HARMONIC MORPHISMS OF ALLOF-WALLACH SPACES OF POSITIVE CURVATURE

HAJIME URAKAWA

Abstract. An infinite family of distinct harmonic morphisms with minimal circle fibers from the 7-dimensional homogeneous Allof-Wallach spaces of positive curvature onto the 6-dimensional flag manifolds is given.

1. Introduction

In 1965, Eells and Sampson [13] initiated a theory of harmonic maps in which variational problems play central roles in geometry; Harmonic map is one of solutions of important variational problems which is a critical point of the energy functional $E(\varphi) = \frac{1}{2} \int_M |d\varphi|^2 v_g$ for smooth maps φ of (M, g) into (N, h). The Euler-Lagrange equations are given by the vanishing of the tension filed $\tau(\varphi)$. On the other hand, Fuglede [14] in 1978 and Ishihara [22] in 1979, introduced independently the alternative notion of harmonic morphism which preserves harmonic functions (see [4]). Harmonic morphisms are one of important examples of harmonic maps.

In this paper, we give new examples of harmonic morphisms, indeed, an infinite family of distinct harmonic morphisms from the 7 dimensional homogeneous space of positive sectional curvature into the 6 dimensional flag manifold. Namely, we show the following theorem.

Theorem (cf. Theorem 4.2) Let $(P, g) = (M_{k, \ell}, g_t) = (SU(3)/T_{k, \ell}, g_t)$, $k, \ell \in \mathbb{Z}$, $(k, \ell) = 1; -1 < t < 0$, or $0 < t < \frac{1}{3}$, be infinitely many distinct homogeneous the 7-dimensional Allof-Wallach spaces of positive sectional curvature, and let (M, h), the 6-dimensional flag manifold $(SU(3)/T, h)$. Then, the Riemannian submersions with circle fibers,
\(\pi : (P, g) = (M_{k, \ell}, g_t) \rightarrow (M, h) = (SU(3)/T, h) \), are all harmonic morphisms with minimal fibers.

Here, the subgroups \(T_{k, \ell} \) and \(T \) of \(SU(3) \) and the homogeneous space \(M_{k, \ell} \) are given as follows.

\[
T_{k, \ell} = \left\{ \begin{pmatrix} e^{2\pi i \theta} & 0 & 0 \\ 0 & e^{2\pi i \theta} & 0 \\ 0 & 0 & e^{-2\pi i (k+\ell)} \end{pmatrix} \mid \theta \in \mathbb{R} \right\}
\]

\[
T = \left\{ \begin{pmatrix} e^{2\pi i \theta_1} & 0 & 0 \\ 0 & e^{2\pi i \theta_2} & 0 \\ 0 & 0 & e^{-2\pi i (\theta_1+\theta_2)} \end{pmatrix} \mid \theta_1, \theta_2 \in \mathbb{R} \right\} \subset G = SU(3),
\]

and \(M_{k, \ell} = G/T_{k, \ell} = SU(3)/T_{k, \ell} \).

2. Preliminaries

2.1. Harmonic maps. We first prepare the materials for the first and second variational formulas for the bienergy functional and biharmonic maps. Let us recall the definition of a harmonic map \(\varphi : (M, g) \rightarrow (N, h) \), of a compact Riemannian manifold \((M, g) \) into another Riemannian manifold \((N, h) \), which is an extremal of the energy functional defined by

\[
E(\varphi) = \int_M e(\varphi) v_g,
\]

where \(e(\varphi) := \frac{1}{2} |d\varphi|^2 \) is called the energy density of \(\varphi \). That is, for any variation \(\{ \varphi_t \} \) of \(\varphi \) with \(\varphi_0 = \varphi \),

\[
\left. \frac{d}{dt} \right|_{t=0} E(\varphi_t) = - \int_M h(\tau(\varphi), V) v_g = 0, \quad (2.1)
\]

where \(V \in \Gamma(\varphi^{-1}TN) \) is a variation vector field along \(\varphi \) which is given by \(V(x) = \frac{d}{dt} \bigg|_{t=0} \varphi_t(x) \in T_{\varphi(x)}N, \ (x \in M) \), and the tension field is given by \(\tau(\varphi) = \sum_{i=1}^{m} B(\varphi)(e_i, e_i) \in \Gamma(\varphi^{-1}TN) \), where \(\{ e_i \}_{i=1}^{m} \) is a locally defined orthonormal frame field on \((M, g) \), and \(B(\varphi) \) is the second fundamental form of \(\varphi \) defined by

\[
B(\varphi)(X, Y) = (\nabla d\varphi)(X, Y)
\]

\[
= (\nabla_X d\varphi)(Y) = \nabla_X (d\varphi(Y)) - d\varphi(\nabla_X Y), \quad (2.2)
\]
for all vector fields $X, Y \in \mathfrak{X}(M)$. Here, ∇, and ∇^h, are Levi-Civita connections on TM, TN of (M, g), (N, h), respectively, and $\tilde{\nabla}$, and ∇ are the induced ones on $\varphi^{-1}TN$, and $T^*M \otimes \varphi^{-1}TN$, respectively. By (2.1), φ is harmonic if and only if $\tau(\varphi) = 0$.

2.2. **Riemannian submersions.** We prepare with several notions on the Riemannian submersions. A C^∞ mapping π of a C^∞ Riemannian manifold (P, g) into another C^∞ Riemannian manifold (M, h) is called a Riemannia submersion if (0) π is surjective, (1) the differential $d\pi = \pi_* : T_uP \rightarrow T_{\pi(u)}M$ ($u \in P$) of $\pi : P \rightarrow M$ is surjective for each $u \in P$, and (2) each tangent space T_uP at $u \in P$ has the direct decomposition:

$$T_uP = V_u \oplus H_u, \quad (u \in P),$$

which is orthogonal decomposition with respect to g such that $V = \text{Ker}(\pi_*u) \subset T_uP$ and (3) the restriction of the differential $\pi_* = d\pi_u$ to H_u is a surjective isometry, $\pi_*(H_u, g_u) \rightarrow (T_{\pi(u)}M, h_{\pi(u)})$ for each $u \in P$ (cf. [4]). A manifold P is the total space of a Riemannian submersion over M with the projection $\pi : P \rightarrow M$ onto M, where $p = \dim P = k + m$, $m = \dim M$, and $k = \dim \pi^{-1}(x)$, $(x \in M)$. A Riemannian metric g on P, called adapted metric on P which satisfies

$$g = \pi^*h + k \quad (2.3)$$

where k is the Riemannian metric on each fiber $\pi^{-1}(x)$, $(x \in M)$. Then, T_uP has the orthogonal direct decomposition of the tangent space T_uP,

$$T_uP = V_u \oplus H_u, \quad u \in P, \quad (2.4)$$

where the subspace $V_u = \text{Ker}(\pi_*u)$ at $u \in P$, the vertical subspace, and the subspace H_u of P_u is called horizontal subspace at $u \in P$ which is the orthogonal complement of V_u in T_uP with respect to g.

In the following, we fix a locally defined orthonormal frame field, called adapted local orthonormal frame field to the projection $\pi : P \rightarrow M$, $\{e_i\}_{i=1}^p$ corresponding to (2.9) in such a way that

- $\{e_i\}_{i=1}^m$ is a locally defined orthonormal basis of the horizontal subspace H_u ($u \in P$), and
- $\{e_i\}_{i=1}^k$ is a locally defined orthonormal basis of the vertical subspace V_u ($u \in P$).

Corresponding to the decomposition (2.9), the tangent vectors X_u, and Y_u in T_uP can be defined by

$$X_u = X^V_u + X^H_u, \quad Y_u = Y^V_u + Y^H_u, \quad (2.5)$$

$$X^V_u, \quad Y^V_u \in V_u, \quad X^H_u, \quad Y^H_u \in H_u \quad (2.6)$$

for $u \in P$.
Then, there exist a unique decomposition such that
\[g(X_u, Y_u) = h(\pi_*X_u, \pi_*Y_u) + k(X^V_u, Y^V_u), \quad X_u, Y_u \in T_uP, \ u \in P. \]

2.3. The reduction of the harmonic map equation. Hereafter, we treat with the above problem more precisely in the case \(\dim(\pi^{-1}(x)) = 1, \ (u \in P, \pi(u) = x) \). Let \(\{e_1, e_1, \ldots, e_m\} \) be an adapted local orthonormal frame field being \(e_{n+1} = e_m \), vertical. The frame fields \(\{e_i : i = 1, 2, \ldots, n\} \) are the basic orthonormal frame field on \((P, g)\) corresponds to an orthonormal frame field \(\{e_1, e_2, \ldots, e_n\} \) on \((M, g)\).

In this section, we determine the biharmonic equation precisely in the case that \(p = m + 1 = \dim P, \ m = \dim M, \) and \(k = \dim \pi^{-1}(x) = 1 \) \((x \in M)\). Since \([V, Z] \) is a vertical field on \(P \) if \(Z \) is basic and \(V \) is vertical (cf. [36], p. 461). Therefore, for each \(i = 1, \ldots, n, [e_i, e_{n+1}] \) is vertical, so we can write as follows.

\[[e_i, e_{n+1}] = \kappa_i e_{n+1}, \quad i = 1, \ldots, n \quad (2.7) \]

where \(\kappa_i \in C^\infty(P) \) \((i = 1, \ldots, n)\). For two vector fields \(X, Y \) on \(M \), let \(X^*, Y^* \) be the horizontal vector fields on \(P \). Then, \([X^*, Y^*] \) is a vector field on \(P \) which is \(\pi \)-related to a vector field \([X, Y]\) on \(M \) (for instance, [49], p. 143). Thus, for \(i, j = 1, \ldots, n, [e_i, e_j] \) is \(\pi \)-related to \([e_i, e_j]\), and we may write as

\[[e_i, e_j] = \sum_{k=1}^{n+1} D^k_{ij} e_k, \quad (2.8) \]

where \(D^k_{ij} \in C^\infty(P) \) \((1 \leq i, j \leq n; 1 \leq k \leq n + 1)\).

2.4. The tension field. In this subsection, we calculate the tension field \(\tau(\pi) \). We show that

\[\tau(\pi) = -d\pi \left(\nabla_{e_{n+1}} e_{n+1} \right) = -\sum_{i=1}^{n} \kappa_i e_i. \quad (2.9) \]
Indeed, we have
\[
\tau(\pi) = \sum_{i=1}^{m} \left\{ \nabla_{e_i}^* d\pi(e_i) - d\pi (\nabla_{e_i} e_i) \right\} \\
= \sum_{i=1}^{n} \left\{ \nabla_{e_i}^* d\pi(e_i) - d\pi (\nabla_{e_i} e_i) \right\} + \nabla_{e_{n+1}}^* d\pi(e_{n+1}) - d\pi (\nabla_{e_{n+1}} e_{n+1}) \\
= -d\pi \left(\nabla_{e_{n+1}} e_{n+1} \right) \\
= -\sum_{i=1}^{n} \kappa_i e_i.
\]
Because, for \(i, j = 1, \ldots, n \),
\[
d\pi (\nabla_{e_{i}} e_{j}) = \nabla_{e_{i}}^* h_{j}, \text{ and } \nabla_{e_{i}}^* d\pi(e_{i}) = \nabla_{d\pi(e_{i})}^* d\pi(e_{i}) = \nabla_{e_{i}}^* h_{i}.
\]
Thus, we have
\[
\sum_{i=1}^{n} \left\{ \nabla_{e_i}^* d\pi(e_i) - d\pi (\nabla_{e_i} e_i) \right\} = 0. \quad (2.10)
\]
Since \(e_{n+1} = e_m \) is vertical, \(d\pi(e_{n+1}) = 0 \), so that \(\nabla_{e_{n+1}}^* d\pi(e_{n+1}) = 0 \).
Furthermore, we have, by definition of the Levi-Civita connection, we have, for \(i = 1, \ldots, n \),
\[
2g(\nabla_{e_{n+1}} e_{n+1}, e_i) = 2g(e_{n+1}, [e_i, e_{n+1}]) = 2\kappa_i,
\]
and \(2g(\nabla_{e_{n+1}} e_{n+1}, e_{n+1}) = 0 \). Therefore, we have
\[
\nabla_{e_{n+1}} e_{n+1} = \sum_{i=1}^{n} \kappa_i e_i,
\]
and then,
\[
d\pi \left(\nabla_{e_{n+1}} e_{n+1} \right) = \sum_{i=1}^{n} \kappa_i e_i. \quad (2.11)
\]
Thus, we obtain (2.9). \(\square \)

Thus, we obtain the following theorem:

Theorem 2.1. Let \(\pi : (P, g) \to (M, h) \) be a Riemannian submersion over \((M, h) \). Then,

The tension field \(\tau(\pi) \) of \(\pi \) is given by
\[
\tau(\pi) = -d\pi \left(\nabla_{e_{n+1}} e_{n+1} \right) = -\sum_{i=1}^{n} \kappa_i e_i, \quad (2.12)
\]
where \(\kappa_i \in C^\infty(P), (i = 1, \ldots, n) \).
3. HARMONIC MORPHISMS

Definition 3.1. (1) A smooth map \(\pi : (P, g) \to (M, h) \) is harmonic if the tension field vanishes, \(\tau(\pi) = 0 \), and

(2) \(\pi : (P, g) \to (M, h) \) is a harmonic morphism (cf. [4], p. 106) if, for every harmonic function \(f : (M, h) \to \mathbb{R} \), the composition \(f \circ \pi : (P, g) \to \mathbb{R} \) is also harmonic.

(3) \(\pi : (P, g) \to (M, h) \) is horizontally weakly conformal (cf. [4], p. 46) if, the differential \(\pi_* : T_pP \to T_{\pi(p)}M \) is surjective, and

\[
(\pi^*h)(X,Y) = \Lambda(p) g(X,Y) \quad (X, Y \in \mathcal{H}_p),
\]

for some non-zero number \(\Lambda(p) \neq 0 (p \in P) \). Here, \(\mathcal{H}_p \) is the horizontal subspace of \(T_pP \) for the Riemannian submersion \(\pi : (P, g) \to (M, h) \) satisfying that

\[
\begin{cases}
T_pP = V_p \oplus \mathcal{H}_p, \\
V_p = \ker(\pi_*),
\end{cases}
\]

It is well known (cf. [4], p. 108) that

Theorem 3.2. (Fuglede, 1978 and Ishihara, 1979) Let \(\varphi : (P, g) \to (M, g) \) be a Riemannian submersion. Then, it is harmonic morphism if and only if the following two conditions hold:

(i) \(\varphi : (P, g) \to (M, h) \) is harmonic and

(ii) \(\varphi : (P, g) \to (M, h) \) is horizontally weakly conformal.

Corollary 3.3. (cf. [4], p. 123) A Riemannian submersion \(\varphi : (P, g) \to (M, g) \) is a harmonic morphism if and only if \(\varphi \) has minimal fibers.

Example. Let \(G \) be a compact Lie group, and \(K \subset H \subset G \), closed subgroups of \(G \). It is well known ([4], p. 123) that, the natural projection \(\pi : (G/K, g) \to (G/H, h) \) is a harmonic Riemannian submersion with totally geodesic fibers. Notice that both the Riemannian metrics \(g \) on \(G/K \) and \(h \) on \(G/H \) are the invariant Riemannian metrics on \(G/K \) and \(G/H \) are induced from the \(\text{Ad}(G) \)-invariant inner product \(\langle \, , \rangle \) on the Lie algebra \(g \) of \(G \). The Allot-Wallach’s Riemannian metrics of positive sectional curvature in our main theorem, Theorem 4.2, are invariant Riemannian metrics, but are different from the ones induced from the \(\text{Ad}(G) \)-invariant inner product \(\langle \, , \rangle \) on the Lie algebra \(g \) of \(G \).
4. Statement of main theorem

We first prepare the setting of the Allof-Wallach theorem [2]. Let $G = SU(3)$, and

$$T_{k, \ell} = \left\{ \begin{pmatrix} e^{2\pi i k \theta} & 0 & 0 \\ 0 & e^{2\pi i \ell \theta} & 0 \\ 0 & 0 & e^{-2\pi i (k+\ell)} \end{pmatrix} \bigg| \theta \in \mathbb{R} \right\} \subset T = \left\{ \begin{pmatrix} e^{2\pi i \theta_1} & 0 & 0 \\ 0 & e^{2\pi i \theta_2} & 0 \\ 0 & 0 & e^{-2\pi i (\theta_1+\theta_2)} \end{pmatrix} \bigg| \theta_1, \theta_2 \in \mathbb{R} \right\} \subset G_1 = \left\{ \begin{pmatrix} x & 0 \\ 0 & \det(x^{-1}) \end{pmatrix} \bigg| x \in U(2) \right\} \subset G = SU(3),$$

and the Lie algebras of $G, T_{k, \ell}, T, G_1$ by $\mathfrak{g}, \mathfrak{t}_{k, \ell}, \mathfrak{t}, \mathfrak{g}_1$, respectively. Let the Ad(G)-invariant inner product \langle , \rangle_0 by

$$\langle X, Y \rangle_0 := -\text{Re}(\text{Tr}(XY)), \quad X, Y \in \mathfrak{g},$$

$$\mathfrak{m} = \mathfrak{g}_1^\perp := \left\{ \begin{pmatrix} 0 & 0 & z_2 \\ 0 & 0 & z_1 \\ -\overline{z}_2 & -\overline{z}_1 & 0 \end{pmatrix} \bigg| z_1, z_2 \in \mathbb{C} \right\},$$

$$\mathfrak{t}_{k, \ell} := \left\{ \begin{pmatrix} 2\pi i k \theta & 0 & 0 \\ 0 & 2\pi \ell \theta & 0 \\ 0 & 0 & -2\pi i (k+\ell) \theta \end{pmatrix} \bigg| \theta \in \mathbb{R} \right\},$$

$$V_1 := \mathfrak{t}_{k, \ell}^\perp \cap \mathfrak{g}_1, \quad V_2 := \mathfrak{g}_1^\perp = \mathfrak{m},$$

and let

$$\mathfrak{g} = \mathfrak{su}(3) = \mathfrak{t}_{k, \ell} \oplus V_1 \oplus V_2,$$

the orthogonal direct decomposition of \mathfrak{g} with respect to the inner product \langle , \rangle_0. For $-1 < t < \infty$, let the new inner product \langle , \rangle_t by

$$\langle x_1 + x_2, y_1 + y_2 \rangle_t := (1 + t)\langle x_1, y_1 \rangle_0 + \langle x_2, y_2 \rangle_0,$$

(4.1)

where $x_i, y_i \in V_i \ (i = 1, 2)$, and let g_t, the corresponding G-invariant Riemannian metric on the homogeneous space $G/T_{k, \ell}$. Then,

Theorem 4.1. (Allof and Wallach [2]) The homogeneous space $(G/T_{k, \ell}, g_t)$ corresponding to (4.1) with $(-1 < t < 0)$ or $(0 < t < \frac{1}{3})$ have strictly positive sectional curvature.

We state our main theorem as follows:
Theorem 4.2. Let π be the Riemannian submersion of $(SU(3)/T_{k,\ell}, g_t)$ onto $(SU(3)/T, h)$, where $(SU(3)/T, h)$ is a flag manifold with the SU(3)-invariant Riemannian metric h corresponding the inner product \langle , \rangle_0 on g. Then, it is a harmonic morphism, i.e., for every harmonic function on a neighborhood V in $SU(3)/T$, the composition $f \circ \pi$ is harmonic on a neighborhood $\pi^{-1}(V)$ in $SU(3)/T_{k,\ell}$, and also it has minimal fibers.

5. Proof of main theorem

Here, in this section, we give a proof of Theorem 4.2. We take a basis $\{X_0, X_1, X_2\}$ of V_1 and the one $\{X_3, X_4, X_5, X_6\}$ of V_2 as follows:

$$X_0 = \frac{i}{\sqrt{5\Gamma}} \begin{pmatrix} 2k + \ell & 0 & 0 \\ 0 & 2m + \ell & 0 \\ 0 & 0 & 2k + m \end{pmatrix},$$

$$X_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$X_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad X_4 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix},$$

$$X_5 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad X_6 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{pmatrix}. $$

Here $\Gamma := k^2 + \ell^2 + k\ell$, $m := -k - \ell$, and $\{X_0, X_1, X_2, X_3, X_4, X_5, X_6\}$ is an orthonormal basis of $V_1 \oplus V_2$ with respect to \langle , \rangle_0, and $g = su(3) = t_{k,\ell} \oplus V_1 \oplus V_2$.

Then, the basis of $V_1 \oplus V_2$

$$\left\{ \frac{1}{\sqrt{1+t}} X_0, \frac{1}{\sqrt{1+t}} X_1, \frac{1}{\sqrt{1+t}} X_2, X_3, X_4, X_5, X_6 \right\} \quad (5.1)$$

is orthonormal with respect to the inner product \langle , \rangle_t, $(-1 < t < \infty)$ in (4.1). We denote $M_{k,\ell} := SU(3)/T_{k,\ell}$ with k and $\ell \in \mathbb{Z}$ with $(k, \ell) = 1$, and the corresponding local unit orthonormal vector fields on $M_{k,\ell} := SU(3)/T_{k,\ell}$ by

$$\{ e_{i}^t, e_{1}^t, e_{2}^t, e_{3}^t, e_{4}^t, e_{5}^t, e_{6}^t \} \quad (5.2)$$

For the projection $\pi : M_{k,\ell} = SU(3)/T_{k,\ell} \to M = SU(3)/T$, each element e_i^t ($i = 0, 1, \ldots, 6$) in (5.2) corresponds by π_* (the differential
Lemma 5.1. We have
\[\left\{ 0, \frac{1}{\sqrt{1+t}} e'_1, \frac{1}{\sqrt{1+t}} e'_2, e'_3, e'_4, e'_5, e'_6 \right\}, \]
where \(\{e'_1, e'_2, e'_3, e'_4, e'_5, e'_6\} \) is an orthonormal frame field on \((SU(3)/T, h)\).

By definition of the Levi-Civita connection of a Riemannian metric \(g_t \), for every vector field \(X \) on \(P = M_{k,\ell} \),
\[
2 g_t(X, \nabla^{g_t}_{e'_0} e'_0) = e'_0 g_t(X, e'_0) + e'_0 g_t(X, e'_0) - X g_t(e'_0, e'_0) \\
\quad + g_t(e'_0, [X, e'_0]) + g_t(e'_0, [X, e'_0]) - g_t(X, [e'_0, e'_0]) \\
= 2 \left\{ e'_0 g_t(X, e'_0) + g_t(e'_0, [X, e'_0]) \right\}. \tag{5.3}
\]
Thus, we have
\[
g_t(X, \nabla^{g_t}_{e'_0} e'_0) = e'_0 g_t(X, e'_0) + g_t(e'_0, [X, e'_0]). \tag{5.3}
\]
On the other hand, we have
\[
e'_0 g_t(e'_i, e'_0) = 0 \quad (i = 0, 1, \ldots, 6) \tag{5.4}
\]
Indeed,\[
e'_0 g_t(e'_i, e'_0) = 0 \quad (i = 0, 1, \ldots, 6) \tag{5.5}
\]
and by a straightforward computation, we have the following Lemma:

Lemma 5.1. We have
\[
\begin{align*}
\left[\frac{1}{\sqrt{1+t}} X_1, \frac{1}{\sqrt{1+t}} X_0 \right] &= -\frac{3(k + \ell)}{(1+t)\sqrt{5}} X_2, \\
\left[\frac{1}{\sqrt{1+t}} X_2, \frac{1}{\sqrt{1+t}} X_0 \right] &= -\frac{3(k + \ell)}{(1+t)\sqrt{5}} X_1, \\
\left[X_3, \frac{1}{\sqrt{1+t}} X_0 \right] &= \frac{-3\ell}{\sqrt{1+t}\sqrt{5}} X_4, \left[X_4, \frac{1}{\sqrt{1+t}} X_0 \right] = \frac{3\ell}{\sqrt{1+t}\sqrt{5}} X_3, \\
\left[X_5, \frac{1}{\sqrt{1+t}} X_0 \right] &= \frac{3k}{\sqrt{1+t}\sqrt{5}} X_6, \left[X_6, \frac{1}{\sqrt{1+t}} X_0 \right] = \frac{-3k}{\sqrt{1+t}\sqrt{5}} X_5.
\end{align*}
\]

By Lemma 5.1, we have
\[
ge_t(e'_0, [X, e'_0]) = 0 \quad (\forall X = X_i \ (i = 0, 1, \ldots, 6)). \tag{5.6}
\]
By (5.3), (5.4), (5.5), we have
\[
ge_t(X, \nabla^{g_t}_{e'_0} e'_0) = 0 \quad (\forall X \in \mathcal{X}(M_{k,\ell})). \tag{5.7}
\]
which implies that
\[\nabla g \tau e_0^t = 0. \] (5.8)

Then, we have
\[\tau(\pi) = -d\pi(\nabla g \tau e_0^t) = 0. \] (5.9)

Therefore, by (5.8) and (5.9), the submersion \(\pi \) is a harmonic map with minimal fibers. Due to Corollary 3.3, we have Theorem 4.2. \(\square \)

Remark 5.2.

(1) In our main theorem, Theorem 4.2, since \((G/T, h)\) is a flag manifold, so a Kähler manifold, it admits a lot of harmonic function on an open subset \(V \) in \(G/T \). For a harmonic function \(f \) on an open subset \(V \subset G/T \), then \(f \circ \pi \) is harmonic on \(\pi^{-1}(V) \).

(2) Our fibration \(\pi : (SU(3)/T_k, \ell, g) \to (SU(3)/T, h) \) has close similarities to the Hopf fibration \(\pi' : (S^{2n+1}, g_0) \to (\mathbb{C}P^n, h_0) \). Both the total spaces have positive sectional curvature, and both the base spaces are Kähler manifolds.

References

[1] K. Akutagawa and S. Maeta, *Complete biharmonic submanifolds in the Euclidean spaces*, Geometriae Dedicata, 164 (2013), 351–355.

[2] S. Aloff and N.R. Wallach, *An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures*, Bull. Amer. Math. Soc., 81 (1975), 93–97.

[3] P. Baird and D. Kamissoko, *On constructing biharmonic maps and metrics*, Ann. Global Anal. Geom. 23 (2003), 65–75.

[4] P. Baird and J.C. Wood, *Harmonic morphisms between Riemannian manifolds*, London Math. Soc. Monographs, Oxford, 2003.

[5] A. Balmus, S. Montaldo and C. Oniciuc, *Classification results for biharmonic submanifolds in spheres*, Israel J. Math., 168 (2008), 201–220.

[6] A. Balmus, S. Montaldo and C. Oniciuc, *Biharmonic hypersurfaces in 4-dimensional space forms*, Math. Nachr., 283 (2010), 1696–1705.

[7] C. Boyer and K. Galicki, *Sasakian Geometry*, Oxford Sci. Publ., 2008.

[8] R. Caddeo, S. Montaldo, P. Piu, *On biharmonic maps*, Contemp. Math., 288 (2001), 286–290.

[9] I. Castro, H.Z. Li and F. Urbano, *Hamiltonian-minimal Lagrangian submanifolds in complex space forms*, Pacific J. Math., 227 (2006), 43–63.

[10] B.Y. Chen, *Some open problems and conjectures on submanifolds of finite type*, Soochow J. Math., 17 (1991), 169–188.

[11] F. Defever, *Hypersurfaces in \(\mathbb{E}^4 \) with harmonic mean curvature vector*, Math. Nachr., 196 (1998), 61–69.

[12] J. Eells and L. Lemaire, *Selected Topics in Harmonic Maps*, CBMS, Regional Conference Series in Math., Amer. Math. Soc., 50, 1983.
[13] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109–160.
[14] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (1978), 107–144.
[15] D. Fetcu and C. Oniciuc, Biharmonic integral C-parallel submanifolds in 7-dimensional Sasakian space forms, Tohoku Math. J., 64 (2012), 195–222.
[16] T. Hasanis and T. Vlachos Hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145–169.
[17] T. Ichihara, J. Inoguchi, H. Urakawa, Biharmonic maps and bi-Yang-Mills fields, Note di Mat., 28, (2009), 233–275.
[18] T. Ichihara, J. Inoguchi, H. Urakawa, Classifications and isolation phenomena of biharmonic maps and bi-Yang-Mills fields, Note di Mat., 30, (2010), 15–48.
[19] J. Inoguchi, Submanifolds with harmonic mean curvature vector filed in contact 3-manifolds, Colloq. Math., 100 (2004), 163–179.
[20] H. Iriyeh, Hamiltonian minimal Lagrangian cones in \mathbb{C}^n, Tokyo J. Math., 28 (2005), 91–107.
[21] S. Ishihara and S. Ishikawa, Notes on relatively harmonic immersions, Hokkaido Math. J., 4 (1975), 234–246.
[22] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Kyoto Univ., 19 (1979), 215–229.
[23] G.Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese Ann. Math., 7A (1986), 388–402; Note di Mat., 28 (2009), 209–232.
[24] T. Kajigaya, Second variation formula and the stability of Legendrian minimal submanifolds in Sasakian manifolds, Tohoku Math. J., 65 (2013), 523–543.
[25] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, 1972.
[26] E. Loubeau, C. Oniciuc, The index of biharmonic maps in spheres, Compositio Math., 141 (2005), 729–745.
[27] E. Loubeau and C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, Trans. Amer. Math. Soc., 359 (2007), 5239–5256.
[28] E. Loubeau and Y-L. Ou, Biharmonic maps and morphisms from conformal mappings, Tohoku Math. J., 62 (2010), 55–73.
[29] S. Maeta and U. Urakawa, Biharmonic Lagrangian submanifolds in Kähler manifolds, Glasgow Math. J., 55 (2013), 465–480.
[30] S. Montaldo, C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), 1–22.
[31] Y. Nagatomo, Harmonic maps into Grassmannians and a generalization of do Carmo-Wallach theorem, Proc. the 16th OCU Intern. Academic Symp. 2008, OCAMI Studies, 3 (2008), 41–52.
[32] N. Nakauchi and H. Urakawa, Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature, Ann. Global Anal. Geom., 40 (2011), 125–131.
[33] N. Nakauchi and H. Urakawa, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results in Math., 63 (2013), 467–474.
[34] N. Nakauchi, H. Urakawa and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata, 169. (2014), 263–272.
[35] C. Oniciuc, *Biharmonic maps between Riemannian manifolds*, Ann. Stiint Univ. Af. I. Cuza Iasi, Mat. (N.S.), 48 No. 2, (2002), 237–248.

[36] B. O’Neill, *The fundamental equation of a submersion*, Michigan Math. J., 13 (1966), 459–469.

[37] S. Ohno, T. Sakai and H. Urakawa, *Biharmonic homogeneous hypersurfaces in compact symmetric spaces*, Differ. Geom. Appl., 43 (2015), 155–179.

[38] S. Ohno, T. Sakai and H. Urakawa, *Rigidity of transversally biharmonic maps between foliated Riemannian manifolds*, to appear in Hokkaido Math. J.

[39] Ye-Lin Ou and Liang Tang, *The generalized Chen’s conjecture on biharmonic submanifolds is false*, arXiv: 1006.1838v1.

[40] Ye-Lin Ou and Liang Tang, *On the generalized Chen’s conjecture on biharmonic submanifolds*, Michigan Math. J., 61 (2012), 531–542.

[41] T. Sasahara, *Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors*, Publ. Math. Debrecen, 67 (2005), 285–303.

[42] T. Sasahara, *Stability of biharmonic Legendrian submanifolds in Sasakian space forms*, Canad. Math. Bull. 51 (2008), 448–459.

[43] T. Sasahara, *A class of biminimal Legendrian submanifolds in Sasakian space forms*, a preprint, 2013, to appear in Math. Nach.

[44] T. Takahashi, *Minimal immersions of Riemannian manifolds*, J. Math. Soc. Japan, 18 (1966), 380–385.

[45] M. Takeuchi and S. Kobayashi, *Minimal imbeddings of R-space*, J. Differ. Geom., 2 (1968), 203–213.

[46] H. Urakawa, *The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold*, Compositio Math., 59 (1986), 57–71.

[47] H. Urakawa, *CR rigidity of pseudo harmonic maps and pseudo biharmonic maps*, Hokkaido Math. J., 46 (2017), 141–187.

[48] H. Urakawa, *Harmonic maps and biharmonic maps on principal bundles and warped products*, to appear in J. Korean Math. Soc., 2018.

[49] H. Urakawa, *Calculus of Variations and Harmonic Maps*, Vol. 132, Amer. Math. Soc., 1990.

[50] Z-P Wang and Y-L Ou, *Biharmonic Riemannian submersions from 3-manifolds*, Math. Z., 269 (2011), 917–925.

Graduate School of Information Sciences, Tohoku University, Aoba 4-3-09, Sendai 980-8579, Japan

E-mail address: urakawa@math.is.tohoku.ac.jp