Recent advances in understanding mitochondrial genome diversity [version 1; peer review: 4 approved]

Rafael Zardoya

Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain

Abstract

Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.

Keywords

mitochondrial genomes, animal, plant, fungi, unicellular eukaryotes

Open Peer Review

Approval Status

1. Jianping Xu, McMaster University, Hamilton, Canada
2. Anna Klucinka, Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
3. Hansong Ma, Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
4. Yongjie Zhang, Shanxi University, Taiyuan, China
Introduction

Mitochondria are specialized organelles of eukaryotic cells in charge of essential roles, including the supply of energy (in the form of ATP) through aerobic respiration (oxidative phosphorylation, or OXPHOS), the biosynthesis of different types of lipids and iron–sulfur clusters, programmed cell death (apoptosis), calcium homeostasis, and the reaction to stressors, among many others. The most intriguing feature of mitochondria is arguably their endosymbiotic origin (for a recent retrospective, see 3). All mitochondria descend from an ancestor related to extant alphaproteobacteria which integrated into an host cell related to extant Asgard archaea. However, owing to potential biases affecting phylogenetic inference, the precise closest living sister groups of neither the symbiont nor the host are known. Though still under debate, the integration likely occurred late during eukaryogenesis. The endosymbiosis was a complex evolutionary process, which likely implied incremental steps, including the acquisition of the protein and RNA import machinery, the modification of the endosymbiont membranes, the massive gene transfer to the nucleus, the forming of the inner membrane invaginations, the coordination of biochemical pathways, and the integration of mitochondrial division into the cell cycle. As a result, mitochondria exhibit mosaic proteomes with about 1000 proteins of mixed evolutionary origins. Most proteins of alphaproteobacterial origin are involved in aerobic respiration and ribosomal function, whereas proteins of eukaryotic origin are generally in charge of nuclear–mitochondria signaling.

Despite the massive loss (due to functional redundancy) or transfer of genes to the nucleus during the endosymbiosis of mitochondria, these organelles still retain a reduced set of protein-coding genes that are replicated, transcribed, and translated independently from the nuclear genome. Remarkably, these mitochondrial protein-coding genes are translated using genetic codes different from the standard (nuclear) genetic code in many living eukaryotes. Several hypotheses have been postulated to explain the evolutionary persistence of a mitochondrial genome (hereafter mitogenome) in eukaryote cells despite the evolutionary pressure to centralize genetic regulatory coupling and redox control. Mitogenomes are double-stranded DNA molecules of variable size that generally are found as circular, linear, or branched forms. Each cell may contain more than 1000 mitogenomes (the so-called chondriome), showing length and site heteroplasmy (nucleotide [nt] variation) and allowing the accumulation of mutations without immediate deleterious effects. The mitogenome population of an individual is constantly varying and subjected both to genetic drift, as some mitogenomes may segregate more frequently than others by chance, and to selection, as those molecules that provide higher energy production or that replicate more often may be transmitted more efficiently. Genetic bottlenecks and recombination can also have profound effects on heteroplasmy. The relative influence of genetic drift and selection on mitogenomes depends on their inheritance mechanism, which varies among animals, fungi, and plants. Maternal inheritance of mitogenomes due to selective degradation of paternal ones is the prevalent mechanism in animals and plants, although remarkable exceptions of paternal leakage producing doubly uniparental inheritance (DUI) have been reported in, for example, mussels, the bladder campion, Silene vulgaris, and very exceptional cases in humans. In fungi, there are a variety of inheritance patterns during sexual reproduction. In Ascomycota yeasts, biparental inheritance of mitochondria in the zygote is common, but later on, one of the parental mitogenomes is usually eliminated. In filamentous Ascomycota, mitochondria are generally inherited from the larger of the two cells involved in the mating process. In Basidiomycota, both uniparental and biparental inheritance modes are reported.

The replication and transcription of mitogenomes have been best studied in vertebrates as the original experimental studies to identify the different proteins were performed in this group. The control region of the vertebrate mitogenome has the origin of replication of one strand and the origins for transcription of both strands, whereas the origin of replication for the opposite strand is located within a cluster of transfer RNA (tRNA) genes between the cox1 and nad2 genes. The traditional strand displacement model for replication of mammal mitogenomes implies initiation from the origin of replication using a transcript as primer. After replication of the first strand exposes the origin of replication of the lagging strand, its replication is initiated. Alternative models of strand-coupled replication involving the incorporation of RNA fragments in the newly synthesized lagging strand (implying the formation of Okazaki fragments) have been also proposed. The enzyme in charge of mitogenome replication in mammals is the nucleus-encoded DNA polymerase γ, which belongs to the family A DNA polymerases and contains a proof-reading 3′→5′ exonuclease. In plant and fungal mitogenomes, a recombination-dependent or rolling circle mechanism similar to bacteriophage T4 DNA replication or both have been proposed. Whether there are specific origins of replication and their putative location are not known. The enzymes in charge of mitogenome replication in Arabidopsis are DNA polymerase IA and IB, also belonging to the family A DNA polymerases. Whereas animal mitogenomes have been shown to evolve faster than their nuclear counterparts, the mitogenomes of plants and fungi evolved generally slower than the corresponding nuclear genomes. It has been postulated that the different replication models of plant and fungal versus vertebrate mitogenomes imply different repairing capacities that affect fidelity of the copies, which may explain main differences in evolutionary rates.

The enzyme in charge of transcription is a DNA-dependent RNA polymerase related to RNA polymerases in T3 and T7 bacteriophages. A long primary polycistronic transcript is synthesized and later cleaved by the RNase P and RNase Z at the 5′ and 3′ ends of the intervening tRNAs, respectively. This “tRNA punctuation model” cannot explain the processing of the
primary transcript outside vertebrates, as tRNA genes in other eukaryote mitogenomes either are frequently grouped together in clusters or simply have been massively lost. Alternatively, in humans, Fas-activated serine/threonine kinases (FASTKs) have been shown to be involved in the processing of transcript precursors derived from adjacent genes that lack an intervening tRNA25. These proteins have a conserved C-terminal RAP domain, which might have a putative endonuclease activity and could represent a more general (outside vertebrates) mitochondrial RNA processing mechanism35. After cleavage, a poly-A tail is added to the 3′ end of the individual messenger RNAs (mRNAs) by a polyadenylidic acid RNA polymerase. This polyadenylation is crucial as it completes the stop codons of several genes.

The tRNA maturation involves a chemical modification by several enzymes of the first position of the tRNA anticonod to facilitate non–Watson-Crick (wobble) base pairing25. This is critical as the tRNA repertoire of mitogenomes is often reduced and the modification expands codon recognition during mitochondrial translation. In addition, editing of the aminoacyl acceptor stems is a widespread mechanism occurring during the post-transcriptional processing of mitochondrial tRNAs35. Finally, it is important to note that, in some species, the existence of a reduced set of tRNA genes in the mitogenome is compensated by the import of nucleus-encoded tRNAs from the cytosol. These striking differences in tRNA processing and maturation result in deviations from the standard genetic code45. Translation of mRNAs occurs in the mitochondrial ribosomes. Each mitoribosome is formed by a small subunit (SSU), which binds mRNAs and tRNAs, and a large subunit (LSU), which catalyzes the formation of peptide bonds. Several of the proteins (except in animals) and the SSU and LSU tRNAs that form both subunits are encoded by mitogenomes. In some species, the mitogenome also encodes the SS tRNA. Other non-coding RNAs such as the H1 RNA (the RNA component of the RNaseP), the RMRP (involved in 5.8S RNA processing), the hTERC (the RNA component of telomerase), and various microRNAs are encoded by the nuclear genome and imported into the mitochondria38. In mammals, RNA import is ATP-dependent and requires the presence of the membrane potential, a specific channel in the outer mitochondrial membrane, and the involvement of the polynucleotide phosphorylase (PNPASE), a 3′-to-5′ exonuclease and poly-A polymerase located in the mitochondrial intermembrane space35,36. Mitoribosome assembly is performed at the so-called mitochondrial RNA granules35. In the mitochondria, the mitogenomes are not present as naked DNA but packaged with proteins (the most essential is the mitochondrial transcription factor A, or TFAM) in the so-called nucleoids, which are required for correct mitogenome replication, transcription, and translation37.

In the last several years, the development of high-throughput sequencing techniques has enormously accelerated the sequencing of mitogenomes (there were over 10,000 reference sequences in the National Center for Biotechnology Information [NCBI] organelle genome database as of November 2019; Figure 1), widening our view of their diversity. Here, I will review the most recent data available on the structure and gene content of the mitogenomes of the different groups of living eukaryotes within an evolutionary context.

1. Animal mitochondrial genome structure

The mitogenomes of bilaterian animals are extremely compact (Figure 2). They are normally organized into a single circular molecule of about 16 Kb (ranging from 11 to 50 Kb) in length. Remarkably, however, in dicyemids (rhombozoans) and some rotifers, nematodes, thrips, and lice, the mitogenome is divided into multiple circular mini-chromosomes48. Bilaterian animal mitogenomes normally contain 13 protein-coding genes (nad1–6, 4L; cob; cox1–3; and atp6 and 8), which encode different subunits of the enzyme complexes of the OXPHOS system; two RNA genes; and 22 tRNA genes (Figure 2). As an exception, the atp8 gene is absent in most nematodes48 and flatworms49 and has been difficult to annotate in some bivalves50. Furthermore, the mitogenome of the only species of arrow worm (phylum Chaetognatha) thus far sequenced lacks the atp6 and 8 genes and all tRNA genes but trnM51. All bilaterian mitochondrial genes lack introns, and the only reported exception is the cob1 gene of one annelid52. In general, genes abut with almost no intronic regions, and the only exceptions are the so-called control regions that contain the origins of replication and transcription. The synten is rather conserved within the different bilaterian phyla, although some (for example, Mollusca43) are more prone to gene rearrangements than others (for example, Arthropoda43). Within Chordata, the mitogenome organization of vertebrates is highly conserved whereas that of ascidians is hypervariable53. Gene rearrangements between relatively closely related taxa usually involve trn genes (but not only) and are particularly frequent around the control regions, through the tandem duplication and random loss (TDLR) mechanism, which explains translocations34 but not inversions.

The structures of the mitogenomes of the earliest lineages of metazoa (that is, Porifera, Ctenophora, Placozoa, and Cnidaria) differ variously from the above described for bilaterian animals (Figure 2). Whereas the mitogenome of Ctenophora is 10 to 11 Kb in length, those of most of Cnidaria and Porifera are 16 to 20 Kb (although some sea anemones and calcareous sponges can reach up to 77 to 81 Kb) and that of Placozoa is 32 to 43 Kb52. One notable difference is the presence of linear mitogenomes in calcareous sponges and several cnidarians49,68. In some cnidarians, the linear mitogenome is organized into a single chromosome with terminal inverted repeats53, whereas in other cnidarians34,50 and calcareous sponges53, there are multipartite mitogenomes. A second striking feature of the mitogenomes of non-bilaterian animals is the different gene content and the presence of introns in some genes. Additional mitochondrial protein-coding genes reported in non-bilaterian animal taxa are the following: atp9 in most sponge mitogenomes; polB encoding a family B DNA polymerase in the placozoan and some jellyfish mitogenomes; mutS encoding a mismatch repair protein in the mitogenomes of some corals; and tatC encoding the twin-arginine translocase subunit C in the mitogenome of the sponge family Oscarellidae47 (Figure 2). On the other hand, ctenophores, placozoans, and carcharid sponges lack the atp8 gene. The number of trn genes also differs between non-bilaterian and bilaterian animal mitogenomes. Those of demosponges and placozoans have in addition the trnl(CAU) and trnR(UCU) genes, whereas cnidian mitogenomes (and independently one group of sponges53) have reduced their set to only trnM and trnW52 and those of ctenophores have lost all of their trn genes52. The presence of self-splicing introns of groups I and II (typical of bacteria and
Metazoa

![Metazoa Bar Chart]

Figure 1. Currently sequenced complete mitogenomes. Complete mitogenome sequences are available at the organelle genomes database, which is part of the National Center for Biotechnology Information Reference Sequence project. Release 7/11/19 was downloaded and mitogenomes were separated by groups (Metazoa, Fungi, Archaeplastida, and other eukaryotes). The proportion (percentage) of sequenced mitogenomes to the estimated number of species per group is shown above each bar.

viruses) has been reported in cox1 and nad5 genes of different species of corals, sponges, and placozoans. Group I and II introns contain internal heg (encoding homing endonucleases) and matR (encoding reverse transcriptases) genes, respectively. It is postulated that the introns and many of the extra protein-coding genes (except atp9 and tatC) were likely acquired through horizontal transfer.

Metazoa and their unicellular closest sister groups form the Holozoa. Within non-metazoan Holozoa, the mitogenomes of the choanoflagellate Monosiga brevicollis, the filasterean Capsaspora owczarzaki and Ministeria vibrans, and the ichthyosporean Amebiasidium parasiticum have been sequenced. These mitogenomes are relatively large: 76, 197, 56, and 300 Kb, respectively. The variation in length is due to differences in repeats in non-coding regions. All are linear (with multiple chromosomes in A. parasiticum) except that of M. brevicollis, which is circular.

The ccmC and ccmF genes encoding proteins assisting in cytochrome c biogenesis are exclusive to C. owczarzaki, whereas the tatC gene is found only in M. brevicollis. The mitogenome of A. parasiticum is particularly rich in introns; there are 21 from group I and two from group II.

2. Fungal mitochondrial genome structure

Fungal mitochondrial DNAs are usually considered circular but may well exist as linear molecules in vivo (with inverted repeats at the ends). Linearization has occurred independently several times in fungi (and other eukaryotes) and, according to one hypothesis, may have been triggered by the integration of linear mitochondrial plasmids often carrying the dpoB gene, which encodes a DNA polymerase B. Fungal mitogenomes largely vary between 12 and 236 Kb in length and are highly dynamic: important differences in sizes have been reported even between strains and individuals within the same species. Another remarkable feature of fungal mitogenomes is that they use several genetic codes. The typical mitochondrial genome of dikarya fungi (Ascomycota and Basidiomycota)
Figure 2. Gene content of mitogenomes. The mitogenome size (in kilobases) and the presence of the different mitochondrial genes are shown. The black, dark, and light gray squares indicate that the gene was reported in all or almost all, most, or few taxa of the group, respectively. For tRNA genes, the number is provided. A consensus phylogeny of the eukaryotes is depicted. Numbers in the nodes refer to the following: 1. Metazoa; 2. Holozoa; 3. Fungi; 4. Holomycota; 5. Ophistokonta; 6. Amoebozoa; 7. Amorphea; 8. Spermatophytes; 9. Tracheophytes; 10. Embryophytes; 11. Viridiplantae; 12. Archaeplastida; 13. Stramenopiles; 14. Alveolata; 15. SAR; 16. Diaphoreticktes; 17. Excavata.
contains 14 protein-coding genes (nad1–6, 4L; cob; cox1–3; and atp6, 8, and 9), the rnl and rns genes, and a variable number (20 to 31) of trn genes\(^{2,5}\) (Figure 2). The presence of the rps3 (originally named var1) gene\(^{2,6}\) is widespread in dikarya fungal mitogenomes but is not present in all. A remarkable variation from the consensus is the lack of the nad genes in some yeasts (family Saccharomycetaceae)\(^3\). A scattered distribution of the rnpB gene that encodes for the RNA subunit of the mitochondrial RNase P is found in fungal mitogenomes\(^{89}\). Genes are generally encoded in one strand in Ascomycota and in both in Basidiomycota. Introns are mostly of group I and normally contain heg genes\(^{42}\). For instance, up to 43 group I introns have been reported in Agaricus bisporus\(^{8}\). Gene rearrangements are frequent among dikarya mitogenomes and are most likely the result of intrachromosomal recombination events\(^{86}\). The mitogenomes of early divergent lineages of fungi (for example, Mucoromycetes and Chytridiomycetes) have been less well studied\(^{75}\) (Figure 1). The ones reported have the genes encoding the 14 OXPHOS complex subunits and the two rRNAs\(^{83}\); some Mucoromycetes have, in addition, the rnpB and rps3 genes\(^{2,7}\); the polB gene as well as heg genes within group I introns have been found in the chytridiomycete Synchytrium endobioticum\(^{84}\). An interesting feature of several of these mitogenomes is the drastic reduction in the number of trn genes to only five to nine in several chytridiomycete species such as Hyaloraphidium curvatum\(^{85}\), Monoblepharella sp.\(^{9}\), or S. endobioticum\(^{84}\). Moreover, several of the mitogenomes of early divergent lineages of fungi have the coxl and rns genes divided into two fragments, separated by one or several genes, either at the same strand or at opposite strands\(^{85}\).

The circular mitogenome of Nuclearia simplex of 74 Kb in length represents the Nuclearia, which are the unicellular sister group of fungi within Holomycota\(^7\). This mitogenome has the same set of OXPHOS complex subunit genes typically found in fungal mitogenomes. In addition, it has the rps11 and 12 genes (Figure 2). The rnl and rns genes and a total of 25 trn genes are present\(^7\). Remarkably, this mitogenome contains a high number of introns (21 of group I and one of group II) and two to 10 unassigned open reading frames (ORFs).

3. Plant mitochondrial genome structure

In green plants (Viridiplantae), research effort has been preferentially concentrated in plastids; thus, the majority of the diversity of mitogenomes awaits further exploration (Figure 1). Mitogenomes have been sequenced for angiosperms (for example, \(78\)), acrogynnosperms\(^{89}\), ferns\(^{80}\), lycophytes\(^{31-83}\), mosses\(^{81-86}\), liverworts\(^{87}\), and green algae\(^{88}\) (Figure 1).

The main feature that characterizes the mitogenomes of flowering plants (angiosperms) is their relatively large length, which varies a 100-fold range from 66 Kb of that of the parasitic plant Viscum scurruloides\(^{89}\) to 11.3 Mb of that of the eudicotyledon Silene conica\(^{89}\). Within an angiosperm mitochondria, there could be several subgenomic isoforms with alternative arrangements resulting from homologous recombination that could have linear, branched, and circular structures\(^{91}\). The angiosperm mitogenomes generally encode in both strands for a core set of 24 protein-coding genes: nad1–7, 9, 4L; cob; cox1–3; atp1, 4, 6, 8, and 9; and the ccmB, C, Fc, and Fn genes encoding proteins assisting in cytochrome c biogenesis; the tatC (also referred to as mtrB); and matR\(^{89}\) (Figure 2). In addition, angiosperm mitogenomes may have different combinations of rps and rpl genes as well as adh3 and 4 genes encoding succinate dehydrogenase subunits of OXPHOS complex II\(^{89}\) (Figure 2). Notably, the parasitic plant V. scurruloides lacks all nad genes\(^{89}\). Most angiosperm mitogenomes have homing group II introns in several protein-coding genes\(^{89}\), whereas the presence of group I introns has been reported only in the coxl gene and has been inferred to result from an original horizontal gene transfer from fungi, and subsequent transfers occurred from one angiosperm to another\(^{89}\). Angiosperm mitogenomes have the rns5 gene, which encodes the rRNA 5S of the large subunit in addition to the rns and rnl genes. No angiosperm mitogenome has a complete set of trn genes and thus translation relies on nucleus-encoded tRNAs that are imported from the cytosol. In particular, trnA, R, L, T, and V genes are generally missing in angiosperm mitogenomes\(^{84}\). The number of trn genes varies from only three to eight in Viscum\(^{89}\) and Silene\(^{10}\) to 17 to 29 genes in many species\(^{84}\). Some of these trn genes have group I introns\(^{85}\). Notably, a small fraction of the mitochondrial trn genes are derived from the chloroplast genome\(^{84}\).

Variation in size of angiosperm mitogenomes is attributed mostly to differences in the number and length of non-coding regions\(^{86}\) and to intracellular transfers from the nucleus and the chloroplast genomes\(^{89}\). Differences in intron length\(^{72}\) and horizontal gene transfer events\(^{89}\) also account for size disparity. Intergenic regions in angiosperm mitogenomes are formed mostly by repeats of variable length well above 1 Kb. The dynamic nature of angiosperm mitogenomes relies mostly on large non-tandem repeats, which are responsible for rearrangements and changes in size through homologous recombination\(^{89}\). The high recombination activity implies that gene order varies extensively even at the intra-specific level.

The core set of 24 protein-coding genes defined for angiosperms plus the three rnl genes are generally conserved in acrogynnosperms, ferns, spikemosses, mosses, liverworts, and green algae mitogenomes (Figure 2). However, the number of rps and rpl genes varies substantially in the mitogenomes of these lineages. The number of introns within genes varies between 20 and 40 and most are of group II. Within acrogynnosperms, mitogenome research has been focused mostly on the early divergent lineages corresponding to genera Cycas, Ginkgo, and Welwitschia\(^{89}\). As in angiosperms, the mitogenomes of the three above-mentioned acrogynnosperms are relatively large: 415, 346, and 979 Kb, respectively. The Welwitschia mitogenome has a reduced set of trn genes\(^{89}\). The mitogenome of Pinus taeda is available at GenBank (MF991879; unpublished) and has the same protein-coding gene content found in Cycas and Ginkgo and many angiosperms, as well as 38 trn genes, which is higher than usual.

Thus far, the mitogenomes of Ophioglossum californicum and Psilotum nudum represent the ferns (Pteridophyta\(^{89}\)). They are 372 Kb (one circular chromosome) and 628 Kb (two circular chromosomes) in length, respectively (Figure 2). The difference in length is due to repetitive intergenic sequences as the gene content of both species is virtually the same as that found in
Cycas and Ginkgo and many angiosperms80. The *nad* genes are particularly intron-rich and thus rather long. For instance, the *Psilotum* *nad1* gene is 21 Kb in length. The mitogenomes of spikemosses and quillworts (Lycophyta) have been sequenced in the three families within the group (that is, Selaginellaceae81, Isoetaceae82, and Lycopodaceae83). These genomes are 413, 58, and 183 Kb in length, respectively (Figure 2). From the core set of 24 genes, all three representatives lack the *ccm* genes84-86 (Figure 2). Also, *atp4* is missing in Selaginellaceae, *nad7* in Lycopodiaceae, and *matR* in Isoetaceae and Selaginellaceae.

The set of accessory genes found in angiosperm mitogenomes is found almost completely in the Lycophyta mitogenome83 but heavily reduced in the Isoetaceae82 and Selaginellaceae83 mitogenomes (Figure 2). The Selaginellaceae mitogenome lacks the *rrn5* gene and has no *rrn* genes87. The moss (Briophyta) mitogenomes are 100 to 141 Kb in length88,89. They lack the *matR* gene (Figure 2). Synteny is largely conserved among moss mitogenomes88. The mitogenomes of representatives of the three main liverwort lineages—Haplothamnopsida90, Jungermanniopsida91,92, and Marchantiopsida93,94—are circular molecules of 152 to 187 Kb in length that lack the *nad7*95,96 and *ccm* genes97 in some species (Figure 2). These mitogenomes have up to 20 to 24 unassigned ORFs. Green algae (Chlorophyta) mitogenomes vary between 16 and 130 Kb in length because of the presence of numerous tandem repeats98. Whereas the mitogenomes of Prasinophyta are bigger and have the *nad10* gene as an addition to the angiosperm core set, the mitogenomes of Chlorophyta are smaller and show two different gene contents in Chlamydomonadales and Sphaeropleales, respectively99,100. The mitogenomes of Chlamydomonadales are generally linear with palindromic telomeres (but see101) and lack many core genes (*nad3, 7, 9, 4L; cox2 and 3; atp1, 4, 6, 8, and 9; all *rrn* and *rpl*; and tatC80)), whereas those of Sphaeropleales have a more complete set of OXPHOS genes, lacking only *atp1, 4*, and *8* (Figure 2). All mitogenomes of green algae lack the *ccm*, *matR*, and *rrn5* genes85. The number of *rrn* genes varies between 23 and 27 in Prasinophyta but in Chlamydomonadales has been reduced to only three or four98; it is remarkable that, in Sphaeropleales, all four *rrnL* are missing102. A notable feature of Chlorophyta mitogenomes is that *rrnL* and *rrnS* genes are fragmented. In Chlamydomonadales, these two genes are highly fragmented and the fragments are scattered across the chromosome, whereas in Sphaeropleales, the *rrnL* and *rrnS* consist of four and two fragments, respectively95,100. Another interesting feature of green algae mitogenomes is the evolutionary history of the *cox2* gene104. This gene is complete in the mitogenomes of Prasinophyta and divided into two fragments, *cox2a* and *cox2b*, in Chlorophyta. Whereas in Sphaeropleales, the *cox2a* is in the mitogenome and the *cox2b* is in the nuclear genome, in Chlamydomonadales, both fragments have been transferred to the nuclear genome104. Finally, it is important to note that Chlorophyta mitogenomes show important variations in the genetic code104.

Green plants (Viridiplantae) and their unicellular close sister groups form the Archaeplastida. Within non-green plant Archaeplastida, the mitogenomes of Glaucophyta are circular and between 33 and 52 Kb in length106. These mitogenomes lack the *nad11* gene as an addition to the angiosperm core set but lack the *ccm*, *tatC*, and *matR* genes (Figure 2). They also encode several *rpl* and *rrn* genes as well as the *sdh3* and *4* genes (Figure 2). There are two to 10 unassigned ORFs. Genes generally lack introns98. These mitogenomes have *rrn* genes sufficient to produce tRNAs that decode all codons but ACN (Threonine)104. The mitogenomes of Rhodophyta are circular molecules of 25 to 30 Kb in length107,108. They lack some of the genes of the angiosperm core set (*nad7* and 9; *atp1; ccm; and *matR*) and have few *rpl* and *rrn* genes (Figure 2).

4. Other eukaryote mitogenome structures

The characterization of mitogenomes from early diverging (mostly unicellular) lineages of eukaryotes (Amoebozoa, Heterokonta, Alveolata, Rhizaria, Cryptophyta, Centrohelida, Haptophyta, and Excavata) is key to understanding the evolutionary history of mitogenomes and their great diversity109. The number of these mitogenomes that are being sequenced is growing fast but is still comparatively small given the high diversity of these lineages (Figure 1).

Within Amoebozoa, the mitogenomes of Conosea110 and Lobosea111 have similar sizes of 29 to 58 Kb (Figure 2). These circular mitogenomes generally have a core set of 19 OXPHOS subunit-protein-coding genes (*nad1–7, 9, 11, 4L; cob; cox1–3; atp1, 4, 6, 8, and 9*) and several *rrn* and *rpl* genes and unassigned ORFs110-112; although different species may have lost variously some of these genes, an extreme case is that of the free-living lobosean *Vannella croatica*, which lacks the *nad3, 7, 9; atp1, 4, 6, 8, and 9* and *rrn* and *rpl* genes113. The *rrnS* and *rrnL* genes and 13 to 25 *rrn* genes are present109-114. Most (if not all) genes are encoded in the same strand, and most *rrn* genes are grouped into a single or few clusters. The *cox1* and 2 genes may be fused115 and contain group I introns with *heg* genes116. The *tufA* gene, which encodes for an elongation factor, has been reported in the lobosean *Vermamoeba vermiformis* (GenBank accession number: GU828005; unpublished). Interestingly, amoebozoan mitogenomes generally show little synteny and are highly divergent in sequence, even between individuals morphologically identified as belonging to the same species117.

Within Straminipiles (or Heterokonta), the size and gene content of the mitogenomes of the main groups are generally conserved (Figure 2). Several mitogenomes of Ochrophyta algae from families Chrysophyceae118, Phaeophyceae117, Eustigmatophyceae118, and Bacillariophyceae (diatoms119) have been sequenced. The circular genomes normally vary in size between 34 and 77 Kb, depending on intervening sequences of variable length. They code generally for the same protein-coding and *rrn* genes found in Amoebozoa mitogenomes except *atp1* (only present in Eustigmatophyceae118). In addition, they encode the *rrnS*, *tatA* (not in all), and *tatC* genes. Remarkably, in Phaeophyceae, the *cox2* gene shows an in-frame insertion of about 3 Kb (1000 amino acids117). The circular mitogenomes of Oomycota are compact and differ in size between the orders Peronosporales (38 Kb), Saprolegniales (47 to 49 Kb), and Pythiales (55 Kb120). The gene content common to the three orders includes the same core set of OXPHOS system protein-coding genes found in Amoebozoa mitogenomes (Figure 2). An interesting addition to the RNA gene set is the presence of the *srrA*
gene, which encodes for a transfer-messenger RNA that releases translation complexes when stalled on mRNAs lacking a stop codon\(^{15}\). The larger sizes of the Saprolegniiales and Pythiales mitogenomes are due to duplication events in several genes\(^ {10}\). The mitochondrial genome of Cafeteria marina represents the Bigyra\(^ {22}\). It is a circular molecule of 43 Kb, which has the same gene content as Amoebozoa mitogenomes\(^ {12}\). Remarkably, the nad11 gene in many Heterokonta is split into two fragments; in several groups (for example, all Eustigmatophyceae, some Bacillariophyceae, and some Bygira), one of the fragments is relocated to the nuclear genome\(^ {14}\). The mitogenomes of Blastocystis are exceptional within Heterokonta as the species of this genus have mitochondrion-related organelles instead of true mitochondria\(^ {12}\). These mitogenomes are circular and of only 28 Kb in length, have a highly biased codon usage, and lack the cox, cob, and atp genes\(^ {13}\) (Figure 2).

Within Alveolata, the mitogenomes of Ciliophora are linear (with long inverted repeats in the terminal regions) and have a relatively large size of 40 to 76 Kb\(^ {124}\) (Figure 2). They are highly compact with small intergenic regions. They normally have a core set of 14 OXPHOS system protein-coding genes (they lack nad11, cox3, and atp1, 4, 6, and 8) and a variable number of accessory rps and rpl genes\(^ {126}\) (Figure 2). In addition, these mitogenomes have 21 or 22 unassigned ORFs, which encode proteins as large as 1300 amino acids\(^ {12}\). They have a reduced set of four to eight trn genes\(^ {124}\). Hence, nucleus-encoded tRNAs need to be imported to complete translation. Some of the genes, like nad1 and the two rrm genes, are usually found fragmented\(^ {125}\). An exceptional case is that of Nyctotherus ovalis as the organellar genome is located in the hydrogenosome\(^ {126}\). This mitogenome of 48 Kb has the nad genes but lacks the cox, cob, and atp genes as well as most rps, rpl, and trn genes\(^ {126}\). The mitogenomes of apicomplexans are the smallest known (only 6 to 7 Kb\(^ {125}\)), whereas those of dinoflagellates are relatively large (from 90\(^ {19}\) to 326 Kb\(^ {10}\)) (Figure 2). The gene contents of the mitogenomes of apicomplexans and dinoflagellates are minimum with only three protein-coding genes (cox1 and 3 and cob), two fragmented rRNA genes and no trn genes\(^ {126}\) (Figure 2). The rRNA fragments are coded on both strands of the mitogenome and not in linear order\(^ {19}\). In the P. falciparum mitogenome, up to 12 and 15 fragments need to be assembled (through a yet-unknown mechanism) into the ribosome to form the small (804 nt) and large (1233 nt) rRNAs, respectively\(^ {19}\). A certain degree of sympathy of the fragmented genes is conserved among related taxa, and the fragmentation of the rrm genes was suggested to have occurred in the common ancestor of apicomplexans and dinoflagellates\(^ {19}\). In dinoflagellates, the diatom endosymbionts have mitogenomes with more canonical gene contents (see Ochrophyta mitogenomes\(^ {119}\)).

Within Rhizaria, only mitogenomes of Cercozoa but not of Foraminifera and Radiolaria are available (Figure 2). Within Cercozoa, the mitogenomes of Lotharella oceanica and Bigelowiella natans\(^ {130}\) and of Spongoptera subterranea\(^ {31}\) and Plasmodiophora brassicae\(^ {12}\) represent Filosa and Endomyxa, respectively. The linear mitogenomes of L. oceanica and B. natans are 36 to 37 Kb in length and have terminal inverted repeats. They contain the same core set of OXPHOS system protein-coding genes of Amoebozoa except nad11 and atp4 as well as several rps and rpl genes. The nad6 and nad9 genes are duplicated in L. oceanica. No introns were found. Other genes involved in transcription, RNA processing, or protein import are missing\(^ {10}\). The circular mitogenome of S. subterranea is 38 Kb in length whereas that of P. brassicae is 115 Kb long, including a 12.5-Kb repeat\(^ {32}\). The gene contents of both mitogenomes are the same as those of Filosa plus polB and mnpB (Stjelja et al.\(^ {15}\) 2019). Up to 54 and five introns were found in P. brassicae and S. subterranea, respectively. Seven of the introns in P. brassicae were of group II. In total, 19 unassigned ORFs, most within introns, were inferred\(^ {12}\). The difference in number of introns, the long repeat, and intergenic regions may largely account for the different in lengths between the two mitogenomes.

The mitogenomes of Haptophyta\(^ {13}\), Centhofila\(^ {34}\), and Cryptophyta\(^ {35}\) have been sequenced. (Sometimes these lineages have been grouped together within Hacrobia, although the monophyly of this group is highly controversial\(^ {18}\).) The mitogenomes of the Haptophyta are circular molecules of 29 to 34 Kb (Figure 2). The intron-less genes are transcribed from the same strand. These mitogenomes have a reduced representation of OXPHOS system protein-coding genes, lacking nad7, 9, and 11 and atp1 and 8 and having only four and one rps and rpl genes, respectively\(^ {13}\). In contrast, the circular mitogenome of Manophrys sp. representing the Centrofilida is 113 Kb in length\(^ {134}\) and has a rather complete set of protein-coding genes, including nad1–11, 4L; cox1–3; cob; atp1, 6, 8, and 9; 12 rps and seven rpl genes; sdh2–4; tufA; cox11; and polB (Figure 2). The genes cox1 and nad5 are partitioned whereas nad9 is duplicated. There are 19 group I introns, most encoding heg genes. This mitogenome also has an rpo gene, which derives from integration of a mobile genetic element (linear plasmid) and encodes a single-subunit T7/T3-like RNA polymerase that is not involved in the transcription of the mitogenome. There are up to 12 unassigned ORFs. The mitogenomes of Cryptophyta are circular molecules ranging in size from 37 to 54 Kb\(^ {13}\) (Figure 2). The mitogenomes contain the same set of OXPHOS system protein-coding genes reported in Marophrys sp.; a slightly reduced set of rps and rpl genes; and sdh3 and 4 and tatA and C\(^ {15}\). The genes cox1 and cob contain a group II intron in some species. Large syntenic blocks are conserved between species and a large repeat region is found\(^ {13}\).

Within Excavata, mitogenomes are extremely diverse (Figure 2). The mitogenomes of Jakobida are the richest in gene content\(^ {14,17}\) and the most similar to the transcriptional and translational machinery operons in bacterial genomes\(^ {16}\); those of Heterolobosea are compact and gene-rich\(^ {18}\); those of some Euglenozoa are arranged in specialized structures called kine-toplasts\(^ {40}\) and in Metamonada are simply absent as species either have highly reduced versions of mitochondria called mitochondrion-related organelles\(^ {41,42}\) or completely lack them\(^ {43}\) because of their adaptation to anaerobic environments. Jakobid mitogenomes are mostly circular, of 67 to 100 Kb, and share a large core set of genes\(^ {37,44,45}\), which include the OXPHOS system protein-coding genes reported for Marophrys sp. plus atp3 and 4 and the accessory genes encoding the RNA polymerase (rpoA–D), several import transporters (secY and tatA and C), proteins for binding of the heme b cofactor to cytochrome c through the maturation system I (ccmA–C and F), and the RNase
P (rnpB) (Figure 2). The mitogenome of Andalucia godoyi has, in addition, the cox1S encoding a protein involved in cytochrome c oxidase (COX) assembly[3]. These mitogenomes also have the ssrA gene[4]. The circular mitogenome of Nuegleria fowleri as a representative of Heterolobosozoa is 49 Kbp[5] but is almost as rich in genes as the jakobid mitogenomes (Figure 2). Within Euglenozoa, the mitogenomes of Euglena, Diplonema, and Trypanosoma are radically different in organization but not in their reduced gene content[6]. The short linear mitogenome molecules of 5 to 8 Kbp in length of Euglena contain only the nad1, 4, and 5; cob; and cox1–3 genes as well as fragmented and highly divergent rrmL and rrmS genes[7]. The mitogenome of Diplonema is organized into about 80 to 100 circles of 6 to 7 Kbp in length, each containing one or several (overlapping) gene fragments flanked by highly redundant non-coding regions[8]. The initial annotations of the mitogenome of Diplonema also reported the nad7 and 8 and atp6 genes in addition to the genes observed in Euglena[9]. However, a recent study[10] demonstrated the presence of the nad2, 3, 6, 9, and 4L genes with highly divergent sequences. The mitochondrial protein-coding and rrr genes in Diplonema are highly fragmented, and gene pieces (or modules) are transcribed separately. The transcripts are end-processed to eliminate non-coding sequences and joined by an RNA ligase[11]. Two types of RNA editing (one adding uridine tails at the 3′ ends of modules and the other producing C-to-U ends of modules and the other producing C-to-U) are post-transcriptionally[12]. It is postulated that the origin of mitogenome and gene fragmentation in diplomenids could be related to a mobile element that proliferated and propagated[13]. The molecular mechanism that ensures how chromosome loss is avoided during cell division is unknown[14].

The kinetoplasts of Trypanosoma are the most complex mitogenomes within Euglenozoa. The kinetoplast is a single disk-shaped structure composed of dozens of maxicircles of 20 Kbp in length and thousands of minicircles of 1 Kbp in length[15]. The maxicircles have the genes found in Diplonema plus rps12 and four unassigned ORFs. The minicircles encode small guide RNAs, which aid in post-transcriptional RNA editing[16]. In Euglenozoa, all tRNAs must be imported from the cytosol.

5. Conclusions and perspectives

The last few years have witnessed an astounding increase in the number of sequenced mitogenomes. The advent of high-throughput sequencing techniques has extended mitogenome characterization to non-model, understudied eukaryotes and has facilitated the sequencing of large, fragmented, or repeat-rich mitogenomes otherwise intractable with traditional cloning, standard/long polymerase chain reaction (PCR), and sequencing methods. The rich database of mitogenomes available is still taxon-biased. The proportion of mitogenomes sequenced to the number of species per lineage is generally less than 10% (and in many instances less than 1%) and reaches only 21% in mammals, the best sampled case (Figure 1). Yet a good-enough representation of most eukaryote groups is available not only to allow the consensus gene structures for the different groups to be inferred (Figure 2) but also to recognize the astonishing diversity of exceptions to these consensuses. The early notion—based exclusively on the study of bilaterian species—that mitogenomes are one single chromosome and are circular and compact (of merely 16 Kbp in length) has been largely superseded as the mitogenome structure of other eukaryotes has been unraveled[17,18,19]. Mitogenomes are much more variable and dynamic than previously thought: their form can be circular, linear (with terminal inverted repeats), or branched; they can be organized into single or multipartite chromosomes; their sizes vary extensively from less than 10 Kbp to more than 11 Mb and this is due mostly to changes in gene content and the presence of repeats in non-coding regions and of self-splicing introns. Their gene structure is also highly variable, including the presence of group I and II introns and the existence of partitioned genes (with the possibility of having one of the partitions in the nuclear genome).

The diversity of gene contents (Figure 2) allows the main trends during the evolutionary history of mitochondria to be inferred[20]. Alphaproteobacteria, the closest living group of mitochondria, have their genes encoding the subunits of the respiratory chain complexes and those encoding ribosomal proteins organized into operons, whose gene content and synteny are maintained in the mitogenomes of some unicellular eukaryotes, particularly jakobids and (to some extent) heterolobosozoa. These bacterial operons also contain genes encoding proteins involved in protein transport, cytochrome c biogenesis, and DNA and RNA polymerization. All of these bacterial genes were inherited vertically into mitogenomes and later either maintained or eliminated variously depending of the evolutionary pathway, generating the great diversity in gene content, organization, and structure of mitogenomes which we observe in living eukaryotes (Figure 2). The genes cob, cox1 and 3, and rrmS and rrmL are conserved throughout all known mitogenomes. The genes nad1–6, 4L; cox2, atp6, 8, and 9 are also highly conserved but are missing in some lineages, namely Apicomplexa, Dinoflagellata, and Euglenozoa. The genes nad7 and 9, atp1 and 4, sdh3 and 4, tatC, and rrmS are generally found in unicellular eukaryotes and Archeoplastida (with the exception of Rhodophyta) but not in fungi and animals. The genes nad8 and 10, atp3, and sdh2 are restricted mostly to Excavata, Centrohelida, and Cryptophyta. The genes rps and rpl have been generally lost in animals, fungi (with the exception of rps3), Euglenozoa, and Alveolata. The presence of rps16 and rpl11, 11, 18–20, 27, 30–32, and 34–35 is restricted to Jakobida and a few more lineages. The genes ccmC, D, and F are found in Jakobida, Heterolobosozoa, and Viridiplantae. In addition, the gene content of mitogenomes has been enriched repeatedly through scattered horizontal gene transfer of several genes of viral, bacterial, plastid, or nuclear origin. For instance, the presence of group I and II introns of bacterial/viral origin, which include genes that encode their own maturases, is widespread except in bilaterian animals, and the gene matR is prevalent in Viridiplantae.

The sequencing of mitogenomes has been boosted by high-throughput sequencing techniques. The genome skimming approach is particularly useful for sequencing mitogenomes[21]. This technique consists of sequencing nuclear genomes at a low coverage. As a result, the recovery of high-copy fractions such as
mitogenomes, which are present in thousands of copies per cell, is enhanced. Genome skimming looks particularly promising for obtaining mitogenomes from museum and herbarium-preserved old material[15]. Several pipelines have been specifically designed to assemble mitogenomes from short reads[15,13]. Normally, the assembly is relatively straightforward, particularly if mitogenomes from closely related species are available and used as reference. However, the exceptions to this rule are plant mitogenomes, which are rather big and contain repeat regions prone to homologous recombination. These features have been a major drawback for long PCR amplification in the past and have seriously hindered assembly from short reads. In this regard, the use of technologies that produce long reads looks very promising for assembling plant mitogenomes[15] and in general for eliminating assembly chimaeras of short reads that may arise when using too-distant references. Mitogenome-encoded proteins have conserved domains that provide significant results in sequence similarity or hidden Markov model searches, which also facilitate (almost) automatic annotation. Hence, the perspective that the mitogenome database will grow exponentially in number and diversity in the coming years is well grounded and soon it will be possible targeting all key taxa representing main lineages of eukaryotes and, in particular, those groups of unicellular eukaryotes that are known only through metabarcoding approaches or those unknown that may live in extreme environments. The orthology of mitochondrial genes is relatively easy to assess and the sequences of these mitogenomes will allow species limits to be determined[15], cryptic species diversity to be detected[15], and robust trees to be reconstructed to help resolve ongoing phylogenetic controversies[14]. The recovered trees could be used as evolutionary frameworks to compare changes in gene content and arrangement between sister taxa and infer the features of the mitogenomes of most recent common ancestors. This will provide us with an unprecedented view of the evolutionary transitions (gains, losses, and reorganizations) that occurred in mitogenomes during the diversification of eukaryotes and will help us understand the evolutionary mechanisms (for example, selection versus random drift) that triggered changes. As more nuclear genomes become sequenced, we will be able to understand the origin of mitochondrial intergenic regions and repeats on one side and the ultimate fate of the missing mitochondrial genes in the different mitogenomes. As more mitogenome organizations are characterized and combined with advance technologies such as single-cell transcriptomics, it will be possible to gain insights into the variety of replication, transcription, and translation (including RNA editing and changes in genetic code) processes occurring outside vertebrate mitogenomes and to further understand the evolution of the signaling occurring between the mitochondrial and the nuclear genomes.

Appendix: Brief key to mitochondrial genes and corresponding protein functions

1. OXPHOS system proteins

The mitochondrial electron transport chain is composed of four (I–IV) complexes inserted in the inner mitochondrial membrane[15] that could be either physically connected in a supercomplex called the respirasome; connected only through redox reactions by two mobile molecules (the ubiquinone or Coenzyme Q and the cytochrome c) or dynamically shifting between the two extreme states[56]. A fifth (V) complex is required to transform the proton pumping occurring in complexes I, II, and IV into ATP.

The NADH dehydrogenase (complex I) catalyzes the oxidation of NADH to NAD⁺ and the transfer of electrons to ubiquinone. This complex of 44 protein subunits in humans is composed of a long hydrophobic membrane domain with the proton-pumping module and a hydrophilic peripheral domain with the NADH-binding and ubiquinone-binding modules[17]. In bacteria, the complex I is encoded in the nuo operon, which consists of 14 genes (nuoA–N). The genes nuoA, H, J, K, L, M, and N are homologs of mitochondrial genes nad3, 1, 6, 4L, 5, 4, and 2, respectively, which encode the chains inserted in the inner mitochondrial membrane. The genes nuoB, C, D, G, and I are homologs of mitochondrial genes nad10, 9, 7, 11, and 8, respectively, which encode subunits of the peripheral domain[15].

The succinate dehydrogenase (complex II) catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to ubiquinol. One hydrophilic domain has two subunits: a flavoprotein (SdhA) that binds the succinate and an iron–sulfur protein (SdhB). There is also a hydrophobic domain anchored in the inner membrane with two subunits: the cytochrome b560 (SdhC) and another cytochrome b (SdhD). Genes sdh2, 3, and 4 encode subunits B, C, and D, respectively.

The coenzyme Q-cytochrome c reductase (complex III) catalyzes the oxidation of ubiquinol and the transfer of electrons to cytochrome c. This complex is made of three proteins in bacteria and up to 11 in humans. The gene cob encodes for cytochrome h, an integral membrane protein with two heme groups which binds the ubiquinol[15].

The cytochrome c oxidase (COX) (complex IV) reduces molecular oxygen to water. The complex is fully integrated in the inner membrane and includes 13 to 17 protein subunits and several redox cofactors: a di-copper center (CuA) present in COX2, a heme group, and a binuclear heme a3-CuB center present in COX1[16]. The mitochondrial genes cox1, 2, and 3 encode the corresponding subunits, which form the catalytic core and are the only ones present in bacteria.

The ATP synthase (complex V) produces ATP from ADP in the presence of a proton gradient across the membrane, which is generated by electron transport complexes of the respiratory chain. Complex V consists of two structural domains: F1, containing the extramembraneous catalytic core, and Fo, containing the membrane proton channel. Genes atp6, 8, and 9 encode subunits of the Fo. Genes atp1 and 4 encode the alpha and beta subunits of the F1, respectively.

2. Ribosomal components

Mitochondrial ribosomes are composed of small and large subunits[159]. The genes rps1–4, 7, 8, 10–14, and 19 and rrnS
encode proteins and the rRNA (12S in animals, 15S in fungi, and 18S in plants), respectively, of the small subunit. The genes \(rpl2, 5, 6, 11, 14, 16, 19, 31 \) and \(rrlL \) encode proteins and the rRNA (16S in animals, 21S in fungi, and 26S in plants), respectively, of the large subunit. The gene \(rrsS \) encodes 5S rRNA of the large subunit in plants and most unicellular eukaryotes. In gammaproteobacteria, ribosomal protein genes are organized in operons combining \(rps \) and \(rpl \) genes as well as other genes such as \(tufA \), \(rpoA-D \), and \(secY \), a condition also found in some mitogenomes (for example, those of Jakobida).

3. Protein maturation
Cytochromes \(c \) are proteins with covalently attached heme \(b \) cofactors. The binding of the heme group relies on membrane-associated proteins named cytochrome \(c \) maturation systems, one of which is System I or Ccm. This system is organized into three functional modules: (1) transports the heme \(b \), (2) has chaperoning function, and (3) performs the ligation. Genes \(ccmA–C \) encode three of the five subunits involved in module 1. Genes \(ccmFc \) and \(ccmFn \) encode proteins involved in module 3.

Assembly of the redox cofactors requires the participation of a set of accessory proteins. In particular, gene \(cox11 \) encodes a protein involved in copper insertion.

4. Transporters
Proteins can be secreted across a membrane either in their unfolded conformation (and later fold into their native structure) using the SecYEG (or TAT) pathway or in their folded state using the Twin-arginine translocation (or SecY-independent) pathway. The genes involved in the two pathways are the \(sec \) and \(tat \) genes, respectively. The gene \(secY \) encodes for the central subunit of the secretory channel SecYEG. The genes \(tatA \) and \(tatC \) encode membrane-integrated subunits of the TAT channel.

5. Processing proteins
The family B of DNA polymerases, such as the DNA polymerase II of Escherichia coli or the T4 DNA polymerase, have replicative and 3′–5′ exonuclease proofreading activities. The \(polB \) (also referred to as \(dpoB \)) gene encodes these proteins.

The DNA-dependent RNA polymerase synthesizes RNA from a DNA template. In bacteria, the enzyme core is composed of five subunits: two \(\alpha \) involved in assembly and transcriptional regulation, \(\beta \) and \(\beta' \) involved in the catalysis, and \(\omega \) involved in assembly, which are encoded by genes \(rpoA, B, \) and \(C \) and \(Z \), respectively. In addition, the \(\sigma \) transcription initiation factor, encoded by the \(rpoD \) gene, binds to the core, forming the holoenzyme. Archaeal and eukaryotic RNA polymerase core enzymes consist of 10 to 20 subunits.

The DNA mismatch repair system in gammaproteobacteria such as \(E. coli \) recognizes differences in the methylation state. This system has to recognize the mispair, propagate the signal, select the appropriate strand, excise it, and resynthesize a new one. Gene \(mutS \) encodes for an ABC-family ATPase that recognizes the mispair.

Ribonuclease P (RNase P) is an endonuclease that cleaves other RNA molecules at the junction between a single-stranded region and the 5′ end of a double-stranded region (for instance, in a tRNA precursor). The gene \(rnpB \) encodes for the RNA subunit.

The \(ssrA \) gene encodes a transfer-messenger RNA that participates in the so-called ribosome rescue pathway. This molecule releases translation complexes when stalled on mRNAs lacking a stop codon. First, it acts as a tRNA, binding to the stalled ribosomes, then as a mRNA, adding an ssrA peptide tag to the C-terminus of the nascent polypeptide chain, which is targeted for proteolysis.

Group I and II introns contain inside \(heg \) and \(matR \) genes, respectively, which encode RNA maturases. The maturases of group I have a homing endonuclease activity whereas those of group II have a reverse transcriptase activity. In addition, both have a ribozyme component, which catalyzes splicing.

The gene \(tufA \) encodes for the protein synthesis elongation factor Tu (EF-Tu), which plays a central role in the elongation phase of protein synthesis by placing the aminoacyl-tRNA at the A site of the ribosome.

Abbreviations
ATP, adenosine triphosphate; BP, base pair; CCM, cytochrome \(c \) maturation system; COB, apocytochrome B; COX; cytochrome \(c \) oxidase; HEG, homing endonuclease; LSU, large ribosomal subunit; MAT, maturase; mRNA, messenger RNA; MUT, mutator; NAD, NAD dehydrogenase; nt, nucleotide; ORF, open reading frame; OXPHOS, oxidative phosphorylation; PCR, polymerase chain reaction; POLB, family B of DNA polymerases; RNP, ribonuclese P; RPL, ribosomal protein of the large subunit; RPO, DNA-dependent RNA polymerase; RPS, ribosomal protein of the small subunit; RRNA, ribosomal RNA; SAR, Stramenopiles, Alveolata, Rhizaria; SDH, succinate dehydrogenase; SEC, Secretory; SSR, 10Sa RNA; SSU, small ribosomal subunit; TAT, Twin-arginine translocation; tRNA, transfer RNA; TUF, TU elongation factor.
Evolutionary insights into intron dynamics and evolution in the caterpillar fungus *Cordyceps militaris*. *Genes* 2014; 5(2): 451–65.

F1000 Research 2020, 9(F1000 Faculty Rev):270 Last updated: 18 JAN 2023
Histories of Organelles. Coralline Red Algae Provide Insights into the Incongruent Evolutionary phylogenetics suggests a monophyletic archaeplastida. Gloeochaete wittrockiana Biol Evol. speciation of the early land plants. of the organellar genomes of the Aneura pinguis revealed advanced cryptic genome evolution in liverworts. plants PubMed Abstract

(7): e0180484. Bowman JL, Kohchi T, Yamato KT, Sloan DB, Alverson AJ, Chuckalovcak JP, et al. The extraordinary variation in the mitochondrial genomes of their protist mitochondrial DNAs. The complete mitochondrial genome of the ciliate Paravannella minima (Amoebozoa, Discosea, Vannellida). Eur J Cell Biol. (2): 57. Ševčíková T, Klimov V, Zdrávková V, et al. A Comparative Analysis of Mitochondrial Genomes in Euglenid Flagellates Algana, Genome Biol Evol. 2016; 8(3): 705–22. Publisher Full Text

2011; 4: 289–94. Free Full Text

28

2017; 12: (11): e0180664. Wynn EL, Christensen AC: Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution. G3 (Bethesda). 2019; 9(2): 549–59. Publisher Abstract | Publisher Full Text | Free Full Text

45

2012; 8: e43763. Publisher Abstract | Publisher Full Text | Free Full Text

10

2008; 25(7): 1440–50. Publisher Abstract | Publisher Full Text | Free Full Text

F1000Research 2020, 9(F1000 Faculty Rev):270 Last updated: 18 JAN 2023}

89. Skippen E, Barkman TJ, Rice DW, et al.: Miniatized mitogenome of the parasitic plant Viscum scurrolludum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A. 2015; 112(27): E3615–E3624. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

90. Sloan DB, Alverson AJ, Chulkalovcak JP, et al.: Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012; 10(1): e1001241. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Kozik A, Rowan BA, Lavelle D, et al.: The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019; 15(8): e1008373. PubMed Abstract | Publisher Full Text | Free Full Text

Brown GG, Des Colas Frans-Small C, Osterman-Biran G: Group II intron splicing factors in plant mitochondria. Front Plant Sci. 2014; 5: 35. PubMed Abstract | Publisher Full Text | Free Full Text

Sanchez-Puerta MV, Cho Y, Mower JP, et al.: Frequent, phylogenetically local horizontal transfer of the cor(t) group I intron in flowering plant mitochondria. Mol Biol Evol. 2008; 25(6): 1792–1802. PubMed Abstract | Publisher Full Text | Free Full Text

Michaud M, Cognat V, Duchâme AM, et al.: A global picture of tRNA genes in plant genomes. Plant J. 2011; 66(1): 80–93. PubMed Abstract | Publisher Full Text

Silva SR, Alkarenga DO, Aranguren Y, et al.: The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLoS One. 2017; 12(7): e0180484. PubMed Abstract | Publisher Full Text | Free Full Text

Wang B, Xue J, Li L, et al.: The fragmented mitochondrial genomics of Paravannella minima (Amoebozoa, Discosea, Vannellida), Eur J Protistol. 2019; 68: 80–87. PubMed Abstract | Publisher Full Text | Free Full Text

Bonderenko N, Glotova A, Nassonova ES, Mijanovic O, et al.: Mitochondrial Genome of Vannella croatica (Amoebozoa, Discosea, Vannellida). J Eukaryot Microbiol. 2018; 66(6): 820–827. PubMed Abstract | Publisher Full Text | Free Full Text

Bondarenko NI, Nassonova ES, Mijanovic O, et al.: Mitochondrial Genomes of Treubia lacunosa (Amoebozoa, Discosea, Vannellida). Eur J Protistol. 2018; 63: 83–96. PubMed Abstract | Publisher Full Text | Free Full Text

Nesterova D, Faye Y, Richtova J, et al.: Morphology, Ultrastructure, and Mitochondrial Genome of the Marine Non-Photosynthetic Bicosoecid Dinobryon robustum. RNA. J. Mol. Biol. 2019; 427(4): 1436–48. PubMed Abstract | Publisher Full Text | Free Full Text

Wang B, Xue J, Li L, et al.: The complete mitochondrial genome sequence of the liverwort Physcomitrella patens. Curr Genet. 2009; 56(6): 601–9. PubMed Abstract | Publisher Full Text | Free Full Text

Myczczyński K, Bączkiewicz A, Buzickowska K, et al.: The extraordinary variation of the organelar genomes of the fern Pteridium aquilinum reveals ancient cryptic genome evolution in liverworts. Curr Genet. 2009; 56(6): 601–9. PubMed Abstract | Publisher Full Text | Free Full Text

Böman JM, Kohchi T, Yamato KT, et al.: Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell. 2017; 171(2): 287–304, e15. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Fučíková K, Lewis PO, González-Halphen D, et al.: Gene arrangement convergence, diverse intron content, and genetic code modifications in mitochondrial genomes of sphaeroideals (chlorophylla). Genome Biol Evol. 2014; 6(8): 2170–80. PubMed Abstract | Publisher Full Text | Free Full Text

Harmi T, Kawasaki T, Toyoda A, et al.: Multiple Independent Changes in Mitochondrial Genome Continuation in Clamydomonadales Algae. Genome Biol Evol. 2017; 9(4): 993–999. PubMed Abstract | Publisher Full Text | Free Full Text

Jackson CJ, Reyes-Prieto A: The mitochondrial genomes of the glaucophyte Gloeochaete wittrockiana and Cyanophyceae glaucocyst: multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biol Evol. 2014; 6(10): 2774–85. PubMed Abstract | Publisher Full Text | Free Full Text

Lee JM, Song HJ, Park SI, et al.: Mitochondria and plastid genomes from Coraline Red Algae Provide Insights into the Incongruent Evolutionary Histories of Organelles. Genome Biol Evol. 2018; 10(11): 2961–2972. PubMed Abstract | Publisher Full Text | Free Full Text

Li Y, Liu N, Wang X, et al.: Comparative genomics and systematics of Botryococcus, Euchema, and Kappaphycus (Solieriales: Rhodophyta) based on mitochondrial genome. J Appl Phycol. 2018; 30: 3435–3443. PubMed Abstract | Publisher Full Text | Free Full Text

Gray MW, Lang BF, Cederberg R, et al.: Genome structure and gene content in a protist mitochondrion. Nucleic Acids Res. 2019; 26(4): 865–78. PubMed Abstract | Publisher Full Text | Free Full Text

Heidel AJ, Glöckner G: Mitochondrial Genome Evolution in the Social Amoebae. Mol Biol Evol. 2008; 25(7): 1440–50. PubMed Abstract | Publisher Full Text | Free Full Text

Bondarenko N, Glotova A, Nassonova E, et al.: The complete mitochondrial genome of Symbiodinium minutum (Dinophyceae, Dinophyta) with rapid evolution of the mitochondrial ribosomal RNAs of Plasmodium Falciparum, Plasmodium berghei, and Plasmodium knowlesi. Mol Biol Evol. 2012; 29(11): 3435–3443. PubMed Abstract | Publisher Full Text | Free Full Text

Feagin JE, Harrell MI, Lee JC, et al.: The fragmented Mitochondrial Ribosomal RNAs of Plasmodium Falciparum. PLoS ONE. 2012; 7(6): e38320. PubMed Abstract | Publisher Full Text | Free Full Text

Tanifuji G, Archibald JM, Hashimoto T: Comparative genomics of mitochondria
Open Peer Review

Current Peer Review Status: ✅ ✅ ✅ ✅

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Yongjie Zhang
 School of Life Sciences, Shanxi University, Taiyuan, China
 Competing Interests: No competing interests were disclosed.

2. Michael W Gray
 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
 Competing Interests: No competing interests were disclosed.

3. Anna Klucnika
 1. Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
 2. Department of Genetics, University of Cambridge, Cambridge, UK
 Competing Interests: No competing interests were disclosed.

4. Hansong Ma
 1. Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
 2. Department of Genetics, University of Cambridge, Cambridge, UK
 Competing Interests: No competing interests were disclosed.

5. Jianping Xu
 Department of Biology, McMaster University, Hamilton, Canada
 Competing Interests: No competing interests were disclosed.

Comments on this article

Reader Comment 14 Nov 2020

Johannes Pignatti, La Sapienza University, Rome, Italy

Dear Author,
this is an interesting review article.
I spotted two typos in Fig. 1:
Rodophyta --> Rhodophyta
Briophytina --> Bryophytina

Best,
Johannes Pignatti

Prof. Johannes Pignatti,
Dipartimento di Scienze della Terra
Università degli Studi di Roma “La Sapienza”
Piazzale Aldo Moro 5, 00185, Roma
e-mail (office): johannes.pignatti@uniroma1.it

Competing Interests: None

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com