Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-phase High-performance Liquid Chromatography in Bulk and Tablet Dosage Forms

Sufiyan Ahmad Raees Ahmad¹, Lalit Patil¹, Mohammed Rageeb Mohammed Usman², Mohammad Imran³, Rashid Akhtar⁴

¹Department of Quality Assurance, Gangamai College of Pharmacy, Dhule, ²Department of Pharmacognosy, Smt. S. S. Patil College of Pharmacy, Chopda, ³Department of Pharmaceutical Chemistry, KBHSS Trusts Institute of Pharmacy, ⁴Department of Pharmacognosy, Royal College of Pharmaceutical Education and Research, Nasik, Maharashtra, India

INTRODUCTION

Abacavir (ABAC) and lamivudine (LAMI) are synthetic nucleoside analogs that show a potent and synergistic effect on the inhibition of human immunodeficiency virus-1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). HIV encodes at least three enzymes: protease, reverse transcriptase, and endonuclease. ABAC and LAMI belong to the class of nucleoside reverse transcriptase inhibitors (NRTIs). New therapeutic strategy of AIDS treatment requires the combination of these antiretroviral (ARV) drugs. The introduction of highly effective combination regimens of ARV drugs has led to substantial improvements in morbidity and mortality. ABAC tablets in combination with other ARV agents in tablet form are indicated for the treatment of HIV-1 infection. ABAC should not be added as a single agent when ARV regimens are changed due to loss of virologic response.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Raees Ahmad SA, Patil L, Mohammed Usman MR, Imran M, Akhtar R. Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-phase High-performance Liquid Chromatography in Bulk and Tablet Dosage Forms. Phcog Res 2018:10:92-7.
Intracellularly, ABAC is converted by cellular enzymes to the active metabolite, carbovir triphosphate, an analog of deoxyguanosine-5'-triphosphate. Intracellularly, LAMI is phosphorylated to its active 5'-triphosphate metabolite, lamivudine triphosphate. Chemically, ABAC sulfate is (1S, cis)-4-[2-amino-6-(cyclopropyl amino)-9H-purin-9-yl]-2-cyclopentene-1-methanol sulfate, and LAMI is (2R, cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one. Figures 1 and 2 show the structures of ABAC and LAMI, respectively. Numerous analytical methods have been employed for the quantitative determination of single- or multi-component NRTIs in pharmaceutical dosage forms. These methods include ultraviolet (UV)-visible spectrophotometric high-performance thin-layer chromatography and high-performance liquid chromatography.

Table 1: Details of chromatogram of standard mixture abacavir and lamivudine

Name of drug	RT (min)	Area	Plates	Tailing factor
Abacavir	3.48	66.22	4943.3	1.4286
Lamivudine	7.21	33.76	3663.5	1.3182

RT: Retention time
HPLC was considered the best method of assay since this method is the most accurate of all chromatographic and other separation methods. The reported method differs with respect to extraction procedure, eluent used for reverse-phase HPLC (RP-HPLC), and UV detection wavelength. The development and validation of a simple, rapid, accurate, and precise method of assay for ABAC and LAMI in tablet formulations are now reported in this work using RP-HPLC with UV detection at 245 nm.

MATERIALS AND METHODS

Materials and reagents
The analysis of the drug was carried out on Youngline (S.K.) Gradient System UV Detector. This study was equipped with reverse phase (Grace) C18 column (4.6 mm × 250 mm; 5 µm), a SP930D pump, a 20 µl injection loop, UV730D Absorbance detector, and running autochro-3000 software. ABAC and LAMI were procured from CIPLA. Orthophosphoric acid (OPA), methanol, acetonitrile (HPLC Grade Merck Specialties Pvt. Ltd. Shiv Sager Estate “A” Worli, Mumbai.), water, 0.45 µm filter (Millipore, Bangalore) were also used. A combination of ABAC (600 mg) and LAMI (300 mg) in tablet formulation was procured from local pharmacy (ABAMUNE-L, Cipla).

Chromatographic conditions
Column C18 (250 mm × 4.6 mm); particle size packing 5 µm; detection wavelength of 245 nm; flow rate 1.00 ml/min; temperature ambient; sample size 20 µl; mobile phase methanol: water (OPA 0.05%) (83:17); run time of 10 min.

Table 2: Analysis of marketed formulation

Serial number	Amount present in mg	Amount found in mg	Percentage label claim			
	Abacavir	Lamivudine	Abacavir	Lamivudine	Abacavir	Lamivudine
1	60	30	60.96	30.43	101.60	101.45
2	60	30	60.83	30.80	101.38	102.67
Mean±SD	-	-	-	-	101.49±0.27	103.67±0.27
%RSD	-	-	-	-	0.27	0.26

SD: Standard deviation; RSD: Relative standard deviation

Table 3: Details of chromatogram of abacavir and lamivudine in tablet formulation

Name of drug	RT (min)	Area (%)	Theoretical plates	Tailing factor
Abacavir	3.5	66.82	4990.7	1.5833
Lamivudine	7.3	30.72	2047.9	1.1364

RT: Retention time
Preparation of standard stock solution
20 mg of ABAC and 10 mg of LAMI were weighed accurately and transferred to a 10-ml volumetric flask dissolved in methanol and diluted to 10 ml with the mobile phase (methanol: water, 83:17 v/v) to give a stock solution of 2000 μg/ml ABAC and 1000 μg/ml LAMI. Table 1 shows the details of the chromatogram of standard mixture ABAC and LAMI. Figures 3 and 4 show the chromatogram of standard ABAC and LAMI. Figure 5 shows the chromatogram of standard mixture of ABAC and LAMI.

Method development and validation
Serial dilutions were done to prepare various concentration stock working standard of various concentrations was prepared by taking aliquots of standard solution and diluted to get required concentration for calibration plot and which was injected.

Assay preparation for commercial formulation
For analysis of the tablet dosage form, 20 tablets were weighed individually and their average weight was determined. After that, they were crushed to fine powders and powder equivalent to 1 mg was taken and transferred to 10 ml volumetric flask and diluted with 10 ml methanol; from the above solution, 0.2 ml was taken and diluted to 10 ml.

Table 4: Linearity study

Concentration (μg/ml)	Abacavir	Lamivudine	Area
	Abacavir	lamivudine	
20	10	214.62	146.535
40	20	465.89	255.03
60	30	731.9146	380.505
80	40	970.18	483.445
100	50	1216.433	592.5555

Table 5: Linearity of abacavir

Concentration	Average peak area
20	216.689
40	469.3872
60	736.5661
80	963.5581
100	1210.895

Table 6: Linearity of lamivudine

Concentration	Average peak area
10	146.535
20	255.03
30	380.505
40	483.445
50	592.5555

Table 7: Recovery studies of abacavir and lamivudine

Level of recovery (%)	Abacavir	Lamivudine	Abacavir	Lamivudine	Abacavir	Lamivudine
Amount present (mg)	20	10	20	10	10	20
Amount of standard added (mg)	16	8	20	10	12	24
Percentage recovery	97.25	98.41	99.45	101.64	99.26	99.62
	100.00	101.06	100.40	99.58	100.94	100.63
the mark with methanol: water (83:17); the amounts of ABAC and LAMI per tablet were calculated from the calibration curve. Analysis procedure was repeated five times with tablet formulation. Results are shown in Tables 2 and 3 that show the analysis of marketed formulation and details of chromatogram of ABAC and LAMI in tablet formulation. Figure 6 shows the chromatogram of ABAC and LAMI in tablet formulation.

RESULTS

Linearity and range

From ABAC and LAMI standard stock solution, different working standard solutions (20–100 μg/ml) were prepared in the mobile phase. Likewise from ABAC and LAMI standard stock solution, different working standard solutions (10–50 μg/ml) were prepared in the mobile phase. 20 μl of sample solution was injected onto the column using fixed volume loop injector. Chromatograms were recorded. The area for each concentration was recorded in Tables 4-6 that show linearity study. Figures 7 and 8 show the calibration curve of ABAC and LAMI, respectively.

Accuracy

Recovery studies were performed to validate the accuracy of developed method. To a preanalyzed tablet solution, a definite concentration of standard drug (80%, 100%, and 120%) was added and then its recovery was analyzed [Table 7]. Statistical validation of recovery studies is shown in Table 8 and Figures 9-11.

Table 8: Statistical validation of recovery studies

Level of recovery (%)	Drug	Mean percentage recovery±SD*	%RSD
80	Abacavir	35.78±0.31	0.87
100	Lamivudine	17.98±0.15	0.80
120	Abacavir	39.99±0.13	0.34
	Lamivudine	20±0.15	0.74

Denotes average of three determinations. SD: Standard deviation; RSD: Relative standard deviation

System suitability parameters

To ascertain the resolution and reproducibility of the proposed chromatographic system for estimation of ABAC (600 mg) and LAMI (300 mg), system suitability parameters were studied. The results are shown in Figure 12 and Table 9.

Precision

The method was established by analyzing various standards of ABAC and LAMI. All the solutions were analyzed thrice to record any intraday and interday variation in the result. The results obtained for interday and intraday variation are shown in Table 10 and Figure 13.

Robustness

The robustness is a measure of its capacity to remain unaffected by small and deliberate variations in method parameters and provides an indication of its reliability during normal usage; hence, the following are performed by slight variations in parameters. The assay content of the sample was measured by change in the flow rate of 0.90–1.10 ml/min. The results indicate that less variability in retention time and tailing factor were observed [Tables 11 and 12].

DISCUSSION

The proposed methods for simultaneous estimation of ABAC and LAMI in tablet dosage forms were found to be simple, accurate, economical, and rapid. The method was validated as per the International Conference on Harmonization Q2 (R1) guidelines. Standard calibration yielded correlation coefficient (r²) 0.999 for both ABAC and LAMI at all the selected wavelengths. The values of % relative standard deviation are within the prescribed limit of 2%, showing high precision of methods, and recovery was close to 100% for both drugs. Results of the analysis of pharmaceutical formulations reveal that the proposed method is suitable for their simultaneous determination, with virtually no interference of any additive present in pharmaceutical formulations. Hence, the above methods can be applied successfully for simultaneous estimation of ABAC and LAMI in formulations.

CONCLUSION

The developed HPLC methods in that linearity, precision, range, and robustness were found to be more accurate, precise, and reproducible. The methods were found to be simple and time saving. All proposed methods could be applied for routine analysis in quality control laboratories.

Acknowledgments

We are thankful to the Principal, Gangamai College of Pharmacy, Nagaon, Dist. Dhule, for providing necessary facilities for research work. They are also grateful to Cipla Ltd., Goa, for giving gift samples of pure drugs.

Table 8: Statistical validation of recovery studies

Level of recovery (%)	Drug	Mean percentage recovery±SD*	%RSD
80	Abacavir	35.78±0.31	0.87
100	Lamivudine	17.98±0.15	0.80
120	Abacavir	39.99±0.13	0.34
	Lamivudine	20±0.15	0.74

Denotes average of three determinations. SD: Standard deviation; RSD: Relative standard deviation

Table 9: System suitability parameters

System suitability parameters	Proposed method	
	Abacavir	Lamivudine
RT	3.4833	7.5667
Area	502.5529	256.7151
Theoretical plate number	4943.3	3527.6
Tailing factor	1.5000	0.8387

RT: Retention time

Table 10: Intra- and inter-day precision studies on high-performance liquid chromatography method for abacavir and lamivudine

Method	Drug	Concentration (μg/ml)	Intraday precision	Interday precision		
			Mean±SD	Percentage amount found	Mean±SD	Percentage amount found
RP-HPLC method	Abacavir	20	223.80	100.35	218.34	98.18
		60	725.68	100.85	740.74	102.88
		100	1179.89	97.11	1245.07	102.30
	Lamivudine	10	142.80	100.20	150.89	102.04
		30	380.18	102.57	377.38	101.73
		50	589.57	98.94	592.33	99.46

Mean of each 3 reading for HPLC method. HPLC: High-performance liquid chromatography; RP-HPLC: Reverse phase-HPLC; SD: Standard deviation
Table 11: Robustness study of abacavir

Parameters	Concentration	Amount of detected (mean±SD)	%RSD
Mobile phase composition			
84:16	60	6.38±1.01	0.88
82:18	60	10.77±1.5	1.48
Wavelength change (nm)			
244	60	4.70±0.89	0.59
246	60	9.17±1.4	1.28
Flow rate change (ml)			
0.90	60	2.85±0.41	0.38
1.10	60	5.70±0.74	0.80

SD: Standard deviation; RSD: Relative standard deviation

Table 12: Robustness study of lamivudine

Parameters	Concentration	Amount of detected (mean±SD)	%RSD
Mobile phase composition			
84:16	30	4.8±0.89	1.29
82:18	30	4.95±0.97	1.36
Wavelength change (nm)			
244	30	2.87±0.38	0.76
246	30	0.18±0.09	0.21
Flow rate change (ml)			
0.90	30	0.88±0.14	0.22
1.10	30	2.01±0.77	0.52

SD: Standard deviation; RSD: Relative standard deviation

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. WHO Public Assessment Report. Abacavir Sulfate, Lamivudine and Zidovudine Tablets 300mg/150mg/300mg. Part 7; 2009. p. 1-2.
2. Intracellularly, abacavir is converted by cellular enzymes to the active metabolite, carbovir triphosphate. Indian Pharmacopoeia 1996;1: A-68-70.
3. Srinivas Rao M, Ravi Kumar D, Vardhan SV, Ramachandran D. Development of validated spectrophotometric method for the assay of Abacavir sulfate in bulk and pharmaceutical dosage formulations. Int J Chemtech Res 2011;3:1200-2.
4. Venkatamahesh R, Dhachinamoorthi D. Visible spectrophotometric determination of abacavir sulphate in bulk drug and tablet dosage form. Int J Pharm Tech Res 2011;3:356-9.
5. Srinivasa G, Ram Reddy N, Chakravarthi IE. Validate spectrophotometric method for the determination of Abacavir sulfate in pharmaceutical preparations. Global J C 2011;S:172-8.
6. Sudha T, Ravikumar VR, Hemalatha PV. Validated HPTLC method for simultaneous determination of lamivudine and Abacavir sulphate in tablets dosage form. Int J Pharm Sci Res 2010;1:101-11.
7. Sparidans RW, Hoetelmans RM, Beijnen JH. Liquid chromatographic assay for simultaneous determination of abacavir and mycophenolic acid in human plasma using dual spectrophotometric detection. J Chromatogr B Biomed Sci Appl 2001;750:185-61.
8. Ravitch Jr, Moseley GC. High-performance liquid chromatographic assay for Acavir and its two major metabolites in human urine and cerebrospinal fluid. J Chromatogr 2001;762:165-73.
9. Aymard G, Legrand M, Trichereau N, Duquet B. Determination of twelve antiretroviral agents in human plasma sample using reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 2000;744:227-40.
10. Veldkamp IA, Sparidans WR, Hoetelmans WM, Beijnen HJ. Quantitative determination of Abacavir, a novel nucleoside reverse transcriptase inhibitor, in human plasma using isotropic RP-HPLC with ultraviolet detection. J Chromatogr 1999;734:123-8.
11. Anantha Kumar D, Srinivasa Rao G, Seshagiri Rao JV. Simultaneous determination of Lamivudine, Zidovudine and Abacavir in tablet dosage form by RP-HPLC method. E J Chem 2010;7:180-4.
12. Lewis SR, White CA, Bartlett MG. Simultaneous Determination of Abacavir and Zidovudine from rat tissue using HPLC with UV detection. J Chromatogr 2007;85:45-52.
13. Ozkan Y, Savaser A. Simple and reliable HPLC method of abacavir determination in pharmaceutical, human serum and drug dissolution studies from tablets. J Liquid Chrom Relat Technol 2005;28:23-37.
14. Raja T, Lakshmmana Rao A. Development and validation of RP-HPLC method for the estimation of abacavir, lamivudine and zidovudine in pharmaceutical dosage form. Int J Pharm Tech Res 2011;3:852-7.
15. Sudha T, Ravi Kumar VR, Hemalatha PV. RP-HPLC method for simultaneous estimation of lamivudine and abacavir sulfate in tablet form. Int J Pharm Biomed Res 2008;1:108-13.
16. ICH – Guidelines Q2A, Validation of Analytical Procedures: Definition and terminology (CPMP III/5626/94). Geneva, Switzerland; March, 1995. ICH – Guidelines Q2B, Validation of Analytical Procedures: Methodology, (CPMP/ ICH/281/95). Geneva, Switzerland; November, 1996.