The impact of SARS-CoV-2 on the sudden onset of Mucormycosis in the Indian subcontinent-A review

Shakila Mahesh¹, Samridhi Srivastava², Sakshi, Riya Tripathi²

¹Head of Microbiology Department, ²Faculty of Dental Sciences, Department of Microbiology, BDS, Manav Rachna Dental College, FDS, MRIIRS, Faridabad, Haryana, India

Abstract

Mucormycosis or black fungus is a rare fungal infection, but cases are rising amidst the Coronavirus pandemic. The disease mostly infects immunocompromised patients including diabetics and those receiving corticosteroid therapy. The most common etiological agent is Rhizopus arrhizus, from the Mucorales family of fungi. The fungal spores may affect the nose and sinuses, the respiratory tract, renal tract, cutaneous tissues, or may be disseminated throughout the body. Early detection can be done by PCR technique, but direct microscopy is also commonly done. Treatment is most commonly done using high-cost liposomal Amphotericin B injections. Surgical debridement of the affected tissues may sometimes be necessary. Knowledge of the disease and its management techniques is absolutely essential for healthcare professionals in the current scenario. Early diagnosis may improve prognosis. In this narrative review, we seek to provide an overview of the most essential features of Mucormycosis, especially in association with SARS-CoV-2.

Keywords: Amphotericin B, Coronavirus, corticosteroid therapy, diabetes mellitus, mucormycosis, PCR

Introduction

On 11 March 2020, WHO officially declared a global pandemic from SARS-CoV-2, one of the deadliest viruses in history.¹ As of 29 May 2021, Coronavirus had killed 3.53 million people, along with 169 million confirmed cases.¹ The virus was already deadly enough in itself, but it seems that new diseases are on a constant rise. One of these is the deadly Mucormycosis, a fungal infection that used to be a rare case before Coronavirus, but now seems to have become a common occurrence in people of the Indian subcontinent.

Mucormycosis, often known as the Black Fungus, is an invasive vascular disease characterised by tissue infarction and necrosis.² The causative agents are multiple and varied and often differ in developed and developing nations. Rhizopus arrhizus has usually been globally considered the most common pathogen.³ Apophysomyces species are the second most frequent in India, whereas Lichtheimia species are more abundant in developed countries.³ Other species may include Rhizomucor, Mucor, and Cunninghamella species. Some researchers have also discovered Thamnostylum lucknowense as a possible etiological agent.³

The infection is usually acquired by inhaling, ingesting, or direct inoculation of fungal spores in the human body.⁶ It affects the sinuses, the brain, and the lungs and can be life-threatening in diabetic or severely immunocompromised individuals, such as cancer patients or people with HIV/AIDS.⁶ Although the most common risk factor for Mucormycosis remains diabetes mellitus,⁶ several other possible causes have been recorded. In contrast to India, countries such as the USA and European nations recorded a larger number of cases having hematological malignancies and transplants as the underlying predisposing factors.⁷⁻⁹ Other factors include prolonged neutropenia, corticosteroid therapy, iron overload, trauma, illicit drug usage, premature babies, trauma, and burns.⁸ The disease may affect several organs, including the
eyes, respiratory, gastrointestinal, or renal tract, or may present as a cutaneous or disseminated disease.[10,11]

Diagnosis of Mucormycosis from bronchoalveolar lavage (BAL), transbronchial biopsies, aspirated fluid, etc., is done by direct microscopy using H and E stain, Lactophenol cotton blue mount (LPCB), calcofluor white stain, KOH mount, and culture on Sabouraud’s dextrose agar (SDA). Polymerase chain reaction (PCR) is used for the early diagnosis of Mucormycosis.

Treatment of Mucormycosis mostly includes injections of Amphotericin B, surgical debridement of infected tissues, and managing the underlying disease.[2]

The impact of SARS-CoV-2 and sudden onset of mucormycosis are rapidly increasing in India, owing to a large diabetic population, coronavirus patients who are critically immunocompromised, and corticosteroid therapy. As of 25 May 2021, 11,700 black fungus cases had been reported in India, with the maximum numbers coming from the western state of Gujarat. Other states affected were Karnataka, Uttarakhand, Telangana, Haryana, and Madhya Pradesh.[3]

The fatality rate (31–50%) was extremely high in the second wave due to the most virulent mutant of the Coronavirus (B.1.617.2 and B.1.617.2.1).[9]

Physicians relied on steroids to combat the severe inflammation and cytokine storm induced by the new Delta variant. Even among non-hospitalized individuals who showed no evidence of respiratory distress, corticosteroids were indiscriminately given. There were no established guidelines for the treatment of COVID-19 patients. There was a 10-fold rise in sales of dexamethasone and methylprednisolone, and one of the predominant reasons for the spurt of mucormycosis among post-COVID-19 treated patients. Another hurdle in the treatment of mucormycosis was the lack of availability of Amphotericin B and its exorbitant cost.[12,13] Given the seriousness of the instances and the quickly rising numbers, the government should consider subsidising the drug to promote patient access and treatment.

It is critical to do quick research into better illness management and control methods, as well as to raise public awareness so that individuals can recognise symptoms early and seek treatment before drastic measures are necessary.

This systemic review highlights the impact of SARS CoV-2 and the sudden onset of mucormycosis, as well as treatment options.

Method of Selection of Journal

The Journal of Family Medicine and Primary Care (JFMPC) covers a broad spectrum of clinical topical catering to the academic needs of various physicians, National Health Mission (NHM) doctors, community surgeons, community health workers, and public health specialists. The impact factor of the journal is 0.60. The journal is indexed with the Directory of Open Access Journals (DOAJ), Indian Science Abstracts, PubMed Central.

The data is derived from various research articles published on epidemiology of Mucormycosis in India as well as globally and review articles published in Scopus and PubMed, including the latest updates from government websites like Indian Council of Medical Research (ICMR) and Centres for Disease Control and Prevention (CDC).

Epidemiology

The incidence of mucormycosis is rising globally,[12,14-19] but the rise is very high in India and China among patients with uncontrolled diabetes mellitus.[20-23] However, the incidence is higher in Europe than in Asia, as reported by a review of 851 cases from 2000 to 2017, as the rate was 34% in Europe, 31% in Asia, and 28% in North or South America [Figure 1].[9]

Many cases remain undiagnosed due to difficulty in sample collection and the inadequacy of diagnostic tests. As estimated by the Leading International Fungal Education (LIFE) portal, the annual incidence of Mucormycosis is 10,000 cases globally, not including India. On including India, however, the estimate rose to 910,000 cases.[20,24] Globally, diabetes mellitus as a risk factor varies between 17% to 88%.[3,27]

Etiology

Figure 2 shows the current classification of Mucorales. The Mucoromycetes class of fungi includes Order Mucorales, as the main causal agent of Mucormycosis (previously called zygomycosis), which is a rare, opportunistic fungal infection.[19]

Globally, 70–80% of all cases can be accounted for by Rhizopus, Mucor, and Lichtheimia (formerly Absidia or Myocladus) spp.[21,28-30] Other rare etiological agents include Apophysomyces, Saksenaea, Rhizomucor, Cunninghamella, Cokeromyces, Actinomucor, and Syncephalastrum spp.[21,28-30] In the Indian context, however, Apophysomyces elegans ranks second among the most common causative agents after Rhizopus oryzae.[3,21]

Although the data indicates Mucorales as being opportunistic pathogens, Apophysomyces elegans and Saksenaea vasiformis can infect even a seemingly normal host, which may
follow severe accidental trauma in tropical and subtropical areas. Very few of these patients manifest rhino-cerebral and pulmonary infections; most others develop only cutaneous mucormycosis. It might be noted that sporulation in Apophysomyces elegans is a tedious process only attainable in the laboratory, so it is yet unclear as to how these spores manage to invade these patients from the environment. Immunocompromised individuals are also at risk of infections from Cunninghamella bertholletiae, Rhizomucor pusillus, and Rhizopus microsporus, although the incidence is rarer. Another infrequent species in India are Rhizopus homothallicus, which was first reported in patients with cavitary pulmonary mucormycosis. Mucor irregularis and Thamnostylum lucknowense have been implicated in certain recent cases.

The considerable risk factors for mucormycosis involve factors such as uncontrolled diabetes mellitus in ketoacidosis, other forms of metabolic acidosis, corticosteroids therapy, organ or bone marrow transplantation, neutropenia, trauma and burns, malignant hematologic disorders, illicit intravenous drug use, neonatal prematurity, and malnourishment and deferoxamine therapy in patients receiving hemodialysis. Patients on Immunosuppressive therapy and high steroid doses (≥ 600 mg of prednisone) are susceptible to mucormycosis. Corticosteroid impairs the macrophage and neutrophil function and makes the patient susceptible.

However, since all these factors were also present in the first wave but did not lead to Mucormycosis, the question arises—what changed in the second wave of Covid-19? The answer may lie in the fact that since the second wave was much more widespread and the patient numbers had increased drastically, it led to a rapid shortage of medical supplies, the most important being oxygen cylinders. Due to the lack of medical-grade oxygen, over 130 Indian cities reported massive deaths of COVID-19 patients in intensive care units. Oxygen, crucial for several biochemical processes, makes survival under hypoxic conditions and aspect of increased virulence for some human pathogenic fungi. The endocytosis mechanism of some Mucorales species is enhanced by hypoxia, which further shifts fungi energy metabolism from carbohydrates to fatty acid, thus enabling lipid uptake from host serum to function, which serves as an extracellular nutrient source during the infection, therefore portraying a specific pathogenicity pattern. This might explain the destructive lesions with widespread necrosis, most commonly seen in the central face area, where the sebaceous glands are profusely found. Hypoxia-Inducible Factors (HIFs) also play a notable regulatory role in immunometabolism, which follows inadequate tissue oxygenation, thus favouring tissue damage and immune cell dysfunction under hypoxic conditions.

Moreover, the possibility that some of the SARS-CoV-2 variants enhance the mycoviral properties can also be considered. In fact, double and single-stranded RNA viral elements have been found in Mucorales species, raising clinical interest over how mycoviruses may increase or decrease fungal virulence, leading to a killer phenotype.

Pathogenesis

Iron is an essential element for cell growth and development, thus, successful pathogens use varied techniques to get iron from the host.

Recent data is indicative of the fact that the level of available, unbound iron in serum plays a key role in uniquely predisposing patients with Diabetic ketoacidosis (DKA) to mucormycosis. Such patients have elevated levels of free iron in their serum.
which is suitable for the growth of R. oryzae at acidic pH (7.3–6.88) only, not at alkaline pH (7.78–8.38).66

Patients undergoing dialysis who are treated with deferoxamine, an iron chelator, are also uniquely susceptible to a deadly form of mucormycosis.62–65 Cases of transplantation that include an underlying myelodysplastic syndrome are at a major risk of developing mucormycosis probably because of the iron load resulting from repeated blood transfusions.66

Rhizopus secretes a siderophore rhizoferrin that belongs to the polycarboxylate family.67 In a receptor-mediated, energy-dependent process, Rhizopus is supplied with Iron by Rhizoferrin.67,68

The fungi can even fulfill their need for iron from the host by heme.69,70 The Rhizopus genome project revealed two homologs of heme oxygenase,71 and these enable R. oryzae to obtain iron from the haemoglobin of the host, which might be the reason for its angioinvasive nature.72

Pathological Changes in Mucormycosis

Mucormycosis frequently affects sinuses, the brain, or the lungs. It can also impact the oral cavity, gastrointestinal tract, skin as well as other organs.72 The outcomes of mucormycosis on different organs are as under:

Sinuses: Blocks the nasal septum and leads to blackish or bloody discharge.

Oral cavity: Appearance of necrotic lesions in the form of pressure sores in the naso-orbital region, palate, the floor of the mouth.73

Eye: Blurred vision or vision loss. Lesions in the eye occur due to the angioinvasive nature of the germinated hyphae, which results in dry gangrene.74

Skin: Thrombosis or necrotic lesions.

Brain: Vascular occlusion due to intravascular thrombosis leads to cerebral infarction and haemorrhagic necrosis even before the fungal hyphae invades the brain tissue.75 In advanced CNS mucormycosis hyphal invasion of the necrotic brain parenchyma might lead to death.76

Clinical Forms of Mucormycosis

The most common form is rhino-orbito-cerebral mucormycosis (ROCM), often seen in diabetic ketoacidosis patients or those with uncontrolled diabetes mellitus. It was concluded from a study in India that 88% of the patients with ROCM had diabetes mellitus.78 Similarly, other factors pose an equal risk in ROCM cases [Figure 4].79,80

The second most common site is the lungs, leading to pulmonary form, often seen in patients with blood dyscrasias or transplant recipients [Figure 4].11,25 Risk factors include haematological malignancy (32–40%), diabetes mellitus (32–56%), renal disease (13–18%), solid organ transplant (6.5–9%), and haematopoietic stem cell transplant (1–9.8%).79,81

Penetrating trauma or skin breach is most often the cause of Cutaneous mucormycosis, especially in an immunocompetent host. The major predisposing factor is penetrating trauma (23–88%).82

Ante-mortem diagnosis of Gastrointestinal (GI) mucormycosis is very difficult. It is common in premature or low birth weight infants, in patients with malnutrition, or on renal dialysis [Figure 4].10,77

A rise in patients with isolated renal mucormycosis from 5.4% to 14% has been recently observed by various researchers.12,20,21,23

Dissemination of Mucorales occurs through haematogenous routes. 13% of cases were present with disseminated disease, as reported by a meta-analysis. Lung (91.2%), CNS (53%), sinus (32.4%), liver (17.6%), and kidney (14.7%) describe the decreasing order of frequency of sites of dissemination.83

Clinical Symptoms

As stated above, Mucormycosis presents with various symptoms depending on the tissue or organ which is primarily affected. Symptoms of rhino cerebral mucormycosis include unilateral facial oedema, headache, nasal or sinus congestion, black lesions on the nasal bridge or upper inside of the mouth that rapidly increase in severity, and fever. Pulmonary symptoms may include fever, cough, chest pain, or shortness of breath.80,83–86 Blisters or ulcers are present in cutaneous manifestations, and the infected area may turn black. Other symptoms are pain, warmth, excessive redness, or swelling around a wound. Symptoms of gastrointestinal mucormycosis include abdominal pain, nausea and vomiting, and gastrointestinal bleeding. Disseminated mucormycosis usually occurs in people already sick from other medical conditions, so the patient's symptoms cannot be attributed to any one disease. Neural manifestations might be mental status changes or coma.50,61,74

Laboratory Diagnosis

Studies suggest that there is an increased survival and even reduced need for surgical resection, disfigurement, and suffering in cases of early diagnosis of mucormycosis.87–89
Clinical diagnosis: During initial CT scans of immunocompromised patients having pulmonary mucormycosis, a nodule (≤3 cm)/mass (>3 cm) or consolidation with surrounding ground-glass opacity halo (18/20, 90%) was observed. In follow-up CT scans, morphologic changes were observed in 87%, which included RFS, central necrosis, and air-crescent sign. In 13 out of 15 patients, sequential morphologic changes were related to the absolute neutrophil count. Another imaging technique that can be used is the Positron emission tomography-computed tomography (PET/CT) with [18F]-fluorodeoxyglucose (FDG).

Specimens: Can be collected from scrapings of lesions, pus, sputum, nasal discharge.

Routine laboratory diagnosis: As routine haematoxylin and eosin (H&E) might show only the cell wall with no structures inside or very degenerate hyphae. Mucorales genera produce non-pigmented, wide (5–20 μm), thin-walled, ribbon-like hyphae with no or few septations and right-angle branching. Fungal walls can be viewed easily through Grocott’s methenamine-silver (GMS) and periodic acid-Schiff (PAS) stains. PAS gives a better visualization of surrounding tissue when compared with GMS. Direct microscopy of KOH and calcofluor white wet mounts shows non-septate hyphae, which can be used for presumptive diagnosis of mucormycosis. Immunohistochemistry using monoclonal antibodies against R. arrhizus can prove to be of significant help in the diagnosis where cultures are negative; it has also been proven useful for differentiating between aspergillosis and mucormycosis (sensitivity 100%, specificity 100% for mucormycosis).

Culture of specimens helps in the identification of the genus and species and can also be used for antifungal susceptibility testing. Fungi can be readily grown on Sabouraud’s dextrose agar (SDA) without cycloheximide at 37°C. Lactophenol cotton blue preparation of colonies shows branched sporangiospores arising across aerial mycelium.

Applied and emerging molecular methods: For the detection of mucormycosis in tissues, numerous methods have been developed, which includes PCR based techniques like nested PCR, real-time PCR (qPCR), nested PCR combined with RFLP, PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), and PCR/high-resolution melt analysis (HRMA). Studies done recently have stated that qPCR in BAL concerning cases of pulmonary mucormycosis leads to early diagnosis and even better outcomes.

Treatment

Early discovery, surgical debridement of infected tissue, antifungal medicines, and addressing the underlying cause are all effective treatments for mucormycosis. The first-line treatment is amphotericin B (AmB), followed by posaconazole and isavuconazole. Isavuconazole is a novel antifungal medicine with similar potency to AmB; however, it was only recently introduced in the Indian market thus its efficacy has yet to be determined.

Discussion & Conclusion

Mucormycosis epidemiology is changing all the time. The difficult component is detecting mucormycosis in COVID-19 patients. Histopathology, direct examination, and culture are all important techniques for identification, as are substantial developments in molecular approaches. Reports state a total of 45,432 cases of mucormycosis till 15 July 2021 of which 4,252 were fatal. Of all these cases, 84.4% of patients had a history of Covid-19, mostly of rhino cerebral type (77.6%). Males were found to be more impacted (78.9%) than females in a study of 101 Mucormycosis individuals (21.1%). HCWs should try to deescalate the underlying systemic disease while managing Mucormycosis. Sinusitis is not necessarily caused by bacteria; it can also be caused by Mucormycosis, so caution should be used while treating Covid or immunocompromised people. It is prudent to conduct a thorough investigation into such patients in order to rule out a fungal cause. Surgical debridement of necrosed tissues should be performed, followed by antifungal medication for 4–6 weeks.

Summary

Mucormycosis is a potentially fatal fungal infection. It is an opportunistic infection associated with immunosuppression and can manifest in a variety of ways. The Rhinocerebral type displays obvious signs on the oral cavity’s hard palate or swelling in one portion of the face. CT scans help confirm the diagnosis. After aspiration of fluid from the lungs or a tissue biopsy, pulmonary type can be determined. Following surgical debridement of diseased tissue, antifungals such as isavuconazole and amphotericin B can help to restrict dissemination. The ICMR and the CDC have published guidelines on Mucormycosis prevention, diagnosis, and treatment. The treatment guidelines, as well as the medicine of choice and the drugs to be discontinued, should be updated on a regular basis and made available to doctors as soon as possible. Innovative approaches to lessen the hardship of wearing PPE kits for longer periods methods to improve PPE donning and doffing off to reduce the risk of infection and reduce the excessive demand on doctors should also be investigated.

Conflicts of interest

There are no conflicts of interest.
Mahesh, et al.: The impact of SARS-CoV-2 and sudden onset of mucormycosis

References

1. Covid-19 pandemic. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/COVID-19_pandemic. [Last accessed on 2021 Oct 07].

2. Prakash H, Chakrabarti A. Epidemiology of mucormycosis in India. Microorganisms 2021;3(March):9;523.

3. Fungus. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Fungus. [Last accessed on 2021 Oct 07].

4. Skiaida A, Pavleas I, Drogari-Apiranthitou M. Epidemiology and diagnosis of mucormycosis: An update. J Fungi (Basel) 2020;6:265.

5. Biswas S. 2021. Mucormycosis: The ‘black fungus’ maiming Covid patients in India. BBC News. BBC; Available from: https://www.bbc.com/news/world/asia-india-57027829. [Last accessed on 2021 Oct 07].

6. Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel) 2019;5:26. doi: 10.3390/jof5010026.

7. Lanternier F, Dannaouel E, Morizot G, Elie C, Garcia-Hermoso D, Huerre M, et al. A global analysis of mucormycosis in France: The RetroZygo Study (2005-2007). Clin Infect Dis 2012;54(Suppl 1):S53-43.

8. Skiaida A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European confederation of medical mycology (ECMM) working group on zygomycosis between 2005 and 2007. Clin Microbiol Infect 2011;17:1859-67.1 July

9. Pagano L, Valentini CG, Posteraro B, Girmenia C, Ossi C, Pan A, et al. Zygomycosis in Italy: A survey of FIMUA-ECMM (Federazione Italiana di micopatologia Umana ed Animale and European confederation of medical mycology). J Chemother 2009;21:322-9.

10. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufenle RL, et al. Epidemiology and outcome of zygomycosis: A review of 929 reported cases. Clin Infect Dis 20051 September; 41:634-53.29 July

11. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DC, et al. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019;25:26-34.21 July

12. Patel A, Kaur H, Xess I, Michael JS, Savio J, Rudramurthy S, et al. A multicentre observational study on the epidemiology, risk factors, management, and outcomes of mucormycosis in India. Clin Microbiol Infect 2020;26:944.e9-15.4 December

13. Patel AK, Patel KK, Patel K, Gohel S, Chakrabarti A. Mucormycosis at a tertiary care centre in Gujarat, India. Mycoses 2017;60:407-11.9 March

14. Patel A, Kaur H, Xess I, Michael JS, Savio J, Rudramurthy S, et al. A multicentre observational study on the epidemiology, risk factors, management, and outcomes of mucormycosis in India. Clin Microbiol Infect 2020;26:944.e9-15.4 December

15. Pandey M, Singh G, Agarwal R, Dabas Y, Jyotsna VP, Kumar R, et al. Emerging rhizopus microsporus infections in India. J Clin Microbiol 2018;56:e00433-18.

16. Kontoyiannis DP, Yang H, Song J, Kelkar SS, Yang X, Azie N, et al. Prevalence, the clinical and economic burden of mucormycosis-related hospitalizations in the United States: A retrospective study. BMC Infect Dis 2016;16:730.

17. Torres-Narbona M, Guíñez J, Martínez-Alarcón J, Muñoz P, Gadea I, Bouza E, et al. Impact of zygomycosis on microbiology workload: A survey study in Spain. J Clin Microbiol 2007;45:2051-3.28 March

18. Bitar D, Van Caulteren D, Lanternier F, Dannaouel E, Che D, Dromer F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997-2006. Emerg Infect Dis 2009;15:1395-401.

19. Ambrosioni J, Bouchuiqu-Wafa K, Garbino J. Emerging invasive zygomycosis in a tertiary care center: Epidemiology and associated risk factors. Int J Infect Dis 2010;14(Suppl 3):e100-3.24 March

20. Chakrabarti A, Das A, Mandal J, Shivaparaksh MR, George VK, Tarai B, et al. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 2006;44:335-42.

21. Chakrabarti A, Chatterjee SS, Das A, Panda N, Shivaparaksh MR, Kaur A, et al. Invasive zygomycosis in India: experience in a tertiary care hospital. Postgrad Med J 2009;85:573-81.

22. Manesh A, Rupali P, Sullivan MO, Mohanraj P, Rupa V, George B, et al. Mucormycosis-A clinicoepidemiological review of cases over 10 years. Mycoses 2019;62:391-8.19 February

23. Lin E, Moua T, Limper AH. Pulmonary mucormycosis: Clinical features and outcomes. Infection 2017;45:443-8.20 February

24. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 201718 October; 3:57. doi: 10.3390/jof3040057.

25. Prakash H, Ghosh AK, Rudramurthy SM, Paul RA, Gupta S, Negi V, et al. The environmental source of emerging apophysomyces variabilis infection in India. Med Mycol 20161 August; 54:567-75.26 April

26. Chakrabarti A, Singh R. Mucormycosis in India: Unique features. Mycoses 2014;57(Suppl 3):85-90.

27. Dioverti MV, Cawcutt KA, Abidi M, Sohail MR, Walker RC, Osman DR. Gastrointestinal mucormycosis in immunocompromised hosts. Mycoses 2015;58:714-8.12 October

28. Chakrabarti A, Singh R. The emerging epidemiology of mold infections in developing countries. Curr Opin Infect Dis 2011;24:521-6.

29. Meis JF, Chakrabarti A. Changing epidemiology of an emerging infection: Zygomycosis. Clin Microbiol Infect 2009;15(Suppl 5):10-4.

30. Gomes MZ, Lewis RE, Kontoyiannis DP. Mucormycosis is caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin Microbiol Rev 2011;24:411-45.

31. Backusella. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Backusella. [Last accessed on 2021 Oct 07].

32. Choanephorae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Choanephorae. [Last accessed on 2021 Oct 07].

33. Cunninghamellaceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Cunninghamellaceae. [Last accessed on 2021 Oct 07].

34. Mucoraceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Mucoraceae. [Last accessed on 2021 Oct 07].
36. Phycomycetaceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Phycomycetaceae. [Last accessed on 2021 Oct 07].
37. Pilobolaceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Pilobolaceae. [Last accessed on 2021 Oct 07].
38. Radiomycetaceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Radiomycetaceae. [Last accessed on 2021 Oct 07].
39. Syncephalastraceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Syncephalastraceae. [Last accessed on 2021 Oct 07].
40. Umbelopsidaceae. Wikipedia. Wikimedia Foundation; 2021. Available from: https://en.wikipedia.org/wiki/Umbelopsidaceae. [Last accessed on 2021 Oct 07].
41. Kaushik R. Primary cutaneous zygomycosis in India. Indian J Surg 2012;74:468-75.20 March
42. Padhye AA, Ajello L. Simple method of inducing sporulation by Apophysomyces elegans and Saksenaea vasiformis. J Clin Microbiol 1988;26:1861-3.
43. Chakrabarti A, Dhaliwal M. Epidemiology of mucormycosis in India. Curr Fungal Infect Rep 2013;7:287-92.
44. Kimura M, Ugawasa S, Makimura K, Satoh K, Toyazaki N, Ito H. Isolation and identification of rhizomucor pusillus from pleural zygomycosis in an immunocompetent patient. Med Mycol 2009;47:869-73.
45. Verma R, Nair V, Vasudevan B, Vijendran P, Behera V, Neema S. Rare case of primary cutaneous mucormycosis of the hand caused by Rhizopus microsporus in an immunocompetent patient. Int J Dermatol 2014;53:66-92.29 October
46. Hemeshhtarr BM, Patil RN, O'Donnell K, Chaturvedi V, Ren P, Padhye AA. Chronic rhinofacial mucormycosis caused by Mucor irregularis (Rhizomucor variabilis) in India. J Clin Microbiol 2011;49:2372-5.20 April
47. Xess I, Mohapatra S, Shivaparakash MR, Chakrabarti A, Benny GL, O'Donnell K, et al. Evidence implicating thamnostylum lucknowense as an etiological agent of rhino-orbital mucormycosis. J Clin Microbiol 2012;50:1491-4.1 February
48. Chakrabarti A, Das A, Mandal J, Shivaparakash MR, George VK, Tarai B, et al. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 2006;44:335-42.
49. Patel A, Kaur H, Xess I, Michael JS, Savio J, Rudramurthy S, et al. A multi-centre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin Microbiol Infect 2020;26:944.e9-15.
50. Spellberg B, Edwards J Jr. Iron acquisition: a novel perspective on mucormycosis pathogenesis and treatment. Curr Opin Infect Dis 2008;21:620-5.
51. Ibrahim AS, Spellberg B, Edwards J Jr. Iron acquisition: a novel perspective on mucormycosis pathogenesis and treatment. Curr Opin Infect Dis 2008;21:620-5.
52. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis 2012;54(Suppl 1):S16-22.
53. Artis WM, Fountain JA, Delcher HK, Jones HE. A mechanism of susceptibility to mucormycosis in diabetic ketoacidosis: Transferferrin and iron availability. Diabetes 1982;31:1109-14.
54. Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, et al. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest 1993;91:1979-86.
55. Boelaert JR, Fenves AZ, Coburn JW. Deferoxamine therapy and mucormycosis in dialysis patients: Report of an international registry. Am J Kidney Dis 1991;18:660-7.
56. Boelaert JR, Fenves AZ, Coburn JW. Registry on mucormycosis in dialysis patients. J Infect Dis 1989;160:914.
57. Boelaert JR, Fenves AZ, Coburn JW. Mucormycosis among patients on dialysis. N Engl J Med 198920 July; 321:190-1.
58. Boelaert JR, van Roost GF, Vergauwe PL, Verbanck JJ, de Vroey C, Segaert MF. The role of desferrioxamine in dialysis-associated mucormycosis: Report of three cases and review of the literature. Clin Nephrol 1988;29:261-6.
59. Maertens J, Demuyynck H, Verheben EK, Zachée P, Verhoef GE, Vandenbergehe P, et al. Mucormycosis in allogeneic bone marrow transplant recipients: Report of five cases and review of the role of iron overload in the pathogenesis. Bone Marrow Transplant 1999;24:307-12.
60. Thielen A, Winkelmann G. Rhizoferrin: A complex one type siderophore of the mucorales and entomophthorales (zygomycetes). FEMS Microbiol Lett 1992 July; 100:549-3.
61. Boelaert JR, de Locht M, Schneider YJ, de Locht M, Boelaert JR, Schneider YJ. Iron uptake from ferrozine and from ferrirhizoferrin by germinating spores of Rhizopus microsporus. Biochem Pharmacol 199418 May; 47:1843-50.
62. Santos R, Buisson N, Knight S, Dancis A, Camadro JM, Lesuisse E. Haemin uptake and use as an iron source by Candida albicans: Role of CmHMX1-encoded haem oxygenase. Microbiology (Reading) 2003;149:579-88.
63. Worsham PL, Goldman WE. Quantitative plating of Histoplasma capsulatum without the addition of conditioned medium or siderophores. J Med Vet Mycol 1988;26:137-43.
64. Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 2009;5:e1000549. doi: 10.1371/journal.pgen.1000549.3 July
65. Mahalaxmi I, Jayaramayya K, Venkatesan D, Subramaniam MD, et al. The impact of SARS-CoV-2 and sudden onset of mucormycosis...
Mahesh, et al.: The impact of SARS-CoV-2 and sudden onset of mucormycosis

Renu K, Vijayakumar P, et al. Mucormycosis: An opportunistic pathogen during COVID-19. Environ Res 2021; 201:111643. doi: 10.1016/j.envres. 2021.111643.

74. Bakathir AA. Mucormycosis of the jaw after dental extractions: two case reports. Sultan Qaboos Univ Med J 2006;6:77-82.

75. Ochiai H, Iseda T, Miyahara S, Goya T, Wakisaka S. Rhinocerebral mucormycosis–case report. Neurol Med Chir (Tokyo) 1993;33:373-6.

76. Economides MP, Ballester LY, Kumar VA, Jiang Y, Tarrand J, Prieto V, et al. Invasive mold infections of the central nervous system in patients with hematologic cancer or stem cell transplantation (2000-2016): Uncommon, with improved survival but still deadly often. J Infect 2017;75:572-80.14 September

77. Skiada A, Rigopoulos D, Larios G, Petrükos K, Katsambas A. Global epidemiology of cutaneous zygomycosis. Clin Dermatol 2012;30:628-32.

78. Malik AN, Bi WL, McCray B, Abedalthagafi M, Vaitkevicius H, Dunn IF. Isolated cerebral mucormycosis of the basal ganglia. Clin Neurol Neurosurg 2014;124:102-5.23 June

79. Nithyanandam S, Jackson BS, Battu RR, Thomas RK, Correa MA, D’Souza O. Rhinoro-orbital-cerebral mucormycosis. A retrospective analysis of clinical features and treatment outcomes. Indian J Ophthalmol 2003;51:231-6.

80. Tedder M, Spratt JA, Anstadt MP, Lowe JE. Pulmonary mucormycosis: Results of medical and surgical therapy. Ann Thorac Surg 1994;57:1044-50.

81. Lee FY, Mossad SB, Adal KA. Pulmonary mucormycosis: The last 30 years. Arch Intern Med 199928 June; 159:1301-9.

82. Fujii S, Sun X. Characteristics of pulmonary mucormycosis and predictive risk factors for the outcome. Infection 2018;46:503-12.10 May

83. Kaur H, Ghosh A, Rudramurthy SM, Chakrabarti A. Gastrointestinal mucormycosis in apparently immunocompetent hosts-A review. Mycoses 2018;61:898-908.20 June

84. Symptoms of mucormycosis. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention; 2021. Available from: https://www.cdc.gov/fungal/diseases/mucormycosis/symptoms.html. [Last accessed on 2021 7 October].

85. Camara-Lemarroy CR, González-Moreno EI, Rodríguez-Gutiérrez R, Rendón-Ramírez EJ, Ayala-Cortés AS, Fraga-Hernández ML, et al. Clinical features and outcome of mucormycosis. Interdiscip Perspect Infect Dis 2014;2014:562610. doi: 10.1155/2014/562610.20 August

86. Available from: https://www.healthline.com/health/mucormycosis.

87. Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis 200815 August; 47:503-9.

88. Walsh TJ, Gamaletou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis 2012;54(Suppl 1):S55-60.

89. Skaia A, Pavleas I, Drogar-Apiranthitou M. Epidemiology and diagnosis of mucormycosis: An update. J Fungi (Basel) 2020;6:265.
Mahesh, et al.: The impact of SARS-CoV-2 and sudden onset of mucormycosis

Model of experimental pulmonary zygomycosis. J Clin Microbiol 2008;46:3690-702. 105. Bernal-Martínez L, Buitrago MJ, Castelli MV, Rodriguez-Tudela JL, Cuenca-Estrella M. Development of a single tube multiplex real-time PCR to detect the most clinically relevant Mucormycetes species. Clin Microbiol Infect 2013;19:E1-7. 28 August

106. Mercier T, Reynders M, Beuselinck K, Guldentops E, Maertens J, Lagrou K. Serial detection of circulating mucorales DNA in invasive mucormycosis. A retrospective multicenter evaluation. J Fungi (Basel) 2019;5:113. doi: 10.3390/jof5040113.

107. Guegan H, Iriart X, Bougnoux ME, Berry A, Robert-Gangneux F, Gangneux JP. Evaluation of MucorGenius® mucorales PCR assay for the diagnosis of pulmonary mucormycosis. J Infect 2020;81:311-7. 28 May

108. Springer J, White PL, Kessel J, Wieters I, Teschner D, Korczynski D, et al. A comparison of aspergillus and mucorales PCR testing of different bronchoalveolar lavage fluid fractions from patients with suspected invasive pulmonary fungal disease. J Clin Microbiol 2018;56:e01655-17.

109. Scherer E, Iriart X, Bellanger AP, Dupont D, Guitard J, Gabriel F, et al. Quantitative PCR (qPCR) detection of mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J Clin Microbiol 2018;56:e00289-18.

110. Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SC, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European confederation of medical mycology in cooperation with the mycoses study group education and research consortium. Lancet Infect Dis 2019;19:e405-21. 15 November

111. Marty FM, Ostrosky-Zeichner L, Cornely OA, Mullane KM, Perfect JR, Thompson GR 3rd, et al. Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet Infect Dis 2016;16:382-391. 28 February

112. India of. Over 45,000 cases of mucormycosis were reported in the country. India Today. 2021. Available from: https://www.indiatoday.in/india/story/over-45-000-cases-of-mucormycosis-reported-in-country-1830590-2021-07-21. [Last accessed on 2021 7 October].

113. Cdc.gov. 2022. For Healthcare Professionals | Mucormycosis | CDC. Available from: <https://www.cdc.gov/fungal/diseases/mucormycosis/health-professionals.html>. [Last accessed on 2002 Feb 12].