Multipliers of pg-Bessel sequences in Banach spaces

M.R. Abdollahpour, A. Najati and P. Găvruța

Abstract

In this paper, we introduce $(p, q)g$-Bessel multipliers in Banach spaces and we show that under some conditions a $(p, q)g$-Bessel multiplier is invertible. Also, we show the continuous dependency of $(p, q)g$-Bessel multipliers on their parameters.

Keywords. p-frames, g-frames, pg-frames, qg-Riesz bases, $(p, q)g$-Bessel multiplier.

AMS Subject Classification. Primary 47B10, 42C15; Secondary 47A58.

1 Introduction

Frames have been introduced by J. Duffin and A.C. Schaeffer in [14], in connection with non-harmonic Fourier series. A frame for a Hilbert space is a redundant set of vectors which yield, in a stable way, a representation for each vector in the space. The frames have many nice properties which make them very useful in the characterization of function space, signal processing and many other fields. See the book [11] and the references of the paper [16]. The concept of frames was extended to Banach spaces by K. Gröchenig in [17] to develop atomic decompositions from the paper [15]. See also [6, 10, 12, 13].
Definition 1.1. Let X be a Banach space. A countable family $\{g_i\}_{i \in I} \subset X^*$ is a p-frame for X, $1 < p < \infty$, if there exist constants $A, B > 0$ such that
\[
A \|f\|_X \leq \left(\sum_{i \in I} |g_i(f)|^p \right)^{\frac{1}{p}} \leq B \|f\|_X, \quad f \in X.
\]

G-frame as a natural generalization of frame in Hilbert spaces, were introduced by Sun [22] in 2006. G-frame cover many previous extensions of a frame. For some properties of g-frames, we can refer to [1, 3, 4].

Definition 1.2. Let H be a Hilbert space and $\{H_i\}_{i \in I}$ be a sequence of Hilbert spaces. We call a sequence $\{\Lambda_i \in B(H, H_i) : i \in I\}$ a g-frame for H with respect to $\{H_i\}_{i \in I}$ if there exist two positive constants A and B such that
\[
A \|f\|_2^2 \leq \sum_{i \in I} \|\Lambda_i f\|_2^2 \leq B \|f\|_2^2, \quad f \in H.
\]
We call A and B the lower and upper g-frame bounds, respectively. We call $\{\Lambda_i\}_{i \in I}$ a tight g-frame if $A = B$ and Parseval g-frame if $A = B = 1$.

Bessel multipliers for Hilbert spaces are investigated by Peter Balazs [7, 8, 9]. We use the following notations for sequence spaces.

(1) $c_0 = \{\{a_n\}_{n=1}^\infty \subseteq \mathbb{C} : \lim_{n \to \infty} a_n = 0\}$;

(2) $l^p = \{\{a_n\}_{n=1}^\infty \subseteq \mathbb{C} : \|a\|_p = (\sum_{n \in \mathbb{N}} |a_n|^p)^{\frac{1}{p}} < \infty\}, 0 < p < \infty$;

(3) $l^\infty = \{\{a_n\}_{n=1}^\infty \subseteq \mathbb{C} : \|a\|_\infty = \sup_{n \in \mathbb{N}} |a_n| < \infty\}$.

Definition 1.3. Let H_1 and H_2 be Hilbert spaces. Let $\{f_i\}_{i=1}^\infty \subseteq H_1$ and $\{g_i\}_{i=1}^\infty \subseteq H_2$ be Bessel sequences. Fix $m = \{m_i\}_{i=1}^\infty \in l^\infty$. The operator
\[
M_{m,\{f_i\},\{g_i\}} : H_1 \to H_2, \quad M_{m,\{f_i\},\{g_i\}}(f) = \sum_{i=1}^\infty m_i \langle f, f_i \rangle g_i
\]
is called the Bessel multiplier of the Bessel sequences $\{f_i\}_{i=1}^\infty$ and $\{g_i\}_{i=1}^\infty$. The sequence m is called the symbol of M.

Multipliers for p-Bessel sequences in Banach spaces were introduced in [19]. Also g-Bessel multipliers were investigated by Rahimi [18]. In this note, by mixing the concepts of multipliers for p-Bessel sequences and g-Bessel multipliers, we will define multipliers for the pg-Bessel sequences (pg-frames) and we will investigate some of their properties.

In our opinion, it is possible that the results of this paper can be applied in Quantum Information Theory. A beautiful presentation of the connections between frames and POVM is the paper [20]. See also [21].
2 Review of pg-frames and qg-Riesz bases

In [2], pg-frames and qg-Riesz bases for Banach spaces have been introduced. In this section, we recall some properties of pg-frames and qg−Riesz bases from [2]. Throughout this section, I is a subset of \mathbb{N}, X is a Banach space with dual X^* and also $\{Y_i : i \in I\}$ is a sequence of Banach spaces.

Definition 2.1. We call a sequence $\Lambda = \{\Lambda_i \in B(X, Y_i) : i \in I\}$ a pg−frame for X with respect to $\{Y_i : i \in I\}$ ($1 < p < \infty$), if there exist $A, B > 0$ such that

$$A \|x\|_X \leq \left(\sum_{i \in I} \|\Lambda_i x\|^p \right)^{\frac{1}{p}} \leq B \|x\|_X, \quad \forall x \in X.$$ (2.1)

A, B is called the pg-frame bounds of $\{\Lambda_i\}_{i \in I}$.

If only the second inequality in (2.1) is satisfied, $\{\Lambda_i\}_{i \in I}$ is called a pg-Bessel sequence for X with respect to $\{Y_i : i \in I\}$ with bound B.

Definition 2.2. Let $\{Y_i\}_{i \in I}$ be a sequence of Banach spaces. We define

$$\left(\sum_{i \in I} \bigoplus Y_i \right)_{l_p} = \left\{ \{x_i\}_{i \in I} | x_i \in Y_i, \sum_{i \in I} \|x_i\|^p < +\infty \right\}.$$

Therefore $\left(\sum_{i \in I} \bigoplus Y_i \right)_{l_p}$ is a Banach space with the norm

$$\|\{x_i\}_{i \in I}\|_p = \left(\sum_{i \in I} \|x_i\|^p \right)^{\frac{1}{p}}.$$

Let $1 < p, q < \infty$ be conjugate exponents, i.e., $\frac{1}{p} + \frac{1}{q} = 1$. If $x^* = \{x_i^*\}_{i \in I} \in \left(\sum_{i \in I} \bigoplus Y_i \right)_{l_q}$, then one can show that the formula

$$\langle x, x^* \rangle = \sum_{i \in I} \langle x_i, x_i^* \rangle, \quad x = \{x_i\}_{i \in I} \in \left(\sum_{i \in I} \bigoplus Y_i \right)_{l_p}$$

defines a continuous functional on $\left(\sum_{i \in I} \bigoplus Y_i \right)_{l_p}$, whose norm is equal to $\|x^*\|_q$.

Lemma 2.3. [5] Let $1 < p, q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left(\sum_{i \in J} \bigoplus Y_i \right)_{l_p}^* = \left(\sum_{i \in J} \bigoplus Y_i^* \right)_{l_q};$$

where the equality holds under the duality

$$\langle x, x^* \rangle = \sum_{i \in J} \langle x_i, x_i^* \rangle.$$
Definition 2.4. Let \(\Lambda = \{ \Lambda_i \in B(X,Y_i) : i \in I \} \) be a \(pg \)-Bessel sequence for \(X \) with respect to \(\{Y_i\} \). We define the operators

\[
U_\Lambda : X \to \left(\sum_{i \in I} \bigoplus Y_i \right)_{l_p}, \quad U_\Lambda(x) = \{ \Lambda_i x \}_{i \in I}
\] (2.2)

and

\[
T_\Lambda : \left(\sum_{i \in I} \bigoplus Y_i^* \right)_{l_q} \to X^* \quad T_\Lambda \{ g_i \}_{i \in I} = \sum_{i \in I} \Lambda_i^* g_i.
\] (2.3)

\(U_\Lambda \) and \(T_\Lambda \) are called the analysis and synthesis operators of \(\Lambda = \{ \Lambda_i \}_{i \in I} \), respectively.

The following proposition, characterizes the \(pg \)-Bessel sequence by the operator \(T_\Lambda \) defined in (2.3).

Proposition 2.5. \(\{\Lambda_i \in B(X,Y_i) : i \in I \} \) is a \(pg \)-Bessel sequence for \(X \) with respect to \(\{Y_i\} \), if and only if the operator \(T_\Lambda \) defined in (2.3) is a well defined and bounded operator. In this case, \(\sum_{i \in I} \Lambda_i^* g_i \) converges unconditionally for any \(\{ g_i \}_{i \in I} \in \left(\sum_{i \in I} \bigoplus Y_i^* \right)_{l_q} \).

Lemma 2.6. If \(\Lambda = \{ \Lambda_i \in B(X,Y_i) : i \in I \} \) is a \(pg \)-Bessel sequence for \(X \) with respect to \(\{Y_i\}_{i \in I} \), then

(i) \(U_\Lambda^* = T \),

(ii) If \(\Lambda = \{ \Lambda_i \in B(X,Y_i) : i \in I \} \) is a \(pg \)-frame for \(X \) and all of \(Y_i \)'s are reflexive, then \(T_\Lambda^* = U_\Lambda \).

Theorem 2.7. \(\Lambda = \{ \Lambda_i \in B(X,Y_i) : i \in I \} \) is a \(pg \)-frame for \(X \) with respect to \(\{Y_i\}_{i \in I} \) if and only if \(T_\Lambda \) defined in (2.3) is a bounded and onto operator.

Definition 2.8. Let \(1 < q < \infty \). A family \(\Lambda = \{ \Lambda_i \in B(X,Y_i) : i \in I \} \) is called a \(gg \)-Riesz basis for \(X^* \) with respect to \(\{Y_i\}_{i \in I} \), if

(i) \(\{ f : \Lambda_i f = 0, i \in I \} = \{0\} \) (i.e., \(\{\Lambda_i\}_{i \in I} \) is \(g \)-complete);

(ii) There are positive constants \(A, B \) such that for any finite subset \(I_1 \subseteq I \)

\[
A \left(\sum_{i \in I_1} \| g_i \|^q \right)^{\frac{1}{q}} \leq \| \sum_{i \in I_1} \Lambda_i^* g_i \| \leq B \left(\sum_{i \in I_1} \| g_i \|^q \right)^{\frac{1}{q}}, \quad g_i \in Y_i^*.
\]
The assumptions of the definition (2.8) imply that \(\sum_{i \in J} \Lambda_i^* g_i \) converges unconditionally for all \(\{g_i\}_{i \in I} \), and

\[
A \left(\sum_{i \in I} \|g_i\|^q \right)^{\frac{1}{q}} \leq \| \sum_{i \in I} \Lambda_i^* g_i \| \leq B \left(\sum_{i \in I} \|g_i\|^q \right)^{\frac{1}{q}}.
\]

In [2], it is proved that if \(\Lambda = \{\Lambda_i \in B(X, Y_i) : i \in I\} \) is a \(pg \)-Riesz basis for \(X^* \) with respect to \(\{Y_i\}_{i \in I} \), then \(\Lambda \) is a \(pg \)-frame for \(X \) with respect to \(\{Y_i\}_{i \in I} \). Therefore \(\Lambda = \{\Lambda_i \in B(X, Y_i) : i \in I\} \) is a \(pg \)-Riesz basis for \(X^* \) if and only if the operator \(T_\Lambda \) defined in (2.3) is an invertible operator from \((\sum_{i \in J} \bigoplus Y_i^*)_{l_q} \) onto \(X^* \).

Theorem 2.9.[2] Let \(\{Y_i\}_{i \in I} \) be a sequence of reflexive Banach spaces. Let \(\Lambda = \{\Lambda_i \in B(X, Y_i) : i \in I\} \) be a \(pg \)-frame for \(X \) with respect to \(\{Y_i\}_{i \in I} \). Then the following statements are equivalent:

(i) \(\{\Lambda_i\}_{i \in I} \) is a \(pg \)-Riesz basis for \(X^* \);

(ii) If \(\{g_i\}_{i \in I} \in (\sum_{i \in I} \bigoplus Y_i^*)_{l_q} \) and \(\sum_{i \in I} \Lambda_i^* g_i = 0 \) then \(g_i = 0 \);

(iii) \(R_\Lambda = (\sum_{i \in I} \bigoplus Y_i)_{l_p} \).

3 Multipliers for \(pg \)-Bessel sequences

In this section, we assume that \(X_1 \) and \(X_2 \) are reflexive Banach spaces and \(\{Y_i\}_{i=1}^\infty \) is a family of reflexive Banach spaces. Also, we consider \(p, q > 1 \) are real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proposition 3.1. Let \(X \) be a Banach space and let \(\Lambda = \{\Lambda_i \in B(X, Y_i)\}_{i=1}^\infty \) be a \(pg \)-Bessel sequence for \(X \) with respect to \(\{Y_i\}_{i=1}^\infty \) with the bound \(B \).

1. If \(\Theta = \{\Theta_i \in B(X, Y_i)\}_{i=1}^\infty \) is a sequence of bounded operators such that

\[
(\sum_{i=1}^\infty \|\Lambda_i - \Theta_i\|^p)^{\frac{1}{p}} < K < \infty,
\]

then \(\Theta \) is a \(pg \)-Bessel sequence for \(X \) with bound \(B + K \).

2. Let \(\Theta^{(n)} = \{\Theta_i^{(n)} \in B(X, Y_i)\}_{i=1}^\infty \) be a sequence of bounded operators such that for all \(\varepsilon > 0 \) there exists \(N > 0 \) with

\[
\left(\sum_{i=1}^\infty \|\Lambda_i - \Theta_i^{(n)}\|^p \right)^{\frac{1}{p}} < \varepsilon, \quad n \geq N,
\]

then \(\Theta^{(n)} \) is a \(pg \)-Bessel sequence and for all \(n \geq N \),

\[
\|U_{\Theta^{(n)}} - U_\Lambda\| \leq \varepsilon, \quad \|T_{\Theta^{(n)}} - T_\Lambda\| \leq \varepsilon.
\]
Proof. (1) It is easy to show that $\sum_{i=1}^{\infty} \Theta^* U_i$ converges for any $\{g_i\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \oplus Y_i^*)_{k_q}$. Therefore, if $\{g_i\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \oplus Y_i^*)_{k_q}$ we have

$$\|T_\Lambda \{g_i\}_{i=1}^{\infty} - T_\Theta \{g_i\}_{i=1}^{\infty}\| = \left\| \sum_{i=1}^{\infty} (\Lambda^*_i - \Theta^*_i) g_i \right\| = \sup_{\|f\| \leq 1} \left\| \sum_{i=1}^{\infty} g_i (\Lambda_i f - \Theta_i f) \right\|$$

$$\leq \sup_{\|f\| \leq 1} \left\| \sum_{i=1}^{\infty} g_i \right\| \|\Lambda_i f - \Theta_i f\|$$

$$\leq \left(\sum_{i=1}^{\infty} \|g_i\|^p \right)^{\frac{1}{p}} \sup_{\|f\| \leq 1} \left(\sum_{i=1}^{\infty} \|\Lambda_i f - \Theta_i f\|^p \right)^{\frac{1}{p}}$$

$$\leq K \|\{g_i\}_{i=1}^{\infty}\|_q,$$

and so

$$\|T_\Theta \{g_i\}_{i=1}^{\infty}\| \leq \|T_\Theta \{g_i\}_{i=1}^{\infty} - T_\Lambda \{g_i\}_{i=1}^{\infty}\| + \|T_\Lambda \{g_i\}_{i=1}^{\infty}\|$$

$$\leq (B + K) \|\{g_i\}_{i=1}^{\infty}\|_q.$$ Consequently, Proposition 2.5 implies that $\{\Theta_i\}_{i=1}^{\infty}$ is a pg-Bessel sequence with the bound $B + K$.

(2) It follows from (1) that $\{\Theta_i^{(n)}\}_{i=1}^{\infty}$ is a pg-Bessel sequence and $\|T_{\Theta^{(n)}} - T_\Lambda\| \leq \varepsilon$ for all $n \geq N$. But for $f \in X$ and $n \geq N$ we have

$$\|U_{\Lambda} f - U_{\Theta^{(n)}} f\|_p = \left(\sum_{i=1}^{\infty} \|\Lambda_i f - \Theta_i^{(n)} f\|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} \|\Lambda_i - \Theta_i^{(n)}\|^p \right)^{\frac{1}{p}} \|f\|$$

hence $\|U_{\Theta^{(n)}} - U_{\Lambda}\| \leq \varepsilon$. \qed

Proposition 3.2. Let $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_2 with bound B_Λ and $\Theta = \{\Theta_i \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a qg-Bessel sequence for X_1^* with bound B_Θ. If $m \in l^\infty$, then the operator

$$M_{m, \Lambda, \Theta} : X_1^* \rightarrow X_2^*, \quad M_{m, \Lambda, \Theta}(g) = \sum_{i=1}^{\infty} m_i \Lambda_i^* \Theta_i g$$

is well defined, the sum converges unconditionally for all $g \in X_1^*$ and

$$\|M_{m, \Lambda, \Theta}\| \leq B_\Lambda B_\Theta \|m\|_\infty.$$

Proof. Let $g \in X_1^*$, then $\{m_i \Theta_i g\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \oplus Y_i^*)_{k_q}$, and Proposition 2.5 implies that $\sum_{i=1}^{\infty} m_i \Lambda_i^* \Theta_i g$ converges unconditionally and $M_{m, \Lambda, \Theta}$ is well
Therefore $M_{m,\Lambda,\Theta}$ is bounded and $\|M_{m,\Lambda,\Theta}\| \leq B_{\Lambda}B_{\Theta}\|m\|_{\infty}$.

Definition 3.3. Let $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_2 with bound B_{Λ} and $\Theta = \{\Theta_i \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a qq-Bessel sequence for X_1^* with bound B_{Θ}. Let $m = \{m_i\}_{i=1}^{\infty} \in l^{\infty}$. The operator

$$M_{m,\Lambda,\Theta} : X_1^* \to X_2^*, \quad M_{m,\Lambda,\Theta}(g) = \sum_{i=1}^{\infty} m_i\Lambda_i^*\Theta_i g$$

(3.1)

is called the $(p,q)g$–Bessel multiplier of Λ, Θ and m. The sequence m is called the symbol of M.

Proposition 3.4. Let $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a qq-Riesz basis for X_2^* and $\Theta = \{\Theta_i \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a qq-Bessel sequence for X_1^* with non zero members. Then the mapping

$$m \to M_{m,\Lambda,\Theta}$$

is injective from l^{∞} into $B(X_1^*, X_2^*)$.

Proof. If $M_{m,\Lambda,\Theta} = 0$, then $\sum_{i=1}^{\infty} m_i\Lambda_i^*\Theta_i g = 0$ for all $g \in X_1^*$. Then Theorem 2.9 implies that $m_i\Theta_i g = 0$ for all $i \in \mathbb{N}$ and for all $g \in X_1^*$. Since $\Theta_i \neq 0$ for each $i \in \mathbb{N}$, we get $m_i = 0$.

Theorem 3.5. Let $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a qq-Riesz basis for X_2^* with respect to $\{Y_i\}_{i=1}^{\infty}$, then there exist a sequence $\{\Lambda_i \in B(X_2^*, Y_i^*)\}_{i=1}^{\infty}$ which is a pg-Riesz basis for X_2 with respect to $\{Y_i^*\}_{i=1}^{\infty}$ such that

$$x^* = \sum_{i=1}^{\infty} \Lambda_i^*\bar{\Lambda}_i x^*, \quad x^* \in X_2^*$$

and $\bar{\Lambda}_k\Lambda_i^* = \delta_{k,i}I$.

7
Proof. Since $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ is a pg-frame for X_2, Theorem 2.7 implies that for every $x^* \in X_2^*$ there exists $\{g_i\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \bigoplus Y_i^*)_q$ such that $x^* = \sum_{i=1}^{\infty} \Lambda_i^* g_i$. Let us define the operator
\[
\bar{\Lambda}_i : X_2^* \to Y_i^*, \quad \bar{\Lambda}_i(x^*) = g_i.
\]
By Theorem 2.9, $\bar{\Lambda}_i$ is well defined. Let A_Λ, B_Λ be the gg-Riesz basis bounds for $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$. Then for any $\{g_i\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \bigoplus Y_i^*)_q$ we have
\[
A_\Lambda \left(\sum_{i=1}^{\infty} \|g_i\|^q \right)^{\frac{1}{q}} \leq \| \sum_{i=1}^{\infty} \Lambda_i^* g_i \| \leq B_\Lambda \left(\sum_{i=1}^{\infty} \|g_i\|^q \right)^{\frac{1}{q}}.
\]
Therefore
\[
\frac{1}{B_\Lambda} \| \sum_{i=1}^{\infty} \Lambda_i^* g_i \| \leq \left(\sum_{i=1}^{\infty} \|g_i\|^q \right)^{\frac{1}{q}} \leq \frac{1}{A_\Lambda} \| \sum_{i=1}^{\infty} \Lambda_i g_i \|,
\]
for all $\{g_i\}_{i=1}^{\infty} \in (\sum_{i=1}^{\infty} \bigoplus Y_i^*)_q$. Hence we get
\[
\frac{1}{B_\Lambda} \|x^*\| \leq \left(\sum_{i=1}^{\infty} \|\bar{\Lambda}_i(x^*)\|^q \right)^{\frac{1}{q}} \leq \frac{1}{A_\Lambda} \|x^*\|, \quad x^* \in X_2^*.
\]
This implies that $\{\bar{\Lambda}_i \in B(X_2^*, Y_i^*)\}_{i=1}^{\infty}$ is a gg-frame for X_2^* with respect to $\{Y_i^*\}_{i=1}^{\infty}$ with bounds $1/A_\Lambda$ and $1/B_\Lambda$ and
\[
x^* = \sum_{i=1}^{\infty} \Lambda_i^* \bar{\Lambda}_i x^*, \quad x^* \in X_2^*
\]
and $\bar{\Lambda}_k \Lambda_i^* = \delta_{k,i} I$. From other hand the synthesis operator is invertible and $U_\Lambda = T_\Lambda^{-1}$, therefore U_Λ is invertible. So by lemma 2.6 $U_\Lambda^* = T_\Lambda$ is invertible and therefore $\{\bar{\Lambda}_i\}_{i \in \mathbb{N}}$ is a pg-Riesz basis for X_2.

Corollary 3.6. Let $\Theta = \{\Theta_i \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a pg-Riesz basis for X_1 with respect to $\{Y_i^*\}_{i=1}^{\infty}$ with bounds A_Θ, B_Θ, then there exists a sequence $\{\Theta_i \in B(X_1, Y_i)\}_{i=1}^{\infty}$ which is a gg-Riesz basis for X_1^* with respect to $\{Y_i\}_{i=1}^{\infty}$ with bounds $1/B_\Theta / A_\Theta$ and
\[
x = \sum_{i=1}^{\infty} \Theta_i^* \bar{\Theta}_i x, \quad x \in X_1,
\]
and $\bar{\Theta}_k \Theta_i^* = \delta_{k,i} I$.

8
Proposition 3.7. Let $\Lambda = \{\Lambda_i \in B(X_2,Y_i)\}_{i=1}^\infty$ be a qq-Riesz basis for X_2^* with respect to $\{Y_i\}_{i=1}^\infty$ with bound A_{Λ}, B_{Λ} and $\Theta = \{\Theta_i \in B(X_1^*,Y_i^*)\}_{i=1}^\infty$ be a pg-Riesz basis for X_1 with respect to $\{Y_i^*\}_{i=1}^\infty$ with bounds A_{Θ}, B_{Θ}. If $m \in l^{\infty}$, then

$$A_{\Lambda}A_{\Theta}\|m\|_{\infty} \leq \|M_{m,\Lambda,\Theta}\| \leq B_{\Lambda}B_{\Theta}\|m\|_{\infty}.$$

Proof. By proposition 3.2, it is enough to show that we have the lower bound. Corollary 3.6 implies that there exists a sequence $\{\tilde{\Theta}_i \in B(X_1,Y_i)\}_{i=1}^\infty$ which is a qq-Riesz basis for X_1^* (therefore a pg-frame for X_1) with respect to $\{Y_i\}_{i=1}^\infty$ with bounds $\frac{1}{k_\Theta}, \frac{1}{k_\Lambda}$ and

$$x = \sum_{i=1}^{\infty} \Theta_i^*\tilde{\Theta}_i x, \quad \text{for each } x \in X_1,$$

and $\tilde{\Theta}_k\Theta_i^* = \delta_{k,i}I$. Let us fix $0 \neq y_k^* \in Y_k^*$ for each $k \in \mathbb{N}$, then we have

$$\|M_{m,\Lambda,\Theta}\| = \sup_{0 \neq g \in X_1^*} \frac{\|M_{m,\Lambda,\Theta}g\|}{\|g\|} = \sup_{0 \neq g \in X_1^*} \frac{\|\sum_{i=1}^{\infty} m_i\Lambda_i^*\Theta_i g\|}{\|g\|} \geq \sup_{k \in \mathbb{N}} \frac{\|\sum_{i=1}^{\infty} m_i\Lambda_i^*\Theta_i(\tilde{\Theta}_k)^*y_k^*\|}{\|\Theta_k y_k^*\|} \geq A_{\Lambda}A_{\Theta}\|m\|_{\infty}. \quad \square$$

Theorem 3.8. Let $\Lambda = \{\Lambda_i \in B(X_2,Y_i)\}_{i=1}^\infty$ be a qq-Riesz basis for X_2^* with respect to $\{Y_i\}_{i=1}^\infty$ and $\Theta = \{\Theta_i \in B(X_1^*,Y_i^*)\}_{i=1}^\infty$ be a pg-Riesz basis for X_1 with respect to $\{Y_i^*\}_{i=1}^\infty$. If $m = \{m_i\}_{i=1}^\infty$ satisfies $0 < \inf_{i \in \mathbb{N}}|m_i| \leq \sup_{i \in \mathbb{N}}|m_i| < +\infty$, then $M_{m,\Lambda,\Theta}$ is invertible.

Proof. Let us consider $\{\tilde{\Lambda}_i \in B(X_2,Y_i^*)\}_{i=1}^\infty$ and $\{\tilde{\Theta}_i \in B(X_1,Y_i)\}_{i=1}^\infty$ which appear in Proposition 3.5 and Corollary 3.6 respectively. We prove that

$$(M_{m,\Lambda,\Theta})^{-1} = M_{m,\tilde{\Theta},\tilde{\Lambda}}^{-1}.$$
Let $g \in X_1^*$, then
\[
M_{\tilde{m}, \tilde{\Theta}, \tilde{\Lambda}} \circ M_{m, \Lambda, \Theta}(g) = M_{\tilde{m}, \tilde{\Theta}, \tilde{\Lambda}} \left(\sum_{i=1}^{\infty} m_i \Lambda_i^* \Theta_i g \right)
= \sum_{k=1}^{\infty} \frac{1}{m_k} (\tilde{\Theta}_k)^* \tilde{\Lambda}_k \left(\sum_{i=1}^{\infty} m_i \Lambda_i^* \Theta_i g \right)
= \sum_{k=1}^{\infty} \frac{1}{m_k} (\tilde{\Theta}_k)^* \left(\sum_{i=1}^{\infty} m_i \Lambda_k \Lambda_i^* \Theta_i g \right)
= \sum_{k=1}^{\infty} \frac{1}{m_k} (\tilde{\Theta}_k)^* (m_k \Theta_k g)
= g.
\]

Let us consider $f \in X_2^*$, then
\[
M_{m, \Lambda, \Theta} \circ M_{\tilde{m}, \tilde{\Theta}, \tilde{\Lambda}} f = M_{m, \Lambda, \Theta} \left(\sum_{k=1}^{\infty} \frac{1}{m_k} (\tilde{\Theta}_k)^* \tilde{\Lambda}_k f \right)
= \sum_{i=1}^{\infty} m_i \Lambda_i^* \Theta_i \left(\sum_{k=1}^{\infty} \frac{1}{m_k} (\tilde{\Theta}_k)^* \tilde{\Lambda}_k f \right)
= \sum_{i=1}^{\infty} m_i \Lambda_i^* \left(\sum_{k=1}^{\infty} \frac{1}{m_k} \Theta_i (\tilde{\Theta}_k)^* \tilde{\Lambda}_k f \right)
= \sum_{i=1}^{\infty} m_i \Lambda_i^* \left(\frac{1}{m_i} \tilde{\Lambda}_i f \right)
= f.
\]

\[\square\]

In the next results, we show that the $(p, q)g$-Bessel multiplier $M = M_{m, \Lambda, \Theta}$ depends continuously on its parameters, $m = \{m_i\}_{i=1}^{\infty}$, $\Lambda = \{\Lambda_i\}_{i=1}^{\infty}$ and $\Theta = \{\Theta_i\}_{i=1}^{\infty}$.

Theorem 3.9. Let $\Lambda = \{\Lambda_i \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_2 with bound B_Λ and $\Theta = \{\Theta_i \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a gq-Bessel sequence for X_1^* with bound B_Θ. Let $p_1, q_1 > 1$ such that $\frac{1}{p_1} + \frac{1}{q_1} = 1$ and $m \in l^\infty$.

Let $\Lambda^{(n)} = \{\Lambda_i^{(n)} \in B(X_2, Y_i)\}_{i=1}^{\infty}$ be a pg-Bessel sequence for X_2 with bound $B_{\Lambda^{(n)}}$ and $\Theta^{(n)} = \{\Theta_i^{(n)} \in B(X_1^*, Y_i^*)\}_{i=1}^{\infty}$ be a gq-Bessel sequence for X_1^* with bound $B_{\Theta^{(n)}}$ for all $n \in \mathbb{N}$.

Then
(1) If $\|m^{(n)} - m\|_{p_1} \to 0$, then $\|M_{m^{(n)}, \Lambda, \Theta} - M_{m, \Lambda, \Theta}\| \to 0$, as $n \to \infty$.

(2) If $m \in l^{p_1}$ and $\{\Theta_i^{(n)}\}_{i=1}^{\infty}$ converges to $\{\Theta_i\}_{i=1}^{\infty}$ in l^{q_1}-sense, then

$$\|M_{m, \Lambda, \Theta^{(n)}} - M_{m, \Lambda, \Theta}\| \to 0, \quad n \to \infty.$$

(3) If $m \in l^{p_1}$ and $\{\Lambda_i^{(n)}\}_{i=1}^{\infty}$ converges to $\{\Lambda_i\}_{i=1}^{\infty}$ in l^{q_1}-sense, then

$$\|M_{m, \Lambda^{(n)}, \Theta} - M_{m, \Lambda, \Theta}\| \to 0, \quad n \to \infty.$$

(4) Let

$$B_1 = \sup_{n \in \mathbb{N}} B_{\Lambda^{(n)}} < +\infty, \quad B_2 = \sup_{n \in \mathbb{N}} B_{\Theta^{(n)}} < +\infty.$$

If $\|m^{(n)} - m\|_{l^{p_1}} \to 0$ and $\{\Theta_i^{(n)}\}_{i=1}^{\infty}$ and $\{\Lambda_i^{(n)}\}_{i=1}^{\infty}$ converge to $\{\Theta_i\}_{i=1}^{\infty}$ and $\{\Lambda_i\}_{i=1}^{\infty}$ in l^{q_1}-sense, respectively, then

$$\|M_{m^{(n)}, \Lambda^{(n)}, \Theta} - M_{m, \Lambda, \Theta}\| \to 0, \quad n \to \infty.$$

Proof. (1) Using proof of the Proposition B.3 we have

$$\|M_{m^{(n)}, \Lambda, \Theta} - M_{m, \Lambda, \Theta}\| = \|M_{m^{(n)} - m, \Lambda, \Theta}\| \leq B_\Lambda B_{\Theta} \|m^{(n)} - m\|_{\infty} \leq B_\Lambda B_{\Theta} \|m^{(n)} - m\|_{p_1} \to 0.$$

(2) For $g \in X_1^*$, we have

$$\|M_{m, \Lambda, \Theta^{(n)}} g - M_{m, \Lambda, \Theta} g\| = \left\| \sum_{i=1}^{\infty} m_i \Lambda_i^* (\Theta_i^{(n)} - \Theta_i) g \right\| \leq \sum_{i=1}^{\infty} m_i \|\Lambda_i^*\| \|\Theta_i^{(n)} - \Theta_i\| g \| \\ \leq \sum_{i=1}^{\infty} B_\Lambda m_i \|\Theta_i^{(n)} - \Theta_i\| g \| \\ \leq B_\Lambda \|m\|_{p_1} \left(\sum_{i=1}^{\infty} \|\Theta_i^{(n)} - \Theta_i\| g \|^q \right)^{\frac{1}{q}}.$$

So

$$\|M_{m, \Lambda, \Theta^{(n)}} - M_{m, \Lambda, \Theta}\| \leq B_\Lambda \|m\|_{p_1} \left(\sum_{i=1}^{\infty} \|\Theta_i^{(n)} - \Theta_i\| g \|^q \right)^{\frac{1}{q}} \to 0.$$

11
(3) It is similar to the proof of (2).

(4) We have
\[
\|M_{m,n},\Lambda^{(n)},\Theta^{(n)} - M_{m,\Lambda^{(n)},\Theta^{(n)}}\| \leq B_1 B_2 \|m^{(n)} - m\|_{p_1}, \tag{3.2}
\]
\[
\|M_{m,\Lambda^{(n)},\Theta^{(n)}} - M_{m,\Lambda,\Theta^{(n)}}\| \leq B_2 \|m\|_{p_1} \left(\sum_{i=1}^{\infty} \|\Lambda_i^{(n)} - \Lambda_i\|^{q_1} \right)^{\frac{1}{q_1}}, \tag{3.3}
\]
\[
\|M_{m,\Lambda,\Theta^{(n)}} - M_{m,\Lambda,\Theta}\| \leq B_\Lambda \|m\|_{p} \left(\sum_{i=1}^{\infty} \|\Theta_i^{(n)} - \Theta_i\|^{q_1} \right)^{\frac{1}{q_1}}. \tag{3.4}
\]

Since
\[
\|M_{m,n},\Lambda^{(n)},\Theta^{(n)} - M_{m,\Lambda,\Theta}\| \leq \|M_{m,n},\Lambda^{(n)},\Theta^{(n)} - M_{m,\Lambda^{(n)},\Theta^{(n)}}\| \\
+ \|M_{m,\Lambda^{(n)},\Theta^{(n)}} - M_{m,\Lambda,\Theta^{(n)}}\| \\
+ \|M_{m,\Lambda,\Theta^{(n)}} - M_{m,\Lambda,\Theta}\|,
\]
(3.2), (3.3), (3.4) imply that
\[
\|M_{\Lambda^{(n)},\Theta^{(n)},m^{(n)}} - M_{\Lambda,\Theta,m}\| \to 0, \quad n \to \infty.
\]

\[\square\]

Acknowledgements: The work of P. Găvruța was partial supported by a grant of Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-JRP-RO-FR-2011-2-11-RO-FR/01.03.2013.

References

[1] M.R. Abdollahpour, F. Bagarello, *On some properties of g-frames and g-coherent states*, Il Nouvo Cimento B, 125(11)(2010) 1327–1342.

[2] M.R. Abdollahpour, M.H. Faroughi, A. Rahimi, *pg-Frames in Banach spaces*, Methods Func. Anal. Topology, 135(3)(2007) 201–210.

[3] M.R. Abdollahpour, A. Najati, *Besselian g-frames and near g-Riesz bases*, Appl. Anal. Discrete Math., 5(2011) 259–270.

[4] M.R. Abdollahpour, A. Najati, *g-Frames and Hilbert-Schmidt operators*, Bull. Iranian Math. Soc., 37(4)(2011) 141–155.
[5] C.D. Aliprantis, K.C. Border, *Infinite dimensional analysis*, Springer, 1999.

[6] A. Aldroubi, Q. Sung, W. Tang, p–frames and shift invariant subspaces of L^p, J. Fourier Anal. Appl. 7(2001) 1–22.

[7] P. Balazs, *Basic definition and properties of Bessel multipliers*, J. Math. Anal. and Appl., 325(1)(2007) 571–585.

[8] P. Balazs, *Hilbert-Schmidt operators and frames-classifications, approximation by multipliers and algorithms*, Int. J. Wavelets, Multiresolut. Inf. Process., 6(2)(2008) 315–330.

[9] P. Balazs, *Matrix representations of operators using frames*, Sampl. Theory Signal Image Process., (STSIP), 7(1)(2008) 39–54.

[10] P.G. Casazza, D. Han, D.R. Larson, *Frames for Banach spaces*, Contemp. Math. Vol. 247, Amer. Math. Soc., Providence, R. I., 1999, 149–182.

[11] O. Christensen, *An Introduction to Frames and Riesz Bases*, Birkhäuser, 2003.

[12] O. Christensen, D. Stoeva, p-Frames in separable Banach spaces, Adv. Comput. Math., 18(2003) 117–126.

[13] O. Christensen, C. Heil, *Perturbation of Banach frames and atomic decompositions*, Math. Nachr., 185(1997) 33–47.

[14] R.J. Duffin, A.C. Schaeffer, *A class of nonharmonic Fourier series*, Trans. Amer. Math. Soc., 72(1952) 341–366.

[15] H.G. Feichtinger, K. Gröchenig, *A unified approach to atomic decompositions via integrable group representations*, In: Proc. Conf. ”Function Spaces and Applications”.(M. Cwikel et al. eds.), pp. 52–73. Lect. Notes Math 1302. Berlin-Heidelberg-New York: Springer, 1988.

[16] P. Găvruţa, *On some identities and inequalities for frames in Hilbert spaces*, J.Math.Anal.Appl. 321(2006) 469–478.

[17] K. Gröchenig, *Describing functions: atomic decompositions versus frames*, Monatsh. Math., 112 (1991) 1–41.

[18] A. Rahimi, *Multipliers of Generalized Frames in Hilbert spaces*, Bull. Iranian Math. Soc., 37(1)(2011), 63–80.
[19] A. Rahimi, P. Balazs, \textit{Multipliers for p-Bessel sequences in Banach spaces}, Integr. Equ. Oper. Theory, \textbf{68}(2010) 193–205.

[20] M.B. Ruskai, \textit{Some connections between frames, mutually unbiased bases, and POVM s in Quantum Information Theory}, Acta Appl.Math. \textbf{108}(3)(2009) 709–719.

[21] A.J. Scott, \textit{Tight informationally complete quantum measurements}, J. Phys. A 39 (2006) 13507–13530.

[22] W. Sun, \textit{g- Frames and g-Riesz bases}, J. Math. Anal. Appl, \textbf{322}(1)(2006) 437–452.