Energy Harvesting from Piezoelectric Cantilever Beam with Different Shapes

R Amna, M R Sarker, R Mohamed

Abstract: This paper reviews the piezoelectric energy harvesting from mechanical vibration. The recent development in the microelectronic devices and wireless sensor networks (WSNs) requires continuous power source for better performance. Many researchers have been done to develop a permanent portable power source for microelectronic devices. Micro energy harvesting (MEH) consists of two basic elements; freely available energy and transducer. Energy is everywhere around us in different forms. The energy conversion ability of piezoelectric energy harvester is high among different MEH techniques. A cantilever type piezoelectric energy harvester under different shapes is mostly studied in the last few years. The output of piezoelectric harvester depends upon the deflection produced, more deflection led to more electrical output. The deflection in cantilever beam under different shapes is different. This review paper presents a comparison of different piezoelectric cantilever beam shapes and output generated analyzed in the last decade.

Key Words: Piezoelectric cantilever beam, micro energy harvesting, resonant frequency.

I. INTRODUCTION

Energy harvesting (EH) is the process of capturing energy on micro scale from the sources freely available in our surroundings, transform them and store them for later use [1][2][3][4]. EH is also known as energy scavenging or power harvesting. With the recent developments in wireless sensor networks (WSNs) and micro electromechanical systems, EH got so much attention and considered as best replacement of conventional batteries [5][6][7]. These devices use the batteries as their power sources and their performance is limited due to the problems associated with batteries e.g. life time and periodic maintenance of the batteries [8][9][10]. The recharging and replacement of these batteries is a big problem when the devices are installed in remote locations. Many researches have been done to overcome this problem and design an independent power source with life time more than conventional batteries.

From ancient times humans have been using EH in the forms of watermills, windmills etc. Nowadays’ renewable energy got so much attention and considered to be the future of the power source due to the decay of fossil fuels and nuclear power instabilities [11][12][13]. The renewable energy power plants generating capacity is in the range of kW to mW, it is known as macro energy harvesting (MEH) technology [14][15][16]. On the flip side, a MEH technology utilizes free form of energy from our surroundings and their generating capacity is in the range of µW to mW [17][18][19].

This MEH is the best alternative of batteries. For vibrational EH three mechanisms are available; electromagnetic, electrostatic and piezoelectric [20][21][22]. Piezoelectric EH is considered as independent power source for wireless sensor network systems due to their high capability of converting mechanical vibration into electrical energy with a very simple harvester structure [23]. Piezoelectric micro electromechanical systems (MEMS devices) present the advantages of (i) High energy density of piezoelectric material even the film thickness is reduced (ii) low power requirement of piezoelectric actuators (iii) capable of interfacing of electrical and mechanical components (iv) higher frequency and temperature stability of resonant devices [24][25][26].

In the middle of eighteen century two scientists, Carlous Linnaeus and Franz Aepinus first observed the special properties of some materials. The authors found that crystals and some ceramics generate electric charges as a reaction of temperature change. Piezoelectricity as a research field of crystal physics was first studied by two famous brothers Jacqs Curies (1856-1941) and Pierre Curie (1859-1906) [27]. It was also observed that the unusual behavior of some crystalline materials like quartz, tourmaline, topaz, rochelle salt and cane sugar. Jacqs Curies and Pierre Curie found that voltages generated by the application of tension and compression opposite in polarities and directly proportional to the applied load. This was called piezoelectric effect by Hankel [28]. The piezoelectricity comes from the Greek word “Piezo” means pressure.

II. PIEZOELECTRIC PHENOMENON

Piezoelectric materials (PMs) are classified (according to existence) into two classes: natural and man-made. The natural PMs are crystalline materials like Tourmaline (group minerals), Rochelle salt, Topaz and some organic substances like silk, wood bone, rubber etc [29][30]. Fig. 1 shows the atomic structure of Silicon Dioxide (SiO2) which is built of oxygen atoms around a silicon atom.
Energy Harvesting From Piezoelectric Cantilever Beam with Different Shapes

The distance between oxygen atoms and silicon atom is same. When stress is applied, the position of the atoms is changed and Polarization is caused as a result of net dipole movement and electricity is produced.

The man-made PMs are quartz analogs, polymers, ceramics and composites. There are 32 crystal classes divided into seven groups:
- Triclinic
- Monoclinic
- Orthorhombic
- Tetragonal
- Trigonal
- Hexagonal
- Cubic

Only 20 out of 32 classes allow piezoelectric effect. In these 20 classes, 10 are polar and the remaining 10 are non-polar. PMs are capable of transforming applied mechanical force into electrical energy and this property is exhibit by special type of materials like barium titanate, Rochelle salt, quarts and tourmaline. The generation of electricity in these materials is known as piezoelectric effect. Diversely, by the application of electric field these crystals deforms. This effect is known as inverse piezoelectric effect as shown in Fig 2 and Fig 3. The application of piezoelectric effect is in sensors and transducers whereas inverse piezoelectric effect is used in actuators. The electromechanical behavior of the PMs can be expressed by two linearized equations given below.

\[
D_i = \varepsilon_i^\sigma E_j + d_{im}^e \sigma_m
\]

\[
\varepsilon_i^e = d_{ik}^e E_j + S_{km}^E \sigma_m
\]

Where \(D_i\) is represents dielectric displacement in N/m V or C/m², \(\varepsilon_i^\sigma\) is the strain vector, \(E_j\) is applied electric field in volts/meter, \(\sigma_m\) is stress in N/m², \(d_{im}^e\) and \(d_{ik}^e\) is piezoelectric constants in m/V or C/N, \(\varepsilon_i^\sigma\) is dielectric permittivity in N/V² or F/m, \(S_{km}^E\) is Elastic compliance matrix in m²/N, \(C\) is inverse piezoelectric effect, \(d\) is piezoelectric effect, \(\sigma\) is quality measured at constant stress and \(E\) is quality measured at constant electric field.

| Table. 1 Piezoelectric characteristic [26] |
|---|---|---|
| Coefficients | PZT-5H | PZT-8 | PVDF |
| \(d_{31}\) | -274*10⁻¹² m/V | -97 | 18-24 |
| \(d_{32}\) | -274*10⁻¹² m/V | -97 | 2.5-3 |
| \(d_{33}\) | 593*10⁻¹² m/V | 225 | -33 |
| \(d_{15}\) | 741*10⁻¹² m/V | 330 | ---- |
| Relative permittivity \(\varepsilon_{33}\) | 3400 | 1000 | ---- |
| Free strain range | -250 to +850 | ⍺ | ---- |
| Poling field dc | 12kV/cm | 5.5 | ---- |
| Depoling field ac | 7kV/cm | 15 | ---- |
| Curie Temperature | 193°C | 300 | ---- |
| Dielectric Break down | 20kV/cm | ---- | ---- |
| Density | 7500kg/m³ | 7600 | ---- |
| Open circuit stiffness \(E_{11}\) | 62GPa | 87 | ---- |
| Open circuit stiffness \(E_{33}\) | 48GPa | 74 | ---- |
| Compressive strength (static) | >517MPa | >517 | ---- |
| Compressive depoling limit | 30MPa | 150 | ---- |
| Tensile strength (static) | 75.8 | 75.8 | ---- |
| Tensile strength (dynamic) | 27.6MPa | 34.5 | ---- |
On the base of their performance PMs are divided into two categories: piezo ceramics and piezo polymers. Piezo ceramics have large energy conversion rate and electromechanical coupling constant but they are too brittle to be used in different shapes. On the other hand the coupling constant of piezo polymers has smaller value but it has the advantage of being flexible and could be used in any shape easily. Fig 4 shows comparison of energy density for 3 types of vibrational energy harvesting techniques. Table 1 shows a comparison between the characteristics of piezo ceramics and piezo polymers. Many researches have been done to analyze the EH from mechanical vibration [35][36][37].

One disadvantage of the piezoelectric cantilever beam structure is its gradient strain distribution i.e. piezoelectric element is not fully utilized. To overcome this problem, PEHS under different shapes is designed and analyzed [32, 33]. Mostly the performance of piezoelectric harvester is compared in terms of their power density (output power per harvester volume, Wcm$^{-3}$) which is measured at given acceleration and frequency of vibration. The power density values for piezoelectric EH are reported in the range of µWcm$^{-3}$ to few mWcm$^{-3}$[45].

It is proved practically that the geometry of the cantilever beam affects the harvested power directly. Different piezoelectric EH have been proposed and investigated to power up wireless devices. The conventional EH systems have many difficulties in practical application as there power efficiency is not stable. To overcome these problems the researchers proposed different improvements techniques such as multimodal system, self-tuning, frequency pumping, wide-band width transducers and mechanical tuning [46].
IV. RECTANGULAR BEAM

The cantilever beam is the most studied form of piezoelectric EH. The simplest shape of cantilever beam is rectangular that is frequently studied and analyzed as shown in Fig 5[47]. The harvester consists of a piezo ceramic with elastic body and proof mass. This simple form of piezoelectric EH produces deflection to generate noticeable electrical output. The performance of the harvester depends upon its length, area, mass etc. (physical parameters). These factors can be optimized to get maximum electrical output.

![Fig. 5 Piezoelectric Cantilever Beam][47]

The series of experiments are performed with different beam aspect ratios and analyzed their power generation performance at constant acceleration and frequency of vibration and found that the output power density of the harvester is enhanced when beam shape is closed to square with constant bending stiffness and beam area. The values of beam’s volume was 0.89 cm3, 0.86 cm3, 1.19 cm3, 2.12 cm3, 0.58 cm3, 2.99 cm3 and the output power density observed values were 5.25 mW/cm3, 10.71 mW/cm3, 13.47 mW/cm3, 12.87 mW/cm3, 7.92 mW/cm3 to 12.15 mW/cm3.

It’s clear from the observations that the maximum power density is 13.47 mW/cm3 at 1.19 cm3 volume of the beam, if the volume is further increased the output power density is reduced.

It was analyzed by [48] that the natural frequency of the two rectangular beams is 8.79Hz and 8.83Hz respectively, with peak voltages 42.6V and 57.0V and average power of 1.04mW and 1.99mW. The length of the beam was 100mm, width 40mm, thickness of the beam t, 0.5mm, thickness of each of the piezoelectric plates tp, 0.5mm and mass of the block was 5g.

A rectangular piezoelectric EH designed and simulated and the results are shown below in table 2.

![Table 2 Selected variable parameters and levels][50]

Volume of Piezoelectric Material(mm3)	Rectangular shape	Triangular shape
113.41	61.30	

On the basis of analytic comparison between rectangular and triangular cantilevers (the stress across the width of the cantilever assumed to be uniform) divulge that a triangular cantilever with the same beam volume as compared to a rectangular beam has a large deflection and a higher average strain for a given load.

VI. TRAPEZOIDAL BEAM

Power density of a beam can be enhanced by the application of smaller volumes and the strain distribution is more evenly in trapezoidal cantilever beam which generates the output power two times greater than a rectangular beam for a given volume. The output of trapezoidal cantilever beam can be increased by reducing the resonant frequency of the beam [51]. Fig 7 shows trapezoidal shape piezoelectric beam.

![Fig. 7 Trapezoidal Piezoelectric energy harvester][51]
VII. T-SHAPED

A harvester is designed for a specific acceleration of vibration and resonant frequency to optimize the harvested power. One of the important parameter in the design of EH is stress in the device. The maximum stress in the rectangular beam is located near clamped end. The stress and the acceleration are inversely proportional; when the stress in the device is reduced it can vibrate with greater acceleration of vibration. To reduce the stress the beam should be widened at the clamping and it spread the stress. Because widening the beam at the clamping increases the resonant frequency. Fig 8 shows T-shape piezoelectric beam[52].

The structural T-shaped piezoelectric EH beam was analyzed and made observations are listed in the table 4 [52]. It’s suitable and no proof mass was used and lower resonant frequency was achieved.

Table. 4 Structural properties of T-Shaped piezoelectric beam

Beam volume	24.566*10^3 cm³
Vibrational source	0.5g acceleration
Resonant frequency	229.25Hz
Free end displaced	2.77mm
Free end displaced with Velocity	3.29m/sec
Max. stress near fixed end	2.39*10^3 N/m²

Fig. 8 T-Shaped Piezoelectric Harvester

VIII. CONCLUSIONS AND OUTLOOK

In this paper piezoelectric EH technology from mechanical vibration was reviewed and piezoelectric cantilever beam under different shapes was investigated. The vibrational EH technology is considered as permanent and reliable source of power for microelectronic devices and WSNs. The triangular configuration as compared to rectangular one is capable of higher strain and higher power generation. Also it is found that the trapezoidal configuration evenly distributes the strain and increases the efficiency of the harvester. On the basis of observations it is seen that the Trapezoidal beam produces 30% more energy than Rectangular beam.

ACKNOWLEDGMENTS

This work was carried out with the financial support from the Ministry of Higher Education of Malaysia under the research grant GGP-2017-011.

REFERENCES

1. S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, and R.G. Polcawich, A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits, Energy Harvest. Syst. 4,3–39 (2017).
2. M.R. Sarker, R. Mohamed, M.H.M. Saad, and A. Mohamed, dSPACE Controller-Based Enhanced Piezoelectric Energy Harvesting System Using PI-Lightning Search Algorithm, IEEE Access. 7,3610–3626 (2019).
3. M.R. Sarker, A. Mohamed, and R. Mohamed, Designing a low voltage energy harvesting interface circuit utilizing piezoelectric vibration transducer, in: 2016 Int. Conf. Adv. Electr. Electron. Syst. Eng. ICACEES 2016, 512-516 (2017).
4. D.W. Wang, J.L. Mo, X.F. Wang, H. Ouyang, and Z.R. Zhou, Experimental and numerical investigations of the piezoelectric energy harvesting via friction-induced vibration, Energy Conver.
5. M.R. Sarker, A. Mohamed, and R. Mohamed, Implementation of non-controlled rectifier circuit based on vibration utilizing piezoelectric bending generator, Int. J. Appl. Electromagn. Mech.54, 471-488 (2017).
6. T. Ruan, Z.J. Chew, and M. Zhu, Energy-Aware Approaches for Energy Harvesting Powered Wireless Sensor Nodes, IEEE Sens. J.17, 2165–2173(2017).
7. Deepti, and S. Sharma, Piezoelectric energy harvesting and management in WSN using MPPT algorithm, in: 2016 Int. Conf. Wirel. Commun. Signal Process. Netw. IEEE, 2228–2232 (2016).
8. M.R. Sarker, A. Mohamed, and R. Mohamed, Improved proportional-integral voltage controller for a piezoelectric energy harvesting system converter utilizing lightning search algorithm, Ferroelectrics. 514, 123-145 (2017).
9. M.R. Sarker, S.H.M. Ali, M. Othman, and M.S. Islam, Designing a low voltage energy harvesting circuits for rectified storage voltage using vibrating piezoelectric, in: Proc. - 2011 IEEE Student Conf. Res. Dev. SCOReD, 343-346 (2011).
10. S. Shevtsov, and M. Flek, Random Vibration Energy Harvesting by Piezoelectric Stack Charging the Battery, Procedia Eng.144,645–652 (2016).
11. M.R. Sarker, A. Mohamed, and R. Mohamed, Cantilever beam vibration from fluid interactions with triangular shape blunt body for energy harvesting application, in: 2015 IEEE Student Conf. Res. Dev. SCOReD 6-10 (2015).
12. S. Gaikwad, and M. Ghosal, Energy efficient storage-less and converter-less renewable energy harvesting system using MPPT, in: 2017 2nd Int. Conf. Converg. Technol., IEEE, 971–973 (2017).
13. N. Jain, and V.A. Bohara, Energy Harvesting and Spectrum Sharing Protocol for Wireless Sensor Networks, IEEE Wirel. Commun. Lett.4, 697–700(2015).
14. R. Mohamed, M.R. Sarker, and A. Mohamed, An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices, Int. J. Appl. Electromagn. Mech.50, 537-548(2016).
15. R. Mohamed, M.R. Sarker, and A. Mohamed, Modelling of a low frequency based rectangular shape piezoelectric cantilever beam for energy harvesting applications, Indones. J. Electr. Eng. Comput. Sci.12, 290-295 (2018).
16. M.R. Sarker, A. Mohamed, and R. Mohamed, Vibraton Based Piezoelectric Energy Harvesting Utilizing Bridgeless Rectifier Circuit, 28, 87-94 (2016).
17. I. Izadgoshash, Y.Y. Lim, L. Tang, R.V. Padilla, Z.S. Tang, and M. Sedghi, Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system, Energy Conver.
18. H. Mutsuda, Y. Tanaka, Y. Doi, and Y. Moriyama, Application of a flexible device coating with piezoelectric paint for harvesting wave energy, Ocean Eng.172,170–182 (2019).
19. M. Sarker, A. Mohamed, R. Mohamed, M.R. Sarker, A. Mohamed, and R. Mohamed, A New Method for a Piezoelectric Energy Harvesting System Using a Backtracking Search Algorithm-Based PI Voltage Controller, Micromachines. 7, 171 (2016).
Energy Harvesting From Piezoelectric Cantilever Beam with Different Shapes

20. R. Hosseini, and M. Hamedi, Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester, Shahid Rajaee Teach. Train. Univ.6, 65–73 (2016).

21. Z. Zhang, C. Nib, and X. Zhang, Experiment Research on Power Generation Performance of Double Piezoelectric Vibration Energy Harvester, IOP Conf. Ser. Mater. Sci. Eng.269,012094 (2017).

22. R. Sarkar, A. Mohamed, and R. Mohamed, Performance evaluation modelling a Microelectromechanical system based Finite Element piezoelectric shear actuated beam, Prz. Elektrotechniczny. 91, 5-8 (2015).

23. H. Sodano, D.J. Inman, and G. Park, A Review of Power Harvesting from Vibration using Piezoelectric Materials, (2004).

24. N.M. White, P. Glynn-Jones, and S.P. Beeby, A novel thick-film piezoelectric micro-generator, Smart Mater. Struct.10, 880–882 (2001).

25. S.S. Won, H. Seo, M. Kawahara, S. Glinske, J. Lee, Y. Kim, C.K. Jeong, A.I. Kingon, and S-H. Kim, Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films, Nano Energy. 55, 182–192 (2019).

26. M.T. Todaro, F. Guido, V. Mastronardi, D. Desmaele, G. Epifani, L. Algieri, and M. De Vittorio, Piezoelectric MEMS vibrational energy harvesters: Advances and outlook, Microelectron. Eng.184, 23–36 (2017).

27. F. Duck, ‘The Electrical Expansion of Quartz’ by Jacques and Pierre Curie, Ultrasound. 17, 197–203 (2009).

28. P. Dineva, D. Gross, R. Müller, and T. Rangelov, Dynamic Fracture of Piezoelectric Materials, Springer International Publishing, Cham, 2014.

29. J. Hafner, M. Teuschel, M. Schneider, and U. Schmid, Origin of the strong temperature effect on the piezoelectric response of the ferroelectric (co-)polymer P(VDF70-TrFE30), Polymer (Guildf),170, 1–6(2019).

30. T. Sajini, M.G. Gigmol, and B. Mathew, A brief overview of molecularly imprinted polymers supported on titanium dioxide matrices, Mater. Today Chem.11, 283–295(2019).

31. R. Hinchet, U. Khan, C. Falconi, and S-W. Kim, Piezoelectric properties in two-dimensional materials: Simulations and experiments, Mater. Today. 21, 611–630(2018).

32. A. Daniels, M. Zhu, and A. Tiwari, Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 2626–2633(2013).

33. C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, and Q. Zhou, AIN piezoelectric thin films for energy harvesting and acoustic devices, Nano Energy. 51, 146–161(2018).

34. A.A. Shah, A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems, Lat. Am. J. Solids Struct.3, 305–334(2011).

35. K. Tao, H. Yi, L. Tang, J. Wu, P. Wang, N. Wang, L. Hu, Y. Fu, J. Miao, and H. Chang, Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting, Surf. Coatings Technol.359, 289–295(2019).

36. A. Eddiai, M. Meddad, R. Farhan, M. Mazzou, M. Rguiti, and D. Guyomar, Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure, Superlattices Microstruct. (2018).

37. M. Zhou, Y. Fu, B. Wang, and M.S.H. Al-Furjan, Vibration analysis of a longitudinal polarized piezoelectric tubular energy harvester, Appl. Acoust.146,118–133(2019).

38. S. Priya, Advances in energy harvesting using low profile piezoelectric transducers, J. Electroceramics. 19, 167–184(2007).

39. J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, Parasitic power harvesting in shoes, in: Dig. Pap. Second Int. Symp. Wearable Electrics, IEEE, 492–496 (2011).

40. J. Zhang, S. Ma, and L. Qin, Analysis of frequency characteristics of MEMS piezoelectric cantilever beam for broad vibration energy harvesting, in: 2015 Proc. IEEE Int. Symp. Ultrason. Ferroelectr. Freq. Control. 193,197–201 (2015).

41. S. Pattanaik, Design and analysis of of piezo-wheel for light electric vehicle, in: 2014 9th IEEE Conf. Ind. Electron. Appl., IEEE, 1816–1819 (2014).

42. H.-C. Song, P. Kumar, D. Maurya, M.-G. Kang, W.T. Reynolds, D.-Y. Jeong, C.-Y. Kang, and S. Priya, Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density, J. Microelectromechanical Syst.26, 1226–1234(2017).

43. H. Gufe, A.G. Akyurekli, M. Guil, M. Gurbuz, B. Koc, and A. Dogan, Wide-band piezoelectric resonance frequency energy harvester, in: 2014 Jt. IEEE Int. Symp. Appl. Ferroelectr. Int. Work. Acoust.