Role of genetics in the diagnosis and prognosis of Crohn's disease

Epameinondas V Tsianos, Konstantinos H Katsanos, Vasileios E Tsianos

Epameinondas V Tsianos, Konstantinos H Katsanos, Vasileios E Tsianos, 1st Division of Internal Medicine and Hepato-Gastroenterology Unit, Department of Medicine, Medical School, University of Ioannina, Leoforos Stavrou Niarxou, PO Box 1186, 45110 Ioannina, Greece

Author contributions: Tsianos EV designed and critically revised the paper; Katsanos KH designed and wrote the paper; Tsianos VE performed research for acquisition of data.

Correspondence to: Epameinondas V Tsianos, MD, PhD, FEBG, AGAF, Professor of Internal Medicine, 1st Division of Internal Medicine and Hepato-Gastroenterology Unit, Department of Medicine, Medical School, University of Ioannina, Leoforos Stavrou Niarxou, PO Box 1186, 45110 Ioannina, Greece. etsianos@uoi.gr

Telephone: +30-26510-07501 Fax: +30-26510-07016

Received: March 22, 2011 Revised: June 15, 2011

Accepted: June 22, 2011

Published online: December 28, 2011

Abstract

Considering the epidemiological, genetic and immunological data, we can conclude that the inflammatory bowel diseases are heterogeneous disorders of multifactorial etiology in which hereditability and environment interact to produce the disease. It is probable that patients have a genetic predisposition for the development of the disease coupled with disturbances in immunoregulation. Several genes have so far been related to the diagnosis of Crohn's disease. These genes are related to innate pattern recognition receptors, to epithelial barrier homeostasis and maintenance of epithelial barrier integrity, to autophagy and to lymphocyte differentiation. So far, the strongest and most replicated associations with Crohn's disease have been demonstrated with NOD2, IL23R and ATG16L1 genes. Many genes have so far been implicated in the prognosis of Crohn's disease and many attempts have been made for classification of genetic profiles in Crohn's disease. CARD15 seems to be not only a susceptibility gene, but also a disease-modifier gene for Crohn's disease. Enriching our understanding of Crohn's disease genetics is of value, but when combining genetic data with functional data the outcome could be of major importance to clinicians.

© 2011 Baishideng. All rights reserved.

Key words: Crohn's disease; Genetics; Polymorphism; Diagnosis; Prognosis; Genome-wide scan; Genetic consortium

Peer reviewers: Charles P Heise, MD, Associate Professor, Department of Surgery, School of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, United States; Alberto Tommasini, MD, Professor, Laboratory of Immunopathology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell’Istria 65/1, Trieste 34137, Italy; Emanuel K Manesis, MD, Professor of Medicine, Athens University School of Medicine, Liver Unit, Euroclinic, 19 Mavromateon Street, Athens 1034, Greece

Tsianos EV, Katsanos KH, Tsianos VE. Role of genetics in the diagnosis and prognosis of Crohn’s disease. World J Gastroenterol 2011; 17(48): 5246-5259 Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i48/5246.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i48.5246

Evolving role of genetics in Crohn’s disease

Despite decades of research the etiology of inflammatory bowel diseases (IBD) remains largely unexplained, but considering together the epidemiological, genetic and immunological data, we can conclude that IBD are heterogeneous disorders of multifactorial etiology in which hereditability (genetic) and environment (microbial, behavior) interact to produce the immunological background of the disease. It is probable that patients have a genetic predisposition for the development of the disease
coupled with disturbances in immunoregulation. The disease can then be triggered by any of a number of different unknown environmental factors and sustained by an abnormal immune response to these factors. Accordingly, the intensive interaction between intestinal epithelial cells and immune competent cells is critical to maintain and perpetuate the chronic inflammatory process characteristic for IBD.

Early epidemiologic evidence for the role of genetic factors in the pathogenesis of Crohn’s disease (CD) came from studies demonstrating higher rates of CD among individuals of Caucasian and Jewish ethnicity, familial aggregation of CD and higher concordance rates for both twins developing CD in monozygotic compared with dizygotic twins. The search for specific CD susceptibility genes, however, has been difficult due to complex genetics, including factors such as the lack of simple Mendelian inheritance patterns, involvement of several genes, and the influence of environmental factors and intestinal microflora on disease development. More than 30 distinct genomic loci encode genes involved in a number of homeostatic mechanisms and have been suggested to be involved in CD etiopathogenesis and prognosis.

Until very recently, two main approaches could be undertaken to identify genes in complex diseases: the positional cloning approach, based on linkage analysis, and the candidate gene approach, based on association studies. Linkage analysis studies the co-segregation of the disease with a marker within families. The candidate gene approach uses case-control cohorts or trios of affected offspring with both parents. Here, a specific gene with known or potential interest for the disease is studied. The allelic frequencies (in the case of case-control study) or the transmission of a single nucleotide polymorphism (SNP) towards affected offspring (in the case of trios) are analyzed, and differences between patients and controls, or distortion of transmission towards affected children, will point towards implication of the gene in the pathogenesis of the disease under investigation.

Despite the large numbers of genome-wide association studies (GWAS) established to date, most diseases have only managed to explain some additional percentage of the hereditability estimates. In an attempt to explain some of this missing hereditability, researchers have adopted several complementary strategies. Larger cohorts of cases are being collected, through either further patient recruitment or collaborations. The meta-analysis data generated to date have demonstrated how increasing the cohort sample size generates additional statistical power to detect smaller and smaller odds ratios. Advances in technology, and particularly bioinformatics, have now made it possible to perform GWAS using common copy number variation probes. Many groups are looking to high-throughput sequencing technology, with the aim of sequencing candidate gene regions identified by GWAS, to hopefully identify either the causal or rare variants. Several GWAS have been published in the last decade and have identified many genes associated with Crohn’s disease (Table 1). Among these, there are recognition-related genes such as NOD1 and TLR4, other susceptibility genes including DLG5, OCTN and HLA, and the newest susceptibility genes in CD resulting from GWAS: IL23R gene, ATG16L1 gene and IRGM gene.

THE ROLE OF GENES IN THE DIAGNOSIS OF CROHN’S DISEASE
Several genes have so far been related to the diagnosis of Crohn’s disease. These genes are related to innate pattern recognition receptors, to epithelial barrier homeostasis and maintenance of epithelial barrier integrity, to autophagy and to lymphocyte differentiation. So far, the strongest and most replicated associations with CD have been demonstrated with NOD2, IL23R and ATG16L1 genes.

Genes related to innate pattern recognition receptors

NOD2/CARD15 gene: NOD2/CARD15 (Caspase Recruitment Domain Family member 15) acts as a pattern recognition receptor (PRR); this locus has been characterized as the IBD1 locus on 16q12-13.

Fine mapping of the IBD1 locus identified the underlying gene on chromosome 16 as the CARD15 (previous NOD2) gene. CARD15 represents homology with the R genes in plants; genes that confer resistance to infection. Thirty nonconservative polymorphisms have been identified within the gene, which are associated with CD, but only three are common (Arg702Trp, Gly908Arg and Leuc1007insC). These three common variants account for approximately 82% of the mutated alleles. CARD15 is associated with CD only and not with ulcerative colitis. CARD15 codes for a protein expressed in monocytes, macrophages, dendritic cells, epithelial cells and Paneth cells. CARD15 is involved in the recognition of bacterial peptidoglycan-derived muramyl dipeptide through the leucine-rich repeat region. Of importance, the frameshift mutation 1007insC leads to a truncated protein lacking the 33 distal amino acids was associated with impaired activation of the transcription factor NF-κappa B after stimulation.

It has been shown that Paneth cells play an important role in innate host defense via their ability to secrete antimicrobial peptides and proteins. Although nucleotide-binding oligomerization domains (NODs) are expressed at low levels in absorptive and secretory intestinal epithelial cells, Paneth cells in the small intestine have been recognized as the predominant site of expression of NOD2 in the epithelium. Furthermore, NOD2 mutations have been associated with decreased expression of antimicrobial peptides, the α-defensins, by Paneth cells. In addition, a distinct gene polymorphism resulting in low β-defensin 2 gene copy number has been associated with a predisposition to colonic Crohn’s disease. In addition, NOD2 plays important roles in the promotion of antibacterial T-helper-17 (Th-17) cells in the IL-23-IL-1-IL-17 axis.

CARD15 variants are found in 35% to 45% of white
CD patients, with the exception of Scandinavian, Irish and Scottish patients, in whom the prevalence is much lower. Genotype relative risks of 3 (simple mutation) and 10–44 (double mutations) have been reported in European Caucasians, and in Indian, Chinese and Japanese populations. Other CARD related genetic loci that have been associated with CD diagnosis are the CARD4 (NOD1), CARD8 and CARD9 loci.

Organic cation transporter genes: Organic cation transporters (OCTNs, 5q31-33) are membrane transporters for drugs and positively charged endogenous metabolites. The novel OCTN subfamily, 5q31-33, may also transport carnitine, which is essential for metabolism of lipids and is involved in transport of light chain fatty acids into mitochondria for beta-oxidation. Early studies in this field reported on two functional mutations in the carboxyl terminus of OCTN1, OCTN2 and OCTN2 on 5q31 (the IBD5 locus) that were associated with Crohn's disease. As membrane transporters of organic cations, OCTNs are therefore important in the maintenance of intracellular homeostasis. In humans OCTN1 and OCTN2 map to IBD5 on 5q31. An OCTN3 has recently been described in humans.

Toll-like receptor genes: Host response to microbial pathogens includes self-defense mechanisms such as defensins, PRRs, pathogen-associated molecular patterns and toll-like receptors (TLRs). TLRs recognize conserved motifs on pathogens that are not found in higher eukaryotes and initiate “innate” (rapid and non-specific) immune responses. Subsequently, specific receptors recognizing chemo-attractant molecules mobilize phagocytic leukocytes and can induce their migration to inflammatory sites. There, leukocytes encounter the invading microorganisms and ingest them through the activation of phagocytic receptors that mediate the uptake process. Innate immune responses are linked to the generation of corresponding adaptive immune responses and studies of genetically engineered or cellularly manipulated animal models have generated a great deal of new information.

Leucocyte-epithelial interactions are of special interest, as exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators, whereas ligation of leucocyte TLRs modulates specific antimicrobial responses. It has been shown that Paneth cells play an important role in innate host defense via their ability to secrete antimicrobial peptides and proteins. In addition, it has been shown that NO2 mutations lead to loss of negative regulatory effects on TLR signaling while activation of the CARD domain results in activation of NF-κB.

TLRs are the most important receptors of the innate immune system. They are expressed by immune cells and by intestinal epithelial cells in IBD patients. In humans, at least 10 different TLRs are described and each recognizes a specific pathogen-associated molecular pattern. A trans-
mission disequilibrium test on Belgian IBD trios with CD demonstrated preferential transmission of the TLR4 Asp299Gly polymorphism from heterozygous parents to affected children. TLR9 modulates CD susceptibility and there is interaction between other polymorphisms such as NOD2, IL23R and DLG5.

Genes related to epithelial barrier homeostasis

The gastrointestinal tract uses a system of tolerance and controlled inflammation to limit the response to dietary or bacteria-derived antigens in the gut. When this complex system breaks down, by means of either a chemical or pathogenic insult in a genetically predisposed individual, the resulting immune response may lead to IBD. Genes or loci involved in the maintenance of epithelial barrier integrity and associated with Crohn's disease are the IBD5 and the Discs large homolog 5 (DLG5) genes.

The DLG5 gene is a 180-kbp protein containing 1900 amino acids. DLG5 protein harbors a caspase activation and recruitment domain (CARD), which is a further CD susceptibility gene of the CARD family and contributes to CARD-mediated mechanisms of host defense. In fact, the DLG5 gene associated protein is a member of the MAGUK (Membrane Associated Guanylate Kinase) family of scaffolding proteins. Scaffolding proteins organize protein complexes at cellular junctions to integrate the tethering of adhesion molecules, receptors and intracellular signaling enzymes. Of interest is a population variation regarding DLG5 variants. For example, the DLG5 R30Q variant has not been confirmed in other European studies. Other genes of potential importance in the same panel are the PTGER4, ITLN1, DMBT1, BPI and XBPI genes.

Genes related to molecular mimicry and autophagy

The innate immune system is the first line of defense against infection. Of interest, virulence factors from bacteria and viruses have been identified that manipulate host innate immune signaling pathways through molecular mimicry. These microbial proteins contain signaling domains that bear sequence and structural similarity to their host targets, thereby potentially sabotaging host immunity by hijacking crucial signaling pathways and uncoupling receptor activation from effector induction. Several protein families have evolved to function as receptors or sensors of pathogen invasion. There are two types of signaling domains for the above receptors: the TIR domain for the TLRs, and the Pyrin domain or CARD for the NOD-like receptors (NLKs) and retinoic acid-inducible gene 1-like receptors or helicases.

Molecular mimicry has been invoked as one of the mechanisms responsible for the activation of autoreactive cells by microbial peptides that have structural similarities to self peptides, but there is also evidence that antigenically unrelated infections or specific inflammatory signals can result in autoaggressiveness and induction of organ-specific autoimmunity, including the gut. The extent and severity of this loss of tolerance is still being defined, as it has been demonstrated that loss of tolerance in IBD patients is not exclusive for bacterial antigens and occurs also for orally administered soluble proteins. This subversion of innate immune signaling through molecular mimicry is closely related to the phenomenon of autoaggressiveness. Autoaggressiveness is the tightly orchestrated cellular ‘housekeeping’ process responsible for the degradation of damaged and dysfunctional cellular organelles and protein aggregates, and is well recognized to play an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. Regulated degradation and turnover of subcellular components is essential for normal cellular function, growth and development. The major catabolic pathway responsible for the disposal of obsolete or damaged organelles and protein aggregates is autophagy (i.e., “self-digestion”). During this process organelles and proteins are enclosed in a double-membrane vesicle (the autophagosome), delivered to lysosomes and the substrates for adenosine-triophosphate, and products can be recycled to synthesize new proteins, high-energy phosphates and other cellular components. Autophagy has evolved as a conserved mechanism for cell survival under conditions of starvation and stress. In addition to (macro)autophagy, characterized by the sequestration of organelles and proteins within an autophagosome, there are two additional subtypes of self-digestion: microautophagy which refers to protrusion of the lysosomal membrane per se around a region of cytoplasm; and chaperone-mediated autophagy in which degradation is restricted only to those proteins with a consensus peptide sequence recognized by specific chaperone complexes. Autophagy is now considered to be important for host defense against intracellular microorganisms. The associations of the autophagy-associated genes with Crohn's disease strongly support the hypothesis that abnormal innate immune responses to intracellular pathogens contribute to the pathogenesis of Crohn's disease. In fact, the pathological characteristics of human Crohn's disease represent “granuloma” formation. The mechanisms of granuloma formation remain unclear. Recent studies have demonstrated functional roles for IL-23 in the differentiation and promotion of Th-17 cells. Autophagy genes that have been related to CD diagnosis are the ATG16L1, IRGM and the LRRK2 gene. Unraveling the mechanisms of such molecular mimicry is crucial to our understanding and clinical intervention of infectious diseases and inflammatory disorders of unknown etiopathogenesis, including Crohn's disease.

Genes related to lymphocyte differentiation

IL23R gene: Dysregulated cytokine production by mucosal lymphocytes and macrophages has been implicated in the pathogenesis of CD. In fact, an exclusive increase of CD4+ T cells in inflammatory bowel disease and their recruitment as intraepithelial lymphocytes has been demonstrated. CD4+ T cells secreting interleukin-17 (T helper type 17 (Th-17) cells) have emerged as a key effector population driving colitis in animal models previously
associated with exaggerated T helper type 1 responses.

Of the genes involved in the differentiation of Th-17 lymphocytes the IL23R gene has been proved of great importance and has been related to Crohn’s disease.

IL23R, consisting of an IL-12β1 and an IL23R chain, is highly expressed on memory T cells. IL23 is a novel cytokine formed via the binding of IL12p40 to a p19 protein. After binding to the IL23 receptor, IL23 preferentially activates memory T cells. IL23 does exhibit some similar biological activities to IL-12; however, IL-12 is more involved in the differentiation of naïve T-cells into Th1 lymphocytes and subsequent IFNγ production. IL23, on the other hand, mediates proinflammatory activities in part by the production of IL17 through activation of Th17 lymphocytes.

Signal transducer and activator of transcription 3 gene:
Signal transducers and activators of transcription (STATs) play an important role in various autoimmune disorders including IBD. STAT3 was initially identified as an acute phase response factor, an inducible DNA binding protein that binds to the IL-6 responsive element within the promoters of hepatic acute phase protein genes, and is involved in IL-6 dependent T-cell proliferation through prevention of apoptosis. Subsequent studies indicate that STAT3 becomes activated in response to a wide variety of cytokines and growth factors. Recent studies have revealed that STAT3 activation plays distinctly different roles between innate immune responses and acquired immune responses in colitis. STAT3-mediated activation of acquired immune responses plays a pathogenic role in colitis by enhancing the survival of pathogenic T-cells. In contrast, STAT3-mediated activation of innate responses contributes to the suppression of colitis. Emerging data indicate that STAT3 is one of the crucial targets for the treatment of IBD. However, as the receptors of these cytokines and growth factors are present in both innate and acquired cells, activation of STAT3 is likely to occur in both cell types. Therefore, as the function of STAT3 is a double-edged sword, careful attention should be directed toward the cell population that is being targeted when one contemplates STAT3 inhibition or activation in human IBD. Within the same panel, other than STAT3 genes, and with probable importance, are the TNFSF15, JAK2, CCR6 and ICOSLG genes.

Genes related to secondary immune response, apoptosis and other pathways

Chemokines play a central role in the pathogenesis of IBD as they are able to trigger multiple inflammatory actions including leukocyte activation and chemotraction, granule exocytosis, production of metalloproteinases for matrix degradation and upregulation of the oxidative burst. Therefore, further support is given for genes that relate to secondary immune response, apoptosis and other pathways. For example, in the IBD4 locus 4 several interesting candidate genes, which may be relevant in the pathogenesis of CD, lie within this region (e.g., genes regulating apoptosis, signal transduction proteins, chemo-

kine receptors, T cell receptors, metalloproteinases).

Gene expression profiles from colon lamina propria fibroblasts have demonstrated several functional changes in some proteins coded from the corresponding genes: collagen types 1, IV, XIV; matrix metalloproteinase 1; cathepsin K; stroma cell-derived factor-1; chitinase3-like-1; and many others. The major histocompatibility complex (MHC) has been extensively investigated. Human leukocyte antigen (HLA) class II molecules present partially digested antigen to the T-cell receptor and play a central role in the immune response. In CD, the MHC and HLA studies have yielded conflicting and heterogenous results. HLA DR1 has been implicated in CD.

Many other genes, loci and chromosomes involved in CD have also been advocated in several studies that, however, still require wide replication and association with clinical practice. These include CNR1, MCP-1, PTPN2 (protein tyrosine phosphatase), IL12RAP, I18R, IL-12, IL23R, IL23/IL12 pathway, PTGER4, MST1/B56N/MST1R, IL-2/IL-22, TYK2, JUN, NATURE, IL-10, NELL1, NFKX2-3, CD24, CYCD, T24, 1p34, 1q24, 10q21, 5p13, RCC1-like domain, ICOSLG, CDKAL1, 1q31.3.3, 1p35.2, 3p29, 5p13.1, 13q13.3, 1p35.2, 3p29, 5p13.1, X chromosome, NLRP3, Vitamin D receptor (VDR) polymorphisms and many others as well.

Genes in family and ethnic group studies

Linkage studies performed in complex genetic disorders such as CD frequently use model-free analytic methods, which are non-parametric analyses that do not assume Mendelian recessive or dominant models of inheritance. The strongest risk factor for IBD is having a relative with the same disease. First-degree relatives of patients with CD have a 12- to 15 times greater risk of developing CD than do people of comparable age in the general population. Familial clustering can also result from exposure to common environmental risk factors. Twin studies are very useful to determine the degree of genetic vs non-genetic etiologies for a trait. Today, there is no evidence of a separate entity of familial IBD. Based on the current literature, phenotypic differences between familial and sporadic cases of IBD are weak. Available data are to be accepted with caution, however, as they are mostly retrospective and may be biased. CARD15 explains around 20% of the genetic predisposition to Crohn’s disease. The relative risk of developing CD in the presence of one mutation is 2.4, but increases dramatically in the case of two mutations (compound heterozygous or homozygous).

Although NOD2 provides no clear familial predisposition, unaffected relatives do carry an increased risk of CARD15 variants (37.1%) compared to controls, and it would be interesting to see if they will eventually develop symptoms. In addition, maternal transmission of CARD15 variants seems protective with a lower ratio of affected/unaffected children when compared to fathers. In the light of the foregoing data, it seems that genetic counseling should be carried out with caution. In addition, families should not receive genetic counsel-
ing/information about age at onset and disease severity. Ethnic group studies and ethnic variation were firstly demonstrated in Jewish populations, and those studies are of major importance in this context[54].

THE ROLE OF GENES IN PROGNOSIS OF CROHN’S DISEASE

This is a major issue that greatly concerns patients. Many genes have so far been implicated in the prognosis of Crohn’s disease and numerous attempts have been made to classify the genetic profiles in Crohn’s disease. Of interest, CARD15 seems not only a susceptibility gene, but also a disease-modifier gene for CD. Of the many studies published on the clinical relevance of CARD15 mutations, there are several providing data on disease location, and the majority of them support a significant association of CARD15 mutations with ileal disease, while some demonstrate a connection with the absence of colonic location. Some studies also provide data supporting the relevance of CARD15 variants with strictureing disease behavior, and also penetrating behavior. Other pertinent studies have revealed an association with early onset of the disease. These investigations also support the theory that pediatric Crohn’s is a “more genetic disease” consistent with other polygenic disease models. Other reports provide data on an increased risk or need of surgery related to CD[55].

Differences among studies are difficult to explain, and we could argue about the low number of patients in some of the studies, the disease variability among Caucasians and, finally, differences regarding disease assessment and interobserver agreement. Whether the described relationship between the CARD15 variants and both stenosing phenotype and increased need for surgery in CD patients is a true association, or only reflects the high proportion of ileal CD developing bowel stenosis and, therefore, requiring surgery, is still a matter of controversy.

Genes related to age of Crohn’s disease onset

With respect to age of CD onset and more specifically to childhood or early-onset Crohn’s disease, many genes/loci have been implicated: TNFRSF6B, CXCL9[56], IL-23R[57], NOD2[58], ATG16L1 rs2241880[59], CRP[60], MIF[61], IL-10[62], MDR1[63]. Of interest, DLD5 seems protective for female children[64], while there are also studies not supporting the relationship of genes and early onset of CD[65] or supporting the relation of IL-10 and IRGM with adult onset[66].

Genes related to Crohn’s disease behavior

Genes related to stenotic/structuring behavior in CD are: NOD2/CARD15[67], MIF[68] IL-12B[59], TNF[69], IL-10[70], and CXCR3[67]. Of importance, NOD2/CARD15 has been also related to acute intestinal obstruction[68]. IL-10 and IL-6 are also potentially related to stenotic/structuring behavior in CD, while genetic variants of several metalloproteinases and their inhibitors would be excellent candidate genes, since these molecules are considered to play a key role in the abnormal fibrogenesis that underlies the development of bowel stenosis in CD patients. Genes related to penetrating/fistulizing behavior in CD are as follows: NOD2, IRGM, TNF[70], HLADRB1*0701[71], the C-allele in CDKAL1 rs6908425 SNP is associated with NOD2(2) peri-plantal fistula, whereas OCTN and the near IL-12B gene rs12704036 T-allele have a relationship with non-plantal fistula[90,91]. Inflammatory CD behavior has been related to HLA variation[92] while granulomatous disease has been related with TLR4/CARD15 variants[93].

Genes related to Crohn’s disease location

Upper gastrointestinal Crohn’s disease has been related to NOD2[94] and MIF variants[95]. Ileal CD has been related to the following genes: IL-10[96], CRP gene[60], NOD2, ZNF365 and STAT3[98]. Genes/loci associated with ileocolonic CD are 3p21, ATG16L1[69] and TCF-4 (TCF7L2)[99]. No role for phenotype in IL23R gene has been demonstrated[100] while a detailed genotype-phenotype analysis revealed weak associations of the IL23R rs10024819 variant with ileal involvement and stenoses in carriers of the TT genotype. Finally, the HLADRB1*0701 has been associated with ileal CD, but only in patients who have no CARD15 variants[101]. Colonic CD has been related to the following genes: HLA region (associated with inflammatory colonic phenotype); and TLR4[102], TLR1, -2, -6[103]. The TNF gene showed a negative association with strictureing behavior or colonic location[104]. For IBD5 and OCTN1 and 2, results have not been consistent but associations with perianal and ileal disease have been reported.

Genes related to Crohn’s disease activity

Genes implicated in disease activity are the following: HSP70-2 heat shock protein gene[105], NOD2[106], PAI-1 (Type 1 plasminogen activator inhibitor[107]), while the combination of NOD2 and PAI-1 predicted complicated disease behavior[108]. Of importance, NOD2 predicted lower weight in children[109], and CNR1 low body mass index[110].

Genes related to surgery

The NOD2 gene has been related to early pediatric surgery[111], stenosis and need for surgery[112], previous surgeries[113], increased number of surgeries[107] and surgical costs[114]. NOD2 has no relation to the risk of re-operation[115]. Finally, HLA-A-G has been associated with higher risk for ileocolonic resection[116].

Genes related to dysplasia and cancer

The FHIT gene (fragile histidine triad gene) located at 3p14.2 has been identified as a candidate tumor-suppressor gene. The gene spans the t(3:8) translocation breakpoint of familial renal cell carcinoma and contains the FRA3B fragile site. It encodes the human diadenosine triphosphate hydrolase, which in vitro cleaves the diadenosine substrate into ADP and AMP. It has been suggested that FHIT gene plays a role in the pathogenesis of IBD and the development and progression of a subgroup of IBD-related carcinomas at an early phase[117-119].
Tsianos EV et al. Genetics in Crohn's disease

Genes related to extraintestinal manifestations and concomitant diseases

Extraintestinal manifestations are common in CD. Genes related to CD extraintestinal manifestations have been reported, as follows. Peripheral arthritis was related to HLA-B27, HLA-B*35, TNFα-308A (R124), CARD15 has been related to spondylarthropathy, and uveitis but not to saccroiliitis (TNF-1031C). FcGR3A was associated with erythema nodosum while certain HLA alleles (HLA-B27, HLA-B35 and HLA-B44) were connected with different disease behavior and extraintestinal manifestations such as arthropathy, eye and skin manifestations. Genes/loci related to other chronic diseases concomitant to CD are TPMT*3A (Twin studies have linked polymorphisms of the VDR gene with bone mineral density in healthy women, and in addition VDR is an important regulator of calcium metabolism and bone cell function and influences calcium absorption from the intestine. VDR polymorphisms have also been implicated in susceptibility to Crohn's disease [137].

The HLADR region has been associated with failure to budesonide [138] while DLG5R30Q predicted response to steroids [139]. Other genes such as MIF (macrophage migration inhibition) [140] and MDR have also been related to steroid therapy [136]. In addition, 1082 AA IL-10 genotype was associated with steroid dependency, whereas the allele 113A of the DLG3 gene conferred resistance to steroids.

Regarding response to infliximab, the data for the TNF gene are conflicting. Specifically, there are conflicting data regarding the role of FeGR3A, which has been supported by some authors [141,142], but was not confirmed in patients in the ACCENT I study. Response to infliximab is not related to TNFα-308 [143] or TNFR1 and TNFR2 [144] or NOD2 [145] or CRP gene [146]. The association between the Fas ligand-843 TT genotype and lack of response to infliximab seemed to be the most relevant observation [147]. The relationship between infliximab response and the lymphotixin alpha gene is also conflicting [148].

Pharmacogenetics in Crohn's disease

Pharmacogenetics is of major importance in CD therapeutics and prognosis. Genes have been implicated in influencing the efficacy and side effects of drugs and reflect a complex interplay regarding absorption, elimination and transport. Future studies need to be large and prospective with uniformly phenotyped patients, and correlating genetic associations with functional data. In addition, hypotheses such as whether observations about drug response in IBD lead us to IBD etiology or whether the genes that control the drug response are related to genes that control the disease still remain unanswered. Pharmacogenetic studies to date have found no association between CARD15 variants and prediction of response to various IBD therapies. In addition, responses to azathioprine (AZA), steroids and infliximab are not related to NOD2 [120]. Of note, NOD2 was only related to antibiotic failure [129]. For mesalazine, variability in drug acetylation was demonstrated many years ago with patients divided into slow and rapid acetylators, because of polymorphisms in the N-acetyltransferase (NAT) genes. Two isoenzymes NAT1 and NAT2 have been identified in humans and more than 50% of Caucasians are NAT2 slow acetylators. Mesalazine is acetylated in the liver by NAT1 into N-acetyl-5 aminosalicylates and excreted in the urine [15].

The clinical usefulness of pharmacogenetics in CD is limited to AZA and thiopurine methyltransferase (TPMT) at this moment. The human TPMT gene, consisting of 10 exons, is located on chromosome 6p22.3. The hereditary nature of TPMT deficiency in humans was initially identified in a study of TPMT activity in red blood cells (RBC). This and subsequent studies determined the distribution of TPMT activity in RBC to be trimodal; 90% of persons have high activity, 10% have intermediate activity and 0.3% have low or undetectable enzyme activity. To date, numerous mutant TPMT alleles have been identified, including the three most frequent alleles (TPMT*2, TPMT*3A and TPMT*3C), which account for 80%-95% of intermediate or low TPMT enzyme activity cases. The prevalence of the most frequent SNPs in the TPMT gene has been reported to vary worldwide. However, it is of interest that studies on the prevalence of TPMT SNPs in large IBD cohorts are lacking.

Although AZA is an effective drug for maintenance of remission in IBD, it is associated with side effects. Clinically sound pharmacogenetic studies over the last two decades have shown that polymorphisms in the TPMT gene locus play a significant role in the occurrence of various side effects of thiopurine drugs including life-threatening bone marrow toxicity, a serious dose-related toxicity [126-128].

The G2677T variant in the MDR1 gene predicted gastrointestinal and unspecified intolerance to azathioprine and methotrexate in inflammatory bowel disease patients. These findings suggest a role for MDR1/P-gp in the mechanism of action of azathioprine and methotrexate [129].

WHAT LIES AHEAD

Gene-to-gene crosstalk and epistasis

With new methodologies such as genome-wide association studies, microarrays and fine SNP analysis becoming available during the last decade, our investigative armamentarium has been considerably enriched. As many studies with complex statistics arise, we understand increasingly the real crosstalk present among genes and the need for a genetic panel for disease diagnosis and prognosis. It is now evident that gene-to-gene interaction and epistasis modulate disease activity and susceptibility [149]. Some data have come to light. A genome-wide scan in a Flemish population of IBD affected families supports the
existence of IBD4 on 14q11, and has shown additional evidence for the existence of other susceptibility loci (1p, 4q and 10p). This study has further demonstrated that epistasis and gene-to-gene interactions (CARD15-TLR4) are also present in IBD and that population heterogeneity is not to be underestimated[15]. Crosstalk has been demonstrated for TLR9 with NOD2, IL23R and DLG5, and epistasis has been shown between IL23R and DLG5.

Also, potential epistasis between CARD15 and TLR4 has been shown between IL23R and DLG5. Also, potential epistasis between IL23R variants and the three other previously described CD susceptibility genes CARD15, SLC22A4 and SLC22A5 (OCTN 1 and 2) has been shown[116].

Genetic consortium studies and genome-wide scans
Gene-to-gene crosstalk and epistasis
Genome-wide association studies
Microarrays
Fine single nucleotide polymorphism analysis
Genetic consortium studies and genome-wide scans
Genome-wide association studies
Genetic consortium studies
Future perspectives
Functional studies to understand the mechanisms
Combining genetic data with functional data
Combination of a panel of clinical, biochemical, serological and genetic factors
Functional consequences of polymorphisms
Molecular and cellular mechanisms leading to Crohn’s disease
Predict disease outcomes
Redesigning the methods of treatment

CONCLUSION

The recent advances in the understanding of CD genetics have been tremendous[158]. Starting with the susceptibility area, whole genome linkage and association scans have already led to the identification of a number of susceptibility genes (NOD2/CARD15, DLG5, OCTN1 and 2, NOD1, IL23R, PTGER4, ATG16L1 and IRGM) of which the NOD2/CARD15 gene is the most replicated and understood at present. Although it is clear that genetic research in IBD has advanced our understanding of the clinical heterogeneity of the disease, new efforts are required and point towards the complex combination of a panel of clinical, biochemical, serological and genetic factors, in order to achieve the optimal prediction of both clinical behavior and response to therapy.

Genome-wide association studies have allowed an unprecedented rapid unraveling of the genetic basis of IBD; however there will be much more follow-up work needed in this field. First, ongoing work including meta-analysis of the CD genome-wide association studies will probably reveal additional CD susceptibility genes. It will then be essential to investigate the functional consequences of polymorphisms in these genes so that the molecular and cellular mechanisms leading to CD can be better characterized. Finally, genotype-phenotype correlation studies should help clinicians predict disease outcomes with more accuracy, including the risk for complications, need for surgery, and response to therapy, and finally lead to redesigning the methods of treatment of CD patients.

REFERENCES

1. Achkar JP, Duerr R. The expanding universe of inflammatory bowel disease genetics. Curr Opin Gastroenterol 2008; 24: 429-434
2. Van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet 2009; 10: 89-116
van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, McGovern DP, Onnie C, Negro K, Golldorthe S, Foxwell BM, Mathew CG, Forbes A, Jewell DP, Playford RJ. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. *Lancet* 2005; 365: 1794-1796

Yamamoto S, Ma X. Role of Nod2 in the development of Crohn’s disease. *Microbes Infect* 2009; 11: 912-918

Colombo JB. The CARD15 (also known as 13-442) gene in Crohn’s disease: are there implications for current clinical practice? *Clin Gastroenterol Hepatol* 2003; 1: 5-9

Henckaerts L, Van Steen K, Verstreken I, Cleyven I, Franke A, Schreiber S, Rutgeerts P, Vermeire S. Genetic risk profiling and prediction of disease course in Crohn’s disease patients. *Clin Gastroenterol Hepatol* 2009; 7: 972-980.e2

Huang JP, Lastres-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Bequet T, Naem I, Dupas JL, Van Gossum A, Orlholm M, Bonaiti-Pellie C, Weissenbach J, Mathew CG, Lennard-Jones JE, Cortot A, Colombo JB, Thomas G. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. *Nature* 1996; 379: 821-823

Vermeire S. Review article: genetic susceptibility and application of genetic testing in clinical management of inflammatory bowel disease. *Aliment Pharmacol Ther* 2006; 24 Suppl 3: 2-10

Boedeker EC. Gut microbes, the innate immune system and inflammatory bowel disease: location, location, location. *Curr Opin Gastroenterol* 2007; 23: 1-3

Vermeire S. DLG5 and OCTN. *Inflamm Bowel Dis* 2004; 10: 888-890

Pugazhendhi S, Arme A, Balamurugan R, Subramanian V, Ramakrishna BS. Common NOD2 mutations are absent in patients with Crohn’s disease in India. *Indian J Gastroenterol* 2008; 27: 201-203

Leong RW, Armuzzi A, Ahmad T, Wong ML, Tse P, Jewell DP, Sung JY. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. *Aliment Pharmacol Ther* 2003; 17: 1461-1470

Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takashashi O, Ogura Y, Inohara N, Núñez G, Kishi Y, Koike Y, Shimosega wa T, Shimoyama T, Hibi T. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. *Gastroenterology* 2002; 123: 86-91

Molnar T, Hofner P, Nagy F, Lakatos PL, Fischer S, Lakatos L, Kovacs A, Altorjai P, Papp M, Palatka K, Demeter P, Tulassay Z, Nyaze T, Miheller P, Papp J, Mandi Y, Lonovics J. NOD1 gene E266K polymorphism is associated with disease susceptibility but not with disease phenotype or NOD2/CARD15 in Hungaric patients with Crohn’s disease. *Dig Liver Dis* 2007; 39: 1064-1070

Browning BL, Anness V, Barclay ML, Bingham SA, Brand S, Büzing C, Castron D, Cucchiari S, Dalapiccola B, Drummond H, Ferguson LR, Ferraris A, Fisher SA, Geary RB, Glas J, Henckaerts L, Huebner C, Knafelz D, Lakatos L, Lakatos PL, Latino A, Liu X, Mathew C, Müller-Mlysok B, Newman WG, Nimmo ER, Noble CL, Palmeri O, Parkes M, Petermann I, Rutgeerts P, Satsangi J, Shelling AN, Siminovich KA, Tórkó HP, Tremelling M, Vermeire S, Valvano MR, Witt H. Gender-stratified analysis of DLG5 R30Q in 4707 patients with Crohn disease and 4973 controls from 12 Caucasian cohorts. *J Med Genet* 2008; 45: 36-42

Newman B, Gu X, Wintle R, Crescon D, Yazdanpanah M, Liu X, Peltekova V, Van Oene M, Amos CI, Siminovich KA. A risk haplotype in the Solute Carrier Family 22A4/22A5 gene cluster influences phenotypic expression of Crohn’s disease. *Gastroenterology* 2005; 128: 260-269

De Jager PL, Franchimont D, Waliszewska A, Bitton A, Cohen A, Langelier D, Belaiche J, Vermeire S, Farwell L, Goris A, Libioucle C, Jani N, Dassopoulous T, Bromfield GP, Dubois B, Cho JH, Brant SR, Duerr RH, Yang H, Rotter JL, Silverberg MS, Steinhardt AH, Daly MJ, Podolsky DK, Louis E, Hafler DA, Rioux JD. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. *Genes Immun* 2007; 8: 387-397

Bokoch GM. Regulation of innate immunity by Rho GTPases. *Trends Cell Biol* 2005; 15: 163-171

Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like receptor-mediated immune responses. *Nat Rev Immunol* 2005; 5: 446-458

Watanabe T, Kitani A, Strober W. NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn’s disease. *Gut* 2005; 54: 1515-1518

Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlie tinck R, Rutgeerts P, Vermeire S. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. *Inflamm Bowel Dis* 2006; 12: 1-8

Perrier C, Rutgeerts P. Cytokine blockade in inflammatory bowel diseases. *Immunotherapy* 2011; 3: 1341-1352

Török HP, Glas J, Tonenchi L, Lohse P, Müller-Mlysok B, Limbersky O, Neugebauer C, Schnitzler F, Seiderer J, Tilkack C, Brand S, Brümmler G, Jagiello P, Epplen JT, Griga T, Klein W, Schiemann U, Wolczanscy M, Ochsenkühn T, Wolczanscy C. Polymorphisms in the DLG5 and OCTN cation transporter genes in Crohn’s disease. *Gut* 2005; 54: 1423-1427

Geboes K. From inflammation to lesion. *Acta Gastroenterol Belg* 1994; 57: 273-284

Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. *Am J Gastroenterol* 1997; 92: 55-115

Achkar JP, Fiocchi C. Gene–gene interactions in inflammatory bowel disease: biological and clinical implications. *Am J Gastroenterol* 2009; 104: 1734-1736

Friedrichs F, Henckaerts L, Vermeire S, Kucharzik T, Seeha fer T, Möller-Krull M, Bornberg-Bauer E, Stoll M, Weiner J. The Crohn’s disease susceptibility gene DLG5 as a member of the CARD interaction network. *J Mol Med (Berl)* 2008; 86: 423-432

Vermeire S, Pierik M, Hlavaty T, Claessens G, Van Schuer beek N, Joossens S, Ferrante M, Henckaerts L, Bueno de Mesquita M, Vlie tinck R, Rutgeerts P. Association of organic cation transporter risk haplotype with perianal penetrating Crohn’s disease but not with susceptibility to IBD. *Gastroenterology* 2005; 129: 1845-1853

Klein W, Tromm A, Wolczanscy C, Hagedorn M, Duerig N, Epplen JT, Schmiegel WH, Griga T. A polymorphism of the NFKBIA gene is associated with Crohn’s disease patients lacking a predisposing allele of the CARD15 gene. *Int J Crohn Colitis Dis* 2004; 15: 153-156

Xiao TS. Subversion of innate immune signaling through molecular mimicry. *J Clin Immunol* 2010; 30: 638-642

Dong Y, Undyala VV, Gottlieb RA, Merzent MR, Przyklenk K. Autophagy: definition, molecular machinery and potential role in myocardial ischemia-reperfusion injury. *J Cardiovasc Pharmacol* 2010

Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JL, Duerr RH, Cho JH, Daly MJ, Brant SR. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. *Nat Genet* 2007; 39: 596-604

Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häser R, Sipos B, Fölsch UR, Lengauer T, Plätzer M, Mathew CG, Krawczak M, Schreiber S. A genome-wide association study identifies new susceptibility loci for Crohn disease in the Chinese population. *Hum Gene Mut* 2007; 28: 614-621

McCarroll SA, Huett A, Kuballa P, Chlewański S, Landry A, Goyette P, Zody MC, Hall JL, Brant SR, Cho JH, Duerr RH,
Silverberg MS, Taylor KD, Rioux JD, Altshuler D, Daly MJ, Xavier RJ. Deletion polymorphism upstream of IGRM associated with altered IGRM expression and Crohn’s disease. *Nat Genet* 2008; 40: 1107-1112

35 Kaser A, Blumberg RS. Adaptive immunity in inflammatory bowel disease: state of the art. *Curr Opin Gastroenterol* 2008; 24: 455-461

36 Brant SR, Rouen’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. *Gut* 2009; 58: 1152-1167

37 Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhardt AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kissen A, Kugathasan S, Abreu MT, Gregersen PK, Barnum MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. *Science* 2006; 314: 1461-1463

38 Dubinsky MC, Wang D, Picornell Y, Wrobel I, Katzir L, Quiros A, Dutridge D, Wahbeh G, Silber G, Bahar R, Mengesha E, Targan SR, Taylor KD, Rotter JI. IL-23 receptor (IL-23R) gene protects against pediatric Crohn’s disease. *Inflamm Bowel Dis* 2008; 14: 511-515

39 Amre DK, Mack DR, Morgan K, Israel D, Deslandres C, Seidman EG, Lambrette P, Costea I, Krupovses A, Fegury H, Dong J, Grimmel G, Levy E. Susceptibility loci reported in genome-wide association studies are associated with Crohn’s disease in Canadian children. *Aliment Pharmacol Ther* 2010; 31: 1196-1199

40 Sato K, Shiotani M, Fukuda S, Iwamoto E, Machida H, Inamine T, Kondo S, Yanagihara K, Isomoto H, Mizuta Y, Koeho S, Tsukamoto K. Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn’s disease in the Japanese population. *J Clin Immunol* 2009; 29: 815-825

41 Sugimoto K, Role of STAT3 in inflammatory bowel disease. *World J Gastroenterol* 2008; 14: 5110-5114

42 Yamazaki K, Takahashi A, Takazoe M, Kubo M, Onouchi Y, Fujino A, Kamatani N, Nakamura Y, Hata A. Positive association of genetic variants in the upstream region of NFKB2 with Crohn’s disease in Japanese patients. *Gut* 2009; 58: 228-232

43 TREM2 M, Parkes M. Genome-wide association scans identify multiple confirmed susceptibility loci for Crohn’s disease: lessons for study design. *Inflamm Bowel Dis* 2008; 14: 1205-1227

44 Lees CW, Satsangi J. Genetics of inflammatory bowel disease: implications for disease pathogenesis and natural history. *Expert Rev Gastroenterol Hepatol* 2009; 3: 513-534

45 Danese S, Gasbarrini A. Chemokines in inflammatory bowel disease. *Curr Drug Targets* 2009; 10: 1089-1101

46 Lang M, Schlechtweg M, Kellermayer S, Brenmohl J, Falk W, Schölmerich J, Herfarth H, Rogler G, Hausmann M. Gene expression profiles of mucosal fibroblasts from strictured and nonstrictured areas of patients with Crohn’s disease. *Inflamm Bowel Dis* 2009; 15: 212-223

47 Henckaerts L, Figueras C, Vermeire S, Sans M. The role of genetics in inflammatory bowel disease. *Curr Drug Targets* 2008; 9: 361-368

48 Palmieri O, Latiano A, Salvatori E, Valvano MR, Bossa F, Latiano T, Corritore G, di Mauro L, Andriulli A, Annese V. The -A2518G polymorphism of monocyte chemoattractant protein-1 is associated with Crohn’s disease. *Am J Gastroenterol* 2010; 105: 1586-1594

49 Amre DK, Mack DR, Morgan K, Fujisawa M, Israel D, Deslandres C, Seidman EG, Lambrette P, Costea I, Krupovses A, Fegury H, Dong J, Grimmel G, Levy E. Investigation of reported associations between the 20q13 and 21q22 loci and pediatric-onset Crohn’s disease in Canadian children. *Am J Gastroenterol* 2009; 104: 2824-2828

50 Wang K, Zhang H, Kugathasan S, Annese V, Bradford JP, Russell RK, Siepman PM, Mielinski M, Glessner J, Hou C, Wilson DC, Walters T, Kim C, Frackelton EC, Lionetti P, Barabino A, Van Limbergen J, Guthery S, Derson L, Piccoli D, Li M, Dubinsky M, Silverberg M, Griffiths A, Grant SF, Satsangi J, Baldassano R, Hakonarson H. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn’s disease. *Am J Hum Genet* 2009; 84: 399-405

51 Russell RK, Nimmo ER, Satsangi J. Molecular genetics of Crohn’s disease. *Curr Opin Genet Dev* 2004; 14: 264-270

52 Beckley JB, Hancock L, Geremia A, Cummings JR, Morris A, Cooney R, Pathan S, Guo C, Jewell DP. Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MSTR gene and Crohn’s disease. *Genome Res* 2006; 16: 1526-1531

53 Márquez A, Varadé J, Robledo G, Martínez A, Mendoza JL, Taxonera C, Fernández-Arquero M, Díaz-Rubio M, Gómez-García M, López-Nevot MA, de la Concha EG, Martin J. Urcelay E. Specific association of a CLEC16A/KIAA0350 polymorphism with NOD2/CARD15(-) Crohn’s disease patients. *Eur J Hum Genet* 2009; 17: 1304-1308

54 Machida H, Tsukamoto K, Wen CY, Shikuwa S, Isomoto H, Mizuta Y, Takeshima F, Murase K, Matsumoto N, Murata I, Kohno S, Wen CY. Crohn’s disease in Japanese is associated with a SNP haplotype of N-acetyltransferase 2 gene. *World J Gastroenterol* 2005; 11: 4833-4837

55 Weersma RK, Stokkers PC, Cleynen I, Wolfkamp SC, Henckaerts L, Schreiber S, Dijkstra G, Franke A, Nolte IM, Rutgers P, Wijmenga C, Vermeire S. Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch-Belgian cohort. *Am J Gastroenterol* 2009; 104: 630-638

56 Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barnarda MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhardt AH, Targan SR, Xijia R, Li, Boulche C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Lee K, Mini M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Omnie CM, Fisher SA, Marchini J, Ghiro J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. *Nat Genet* 2008; 40: 955-962

57 Liobuille C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D, Vermeire S, Dewit O, de Vos M, Dixon A, Demarche B, Gut I, Heath S, Foglio M, Liang L, Laukens D, Mni M, Zelenika D, Van Gossum A, Rutgeerts P, Belaiche J, Lathrop M, Georges M. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. *PLoS Genet* 2007; 3: e58

58 Urcelay E, Mendoza JL, Martin MC, Mas A, Martinez A, Taxonera C, Fernandez-Arquero M, Diaz-Rubio M, de la Concha EG. MDR1 gene: susceptibility in Spanish Crohn’s disease and ulcerative colitis patients. *Inflamm Bowel Dis* 2006; 12: 33-37

59 Vermeire S, Satsangi J, Peeters M, Parkes M, Jewell DP, Vliegtrick R, Rutgeerts P. Evidence for inflammatory bowel disease as a susceptibility locus in the X chromosome. *Gastroenterology* 2001; 120: 834-840

60 Villanacci L, Lemire M, Fortin G, Louis E, Silverberg MS, Collette C, Baba N, Liobuille C, Belaiche J, Bitton A, Gaudet D, Cohen A, Langelier D, Fortin PR, Wither JE, Sarfati M, Rutgeerts P, Rioux JD, Vermeire S, Hudson TJ, Franchimont D. Common variations in the NLRP3 region contribute to Crohn’s disease susceptibility. *Nat Genet* 2009; 41: 71-76

61 Simmons JD, Mullighan C, Welsh KJ, Jewell DP. Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. *Gut* 2000; 47: 211-214
Tsianos EV et al. Genetics in Crohn’s disease

62 Peeters M, Corteo A, Vermeire S, Colombel JF. Familial and sporadic inflammatory bowel disease: different entities? Inflamm Bowel Dis 2000; 6: 314-320

63 Brant SR, Shugart YY. Inflammatory bowel disease gene hunting by linkage analysis: rationale, methodology, and present status of the field. Inflamm Bowel Dis 2004; 10: 300-311

64 Vignali C, Singer E, Peyrin-Biroulet L, Desreumaux P, Cha-mailllard M. How NOD2 mutations predispose to Crohn’s disease? Microbes Infect 2007; 9: 658-662

65 Akolkar PN, Gulgani-Akolkar B, Heresbach D, Lin XY, Fish-er S, Katz S, Silver J. Differences in risk of Crohn’s disease in offspring of mothers and fathers with inflammatory bowel disease. Am J Gastroenterol 1997; 92: 2241-2244

66 Vermeire S, Van Assche G, Rutgeerts P. Should family members of IBD patients be screened for CARD15/NOD2 mutations? Inflamm Bowel Dis 2008; 14 Suppl 2: S190-S191

67 Csilag C, Nielsen OH, Borup R, Olsen J, Bjerrum JT, Nielsen FC. CARD15 status and familial predisposition for Crohn’s disease and colonic gene expression. Dig Dis Sci 2007; 52: 1783-1789

68 Ester N, Pierik M, van Steen K, Vermeire S, Claessens G, Jo-oossens S, Vlieetink R, Rutgeerts P. Transmission of CARD15 (NOD2) variants within families of patients with inflammatory bowel disease. Am J Gastroenterol 2004; 99: 299-305

69 Heliot T, Halme L, Lappalainen M, Fodstad H, Paavola-Sakki P, Turunen U, Färkkilä M, Krusius T, Kontula K. CARD15/NOD2 gene variants are associated with familial occurring and complicated forms of Crohn’s. Gut 2003; 52: 556-560

70 Shugart YY, Silverberg DS, Duerr RH, Taylor KD. Wang MH, Zarfas K, Schumm LP, Bromfield G, Steinhart AH, Griffiths AM, Kane SV, Paavola-Sakki P, Turunen U, Färkkilä M, Krusius T, Kontula K. CARD15/NOD2 gene and phenotype in Crohn’s disease. Inflamm Bowel Dis 2007; 13: 572-576

71 Radford-Smith G, Pandeya N. Associations between NOD2/CARD15 genotype and phenotype in Crohn’s disease—are we there yet? World J Gastroenterol 2006; 12: 7097-7103

72 Lacher M, Schroepf S, Ballauff A, Lohse P, von Schweinitz D, Kappler R, Koletzko S. Autophagy 16-16 like 1 rs2241880 G allele is associated with Crohn’s disease in German children. Acta Paediatr 2009; 98: 1835-1840

73 Baldassano RN, Bradfield JP, Monos DS, Kim CE, Glessner JT, Casalunovo T, Frackelton EC, Otteno FG, Kantorakis S, Shaner JL, Smith RM, Eckert AW, Robinson LJ, Onyali CC, Abrams DJ, Chiavacci RM, Skraban R, Devoto M, Grant SF, Hakonarson H. Association of variants of the interleukin-23 receptor gene with susceptibility to pediatric Crohn’s disease. Acta Paediatr 2009; 98: 1835-1840

74 Amre DK, Mack DR, Morgan K, Knupovs A, Costea I, Lam-brette P, Grimard G, Dong J, Feguey H, Bucions V, Deslan-dres C, Levy E, Seidman EG. Autophagy gene ATG16L1 but not IRGM is associated with Crohn’s disease in Canadian children. Inflamm Bowel Dis 2009; 15: 501-507

75 Gazouli M, Pachoula I, Panayotou I, Mantzaris G, Chrousos G, Anagnostou NP, Roma-Giannikou E. NOD2/CARD15, ATG16L1 and IL23R gene polymorphisms and childhood-onset Crohn’s disease. World J Gastroenterol 2010; 16: 1753-1758

76 Amre DK, Mack DR, Morgan K, Israel D, Lambrette P, Costea I, Knupovs A, Feguey H, Dong J, Grimard G, Deslanders C, Levy E, Seidman EG. Interleukin 10 (IL-10) gene variants and susceptibility for paediatric onset Crohn’s disease. Aliment Pharmacol Ther 2009; 29: 1025-1031

77 Stever M, Emmerdinger D, Diegelmann J, Pfenning S, Ochsen-kühn T, Göke B, Lohse P, Brand S. The cannabinoid 1 recep-tor (CNR1) 1359 G/A polymorphism modulates susceptibility to ulcerative colitis and the phenotype in Crohn’s disease. PLoS One 2010; 5: e9453

78 Sanchez R, Levy E, Costea F, Sinnett D. IL-10 and TNF-alpha promoter haplotypes are associated with childhood Crohn’s disease location. World J Gastroenterol 2009; 15: 3776-3782

79 Knupovs A, Seidman EG, Mack D, Israel D, Morgan K, Lambrette P, Costea I, Deslumiers C, Grimard G, Law L, Levy E, Amre DK. Associations between ABCB1/MDR1 gene polymorphisms and Crohn’s disease: a gene-wide study in a pediatric population. Inflamm Bowel Dis 2009; 15: 900-908

80 Blank V, Friedrichs F, Babusukumar U, Wang T, Stoll M, Broeckel U, Kugathasan S. DLG5 R30Q variant is a female-specific protective factor in pediatric onset Crohn’s disease. Am J Gastroenterol 2007; 102: 391-398

81 Essers J, Li J, Kugathasan S, Stevens CR, Grand RJ, Daly MJ. Established genetic risk factors do not distinguish early and later onset Crohn’s disease. Inflamm Bowel Dis 2009; 15: 1508-1511

82 Latiano A, Palmieri O, Cucchiara S, Castro M, D’Inca R, Guariso G, Dallapiccola B, Valvaro MN, Latiano T, Andriulli A, An- nese V. Polymorphism of the IRGM gene might predispose to fistulizing behavior in Crohn’s disease. Am J Gastroenterol 2010; 104: 110-116

83 Barreiro-de Acosta M, Peña AS. Clinical applications of NOD2/CARD15 mutations in Crohn’s disease. Acta Gastroenterol Latinoam 2007; 37: 49-54

84 Brand S, Staudinger T, Schützler F, Pfeinig S, Hofbauer K, Dambacher J, Seiderer J, Tilkack C, Konrad A, Crispin A, Göke B, Lohse P, Ochsenkühn T. The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn’s disease. Inflamm Bowel Dis 2005; 11: 645-652

85 Aithal GP, Day CP, Leathart J, Daly AK, Hudson M. Association of single nucleotide polymorphisms in the interleukin-4 gene and interleukin-4 receptor gene with Crohn’s disease in a British population. Genes Immun 2001; 2: 44-47

86 Sabate JM, Ameriane N, Lamori J, Jouet P, Farmachidi JP, Soule JC, Hamois P, Sbohiani J, Rian D, Deybach JC, de Poot D, Coffin B. The V249I polymorphism of the CXCR3 gene is associated with fibrostenotic disease behavior in patients with Crohn’s disease. Eur J Gastroenterol Hepatol 2008; 20: 748-755

87 Brand S, Beigel F, Olszak T, Zittmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, Herrmann C, Seiderer J, Ochsenkühn T, Gökë B, Auernhammer CJ, Dambacher J. IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 2006; 290: G287-G298

88 Guagnonzi D, Cossu A, Viscido A, Corleto V, Annese V, Latiano A, Delle Favre G, Caprilli R. Acute intestinal obstruction and NOD2/CARD15 mutations among Italian Crohn’s disease patients. Eur Rev Med Pharmacol Sci 2008; 12: 179-182

89 González S, Rodrigo L, Martínez-Borra J, López-Vázquez A, Fuentes D, Níñez P, Cadahía V, Soro C, Dieguez MA, López-Larrea C. TNF-alpha -308A polymorphism is associated with enhanced TNF-alpha production and inflammatory activity in Crohn’s patients with fistulising disease. Ann Med 2003; 35: 1051-1056

90 Bouna G, Poon AC, García-González MA, Schreuder GM, Felb-Bensma RJ, Meuwissen SC, Pena AS.HLA-DRB1*0401, but not the TNFA -308 promoter gene polymorphism, confers protection against fistulising Crohn’s disease. Immunogenetics 1998; 47: 451-455

91 Silverberg MS. OCTNs: will the real IBD5 gene please stand up? World J Gastroenterol 2006; 12: 3678-3681

92 Burton PR, Clayton DG, Cardon LR, Drackdo N, Deloukas P, Duncanson A, Kwaitkowski DP, McCarthy MJ, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Burton PR, Davison D, Donnelly P, Easton D, Evans D, Leung HT, Marchini JL, Morris AP, Spencer CC, Tobin MD, Cardon LR, Clayton DG, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland
Tsianos EV et al. Genetics in Crohn's disease

S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Todd JA, Ouwehand WH, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EG, Grozeva D, Hamshere ML, HOLMS PA, Jones IR, Kirov G, Moskvina V, Nikolov I, DONOVAN MC, Owen MJ, CRADDOCK N, Collier DA, ELKIN A, Farmer A, Williamson R, MORFIN P, Yong C, AHF, Dermoij M, Balmforth AJ, Barrett JH, Bishop DT, ILE MJ, MAAG S, Yuldishava N, HALL AS, Braun PS, Burton PR, Dixon RJ, Mangino M, SUZANNE S, Tobin MD, Thompson JR, SAMANU SJ, Bredin F, TREMELLING M, Parkes M, Drummond H, Lees CW, NINMIO ER, Satsangi J, FISHER SA, FORREST S, Lewis CM, OMIE CM, Prescott NJ, SANDERSON J, Mathew CG, Barbour J, MOLTZHARDIN MK, Todhunter CE, MANSFIELD JC, AHMAD T, CUMMINGS FR, JEWELL DF, WEBSTER J, BROWN MJ, CLAYTON DG, LATHROP GM, CONNELL J, DOMINIZCAK A, SAMANU SJ, MARCANO CA, BURKE B, DOBSON R, GUNGADO J, LE KL, MUNROE PB, NEWHOUSE SJ, ONIPINLA A, WALLace C, XUE M, CAUfFELD M, FARRALL M, BARTON A, BRUCE IN, DONOVAN H, EYRE S, Gilbert PD, HIDER SL, HINKS AM, JOHN SL, POTTER C, SILMAN AJ, SYMMONS DP, THOMSON W, WORTHINGTON J, CLAYTON DG, DUNBER DB, NUTLAND S, STEVENS H, HALLGRIMSDOTTIR RW, WALKER NM, WIDMANN TF, FRAETHY RM, LANGO H, PERRY JR, SHIELDS BM, WOODEN MN, HATTERSLEY AT, HITMAN GA, WALLER M, ELLIOTT KS, GROVES CJ, LINDREN CM, RAYNER NW, TIPSMAN JN, ZEGGINI E, MCCARTHY MJ, NEWPORT M, SIRUGO G, LYONS E, VANBERG F, HILL AV, BRADFORD LA, FARRA C, POINTON J, WORDSPORTH P, BROWN MA, FRANKLYN JA, HEWARD JM, SIMMONDS MJ, GOUGH SC, SEAL S, STRATTON MR, RahnMAN N, TOD J, GRNIA TI, FRYLING TA, JYOUNOUCHI H, GOEKE B, OCHSENKUNHN T, Lohse P, GROZNE A, OCHSENKUNHN T, Müller-MYHOSK BM, WALLACO Z, MSUCCIC M, TEARS S. rs100841 is the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R CARD15, and OCTN1/2 variants. PLoS One 2009; 4: e490

COMMENTS JR, AHMAD T, GERENIA A, BECKLY J, COONEY R, HANCOCK L, PATHAN S, GUO C, CARDON LR, DE WIT M, BLOR C, FERNANDEZ-REJANO M, GARCIA J, GOSS A, HJARNAU s, JENNER V, WHITMORE D, LLOYD D, RUTGERS P, Vermeere S, COONEY R, FELLERMANN K, JEWELL D, BEVINS CL, SCHMIDT M, STANGE EF, WEIKAMP J, GENEICs P, WIT T, OF TRANSCRIPTION FACTOR TCF4-TCF7L2 putative promoter region are associated with small intestinal Crohn's disease. PLoS One 2009; 4: e4496

90 KOSLOWSKI C, KÜBLER C, CHAMAillard M, SCHEAFFER E, REINrTH W, WANG G, BEEssER J, TEMLEI A, PEPYR-IN-BIOulet L, WINTER S, HERRLINGER KR, RUTGEErTS P, VERMEERe S, COONEY R, FELLERMANN K, JEWELL D, BEVINS CL, SCHMIDT M, STANGE EF, WEIKAMP J, Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS One 2009; 4: e4496

91 COOMS E, HARRAMM C, YAMAGUCHI K, TÖRÖK HP, SCHMECHEL S, TONENCHI L, GRASSL C, DABAMBER C, PENNING S, MAIER K, GRIGA T, GLENNEN G, EPPLENF JT, SCHIEMANN U, FOLWACZNY C, Lohse P, GROE A, OCHSENKUNHN T, MÜLLER-MYHOSK BM, FALLACO Z, MSUCCIC M, TEARS S. rs100841 is the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R CARD15, and OCTN1/2 variants. PLoS One 2009; 4: e4918

92 OUBURG S, MAllant-Hent R, CRUSIUS JB, VON BODEGRAVEN AA, MULder C, LINSKENS R, PEt As, MORRE S. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the SACCAROMYCES CEREVISIAE mannann-LBP-CD14-TLR4 pathway. Gut 2005; 54: 439-440

93 Koon HW, Shih DQ, Chen J, BakrItZI K, Hing TC, Law I, Ho S, Ichikawa R, Zhao D, Xu H, Gallo R, Dempsey P, Cheng G, TARGAR SR, POTHOLAKIS C, Cathelicidin signalling via the toll-like receptor protects against colitis in mice. Gastroentrology 2011; 141: 1852-1863.e1-3

94 Waische KA, Villani AC, VERMEIRE S, DUFRESNE L, Chen TC, BITTON A, COHEN A, THOMSON AB, Wild GE. Tumor necrosis factor receptor gene polymorphisms in Crohn's disease: association with clinical phenotypes. JGastroenterol Hepatol 2005; 100: 1126-1133

95 Nam SY, KIM N, Kim JS, Lim SH, Jung HC, Song IS. Heat shock protein gene 70-2 polymorphisms is differentially associated with the clinical phenotypes of ulcerative colitis and Crohn's disease. J Gastroenterol Hepatol 2007; 22: 1032-1038

96 KLAUSZ G, Molnár T, Nagy F, Gyulai Z, Boda K, LONOVICS J, Mándy Y. Polymorphism of the heat-shock protein gene Hsp70-2, but not polymorphisms of the IL-10 and CD14 genes, is associated with the outcome of Crohn's disease. Sand J Gastroenterol 2005; 40: 1197-1204

97 Alvarez-Lobos MA, Arostegui JI, Sans M, Tassies D, Piu J, ReverTerc J, PiQuè J, BaronET J, Panés J. Combined type-1 plasminogen activator inhibitor and NOD2/CARD15 genotyping predicts complicated Crohn's disease behaviour. Aliment Pharmacol Ther 2007; 25: 429-440

98 Sans M, Tassies D, Pellisé M, Espinosa G, Quinto L, PiQuè J, ReverTerc J, Panés J. The 4G/4G genotype of the 4G/1G polymorphism of the type-1 plasminogen activator inhibitor (PAI-1) gene is a determinant of penetrating behaviour in patients with Crohn's disease. Aliment Pharmacol Ther 2003; 17: 1039-1047

99 TOMER G, CEBALLOS E, CONCEPCION E, BenkOV KJ. NOD2/ CARD15 variants are associated with lower weight at di-
agression in children with Crohn’s disease. Am J Gastroenterol 2003; 98: 2479-2484

110 Schicho R, Storr M. Alternative targets within the endocan- nabinoid system for future treatment of gastrointestinal dis- eases. Can J Gastroenterol 2011; 25: 377-383

111 Kugathasan S, Collins N, Maresco K, Hoffmann RG, Ste- phens M, Werlin SL, Rudolph C, Broeckel U. CARD15 gene mutation as a risk factor for early surgery in pediatric onset Crohn’s disease. Clin Gastroenterol Hepatol 2004; 2: 1005-1009

112 Seiderer J, Elben I, Diegelmann J, Glas J, Stallhofer J, Tillack C, Pfennig S, Jürgens M, Schmelch Conrad A, Göde B, Och- senkühn T, Müller-Myskow B, Lohse P, Brand S. Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohns disease. Inflamm Bowel Dis 2008; 14: 437-445

113 Barreiro M, Núñez C, Domínguez-Muñoz JE, Lorenzo A, Barreiro F, Potel J, Peña AS. Association of NOD2/CARD15 mutations with previous surgical procedures in Crohn’s disease. Rev Esp Enferm Dig 2005; 97: 547-553

114 Odes S, Friger M, Vardi H, Claessens G, Bosuyt X, Riis L, Munkholm P, Wolters F, Yona H, Hoie O, Beltrami M, Tsia- nos E, Kasinska V, Mouzaki K, Clower D, Merlin T, Buser E, Politi P, O’Morain C, Limonard C, Russell M, Vann M, Moum B, Stockbrugger R, Vermeire S. The FHIT gene, spanning the chromosome 3p14.2 susceptibility locus on 10p12.2. Gastroenterology 2008; 135: 1207-1215

115 Schurr E, Gros P. A common genetic fingerprint in leprosy and Crohn’s disease? N Engl J Med 2009; 361: 2666-2668

116 Weiss B, Lebowitz O, Fiddor HH, Maza I, Levine A, Shaoul R, Reif S, Bujanover Y, Karban A. Response to medical treat- ment in patients with Crohn’s disease: the role of NOD2/ CRAD15, disease phenotype, and age of diagnosis. Dig Dis Sci 2010; 55: 1671-1678

117 Angelberger S, Reinsch W, Dejaco C, Miehsler W, Waldho- ler T, Weltkamp J, Lichtenberger C, Schaeffeler E, Vogelsang H, Schwab M, Teml A. NOD2/CARD15 gene variants are linked to failure of antibiotic treatment in perianal fistulating Crohn’s disease. Am J Gastroenterol 2008; 103: 1197-1202

118 Schwab M, Schäffeler E, Marx C, Fischer C, Lang T, Beh- rers C, Gregor M, Eichelbaum M, Zanger UM, Kaskas BA. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine s-methyltransferase polymorphism. Pharmacogenetics 2002; 12: 429-436

119 Srimartpirom S, Tassaneeuyakul W, Kukongviriyapan V, Tan- saneeuyakul W. Thiopurine S-methyltransferase genetic poly- morphism in the Thai population. Br J Clin Pharmacol 2004; 58: 66-70

120 McLeod HL, Pritchard SC, Githang’a J, Indalo A, Ameyaw MM, Powrie RH, Booth L, Collie-Duguid ES. Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan indi- viduals. Pharmacogenetics 1999; 9: 773-776

121 Dong XW, Zheng Q, Zhu MM, Tong JL, Ran ZH. Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease. World J Gastroen- terol 2010; 16: 3187-3195

122 Lennard T. TPMT in the treatment of Crohn’s disease with azathioprine. Gut 2002; 51: 143-146

123 Katsanos KH, Ferrante M, Henckaerts L, Joosens M, Schnitz- ler F, Arijs I, Vermeulen N, Joosens S, Pierik M, Noman M, Van Assche G, Tsianos EV, Rutgeerts P, Vermeire S. The 2677T variant of the MDRI gene and previous intolerance to azathioprine predict intolerance to methotrexate in inflammatory bowel disease. Gut 2006; 55 (Suppl V): A20

124 Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDRI (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75: 13-33

125 Todhunter CE, De Leenheer F, Crues A, Bartram SA, Donald- son PT, D’Arcy AK, Francis RM, Mansfield JC, Thompson NP. Influence of IL-6, COL1A1, and VDR gene polymorphisms on bone mineral density in Crohn’s disease. Gut 2005; 54: 1579-1584
