TGFam-Finder: An optimal solution for target-gene family annotation in eukaryotic genomes

Seungill Kim1,10,*, Kyeongchae Cheong2,10, Jieun Park1, Myung-Shin Kim1,2, Ji-Hyun Kim1, Min-Ki Seo1, Sun-Ho Kwon3, Yong-Min Kim4, Namjin Koo4, Kwang-Soo Kim5, Nuri Oh5, Ki-Tae Kim6, Jongbum Jeon2, Hyunbin Kim2, Yoon-Young Lee7, Kee Hoon Sohn7,8, Honour C McCann9, Sang-Kyu Ye3, Kyung-Soon Park5, Yong-Hwan Lee2,6 & Doil Choi1,2,*

1Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea. 10These authors equally contributed to this work.

2Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Korea.

3Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Korea

4Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.

5Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea

6Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.

7Department of Life Sciences, and 8School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Korea.

9New Zealand Institute for Advanced Study, Massey University Auckland 0632, New Zealand.

10These authors equally contributed to this work.

*Correspondence should be addressed to S. Kim (ksi2204@gmail.com) or D. Choi (doil@snu.ac.kr).
Corresponding author

Seungill Kim
Research Assistant Professor, Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University
Seoul, 151-921, Republic of Korea
Tel: +82-2-880-4946
E-mail: ksi2204@gmail.com

Doil Choi
Professor, Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University
Seoul, 151-921, Republic of Korea
Tel: +82-2-880-4568
Fax: +82-2-873-2056
E-mail: doil@snu.ac.kr
Abstract

Whole genome annotation errors that omit essential protein-coding genes hinder further research. We developed Target Gene Family Finder (TGFam-Finder), an optimal tool for structural annotation of protein-coding genes containing target domain(s) of interest in eukaryotic genomes. Large-scale re-annotation of 100 publicly available eukaryotic genomes led to the discovery of essential genes that were missed in previous annotations. An average of 117 (346%) and 148 (45%) additional FAR1 and NLR genes were newly identified in 50 plant genomes. Furthermore, 117 (47%) additional C2H2 zinc finger genes were detected in 50 animal genomes including human and mouse. Accuracy of the newly annotated genes was validated by RT-PCR and cDNA sequencing in human, mouse and rice. In the human genome, 26 newly annotated genes were identical with known functional genes. TGFam-Finder along with the new gene models provide an optimized platform for unbiased functional and comparative genomics and comprehensive evolutionary study in eukaryotes.
Introduction

The recent emergence of long read sequencing approaches such as single molecule real-time sequencing and nanopore technology enables near-perfect assemblies of even enormous genomes like that of the salamander (genome size = 32 Gb, contig N50 = 300 kb) and the improvement of existing assemblies for complex genomes. Structural gene annotation of protein-coding sequences is a post-assembly process that is essential for further research. To date, hundreds of plant and animal genome resources have been released in public databases and used for subsequent functional genomics analyses, evolutionary analyses, and biotechnology applications. However, there are continuous reports of annotation errors, including imperfect gene models and missing functional genes. These reports demonstrate that the accidental omission of essential genes that are correctly located in assembled genomes but not annotated in the gene model can ultimately generate biases in downstream studies.

Pre-existing gene models are continuously being improved using manual, computational, and experimental analyses for model species such as human, mouse, and Arabidopsis. Since the Gene Encyclopedia of DNA Elements (GENCODE) project was initiated, a total of 25 and 17 updates for whole gene models of human and mouse have been accomplished, respectively (see URLs). In plant, The Arabidopsis Information Resource (TAIR) is maintaining genomic resources for the model plant A. thaliana, currently providing the 11th updated gene model, (Araport 11, see URLs). In addition, groups conducting genome sequencing projects of major animal and plant species continuously improve the quality of their gene models (see URLs). However, the majority of published gene models remain inaccurate and likely incomplete, and have not been updated beyond the initial version.

In general, the potential function of a gene is predicted based on the identification of conserved domains or motifs. Studies focusing on specific genes or families often begin working with annotated gene models by identifying those genes of interest that contain the appropriate target domain(s) or motifs. Performing new annotation and improving existing gene models require huge inputs of human labor and computational resources. Therefore, researchers have designed novel approaches to identify specific genes or gene families. For example, Jupe et al. developed resistance gene
enrichment and sequencing (RenSeq), a high-throughput sequencing method for the selective capture and sequencing of nucleotide-binding and leucine-rich-repeat (NLR) genes without whole genome sequencing\(^9\). Although these methods enable detection of candidate regions containing target genes, further annotation to determine accurate gene structure in candidate regions remains a bottleneck.

Here, we present Target Gene Family Finder (TGFam-Finder), an optimal tool that allows automatic annotation of all protein-coding genes containing specific target domain(s) in assembled genomes. We evaluated TGFam-Finder through the massive re-annotation of far-red-impaired response 1 (FAR1) transcription factor and nucleotide-binding and leucine-rich-repeat (NLR) gene families in 50 plant genomes, as well as Cys2-His2 zinc finger (C2H2 zinc finger) and homeobox transcription factor gene families in 50 animal genomes. A large number of missing target genes in the pre-existing gene models were newly identified during re-annotation with TGFam-Finder. In particular, 26 newly annotated genes that were omitted in the existing human gene model had identical sequences with known functional genes. We validated the accuracy and expression of these newly annotated genes in human, mouse, and rice by performing RT-PCR and cDNA sequencing analyses. Our analyses demonstrate the efficiency of TGFam-Finder for users, including bench-based researchers given notably reduced annotation time using a desktop computer. TGFam-Finder, a domain search-based gene annotation tool could provide an optimal solutions for target-gene family annotation in functional, comparative, and evolutionary studies.

Results

Conceptual overview of TGFam-Finder

We designed TGFam-Finder as an unbiased annotation tool to identify any target-gene family of interest in assembled genomes. TGFam-Finder was developed for an audience including novice bioinformaticians, incorporating ease of use from installation to completion of structural annotation. To this, we provide additional tool packages enabling the automatic installation of prerequisite tools for further structural gene annotation using TGFam-Finder without any manual configuration (Supplementary Fig. 1 and Online Methods)
An automatic annotation process using TGFam-Finder consists of the following three steps: (1) genome-wide identification of target regions containing specific target-gene sequences of interest, (2) structural annotation of the target regions using available proteins, transcriptomes and *ab-initio* prediction, and (3) construction of the final gene model (Fig. 1). One of the distinct features of TGFam-Finder is the extraction of target regions containing sequences of target-gene family. To reduce annotation time and unnecessary computation, TGFam-Finder identifies all genomic regions containing domain(s) of the target genes using HMMER12 from six-frame translated genome sequences. The target regions are determined after masking unnecessary sequences as ‘X’, except for the identified genomic regions and their flanking sequences (Fig. 1). Then, structural annotation of target regions is performed to generate the initial gene model through serial processes of protein mapping, transcriptome annotation, and *ab-initio* prediction (Fig. 1). On the basis of the evidence gathered in the previous steps, TGFam-Finder combines the initial gene models and determines the final gene model of target families (Fig.1).

TGFam-Finder improves upon pre-existing gene models through identification of missing essential genes, providing an unbiased model of target-gene families. To evaluate TGFam-Finder, we collected genomic data for 50 plants and 50 animals, including assemblies, annotated genes, and transcriptome data from public databases (Supplementary Table 1-2). In the plant genomes, we searched for the FAR1 transcription factor family that modulates phytochrome A signaling13 and NLR gene family that typically contains plant cytoplasmic immune receptor genes14 as target-gene families. In the animal genomes, we searched for the C2H2 zinc finger proteins, the largest transcription factor family, which is involved in functions such as sequence-specific DNA-binding and protein-protein interaction15, and the homeobox transcription factor family which primarily induces cellular differentiation by transcriptionally controlling co-regulated gene expression cascades16.

FAR1 and NLR annotation in plant genomes

We re-annotated FAR1 and NLR genes in 50 plant genomes using TGFam-Finder (Fig. 2, Supplementary Fig. 2-3 and Online Methods). Only 1.3% and 1.9% of the plant genomes (average
genome length 1,127 Mb) were determined as target regions for the re-annotation of FAR1 and NLR, respectively (Supplementary Fig. 2 and Supplementary Table 3). On average, 34 FAR1 and 327 NLR genes considering representative loci were identified in previously annotated gene models of the 50 plant genomes (Supplementary Table 3). In addition to these, we identified 117 (346%) and 148 (45%) new FAR1 and NLR genes using TGFam-Finder, respectively, indicating that only 23% (34 of 151) of FAR1s and 69% (327 of 475) of NLRs were annotated in previous studies (Fig. 2a, Supplementary Fig. 3a, and Supplementary Table 3). Specifically, 104 (89%) and 108 genes (73%) of the newly annotated FAR1 and NLR genes were located in genomic regions without any genes in the existing models (Supplementary Fig. 4 and Supplementary Table 4). In addition, TGFam-Finder found intact gene structures in regions containing previously annotated partial FAR1 and NLR genes that have no start or stop codons (Supplementary Table 3). TGFam-Finder newly annotated 31 FAR1s (26%) and 69 NLRs (43%) based on protein or transcriptome evidences in the new gene models (Supplementary Table 5).

Compared to the number of genes in the existing gene models, we found a large number of new FAR1s in 18 of the 50 genomes, including 12 dicot and 5 monocot plants, which was more than a 3-fold increase, or more than 100 new FAR1s (Fig. 2a). Specifically, 7 and 19 FAR1s were annotated in the existing model of carrot and maize genomes, but TGFam-Finder identified 142 and 383 new FAR1s in carrot and maize, respectively, a more than 20-fold increase relative to the number of existing genes (Fig. 2a and Supplementary Table 3). In the wheat genome, we detected more than 3,000 new FAR1 genes. For the new gene model of NLRs, we also found a number of genes in 14 plant genomes (9 dicot species), which is a more than 1-fold increase or more than 200 genes (Supplementary Fig. 3a and Supplementary Table 3). Although only three NLRs were annotated in existing gene model of Selaginella genome, 56 (>18-fold increase) more NLRs were correctly detected by TGFam-Finder in the same genome sequences (Supplementary Fig. 3a and Supplementary Table 3). Furthermore, we identified over 1,000 more NLRs in genome sequences of Eucalyptus and wheat, respectively. These results indicate that gene models for FAR1 and NLR were greatly improved using TGFam-Finder compared with the extremely biased existing models omitting
many of those genes.

To study phylogenetic relationships of FAR1 and NLR in the 50 plant genomes, we performed gene clustering and phylogenetic analyses of the new gene models containing the newly annotated genes and the existing gene models (Fig. 2b, Supplementary Fig. 3b and Supplementary Table 6). The gene clustering analyses among the new gene models of 50 plant genomes revealed that an average of 48 (41%) new FAR1 genes and 20 (13%) new NLR genes did not cluster with existing genes (Supplementary Table 6). Overall, the number of FAR1s in new clusters was significantly larger in monocots than in dicots (Fig. 2b). These results indicate that a large number of the newly annotated genes, especially FAR1 in monocots, belonged to new subfamilies distinguished from the other subfamilies of the existing gene models. Furthermore, phylogenetic analyses of FAR1 and NLR in various plant genomes revealed that a large number of newly annotated genes were distinctly grouped in specific lineages. This means that certain gene clades were never annotated in earlier studies (Fig. 2c, Supplementary Fig. 3c and 4).

Annotation of C2H2 zinc finger and homeobox genes in animal genomes.

We performed re-annotation of C2H2 zinc finger and homeobox gene families in 50 animal genomes (Fig. 3 and Supplementary Fig. 5-6). A total of only 0.6% and 1.7% of the animal genomes (average genome size 1,652Mb) were used as target regions for the re-annotation of C2H2 zinc finger and homeobox genes, respectively (Supplementary Fig. 5 and Supplementary Table 7). An average of 117 (47%) and 22 (14%) additional C2H2 zinc finger and homeobox genes, respectively, were newly annotated in the 50 animal genomes (Supplementary Table 7). Specifically, 75% (88 and 17) of the new C2H2 zinc finger and homeobox genes did not overlap with any previously annotated genes, indicating that majority of the newly annotated genes were located in new chromosomal regions where no genes had been identified in earlier studies (Supplementary Table 8). We observed many partial C2H2 zinc finger and homeobox genes in existing gene models of several invertebrate genomes in contrast to the result of re-annotation of plant genomes. In that regions containing those partial genes, TGFam-Finder identified new or their intact gene structures (Supplementary Table 7).
Our analyses revealed that over half of the new C2H2 zinc finger (54%) and homeobox genes (66%) were annotated based on protein or transcriptome evidence, indicating that a great number of new genes were identified by obvious evidence (Supplementary Table 9). We found a number of new C2H2 zinc finger (> 1-fold increase compared to the number of existing genes or 100 additional copies) in 24 of the 50 animal genomes including 17 genomes of mammalian species (Supplementary Table 7-8). In particular, we observed 133 (23%) and 227 (47%) newly identified C2H2 zinc finger genes in human and mouse genomes, respectively, and 77 (33%) new homeobox genes in the human genome (Supplementary Table 7-8). Together with the re-annotation of FAR1 and NLR in plant genomes, these results confirm that TGFam-Finder significantly improved the existing gene models of C2H2 zinc finger and homeobox genes in the animal genomes by identifying new gene structures absent in the existing gene models.

Phylogenetic comparisons of C2H2 zinc finger and homeobox gene families using the new gene models revealed that the many (36%) newly annotated C2H2 zinc finger genes were clustered as unique clades, suggesting that those were derived from newly identified lineages that were absent in existing models (Fig. 3b, Supplementary Fig. 6b and Supplementary Table 10). Moreover, phylogenetic trees of C2H2 zinc finger and homeobox genes in the human genome revealed significantly expanded lineages containing a small number of previously annotated genes and a large number of newly annotated genes (Fig. 3c and Supplementary Fig. 6c). We also found remarkably expanded or newly constructed lineages of C2H2 zinc finger and homeobox gene families in other animal genomes including mouse (Supplementary Fig. 7).

Validation and expression of the new gene model

We tested the accuracy of the new gene models by comparing the new gene models to UniProt and NR databases (Supplementary Fig. 8 and Supplementary Table 11-12). We determined that sequences in NR and UniProt databases matched a percentage of the newly annotated genes ranging from, 56% (C2H2 zinc finger) to 61% (NLR), and 39% (FAR1) to 57% (NLR), respectively, covering more than 80% of the sequences in those databases (Supplementary Fig. 8). For all gene families, the
matched percentage of newly annotated genes was significantly lower than that of previously
annotated genes because of relatively low coverage of ab-initio genes (Supplementary Fig. 8).
However, we also found a large portion of previously annotated genes perfectly matched to the
sequences in NR and UniProt, suggesting that many of the previously annotated genes were already
present in those databases and these made higher coverage of the previously annotated genes.
(Supplementary Fig. 9).
Swiss-Prot of UniProt is a database consisted of experimentally validated gene sequences17. In total,
we detected that 25 and 1 newly annotated homeobox and C2H2 zinc finger genes in the human
genome had identical sequences in Swiss-Prot, respectively (Supplementary Table 13). This may
indicate that functional protein-coding genes were recorded in Swiss-Prot based on experimental
evidences but yet annotated their gene structures from the genome sequences. When we compared
previously annotated genes to SwissProt, the majority of perfectly matched genes to sequences of
SwissProt was enriched in specific genomes such as human, mouse and Arabidopsis, suggesting that
SwissProt primarily contained sequences of those species (Supplementary Fig. 10). Thus, we
performed identification of new genes having strong homology to sequences in the SwissProt (>95%
identity and 100% coverage) and found many newly annotated genes (65 and 34 of homeobox and
C2H2 zinc finger, respectively) in animal genomes (Supplementary Fig. 11).
To validate the expression of the newly annotated genes, we performed RT-PCR and sequencing
analyses using human, mouse and rice RNA samples (Fig. 4, Supplementary Fig. 12 and
Supplementary Table 14). We designed 47, 43, and 79 primer sets for newly annotated genes in
human, mouse and rice, respectively. Of these, 19, 15, and 50 genes (40, 35, and 63%) were
confirmed expression and accurately validated by comparison between sequenced PCR products and
annotated gene models. These results verify that the newly annotated genes are truly present and
expressed as mRNA in each genome (Fig. 4 and Supplementary Table 14).

Annotation run-time using TGFam-Finder
The full annotation of a large genome can take weeks to complete and requires enormous
computational resources19. To evaluate the performance of TGFam-Finder, we estimated the actual annotation run-time using TGFam-Finder for representative plant and animal genomes ranging from \textasciitilde 200 Mb to \textasciitilde 3 Gb using a desktop computer (32 Gb memory and 4 CPU). In total, it took 2 hours for NLRs of the \textit{Selaginella} (\textasciitilde 200 Mb) to 44 hours for C2H2 zinc finger of the human (\textasciitilde 3 Gb) for annotation, indicating that completion of gene model construction could be finished within 2 days for the large genome such as human using a standard desktop computer (Table 1). Specifically, we verified that annotation of FAR1 in maize (\textasciitilde 2 Gb) and C2H2 zinc finger in chicken (\textasciitilde 1 Gb) required less than 12 hours. This indicates that users can efficiently annotate their target genes within half a day, with the exception of several huge genomes.

Genomic features of the newly annotated genes in plant and animal genomes

The genomic positions of the newly annotated genes could be classified into the following three categories: (1) non-overlapping, (2) overlapping with existing genes without target domain(s), and (3) overlapping with existing partial target genes (Supplementary Fig. 13). For non-overlapping genes, a large portion of those were overlapped with repetitive sequences (Supplementary Fig. 14a-b). Interestingly, the non-overlapping FAR1s in plant genomes were remarkably resided in the regions containing DNA-transposons. We observed that a significant number of NLRs in plant genomes co-localized with LTR-retrotransposons (Supplementary Fig. 14c). We also found that many C2H2 zinc finger were located in regions consisting of unclassified transposable elements in animal genomes. Considering previous reports describing annotation processes19, 20, our results suggest that repeat masking before gene annotation could have a crucial impact in generating imperfect gene models. In the case of newly annotated genes overlapping with existing genes without target domain(s), we observed that the newly annotated gene families were primarily overlapped with hypothetical genes without known domain(s). This result suggests that several newly annotated genes were ignored in previous annotations due to the presence of uncharacterized genes in the same region (Supplementary Fig. 15).
Conclusion

The construction of accurate gene models after genome assembly is a critical step in genomic and functional analysis. Previous methods have been shown to be ineffective, hampered by imperfect methodologies, resources, and knowledge. Here, we described TGFam-Finder, a highly efficient tool to implement automatic structural annotation for target-gene families of interest. We evaluated and demonstrated the competitiveness of TGFam-Finder through the re-annotation of FAR1 and NLR gene families in 50 plants and C2H2 zinc finger and homeobox families in 50 animals. We only used publicly available resources, and identified large numbers of newly annotated genes that were omitted in the existing gene models (346, 45, 47, and 14% more FAR1, NLR, C2H2 zinc finger, and homeobox genes, respectively). The newly annotated genes were significantly supported by protein or transcriptome evidences. A total of 25 newly annotated homeobox and 1 C2H2 zinc finger genes in the human genome were identical to known functional gene sequences. We performed RT-PCR and sequencing analyses to confirm and validate the expression and accuracy of newly annotated genes in human, mouse, and rice genomes.

TGFam-Finder is easy to use and requires considerably less run-time and computing power than full annotation. The estimated annotation run-time of TGFam-Finder using a desktop PC was 2 hours for Selaginella (~200 Mb) NLRs and 44 hours for human (~3 Gb) C2H2 zinc finger. Compared to the long run-time of several weeks and intensive computational power required for full annotation, our results demonstrate that TGFam-Finder enables even novice users to obtain their target gene models within several days.

In summary, TGFam-Finder is designed to detect all protein-coding genes containing target domain(s) of interest and provide annotation evidence in eukaryotic genomes. TGFam-Finder enables users who study gene functions to determine their experimental priorities based on the annotation evidence and exact copy number of the genes of interest. Moreover, large-scale comparative studies of gene families will not be biased by missing genes, which are frequently encountered in previous annotations. Our approach provides an optimal solution for the identification and characterization of target-gene families, accelerating accurate functional, comparative and evolutionary analyses.
Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A04004014) to S.K. and by a grant from the Agricultural Genome Center of the Next Generation Biogreen 21 Program of RDA (Project No. PJ013153) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A5A1023599, SRC) to D.C. We appreciate the assistance from the KOBIC Research Support Program. We also acknowledge to the following researchers who performed iterative beta testing of TGFam-Finder: Ho-Sub Shin, Myung-Shin Kim, and Jun-Ki Lee in Seoul National University; Namjin Koo in Korea Research Institute of Bioscience and Biotechnology; and Eunyoung Seo in University of California, Berkeley.

Author contributions

S.K. and D.C. conceived the project, designed the content, and organized the manuscript. S.K., J.P., M.-S.K. and K.C. developed TGFam-Finder and annotation of the gene families. S.K., M.-S.K., Y.-M.K., and N.K. collected resources of 50 plant and 50 animal genomes. J.-H.K., S.-H.K., K.-S.K, N.O., S.-K.Y., and K.-S.P. prepared the RNA samples. J.-H.K., K.-S.K, N.O., and K.-S.P. implemented the RT-PCR analysis. S.K., M.-K.S., K.-T.K., J.J., H.K., Y.-Y.L., K.-H.S., H.C.M., and Y.-H.L. performed phylogenetic analyses and validation of the new gene models. S.K. and H.K. designed and constructed the figures. S.K. and D.C. wrote the manuscript.

URLs

GENECODE (human and mouse), https://www.gencodegenes.org/
TAIR (Arabidopsis), https://www.arabidopsis.org/
GenBank (Zebrafish), https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Danio_rerio/105/
GenBank (Pig), https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Sus_scrofa/106/
iTAG (Tomato), https://solgenomics.net/
RepeatModeler, http://www.repeatmasker.org/RepeatModeler/
RepeatMasker, http://www.repeatmasker.org/
Table 1. Annotation run-time of TGFam-Finder using a desktop PC

Species	S. moellendorffii	G. gallus	Z. mays	H. sapiens	H. sapiens
Gene family	NLR	C2H2 zinc finger	FAR1	Homeobox	C2H2 zinc finger
Genome size (Mb)	213	1,046	2,067	3,209	3,209
Run-time (Total)	2h 16m	11h 25m	6h 26m	8h 49m	43h 54m
0. Sixframe translation	3m	13m	27m	44m	55m
1. Domain identification	1m	5m	9m	16m	6h 54m
2. Protein mapping	17m	4h 23m	1h 1m	1h 5m	16h 59m
3. Transcriptome annotation	1h 40m	6h 12m	3h 36m	6h 9m	17h 17m
4. Ab-initio prediction	13m	28m	1h 10m	31m	1h 44m
5. Final gene model generation	2m	4m	3m	4m	5m

Notes: h, hour; m, minutes.
Figure legends

Figure 1. Annotation process of TGFam-Finder. An automatic process for new identification of target-gene families using TGFam-Finder is depicted. The diagram shows serial processes starting from six-frame translation to integration of the gene model. The gray block of the diagram describes determination of target regions containing target domain(s) and their flanking sequences for further annotation. The blue and pink blocks indicate structural annotation using proteins and transcriptomes, and the ab-initio method, respectively. Names of representative tools for structural annotation are given in the blue and pink blocks. Initial gene models are integrated from the structural annotation as depicted in the white block.

Figure 2. Re-annotation of FAR1 genes in 50 plant genomes. (a) Heat map indicates the number of existing FAR1 genes in the representative loci of 50 plant genomes. Bar graphs show the fold-increase of newly annotated genes compared with the number of existing genes (left) and the number of newly annotated genes (right). Colors in the bar represent the number of newly annotated genes from protein or transcriptome evidence (orange) and ab-initio model (navy blue). (b) Boxplot shows the distribution of the number of newly annotated genes in clusters without any existing genes. (c) Phylogenetic tree of newly annotated genes in the rice genome. Red and blue circles indicate newly annotated and previously annotated genes, respectively. Red branches indicate sublineages with multiple newly annotated genes including no copies or only a small number of previously annotated genes.

Figure 3. Newly annotated C2H2 zinc finger genes in 50 animal genomes. (a) Heat map and bar graphs represent the number of previously annotated genes in representative loci and the fold-increase and number of newly annotated genes, respectively. Orange bars indicate the number of genes generated from protein or transcriptome evidence. Navy blue bars represent ab-initio prediction. (b) The number of newly annotated genes in clusters without any previously identified genes is depicted. (c) Phylogenetic tree of new gene model in the human genome shows the phylogenetic relationship of those genes. The newly annotated and previously annotated genes are marked as red and blue circles, respectively.

Figure 4. Validation and expression of newly annotated genes. Bar graphs show the numbers of primer-designed (yellow), expressed (blue) and validated genes (red) in human, mouse, and rice genomes, respectively, identified by RT-PCR and sequencing analyses.
Methods

Annotation overview of TGFam-Finder

TGFam-Finder was developed to run in the Linux OS environment. For novices in bioinformatics-based analyses, we constructed an install package that allow auto-installation of prerequisite tools to run TGFam-Finder (Supplementary Fig. 1). Through the install package, prerequisite tools, including Bowtie2-2.3.1, HMMER-3.1b2, BLAST 2.6.0+, InterproScan-5.22-61.0, Exonerate-2.2.0, Blat v35, Tophat-2.1.1 and Cufflinks-2.2.1, Augustus-3.2.3, Scipio-1.4, and ClustalW-2.1 are provided for further annotation using TGFam-Finder. To run TGFam-Finder, users need to configure the location information of genomic resources and the prerequisite programs in ‘RESOURCE.config’ and ‘PROGRAM_PATH.config’. Basically, ‘PROGRAM_PATH.config’ is automatically generated through the auto-installation process. Whereas, users should enter the location of the target genome, peptide sequences of target or allied species, and peptide sequences including target domains in various species as minimum resources. To classify specific proteins having target domain(s) of interest, TGFam-Finder requires the location of functional annotation information of target or allied species formatted as tsv and target domain ID(s) in ‘RESOURCE.config’. Moreover, users can input ‘EXTENSION_LENGTH’ to determine target regions for further annotation, and ‘MAX_INTRON_LENGTH’ for alignment processes using proteins. For extra configuration, users can also register the location of transcriptome, genomic position of genes and coding DNA sequences of target species in ‘RESOURCE.config’.

The annotation pipeline of TGFam-Finder consists of three steps. (1) Determination of target regions using ‘0.SixFrameTranslation.pl’ and ‘1.Domain_Identification.pl’, (2) Gene prediction in the target regions via ‘2.Auto_ProteinMapping.pl’, ‘3.Auto_ISGAP.pl’ and ‘4.Auto_Augustus.pl’, and (3) Generation of final gene model through ‘5. Generating_FinalGeneModel.pl’ (Fig. 1). To identify the position of target domains in an assembled genome, TGFam-Finder generates six-frame translated genome sequences. Then, a hidden Markov model (hmm) matrix is constructed through alignments among target domain(s) in protein sequences of target or allied species using ClustalW. After identification of genomic regions containing target domain(s) using HMMER, target regions including the target domain(s) and their flanking sequences are determined.

Structural annotation for the target regions is conducted via processes of protein mapping, transcriptome-based annotation and ab initio prediction. For efficient protein mapping, TGFam-Finder detects proteins with homology to target regions in the resource peptide sequences using BLAST+, and aligns between the proteins and matched target regions using Exonerate. ‘Transcriptome-based annotation is implemented in the order of reference-guided transcriptome assembly using Tophat and Cufflinks, and annotation via ISGAP pipeline’. For ab-initio gene prediction, the training set is constructed using the protein sequences of target or allied species having target domain(s), and the gene models generated from protein mapping and transcriptome-based annotation. Then, Augustus
generates the gene model based on the training set. Finally, the final gene model is generated by combining the initial gene models in order from the transcriptome-based annotation, protein mapping, and ab initio prediction.

Structural annotation of target-gene families in plant and animal genomes

FAR1 and NLR were re-annotated in 50 plant genomes, and C2H2 zinc finger and homeobox genes were re-annotated in 50 animal genomes using TGFam-Finder (Fig. 2-3, Supplementary Fig. 3 and 6, and Supplementary Table 3 and 7). We used assembled genomes and proteins described in Supplementary Table 1 and 2 as ‘TARGET_GENOME’ and ‘PROTEINS_FOR_DOMAIN_IDENTIFICATION’ in ‘RESOURCE.config’. After performing functional annotation using InterproScan-527 for the proteins, generated tsv files for the proteins were used as ‘TSV_FOR_DOMAIN_IDENTIFICATION’. PF03101 (FAR1), PF00931 (NLR), PF00096 (C2H2 zinc finger), and PF00046 (homeobox) were selected as ‘TARGET_DOMAIN_ID’ for classification of target-gene families. ‘EXTENSION_LENGTH’ and ‘MAX_INTRON_LENGTH’ were determined as 30kb. We extracted target genes in the existing gene models of plants or animals having the Pfam IDs in the tsv files, and then merged them to use as ‘RESOURCE_PROTEIN’. Location of transcriptome, gff3, and coding DNA sequences of the plant and animal genomes were also recorded in ‘RESOURCE.config’ (Supplementary Table 1-2).

Phylogenetic analyses of the new gene models.

To perform phylogenetic comparison of new gene models for FAR1 and NLR in plant genomes, and C2H2 zinc finger and homeobox genes in animal genomes, we implemented gene clustering using OrthoMCL31 among the new models of each gene family (Supplementary Table 6 and 10). Then, the amino-acid sequences of target domains in each genome were aligned using ClustalW230, and the phylogenetic trees of each gene family in the specific plant and animal genomes were constructed with MEGA732 using the neighbor-joining method (Supplementary Fig. 4 and 7).

Comparison of newly annotated genes and sequences in NR and UniProt

We compared new gene models of each gene family as query to sequences in NR and UniProt databases as subject using BLASTP. We counted the number of newly annotated genes that matched to NR and UniProt databases considering an e-value score of 1e^{-5} and more than 80% subject coverage (Supplementary Fig. 8 and Supplementary Table 11-12). To verify the number of newly annotated genes with strong homology to sequences in those databases, we used cut-off values greater than 98% identity and 100% subject coverage (Supplementary Fig. 9). We estimated the number of newly annotated genes with strong homology to functional genes in Swiss-Prot using cut-off values greater than 95% sequence similarity and 100% subject coverage (Supplementary Fig. 11).
Validation of newly annotated genes using RT-PCR and sequencing analyses

MCF-7 and MCF-10A cell lines (ATCC, Teddington, UK) with LEC and ADSC (LONZA, Basel, Switzerland) were used for gene-expression verification and sequence validation for newly annotated genes in the human genome. Mouse embryonic fibroblasts (MEFs) (Stemgent, MA, USA) and two tissues (brain and spleen) from 6 to 8-week-old C57BL/6J mice (Koatech, Gyunggi-do, Korea) were used for analyses of the mouse genome. C57BL/6J mice were maintained according to the policies approved by CHA University. Seedlings of the rice (*Oryza sativa*) cultivar Nakdong were used for validation of rice FAR1 and NLR genes. Total RNA was extracted from rice seedlings, cultured human cells, and each mouse tissue using TRIzol® reagent (Invitrogen, USA). The total RNA was treated with DNase I and reverse-transcribed with Oligo (dT) primers and Superscript II (Invitrogen), according to the manufacturer’s instructions. Subsequently, RT-PCR was conducted to analyze gene expression using the designed gene primers for each family. We used Gapdh of human and mouse and Actin of rice as controls. PCR products were purified with AccuPrep® PCR purification kit (Bioneer, Korea) or gel elution. Finally, the PCR products were sequenced using ABI3730XL (Applied Biosystems) as described in Supplementary Table 14.

Identification of genes overlapping with repeat sequences

To annotate genomic sequences containing non-overlapping genes along with previously annotated genes described in Supplementary Figure 13, we performed repeat annotation for the genomic regions using RepeatModeler and RepeatMasker (see URL). De novo repeat libraries of each plant and animal genome were constructed using RepeatModeler, and then RepeatMasker was used to repeat masking on the repeat libraries. We considered that if specific repeat sequences covered more than 50% of a non-overlapping gene, the gene resided in the genomic region containing the specific repeat sequence (Supplementary Fig. 14).

Computational resources used to run TGFam-Finder

To estimate annotation run-time of TGFam-Finder, we performed annotation using a desktop computer (Intel Core i7-4770 CPU @ 3.40GHz, 8 processors, and 32Gb memory) for NLR families in *S. moellendorffii*, C2H2 zinc finger gene families in *G. gallus*, FAR1 genes in *Z. mays*, and C2H2 zinc finger and homeobox genes in *H. sapiens* (Table 1). For efficient test, we randomly extracted and used ~10Gb of whole transcriptome data of *G. gallus*, *Z. mays*, and *H. sapiens* as described in Supplementary Table 1 and 2. For the annotation of FAR1 and NLR genes in 50 plant genomes, and C2H2 zinc finger and homeobox genes in 50 animal genomes, we used two of our computer servers with the following specifications (1) Intel Xeon CPU E5-2697 v2 @ 2.70GHz, 48 processors, and 264Gb memory, and (2) Intel Xeon CPU E5-4650 v2 @ 2.40GHz, 80 processors, and 512Gb memory.
The re-annotation of each gene family was finished within one week using those servers.

Data availability
The newly generated gene models including peptide and coding DNA sequences with gff3 and tsv are accessible at: http://TGFam-Finder.snu.ac.kr.

Code availability
The TGFam-Finder program package including auto-installation and annotation scripts with sample data is accessible at: https://github.com/tgfam-finder and http://TGFam-Finder.snu.ac.kr.
References

1. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50-55 (2018).
2. Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36, 338-345 (2018).
3. Jiao, Y.P. et al. Improved maize reference genome with single-molecule technologies. Nature 546, 524-527 (2017).
4. Schmidt, M.H.W. et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell 29, 2336-2348 (2017).
5. Jones, S.J.M. Prediction of genomic functional elements. Annu. Rev. Genom. Hum. G. 7, 315-338 (2006).
6. Johnston, J.J. et al. Massively parallel sequencing of exons on the X chromosome identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am. J. Hum. Genet. 86, 743-748 (2010).
7. Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 49, 1731-1740 (2017).
8. Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995-1005 (2007).
9. Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530-544 (2013).
10. Li, Y.I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151-158 (2018).
11. Teer, J.K. & Mullikin, J.C. Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet. 19, R145-R151 (2010).
12. Mistry, J., Finn, R.D., Eddy, S.R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).
13. Hudson, M., Ringli, C., Boylan, M.T. & Quail, P.H. The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13, 2017-2027 (1999).
14. Jacob, F., Vernaldi, S. & Maekawa, T. Evolution and conservation of plant NLR functions. Front. Immunol. 4, 297 (2013).
15. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313-340 (2001).
16. Cillo, C., Cantile, M., Faiella, A. & Boncinelli, E. Homeobox genes in normal and malignant cells. J. cell. Physiol. 188, 161-169 (2001).
17. UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 46, 2699 (2018).
18. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61-D65 (2007).
19. Yandell, M. & Ence, D. A beginner's guide to eukaryotic genome annotation. Nat. Rev. Genet. 13,
21. Slater, G.S. & Birney, E. Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics* **6**, 31 (2005).
22. Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. *Genome Biol.* **7**, S11-18 (2006).
23. Kim, S. et al. Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (*Allium cepa* L.). *DNA Res.* **22**, 19-27 (2015).
24. Ghosh, S. & Chan, C.K. Analysis of RNA-Seq Data Using TopHat and Cufflinks. *Methods Mol. Biol.* **1374**, 339-361 (2016).
25. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357-359 (2012).
26. Camacho, C. et al. BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421 (2009).
27. Jones, P. et al. InterProScan 5: genome-scale protein function classification. *Bioinformatics* **30**, 1236-1240 (2014).
28. Kent, W.J. BLAT - The BLAST-like alignment tool. *Genome Res.* **12**, 656-664 (2002).
29. Keller, O., Odronitz, F., Stanke, M., Kollmar, M. & Waack, S. Scipio: Using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. *BMC Bioinformatics* **9**, 278(2008).
30. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947–2948 (2007).
31. Li, L., Stoeckert, C.J., Jr. & Roos, D.S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. *Genome Res.* **13**, 2178-2189 (2003).
32. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **33**, 1870-1874 (2016).
Gene regions defining target regions including domain(s) and their flanking sequences

All possible translation

Detecting candidates of target domains

Determining target regions including domain(s) and their flanking sequences

1) Existing genes (optional)
2) Genes (transcriptome)
3) Genes (protein mapping)
4) Genes (ab initio model)

Six-frame translation

Domain search

Gene regions defining

Resources (Proteins, Transcriptome)

Protein mapping (PM)

Annotation for transcripts

TopHat & Cufflink

Exonerate

ISGAP

Ab initio prediction

Augustus

Combining gene model

Integration

Final gene model

Masked genome sequences

Protein mapping

Construction of consensus

Assembled transcript

Extension of consensus

No gene from ab initio model

Ab initio prediction

Gene model from transcriptome and proteins

Combined model from proteins and ab initio prediction

1) Existing genes (optional)
2) Genes (transcriptome)
3) Genes (protein mapping)
4) Genes (ab initio model)
The number of existing genes

Evidence

Ab initio

Newly annotated genes

Previously annotated genes
Vertebrates
Mammalia

Average
Helobdella robusta
Crassostrea gigas
Octopus bimaculoides
Trichinella spiralis
Caenorhabditis elegans
Limulus polyphemus
Stegodyphus mimosarum
Ixodes scapularis
Danusites petersipus
Anopheles gambiæ
Musca domestica
Drosophila melanogaster
Saccoglossus kowalevskii
Stronglyocentrotus purpuratus
Danio rerio
Electrophorus electricus
Onchorynchus mykiss
Takifugu rubripes
Xenopus tropicalis
Alligator sinensis
Pelecanus crispus
Opisthocomus hoazin
Plicidula alicicola
Halicercus alicicola
Anas platyrhynchos
Gallus gallus
Ornithorhyncus anatinus
Laudonta africana
Galeopterus variatus
Otjolmur garnetti
Califrits jacchus
Homo sapiens
Nomascus leucogenys
Oryctolagus cuniculus
Mus musculus
Equus caballus
Pharopus vamyrus
Myotis lucifugus
Odobenus rosmarus
Felis catus
Panthera tigris altaica
Camelus ferus
Sus scrofa
Bos taurus
Tursiops truncatus
Balenioptra acutrostrata

The number of existing genes

Gene	Evidence	Ab initio
0	752	0

Vertebrate (mammal)
Vertebrate (others)
Invertebrate

Previously annotated genes
Newly annotated genes
