Genomics update

Genome (re-)annotation and open-source annotation pipelines

Roland J. Siezen1,2,3 and Sacha A. F. T. van Hijum1,2,3

1Kluyver Centre for Genomics of Industrial Fermentation; TI Food and Nutrition, 6700AN Wageningen, The Netherlands.
2NIZO food research, 6710BA Ede, The Netherlands.
3Netherlands Bioinformatics Centre and Center for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, 6500HB Nijmegen, The Netherlands.

These days, more and more scientists are diving into genome sequencing projects, urged by fast and cheap next-generation sequencing technologies. Only to discover that they are quickly drowning in an unfathomable sea of sequence data and gasping for help from experts to make biological sense of this ensuing disaster. Bioinformaticians and genome annotators to the rescue!

Microbial genome annotation involves primarily identifying the genes (or actually the open reading frames: ORFs) encrypted in the DNA sequence and deducing functionality of the encoded protein and RNA products (Fig. 1). First, a gene finder such as Glimmer (Delcher et al., 1999) or GeneMark (Lukashin and Borodovsky, 1998) is applied to the genome DNA sequence, producing a set of predicted protein-coding genes. These programs are quite accurate, though not perfect. The next step is to take the set of predictions and search for hits against one or more protein and/or protein domain databases using BLAST (Altschul et al., 1997), HMMer (Eddy, 1998) or other programs. For each gene that has a significant match, the BLAST output together with the annotation of the hit can be used to assign a name and function to the protein. The accuracy of this step depends not only on the annotation software, but also on the quality of the annotations already in the reference database.

Genome sequences deposited in NCBI/GenBank, EMBL and DDBJ databases (which mirror each other) are annotated by the submitting groups, who each use their own methods, criteria and thoroughness. This leads to a large diversity in annotation completeness and accuracy.

Many of the first genomes published had very limited or no functional annotation, simply because there was very little genomic information in these reference databases to compare with. Most public genome annotation remains static for years, and many annotations have never been changed since their initial publication. Over the years, annotation updates may have been maintained by the submitters, but they are generally only stored in local databases such as GenProtEC/EcoGene for Escherichia coli K12 (Rudd, 2000), Genolist/Bactilist for Bacillus subtilis 168 (Lechat et al., 2008) and SGD for Saccharomyces cerevisiae (Christie et al., 2004).

Since gene functional annotation relies heavily on sequence similarity searching techniques with protein sequence databases, automatically annotated entries based on BLAST hits to NCBI databases can quickly become outdated. In the mean time, downstream sciences, such as comparative genomics, proteomics, transcriptomics and metabolomics, have rapidly increased our knowledge of many gene products. It is critical therefore, that genome annotations are frequently updated if the information they contain is to remain accurate, relevant and useful.

Re-annotation

Re-annotation is defined as the process of updating a previously annotated genome. Automated annotation pipelines combine many different algorithms for gene calling and protein function analysis. In some cases this is followed by manual expert curation, albeit less and less these days, which involves including experimental evidence, and using more sophisticated bioinformatics analysis, such as operon predictions, comparative genome analysis, regulatory motifs prediction, metabolic pathway reconstruction and a lot of common (biochemical) sense. Automated methods save time and resources, but will not incorporate the maximum information available from expert curators, leading to incomplete or even false designations. By contrast, manual annotation is costly and time-consuming. However, manual re-annotation of genomes can significantly reduce the propagation of annotation errors and thus reduce the time spent on flawed research. Hence, there is a need for a research...
community-wide review and regular update of genome interpretations.

Re-annotations can be published in literature or made available on websites. Examples of published re-annotated genomes are unfortunately rare compared with the rapidly increasing number of sequenced genomes. A first overview of re-annotated genomes was made by (Ouzounis and Karp, 2002). In Table 1 we list some more recently re-annotated microbial genomes. In the latest cases, next-generation technologies have been used for re-sequencing of the original strain prior to re-annotation. Exemplary is the re-sequencing and re-annotation of B. subtilis 168 (Barbe et al., 2009), published 12 years after the original genome paper (Kunst et al., 1997). About 2000 sequence differences were revealed, mainly single nucleotide polymorphisms (SNPs), allowing correction of some frameshifts and variation of amino acid residues prior to re-annotation (Table 1).

Standardized (re)-annotation databases

Many (re)annotation databases exist (see Table 2 for an overview), of which a few are general: DDBJ, EMBL, Pedant and NCBI GenBank. The ERGO resource is the only commercial database. Some of these databases contain manually curated and standardized gene functions (e.g. ERGO, RefSeq and Genome Reviews). Many of these databases contain gene functions compiled from

Table 1. Selection of re-annotated microbial genomes.

Genome	Re-sequencing	Deleted genes	New genes	Corrected genes\(^b\)	Original publication	Publication
Eukaryotes						
Saccharomyces cerevisiae	No	370	3	46	1996	Wood et al. (2001)
Aspergillus nidulans	No	640	494		2005	Wortman et al. (2009)
Prokaryotes						
Bacillus subtilis 168	454 pyro, Solexa	171\(^a\)	326		1997	Barbe et al. (2009)
Campylobacter jejuni NCTC11168	No	608	299	435	2000	Gundogdu et al. (2007)
Escherichia coli CFT073	No	10	82	60	1998	Camus et al. (2002)
Mycobacterium tuberculosis H37Rv	No	10	82	60	2005	Yang et al. (2009)
Zymomonas mobilis ZM4	454 pyro	271	48\(^a\)	539		

\(^a\) Includes new pseudogenes.
\(^b\) Includes corrected pseudogenes, but not genes with SNPs leading to only amino acid changes.

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, *Microbial Biotechnology*, 3, 362–369
Table 2. Genome (re-)annotation databases.

Database	Organization	Description	Access/distribution	Reference
NCBI Genbank	National Institutes of Health, USA	An annotated collection of all publicly available DNA sequences	http://www.ncbi.nlm.nih.gov/Genbank	Benson et al. (2009)
DDJB	DDJB (DNA Data Bank of Japan)	General nucleotide database	http://www.ddbj.nig.ac.jp/	None
EMBL-EBI	EMBL	Nucleotide sequence database	http://www.ebi.ac.uk/emb/	None
EMBL-Entrez Genome Project	National Institutes of Health, USA	Collection of complete and incomplete genome sequences	http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomes	None
ERGO	Integrated Genomics, USA	A systems-biology informatics toolkit for comparative genomics	http://www.integratedgenomics.com/ergo.html	Overbeek et al. (2003)
Genome Reviews	EMBL-EBI	Up-to-date, standardised and comprehensively annotated complete genomes	http://www.ebi.ac.uk/GenomeReviews/	Sterk et al. (2006)
RefSeq	National Institutes of Health, USA	A curated non-redundant sequence database	http://www.ncbi.nlm.nih.gov/RefSeq/	Pruitt et al. (2009)
The SEED	Fellowship for integration of genomes (FIG)	Subsystems approach to genome annotation	http://www.theseed.org/wiki/index.php/Main_Page	Overbeek et al. (2005)
IMG	DOE Joint Genome Institute, USA	Integrated microbial genomes database	http://img.jgi.doe.gov	Markowitz et al. (2006); Markowitz et al. (2010)
Microbes Online	Virtual Institute for Microbial Stress and Survival	An integrated portal for comparative and functional genomics	http://www.microbesonline.org/	Dehal et al. (2010)
CMR	J. Craig Venter Institute (JCVI)	Comprehensive Microbial Resource: display information on all of the	http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi	Davidson et al. (2010)
GOLD	DOE Joint Genome Institute, USA	Genomes On Line Database	http://www.genomesonline.org/	Llicios et al. (2010)
Genome information broker (GIB)	DOE Joint Genome Institute, USA	Database of microbial genomes and some comparative genomic tools	http://www.gib.genomes.nig.ac.jp/	Fumoto et al. (2002)
Genome Atlas	CBS, Technical University of Denmark	DNA structural atlases for complete microbial genomes	http://www.cbs.dtu.dk/services/GenomeAtlas/	Hallin and Ussery (2004)
Pedant	Munich Information Center for Protein Sequences (MIPS)	PEDANT 3 database: a Protein Extraction, Description and Analysis Tool	http://pedant.gsf.de	Riley et al. (2005)
REGANOR	CeBiTec, Germany	Gene prediction server and database	https://www.cebiotec.uni-bielefeld.de/groups/bio/software/reganor/cgi-bin/	Linke et al. (2006)
BacMap	University of Alberta, Canada	An interactive picture atlas of annotated bacterial genomes	http://wishart.biology.ualberta.ca/BacMap/	Stothard et al. (2005)
MOSAIC	INRA, France	Database dedicated to the comparative genomics of bacterial strains at the	http://genome.jouy.inra.fr/mosaic/	Chiapello et al. (2008)
InterPro	EMBL-EBI	Integrative protein signature database	http://www.ebi.ac.uk/Interpro/	Hunter et al. (2009)
Pfam	Sanger Institute, UK	Protein families and domains database	http://pfam.sanger.ac.uk	Finn et al. (2010)
SMART	EMBL, Germany	Protein domain architecture database	http://smart.embl-heidelberg.de	Letunic et al. (2009)
Gene Ontology Annotation (GOA)	The Gene Ontology	GO controlled vocabulary of biological processes	http://www.geneontology.org/GO.tools.annotation.shtml and www.ebi.ac.uk/GOA/	Barrell et al. (2009)
TIGRFAMs	J. Craig Venter Institute (JCVI)	Assignment of molecular function and biological process	http://www.jcvi.org/cms/research/projects/tigrfams/overview/Free_to_use_hidden_markov_models	Selengut et al. (2007)
Pseudogene.Org	Yale Gerstein Group	A comprehensive database and comparison platform for pseudogene annotation	http://pseudogene.org	Liu et al. (2004); Karro et al. (2007)
ExPaSy ENZYME	Swiss Institute for Bioinformatics (SIB)	Enzyme nomenclature database	http://www.expasy.ch/enzyme/	Bairoch (2000)
MetaCyc	SRI International, USA	Database of metabolic pathways and enzymes	http://metacyc.org/	Caspi et al. (2010)
KEGG	Kyoto Encyclopedia for Genes and Genomes: Kanesawa Laboratories	A bioinformatics resource for linking genomes to life and the environment	http://www.genome.jp/kegg/	Okuda et al. (2008)

Various sources (e.g. GIB, GOLD, CMR, Genome Reviews, IMG, RefSeq, the SEED and ERGO).

Many of the previous databases make use of annotation information from InterPro protein domains, Gene Ontologies (GO; controlled vocabulary of cellular functions), and TIGRFAMs (also part of Manatee, used in IGS/JCVI annotation services). The pseudogene.org database can be used to determine whether a gene in a given genome could be a pseudogene (non-functional).

Microbes adapt to their environment by modulating parts of their metabolic and gene regulatory networks. Metabolic networks consist of gene products (enzymes).
that catalyse chemical reactions where metabolic compounds are (re)used. The Enzyme Commission (EC) number is a way of classifying enzyme activity, using a nomenclature with specific numbers that are organized hierarchically to indicate the catalysed chemical reaction (ExPASy). Both the KEGG and MetaCyc databases describe the relation of gene products to metabolic pathways. In addition to (curated) annotation information, a few databases also offer bioinformatics and/or visualisation tools for comparative genomics, e.g. MOSAIC, CMR, the Seed, ERGO, GIB, xBASE, MicrobesOnline and BacMap.

(Re)-annotation pipelines

Many of the afore-mentioned databases contain annotation information that is generated by gene annotation pipelines. Table 3 lists annotation pipelines that are either offered as a service or that can be downloaded and installed locally. Locally running pipelines (AGMIAL, DIYA, Restauro-G, GenVar, SABIA, MAGPIE and GenDB) have the advantage that data can be kept confidential and that the annotation process is run on local hardware, ensuring reproducible annotation times. On-line services (IGS, IMG, JCVI, IGS, RAST, xBASE, BASys) have the advantage of simplicity and little time investment. Curation of the annotation results requires constant user interaction to view the genes in context of different annotation information. The JCVI and IGS services both use the (formerly known as TIGR) Manatee pipeline, which also uses the TIGRFAMs to detect functional domains in protein sequences. They offer the user the possibility to view and alter annotations in the respective databases they use. Similar functionality is offered by MAGE (which uses the MicroScope database) (Fig. 2), IMG-ER (uses the IMG data model as basis) and RAST (based on the Seed). The commercially available Pedant-Pro pipeline is based on the Pedant annotation pipeline with various enhancements. Usability of the MiGAP and ATCUG annotation pipelines could not be judged by us due to unavailable software (ATCUG) or website language in Japanese (MiGAP). The Taverna work-flow system allows to link different web services, and has the advantage that it can be adapted by experienced bioinformaticians. Assigning genes to metabolic pathways can be done using the KAAS service (Table 3), which annotates gene products by assigning EC numbers based on amino acid similarity to gene products with known EC numbers.

Once gene annotations have been determined, they can be checked for inaccurate or missing gene annotations using MiCheck. Hsiao and colleagues (2010) describe an algorithm for policing gene annotations, which looks for genes with poor genomic correlations with their network neighbours, and are likely to represent annotation errors. They applied their approach to identify misannotations of B. subtilis. The Artemis generic visualisation tool can be

© 2010 The Authors
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 3, 362–369
Table 3. Genome (re-)annotation pipelines.

Pipeline	Organization	Description	Access/distribution	Reference
IGS	University of Maryland	A FREE resource for genomics researchers and educators bringing advanced bioinformatics tools to the lab bench and the classroom	http://ae.igs.umaryland.edu/cgi/index.cgi	Free service
JCVI annotation service	J. Craig Venter Institute (JCVI)	Free to use genome annotation service	http://www.jcvi.org/cms/research/projects/annotation-service/overview/	None
MiGAP	Database Center for Life Sciences (DBCLS)	Microbial Genome Annotation Pipeline (MiGAP) for diverse users	http://migap.lifesciencedb.jp/	Note: site is in Japanese
MaGe/MicroScope	GENOSCOPE	Magnifying Genomes: microbial genome annotation system	http://www.genoscope.cns.fr/aga/mage	Vaillanet et al. (2006); Vaillanet et al. (2009)
BASys	University of Alberta, Canada	A web server for bacterial genome annotation	http://wishtart.biology.ualberta.ca/basys/	Free to use
RAST	Fellowship for Integration of Genomes (FIG)	The RAST Server: RapidAnnotations using Subsystems Technology based on the Seed	http://rast.nmpdr.org/	Free to use service
xBASE	University of Birmingham, UK	Bacterial genome annotation service	http://xbase.ac.uk/annotation/	Free to use service
IMG ER	Joint Genome Institute (JGI)	A system for microbial genome annotation expert review and curation	http://img.jgi.doe.gov/er	Free service
GenVar	Virginia Bioinformatics Institute	Bacterial gene annotation and comparative genomics pipeline	http://pmac.vbi.vt.edu/downloads/software/GenVar	Free for non-commercial use
Pedant-Pro	Biimax	Genome analysis package for comprehensive analysis of DNA and protein sequences	http://www.biimax.de/products/pedantpro.php	Frishman et al. (2001)
AGMIAL	INRA, France	An annotation strategy for prokaryote genomes as a distributed system	http://genome.jouy.inra.fr/agsial/	Open source license
GenDB	CeBiTec, Germany	Bacterial annotation system	http://www.cebiotec.uni-bielefeld.de/groups/bri/software/gendb_info/	Free to use, stand-alone software
DIYA	DIY Genomics Consortium	A bacterial annotation pipeline for any genomics lab	https://sourceforge.net/projects/diya/	Stewart et al. (2009)
SABIA	LNCC, Brazil	Bacterial annotation system	http://www.sabia.lncc.br/	Free to use, stand-alone software
MAGPIE	Genome Prairie Project, Canada	Genome annotation system	http://magaie.ucalgary.ca/	Gaasterland and Sensen (1996)
Restauro-G	Institute for Advanced Biosciences, Keio University	A Rapid Genome Re-Annotation System for Comparative Genomics	http://restauro-g.hib.keio.ac.jp/	Software distributed under the GNU public license
ATUCG system	Universidade Federal do Rio Grande do Sul, Brasil	Agent-based environment for automatic annotation of Genomes	None	Software should be requested at authors
Taverna: annotation of genomes	University of Manchester	Interactive genome annotation pipeline.	http://www.taverna.org.uk/introduction/taverna-in-use/annotation/annotation-of-genomes/	Hull et al. (2006)
KAAS	Kyoto Encyclopedia for Genes and Genomes (KEGG)	KEGG automated annotation service for metabolic pathways	http://www.genome.jp/tools/kaas/	Free to use service

used for manual editing of annotation (Rutherford et al., 2000). Prior to submission of a DNA sequence and annotation to the NCBI genome database, the NCBI Sequin service (http://www.ncbi.nlm.nih.gov/projects/Sequin/) also facilitates checking gene annotations, making sure that certain standards and formats are used.

Comparison of automatic annotation pipelines

Genome annotations are accumulating rapidly and most genome centres depend heavily on automated annotation systems. But rarely has their output been systematically compared to determine accuracy and inherent errors.
Bakke and colleagues (2009) compared the automatic genome annotation services IMG, RAST and JCVI, and found considerable differences in gene calls (Fig. 3), features and ease of use. Each service provided multiple unique start sites and gene product calls as well as mistakes. They argue that the most efficient way to substantially decrease annotation error is to compare results from multiple annotation services. Aggregating data and displaying discrepancies between annotations should resolve many possible errors including false positives, uncalled genes, genes without a predicted function, incorrectly predicted functions and incorrect start sites. To accomplish multi-annotation comparison, information must be interchangeable between annotation services, and software should be built to connect annotations in a manner that promotes easy human review. Tools that cross-query annotations and provide side-by-side comparisons that include genomic context and multiple functional annotations will aid the user and decrease the amount of time required to make an accurate correction, i.e. to decrease manual curation time.

Future

Clearly, standardization of ORF calling and annotation (and re-annotation of published genomes) is of utmost importance. A few standard operating procedures for genome annotation have already been proposed in recent years (Angiuoli et al., 2008; Mavromatis et al., 2009). Still, we are a long way from achieving that goal, and it is unlikely we will ever be able to weed out all the incorrect gene calls and inherited annotations that are abundant in present genome databases. The contents of NCBI GenBank can only be changed by the original submitters, and that rarely happens. So be aware that a BLAST search against GenBank may retrieve very outdated or incorrectly inherited annotations. It is wiser to BLAST against curated genome databases, but there are so many to choose from (Table 2), and we clearly need tools to compare annotations from different curated databases.

Re-annotation of genomes is a never-ending process, and any current genome annotation is only a snapshot. New information emerges almost every day from re-sequencing, experimentation (e.g. transcriptomics, proteomics, phenotypic tests, gene knock-outs), comparative genomics, etc. Salzberg (2007) has proposed that a ‘genome wiki’ might provide just the solution we need for genome annotation. A wiki would allow the community of experts to work out the best name for each gene, to indicate uncertainty where appropriate, to include experimental evidence, to discuss alternative annotations, and to continuously update annotations. Although wikis will not (and should not) supplant well-curated model-organism databases, for the majority of species they might represent our best chance for creating accurate, up-to-date genome annotation.

And if you are really serious about updating your annotations, don’t forget to re-sequence your original strains using next-generation sequencing, at least if you can still find them in your freezer!

Acknowledgements

This project was carried out within the research programmes of the Kluyver Centre for Genomics of Industrial Fermentation and the Netherlands Bioinformatics Centre, which are part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

References

Almeida, L.G., Paixao, R., Souza, R.C., Costa, G.C., Barrientos, F.J., Santos, M.T., et al. (2004) A system for automated bacterial (genome) integrated annotation – SABIA. Bioinformatics 20: 2832–2833.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

Angiuoli, S.V., Gussman, A., Klimke, W., Cochrane, G., Field, D., Garrity, G., et al. (2008) Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 12: 137–141.

Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
Bairoch, A. (2000) The ENZYME database in 2000. Nucleic Acids Res 28: 304–305.
Bakke, P., Carney, N., Deloache, W., Gearing, M., Ingverson, K., Lotz, M., et al. (2009) Evaluation of three automated genome annotations for Halorhabdus utahensis. PLoS One 4: e6291.
Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., et al. (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155: 1758–1775.
Barrell, D., Dimmer, E., Huntley, R.P., Binns, D., O’Donovan, C., and Apweiler, R. (2009) The GOA database in 2009 – an integrated Gene Ontology Annotation resource. Nucleic Acids Res 37: D396–D403.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. (2009) GenBank. Nucleic Acids Res 37: D26–D31.
Bocs, S., Cruveiller, S., Vallenet, D., Nuel, G., and Medigue, C. (2003) AMI Gene: Annotation of Microbial Genes. Nucleic Acids Res 31: 3723–3726.
Bryson, K., Loux, V., Bossy, R., Nicolas, P., Chailou, S., van de Guchte, M., et al. (2006) AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system. Nucleic Acids Res 34: 3533–3545.
Camus, J.C., Pryor, M.J., Medigue, C., and Cole, S.T. (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148: 2967–2973.
Caspi, R., Altman, T., Dale, J.M., Dreher, K., Fulcher, C.A., Gilham, F., et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38: D473–D479.
Chaudhuri, R.R., Loman, N.J., Snyder, L.A., Bailey, C.M., Stekel, D.J., and Pallen, M.J. (2008) xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36: D543–D546.
Chiapelio, H., Gendrault, A., Caron, C., Blum, J., Petit, M.A., and El Karoui, M., (2008) MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level. BMC Bioinformatics 9: 498.
Christie, K.R., Weng, S., Balakrishnan, R., Costanzo, M.C., Dolinski, K., Dwight, S.S., et al. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32: D311–D314.
Davidson, T., Beck, E., Ganapathy, A., Montgomery, R., Zafar, N., Yang, Q., et al. (2010) The comprehensive microbial resource. Nucleic Acids Res 38: D340–D345.
Dehal, P.S., Joachimiak, M.P., Price, M.N., Bates, J.T., Baumohl, J.K., Chivian, D., et al. (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38: D396–D400.
Delcher, A.L., Harmon, D., Kasif, S., White, O., and Salzberg, S.L. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–4641.
Eddy, S.R. (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.
Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Ponting, J.E., et al. (2010) The Pfam protein families database. Nucleic Acids Res 38: D211–D222.

Frishman, D., Albermann, K., Hani, J., Heumann, K., Metanomski, A., Zollner, A., and Mewes, H.W. (2001) Functional and structural genomics using PEDANT. Bioinformatics 17: 44–57.
Fumoto, M., Miyazaki, S., and Sugawara, H. (2002) Genome Information Broker (GIB): data retrieval and comparative analysis system for completed microbial genomes and more. Nucleic Acids Res 30: 66–68.
Gaasterland, T., and Sensen, C.W. (1996) MAGPIE: automated genome interpretation. Trends Genet 12: 76–78.
Gundogdu, O., Bentley, S.D., Holden, M.T., Parkhill, J., Dorrell, N., and Wren, B.W. (2007) Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8: 162.
Hallin, P.F., and Ussery, D.W. (2004) CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data. Bioinformatics 20: 3682–3686.
Hsiao, T.L., Revelles, O., Chen, L., Sauer, U., and Vitkup, D. (2010) Automatic policing of biochemical annotations using genomic correlations. Nat Chem Biol 6: 34–40.
Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., and Oinn, T. (2006) Taverna: a tool for building and running workflows of services. Nucleic Acids Res 34: W729–W732.
Hunter, S., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., et al. (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37: D211–D215.
Karro, J.E., Yan, Y., Zheng, D., Zhang, Z., Carriere, N., Cayting, P., et al. (2007) Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. Nucleic Acids Res 35: D55–D60.
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Aloni, G., Azevedo, V., et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256.
Lechat, P., Hummel, L., Rousseau, S., and Moszer, I. (2008) GenoList: an integrated environment for comparative analysis of microbial genomes. Nucleic Acids Res 36: D469–D474.
Letunic, I., Doerks, T., and Bork, P. (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37: D229–D232.
Linke, B., McHardy, A.C., Neuweger, H., Krause, L., and Meyer, F. (2006) REGANOR: a gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes. Appl Bioinformatics 5: 193–198.
Liolios, K., Chen, I.M., Mavromatis, K., Tavernarakis, N., Hugenholtz, P., Markowitz, V.M., and Kyriides, N.C. (2010) The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 38: D346–D354.
Liu, Y., Harrison, P.M., Kunin, V., and Gerstein, M. (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5: R64.
Lukashin, A.V., and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26: 1107–1115.
Luo, C., Hu, G.Q., and Zhu, H. (2009) Genome reannotation of *Escherichia coli* CFT073 with new insights into virulence. *BMC Genomics* 10: 552.

Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., et al. (2010) The integrated microbial genomes system: an expanding comparative analysis resource. *Nucleic Acids Res* 38: D382–D390.

Markowitz, V.M., Korzeniewski, F., Palaniappan, K., Szeto, E., Werner, G., Padki, A., et al. (2006) The integrated microbial genomes (IMG) system. *Nucleic Acids Res* 34: D344–D348.

Markowitz, V.M., Mavromatis, K., Ivanova, N.N., Chen, I.M., Chu, K., and Kyrpides, N.C. (2009) IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 25: 2271–2278.

Mavromatis, K., Chen, I. N., Szeto, E., Markowitz, V.M., and Kyrpides, N.C. (2009) The DOE-JGI standard operating procedure for the annotations of microbial genomes. *Standards in Genomics Sciences* 1: 68–71.

Meyer, F., Goesmann, A., McHardy, A.C., Bartels, D., Bikel, T., Clausen, J., et al. (2003) GenDB – an open source genome annotation system for prokaryote genomes. *Nucleic Acids Res* 31: 2187–2195.

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007) KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic Acids Res* 35: W182–W185.

Nascimento, L.V., and Bazzan, A.L. (2005) An agent-based system for re-annotation of genomes. *Genet Mol Biol* 4: 571–580.

Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., et al. (2008) KEGG Atlas mapping for global analysis of metabolic pathways. *Nucleic Acids Res* 36: W423–W426.

Ouzounis, C.A., and Karp, P.D. (2002) The past, present and future of genome-wide re-annotation. *Genome Biol* 3: COMMENT2001.

Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Coloon, M., et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. *Nucleic Acids Res* 33: 5691–5702.

Overbeek, R., Larsen, N., Wulnas, T., D’Souza, M., Pusch, G., Selkov, E., Jr., et al. (2003) The ERGO genome analysis and discovery system. *Nucleic Acids Res* 31: 164–171.

Pruitt, K.D., Tatusova, T., Klimke, W., and Maglott, D.R. (2009) NCBI Reference Sequences: current status, policy and new initiatives. *Nucleic Acids Res* 37: D32–D36.

Riley, M.L., Schmidt, T., Wagner, C., Mewes, H.W., and Frishman, D. (2005) The PEDANT genome database in 2005. *Nucleic Acids Res* 33: D308–D310.

Rudd, K.E. (2000) EcoGene: a genome sequence database for *Escherichia coli* K-12. *Nucleic Acids Res* 28: 60–64.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell, B. (2000) Artemis: sequence visualization and annotation. *Bioinformatics* 16: 944–945.

Salzberg, S.L. (2007) Genome re-annotation: a wiki solution? *Genome Biol* 8: 102.

Selengut, J.D., Haft, D.H., Davidsen, T., Ganapathy, A., Gwinnt-Giglio, M., Nelson, W.C., et al. (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. *Nucleic Acids Res* 35: D260–D264.

Sterk, P., Kersey, P.J., and Apweiler, R. (2006) Genome Reviews: standardizing content and representation of information about complete genomes. *OMICS* 10: 114–118.

Stewart, A.C., Osborne, B., and Read, T.D. (2009) DIYA: a bacterial annotation pipeline for any genomics lab. *Bioinformatics* 25: 962–963.

Stothard, P., Van Domselaar, G., Shrivastava, S., Guo, A., O’Neill, B., Cruz, J., et al. (2005) BacMap: an interactive picture atlas of annotated bacterial genomes. *Nucleic Acids Res* 33: D317–D320.

Tamaki, S., Arakawa, K., Kono, N., and Tomita, M. (2007) Restauro-G: a rapid genome re-annotation system for comparative genomics. *Genomics Proteomics Bioinformatics* 5: 53–58.

Vallenet, D., Engelen, S., Mornico, D., Cruveiller, S., Fleury, L., Lajus, A., et al. (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. *Database (Oxford)* 2009: bap021.

Vallenet, D., Labarre, L., Rouy, Z., Barbe, V., Bocs, S., Cruveiller, S., et al. (2006) MaGe: a microbial genome annotation system supported by synteny results. *Nucleic Acids Res* 34: 53–65.

Van Domselaar, G.H., Stothard, P., Shrivastava, S., Cruz, J.A., Guo, A., Dong, X., et al. (2005) BASys: a web server for automated bacterial genome annotation. *Nucleic Acids Res* 33: W455–W459.

Wood, V., Rutherford, K.M., Ivens, A., Rajandream, M.A., and Barrell, B. (2001) A re-annotation of the *Saccharomyces cerevisiae* genome. *Comp Funct Genomics* 2: 143–154.

Wortman, J.R., Gilsenan, J.M., Joardar, V., Deegan, J., Clutterbuck, J., Andersen, M.R., et al. (2009) The 2008 update of the *Aspergillus nidulans* genome annotation: a community effort. *Fungal Genet Biol* 46 (Suppl. 1): S2–13.

Yang, S., Pappas, K.M., Hauser, L.J., Land, M.L., Chen, G.L., Hurst, G.B., et al. (2009) Improved genome annotation for *Zymomonas mobilis*. *Nat Biotechnol* 27: 893–894.

Yu, G.X., Snyder, E.E., Boyle, S.M., Crasta, O.R., Czar, M., Mane, S.P., et al. (2007) A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case. *Nucleic Acids Res* 35: 3953–3962.