HLA-DRB1 alleles in four Amerindian populations from Argentina and Paraguay

Maria L. Parolín and Francisco R. Carnese

Abstract

The major histocompatibility complex (MHC) is one of the biological systems of major polymorphisms. The study of HLA class II variability has allowed the identification of several alleles that are characteristic to Amerindian populations, and it is an excellent tool to define the relations and biological affinities among them. In this work, we analyzed the allelic distribution of the HLA-DRB1 class II locus in four Amerindian populations: Mapuche (n = 34) and Tehuelche (n = 23) from the Patagonian region of Argentina, and Wichi SV (n = 24) and Lengua (n = 17) from the Argentinean and Paraguayan Chaco regions, respectively. In all of these groups, relatively high frequencies of Amerindian HLA-DRB1 alleles were observed (DRB1*0403, DRB1*0407, DRB1*0411, DRB1*0417, DRB1*0802, DRB1*0901, DRB1*1402, DRB1*1406 and DRB1*1602). However, we also detected the presence of non-Amerindian variants in Mapuche (35%) and Tehuelche (22%). We compared our data with those obtained in six indigenous groups of the Argentinean Chaco region and in a sample from Buenos Aires City. The genetic distance dendrogram showed a clear-cut division between the Patagonian and Chaco populations, which formed two different clusters. In spite of their linguistic differences, it can be inferred that the biological affinities observed are in concordance with the geographic distributions and interethnic relations established among the groups studied.

Key words: HLA-DRB1, polymorphism, Amerindians, biological affinities.

Introduction

In the human species, the major histocompatibility complex (MHC) includes the HLA (human leukocyte antigen) genes. It is located on the short arm of chromosome 6, between 6p21.31 and 6p21.33, and is characterized by a set of highly polymorphic genes. The function of the HLA genes is to present antigens to the T-cells. In addition, some of the class I genes are ligands for natural killer cell receptors. These histocompatibility molecules can be divided into two main groups: class I and class II molecules. Class I molecules are found in the HLA-A, HLA-B and HLA-C loci, and class II in the HLA-DR, HLA-DQ and HLA-DP loci. Both types of molecules are formed by heterodimers consisting of two chains, α and β, noncovalently bound to an extracellular domain, a transmembrane portion and a cytoplasmic tail (Fainboim et al., 1999; Travers, 2000).

One of the characteristics of the HLA system is its high degree of polymorphism. The extensive gene distribution among populations has enabled the characterization of different ethnic groups and the development of several interesting studies in bioanthropology. In this context, the analysis of the HLA system variability is an excellent tool for evolutionary studies, migratory path reconstruction, the establishment of interethnic contacts, and for evaluating the relationships and biological affinity among different human groups. These studies, conducted at the serological level and, more recently, with the use of molecular techniques, have shown that Native Americans display a lower genetic diversity than other populations (Cerna et al., 1993; Trachtenberg et al., 1996; Fernández-Viña et al., 1997; Salzano, 2002; Tsuneto et al., 2003). In addition, it has been observed that certain allelic variants found in Amerindians are absent or have lower frequencies in other ethnic groups. In Native Americans, the alleles DRB1*0403, *0404, *0407, *0802, *0901, *1402 and *1602 are extensively distributed throughout America, whereas DRB1 *0411, *0417, *1406, and *1413 were detected mainly in indigenous populations of Latin America (Cerna et al., 1993; Zhang et al., 1993; Petzl-Erler et al., 1997; Tsuneto et al., 2003). A review on this subject was recently published (Salzano, 2002).

In Argentina, Pirosky et al. (1983), Vullo et al. (1984) and Haas et al. (1985) made serological determinations of the class I and class II HLA antigens in the Toba, Wichí and Mapuche groups, and molecular studies were performed...
mainly in some aboriginal populations of northern Argentina (Vullo et al., 1992; Cerna et al., 1993; Fernández-Viña et al., 1997, Pando, 1998; Marcos, 2000) and also in a Mapuche group of Anecón Grande, province of Rio Negro (Ginther et al., 1993). However, there are no studies so far on the allelic distribution of HLA-DRB1 in Mapuche populations from the localities of Cerro Policía and Aguada Guzmán, in the Rio Negro province, nor in the Tehuelche community of the province of Chubut. No studies were performed either in the Wichi groups of Santa Victoria Este, province of Salta, or in the Lengua community of the Paraguayan Chaco. Therefore, the aim of this study was: 1) to analyse the genetic diversity of the HLA-DRB1 locus in four Indian populations, two from the Argentine Patagonia region (Mapuche and Tehuelche) and the other two (Wichi and Lengua) from the Gran Chaco Region of Argentina and Paraguay, respectively; 2) to estimate the genetic distances among them; and 3) to compare the results obtained with those from other native groups of Argentina.

Materials and Methods

Populations studied

The Mataco or Wichi are much more numerous than the other Amerindian Chaco groups, their total population being estimated at 20,000 in 1986. A 1984 census revealed a total of 9,143 individuals in Salta, representing 51% of the Province’s Indian groups. Besides agriculture, hunting and fishing, they are notable by their textile production (Acreche et al., 1996). Their language, Mataco proper, is classified within the Mataco-Guaicuru linguistic stock (Loukotka, 1968; Greenberg, 1987). The sample was obtained from the community of Santa Victoria Este (SV), Department of Rivadavia, province of Salta (63° 42’ W, 22° 17’ S. See Figure 1).

The Lengua Indians live between 20° 30’ and 24° S and 58° and 59° 50’ W. They previously lived in Bolivia, and their language is classified as a stock of the Chaco division (Loukotka, 1968) or, according to the classification by Greenberg (1987), the Macro-Panoan branch of the Ge-Pano-Karib division. In the past, their life depended upon hunting, fishing and gathering. Currently, the main population is settled in communities near Filadelfia, Department of Boquerón, Paraguay (Figure 1), where they cultivate small gardens, plant crops, and have some livestock (Goicoechea et al., 2001a). The individuals studied came from two communities, Misión Lengua, Barrio Obrero, Filadelfia, and Yalve Sanga, located 30 km south of Filadelfia.

The Mapuche speak a language classified within the Southern Andean division, the Araucanian group (Loukotka, 1968; Greenberg, 1987). They came from Chile and became established in Argentina since the beginning of the 17th century. Originally they mainly practiced agriculture, but nowadays they also extensively raise sheep and goats. They live in both rural and urban areas of the provinces of Rio Negro, Neuquén, Chubut, Santa Cruz, La Pampa and Buenos Aires. Their total population was estimated at 50,000 (Goicoechea et al., 1996). The present sample was obtained from two localities: Aguada Guzmán (68° 57’ W, 39° 30’ S) and Cerro Policía (68° 37’ W, 39° 10’ S), province of Rio Negro (Figure 1).

The present-day Tehuelche are the remnants of a formerly quite large tribe that in historic times occupied the whole Patagonia, from the Rio Negro and its affluent, the Rio Limay, down to the Strait of Magellan and the isthmus connecting the Brunswick Peninsula with the continent. They were split into two main divisions, northern and southern, and those who live now are probably descendants of the southern group. Intermixture with non-Indians has
occurred over the years (Valory, 1968). Their language is classified as Andean, Patagon stock (Loukotka, 1968; Greenberg, 1987). Material for the present study was collected at the village of El Chalia (71° W, 45° S), Department of Rio Senguer, province of Chubut.

Biological samples

A total of 98 individuals of Amerindian populations from the Patagonia Region [Mapuche (n = 34) and Tehuelche (n = 23)] and the Gran Chaco region of Argentina and Paraguay [Wichi SV (n = 24) and Lengua (n = 17)] were analysed (Figure 1).

The blood samples were obtained during the period from 1990 to 1995. Blood was collected into sterile tubes with anticoagulant and codified, anonymized and kept at -20 °C in the DNA Bank of the Biological Anthropological Section of the Anthropological Science Institute of Buenos Aires University. The donors of the samples were informed about the aim of the study and gave their consent to perform the research. The Wichi and Lengua samples were provided by Dr. J. Ferrer from Pennsylvania University, USA. DNA was obtained using the organic extraction method with phenol-chloroform and ethanol precipitation. The allelic variants of the HLA-DRB1 locus were determined using the PCR-SSOP (Polymerase Chain Reaction-Specific Oligonucleotide Probes) and PCR-SSP (Polymerase Chain Reaction-Sequence Specific Primers) molecular typing techniques. At first, sequence amplification of exon-2 was performed using primers that match homologous sequences for all the alleles of HLA-DRB1 loci. These products were scattered in a dot-blot shape on a positively charged nylon membrane, then denatured, fixed and later hybridized to several SSOP probes marked with digoxigenin. This first typing recognizes only the DRB1 family of alleles. The oligonucleotides used as probes or primers and the hybridization protocols were obtained from the XII International Histocompatibility Workshop (Bignon and Fernandez-Vina, 1997). For the determination of the allelic subtypes, the Orelup PCR-SSP kit was used according to the manufacturer’s instructions.

Statistical analysis

The HLA-DRB1 gene frequencies were estimated using the maximum likelihood method (Excoffier and Slatkin, 1995). Hardy-Weinberg (HW) equilibrium was tested by calculating the exact p-values as proposed by Guo and Thompson (1992), using the ARLEQUIN program, version 2000 (Schneider et al., 2000). Gene diversity and genetic distances (DA) were estimated using the method of Nei (1973, 1986) and Nei et al. (1983). Neighbour-joining dendrograms (Saitou and Nei, 1987) were elaborated using the DISPAN program (Ota, 1993).

Results

Table 1 shows that in the four populations studied the alleles of Amerindian origin presented several variations. For example, while alleles DRB1*1402 and DRB1*0802 were detected in all groups analysed, allele DRB1*0403 was observed only in Wichi SV, Tehuelche and Lengua. The latter two groups shared the DRB1*1602 variant with the Mapuche Indians. However, in spite of the similarities detected, some of these variants presented different frequencies in the analysed groups. In turn, alleles DRB1*0411, DRB1*0417 and DRB1*1406 were detected only in the Gran Chaco region, while DRB1*0407 and DRB1*0901 were detected exclusively in Patagonia.

Three out of the four populations were in HW equilibrium: Mapuche (p = 0.07), Tehuelche (p = 0.54) and Wichi SV (p = 0.11), whereas in Lengua there was a significant difference in the HWE (p = 0.02), with a pronounced deficiency of heterozygotes (Hobs = 0.36, Hesp = 0.55). In Mapuche and Tehuelche, 15 allelic variants were found, followed by Wichi SV and Lengua with 6 and 5 variants, respectively. The indigenous people of Patagonia exhibited a greater genetic diversity, probably due to the introgression of genes of European origin into their gene pool. In fact, these populations presented 35% and 22% of non-Amerindian genes, respectively (DRB1*01, DRB1*0301, DRB1*0405, DRB1*0701, DRB1*1001, DRB1*1101, DRB1*12, DRB1*13, DRB1*14, DRB1*15, DRB1*16).

Table 1 - HLA-DRB1 allele frequencies in the four populations studied.

Alleles	Populations			
	Mapuche (n = 34)	Tehuelche (n = 23)	Wichi SV (n = 24)	Lengua (n = 17)
DRB1*01	0.059	0.022		
DRB1*03	0.059	0.022		
DRB1*04	0.022	0.104	0.029	
DRB1*07	0.044	0.161	0.022	
DRB1*10	0.044	0.161	0.022	
DRB1*11	0.044	0.161	0.022	
DRB1*12	0.044	0.161	0.022	
DRB1*13	0.044	0.161	0.022	
DRB1*14	0.044	0.161	0.022	
DRB1*15	0.044	0.161	0.022	
DRB1*16	0.044	0.161	0.022	

n: number of samples; ^: most frequent alleles in Amerindian populations.
Table 2 - Geographic and linguistic origins of the Argentinean populations that were compared with the Amerindian groups studied.

Population	n	Language	Locality	Reference
Chiriguano	56	Tupí-Guarani	Orán (23° 08' S, 64° 20' W)	Pando, 1998
			Province of Salta	
Wich (2)	19	Mataco Guaicuru	Orán (23° 08' S, 64° 20' W)	Pando, 1998
			Mataco Division	
Wich (3)	49	Mataco Guaicuru	Province of Formosa	Cerna et al., 1993
			Mataco Division (Ref: Mataco-Wichi)	
Toba (1)	135	Mataco Guaicuru	Province of Formosa	Cerna et al., 1993
			Guaicuru Division (Ref: Eastern-Toba)	
Toba (2)	19	Mataco Guaicuru	Province of Formosa	Cerna et al., 1993
			Guaicuru Division (Ref: Western-Toba-Pilaga)	
Toba (3)	86	Mataco Guaicuru	Rosario city (32° 57' S, 60° 39' W)	Marcos, 2000
			Guaicuru Division	
Buenos Aires	365	Spanish	Buenos Aires city (34° 38' S, 58° 28' W)	Marcos, 2000
			Province of Santa Fe	

Table 3 - HLA-DRB1 allele frequencies in six Amerindian groups of the Gran Chaco and a sample of Buenos Aires city.

Alleles	Populations						
	Chiriguano	Wich (2)	Wich (3)	Toba (1)	Toba (2)	Toba (3)	Buenos Aires
HLA-DRB1	(n = 56)	(n = 19)	(n = 49)	(n = 135)	(n = 19)	(n = 86)	(n = 365)
DRB1*01							
01	0.009			0.016			0.058
0301	0.026	0.026					0.058
0302			0.030				0.110
DRB1*04							
0401	0.009				0.006		0.006
0402						0.006	0.029
0403*	0.018	0.021	0.034		0.058		0.014
0404*	0.009	0.105	0.110	0.054	0.058		0.017
0405		0.004		0.006			0.005
0407*	0.053	0.062	0.061	0.081		0.081	0.019
0408						0.010	
0409						0.005	
0410					0.006	0.006	0.005
0411*	0.045	0.215	0.076	0.062	0.093	0.012	0.005
0413							0.002
0417*		0.080	0.122	0.090	0.061	0.041	
DRB1*07	0.018	0.026	0.011	0.015	0.093	0.052	0.137
0801					0.006	0.006	0.014
0802*	0.107	0.110	0.183	0.223	0.126	0.203	0.027
0803					0.005		
0804	0.026	0.026					0.010
0806						0.002	
0807*	0.009					0.012	
0808						0.002	
DRB1*09	0.018	0.053		0.011		0.017	0.019
0901*					0.004		0.012
DRB1*10	1.001				0.012	0.012	0.063
1101	0.026				0.012	0.012	0.063
1102					0.007		
1103					0.010		
1104				0.037		0.031	
DRB1*1102, DRB1*1104, DRB1*1301, DRB1*1302 and DRB1*1601, Table 1). In contrast, Wichi SV and Lengua showed 100% of Amerindian alleles and, therefore, the genetic diversity was much higher in Mapuche (H = 0.91) and Tehuelche (H = 0.85) than in Wichi SV (H = 0.75) and Lengua (H = 0.56). As usual in human populations, the intrapopulational variation was high and explained 86% of the total genetic variability, while the gene differentiation coefficient diversity (Gst’) was 17%.

Our data were compared with those obtained in six Amerindian groups of the Gran Chaco region of Argentina and also with a sample of European origin from the city of Buenos Aires, to evaluate the effect of admixture (Tables 2 and 3). The results showed a pronounced divergence among these regions. In general, smaller genetic distances were observed among the Chaco Populations and also between the Mapuche and Tehuelche groups. Almost all populations showed clear-cut differences with regard to the sample of Buenos Aires. However, due to the high admixture of non-Amerindian genes of European origin, the Mapuche and Tehuelche presented much smaller or only minor genetic distances from the Buenos Aires group (Table 4). The genetic distance dendrogram (Figure 2) shows that the Patagonian-Buenos Aires populations are clustered together, separated from all the Chaco populations.

Table 3 (cont.)

Alleles	Populations						
	Chiriguano (n = 56)	Wichi (2) (n = 19)	Wichi (3) (n = 49)	Toba (1) (n = 135)	Toba (2) (n = 19)	Toba (3) (n = 86)	Buenos Aires (n = 365)
DRB1*11	DRB1*1106 0.002 0.002 0.002						
	DRB1*1108 0.002						
	DRB1*1115 0.002						
DRB1*12	DRB1*12 0.045 0.010						
	DRB1*1301 0.011 0.008 0.012 0.056						
	DRB1*1302 0.009 0.017 0.058						
	DRB1*1303 0.004 0.010						
	DRB1*1305 0.005						
	DRB1*1307 0.002						
DRB1*14	DRB1*1401 0.004 0.006 0.022						
	DRB1*1402 0.214 0.186 0.264 0.106 0.093 0.145 0.014						
	DRB1*1404 0.196 0.121 0.171 0.237 0.272 0.192 0.005						
	DRB1*1406 0.004						
	DRB1*15 0.027 0.022 0.004 0.123 0.006 0.094						
	DRB1*1601 0.036						
	DRB1*1602 0.179 0.123 0.006 0.007						
	DRB1*1604 0.009 0.023 0.006 0.137 0.287						
	DRB1*1605 0.009 0.023 0.006 0.007						
	DRB1*1606 0.002						

*: Most frequent alleles in Amerindian populations. For references, see Table 2.

Table 4 - Genetic distances (DA) for ten populations of Argentina.

	Mapuche	Tehuelche	Wichi SV	Lengua	Chiriguano	Wichi (2)	Wichi (3)	Toba (1)	Toba (2)	Toba (3)	Buenos Aires
Tehuelche	0.174										
Wichi SV	0.785	0.671									
Lengua	0.674	0.647	0.163								
Chiriguano	0.592	0.550	0.288	0.443							
Wichi (2)	0.357	0.307	0.339	0.228	0.330						
Wichi (3)	0.632	0.558	0.160	0.300	0.137	0.287					
Toba (1)	0.377	0.398	0.232	0.293	0.199	0.217	0.130				
Toba (2)	0.555	0.496	0.278	0.344	0.244	0.265	0.149	0.170			
Toba (3)	0.351	0.300	0.283	0.307	0.250	0.204	0.165	0.084	0.193		
Buenos Aires	0.341	0.427	0.815	0.809	0.593	0.517	0.649	0.485	0.567	0.387	
Brazil (Tsuneto in the Quechua (18%) and in the Guarani (11%) of Peru and the Mapuche (7%) and Tehuelche (9%), was also detected addition, allele DRB1*0901, which was detected only in lral and South America (19%-45%) (Salzano, 2002). In

cordance with the variation range observed in North, Central and South America (31%), and in several South Amerindian populations such as the Wayuu (14%) and the Bari (40%) (Salzano, 2002).

On the other hand, the genetic distance dendrogram (Figure 2) shows that the Patagonian-Buenos Aires groups are clustered together and separated from all the Chaco populations. This topology is coherent with the geographic distribution and the interethnic relationships of the analysed groups. Thus, the strong biological affinities among the indigenous populations of Patagonia can be supported on the basis of the ethnic-historical information available.

The contact between the Mapuche and Tehuelche populations began in the XVI century with the arrival of the Araucanian people in the Pampa and Patagonia regions. During this process, the Tehuelche incorporated the Mapuche language, as well as several cultural features. Thus, a major gene flow occurred through marriage, trade and political network (Mandrini, 1988; Nacuzzi, 1998). Likewise, these populations had intense contact with Spanish colonists ever since the XVIII century, mainly through trade relations and
also upon conflictive and tense situations, when the seizing of captives made up the main axis for mating between natives and Europeans (Socolow, 1992). These facts could partly explain most of the genetic diversity observed in the Mapuche and Tehuelche Indians. In this sense, it is also known that in the communities of Aguada Guzmán and Cerro Policia there was a strong gene flow with non-Amerindians, due to the contacts established with people from urban centres such as the city of General Roca (Province of Río Negro) (Goicoechea et al., 2000). Regarding the Tehuelche community of El Chalía, the presence of Europeans can be verified by the historical and demographic information available, given that they participated as colonists in the foundation of this settlement (Carnese et al., 2002).

We did not have our own demographic data on the Chaco populations to allow us estimating the biological relationships among the groups studied. However, historical and anthropological information shows that the inhabitants of the Chaco kept extensive trade and cultural relationships that could encourage interethnic marriages with other Andean, Amazonian and Mesopotamian groups (Metraux, 1946; Dejean et al., 2004). Therefore, the gene flow mechanism could explain the strong genetic affinities observed between the Wichi and Lengua groups. Nevertheless, the lower genetic diversity detected in these groups seems to contradict this explanation, because an interethnic gene flow leads to an increase in the intrapopulational genetic variability. Therefore, these results could be explained by a combined action of gene flow and genetic drift. This mechanism may have influenced mainly the Lengua group, as its lower biological diversity (H = 0.56) and its pronounced deficiency of heterozygotes seem to suggest. Previous data of STR markers obtained in the same populations also suggest that genetic drift could be the most important mechanism in the determination of the biological variability of Chaco populations (Catanesi et al., 2006). However, the low diversity found in this group could also be due to the small sample size. It is known that natural selection has a certain effect on HLA loci, which can produce some distortion and lead to an erroneous assessment of the biological relations among populations. It should however be emphasized that our results are in concordance with those obtained in previous studies performed in the same population, using blood group determination and mitochondrial and nuclear DNA markers (Goicoechea et al., 2001b; Catanesi et al., 2003; Catanesi et al., 2006). This concordance, in turn, ratifies the usefulness of the HLA-DRB1 locus in genetic population studies.

Acknowledgments

We especially thank Drs. Leonardo Fainboim and Yanina Marcos from the Immunogenetic Service of the Hospital de Clinicas “José de San Martin”, UBA, for helping us to determine the HLA markers, and Dr. Alicia S. Goicoechea for constructive suggestions. The Indian leaders and the subjects of the investigation were adequately informed about the aims of the study and gave their approval, which is gratefully acknowledged. Financial support was provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 5393) and the Universidad de Buenos Aires (UBACyT F044).

References

Acreehe N, Caruso G and Albeza M (1996) Distancias genéticas en poblaciones del NOA. Rev Arg Antrop Biol 1:139-152.
Bignon J and Fernandez-Viña M (1997) Protocols of the 12th International Histocompatibility Workshop for typing of HLA class II alleles by DNA amplification by the polymerase chain reaction (PCR) and hybridization with sequence specific oligonucleotide probes (SSOP). In: Charron D (ed) Genetic Diversity of HLA. Functional and Medical Implications. Medical and Scientific International Publisher, Sèvres, pp 584-595.

Carnese F, Caratini A and Goicoechea A (2002) Interethnic relations in Native-American populations of Argentine Patagonia: A genetic demographic analysis. In: Briones C and Lanata J (eds) Contemporary Perspectives on the Native Peoples of Pampa, Patagonia and Tierra del Fuego. Westport, Connecticut, pp 121-134.
Carnese F, Avena S, Goicoechea A, Dejean C, Sevin A and Dugoujon J (2003) Sistemas Gm y Km en poblaciones aborígenes de la Patagonia Argentina. In: Aluja M, Malgos a A and Nogués R (eds) Antropología y Biodiversidad. Bel laterra Press, Barcelona, pp 67-73.
Catanesi C, Tourret N, Carnese F and Vidal Rioja L (2006) South American Amerindian diversity at the vWA STR locus. J Basic Appl Genet 17:35-40.

Dejean C, Crouau-Roy B, Goicoechea A, Avena S and Carnese F (2004) Genetic variability in Amerindian populations of Northern Argentina. Genet Mol Biol 27:489-495.

Excoffier L and Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12:921-927.
Fainboim L, Satz M and Geffner J (1999) Introducción a la Inmunología Humana. 4th edition. Editorial Médica Pam americana, Buenos Aires, 389 pp.
Fernández-Viña M, Lázaro A, Marcos C, Nulf C, Raimondi E, Haas E and Stastny P (1997) Dissimilar evolution of B-locus versus A-locus and class II loci of the HLA region in South American Indian tribes. Tissue Antigens 50:233-250.
Ginther C, Corach D, Penacino G, Rey J, Carnese F, Hutz M, Anderson A, Just J, Salzano F and King M (1993) Genetic variation among the Mapuche Indians from the Patagonian region of Argentina. In: Pena SD, Chakraborty R, Eppl en JT and Jeffreys AJ (eds) Mitochondrial DNA Sequence Variation Allele Frequencies of Several Nuclear Genes. Birkhäuser Verlag, Basel, pp 211-219.
Goicoechea A, Soria M, Hae do A, Crognier E and Carnese F (1996) Distancias genéticas en poblaciones aborígenes de la Argentina. Rev Arg Antrop Biol 1:153-166.
Goicoechea A, Carnese F, Caratini A, Avena S, Salaberry M and
Salzano F (2000) Demography, genetic diversity and popu-
lation relationships among Argentinean Mapuche indians.
Genet Mol Biol 23:513-518.

Goicoechea A, Carnese F, Dejean C, Avena S, Weimer T, Estalote
A, Simoes M, Palatnik M, Salamoni P, Salzano F et al.
(2001a) New Genetic Data on Amerindians from the Para-
guayan Chaco. Am J Hum Biol 13:660-667.

Goicoechea A, Carnese F, Dejean C, Avena S, Weimer T, Franco
M, Callelegu-Jacques S, Estalote A, Simoes M, Palatnik M et al.
(2001b) Genetic relationships between Amerindian popula-
tions of Argentina. Am J Phys Anthropol 115:133-143.

Greenberg J (1987) Language in the Americas. Stanford Univer-
sity Press. Stanford, 458 pp.

Grahovac B, Sukernik R, O’hUigin C, Zaleska-Rutczynska Z,
Blagitko N, Raldugina O, Kosutic T, Satta Y, Figueroa F,
Takahata N et al. (1998) Polymorphism of the HLA class II
loci in Sibarian populations. Hum Genet 102:27-43.

Guo S and Thompson E (1992) Performing the exact test of
Hardy-Weinberg proportion for multiple alleles. Biometrics
48:361-372.

Haas E, Salzano F, Araujo H, Grossman F, Barbetti A, Weimer T,
Franco M, Verruno L, Nasif O, Morales V et al. (1985) HLA antigens and other genetic markers in the Mapuche Indians of
Argentina and other genetic markers in the Mapuche Indians.
Hum Hered 35:306-313.

Lazaro A, Moraes M, Marcos C, Moraes J, Fernández-Viña M and
Stastny P (1999) Evolution of HLA class-I compared to
HLA class-II polymorphism in Terena, a South-American
Indian tribe. Hum Immunol 60:1138-1149.

Loukotka C (1968) Classification of South American Indian Lan-
guages. University of California, Los Angeles. 453 pp.

Mandrini R (1988) La sociedad indigena de las pampas en el siglo
XIX. In: Lischetti M (ed) Manual de Antropología.
EUDEBA, Buenos Aires.

Metraux A (1946) Ethnography of the Gran Chaco. In: Steward J
(ed) Handbook of South American Indians. Indians of the
Gran Chaco. Bureau of American Ethnology Bulletin 143,
Smithsonian Institution, v. I, part 2, pp 197-370.

Nacuzzi L (1998) Identidades Impuestas. Tehuelches, Aucas y
Pampas en el Norte de la Patagonia. Sociedad Argentina de
Antropología, Buenos Aires, 268 pp.

Nei M (1973) Analysis of gene diversity in subdivided popula-
tions. Proc Natl Acad Sci USA 70:3321-3332.

Nei M (1986) Definition and estimation of fixation indices. Evo-
lution 40:643-645.

Nei M, Tajima F and Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:927-
943.

Ota T (1993) DISPAN: Genetic distance and phylogenetic analy-
sis. Pennsylvania State University, Pennsylvania.

Pando M (1998) Estudio molecular de la distribución de alelos
HLA-DR-DQ en poblaciones normales argentinas y en pa-
cientes con hepatitis crónica autoinmune. Doctoral Thesis,
Facultad de Ciencias Exactas y Naturales. Universidad de
Buenos Aires.

Petzl-Erler M (1997) Guaraní Amerindian Brazil normal. In:
Terasaki P and Gjertson D (eds) HLA 1997. Tissue Typing
Laboratory, Los Angeles, pp 291.

Petzl-Erler M, Gorodezky C, Layrisse Z, Klitz W, Fainboim L,
Vullo C, Bodmer JG, Egea E, Navarrete C, Infante E et al.
(1997) Anthropology report for region Latin-America: Amer-
indian and admixed populations. In: Charron D (ed) Ge-
etric Diversity of HLA. Functional and Medical Implica-
tions. Medical and Scientific International Publisher,
Sèvres, pp 337-345.

Pirosky I, Cantora M, Vellard J, Braunstein J and Alessandria J
(1983) Análisis genético de una población indígena toba.
Estudio de la frecuencia del HLA-DR. Medicina 43:281-
284.

Saitou N and Nei M (1987) The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Mol Biol Evol
4:406-425.

Salzano F (2002) Molecular variability in Amerindians: Wide-
spread but uneven information. An Acad Bras Cienc
74:223-263.

Schneider S, Roessli D and Excoffier L (2000) ARLEQUIN: Soft-
ware for population genetics data analysis. Genetics and
Biometry Laboratory. Department of Anthropology, Uni-
versity of Geneva.

Socolow S (1992) Spanish captives in Indian societies: Cultural
contact along the Argentine frontier, 1600-1835. Hispanic
American Historical Review 72:73-99.

Takahata N, Ohashi J, Bannai M and Juji T (2001) Genetic link
between Asians and Native Americans: Evidence from HLA
genes and haplotypes. Hum Immunol 62:1001-1008.

Trachtenberg E, Keyeux G, Bernal J, Rhodas M and Erlich H
(1996) Results of Expedición Humana. I. Analysis of HLA
Class II (DRB1-DQA1-DQB1-DPB1) alleles and DR-DQ
haplotypes in nine Amerindian populations from Colombia.
Tissue Antigens 48:174-181.

Travers P (2000) Immune recognition and the MHC. In: Bidwell J
and Navarrete C (eds) Histocompatibility Testing. Imperial
College Press, London, pp 11-39.

Tsuneto L, Probst C, Hutz M, Salzano F, Rodríguez-Delfin L,
Zago M, Hill K, Hurtado A, Ribeiro-dos-Santos A and
Petzl-Erler M (2003) HLA class-II diversity in seven Amer-
indian populations. Clues about the origins of the Aché. Tis-
 sue Antigens 62:512-526.

Valory D (1968) Notas sobre la antropología y demografía de las
poblaciones fueguinas. Am Indig 28:653-674.

Vulco C, Celis E, Serra H and Riera C (1984) Study of HLA sys-
tem in a Mataco population: A geographically isolated Ame-
rican indian tribe. Tissue Antigens 23:33-40.

Vulco C, Delfino L, Angelini G and Ferrara G (1992) HLA poly-
morphic variants. Hum Immunol 35:209-214.

Zhang S, Fernandez-Viña M, Falco M, Cerna M, Raimondi E and
Stastny P (1993) A novel HLA-DRB1 allele (DRB1*0417)
in South American Indians. Immunogenetics 38:463.

Internet Resources
Marcos C (2000) HLA-DRB1 data of a Toba population from
Rosario city, Santa Fé Province, and Buenos Aires urban
groups, Argentina. Available at
http://www.allelefrequencies.net (July, 2008).

Associate Editor: Francisco Mauro Salzano

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.