Datasets for testing the performances of jump diffusion models

Weijun Xua, Guifang Liua,*, Hongyi Lib

a School of Business Administration, South China University of Technology, Guangzhou 510640, China
b Business School, Chinese University of Hong Kong, Shatin, NT, Hong Kong

\textbf{A R T I C L E I N F O}

Article history:
Received 27 August 2016
Received in revised form 9 October 2016
Accepted 3 November 2016
Available online 10 November 2016

\textbf{A B S T R A C T}

This article contains datasets related to the research article titled a novel jump diffusion model based on SGT distribution and its applications ("A novel jump diffusion model based on SGT distribution and its applications" (W.J. Xu, G.F. Liu, H.Y. Li, 2016) [1]). The datasets contain continuous composite daily percentage return values which are computed from the daily closing prices. Firstly, we describe statistical properties of the datasets. Then, the datasets are split into two samples, the in-sample data and out-of-sample data. The datasets can be used as benchmarks for testing the performances of jump diffusion models.

\textcopyright{} 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\textbf{Specifications Table}

Subject area	Economics
More specific subject area	Financial Engineering
Type of data	Table, figure, Excel file
How data was acquired	The datasets were acquired freely from the Wind Finance Database in China.
Data format	Raw

DOI of original article: http://dx.doi.org/10.1016/j.econmod.2016.07.004
* Corresponding author.
E-mail address: liuguifang23@126.com (G. Liu).
Experimental factors
In order to the empirical research, the dataset is split into two samples, the in-sample data and out-of-sample data.

Experimental features
The data is the daily percentage return values of four representative composite indices and is public data in financial market.

Data source location
Guangzhou, China

Data accessibility
Data is within this article (http://www.wind.com.cn/Default.aspx)

Value of the data

- The data is convenient to execute the statistical analysis and empirical application in this paper.
- The data can be used to test the existence of jumps in four representative composite indices and estimate the relevant model parameters.
- The data can be used to assess the asset return distribution describing performance of relevant models.
- The data can be used to explore the volatility forecast performance of relevant models based on in-sample data and out-of-sample data respectively.

1. Data

- The raw data contains the daily closing price of four representative composite indices (the Nikkei 225 Index (NIKKEI225), the Dow Jones Industrial Average Index (DJIA), Hang Seng Composite Index (HSI), and the Shanghai Composite Index (SCI)). The time period is from January 3, 1995 to March 25, 2016.
- In order to explore the performance of jump diffusion models, the daily closing price is converted into daily percentage return value.

2. Experimental design, materials and methods

The datasets, daily closing price time series of asset $S_t (t=1,2,\ldots,N)$, are obtained from the Wind Finance Database (http://www.wind.com.cn/Default.aspx) in China. In order to explore the asset return distribution describing performance of jump diffusion models, the datasets are converted into daily percentage return values y_t by using the following equation:

$$y_t = 100 \times (\ln(S_t) - \ln(S_{t-1}))$$

where $\ln(S_t)$ is the natural logarithm of the closing price S_t at t. All the datasets are listed in Table 1. The daily closing prices and daily percentage return values are shown in Supplementary materials (data.xlsx).

Finally, on the performance of volatility forecasts, several GARCH family models with some compound return distributions are presented. The datasets are split into two samples, the in-sample data and out-of-sample data (see Fig. 1). In order to compare the performance of volatility forecasts of relevant models, we use the rolling-window approach (One step forward). The initial time period of

Dataset Name	N	Time interval	Country	Description	
1	NIKKEI225	5175	January 3, 1995–March 25, 2016	Japan	Nikkei 225 Index
2	DJIA	5196	January 3, 1995–March 25, 2016	USA	Dow Jones Industrial Average Index
3	HIS	5180	January 3, 1995–March 25, 2016	China	Hang Seng Composite Index
4	SCI	5146	January 3, 1995–March 25, 2016	China	Shanghai Composite Index
in-of-sample data is from January 3, 1995 to 26 April, 2013. For each data series, these relevant models are first estimated using the in-of-sample data (before the time t), and a volatility value is obtained as a forecast volatility at the next time $t + 1$ (see Fig. 1). Subsequently, the estimation period was rolled forward by adding one new day. By repeating this procedure, the out-of-sample volatility forecasts were calculated for the rest days.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.014.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.11.014.

Reference

[1] W.J. Xu, G.F. Liu, H.Y. Li, A novel jump diffusion model based on SGT distribution and its applications, Econ. Model. 59 (2016) 74–92.