Molecular detection of *Dirofilaria* spp. and host blood-meal identification in the *Simulium turgaicum* complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran

Fariba Khanzadeh¹, Samad Khaghaninia¹, Naseh Maleki-Ravasan²,³*, Mona Koosha⁴ and Mohammad Ali Oshaghi⁴*

Abstract

Background: Blackflies (Diptera: Simuliidae) are known as effective vectors of human and animal pathogens, worldwide. We have already indicated that some individuals in the *Simulium turgaicum* complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the *S. turgaicum* (s.l.), to identify their host blood-meals, and to examine their potential involvement in the circulation of zoonotic microfilariae in the study areas.

Methods: Adult blackflies of the *S. turgaicum* complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanolou, Khetay, Khomarlou, Larijan, Mohammad Salehlu, Parvizkhaniou and Qarloujeh) of the Aras River Basin. A highly sensitive and specific nested PCR assay was used for detection of filarial nematodes in *S. turgaicum* (s.l.), using nuclear 18S rDNA-ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional *cyt b* PCR assays.

Results: A total of 2754 females of *S. turgaicum* (s.l.) were collected. The DNA of filarial parasites was detected in 6 (0.62%) of 960 randomly examined individuals. Sequence analysis of 420 base pairs of 18S rDNA-ITS1 genes identified *Dirofilaria* spp. including 5 *D. immitis* and 1 *D. repens*. Importantly, all filarial positive specimens have been captured from humans and animals outdoors. Cytb-PCR assays showed that in all ecotypes studied, members of the *S. turgaicum* complex had preferably fed on humans, dogs, bovids, and birds, respectively.

Conclusions: To the best of our knowledge, this is the first report of *D. immitis*/*D. repens* detection in blackflies. Results showed that *S. turgaicum* (s.l.) was the most abundant (97%) and anthropophilic (45%) blackfly in all studied ecotopes/villages and that DNA of *Dirofilaria* spp. was detected in the flies taken from six villages. Dirofilariasis is a
Background

Blackflies, buffalo gnats or turkey gnats (Diptera: Simuliidae) are known to be effective vectors among arthropod groups since they are vigorous in circulation of 28 vertebrate pathogens and parasites, besides the causal agent of human onchocerciasis is vectored by 25 Simulium spp. [1, 2]. Potentially they are responsible for transmitting pathogenic agents ranging from protozoan parasites (n = 17) to filarial nematodes (n = 15) and several arboviruses among numerous hosts [2]. In this spectrum, only two human diseases, onchocerciasis and mansonellosis, are caused by simulid-borne filarial nematodes [1].

Onchocerciasis is caused by the parasitic worm Onchocerca volvulus and may lead to itching, disfiguring dermatitis, and eye lesions, including permanent blindness in humans. Although most infected people reside in Africa south of the Sahara, the disease is widespread to some areas in Latin America and Yemen, as well. Estimates in 2017 exposed that there were 21 million O. volvulus infections worldwide; 14.6 million of the infected people with skin disease and 1.15 million with vision loss [3].

The pathology of mansonellosis, caused by Mansonella ozzardi, appears to be mild [4]. The disease is restricted to the New World tropics where the disease is vectored via at least five simulid species and biting midges of the genus Culicoides [5].

In addition to being proficient vectors of important disease agents, blackflies are annoying pests of humans and animals due to their swarming and long-term blood-sucking behaviors resulting in significant economic losses in sectors of society from agriculture, animal husbandry, and forestry to tourism, and entertainment [6–10]. These flies are among the few arthropods that have the potential to kill animals by their extreme blood-feeding and serious toxemia (simuliotoxicosis) originated from the saliva [11, 12].

According to the last inventory of blackflies, a total of 2348 species including 2331 living and 17 fossil have been recorded as valid species worldwide [13]. The Palaearctic Region covers the most described blackflies species, with 33%, followed by the Oriental (17%), and Neotropical (16%) Regions [13]. The Palaearctic Simulium subgenus Wilhelmia comprises 31 living species throughout Europe, Asia and Africa that are acknowledged as noteworthy and dominant pests of humans and livestock [8, 9, 14–17].

Simulium turgaicum is a species complex in the S. equinum species-group in the subgenus Wilhelmia. We recently showed with detailed morphological and molecular studies that S. turgaicum comprises three well-supported lineages in Iran [9]. The divergence within S. turgaicum has previously been shown by other researchers, as well [16–18].

Simulids are reported to be the most insidious insects in the Aras River Basin, so that farmers and ranchers have had to wear beekeeping hats or alter their working hours from day to night. In this region, blackflies enter farmers’ eyes, ears, mouth, and nose throughout the day. However, in the late hours of the day and in crowded places, blackflies fly recklessly against all parts of humans and animals (our personal observations). The S. turgaicum complex dominates the blackfly community in the Aras River Basin, accounting for 97% of the specimens in our previous study [9].

There is little knowledge of the potential vectorial role of blackflies in Iran where no documentation exists on their role in the circulation of anthroponotic or zoonotic pathogens in the country. Although to date Simulium spp. have been described as vectors of Dirofilaria ursi, a parasite of American and Asian bears [19], to the best of our knowledge, no studies have been carried out regarding blackflies as vectors of mosaic zoonoses of D. immitis/D. repens. This study aimed to (i) determine the abundance of S. turgaicum complex in the Aras River basin of Iran, (ii) identify their host blood meals through PCR assays, and (iii) examine the potential involvement of the S. turgaicum complex in the circulation of zoonotic microfilariae in the region.

Methods

Study area, blackfly collection and identification

The study was conducted in the south of the Aras River, in Khoda-Afarin County, East Azerbaijan Province, in northwestern Iran. Due to the climatic conditions, water resources are abundant in this region so that the main occupations of the population are farming and animal husbandry. Adult blackflies were bimonthly trapped with a conventional insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the Aras River, and rice and alfalfa fields) of 10 villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlu, Parvizkhanlou and Qarloujeh) from May to October 2016–2018.
Specimens were stored in 70% ethanol at 4 °C until investigation. Morphological identifications of the specimens were achieved using the key by Crosskey [20]. The specimens with empty and blood-fed abdomens were applied for filarial and mammalian hosts’ genome analysis, respectively.

DNA extraction, filarial species detection and sequencina subset (31–71%) of the specimens with empty abdomens (unfed or fully gravid) from each site was selected for filarial genome analysis. The selected specimens included representatives of all the blackflies caught per time and per net in the analysis. Adult blackflies were separately rinsed twice with 70% ethanol at 10,000 × rpm for 2 min. The whole bodies of dehydrated flies were pulverized using narrow metal pestles in 1.5 ml microtubes. The total genomic DNA was extracted using the Collins et al. [21] method. A highly sensitive microtubes. The total genomic DNA was extracted from the source of blood meals. Genomic DNA from blood-fed female blackflies was extracted using the Collins et al. [21] method. DNA from dog, bovine, hen, and human blood was set as positive controls, and DNA of male blackflies, as well as water, was used as negative controls. Reagents in the multiplex PCR assay were the same as those for the filarial detection; however, the thermal conditions for initial denaturation were at 94 °C for 10 min, continued by 35 cycles of denaturation at 95 °C for 30 s, annealing at 53 °C for 40 s, and extension at 72 °C for 8 min. The specific PCR for each avian, bovine, dog, and human host corresponded with annealing temperatures of 55 °C, 58 °C, 56 °C and 64 °C, respectively. PCR products from the two types of assays were analyzed by 2% agarose gel electrophoresis stained by GreenViewer dye (Parstous, Mashhad, Iran) and photographed on a UV transilluminator.

Results

Entomological and parasitological findings

Large numbers of blackflies were captured from the study areas, of which 97% including 2754 females and 300 males were morphologically identified as the Simulium turgaicum complex. Representative specimens of each ecotope in each village were selected for detection of filarial nematodes in S. turgaicum (s.l.) The DNA of filarial parasites was detected in 6 (0.62%) of 960 individuals (Table 1). Importantly, all filarial positive specimens have been captured from humans and animals outdoors. Amplicons from the positive specimens were purified and sequenced. Sequence analysis of ~ 420 bp of 18S rDNA and ITS1 regions identified Dirofilaria spp. including 5 D. immitis and 1 D. repens. Five sequences of D. immitis (MT052018, MT052020-23) showed 99.05–100% identity with the isolates reported from Thailand (MK250772, MK250801, MK250802). A sequence of D.
repens (MT052019) displayed 99.47% similarity with a sequence reported from Thailand (AY621481). Relationships analysis using 18S rDNA and ITS1 sequences confirmed that the specimen clustered with the *Dirofilaria* spp. lineage, with high bootstrap values (Fig. 1).

Vertebrate hosts
The sources of the blood meals were determined for 113 blood-fed specimens of the *S. turgaicum* complex trapped from different ecotypes of five villages, i.e. Gholibaiglou, Gungormaz, Hamrahlou, Khetay and Qarloujeh, in the Aras River Basin. Although blood-fed flies were present in all ecotopes studied, most of them were trapped from humans/animals outdoors, an epidemiologically important ecotope. Selected primers for avian, bovine, dog, and human hosts yielded 508, 271, 153, and 228 bp products, respectively, in both multiplex and specific cytb-PCR assays. Multiplex PCR results revealed four patterns of single (*n* = 14), double (*n* = 23), triple (*n* = 8) and quadruple (*n* = 1) blood sources among 46 specimens of *S. turgaicum* (s.l). The method revealed blood-meal sources (*s*. *l*.): human (45%), dog (24%), bovine (22%), and bird (9%). Nine out of 46 (19.6%) specimens had at least mixed dog and human blood. Among the 113 blood-fed specimens tested by conventional PCR, 50 (44%) fed on humans, 26 (23%) on boids, 22 (20%) on dogs, and 15 (13%) on birds (Table 2). Feeding on humans varied among the populations of *S. turgaicum* (s.l.), from 30% to 51%.

Discussion
Blackflies have been the focus of many studies since they are strong blood-feeders and competent vectors of human and animal disease agents. However, to date, they have not been implicated in the infection and possible transmission of *D. immitis* or *D. repens*. We found a high prevalence of *S. turgaicum* (s.l.) in the region, with blood meals primarily from humans and dogs, and with DNA of the microfilariae of both species in the specimens with empty abdomens which are unfed or fully gravid. Detection of filarial DNA in blackflies with empty abdomens indicates considerable age or survival which is epidemiologically thought-provoking indicating that the parasite is still present following the blood-digestion process and may evolve to its infective stage. The second point should be confirmed in future studies by confirming the vitality of the nematodes or the developmental stages of the microfilariae in the epidemiologically important parts of the fly’s body.

Dirofilariasis is largely caused by two parasites, *D. (Dirofilaria) immitis* (Leidy, 1856) and *D. (Nochiella) repens* (Railliet & Henry, 1911) (Spirurida: Onchocercidae), in humans and carnivores, with distinct clinical and

Table 1 Females of *Simulium turgaicum* complex captured in Aras River Basin, Iran, and tested for *Dirofilaria* spp. infection

Village	Ecotope (n)	No. of collected specimens	No. of specimens used for filer detection (%)	No. of infected (%)	*Dirofilaria* species	GenBank ID
Deim-Qarloujeh	Irrigation canals in rural areas (n = 513)	513	220 (43)	1 (0.45)	*D. repens*	MT052019
Gholibaiglou	Lands along the Aras River (n = 57), rice and alfalfa fields (n = 43)	100	40 (40)	–	–	–
Gungormaz	Lands along the Aras River (n = 75), humans and animals outdoors (n = 105)	180	60 (33)	1 (1.67)	*D. immitis*	MT052020
Hamrahlou	Lands along the Aras River (n = 178), humans and animals outdoors (n = 142)	320	100 (31)	–	–	–
Hasanlou	Lands along the Aras River (n = 18), rice and alfalfa fields (n = 7)	25	10 (40)	–	–	–
Khetay	Humans and animals outdoors (n = 396)	396	110 (28)	1 (0.91)	*D. immitis*	MT052023
Khomarlou	Lands along the Aras River (n = 142)	142	50 (35)	1 (2)	*D. immitis*	MT052018
Larijan	Lands along the Aras River (n = 72), humans and animals outdoors (n = 53)	105	50 (48)	1 (2)	*D. immitis*	MT052021
Parvizkhanlou	Alfalfa field (n = 42)	42	30 (71)	–	–	–
Qarloujeh	Rice and alfalfa fields (n = 453), humans and animals outdoors (n = 478)	931	290 (31)	1 (0.34)	*D. immitis*	MT052022
Total		2754	960 (35)	6 (0.625)	–	–

Note: The data on the males of *S. turgaicum* (s.l) and the remaining 3% collected blackflies are not shown here.

Abbreviation: *n*, total number of specimens
epidemiological features. *Dirofilaria immitis* is responsible for severe cardiopulmonary dirofilariasis, whereas *D. repens* causes non-pathogenic subcutaneous dirofilariasis in canids and felids. Accordingly, *D. immitis* and *D. repens* are globally regarded as human pulmonary and hypodermic/ophthalmic dirofilariasis, respectively [28, 29]. Herein we detected both nematodes in the study areas; however, their clinical manifestations need to be determined in detail in the future.

Successful development of the *Dirofilaria* species depends on an intermediate mosquito species and a vertebrate as a definitive host [30]. Many species of culicid mosquitoes in the genera *Aedes, Anopheles, Armigeres, Coquillettidia, Culex, Culiseta, Mansonina* and *Psorophora*...
allow the development of both *D. immitis* and *D. repens* [31–55] which may transmit carrying worms to available vertebrates. *Dirofilaria immitis*, can parasitize many canines and felines in tropical, subtropical, and temperate regions worldwide [56]. However, filarial infections of dog, cat, fox, wolf, coyote, and least weasel by *D. repens* have been documented only in Old World countries [56]. Humans are not appropriate hosts for *Dirofilaria* spp.; however, among mammalian hosts, dogs are the most important reservoir host for human infection of both species of *Dirofilaria* [57].

Human and animal dirofilariasis has been documented in 11 of the 31 provinces of Iran. In two main foci of the country (southern regions of the Aras River: East Azerbaijan and Ardebil Provinces), the highest frequencies of dirofilariaosis caused by *D. immitis* were 36.8% in dogs, 57.1% in jackals, 50% in foxes, 50% in wolves, and 0.8% in cats, and by *D. repens*, 60.8% in dogs and 10% in jackals [48, 58]. Fourteen cases of human subcutaneous, ocular, testicular, and pulmonary dirofilariasis have been reported in the country [58]. The infective third-stage larvae of *D. immitis* and *Setaria labiatapapillosa* (Alessandri) (Spirurida: Onchocercidae) were, respectively, reported in *Cx. theileri* and *An. maculipennis* [48].

Even if the presence of DNA of these parasites in mosquitoes (0.85–10%) [29]. These flies frequently feed on humans and dogs and potentially could pick up *Dirofilaria* spp. The possibility of blackflies as vectors of the *Dirofilaria* in this study is reinforced by studies showing that *D. ursi* Yamaguti, 1941 is transmitted by blackflies to black bears in North America and Japan [59, 60]. Likewise, in support of the vectorial activities of simuliiids in Iran, a nodular eye lesion of human onchocerciasis caused by *O. lupi* and the involvement of blackflies in its transmission has been reported from center of the country [61].

Complex interactions between intrinsic and extrinsic factors influence vector competence. Intrinsic factors, such as genetics and physiology, as well as behavioral traits, may govern an insect’s ability to acquire, support development, and transmit pathogenic agents. Extrinsic factors include the populations of the host reservoir and their activity patterns, climatic conditions, genetic variability in infectivity of pathogens, and even gut microorganisms [62–67]. Although blackflies are recognized as one of the most important medical and veterinary groups of arthropods due to their vector competence, there is a little information on their biology and ecology in Iran. This study is the first step for issuing public health policies and blackfly control campaigns in Iran, as well as those interested in studying the factors affecting vector eligibility.

Development of filarial nematodes to the third larval stage in the intermediate insect vector is essential for successful transmission to the definitive host. Microfilaria such as *D. ursi* develops to the third larval stage in the Malpighian tubules of the corresponding vector [68]. However, vector incrimination of blackflies relies on the

Table 2 Identification of vertebrate hosts of the *Simulium turgaicum* complex based on the host cytb gene in ingested blood meals by multiplex and conventional PCR assays in the Aras River Basin, Iran

Village	Ecotope (No. of blood-fed specimens)	Multiplex PCR	Host-specific PCR		
Qarroujeh	Humans/animals outdoors *(n = 23)*; irrigation canals *(n = 14)*; lands along the river *(n = 17)*; rice and alfalfa fields *(n = 19)*	73	18		
			DH *(n = 1)*; CD *(n = 2)*; BD *(n = 2)*; CH *(n = 9)*; BH *(n = 2)*; BCD *(n = 1)*; BCDH *(n = 1)*	73	7
			Host	37	
Hamrahlou	Humans/animals outdoors *(n = 2)*	2	–		
			Host	–	
Khetay	Humans/animals outdoors *(n = 15)*	15	15		
			H *(n = 8)*; D *(n = 1)*; DH *(n = 2)*; CD *(n = 3)*; BCD *(n = 1)*	15	4
			Host	5	
Gholibaiglou	Humans/animals outdoors *(n = 13)*	13	11		
			H *(n = 4)*; CD *(n = 2)*; BCD *(n = 1)*; BDH *(n = 2)*	13	4
			Host	4	
			3		
			Host	2	
Total	113	46	46	113	15

Abbreviations: B, bird; C, bovine; D, dog; H, human
presence of L3 worms in the head capsules of the female insects [68]. Future studies should be conducted to locate microfilariae in the Malpighian tubules and head capsules of the females of *S. turgicic*um (*s.l.*).

The literature shows that *D. immitis* and *D. repens* can infect many species of mammals varying in both quantity and quality [29]. Dissimilarity in susceptibility to parasites is common in multi-host, multi-parasite collections, and can have profound significance for ecology and evolution in these systems [69, 70]. This may lead to heterogeneous and asymmetric transmission among and between host species [71–74]. The results of the present study show that insects other than Culicidae mosquitoes may be involved in establishing a cycle of dirofilariasis in the region. Since both *D. immitis* and *D. repens* can infect many species of mammals and can be transmitted by various vector species of mosquitoes and blackflies, they exhibit poor host specificity in terms of definitive and intermediate hosts [75]. These findings challenge our ability to recognize, forecast, and handle dirofilariasis dynamics in the region.

The results of this study revealed that *S. turgicic*um (*s.l.*) has diverse host preferences and feeds on humans, dogs, bovids and birds. A majority (69%) of the specimens fed on humans and/or dogs. This may be related to host availability in the region and could have important epidemiological consequences. Dogs are the main reservoir of *Dirofilaria* spp., and if a blackfly prefers to feed on humans and dogs, then the probability of becoming infected and then transmitting the parasite to a human will be increased. However, to incriminate *S. turgicic*um (*s.l.*) as an actual vector of *D. immitis* and *D. repens*, more information on the biological and ecological factors that influence the transmission of these parasites in the studied region should be provided. These are included, but not limited to, parous rates, daily and seasonal fluctuations of biting activities (especially of parous females), preference for human body parts, longevity, flight range, and gonotrophic cycle [76].

Conclusions

Gathering site-specific information for vectors is a vital stage in implementation of vector control measures. Our study provides preliminary information on dirofilariasis in an active focus in northwestern Iran. We identified the dominant blackfly taxon in the study area and addressed issues of anthropophily and presence of *Dirofilaria* spp. in specimens with an empty abdomen. We are currently surveying nematode distributions in epidemiologically important parts of the bodies of blackflies. These findings could be used in epidemiological studies and strategic planning for the control of dirofilariasis in the region.

Abbreviations

18S rRNA: 18S Ribosomal RNA; cytb: Cytochrome b; ITS1: Internal transcribed spacer 1; s.l.: sensu lato.

Acknowledgments

We are grateful to Dr Peter H. Adler for his insightful suggestions and careful reading of the manuscript.

Authors’ contributions

NMR and MAO conceived the study, its design and coordination. FK and SK participated in field work. FK identified the blackflies. FK and NMR carried out the molecular studies, sequence alignment and drafted the manuscript. MAO acquired resources. NMR and MAO supervised the analysis of the data and reformulated the manuscript. All authors read and approved the final manuscript.

Funding

The study was financially supported by the collaborative linkage grants awarded to NMR by the Pasteur Institute of Iran and to MAO by Tehran University of Medical Sciences (TUMS), Grant No. 39440.

Availability of data and materials

The datasets utilized in drawing the conclusions of this article are included in the article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

All authors declare that they have no conflicts of interest.

Author details

1 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tehran, Iran. 2 Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.

3 Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran. 4 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.

Received: 22 June 2020 Accepted: 29 October 2020 Published online: 04 November 2020

References

1. Adler PH, Cheke RA, Post RJ. Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae). Infect Genet Evol. 2010;10:846–65.

2. Adler PH, McCreadie JV. Black flies (Simuliidae). In: Mullen GR, Durden LA, editors. Medical and veterinary entomology. 3rd ed. San Diego: Elsevier; 2019. p. 237–59.

3. WHO. Onchocerciasis Fact Sheet. 2019. Geneva: World Health Organization; 2019. [https://www.who.int/news-room/fact-sheets/detail/onchocerciasis]. Accessed 14 Jun 2019.

4. Klion AD, Nutman TB. Loiasis and Mansonella infections. In: Guerrant RL, Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens, & practice. Philadelphia: Churchill Livingstone; 1999. p. 861–72.

5. Shelley AJ, Coscarón S. Simulid blackflies (Diptera: Simuliidae) and ceratopogonid midges (Diptera: Ceratopogonidae) as vectors of *Mansonella ozzardi* (Nematoda: Onchocercidae) in northern Argentina. Mem Inst Oswaldo Cruz. 2001;96:451–8.

6. Bobrova SI. Swarming of bloodsucking blackflies (Diptera, Simuliidae) in Siberia. Parazitologiya. 1977;11:442–5.
7. Adler PH, McCreadie JW. Insect life: the hidden ecology of black flies: sibling species and ecological scale. Am Entomol. 1997;43:153–62.
8. Sariözkan S, Inci A, Yildirim A, Duzlu O, Gray EW, Adler PH. Economic losses during an outbreak of Simulium (Wilhelmia) species (Diptera: Simuliidae) in the Cappadocia Region of Turkey. Turk Parazitol Dergisi. 2014;38:116–9.
9. Khanzadeh F, Khabaninia S, Maleki-Rasavan N, Oshaghi MA, Adler PH. Black flies (Diptera: Simuliidae) of the Aras River Basin: species composition and floral visitation. Acta Trop. 2020;205:536–20.
10. Schnellbacher RW, Holder K, Morgan T, Foil L, Beaufrère H, Nevarez J, et al. A taxonomic account of the blackfly fauna of Iraq and Iran, with an emphasis on the vector potential of Dirofilaria immitis. J Med Entomol. 2005;42:1045–56.
11. Khanzadeh F, Azarmi A, Yanzadeh H, Mohtasebi S. Blackfly fever and dermatitis caused by Simulium kiritshenkoi: a human case report in Iran. BMC Infect Dis. 2020;20:348.
12. Schnellbacher RW, Holder K, Morgan T, Foil L, Beaufrère H, Nevarez J, et al. Phylogeography of Wilhelmia species (Diptera: Simuliidae) - Insights from Balkan populations. J Med Entomol. 2019;56:967–78.
13. Khanzadeh F, Azarmi A, Yanzadeh H, Mohtasebi S. Blackfly fever and dermatitis caused by Simulium kiritshenkoi: a human case report in Iran. BMC Infect Dis. 2020;20:348.
14. Ames IA. Iowa insect information notes. Ames: Department of Entomology, Iowa State University, Academic Press; 2005.
15. Schnellbacher RW, Holder K, Morgan T, Foil L, Beaufrère H, Nevarez J, et al. A taxonomic account of the blackfly fauna of Iraq and Iran, with an emphasis on the vector potential of Dirofilaria immitis. J Med Entomol. 2005;42:1045–56.
16. Inci A, Yildirim A, Duzlu O, Onder Z, Ciloglu A, Seitz G, et al. Genetic diversity and identification of palearctic black flies in the subgenus Wilhelmia (Diptera: Simuliidae). J Med Entomol. 2017;54:888–94.
17. Dukinjic J, Jovanovic V, Popovic N, Zivic I, Rakovic M, Cerba P, et al. Phylogeography of Simulium subgenus Wilhelmia (Diptera: Simuliidae) - Insights from Balkan populations. J Med Entomol. 2019;56:967–78.
18. Adler PH, Inci A, Yildirim A, Duzlu O, McCreadie JW, Kudela A, et al. Are black flies of the subgenus Wilhelmia (Diptera: Simuliidae) multiple species or a single geographical generalist? Insights from the macrogenome. Biol J Linn Soc. 2015;114:163–83.
19. Michalski ML, Bain O, Fischer K, Fischer PU, Kumar S, Foster JM. Identification and phylogenetic analysis of Dirofilaria urisi (Nematoda: Filarioidea) from Wisconsin black bears (Ursus americanus) and its Wolbachia endosymbiont. Parasitology. 2010;137:412–9.
20. Crosskey RW. The natural history of blackflies. London: The British Museum of Natural History; 1990.
21. Werner D, Adler PH. A faunistic review of the black flies (Simuliidae, Diptera) of the federal state of Sachsen-Anhalt. Germany Abhandl Berichte Naturw. 2005;52:29–45.
22. Tang TT, López-Vélez R, Lanza M, Shelley AJ, Rubio JM, Luz SLB. Nested PCR to detect and distinguish the sympatric filarial species Dirofilaria immitis and Dirofilaria repens within the mosquito Aedes aegypti (L.) and Aedes polynesiensis (Diptera: Culicidae) in Moorea, French Polynesia: a study of adult population structures and pathogen (Wuchereria bancrofti and Dirofilaria immitis) infection rates to indicate regional and seasonal epidemiological risk for dengue and filariasis. J Med Entomol. 2005;42:1045–56.
23. Labarthe N, Serrano ML, Mello YF, de Oliveira SJ, Lourenço-de-Oliveira R. Potential vectors of Dirofilaria immitis (Leidy, 1856) in Itacoatiara,amazonic region of niterói municipality, State of Rio de Janeiro, Brazil Mem Inst Oswaldo Cruz. 1998;93:425–32.
24. Scoles GA, Dickson SL, Blackmore MS. Assessment of Aedes sierensis as a vector of canine heartworm in Utah using a new technique for determining the infectivity rate. J Am Mosq Control Assoc. 1993;9:88–90.
25. Manrique-Saide P, Escobedo-Ortega J, Bollo-González M, Sauri-Arceo C, Díaz-Mendoza J, Muñoz S. Molecular detection and DNA barcoding of vectored filarial species in mosquitoes (Diptera: Culicidae) in Nigeria: a study of adult Dirofilaria immitis infections in naturally infected local mosquitoes. Med Vet Entomol. 2009;23:111–21.
49. Todorovic S, McKay T. Potential mosquito (Diptera: Culicidae) vectors of *Dirofilaria immitis* from residential entryways in Northeast Arkansas. Vet Parasitol. 2020;109(105):1–6.

50. Watts KJ, Courtney CH, Reddy GR. Development of a PCR- and probe-based test for the sensitive and specific detection of the dog heartworm *Dirofilaria immitis*, in its mosquito intermediate host. Mol Cell Probes. 2001;14:425–30.

51. Coluzzi M, Cancrini G. Genetics of the susceptibility of *Aedes aegypti* to *Dirofilaria repens*. Parasiotologia. 1974;16:239–56.

52. Cancrini G, Petrobelli M, Regalbuto AF, Tampieri MP, Torre A. Development of *Dirofilaria* and *Setaria* nematodes in *Aedes albopictus*. Parasitologia. 1995;37:141–5.

53. Fuelleborn F. Über Versuche an hundefilarien und deren Übertragung durch Mücken. Arc Sciif. Tropenbyg. 1908;12:309.

54. Gunewardene K. Observations on the development of *Dirofilaria repens* in *Aedes* (Steomygia) *albopictus* and other common mosquitoes of Ceylon. Ceylon J Med Sci. 1956,9:45–53.

55. Bernard NP, Bauche J. Conditions de propagation de la filariose sous-marine du chien. Stegomyia fasciata hôte intermédiaire de *Dirofilaria repens*. Bull Soc Pathol Exot. 1913;2:89–99.

56. Otranto D, Deplazes P. Zoonotic nematodes of wild carnivores. Int J Parasitol. 2008;66:193–285.

57. McCall JW, Genchi C, Kramer LH, Guerrero J, Venco L. Heartworm disease in animals and humans. Adv Parasitol. 2000;46:193–285.

58. Azari-Hamidian S, Yaghoobi-Ershadi MR, Javadian E, Mobedi I, Abai Khanzadeh. Review of the biology and ecology of adult blackflies in Ceylon. J Wild Dis. 1990;26:137–8.

59. Yokohata Y, Fujita O, Kamiya M, Fujita T, Kaneko K, Ohbayashi M. Parasites of the black bear, *Ursus americanus*. J Parasitol. 1994;80:478–80.

60. Duffy MS, Greaves TB, Moller MB. Helminths of the black bear, *Ursus americanus*. J Parasitol. 2015;99(5):633–43.

61. Choubdar N, Oshaghi MA, Rafinejad M, Pourmand MR, Maleki-Ravasan N, Salehi-Vaziri M, et al. Effect of meteorological factors on *Hyalomma* species composition and their host preference, seasonal prevalence and infection status to Crimean-Congo Haemorrhagic Fever in Iran. J Arthropod Borne Dis. 2019,30:268–83.

62. Addison EM. Transmission of *Dirofilaria ursi* Yamaguti. Nematoda: *Onchocercidae*) of black bear (*Ursus americanus*) by blackflies (*Simulium*) in New Brunswick. J Parasitol. 1995;37:141–5.

63. Watts KJ, Courtney CH, Reddy GR. Development of a PCR- and probe-based test for the sensitive and specific detection of the dog heartworm *Dirofilaria immitis*, in its mosquito intermediate host. Mol Cell Probes. 2001;14:425–30.

64. Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, et al. Aerobic bacterial flora of biotic and abiotic components of a hyperendemic zoonotic cutaneous leishmaniasis (ZCL) focus. Parasit Vectors. 2013;6:93.

65. Goddard J. Infectious diseases and arthropods. 3rd ed. In: Georgiev VS, Series editor. Infectious Diseases: Springer, Switzerland. 2018. p. 33–4.

66. Karmian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Mohebali M, Shirazi MH, et al. Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasit Vectors. 2019;12:10.

67. Choubdar N, Oshaghi MA, Rajinejad J, Pourmand MR, Maleki-Ravasan N, Salehi-Vaziri M, et al. Effect of meteorological factors on *Hyalomma* species composition and their host preference, seasonal prevalence and infection status to Crimean-Congo Haemorrhagic Fever in Iran. J Arthropod Borne Dis. 2019,30:268–83.

68. Addison EM. Transmission of *Dirofilaria ursi* Yamaguti. Nematoda: *Onchocercidae*) of black bear (*Ursus americanus*) by blackflies (*Simulium*) in New Brunswick. J Parasitol. 1995;37:141–5.