Focus Review

A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs

Stefan Schoeftner and Maria A Blasco*
Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomeric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases.

Keywords: epigenetics; silencing; telomeres; telomeric chromatin

Introduction

Telomeres are nucleoprotein structures that protect the ends of linear chromosomes from degradation and from being detected as double-strand DNA breaks (Chan and Blackburn, 2004; Palm and de Lange, 2008). A tri-partite organization of telomeres is a canonical feature of chromosome termini in eukaryotes. Telomeres consist of (i) a capping structure, which protects the end of chromosomes from degradation and from eliciting a DNA damage response (DDR), and also controls the extension of telomeric repeats; (ii) a stretch of double-stranded repetitive and transcribed DNA elements; and (iii) repetitive telomere-associated sequences (TAS) also referred to as subtelomeres (Riethman et al, 2005; Blasco, 2007; Anderson et al, 2008). Whereas yeast, vertebrate, and plant telomeres consist of short-tandem repeats, Drosophila melanogaster chromosomes terminate in arrays of telomere-specific non-long terminal-repeat (LTR) retrotransposons (Pardue and DeBaryshe, 2003; Chan and Blackburn, 2004; Zellinger and Riha, 2007). Telomere function depends on a minimal length of telomeric repeats and the functionality of the associated protein complexes. In addition, higher-order DNA conformations, such as the T-loop, are thought to contribute to telomere function (Griffith et al, 1999). In most species, telomeres are maintained by telomerase, a reverse transcriptase that adds telomeric repeats de novo after every cell division, thereby counteracting incomplete DNA replication of telomeres due to the so-called end-replication problem (Collins and Mitchell, 2002; Chan and Blackburn, 2004). Drosophila melanogaster compensates the lack of telomerase by transposing telomere-specific LTR retrotransposons to chromosome ends (Pardue and DeBaryshe, 2008). Alternative pathways involving telomere recombination (ALT, alternative lengthening of telomeres) have been also described in mammals (Collins and Mitchell, 2002; Pardue and DeBaryshe, 2003; Muntoni and Reddel, 2005).

In adult mammalian tissues and adult stem cells, telomerase activity is not sufficient to maintain telomeres during cell division and tissue renewal (Collins and Mitchell, 2002; Flores et al, 2005; Sarin et al, 2005). Progressive telomere shortening leads to telomere dysfunction and elicitation of a DDR, which result in cell cycle arrest/senescence or apoptosis (Harley et al, 1990; d’Adda di Fagagna et al, 2003). In vivo, critically short telomeres result in stem cell dysfunction, premature loss of tissue regeneration, and reduced life span, as shown in the context of telomerase-deficient mice (Blasso et al, 1997; Herrera et al, 1999; Rudolph et al, 1999; Gonzalez-Suarez et al, 2000; Collins and Mitchell, 2002; Blasco, 2005; Garcia-Cao et al, 2006). In contrast, over-expression of telomerase is sufficient to immortalize most human cell types in vitro and leads to a significant extension of the median life span of Tert transgenic mice with increased cancer resistance (Bodnar et al, 1998; Gonzalez-Suarez et al, 2001; Artandi et al, 2002; Canela et al, 2004; Tomas-Loba et al, 2008).

Pioneer studies in yeast indicated the involvement of chromatin modifications in the control of telomere function and telomere length. In particular, reporter genes introduced...
in proximity to telomeres were found to be silenced, suggesting a repressive chromatin environment at yeast telomeres, which was later also reported for D. melanogaster and mammals (Palladino et al., 1993; Cooper et al., 1997; Baur et al., 2001; Koering et al., 2002; Biessmann et al., 2005; Mason et al., 2008). Whereas telomeric repeats are devoid of histones in yeast, the accumulation of repressive histone modifications at mammalian telomeric and subtelomeric repeats, as well as the hypermethylylation of subtelomeric DNA, has been recently shown to have a central function in mammalian telomere-length homeostasis (Blasco, 2007).

Recent discoveries of transcripts derived from yeast and vertebrate telomeres, as well as rasiRNAs derived from Drosophila melanogaster telomeric retrotransposons, suggests the involvement of non-coding RNAs in telomere structure and telomere regulation across species (Savitsky et al., 2006; Azzalin et al., 2007; Schoeftner and Blasco, 2008). Mammalian and yeast telomeric RNAs have been proposed to control telomere structure as well as telomere elongation by telomerase (Azzalin et al., 2007; Luke et al., 2008; Schoeftner and Blasco, 2008).

In this review, we provide an overview on the epigenetic regulation of yeast, D. melanogaster, and vertebrate telomeres, with a special emphasis on the regulation of mammalian telomeric chromatin during development and in the context of telomere-associated diseases.

The telomere-binding proteins

From yeast to man, telomeres are bound by specialized protein complexes that regulate telomere length and telomere capping. In *Saccharomyces cerevisiae*, Cdc13 binds to the G-strand overhang and controls telomere elongation by telomerase, whereas Rap1 (repressor–activator protein 1) recruits the silent information regulator proteins Sir2, Sir3, Sir4 and the telomere-length regulators Rif1 and Rif2 to telomeres, forming the so-called ‘telosome’ (Wright et al., 1992; Tham and Zakian, 2002). Rap1–Rif1 complexes act as a counting mechanism to negatively regulate telomere length (Kyrion et al., 1992; Krauskopf and Blackburn, 1996; Marcand et al., 1999; Levy and Blackburn, 2004). Homologues of *S. cerevisiae* Rap1 and Rif1 have also been described in *Schizosaccharomyces pombe*. In *S. pombe*, Rap1 and Rif1 are recruited to double-stranded telomeric repeats through association with the telomere repeat-binding protein Taiz1, thus regulating telomere length and telomeric silencing (Kanoh and Ishikawa, 2001). The *S. pombe* G-strand overhang is protected by Pot1. Pot1 associates with Tpz1, Ccq1 and Poz1 and contacts the Taiz1–Rap1 complex located at double-stranded telomeric repeats (Miyoshi et al., 2008).

Telomere-binding proteins in *S. pombe* telomeres are highly related to components of the mammalian shelterin complex. In functional analogy to Taiz1, the mammalian shelterin components TRF1 and TRF2 bind to double-stranded telomeric repeats and recruit TPP1 (orthologue of *S. pombe* Tpz1), Rap1, TIN2, and the poly(ADP)-riboylasylases Tank1 and Tank2 to telomeres (Palm and de Lange, 2008). The single-stranded 3′ overhang is bound by Pot1, which contacts with TRF1 and TRF2 at double-stranded telomere regions through TPP1.

D. melanogaster lacks telomerase activity and maintains arrays of telomere-specific LTR retrotransposons by retro-

transposition or gene conversion (Biessmann and Mason, 2003). In contrast to yeast and vertebrate telomeres, chromosome capping in *D. melanogaster* is mediated by an alternative mechanism, which is dependent on the ‘terminin’ protein complex containing the heterochromatin protein 1 (HP1), HOAP (HP1/ORC-associated protein), and the mod-iglani (moi) gene product (Cenci et al., 2005). The dependence of chromosome capping on HP1, a major component of heterochromatin, shows the strong bias of *Drosophila melanogaster* telomere regulation towards the use of general chromatin regulators.

Epigenetic regulation of yeast telomeres

S. cerevisiae telomeres consist of 350 ± 75 bp of C1–2A/TG1–3 histone-free DNA repeats that terminate in a single 3′ overhang (Wright et al., 1992). Adjacent subtelomeric Y′ and X repeats are assembled into nucleosomes and extend several kilobases towards centromeres (Louis, 1995). The silencing of reporter genes introduced into *S. cerevisiae* subtelomeric regions, a phenomenon also referred to as ‘telomere position effect’ (TPE), provided early evidence for a repressive chromatin environment at telomeres (Gottschling et al., 1990; Tham and Zakian, 2002). As discussed above, histone-free telomeric repeats are bound by Rap1, which recruits the silent information regulator Sir4. Sir4 further attracts Sir2 and Sir3 to telomeres. The NAD-dependent deacetylase activity of Sir2 is essential for telomere repression and the spreading of silencing, whereas Sir3 and Sir4 act as structural components. Sir2 de-acetylates the tails of histones H3 and H4 with preference for acetylated lysine 16 on histone H4 (H4K16Ac), thereby creating a high-affinity-binding site for Sir3 and Sir4 (Hecht et al., 1995; Tanny et al., 1999; Imai et al., 2000; Carmen et al., 2002). Mutations in residues K16–K20 of histone H4, as well as loss of Sir2, result in loss of telomeric repression (Johnson et al., 1990; Aparicio et al., 1991; Tanny et al., 1999). Binding of Sir3 and Sir4 is further enhanced by the production of 2′-O-acetyl-ADP-ribose (O-AADPR), a side product of the NAD + hydrolysis by Sir2 (Liou et al., 2005; Martino et al., 2009). Thus, a positive-feedback loop based on cycles of histone H3 and H4 de-acetylation, Sir protein recruitment and O-AADPR-mediated stabilization allows the Sir complex to spread along subtelomeric nucleosomes and silence promoters kilobases away from Rap1-determined silencing nucleation. Silencing is further enhanced by the formation of a telomeric fold-back structure and the association of telomeres with the Sir-rich nuclear periphery (Mailet et al., 1996; Strahl-Bolsinger et al., 1997; de Bruin et al., 2000). Spreading of telomeric silencing is antagonized by Sas2, a specific MYST-type family acetylase of the SAS complex that competes with Sir2 in controlling the acetylation status of H4K16 (Osada et al., 2001; Kimura et al., 2002; Suka et al., 2002; Shia et al., 2005). H4K16 acetylation by Sas2 is important for the subsequent incorporation of H2A.Z that forms a chromatin boundary preventing the propagation of silencing (Meneghini et al., 2003; Shia et al., 2006). Hyperacetylated H4K16 also drives Sir3 displacement and allows binding of the histone methyltransferase Dot1 that methylates the histone H3 lysine 79 residue, further antagonizing the spreading of Sir complexes (Park et al., 2002; van Leeuwen and Gottschling, 2002; van Leeuwen et al., 2002; Ng et al., 2002a; Altf et al., 2007; Fingerman et al., 2007).
addition, the ubiquitination of lysine 123 of H2B by the ubiquitin-ligating enzyme Rad6 is required for efficient H3K79 methylation and the methylation of histone H3K4 by Set1, another marker of telomeric chromatin (Briggs et al., 2002; Dover et al., 2002; Ng et al., 2002b; Sun and Allis, 2002; Shahbazian et al., 2005). Together, this indicates the existence of a network of trans-histone pathways to tune repression at telomeres and subtelomeres.

The role of these epigenetic modifications in the regulation of yeast telomere length is well documented. Several mutations that disrupt telomeric silencing also decrease the length of telomeres (Palladino et al., 1993; Greenwell et al., 1995; Porter et al., 1996; Nislow et al., 1997). In addition, the Rap1 counting pathway seems to be indirectly regulated by the Sir proteins (Marcand et al., 1997). Furthermore, anchoring of telomeres to the nuclear periphery seems to regulate telomere length in cells that are compromised for the Rap1 counting pathway (Gartenberg et al., 2004; Berthiau et al., 2006; Hediger et al., 2006). Notably, deletion of Rif2 can also lead to recombination-dependent telomere elongation (Teng et al., 2000), suggesting a link between telomeric chromatin and recombination. Recently, S. cerevisiae and vertebrate telomeres were shown to be transcribed by RNA Polymerase II, giving rise to single-stranded telomeric repeat-containing RNAs (TERRA/TelRNAs). Yeast TERRA was reported to form RNA/DNA hybrids negatively regulating telomerase-dependent telomere elongation; however, the possible role of TelRNA/TERRA in defining telomeric silencing has not yet been addressed (Azzalin et al., 2007; Luke et al., 2008). Studying the involvement of TERRA in the regulation of yeast telomeric chromatin will reveal novel pathways of telomere control.

Epigenetic regulation of* S. pombe* telomeres

Telomeres in fission yeast* S. pombe* share features with* S. cerevisiae* and mammalian telomeres. Similar to budding yeast, *S. pombe* telomeric repeats are devoid of nucleosomes; however, telomere-binding proteins and the telomeric chromatin structure are highly related to that of mammals. Mutations in telomere-binding proteins and telomere heterochromatin regulators, such as Tal1, Rap1, Swi6, and Clr1-4, are known to affect telomeric silencing (Thon and Klar, 1992; Allshire et al., 1995; Cooper et al., 1997; Nimmo et al., 1998; Chikashige and Hiraoi, 2001; Kanoh and Ishikawa, 2001; Sugiyama et al., 2007). In addition, disruption of telomeric heterochromatin results in increased subtelomeric recombination, which, similar to mammals, can impact on telomere-length homeostasis (Kanoh et al., 2003; Bisht et al., 2008). Fission yeast telomeric heterochromatin is enriched for Swi6, the orthologue of* D. melanogaster* HP1. HP1 recruitment to telomeres is dependent on H3K9 methylation by the SET domain-containing histone methyltransferase Ctr4 (orthologue of mammalian Su(var)39h HMTases) that methylates the histone H3 lysine 9 residues at telomeres (Bannister et al., 2001; Nakayama et al., 2001). The chromatin structure of* S. pombe* telomeres is similar to that found at centromeric regions and the mating-type locus where H3K9 methylation by Ctr4 is dependent on the generation of small RNAs derived from heterochromatic regions by Dcr1 (the homologue of mammalian Dicer 1) (Ekwall et al., 1995, 1996; Nakayama et al., 2000, 2001; Reinhart and Bartel, 2002; Motamedi et al., 2004; Noma et al., 2004; Verdel et al., 2004; Kato et al., 2005). However, only the combined ablation of the telomeric repeat-binding protein Tal1 and proteins involved in NAI-mediated heterochromatin formation releases Swi6 from telomeres, suggesting that telomeric heterochromatin is recruited by Tal1 and components of the NAI machinery (Kanoh et al., 2005). Recently, the multi-enzyme complex SHREC, which mediates heterochromatin transcriptional gene silencing in* S. pombe*, was shown to be recruited to telomeres by redundant pathways involving Tal1 and Ccq1, as well as the RNAi machinery (Sugiyama et al., 2007). SHREC contains the histone deacetylase Clr3 and the chromatin remodelling factor Mit1 and both activities are required to silence reporter genes at subtelomeres (Sugiyama et al., 2007). Interestingly, in addition to recruiting SHREC, Ccq1, which is functionally linked to the telomeric single-stranded-binding protein Pot1, also recruits telomerase and prevents telomeric recombination (Miyoshi et al., 2008; Tomita and Cooper, 2008). Finally, absence of SpSet1p, a histone H3 lysine 4 methyltransferase associated with transcriptional activation, also results in impaired telomeric silencing and telomere elongation (Kanoh et al., 2003). In summary, the regulation of telomeric heterochromatin in* S. pombe* illustrates an interplay between the telomere-binding proteins and general chromatin regulators. Given the high similarity between* S. pombe* and mammalian telomeres, a role for shelterin in telomere chromatin regulation can be anticipated. In this respect, altered nucleosome spacing in cells over-expressing TRF2 provides evidence for such a connection (Benetti et al., 2008b).

The heterochromatin structure of* Drosophila* telomeres

In contrast to short telomeric repeats in yeast and mammals, *D. melanogaster* chromosome termini consist of up to 12 kb of tandem arrays of telomere-specific HeT-A, TART and TAHR LTR retrotransposons (Mason and Biessmann, 1995; Mason et al., 2008). These arrays of HeT-A, TART, and TAHR (HTT) retroelements are preferentially maintained by target-primed reverse transcription-based retrotransposition to chromosome ends, or alternatively, by gene conversion. Transposition is dependent on HTT retroelements-encoded reverse transcriptases and occurs to any chromosome end, creating a high heterogeneity in array length (Biessmann et al., 1993; Levis et al., 1993; Walter et al., 1995; Biessmann and Mason, 2003; Abad et al., 2004; Pardue et al., 2005). Telomere capping is mediated by the ‘terminin’ complex comprising HP1, the telomere-specific HOAP (HP1/ORC-associated protein), and the modigliani (moi) gene product (Silva et al., 2004; Bi et al., 2005; Clapponi et al., 2006; Okemus et al., 2006; Raffa et al., 2009). Interestingly, HP1, encoded by Su(var)205, is recruited to chromosome ends independently of the sequence content or presence of H3K9me3 and spreads at lower density into adjacent HTT arrays where HP1 uses its chromodomain to bind H3K9me3 (Fanti et al., 1998; Andreyeva et al., 2005; Frydrychova et al., 2008). Su(var)205 mutants display telomere fusions, increased HeT-A transcript levels, and increased retroelement addition leading to telomere elongation (Savitsky et al., 2002). Thus, *Drosophila* telomere length is controlled by an interaction of H3K9me3 and HP1 in silencing HTT arrays, whereas
chromosome capping by HP1 controls the addition of retro-elements to chromosome ends (Perrini et al., 2004). In addition to siRNAs and miRNAs, a third RNA silencing system based on the Piwi subfamily of Argonaut proteins has evolved that prevents the spreading of selfish DNA elements such as telomeric retro-transposons in the germline (Hartig et al., 2007). In the first step of the repeat-associated short-interfering (rasi)RNA pathway, rasiRNAs are generated from damaged inactive copies of transposable elements. These antisense rasiRNAs then target transcripts of functional transposons in a process that depends on the action of the Piwi proteins (Saito et al., 2006; Brennecke et al., 2007; Gunawardane et al., 2007). Complementary relationships of sense and antisense RNA populations indicate the existence of a positive-feedback loop, also described as the ‘ping-pong model’ that ensures efficient elimination of transcripts derived from active transposons (Brennecke et al., 2007). Consistent with this model, transcript levels from functional telomere-specific retrotransposons are significantly increased in germline mutants for components of the rasiRNA pathway and the RNA helicase gene spr-E (Savitsky et al., 2006; Klenov et al., 2007; Shpiz et al., 2007). Furthermore, decreased rasiRNA production is accompanied by reduced H3K9me3 and HP1 levels at HTT arrays and by an abundant retrotransposition of HeT-A elements (Savitsky et al., 2006; Klenov et al., 2007). In line with this, Piwi is reported to localize to chromatin in a complex with HP1a, providing further evidence for a role of the rasiRNA pathway in telomere regulation (Brower-Toland et al., 2007; Klenov et al., 2007).

Telomere-associated sequences (TAS) located adjacent to HTT arrays sequences have been reported to have a role in silencing (Mason et al., 2008). TAS are enriched for the H3K27me3 mark and bound by Polycomb proteins, which in turn impact on TPE (Boivin et al., 2003; Mason et al., 2004; Andreveya et al., 2005; Shanower et al., 2005; Doheny et al., 2008). Interestingly, TAS are also subjected to regulation by the rasiRNA pathway. However, in contrast to HTT repeats where mutations of the rasiRNA pathway result in loss of telomeric heterochromatin, reduced TAS-originated rasiRNAs are associated with a loss of euchromatic marks (Yin and Lin, 2007). This discrepancy in chromatin regulation indicates that repetitive elements in HTT arrays and TAS sequences underlie distinct mechanisms of epigenetic regulation. A functional conservation of the rasiRNA pathway in telomere regulation in the mammalian germline is not known to date.

Vertebrate telomeric heterochromatin

Similar to *D. melanogaster* and *S. pombe*, vertebrate telomeres are enriched for the H3K9me3 mark, imposed by the Suv39h HMTases, the mammalian homologues of *S. pombe* Ctr4 (Peters et al., 2001, 2003; Garcia-Cao et al., 2004). H3K9me3 provides a high-affinity-binding site for HP1 and promotes the imposition of the H4K20me3 mark by the Suv4-20h1 and Suv4-20h2 HMTases (Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001; Schotta et al., 2004, 2008; Benetti et al., 2007b) (Figure 1). In addition to these heterochromatic histone marks, telomeric repeats also contain di-methylated H3K79, which is mediated by the Dot1L HMTase (San-Segundo and Roeder, 2000; Shanower et al., 2005). Dot1L activity is also required for efficient imposition of the H4K20me3 mark at telomeres, suggesting that both Suv39h HMTases and Dot1L are acting upstream of the Suv4-20h HMTases (Jones et al., 2008) (Figure 1) Interestingly, although telomeres display normal H3K9me3 levels, the abundance of H3K9me2 is markedly reduced at telomeric repeats in cells lacking Dot1L. This suggests that additional H3K9-specific HMTases, such as G9a of ESET, could be involved mediating H3K9me2 at telomeres (Jones et al., 2008). In addition to repressive histone marks, telomeric H3 and H4 histones are under-acetylated (Benetti et al., 2007a). In this regard, lack of the histone deacetylatase SIRT6 results in elevated H3K9-acetylation levels at human telomeres and can lead to telomere dysfunction (Michishita et al., 2008).

DNA methylation at subtelomeric repeats

DNA methylation is known to regulate mammalian development and to specify silent chromatin regions in both eu- and heterochromatin (Chen and Li, 2006). In contrast to *S. cerevisiae* and *D. melanogaster*, which lack or display low levels of DNA methylation, mammalian subtelomeric regions are heavily methylated (Tommerup et al., 1994; van Overveld et al., 2003; Steinert et al., 2004; Gonzalez et al., 2006) (Figure 1). Importantly, TTAGGG repeats remain unmethylated because of the lack of methylate-able cytosine. It has been proposed that DNA methylation at subtelomeric repeats acts as an additional mechanism in mammals that enforces TPE (van Overveld et al., 2003; Pedram et al., 2006). DNA methylation patterns in mammalian cells are established by three main DNA methyltransferases (DNMTs). *De novo* methylation patterns are established by DNMT3a and DNMT3b and maintained by DNMT1, which copies parental-strand methylation onto the *de novo* synthesized daughter strand after DNA replication (Okano et al., 1998). DNA methylation is enriched at repetitive elements such as the pericentric regions and is regarded to prevent frequent recombination events (Bender, 1998; Maloisel and Rossignol, 1998; Dominguez-Bendala and McWhir, 2004; Gonzalez et al., 2006; Jaco et al, 2008). Consistent with this, deficiency of DNMT1 or DNMT3ab causes a dramatic elongation of telomeres, which is driven by increased homologous recombination events between telomeric sister chromatids (Gonzalo et al., 2006). The mechanism of DNMT recruitment to subtelomeres remains however unclear. Whereas DNA methylation at pericentric repeats is reduced in the absence of Suv39h HMTases and an interaction between HP1 and Suv39h1 had been reported, loss of Suv39h HMTases does not affect subtelomeric DNA methylation (Fuku et al., 2003; Lehnertz et al., 2003; Benetti et al., 2007b). This suggests the existence of an alternative pathway of DNMT recruitment to subtelomeres.
Rb family proteins regulate telomeric and subtelomeric chromatin status

A major tumour suppressor pathway in mammals is centred on the family of retinoblastoma (RB) proteins, consisting of RB1, RBL1 and RBL2 (Weinberg, 1995; Lipinski and Jacks, 1999; Classon and Harlow, 2002). RB proteins are transcriptional repressors that control cell cycle genes through interaction with E2F family of transcription factors, as well as by direct recruitment of chromatin regulators to promoters (Harbour and Dean, 2000a, b). In addition to their role at specific promoters, RB family proteins also influence global H4K20me3 and DNA methylation levels, impacting on the epigenetic regulation of telomeres and centromeres (Gonzalo et al, 2005). In particular, RB proteins promote the recruitment of Suv4-20h HMTase and HP1 to telomeres, thereby negatively regulating telomere length and telomere recombination (Gonzalo and Blasco, 2005). In addition, mouse Rbl2 acts as a transcriptional repressor of DNMTs, thereby influencing telomere length and telomere recombination (Kimura et al, 2003; Gonzalo and Blasco, 2005; McCabe et al, 2005; Benetti et al, 2008a) (Figure 1). In particular, the lack of a functional miR290 cluster targeting Rbl2 in embryonic stem (ES) cells deficient for Dicer results in elevated levels of Rbl2 (Sinkkonen et al, 2008; Benetti et al, 2008a). In turn, increased Rbl2 levels repress DNMT expression and result in loss of global as well as subtelomeric DNA methylation, which drives increased telomeric recombination and aberrant telomere elongation (Benetti et al, 2008a). Indeed, Dicer1-null ES cells phenocopy telomere defects of DNMT-deficient cells, suggesting that Rbl2 and the miR290 cluster are major determinants controlling DNA methylation in ES cells (Gonzalo et al, 2006; Benetti et al, 2008a) (Figure 1). Remarkably, Dicer deficiency does not result in a loss of heterochromatic histone marks at telomeres, excluding a direct involvement of Dicer-dependent small RNAs in the assembly of telomeric heterochromatin (Benetti et al, 2008a). The antagonistic role of Rbl2 on DNA methylation is at first glance in contradiction to the reduced DNA methylation levels observed in primary mouse embryonic

![Figure 1 Assembly of mammalian telomeric and subtelomeric heterochromatin.](https://example.com/figure1.png)
fibroblasts (MEFs) lacking Rb, Rbl1 and Rbl2 proteins; however, this discrepancy can be explained by the fact that Rbl2 is not expressed in MEFs (Gonzalo and Blasco, 2005). In summary, loss of RB proteins results in improved telomere maintenance due to a more relaxed telomeric chromatin structure. Given the central role of RB proteins as tumour suppressors, it will be very interesting to investigate the contribution of improved telomere maintenance to proliferative capacity of tumour cells lacking RB proteins.

Telomere repeat-associated transcripts (TERRA/TelRNAs)

On account of their compact heterochromatic structure, telomeres were not regarded to be permissive for transcription. However, other heterochromatic domains in the genome, such as mouse major satellite or human heterochromatic satellite III repeats, were already shown to be efficiently transcribed by RNA polymerase II, giving rise to non-coding RNAs (Lehnertz et al., 2003; Jolly et al., 2004; Rizzi et al., 2004). Recently, two independent reports showed that the telomeric C-rich strand is frequently transcribed by RNA polymerase II, giving rise to UUAGGG-repeat containing non-coding RNAs (TERRA or TelRNA) (Azzalin et al., 2007; Schoeftner and Blasco, 2008). Although formal evidence is still missing, the detection of subtelomeric sequences in TelRNA/TERRA molecules strongly suggests the existence of transcriptional control elements at subtelomeres (Azzalin et al., 2007). Up to date, transcripts containing telomeric repeats have been described in *Mus musculus*, *Homo sapiens*, *S. cerevisiae* and *Danio rerio* (Azzalin et al., 2007; Luke et al., 2008; Schoeftner and Blasco, 2008). The fact that retrotransposition events at HTT arrays of *D. melanogaster* also depend on transcription suggests that transcription is a universal process occurring at the ends of linear, eukaryotic chromosomes. Importantly, telomeric RNAs can be detected at telomeres by RNA-FISH techniques, suggesting that TERRA/TelRNAs can associate with telomeric chromatin in cis, a feature reported earlier for the non-coding XIST RNA that controls mammalian dosage compensation (Azzalin et al., 2007; Payer and Lee, 2008; Schoeftner and Blasco, 2008). Interestingly, in a panel of female mouse cell lines, TERRA/TelRNA form accumulations (Tacs) in the immediate vicinity of the territory of inactive X chromosome (Xi), suggesting an involvement of TERRA/TelRNA in the biology of X inactivation (Schoeftner and Blasco, 2008). TERRA/TelRNA molecules range between ca 100 bp and >9 kb in length and were reported to form intermolecular G-quadruplex structure with single-stranded telomeric DNA, but can also fold into a compact repeated structure containing G-quartets (Azzalin et al., 2007; Schoeftner and Blasco, 2008; Xu et al., 2008; Martadinata and Phan, 2009; Randall and Griffith, 2009). Several lines of evidence exist implicating TelRNA/TERRA in the negative control of telomere length (Schoeftner and Blasco, 2008). Increased TelRNA/TERRA levels by interfering with TelRNA/TERRA decay, such as the impairment of non-sense-mediated RNA decay in human cells or by deletion of the 5'–3'exonuclease Rat1p in *S. cerevisiae*, are associated with a loss of telomere reserve (Azzalin et al., 2007; Luke et al., 2008). Current models propose a role for TelRNA/TERRA in controlling telomerase activity. In yeast, the formation of a DNA/RNA hybrid between TelRNA/TERRA and telomeres is thought to inhibit elongation by telomerase, whereas in mammals, TelRNA/TERRA was shown to efficiently inhibit telomerase activity in vitro, presumably by base pairing with the template region of the RNA component of telomerase (TERC) (Luke et al., 2008; Schoeftner and Blasco, 2008) (Figure 2). These working models are supported by expression data showing low TelRNA/TERRA levels during mouse embryogenesis and in cancer cells—two biological conditions that are characterized by rapid cell proliferation and dependence on high telomerase activity (Schoeftner and Blasco, 2008). On the other hand, accumulation of TelRNA/TERRA in adult tissues could be coupled to telomerase inhibition and ageing (Schoeftner and Blasco, 2008). Importantly, in immortal cell lines, as well as during nuclear reprogramming, TelRNA/TERRA levels correlate with the average telomere reserve (Schoeftner and Blasco, 2008; Marion et al., 2009). Together with the fact that TelRNA/TERRA can be localized to telomeric DNA repeats this suggests that TelRNA/TERRA could locally control telomerase activity in cis, a mechanism that could explain the preferential elongation of the shortest telomere in yeast and mammals on the molecular level (Marcand et al., 1999; Hemann et al., 2001; Samper et al., 2001; Teixeira et al., 2004; Schoeftner and Blasco, 2008). In addition, this mechanism would also preclude excessive telomere elongation by telomerase (i.e. telomere elongation during nuclear reprogramming, Marion et al., 2009), a condition that was found to be associated with impaired female fertility and fecundity in *D. melanogaster* (Walter et al., 2007). However, until formal evidence for a direct role of TERRA in telomerase inhibition has been presented, a speculative role of telomerase recruitment by TelRNA/TERRA should be considered (Figure 2).

Interestingly, long non-coding RNAs transcribed by RNA Pol II have been shown earlier to be involved in the epigenetic regulation of the genome (Bernstein and Allis, 2005). In particular, XIST and roX RNAs are chromatin-associated non-coding RNAs that regulate mammalian and *Drosophila melanogaster* dosage compensation, respectively (Deng and Meller, 2006; Payer and Lee, 2008). In addition, other non-coding RNAs such as the *Air* or *Kcnq1or1* RNAs are involved in genomic imprinting (Paule et al., 2007; Pandey et al., 2008). Functional evidence is still missing, but it is expected that non-coding TelRNA/TERRA may also influence the chromatin status at subtelomeres and telomeres. Although small *Dicer*-dependent double-stranded small RNAs are not involved in the generation of telomeric heterochromatin (Benetti et al., 2008a), a possible contribution of small single-stranded TelRNA/TERRA molecules, processed from a larger RNA precursor, has to be considered. In this respect, it will be particularly interesting to explore a possible connection between TeRNA/TERRA and the mammalian Piwi proteins, which generate small single-stranded RNAs from transcripts derived from repetitive elements (Aravin et al., 2007; Carmell et al., 2007; Kuramochi-Miyagawa et al., 2008).

Epigenetic regulation of telomere length and telomere recombination

Heterochromatic marks at telomeres have been proposed to act as negative regulators of telomere elongation (Blasco,
Telomeric chromatin during differentiation and reprogramming

Telomere length is a major regulator of telomeric chromatin status in a given cell type and is assumed to change over the lifetime of organisms due to progressive loss of telomere reserve (Benetti et al., 2007a). In mouse embryos, telomere length is reset to a maximum length until the blastocyst stage in a telomerase-independent manner (Liu et al., 2007). In particular, increased recombination events at telomeres of mouse zygotes and two-cell embryos suggest that ALT is the driving force for the resetting of telomere length at early cleavage embryos (Schaetzlein et al., 2004; Liu et al., 2007). These data suggest that (sub-)telomeres are organized into a relatively open chromatin structure that favours telomeric recombination until the blastocyst stage. Resetting of telomere length at early cleavage embryos is necessary for the proper development of the organism. This dynamic regulation of telomere length is essential for the survival and adaptation of organisms. Telomere length can be recapitulated by nuclear cloning using terminally differentiated cells. Animals derived from differ-
entiated cells with short telomeres were shown to display normal telomere length even after several cycles of nuclear transfer (Lanza et al., 2000; Wakayama et al., 2000). More recently, nuclear reprogramming has been achieved in vitro. Retroviral transduction of pluripotency factors into primary MEF, gives rise to induced pluripotent stem cells (iPSC), which are functional equivalents of mouse ES cells (Takahashi and Yamanaka, 2006; Maherali et al., 2007; Takahashi et al., 2007; Nakagawa et al., 2008; Stadtfeld et al., 2008; Wernig et al., 2008). This reprogramming event is accompanied by a dramatic telomerase-dependent telomere elongation that continues post-reprogramming until reaching the length of ES cell telomeres (Marion et al., 2009). During this process, high densities of H3K9m3 and H4K20me3 at telomeres of primary MEF are converted into a more open—ES cell-like—chromatin structure at iPSC telomeres (Marion et al., 2009). In parallel with telomere elongation, TERRA levels are efficiently upregulated in iPSC compared with MEF, a phenomenon that may serve to negatively regulate telomerase activity once iPSC reach the ES cell-like telomere length (Marion et al., 2009) (Figure 3). The reprogramming of telomeres during iPSC generation provides formal evidence that telomeric chromatin structure is defined by cell-type-specific epigenetic programmes that can be reversed by reprogramming. In line with the need for sufficient telomere reserve for stem cell functionality, reprogramming efficacy of telomerase-deficient MEF is dramatically reduced due to the appearance increased chromosome end-to-end fusions (Allsopp et al., 2003; Flores et al., 2005, 2008; Marion et al., 2009). Together, this indicates a complex regulation of telomeric heterochromatin during development and cellular differentiation, which is expected to impact on human disease.

Implications of telomere chromatin regulation for human disease

Telomere maintenance is essential for tumour cells to escape cell arrest/senescence and apoptosis. Tumour formation often occurs in the context of altered DNA methylation, loss of H4K20me3, and altered expression of Suv4-20h and Suv39h HMTases (Fraga et al., 2005; Gonzalo and Blasco, 2005; Pogribny et al., 2006; Ting et al., 2006; Tryndyak et al., 2006). Furthermore, loss of H3K9me2 and H3K9me3 in Suv39h HMTase double null-mice results in an increased incidence of B cell lymphomas (Peters et al., 2001). Along this line, it has been recently shown that the methylation status of subtelomeric DNA repeats negatively correlates with telomere length and telomere recombination in a large panel of human cancer cell lines (Vera et al., 2008). This suggests that telomeres suffer epigenetic alterations during tumourigenesis, which in turn are important drivers of telomere length changes in cancer cells. These epigenetic alterations are also expected to impact on the telomeric chromatin structure, improving telomere maintenance by ALT or providing improved access for telomerase to the G-strand overhang (Blasco, 2007). It is not known, however, whether increasing telomere compaction can affect the proliferative potential of cancer cells and impact on telomere homeostasis during organismal ageing.

Figure 3 Reprogramming of telomeres upon induction of pluripotency in differentiated cells. Telomeres in primary MEFs are shorter than in ES cells and are organized into a highly compact chromatin structure with low TelRNA/TERRA expression. Induction of pluripotency by retroviral transduction of Oct4, Sox2, Klf4, (c-myc), results in nuclear reprogramming and the generation of pluripotent iPSC cells, which are functionally equivalent to ES cells. Reprogramming results in a dramatic upregulation of telomerase activity concomitant with a reduction of H3K9me3, H4K20me3, HP1, and DNA methylation at telomeres and subtelomeres as well as an increase in TelRNA/TERRA expression. Telomerase efficiently elongates telomeres until the natural limit of telomere length of pluripotent mouse ES cells has been reached.
Some severe premature ageing syndromes are caused by mutations in telomerase components giving rise to human syndromes such as Aplastic anaemia (TERC, TERT) (Yamaguchi et al., 2005), Dyskeratosis congenita (DKC1, TERC) and idiopathic pulmonary fibrosis (Tsakiri et al., 2007), or by mutations in various DNA repair genes such as Ataxia telangiectasia (ATM), Werner (WRN) and Bloom syndromes (BLM), Fanconi anaemia (Fanc genes), and Nijmegen breakage syndrome (NBN) (reviewed in Blasco, 2005). These patients display a substantially increased risk of developing disease states characterized by a premature loss of tissue renewal; however, the possible contribution of epigenetic defects at telomeres is still unclear (Mason et al., 2005). Similarly, accelerated telomere shortening can also occur due to environmental influences. In this regard, human population studies recently linked environmental influences (smoking, obesity, or stress) to an accelerated rate of telomere shortening (Cawthon, 2005). Similarly, accelerated telomere shortening will foster our understanding of general telomere derivatives from telomeres and the epigenetic control of telomeric transcripts. The detailed investigation of function of RNAs derived from telomeres and the epigenetic control of telomeric transcripts. The detailed investigation of function of RNAs derived from telomeres and the epigenetic control of telomeric transcripts.

The recent discovery of TelRNA/TERRA transcription is linked to telomere shortening in humans and yeast. The fact that TelRNA/TERRA can antagonize telomere maintenance by telomerase, and the presence of decreased TERRA levels in human cancer samples, could point towards a relevant role of TelRNA/TERRA in limiting telomerase-dependent telomere elongation in cancer cells (Schoeftner and Blasco, 2008). This pinpoints TelRNA/TERRA as a candidate for cancer therapies based on the inhibition of telomerase (Harley, 2008). Another interesting line of evidence for a role of TelRNA/TERRA in disease comes from patients suffering from autosomal-recessive ICF (immunodeficiency, centromeric region instability, facial anomalies) syndrome. These patients display subtelomeric DNA methylation defects and abnormally short and or undetectable telomeres on some chromosome arms. Increased TelRNA/TERRA transcription in these patients points towards a role of telomeric transcripts in ICF (Yehezkel et al., 2008).

We are just beginning to understand the complex regulation of telomeric chromatin and the regulation of telomeric transcripts. The detailed investigation of function of RNAs derived from telomeres and the epigenetic control of telomeres will foster our understanding of general telomere regulation. This line of research is also expected to provide important insight into the roles of telomeres during development, ageing, and a panel of important telomere associated human diseases.

References

Abad JP, De Pablos B, Osogawa K, De Jong PJ, Martin-Gallardo A, Villasante A (2004) Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 21: 1631–1619

Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, Cote J (2007) Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28: 1002–1014

Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233

Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102: S172–S170

Anderson JA, Song YS, Langley CH (2008) Molecular population genetics of Drosophila subtelomeric DNA. Genetics 178: 477–487

Andreyeva EN, Belyaeva ES, Semeshin VF, Pokholkova GV, Zhimulev IF (2005) Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants. J Cell Sci 118: 5465–5477

Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66: 1279–1287

Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316: 744–747

Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA, Castrillon DH, Horner JW, Weiler SR, Carrasco RD, DePinho RA (2002) Constitutive telomerase expression promotes mammary carcinoma in aging mice. Proc Natl Acad Sci USA 99: 8191–8196

Azizzalim CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318: 798–801

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kozardzes T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124

Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292: 2075–2077

Blader J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23: 252–256

Benetti R, Garcia-Cao M, Blasco MA (2007a) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39: 243–250

Benetti R, Gonzalez S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andtl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008a) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15: 268–279

Benetti R, Gonzalez S, Jaco I, Schotta G, Klatt P, Jenuwein T, Blasco MA (2007b) SuV4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 176: 925–936

Bennett R, Schoeftner S, Munoz P, Blasco MA (2008b) Role of TRF2 in the assembly of telomeric chromatin. Cell Cycle 7: 3461–3468

Berrnstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19: 1635–1655

Berthiau AS, Yankulov K, Bah A, Revardel E, Luciano P, Wellinger RJ, Geli V, Gilson E (2006) Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 25: 846–856

BXi, Srikanta D, Fanti L, Pimpinelli S, Badugu R, Kellum R, Rong YS (2005) Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc Natl Acad Sci USA 102: 15167–15172

Biessmann H, Prasad S, Walter MF, Mason JM (2005) Euchromatic histone H4 tail defines the boundary of telomeric heterochromatin. Trends Biochem Sci 30: 559–566

Benetti R, Schoeftner S, Kusalik VB, Gollapudi G, Jenuwein T, Blasco MA (2007a) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39: 243–250

Bennett R, Nononzo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andtl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008a) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15: 268–279

Benetti R, Gonzalez S, Jaco I, Schotta G, Klatt P, Jenuwein T, Blasco MA (2007b) SuV4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 176: 925–936

Benetti R, Schoeftner S, Munoz P, Blasco MA (2008b) Role of TRF2 in the assembly of telomeric chromatin. Cell Cycle 7: 3461–3468

Berrnstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19: 1635–1655

Berthiau AS, Yankulov K, Bah A, Revardel E, Luciano P, Wellinger RJ, Geli V, Gilson E (2006) Subtelomeric proteins negatively regulate telomere elongation in budding yeast. EMBO J 25: 846–856

Bi Xi, Srikanta D, Fanti L, Pimpinelli S, Badugu R, Kellum R, Rong YS (2005) Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc Natl Acad Sci USA 102: 15167–15172

Biessmann H, Kasravi B, Jakob K, Bui T, Ikenaga K, Mason JM (1993) The genomic organization of HeT-A retroposons in Drosophila melanogaster. Chromosoma 102: 297–305

Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60: 2325–2333

Biessmann H, Prasad S, Walter MF, Mason JM (2005) Euchromatic and heterochromatic domains at Drosophila telomeres. Biochem Cell Biol 83: 477–485

Bishik KK, Arora S, Ahmed S, Singh J (2008) Role of heterochromatin in suppressing subtelomeric recombination in fission yeast. Yeast 25: 537–548
Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. *EMBO J* 24: 1095–1103

Blasco MA (2007) The epigenetic regulation of mammalian telomeres. *Nat Rev Genet* 8: 299–309

Blankenship ME, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. *Cell* 91: 25–34

Bodnar AG, Ouellette M, Frolikis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. *Science* 279: 349–352

Bovin A, Gally C, Netter S, Anxolabéhère D, Ronsseray S (2007) Telomeric associated sequences of Drosophila recruit polycombin- group proteins in vivo and can induce pairing-sensitive repression. *Genetics* 164: 195–208

Brenecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. *Cell* 128: 1089–1103

Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahal BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. *Nature* 418: 498

Brown-Toland B, Findley SD, Jiang L, Liu L, Yin H, Dus M, Zhou P, Elgin SC, Lin H (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a. *Genes Dev* 21: 2300–2311

Canela A, Martin-Caballero J, Flores JM, Blasco MA (2004) Constitutive expression of ret in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice. *Nat Med* 10: 2475–2493

Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MiWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. *Dev Cell* 12: 503–514

Carmen AA, Milne L, Grunstein M (2002) Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein 1B3. *J Biol Chem* 277: 4778–4781

Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA, Hannon GJ (2007) Discrete small RNA-generating loci as a ‘higher order’ of telomere regulation. *Nat Cell Biol* 9: 1731–1735

Chang S, Khoo CM, Naylor ML, Maser RS, DePinho RA (2003) The chromosome protein Swi6: a key component at fission yeast centromeres. *Science* 296: 1429–1431

Eskall K, Javerzat JP, Lorentz A, Schmidt H, Cranston G, Allshire R (1995) The chromosomal protein Swi6: a key component at fission yeast centromeres. *Science* 269: 1429–1431

Eskall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R, Cranston G, Allshire R (1996) Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. *J Cell Sci* 109 (Part 1): 2637–2648

Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. *Proc Natl Acad Sci USA* 101: 17312–17315

Fanti L, Giovinazzo G, Berlolo M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. *Mol Cell* 2: 527–538

Fingerman IM, Li HC, Briggs SD (2007) A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. *Genes Dev* 21: 2018–2029

Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA (2008) The longest telomers: a general signature of adult stem cell compartments. *Genes Dev* 22: 654–667

Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. *Science* 309: 1253–1256

Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada JS, Schotta G, Peters AH, Jenuwein T, de la Fuente N, Blasco MA (2005) DNA methyltransferases control telomere length and telomerase activity and interact with Rb family proteins. *Nat Genet* 37: 391–400

Frydrychova RC, Mason JM, Archer TK (2008) HP1 expression in hairfollicles regulates hair pigmentation. *Mol Cell Biol* 28: 2253–2264

Garcia-Cao I, Garcia-Cao M, Tomas-Loba A, Martin-Caballero J, Flores JM, Klatt P, Blasco MA, Serrano M (2006) Increased p53 activity does not accelerate telomere-driven ageing. *EMBO Rep* 7: 546–552

Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the SuV39h1 and SuV39h2 histone methyltransferases. *Nat Genet* 36: 94–99

Gartenberg MR, Neumann FR, Raroche T, Blaszczyk M, Gasser SM (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. *Cell* 119: 955–967

Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. *Nat Genet* 26: 114–117

Gonzalez-Suarez E, Samper E, Ramirez A, Flores JM, Martin-Caballero J, Jorcano JL, Blasco MA (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. *EMBO J* 20: 2619–2630

Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Egria R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the Rb family in the epigenetic definition of chromatin. *Cell Cycle* 4: 752–755

Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Egria R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the Rb family in stabilizing histone methylation at constitutive heterochromatin. *Nat Cell Biol* 7: 420–428

Gonzalo S, Jao I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. *Nat Cell Biol* 8: 416–424
Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762

Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829

Griffith JD, Comeau L, Rosenfeld S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514

Gunnawardene LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Sionmi H, Sionmi MC (2007) A sticker-mediated mechanism for repeat-associated siRNA 3’ end formation in Drosophila. Science 315: 1587–1590

Hande MP, Samper E, Lansdorp P, Blasco MA (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 144: 589–601

Harbour JW, Dean DC (2000a) Chromatin remodeling and Rb activity. Curr Opin Cell Biol 12: 685–689

Harbour JW, Dean DC (2000b) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409

Harley CB (1998) Telomerase and cancer therapeutics. Nature 393: 84–88

Harley CB, Fisher AB, Greider CW (2001) The shortest Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Johnson LM, Kayne PS, Kahn ES, Grunstein M (1990) Genetic Petes TD (1995) TEL1, a gene involved in controlling telomere histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592

Hediger F, Berthiau AS, van Houwe G, Gilson E, Gasser SM (2006) Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation. EMBO J 25: 857–867

Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest Joly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Johnson LM, Kayne PS, Kahn ES, Grunstein M (1990) Genetic histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592

Jaco I, Canela A, Vera E, Blasco MA (2008) Centromere replication of Rif1p and Rif2p on the most distal telomeres. J Cell Biol 182: 1015–1027

Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Cell 105: 458–460

Kanoh J, Francesconi S, Collura A, Schramke V, Ishikawa F, Baldacci G, Geli V (2003) The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad53-dependent pathway. J Mol Biol 326: 1081–1094

Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624–1630

Kanoh J, Sadaie M, Urano T, Ishikawa F (2005) Telomere binding proteins Taz1p and Taz2p establish telomere heterochromatin independently of RNAi at telomeres. Curr Biol 15: 1808–1819

Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309: 467–469

Kimura A, Umehara T, Horikoshi M (2002) Chromosomal gradient of histone acetylation established by Saa2p and Sir2p functions as a shield against gene silencing. Nat Genet 32: 370–377

Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K (2003) Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and -independent pathways. Nucleic Acids Res 31: 3011–3013

Klenov MS, Lavrov SA, Stolyarenko AD, Ryazansky SS, Aravin AA, Tsuschl T, Grozdev VA (2007) Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster genome. Nucleic Acids Res 35: 5430–5438

Koering CE, Pollize A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pullitzer JF, Gilson E (2002) Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 3: 1055–1061

Krauskopf A, Blackburn EH (1996) Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. Nature 383: 354–357

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Tokoty O, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MLI and MIW2 in murine fetal testes. Genes Dev 22: 908–919

Kyrion G, Boaky AE, Lustig AJ (1992) C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol Cell Biol 12: 5159–5173

Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–120

Lanza RP, Cicelli JB, Blackwell C, Cristofalo VF, Francis MK, Baerlocher GM, Mak J, Schertzer M, Chavez EA, Sawyer N, Lansdorp PM, West MD (2000) Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288: 665–669

Lehtzetz B, Ueda Y, Derick AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suvar39-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192–401

Levis RW, Ganesan R, Houckens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093

Levy DL, Blackburn EH (2004) Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol Cell Biol 24: 10857–10867

Liu GG, Tanny JC, Kruger RG, Walz T, Maozad D (2005) Assembly of the SIR complex drives its regulation by O-acetyl-H3K14-ribosyl, a product of NAD-dependent histone deacetylation. Cell 121: 515–527

Lipinski MM, Jacks T (1999) The retinoblastoma gene family in differentiation and development. Oncogene 18: 7873–7882

Liu L, Bailey SM, Okupa M, Munoz F, Li C, Zhou L, Wu C, Czerniewicz E, Sandler L, Seyfang A, Blasco MA, Keefe DL (2007) Telomere lengthening early in development. Nat Cell Biol 9: 1436–1441

Luis EJ (1995) The chromosome ends of Saccharomyces cerevisiae. Yeast 11: 1553–1573

Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The RAP80 3’ to 3’ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32: 465–477

Maherali N, Sridharan R, Xie W, Utitkal J, Emini S, Arnold K, Stadtfeld M, Yacheccho R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55–70

Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM (1996) Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silenced-mediated repression. Genes Dev 10: 1796–1811

Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation at telomeres. EMBO J 17: 3101–3113

Marcand S, Brevet V, Gilson E (1999) Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J 18: 3509–3519

A ‘higher order’ of telomere regulation
S Schottoff and MA Blasco

©2009 European Molecular Biology Organization

The EMBO Journal VOL 28 | NO 16 | 2009 2333
Marcondes S, Gilson E, Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275: 986–990
Marion RM, Strati K, Li H, Tejera A, Schoenfeldt S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4: 141–154
Martindale H, Pahn AT (2009) Structure of propeller-type parallel-stranded RNA G-quadruplexes, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc 131: 2570–2578
Martino F, Kueng S, Robinson P, Tsai-Pflugfelder M, van Leeuwen F, Ziegler M, Cubzioles F, Cockell MM, Rhodes D, Gasser SM (2009) Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load Sir complexes onto nucleosomes in vitro. Mol Cell 33: 323–334
Mason JM, Biessmann H (1995) The unusual telomeres of fission yeast. Science 268: 2670–2678
Nakayama J, Klar AJ, Grewal SI (2000) A chromodomain protein, Muetl1, associates with telomeric repeats and is essential for telomere maintenance in Drosophila. Nat Genet 25: 452–460
Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 114: 789–802
Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 114: 789–802
Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Bohr VA, Ried T, Gozani O, Chua KF (2008) Sir3p binds telomeric DNA in a sequence-specific manner. Genes Dev 22: 2570–2578
Muntoni A, Reddel RR (2004) The first molecular details of ALT in human tumor cells. Hum Mol Genet 13(Spec No. 16): 1577–1589
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi N, Kiyokawa H, Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Bohr VA, Ried T, Gozani O, Chua KF (2008) Sir3p binds telomeric DNA in a sequence-specific manner. Genes Dev 22: 2570–2578
Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Mason JM, Biessmann H (1995) The unusual telomeres of fission yeast. Science 268: 2670–2678
Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loecher P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIR2T redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 132: 1007–918
Oikemus SR, Queiroz-Machado J, Lai K, McGinnis N, Sunkel C, Brodsly MH (2006) Epigenetic telomere protection by Drosophila DNA damage response pathways. PLoS Genet 2: e71
Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltrans- ferases. Nat Genet 19: 219–220
Osada S, Sutton A, Muster N, Brown CE, Yates III JR, Sternganz R, Workman JL (2001) The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev 15: 3155–3168
Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334
Palladino F, Laroche T, Gilson E, Axelrod A, Pillus L, Gasser SM (1993) SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75: 543–555
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Randori C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32: 232–246
Pardue ML, DeBaryshe PG (2003) Retranspositionss provide an evolutionarily robust non-telomere mechanism to maintain telomere length. Annu Rev Genet 37: 485–511
Pardue ML, DeBaryshe PG (2008) Drosophila telomeres: a variation on the telomerase theme. Fly (Austin) 2: 101–110
Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL (2005) Two retranspositionss maintain telomeres in Drosophila. Chromosoma Res 13: 443–453
Park JH, Cosgrove MS, Youngman E, Wolberger C, Boeke JD (2002) A core nucleosome surface crucial for transcriptional silencing. Nat Genet 32: 273–279
Pauler FM, Koerner MV, Barlow DP (2007) Silencing by imprinted Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing. Cell 112: 725–736
Pennisi B, Placentini L, Fanti L, Alitieri F, Chichiarelli S, Berlolo M, Turano C, Ferraro A, Pimpinelli S (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15: 467–476
Peters AH, Pardue MG, Youngman E, Wolberger C, Boeke JD (2002) A core nucleosome surface crucial for transcriptional silencing. Nat Genet 32: 273–279
Pai L, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42: 733–772
Pedram M, Sprung CN, Gao Q, Lo AW, Reynolds GE, Murnane JP (2006) Telomere position effect and silencing of transgenes near telomeres in the mouse. Mol Cell Biol 26: 1865–1878
Perrini B, Placentini L, Fanti L, Alitieri F, Chichiarelli S, Berlolo M, Turano C, Ferraro A, Pimpinelli S (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 15: 467–476
Peters AH, Kubiczek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2008) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577–1589
Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian hetero- chromatin and gene silencing. Mol Cell 10: 323–337
Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier J, Karpinetis TV (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suvar4-20 and Suvar39 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27: 1180–1186
Porter SE, Greenwell PW, Ritchie KB, Peters TD (1996) The DNA-binding protein Hdp1 (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res 24: 582–585
Rafa GA, Sirico G, Cugusi S, Ciapponi L, Cenci G, Wojcik E, Gatti M (2009) The Drosophila modigliani (mou) gene encodes a HOAP-interacting protein required for telomere protection. Proc Natl Acad Sci USA 106: 2271–2276
Randall A, Griffith JD (2009) Structure of long telomeric RNA transcripts: the G-rich RNA forms a compact repeating structure containing G-quartets. J Biol Chem 284: 13980–13986
Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297: 1831

Riethman H, Ambrosi A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13: 505–515

Rizzini N, Denegri M, Chioldi I, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutively heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15: 543–551

Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712

Schoeftner S, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222

Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Tecr-/- mice with short telomeres. EMBO Rep 2: 800–807

San-Segundo PA, Roeder GS (2000) Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell 11: 3601–3615

Sarin KY, Cheung P, Gilison D, Lee E, Tennen RL, Wang E, Artandi MK, Olo AE, Artandi SE (2005) Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436: 1048–1052

Savitsky M, Kravchuk O, Melnikova L, Georgiev Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15: 543–551

Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, Grewal SI (2007) SHREC, an effector complex for heterochromatin transcriptional silencing. Cell 128: 491–504

Suk J, Sun ZW, Li B, Grewal SI, Moazed D (2006) siRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222

Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222

van Overveld PG, Lemmers RJ, Sandkuijl LA, Enthoven L, Winokur V, Vera E, Canela A, Fraga MF, Esteller M, Blasco MA (2008) Epigenetic regulation of telomeres in human cancer. Oncogene 27: 6817–6833

van Uden N, Sawa T, Kurihara D, Tsujimoto Y, Tsuchiya A, Koizumi T, Hug C, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303: 672–676

Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, Ogura A, Tachibana M, Perry AC, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712

Yan J, Dowd GJ, Huang J, Hilt H, Moazed D (1999) An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99: 735–745

Zeitler BT, Arneric S, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomere-extendible and -nonextendable states. Cell 117: 323–335

Zeng SC, Chang J, McCowan B, Zakian VA (2000) Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rap1-dependent, Rif-inhibited recombinational mechanism. Mol Cell 6: 947–952

Thom WH, Zakian VA (2002) Transcriptional silencing at Sacccharomyces telomeres: implications for other organisms. Oncogene 21: 512–513

Thom G, Klar AJ (1992) The clp1 locus regulates the expression of the cryptic mating-type locus of fission yeast. Genetics 131: 287–296

Ting AH, Garvey KM, Baylin SB (2006) The cancer epigenome—components and functional correlates. Genes Dev 20: 3215–3231

Tomas-Loba A, Flores I, Fernandez-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borras C, Mathieu A, Katt P, Flores JM, Vina J, Serrano M, Blasco MA (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135: 609–622

Shahbazian MD, Zhang K, Grunstein M (2005) Histone H2B ubiquitination controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19: 271–277

Shanower GA, Muller M, Blanton JL, Honti V, Gyorkevicz H, Schell P (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169: 173–184

Shia WJ, Li B, Workman JL (2006) SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae. Genes Dev 20: 2507–2512

Shia WJ, Osa S, Flores L, Swanson SK, Washburn MP, Workman JL (2005) Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280: 11987–11994

Shipp S, Kwon D, Uneva A, Kim M, Klenov M, Rozovsky Y, Georgiev Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15: 543–551

Silva E, Tiong S, Pedersen M, Tiong S, Pedersen M, Homola E, Royou A, Fasulo B, Siriaco R, Riethman H, Ambrosini A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13: 505–515

Srivastava S, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222

Srivastava S, Kwon D, Georgiev Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15: 543–551

Stadtmann A, Cyluczak Y, Schmitt P, Schmidt M, Haidinger S, Griesmacher A, Nothdurft H, Schulmeister T, Bemtter P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15: 259–267

Stadtmann A, Cyluczak Y, Schmitt P, Schmidt M, Haidinger S, Griesmacher A, Nothdurft H, Schulmeister T, Bemtter P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15: 259–267

© 2009 European Molecular Biology Organization

The EMBO Journal VOL 28 | NO 16 | 2009 2335
Colgan DF, Mombaerts P, Yanagimachi R (2000) Cloning of mice to six generations. Nature 407: 318–319
Walter MF, Biessmann MR, Benitez C, Torok T, Mason JM, Biessmann H (2007) Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility. Chromosoma 116: 41–51
Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104: 229–241
Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330
Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2: 10–12
Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6: 197–210
Xu Y, Kimura T, Komiyama M (2008) Human telomere RNA and DNA form an intermolecular G-quadruplex. Nucleic Acids Symp Ser (Oxf) 52: 169–170
Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352: 1413–1424
Yeheshkel S, Segov Y, Viegas-Pequignot E, Skorecki K, Selig S (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17: 2776–2789
Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450: 304–308
Zellinger B, Riha K (2007) Composition of plant telomeres. Biochim Biophys Acta 1769: 399–409

EMBO open

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution, and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.

The EMBO Journal is published by Nature Publishing Group on behalf of European Molecular Biology Organization. This article is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Licence. [http://creativecommons.org/licenses/by-nc-nd/3.0]