STUDIES ON THE ARBUSCULAR MYCORRHIZAL FUNGAL BIODIVERSITY IN THE PLANT SPECIES OF KONDRANGHI HILLS, DINDUGUL DISTRICT, TAMIL NADU, INDIA

Santhoshkumar, S*., N. Nagarajan and K. Santhoshkumar
PG and Research Department of Botany Kongunadu Arts and Science College (Autonomous), Coimbatore - 641 029, Tamil Nadu, India.

ABSTRACT
The present study to investigated that the arbuscular mycorrhizal fungal root colonization and spore population in some medicinal at Kondrangi hills Eastern Ghats of Dindugul district, Tamilnadu, India. Root and rhizosphere soil samples were collected during the month of August, 2017-March, 2018 from the surface to 30 cm depth as well as pH were also recorded. Totally 32 plant species belonging to 21 families and 30 genera were identified. The present result showed arbuscular mycorrhizal spore population in the rhizosphere soil and root colonization of all the plant species. A total of 20 AM fungal species belonging to 7 genera and 2 different orders were recorded from the rhizosphere soil samples of this study region. The Glomus was dominant had seen in rhizosphere soil samples in all the medicinal plant species. The maximum spore population was found in the rhizosphere soil samples of Phyllanthus amarus (440 /100 g soil) which belongs to the family Euphorbiaceae and the lowest spore population was observed in the Tephrosia purpurea (110 /100g soil) belongs to Fabaceae. family. The highest 87% AM fungal infection was found in roots of Plumbago zeylanica belongs to the family Plumbaginaceae. While the lowest 24% AM fungal association was found in the root of Striga angustifolia belongs to the family Scrophulariaceae.

Keywords: Arbuscular mycorrhizal fungi, Medicinal plants, Kondrangi hills.

1. INTRODUCTION
Fungi constitute a megadiverse kingdom. There are at least 1.5 million, but probably as many as 3–5 million species, of which only about 100,000 have been described formally. Fungi play an important role in the rhizosphere; one among them Arbuscular Mycorrhizal symbiotic association with plant and enhances the absorption of water and nutrients, especially in phosphorous. It also increases the tolerance of plants to biotic and abiotic stresses, as pathogens, drought and high salinity (1). Besides that, the Arbuscular Mycorrhizal plays a critical role in the functional and successional processes of plant communities as soil formation, management and nutrient cycling (2, 3).

In the present study area of kondrangi hills located at eastern region of Dindugul district, a rich diversity of medicinal plants scattered over the hills and hillocks. Publish information on the AM fungal association in the medicinal plants at kondrangi hills is not available till date. Hence, the present research to investigate the diversity of arbuscular mycorrhizal fungi in the rhizosphere soil samples and root colonization of medicinal plants species were collected from the kondrangi hills, Eastern Ghats of Dindugul district, Tamil Nadu India.
2.2. Sample collection

In this present study, root and rhizosphere soil samples of 32 plant species were collected for the duration of August, 2017- March, 2018. The collected soil and root samples were placed in the polyethylene bags, labeled and then transported to the laboratory. The root samples were freshly processed, whereas rhizosphere soil samples were analyzed for mycorrhizal spore population and AM fungal root colonization in study species.

2.3. Estimation of AM fungal root colonization

The root samples were cleared and stained in tryphan blue with a modified version of following method by Philips and Hayman’s (4). The collected roots samples were cut into 1-2 cm pieces, heated at 90ºC in 10% KOH for about 1 hour. For thicker and older roots, the duration was increased. The root segments were rinsed in water and acidified with dilute HCl. The root pieces were stained with 0.05% tryphan blue in lacto phenol for 5 minutes and the excess stain was removed with clear lacto phenol.

The percentage of AM fungal infection was calculated using the formula:

\[
\text{Percentage of colonization} = \frac{\text{No. of root segments colonized}}{\text{Total no of root segments of observed}} \times 100
\]

2.4. Identification of AM fungi

The present study isolation and identification of AM fungal spores based upon their morphological characters such as spore size, color, hyphal attachment, cell wall layer characters, were identified in addition with nomenclature, keys of the following manual authors were used: Raman and Mohankumar (5); Schenk and Perez (6) and Schubler and Walker (7). The Photomicrographs were taken with the help of a Magnus Olympus Microscope.

2.5. Soil pH

The pH of the soil samples was determined (soil-water suspensions 1:5) with the help of pH meter (Elico) and values were recorded.

3. RESULTS AND DISCUSSION

In the present result reveals that totally 32 medicinal plant species belongs to 21 families were examined AM fungal colonization and spore population at kondrangi hills, Dindugul district, Tamilnadu (Fig. 2,3). The collected and identification of the plant species for their respective family, habit, plant parts used and therapeutic uses are presented (Table.1, 2; Fig. 4,5). The present findings that the rhizosphere soil samples of kondrangi hills, the maximum spore population was observed in the plant species of Phyllanthus amarus (440/100g of soil) belongs to Euphorbiaceae and minimum was observed in Tephrosia purpurea (110/100g of soil) belongs to Fabaceae. In the present investigation the highest AM fungal infection was recorded in Plumbago zeylanica 87%belongs to Plumbaginaceae and minimum was noticed in Striga angustifolia 24% belongs to Scrophulariaceae. The plant species like Portulaca oleracea 36% (Portulacaceae) Heliotropium scarbrum 35% (Boranginaceae), Meremiea tridenta 40% (Convolvulaceae), Evolulus alsinoides 33% and Ipomea pesti-gridis 28% belongs to (Convolvulaceae), Justicia tranubariensis 32% (Acanthaceae), Plecranthus barbatus 40% (Lamiaceae), Striga angustifolia 24% (scrophulariaceae) and the two members of Euphorbiaceae Euphorbia hirta 28%, Phyllanthus amarus 39% showed 20 to 40 % of infection. Logaprabha and Tamilselvi (2015) observed that some of the plants which were previously reported to be-non-mycorrhizal, were found to possess the mycorrhizal association. The level of AM infection markedly differed with various plants. The plant species Cynodon dactylon belongs to Poaceae member showed AM fungal colonization Sampath kumar et al. (2007). The similar findings were noticed in the present study of other species Cymbopogan citratus belongs to Poaceae member. The results was observed in the present research clearly indicated that the plants species belonging to the family Poaceae showed Arbuscular mycorrhizal fungal colonization. In this, study revealed that the rhizosphere soil samples of all the plant species the genus Glomus was predominant than other and Gigaspora occupied the second position. The present study also concluded that there is a high incidence of AM fungi in the study area. All the plant species studied were colonized by AM fungi.
Table 1. Identification of Plant species and their medicinal uses of Kondrangi hills, Dindugul district, Tamilnadu.

S.No.	PLANT SPECIES	FAMILY	PART USED	MEDICINAL USES
1	Cleome monophylla L.	Capparidaceae	Whole plant	Ulcer, Swelling
2	Portulaca oleracea L.	portulacaceae	Whole plant	Heart attack, digestive problem
3	Corchorus aestuans L.	Tiliaceae	Whole plant	Headache, flavouring
4	Cissus quadrangularis L.	Vitceae	Stem	Diabetes, allergies, asthma
5	Indigofera villosa L.	Fabaceae	Leaf	Snake bite, swelling, ulcer
6	Tephrosia purpurea sensu Baker	Fabaceae	Whole plant	Ulcer, asthma, tumors
7	Mollugo pentaphylla L.	Aizoaceae	Leaf	Stomach pain, antacancer
8	Borreria ocymoides (Burm.f.) DC.	Rubiaceae	Whole plant	Headache, wounds, eczema
9	Oldenlandia aspera L.	Rubiaceae	Leaf and root	Tuberculosis, asthma, snake bites
10	Oldenlandia umbellata Steud.	Rubiaceae	Whole plant	Asthma, snake bites
11	Plumbago zeylanica L.	Plumbaginaceae	Whole plant	Dysentery, leucoderma, piles
12	Pergularia daemia (Forssk.) chiov.	Asclepiadaceae	Whole plant	Leprosy, haemorrhoids, ulcer
13	Heliotropium scabrum Retz.	Boranginaceae	Whole plant	Blood loss, yaws, skin ulcer
14	Merremia tridenta (L.) Hallier f.	Convolvulaceae	Whole plant	Dysentery, snake bites
15	Evolulus alsinoides (Linn.) Linn.	Convolvulaceae	Whole plant	Syphilis, scrofula, snake bites
16	Ipomoea pesti-gridis L.	Convolvulaceae	Leaf	Pimples, tumours, headache
17	Didymocarpus tomentosa Wight	Gesneriaceae	Leaf	Fever, skin allergy, kidney stone
18	Sesamum orientale L.	Pedieaceae	Whole plant	Diarrhoea, dysentery
19	Barleria prionitis L.	Acanthaceae	Whole plant	Fever, rheumatism, jaundice
20	Andrographis echionides (L.)	Acanthaceae	Whole plant	Fever, stomach-ache, dysentery
21	Justicia trangubariensis L.f.	Acanthaceae	Whole plant	Fever, stomach pain
22	Plentranthes barbatus Andrews	Lamiaceae	Leaf, root	Blood pressure, digestion
23	Leucas aspera(Willd.) Link	Lamninaeae	Leaf	Fever, skin diseases
24	Striga angustifolia (D. Don)C J Saldanha	Scrophulariaceae	Leaf and stem	Healing process, dye skins blue-black
25	Allmania nodiflora (L)R.Br.ex Wight	Amaranthaceae	Whole plant	Fever, cold, snake bites
26	Aerva javanica (Buirm.f.) juss.ex Schult.	Amaranthaceae	Whole plant	Headache, toothache
27	Euphorbia hirta L.	Euphorbiaceae	Whole plant	Asthma, Fever, cold
28	Phyllanthus amarus Schumach & Thonn.	Euphorbiaceae	Whole plant	Jaundice, stomach pain
29	Phyllanthus maderaspatenesis L.	Euphorbiaceae	Whole plant	Skin, rheumatism, jaundice
30	Gloriosa superba L.	Liliaceae	Whole plant	Cancer, ulcer, piles
31	Typhonium trilobatum. schott.	Araceae	Tuber	Piles, stomach pain, ulcer
32	Cymbopogan citrates(DC) stapf,	Poaceae	Leaf and root	Achy joints, fever, cold
Table 2. AM fungal root colonization and spore population in the plant species of Kondrangi hills, Ottanchantram, Dindugul district, during August, 2017-March, 2018.

S. No	Plant Species	pH	Types of infection	Spore Population (100g/soil)	(%) of root colonization
1.	Cleome monophylla L.	5.1	+ - +	375	45
2.	Portulaca oleracea L.	4.8	+ + -	260	36
3.	Corchorus aescuans L.	6.8	+ - +	403	60
4.	Cissus quadrangularis L.	5.3	+ + -	180	55
5.	Indigofera villosa L.	5.5	+ - +	340	53
6.	Tephrosia purpurea Sensu Baker	5.5	+ + -	110	70
7.	Mollugo pentaphylla L.	4.8	+ - +	303	66
8.	Borreria ocyoides (Burm.f.) DC.	5.2	+ + -	245	46
9.	Oldenlandia aspera L.	5.9	+ - +	210	54
10.	Oldenlandia umbellata Steud.	6.0	+ + -	359	77
11.	Plumbago zeylanica L.	5.3	+ - +	390	87
12.	Pergularia daemia (Forssk.) Chiov.	5.6	+ + -	412	68
13.	Heliotropium scabrum Retz.	5.8	+ - +	231	35
14.	Meremia tridenta (L.) Hallier f.	5.1	+ + -	195	40
15.	Evolvulus alsinoides (Linn.) Linn.	6.3	+ - +	204	33
16.	Ipomoea pestigridis L.	6.6	+ + -	365	28
17.	Didymocarpus tomentosa Wight	4.5	+ - +	301	50
18.	Sesamum orientale L.	5.8	+ + -	297	48
19.	Barleria priionitis L.	5.4	+ - +	247	63
20.	Andrographis echinoides (L.) Nees.	5.7	+ + -	380	59
21.	Justicia trangubariensis L. f.	5.9	+ - +	430	32
22.	Pleranthes barbatus Andrews	5.1	+ - +	399	40
23.	Leucas aspera(Wildl.) Link	5.0	+ - +	341	69
24.	Striga angustifolia (D. Don) C.J.Saldanha	6.4	+ + -	258	24
25.	Allmania nodiflora (L)R.Br.ex Wight	6.2	+ - +	382	57
26.	Aerva javanica (Burm.f.) juss. ex Schult.	5.8	+ + -	304	44
27.	Euphorbia hirta L.	5.3	+ + -	312	28
28.	Phyllanthus amarus Schumach & Thonn.	5.5	+ - +	440	39
29.	Phyllanthus maderaspatenesis L.	6.2	+ - +	228	71
30.	Gloriosa superba L.	6.5	+ + -	174	42
31.	Typhonium trilobatum schott.	5.8	+ + -	280	58
32.	Cymbopogan citrates (DC.) Stapf	5.6	+ + -	360	61
Table. 3. AM fungal genera and species were isolated from the rhizosphere soil samples of Kondrangi hills.

S. No	AM fungal genera	Order	Family	Species
1	*Acaulospora*	Diversisporales	Acaulosporaceae	*levies*
2	*Claroideoglomus*	Glomerales	Claroideoglomeraceae	*etunicatum*
3	*Gigaspora*	Diversisporales	Gigasporaceae	*candida* and *decipiens*
4	*Glomus*	Glomerales	Glomeraceae	*Gl.hoi, Gl.albidum, Gl. arborescences, Gl. austral, Gl. citricola, Gl. delhience, Gl. dimorphicum, Gl. favisporum, Gl. microcarpum, Gl. glomerulatum, Gl. heterosporum, Gl. macrocarpum, Gl. multisubstensum,*
5	*Rhizophagus*	Glomerales	Glomeraceae	*fasciculatus*
6	*Sclerocystis*	Glomerales	Glomeraceae	*pachycaulis*
7	*Redeckera*	Diversisporales	Gigasporaceae	*fulvum*

Fig. 2. Isolation of AM fungal spores in the rhizosphere soil samples of different plant species collected from the Kondrangi hills.

Fig. 3. AM fungal colonization in the root samples of from the plant species in Kondrangi hills.
The present study reveals that *Glomus* is the dominant AM fungal genus which seems to be dominant in the root regions of the plant species. Similar findings are in conformity that the genus *Glomus* was predominance in arid and semi-arid areas (10-13). Natalia et al. (14) reported that mycorrhizae are key components of natural ecosystems because of their essential role in sustain vegetation cover. The present study revealed that the *Allmania nodiflora* belongs to Amaranthaceae member showed 57% of arbuscular mycorrhizal colonization was observed. The present studies believed to be non mycorrhizal plants were found to be associated with AM fungi.

As far as the rhizosphere soil samples of Kondrangi hills, totally 20 AM fungal species belong to 7 genera and 2 different order (Fig. 6,7) were isolated and identified. Of these 1 species of *Acaulospora*, *Aca. levies*, 1 species of *Claroideoglomus etunicatum*, 2 species of *Gigaspora*, *Gig.* candida and *Gig.* decipiens, 13 species of *Glomus*, *G.hoi*, *Gl.albidum*, *Gl. arborescens*, *Gl. austral*, *Gl. citricola*, *Gl. delhience*, *Gl. dimorphicum*, *Gl. favisporum*, *Gl. microcarpum*, *Gl. glomerulatum*, *Gl. heterosporum*, *Gl. macrocarpum*, *Gl. multisubstensum*, 1 Species of *Sclerocystis*, *Scl. pachycaulis*, 1 Species of *Redekera fulvum*, 1 Species of *Rhizophagus fasciculatus* were observed (Table. 3; Fig. 8). Santhoshkumar and Nagarajan (15) reported that AM fungal association in the Rhizosphere soil of some Pteridophytic plant species in Valparai Hills, Western Ghats of Tamilnadu. Totally 34 AM fungal spore species was identified six genera from 12 plant species belongs to 7 families. Of these AM fungal spores of the genus *Glomus* was recorded as the most population,
followed by *Aculospora, Gigaspora, Scutellispora, Sclerocystis* and *Entrophospora* respectively.

4. CONCLUSION

The AM colonization and spore population in 32 medicinal plants species were investigated in kondrangi hills, Dindugul district, Tamilnadu. From the present findings of the research work, conclude that root colonization and spore population was abundant in all the plant species, however the genus *Glomus* was the dominant seen in all the rhizosphere soil. In this mutualistic association significance on medicinal plants, improving plant growth and also increasing secondary metabolite production, especially in agricultural crops.

REFERENCES

1. Oztekin, G.B., Y. Tuzel and I.H. Tuzel, (2013). Does mycorrhizal improve salinity tolerance in grafted plants? *Sci. Hortic.* **149**: 55–60.

2. Van der Heijden, M.A. and T.R. Horton, (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. *J. Ecol.* **97**: 1139–1150.

3. Gianinazzi, S.A., M.N. Gollotte, D. Binet, D. van Tuinen, W. Redecker and D. Wipf, (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. *Mycorrhiza* **20**: 519–530.

4. Phillips, J.M. and D.S. Hayman, (1970). Improved procedures for clearing roots staining parasitic and vesicular – arbuscular mycorrhizal fungi for rapid assessment of infection. *Trans. Br. Mycol. Sci.* **55**: 158-161.

5. Raman, N. and V. Mohan Kumar, (1988). *Techniques in Mycorrhizal Research*. University of Madras, Madras. 279p.

6. Schenck, N.C. and Y. Perez, (1990). *Manual for the identification of VA mycorrhizal fungi*. Synergistic Publications, Gainesville, Florida, USA.

7. Schüßler, A. and C. Walker, (2010). The Glomeromycota. A species list with new families and new genera: Published in December 2010 in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatsammung Munich, and Oregon State University. www.amf-phylogeny.com.

8. Logaprabha, V. and K.S. Tamilselvi, (2015). Natural Mycorrhizal Colonization of Plant Species growing in a Limestone Mine Spoil: Case study from ACC, Coimbatore, India. *Int. Res. J. Biol. Sci.* **4**(7): 73-78.

9. Sampathkumar, G.N., M. Prabakaran and R. Rajendra, (2007). *Association of AM-fungi in some medicinal plants and its influence on growth*. In: *Organic farming and mycorrhizae in agriculture*, I. K. Int. Pub. House Pvt. Ltd. New Delhi India, 101-106.

10. Lamnot, B. (1982). Mechanisms for enhancing nutrient uptake in plant, with special reference to Mediterranean South Africa and Western Australia. *Botanical Rev.* **48**: 597-689.

11. Stutz, J.C., R. Copeman, C.A. Martin, J.B. Morton, (2000). Patterns of species composition and distribution of arbuscular mycorrhizal fungi in arid regions of southwestern North America and Namibia, Africa. *Canadian J. Bot.* **78**: 237-245.

12. Chen, X., Z. Fang and J. Tang, (2001). Investigation on host plants of vesicular-arbuscular mycorrhiza fungi (VAMF) within weed community in agricultural slope land in red soil area, southeastern China, *Biodiversity Sci.* **9**: 122-128.

13. Pande, M. and J.C. Tarafdar, (2004). Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. *Appl. Soil Ecol.* **26**: 233-241.

14. Natalia, R., P. Jefferies and J.M. Barea, (1996). Assessment of Natural Mycorrhizal potential in a Desertified Semiarid Ecosystem. *Appl. Environ. Microbiol.* **842**: 842-847.

15. Santhoshkumar, S. and N. Nagarajan, (2014). AM fungal association in the rhizosphere soil of some Pteridophytic plant species in Valparai Hills, Western Ghats of Tamil Nadu, India. *Int. J. Life Sci.* **2**(3): 201-206.