Wavelet Analysis as an Information Processing Technique

H. M. de Oliveira, D. F. de Souza

Abstract—A new interpretation for the wavelet analysis is reported, which can is viewed as an information processing technique. It was recently proposed that every basic wavelet could be associated with a proper probability density, allowing defining the entropy of a wavelet. Introducing now the concept of wavelet mutual information between a signal and an analysing wavelet fulfills the foundations of a wavelet information theory (WIT). Both continuous and discrete time signals are considered. Finally, we showed how to compute the information provided by a multiresolution analysis by means of the inhomogeneous wavelet expansion. Highlighting ideas behind the WIT are presented.

Index Terms—Wavelet analysis, information theory, entropy of wavelets, wavelet mutual information, multiresolution information.

I. BACKGROUND

This paper is focused on information theory aspects of a powerful tool: the wavelet analysis [1,2]—that evolved into a specialised branch of modern-day signal processing. Recently, a new insight into wavelets was reported [3], which was based on the statistical interpretation of the wave-function formulated by Max Born [4]. Every continuous basic wavelet was then associated with a proper probability density, allowing defining the Shannon entropy of a wavelet. Further entropy definitions were also considered, such as Jumarie or Renyi entropy of wavelets [5,6]. It was also shown that the highest time entropy among all supportly compacted wavelets is achieved by the Haar wavelet [3]. This is in agreement with the fact that maximum entropy of a discrete random variable is achieved by a uniform distribution. An entropy conservation principle was also stated [3]. It was also remarked that CMor and gauss1 are transform-invariant wavelets, thereby achieving isoresolution [7]. This paper is intended to fill fundamental concepts towards a wavelet information theory (WIT). Since the entropy of wavelets was introduced, it seems obvious to zero in on the mutual information. Questions such as "How many information unity an analysing wavelet provides on a signal"? could then be addressed. We foresee that our attempt to present the underlying philosophy of WIT may help users navigate the deep ocean of wavelets.

Definition 1: (Shannon entropy of a wavelet). The time entropy, \(H(\psi) \), of a continuous wavelet \(\psi(\cdot) \) is defined by

\[
H(\psi) := -\int_{-\infty}^{+\infty} \psi^2(t) \log_2(\psi^2(t)) dt ; \tag{1a}
\]

In a parallel way, the frequency entropy, \(H(\psi) \), of a continuous wavelet \(\psi(\cdot) \) is defined by

\[
H_f(\psi) := -\int_{-\infty}^{+\infty} \frac{1}{2\pi} |\psi(w)|^2 \log_2 \left(\frac{1}{2\pi} |\psi(w)|^2 \right) dw . \tag{1b}
\]

The entropy gives information on the spreading of the wavelet, i.e., it furnishes a "localising measure" of the corpuscle in a particular domain (time or frequency).

Definition 2: (Global entropy of a continuous wavelet). The global entropy of a wavelet \(\psi(\cdot) \) is defined by

\[
H_g := H(\psi) + H_f(\psi) . \tag{2}
\]

A direct property follows from such a definition: every daughter wavelet has the same global entropy of the mother wavelet, some sort of conservation principle. It follows then

Corollary: The global entropy is preserved within the same wavelet family \(\{\psi_{a,b}(t)\}_{a,b \in \mathbb{R}} \), so we are able to find a unique entropy value associated with a wavelet basis.

Furthermore, Gabor inequality established a lower bound on the product between the variances associated with these two densities [8]. There exists an uncertainty principle between the time and the frequency entropy, that is, a lower bound on the product

\[
H_T(\psi)H_f(\psi) \geq H_g^2 / 4 .
\]

The closed expression for the entropy of the (complex) Morlet wavelet \(\psi_{CMor} \) is

\[
H(\psi_{CMor}) = H_f(\psi_{CMor}) = \log_2 \left(\sqrt{\pi} \right) , \tag{3}
\]

so that \(H_{CMor} = \log_2 (\pi) \). The time entropy of the standard Haar wavelet is equal to unity.

A good number of orthogonal wavelets cannot be described by analytical expressions, but fairly via filter coefficients [9]—Daubechiehs, Symmlets, Coiflets, or even Mathieu wavelets [10]. The Shannon entropy of such wavelets can be found by using the so-called two-scale relationship of a multiresolution analysis [11,12]. Two-scale relation of the scaling function \(\phi \) and wavelet \(\psi \) are given by:

\[
\phi(t) = \sqrt{2} \sum_{|\ell| < \infty} h_{\ell} \phi(2t - \ell) \quad \text{and} \quad \psi(t) = \sqrt{2} \sum_{|\ell| < \infty} g_{\ell} \phi(2t - \ell) \quad \text{(4)}
\]

Let \(\mathbb{Z} \) denote the set of integers. The low-pass \(H(\cdot) \) filter of the MRA: \(H(\omega) := \sum_{\ell \in \mathbb{Z}} h_{\ell} e^{-j\omega \ell} \) with \(H(0) = \sqrt{2} \), \(H(\pi) = 0 \).
The high-pass \(G(.) \) filter of the MRA:
\[
G(\omega) := \sum_{i \in \mathbb{Z}} g_i e^{-j\omega i}
\]
with \(G(0) = 0 \), \(G(\pi) = \sqrt{2} \). For the sake of simplicity, filter coefficients will encompass the term \(\sqrt{2} \), i.e., \(h_k \leftrightarrow 2 \sqrt{2} \). In these cases,
\[
\int_{-\infty}^{\infty} \phi(t) dt = \sum_{k \in \mathbb{Z}} h_k^2 = 1, \quad \int_{-\infty}^{\infty} \psi^2(t) dt = \sum_{k \in \mathbb{Z}} g_k^2 = 1.
\]
(5)

The (discrete) probability density of \(\psi \) is described by the probabilities \(\{g_k^2\}_{k \in \mathbb{Z}} \). The MRA wavelet entropy can be computed by
\[
H_{\text{MRA}}(\psi) := \sum_{n=-\infty}^{\infty} g_n^2 \cdot \log_2 \left(\frac{g_n^2}{h_n^2} \right) \geq \sum_{n=-\infty}^{\infty} h_n^2 \cdot \log_2 \left(\frac{h_n^2}{h_n^2} \right).
\]
(6)

II. CROSS DENSITY AND CROSS-ENTROPY OF WAVELETS

Let \(\langle ., . \rangle \) be the inner product on the interval \((-\infty, +\infty) \), and \(\Re \) (respectively \(\Im \)) the real part (respectively imaginary part) of a complex. The energy content \(E < +\infty \) of a real signal \(f(t) \in L^2(\mathbb{R}) \) is given by \(E = \langle f(t), f(t) \rangle := \int_{-\infty}^{\infty} f^2(t) dt \).

The energy time density is given by \(E = \frac{1}{\sqrt{2\pi}} F(w) \). Also,
\[
E = \frac{1}{\sqrt{2\pi}} F(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw,
\]
(7)

so the energy spectral density is given by \(\frac{1}{2\pi} |F(w)|^2 \).

Given a transform pair, \(\psi(t) \leftrightarrow \Psi(w) \), \(\Psi \) real, define then the mixed-domain signal \(\psi(\zeta) + \frac{1}{\sqrt{2\pi}} \Psi(-\zeta) \), which is a (Fourier) transform-invariant \([7,12]\).

The inner product
\[
I := \langle \psi(\zeta) + \frac{1}{\sqrt{2\pi}} \Psi(-\zeta), \psi(\zeta) + \frac{1}{\sqrt{2\pi}} \Psi(-\zeta) \rangle > 0
\]
(8)

furnishes information on the time-frequency energy distribution. Clearly,
\[
I = \int_{-\infty}^{\infty} \psi^2(t) dt + 2 \frac{1}{\sqrt{2\pi}} \Re \left(\int_{-\infty}^{\infty} \psi(\zeta) \Psi(-\zeta) d\zeta \right) + \frac{1}{2\pi} \int_{-\infty}^{\infty} |\Psi(w)|^2 dw.
\]
(9)

A new cross-time-frequency "density" appears! Let then
\[
\Re \left(\frac{1}{\sqrt{2\pi}} \psi(\zeta) \Psi(-\zeta) \right)
\]
be such a function. Indeed,
\[
\int_{-\infty}^{\infty} \psi^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\Psi(w)|^2 dw = 1.
\]
All we need to evaluate the integral
\[
\frac{1}{\sqrt{2\pi}} \Re \left(\int_{-\infty}^{\infty} \psi(\zeta) \Psi(-\zeta) d\zeta \right).
\]
(10)

A natural upper bound can easily be derived:

Proposition 1: If the wavelet \(\psi(t) \) is absolutely integrable, then \(\psi(t) \leftrightarrow \Psi(w) \) and
\[
\frac{1}{\sqrt{2\pi}} \Re \left(\int_{-\infty}^{\infty} \psi(\zeta) \Psi(-\zeta) d\zeta \right) \leq \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} |\psi(\zeta)|^2 d\zeta \right)^{\frac{1}{2}} < +\infty
\]
(11)

Proof: Follows by replacing the wavelet spectrum by its definition and applying the inequality
\[
\left| \int_{0}^{r} g(\zeta) d\zeta \right| \leq \int_{0}^{r} |g(\zeta)| d\zeta.
\]

Another more realistic bound on the inner product between a signal and its spectrum is given by:

Proposition 2: Given a continuous wavelet \(\psi(t) \leftrightarrow \Psi(w) \) then
\[
\frac{1}{\sqrt{2\pi}} \Re \left(\int_{-\infty}^{\infty} \psi(\zeta) \Psi(-\zeta) d\zeta \right) \leq 1 \text{ with equality if and only if } \psi(t) \text{ is an invariant wavelet.}
\]

Proof: The Cauchy inequality for complex signals establishes that
\[
\left| \int_{-\infty}^{\infty} F_1(x) F_2(x) dx \right|^2 \leq \int_{-\infty}^{\infty} |F_1(x)|^2 dx \int_{-\infty}^{\infty} |F_2(x)|^2 dx
\]
with equality if and only if \(F_1(x) = k F_2^*(x) \), where \(k \) is an arbitrary constant. Therefore
\[
\left| \frac{1}{\sqrt{2\pi}} \Re \left(\int_{-\infty}^{\infty} \psi(\zeta) \Psi(-\zeta) d\zeta \right) \right|^2 \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |\psi(\zeta)|^2 d\zeta \int_{-\infty}^{\infty} |\Psi(\zeta)|^2 d\zeta = 1.
\]
(13)

Thus, if \(f \leftrightarrow F \) has a finite energy \(E \), then
\[
|f, F| \leq E.
\]
(14)

Lemma 3: (Gibbs inequality for wavelets) Given two continuous wavelets \(\{\psi_i(t)\}_{i=1,2} \), then
\[
-\int_{-\infty}^{\infty} \psi_i^2(t) \log_2 \left(\frac{\psi_i^2(t)}{\psi_2^2(t)} \right) dt \leq \int_{-\infty}^{\infty} \psi_i^2(t) \log_2 \left(\frac{\psi_i^2(t)}{\psi_2^2(t)} \right) dt,
\]
with equality if and only if \(\psi_1(t) = \psi_2(t) \) \((\forall t) \).

Proof: Applying the fundamental inequality \(\ln x \leq x - 1 \) with equality if and only if \(x = 1 \), one derives
\[
\int_{-\infty}^{\infty} \psi_1^2(t) \log_2 \left(\frac{\psi_1^2(t)}{\psi_2^2(t)} \right) dt \leq \frac{1}{\ln 2} \int_{-\infty}^{\infty} \psi_1^2(t) dt - \int_{-\infty}^{\infty} \psi_2^2(t) dt \leq 0.
\]
(15)

A straightforward upper bound on the entropy of a wavelet can be derived.

Proposition 4: The global entropy of a wavelet \(\psi(.) \leftrightarrow \Psi(.) \) is upper bounded by...
Evoking the definition of the mutual information between two continuous random variables X and Y, we recognise that the root for creating such a measure is defining some joint probability measure [16], [18]. We shall see that this can be done with the aide of the continuous wavelet transform (CWT), $\text{CWT}(a,b):=<f(t),\psi_{a,b}(t)>$. We infer that the energy conservation and the resolution of the identity [1] can be used so as to define a joint density between a signal and a wavelet in the wavelet domain.

Definition 4. (Joint signal-wavelet probability density). Let $f \in L^2(\mathbb{R})$ be a signal of energy $E := \int_{-\infty}^{\infty} f^2(t)dt$. Given a mother continuous wavelet $\psi(.)$ with admissibility constant $c_\psi < +\infty$, the joint density between f and a version $\psi_{a,b}(t)$, can be defined by

$$
H_\psi \leq -\int_{-\infty}^{\infty} \psi^2(\zeta) \log_2 \left(\frac{1}{2\pi} \left| |\zeta| \right|^2 \right) d\zeta - \int_{-\infty}^{\infty} \frac{1}{2\pi} |\zeta|^2 \log_2 \left(\psi^2(\zeta) \right) d\zeta,
$$

with equality if and only if $\psi(.)$ is an invariant wavelet.

Proof: Follows from the lemma 3, with equality if

$$
\psi^2(\zeta) = \frac{1}{2\pi} |\zeta|^2. \Box
$$

Another interesting consequence of this approach is that the Kullback-Leiber distance [6,15] can assess the distance between two wavelets. Kullback called such a measure as the direct divergence, although alternative names have been suggested (e.g., cross-entropy, relative entropy). The notation $H(\psi_1 || \psi_2)$ by Cover and Thomas has thereafter been adopted [16].

Definition 3: (Wavelet distance). Given two continuous wavelets $\{\psi_i(t)\}_{i=1,2}$ compactly supported on $\text{Supp}(\psi_i(t))$, $i=1,2$ respectively, the Kullback discriminant can evaluate the distance between their two associated densities according to

$$
D_1(\psi_1, \psi_2) := H(\psi_1 || \psi_2) = 2 \int_{\text{Supp}(\psi_1)} \psi_1^2(t) \log_2 \left(\frac{\psi_1(t)}{\psi_2(\lambda_{1,2} t)} \right) dt
$$

where $\lambda_{1,2}$ is the ratio between the length of the support of the two wavelets, $\psi_1(t)$ and $\psi_2(t)$. The distance $D_1(\psi_1, \psi_{\text{Haar}})$, for instance, plays the role of the divergence from equiprobability, D_1, introduced by Gatlin when investigating genetic messages [17].

From the practical viewpoint, this definition can be extended by considering the effective support of the wavelets instead of its (unbounded) support. The nonnegativity of $H(\psi_1 || \psi_2)$ is not the only reasoning for adapting it as a closeness measure between wavelets. Although being asymmetric and not holding the triangle inequality, its relevance relies on the Kullback principle. Moreover, a similar measure can be taken over the frequency domain. A distance measure between two wavelets, complete to a certain extent, could be

$$
D_2(\psi_1, \psi_2) := 2 \int_{\text{EffSupp}(\psi_1)} \psi_1^2(t) \log_2 \left(\frac{\psi_1(t)}{\psi_2(\lambda_{1,2} t)} \right) dt + 2 \int_{\text{EffSupp}(\psi_1)} \left| \psi_1(w) \right|^2 \log_2 \left(\frac{\left| \psi_1(w) \right|^2}{\left| \psi_2(\mu_{1,2} w) \right|^2} \right) dw,
$$

where $\lambda_{1,2}$ (respectively $\mu_{1,2}$) is the ratio between the length of the effective support of the two wavelets in the time (respectively frequency) domain.

III. BY WAY OF A WAVELET INFORMATION THEORY

$$
p(a,b) := \frac{\left| \text{CWT}(a,b) \right|^2}{E_c \psi^2}, \quad a \neq 0. \quad (19)
$$

Clearly, $p(a,b)$ is a joint probability density (between the signal and the analysing wavelet) over the scale-translation domain. This joint density is thus expressed in terms of the scalogram of the signal, which visually provides information about local meaningful features embedded in the data [19]. Everything is now set for introducing the notion of wavelet mutual information to emboider on the WIT.

A. Mutual Signal-wavelet Information

Definition 5: (Mutual signal-wavelet information). The wavelet mutual information $I(f(t), \{\psi_{a,b}(t)\})$ between the signal and analysing wavelet can be found in a way somewhat similar to the classical definition $I(X,Y)=H(X)+H(Y) - H(X|Y)$ after using Bayes’ rule:

$$
I(f(t), \{\psi_{a,b}(t)\}) := \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\text{CWT}(a,b)}{E_c \psi^2} \log_2 \left(\frac{E_c \psi^2 \text{CWT}(a,b)}{\int_{-\infty}^{+\infty} \text{CWT}(a,b) \frac{db}{a^2}} \right) dadb. \quad (20)
$$

This allows for computing the amount of information provided by the decomposition of a signal f using a wavelet ψ.

Since $I(X,Y) \geq 0$ whatever the joint distribution $p(X,Y)$ [14,18], a nonnegative amount of information $I(f(t), \{\psi_{a,b}(t)\}) \geq 0$ is provided by the analysis.
The continuous time wavelet series (CTWS) can be used instead of the CWT. In the dyadic case, only
\[
\psi_{n,m} = \frac{1}{\sqrt{2^m}} \psi(2^{-m} t - n),
\]
versions are considered.

Wavelet coefficients (details) are
\[
w_{n,m} := \langle f, \psi_{n,m} \rangle = \int_{-\infty}^{\infty} f(t) \psi_{n,m}^*(t) dt, \quad n, m \in \mathbb{Z}, \; n \neq 0.
\]

For orthogonal wavelets, the set \(\{ \psi_{n,m}(t) \}_{n,m \in \mathbb{Z}}, \, t \in \mathbb{R} \) is a basis for \(L^2(\mathbb{R}) \) [1, Theorem 4.5, p.247] and therefore
\[
f(t) = \text{l.im.} \sum_{n,m \in \mathbb{Z}} w_{n,m} \psi_{n,m}(t),
\]
where \(\text{l.im.} \) denotes the limit in the mean and therefore
\[
\sum_{n,m \in \mathbb{Z}} |w_{n,m}|^2 = \int_{-\infty}^{\infty} f^2(t) dt = E.
\]

The mutual signal-wavelet information can be derived from the homogeneous wavelet expansion as
\[
I(f, \psi) = \sum_{n,m \in \mathbb{Z}} |w_{n,m}|^2 \frac{E |w_{n,m}|^2}{\sum_{n \in \mathbb{Z}} |w_{n,m}|^2} - \log_2 \left(\sum_{n \in \mathbb{Z}} |w_{n,m}|^2 \right).
\]

Finally, it is especially meaningful to evaluate the amount of information provided when the breath-takingly influential Mallat multiresolution approach is applied to the analysis of a signal [11,12]. Entropy can also be computed using detail coefficients (e.g., [20]).

B. Multiresolution Information

Suppose that \(\{ V \} \) constitutes the closed approximation subspaces of a multiresolution analysis (MRA) of \(L^2(\mathbb{R}) \) and let \(\{ W \} \) denote the sequence of orthogonal complementary (wavelet) spaces.

For any given level \(j \),
\[
clos \{ V_j \cup W_{j,1} \cup W_{j,2} \cup \ldots \} = L^2(\mathbb{R}),
\]
where \(\text{clos} \) denotes the closure union and \(\cup \) indicates "orthogonal sums" of subspaces. An MRA expansion can be written in terms of scaling functions (\(\phi \)) and wavelet functions (\(\psi \)) as
\[
f(t) = \text{l.im.} \sum_{k \in \mathbb{Z}} v_{k,j} \phi_{k,j}(t) + \sum_{j=-\infty}^{\infty} \sum_{k \in \mathbb{Z}} w_{k,j} \psi_{k,j}(t),
\]
and
\[
\sum_{k \in \mathbb{Z}} v_{k,j}^2 + \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} w_{k,j}^2 = \int_{-\infty}^{\infty} f^2(t) dt = E,
\]
where \(v = \{ v_{k,j} \}_{k \in \mathbb{Z}} \) are the approximation coefficients and \(w = \{ w_{k,j} \}_{k \in \mathbb{Z}, \; j = 1, 2, \ldots, \infty} \) are the detail coefficients of the MRA. The mutual signal-wavelet information of an MRA can be computed from the inhomogeneous wavelet expansion by
\[
I(f, \phi, \psi) = \sum_{k \in \mathbb{Z}} \sum_{j=1}^{\infty} \frac{\left(v_{k,j}^2 + w_{k,j}^2 \right)}{E}.
\]

IV. Wavelet-based Information Processing of a Few Signals

The main benefit of the MRA decomposition is the fact that there are plenty of room in the selection of the wavelet system. A specific signal feature can be enhanced in a particular decomposition level and different wavelets provide different readings. In order to gain some insight into the information theory approach for multiresolution analysis, a few simple discrete signals were analysed and their information content computed in each decomposition level. Three signals of length 16 were selected: the first one, shaped as a particular wavelet (db1); a dc-signal; and a random signal. Several orthogonal wavelet systems were considered: Daubechies (db1,...,db5), Coiflets (coif2, coif3), Symmlets (sym1, sym2).

Wave	Approx. (%)	Detail 1 (%)	Total inform. amount (%)
db1	0.0000	<0.0001	<0.0001
db2	<0.0001	0.0001	0.0001
db4	<0.0001	<0.0001	0.0018
db5	<0.0001	0.0027	0.0028
coif2	<0.0001	0.0007	0.0008
coif3	<0.0001	<0.0007	0.0007
sym1	0.0001	<0.0003	0.0003
sym2	0.0001	<0.0003	0.0004

Wave	Approx. (%)	Detail 2 (%)	Detail 1 (%)	Total inform. amount (%)
db1	0.0351	0.0280	0.0280	0.0351
db2	0.0214	0.0214	<0.0001	0.0214
db4	0.0174	0.0135	0.0135	0.0174
db5	0.0136	0.0111	0.0111	0.0136
coif2	0.0063	0.0048	0.0048	0.0063
coif3	0.0010	0.0010	0.0010	0.0010
sym1	0.0356	0.0283	<0.0001	0.0356
sym2	0.0218	0.0171	<0.0001	0.0218
TABLE III.
INFORMATION AMOUNT IN THE THREE-LEVEL MRA-DECOMPOSITION OF THE SIGNAL x[n].

wave	Approx.	Detail 1	Detail 2	Detail 3	Total Infor.
	(%)	(%)	(%)	(%)	amount (100%)
db1	0.0123	0.0282	0.0233	0.0512	0.0445
db2	0.2015	0.0233	0.0512	0.2232	0.1028
db4	0.0233	0.0952	0.1952	0.0305	0.081
db5	0.0233	0.0233	0.0233	0.0233	0.0233
coif2	0.0233	0.0233	0.0233	0.0233	0.0233
sym1	0.0233	0.0233	0.0233	0.0233	0.0233
sym2	0.0233	0.0233	0.0233	0.0233	0.0233

For the dc signal, null information content was found for each and every one approximation, whatever the decomposition level, as expected. As another naive example, the following random signal of length 16 was generated:

\[x[n]= [0.9501 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565 0.0185 0.8214 0.4447 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057]. \]

TABLE IV.
INFORMATION AMOUNT IN THE ONE-LEVEL MRA-DECOMPOSITION OF THE SIGNAL x[n].

wave	Approximation (%)	Detail 1 (%)	Total Infor. amount (100%)
db1	0.0444	0.0944	0.1005
db2	0.0086	0.0730	0.0842
db4	0.0315	0.0846	0.0934
db5	0.0512	0.1070	0.1234
coif2	0.0075	0.0705	0.0781
sym1	0.0210	0.1182	0.1392
sym2	0.0183	0.0969	0.1152

TABLE V.
INFORMATION AMOUNT IN THE TWO-LEVEL MRA-DECOMPOSITION OF THE SIGNAL x[n].

wave	Approx. (%)	Detail 2 (%)	Detail 1 (%)	Total Infor. amount (100%)
db1	0.0512	0.0962	0.1028	0.2322
db2	0.0312	0.0282	0.0233	0.1249
db4	0.0194	0.0233	0.0168	0.0916
db5	0.0116	0.0505	0.0055	0.1615
coif2	0.0025	0.0256	0.0116	0.0499
sym1	0.0025	0.0256	0.0116	0.0499
sym2	0.0025	0.0256	0.0116	0.0499

The computation of the information content was carried out using the Matlab™. MRA-info of \(x[n] \) is presented in Tables IV, V, and VI. Overall, \(\text{sym1} \)-based MRA provides much information and \(\text{coif2} \)-based MRA provides less information for this particular signal.

V. CONCLUSIONS

This paper intends to present a new regard to wavelets, which can be viewed as an information processing technique. Defining the mutual information between signals and analysing wavelets then fulfilled the heart of a wavelet information theory. This approach may help selecting suitable wavelets for analysing a signal. Distances between two wavelets were proposed and it was shown that \(D_{1}(\psi, \psi_{\text{sym}}) \) is a divergence measure from equiprobability. The emphasis of this paper was on conveying the chief ideas behind the WIT as opposed to presenting a formal mathematical development. Despite the fact that a mere draft of this technique has been outlined, it instigates expectations on both theoretical and practical information theory outcomes related to the wavelet analysis (e.g. criteria in the choice of the wavelet system; wavelet shrinkage compression carried out on wavelet-based information-theory-oriented algorithms not on the energy.)

ACKNOWLEDGMENTS

The first author is obliged to Professor Valdemar C. da Rocha Jr, who was steadfast in creating an exceptional atmosphere of enthusiastic, inspiring interest in IT.

REFERENCES

[1] M. Vetterli, J. Kovačević, Wavelets and Subband Coding, Englewood Cliffs: Prentice-Hall, NJ, 1995.
[2] C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and the Wavelet Transform--A Primer. Prentice-Hall, Englewood cliffs, NJ, 1999.
[3] H.M. de Oliveira, “Shannon and Renyi Entropy of Waves”, XVI Simpósio Brasileiro de Telecomunicações, SBT’04, 06-09 de Setembro de 2004, Belém – PA, 2004.
Available: http://www2.ee.ufpe.br/codec/publicacoes.html
[4] A. Beiser, *Concepts of Modern Physics*, New York: McGraw-Hill Series in Fundamental Physics, 1994.

[5] G. Jumarie, “Further Results on the Information Theory of Deterministic Functions and its Application to Pattern Recognition”, *Annales des Télécommunications*, vol.45, n.1-2, pp. 66-68, Feb., 1990.

[6] G. Battail, *Théorie de l'Information: Application aux techniques de communication*, Paris: Masson, 1997.

[7] L. R. Soares, H. M. de Oliveira, R. J. S. Cintra, and R. M. Campello de Souza, “Fourier Eigenfunctions, Uncertainty Gabor Principle and Isosolution Wavelets”, in *Anais do XX Simpósio Bras. de Telecomunicações*, Rio de Janeiro, Oct., 2003. Available: http://www2.ee.ufpe.br/codec/publicacoes.html

[8] D. Gabor, “Theory of Communications”, *J. IEE*, vol. 93, pp. 429-457, 1946.

[9] A. Bultheel, “Learning to Swim in a Sea of Wavelets”, *Bull. Belg. Math. Soc.*, vol. 2, pp. 1-46, 1995.

[10] M.M.S. Lira, H.M. de Oliveira, and R.J.S. Cintra, “Elliptic-Cylinder Wavelets: The Mathieu Wavelets”, *IEEE Signal Process. Letters*, vol. 11, n.1, Jan., pp. 52 - 55, 2004.

[11] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 11, n.7, pp. 674-693, July, 1989.

[12] S-C. Pei, J-J. Ding, “Eigenfunctions of Linear Canonical Transforms”, *IEEE Trans. on Signal Process.*, vol.50,n.1, Jan., pp.11-26, 2002.

[13] B. Jawerth, and W. Sweldens, “An Overview of Wavelet Based Multiresolution Analyses”, *SIAM Rev.*, vol. 36, no.3, pp. 377-412, 1994.

[14] R.G. Gallager, *Information Theory and Reliable Communication*, New York: John Wiley, 1968.

[15] J.H. Shore, and R.W. Johnson, “Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy”, *IEEE Trans. on Info. Theory*, vol. 26, pp. 26-37, Jan., 1980.

[16] T.M. Cover, J.A. Thomas, *Elements of Information Theory*, John Wiley, 1991.

[17] L.L. Gatlin, *Information Theory and the Living System*, Columbia University Press, New York, 1972.

[18] Claude Elwood Shannon, *Collected Papers*, N.J.A. Sloane, and A.D Wyner Eds., IEEE Press, 1993.

[19] O. Rioul and M. Vetterli, “Wavelets and Signal Processing”, *IEEE Signal Proc. Mag.*, pp. 14-37, Oct., 1991.

[20] D. Lemire, C. Pharand, J-C. Rajaona, H. Dubé, and A.R. LeBlanc, “Wavelet Time Entropy, T Wave Morphology and Myocardial Ischemia”, *IEEE Trans. on Biom. Eng.*, vol. 47, pp. 967-970, July, 2000.