Durability against carbonation of concrete formulated with partial replacement of cement with marble powder

AHMED MERAH • University AmmarTelidji of Laghouat, Faculty of Civil Engineering and Architecture, Research Laboratory of Civil Engineering (LRGC), Laghouat, Algeria • a.merrah@lagh-univ.dz and ahmed-merrah@gmail.com

BENHARZALLAH KROBBA • University AmmarTelidji of Laghouat, Faculty of Civil Engineering and Architecture, Structural Rehabilitation and Materials Laboratory (SREML), Laghouat, Algeria • b.krobba@yahoo.fr and h.kroba@lagh-univ.dz

Received: 10. 06. 2020. • https://doi.org/10.14382/epitoanyag.jsbcm.2021.4

Abstract

The first objective of this study is the use of marble waste powder as a partial replacement for cement (CEM I 42.5) in concrete. Furthermore, the phenomenon of carbonation significantly influences the durability of reinforced concrete structures, in this context, the second objective of this work is the study of the effect of accelerated carbonation on the durability of concretes formulated with cement. Containing marble powder with different percentages. To achieve this objective, four concrete mixes containing 0%, 10%, 15% and 30% marble powder as a cement replacement by weight were prepared. These concrete mixes were subjected to accelerated carbonation to study their durability against this phenomenon. The series of tests is carried out to study the effect of replacing 10%, 20% and 30% of the cement with marble powder on the depth of carbonation and the compressive strength and compare it with traditional concrete. The result of the present study indicates that the depth of carbonation increases with the increase in the rate of replacement of the cement with marble powder (10% to 30%) and that the resistance to compression decreases slightly with the increase in the replacement. The compressive strength of the concrete remains within the acceptable range recommended by the regulations used in Algeria.

Keywords: waste, marble powder, concrete durability, carbonation depth, compressive strength, environment

1. Introduction

The consumption of fossil fuels releases trace gases in the atmosphere that affect the climate, such as methane, Sulphur dioxide, nitrogen and carbon dioxide. The latter being responsible for half of the greenhouse effect [1]. The global carbon dioxide (CO₂) content of the atmosphere reaches the symbolic and significant threshold of 400 parts per million (ppm) for the first time in 2015 and set new records in 2016 [2].

Concrete is the most widely used composite material in the world, given its high strength and stability. This material is mainly composed of cement, aggregates, water and possibly additives, all the components of this material are available in nature with the exception of the cement which requires fossil energy for production which is the main source of pollution air. The cement industry generates enormous quantities of carbon dioxide and thus participates in increasing the concentration of CO₂ in the air. This concentration can reach 1% and to produce a ton of cement, the cement industry releases a ton of CO₂ [3].

Moreover, the country of Algeria contains several marble quarries that generate marble powder who leads to an environmental problem, in this approach fits our study, which consists in the use of this waste as partial substitution with Portland cement. In this context, two objectives are to be expected, the first consists in limiting the CO₂ on emissions due to the manufacture of cement, the second consists in minimizing the effects on the environment by the use of marble powder as a partial replacement for the cement, in this axe of research several researchers have carried out several studies on the effect of this partial replacement of cement with marble powder, among these researchers, [4] conducted a study on the possibility of using marble powder in self-placing concrete as a partial replacement for cement, the results of this study showed that the optimal percentage of replacement is around 50% which leads to an increase in compressive strength . [5-6] studies the effect of the use of marble powder as a partial replacement of cement on the concrete properties, the results obtained shown that the use of marble powder improves workability, compressive and tensile strength. [7-10] studied the effect of different percentage of substitution of cement by marble powder on compressive strength, the results of this research shown that the optimal rate of replacement of cement by powder marble is up to 10%. In the same way, [11-12] concluded that an optimum of 15% replacement leads to an improvement in strength and durability of concrete.
The result of this investigation indicates that the carbonation depth decreases with the increase of the replacement of cement with waste marble powder (10% to 30%) and the compressive strength decreases slightly with the increase of replacement. The compressive strength remains within the acceptable range of M25 concrete.

2. Materials

2.1 Cement

The used cement is a Portland cement CEM I 42.5 produced in the locality of BISKRA in South East of Algeria, the cement density is 3.07 g/cm³, with the characteristics shows in Table 1, 2 and 3.

Elements	Content %	Norms
SO₃	2.30	(NA 237) < 3.5%
CL	0.028	(NA 5080) ≤ 0.1%
P A F	2.04	(NA 237) ≤ 5%
C₂ S clinker	62	In accordance with Bogue
C₂ S clinker	13	In accordance with Bogue
C₂ A clinker	1.5	In accordance with Bogue
C₂ AF clinker	17	In accordance with Bogue

Table 1 Mineralogic characteristics of used Cement CEM I 42.5

Designation	Measures	Norms
Specific surface Blaine (cm²/g)	3420	(NA231)
Start of taking (min)	180	(NA233) ≥60 min
Hot expansion (min)	0.5	≤10mm(NA232)
Consistence (%)	25.7	T(NA290)

Table 2 Physics proprieties of used cement CEM I 42.5

Mechanical proprieties	Compressive strength (MPa)	
2 days	≥10	21
28 days	62.5±Re42.5	49.5

Table 3 Mechanic proprieties of used cement CEM I 42.5

2.2 Powder marble

The used marble powder was a waste resulting from the cutting, shaping and illustration of marble stones. This powder was supplied by the company MCA (Marble Tile and Agglo-marble installed in locality of Bordj Bou Arrérdj in Algeria). The physic and the chemical properties of the marble powder are given in Table 4.

Powder marble	Compo-	Content (%)	
Content (%)	0.76	0.41 0.23	54.9 0.61 0.24 0.04 0.61 0.005 36.3

Table 4 Chemical properties of the marble powder
2.3 Aggregates

The used sand is alluvial (0–5 mm) which produced by Oued M’zi quarry of Laghouat, Algeria, two classes of limestone aggregates (3–8 mm and 8–15 mm) were used in the concrete formulation which produced by the quarry (Laghouat).

The Table 5 gives the physical proprieties of the used aggregates.

Physical proprieties of the used aggregates	Standard	Sand 0/5	3/8	8/15
Apparent density (g/cm³)	1.64	1.319	1.255	
Absolute density (g/cm³)	2.6	2.65	2.65	
Absorption coefficient (%)	1	1.5	1.5	

The used sand has a particle size of 0–5 mm, apparent density of 1.56 g/cm³ and absolute density of 2.61 g/cm³. Two sizes of aggregates (3–8 mm), (8–15 mm) are used to formulate the concretes, these aggregates are characterized by a calcareous rock with a high calcium carbonate content (98% CaCO₃), their apparent densities are 1.32 g/cm³ and 1.26 g/cm³ respectively. Their absolute density is 2.6 g/cm³. The used water is tap water. It meets all the requirements of NFP 18-303 and EN 1008, taking into account the concentrations of suspended solids and dissolved salts.

3. Methods

3.1 Concrete formulation

The used concrete formulation method in the present study is DREUX GORISSE method.

The results of the concrete formulation were given in Table 6:

S/G	W/C	Sand (S) (kg/m³)	Gravel (G) 3/8 (kg)
0.60	0.57	683.7	146.7

Gravel (G) 8/15 (kg)	Cement (C) (CEM I) (kg)	Water (W) (l)	Slump test (cm)
990.25	374.40	216.42	8

Table 6 Results of control concrete formulation (Legend: S: Sand, G: Gravels, W: Water, C: Cement)

Table 5 Physical proprieties of the used aggregates

3.2 Confection and preservation of samples

Before mixing the concretes, the aggregates, previously washed and dried in an oven at 10 ± 5 °C for one day (24 h), then cooled in ambient air, they are introduced, according to mass proportions already known. in parallel with the preparation of the concrete, the moulds (7x7x7 cm³) are prepared for the determination of the compressive strength and for the accelerated carbonation tests. All the samples are kept in the moulds for 24 hours in plastic film, after demoulding, they are immersed in water at T = 20 ± 0.5 °C according to standard NA 426 for 28 days and according to the recommendation of the AFPC AFREM [22] until the deadlines for the start of tests (Fig. 1).

3.3 Compressive strength test

In order to determine the compressive strength of the four concrete formulations (B1, B2, B3 and B4) cubic samples of prepared concrete will be subjected to two test campaigns, compression test and accelerated carbonation test.

Concretes formulations	Cement (kg)	Marble powder (kg)
B1 (0% replacement)	374.4	0
B2 (10% replacement)	336.96	37.44
B3 (20% replacement)	299.52	74.88
B4 (30% replacement)	262.08	112.32

Table 7 Weights of Marble powder for different concrete formulations

After 28 days of cure, the cubic samples (7x7x7 cm³) of prepared concrete will be subjected to two test campaigns, compression test and accelerated carbonation test.

Fig. 1 Samples conservation

1. ábra Minták tárolási módszere

Fig. 2 Machine for compressive strength test

2. ábra A nyomószilárdság vizsgálatához használt eszköz
(7×7×7 cm³) were used. The compressive strength for cubic samples of carbonated and control concrete samples were determinate at age 7, 14 and 28 days.

The compression resistance test was carried out on 7×7×7 cm³ cubic samples according to NF P18-406. The hydraulic press used has a loading speed of 0.5 MPa / Sec with a capacity of 3000 kN. The rupture stress is given directly by the testing machine with an accuracy of 0.5 MPa (Fig. 2).

3.4 Accelerated carbonation test

The concrete carbonation is a very slow phenomenon in the atmosphere, the concentration of carbon dioxide is not very important (of the order of 0.3%) in the air, the effect of this phenomenon is manifested only after several years of exposure of reinforced concrete structures to this phenomenon, therefore, it is necessary to find a way to accelerate the carbonation of the cementitious material ensuring results representative of this natural phenomenon. This test is called accelerated carbonation test.

3.4.1 Accelerated carbonation test procedure according to AFPC-AFREM test protocol

The test consists in following the evolution of the thickness of the carbonated concrete preserved in an atmosphere rich in carbon dioxide (CO₂).

A.1. Equipment:
- Ventilated oven: controlled at 40 ± 2°C, located in a room with a temperature of 20 ± 2°C
- Accelerated carbonation chamber: the accelerated carbonation test consists in obtaining a gas mixture (50% CO₂ + 50% air) in the carbonation chamber (Fig. 3) with controlling the relative humidity which must be between 40 and 80%. To monitor the relative humidity, a hygrometer was used. The carbonation test is executed using a carbon dioxide (CO₂) incubator according to the AFPC-AFREM test protocol (1997) [22].

To start the accelerated carbonation test, the samples must be preconditioned in two phases:
In the first phase, the samples were submitted to a cure in a humid environment (relative humidity greater than 95% or emerged into water) for 28 days according AFPC AFREM[22] then weighed, in order to determining the bulk density and the water content.

In the second phase, they are placed in an oven at 40 ± 2°C, for 48 hours, then weighed for second time [22]. The two faces of each sample must be covered with adhesive aluminium to guide the diffusion of CO₂, then the samples are subjected to accelerated carbonation in the carbonation chamber for 28 days (Fig. 4 and Fig. 5) AFPC AFREM[22] while other control samples are stored in the laboratory to measure the compressive strength.
4. Results and discussions

4.1 Densities and water content of samples

In order to conduct the accelerated carbonation test and according to AFPC AFREM 97 [22] recommendations, in the first pre-conditioning phase, the bulk density and water content of the samples must be determined for the accelerated carbonation test.

Table 8 show the results of densities and water content for the four-concrete formulation

Concrete formulations	Densities (kg/m³)	Water content (%)
B1(0% replacement)	2537.63	2.37
B2(10% replacement)	2566.14	2.32
B3(10% replacement)	2602.85	2.32
B4(10% replacement)	2592.64	2.34

Table 8 Densities and water content for the four concrete formulations

Table 8 shows that the densities increases with the increase of substitution (cement with the powder marble) for the four concrete formulations. The water content of the all-concrete formulations have the same value, from these results, then, the accelerated carbonation test can be started according to AFPC AFREM 97 [22].

4.2 Effect of the replacement (cement by the powder marble) on the compressive strength for the four concretes formulations

At the age of 28 days, samples were tested with the compressive machine, the table 9 show the effect of the carbonation on the compressive strength of the control concrete and the other concretes with different percentages of replacements of cement with powder marble (10%, 20% and 30%).

Age (days)	Concrete B1 (control)	Concrete B2 (10% replacement)	Concrete B3 (20% replacement)	Concrete B4 (30% replacement)
7	59.2	55.4	52.9	46.4
14	853.24	865.92	881.7	913.3
28	856.8	869.2	886.8	923.1

Table 9 Compressive strength for different concrete formulations

From Table 9, we draw the following curve (Fig. 8).

In Fig. 7, it is clearly shown that the compressive strength decreases with increasing percentage of substitution of cement with marble powder. This decrease is slightly (of the order of 11%) up to a percentage of 20% of substitution and it is important of the order of 22% for a substitution of 30%.

The obtained results for the compressive strength of concrete are in agreement with those obtained by [23]. The value of the compressive strength of 46 MPa corresponding to a substitution of cement with 30% of marble powder is acceptable for the realization of structural elements of reinforced concrete. This result will lower cost of making reinforced concrete structures, with condition to protecting the exposed concrete against carbonation.

4.3 Effect of the carbonation on the gain mass for the four concrete formulations

The Table 10 show the effect of the carbonation on the gain mass for the four concrete formulations at the different ages 7, 14 and 28 days.

Age (days)	Concrete B1 (control)	Concrete B2 (10% replacement)	Concrete B3 (20% replacement)	Concrete B4 (30% replacement)
7	853.24	865.92	881.7	913.3
14	856.8	869.2	886.8	923.1
28	858.2	870.6	889.1	925.6

Table 10 Mass gain (g) for different concrete formulations

Fig. 8 Mass gain for the four concretes formulations

Fig. 8 show that the carbonation increases the mass of samples with the increase of the substitution (cement by marble powder (10%, 20%, 30%). This increase is due mainly to the concrete carbonation who makes changes in the microstructure of carbonated concrete (replacement of portlandite by calcite).
4.4 Effect of the accelerated carbonation on the four concretes formulations.

The carbonate depth was determined, according to the AFPC-AFREM 97 procedure [22] with a phenolphthalein method described above, applied to the face of the cubic samples (7×7×7 cm³) after cutting into two parts with the ages 7, 14 and 28 days. Table 11 shows the evolution of the depth of carbonation at different ages for the four concrete formulations.

Age (days)	Concrete B1 (Control)	Carbonation depth (mm)		
	B2 (10% replacement)	B3 (20% replacement)	B4 (30% replacement)	
7	1	3	4	6
14	2	5	7	8
28	3	6	7.5	9.5

Table 11: Evolution of carbonation depth at different ages for the four concrete formulations.

From the Table 11, we draw the following curve (Fig. 9).

According to the curve of the evolution of the carbonation depth with the square of time for the different concretes, we note that the depth of the carbonation increases with the substitution of cement by the marble powder (10%, 20%, 30%).

In addition, it can be seen from the previous curve (Fig. 9) that the evolution of the carbonation depth is relatively fast from 7 days to 14 days and stabilizes at almost constant values until the 28th days. This for all concretes (B1, B2, B3, B4). This result can be explained as follows:

During the 7 to 14-day period, the available amount of portlandite is larger, resulting in faster carbonation with calcite formation.

For the period between 14 and 28 days, the available amount of portlandite becomes low as it is consumed during the first period. This will reduce the carbonation rate.

This reduction is caused by clogging of pores caused by the formation of calcite which has a molar volume greater than the molar volume of portlandite.

On the other hand, it can be concluded that the depth of carbonation increases with the increase of the percentage of replacement of powder marble.

5. Conclusions

From this study, the following conclusions can be written:

- The depth of carbonation increases with the time of exposure in the enclosure of accelerated carbonation.
- The increase in the substitution of cement by powdered marble increases the depth of carbonation. This is due to the replacement of cement by the marble powder which makes decreased, the rate of portlandite and consequently, it accelerates the consumption of this one by the reaction of carbonation.
- The increase in the mass of carbonate samples increases with the increase in the depth of carbonation, this is mainly due to the carbonation of portlandite giving rise to calcite densers than portlandite.
- The compressive strength decreases with substitution of the cement by the marble powder. This decrease is slight and remains within values acceptable by Algerian standards.
- Partial replacement of cement with marble powder up to 30% can give a quality concrete (Acceptable compressive strength according to Algerian standards). Moreover, this replacement contributes to reducing the harmful effects of marble waste on the environment.
- To protect this concrete and make it durable against carbonation, it must be protected by an anti-carbonation coating.
- The optimal rate (30%) obtained by replacing cement with marble powder can reduce the carbon dioxide emission in the atmosphere by the production of CEM I cement by 25%.

References

[1] Retailack, G. J. – Conde, G. D. (2020): Deep time perspective on rising atmospheric CO₂. Global and Planetary Change 103:177.
[2] Betts, R. A. – Jones, C. D. – Knight, J. R. – Keeling, R. E. – Kennedy, J. J. (2016): El Niño and a record CO₂ rise. Nature Climate Change 6, 806.
[3] Diet, A. – Schmitt, A. (1996): Electricity of France and renewable energies: this is part Solar systems (Review) 17–23.
[4] Sadek, D.M. – El-Attar, M.M. – Ali, H.A. (2016): Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production 121, 19–32. https://doi.org/10.1016/j.jclepro.2016.02.044
[5] Soliman, N. M. (2013): Effect of using marble powder in concrete mixes on the behaviour and strength of RC slabs. International Journal of Current Engineering and Technology 3, 1863–1870.
[6] Aliabdo, A. A. – Elmoaty, A. E. M. A. – Auda, E. M. (2014): Re-use of waste marble dust in the production of cement and concrete. Construction and building materials 50, 28–41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
[7] Kumar, R. – Kumar, S. K. (2015): Partial replacement of cement with marble dust powder. International Journal of Engineering Research and Applications 5, 106–114.
[8] Vaidevi, C. (2013): Study on marble dust as partial replacement of cement in concrete. Indian journal of engineering 4, 14–16.
[9] Rodrigues, R. – De Brito, J. – Sardinha, M. (2015): Mechanical properties of structural concrete containing very fine aggregates from marble cuttings. Construction and Building Materials 77, 349–356. https://doi.org/10.1016/j.conbuildmat.2014.12.104
[10] Ergün, A. (2011): Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties.
of concrete. Construction and building materials 25, 806–812. https://doi.org/10.1016/j.conbuildmat.2010.07.002

[11] Singh, M. – Srivastava, A. – Bhunia, D. (2019): Long term strength and durability parameters of hardened concrete on partially replacing cement by dried waste marble powder slurry. Construction and Building Materials 198, 553–569. https://doi.org/10.1016/j.conbuildmat.2018.12.005

[12] Singh, M. – Srivastava, A. – Bhunia, D. (2017): An investigation on effect of partial replacement of cement by waste marble slurry. Construction and Building Materials 134, 471–488. https://doi.org/10.1016/j.conbuildmat.2016.12.155

[13] Singh, M. – Srivastava, A. – Bhunia, D. (2019): Analytical and experimental investigations on using waste marble powder in concrete. Journal of Materials in Civil Engineering 31, 04019011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002631

[14] Ulubeyli, G. C. – Bilir, T. – Artir, R. (2016): Durability properties of concrete produced by marble waste as aggregate or mineral additives. Procedia engineering 161, 543–548.

[15] Vardhan, K. – Siddique, R. – Goyal, S. (2019): Strength, permeation and micro-structural characteristics of concrete incorporating waste marble. Construction and Building Materials 203, 45–55. https://doi.org/10.1016/j.conbuildmat.2019.01.079

[16] Ashish, D. K. (2018): Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. Journal of Building Engineering 15, 236–242. https://doi.org/10.1016/j.jbe.2017.11.024

[17] Ashish, D. K. (2019): Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of cleaner production 211, 716–729. https://doi.org/10.1016/j.jclepro.2018.11.245

[18] Gameiro, F. – De Brito, J. – da Silva, D. C. (2014): Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry. Engineering Structures 59, 654–662 https://doi.org/10.1016/j.engstruct.2013.11.026

[19] Singh, M. – Choudhary, K. – Srivastava, A. – Sangwan, K.S. – Bhunia, D. (2017): A study on environmental and economic impacts of using waste marble powder in concrete. Journal of Building Engineering 13, 87–95. https://doi.org/10.1016/j.jobe.2017.07.009

[20] Rana, A. – Kalla, P. – Caetenyi, L. J. (2015) Sustainable use of marble slurry in concrete. Journal of Cleaner Production 94, 304–311. https://doi.org/10.1016/j.jclepro.2015.01.053

[21] Kumar, A. – Thakur, A. (2018): A State of Art Review: On Usage of Waste Marble Powder In Concrete Production.

[22] Rougeau, P .: AFREM crossover test results, Accelerated carbonation test, CERIB, 1997.

[23] Tayeh, B. A. (2018): Effects of marble, timber, and glass powder as partial replacements for cement. Journal of Civil Engineering and Construction 7, 63–71. https://doi.org/10.3273/jcec.2018.7.2.63

Ref.:
Merah, Ahmed – Krobba, Benharzallah: Durability against carbonation of concrete formulated with partial replacement of cement with marble powder
Építő anyag – Journal of Silicate Based and Composite Materials, Vol. 73, No. 1 (2021), 17–23. p. https://doi.org/10.14382/epitoanyag-jsbcm.2021.4

ICAIBMS 2021
15th International Conference on Artificial Intelligence-Based Materials Science
April 08-09, 2021 in Athens, Greece

The International Research Conference is a federated organization dedicated to bringing together a significant number of diverse scholarly events for presentation within the conference program. Events will run over a span of time during the conference depending on the number and length of the presentations. With its high quality, it provides an exceptional value for students, academics and industry researchers.

ICAIBMS 2021: 15. International Conference on Artificial Intelligence-Based Materials Science aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Artificial Intelligence-Based Materials Science. It also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of Artificial Intelligence-Based Materials Science.

waset.org/artificial-intelligence-based-materials-science-conference-in-april-2021-in-athens