Abstract

In this research work, Data Envelopment Analysis (DEA) is broadly connected in assessing the productivity of banks since it may be a strategy able of assessing the proficiency of choice making units in utilizing different inputs to deliver numerous yields. Be that as it may, a few yields of banks, in truth, have Fuzzy property, whereas ordinary DEA approach can as it were evaluate productivity with a fresh esteem and is incapable to assess loose information. Hypothetically, the Fuzzy Data Envelopment Analysis (FDEA) approach can assess banks’ productivity more reasonable and exact since it can take the fuzzy property of inputs and/or yields into thought. The comes about appear that the FDEA approach could not as it were successfully differentiate instability, but too may have a better capability to segregate banks’ effectiveness than the ordinary DEA method.

References

1. Sherman, H.D., Gold, F., 1985. Bank branch operating efficiency: Evaluation with data
envelopment analysis. Journal of Banking and Finance, 9, 297-316.
2. Aly, H.Y., Grabowski, R., Pasurka, C., Rangan, N., 1990. Technical, scale and allocative efficiencies in U.S. banking: An empirical investigation. The Review of Economics and Statistics, 72, 211-218.
3. Yue, P., 1992. Data envelopment analysis and commercial bank performance: A primer with applications to Missouri banks. Federal Reserve Bank of St. Louis, 31-45.
4. Miller, S.M., Noulas, A.G., 1996. The technical efficiency of large bank production. Journal of Banking and Finance, 20, 495-509.
5. Berger, A.N., DeYoung, R., 1997. Problem loans and cost efficiency in commercial banks. Journal of Banking and Finance, 21, 849-870.
6. Berger, A.N., Humphrey, D.B., 1997. Efficiency of financial institutions: International survey and directions for future research. Journal of Operational Research, 98, 175-212.
7. Kao, C., Liu, S.T., 2000a. Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Systems, 113, 427-437.
8. Kao, C., Liu, S.T., 2000b. Data envelopment analysis with missing data: An application to University libraries in Taiwan. Journal of the Operational Research Society, 51, 897-905.
9. Cooper, W.W., Park, K.S., Yu, G., 1999. IDEA and AR-IDEA: Models for dealing with imprecise data in DEA. Management Science, 45, 597-607.
10. Li, Y., 2003. The Asian financial crisis and non-performing loans: Evidences from commercial banks in Taiwan. International Journal of Management, 20, 69-74.
11. Hoshi, T., Kashyap, A., 1999. The Japanese banking crisis: Where did it come from and how will it end? NEBR Working Paper, 7250.
12. Park, J.H., 2002. Globalization of financial markets and the Asian crisis: Some lessons for third world developing countries. Journal of Third World Studies, 19, 141-164.
13. Kao, C., Liu, S.T., 2004. Predicting bank performance with financial forecasts: A case of Taiwan commercial banks. Journal of Banking and Finance, 28, 2353-2368.
14. Zadeh, L. A., 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3-28.
15. Saati, S.M., Memariani A., Jahanshahloo G.R., 2002. Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 3, 255-267.
16. Entani, T., Maeda, Y., Tanaka, H., 2002. Dual models of interval DEA and its extension to interval data. European Journal of Operational Research, 136, 32-45.
17. Lertworasirikul S., Fang S.C., Nuttle H.L.W., Joines J.A., 2003. Fuzzy BCC model for data envelopment analysis. Fuzzy Optimization and Decision Making, 2, 337-358.
18. Lertworasirikul S., Fang S.C., Joines J.A., Nuttle H.L.W., 2003. Fuzzy data development analysis (DEA): A possibility approach. Fuzzy Sets and Systems, 139, 379-394
19. Chen, S.H., 1985. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, 17, 113-129.
20. Tseng, T.Y., Klein, C.M., 1989. New algorithm for the ranking procedure in fuzzy decision making. IEEE Transactions on Systems, Man and Cybernetics, 19, 1289-1296.
21. Chen, C.B., Klein, C.M., 1997. A simple approach to ranking a group of aggregated fuzzy utilities. IEEE Transactions on Systems, Man and Cybernetics Part, 27, 26-35.
22. Kao, C., Liu, S.T., 2003, A mathematical programming approach to fuzzy efficiency ranking. International Journal of Production Economics, 86, 145-154.
23. Chen, C.B., Klein, C.M., 1997. A simple approach to ranking a group of aggregated fuzzy utilities. IEEE Transactions on Systems, Man and Cybernetics Part, 27, 26-35.
Index Terms

Computer Science Fuzzy Systems

Keywords

Data Envelopment Analysis, Fuzzy Data Envelopment Analysis, -cut, inaccurate data.