NECA derivatives exploit the paralog-specific properties of the site 3 side pocket of Grp94, the endoplasmic reticulum Hsp90

The hsp90 chaperones govern the function of essential client proteins critical for normal cell function as well as cancer initiation and progression. Hsp90 activity is driven by ATP, which binds to the N-terminal domain and induces large conformational changes that are required for client maturation. Inhibitors targeting the ATP-binding pocket of the N-terminal domain have anticancer effects, but most bind with similar affinity to cytosolic Hsp90α and Hsp90β, endoplasmic reticulum Grp94, and mitochondrial Trap1, the four cellular hsp90 paralogs. Paralog-specific inhibitors may lead to drugs with fewer side effects. The ATP-binding pockets of the four paralogs are flanked by three side pockets, termed sites 1, 2, and 3, which differ between the paralogs in their accessibility to inhibitors. Previous insights into the principles governing access to sites 1 and 2 have resulted in development of paralog-selective inhibitors targeting these sites, but the rules for selective targeting of site 3 are less clear. Earlier studies identified 5′N-ethylcarboxamido adenosine (NECA) as a Grp94-selective ligand. Here we use NECA and its derivatives to probe the properties of site 3. We found that derivatives that lengthen the 5′ moiety of NECA improve selectivity for Grp94 over Hsp90α. Crystal structures reveal that the derivatives extend further into site 3 of Grp94 compared with their parent compound and that selectivity is due to paralog-specific differences in ligand pose and ligand-induced conformational strain in the protein. These studies provide a structural basis for Grp94-selective inhibition using site 3.

Hsp90 chaperones are required for the conformational maturation and late-stage activation of hundreds of client proteins, many of which are essential for cell viability (1–3). Grp94, the endoplasmic reticulum Hsp90 paralog, is required for localization of cell surface receptors, including Toll-like receptors, Lrp6, Her2, and integrins (4–7), as well as secreted proteins, such as insulin-like growth factors (8). Overexpression of Grp94 occurs in various cancers, including multiple myeloma and Her2+ breast cancer, and correlates with a poor prognosis (9, 10). Recent studies have shown that blocking Grp94 activity in these cancer cells leads to client degradation and reduces cancer cell viability (4, 11).

Over a dozen Hsp90 inhibitors that target the ATP-binding pocket in the N-terminal domain (NTD) have been tested in clinical trials, but a lack of biomarkers for patient selection, compound- or target-specific toxicities, and, under some conditions, up-regulation of compensatory chaperone systems have hindered their progress to approval (12–17). In addition to Grp94, humans possess two Hsp90 paralogs in the cytosol (Hsp90α and Hsp90β) and one in the mitochondria (Trap1). Because Hsp90 paralogs have distinct sets of client proteins with widely diverse cellular functions, selective inhibition (targeting just one of the four paralogs) may mitigate the limitations of some of the pan-hsp90 inhibitors and improve drug efficacy in cancer treatment (18).

The residues that comprise the ATP-binding pocket of the NTDs are almost universally conserved, making hsp90 paralog selective drug discovery a challenge. Three distinct side pockets, however, adjoin the central ATP-binding cavity of hsp90s (Fig. 1), and paralog selectivity can be achieved by accessing these side pockets in one paralog but not another. Although the residues that line the side pockets are also conserved between paralogs, selective access is governed by intrinsic conformational differences between the NTDs of each paralog as well as by ligand-driven rearrangements (4, 19–23). In one of the best-studied examples, two of these side pockets, site 1 and site 2, have been shown to distinguish between cytosolic Hsp90 and Grp94. Crystal structures of each paralog bound to PU-H54, a purine-based (PU) Grp94-selective inhibitor, revealed that the flexibility of the Grp94 lid (helices 4 and 5), compared with its Hsp90 counterpart, permits conditional access to site 2 upon inhibitor binding. In Grp94:PU-H54, rearrangement of the lid causes Phe-199 to swing toward site 1, exposing the hydrophobic cleft of site 2. This movement allows the nonpolar 8-aryl...
moiety of PU-H54 to enter site 2 in an energetically favorable conformation. On the other hand, the structure of Hsp90:PU-H54 showed that the lid is unaffected by inhibitor binding and that Hsp90 Phe-138, the equivalent of Grp94 Phe-199, blocks site 2, forcing the 8-aryl moiety of PU-H54 to remain in the energetically less favorable site 1.

While differential access to site 1 and site 2 offers selectivity within the PU inhibitor scaffold, less is known about how other regions of the ATP-binding pocket could be exploited for paralog selectivity. 5'-N-ethylcarboxamidomoiety occupies the side pocket called site 3, which sits adjacent to the termini of the helix 4/5 lid (23). Modeling the NECA binding pose into the structure of unliganded yeast Hsp90 showed that access to site 3 is disfavored by a predicted clash between the terminal methyl group of the 5'- moiety and the backbone carbonyl oxygen of Hsp90 Gly-121. In Grp94:NECA, the equivalent Gly-196 is displaced by 3.6 Å compared with Hsp90, allowing the 5'- moiety to enter site 3.

Conformational remodeling of the Hsp90 lid or the entering ligand would therefore be required to accommodate NECA in Hsp90. Furthermore, the structure of Grp94:NECA revealed that the volume of site 3 is not fully occupied by the 5'- moiety of NECA, suggesting that inhibitors could be designed to fill site 3 and enhance Grp94 selectivity and affinity.

To explore the ability of ligands to more completely occupy site 3 in Grp94 and to characterize the selectivity of NECA-based ligands, we designed 5'-modified derivatives of NECA that are predicted to extend further into site 3. We found that one of these derivatives exhibits improved selectivity for Grp94 over Hsp90. In addition, crystal structures of Grp94 and Hsp90 bound to NECA and its derivatives show that subtle energetic differences between the 5'- moieties of these ligands, leading to partial remodeling of site 3, dictate the selective preference for Grp94 over Hsp90. Taken together, our data demonstrate that site 3 is a promising target for the design of Grp94 selective inhibitors.

Results

NECA and its 5'-modified derivatives bind selectively to Grp94 over Hsp90

Analysis of the structure of Grp94 in complex with NECA (23) showed that the 5'-N-ethylcarboxamidomoiety does not completely fill site 3 of the ATP-binding pocket. Site 3, which is formed by Met-85, Asn-162, Leu-163, Thr-165, Ala-167, Thr-171, Gly-196, Val-197, Phe-199, and Tyr-200, sits adjacent to the central adenine-binding cavity of the N-terminal domain. We designed 3 ligands, N-propylcarboxamido adenosine (NPCA), N-hydroxethylcarboxamido adenosine (NEaCA), and N-aminoethycarboxamido adenosine (NEoCA), which lengthen the 5'- moiety of NECA by an additional methyl, hydroxyl, or amino group, respectively (Fig. 2). We assessed the binding properties of these ligands to Grp94 and Hsp90 using isothermal titration calorimetry (ITC). As seen in Fig. 3 and Table 1, NECA, NPCA, and NEoCA bind to human Hsp90 with K_d values of 2.8 μM, 6.3 μM, and 9.1 μM, respectively. The measured affinity of NECA was considerably worse, with a K_d value of 130 μM.

NECA and its derivatives exhibit preferential binding to Grp94 over Hsp90. As seen in Fig. 3 and Table 1, NECA, NPCA, NEoCA, and NEaCA bind to human Hsp90 with K_d values of 14, 58, 68, and 708 μM, respectively. When comparing the ratio of K_d values for Grp94 and Hsp90, it is apparent that NECA binds with 5-fold greater affinity to Grp94 than to Hsp90, whereas NPCA, NEoCA, and NEaCA exhibit 9.1-, 7.4-, and 5.4-fold higher affinity for Grp94 than for Hsp90. In this series, the order of fold selectivity of compounds for Grp94 over Hsp90 is NPCA > NEoCA > NEaCA ~ NECA.

Table 1

Ligand	-R	K_d (μM)
NECA	-H	130
NPCA	-CH$_3$	2.8
NEoCA	-OH	6.3
NEaCA	-NH$_2$	9.1

We compared the K_d values determined by ITC with K_i values calculated from a fluorescence polarization (FP) competition displacement assay using geldanamycin-Cy3b as the tracer (27, 28). As seen in Fig. 4 and Table 2, the K_i values for NECA, NPCA, NEoCA, and NEaCA, calculated from the IC$_{50}$ measurements according to the method of Nikolovska-Coleska et al. (29) yielded values of 1.0, 2.0, 3.9, and >20 μM for Grp94 and 7.9, 32.8, >40, and >40 μM for Hsp90. The K_i values of NECA, NPCA, NEoCA, and NEaCA are significantly lower for Grp94 than for Hsp90, indicating a strong preference for Grp94.

Figure 1. Side pockets of the ATP-binding cavity in the Grp94 NTD. Residue numbers of side pocket side chains are indicated.

Figure 2. NECA and derivatives used in this study. Binding pockets of scaffold and substituent moieties in Hsp90 and Grp94 are indicated schematically.

Figure 3. NECA and derivatives bind selectively to Grp94 over Hsp90. As seen in Fig. 3 and Table 1, NECA, NPCA, NEoCA, and NEaCA, calculated from the IC$_{50}$ measurements according to the method of Nikolovska-Coleska et al. (29) yielded values of 1.0, 2.0, 3.9, and >20 μM for Grp94 and 7.9, 32.8, >40, and >40 μM for Hsp90. The K_i values of NECA, NPCA, NEoCA, and NEaCA are significantly lower for Grp94 than for Hsp90, indicating a strong preference for Grp94.

Figure 4. Analysis of the structure of Grp94 in complex with NECA. The structure of Grp94 in complex with NECA revealed that the 5'-N-ethylcarboxamidomoiety does not completely fill site 3 of the ATP-binding pocket. Site 3, which is formed by Met-85, Asn-162, Leu-163, Thr-165, Ala-167, Thr-171, Gly-196, Val-197, Phe-199, and Tyr-200, sits adjacent to the central adenine-binding cavity of the N-terminal domain. We designed 3 ligands, N-propylcarboxamido adenosine (NPCA), N-hydroxethylcarboxamido adenosine (NEoCA), and N-aminoethycarboxamido adenosine (NEaCA), which lengthen the 5'- moiety of NECA by an additional methyl, hydroxyl, or amino group, respectively (Fig. 2). We assessed the binding properties of these ligands to Grp94 and Hsp90 using isothermal titration calorimetry (ITC). As seen in Fig. 3 and Table 1, NECA, NPCA, and NEoCA bind to human Hsp90 with K_d values of 2.8 μM, 6.3 μM, and 9.1 μM, respectively. The measured affinity of NECA was considerably worse, with a K_d value of 130 μM.

NECA and its derivatives exhibit preferential binding to Grp94 over Hsp90. As seen in Fig. 3 and Table 1, NECA, NPCA, NEoCA, and NEaCA bind to human Hsp90 with K_d values of 14, 58, 68, and 708 μM, respectively. When comparing the ratio of K_d values for Grp94 and Hsp90, it is apparent that NECA binds with 5-fold greater affinity to Grp94 than to Hsp90, whereas NPCA, NEoCA, and NEaCA exhibit 9.1-, 7.4-, and 5.4-fold higher affinity for Grp94 than for Hsp90. In this series, the order of fold selectivity of compounds for Grp94 over Hsp90 is NPCA > NEoCA > NEaCA ~ NECA.

We compared the K_d values determined by ITC with K_i values calculated from a fluorescence polarization (FP) competition displacement assay using geldanamycin-Cy3b as the tracer (27, 28). As seen in Fig. 4 and Table 2, the K_i values for NECA, NPCA, NEoCA, and NEaCA, calculated from the IC$_{50}$ measurements according to the method of Nikolovska-Coleska et al. (29) yielded values of 1.0, 2.0, 3.9, and >20 μM for Grp94 and 7.9, 32.8, >40, and >40 μM for Hsp90. The K_i values of NECA, NPCA, NEoCA, and NEaCA are significantly lower for Grp94 than for Hsp90, indicating a strong preference for Grp94.
data agree with the measured K_d values and yield Grp94 selectivity factors of 16.6 for NPCA, >10 for NEoCA, and 8.0 for NECA, in good agreement with the K_d data calculated from the ITC measurements.

Compounds that target the ATP-binding pocket are predicted to competitively displace ATP, leading to loss of ATP hydrolysis activity. To verify that the NECA inhibitors displace ATP in Grp94, we monitored the ATP hydrolysis activity of Grp94 in response to increasing amounts of the NECA derivative. As seen in Table 2 and Fig. S3, all of the compounds suppressed the ATP hydrolysis activity of Grp94. IC$_{50}$ values calculated from the inhibition titration yielded values of 10 μM for NECA and NEoCA, 17 μM for NPCA, and >100 μM for NEaCA. These values agree approximately with the K_d values for these compounds measured by ITC.

From the binding data, it appears that increasing the length of the 5’ substituent improves the relative binding of NECA derivatives to Grp94 compared with Hsp90. Thus, targeting site 3 is a potential mechanism of paralog selectivity.

Structures of Grp94 and Hsp90 bound to NECA derivatives

To understand the structural basis of the observed differences in affinity between NECA and its derivatives for Grp94 and Hsp90, we determined the crystal structures of the N-terminal domains of Grp94 and Hsp90 in complex with these compounds. Structures of the Grp94 N-terminal domain with (Grp94N) and without (Grp94N$_{41}$) the charged linker in complex with NECA have been reported previously (PDB codes 1U2O, 1YSZ, and 6D28) (23, 30). Crystals of ligand complexes containing Grp94N$_{41}$ were determined for complexes containing NPCA, NEoCA, and NEaCA (PDB codes 2GQP, 2HG1, and 2HCH). Data collection and refinement statistics are presented in Table 3.

The Grp94N$_{41}$:ligand complexes crystallize in a different space group than the Grp94N:ligand complexes, and in the Grp94N$_{41}$:ligand complexes, the residues corresponding to

Table 1

Ligand	Protein	K_d μM	ΔG kcal/mol	ΔH kcal/mol	$T\Delta S$ kcal/mol
NECA	Grp94N	2.8 ± 0.1	−7.545 ± 0.030	−18.8 ± 0.6	−11.26 ± 0.54
NPCA	Grp94N	14.0 ± 2.8	−6.601 ± 0.120	−11.4 ± 0.0	−4.78 ± 0.15
NEoCA	Grp94N	6.3 ± 0.1	−7.071 ± 0.006	−16.3 ± 0.6	−9.23 ± 0.57
NEaCA	Grp94N	57.5 ± 2.1	−5.762 ± 0.022	−8.3 ± 0.0	−2.54 ± 0.02
PU-H71	Grp94N	6.75 ± 3.5	−6.849 ± 0.018	−20.1 ± 0.3	−13.25 ± 0.30
NEaCA	Hsp90N	70.0 ± 8.8	−5.667 ± 0.031	−13.1 ± 2.0	−7.43 ± 1.95
NEaCA	Grp94N	13.0 ± 11.0	−5.281 ± 0.052	−12.0 ± 1.0	−6.72 ± 1.04
NEaCA	Hsp90N	70.0 ± 8.8	−4.283 ± 0.074	−7.3 ± 0.6	−3.02 ± 0.64
NEaCA	Grp94N	0.063 ± 0.033	−9.867 ± 0.330	−15.4 ± 1.1	−5.48 ± 1.39
NEaCA	Hsp90N	0.0049 ± 0.0020	−11.440 ± 0.339	−19.9 ± 2.8	−8.43 ± 3.08
the junction between helices 3 and 4 (167–169) and some portions of helix 4 (residues 170–186) are disordered. Because these disordered regions include two residues that form part of site 3 (Ala-167 and Thr-171), we compared corresponding pairs of Grp94N and Grp94NΔ41:ligand complexes to see whether the disordered residues affected the pose or placement of the bound ligand. In all pairs, the electron density for the bound ligand is strong (Fig. S1A) and shows that the pose of the ligand in the paired Grp94N and Grp94NΔ41 complexes is nearly identical (Fig. S1B). In the results that follow, we refer to the higher-resolution structure of the N/NΔ41 pair when describing the ligand pose and reference the Grp94N structure when describing the site 3 interactions.

The protein components of the Grp94:NECA, Grp94:NPCA, Grp94:NEoCA, and Grp94:NEaCA structures are nearly identical, with average pairwise root mean square deviations between the Ca atoms of each protein of 0.205 ± 0.038 Å. In each structure, the adenine and ribose moieties of the adenosine occupy identical positions within the ATP-binding cavity of Grp94, with the adenine resting in the central binding cavity and the hydroxyls of the pendant ribose pointing out of the mouth of the cavity (Fig. 5A). Stabilization of the bound ligand is achieved in part by 10 direct or water-mediated hydrogen bonds between the adenosine moiety and the protein, which is in agreement with the enthalpy-driven binding observed by ITC. Within the 5′ carboxamido moiety, the additional methyl, hydroxyl, or amino groups of NPCA, NEoCA, and NEaCA, respectively, are essentially superimposable and sit across the width of the site 3 pocket. Although they would be free to rotate in solution, the longer 5′ moieties of NPCA, NEoCA, and NEaCA (Fig. 5B) fit tightly into site 3 and effectively restrict the dihedral torsion angle of the amido-carbon bond to a gauche conformation (Fig. 5C). The gauche conformation is energetically less favored compared with the anti configuration seen in Grp94:NECA (Fig. 5D). This steric constraint may account for the slightly higher K_d of NPCA and NEoCA to Grp94 compared with NECA.

We also determined the structures of human Hsp90α in complex with NECA, NPCA, NEoCA, and NEaCA. Crystals of apoHsp90N were soaked with the ligand prior to freezing and data collection. Crystals of Hsp90:NECA and Hsp90:NPCA diffracted to a resolution of 1.6 Å and 1.65 Å, respectively, whereas crystals of Hsp90:NEoCA and Hsp90:NEaCA each diffracted to a resolution of 1.5 Å. All structures were solved by molecular replacement. Data collection and refinement statistics are presented in Table 3. The position of the bound ligands is supported by strong electron density (Fig. S1A).

In the Hsp90:NECA complex, the NECA ligand occupies the ATP-binding pocket. Comparison of the structures of Hsp90:NECA and Grp94:NECA shows that the adenine and ribose moieties of NECA make similar interactions within the ATP-binding pocket but differ significantly in the poses of the 5′ moieties of the bound NECA. As seen in Fig. 6A, compared with Grp94-bound NECA (NECA_{Grp}), the dihedral angle of the amido-carbon bond of NECA_{Hsp} undergoes a 190° rotation, resulting in the ε methyl group pointing toward the back face of Hsp90 site 3. In contrast, the pose of NECA_{Grp} places the ε methyl closer to the front face of site 3. The entrance to site 3 in Hsp90 is constricted compared with the entrance to site 3 in Grp94. This constriction is due to differences in the position of the carbonyl oxygen of Gly-135 compared with the equivalent Gly-196 in Grp94. As described previously for yeast Hsp90 (23), modeling the NECA_{Grp} ligand into the structure of human Hsp90:NECA shows that the NECA_{Grp} would clash with the carbonyl oxygen of Gly-135 (Fig. 6B). The rearranged pose of NECA_{Hsp} thus reflects the need to avoid steric clashes with Gly-135 in the Hsp90 pocket.

NPCA binds to Hsp90 with a 3.5-fold lower affinity than NECA. Examination of the structure of the Hsp90:NPCA complex shows that, although the adenine and ribose again occupy their expected positions, the 5′ moiety fits deeper into site 3 of Hsp90 compared with NECA and packs closely against the side chain of Tyr-139 (Fig. 6C). In the high-resolution structure of Hsp90:NPCA, the electron density for Tyr-139 is consistent with two side-chain rotamers. In the more favored "distal" rotamer, the side chain of Tyr-139 is 3.5 Å away from the epsilon methyl of NPCA. In the "proximal" rotamer, on the other hand, the side chain of Tyr-139 is rotated 19.6° away from the distal position. This decreases the distance from the ε methyl of NPCA to Tyr-139 to 2.4 Å, a distance that is too close to be energetically favorable (Fig. 6C). The distal rotamer conformation appears to be a consequence of the longer 5′ moiety of NPCA because comparison of the high-resolution Hsp90:NCA and Hsp90:NPCA structures shows that, in Hsp90:NCA, Tyr-139 occupies only the "normal" proximal rotamer conformation.

The distal rotamer conformation of Tyr-139 enlarges site 3 in Hsp90:NPCA and prevents a van der Waals clash with the longer 5′ moiety of NPCA. The distal rotamer of Tyr-139 seen in Hsp90:NPCA, however, pushes the side chain of the residue deeper into the hydrophobic core of Hsp90. Although the energetic consequences of this movement are unknown, an analysis of the 194 human Hsp90α N-terminal domain structures in the PDB shows that only 10 other structures exhibit this Tyr-139 conformation (Fig. S2). This set includes eight related com-

Characterizing a Grp94-selective side pocket

Figure 4. FP binding assay of NECA and derivatives. A and B, the assay contained 10 nM full-length hHsp90α (A) or Grp94 (B) and 6 nM geldanamycin-Cy3b tracer. Graphs represent the average of two independent measurements.
Characterizing a Grp94-selective side pocket

Table 2
Comparison of FP IC₅₀, FP Kᵢ, ITC Kᵦ, and ATPase IC₅₀ values

Ligand	Protein	FP IC₅₀ (µM)	FP Kᵢ (µM)	ITC Kᵦ (µM)	ATPase IC₅₀ (µM)	Fold Grp94 Selectivity	IC₅₀	Kᵢ	Kᵦ
NECA	Grp94	4.8 ± 0.7	1.0 ± 0.1	2.8 ± 0.14	10 ± 4.5	20.7 ± 4.5	7.9 ± 1.5	5.0 ± 1.0	
NPCA	Hsp90	9.7 ± 1.6	2.0 ± 0.3	6.3 ± 0.1	17 ± 3.5	42.8 ± 7.9	16.4 ± 2.8	9.1 ± 0.4	
NPCA	Grp94	14.8 ± 3.6	32.8 ± 2.7	57.5 ± 2.1	ND	>26 ± 4	>10 ± 1.3	7.4 ± 0.5	
NEoCA	Grp94	18.9 ± 2.6	3.9 ± 0.5	9.1 ± 0.3	10 ± 2.4	>5	2	4.8 ± 0.8	
NEaCA	Grp94	>500	>40	67.5 ± 3.5	ND	>5	2	4.8 ± 0.8	
NPCA	Hsp90	>500	>20	708 ± 88	ND	ND	ND	ND	

Table 3
Data collection and refinement statistics

PDB code	Grp94NΔ41:NECA	Grp94N:NECA	Grp94 NΔ41:NEoCA	Grp94 N:NEoCA	Grp94 NA41:NEaCA	
Data collection						
X-ray source/detector	APS 22-BM/MarCCD	RU200/R-Axis	RU200/R-Axis	APS 23-IDD/Pilatus	RU200/R-Axis	
Space group	P212121	C2221	P212121	C2221	P212121	
Cell dimensions	a, b, c (Å)	65.69, 84.84, 95.74	89.47, 99.65, 63.19	65.19, 84.43, 94.82	65.66, 84.77, 94.92	
Resolution (Å)	38.8–1.5	31.1–2.30	47.41–2.30	45.92–1.76	47.64–2.30	
Unique reflections	86,230	11,513	23,793	23,793	24,398	
Nonhydrogen atoms	3614	1906	3741	3741	3632	
Water molecules	563	118	225	225	1910	
Rmsds	Bond lengths (Å)	0.006	0.007	0.006	0.006	0.006
Ramachandran outliers (%)	1.4	0.89	1.2	1.01	1.5	
Clash score	4	13	8	4	6	

Data collection	Grp90α:NECA	Grp90α:NECA	Grp90α:NEoCA	Grp90α:NEoCA	
X-ray source/detector	SSRL 12–2/Pilatus	SSRL 12–2/Pilatus	APS 17ID/Pilatus	APS 17ID/Pilatus	
Space group	P212121	P212121	P212121	P212121	
Cell dimensions	a, b, c (Å)	64.55, 90.08, 98.41	64.45, 89.39, 99.29	64.40, 89.27, 99.07	64.43, 88.87, 99.00
Resolution (Å)	35.89–1.60	43.4–1.65	35.94–1.50	35.94–1.50	
Unique reflections	37,660	68,398	90,961	90,962	
Nonhydrogen atoms	1695	3261	3290	3280	
Water molecules	280	478	636	617	
Rmsds	Bond lengths (Å)	0.006	0.013	0.006	0.007
Ramachandran outliers (%)	0.0	0.0	0.0	0.0	
Clash score	0.6	2	3	4	

plexes of Hsp90 bound to tricyclic imidazo pyridines (31) and two structures of complexes with benzimidazol-substituted pyrrolo pyridine carboxamides. These ligands insert into site 1 of the Hsp90-binding pocket and make direct hydrogen bond interactions between the Tyr-139 OH and nitrogen substituents of the ligand. In contrast, in Hsp90:NECA, Tyr-139 makes no stabilizing ligand interactions and instead moves only to accommodate the impinging 5’ ligand moiety from site 3. Compared with Hsp90:NECA, this movement likely accounts for the energetic penalty incurred when Hsp90 binds NPCA.

Compared with Hsp90:NECA, the structures of Hsp90:NEoCA and Hsp90:NEaCA reveal altered positioning of the terminal hydroxyl and amine groups. In Hsp90:NEoCA, the ε OH of NEoCA points away from the back wall of site 3 and
makes hydrogen bond interactions with the carbonyl oxygen of Gly-135 and with a water molecule (Fig. 6D). NEaCA, on the other hand, contains a charged terminal amino group that adopts two conformations of equal occupancy. In both cases, the ε amino group makes extensive hydrogen-bonding interactions with the carbonyl oxygens of Asn-106, Thr-109, and either the carbonyl oxygen of Ile-110 or the OH of Tyr-139, depending on the conformation of the terminal amino group. The K_d of NEaCA binding to both Grp94 and Hsp90 is substantially worse than for NECA, NPCA, or NEoCA. This cannot be ascribed to unfavorable steric clashes because the poses of NEoCA and NEaCA are essentially identical when bound to Grp94, and the conformation of both Grp94 and Hsp90 is unaltered in the protein:NECA complexes. Rather, the reduced binding affinity likely reflects the energetic costs of burying a fully charged amino group deep in a protein cavity, perhaps displacing stabilizing water molecules in the process.

Discussion

Of the three side pockets identified near the ATP-binding cavity of hsp90 chaperones, sites 1 and 2 have been exploited previously for the design of paralog-selective inhibitors (4, 19–22, 32). Site 3, in contrast, has been relatively neglected, in part because site 3 is further away from the central ATP-binding cavity, requiring longer linkers between the central scaffold and its attached substituents and making targeting more difficult. The structural differences between site 3 in Grp94 and Hsp90 are also subtle, and access to site 3 is not governed by structural rearrangements to the N-terminal domain as they are for sites 1 and 2.

Here we have shown that inhibitors based on the NECA scaffold all target site 3 and bind with a 5- to 9-fold preference for Grp94 over Hsp90. The origins of the preferential binding of these compounds to Grp94 appear to be due to the effect of Gly-135 in Hsp90 on the trajectory of the 5′ carboxamido substituent. Initial modeling studies (23) indicated that NECA would not be able to access site 3 in yeast Hsp90 in the pose adopted when it bound to Grp94. The structural data presented here indicate that, although the adenine and ribose of NECA rotate to a clash with the carbonyl oxygen of Gly-135 on the trajectory of the 5′ carboxamido substituent. Initial modeling studies (23) indicated that NECA would not be able to access site 3 in yeast Hsp90 in the pose adopted when it bound to Grp94. The structural data presented here indicate that, although the adenine and ribose of NECA rotate to a clash with the carbonyl oxygen of Gly-135 in Hsp90, the conformation of both Grp94 and Hsp90 is unaltered in the protein:NECA complexes. Rather, the reduced binding affinity likely reflects the energetic costs of burying a fully charged amino group deep in a protein cavity, perhaps displacing stabilizing water molecules in the process.
Characterizing a Grp94-selective side pocket

In an attempt to improve ligand affinity and selectivity for Grp94, we hypothesized that compounds that insert deeper into site 3 would incur a binding advantage over NECA because of increased interactions between the ligand and the pocket. However, the binding data reported here show that NPCA, NEoCA, and NEaCA all bind to Grp94 and Hsp90 with weaker affinity than the parent compound, NECA. In the case of Grp94, examination of the structures of the Grp94:NPCA, Grp94:NEoCA, and Grp94:NEaCA complexes shows that the 5’ moieties all adopt similar poses that directs the 5’ moiety further toward the rear of site 3. This results in a gauche conformation at the terminal end of the 5’ substituents, which incurs a modest energetic penalty compared with the anti pose. In the case of NPCA and NEoCA, the energetic penalty for this conformation compared with NECA reduces the binding affinity by only 2- to 3-fold. Incorporation of the amino substituent, however, leads to a nearly 50-fold decrease in binding affinity, indicating that burial of a charged group in such a constrained pocket is strongly disfavored.

A similar trend in the binding affinities for NPCA, NEoCA, and NEaCA is also observed for Hsp90. Incorporation of the additional methyl or hydroxyl group results in a 4- to 5-fold loss of binding affinity, whereas addition of the charged amino group lowers the affinity by 50-fold compared with the parent compound, NECA. Interestingly, the maximal selectivity between Grp94 and Hsp90 in this series is found with NPCA, which gains an additional factor of 2 in selectivity for Grp94 over Hsp90 compared with NECA. This can be rationalized by the structure of Hsp90:NPCA, which shows that the nonpolar over Hsp90 compared with NECA. This can be rationalized by the structure of Hsp90:NPCA, which shows that the nonpolar

Characterizing a Grp94-selective side pocket
ity over Hsp90 suggests that site 3 has potential as a paralog-selective side pocket. However, functional and therapeutic exploitation of the NECA scaffold has been slowed by concerns about cross-reactivity with adenosine A2 receptors as well as by the modest affinity of NECA for Grp94. With regard to the later concern, NECA and the derivatives tested here exhibit high solubility in aqueous solutions (>200 mM). It is possible that next-generation NECA derivatives, designed with higher lipophilicity, might effectively drive the equilibrium in favor of Grp94 binding and improve the potency of these compounds.

Experimental procedures

Protein expression and purification

The N-terminal domain of Grp94 (Grp94NΔ41) (residues 69–337; Δ41 refers to deletion of the charged linker, residues 287–327, which are replaced by four glycine residues) was overexpressed in *Escherichia coli* strain BL21 Star DE3 as GST fusions. Expression, purification, and removal of GST by thrombin proteolysis were done as described previously (23). Near full-length Grp94 (residues 73–754 Δ41) was expressed in *E. coli* and purified as described previously (38). The N-terminal domain of human Hsp90α (residues 1–236) was expressed in *E. coli* as an N-terminal His tag fusion and purified as described previously (39).

Reagents

NECA was purchased from Sigma. NPCA, NEoCA, and NEαCA were provided by E. Toone (Duke University) and synthesized in a two-step process starting from 2',3'-'isopropylidenadenosine and propylamine, isopropenyl chloroformate, or ethylenediamine (all from Aldrich) according to published protocols (40).

Analytical HPLC-MS

Mass spectra of NECA and its derivatives were obtained on an Advion Expression LCMS instrument with electrospray ionization. Analytical HPLC was performed on an Agilent Technologies 1260 Infinity Quaternary LC system. The purity and identity of each compound were verified by HPLC-MS using the following method: 12-min gradient of increasing concentrations of acetonitrile in water (5% → 100%) containing 0.1% formic acid with a flow rate of 0.4 ml/min and UV detection at λ = 218 and 260 nm on an Agilent Poroshell 120 EC-C18, 3.0 mm × 450 mm, 2.7-μm column. Compounds had a purity of 95% or more.

Isothermal titration calorimetry

Proteins were equilibrated into DTT-free assay buffer by repeated concentration and dilution using an ultrafiltration spin filter (Millipore). Concentrated ligand solutions in DMSO, typically 100 mM, were diluted into assay buffer. The standard ITC assay buffer contained 40 mM Hepes (pH 7.5), 100 mM NaCl, and 1% DMSO. Titration solutions were removed a day before use to prevent denaturation of the protein. ITC titration experiments were performed using a VP-ITC calorimeter (Microcal, Inc.) with the ligand solution (500–1500 μM) loaded into the titration syringe and the protein (30–150 μM) into the cell. ITC titration against PU-H71, a well-characterized Hsp90 inhibitor, was used as a benchmark for both instrumental and protein quality control.

ITC assays consisted of 29 injections of 10 μl (2 μl for the first injection) each, with 5-min intervals between injections, and the stirring speed was set to 310 rpm. The first injection was discarded in all titrations. Reference power was set at 10 or 15 μCal s⁻¹. Data were fit to a one-site model using Origin 7 Software. Two replicate titrations were carried out, and the reported parameters represent the average of the two replicates.

The fluorescence polarization competition binding assay was carried out as described previously (28). The protein concentration was 10 nM, and the geldanamycin-Cy3b concentration was 6 nM. Competition reactions were incubated for 24 h at 4 °C prior to analysis.

Kᵢ calculation

Kᵢ values for competition binding experiments were calculated from the FP IC₅₀ values using the method of Nikolovska-Coleska et al. (29) using equations as described previously (41) and implemented in a spreadsheet calculator (29). Input data for the calculation were total protein concentration (10 nM), tracer ligand concentration (6 nM), tracer ligand *Kᵢ* for the protein, and measured IC₅₀ values. Tracer ligand *Kᵢ* values for Grp94 (2.5 nM) and Hsp90α (0.7 nM) were taken from a previous report (28).

NECA inhibitor IC₅₀ measurements

ATP hydrolysis rates were measured using the PiPer Phosphate assay kit (Thermo Fisher Scientific) in 96-well fluorescent assay plates (Corning). Nearly full-length Grp94 (73–754Δ287–327) was buffer-exchanged into 1× ATPase buffer (40 mM Hepes-KOH (pH 7.4), 150 mM KCl, and 5 mM MgCl₂), concentrated to 50 μM, and diluted prior to the experiment. Experimental setup included a 50 μl:50 μl mixture of PiPer reagent (100 mM Amplex Red reagent containing 4 units/ml malate phosphate, 0.4 mM malate, 2 units/ml glucose oxidase, and 0.4 units/ml horseradish peroxidase) and the ATPase reaction (5 μl of ATP solution, 5 μl of inhibitor solution, and 40 μl of protein or 40 μl of 1× ATPase buffer for ATP-only wells). Inhibitors were prepared from stocks in DMSO and serially diluted in 1× ATPase buffer before addition to the plate. The effects of NECA, NPCA, and NEαCA were tested in the range of 0.781–100 μM. NEαCA was tested in the range of 2.91–372 μM. The final concentration of protein in each well was between 2.2–2.7 μM depending on the plate, and the final ATP concentration was 15 μM. Plates were incubated at 37 °C for 4 h, and the reactions were quenched on ice.

Fluorescence was measured at 544 nm/590 nm (excitation/emission) on a SpectraMax Gemini XS plate reader (Molecular Devices) with 30 readings/well. Data were background-corrected by subtracting the average of wells containing ATP only. Percent activity was calculated by dividing the measured fluorescence of inhibitor-treated wells by the average of wells containing protein, ATP, and DMSO (i.e. no inhibitor). DMSO had no effect on ATPase activity. Experiments are averages of six independent measurements. The data were plotted using Prism, and inhibitor concentration was transformed to logarithmic scale. The data were then fit using the dose–response inhibition equation: log(inhibitor) versus percent response (percent

Characterizing a Grp94-selective side pocket

J. Biol. Chem. (2019) 294(44) 16010–16019 16017
activity compared with DMSO). IC$_{50}$ was determined by measuring the concentration of inhibitor required to inhibit 50% activity.

Crystallization and structure solution

Complexes between Grp94N41 and NPCA, NEoCA, and NECA were formed by mixing concentrated protein at 30 mg/ml with 1–2.5 μl of concentrated ligand in DMSO to a final concentration of 5 mM and incubating the mixture on ice for 15 min. Crystals were formed by hanging drop vapor diffusion at 18 °C by mixing 2 μl of Grp94N41:ligand with an equal volume of reservoir solution consisting of 100 mM Tris (pH 7.6), 25 mM MgCl$_2$, and 30%–35% PEG 400. Crystals formed in 1–3 days. Crystals of apoHsp90N were formed by hanging drop vapor diffusion at 4 °C by mixing 2 μl of protein at 25 mg/ml with an equal volume of cold reservoir solution consisting of 100 mM BisTris propane (pH 6.4), 10–50 mM MgCl$_2$, and 10–20% PEG 3350. Crystals were removed after 1–3 days. Soaks were performed by adding 1 μl of a 9 mM ligand solution in reservoir solution to the crystal-containing drops. Crystals were harvested after 3–4 h of soaking.

Grp94N41 crystals were harvested directly from crystallization drops without further stabilization and flash-frozen in liquid nitrogen. Crystals of Hsp90N:ligand soaks were removed from the mother liquor in a loop, placed briefly in a drop containing reservoir solution, followed by transfer to a cryostabilization solution of 100 mM BisTris propane (pH 6.4), 25 mM MgCl$_2$, and 30% PEG 3350. Crystals were removed after a few seconds and flash-frozen in liquid nitrogen.

Structure solution was carried out by molecular replacement using PDB code 1QY5 as the search model for Grp94 and 1YER as the search model for Hsp90. Refinement was carried out in Phenix.

Acknowledgments—We thank Dr. E. Toone (Duke University) for chemical synthesis of the NECA derivatives, and W. J. Aw and C. Camponozzi for assistance with crystal growth for PDB codes 6CYI, 6CYH, and 6CYG. X-ray data were collected at Advanced Photon Source beamlines 23ID-B, 22-BM, and 17-ID and SSRF beamline 21-2.

References

1. Marzec, M., Eletto, D., and Argon, Y. (2012) GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. *Biochim. Biophys. Acta* 1823, 774–787 CrossRef Medline
2. Johnson, J. L. (2012) Evolution and function of diverse Hsp90 homologs and cochaperones proteins. *Biochim. Biophys. Acta* 1823, 607–613 CrossRef Medline
3. Taipale, M., Jarosz, D. F., and Lindquist, S. (2010) Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. *Nat. Rev. Mol. Cell Biol.* 11, 515–528 CrossRef Medline
4. Patel, P. D., Yan, P., Seidler, P. M., Patel, H. J., Sun, W., Yang, C., Que, N. S., Taldone, T., Finotti, P., Stephani, R. A., Gewirth, D. T., and Chiosis, G. (2013) Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. *Nat. Chem. Biol.* 9, 677–684 CrossRef Medline
5. Randow, F., and Seed, B. (2001) Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. *Nat. Cell Biol.* 3, 891–896 CrossRef Medline
6. Liu, B., Staron, M., Hong, F., Wu, B. X., Sun, S., Morales, C., Crosson, C. E., Tomlinson, S., Kim, I., Wu, D., and Li, Z. (2013) Essential roles of grp94 in gut homeostasis via chaperoning canonical Wnt pathway. *Proc. Natl. Acad. Sci. U.S.A.* 110, 6877–6882 CrossRef Medline
7. Yang, Y., Liu, B., Dai, J., Srimivasta, P. K., Zammitt, D. J., Lefrançois, L., and Li, Z. (2007) Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. *Immunology* 26, 215–226 CrossRef Medline
8. Wanderling, S., Simen, B. B., Ostrovsky, O., Ahmed, N. T., Vogen, S. M., Gidalevitz, T., and Argon, Y. (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. *Mol. Biol. Cell* 18, 3764–3775 CrossRef Medline
9. Wu, B. X., Hong, F., Zhang, Y., Ansa-Addo, E., and Li, Z. (2016) GRP94/ gp96 in Cancer: Biology, Structure, Immunology, and Drug Development. *Adv Cancer Res.* 129, 165–190
10. Ansa-Addo, E. A., Thaxton, J., Hong, F., Wu, B. X., Zhang, Y., Fugle, C. W., Metelli, A., Riesenfeld, B., Williams, K., Gewirth, D. T., Chiosis, G., Liu, B., and Li, Z. (2016) Clients and oncogenic roles of molecular chaperone gp96/grp94. *Curr. Top. Med. Chem.* 16, 2765–2778 CrossRef Medline
11. Hua, Y., White-Gilbertson, S., Kellner, I., Rachidi, S., Usmani, S. Z., Chiosis, G., Delpinho, R., Li, Z., and Liu, B. (2013) Molecular chaperone gp96 is a novel therapeutic target of multiple myeloma. *Clin. Cancer Res.* 19, 6242–6251 CrossRef Medline
12. Ihaveri, K., Taldone, T., Modi, S., and Chiosis, G. (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. *Biochim. Biophys. Acta* 1823, 742–755 CrossRef Medline
13. Neckers, L., and Workman, P. (2012) Hsp90 molecular chaperone inhibitors: are we there yet? *Clin. Cancer Res.* 18, 64–76 CrossRef Medline
14. Joshi, S., Wang, T., Araujo, T. L. S., Sharma, S., Brodsky, J. L., and Chiosis, G. (2018) Adapting to stress: chaperone networks in cancer. *Nat. Rev. Cancer* 18, 562–575 CrossRef Medline
15. Rodina, A., Wang, T., Yan, P., Gomes, E. D., Dunphy, M. P., Pillarsetty, N., Koren, J., Gerecitano, J. F., Taldone, T., Zong, H., Caldas-Lopes, E., Alpaugh, M., Corben, A., Riolo, M., Beattie, B., et al. (2016) The epichaperome is an integrated chaperone network that facilitates tumour survival. *Nature* 538, 397–401 CrossRef Medline
16. Taldone, T., Wang, T., Rodina, A., Pillarsetty, N. V. K., Digwal, C. S., Sharma, S., Yan, P., Joshi, S., Pagare, P. P., Bolaender, A., Roboz, G. J., Guzman, M. L., and Chiosis, G. (2019) A chemical biology approach to the chaperone in cancer-hsp90 and beyond. *Cold Spring Harb. Perspect. Biol.* pii: a034116 CrossRef Medline
17. Wang, T., Rodina, A., Dunphy, M. P., Corben, A., Modi, S., Guzman, M. L., Gewirth, D. T., and Chiosis, G. (2019) Chaperone heterogeneity and its implications for cancer study and treatment. *J. Biol. Chem.* 294, 2162–2179 CrossRef Medline
18. Gewirth, D. T. (2016) paralog-specific Hsp90 inhibitors: a brief history and a bright future. *Curr. Top. Med. Chem.* 16, 2779–2791 CrossRef Medline
19. Ernst, J. T., Liu, M., Zacchera, H., Neubert, T., Beaumont, K., Turnbull, A., Kalbel, A., Vought, B., and Stamos, D. (2014) Correlation between chemotherapy-type-dependent binding conformations of HSP90α/β and isoform selectivity: implications for the structure-based design of HSP90α/β-selective inhibitors for treating neurodegenerative diseases. *Bioorg. Med. Chem. Lett.* 24, 204–208 CrossRef Medline
20. Ernst, J. T., Neubert, T., Liu, M., Sperry, S., Zacchera, H., Turnbull, A., Fleck, B., Kargo, W., Woody, I., Chiang, P., Tran, D., Chen, W., Snyder, P., Alcacio, T., Nezami, A., et al. (2014) Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as Huntington’s disease. *J. Med. Chem.* 57, 3382–3400 CrossRef Medline
21. Patel, H. J., Patel, P. D., Ochiana, S. O., Yan, P., Sun, W., Patel, M. R., Shah, S. K., Tramentozzi, E., Brooks, J., Bolaender, A., Shrestha, L., Stephani, R.,...
Characterizing a Grp94-selective side pocket

Finotti, P., Leifer, C., Li, Z., Gewirth, D. T., et al. (2015) Structure-activity relationship in a purine-scaffold compound series with selectivity for the endoplasmic reticulum Hsp90 paralog Grp94. J. Med. Chem. 58, 3922–3943 CrossRef Medline

22. Que, N. L. S., Crowley, V. M., Duerfeldt, A. S., Zhao, J., Kent, C. N., Blagg, B. S. J., and Gewirth, D. T. (2018) Structure-based design of a Grp94-selective inhibitor: exploiting a key residue in Grp94 to optimize paralog-selective binding. J. Med. Chem. 61, 2793–2805 CrossRef Medline

23. Soldano, K. L., Iivan, A., Nicchitta, C. V., and Gewirth, D. T. (2003) Structure of the N-terminal domain of GRP94: basis for ligand specificity and regulation. J. Biol. Chem. 278, 48330–48338 CrossRef Medline

24. Hutchison, K. A., and Fox, I. H. (1989) Purification and characterization of the adenosine A2-like binding site from human placental membrane. J. Biol. Chem. 264, 19989–19903 Medline

25. Hutchison, K. A., Nevins, B., Perini, F., and Fox, I. H. (1990) Soluble and membrane-associated human low-affinity adenosine binding protein (adenotin): properties and homology with mammalian and avian stress proteins. Biochemistry 29, 5138–5144 CrossRef Medline

26. Rosser, M. F., and Nicchitta, C. V. (2000) Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94: I: evidence for allosteric regulation of ligand binding. J. Biol. Chem. 275, 22798–22805 CrossRef Medline

27. Kim, J., Felts, S., Llauger, L., He, H., Huezo, H., Rosen, N., and Chiosis, G. (2004) Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J. Biol. Chem. 279, 375–381 CrossRef Medline

28. Taldone, T., Patel, P. D., Patel, M., Patel, H. J., Evans, C. E., Rodina, A., Ochiana, S., Shah, S. K., Uddin, M., Gewirth, D., and Chiosis, G. (2013) Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J. Med. Chem. 56, 6803–6818 CrossRef Medline

29. Nikolovska-Coleska, Z., Wang, R., Fang, X., Pan, H., Tomita, Y., Li, P., Roller, P. P., Krajewski, K., Saito, N. G., Stuckey, J. A., and Wang, S. (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 332, 261–273 CrossRef Medline

30. Dollins, D. E., Immormino, R. M., and Gewirth, D. T. (2005) Structure of unliganded GRP94, the endoplasmic reticulum Hsp90: basis for nucleotide-induced conformational change. J. Biol. Chem. 280, 30438–30447 CrossRef Medline

31. Vallée, F., Carrez, C., Pilorge, F., Dupuy, A., Parent, A., Bertin, L., Thompson, F., Ferrari, F., Fassy, F., Lamberton, A., Thomas, A., Arrebola, R., Guerif, S., Rohaut, A., Certal, V., et al. (2011) Tricyclic series of heat shock protein 90 (Hsp90) inhibitors part I: discovery of tricyclic imidazo[4,5-c]pyridines as potent inhibitors of the Hsp90 molecular chaperone. J. Med. Chem. 54, 7206–7219 CrossRef Medline

32. Ohkubo, S., Kodama, Y., Muraoka, H., Hitotsumachi, H., Yoshimura, C., Kitade, M., Hashimoto, A., Itou, K., Gomori, A., Takahashi, K., Shibata, Y., Kanoh, A., and Yonekura, K. (2015) TAS-116, a highly selective inhibitor of heat shock protein 90α and β, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol. Cancer Ther. 14, 14–22 CrossRef Medline

33. Liu, S., and Street, T. O. (2016) 5’-N-ethylcarboxamidoadenosine is not a paralog-specific Hsp90 inhibitor. Protein Sci. 25, 2209–2215 CrossRef Medline

34. Ge, J., Normant, E., Porter, J. R., Ali, J. A., Dembski, M. S., Gao, Y., Georges, A. T., Grenier, L., Pak, R. H., Patterson, J., Sydor, J. R., Tibbitts, T. T., Tong, J. K., Adams, I., and Palombella, V. J. (2006) Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-α-methoxy-geldanamycin as potent, water-soluble inhibitors of Hsp90. J. Med. Chem. 49, 4606–4615 CrossRef Medline

35. Crowley, V. M., Huard, D. J. E., Lieberman, R. L., and Blagg, B. S. J. (2017) Second generation Grp94-selective inhibitors provide opportunities for the inhibition of metastatic cancer. Chemistry 23, 15775–15782 CrossRef Medline

36. Crowley, V. M., Huard, D. J. E., Lieberman, R. L., and Blagg, B. S. J. (2017) Second generation Grp94-selective inhibitors provide opportunities for the inhibition of metastatic cancer. Chemistry 23, 15775–15782 CrossRef Medline

37. Duerfeldt, A. S., Peterson, L. B., Maynard, J. C., Ng, C. L., Eletto, D., Ostrovsky, O., Shinogle, H. E., Moore, D. S., Argon, Y., Nicchitta, C. V., and Blagg, B. S. (2012) Development of a Grp94 inhibitor. J. Am. Chem. Soc. 134, 9796–9804 CrossRef Medline

38. Dollins, D. E., Warren, J. J., Immormino, R. M., and Gewirth, D. T. (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol. Cell 28, 41–56 CrossRef Medline

39. Immormino, R. M., Kang, Y., Chiosis, G., and Gewirth, D. T. (2006) Structural and quantum chemical studies of 8-aryl-sulfonyl adenine class Hsp90 inhibitors. J. Med. Chem. 49, 4953–4960 CrossRef Medline

40. de Zwart, M., Kourownakis, A., Kooijman, H., Spek, A. L., Link, R., van Fritjag Drabbe Künzel, J. K., and Ijzermans, A. P. (1999) 5’-N-substituted carboxamidoadenosines as agonists for adenosine receptors. J. Med. Chem. 42, 1384–1392 CrossRef Medline

41. Huck, J. D., Que, N. L. S., Sharma, S., Taldone, T., Chiosis, G., & Gewirth, D. T. (2019). Structures of Hsp90α and Hsp90β bound to a purine-scaffold inhibitor reveal an exploitable residue for drug selectivity. Proteins. 87, 869–877 CrossRef Medline