Imaging Diagnosis, Prevalence, and Clinical Outcomes of Arthroscopic Surgery for Anterior Inferior Iliac Spine Impingement

A Systematic Review and Meta-analysis

Naomi Kobayashi,*† MD, PhD, Emi Kamono,† PT, BHS, Yuya Yamamoto,†‡, Yohei Yukizawa,† MD, PhD, Hideki Honda,† MD, Shu Takagawa,† MD, PhD, Toshihiro Misumi,§ MD, PhD, and Yutaka Inaba,‡ MD, PhD

Investigation performed at Yokohama City University Medical Center, Yokohama, Japan

Background: Subspine impingement, or anterior inferior iliac spine (AIIS) impingement, is a type of extra-articular pathology associated with femoroacetabular impingement syndrome and often requires subsequent arthroscopic surgery.

Purpose: To examine the diagnostic accuracy, prevalence, and clinical outcomes of arthroscopic treatment for AIIS impingement.

Study Design: Systematic review; Level of evidence, 4.

Methods: The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 checklist was applied. We searched for studies on the prevalence, diagnostic accuracy, and results of surgical treatment for AIIS impingement. For each included study, data synthesis and statistical analysis were performed to identify pooled prevalence, calculate clinical outcome scores, and estimate adverse events. The QUADAS (a quality assessment tool for diagnostic accuracy studies) was used to assess the quality of the diagnostic accuracy studies, and the Risk of Bias Assessment tool for Nonrandomized Studies was used to assess the quality of the studies on arthroscopic treatment efficacy.

Results: Out of an initial 791 studies, 23 were included. AIIS impingement was diagnosed by plain radiography with 76% to 86% sensitivity, 3-dimensional computed tomography with 80% to 81.8% sensitivity, magnetic resonance imaging with 80% sensitivity, and ultrasound with 92.5% sensitivity. For patients who underwent hip arthroscopy, the pooled prevalence of AIIS impingement was 18%. Significant improvement between pre- and postoperative clinical outcomes was observed: 25.75 points for the modified Harris hip score (mHHS), 46.88 points for the Hip Outcome Score–Sport subscale, 20.85 points for the Nonarthritic Hip Score, and -2.92 points for the pain visual analog scale. The minimal clinically important difference on the mHHS was exceeded by 94% of patients. The pooled incidence of surgical complications was 1%. Of 6 included studies on diagnostic accuracy, 2 were identified as having a low risk of bias, and 4 included >2 factors with a high risk of bias. All 9 included studies on treatment outcomes had at least 1 factor with a high risk of bias.

Conclusion: Several imaging modalities assist in the diagnosis of AIIS impingement. The overall prevalence of AIIS impingement in patients that underwent hip arthroscopy was 18%. Clinical outcomes after arthroscopic AIIS decompression were generally favorable, with a relatively low rate of surgical complications.

Keywords: anterior inferior iliac spine (AIIS) impingement; subspine impingement; femoroacetabular impingement; hip arthroscopy

Recent developments in the field of hip arthroscopic surgery have enabled effective surgical treatment of femoroacetabular impingement (FAI) syndrome (FAIS),29 including other extra-articular pathologies.19 Subspine impingement, also known as anterior inferior iliac spine (AIIS) impingement, is an important cause of FAI-related hip pain,7 although it is often overlooked. Although the underlying cause is unclear, AIIS impingement is likely induced by mechanical stress around the subspine region of the AIIS, just adjacent to the acetabulum labrum and capsule; this stress is triggered by particular hip positions such as deep flexion or internal rotation with flexion such as high-kicking dancing.25 Stress can be induced not only by visible morphologic abnormalities but also by a combination of dynamic factors plus FAI morphology.7 In particular, existing AIIS impingement is an important risk factor for treatment failure after arthroscopic
Despite accumulating evidence concerning FAIS pathology, many unanswered questions remain, particularly about extra-articular pathology and AIIS impingement.

In the clinical setting, it is important to know how AIIS impingement is diagnosed, its actual prevalence, and likely clinical outcomes after arthroscopic surgery. Although several studies have examined AIIS in the context of these clinical issues, a limited number of systematic reviews or meta-analyses has been performed. The purpose of this systematic review and meta-analysis is to clarify the following clinical questions: (1) What are the imaging and diagnostic options for AIIS impingement? (2) What is the prevalence of AIIS impingement? (3) Is arthroscopic decompression a useful and safe treatment for AIIS impingement? It was hypothesized that several imaging modalities are available for AIIS impingement, its prevalence may vary by population, and arthroscopic decompression is a promising surgical option with acceptable clinical outcomes.

METHODS

A systematic review and meta-analysis were conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines and was registered on PROSPERO (CRD42021281554).

Literature Search

Multiple comprehensive literature searches of the PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Cochrane Library databases were performed on May 6, 2021. Search keywords included (“extra-articular impingement” OR “anterior inferior iliac spine” OR “subspine” OR “aiis”). An additional manual search was performed to identify other relevant articles or bibliographies. Topics covered were (1) the prevalence of AIIS impingement, (2) the accuracy of diagnostic tests for AIIS impingement, and (3) results of treatment for AIIS. The detailed search strategies are listed in Appendix Table A1.

Study Screening and Eligibility Assessment

After the first extraction, an initial screen was performed by 2 reviewers (N.K. and E.K.). During this screen, the title and abstract were reviewed, and inappropriate literature was excluded. Disagreements were resolved by discussion. Duplicate articles were removed. Next, an eligibility assessment of full manuscripts was performed by the same 2 reviewers. Exclusion criteria were animal studies, reviews, technical notes, letters to the editor, and expert opinions. There was no language restriction. The inclusion criteria were as follows:

- Prevalence: All studies that reported prevalence of AIIS, subspine, or extra-articular impingement.
- Diagnostic accuracy: Inclusion criteria were articles that reported the sensitivity and specificity of radiographs, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and physical examination for AIIS impingement. Only studies that mentioned sensitivity and specificity were included.
- Treatment: Studies that reported (1) a direct comparison between preoperative and postoperative groups following AIIS decompression, in which primary or revision arthroscopy was performed; (2) patient-reported outcomes both preoperatively and postoperatively; and (3) a minimum follow-up period of 6 months.

Data Synthesis and Statistical Analysis

Data from each eligible study were extracted independently by 2 authors (N.K. and E.K.). For studies that did not report
If pooling of data was not possible, a narrative approach was used to describe the studies. Pooled prevalence and adverse events estimation for AIIS were calculated using Freeman Tukey double arcsine transformation and Dersimonian-Laird random-effects models, respectively. To assess the effects of differences in patient background, a subgroup analysis of high-kicking athletes and nonathletes was performed. For treatment-based studies, the clinical outcome scores were classified. Pooled clinical outcome scores were calculated based on unadjusted mean differences (MDs), with 95% CIs. Pooled MDs of clinical outcome scores were calculated using random-effects models. A \(P \) value \(< .05\) was considered statistically significant. The heterogeneity of treatment effects among studies was evaluated by calculating the \(I^2 \) value. All statistical analyses were conducted using R (R Core Team, 2020). R package “meta” and “metafor” were used to estimate prevalence and clinical outcome.

Lead Author	Sample Size	Inclusion Criteria	Diagnostic Modality	Definition of AIIS impingement	Reference Standard	Sensitivity/Specificity, %
Karnä (2018)	145 patients	Patients diagnosed with FAI	Plain radiograph	Based on the position of its inferior margin to the sourcil line. Type 1 AIIS was above the level of the sourcil line	3D-CT	86/53
Krueger (2017)	30 patients	Bony mature patients	Plain radiograph	Type A: projection of the AIIS above the acetabular sourcil Type B: caudal extension of the AIIS below the acetabular sourcil but not exceeding extension of the AIIS below the acetabular sourcil	3D-CT	76/64
Samim (2019)	62 patients	Arthroscopic treatment for FAI	MRI	Pertinent soft tissue and bone abnormalities, including the presence of a distal cam and AIIS morphologic characteristics	Intraoperative findings	80/81
Amar (2021)	30 patients (53 hips)	Patients with hip-related complaints	Ultrasound	Type 1: Smooth iliac wall without any bony prominence between the caudal level of the AIIS and the acetabular rim Type 2: No iliac wall distal to the AIIS, and bony wall clearly demonstrated at the acetabular rim	False-profile radiograph	92.5/96
Aguilera-Bohórquez (2019)	135 patients (194 hips)	Diagnosis of symptomatic FAI	3D-CT	Femoral anteversion < 8°	3D-CT	81.8/70.5
Balazs (2017)	508 hips	Hip pain or injury	3D-CT	Based on Hetsroni et al\(^{16}\): normal (type 1) and abnormal (types 2 and 3)	Hip symptoms	80/23

\(^{a} \) AIIS, anterior inferior iliac spine; FAI, femoroacetabular impingement; 3D-CT, 3-dimensional reconstructed computed tomography; MRI, magnetic resonance imaging.

Evaluation of Bias Risk

The quality of the studies was assessed independently by 2 reviewers (Y.Y. and E.K.). No specific tool/scoring system was used to assess the quality of studies examining prevalence and morphology. QUADAS (a quality-assessment tool for diagnostic accuracy studies) was graded to assess the quality of diagnosis studies. The Risk of Bias Assessment tool for Nonrandomized studies was graded to assess the quality of treatment studies. Publication bias was evaluated by constructing a funnel plot for each outcome.

RESULTS

Figure 1 shows a flowchart illustrating study screening and eligibility assessment. This process identified 23 studies, of which 6 were imaging diagnosis studies, 7 were

Table 1 Summary of Studies on Diagnostic Imaging Accuracy (n = 6)\(^{(a)}\)

Note: This table provides a summary of studies on diagnostic imaging accuracy for anterior inferior iliac spine (AIIS) impingement.
prevalence studies, reported outcomes after arthroscopic treatment, and 9 studies reported on adverse effects after arthroscopic treatment.

A summary of the 6 studies on diagnostic imaging accuracy is shown in Table 1. Plain radiographs, 3-dimensional reconstructed CT (3D-CT), MRI, and US were used for diagnosis of AIIS impingement. For plain radiographs, the sensitivity was 76% to 86% and the specificity was 53% to 64%, for MRI the sensitivity was 80% and

TABLE 2
Summary of Studies on AIIS Impingement Prevalence (n = 9)

Lead Author (Year)	Affected Hips (Total Hips)	Inclusion Criteria	Definition of AIIS Impingement
Larson²⁴ (2014)	39 (85)	Patients who underwent arthroscopic revision FAI correction due to residual cam or pincer deformity	AIIS decompression required
Ricciardi²³ (2014)	14 (147)	Patients who underwent revision hip preservation surgery	Intraoperative findings
Amar⁵ (2016)	21 (100)	Patients who underwent hip arthroscopy for various diagnoses	AIIS dimensions and distances between the most prominent anteroinferior point of the AIIS and the acetabular rim
Kruger²³ (2017)	17 (80)	Patients who underwent arthroscopic correction of primary FAI	Intraoperative signs for subspine impingement
Aguilera-Bohórquez² (2019)	46 (194)	Patients with symptomatic FAI evaluated by CT	Contact area between the AIIS and the femoral neck (based on a 3D dynamic study)
Larson²⁵ (2020)	64 (77)	Competitive dancers who underwent an arthroscopic hip procedure	AIIS decompression required
Kobayashi²¹ (2020)	6 (35)	Patients with cam morphology who underwent hip arthroscopic osteochondroplasty	Impingement point on the acetabular side using kinematic simulation software
Marom²⁷ (2020)	306 (421)	Soccer players who underwent primary hip arthroscopies for FAI	Iliac subspine decompression performed
Roos³³ (2020)	25 (275)	Patients who underwent arthroscopic FAI treatment	Arthroscopic treatment of subspine impingement performed

³³D, 3-dimensional; AIIS, anterior inferior iliac spine; CT, computed tomography; FAI, femoroacetabular impingement.

Figure 2. Forest plots showing prevalence of anterior inferior iliac spine impingement in the primary arthroscopy (18%), revision arthroplasty (23%), and high-kicking athlete (72%) populations. Heterogeneity was identified as high for all 3 populations, with I² values of 82%, 97%, and 93%, respectively. The funnel plot for prevalence studies revealed a symmetric property regarding publication bias.
TABLE 3

Summary of Studies on Arthroscopic Treatment Outcomes for AIIS Impingement (n = 9)*

Lead Author (Year)	Surgical Procedures	Hips, n	Mean Age, y	Sex, M/F	AIIS Type	Follow-up Time	Outcome Measures
Hetsroni**15** (2012)	AIIS decompression	10	24.9 (15-44)	10/0	NA	14.7 ± 7.2 mo	ROM, mHHS
Hapa14 (2013)	AIIS decompression	163	27.8 (14-52)	75/75	Type 2: 31, Type 3: 32	11.1 ± 4.1 mo	VAS, mHHS, SP12, alpha angle
Nwachukwu**30** (2017)	AIIS decompression without concurrent treatment of FAI	33	26.1 ± 10.3	0/33	Type 2: 32, Type 3: 1	19.1 mo (range, 12-44 mo)	mHHS, HOS, iHOT-33
Flore12 (2018)	Global acetabular retroversion with AIIS decompression	22	33.5 ± 12.2	7/15	NA	≥1 y	mHHS, HOOS, HOS-S, VAS, SP12
Feghhi**10** (2020)	Arthroscopic FAI correction with or without AIIS decompression	19	28	0/18	Type 1: 5, Type 2: 14	44 mo (range, 23-61 mo)	mHHS, HOOS, HOS-ADL, HOS-S, muscle strength
Michal28 (2020)	Arthroscopic subspinal decompression	34	32.6 (18-61)	18/16	Type 2: 27, Type 3: 7, Type 2: 15	25 mo (range, 13-37 mo)	29.5 mo (range, 6-82 mo) mHHS, NAHS, ROM
Roos33 (2020)	AIIS decompression	28	32.1 (19-44)	18/7	NA	33.1 ± 7.7 mo	mHHS, NAHS, iHOT-12
Tateishi38 (2018)	Arthroscopic FAI correction with or without AIIS decompression	29	31.6 ± 13.5	14/15	Type 1: 5, Type 2: 26	181 ± 32 d	mHHS, NAHS, VAS
Shapira37 (2021)	Arthroscopic FAI correction with or without AIIS decompression	50	33.38 ± 13.55	21/29	NA	33.1 ± 7.7 mo	VAS, visual analog scale for pain

*AIIS, anterior inferior iliac spine; F, female; FAI, femoroacetabular impingement; HOOS, Hip disability and Osteoarthritis Outcome Score; HOS, Hip Outcome Score; HOS-ADL, Hip Outcome Score–Activities of Daily Living; HOS-S, Hip Outcome Score–Sport subscale; iHOT, International Hip Outcome Tool; M, male; mHHS, modified Harris Hip Score; NA, not available; NAHS, Nonarthritic Hip Score; ROM, range of motion; SF-12, 12-Item Short Form Health Survey; VAS, visual analog scale for pain.

Figure 3. Forest plots of MD between pre- and postoperative improvements in patient-reported outcome scores. The mean differences in mHHS, percentage of mHHS exceeding MCID, HOS-S, NAHS, and VAS were 25.75, 94, 46.88, 20.85, and -2.92, respectively. The I² values for heterogeneity were 93%, 0%, 97%, 81%, and 0%, respectively. The funnel plot for patient-reported outcome scores studies revealed an asymmetric property regarding publication bias. HOS-S, Hip Outcome Score–Sport subscale; MCID, minimal clinically important difference; MD, mean difference; mHHS, modified Harris Hip Score; NAHS, Nonarthritic Hip Score; ROM, range of motion; SF-12, 12-Item Short Form Health Survey; VAS, visual analog scale for pain.
specificity was 81%, for US the sensitivity was 92.5% and specificity was 96%, and for 3D-CT the sensitivity was 80% to 81.8% and specificity was 23% to 70.5%.

Table 2 shows a summary of the 9 studies on the prevalence of AIIS impingement. Figure 2 shows the pooled prevalence of AIIS impingement in patients who

Table 4

Summary of Studies on Adverse Events (n = 9)

Author and Year	Surgical Procedure	Patients	Follow-up Duration	Definition of Adverse Events	Complications/Reoperations, n
Hetsroni15 (2012)	AIIS decompression	10	14.7 ± 7.2 mo	Rectus femoris insertion detachment from the AIIS area after surgery	0/NA
Hapa14 (2013)	AIIS decompression	163	2 y	Short-term and long-term hip flexion deficits or rectus femoris avulsions	0/NA
Flores12 (2018)	Arthroscopic surgery for focal pincer-type FAI with or without AIIS decompression	22	≥1 y	Major or minor complications	0/0
Aguilera-Bohórquez3 (2020)	AIIS decompression	22	1 y	Complications or reintervention because of residual pain	0/0
Feghhi10 (2020)	AIIS decompression with borderline hip dysplasia	18	44 mo (23-61 mo)	Complications or reoperation; symptoms of postoperative hip instability based on the apprehension maneuver and dial test	0/0
Luyckx26 (2020)	AIIS decompression after THA	20	20 mo (12-40 mo)	Developed postoperative heterotopic ossification or additional postoperative infiltration of the psoas	3/NA
Roos33 (2020)	AIIS decompression	28	29.5 mo (6-82 mo)	Ossification or vaginal skin lesion resulting from traction	1/NA
Tateishi38 (2018)	AIIS decompression	29	181 ± 32 d	Flexor muscle strength weakening or revision surgery	0/0
Shapira37 (2021)	FAI with SSI, FAI without SSI	50	2 y	Revision or conversion to THA	1/3

AIIS, anterior inferior iliac spine; FAI, femoroacetabular impingement; NA, not available; SSI subspine impingement; THA, total hip arthroplasty.

Figure 4. Incidence of complications and reoperations after arthroscopic surgery for AIIS impingement. Incidence of complication was 1% and incidence of reoperation was 2%. The I^2 value was 0% for both complications and reoperations, suggesting low heterogeneity. The funnel plots for complications and reoperations revealed asymmetric properties regarding publication bias.
underwent hip arthroscopy; there were no studies on prevalence in the general population. The random-effects model revealed that the overall prevalence of AIIS impingement in the primary arthroscopy group was 18% (95% CI, 13%-26%). Subgroup analysis of the high-kicking athlete group revealed a high prevalence of impingement (72%) compared with the primary or revision arthroscopy group (23%).

The 9 studies on the outcomes of surgical treatment for AIIS impingement are summarized in Table 3. Figure 3
shows a forest plot of the MDs between pre- and postoperative modified Harris Hip Scores (mHHS), the percentage of mHHS that exceeded the minimal clinically important difference (MCID; the previously published MCID of 8.2 was used as a reference),

Table 4 summarizes the characteristics of studies on adverse events. The pooled incidences of complications and reoperation were 1% and 2%, respectively (Figure 4).

The heterogeneity of the studies depended on the type of assessment. The I^2 value for prevalence showed high heterogeneity; the value for improvement in clinical scores varied from 0% to 97% (no heterogeneity to high heterogeneity), and the I^2 value for complications and reoperation was 0% (no heterogeneity). Figures 5 and 6 show the risk of bias for the studies on diagnostic accuracy and arthroscopic treatment outcomes, respectively. Two of the studies on diagnostic accuracy were identified as having a low risk of bias, while the remaining 4 studies had >2 factors with a high risk of bias (Figure 5). All studies on arthroscopic treatment outcomes had at least 1 factor with a high risk of bias with respect to selection of participants and blinding of outcome assessments (Figure 6).

DISCUSSION

This systematic review and meta-analysis revealed that imaging modalities such as plain radiographs, 3D-CT, MRI, and US are useful for diagnosis. The prevalence of AIIS impingement in those that have undergone primary hip arthroscopy is around 18%, and overall clinical outcomes after arthroscopic AIIS decompression are acceptable with improvement of 25.75 for mHHS, 94% for mHHS exceeding MCID, 46.88 for HOS-S, 20.85 for NAHS, and -2.92 for pain VAS, and with an overall complication rate of about 1%.

AIIS impingement is an extra-articular pathology that is occasionally latent under FAI conditions. While clinical recognition of AIIS impingement has increased gradually, evidence in the literature is still limited. Regarding image-based diagnosis of AIIS impingement, we found no single gold standard imaging modality. Plain radiographic imaging is a basic tool for identifying AIIS. Although morphological classification of AIIS based on CT images is established, actual impingement between the AIIS and the femur during motion cannot be visualized on a static image. Therefore, Hetsroni et al. conducted computer simulation analyses to show that range of motion (ROM) was limited significantly in cases with prominent AIIS morphology (type 2 or 3). Thus, kinematic computer simulation analysis is a powerful tool for evaluating ROM and identifying the location of AIIS impingement. MRI also has potential for diagnosing AIIS impingement. Indeed, Samim et al. showed that soft tissue injuries and osseous findings, such as distal cam, on MRI scans that were not morphologic features of the AIIS are associated with subspine impingement. Finally, US is useful for evaluating AIIS morphology. The overall accuracy of US compared with the false-profile view is 92.3%. Thus, imaging diagnosis of AIIS impingement basically relies on morphological evaluation of plain radiographs and CT, with MRI and US as additional diagnostic modalities.

The prevalence of AIIS impingement is an important clinical issue. It is difficult to discuss prevalence because there are no standardized diagnostic criteria for AIIS impingement. In addition, a high percentage of patients with an AIIS morphology associated with subspine impingement are asymptomatic. To make a reliable estimate of prevalence, large-scale epidemiological surveys are required. Based on the limited evidence available, we found that the overall incidence of AIIS impingement in patients who underwent primary hip arthroscopy was approximately 18%; also, subanalyses revealed a difference in incidence between high-kicking athletes and nonathletes. For instance, the prevalence was higher in activities involving high-kicking, such as dancing and soccer. Thus, special attention needs to be given to the possibility of AIIS impingement in individuals undertaking such sporting activities. In addition, we found a higher prevalence of AIIS impingement in revised hip arthroscopy cases than in primary hip arthroscopy cases. This suggests (indirectly) the potential persistence of AIIS impingement after primary arthroscopy. Cam or pincer resection may improve ROM; however, subsequent AIIS impingement may ensue. Nevertheless, it should be noted that all results reported here are valid only for patients undergoing hip arthroscopy, not for the general population. Recent anatomic data based on 1797 cadaveric specimens reported that AIIS dysmorphism was present in 6.4%. This is lower than the current rate for patients undergoing hip arthroscopy.

Regarding clinical outcomes of arthroscopic surgery for AIIS impingement, we extracted 9 studies with standardized clinical assessment protocols. These studies reported favorable improvements with limited complications, including 2 cases with heterotopic ossification, 1 case with insertion tendinopathy of direct head of rectus femoris, 1 case with a small vaginal skin lesion, 1 case with irritation of the hip flexor. However, most of these had a short follow-up period of 1 to 2 years. A case series by Hetsroni et al. was the first to report arthroscopic decompression for AIIS impingement. A recent study that compared AIIS impingement with borderline hip dysplasia and nondysplastic FAIS revealed that arthroscopic AIIS decompression is a safe and effective treatment. A clinical issue is the decision regarding the area of decompression within the AIIS lesion. In this regard, an important cadaveric study was conducted by Hapa et al. They showed that the direct head of the rectus tendon has a broad insertion on the AIIS; however, the area devoid of tendon provides a “safe zone” for subspine decompression in cases of symptomatic AIIS impingement. This is important to ensure safe AIIS decompression, particularly in terms of retaining muscle strength after surgery. Indeed, Tateishi et al. reported that AIIS decompression did not compromise knee extensor or hip flexor strength postoperatively. In addition, the pooled incidence of surgical complications was 1%, which is almost the same
as the overall complication rate after hip arthroscopy for FAIS in adolescents, and slightly lower than the pooled rate of all complications (4%) in adults.

Limitations

There are several limitations to this study. The heterogeneity in the assessment of prevalence (see Figure 2) was very high in all subgroups. We identified a relatively high risk of bias, particularly with respect to selection of participants and blinding of assessments of arthroscopic treatment outcomes. In addition, there was a relatively high risk of bias regarding the flow and timing of diagnosis. Furthermore, we must note the possibility of publication bias because there was asymmetry in funnel plot for each outcome. Particularly adverse events may be underestimated or unreported. Thus, further studies with a lower risk of bias are needed to better assess clinical outcomes and diagnostic accuracy.

CONCLUSION

Study findings indicated that several imaging modalities assist diagnosis of AIIS impingement. The overall prevalence of AIIS impingement in the primary hip arthroscopy population is approximately 18%, with higher prevalence in those participating in high-kicking sports activities. Clinical outcomes after arthroscopic AIIS decompression are generally favorable with a relatively low rate of surgical complications.

REFERENCES

1. Addai D, Zarkos J, Pettit M, Sunil Kumar KH, Khandoja V. Outcomes following surgical management of femoroacetabular impingement: a systematic review and meta-analysis of different surgical techniques. Bone Joint Res. 2021;10(9):574-590. doi:10.1302/2046-3758.109.BJR-2020-0443.R1
2. Aguilera-Bohorquez B, Brugiatti M, Coaquira R, Cantor E. Frequency of subspine impingement in patients with femoroacetabular impingement evaluated with a 3-dimensional dynamic study. Arthroscopy. 2019;35(1):91-96. doi:10.1016/j.arthro.2018.08.035
3. Aguilera-Bohorquez B, Ramirez S, Cantor E. Functional results of arthroscopic treatment in patients with femoroacetabular and subspine impingement diagnosed with a 3-dimensional dynamic study. Arthrosc Sports Med Rehabil. 2020;2(1):e39-e45. doi:10.1016/j.asmr.2019.10.007
4. Amar E, Rosenthal R, Guanche CA, et al. Sonographic evaluation of anterior inferior iliac spine morphology demonstrates excellent accuracy when compared to false profile view. Knee Surg Sports Traumatol Arthrosc. 2021;29(5):1413-1419. doi:10.1007/s00167-020-06304-x
5. Amar E, Warschawsky Y, Sharfman ZT, Martin HD, Safran MRS, Rath E. Pathological findings in patients with low anterior inferior iliac spine impingement. Surg Radiol Anat. 2016;38(5):569-575. doi:10.1007/s00276-015-1591-8
6. Balazs GC, Williams BC, Knaus CM, et al. Morphological distribution of the anterior inferior iliac spine in patients with and without hip impingement: reliability, validity, and relationship to the intraoperative assessment. Am J Sports Med. 2017;45(5):1117-1123. doi:10.1177/0363546516682230
7. Carton P, Filan D. Anterior inferior iliac spine (AIIS) and subspine hip impingement. Muscles Ligaments Tendons J. 2016;6(3):324-336. doi:10.1111/mltj.2016.6.3.324
8. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2
9. de Sa D, Airdawdan H, Cargnelli S, et al. Extra-articular hip impingement: a systematic review examining operative treatment of psoas, subspine, ischiofemoral, and greater trochanteric/pelvic impingement. Arthroscopy. 2014;30(8):1026-1041. doi:10.1016/j.arthro.2014.02.042
10. Feghhi D, Shearin J, Bharam S. Arthroscopic management of subspine impingement in borderline hip dysplasia and outcomes compared with a matched cohort with nondysplastic femoroacetabular impingement. Am J Sports Med. 2020;48(12):2919-2926. doi:10.1177/0363546520951202
11. Filan D, Mullins K, Carton P. Hip range of motion is increased after hip arthroscopy for femoroacetabular impingement: a systematic review. Arthroscopy. 2022;42(2):e797-e822. doi:10.1016/j.arthro.2021.12.001
12. Flores SE, Chambers CC, Borak KR, Zhang AL. Arthroscopic treatment of acetabular retroversion with acetabuloplasty and subspine decompression: a matched comparison with patients undergoing arthroscopic treatment for focal pincer-type femoroacetabular impingement. Orthop J Sports Med. 2018;6(7):2325967118783741. doi:10.1177/2325967118783741
13. Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat. 1950;21(4):607-611.
14. Hapa O, Bedi A, Gursan O, et al. Anatomic footprint of the direct head of the rectus femoris origin: cadaveric study and clinical series of hips after arthroscopic anterior inferior iliac spine/subspine decompression. Arthroscopy. 2013;29(12):1932-1940. doi:10.1016/j.arthro.2013.08.023
15. Hetsroni I, Larson CM, Dela Torre K, Zbeda RM, Magennis E, Kelly BT. Anterior inferior iliac spine deformity as an extra-articular source for hip impingement: a series of 10 patients treated with arthroscopic decompression. Arthroscopy. 2012;28(11):1644-1653. doi:10.1016/j.arthro.2012.05.882
16. Hetsroni I, Poultisides L, Bedi A, Larson CM, Kelly BT. Anterior inferior iliac spine morphology correlates with hip range of motion: a classification system and dynamic model hip. Clin Orthop Relat Res. 2013;471(8):2497-2503. doi:10.1007/s11999-013-2847-4
17. Higgins JP, Green S. Extracting Study Results and Converting to the Desired Format. 2nd ed. Wiley-Blackwell; 2019.
18. Kars M, Adeyemi TF, Stephens AR, et al. Revisiting the anterothoracic spine: is the subspine pathological? A clinical and radiographic evaluation. Clin Orthop Relat Res. 2018;476(7):1494-1502. doi:10.1097/01.blo.0000533626.25502.e1
19. Kaya M. Impact of extra-articular pathologies on groin pain: an arthroscopic evaluation. PLoS One. 2018;13(1):e0191091. doi:10.1371/journal.pone.0191091
20. Knapik DM, Fortun CM, Schill CRJ, Nho SJ, Salata MJ. Prevalence of anterior inferior iliac spine dysmorphism and development of a novel classification system: an anatomic study of 1,797 cadaveric specimens. Front Surg. 2021;7:587921. doi:10.3389/fsurg.2020.587921
21. Kobayashi N, Choe H, Ike H, et al. Evaluation of anterior inferior iliac spine impingement after hip arthroscopic osteochondroplasty using computer simulation analysis. J Orthop Surg. 2020;28(2): 2309499020935533. doi:10.1177/2309499020935533
22. Krueger DR, Windler M, Geßlein M, Schuetz M, Perka C, Schroeder JH. Is the evaluation of the anterior inferior iliac spine (AIIS) in the AP pelvis possible? Analysis of conventional X-rays and 3D-CT reconstructions. Arch Orthop Trauma Surg. 2017;137(7):975-980. doi:10.1007/s00402-017-2694-y
23. Krüger DR, Schütz M, Perka C, Schröder J. [Radiologic presentation in subspine impingement and correlation with intraarticular impingement in the hip]. Z Orthop Unfall. 2017;155(4):409-416. doi:10.1055/s-0043-103413
24. Larson CM, Giveans MR, Samuelson KM, Stone RM, Bedi A. Arthroscopic hip revision surgery for residual femoroacetabular
impingement (FAI): surgical outcomes compared with a matched cohort after primary arthroscopic FAI correction. *Am J Sports Med.* 2014;42(8):1785-1790. doi:10.1177/0363546514534181

25. Larson CM, Ross JR, Giveans MR, McGaver RS, Weed KN, Bedi A. The dancer’s hip: the hyperflexible athlete: anatomy and mean 3-year arthroscopic clinical outcomes. *Arthroscopy.* 2020;36(3):725-731. doi:10.1016/j.arthro.2019.09.023

26. Luyckx L, Hendrickx J, Timmermans A, Vandenabeele F, Corten K. Extra-articular impingement at the anterior inferior iliac spine: a cause of refractory periarthritis pain after total hip arthroplasty. *Arthroplast Today.* 2020;6(4):845-849. doi: 10.1016/j.artd.2020.07.016

27. Marom N, Dooley MS, Burger JA, et al. Characteristics of soccer players undergoing primary hip arthroscopy for femoroacetabular impingement: a sex- and competitive level-specific analysis. *Am J Sports Med.* 2020;48(13):3255-3264. doi:10.1177/0363546520958697

28. Michal F, Amar E, Atzmon R, et al. Subspinal impingement: clinical outcomes of arthroscopic decompression with one year minimum follow up. *Knee Surg Sport Traumatol Arthrosc.* 2020;28(9):2756-2762. doi:10.1007/s00167-018-4923-5

29. Migliorini F, Maffulli N. Arthroscopic management of femoroacetabular impingement in adolescents: a systematic review. *Am J Sports Med.* 2021;49(13):3708-3715. doi:10.1177/03635465211062903

30. Nwachukwu BU, Chang B, Fields K, et al. Outcomes for arthroscopic treatment of anterior inferior iliac spine (subspine) hip impingement. *Orthop J Sports Med.* 2017;5(8):2325967171723109. doi:10.1177/2325967117723109

31. Nwachukwu BU, Fields K, Chang B, Nawabi DH, Kelly BT, Ranawat AS. Preoperative outcome scores are predictive of achieving the minimal clinically important difference after arthroscopic treatment of femoroacetabular impingement. *Am J Sports Med.* 2017;45(3):612-619. doi:10.1177/0363546516669325

32. Ricciardi BF, Fields K, Kelly BT, Ranawat AS, Coleman SH, Sink EL. Causes and risk factors for revision hip preservation surgery. *Am J Sports Med.* 2014;42(11):2627-2633. doi:10.1177/0363546514545855

33. Roos BD, Roos MV, Camisa Júnior A, Lima EMU, Fontana MF, Oкамoto RP. Subspine hip impingement: clinical and radiographic results of its arthroscopic treatment. *Rev Bras Ortop Sao Paulo.* 2020;55(6):722-727. doi:10.1556/s-0040-1713760

34. Ross JR, Larson CM, Adeoyo O, Kelly BT, Bedi A. Residual deformity is the most common reason for revision hip arthroscopy: a three-dimensional CT study. *Clin Orthop Relat Res.* 2015;473(4):1388-1395. doi:10.1007/s11999-014-4069-9

35. Samim M, Walter W, Gyftopoulos S, Poultsides L, Youm T. MRI assessment of subspine impingement: features beyond the anterior inferior iliac spine morphology. *Radiology.* 2019;293(2):412-421. doi:10.1148/radiol.2019190581

36. Schaver AL, Leary SM, Henrichsen JL, Larson CM, Westermann RW. Outcomes of arthroscopic decompression of the anterior inferior iliac spine, a systematic review and meta-analysis. Published online January 12, 2022. *Am J Sports Med.* doi:10.1177/03635465211062903

37. Shapira J, Yelton MJ, Glein RM, et al. Intraoperative findings and clinical outcomes associated with arthroscopic management of subspine impingement: a propensity-matched controlled study. *Arthroscopy.* 2021;37(10):3090-3101. doi:10.1016/j.arthro.2021.03.057

38. Tateishi S, Onishi Y, Suzuki H, et al. Arthroscopic anterior inferior iliac spine decompression does not alter postoperative muscle strength. *Knee Surg Sports Traumatol Arthrosc.* 2018;26(9):2763-2771. doi:10.1007/s00167-018-5026-z

APPENDIX

TABLE A1
Search Strategies

The Cochrane Library	PubMed	EBSCO CINAHL Plus
1) extra-articular impingement: ti, ab, kw	1) "extra-articular impingement"[All Fields]	S1) extra-articular impingement
2) anterior inferior iliac spine: ti, ab, kw	2) "subspine impingement"[All Fields]	S2) subspine impingement
3) subspine impingement: ti, ab, kw	3) "aiis"[All Fields]	S3) aiis
4) aiis: ti, ab, kw	4) "anterior inferior iliac spine"[All Fields]	S4) anterior inferior iliac spine
5) 1 OR 2 OR 3 OR 4	5) "extra-articular impingement"[All Fields] OR "subspine impingement"[All Fields] OR "aiis"[All Fields] OR "anterior inferior iliac spine"[All Fields]	S5) S1 OR S2 OR S3 OR S4