Anikushin, Mikhail
Frequency theorem and inertial manifolds for neutral delay equations. (English)
Zbl 1527.35094
J. Evol. Equ. 23, No. 4, Paper No. 66, 61 p. (2023).

Summary: We study the infinite-horizon quadratic regulator problem for linear control systems in Hilbert spaces, where the cost functional is in some sense unbounded. Our motivation comes from delay equations with the feedback part containing discrete delays or, in other words, measurements given by δ-functionals, which are unbounded in L_2. Working in an abstract context in which such (and many others, including parabolic boundary control problems) equations can be treated, we obtain a version of the Frequency Theorem. It guarantees the existence of a unique optimal process and shows that the optimal cost is given by a quadratic Lyapunov-like functional. In our adjacent works it is shown that such functionals can be used to construct inertial manifolds and allow to treat and extend many works in the field in a unified manner. Here we concentrate on applications to delay equations and especially mention the works of R.A. Smith on developments of convergence theorems and the Poincaré-Bendixson theory; and also the works of Yu.A. Ryabov, R.D. Driver and C. Chicone on inertial manifolds for equations with small delays and their recent generalization for equations of neutral type given by S. Chen and J. Shen.

MSC:
35B42 Inertial manifolds
34K35 Control problems for functional-differential equations
34K40 Neutral functional-differential equations
37L45 Hyperbolicity, Lyapunov functions for infinite-dimensional dissipative dynamical systems
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
47D06 One-parameter semigroups and linear evolution equations

Keywords:
frequency theorem; delay equations; inertial manifolds; Lyapunov functionals

Full Text: DOI arXiv

References:
[1] Adams R.A. Sobolev Spaces. Academic Press (1975) · Zbl 0314.46030
[2] Anikushin M.M., Romanov A.O. Frequency conditions for the global stability of nonlinear delay equations with several equilibria. arXiv preprint, arXiv:2306.04716v2 (2023) · Zbl 1514.37101
[3] Anikushin M.M. Variational description of uniform Lyapunov exponents via adapted metrics on exterior products. arXiv preprint, arXiv:2304.05713v2 (2023)
[4] Anikushin M.M. Spectral comparison of compound cocycles generated by delay equations in Hilbert spaces. arXiv preprint, arXiv:2302.02537v2 (2023)
[5] Anikushin, MM; Romanov, AO. Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. Phys. D: Nonlinear Phenom., 445 (2023) · Zbl 1514.37101 · doi:10.1016/j.physd.2023.133653
[6] Anikushin M.M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates, Differ. Uravn. Protessy Upravl., 4, (2022) · Zbl 1511.47089
[7] Anikushin M.M. Inertial manifolds and foliations for asymptotically compact cocycles in Banach spaces. arXiv preprint, arXiv:2012.03821v3 (2022) · Zbl 1475.35074
[8] Anikushin, MM. On the compactness of solutions to certain operator inequalities arising from the Likhitarnikov-Yakubovich frequency theorem, Vestnik St. Petersb. Univ. Math., 54, 4, 301-310 (2021) · Zbl 07485526 · doi:10.1134/S1063454121040026
[9] Anikushin, MM. Frequency theorem for parabolic equations and its relation to inertial manifolds theory, J. Math. Anal. Appl., 505, 1 (2021) · Zbl 1475.35074 · doi:10.1016/j.jmaa.2021.125454
[10] Anikushin, MM. Almost automorphic dynamics in almost periodic cocycles with one-dimensional inertial manifold, Differ. Uravn. Protessy Upravl., 2, 13-48 (2021) · Zbl 1476.37031
[11] Anikushin, MM. A non-local reduction principle for cocycles in Hilbert spaces, J. Differ. Equations, 269, 9, 6699-6731 (2020) · Zbl 1506.47073 · doi:10.1016/j.jde.2020.05.011
[12] Anikushin, MM, On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations, Vestnik St. Petersb. Univ. Math., 52, 3, 234-243 (2019) · Zbl 1429.37016 · doi:10.1134/S1063454119030038

[13] Anikushin M.M., Reitmann V., Romanov A.O. Analytical and numerical estimates of the fractal dimension of forced quasiperiodic oscillations in control systems. · Zbl (Differ. Uravn. Protsessy Upravl.), 2 (2019), in Russian · Zbl 1422.93074

[14] Anikushin, MM, On the Smith reduction theorem for almost periodic ODEs satisfying the squeezing property, Rus. J. Nonlin. Dyn., 15, 1, 97-108 (2019) · Zbl 1420.34063

[15] Arov D.Z., Staffans O.J. The infinite-dimensional continuous time Kalman-Yakubovich-Popov inequality. · Zbl (Operator Theory: Advances and Applications), Birkhäuser Verlag Basel, Switzerland, 37-72 (2006) · Zbl 1111.47013

[16] Bátáki, A.; Piazzera, S., Semigroups for Delay Equations (2005), Wellesley: A K Peters, Wellesley

[17] Chicone, C., Inertial flows, slow flows, and combinatorial identities for delay equations, J. Dyn. Diff. Equat., 16, 3, 805-831

[18] Bátkai, A.; Piazzera, S., Semigroups for Delay Equations (2005), Wellesley: A K Peters, Wellesley

[19] Koksch, N.; Siegmund, S., Pullback attracting inertial manifolds for nonautonomous dynamical systems, J. Dyn. Differ. Equ.,

[20] Anikushin, MM, On the Liouville phenomenon in estimates of fractal dimensions of forced quasi-periodic oscillations in control systems. · Zbl (Differ. Uravn. Protsessy Upravl.), 2 (2019), in Russian · Zbl 1422.93074

[21] Bátáki, A.; Piazzera, S., Semigroups for Delay Equations (2005), Wellesley: A K Peters, Wellesley

[22] Chicone, C. Inertial, slow flows, and slow flows, and combinatorial identities for delay equations, J. Dyn. Diff. Equat., 16, 3, 805-831 (2004) · Zbl 1073.34087 · doi:10.1007/s10884-004-6696-4

[23] Driver, RD, On Ryabov’s asymptotic characterization of the solutions of quasilinear differential equations with small delays, SIAM Rev., 10, 3, 329-341 (1968) · Zbl 0165.42801 · doi:10.1137/1010058

[24] Dunford N., Schwartz J.T. · Zbl (Linear Operators, Part 1: General Theory), John Wiley & Sons (1988)

[25] Engel K.-J., Nagel R. · Zbl (One-Parameter Semigroups for Linear Evolution Equations). Springer-Verlag (2000) · Zbl 0952.47036

[26] Gelig, AKh; Leonov, GA; Yakubovich, VA, Stability of Nonlinear Systems with Non-Unique Equilibrium State (1978), Moscow: Nauka, Moscow · Zbl 0544.93051

[27] Hale, JK, Theory of Functional Differential Equations (1977), New York: Springer-Verlag, New York · Zbl 0352.34001 · doi:10.1007/978-1-4612-9892-2

[28] Koksch N., Siegmund S., Pullback attracting inertial manifolds for nonautonomous dynamical systems, J. Dyn. Differ. Equ., 14, 4, 889-941 (2002) · Zbl 1025.34042 · doi:10.1023/A:1020768711975

[29] Kostianko A., Zelik S. Kwak transform and inertial manifolds revisited. · Zbl (J. Dyn. Diff. Equ.), 1-21 (2021) · Zbl 1501.35087

[30] Kostianko A., Li X., Sun C., Zelik S. Inertial manifolds via spatial averaging revisited. · Zbl (SIAM J. Math. Anal.), 54(1) (2022) · Zbl 1481.37059

[31] Kostianko A. Zelik S. Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: periodic boundary conditions, · Zbl (Commun. Pure Appl. Anal.), 17(1), 285-317 (2018) · Zbl 1377.35033

[32] Kostianko A. Zelik S. Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions, · Zbl (Commun. Pure Appl. Anal.), 16(6), 2357-2376 (2017) · Zbl 1372.35043

[33] Krein S.G. · Zbl (Linear Equations in Banach Space). AMS (1971)

[34] Kuznetsov, NV; Reitmann, V., Attractor Dimension Estimates for Dynamical Systems: Theory and Computation (2020), European Mathematical Society

[35] Likhtarnikov, AL; Yakubovich, VA, The frequency theorem for equations of evolutionary type, Sib. Math. J., 17, 5, 790-803 (1976) · Zbl 0405.93025 · doi:10.1023/A:1020768711975

[36] Lions J.-L. · Zbl (Optimal Control of Systems Governed by Partial Differential Equations). Springer Verlag (1971) · Zbl 0203.09001

[37] Louis J.-Cl., Wexler D. The Hilbert space regulator problem and operator Riccati equation under stabilizability. · Zbl (Annales de la Société Scientifique de Bruxelles), 105(4), 137-165 (1991) · Zbl 0771.47020

[38] Miklavčič, M., A sharp condition for existence of an inertial manifold, J. Dyn. Differ. Equ., 3, 3, 437-456 (1991) · Zbl 0727.34048 · doi:10.1007/BF01014974

[39] Pardalos P. The standard regulator problem for systems with input delays. An approach through singular control theory. · Zbl (Appl. Math. Optim.), 31(2), 119-136 (1995) · Zbl 0815.49006

[40] Pritchard A.; Salamon D., The linear-quadratic control problem for retarded systems with delays in control and observation, IMA J. Math. Control, 2, 4, 335-362 (1985) · Zbl 0646.34078 · doi:10.1093/imamci/2.4.335

[41] Proskurnikov, AV, A new extension of the infinite-dimensional KYP lemma in the coercive case, IFAC-PapersOnLine, 48, 1, 246-251 (2015) · doi:10.1016/j.ifacol.2015.09.192

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH
[43] Romanov A.V. Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. \textit{Izvestiya: Mathematics}, 43(1), 31-47 (1994) · Zbl 0820.34040

[44] Ryabov Yu.A. Asymptotic properties of solutions of weakly nonlinear systems with small delay. \textit{Trudy Sem. Teor. Differential. Uravnennii s Otklon. Argumentom Univ. Druzhby Narodov Patrisa Lumumby}, 5, 213-222 (1967), in Russian · Zbl 0255.34073

[45] Smith, RA, Poincaré-Bendixson theory for certain retarded functional-differential equations, Differ. Integral Equ., 5, 1, 213-240 (1992) · Zbl 0754.34070

[46] Smith, RA, Orbital stability for ordinary differential equations, J. Differ. Equations., 69, 2, 265-287 (1987) · Zbl 0632.34054 · doi:10.1016/0022-0396(87)90120-3

[47] Smith R.A. Existence of periodic orbits of autonomous retarded functional differential equations. \textit{Math. Proc. Cambridge Philos. Soc.}, 88(1) (1980) · Zbl 0435.34062

[48] Suarez, MJ; Schopf, PS, A delayed action oscillator for ENSO, J. Atmos. Sci., 45, 21, 3283-3287 (1988) · doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2

[49] Attractors, Zelik S., Then and now, Uspekhi Mat. Nauk, 78, 4, 53-198 (2023)

[50] Zelik, S., Inertial manifolds and finite-dimensional reduction for dissipative PDEs, P. Roy. Soc. Edinb. A, 144, 6, 1245-1327 (2014) · Zbl 1343.35039 · doi:10.1017/S0308210513000073

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.