Neural Network Ensembles to Real-time Identification of Plug-level Appliance Measurements

NILM Workshop 2016, 14th May
Karim Said Barsim, Lukas Mauch, and Bin Yang
Institute of Signal Processing and System Theory
University of Stuttgart, Stuttgart, Germany

{karim.barsim,lukas.mauch,bin.yang}@iss.uni-Stuttgart.de
Introduction and motivation

- Appliance identification
 - A sub-task of the NILM problem
 - Sometimes a disjoint process

- An upper bound
 - Raw signatures (current $i(n)$ and voltage $v(n)$)
 - High resolution signals
 - Plug-level measurements

- Plug-level appliance identification
 - Smart outlets

- Aspects of the identification process
 - Training data
 - Sampling frequency
 - Signature variations
Task and tools

Generic appliance identification from high resolution raw measurements

- Neural network ensembles:
 - Suitable for raw-data learning
 - Unstable w.r.t training data (i.e. suited for models ensembles)

- Plug Load Appliance Identification Dataset (PLAID) \(^{[1]}\)
 - Plug-level raw measurements
 - Generic appliance categories

\(^{[1]}\) J. Gao, S. Giri, E. C. Kara, and M. Berg’ es, “PLAID: A Public Dataset of High-resolution Electrical Appliance Measurements for Load Identification Research: Demo Abstract”. In proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings:198–199, 2014.
Appliances’ Signature

- Raw current $i(n)$ and voltage $v(n)$
 - Unsupervised feature learning
 - $x_\tau = [i_\tau^T, v_\tau^T]^T$
- Single period (~0.017 seconds @ 60Hz)
 - Real-time identification
 - $i_\tau = [i(\tau), i(\tau + 1), ..., i(\tau + d + 1)]^T$
- Segment-based normalization
 - Discarding amplitude information
 - Generic labeling
 - $\hat{i}_\tau = \frac{2 (\max i_\tau - \min i_\tau) 1_{d,1}}{\max i_\tau - \min i_\tau}$
- Algorithmic expansion
 - Multiple phase shifts from 2 periods
 - Translation invariance and robustness to variations
 - $X = \{ x_\tau \mid \tau = \tau_0 + m \epsilon, \ 0 \leq m < \frac{d}{\epsilon} \}$

Appliance signature (green curves)

Expansion of training data
Prediction model

- A neural network ensemble
 - Unstable models
 - Similar to Bootstrap aggregation
 - Ex. binary classification networks
 - Ex. per class combination \(\binom{11}{2} = 55 \) nets
 - Ex. shallow, feedforward, fully connected nets

\[
D_{\omega_i,\omega_j} = \{ x \in X | \omega(x) = \omega_i \text{ or } \omega(x) = \omega_j \}
\]

\[
\hat{\theta}_{\omega_i,\omega_j}(x) = [\hat{p}_{\omega_i,\omega_j}, \hat{p}_{\omega_j,\omega_i}]
\]

- Confidence-weighted voting

\[
\hat{\omega}(x) = \arg\max_{\omega_i \in \Omega} \sum_{j \neq i} \hat{p}_{\omega_j,\omega_i}(x)
\]

An example of the adopted prediction model

14th May 2016

L. Mauch
Stuttgart University
Experiments (1) - Prediction

- PLAID Dataset
 - +200 instances
 - +1000 measurements
 - Category-based (11 cat.)
 - High frequency (30 kHz)
 - Residential dataset (55 homes)

- Prediction - Training
 - Validation-based early stopping
 - Building-based validation
 - Leave-house-out cross validation [2]
 - Complete (54 houses, 30 kHz, 11 cat.)

- Prediction - Evaluation
 - Category-based, F_1 - score F1S
 - Building-based, Accuracy α

- Total accuracy: $\alpha = 0.89\%$

[2] J. Gao, E. C. Kara, S. Giri, and M. Berg, “A feasibility study of automated plug-load identification from high frequency measurements”. In proceedings of the 3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP):220–224, Dec. 2015.
Experiments (2) - Training data

- Effect of reducing size of training data τ
 - Building-based reduction
 - Training on a ratio τ of labeled data
- Sampling frequency $f_s = 30$ kHz
- Test sample: last period of each measurement
- Label space $|\Omega| = 11$ categories
- Notable degradation w.r.t training data

![Graph showing accuracy vs size of training set τ.](image)

- Labeled dataset $\sim \tau$
- Unlabeled set
- Validation $\sim 30\%$
- Training data
- Test Building

L. Mauch
Stuttgart University

(7/11) 14th May 2016
Experiments (3) - Sampling frequency

- Complete training data (54 buildings)
- Resampled signals
 - Sampling frequency $f_s = 2.5 - 30$ kHz
- Test sample: last period of each measurement
- Label space $|\Omega| = 11$ categories
- Almost stable for a wide range
 - Always +80%

![Graph showing accuracy vs. sampling frequency](image)

![Diagram showing signal processing steps](image)
Experiments (4) - Signature variation

- Complete training data (54 buildings)
- Sampling frequency $f_s = 30 \text{ kHz}$
- **Test sample:**
 - Phase-shifted sample by τ seconds
- Label space $|\Omega| = 11$ categories
- Robust to signature variations
 - But only evaluated on 1 second of operation
 - A certain phase shift is preferred

![Accuracy vs Time](image1.png)

![Current vs Time](image2.png)
Experiments (5) - Label space

- Complete training data (54 buildings)
- Sampling frequency $f_s = 30$ kHz
- Test sample: last period of each measurement
- **Label space**
 - A list of appliances in each building is known
 - A per-building label space Ω_h
- Useful information but not always available.
 - Total accuracy: $\alpha \approx 95\%$

Graphs:
- Accuracy vs. size of training set r
- Accuracy vs. sampling frequency f_s [kHz]
- Current [A] vs. time [ms] for a laptop with $\tau = 100$ ms
Thank you for your attention