The Polynomial Form of the Scattering Equations is an H-Basis

Jorrit Bosma,1 Mads Søgaard,2 and Yang Zhang1

1Institute for Theoretical Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland
2SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

(Dated: May 27, 2016)

We prove that the polynomial form of the scattering equations is a Macaulay H-basis. We demonstrate that this H-basis facilitates integrand reduction and global residue computations in a way very similar to using a Gröbner basis, but circumvents the heavy computation of the latter. As an example, we apply the H-basis to prove the conjecture that the dual basis of the polynomial scattering equations must contain one constant term.

INTRODUCTION

The Cachazo, He and Yuan (CHY) formulation [1,2] of the perturbative S-matrix relies on a collection of rational maps \{f_a\} from the space of massless kinematic configurations to the moduli space \(\mathcal{M}_{0,n}\) of Riemann spheres with \(n\) marked points \(z_a \in \mathbb{C}P^1\) associated with each of the external particles. Particularly, the set \(\mathcal{S}\) of the \((n-3)!\) solutions to simultaneous constraints,

\[
f_a(z, k) = \sum_{b \neq a} \frac{k_a \cdot k_b}{z_a - z_b} = 0, \quad \forall a \in A = \{1, 2, \ldots, n\}.
\]

(1)
dubbed as the scattering equations, provides a very intriguing basis for decomposing massless scattering processes in generic quantum field theories. The external particles have momenta \(k_a\) and polarizations \(\epsilon_a\). Scattering amplitudes in arbitrary dimension are expressed as a multidimensional integral of a certain rational function on \(\mathcal{M}_{0,n}\) [1,2]. At the heart of the formalism lies the principle that the integration is localized on the support of the scattering equations. We write amplitudes as

\[
A_n^{\text{tree}}(\{k_a, \epsilon_a\}) = \int d\Omega_{\text{CHY}} \mathcal{I}(\{z_a\}, \{k_a, \epsilon_a\}),
\]

(2)
where \(d\Omega_{\text{CHY}}\) is the integration measure,

\[
d\Omega_{\text{CHY}} \equiv \frac{d^n z}{\text{vol} \, SL(2, \mathbb{C})} \prod_a \delta(f_a),
\]

(3)
and \(\mathcal{I}\) is referred to as the CHY integrand. The latter is a rational function of the marked points \(z_a\) and \(d\Omega_{\text{CHY}}\) is constructed from the \(f_a\)'s. The philosophy is that for a given theory in consideration, for example Yang-Mills theory, there exists a compact integrand \(\mathcal{I}\) such that eq. (2) reproduces the correct S-matrix.

In order to briefly explain the notation in eq. (3), we remark that \(SL(2, \mathbb{C})\) invariance implies that imposition of merely any \((n-3)\) of the scattering equations suffices to restrict the solution to eq. (1). Evidently,

\[
\prod_a \delta(f_a) \equiv z_{i,j}z_{j,k}z_{k,i} \prod_{a \in A \setminus \{i,j,k\}} \delta(f_a),
\]

(4)
where the labels \(i, j, k\) specify the arbitrary choice of the the three extraneous scattering equations to be disregarded. Throughout this paper \(z_{a,b} \equiv z_a - z_b\). Moreover, the \(SL(2, \mathbb{C})\) redundancy is explicitly quotiented out by fixing the values of, say, \(z_1, z_2, z_3\) and \(z_4\).

For the purpose of investigating aspects of the CHY formalism via algebraic geometry, it is essential to interpret eq. (2) as a multivariate global residue with respect to the polynomial form of the scattering equations derived by Dolan and Goddard [3]. Let \(h_m\) be the multilinear homogeneous polynomial of degree \(m\) defined by

\[
h_m = \frac{1}{m!} \sum_{a_1, a_2, \ldots, a_m \in A'} \sigma_{a_1 a_2 \ldots a_m} z_{a_1} z_{a_2} \cdots z_{a_m},
\]

(5)
for \(A' = \{2, \ldots, n-1\}\) and \(\sigma_{a_1 a_2 \ldots a_m} \equiv k_{a_1 a_2 \ldots a_m}\). Then eqs. (1) subject to the partial gauge fixing \(z_1 \rightarrow 0\) and \(z_n \rightarrow \infty\) are equivalent to the polynomial equations,

\[
h_m = 0, \quad 1 \leq m \leq n - 3.
\]

(6)
In terms of the \(h_m\)'s, eq. (2) can be rewritten as \((n-3)\)-fold integral over a contour \(\mathcal{C}\) encircling all points in \(\mathcal{S}\), with the replacements \(\mathcal{I} \rightarrow \tilde{\mathcal{I}}\) and \(d\Omega_{\text{CHY}} \rightarrow d\tilde{\Omega}_{\text{CHY}},\)

\[
\tilde{\mathcal{I}} \equiv \prod_{a \in A} \left(z_a - z_{a+1} \right)^2,
\]

(7)
and

\[
d\tilde{\Omega}_{\text{CHY}} \equiv \frac{z_2}{z_{n-1}} \prod_{m=1}^{n-3} \frac{1}{h_m(z, k)} \prod_{2 \leq a < b \leq n-1} \left(z_a - z_b \right)^{n-2} \left(z_a - z_{a+1} \right)^2.
\]

(8)

The CHY literature is by now fairly extensive. We suggest a partial list [6,17] of recent developments. The loop-level generalization is addressed in ref. [18–23]. Although eqs. (1) look very simple, it is a formidable task to solve them to actually compute amplitudes. This problem has received considerable attention recently, and it is now clear that the explicit solutions can be bypassed completely. We mention the integration rules [25–29] and various other approaches [30–33]. See also refs. [34–36].
for related progress. In ref. [24] two of the present authors proposed an advantageous alternative offered by the Bezoutian matrix method from computational algebraic geometry. We will revisit this part later.

The main result of this paper is that the polynomial scattering equations [14] automatically form an H-basis for the zero-dimensional ideal $I = \langle h_1, \ldots, h_{n-3} \rangle$.

H AND G(RÖBNER) BASES

We consider the ring $R = \mathbb{K}[z_1, \ldots, z_n]$ of polynomials in n variables z_1, \ldots, z_n over a field \mathbb{K}. Typically, $\mathbb{K} = \mathbb{C}$ or $\mathbb{K} = \mathbb{Q}$. Here we follow refs. [40, 41].

Let P_d be the subset of all polynomials of degree d or less, and S_d be the subset of homogeneous polynomials of degree d. We have the direct sum decomposition,

$$P_d = \bigoplus_{i=0}^{d} S_d .$$

Consider an ideal I generated by polynomials f_1, \ldots, f_k, $I = \langle f_1, \ldots, f_k \rangle$. So for any $f \in I$,

$$f = \sum_{i=1}^{k} q_i f_i, \quad q \in R .$$

In practice, it is much easier to carry out polynomial reduction if

$$\max_{i=1}^{k} \deg(q_i f_i) = \deg f ,$$

since the quotients q_i’s degrees are under control. However, the condition (11) in general may not be satisfied for any set of generators for I. Hence F. Macaulay [42] defined the H-basis of an ideal:

Definition 1. We say that $\{f_1, \ldots, f_k\} \subseteq I$ is an H-basis of an ideal $I \subseteq R$, if $\forall f \in I$, $\exists q_1, \ldots, q_k \in R$ such that $f = \sum_{i=1}^{k} q_i f_i$, and

$$\max_{i=1}^{k} \deg(q_i f_i) = \deg f .$$

By this definition, the condition of being an H-basis is equivalent to that $P_d \cap I$ is generated as,

$$P_d \cap I = \text{span}_\mathbb{K}\{af_i\} , \quad \forall a \in R, \quad \deg a \leq d - \deg f_i .$$

For any polynomial $f \in R$, define the initial form of f, $\langle f \rangle$, as the homogeneous part of f, with the degree $\deg f$. The condition of being an H-basis can be further reformulated as [41],

$$\langle \langle I \rangle \rangle = \langle \langle f_1 \rangle, \ldots, \langle f_k \rangle \rangle ,$$

where $\langle \langle I \rangle \rangle$ is the collection of initial forms of all polynomials in I.

When the number of generators equals the number of variables, there is a simple way to check if the generator set is an H-basis [40, 41].

Theorem 2. $H \equiv \{f_1, \ldots, f_k\}$ is an H-basis for the ideal $I = \langle f_1, \ldots, f_k \rangle$, provided that $(0, \ldots, 0)$ is the only simultaneous zero of the initial forms $\langle f_1 \rangle, \ldots, \langle f_k \rangle$.

With an H-basis, many problems in commutative algebra can be translated to linear algebra problems by eq. (13). We remark that the H-basis, in many aspects, resembles the Gröbner basis (G-basis). They both rely on the order of monomials. An H-basis sorts monomials by the degree, while a G-basis sorts monomials by a total monomial order \succ. The definition of a G-basis can be rephrased in a similar form of def. (12).

$$\max_{i=1}^{k} \text{LT}(q_i g_i) = \text{LT}(f) ,$$

where LT stands for the highest monomial with respect to \succ, and “max” and “=” are to be understood in the context of this monomial order.

The G-basis concept can be considered as a refined version of the H-basis, since roughly speaking, it converts commutative algebra problems to one-dimensional linear algebra problems. On the other hand, in many cases, like the high-point scattering equations, the computation to obtain a G-basis is heavy. Furthermore, for symmetric ideals, the G-basis introduces an artificial order between variables which explicitly breaks the symmetry.

THE POLYNOMIAL FORM OF THE SCATTERING EQUATIONS IS AN H-BASIS

We are now ready to prove our principal result.

Theorem 3. The polynomial scattering equations $h_m, 1 \leq m \leq n - 3$, form an H-basis.

Proof. We show that $V(J) \equiv V(\langle \langle h_1 \rangle, \ldots, \langle h_{n-3} \rangle \rangle)$, the zero locus of the initial forms of the polynomial scattering equations, consists of only the point $(0, \ldots, 0)$, after which the result follows from Theorem 2. Note that since our field of interest $\mathbb{K} = \mathbb{C}$ is algebraically closed, $V(J) = V(\sqrt{J})$, so it suffices to consider the radical ideal $\sqrt{J} \supset J$. From inspection of eq. (13), after applying the gauge fixing $z_2 \to 1$, we have

$$\langle \langle h_m \rangle \rangle = \frac{1}{m!} \sum_{a_1, a_2, \ldots, a_m \in A''} \sigma_{a_1, a_2, \ldots, a_m} z_{a_1} z_{a_2} \cdots z_{a_m} ,$$

where $A'' = \{3, \ldots, n - 1\}$. By iteratively considering

$$z_3 \cdots z_{n-1-i} h_{n-3-i} \in \sqrt{J}$$

for $i = 0, \ldots, n - 4$, we find that, after each step, $z_3^2 \cdots z_{n-1-i}^2 \in \sqrt{J}$ and hence $z_3^2 \cdots z_{n-1-i} \in \sqrt{J}$. As
the same works for permutations of the indices, we realize that $z_3, \ldots, z_{n-1} \in \sqrt{J}$ and thus

$$V(\sqrt{J}) = V((z_3, \ldots, z_{n-1})) = \{(0, \ldots, 0)\}.$$ \hfill (18)

\section*{INTEGRAND REDUCTION}

One of the crucial features of an H-basis is that we can perform polynomial reduction towards it, in a similar way as the G-basis. Here we do not need the reduction algorithm for a generic H-basis \cite{40}, but only the case of our interest, i.e. the polynomial scattering equations as an H-basis. The goal is to reduce an arbitrary polynomial to a polynomial with degree low enough.

Let $\{f_1, \ldots, f_n\}$ be an H-basis in n variables z_1, \ldots, z_n and let $I = (f_1, \ldots, f_n)$ so in(I) is the ideal of the initial forms. As $V(\text{in}(I)) = \{(0, \ldots, 0)\}$, there exists a positive integer d^* such that

$$S_d \subset \text{in}(I), \quad \forall d > d^*.$$ \hfill (19)

Now we estimate d^* for scattering equations:

\begin{proposition}
For the n-point tree-level scattering equations, define $d^* = (n-3)(n-4)/2$. Then $S_d \subset \text{in}(I), \quad \forall d > d^*$.
\end{proposition}

\begin{proof}
Homogeneity of the initial forms implies that $R/\langle \text{in}(I) \rangle = \bigoplus_{i=0}^{\infty} A_d$ is a graded algebra. Then,

$$\dim_k A_d = 0, \quad \text{if } d > \sum_{i=1}^{k} \deg f_i - n,$$ \hfill (20)

when $\text{V(in(I))} = \{(0, \ldots, 0)\}$ \cite{40}. The theorem follows immediately from the degree counting of the scattering equations.
\end{proof}

The upshot of the above discussion is that we can reduce any desired polynomial with degree larger than $d^* = (n-3)(n-4)/2$ to a polynomial with degree equal or less than d^* towards an H-basis. The algorithm is recursive: given a polynomial f with deg $f = d > d^*$, since $\text{in}(f) \in \langle \text{in}(I) \rangle$,

$$\text{in}(f) = \sum_{i=1}^{n-3} q_i^{(d)} \text{in}(f_i),$$ \hfill (21)

where $\text{deg } q_i^{(d)} = d - \text{deg } f_i$. Since the degrees are confined by virtue of the H-basis, the $q_i^{(d)}$’s can be obtained by just solving a finite system of linear equations. Define

$$\tilde{f} = f - \sum_{i=1}^{n-3} q_i^{(d)} f_i.$$ \hfill (22)

By construction, \tilde{f} is polynomial with degree less than d, because we subtracted off the leading part. Repeat at most $d-d^*$ times and collect the intermediate coefficients,

$$f = \sum_{i=1}^{n-3} q_i^{(d)} f_i + r,$$ \hfill (23)

where r—the remainder after the division—is a polynomial with the degree at most $(n-3)(n-4)/2$. With this procedure, r is uniquely determined as a consequence of the H-basis.

\section*{GLOBAL RESIDUES AND THE BEZOUTIAN}

The H-basis property of the polynomial scattering equations allow us to prove an exciting empirical observation \cite{24}: the CHY formula produces a global residue proportional to merely a single monomial coefficient, and the constant of proportionality is universal.

For the benefit of the reader, we recall the notion of a global residue with emphasis on polynomials. We refer to the classical text books \cite{43, 44} and related applications \cite{24} (see also refs. \cite{36–39}). A individual (local) residue may require algebraic extensions such as $\sqrt{2}$. On the contrary, a global residue is a manifestly rational quantity of the monomial coefficients. Let $I = (f_1, \ldots, f_n)$ be a zero-dimensional polynomial ideal, so R/I is a finite-dimensional C-linear space. The global residue is a linear map $R/I \to C$ that computes the total sum of individual residues,

$$\text{Res}_{(f_1, \ldots, f_n)}(I) \equiv \sum_{\xi \in \mathcal{Z}(I)} \text{Res}_{(f_1, \ldots, f_n), \xi}(I).$$ \hfill (24)

We can make connection with the CHY formalism and the scattering equations by noting that

$$H(z) \equiv \frac{z_n}{z_{n-1}} \prod_{2 \leq a < b \leq n-1} (z_a - z_b) \prod_{a=2}^{n-2} \frac{z_a}{(z_a - z_{a+1})^2} \times \tilde{f},$$ \hfill (25)

and therefore, eq. (24) equals $\text{Res}_{(h_1, \ldots, h_{n-3})}(N)$. In particular, if N is not a polynomial, but a rational function $N = N_1/N_2$ and N_2 is nonvanishing on $\mathcal{Z}(I)$, then \cite{24}

$$\text{Res}_{(f_1, \ldots, f_n)}(H_1/H_2) \equiv \text{Res}_{(f_1, \ldots, f_n)}(H_1 G_2).$$ \hfill (26)

Here, G_2 is the polynomial inverse of N_2 modulo I.

Efficient algebraic evaluation of global residues without computing the individual residues is facilitated by the following theorem \cite{43}.

\begin{proposition}[Global Duality]
\end{proposition}

$$\langle N_1, N_2 \rangle \equiv \text{Res}(N_1 \cdot N_2)$$ \hfill (27)

is a nondegenerate inner product.
Let \(\{e_i\} \) be a basis for \(R/I \). The strength of this theorem is that it requires the existence of a dual basis \(\{\Delta_i\} \) in \(R/I \), defined by the orthonormality conditions,

\[
\langle e_i, \Delta_j \rangle = \delta_{ij} .
\]

(28)

Indeed, if we decompose \([N] = \sum_i \lambda_i e_i \) and \(1 = \sum_i \mu_i \Delta_i \) with \(\lambda_i, \mu_i \in \mathbb{C} \), a tractable expression emerges,

\[
\text{Res}\{f_1,\ldots,f_n\}(N) = \sum_{i,j} \lambda_i \mu_j \langle e_i, \Delta_j \rangle = \sum_i \lambda_i \mu_i .
\]

(29)

The dual and canonical bases are obtained algorithmically by means of the Gröbner basis method and the Bezoutian matrix \([24]\). This method boils down the problem to taking linear combinations of monomial coefficients of the numerator in question. Henceforth we will restrict attention to a special case. If we randomly write down a zero-dimensional ideal, none of the entries of the dual basis may be constant. But if \(\Delta_j \) is a scalar, the decomposition of unity over the dual basis becomes trivial and the global residue \([29]\) truncates to a single term,

\[
\text{Res}\{f_1,\ldots,f_n\}(N) = \lambda_1/\Delta_1 .
\]

(30)

We will momentarily show that an \(H \)-basis gives rise to this particular result. Our starting point is the Euler-Jacobi vanishing theorem.

Theorem 6 (Euler-Jacobi). Suppose \(I = \langle f_1,\ldots,f_n \rangle \) is a zero-dimensional ideal whose generators form an \(H \)-basis. Then, for any \(N \in R \),

\[
\text{Res}\{f_1,\ldots,f_n\}(N) = 0 ,
\]

(31)

if \(\deg(N) < d^* \), where \(d^* \equiv \sum_{i=1}^n \deg f_i - n \) is the critical degree.

Accordingly, for the \(n \)-point tree-level polynomial scattering equations, if the degree of the numerator is strictly less than \(d^* = (n - 3)(n - 4)/2 \), the global residue vanishes identically. This observation leads us the following theorem and corollary.

Theorem 7. Let \(I = \langle h_1,\ldots,h_{n-3} \rangle \) be the ideal generated by the polynomial scattering equations. The canonical linear basis for \(I/R \) must contain a monomial of degree at least \(d^* \).

Proof. If not, then all monomials in the canonical linear basis have the degree strictly less than \(d^* \). By Euler-Jacobi’s theorem, \(\langle 1,m \rangle = 0 \), for every monomial \(m \) in the canonical basis. This is a contradiction of the non-degenerate property of the inner product. \(\square \)

Corollary 7.1. Let \(I = \langle h_1,\ldots,h_{n-3} \rangle \) be the ideal generated by the polynomial scattering equations. Then, the dual basis of \(R/I \) must contain a constant.

Proof. The \(k \)-th row of the Bezoutian matrix \(B \) has degree \(k \), ergo we have the bound \(\deg(\det B) \leq d^* \). The rest follows immediately from Theorem \(\square \)

We have thus confirmed that the global residue with respect to an \(H \)-basis of any polynomial \(N \in R \) is always dictated entirely by the leading term of the Gröbner basis normal form of \(N \). More specifically, Corollary \(\square \) implies that

\[
\text{Res}_{\langle h_1,\ldots,h_{n-3} \rangle}(N) = [N]_{z_{n-1}^*}^{\Delta_1} ,
\]

(32)

where the subscript indicates that only a single coefficient is extracted.

GLOBAL RESIDUES AND H-BASIS

Alternatively, besides the Bezoutian matrix and Gröbner basis approach, we can also use the \(H \)-basis to calculate global residues with respect to the scattering equations for polynomial numerators. Given \(N \) as a degree \(d \) polynomial, if \(d > d^* = (n - 3)(n - 4)/2 \), using the integrand reduction algorithm,

\[
N = \sum_{i=1}^{n-3} q_i h_i + \tilde{N} ,
\]

(33)

where \(\tilde{N} \) is a polynomial with the degree at most \(d^* = (n - 3)(n - 4)/2 \). From the preceding \(H \)-basis discussion,

\[
\text{Res}_{\langle h_1,\ldots,h_{n-3} \rangle}(N) = \text{Res}_{\langle \text{in}(h_1),\ldots,\text{in}(h_{n-3}) \rangle}(\text{in}(\tilde{N})) ,
\]

(34)

and \(\text{in}(N) \) consists monomials with the degree \(d^* \). From the proper map theorem \([41]\) of \(H \)-basis,

\[
\text{Res}_{\langle h_1,\ldots,h_{n-3} \rangle}(N) = \text{Res}_{\langle \text{in}(h_1),\ldots,\text{in}(h_{n-3}) \rangle}(\text{in}(\tilde{N})) .
\]

(35)

Note that the \(\text{in}(h_i) \)'s have only one common zero, namely at \((0,\ldots,0)\). Hence we just need to evaluate the residue at one point. Furthermore from the \(H \)-basis graded algebra \([40]\),

\[
\dim_{\mathbb{C}} S_{d^*} - \dim_{\mathbb{C}}(S_{d^*} \cap (\text{in}(I))) = 1 .
\]

(36)

Consequently, if a degree-\(d^* \) monomial’s residue is obtained and nonzero, all other degree-\(d^* \) monomial’s residues are obtained from linear relations. Such a residue can be found using the transformation law from algebraic geometry.

Proposition 8. For the \(n \)-point scattering equations in polynomial form, with the gauge fixing \(z_1 \to 1, z_{n-1} \to 0 \) and \(z_n \to \infty \),

\[
\text{Res}_{\langle h_1,\ldots,h_{n-3} \rangle}(z_3 z_4^2 \ldots z_{n-2}^2) = \frac{(-1)^{(n-3)(n-4)/2}}{\prod_{j=1}^{n-3} \tilde{s}_{j,j+1,\ldots,n-2}^2} ,
\]

(37)

where \(\tilde{s}_{j,j+1,\ldots,n-2} \equiv (k_j + k_{j+1} + \ldots + k_{n-2} + k_n)^2 \).
Proof. Since the polynomial scattering equations form an H-basis, $\text{in}(h_i) \in \langle z_2, \ldots, z_{n-2} \rangle$, $1 \leq i \leq n-3$. That is,

$$\text{in}(h_i) = \sum_{j=2}^{n-2} a_{ij} z_j. \quad (38)$$

Choosing the matrix $A = (a_{ij})$ to be upper triangular, the determinant becomes,

$$\det A = (-1)^{\frac{(n-3)(n-4)}{2}} z_3 z_4^2 \cdots z_{n-2} \prod_{j=2}^{n-2} s_{j,j+1,\ldots,n-2}. \quad (39)$$

Hence, the result follows from transformation law [43].

Using this straightforward approach, we are able to get the residue of any polynomial numerator in analytic form using the H-basis.

CONCLUSION

We have uncovered and proved that the polynomial form of the scattering equations is an H-basis. We have explored and emphasized several compelling implications of this observation, and briefly compared with the presumably more familiar Gröbner basis, which can be computationally expensive to obtain.

In particular, the H-basis enables us to perform reductions of high-degree multivariate polynomials without the need for a Gröbner basis. More concretely, in connection with the scattering equations we have shown that any monomial with degree greater than $d^* = (n-3)(n-4)/2$ can always be reduced to a polynomial of degree at most d^*, modulo the H-basis. This procedure only involves linear algebra. The H-basis greatly enhances our ability to compute global residues and thus calculate scattering amplitudes in the CHY framework.

In this direction we have also proved a conjecture recently made in ref. [24], namely that the dual basis associated with the polynomial scattering equations always contains a constant and that hence any global residue is just one rational monomial coefficient, multiplied by a universal factor. In a forthcoming paper [17] we expect to tabulate analytic expressions for many of the CHY global residues, also at loop level.

It remains intriguing to gain a complete insight into the algebraic geometry underlying the whole CHY formalism. We anticipate that the explicit identification of the polynomial scattering equations as an H-basis paves the way for new exciting advances in this direction.

Acknowledgments: We acknowledge useful discussions with N. Beisert, L. Dolan, P. Goddard, A. Georgoudis and K. Larsen. M.S. thanks ETH Zürich, Kavli Institute for Theoretical Physics, and Mainz Institute for Theoretical Physics for hospitality. The work of M.S. is supported by the Danish Council for Independent Research under contract No. DFF-4181-00563. Y.Z. is supported by an Ambizione grant (PZ00P2_161341) from the Swiss National Foundation and in part by the National Science Foundation under contract No. NSF PHY11-25915. Y.Z. acknowledges the KITP workshop “LHC Run II and the Precision Frontier”.

[1] F. Cachazo, S. He and E. Y. Yuan, Phys. Rev. D 90, no. 6, 065001 (2014) [arXiv:1306.6575 [hep-th]].
[2] F. Cachazo, S. He and E. Y. Yuan, Phys. Rev. Lett. 113, no. 17, 171601 (2014) [arXiv:1307.2199 [hep-th]].
[3] F. Cachazo, S. He and E. Y. Yuan, JHEP 1407, 033 (2014) [arXiv:1309.0885 [hep-th]].
[4] F. Cachazo, S. He and E. Y. Yuan, JHEP 1501, 121 (2015) [arXiv:1409.8256 [hep-th]].
[5] F. Cachazo, S. He and E. Y. Yuan, JHEP 1507, 149 (2015) [arXiv:1412.3470 [hep-th]].
[6] L. Dolan and P. Goddard, JHEP 1407, 029 (2014) [arXiv:1402.7374 [hep-th]].
[7] S. Weinzierl, JHEP 1404, 092 (2014) [arXiv:1402.2516 [hep-th]].
[8] L. Dolan and P. Goddard, JHEP 1405, 010 (2014) [arXiv:1311.5200 [hep-th]].
[9] S. Weinzierl, JHEP 1503, 141 (2015) [arXiv:1412.5999 [hep-th]].
[10] L. Dolan and P. Goddard, [arXiv:1511.09441 [hep-th]].
[11] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily and P. H. Damgaard, JHEP 1509, 136 (2015) doi:10.1007/JHEP09(2015)136 [arXiv:1507.00097 [hep-th]].
[12] S. G. Naculich, JHEP 1409, 029 (2014) doi:10.1007/JHEP09(2014)029 [arXiv:1407.7836 [hep-th]].
[13] S. G. Naculich, JHEP 1505, 050 (2015) doi:10.1007/JHEP05(2015)050 [arXiv:1501.03500 [hep-th]].
[14] N. E. J. Bjerrum-Bohr, P. H. Damgaard, P. Tourkine and P. Vanhove, Phys. Rev. D 90, no. 10, 106502 (2014) [arXiv:1403.4553 [hep-th]].
[15] Y. j. Du, F. Teng and Y. s. Wu, JHEP 1605, 086 (2016) doi:10.1007/JHEP05(2016)086 [arXiv:1603.08158 [hep-th]].
[16] H. Gomez, [arXiv:1604.05373 [hep-th]].
[17] C. Cardona and H. Gomez, [arXiv:1605.01446 [hep-th]].
[18] T. Adamo, E. Casali and D. Skinner, JHEP 1404, 104 (2014) [arXiv:1312.3828 [hep-th]].
[19] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Phys. Rev. Lett. 115, no. 12, 121603 (2015) doi:10.1103/PhysRevLett.115.121603 [arXiv:1507.00321 [hep-th]].
[20] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, JHEP 1603, 114 (2016) doi:10.1007/JHEP03(2016)114 [arXiv:1511.06315 [hep-th]].
[21] S. He and E. Y. Yuan, Phys. Rev. D 92, no. 10, 105004 (2015) doi:10.1103/PhysRevD.92.105004 [arXiv:1508.06027 [hep-th]].
[22] F. Cachazo, S. He and E. Y. Yuan, [arXiv:1512.05001 [hep-th]].
[23] E. Casali and P. Tourkine, JHEP 1504, 013 (2015) doi:10.1007/JHEP04(2015)013 [arXiv:1412.3787 [hep-th]].
[24] M. Søgaard and Y. Zhang, Phys. Rev. D 93, no. 10, 105009 (2016) doi:10.1103/PhysRevD.93.105009 [arXiv:1509.08897 [hep-th]].
[25] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily and P. H. Damgaard, JHEP 1509, 129 (2015) doi:10.1007/JHEP09(2015)129 [arXiv:1506.06137 [hep-th]].
[26] C. Baadsgaard, N. E. J. Bjerrum-Bohr, J. L. Bourjaily, P. H. Damgaard and B. Feng, JHEP 1511, 080 (2015) doi:10.1007/JHEP11(2015)080 [arXiv:1508.03627 [hep-th]].
[27] N. E. J. Bjerrum-Bohr, J. L. Bourjaily, P. H. Damgaard and B. Feng, arXiv:1605.06501 [hep-th].
[28] B. Feng, JHEP 1605, 061 (2016) doi:10.1007/JHEP05(2016)061 [arXiv:1601.05864 [hep-th]].
[29] R. Huang, B. Feng, M. x. Luo and C. J. Zhu, arXiv:1604.07314 [hep-th].
[30] C. Kalousios, JHEP 1505, 054 (2015) [arXiv:1502.07711 [hep-th]].
[31] R. Huang, J. Rao, B. Feng and Y. H. He, JHEP 1512, 056 (2015) doi:10.1007/JHEP12(2015)056 [arXiv:1509.04183 [hep-th]].
[32] C. Cardona and C. Kalousios, Phys. Lett. B 756, 180 (2016) doi:10.1016/j.physletb.2016.03.003 [arXiv:1511.05915 [hep-th]].
[33] C. Cardona and C. Kalousios, JHEP 1601, 178 (2016) doi:10.1007/JHEP01(2016)178 [arXiv:1509.08908 [hep-th]].
[34] C. S. Lam and Y. P. Yao, Phys. Rev. D 93, no. 10, 105004 (2016) doi:10.1103/PhysRevD.93.105004 [arXiv:1512.05387 [hep-th]].
[35] C. S. Lam and Y. P. Yao, Phys. Rev. D 93, no. 10, 105008 (2016) doi:10.1103/PhysRevD.93.105008 [arXiv:1602.06419 [hep-th]].
[36] M. Søgaard and Y. Zhang, JHEP 1312, 008 (2013) [arXiv:1310.6006 [hep-th]].
[37] M. Søgaard and Y. Zhang, JHEP 1407, 112 (2014) [arXiv:1403.2463 [hep-th]].
[38] M. Søgaard and Y. Zhang, JHEP 1412, 006 (2014) [arXiv:1406.5044 [hep-th]].
[39] H. Johansson, D. A. Kosower, K. J. Larsen and M. Søgaard, Phys. Rev. D 92, no. 2, 025015 (2015) [arXiv:1503.06711 [hep-th]].
[40] H. M. Möller, T. Sauer. In A. Cohen, C. Rabut, and L. L. Schumaker (eds.), Curve and Surface fitting: Saint–Malo 1999, pages 325–332. Vanderbilt University Press, 2000.
[41] E. Cattani, A. Dickenstein, B. Sturmfels, [arXiv:9404 011 [alg-geom]].
[42] Macaulay, F. S., Cambridge Tracts in Math. and Math. Phys., 19, Cambridge Univ. Press, 1916.
[43] P. Griffiths, J. Harris, Wiley-Interscience [John Wiley & Sons], New York, 1978.
[44] R. Hartshorne, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[45] D. Cox, J. Little, D. O’Shea, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1997.
[46] E. Cattani and A. Dickenstein. Springer Berlin Heidelberg, 2005.
[47] J. Bosma, M. Søgaard and Y. Zhang, to appear.