Targeting macrophages in cancer immunotherapy
Zhaojun Duan1,2 and Yunping Luo1,2

Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.

As a type of phagocytic cell that was initially identified as clearing foreign pathogens by Elie Metchnikoff, macrophages have gradually been considered for cancer immunotherapy in recent years. In light of their positive roles in current therapeutic strategies, they have become a promising target for improved cancer treatments. To facilitate the use of macrophages in cancer immunotherapy, we summarize their related characterization and research progress in this review.

CATEGORIES AND CHARACTERIZATION OF MACROPHAGES

Development and differentiation of macrophages

It is now widely accepted that macrophages in tissues, as well as monocytes in the peripheral blood, are classified as the mononuclear phagocytic system (MPS). This concept has developed over a long history, and its current version takes the origin, morphology, function, and kinetics of the cells into consideration. In MPS, macrophages originate from bone marrow stem cells, and their development goes through sequential stages as granulocyte–monocyte progenitor cells, pro-monocytes, and mature monocytes. After entering various tissues, monocytes differentiate into macrophages. However, in some lower multicellular organisms without circulating monocytes, such as Porifera, macrophages still exist. For patients with some lower multicellular organisms without circulating monocytes, extramedullary hematopoiesis, especially in the spleen. It has been reported that Ly6C+ patrolling monocytes are mainly responsible for detecting pathogens intravascularly and maintaining vascular integrity, while Ly6C- inflammatory monocytes are recruited to infectious sites and injuries, mediating extravascular inflammatory responses and then differentiating into macrophages. Some studies have also indicated that both Gr1+/Ly6Chigh and Gr1−/Ly6Clo monocytes have the potential to enter tissues and turn into macrophages, but the former are more likely to become M1 macrophages, while the latter are M2 phenotypes. Above all, macrophages in tissues are probably a mixture of embryo- and adult-derived cells.

Wherever the macrophages originated from, the macrophage colony-stimulating factor 1 receptor (CSF1R) is a key receptor that induces their differentiation. CSF1 and IL-34 are two ligands of CSF1R. These two factors function in different ways. It has been reported that macrophages in the liver, spleen, or bone marrow are typically regulated by CSF1-mediated signals, while IL-34 dominates the development of macrophages in the brain. Given the importance of CSF1R, its inhibitors are often used in scientific studies to deplete macrophages. In addition, the lack of Sfi1, which is a pioneering transcriptional regulator in myeloid lineage development, could result in a total depletion of CD11b+/Ly6C− macrophages. An expression disparity of Sfi1 determines the differentiation of Ly6C− monocytes into INOS+ macrophages or monocyte-derived dendritic cells. Id3 is indispensable for liver macrophages. PPARγ maintains the anti-inflammatory function of alveolar macrophages. Gata6 controls the proliferative renewal of peritoneal macrophages. LXR deficiency could cause a failure in the generation of splenic marginal zone macrophages and metallophilic macrophages. Epigenetic changes drive the differentiation of monocytes into macrophages. More factors participating in the differentiation of macrophages have been described in previous reviews.

Categories

Macrophages are widely distributed in various tissues. According to their histological locations, macrophages residing in specific
tissues can be categorized into Kupffer cells in the liver, microglial cells in the brain, osteoclasts in the osseous tissue, alveolar macrophages in the lung, mesangial cells in the kidney, subcapsular sinus macrophages in lymph, and so on.26,27 A summary of the ontogeny, functions, and markers of macrophages in different tissues is listed in Table 1. It has been shown that macrophages from different tissues possess diverse expression profiles for transcripts and proteins, which can have a profound impact on their phenotypes and functions.28,29

Based on phenotypes and functions, macrophages can be typically divided into M1 (proinflammatory, classically activated macrophages) and M2 (anti-inflammatory, alternatively activated macrophages) types (Fig. 2). In brief, M1 macrophages can be induced by IFN-γ, lipopolysaccharide (LPS), TNF-α or granulocyte–macrophage colony-stimulating factor (GM-CSF), followed by activation of Toll-like receptor signaling pathways. They play a positive role in the removal of pathogens and tumor cells. On the one hand, M1 macrophages express high levels of antigen-presenting MHC complexes, which accelerate the activation of adaptive immune responses. On the other hand, they act directly on target cells by generating nitric oxide, reactive oxygen species, and reactive nitrogen species. Moreover, M1 macrophages promote inflammatory responses by secreting cytokines such as TNF-α, IL-1α, IL-1β, IL-6, IL-12, IL-18, and IL-23.30,31 Excessive M1 macrophage-mediated responses may lead to tissue damage, which is the main cause of atherosclerosis and other chronic inflammation.32–34 M2 macrophages can be induced by cytokines, such as IL-4, IL-13, glucocorticoids, M-CSF/CSF1, IL-10, IL-33, IL-21, and TGF-β.35–37 Accompanied by increased production of polyamines and ornithine through the arginase pathway, high secretion of IL-10, PGE2, TGF-β, but low IL-12, they are major participants in the clearance of parasites and homeostasis, such as tissue remodeling and regeneration, wound healing and anti-inflammation.38,39 When M2 macrophages develop further, they are refined into M2a, M2b, M2c, and M2d subgroups.40 Their specific characterizations have been reviewed by Abbas Shapouri Moghaddam et al.41 Macrophages have strong plasticity. It has been shown that different phenotypes could possibly transform mutually under certain conditions.

Tumor-associated macrophages (TAMs) generally represent a major component of myeloid cells present in tumors. For some solid tumors, TAMs can arise from several origins: as residual macrophages derived from the yolk sac, infiltrating macrophages as the major replenishment recruited from bone marrow/Ly6C+–circulating monocytes, and a minority from the spleen.8,42–47 It has been demonstrated that TAMs with different origins may act differently than anti-macrophage oncotherapies.41 In most established tumors, TAMs tend to be considered M2-skewed macrophages because they possess the majority of the representative properties of M2 macrophages, usually including but not limited to high expression levels of arginase-1, mannose receptor, and a low MHC class II complex.48 Transcriptome profile analysis revealed that TAMs are more similar to fetal macrophages but not inflammatory macrophages.41 However, as macrophages are plastic, there is also evidence suggesting that TAMs actually have both M1 and M2 expression patterns or expression patterns distinct from those of M1 and M2 macrophages.49 Since 90–95% of neoplasms are closely associated with a chronic inflammatory status, it has been suggested that M1 macrophages may induce tumor initiation by creating a mutagenic microenvironment, while M2 macrophages promote malignancy progression.46,49 It is also believed that TAMs may exert both tumor-promoting and tumor-inhibiting functions,50,51 which make TAMs a potential target for cancer therapies.

Typical markers
To be distinguished from other immunocytes, macrophages can be characterized by phagocytosis and the expression of CD11b, F4/80, and CSF1R in mice or CD79, CD163, CD16, CD312, and CD115 in humans.43 Specifically, to present antigens and activate adaptive immune responses, M1 macrophages often express high levels of MHC class II molecules and costimulatory molecules, such as CD40, CD80, and CD86, while M2 macrophages contain upregulated levels of endocytosis-related receptors, such as the human scavenger receptors CD163 and Stabilin-1 and C-type lectin receptors, including CD206, CD301, with CD1 and CD209.43 In addition to the proinflammatory or anti-inflammatory cytokines mentioned above, polarized macrophages generate different types of chemokines. CXCL9, CXCL10, CXCL11, and CCL5 are usually secreted by M1 macrophages to recruit Th1, Th17, and cytotoxic T cells, while CCL2, CCL17, CCL18, CCL22, and CCL24 are produced by M2 macrophages in most cases.31,38,40

Basic functions of macrophages
One of the basic functions of macrophages is phagocytosis. Through phagocytosis, macrophages can clear erythrocytes, apoptotic cells, and effete cells to maintain homeostasis. Neutropenia and splenomegaly may occur when neutrophils and erythrocytes in the spleen and liver cannot be phagocytized.52 This type of clearance process is independent of immune
Tissue	Macrophage	Ontogeny	Function	Identifying markers	Refs.
Liver	Kupffer cells	Yolk sac derived	Clearance of bacteria, aged erythrocytes, and cellular debris from the blood; regulation of the immune response; involvement in liver injury repair	F4/80^{hi} CD11b^{lo} Siglec-1⁺ CD68⁺ Galectin-3⁺ CD80^{lo}/[−] PPARγ⁺ Ly6C[−] CX3CR1[−] Clec4F⁺ TIM-4⁺	27,62,223–225
Monocyte-derived liver macrophage (MoMFs)	Monocyte derived	Rapid accumulation and involvement in immune responses after organ damage			226–229
Liver capsular macrophages	Monocyte derived		Sensing bacteria reaching the hepatic capsule; inhibition of the hepatic spread of peritoneal pathogens; recruiting neutrophils	F4/80⁺ MHC-II⁺ CD11b⁺ CD64⁺ CD103⁺ CX3CR1⁺ TIM-4⁺ CD207⁺	230
Lung	Alveolar macrophages	Yolk sac and fetal liver progenitors	Immune surveillance; phagocytosis of inhaled particles	F4/80^{lo} CD11b^{lo} CD11c⁺ CD14^{lo} DEC205⁺ MHC-II^{lo} CD68⁺ Siglec F⁺ MARCO⁺ CD206⁺ Dectin-1⁺ Galectin-3⁺ Merk⁺ CD64⁺ Siglec-1⁺	27,223,231–233
Interstitial macrophages	Fetal liver and bone marrow-derived monocytes		Immune surveillance		233–236
Central nervous system	Microglial cells	Yolk sac derived	Functioning as immune surveillance; promote neuronal survival and remove dead neurons; synaptic remodeling	F4/80⁺ CD11b⁺ CD45⁺ CX3CR1^{hi} Iba-1⁺ P2RY12⁺	26,27,236,237
Perivascular macrophages	Yolk sac or fetal liver progenitors		Blood–brain barrier integrity; phagocytosis; antigen presentation; lymphatic clearance		237–248
Tissue	Macrophage	Ontogeny	Function	Identifying markers	Refs.
----------------------	-----------------------------	---------------------------------	--	---	---------------
Meningeal macrophages	Yolk sac derived	Immune surveillance		F4/80⁺, CD11b⁺, CD45^{lo}, Iba-1⁺, CD209b⁺, CX3CR1^{hi}, Chnrb4⁺	27, 237, 249
Bone	Osteoclast	Monocyte derived	Resorption of organic matter and minerals from the bone matrix	Calcitonin receptor⁺, ER-HR3⁺, F4/80⁺, Tartrate-resistant acid phosphatase (TRAP)⁻	26, 27, 250–252
Bone marrow	Yolk sac derived or fetal liver-derived monocytes	Promoting erythropoiesis; maintenance of the hematopoietic stem cells niche		Siglec-1⁺, F4/80⁺	250, 253
Spleen	Marginal zone macrophages	Bone marrow-derived monocytes	Clearance of pathogens present in the circulation; retention of marginal zone B cells	CD68⁺, Dectin-2⁺, F4/80⁺, LXRx⁻, MARCO⁺, TIM-4⁻, SIGN-R1⁺	22, 254–256
Spleen	Marginal metallophilic macrophages	Bone marrow-derived monocytes	Clearance of pathogens present in the circulation	CD68⁺, F4/80⁺, LXRx⁻, Siglec-1⁺	257
Spleen	White pulp (tingible body) macrophages	Not clear	Clearance of apoptotic B cells	CD68⁺, MFG-EB⁺, MerTk⁻, TIM-4⁻, CD36⁻	257–259
Spleen	Red pulp macrophages	Yolk sac-derived or fetal liver-derived monocytes	Clearance of effete red blood cells; immunosurveillance; detoxification; iron recycling; antigen delivery to DCs	F4/80^{hi}, CD11b^{lo}, Siglec-1^{lo}, CD68⁺, MHC-II⁺, CSF1R⁺, SIRPa⁻, Siglec F⁻, CD163⁺, Dectin-2⁺, VCAM1⁺, Spi-C⁻, Heme Oxigenase⁺, Ferroportin⁺	223, 255, 259–261
Kidney	Mesangial cell	Monocyte derived	Intraglomerular mesangial cells; regulation of glomerular filtration; mesangial matrix formation; phagocytosis; monitoring of glucose concentrations	F4/80⁺, CD11b⁺, CD103⁻, CX3CR1⁺, SIRPa⁻, Siglec F⁻	223
Lymph node	Subcapsular sinus macrophages	Yolk sac-derived or bone marrow-derived monocyte	Limiting the systemic dissemination of pathogens and bacterial infections; promote the presentation of antigens	F4/80⁺, MARCO⁺, Siglec-1^{hi}, CD11b^{hi}, Ligands for the cysteine-rich domain of the mannose receptor⁻	223, 262, 263
Medullary macrophages	Bone marrow-derived monocytes	Highly phagocytic and rapidly clear pathogens		CD11b⁺, Siglec-1⁺, F4/80⁺, MARCO⁺, SIGN-R1⁺	223, 263, 264
Serosal Tissues	Pleural macrophages	Immune surveillance		CD11b^{hi}, F4/80^{hi}	265–267
responses and is regarded as the fundamental function of macrophages. When pathogens or aberrant cells, such as tumor cells, are recognized by macrophages, they can be phagocytized and processed into antigen peptides. Macrophages present these peptides to MHC class II molecules on their surface and stimulate T-cell proliferation and activation with the synergistic effect of costimulatory molecules. It has been reported that adult macrophages are primarily responsible for host defense, while

Tissue	Macrophage	Ontogeny	Function	Identifying markers	Refs.
Bone marrow-derived	Bone marrow-derived	Regulation of IgA production in	Siglec F⁺ RELM⁺ TIM-4⁻ CD11b⁺	268–270	
Large peritoneal	or fetal liver-derived	the gut	CD11c⁺ SIGN-R1⁺ F4/80⁺ GATA-6⁻		
Small peritoneal	Bone marrow-derived	Immune surveillance	CD11b⁺ CD11c⁻	265,269,270	
peritoneal macrophages	monocytes		F4/80⁺ Id2⁻ Langerin⁺ RUNX3⁺		
Skin	Langerhans cells	Interaction with T lymphocytes;	CD11b⁺ CD11c⁻ F4/80⁺	27,271,272	
Dermal macrophages	Bone marrow-derived	Immune surveillance	Dectin-1⁺ Dectin-2⁻ F4/80⁻ CD64⁺	27,223,255,273	
Adipose tissue	Adipose tissue-associated macrophages	Not clear	Adipogenesis; adaptive thermogenesis; regulation of insulin sensitivity	CD45⁻ F4/80⁻ PPARγ⁻	274,275
Gastrointestinal Tract	Intestinal lamina propria macrophages	Bone marrow-derived	Maintenance of intestinal homeostasis; recognition and removal of	CD11b⁺ CD11c⁻ CX3CR1⁺ F4/80⁻ CD64⁻	27,276
Blood	Ly6C^{lo} monocytes	Bone marrow-derived	Immune surveillance; maintenance of vascular integrity	CD11b⁺ CD43⁻ CX3CR1⁺ Ly6C^{lo}	27,277,278
Tumor	Tumor-associated macrophage	Yolk sac derived or monocyte	Promote tumor growth; inhibit tumoricidal immune response; initiate	Murine: Ly6C⁺ MHC-II⁻	42,279–281
		derived	angiogenesis; activate matrix remodeling; aid invasion and intravasation	CX3CR1⁺ CCR2⁺ CD62L⁺ TIE2⁺ Human:	

Table 1. continued
fetal macrophages are involved in tissue remodeling.40 Macrophages play an important role in the development and homeostasis. For example, microglia are required in almost every precise developmental stage of the central nervous system.57 Cardiac macrophages help maintain homeostasis in the steady-state heart by facilitating myocardial conduction.58 CCR2–macrophages are instrumental in cardiac recovery, coronary development, and postnatal coronary growth.59,60 Impaired activation or depletion of Kupffer cells leads to hepatic steatosis and insulin resistance.61–63 Defects in perivascular macrophages can give rise to the unsuccessful establishment of the blood–brain barrier.64 It is well known that macrophages are related to many diseases. Here, we will focus on its role in tumors in the following sections.

FUNCTIONS OF MACROPHAGES IN CANCERS

By secreting various factors and affecting other immune cells, macrophages not only play a role in chronic inflammation but also initiate, promote, or suppress the development of cancer. Ornithine, VEGF, EGF, and TGF-β are examples of tumor-promoting factors derived from macrophages, while nitric oxide generated by inducible nitric oxide synthase in macrophages can inhibit tumor growth.32,33,65,66 Macrophages have been demonstrated to be involved directly or indirectly in several key features of malignant tumors, including angiogenesis, invasiveness, metastasis, regulation of the tumor microenvironment, and therapeutic resistance (Fig. 3).

Angiogenesis

By expressing WNT7B, WNT5A, WNT11, VEGF-C, VEGF-D, and other factors, macrophages are deeply involved in vasculogenesis and lymphogenesis.57–59 In addition, TAMs can enhance tumor hypoxia and glycolysis,71 two important causes of angiogenesis.72,73 HIF-1α is a protein induced in hypoxia conditions. It has been demonstrated that HIF-1α is an important transcriptional factor regulating the transcription of angiogenesis-associated genes, such as VEGF, bFGF, PDGF, and PGE2 in TAMs.74,75 Through the synthesis of WNT7B, macrophages also stimulate vascular endothelial cells to produce VEGF.76 Other TAM-produced proangiogenic molecules that recruit or activate endothelial cells include CXCL12, TNF-α, IL-1β, IL-8, Sema4d, adrenomedullin, and thymidine phosphorylase.41,77,78 Studies on liver diseases have revealed that in addition to producing proangiogenic molecules, macrophages can benefit the formation of complex vascular networks by interacting with the sprouting vasculature.79 Live imaging showed that macrophages drive sprouting angiogenesis via VEGF signaling and coordinate blood vessel regression in wound healing by clearing apoptotic endothelial cells.80 Preventing macrophages from entering avascular areas by blocking the Sem3A3/Nrp1 signaling pathway could inhibit angiogenesis.81 It has been reported that angiogenic macrophages are similar to fetal counterparts based on their characteristic expression of Tie2.77,82 Targeting Tie2 or its ligand ANG2 inhibits angiogenesis in certain tumor models, such as those for breast and pancreatic cancers.82 Depletion of TAMs inhibits angiogenesis.74,83 A close relationship between macrophages and angiogenesis has been discussed in previous reviews.84,85

Invasiveness and metastasis

Macrophages can not only increase the density of blood vessels but also promote the invasiveness and metastasis of tumor cells. By expressing matrix metalloproteinases, cathepsin, urokinase plasminogen activator, and matrix remodeling enzymes, such as lysyl oxidase and osteonectin, macrophages dissolve the extracellular matrix to pave the way for tumor cell escape.86 TAMs upregulate cytokines, such as IL-1ra, to promote metastasis by enhancing tumor cell stemness.87 Secretion of TGF-β and growth factors, such as EGF analogs, promotes epithelial–mesenchymal transition and invasiveness of tumor cells.88,89 Exosomes released from M2 macrophages are responsible for cancer metastasis by transferring certain miRNAs into cancer cells, such as colorectal cancer and pancreatic ductal adenocarcinoma cells.90,91

In addition to macrophages in primary tumors, macrophages can also assist in tumor survival and colonization at premetastatic lesions. It has been demonstrated that macrophages are required for the early dissemination of breast cancer, and early disseminated macrophages contribute to late metastasis.92 Tumor exosomes are crucial in tumor organotropic metastasis. It has been observed that pancreatic cancer cell-derived exosomes preferentially colocalize with macrophages in liver metastasis sites.93 Exosome-educated macrophages facilitate premetastatic niche formation via secretion of TGF-β.95 In addition, the interplay between integrin a4 on macrophages and VECA1 on tumor cells promotes cancer cell survival.96 Results from other studies support the indispensable role of monocytes/macrophages recruited to premetastatic niches in promoting circulating tumor cell survival and colonization in metastatic lesions.97,98 At lung metastasis nodules of breast cancer, CCL2 produced by tumor cells is an important chemokine for the recruitment and retention of inflammatory monocytes/macrophages.99 By recruiting Ly6C+ monocytes via CCL2, fibrocytes prepare a premetastatic niche in the lung for melanoma cells.100 After differentiating of CCR2+Ly6C+ inflammatory monocytes into Ly6C- macrophages, these cells accelerate tumor cell extravasation by generating VEGF.101
Tissue-resident macrophages have also been demonstrated to promote or restrict metastasis. Alveolar macrophages promote hepatocellular carcinoma lung metastasis by producing an inflammatory mediator, leukotriene B4. By suppressing Th1 responses, alveolar macrophages facilitate breast tumor cells to metastasize. Kupffer cells engulf cancer cells in a Dectin-2-dependent manner to limit liver metastasis.

Effects of macrophages on tumor microenvironment

Many factors, such as CSF1, VEGF-A, CXCL12, ANG2, CCL5, and CCL2, in solid tumors, can recruit angiogenic macrophages. This enrichment allows macrophages to play a major role in the construction of the tumor immune microenvironment. Granulin generated by TAMs can induce fibrosis, which prevents T cells from infiltrating. Attenuation of the TAM antigen presentation ability results in a reduction in T-cell activation and proliferation.

Exosomes consisting of various miRNAs derived from TAMs orchestrate an immunosuppressive tumor microenvironment by causing Treg/Th17 imbalance. It has been summarized that tumor-associated macrophages support a suppressive tumor microenvironment in three ways: (1) by consuming the metabolites, e.g., L-arginine, which is essential for T-cell activation, can be metabolized by TAMs with high expression of ARG1. (2) by producing the cytokines and chemokines, IL-10, TGF-β, and PGE2, which are primarily secreted by TAMs, to inhibit the activation and function of various immune cells, including cytotoxic T cells, but induce and maintain regulatory T cells, (3) by expressing inhibitory molecules. TAMs elicit immune suppression through the expression of inhibitory receptors or immune checkpoint ligands (e.g., MHC-I molecules, PD-L1, PD-L2, CD80, CD86, B7-H4 and VISTA). These molecules deliver an inhibitory signal to ligand- or receptor-expressing immune cells.

Therapeutic resistance

Macrophages are also an important cell-extrinsic factor that mediates the resistance of tumor cells to chemotherapy or radiotherapy. By expressing IL-6, TNF-α, cathepsin B and S, or inducing other cells to produce IL-6, macrophages activate STAT3.
in tumor cells, which enhances the proliferation and survival of malignant cells under treatment with several chemotherapeutics. The epithelial to mesenchymal transition, which can be elicited by macrophages, has been demonstrated to be another mechanism behind chemoresistance. Exosomal miR-223 from macrophages has been reported to cause a chemoresistant phenotype after being delivered into epithelial ovarian cancer cells. miR-21 derived from macrophages is responsible for cisplatin resistance in gastric cancer cells. Macrophages exacerbate fatty acid beta-oxidation of gastric cancer cells by generating growth differentiation factor 15 so that the cancer cells are more resistant to 5-fluorouracil treatment. Metabolites, including deoxycytidine, from macrophages, weakened the therapeutic effect of gemcitabine in pancreatic ductal adenocarcinoma. Murine pancreatic ductal adenocarcinoma models showed an enhanced therapeutic response toward gemcitabine after depleting macrophages with liposomal clodronate. As summarized by Marek Nowak et al., TAMs contribute to chemoresistance by inducing prosurvival and antiapoptotic signals in cancer cells, as well as their protumoral polarization.

It has been reported that irradiation promotes the accumulation and M2 polarization of macrophages. Heparin-binding epidermal growth factor, which is primarily secreted by macrophages, could reduce the radiosensitivity of head and neck cancer cells by activating the nonhomologous end-joining pathway. TNF-α has a radioprotective function in a TAM-produced VEGF-dependent manner. Carcinoembryonic antigen has been identified as a radioresistance marker in colorectal cancer because it induces M2 polarization of macrophages. Inhibition of differentiation of M2 macrophages showed enhanced responses to radiotherapy in breast cancer. Of note, dying cancer cells after treatment with chemotherapeutics or radiation might also initiate antitumor immune responses. Whether the function of macrophages leads to sensitization or resistance to traditional therapy is complex. Better understanding of the mechanisms can improve the efficacy of traditional oncotherapy.

INvolvement of macrophages in current immunotherapy

Due to the limitations and shortages of traditional cancer treatments, immunotherapy has become the most promising cancer treatment. Various cancer immunotherapy strategies have emerged. These include adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors. Although most of these strategies are not meant to target macrophages directly or originally, macrophages contribute significantly to the final outcomes.

Immune checkpoint inhibitors

To date, many immune checkpoint blockade therapies have been reported, but the most commonly used therapies in the clinic are anti-PD-1 and anti-PD-L1 therapies. Cancer immunotherapy based on inhibiting the immune checkpoints CTLA-4 and PD-1 aim at relieving immune suppression rather than simply reinforcing immune responses. Blocking the PD-1/PD-L1 pathways with inhibitors to enhance the cytotoxic function of T cells has made certain achievements in the resolution of malignancies. However, even if the adaptive immune system is compromised or the function of T cells cannot be fully recovered by PD-1 inhibitors under specific circumstances, PD-1/PD-L1 antagonisms can still increase antitumor efficacy. Therefore, more immune cell types should be involved in PD-1/PD-L1 inhibitor treatment. Additional studies revealed that both PD-L1 and PD-1 are expressed in TAMs, promoting immune suppression and escape. PD-1+ TAM phagocytosis can be rescued by PD-L1 blockade, which leads to a direct decrease in tumor burden. Furthermore, anti-PD-1 or PD-L1 immune checkpoint blockade induced an M1 macrophage polarization. M1 macrophage polarization or repolarization has been linked to an enhanced antineoplastic effect by numerous studies. Of note, macrophages might play a negative role in anti-PD-1 treatment, such as by preventing cytotoxic T cells from reaching tumor cells. In addition, in vivo imaging showed the transfer of an anti-PD-1 antibody from CD8+ T cells to TAMs through the binding of Fc-Fcy receptors shortly after its administration. Blocking such binding reduced the accumulation of anti-PD-1 antibody in TAMs and prolonged its retention time in CD8+ T cells, leading to the regression of tumors.

Along with the concept of immune checkpoints on T cells, several checkpoints that are mainly associated with macrophages have also been discovered. CD47 is a poor prognostic factor in tumor cells, and its interaction with SRPs on macrophages helps tumor cells evade phagocytic clearance by macrophages. Blocking CD47 has resulted in macrophage-mediated tumor inhibition. The inhibitory receptor LILRB1 expressed on macrophages prevents tumor cells from being phagocytosed by interacting with the beta-2 microglobulin (β2M) subunit of the MHC class I complex. The CD24-Siglec-10 axis promotes immune evasion by downregulating macrophage phagocytosis. Inhibition of these immune checkpoints has significantly increased cancer immunotherapy efficacy.

Tumor vaccines

Vaccines can be divided into two categories: preventive vaccines and therapeutic vaccines. Preventive vaccines are often designed to induce specific adaptive immunity, chiefly humoral immunity, before the occurrence of disease, which is normally caused by infection with a virus or bacteria. Thus, it can be used to reduce the incidence of viral or bacterial infection-induced carcinoma. Typical examples of preventive vaccines are those for HBV or HPV. Although a proper adaptive immune response is believed to be the primary reason for the effectiveness of these vaccines, it has been reported that immediate innate immunity other than time-consuming adaptive immunity is principally responsible for the spontaneous regression of cancer.

Therapeutic vaccines are usually designed to elicit protective T cells. However, Maxime Thoreau et al. demonstrated that cooperation between T cells and macrophages is required to achieve the effects of a therapeutic vaccine. A denser presence of macrophages along with tumor regression has shown to precede the infiltration of CD8+ T cells. Numerous approaches choose synthetic peptides, recombinant proteins, whole tumor cells, viral vectors, bacteria or nucleic acids as vaccination candidates to activate T cells via antigen-presenting cells, which are mostly dendritic cells. Among these, some regimens that used GM-CSF as an adjuvant generated obvious immune responses. Sipuleucel-T was the first therapeutic vaccine approved by the FDA to be used in a particular group of prostate cancer patients. A fusion protein combining a targeting tumor antigen prostate acid phosphatase with GM-CSF was used to induce antigen-specific T cells. It prolonged the survival of patients in a few clinical trials. A STING agonist formulated with GM-CSF showed remarkable antitumor efficacy in multiple established tumors. Some tumor cells used as whole-cell vaccines can secrete GM-CSF. In addition, oncolytic virotherapy, which increases the targeting of cancer cells through virus infection, could induce antitumor immune responses, especially in cells that had been engineered to express GM-CSF. GM-CSF is combined for the purpose of enhancing DC functions and limiting Treg regulation. However, GM-CSF could also induce M1 macrophage polarization and activate macrophages to exert an antitumor function.

In another virus-related tumor immunotherapy study, Danyang Wang et al. used an NF-kB-activating gene expression adenovirus-associated virus system to express an artificial neoantigen on the tumor cell surface, which could be targeted by specific immune
cells. When they chose calreticulin, a signal to promote phagocytic uptake, the cancer cells could be engulfed by macrophages.161 In addition, exosomes derived from M1- but not M2-polarized macrophages boosted the antitumor vaccine by eliciting a release of Th1 cytokines and a stronger antigen-specific cytotoxic T-cell response.162 Xu et al. reported that a listeria-based tumor vaccine benefited anti-PD-1 therapy against hepatocellular carcinoma by skewing macrophage polarization.163

Antibodies
Checkpoint inhibitors, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), are monoclonal antibodies. In addition, many other monoclonal antibodies have been approved for clinical cancer immunotherapy by the FDA. Rituximab and trastuzumab are examples of these monoclonal antibodies. Rituximab is used in B-cell lymphoma by targeting CD20. B lymphoma cells are more sensitive to macrophages in the presence of rituximab.164 Its combination with cyclophosphamide induced nearly complete tumor elimination in resistant bone marrow by activating macrophages.165 After blocking the CD47-SIRPα axis, rituximab-induced macrophage phagocytosis was augmented in nongenital B diffuse large B-cell lymphoma patients.166 Trastuzumab is an HER2-targeting antibody that has shown promising efficacy in breast cancer therapy. It has been reported that antibody-dependent cell phagocytosis mediated by macrophages is the main cause of the effectiveness of trastuzumab plus CD47 blockade.167 By binding with Fcy receptors on macrophages, trastuzumab triggered macrophage phagocytic killing, and this function was augmented after increasing the expression of Fcy receptors on macrophages.168 In addition, trastuzumab resistance was overcome by shifting macrophages from the M2 to M1 phenotype.169

Adoptive cell therapy
Adoptive cell therapy is also a very promising therapy that induces tumor regression by transferring specific immune cells to the tumor-bearing host. These cells may come from the host itself or some other donors. They are commonly manipulated to possess better effector functions and proliferate to a sufficient number in vitro before administration.170 Typical examples include T cells with engineered chimeric antigen receptors (CAR-Ts) or gene-modified T-cell receptors (TCR-Ts). In 2006, the adoptive transfer of TCR-engineered lymphocytes, which recognize an antigen named MART-1, caused tumor regression in metastatic melanoma patients.171 In 2010, administration of CAR-T cells against CD19 efficiently eliminated B cells in a patient with follicular lymphoma.172 However, insufficient infiltration into solid tumors is a major limitation for these T-cell-based immunotherapies. Local low-dose irradiation increased T-cell recruitment by inducing M1-phenotype macrophage differentiation.173 Cytokine release syndrome is considered to be closely related to the efficacy of adoptive cell therapy, but serious cytokine release syndrome may lead to death. It has been reported that cytokine release syndrome induced by CAR-T-cell transfer is mediated by macrophages.174 Inhibiting or neutralizing GM-CSF abolished macrophage-derived cytokines, which released syndrome-related cytokines and enhanced CAR-T-cell functions.175,176 Therefore, taking the response of macrophages into account may benefit adoptive modified T-cell therapy. Modified macrophages with the chimeric antigen receptor (CARMA) have also been tested by Klichinsky et al. The first generation of chimeric antigen receptors, which combine the scFv of anti-CD19, anti-mesothelin, or anti-HER2 antibodies with a CD3 intracellular domain, has been constructed. This CARMA displayed a strong tumoricidal function in preclinical models.177

Small-molecule inhibitors
Because of several advantages, such as oral bioavailability, the relatively low cost, ease of crossing physiological barriers or access to intracellular targets, small-molecule drugs are complementary and synergistic with other immune-oncology therapies.178 Numerous small-molecule inhibitors have been proven to suppress tumors by targeting macrophage-associated molecules. For example, IDO is a poor prognosis indicator that is often highly expressed in macrophages, dendritic cells, and tumor cells. Small-molecule inhibitors targeting IDO have been tested in clinical trials to reestablish positive immune responses.179,180 ARG1 is a cytosolic enzyme that plays a key role in the immunosuppressive function of TAMs. Compounds inhibiting arginase have shown potential in tumor suppression.181 RRX-001, a small-molecule inhibitor, downregulated not only CD47 on cancer cells but also SIRPα on macrophages and showed hypotoxicity but strong antitumor activity in clinical trials.182 In addition, small-molecule inhibitors have great potential in combination with other oncotherapy strategies. Inhibition of Bcl-2 family members improved the efficacy of CAR-T therapy in B-cell malignancy.183 PI3K-γ inhibitors, such as IPI-549, overcome immune checkpoint resistance by reshaping the tumor microenvironment, including switching macrophage polarization from the M2 to M1 phenotype.184 Small-molecule inhibitors targeting CXCR2 on neutrophils and CCR2 on macrophages improve the chemotherapeutic effects in pancreatic ductal adenocarcinoma models.185 PLX-3397, a small-molecule inhibitor of CSF1R, cKIT, and FLT3 has been demonstrated to decrease tumor burden by reducing M2 macrophages in combination with adoptive cell transfer immunotherapy or other small-molecule inhibitors.186,187 FAK is indispensable for the migration and stable protrusion formation of macrophages. Small-molecule inhibitors against FAK have shown promising antitumor activity, especially when combined with chemotherapy and immunotherapy strategies.188

PROSPECT: MACROPHAGES ARE A PROMISING TARGET IN FUTURE CANCER IMMUNOTHERAPY
To date, great endeavors to boost T cell-directed anticancer immune responses have been made. As reported, the incidence of cancerogenesis is low in invertebrates with no T or B cells, indicating that innate immune cells are of great importance for preventing the initiation and development of cancer.189–191 In addition to their supporting role in all kinds of immunotherapies, macrophages may become a promising target in future cancer immunotherapy.192,193 Many targets and pharmacological agents related to macrophages in oncotherapy have been summarized in recent reviews.126,193 We updated the typical macrophages-targeting agents that have been registered for cancer-related clinical trials (excluding projects those are in the status of terminated, withdrawn, unknown, not yet recruiting) in Table 2. The potential and promising strategies targeting macrophages have been categorized into six types based on their objectives in Fig. 4. There are several advantages to target macrophages in cancer immunotherapy. Low infiltration is a major barrier for T-cell-based anticancer therapy, and macrophages account for ~30–50% of infiltrating immune cells in the tumor microenvironment. As mentioned above, circulating monocytes are a major source of infiltrating macrophages in tumors, and the accessibility of peripheral blood mononuclear cells makes it easy to operate if a macrophage-based therapy strategy is adopted in the clinic.

Currently, it is generally believed that cancer cells originate from endogenous cells in humans. Even if numerous tumor-specific antigens have been identified, most specific antigens still exist in a few normal cells. In contrast, not all cancer cells express just one specific antigen because of tumor heterogeneity. Clearance of specific antigen-expressing cancer cells may only result in temporary and limited antitumor efficacy. Nevertheless, as a type of innate immune cell, macrophages can exert a tumor-suppressive function without targeting one specific antigen.194,195
Target	Agent	Organization	ClinicalTrials.gov Identifier	Tumors	Other interventions	Phase
CSF1	Lacnotuzumab (MCS110)	Novartis Oncology	NCT02435680	Advanced triple-negative breast cancer	Carboplatin, gemcitabine	II
			NCT01643850	Pigmented villonodular synovitis	None	II
			NCT03694977	Gastric cancer	PDR001	II
CCL2	Carlumab (CNTO 888)	Centocor Research & Development	NCT01204996	Solid tumors	Standard of care	I
			NCT00992186	Prostate cancer	None	II
SIRPα	TTI-622	Trillium Therapeutics	NCT03530683	Advanced relapsed or refractory lymphoma or myeloma	Rituximab, PD-1 inhibitor, proteasome-inhibitor regimen	I
			NCT01204996	Solid tumors	BI 754091	I
			NCT00992186	Prostate cancer	None	II
TIE2	CEP-11981 (ESK981)	Karmanos Cancer Institute	NCT04159896	Advanced cancer	Pembrolizumab	I
			NCT03456804	Prostate cancer	None	II
	Regorafenib (BAY 73-4506)	Bayer	NCT04170556	Hepatocellular carcinoma	Pembrolizumab, nivolumab	I/II
Arginase	INCB001158 (CB1158)	Incyte	NCT03910530	Advanced solid tumors	Pembrolizumab	I
HER2	CAR-macrophage	Carisma Therapeutics Inc.	NCT04660929	HER2 overexpressing solid tumors	Pembrolizumab	I
	EF-022	Efranat	NCT02052492	Solid tumors	None	I
CD40	SEA-CD40	Seattle Genetics	NCT02376699	Solid tumors	Pembrolizumab	I
	APX005M	Apexigen	NCT03389802	Pediatric CNS	None	I
			NCT04130854	Locally advanced rectal adenocarcinoma	Doxorubicin	II
			NCT02482168	Non-small-cell lung cancer, melanoma, urethelial carcinoma, head and neck cancer	Pembrolizumab	I
CP-870,893	Selicrelumab (R7009879)	VLST Corporation	NCT01103635	Metastatic melanoma	Tremelimumab (anti-CTLA-4)	I
			NCT02760797	Advanced solid tumors	Anti-PD-L1	I
			NCT02665416	Advanced solid tumors	Bevacizumab or vanucizumab	I
			NCT02304393	Solid tumors	Atezolizumab	I
			NCT02588443	Pancreatic ductal adenocarcinoma	Gemcitabine, nab-paclitaxel	I
Target	Agent	Organization	ClinicalTrials.gov Identifier	Tumors	Other interventions	Phase
--------	-------	--------------	-------------------------------	--------	--------------------	-------
CDX-1140	Celldex Therapeutics	NCT04491084	Non-small-cell lung cancer, lung cancer	CDX-301	I/II	
		NCT04520711	Malignant epithelial neoplasms	TCR-T, pembrolizumab	I	
		NCT04616248	Unresectable or metastatic breast cancer	Poly ICLC, radiation therapy, recombinant Fc ligand	I	
		NCT04364230	Melanoma	6MPH, NeoAg-mBRAF, Poly ICLC	I/II	
		NCT03329950	Advanced malignancies	CDX-301, pembrolizumab, chemotherapy	I	
		NCT00525447	Multiple myeloma	Lenalidomide, dexamethasone	I	
		NCT0079716	Multiple myeloma	None	I	
		NCT0043916	Large B-cell diffuse lymphoma, non-Hodgkin lymphoma	None	II	
		NCT0103779	Non-Hodgkin lymphoma	None	I	
		NCT0065837	Large B-cell diffuse lymphoma, non-Hodgkin lymphoma	Rituximab, gemcitabine	I	
		NCT0056699	None	Rituximab	I	
		NCT0064898	Multiple myeloma	Bortezomib	I	
		NCT00283101	Lymphocytic, chronic leukemia	None	I/II	
		NCT00670592	Non-Hodgkin’s lymphoma, Hodgkin’s lymphoma	None	II	
		NCT01275209	Follicular lymphoma	None	I	
		NCT00231166	Multiple myeloma	None	I	
		NCT04547777	Glioma	None	I	
		NCT04059588	Solid tumor, skin cancer	D2C7-IT	I	
		NCT02829099	Advanced solid neoplasms	None	I	
		NCT04635995	Cancer	None	I	
		NCT15061911	Neoplasms, lymphoma, non-Hodgkin, B cell	None	I	
		NCT03852511	Metastatic cancer, epithelial tumor	None	I	
		NCT02599324	Renal cell, urothelial, gastric, colon, pancreatic adenocarcinoma	None	Ib/II	
		NCT01478581	Multiple myeloma	Dexamethasone	I	
		NCT01752426	Leukemia	heavy water (H2O)	I, II	
		NCT01236391	Mantle cell lymphoma	None	II	
		NCT01105247	B-cell chronic lymphocytic leukemia, small lymphocytic lymphoma	None	I, II	
		NCT01614821	Waldenstrom’s macroglobulinemia	None	II	
		NCT01292135	B-cell chronic lymphocytic leukemia, small lymphocytic lymphoma	None	I	
		NCT01520519	Leukemia	Rituximab	II	
		NCT01109069	B-cell lymphoma, chronic lymphocytic leukemia	None	II	
		NCT01217749	Chronic lymphocytic leukemia	Ofatumumab	I, II	
		NCT02403271	Chronic lymphocytic leukemia	Durvalumab	I, II	
Target	Agent	Organization	ClinicalTrials.gov Identifier	Tumors	Other interventions	Phase
--------	-------	--------------	--------------------------------	--------	--------------------	-------
				Non-small-cell lung cancer, breast cancer, pancreatic cancer	Temsirolimus	III
			NCT01646021	Mantle cell lymphoma		
			NCT01855750	Lymphoma	Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone	II
			NCT01980628	Marginal zone lymphoma, B-cell lymphoma	None	II
			NCT01589302	Prolymphocytic leukemia, small lymphocytic lymphoma, chronic lymphocytic leukemia	None	II
			NCT01325701	Diffuse large B lymphoma	None	II
			NCT01578707	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Ofatumumab	III
			NCT01722487	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Chlorambucil	III
			NCT02436668	Metastatic pancreatic adenocarcinoma	Gemcitabine, nab-paclitaxel	III
			NCT01980654	Follicular lymphoma, B-cell lymphoma, non-Hodgkin's lymphoma	Rituximab	II
			NCT01973387	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Rituximab	III
			NCT01611090	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Bendamustine, hydrochloride, rituximab	III
			NCT02401048	Diffuse large B-cell lymphoma, follicular lymphoma	MEDI4736	I, II
			NCT02639910	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Tafasitamab, idelalisib, venetoclax	II
			NCT02902965	Multiple myeloma	Bortezomib dexamethasone	II
			NCT01744691	Chronic lymphocytic leukemia with 17p deletion, small lymphocytic lymphoma with 17p deletion	None	II
			NCT02264574	Chronic lymphocytic leukemia, small-cell lymphoma	Obinutuzumab, chlorambucil	III
			NCT02514083	Chronic lymphocytic leukemia, small lymphocytic lymphoma	Fludarabine	II

Targeting macrophages in cancer immunotherapy

Duan and Luo (2021) 6:127
Target	Agent	Organization	ClinicalTrials.gov Identifier	Tumors	Other interventions	Phase
			NCT02777710	Pancreatic or colorectal cancers	Durvalumab	I
			NCT02734433	Advanced solid tumors	None	I
			NCT03158103	Gastrointestinal stromal tumor	MEK162	I
	BLZ945	Novartis	NCT02829723	Advanced solid tumors	PDR001	I
	ARRY-382	Array Biopharma	NCT01316822	Metastatic cancer	None	I
			NCT02880371	Advanced solid tumors	Pembrolizumab	II
	Edicotinib (JNJ-40346527)	Johnson & Johnson	NCT03177460	Prostate cancer	None	I
	IMC-CS4(LY3022855)	Eli Lilly	NCT01346358	Advanced solid tumors	None	I
			NCT02265536	Advanced breast, prostate cancer	None	I
			NCT02718911	Solid tumor	Durvalumab, tremelimumab	I
			NCT03101254	Melanoma	Vemurafenib cobimetinib	I & II
			NCT03153410	Pancreatic ductal adenocarcinoma	Cyclophosphamide, pembrolizumab, GVAX	I
			NCT02471716	Tenosynovial giant cell tumor	None	II
		Five Prime Therapeutics	NCT03927105	Peripheral T-cell lymphoma	Nivolumab	II
			NCT03502330	Melanoma, non-small-cell lung cancer, renal cell carcinoma	APX005M nivolumab	I
			NCT04331067	Triple-negative breast cancer	Nivolumab	Ib/II
			NCT03158272	Advanced malignancy	Nivolumab	I
			NCT02526017	Advanced solid tumors	Nivolumab	I
		Hoffman La Roche	NCT02323191	Advanced solid tumors	Atezolizumab	I
	Emactuzumab (RO5509554)	Hoffman La Roche	NCT02760797	Advanced solid tumors	RO7009789	I
			NCT01494688	Advanced solid tumors	Paclitaxel	I
			NCT03708224	Advanced head and neck squamous cell carcinoma	Atezolizumab	II
			NCT03193190	Pancreatic ductal adenocarcinoma	Additional therapies	I/II
		Turning Point Therapeutics, Inc.	NCT03993873	Advanced solid tumor	None	I
		Deciphera Pharmaceuticals LLC	NCT04242238	Sarcoma	Avelumab	I
			NCT03696469	Advanced malignant neoplasm	None	I & II
	Q702	Qurient Co., Ltd.	NCT04648254	Solid tumor	None	I
	SNXD-6532	Syndax	NCT03238027	Solid tumor	Durvalumab	I
			NCT04301778	Unresectable intrahepatic cholangiocarcinoma	Durvalumab	II
	CD47	Magrolimab (HuSF9-G4)	NCT02211609	Solid tumor	None	I
		Gilead Sciences	NCT03248479	Hematological Malignancies	Azacitidine	I
			NCT02678338	Acute myeloid leukemia, myelodysplastic syndrome	None	I
			NCT03527147	Non-Hodgkin's lymphoma	AZD9150 acalabrutinib AZD6738 rituximab AZD5153	I
			NCT04599634	B-cell malignancies	Obinutuzumab venetoclax	I
Target	Agent	Organization	ClinicalTrials.gov Identifier	Tumors	Other interventions	Phase
---------	---------------------	--------------------------------------	-------------------------------	--	---	-------
			NCT02953782	Advanced solid malignancies and colorectal carcinoma	Cetuximab	I
			NCT03558139	Ovarian cancer	Avelumab	I
			NCT03248479	Hematological malignancies	Azacitidine	I
			NCT04541017	T-cell lymphoma	Mogamulizumab	I/I
			NCT03922477	Acute myeloid leukemia	Atezolizumab	I
			NCT04435691	Acute myeloid leukemia	Azacitidine, venetoclax	I/I
			NCT03869190	Urothelial carcinoma	Atezolizumab, enfortumab, vedotin, niraparib	I/I
			NCT02953509	Non-Hodgkin lymphoma	Rituximab, gemicitabine, oxaliplatin	I/I
			NCT04313881	Myelodysplastic syndromes	Azacitidine	III
			NCT02890368	Solid tumors and mycosis fungoides	PD-1/PD-L1 inhibitor, pegylated interferon-α2a, radiation, talimogene laherparepvec	I
			NCT04328831	Advanced malignancies	None	I
			NCT04338659	Advanced malignancies	None	I
			NCT04257617	Locally advanced solid tumor	None	I
			NCT02367196	Hematologic neoplasms	Rituximab	I
			NCT04097769	Advanced solid tumor	None	I
			NCT03717103	Advanced malignancies	Rituximab	I
			NCT03763149	Advanced malignancies	None	I
			NCT03512340	Advanced solid cancers, hematologic cancers	None	I
			NCT04349969	Neoplasms malignant	None	I
			NCT04306224	Solid tumor, lymphoma	None	I
CCR2	BMS-813160	Bristol-Myers Squibb	NCT03184870	Colorectal/pancreatic cancer	Chemotherapy or nivolumab	I/I
			NCT03496662	Pancreatic cancer	Nivolumab abraxane, gemicitabine	I/I
			NCT03767582	Pancreatic cancer	Radiation therapy, nivolumab, GVAX	I/I
			NCT04123379	Non-small-cell lung cancer, hepatocellular carcinoma	Nivolumab, BMS-986253	II
			NCT02996110	Advanced cancer	Nivolumab, ipilimumab, relatlimab, BMS-98620S	II
AL176	Arch Oncology		NCT02834948	Solid tumor	Paditaxel	I/I
			NCT04445701	Multiple myeloma	Bortezomib, dexamethasone	I/I
			NCT04328831	Advanced malignancies	None	I
			NCT04338659	Advanced malignancies	None	I
			NCT04257617	Locally advanced solid tumor	None	I
			NCT02367196	Hematologic neoplasms	Rituximab	I
			NCT04097769	Advanced solid tumor	None	I
			NCT03717103	Advanced malignancies	Rituximab	I
			NCT03763149	Advanced malignancies	None	I
			NCT03512340	Advanced solid cancers, hematologic cancers	None	I
			NCT04349969	Neoplasms malignant	None	I
			NCT04306224	Solid tumor, lymphoma	None	I
Macrophages are a double-edged sword in the tumor microenvironment. As a prominent component of tumor stromal cells, macrophages can gather around blood vessels, induce angiogenesis, and promote tumor invasion. On the other hand, they could also phagocytose cancer cells and remodel the tumor microenvironment.

Fortunately, the polarization of macrophages can be repolarized. The transformation from M2- to M1-phenotype macrophages is sufficient to cause a tumor-suppressive effect.\(^{194-196}\) Of note, the polarization of macrophages is independent of T cells, while M1 macrophages are able to induce Th1 immune responses, and M2 macrophages can...
trigger Th2 immune responses. This provides an opportunity to target macrophages in cancer immunotherapy. More importantly, the direction of macrophages to T or B cells does not rely on the existence of tumor-specific antigens. While IFN-γ from M1 macrophages is an incentive for Th1 responses, TGF-β and IL-10-derived M2 macrophages cause the generation of Treg cells. Trogocytosis is a process in which a tumor-derived antigen is transferred to Fcy receptor-expressing lymphocytes with the help of certain antibodies. It has been demonstrated that tumor cells decrease the expression of specific antigens by delivering them to CAR-T cells or NK cells, leading to fratricide T cells or NK cells.

Trogocytosis has also been discovered between tumor cells and macrophages and is partially responsible for tumor immune escape. However, Velmurugan et al. reported that persistent trogocytosis of macrophages eventually leads to the killing of antibody-opsonized tumor cells. They explained that these discrepancies might be caused by limited contact time between two types of cells and the lack of competing endogenous antibodies under physiological conditions. Moreover, macrophages are capable of presenting antigens. Proteins that have been passed to the plasma membrane by trogocytosis might be more likely to be processed and presented than cytotoxic proteins.

In addition, as mentioned above, macrophages from different sources may exert different functions. This offers an opportunity for more accurately targeted immunotherapy. For example, CCR2‘Ly6C’ inflammatory monocytes can be recruited to pulmonary metastasis sites by CCL2 secreted by tumor cells and then differentiate into Ly6C’ macrophages that promote metastasis. Selectively targeting this group of monocytes may reduce metastasis without damaging the homeostasis maintaining functions of residual macrophages. Macrophages also have advantages in certain types of cancer. Approximately 20% of nonparenchymal cells in the liver are macrophages. Macrophages in different locations function differently. By stimulating adaptive immune responses, they exert tumoricidal or protumoral and, in general, protumoral functions. It has been summarized in a previous review that targeting pathogenic macrophages is a promising option for patients with liver disease. Moreover, ascites is a common pathological phenomenon in liver cancer that is often accompanied by a poor prognosis. Integrated single-cell RNA sequencing revealed that lymphocytes in ascites are similar to those in peripheral blood, while myeloid cells in ascites are more likely to originate from tumor-infiltrating myeloid cells. This notion was further confirmed by RNA velocity and phylogenetic trees of macrophages from various tissues. According to this study, intratumoral macrophage-based immunotherapy for hepatocellular carcinoma can not only resolve tumor burden in situ but also relieve ascites.

Thus, macrophages provide a force to be considered in tumor immunotherapy. Research on macrophages might open a new door for oncotherapy. To address various malignancies, more strategies based on or combined with macrophages need to be explored in the future.

ACKNOWLEDGEMENTS

Several elements used for figures in this review were downloaded from https://smart.servier.com. The Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License. This work was supported by the National Natural Science Foundation of China (NSFC) (No. 81672914), (No. 81472654), (Y. Luo), (No. 81601374) (Z. Duan), and the Fundamental Research Funds for the Central Universities (3332020033, Z. Duan).

AUTHOR CONTRIBUTIONS

Z.D. wrote the paper and Y.L. revised it.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).
2. Xuetao Cao, W. H. Medical Immunology, third edn. (People’s Medical Publishing House, 2015).
3. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 782–804 (2013).
4. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).
5. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).
6. Satpathy, A. T., Wu, X., Albring, J. C. & Murphy, K. M. Redefining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).
7. Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc. Natl Acad. Sci. USA 109, 2491–2496 (2012).
8. Shand, F. H. et al. Tracking of interstitium migration reveals the origins of tumor-infiltrating monocytes. Proc. Natl Acad. Sci. USA 111, 7771–7776 (2014).
36. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to implications. Trends Immunol. 21, 1–4 (2015).
37. Williams, C. B., Yeh, E. S. & Soloff, A. C. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2, 1–12 (2016).
38. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).
39. Biswas, S. K. et al. Distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).
40. Salamaninejad, A. et al. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol. 42, 591–608 (2019).
41. Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6, 1670–1690 (2014).
42. Yang, L. & Zhang, Y. Tumor-associated macrophages: from basic research to clinical application. J. Hematol. Oncol. 10, 58 (2017).
43. Gordy, C., Pua, H., Sempowski, G. D. & He, Y. W. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117, 618–629 (2011).
44. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
45. Shevach, E. M. & Rosenthal, A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J. Exp. Med. 138, 1213–1229 (1973).
46. Medzhivot, R., Preston-Hurlbert, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).
47. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).
48. Hulmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522 e520 (2017).
49. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).
50. Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Curr. Res. 118, 1498–1511 (2016).
51. Kang, K. et al. Adipocytokine-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).
52. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
53. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).
54. Nishimura, I. et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 7, 3855 (2017).
55. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).
56. Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Curr. Res. 118, 1498–1511 (2016).
57. Kang, K. et al. Adipocytokine-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).
58. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
59. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).
60. Nishimura, I. et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 7, 3855 (2017).
61. Hibbs, J. B. Jr., Vavrin, Z. & Taintor, R. R. L-arginine is required for expression of nitric oxide synthase in the brain. Nature 367, 664–668 (1994).
62. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
63. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).
64. Nishimura, I. et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 7, 3855 (2017).
65. Hibbs, J. B. Jr., Vavrin, Z. & Taintor, R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138, 550–565 (1987).
66. Mills, C. D. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit. Rev. Immunol. 21, 399–425 (2001).
67. Rauen, S. & Montgomery, K. E. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers 4, 618–657 (2012).
68. Raal, S. et al. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134, 4449–4458 (2007).
69. Fuster, J. A. et al. Regulation of angiogenesis by a non-canonical Wnt/β-catenin pathway in myocardial cells. Nature 474, 511–515 (2011).
70. Spric, Z., Eri, Z. & Eric, M. Significance of vascular endothelial growth factor (VEGF)-C and VEGF-D in the progression of cutaneous melanoma. Int. J. Surg. Pathol. 23, 629–637 (2015).
71. Jiang, H. et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79, 795–806 (2019).
72. Feng, J. et al. Emerging roles and the regulation of aerobic glycolysis in hepa-tocellular carcinoma. J. Exp. Clin. Cancer Res. 39, 126 (2020).
73. Sinivasan, S. et al. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18, 449–462 (2015).
18. Squardito, M. L. & De Palma, M. Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol. Asp. Med. 32, 123–145 (2011).
19. Jetten, N. et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17, 109–118 (2014).
20. Yeo, E. J. et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74, 2962–2973 (2014).
21. Murdoch, C., Mathew, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).
22. Zhou, H., Binnardi, N. O., Yang, Y. H., Proia, P. & Basile, J. R. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 15, 391–407 (2012).
23. Ramirez-Pedraza, M. & Fernandez, M. Interplay between macrophages and angiogenesis: a double-edged sword in liver disease. Front. Immunol. 10, 2882 (2019).
24. Gurevich, D. B. et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J 37, e97786 (2018).
25. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).
26. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).
27. Belgiovine, C., D’Incalci, M., Allavena, P. & Frapoli, R. Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol. Life Sci. 73, 2411–2424 (2016).
28. Du Cheyne, C., Tay, H. & De Spieghelaere, W. The complex tie between macrophages and angiogenesis. Anat. Histol. Embryol. 49, 585–596 (2019).
29. Albin, A., Bruno, A., Noonan, D. M. & Mortara, L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front. Immunol. 5, 527 (2018).
30. Wang, W. et al. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stats/Kit-11ra pathway in mouse breast cancer. Oncogene 37, 97 (2018).
31. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
32. Bonde, A. K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R. A. Intra-tumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012).
33. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).
34. Mason, S. D. & Joyce, J. A. Protumoral networks in cancer. Trends Cell Biol. 21, 228–237 (2011).
35. Lan, J. et al. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res. 79, 146–158 (2019).
36. Yin, Z. et al. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-beta signaling pathway. J. Exp. Clin. Cancer Res. 38, 310 (2019).
37. Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).
38. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Sci. Rep. 5, 227–322 (2015).
39. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 816, 816–826 (2015).
40. Chen, J. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PI3K/PtP113. Cancer Cell 19, 541–555 (2011).
41. Peinado, H. et al. Mesenchymal stem cells contribute to tumor growth and metastasis: a mechanism that fuels cancer radio/chemoresistant cells. Cancer Cell 15, 285–297 (2009).
42. Kajiyama, G., et al. CCL2-induced chemokine cascade promotes breast cancer progression of pancreatic ductal adenocarcinoma by recruiting Ly-6C+ monocytes via CCL2. J. Immunol. 190, 4861–4867 (2013).
43. Qin, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).
44. Nosaka, T. et al. Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4. J. Immunol. 200, 1839–1852 (2018).
45. Sharma, S. K. et al. Pulmonary alveolar macrophages contribute to the pre-metastatic niche by suppressing antimacrophage T cell responses in the lungs. J. Immunol. 194, 5529–5538 (2015).
46. Kimura, Y. et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc. Natl. Acad. Sci. USA 113, 14097–14102 (2016).
134. Noguchi, T. et al. Galactan isolated from Cantharellus cibarius modulates antitumor immunity by converting tumor-associated macrophages toward M1-like phenotype. Carbohydr. Polym. 226, 115295 (2019).

135. Ma, Q. et al. PhGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur. J. Pharmacol. 863, 172696 (2021).

136. Roder, C. B. et al. TL78-agonist-loaded nanoparticles promote the polarization of tumor-associated macrophages to enhance cancer immunotherapy. Nanomedicine, 52, 578–588 (2018).

137. Peranzone, E. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

138. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, 389 (2017).

139. Majeti, R. et al. CD47 is an adaptive prognostic factor and therapeutic antibody target in human acute myeloid leukemia stem cells. Cell 158, 286–299 (2019).

140. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

141. Weiskopf, K. et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J. Clin. Investig. 126, 2610–2620 (2016).

142. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LLRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

143. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

144. Wiemann, B. & Starnes, C. O. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther. 64, 529–564 (1994).

145. Thomas, J. A. & Badini, M. The role of innate immunity in spontaneous regression of cancer. Indian J. Cancer 48, 246–251 (2011).

146. Thoreau, M. et al. Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncoargets 6, 27832–27846 (2015).

147. Santos, P. M. & Butterfield, L. H. Dendritic cell-based cancer vaccines. J. Immunol. 200, 443–449 (2018).

148. Walter, S. et al. Multipletope immune response to cancer vaccine IMAC01 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

149. Cheever, M. A. & Higano, C. S. PROVENGEL (Siglec-10) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

150. Fu, J. et al. STING agonist formulated cancer vaccines can cure established macrophages. Proc. Natl Acad. Sci. USA 109, 14903–14908 (2012).

151. Agarwalla, P., Barnard, Z., Fecci, P., Dranoff, G. & Curry, W. T. Jr Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J. Immunother. 35, 385–389 (2012).

152. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA 90, 5339–5343 (1993).

153. Chiocca, E. A. & Rabkin, S. D. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol. Res. 2, 295–300 (2014).

154. Senzer, N. N. et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27, 5763–5771 (2009).

155. Halstead, E. S. et al. GM-CSF overexpression after influenza virus infection prevents mortality and moderates M1-like airway macrophage/macrophage polarization. Respir. Res. 19, 3 (2018).

156. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

157. Wang, D., Dai, W. & Wang, J. A cell-specific nuclear factor-kappa B-activating gene expression strategy for delivering cancer immunotherapy. Hum. gene Ther. 30, 471–484 (2019).

158. Cheng, L., Wang, Y. & Huang, L. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol. Ther. 25, 1665–1675 (2017).

159. Xu, G. et al. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene 39, 1429–1444 (2019).

160. Lefebvre, M. L., Krause, S. W., Salcedo, M. & Nardin, A. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rituximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J. Immunother. 29, 388–397 (2006).

161. Roghanian, A. et al. Cyclophosphamide enhances cancer antibody immunotherapy in the resistant bone marrow niche by modulating macrophage Fcgamma expression. Cancer Immunol. Res. 7, 1876–1890 (2019).

162. Vogelzang, N. J. et al. Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance by shifting tumor-associated macrophages from M2 to M1 phenotype. J. Immunol. 194, 4997–5006 (2015).

163. Xu, M. et al. Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J. Immunol. 194, 4997–5006 (2015).

164. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

165. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

166. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

167. Krぬ, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/iNOS1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

168. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

169. Stenner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR T-cell function in xenografts. Blood 133, 679–709 (2019).

170. Sachdeva, M., Duclatcheau, P., Depil, S., Pioit, L. & Valton, J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J. Immunol. 198, 299–300 (2014).

171. Rodríguez, P. C. et al. Arginase I production in the tumor microenvironment by macrophages and abated by IL-1 blockade. Mol. Ther. 24, 58–65 (2016).

172. Mok, S. et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of other. Cancer Immunol. Res. 3, 3543–3554 (2015).

173. Arlauckas, S. P. et al. Targeting macrophages in cancer immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade overcomes anti-PD-1 resistance. Cancer Immunol. Res. 7, 80–89 (2019).

174. Duan and Luo Targeting macrophages in cancer immunotherapy 19
Targeting macrophages in cancer immunotherapy

Duan and Luo

189. Robert, J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev. Comp. Immunol. 34, 915–925 (2010).

190. Wang, J. et al. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 75, 306–315 (2015).

191. Mills, C. D., Ley, K., Buchmann, K. & Cantor, J. Sequential immune responses: the weapons of immunity. J. Infect. Immun. 7, 403–449 (2015).

192. Cavaillon, J. M. The historical milestones in the understanding of leucocyte biology initiated by Elie Metchnikoff. J. Leukoc. Biol. 90, 413–424 (2011).

193. Pathria, P., Louis, T. L. & Varner, J. A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40, 310–327 (2019).

194. O'Sullivan, T. et al. Cancer immunoeediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012).

195. Mills, C. D., Shearer, J., Evans, R. & Caldwell, M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J. Immunol. 149, 2709–2714 (1992).

196. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

197. Mills, C. D., Kincaid, K., Alt, J. M., Heilmann, M. J. & Hill, A. M. M1/M2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

198. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

199. Nagai, T. et al. Targeting tumor-associated macrophages in an experimental model of tumor development. BMC Med. 15, 4789 (2017).

200. Nordquist, R. et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 20, 1654–1666 (2017).

201. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

202. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

203. Bhattacharya, S. et al. Targeting tumor-associated macrophages with a recombinant immunotoxin to folate receptor beta. Immunol. Immunother. 58, 904 (2018).

204. Velmurugan, R., Challa, D. K., Ram, S., Ober, R. J. & Ward, E. S. Macrophage-targeted therapeutics. Adv. Drug Deliv. Rev. 84, 410–421 (2015).

205. Nagai, T. et al. Targeting tumor-associated macrophages in an experimental model of tumor development. BMC Med. 15, 4789 (2017).

206. O'Sullivan, T. et al. Cancer immunoeediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012).

207. Lettieri-Barbato, D. & Aquilano, K. Pushing the limits of cancer therapy: the weapon of immunity. Eur. J. Immunol. 49, 67–70 (2019).

208. Fujikuni, Y. et al. Targeting tumor-associated macrophages with a recombinant immunotoxin to folate receptor beta. Immunol. Immunother. 58, 904 (2018).

209. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

210. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

211. Ngambenjawong, C., Gustafson, H. H. & Pun, S. H. Progress in tumor-associated macrophages as treatment targets in oncology. Lancet Oncol. 17, 26–32 (2016).

212. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

213. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

214. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

215. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

216. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumor-bearing anti-cancer therapy. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

217. Takanaka, M. C. et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat. Neurosci. 22, 729–740 (2019).
