cell differentiation. Nature 327: 677–682.

Chien, Y.-H., M. Iwashima, D.A. Wettstein, K.B. Kaplan, J.F. Elliott, W. Born, and M.M. Davis. 1987b. T cell receptor 8 chain gene rearrangements in early thymocytes. Nature 330: 722–727.

Chou, H.S., S.J. Anderson, M.C. Loue, S.A. Godambe, M.R. Pozzi, M.A. Behlke, K. Huppi, and D.Y. Loh. 1987. Tandem linkage and unusual RNA splicing of the T-cell receptor 8 chain variable-region genes. Proc. Natl. Acad. Sci. USA: 1992–1996.

Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wylie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 349–352.

Danska, J.S., F. Pflumio, C.J. Williams, O. Huner, J.E. Dick, and C.J. Guidos. 1994. Rescue of T cell-specific V(D)J recombination in SCID mice by DNA damaging agents. Science 266: 450–455.

DeLeonardo, A., S.P. Linke, K. Clarkin, and G.M. Wahl. 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cipl in normal human fibroblasts. Genes & Dev. 8: 2540–2551.

Donehower, L.A., M. Harvey, B.L. Slagle, M.J. McArthur, C.A. Montgomery, J.S. Butel, and A. Bradley. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215–221.

Enoch, T. and C. Norbury. 1995. Cellular responses to DNA damage: Cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem. Sci. 20: 426–430.

Fehling, H.J., A. Krookova, C. Saint-Ruf, and H. von Boehmer. 1995. Crucial role of the pre-T-cell receptor a gene in development of a8 but not y8 T cells. Nature 375: 795–798.

Fiscella, M., S.I. Ullrich, N. Zambrano, M.T. Shields, D. Lin, S.P. Lees-Miller, C.W. Anderson, W.E. Mercer, and E. Appella. 1993. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8: 1519–1528.

Fulop, G.M. and R.A. Phillips. 1990. The scid mutation in mice causes a general defect in DNA repair. Nature 347: 479–482.

Garman, R.D., P.J. Doherty, and D.H. Rautel. 1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45: 733–742.

Godfrey, D.I., J. Kennedy, T. Suda, and A. Zlotnik. 1993. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3+ CD4− CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150: 4244–4252.

Godfrey, D.I., J. Kennedy, P. Mombaerts, S. Tonegawa, and A. Zlotnik. 1994. Onset of TCR-β gene rearrangement and role of TCR-β expression during CD3+ CD4− CD8− thymocyte differentiation. Immunity 152: 4783–4792.

Gottlieb, T.M. and S.P. Jackson. 1993. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131–142.

——. 1994. Protein kinases and DNA damage. Trends Biochem. Sci. 19: 500–503.

Groettrup, M. and H. von Boehmer. 1993. A role for a pre-T-cell receptor in T-cell development. Immunity 14: 610–614.

Groettrup, M., K. Ungewiss, O. Azogu, R. Palacios, M.J. Owen, A.C. Hayday, and H. von Boehmer. 1993. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75: 283–294.

Guidos, C.J., C.J. Williams, G.E. Wu, C.J. Paige, and J.S. Danska. 1995. Development of CD4+ CD8+ thymocytes in Rag deficient mice through a T-cell receptor β chain-independent pathway. J. Exp. Med. 181: 1187–1195.

Hartley, K.O., D. Gell, G.C.M. Smith, H. Zhang, N. Dicevca, M.A. Connolly, A. Admon, S.P. Lees-Miller, C.W. Anderson, and S.P. Jackson. 1995. DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell 82: 849–856.

Hendrickson, E.A., X.-Q. Qin, E.A. Bump, D.G. Scharz, M. Oettinger, and D.T. Weaver. 1991. A link between double-strand break-related repair and V(D)J recombination: The scid mutation. Proc. Natl. Acad. Sci. USA: 4061–4065.

Jackson, S.P. and P.A. Jeggo. 1995. DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem. Sci. 20: 412–415.

Jacobs, H., D. Vandeputte, L. Tolkamp, E. Vries, J. Borst, and A. Berns. 1994. CD3 components at the surface of pro-T cells can mediate pre-T cell development in vivo. Eur. J. Immunol. 24: 934–939.

Kadish, J.L. and R.S. Basch. 1975. Thymic regeneration after lethal irradiation: Evidence for an intra-thymic radiosensitive T cell precursor. J. Immunol. 114: 452–458.

Kastan, M.B., C.E. Canman, and C.J. Leonard. 1995. P53, cell cycle control and apoptosis: Implications for cancer. Cancer Metastasis Rev. 14: 3–15.

Kienler, L.J., W.A. Kuziel, and P.W. Tucker. 1991. T cell receptor γ and δ gene functional sequences in scid mice: Excessive P nucleotide insertion. J. Exp. Med. 174: 769–773.

Kirchgesner, C.U., C.K. Patil, J.W. Evans, C.A. Cuomo, L.M. Fried, T. Carter, M.A. Oettinger, and J.M. Brown. 1995. DNA-dependent kinase (p530) as a candidate gene for the murine SCID defect. Science 267: 1178–1183.

Koop, B.F., R.K. Wilson, K. Wang, B. Vemooij, D. Zaller, C.L. Kuo, D. Seto, M. Toda, and L. Hood. 1992. Organization, structure, and function of 95 kb of DNA spanning the murine TCR-β gene region. Genomics 13: 1209–1230.

Lee, S., B. Elenbaas, A. Levine, and J. Griffith. 1995. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81: 1013–1020.

Lees-Miller, S.P., K. Sakaguchi, S.I. Ullrich, E. Appella, and...
C.W. Anderson. 1992. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12: 5041–5049.

Levett, C.N. and K. Eichmann. 1995. Receptors and signals in early thymic selection. Immunity 3: 667–672.

Levett, C.N., A. Ehrfeld, and K. Eichmann. 1993. Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3ε determines clonal deletion or induction of developmental program. J. Exp. Med. 177: 707–716.

Levett, C.N., B. Wang, A. Ehrfeld, C. Terhorst, and K. Eichmann. 1995. Regulation of T cell receptor (TCR)-β locus allelic exclusion and initiation of TCR-α locus rearrangement in immature thymocytes by signaling through the CD3 complex. Eur. J. Immunol. 25: 1257–1261.

Lieber, M.R., J.E. Hesse, S. Lewis, G.C. Bosma, N. Rosenberg, K. Mizuuchi, M.J. Bosma, and M. Gellert. 1988. The defect in murine severe combined immune deficiency: Joining of signal sequences but not coding segments in V(D)J recombination. Cell 55: 7–16.

Lindahl, T., M.S. Satoh, G.G. Poirier, and A. Klungland. 1995. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20: 405–411.

Livak, F., H.T. Petrie, I.N. Crispe, and D.G. Schatz. 1995. In-frame TCRβ gene rearrangements play a critical role in the αβ/γδ T cell lineage decision. Immunity 2: 617–627.

Low, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–851.

Lu, X. and D.P. Lane. 1993. Differential induction of transcriptionally active p53 following UV or ionizing radiation: Defects in chromosome instability syndromes? Cell 75: 765–778.

Malissen, M., K. Minard, S. Mjolsness, M. Kronenberg, J. Gouverneur, T. Man, H. Tunkapillar, M.B. Prystowsky, Y. Yoshikai, F. Fitch, T.W. Mak, and L. Hood. 1984. Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the β polypeptide. Cell 37: 1101–1110.

Malynn, B.A., T.K. Blackwell, G.M. Fulop, G.A. Rathbun, A.J.W. Furley, P. Ferriell, L.B. Heinke, R.A. Phillips, G.D. Yancopoulos, and F.W. Alt. 1988. The scid defect affects the final step of the immunoglobulin VDJ recombination mechanism. Cell 54: 453–460.

McBlane, J.F., D.C. van Gent, D.A. Ramsden, C. Romeo, C.A. Cuomo, M. Gellert, and M.A. Oettinger. 1995. Cleavage at a VDJ recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83: 387–395.

Merino, R., L. Ding, D.J. Veis, S.J. Korsmeyer, and G. Nunez. 1994. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes. EMBO J. 13: 683–691.

Mombaerts, P., C. Terhorst, T. Jacks, S. Tonegawa, and J. Sancho. 1995. Characterization of immature thymocyte lineages derived from T-cell receptor or recombination activating gene 1 and p53 double mutant mice. Proc. Natl. Acad. Sci. 92: 7420–7424.

Morozov, V.E., M. Falzon, C.W. Anderson, and E.L. Kuff. 1994. DNA-dependent protein kinase is activated by nicks and larger single-stranded gaps. J. Biol. Chem. 269: 16684–16688.

Murphy, W.J., S.K. Durum, M.R. Anver, D.K. Ferris, D.W. McVicar, I.J. O'Shea, S.K. Ruscetti, M.R. Smith, H.A. Young, and D.L. Longo. 1994. Induction of T cell differentiation and lymphomagenesis in the thymus of mice with severe combined immunodeficiency [SCID]. J. Immunol. 153: 1004–1014.

Nelson, W.G. and M.B. Kastan. 1994. DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14: 1815–1823.

Pergola, F., M.Z. Zdzienicka, and M.R. Lieber. 1993. V(D)J recombination in mammalian mutants defective in DNA double-strand break repair. Mol. Cell. Biol. 13: 3464–3471.

Peterson, S.R., A. Kurimasa, M. Oshimura, W.S. Dynan, E.M. Bradbury, and D.J. Chen. 1995. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells. Proc. Natl. Acad. Sci. 92: 3171–3174.

Petrini, J.H., A.M. Carroll, and M.J. Bosma. 1990. T cell receptor gene rearrangements in functional T cell clones from severe combined immunodeficient (scid) mice: Reversion of the scid phenotype in individual lymphocyte progenitors. Proc. Natl. Acad. Sci. 87: 3450–3453.

Ramsden, D.A. and M. Gellert. 1995. Formation and resolution of double-strand break intermediates in V(D)J recombination. Genes & Dev. 9: 2409–2420.

Roth, D.B., J.P. Menetski, P.B. Nakajima, M.J. Bosma, and M. Gellert. 1992a. V(D)J recombination: Broken DNA molecules with covalently sealed [hairpin] coding ends in scid mouse thymocytes. Cell 70: 983–991.

Roth, D.B., P.B. Nakajima, J.P. Menetski, M.J. Bosma, and M. Gellert. 1992b. V(D)J recombination in mouse thymocytes: Double-strand breaks near T cell receptor β rearrangement signals. Cell 69: 41–53.

Roth, D.B., C. Zhu, and M. Gellert. 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. 90: 10788–10792.

Roth, D.B., T. Lindahl, and M. Gellert. 1995. How to make ends meet. Curr. Biol. 5: 496–499.

Saint-Ruf, C., K. Ungewiss, M. Groettrup, L. Bruno, H.J. Fehling, and H. von Bochmer. 1994. Analysis and expression of a cloned pre-T cell receptor gene. Science 266: 1208–1212.

Schatz, D.G., M.A. Oettinger, and D. Baltimore. 1989. The V(D)J recombination activating gene, RAG-1. Cell 59: 1035–1048.

Schissler, M., A. Constantinescu, T. Morrow, M. Baxter, and A. Peng. 1993. Double-strand break signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated. Trends Biochem. Sci. 18: 1101–1110.

Schuler, W., A. Schuler, G.G. Lennon, G.C. Bosma, and M.J. Bosma. 1990. Defective V to J recombination of T cell receptor β chain genes in scid mice. Cell 64: 963–972.

Schuler, W., A. Schuler, G.G. Lennon, G.C. Bosma, and M.J. Bosma. 1988. Transcription of unrearranged antigen receptor genes in scid mice. EMBO J. 7: 2019–2024.

Schuler, W., A. Schuler, and M.J. Bosma. 1990. Defective V to J recombination of T cell receptor γ chain genes in scid mice. Eur. J. Immunol. 20: 545–550.

Schuler, W., N.R. Ruetsch, M. Amsler, and M.J. Bosma. 1991. Coding joint formation of endogenous T cell receptor genes in lymphoid cells from scid mice: Unusual P-nucleotide additions in V(D)J joining. Int. J. Immunogenet. 18: 346–355.

Sen-Majumdar, A., C. Guidos, T. Kina, M. Lieberman, and I.L. Weissman. 1994. Characterization of preneoplastic thymocyte development through CD3. I. Timepoint of ligation of CD3ε determines clonal deletion or induction of developmental program. J. Exp. Med. 177: 707–716.
p53-dependent responses in irradiated scid mice

induced to enter the CD4/CD8 differentiation pathway. Eur. J. Immunol. 20: 69–77.
Taccioli, G.E., G. Rathbun, E. Oltz, T. Stamato, P.A. Jeggo, and F.W. Alt. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.
Taccioli, G.E., T.M. Gottlieb, T. Blunt, A. Priestley, J. Demengeot, R. Mizuta, A.R. Lehmann, F.W. Alt, S.P. Jackson, and P.A. Jeggo. 1994. Ku80: Product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265: 1442–1445.
Timme, T.L. and T.C. Thompson. 1994. Rapid allelotype analysis of p53 knockout mice. BioTechniques 17: 461–463.
van Gent, D.C., J.F. McBlane, D.A. Ramsden, M.J. Sadofsky, J.E. Hesse, and M. Gellert. 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81: 925–934.
Veis, D.J., C.L. Sentman, E.A. Bach, and S.J. Korsmeyer. 1993. Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes. J. Immunol. 151: 2546–2554.
Wilson, A., W. Held, and H.R. MacDonald. 1994. Two waves of recombinase gene expression in developing thymocytes. J. Exp. Med. 179: 1355–1360.
Wilson, R.K., B.F. Koop, C. Chen, N. Halloran, R. Sciammas, and L. Hood. 1992. Nucleotide sequence analysis of 95 kb near the 3' end of the murine T-cell receptor α/β chain locus: Strategy and methodology. Genomics 13: 1198–1208.
Zhu, C. and D.B. Roth. 1995. Characterization of coding ends in thymocytes of scid mice: Implications for the mechanism of V(D)J recombination. Immunity 2: 101–112.
Züniga-Pflücker, J.C., D. Jiang, P.L. Schwartzberg, and M.J. Lenardo. 1994. Sublethal γ-radiation induces differentiation of CD4+/CD8− into CD4+/CD8+ thymocytes without T cell receptor β rearrangement in recombinase activation gene 2−/− mice. J. Exp. Med. 180: 1517–1521.
p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes.

M A Bogue, C Zhu, E Aguilar-Cordova, et al.

Genes Dev. 1996, 10:
Access the most recent version at doi:10.1101/gad.10.5.553