We currently have no approved drugs for the treatment of Ebola virus disease (EVD) or post-Ebola syndrome (PES). A substantial proportion of patients presenting for treatment die, including healthcare workers (HCWs) with hospital-acquired infections. More than 28,000 people were suspected or confirmed with EVD and 11,000 died in the West Africa outbreak during 2014–2016. A new EVD epicenter developed in the Democratic Republic of Congo in mid-2018, and it is likely that new outbreaks will occur in the future. The low survival rate discourages patients from presenting for treatment, and the occupational risk discourages HCWs from caring for highly infectious patients. A substantial proportion of survivors complain of chronic symptoms, such as eye problems (47%) and arthralgias (64%)—a condition that has been termed PES (Wilson et al., 2018). Inflammation may play a role in both the uveitis, which can result in blindness (Shantha et al., 2017) and in arthritis (Amissah-Arthur et al., 2017). Availability of an efficacious adjunctive treatment drug would save lives, increase the number of people presenting for treatment, and increase the willingness of HCWs to care for patients. An efficacious drug for adjunctive treatment of PES could decrease morbidity suffered by survivors. To date, most research efforts have focused on vaccine for prevention and either antivirals or antibody preparations for treatment. However, given the extensive inflammatory component of EVD, adjunctive therapy to decrease inflammation—but not globally downregulate the host immune response in a manner that could be detrimental (e.g., steroids)—may hold promise for better outcomes for those infected. Although drugs such as acetylsalicylic acid, ibuprofen, indomethacin, and celecoxib are also broadly anti-inflammatory, they all inhibit cyclooxygenase and can interfere with platelet aggregation—a characteristic that would be disqualifying for use with hemorrhagic fevers.

“Cytokine storm,” a burst in production of inflammatory cytokines, is thought by many to be integral to EVD pathogenesis, and high levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, IL-1β, macrophage inflammatory protein (MIP)-1α, MIP-1β, and macrophage chemoattractant protein (MCP)-1 are associated with fatal infections (Ruibal et al., 2016;
Vernet et al., 2017). Nuclear factor of activated T cells (NFAT) is thought to be the key transcriptional regulator of inflammatory mediators (Madelain et al., 2018). Knock-out mice with dampened cytokine response (Tim-1-/-) are considerably more likely to survive Ebola virus challenge than their wild-type counterparts, despite a limited impact on viremia (Younan et al., 2017).

We questioned whether the inflammation associated with cytokine storm could be countered pharmaceutically—and having some familiarity with one antimicrobial (minocycline) with significant anti-inflammatory properties as well as documented antiviral activity—we searched PubMed for articles describing cytokine activity during EVD and during minocycline use.

Minocycline is an FDA-approved semisynthetic tetracycline with an established safety profile that has been used for 40 years in the treatment of acne and rosacea (Cullen and Cohan, 1976; Hersle and Gisslen, 1976), and more recently, for multidrug resistant Acinetobacter (Lashinsky et al., 2017). It appears to have activity against certain viral pathogens: It inhibits H7N9 replication in vitro (Josset et al., 2014), attenuates stimulation of interferon-related gene and TRAIL in human dendritic cells and PMBCs exposed to HIV or influenza virus (Drewes et al., 2014), reduces West Nile Virus titers in brain-derived cell types in a dose-dependent manner (Michaelis et al., 2007), reduces Japanese encephalitis-induced damage in neuronal cell cultures (Mahanty et al., 2003; Mishra et al., 2009), and, based on molecular dynamics, may possibly inhibit the binding of Congo Crimean hemorrhagic fever virus to host nucleoprotein during cell infection—a host protein that is believed to be pivotal to viral replication (Sharifi et al., 2017). In a randomized controlled trial of patients with dengue hemorrhagic fever, compared to patients who received standard-of-care supportive treatment, those who also received the related tetracycline class antibiotic—doxycycline—had significantly lower mortality [20.9% vs 11.2% (p < 0.05)] and lower TNF and IL6 levels on days 3, 5, and 7 (p < 0.05 for all).

Table 1: Comparison of the Effect of Ebola Virus and Minocycline on Selected Biomarkers.

Biological Marker	Ebola Virus	Minocycline Effect on Physical or Infectious Challenge			
	Nonsurvivors	Survivors	Animal Model	In Vivo	In Vitro
TNF-α	† (Baize et al., 2002)	† (Baize et al., 2002)	† (Geisbert et al., 2003; Mahanty et al., 2003; Rubins et al., 2007)	↓ (Ledeboer et al., 2005; Masocha et al., 2006; Suzuki et al., 2010; Wu et al., 2012; Hou et al., 2013; Ashraf et al., 2014)	↓ (Szeto et al., 2010; Tai et al., 2013)
IL-6	† (Baize et al., 2002; Hutchinson and Rollin, 2007; Wauquier et al., 2010)	† (Baize et al., 2002; Wauquier et al., 2010)	† (Geisbert et al., 2003; Rubins et al., 2007)	↓ (Ledeboer et al., 2005; Masocha et al., 2006; Suzuki et al., 2010)	↓ (Tai et al., 2013)
IFN-α	† (Vilinger et al., 1999; Gupta et al., 2012)	† (Vilinger et al., 1999; Gupta et al., 2012)	† (Geisbert et al., 2003; Mahanty et al., 2003)	↓ (Suzuki et al., 2010)	↓ (Tai et al., 2013)
MIP-1α	† (Wauquier et al., 2010)	† (Wauquier et al., 2010)	† (Geisbert et al., 2003; Rubins et al., 2007)	↓ (Suzuki et al., 2010)	↓ (Tai et al., 2013)
MIP-1β	† (Baize et al., 2002; Hutchinson and Rollin, 2007; Wauquier et al., 2010)	† (Wauquier et al., 2010)	† (Geisbert et al., 2003; Rubins et al., 2007)	↓ (Suzuki et al., 2010)	↓ (Tai et al., 2013)
MCP-1	† (Geisbert et al., 2003; Mahanty et al., 2003; Rubins et al., 2007)	† (Geisbert et al., 2003; Mahanty et al., 2003; Rubins et al., 2007)	↓ (Suzuki et al., 2010)	↓ (Tai et al., 2013)	
MMP-3	† (Sanchez et al., 2004)	† (Hensley et al., 2002; Geisbert et al., 2003)	↓ (Suzuki et al., 2010)	↓ (Masocha et al., 2006)	↓ (Fortier et al., 2010)
Markers of oxidative stress	† (Sanchez et al., 2004)	† (Sanchez et al., 2004)	† (Sanchez et al., 2004)	↓ (Suzuki et al., 2010; Huang et al., 2012; Ashraf et al., 2014)	↓ (Yang et al., 2007; Tai et al., 2013)
Pro-apoptotic factors/markers	† (Hutchinson and Rollin, 2007; Wauquier et al., 2010)	† (Hutchinson and Rollin, 2007)	† (Rubins et al., 2007)	↓ (Chu et al., 2005; Czerny et al., 2012; Drewes et al., 2014)	↓ (Chu et al., 2005; Czerny et al., 2012)
Anti-apoptotic marker (bcl-2)	† (Rollin et al., 2007)	† (Rollin et al., 2007)	† (Geisbert et al., 2003)	↓ (Chu et al., 2005; Czerny et al., 2012)	↓ (Suzuki et al., 2010; Schwartz et al., 2013)
Liver function	† (Rollin et al., 2007)	† (Geisbert et al., 2003)	† (Geisbert et al., 2003)	↓ (Chu et al., 2005; Czerny et al., 2012)	↓ (Suzuki et al., 2010; Schwartz et al., 2013)

Notes:

1In vitro data for Ebola can be found in references.
2NOS (inducible nitric oxide synthase), NO (nitric oxide), nitrate, SOD (superoxide dismutase).
3TACE (tumor necrosis factor-α converting enzyme), TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand), RANTES (regulated upon activation, normal T cell expressed and secreted), Eotaxin, Fas (Fas antigen), FasL (Fas antigen ligand), caspase-3, annexin I, interleukin; MIP, macrophage inflammatory protein; MCP, macrophage chemotactic protein; MMP, matrix metalloproteinase. †, significantly increased; †, significantly decreased.
(Fredeking et al., 2015). Table 1 compares the effects of Ebola virus and minocycline on selected biomarkers including important cytokines and chemokines.

As shown in our table, the anti-inflammatory activity of minocycline opposes those of many gene products of Ebola virus. It also selectively impairs NFAT-mediated transcriptional activation (Szeto et al., 2011). Due to its small size and lipophilic nature, minocycline may reach potentially therapeutic concentrations in tissue compartments for which antibiotic penetration is typically difficult, such as the eye (Abcouwer et al., 2013; Scholz et al., 2015) and joints (McEvoy, 2016). Such spaces appear to be capable of harboring Ebola virus (Varkey et al., 2015; Steptoe et al., 2017; Subissi et al., 2018) and are thought to contribute to the chronic sequelae seen in PES (Shantha et al., 2017; PREVAIL III Study Group, 2019; Heydari-Kamjani et al., 2019). However, pharmacokinetic/pharmacodynamic (PK/PD) data are lacking that would confirm minocycline penetration into such spaces. As previously mentioned, inflammation may play a role in both the potentially blinding uveitis and arthritis of PES. Although there are animal data to suggest that minocycline may have anti-inflammatory effects in the eye (Scholz et al., 2015) and human data to suggest anti-inflammatory activity in joints (Pradier et al., 2018), it is not known whether it has direct antiviral activity against Ebola virus.

Given minocycline’s broad anti-inflammatory activity against cytokines/chemokines that appear to be pathologically upregulated by Ebola virus and the safety history, relative availability, and affordability of minocycline, we feel it should be investigated as an adjunctive therapy in animal models of acute EVD. Given that it appears to cross into protected spaces where it may have anti-inflammatory activity, we feel it should also be investigated as adjunctive therapy for chronic sequelae of EVD (i.e., PES). It is likely that the anti-inflammatory benefit would be greater in certain infected populations (starting treatment early vs late in the infection), and it is also possible that, for some, downregulation of inflammation in general could impair host clearance of the virus. These important issues are amenable to investigation in animal models.

REFERENCES

Abcouwer, S. F., Lin, C. M., Shanmugam, S., Muthusamy, A., Barber, A. J., and Antonetti, D. A. (2013). Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J. Neuroinflammation 10, 149. doi: 10.1186/1742-2094-10-149

Amisah-Arthur, M. B., Poller, B., Tunbridge, A., and Adebajo, A. (2017). Musculoskeletal manifestations of Ebola virus. Rheumatology 57 (1), 28–31. doi: 10.1093/rheumatology/kex082

Asrail, T., Jiang, W., Hoque, M. T., Henderson, J., Wu, C., and Bendayan, R. (2014). Role of anti-inflammatory compounds in human immunodeficiency virus-1 glycoprotein120-mediated brain inflammation. J. Neuroinflammation 11, 91. doi: 10.1186/1742-2094-11-91

Baize, S., Leroy, E. M., Georges, A. J., Georges-Courbot, M. C., Capron, M., Bedjabaga, I., et al. (2002). Inflammatory responses in Ebola virus-infected patients. Clin. Exp. Immunol. 128 (1), 163–168. doi: 10.1046/j.1365-2249.2002.01800.x

Chu, H. C., Lin, Y. L., Sytwu, H. K., Lin, S. H., Liao, C. L., and Chao, Y. C. (2005). Effects of minocycline on Fas-mediated fulminant hepatitis in mice. Effects of minocycline on Fas-mediated fulminant hepatitis in mice. Br. J. Pharmacol. 144 (2), 275–282. doi: 10.1038/sj.bjp.0706079

Cilloniz, C., Ebihara, H., Ni, C., Neumann, G., Korth, M. J., Kelly, S. M., et al. (2011). Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection. J. Virol. 85 (17), 9060–9068. doi: 10.1128/jvi.00659-11

Cullen, S. I., and Cohan, R. H. (1976). Minocycline therapy in acne vulgaris. Cutis 17 (6), 1208–1210. 14.

Czerny, C., Kohlmukhamedov, A., Theruvath, T. P., Maldonado, E. N., Ramshesh, V. K., Lehner, M., et al. (2012). Minocycline decreases liver injury after hemorrhagic shock and resuscitation in mice. HPB Surg. World J. Pancreatic Biliary Surg. 2012, 259512. doi: 10.1155/2012/259512

Drewes, J. L., Szeto, G. L., Engle, E. L., Liao, Z., Shearer, G. M., Zink, M. C., et al. (2014). Attenuation of pathogenic immune responses during infection with human and simian immunodeficiency virus (HIV/SIV) by the tetracycline derivative minocycline. PloS One 9 (4), e94375. doi: 10.1371/journal.pone.0094375

Fortier, L. A., Motta, T., Greenwald, R. A., Divers, T. J., and Mayr, K. G. (2010). Synoviocytes are more sensitive than cartilage to the effects of minocycline and doxycycline on IL-1alpha and MMP-13-induced catabolic gene responses. J. Orthopaedic Res. Off. Publ. Orthopaedic Res. Soc. 28 (4), 522–528. doi: 10.1002/jor.21006

Fredeking, T. M., Zavala-Castro, J. E., Gonzalez-Martinez, P., Moguel-Rodriguez, W., Sanchez, E. C., Foster, M. J., et al. (2015). Dengue patients treated with doxycycline showed lower mortality associated to a reduction in IL-6 and TNF levels. Recent patents on anti-infect drug discovery. Recent Pat. Antinfect. Drug Discov. 10, 1, 51–58. doi: 10.2174/157448911066615041015839

Geisbert, T. W., Hensley, L. E., Larsen, T., Young, H. A., Reed, D. S., Geisbert, J. B., et al. (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 163 (6), 2347–2370. doi: 10.1016/S0002-9440(03)63591-2

Gupta, M., MacNeil, A., Reed, Z. D., Rollin, P. E., and Spiropoulou, C. F. (2012). Serology and cytokine profiles in patients infected with the newly discovered Bundibugyo ebolavirus. Virology 423 (2), 119–124. doi: 10.1016/j.virol.2011.11.027

Hensley, L. E., Young, H. A., Jahrling, P. B., and Geisbert, T. W. (2002). Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. ImmunoLett. 80 (3), 169–179. doi: 10.1016/s0165-2478(01)00327-3

Hersle, K., and Gisslen, H. (1976). Minocycline in acne vulgaris: a double-blind study. Curr. Ther. Res. Clin. Exp. 19 (3), 339–342.

Heydari-Kamjani, M., Demory Beckler, M., and Kesselman, M. M. (2019). Reconsidering the use of minocycline in the preliminary treatment regime of rheumatoid arthritis. Cutis 11 (8), e5351. doi: 10.7759/cutis.5351

Hou, Y., Ryu, C. H., Park, K. Y., Kim, S. M., Jeong, C. H., and Jeun, S. S. (2013). Effective combination of human bone marrow mesenchymal stem cells and human and simian immunodeficiency virus (HIV/SIV) by the tetracycline derivative minocycline. PloS One 9 (4), e94375. doi: 10.1371/journal.pone.0094375

AUTHOR CONTRIBUTIONS

KH performed the literature review and drafted the table and text. MP helped to synthesize the tabular data and edited the text. JB reviewed the information and edited the text.

ACKNOWLEDGMENTS

We would like to thank Dr. Conrad Quinn of the Centers for Disease Control and Prevention for listening to and asking questions about the concept and offering editorial advice.

Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 16913

3
minocycline in experimental autoimmune encephalomyelitis mice. Stem Cell Res. Ther. 4 (4), 77. doi: 10.1186/s13287-012-0042-7
Huang, C., Li, K., Zeng, Q., Ding, Y., Zhou, Y., Mao, X., et al. (2012). Effect of minocycline postconditioning and ischemic postconditioning on myocardial ischemia-reperfusion injury in atherosclerosis rabbits. J. Huazhong University Sci. Technol. Med. Sci. = Huazhong ke ji ji da xue xue bao Yi Yi xing De wen ban = Huazhong ke ji ji da xue xue bao Yi Yi xing De wen ban 32 (4), 524–529. doi: 10.1177/10195107120324000

Hutchinson, K. L., and Rollin, P. E. (2007). Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J. Infect. Dis. 196 Suppl 2, S357–S363. doi: 10.1086/520611
Josset, L., Zeng, H., Kelly, S. M., Tumpney, T. M., and Katze, M. G. (2014). Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. mBio 5 (1), e01102–e01113. doi: 10.1128/mBio.01102-13

Lashinsky, J. N., Henig, O., Pogue, J. M., and Kaye, K. S. (2017). Minocycline for the treatment of multidrug and extensively drug-resistant a. baumannii: A review. Infect. Dis. Ther. 6 (2), 199–211. doi: 10.1007/s40121-017-0153-2
Ledeboer, A., Sloane, E. M., Milligan, E. D., Frank, M. G., Mahony, J. H., Maier, S. F., et al. (2005). Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 115 (1–2), 71–83. doi: 10.1016/j.pain.2005.02.009
Madelein, V., Baize, S., Iacquot, F., Reynard, S., Fitzet, A., Barron, S., et al. (2018). Ebola viral dynamics in nonhuman primates provides insights into virus immunopathogenesis and antiviral strategies. Nat. Commun. 9 (1), 4013. doi: 10.1038/s41467-018-06215-2

Mahanty, S., Gupta, M., Paragas, J., Bray, M., Ahmed, R., and Rollin, P. E. (2003). Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection. Virology 312 (2), 415–424. doi: 10.1016/s0042-6822(03)00233-2
Matsch, W., Rottenberg, M. E., and Kristensson, K. (2006). Minocycline impedes African trypanosomiasis invasion of the brain in a murine model. Antimicrob. Agents Chemother. 50 (5), 1798–1804. doi: 10.1128/acf.50.1798-1804.2006
McEvoY, T. (2016). Minocycline: rheumatoid arthritis. Hospital Pharm. 51 (7), 535–538. doi: 10.13107/hp1057-535
Michaels, M., Kleinschmidt, M. C., Doerr, H. W., and Cinti, J. R. (2007). Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J. Antimicrob. Chemother. 60 (5), 981–986. doi: 10.1093/jac/dkm307

Mishra, M. K., Ghosh, D., Duseja, R., and Basu, A. (2009). Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem. Int. 54 (7), 466–470. doi: 10.1016/j.neubiо.2009.01.022

Pradier, M., Robineau, O., Boucher, A., Tittecat, M., Blondiaux, N., Valette, M., et al. (2018). Suppressive antibiotic therapy with oral tetracyclines for prosthetic joint infections: A retrospective study of 78 patients. J. Rheumatol. 45 (1), 39–47. doi: 10.1002/ar.27717

PreVAIL III Study Group (2019). A longitudinal study of ebola sequelae in humans infected with Sudan Ebola virus. J. Infect. Dis. 201 (8), 1132–1140. doi: 10.1093/infdis/jiy280

Saito, G. L., Brice, A. K., Yang, H. C., Barber, S. A., Siliciano, R. F., and Clements, J. E. (2010). Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J. Infect. Dis. 201 (8), 1132–1140. doi: 10.1086/651277

Szeto, G. L., Pomerantz, J. L., Graham, D. R., and Clements, J. E. (2011). Minocycline suppresses activation of nuclear factor of activated T cells 1 (NFAT1) in human CD4+ T cells. J. Biol. Chem. 286 (13), 11275–11282. doi: 10.1074/jbc.M110.210518

Villinger, F., Rollin, P. E., Brar, S. S., Chikakula, N. F., Winter, J., Sundstrom, J. B., et al. (1999). Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J. Infect. Dis. 179 Suppl 1, S188–S191. doi: 10.1086/314283
Wacquier, N., Beckuat, P., Padilla, C., Baize, S., and Leroy, E. M. (2010). Human fatal zaire ebola virus infection is associated with an aberrant innate immune and with massive lymphocyte apoptosis. PLoS Negl. Trop. Dis. 4 (10), e837. doi: 10.1371/journal.pntd.0000837

Wilson, H. W., Amo-Addae, M., Kenu, E., Ilesanmi, O. S., Ameme, D. K., and Sackey, S. O. (2018). Post-ebola syndrome among ebola virus disease survivors in montserrado county, liberia 2016. BioMed Res. Int. 2018, 1909410. doi: 10.1155/2018/1909410

World Health Organization (2006). Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter. Toxicol. Appl. Pharmacol. 205 (2), 172–179. doi: 10.1016/j.taap.2007.03.007

Shantha, J. G., Crozier, I., and Yeh, S. (2017). An update on ocular complications of Ebola virus disease. Curr. Opin. Ophthalmol. 28 (6), 600–606. doi: 10.1097/ICU.0000000000000426
Shantha, J. G., Crozier, I., and Yeh, S. (2017). An update on ocular complications of Ebola virus disease. Curr. Opin. Ophthalmol. 28 (6), 600–606. doi: 10.1097/ICU.0000000000000426

Shantha, J. G., Crozier, I., and Yeh, S. (2017). An update on ocular complications of Ebola virus disease. Curr. Opin. Ophthalmol. 28 (6), 600–606. doi: 10.1097/ICU.0000000000000426
Yang, L. P., Zhu, X. A., and Tso, M. O. (2007). Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation. *Mol. Vision* 13, 1083–1093.

Younan, P., Iampietro, M., Nishida, A., Ramanathan, P., Santos, R. I., Dutta, M., et al. (2017). Ebola virus binding to Tim-1 on T lymphocytes induces a cytokine storm. *mBio* 8 (5), e00845–17. doi: 10.1128/mBio.00845-17

Disclaimers: Use of trade names and commercial sources is for identification only and does not imply endorsement. This is an opinion piece based on literature review. No experiments have been conducted or data collected at this time for the potential adjunct treatment of Ebola virus disease or post-Ebola syndrome.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Hendricks, Parrado and Bradley. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.