Separable metamaterials: analytical ab-initio homogenization and chirality

Alessandro Ciattoni, Domenico Rago and Carlo Rizza

1 Consiglio Nazionale delle Ricerche, CNR-SPIN, Via Vetoio 10, 67100 L’Aquila, Italy
2 Dipartimento Scienze Fisiche e Chimiche, Università degli studi dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
3 Dipartimento di Scienza e Alta Tecnologia, Università degli studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy

E-mail: alessandro.ciattoni@aquila.infn.it

Received 3 June 2016, revised 1 August 2016
Accepted for publication 14 September 2016
Published 14 October 2016

Abstract
We investigate the ab-initio homogenization of separable metamaterials with factorized dielectric permittivity profiles, which can be achieved through suitable grey-scale permittivity design techniques. Separability allows such metamaterials to be physically regarded as the superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, separable metamaterials admit a simple and analytical description of their electromagnetic bi-anisotropic response, which can be reconstructed from the properties of the 1D generating media. Our approach provides a strategy that allows the full ab-initio and flexible design of a complex bianisotropic response by using the simple and well-known properties of 1D metamaterials.

Keywords: homogenization, chirality, bianisotropy

Electromagnetic propagation through metamaterials is usually described by means of effective medium theories [1–4], which are adequate when the radiation wavelength is much larger than the structure periodicity. Basically such homogenization approaches provide a method for evaluating the effective permittivity and permeability of the homogeneous effective medium from the knowledge of the electromagnetic properties of the metamaterial inclusions and their spatial arrangement. More refined approaches [5–11] encompassing the bianisotropic response of the inclusions and/or the spatial dispersion of the overall structure, allow us to evaluate the bianisotropic effective parameters of the effective medium.

Chiral metamaterials, whose structure cannot be superimposed onto their mirror images, have attracted much research effort in the last decade [12, 13] since they host remarkable electromagnetic effects that are much more pronounced than in natural chiral media or cannot be observed in nature at all. Relevant examples of such phenomena are negative refraction [14–18], giant optical activity [19–21], asymmetric transmission [22, 23] and switching of the chiral metamaterial response [24–26]. Since chiral asymmetry is a 3D geometrical property, chiral metamaterials are generally composed of 3D metallic inclusions, e.g. twisted crosses or twisted split-ring resonators. Remarkably, an effective arbitrary reciprocal bi-anisotropic response can be tailored by suitably inserting in the metamaterial unit cell the basic chiral and omega inclusions [27]. Metamaterials exhibiting 2D and 1D geometric chirality, i.e. that cannot be superimposed onto their mirror images using only rigid motions of a plane (translations and in-plane rotation) and of a line (translations), have also been considered. Strong optical activity and circular dichroism have been predicted and observed in planar chiral metamaterials [28–33] and extrinsically chiral metamaterials [34–41], which are characterized by 2D and 1D geometric chirality, respectively. Another class of metamaterials displaying 1D geometric chirality is that of 1D metamaterials [11], which have recently been shown to exhibit highly tunability if containing graphene sheets [42] and to support strong optical activity in the epsilon-near-zero regime [43].

In this paper we investigate a class of metamaterials characterized by factorized and periodic microscopic...
permittivity profiles and we show that such separable meta-
materials can be analytically ‘decomposed’ in terms of three
fictitious 1D generating media. The decomposition is entailed
by the factorization of the constituent permittivity profile as
the product of three functions each depending on a single
cartesian coordinate. It is worth noting that metamaterials
with such a factorization property have never been considered
in standard homogenization approaches, not even as a specific
application of the homogenization procedures. The factorized
permittivity profile can be obtained through a number of gray-
scale permittivity design techniques, as all-photodesigning
both in semiconductors [44] and in phase change materials
[45] and digitalization [46]. We show that a remarkable
consequence of the decomposition is the possibility to
reconstruct the effective response (in the long-wavelength
limit) from those of the 1D generating media. Therefore
the description of the effective bianisotropic response, for
separable metamaterials, is ab-initio, simple and fully ana-
lytical, and this allows the complete and simultaneous
design of both dielectric and chiral properties. It is worth
noting that the decomposition of separable metamaterials
as a superposition of three 1D generating media arises from
the factorization of the microscopic dielectric permittivity
relative to a specific cartesian reference. Therefore, such
decomposition does not rely on spatially isolated elements
of the unit cell each accounting for a specific multipolar
response, which is the standard strategy commonly used in
metamaterial science.

Let us consider an unbounded metamaterial whose
underlying nonmagnetic inclusions are spatially patterned,
for simplicity, on a simple cubic lattice whose period L is
much smaller than the radiation wavelength λ, so that
η = L/λ ≪ 1. In this paper we consider the class of separa-
able metamaterials (SMMs) whose microscopic relative di-
electric permittivity εSMM(r) (the subscripts will hereafter be
used for microscopic quantities) has the same periodicity of
the metamaterial and it is separable, i.e. it can be written as

$$\varepsilon_S(r) = \varepsilon_x(x)\varepsilon_y(y)\varepsilon_z(z)$$

where $\varepsilon_{\alpha}(x_\alpha)$ ($\alpha = 1, 2, 3$) are three one-dimensional
periodic functions with period L. In order to obtain the effective
electromagnetic response of SMMs in the long wavelength
limit η ≪ 1, we exploit the nonlocal homogenization
approach theory developed in [11]. According to such
approach, a metamaterial with periodic microscopic dielectric
constant $\varepsilon_M(r)$ (where the subscript M labels an arbitrary
medium) is described, up to the first order of η, by the
effective medium constitutive relations

$$D = \varepsilon_0(\varepsilon^{(M)} + \kappa^{(M)}T)\kappa^{(M)}E = \frac{1}{c}\kappa^{(M)}T\mathbf{H},$$

$$B = \frac{1}{c}\kappa^{(M)}T\mathbf{E} + \mu_0\mathbf{H}.$$

(2)

Here $\varepsilon^{(M)}$ and $\kappa^{(M)}$ are the effective permittivity and chiral
tensors (the superscripts will hereafter be used for effective
quantities), respectively, and they are given by

$$\varepsilon^{(M)}_{\alpha\beta} = \varepsilon_0\delta_{\alpha\beta} + \frac{1}{2}\varepsilon_0\delta_{\alpha\beta}\partial_{M\alpha\beta},$$

$$\kappa^{(M)}_{ij} = k_0\left[-\varepsilon_{ij}\partial_{Mij} + \frac{1}{2}\left(\varepsilon_{ij}\partial_{Mij} + \partial_{Mij}\right)\right].$$

(3)

where $k_0 = 2\pi/\lambda$, ε_{ij} is the Levi-Civita symbol, the
overline of a function W stands for its spatial average over the
cubic unit cell C, i.e., $\overline{W} = \frac{1}{L^3}\int_C dmW(r)$, and $f_\alpha(r)$ are the
three functions having the metamaterial periodicity with
vanishing spatial average ($\overline{f_\alpha} = 0$) which satisfy the
equations

$$\nabla \cdot (\varepsilon_M \nabla f_\alpha) = -\partial_\alpha \varepsilon_M.$$

(4)

Such an electrostatic-like equation holds within the meta-
material unit-cell and the periodic boundary conditions on its
edges, resulting from the metamaterial microscopic periodici-
ity, physically accounts for the coupling among the unit cell
and its surroundings. For a general dielectric profile ε_M
these equations have to be solved by resorting either to numerical
or to spectral methods [3, 47]. On the other hand, the situation
of SMMs is peculiar since, for the dielectric profile of
equation (1) (i.e. for $\varepsilon_M = \varepsilon_R$), equation (4) yields the three
independent equations

$$\frac{d}{dx_\alpha}\left(\varepsilon_{\alpha} \frac{df_\alpha}{dx_\alpha}\right) = -\frac{df_\alpha}{dx_\alpha},$$

where the dependence $f_\alpha(x_\alpha) = f_\alpha(x_\alpha)$ has been self-consis-
tently assumed and which are satisfied by three functions
$f_\alpha(x_\alpha)$ that are periodic with period L and have vanishing
spatial average.

It is now crucial noting that, for a periodic 1D medium
whose dielectric permittivity is $\varepsilon_M(r) = \varepsilon_x(x_1)$, equation (4)
reproduces equation (5) [11]. In other words the functions
$f_\alpha(x)$, $f_x(y)$ and $f_z(z)$ of a 3D SMM coincide with those
taining three 1D media whose permittivities are $\varepsilon_x(x)$,
$\varepsilon_y(y)$ and $\varepsilon_z(z)$. Therefore, it is natural to decompose a SMM
into three fictitious 1D generating media (GM) whose per-
mitivities are the x_α-dependent parts of the separable
permittivity profile of equation (1). The effective permittivity
and chiral tensors, $\varepsilon^{(1)}$ and $\kappa^{(1)}$, of the three GM are [11]

$$\varepsilon^{(1)} = \frac{1}{l}\int_0^L \frac{d\xi e^{-2\pi i\xi L}}{[\varepsilon_x(\xi)]^{-1}} \varepsilon_x(\xi)$$

and

$$\kappa^{(1)} = \frac{1}{l}\int_0^L \frac{d\xi e^{-2\pi i\xi L}}{[\varepsilon_x(\xi)]^{-1}} \varepsilon_x(\xi).$$

(6)

Here $\varepsilon_x(\xi)$ and $\kappa_x(\xi)$ are the Fourier coefficients of
$\varepsilon_x(x_1)$ and its reciprocal, respectively, and $\tau_\alpha = \frac{1}{\varepsilon_x(\xi)}$ is the degree of
electromagnetic chirality of the GM associated to the x_α
direction since it vanishes if the permittivity profile $\varepsilon_x(x_1)$
cannot be superposed onto its mirror image by using trans-
lations without resorting rotations (1D chirality) [11, 43].
The above discussed decomposition of a SMM has remarkable consequences on its effective electromagnetic response. From [11], the functions \(f_{a}(x) \) satisfying equation (5) are \(f_{a}(x) = \frac{L}{2\pi\epsilon_{a/0}} \sum_{m,n=0}^{\infty} e^{-i2\pi(x/L)} b_{a/0,n} / n \) which inserted into equation (3), after some algebra, yield

\[
e^{(S)} = \begin{pmatrix}
\frac{a_{0,0}}{b_{0,0}} & 0 & 0 \\
0 & \frac{b_{0,0}}{b_{0,0}} & 0 \\
0 & 0 & \frac{a_{0,0}}{b_{0,0}}
\end{pmatrix}
\]

\[
\kappa^{(S)} = \begin{pmatrix}
0 & \frac{a_{0,0}}{b_{0,0}} & -\frac{a_{0,0}}{b_{0,0}} T_x \\
-\frac{a_{0,0}}{b_{0,0}} T_y & 0 & \frac{a_{0,0}}{b_{0,0}} \\
\frac{a_{0,0}}{b_{0,0}} T_y & \frac{a_{0,0}}{b_{0,0}} & 0
\end{pmatrix}
\]

expressions which are the main result of the present paper. From equation (7) it turns out that SMMS are generally biaxial media with pseudo-chiral-omega chirality (Tr. \(\kappa^{(S)} = 0 \)). Note that the homogenization procedure we have discussed to obtain these tensors from the constituent permittivity profile \(\varepsilon_S(x, y) \) is particularly simple (i.e. only requires the evaluation of the Fourier coefficients \(a_{0,n} \) and \(b_{0,n} \) and the summation of the series for \(\tau_{0} \)). Moreover, equation (7) has a deeper conceptual value since, using equation (6), it can be rewritten as

\[
e^{(S)} = \varepsilon^{(x)} \varepsilon^{(y)} \varepsilon^{(z)},
\]

\[
\kappa^{(S)} = \kappa^{(x)} \varepsilon^{(y)} \varepsilon^{(z)} + \kappa^{(y)} \varepsilon^{(x)} \varepsilon^{(z)} + \kappa^{(z)} \varepsilon^{(x)} \varepsilon^{(y)}.
\]

In other words SMMS have effective permittivity and chiral tensors, which are combinations of the corresponding GM tensors, i.e. their bianisotropy is reconstructed from those of the GM. The whole analysis hitherto considered is summarized in figure 1 where it is pictorially sketched that homogenization of a SMM can be broken into three steps: (1) decomposition into GM; (2) homogenization of the GM; (3) reconstruction of the SMM effective bianisotropy from those of the GM.

In order to test the above results (equation (8)) we have compared the isofrequency surface and polarizations of the bianisotropic effective medium with those predicted by the Bloch description of photonic crystals. For simplicity, we have focused on 2D SMMS whose constituent permittivity is \(\varepsilon_S(x, y) = \varepsilon_1(x) \varepsilon_2(y) \) (i.e. with \(\varepsilon_3(z) = 1 \)) where

\[
\varepsilon_\alpha(x_0) = A_\alpha + B_\alpha \left[\cos \left(\frac{2\pi}{L} x_0 \right) + \sin \left(\frac{4\pi}{L} x_0 \right) \right].
\]

In equation (9), \(A_\alpha = \varepsilon_\alpha(x_0) \) whereas \(B_\alpha \) is a parameter accounting for the 1D chirality of the profile \(\varepsilon_\alpha(x_0) \) since, for \(B_\alpha = 0 \), there is no translation \(T \) for which \(\varepsilon_\alpha(T - x_0) = \varepsilon_\alpha(x_0) \). Maxwell equations for the effective medium of equation (2), for the plane waves \(E = V e^{i(k_x x + k_y y + k_z z)} \), turn into the homogeneous system

\[
\begin{pmatrix}
k_x^2 & i k_0 \kappa^{(S)} & k_0^2 \\
n_0 & k_0 & 0 \\
0 & 0 & k_0^2
\end{pmatrix}
\begin{pmatrix}
V \cr 0 \cr 0
\end{pmatrix} = 0
\]

where \(\kappa^{(S)} \) and \(\kappa^{(S)} \) are the effective tensors of equation (8) evaluated from the permittivity profile \(\varepsilon_S(x, y) \) through the above described procedure. Accordingly the eigenvalues \(k_x, k_y, k_z \) and polarizations \(V(k_x, k_y) \) are evaluated after imposing the compatibility of the system (i.e. after setting the determinant of the coefficient matrix equal to zero). On the other hand, in the Bloch description of photonic crystals, the periodic permittivity \(\varepsilon_S(x, y) \) supports, for each \((k_x, k_y) \) in the first Brillouin zone \(|k_x| < \pi/L, \ |k_y| < \pi/L \), the Bloch modes \(E = U e^{i(k_x x + k_y y)} \), whose eigenvalues \(k_B^2(k_x, k_y) \) and average polarizations \(U_B(k_x, k_y) \) are evaluated by solving Maxwell equations through the standard plane-wave-expansion method.

As a numerical example we consider the bi-dimensional SMM with \(A_x = 1 + 0.2i, B_x = 2, A_y = 3 \) and \(B_y = 1.4 \) and the period to wavelength ratio \(\eta = 0.07 \); in figure 2(a) we plot the real and imaginary parts of its permittivity profile \(\varepsilon_S \) on the unit cell. For each \((k_x, k_y) \), there are four eigenvalues \(k_{\text{even}}(k_x, k_y) \) in the effective medium description and an infinite number of eigenvalues \(k_B^2(k_x, k_y) \) in the Bloch description. In figure 2(b) we plot the real and imaginary parts of the eigenvalues \(k_{11}, k_{12} \) (surfaces) and \(k_{21}^R, k_{22}^R \) (dots), normalized with \(k_\ell = 2\pi/L \), where \(k_{11}^R \) and \(k_{22}^R \) are the effective medium eigenvalues with positive real parts whereas \(k_{21}^R \) and \(k_{22}^R \) are the...
correspondingly closest Bloch eigenvalues. For each mode reported in figure 2(b) we have evaluated the normalized polarizations $v = \mathbf{V}/|\mathbf{V}|$ and $v^\theta = \mathbf{V}^\theta/|\mathbf{V}|^\theta$ and we have plotted the absolute values of their components in figure 2(c). The very good agreement between the two approaches proves the accuracy of the effective medium description of SMMs. Note, from the second row of figure 2(c), that the modes 2 have the polarization profiles which are not symmetric for the reflection $k_\perp \rightarrow -k_\perp$, and this is a clearly due to electromagnetic chirality which here plays a significant role.

An interesting feature of SMMs is that their bi-anisotropic response is produced by the full interplay of the three independent GM, since each of them affects all the components of the tensors of equation (7). Such remarkable property, once combined with the potential antiresonant $a_{0,0} \simeq 0$ (epsilon-near-zero regime [43]) and resonant $b_{0,0} \simeq 0$ behaviors of the GM, can be used to achieve enhancement and/or suppression of specific mechanisms. As an example we discuss the possibility of enhancing the medium electromagnetic chirality. Note that for a single 1D stratified medium, the condition $b_{0,0} \simeq 0$ does not generally lead to the full enhancement of its electromagnetic chirality since $b_{0,0}$ appears in both tensors of equation (6). On the other hand, the interplay of the three GM can be used to compensate the resonance of one GM with the antiresonance of another GM to avoid large permittivities and, at the same time, to achieve large chirality tensors components. As an example, suppose that $b_{0,0} = \xi B_{2,0}$, $a_{0,0} = \xi A_{0,0}$ and $b_{0,0} = \xi B_{2,0}$, where $\xi \ll 1$ and the quantities labelled by capital letters are of the order of 1. In this example the x- and z-associated GM are resonant.
whereas the y-associated GM medium is in the ENZ regime.

In this situation the tensors of equation (7) become

$$
\mathbf{\varepsilon}^{(S)} = \begin{pmatrix}
\varepsilon_{0,0} & 0 & 0 \\
0 & \varepsilon_{0,0} & 0 \\
0 & 0 & \varepsilon_{0,0}
\end{pmatrix},
$$

$$
\mathbf{\kappa}^{(S)} = \frac{1}{\xi} \begin{pmatrix}
0 & \frac{\varepsilon_{1,0}}{b_{1,0}} \tau_z & \frac{\varepsilon_{0,0}}{b_{0,0}} \tau_z \\
-\frac{\varepsilon_{1,0}}{b_{1,0}} \tau_z & 0 & \frac{\varepsilon_{0,0}}{b_{0,0}} \tau_z \\
-\frac{\varepsilon_{0,0}}{b_{0,0}} \tau_z & 0 & 0
\end{pmatrix},
$$

(10)

so that, due to the factor $1/\xi \gg 1$, the components of the chirality tensor can become large while the permittivity does not experience enhancement.

The separability condition defining SMMs of equation (1) is rather unusual and its achievement has to resort to specific expediency. A feasible way for achieving a factorized permittivity profile is offered by the recent photo-designing techniques where a general dielectric pattern is physically written within the medium bulk through suitable illumination. As an example, optically reconfigurable metasurfaces in phase change materials are achieved as a two-dimensional binary or greyscale pattern into a nanoscale thin film by inducing a refractive-index-changing phase transition with tailored trains of femtosecond pulses [45].

In order to show that a separable dielectric pattern can be achieved in phase change materials, we consider a slab of germanium antimony telluride (Ge$_2$Sb$_2$Te$_5$, or short GST) which has crystalline and amorphous phases whose dielectric permittivities, at $\lambda = 10 \mu m$, are $\varepsilon_a = 38 + 2i$ and $\varepsilon_d = 12.8 + 0.01i$, respectively [48]. As shown in [45], by using a spatial light modulator and femto-second pulses, it is possible to store a bidimensional periodic dielectric permittivity profile whose period is of the order of a micron. The structure of the unit cell can be suitably tailored since the local dielectric permittivity is given by $\varepsilon_{loc} = [2\varepsilon_p - \varepsilon_d + \sqrt{(2\varepsilon_p - \varepsilon_d)^2 + 8\varepsilon_p\varepsilon_d}]/4$ where $\varepsilon_p = (1 - f)\varepsilon_a + f\varepsilon_d$ and $\varepsilon_d = (1 - f)\varepsilon_a + f\varepsilon_d$ and f is the local crystal fraction which can be related to the number of pulses locally striking the spot [49]. This relation for ε_{loc} shows that $\text{Re}(\varepsilon_{loc})$ can be locally set to assume any values in the range between $\text{Re}(\varepsilon_a)$ and $\text{Re}(\varepsilon_d)$ and that its imaginary part can be neglected [48]. As a basic and proof of concept example, one can design a basic unit cell comprising a bidimensional 2×3 rectangular array whose spots have light-induced permittivity $\varepsilon^{(i)}_i$ where $i = (1, 2, 3)$. The separability condition can be achieved by setting the values of the first and second row of the permittivity matrix as $\varepsilon^{(i)}_1_{11}, \varepsilon^{(i)}_1_{12}, \varepsilon^{(i)}_1_{13}$ and $\varepsilon^{(j)}_2_{11}, \varepsilon^{(j)}_2_{12}, \varepsilon^{(j)}_2_{13}$ (where θ is a parameter) in such a way that all the six values are in the above allowed light-induced permittivity range.

In conclusion, we have considered the novel class of SMMs whose permittivity separability yields a simple and interesting description of the medium electromagnetic response in the long-wavelength limit. Specifically we have shown that three one dimensional GM can be associated to a SMM and that the SMM bianisotropic response is obtained by combining those of the GM media. Both the permittivity and chiral tensor of a SMM have entries which are factorized as products of three contributions coming from the three 1D media. This provides the possibility of exploiting the interplay between the three GM to achieve, with desired supressions and enhancements, the desired bianisotropic response. Such freedom to tailor the bianisotropic response, combined with the above simple analytical description, suggests that SMMs could play a relevant role for devising novel and pioneering devices for optical steering. For example, optical activity and circular dichroism exhibited by SMMs can be easily optimized through the analytical expression of the chiral tensor by tuning the three underlying GM media. The most suitable platform for manufacturing SMMs and hence exploiting our results is naturally provided by schemes based on gray-scale permittivity design techniques which simply allow to achieve the separability condition characterizing SMMs.

AC and CR thank the US Army International Technology Center Atlantic for financial support (Grant No. W911NF-14-1-0315).

References

[1] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B 65 195104
[2] Smith D R and Pendry J B 2006 J. Opt. Soc. Am. B 23 391
[3] Felbacq D, Bouchitt G, Guizal B and Moreau A 2008 J. Nanophoton. 2 023501
[4] Ortiz G P, Martinez-Zega B E, Mendoza B S and Mochn W L 2009 Phys. Rev. B 79 245132
[5] Ouchetto O, Qiu C W, Zhou S, Li L W and Razek A 2006 IEEE Trans. Microwave Theory Tech. 54 3893
[6] Silveirinha M G 2007 Phys. Rev. B 75 115104
[7] Baena J D, Jelinek L, Marqus R and Silveirinha M 2008 Phys. Rev. A 78 013842
[8] A1 A 2011 Phys. Rev. B 84 075153
[9] Reyes-Avendao J A, Algrodeo-Badillo U, Halevi P and Prez-Rodriguez F 2011 New J. Phys. 13 073041
[10] Simovski C R 2011 J. Opt. 13 013001
[11] Ciattoni A and Rizza C 2015 Phys. Rev. B 91 184207
[12] Valev V K, Baumberg J, Sibilia C and Verbiest T 2013 Adv. Mater. 25 2517–34
[13] Li Z, Mutlu M and Ozbay E 2013 J. Opt. 15 023001
[14] Pendry J B 2004 Science 306 1353
[15] Plum E, Zhou J, Dong J, Fedotov V A, Koschyna T, Soukoulis C M and Zholudev N I 2009 Phys. Rev. B 79 035407
[16] Wang B, Zhou J, Koschyna T and Soukoulis C M 2009 App. Phys. Lett. 94 151112
[17] Zhang S, Park Y S, Li J, Lu X, Zhang W and Zhang X 2009 Phys. Rev. Lett. 102 023901
[18] Li Z, Zhao R, Koschyna T, Kafesaki M, Alic K B, Colak E, Caglayan H, Ozbay E and Soukoulis C M 2010 App. Phys. Lett. 97 081901
[19] Plum E, Fedotov V A, Schwanecke A S, Zholudev N I and Chen Y 2007 App. Phys. Lett. 90 223113
[20] Ye Y and He S 2010 App. Phys. Lett. 96 203501
