Emerging roles of MT-MMPs in embryonic development

Natalia Moracho1 | Ana I. R. Learte2 | Emma Muñoz-Sáez3 |
Miguel A. Marchena1 | Marí aeros exclusive access. | Alicia G. Arroyo4,5 | Cristina Sánchez-Camacho1,4

1Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
2Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
3Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
4Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
5Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain

Correspondence
Cristina Sánchez-Camacho, Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.
Email: cristina.sanchez-camacho@universidadeuropea.es

Funding information
Cátedra Fundación ASISA-UE, Grant/Award Number: 2019/UEM41; Spanish Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number: SAF2017-83229-R; Universidad Europea de Madrid, Grant/Award Numbers: 2018UEM13, 2019UEM10

Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.

KEYWORDS
angiogenesis, axon guidance, cell migration, cell polarity, embryonic development, epithelial-mesenchymal transition, metalloproteinase, synaptogenesis
INTRODUCTION

The extracellular matrix (ECM) is a dynamic structure that supplies mechanical support to the cells, and it is continuously changing and remodeling in order to ensure tissue homeostasis. ECM comprises both the basement membrane and the interstitial matrix, and it is composed of distinct macromolecules, including fibrillar collagens, glycoproteins, proteoglycans, and polysaccharides. Apart from serving as structural scaffold, ECM contributes to complex and diverse cellular functions during embryogenesis, wound healing or cancer progression. These physiological and pathological processes are regulated by matrix-cleaving proteases that are able to remodel ECM by local release or cleavage of distinct matrix components as well as to activate receptors and growth factors, adhesion molecules, cytokines and other pericellular proteins through proteolytic processing at the cell surface. Among the major proteases that participate in these processes to allow tissue remodeling and cellular invasion are Matrix Metalloproteinases (MMPs). MMPs belong to the Metzincin superfamily of proteases found in all organisms, which includes other Zn²⁺-dependent enzymes such as A disintegrin and metalloproteinase (ADAMs), serralysins, and astacins. All members are characterized by the presence of a zinc ion in their catalytic domain that is required for their proteolytic functions. A subgroup within MMP family are the Membrane-type matrix metalloproteinases (MT-MMPs), anchored to the cell membrane by either a type I transmembrane domain (MT1-MMP/MMP-14, MT2-MMP/MMP-15, MT3-MMP/MMP-16, and MT5-MMP/MMP-24) or a glycosylphosphatidylinositol (GPI)-anchor (MT4-MMP/MMP-17 and MT6-MMP/MMP-25). Within membrane bound MMPs, are also included MMP-23A and MMP-23B, which localize as transmembrane type II proteinases via an N-terminal signal anchor.

Several MT-MMPs are expressed in normal tissues playing a role in homeostasis, but most of them are induced in diseases or inflamed tissues mediating repairing or remodeling processes. Although most of our current information regarding these enzymes comes from cancer studies, the first MMP identified, collagenase, was found in tadpole tail resorption during amphibian metamorphosis. Moreover, this collagenolytic activity was found in other tissues such as gills and gut that relies heavily on ECM remodeling during embryogenesis. To date, other members of these endopeptidases have been involved in tail resorption during frog metamorphosis including not only secreted MMPs (MMP-2, MMP-9, MMP-11, MMP-13, and MMP-18) but also metalloproteinases anchored to the cell membrane such as MT1-MMP and MT3-MMP. This is a notable event in developmental biology that emphasizes the relevance of MMPs in tissue remodeling during embryogenesis. Indeed, MMP expression profiles have been reported in the embryo, suggesting the existence of unknown functions for these enzymes during development. However, our current knowledge about the contribution of MMPs in distinct developmental processes occurring in the embryo is limited, in part due to the lack of embryonic lethal phenotypes caused by MMP deficiency.

In this review, we want to summarize the involvement of MT-MMPs, a subgroup of MMPs anchored to the cell membrane, in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for development.

1.1 Domain structure of mammalian MMPs

The large number of members in the vertebrate MMP family makes possible different mechanisms of redundancy and compensation that complicate the study of their individual physiological functions. For that reason, Drosophila is an excellent model system to address MMP function as only two encoded MMP genes have been identified: Dm1-MMP that is a secreted enzyme and, Dm2-MMP, which is tethered to the plasma membrane through a GPI anchor. Despite sharing the same kind of anchor, it is not clear if Dm2-MMP is the mammalian orthologue gene of GPI-type MMPs. In Caenorhabditis elegans, there are six known MMPs while 25 MMP members have been reported in the zebrafish genome (six of them are MT-MMP orthologs anchored to the plasma membrane while the remaining ones are non-tethered enzymes). In contrast, in mammals, the MMP family is the most heterogeneous and comprises 28 members, 24 of which are found in humans. All MMPs with no difference have a basic core structure consisting of three conserved domains: the prodomain, the catalytic, and the hemopexin domains (Figure 1). The prodomain, with a length of 80 amino acids and a consensus sequence with unpaired cysteines, keeps the enzyme in latent state. At the C-terminal of the prodomain, all members of the MMP family show the catalytic domain, which also has a conserved sequence (“HEXXHGXGXXH”). Three histidine (H) and the glutamate (E) of this sequence allow holding a zinc ion in the active site of the catalytic domain, which is fully required for MMP proteolytic activity.
activity (Figure 1). This is linked by the hinge region to the hemopexin domain, which participates in substrate recognition and degradation10-14 (Figure 1).

Even though there are various type of classifications, mammalian MMP family members are divided into two categories: secreted MMPs to the extracellular milieu and membrane tethered to the cell surface MMPs, named membrane-type MMPs (MT-MMPs) (Figure 1). Secreted MMPs are classified according to their domain's organization into four groups:
archetypal MMPs (MMP-1, MMP-3, MMP-8, MMP-10, MMP12, MMP-13, MMP-19, MMP-20, and MMP-27), which display the basic multidomain organization as previously described; gelatinases (MMP-2 and MMP-9), that conserve the structure of the archetypal MMPs, but further integrate three fibronectin type II repeats in their catalytic domain for the binding of gelatin and denatured collagen; furin-activable MMPs (MMP-11, MMP-21, and MMP-28) characterized by the presence of a furin recognition sequence (“RX[K/R] R”) located between the prodomain and the catalytic domain that allow proenzyme activation; and matrilysins (MMP-7 and MMP-26), an exception since they lack the hinge region and hemopexin domain (Figure 1).10,12,14

FIGURE 2 Legend on next page.
On the other hand, MT-MMP family is composed of six enzymes classified based on their linkage to the plasma membrane in transmembrane type I MMPs including MT1-, MT2-, MT3-, and MT5-MMP, which are tethered to the membrane surface through a transmembrane domain joined to a short cytoplasmic tail and, MT-MMPs anchored by a GPI motif, comprising MT4-, and MT6-MMP\(^{10,11,14-16}\) (Figure 1). This GPI anchor confers typical mechanisms of regulation and biosynthesis to this group.\(^{15,16}\) Both MT-MMP groups show a stem region downstream of their hemopexin domain which, in the case of the GPI-anchored MMPs, it is crucial for the establishment of homophilic interactions (Figures 1 and 2B).\(^{11,15}\) A unique feature of type I MT-MMPs is the insertion of a short sequence called MT-loop in the catalytic domain (Figure 1).\(^{10,11}\) Finally, a distinct transmembrane MMP subgroup named transmembrane type II includes MMP-23A and MMP-23B which have the transmembrane domain at the N-terminal\(^{17}\) (Figure 1). This group differs from the other membrane-anchored MMPs in the absence of the hinge region and the hemopexin domain which are both replaced by the immunoglobulin and cysteine array domains.\(^{12,17}\) Since MMPs are involved in multiple cellular processes, the list of their substrates is very extensive and heterogeneous. Indeed, thanks to the development of degradomic approaches, it has been possible to predict a wide range of ECM components, secreted and membrane-bound molecules as well as numerous intracellular substrates that can be processed by MMPs (for a more detailed information, see References 12, 13, 18) (Table 1). Among membrane-tethered MMPs, only MT1-MMP has been demonstrated to cleave intracellular proteins such as apoptotic regulators, cytoskeletal proteins, signal transducers, or transcriptional and translational regulators, although the relevance of its intracellular substrate processing during embryonic development is still unknown.\(^{12,13,18}\)

1.2 | Regulation of MT-MMP catalytic activity

Uncontrolled proteolytic function of matrix metalloproteinases can enhance cell invasion and tissue damage disrupting tissue homeostasis. In fact, MT-MMPs are involved in a variety of pathological processes, such as tumor progression and metastasis, fibrosis, or chronic inflammation. Therefore, there is an exhaustive control over their proteolytic activity. The first level of regulation comprises a tuned and individually control of MT-MMP gene expression. MT-MMP transcriptional activation can be induced or repressed depending on the kind of stimuli interacting with the cis-element binding sites located at the MMP promoter.\(^{11,19}\) However, MT-MMP catalytic activity is also tightly regulated post-transcriptionally at several points: biosynthesis and intracellular trafficking, proenzyme activation, endocytosis and recycling, cell surface degradation and shedding, endogenous inhibition, dimerization, and post-translational modifications (Figure 2).

1.2.1 | Biosynthesis and intracellular trafficking of MT-MMPs

MT-MMP regulation relies on their biosynthesis and intracellular trafficking, which finally lead to their precise localization on the cell surface. The biosynthetic...
MT-MMP	Substrates	Relevant biological context	References
MT1-MMP	Type I, II, III, IV collagen; Gelatin, Fibronectin, Vitronectin, Laminin-1, −2/4, and −5	Endochondral ossification and angiogenesis. Chondrocyte proliferation. Cell proliferation and morphogenesis in renal, lung and submandibular gland development.	84,94,150,267,282,283,284
	Perlecan, Aggrecan	Proliferation and migration of renal tubule cells. Basement membrane remodeling during kidney development.	150,284
	Fibrinogen/fibrin	Tumor cell invasion and growth.	115,178
	Syndecan-1	Pro-migratory effect during tumor progression.	89
	Betaglycan	In vitro inhibition of TGF-β-induced tumor angiogenesis.	285
	ICAM-1	ICAM-1 shedding under conditions of oxidative stress. Monocyte transmigration.	91,92
	β1-integrin	Skeletal stem cell commitment via MT1-MMP/β1-integrin/YAP/TAZ signaling pathway during osteogenesis.	83
	Pro-αv-integrin	Tumor cell adhesion and migration.	90,286,287
	E-cadherin, N-cadherin	Ischemia-induced cadherin disruption in NRK cells.	288
	Pro-MMP-2	Tumor cell invasion and metastasis. Lympathic vessel sprouting. Retinal axon growth.	116,215,238,289,290,291
	Pro-MMP-8	Proteolytic MMP-8 activation during corneal wound healing.	292
	Pro-MMP-13	Indirect activation of pro-MMP-9 through the activation of pro-MMP-13 in osteoarthritic condrocytes	293,294,295
	MT1-MMP	Tumor invasion a metastasis.	39
	ADAM9	Negative modulation of ADAM9 activity to maintain FGFR2 signaling during osteogenesis.	296
	EphA2	Cancer cell migration and invasion. Malignant transformation in human ovarian tumors.	253,297
	Pro-TGF-β	Osteoblast survival during trans-differentiation into osteocytes by p44/p42-MAPK-dependent pathway.	298,299
	Pro-TNFα	Inflammation	284
	HB-EGF	Proliferation and tumor growth by stimulating the EGFR signaling pathway.	300,301
	DDR1	Regulation of cell proliferation and apoptosis by the collagen/DDR1 axis in breast carcinoma.	302,303
	VEGFR1	Inhibition of corneal angiogenesis by reducing VEGF-A165.	187
	LYVE-1	Suppression of lymphatic vascular outgrowth.	212
	PTK7	Cancer cell invasion and PCP-dependent convergent extension during embryogenesis.	131
	TSP-1	Inflammatory intussusceptive angiogenesis via TSP1/nitric oxide pathway.	191,255
	C3b	Tumor cell immune resistance and survival of metastatic cells by suppressing the complement cascade	304
	Dll1	Inhibition of Dll1-induced Notch signaling in hematopoietic progenitor cells to maintain B-cell development in bone marrow.	305
	CD44	Tumor cell migration and invasion.	63,97,306
	MCP-3	Inflammation and immune responses.	307
	APP	Pro-amyloidogenic effect via MMP-2 by regulating APP processing.	308,309,310
	LRP1	Tissue remodeling by migrating tumor cells. Vascular smooth muscle differentiation via PDGFB-PDGFR-β axis in vessel wall architecture.	205,311
	gC1qR	gC1qR cleavage in breast carcinoma cells.	312
	Semaphorin 4D	Endothelial cell chemotaxis in vitro and tumor-induced angiogenesis in vivo.	193
	Endoglin	Tumor angiogenesis.	188
	KiSS-1	Anti-metastatic effect during cancer progression.	313
	α1PI	Not determined.	282
	αTGF	Tumor cell adhesion and migration.	314,315
	ApoE5	Cell proliferation in cultured cells.	316
	MICA	Tumor cell sensitivity to natural killer cell cytotoxicity.	317
	IL8, SLP1, CTGF, DR6	Not determined.	318
	EMMPRIN	In vitro cleavage in tumor cell lines.	319

(Continues)
MT-MMP	Substrates	Relevant biological context	References
MT1-MMP	Galectin-1, DJ1, Hsp90α, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, dickkopf-1	Not determined.	320
	NC1 (type IV collagen) Fibronectin, fibrin, tenasin, nidogen, perlecain, aggrecan, laminin-1 E-cadherin Pro-MMP-2 LRP	Proliferation and branching of the submandibular gland. Tumor growth. VEGF-mediated angiogenesis. Epithelial cell proliferation. Tumor growth by promoting cancer cell invasion and adhesion. Tissue remodeling by migrating tumor cells.	162, 202, 282, 321, 322, 106, 323, 324, 325, 311
MT2-MMP	MT2-MMP NC1 (type IV collagen) Fibronectin, fibrin, tenasin, nidogen, perlecain, aggrecan, laminin-1	Proliferation and branching of the submandibular gland.	162
pathway is slightly different in the two main groups of MT-MMPs (Figure 2). The signal peptide located in the N-terminal of both groups of membrane-type MMP is necessary for driving them to the endoplasmic reticulum to start its biosynthesis. Furin-dependent activation of transmembrane type I MMPs occurs in the trans-Golgi (Figure 2). The intracellular trafficking has been studied in MT1-MMP and MT3-MMP, where Golgi-derived vesicles containing the proteinase are intracellularly transported to the plasma membrane.20 MT1-MMP-containing vesicles are driven to the cell membrane by a kinesin-dependent mechanism along actin filaments and microtubules. At the cell surface, KIF5B and KIF3A/KIF3B kinesins drive the release of the enzyme to allow their surface exposure21,22 (Figure 2A). Moreover, MT1-MMP has been shown to traffic from intracellular compartments to the plasma membrane via Rab8-vesicles enabling its delivery in tumor cell protrusions and promoting its proinvasive activity.23

Regarding GPI-type MMPs, the hydrophobic tail of the zymogen at the C-terminal is replaced with a GPI precursor by a GPI transamidase in the endoplasmic reticulum. Subsequently, furin recognizes and cleaves a conserved sequence at the C-terminal of the prodomain, resulting in the mature form of the MT-MMP at the trans-Golgi (Figure 2B). It is still unclear where the transamidase cleavage site is, but possibly corresponds to residue 573 and 549 in MT4- and MT6-MMP, respectively.10,15,16 The biosynthetic pathway continues on the Golgi, where the GPI anchor is modified to generate the mature form. Some of these modifications, such as glycosylation and the change of unsaturated fatty acid chain into saturated ones, are essential for the proper anchoring of GPI-type MT-MMPs to the plasma membrane giving them unique characteristics and a specific localization to specialized lipid microdomains.10,11,15,16 In contrast to transmembrane MT-MMPs, the mechanisms underlying post-Golgi sorting and subsequent surface delivery of these endopeptidases remain unclear to date16 (Figure 2B).

1.2.2 | Proenzyme activation

As all MMPs are synthesized as zymogens, a key step in their regulation is their conversion into mature proteinases.10,11,14-16 The immature enzyme is maintained due to the interaction between the cysteine residue within the prodomain and the catalytic zinc ion through a thiol bond preventing substrate interaction (Figure 2).

Zymogen activation involves both proteolytic and non-proteolytic mechanisms.10,11,13,14,18 Intracellular proteolytic activation of the zymogen comprises the cleavage of the thiol bond resulting in the disruption of the cysteine-zinc ion interaction and the removal of the prodomain (Figure 2). Thus, the catalytic domain is exposed to bind and process distinct substrates. This proteolytic activation is driven by furin for membrane-tethered and furin-activable MMPs.10,11,13,14,18 Also, MMPs can be proteolytically activated by another MMP such as MT1-MMP that is responsible for MMP-2 activation, or by different proteases like serin protease that is required for MMP-3 activation and trypsin that has been reported to activate MMP-9 in vitro.13,18

MMPs can also be activated in both physiological and pathological settings without the proteolytic processing of the prodomain. This is the case of some secreted MMPs such as MMP-1, MMP-2, MMP-7, MMP-8, and MMP-9 that can undergo post-translational modifications induced by oxidants (reactive oxygen-nitrogen species).24,25 This results in the disruption of the interaction between the cysteine and the catalytic zinc ion and therefore, the MMP zymogen being directly activated by oxidative stress. In addition, metalloproteinases can also interact with non-substrates macromolecules which produces a distortion in the active site leading to allosteric activation. Both proteolytic-independent mechanisms can be followed by an autocatalytic degradation of the prodomain to achieve the fully active MMP.13,18

1.2.3 | Endocytosis and recycling

Endocytosis is the proposed mechanism for controlling the amount of the enzyme exposed to the cell surface. Both, transmembrane- and GPI-type MMPs, follow different endocytic pathways to recycle them back to the cell membrane or to target them for lysosomal degradation26 (Figure 2).

In the case of transmembrane MMPs, their endocytosis follows the classic clathrin and dynamin-dependent pathway for being efficiently internalized (Figure 2A). The consensus sequence in their cytoplasmic tail has a motif consisting of two leucine and one tyrosine (LLY573), that interacts with the clathrin adaptor protein 2 (AP2) allowing their endocytosis via clathrin-coated vesicles27-31 (Figure 2A). Additionally, an alternative endocytic clathrin-independent pathway has been demonstrated for MT1-MMP via caveolae in endothelial and tumor cells (Figure 2A).27,30,32 During angiogenesis, this caveolae-mediated endocytosis regulates MT1-MMP association with caveolin and distinct integrins for the proper enzyme localization and tubulogenic process.52

Internalized MT1-MMP also accumulates in invadosomes, which are actin-enriched protrusions of the plasma membrane involved in ECM remodeling31
(Figure 2A). Invadosomes are present in cancer cells where focal degradation of the ECM is necessary for tumor dissemination. The recruitment and the release of metalloproteinases, specifically MT1-MMP, confers proteolytic activity to invadosomes. The regulated MT1-MMP delivery to invadosomes requires a coordinated and complex machinery dependent on endosomal transport along microtubules. It has been described that invadosomes maturation is strongly regulated by the protrudin pathway, which is essential for the translocation of MT1-MMP-containing late endosomes toward immature invadosomes. Subsequently, the exocytosis of the secretory vesicles containing MT1-MMP is driven by SNARE protein family, SNAP-23, Syntaxin-4, and VAMP-7, (Figure 2A). In fact, VAMP-7 colocalize with MT1-MMP at focal sites of degradation and it is known that delivery of MT1-MMP to invadopodia during ECM remodeling relies on VAMP-7 function, possibly through the formation of molecular complex among VAMP-7, Syntaxin-4, and SNAP-23.

The mature GPI-anchored MMPs are internalized through the CLIC/GEEC pathway (Figure 2B). This dynamic endocytic route involves the formation of tubular-shaped plasma membrane invaginations named clathrin independent carriers (CLICs) that internalize these metalloproteinases becoming mature GPI early endosomal compartments (GEEC) and it has been demonstrated for MT4-MMP (Figure 2B). The signaling cascade that triggers this pathway involves the small GTPase of the Rho family, Cdc42, and the transcription factors Arf1 and GBF1 that regulates Cdc42 activity.

1.2.4 | Cell surface degradation and shedding

Shedding is another alternative followed by MT-MMPs to control their pericellular proteolytic activity and the amount of proteinase once they are tethered to the cell surface. Shedding active MT-MMPs may either involve the release of the extracellular portion to the pericellular milieu or the removal of the enzyme from the cell surface in order to inactivate it. Several studies confirmed that MT1-MMP shedding is autocatalytic-dependent, involving the cleavage of a peptide bond in the hinge region followed by a second cleavage in the active site. The result of this autocatalytic shedding is the formation of two inactive MT1-MMP species: a membrane-tethered species and a shed soluble catalytic domain fragment (Figure 2A). Moreover, MT1-MMP shedding can also follow non-autocatalytic mechanisms by a cleavage in the stem region which releases the whole active ectodomain (Figure 2A). Similarly, MT5-MMP is also shed through a cleavage in the stem region which results in a major species or in the hinge region releasing smaller MT5-MMP fragments.

In contrast to transmembrane-type, shedding of GPI-anchored MMPs is not totally clear (Figure 2B). It is thought that MT4- and MT6-MMP shedding are MMP-independent because none of them are affected in the presence of tissue inhibitors of metalloproteinases (TIMPs). Therefore, it is possible that their shedding is dependent on phospholipase C (PLC) as demonstrated for MT4-MMP and in a similar manner to the membrane dipeptidase, a GPI protein which is also released in a PLC-dependent manner. Moreover, MT6-MMP is shed through a cytokine-dependent mechanism releasing soluble MT6-MMP species, which play significant roles in tissue repair and host defense during innate immune response.

1.2.5 | Interactions with endogenous inhibitors

Once MT-MMPs are exposed on the cell surface, their enzymatic activity is regulated by endogenous inhibitors, TIMPs (Figure 2). There are four mammalian TIMPs (TIMP-1, 2, 3, and 4), that inhibit MT-MMPs by binding their N-terminal domain with the catalytic zinc ion of the enzyme. Except for TIMP-3, the remaining TIMPs are found as soluble forms. Independently of their inhibitory activities, TIMPs play various biological activities in the embryo. For instance, TIMP-2 regulates kidney morphogenesis by promoting cell growth on mesenchymal cells. Similarly, TIMP-3 null mice display alveolar defects and defective mammary gland branching.

Transmembrane type I MMPs are inhibited by all TIMPs except for TIMP-1 that displays poor inhibitory activity against these enzymes. Kinetic studies demonstrate that TIMP binding affinity is different and highly selective for the distinct MT-MMPs. For instance, TIMP-3 has a higher affinity binding to MT3-MMP while TIMP-2 is a strong inhibitor of MT1-MMP. In addition, the membrane-bound glycoprotein, reversion-inducing cysteine-rich protein with Kazal motifs (RECK) has been described as a MT1-MMP inhibitor and it also interacts with MMP-2 and MMP-9 (Figure 2A). During development, it plays a vital role as a regulator of tissue morphogenesis as RECK deficient embryos showed vascular defects that lead to premature death. Moreover, RECK is also involved in tumor angiogenesis by inhibiting MMP activity which leads to the suppression of the formation of new blood vessels. Interestingly, the proteoglycan Testican-3 and it is
splicing variant gene, N-tes, have been described to negatively affect MT1- and MT3-MMP proteolytic activity.48

Regarding GPI-anchored MMPs, MT4- and MT6-MMP are inhibited by all TIMPs, being TIMP-1 the most effective inhibitor15,16 (Figure 2B). Additionally, other molecules present in the plasma membrane can interfere with their proteolytic activity such as Clusterin (also named apolipoprotein J), that forms a complex with MT6-MMP through the hemopexin domain49 (Figure 2B).

1.2.6 | Dimerization

Oligomerization is important for stabilization, subcellular distribution, and regulation of the amount of MT-MMP and its turnover.29,50-52 Besides, a relationship between metalloproteinase dimerization and a greater proteolytic activity in tumor cells is plausible.29,51

Among transmembrane MT-MMPs, only MT1-MMP can establish homophilic complexes.29,51,52 MT1-MMP dimers are set up by interactions between the hemopexin and/or the transmembrane domains to fix the enzyme to the cell surface and to facilitate its proteolytic activity over the collagen triple helix29,52 (Figure 2A). This dimerization involves cytoskeleton rearrangement, which is regulated by GTPases, Cdc42 and Rac1,11,29 and it can be enhanced by certain chemokines in a PI3K and actin-dependent manner in endothelial cells.32 Besides, MT1-MMP oligomerization via hemopexin domains facilitates the activation of pro-MMP-2 through the formation of a MT1-MMP, TIMP-2, and pro-MMP-2 ternary complex. Firstly, MT1-MMP forms a homodimer interaction via hemopexin domain in which, one molecule is inhibited due to its interaction with TIMP-2. In parallel, TIMP-2 interacts via C-terminal with the hemopexin domain of pro-MMP-2. Following, the molecule of MT1-MMP in the homodimer that is free from TIMP-2 interaction, cleaves the prodomain of pro-MMP-2 leading to its autocatalysis. Finally, MMP-2 is released to the extracellular space as a mature enzyme.3,11,14,21,53

Both GPI-anchored proteins, MT6- and MT4-MMP, are found in homodimer forms at the cell membrane maintained via a disulfide bond between the cysteine residues of the stem region16,26 (Figure 2B).

1.2.7 | Post-translational modifications

MMPs can undergo post-translational modifications, which consist in adding different chemical groups to the residues within the protein chain that influence their enzymatic activity. One of these modifications includes MT1-MMP phosphorylation, specifically the Tyr573 residue located in the cytoplasmic tail, which has been linked to promote endothelial and tumor cell migration.54,55 In fact, Tyr573 phosphorylation represents a tightly regulatory mechanism of carcinoma cell behavior by inducing cell detachment and invasion and thereby, promoting metastasis.56 Moreover, Tyr573 interacts with p130Cas to regulate Rac1 activity in the signaling pathway that underlies the control of macrophage migration and fusion.55 MT1-MMP can also be palmitoylated in its cytoplasmic domain, in particular the Cys574. This post-translational modification regulates cell migration as well as clathrin-dependent endocytosis since culture cells transfected with palmitoylation-defective mutant MT1-MMP constructs impaired cell motility and the ability of MT1-MMP internalization through the clathrin-mediated pathway.57

In addition, glycosylation of the MT1-MMP hinge region has been described as an autocatalytic regulatory mechanism.58,59 Indeed, an incomplete glycosylated MT1-MMP increases its own proteolysis in cancer cells.59 Since glycosylation affects MT1-MMP activity, several in vitro studies have tried to assess the potential of glycosylated MT1-MMP to activate MMP-2. However, it is controversial if this posttranslational modification impairs the interaction between MT1-MMP and TIMP-2 and consequently, MMP-2 activation.58,59 On the other hand, GPI-anchored MT-MMPs can also be post-translationally modified. In this regard, N-glycosylation is essential for MT4-MMP stability by inducing dimerization while MT6-MMP is O-glycosylated.16,26

2 | MT-MMPS PARTICIPATE DURING CELL MIGRATION, PROLIFERATION AND POLARITY

2.1 | Cell migration

Several scenarios lead to cells remodeling their polarity through modifications of cell-cell and cell-matrix adhesions in order to initiate cell migration. This is a fundamental cellular process that enables major tissue rearrangements and organ morphogenesis in the embryo. These processes involve precise trafficking and distribution of MT-MMPs between the apical and basal cell surfaces for extracellular matrix degradation and remodeling.50 As a result, targeted localization of MT-MMPs is found at specific cell sites. This enables pericellular proteolysis at polarized cell structures such as the leading edge of migrating cells, focal adhesion and collagen attachment sites, podosomes, and lamellipodia (and invadopodia in cancerous cells).22,23,31,61-64 Regarding cell migration little is known about the roles of transmembrane MMPs in the embryo. Previous data reported the
expression of MT1-MMP in distinct organs and systems of
the developing mouse embryo.65-70 Notably, a recent study
developed a dynamic expression pattern for MT1-MMP in
the mouse embryo, particularly in the developing cardiovas-
cular and nervous systems and the limbs.71 These results
support that MT1-MMP may participate in distinct morpho-
genetic processes during embryogenesis that requires cell
migration. Indeed, MT1-MMP expression has been reported
to support cell migration.69 Supporting these data, MT1-MMP as well as MT2-, MT3-, MT4- and
MT5-MMP are all expressed in the subventricular zone, the
rostral migratory stream, and the olfactory bulb at postnatal
stages and persists in the adulthood72 (Table 2). In fact, neuroblast migration is reduced by MMP inhibitors and the
migrating olfactory stem cells show MT1-MMP-enriched
lamellipodia72-74 (Table 2).

Interestingly, both MT1- and MT2-MMP are
expressed by trophoblasts and localize in podosomes.75,76
Through the endothelin receptor type B localized in
trophoblast, endothelin-1 down-regulates the expression
levels of both metalloproteinases, which restrains tropho-
blast migration in the embryo77 (Table 2). During Xenopus and chicken embryogenesis, MT3-MMP expres-
sion is developmentally controlled and predominantly
found in the neural tube and the limb buds where ECM
remodeling and cell migration are crucial.78,79 In line
with these data, this enzyme is also expressed by the
developing corneal epithelial cells where it may regulate
their cellular migration through the association with
CD44, which is a cell surface hyaluronic acid receptor
with affinity to osteopontin, collagen, and fibronectin80
(Table 2). Since MT3-MMP has been reported to degrade
collagen III-enriched environment, it has been involved
in cell migration during skeletal development (Table 1).

MT1-MMP is also expressed in embryonic connective tis-
sue cells such as osteoblasts, osteoclasts, and peri-
chondrial, muscle, and tendon fibroblasts.67,71,81,82
During osteogenesis, differentiation of skeletal stem cells
is regulated by MT1-MMP/β1 integrin/YAP/TAZ signal-
ing axis83 (Table 2). In fact, Mt1-mmp−/− mice display
several craniofacial abnormalities as well as skeletal tis-
ue disorders84,85 (Table 2). Moreover, double deficient
mice for MT1- and MT3-MMP result in severe embryonic
defects in bone formation, which ultimately lead to early
death69 (Table 2). MT4-MMP, is expressed during limb
vascularization possibly promoting angioblasts migration
at early stages of mouse development.86 Additionally, this
GPI-anchored MMP is found in various structures of the
embryonic brain such as the olfactory bulb, cerebral cor-
tex, and hippocampus pointing out a possible involve-
ment in neural migration and proliferation during CNS
development.86 Moreover, Dm2-MMP plays an important
role in Drosophila heart development since it is expressed
in cardioblasts where it regulates collective cell migration
that contributes to cardiac lumenogenesis.87

Processing and trafficking of adhesion molecules by
transmembrane MMPs is also pivotal for cell fate and
motility in cancer cells. In that regard, it is known that
vesicular colocalization of MT1-MMP with β1- or
αvβ3-integrins at cell-cell contacts and motile structures
modulates endothelial cell migration.88 Also, localized
proteolytic activity of MT1-MMP cleaves other adhesion
molecules such as laminin, syndecan-1 and ICAM-1 to
promote cell migration (Table 1).89-92 Thus, cleavage of
laminin-5 by MT1-MMP releases an intermediary that
through EFGR signaling induces epithelial cell migra-
ation93,94 (Table 1). Remarkably, several studies have
suggested novel functions for this enzyme regulating
motility and trafficking of distinct immune cells.95,96
MT1-MMP is expressed in human monocyte-derived
immature and mature dendritic cells and participates in
their migration by processing different substrates such as
ICAM-191 or αv-integrin.90 Also, CD44H is processed by
MT1-MMP into its active form (CD44) (Table 1), releas-
ing a fragment that induces a migratory response.63,97,98
Independently of its proteolytic functions, MT1-MMP
also promotes macrophage migration by its association
with p130Cas and regulating Rac1 activity.55 Among the
GPI-anchored MMPs, MT4-MMP is implicated in mono-
cyte migration by cleaving eM-integrin increasing patrol-
ning monocyte crawling and thereby, their recruitment to
inflamed tissues99 (Table 1). In addition, MT6-MMP is
involved in monocyte and neutrophil cell migration by
processing vimentin100 (Table 1).

2.2 | Cell proliferation

Several studies have reported the involvement of MT-
MMPs in cell proliferation, although most of them are
focused on the context of tumor cells.11,52,101,102 For
instance, it has been shown that the proteolytic
processing of N-cadherin by MT5-MMP is necessary for
neural stem cell proliferation at postnatal stages103
(Table 2). Polared distribution of adhesive molecules
determines adult neural stem cell quiescence in the
epithelial stem niche of the subependymal zone: the api-
cal domain interacts with ependymocytes through
E-cadherin104 while the basal process adheres to the vas-
culature by α6β1-integrin-laminin interaction.105 Hence,
MT5-MMP-mediated cleavage of N-cadherin is necessary
for the exit from quiescence of neural stem cells and their
activation and proliferation.103 Similarly, MT2-MMP con-
trols epithelial cell proliferation rate by cleaving
E-cadherin in the intestinal niche106 (Table 1). Thus,
polarized localization of MT2-MMP at the apical junctions
MT-MMP	Cellular process	Biological functions	References
MT1-MMP	Cell migration	Neuroblast migration in postnatal brains.	72,73
		Trophoblast migration controlled by endothelin receptor type B/endothelin-1 activation.	75,76
		Skeletal and connective tissue disorders.	
		Osteogenesis and differentiation of skeletal stem cells through the MT1-MMP/β1-integrin/Rho GTPase signaling.	67,81,82,83,84,85
		Formation of the cardiac valves by inducing mesenchymal cell migration through degradation of type IV collagen in the developing endocardial cushions.	139,140
		Neural crest cell migration possible through the regulation of cadherin levels. Neural crest cell delamination independently of its catalytic activity.	134,135
	Cell polarity	Acquisition of cell polarity during zebrafish gastrulation cell movements.	125
		MT1-MMP internalization regulated by the planar cell polarity protein VANGL2 during gastrulation.	126
	Tissue branching	Ureteric bud branching morphogenesis regulated by proteolytic degradation of the kidney basement membrane.	150,151,152,153
		Mammary gland morphogenesis mediated by collagen type I and laminin degradation. Epithelial cell branching regulation.	157,158,159,160
		Submandibular gland branching morphogenesis.	66
	Angiogenesis and vessel wall formation	Lung vascularization and alveolar septum formation in postnatal development.	66,180,181
		Secondary ossification. FGF2-induced retinal neovascularization.	84,85
	Axon growth	Postnatal retinal axon growth through MMP-2 activation.	238
		Neurite outgrowth through L1-ANT1/2-GAPDH-MT1-MMP complex in cerebellar neurons.	241
		Nerve sprouting induced by MT1-MMP and MMP-2 via pro-NGF conversion and TrkA signaling in sympathetic neurons.	242
	Synaptogenesis	Navigation of spinal cord pioneer axons.	243
		Retinal neurogenesis and axon growth.	240
MT2-MMP	Cell migration	Endocardial cushion development mediated by Snail1-induced mesenchyme cell migration.	141
	Cell proliferation	Epithelial cell proliferation mediated by E-cadherin cleavage and interaction with ZO-1 at the apical cell junction during intestinal remodeling.	106
	Tissue branching	Submandibular gland branching through the proteolytic release of collagen IV NC1 fragments and via PI3K/Akt signaling pathway.	162
of epithelial cells allows the interaction with zonula occludens protein-1 (ZO-1) through its cytosolic domain as well as the proteolytic processing of E-cadherin. As a result, MT2-MMP-mediated cleavage disrupts apical E-cadherin-mediated epithelial cell quiescence promoting their proliferation during intestine morphogenesis\(^\text{106}\) (Table 2). In line with this data, MT1-MMP also participates in the maintenance of the hematopoietic stem cell niche by promoting the transcription of chemokines/ cytokines via HIF-1 signaling during the postnatal hematopoiesis.\(^\text{107}\)

Regarding the role of GPI-anchored MT-MMPs in cell proliferation during development, MT4-MMP deficiency was shown to result in a transient boost of vascular smooth muscle cell (VSMC) proliferation in the neonatal aorta by not yet defined mechanisms, suggesting a negative role of MT4-MMP in regulating VSCM proliferation.\(^\text{108}\) Moreover, in Drosophila, the GPI-anchored Dm2-MMP is involved in follicle stem cell proliferation, which is orchestrated by Wingless (Wg)/Dally-like protein (Dlp) signaling pathway.\(^\text{109}\) Herein, Dlp is a substrate for Dm2-MMP so that, in wild-type ovaries Dlp processed by the enzyme is not able to interact with Wg and therefore follicle stem cell proliferation is inhibited. However, Dm2-MMP null ovaries show an increase rate of stem cell proliferation as consequence of the interaction between Wg and Dlp that results in an enhancement of Wg signaling.\(^\text{109}\) Also in the morphogenetic events that lead to tissue elongation, flattening, expansion, and proliferation in the Drosophila limb development, Dm1-/ Dm2-MMP proteases act degrading ECM.\(^\text{110}\) These processes may be regulated by the expression of Ubx, a homeotic gene belonging to the HOX family of transcription factors. Ubx regulates apical and basal matrix remodeling during epithelial wing morphogenesis by repressing genes encoding basal matrix metalloproteases (Dm1- and Dm2-Mmp) and inducing Timp in the halteres.\(^\text{111}\)

In a distinct context, high MT1-MMP expression in gastric carcinoma cells contributes to cell migration and

MT-MMP	Cellular process	Biological functions	References
MT3-MMP	Cell migration	Corneal epithelial cell migration mediated by CD44v6 receptor shedding.	80
		Neural crest cell migration possibly regulated by N-cadherin and laminin cleavage.	136
	Cell migration and proliferation	Palatogenesis and bone formation defects. Impairment of the mesenchymal cell migration and proliferation caused by the loss of collagenolytic abilities in the double MT1−/MT3-MMP mutant mice.	65
	Synaptogenesis	Excitatory synapse development by the proteolytic cleavage of Nogo-66 receptor (NgR1) in cortical neurons.	277
MT4-MMP	Cell migration	Neural crest cell migration in zebrafish.	137
	Angiogenesis	Vascular wall maturation by inducing VSCMs migration and differentiation via osteopontin proteolysis and JNK signaling pathway.	108
MT5-MMP	Cell proliferation	Neural stem cell proliferation mediated by N-cadherin cleavage.	103
	Axon growth	Axon extension of dorsal root ganglia neurons through proteolysis of proteoglicans.	223
	Synaptogenesis	Synapse regulation by binding to PSD, ABP, and GRIP to target AMPA receptors to synapses. Axon growth and synapse remodeling through proteolytic cleavage of N-cadherin.	246
MT6-MMP	Axon growth	Sensory neuron axon guidance mediated by remodeling extracellular environment of the axonal pathway.	233,247

Note: Summary of MT-MMP functions described during vertebrate development demonstrates their participation in cellular processes essential for the growing embryo such as cell polarity, proliferation and migration, angiogenesis, tissue branching, axon growth, and synaptogenesis.
proliferation by regulating vimentin and E-cadherin levels.112 Moreover, miRNA-mediated down-regulation of MT1-MMP has an inhibitory effect over cervical cancer cell proliferation and invasion through the inactivation of the TNF pathway113 and the regulation of HB-EGF expression levels.114,115 Indirectly, MT1-MMP also induces tumor cell migration in type IV collagen environment by activating pro-MMP-2.82,116 Additionally, MT3-MMP is an important driver of tumor dissemination by activating pro-MMP-2 and its inhibition leads to impaired cancer progression and cell proliferation rate.117-119 Similarly, MT5-MMP also promotes cell migration and proliferation through pro-MMP-2 activation and thereby, supports tumor progression.120 Independently of its proteolytic activity, MT4-MMP is involved in breast cancer cell proliferation by promoting EGFR phosphorylation, which lead to the progression of the tumor via EGFR signaling.121

2.3 Gastrulation and cell polarity

Increased cadherin levels and adhesion at the cell surface seems to be dependent on glypican 4, a Wnt co-receptor anchored to the membrane by a GPI linkage that is required for the correct establishment of planar cell polarity (PCP) during frog gastrulation.122-124 Since there is a strong genetic interaction between zebrafish MT1-MMP and glypican 4, we can speculate that PCP proteins regulate ECM assembly and remodeling possibly by ensuring matrix metalloproteinase localization during developmental events, such as formation of the three embryonic layers during gastrulation125 (Table 2). Gastrulation requires cell movements involving ECM proteolytic degradation and remodeling to enable proper PCP establishment. Both canonical and non-canonical Wnt pathways have been implicated in the ECM reorganization during this process and in that regard, it is known that MT1-MMP activity coordinates with non-canonical Wnt signaling cascade through colocalization with its key regulator VANGL2122,125 (Table 2). Vanl2 mutant embryos show increased MMP activity that possibly facilitates the formation of cell protrusions.122,126 Moreover, inhibition of MT1-MMP/MMP-2 rescues cell adhesion in VANGL2 knockout cells, and deregulation of both VANGL2 and MT1-MMP alters cell polarity leading to abnormal cell protrusion formation.125,127-130 VANGL2 regulates MT1-MMP negatively by controlling \(\alpha\beta3\)-integrin levels and activating MMP-2.127,130 In addition, evidence suggests that there are further links between MT1-MMP function and the Wnt/PCP signaling pathway through the transmembrane receptor PTK7, which is an essential regulator of both the canonical and non-canonical Wnt pathways, as well as a proteolytic target of MT1-MMP required for redistribution of polarized cell membranes upon cleavage131 (Table 1). In this regard, a defect in PTK7 cleavage may explain the inappropriate ciliary organization in mouse ependymal cells, where ciliary defects associated to disrupted polarity are shown upon MT1-MMP loss, suggesting that MT1-MMP may be essential for planar polarization of ependymal cells.74 Furthermore, Wnt signaling pathway may contribute to ensure proper trafficking of MT1-MMP to specific sites for polarized structure formation in several contexts, in a process required to enable distribution between the apical and basal cell surfaces.34,60

Epithelial polarization is also essential to allow cells to organize in sheets and tubules. In this sense, the proper localization of MT1-MMP required for tubulogenesis and lumen formation is mediated by the receptor tyrosine kinase for collagen, discoidin domain receptor 1 (DDR1), which regulates the apicobasal distribution of this metalloproteinase in epithelial cells.132 (Table 1).

2.4 Epithelial-mesenchymal transition (EMT)

One of the paramount developmental processes, which include cell proliferation and migration as well as changes in cell polarity, consists in the transition of epithelial into mesenchymal cells. The neural crest cells (NCCs) are a multipotent progenitor population, which accomplish the EMT that enables them to delaminate from the dorsal folds of the neural tube and subsequently migrate to various destinations to form differentiated tissues.133 MT-MMPs play an important role during EMT in different tissues and species. As a matter of fact, MT1-MMP is expressed in both premigratory and migrating NCCs in Xenopus embryos and it is involved in their transition and migration independently of MMP-2 activation. MT1-MMP promotes neural crest EMT and migration possibly by regulating N-cadherin and E-cadherin levels and ECM degradation134 (Figure 3A; Table 2). Thus, down-regulation of MT1-MMP levels leads to an increase of N-cadherin expression and a reduced NCC migration.134 Supporting these data, the enzyme is also reported in the migrating NCCs along the neural tube in the mouse embryo.71 Additionally, MT1-MMP is required for basal positioning of NCC nuclei prior to epithelial delamination during the formation of the chicken neural tube. This novel function is proposed to be relevant for the regulation of EMT during development independently of its catalytic activity, suggesting that it may play an important role in the accomplishment of epithelial basal cell extrusions through mechanisms yet to be
explored135 (Table 2). Similarly, MT3-MMP is also expressed in cranial NCCs enhancing their migration probably through the degradation of N-cadherin and laminin during chick development. Thus, embryos lacking MT3-MMP displayed defects in the NCC migratory routes136 (Figure 3A; Table 2). Among the GPI-anchored
MMPs, MT4-MMP expression has been reported in NCCs in the mouse embryo and its ortholog mmp17b has been demonstrated to be necessary for the proper NCC migration in zebrafish embryos86,137 (Figure 3A; Table 2). Moreover, this study suggests a functional interaction of mmp17b and the MMP inhibitor RECK during NCC development.

Heart morphogenesis is also considered as an EMT-like process, which comprises several events such as endocardium and endocardial cushion formation.138 In fact, MT1-MMP as well as MMP-2 have been described to promote mesenchymal cell migration by degrading type IV collagen of the developing endocardial cushions leading to the formation of the cardiac valves139,140 (Table 2). This is in line with the reported expression of MT1-MMP in the mouse embryonic heart where the enzyme was found in the primitive atrium, the ventricle, the cardiac outflow tract, and the endothelial cells of the endocardium.71 Interestingly, this expression pattern persists along heart morphogenesis supporting the requirement of this transmembrane MMP during cardiac development.71 Similarly, MT2-MMP, through a direct transactivation by Snail1, has been also involved in endocardial cushion development.141 Thus, Snail1-mediated mesenchyme cell migration requires MT2-MMP activity, which is sufficient to rescue migratory phenotypes observed in targeted Snail1 knockdown during the formation of heart valves structures.141 (Table 2).

During mesenchymal transmigration in invasion programs, Snail1 and Snail2 regulate the activity of different metalloproteinases such as MT1-, MT2- and MT4-MMP.141-144 In this context, the acquisition of an invasiveness phenotype by cancer cells triggered by Snail inducing MT1- and MT2-MMP expression provide to these cells with the ability to migrate by remodeling the underlying basement membrane.142,143 Similarly, E-cadherin is also processed by MT2-MMP in cancer cells to trigger EMT in invasion programs.145

For instance, MT1-MMP localizes in the proximal part of the embryonic midgut where ECM remodeling activity is essential for intestine development.71 According to this, previous studies have described a correlation between MT1-MMP expression and villi morphogenesis during chicken embryonic development.148

In addition, renal system development comprises multiple steps of branching and ECM degradation to achieve a mature collecting system. In this regard, MT1-MMP expression is found in different embryonic renal structures such as the urogenital tract, the bulbourethral gland mesenchyme, and the metanephric mesenchyme.67,149-151 Moreover, migrating ureteric tip cells express MT1-MMP to remove ECM barriers and to allow tip cell branching, suggesting a role for MT1-MMP as a pericellular protease essential for the developing renal system152,153 (Table 2). In fact, defective MT1-MMP functioning has been associated with an excessive accumulation of basement membrane components such as laminin, collagen, and perlecain which ultimately leads to defective branching pattern and impaired cell proliferation150 (Tables 1 and 2). The excessive accumulation of collagen IV in the underlying basement membrane of the tubular epithelium has implicated MT2-MMP as a required regulator of renal branching morphogenesis, even though its function in this context is yet unclear.150 The enzyme expression has been also reported in the pronephros of the chicken embryo supporting a possible role of MT2-MMP in this process.154 MT4-MMP is localized in the collecting ducts of the embryonic kidney although further studies are needed to elucidate how the enzyme participates in the developing kidney.155

MT1-MMP has been reported to modulate cell proliferation within mammary gland morphogenesis since its expression is found in the branching ductal tree as well as in the mammary stroma.147,156 Moreover, epithelial end bud cells localize their MT1-MMP at lamellipodia of the tip cells to degrade local type I collagen and laminins of the surrounding mesenchyme promoting cell proliferation and branching147,157,158 (Table 2). For instance, stroma-cell specific targeting of MT1-MMP resulted in the complete suppression of branching morphogenesis and collagen accumulation indicating that mammary gland development relies on stroma cell functions.147,159 Moreover, in vitro studies in which Mt1-mmp−/− mammary epithelial organoids were embedded in 3D type I collagen hydrogels showed defects in the branching duct pattern.147 Interestingly, MT1-MMP is a key player in the invasive response during breast carcinoma, although its mechanisms of action in the mammary gland during tumorigenesis are quite different from those followed by normal mammary epithelial cells. Thus, while the normal mammary gland development depends on
MT1-MMP in the stroma, tissue invasion depends on MT1-MMP expressed in breast epithelial carcinoma cells themselves. 159

Additionally, MT1-MMP exerts non proteolytic functions to regulate epithelial branching morphogenesis. Thus, MT1-MMP hemopexin domain acts together with CD44 during the patterning of the developing mammary tissue to promote cell rearrangement and motility by activating Rho kinase signaling. 160 Similarly, since it has been described the relevance of integrin function in branching morphogenesis, 161 the interaction between the MT1-MMP transmembrane/cytoplasmic domain with β1-integrins has been implicated in mammary branching by promoting epithelial cell invasion independently of its catalytic activity 158 (Table 2). MT2-MMP is also expressed in the mammary epithelium during all developmental stages except for the lactating period when ECM degradation is not required 156 and therefore, both enzymes may play complementary or redundant roles during mammary gland development (Table 2). Moreover, according to previous actions described for MT2-MMP in cancer cells, 115 it is possible that its action is based on providing the epithelial cells that do not have collagenolytic activity with proliferative ability to degrade mammary basement barriers. Regarding MT3-MMP, is found in the stroma of the mammary gland, 156 although there is not a direct evidence for a similar role in branching morphogenesis.

MT2-MMP is mostly expressed by epithelial cells and its proteolytic activity is required for cell proliferation during submandibular gland morphogenesis. 162 In this context, NC1 fragments obtained from MT2-MMP-mediated collagen IV proteolysis (Table 1) increases cell proliferation and end buds branching via PI3K/Akt signaling pathway in the submandibular gland 162 (Table 2). Indeed, in submandibular gland explants treated with MT2-MMP siRNA intracellular collagen IV accumulation reached high levels while the release of NC1 domains dropped, which ultimately resulted in a notable impaired branching morphogenesis. 162 Similar to mammary gland branching, mesenchymal cells surrounding the submandibular epithelium express MT1-MMP. 162 In fact, embryos lacking the enzyme showed enlarged gland end buds and subsequently, defective branching 66 (Table 2).

The Drosophila tracheal system has been proven as an excellent tool for the study of MMPs in branching morphogenesis. 163,164 Tracheogenesis starts when epithelial cells differentiate in tracheal cells and migrate to build sac-like structures. Subsequently, these tracheal sacs undergo successive branching programs in order to form the complex network of epithelial tubes characteristic of the fly tracheal system. 164-166 This mechanism is coordinated by BNL/BTL axis signaling. Tracheal cells, which harbors FGF receptor breathless (Btl), respond to brancheless (BNL) gradient provided by the surrounding mesodermal cells. 167 Both Dm1- and Dm2-MMP are essential for this morphogenetic event and are expressed in the air sac primordium. Notably, although knockdown of both MMPs display similar phenotypes in the developing tracheal tube network, their roles are quite different. Secreted Dm1-MMP-dependent proteolysis is required for tracheal cell invasion into myotubes by removing collagen IV barriers that avoid invading branch tip cell migration. 168 Thus, Dm1-MMP fly mutant embryos show severely disrupted trachea elongation supporting that the catalytic domain is essential for tracheal branching. 163 Similarly, the membrane anchored Dm2-MMP has been also involved in ECM remodeling during tracheal development since Drosophila embryos lacking the enzyme showed an aberrant air sac development. 169 Its proteolytic functions over basal lamina components are essential to disc cell migration resulting in a precise disc trachea association and air sac development 169 (Table 2). Indeed, Dm2-MMP is involved in tracheal branching independently of its proteolytic actions. It has been described that Dm2-MMP regulates tip cell specification by modulating FGF signaling during air sac development, which ultimately leads to avoid the acquisition of tip cell phenotype. This lateral inhibition mediated by Dm2-MMP is important to control tracheal branching pattern 170 (Table 2).

4 ROLE OF MT-MMPS DURING ANGIOGENESIS AND LYMPHANGIOGENESIS

4.1 Angiogenesis

Angiogenesis is an essential developmental process for the proper organogenesis and growth of the embryo. After the formation of the primary plexus by vasculogenesis, new blood vessels sprouted from the pre-existing ones in order to supply the nutritional requirements of the growing embryo. 171,172 Angiogenesis also takes place in the adulthood during the menstrual cycle and tissue repair or under pathological circumstances such as cancer progression and in response to an inflammatory insult. Blood vessel formation by sprouting angiogenesis involves a sequence of events in the endothelial cells: cellular activation, degradation, and invasion of the ECM, cell migration into the tissues, proliferation, cell fusion and tubulogenesis, and stabilization of new capillaries. 51,173,174 These regulated steps in angiogenesis are facilitated by MMPs through different mechanisms such as perivascular matrix remodeling, release of angiogenic factors from the ECM or cleavage of angiogenic inhibitors.
In this context, the most studied cell surface-associated MMP is MT1-MMP which has a key function promoting endothelial cell migration.175-177 Since MT1-MMP displays fibrinolytic activity, endothelial cells expressing the enzyme can penetrate fibrin-enriched tissues and switch on tubulogenic programs during neovascularization.178 In fact, null mice for this metalloproteinase display defective vascular invasion of cartilage, which results in an unsuitable secondary ossification84,85 (Table 2). Moreover, these post-natal mice displayed a null FGF-2-induced retinal neovascularization supporting that MT1-MMP is a key player in the angiogenic process85 (Table 2). In addition, \textit{in vitro} studies demonstrated that vascular outgrowth of aortic explants isolated from \textit{Mt1-mmp} deficient-mice was impaired due to the inability of the endothelial cells to degrade the surrounding matrix.51,179 In the same context, lung endothelial cells deficient for MT1-MMP showed an impaired \textit{in vitro} migration and tubulogenesis ability and consequently, the postnatal alveolar septum formation was disrupted66,176,180,181 (Table 2). Next to tubular neovessel formation, endothelial cells also participate in a complex process named lumenogenesis, which results in the formation of intracellular space where the blood can flow through. Since ECM remodeling is necessary for lumen expansion, several studies have supported that MT1-MMP catalytic activity is also essential to control the vascular lumen formation through Cdc42 activation.172,182,183

Despite these observations and the fact that its expression has been reported in the endothelium of a variety of organs during embryogenesis, including the eye, brain and limbs,66,71,85,184 the role of MT1-MMP in developmental angiogenesis is poorly understood. For example, MT1-MMP expression in the hyaloid vessels during the eye development has pointed out a possible function of this enzyme in regressing vessels of the postnatal retina similar to that described for MT1-MMP in vascular regression in the aortic ring model.71,185 Moreover, the protein also localized in the nerve fiber layer of the mouse retina where it plays role related to vascularization.186

It should be noticed that, although MT1-MMP is generally considered as a pro-angiogenic factor, it may play a dual role by blocking the angiogenic response in some avascular tissues such as the cornea. In this context, VEGFR1 is proteolytically processed by MT1-MMP generating N-terminal VEGFR1 fragments which can still bind VEGF-A\textsubscript{165} reducing its proangiogenic effect and thereby inhibiting corneal angiogenesis187 (Table 1). Similarly, MT1-MMP-mediated endoglin cleavage, which results in soluble forms of the receptor, also impairs tumoral angiogenesis by sequestering angiogenic ligands such as TFG-\(\beta\) that inhibits sprouting angiogenesis.188 During wound healing, keratinocytes-derived MT1-MMP are also involved in vascular regression by releasing endostatin fragments which have been previously described to harbor anti-angiogenic activity.189 In this context, the epidermis-specific \textit{Mt1-mmp} knockout mice showed a significant increase in vascular density because of the reduction in the levels of endostatin fragments.189

Angiogenesis can also occur under pathological circumstances and generally appeared associated with an inflammatory response.171,190-192 In fact, upregulation of MT1-MMP expression induced by the pro-inflammatory chemokines CCL2 and CXCL8 triggers the angiogenic response in endothelial cells.32 MT1-MMP has been also reported to control the intestinal vasculature expansion by proteolytically processing thrombospondin-1 (TSP1). The resulting C-terminal fragment works as intermediary in the CD47/\(\alpha\)v\(\beta\)3-integrin signaling cascade that ultimately triggers intussusceptive angiogenesis through NO production193 (Table 1). Interestingly, the vascular expansion via intussusceptive angiogenesis may also rely on the ability of NO to induce MT1-MMP expression in endothelial cells promoting their migration.190 In cancer cells, unregulated MT1-MMP activity enhances cell migration and invasion through the proteolytic processing of semaphorin 4D into soluble forms that lead to the impairment of Sema4D/Plexin B1 signaling pathway.102,193,194 Moreover, elastin-derived peptides trigger the angiogenic response and upregulate MT1-MMP expression, which is required to promote cell motility and cell polarity in human microvascular endothelial cells.195

All these data are consistent with the reported expression of MT-MMPs during endometrial angiogenesis, an essential physiological process for a vascularized receptive endometrium in the adult tissue. Remarkably, MT1-, MT2-, MT3-, and MT4-MMP localize in endothelial and perivascular cells of the human endometrium and during menstrual phases associated with high angiogenic activities. In particular, MT2- and MT3-MMP regulate capillary-like tube formation during endometrial neovascularization.196-198

Apart from these data, little is known about MT2- and MT3-MMP function during embryonic angiogenesis and most of the research is focused on cancer studies. This role in tumoral angiogenesis is also supported by the fact that MT1- and MT2-MMP display pro-invasive, angiogenic, and metastatic activities in cancer cells in response to Snail1 induction.142 Remarkably, MT2-MMP increases intratumoral microvessel density in human esophageal and lung cancer tissues.199,200 One possible mechanism by which MT2-MMP can promote basal membrane degradation during pathological angiogenesis is through the processing of versican, an ECM component of the venular basement membranes. Thus, VEGF-induced
angiogenesis in pathological conditions up-regulates ADAMTS-1 and MT2-MMP in endothelial cells that degrade versican201 (Table 1). Similarly, it has been described that the fibrinolytic activity of MT2-MMP promotes VEGF-induced angiogenesis. Thus, HUVEC cells expressing MT2-MMP were able to degrade fibrin matrices inducing cell migration and invasion.202 The implication of MT3-MMP in angiogenesis was described by Bakhashab et al., who tested that under the pro-angiogenic effect of metformin, a cardioprotective treatment used in type 2 diabetes, MT3-MMP was up-regulated inducing endothelial cell migration and therefore, promoting angiogenesis.203 Regarding MT6-MMP, elevated mRNA levels were observed in acute cutaneous wounds suggesting a contribution in angiogenesis during wound healing.204 Additionally, MT1-MMP has a pivotal role in blood vessel wall development and during vascular remodeling.184,205 The maturation of the newly built vascular network involves the deposition of a new basement membrane and the recruitment of mural cells including pericytes and vascular smooth muscle cells (VSMCs).51,174 The cellular investment of the nascent vasculature is regulated by an interplay between MT1-MMP and the PDGFR-β/PDGF-B signaling pathway.177,184,205 Therefore, MT1-MMP-deficient mice showed aberrant retinal and brain VSMC recruitment as consequence of the defective PDGFR-β signaling.184 Moreover, MT1-MMP expression in VSMCs covering the embryonic arteries suggested that its function in vessel wall remodeling is established during development.67 Indeed, its expression has been reported in umbilical vessels71 where it may play a role in the umbilical vascular wall similar to that described for ADAMTS9.206 Importantly, MT1-MMP provides VSMCs with proteolytic and migratory abilities, during pathological vessel remodeling.207 Hence, MT1-MMP-dependent LDL receptor related protein 1 (LRP1) cleavage regulates VSMC dedifferentiation program inducing the expression of pro-migratory and pro-invasive genes which are determinant for the vascular wall remodeling after injury205 (Table 1).

Although of the mechanisms by which MT4-MMP participates in blood vessel formation has been poorly investigated during development, its expression has been reported in the cardiovascular system as well as in the vascularization of the limb, brain, and eye of the mouse embryo.86 In particular, MT4-MMP localizes in the endocardial endothelium of the primitive heart tube as well as in endothelial cells and VSMCs in the dorsal aortic wall at distinct developmental stages.86,108 Moreover, previous studies confirmed MT4-MMP expression in VSMCs in different tissues such as the intestine, lung, stomach, ovary, testis, and uterus in the postnatal mouse.208 Although its function in the endothelium is not clear so far, MT4-MMP has an essential role in the maturation and stabilization of the blood vessel wall in the embryo. Thus, the ortholog in zebrafish embryos, mmp17b, localized in neural crest cells, which are the precursors of VSMCs, and its activity is necessary for their proper migration137 (Table 2). Supporting these data, MT4-MMP-driven osteopontin (OPN) proteolysis regulates blood vessel wall stabilization during aortic wall development. Thus, N-terminal OPN fragments released by MT4-MMP-mediated cleavage modulate, via JNK signaling, the differentiation and positioning of VSMCs for the proper establishment of the arterial vessel wall108 (Tables 1 and 2). This essential function in vessel stabilization is supported by previous studies in MT4-MMP-overexpressing breast carcinoma cells, which established a correlation between the blood vessel architecture and the development of metastasis. Therefore, MT4-MMP proteolytic activity in tumor cells induces pericyte detachment and blood vessel enlargement increasing vascular leakage and consequently favoring the increase of metastatic spread.209 Additionally, tumor-derived MT4-MMP has been shown to contribute to tumor growth and metastasis through its pro-angiogenic effect210 (Table 1). Besides its involvement in mural cell recruitment during blood vessel architecture, the fact that MT4-MMP is expressed in the early embryo suggests additional functions in endothelial cells during angiogenesis.

4.2 Lymphangiogenesis

Lymphangiogenesis, or the generation of new lymphatic vessels sprouted from the pre-existing blood vessels, is a dynamic process during embryogenesis that includes proliferation, sprouting, and migration of lymphatic endothelial cells.211 Like blood vessel elongation, ECM remodeling is required to provide a path for lymphatic endothelial cell migration and lymphatic vessel outgrowth. In fact, these cells express some MMPs and different in vitro studies have suggested essential roles of MT-MMPs for lymphangiogenesis. In addition, lymphatic vessel remodeling is mainly regulated by VEGFR3 signaling through VEGF-C and VEGF-D ligands and the endothelial hyaluronan receptor-1 (LYVE-1) located in the lymphatic endothelium.211-213

In the adulthood, lymphangiogenesis is linked to pathological conditions such as inflammation, tissue repair, tumor growth and metastasis and fat metabolism.211,213 Several studies suggest essential roles of MT-MMPs in this process. In this regard, MT1-MMP is involved in corneal inflammatory lymphangiogenesis by inducing VEGF-C and VEGF3 expression and therefore,
promoting the development of new lymphatic vessels. In addition, studies in vitro have demonstrated that MT1-MMP-mediated pro-MMP2 activation promotes lymphatic vessels sprouting.

In contrast to these pro-lymphangiogenic behaviors, this enzyme can also exert anti-lymphangiogenic effects through two independent mechanisms. MT1-MMP was shown to suppress lymphatic vascular outgrowth by proteolytically processing LYVE-1 located on the lymphatic endothelial cell surface and therefore, blocking the LYVE-1-dependent lymphangiogenesis. Moreover, this enzyme negatively regulates VEGF-C production in macrophages through PI3K signaling which lead to impairment of spontaneous lymphangiogenesis.

Since cancer cells use the lymphatic vasculature to be transported for the primary tumor site to distant organ and thus, enhance cancer cell dissemination, most of the studies have focus on how MT-MMPs contribute to lymph node metastasis. Indeed, MT3-MMP which is overexpressed in primary human melanomas, promotes lymphatic invasion by cleaving the cell adhesion molecule L1-CAM involved in transendothelial migration (Table 1). Regarding MT4-MMP, little is known about its role in lymphatic invasion but its expression in human breast cancer lymph nodes as well as metastatic nodes has pointed out a possible function as an effector of breast carcinoma dissemination.

5 | FUNCTION OF MT-MMPS IN AXON GROWTH AND GUIDANCE

Axon guidance relies in the capacity of the growth cones, at the tip of the axon, to respond to guidance cues present in the environment. The growth cones guide the extension of the navigating axons providing sites of attachment and degradation of the ECM where they express metalloproteinases. In this context, MMPs allow the advance of the growth cone by degrading the ECM, consequently facilitating neurite outgrowth, axon extension and synaptic plasticity. On account of this, we can argue that MT-MMPS are key regulators of axon guidance during development, enabling axon growth, and processing guidance cues and their receptors as well as their inhibitors. The molecular processes by which MT-MMPS make this possible remain elusive, possibly due to the fact that these proteinases show considerable redundancy in vertebrates.

In that regard, Drosophila has been proven an amenable tool for the study of the role of MMPs in axonal fasciculation and guidance during development. MMP activity in the developing nervous system is essential for both axon pathfinding and dendritic plasticity in the fly brain. Both MMPs, Dm1- and Dm2-MMP are widely expressed in the CNS. In the fly, these proteinases inhibit the regulated separation/defasciculation of motor axons at defined choice points and are also redundantly required by motor neurons to be guided to their target muscles. Individual motor axons must separate from their original nerves when they reach their appropriate target, a process influenced by the membrane anchored Dm2-MMP and, to a lesser extent, secreted Dm1-MMP, indicating that both endopeptidases can perform similar functions. In fact, loss of Dm2-MMP function shows failed fasciculation of motor neuron axons and splinter off before reaching their targets.

MMPs are expressed dynamically in the developing and adult CNS and after brain damage in vertebrates. They localize on the growth cones of neurites extending in vitro and their activity is involved in axon guidance as well as in neuronal migration, myelination, synaptic plasticity, and neurogenesis. In this context, MT1-MMP and its substrate MMP-2 have been posted as promising axon-outgrowth promoting molecules within the CNS. In fact, neurite outgrowth was reduced in postnatal retinal explants derived from Mt1-mmp deficient pups and after blocking pro-MMP-2 activation by MT1-MMP (Figure 3B). These data revealed that MT1-MMP stimulates retinal axon growth through activation of MMP-2.

Thus, in vivo exposed preparations of the brain treated with broad-range MMP inhibitors resulted in misguidance of retinotectal projections in Xenopus embryos. Also in zebrafish, mmp14a, one paralog of MT1-MMP, is required for retinal neurogenesis and the development of the retinotectal projections (Table 2). In the mouse embryo, a recent study reported that Mt1-mmp localized at distinct points of the visual pathway, including the optic stalk and optic chiasm region as well as in the superficial layers of the superior colliculus that receive direct visual input from the retina, supporting a role for this proteinase in the guidance of visual axons.

Similar effects of MT1-MMP promoting neurite outgrowth from cultured granule cells were described in the mouse cerebellum. In this study, MT1-MMP interacts with the cell adhesion molecule L1, the adenine nucleotide translocator (ANT1 and 2) and GAPDH forming a complex at the cell surface to promote L1-induced neurite outgrowth in cerebellar neurons (Figure 3B; Table 2). In a different model, sympathetic neurons under conditions of hyperactivity by electrical stimulation respond by increasing nerve growth factor (NGF), MMP-2, and MT1-MMP levels. MT1-MMP activates
MMP-2, which in turn cleaves and activates NGF to promote neurite outgrowth via TrkA signaling (Table 2). Notably, it has been shown that actin remodeling drives synaptic-like vesicles release and MT1-MMP activity at specific points regulating axon growth cone microenvironment, and enabling pioneer axons to navigate across the boundary of the zebrafish spinal cord (Table 2). The function of MT1-MMP in the brain has been associated with the control of appetite and body weight. Thus, loss of proteinase activity results in nuclear accumulation and decreased axonal transport of two neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), in the arcuate nucleus of the hypothalamus, leading to the characteristic phenotype observed in these mutant mice related to insufficient nutrient intake.244

Although there is not a direct evidence for similar functions, MT4-MMP expression in the retinal ganglion cell layer as well as in the dorsal lateral geniculate nucleus, one of the main central targets for retinal axons, makes likely its involvement in steering axons to their final targets.86 Interestingly, this metalloproteinase localizes in the anterior hypothalamus, an important brain center for regulating thirst in the brain, and mutant mice for MT4-MMP display abnormalities in water homeostasis.155 Regarding MT5-MMP, is expressed specifically in the brain40 and the developing dendrites of Purkinje cells, suggesting its involvement in neuronal plasticity and dendrogenesis.245 Moreover, MT5-MMP localized at the growth cone of sensory neurons and it has been involved in axon growth during development223,246 (Figure 3B). These data suggest that pericellular proteolysis of proteoglycans which normally inhibits neurite outgrowth, mediated by MT5-MMP may contribute to axon extension of dorsal root ganglia neurons (Tables 1 and 2). Also in zebrafish, morpholino-mediated knockdown of mmp25b, the orthologous gene of Mt6-mmp, results in larvae that are uncoordinated and insensitive to touch suggesting defects in the development of sensory neurons. Supporting these data, reduced type IV collagen degradation was observed throughout the pathway of trigeminal ganglion axons in the morphant embryos, indicating that this MMP is involved in sensory neuron axon guidance233,247 (Table 2).

It remains to be determined the molecular mechanisms by which these proteases may participate in axon guidance and growth. It seems plausible that their proteolytic activity is not only necessary for the local degradation of the surrounding matrix to ensure the accuracy of axon pathfinding. In fact, numerous evidence supports that MT-MMPs can also cleave and/or activate substrates such as axon guidance and adhesion molecules as well as growth factors, all of which can facilitate axon outgrowth in the developing CNS.220,248 In Drosophila, the ECM molecule Frac is expressed concurrently with axon pathfinding and Dm2-MMP-expressing glia, and its proteolytic cleavage by Dm2-MMP may contribute to the activation of non-canonical BMP signaling pathway in motoneurons.249 Also in the fly, the degree of motor axon fasciculation in the embryo depends on the level of MMP catalytic activity, suggesting that particular MMP substrate(s) plays an instructive role in motor axon guidance. Indeed, several studies suggest that MMP-mediated cleavage is directed toward ectodomains of guidance cues in the environment and their receptors on growth cones in order to activate or terminate their motility. That is the case of the ADAM metalloprotease Kuzbanian, which mediates the proteolytic activation of the Slit/Roundabout receptor complex, essential for the removal of Roundabout receptor from commissural axons to allow them to cross to the contralateral side.250 Kuzbanian also participates in contact-mediated axon repulsion by ephrins and forms a stable complex with ephrin-A2.251 Thus, the membrane anchored ephrin-A2 cleavage by the protease after Eph receptor binding, initiates axon detachment, and retraction.

In vertebrates, MMPs are capable of modulating the interactions between guidance cues and their receptors in vitro,224,251 regulating the migratory activity of commissural axons acting through chemoattractive signals. Specific MMP inhibitors potentiate neurite outgrowth mediated by netrin-1 through the regulation of the activity of its receptor DCC in dorsal spinal cord explants.224 Thus, MMP cleaves DCC, possibly to a nonfunctional form of the receptor, and therefore, the blockade of the proteinase enhances responsiveness to netrin-1 on commissural axons. In a distinct context, previous work has shown reduced MT1-MMP expression levels upon loss of the axon guidance molecule SEMA7A in oral squamous carcinoma cells.252 In addition, MT1-MMP has been reported to promote cancer cell migration and invasion by cleaving the axon guidance receptor EphA2.253,254 An intriguing possibility is that, in a similar manner, MT1-MMP mediates axon guidance responses through that activation of the Eph/ephrin signaling pathway via the proteolytic processing of the receptor at the growth cone. Interestingly, following a quantitative proteomic analysis distinct guidance cues such as SEMA3C, SLIT1, SLIT2, and SFRP1 have been identified as putative substrates of MT1-MMP in activated endothelial cells.255 β1-integrin is also an important mediator of axonal outgrowth in the retina and interactions between integrins and MMPs in other physiological processes have been described before.256,257 In this context, it has been proposed that MT1-MMP activates MMP-2 to promote axonal outgrowth in mouse retinal explants. In turn, activated MMP-2 might affect axon outgrowth via a
β1-integrin-dependent pathway (Figure 3B). Another proposed metalloproteinase sensitive target is FGF, since deregulation of FGF signaling produces defects in the extension and targeting of retinal axons similar to that observed upon broad-spectrum MMP inhibition in the developing Xenopus brain.258,259

6 | ROLE OF MT-MMPS IN SYNAPTOSTEGESIS

Neural plasticity allows neural circuits to adapt the assembly of synaptic contacts in order to guarantee synaptic transmission and communication in the brain. However, the molecular mechanisms underlying synaptic plasticity are not fully understood. As mentioned above, MT-MMPS are good candidates to exert relevant roles as regulators of axonal plasticity via synaptic remodeling. MMP function modulates synapse formation and activity-dependent plasticity via local ECM remodeling, allowing the modification of synaptic architecture. Remarkably, membrane-bound MMPs are found at the synaptic junction within axons and sites critical to this process.246

Several studies in Drosophila demonstrate that both MMPs regulate synaptogenesis including in axonal terminals and dendrite reshaping.231,261 In particular, Dm2-MMP mutants display a total block of dendrite reshaping in sensory neurons due to defects in local degradation of basement membranes.261 This suggests that matrix micro-environmental degradation driven by the GPI-anchored Dm2-MMP is an essential mechanism to allow dynamic changes in dendritic arbors during reorganization of neural networks. An excellent model to study synapses due to their accessibility and simplicity is the neuromuscular junction (NMJ) in the peripheral nervous system.235 At the NMJ, TIMP inhibits synaptic MMP function and regulates its proteolytic activity in the extracellular space surrounding synaptic boutons. Failure to inhibit MMP activity leads to delays in muscle peristalsis due to alterations on the BMP signal transduction pathway that modulates NMJ structure and function.262 Also, Dm1- and Dm2-MMP proteolytic activities regulate basal synapse morphogenesis to restrict NMJ development over time through a mechanism that modulates the HSPG Dally-like protein (Dlp) co-receptor to restrict Wingless (Wg) trans-synaptic signaling.263 However, only the secreted Dm1-MMP is required for fast, activity-dependent synapse formation.264 In line with these data, Dm1-MMP levels are increased after acute neuronal stimulation enabling synaptogenesis through a direct interaction with Dlp, which can modulate Dm1-Mmp proteolytic function.263 On the other hand, Dm2-MMP spatially confines Dlp at the synapse, antagonizing the Dlp-Dm1-MMP interaction. Moreover, Dm1-MMP is constitutively increased while activity-dependent Dm1-Mmp augmentation is lost in a Fragile X syndrome model in fly.265 Both defects are prevented when Dlp is suppressed.266 Altogether, these data suggest that both MMPs are differentially required in distinct phases of synapse formation by a reciprocal co-regulation of Dm1- and Dm2-MMP.

Similar to Drosophila, MMP activity is also necessary for NMJ formation in vertebrates.235 Expression of MT1-MMP has been reported during muscle development and knockout mice display altered myogenic differentiation.71,267 Interestingly, a recent study demonstrated that vesicular trafficking and surface insertion of postsynaptic MT1-MMP regulate aneural AChR clustering via focal ECM degradation (Figure 3C). Thus, precise targeting of MT1-MMP to podosome-like structures initiates focal ECM remodeling to allow the recruitment of AChR clusters at the synapse (Table 2). MT1-MMP deficient mice also display a reduction of axonal growth and arborization in the diaphragm muscles, suggesting that a retrograde signaling from the post- to the presynaptic regions is necessary for the proper muscle innervation.235

In mammals, secreted MMPs have been involved in dendritic reshaping and synaptic plasticity both at the pre- and postsynaptic compartments.268-273 In addition, MMP activity appear to be important in the process of synaptic plasticity necessary for memory consolidation. There has been found a significant correlation between learning and memory acquisition processes and expression of MMP-9.274 MMP-9 together with MMP-2 are differentially expressed in the rat hippocampus and cerebellum and both are susceptible to trigger changes in tissue remodeling upon kainate administration.272,275 Also inhibition of MMP catalytic activity affects de-afferentiation-induced sprouting in the adult nervous system.276 MMP-2 inhibition reduces cortical dendritic growth in response to Sema3A in a PKCalpha-dependent pathway implicating NRP-1.271 As both MMP-2 and MMP-9 are substrates of some MT-MMPS, we can speculate on a possible function of membrane-tethered proteinases in synaptogenesis mediated through shedding of secreted MMPs. However, only a few studies have directly associated MT-MMP proteolytic activity with synaptic plasticity. The fact that MT-MMPS localize in dendritic spines supports this potential function in synaptogenesis. In cortical neurons, MT3-MMP loss of function reduces excitatory synapse development. Proteolytic cleavage of Nogo-66 receptors (NgR1) by MT3-MMP generates a soluble ectodomain fragment that accelerates excitatory synapse formation (Figure 3D; Tables 1 and 2).
MT5-MMP is highly expressed in the CNS, particularly in the hippocampus and cerebellum, both brain regions with relevant synaptic plasticity, and its synaptic expression increased in response to traumatic brain injury. Related to a role in synaptogenesis, synaptic expression increased in response to traumatic neurotransmitter receptors (Table 2). Interaction between MT5-MMP and ABP targets MMP-mediated proteolysis to growth cones in developing neurons and to synapses in mature neurons, where it may contribute to axon growth or synapse remodeling through proteolytic cleavage of N-cadherins or other ECM molecules (Figure 3B). In a different context, the synaptic adhesion protein N-cadherin is also a MT5-MMP substrate that participates in pain control and inflammatory hyperalgesia (Table 1). This response is mediated by the interaction between nociceptive neurites and mast cells and requires that MT5-MMP and N-cadherin concentrate at the sites of cell-cell interaction. Further, loss of MT5-MMP in mice enhances nociceptive responses through a hyperinnervation phenotype that increases sensitivity to thermal stimuli. On the other hand, expression levels of MT5-MMP and N-cadherin are modified after damage to the brain circuitry in correlation with a functional recovery of synaptic function. Interestingly, MT5-MMP is also involved in mechanical allodynia and in neural plasticity induced by peripheral nerve injury. There is not a direct evidence for similar functions of GPI-anchored MT-MMPs in synapse formation, but the restricted expression of MT4-MMP during brain development, particularly in the olfactory bulb, cerebral cortex, and hippocampus makes it possible.

7 | CONCLUSIONS

Since only several studies have addressed their function in the developing embryo, understanding the role of MT-MMPs is still an open question today in the field of developmental biology. On the one hand, the complex cell biology of these endopeptidases involves many points of regulation to ensure the precise control of their proteolytic activities. Moreover, as shown for other MMPs, it is reasonable that different biological functions of MT-MMPs depend on other protein domains distinct from the catalytic site. On the other hand, possible redundancy in the proteolytic actions among distinct members of the MT-MMPs may add difficulty to assess functional studies. Regarding their involvement in embryonic development, increasing evidence supports that MT-MMPs participate in different developmental processes. Most of these functions in the embryo require a polarized cell distribution of the enzyme to mediate in angiogenesis, gastrulation, axon guidance, branching morphogenesis, or EMT among other processes. However, how MT-MMPs are targeted to motile cell structures such as the leading edge of migrating cells, lamellipodia, or the growth cone is still an unclear question. Interestingly, MT1-MMP has been demonstrated in distinct subcellular compartments where it is able to cleave several intracellular proteins such as cytoskeletal proteins, apoptotic regulators, signal transducers, or transcriptional and translational regulators that can be also relevant to distinct morphogenetic processes in the embryo. However, further studies are needed to elucidate the importance of intracellular substrate proteolysis and actions for MT-MMPs during embryonic development.

What are the target substrates that MT-MMPs may process to mediate their physiological functions in the embryo? Apart from ECM components, adhesion molecules such as integrins or cadherins are among the main substrates that MT-MMPs cleavage to mediate cell migration, proliferation, and polarity during embryonic development. It is worth mentioning that morphogens, which are essential signaling molecules for embryogenesis, may be good candidates for MT-MMP-mediated proteolysis as it has been reported for the Wnt/PCP signaling pathway during gastrulation. A role of MT-MMPs in contributing to axon growth and guidance has been also suggested, although the mechanisms underlying are poorly understood and may involve not only ECM degradation but also cleavage and activation of adhesion molecules, receptors, and guidance cues such as ephrins, semaphorins and netrins. In addition, MT-MMP-mediated shedding and proteolytic cleavage of ECM components and receptors could stimulate neural circuit remodeling and enhance functional connectivity after brain injury by targeting neurotransmitter receptors to synapses. However, further studies are necessary to understand how MT-MMPs contribute to the formation and maturation of synapses and the refinement of neural circuits during development and in pathological conditions.

AUTHOR CONTRIBUTIONS

Natalia Moracho: Conceptualization; investigation; visualization; writing - original draft; writing-review & editing. Ana I. R. Learte: Conceptualization; investigation; validation; writing - original draft; writing-review & editing. Emma Muñoz-Sáez: Investigation; writing - original draft; writing-review & editing. Miguel A. Marchena: Investigation; validation. María A. Cid: Investigation; validation. Alicia G. Arroyo: Conceptualization;
funding acquisition; resources; writing - original draft; writing-review & editing. **Cristina Sánchez-Camacho**: Conceptualization; funding acquisition; investigation; project administration; resources; supervision; writing - original draft; writing-review & editing.

ORCID

Natalia Moracho DOI: https://orcid.org/0000-0001-8596-5714

Ana I. R. Learte DOI: https://orcid.org/0000-0003-3544-8115

Emma Muñoz-Sáez DOI: https://orcid.org/0000-0003-3654-0343

Alicia G. Arroyo DOI: https://orcid.org/0000-0002-1536-3846

Cristina Sánchez-Camacho DOI: https://orcid.org/0000-0001-7756-0426

REFERENCES

1. Bonnans C, Jou Ch, Werb Z. Remodelling the extracellular matrix in development and disease. *Nat Rev Mol Cell Biol*. 2014;15(12):786-801. https://doi.org/10.1038/nrm3904

2. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. *J Cell Biol*. 2012;196(4):395-406. https://doi.org/10.1083/jcb.201102147

3. Ra H-J, Parks WC. Control of matrix metalloproteinase catalytic activity. *Matrix Biol*. 2007;26(8):587-596. https://doi.org/10.1016/j.matbio.2007.07.001

4. Gross J, Lapiere C. Collagenolytic activity in amphibian tissues: a tissue culture assay. *Proc Natl Acad Sci U S A*. 1962;48:1014-1022. https://doi.org/10.1073/pnas.48.10.1014

5. Yaoita Y. Tail Resorption during metamorphosis in Xenopus tadpoles. *Front Endocrinol*. 2019;10:143. https://doi.org/10.3389/fendo.2019.00143

6. LaFever KS, Wang X, Page-McCaw P, Bhave G, Page-McCaw A. Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. *Sci Rep*. 2017;7:44560. https://doi.org/10.1038/srep44560

7. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. *Nat Rev Mol Cell Biol*. 2007;8(3):221-233. https://doi.org/10.1038/nrm2125

8. Wada K, Sato H, Kinoh H, Kajita M, Yamamoto H, Seiki M. Cloning of three *Caenorhabditis elegans* genes potentially encoding novel matrix metalloproteinases. *Gene*. 1998;211(1):57-62. https://doi.org/10.1016/s0378-1119(98)00076-6

9. Wyatt RA, Keow JY, Harris ND, Hache CA, Li DH, Crawford BD. The zebrafish embryo: a powerful model system for investigating matrix remodelling. *Zebrafish*. 2009;6(4):347-354. https://doi.org/10.1089/zeb.2009.0609

10. Cui N, Hu M, Khalil RA, Mol P, Transl B, Author S. Biochemical and biological attributes of matrix Metalloproteinases. *Prog Mol Biol Transl Sci*. 2017;147(617):1-73. https://doi.org/10.1016/bs.pmbts.2017.02.005

11. Itoh Y. Membrane-type matrix metalloproteinases: their functions and regulations. *Matrix Biol*. 2015;44-46:207-223. https://doi.org/10.1016/j.mabiol.2015.03.004

12. Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. *Crit Rev Biochem Mol Biol*. 2007;42(3):113-185. https://doi.org/10.1080/10409230701340019

13. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. *FEBS J*. 2021. https://doi.org/10.1111/febs.15701

14. Fanjul-Fernandez M, Folgueras AR, Cabrera S, et al. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. *Biochim Biophys Acta, Mol Cell Res*. 2010;1803(1):3-19. https://doi.org/10.1016/j.bbamcr.2009.07.004

15. Yip C, Foldart P, Noel A, Soumi NE, Noël A, Soumi NE. MT4-MMP: the GPI-anchored membrane-type matrix metalloprotease with multiple functions in diseases. *Int J Mol Sci*. 2019;20(2):1-13. https://doi.org/10.3390/ijms20020354

16. Sohail A, Sun Q, Zhao H, Bernardo MM, Cho J-A, Fridman R. MT4-(MMP17) and MT6-MMP (MMP25), a unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. *Cancer Metastasis Rev*. 2008;27(2):289-302. https://doi.org/10.1007/s10555-008-9129-8

17. Pei D, Kang T, Qi H. Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. *J Biol Chem*. 2000;275(43):33988-33997. https://doi.org/10.1074/jbc.M006493200

18. Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. *Crit Rev Biochem Mol Biol*. 2010;45(5):351-423. https://doi.org/10.3109/10409238.2010.501783

19. Loffek S, Schilling O, Franzke C-W. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. *Eur Respir J*. 2011;38(1):191-208. https://doi.org/10.1183/09031936.00146510

20. Wang X, Ma D, Keski-Oja J, Pei D. Co-recycling of MT1-MMP and MT3-MMP through the trans-Golgi network. Identification of DKV582 as a recycling signal. *J Biol Chem*. 2004;279(10):9331-9336. https://doi.org/10.1074/jbc.M312369200

21. Gifford V, Itoh Y. MT1-MMP-dependent cell migration: Pro-lytic and non-pro-lytic mechanisms. *Biochem Soc Trans*. 2019;47(3):811-826. https://doi.org/10.1042/BST20180363

22. Wiesner C, Faix J, Himmel M, Bentzien F, Linder S. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface expression in cancer. *Blood*. 2010;116(9):1559-1569. https://doi.org/10.1182/blood-2009-12-257089

23. Bravo-Cordero JJ, Marrero-Diaz R, Megías D, et al. MT1-MMP and MT3-MMP through the trans-Golgi network. Identification of MT1-MMP as a recycling signal. *J Biol Chem*. 2014;289(1):191-208. https://doi.org/10.1074/jbc.M113520200

24. Maeda H. Activation of matrix metalloproteinases by TGF-β. *Crit Rev Biochem Mol Biol*. 2015;57:51-62. https://doi.org/10.1080/10409238.2015.1038234

25. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Veldman T, Liang Y, Ribeiro JL, Zhang N, van der Ven B, van der Heijden K, van der Veur M. Activator of Matrix Metalloproteinase-1 (ADAM17): biological, cellular and pathological perspectives. *Biochim Biophys Acta, Mol Cell Res*. 2019;20(2):1-13. https://doi.org/10.3390/ijms20020354

26. Viappiani S, Nicolescu AC, Holt A, et al. Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. *Biochem Pharmacol*. 2009;77(5):826-834. https://doi.org/10.1016/j.bcp.2008.11.004

27. Okamoto T, Akaite S, Sawada T, Miyamoto Y, van der Vliet A, Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. *J Biol Chem*. 2001;276(31):29596-29602. https://doi.org/10.1074/jbc.M102417200

28. Sohail A, Marco M, Zhao H, et al. Characterization of the dimerization interface of membrane type 4 (MT4)-matrix metalloproteinase.
26. Remacle A, Murphy G, Roghi C. Membrane type 1-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci. 2003; 116(Pt 19):3905-3916. https://doi.org/10.1242/jcs.007110

27. Uekita T, Itoh Y, Yana I, Ohno H, Seiki M. Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol. 2001;155(7):1345-1356. https://doi.org/10.1083/jcb.200108112

28. Suárez H, López-Martín S, Toribio V, et al. Regulation of MT1-MMP activity through its association with ERMs. Cells. 2020;9(2):348. https://doi.org/10.3390/cells9020348

29. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and molecular mechanisms of MT1-MMP-dependent Cancer cell invasion. Annu Rev Cell Dev Biol. 2016;32:555-576. https://doi.org/10.1146/annurev-cellbio-111315-125227

30. Gálvez BG, Genis L, Matías-Roman S, et al. Membrane type 1 matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/cc12 and interleukin-8/CXCL8 in endothelial cells during angiogenesis. J Biol Chem. 2005;280(2):1292-1298. https://doi.org/10.1074/jbc.M408673200

31. Sharma P, Parveen S, Shah LV, et al. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol. 2020;219(1):e201812098. https://doi.org/10.1083/jcb.201812098

32. Pedersen NM, Wenzel EM, Wang L, et al. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J Cell Biol. 2020;219(8):e202003063. https://doi.org/10.1083/jcb.202003063

33. Steffen A, Le Dez G, Poincloux R, et al. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr Biol. 2008;18 (12):926-931. https://doi.org/10.1016/j.cub.2008.05.044

34. Williams KC, McNeilly RE, Coppolino MG. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell. 2014;25(13):2061-2070. https://doi.org/10.1091/mbc.E13-10-0582

35. Truong A, Yip C, Paye A, et al. Dynamics of internalization and recycling of the prometastatic membrane type 4 matrix metalloproteinase (MT4-MMP) in breast cancer cells. FEBS J. 2016;283(4):704-722. https://doi.org/10.1111/febs.13625

36. Toth M, Hernandez-Barrantes S, Osenkowski P, et al. Complex pattern of membrane type 1 matrix metalloproteinase shedding. Regulation by autocatalytic cells surface inactivation of active enzyme. J Biol Chem. 2002;277(29):26340-26350. https://doi.org/10.1074/jbc.M200655200

37. Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107(6):789-800. https://doi.org/10.1016/s0092-8674(01)00597-9

38. Barasch J, Yang J, Qiao J, et al. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest. 1999;103(9):1299-1307. https://doi.org/10.1172/JCI4586

39. Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem. 1999;274(13):8925-8932. https://doi.org/10.1074/jbc.274.13.8925

40. Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem. 1999;274(13):8925-8932. https://doi.org/10.1074/jbc.274.13.8925
53. Somerville RPT, Oblander SA, Apte SS. Matrix metalloproteinases: old dogs with new tricks. *Genome Biol.* 2003;4(6):216. https://doi.org/10.1186/gb-2003-4-6-216

54. Nyalendo C, Michaud M, Beaulieu E, et al. Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: role in endothelial and tumor cell migration. *J Biol Chem.* 2007;282(21):15690-15699. https://doi.org/10.1074/jbc.M608045200

55. Gonzalo P, Guadamillas MC, Hernández-Riquer MV, et al. MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. *Dev Cell.* 2010;18(1):77-89. https://doi.org/10.1016/j.devcel.2009.11.012

56. Yang J, Kasberg WC, Celó A, Liang Z, Quispe K, Stack MS. Post-translational modification of the membrane type 1 matrix metalloproteinase (MT1-MMP) cytoplasmic tail impacts ovarian cancer multicellular aggregate dynamics. *J Biol Chem.* 2017;292(32):13111-13121. https://doi.org/10.1074/jbc.M117.800904

57. Anilkumar N, Uekita T, Couchman JR, Nagase H, Seiki M, Itoh Y. Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration. *FASEB J.* 2005;19(10):1326-1328. https://doi.org/10.1096/fj.04-3651fje

58. Wu YI, Munshi HG, Sen R, et al. Glycosylation broadens the substrate profile of membrane type 1 matrix metalloproteinase. *J Biol Chem.* 2004;279(9):8278-8289. https://doi.org/10.1074/jbc.M311870200

59. Remacle AG, Chekanov AV, Golubkov VS, Savinov AY, Rozanov DV, Strongin AY. O-glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP). *J Biol Chem.* 2006;281(25):16897-16905. https://doi.org/10.1074/jbc.M600295200

60. Weaver SA, Wolters B, Ito N, et al. Basal localization of MT1-MMP is essential for epithelial cell morphogenesis in 3D collagen matrix. *J Cell Sci.* 2014;127(6):1203-1213. https://doi.org/10.1242/jcs.135236

61. Takino T, Watanabe Y, Matsu M, et al. Membrane-type 1 matrix metalloproteinase modulates focal adhesion stability and cell migration. *Exp Cell Res.* 2006;312(8):1381-1389. https://doi.org/10.1016/j.yexcr.2006.01.008

62. Takino T, Saeki H, Miyamori H, Kudo T, Sato H. Inhibition of membrane-type 1 matrix metalloproteinase at cell-matrix adhesions. *Cancer Res.* 2007;67(24):11621-11629. https://doi.org/10.1158/0008-5472.CAN-07-5251

63. Mori H, Tomari T, Koshikawa N, et al. CD44 directs extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. *Dev Biol.* 2008;313(1):196-209. https://doi.org/10.1016/j.ydbio.2007.10.017

64. Nakahara H, Howard L, Thompson EW, et al. Transmembrane/cytoplasmic-domain-mediated membrane type 1-matrix metalloproteinase docking to invadopodia is required for cell invasion. *Proc Natl Acad Sci U S A.* 1997;94(15):7959-7964. https://doi.org/10.1073/pnas.94.15.7959

65. Shi J, Son M-Y, Yamada S, et al. Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. *Dev Biol.* 2008;313(1):196-209. https://doi.org/10.1016/j.ydbio.2007.10.017

66. Oblander SA, Zhou Z, Gálvez BG, et al. Distinctive functions of membrane type 1 matrix-metalloproteinase (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. *Dev Biol.* 2005;277(1):255-269. https://doi.org/10.1016/j.ydbio.2004.09.033

67. Apte SS, Fukai N, Beier DR, Olsen BR. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. *J Biol Chem.* 1997;272(41):25511-25517. https://doi.org/10.1074/jbc.272.41.25511

68. Kheradmand F, Rishi K, Werb Z. Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. *J Cell Sci.* 2002;115(Pt 4):839-848.

69. Legalpicec B, Trugnan G, Murphy G, Leongt B, Ronco P. Expression of the type IV collagenase system during mouse kidney development and tubule segmentation. *J Am Soc Nephrol.* 2001;12(11):2358-2369.

70. Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. *FEBS Lett.* 2004;563(1-3):129-134. https://doi.org/10.1016/S0014-5793(04)00281-9

71. Muñoz-Sáez E, Moracho N, Learte A, Arroyo A, Sánchez-Camacho C. Dynamic expression of membrane type 1-matrix metalloproteinase (M1-mmp/Mmp14) in the mouse embryo. *Cells.* 2020; (under review).

72. Bovetti S, Bovolin P, Perroteau I, Puche AC. Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. *Eur J Neurosci.* 2007;25(7):2021-2033. https://doi.org/10.1111/j.1460-9568.2007.05441.x

73. Ould-Yahoui A, Chai O, Baranger K, et al. Role of matrix metalloproteinases in migration and neurotrophic properties of nasal olfactory stem and ensheathing cells. *Cell Transplant.* 2013;22(6):993-1010. https://doi.org/10.3727/096368912X657468

74. Jiang Z, Zhou J, Qin X, et al. MT1-MMP deficiency leads to defective ependymal cell maturation, impaired ciliogenesis, and hydrocephalus. *JCI Insight.* 2020;5(9):e132782. https://doi.org/10.1172/jci.insight.132782

75. Patel A, Dash PR. Formation of atypical podosomes in extravillous trophoblasts regulates extracellular matrix degradation. *Eur J Cell Biol.* 2012;91(3):171-179. https://doi.org/10.1016/j.ejcb.2011.11.006

76. Majali-Martinez A, Hiden U, Ghaffari-Tabrizi-Wizsy N, Lang U, Desoye G, Dieber-Rotheneder M. Placental membrane-type metalloproteinases (MT-MMPs): key players in pregnancy. *Cell Adhes Migr.* 2016;10(1-2):136-146. https://doi.org/10.1080/19336918.2015.1110671

77. Majali-Martinez A, Velicky P, Pollheimer J, et al. Endothelin-1 down-regulates matrix metalloproteinase 14 and 15 expression in human first trimester trophoblasts via endothelin receptor type B. *Hum Reprod.* 2017;32(1):46-54. https://doi.org/10.1093/humrep/dew295

78. Yang M, Hayashi K, Hayashi M, Fujii JT, Kurikina M. Cloning and developmental expression of a membrane-type matrix metalloproteinase from chicken. *J Biol Chem.* 1996;271(41):25548-25554. https://doi.org/10.1074/jbc.271.41.25548

79. Hammoud L, Walsh LA, Damjanovski S. Cloning and developmental characterization of *Xenopus laevis* membrane type-3 matrix metalloproteinase (Mt3-MMP). *Biochem Cell Biol.* 2006;84(2):167-177. https://doi.org/10.1139/o05-175
80. Huh M-I, Lee Y-M, Seo S-K, et al. Roles of MMP/TIMP in regulating matrix swelling and cell migration during chick corneal development. *J Cell Biochem.* 2007;101(5):1222-1237. https://doi.org/10.1002/jcb.21246

81. Kinoh H, Sato H, Tsunezuka Y, et al. MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. *J Cell Sci.* 1996;109(Pt 5):953-959.

82. Sato T, del Carmen OM, Hou P, et al. Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. *J Cell Sci.* 1997;110(Pt 5):589-596.

83. Tang Y, Rowe RG, Botvinick EL, et al. MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. *Dev Cell.* 2013;25(4):402-416. https://doi.org/10.1016/j.devcel.2013.04.011

84. Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. *Cell.* 1999;99(1):81-92. https://doi.org/10.1016/s0092-8674(00)80064-1

85. Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase 1. *Proc Natl Acad Sci U S A.* 2000;97(8):4052-4057. https://doi.org/10.1073/pnas.060037197

86. Blanco MJ, Rodriguez-Martín I, Learte AIR, et al. Developmental expression of membrane type 4-matrix metalloproteinase (MMP4-MMP17) in the mouse embryo. *PLoS One.* 2017;12(9):e0184767. https://doi.org/10.1371/journal.pone.0184767

87. Raza QS, Vanderploeg JL, Jacobs JR. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development. *PLoS One.* 2017;12(2):e0171905. https://doi.org/10.1371/journal.pone.0171905

88. Gálvez BG, Matías-Román S, Yáñez-Mó M, Sánchez-Madrid F, Arroyo AG. ECM regulates MT1-MMP localization with β1 or αvβ3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. *J Cell Biol.* 2002;159(3):509-521. https://doi.org/10.1083/jcb.200205026

89. Endo K, Takino T, Miyamori H, et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. *J Biol Chem.* 2003;278(42):40764-40770. https://doi.org/10.1074/jbc.M306736200

90. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY. Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. *J Biol Chem.* 2002;277(12):9749-9756. https://doi.org/10.1074/jbc.M1026920

91. Essick E, Sithu S, Dean W, D’Souza S. Pervanadate-induced shedding of the intercellular adhesion molecule (ICAM)-1 ectodomain is mediated by type 1 membrane metalloproteinase (MT1-MMP), *Mol Cell Biochem.* 2008;314(1-2):151-159. https://doi.org/10.1007/s11010-008-9776-7

92. Sithu SD, English WR, Olson P, et al. Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. *J Biol Chem.* 2007;282(34):25010-25019. https://doi.org/10.1074/jbc.M611273200

93. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloproteinase MT1-MMP in epithelial cell migration over laminin-5. *J Cell Biol.* 2000;148(3):615-624. https://doi.org/10.1083/jcb.148.3.615

94. Koshikawa N, Minegishi T, Sharabi A, Quaranta V, Seiki M. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. *J Biol Chem.* 2005;280(1):88-93. https://doi.org/10.1074/jbc.M411824200

95. Yang M-X, Qu X, Kong B-H, et al. Membrane type 1-matrix metalloproteinase is involved in the migration of human monocyte-derived dendritic cells. *Immunol Cell Biol.* 2006;84(6):557-562. https://doi.org/10.1111/j.1440-1711.2006.01465.x

96. Matías-Román S, Gálvez BG, Genís L, et al. Membrane type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. *Blood.* 2005;105(10):3956-3964. https://doi.org/10.1182/blood-2004-06-2382

97. Kajita M, Itoh Y, Chiba T, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. *J Cell Biol.* 2001;153(5):893-904. https://doi.org/10.1083/jcb.153.5.893

98. Suenaga N, Mori H, Itoh Y, Seiki M. CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. *Oncogene.* 2005;24(5):859-868. https://doi.org/10.1038/sj.onc.1208258

99. Clemente C, Rius C, Alonso-Herranz L, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. *Nat Commun.* 2018;9(1):910. https://doi.org/10.1038/s41467-018-03351-4

100. Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM. Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. *J Biol Chem.* 2012;287(16):13382-13395. https://doi.org/10.1074/jbc.M111.314179

101. Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. *Biochimie.* 2005;87(3-4):329-342. https://doi.org/10.1016/j.biochi.2004.07.012

102. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix Metalloproteinases in angiogenesis and Cancer. *Front Oncol.* 2019;9:1370. https://doi.org/10.3389/fonc.2019.01370

103. Porlan E, Martí-Prado B, Morante-Redolat JM, et al. MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin. *Nat Cell Biol.* 2014;16(7):629-638. https://doi.org/10.1038/nclb2993

104. Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, van der Kooy D. E-cadherin regulates neural stem cell self-renewal. *J Neurosci.* 2009;29(12):3885-3896. https://doi.org/10.1523/JNEUROSCI.0037-09.2009

105. Shen Q, Wang Y, Kokovay E, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. *Cell Stem Cell.* 2008;3(3):289-300. https://doi.org/10.1016/j.stem.2008.07.026

106. Gómez-Escudero J, Moreno V, Martín-Alonso M, et al. E-cadherin cleavage by MT2-MMP regulates apical junctional signaling and epithelial homeostasis in the intestine. *J Cell
Cao L, Chen C, Zhu H, et al. MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion. *Oncotarget*. 2017;10(1):7059-7076. https://doi.org/10.18632/oncotarget.16515.

Nishida C, Kubo T, Tashiro Y, et al. MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. *Blood*. 2012;119(23):5405-5416. https://doi.org/10.1182/blood-2011-11-390849.

Martin-Alonso M, Garcia-Redondo AB, Guo D, et al. Deficiency of MMP17/MT4-MMP proteolytic activity predisposes to aortic aneurysm in mice. *Circ. Res*. 2015;117(2):e13-e26. https://doi.org/10.1161/CIRCRESAHA.117.305108.

Wang X, Page-McCaw A. A matrix metalloproteinase mediates long-distance attenuation of stem cell proliferation. *J Cell Biol*. 2014;206(7):923-936. https://doi.org/10.1083/jcb.201403084.

Diaz-de-la-Loza MDC, Ray RP, Ganguly PS, et al. Apical and basal matrix remodeling control epithelial morphogenesis. *Dev Cell*. 2018;46(1):23, e5-39. https://doi.org/10.1016/j.devcel.2018.06.006.

Diaz-de-la-Loza M-D-C, Loker R, Mann RS, Thompson BJ. Control of tissue morphogenesis by the HOX gene Ultrabithorax. *Development*. 2020;147(5):de184564. https://doi.org/10.1016/j.devel.2018.04.020.

Li B, Lou G, Zhou J. MT1-MMP promotes the proliferation and invasion of gastric carcinoma cells via regulating vimentin and E-cadherin. *Mol Med Rep*. 2019;19(4):2519-2526. https://doi.org/10.3892/mmr.2019.9918.

Li M, Ren C-X, Zhang J-M, et al. The effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling. *Cell Physiol Biochem*. 2018;50(4):1398-1413. https://doi.org/10.1159/000494602.

Shen H, Wang L, Xiong J, et al. Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. *Cell Cycle*. 2019;18(10):1110-1121. https://doi.org/10.1080/15384101.2019.1609829.

Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. *Cell*. 2003;114(1):33-45. https://doi.org/10.1016/S0092-8674(03)00513-0.

Taniwaki K, Fukamachi H, Komori K, et al. Stromal-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. *Cancer Res*. 2007;67(9):4311-4319. https://doi.org/10.1158/0008-5472.CAN-06-4761.

Li Y, Wang Y, Yu L, et al. miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. *Cancer Lett*. 2013;339(2):260-269. https://doi.org/10.1016/j.canlet.2013.06.018.

Wang H, Li X-T, Wu C, et al. miR-132 can inhibit glioma invasion and migration by target MMP16 in vitro. *Onco Targets Ther*. 2015;8:3211-3218. https://doi.org/10.2147/OTT.S79282.

Cao L, Chen C, Zhu H, et al. MMP16 is a marker of poor prognosis in gastric cancer promoting proliferation and invasion. *Oncotarget*. 2016;7(32):51865-51874. https://doi.org/10.18632/oncotarget.10177.

Llano E, Pendás AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors. *Cancer Res*. 1999;59(11):2570-2576.

Paye A, Truong A, Yip C, et al. EGFR activation and signaling in cancer cells are enhanced by the membrane-bound metalloprotease MT4-MMP. *Cancer Res*. 2014;74(3):6758-6770. https://doi.org/10.1158/0008-5472.CAN-13-2994.

Dohn MR, Mundell NA, Sawyer LM, Dunlap JA, Jessen JR. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation. *Dev Biol*. 2013;383(1):39-51. https://doi.org/10.1016/j.ydbio.2013.08.027.

Topczewski J, Sepich DS, Myers DC, et al. The zebrafish glypicanc knypek controls cell polarity during gastrulation movements of convergent extension. *Dev Cell*. 2001;1(2):251-264. https://doi.org/10.1016/s1534-5807(01)00005-3.

Ohkawara B, Yamamoto TS, Tada M, Ueno N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in *Xenopus laevis*. *Development*. 2003;130(10):2129-2138. https://doi.org/10.1242/dev.004345.

Coyle RC, Latimer A, Jessen JR. Membrane-type 1 matrix metalloproteinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling. *Exp Cell Res*. 2008;314(10):2150-2162. https://doi.org/10.1016/j.yexcr.2008.03.010.

Williams BB, Cantrell VA, Mundell NA, Bennett AC, Quick RE, Jessen JR. VANGL2 regulates membrane trafficking of MMP14 to control cell polarity and migration. *J Cell Sci*. 2012;125(9):2141-2147. https://doi.org/10.1242/jcs.097964.

Jessen TN, Jessen JR. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. *Exp Cell Res*. 2017;361(2):265-276. https://doi.org/10.1016/j.yexcr.2017.10.026.

Jessen JR, Topczewski J, Bingham S, et al. Zebrafish trilobite identifies new roles for strabismus in gastrulation and neuronal movements. *Nat Cell Biol*. 2002;4(8):610-615. https://doi.org/10.1038/ncb828.

Davidson LA, Marsden M, Keller R, Desimone DW. Integrin α5β3 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. *Curr Biol*. 2006;16(9):833-844. https://doi.org/10.1016/j.cub.2006.03.038.

Cantrell VA, Jessen JR. The planar cell polarity protein van Gogh-like 2 regulates tumor cell migration and matrix metalloproteinase-dependent invasion. *Cancer Lett*. 2010;287(1):54-61. https://doi.org/10.1016/j.canlet.2009.05.041.

Golubkov VS, Chekanov AV, Cieplak P, et al. The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis. *J Biol Chem*. 2010;285(46):35740-35749. https://doi.org/10.1074/jbc.M110.151519.

Sogard PP, Ito N, Sato N, Fujita Y, Matter K, Itoh Y. Epithelial polarization in 3D matrix requires DDR1 signaling to regulate actomyosin contractility. *Life Sci Alliance*. 2019;2(1):e201800276. https://doi.org/10.26508/lsa.201800276.

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. *Cell*. 2009;139(5):871-890. https://doi.org/10.1016/j.cell.2009.11.007.

Garmon T, Wittling M, Nie S. MMP14 regulates cranial neural crest epithelial-to-Mesenchymal transition and migration. *Dev Cell*. 2011;26(3):342-355. https://doi.org/10.1016/j.devcel.2011.03.011.
135. Andrieu C, Montigny A, Bibonne A, Despin-Guitard E, Alfandari D, Théveneau E. MMP14 is required for delamination of chick neural crest cells independently of its catalytic activity. *Development*. 2020;147(7):dev183954. https://doi.org/10.1242/dev.183954

136. Roth L, Kaley-Altman R, Monsonego-Ornan E, Sela-Donenfeld D. A new role of the membrane-type matrix metalloproteinase 16 (MMP16/MIT3-MMP) in neural crest cell migration. *Int J Dev Biol*. 2017;61(3-4-5):245-256. https://doi.org/10.1387/ijdb.160286ds

137. Leigh NR, Schupp M-O, Li K, et al. Mmp17b is essential for proper neural crest cell migration in vivo. *PLoS One*. 2013;8(10):e76484. https://doi.org/10.1371/journal.pone.0076484

138. Nakaya Y, Sheng G. EMT in developmental morphogenesis. *Cancer Lett*. 2013;341(1):9-15. https://doi.org/10.1016/j.canlet.2013.02.037

139. Alexander SM, Jackson KJ, Bushnell KM, McGuire PG. Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart. *Dev Dyn*. 1997;209(3):261-268. https://doi.org/10.1002/sic.1997007

140. Song W, Jackson K, McGuire PG. Degradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. *Dev Biol*. 2000;227(2):606-617. https://doi.org/10.1006/dev.2000.9919

141. Tao G, Levay AK, Gridley T, Lincoln J. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. *Dev Biol*. 2011;359(2):209-221. https://doi.org/10.1016/j.ydbio.2011.08.022

142. Ota I, Li X-Y, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. *Proc Natl Acad Sci U S A*. 2009;106(48):20318-20323. https://doi.org/10.1073/pnas.0910962106

143. Rowe RG, Li X-Y, Hu Y, et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. *J Cell Biol*. 2009;184(3):399-408. https://doi.org/10.1083/jcb.20081113

144. Huang C-H, Yang W-H, Chang S-Y, et al. Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. *Neoplasia*. 2009;11(12):1371-1382. https://doi.org/10.1593/neo.911326

145. Liu Y, Sun X, Feng J, et al. MT2-MMP induces proteolysis and leads to EMT in carcinomas. *Oncotarget*. 2016;7(30):48193-48205. https://doi.org/10.18632/oncotarget.10194

146. Hannezo E, Simons BD. Multiscale dynamics of branching morphogenesis. *Curr Opin Cell Biol*. 2019;60:99-105. https://doi.org/10.1016/j.jceb.2019.04.008

147. Feinberg TY, Rowe RG, Saunders TL, Weiss SJ. Functional roles of MMP14 and MMP15 in early postnatal mammary gland development. *Development*. 2016;143(21):3956-3968. https://doi.org/10.1242/dev.136259

148. Camargo KC, Gomes JR, Loddi MM, de Sordi R, Costa-Ayub CLS, Soares MA. MT1-MMP and its potential role in the vertebrate intestinal morphogenesis. *Acta Histochem*. 2016;118(7):729-735. https://doi.org/10.1016/j.acthis.2016.07.009

149. Tanney DC, Feng L, Pollock AS, Lovett DH. Regulated expression of matrix metalloproteinases and TIMP in nephrogenesis. *Dev Dyn*. 1998;213(1):121-129. https://doi.org/10.1002/sici.1097-0177(199809)213:1<121::aid-aja12>3.0.co;2-5

150. Riggins KS, Mernaugh G, Su Y, et al. MT1-MMP-mediated basement membrane remodeling modulates renal development. *Exp Cell Res*. 2010;316(17):2993-3005. https://doi.org/10.1016/j.yexcr.2010.08.003

151. Kanwar YS, Ota K, Yang Q, et al. Role of membrane-type matrix metalloproteinase 1 (MT1-MMP), MMP-2, and its inhibitor in nephrogenesis. *Am J Physiol Renal Physiol*. 2000;279(5):F891-F890. https://doi.org/10.1152/ajprenal.1999.277.6.F934

152. Pohl M, Sakurai H, Bush KT, Ngam SK. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. *Am J Physiol Renal Physiol*. 2000;279(5):F891-F890. https://doi.org/10.1152/ajprenal.2000.279.5.F891

153. Meyer TN, Schwesinger C, Bush KT, et al. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. *Dev Biol*. 2004;275(1):44-67. https://doi.org/10.1016/j.ydbio.2004.07.022

154. Patterson RA, Cavanaugh AM, Cantiemir V, Brauer PR, Reedy MV. MT2-MMP expression during early avian morphogenesis. *Anat Rec Adv Integr Anat Evol Biol*. 2013;296(1):64-70. https://doi.org/10.1002/ar.22618

155. Srirchai MB, Colletta H, Gewin L, et al. Membrane-type 4 matrix metalloproteinase (MT4-MMP) modulates water homeostasis in mice. *PLoS One*. 2011;6(2):e17099. https://doi.org/10.1371/journal.pone.0017099

156. Szabova L, Yamada SS, Birkedal-Hansen H, Holmbeck K. Expression pattern of four membrane-type matrix metalloproteinases in the normal and diseased mouse mammary gland. *J Cell Physiol*. 2005;205(1):123-132. https://doi.org/10.1002/jcp.20385

157. Alcaraz J, Mori H, Ghajar CM, Brownfield D, Galgoczy R, Bissell MJ. Collective epithelial cell invasion overcomes mechanical barriers of collagenous extracellular matrix by a narrow tube-like geometry and MMP14-dependent local softening. *Integr Biol*. 2011;3(12):1153-1166. https://doi.org/10.1039/c1ib00073j

158. Mori H, Lo AT, Inman JL, et al. Transmembrane/cytosplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin 1. *Development*. 2013;140(2):343-352. https://doi.org/10.1242/dev.084256

159. Peinberg TY, Zheng H, Liu R, Wicha MS, Yu SM, Weiss SJ. Divergent matrix-remodeling strategies distinguish developmental from neoplastic mammary epithelial cell invasion programs. *Dev Cell*. 2018;47(2):145-e6-160. https://doi.org/10.1016/j.devcel.2018.08.025

160. Mori H, Gjorevski N, Inman JL, Bissell MJ, Nelson CM. Self-organization of engineered epithelial tubules by differential cellular motility. *Proc Natl Acad Sci U S A*. 2009;106(35):14890-14895. https://doi.org/10.1073/pnas.0901269106

161. Taddei I, Deugnier M-A, Faraldo MM, et al. Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. *Nat Cell Biol*. 2008;10(6):716-722. https://doi.org/10.1038/ncb1734
Page 330 to 456 continues...
191. Esteban S, Clemente C, Koziol A, et al. Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via TSP1/nitric oxide axis. EMBO Mol Med. 2020;12(2):e10862. https://doi.org/10.15252/emmm.201910862

192. Koziol A, Martin-Alonso M, Clemente C, Gonzalo P, Arroyo AG. Site-specific cellular functions of MT1-MMP. Eur J Cell Biol. 2012;91(11-12):889-895. https://doi.org/10.1016/j.ejcb.2012.07.003

193. Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem. 2007;282(9):6899-6905. https://doi.org/10.1074/jbc.M609570200

194. Knapinska AM, Fields GB. The expanding role of MT1-MMP. Int J Mol Sci. 2015;10(1):463-473. https://doi.org/10.3390/ijms10010463

195. Robinet A, Fahem A, Cauchard J-H, et al. Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci. 2005;118(Pt 2):343-356. https://doi.org/10.1242/jcs.01613

196. Plaisier M, Kapiteijn K, Koolwijk P, et al. Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: role of MT3-MMP. J Clin Endocrinol Metab. 2004;89(11):5828-5836. https://doi.org/10.1210/jc.2004-0860

197. Plaisier M, Koolwijk P, Hanemaaijer R, et al. Membrane-type matrix metalloproteinases and vascularization in human endometrium during the menstrual cycle. Mol Hum Reprod. 2006;12(1):11-18. https://doi.org/10.1093/molehr/gah257

198. Goffin F, Munaut C, Frankenne F, et al. Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium. Biol Reprod. 2003;69(3):976-984. https://doi.org/10.1095/biolreprod.103.015933

199. Chen L, Dongmei DI, Luo G, et al. Immunochemical staining of MT2-MMP correlates positively to angiogenesis of human esophageal cancer. Anticancer Res. 2010;30(10):4363-4368.

200. Chen L, Zhou Q, Xu B, et al. MT2-MMP expression associates with tumor progression and angiogenesis in human lung cancer. Int J Clin Exp Pathol. 2014;7(6):3469-3477.

201. Fu Y, Nagy JA, Brown LF, et al. Proteolytic cleavage of versican and involvement of ADAMTS-1 in VEGF-A/VPF-induced pathological angiogenesis. J Histochem Cytochem. 2011;59(5):463-473. https://doi.org/10.1369/0022155411401748

202. Ratel D, Mihoubi S, Beaulieu E, et al. VEGF increases the fibrinolytic activity of endothelial cells within fibrin matrices: involvement of VEGFR-2, tissue type plasminogen activator and matrix metalloproteinases. Thromb Res. 2007;121(2):203-212. https://doi.org/10.1016/j.thromres.2007.03.024

203. Bakhashab S, Ahmed FFW, Schulten H-JJ, et al. Proangiogenic effect of metformin in endothelial cells is via upregulation of VEGFR1/2 and their signaling under hyperglycemia-hypoxia. Int J Mol Sci. 2018;19(1):1-18. https://doi.org/10.3390/ijms19010293

204. Greaves NS, Lqbal SA, Morris J, et al. Acute cutaneous wounds treated with human decellularised dermis show enhanced angiogenesis during healing. PLoS One. 2015;10(1):e0113209. https://doi.org/10.1371/journal.pone.0113209

205. Hehti K, Rose NF, Valavaara S, Weiss SJ, Keski-Oja J. MT1-MMP promotes vascular smooth muscle dedifferentiation through LRPI processing. J Cell Sci. 2009;122(Pt 1):126-135. https://doi.org/10.1242/jcs.055279

206. Nandadasa S, Nelson CM, Apte SS. ADAMTS9-mediated extracellular matrix dynamics regulates umbilical cord vascular smooth muscle differentiation and rotation. Cell Rep. 2015; 11(10):1519-1528. https://doi.org/10.1016/j.celrep.2015.05.005

207. Filipiov S, Koenig GC, Chun T-H, et al. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med. 2005;202(5):663-671. https://doi.org/10.1084/jem.20050607

208. Rikimaru A, Komori K, Sakamoto T, et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cells. 2007;12(9):1091-1100. https://doi.org/10.1111/j.1365-2443.2007.01110.x

209. Chabottaux V, Ricaud S, Host L, et al. Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med. 2009;13(9B):4002-4013. https://doi.org/10.1111/j.1582-4934.2009.00764.x

210. Host L, Paye A, Detry B, et al. The proteolytic activity of MT4-MMP is required for its pro-angiogenic and pro-metastatic promoting effects. Int J Cancer. 2012;131(7):1537-1548. https://doi.org/10.1002/ijc.27436

211. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460-476. https://doi.org/10.1016/j.cell.2010.01.045

212. Wong HLX, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824. https://doi.org/10.1038/ncomms10824

213. Vahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 2017;31(16):1615-1634. https://doi.org/10.1101/gad.303776.117

214. Du H-T, Liu P. Matrix metalloproteinase 14 participates in corneal lymphangiogenesis through the VEGF-C/VEGFR-3 signaling pathway. Exp Ther Med. 2016;12(4):2120-2128. https://doi.org/10.3892/etm.2016.3601

215. Ingvarsen S, Porse A, Erpícum C, et al. Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP: impact on lymphangiogenesis. J Biol Chem. 2013; 288(15):10195-10204. https://doi.org/10.1074/jbc.M112.447169

216. Tatti O, Gucciardo E, Pekkonen P, et al. MMP16 mediates a proteolytic switch to promote cell-cell adhesion, collagen alignment, and lymphatic invasion in melanoma. Cancer Res. 2015;75(10): 2083-2094. https://doi.org/10.1158/0008-5472.CAN-14-1923

217. Chabottaux V, Sounni NE, Pennington CJ, et al. Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Res. 2006;66(10):5165-5172. https://doi.org/10.1158/0008-5472.CAN-05-3012

218. Santiago-Medina M, Gregus KA, Nichol RH, O’Toole SM, Gomez TM. Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development. 2015;142(3):486-496. https://doi.org/10.1242/dev.108266

219. Muir D. Metalloproteinase-dependent neurite outgrowth within a synthetic extracellular matrix is induced by nerve
growth factor. Exp Cell Res. 1994;210(2):243-252. https://doi.org/10.1006/excr.1994.1036

220. Webber CA, Hocking JC, Yong VW, Stange CL, McFarlane S. Metalloproteases and guidance of retinal axons in the developing visual system. J Neurosci. 2002;22(18):8091-8100. https://doi.org/10.1523/JNEUROSCI.22-18-08091.2002

221. Webber CA, Hocking JC, Yong VW, Stange CL, McFarlane S. Matrix metalloproteases are required for retinal ganglion cell axon guidance: where the good guys go bad. Semin Cell Dev Biol. 2008;19(1):42-51. https://doi.org/10.1016/j.semcdb.2007.06.003

222. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci. 1998;18(14):5203-5211. https://doi.org/10.1523/JNEUROSCI.18-14-05203.1998

223. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci. 1998;18(14):5203-5211. https://doi.org/10.1523/JNEUROSCI.18-14-05203.1998

224. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci. 1998;18(14):5203-5211. https://doi.org/10.1523/JNEUROSCI.18-14-05203.1998

225. Ferguson TA, Muir D. MMP-2 and MMP-9 increase the neurite-promoting potential of schwann cell basal laminae and are upregulated in degenerated nerve. Mol Cell Neurosci. 2001;17(6):945-956. https://doi.org/10.1006/mcne.2001.0986

226. Duchossoy Y, Horvat JC, Stettler O. MMP-related gelatinase and are upregulated in degenerated nerve. Mol Cell Neurosci. 2001;17(6):945-956. https://doi.org/10.1006/mcne.2001.0986

227. Ahmed Z, Dent RG, Leadbeater WE, Smith C, Berry M, Logan A. Matrix metalloproteases: degradation of the inhibitory environment of the transacted optic nerve and the scar by regenerating axons. Mol Cell Neurosci. 2005;28(1):64-78. https://doi.org/10.1016/j.mcn.2004.08.013

228. McFarlane S. Metalloproteases: carving out a role in axon guidance. Neuron. 2003;37(4):559-562. https://doi.org/10.1016/s0896-6273(03)00089-8

229. Hehr CL, Hocking JC, McFarlane S. Matrix metalloproteinases are required for retinal ganglion cell axon guidance at select decision points. Development. 2005;132(15):3371-3379. https://doi.org/10.1242/dev.01908

230. Page-Mccaw A. Remodeling the model organism: matrix metalloproteinase functions in invertebrates. Semin Cell Dev Biol. 2008;19(1):14-23. https://doi.org/10.1016/j.semcdb.2007.06.004

231. Kuo CT, Jan LY, Jan YN. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ec dysone signaling. Proc Natl Acad Sci U S A. 2005;102(42):15230-15235. https://doi.org/10.1073/pnas.0507393102

232. Miller CM, Page-Mccaw A, Broihier HT. Matrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo. Development. 2008;135(1):95-109. https://doi.org/10.1242/dev.011072

233. Crawford BD, Po MD, Saranayan PV, Forsberg D, Schulz R, Pilgrim DB. Mmp25 facilitates elongation of sensory neurons during zebrafish development. Genesis. 2014;52(10):833-848. https://doi.org/10.1002/dvg.22803

234. Agrawal SM, Lau L, Yong VW. MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol. 2008;19(1):42-51. https://doi.org/10.1016/j.semcdb.2007.06.003

235. Chan ZK-C, Kwan H-LR, Wong YS, et al. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. elife. 2020;9:e54379. https://doi.org/10.7554/elife.54379

236. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6(12):931-944. https://doi.org/10.1038/nrn1807

237. Fujioka H, Dairyo Y, Yasunaga K-I, Emoto K. Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int. 2012;2012:789083-789088. https://doi.org/10.1155/2012/789083

238. Gaublomme D, Buyens T, De Groef L, et al. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One. 2013;8(1):e52915. https://doi.org/10.1371/journal.pone.0052915

239. Loers G, Makhina T, Bork U, Dörner A, Schachner M, Kleene R. The interaction between cell adhesion molecule L1, matrix metalloproteinase 14, and adenosine nucleotide translocator at the plasma membrane regulates L1-mediated neurite outgrowth of murine cerebellar neurons. J Neurosci. 2012;32(11):3917-3930. https://doi.org/10.1523/JNEUROSCI.6165-11.2012

240. Janssens E, Gaublomme D, De Groef L, et al. Matrix metalloproteinase 14 in the zebrafish: an eye on retinal and retinotectal development. PLoS One. 2013;8(1):e52915. https://doi.org/10.1371/journal.pone.0052915

241. Nichols EL, Smith CJ. Synaptic-like vesicles facilitate pioneer axon invasion. Curr Biol. 2019;29(16):2652, e4-2664. https://doi.org/10.1016/j.cub.2019.06.078

242. Byrne LC, Zhou Z, Tryggyason K, Hökfelt T, Fettisov SO. Altered NPY and AgRP in membrane type-1 matrix metalloproteinase-deficient mice. Neuroreport. 2004;15(3):569-574. https://doi.org/10.1097/00001210-200403100-00037

243. Sekine-Aizawa Y, Hama E, Watanabe K, et al. Matrix metalloproteinase (MMP) system in brain: identification and characterization of brain-specific MMP highly expressed in cerebellum. Eur J Neurosci. 2001;13(3):935-948. https://doi.org/10.1046/j.0953-816x.2001.01462.x

244. Monea S, Jordan BA, Srivastava S, DeSouza S, Ziff EB. Membrane localization of membrane type 5 matrix metalloproteinase by AMPA receptor binding protein and cleavage of cadherins. J Neurosci. 2006;26(8):2300-2312. https://doi.org/10.1523/JNEUROSCI.3521-05.2006

245. Small CD, Crawford BD. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective. Neural Regen Res. 2016;11(3):357-362. https://doi.org/10.4103/1673-5374.179030
250. Schimmelpfeng K, Gögel S, Klämbt C. The function of leaky kuzbanian during growth cone and cell migration. *J Neurosci.* 2011;31(14):5335-5347. https://doi.org/10.1523/JNEUROSCI.4811-10.2011

251. Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a membrane metalloproteinase. *Cell* 2001;106(1–2):25-36. https://doi.org/10.1016/s0925-4773(01)00026-6

252. Schlimmelpfeng K, Gögel S, Klämbt C. The function of leaky kuzbanian during growth cone and cell migration. *Mech Dev.* 2001;106(1–2):25-36. https://doi.org/10.1016/s0925-4773(01)00026-6

253. Saito T, Kasamatsu A, Ogawara K, et al. Semaphorin7A promotes tumoral growth and metastasis in human oral cancer by regulation of G1 cell cycle and matrix metalloproteinases: possible contribution to tumoral angiogenesis. *PLoS One.* 2015;10(9):1-20. https://doi.org/10.1371/journal.pone.0137923

254. Kaczmarek L, Lapinska-Dzwonek J, Szymczak S. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. *J Neurosci.* 2006;26(11):4481-4494. https://doi.org/10.1096/jf.12-205906

255. Ogier C, Bernard A, Chollet A-M, et al. Matrix metalloproteinase-9 (MMP-9) regulates astrocyte motility in connection with the Actin cytoskeleton and integrins. *Glia.* 2006;54(4):272-284. https://doi.org/10.1002/glia.20349

256. Kryczka J, Stasiak M, Dzik M, Dzik A, Cierniewski CS. Matrix metalloproteinase-2 cleavage of the β1 integrin ectodomain facilitates colon cancer cell motility. *J Cell Sci.* 2012;287(43):36556-36566. https://doi.org/10.1074/jbc.M112.384909

257. McFarlane S, Cornel E, Amaya E, Holt CE. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. *Neuron.* 1996;17(2):245-254. https://doi.org/10.1016/s0896-6273(00)80156-7

258. McFarlane S, McNeill L, Holt CE. FGF signaling and target recognition in the developing Xenopus visual system. *Neuron.* 1995;15(5):1017-1028. https://doi.org/10.1016/0896-6273(95)90091-8

259. Depetris-Chauvin A, Fernández-Gamba A, Gorostiza EA, Herrero A, Castaño EM, Ceriani MF. MMP1 processing of the PDF neuropeptide regulates circadian structural plasticity of pacemaker neurons. *PLoS Genet.* 2014;10(10):e1004700. https://doi.org/10.1371/journal.pgen.1004700

260. Yasunaga K, Kanamori T, Morikawa R, Suzuki E, Emoto K. Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. *Dev Cell.* 2010;18(4):621-632. https://doi.org/10.1016/j.devcel.2010.02.010

261. Shilts J, Broadie K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. *J Cell Sci.* 2017;130(14):2344-2358. https://doi.org/10.1242/jcs.208080

262. Dear ML, Shilts J, Broadie K. Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. *Sci Signal.* 2017;10(504):eaan3181. https://doi.org/10.1126/scisignal.aan3181

263. Ataman B, Ashley J, Gorczyca M, et al. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. *Neuron.* 2008;57(5):705-718. https://doi.org/10.1016/j.neuron.2008.01.026

264. Sears JC, Broadie K. Fragile X mental retardation protein regulates activity-dependent membrane trafficking and trans-synaptic signaling mediating synaptic remodeling. *Front Mol Neurosci.* 2017;10:440. https://doi.org/10.3389/fnmol.2017.00440

265. Ohtake Y, Tojo H, Seiki M. Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. *J Cell Sci.* 2006;119(Pt 18):3822-3832. https://doi.org/10.1242/jcs.03158

266. Meighan SE, Meighan PC, Choudhury P, et al. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. *J Neurochem.* 2006;96(5):1227-1241. https://doi.org/10.1111/j.1471-4159.2005.03565.x

267. Wang X, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW. Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. *Proc Natl Acad Sci U S A.* 2008;105(49):19520-19525. https://doi.org/10.1073/pnas.0807248105

268. Wilczynski GM, Konopacki FA, Wilczek E, et al. Important role of matrix metalloproteinase 9 in epileptogenesis. *J Cell Biol.* 2008;180(5):1021-1035. https://doi.org/10.1083/jcb.200708213

269. Gonthier B, Koncina E, Satkauskas S, et al. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. *PLoS One.* 2009;4(4):e5099. https://doi.org/10.1371/journal.pone.0005099

270. Szklarczyk A, Lapinska J, Ryłski M, McKay RDG, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. *J Neurosci.* 2002;22(3):920-930. https://doi.org/10.1523/JNEUROSCI.22-03-00920.2002

271. van Gerten C, Holmin S, Mathiesen T, Nordqvist A-AS. Increases in matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 mRNA after cerebral contusion and depolarisation. *J Neurosci Res.* 2003;73(6):803-810. https://doi.org/10.1002/jnr.10729

272. Wright JW, Masino AJ, Reichert JR, et al. Ethanol-induced impairment of spatial memory and brain matrix metalloproteinases. *Brain Res.* 2003;963(1–2):252-261. https://doi.org/10.1016/s0006-8993(02)04036-2
275. Zhang JW, Deb S, Gottschall PE. Regional and differential expression of gelatinases in rat brain after systemic kaic acid or bicusculine administration. *Eur J Neurosci*. 1998;10(11): 3358-3368. https://doi.org/10.1046/j.1460-9568.1998.00347.x

276. Reeves TM, Prins ML, Zhu J, Povlishock JT, Phillips LL. Matrix metalloproteinase inhibition alters functional and structural correlates of deafentation-induced sprouting in the dentate gyrus. *J Neurosci*. 2003;23(32):10182-10189. https://doi.org/10.1523/JNEUROSCI.23-32-10182.2003

277. Sanz RL, Ferraro GB, Kacerovsky J, et al. MT3-MMP promotes excitatory synapse formation by promoting Nogo-66 receptor ectodomain shedding. *J Neurosci*. 2018;38(3):518-529. https://doi.org/10.1523/JNEUROSCI.0962-17.2017

278. Jaworski DM. Developmental regulation of membrane type-5 matrix metalloproteinase (MT5-MMP) expression in the rat nervous system. *Brain Res*. 2000;860(1-2):174-177. https://doi.org/10.1016/s0006-8993(00)02035-7

279. Warren KM, Reeves TM, Phillips LL. MT5-MMP, ADAM-10, and N-cadherin in concert to facilitate synapse reorganization after traumatic brain injury. *J Neurotrauma*. 2012;29(10):1922-1940. https://doi.org/10.1089/neu.2012.2383

280. Folgueras AR, Valdés-Sánchez T, Llano E, et al. Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. *Proc Natl Acad Sci U S A*. 2009;106(38):16451-16456. https://doi.org/10.1073/pnas.0908507106

281. Komori K, Nonaka T, Okada A, et al. Absence of mechanical allodynia and Abeta-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. *FEBS Lett*. 2004;575(1-3):125-128. https://doi.org/10.1016/s0014-5793(03)01458-3

282. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. *J Biol Chem*. 1997;272(4):2446-2451. https://doi.org/10.1074/jbc.272.4.2446

283. Szabova L, Yamada SS, Wimer H, et al. Matrix metalloproteinase-14 promotes lung cancer by cleavage of ALDH1L1 expressed on the surface of invasive tumour cells. *Nature*. 1994;370(6484):61-65. https://doi.org/10.1038/370061a0

284. Covington MD, Burghardt RC, Parrish AR. Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). *Am J Physiol Renal Physiol*. 2006;290(1):F43-F51. https://doi.org/10.1152/ajprenal.00179.2005

285. Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. *Nature*. 2001;20(17):4782-4793. https://doi.org/10.1039/embr2001.17.4782

286. Shiomizu T, Okada Y. MT1-MMP and MMP-7 in invasion and metastasis of human cancers. *Cancer Metastasis Rev*. 2003;22(2-3):145-152. https://doi.org/10.1023/a:1023093200502

287. Dreier R, Grässel S, Fuchs S, Schaumburger J, Bruckner P. Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. *J Biol Chem*. 1996;271(29):17124-17131. https://doi.org/10.1074/jbc.271.29.17124

288. Takahashi Y, Hamasaki M, Aoki M, et al. Activated EphA2 processing by mt1-mmp is involved in malignant transformation of ovarian tumours in vivo. *Anticancer Res*. 2012;32(6):1176-1190. https://doi.org/10.1021/jc.02041

289. Karsdal MA, Andersen TA, Bonefeld L, Christiansen C. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. *DNA Cell Biol*. 2004;23(3):155-165. https://doi.org/10.1089/104454904322964751

290. Nishiyama N, Mizushima H, Minegishi T, et al. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. *Cancer Sci*. 2011;102(1):111-116. https://doi.org/10.1111/j.1349-7006.2010.01748.x

291. Shawczuk M, Wellensteind MD, Lee SB, et al. Matrix metalloproteinase 14 promotes lung cancer by cleavage of...
302. Fu H-L, Sohail A, Valiathan RR, et al. Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem. 2013;288(17):12114-12129. https://doi.org/10.1074/jbc.M112.409599

303. Saby C, Collin G, Sinane M, et al. DDR1 and MT1-MMP expression levels are determinant for triggering bik-mediated apoptosis by 3d type i collagen matrix in invasive basal-like breast carcinoma cells. Front Pharmacol. 2019;10:462. https://doi.org/10.3389/fphar.2019.00462

304. Rozanov DV, Savinov AY, Golubkov VS, et al. Cellular membrane-type 1 matrix metalloproteinase (MT1-MMP) cleaves C3b, an essential component of the complement system. J Biol Chem. 2004;279(45):46551-46557. https://doi.org/10.1074/jbc.M405284200

305. Jin G, Zhang F, Chan KM, et al. MT1-MMP cleaves Dll1 to support breast cancer cell invasion. Blood. 2002;100(4):1160-1167.

306. Nakamura H, Suenaga N, Taniwaki K, et al. Constitutive and inducible CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res. 2004;64(3):876-882. https://doi.org/10.1158/0008-5472.can-03-3502

307. McQuibban GA, Gong J-H, Wong JP, Wallace JL, Clark-Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemotactic protein-1 regulates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 2002;100(4):1160-1167.

308. Higashi S, Miyazaki K. Novel processing of beta-amyloid precursor protein catalyzed by membrane type 1 matrix metalloproteinase releases a fragment lacking the inhibitor domain against gelatinase A. Biochemistry. 2003;42(21):6514-6526. https://doi.org/10.1021/bi020643m

309. Ahmad M, Takino T, Miyamori H, Yoshizaki T, Furukawa M, Sato H. Cleavage of amyloid-beta precursor protein (APP) by membrane-type matrix metalloproteinases. J Biol Chem. 2006;139(3):517-526. https://doi.org/10.1073/jbc.M1066993200

310. Pauzier J-M, Py NA, García-González L, et al. Proa myloidogenic effects of membrane type 1 matrix metalloproteinase involve MMP-2 and BACE-1 activities, and the modulation of APP trafficking. FASEB J. 2019;33(2):2910-2927. https://doi.org/10.1096/fj.201801076R

311. Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 2004;279(6):4260-4268. https://doi.org/10.1074/jbc.M311569200

312. Rozanov DV, Ghebrehiwet B, Postnova TI, Eichinger A, Deryugina EI, Strongin AY. The hemopexin-like C-terminal domain of membrane type 1 matrix metalloproteinase regulates proteolysis of a multifunctional protein, cC1qR. J Biol Chem. 2002;277(11):9318-9325. https://doi.org/10.1074/jbc.M10711200

313. Takino T, Koshikawa N, Miyamori H, et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metas tin by matrix metalloproteinases. Oncogene. 2003;22(30):4617-4626. https://doi.org/10.1038/sj.onc.1206542

314. Belkin AM, Akimov SS, Zartskaya LS, Ratnikov BI, Deryugina EI, Strongin AY. Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem. 2001;276(21):18415-18422. https://doi.org/10.1074/jbc.M101035200

315. Belkin AM, Zemskov EA, Hang J, Akimov SS, Sikora S, Strongin AY. Cell-surface-associated tissue transglutaminase is a target of MMP-2 proteolysis. Biochemistry. 2004;43(37):11760-11769. https://doi.org/10.1021/bi049266z

316. Aoki T, Sato D, Li Y, Takino T, Miyamori H, Sato H. Cleavage of apolipoprotein E by membrane-type matrix metalloproteinase-1 abrogates suppression of cell proliferation. J Biochem. 2005;137 (1):95-99. https://doi.org/10.1093/jb/mvi009

317. Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD. The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule a independent of a disintegrin and metalloproteinases. J Immunol. 2010;184(7):3346-3350. https://doi.org/10.4049/jimmunol.0903789

318. Tam EM, Morrison CJ, Wu YI, Stack MS, Overall CM. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci U S A. 2004;101(18):6917-6922. https://doi.org/10.1073/pnas.0305862101

319. Egawa N, Koshikawa N, Tomari T, Nishimaki T, Isobe T, Seiki M. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRINT) fragment from tumor cells. J Biol Chem. 2006;281(49):37576-37585. https://doi.org/10.1074/jbc.M606993200

320. Butler GS, Dean RA, Tam EM, Overall CM. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol Cell Biol. 2008;28(15):4896-4914. https://doi.org/10.1128/MCB.01775-07

321. Hotary KB, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell invasion and morphogenesis in a threedimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000;149(6):1309-1323. https://doi.org/10.1083/jcb.149.6.1309

322. Hotary KB, Yana I, Sabeh F, et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and independent processes. J Exp Med. 2002;195 (3):295-308. https://doi.org/10.1084/jem.20010815

323. Butler GS, Will H, Atkinson SJ, Murphy G. Membrane-Type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997;244(2):653-657. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00653.x

324. Morrison CJ, Butler GS, Bigg HF, Roberts CR, Soloway PD, Overall CM. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem. 2001;276(50):47402-47410. https://doi.org/10.1074/jbc.M108643200

325. Chen Y, Lu H, Tao D, et al. Membrane type-2 matrix metalloproteinases improve the progression of renal cell cancer. Int J Clin Exp Pathol. 2017;10(10):10618-10626.
3. Matrix metalloproteinase. *Eur J Biochem*. 1999;262(3):907-914. https://doi.org/10.1046/j.1432-1327.1999.00459.x

327. Tatti O, Arjama M, Ranki A, Weiss SJ, Keski-Oja J, Lehti K. Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. *PLoS One*. 2011;6(12):e28325. https://doi.org/10.1371/journal.pone.0028325

328. Takino T, Sato H, Shinagawa A, Seiki M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. *J Biol Chem*. 1995;270(39):23013-23020. https://doi.org/10.1074/jbc.270.39.23013

329. Shofuda KI, Yasumitsu H, Nishihashi A, Miki K, Miyazaki K. Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMPs with and without transmembrane domain. *J Biol Chem*. 1997;272(15):9749-9754. https://doi.org/10.1074/jbc.272.15.9749

330. Shofuda KI, Hasenstab D, Kenagy RD, et al. Membrane-type matrix metalloproteinase-1 and -3 activity in primate smooth muscle cells. *FASEB J*. 2001;15(11):2010-2012. https://doi.org/10.1096/fj.00-0871fje

331. Ferraro GB, Morrison CJ, Overall CM, Strittmatter SM, Fournier AE. Membrane-type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. *J Biol Chem*. 2000;275(19):14046-14055. https://doi.org/10.1074/jbc.275.19.14046

332. Wang Y, Johnson AR, Ye QZ, Dyer RD. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. *J Biol Chem*. 1999;274(46):33043-33049. https://doi.org/10.1074/jbc.274.46.33043

333. Gao G, Westling J, Thompson VP, Howell TD, Gottschall PE, Sandy JD. Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. *J Biol Chem*. 2002;277(13):11034-11041. https://doi.org/10.1074/jbc.M107443200

334. Gao G, Plaa A, Thompson VP, Jin S, Zuo F, Sandy JD. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. *J Biol Chem*. 2004;279(11):10042-10051. https://doi.org/10.1074/jbc.M312100200

335. Romanic AM, Burns-Kurtis CL, Ao Z, Arleth AJ, Ohlstein EH. Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. *Am J Physiol Renal Physiol*. 2001;281(2):F309-F317. https://doi.org/10.1152/ajpregn.2001.281.2.F309

336. Shiryaev SA, Savinov AY, Cieplak P, et al. Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. *PLoS One*. 2009;4(3):e4952. https://doi.org/10.1371/journal.pone.0004952

337. Baranger K, Marchalant Y, Bonnet AE, et al. MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. *Cell Mol Life Sci*. 2016;73(1):217-236. https://doi.org/10.1007/s00018-015-1992-1

338. English WR, Velasco G, Strackle JO, Knäuper V, Murphy G. Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25). *FEBS Lett*. 2001;491(1-2):137-142. https://doi.org/10.1016/s0014-5793(01)02150-0

339. Nie J, Pei D. Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 25 at the asn(109)-Tyr bond. *Cancer Res*. 2003;63(20):6758-6762.

340. Velasco G, Cal S, Merlos-Suárez A, et al. Human MT6-matrix metalloproteinase: identification, progelatinase a activation, and expression in brain tumors. *Cancer Res*. 2000;60(4):877-882.

341. Nie J, Pei D. Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 6. *Exp Cell Res*. 2004;296(2):145-150. https://doi.org/10.1016/j.yexcr.2004.02.008

How to cite this article: Moracho N, Learte AIR, Muñoz-Sáez E, et al. Emerging roles of MT-MMPs in embryonic development. *Developmental Dynamics*. 2022;251(2):240-275. https://doi.org/10.1002/dvdy.398