UNIFORM L^p-IMPROVING FOR WEIGHTED AVERAGES ON CURVES

BETSY STOVALL

Abstract. We define variable parameter analogues of the affine arclength measure on curves and prove near-optimal L^p-improving estimates for associated multilinear generalized Radon transforms. Some of our results are new even in the convolution case.

1. Introduction

In this article we consider weighted versions of multilinear generalized Radon transforms of the form

$$M_0(f_1, \ldots, f_k) := \int_{\mathbb{R}^d} \prod_{i=1}^k f_i \circ \pi_i(x) \, a(x) \, dx,$$

(1.1)

where a is a continuous cutoff function and the $\pi_i : \mathbb{R}^d \to \mathbb{R}^{d-1}$ are smooth submersions.

In [24, 21], near endpoint estimates of the form

$$|M_0(f_1, \ldots, f_k)| \leq C \prod_{i=1}^k \|f_i\|_{L^p_i(\mathbb{R}^{d-1})},$$

(1.2)

with $C = C(\pi_1, \ldots, \pi_k, p_1, \ldots, p_k)$, were established for M_0 under the assumption that the π_i satisfy a certain finite type condition on the support of a. In particular, it was found that the exponents on the right on (1.2) depend on this ‘type.’ These results are nearly sharp in the sense that if the type of the π_i degenerates anywhere on the set where $a \neq 0$, then the corresponding near endpoint estimates also fail. It is not, however, known in general what happens when the type degenerates at some point where $a \neq 0$ (for instance, on the boundary of the support) or the rate at which the constants in (1.2) blow up as the type degenerates.

Our goal is to quantify and counteract the failure of (1.2) in such situations by replacing M_0 by an appropriately weighted operator, for which we will establish near-optimal Lebesgue space bounds. The exponents (though not the implicit constants) in these bounds will be independent of the choice of π_1, \ldots, π_k and the cutoff function a. Further, the weights we employ transform naturally under changes of coordinates, so they may reasonably be viewed as generalizations of the affine arclength measure on curves in \mathbb{R}^d. A number of recent articles (such as [1, 6, 7, 8, 10, 12, 15, 16, 17, 18, 20]) have been devoted to establishing uniform estimates for operators weighted by affine arclength measure, and these results provide much of the motivation for this article.
1.1. A motivating example. Stating the main results of this article, or even the results of [24, 21] requires some notation, so we postpone this until the next section. By way of background and motivation, we will spend the remainder of the introduction describing a concrete case about which much is known, and which provides the inspiration for the more general operators considered in this article. Let \(\gamma : \mathbb{R} \to \mathbb{R}^d \) be a smooth curve and \(a \) a continuous cutoff function. Consider the operator

\[
T_0 f(x) := \int_{\mathbb{R}} f(x - \gamma(t)) a(t) \, dt, \quad f \in C_0^0(\mathbb{R}^d).
\]

By duality, \(T_0 : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d) \) if and only if for all \(f \in L^p(\mathbb{R}^d) \) and \(g \in L^q(\mathbb{R}^d) \),

\[
\left| \int_{\mathbb{R}^d} \int_{\mathbb{R}} f(x - \gamma(t)) g(x) a(t) \, dt \right| \leq C(\gamma, p, q) \| f \|_{L^p(\mathbb{R}^d)} \| g \|_{L^q(\mathbb{R}^d)};
\]

this may be compared with \([12]\).

The curve \(\gamma \) is said to be of type (at most) \(N \) when \(\det(\gamma'(t), \ldots, \gamma^{(d)}(t)) \) vanishes to order at most \(N \) at any point. The results of [9] imply that if \(\gamma \) is of type \(N \) on the support of \(a \), \(\| T_0 \|_{L^p \to L^q} < \infty \) if \((p^{-1}, q^{-1})\) lies in the trapezoid with vertices

\[
(0, 0), \quad (1, 1), \quad (p_N^{-1}, q_N^{-1}) := \left(\frac{d}{N + \frac{d-1}{2}}, \frac{d-1}{N + \frac{d-1}{2}} \right), \quad (1 - q_N^{-1}, 1 - p_N^{-1}).
\]

(The non-endpoint result was due to Tao–Wright in [24].) Further, if \(N \) is the maximal type of \(T_0 \) on \(\{ t : a(t) \neq 0 \} \), this is sharp. If \(\gamma \) is not of finite type, \(T_0 \) satisfies no \(L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d) \) estimates off the line \(\{ p = q \} \).

It was first noticed in [13] and [11] that affine, as opposed to Euclidean, arclength has a uniformizing effect on the bounds for convolution and Fourier restriction operators associated to possibly degenerate curves. It is now known that if \(\gamma \) is a polynomial curve, convolution with affine arclength measure on \(\gamma \), which is the operator

\[
Tf(x) := \int_{\mathbb{R}} f(x - \gamma(t)) | \det(\gamma'(t), \ldots, \gamma^{(d)}(t)) |^{\frac{1}{d+1}} dt,
\]

maps \(L^p(\mathbb{R}^d) \) boundedly into \(L^q(\mathbb{R}^d) \) if and only if (provided \(T \neq 0 \) \((p^{-1}, q^{-1}) \) lies on the line segment joining \((p_0^{-1}, q_0^{-1}), (1 - q_0^{-1}, 1 - p_0^{-1})\), with \(p_0, q_0 \) defined as above \([15, 6, 20]\)). Further, the operator norms established in \([13, 6, 20]\) depend only on the degree of the polynomial; for this, it is crucial that the affine arclength transforms nicely under reparametrizations and affine transformations. Further investigations have been carried out by Oberlin and Dendrinos–Stovall in the non-polynomial case in \([16, 9]\). The above mentioned results are essentially optimal, both in terms of the exponents involved and in terms of pointwise estimates on the weight. \([17]\) (cf. Proposition \([2.2]\)). Analogous results are also known for the restricted X-ray transform, \([5, 9]\). There have also been a number of recent articles aimed at establishing uniform estimates for Fourier restriction to curves with affine arclength measure, for instance \([11, 7, 10, 22]\).

Our goal in this article is to address the gap between the general results of \([24, 21]\) and the type-independent results of \([6, 8, 15, 20]\) by introducing a generalization of the affine arclength measure, well-suited to \([14]\). We will also prove near-endpoint bounds for the weighted operator and, in particular, will generalize the results of \([24, 21]\) to the case when the \(\pi_i \) completely fail to be of finite type on the support of \(a \). Some of our results are new even in the translation invariant case.
2. Basic notions and statements of the main results

Notation. Throughout the article, we will use the now-standard notation $A \triangleq B$ to mean that $A \leq CB$ for some innocuous implicit constant C. The value of this constant will be allowed to change from line to line. The meaning of ‘innocuous’ will be specified at the beginning of most sections, though in this section it will be specified in situ and in the next, it does not arise. Additionally, $A \geq B$ if $B \leq A$, and $A \sim B$ if $A \leq B$ and $B \leq A$. We denote the nonnegative integers by \mathbb{Z}_0. If ℓ is any integer, δ is an ℓ-tuple of real numbers, and $\beta \in \mathbb{R}^\ell$ is a multiindex, we denote by δ^β the quantity $\delta_1^\beta_1 \cdots \delta_\ell^\beta_\ell$.

We will also use some less-standard notation. We consider the partial order \preceq on \mathbb{Z}_0^ℓ defined by $b_1 \leq b_2$ if $b_1^i \leq b_2^i$, $1 \leq i \leq k$. We say $b_1 < b_2$ if at least one of these inequalities is strict. If $B \subseteq \mathbb{Z}_0^\ell$, is any set, we define a polytope

$$\mathcal{P}(B) := \text{ch} \bigcup_{b \in B} \{ (0, \infty)^k + \{b\},$$

where ‘ch’ denotes the convex hull.

Fix a dimension d and an integer $k \geq 2$; k may exceed d. We will consider vector fields X_1, \ldots, X_k, defined and smooth on the closure of an open set U. A word w is an element of $W := \bigcup_{n=1}^\infty \{1, \ldots, k\}^n$. To each word is associated a vector field X_w, defined recursively by $X_{(i)} := X_i$, $1 \leq i \leq k$ and $X_{(w,i)} := [X_w, X_i]$, for $w \in W$ and $1 \leq i \leq k$. The degree of $w \in W$ is the k-tuple, $\deg w$, whose i-th entry is the number of occurrences of i in w.

All brackets of such vector fields lie in the span of the X_w: if $w, w' \in W$,

$$[X_w, X_{w'}] = \sum_{\deg \bar{w} = \deg w + \deg w'} C_{w,w'}^{\bar{w}} X_{\bar{w}}, \quad (2.1)$$

where $C_{w,w'}^{\bar{w}}$ is an integer. Indeed, by the Jacobi identity,

$$[X_w, [X_{w'}, X_i]] = [[X_w, X_{w'}], X_i] - [X_{(w,i)}, X_{w'}],$$

and so (2.1) is easily obtained by inducting on $\| \deg w' \|_\ell$. (This was observed in [14].) We note that for each $b \in \mathbb{N}^k$, there are only finitely many words w with $\deg w = b$, so the sum in (2.1) is finite.

If $I = (w_1, \ldots, w_d)$ is a d-tuple of words, we define $\deg I := \sum_{i=1}^d \deg w_i$ and $\lambda_I := \det(X_{w_1}, \ldots, X_{w_d})$.

The Newton polytope of the vector fields X_1, \ldots, X_k at the point $x_0 \in U$ is defined to be

$$\mathcal{P}_{x_0} := \mathcal{P}(\{ \deg I : I \text{ is a } d \text{-tuple of words satisfying } \lambda_I(x_0) \neq 0 \}),$$

and we define the Newton polytope of a set $A \subseteq U$ to be

$$\mathcal{P}_A := \text{ch}(\bigcup_{x \in A} \mathcal{P}_x).$$

The Hörmander condition is the statement that $\mathcal{P}_{x_0} \neq \emptyset$ for each $x_0 \in U$. When the X_i are nonvanishing vector fields tangent to the fibers of the π_i, this is the finite type hypothesis in [23] [21].
Results. Let $U \subseteq \mathbb{R}^d$ be an open set and let $\pi_1, \ldots, \pi_k : U \to \mathbb{R}^{d-1}$ be smooth submersions (i.e. having surjective differentials). Letting \star denote the composition of the Hodge-star operator, which maps $(d-1)$-forms to one-forms, with the natural identification of one-forms with vectors via the Euclidean metric, we define vector fields

$$X_j := \star(d\pi_j^1 \wedge \cdots \wedge d\pi_j^{d-1}), \quad 1 \leq j \leq k.$$

(2.2)

Let a be a continuous function with compact support contained in U. Fix a d-tuple of words $I_0 = (w_1, \ldots, w_d)$ and define the generalized affine arclength

$$\rho = \rho_{I_0} := \left| \det(X_{w_1}, \ldots, X_{w_d}) \right|_{\mathrm{Jac}(0)}^{-1},$$

(2.3)

where $|b|_1$ denotes the ℓ_1 norm. Define a k-linear form $M : [C^0(\mathbb{R}^d)]^k \to \mathbb{C}$ by

$$M(f_1, \ldots, f_k) := \int_{\mathbb{R}^d} \prod_{j=1}^k f_j \circ \pi_j(x) \rho(x) a(x) \, dx.$$

(2.4)

For $b \in \mathbb{R}^k$ with $|b|_1 > 1$, define

$$q(b) := \frac{b}{|b|_1 - 1}.$$

(2.5)

It is easy to check that q equals its own inverse. The following is our main theorem.

Theorem 2.1. Assume that deg I_0 is an extreme point of $\mathcal{P}_{\mathrm{supp} a}$. Then for all $p \in [1, \infty)^k$ satisfying $(p_1^{-1}, \ldots, p_k^{-1}) \preceq q(b)$ and $p_j^{-1} < q_j(b)$ when $(\deg I_0)_j \neq 0$, we have the estimate

$$|M(f_1, \ldots, f_k)| \lesssim \prod_{j=1}^k \|f_j\|_{L^{p_j}(\mathbb{R}^{d-1})},$$

(2.6)

for all continuous f_1, \ldots, f_k. The implicit constant depends on the π_j, a, p and b_0, but not on the f_j. Thus M extends to a bounded k-linear form on $\prod_{j=1}^k L^{p_j}(\mathbb{R}^{d-1})$.

The extremality hypothesis seems natural by analogy with the translation invariant case; it also leads to certain invariants of the weight, as we will discuss below. However, we ultimately prove a more general result, Theorem 6.1, which does not require extremality. (We postpone stating the latter because it requires more notation.)

With the given weight, the above theorem is nearly sharp. Indeed, under the hypotheses and notation above, we have the following.

Proposition 2.2. Let μ be a nonnegative Borel measure whose support is contained in U, and assume that the bound

$$M_\mu(\chi_{E_1}, \ldots, \chi_{E_k}) := \int_{\mathbb{R}^d} \prod_{j=1}^k \chi_{E_j} \circ \pi_j \, d\mu \leq A(\mu) \prod_{j=1}^k \|E_j\|_{L^{p_j}}$$

(2.7)

holds for all Borel sets $E_1, \ldots, E_k \subseteq \mathbb{R}^{d-1}$ and some constant $A(\mu) < \infty$. If $\mu \neq 0$, $(p_1, \ldots, p_k) \in [1, \infty)^k$. If $\sum_j p_j^{-1} > 1$, let $b_0 := q(p_1^{-1}, \ldots, p_k^{-1})$. Then $\mu(\{x : b_p \notin \mathcal{P}_x\}) = 0$. If in addition, b_p is an extreme point of $\mathcal{P}_{\mathrm{supp} \mu}$, μ is absolutely continuous with respect to Lebesgue measure, and its Radon–Nikodym derivative satisfies

$$\frac{d\mu}{dx} \lesssim A(\mu) \sum_{\deg I = b_p} |\lambda_I|^{\frac{1}{p_1^{-1}-1}}.$$

(2.8)
The implicit constant in (2.8) may be chosen to depend only on d, p; $A(\mu)$ has the same value in (2.7) and (2.8).

In the translation invariant case, a similar result is due to D. Oberlin in [17] (cf. [8] for the restricted X-ray transform). The final statement in the proposition only applies in the endpoint case, which is not otherwise addressed in this article. The endpoint version of Theorem 2.1 is known to fail without further assumptions on the X than made here, as can be seen by considering the example of convolution with affine arclength on $\gamma(t) = (t, e^{-1/t} \sin(\frac{1}{t}))$, $t > 0$, for k sufficiently large. (This example is due to Sjölin in [15].)

The proofs of Theorem 2.1 and Proposition 2.2 will rely on a more general result about smooth vector fields X_1, \ldots, X_k on \mathbb{R}^d. To state this result, we need some additional terminology.

Let $J \in \{1, \ldots, k\}^d$. We define $\deg J$ to be the k-tuple whose i-th entry is the number of occurrences of i in J. If $\alpha \in \mathbb{Z}_0^d$ is a multi-index, we define $\deg J \alpha$ to be the k-tuple whose i-th entry is $\sum_{\ell : J_\ell = i} \alpha_\ell$. We define

$$\Psi^J_{x_0}(t_1, \ldots, t_d) := \exp(t_d X_{J_d}) \circ \cdots \circ \exp(t_1 X_{J_1})(x_0).$$

(2.9)

We define another polytope,

$$\mathcal{P}_{x_0} := \mathcal{P}(\{\deg J + \deg J \alpha : J \in \{1, \ldots, k\}^d \text{ and } \alpha \in (\mathbb{Z}_0)^d \}
\text{ satisfy } \partial^\alpha_t \det D\Psi^J_{x_0}(0) \neq 0 \}.$$

Proposition 2.3. For each $x_0 \in U$, $\mathcal{P}_{x_0} = \mathcal{P}_{x_0}$. Furthermore, for each extreme point b_0 of \mathcal{P}_{x_0},

$$\sum_{\deg I = b_0} |\lambda_I(x_0)| \sim \sum_{J \in \{1, \ldots, k\}^d} \sum_{\alpha \in (\mathbb{Z}_0)^d : \deg J + \deg J \alpha = b_0} |\partial^\alpha_t \det D\Psi^J_{x_0}(0)|. \quad (2.10)$$

The implicit constants may be taken to depend only on d and b_0, and in particular, may be chosen to be independent of the X_i.

Examples. We take a moment to discuss a few concrete cases where these results apply.

The translation-invariant case. Let $\gamma : \mathbb{R} \to \mathbb{R}^d$ be a smooth map and for $(t, x) \in \mathbb{R}^{1+d}$, define $\pi_1(t, x) = x, \pi_2(t, x) = x - \gamma(t)$. Thus the unweighted operator M_0 in (1.1) is essentially convolution with Euclidean arclength measure on γ, paired with a test function.

Using the definition above, $X_1 = \partial_x, X_2 = \partial_t + \gamma' \cdot \nabla_x$. If w is any word of length $n \geq 2$ and if the first two letters of w are 1 and 2, $X_w(t, x) = \gamma^{(n)}(t)$. If $d \geq 2$, the Hörmander condition is equivalent to the statement that the torsion of γ does not vanish to infinite order at any point. We note in particular that

$$|\det(X_1, X_2, X_{(1, 2)}, \ldots, X_{(1, \ldots, 1, 2)})| = |\det(X_1, X_2, X_{(2, 1)}, \ldots, X_{(2, \ldots, 2, 1)})|
= |\det(\gamma', \ldots, \gamma^{(d)})|,$$

and if U is any open set, the only extreme points of \mathcal{P}_U (unless \mathcal{P}_U is empty) are

$$\left(\frac{d(d-1)}{2} + 1, d\right), \quad \left(d, \frac{d(d-1)}{2} + 1\right).$$

Thus the affine arclength in this case is defined in the usual way:

$$\rho(t, x) = |\det(\gamma'(t), \ldots, \gamma^{(d)}(t))|^{\frac{2}{d(d+1)}}.$$
By Theorem 2.1 for any smooth $\gamma : \mathbb{R} \to \mathbb{R}^d$, and any continuous cutoff function a, the convolution operator

$$Tf(x) = \int f(x - \gamma(t)) |\det(\gamma'(t), \ldots, \gamma^{(d)}(t))|^{\frac{1}{d+1}} a(t) \, dt$$

maps $L^p(\mathbb{R}^d)$ into $L^q(\mathbb{R}^d)$ whenever (p^{-1}, q^{-1}) lies in the interior of the trapezoid with vertices as in (1.3) in the case $N = 0$. For general smooth curves this result is new, but, as mentioned in the introduction, even stronger results are known in some special cases.

Restricted X-ray transforms. Let $\gamma : \mathbb{R} \to \mathbb{R}^{d-1}$ be a smooth map and for $(s, t, x) \in \mathbb{R}^{1+1+d-1}$, define $\pi_1(s, t, x) := (t, x)$, $\pi_2(s, t, x) := (s, x - s\gamma(t))$. Then the operator M_0 in (1.1) is the restricted X-ray transform

$$Xf(t, x) = \int f(s, x - s\gamma(t)) a(s, t) \, ds,$$

paired with a test function. Using the above definition,

$$X_1 = \partial_s, \quad X_2 = \partial_t + s\gamma'(t) \cdot \nabla x.$$

If $d \geq 3$, the only $d+1$-tuples of words (w_1, \ldots, w_{d+1}) with $\det(X_{w_1}, \ldots, X_{w_{d+1}}) \neq 0$ are, after reordering, those satisfying

$$w_1 = 1, \quad w_2 = 2, \quad w_i = (1, 2, \cdots, 2), \quad 3 \leq i \leq d + 1.$$

Thus the only extreme point of the Newton polytope is $(d, 1 + \frac{d(d-1)}{2})$, and

$$\rho(s, t, x) = |\det(\gamma'(t), \ldots, \gamma^{(d-1)}(t))|^{\frac{d}{d+1}},$$

which is a power of the usual affine arclength. Theorem 2.1 thus gives a partial generalization of the results of [8], wherein a sharp strong type bound for the X-ray transform restricted to polynomial curves with affine arclength was established.

Generalized Loomis–Whitney. Let $\pi_1, \ldots, \pi_d : \mathbb{R}^d \to \mathbb{R}^{d-1}$ be smooth submersions. The point $(1, \ldots, 1)$ is always extreme or in the exterior of the Newton polytope, so for $\varepsilon > 0$

$$\left| \int_{\mathbb{R}^d} \prod_{i=1}^d f_i \circ \pi_i(x) |\det(X_1, \ldots, X_d)(x)|^{\frac{1}{d+1}} a(x) \, dx \right| \lesssim \prod_{i=1}^d \|f_i\|_{L^{d-1+\varepsilon}(\mathbb{R}^{d-1})},$$

with the implicit constant depending on the π_i and ε. In the case when the X_i do span at every point of the support of a, the endpoint estimate was proved in [2]. (The classical Loomis–Whitney inequality is the endpoint estimate when the π_i are linear and $a \equiv 1$.)

Outline. In Section 5 we show that the weights we employ satisfy certain natural invariants; this makes them reasonable generalizations of the usual affine arclength measure. In Section 4 we prove Proposition 2.2 by employing the results of [23] and using a compactness argument. We also use a combinatorial lemma, whose proof is postponed to the appendix. In Section 5 we prove the optimality result, Proposition 2.2. Finally, in Section 6 we prove a more general result, Theorem 6.1 which implies Theorem 2.1. Our techniques for the proof of the main theorem are essentially those of [8] [24] [21], with some modifications to handle the potential failure of the Hörmander condition.
Acknowledgements. The idea for this project came from a conversation with Michael Christ, and Terence Tao provided many valuable suggestions during the early stages of this work. The author is very grateful for these discussions. She would also like to thank the anonymous referee for a detailed and enormously helpful report. This project was supported in part by NSF DMS-0902667 and 1266336.

3. INVARIANTS OF THE AFFINE ARCLENGTHS

Let U, π_1, \ldots, π_k, and X_1, \ldots, X_k be as defined above. For $1 \leq j \leq k$, let $V_j := \pi_j(U)$. Fix a d-tuple of words I_0, and assume that $b_0 := \deg I_0$ is minimal in the sense that if $\deg I' < \deg I_0$, $\lambda_I \equiv 0$. (This minimality is essential.) Define ρ as in (2.3).

Proposition 3.1. Let $F : U \to \mathbb{R}^d$ and $G_j : V_j \to \mathbb{R}^{d-1}$, $1 \leq j \leq k$, be smooth maps. Define $\tilde{\pi}_j := G_j \circ \pi_j \circ F$, $1 \leq j \leq k$, and let \tilde{X}_j, $\tilde{\rho}$ be defined as in (2.2), (2.3), with tildes inserted. Then

$$\tilde{\rho} = \left(\prod_{j=1}^k |(\det DG_j) \circ \pi_j|^{\lambda_j(b_0)}\right)|\det DF| \rho \circ F, \quad (3.1)$$

where \mathbf{q} is defined as in (2.5).

In the notation above, let a be a continuous, compactly supported function with $\text{supp } a \subseteq U$, and define

$$\tilde{M}(f_1, \ldots, f_k) := \int_U \prod_{j=1}^k f_j \circ \tilde{\pi}_j(x) \tilde{\rho}(x) a \circ F(x) \, dx.$$

Proposition 3.1 implies that if each G_j is equal to the identity and F is one-to-one, then

$$\tilde{M}(f_1, \ldots, f_k) = M(f_1, \ldots, f_k).$$

If we simply assume that F and all of the G_j's are one-to-one, the proposition implies that for $(p_1^{-1}, \ldots, p_k^{-1}) := \mathbf{q}(b_0)$,

$$\sup_{f_1, \ldots, f_k \neq 0} \frac{\tilde{M}(f_1, \ldots, f_k)}{\prod_{j=1}^k \|f_j\|_{L^p(U \times \mathbb{R}^{d-1})}} = \sup_{f_1, \ldots, f_k \neq 0} \frac{M(f_1, \ldots, f_k)}{\prod_{j=1}^k \|f_j\|_{L^p(U \times \mathbb{R}^{d-1})}}.$$

We stress, however, that our theorem covers only the non-endpoint cases satisfying $(p_1^{-1}, \ldots, p_k^{-1}) \neq \mathbf{q}(b_0)$ and b_0 extreme, so it is not known that either side is finite except in certain cases (cf. [2, 4, 13, 15, 20]).

If we fix j, we may consider the family of curves $\gamma_j^x(t) := \pi_j(x, t)$. For any smooth one-to-one function $\phi : \mathbb{R} \to \mathbb{R}$, $x, t \mapsto (x, \phi(t))$ is also smooth and one-to-one and has Jacobian determinant $\phi'(t)$. Thus we obtain the following.

Corollary 3.2. The generalized affine arclength defines a parametrization-invariant measure on each of the curves $\gamma_j^x = \pi_j(x, t)$.

Proof of Proposition 3.1. We will prove the proposition first when the G_j are equal to the identity and then when F is. The general case follows by taking compositions.

In the first case, it suffices by simple approximation arguments to prove the identity when $\det DF \neq 0$. In this case, careful computations reveal that

$$\tilde{X}_j = (\det DF) F^* X_j,$$
where \(F^* \) is the pullback by \(F \), given by
\[
F^*X := (DF)^{-1}X \circ F. \tag{3.2}
\]

For \(1 \leq i \leq k \), let \(Y_i = F^*X_i \). Then by naturality of the Lie bracket, \(Y_w = F^*X_w \), \(w \in \mathcal{W} \). By induction (with base case \(w = (j) \)), the coordinate expression for the Lie bracket \(([X, X'] = X(X') - X'(X)) \), and the product rule, for each \(w \in \mathcal{W} \),
\[
\bar{X}_w = (\det DF)^{\deg w}|Y_w + \sum_{\deg w' < \deg w} f_{w,w'}Y_{w'}, \tag{3.3}
\]
where the \(f_{w,w'} \) are smooth functions.

By (3.3), (3.2), and our minimality assumption,
\[
\det(\bar{X}_{w_1}, \ldots, \bar{X}_{w_d}) = (\det DF)^{|b_0|} \det(Y_{w_1}, \ldots, Y_{w_d}) + \sum_{b'' < b_0} \sum_{\deg l'' = b''} f_l \det(Y_{w_1}, \ldots, Y_{w_d})
\]
\[= (\det DF)^{|b_0| - 1} \det(X_{w_1}, \ldots, X_{w_d}) \circ F + 0.
\]

This completes the proof in the first case.

In the second case, when \(F \) is the identity, it is easy to compute \(\bar{X}_j = [(\det DG_j) \circ \pi_j]X_j \), and it can be shown using the product rule and minimality of \(b_0 \) (as above) that
\[
\det(\bar{X}_{w_1}, \ldots, \bar{X}_{w_d}) = \prod_{j=1}^k [(\det DG_j) \circ \pi_j]^{b_0} \det(X_{w_1}, \ldots, X_{w_d}),
\]
which implies (3.1).

\[\square\]

4. Equivalence of the Two Polytopes: The Proof of Proposition 2.3

Fix a point \(b_0 \in [0, \infty)^k \). We say that an object (such as a constant, vector, or set) is admissible if it may be chosen from a finite collection, depending only on \(b_0 \) and \(d \), of such objects. In particular, all implicit constants in this section will be admissible.

The proof of Proposition 2.3 will rely on the following compactness result about polytopes with vertices in \(\mathbb{Z}_0^k \).

Proposition 4.1. Let \(\mathcal{B} \subseteq \mathbb{Z}_0^k \) and assume that \(b_0 \notin \mathcal{P}(\mathcal{B}) \). There exist
\[(i) \ \varepsilon > 0 \text{ and } v_0 \in (\varepsilon, 1]^k \text{ such that } v_0 \cdot b_0 + \varepsilon < v_0 \cdot p \text{ for every } p \in \mathcal{P}(\mathcal{B})
\]
\[(ii) \ a \text{ finite set } \mathcal{A} \subseteq \mathbb{Z}_0^k \text{ such that } b_0 \notin \mathcal{P}(\mathcal{A}) \text{ and } \mathcal{P}(\mathcal{B}) \subseteq \mathcal{P}(\mathcal{A}).
\]
Moreover, \(\varepsilon, v_0, \mathcal{A} \) are admissible.

Note that this proposition also applies when \(b_0 \) is an extreme point of \(\mathcal{P}(\mathcal{B}) \), since in this case \(b_0 \notin \mathcal{P}(\mathcal{B} \setminus \{b_0\}) \).

Assuming the validity of Proposition 4.1 for now (it will be proved in the Appendix), we devote the remainder of the section to the proof of Proposition 2.3.

We may of course assume that \(x_0 = 0 \) and that \(U \) is a bounded neighborhood of \(0 \). Furthermore, we may assume that \(k > d \) and \(X_i = \partial_i, 1 \leq i \leq d \). Indeed, if the proposition holds under this assumption, it holds for \(\partial_1, \ldots, \partial_d, X_1, \ldots, X_k \), with \(k + d \) replacing \(k \). We may then transfer the result back to \(X_1, \ldots, X_k \) by restricting to those \(b \in [0, \infty)^{k+d} \) with \(b^1 = \cdots = b^d = 0 \). By this assumption, \(\mathcal{P}_0 \neq \emptyset \), and it suffices to prove that if \(b_0 \) is an extreme point of \(\mathcal{P}_{x_0} \), then (2.10) holds, and if \(b_0 \notin \mathcal{P}_{x_0} \), then \(b_0 \notin \mathcal{P}_{x_0} \).
We begin with the case when b_0 is an extreme point of P_0. Fix a neighborhood V of 0, sufficiently small for later purposes, with $V \subseteq U$. Choose a d-tuple $I_0 = (w_1, \ldots, w_d) \in \mathcal{W}^d$ with $\deg I_0 = b_0$ and

$$|\lambda_{I_0}(0)| = \max_{\deg I = b_0} |\lambda_I(0)|. \quad (4.1)$$

(Note that I_0 is admissible, since only finitely many d-tuples of words give rise to this degree.) By smoothness of the X_j, we may assume that V is so small that

$$\frac{1}{2}|\lambda_{I_0}(0)| \leq \frac{1}{2} \max_{\deg I = b_0} |\lambda_{I}(x)| \leq |\lambda_{I_0}(x)| \leq 2|\lambda_{I_0}(0)|, \quad x \in V.$$

By Proposition 4.1, we may choose admissible $v_0 = (v_0^1, \ldots, v_0^k) \in (0,1]^k$ and $\varepsilon > 0$ such that $v_0 \cdot b_0 + \varepsilon < v_0 \cdot p$ for every $p \in P_0 \cap Z_0 \setminus \{b_0\}$.

Lemma 4.2. For each $m \geq 1$, there exists $\delta(m) > 0$, depending on m, b_0, X_1, \ldots, X_k, such that for all $0 < \delta < \delta(m)$, the map

$$\Phi^\delta(y_1, \ldots, y_d) := \exp(y_1 \delta^{v_0 \cdot w_1} X_{w_1} + \cdots + y_d \delta^{v_0 \cdot w_d} X_{w_d})(0) \quad (4.2)$$

and pullbacks

$$Y_j^\delta := (\Phi^\delta)^* \delta^{v_0} X_j = (D\Phi^\delta)^{-1} \delta^{v_0} X_j \circ \Phi^\delta \quad (4.3)$$

satisfy the following properties: Φ^δ is a diffeomorphism of the unit ball $B(1)$ onto a neighborhood of 0 in V,

$$|\det D\Phi^\delta(y)| \sim \delta^{v_0 \cdot b_0} |\lambda_{I_0}(0)|, \quad y \in B(1), \quad (4.4)$$

$$\|Y_j^\delta\|_{C^m(B(1))} \lesssim 1, \quad 1 \leq j \leq k \quad (4.5)$$

$$|\det(Y_{w_1}^\delta(y), \ldots, Y_{w_d}^\delta(y))| \sim 1, \quad y \in B(1). \quad (4.6)$$

Proof. Recall that W is the set of all words. Let

$$W_0 := \{w \in W : \deg w \cdot v_0 \leq d\} \quad \text{and} \quad W_1 := \{w \in W : d < \deg w \cdot v_0 \leq 2d\}. \quad (4.7)$$

Since v_0 is an admissible element of $(0,1]^k$, these are admissible, finite sets, and W_0 contains the one-letter words: $(1), (2), \ldots, (k)$. Furthermore, W_0 contains b_0 since our choice of v_0 and assumption that $X_j = \partial_j$, $1 \leq j \leq k$, imply that

$$v_0 \cdot b_0 \leq v_0 \cdot (1, \ldots, 1, 0, \ldots, 0) = (v_0)1 + \cdots + (v_0)d \leq d.$$

The vector fields X_w are all smooth, $W_0 \cup W_1$ is a finite set, and each coefficient of v_0 is positive. Thus for each $M \geq 0$, for all sufficiently small $\delta > 0$ and all $w \in W_0 \cup W_1$,

$$\|\delta^{v_0 \cdot w} X_w\|_{C^0(V)} \leq \frac{1}{2} \dist(0, \partial V), \quad \|\delta^{v_0 \cdot w} X_w\|_{C^M(V)} \leq 1. \quad (4.8)$$

Additionally, by our choice of v_0, ε,

$$|\delta^{v_0 \cdot w} \lambda_I(0)| < \delta |\delta^{v_0 \cdot b_0} \lambda_{I_0}(0)|, \quad I \in (W_0 \cup W_1)^d, \quad \deg I \neq b_0. \quad (4.9)$$

By the Jacobi identity, if $w, w' \in W_0$,

$$[\delta^{v_0 \cdot w} X_w, \delta^{v_0 \cdot w'} X_{w'}] = \sum_{\deg \tilde{w} = \deg w + \deg w'} C^{\tilde{w}}_{w, w'} (\delta^{v_0 \cdot \tilde{w}} X_{\tilde{w}}), \quad (4.10)$$

for admissible (because W_0 is) constants $C^{\tilde{w}}_{w, w'}$. If $v_0 \cdot (\deg w + \deg w') \leq d$, each \tilde{w} in the sum is an element of W_0. If not, each \tilde{w} is in W_1, and we can expand

$$\delta^{v_0 \cdot \tilde{w}} X_{\tilde{w}} = \sum_{j=1}^d \delta^{v_0 \cdot \tilde{w}} X_{\tilde{w}}^j \partial_j = \sum_{j=1}^d (\delta^{v_0 \cdot \tilde{w}} - v_0^j X_{\tilde{w}}^j) (\delta^{v_0 \cdot \tilde{w}} X_{\tilde{w}}^j).$$
Note that \(v_0 \cdot \deg \hat{w} - v_0^j > 0 \) for \(\hat{w} \in \mathbb{W}_1 \). Using (4.10) to put the pieces back together, for sufficiently small \(\delta > 0 \) and any \(w, w' \in \mathbb{W}_0 \),

\[
[\delta v_0 - \deg w X_w, \delta v_0 - \deg w' X_w] = \sum_{\hat{w} \in \mathbb{W}_0} c_{\hat{w}, w}^\delta \delta \deg \hat{w} X_{\hat{w}},
\]

with

\[
\|c_{\hat{w}, w}^\delta\|_{C^\infty(\mathcal{V})} \lesssim 1. \tag{4.11}
\]

The conclusion of the lemma is now a direct application of Theorem 5.3 of [23], whose (lengthy) proof uses compactness arguments and Gronwall’s inequality, among other tools. For the convenience of the reader wishing to verify this, we provide a short dictionary to translate the notation. Let \(M \) be sufficiently large (depending on \(m, d, I_0 \)) and choose \(\delta(m) > 0 \) sufficiently small that [18], [9], and (4.11) all hold. Then the terms

\[
\{X_1, \ldots, X_q\}, \{d_1, \ldots, d_q\}, A, (\delta^d X), n_0(x, \delta)
\]

from [23] are, in our notation,

\[
\{X_w\}_{w \in \mathbb{W}_0}, \{\deg w\}_{w \in \mathbb{W}_0}, \{(\delta^0 v_0, \ldots, \delta^0 v_0) : 0 < \delta \leq \delta(m)\}, (\delta v_0 - \deg w X_w)_{w \in \mathbb{W}_0}, d.
\]

A priori, the results of [23] only guarantee that for each \(m \geq 0 \), there exists an admissible constant \(\eta > 0 \) such that the conclusions hold on \(B(\eta) \). We want \(\eta = 1 \), but this is just a matter of rescaling. Define

\[
D_{v_0, I_0}^\eta (t_1, \ldots, t_d) := (\eta v_0 - \deg w_1 t_1, \ldots, \eta v_0 - \deg w_d t_d);
\]

then

\[
\Phi^\delta = \Phi \circ D_{v_0, I_0}^\eta \quad \text{and} \quad Y_w^\delta = (D_{v_0, I_0}^\eta)^{-1} (\eta v_0 - \deg w Y_w) \circ D_{v_0, I_0}^\eta.
\]

Thus the lemma holds with a slightly smaller (\(\eta \) times the original) value of \(\delta(M) \).

\[
\square
\]

Lemma 4.3. Let \(m \) be a sufficiently large admissible integer, and let \(Y_1, \ldots, Y_k \) be vector fields with the properties that

\[
\|Y_j\|_{C^m(B(1))} \lesssim 1, \quad |\det(Y_{w_1}, \ldots, Y_{w_d})| \sim 1 \quad \text{on } B(1) ; \tag{4.12}
\]

\[
|\det(Y_{w_1}, \ldots, Y_{w_d})| \sim 1 \quad \text{on } B(1); \tag{4.13}
\]

here we recall that \((w_1, \ldots, w_d) = I_0 \). For \(J \in \{1, \ldots, k\}^d \), define

\[
\tilde{\Psi}^J(t_1, \ldots, t_d) := e^{t_1 Y_{j_1}} \circ \cdots \circ e^{t_1 Y_{j_1}(0)}.
\]

Then

\[
\max_{J \in \{1, \ldots, k\}^d} \|\det D\tilde{\Psi}^J\|_{C^0(B(c_0))} \sim 1, \tag{4.14}
\]

for some admissible constant \(c_0 > 0 \); in particular, \(\tilde{\Psi}^J \) is defined on the ball \(B(c_0) \).

Proof. There are similar results in [3, 5, 21, 24], but without the uniformity, so we give a complete proof.

The upper bound, \(|\det D\tilde{\Psi}^J|_{C^0(B(c_0))} \sim 1 \) is an immediate consequence of (4.12) for \(m \geq 2 \), by Picard’s existence theorem.

For the lower bound, we first show that if \(m \geq |b_0| + 2 \), the left side of (4.14) is nonzero. For \(1 \leq i \leq d \) and \(J \in \{1, \ldots, k\}^i \), define

\[
\tilde{\Psi}^J_i(t_1, \ldots, t_i) := e^{t_1 Y_{j_1}} \circ \cdots \circ e^{t_1 Y_{j_1}(0)};
\]
\(\Psi_t^J \in C^{m+1}(B(c_0)) \) for admissible \(c_0 > 0 \) by standard ODE existence results. Supposing that the left side of (4.14) is zero, there exists some minimal \(i \in \{0, \ldots, d-1\} \) such that
\[
\max_{J \in \{1, \ldots, k\}^d} \| \partial_t \Psi_{t+1}^J \wedge \cdots \wedge \partial_{t+i} \Psi_{t+i}^J \|_{C^0(B(c_0))} = 0.
\]
By (4.13), the \(Y_j \) cannot all vanish at zero, so this \(i \) is at least 1.

By minimality of \(i \), there exist \(J \in \{1, \ldots, k\}^d \), \(t_0 \in \mathbb{R}^d \) with \(|t_0| < c_0 \), and \(\varepsilon > 0 \) such that \(\Psi_t^J \) is an injective immersion on \(\{ t \in \mathbb{R}^d : |t-t_0| < \varepsilon \} =: B_{\varepsilon}(\varepsilon) \). Our assumption and the definition of exponentiation imply that for all \(1 \leq j \leq k \) and \((t_1, \ldots, t_i) \in B(c_0),
\[
0 = (\partial_t \Psi_{t+1}^J \wedge \cdots \wedge \partial_{t+i} \Psi_{t+i}^J)(t_1, \ldots, t_i, 0)
= (\partial_t \Psi_t^J \wedge \cdots \wedge \partial_{t+i} \Psi_{t+i}^J)(t_1, \ldots, t_i) \wedge Y_j(\Psi_t^J(t_1, \ldots, t_i)).
\]
Therefore \(Y_1, \ldots, Y_k \) are tangent to \(\Psi_t^J(B_{\varepsilon}(\varepsilon)) \), as must be any Lie brackets that are defined, in particular all of those up to order \(m \). Since \(m \geq |b_0| \), this contradicts (4.13). Tracing back, we see that we must have det \(\Psi^J \neq 0 \) on \(B(c_0) \) for some \(J \in \{1, \ldots, k\}^d \).

Now we prove that there is a uniform lower bound for \(m := |b_0| + 3 \). If not, there exists a sequence \((Y_1^{(n)}, \ldots, Y_k^{(n)})\) satisfying hypotheses (4.12) and (4.13), but with
\[
\max_{J \in \{1, \ldots, k\}^d} \| \det D\Psi_t^{(n), J} \|_{C^0(B(c_0))} \to 0,
\]
where \(\Psi_t^{(n), J}(t_1, \ldots, t_d) := e^{t_0 Y_0^{(n)}} \circ \cdots \circ e^{t_1 Y_1^{(n)}}(0) \). By Arzela–Ascoli, after passing to a subsequence, each \((Y_j^{(n)})\) converges in \(C^{m-1}(B(1)) \) to some vector field \(Y_j \). Thus for \(|\deg w| \leq m-1 \), \(Y_w^{(n)} \to Y_w \), and by standard ODE results, for each \(J \), the sequence \((\Psi^{(n), J})\) converges to \(\Psi^J \) in \(C^m(B(c_0)) \). So \(Y_1, \ldots, Y_k \) satisfy hypotheses (4.12) and (4.13) (the former with \(m = |b_0| + 2 \)), but det \(D\Psi^J \neq 0 \) on \(B(c_0) \), for all \(J \in \{1, \ldots, k\}^d \). This is impossible, so the lower bound in (4.14) must hold.

We return to a consideration of the vector fields \(X_1, \ldots, X_k \) in the next lemma, where we transfer the inequality in Lemma 4.3 from \(\tilde{\Psi}^J \) to \(\Psi^J \).

Lemma 4.4. For \(J \in \{1, \ldots, k\}^d \) and \(\alpha \in \mathbb{Z}_0^d \), if \(v_0 \cdot (\deg J + \deg J \alpha) < v_0 \cdot b_0 \), then \(\partial^\alpha \det D\Psi^J(0) = 0. \) Furthermore,
\[
\sum_{J \in \{1, \ldots, k\}^d} \sum_{\alpha \in (\mathbb{Z}_0^d)^J} \left| \partial^\alpha \det D\Psi^J(0) \right| \sim |\lambda_{I_0}(0)|. \tag{4.15}
\]

Proof. For \(J \in \{1, \ldots, k\}^d \), let
\[
\Psi^J := \tilde{\Psi}^J \circ D^J, \quad \text{where} \quad D^J := e^{t_0 Y_0^J} \circ \cdots \circ e^{t_1 Y_1^J}(0),
\]
which \(Y_0^J, \ldots, Y_k^J \) as in (4.13). By naturality of exponentiation, \(\Psi^{J, \delta} := \Phi \circ \tilde{\Psi}^J \), where \(\Phi^\delta \) is defined in (4.2). Hence by Lemmas 4.2 and 4.3,
\[
\max_{J \in \{1, \ldots, k\}^d} \| \det D\Psi^{J, \delta} \|_{C^0(B(c_0))} \sim \delta^{v_0 \cdot b_0} |\lambda_{I_0}(0)|, \quad 0 < \delta < \delta(m). \tag{4.16}
\]
where $m = m(b_0, d)$ is sufficiently large and $\delta(m)$ is the (inadmissible) constant from Lemma 4.2. As we will see, the lemma follows by sending $\delta \searrow 0$.

Let $M = M(b_0, d)$ be a sufficiently large integer, let $J \in \{1, \ldots, k\}^d$, and let $P^{J, \delta}$ be the degree M Taylor polynomial of $d\Psi^{J, \delta}$, centered at 0. Then
\[
\|P^{J, \delta} - \det D\Psi^{J, \delta}\|_{C^0(B(c_0))} \leq (\frac{\delta}{M})^{v_0-\deg J+M+1+\min_i v_i} \|\det D\Psi^{J, \delta}\|_{C^0(B(c_0))} \leq (\frac{\delta}{\min_i v_i})^{v_0-\deg J+M+1+\min_i v_i},
\]
(4.17)
where the first inequality is by Taylor’s theorem and admissibility of M, and the second is from (4.5), provided m is sufficiently large depending on M. Motivated by this inequality, we assume that $v_0 \cdot b_0 < M \min_i v_i$.

By the equivalence of all norms on the space of degree at most M polynomials of d variables,
\[
\|P^{J, \delta}\|_{C^0(B(c_0))} \lesssim \sum_{|\alpha| \leq M} |\partial^{\alpha} P^{J, \delta}(0)| = \sum_{|\alpha| \leq M} (\delta^{v_0-\deg J+\deg \lambda_0} |\partial^{\alpha} \det D\Psi^{J}(0)|.
\]
If $\alpha \in \mathbb{Z}^d_0$ and $v_0 \cdot (\deg J + \deg \lambda_0) \leq v_0 \cdot b_0$, then $|\alpha| \leq \frac{1}{\min_i v_i} (v_0 \cdot \deg \lambda_0) \leq M$, and
\[
\delta^{v_0-\deg J+\deg \lambda_0} |\partial^{\alpha} \det D\Psi^{J}(0)| = |\partial^{\alpha} P^{J, \delta}(0)| \lesssim \|P^{J, \delta}\|_{C^0(B(c_0))} \lesssim \|\det D\Psi^{J, \delta}\|_{C^0(B(c_0))} + (\frac{\delta}{\min_i v_i})^{v_0-\deg J+M+1+\min_i v_i} \lesssim \delta^{v_0-b_0} |\lambda_0(0)| + (\frac{\delta}{\min_i v_i})^{v_0-\deg J+M+1+\min_i v_i}.
\]
Sending $\delta \searrow 0$, we see that
\[
\partial^{\alpha} \det D\Psi^{J}(0) = 0, \quad \text{whenever} \quad v_0 \cdot (\deg J + \deg \lambda_0) < v_0 \cdot b_0,
\]
(4.19)
\[
|\partial^{\alpha} \det D\Psi^{J}(0)| \lesssim |\lambda_0(0)| \quad \text{if} \quad v_0 \cdot (\deg J + \deg \lambda_0) = v_0 \cdot b_0.
\]
(4.20)

Now for the lower bound. By (4.10) and the fact that there are only finitely many choices for J, there exist $J \in \{1, \ldots, k\}^d$ and a sequence $\delta_n \searrow 0$ such that
\[
\|\det D\Psi^{J, \delta_n}\|_{C^0(B(c_0))} \gtrsim \delta_n^{v_0-b_0} |\lambda_0(0)|.
\]
(4.21)
Since $M \min_i v_i = v_0 \cdot b_0$ and $\lambda_0(0) \neq 0$, (4.21), (4.17), and (4.18) imply that for δ_n sufficiently (inadmissibly) small,
\[
\delta_n^{v_0-b_0} |\lambda_0(0)| \lesssim \|P^{J, \delta_n}\|_{C^0(B(c_0))} \lesssim \sum_{|\alpha| \leq M} (\delta_n^{v_0-\deg J+\deg \lambda_0} |\partial^{\alpha} \det D\Psi^{J}(0)|).
\]

Applying (4.19) and letting $n \to \infty$,
\[
|\lambda_0(0)| \lesssim \sum_{v_0-\deg J+\deg \lambda_0} |\partial^{\alpha} \det D\Psi^{J}(0)|.
\]
This completes the proof of (4.15), and thus of Lemma 4.4.

By our choice of v_0, (4.15) is just (2.10), so to complete the proof of Proposition 2.3 it suffices to prove the following.

Lemma 4.5. $P_0 = \tilde{P}_0$. \hfill \square
Proof. By (2.10), \(\tilde{P}_0 \) contains the extreme points of \(P_0 \), so \(P_0 \subseteq \tilde{P}_0 \). Now suppose that \(b_0 \notin P_0 \). Then there exist \(v_0 \in (0, 1]^k \) and \(\varepsilon > 0 \) such that \(v_0 \cdot b_0 + \varepsilon < v_0 \cdot p \), for all \(p \in P_0 \). At least one extreme point \(b \) of \(P_0 \) satisfies \(v_0 \cdot b = \max_{p \in P_0} v_0 \cdot p \); perturbing \(v_0 \) slightly, we may assume that there exists \(b_1 \in P_0 \) such that

\[
v_0 \cdot b_0 < v_0 \cdot b_1 < v_0 \cdot p, \quad \text{for all } b_1 \neq p \in P_0.
\]

By Lemma 4.4, \(\partial^\alpha \det D\Psi^J(0) = 0 \) whenever \((\deg J, \deg \alpha) \cdot v_0 < v_0 \cdot b_1 \), so \(b_0 \notin \tilde{P}_0 \). Thus \(P_0 \subseteq \tilde{P}_0 \), and we are done.

Remarks. A more direct argument, using the Baker–Campbell–Hausdorff formula should be possible, but the author has not been able to carry this out. Let \(k = d \) and consider vector fields \(X_1, \ldots, X_d \). Using the approximation \(\exp(tX) = \sum_{n=0}^{N-1} \frac{t^n}{n!} X^{n-1}(X) + O(|t|^N) \), which may be found in [4], the formula for the Lie derivative of a determinant of \(d \) vector fields, and somewhat tedious computations, one can show that

\[
\partial^\alpha \big|_{t=0} \det D_t(e^{t}X_d \circ \cdots \circ e^{t}X_1)(x_0)
\]

\[
= \pm \sum_{\alpha_i} \prod_{i=1}^{d} \left(\deg w_i, \deg_1 w_i, \ldots, \deg_d w_i \right) \det(X_{w_1}, X_{w_2}, \ldots, X_{w_d}),
\]

where the \(* \) indicates that the sum is taken over those words \(w_i = (w_i^1, \ldots, w_i^{n_i}) \) satisfying \(\sum_i \deg w_i = \alpha + (1, \ldots, 1) \) and \(w_i^1 > w_i^2 \geq \cdots \geq w_i^{n_i} \) (in particular, \(w_1 = (1) \)). Replacing \(X_i \) above with \(X_J \) gives an alternative proof that the right (Jacobian) side of (2.10) is bounded by the left (determinant) side, but using this formula to bound the left of (2.10) by the right seems nontrivial.

The estimate (2.10) may fail if \(b \) is not extreme (even if it is minimal). To see this, let \(\gamma(t) := (t, \ldots, t^d) \) and define \(X_0 := \partial_t, X_i := \partial_t - \gamma'(t) \cdot \nabla x, 1 \leq i \leq d, \) and take \(b := (1 + \frac{d(d-1)}{2}, 1, \ldots, 1) \). In this case, the only \(I \) with \(\deg I = b \) and \(\lambda_I \neq 0 \) are those of the form

\[
I = ((1), (j_1), (1, j_2), \ldots, (1, 1, j_d)),
\]

with the \(j_i \) distinct. Thus the left side of (2.10) is a non-zero dimensional constant. On the other hand, simple combinatorial considerations show that the right side of (2.10) must be identically zero.

Less uniform versions of (2.10) may be found in [3, 21, 24]. Let \(X_1, \ldots, X_k \) be smooth vector fields and assume that there exists a \(d \)-tuple \(I = (w_1, \ldots, w_d) \) such that \(|\lambda_I| \geq 1 \) on \(U \). Let \(\delta_1, \ldots, \delta_k \) be scalars satisfying the smallness and weak comparability conditions

\[
\delta_i \leq K, \quad \delta_i \leq K\delta_j, \quad 1 \leq i, j \leq k.
\]

Then [24, 21] prove that there exist \(N \geq |\deg I|_1 \) and \(N' \) (depending on \(I \)) such that

\[
\sum_{|\deg I|_1 \leq N} \left(\prod_{i=1}^{k} \delta_i^{(\deg I)_i} \right) |\lambda_I(x_0)|
\]

\[
\sim \sum_{J \in \{1, \ldots, k\}^d} \sum_{\alpha \in \mathbb{Z}^d} \left(\prod_{i=1}^{k} \delta_i^{\deg J + \deg J \cdot \alpha} \right) |\partial^\alpha \det D_{\Psi^J}(x_0)(0)|, \quad x_0 \in U,
\]
with inadmissible implicit constants. It is not shown, however, how to remove the
dependence of the implicit constant on \(\varepsilon, K \), or the \(X_i \), or, in particular, how to
remove the assumption that the Hörmander condition holds uniformly.

5. Proof the optimality result: Proposition 2.2

The entirety of this section will be devoted to the proof of Proposition 2.2. It
suffices to prove the proposition when \(\text{supp} \mu \subseteq V \), and \(V \) and \(W \) are bounded open
subsets of \(U \) with \(\overline{V} \subseteq W, \overline{W} \subseteq U \). (Recall that \(U \) is the set on which the \(\pi_i \), and
hence the \(X_i \), are defined.) By (2.7) with \(E_j = \pi_i(V) \), \(1 \leq i \leq k, \mu(V) < \infty \).
Throughout this section, an object will be said to be admissible if it depends (or
it is taken from a finite set depending) only on \(d \) and \(p = (p_1, \ldots, p_k) \).
All implicit constants will be admissible. The constant \(A(\mu) \) will always represent precisely the
quantity in (2.7), and in particular will not be allowed to change from line to line.

First suppose that \(p_j_0 < 1 \). Without loss of generality, \(j_0 = 1 \). We may cover
\(\pi_1(V) \) by \(C_{V, \pi_1} \varepsilon^{-(d-1)} \) balls \(B_i \) of radius \(\varepsilon \), so

\[
\mu(V) \leq \sum_i \int_{B_i} \chi_{\pi_1} \prod_{j=2}^k \chi_{\pi_j(V) \cap \pi_j} \, d\mu \leq A(\mu) \sum_i |B_i|^{1/p_1} \prod_{j=2}^k |\pi_j(V)|^{1/p_j}
\[
\leq C(\mu, d, p, V, \pi_2, \ldots, \pi_k) \varepsilon^{(d-1)(\frac{1}{p_1}-1)}.
\]

Letting \(\varepsilon \to 0 \), we see that \(\mu \equiv 0 \).

We now turn to the case when \(\sum_j p_j^{-1} > 1 \). Replacing \(\{X_1, \ldots, X_k\} \) with
\(\{\partial_1, \ldots, \partial_d, X_1, \ldots, X_k\} \), \((p_1, \ldots, p_k) \) with \((\infty, \ldots, \infty, p_1, \ldots, p_k) \), and \(k \) with \(d+k \)
if necessary, we may assume that \(X_i = \partial_i, 1 \leq i \leq d \), without affecting either of
the following sets

\[
Z := \{x \in V : b_p \notin P_x \}
\]
\[
\Omega := \{x \in V : b_p \text{ is an extreme point of } P_x \},
\]
or the quantity on the right of (2.7).

The proposition will follow from the next two lemmas.

Lemma 5.1. \(\mu(Z) = 0 \).

Lemma 5.2. If \(\rho := \sum_{d \geq 1} |\lambda_{t}||\mu_{t}^{\mu_{t}+1} \rangle \) and

\[
\Omega_n := \{x \in \Omega : 2^n \leq \rho(x) \leq 2^{n+1} \}, \quad n \in \mathbb{Z},
\]
then \(\mu(\Omega') \lesssim A(\mu)2^n|\Omega'| \) for any Borel set \(\Omega' \subseteq \Omega_n \).

Proof of Lemma 5.1. By Proposition 4.1 there exist admissible, finite sets \(A_i, i = 1, \ldots, C_{d, p} \)
such that \(b_p \notin P(A_i) \) for any \(i \) and for each \(x \in Z \), there exists an \(i \) such that
\(P_x \subseteq P(A_i) \). For the remainder of the proof of the lemma, we let \(A = A_i \) be
fixed and define

\[
Z' := \{x \in Z : P_x \subseteq P(A)\}.
\]
It suffices to show that \(\mu(Z') = 0 \).

Choose admissible \(\varepsilon > 0 \) and \(v \in (\varepsilon, 1]^k \) such that

\[
v \cdot b_p + \varepsilon < v \cdot b, \quad \text{for } b \in P(A).
\]

Define

\[
W_0 := \{w \in W : v \cdot \deg w \leq d\}.
\]
Let $N = N_{d,p}$ be an integer whose size will be determined in a moment and which is, in particular, larger than $\frac{4}{d}$. Since \overline{W} is compact and contained in U, the X_i are smooth on U, and $\{X_w : w \in W_0\}$ contains the coordinate vector fields, there exists $\delta_0 > 0$, depending on the π, p, and W, such that for all $0 < \delta \leq \delta_0$, $I \in W_0^d$ satisfying deg $I \in \mathcal{P}(A)$, $x \in W$, and $w, w' \in W_0$,

\[
\|\delta^{v - \text{deg} I} l_{\lambda_I}(x)\| < \delta^v \delta^{b_p},
\]

\[
\|\delta^{v - \text{deg} w} X_w\|_{\mathcal{C}^0(W)} \leq \frac{1}{4} \text{dist}(V, \partial W), \quad \|\delta^{v - \text{deg} w} X_{w'}\|_{\mathcal{C}^0(W)} \leq 1,
\]

\[
[\delta^{v - \text{deg} w} X_w, \delta^{v - \text{deg} w'} X_{w'}] = \sum_{\tilde{w} \in W_0} c_{w, w, \tilde{w}} \delta^{v - \text{deg} \tilde{w}} X_{\tilde{w}},
\]

with

\[
\|c_{w, w, \tilde{w}}\|_{\mathcal{C}^0(W)} \lesssim 1.
\]

We omit the details since they are essentially the same as arguments found in the proof of Lemma 1.2.

For $x \in Z'$ and $0 < \delta \leq \delta_0$, choose $I_\delta \in W_0^d$ such that

\[
\delta^{v - \text{deg} I_\delta} \lambda_{I_\delta}(x) = \max_{I \in W_0^d} \delta^{v - \text{deg} I} |\lambda_I(x)|.
\]

Let

\[\Phi_\delta(t_1, \ldots, t_d) := \exp(t_1 \delta^{v - \text{deg} w_1} X_{w_1} + \cdots + t_d \delta^{v - \text{deg} w_d} X_{w_d})(x),\]

\[B(x, \delta) := \{\Phi_\delta(t) : |t| < 1\},\]

where $I_\delta = (w_1, \ldots, w_d)$. Then $B(x, \delta) \subseteq W$ by (5.2) and the fact that $x \in Z' \subseteq V$.

By the results of [23], provided $N = N_{d,p}$ is sufficiently large, these balls are doubling in the sense that $|B(x, \delta)| \sim |B(x, 2\delta)|$, for all $x \in Z'$ and $0 < \delta \leq \delta_0$. (Here we are using the fact that ε and v are admissible.) Furthermore, for $x \in V$,

\[|B(x, \delta)| \sim \delta^{v - \text{deg} I_{\delta}^v} |\lambda_{I_\delta}(x)| \]

\[\exp(tX_\pi)(y) \in B(x, C\delta) \quad \text{whenever} \quad y \in B(x, \delta), \quad |t| < \delta^v,\]

where $C = C_{d,p}$. By the doubling property, the change of variables formula, and (5.3), if $\sigma_1 : \pi_1(W) \to \mathbb{R}^d$ is any smooth section of π_i (i.e. $\sigma_1 \circ \pi_i$ is the identity), with $\sigma_1(\pi_1(V)) \subseteq W$,

\[
|B(x, \delta)| \sim |B(x, C\delta)| = \int_{\pi_i(B(x, C\delta))} \int_{\mathbb{R}^d} \chi_{B(x, C\delta)}(e^{tY_i}(\pi_i(y))) \, dt \, dy \geq \int_{\pi_i(B(x, C\delta))} \int_{\mathbb{R}^d} \chi_{B(x, C\delta)}(e^{tY_i}(\pi_i(y))) \, dt \, dy \gtrsim \delta^{v} |\pi_i(B(x, \delta))|.
\]

By the Vitali covering lemma (as stated in [19], for instance), for each $0 < \delta \leq \delta_0$, there exists a collection of points $\{x_j\}_{j=1}^{M_k} \subseteq Z'$ such that $Z' \subseteq \bigcup_{j=1}^{M_k} B(x_j, \delta)$ and such that the balls $B(x_j, C^{-1}\delta)$ are pairwise disjoint. By this, (2.1) and the fact that $\chi_{B(x_j, \delta)} \leq \prod_{i=1}^{k} \chi_{B(x_j, \delta)} \circ \pi_i$, (5.4), (5.6) and the definition of b_p, the doubling property and (5.1), and finally, disjointness of the $B(x_j, \delta)$,

\[
\mu(Z') \leq \sum_{j=1}^{M_k} \mu(B(x_j, \delta)) \leq A(\mu) \sum_{j=1}^{k} \prod_{i=1}^{k} |\pi_i(B(x_j, \delta))|^{\frac{1}{p_i}} \leq A(\mu) \sum_{j=1}^{k} |B(x_j, C\delta)|^{\frac{1}{p_i}} \prod_{i=1}^{k} \delta^{-\frac{1}{p_i}},
\]
Thus, considering the balls $B \in$ with

$$\delta v^{-\deg I} t_{x}^{\delta} - v - b_{p} |I_{x}^{\delta}(x)| \sum_{i} \frac{|I_{x}^{\delta}(x)|}{\lambda_{I_{x}^{\delta}}(x)} \leq A(\mu) |W| \delta^{v} \left(\sum_{i} \frac{|I_{x}^{\delta}(x)|}{\lambda_{I_{x}^{\delta}}(x)}\right).$$

The lemma follows by sending δ to 0. □

Proof of Lemma 5.2. The proof is similar to that of Lemma 5.1. Fix n and $\Omega' \subseteq \Omega$. Let $x \in \Omega'$. Since $\Omega' \subseteq \Omega$, b_{p} is an extreme point of P_{x}. By the definition of ρ, $\max_{i=\rho} |I_{x}^{\rho}(x)| \sim 2n^{\rho} |I_{x}^{\rho}|$.

By Proposition 4.1 and a covering argument, we may assume that there exists a finite set $A \subseteq Z_{0}^{\delta}$ such that $b_{p} \notin P(A)$ and for each $x \in \Omega'$, $P_{x} \subseteq P(A \cup \{b_{p}\})$. Choose $\varepsilon > 0, v \in \{\varepsilon, 1\}^{k}$ such that $v \cdot b_{p} + \varepsilon < v \cdot b$ for each $b \in P(A \cup \{b_{p}\}) \cap Z_{0}^{k} \setminus \{b_{p}\}$, and let

$$W_{0} := \{w \in W : v \cdot \deg w \leq d\}.$$

Since $(1, \ldots, 1, 0, \ldots, 0) \in P_{x}$ for each $x \in U$, $(1, \ldots, 1, 0, \ldots, 0) \in P(A \cup \{b_{p}\})$. Therefore, $v \cdot b_{p} \leq \sum_{i=1}^{d} v^{i} \leq d$, so deg $I = b_{p}$ implies that $I \in W_{0}^{d}$.

Let $N = N_{d,p}$ be a large integer. As before, there exists $\delta_{n} > 0$, which depends on n, the π, and on p, such that for all $0 < \delta \leq \delta_{n}, x \in \Omega'$, $I \in W_{0}^{d}$ with deg $I \neq b_{p}$, and $w, w' \in W_{0}$,

$$|\delta v^{-\deg I} \lambda_{I}(x)| \leq \frac{\delta v^{-\deg I} \lambda_{I}(x)}{\max_{I=\rho} \delta v^{-\deg I} \lambda_{I}(x)},$$

$$\|\delta v^{-\deg w} X_{w}^{v} \|_{C^{v}(W)} \leq \frac{1}{d} \text{ dist}(V, \partial W),$$

$$\|\delta v^{-\deg w} X_{w}^{v} \|_{C^{v}(W)} \leq 1,$$

$$[\delta v^{-\deg w} X_{w}^{v}, \delta v^{-\deg w'} X_{w'}^{v}] = \sum_{\tilde{w} \in W_{0}} c_{w, w', \delta} \delta v^{-\deg \tilde{w}} X_{\tilde{w}},$$

with

$$\|c_{w, w'}^{\tilde{w}, \delta} \|_{C^{v}(W)} \leq C_{d,p},$$

for all $w, w' \in W_{0}$. In particular, we may choose δ_{n} sufficiently small that for each $x \in \Omega'$ and $0 < \delta \leq \delta_{n}$, there exists a d-tuple $I_{x}^{\delta} \in W_{0}^{d}$ such that deg $I_{x}^{\delta} = b_{p}$ and

$$\delta v^{-\deg I_{x}^{\delta} |I_{x}^{\delta}(x)|} = \max_{I \in W_{0}^{d}} \delta v^{-\deg I} \lambda_{I}(x) \sim \delta v^{-\deg I} \lambda_{I}(x) \sim 2^{n(b_{p})|I_{x}^{\delta}| - 1}.$$

Thus, considering the balls $B(x, \rho)$ (defined in 4.3) for $x \in \Omega'$ and $0 < \rho \leq \rho_{n}$, we have

$$|B(x, \delta)| \sim 2^{n(b_{p})|I_{x}^{\delta}| - 1} \delta v^{-b_{p}} = 2^{\sum_{i} \frac{1}{\pi_{i}} - 1} \delta v^{-b_{p}}.$$

Since the balls $B(x, \rho)$ are doubling, for each $\eta > 0$ there exist ρ_{n} such that $|B(x, \delta)| \leq |\Omega'| + \eta$.

Arguing as in the proof of Lemma 5.1,

$$\mu(\Omega') \leq \sum_{j=1}^{M_{k}} \mu(B(x, \delta)) \leq A(\mu) \sum_{j=1}^{M_{k}} |B(x, \delta)| |B(x, \delta)| \sum_{i} \frac{|I_{x}^{\delta}(x)|}{\lambda_{I_{x}^{\delta}}(x)} \sim A(\mu) 2^{n(|\Omega'| + \eta)}.$$
Letting $\eta \to 0$ completes the proof.

Remarks. The pointwise upper bound (2.8) is false if no assumptions are made on b_p. Indeed, if b_p lies in the interior of $P_{\mathcal{X}_0}$, then for some $\theta < 1$, $b_{\theta p}$ lies in the interior of $P_{\mathcal{X}_0}$, where $\theta p = (\theta p_1, \ldots, \theta p_k)$. Thus for some neighborhood U of x_0, $b_{\theta p}$ lies in the interior of $P_{\mathcal{X}}$ for every $x \in U$. Hence by the main result in [21], if a is continuous with compact support in U,

$$\left| \int \prod_{j=1}^{k} f_j \circ \pi_j(x) a(x) \, dx \right| \lesssim \prod_{j=1}^{k} \|f_j\|_{L^{\theta p_j}}.$$

Additionally,

$$\left| \int \prod_{j=1}^{k} f_j \circ \pi_j(x) |\log |x - x_0|| a(x) \, dx \right| \lesssim \prod_{j=1}^{k} \|f_j\|_{L^\infty}.$$

Thus by interpolation,

$$\left| \int \prod_{j=1}^{k} f_j \circ \pi_j(x) |\log |x - x_0||^{1-\theta} a(x) \, dx \right| \lesssim \prod_{j=1}^{k} \|f_j\|_{L^{p_j}}.$$

For the unweighted bilinear operator in the ‘polynomial-like’ case, the endpoint restricted weak type bounds are known and are due to Gressman in [13]; in the multilinear case, the corresponding estimates follow by combining his techniques with arguments in [21]. The deduction of endpoint bounds from the arguments in [13] does not seem to be immediate in the weighted case, and so these questions remain open except for certain special configurations (such as convolution or restricted X-ray transform along polynomial curves).

6. Proof of the main theorem: Theorem 2.1

In this section, undecorated constants and implicit constants ($C, c, \lesssim, \gtrsim, \sim$) will be allowed to depend on a cutoff function a (specifically, on upper bounds for $\text{diam}(\text{supp} \, a)$ and $\|a\|_{L^\infty}$), a point $b_0 \in \mathbb{Z}_0^k$, and exponents p_1, \ldots, p_k (all of which will be given in a moment), as well as the π_j. Other parameters (namely, ε, δ, N) that depend on b_0, p_1, \ldots, p_k will arise later on, so implicit constants may depend on these quantities as well. Unless otherwise stated, decorated constants and implicit constants ($c_d, \lesssim_{N,d}, \gtrsim_d$, etc.) will only be allowed to depend on the objects in their subscripts.

Let $J_0 \in \{1, \ldots, k\}^d$ and for $x \in U$, define $\Psi_{x}^{J_0}(t)$ as in (2.41). Let β_0 be a multiindex, and define $b_0 := \deg J_0 + \deg J_0 \beta_0$. Let

$$\tilde{\rho}(x) := |\partial_{t}^{J_0}|_{t=0} \det D_t \Psi_{x}^{J_0}(t)|^{\frac{1}{\text{deg}_{J_0} - 1}}.$$

(6.1)

Let a be continuous and compactly supported in U, and define the multilinear form

$$\tilde{M}(f_1, \ldots, f_k) := \int_{\mathbb{R}^d} \prod_{j=1}^{k} f_j \circ \pi_j(x) \tilde{\rho}(x) a(x) \, dx.$$

In light of Proposition 2.8, the following more general (we need not assume that b_0 is extreme) result implies Theorem 2.1.
Theorem 6.1. Let \((p_1, \ldots, p_k) \in [1, \infty)^k\) satisfy \((p_1^{-1}, \ldots, p_k^{-1}) < q(b_0)\), with \(p_i^{-1} < q_i(b_0)\) when \(b_0^i \neq 0\). Then

\[
|\tilde{M}(f_1, \ldots, f_k)| \lesssim \prod_{j=1}^{k} \|f_j\|_{L^{p_j}},
\]

for all continuous \(f_1, \ldots, f_k\).

Since \(J_0\) and \(\beta_0\) are fixed, we will henceforth drop the tildes from our notation, with the understanding that we are using (6.1) instead of (2.3) to define \(\rho\).

It suffices to prove (6.2) when the \(f_j\) are nonnegative. Suppose that \(b_j = 0\) for some \(j\). Then \(\pi_j\) plays no role in the definition of \(\rho\), and \(p_j = \infty\), so by Hölder’s inequality, we may ignore \(f_j\) entirely. Thus we may assume that \(b_j \neq 0\) for each \(j\).

In fact, we may assume that for each \(j\), \(p_j < \infty\) since \(\|f_j\|_{L^{p_j}(\text{supp } a)} \lesssim \|f_j\|_{L^{\infty}}\), by the compact support of \(a\).

We only claim a non-endpoint result, so by real interpolation with the trivial (by Hölder) inequalities of the form

\[
M(f_1, \ldots, f_k) \lesssim \prod_{j=1}^{k} \|f_j\|_{L^{\tilde{p}_j}}, \quad \sum_{j=1}^{k} \tilde{p}_j^{-1} \leq 1,
\]

it suffices to prove that for all Borel sets \(E_1, \ldots, E_k\) and some sufficiently small \(\varepsilon > 0\),

\[
\int_{\mathbb{R}^d} \prod_{j=1}^{k} \chi_{E_j} \circ \pi_j(x) \rho(x) a(x) \, dx \lesssim \prod_{j=1}^{k} |E_j|^{q_j(b_0)^{-\varepsilon}}. \tag{6.3}
\]

Letting \(\Omega := \text{supp } a \cap \bigcap_{j=1}^{k} \pi_j^{-1}(E_j)\), (6.3) will follow from

\[
\rho(\Omega) \lesssim \prod_{j=1}^{k} |\pi_j(\Omega)|^{q_j(b_0)^{-\varepsilon}}. \tag{6.4}
\]

If we define

\[
\alpha_j := \frac{\rho(\Omega)}{|\pi_j(\Omega)|}, \tag{6.5}
\]

a bit of arithmetic shows that (6.4) is equivalent to

\[
\prod_{j=1}^{k} \alpha_j^{q_j(b_0)(-\varepsilon, \varepsilon)} \lesssim \rho(\Omega),
\]

which in turn would be implied by

\[
\prod_{j=1}^{k} \alpha_j^{b_j^i + \varepsilon} \lesssim \rho(\Omega), \tag{6.6}
\]

with a slightly smaller \(\varepsilon\). (We recall that \(q\) equals its own inverse.)

By the coarea formula,

\[
\alpha_j = |\pi_j(\Omega)|^{-1} \int_{\pi_j(\Omega)} \int_{\pi_j^{-1}(y)} \chi_{\Omega}(x) \rho(x) \frac{1}{|\pi_j(x,y)|} \, d\mathcal{H}^1(x) \, dy. \tag{6.7}
\]

Since \(\pi_j\) is a submersion, \(|X_j| \gtrsim 1\) and \(\mathcal{H}^1(\pi_j^{-1}(y)) \lesssim 1\) for all \(y \in \pi_j(\Omega)\). Since \(\rho \lesssim 1\) by smoothness of the \(\pi_j\), (6.7) implies that

\[
\alpha_j \lesssim \text{diam}(\Omega) \leq \text{diam}(\text{supp } a). \tag{6.8}
\]
By taking a partition of unity, we may assume that the α_j are as small as we like, in particular, that they are smaller than $\frac{1}{2}$. Reordering if necessary, $\alpha_1 \leq \cdots \leq \alpha_k$. Thus for C sufficiently large, $\rho(\Omega_n) \leq \frac{1}{2}\rho(\Omega)$.

For $n \in \mathbb{Z}$, let $\Omega_n = \{ x \in \Omega : 2^n \leq \rho(x) < 2^{n+1}\}$. Then for C sufficiently large, $\Omega_n = \emptyset$ for all $n > C$. On the other hand, since π_1 is a submersion and $\text{supp}\, \alpha$ is compact,

$$\sum_{n \leq \log \alpha_1 - C} \rho(\Omega_n) \lesssim \sum_{n \leq \log \alpha_1 - C} 2^n |\pi_1(\Omega)| \lesssim 2^{-C} \alpha_1 |\pi_1(\Omega)| = 2^{-C} \rho(\Omega).$$

Thus for C sufficiently large,

$$\rho\left(\bigcup_{n \leq \log \alpha_1 - C} \Omega_n \right) < \frac{1}{2} \alpha_1 |\pi_1(\Omega)| = \frac{1}{2} \rho(\Omega).$$

By pigeonholing, there exists n with $\log \alpha_1 - C \leq n \leq C$ such that

$$\rho(\Omega_n) \geq (2(|\log \alpha_1| + 2C))^{-1} \rho(\Omega) \gtrsim \alpha_1 \rho(\Omega). \quad (6.9)$$

Define

$$\alpha_{n,j} := \frac{\rho(\Omega_n)}{|\pi_1(\Omega_n)|}, \quad j = 1, \ldots, k.$$

By (6.9) and the triviality $\rho(\Omega_n) \leq \rho(\Omega)$, together with the proof of (6.8) and the small diameter of $\text{supp}\, \alpha$,

$$\alpha_1 \rho(\Omega) \approx \alpha_1^{\delta} \lesssim \alpha_{n,j} \lesssim \frac{\alpha_1}{2}.$$

Therefore (6.9) follows from

$$\rho(\Omega_n) \gtrsim \prod_{j=1}^{k} (\alpha_{n,j})^{b_0 + \varepsilon}, \quad (6.10)$$

with a slightly smaller value of ε. Henceforth, we let $\rho_0 := 2^n$ (for this value of n) and drop the n’s from the notation in (6.10). We note that $\rho(\Omega) \sim \rho_0 |\Omega|$. Reordering again, we may continue to assume that $\alpha_1 \leq \cdots \leq \alpha_k$.

Let $\delta > 0$ be a small constant (depending on ε, b_0, d), which will be determined later on. Cover Ω by $c_d\alpha_1^{-\delta}$ balls of radius $\alpha_1^{-\delta}$. By pigeonholing, there exists $\Omega' \subseteq \Omega$ with

$$\rho(\Omega') \gtrsim \alpha_1^{-\delta} \rho(\Omega).$$

Arguing as above, the parameters $\alpha_1' := |\pi_1(\Omega')|^{-1} \rho(\Omega')$ satisfy

$$\alpha_1^{-\delta} \leq \alpha_1^{-\delta} \alpha_1 \lesssim \alpha_1' \lesssim \text{diam}(\Omega') \leq \alpha_1^{-\delta}. \quad (6.11)$$

Thus for δ sufficiently small, (6.10) would follow from

$$\rho(\Omega') \gtrsim \prod_{j=1}^{k} (\alpha_j')^{b_0 + \varepsilon},$$

with a slightly smaller value of ε.

Since $\alpha_j' \lesssim \text{diam}(\text{supp}\, \alpha)$, we may assume that the α_j' are as small (depending on the π_j, ε, δ), as we like. Thus (6.11) implies that for each $1 \leq j \leq k$,

$$\text{diam}(\Omega') \leq c(\alpha_j')^{\delta},$$

for some slightly smaller value of δ, and with c as small as we like. By the same argument as for (6.3),

$$\alpha_j' \lesssim \rho_0 \text{diam}(\Omega') \lesssim \rho_0 (\alpha_j')^{\delta},$$

whence $\rho_0 \geq c^{-1}(\alpha_j')^{1-\delta}$, again with a slightly smaller value of δ.

In summary, to complete the proof of Theorem 6.1 (and thereby that of Theorem 2.1) it suffices to prove the following.

Lemma 6.2. Let \(\varepsilon > 0 \) be sufficiently small depending on \(b_0 \) and \(\delta > 0 \) be sufficiently small depending on \(\varepsilon, b_0 \). Let \(\Omega \subseteq \text{supp} a \) be a Borel set, and define \(\alpha_1, \ldots, \alpha_k \) as in (6.5). Assume that \(\alpha_1 \leq \ldots \leq \alpha_k \), that
\[
\rho_0 \leq \rho(x) \leq 2\rho_0 \quad \text{for all } x \in \Omega,
\]
and that
\[
\alpha_k < c, \quad \rho_0 \geq c^{-1}\alpha_k^{1-\delta}, \quad \text{diam}(\Omega) \leq c\alpha_1^\delta. \quad (6.12)
\]
Then for \(c \) sufficiently small, depending on the \(\pi_j, b_0, \varepsilon, \delta \), we have
\[
\prod_{j=1}^k \alpha_j^{b_j + \varepsilon} \lesssim \rho(\Omega). \quad (6.13)
\]

We note in particular that all constants and implicit constants are independent of \(\rho_0, \Omega \), and the \(\alpha_j \).

We devote the remainder of this section to the proof of Lemma 6.2. We use the method of refinements, which originated in [4] and was further developed in similar contexts in [3] [24].

Recalling (6.1),
\[
\left| \partial^{j_0} \det \Phi_{x_0}(0) \right| \sim \rho_0^{|j_0|^{-1}} =: \lambda_0, \quad x_0 \in \Omega. \quad (6.14)
\]

As in [24], for \(w > 0 \), we say that a set \(S \subseteq [-w, w] \) is a central set of width \(w \) if for any interval \(I \subseteq [-w, w] \),
\[
|I \cap S| \lesssim \left(\frac{|I|}{w} \right)^\varepsilon |S|.
\]

Lemma 6.3. For each subset \(\Omega' \subseteq \Omega \) with \(\rho(\Omega') \gtrsim \alpha_1^{C_\varepsilon} \rho(\Omega) \) and each \(1 \leq j \leq k \), there exists a refinement \((\Omega')_j \subseteq \Omega' \) with \(\rho((\Omega')_j) \gtrsim \alpha_1^{2C_\varepsilon} \rho(\Omega') \), such that for each \(x \in (\Omega')_j \),
\[
\mathcal{F}_j(x, (\Omega')_j) \subseteq \{ t : |t| \lesssim \alpha_1^\delta \text{ and } e^{\delta X_i}(x) \in (\Omega')_j \}
\]
is a central set whose width \(w_j \) and measure satisfy
\[
\rho_0^{-1} \alpha_1^{2C_\varepsilon} \alpha_j \lesssim w_j \lesssim c\alpha_1^\delta \quad \text{and} \quad |\mathcal{F}_j(x, (\Omega')_j)| \gtrsim \rho_0^{-1} \alpha_1^{2C_\varepsilon} \alpha_j. \quad (6.15)
\]

This lemma has essentially the same proof as Lemma 8.2 of [24], but we sketch the argument for the convenience of the reader.

Sketch proof of Lemma 6.3. First we discard shorter-than-average \(\pi_j \) fibers in \(\Omega' \), leaving a subset \(\Omega'' \subseteq \Omega' \) with \(\rho(\Omega'') \gtrsim \rho(\Omega') \) such that for each \(x \in \Omega'' \),
\[
|\{ t : |t| \lesssim \alpha_1^\delta \text{ and } e^{\delta X_i}(x) \in \Omega' \}| \gtrsim \left(\frac{|\Omega'|}{|\Omega|} \right)^\varepsilon \gtrsim \alpha_1^\delta \rho_0^{-1} \alpha_j.
\]

Next, if \(S \subseteq [-\alpha_1^\delta, \alpha_1^\delta] \) is a measurable set, it contains a translate \(S' \) of a central set of measure at least \(|S|^1/2\varepsilon \) and width at most \(c\alpha_1^\delta \). Indeed, take \(S' = S \cap I' \), where \(I' \) is a minimal length dyadic interval with \(|S \cap I'| \geq \left(\frac{|I'|}{\alpha_1^\delta} \right)^\varepsilon |S| \).

Using the exponential map, each \(\pi_j \) fiber in \(\Omega'' \) is naturally associated to a set \(S \subseteq [-\alpha_1^\delta, \alpha_1^\delta] \); \(S \) can be refined to a translate \(S' \) of a central set; and \(S' \) is then a fiber of the set \((\Omega')_j \). By the definition of exponentiation, for \(x \in (\Omega')_j \), the set \(\mathcal{F}_j(x, (\Omega')_j) \) in (6.15) contains 0, and it is easy to see that a 0-containing translate of a central set of width \(w \) is a central set of width \(2w \). Finally, by pigeonholing,
we can select only those fibers having the most popular dyadic width (there are at most $\log \alpha_1$ options).

Write $J_0 = (j_1, \ldots, j_d)$. With $\Omega_0 := \Omega$, for $1 \leq i \leq d$ we define

$$\Omega_i := (\Omega_{i-1})_{j_{d-i+1}}.$$

By Lemma 6.3 for each i, $\rho(\Omega_i) \geq \alpha_1^{C_\varepsilon} \rho(\Omega)$.

Fix $x_0 \in \Omega_d$. Let

$$F_1 := \mathcal{F}_{j_1}(x_0, \Omega_d), \quad x_1(t) := e^{tx_{j_1}}(x_0),$$

and for $2 \leq i \leq d$, let

$$F_i := \{ (t_1, \ldots, t_i) : (t_1, \ldots, t_{i-1}) \in F_{i-1}, t_i \in \mathcal{F}_{ji}(x_{i-1}(t_1, \ldots, t_{i-1}), \Omega_{d-i+1}) \}$$

$$x_i(t_1, \ldots, t_i) := e^{tx_{ji}}x_{i-1}(t_1, \ldots, t_{i-1}).$$

By construction, for each i and each $(t_1, \ldots, t_i) \in F_i$,

$$x_i(t_1, \ldots, t_i) \in \Omega_{d-i+1} \subseteq \Omega_{d-i},$$

so $\mathcal{F}_{j_{i+1}}(x_i(t_1, \ldots, t_i), \Omega_{d-i})$ is a central set whose width and measure satisfy (6.10) (with j_{i+1} in place of j). Furthermore,

$$\Psi_{x_{0i}}^{J_{0i}}(F_d) \subseteq \Omega \quad \text{and} \quad |F_d| \gtrsim \rho_0^{-d} \alpha_1^{C_\varepsilon} \alpha^{\deg J_0}; \quad (6.17)$$

here we recall that deg J is the k-tuple whose i-th entry is the number of appearances of i in the d-tuple J.

Let $\Psi_{x_0}^N$ be the degree N Taylor polynomial of $\Psi_{x_0}^{J_0}$, where $N \geq |b_0| + 1$ is a large integer to be chosen later. Let $Q_w = \prod_{i=1}^d [-w_i, w_i]$ and let $Q_1 = Q(1, \ldots, 1)$. By scaling, the equivalence of all norms on the degree N polynomials in d variables, and (6.14),

$$\| \det D\Psi_{x_0}^N \|_{C^0(Q_w)} \geq \sup_{t \in Q_1} |\det D\Psi_{x_0}^N(w_1 t_1, \ldots, w_d t_d)|$$

$$\sim_{N,d} \sum_{\beta} \sum_{\beta} w^{\beta} |\partial^\beta \det D\Psi_{x_0}^N(0)| \geq \rho_0 |\partial^{\beta_0} \det D\Psi_{x_0}^N(0)| \sim \rho_0 \lambda_0.$$

Thus by (6.16), the definition of λ_0, and some arithmetic,

$$\| \det D\Psi_{x_0}^N \|_{C^0(Q_w)} \gtrsim \rho_0^{-d} \alpha_1^{C_\varepsilon} \alpha^{\deg J_0}. \quad (6.18)$$

(We recall that deg J is the k-tuple whose i-th entry equals $\sum_{j, j_0} 1 - \beta_0$.)

Lemma 6.4. If P is any degree N polynomial on \mathbb{R}^d, there exists a subset $F'_d \subseteq F_d$ such that $|F'_d| \gtrsim_{N,x,d} |F_d|$ and

$$|P(t)| \gtrsim_{N,x,d} \| P \|_{C^0(Q_w)}, \quad t \in F'_d.$$

The lemma follows from Lemma 6.2 of [3] or Lemma 7.3 of [24]. Roughly, if S is a central set of width w_0 and p is a degree N polynomial, p is close to $\| p \|_{C^0([-w_0, w_0])}$ on most of S. This is because the set where p is small is the union of at most N small intervals. Recalling how our set F_d was constructed (from a “tower” of central sets), it is possible to iterate d times to obtain the lemma.

Now we use $\Psi_{x_0}^N$ to control $\Psi_{x_0}^{J_0}$ via the following lemma, which just paraphrases Lemma 7.1 of [3]. We recall that Q_1 is the unit cube.
Lemma 6.5. Let \(N, C_1, c_2, c_3 > 0 \). There exists a constant \(c_0 > 0 \), depending on \(C_1, c_2, c_3, N, d \), such that the following holds. Let \(\Psi : Q_1 \to \mathbb{R}^d \) be twice continuously differentiable and let \(\Psi^N : \mathbb{R}^d \to \mathbb{R}^d \) be a degree \(N \) polynomial. Set \(J_{\Psi} := \| \det D\Psi \|_{C^0(Q_1)} \) and assume that
\[
\| \Psi \|_{C^0(Q_1)} \leq C_1, \quad \| \Psi - \Psi^N \|_{C^2(Q_1)} \leq c_0 J_{\Psi}^2. \tag{6.19}
\]

Let \(G \subseteq Q_1 \) be a Borel set with the property that for any degree \(N \) polynomial \(P : \mathbb{R}^d \to \mathbb{R} \),
\[
|\{t \in G : |P(t)| \geq c_2 \| P \|_{C^0(Q_1)}\}| \geq c_3 |G|. \tag{6.20}
\]
Then
\[
|\Psi(G)| \geq c_0 |G| \| \det D\Psi^N \|_{C^0(Q_1)}. \tag{6.21}
\]

For the complete details, the reader may consult [3]. We give a quick sketch of that argument here.

Sketch proof of Lemma 6.5. Let \(P = \det D\Psi^N \) and let \(G' \) denote the set on the left of (6.20). By (6.19),
\[
|\det D\Psi(t)| \sim |P(t)| \sim \| P \|_{C^0(Q_1)} \sim J_{\Psi}, \quad t \in G', \quad \| \Psi^N \|_{C^2(Q_1)} \leq 2C_1. \tag{6.21}
\]
This first series of inequalities above imply that
\[
\int_{G'} |\det D\Psi| \geq c_0^{1/2} |G| \| \det D\Psi^N \|_{C^0(Q_1)}.
\]
It remains to show that \(\Psi \) is finite-to-one on \(G' \), so that \(|\Psi(G')| \gtrsim \int_{G'} |\det D\Psi| \).

First the local case. For \(c_0 \) sufficiently small and \(B \) any ball with radius \(c_0^{1/2} J_{\Psi} \) and center in \(G' \), \(\Psi, \Psi^N \) may be shown to be one-to-one on \(10B \) and to satisfy
\[
|\det D\Psi(t)| \sim |P(t)| \sim J_{\Psi}, \quad t \in 10B. \tag{6.22}
\]
We cover \(G' \) by a finitely overlapping collection of such balls \(B \).

Globally, we know (it is an application of Bezout’s theorem) that \(\Psi^N \) is at most \(C_{N,d} \)-to-one on \(G' \). Thus a point \(x \in \mathbb{R}^d \) falls in \(\Psi^N(10B) \) for at most \(C_{N,d} \) balls \(B \in B \). We are done if we can show that \(\Psi(B) \subseteq \Psi^N(10B) \). By the mean value theorem (applied to \((\Psi^N)^{-1} \)), then Cramer’s rule, (6.21), and (6.22),
\[
\text{dist}(\Psi^N(B), (\Psi^N(10B))^c) \geq \text{dist}(B, (10B)^c) \| (D\Psi^N)^{-1} \|_{C^0(10B)} - 1 > c_0^{1/2} J_{\Psi} \text{diam}(B).
\]
The right side is just \(c_0 J_{\Psi}^2 \geq \text{dist}(\Psi(B), \Psi^N(B)) \), so we are done. \(\square \)

Let \(D_w \) denote the dilation \(D_w(t_1, \ldots, t_d) = (w_1 t_1, \ldots, w_d t_d) \). We will apply Lemma 6.5 with \(\Psi = \Psi^{j_0}_{x_0} \circ D_w, \Psi^N = \Psi^N_{x_0} \circ D_w, \) and \(G = D_w F_d \). By Lemma 6.4 we just need to verify (6.19).

Since \(w_j \leq 1 \) for each \(j \), \(\| \Psi \|_{C^2(Q_1)} \leq \| \Psi^{j_0}_{x_0} \|_{C^2(Q_w)} \lesssim 1 \). For the error bound,
\[
\| \Psi^{j_0}_{x_0} - \Psi^N_{x_0} \|_{C^2(Q_w)} \lesssim \max_j w_j^{-1} \| \Psi^{j_0}_{x_0} \|_{C^{N+1}(Q_w)} \lesssim (c\alpha_1)^N, \tag{6.23}
\]
where \(c \) is as in (6.12). (Recall that implicit constants do not depend on \(c \).) We choose \(N \) larger than \(\delta^{-1}(10 \deg_j \beta_0 + 10d) \), and then choose \(c \) sufficiently small. Combining (6.23), (6.12), and (6.18),
\[
\| \Psi^{j_0}_{x_0} - \Psi^N_{x_0} \|_{C^2(Q_w)} \leq c_0(\prod_j w_j)^2 \| \det D\Psi^N_{x_0} \|_{C^0(Q_w)}. \]
For c_0 sufficiently small, this implies that
\[\| \det D\Psi_{x_0}^j - \det D\Psi_{x_0}^N \|_{C^0(Q_{\omega})} < \frac{1}{2} \| \det D\Psi_{x_0}^N \|_{C^0(Q_{\omega})}, \]
so $\| \det D\Psi_{x_0}^j \|_{C^0(Q_{\omega})} \geq \frac{1}{2} \| \det D\Psi_{x_0}^N \|_{C^0(Q_{\omega})}$. Rescaling gives us (6.19).

Applying Lemma 5.5 inequality (6.18), and $b_0 = \deg J_0 + \deg J_0 \beta_0$,
\[|\Omega| \geq |\Psi_{x_0}(F_d)| \geq |F_d| \rho_0^{d-1} \alpha_1 C \rho_0 \beta_0 \geq \rho_0^{-1} \alpha_1 C \rho_0 \beta_0. \]

The proof of Theorem 2.1 is finally complete.

7. Appendix: The proof of Proposition 4.1

In this section we prove Proposition 4.1 which was used in proving Propositions 2.2 and 2.3. We fix, for the remainder of this section, a point $b_0 \in [0, \infty)^k$. An object is admissible if it may be chosen from a finite collection, depending only on b_0, of such objects, and all implicit constants will be admissible (i.e. depending only on b_0).

The following two lemmas show that conclusions (i) and (ii) of Proposition 4.1 are equivalent.

Lemma 7.1. If $A \subseteq \mathbb{Z}_0^k$ is a finite set and $b_0 \notin \mathcal{P}(A)$, there exist $\varepsilon > 0$ and $v_0 \in (\varepsilon, 1)^k$ such that $v_0 \cdot b_0 + \varepsilon < v_0 \cdot p$ for every $p \in \mathcal{P}(A)$.

Lemma 7.2. If $v_0 \in (0, 1]^k$, there exists a finite set $A \subseteq \mathbb{Z}_0^k$ such that $b_0 \notin \mathcal{P}(A)$ and
\[\{ b \in \mathbb{Z}_0^k : v_0 \cdot b_0 < v_0 \cdot b \} \subseteq \mathcal{P}(A). \]

Proof of Lemma 7.1. We may assume that $b_0 \neq (0, \ldots, 0)$ and $A \neq \emptyset$; otherwise, the result is trivial. Since $b_0 \notin \mathcal{P}(A)$, there exists $v_1 \in \mathbb{R}^k$ such that $v_1 \cdot b_0 < v_1 \cdot p$ for every $p \in \mathcal{P}(A)$. Since $\mathcal{P}(A)$ contains a translate of $[0, \infty)^k$, $v_1 \in [0, \infty)^k$. We may assume that $v_1 \in [0, 1)^k$. Let
\[\delta := \frac{1}{2} |b_0|_{1}^{-1} \min_{b \in A} v_1 \cdot (b - b_0). \]
Since A is finite, $\delta > 0$. Let $v_2 := v_1 + (\delta, \ldots, \delta)$. Then $v_2 \in [\delta, 1 + \delta]^k$. If $b \in A$,
\[b \cdot v_2 = v_1 \cdot b_0 + v_1 \cdot (b - b_0) + \delta |b_1| \geq v_2 \cdot b_0 + \delta |b_1| \geq v_2 \cdot b_0 + \delta. \]
The conclusion thus holds with $\varepsilon := \frac{1}{2} \frac{\delta}{1 + \delta}$, $v_0 := \frac{v_2}{1 + \delta}$. \hfill \Box

Proof of Lemma 7.2. Let $\varepsilon := \min_j v_0^j$ and let $N := \lfloor k \varepsilon^{-1} (b_0 \cdot v_0 + 1) \rfloor$. If $p \in \mathbb{Z}_0^k$ and $|p|_1 \geq N$,
\[v_0 \cdot p \geq \min_j v_0^j \max_i p_i \geq \varepsilon \frac{N}{k} \geq b_0 \cdot v_0 + 1, \]
so the conclusion holds with
\[A := \{ b \in \mathbb{Z}_0^k : |b|_1 \leq N \text{ and } v_0 \cdot b > v_0 \cdot b_0 \}. \]
\hfill \Box

The following lemma implies that the conclusions of Proposition 4.1 hold whenever B is a finite set with $\#B \leq k + 1$.

Lemma 7.3. Let $B \subseteq \mathbb{Z}_0^k$ be a finite set. Assume that $\#B \leq k + 1$ and that $b_0 \notin \mathcal{P}(B)$. Then there exist admissible $\varepsilon > 0$ and $v_0 \in (\varepsilon, 1]^k$ such that $b \cdot v_0 > b_0 \cdot v_0 + \varepsilon$ for every $p \in \mathcal{P}(B)$.

The same proof shows that for any finite \(\mathcal{B} \) with \(b_0 \notin \mathcal{P}(\mathcal{B}) \), there exist \(\varepsilon > 0 \) and \(\nu_0 \in (\varepsilon,1]^k \), taken from a finite list that depends only on \(b_0 \) and \(m \), such that
\[
 b \cdot \nu_0 > b_0 \cdot \nu_0 + \varepsilon \quad \text{for every} \quad p \in \mathcal{P}(\mathcal{B}),
\]
but for simplicity, we only prove the version that we use.

Proof. The conclusion is trivial if \(\mathcal{B} = \emptyset \), so we write \(\mathcal{B} = \{b_1, \ldots, b_m\} \) with \(m \leq k + 1 \). By Lemma 7.1, the conclusion is trivial if \(\{b_1, \ldots, b_m\} \) is admissible; we will reduce to this case.

If \(|b_i|_1 > |b_0|_1 \), \(1 \leq i \leq m \), the conclusion holds with \(\nu_0 = (1, \ldots, 1) \), \(\varepsilon = \frac{1}{2} (|b_0|_1 + 1) - 1 \). Reindexing if necessary, we may assume that \(|b_1|_1 \leq |b_0|_1 \), in which case \(\{b_1\} \) is admissible.

Assume that for some \(j < m \), \(\{b_1, \ldots, b_j\} \) is admissible. By assumption, \(b_0 \notin \mathcal{P}(\{b_1, \ldots, b_j\}) \), so by Lemma 7.1 there exist admissible \(\varepsilon_j > 0 \), \(v_j \in (\varepsilon_j,1]^k \) such that \(v_j \cdot b_0 + \varepsilon_j < v_j \cdot b_i \) for \(1 \leq i \leq j \). If \(v_j \cdot b_0 + \varepsilon_j < v_j \cdot b_i \) for every \(i \), the conclusion of the lemma holds with \(\varepsilon = \varepsilon_j \), \(\nu_0 = v_j \). Otherwise, after reindexing, we may assume that \(v_j \cdot b_{j+1} \leq v_j \cdot b_0 \). Therefore \(b_{j+1} \) is admissible, and hence \(\{b_1, \ldots, b_{j+1}\} \) is admissible as well. The procedure must terminate after at most \(m \) \((\leq k + 1)\) steps, and so the lemma is proved.

Lemma 7.3 has the following corollary.

Lemma 7.4. Under the hypotheses of Lemma 7.3, there exists an admissible \(\varepsilon > 0 \) such that if
\[
 b(\theta) := \sum_{i=1}^{m} \theta_i b_i
\]
is any convex combination of \(b_1, \ldots, b_m \), there exists an \(i, 1 \leq i \leq k \) such that \(b^i(\theta) \geq b_i^0 + \varepsilon \).

Proof. By Lemma 7.3 there exist admissible \(\varepsilon > 0 \), \(\nu_0 \in (\varepsilon,1]^k \) such that
\[
 \varepsilon < (b(\theta) - b_0) \cdot \nu_0 \leq \left(\sum_{i=1}^{k} \nu_i \right) \max_{1 \leq i \leq k} \left(b^i(\theta) - b_i^0 \right) \leq \max_{1 \leq i \leq k} \left(b^i(\theta) - b_i^0 \right).
\]
\(\square \)

Finally, we are ready to complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Let \(C > |b_0|_1 \) be a large constant, to be determined (admissibly) in a moment. Define \(\mathcal{A} := \mathcal{B}' \cup \mathcal{B}'' \), where
\[
 \mathcal{B}' := \{ b \in \mathcal{B} : |b|_1 \leq C \}
\]
\[
 \mathcal{B}'' := \{ C e_i : 1 \leq i \leq k \}.
\]
Here \(e_i \) denotes the \(i \)-th standard basis vector. Then since \(\mathcal{P}(\mathcal{B}'') = \mathcal{P}(\{b \in \mathbb{Z}_0^k : |b|_1 \geq C\}) \subseteq \mathcal{P}(\mathcal{B}) \subseteq \mathcal{P}(\mathcal{A}) \). It remains to show that for \(C \) sufficiently large, \(b_0 \notin \mathcal{P}(\mathcal{A}) \).

Assume that \(b_0 \in \mathcal{P}(\mathcal{A}) \). By Carathéodory’s Theorem from combinatorics (see, for instance, [25] p. 46), \(b_0 = \sum_{i=1}^{k+1} \theta_i a_i \), for some \(a_1, \ldots, a_{k+1} \in \mathcal{A} \) and \(0 \leq \theta_i \leq 1 \) satisfying \(\sum_i \theta_i = 1 \). Reindexing if necessary,
\[
 b_0 \geq \sum_{l=1}^{j} \theta_l C e_{i_l} + \sum_{l=j+1}^{k+1} \theta_l b_{l}, \tag{7.1}
\]
where $b_{j+1}, \ldots, b_{k+1} \in B'$. Since $C > |b_0|_1$, $\sum_{l=j+1}^{k+1} \theta_l > 0$, and since $b_0 \notin \mathcal{P}(B') \subseteq \mathcal{P}(B)$, $\sum_{l=1}^{j} \theta_l > 0$.

Let $b(\theta) := \left(\sum_{l=j+1}^{k+1} \theta_l \right)^{-1} \sum_{l=j+1}^{k+1} \theta_l b_l$.

By Lemma 7.4 there exists an i, $1 \leq i \leq k+1$ such that $b^i(\theta) \geq b^i_0 + \varepsilon$, where $\varepsilon > 0$ depends only on b_0 (crucially, not on C). By (7.1),

$$b_0 \geq \left(\sum_{l=j+1}^{k+1} \theta_j \right) b(\theta),$$

so comparing the i-th coordinates, we see that

$$\sum_{l=j+1}^{k+1} \theta_j \leq \frac{b^i_0}{b^i_0 + \varepsilon} \leq \frac{|b_0|_{\infty}}{|b_0|_{\infty} + \varepsilon},$$

so

$$\sum_{l=1}^{j} \theta_j \geq 1 - \frac{|b_0|_{\infty}}{|b_0|_{\infty} + \varepsilon} = \frac{\varepsilon}{|b_0|_{\infty} + \varepsilon}. \tag{7.2}$$

On the other hand, by (7.1) and the fact that all coordinates of the b_l are non-negative, $\sum_{l=1}^{j} \theta_j \leq \frac{|b_0|_{1}}{C}$. For $C = C(\varepsilon, b_0)$ sufficiently large (admissible since ε is), this contradicts (7.2), and the proof of Proposition 4.1 is complete.

\textbf{References}

[1] J.-G. Bak, D. M. Oberlin, A. Seeger, \textit{Restriction of Fourier transforms to curves and related oscillatory integrals.} Amer. J. Math. 131 (2009), no. 2, 277–311.

[2] J. Bennett, A. Carbery, and J. Wright, \textit{A non-linear generalization of the Loomis–Whitney inequality and applications}, Math. Res. Lett. 12 (2005), 443–457.

[3] M. Christ, \textit{Lebesgue space bounds for one-dimensional generalized Radon transforms}. Preprint, dated 9/28/08.

[4] M. Christ, \textit{Convolution, curvature, and combinatorics: a case study}. Internat. Math. Res. Notices (1998), no. 19, 1033–1048.

[5] M. Christ, A. Nagel, E. M. Stein, and S. Wainger, \textit{Singular and maximal Radon transforms: analysis and geometry}, Ann. of Math., 150 (1999), 489–577.

[6] S. Dendrinos, N. Laghi, J. Wright, \textit{Universal L^p improving for averages along polynomial curves in low dimensions}. J. Funct. Anal. 257 (2009), no. 5, 1355–1378.

[7] S. Dendrinos and D. Müller, \textit{Uniform estimates for the local restriction of the Fourier transform to curves}. Preprint, to appear, Trans. Amer. Math. Soc.

[8] S. Dendrinos and B. Stovall, \textit{Uniform estimates for the X-ray transform restricted to polynomial curves}. J. Funct. Anal. 262 (2012), no. 12, 4986–5020.

[9] S. Dendrinos and B. Stovall, \textit{Uniform bounds for convolution and restricted X-ray transforms along degenerate curves}, preprint.

[10] S. Dendrinos, J. Wright, \textit{Fourier restriction to polynomial curves I: a geometric inequality}. Amer. J. Math. 132 (2010), no. 4, 1031–1076.

[11] S. W. Drury, B. P. Marshall, \textit{Fourier restriction theorems for curves with affine and Euclidean arclengths}. Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 111–125.

[12] S. W. Drury and B. P. Marshall, \textit{Fourier restriction theorems for degenerate curves}, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 541–553.

[13] P. T. Gressman, \textit{L^p-improving properties of averages on polynomial curves and related integral estimates}. Math. Res. Lett. 16 (2009), no. 6, 971–989.

[14] L. Hörmander, \textit{Hypoelliptic second order differential equations}, Acta Math. 119 (1967), 147–171.
[15] D. M. Oberlin, *Convolution with measures on polynomial curves*. Math. Scand. **90** (2002), no. 1, 126–138.

[16] D. M. Oberlin, *Convolution with measures on flat curves in low dimensions*. J. Funct. Anal. **259** (2010), no. 7, 1799–1815.

[17] D. M. Oberlin, *Affine dimension: measuring the vestiges of curvature*. Michigan Math. J. **51** (2003), no. 1, 13–26.

[18] P. Sjölin, *Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in \mathbb{R}^2*. Studia Math. **51** (1974), 169–182.

[19] E. M. Stein, *Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Math. Series, no. 43, Princeton University Press, Princeton, NJ, 1993.

[20] B. Stovall, *Endpoint $L^p \to L^q$ bounds for integration along certain polynomial curves*. J. Funct. Anal. **259** (2010), no. 12, 3205–3229.

[21] B. Stovall, *L^p improving multilinear Radon-like transforms*. Rev. Mat. Iberoam. **27** (2011), no. 3, 1059–1085.

[22] B. Stovall *Uniform estimates for Fourier restriction to polynomial curves in \mathbb{R}^d*. Preprint, to appear in Amer. J. Math.

[23] B. Street, *Multi-parameter Carnot–Carathéodory balls and the theorem of Frobenius*. Rev. Mat. Iberoam. **27** (2011), no. 2, 645–732.

[24] T. Tao and J. Wright, *L^p improving bounds for averages along curves*. J. Amer. Math. Soc. **16** (2003), no. 3, 605–638.

[25] G. Ziegler, *Lectures on polytopes*. Graduate Texts in Mathematics, 152. Springer–Verlag, New York, 1995.

Department of Mathematics, 480 Lincoln Dr., Madison, WI 53706–1325

E-mail address: stovall@math.wisc.edu