Medicinal Plants: Safety Must Be First and Foremost

Yann A Meunier*
Former Stanford University School of Medicine, Stanford Hospital and Clinics, USA

Introduction

In the general population the sentiment that what is natural is also wholesome prevails. While it may be generally true, unfortunately there are deleterious exceptions in the flora especially regarding plants used for real or perceived medical benefits.

More than 1,000 plants and associations of different plants can be found on the United States market. There are more than 7,000 species of medicinal plants. Several of them contain toxic substances which, if ingested, at worst can lead to death. Heavy metals such as mercury, lead, cadmium, copper, iron, manganese, nickel, zinc, and arsenic have been found in their analysis. In a study performed in the United States on 251 preparations coming from Asia, arsenic was found in 36 samples, mercury in 35 samples, and lead in 24 others. Lead encephalopathy and mercury poisoning have been described as detrimental effects of herbal decoctions or raw plant absorption. Anecdotally, a Tibetan child receiving “vitamin herbs” had absorbed 63 g of lead over 4 yrs. Another example is an Indian child who developed eye cancer from an herbal remedy containing arsenic and given to him by his parents [1,2].

Plant potential harmful effects of plant consumption include but are not limited to:

- Some idaturas have an anticholinergic action while others contain atropine, which can lead to dry mouth, blurred vision, sensitivity to light, lack of sweating, dizziness, nausea, loss of balance, hypersensitivity reactions (such as skin rash), and tachycardia, for example.
- Ginkgo biloba has been shown to produce spontaneous cerebral or ocular hemorrhage, fainting, and hypoglycemia.
- Chan su, a traditional Chinese medicine used for sore throat and cardiac palpitations contains toxic secretions collected from toad glands and which have an action comparable to digoxin. They stimulate the cardiovascular system and can cause death by arrhythmia.
- Herbs from the aristolochia, or teucrium chamaedrys families have triggered toxic hepatitis.
- Kava (piper methysticum), pennyroyal (mentha pulegium, sometimes used to induce miscarriage), Jin bu huan and others like a Chinese remedy dubbed “eternal life” have induced hepatitis fulminans.
- Aristolochia fang chi, an herb containing aristrocholic acid, can generate urinary tract cancer.
- Garlic can increase the risk of hemorrhage.
- Echinaceae can raise the risk of allergy and immune suppression.
- Valerian can enhance the risk of sedation.

Other adverse effects of medicinal plants include but are not limited to:

- Cardiovascular system: Arrhythmia, myocardial infarction, heart failure, pericarditis, hypertension.
- Neurological system: Stroke, fainting.
- Renal system: Tubulo-interstitial nephritis.
- Gastro-intestinal system: Diarrhea, constipation, vomiting, rectal bleeding.

Furthermore, medicinal plants can interact with allopathic medications, for example:

- Hypericum perforatum reduces the action of anticoagulants used to prevent cardiac and cerebral complications of some diseases. It also decreases the efficacy of digoxin, theophylline (prescribed to treat asthma) as well as some anti-HIV medications.
- Garlic enhances the action of antidiabetic drugs and the hepatic toxicity of paracetamol.

To ensure good traceability of all products, each plant and each group of plants must be specifically tagged. They must be analyzed thoroughly with state of the art equipment providing, for example:

- Organoleptic characteristics (aspect, color, smell, texture, taste).
- Identification (showing the matter identity or that of the expected product).
- Physical and chemical test results [3].
- Dosages of active ingredients: vitamins, minerals, preservatives (quality of the product).
- Microbiological analyses (compliance with healthcare criteria).
- Total number of germs, fungi, yeasts and research of specific germs results.

Using the following techniques, for example:

- Thin layer chromatography (particularly for the identification of plants).
- High performance liquid chromatography (in particular for the dosage of active ingredients and the purity of components).
- Gas chromatography (for the dosage of fatty acids, chemo types, essential oils).

*Corresponding author: Yann A Meunier, Former Stanford University School of Medicine, Stanford Hospital and Clinics, USA, E-mail: ymeunieremd@gmail.com

Received August 22, 2017; Accepted September 06, 2017; Published September 13, 2017

Citation: Meunier YA (2017) Medicinal Plants: Safety Must Be First and Foremost. J Tradit Med Clin Natur 6: 241. doi: 10.4172/2573-4555.1000241

Copyright: © 2017 Meunier YA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
as much as possible: “Primum non nocere” should be the mantra of necessity, a moral duty, and a professional obligation. This is why quality control is of paramount importance. Patients must be protected as much as possible. “Primum non nocere” should be the mantra of everyone involved in healthcare.

References

1. Talas ZS, Gogebakan A, Orun I (2013) Effects of propolis on blood biochemical and hematological parameters in nitric oxide synthase inhibited rats by Nω-Nitro-L-arginine methyl ester. Pak J Pharm Sci 26: 915-919.
2. Ribero B, Lopes R, Andrade PB, Seabra RM, Gonçalves RF, et al. (2008) Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and slits. Food chem 110: 47-56.
3. Wong JY, Chye FY (2009) Antioxidant properties of selected tropical wild edible mushrooms. J Food Comp Anal 22: 269-277.
4. Soares AA, de Sá-Nakanishi AB, Bracht A, da Costa SMG, Koehnlein EA, et al. (2013) Hepatoprotective effects of mushrooms. Molecules 18: 7609-7630.
5. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products extraction, antimicrobial, and antioxidant activities of four medicinal plants on the basis of DPPH free radical scavenging. Pak J Pharm Sci 26: 949-952.
6. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, et al. (2015) Antioxidants of edible mushrooms. Molecules 20: 19489-19525.
7. Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, et al. (2008) Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assay. Food Chem 111: 61-66.
8. Obodai M, Ferreira IC, Fernandes Â, Barros L, Mensah DLN, et al. (2014) Antioxidant and anti-microbial properties of two organoselenium compounds. Fresenius Environ Bull. 21: 3389-3393.
9. Palacios I, Lozano M, Moro C, D’arrigo M, D’arrigo M, et al. (2011) Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128: 674-678.
10. Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, et al. (2013) Hepatoprotective effects of mushrooms. Molecules 18: 7609-7630.
11. Mallikarjuna SE, Ranjini A, Haware DJ, Vijayalakshmi MR (2013) Mineral composition of four edible mushrooms. Journal of Chemistry.
12. Cheung YC, Siu KC, Wu JY (2013) Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food Bioproc Tech 79: 214-220.
13. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, et al. (2015) Antioxidants of edible mushrooms. Molecules 20: 19489-19525.
14. Acharya K, Samui K, Rai M, Dutta BB, Acharya R, et al. (2004) Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J Exp Biol 42: 538-540.
15. Cai M, Lin Y, Luo YL, Liang HH, Sun P, et al. (2015) Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-juda (Higher Basidiomycetes). Int J Med Mushrooms 17: 591-600.
16. Xu S, Zhang Y, Jiang K (2016) Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food & function 7: 3868-3879.
17. Leikus V, Kim HR, Kim J, Jang YS (2002) Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J Agric Food Chem 50: 6490-6496.
18. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37: 277-285.
19. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, et al. (2015) Antioxidants of edible mushrooms. Molecules 20: 19489-19525.
20. Acharya K, Samui K, Rai M, Dutta BB, Acharya R, et al. (2004) Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J Exp Biol 42: 538-540.
21. Cai M, Lin Y, Luo YL, Liang HH, Sun P, et al. (2015) Extraction, antimicrobial, and antioxidant activities of crude polysaccharides from the wood ear medicinal mushroom Auricularia auricula-juda (Higher Basidiomycetes). Int J Med Mushrooms 17: 591-600.
22. Xu S, Zhang Y, Jiang K (2016) Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food & function 7: 3868-3879.
23. Mallikarjuna SE, Ranjini A, Haware DJ, Vijayalakshmi MR (2013) Mineral composition of four edible mushrooms. Journal of Chemistry.
24. Cheung YC, Siu KC, Wu JY (2013) Kinetic models for ultrasound-assisted extraction of water-soluble components and polysaccharides from medicinal fungi. Food Bioproc Tech 79: 214-220.
25. Akgül H, Nur AD, Sevindik M, Doğan M (2016) Tricholum terraeunum ve Coprinus micaceus’un bazı biyolojik aktivitelerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 17: 158-162.
26. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38: 1103-1111.
27. Gadd GM, Mowll JL, White C, Newby PJ (1986) Methods for assessment of heavy metal toxicity towards fungi and yeasts. Environ Toxicol 1: 169-185.
28. Hosseinialhashemi SK, Salem MZ, HosseinAshrafi SK, Latbani AJ (2016) Chemical composition and antioxidant activity of extract from the wood of Fagus orientalis: Water resistance and decay resistance against Trametes versicolor. BioResources 11: 3890-3903.
29. Lee IK, Kim YS, Jang YW, Jung JY, Yun BS, et al. (2007) New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Biocorg Med Chem Lett 17: 6678-6681.