SUPPORTING INFORMATION

Quantification of P-glycoprotein in the gastrointestinal tract of humans and rodents:
Methodology, Gut Region, Sex and Species Matters

Yang Mai ‡1,2, Liu Dou ‡1, Zhicheng Yao 3, Christine M. Madla 1, Francesca K.H. Gavins 1, Farhan Taherali1, Heyue Yin 2, Mine Orlu 1, Sudaxshina Murdan 1*, Abdul W. Basit 1*

1. UCL School of Pharmacy, University College London, 29 – 39 Brunswick Square, London, WC1N 1AX, United Kingdom.

2. School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China

3. Department of General Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China

*Corresponding authors: Professor Abdul W. Basit (a.basit@ucl.ac.uk) and Dr. Sudaxshina Murdan (s.murdan@ucl.ac.uk)
Supplementary Figure 1. Western Blot results of intestinal P-gp expression in male and female human small intestinal tissues

Supplementary Figure 2. Western Blot results of intestinal P-gp expression in male and female rat intestinal tract
Supplementary Figure 3. Western Blot calibration of intestinal P-gp expression.

Supplementary Figure 4. Correlation between human small intestinal P-gp following quantification via LC-MS/MS and Western Blot.
Supplementary Figure 5. Correlation between rat small intestinal P-gp following quantification via LC-MS/MS and Western Blot.

Rat small intestine

Rat colon
Supplementary Figure 6. Correlation between rat colonic P-gp following quantification via LC-MS/MS and Western Blot.

Supplementary Figure 7. Correlation between human small intestinal P-gp following quantification via LC-MS/MS and RT-PCR.
Supplementary Figure 8. Correlation between human small intestinal P-gp following quantification via Western Blot and RT-PCR.

Supplementary Figure 9. Correlation between rat small intestinal P-gp following quantification via LC-MS/MS and RT-PCR.
Supplementary Figure 10. Correlation between rat small intestinal P-gp following quantification via Western Blot and RT-PCR.

![Graph showing correlation between rat colon P-gp levels and mdr1a expression.](image)

$R^2 = 0.0071$

Supplementary Figure 11. Correlation between rat colonic P-gp following quantification via LC-MS/MS and RT-PCR.

![Graph showing correlation between rat colon P-gp levels and mdr1a expression.](image)

$R^2 = 0.9106$
Supplementary Figure 12. Correlation between rat colonic P-gp following quantification via Western Blot and RT-PCR.

![1st transition calibration curve](image)

Supplementary Figure 13. 1st transition calibration curve from the average ratio of P-glycoprotein at specific concentrations (see Supplementary Table 6).
Supplementary Figure 14. 2nd transition calibration curve from the average ratio of P-glycoprotein at specific concentrations (see Supplementary Table 7).

Supplementary Figure 15. 3rd transition calibration curve from the average ratio of P-glycoprotein at specific concentrations (see Supplementary Table 8).
Supplementary Figure 16. Comparison of the 1st, 2nd and 3rd transition quantification values of human intestinal P-glycoprotein (see Supplementary Table 9).
Supplementary Figure 17. Comparison of the 1st, 2nd and 3rd transition quantification values of Wistar rat intestinal P-glycoprotein (see Supplementary Table 10).
Supplementary Figure 18. MRM chromatograms for the developed LC-MS/MS method applied to measure all three transitions of proteotypic peptides (left) and their stable isotope labelled internal standard peptides (right) from the spiked HSA matrix.
Supplementary Figure 19. MRM chromatograms for the developed LC-MS/MS method applied to measure all three transitions of proteotypic peptides (left) and their stable isotope labelled internal standard peptides (right) from the blank HSA matrix.
Supplementary Figure 20. MRM chromatograms for the developed LC-MS/MS method applied to measure all three transitions of proteotypic peptides (left) and their stable isotope labelled internal standard peptides (right) from 0.1% formic acid water.
Supplementary Figure 21. Comparison of the analytical samples and internal standard transition MS signal ratio, 1/2 transition ratio, 1/3 transition ratio and 2/3 transition ratio respectively; a) human intestinal tissue samples; b) Wistar rat intestinal tissue samples.

Supplementary Table 1. Statistical difference via one-way ANOVA of P-gp expression in intestinal segments in rats and humans via quantification
Supplementary Table 2. Threshold cycle values for PCR

Sample	Mean	S.D.	Min	Max	p-value	2^-ΔCt (10^6)												
Rat																		
Jejunum	M (n = 7)	21.85	0.68	21.19	23.02	31.02	0.86	30.05	32.29	9.17	0.35	1.79	0.44					
	F (n = 8)	22.51	0.58	21.73	23.49	33.14	0.78	32.34	34.68	10.62	0.52	0.67	0.23					
	M (n = 10)	22.53	0.96	20.74	23.66	31.38	1.06	29.41	32.46	8.84	0.37	2.24	0.58					
	F (n = 5)	22.16	0.79	21.13	23.16	31.88	0.90	30.51	32.97	9.72	0.23	1.20	0.20					
Duodenum	M (n = 6)	22.77	0.68	22.24	23.66	30.96	0.96	29.97	32.46	8.19	0.39	3.54	0.87					
	F (n = 6)	22.01	0.48	21.23	22.46	29.86	0.70	28.96	30.72	7.85	0.37	4.45	1.11					
Jejunum	M (n = 6)	21.93	0.69	21.04	22.64	28.77	0.78	27.79	29.87	6.84	0.41	8.99	2.35					
	F (n = 6)	22.28	0.89	21.29	23.71	29.35	0.68	28.41	30.25	7.07	0.46	7.76	2.36					
	M (n = 6)	22.35	0.60	21.58	23.20	29.08	0.54	28.44	29.85	6.73	0.12	9.44	0.80					
	F (n = 6)	22.25	0.62	22.17	23.17	29.57	0.72	28.34	30.38	7.32	0.33	6.42	1.56					
	M (n = 6)	22.29	0.96	21.06	23.19	28.61	1.06	27.28	29.66	6.32	0.21	12.66	1.91					
	F (n = 6)	22.42	0.71	21.22	23.20	29.44	0.88	27.91	30.54	7.01	0.29	7.89	1.61					
Human																		
Jejunum																		
		< 0.001†	0.002†	< 0.001†	0.084	0.003†	0.037	0.046	0.483	< 0.001†	< 0.001†	0.016	0.516					
Human (mdr1)																		
Jejunum																		
		< 0.001†	0.002†	< 0.001†	0.084	0.003†	0.037	0.046	0.483	< 0.001†	< 0.001†	0.016	0.516					
Rat (mdr1a)																		
Jejunum																		
		< 0.001†	0.002†	< 0.001†	0.084	0.003†	0.037	0.046	0.483	< 0.001†	< 0.001†	0.016	0.516					

p < 0.05
†p < 0.01
Supplementary Table 3. Raw RT-PCR data

Group	Ct (mdr1)	Ct (β-actin)	ΔCt	ΔCt(-)	2^ΔCt	Expressive Value	Mean (Ct mdr1)	Mean (Ct β-actin)	Mean (ΔCt)	Mean S.D. (Ct mdr1)	S.D. (Ct β-actin)	Mean S.D. (ΔCt)	S.D.	S.D.	
Male Duodenum	1	33.83	23.61	8.85	-8.85	0.00217	2.17								
	2	32.61	22.25	8.11	-8.11	0.00363	3.63								
	3	32.94	22.46	8.39	-8.39	0.00299	2.99								
	4	32.43	22.24	7.73	-7.73	0.00471	4.71								
	5	33.84	23.66	8.12	-8.12	0.0036	3.6								
	6	32.62	22.41	7.96	-7.96	0.00401	4.01	30.96	22.77	8.19	3.52	0.96255	0.6757	0.38654	0.8692
Female Duodenum	1	32.25	21.23	7.73	-7.73	0.00471	4.71								
	2	32.71	22.46	8.26	-8.26	0.00326	3.26								
	3	32.42	22.13	7.50	-7.50	0.00553	5.53								
	4	33.38	22.43	8.25	-8.25	0.00329	3.29								
	5	31.90	21.63	7.96	-7.96	0.00402	4.02								
	6	32.75	22.16	7.41	-7.41	0.00587	5.87	29.86	22.01	7.85	4.45	0.69623	0.48172	0.36556	1.1132
Male Jejunum	1	33.08	22.51	7.36	-7.36	0.00609	6.09								
	2	32.13	21.42	7.37	-7.37	0.00606	6.06								
	3	31.93	21.04	6.75	-6.75	0.00928	9.28								
	4	34.07	22.64	6.50	-6.50	0.01105	11.05								
	5	33.28	22.45	6.60	-6.60	0.01032	10.32								
	6	33.16	21.49	6.49	-6.49	0.01111	11.11	28.77	21.93	6.84	8.99	0.77600	0.68766	0.41225	2.3488
Female Jejunum	1	33.68	23.71	6.54	-6.54	0.01075	10.75								
	2	32.54	22.67	6.65	-6.65	0.00996	9.96								
	3	33.14	22.27	7.68	-7.68	0.00486	4.86								
	4	32.28	22.35	7.00	-7.00	0.00781	7.81								
	5	31.90	21.29	7.54	-7.54	0.00539	5.39								
---	---	---	---	---	---	---	---	---	---	---					
	6	21.40	7.01	-7.01	0.00776	7.76	29.35	22.28	7.07	7.76					
	1	32.76	22.58	6.75	-6.75	0.00929	9.29								
	2	32.44	22.63	6.57	-6.57	0.01049	10.49								
	3	30.68	21.76	6.68	-6.68	0.00977	9.77								
	4	33.52	23.20	6.65	-6.65	0.00997	9.97								
	5	32.29	22.35	6.83	-6.83	0.00879	8.79								
	6	30.90	21.58	6.91	-6.91	0.00832	8.32								

Ileum

	6	21.06	6.27	-6.27	0.01296	12.96					
	1	31.69	21.06	6.27	-6.27	0.01296	12.96				
	2	34.43	22.17	6.55	-6.55	0.0107	10.7				
	3	34.12	23.07	6.07	-6.07	0.01487	14.87				
	4	34.42	23.02	6.48	-6.48	0.01121	11.21				
	5	33.50	23.19	6.47	-6.47	0.01126	11.26				
	6	31.46	21.22	6.06	-6.06	0.01496	14.96	28.61	22.29		

Colon

	6	21.22	6.69	-6.69	0.00966	9.66					
	1	31.46	21.22	6.69	-6.69	0.00966	9.66				
	2	32.74	22.25	7.23	-7.23	0.00665	6.65				
	3	33.65	22.73	6.63	-6.63	0.01009	10.09				
	4	33.47	22.94	7.07	-7.07	0.00744	7.44				
	5	34.19	23.20	7.34	-7.34	0.00619	6.19				
	6	32.35	22.21	7.10	-7.10	0.00728	7.28	29.44	22.42		
Supplementary Table 4. Rat intestinal *mdr1a* and P-gp expression quantified by RT-PCR, Western Blot or LC-MS/MS

Technique employed for gene and protein expression of intestinal P-gp

Technique	Sex	Rat Sample	Duodenum	Jejunum	Ileum	Colon
RT-PCR	Male	1	2.17	6.09	8.79	14.87
		2	3.60	9.28	9.97	11.21
		3	3.63	11.05	9.29	12.96
		4	2.99	6.06	8.32	11.26
		5	4.71	11.11	9.77	14.96
		6	4.01	10.32	10.49	10.70
	Female	1	3.26	7.76	5.04	7.44
		2	3.29	4.86	5.49	7.28
		3	4.02	5.39	5.54	6.19
		4	4.71	7.81	8.79	9.66
		5	5.53	10.75	5.66	6.65
		6	5.87	9.96	8.00	10.09
Western Blot	Male	1	0.40	0.51	0.63	0.82
		2	0.48	0.64	0.84	0.96
		3	0.58	1.00	1.22	1.58
		4	0.47	0.48	0.54	0.99
		5	0.80	1.42	1.52	1.65
		6	0.70	0.83	0.96	1.66
	Female	1	0.10	0.41	0.49	0.72
		2	0.21	0.37	0.38	0.58
		3	0.22	0.40	0.51	0.90
		4	0.23	0.55	0.73	0.81
		5	0.34	0.74	0.62	1.25
		6	0.47	0.60	0.67	0.99
LC-MS/MS	Male	1	2.04	3.16	3.37	3.09
		2	2.05	3.18	3.38	1.82
		3	2.06	3.45	5.17	2.11
		4	2.04	2.24	2.51	2.00
		5	2.27	3.92	4.18	3.20
		6	2.11	3.26	3.38	1.68
	Female	1	1.37	1.81	2.41	2.00
		2	1.57	1.61	1.91	1.78
	1.81	1.92	2.23	1.75		
---	------	------	------	------		
4	2.15	2.20	3.38	2.85		
5	2.31	2.24	2.46	2.44		
6	2.54	1.95	2.24	1.77		
Supplementary Table 5. Human intestinal *mdrl* and P-gp expression quantified by RT-PCR, Western Blot or LC-MS/MS

Number	Intestinal region	Sample	RT-PCR	Western Blot	LC-MS/MS
1	Jejunum	M1	1.79	1.63	2.89
2		M2	1.83	1.77	2.97
3		M3	1.28	1.29	2.22
4		M4	1.62	1.53	2.81
5		M5	2.47	2.04	3.32
6		M6	1.31	1.36	2.41
7		M7	2.20	1.84	3.05
8		F1	0.39	0.37	0.59
9		F2	0.53	0.71	1.60
10		F3	0.95	1.06	1.95
11		F4	0.52	0.61	1.14
12		F5	0.89	0.91	1.86
13		F6	0.91	0.95	1.94
14		F7	0.43	0.42	0.68
15		F8	0.75	0.81	1.85
1	Ileum	M1	3.34	3.09	6.43
2		M2	2.45	2.11	4.99
3		M3	2.00	1.94	4.11
4		M4	1.37	1.03	3.87
-----	-----	-----	-----		
5	M5	1.71	1.59	3.94	
6	M6	2.96	2.26	5.01	
7	M7	2.25	2.10	4.55	
8	M8	2.24	2.06	4.40	
9	M9	2.21	1.99	4.28	
10	M10	1.90	1.86	4.02	
11	F1	1.28	1.23	2.88	
12	F2	1.50	1.44	3.53	
13	F3	1.15	1.08	2.71	
14	F4	0.97	0.95	2.31	
15	F5	1.11	1.06	2.52	
Supplementary Table 6. Average ratio of the first transition for a calibration curve

STDS	Concentration (fmol)	Target peak area (635.3/771.3)	Target peak area (640.3/781.4)	Ratio	Average ratio	
1	500	1067	1069	1269	0.8423956	0.92146047
		1372		1.0811663		
		509		0.4104839		
2	250	457	1240	623	0.3685484	0.42715054
				0.5024194		
		251		0.2079536		
3	125	241	1207	266	0.1996686	0.20933444
				0.2203811		
		123		0.1000000		
4	62.50	114	1230	106	0.0926829	0.09295393
				0.0861789		
		50		0.0394633		
5	31.25	48	1267	39	0.0378848	0.03604315
				0.0307814		
		27		0.0225188		
6	15.625	20	1199	20	0.0166806	0.01973867
				0.0200167		
Supplementary Table 7. Average ratio of the second transition for a calibration curve

STDs	Concentration (fmol)	Target peak area (635.3/900.5)	Target peak area (640.3/910.5)	Ratio	Average ratio	
1	500	1659	1602	1.04012539	1.00438871	1.05350052
		1780	1595	1.11598746		
		899		0.62430556		
2	250	699	1440	0.48541667	0.58101852	
		912		0.63333333		
		367		0.24049803		
3	125	358	1526	0.23460026	0.24093491	
		378		0.24770642		
		200		0.1332445		
4	62.50	209	1501	0.13924051	0.1221408	
		141		0.09393738		
		75		0.05175983		
5	31.25	73	1449	0.05037957	0.05221992	
		79		0.05452036		
		34		0.02278820		
6	15.625	37	1492	0.02479893	0.02457551	
		39		0.02613941		
Supplementary Table 8. Average ratio of the third transition for a calibration curve

STDs	Concentration (fmol)	Target peak area (635.3/971.6)	Target peak area (640.3/981.5)	Ratio	Average ratio
1	500	2480	2461	0.8775646	
		3135	3076	0.87084218	0.95258316
		1129	1112	0.39697609	
2	250	1110	1107	0.38924051	0.42217534
		1366	1359	0.48030942	
		581	574	0.22865014	
3	125	550	550	0.21645022	0.22261577
		566	563	0.22274695	
		312	307	0.12154266	
4	62.50	284	284	0.11063498	0.10167511
		187	187	0.07284768	
		116	116	0.04178674	
5	31.25	103	103	0.03710375	0.03758405
		94	94	0.03386167	
		46	46	0.01762452	
6	15.625	48	48	0.01839080	0.01634738
		34	34	0.01302682	
Supplementary Table 9. Comparison of transitions 1 – 3 in human intestinal samples

Sex	Site	Number	Transition 1	Transition 2	Transition 3
Male	Jejunum	1	1.39	1.19	0.98
		2	3.01	3.21	3.44
		3	2.66	2.56	2.25
		4	2.76	2.96	2.82
		5	2.85	3.15	2.95
		6	1.94	2.04	2.40
		7	2.52	2.87	3.07
		8	6.64	6.74	6.11
Male	Ileum	9	4.01	4.51	4.30
		10	3.44	3.82	4.02
		11	3.99	4.09	3.65
		12	4.18	4.31	4.25
		13	4.98	5.08	4.94
		14	3.32	3.33	3.67
		15	4.56	4.88	5.10
		16	4.24	4.18	4.04
		17	4.01	3.91	4.13
Female	Jejunum	18	0.41	0.67	0.52
		19	1.77	1.99	1.71
		20	1.87	2.11	1.77
		21	0.98	1.17	1.11
		22	2.21	2.01	1.89
Female	Ileum	23	1.56	1.96	1.76
		24	0.78	0.71	0.65
		25	1.66	1.57	1.63
Female	Ileum	26	2.81	2.79	2.63
----	------	------	------		
27	3.31	3.67	3.39		
28	2.98	2.89	2.87		
29	2.44	2.40	2.22		
30	2.31	2.63	2.41		
Supplementary Table 10. Comparison of transitions 1 – 3 in Wistar rat intestinal samples

Sex	Site	Number	Transition 1	Transition 2	Transition 3
Male	Duodenum	1	2.22	2.13	1.96
		2	2.33	2.23	1.98
		3	2.14	2.09	2.01
		4	2.10	2.17	1.91
		5	2.13	2.33	2.21
		6	2.22	2.19	1.93
		7	3.01	3.24	3.08
		8	2.90	2.99	3.36
	Jejunum	9	2.31	2.37	2.11
		10	3.71	3.89	3.95
		11	3.21	3.32	3.20
Male	Ileum	12	3.27	3.49	3.41
		13	3.53	3.50	3.26
		14	2.50	2.68	2.34
		15	4.12	4.21	4.15
		16	5.15	5.05	5.29
		17	3.16	3.45	3.29
		18	3.73	4.01	3.95
		19	1.87	1.91	1.74
		20	1.92	1.72	1.65
	Colon	21	1.93	2.21	2.02
		22	2.88	3.29	3.12
		23	3.10	3.20	2.97
Female	Duodenum	25	2.29	2.39	2.22
		26	2.54	2.68	2.41
Supplementary Table 11. The accuracy and precision of QC samples with the current method, calculated as % recovery and the relative standard deviation (CV%) respectively.

	QC low	QC medium	QC high
Accuracy	91.8 – 104.1%	92.9 – 107.6%	90.5 – 111.4%
Intra-day	11.1%	6.1%	9.8%
Precision	11.3%	14.6%	13.8%
Supplementary Table 12. The results of peptide stability assessment in different processing conditions.

Stability	QC low	QC medium	QC high
2 hours at RT	96.1%	93.4%	99.6%
24 hours at 4°C	91.1%	92.8%	98.7%
4 hours at 37°C	94.1%	91.2%	100.9%

Supplementary Table 13. Verification of interference-free transitions for the analyte and internal standard

	Transition ratio 1/2	Transition ratio 1/3	Transition ratio 2/3			
	Analytical samples	Internal standards	Analytical samples	Internal standards	Analytical samples	Internal standards
Human tissue						
Range	0.54 – 0.85	0.66 – 0.90	0.30 – 0.50	0.35 – 0.50	0.49 – 0.70	0.52 – 0.65
Average	0.68	0.77	0.40	0.43	0.59	0.56
Wistar rat tissue						
Range	0.59 – 0.96	0.66 – 0.93	0.32 – 0.58	0.39 – 0.53	0.51 – 0.76	0.51 – 0.64
Average	0.72	0.80	0.45	0.46	0.63	0.58