Lateral pelvic lymph nodes for rectal cancer: A review of diagnosis and management

Shimpei Ogawa, Michio Itabashi, Yuji Inoue, Takeshi Ohki, Yoshiko Bamba, Kurodo Koshino, Ryosuke Nakagawa, Kimitaka Tani, Hisako Aihara, Hiroka Kondo, Shigeki Yamaguchi, Masakazu Yamamoto

ORCID number: Shimpei Ogawa 0000-0003-4196-7261; Michio Itabashi 0000-0003-2664-1984; Yuji Inoue 0000-0002-1383-8596; Takeshi Ohki 0000-0002-6328-0754; Yoshiko Bamba 0000-0002-7139-8576; Kurodo Koshino 0000-0001-9027-7310; Ryosuke Nakagawa 0000-0001-6428-1209; Kimitaka Tani 0000-0001-8078-1369; Hisako Aihara 0000-0003-2214-3320; Hiroka Kondo 0000-0003-1416-4383; Shigeki Yamaguchi 0000-0003-3850-2818; Masakazu Yamamoto 0000-0001-6027-620X.

Author contributions: Ogawa S, Itabashi M, Inoue Y, Ohki T, Bamba Y, Koshino K, Nakagawa R, Tani K, Aihara H, Kondo H, Yamaguchi S and Yamamoto M conceptualized and designed the study; Ogawa S performed the data analysis and interpretation; Ogawa S and Itabashi M revised the manuscript for important intellectual content; Ogawa S, Itabashi M and Yamamoto M provided the final approval for the manuscript to be published.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

Abstract

The current status and future prospects for diagnosis and treatment of lateral pelvic lymph node (LPLN) metastasis of rectal cancer are described in this review. Magnetic resonance imaging (MRI) is recommended for the diagnosis of LPLN metastasis. A LPLN-positive status on MRI is a strong risk factor for metastasis, and evaluation by MRI is important for deciding treatment strategy. LPLN dissection (LPLD) has an advantage of reducing recurrence in the lateral pelvis but also has a disadvantage of complications; therefore, LPLD may not be appropriate for cases that are likely to have LPLN metastasis. Radiation therapy (RT) and chemoradiation therapy (CRT) have limited effects in cases with suspected LPLN metastasis, but a combination of preoperative CRT and LPLD may improve the treatment outcome. Thus, RT and CRT plus selective LPLD may be a rational strategy to omit unnecessary LPLD and produce a favorable treatment outcome.

Key Words: Diagnosis; Treatment; Rectal cancer; Lateral pelvic lymph node metastasis; Lateral pelvic lymph node dissection; Radiotherapy

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Diagnosis of lateral pelvic lymph node (LPLN) metastasis of rectal cancer is mainly made using magnetic resonance imaging (MRI). LPLN-positive status on MRI is a strong risk factor for metastasis, and evaluation by MRI is important for deciding treatment strategy. LPLN dissection (LPLD) reduces recurrence in the lateral pelvis but also has complications and may not be appropriate for cases predicted to not have
According to the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Japan

Peer-review report's scientific quality classification
- Grade A (Excellent): 0
- Grade B (Very good): 0
- Grade C (Good): C
- Grade D (Fair): 0
- Grade E (Poor): 0

Received: February 21, 2021

Peer-review started: February 21, 2021

First decision: May 8, 2021

Revised: May 21, 2021

Accepted: August 24, 2021

Article in press: August 24, 2021

Published online: October 15, 2021

P-Reviewer: Fernandez Escamez CS

S-Editor: Ma YJ

L-Editor: A

P-Editor: Guo X

Citation: Ogawa S, Itahashi M, Inoue Y, Ohki T, Bamba Y, Koshino K, Nakagawa R, Tani K, Aihara H, Kondo H, Yamaguchi S, Yamamoto M. Lateral pelvic lymph nodes for rectal cancer: A review of diagnosis and management. *World J Gastrointest Oncol* 2021; 13(10): 1412-1424

URL: https://www.wjgnet.com/1948-5204/full/v13/i10/1412.htm

DOI: https://dx.doi.org/10.4251/wjgo.v13.i10.1412

INTRODUCTION

Colorectal cancer (CRC) is the third most frequently diagnosed cancer worldwide, with an estimated 1.9 million new cases reported annually[1]. Moreover, CRC accounts for 9.4% of all cancer deaths, and about one-third of CRC cases are represented by rectal cancer. Lymph node (LN) metastasis is a risk factor for local recurrence and a poor prognostic factor in rectal cancer, and the treatment strategy is important. Rectal lymph flow upward, laterally and downward, and LN metastasis mainly advances along the mesorectal nodal chain along the inferior mesenteric artery nodes[2-5]. Lower rectal cancer on the anal side from the peritoneal reflection also advances to LNs of the extramesorectal lateral pelvis. The frequency of lateral pelvic lymph node (LPLN) metastasis of lower rectal cancer is 11.3%-22.4%, and the outcome of cases with LPLN metastasis is poor[6-13]. Regarding treatment outcomes, the survival rates of cases with internal iliac LN metastasis and more distant LPLN metastasis are comparable to those of the tumor-node-metastasis (TNM) classifications N2a and N2b, respectively[10].

In lower rectal cancer, local recurrence occurs as frequently as liver metastasis and lung metastasis, and reportedly in 4%-10% of rectal cancer cases treated with total mesorectal excision (TME) alone[14,15]. Of local recurrence cases, recurrence in the lateral pelvis is accompanied by serious complications, the possibility of salvage is low, and many patients do not survive, making this a significant clinical problem[16]. Moreover, ≥ 40% of LPLN metastasis cases with local recurrence do not have distant metastasis, which indicates the importance of local control[17]. Therefore, LPLN metastasis is closely linked to the treatment outcome of lower rectal cancer and control of LPLN metastasis may be key to improvement of outcomes. In this review, the current status and future prospects of diagnosis and treatment of LPLN metastasis of rectal cancer are discussed.

DIAGNOSIS OF LN METASTASIS OF RECTAL CANCER

LN metastasis of rectal cancer can be evaluated by endoscopic ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and [18F]fluorodeoxyglucose-positron emission tomography (FDG-PET)[18]. Of these imaging modalities, MRI has superior contrast resolution of soft tissue and is an excellent method with multiplanar imaging capacity that is useful for the N staging of rectal cancer[19]. In the European Society for Medical Oncology (ESMO) guidelines, endorectal ultrasound is the recommendation for invasion depth evaluation in T1 cases, whereas MRI is recommended for evaluation of T2 or deeper invasion and LN metastasis because it can evaluate a wide range inside and outside the mesorectum[18,20].

Diagnosis of LPLN metastasis by MRI

Diagnosis of LN metastasis of rectal cancer has been widely investigated in the perirectal lymph nodes (PRLNs), whereas fewer studies have investigated LPLNs[21]. The cut-off for LPLN size varies from 4 mm to 12 mm. Similar to those for PRLNs, various morphological criteria have also been described, including irregular border, mixed signal intensity, speculated appearance, indistinct border, and mottled heterogeneous appearance[22-34]. In a comparison of area under the curve-based diagnoses using 5-mm and 10-mm cut-offs for the short axis, we found values of 0.7418 on the
right and 0.7593 on the left at 5-mm, and of 0.6326 on the right and 0.6559 on the left at 10-mm[35]. The 5-mm values were significantly higher and indicated excellent diagnostic ability using a 5-mm short axis cut-off (Table 1).

Diagnosis of LPLN metastasis based on size criteria
Results supporting the validity of size-based LPLN diagnosis have been reported. Ueno et al[11] divided the lateral region of excised specimens into six areas and compared the size of metastasis-positive and -negative LNs in each area, yielding the observation that the size of metastasis-positive LNs was significantly larger in all areas. Akasu et al[27] reported a relationship between LN size on MRI and histological metastasis for PRLNs and LPLNs. In PRLNs, the overlap of metastasis-positive and -negative LNs was large, as reported by Brown et al[36], but the overlap was small for LPLNs and very small or non-existent LNs that were visualized on imaging in most metastasis-negative cases; thus, the size criterion was concluded to work well.

LPLN-positive status on MRI as a risk factor for LPLN metastasis
Female sex, lower rectum involvement, histopathological grade other than well or moderately differentiated adenocarcinoma, lymphatic invasion, venous invasion, wall depth of invasion ≥ pT3, and PRLN metastasis have been reported as risk factors of LPLN metastasis of rectal cancer[6-10,37-39]. LPLN-positive status on imaging has also been identified as a risk factor. Fujita et al[9] defined cases with LPLNs of ≥ 5 mm on CT as LPLN-positive, and found the LPLN-positive status to be an independent risk factor for LPLN metastasis, with an odds ratio (OR) of 28.00, which was higher than that of other risk factors. We also found LPLN-positive status on MRI to be an independent risk factor, together with age (< 64 years), histopathological grade (G3 + G4), M1, and pPRLN(+) status, with ORs for right and left LPLNs of 10.73 and 24.53, respectively[40]. These values were higher than those for the other risk factors, showing the importance of a LPLN-positive status on MRI.

Current diagnosis of LPLN metastasis
Size-based diagnosis of LN metastasis of rectal cancer by MRI is simple and has only small inter-observer differences compared with those in morphology-based diagnosis, suggesting that size-based diagnosis is the most reliable, clinically[27]. Kim et al[17] also stated that LN size is the most reliable parameter for diagnosis of LN metastasis by MRI and that 5 mm is the most common criterion. In a meta-analysis of preoperative evaluation of rectal cancer by MRI, diagnosis of LN metastasis was evaluated as poor based on the diagnostic odds ratio (i.e., “DOA”) compared with those of the circumferential resection margin (CRM) and T category[21]. The diagnostic ability of LPLN by MRI had a pooled sensitivity, specificity, and DOA of 0.72, 0.80, and 10.2, respectively, in a meta-analysis[41]. The 5-mm values were significantly higher and indicated excellent diagnostic ability using a 5-mm short axis cut-off (Table 1).

New diagnostic method for LN metastasis of rectal cancer
Diffusion-weighted MRI, Gadofosveset-enhanced MRI, and LN-specific contrast medium ultrasmall superparamagnetic iron oxide contrast agent (i.e. ‘USPIO’)-enhanced MRI have been examined for improvement of diagnosis of LN metastasis of rectal cancer[42-48]. Using differences in enhancement patterns of Gadofosveset-enhanced MRI, the favorable results of negative predictive values of > 95% per lesion and > 85% per patient have been reported[42]. Regarding USPIO-enhanced MRI, USPIO is not approved for clinical use in Japan and its routine use in medical practice is not approved in Western countries, although favorable results (sensitivity of 93%, specificity of 96%) have been reported[43-45]. FDG-PET in combination with CT and MRI has been examined in post-CRT cases, with the cut-off for each method being determined from a receiver operating characteristic curve. Diagnosis using combined cut-offs of 12 mm on CT and MRI and SUVmax of 1.6 on FDG-PET give accuracy of 92.9%, sensitivity of 88.2%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 84.6%[46].

TREATMENT STRATEGIES FOR RECTAL CANCER LPLN METASTASIS IN GUIDELINES
Treatment strategies for LPLN metastasis of rectal cancer differ between Eastern countries, especially Japan, and Western countries. In Japan, LPLN metastasis, which
Table 1: Studies of magnetic resonance imaging diagnosis and criteria for lateral pelvic lymph node metastasis

Ref.	Patients	Accuracy	Sensitivity	Specificity	PPV	NPV	Criteria
Kim et al [22], 1999	8	12.5%	67%	97%			> 1.2 cm
Kim et al [23], 2000	14	29%			91%	81%	> 7 mm
Arii et al [24], 2006	53	83%	56%	97%			Round shape
Matsuoka et al [25], 2007	51	78%	67%	83%			≥ 5 mm (short-axis)
Min et al [26], 2009	66	86.4%					> 1.0 cm, > 0.5 cm (short-axis)
Akasu et al [27], 2009	104	87%	87%	87%	52%	97%	≥ 4 mm (short-axis)
Lim et al [28], 2013	67	39.0%					Spiculated or indistinct borders, mottled heterogenic pattern
Akiyoshi et al [29], 2015	77	68%	85%				≥ 8 mm (short-axis)
Ishibe et al [30], 2016	84	88.1%	43.8%	98.5%	87.5%	88.1%	≥ 10 mm (short-axis)
Lee et al [31], 2019	37	85.7%	84.0%		12.5%	99.5%	≥ 7 mm (short-axis)
Ogawa et al [35], 2016	268 (right)	77.6%	68.6%	79.7%	44.3%	91.5%	≥ 5 mm (short-axis)
	280 (left)	79.3%	70.8%	81.0%	43.6%	93.1%	

NPV: Negative predictive value; PPV: Positive predictive value.

is defined as progression beyond the mesorectum, is considered controllable by surgical LPLN dissection (LPLD), and TME + LPLD is the standard surgical procedure for advanced lower rectal cancer[49-51]. LPLNs are handled as regional LNs and the Japanese treatment guidelines for CRC recommend prophylactic dissection for T3 or deeper lower rectal cancer, even in cases without suspected LPLN metastasis[51]. In contrast, in Western countries, LPLN metastasis is handled as a systemic disease because distant metastasis is common and the outcome is poor[52,53].

In the American Joint Committee on Cancer (i.e., “AJCC”) Cancer Staging Manual, for the lateral pelvic regions, LNs in the internal iliac region, but not those in the obturator, external iliac and common iliac regions, are classified as regional LNs, and metastasis to the lateral pelvic regions, except of the internal iliac region, is handled as distant metastasis[54]. In Western countries, a combination of TME with radiation therapy (RT) and chemoradiation therapy (CRT) is the standard treatment for advanced lower rectal cancer because preoperative RT and CRT exhibit a partial local control effect. The combination of preoperative RT or CRT has been reported to reduce local recurrence to ≤ 10%[55].

The National Comprehensive Cancer Network (i.e., “NCCN”) guidelines recommend TME after CRT with concomitant fluorouracil for cStage II-III rectal cancer [56]. Induction chemotherapy before CRT is also recommended as a standard treatment. There is no specific description for LPLD, but extended dissection of LNs located outside the resection region, to which LPLNs correspond, is indicated for resectable LNs with suspected metastasis, whereas prophylactic dissection is not particularly recommended for LNs without suspected metastasis.

In the ESMO guidelines, the recurrence risk is classified into “early”, “intermediate”, “bad”, and “advanced” based on the distance of the tumor from the anal verge, the T stage and N stage, while use of TME alone, preoperative RT, and preoperative CRT is recommended depending on the risk[18]. There is no description concerning prophylactic LPLD, and when LPLN metastasis is suspected, the case is classified as “advanced”, with preoperative CRT followed by surgery (TME and more extensive surgery if indicated by tumor overgrowth) or preoperative short-course preoperative RT (5 × 5 Gy) plus the folinic acid + flurourcil + oxaliplatin (i.e., “FOLFOX”) regimen and a delay of surgery are described as treatment methods. The ESMO guidelines also do not particularly recommend prophylactic dissection for LPLNs without suspected metastasis, similar to the NCCN guidelines, and LPLD is
not routinely performed in Western countries.

LPLD and CRT for cLPLN(-) cases

Many studies on the treatment outcomes of LPLD have been reported, mainly from Japan[7,13,57,58]. Kanemitsu et al[13] determined the 5-year overall survival (OS) rates in LPLN metastasis(+) cases treated with LPLD at two high-volume centers in Japan as 53.1% and 45.2%, respectively, compared to those in LPLN metastasis(-) cases, which were 81.7% and 81.0%, respectively. The local recurrence risk ratio of unilateral to bilateral LPLD cases was 2.0, indicating the necessity of bilateral dissection. In a comparison of cases treated with and without LPLD in a matched cohort study, the 5-year OS rates were 68.9% and 62.0%, respectively, with a significantly higher OS in cases treated with LPLD[58].

The results of the JCOG0212 randomized controlled trial have provided insights into the outcomes of prophylactic LPLD in cLPLN(-) cases without suspected metastasis[57]. This trial examined TME alone (designated as the ME group) compared to TME + LPLD (designated as the LPLD group) as standard treatment. The primary endpoint of 5-year relapse-free survival (RFS) was 73.4% in the LPLD group and 73.3% in the ME group, which did not demonstrate non-inferiority of TME alone; moreover, the Kaplan-Meier curve for RFS was consistent, showing no superiority of LPLD. The secondary endpoint of 5-year OS was 92.6% in the LPLD group and 90.2% in the ME group, again showing no significant difference. The 5-year local recurrence-free rates were 87.7% in the LPLD group and 82.4% in the ME group, with no significant difference, but the local recurrence rate was significantly lower in the LPLD group (26 cases (7.4%) vs 44 cases (12.6%), \(P = 0.024 \)). Local recurrence was in the lateral pelvis in 4 and 23 cases in the respective groups. Thus, recurrence in the lateral pelvis occurred in fewer cases in the LPLD group, indicating that LPLD is effective for reduction of recurrence in this region.

One reason for non-performance of LPLD in Western countries is that superiority of the treatment effect of LPLD compared to RT and CRT has not been demonstrated [52]. Kusters et al[59] adjusted patient background factors and compared treatment outcomes in a Japanese group (designated as the “NCCH” group) treated with TME + LPLD and groups treated with TME alone and RT + TME in a Dutch trial. The 5-year local recurrence rate was 6.9% in the Japanese NCCH group, 5.8% in the Dutch RT + TME group, and 12.1% in the Dutch TME-alone group. Thus, this rate was lower with TME + LPLD and TME + RT than with TME alone, and both LPLD and RT indicated a partial local control effect compared with TME alone. There was no difference between the effects of TME + LPLD and TME + RT.

Nagawa et al[60] performed 50-Gy preoperative RT in 45 patients with lower rectal cancer without LPLN enlargement in cases treated with TME alone and TME + LPLD. There was no difference in the OS and local recurrence rates between the two groups, and accordingly it was concluded that LPLD is unnecessary for lower rectal cancer without LPLN enlargement before treatment if preoperative RT is performed. In addition, Watanabe et al[61] also found no difference in the survival rate between RT-treated non-LPLD cases and LPLD-treated non-RT cases. In these studies, even though LPLD was added before treatment, if LPLN metastasis was not suspected before treatment, the oncological effect was small and the tumor could be controlled by preoperative RT. This suggests that a favorable outcome may be acquired even with TME alone if preoperative RT is performed.

The other reason for not performing LPLD in Western countries is the complications associated with LPLD[52]. Intraoperative complications of a long operative time and large-volume blood loss, and postoperative complications such as urinary and sexual dysfunction have been reported in LPLD-treated cases. Similarly, in the JCOG0212 study, the operative time was significantly longer and blood-volume loss was larger in the LPLD group, and the incidence of grade 3 or more severe complications was 22% in the LPLD group but only 16% in the ME group treated without LPLD[62]. In a recent meta-analysis, only Gao et al[63] reported a significantly lower 5-year local recurrence rate after LPLD than that in cases without LPLD treatment. In most reports, there was no difference in OS, DFS, or local recurrence (Tables 2 and 3)[63-69]. Postoperative urinary and sexual dysfunction was common, the operative time was long, and blood-volume loss was large in LPLD cases, but there are also serious complications of RT and CRT. These include dysuria, dyschezia, sexual dysfunction and secondary cancer as late complications and perineal wound complication of abdominoperineal resection and an influence on defecation function in cases treated with sphincter-preserving surgery[70-72].
Table 2 Variables in treatment of lateral pelvic lymph node dissection in recent meta-analyses and systematic reviews

Ref.	Study (RCT)	Treatment	Patients	CRT or RT	OS	DFS	TR	LR	LLR
Cao et al[63], 2020	12 (6)	TME + LPLD	1952	359	5-yr HR 0.93, 95% CI: 0.71-1.22, P = 0.62	5-yr HR 0.99, 95% CI: 0.74-1.34, P = 0.96	5-yr RR 0.98, 95% CI: 0.81-1.18, P = 0.83	5-yr RR 0.71, 95% CI: 0.56-0.89, P = 0.003	5-yr RR 0.49, 95% CI: 0.18-1.28, P = 0.14
Wang et al[64], 2020	16 (4)	TME + LPLD	2984	HR 1.11, 95% CI: 0.77-1.61, P = 0.57	HR 1.05, 95% CI: 0.85-1.30, P = 0.64	OR 0.93, 95% CI: 0.56-1.54, P = 0.78			
Ma et al[65], 2020	26 (5)	TME + LPLD	3171	417	5-yr HR 1.14, 95% CI: 0.85-1.54	5-yr HR 1.07, 95% CI: 0.89-1.28, P = 0.496	OR 1.00, 95% CI: 0.80-1.24	OR 0.90, 95% CI: 0.76-1.06, P = 0.208	
Emile et al[66], 2020	29 (5)	TME + LPLD	4194	551	HR 1.056, 95% CI: 0.98-1.13, P = 0.013	HR 1.02, 95% CI: 0.97-1.07, P = 0.37	HR 0.96, 95% CI: 0.75-1.25, P = 0.79		
Hajibandeh et al[67], 2020	18 (2)	TME + LPLD	2762	321	5-yr OR 1.01, 95% CI: 0.78-1.30, P = 0.94	5-yr OR 1.07, 95% CI: 0.86-1.32, P = 0.54	OR 0.97, 95% CI: 0.72-1.29, P = 0.82	OR 1.01, 95% CI: 0.72-1.42, P = 0.97	
Law et al[68], 2020	6 (0)	CRT + TME + LPLD	268	268	5-yr OR 0.70, 95% CI: 0.20-2.39, P = 0.57	5-yr OR 0.42, 95% CI: 0.14-1.24, P = 0.12			
Yang et al[69], 2020	8 (1)	CRT + TME + LPLD	435	435	HR 0.78, 95% CI: 0.32-1.88, P = 0.58	HR 0.94, 95% CI: 0.62-1.43, P = 0.77	OR 0.82, 95% CI: 0.27-2.46, P = 0.72	OR 2.99, 95% CI: 1.20-7.44, P = 0.02	

CI: Confidence interval; CRT: Chemoradiation therapy; DFS: Disease-free survival; HR: Hazard ratio; LLR: Local lateral recurrence; LPLD: Lateral pelvic lymph node dissection; LR: Local recurrence; OR: Odds ratio; OS: Overall survival; RCT: Randomized controlled trial; RR: Risk ratio; RT: Radiation therapy; TME: Total mesorectal excision; TR: Total recurrence.

LPLD and CRT for cLPLN(+) cases

Difficulty with control of LPLN metastasis by RT or CRT alone has been reported. In cLPLN(+) cases with suspected LPLN metastasis, Kim et al[17] found local recurrence in 29 (7.9%) of 366 cases treated with TME alone without LPLD after preoperative CRT. Recurrence in the lateral pelvis was found in 24 (82.7%) of these cases and the local recurrence rates according to pretreatment LPLN size were 2.3%, 12.5% and 68.8% in cases with sizes < 5 mm, 5-10 mm and > 10 mm, showing that this rate was high in cases with LPLN enlargement. In 66 cases with LPLNs with a short axis of > 5 mm on MRI after CRT, Oh et al[73] found metastasis in 22 (33.3%). Recurrence in the lateral pelvis was found in 24 (82.7%) of these cases and the 3-year RFS was 7.44, OR 2.99, 95% CI: 1.20-7.44, P = 0.02.
Table 3 Variables in complications of lateral pelvic lymph node dissection in recent meta-analyses and systematic reviews

Ref.	Study (RCT)	Treatment	Patients	CRT or RT	Operation time	Blood loss	Complications	Urinary dysfunction	Sexual dysfunction
Gao et al[62], 2020	12 (6)	TME + LPLD	1952	359	WMD 97.03 min, 95%CI: 75.35-118.72, P < 0.001	WMD 303.20 mL, 95%CI: 156.82-449.58, P < 0.001	RR 1.35, 95%CI: 1.05-1.74, P = 0.02	Pooled RR 1.44, 95%CI: 0.63-3.28, P = 0.38	Pooled RR 1.41, 95%CI: 0.87-2.31, P = 0.17
Wang et al[64], 2020	16 (4)	TME + LPLD	2984				OR 1.48, 95%CI: 1.07-2.03, P = 0.02	OR 1.60, 95%CI: 0.66-3.87, P = 0.3	
Ma et al[65], 2020	26 (5)	TME + LPLD	417	417	WMD 92.50 min, 95%CI: 75.63-109.37	WMD 283.89 mL, 95%CI: 183.00-384.79	OR 1.30, 95%CI: 1.04-1.63	OR 2.14, 95%CI: 1.21-3.79, P = 0.009	OR 4.19, 95%CI: 1.55-11.33, P = 0.005
Emile et al[66], 2020	29 (5)	TME + LPLD	4194	551	360 min (median), range 310-546, P = 0.02	582 mL (median), P = 0.4	OR 1.48, 95%CI: 1.18-1.87, P < 0.001	OR 2.1, 95%CI: 1.21-3.67, P = 0.008	OR 1.62, 95%CI: 0.94-2.79, P = 0.08
Hajibandeh et al[67], 2020	18 (2)	TME + LPLD	2762	321	MD 116.02, 95%CI: 89.20-142.83, P < 0.00001		OS 1.59, 95%CI: 1.14-2.24, P = 0.007	OR 6.66, 95%CI: 3.13-13.39, P = 0.00001	OR 9.67, 95%CI: 2.38-39.26, P = 0.002
Yang et al[68], 2020	8 (1)	CRT + TME + LPLD	435	435					
CRT + TME	1461	1461	MD =138.63 min, 95%CI: -219.66--57.60, P < 0.01	MD =226.24 mL, 95%CI: -505.76-53.27, P = 0.11		OR 0.20, 95%CI: 0.08-0.46, P < 0.01			

CI: Confidence interval; CRT: Chemoradiation therapy; LPLD: Lateral pelvic lymph node dissection; MD: Mean difference; OR: Odds ratio; RCT: Randomized controlled trial; RR: Risk ratio; RT: Radiation therapy; TME: Total mesorectal excision; WMD: Weighted mean difference.

difference. The 3-year RFS was 77.4% and the 3-year local recurrence rate was 5.8% in the entire cohort, showing favorable results.

Akiyoshi et al[77] also found LPLN metastasis in 57 (26.9%) of 212 cases with LPLN enlargement and LPLD treatment, in a study of 613 cases. Recurrence in the lateral pelvis occurred in 20 (76.9%) of 26 cases with local recurrence (5 with unilateral dissection, 15 without LPLD) and the 3-year DFS was 70% in LPLN metastasis(+) cases, which was significantly poorer than that of 88% in ypN0 cases but significantly favorable compared with that of 48% in ypN2 LPLN metastasis(-) cases. The 3-year cumulative local recurrence rate in LPLN metastasis(+) cases was 3.6%, which was significantly lower than that of 17% in ypN2 LPLN metastasis(-) cases and not significantly different from that of 8.0% in ypN1 LPLN metastasis(+) cases.

Ogura et al[78] found LPLN enlargement in 327 patients who underwent laparoscopic surgery. Metastasis was present in 26 (24.3%) of 107 cases treated with TME + LPLD. The operative time was significantly longer and blood-volume loss was larger in LPLD compared to non-LPLD cases but there was no significant difference in the incidence of major complications. The 3-year RFS rates were 84.7% and 82.0% in the LPLD and non-LPLD groups, respectively, and the local recurrence rate was 3.2% in the LPLD group and 5.2% in the TME group, with no significant differences between.

A recent meta-analysis similarly found no difference in OS between TME + CRT and TME + CRT + LPLD (Table 2)[68,69]. Yang et al[69] found no difference in overall local recurrence in cases with suspected LPLN metastasis but the incidence of local recurrence in the lateral pelvic region was significantly lower in the TME + CRT + LPLD group than in the TME + CRT group.
Treatment strategy for LPLN in rectal cancer cases

The main advantage of LPLD is its ability to reduce the rate of lateral pelvic recurrence, but disadvantages such as a longer operative time as well as increased blood-volume loss and complications suggest that LPLD is not likely to be needed for cases that are unlikely to have LPLN metastasis, provided that the diagnosis is accurate. We have suggested possible omission of LPLD in PRLN metastasis-negative cases with a long LPLN axis of ≤ 5 mm on MRI[79]. A sub-analysis by stage in the JCOG0212 study showed improvement of RFS in clinical stage III in the LPLD group, based on which LPLD is recommended for stage III cases and can be omitted for stage II cases without improvement[80].

The JCOG0212 study also demonstrated a reduction effect of LPLD on recurrence in the lateral pelvis but not on local recurrence in the central region and anastomotic part of the pelvis[57]. A high local recurrence rate has been found in cases with a short CRM on MRI, and there is evidence to suggest that RT and CRT aimed at shrinking the tumor and securing the CRM may be effective in these cases[81,82]. In Japan, TME + LPLD is the standard treatment for advanced lower rectal cancer, but the latest guidelines recommend preoperative CRT for rectal cancer with a high local recurrence risk, although the recommendation is not strong[51]. Cases in which a sufficient CRM cannot be secured may correspond to this high-risk rectal cancer and preoperative CRT may be considered for these cases.

RT and CRT have not been performed in many previous studies on LPLN and it is thought that the outcome is poor and the local recurrence rate is high in LPLN metastasis cases[7,10,13,83]. No prospective comparative study on LPLD following RT and CRT has been performed in cases with suspected LPLN metastasis. As described above, preoperative RT and CRT cannot reduce LPLN metastasis and their effects are limited, but for cases with suspected LPLN metastasis, a combination of preoperative CRT and LPLD may improve outcomes[76,78,84-91]. Thus, preoperative RT and CRT + selective LPLD may be a rational strategy for omitting unnecessary LPLD while acquiring a favorable treatment outcome.

CONCLUSION

In Western countries, LPLN metastasis is handled as a systemic disease, due to concerns about the treatment effect and the many complications of LPLD. However, the efficacies of RT boost (strengthening) and a combination of CRT and LPLD for LPLN metastasis have recently been reported in Western countries[85,92-95]. The accuracy of diagnostic imaging largely depends on the diagnostic equipment and may be increased by modification of this equipment and development of contrast media. This suggests that the significance of prophylactic LPLD will further decrease for LPLNs that are less likely to be metastasized. RT and CRT are rational methods that can omit unnecessary LPLD while giving a favorable treatment outcome. Current multidisciplinary treatment of rectal cancer, in addition to RT and CRT, which are local treatments, is progressing toward a strategy of use of systemic chemotherapy aimed at controlling distant metastasis and improving survival. Both multidisciplinary treatment and LPLD are established and further improvement of treatment outcomes can be expected by utilizing the advantages of these methods with optimum indications.

REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]
2. Sauer I, Bacon HE. A new approach for excision of carcinoma of the lower portion of the rectum and anal canal. Surg Gynecol Obstet 1952; 95: 229-242 [PMID: 14950656]
3. Blair JB, Holyoke EA, Best RR. A note on the lymphatics of the middle and lower rectum and anus. Anat Rec 1950; 108: 635-644 [PMID: 14799884 DOI: 10.1002/ar.1091080402]
4. Stearns MW Jr, Dederish MR. Five-year results of abdominopelvic lymph node dissection for carcinoma of the rectum. Dis Colon Rectum 1959; 2: 169-172 [PMID: 13652786 DOI: 10.1000/7BF0B261671]
5. Koh DM, Brown G, Husband JE. Nodal staging in rectal cancer. Abdom Imaging 2006; 31: 652-659 [PMID: 16897279 DOI: 10.1007/s00261-006-9021-3]
6. Ueno M, Oya M, Azekura K, Yamaguchi T, Matou T. Incidence and prognostic significance of lateral
lymph node metastasis in patients with advanced low rectal cancer. Br J Surg 2005; 92: 756-763 [PMID: 15888995 DOI: 10.1002/bjs.4975]
7 Sugihara K, Kobayashi H, Kato T, Mori T, Mochizuki H, Kameoka S, Shirouzu K, Muto T. Indication and benefit of pelvic sidewall dissection for rectal cancer. Dis Colon Rectum 2006; 49: 1663-1672 [PMID: 17041749 DOI: 10.1053/dcr.2006.06-0714]
8 Kobayashi H, Mochizuki H, Kato T, Mori T, Kameoka S, Shirouzu K, Sugihara K. Outcomes of surgery alone for lower rectal cancer with and without pelvic sidewall dissection. Dis Colon Rectum 2009; 52: 567-576 [PMID: 19404054 DOI: 10.1053/j.dcr.2009.03.008]
9 Fujita S, Yamamoto S, Akasu T, Moriya I. Risk factors of lateral pelvic lymph node metastasis in advanced rectal cancer. Int J Colorectal Dis 2009; 24: 1085-1090 [PMID: 19387660 DOI: 10.1007/s00384-009-0704-4]
10 Akiyoshi T, Watanabe T, Miyata S, Kotake K, Muto T, Sugihara K. Japanese Society for Cancer of the Colon and Rectum. Results of a Japanese nationwide multi-institutional study on lateral pelvic lymph node metastasis in low rectal cancer: is it regional or distant disease? Ann Surg 2012; 255: 1129-1134 [PMID: 22549752 DOI: 10.1097/SLA.0b013e3182565d9e]
11 Ueno H, Mochizuki H, Hashiguchi Y, Ishiguro M, Miyoshi M, Kajiwara Y, Sato T, Shimazaki H, Hase K. Potential prognostic benefit of lateral pelvic node dissection for rectal cancer located below the peritoneal reflection. Ann Surg 2007; 245: 80-87 [PMID: 17197969 DOI: 10.1097/01.sla.0000225359.72553.8c]
12 Yano H, Moran BJ. The incidence of lateral pelvic side-wall nodal involvement in low rectal cancer may be similar in Japan and the West. Br J Surg 2008; 95: 33-49 [PMID: 18165939 DOI: 10.1002/bjs.6061]
13 Kanemitsu Y, Komori K, Shida D, Ochiai H, Tsukamoto S, Kinoshita T, Moriya I. Potential impact of lateral lymph node dissection (LLND) for low rectal cancer on prognosis and local control: A comparison of 2 high-volume centers in Japan that employ different policies concerning LLND. Surgery 2017; 162: 303-314 [PMID: 28366499 DOI: 10.1016/j.surg.2017.02.005]
14 Heald RJ, Ryall RD. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986; 1: 1479-1482 [PMID: 2425199 DOI: 10.1016/s0140-6736(86)91510-2]
15 Platell CF. Changing patterns of recurrence after treatment for colorectal cancer. Int J Colorectal Dis 2007; 22: 1223-1231 [PMID: 17393173 DOI: 10.1007/s00384-007-0306-y]
16 Harris CA, Solomon MJ, Heriot AG, Sagar PM, Tekkis PP, Dixon L, Pascoe R, Dobbs BR, Frampton CM, Harji DP, Kontovounios C, Austin KK, Koh CE, Lee PJ, Lynch AC, Warrier SK, Frizelle FA. The Outcomes and Patterns of Treatment Failure After Surgery for Locally Recurrent Rectal Cancer. Ann Surg 2016; 264: 323-329 [PMID: 26692078 DOI: 10.1097/SLA.0000000000001524]
17 Kim TH, Jeong SY, Choi DH, Kim DY, Jung KH, Moon SH, Chang HJ, Lim SB, Choi HS, Park JG. Lateral lymph node metastasis is a major cause of locoregional recurrence in rectal cancer treated with preoperative chemoradiotherapy and curative resection. Ann Surg Oncol 2008; 15: 729-737 [PMID: 18057989 DOI: 10.1245/s10434-007-0969-6]
18 Glynn-Jones R, Wyvrlich L, Tirt E, Brown G, Rödel C, Cervantes A, Arnold D; ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29: iv263 [PMID: 29741565 DOI: 10.1093/annonc/mdy161]
19 Torkzad MR, Pahlman L, Gilmeilus B. Magnetic resonance imaging (MRI) in rectal cancer: a comprehensive review. Insights Imaging 2010; 1: 245-267 [PMID: 22347920 DOI: 10.1007/s13244-010-0037-4]
20 Klessen C, Rogalla P, Taupitz M. Local staging of rectal cancer: the current role of MRI. Eur Radiol 2007; 17: 379-389 [PMID: 17008990 DOI: 10.1007/s00330-006-0388-x]
21 Al-Sukhni E, Milot L, Fruitman M, Beyene J, Victor JC, Schmocker S, Brown G, McLeod R, Kennedy E. Diagnostic accuracy of MRI for assessment of T category, lymph node metastases, and circumferential resection margin involvement in patients with rectal cancer: a systematic review and meta-analysis. Ann Surg Oncol 2012; 19: 2212-2223 [PMID: 22271205 DOI: 10.1245/s10434-011-2210-5]
22 Kim NK, Kim MJ, Yun SH, Sohn SK, Min JS. Comparative study of transrectal ultrasonography, pelvic computerized tomography, and magnetic resonance imaging in preoperative staging of rectal cancer. Dis Colon Rectum 1999; 42: 770-775 [PMID: 10378601 DOI: 10.1053/dcr.1999.08033]
23 Kim NK, Kim MJ, Park JK, Park SI, Min JS. Preoperative staging of rectal cancer with MRI: accuracy and clinical usefulness. Ann Surg Oncol 2000; 7: 732-737 [PMID: 11129420 DOI: 10.1007/s10434-000-0732-3]
24 Arii K, Takifuji K, Yokoyama S, Matsuda K, Higashiguchi T, Tominaga T, Oku Y, Tani M, Yamae H. Preoperative evaluation of pelvic lateral lymph node of patients with lower rectal cancer: comparison study of MR imaging and CT in 53 patients. Langenbecks Arch Surg 2006; 391: 449-454 [PMID: 16847648 DOI: 10.1007/s00423-006-0066-0]
25 Matsuoka H, Nakamura A, Masaki T, Sugiyama M, Naito T, Ohkura Y, Sakamoto A, Atomi Y. Optimal diagnostic criteria for lateral pelvic lymph node metastasis in rectal carcinoma. Anticancer Res 2007; 27: 3529-3533 [PMID: 17972513]
26 Min BS, Kim JS, Kim NK, Lim JS, Lee KY, Cho CH, Sohn SK. Extended lymph node dissection for rectal cancer with radiologically diagnosed extramural lymph node metastasis. Ann Surg Oncol 2009; 16: 3271-3278 [PMID: 19763693 DOI: 10.1245/s10434-009-0692-1]
27 Akasu T, Imamura G, Takawa M, Yamamoto S, Muramatsu Y, Moriyama N. Accuracy of high-
resolution magnetic resonance imaging in preoperative staging of rectal cancer. *Ann Surg Oncol* 2009; 16: 2787-2794 [PMID: 19618244 DOI: 10.1245/s10434-009-0613-5]

Lim SB, Yu CS, Kim CW, Yoon YS, Park SH, Kim TW, Kim JH, Kim JC. Clinical implication of additional selective lateral lymph node excision in patients with locally advanced rectal cancer who underwent preoperative chemoradiotherapy. *Int J Colorectal Dis* 2013; 28: 1667-1674 [PMID: 23943282 DOI: 10.1007/s00384-013-1761-2]

Akiyoshi T, Matsueda K, Hiratsuka M, Unno T, Nagata J, Nagasaki T, Konishi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M. Indications for Lateral Pelvic Lymph Node Dissection Based on Magnetic Resonance Imaging Before and After Preoperative Chemoradiotherapy in Patients with Advanced Low-Rectal Cancer. *Ann Surg Oncol* 2015; 22 Suppl 3: S614-S620 [PMID: 25886145 DOI: 10.1245/s10434-015-4565-5]

Ishibe A, Ota M, Watanabe J, Suwa Y, Suzuki S, Kanazawa A, Watanabe K, Ichikawa Y, Kinakishi C, Endo I. Prediction of Lateral Pelvic Lymph-Node Metastasis in Low Rectal Cancer by Magnetic Resonance Imaging. *World J Surg* 2016; 40: 995-1001 [PMID: 26541864 DOI: 10.1007/s00268-015-3299-7]

Yamaoka Y, Kinugasa Y, Shiomori A, Yamaguchi T, Kagawa H, Yamakawa Y, Numata M, Furutani A. Preoperative chemoradiotherapy changes the size criterion for predicting lateral lymph node metastasis in lower rectal cancer. *Int J Colorectal Dis* 2017; 32: 1631-1637 [PMID: 28762190 DOI: 10.1007/s00384-017-2783-x]

Komori K, Fujita S, Mizusawa J, Kanemitsu Y, Ito M, Shiomori A, Ohue M, Ota M, Akazai Y, Shiozawa M, Yamaguchi T, Bandou H, Katsumata K, Kinugasa Y, Takii Y, Akasu T, Moriya Y. Colorectal Cancer Study Group of Japan Clinical Oncology Group. Predictive factors of pathological lateral pelvic lymph node metastasis in patients without clinical lateral pelvic lymph node metastasis (clinical stage II/III): The analysis of data from the clinical trial (JCOG0212). *Eur J Surg Oncol* 2019; 45: 336-340 [PMID: 30477950 DOI: 10.1016/j.ejso.2018.11.016]

Lee D, Matsuda T, Yamashita K, Hasegawa H, Yamamoto M, Kanaji S, Oshikiri T, Nakamura T, Suzuki S, Fukumoto T, Kakeji Y. Significance of Lateral Pelvic Lymph Node Size in Predicting Metastasis and Prognosis in Rectal Cancer. *Anticancer Res* 2019; 39: 993-998 [PMID: 30711986 DOI: 10.21873/anticancer.13204]

Kawai K, Shiratori H, Hata K, Nozawa H, Tanaka T, Nishikawa T, Murono K, Ishihara S. Optimal Size Criteria for Lateral Lymph Node Dissection After Neoadjuvant Chemoradiotherapy for Rectal Cancer. *Dis Colon Rectum* 2021; 64: 274-283 [PMID: 33395141 DOI: 10.1097/DCR.0000000000001866]

Ogawa S, Hida J, Ike H, Kinugasa T, Ota M, Shintou E, Itabashi M, Kameoka S, Sugihara K. Selection of Lymph Node-Positive Cases Based on Perirectal and Lateral Pelvic Lymph Nodes Using Magnetic Resonance Imaging: Study of the Japanese Society for Cancer of the Colon and Rectum. *Ann Surg Oncol* 2016; 23: 1187-1194 [PMID: 26671038 DOI: 10.1245/s10434-015-5021-2]

Brown G, Richards CJ, Bourne MW, Radcliffe AG, Dallimore NS, Williams GT. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. *Radiology* 2003; 227: 371-377 [PMID: 12732695 DOI: 10.1148/radiol.2272011747]

Tan KY, Yamamoto S, Fujita S, Akasu T, Moriya Y. Improving prediction of lateral node spread in low rectal cancers—multivariate analysis of clinicopathological factors in 1,046 cases. *Langenbecks Arch Surg* 2010; 395: 545-549 [PMID: 20361335 DOI: 10.1007/s00423-010-0642-1]

Kinugasa T, Akagi Y, Ochi T, Ishibashi Y, Tanaka N, Oka Y, Mizobe T, Yuge K, Fujino S, Kibe S, Shirouzu K. Lateral lymph-node dissection for rectal cancer: meta-analysis of all 944 cases undergoing surgery during 1975-2004. *Anticancer Res* 2013; 33: 2921-2927 [PMID: 23780981]

Ishihara S, Kawai K, Tanaka T, Kiyomatsu T, Hata K, Nozawa H, Morikawa T, Watanabe T. Oncological Outcomes of Lateral Pelvic Lymph Node Metastasis in Rectal Cancer Treated With Preoperative Chemoradiotherapy. *Dis Colon Rectum* 2017; 60: 469-476 [PMID: 28383446 DOI: 10.1097/DCR.0000000000000752]

Ogawa S, Hida J, Ike H, Kinugasa T, Ota M, Shintou E, Itabashi M, Okamoto T, Sugihara K. The important risk factor for lateral pelvic lymph node metastasis of lower rectal cancer is node-positive status on magnetic resonance imaging: study of the lymph Node Committee of Japanese Society of Cancer of the Colon and Rectum. *Int J Colorectal Dis* 2016; 31: 1719-1728 [PMID: 27576475 DOI: 10.1007/s00384-016-2641-3]

Hoshino N, Murakami K, Hida K, Sakamoto T, Sakai Y. Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis. *Int J Clin Oncol* 2019; 24: 46-52 [PMID: 30259217 DOI: 10.1007/s10147-018-1349-5]

Lambregs DM, Beets GL, Maas M, Kessels AG, Bakers FC, Cappendijk VC, Engelen SM, Lahaye MJ, de Bruiné AP, Lammering G, Leiner T, Verwoerd JL, Wildberger JE, Beets-Tan RG. Accuracy of gadofosveset-enhanced MRI for nodal staging and restaging in rectal cancer. *Ann Surg Oncol* 2011; 253: 539-545 [PMID: 21239980 DOI: 10.1097/SLA.0b013e31820b0f1f]

Koh DM, George C, Temple L, Collins DJ, Toomey P, Raja A, Bett N, Farhat S, Husband JE, Brown G. Diagnostic accuracy of nodal enhancement pattern of rectal cancer at MRI enhanced with ultrasmall superparamagnetic iron oxide: findings in pathologically matched mesorectal lymph nodes. *AJR Am J Roentgenol* 2010; 194: W505-W513 [PMID: 20489069 DOI: 10.2214/AJR.08.1819]

Koh DM, Brown G, Temple L, Raja A, Toomey P, Bett N, Norman AR, Husband JE. Rectal cancer:
mesorectal lymph nodes at MR imaging with USPIO vs histopathologic findings—initial observations. *Radiology* 2004; 231: 91-99 [PMID: 14976266 DOI: 10.1148/radiol.2311030142]

Lahaye MJ, Engelen SM, Kessels AG, de Bruijne AP, von Meyenfeldt MF, van Engelschoen JM, van de Velde CJ, Beets GL, Beets-Tan RG. USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria. *Radiology* 2008; 246: 804-811 [PMID: 18193379 DOI: 10.1148/radiol.2463070221]

Ishihara S, Kawai K, Tanaka T, Kiyomatsu T, Hata K, Nozawa H, Morikawa T, Watanabe T. Diagnostic value of FDG-PET/CT for lateral pelvic lymph node metastasis in rectal cancer treated with preoperative chemoradiotherapy. *Tech Coloproctol* 2018; 22: 347-354 [PMID: 29623475 DOI: 10.1007/s10151-018-1779-9]

Catalano OA, Lee SI, Parente C, Cauley C, Furtado FS, Striar R, Sorcielli A, Salvatore M, Li Y, Umutlu L, Canhaamaque LG, Groshar D, Mahmood U, Blaszkosky LS, Ryan DP, Clark JW, Jo, Hong TS, Kanitake H, Bordeianou L, Berger D, Ricciardi R, Rosen B. Improving staging of rectal cancer in the pelvis: the role of PET/MRI. *Eur J Nucl Med Mol Imaging* 2021; 48: 1235-1245 [PMID: 33034673 DOI: 10.1007/s00259-020-05036-x]

Suarez-Weiss KE, Herold A, Gervais D, Palmer E, Amorim B, King JD, Weier L, Shahein T, Bernstein H, Domachevski L, Canhaamaque LG, Herrmann K, Umutlu L, Groshar D, Catalano OA. Hybrid imaging of the abdomen and pelvis. *Radiology* 2020; 60: 80-89 [PMID: 32424463 DOI: 10.1007/s00117-020-06661-x]

Hojo K, Sawada T, Moriya T. An analysis of survival and voiding, sexual function after wide ileopelvic lymphadenectomy in patients with carcinoma of the rectum, compared with conventional lymphadenectomy. *Dis Colon Rectum* 1989; 32: 128-133 [PMID: 2914526 DOI: 10.1007/BF02553825]

Moriya Y, Sugihara K, Akasu T, Fujita S. Importance of extended lymphadenectomy with lateral node dissection for advanced lower rectal cancer. *World J Surg* 1997; 21: 728-732 [PMID: 9276704 DOI: 10.1002/s002899000000000]

Hashiguchi Y, Muro K, Saito Y, Ito Y, Ajioka Y, Hamaeguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M, Ishihara S, Kanemitsu Y, Kinugasa Y, Murofushi K, Nakajima TE, Oka S, Tanaka T, Taniuchi H, Tsuji A, Uehara K, Ueno H, Yamana Y, Yamazaki K, Yoshida M, Yoshino T, Itabashi M, Sakamaki K, Sano K, Shimada Y, Tanaka S, Uetake H, Yamaguchi S, Yamaguchi N, Kobayashi H, Matsuoka K, Kotake K, Sugihara K. Japanese Society for Cancer of the Colon and Rectum. Stage II/III Lower Rectal Cancer (JCOG0212): A Multicenter, Randomized Controlled, Noninferiority Trial. *Ann Surg* 2019; 270: 229-235 [PMID: 31205527 DOI: 10.1097/SLA.0000000000002485-x]

Georgiou P, Tan E, Gouvas N, Antoniou A, Brown G, Nicholls RJ, Tekkis P. Extended lymphadenectomy vs conventional surgery for rectal cancer: a meta-analysis. *Lancet Oncol* 2009; 10: 1053-1062 [PMID: 19767239 DOI: 10.1016/S1470-2045(09)70224-4]

Wang Z, Loh KY, Tan KY, Woo EC. The role of lateral pelvic lymph node dissection in the management of lower rectal cancer. *Langenbecks Arch Surg* 2012; 397: 353-361 [PMID: 22105772 DOI: 10.1007/s00423-011-0864-x]

Amin MB, Edge S, Greene F. AJCC cancer staging manual. 8th ed. New York, Springer; 2017

Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmidberger H, Raab R; German Rectal Cancer Study Group. Preoperative vs postoperative chemoradiotherapy for rectal cancer. *N Engl J Med* 2004; 351: 1731-1740 [PMID: 15496622 DOI: 10.1056/NEJMoa040694]

National Comprehensive Cancer Network. Colon Cancer (Version 1.2021). Available from: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf

Fujita S, Mizusawa J, Kanemitsu Y, Ito M, Kinugasa Y, Komori K, Ohue M, Ota M, Akazai Y, Shiozawa M, Yamaguchi T, Bandou H, Katsumata K, Murata K, Akagi Y, Takiguchi N, Sawada T, Moriya Y, Akasu T, Mizusawa J, Kanemitsu Y, Ito M, Kinugasa Y, Ohue M, Fujii S, Shiozawa M, Hasegawa K. Impact of Lateral Pelvic Lymph Node Dissection on the Survival of Patients with T3 and T4 Low Rectal Cancer. *World J Surg* 2016; 40: 1492-1499 [PMID: 26908236 DOI: 10.1007/s00268-016-3444-y]

Kusters M, Beets GL, van de Velde CJ, Beets-Tan RG, Marijnen CA, Rutten HJ, Putter H, Moriya Y. A comparison between the treatment of low rectal cancer in Japan and the Netherlands, focusing on the patterns of local recurrence. *Ann Surg* 2009; 249: 229-235 [PMID: 19212175 DOI: 10.1097/SLA.0b013e318190a664]

Nagawa H, Muto T, Sunouchi K, Higuchi Y, Tsurita G, Watanabe T, Sawada T. Randomized, controlled trial of lateral node dissection vs. nerve-preserving resection in patients with rectal cancer after preoperative radiotherapy. *Dis Colon Rectum* 2001; 44: 1274-1280 [PMID: 11384199 DOI: 10.1097/00002334-199804000-00009]

Watanabe T, Tsurita G, Muto T, Sawada T, Sunouchi K, Higuchi Y, Komuro Y, Kanazawa T, Iijima T, Miyaki M, Nagawa H. Extended lymphadenectomy and preoperative radiotherapy for lower rectal cancers. *Surgery* 2002; 132: 27-33 [PMID: 12110792 DOI: 10.1067/msy.2002.125357]
dissection can be omitted in lower rectal cancer in which the longest lateral pelvic and perirectal
Ogawa S, Kuroyanagi H. Feasibility of Laparoscopic Total Mesorectal Excision with Extended Lateral Pelvic
3
3
after neoadjuvant (chemo)radiotherapy in patients with advanced low rectal cancer.
Akiyoshi T
10.1097/DCR.0000000000000834
based on pretreatment imaging.
dissection in patients with advanced low rectal cancer treated with preoperative chemoradiotherapy
Kim MJ
study.
Neoadjuvant chemoradiotherapy affects the indications for lateral pelvic node dissection in mid/Low
JW, Kim JH, Chang TY, Park SC, Sohn DK, Oh JH, Park JW, Ryoo SB, Jeong SY, Park KJ. Can
Oh HK
DOI:
10.1245/s10434-014-3559-z

Yokoyama T, Kim JH, Nagayama S, Kato T, Fukunaga Y, Unno T, Kano A. Lateral pelvic lymph node
dissection in rectal cancer surgery. Surgery 2020; 168: 486-496 [PMID: 32620303 DOI: 10.1016/j.surg.2020.04.063]

Law BZY, Yusuf Z, Ng YE, Aly EH. Does adding lateral pelvic lymph node dissection to neoadjuvant chemotherapy improve outcomes in low rectal cancer? Int J Colorectal Dis 2020; 35: 1387-1395 [PMID: 32504333 DOI: 10.1007/s00384-020-03656-1]

Yang X, Yang S, Hu T, Gu C, Wei M, Deng X, Wang Z, Zhou Z. What is the role of lateral lymph node dissection in rectal cancer patients with clinically suspected lateral lymph node metastasis after preoperative chemoradiotherapy? Cancer Med 2020; 9: 4477-4489 [PMID: 32352659 DOI: 10.1002/cam4.2643]

Peeters KC, van de Velde CJ, Leer JW, Martijn H, Jungebeutm JT, Kraneburg EK, Steup WH, Wiggers T, Rutten HJ, Marijn CA. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients—a Dutch colorectal cancer group study. J Clin Oncol 2005; 23: 6199-6206 [PMID: 16135487 DOI: 10.1200/JCO.2005.14.779]

Birgisson H, Pålhn, Gunnarson U, Gliemblus B. Occurrence of second cancers in patients treated with radiotherapy for rectal cancer. J Clin Oncol 2005; 23: 6126-6131 [PMID: 16135478 DOI: 10.1200/JCO.2005.02.543]

Marijn CA, Kaptitjen E, van de Velde CJ, Martijn H, Steup WH, Wiggers T, Kraneburg EK, Leer JW; Cooperative Investigators of the Dutch Colorectal Cancer Group. Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: report of a multicenter randomized trial. J Clin Oncol 2002; 20: 817-825 [PMID: 11821466 DOI: 10.1200/JCO.2002.20.3.817]

Oh HK, Kang SB, Lee SM, Lee SY, Ilm MH, Kim DW, Park JH, Kim YH, Lee KH, Kim JS, Kim JW, Kim JH, Chang TY, Park SC, Sohn DK, Oh JH, Park JW, Ryoo SB, Jeong SY, Park KJ. Neoadjuvant chemoradiotherapy affects the indications for pelvic lymph node dissection in mid/Low rectal cancer with clinically suspected lateral node involvement: a multicenter retrospective cohort study. Ann Surg Oncol 2014; 21: 2280-2287 [PMID: 24604580 DOI: 10.1245/s10434-014-3155-z]

Kim MJ, Kim TH, Kim DY, Kim SY, Baek JY, Chang HJ, Park SC, Park JW, Oh JH. Can chemoradiation allow for omission of lateral pelvic node dissection for locoregional rectal cancer? J Surg Oncol 2015; 111: 459-464 [PMID: 25559888 DOI: 10.1002/jso.23852]

Kusters M, Slater A, Muirhead R, Hompes R, Guy RJ, Jones OM, George BD, Lindsay I, Mortensen NJ, Cunningham C. What To Do With Lateral Nodal Disease in Low Locally Advanced Rectal Cancer? Dis Colon Rectum 2017; 60: 577-585 [PMID: 28481851 DOI: 10.1097/DCR.0000000000000834]

Akiyoshi T, Ueno M, Matsueda K, Konishi T, Fujimoto Y, Nagayama S, Fukunaga Y, Unno T, Kano A, Kuroyanagi H, Oya M, Yamaguchi T, Watanabe T, Muto T. Selective lateral pelvic lymph node dissection in patients with advanced low rectal cancer treated with preoperative chemoradiotherapy based on pretreatment imaging. Ann Surg Oncol 2014; 21: 189-196 [PMID: 23963871 DOI: 10.1245/s10434-013-3216-y]

Akiyoshi T, Toda S, Tomitaga O, Oka K, Tomizawa K, Hanaoka Y, Nagasaki T, Konishi T, Matoba S, Fukunaga Y, Ueno M, Kuroyanagi H. Prognostic impact of residual lateral lymph node metastasis after neoadjuvant (chemo)radiotherapy in patients with advanced low rectal cancer. BJIS Open 2019; 3: 822-829 [PMID: 31832589 DOI: 10.1002/bjsj.50194]

Ogura A, Akiyoshi T, Nagasaki T, Konishi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M, Kuroyanagi H. Feasibility of Laparoscopic Total Mesorectal Excision with Extended Lateral Pelvic Lymph Node Dissection for Advanced Lower Rectal Cancer after Preoperative Chemoradiotherapy. World J Surg 2017; 41: 868-875 [PMID: 27730352 DOI: 10.1007/s00268-016-3762-0]

Ogawa S, Itabashi M, Hiroswa T, Hashimoto T, Bamba Y, Kanneoka S. Lateral pelvic lymph node dissection can be omitted in lower rectal cancer in which the longest lateral pelvic and perirectal
lymph node is less than 5 mm on MRI. *J Surg Oncol* 2014; **109**: 227-233 [PMID: 24163955 DOI: 10.1002/jso.23478]

80 Tsukamoto S, Fujita S, Ota M, Mizusawa J, Shida D, Kanemitsu Y, Ito M, Shiomi A, Komori K, Ohue M, Akazai Y, Shiozawa M, Yamanouchi T, Bando H, Tsuchida A, Okamura S, Akagi Y, Takiguchi N, Saida Y, Akaai T, Moriya Y. Colorectal Cancer Study Group of Japan Clinical Oncology Group. Long-term follow-up of the randomized trial of mesorectal excision with or without lateral lymph node dissection in rectal cancer (JCOG0212). *Br J Surg* 2020; **107**: 586-594 [PMID: 32162301 DOI: 10.1002/bjs.11513]

81 Patel UB, Taylor F, Blomqvist L, George C, Evans H, Tekkis P, Quirke P, Sebag-Montefiore D, Moran B, Heald R, Guthrie A, Bees N, Swift I, Pennert K, Brown G. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. *J Clin Oncol* 2011; **29**: 3753-3760 [PMID: 21876084 DOI: 10.1200/JCO.2011.34.9068]

82 Birbeck KF, Macklin CP, Tiffin NJ, Parsons W, Dixon MF, Mapstone NP, Abbott CR, Scott N, Finan PJ, Johnston D, Quirke P. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. *Ann Surg 2002; 235*: 449-457 [PMID: 11923590 DOI: 10.1097/00000658-200204000-00001]

83 São Julião GP, Habr-Gama A, Vailati BB, Perez RO. The good, the bad and the ugly: rectal cancers in the twenty-first century. *Tech Coloproctol* 2017; **21**: 573-575 [PMID: 2856136 DOI: 10.1007/s10151-017-1651-7]

84 Haanappel A, Kroon HM, Schaap DP, Bedrikovetsky S, Dudi-Venkata NN, Lee HX, Thomas ML, Liu J, van der Valk MJM, Rutten HJT, Beets GL, Kusters M, Sammour T. Lateral Lymph Node Metastases in Locally Advanced Low Rectal Cancers May Not Be Treated Effectively With Neoadjuvant (Chemo)Radiotherapy Only. *Front Oncol* 2019; **9**: 1555 [PMID: 31850231 DOI: 10.3389/fonc.2019.01355]

85 Malakorn S, Yang Y, Bednarski BK, Kaur H, You YN, Holliday EB, Dasari A, Skibber JM, Rodriguez-Bigas MA, Chang GJ. Who Should Get Lateral Pelvic Lymph Node Dissection After Neoadjuvant Chemoradiation? *Dis Colon Rectum* 2019; **62**: 1158-1166 [PMID: 31490825 DOI: 10.1097/DCR.0000000000001465]

86 Wang P, Zhou S, Zhou H, Liang J, Zhou Z. Evaluating predictive factors for determining the presence of lateral pelvic node metastasis in rectal cancer patients following neoadjuvant chemoradiotherapy. *Colorectal Dis* 2019; **21**: 791-796 [PMID: 30801862 DOI: 10.1111/codi.14595]

87 Ogura A, Konishi T, Cunningham C, Garcia-Aguilar J, Iversen H, Toda S, Lee IK, Lee HX, Uehara K, Lee P, Putter H, van de Velde CJH, Beets GL, Rutten HJT, Kusters M; Lateral Node Study Consortium. Neoadjuvant (Chemo)radiotherapy With Total Mesorectal Excision Only Is Not Sufficient to Prevent Lateral Local Recurrence in Enlarged Nodes: Results of the Multicenter Lateral Node Study of Patients With Low cT3/4 Rectal Cancer. *J Clin Oncol* 2019; **37**: 33-43 [PMID: 30403572 DOI: 10.1200/JCO.18.0032]

88 Matsuda T, Sumi Y, Yamashita K, Hasegawa H, Yarmamoto M, Matsuda Y, Kanaji S, Oshikiri T, Nakamura T, Suzuki S, Kakeji Y. Outcomes and prognostic factors of selective lateral pelvic lymph node dissection with preoperative chemoradiotherapy for locally advanced rectal cancer. *Int J Colorectal Dis* 2018; **33**: 367-374 [PMID: 29442155 DOI: 10.1007/s00384-018-2974-1]

89 Nagasai T, Akiyoshi T, Fujimoto Y, Konishi T, Nagayama S, Fukunaga Y, Ueno M. Preoperative Chemoradiotherapy Might Improve the Prognosis of Patients with Locally Advanced Low Rectal Cancer and Lateral Pelvic Lymph Node Metastases. *World J Surg* 2017; **41**: 876-883 [PMID: 27730348 DOI: 10.1007/s00268-016-3748-y]

90 Kim HJ, Choi GS, Park JS, Park SY, Cho SH, Lee SJ, Kang BW, Kim GJ. Optimal treatment strategies for clinically suspicious lateral pelvic lymph node metastasis in rectal cancer. *Oncotarget 2017; 8*: 100724-100733 [PMID: 29246016 DOI: 10.18632/oncotarget.20121]

91 Chen JN, Liu Z, Wang ZI, Mei SW, Shen HY, Li J, Pei W, Wang Z, Wang XS, Yu J, Liu Q. Selective lateral lymph node dissection after neoadjuvant chemoradiotherapy in rectal cancer. *World J Gastroenterol* 2020; **26**: 2877-2888 [PMID: 32550762 DOI: 10.3748/wjg.v26.i21.2877]

92 Yahya JB, Herzog DO, Farrell MJ, Degnin CR, Chen Y, Holland J, Brown S, Jaboin J, Tsikitis VL, Lu K, Thomas CR Jr, Mitin T. Does a fine line exist between regional and metastatic pelvic lymph nodes in rectal cancer? Striking discordance between national guidelines and treatment recommendations by US rectal oncologists. *J Gastrointest Oncol* 2018; **9**: 441-447 [PMID: 29988090 DOI: 10.21037/gjo.2018.02.05]

93 Malakorn S, Chang GJ. Treatment of rectal cancer in the East and West: Should it be different? *Surgery 2017; 162*: 315-316 [PMID: 28619666 DOI: 10.1016/j.surg.2017.04.002]

94 Sammour T, Chang GJ. Lateral Node Dissection in Low Rectal Cancer: Time for a Global Approach? *Ann Surg 2017; 266*: 208-209 [PMID: 28437315 DOI: 10.1097/SLA.0000000000002273]

95 Sammour T, Chang GJ. Lateral pelvic lymph node dissection and radiation treatment for rectal cancer: Mutually exclusive or mutually beneficial? *Ann Gastroenterol Surg 2018; 2*: 348-350 [PMID: 30238075 DOI: 10.1002/ags3.12197]
