The canonical form has got baubles

Marco S. Bianchi, a Matias Leoni b

a Center for Research in String Theory - School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS, UK
b Physics Department, FCEyN-UBA & IFIBA-CONICET Ciudad Universitaria, Pabellón I, 1428, Buenos Aires, Argentina

E-mail: m.s.bianchi@qmul.ac.uk, leoni@df.uba.ar

ABSTRACT: The method of differential equations in canonical form has proven a powerful tool for solving multiloop Feynman integrals. In this note we test this procedure away from four dimensions. Namely, we consider the simple example of a massless doublebox, expanded in dimensional regularization around six dimensions. We achieve a canonical form for the relevant master integrals and solve them in terms of harmonic polylogarithms up to transcendental order 9. The integral basis of uniform transcendentality requires increasing indices of propagators. According to the standard graphical jargon, this amounts to decorating the integrals with baubles, like on Christmas trees, or rather loops in this case. The results can be useful for studying amplitudes in six dimensions.
1 Introduction

Solving Feynman integrals with differential equations is a well-established and efficient technique [1–7]. Recently the method has been fuelled, thanks to the proposal by Henn [8] of performing a particular choice of master integrals of uniform degree of transcendentality. Such a choice casts the corresponding system of differential equations in a canonical form where the right-hand-side is proportional to the dimensional regularization parameter. This in turn implies that the master integrals can be solved iteratively, order by order in ϵ, in a quite straightforward manner (provided boundary conditions for the differential equations are specified). The method has been applied to a plethora of contexts of phenomenological interest, that is in $d = 4 - 2\epsilon$ dimensions [9–21]. On the contrary, much less applications have been performed in other dimensions (see [22, 23], for example).

In this short note, we take a detour from four dimensions and explore the canonical form method in higher dimensions. In particular, we apply the method to the integrals relevant for $2 \rightarrow 2$ scattering of massless particles in six dimensions up to two loops, in the planar limit. More explicitly, we start considering the six-dimensional box as a warm-up exercise and then move to the two-loop planar doublebox. The latter problem involves eight master integrals. We find a basis exhibiting uniform transcendentality, by showing that they obey a system of differential equations in canonical form. The corresponding alphabet is such that the result can be expressed naturally in terms of
harmonic polylogarithms HPL, whose definition we review in Appendix A. We provide
the necessary integration constants by requiring, order by order, that the integrals have
the expected physical branch cuts. All this can be implemented in a mechanical way
and we test its efficiency by pushing the solution in terms of polylogarithms up to depth
9. These results are collected in electronic format in an ancillary file doublebox6d.m.

We acknowledge that we carried out the relevant IBP identities reductions [24–27]
using FIRE [28–30] and LiteRed [31, 32].

2 Warm up: the one loop case

We first consider the one loop box integral in six space-time dimensions

\[G_{a_1...a_4} = \frac{e^{\gamma_E}}{\pi^{d/2}} \int d^d k_1 \frac{1}{P_1^{a_1} P_2^{a_2} P_3^{a_3} P_4^{a_4}} \]

where

\[P_1 = k_1^2 \quad P_2 = (k_1 + p_1)^2 \quad P_3 = (k_1 + p_1 + p_2)^2 \quad P_4 = (k_1 - p_4)^2 \]

We treat the integrals within dimensional regularization \(d = 6 - 2\epsilon \) and consider their
Laurent expansion in the regularization parameter \(\epsilon \). Throughout the paper we work
with Euclidean signature. The kinematics of the problem allow for two independent
Mandelstam invariants \(s \equiv (p_1 + p_2)^2 \) and \(t \equiv (p_2 + p_3)^2 \) and a single dimensionless
combination thereof, which we define \(x \equiv t/s \).

We derive a differential equation with respect to \(x \) for this integral, which requires
including two additional master integrals which are bubbles in the \(s \) and \(t \) channels.

In order to achieve a canonical form for the system, we choose the bubbles in such
a way that they display uniform transcendentality. By looking at their expression in
terms of \(\Gamma \) functions, one possible choice reads

\[f_1 = (1 - 2\epsilon) \epsilon G_{2,0,1,0} \]
\[f_2 = (1 - 2\epsilon) \epsilon G_{0,2,0,1} \]

Inspecting the differential equation for the box, it turns out that the trivial corner
integral suffices for having a canonical form

\[f_3 = (1 - 2\epsilon) \epsilon^2 (s + t) G_{1,1,1,1} \]

With this choice the system of differential equations is cast in the canonical form

\[\partial_x \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \epsilon A \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} \]
where

\[A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ \frac{2}{x} & \frac{1}{2} \frac{1}{2} & 0 \end{pmatrix} \] (2.7)

From this form it is immediate to see that the box can be expanded order by order in terms of HPL’s with indices \(\{0, -1\} \) of fixed transcendentality.

3 The doublebox

Next, we consider the class of two-loop integrals given by the following propagators

\[G_{a_1, \ldots, a_9} = \frac{e^{2\gamma \epsilon}}{(\pi^{d/2})^2} \int d^d k_1 d^d k_2 \frac{P_{a_4} P_{a_6}}{P_1 P_2 P_3 P_5 P_7 P_8 P_9} \] (3.1)

where

\[P_1 = k_1^2 \quad P_2 = (k_1 + p_1)^2 \quad P_3 = (k_1 + p_1 + p_2)^2 \]
\[P_4 = (k_1 - p_4)^2 \quad P_5 = k_2^2 \quad P_6 = (k_2 + p_1)^2 \]
\[P_7 = (k_2 + p_1 + p_2)^2 \quad P_8 = (k_2 - p_4)^2 \quad P_9 = (k_1 - k_2)^2 \] (3.2)

where we assume that \(a_4 \geq 0 \) and \(a_6 \geq 0 \). In four dimensions the problem of finding a canonical basis was solved in [8]. Here we want to achieve the same goal in \(d = 6 - 2\epsilon \). The reduction to master integrals was solved in [33] for arbitrary dimension. In [34] a different choice of master integrals was proposed, and the doublebox integrals where computed in six dimensions as well, thus effectively solving the problem in 6\(d \).

Moreover, a clever way of solving the corner doublebox in strictly six dimensions (it is both UV and IR finite and thus require no regularization) was developed in [35], exploiting unique triangles.

Nevertheless we revisit the problem in order to find yet another basis of master integrals, which can put the system in canonical form, with all the benefits that this carries, especially the possibility of performing higher order expansion in \(\epsilon \) in a straightforward fashion. In particular we find that the following basis does the job

\[f_1 = -2 \epsilon (1 - 3\epsilon) t G_{0,2,0,0,0,0,2,3} \] (3.3)
\[f_2 = -2 \epsilon (1 - 3\epsilon) s G_{0,2,0,2,0,0,0,3} \] (3.4)
\[f_3 = 4 \epsilon^2 (1 - 2\epsilon)^2 G_{2,0,1,0,2,0,1,0} \] (3.5)
\[f_4 = -8 \epsilon^2 (1 - 3\epsilon) s G_{0,1,0,1,0,0,3,0,1,0,2} \] (3.6)
\[f_5 = -2 \epsilon^3 (1 - 3\epsilon) (1 - 2\epsilon) (s + t) G_{1,1,1,0,0,0,0,2,2} \] (3.7)
\[f_6 = \epsilon^3 (1 - 3\epsilon) (s + t) G_{0,1,1,0,1,0,0,1,3} \] (3.8)
\begin{align}
 f_7 &= \epsilon^4 s t (s + t) G_{1,2,1,0,1,0,1,2,1} - 4 \epsilon^2 (1 - 2\epsilon)^2 \frac{t}{s} G_{2,0,1,0,2,0,1,0,0} \\
 f_8 &= \epsilon^4 (2\epsilon - 1) s t G_{1,1,1,0,1,0,1,2,1} + \frac{1}{2} \epsilon^4 s^2 t G_{1,2,1,0,1,0,1,2,1} - 2 \epsilon^3 (1 - 3\epsilon) s G_{0,1,1,0,1,0,0,1,3}
\end{align}

where the integrals are normalized with a common factor \(s^{2\epsilon} \) that we did not display for conciseness. The basis is represented graphically in Figure 1. A few comments are in order. The first topologies can be solved immediately in terms of \(\Gamma \) functions, therefore we have just picked up a choice of indices where the expansion in \(\epsilon \) displays uniform transcendentality. In particular, the factors in front of the integrals have been tuned to ensure that this is the case. Of course other choices of indices could have worked as well, ours is just intended to minimize the prefactors. For the more complicated topologies we found no unique answer to achieve a canonical form and we present here a particular choice that we have found particularly compact, without excluding that a more convenient form could exist. Finally we note that, as intuition might have suggested, increasing the dimension of integrations entails raising the powers of some propagators as well, in order to attain the canonical form. This behaviour can probably be studied in a more systematic manner and extended to higher loop and more complicated integrals, using maximal cuts \([8, 36]\) in higher dimensions.

The matrix for the system of differential equations reads

\[
\partial_x f(\epsilon, x) = \epsilon A(x) f(\epsilon, x)
\]

\textbf{Figure 1.} Master integral topologies for \(d = 6 - 2\epsilon \). Dotted propagators denote raising its index by one unit. In the last two master integrals a combination of topologies is involved, which is not displayed in the cartoon.
This proves that the integrals can be solved in terms of harmonic polylogarithms \[37\] with indices \{0, -1\} at any order.

The initial condition at \(\epsilon = 0\) fixes the symbol of the solution completely

\[f^{(0)} = \{1, 1, 1, 0, 0, 1, 1/2\} \] (3.13)

This can be integrated order by order in a straightforward manner. To extract the full solution for the integrals one has to specify a boundary condition at each term in the \(\epsilon\) expansion as well. One could in principle do this by direct calculation in a special kinematic point from the Mellin-Barnes representation \[33\]. Instead of doing this we follow another path, based on the properties of the Fuchsian differential equation and on the expected analytic structure of the result, along the lines of \[9, 11\]. A systematic way of performing this step is as follows. The differential equation is given by the eight dimensional system

\[
\frac{d}{dx} f(x, \epsilon) = \epsilon \left(\frac{M_0}{x} + \frac{M_1}{1 + x} \right) f(x, \epsilon)
\] (3.14)

We choose to integrate the system from the regular singular base point \(x = 0\). In order to do so we decompose

\[f(x, \epsilon) = Q(x, \epsilon) f_L(x, \epsilon) \] (3.15)

where \(f_L(x, \epsilon)\) is such that

\[f(x, \epsilon) \rightarrow f_L(x, \epsilon), \quad \text{when} \quad x \rightarrow 0 \] (3.16)

This means that \(f_L(x, \epsilon)\) determines the asymptotic behaviour of \(f(x, \epsilon)\) at \(x = 0\) and it is given by

\[f_L(x, \epsilon) = x^{e^{M_0}} g(\epsilon) = \exp (\epsilon M_0 \log x) \ g(\epsilon) \] (3.17)

where the vector \(g(\epsilon) = (g_1(\epsilon), ..., g_8(\epsilon))^t\). On the other hand \(Q(x, \epsilon)\) is a matrix given by

\[Q(x, \epsilon) = \sum_{n=0}^{\infty} \epsilon^n Q_n(x), \quad \text{with} \quad Q_0(x) = I, \quad \text{and} \quad Q_n(0) = 0 \quad \text{for} \ n > 0 \] (3.18)
The terms $Q_n(x)$ can be seen to satisfy the recursive differential equation

$$ \frac{d}{dx}Q_{n+1}(x) = \left[M_0, Q_n(x) \right] + \frac{M_1 Q_n(x)}{1 + x} \quad (3.19) $$

These can be easily solved in terms of harmonic polylogarithms with indices $\{0, -1\}$. The first few terms read

$$ Q_0 = 1, \quad Q_1 = M_1 H_{-1}(x), \quad Q_2 = [M_0, M_1] H_{0,-1}(x) + M_1 M_1 H_{-1,-1}(x) $$

$$ Q_3 = [M_0, [M_0, M_1]] H_{0,0,-1}(x) + [M_0, M_1, M_1] H_{0,-1,-1}(x) + M_1 [M_0, M_1] H_{-1,0,-1}(x) + M_1 M_1 M_1 H_{-1,-1,-1}(x) \quad (3.20) $$

Let us expand the exponential which defines $f_L(x, \epsilon)$ in (3.17). We can further decompose the result in four pieces according to the x-dependence:

$$ f_L(x, \epsilon) = f_L^A(\epsilon) + x^f f_L^B(\epsilon) + x^{-2f} f_L^C(\epsilon) + x^{-2f} \log x f_L^D(\epsilon) \quad (3.21) $$

where each piece $f_L^A...f_L^D$ is a vector whose components are linear combinations of the components of $g(\epsilon)$ (for details see appendix B). Comparing these expressions with the actual asymptotic expansion for $x \to 0$ of the first six Feynman integrals we may fix $g_1(\epsilon)$ to $g_6(\epsilon)$ exactly in terms of Γ functions (also in appendix B). We note that this way of solving the system fixes, a priori, plenty of information about its asymptotics for $x \to 0$. In fact, for example, a careful analysis shows that thanks to the structure of the matrix M_0, by fixing the asymptotics of f_2 (which is a simple double bubble) we fix the asymptotic constant term of f_8 (which involves a doublebox).

Nevertheless the $x \to 0$ limit for the last two master integrals is more complicated and therefore determining $g_7(\epsilon)$ and $g_8(\epsilon)$ is not as easy as for the simpler topologies. A more efficient way of fixing these constants is by inspecting the behaviour of f_7 and f_8 at $x = -1$. At this kinematic point we can impose the physical requirement that the integrals, being planar, do not possess branch cuts in the u channel, that is for $s = -t, x = -1$. Indeed the alphabet of the solution allows in principle harmonic polylogarithms with indices -1 in the first slots which are individually singular at that point. However, the full result for the integrals should be free of such branch points. Since the doublebox term in f_7 is multiplied by $(s + t)$ and is expected to be regular in $s = -t$, we can fix $g_7(\epsilon)$, order by order, by demanding that $f_7(x) \to f_3(-1) = g_3(\epsilon)$ when $x \to -1$ (c.f. (3.5) and (3.9)). Then we can fix the n'th term of the expansion of $g_8(\epsilon)$ appearing at order n, by inspecting the analytic structure at order $n + 1$ and in particular extracting the coefficients of the $\log(x + 1)$ singular terms. Again, imposing that this coefficient vanishes fixes $g_8(\epsilon)$ order by order.
An even more powerful tool for fixing the constant term of $g_8(\epsilon)$ is the following. A careful analysis of the Mellin-Barnes representation of f_7 and f_8 shows, without computing the details, that in the asymptotic limit of $x \to 0$ there is no x^ϵ scaling of those two functions. On the other hand, according to (3.21), the asymptotic vector f_L contains a term with the x^ϵ scaling that is multiplied by $f_L^B(\epsilon)$. Since

$$f_L^B(\epsilon) = \frac{1}{3}(g_7(\epsilon) - 2g_8(\epsilon) - 4g_6(\epsilon)) \ (0, 0, 0, 0, 0, 1, -1)^t,$$

(3.22)

we impose that $g_8(\epsilon) = \frac{1}{2}g_7(\epsilon) - 2g_6(\epsilon)$ so that the x^ϵ scaling vanishes. Using this condition we are able to fix the integration constant of f_8 directly at order n, instead of having to extract the divergent behaviour at order $n + 1$, as outlined above.

Instead of solving the system from a particular base point as an evolution operator as we did above, one could also solve (3.11) directly in terms of harmonic polylogarithms using their definition up to an integration constant that we can fix similarly by using the $x = -1$ limit. We compared with such an alternative method as a cross-check of our results. In performing the relevant limits we have used diffusively the HPL.m package [38, 39].

Equipped with this procedure and its cross-checks we have determined a solution up to order 9 in terms of harmonic polylogarithms, which the interested reader can find in electronic format in the ancillary file doublebox6d.m. The results are presented in such a way that to be directly fed to HPL.m. As an example, here we show the result for f_8 at order 6

$$f_8^{(6)} = -45H_{-1, -1, -1, -1, 0, 0}(x) + 84H_{-1, -1, -1, 0, 0, 0}(x) + 46H_{-1, -1, -2, 0, 0}(x) +$$

$$- 108H_{-1, -1, 0, 0, 0, 0}(x) + 58H_{-1, -2, -1, 0, 0}(x) - 88H_{-1, -2, 0, 0, 0}(x) - 52H_{-1, -3, 0, 0}(x) +$$

$$+ 96H_{-1, 0, 0, 0, 0, 0}(x) + 44H_{-2, -1, -1, 0, 0}(x) - 80H_{-2, -1, 0, 0, 0}(x) - 44H_{-2, -2, 0, 0}(x) +$$

$$+ 96H_{-2, 0, 0, 0, 0}(x) - 56H_{-3, -1, 0, 0}(x) + 80H_{-3, 0, 0, 0}(x) + 48H_{-4, 0, 0}(x) - 80H_{0, 0, 0, 0, 0}(x) +$$

$$+ \pi^2 \left(- \frac{45}{2} H_{-1, -1, -1, -1}(x) + \frac{43}{2} H_{-1, -1, -1, 0}(x) + 23H_{-1, -1, -2}(x) - \frac{109}{6} H_{-1, -1, 0, 0}(x) +$$

$$+ 29H_{-1, -2, -1}(x) - \frac{73}{3} H_{-1, -2, 0}(x) - 26H_{-1, -3}(x) + \frac{44}{3} H_{-1, 0, 0, 0}(x) + 22H_{-2, -1, -1}(x) +$$

$$- \frac{62}{3} H_{2, -1, 0}(x) - 22H_{2, -2, -2}(x) + \frac{50}{3} H_{2, 0, 0}(x) - 28H_{3, -1}(x) + \frac{68}{3} H_{3, 0}(x) +$$

$$+ 24H_{4, -1}(x) - \frac{34}{3} H_{0, 0, 0, 0}(x) \right) + \zeta(3) \left(- 45H_{-1, -1, -1}(x) + 37H_{-1, -1, 0}(x) +$$

$$+ 58H_{-1, -2}(x) - 6H_{-1, 0, 0}(x) + 44H_{-2, -1}(x) - 36H_{-2, 0}(x) - 56H_{-3}(x) - \frac{20}{3} H_{0, 0, 0}(x) +$$

$$+ \pi^4 \left(- \frac{83}{120} H_{-1, -1}(x) + \frac{127}{180} H_{-1, 0}(x) + \frac{59}{90} H_{-2}(x) - \frac{179}{360} H_{0, 0}(x) \right) +$$

$$- 7 -$$
\[+ \zeta(5)(3H_0(x) - 44H_{-1}(x)) + \pi^2\zeta(3)(14H_{-1}(x) - \frac{167}{18}H_0(x)) + \frac{996240\zeta(3)^2 - 107\pi^6}{30240} \]

(3.23)

At lower orders these results can be simplified considerably and expressed in terms of ordinary polylogarithms. This might be helpful for some applications, but we have refrained from doing this in the present case, as the form in terms of HPL’s makes the iterative structure of the result more manifest. The constant for the results at order 8 features the harmonic sum \(S_{5,3}(\infty) = \zeta(8) + \zeta(5,3) \), along with other products of simple zeta values. Starting from order 9 several MZV’s (Multiple Zeta Values) appear, whose identities in terms of a reduced set of constants are not tabulated in HPL.m and that we leave indicated in the HPL.m format.

We have performed successful numerical checks of our results using FIESTA [40, 41].

4 Conclusions

In this note we have explored the use of differential equations in canonical form away from four dimensions, finding that the method, as expected, can be successfully applied. In particular we have focussed on the massless planar doublebox in six dimensions. We have determined a basis of master integrals of uniform transcendentality which casts the system into canonical form and we solved the system of equations up to order 9. We have provided the necessary boundary conditions order by order, by implementing the physical requirement that the integrals be regular at \(x = -1 \). As a byproduct, we have proved that these integrals can all be expressed in terms of HPL only. Apart from testing the method, the results contained in this paper might be useful for applications to scattering in six dimensions, which has been the topic of some recent papers [42–48]. In particular, they could be used to perform tests of a fresh conjecture on a BDS exponentiation [49] of dual conformally invariant [50–52] amplitudes in six dimensions and a possible relation to those of \(\mathcal{N} = 4 \) SYM theory [53].

Finally it would be interesting to extend the analysis of this paper to other dimensions. In particular three dimensions could be a stimulating setting, given the existence of various perturbative results on four-point loop amplitudes [54–63].

Acknowledgements

We thank Andi Brandhuber for discussions. MB particularly thanks Joe Hayling and Rodolfo Panerai for extra CPU’s. The work of MB was supported in part by the Science and Technology Facilities Council Consolidated Grant ST/L000415/1 String theory, gauge theory & duality.
A Harmonic polylogarithms

The results of the integrals of this paper are expressed in terms of harmonic polylogarithms, whose definition we review in this appendix. Harmonic polylogarithms \([37]\) \(H_{a_1,a_2,...,a_n}(x)\), with indices \(a_i \in \{1, 0, -1\}\), are constructed in a recursive manner as follows

\[
H_{a_1,a_2,...,a_n}(x) = \int_0^x f_{a_1}(t) H_{a_2,...,a_n}(t) \, dt
\]

(A.1)

where

\[
f_{\pm 1}(x) = \frac{1}{1 \mp x}, \quad f_0(x) = \frac{1}{x}
\]

\[
H_{\pm 1}(x) = \mp \log(1 \mp x) \quad H_0(x) = \log x
\]

(A.2)

and at least one of the indices \(a_i\) is non-zero. When all indices vanish the definition reads

\[
H_{0,0,...,0}(x) = \frac{1}{n!} \log^n x
\]

(A.3)

We also use the so called \(m\)-notation \([37]\) in which integers different form \(\{-1, 0, 1\}\) appear as indexes of the \(H\) functions. A non-null integer \(m\) means that there are \(|m| - 1\) zeros to the left of that (non-null) index. For example \(H_{-3,1,2}(x) = H_{0,0,-1,1,0,1}(x)\).

B System asymptotics

The asymptotic vector is defined in (3.17). We have that

\[
f_L(x, \epsilon) = f_L^A(\epsilon) + x f_L^B(\epsilon) + x^{-2 \epsilon} f_L^C(\epsilon) + x^{-2 \epsilon} \log x f_L^D(\epsilon)
\]

(B.1)

with

\[
f_L^A(\epsilon) = \begin{pmatrix}
0 \\
g_2(\epsilon) \\
g_3(\epsilon) \\
g_4(\epsilon) \\
-\frac{1}{5} g_4(\epsilon) \\
-\frac{2}{5} g_2(\epsilon) \\
0 \\
\frac{1}{4} g_2(\epsilon)
\end{pmatrix}, \quad f_L^B(\epsilon) = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
\frac{1}{3} g_7(\epsilon) - \frac{2}{3} g_8(\epsilon) - \frac{4}{3} g_6(\epsilon) \\
-\frac{1}{3} g_7(\epsilon) + \frac{2}{3} g_8(\epsilon) + \frac{4}{3} g_6(\epsilon)
\end{pmatrix}
\]
\[
 f^C_L(\epsilon) = \begin{pmatrix}
 g_1(\epsilon) \\
 0 \\
 0 \\
 g_5(\epsilon) + \frac{1}{8} g_4(\epsilon) \\
 g_6(\epsilon) + \frac{1}{4} g_2(\epsilon) \\
 \frac{2}{3} (g_7(\epsilon) + g_8(\epsilon) + 2 g_6(\epsilon)) \\
 \frac{1}{3} (g_7(\epsilon) + g_8(\epsilon) - 4 g_6(\epsilon) - \frac{2}{3} g_2(\epsilon)) \\
 \end{pmatrix}, \quad \text{and} \\
 f^D_L(\epsilon) = \begin{pmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 \frac{1}{4} \epsilon g_1(\epsilon) \\
 \frac{1}{3} \epsilon g_1(\epsilon) \\
 \epsilon (2 g_1(\epsilon) - g_2(\epsilon) + g_4(\epsilon) + 8 g_5(\epsilon) - 8 g_6(\epsilon)) \\
 \epsilon (\frac{1}{2} g_1(\epsilon) + \frac{1}{2} g_4(\epsilon) + 4 g_5(\epsilon) - 4 g_6(\epsilon) - \frac{1}{2} g_2(\epsilon)) \\
 \end{pmatrix} \\
 \text{(B.2)}
\]

Comparing these expressions with the actual asymptotic expansion for \(x \to 0 \) of the first six Feynman integrals we may fix \(g_1(\epsilon) - g_6(\epsilon) \) exactly by computing them by hand. We obtain

\[
 g_1(\epsilon) = g_2(\epsilon) = e^{2\gamma} \frac{\Gamma^3(1-\epsilon) \Gamma(1+2\epsilon)}{\Gamma(1-3\epsilon)}
\]

\[
 g_3(\epsilon) = \frac{\epsilon e^{2\gamma} \Gamma^4(1-\epsilon) \Gamma^2(\epsilon+1)}{\Gamma^2(1-2\epsilon)}
\]

\[
 g_4(\epsilon) = \frac{\epsilon e^{2\gamma} \Gamma(1-2\epsilon) \Gamma(1-\epsilon)^2 \Gamma(\epsilon+1) \Gamma(2\epsilon+1)}{\Gamma(1-3\epsilon)}
\]

\[
 g_5(\epsilon) = \frac{g_1(\epsilon)}{4} \left(\frac{1}{2} - \frac{\Gamma(1-2\epsilon) \Gamma(\epsilon+1)}{2\Gamma(1-\epsilon)} + \right.
\]

\[
 \left. + \epsilon (\psi^{(0)}(1-\epsilon) - \psi^{(0)}(2\epsilon+1) + \psi^{(0)}(1-2\epsilon) + \gamma) \right)
\]

\[
 g_6(\epsilon) = \frac{g_1(\epsilon)}{4} \epsilon \left(-\psi^{(0)}(2\epsilon+1) + 2\psi^{(0)}(1-2\epsilon) + \gamma \right)
\]

all six \(g_i(\epsilon) \) functions have uniform transcendentaly.

The functions \(g_7(\epsilon) \) and \(g_8(\epsilon) \) that we fixed up to order 9 using the \(x \to -1 \) limit read

\[
 g_7(\epsilon) = 1 - 13 \zeta_2 \epsilon^2 - \frac{44 \zeta_3 \epsilon^3}{3} - \frac{175 \zeta_4 \epsilon^4}{4} + \left(\frac{362 \zeta_2 \zeta_3}{3} - \frac{292 \zeta_5}{5} \right) \epsilon^5
\]
\begin{align*}
&+ \left(\frac{977 \zeta_3^2}{9} + \frac{1423 \zeta_6}{16} \right) \epsilon^6 + \left(\frac{1598 \zeta_3 \zeta_4}{3} + \frac{3446 \zeta_2 \zeta_5}{5} - \frac{1416 \zeta_7}{7} \right) \epsilon^7 \\
&+ \left(-48 \zeta_{5,3}^2 + \frac{5009}{9} \zeta_2 \zeta_3^2 + \frac{14318 \zeta_5 \zeta_3}{15} + \frac{479729 \zeta_8}{192} \right) \epsilon^8 + O \left(\epsilon^9 \right) \quad \text{(B.3)}
\end{align*}

and

\begin{align*}
g_8(\epsilon) &= \frac{1}{2} - \frac{7 \zeta_2 \epsilon^2}{2} - \frac{16 \zeta_3 \epsilon^3}{3} - \frac{139 \zeta_4 \epsilon^4}{8} + \left(\frac{79 \zeta_2 \zeta_3}{3} - \frac{106 \zeta_5}{5} \right) \epsilon^5 \\
&+ \left(\frac{593 \zeta_3^2}{18} - \frac{107 \zeta_6}{32} \right) \epsilon^6 + \left(\frac{17}{90} \zeta_2 \left(402 \zeta_2 \zeta_3 + 918 \zeta_5 \right) - \frac{484 \zeta_7}{7} \right) \epsilon^7 + \\
&+ \left(-\frac{1553 \zeta_2 \zeta_3^2}{18} + \frac{4247 \zeta_3 \zeta_5}{15} - 24 \zeta_{5,3} + \frac{284969 \zeta_8}{384} \right) \epsilon^8 + O \left(\epsilon^9 \right) \quad \text{(B.4)}
\end{align*}

where we omit the order 9 for shortness.

References

[1] A. V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B254 (1991) 158–164.

[2] A. V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B267 (1991) 123–127. [Erratum: Phys. Lett.B295,409(1992)].

[3] Z. Bern, L. J. Dixon, and D. A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B412 (1994) 751–816, [hep-ph/9306240].

[4] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A110 (1997) 1435–1452, [hep-th/9711188].

[5] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B580 (2000) 485–518, [hep-ph/9912329].

[6] T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: The Planar topologies, Nucl. Phys. B601 (2001) 248–286, [hep-ph/0008287].

[7] T. Gehrmann and E. Remiddi, Two loop master integrals for gamma* → 3 jets: The Nonplanar topologies, Nucl. Phys. B601 (2001) 287–317, [hep-ph/0101124].

[8] J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601, [arXiv:1304.1806].

[9] J. M. Henn, A. V. Smirnov, and V. A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128, [arXiv:1306.2799].
[10] J. M. Henn and V. A. Smirnov, *Analytic results for two-loop master integrals for Bhabha scattering I*, JHEP 11 (2013) 041, [arXiv:1307.4083].

[11] J. M. Henn, A. V. Smirnov, and V. A. Smirnov, *Evaluating single-scale and/or non-planar diagrams by differential equations*, JHEP 03 (2014) 088, [arXiv:1312.2588].

[12] F. Caola, J. M. Henn, K. Melnikov, and V. A. Smirnov, *Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons*, JHEP 09 (2014) 043, [arXiv:1404.5590].

[13] M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert, and L. Tancredi, *Magnus and Dyson Series for Master Integrals*, JHEP 03 (2014) 082, [arXiv:1401.2979].

[14] T. Gehrmann, A. von Manteuffel, L. Tancredi, and E. Weihs, *The two-loop master integrals for $q\bar{q} \rightarrow VV$*, JHEP 06 (2014) 032, [arXiv:1404.4853].

[15] A. von Manteuffel, R. M. Schabinger, and H. X. Zhu, *The two-loop soft function for heavy quark pair production at future linear colliders*, Phys. Rev. D92 (2015), no. 4 045034, [arXiv:1408.5134].

[16] F. Dulat and B. Mistlberger, *Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO*, arXiv:1411.3586.

[17] T. Gehrmann, A. von Manteuffel, and L. Tancredi, *The two-loop helicity amplitudes for $q\bar{q} \rightarrow V_1 V_2 \rightarrow 4$ leptons*, JHEP 09 (2015) 128, [arXiv:1503.0481].

[18] J. M. Henn, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, *A planar four-loop form factor and cusp anomalous dimension in QCD*, JHEP 05 (2016) 066, [arXiv:1604.0312].

[19] R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello, and V. A. Smirnov, *Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence*, arXiv:1609.0668.

[20] J. M. Henn, A. V. Smirnov, and V. A. Smirnov, *Analytic results for planar three-loop integrals for massive form factors*, arXiv:1611.0652.

[21] R. N. Lee, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, *Four-loop photon quark form factor and cusp anomalous dimension in the large-N_c limit of QCD*, arXiv:1612.0438.

[22] M. G. Kozlov and R. N. Lee, *One-loop pentagon integral in d dimensions from differential equations in ϵ-form*, JHEP 02 (2016) 021, [arXiv:1512.0116].

[23] M. G. Kozlov, *One-loop pentagon integral with one offshell leg in d dimensions from differential equations in ϵ-form*, arXiv:1612.0356.
F. V. Tkachov, *A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions*, Phys. Lett. B100 (1981) 65–68.

K. G. Chetyrkin and F. V. Tkachov, *Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops*, Nucl. Phys. B192 (1981) 159–204.

S. Laporta and E. Remiddi, *The Analytical value of the electron (g-2) at order alpha**3 in QED*, Phys. Lett. B379 (1996) 283–291, [hep-ph/9602417].

S. Laporta, *High precision calculation of multiloop Feynman integrals by difference equations*, Int. J. Mod. Phys. A15 (2000) 5087–5159, [hep-ph/0102033].

A. V. Smirnov, *Algorithm FIRE – Feynman Integral REDuction*, JHEP 10 (2008) 107, [arXiv:0807.3243].

A. V. Smirnov and V. A. Smirnov, *FIRE4, LiteRed and accompanying tools to solve integration by parts relations*, Comput. Phys. Commun. 184 (2013) 2820–2827, [arXiv:1302.5885].

A. V. Smirnov, *FIRE5: a C++ implementation of Feynman Integral REDuction*, Comput. Phys. Commun. 189 (2015) 182–191, [arXiv:1408.2372].

R. N. Lee, *Presenting LiteRed: a tool for the Loop InTEgrals REDuction*, arXiv:1212.2685.

R. N. Lee, *LiteRed 1.4: a powerful tool for reduction of multiloop integrals*, J. Phys. Conf. Ser. 523 (2014) 012059, [arXiv:1310.1145].

V. A. Smirnov and O. L. Veretin, *Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators*, Nucl. Phys. B566 (2000) 469–485, [hep-ph/9907385].

C. Anastasiou, J. B. Tausk, and M. E. Tejeda-Yeomans, *The On-shell massless planar double box diagram with an irreducible numerator*, Nucl. Phys. Proc. Suppl. 89 (2000) 262–267, [hep-ph/0005328].

D. I. Kazakov, *Evaluation of Multi-Box Diagrams in Six Dimensions*, JHEP 04 (2014) 121, [arXiv:1402.1024].

A. Primo and L. Tancredi, *On the maximal cut of Feynman integrals and the solution of their differential equations*, arXiv:1610.0839.

E. Remiddi and J. A. M. Vermaseren, *Harmonic polylogarithms*, Int. J. Mod. Phys. A15 (2000) 725–754, [hep-ph/9905237].

D. Maitre, *HPL, a mathematica implementation of the harmonic polylogarithms*, Comput. Phys. Commun. 174 (2006) 222–240, [hep-ph/0507152].

D. Maitre, *Extension of HPL to complex arguments*, Comput. Phys. Commun. 183 (2012) 846, [hep-ph/0703052].
A. V. Smirnov and M. N. Tentyukov, *Feynman Integral Evaluation by a Sector Decomposition Approach (FIESTA)*, *Comput. Phys. Commun.* **180** (2009) 735–746, [arXiv:0807.4129].

A. V. Smirnov, V. A. Smirnov, and M. Tentyukov, *FIESTA 2: Parallelizable multiloop numerical calculations*, *Comput. Phys. Commun.* **182** (2011) 790–803, [arXiv:0912.0158].

C. Cheung and D. O’Connell, *Amplitudes and Spinor-Helicity in Six Dimensions*, *JHEP* **07** (2009) 075, [arXiv:0902.0981].

Z. Bern, J. J. Carrasco, T. Dennen, Y.-t. Huang, and H. Ita, *Generalized Unitarity and Six-Dimensional Helicity*, *Phys. Rev.* **D83** (2011) 085022, [arXiv:1010.0494].

Y.-t. Huang and A. E. Lipstein, *Amplitudes of 3D and 6D Maximal Superconformal Theories in Supertwistor Space*, *JHEP* **10** (2010) 007, [arXiv:1004.4735].

A. Brandhuber, D. Korres, D. Koschade, and G. Travaglini, *One-loop Amplitudes in Six-Dimensional (1,1) Theories from Generalised Unitarity*, *JHEP* **02** (2011) 077, [arXiv:1010.1515].

T. Dennen and Y.-t. Huang, *Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes*, *JHEP* **01** (2011) 140, [arXiv:1010.5874].

L. V. Bork, D. I. Kazakov, and D. E. Vlasenko, *On the amplitudes in N=(1,1) D=6 SYM*, *JHEP* **11** (2013) 065, [arXiv:1308.0117].

L. V. Bork, D. I. Kazakov, and D. E. Vlasenko, *Challenges of D = 6 N = (1, 1) SYM theory*, *Phys. Lett.* **B734** (2014) 111–115, [arXiv:1404.6998].

Z. Bern, L. J. Dixon, and V. A. Smirnov, *Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond*, *Phys.Rev.* **D72** (2005) 085001, [hep-th/0505205].

J. Drummond, J. Henn, V. Smirnov, and E. Sokatchev, *Magic identities for conformal four-point integrals*, *JHEP* **0701** (2007) 064, [hep-th/0607160].

J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, *Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes*, *Nucl.Phys.* **B826** (2010) 337–364, [arXiv:0712.1223].

G. Korchemsky, J. Drummond, and E. Sokatchev, *Conformal properties of four-gluon planar amplitudes and Wilson loops*, *Nucl.Phys.* **B795** (2008) 385–408, [arXiv:0707.0243].

J. Bhattacharya and A. E. Lipstein, *6d Dual Conformal Symmetry and Minimal Volumes in AdS*, [arXiv:1611.0217].

[40] A. V. Smirnov and M. N. Tentyukov, *Feynman Integral Evaluation by a Sector Decomposition Approach (FIESTA)*, *Comput. Phys. Commun.* **180** (2009) 735–746, [arXiv:0807.4129].

[41] A. V. Smirnov, V. A. Smirnov, and M. Tentyukov, *FIESTA 2: Parallelizeable multiloop numerical calculations*, *Comput. Phys. Commun.* **182** (2011) 790–803, [arXiv:0912.0158].

[42] C. Cheung and D. O’Connell, *Amplitudes and Spinor-Helicity in Six Dimensions*, *JHEP* **07** (2009) 075, [arXiv:0902.0981].

[43] Z. Bern, J. J. Carrasco, T. Dennen, Y.-t. Huang, and H. Ita, *Generalized Unitarity and Six-Dimensional Helicity*, *Phys. Rev.* **D83** (2011) 085022, [arXiv:1010.0494].

[44] Y.-t. Huang and A. E. Lipstein, *Amplitudes of 3D and 6D Maximal Superconformal Theories in Supertwistor Space*, *JHEP* **10** (2010) 007, [arXiv:1004.4735].

[45] A. Brandhuber, D. Korres, D. Koschade, and G. Travaglini, *One-loop Amplitudes in Six-Dimensional (1,1) Theories from Generalised Unitarity*, *JHEP* **02** (2011) 077, [arXiv:1010.1515].

[46] T. Dennen and Y.-t. Huang, *Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes*, *JHEP* **01** (2011) 140, [arXiv:1010.5874].

[47] L. V. Bork, D. I. Kazakov, and D. E. Vlasenko, *On the amplitudes in N=(1,1) D=6 SYM*, *JHEP* **11** (2013) 065, [arXiv:1308.0117].

[48] L. V. Bork, D. I. Kazakov, and D. E. Vlasenko, *Challenges of D = 6 N = (1, 1) SYM theory*, *Phys. Lett.* **B734** (2014) 111–115, [arXiv:1404.6998].

[49] Z. Bern, L. J. Dixon, and V. A. Smirnov, *Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond*, *Phys.Rev.* **D72** (2005) 085001, [hep-th/0505205].

[50] J. Drummond, J. Henn, V. Smirnov, and E. Sokatchev, *Magic identities for conformal four-point integrals*, *JHEP* **0701** (2007) 064, [hep-th/0607160].

[51] J. Drummond, J. Henn, G. Korchemsky, and E. Sokatchev, *Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes*, *Nucl.Phys.* **B826** (2010) 337–364, [arXiv:0712.1223].

[52] G. Korchemsky, J. Drummond, and E. Sokatchev, *Conformal properties of four-gluon planar amplitudes and Wilson loops*, *Nucl.Phys.* **B795** (2008) 385–408, [arXiv:0707.0243].

[53] J. Bhattacharya and A. E. Lipstein, *6d Dual Conformal Symmetry and Minimal Volumes in AdS*, [arXiv:1611.0217].
[54] A. Agarwal, N. Beisert, and T. McLoughlin, *Scattering in Mass-Deformed N=4 Chern-Simons Models*, JHEP 0906 (2009) 045, [arXiv:0812.3367].

[55] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, C. A. Ratti, et al., *From Correlators to Wilson Loops in Chern-Simons Matter Theories*, JHEP 1106 (2011) 118, [arXiv:1103.3675].

[56] W.-M. Chen and Y.-t. Huang, *Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory*, JHEP 1111 (2011) 057, [arXiv:1107.2710].

[57] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, *Scattering Amplitudes/Wilson Loop Duality In ABJM Theory*, JHEP 1201 (2012) 056, [arXiv:1107.3139].

[58] M. S. Bianchi, M. Leoni, A. Mauri, S. Penati, and A. Santambrogio, *Scattering in ABJ theories*, JHEP 1112 (2011) 073, [arXiv:1110.0738].

[59] M. S. Bianchi, M. Leoni, and S. Penati, *An All Order Identity between ABJM and N=4 SYM Four-Point Amplitudes*, JHEP 1204 (2012) 045, [arXiv:1112.3649].

[60] M. S. Bianchi and M. Leoni, *N=8 SYM vs. N=6 Chern-Simons: Four-point amplitudes at two-loops*, JHEP 1303 (2013) 101, [arXiv:1210.4925].

[61] M. S. Bianchi, M. Leoni, M. Leoni, A. Mauri, S. Penati, et al., *ABJM amplitudes and WL at finite N*, JHEP 1309 (2013) 114, [arXiv:1306.3243].

[62] L. Bianchi and M. S. Bianchi, *Non-planarity through unitarity in ABJM*, Phys.Rev. D89 (2014), no. 12 125002, [arXiv:1311.6464].

[63] M. S. Bianchi and M. Leoni, *On the ABJM four-point amplitude at three loops and BDS exponentiation*, JHEP 1411 (2014) 077, [arXiv:1403.3398].