Where Does Honey Bee (Apis mellifera L.) Pollen Come from? A Study of Pollen Collected from Colonies at Ornamental Plant Nurseries

Kimberly A. Stoner 1, Andrea Nurse 2, Robert W. Koethe 3, Maxwell S. Hatala 4 and David M. Lehmann 5,*

1 Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
2 Climate Change Institute, University of Maine, Orono, ME 04469, USA
3 Region 1 Office, Land, Chemicals and Redevelopment Division RCRA, UST and Pesticides Section, U.S. Environmental Protection Agency, Boston, MA 02771, USA
4 Oak Ridge Associated Universities, Oak Ridge, TN 37830, USA
5 Center for Public Health and Environmental Assessment, Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA

* Correspondence: lehmann.david@epa.gov; Tel.: +1-919-541-0234

Simple Summary: Pollen is the main source of protein, fats, and many micronutrients for honey bees, and it also has the potential to be a major route of exposure to pesticides. The objective of this study was to quantify to what extent honey bee colonies use ornamental nursery plants as sources of pollen over the season. We put honey bee colonies at two large commercial ornamental plant nurseries and used a pollen-trapping device to collect pollen from foraging honey bees as they returned to the hive. Pollen was collected each week from June until September in 2015 and 2018. Samples from the pollen collected were identified to genus by a pollen specialist. By counting and measuring the pollen grains, we could quantify how much of the pollen came from what plant source. We found that most of the pollen in July and August was collected from plant genera not grown at the nursery, including clover (Trifolium), maize (Zea), buckwheat (Fagopyrum), and jewelweed, and related species (Impatiens). Genera grown at the nurseries and found in the honey bee-collected pollen in June and early July included roses (Rosa), sumac (Rhus), and hollies (Ilex), but each of these genera also include native or naturalized species that are abundant in the surrounding area, so the pollen probably came from both the nursery and the surroundings.

Abstract: Ornamental nursery plants are both a major agricultural industry in the U.S. and a major feature of the urban and suburban landscape. Interest in their relationship with pollinators is two-fold: the extent to which they provide a nutritional benefit to pollinators, and the extent to which they have the potential to harm pollinators by exposing them to pesticide residues in nectar and pollen. We identified plant genera as sources of trapped pollen collected by honey bee colonies located at commercial ornamental plant nurseries in Connecticut in 2015 and 2018 and quantified the percentage of pollen volume collected from each genus for each weekly sample over two seasons. Plant genera grown at these nurseries, particularly Rosa, Rhus, and Ilex, contributed substantially to pollen volume during weeks 23–27 of the year. Among the genera not grown in nurseries, Toxicodendron was also important during weeks 23 and 24, and Trifolium was important in both frequency and quantity throughout the season. Zea was a major component of pollen volume from weeks 28–36 in both sites, even though cropland was not over 11% of land cover at either site.

Keywords: honey bee; Apis mellifera; palynology; pollen analysis; pollen foraging; ornamental plant nursery; landscape analysis
1. Introduction

In recent years, there has been great interest in the role of ornamental plants in providing resources to bees. Popular books [1], websites [2], scientific research papers [3], and reviews [4] provide information to gardeners looking for flowering plants that are both aesthetically pleasing and pollinator-friendly. Ornamental flowering plants can be highly attractive to diverse pollinator taxa, although visitation varies by genus, species, and even cultivar [3,5–7]. On the other hand, systemic pesticides are labeled for use on ornamental plants in the nursery and landscape industries at higher rates than are allowed for other agricultural crops [8], which could result in hazardous exposures to bees in nectar [9] and in pollen [10,11]. Thus, there is a two-fold interest in utilization of ornamental plants by bees: as a food resource and as a possible source of hazardous exposures to pesticides [2].

Most previous reports on attractiveness of ornamental plants to pollinators have focused on measuring visitation [3–5,7,12]. In the case of honey bees, floral visitation is mostly a measure of nectar collection, because over 80% of honey bee foraging trips are for nectar [13,14]. Although nectar provides the carbohydrates needed for the colony’s energy and the basis for harvestable honey, pollen is the primary source of essential amino acids, lipids, vitamins, and other micronutrients for the growth and sustenance of honey bee colonies [15].

Pollen trapping provides a method of sampling pollen as it is collected by foraging honey bee workers through the season, making it available for multiple levels of analysis: identification of plant sources of pollen through palynology [16] or molecular methods [17,18], and identifying and quantifying pesticides residues as a measure of pesticide risks [11,19]. This approach has been used to measure pollen collection and pesticide exposure in relation to many agricultural environments: maize and soybean regions in the Midwestern U.S. [20,21], apple orchards in the Northeastern U.S. [22], and mixed intensive agricultural areas in Europe [23–26].

This paper is one of a series using pollen trapping as a tool for understanding how honey bees relate to the agricultural production of ornamental nursery plants through pollen [11,27]. The production of ornamental nursery plants is a major industry in the U.S., with annual sales of USD 4.545 billion as of 2019 [28], and a major industry in Connecticut, with USD 103.4 million in annual sales as of the 2017 Census of Agriculture [29]. Consumers across the U.S. buying ornamental plants are seeking plants labeled as “pollinator friendly”, and producers also see this as an effective marketing label [30]. This is often framed in terms of reducing the toxicity of pesticide residues in nectar and pollen, but logically should also include whether the plant contributes to bee nutrition.

Previous work from ornamental plant nurseries in Connecticut used DNA metabarcoding for analysis of plant sources of pollen [27]. Although DNA metabarcoding is valuable for identifying plant sources of pollen at the family and genus level [21,31,32], it is not a reliable method for quantification [31,33,34]. In this paper, we have focused on quantification of plant sources of pollen, using the full capacity of palynology to quantify the contribution of plant genera to the pollen by volume across two seasons of pollen collection.

Among the advantages of microscopic analysis of pollen is the ability to quantify the amount of pollen from different plant sources on several levels relevant to understanding the dietary importance of a plant source, using counts and measurements of identified pollen types to calculate pollen volume [26,35,36], which is proportional to pollen weight [37,38]. The objective of this study was to quantify the extent to which honey bees used ornamental nursery plants as sources of pollen and to identify the most important plant genera by percentage of pollen volume used as pollen sources through the season.

2. Materials and Methods

Pollen collection. Pollen samples were collected in 2015 and 2018 using Sundance bottom-mounted pollen traps (Ross Rounds, Inc. Canandaigua, NY) at two ornamental plant nurseries: Prides Corner Farms, Lebanon, Connecticut (41°36′54″ N, 72°12′52″ W) and Monrovia Nursery, Granby, Connecticut (41°55′55″ N, 72°47′10″ W). Prides Corner
Farms covers 168 ha of cultivated area, and Monrovia Nursery is 183 ha. The two sites are 59 km apart.

Detailed descriptions of collection methods used in 2015 are given in Stoner et al. [11] and Sponsler et al. [27]. Pollen samples were collected weekly in 2015 from 28 May to 10 September at Prides Corner Farms and 3 June to 23 September at Monrovia Nursery. Three colonies were located at each nursery, with trapping rotating each week so that pollen was trapped from two colonies at a time, with the trap on the remaining colony set on bypass, and the colony was allowed to retain pollen for its own use. No supplementation with pollen or syrup was provided.

Pollen collection methods used in 2018 differed from those in 2015 in that four honey bee colonies were installed at each site, with two colonies trapping pollen for two weeks, and then set on bypass for two weeks to allow more time for the colony to collect pollen for its own use. Pollen was collected weekly, and colonies were inspected to make sure they were queenright, with queen replacement as needed. Pollen was collected in 2018 from 7 June (Prides Corner Farms) or 8 June (Monrovia Nursery) 2018 to 6 September (both sites) in 2018. Pollen from each hive was collected and stored separately, and frozen in Ziploc quart freezer bags in standard freezers (−18 °C) immediately upon return to the laboratory until use.

Land cover map and categorization. Recognizing that honey bees are more likely to forage within a radius of 0.8 km around their hive, land cover characteristics were quantified within this zone and also within a 4 km radius, representing a maximum foraging range [13]. The GPS coordinates for each honey bee deployment site were mapped on ArcGIS Pro (V2.9.2; Esri Inc., Redlands, CA, USA). Concentric rings (i.e., buffers) were plotted on the map around each site. We used the 2019 National Land Cover Database (NLCD) to classify the types of land cover surrounding each site within the two radii [39]. The NLCD classifies land cover into eight different primary categories, including water, developed, barren, forest, shrubland, herbaceous, planted/cultivated, and wetlands [39]. Except for barren land, these classes are each composed of subcategories with unique characteristics. For example, there are four subcategories of developed land (e.g., developed/open space, developed/low, developed/medium, and developed/high intensity). We also summed the percentages of land cover for deciduous forest, evergreen forest, and mixed forest to determine the total percentage of forest, the percentages of shrub/scrub and grassland/herbaceous to determine the total percentage of grassland/herbaceous, and the percentages of land cover for woody wetlands and emergent herbaceous wetlands to determine the total percentage of wetlands. Aerial images of the areas around each site were collected from the ESRI Imagery basemap [40] and extracted using ArcGIS Pro.

Palynology. For the 2015 pollen, a single subsample, ranging in size from 0.47 to 0.85 g, from each bulk pollen sample (kept separate by hive and sample date) was sent to the Climate Change Institute, University of Maine, Orono, for microscopy. A total of 43 sub-samples, 21 from Prides Corner Farms, and 22 from Monrovia Nursery in 2015, were analyzed. Selected samples from these sites and one additional nursery were used in Sponsler et al. [27] as a palynological cross-check on DNA metabarcoding results, but here we are using the palynology results from across the entire season at two nurseries in our analysis. The third nursery included in pesticide analysis by Stoner [11] and DNA metabarcoding in Sponsler [27] is not included here because of incomplete records of plant genera grown at the nursery for comparison with the palynological results.

For the 2018 pollen, three subsamples with approximately 0.5 g in each (mean = 0.502, s.d. = 0.085) were processed, mounted on slides, and analyzed separately for each hive and date at the same laboratory. After confirming consistency among subsamples, results from the three subsamples were combined by hive and date for further data analysis. For the 2018 pollen, 24 of these combined hive X date samples from Monrovia Nursery and 26 from Prides Corner Farms were analyzed.

Acetolysis procedures were adapted from Faegri et al. [41]. Pellets were first disarticulated with 10% hydrochloric acid. Glacial acetic acid washes dehydrated the samples before acetolysis. A 9:1 mixture of acetic anhydride and sulfuric acid removed cellular
contents and the cellulose wall (intine) to clarify sculptural characters of the pollen exine. The acetolyzed pollen sample was then dehydrated with multiple washes in 95% ethanol and suspended in silicone oil. Samples for pollen analysis were mounted on glass slides under 23 mm² coverslips and examined under light microscopy at 40× magnification. Each slide was scanned in its entirety, and all pollen types present were identified to their plant family, genus, or species with the greatest specificity possible. Pollen grains were counted along marked transects until all pollen species were recorded and a minimum of 300 pollen grains counted per slide (mean = 368, s.d. = 31.0).

Pollen identification followed standard keys [41–47], and the extensive pollen reference collection at the Climate Change Institute (CCI). This study added over 100 pollen taxa to the CCI pollen reference collection with over half of the reference taxa used coming from Connecticut. In most cases, pollen was identified to genus, but some pollen types could be identified only to family (e.g., some types within the Fabaceae) or were marked as “cf”, which stands for the Latin “confer” or “conferatur”, both meaning “compare”. This means the genus given is the closest match to the reference specimens or literature references available, but the identification is not entirely certain. Pairs of closely related genera, such as *Eupatorium* and *Eutrochium* or *Dasiphora* and *Potentilla*, are listed together because they cannot be reliably separated. Common and Latin names used in the text, Appendix A Table A1, and Supplementary Materials follow Haines [48].

Calculations of volume of pollen by plant source. We calculated the pollen volume of each pollen type (identified by family, genus, or species) in each trapped pollen sample collected over two years at both sites. To calculate the volume of each pollen type, we measured the length of the polar and equatorial axes of typical grains of each taxon. The volume per pollen grain of each pollen taxon was calculated (Appendix A Table A1) based on formulae for different pollen shapes (spherical, prolate, or oblate) [35], and then volumes for each taxon were calculated as a percentage of the total pollen volume for the sample [26,35,36,38], using this equation:

\[
\text{Percentage of pollen volume by genus} = \frac{100 \times (\text{count of pollen grains} \times \text{volume of pollen grains})}{\text{Sum of total pollen volume for all taxa}}
\]

Identification of genera grown at each nursery. Lists of genera for each nursery were compiled from nursery sales, shipping, and pest management records, and from visual observations and discussions with nursery staff (Appendix A Table A2). Records from 2015 and 2018 were combined.

Statistical methods. The pollen volume for the genera grown at the nursery where the honey bee colony was located was summed, and the percentage of pollen volume attributed to genera grown at the nursery in relation to the total pollen volume for the sample was calculated for each hive and sample date. The percentage of pollen volume from genera grown at the nursery where the hive was located is presented graphically with descriptive nonparametric statistics using the “boxplot” function in ggplot2 showing the median, 25th, and 75th percentile ranges for each week of the year [49].

3. Results

3.1. Land Cover Composition at the Nursery Sites

Using the location of the honey bee deployment sites and the NLCD land cover composition, we calculated the percentage of land covered by each category within the radii of 0.8 km and 4 km (Figure 1). Land cover characteristics differed between the two sites, primarily within the 0.8 km radius. Monrovia Nursery had both more developed land (30%) and more land in cultivation (40%) than Prides Corner Farms within the same area (4.5% and 20%, respectively). Prides Corner Farms had more pasture/hay (27%) and forest (42%) within the 0.8 km radius than Monrovia Nursery (0.9% and 22%, respectively). On a wider scale, Monrovia Nursery is in a more suburban environment, with 23% of the land developed within a 4 km radius, compared to 8% for Prides Corner Farms, which
is in more rural surroundings. Both nurseries have relatively little cultivated cropland in
the wider surroundings, 7% at Monrovia Nursery and 11% at Prides Corner Farms, with
forested land dominating at the wider scale at both sites (50% at Monrovia Nursery, 54% at
Prides Corner Farms).

Figure 1. Land cover composition. Land cover composition of the environment surrounding honey
bee colonies located at commercial plant nurseries in Connecticut using a 0.8 and 4 km radius around
each site. (A) Land cover composition expressed as percentages for Monrovia Nursery. (B) Aerial
photo (scale = 1:55,396) of the environment surrounding the honey bee colonies at Monrovia Nursery.
Black rings represent 0.8- and 4 km honey bee foraging radii around each commercial plant nursery.
(C) Land cover composition for Prides Corner Farms. (D) Aerial photo for Prides Corner Farms with
land cover composition color-coded within the two foraging radii.

3.2. Percent of Total Pollen Volume from Genera Grown at the Nursery

For each trapped pollen sample from the two sites and two years of trapping, we
 calculated pollen volume for each taxon and the percentage of the total pollen volume
represented by each genus as described above. Then, we summed the percentage of total
pollen volume for those genera grown at the nursery, as shown in Figure 2. This percentage
(or proportion) represents the maximum amount of the pollen that could have come from the
nursery, because honey bees forage over an area larger than the nursery, and often the genera
grown at the nursery, such as *Rosa* and *Rhus*, include species that grow wild in the area.
For each trapped pollen sample from the two sites and two years of trapping, we calculated pollen volume for each taxon and the percentage of the total pollen volume represented by each genus as described above. Then, we summed the percentage of total pollen volume for those genera grown at the nursery, as shown in Figure 2. This percentage (or proportion) represents the maximum amount of the pollen that could have come from the nursery, because honey bees forage over an area larger than the nursery, and often the genera grown at the nursery, such as *Rosa* and *Rhus*, include species that grow wild in the area.

We found that the percentage of pollen volume that could have come from the ornamental plants grown at the nurseries was highly variable in weeks 23–24 during early to mid-June (Figure 2). Week 24 was especially variable with three samples from Monrovia Nursery at 62%, 77%, and 92% from genera grown at the nurseries, and the remaining samples all below 17%. Weeks 25 and 26 had generally high proportions of pollen volume from genera at the nurseries, with medians above 50%. The proportion of pollen from genera grown at the nurseries began dropping in week 27, and then remained low, with medians below 25%, until weeks 38 and 39, when the proportions increased in the two of the three samples taken at Monrovia Nursery at the end of the season in 2015.

3.3. Genera in Pollen Samples at Each Nursery

Most of the genera occurring in the pollen samples at a minimum of 5% of the pollen volume were not grown at either nursery (Figure 3). Figure 3 presents the frequency of occurrence for each genus at different levels: 5 to 15%, 15 to 45%, or greater than 45%. At both sites, *Zea* (maize), *Trifolium* (several species of clover), and *Toxicodendron* (poison ivy and poison sumac), none of which are ornamental nursery plants, were major sources of pollen, occurring frequently above 5% of the pollen volume, and occasionally above 45% of the pollen volume. The genera in the pollen samples at each site and their frequency of occurrence at these levels are described below.
≥ 15 to 45%, and 2 samples from 5 to 15% for a total of 8 samples from 5 to 15%, for a total of 21 samples; and pollen types not grown at the nursery but frequently found at a volume ≥ 45%.

Monrovia Nursery (Figure 3A). At Monrovia Nursery, *Zea* was the genus most frequently found at a volume ≥ 5%, with 10 samples over 45%, 8 samples from 15 to 45%, and 9 samples from 5 to 15%, for a total of 27 samples ≥ 5% out of a total of 46 samples analyzed. *Trifolium* followed with 1 sample over 45%, 10 samples from 15 to 45%, and 10 samples from 5 to 15%, for a total of 21 ≥ 5% out of 46 samples. *Toxicodendron* was also found both frequently and in high proportions, with 4 samples above 45%, 2 samples from 15 to 45%, and 2 samples from 5 to 15% for a total of 8 ≥ 5% out of 46 samples. Other pollen types not grown at the nursery but frequently found at ≥ 5% of pollen volume were: *Ambrosia/Xanthium* (ragweed and cocklebur), 7 samples; *Plantago* (plantain), 7 samples; and *Polygonum* (knotweed) and *Nymphaea* (water lily) with 6 samples each. Other pollen types not grown at Monrovia Nursery but with at least 45% in one sample were *Parthenocissus* (Virginia creeper and Boston ivy), *Medicago* (medick and alfalfa), and *Eleagnus* (autumn-olive and Russian-olive).

Among the genera actually grown at Monrovia Nursery, only *Rosa* (rose) and *Rhus* (sumac) ever composed more than 45% of any sample (2 samples for *Rosa* and 1 for *Rhus*). *Rhus* was found at ≥ 5% in 7 samples, *Ilex* (holly) in 6 samples, and *Rosa* and *Hydrangea* (hydrangea) in 5 samples.

Prides Corner Farms (Figure 3B). *Trifolium* was most frequently found ≥ 5%, with 5 samples above 45%, 10 samples from 15 to 45%, and 12 samples from 5 to 15%, for a total of 27 samples ≥ 5% of pollen volume out of a total of 47 samples analyzed at this site. *Zea* followed, with 3 samples above 45%, 6 from 15 to 45%, and 5 from 5 to 15%, totaling 14 samples ≥ 5%. *Toxicodendron*, *Impatiens* (touch-me-not), *Fagopyrum* (buckwheat), and *Plantago* all had 8 samples ≥ 5% of pollen volume, with the first three also including samples above 45%. *Humulus* (hop) had 7 samples ≥ 5% of pollen volume, with one above 45%.

No genus grown at Prides Corner Farms ever composed more than 45% of any pollen sample. Genera grown at Prides Corner Farms that were found most frequently above 5%
of pollen volume were *Swida/Cornus* (dogwood) and *Solidago/Euthamia* (goldenrod), both with 7 samples, all from 5 to 15%, followed by *Hydrangea*, with 6 samples. *Rosa* and *Rhus* both had 5 samples ≥5% of pollen volume.

3.4. Major Plant Sources of Pollen through the Season

In Figure 4, the major sources of pollen were narrowed down further to those that composed a proportion of at least 15% of pollen volume in at least one sample and then graphed across the pollen trapping season.

![Figure 4](image-url)

Figure 4. Major sources of pollen through the season by genus. Each bubble represents a genus that represented a percentage of at least 15% of the pollen in a sample trapped from a honey bee colony, with the size of the bubble representing the percentage that genus represented from the total volume of the pollen sample, and the color indicating whether the genus was grown at the nursery. This figure includes pollen samples from both Monrovia Nursery and Prides Corner Farms from both 2015 and 2018. Note that jittering was used to make bubbles visible for the same genus for multiple samples in the same week, slightly altering the alignment with the grid.
Seasonality of Genera Grown at the Nurseries as Major Pollen Sources. Genera grown at the nurseries primarily contributed to the trapped pollen early in the season (weeks 22–27), with *Rosa*, *Rhus*, and *Ilex* concentrated during those weeks. *Rosa* was a prominent component of two samples from week 23 (35% and 51% of the samples) and 24, then trailed off after week 27, with *Rhus* starting in week 23 and peaking at week 25 with 3 samples (26%, 34%, and 52%). *Ilex* then peaked at week 26 (24% and 44%) and continued through week 27. Later in the season, *Hydrangea* and *Oenothera* (evening-primrose and bee-blossom) together contributed to the higher proportion of pollen from nursery genera in two samples from Monrovia Nursery in week 33, and *Clematis* (virgin’s-bower) along with *Solidago* (goldenrod) in week 38 and *Euthamia* (grass-leaved goldenrod) in week 39.

Seasonality of Genera Not Grown at the Nurseries as Major Pollen Sources. *Toxicodendron* was a major pollen source (from 46% to 82%) in six samples in week 23, continuing into week 24. *Trifolium* was also a major pollen source beginning in week 23 (27% and 76%), and peaked in week 24 (34%, 49%, and 90%), but also continued through week 32, with a few smaller proportions in later weeks. *Fagopyrum* was a major pollen source beginning in week 28 (69% and 52%) and continued through week 29 (69% and 95%) and 30 (41% and 79%). *Zea* was a major source starting with one sample each in weeks 28 (56%) and 29 (36%) and continued with multiple samples per week with proportions ranging from 19 to 96% through week 35. *Impatiens* was a major source late in the season, particularly in week 36, with 4 samples ranging from 22 to 55%.

4. Discussion

Using pollen trapping and microscopy-based palynology, we identified and quantified the floral sources of pollen collected by honey bee foragers in two ornamental plant nurseries located in Connecticut. Overall, most of the contribution to honey bee pollen of genera grown at the nurseries was during the early weeks of pollen trapping, up through week 27 (all of June and the first week of July), particularly at Monrovia Nursery (Figure 2). This was in large part due to *Rosa* and *Rhus*, each of which supplied the majority of the pollen volume in multiple samples at Monrovia Farms—in one sample, *Rosa* was 89% of the pollen volume.

It should be kept in mind that percentages given throughout for genera grown at the nurseries are the maximum that could have come from inside the nursery. For example, while *Rosa* made up a significant percentage of annual plant sales at both nurseries (4.3% at Prides Corner Farms and 10.4% at Monrovia Nursery, Appendix A Table A2), there are also 16 species of *Rosa* recorded as occurring in the wild in Connecticut [48], including the invasive species *Rosa multiflora* Thunb., which is abundant in pastures, field edges, and along roadides [50]. Both cultivated roses and multiflora rose bloom in Connecticut in early June, when rose pollen was a major component of the trapped pollen (personal observation, K.A.S.). *Rhus*, another genus grown at the nurseries and contributing to trapped pollen, is a minor crop at both nurseries, but includes 4 native species in Connecticut and is abundant growing wild along roadsides, forest edges, and dry fields [48].

Other early summer contributors to pollen from genera grown at the nurseries were *Ilex*, at both nurseries; *Syringa, Hemerocallis, Vitis, Viburnum*, and *Clematis* at Prides Corner Farms; and *Spiraea* at Monrovia Nursery. *Spiraea* is of particular interest because previous research found high levels of pesticides associated with *Spiraea* pollen at another ornamental plant nursery in Connecticut, not included here [11]. We found *Spiraea* pollen above 5% of the pollen volume in only 4 samples, all at Monrovia Nursery (Figure 3A), with only a single sample above 15% (Figures 3A and 4).

Of the genera not grown at the nurseries, *Trifolium* was a major source across much of the season and was also the most frequently occurring pollen source in a previous study that included our sites [27]. The family Fabaceae, to which *Trifolium* belongs, was found to be a major pollen source in several studies in the Northeast and Midwest of the U.S. using a variety of techniques for pollen identification and quantification [16,21,32].
A surprise finding was that **Zea** was a major pollen source in both quantity and frequency starting in late July and continuing to late August at both sites, which has not been a common finding in the United States. In several studies conducted in intensively agricultural regions of the Midwestern U.S., where maize is a major component of the landscape, honey bees collected little or no maize pollen [21,51,52], although Krupke et al. [53] was an exception.

In contrast, several studies conducted in Europe found that maize was a major source of pollen, even when maize occupied only a small proportion (as little as 4%) of the surrounding landscape [24,26,38]. In an analysis of 114 datasets, mainly from Europe, Keller et al. [54] found that maize was among the 5 most common pollen sources in over 50% of the studies. Recognizing the significance of these findings, additional studies conducted in Europe evaluated the effects of maize pollen on honey bee health. Results showed that a diet of maize pollen has been shown to reduce honey bee longevity and brood production [55], and mixed pollen with a high proportion of maize (70%) negatively affected honey bee survival, hypopharyngeal gland development, and vitellogenin production [56].

In the nursery sites studied here, cropland of all kinds (including the nurseries themselves) occupied only 7 to 11% of the land cover in the 4 km foraging area, but in 10 samples at Monrovia Nursery and 3 samples at Prides Corner Farms, **Zea** represented over 45% of pollen volume (Figure 3). Part of the variation in overall results may stem from variability in pollen foraging behavior among colonies, even in the same site in the same year. One colony at Prides Corner Farms collected 92% and 96% maize pollen over two weeks, and also collected an unusually large amount of pollen (523 g and 1495 g), so that maize pollen represented 49% of all the trapped pollen for that colony over the season (P8, Supplementary Materials), while the other colony over the same two weeks collected 64% and 45% maize pollen, but in much smaller samples (121 g and 161 g), so that maize represented only 5% of the pollen for the season (P6, Supplementary Materials).

Because this study was based on pollen trapped from honey bee colonies, we can address only the extent to which these ornamental plant genera provide pollen to honey bees, rather than to the wide diversity of wild bees and other pollinators. As has been recognized for over a century, bees vary widely in their pollen utilization, from specialization on just a few closely related species to broad generalization, with many different foraging strategies and pollen-collecting behaviors [57,58].

Consumers across the U.S. are seeking “pollinator friendly” ornamental plants (Khachatryan, et al. 2020). Our results show that overall, genera grown at the nurseries constitute only a part of the rich diversity of pollen sources available to honey bee colonies early in the summer, along with non-nursery genera like **Trifolium**, **Toxicodendron**, and **Eleagnus**. Dependence on nursery-grown genera drops off sharply as a component of pollen collections after mid-July (week 28), and the honey bees relied much more heavily on a mixture of crops (**Zea**, **Fagopyrum**, **Medicago**, **Humulus**), and herbaceous weeds and wildflowers (**Trifolium**, **Impatiens**), for the rest of the summer. These findings suggest that honey bee colonies do not rely heavily on ornamental plants as sources of pollen, even when they are located in the heart of commercial plant nurseries.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/insects13080744/s1, Figure S1: Weight of trapped pollen by genus over the season for each hive in 2018. Table S1: Weight of trapped pollen by genus over the season for each hive in 2018. Table S2: Weight of pollen collected by location, hive, and date in 2018.

Author Contributions: Conceptualization, K.A.S., D.M.L. and R.W.K.; methodology, K.A.S. and A.N.; software, K.A.S. and D.M.L.; formal analysis, K.A.S. and D.M.L.; investigation, K.A.S. and A.N.; resources, K.A.S. and A.N.; data curation, K.A.S. and A.N.; writing—original draft preparation, K.A.S.; writing—review and editing, K.A.S., D.M.L. and R.W.K.; visualization, K.A.S., M.S.H. and D.M.L.; supervision, D.M.L. and R.W.K.; project administration, K.A.S., D.M.L. and R.W.K.; funding acquisition, K.A.S., D.M.L. and R.W.K. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by U.S. Department of Agriculture—National Institute of Food and Agriculture—Specialty Crops Research Initiative, grant number 2016-51181-25399, ‘Protecting Pollinators with Economically Feasible and Environmentally Sound Ornamental Horticulture’, and by U.S. Environmental Protection Agency, Regional Applied Research Efforts, ‘Coupling Neonicotinoid Exposure Assessment in a Plant Nursery Setting to Colony Condition and Health in Bumble Bees (Bombus impatiens)’.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article and Supplementary Material.

Acknowledgments: Special thanks to the staff at Prides Corner Farms and Monrovia Nursery for allowing us to keep our honey bee colonies and trap pollen onsite, and for providing us information about the plants in bloom. Mark Creighton provided major assistance in establishing the hives, training the crew in working with honey bees, and dealing with problems as they arose. Alejandro Chiriboga of the University of Connecticut also assisted with the bees and shared his records from his Integrated Pest Management Program at Prides Corner Farms. Richard Cowles assisted with bee management and pollen collection, and collected information about the nursery plant inventories in 2015. Kendra Gluck, Olivia Zukas, Allison Labelle, Annalisie Kieley, and Anna Radchenko assisted with managing the bees, pollen and reference sample collection, and visual plant surveys in 2015. Hunter Naizby, Arrian Barbassioon, and Erik Galvin maintained the honey bee colonies, collected trapped pollen, and collected pollen reference samples at the nurseries in 2018. We also thank Chelsea Weitekamp and Doug Kaylor for thoughtful and critical review of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Disclaimer: This article has been reviewed by the U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency or of the U.S. Federal Government, nor does the mention of trade names or commercial products constitute endorsement or recommendations for use of those products. The authors report no financial or other conflicts of interest. The authors alone are responsible for the content and writing of this article.

Appendix A

Table A1. Pollen Grain Volumes used in calculations of pollen volume. In general, these volumes are calculated from pollen grains measured for each genus directly from the pollen samples. However, for some genera, such as Trifolium, where multiple species were identified with different grain volumes, the volume used was a weighted average of the measured volume for each species. cf = “confer” or “conferatur”, from Latin, both meaning “compare”.

Monrovia Nursery	Prides Corner Farms				
Genus or Family	cf	Grain volume (µm³)	Genus or Family	cf	Grain volume (µm³)
Acer	cf	4920	Actaea	cf	7238
Amaranthus		6371	Actaea	cf	22,449
Ambrosia/Xanthium		3054	Aesculus		3351
Amorpha		3393	Ajuga		4581
Andropogon		22,093	Alisma	cf	22,449
Anthyllis	cf	8143	Allium		6447
Antirrhinum		4618	Ambrosia/Xanthium		3236
Aquilegia		3054	Amorpha		3393
Asparagus		2360	Anthyllis		10,619
Astragalus		5236	Aquilegia		4817
Table A1. Cont.

Monrovia Nursery	Prides Corner Farms
Baptisia	Aralia
Bellis cf	Arctium cf
Berberis	Asparagus cf
Calystegia	Astragalus cf
Capsella cf	Baptisia
Carum cf	Begonia
Castanea	Bellis cf
Centaurea	Buddleja
Cephalanthus	Buxus cf
Chelidonium	Callitriche
Chenopodium	Campanula
Cirsium 22,449	Capsella cf
Clematis 8181	Caragena
Coreopsis 11,494	Cardamine cf
Cucumis 87,114	Carya
Cucurbita 530,241	Castanea
Daucus cf 1882	Celastrus
Dianthus cf 47,713	Celosia
Epilobium cf 523,600	Centaurea
Erigeron cf 6371	Cephalanthus 3393
Eupatorium/Eutrochium	Chelidonium 11,494
Euphorbia 8310	Chenopodium 6371
Fagopyrum 7238	Cichorium cf
Fallopia 3393	Cirsium 22,449
Fraixinus 4189	Clematis 5540
Fuchsia cf 102,161	Colutea cf 3485
Funaria moss 2124	Coreopsis 11,494
Gaillardia cf 41,630	Crocosmia cf 17,999
Geranium 77,952	Cytisus 3732
Hedera cf 17,157	Dahlia cf 15,599
Heiracium 7238	Daucus cf 1882
Helianthus 18,817	Digitalis 4189
Hemerocallis 44,899	Echinops 25,656
Heuchera 905	Epilobium 747,596
Hydrangea 1327	Erigeron cf 6086
Hypericum 509	Eupatorium/Eutrochium cf 4398
Ilex 10,688	Fagopyrum 32,071
Impatiens 18,817	Fagus 7202
Iris 59,362 moss Funaria	1947
Lepidium cf 8181	Gaillardia 41,630
Liatris cf 11,494	Galium 2572
Linaria 2547	Gaura cf 696,912
Lotus 1327	Heiracium 7238
Lycium 14,137	Helianthus 18,817
Lysimachia 5445	Hemerocallis 73,999
Lythrum 11,579	Hippuris 8181
Medicago 8585	Humulus 6371
Melilotus cf 4920	Hydrangea 1327
Mentha 25,656	Hypericum 509
Nuphar 17,974	Illex 8181
Nymphaea 17,974	Impatiens 6283
Table A1. Cont.

Monrovia Nursery	Prides Corner Farms			
Paeonia	10,263	Iris	35,278	
Parthenocissus	13,932	Lagerstroemia	15,080	
Philadelphus	1593	Lepidium	324	
Philox	47,713	Lespedeza	2681	
Phryna	4817	Liatris	cf	11,494
Phylolacca	10,263	Lamium	cf	9140
Pinus	78,703	Liquidambar	28,731	
Plantago	7588	Lonicer	cf	38,725
Polygemon	11,494	Lotus	1327	
Ponederia	6049	Lupinus	3563	
Potentilla/ Dasiphora	1593	Lysimachia	2356	
Primula	11,451	Lythrum	8890	
Quercus	6648	Malus	cf	6925
Raphanus	cf	Medicago	5052	
Rhamnus	3223	Melilotus	4920	
Rhododendron	32,511	Mikania	cf	14,137
Rhus	13,854	Morus	1767	
Robinia	6097	Myriophyllum	41,630	
Rosa	5231	Nyssa	13,547	
Rubus	2686	Onobrychis	5089	
Rumex	8084	Pedicularis	1327	
Sagitaria	6371	Persicaria	33,510	
Salvia	16,605	Phlox	47,713	
Saxifraga	4189	Plantago	7156	
Scutellaria	8181	Polygonatum	56,968	
Solanium	2015	Polygonum	34,024	
Solidago	cf	Potentilla	1593	
Spergula	7238	Primula	637	
Spiraea	530	Quercus	6648	
Stellaria	cf	14,137		
Swida	17,652	Rhamnus	5195	
Symphyotrichum	cf	Rhus	14,380	
Symphoricarpus	33,510	Robinia	6097	
Symphoricarpus	33,510	Rosa	3979	
Toxicodendron	5753	Rubus	6336	
Tragopogon	65,450	Rudbeckia	cf	14,137
Trifolium summed	4337	Rumex	8818	
Urtica	4849	Salvia	11,494	
Verbascum	4817	Sambucus	3223	
Viburnum	8181	Sedum	3054	
Vitis	5175	Solanum	2145	
Zea	248,475	Solidago	cf	3393
Zinnia	cf	*Symphoricarpus*	33,510	
Crassulaceae	2356	*Symphyotrichum*	14,137	
Brassicaceae ≤ 20 µm	3054	*Stellaria/Cerastium*	18,817	

Note: *cf* indicates a close affinity or species classification.
Table A1. Cont.

Monrovia Nursery	Prides Corner Farms
Taraxacum	cf 11,494
Taxus	14,137
Thalictrum	4189
Toxicodendron	3817
Trifolium	5429
Urtica	1767
Verbascom	4817
Veronica	8033
Viburnum	12,464
Viola	12,315
Vitis	4817
Weigela	cf 47,713
Wisteria	5236
Zea	248,475
Apiaceae—no genus	1697
Boraginaceae—no genus	5575
Brassicaceae—no genus 18–20 um	3054
Brassicaceae—no genus 20 um	4189
Crassulaceae—no genus	2356
Poaceae—large pore no genus	21,167
Poaceae sp. 2 no genus	19,957
Poaceae—no genus	4189
Caprifoliaceae—no genus	4189
Solanaceae	8181

Table A2. List of Flowering Plant Genera at the Nurseries. The initial list of the major plant genera by plant sales (listed in all capital letters with numbers of plants and percentages) was collected by Dr. Richard Cowles at the beginning of the 2015 growing season. This initial list was supplemented with lists from visual surveys at the sites in 2015 and 2018, plant inventories from Monrovia Nursery, and records of plant genera treated from nursery pesticide records.

Genus	Annual Plant Sales as Reported by Nurseries at the Beginning of 2015	Percentages Based on Reported Annual Sales	Additional Cultivated Genera from Visual Surveys, Pesticide Records, or Inventories			
	No. Plants Prides Corner Farms	No. Plants Monrovia Nursery	% Prides Corner Farms	% Monrovia Nursery	Prides Corner Farms	Monrovia Nursery
Abelia	33,511	3080	1.4%	0.2%	X	
ACER	33,693	3080	1.4%	0.2%	X	X
Achillea	33,693	3080	1.4%	0.2%	X	X
Agastache	33,693	3080	1.4%	0.2%	X	X
Ajuga	33,693	3080	1.4%	0.2%	X	X
Allium	33,693	3080	1.4%	0.2%	X	X
Anemone	33,693	3080	1.4%	0.2%	X	X
Aquilegia	33,693	3080	1.4%	0.2%	X	X
Armeria	33,693	3080	1.4%	0.2%	X	X
Asclepias	33,693	3080	1.4%	0.2%	X	X
Astilbe	33,693	3080	1.4%	0.2%	X	X
BERBERIS	17,001	33,693	0.7%	2.2%		
BUDDLEIA	33,688	14,634	1.4%	0.9%		
BUXUS	129,842	49,348	5.3%	3.2%		
Table A2. Cont.

Genus	No. Plants Prides Corner Farms	No. Plants Monrovia Nursery	Percentages Based on Reported Annual Sales	Additional Cultivated Genera from Visual Surveys, Pesticide Records, or Inventories	
				Prides Corner Farms	Monrovia Nursery
Calluna		X		X	X
Campanula		X		X	X
Caragana		X		X	X
Caryopteris		X		X	X
Catalpa		X		X	X
Centaurea		X		X	X
Cephalanthus		X		X	X
Cercis		X		X	X
Chaenomeles		X		X	X
CLEMATIS	22,327	17,975	0.9%	1.2%	
CLETHRA	17,583	9380	0.7%	0.6%	
COREOPSIS	18,477	13,805	0.8%	0.9%	
CORNUS (or Swida)	45,303	7128	1.9%	0.5%	
Cotinus		X		X	X
CYTISUS	17,892	4827	0.7%	0.3%	
Delosperma		X		X	X
Delphinium		X		X	X
DELITZIA	24,336	5103	1.0%	0.3%	
DIANTHUS	14,384	2520	0.6%	0.2%	
Dicentra		X		X	X
Diervilla		X		X	X
ECHINACEA	52,876	25,706	2.2%	1.6%	
Erica		X		X	X
EUONYMUS	57,775	15,331	2.4%	1.0%	
Eupatorium		X		X	X
FORSYTHIA	17,852	8016	0.7%	0.5%	
Fothergilla		X		X	X
Fragaria		X		X	X
Gaillardia		X		X	X
Gaura		X		X	X
Geranium		X		X	X
Geum		X		X	X
Helenium		X		X	X
Heliosis		X		X	X
HELLEBORUS	23,545	10,571	1.0%	0.7%	
HEMEROCALLIS	62,301	20,352	2.6%	1.3%	
HEUCHERA	26,989	22,329	1.1%	1.4%	
HIBISCUS	38,486	7057	1.6%	0.5%	
HOSTA	54,946	68,531	2.3%	4.4%	
HYDRANGEA	247,037	185,588	10.2%	11.9%	
Hypericum		X		X	X
Iberis		X		X	X
ILEX	115,836	45,688	4.8%	2.9%	
IRIS	17,962	6820	0.7%	0.4%	
ITEA	9371	3751	0.4%	0.2%	
Lagerstroemia		X		X	X
KALMIA	44,291	20,804	1.8%	1.3%	
Kniphofia		X		X	X
Table A2. Cont.

Genus	No. Plants Prides Corner Farms	No. Plants Monrovia Nursery	% Prides Corner Farms	% Monrovia Nursery	Additional Cultivated Genera from Visual Surveys, Pesticide Records, or Inventories
Lamium					
LAVANDULA	33,734	5532	1.4%	0.4%	
LEUCANTHEMUM	15,193	7628	0.6%	0.5%	
LEUCOTHOE	24,502	1898	1.0%	0.1%	
Ligularia					
Lobelia					
Lonicera					
LUPINUS	18,224		0.7%		
Lygeum					
MALUS	7790	6311	0.3%	0.4%	
MONARDA	14,250	2062	0.6%	0.1%	
NEPETA	18,642		0.8%		
Oenothera					
PAEOYIA	8680	25,522	0.4%	1.6%	
Pennisetum					
Perovskia					
Phaleophus					
PHLOX	94,604	14,683	3.9%	0.9%	
PHYSOCARPUS	27,417	8788	1.1%	0.6%	
PIERIS	87,271	44,340	3.6%	2.8%	
Platycodon					
POTENTILLA (or Dasiphora)	22,249	6694	0.9%	0.4%	
PRUNUS	19,732	22,455	0.8%	1.4%	
Pyrus					
RHODODENDRON	331,757	445,573	13.6%	28.6%	
Rhus	104,066	162,585	4.3%	10.4%	
ROSMARINUS	16,460		0.7%		
RIBUS	17,575	9975	0.7%	0.6%	
RUDEbeckia	20,905	3597	0.9%	0.2%	
SALIX	14,478		0.6%		
SALVIA	26,184	15,425	1.1%	1.0%	
Sambucus					
SEDUM	16,552	24,497	0.7%	1.6%	
Solanum (Eggplant)					
Solalado					
Sorbaria					
SPIRAEA	80,128	42,086	3.3%	2.7%	
Stachys					
Stokesia					
Symphoricarpus					
SYRINGA	105,496	33,502	4.3%	2.1%	
Tiarella					
VACCINIUM	49,533	20,200	2.0%	1.3%	
Veronica					
VIBURNUM	45,960	14,009	1.9%	0.9%	
VINCA	17,897	5506	0.7%	0.4%	
Vitis					
WEIGELA	47,699	35,225	2.0%	2.3%	
total	2,430,789	1,560,130	2.3%		
References

1. Lindtner, P. Garden Plants for Honey Bees; Wicwas Press, LLC.: Kalamazoo, MI, USA, 2014.

2. Protecting Bees: Research to Help Plant Growers Protect Bees and Manage Pests. Available online: https://protectingbees.njaes.rutgers.edu/ (accessed on 2 June 2022).

3. Mach, B.M.; Potter, D.A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS ONE 2018, 13, e0208428. [CrossRef] [PubMed]

4. Garbuzov, M.; Ratnieks, F.L.W. Listmaina: The strengths and weaknesses of lists of garden plants to help pollinators. Bioscience 2014, 64, 1019–1026. [CrossRef]

5. Garbuzov, M.; Ratnieks, F.L.W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 2015, 44, 638–646. [CrossRef] [PubMed]

6. Corbet, S.A.; Bee, J.; Dasmahapatra, K.; Gale, S.; Gorringle, E.; La Ferla, B.; Moorhouse, T.; Trevail, A.; Van Bergen, Y.; Vorontsova, M. Native or exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Am. Bot. 2001, 87, 219–232. [CrossRef] [PubMed]

7. Garbuzov, M.; Ratnieks, F.L.W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 2014, 28, 364–374. [CrossRef]

8. How Neonicotinoids Can Kill Bees. Available online: https://www.xerces.org/publications/scientific-reports/how-neonicotinoids-can-kill-bees (accessed on 16 June 2022).

9. Mach, B.M.; Bondarenko, S.; Potter, D.A. Uptake and dissipation of neonicotinoid residues in nectar and foliage of systemically treated woody landscape plants. Environ. Toxicol. Chem. 2018, 37, 860–870. [CrossRef] [PubMed]

10. Cowles, R.S.; Eitzer, B.D. Residues of neonicotinoid insecticides in pollen and nectar from model plants. J. Environ. Hortic. 2017, 35, 24–34. [CrossRef]

11. Stoner, K.A.; Cowles, R.S.; Nurse, A.; Eitzer, B.D. Tracking pesticide residues to a plant genus using palynology in pollen trapped from honey bees (Hymenoptera: Apidae) at ornamental plant nurseries. Environ. Entomol. 2019, 48, 351–362. [CrossRef]

12. Erickson, E.; Patch, H.M.; Grozinger, C.M. Herbaceous perennial ornamental plants can support complex pollinator communities. Sci. Rep. 2021, 11, 17352. [CrossRef]

13. Winston, M.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1991.

14. Covich, M.J.; Riddell, F.C.; Aclclon, C.; Fensome, K.A.A.; Quah, S.K.L.; Taylor, E.L.; Ratnieks, F.L.W. Honey bee foraging distance depends on month and forage type. Apidologie 2015, 46, 61–70. [CrossRef]

15. Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 2018, 63, 327–344. [CrossRef] [PubMed]

16. Lau, P.; Bryant Jr, V.M.; Ellis, J.D.; Huang, Z.Y.; Sullivan, J.; Schmehl, D.R.; Cabrera, A.R.; Rangel, J. Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS ONE 2019, 14, e0217294. [CrossRef]

17. Bell, K.L.; De Vere, N.; Keller, A.; Richardson, R.T.; Gous, A.; Burgess, K.S.; Brosi, B.J. Pollen DNA barcoding: Current applications and future prospects. Genome 2016, 59, 629–640. [CrossRef] [PubMed]

18. Keller, A.; Danner, N.; Grillmer, G.; von der Ankenbrand, M.; Von Der Ohe, K.; Von Der Ohe, W.; Rost, S.; Härtel, S.; Steffan-Dewenter, I. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2015, 17, 558–566. [CrossRef]

19. Stoner, K.A.; Eitzer, B.D. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS ONE 2013, 8, e77550. [CrossRef]

20. Long, E.Y.; Krupke, C.H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Commun. 2016, 7, 11629. [CrossRef]

21. Smart, M.; Cormman, R.S.; Iwanowicz, D.D.; McDermott-Kubczko, M.; Pettis, J.S.; Spivak, M.S.; Otto, C.R. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ. Entomol. 2017, 46, 38–49. [CrossRef]

22. McArt, S.H.; Fersch, A.A.; Milano, N.J.; Truitt, L.L.; Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 2017, 7, 46554. [CrossRef]

23. Danner, N.; Keller, A.; Härtel, S.; Steffan-Dewenter, I. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE 2017, 12, e0183716. [CrossRef]

24. Danner, N.; Härtel, S.; Steffan-Dewenter, I. Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic Appl. Ecol. 2014, 15, 677–684. [CrossRef]

25. Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 2018, 615, 208–218. [CrossRef] [PubMed]

26. Requier, F.; Odoux, J.-F.; Tamic, T.; Moreau, N.; Henry, M.; Decourtay, A.; Bretagnolle, V. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 2015, 25, 881–890. [CrossRef] [PubMed]

27. Sponsler, D.B.; Grozinger, C.M.; Richardson, R.T.; Nurse, A.; Brough, D.; Patch, H.M.; Stoner, K.A. A screening-level assessment of the pollinator-attractiveness of ornamental nursery stock using a honey bee foraging assay. Sci. Rep. 2020, 10, 831. [CrossRef] [PubMed]
28. US Census of Agriculture Highlights: Horticuluture. Results from the 2019 Census of Horticultural Specialties. Available online: https://www.nass.usda.gov/Publications/Highlights/2020/census-horticulture.pdf (accessed on 6 June 2022).
29. 2017 Census of Agriculture—State Data. Connecticut. Table 39. Floriculture and Bedding Crops, Nursery Crops, Propagative Materials Sold, Food Crops Grown Under Glass or Other Protection, and Mushroom Crops: 2017 and 2012. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1_Chapter_1_State_Level/Connecticut/st09_1_0039_0039.pdf (accessed on 6 June 2022).
30. Khachatryan, H.; Wei, X.; Rhih, A. Consumer and Producer Perceptions and Preferences of Pollinator-Friendly Labeling Practices in the US Green Industry; University of Florida, Institute of Food and Agricultural Sciences Extension: Gainesville, FL, USA, 2020.
31. Richardson, R.T.; Lin, C.H.; Sponsler, D.B.; Quijia, J.O.; Goodell, K.; Johnson, R.M. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. 2015, 3, 1400066. [CrossRef]
32. Richardson, R.T.; Eaton, T.D.; Lin, C.H.; Cherry, G.; Goodell, K.; Sponsler, D.B. Application of plant metabarcoding to identify diverse honeybee pollen forage along an urban-agricultural gradient. Mol. Ecol. 2021, 30, 310–323. [CrossRef]
33. Bell, K.L.; Fowler, J.; Burgess, K.S.; Dobbs, E.K.; Gruenewald, D.; Lawley, B.; Morozumi, C.; Brosi, B.J. Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Appl. Plant Sci. 2017, 5, 1600124. [CrossRef]
34. Bell, K.L.; Burgess, K.S.; Botsch, J.C.; Dobbs, E.K.; Read, T.D.; Brosi, B.J. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 2019, 28, 431–455. [CrossRef]
35. O’Rourke, M.K.; Buchmann, S.L. Standardized analytical techniques for bee-collected pollen. Environ. Entomol. 1991, 20, 507–513. [CrossRef]
36. Da Silveira, F. Influence of pollen grain volume on the estimation of the relative importance of its source to bees. Apidologie 1991, 22, 495–502. [CrossRef]
37. Roulston, T.H.; Cane, J.H.; Buchmann, S.L. What governs protein content of pollen: Pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol. Monogr. 2000, 70, 617–643. [CrossRef]
38. Odoux, J.-F.; Feuillet, D.; Aupinel, P.; Loublier, Y.; Tasei, J.-N.; Mateescu, C. Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies. Apidologie 2012, 43, 561–575. [CrossRef]
39. Dewitz, J.; Survey, U.G. National Land Cover Database (NLCD) 2019 Products, Ver. 2.0, June 2021; US Geological Survey: Reston, VA, USA, 2021. [CrossRef]
40. World Imagery. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 6 June 2022).
41. Faegri, K.; Kaland, P.E.; Krzywinski, K. Textbook of Pollen Analysis; John Wiley & Sons Ltd.: New York, NY, USA, 1989.
42. Crompton, C.W.; Wojtas, W.A. Key to the Quaternary Pollen and Spores of the Great Lakes Region; Royal Ontario Museum: Toronto, ON, Canada, 2005; p. 65.
43. Kapp, R.O.; King, J.E.; Davis, O.K. Vascular Plants of New England; New England Wildflower Society’s Flora Novae Angliae: A Manual For the Identification of Native and Naturalized Higher Plants; Agriculture Canada and Canada Communication Group-Publishing: Ottawa, ON, Canada, 1993.
44. McAndrews, J.H.; Berti, A.A.; Norris, G. The Flower and the Bee; Charles Scribner’s Sons: New York, NY, USA, 1918; p. 286.