Quantifying quantum coherence based on the generalized $\alpha - z$–relative Rényi entropy

Xue-Na Zhu1, Zhi-Xiang Jin2, and Shao-Ming Fei3,4

1School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China
2School of Physics, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
3School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
4Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

We present a family of coherence quantifiers based on the generalized $\alpha - z$–relative Rényi entropy. These quantifiers satisfy all the standard criteria for well-defined measures of coherence, and include some existing coherence measures as special cases.

PACS numbers: 03.67.Mn, 03.65.Ud

I. INTRODUCTION

Coherence, being at the heart of interference phenomena, plays a central role in quantum physics as it enables applications that are impossible within classical mechanics or ray optics. Coherence is also a vital physical resource with various applications in biology [1–3], thermodynamical systems [4, 5], transport theory [6, 7] and nanoscale physics [8]. Recent developments in our understanding of quantum coherence [9–14] and nonclassical correlation have come from the burgeoning field of quantum information science. One important pillar of the field is the study on quantification of coherence.

In Ref. [15] the authors established a rigorous framework (BCP framework) for quantifying coherence. The BCP framework consists of the following postulates that any quantifier of coherence C should fulfill:

(C1) Faithfulness: $C(\rho) \geq 0$, with equality if and only if ρ is incoherent.

(C2) Monotonicity: $C(\Phi_I(\rho)) \leq C(\rho)$, for any incoherent operation Φ_I.

(C3) Convexity: C is a convex function of the state, i.e.,

$$\sum_n p_n C(\rho_n) \geq C(\sum_n p_n \rho_n),$$

where $p_n \geq 0$, $\sum_n p_n = 1$.

(C4) Strong monotonicity: C does not increase on average under selective incoherent operations, i.e,

$$C(\rho) \geq \sum_n p_n C(\varrho_n),$$

with probabilities $p_n = tr(K_n \rho K_n^\dagger)$, post measurement states $\varrho_n = \frac{K_n \rho K_n^\dagger}{p_n}$, and incoherent operators K_n.

The authors of Ref. [16] provided a simple and interesting condition to replace (C3) and (C4) with the additivity of coherence for block-diagonal states,

$$C(\rho_1 \oplus \rho_2) = C(\rho_1) + C(\rho_2),$$

for any $p \in [0,1]$, $\rho_i \in \varepsilon(\mathcal{H}_i)$, $i = 1, 2$, and $p \rho_1 \oplus (1 - p) \rho_2 \in \varepsilon(\mathcal{H}_1 \oplus \mathcal{H}_2)$, where $\varepsilon(\mathcal{H})$ denotes the set of density matrices on the Hilbert space \mathcal{H}.

For a given d-dimensional Hilbert space \mathcal{H}, let us fix an orthonormal basis $\{|i\rangle\}_{i=1}^d$. We call all density matrices that are diagonal in this basis incoherent and label this set of quantum states by $\mathcal{I} \subset \mathcal{H}$. All density operators $\delta \in \mathcal{I}$ are of the form:

$$\delta = \sum_i p_i |i\rangle\langle i|,$$

where $p_i \geq 0$ and $\sum_i p_i = 1$. Otherwise the states are coherent. Let Λ be a completely positive trace preserving (CPTP) map:

$$\Lambda(\rho) = \sum_i K_n \rho K_n^\dagger,$$
where \(\{K_n\} \) is a set of Kraus operators satisfying \(\sum_n K_n K_n^\dagger = I_d \), with \(I_d \) the identity operator. If \(K_n^\dagger I K_n \in \mathcal{I} \) for all \(n \), we call \(\{K_n\} \) a set of incoherent Kraus operators, and the corresponding operation \(\Lambda \) an incoherent operational one.

II. THE FUNCTION \(f_{\alpha,z}(\rho, \sigma) \)

Quantifying coherence is a key task in both quantum mechanical theory and practical applications. In Ref. \([17\), \([18\)](\text{raw_text})\) the following function has been presented,

\[
f_{\alpha,z}(\rho, \sigma) = \text{Tr}(\sigma^{\frac{1}{1-z}} \rho^{\frac{z}{1-z}}),
\]

(2)

for arbitrary two density matrices \(\rho \) and \(\sigma \). Here, \(\alpha, z \in \mathbb{R} \). To study the limit when \(\alpha \to 1 \) and \(z \to 0 \), the authors in Ref. \([18\)](\text{raw_text}) parameterized \(z \) in terms of \(\alpha \) as \(z = r(\alpha - 1) \), where \(r \) is a non-zero finite real number, and considered the limit when \(\alpha \to 1 \): \(\lim_{\alpha \to 1} f_{\alpha,r(\alpha-1)}(\rho, \sigma) = \rho \). For fixed \(\alpha \neq 1 \), \(z \to 0 \) is exactly related to the anti-Lie-Trotter problem \([19\)](\text{raw_text})..

For a finite dimensional Hilbert space \(\mathcal{H} \), the set of linear operators is denoted by \(\mathcal{L}(\mathcal{H}) \). The adjoint of \(X \in \mathcal{L}(\mathcal{H}) \) is denoted by \(X^\dagger \). For \(X \in \mathcal{L}(\mathcal{H}) \) and real \(p \neq 0 \), \(\|X\|_p \) is defined by \([20\)](\text{raw_text})

\[
\|X\|_p = (\text{tr}|X|^p)^{\frac{1}{p}},
\]

where \(|X| = \sqrt{X^\dagger X} \). Here, for a self-adjoint operator \(X \), \(X^{-1} \) means the inverse restricted to \(\text{supp}(X) \), so \(X^{-1}X = XX^{-1} \) equals to the orthogonal projection on \(\text{supp}(X) \).

The Hölder’s inequality belongs to a richer family of inequalities. For every \(p_1, ..., p_k, r > 0 \) with \(\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_k} \) one has \([21\)](\text{raw_text})

\[
\|X_1 ... X_k\|_r \leq \|X_1\|_{p_1} ... \|X_k\|_{p_k}.
\]

(3)

From this inequality and the fact that \(\|X^{-1}\|_{-p} = \|X\|_p^{-1} \), the following reverse Hölder’s inequality is derived. Let \(r > 0 \) and \(p_1, ..., p_k \) be such that \(\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_k} \) and that exactly one of \(p_i \)'s is positive and the rests are negative \([20\)](\text{raw_text})

\[
\|X_1 ... X_k\|_r \geq \|X_1\|_{p_1} ... \|X_k\|_{p_k}.
\]

(4)

Moreover, equalities holds in \([3\)](\text{raw_text}) and \([4\)](\text{raw_text}) if and only if \(|X_i|^{p_i}, i = 1, 2, ..., k, \) are proportional.

Lemma 1 For states \(\rho \) and \(\sigma \),

(1) If \(0 < \alpha < 1 \) and \(z > 0 \), we have

\[
f_{\alpha,z}(\rho, \sigma) \leq 1;
\]

(2) If \(\alpha > 1 \) and \(z > 0 \), we have

\[
f_{\alpha,z}(\rho, \sigma) \geq 1.
\]

(3) \(f_{\alpha,z}(\rho, \sigma) = 1 \) if and only if \(\rho = \sigma \), for \(\alpha \in (0,1) \cup (1, +\infty) \) and \(z > 0 \).

[Proof] Let \(r = z, p_1 = \frac{2z}{1-\alpha}, p_2 = \frac{z}{\alpha}, X_1 = \sigma^{\frac{1}{p_1}}, X_2 = \rho^{\frac{1}{p_2}} \). When \(\alpha \in (0,1) \) and \(z > 0 \), we have

\[
f_{\alpha,z}(\rho, \sigma) = \text{tr}(X_1 X_2 X_1)^z = \text{tr}(\{\text{supp}(X_1)\}^r)
\]

\[
= (\|X_1 X_2 X_1\|_r)^r
\]

\[
\leq (\|X_1\|_{p_1} \|X_2\|_{p_2} \|X_1\|_{p_1})^r
\]

\[
= 1,
\]

where the second equality is due to \(X_i^\dagger = X_i \) for \(i = 1, 2 \). From \([3\)](\text{raw_text}) we obtain the first inequality.

When \(\alpha > 1 \) and \(z > 0 \), we have

\[
f_{\alpha,z}(\rho, \sigma) = (\|X_1 X_2 X_1\|_r)^r
\]

\[
\geq (\|X_1\|_{p_1} \|X_2\|_{p_2} \|X_1\|_{p_1})^r
\]

\[
= 1,
\]

(5)
where the first inequality is due to \(\text{[1]} \).

In the above proof of inequalities \(\text{[5]} \) and \(\text{[10]} \), \(||X_1X_2X_1||_2 = ||X_1||_p||X_2||_p||X_1||_p \) if and only if \(|X_1|^p_1 \) and \(|X_2|^p_2 \) are proportional, i.e., there is a number \(k \) which satisfies \(\sigma = kp \). Since \(\text{tr}(\rho) = \text{tr}(\sigma) = 1 \), then we obtain \(k = 1 \). \(\square \)

Let \(P(\mathcal{H}) \) be the set of positive semidefinite operators on \(\mathcal{H} \). For non-normalized states \(\rho, \sigma \in P(\mathcal{H}) \) with \(\text{supp } \rho \subseteq \text{supp } \sigma \), it has been defined in Ref. \(\text{[18]} \),

\[
D_{\alpha,z}(\rho||\sigma) := \frac{1}{\alpha - 1} \log \frac{f_{\alpha,z}(\rho, \sigma)}{\text{tr}\rho}.
\] \(\text{(7)} \)

For any states \(\rho, \sigma \) such that \(\text{supp } \rho \subseteq \text{supp } \sigma \), and for any CPTP map \(\Lambda \): \(D_{\alpha,z}(\Lambda(\rho)||\Lambda(\sigma)) \leq D_{\alpha,z}(\rho||\sigma) \) holds in each of the following cases \(\text{[13]} \):

- \(\alpha \in (0, 1] \) and \(z \geq \max\{\alpha, 1 - \alpha\} \);
- \(\alpha \in [1, 2] \) and \(z = 1 \);
- \(\alpha \in [1, 2] \) and \(z = \frac{2}{\alpha} \);
- \(\alpha \geq 1 \) and \(z = \alpha \).

For two states \(\rho \) and \(\sigma \), one has \(f_{\alpha,z}(\rho, \sigma) = e^{(\alpha - 1)D_{\alpha,z}(\rho||\sigma)} \). Hence \(f_{\alpha,z}(\rho, \sigma) \) has the following properties:

Lemma 2 For any quantum states \(\rho \) and \(\sigma \), such that \(\text{supp } \rho \subseteq \text{supp } \sigma \), and for any CPTP map \(\Lambda \), we have

- If \(\alpha \in (0, 1] \) and \(z \geq \max\{\alpha, 1 - \alpha\} \), then
 \[
f_{\alpha,z}(\Lambda(\rho), \Lambda(\sigma)) \geq f_{\alpha,z}(\rho, \sigma);
 \]

- If \(\alpha \in [1, 2] \) and \(z \in \{1, \frac{2}{\alpha}\} \); or \(\alpha \geq 1 \) and \(z = \alpha \), then
 \[
f_{\alpha,z}(\Lambda(\rho), \Lambda(\sigma)) \leq f_{\alpha,z}(\rho, \sigma).
 \]

III. COHERENCE QUANTIFICATION

The coherence \(C(\rho) \) in Ref. \(\text{[21]} \) can be expressed as

\[
C(\rho) = 1 - \left[\max_{\sigma \in I} f_{\frac{2}{\alpha},1}(\rho, \sigma) \right]^2.
\] \(\text{(8)} \)

In Ref. \(\text{[22]} \) a bona fide measure of quantum coherence \(C(\rho) \) has been presented by utilizing the Hellinger distance:

\[
D_H(\rho, \sigma) = \text{Tr}(\sqrt{\rho} - \sqrt{\sigma})^2;
\]

\[
C(\rho) = \min_{\sigma \in I} D_H(\rho, \sigma)
\]

\[
= 2 \left[1 - \max_{\sigma \in I} f_{\frac{2}{\alpha},1}(\rho, \sigma) \right],
\] \(\text{(9)} \)

which is the coherence \(C_2(\epsilon|\rho) \) of Theorem 3 in Ref. \(\text{[23]} \).

In Ref. \(\text{[23]} \) the coherence has been quantified based on the Tsallis relative \(\alpha \) entropy,

\[
D_{\alpha}(\rho||\sigma) = \frac{1}{\alpha - 1} (f_{\alpha,1}(\rho, \sigma) - 1).
\] \(\text{(10)} \)

But it was shown that it violates the strong monotonicity, even though it can unambiguously distinguish the coherent state from the incoherent ones with the monotonicity. In Ref. \(\text{[24]} \) a family of coherence quantifiers has been presented, which are closely related to the Tsallis relative \(\alpha \) entropy:

\[
C'_\alpha(\rho) = \min_{\sigma \in I} \frac{1}{\alpha - 1} \left(f_{\alpha,1}(\rho, \sigma) - 1 \right),
\] \(\text{(11)} \)

where \(\alpha \in (0, 2] \).

In the following we define a generalized \(\alpha - z \)-relative R\'enyi entropy:

\[
D_{\alpha,z}(\rho, \sigma) = \frac{f_{\alpha,z}(\rho, \sigma) - 1}{\alpha - 1}.
\] \(\text{(12)} \)

It is worthwhile noting that several coherence measures like relative entropy \(\text{[12]} \), geometric coherence \(\text{[25]} \), the sandwiched R\'enyi relative entropy \(\text{[26]} \) and max-relative entropy \(\text{[9]} \) are related to the generalized \(\alpha - z \)-relative R\'enyi entropy.

Based on the relation \(f_{\alpha,z}(\rho, \sigma) \) and \(D_{\alpha,z}(\rho, \sigma) \), and Lemma \(\text{[2]} \) we have
Corollary 1 For any quantum states ρ and σ for which $\text{supp} \rho \subseteq \text{supp} \sigma$, and for any CPTP map Λ: $D_{\alpha,z}(\Lambda(\rho), \Lambda(\sigma)) \leq D_{\alpha,z}(\rho, \sigma)$ holds in each of the following case:
- $\alpha \in (0, 1]$ and $z \geq \max\{\alpha, 1 - \alpha\}$;
- $\alpha \in [1, 2]$ and $z = 1$;
- $\alpha \in [1, 2]$ and $z = \frac{4}{3}$;
- $\alpha > 1$ and $z = \alpha$.

With the above properties, based on the generalized $\alpha - z$-relative Rényi entropy we define the quantity: $C_{\alpha,z}(\rho) = \min_{\sigma \in \mathcal{I}} D_{\alpha,z}(\rho, \sigma)$. The following statement takes place.

Theorem 1 The quantum coherence $C_{\alpha,z}(\rho)$ of a state ρ given by

$$C_{\alpha,z}(\rho) = \min_{\sigma \in \mathcal{I}} D_{\alpha,z}(\rho, \sigma)$$

is a well-defined measure of coherence for the following case:
- $\alpha \in (0, 1]$ and $z \geq \max\{\alpha, 1 - \alpha\}$;
- $\alpha \in [1, 2]$ and $z = 1$;
- $\alpha \in [1, 2]$ and $z = \frac{4}{3}$;
- $\alpha > 1$ and $z = \alpha$.

[Proof] Because of (2), (12) and (13), we have

$$C_{\alpha,z}(\rho) = \begin{cases} \frac{1 - \max_{\sigma \in \mathcal{I}} f_{z,\alpha}^1(\rho, \sigma)}{1 - \alpha}, & 0 < \alpha < 1, \\ \min_{\sigma \in \mathcal{I}} f_{z,\alpha}^1(\rho, \sigma)^{-1}, & \alpha > 1. \end{cases}$$

From Lemma 1, we have $C_{\alpha,z}(\rho) \geq 0$, and $C_{\alpha,z}(\rho) = 0$ if and only if $\rho = \sigma$. Let σ be the optimal incoherent state such that $C_{\alpha,z}(\rho) = D_{\alpha,z}(\rho, \sigma)$. Taking into account Corollary 1 we have that $C_{\alpha,z}(\rho)$ does not increase under any incoherent operations.

Next we prove that $C_{\alpha,z}(\rho)$ satisfies Eq. (11). Suppose ρ is block-diagonal in the reference basis $\{|j\}_j=1^d$, $\rho = p_1 \rho_1 \oplus p_2 \rho_2$ with $p_1 \geq 0, p_2 \geq 0, p_1 + p_2 = 1$, ρ_1 and ρ_2 are density operators. Let $\sigma = q_1 \sigma_1 \oplus q_2 \sigma_2$ with $q_1 \geq 0, q_2 \geq 0$, $q_1 + q_2 = 1$, and σ_1, σ_2 are diagonal states similar to ρ_1, ρ_2, respectively.

Denote Δ either max or min. Set $t_i = \Delta_{\rho_i, \sigma_i} \text{tr}(\sigma^{1/\alpha} \rho_i^{1/\alpha} \sigma^{1/\alpha} \rho_i^{1/\alpha})^z$, $i = 1, 2$. We have

$$\Delta_{\rho_i, \sigma_i} \text{tr}(\sigma^{1/\alpha} \rho_i^{1/\alpha} \sigma^{1/\alpha} \rho_i^{1/\alpha})^z = \Delta_{q_1, q_2} (q_1^{1-\alpha} p_1^{\alpha} t_1 + q_2^{1-\alpha} p_2^{\alpha} t_2).$$

Due to the Hölder inequality with $0 < \alpha < 1$, we have

$$q_1^{1-\alpha} p_1^{\alpha} t_1 + q_2^{1-\alpha} p_2^{\alpha} t_2 \leq \left(\sum_{i=1,2} p_i^{1/\alpha} \right)^{\alpha},$$

where the equality holds if and only $q_1 = l p_1^{1/\alpha}$ and $q_2 = l p_2^{1/\alpha}$ with $l = \left[p_1^{1/\alpha} + p_2^{1/\alpha} \right]^{-1}$, i.e.,

$$\max_{q_1, q_2} (q_1^{1-\alpha} p_1^{\alpha} t_1 + q_2^{1-\alpha} p_2^{\alpha} t_2) = \left(\sum_{i=1,2} p_i^{1/\alpha} \right)^{\alpha}. \quad (15)$$

Similarly, for the inequality with $\alpha > 1$, we have

$$q_1^{1-\alpha} p_1^{\alpha} t_1 + q_2^{1-\alpha} p_2^{\alpha} t_2 \geq \left(\sum_{i=1,2} p_i^{1/\alpha} \right)^{\alpha}.$$

When $q_1 = l p_1^{1/\alpha}$ and $q_2 = l p_2^{1/\alpha}$, we obtain

$$\min_{q_1, q_2} (q_1^{1-\alpha} p_1^{\alpha} t_1 + q_2^{1-\alpha} p_2^{\alpha} t_2) = \left(\sum_{i=1,2} p_i^{1/\alpha} \right)^{\alpha}. \quad (16)$$
Combining (14), (15) and (16), we have
\[
\Delta_{\sigma} = \frac{1}{\alpha} f_{\alpha, z}(\rho, \sigma) = p_{1} \Delta_{\sigma} = \frac{1}{\alpha} f_{\alpha, z}(\rho_{1}, \sigma_{1}) + p_{2} \Delta_{\sigma} = \frac{1}{\alpha} f_{\alpha, z}(\rho_{2}, \sigma_{2}).
\]
Thus, \(C_{\alpha, z} \) satisfies additivity of coherence for block-diagonal states: \(C_{\alpha, z}(p_{1} \rho_{1} \oplus p_{1} \rho_{1}) = p_{1} C_{\alpha, z}(\rho_{1}) + p_{2} C_{\alpha, z}(\rho_{2}). \) \(\Box \)

Corollary 2
For any incoherent state \(\sigma \) and \(\sigma = \rho \), \(C_{\alpha, z}(\rho) \) actually defines a family of coherence measures which includes several typical coherence measures.

IV. THE PROPERTIES OF \(C_{\alpha, z}(\rho) \)

From Theorem 1, \(C_{\alpha, z}(\rho) \) is a well-defined measure of coherence for \(\alpha \in (0, 1) \cup (1, 2] \),
\[
C_{\alpha, z} = \min_{\sigma \in I} \left[f_{\alpha, z}(\rho, \sigma) - 1 \over \alpha - 1 \right],
\]
where \(f(\rho, \sigma) = tr(\rho^{\alpha} \sigma^{1-\alpha}) \), since for any pair of square matrices \(A \) and \(B \), the eigenvalues of \(AB \) and \(BA \) are the same. For any incoherent state \(\sigma = \sum_{k=1}^{d} \delta_{kk} |k\rangle \langle k| \), we have
\[
tr(\sigma^{1-\alpha} \rho^{\alpha}) = \sum_{k=1}^{d} \delta_{kk}^{\alpha} |k\rangle \langle k|^{\alpha} = Q \sum_{k=1}^{d} \frac{|k\rangle \langle k|}{Q} \delta_{kk}^{\alpha-1},
\]
where \(Q = \left(\sum_{k=1}^{d} \langle k| \rho^{\alpha} |k\rangle^{\frac{1}{\alpha}} \right)^{\alpha} \). Denote
\[
\varepsilon(\alpha) = \begin{cases} 0, & 0 < \alpha < 1, \\ 1, & 1 < \alpha. \end{cases}
\]

According to the Hölder inequality and the converse Hölder inequality, we have
\[
\varepsilon(\alpha) \sum_{k=1}^{d} \frac{|k\rangle \langle k|}{Q} \delta_{kk}^{\alpha-1} \geq \varepsilon(\alpha) \left(\sum_{k=1}^{d} \delta_{kk} \right)^{\frac{1}{\alpha}} \left(\sum_{k=1}^{d} \frac{|k\rangle \langle k|}{Q} \right)^{\frac{\alpha}{\alpha}} = \varepsilon(\alpha),
\]
where the equality is attained when \(\delta_{kk}^{\alpha-1} = \frac{|k\rangle \langle k|}{Q} \). Then one finds the following conclusion.

Corollary 2 For \(\alpha \in (0, 1) \cup (1, 2] \),
\[
C_{\alpha, 1}(\rho) = \frac{\sum_{k=1}^{d} \langle k| \rho^{\alpha} |k\rangle^{\frac{1}{\alpha}} - 1}{\alpha - 1}.
\]
And the maximal coherence can be achieved by the maximally coherent states.
That the maximal coherence can be achieved by the maximally coherent states for $C_{\alpha,1}(\rho)$, with $\alpha \in (0, 1) \cup (1, 2]$, can be seen in the following. Based on the eigen-decomposition of a d-dimensional state $\rho = \sum_{j=1}^{d} \lambda_j |\varphi_j\rangle \langle \varphi_j|$, with λ_j and $|\varphi_j\rangle$ representing the eigenvalue and eigenvectors, we have:

$$
\varepsilon(\alpha) \sum_{k=1}^{d} \langle k | \rho^\alpha | k \rangle^{\frac{1}{\alpha}} = \varepsilon(\alpha) \sum_{k=1}^{d} \left(\frac{\lambda_j^\alpha}{\langle \varphi_j | \langle \varphi_j | \varphi_j \rangle^{2}} \right)^{\frac{1}{\alpha}} \\
\leq \varepsilon(\alpha)^d \sum_{k=1}^{d} \lambda_j^\alpha \langle \varphi_j | \langle \varphi_j | \varphi_j \rangle^{2}} \right)^{\frac{1}{\alpha}} \\
= \varepsilon(\alpha)^d \sum_{k=1}^{d} \lambda_j^\alpha \right)^{\frac{1}{\alpha}}.
$$

where the first inequality is due to

$$\sum_{k=1}^{n} \lambda_k x_k^p \leq \left(\sum_{k=1}^{n} \lambda_k \right)^{1-p} \left(\sum_{k=1}^{n} \lambda_k x_k^p \right)^{p}, 0 < p \leq 1, \quad \sum_{k=1}^{n} \lambda_k \right)^{1-p} \left(\sum_{k=1}^{n} \lambda_k x_k^p \right)^{p}, p > 1,$$

with $x_k = \sum_{j=1}^{d} \lambda_j^\alpha \langle \varphi_j | \langle \varphi_j | \varphi_j \rangle^{2}} \geq 0, \lambda_k = 1 \ (k = 1, 2, ..., n)$ and $p = \frac{1}{\alpha}$. Then one can easily find that the upper bound of the coherence can be attained by the maximally coherent states $\rho_d = |\varphi\rangle \langle \varphi|$ with $|\varphi\rangle = \frac{1}{\sqrt{d}} \sum_{j=1}^{d} e^{i\phi_j} |j\rangle$, $C_{\alpha,1}(\rho_d) = \frac{d \varepsilon(z_1)}{\alpha-1}$. □

Theorem 2 For $\alpha \in (0, 1), \beta \in (1, 2], \gamma > 1, \max\{\alpha, 1-\alpha\} \leq \alpha_1 \leq 1, \alpha_2 \geq 1$, we have

$$C_{\alpha,2}(\rho) \leq C_{\alpha,1}(\rho) \leq C_{\alpha,2}(\rho); \quad C_{\beta,1}(\rho) \leq C_{\beta,2}(\rho);$$

And

$$C_{\gamma,\gamma}(\rho) \leq \sum_{k=1}^{d} \langle k | \rho^\gamma | k \rangle^{\frac{1}{\gamma}} \leq \frac{1}{\gamma-1}.
$$

[Proof] Set

$$\varepsilon(z_i) = \begin{cases} -1, & 0 \leq z_i \leq 1, \\ 1, & z_i > 1, \end{cases}$$

where $i = 1, 2$. According to the Araki-Lieb-Thirring inequality, for matrixes $A, B \geq 0$, $q \geq 0$ and for $0 \leq r \leq 1$, the following inequality holds $[28]$.

$$tr(A^r B^r A^r)^q \leq tr(ABA)^{rq}.
$$

While for $r \geq 1$, the inequality is reversed $[28]$,

$$tr(A^r B^r A^r)^q \geq tr(ABA)^{rq}.
$$

From $[21]$ and $[22]$, we have

$$\varepsilon(z_i)f_{\alpha,z_i}(\rho, \sigma) = \varepsilon(z_i)tr(\frac{1}{\rho} \sigma)^{\frac{1}{\alpha}} \rho \sigma \frac{1}{\rho} \sigma^{\frac{1}{\alpha}})^{z_i} \\
\leq \varepsilon(z_i)tr(\frac{1}{\rho} \sigma^{\frac{1}{\alpha}} \sigma \frac{1}{\rho}) \\
= \varepsilon(z_i)tr(\rho \sigma^{1-\alpha}) \\
= \varepsilon(z_i)f_{\alpha,1}(\rho, \sigma).$$
Combining (13) and \(\alpha \in (0, 1) \), we have \(C_{\alpha,z_1}(\rho) \leq C_{\alpha,1}(\rho) \leq C_{\alpha,z_2}(\rho) \). (19) can be obtained in a similar way.

Since \(\gamma > 1 \), we have \(f_{\gamma,\gamma}(\rho, \sigma) \leq tr(\rho \sigma^{1-\gamma}) \). Similar to the proof of (17), \(\min_{\sigma \in I} tr^{\frac{1}{\gamma}}(\rho^{1-\gamma}) = \sum_{k=1}^{d} (k|\rho^\gamma|k)^{\frac{1}{\gamma}} \), we obtain (20). \(\square \)

Example 1: Let us consider a single-qubit pure state,

\[\rho = \frac{1}{2}(I_2 + \sum_i c_i \sigma_i), \]

where \(\sum_i c_i^2 = 1 \), \(I_2 \) is the \(2 \times 2 \) identity matrix and \(\sigma_i \) (\(i = 1, 2, 3 \)) are Pauli matrices. By Ref. [17], one has

\[\max_{\sigma \in I} tr^2(\sqrt{\sigma} \sqrt{\rho}) = \frac{1}{2}(1 + |c_3|), \]

and

\[\max_{\sigma \in I} tr^2(\sqrt{\rho} \sqrt{\sigma}) = \frac{1}{2}(1 + c_3^2). \]

For the single-qubit pure state \(\rho \), one has

\[\rho^{\frac{1}{2}} = \rho = \left(\frac{1 + c_3}{2} \frac{1 - c_3}{2} \frac{i c_3}{2} \frac{1 - i c_3}{2} \right). \]

(23)

Since \(tr(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}})^2 = tr(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}})^2 \), we now compute \(\max_{\sigma \in I} \left[tr(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}})^2 \right]^2 \). Suppose that \(\sigma = \sum_i p_i |i\rangle \langle i| \) with \(p_1 + p_2 = 1 \) and \(0 \leq p_1, p_2 \leq 1 \). We have

\[\sqrt{tr(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}})^2} = \frac{1 + c_3}{2} p_1^{\frac{1}{2}} + \frac{1 - c_3}{2} p_2^{\frac{1}{2}} \]

\[\leq \left[\left(\frac{1 + c_3}{2} \right)^{\frac{1}{2}} + \left(\frac{1 - c_3}{2} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}, \]

by using the H"older inequality and that the equality holds if and only \(p_1 = c(\frac{1 + c_3}{2})^{\frac{1}{2}} \) and \(p_2 = c(\frac{1 - c_3}{2})^{\frac{1}{2}} \) with \(c = \left[(\frac{1 + c_3}{2})^{\frac{1}{2}} + (\frac{1 - c_3}{2})^{\frac{1}{2}} \right]^{-1} \). Therefore we have

\[\max_{\sigma \in I} \left[tr(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}})^2 \right]^2 = \left[\left(\frac{1 + c_3}{2} \right)^{\frac{1}{2}} + \left(\frac{1 - c_3}{2} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}}. \]

Due to (13), we obtain

\[C_{\frac{1}{2},z}(\rho) = 2 \left[1 - \max_{\sigma \in I} tr^2(\sigma^{\frac{1}{2}} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}})^2 \right], \]

then we have

\[C_{\frac{1}{2},z}(\rho) = 1 - |c_3|, \]

\[C_{\frac{1}{2},1}(\rho) = 1 - c_3^2 \]

and

\[C_{\frac{1}{2},2}(\rho) = 2 - 2 \left[\left(\frac{1 + c_3}{2} \right)^{\frac{1}{2}} + \left(\frac{1 - c_3}{2} \right)^{\frac{1}{2}} \right]^3. \]

It is obvious that \(C_{\frac{1}{2},z}(\rho) \leq C_{\frac{1}{2},1}(\rho) \leq C_{\frac{1}{2},2}(\rho) \), see Fig. 1.
FIG. 1: The red dotted line is the vale of $C_{\frac{1}{2},2}(\rho)$; The blue solid line is the vale of $C_{\frac{1}{2},1}(\rho)$; The dashed line is the vale of $C_{\frac{1}{2},\frac{1}{2}}(\rho)$.

V. CONCLUSION

In summary, we have proposed four classes of coherence $C_{\alpha,z}(\rho)$ measures based on the generalized $\alpha - z$-relative Rényi entropy. It has been proven that these coherence measures satisfy all the required criteria for a satisfactory coherence measure. Moreover, we have obtained the analytical formulas for special quantifiers with $z = 1$ and also studied relations among the four classes of coherence $C_{\alpha,z}(\rho)$.

Acknowledgments This work is supported by NSFC under numbers 11675113, 11605083, and Beijing Municipal Commission of Education (KZ201810028042).

[1] Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)
[2] Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)
[3] Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013)
[4] Rybak, L., Amaran, S., Levin, L., Tomza, M., Moszynski, R., Kosloff, R., Koch, C.P., Amitay, Z.: Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms. Phys. Rev. Lett. 107, 273001 (2011)
[5] Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)
[6] Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)
[7] Witt, B., Mintert, F.: Stationary quantum coherence and transport in disordered networks. New J. Phys. 15, 093020 (2013)
[8] Karlström, O., Linke, H., Karlström, G., Wacker, A.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84, 113415 (2011)
[9] Du, S., Bai, S., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)
[10] Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)
[11] Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)
[12] Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)
[13] Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)
[14] Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D. M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302 (2016)
[15] Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)
[16] Audenaert, K.M.R., Datta, N.: $\alpha - z$-relative Rényi entropies. J. Math. Phys. 56, 022202 (2015)
[17] Audenaert, K.M.R., Hiai, F.: Anti-Lie-Trotter formula. e-print arXiv:1412.7905 (2014)
[20] Beigi, S.: Sandwiched Rényi divergence satisfies data processing inequality. J. Math. Phys. 54, 122202 (2013)
[21] Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)
[22] Jin, Z.X., Fei, S. M.: Quantifying quantum coherence and non-classical correlation based on Hellinger distance. Phys. Rev. A 97, 062342 (2018)
[23] Rastegin, A. E.: Quantum-coherence quantifiers based on the Tsallis relative α entropies. Phys. Rev. A 93, 032136 (2016)
[24] Zhao, H.Q., Yu, C.S.: Remediying the strong monotonicity of the coherence measure in terms of the Tsallis relative α entropy. Sci. Rep. 8, b299 (2018)
[25] Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)
[26] Xu, J.W.: Coherence measures based on sandwiched Rényi relative entropy. (arXiv:1808.04662v2)
[27] Luo, S.L., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)
[28] Audenaert, K.M.R.: On the Araki-Lieb-Thirring inequality. Int. J. Inf. Syst. Sci. 4, 78 (2008)