Assessing Multiple Sclerosis-Related Quality of Life among Iranian Patients Using the MSQOL-54 Tool: A cross-sectional study

Niloofar Namazi
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Shadi Ziaei
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Golnaz Afzal
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Saghar Barati
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Rezvaneh Mohebbi
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Mahshad Mir
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Hadi Esmaily
Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Gholamhossein Mehralian (✉ Gmehralian@gmail.com)
Department of Pharmaco-economic and Pharma Management, School of pharmacy, Shahid Beheshti University of Medical sciences, Tehran, Iran

Research Article

Keywords: Quality of Life, Multiple Sclerosis, MSQOL-54, Iran

DOI: https://doi.org/10.21203/rs.3.rs-110434/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The main objectives of this study were to assess quality of life (QoL), consumption patterns of dietary supplements, as well as physical/mental health status in patients with multiple sclerosis (MS). The present study also aimed to determine the association between demographic characteristics and physical as well as mental health composite (PHC and MHC) scores using the Multiple Sclerosis Quality of Life-54 (MSQoL-54) questionnaire.

Methods

This cross-sectional study was conducted on a group of patients with MS (n=382) referring to Shahid Kazemi Pharmacy, based in the city of Tehran, Iran, as a national pharmacy providing specialized pharmaceutical care to these individuals from February 2019 to March 2020 via the implementation of the MSQoL-54 questionnaire.

Results

A total number of 382 patients with MS participated in this study, including 89 (23.3%) men and 293 (76.7%) women, aged 40±10.9 years old (range: 18-84 years old). The overall score of the MSQoL-54 questionnaire was also by 41.58, and that was 69.60 and 62.99 from 100 for PHC and MHC, respectively.

Conclusions

The study results demonstrated that advanced age, longer disease duration, and lower levels of education were significantly associated with lower QoL.

Trial registration

IR.SBMU.PHARMACY.REC.1398.240.

Background

Multiple Sclerosis (MS) is known as the major autoimmune demyelinating disease of the central nervous system (CNS) and even one of the main causes of disabilities, high healthcare costs, and mortality in young adults [1-3]. This condition can correspondingly occur at any age but it usually begins between the ages of 20 and 40 years [4]. A global rising trend in the prevalence rate of MS has been further observed in recent years specifically in females, two times more often than males [5]. The reported cases of MS in 2016 have so far shown 2,221,188 patients living with MS across the world [6].

Iran is also a country with high prevalence rate of MS in the Middle East. With reference to the reports by the Iranian MS Society, the total prevalence rate of MS has been 115.94 per 100,000 cases in 2015 compared with the healthy population [7]. In 2019, the incidence of MS among Iranians has been similarly reported to range from 7 to 148.1/100,000 [8]. This condition can even cause a wide variety of symptoms, including vision loss, paresis, urinary and/or fecal sphincter dysfunction, vertigo, ataxia, and tremor [9]. Besides, MS negatively impacts cognitive and psychological functions [10, 11]. Other psychiatric symptoms similarly include anxiety, sleep disorders, somatization, obsession, and agitation [12].

In this respect, quality of life (QoL) also refers to a broad concept related to individuals’ perceptions of their complete physical, mental, and social well-being as well as both positive and negative aspects of life [13], whose assessment from patients’ perspectives as an outcome measure can be considered important for those living with MS. In previous studies, QoL has represented judgments about mental and physical health status, disease symptoms, mobility, emotional life, social interactions, along with environmental, economic, psychological, and spiritual dimensions, and health satisfaction by patients affected with MS [14, 15].
Research have further confirmed some factors, potentially affecting QoL in patients with MS such as depression, physical disabilities, and fatigue as the most important variables associated with QoL [16, 17]. Correspondingly, it has been established that patients with MS have lower health-related QoL than the general population and suffer from some other neurological disorders like Parkinson's disease and epilepsy [18]. Therefore, the overall goals of medication management services for MS have been towards reduction of disease complications and improvement of QoL [19, 20]. However, assessment of QoL as a significant clinical outcome can be a good definition of successful treatment [21, 22].

In addition, QoL measures can be divided into disease-specific and generic instruments [23]. Accordingly, there are numerous QoL scales e.g., the McGill Quality of Life Questionnaire (MGQoL), the Health-Related Quality of Life (HRQoL), the World Health Organization Quality of Life (WHOQoL-BREF), the Nottingham Health Profile (NHP), the Short Form-36 Questionnaire (SF-36), and the Multiple Sclerosis Quality of Life-54 (MSQoL-54) questionnaire, which have been typically practiced in clinical studies in recent years [24, 25]. In this sense, the MSQoL-54 is a disease-specific questionnaire used to assess QoL in patients with MS, which also provides the opportunity to compare them with the general population [26]. Therefore, the present study was to assess QoL in patients living with MS and to reflect on differences in patients with diverse demographic characteristics. In addition, there was an attempt to find if the type of medicines and supplements used could affect QoL or not.

Methods

Study Design

This cross-sectional study was conducted from February 2019 to March 2020 at Shahid Kazemi Pharmacy in the city of Tehran Iran, as a national pharmacy providing specialized pharmaceutical care to patients with MS. This study was also approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran, with the registry code of IR.SBMU.PHARMACY.REC.1398.240.

Study population

The patients affected with MS referring to the pharmacy concerned were invited to participate in this study. After scrutinizing their prescriptions, additional questions were further raised to make sure that the patients had been diagnosed with MS. To be included in the study, the cases needed to be older than 18 years and with at least six months of MS diagnosis. A written informed consent was also given to the patients prior to their inclusion, and they were allowed to withdraw from the study whenever they desired.

The sample size was calculated using the Cochran's formula. According to the statistics released by the Iranian MS Society, the number of patients with MS in Iran was 68,192 cases. In this formula, the confidence interval (CI) of 1.96 Z-score was defined as 95% and the p-value, as the ratio of the attribute in the society, was equal to 0.5. In addition, the margin of error (D) in this study was 0.05. The sample size was further estimated to be 382 individuals.

Questionnaire Development

The validated Persian version of the MSQoL-54 questionnaire was applied to collect the required data, whose acceptable reliability and construct validity had been already confirmed [27]. Notably, the MSQoL-54 is known as a health-related self-report questionnaire containing 54 items, categorized into 12 sub-scales: physical health (10 items), role limitations-physical (4 items), emotional well-being (8 items), pain (3 items), energy (5 items), health perceptions (5 items), social function (3 items), cognitive function (4 items), health distress (4 items), sexual function (5 items), change in health (1 item), and overall QoL (2 items). There was also one item under the theme of overall QoL, related to patients’ views about overall assessment of their own QoL, labeled as “self-score” in this study.

Additionally, there are two composite scores, namely, physical health composite (PHC) and mental health composite (MHC), measured by adding some sub-scales accordingly. The PHC includes eight sub-scales of physical function, health perceptions, energy/fatigue, role limitations-physical, pain, sexual function, social function, and health distress and the MHC is made up of
five sub-scales: health distress, overall QoL, emotional well-being, role limitations-emotional, and cognitive function. More specifically, the composite scores can be calculated by transforming the item scores to zero to 100 scales, with zero representing the worst health status and 100 indicating the best health status.

With respect to demographic data, characteristics such as age, gender, levels of education, marital status, occupation, level of income, disease duration, and comorbidity are shown in Table 1. As well, the patients’ use of dietary supplements and levels of physical activity were recorded.

Alongside the implementation of the MSQoL-54 questionnaire, the participants were asked to complete two types of questions related to consumption patterns of dietary and herbal supplements and the Short Questionnaire to Assess Health-Enhancing Physical Activity (SQUASH). The structured questionnaire about the consumption patterns of dietary and herbal supplements included detailed questions to assess the use of supplements such as multivitamins and individual vitamins as well as minerals directly. The participants were accordingly instructed to write any products they were using. This questionnaire contained a total number of seven items on specific supplements used, dosage form, frequency of use, onset date, prescribing physician’s specialty, and reason for use.

The SQUASH was also comprised of items on commuting activities, leisure-time and sports activities, household activities, and activities at work and school. Based on the reported efforts in the SQUASH questionnaire, this tool could classify individuals into three different intensity scores, i.e., light, moderate, or vigorous [28].

Results

Over a period of 15 months, a total number of 382 MS patients agreed to participate in the study, including 89 (23.3%) men and 293 (76.7%) women with the age range of 18-84 years. The median of disease duration was also 96.00 months ranged from 6 to 480 months. All other demographic characteristics of the participants are depicted in Table 1.

As well, the frequency of MS medications taken by the patients indicates in (Fig. 1).

The most commonly used dietary and herbal supplements were shows in (Fig. 2).

In addition, Table 2 presents that the overall score of the MSQoL-54 questionnaire among the patients with MS was 41.58±12.69, and that was 69.60±18.38 and 62.99±22.74 respectively for the PHC and MHC.

The correlation test was also fulfilled to determine the association between age and the PHC as well as MHC scores. As indicated in Table 3, there was a significant reverse relationship between age and both the PHC and MHC scores (-0.257 and -0.237, respectively). Similarly, the PHC and MHC scores were significantly associated with disease duration in patients living with MS. It meant that both the PHC and MHC scores had significantly reduced as the disease duration had lengthened (-0.232 and -0.234, respectively).

According to Table 4, the analysis of variance (ANOVA) results correspondingly established that the PHC and MHC scores were significantly associated with levels of education among the patients. Therefore, individuals with higher levels of education obtained higher PHC and MHC scores. In contrast, no significant relationship was found between patients’ levels of physical activity and the PHC and MHC scores.

Table 5 shows the relationship between medicines for MS and the mean scores of MSQoL-54 sub-scales (i.e., self-score, PHC, MHC, and overall QoL). There was accordingly a significant difference between self-score and patients receiving Interferon beta-1a (p-value=0.04). Patients taking Fingolimod further manifested higher overall QoL in comparison with those who had not received this medicine (p-value= 0.02). It is noteworthy that once age was added as the control variable, the p-value was increased to 0.054. As well, patients receiving Rituximab had lower QoL in all domains including self-score, PHC, MHC, and overall QoL.
In this study, prescriptions and use of antidepressant and anxiolytic drugs in patients with MS were not common. The results of this study revealed that vitamin D was the most widely used supplement, followed by calcium while vitamin C was the least consumed one. Moreover, patients taking calcium had less energy and poor physical/mental health status, whereas those receiving vitamin D or any other supplements were associated with better social function.

Consumption of dietary supplements or increase in the number of supplements used had no effects on overall QoL, PHC, or MHC. Regarding the supplement use duration, no correlation was further observed in terms of overall QoL, PHC, or MHC (p-value>0.05). Besides, there was a significant inverse relationship between the consumption of herbal supplements and patients’ overall QoL.

Discussion

MS can significantly affect QoL by interfering with patients’ ability to work, to do leisure-time activities, and to assume typical life roles. Accordingly, assessment of patients’ QoL is an important aspect of outcome endpoints in clinical practice of MS. Thus, great efforts were made to discover QoL in patients with MS using the MSQoL-54 questionnaire in this study. Based on the results, the patients generally achieved low-to-moderate scores in the dimensions of overall QoL, PHC, and MHC.

The findings were also consistent with the results of earlier studies reporting that QoL was poor in patients living with MS [29, 30]. As mentioned by Ruth Ann Marrie et al., underdiagnosed and undertreated depression had been one of the fundamental reasons for reduced QoL in MS. This study had also reported only few patients using antidepressant or anxiolytic drugs to keep their QoL at higher levels. It seems that, patients should be continuously evaluated and appropriate pharmacotherapy is given if needed due to the progressive and disabling nature of MS and the negative effects of depression on QoL. Moreover, the results of this study underlined a negative correlation between age, disease duration, and both PHC and MHC scores. It meant that those with older age and longer disease duration were associated with lower PHC and MHC scores. It can be concluded that patients with advanced age or those who are diagnosed a relatively long time ago, due to limited physical and mental abilities, may need more occupational therapy to improve their QoL. In contrast, as stated by Kamran et al., age does not always affect PHC and MHC [31], and it had been argued that older patients had just lower MHC scores than younger ones [32]. The statistics in the present study had reflected that most patients had low levels of physical activity because of disease severity. In a study conducted by Robert et al., patients’ levels of physical activity had been measured using a questionnaire and an accelerometer as valid measurement criteria, and the results had indicated an indirect relationship between physical activity and QoL [14]. Accordingly, patients need to be well engaged in ways to reduce the disease complications such as continuing to have minimal physical activities.

The results of this study also showed that patients taking supplements did not have a higher overall QoL, PHC, and MHC than those using no supplements, and there was not even a correlation between the duration of supplement use and overall QoL, PHC, and MHC in patients receiving these products. On the other hand, the study findings by Nozari et al. with a smaller sample size had underlined the positive effects of dietary supplements on improved QoL [35]. For example, previous studies had demonstrated a decrease in serological and metabolic responsiveness to vitamin D supplementation by patients living with MS [36, 37], so higher doses of supplements might be needed to have clinically relevant effects in this study population.

In this study, 29 patients (7.6%) received herbal supplements and the results indicated that those taking such supplements had shown lower QoL compared with the ones using no supplements. In contrast, Etemadifar et al. had observed that herbal
medicines such as ginseng could be an appropriate anti-fatigue product to boost QoL [38]. As well, ginseng administration in MS for such a purpose had been evaluated just for patients with relapsing-remitting MS within 12 weeks in this study. It could be argued that patients with lower QoL had felt disappointed with conventional therapies to control MS and they might show higher willingness to use herbal supplements as complementary and alternative medicines.

Conclusion

Given the findings of this study, it could be concluded that patients with MS having advanced age, longer disease duration, and lower levels of education were significantly associated with lower PHC and MHC scores. Besides, there was not a significant relationship between levels of physical activity and PHC as well as MHC scores. The study results additionally suggested that supplementation and its long-term use in patients with MS was not associated with higher QoL. Similarly, addition of herbal medicines had failed to improve QoL.

It is recommended to perform further studies to evaluate the effectiveness of dietary and herbal supplements in enhancing MS-related QoL. This study had some limitations that should be taken into account. It was just a single-center study, so it would be better to include as many patients with MS as possible in other cities in Iran, and even in other countries to get a clear picture of supplement use efficacy and possible factors affecting QoL in such patients. Thus, this study sample was representative of the general population of patients living with MS.

Among the strengths of this study were practicing a comprehensive assessment of QoL, utilizing a validated scale, as well as employing the most commonly criteria for the MS diagnosis and ideal sample size. However, further studies on health-related and patients’ subjective well-being in relation to QoL are needed to assess all the dimensions in MS and to clarify the independent relationship of stronger variables. The present study was thus underpowered to evaluate the effect of supplements on MS-related QoL, and larger scale trials and meta-analysis of available data are required to elucidate the role of supplements on MS-related QoL.

Abbreviations

MS: multiple sclerosis; MHC: Mental Health Composite; MSQOL-54: multiple sclerosis quality of life-54 questionnaire; PHC: Physical Health Composite; QOL: quality of life

Declarations

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki; hence the process of the survey was explained to the patients and, written informed consent was provided prior to enrollment. The protocol of study was approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran with the registry code of IR.SBMU.PHARMACY.REC.1398.240.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.
Funding

The study was funded by the authors themselves.

Authors' contributions

NN: The first author, collected the cases. AG: The second author, (AG) has analyzed, drafted and revised the work. EH, ZSH and BS participated in the design of the study and developed the research question. MR and MM analyzed the data using SPSS software program

MGH: coordinated the study, participated in its conception and its design, and reviewed the manuscript. All authors contributed to and have approved the final manuscript.

Acknowledgements

Authors would like to acknowledge the colleagues working in Shahid Kazemi pharmacy for their support and help.

References

1. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS letters. 2014;588(22):4207-13.
2. Sahraian MA, Sahebkar M, Dehghani R, Derakhshan-Jazari M, Kazami-Moghaddam V, Kouchaki E. Multiple sclerosis-A disease on a dramatically rising trend in Iran: Review of possible reasons. Iran J Neurol. 2017;16(1):34-40.
3. Jones E, Pike J, Marshall T, Ye X. Quantifying the relationship between increased disability and health care resource utilization, quality of life, work productivity, health care costs in patients with multiple sclerosis in the US. BMC Health Services Research. 2016;16(1):294.
4. Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017;19(1):1-10.
5. Valadkeviciene D, Kavaliunas A, Kizlaitiene R, Jocys M, Jatuzis D. Incidence rate and sex ratio in multiple sclerosis in Lithuania. Brain Behav. 2019;9(1):e01150-e.
6. Wallin MT, Culpepper WJ, Nichols E, Bhutti ZA, Gebrehiwot TT, Hay SI, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019;18(3):269-85.
7. Eskandarieh S, Allahabadi NS, Sadeghi M, Sahraian MA. Increasing prevalence of familial recurrence of multiple sclerosis in Iran: a population based study of Tehran registry 1999–2015. BMC Neurol. 2018;18(1):15.
8. Azami M, Yekta Kooshali MH, Shohani M, Khorshidi A, Mahmudi L. Epidemiology of multiple sclerosis in Iran: A systematic review and meta-analysis. PLoS One. 2019;14(4):e0214738-e.
9. Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Current Opinion in Neurology. 2018;31(6):752-9.
10. Macías Islas MÁ, Ciampi E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines. 2019;7(1):22.
11. Jongen PJ, Heerings M, Ruimschotel R, Hessaarts A, Duyverman L, van der Zande A, et al. Intensive social cognitive treatment (can do treatment) with participation of support partners in persons with relapsing remitting multiple sclerosis: observation of improved self-efficacy, quality of life, anxiety and depression 1 year later. BMC Research Notes. 2016;9(1):375.
12. Sarısoy G, Terzi M, Gümüş K, Pazvantoğlu O. Psychiatric symptoms in patients with multiple sclerosis. General hospital psychiatry. 2013;35(2):134-40.
13. Raina SK. State of The Globe: Health-Related Quality of Life as Health Status Measure: Time to Move On. J Glob Infect Dis. 2019;11(3):89-90.
14. Motl RW, McAuley E, Snook EM, Gliottoni RC. Physical activity and quality of life in multiple sclerosis: intermediary roles of disability, fatigue, mood, pain, self-efficacy and social support. Psychol Health Med. 2009;14(1):111-24.

15. Mitchell AJ, Benito-León J, González J-MM, Rivera-Navarro J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. The Lancet Neurology. 2005;4(9):556-66.

16. Salehpoor G, Rezaei S, Hosseininezhad M. Quality of life in multiple sclerosis (MS) and role of fatigue, depression, anxiety, and stress: A bicenter study from north of Iran. Iranian Journal of Nursing and Midwifery Research. 2014;19(6):593-9.

17. da Silva NL, Takemoto MLS, Damasceno A, Fragoso YD, Finkelsztejn A, Becker J, et al. Cost analysis of multiple sclerosis in Brazil: a cross-sectional multicenter study. BMC Health Services Research. 2016;16(1):102.

18. Jongen PJ. Health-Related Quality of Life in Patients with Multiple Sclerosis: Impact of Disease-Modifying Drugs. CNS Drugs. 2017;31(7):585-602.

19. Opara JA, Jaracz K, Brola W. Quality of life in multiple sclerosis. J Med Life. 2010;3(4):352-8.

20. Sicras-Mainar A, Ruíz-Beato E, Navarro-Artieda R, Maurino J. Impact on healthcare resource utilization of multiple sclerosis in Spain. BMC Health Services Research. 2017;17(1):854.

21. Nedjat S, Montazeri A, Mohammad K, Majdzadeh R, Nabavi N, Nedjat F, et al. Quality of Life in Multiple Sclerosis Compared to the Healthy Population in Tehran. Iranian Journal of Epidemiology. 2006;2(3):19-24.

22. Page TE, Farina N, Brown A, Daley S, Bowling A, Bassett T, et al. Instruments measuring the disease-specific quality of life of family carers of people with neurodegenerative diseases: a systematic review. BMJ open. 2017;7(3):e013611-e.

23. Krantz E, Wide U, Trimpou P, Bryman I, Landin-Wilhelmsen K. Comparison between different instruments for measuring health-related quality of life in a population sample, the WHO MONICA Project, Gothenburg, Sweden: an observational, cross-sectional study. BMJ Open. 2019;9(4):e024454.

24. Kłak A, Mińko M, Siwczyńska D, Samoliński B. Selected questionnaire methods studying the quality of life. Postepy Dermatol Alergol. 2015;32(3):210-5.

25. Ibrahim EAAE, Gassoum A, IshagAgib IEI. Quality of life among Sudanese patients with multiple sclerosis in Khartoum state using (MSQoL-54) questionnaire. BMC research notes. 2019;12(1):1-4.

26. Ghaem H, Haghighi AB, Jafari P, Nikseresht A. Validity and reliability of the Persian version of the multiple sclerosis quality of life questionnaire. Neurology India. 2007;55(4):369.

27. Wendel-Vos GCW, Schuit AJ, Saris WHM, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. Journal of Clinical Epidemiology. 2003;56(12):1163-9.

28. Ysrraelit MC, Fiol MP, Gaitán MI, Correale J. Quality of Life Assessment in Multiple Sclerosis: Different Perception between Patients and Neurologists. Front Neurol. 2018;8:729-.

29. Marrie RA, Patten SB, Berrigan LI, Tremlett H, Wolfson C, Warren S, et al. Diagnoses of Depression and Anxiety Versus Current Symptoms and Quality of Life in Multiple Sclerosis. Int J MS Care. 2018;20(2):76-84.

30. Kamran F, Samaei A, Asghari N, Bayat S, Naeiji A, Farrokhnezhad F, et al. The associations between fatigue, disability, and mobility and the quality of life in patients with multiple sclerosis. Middle East Journal of Rehabilitation and Health. 2016;3(1):e34037.

31. Garcia J, Finlayson M. Mental health and mental health service use among people aged 45+ with multiple sclerosis. Canadian journal of community mental health = Revue canadienne de sante mentale communautaire. 2005;24(2):9-22.

32. Rezapour A, Kia AA, Goodarzi S, Hasoumi M, Motlagh SN, Vahedi S. The impact of disease characteristics on multiple sclerosis patients’ quality of life. Epidemiology and health. 2017;39.

33. Karatepe AG, Kaya T, Gündayn R, Demirhan A, Çe P, Gedizlioglu M. Quality of life in patients with multiple sclerosis: the impact of depression, fatigue, and disability. International Journal of Rehabilitation Research. 2011;34(4):290-8.

34. Nozari E, Ghavamzadeh S, Razazian N. The Effect of Vitamin B12 and Folic Acid Supplementation on Serum Homocysteine, Anemia Status and Quality of Life of Patients with Multiple Sclerosis. Clin Nutr Res. 2019;8(1):36-45.
36. Bhargava P, Steele SU, Waubant E, Revirajan NR, Marcus J, Dembele M, et al. Multiple sclerosis patients have a diminished serologic response to vitamin D supplementation compared to healthy controls. Multiple Sclerosis Journal. 2016;22(6):753-60.

37. Bhargava P, Fitzgerald KC, Calabresi PA, Mowry EM. Metabolic alterations in multiple sclerosis and the impact of vitamin D supplementation. JCI insight. 2017;2(19).

38. Etemadifar M, Sayahi F, Abtahi S-H, Shemshaki H, Dorooshi G-A, Goodarzi M, et al. Ginseng in the treatment of fatigue in multiple sclerosis: a randomized, placebo-controlled, double-blind pilot study. International Journal of Neuroscience. 2013;123(7):480-6.

Tables

Table 1. Demographic of participants (n = 382).
Variable	Mean (standard deviation) or n (frequency)
Age (n=382):	
Year	40 (10.9), range: 18-84
Sex:	
Male	89 (23.3)
Female	293 (76.7)
Education:	
Undergraduate	27(7.1%)
Diploma	102(26.7)
Associate degree	15(3.9%)
Bachelor	152(39.8%)
Master	64(16.8%)
PhD*	22(5.8%)
Marital status:	
Single	154 (40.3%)
Married	228 (59.7%)
Habit:	
Cigarette	34 (8.9%)
Alcohol	14 (3.7%)
Both	20 (5.2%)
None	314 (82.2%)
Job:	
Unemployed	28 (7.3%)
Freelance	134 (35.1%)
Government	16 (4.2%)
Housewife	168 (44%)
Student	13 (3.4%)
Retired	23 (6%)
Income:	
1-5 million toman/month	214 (56%)
5-10 million toman/month	81 (21.2%)
>10 million toman/month	25 (6.5%)
MS* duration (n=382):	
Month	111.96 (78.29), range 6-480
Comorbidity:	
Table 2. The mean and standard deviation of MSQoL-54 subsets among multiple sclerosis patients

	Mean	SD
Physical Health Composite	69.60	18.38
Mental Health Composite	62.99	22.74
Overall QoL score	41.58	12.69

QoL: quality of life; SD: standard deviation

Table 3. The comparison between MSQoL-54 subsets in MS patients regarding to the age and disease duration

Quality of life	Age	Disease duration		
	R**	Sig*	R**	Sig*
Physical Health Composite	-0.257	0.00	-0.232	0.00
Mental Health Composite	-0.237	0.00	-0.234	0.00

*P < 0.05 indicates significant difference, R**: correlation is significant at the 0.01 level

Table 4. Relationship between MSQoL-54 subsets and physical activity and educational levels
Variable	Physical Health Composite Mean (SD)	Mental Health Composite Mean (SD)
Physical activity levels		
Light	109.28±58.48	61.75±22.77
Moderate	120.96±58.24	66.23±21.76
Intense	117.83±60.10	63.39±24.17
P value	0.23	0.28
Educational levels		
Undergraduate	110.81±63.18	61.25±25.73
Diploma	95.53±57.16	55.69±22.88
Bachelor	114.47±57.63	64.25±21.58
Master	125.73±56.61	68.29±20.81
PhD	129.40±60.38	70.31±23.38
P value	0.03	0.02

Table 5. Relationship between the mean score of MSQoL-54 subsets and multiple sclerosis drugs
Treatment	Frequency (%)	Self-score (Mean±SD)	PV*	Physical health (Mean±SD)	PV*	Mental health (Mean±SD)	PV*	Overall QoL (Mean±SD)	PV*
Interferon beta	191 (50%)	Yes: 7.69±1.96	0.04	Yes: 115.72±58.19	0.37	Yes: 63.96±21.99	0.40	Yes: 42.61±12.07	0.11
		No: 7.27±2.23		No: 110.38±59.24		No: 62.02±23.47		No: 40.55±13.23	
Fingolimod	74 (20%)	Yes: 7.68±1.97	0.35	Yes: 118.58±57.57	0.36	Yes: 65.44±21.57	0.30	Yes: 44.54±11.43	0.02
		No: 7.43±2.14		No: 111.72±58.98		No: 62.40±23.00		No: 40.87±12.89	
Dimethyl fumarate	43 (11%)	Yes: 7.53±1.96	0.86	Yes: 120.18±58.16	0.39	Yes: 65.76±21.96	0.39	Yes: 41.27±11.74	0.86
		No: 7.47±2.13		No: 112.14±58.79		No: 62.64±22.84		No: 41.62±12.82	
Glatiramer acetate	23 (6%)	Yes: 7.86±2.02	0.36	Yes: 134.86±58.92	0.06	Yes: 68.86±25.53	0.20	Yes: 43.21±11.87	0.52
		No: 7.45±2.11		No: 111.65±58.49		No: 62.61±22.53		No: 41.48±12.75	
Rituximab	18 (5%)	Yes: 5.66±2.19	0.00	Yes: 65.05±46.46	0.00	Yes: 42.66±21.98	0.00	Yes: 29.38±12.43	0.00
		No: 7.57±2.06		No: 115.42±58.27		No: 64.00±22.33		No: 42.18±12.41	
No treatment	12 (3%)	Not applicable		Not applicable		Not applicable		Not applicable	
Teriflunomide	11 (3%)	Yes: 8.00±1.94	0.41	Yes: 108.27±57.66	0.78	Yes: 61.45±20.00	0.82	Yes: 41.36±11.18	0.95
		No: 7.46±2.11		No: 113.19±58.80		No: 63.04±22.83		No: 41.59±12.74	
Natalizumab	8 (2%)	Yes: 7.62±3.15	0.84	Yes: 126.00±50.04	0.52	Yes: 68.87±18.31	0.46	Yes: 40.50±15.56	0.80
		No: 7.48±2.08		No: 112.77±58.90		No: 62.86±22.83		No: 41.60±12.64	
Mitoxantrone	1 (0%)	Not applicable		Not applicable		Not applicable		Not applicable	
Ocrelizumab	1 (0%)	Not applicable		Not applicable		Not applicable		Not applicable	

PV: P value is significant (< 0.05), QoL: quality of life; SD: standard deviation