Risk factors for trauma-induced coagulopathy- and transfusion-associated multiple organ failure in severely injured trauma patients

Kirsten Balvers1,2, Mathijs R. Wirtz1,2, Susan van Dieren3, J. Carel Goslings1 and Nicole P. Juffermans2*

1 Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, Netherlands
2 Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
3 Clinical Research Unit, Academic Medical Center, Amsterdam, Netherlands

Edited by:
Takashi Tagami, Nippon Medical School, Japan
Reviewed by:
Tamas Szakmany, Cardiff University, UK
Hideo Yasunaga, The University of Tokyo, Japan

*Correspondence:
Nicole P. Juffermans, Department of Intensive Care Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
E-mail: n.p.juffermans@amc.uva.nl

Background: Both trauma-induced coagulopathy (TIC) and transfusion strategies influence early outcome in hemorrhagic trauma patients. Their impact on late outcome is less well characterized. This study systematically reviews risk factors for TIC- and transfusion-associated multiple organ failure (MOF) in severely injured trauma patients.

Materials and methods: A systematic search was conducted in PubMed and Embase. Studies published from 1986 to 2013 on adult trauma patients with an injury severity score ≥16, investigating TIC or transfusion strategies with MOF as primary or secondary outcome, were eligible for inclusion. Results of the included studies were evaluated with meta-analyses of pooled data.

Results: In total, 50 studies were included with a total sample size of 63,586 patients. Due to heterogeneity of the study populations and outcome measures, results from 7 studies allowed for pooling of data. Risk factors for TIC-associated MOF were hypocoagulopathy, hemorrhagic shock, activated protein C, increased histone levels, and increased levels of markers of fibrinolysis on admission. After at least 24 h after admission, the occurrence of thromboembolic events was associated with MOF. Risk factors for transfusion-associated MOF were the administration of fluids and red blood cell units within 24 h post-injury, the age of red blood cells (>14 days) and a ratio of FFP:RBC ≥1:1 (OR 1.11, 95% CI 1.04–1.19).

Conclusion: Risk factors for TIC-associated MOF in severely injured trauma patients are early hypocoagulopathy and hemorrhagic shock, while a hypercoagulable state with the occurrence of thromboembolic events later in the course of trauma predisposes to MOF. Risk factors for transfusion-associated MOF include administration of crystalloids and red blood cells and a prolonged storage time of red blood cells. Future prospective studies investigating TIC- and transfusion-associated risk factors on late outcome are required.

Keywords: trauma, multiple organ failure, transfusion, coagulopathy, resuscitation

INTRODUCTION

Despite advances in trauma care, multiple organ failure (MOF) still remains one of the leading causes of late mortality (occurring after more than 3 days) in trauma patients (1, 2). The incidence of MOF in severely injured trauma patients ranges from 15% up until 40% (3–6), with an associated mortality rate that varies between 24% (3) and 51% (6). Even though MOF-related mortality has been shown to decrease over the last decades (2, 6), mortality is still 10 times higher in patients with MOF compared to patients without MOF (4, 5).

Over the last decade, trauma-induced coagulopathy (TIC) is increasingly recognized to contribute to adverse early outcome in trauma patients (7–13). In recognition of that, transfusion strategies have changed toward more and earlier administration of plasma. This has led to a shift in the ratio of RBC:FFP to 1:1. Furthermore, fluid resuscitation with crystalloids has evolved from aggressive therapy to a minimal amount of crystalloid administration. More and earlier administration of plasma, combined with a restriction of crystalloid administration, has showed to reduce early mortality (14–16). However, the impact of both TIC and changing transfusion strategies on the occurrence of MOF has not been systematically reviewed before. Therefore, the aim of this study was to summarize risk factors for TIC- and transfusion-associated MOF in severely injured trauma patients.

MATERIALS AND METHODS

The present study was reported according to the PRISMA guidelines (preferred reporting items for systematic reviews and meta-analyses) (17).
STUDY SELECTION
An electronic search was conducted in PubMed and Embase for articles published from 1986 to 2013. In addition, we searched for ongoing trials on www.controlled-trials.com and www.clinicaltrials.gov.

The following subject headings and free text words were used: (“Blood Coagulation Disorders”[Mesh] OR “Blood Coagulation”[Mesh] OR Coagulation[tiab] OR coagulopathy[tiab] OR “Fibrinolysis”[Mesh] OR Fibrinolysis[tiab] OR hypofibrinolysis[tiab] OR hyperfibrinolysis[tiab]) OR (“Blood Transfusion”[Mesh] OR Transfusion[tiab] OR “Transfusion Medicine”[Mesh] OR “Erythrocyte Transfusion”[Mesh] OR “Blood Component Transfusion”[Mesh]) AND (“Multiple Organ Failure”[Mesh] OR multiple organ failure*[tiab] OR MOF[tiab] OR (infection*[tiab] AND trauma[tiab])) AND (“Multiple Trauma”[Mesh] OR multiple trauma[tiab] OR “Wounds and Injuries”[Mesh] OR “Injury Severity Score”[Mesh] OR Injury Severity Score[tiab] OR ISS[tiab]) (Table S2 in Supplementary Material).

Target population were trauma patients who suffered blunt or penetrating trauma, with a mean injury severity score (ISS) of ≥16 and an age of ≥16 years. Randomized controlled trials (RCTs) and observational studies investigating TIC or transfusion strategies with MOF as primary or secondary outcome were eligible for inclusion. Studies, which focused on patients with isolated traumatic brain injury or burn injury, were excluded. Both prospective and retrospective studies were included. Reviews, correspondeces, case reports, expert opinions, and editorials were excluded. The search was conducted by two independent researchers (Kirsten Balvers and Mathijs R. Wirtz). Any discrepancies in the included studies were resolved by discussion between the reviewers. If necessary, an independent third reviewer was consulted. Only articles defining MOF according to the definition of the Denver (18), Marshall (18, 19), or SOFA (20) score were included in this review. A Denver score of more than 3 and a Marshall score of more than 5, both for at least two consecutive days, were used to define MOF. Furthermore, MOF according to the SOFA score was defined as the simultaneous failure of two or more organ systems. Organ failure was defined as a total of more than two points in a single organ. Language was limited to English, Dutch, or German. We reviewed the bibliographies of the eligible studies for citations of additional suitable studies.

DATA SYNTHESIS
Primary outcomes were risk factors for TIC- and transfusion-associated MOF. Since most of the studies in this field are observational studies, we performed a quality assessment according to the Newcastle-Ottawa Scale (21). Characteristics of the studies examined included comparability of the study groups, methods used to select study participants and determination of outcome variables. The quality of selection of patients in the included studies was rated as good if they included severely injured trauma patients and the control group was drawn from the same community as the exposed cohort. The assessment of comparability of the studies was based on the design and/or analysis used in the studies. Quality of outcome variables was determined by follow-up period and <10% of patients lost-to-follow-up. The Cochrane Collaboration's tool for assessing the risk of bias was used to assess the quality of RCTs (22). This tool was used to evaluate RCTs on seven specific domains (sequence generation, allocation concealment, binding of participants and personnel, binding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias). If the results of studies were contradicting, the quality assessment was used to grade conclusions.

Review Manager (RevMan 5, The Nordic Cochrane Centre) was used to combine findings of studies in a meta-analysis. Studies were pooled if homogeneity was considered by assessing study population, intervention, and outcome. RevMan was used to determine homogeneity by the inverse variance method for a random or fixed effects model. If homogeneity was not obtained studies were excluded from meta-analysis. Heterogeneity was expressed by I^2. An I^2 of >75% was considered as substantial heterogeneity. Meta-analysis was performed on observational studies and RCTs, in which data from observational studies and RCTs were not combined in the same meta-analysis. For the outcome of interest, risk ratios and 95% confidence intervals were used.

RESULTS
We identified 476 articles (PubMed 320, Embase 156) meeting the inclusion criteria. Of these, seven duplicates were removed. Reviewing of the bibliographies resulted in 11 additional articles. The full texts of 114 articles were assessed for eligibility. An additional 64 reviews were excluded, bringing the total on 50 included articles with a total sample size of 63,586 patients (Figure 1). Of the 50 included studies, 46 studies were observational cohort studies and 4 were RCTs. The observational studies included 15 retrospective and 31 prospective studies. Sample size in these studies varied between 19 and 20,288 patients with a median of 384 (IQR 135–1217) patients. Two studies included a heterogeneous population of intensive care patients, all other studies were restricted to trauma patients. The score of the included studies on the Newcastle-Ottawa scale ranged from 6 to 8 with a median of 7. The score of the Cochrane Collaboration's tool for assessing the risk of bias ranged from 8 to 9 (Tables 1 and 2; Table S1 in Supplementary Material).

RISK FACTORS FOR TIC-ASSOCIATED MOF
Eighteen studies reported the effect of TIC on the development of MOF in trauma patients (Table 1). The presence of hypocoagulopathy on admission to the emergency department (ED) was an independent risk factor for MOF (26, 30, 33, 35–39); however, studies could not be pooled due to substantial heterogeneity ($I^2 \geq 90\%$, Figure 2). Hypocoagulopathy was defined by prolongation of coagulation parameters including PT, INR, and APTT and a decreased platelet count (26). Four studies reported a decreased platelet count as an independent risk factor (23, 26, 41, 72). Of note, hypocoagulopathy was rare in patients without persisting shock (73). Other risk factors for TIC-associated MOF were activation of protein C, increased levels of fibrinolytic markers (27, 36–39), and increased levels of extracellular histones (37). Of note, these risk factors were reported in small study numbers.

Taken together, after trauma, damaged endothelial cells and extracellular histones activate protein C, which inhibits factor Va.
and VIIa and leads to hyperfibrinolysis due to the consumption of plasminogen activator inhibitor, with subsequent hypocoagulopathy (37, 74–76).

Later in the course of events following trauma, patients tend to develop a hypercoagulopathy as reported in 5 studies with a total of 5581 patients. In these studies, an association between thromboembolic events, including disseminated intravascular coagulation (DIC) and venous thromboembolism (VTE), and MOF was reported (27, 28, 30, 32, 34). Pooling of data in a meta-analysis was not possible due to differences in outcome measures.

RISK FACTORS FOR TRANSFUSION-ASSOCIATED MOF

We found 36 studies reporting an association between transfusion and the development of MOF in trauma patients (Table 2).

Fluids
Six studies investigated the effect of the administration of crystalloids on MOF in trauma patients. The majority of studies reported crystalloid administration within the first 24 h post-injury as a risk factor for the development of MOF (36, 42, 67, 69, 70). Another study showed a trend toward a lower incidence of MOF in patients who were administered <1000 ml of fluids prior to arrival at the hospital. Two studies did not find a relation between fluids and MOF (53, 65). However, these two studies did not adjust for confounders. Pooling of data could not be performed due to difference in outcome measures. However, it is likely that crystalloid administration is an independent risk factor for MOF given that the studies, which adjusted for confounders found an association between the administration of crystalloids and MOF.

Blood products
The effect of the amount of RBCs administered on the development of MOF in trauma patients was reported in 14 studies (5, 6, 36, 41–43, 45, 46, 55, 56, 61, 66). There seems to be a dose-dependent association between MOF and transfusion, as a significant linear trend was found between the number of RBCs
Reference	Design	Origin	Patients	N	Groups	Risk factors for MOF	Quality
Nuytinck et al. (23)	Prospective	Europe	Trauma patients	71	ARDS/MOF	Plasma elastase level, Complement activation	7/9
					Non-ARDS/MOF		
Wudel et al. (24)	Retrospective	USA	Trauma patients	92	Survivors	No difference	7/9
					Non-survivors		
Sigurddson et al. (25)	Prospective	Asia	Critically ill patients	21	Hemorrhagic shock controls	Platelet activity and intestinal platelet sequestration	7/9
Waydhas et al. (26)	Prospective	Europe	Trauma patients	133	MOF	No difference in coagulopathy, Platelet count <180,000/µL	7/9
					Non-MOF		
Gando et al. (27)	Prospective	Japan	Trauma patients	58	DIC	DIC	6/9
					Non-DIC		
Gando et al. (28)	Prospective	Japan	Trauma patients	47	DIC	Thrombomodulin level, DIC	6/9
					Non-DIC		
Sauaia et al. (29)	Retrospective	USA	Trauma patients	411	MOF	Colloid administration, Lower platelet count, Longer prothrombin time	9/9
					Non-MOF		
Gando et al. (30)	Prospective	Japan	Trauma patients	136	SIRS for ≤2 days, SIRS ≥3 days	Platelet counts, DIC	6/9
					Non-SIRS		
Raeburn et al. (31)	Retrospective	USA	Trauma patients	77	Abdominal compartment syndrome (ACS)	No difference	7/9
Gando et al. (32)	Retrospective	USA	Trauma patients	1751	Normal, Overweight, Obese, Morbid obese	VTE	7/9
Raeburn et al. (33)	Retrospective	Europe	Trauma patients	8724	Coagulopathy, Non-coagulopathy	Coagulopathy	7/9
Paffrath et al. (34)	Retrospective	Europe	Trauma patients	7937	VTE, Non-VTE	VTE	7/9
Nydam et al. (35)	Retrospective	USA	Trauma patients	1415	Thrombocytopenia, Non-thrombocytopenia	Thrombocytopenia	8/9
Brown et al. (36)	Prospective	USA	Trauma patients	1877	Acute traumatic coagulopathy, Non-acute traumatic coagulopathy, Male versus female	Activation of protein C, Acute coagulopathy, Transfusion requirements	7/9
Kutcher et al. (37)	Prospective	USA	Trauma patients	132	High histone levels, Low histone levels	High histone level	7/9
Cohen et al. (38)	Prospective	USA	Trauma patients	203	–	Higher levels of activated protein C upon admission	8/9
Cole et al. (39)	Prospective	Europe	Trauma patients	158	Infection, Non-infection	PC depletion of PC and raised PAP levels	7/9
Trentzsch et al. (40)	Retrospective	Europe	Trauma patients	20,288	Male, Female	No difference in coagulopathy	8/9
Table 2 | Description of included studies; risk factors for transfusion-associated MOF.

Reference	Design	Origin	Patients	N	Groups	Risk factors for MOF	Quality
Sauaia et al. (41)	Retrospective	USA	Trauma patients	394	MOF	>6 RBCs	8/9
					Non-MOF		
Lehmann et al. (42)	Retrospective	Europe	Trauma patients	1112	MOF	RBC administration	8/9
					Non-MOF	Crystalloids	
Moore et al. (43)	Prospective	USA	Trauma patients	513	MOF	Blood transfusion products	8/9
					Non-MOF		
Waydhas et al. (44)	RCT	Europe	Trauma patients	40	ATIII placebo	Placebo	8/10
Sauaia et al. (29)	Retrospective	USA	Trauma patients	411	MOF	Colloid administration	9/9
					Non-MOF	Lower prothrombin time	
Zallien et al. (45)	Prospective	USA	Trauma patients	63	MOF	Number of and a	8/9
					Non-MOF	Age of blood units	
Cryer et al. (46)	Prospective	USA	Trauma patients	105	MOF	>6 RBC units	8/9
					Non-MOF		
Ciesla et al. (6)	Prospective	USA	Trauma patients	1344	MOF	Blood products	8/9
					Non-MOF	Transfusion of >6 RBCs	
Frink et al. (47)	Prospective	Europe	Trauma patients	143	MOF	Transfusion	7/9
					Non-MOF		
Bulger et al. (48)	RCT	USA	Trauma patients	209	Hypertonic fluids Ringer solution	No difference	9/10
Sperry et al. (50)	Prospective	USA	Trauma patients	415	FFP:PRBC ≥ 1:1.50 FFP:PRBC ≤ 1:1.51	A high FFP:PRBC ratio patients	8/9
Maegele et al. (51)	Retrospective	Europe	Trauma patients	713	RBC:FFP > 1.1 RBC:FFP 0.9–1.1 RBC:FFP <0.9	RBC: FFP 0·9–1·1 (1:1)	8/9
Holcomb et al. (52)	Retrospective	USA	Trauma patients	467	Low plasma:RBC < 1:2 high plasma:RBC ratio > 1:2 Low platelet:RBC < 1:2 high platelet:RBC ratio > 1:2	No difference	8/9
Jastrow et al. (53)	Prospective	USA	Trauma patients	48	MOF	Transfusion FFPS and RBCs	7/9
Englehart et al. (54)	Prospective	USA	Trauma patients	1036	RBCs leukoreduced RBCs not leukoreduced	No difference	6/9
Dewar et al. (55)	Retrospective	USA	Trauma patients	504	MOF	No difference	7/9
					Non-MOF		
Mahambrey et al. (56)	Retrospective	Canada	Trauma patients	260	–	RBC administration	7/9
Watson et al. (57)	Prospective	USA	Trauma patients	1175	High plasma transfusion Low plasma transfusion	FFP and cryoprecipitate	9/9
Boffard et al. (58)	RCT	Africa	Trauma patients	301	rVIIa Placebo	rVII group lower incidence MOF although not significant	8/10
Cotton et al. (59)	Prospective	USA	Trauma patients	266	Pre-massive transfusion protocol Massive transfusion protocol	Blood product administration	7/9

(Continued)
Table 2 | Continued

Reference	Design	Origin	Patients	N	Groups	Risk factors for MOF	Quality
Hauser et al. (60)	RCT	World wide	Trauma patients	573	FVIIa	A trend is observed toward decreased MOF in rFVIIa group	9/10
Paffrath et al. (34)	Retrospective	Europe	Trauma patients	7937	VTE	VTE	7/9
Brattstrom et al. (5)	Prospective	Europe	Trauma patients	164	–	>10 RBC units	8/9
Johnson et al. (61)	Retrospective	USA	Trauma patients	1440	MOF	RBC administration	8/9
Nienaber et al. (62)	Retrospective	Europe	Trauma patients	36	FFP	Coagulation factor concentrates	7/9
Perkins et al. (63)	Retrospective	USA	Trauma patients	369	–	No difference	7/9
Wafaisade et al. (64)	Retrospective	Europe	Trauma patients	1362	FFP:RBC < 1:1	No difference	7/9
Hussmann et al. (65)	Retrospective	Europe	Trauma patients	375	–	Crystalloids <1000 ml	7/9
Brakenridge et al. (66)	Prospective	USA	Trauma patients	1366	–	>10 RBC units	7/9
Borgman et al. (67)	Retrospective	Europe	Trauma patients	2474	High FFP:RBC > 1:2	No difference	7/9
Brown et al. (36)	Prospective	USA	Trauma patients	1877	Acute traumatic coagulopathy	Crystallloid, RBC, and FFP administration	7/9
Innerhofer et al. (69)	Prospective	Europe	Trauma patients	144	Fibrinogen and/or prothrombin complex concentrate alone	FFP administration	8/9
Minei et al. (69)	Prospective	USA	Trauma patients	916	MOF	FFP administration	9/9
Neal et al. (70)	Prospective	USA	Trauma patients	452	Crystalloid:RBC ratio	Crystalloid:RBC ratio	9/9
Duchesne et al. (71)	Retrospective	USA	Trauma patients	188	Hypertonic solution	Isotonic solution	7/9

FIGURE 2 | The impact of TIC on the development of MOF. Studies have reported an association between TIC and the incidence of MOF; however, pooling of data was not possible due to substantial heterogeneity.
transfused and the incidence of MOF (43, 49). In addition, most studies reported an increased risk for MOF after administration of more than six units; however, studies could not be pooled due to differences in outcomes measures. Besides the amount of RBCs administrated, the age of red blood cells of >14 days was found as an independent risk factor in four studies. Storage of RBCs for over 14 days was reported to increase the risk of MOF with an OR of 1.16 (95% CI 1.02–1.32; \(P = 0.03 \)). The OR increased to 1.22 (95% CI 1.06–1.41; \(P = 0.006 \)) when the RBC units were older than 21 days (45).

Eight studies investigated the effect of FFPs on the development of MOF. Two studies observed a relation between the administration of FFPs and MOF (57, 69). Other studies reported merely a trend or results were not adjusted for confounders (33, 36, 42, 50, 52, 53). When data of five observational studies were pooled for meta-analysis, there was a significant association between a high FFP:RBC ratio of \(\geq 1:1 \) and MOF (RR 1.11, 95% CI 1.04–1.19, Figure 3). Of note, studies were limited in design. The effect of platelets on the development of MOF was investigated in five studies. No significant association between platelet administration and MOF was reported in these studies (52, 53, 57, 61, 63).

Procoagulant agents

Five studies reported on the relation between MOF and the use of procoagulant agents in patients with severe hemorrhage. In an RCT with 573 patients, recombinant factor VII (rVII) significantly reduced transfusion requirements in both blunt and penetrating trauma patients and showed a trend toward a lower MOF rate in blunt trauma patients (60). Another RCT showed a lower incidence of MOF in patients treated with rVII, although these results were not significant (58). Pooling of data from these two RCTs suggested a lower incidence of MOF in patients treated with rVII compared to placebo (RR 0.81, 95% CI 0.68–0.98, Figure 4).

The early and high-dose administration of antithrombin (AT) significantly reduced duration of MOF, but did not reduce the incidence of MOF (44). Of note, there was no significant difference in safety profile, including thromboembolic events, between the groups. Two studies reported that prothrombin complex concentrate (PCC) administration resulted in decreased transfusion requirements with an associated significant lower frequency of MOF in severely injured trauma patients (62, 77).

In summary, the limitedly available data suggest that procoagulant agents do not contribute to a higher incidence of thromboembolic events and subsequently MOF in severe trauma patients. In fact, these agents are associated with reduced transfusion requirements and a reduced incidence of MOF.

DISCUSSION

Risk factors for TIC-associated MOF in severely injured trauma patients are early hypocoagulopathy, whereas later in the course after admission, the occurrence of thromboembolic events was associated with MOF. Risk factors for transfusion-associated MOF were the administration of fluids and red blood cell units, the age of red blood cells and an FFP:RBC ratio \(\geq 1:1 \). Risk factors are summarized in Table 3.

Hemorrhagic shock and early presence of hypocoagulopathy are risk factors for MOF in trauma patients. Subsequently, after at least 24-h after admission, thromboembolic events were reported as risk factors. Thereby, the coagulation profile associated with MOF seems to change over time. In an effort to reconcile these findings, we hypothesize that patients can transfer

Study or Subgroup	FFP:RBC ≥ 1:1 Events	Total Events	FFP:RBC < 1:1 Events	Total Events	Weight	Risk Ratio IV, Fixed, 95% CI	Risk Ratio IV, Fixed, 95% CI
Borgman 2011	236	422	118	237	20.6%	1.12 [0.96, 1.31]	1.12 [0.96, 1.31]
Holcomb 2008	12	252	9	166	0.7%	0.88 [0.38, 2.04]	0.88 [0.38, 2.04]
Maegel 2008	133	229	220	484	22.4%	1.28 [1.10, 1.48]	1.28 [1.10, 1.48]
Sperry 2008	65	102	169	313	15.2%	1.18 [0.99, 1.41]	1.18 [0.99, 1.41]
Waffa 2011	298	602	373	760	41.2%	1.01 [0.90, 1.12]	1.01 [0.90, 1.12]
Total (95% CI)	1607	1960	100.0%	1190	1.11 [1.04, 1.19]	1.11 [1.04, 1.19]	
Total events	744	889					
Heterogeneity: Chi² = 7.28, df = 4 (\(P = 0.12 \)); I² = 45%							

Test for overall effect: \(Z = 3.00 (P = 0.003) \)

FIGURE 3 | Meta-analysis: the impact of a high FFP:RBC ratio (≥1:1) versus a low FFP:RBC ratio (<1:1) on the development of MOF. A significant association between a high FFP:RBC ratio and the incidence of MOF is observed (\(P = 0.003 \)).

Study or Subgroup	rVII Events	Total Events	Placebo Events	Total Events	Weight	Risk Ratio IV, Fixed, 95% CI	Risk Ratio IV, Fixed, 95% CI
Boffard 2009	7	69	16	74	4.9%	0.47 [0.21, 1.07]	0.47 [0.21, 1.07]
Hauser 2010	108	262	138	280	95.1%	0.84 [0.69, 1.01]	0.84 [0.69, 1.01]
Total (95% CI)	331	354	100.0%	354	0.81 [0.68, 0.98]	0.81 [0.68, 0.98]	
Total events	115	154					
Heterogeneity: Chi² = 1.79, df = 1 (\(P = 0.18 \)); I² = 44%							

Test for overall effect: \(Z = 2.22 (P = 0.03) \)

FIGURE 4 | Meta-analysis: the effect of administration of rVII on the development of MOF. A significant lower incidence of MOF was observed in patients with rVII compared to patients with placebo (\(P = 0.03 \)).
from a hypocoagulable state on admission toward a hypercoagulable state later during the hospital stay, which may predispose to MOF. Immediately after tissue injury, thrombomodulin complexes and extracellular histones activate protein C, which leads to hypocoagulopathy due to the inhibition of FVa and FVII and hyperfibrinolysis (28, 37, 74, 75). Activation of protein C results in utilization of protein C. If protein C levels are consumed and patients do not recover their protein C levels, inhibition of FVa and VII will not occur, causing a hypercoagulable state. This may be followed by the formation of vascular thrombi leading to cell damage in organs and eventually MOF (Figure 5). Further studies are required to confirm this hypothesis.

Risk factors for transfusion-associated MOF are administration of crystalloids, transfusion of RBCs, the age of RBCs > 14 days and an FFP:RBC ratio ≥ 1:1. When transfusion of fluids and blood products is inevitable a limited amount of fluid and blood products is recommended. We found that a high FFP:RBC ratio is an independent risk factor for MOF. However, since transfusion with a low FFP:RBC ratio of < 1:1 is associated with a higher mortality due to bleeding (50, 51, 79, 80), clear recommendations on the FFP:RBC ratio, with the aim to limit MOF cannot be made. In particular, due to the different scoring systems used to define MOF in the meta-analysis. Further studies on risks and benefits of blood product ratios are warranted. A possible explanation for the association between the administration of RBCs in trauma patients and MOF may be storage time. However, the use of fresh blood only is probably not feasible in exsanguinating trauma patients. Furthermore, limited data in this study suggest that procoagulant agents do not contribute to a higher incidence of thromboembolic events and subsequently MOF in severely injured trauma patients. In fact, they seem to reduce the risk of MOF, which is most likely related to a decrease in transfusion requirements. Whether the addition of procoagulant agents may decrease transfusion requirements and subsequently the development of MOF remains to be determined.

LIMITATIONS
There are several limitations to this review. The included studies have a considerable risk of bias related to design and methodology and several studies did not adjust for confounders. Also, there was a relevant heterogeneity as data were presented as mean or median, as frequencies and percentages, and as odds ratios with 95% confidence intervals. This hampered pooling of data in the meta-analysis. Pooling of data was feasible in 7 out of the 50 included studies. Additionally, we have used the Newcastle-Ottawa Scale to assess the quality of observational studies. Previous studies reported a low reliability of the scale due to differences in assessment and low agreement between reviewers, which is a limitation of the scale and subsequently of this study (81, 82). However, despite these limitations, the Cochrane Collaboration recommends the Newcastle-Ottawa scale as the most useful tool for assessing the risk of bias in non-RCTs (83). Furthermore,
there is a lack of a uniform definition of MOF. The use of different scores of MOF hampers interpretation of the results of the meta-analyses and therefore no firm conclusions can be drawn. Additional studies are required to confirm the results of this study.

CONCLUSION

Identifying patients at high risk for MOF may guide the need for monitoring of organ failure and may provide avoidance of therapy, which can aggravate organ failure. Early hypercoagulopathy and shock are risk factors for TIC-associated MOF in severely injured trauma patients. Later in the course of trauma, a hypercoagulable state with the occurrence of thromboembolic events predisposes to MOF. Risk factors for transfusion-associated MOF include the administration of crystalloids and red blood cells and a prolonged storage time of red blood cells. However, pooling of data was hampered by heterogeneity of the study populations and outcome measures. Future prospective studies investigating TIC- and transfusion-associated risk factors on late outcome are required.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://journal.frontiersin.org/article/10.3389/fmed.2015.00024/

REFERENCES

1. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma death: a reassessment. J Trauma (1995) 38(2):185–93. doi:10.1097/00005373-199502000-00006
2. Soreide K, Kruger AI, Vardal AL, Ellingsen CL, Soreide E, Lossius HM. Epidemiology and contemporary patterns of trauma deaths: changing place, similar pace, older face. World J Surg (2007) 31(11):2902–103. doi:10.1007/s00268-007-9226-9
3. Dewar DC, Tarrant SM, King KL, Balogh ZI. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg (2013) 74(3):774–9. doi:10.1097/TA.0b013e31827a5e69
4. Nast-Kolb D, Aufricht M, Rucholtz S, Obergacke U, Waydhas C. Multiple organ failure still a major cause of morbidity but not mortality in blunt multiple trauma. J Trauma (2001) 51(5):835–41. doi:10.1097/00005373-200111000-00003
5. Brattstrom O, Granath F, Rossi P, Oldner A. Early predictors of morbidity and mortality in trauma patients treated in the intensive care unit. Acta Anaesthesiol Scand (2010) 54(8):1007–17. doi:10.1111/j.1399-6576.2010.02266.x
6. Ciesla DJ, Moore EE, Bresch DJ, Galloway WB. Acidosis-induced coagulopathy. Surg Forum (1979) 30:471–3.
7. Schoch H, Friesach T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma (2009) 67(1):125–31. doi:10.1097/TA.0b013e31818b2483
8. Johansson PI, Stensballe JS, Ostrowski SR. A high admission abnormal results of conventional coagulation test on admission to a trauma surgical intensive care unit. Acta Anaesthesiol Scand (2009) 53(5):438–47. doi:10.1111/j.1399-6576.2009.02084.x
9. Sauaia A, Moore EE, Johnson JL, Ciesla DJ, Biffl WL, Banerjee A. Validation of postinjury multiple organ failure scores. Shock (2009) 31(5):438–47. doi:10.1097/SHK.0b013e31818ba4c6
10. Grotz M, von GM, Stalp M, Kauflmann U, Hildebrand F, Pape HC. [Scoring multiple organ failure after severe trauma. Comparison of the Goris, Marshall and Moore scores]. Chirurg (2001) 72(6):723–30. doi:10.1007/s001040100710
11. Antonelli M, Moreno R, Vincent JL, Sprung CL, Mendoca A, Passariello M, et al. Application of SOFA score to trauma patients. Sequential organ failure assessment. Intensive Care Med (1999) 25(4):389–94. doi:10.1007/s001340050586
12. Wells G, Shea B, O’Connel J. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses (2011). Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
13. Giansanti JT, Green S, editors. The Cochrane Collaboration, 5.0.1 ed. Chichester: John Wiley & Sons, Ltd (2008).
14. Nuytink JK, Goris JA, Red H, Schlag V, van Munster PJ. Posttraumatic complications and inflammatory mediators. Arch Surg (1986) 121(8):886–90. doi:10.1001/archsurg.1986.140008002804
15. Wudel JH, Morris JA Jr, Yates K, Wilson A, Bass SM. Massive transfusion: outcome in blunt trauma patients. J Trauma (1991) 31(1):1–7. doi:10.1097/00005373-199110000-00001
16. Sigurdsson GH, Christenson JT, El-Rakhsby MB, Sadek S. Intestinal platelet trapping after traumatic and septic shock. An early sign of sepsis and multiorgan failure in critically ill patients? Crit Care Med (1992) 20:458–67. doi:10.1097/00003246-199204000-00005
17. Waydhas C, Nast-Kolb D, Kick M, Zettl R, Wiescher J, Trupka A, et al. [Operation planning of secondary interventions after polytrauma]. Unfallchirurg (1994) 97(5):244–9.
18. Gando S, Nakashishi Y, Ide T. Cytokines and plasminogen activator inhibitor-1 in posttrauma disseminated intravascular coagulation: relationship to multiple organ dysfunction syndrome. Crit Care Med (1995) 23(11):1835–42. doi:10.1097/00003246-199510000-00009
19. Gando S, Nakashishi Y, Nakazato M, Tsuchida K, Sano T, Sato T. The Cochrane Collaboration. Scand J Trauma Resuscitation and MOF. Transfusion 2009; 49(1):34–9. doi:10.1111/j.1399-2899.2008.01944.x
20. Balvers et al. Risk factors for organ failure www.frontiersin.org April 2015 | Volume 2 | Article 24 | 9
32. Newell MA, Bard MR, Goettler CE, Tschogol EA, Schenarts PJ, Sagarves SG, et al. Body mass index and outcomes in critically injured blunt trauma patients: weighing the impact. J Am Coll Surg (2007) 204(5):1056–61. doi:10.1016/j.jamcollsurg.2006.12.042

33. Maegele M, Lefering R, Yucel N, Tjardes T, Rixen D, Paffrath T, et al. Early coagulopathy in multiple injury: an analysis from the German trauma registry on 8724 patients. Injury (2007) 38(3):298–304. doi:10.1016/j.injury.2006.10.003

34. Paffrath T, Wafaisade A, Lefering R, Simanski C, Bouillon B, Spanholtz T, et al. Venous thrombo-embolism after severe trauma: incidence, risk factors and outcome. Injury (2010) 41(1):91–101. doi:10.1016/j.injury.2009.06.010

35. Nydam TL, K hashuk JH, Moore EE, Johnson JL, Burlew CC, Biffi WL, et al. Refractory postinjury thrombocytopenia is associated with multiple organ failure and adverse outcomes. J Trauma (2011) 70(4):401–6. doi:10.1097/TA.0b013e31825b6a85

36. Brown JB, Cohen MJ, Minei JP, West MA, Billiar TR, et al. Characterization of acute coagulopathy and sexual dimorphism after injury: females and coagulopathy just do not mix. J Trauma Acute Care Surg (2012) 73(6):1395–400. doi:10.1097/TA.0b013e31825b9f05

37. Kutcher ME, Xu J, Vilardi RF, Ho C, Esmnt CT, Cohen MJ. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg (2012) 73(6):1389–94. doi:10.1097/TA.0b013e318270d595

38. Cohen MJ, Call M, Nelson M, Calfe CS, Esmnt CT, Brohki E, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg (2012) 255(2):379–85. doi:10.1097/SLA.0b013e318235d866

39. Cole E, Davenport R, De'ath H, Manson J, Brockamp T, Brohki E. Coagulation system changes associated with susceptibility to infection in trauma patients. J Trauma Acute Care Surg (2013) 74(1):51–7. doi:10.1097/TA.0b013e318278b7bf

40. Trentzsch H, Nienaber U, Behnke M, Lefering R, Pilz S. Female sex protects from organ failure and sepsis after major trauma haemorrhage. Injury (2014) 45(Suppl 1):S20–8. doi:10.1016/j.injury.2014.08.013

41. Sauaia A, Moore FA, Moore EE, Haenel JB, Read RA, Lezotte DC. Early preclinical and clinical data of 1,112 polytrauma patients have an effect on the development of multiple organ failure and adverse outcomes. J Trauma (2011) 70(3):204–10. doi:10.1097/TA.0b013e3182085697

42. Englehart MS, Cho JD, Morris MS, Ge AC, Riha G, Underwood SJ, et al. Use of leukoreduced blood does not reduce infection, organ failure, or mortality following trauma. J Trauma (2009) 67(3):816–22. doi:10.1097/TA.0b013e3181a32d818

43. Moore FA, Moore EE, Sauaia A. Blood transfusion. An independent risk factor for postinjury multiple organ failure. J Am Coll Surg (2007) 204(5):1056–61. doi:10.1016/j.jamcollsurg.2006.12.042

44. Balvers et al. Risk factors for organ failure mortality in severe multiple injury: a retrospective analysis from the trauma registry of the Deutsche Gesellschaft für Unfallchirurgie. Vox Sang (2008) 95(1):112–9. doi:10.1111/j.1537-2995.2008.01074.x

45. Holcomb JB, Wade CE, Michalek JE, Chihiolom GB, Zarzabal LA, Schreiber MA, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg (2008) 248(3):447–58. doi:10.1097/SLA.0b013e3181585a9ad

46. Jastrow KM III, Gonzalez EA, McGuire MF, Sulibsk JW, Koar RA, Iyengar S, et al. Early cytokine production risk stratifies trauma patients for multiple organ failure. J Am Coll Surg (2009) 209(3):320–31. doi:10.1016/j.jamcsurg.2009.05.002

47. Mahambrdy TD, Fowler RA, Pinto R, Smith TS, Callum JI, Pisanis NA, et al. Early massive transfusion in trauma patients: Canadian single centre retrospective cohort study. Can J Anesth (2009) 56(10):749–50. doi:10.1007/s12306-009-9151-5

48. Watson GA, Sperry JL, Rosengart MR, Minei JP, Harbrecht BG, Moore EE, et al. Fresh frozen plasma is independently associated with a higher risk of multiple organ failure and acute respiratory distress syndrome. J Trauma (2009) 67(2):221–7. doi:10.1097/TA.0b013e3181ad5f97

49. Boffard KD, Coong PI, Kluger Y, Rios B, Rinaldi SB, Rossant R, et al. Treatment of bleeding is to stop the bleeding! Treatment of trauma-related hemorrhage. Transfusion (2009) 49(Suppl 5):2405–75. doi:10.1111/j.1537-2995.2008.01987.x

50. Cotton BA, AU BK, Nukne TC, Gunter OL, Robertson AM, Young PP. Predefined massive transfusion protocols are associated with a reduction in organ failure and postinjury complications. J Trauma (2009) 66(1):41–8; discussion 48–9. doi:10.1097/TA.0b013e3181931b31

51. Hauser CJ, Boffard K, Dutton R, Bernard GR, Croce MA, Holcomb JB, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma (2010) 69(3):489–500. doi:10.1097/TA.0b013e3181ed42e6

52. Johnson JL, Moore EE, Khashuk JH, Banerjee A, Cothren CC, Biffi WL, et al. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch Surg (2010) 145(10):973–7. doi:10.1001/archsurg.2010.216

53. Nienaber U, Innesher F, Westermann I, Schochl H, Attal R, Breitkopf R, et al. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury (2011) 42(7):687–701. doi:10.1016/j.injury.2010.12.015

54. Perkins JG, Cap AP, Sinellina PC, Shorr AE, Beaekley AC, Grathwohl KW, et al. Comparison of platelet transfusion as fresh whole blood versus apheresis platelets for massively transfused combat trauma patients (CM). Transfusion (2011) 51(2):242–52. doi:10.1111/j.1537-2995.2010.02818.x

55. Wafaisade A, Maegele M, Lefering R, Braun M, Peiniger S, Neugebauer E, et al. High plasma to red blood cell ratios are associated with lower mortality rates in patients receiving multiple transfusion (≤5 red blood cell units) during acute trauma resuscitation. J Trauma (2011) 70(1):81–8; discussion 88–9. doi:10.1097/TA.0b013e318203e02b

56. Hussmann B, Taegger G, Lefering R, Waydhas C, Nast-Kolb D, Ruchholtz S, et al. Lethality and outcome in multiple injured patients after severe abdominal and pelvic trauma. Influence of preclinical volume replacement – an analysis of 604 patients from the trauma registry of the DGU. Unfallchirurg (2011) 114(8):705–12. doi:10.1007/s00212-011-1842-4

57. Braekenridge SC, Phelan HA, Henley SS, Golden RM, Kashner TM, Eastman AE, et al. High plasma to red blood cell ratios are associated with lower mortality rates in patients receiving multiple transfusion <4 red blood cell units<10 during acute trauma resuscitation. J Trauma (2011) 70(1):81–8; discussion 88–9. doi:10.1097/TA.0b013e31822d2528

58. Borgen MA, Sinellina PC, Holcomb JB, Blackbourne LH, Wade CE, Lefering R, et al. The effect of FFP:RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang (2011) 101(1):44–54. doi:10.1111/j.1537-2995.2010.01466.x

59. Innerhofer P, Westermann I, Tauber H, Breitkopf R, Frits D, Karstenberger T, et al. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy.
of coagulopathy and decreases transfusion rates in patients with major blunt trauma. *Injury* (2013) 44:209–16. doi:10.1016/j.injury.2012.08.047

69. Minei JP, Cuschieri J, Sperry J, Moore EE, West MA, Harbrecht BG, et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. *Crit Care Med* (2012) 40(4):1129–35. doi:10.1097/CCM.0b013e3182373e9f

70. Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. *J Trauma Acute Care Surg* (2012) 72(4):892–8. doi:10.1097/TA.0b013e31828d84a7

71. Duchesne JC, Simms E, Gaudry C, Duke M, Beeson E, McSwain NE, et al. Damage control immunoregulation: is there a role for low-volume hypertonic saline resuscitation in patients managed with damage control surgery? *Am Surg* (2012) 78(9):962–8.

72. Pepe HC, van GM, Rice J, Ganslen A, Hildebrand F, Zech S, et al. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. *J Trauma* (2001) 50(6):989–1000. doi:10.1097/00005373-200106000-00004

73. Frith D, Godlings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. *J Thromb Haemost* (2010) 8(9):1919–25. doi:10.1111/j.1538-7836.2010.03945.x

74. Flocard B, Gugerli L, Faure A, Saint DM, Boyle EM, Peggut O, et al. Early coagulopathy in trauma patients: an on-scene and hospital admission study. *Injury* (2012) 43(1):26–32. doi:10.1016/j.injury.2010.11.003

75. Raza I, Davenport R, Rourke C, Platton S, Manooj J, Spoons C, et al. The incidence and magnitude of fibrinolytic activation in trauma patients. *J Thromb Haemost* (2013) 11(2):307–14. doi:10.1111/jth.12078

76. Nielsen VG. A comparison of the thrombelastograph and the ROTEM. *Blood Coagul Fibrinolysis* (2007) 18(3):247–52. doi:10.1097/MBC.0b013e328092ee05

77. Innerhofer P, Westermann I, Tauber H, Breitkopf R, Fries D, Kastenberger et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. *JAMA* (2015) 313(5):471–82. doi:10.1001/jama.2015.12

78. Lo CK, Mertz D, Loeb M, Newcastle-Ottawa scale: comparing reviewers’ to authors’ assessments. *BMJ Med Res Methodol* (2014) 14:45. doi:10.1186/1471-2288-14-45

79. Zehtabchi S, Nishijima DK. Impact of transfusion of fresh-frozen plasma and packed red blood cells in a 1:1 ratio on survival of emergency department patients with severe trauma. *Acad Emerg Med* (2009) 16(5):371–8. doi:10.1111/j.1553-2712.2009.00386.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.