Non-coding RNAs and glioma: Focus on cancer stem cells

Ali Rajabi,1,2 Mehrdad Kayedi,3 Shiva Rahimi,4 Fatemeh Dashti,1,2 Seyed Mohammad Ali Mirazimi,1,2 Mina Homayoonfal,8 Seyed Mohammad Amin Mahdian,6 Michael R. Hamblin,7 Omid Reza Tamtaji,8,9 Ali Afrasiabi,10 Ameneh Jafari,11,12 and Hamed Mirzaei5

INTRODUCTION

Gliomas are the most common primary type of adult brain cancer, consisting of up to 80% of malignant brain tumors.1 While being the most frequent primary brain tumor, glioblastoma (GBM) is a type of glioma accounting for 57.3% of these tumors and has the worst prognosis: WHO grade IV.1,2 Gliomas are divided into two distinct categories. Firstly, the IDH wild-type tumor or de novo primary GBM, which is most commonly found in older patients (≥62 years), accounts for about 90% of all GBMs. Secondly, the IDH mutant type or secondary GBM, which more frequently occurs in 40- to 50-year-old patients and accounts for only 10% of cases. IDH mutant tumors arise from underlying low-grade astrocytomas.5,3

Microarrays and next-generation sequencing technology have led to significant advances in whole-genome sequencing and provided a more comprehensive understanding of non-coding RNAs (ncRNAs) and their roles and functions. The majority of the human genome (>90%) undergoes transcription, but many of these genes do not result in the synthesis of new proteins.4 Several ncRNAs have important regulatory functions. ncRNAs, including lncRNAs (long ncRNAs), miRs (microRNAs), and circRNAs (circular RNAs) play critical roles in numerous cellular processes and are regulated by specific molecular mechanisms.5,6 miRs are a group of short endogenous ncRNAs that regulate the post-transcriptional expression of many genes.7 miRs are involved in many pathological and physiological cellular processes, including tumorigenesis and cancer progression. Dysregulated miRNA expression may result either in tumor inhibition or in tumor promotion as an oncogene.5,9 circRNAs are a class of ncRNA with covalently closed loops and high stability. Growing evidence has shown that circRNAs play critical roles in the development and progression of diseases, particularly in cancer growth, metastasis, stemness, and resistance to therapy.10 lncRNAs are a group of functional ncRNAs with a wide range of major regulatory
functions in proliferation and differentiation, as well as tumor progression or tumor suppression.6,11–14 Here, we review the current information on the role of ncRNAs in glioma, particularly their effects on cancer stem cells (CSCs).

CSCs and glioma
The cellular heterogeneity in CNS tumors has long been appreciated;15,16 however, the role of self-regenerating tumor cells with increased tumorigenesis has been poorly recognized. Up to now, different terms have been used to denote these cells, including tumor/cancer/brain stem cells, stem-like tumor cells, tumor/cancer/glioma/brain tumor-propagating cells, and glioma/cancer/brain tumor-initiating cells. Because of these inconsistencies, attention has shifted away from their biology and their role in tumorigenesis, toward the discovery of new markers expressed on these cells, and determining if these cells can replicate as floating (non-adherent) spheroids. Moreover, these tumor cells are not necessarily produced from transformed stem cells, and other cell types, including normal stem cells and well-differentiated progenitor cells, could undergo oncogenic transformation. Therefore, precise functional assays must be performed, and an accepted definition should be used in all experimental studies. Any population of CSCs must have the capacity for self-regeneration, and also be able to produce well-differentiated progeny (Figure 1). In the case of brain tumors, these cells can form a tumor following intracranial transplantation, recapitulating the heterogeneity of parental tumor cells. Tumor-initiating cells in animal models can be used for investigation, but CSCs are more infiltrative capability than their progeny, and also their progeny lose tumorigenic potential during differentiation. The presence of a cellular hierarchy can be demonstrated by prospective enrichment and depletion of tumorigenic and non-tumorigenic cells. Cancer cells that contain a cellular hierarchy and are tumorigenic, are considered glioma stem cells or glioma CSCs. Cell culture spheroids can be derived from brain cells (normal or neoplastic), and their progenitors have limited self-renewal potential. However, the mere ability to form spheroids does not define CSCs, without showing a self-renewing population.18 High-passage cell lines are unlikely to be functionally validated CSC models, and cannot accurately represent tumor complexity \textit{in vivo}.19

At high passage numbers, cell lines exhibit changes in morphology, reduced or altered key functions and efficiency, and frequently no longer represent reliable models of their original source material due to selective pressures and genetic drift. Cancer cell lines have significant limitations due to a lack of vascular, stromal, and immune components. Tumors are ecosystems of evolving clones that compete or cooperate with each other and other normal cells that infiltrate their microenvironment.20 This begs the interesting question of whether these clones were selected during their growth into the culture medium or through cell passaging over time. As a result, cell lines derived from a single clone are not always representative of the diversity present in the original tumor.21

Thus, whereas the growth of glioma cells as neurospheres is not essential to retaining stemness, the microenvironment, including medium composition and culture conditions, influences the CSC properties.18,22,23

After the adoption of CD133 as the first surface marker for GCSs, they were classified as CD133+ and CD133−. CD133+ cells or CSCs gradually lose their ability to self-renew during differentiation, but CD133 expression allows brain tumors to form \textit{in vivo}, and neurospheres to grow \textit{in vitro}.22,24–27 Although other surface markers have been reported, which could be used to classify GCSs, the most useful marker remains CD133.28 Prognostic indicators for GBM progression, include CD133\textsuperscript{+/Ki-67−} cells, and the expression of HOX or Nestin genes.29–31 CD184 (CXCR4 chemokine-receptor) is another surface marker that is significantly correlated with CD133 cells and has been shown to increase the expression of hypoxia-inducible factor 1.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Functional criteria of CSCs}
\end{figure}

(A) CSCs are defined by functional characteristics that include sustained self-renewal, persistent proliferation, and tumor initiation upon intracranial transplantation, which is the definitive functional CSC assay. (B) CSCs also share features with somatic stem cells, including frequency within a tissue or tumor, stem cell marker expression (examples relevant to GBM and the brain are provided), and the ability to generate progeny with multiple lineages. Bmi1, B cell-specific Moloney leukemia virus insertion site 1; Olig2, oligodendrocyte transcription factor 2; Sox2, SRY-box transcription factor 2. This figure was adapted from Lathia et al.17
Another surface marker is MUSASHI-1, which regulates the cell cycle and is an RNA binding protein involved in post-transcriptional gene editing. Many additional surface markers have been described that might be used to identify GSCs, such as the cell surface gangliosides GFAP, KLF4, SALL4, ALDH1, L1CAM, SOX2, CD90, and A2B5, and the cell surface glycoprotein CD44. Although CD133 is a cell surface marker that enriches GSCs, the use of CD133 as a unique glioma stem cell marker is likely not enough to tag the whole self-renewing cancer cell reservoir and additional research is needed to identify more markers for GBM stem cells. The main biomarkers of glioma stem cells are illustrated in Figure 2.

miRNAs and CSCs in glioma

Members of the miR-17 family, miR-20a and miR-106a are expressed in multiple types of cells. Both upregulation and downregulation of miRNAs have been observed in various cancers, and specific miRNAs may either promote or suppress tumor formation. miRNAs have also been implicated in the function of stem cells (both normal and cancer). For instance, upregulation of the miR-17-92 cluster (including miR-20a) induces pulmonary epithelium progenitor cells to proliferate and prevents them from differentiating. In mouse embryos, miR-20a/106a acts to control stem cell differentiation. miRNAs are also present in high levels in MLL leukemia stem cells and could affect their function by regulating p21. The anti-tumor activity of tissue inhibitor of metalloproteinases-2 (TIMP-2) has been reported in CSCs in various studies.

miR-106a, one of the tumor-suppressor miRNAs, has played a significant role in the development and progression of human tumors. It was upregulated in colorectal cancer, gastric carcinoma, and mantle cell lymphoma, whereas it was downregulated in glioma. In their study, Dai et al. found that overexpression of miR-106a downregulated expression of glucose transporter 3 (GLUT3) or SLC2A3, an oncogene in several human cancers, via targeting 3' UTR of SLC2A3, resulted in suppression of cell proliferation and cell glucose uptake in GBM cells. miR-20a is widely upregulated in diverse cancer subtypes, including hepatocellular cancer, lung cancer, and GBM.

The bioinformatic analysis confirmed using a luciferase reporter assay showed that miR-20a can directly and negatively regulate CELF2 (CUGBP Elav-like family member 2) gene expression, thus playing a critical role in the growth and invasion of glioma cells. In addition, miR-20a may regulate cell invasion of GBM via IL-6/JAK2/STAT3 axis belonging to the JAK/STAT signaling pathway. Xu et al. suggested that miR-20a introduces its oncogenic activity by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma. The presence of this mutation in glioma upregulates HIF-1α expression, which decreases c-MYC activity, resulting in a consequential decline in miR-20a, is responsible for glioma cell proliferation and resistance to temozolomide (TMZ) treatment.

TIMP-2 is another target gene of miR-20a/106a, which can deregulate the expression of the TIMP-2 gene by interfering with the 3' UTR of TIMP-2 mRNA in GBM.
Nordy (dl-nordihydroguaiaretic acid) is a small-molecule lipoxygenase inhibitor,\(^{44}\) which has been found to suppress cancer growth.\(^{65–67}\) In vitro as well as in vivo studies in glioma have shown its ability to modulate differentiation and inhibit growth.\(^{68}\) It was proposed that Nordy could drive GSCs toward differentiation,\(^{70}\) by increasing the expression of TIMP-2 via downregulation of miR-20a and miR-106a. Wang et al. examined the ability of miR-20a/106a to promote the invasion of GSCs.\(^{65}\) Compared with regular glioma cells, GSCs had higher expression of miR-20a/106a, which was associated with their invasion. miR-20a/106a was found to target TIMP-2 expression, which showed a negative correlation with the levels of these miRs. miR-20a/106a downregulation resulted in an increase in TIMP-2, which suppressed GSC invasion. The ability to suppress miR-20a/106a and therefore upregulate TIMP-2 was proposed to explain the anti-tumor effect of Nordy.\(^{45}\)

Both anti-cancer and pro-oncogenic effects of miR-146a have been reported,\(^{68–72}\) and it has also been shown to be associated with prolonged survival in GBM patients.\(^{73}\)

POU3F2 is a transcription factor belonging to the POU-domain transcription factor and is a key differentiation factor in neurons and embryonic development.\(^{74}\) POU3F2 knockdown can cause tumor-suppressor effects in various cancers.\(^{75–78}\) It can be targeted to prevent prostate tumors from neuroendocrine differentiation.\(^{78}\) CircPOLR2A, an upregulated circRNA in GBM cells, activates the transcription of Sox9 through the miR-2113/POU3F2 axis, thus enhancing GBM cell growth.\(^{79}\) POU3F3 modulates cell proliferation by G1 cell-cycle arrest and apoptosis via its influence on DLL1 and Sox2. One study showed that long intergenic ncRNA POU3F3 (linc-POU3F3) is overexpressed in high-grade glioma tissues and promotes cell viability and proliferation of glioma cells, and leads to glioma progression through downregulation of POU3F3.\(^{80}\) In a recently published paper by Yang et al.,\(^{81}\) they reported that overexpression of POU2F2 significantly correlated with poor prognosis of GBM patients.\(^{81,82}\) They indicated that POU2F2 induces a metabolic shift toward aerobic glycolysis and promotes cell growth and GBM progression through PDK1-dependent activation of the PI3K/AKT/mTOR pathway.\(^{81,82}\)

SMARCA5 is a member of the SWI/SNF family, with helicase and ATPase properties. SMARCA5 can enhance cancer development in ovarian and glioma tumors.\(^{83,84}\) The suppressive effects of miR-100 on breast cancer stem cells could be partly mediated by regulating SMARCA5.\(^{85}\) Interestingly, the level of miR-146a was negatively associated with SMARCA5 in bladder cancer.\(^{86}\) Cui et al. investigated the role of miR-146a and its downstream pathways in GBM.\(^{87}\) They reported a significant downregulation of miR-146a as a result of promoter hypermethylation in recurrent GBM patients, which was associated with a poor prognosis. In vitro as well as in vivo findings showed that miR-146a upregulation greatly reduced proliferation and invasion, as well as the stemness of glioma cells, and enhanced their TMZ sensitivity. At the molecular level, these effects suggest the ability of miR-146a to suppress POU3F2 and SMARCA5 by directly targeting their 3’ UTRs in GBM cells. Altogether, their results suggest that miR-146a may inhibit stemness properties in GBM cells, and enhance their TMZ sensitivity.\(^{82}\)

miR16 could suppress invasion and migration in glioma cells.\(^{87–89}\) In GBM cells, miR16 suppressed invasion, adhesion, and downregulated genes involved in epithelial-mesenchymal transition (EMT).\(^{90}\) Since an association between SOX2 and stemness has been reported, investigating the interplay between miR16 and the SOX family transcription factor in GSCs may reveal useful information. SOX family members SOXD and SOXE have been implicated in glioma formation.\(^{91}\) The transcription factor SOX5 acts to maintain the chromatin configuration and regulates gene expression in various developmental pathways. SOX5 was able to suppress proliferation in glioma cells.\(^{92,93}\) Tian et al. examined the levels of miR16 in GBM SGH44, U87, and U251 cells, and in GSCs, how it affected tumor progression, and its role as a possible prognostic marker.\(^{94}\) Both in vitro and in vivo, upregulation of miR16 suppressed tumor progression, while its inhibition was associated with tumor promotion. There was a positive correlation between miR16 levels and GSCs’ ability to differentiate, and a negative correlation with migration, invasion, and the ability to form colonies. Bcl2, CCND1, CCNE1, CDK6, and SOX5 were identified as direct targets of miR16, and all these factors were downregulated by miR16 in cells. Finally, they showed a correlation between miR16 levels and clinical outcomes in GBM patients and suggested that the anti-cancer effect of miR16 involved GSCs.\(^{94}\)

miR-182 was first detected in murine neurosensory tissues.\(^{95–97}\) Although miR-182 levels are scarce in the fetal period, it becomes upregulated after birth, where it can induce the retinal progenitor cells to terminally differentiate, as well as maintain their mature form.\(^{96}\) It may also induce differentiation and the mesenchymal-to-epithelial transition by modulating SNAI2.\(^{98}\) c-Met has been reported to be upregulated in GBM 99–101 where it promotes tumor invasion and proliferation.\(^{102,103}\)

Hypoxia-inducible factor 2α (HIF2A) is secreted in hypoxic conditions to enhance GSC survival and proliferation, and there was a negative correlation between HIF2A levels and glioma prognosis.\(^{104}\) Another pro-oncogenic factor, Bcl2-like12 (Bcl2L12), was reported to be upregulated in GBM.\(^{105,106}\) Kouri et al. examined the role of miR-182 in GBM, and whether it could be a prognostic marker.\(^{107}\) They identified that miR-182 is a tumor suppressor, which could inhibit Bcl2L12, c-Met, and HIF2A, and subsequently could prevent GSC growth and stemness, and possibly improve GBM treatment response. The same results were observed in vivo. They demonstrated an association between miR-182 and GBM prognosis and suggested that miR-182 could suppress GSCs by inhibiting Bcl2L12, c-Met, and HIF2A.\(^{107}\)

miR-302-367 has been shown to play an important role in mesendoderm differentiation.\(^{108}\) In addition, miR-302-367 may also regulate stemness properties in stem cells of different origins.\(^{109,110}\) It was shown that stemness transcription factors, such as Oct4, Sox2, and...
Nanog, could regulate miR-302-367 in ESCs, as well as early development of murine cells. SDF1 can bind to CXCR4 to regulate various signaling pathways, such as PLC, PI3K/AKT, and MAPK, and to affect multiple cellular processes. CXCR4 is involved in proliferation and motility and could promote the aggressive phenotype of glioma, which explains its correlation with poor patient prognosis. In GSCs, the SHH-GLI-NANOG axis was shown to regulate proliferation and stemness. Fareh et al. investigated the role of the miR-302-367 cluster in GSCs. They used serum to suppress stemness in GSCs, and observed upregulation of the expression of this cluster. They found that miR-302-367 upregulation could inhibit the stemness and tumorigenicity of GSCs by suppressing CXCR4 and disrupting the SHH-GLI-NANOG pathway. They concluded that the miR-302-367 cluster suppressed GSC stemness and tumorigenicity by inhibiting CXCR4 and interfering with the SHH-GLI-NANOG pathway.

Table 1 lists some microRNAs that have been reported to be involved in CSCs, and GSCs in particular.

IncRNAs and CSCs in glioma

IncRNAs, through several mechanisms, are involved in metabolic reprogramming, cell proliferation, cell apoptosis, cell metastasis and invasión, cell-cycle and genomic instability, EMT and migration, cancer stemness, and drug resistance (Figure 3). The oncogenic function of the IncRNA NEAT1 has been shown in glioma and other tumors. Low levels of Let-7g-5p (a let-7 family member) have been reported in glioma patient samples, and higher levels may be predictive of better clinical outcomes in GBM. MAP3K1 has pro-oncogenic effects in glioma, gastric, and breast cancer by regulating proliferation and migration, as well as promoting tolerance to therapy. Bi et al. investigated the level and function of NEAT1 in GSCs. They observed higher levels of NEAT1 in GSCs, as well as in the serum of GBM patients. Suppression of NEAT1 was able to prevent GSCs from proliferating, migrating, and invading. Similar results were found after upregulation of let-7g-5p, which was identified as a direct target of NEAT1. Next, they found that let-7g-5p exerted its effects by targeting and inhibiting MAP3K1. Taken together, their data suggested that NEAT1 could promote GSC pro-oncogenic activity and TMZ tolerance by regulating the let-7g-5p/MAP3K1 pathway.

Esophageal squamous cell cancer and glioma have both been reported to show increased levels of MALAT1, miR-129-3p, miR-129-2-3p, and miR-129–5p are three important members of the miR-129 family, miR-129–5p has tumor-suppressor roles in various cancers, such as ovarian, breast, and glioma. In glioma, miR-129 overexpression showed an anti-oncogenic effect by regulating the Notch-1/E2F7/Beclin-1 pathway. SOX2 is regarded as a molecular signature of GSCs, as well as pluripotent stem cells. Xiong et al. examined the role of MALAT1 in GSCs and the interactions between this IncRNA with miR-129 and SOX2. Compared with regular (non-stem) glioma cells, GSCs showed higher levels of MALAT1, but lower levels of miR-129. MALAT1 inhibition could impair GSC proliferation by upregulating miR-129. miR-129 was found to target and inhibit SOX2. These effects were also observed in vivo. They concluded that MALAT1 could promote GSC tumorigenicity both in vitro and in vivo, by regulating the miR-129/ SOX2 axis.

IncRNA TP73-AS1 was found to be epigenetically downregulated in both oligodendroglioma and GBM. In addition, GBM patient prognosis was found to be positively correlated with TP73-AS1 levels. ALDH1A1 has been identified as a marker of GSCs, and is involved in GSC progression and therapy resistance. It was proposed that ALDH1A1 could interfere with the oxidative stress triggered by chemotherapeutic drugs and induce tolerance to treatment. Mazor et al. studied the effects of TP73-AS1 in GBM patients and GSCs. High levels of TP73-AS1 were observed in GBM patients and were correlated with poor clinical outcomes. They found that TP73-AS1 could attenuate the response of GSCs to TMZ treatment, which could be attributed to its ability to regulate ALDH1A1. Finally, they found a correlation between TP73-AS1 overexpression and poor clinical outcomes in GBM patients. They suggested that TP73-AS1 could enhance tumorigenicity in GSCs and reduce their sensitivity to TMZ by upregulating ALDH1A1.

XIST (X-inactive-specific transcript) is a IncRNA gene on the X chromosome of placental mammals, which produces an IncRNA to silence one of the paired X chromosomes in females. Aberrant XIST expression has been observed in several cancers, and its oncogenic effect may be explained by causing instability in the heterochromatin structure. Furthermore, IncRNA XIST may promote the viability of hematopoietic stem cells. Yao et al. investigated the role of XIST in human GSCs. They found that both glioma cells and GSCs had elevated levels of XIST. In vitro downregulation of XIST in GSCs reduced proliferation, migration, and invasion, while promoting apoptosis and suppressing oncogenesis. The same results were observed after XIST downregulation in a murine model. They identified miR-152 as a direct target of XIST to explain its function. miR-152 has been shown to exert anti-oncogenic effects in GSCs by regulating KLF4. In conclusion, they identified XIST as an oncogene whose suppression could reduce the oncogenesis of GSCs by upregulating miR-152.

Fibroblasts are a group of stromal cells in the tumor microenvironment (TME), which may promote tumor cell progression and metastasis. Cancer cells can progressively activate normal fibroblasts within their environment to form cancer-associated fibroblasts (CAFs). Because of the importance attributed to CAFs in the TME, investigating their potential as targets to treat gliomas is of increasing interest. There is an association between the CAF abundance in the TME and poor clinical outcomes. IncRNA HOTAIR1 shares the same location as HOX genes and has been reported to have pro-oncogenic or anti-oncogenic effects in various cancers by regulating HOXa genes. The anti-oncogenic effects of miR-133b have been proposed to be mediated by different molecules.
Table 1. Role of microRNAs in cancer stem cells

microRNA	Expression	Target	Model (in vitro, in vivo, human)	Ref.
miR-26a	↑	AP-2α	in vitro, in vivo	Huang et al.120
miR-93	↑ (Higher upregulation in PN GSCs than in MES GSCs)	BECN1/Beclin 1, ATG5, ATG4B, and SQSTM1/p62	in vitro, in vivo, human	Huang et al.121
miR-3940-5p	↓	CUL7, NF-κB	in vitro	Xu et al.122
miR-9-5p	↑	NAP1L1, FREM2	in vitro	Zottel et al.123
miR-124-3p	↓	SPRY1, NAP1L1, VIM	in vitro	Zottel et al.123
miR-21-5p	↓	VIM	in vitro	Zottel et al.123
miR-1-3p	↓	NCL	in vitro	Zottel et al.123
miR-30a	↓	NT5E/Akt signaling pathway	in vitro, in vivo	Peng et al.124
miR-150-5p	↓	Wnt/β-catenin pathway	in vitro, in vivo	Tian et al.125
miR-26a	↑	PTEN, PI3K/Akt	in vitro, in vivo	Wang et al.126
miR-504	↓	Grb10	in vitro	Bier et al.127
miR-486-5p	↑	PTEN, FoxO1	in vitro, in vitro	Lopez-Bertoni et al.128
miR-1300	↓	ECT2	in vitro, in vivo	Bouissou et al.129
miR-603	↓	IGF1, IGF1R	in vitro, in vivo	Ramakrishnan et al.130
miR-200b	↓	CD133/PI3K/Akt signaling axis	in vitro, in vivo	Liu et al.131
miR-107	↓	Notch2, MMP-12	in vitro, in vivo	Yuan et al.132
miR-302-367	↓	CXCR4/SDP1, SHH, cyclin D, cyclin A, E2F1	in vitro, in vivo	Fareh et al.133
miR-370-3p	↓	NEAT1, HMGA2, HIF1A	in vitro, in vivo	Lalli et al.134
miR-141	↓	Jagged1	in vitro, in vivo	Gao et al.135
miR-7-5p	↓	Yin Yang 1	in vitro, in vivo	Jia et al.136
miR-33a	↑	PDE8A → PKA	in vitro, in vivo	Wang et al., 2014144
miR-203	↓	BM1, SUZ12	in vitro	Deng et al.145
miR-128	↓	ARCG2	in vitro	Peruzzi et al.146
miR-145	↓	GADD45A	in vitro, in vivo	Shi et al.147
miR-148a	↑	Jak/STAT3, SOCS3	in vitro, in vivo	Cui et al.148
miR-30	↑		in vitro, in vivo	Che et al.149
miR-205	↓	E2F7	in vitro, in vivo	Huynh et al.150
miR-300	↑	hexokinase 2	in vitro, in vivo	Zhang et al.151
miR-143	↓		in vitro, in vivo	Zhao et al.152
miR-10b	↑	HuR/linRNA-p21/β-catenin axis	in vitro, in vivo	Guussous et al.153
miR-146-5p	↓	KITL, SEMA6D, NR2P2, THBS1	in vitro, in vivo	Yang et al.154
miR-124	↓		in vitro, in vivo	Marietta et al.155

(Continued on next page)
microRNA	Expression	Target	Model (in vitro, in vivo, human)	Ref.
miR-203	‡	KITL, SEMA6D, NRFP2, THBS1	in vitro, in vivo	Marisetty et al.154
miR-34a	‡	cyclin D1, c-myc, c-met, Ki-67 Bcl-2 Family	in vitro	Sun et al.155
miR-30b-3p	‡	RHOB	in vitro, in vivo	Yin et al.166
miR-135a	‡	Arhgef6	in vitro, in vivo	Hemmesi et al.157
miR-138	‡	CASP3, BLCAP, MXD1	in vitro, in vivo	Chan et al.158
miR-153	‡	Dvl-3	in vitro, in vivo	Zhao et al.,159
miR-146a	‡	NUMB	in vitro, in vivo	Puca et al.,160
miR-608	‡	MIF	in vitro, in vivo	Wang et al.,161
miR-10b	‡	P21, P16, BIM, PTBP2	in vitro, in vivo	El Fatimy et al.,162
miR340	‡	PLAT	in vitro, in vivo	Yamashita et al.,163
miR-34a	‡	c-Met, Notch	in vitro	Guessous et al.91
miR-20a/106a	‡	TIMP-2	in vitro, in vivo	Wang et al.,45
miR-21	‡	FASLG	in vitro, in vivo	Shang et al.,90
miR-135b	‡	ADAM12, SMAD5, GSK3b	in vitro, in vivo	Lulli et al.,164
miR-223	‡	PAX6, PI3K/Akt	in vitro, in vivo	Huang et al.,165
miR-153	‡	Dvl-3	in vitro, in vivo	Yang et al.,166
miR-125b	‡	POU3F2, SMARCA5	in vitro, in vivo	Wu et al.,167
miR-451	‡	Nrf-2/GPx1/ROS axis	in vitro, in vivo	Gal et al.,168
miR-124	‡	STAT3	in vitro, in vivo	Wei et al.,169
miR-134b	‡	MMP-12	in vitro, in vivo	Liu et al.,170
miR-218	‡	Bmi1, Wnt	in vitro, in vivo	Tu et al.,171
miR-23b	‡	HMGA2	in vitro, in vivo	Geng et al.,172
miR-296-5p	‡	HMGA1, Sox2	in vitro, in vivo	Lopez-Bertoni et al.,173
miR-125b-2	‡	Bax, Bcl-2, cytochrome c, Apaf-1, caspase-3, PARP	in vitro	Shi et al.,174
miR-198	‡	NNAT	in vitro, in vivo	Liu et al.,175
miRNA-155-5p	‡	BMP	in vitro	Liu et al.,175
miRNA-124-3p	‡	Smad2	in vitro, in vivo	Liu et al.,175
miR-455-3p	‡	Bak1	in vitro, in vivo	Tezcan et al.,176
miR-181b	‡	RTVP-1	in vitro, in vivo	Chen et al.,177
miR-125b	‡	E2F2	in vitro, in vivo	Bier et al.,178
miR-137	‡	CTGF, SPARC	in vitro, in vivo	Song et al.,179
Let-7b	‡	CDH1/β-catenin, Notch1/Akt	in vitro, in vivo	Lee et al.,180
miR-145	‡	BM11, E2F3	in vitro, in vivo	Song et al.,181
miR-92a-3p	‡	MIG6, BIM	in vitro, in vivo, human	Shan et al.,182
miR128-1	‡	MMP9	in vitro, in vivo	Kim et al.,183
miR-148a	‡	QKI-6/WTAP	in vitro, in vivo	Wan et al.,184
miR-125b	‡	Bcl2, CDK6, CCND1, CCNE1, SOX5	in vitro, in vivo	Li et al.,185
miR-181b	‡	Bcl2L12, c-Met, HIF2A	in vitro, in vivo, human	Tian et al.,94
miR-16	‡	KLFL4, LGALS3, MEK1/2, PI3K	in vitro, in vivo	Kouri et al.,107
miR-182	‡	–	in vitro, in vivo	Ma et al.,107
miR-152	‡	–	in vitro, in vivo	Xi et al.,107

(Continued on next page)
in different cancers, including HOTAIRM1. Wang et al. explored the interaction between GSCs and fibroblasts in TME, both in vitro and in vivo, and the underlying molecular pathways. GSCs were able to trigger fibroblasts to behave as malignantly transformed fibroblasts (t-FBs). They observed elevated levels of HOTAIRM1 in both glioma cells and t-FBs. In addition, a correlation between high HOTAIRM1 levels and poor clinical outcomes was observed in glioma patients. HOTAIRM1 knockdown suppressed
the pro-tumorigenic and malignant behavior of t-FBs, while the opposite effect was observed by HOTAIRM1 upregulation. At the molecular level, HOTAIRM1 was found to target and inhibit miR-133b-3p, which in turn upregulated TGF-β.

Table 2 lists some lncRNAs that have been reported to be involved in CSCs, and GSCs in particular.

Enhancer RNAs

Enhancer RNAs (eRNAs), a new subclass of lncRNAs, participate in the regulation process of gene transcription. A growing number of studies showed that eRNAs interact with transcription factors, RNA-binding proteins, and transcriptional coactivators, such as CBP/p300 and Bromodomain-containing protein 4. Another mechanism discovered to underlie eRNA functions is that eRNAs participate in transcription factor trapping to increase their local concentration at DNA at the site of transcription.

Based on the evidence, eRNAs play a critical role not only in cell development and homeostasis but also indirectly drive human diseases and differentiation. The most recent findings provide new insights into the characteristics and mechanisms of action of eRNAs, highlighting potentially broad roles of eRNA interactions in tumorigenesis and various cancer types. By modifying gene transcription and protein-RNA interactions, they can influence the expression of oncogenes and tumor-suppressor genes, as well as in abnormal cellular responses to external signals, such as inflammation, hypoxia, hormones, and other stimuli. Emerging studies also indicated the role of eRNAs in the regulation of key immune checkpoints and immune escape of tumor cells. For example, CCAT1, a super-enhancer-derived eRNA, induces PD-L1 expression via activating PI3K/AKT and RAS/MAPK pathways.

Many eRNAs were found to be significantly overexpressed in tumor samples when compared with adjacent normal tissues. Because of their cancer-specific pattern of expression, eRNAs are clinically relevant and can serve as diagnostic, prognostic, and treatment response biomarkers in cancer therapy. In this setting, thanks to the efforts of scientists who attempted to infer cancer-specific expression of eRNAs from RNA sequencing data collected in numerous cancer series around the world, a systematic mapping of eRNAs expressed in various types of cancer is now available. The expression profiles of those eRNAs may help in eliminating intratumor heterogeneity and improving the diagnosis and treatment of a variety of cancers. For instance, focally amplified lncRNA.

![Diagram showing the role of lncRNAs in regulating cancer cellular processes](image-url)
on chromosome 1 (FAL1) has been recognized as an oncogene in numerous cancers and its overexpression is usually associated with poor prognosis. It supports cell proliferation and facilitates EMT, migration, and invasion by modulating the PTEN/AKT pathway. In addition, FAL1 contributes to the growth and metastatic potential of cancer cells via STAT3 phosphorylation and phosphorylation of GSK-3β, a protein crucial in Wnt signaling pathway regulation.

Inflammatory signals have been shown to activate extensive programs of enhancer activation and eRNA production. Rahnamoun et al. revealed, in cancer cells, that p53 mutants abnormally activated a group of enhancers that control the expression of genes involved in various cellular processes.

LncRNA	Expression	Target	Model (in vitro, in vivo, human)	Ref.
TUG1	†	Nestin, miR-145, SOX2, MYC, PRC2 components (EZH2, SUZ12), YY1, BDNF, NGF, NTF3	in vitro, in vivo	Katsushima et al.
LINC00115	†	miR-200s, ZEB1, ZNF596/EZH2/STAT3 signaling pathway	in vitro	Tang et al.
MALAT1	†	miR-129-5p, HMGB1	in vitro	Yang et al.
Linc00152	†	miR-103a-3p/PEZF1/CDC25A axis	in vitro, in vivo	Yu et al.
GAS5	†	miR-196a-5p/FOXO1/PID1, MIIP pathway	in vitro, in vivo	Zhao et al.
HOTAI R1M1	†	HOX genes	in vitro, in vivo	Xia et al.
PCAT1	†	miR-129-5p, HMGB1	in vitro	Zhang et al.
NEAT1	†	miR-129-5p, HEK56	in vitro, human	Bi et al.
MALAT1	†	miR-129, SOX2	in vitro, in vivo	Xiong et al.
NEAT1	†	let-7c, NRAS	in vitro, in vivo	Gong et al.
TP3-AS1	†	ALDH1A1	in vitro, human	Manor et al.
CRNDE	†	miR-186-XIAP, PAK7	in vitro, in vivo	Zheng et al.
TALNEC2	†	miR-21, miR-191	in vitro, in vivo	Brodu et al.
NEAT1	†	miR-107, CDK6	in vitro, in vivo	Yang et al.
XIST	†	miR-152	in vitro, in vivo	Yao et al.
SNHG9	†	miR-326/SOX9	in vitro, in vivo	Wang et al.
Linc01060	†	MZF1/c-Myc/HIF1α	in vitro, in vivo, human	Li et al.
MIR22HG	†	miR-22-3p, miR-22-5p, SFRP2, PCDH15, Wnt/β-catenin	in vitro, in vivo, human	Han et al.
ASB16-AS1	†	E-cadherin, N-cadherin, vimentin, EMT	in vitro, human	Zhang et al.
IncRNA-ZNF281	†	NF-κB1	in vitro, in vivo	Li et al.
MALAT1	†	MRPl, Bcl-2, HSP70, IAPs, p53	in vitro, in vivo	Kim et al.
ENSG00000235427.1	†	CAV1	in vitro	Li et al.
ENSG00000261924.1	†	RPTOR	in vitro, in vivo	Li et al.
P2RX5-TAX1BP3	†	TAX1BP3	in vitro, in vivo	Li et al.
MALAT1	†	ERK/MAPK	in vitro, in vivo	Han et al.
lincRNA-ROR	†	KLF4	in vitro, in vivo	Feng et al.
HIF1A-AS2	†	IGF2BP2, DHX9, HMGA1	in vitro, in vivo, human	Li et al.
TUG1	†	EZH2	in vitro, in vivo	Minea et al.
HOXB-AS1	†	—	in vitro, in vivo, human	Cao et al.
H19	†	—	in vitro, in vivo, human	Shao et al.
SOX2OT	†	miR-194-5p, miR-122, SOX3, TDFG-1	in vitro, in vivo, human	Jiang et al.
RP11-279C4.1	†	miR-1273g-3p/CRB3	in vitro, in vivo	Su et al.
HOTAI R1M1	†	EZH2, LSD1, PDCD4, CCND1, CDK4	in vitro, in vivo	Wang et al.
MEG3	†	vimentin, β-actin, Src_pY527, FAK_pY397, caveolin-1, connexin-43, NDRG1_pT346	in vitro, in vivo, human	Buccarelli et al.
HOTAIM1	†	miR-133b-3p/TGF-β	in vitro, in vivo, human	Wang et al.
of enhancers in response to pro-inflammatory TNF-α signaling. 309 Co-binding of mutant p53 and NF-κB at these enhancers induced eRNA synthesis, one of which was necessary for the activation of key inflammation genes, such as C-C motif chemokine ligand 2 (CCL2). 310 As a result, eRNAs play a direct role in cancer cell immune response. Many other cancer-related signaling pathways, including the Wnt, Notch, and Hippo pathways, orchestrate nuclear events, such as chromatin remodeling and transcription factor/cofactor recruitment to function by enhancer control. 303

Lin et al. recently used the PreSTIGE computational pipeline to predict tissue-specific enhancer-derived RNAs and the underlying regulatory genes. 311 They chose three eRNAs for their significant prognostic values to construct a risk signature: CRNDE, LINC00844, and MRPS31P5. Pathway and gene ontology analyses revealed that the risk signature in glioma is associated with mRNA processing and splicing. Furthermore, they discovered that hub eRNAs may regulate the expression of a variety of splicing factors, including MOV10 and SEC31B, and are associated with prognosis-associated alteration splicing. The researchers developed a risk signature composed of three eRNAs that can be used as targets to accurately predict prognosis in glioma patients. 311 In another study, Guo et al., by functional enrichment analysis and immunogenicomic profiling, indicated that AC003092.1 as an immune-related eRNA is related to glioma-immunosuppressive microenvironment. 312

circular RNAs and CSCs in glioma

The circRNA Serpine2 is able to regulate the migration and invasion of glioma cells by modulating the expression of uPA and MMP-9/2. 313 It was also able to promote the transformation of preneoplastic lesions into medulloblastoma. 314 The tumor-suppressor role of miR-124-3p was also able to promote the transformation of preneoplastic lesions (CCL2). 310 As a result, eRNAs play a direct role in cancer cell immune response by enhancer control. 303

Circular RNAs	Expression	Target	Model (in vitro, in vivo, human)	Ref.
circPTN	↑	miR-145-5p/miR-330-5p	in vitro, in vivo	Chen et al. 316
Serpine2	↑	miR-124-3p/KIF20A	in vitro, in vivo	Li and Lan 317
circCHA1A	↑	FMRI1/circCHA1A/miR-211-5p/HOXC8, MDM2, p53	in vitro, in vivo, human	Jiang et al. 318
cMEIK	↑	miR-593/Ephb2	in vitro, in vivo	Zhou et al. 319
circATP5B	↑	miR-185-5p/HOXB5, JAK2/STAT3	in vitro, in vivo, human	Zhao et al. 320
circ-E-Cad (translatable)	↑	EGFR-STAT3	in vitro, in vivo, human	Gao et al. 321
circ-SMO (translatable)	↑	SMO	in vitro, in vivo, human	Wu et al. 322
cARF1	↑	miR-342-3p/ISL2	in vitro, in vivo, human	Jiang et al. 323

EGFR is reported to be highly expressed in about 50% of GBM tumors and has been recognized as an oncogene in GBM. 319,320 Many studies have attempted to target EGFR to treat GBM, but the results have not so far been very successful. 321-323 It has been found that circRNAs are readily translated 324 because they lack a stop codon in their structure. 325 Gao et al. investigated EGFR activity in GBM 326 and discovered an additional pathway for activating EGFR independent of EGF. In this pathway, C-E-Cad (a variant of E-cadherin) was found to act as a ligand for EGFR. C-E-Cad is translated from circ-E-Cad, a translatable circRNA with high expression levels in GSCs, which enhances their tumorigenicity. Moreover, the efficacy of anti-EGFR therapy was significantly increased by suppressing C-E-Cad expression. In conclusion, they identified C-E-Cad as an independent activating ligand for EGFR in GBM, which could be targeted to improve the efficacy of anti-EGFR therapy. 326

The Hedgehog (HH) signaling pathway is activated in various cancers and plays an important role in embryonic stem cells while it is silent in mature cells. 327-329 The HH network includes HH ligands (Shh, Ihh, and Dhh), as well as PTCH, SMO, and Gli proteins. 330 The HH pathway works as follows: first HH binds to PTCH to derepress SMO, then SMO prevents SUFU from inhibiting Gli1, and then the activated transcription factor Gli1 can regulate gene expression. Direct inhibition of SMO via PTCH has not yet been proven, but it has been found that cholesterol is needed to prevent PTCH from inhibiting SMO. In addition, cholesterol can endogenously activate SMO. 331 Nevertheless, the exact mechanism for PTCH suppression of SMO is elusive, and understanding this step could clarify the whole HH pathway. 332 Wu et al. explored the details of the HH pathway in GBM. 333 They discovered a new protein called SMO-193a.a, which affects the HH pathway. SMO-193a.a is translated from circ-SMO (a translatable circRNA) in GSCs. Knockdown of SMO-193a.a disrupted the HH pathway in GSCs and reduced their tumorigenic ability both in vitro and in vivo. In addition, Gli1 could target FUS to upregulate SMO-193a.a, and the HH pathway activity is maintained in GSCs via the Shh/Gli1/FUS/SMO-193a.a axis. Clinically speaking,
ncRNA	Type	Effect	Mechanism	Ref.
FOXD2-AS1	lncRNA	promoting stemness and proliferation	recruiting TAF-1 to the NOTCH1 promoter region	Wang et al. [339]
circ-Serpin2	lncRNA	promoting proliferation, migration, and invasion	circ-Serpin2 could upregulate KIF20A by sponging miR-124-3p	Li and Lan [18]
RBM5-AS1	lncRNA	promotes radioresistance in medulloblastoma	stabilization of SIRT6 protein	Zhu et al. [340]
TUG1	lncRNA	alleviated TMZ resistance and inhibited tumorigenicity	downregulating EZH2 expression	Cao et al. [291]
SNHG9	lncRNA	facilitates growth of GSCs	competitive endogenous RNA of miR-326 to elevate the expression of SOX9	Wang et al. [341]
RP11-279C4.1	lncRNA	functions as an oncogene that promotes tumour progression	modulating the miR-1273p-3p/CRX3 axis	Wang et al. [295]
TPTEP1	lncRNA	inhibits stemness and radioresistance	miR-106a-5p-mediated P38 MAPK signaling	Tang et al. [342]
LINC01057	lncRNA	promotes mesenchymal differentiation	activating NF-κB	Tang et al. [343]
NEAT1	lncRNA	promotes malignant phenotypes and TMZ resistance in GBM stem cells	MAP3K1, as a direct target of Iet-7p-5p, is positively regulated by NEAT1	Bi et al. [230]
SNHG20	lncRNA	promotes tumorigenesis and cancer stemness	activating PI3K/Akt/mTOR signaling pathway	Gao et al. [344]
TP73-AS1	lncRNA	promotes TMZ resistance	regulation of the expression of metabolism-related genes and ALDH1A1	Mazor et al. [248]
PCAT1	lncRNA	PCAT1 knockdown restrained the sphere-formation ability, increased the apoptosis rate and DNA damage under radiation treatment	increase the expression of miR-129-5p and decrease the expression of HMGB1	Zhang et al. [276]
MALAT1	lncRNA	siRNA against MALAT1 sensitizes GBM to TMZ	–	Kim et al. [285]
SOX2OT	lncRNA	knockdown of SOX2OT inhibits the malignant biological behaviors	upregulating the expression of miR-194-5p and miR-122	Su et al. [274]
TALNEC2	miRNA	increased tumorigenic potential of GSCs and their resistance to radiation	downregulation of miR-21 and miR-19	Gao et al. and Brodie et al. [141,278]
miR-103a	miRNA	decreased the radioresistance capability	suppressing the FGF2-XRCC3 axis	Gu et al. [242]
miR-139	miRNA	inhibitory functions on GSC stemness and tumorigenesis	inhibiting Wnt/β-catenin signalling	Li et al. [282]
miR-27a-5p	miRNA	enhanced the sensitivity of glioma stem cells to radiotherapy	shFOSL1-inhibited miR-27a-5p expression	Li et al. [246]
miR-944	miRNA	reduces glioma growth and angiogenesis	inhibiting AKT/ERK signalling	Jiang et al. [270]
miR-128, miR-30a	miRNA	enhances senescence-associated cytotoxicity of axitinib to overcome drug resistance	–	Cardoso et al. [247]
miR-30b-3p	miRNA	confer TMZ resistance	directly targeting RHOB	Yin et al. [176]
miR-146b-5p	miRNA	suppresses the malignant phenotype	miR-146b-5p inhibited SMARC5 expression and inactivated a TGF-β pathway	Wang et al. [247]
mir-370-3p	miRNA	inhibiting glioma cell growth, migration, and invasion	targeting the NEAT1, HMG2A, and HIF1A	Lulli et al. [149]
miR-603	miRNA	simultaneously promoted the CSC state and upregulated DNA repair to promote acquired resistance	targeting IGF1 and IGF1R	Ramakrishnan et al. [136]
miR-27a-3p, miR-22-3p, miR-221-3p	miRNA	exacerbated radiotherapy resistance	targeting CHD7	Zhang et al. [248]
miR-486-5p	miRNA	enhanced the self-renewal capacity	miR-486-5p as a Sox2-induced miRNA that targets the tumor-suppressor genes PTEN and FoxO1	Lopez-Bertoni et al. [34]
miR-30a	miRNA	suppresses self-renewal and tumorigenicity	blocking the NT5E-dependent Akt signaling pathway by targeting the NT5E	Peng et al. [244]
SMO-193a.a protein expression is more specific for GBM than SMO RNA expression and is better correlated with Gli1 levels. Furthermore, they also observed a correlation between SMO-193a.a levels and a poor prognosis in GBM patients. They concluded that SMO-193a.a could be translated from circSMO to increase the oncogenic capacity of GSCs via induction of the HH pathway.333

Recently, significant overexpression of circSCAF11 was discovered in glioma tissues and cell lines, and ectopic upregulation of circSCAF11 was found to be closely related to glioma patients’ poor clinical outcome.334

Table 3 lists some circRNAs that have been reported to be involved in CSCs, and GSCs in particular.

ncRNA	Type	Effect	Mechanism	Ref.
miR-124	miRNA	promotes a stem-like to neuronal transition, with reduced tumorigenicity and increased radiation sensitivity	targeting the SOX9 and inhibition of ERK1/2	Sabelström et al. 349
miR-181d	miRNA	interferes in the GBM CSC response to treatment with TMZ and ionizing radiation	miR-181d associated with the methylation status of the MGMT	Lizarte Neto et al. 350
miR-93	miRNA	enhanced the activity of IR and TMZ against GSCs	simultaneous inhibition of multiple autophagy regulators, including BECN1/Beclin 1, ATG5, ATG4B, and SQSTM1/p62	Huang et al. 121
miR-7-5p	miRNA	suppresses stemness and enhances TMZ sensitivity of drug-resistant GBM	targeting Yin Yang 1 (YY1)	Jia et al. 342
miR-186	miRNA	reverses cisplatin resistance and inhibits the formation of the GBM	degrading Yin Yang 1	Li et al. 371
miR-29a	miRNA	improved sensitivity to cisplatin	–	Yang et al. 375
miR-132	miRNA	induces TMZ resistance and promotes the formation of CSC phenotypes	targeting TUSC3	Cheng et al. 373
miR-223	miRNA	increase the sensitivity of glioma to TMZ	regulating PI3K/Akt signaling pathway	Huang et al. 382
let-7g-5p	miRNA	inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes	targeting VSIG4	Zhang et al. 225
miR-146b-5p	miRNA	attenuates stemness and radioresistance	targeting HuR/lincRNA-p21/β-catenin pathway	Yang et al. 377
miR-218-5p	miRNA	inhibits the stem cell properties and invasive ability	reduced stem cell marker (A2B5, nestin, PLAGL2, ALDH1 and Sox2) expression	Wu et al. 196
miR-125b	miRNA	sensitize TMZ-induced anti-glioma stem cancer effects	inactivation of Wnt/β-catenin signaling pathway	Shi et al. 374
miR-153	miRNA	decreased radioresistance and stemness	targeting Nrf2/GPx1/ROS pathway	Yang et al. 376
miR-30	miRNA	promotes glioma stem cells	decreased the expression of suppressor of cytokine signaling 3 (SOCS3) expression	Che et al. 148
miR-210	miRNA	miR-210 knockdown decreases hypoxic glioma stem cells stemness and radioresistance	–	Yang et al. 375
miR-455-3p	miRNA	TMZ resistance	–	Tercan et al. 179
miR-125b	miRNA	enhance the chemosensitivity of GBM stem cells to TMZ	targeting Bak1	Chen et al. 177
miR-125b	miRNA	inhibition of miR-125b enhance sensitivity of GSCs to TMZ	targeting PIA53	Shi et al. 209
miR-17	miRNA	decreased cell proliferation and drug resistance	repress MDM2	Li and Yang 356
miR-23b	miRNA	enhanced the sensitivity to TMZ	–	Geng et al. 172
miR-145	miRNA	reduced chemoradioresistance	targeting Oct4 and Sox2	Yang et al. 377
miR-125b-2	miRNA	resistance to TMZ	mitochondrial pathway of apoptosis	Chan et al. 375
miR-9	miRNA	suppression of miR-9 confer stemness potential and chemoresistance	induces SOX2	Jeon et al. 358
miR-328	miRNA	decrease the chemoresistance	targeting ABCG2	Li et al. 379

SMO-193a.a protein expression is more specific for GBM than SMO RNA expression and is better correlated with Gli1 levels. Furthermore, they also observed a correlation between SMO-193a.a levels and a poor prognosis in GBM patients. They concluded that SMO-193a.a could be translated from circSMO to increase the oncogenic capacity of GSCs via induction of the HH pathway.333

Recently, significant overexpression of circSCAF11 was discovered in glioma tissues and cell lines, and ectopic upregulation of circSCAF11 was found to be closely related to glioma patients’ poor clinical outcome.334

Table 3 lists some circRNAs that have been reported to be involved in CSCs, and GSCs in particular.

Conclusions

The properties of stem cells are self-regeneration and differentiation into several lineages of normal cells, but CSCs may be caused by
disturbance of these properties. The presence of CSCs in a tumor causes metastasis to spread more readily. In the brain, the rate and developmental timing of neurogenesis can be changed by the differentiation and self-renewal of cortical progenitor cells. The main reason for the development of glioma is a failure of cellular differentiation, but there is also evidence that aberrant epigenetic mechanisms involving ncRNAs are involved in glioma development. NcRNAs can regulate cellular signaling in CSCs and glioma cells. However, more research into the exact pathways and mechanisms of action of ncRNAs in CSCs and glioma is required to develop a more effective therapy for glioma patients. Recently, new studies have revealed the role of IncRNAs in embryonic pluripotency and self-renewal potential, but there is still a need for more studies into the exact role of ncRNAs in the transformation process, CSC therapy resistance, and maintaining stemness. Thus, ncRNAs could allow us to eventually achieve more success in glioma treatment. These in-depth studies of ncRNA biology will ultimately yield further insight into the molecular mechanisms of tumorigenesis, and lead to the development of improved therapeutic strategies against glioma, which are urgently needed. A summary of the function of glioma stem cell ncRNAs and its mechanism is given in Table 4.

AVAILABILITY OF DATA AND MATERIAL
The primary data for this study are available from the authors on request.

ACKNOWLEDGMENTS
M.R.H. was supported by US NIH grants R01AI050875 and R21AI121700.

AUTHOR CONTRIBUTIONS
H.M. was involved in conception, design, statistical analysis, and drafting of the manuscript. A.R., M.K., S.R., F.D., Seyed Mohammad Ali Mirazimi, Seyed Mohammad Amin Mahdian, M.H., M.R.H., A.F., O.R.T., and A.J. contributed to data collection and manuscript drafting. M.R.H. critically revised the manuscript. All authors approved the final version for submission.

DECLARATION OF INTERESTS
M.R.H. declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc., Cleveland, OH; Hologenix Inc. Santa Monica, CA; Vielight, Toronto, Canada; JOOVV Inc., Minneapolis-St. Paul MN. Consulting; USHIO Corp., Japan; Sanoﬁ-Aventis Deutschland GmbH, Frankfurt am Main, Germany. The other authors declare no competing interests.

REFERENCES
1. Östrem, Q.T., Ciodi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., and Barnholtz-Sloan, J.S. (2019). CBTRUS statistical report: primary brain and other nervous system tumors diagnosed in the United States in 2012-2016. Neuro. Oncol. 21, v1–v100.
2. Louis, D.N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W. (2016). The 2016 world health organization classiﬁcation of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820.
3. Patterson, J., Wongsuratwat, T., and Rodriguez, A. (2020). A glioblastoma genomics primer for clinicians. Med. Res. Arch. 8.
4. Birney, E., Stamatoyannopoulos, J.A., Guigó, R., Margulies, E.H., Koch, C.M., Thurman, R.E., Taylor, C.M., Snyder, M., Malhotra, A., Greenbaum, J.A., et al. (2007). Identiﬁcation and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.
5. Kapranov, P., Willingham, A.T., and Gingeras, T.R. (2007). Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423.
6. Tamtaji, O.R., Derakhshian, M., Rashidi Noshadab, F.Z., Razavijan, J., Hadavi, R., Jalalpour, H., Jafari, A., Rajabi, A., Hamblin, M.R., Mahabady, M.K., et al. (2021). Non-coding RNAs and brain tumors: insights into their roles in apoptosis. Front. Cell Dev. Biol. 9, 792185.
7. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.
8. Medina, P.P., and Slack, F.J. (2008). microRNAs and cancer: an overview. Cell Cycle 7, 2485–2492.
9. Gangaraju, V.K., and Lin, H. (2009). MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10, 116–125.
10. Chen, J., Chen, T., Zhu, Y., Li, Y., Zhang, Y., Wang, Y., Li, X., Xie, X., Wang, J., Huang, M., et al. (2019). cir-PTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J. Exp. Clin. Cancer Res. 38, 398.
11. Esteller, M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874.
12. Wapinski, O., and Chang, H.Y. (2011). Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361.
13. Hu, W., Alvarez-Dominguez, J.R., and Lodish, H.F. (2012). Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 13, 971–983.
14. Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z., and Chen, Y. (2013). Long noncoding RNA: a new player in cancer. J. Hematol. Oncol. 6, 37.
15. Bonavia, R., Inda, M.d.M., Cavenee, W.K., and Furnari, F.B. (2011). Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 71, 4055–4060.
16. Meacham, C.E., and Morrison, S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337.
17. Lathia, J.D., Mack, S.C., Mullearns-Hubert, E.E., Valentim, C.L.L., and Rich, J.N. (2015). Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217.
18. Pastrana, E., Silva-Vargas, V., and Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 7, 486–498.
19. Lee, J., Pottré, R.O., Stenberg, P.O., and Symonds, G.G. (2009). MicroRNAs and cancer: an overview. Cell Cycle 8, 3830–3837.
20. Merlo, L.M.F., Pepper, J.W., Reid, B.J., and Maley, C.C. (2006). Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935.
21. Mouriaux, F., Zaniolo, K., Bergeron, M.A., Weidmann, C., De La Foucheardière, A., Fournier, F., Droit, A., Mercie, M.W., Landreville, S., and Guérin, S.L. (2016). Effects of long-term serial passaging on the characteristics and properties of cell lines derived from uveal melanoma primary tumors. Invest. OphthalmoL Vis. Sci. 57, 5288–5301.
22. Pollard, S.M., Yoshikawa, K., Clarke, I.D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., et al. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 568–580.
23. Cheng, Y.K., Beroukhim, R., Levine, R.L., Mellinghoff, I.K., Holland, E.C., and Michor, F. (2012). A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. Plos Comput. Biol. 8, e1002337.
24. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hise, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396–401.
25. Galli, R., Binda, E., Orfanelli, U., Cipolletti, B., Gritti, A., De Vitis, S., Fiocchi, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of...
tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021.

26. Singh, S.K., Clarke, J.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., Dirks, P.B., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.

27. Mccord, A.M., Jamal, M., Williams, E.S., Camphausen, K., and Tolilon, P.J. (2009). CD133+ glioblastoma stem-like cells are radioresistant with a defective DNA damage response compared with established cell lines. Clin. Cancer Res. 15, 5145–5153.

28. Dirks, P.B. (2010). Brain tumor stem cells: the cancer stem cell hypothesis writ large.

29. Pallini, R., Ricci-Vitiani, L., Banna, G.L., Signore, M., Lombardi, D., Todaro, M., Stassi, G., Martini, M., Maira, G., Larocca, L.M., and De Maria, R. (2008). Nestin functions as a tumor suppressor in glioblastoma stem cells by targeting Krüppel-like factor 4. Cancer Lett.

30. Zhang, M., Song, T., Yang, L., Chen, R., Wu, L., Yang, Z., and Fang, J. (2008). Overexpression of tissue inhibitor of metalloproteinases-2 by retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 68, 443–453.

31. Persano, L., Rampazzo, E., Basso, G., and Viola, G. (2013). Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev. Biol. 370, 305–312.

32. Discan, V., Foerch, C., Schäfer, K., Koeritz, J., Huelsmeyer, V., Zimmer, C., Ringel, F., Gempt, J., and Schlegel, J. (2014). Hypoxia upregulates aldheyde dehydrogenase isoform 1 (ALDH1) expression and induces functional stem cell characteristics in human glioblastoma cells. Brain Tumor Pathol. 31, 162–171.

33. Zhang, M., Song, T., Yang, L., Chen, R., Wu, L., Yang, Z., and Fang, J. (2008). Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J. Exp. Clin. Cancer Res. 27, 85.

34. Bjoerkvig, R., Tysnes, B.B., Aboody, K.S., Najbauer, J., and Terzis, A.J.A. (2005). Cancer stem cell hierarchy in glioblastoma multiforme. Brain. 128, 85–95.

35. Jo, K., Jeon, S., Shin, Y., Yoon, J., Park, S., and Lee, J. (2010). The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome. J. Neurooncol. 91, 775–781.

36. Flusberg, B.A., and Gallicano, G.I. (2009). miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev. Biol. 326, 431–444.

37. Gong, P., Iwasaki, M., Somervaille, T.C.P., Picara, F., Carico, C., Arnold, C., Chen, C.-Z., and Cleary, M.L. (2010). The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 70, 3833–3842.

38. Imren, S., Kohn, D.B., Shimada, H., Blavier, L., and Declerck, Y.A. (1996). Overexpression of tissue inhibitor of metalloproteinases-2 by retroviral-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res. 56, 2891–2895.

39. Albini, A., Melchiori, A., Santì, L., Liotta, L.A., Brown, P.D., and Steller-Stevenson, W.G. (1991). Tumor cell invasion inhibited by TIMP-2: J. Natl. Cancer Inst. 83, 775–779.

40. Declerck, Y.A., Yean, T.D., Chan, D., Shimada, H., and Langley, K.E. (1991). Inhibition of tumor invasion of smooth muscle cell layers by recombinant human metalloproteinase inhibitor. Cancer Res. 51, 2151–2157.

41. Feng, B., Dong, T.T., Wang, L.L., Zhou, H.M., Zhao, H.C., Dong, F., and Zheng, M.H. (2012). Colorectal cancer migration and invasion initiated by microRNA-106a.

42. Xiao, B., Guo, J., Miao, Y., Jiang, Z., Huan, R., Zhang, Y., Li, D., and Zhong, J. (2009). Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta 406, 97–102.

43. Iqbal, J., Shen, Y., Liu, Y., Fu, K., Jaffe, E.S., Liu, C., Liu, Z., Lachet, C.M., Deffebacher, K., Greiner, T.C., et al. (2012). Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood 119, 4939–4948.

44. Dai, D.-W., Lu, Q., Wang, L.-X., Zhao, W.-Y., Cao, Y.-Q., Li, Y.-N., Han, G.-S., Liu, G.-X., and Zhang, Y.-L. (2009). Oncogenic miR-20a and miR-106a enhance the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34, 1407–1419.

45. Volinia, S., Calin, G.A., Liu, C.-G., Ambos, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103, 2257–2261.

46. Mendell, J.T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell 133, 217–222.

47. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. nature 435, 834–838.

48. Zhang, L., Wang, B., Shi, Y., Xu, C., Xiao, H.L., Ma, L.N., Xu, S.L., Yang, L., Wang, Q.L., Dang, W.Q., et al. (2015). MicroRNA-106a enhances invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34, 1407–1419.

49. Volinia, S., Calin, G.A., Liu, C.-G., Ambos, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 103, 2257–2261.
63. Xu, Q., Ahmed, A.K., Zhu, Y., Wang, K., Lv, S., Li, Y., and Jiang, Y. (2018). Oncogenic MicroRNA-20a is downregulated by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma. Biochem. Biophys. Res. Commun. 499, 882–888.

64. Wang, Z., Wang, B., Shi, Y., Xu, C., Xiao, H.L., Ma, L.N., Xu, S.L., Yang, L., Wang, Q.L., Dang, W.Q., et al. (2015). Oncogenic miR-20a and miR-106a enhances the invasiveness of human glioma stem cells by directly targeting TIMP-2. Oncogene 34, 1407–1419.

65. Wang, B., Yu, S.-C., Jiang, I.-Y., Porter, G.W., Zhao, L.-T., Wang, Z., Tan, H., Cui, Y.-H., Qian, C., Ping, Y.-F., and Bian, X.w. (2011). An inhibitor of arachidonate 5-lipoxygenase, Nordy, induces differentiation and inhibits self-renewal of glioma stem-like cells. Stem Cell Rev. Rep. 7, 458–470.

66. Bian, X.W., Xu, J.P., Ping, Y.F., Wang, Y., Chen, J.H., Xu, C.P., Wu, Y.Z., Wu, J., Zhou, X.D., Chen, Y.S., et al. (2008). Unique proteomic features induced by a potential antiangioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics 8, 484–494.

67. Chen, J.-H., Bian, X.-W., Yao, X.-H., Gong, W., Hu, J., Chen, K., Iribarren, P., Zhao, W., and Zhou, X.-D. (2006). Nordy, a synthetic lipoxigenase inhibitor, inhibits the expression of formylpeptide receptor and induces differentiation of malignant glioma cells. Biochem. Biophys. Res. Commun. 342, 1368–1374.

68. Li, Y.-L., Wang, J., Zhang, C.-Y., Shen, Q.-Y., Wang, H.-M., Ding, L., Gu, Y.-C., Lou, J.-T., Zhao, X.-T., Ma, Z.-L., and Jin, Y.X. (2016). MR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget 7, 59287–59298.

69. Huang, Y., Tao, T., Liu, C., Guan, H., Zhang, G., Ling, Z., Zhang, L., Lu, K., Chen, S., Xu, B., and Chen, M. (2017). Upregulation of miR-146a by Y11 depletion correlates with delayed progression of prostate cancer. Int. J. Oncol. 50, 421–431.

70. Wang, X., Tang, S., Le, S.-Y., Lu, R., Rader, J.S., Meyers, C., and Zheng, Z.-M. (2008). Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PloS one 3, e2557.

71. Hung, P.-S., Chang, K.-W., Kao, S.-Y., Chu, T.-H., Liu, C.-J., and Lin, S.-C. (2012). Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma is required for cancer cell growth. PloS one 3, e2910164.

72. Shimoyamada, H., Fujiwara, M., Endo, T., Aoki, I., and Yazawa, T. (2013). POU domain transcription factor 1c (POU1F1) is required for neurogenesis, molecular identity, and migratory preference neurogenesis, molecular identity, and migratory preference. J. Neurosci. 33, 10600–10613.

73. Bishop, J.L., Thaper, D., Vahid, S., Davies, A., Ketola, K., Kuruma, H., Jana, R., Nip, K.M., Angeles, A., Johnson, F., et al. (2017). The master neuronal transcription factor BRN2 is an androgen receptor–suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71.

74. Dominguez, M.H., Ayoub, A.E., and Raksic, P. (2013). POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb. Cortex 23, 2632–2643.

75. Ishii, J., Sato, H., Sakaeda, M., Shishido-Hara, Y., Hiramatsu, C., Kama, H., Shimoyamada, H., Fujimura, M., Endo, T., Aoki, I., and Yazawa, T. (2013). POU domain transcription factor BRN 2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer. Pathol. Int. 63, 158–168.

76. Boyle, G.M., Woods, S.L., Bonazzi, V.F., Stark, M.S., Hacker, E., Aoude, L.G., Dutton-Regester, K., Cook, A.L., Sturm, R.A., and Hayward, N.K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 24, 525–537.

77. Pinner, S., Jordan, P., Sharrock, K., Baxley, L., Collinsin, L., Marias, R., Bonvin, E., Goding, C., and Sahai, E. (2009). Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res. 69, 7969–7977.

78. Bishop, J.L., Thaper, D., Vahid, S., Davies, A., Ketola, K., Kuruma, H., Jana, R., Nip, K.M., Angeles, A., Johnson, F., et al. (2017). The master neuronal transcription factor BRN2 is an androgen receptor–suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71.

79. Frederick, M.I., Siddika, T., Zhang, P., Balasuriya, N., Turk, M.A., O’donoghue, P., and Heinemann, I.U. (2022). miRNA-dependent regulation of AKT1 phosphorylation. Cells 11.
to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int. J. Cancer 133, 544–555.
99. Huang, X., Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2, 681–693.

100. Stommel, J.M., Kimmelman, A.C., Ying, H., Nabouilllin, R., Ponugot, A.H., Wiedemeyer, R., Stegh, A.H., Bradner, J.E., Ligon, K.L., Brennan, C., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290.

101. (2008). Comprehensive genomic characterization defines core pathways. Nature 455, 1061–1068.

102. Boccaccio, C., and Comoglio, P.M. (2006). Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat. Rev. Cancer 6, 637–645.

103. Boccaccio, C., and Comoglio, P.M. (2013). The MET oncogene in glioblastoma stem cell: implications as a diagnostic marker and a therapeutic target. Cancer Res. 73, 3193–3199.

104. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., Shi, Q., Cao, Y., Shi, Y., Sun, G., Zhao, C., and Stewart, R. (2008). Neural stem cell self-renewal. Crit. Rev. Oncol. Hematol. 65, 43–53.

105. Bier, A., Hong, X., Cazacu, S., Goldstein, H., Rand, D., Xiang, C., Wang, W., Vaubel, M., Polacci, M., Laithy, R., Prints, I., Brand, D., et al. (2013). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 23, 165–172.

106. ARCHER, T.K. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells: implications as a diagnostic marker and a therapeutic target. Cancer Res. 68, 6426–6438.

107. Fech, M., Turchi, L., Viroille, V., Debruyne, D., Almairac, F., De-La-Forest Divonne, S., Paquis, P., Preynat-Seauve, O., Krause, K.H., Clini-Rheuss, H., and Viroille, T. (2012). The miR-30-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI1-NANOG network. Cell Death Differ. 19, 232–244.

108. Huang, W., Zheng, Z., Luo, C., Xiao, Y., Li, L., Zhang, X., Yang, L., Xiao, K., Ning, Y., Chen, L., et al. (2019). The miR-26a/AF-2/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Thromarsis 9, 5497–5516.

109. Huang, T., Wan, X., Alvarez, A.A., James, C.D., Song, X., Yang, Y., Sastry, N., Nakano, I., Sulman, E.P., Hu, B., and Cheng, S.Y. (2019). MIIR93 (microRNA-93) regulates tumorigenicity and chemotherapy response of glioblastoma by targeting autophagy. Autophagy 15, 1100–1111.

110. Xu, J., Zhang, Z., Qian, M., Wang, S., Qiu, W., Chen, Z., Sun, Z., Xiong, Y., Wang, C., Sun, X., et al. (2020). Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-kB activation. J. Exp. Clin. Cancer Res. 39, 59.

111. Zottel, A., Samec, N., Kump, A., Razpor Dall’oloi, L.R., PuZar Dominikus, P., Romih, R., Huddokin, S., Miklar, J., Nikitin, D., Sorokin, M., et al. (2020). Analysis of miR-9-5p, miR-124-3p, miR-21-5p, miR-138-5p, and miR-1-3p in glioblastoma cell lines and extracellular vesicles. Int. J. Mol. Sci. 21, 28491.

112. Peng, L., Ming, Y., Zhang, L., Zhou, J., Xiang, W., Zeng, S., He, H., and Chen, L. (2020). MicroRNA-30a suppresses self-renewal and tumorigenicity of glioma stem cells by blocking the NTSE-dependent Akt signaling pathway. Faseb J 34, 5128–5143.

113. Tian, W., Zhu, W., and Jiang, J. (2020). miR-150-5p suppresses the stem cell-like characteristics of glioma cells by targeting the Wnt/b-catenin signaling pathway. Cell Biol. Int. 44, 1156–1167.

114. Alrfaei, B.M., Clark, P., Vemuganti, R., and Kuo, J.S. (2020). MicroRNA miR-100 decreases glioblastoma growth by targeting SMARC5 and ErbB3 in tumor-initiating cells. Technol. Cancer Res. Treat. 19, 1533033820960748.

115. Wang, H., Yan, L., Dong, X., Liu, J., Jiang, Q., Li, H., Shi, J., Yang, X., Dai, X., Qian, Z., and Dong, J. (2020). MiR-146b-5p suppresses the malignancy of GSC/MSC fusion cells by targeting SMARC5. Aging (Albany NY) 12, 13647–13667.

116. Jiang, Y., Zhou, J., Zhao, J., Hou, D., Zhang, H., Li, L., Zou, D., Hu, J., Zhang, Y., and Jing, Z. (2020). MiR-18a-downregulated RORA inhibits the proliferation and tumorigenesis of glioma using the TNF-α-mediated NF-kB signaling pathway. EBioMedicine 52, 102651.

117. Qian, C., Wang, B., Zou, Y., Zhang, Y., Hu, X., Sun, W., Xiao, H., Liu, H., and Shi, L. (2019). MicroRNA 454 enhances chemosensitivity of glioblastoma stem cells to methotrexycurcumin. Cancer Manag. Res. 11, 6829–6840.

118. Yang, Y., Dodbele, S., Park, T., Glass, R., Bhat, K., Sulman, E.P., Zhang, Y., and Abounader, R. (2019). MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. J. Neurooncol. 145, 23–34.

119. Kang, D.W., Hwang, W.C., Noh, Y.N., Park, K.S., and Min, D.S. (2020). Phospholipase D1 inhibition sensitizes glioblastoma to temozolomide and suppresses its tumorigenicity. J. Pathol. 252, 304–316.

120. Wang, Z.F., Liao, F., Wu, H., and Dai, J. (2019). Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvesse endothelial cells in glioma. J. Exp. Clin. Cancer Res. 38, 201.

121. Bier, A., Hong, X., Cazacu, S., Goldstein, H., Rand, D., Xiang, C., Wang, W., Ben-Asher, H.W., Attia, M., Brodie, A., et al. (2020). miR-504 modulates the stemness and mesenchymal transition of glioma stem cells and their interaction with microglia via delivery by extracellular vesicles. Cell Death Differ. 11, 899.

122. Lopez-Bertoni, H., Kotchetkov, I.S., Mihelson, N., Borges, I., and Laterra, J. (2020). A sox2:miR-486-5p Axis regulates survival of GBM cells by inhibiting tumor suppressor networks. Cancer Res. 80, 1644–1655.

123. Bousinot, M., King, H., Adams, M., Higgins, J., Shaw, G., Ward, T.A., Steele, L.P., Tams, D., Morton, R., Polson, E., et al. (2020). Profiling cytokytic microRNAs in pediatric and adult glioblastoma cells by high-content screening, identification, and validation of miR-1300. Oncogene 39, 5292–5306.

124. Ramakrishnan, V., Xu, B., Aker, J., Nguyen, T., Ma, J., Dhawan, S., Ying, J., Mao, Y., Hua, W., Kokkoli, E., et al. (2020). Radiation-induced extracellular vesicle (EV)
release of miR-603 promotes IGFl-mediated stem cell state in glioblastomas. EBioMedicine 55, 102736.

137. Liu, A., Yu, Q., Peng, Z., Huang, Y., Diao, S., Cheng, J., Wang, W., and Hong, M. (2017). miR-200b inhibits CD133(+) glioma cells by targeting the AKT pathway. Oncol Lett 13, 4701–4707.

138. Yuan, X., Yu, L., Li, X., Geng, R., Zhang, L., Chen, J., Meng, Q., Irving, A.T., Wang, D., et al. (2013). ATF3 suppresses metastasis of bladder cancer by regulating gelosin-mediated remodeling of the actin cytoskeleton. Cancer Res. 73, 3625–3637.

139. Fareh, M., Almaric, F., Turchi, L., Burel-Vandenbos, F., Paquis, P., Fontaine, D., Lucas-Gervais, S., Junier, M.P., Chinwehiss, H., and Virolle, T. (2017). Cell-based therapy using miR-302-367 expressing cells repress glioblastoma growth. Cell Death Dis. 8, e2713.

140. Lulli, V., Buccarelli, M., Ilari, R., Castellani, G., De Dominicis, C., Di Giambardino, A., D Alessandris, Q.G., Giannetti, S., Martini, M., Stumpo, V., et al. (2020). Mir-370-3p impairs glioblastoma stem-cell like malignancy regulating a complex interplay between HMGA2/HIF1A and the oncogenic long non-coding RNA (IncRNA) NEAT1. Int. J. Mol. Sci. 21, E3610.

141. Gao, X., Zhu, X., Sun, Y., and Liu, J. (2017). MicroRNA-141 inhibits the self-renewal of glioblastoma stem cells via Jagged1. Mol. Med. Rep. 16, 167–173.

142. Jia, B., Liu, W., Gu, J., Wang, J., Lv, W., Zhang, W., Hao, Q., Pang, Z., Mu, N., Zhang, W., and Guo, Q. (2019). MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting Yin Yang 1. Exp. Cell Res. 375, 73–81.

143. Wang, H., Sun, T., Hu, J., Zhang, R., Yao, R., Wang, S., Chen, R., Melconn, R.E., Friedman, A.H., Keir, S.T., et al. (2014). miR-33a promotes glioma-initiating cell self-renewal via PAKA and NOTCH pathways. J. Clin. Invest. 124, 4489–4502.

144. Deng, Y., Zhu, G., Luo, H., and Zhao, S. (2016). MicroRNA-203 as a stemness inhibitor of glioblastoma stem cells. Mol. Cells 39, 619–624.

145. Peruzzi, P., Bronisz, A., Nowicki, M.O., Wang, Y., Ogawa, D., Price, R., Nakano, I., Kwon, C.H., Hayes, J., Lawler, S.E., et al. (2013). MicroRNA-124 coordinates targeting Polycomb Repressor Complexes in glioma stem cells. Neuro. Oncol. 15, 1212–1224.

146. Shi, L., Wang, Z., Sun, G., Wan, Y., Guo, J., and Fu, X. (2014). miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. NeuroMolecular Med. 16, 517–528.

147. Cui, D., Sajan, P., Shi, J., Shen, W., Wang, K., Deng, X., Zhou, L., Hu, P., and Gao, L. (2017). MiR-144a increases glioma cell migration and invasion by downregulating GADD45A in human gliomas with IDH1 R132H mutations. Oncotarget 8, 25345–25361.

148. Che, S., Sun, T., Wang, J., Hao, Y., Wang, C., Meng, Q., Qi, W., and Yan, Z. (2015). miR-30 overexpression promotes glioma stem cells by regulating Jak/STAT3 signaling pathway. Tumour Biol. 36, 6805–6811.

149. Huhyn, T.T., Lin, C.M., Lee, W.H., Wu, A.T.H., Lin, Y.K., Lin, Y.F., Yeh, C.T., and Wang, L.S. (2015). Pterostilbene suppressed irradiation-resistant glioma stem cells confer temozolomide resistance on glioblastoma cells by delivering miR-30b-3p. Theranostics 5, 2737–2746.

150. Huynh, T.T., Lin, C.M., Lee, W.H., Wu, A.T.H., Lin, Y.K., Lin, Y.F., Yeh, C.T., and Wang, L.S. (2015). Pterostilbene suppressed irradiation-resistant glioma stem cells confer temozolomide resistance on glioblastoma cells by delivering miR-30b-3p. Theranostics 5, 2737–2746.

151. Wang, Z., Xue, Y., Wang, P., Zhu, J., and Ma, J. (2016). MiR-608 inhibits the migration and invasion of glioma stem cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

152. Lulli, V., Buccarelli, M., Martini, M., Signore, M., Biffoni, M., Giannetti, S., Moretto, S., Krzyszewski, N., Ilari, R., Paglia, A., et al. (2015). microRNA340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

153. Zhao, S., Deng, Y., Liu, Y., Chen, X., Yang, G., Mu, Y., Zhang, D., Kang, J., and Wu, Z. (2013). MicroRNA-153 is tumor suppressive in glioblastoma stem cells. Mol. Biol. Cell. Rep. 40, 2789–2798.

154. El Fatimi, R., Subramanian, S., Uhmann, E.J., and Krichevsky, A. (2017). Genome editing reveals glioblastoma addiction to MicroRNA-10b. Mol. Ther. 25, 368–374.

155. Yamashita, D., Kondo, T., Ohue, S., Takahashi, H., Ishikawa, M., Matoba, R., Suehiro, S., Kohno, S., Harada, H., Tanaka, J., and Ohnishi, T. (2015). microRNA340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

156. Lulli, V., Buccarelli, M., Martini, M., Signore, M., Biffoni, M., Giannetti, S., Moretto, S., Krzyszewski, N., Ilari, R., Paglia, A., et al. (2015). microRNA340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

157. Lopez-Bertoni, H., Lal, B., Michelson, N., Guerrero-Cázares, H., Quiñones-Arenas, J., Rodríguez-Galindo, P., Kefas, B., Godlewski, J., Schiff, D., Purov, B., and Abounader, R. (2013). Oncogenic Polycomb Repressor Complexes in glioma stem cells. Neuro. Oncol. 15, 1027–1039.

158. Hemmesi, K., Squadrito, M.L., Mestdagh, P., Conti, V., Ciminelli, M., Piras, I.S., Martini, M., Signore, M., Biffoni, M., Giannetti, S., et al. (2020). MIR-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal via targeting the PAX6 Axis. Theranostics 6, 3298–3312.

159. Huynh, T.T., Lin, C.M., Lee, W.H., Wu, A.T.H., Lin, Y.K., Lin, Y.F., Yeh, C.T., and Wang, L.S. (2015). Pterostilbene suppressed irradiation-resistant glioma stem cells confer temozolomide resistance on glioblastoma cells by delivering miR-30b-3p. Theranostics 5, 2737–2746.

160. Huynh, T.T., Lin, C.M., Lee, W.H., Wu, A.T.H., Lin, Y.K., Lin, Y.F., Yeh, C.T., and Wang, L.S. (2015). Pterostilbene suppressed irradiation-resistant glioma stem cells confer temozolomide resistance on glioblastoma cells by delivering miR-30b-3p. Theranostics 5, 2737–2746.

161. Wang, Z., Xue, Y., Wang, P., Zhu, J., and Ma, J. (2016). MiR-608 inhibits the migration and invasion of glioma stem cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

162. El Fatimi, R., Subramanian, S., Uhmann, E.J., and Krichevsky, A. (2017). Genome editing reveals glioblastoma addiction to MicroRNA-10b. Mol. Ther. 25, 368–374.

163. Yamashita, D., Kondo, T., Ohue, S., Takahashi, H., Ishikawa, M., Matoba, R., Suehiro, S., Kohno, S., Harada, H., Tanaka, J., and Ohnishi, T. (2015). microRNA340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.

164. Lulli, V., Buccarelli, M., Martini, M., Signore, M., Biffoni, M., Giannetti, S., Moretto, S., Krzyszewski, N., Ilari, R., Paglia, A., et al. (2015). microRNA340 suppresses the stem-like cell function of glioma-initiating cells by targeting tissue plasminogen activator. Cancer Res. 75, 1123–1133.
174. Shi, L., Zhang, S., Feng, K., Wu, F., Wan, Y., Wang, Z., Zhang, J., Wang, Y., Yan, W., Fu, Z., and You, Y. (2012). MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int. J. Oncol. 40, 119–129.

175. Liu, S., Yin, F., Zhang, J., Wicha, M.S., Chang, A.E., Fan, W., Chen, L., Fan, M., and Li, Q. (2014). Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J. Cell. Biochem. 115, 1368–1380.

176. Teczan, G., Tunca, B., Belar, A., Preusser, M., Berghoff, A.S., Egelü, U., Cecener, G., Ricken, G., Budak, F., Taskapılı, M.O., et al. (2014). microRNA expression pattern modulates temozolomide response in GBM tumors with cancer stem cells. Cell Mol. Neuro. 34, 679–690.

177. Chen, J., Fu, X., Wan, Y., Wang, Z., Jiang, D., and Shi, L. (2014). miR-125b inhibitor enhances the chemosensitivity of glioblastoma stem cells to temozolomide by targeting BAK1. Tumour Biol. 35, 6293–6302.

178. Bier, A., Giladi, N., Kronfeld, N., Lee, H.K., Carcaxis, S., Finkin, S., Xiang, C., Poisson, L., Descarvalho, A.C., Slavin, S., et al. (2013). MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP1. Oncotarget 4, 665–676.

179. Song, H., Zhang, Y., Liu, N., Zhang, D., Wang, C., Zhao, S., Kong, Y., and Yuan, L. (2016). let-7b inhibits the malignant behavior of gloma cells and glioma stem-like cells via downregulation of EP2. J. Physiol. Biochem. 72, 733–744.

180. Lee, H.K., Bier, A., Carcaxis, S., Finkin, S., Xiang, C., Twito, H., Poisson, L.M., Mikkelsen, T., Slavin, S., Jacoby, E., et al. (2013). MicroRNA-145 is downregulated in glial tumors and regulates gloma cell migration by targeting connective tissue growth factor. PLoS One 8, e54652.

181. Song, H.Y., Chiang, H.C., Tseng, W.L., Wu, P., Chien, C.S., Leu, H.B., Yang, Y.P., Wang, M.L., Jong, Y.J., Chen, C.H., et al. (2016). miR-92a-3p exerts various effects in gloma and gloma stem-like cells specifically targeting CDH11/β-catenin and notch-1/akt signaling pathways. Int. J. Mol. Sci. 17, E2689.

182. Shian, Z.N., Tsai, R., Zhang, M., Gou, Z.H., Wu, J., Ding, M., Zhou, X.F., and He, J. (2016). miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BM11 and EZF3. Oncotarget 7, 78813–78826.

183. Kim, J., Zhang, Y., Skalski, M., Hayes, J., Kefas, B., Schift, D., Purov, B., Parsons, S., Lawler, S., and Abounader, R. (2014). microRNA-148a is a prognostic oncoMiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 74, 1541–1553.

184. Wan, Y., Fei, X.F., Wang, Z.M., Jiang, D.Y., Chen, H.C., Yang, J., Shi, L., and Huang, Q. (2012). Expression of miR-125b in the new, highly invasive glioma stem cell and progenitor cell line SU3. Chin. J. Cancer 31, 207–214.

185. Li, P., Lu, X., Wang, Y., Sun, L., Qian, C., Yan, W., Liu, N., You, Y., and Fu, Z. (2010). miR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells. J. Biomed. Res. 24, 436–443.

186. Xi, Z., Wang, P., Xue, Y., Yang, C., Liu, X., Ma, J., Li, Z., Li, Z., Bao, M., and Liu, Y. (2017). Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating Quaking isoform 6. Oncotarget 8, 24949–24963.

187. Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., Fu, Z., and You, Y. (2010). miR-123b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res. 1312, 120–126.

188. Li, N., Zhang, Y., Sidhuaskas, K., Ellis, M., Evans, I., Frankel, P., Lau, J., El Hassan, T., Guglielmi, L., Bioni, J., et al. (2018). Inhibition of GPR158 by microRNA-449a suppresses neural lineag平淡 of glioma stem/progenitor cells and correlates with higher glioma grades. Oncogene 37, 4313–4333.

189. Bhore, D., Tamura, K., Wakimoto, H., Choi, S.H., Purov, B., Debatisse, J., and Shah, K. (2018). microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro. Oncol. 20, 215–224.

190. Schraivogel, D., Weinmann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J.Y., Anton, M., Sixt, M., Weller, M., Beier, C.P., and Meister, G. (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. Embo j 30, 4309–4322.

191. Turchi, L., Debruyne, D.N., Almairac, F., Virolle, V., Fareh, M., Neirijnck, Y., Burel-Vandenbos, F., Paquis, P., Junier, M.P., and Van Obberghen-Schilling, E., et al. (2013).
209. Shi, L., Wan, Y., Sun, G., Zhang, S., Wang, Z., and Zeng, Y. (2014). miR-125b inhibitor may enhance the invasion-prevention activity of temozolomide in glioblastoma stem cells by targeting PIAS3. BioDrugs. 28, 41–54.

210. Zang, Y., Kim, I., Mueller, A.C., Dey, B., Yang, Y., Lee, D.H., Hachmann, J., Finderle, S., Park, D.M., Christensen, J., et al. (2014). Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT3B, and glioblastoma. Cell Death Differ. 21, 720–734.

211. Chou, G.Y., Chien, C.S., Wang, M.L., Chen, M.T., Yang, Y.P., Yu, Y.L., Chien, Y., Chang, Y.C., Shen, C.C., Chio, C.C., et al. (2013). Epigenetic regulation of the miR142-3p/interleukin-6 circuit in glioblastoma. Mol. Cell 52, 693–706.

212. Ulasov, I.V., Kaverina, N.V., Ghosh, D., Baryshnikova, M.A., Kadagidze, Z.G., Karseladze, A.I., Baryshnikov, A.Y., and Cobbs, C.S. (2017). CMV-70-3p miRNA contributes to the CMV mediated glioma stemness and represents a target for glioma experimental therapy. Oncotarget 8, 25989–25999.

213. Lopez-Berto, H., Lal, B., Li, A., Caplan, M., Guerrero-Cázares, H., Ebert, C.G., Quinones-Hinojosa, A., Glas, M., Scheffer, B., Laterra, J., and Li, Y. (2015). DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Orx and Sox2. Oncogene 34, 3994–4004.

214. Ferrarese, R., Harsh, G.R., Jr., Yadav, A.K., Bug, E., Maticzka, D., Reichardt, W., Ulasov, I.V., Kaverina, N.V., Ghosh, D., Baryshnikova, M.A., Kadagidze, Z.G., Zhang, Y., Kim, J., Mueller, A.C., Dey, B., Yang, Y., Lee, D.H., Hachmann, J., Finderle, S., Park, D.M., Christensen, J., et al. (2014). Lineage-specfic splicing of a brain-enriched alternative exon promotes glioblastoma progression. J. Clin. Invest. 124, 2861–2876.

215. Iannolo, G., Scuito, M.R., Cuscino, N., Pallini, R., Douradinho, B., Ricci Vitiani, L., De Maria, R., and Conaldi, P.G. (2019). Zika virus infection induces MiR34c expression in glioblastoma stem cells: new perspectives for brain tumor treatments. Cell Death Dis. 10, 263.

216. Jiang, J., Lu, J., Wang, X., Sun, B., Liu, X., Ding, Y., and Gao, G. (2021). Glioma stem cell-derived exosomal miR-944 reduces glioma growth and angiogenesis by inhibiting AKT/ERK signaling. Aging (Albany NY) 13, 19243–19259.

217. Rathod, S.S., Rani, S.B., Khan, M., Mumdadar, D., and Shira, A. (2014). Tumor suppressive microRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio 4, 485–495.

218. De La Rocha, A.M.A., González-Huarriz, M., Guruceaga, E., Mihelson, N., Tejada-Solís, S., Diez-Valle, R., Martínez-Vélez, N., Fueyo, J., Gomez-Manzano, C., Alonso, M.M., et al. (2020). miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. Arch. Clin. Biomed. Res. 4, 221–238.

219. Ogawa, D., Ansari, K., Nowicki, M.O., Sali, S., Ghanny, S., Hadaczek, P., Bengtsson, H., et al. (2015). Cytomegalovirus immediate-early proteins promote stemness properties in glioblastoma. Cancer Res. 75, 3605–3616.

220. Ma, K.-X., Wang, H.-J., Li, X.-R., Li, T., Su, G., Yang, P., and Wu, J.-W. (2015). Long non-coding RNA MALAT1/miR-129 interaction promotes the long non-coding RNAs. Onco Targets Ther. 8, 3359–3369.

221. Pang, J.C.S., Li, K.K.W., Lau, K.M., Ng, Y.L., Wong, J., Chung, N.Y.F., Li, H.M., Konermann, C., Pfaff, E., Tönjes, M., Sill, M., Bender, S., et al. (2012). Hotspot mutation analysis of the human miR-23 arrays. BMC Genomics 13, 11032–11041.

222. Hubert, C.G., Rivera, M., Spangler, L.C., Wu, Q., Mack, S.C., Prager, B.C., Cousse, M., Melendon, R.E., Sloan, A.E., and Rich, J.N. (2016). A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76, 2465–2477.

223. Xiong, Z., Wang, L., Wang, Q., and Yuan, Y. (2018). LncRNA MALAT1/miR-129-2 functions as a tumor suppressor in glioma cells by targeting HMGB1 and is down-regulated by DNA methylation. Mol. Cell. Biochem. 404, 229–239.

224. Chen, X., Zhang, Y., Shi, Y., Liu, M., Quon, H., Shi, Z., Zhang, Y.Y., Chen, W., Yang, J., and Li, H. (2015). miR-206–206-2 functions as a tumor suppressor in glioma cells by targeting HMGB1 and is down-regulated by DNA methylation. Mol. Cell. Biochem. 404, 229–239.

225. Konermann, C., Pfaff, E., Tönjes, M., Sill, M., Bender, S., et al. (2012). Hotspot mutation analysis of the human miR-23 arrays. BMC Genomics 13, 11032–11041.

226. Xiong, Z.-Q., Sun, S., Lam, K.-F., Kiang, K.-Y.M., Pu, J.K.S., Ho, A.S.W., Lui, W.-M., Fung, C.-F., Wong, T.-S., and Leung, G.K.-K. (2013). A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol. Dis. 58, 123–131.

227. Tomita, H., Tanaka, K., Tanaka, T., and Hara, A. (2016). Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7, 11018–11032.
245. Liu, P., Brown, S., Gokturk, T., Channathodyil, P., Kannappan, V., Hugnot, J.P., Guichet, P.O., Bian, X., Armesilla, A.L., Darling, J.L., and Wang, W. (2012). Cytoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer stem-like cells. Br J Cancer. 107, 1488–1497.

246. Raha, D., Wilson, T.R., Peng, J., Peterson, D., Yue, P., Evangelista, M., Wilson, C., Merchant, M., and Settleman, J. (2014). The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res. 74, 3579–3590.

247. Rasper, M., Schäfer, A., Piontek, G., Teufel, J., Brockhoff, G., Ringel, F., Heindl, S., Zimmer, C., and Schlegel, J. (2010). Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 12, 1024–1033.

248. Mazor, G., Levin, L., Picard, D., Ahnadov, U., Carén, H., Borkhardt, A., Reifenberger, G., Leprivier, G., Remke, M., and Roblat, B. (2019). The IncRNA TP73-ASI is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis. 10, 246.

249. Brown, C.J., Ballabio, A., Rupert, J.L., Lafreniere, R.G., Grompe, M., Tonlorenzi, R., Mazor, G., Levin, L., Picard, D., Ahmadov, U., Carén, H., Borkhardt, A., Reifenberger, G., Leprivier, G., Remke, M., and Roblat, B. (2019). The IncRNA TP73-ASI is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis. 10, 246.

250. Weakley, S.M., Wang, H., Yao, Q., and Chen, C. (2011). Expression and function of a long non-coding RNA HOTAIRM1 inhibits cell progression by regulating miR-200c in breast cancer. Nucleic Acids Res. 39, 38–44.

251. Yildirim, E., Kirby, J.E., Brown, D.E., Mercier, F.E., Sadreyev, R.I., Scadden, D.T., Yoneda, M., and Shiraishi, T. (2012). Role of stromal myoarchitecture by HOTAIRM1 contributes to temporal collinear HOXA gene activation. Nucleic Acids Res. 40, 10911–10920.

252. Zhao, X., Liu, Y., Zhang, Z., Fan, Q., Li, W., Wang, P., and Xue, Y. (2017). HOTAIRM1 promotes malignant progression of glioma stem cells by negatively regulating miR-107/CDK6 pathway. Mol Cancer. 16, 110.

253. Zhang, P., Liu, Y., Fan, Q., Li, W., Wang, P., and Xue, Y. (2017). HOTAIRM1 promotes malignant progression of glioma stem cells by negatively regulating miR-107/CDK6 pathway. Mol Cancer. 16, 110.

254. Yang, J., Sun, G., Hu, Y., Yang, J., Shi, Y., Liu, H., Li, C., Yang, Y., Lv, Z., Niu, J., et al. (2019). Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/5p. Cell Death Dis. 10, e48170.

255. Yang, J., Sun, G., Hu, Y., Yang, J., Shi, Y., Liu, H., Li, C., Yang, Y., Lv, Z., Niu, J., et al. (2019). Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/5p. Cell Death Dis. 10, e48170.

256. Yang, J., Sun, G., Hu, Y., Yang, J., Shi, Y., Liu, H., Li, C., Yang, Y., Lv, Z., Niu, J., et al. (2019). Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/5p. Cell Death Dis. 10, e48170.

257. Wang, C.J., Chao, C.R., Zhao, W.F., Liu, H.M., Feng, J.S., and Cui, Y.X. (2022). Long non-coding RNA HOTAIRM1 maintains tumorigenicity of glioblastoma stem-like cells through regulation of HOX gene expression. Neurotherapeutics 17, 754–764.

258. Zhang, P., Liu, Y., Fu, C., Wang, C., Duan, X., Zou, W., and Zhao, T. (2019). Knockdown of long non-coding RNA PCAT1 in glioma stem cells promotes radio sensitivity. Med. Mol. Morphol. 52, 114–122.

259. Zheng, J., Li, X.D., Wang, P., Liu, X.B., Xue, Y.X., Hu, Y., Li, Z., Li, Z.Q., Wang, Z.H., and Liu, Y.H. (2015). CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget 6, 25339–25355.

260. Brodie, S., Lee, H.K., Jiang, W., Cacazu, S., Xiang, C., Poisson, L.M., Datta, I., Kalkanis, S., Ginsberg, D., and Brodie, C. (2017). The novel long non-coding RNA TALNR2, regulates tumor cell growth and the stemness and radiation resistance of glioma stem cells. Oncotarget 8, 13785–13801.

261. Yang, X., Xiao, Z., Du, X., Huang, L., and Du, G. (2017). Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 37, 555–562.

262. Wang, C.J., Chao, C.R., Zhao, W.F., Liu, H.M., Feng, J.S., and Cui, Y.X. (2022). Long non-coding RNA SNHG9 facilitates growth of glioma stem-like cells via miR-326/SOX9 axis. J. Gene Med. 24, e3334.

263. Liu, J., Li, T., Liu, H., Yuan, H., Ouyang, T., Wang, J., Chai, S., Li, J., Chen, J., Li, X., et al. (2021). Hypoxic glioma stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-myc/HIF1α axis. Cancer Res. 81, 114–128.

www.moleculartherapy.org

Review
282. Han, M., Wang, S., Frithat, S., Wang, X., Zhou, W., Yang, N., Ni, S., Huang, B., Chen, A., Li, G., et al. (2020). Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through interfering with Wnt/β-catenin signalling. Brain. 143, 512–530.

283. Zhang, D., Zhou, H., Liu, J., and Mao, J. (2019). Long noncoding RNA ASB16-A51 promotes proliferation, migration, and invasion in glioma cells. Biomed. Res. Int. 2019, 5437531.

284. Li, X.T., Li, J.C., Feng, M., Zhou, Y.X., and Du, Z.W. (2019). Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells. Neoplasma 66, 118–127.

285. Kim, S.S., Harford, J.B., Moghe, M., Rait, A., Pirolo, K.F., and Chang, E.H. (2018). Differential long non-coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol. Med. Rep. 14, 2067–2076.

286. Han, Y., Zhou, L., Wu, T., Huang, Y., Cheng, Z., Li, X., Sun, T., Zhou, Y., and Du, Z. (2016). Downregulation of IncRNA-MALAT1 affects proliferation and the expression of stemness markers in glioma stem cell line SHG139. Cell. Mol. Neurobiol. 36, 1097–1107.

287. Feng, S., Yao, J., Chen, Y., Geng, P., Zhang, H., Ma, X., Zhao, J., and Yu, X. (2015). Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma. J. Mol. Neurosci. 56, 623–630.

288. Li, W., Jiang, P., Sun, X., Xu, M., and Zhan, R. (2016). Suppressing H19 modulates tumorigenesis and stemness in U251 and U87MG glioma cells. Cell. Mol. Neurobiol. 36, 1219–1227.

289. Mineo, M., Ricklefs, F., Rooij, A.K., Lyons, S.M., Ivanov, P., Ansari, K.I., Nakano, L., Chiecza, E.A., Godlewski, J., and Bronisz, A. (2016). The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 15, 2500–2509.

290. Cao, Y., Cao, Z., Wang, W., Jie, X., Li, L., Song, H., and Long, J. (2011). IncRNA TUG1 inhibits the cancer stem cell-like properties of temozolomide-resistant glioma cells by interacting with EZH2. Mol. Med. Rep. 4, 267–272.

291. Shao, W., Ding, Q., Guo, Y., Xing, J., Han, Z., Wang, Z., Xu, Q., and Guo, Y. (2021). A pan-cancer landscape of HOX-related IncRNAs and their association with prognosis and tumor microenvironment. Front. Mol. Biosci. 8, 767856.

292. Jiang, X., Yan, Y., Hu, M., Chen, X., Wang, Y., Dai, Y., Wu, D., Wang, Y., Zhong, Z., and Xia, H. (2016). Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J. Neurooncol. 2016, 129–136.

293. Su, R., Cao, S., Ma, J., Liu, Y., Liu, X., Zheng, J., Chen, J., Liu, L., Cai, H., Li, Z., et al. (2017). Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of miR-194-5p and miR-122. Mol. Cancer 16, 171.

294. Wang, F., Zhang, L., Luo, Y., Zhang, Q., Zhang, Y., Shao, Y., and Yuan, L. (2021). The IncRNA RP11-279C4.1 enhances the malignant behaviour of glioma cells and glioma stem-like cells by regulating the miR-1273g-3p/CBX3 Axis. Mol. Neurobiol. 58, 3362–3373.

295. Feng, K., Liu, P., Dong, S., Guo, Y., Cui, X., Zha, X., Li, X., Jiang, L., Liu, L., and Tu, W. (2016). Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low IncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int. J. Oncol. 49, 509–518.

296. Buccarelli, M., Lulli, V., Giuliani, A., Signore, M., Martini, M., D’lessandris, O.G., Giannetti, S., Novelli, A., Ilari, R., Giurato, G., et al. (2020). Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of IncRNA MEG3. Neuro. Oncol. Onco2, 1771–1784.

297. Lewis, M.W., Li, S., and Franco, H.L. (2019). Transcriptional control by enhancer RNAs. Transcription 10, 171–186.

298. Rigova, A.A., Abraham, B.J., Xi, X., Molinie, B., Hannett, N.M., Guo, Y.E., Jangi, M., Giaillourakis, C.C., Sharp, P.A., and Young, R.A. (2015). Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981.

299. Napoli, S., Munz, N., Guidetti, F., and Bertonì, F. (2022). Enhancer RNAs (eRNAs) in cancer: the jacks of all trades. Cancers 14, 1978.
321. Thorne, A.H., Zanca, C., and Furnari, F. (2016). Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro. Oncol. 18, 914–918.

322. Westphal, M., Maire, C.L., and Lamszus, K. (2017). EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 31, 723–735.

323. Prados, M.D., Chang, S.M., Butowski, N., Deboer, R., Parvataneni, R., Carliner, H., Kabuki, P., Ayers-Ringler, J., Rabbitt, J., Page, M., et al. (2009). Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol. 27, 579–584.

324. Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691.

325. Abouhaidar, M.G., Venkataraman, S., Golshani, A., Liu, B., and Ahmad, T. (2014). Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl. Acad. Sci. USA 111, 14542–14547.

326. Gao, X., Xia, X., Li, F., Zhang, M., Zhou, H., Wu, X., Zhong, J., Zhao, Z., Zhao, K., Liu, D., et al. (2021). Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat. Cell Biol. 23, 278–291.

327. Filbin, M.G., Dagbl, S.K., Pazyra-Murphy, M.F., Ramkisson, S., Kung, A.L., Pak, E., Chung, J., Theisen, M.A., Sun, Y., Franchetti, Y., et al. (2013). Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Nat. Med. 19, 1518–1523.

328. Kool, M., Jones, D.T.W., Jager, N., Northcott, P.A., Pugh, T.J., Hovestad, V., Piro, R.M., Esparza, L.A., Markant, S.L., Remke, M., et al. (2014). Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothed inhibition. Cancer Cell 25, 395–405.

329. Peterson, S.C., Eberl, M., Vagnozzi, A.N., Belkadi, A., Veniaminova, N.A., Verhaegen, M.E., Bichakjian, C.K., Ward, N.L., Olugbaga, A.A., and Wong, S.Y. (2015). Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosenosyne niches. Cell Stem Cell 16, 400–412.

330. Jiang, J., and Hui, C.C. (2008). Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812.

331. Deshpande, I., Liang, J., Hedeen, D., Roberts, K.J., Zhang, Y., Ha, B., Latorraca, N.R., Faust, B., Dror, R.O., Beachy, P.A., et al. (2019). Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature 577, 284–288.

332. Hu, A., and Song, B.L. (2019). The interplay of Patched, Smoothened and cholesterol in Hedgehog signaling. Curr. Opin. Cell Biol. 61, 31–38.

333. Wu, X., Xiao, S., Zhang, M., Yang, L., Zhong, J., Li, B., Li, F., Xia, L., Li, X., Zhou, H., et al. (2021). A novel protein encoded by circular SMO RNA is essential for suppression of Shh and PI3K signaling in PTEN-deficient glioblastoma. Cancer Cell 38, 278–284.

334. Meng, Q., Li, S., Liu, Y., Zhang, S., Jin, J., Zhang, Y., Guo, C., Liu, B., and Sun, Y. (2019). Circular RNA circSCAF11 accelerates the glioma tumorigenesis through the miR-421/SP1/VEGFA Axis. Mol. Ther. Nucleic Acids. 19, 669–677.

335. Jiang, Y., Wang, Z., Jing, Z., Li, J., Hu, J., Yang, Q., Kuang, L., and Liu, G. (2022). Overexpression of FOXD2-AS1 enhances proliferation and impairs differentiation of glioma stem cells by activating the NOTCH pathway via TAF1. J. Cell. Mol. Med. 26, 2620–2632.

336. Zhu, C., Li, K., Jiang, M., and Chen, S. (2021). RBM5-AS1 promotes radioreistance in medulloblastoma through stabilization of SIRT6 protein. Acta Neuropathol. Commun. 9, 123.

337. Wang, C.J., Chao, C.R., Zhao, W.F., Liu, H.M., Feng, J.S., and Cui, Y.X. (2022). Long noncoding RNA SNHG9 facilitates growth of glioma stem-like cells via miR-326/ SOX9 axis. J. Gene Med. 24, e3334.

338. Tang, C., Wang, L.X., Yang, M.L., and Zhang, R.M. (2020). IncRNA TPEF1 inhibits stemness and radioreistance of glioma through miR-106a-5p-mediated P38 MAPK signaling. Mol. Med. Rep. 22, 4857–4867.

339. Tan, G., Luo, L., Zhang, J., Zhai, D., Huang, D., Yin, J., Zhou, Q., Zheng, Q., and Zheng, G. (2021). IncRNA LINC01507 promotes mesenchymal differentiation by activating NF-κB signaling in glioblastoma. Cancer Lett. 498, 152–164.

340. Gao, X.F., He, H.Q., Zhu, X.B., Xie, S.L., and Cao, Y. (2019). LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/mTOR signaling pathway. Neoplasma 66, 532–542.

341. Gu, J., Mu, N., Jia, B., Guo, Q., Pan, L., Zhu, M., Zhang, W., Zhang, K., Li, W., Li, M., et al. (2022). Targeting radiation-tolerant persister cells as a strategy for inhibiting radioreistance and recurrence in glioblastoma. Neuro. Oncol. 24, 1056–1070.

342. Li, R., Che, W., Liang, N., Deng, S., Song, Z., and Yang, L. (2021). Silent FOSL1 enhances the radiosensitivity of glioma stem cells by down-regulating miR-27a-5p. Neurochem. Res. 46, 3222–3246.

343. Cardoso, A.M., Morais, C.M., Penna, F., Marante, T., Cunha, P.P., Jurado, A.S., and Pedroso De Lima, M.C. (2021). Differentiation of glioblastoma stem cells promoted by miR-128 or miR-302a overexpression enhances senescence-associated cytotoxocity of axtinin. Hum. Mol. Genet. 30, 160–171.

344. Zhang, Z., Xu, J., Chen, Z., Wang, H., Xue, H., Yang, C., Guo, Q., Qi, Y., Guo, X., Qian, M., et al. (2020). Transfer of MicroRNA via macrophage-derived extracellular vesicles promotes proneural-to-mesenchymal transition in glioma stem cells. Cancer Immunol. Res. 8, 966–981.

345. Sabelström, H., Petri, R., Sichors, K., Jandial, R., Schmidt, C., Sacheva, R., Masic, S., Yuan, E., Tenster, F., Martínez, M., et al. (2019). Driving neuronal differentiation through reversal of an ERK1/2-miR-124-5p/FOX9 Axis Abrogates glioblastoma aggressiveness. Cell Rep. 28, 2064–2079.e11.

346. Lizarde Neto, F.S., Rodrigues, A.R., Trevisan, F.A., De Assis Cirino, M.L., Matias, C.C.M.S., Pereira-De-Silva, G., Peria, F.M., Tirapelli, D.P.de.C., and Carlotti, C.C.G. (2019). microRNA-181d associated with the methylation status of the MGMT gene in Glioblastoma multiforme cancer stem cells submitted to treatments with ionizing radiation and temozolomide. Brain Res. 1729, 146302.

347. Li, J., Song, J., and Guo, F. (2019). miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int. J. Mol. Med. 43, 517–524.

348. Yang, L., Li, N., Yan, Z., Li, C., and Zhao, Z. (2018). Mir-29a-Mediated CD133 expression contributes to cisplatin resistance in CD133(+) glioblastoma stem cells. J. Mol. Neurosci. 66, 369–377.

349. Cheng, Z.X., Yin, W.B., and Wang, Z.Y. (2017). MicroRNA-132 induces temozolomide resistance and promotes the formation of cancer stem cell phenotypes by targeting tumor suppressor candidate 3 in glioblastoma. Int. J. Mol. Med. 40, 1307–1314.

350. Shi, L., Fei, X., Wang, Z., and You, Y. (2015). PI3K inhibitor combined with miR-125b inhibitor sensitizes TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/β-catenin signaling pathway. In Vitro Cell. Dev. Biol. Anim. 51, 1047–1055.

351. Yang, W., Wei, J., Guo, T., Shen, Y., and Liu, F. (2014). Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioreistance. Exp. Cell Res. 326, 22–35.
356. Li, H., and Yang, B.B. (2012). Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2. Oncotarget 3, 1653–1668.

357. Yang, Y.P., Chien, Y., Chiou, G.Y., Cherng, J.Y., Wang, M.L., Lo, W.L., Chang, Y.L., Huang, P.I., Chen, Y.W., Shih, Y.H., et al. (2012). Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEL. Biomaterials 33, 1462–1476.

358. Jeon, H.M., Sohn, Y.W., Oh, S.Y., Oh, S.Y., Kim, S.H., Beck, S., Kim, S., and Kim, H. (2011). ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 71, 3410–3421.

359. Li, W.Q., Li, Y.M., Tao, B.B., Lu, Y.C., Hu, G.H., Liu, H.M., He, J., Xu, Y., and Yu, H.Y. (2010). Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med. Sci. Monit. 16, Hy27–30.