Theoretical Study of Mercury Species Adsorption on MgO(001) Surface

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 IOP Conf. Ser.: Earth Environ. Sci. 63 012023
(http://iopscience.iop.org/1755-1315/63/1/012023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 207.241.229.51
This content was downloaded on 06/09/2017 at 22:51

Please note that terms and conditions apply.

You may also be interested in:

Theoretical Study of Mercury Species Adsorption on CaO(100) Surface
Chong Zhang, Yu Liu, Li Zhao et al.

Vibrational spectroscopy at high pressures. 49. A Raman study of mercury (II) chloride and mercury (II) bromide
D M Adams and P A Fletcher

Simultaneous removal of Hg0 and HCN from the yellow phosphorus tail gas
Yanan Li and Xueqian Wang

Oxidation efficiency of elemental mercury in two DBD plasma reactors
Yuze Jiang, Jiutao An, Kefeng Shang et al.

Adsorption of Water on Au and Mercury on Au, Ag, Mo and Re: Measurements of the Changes in Work Function
R. P. Bajpai, H. Kita and K. Azuma

Green-emitting mercury chloride laser pumped by wide-band optical radiation
S P Bazhulin, N G Basov, S N Bugrimov et al.

Ratio of radiative to nonradiative energy transfer in lasing systems
M B Levin, M G Reva, V V Rodchenkova et al.

Charge transfer and adhesion in Rh/MgO(001)
C W M Castleton, S Nokbin and K Hermansson

Search for the composition of the active medium of an HgF laser
I S Lakoba
Theoretical Study of Mercury Species Adsorption on MgO(001) Surface

Chong Zhang*, Yu Liu, Li Zhao, Min-shu Cui and Qiang Lu
National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, PR China
jl-zc@163.com

Abstract. Traditional thermal power generation releases mercury, which will cause important environmental issues. As one of the main components of fly ash produced by coal-fired power generation, MgO can adsorb mercury in HCl atmosphere. Aiming to investigate the interaction mechanism of MgO with mercury in coal-fired flue gas in HCl atmosphere, density functional theory method is used to study the adsorption of mercury species on the fly ash component. The MgO(001) surface is built to study the stable adsorption configurations of Hg⁰, HCl, HgCl and HgCl₂ on all possible adsorption sites. Results show that Hg⁰, HgCl and HgCl₂ are all chemisorbed on MgO(001) surface weakly, while HCl is dissociatively adsorbed. HgCl cannot exist stably on the surface, so it has no obvious effect on the adsorption and oxidation of Hg⁰.

1. Introduction
Mercury is an important pollutant in coal-fired flue gas, and its main existing forms are elemental mercury (Hg⁰), oxidized mercury (Hg²⁺) and particulate mercury (HgP) [1,2]. The fly ash produced by coal-fired power generation can absorb Hg⁰ which cannot dissolve in water and is difficult to be removed by existing pollution control devices, to a certain extent [3-5]. Since experimental research is difficult to explain the adsorption and oxidation of Hg⁰ on the surface of fly ash component in micro scale, the quantum chemical Density Functional Theory (DFT) calculation is used to create the conditions for revealing the adsorption and oxidation mechanism of Hg⁰. On the basis of experimental research, many scholars have conducted deep studies using DFT method on the adsorption and oxidation mechanism of Hg⁰ on the surface of fly ash components including Fe₂O₃[6,7], CuO[8,9] and MnO₂[10,11]. However, theoretical studies on the adsorption mechanism of Hg⁰ by MgO are rare.

In this paper, the detailed mechanism of mercury species adsorption and dissociative adsorption of HCl on MgO(001) surface are studied by using first-principles calculations based on the density functional theory and the periodic slab models.

2. Computational details
2.1. Model
A four-layer MgO(001) slab is used with a 2 × 2 (8.5088Å×8.5088Å) unit cell, as is shown in Figure 1. The slabs are separated by a vacuum space of 12 Å to prevent interaction between periodic images. The positions of all atoms are allowed to relax with the exception of the bottom 2 layer kept fixed in their bulk positions throughout the calculations.
2.2. Computational methods
Structural optimizations are performed using Dmol³ package in Materials Studio software in this study. The Perdew–Burke–Enzerhoff generalized-gradient approximation (PBE, GGA) is used for the exchange-correlation functional. The double numerical basis set with polarization functions (DNP) and atomic orbital cutoff of 5.5 Å is used. The (3×3×1) k-points Monkhorst–Pack grid is used for bulk lattice optimization.

For the adsorption of mercury species on MgO(001) surface, the adsorption energy $E_{\text{ad}}$ is defined as:

$$E_{\text{ad}} = E_{\text{sys}} - E_{\text{ads}} - E_{\text{sur}}$$

Where $E_{\text{sys}}$ is the system total electronic energy after adsorption; $E_{\text{ads}}$ is the electronic energy of adsorbate; $E_{\text{sur}}$ is the electronic energy of the surface.

![Figure 1: MgO(001) surface. Green and red balls represent Mg and O atoms, respectively.](image)

3. Results and discussion

3.1. Hg⁰ adsorption on MgO(001) surface
There are four possible adsorption sites for Hg⁰ on MgO(001) surface, Mg site (1A), O site (1B), bridge site (1C) and hollow site (1D), respectively. The optimized configurations of Hg⁰ adsorption on each site are shown in Figure 2. The adsorption energies and geometric parameters are given in Table 1. The adsorption energies results show that the stability of Hg⁰ adsorption is in the order of 1A < 1D < 1C < 1B. All of the adsorption energy values are negative with less absolute value, which indicates the Hg⁰ adsorption is weak chemisorption. The adsorption energy of Hg⁰ adsorption on Mg site is relatively lower, and Hg⁰ is closer to the surface with a distance of 3.296 Å, indicating that Hg⁰ is more likely to be bound to the surface Mg atoms. The above results show that Hg⁰ cannot be absorbed directly on MgO(001) surface.
Figure 2. Optimized configurations of Hg$^0$ adsorption on MgO(001) surface. Grey balls represent Hg atoms.

Table 1. The adsorption energies and geometric parameters of Hg$^0$ adsorption on MgO(001) surface.

| No. | Hg-O (Å) | Hg-Mg (Å) | Eads (kJ/mol) |
|-----|----------|-----------|---------------|
| 1A  | -        | 3.296     | -11.087       |
| 1B  | 3.653    | -         | -8.690        |
| 1C  | 3.446    | 3.591     | -9.266        |
| 1D  | 3.616    | 3.649     | -9.438        |

3.2. HCl adsorption on MgO(001) surface

HCl in coal-fired flue gas can act as the oxidative agent of the Hg$^0$ catalytic oxidation reaction, while the mechanism of HCl affecting the Hg$^0$ oxidation on the fly ash composition is still not clear. All possible adsorption sites and initial configuration of HCl are considered. The optimized configurations of HCl adsorption on each site are shown in Figure 3. The adsorption energies and geometric parameters for HCl adsorption on the surface are given in Table 2. The adsorption energy results show that the stability of HCl adsorption is in the order of 2E < 2C < 2D < 2B < 2F < 2A. All of the adsorption energy values are negative, among which the absolute value of adsorption energy of 2A, 2B, 2D and 2F are relatively low, indicating they are weak chemisorption, while that of 2C and 2E are relatively high. In 2C, the adsorption energy is -94.749 kJ/mol, the distance of H-Cl elongates from 1.293 Å to 1.715 Å, H atom of HCl interacts with surface O and the length of new-formed H-O bond is 1.073 Å. 2E is strong chemisorption with an adsorption energy of -94.749 kJ/mol, in which dissociation adsorption of HCl take place and the H-Cl bond breaks, the distance of H-Cl elongates to 1.923 Å, H atom interacts with surface O and the length of H-O bond is 1.022 Å. After the dissociative adsorption of HCl, the Cl radical doesn’t adsorb on the surface but releases to the gas phase, which shows that Cl radical may combine with Hg in the gas phase to form HgCl, an intermediate of oxidation reaction.
Figure 3. Optimized configurations of HCl adsorption on MgO(001) surface. White and grey-green balls represent H and Cl atoms respectively.

Table 2. The adsorption energies and geometric parameters of HCl adsorption on MgO(001) surface.

| No. | H-O (Å) | H-Mg (Å) | Cl-O (Å) | Cl-Mg (Å) | H-Cl (Å) | E_ads (kJ/mol) |
|-----|---------|----------|----------|-----------|---------|---------------|
| 2A  | -       | 3.353    | -        | -         | 1.293   | -10.125       |
| 2B  | -       | -        | 3.021    | -         | 1.295   | -14.496       |
| 2C  | 1.073   | -        | -        | -         | 1.715   | -94.749       |
| 2D  | -       | -        | 3.144    | 3.366     | 1.295   | -15.267       |
| 2E  | 1.022   | -        | -        | 2.51      | 1.923   | -118.092      |
| 2F  | 3.415   | -        | 4.2      | -         | 1.291   | -10.540       |

3.3. HgCl adsorption on MgO(001) surface

HgCl is a possible intermediate of oxidation reaction of Hg\(^0\). So, it is necessary to study the adsorption of HgCl on MgO(001) surface. All possible adsorption sites and initial configuration of HgCl are considered. The optimized configurations of HgCl adsorption on each site are shown in Figure 4. The adsorption energies and geometric parameters for HgCl adsorption on the surface are given in Table 3. The adsorption energy results show that the stability of HgCl adsorption is in the order of 3E < 3G < 3A < 3C < 3D < 3F < 3B. All of the adsorption energy values are negative, but their absolute values are all less than 80 kJ/mol, showing they are relatively weak chemisorption. In addition, the difference of adsorption energy between various configurations is not large. Except for 3E, the absolute values of adsorption energies of other configurations are less than 50 kJ/mol, and all of them are vertical adsorption. The most stable structure for HgCl adsorption on the surface is 3E, in which HgCl adsors on the surface horizontally, and Hg atom is close to the surface O atom, Cl atom is close to the adjacent surface Mg atom, the distance between Hg and O is 2.768 Å, the distance between Cl and Mg is 2.614 Å, and Hg-Cl bond elongates slightly from 2.495 Å to 2.700 Å. All these results show that HgCl cannot be absorbed stably on MgO(001) surface, i.e., the intermediate of Hg\(^0\)-Hg\(^{2+}\) oxidation cannot be formed on the surface.
Figure 4. Optimized configurations of HgCl adsorption on MgO(001) surface.

Table 3. The adsorption energies and geometric parameters of HgCl adsorption on MgO(001) surface.

| No. | Hg-O (Å) | Hg-Mg (Å) | Cl-O (Å) | Cl-Mg (Å) | Hg-Cl (Å) | E_{ads} (kJ/mol) |
|-----|----------|-----------|----------|-----------|-----------|------------------|
| 3A  | -        | -         | 2.701    | -         | 2.756     | -49.927          |
| 3B  | -        | 3.009     | -        | -         | 2.528     | -43.035          |
| 3C  | 2.709    | -         | -        | -         | 2.526     | -45.938          |
| 3D  | 2.935    | 3.014     | -        | -         | 2.510     | -45.277          |
| 3E  | 2.768    | -         | 2.614    | -         | 2.700     | -72.103          |
| 3F  | 3.145    | 3.201     | -        | -         | 2.519     | -44.963          |
| 3G  | -        | -         | 3.064    | 2.963     | 2.822     | -51.748          |

3.4. HgCl₂ adsorption on MgO(001) surface

In the Hg⁰ oxidation reaction with HCl, HgCl₂ is the final product of the reaction. All possible adsorption sites and initial configurations of HgCl₂ are considered. The optimized configurations of HgCl₂ adsorption on each site are shown in Figure 5. The adsorption energies and geometric parameters for HgCl₂ adsorption on MgO(001) surface are given in Table 4. The adsorption energies results show that the stability of HgCl₂ adsorption is in the order of 4B < 4A < 4C < 4D. The most stable structure for HgCl₂ adsorption on the surface is 4B, in which HgCl₂ adsorbs on the surface horizontally, and Hg atom is close to the surface O atom, Cl atoms are close to 2 adjacent surface O atoms, The Hg-Cl bond has no significant elongation, but the Cl-Hg-Cl angle is reduced to 163.399°. Similar to HgCl, the adsorption of HgCl₂ on the surface is also a very weak chemisorption. Based on the adsorption of HgCl on MgO(001) surface, it can be inferred that MgO(001) surface has no obvious effect on the adsorption and oxidation of Hg⁰.
Figure 5. Optimized configurations of HgCl\(_2\) adsorption on MgO(001) surface.

Table 4. The adsorption energies and geometric parameters of HgCl\(_2\) adsorption on MgO(001) surface.

| No. | Hg-O (Å) | Hg-Mg (Å) | Cl-O (Å) | Cl-Mg (Å) | Hg-Cl (Å) | Cl-Hg-Cl (°) | E\(_{\text{ads}}\) (kJ/mol) |
|-----|----------|----------|----------|----------|----------|------------|-----------------|
| 4A  | 2.629    | 3.889    | -        | -        | 2.379    | 157.442     | -31.195         |
| 4B  | 2.502    | -        | -        | -        | 2.377    | 163.399     | -51.625         |
| 4C  | -        | -        | 4.455    | 2.339    | 2.339    | 179.809     | -12.955         |
| 4D  | -        | 2.933    | -        | 2.342    | 179.953  | -12.923     |

4. Conclusions
The detailed adsorption mechanism of Hg on MgO(001) surface is investigated by a systematic density functional theory study and the periodic slab model. Hg\(^0\), HgCl and HgCl\(_2\) are all chemically absorbed on MgO(001) surface weakly, while HCl is dissociatively absorbed. Since HgCl cannot exist stably on the surface, the intermediate of Hg\(^0\)-Hg\(^{2+}\) oxidation cannot be formed. As a result, on MgO(001) surface, the adsorption and oxidation of Hg\(^0\) cannot be obviously promoted.

5. Acknowledgments
The authors thank the Beijing Natural Science Foundation (3172030), Beijing Nova Program, and Fundamental Research Funds for the Central Universities (2016YQ05, 2016MS55) for financial support.

6. References
[1] Lu W, Tian Y, Zhan J and Xie M 2012 *Journal of Environment and Health* **29** 761
[2] Ren J, Zhou J, Luo Z and Cen K 2002 *Acta Scientiae Circumstantiae* **22** 289
[3] Meng S, Duan Y and Huang Z 2009 *Proceedings of the CSEE* **2006**
[4] Wu C, Duan Y and Zhao C 2008 *Proceedings of the CSEE* **14** 55
[5] Zhao Y, Liu S and Ma X 2008 *Proceedings of the CSEE* **28** 55
[6] Guo P, Guo X and Zheng C 2010 *Applied Surface Science* **256** 6991
[7] Guo P, Guo X and Zheng C 2011 *Fuel* **90** 1840
[8] Sun S, Zhang D and Li C 2014 *Chemical Engineering Journal* **258** 128
[9] Xiang W, Liu J and Chang M 2012 *Chemical Engineering Journal* **200** 91
[10] Zhang B, Liu J and Yang Y 2015 *Chemical Engineering Journal* **280** 354
[11] Zhang B, Liu J and Zheng C 2014 *Chemical Engineering Journal* **256** 93