Half-fin anchovy (Setipinna tenuifilis), one of the most important economic fishes, is a highly migratory species. The complete mitochondrial genome of S. tenuifilis was determined by polymerase chain reaction amplification and sequencing, using 13 pairs of primers which were designed based on the mitogenome sequence of S. tenuifilis (GenBank number AP011565.1), a closely related species of Setipinna melanochir (WANCY region, Table 1). The complete mitogenome of S. tenuifilis was deposited in GenBank database with accession number MH037012. Muscle tissues were persevered in 95% ethanol for DNA extraction. Total genomic DNA was extracted from muscle tissue by standard phenol–chloroform procedure (Sambrook et al. 1989).

The complete mitogenome of S. tenuifilis was determined to be 16,215 bp, comprising 37 coding and two non-coding regions. The 37 coding regions include 13 protein-coding genes (ATP6 and 8, COI–III, Cytb, ND1-6, and 4L), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (12S and 16S rRNAs), with gene arrangement and content basically identical to those of other species of Engraulidae. The result of phylogenetic analysis strongly supported that S. tenuifilis was first clustered together with Setipinna melanochir and formed a monophyly in the genus Coilia, and then they constituted a sister-group relationship with two genus Engraulis, and Stolephorus. It concluded that the S. tenuifilis should be classified into the genus Setipinna. The present study also revealed the phylogenetic relationship of this genus at molecular levels. The complete mitochondrial genome sequence of S. tenuifilis can provide basic information for the studies on molecular taxonomy and phylogeny of teleost fishes.
Phylogenetic analysis was performed by MEGA 6.06 (Tamura et al. 2013) based on complete mitogenome sequence of *S. tenuifilis* and those of 13 closely related species belonging to four genus *Engraulis*, *Stolephorus*, *Setipinna*, and *Coilia*. The neighbour-joining tree (Figure 1) showed that *S. tenuifilis* first clustered together with *Setipinna melanochir* and formed a monophyly in the genus *Coilia*, and then they constituted a sister-group relationship with other two genus.

Table 1. Characteristics of the mitochondrial genome of *Setipinna tenuifilis*.

Locus	Abbreviation	From	To	Size nucleotide (bp)	Codon	Amino acid (AA)	Anti-codon	Intergenic nucleotide	Strand
tRNA^F	F	1	69	69	GAA	0	H		
12S rRNA	12S	70	1020	951	TAC	0	H		
tRNA^{Val}	I	3850	3921	72	CAT	-1	H		
16S rRNA	16S	1093	2779	1687	TTA	0	H		
tRNA^{Met}	M	3991	4059	69	CAT	0	H		
ND 1	nd1	2869	3807	939	ATG	313	H		
tRNA^{Phe}	W	5075	5146	72	TCA	2	H		
tRNA^{Leu}	A	5149	5217	69	TGC	1	L		
tRNA^{Leu}	N	5219	5291	73	GTT	0	L		
Rep origin		5292	5320	29					
tRNA^{Cys}	C	5321	5387	67	GCA	0	L		
tRNA^{Met}	Y	5388	5458	71	GCA	0	L		
COX I	cox1	5466	6989	1524	ATC	508	H		
tRNA^{Trp}		6095	7065	71	TGA	5	L		
tRNA^Y	D	7071	7139	69	GTC	11	H		
COX II	cox2	7151	7813	663	ATG	221	H		
tRNA^{Ser}		7844	7916	73	TTT	1	H		
ATP 8	atp8	7918	8082	165	ATG	55	H		
ATP 6	atp6	8076	8756	681	ATG	227	H		
COX III	cox3	8739	9541	783	ATG	261	H		
tRNA^{Ser}		9544	9615	72	TCC	0	H		
ND 3	nd3	9616	9963	348	ATG	116	H		
tRNA^{Arg}		9965	10,033	69	TCG	0	H		
ND4L	nd4L	10,034	10,327	294	ATG	98	H		
ND 4	nd4	10,324	11,694	1371	ATG	457	H		
tRNA^{Glu}		11,705	11,772	68	GTG	1	H		
tRNA^{Trp}		11,774	11,840	67	GCT	0	H		
tRNA^A		11,841	11,912	72	TAG	0	H		
ND 5	nd5	11,913	13,039	1127	ATG	375	H		
ND 6	nd6	13,045	13,563	519	AAC	173	L		
tRNA^{Cyt}		13,564	13,632	69	TCC	0	L		
Cyt b		13,637	14,767	1131	ATG	377	H		
tRNA^{Thr}		14,823	14,891	69	TGT	-1	H		
tRNA^{Pro}		14,891	14,961	71	TGG	0	L		
Control region	CR	14,962	16,215	1254					

Figure 1. Phylogenetic position of the half-fin anchovy.

Phylogenetic analysis was performed by MEGA 6.06 (Tamura et al. 2013) based on complete mitogenome sequence of *S. tenuifilis* and those of 13 closely related species belonging to four genus *Engraulis*, *Stolephorus*, *Setipinna*, and *Coilia*. The neighbour-joining tree (Figure 1) showed that *S. tenuifilis* first clustered together with *Setipinna melanochir* and formed a monophyly in the genus *Coilia*, and then they constituted a sister-group relationship with other two genus.
This result strongly supported that *S. tenuifilis* should be classified into the genus *Setipinna*. This study also revealed the phylogenetic relationship of the genus *Coilia* at molecular levels.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Central Public-interest Scientific Institution Basal Research Fund, ECSFR, CAFS [No. 2012M09].

References

Jondeung A, Sangthong P, Zardoya R. 2007. The complete mitochondrial DNA sequence of the Mekong giant catfish (*Pangasianodon gigas*), and the phylogenetic relationships among Siluriformes. *Gene.* 387:49–57.

Sambrook J, Maniatis TE, Fritsch EF. 1989. Molecular cloning: a laboratory manual. Vol. 1. New York: Cold Spring Harbor Laboratory Press.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. Mega6: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol.* 30:2725–2729.

Zhu YX, Chen Y, Cheng QQ, Qiao HY, Chen WM. 2013. The complete mitochondrial genome sequence of *Schizothorax macropogon* (Cypriniformes: Cyprinidae). *Mitochondrial DNA.* 24:237–239.