Finite Just Non-Dedekind Groups

V.K. Jain* and R.P. Shukla
Department of Mathematics, University of Allahabad
Allahabad (India) 211 002
Email: jaijinenedra@gmail.com; rps@mri.ernet.in

Running Title: Finite Just Non-Dedekind Groups.

Abstract: A group is just non-Dedekind (JND) if it is not a Dedekind group
but all of whose proper homomorphic images are Dedekind groups. The aim
of the paper is to classify finite JND-groups.

*supported by UGC, Government of India
1 Introduction

A group is called Dedekind if all its subgroups are normal. By [1], a group is Dedekind if and only if it is abelian or the direct product of a quaternion group of order 8, an elementary abelian 2-group and an abelian group with all its elements of odd order (one can also see its proof in [10, 5.3.7, p.143]).

Given a group theoretical property P, a just non-P-group is a group which is not P-group but all of whose proper homomorphic images are P-groups; for brevity we shall call these JNP-groups. M.F. Newman studied just nonabelian (JNA) groups in [8, 9]. S. Franciosi and others studied solvable just nonnilpotent (JNN) groups in [3] and D.J.S. Robinson studied solvable just non-T (JNT) groups in [11](here the group with property T means in the group normality is a transitive relation).

The aim of this paper is to classify finite JND-groups. In Section 2, we prove that JND-groups are monolithic group. Section 3 deals with solvable JND-groups and Section 4 shows that nonsolvable JND-groups are semisimple. Theorem 4.4 gives complete classification of finite semisimple JND-groups.

Let G be a group. For, sets X, Y of G, let $[X, Y]$ denote the subgroup of G generated by $[x, y] = x y x^{-1} y^{-1}$, $x \in X$, $y \in Y$. The derived series of G is

$$G = G^{(0)} \geq G^{(1)} \geq \cdots \geq G^{(n)} \geq \cdots,$$

where $G^{(n)} = [G^{(n-1)}, G^{(n-1)}]$, the commutator subgroup of $G^{(n-1)}$. The lower central series of G is

$$G = \gamma_1(G) \geq \gamma_2(G) \geq \cdots \geq \gamma_n(G) \geq \cdots,$$

where $\gamma_{n+1}(G) = [\gamma_n(G), G]$. The group G is called solvable of derived length n (respectively nilpotent of class n) if n is the smallest nonnegative integer such that $G^{(n)} = \{1\}$ (respectively $\gamma_{n+1}(G) = \{1\}$).

2 Some basic properties of JND-groups

We recall that a group is called monolithic if it has smallest nontrivial normal subgroup, called the monolith of G. In this section, we study some basic
properties of JND-groups.

Proposition 2.1. Let G be a JND-group. Then G is not contained in a direct product of Dedekind groups.

Proof. Let $\{H_i\}_{i \in I}$ denote a family of Dedekind groups, where I is an indexing set. Assume that G is contained in $H = \prod_{i \in I} H_i$. Since G is nonabelian, there exists $i \in I$ such that H_i is nonabelian. By the classification Theorem for nonabelian Dedekind groups [10, 5.3.7, p.143], square of each element of a nonabelian Dedekind group is central and its commutator subgroup is isomorphic to \mathbb{Z}_2. This implies that G can not be simple. Take any non-trivial element $x \in G$. Then $x \in Z(G)$ if $x^2 = 1$ and $x^2 \in Z(G)$ if $x^2 \neq 1$ (for G is contained in H). This proves that each subgroup of G contains a nontrivial central element of H. Let N be a nontrivial subgroup of G. Let $x \in N \cap Z(H)$, $x \neq 1$. Since G is JND, $G/\langle x \rangle$ is Dedekind, so $N/\langle x \rangle \leq G/\langle x \rangle$, which proves that $N \leq G$. Hence G is Dedekind. \qed

Corollary 2.2. Let G be a JND-group. Then G is monolithic.

Proof. If G is a JNA-group, there is nothing to prove for $G^{(1)}$ will be contained in each nontrivial normal subgroup of G. Assume that G is not JNA. Let \mathcal{A} denote the set of all nontrivial normal subgroups of G. Then G/H is Dedekind for all $H \in \mathcal{A}$. Further, since G is not JNA, there exists $H \in \mathcal{A}$ such that G/H is nonabelian. Therefore by Proposition 2.1, the homomorphism from G to $\prod_{H \in \mathcal{A}} G/H$ which sends $x \in G$ to $(xH)_{H \in \mathcal{A}}$ is not one-one. This proves that $\bigcap_{H \in \mathcal{A}} H \neq \{1\}$. \qed

Corollary 2.3. Let G be as in Corollary 2.2. Assume that $G^{(2)} \neq \{1\}$. Then the monolith of G is $G^{(2)}$.

Proof. By Corollary 2.2, G is monolithic. Let K denote the monolith of G. Then $K \subseteq G^{(2)}$. If G is JNA, then $K = G^{(1)}$ and so $K = G^{(2)}$. If G is JND but not JNA, then G/K is nonabelian Dedekind. Now by [10, 5.3.7, p.143], the commutator subgroup $G^{(1)}/K$ of G/K is of order 2. So $G^{(2)} \subseteq K$. \qed
3 Finite solvable JND-groups

In this section, we classify finite solvable JND-groups. Solvable JNA-groups with nontrivial center is characterized in [9] and centerless solvable JNA-groups have been classified in [8, Theorem 5.2, p.360]. So, it only remains to classify finite solvable JND-groups which are not JNA-groups.

Proposition 3.1. Let G be a JND-group. Let $Z(G)$, the center of G be nontrivial. Then G is a solvable JNA-group.

Proof. Suppose that G is JND but not JNA. By Corollary 2.2, G is monolithic. Let K denote the monolith of G. Since every subgroup of $Z(G)$ is normal subgroup of G, K is central subgroup of order p for some prime p.

We claim that $p = 2$. Since G is JND but not JNA, G/K is nonabelian Dedekind. By the structure theorem for nonabelian Dedekind groups [10, 5.3.7, p.143], the commutator $(G/K)^{(1)} = G^{(1)}/K$ is of order 2. Thus $|G^{(1)}| = 2p$. Let x be an element of $G^{(1)}$ of order 2. If $x \in Z(G)$, then $K = \langle x \rangle$, so $p = 2$. Assume that $x \notin Z(G)$. Since $|G^{(1)}/K| = 2$ and $x \notin K$, so $G^{(1)} = \langle x \rangle K$. Let $g \in G$ such that $g x g^{-1} \neq x$. Then there exists a nontrivial element $h \in K$ such that $g x g^{-1} = x h$. Now since $h \in Z(G)$, $h^2 = x^2 h^2 = (x h)^2 = (g x g^{-1} h)^2 = 1$ implies that $p = 2$.

Next, we show that G does not contain an element of odd prime order. Assume that $x \in G$ is of odd prime order q. Since $\langle x \rangle K$ has a unique subgroup of order q and $\langle x \rangle K \trianglelefteq G$ (for G/K is Dedekind), $\langle x \rangle \trianglelefteq G$. But, then $K \subseteq \langle x \rangle$, a contradiction.

Further, since G/K is a nonabelian Dedekind, by [10, 5.3.7, p.143], G does not contain any element of infinite order. Thus we have shown that G is a 2-group. Lastly, since G/K is a nonabelian Dedekind, by [10, 5.3.7, p.143], G contains a nonabelian subgroup H of order 16 such that $K \subseteq H$ and $H/K \cong Q_8$. But this is not possible [2, 118, p.146].

Lemma 3.2. A finite centerless solvable JND-group is a JNT-group.

Proof. Let G be a finite centerless solvable JND-group. Since a Dedekind group is also a T-group, it is sufficient to show that G is not a T-group.

Suppose that G is a T-group. Let K denote the monolith of G (Corollary 2.2). Since G is a finite solvable T-group, K is a cyclic group of order p.
for some prime p. Since G/K is nonabelian Dedekind group, by \[10\] 5.3.7, p.143, $|G^{(1)}/K| = 2$. Further, since a solvable T-group is of derived length at most two \[10\] 13.4.2, p.403, $G^{(1)}$ is abelian. Now since $G^{(1)}$ is an abelian group of order $2p$ and G is a T-group, $p = 2$. But then $K \subseteq Z(G) = \{1\}$. This is a contradiction. Therefore G is a JNT-group.

The following example shows that there exists a solvable JND-group which is not a JNA-group.

Example 3.3. Consider an elementary abelian 3-group A of order 9. Let ψ denote the homomorphism from Q_8 to $Aut A = Gl_2(3)$ defined as $i \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $j \mapsto \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, where $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group of order 8. It is easy to check that ψ is injective. Let $G = AQ$ denote the natural semidirect product of A by Q_8. Then G is a JND-group with monolith A.

The following proposition classifies all finite solvable JND-groups which are not JNA-groups.

Lemma 3.4. A finite solvable group G is JND but not JNA if and only if there exists an elementary abelian normal p-subgroup A of G for some prime p which is also monolith of G and a nonabelian Dedekind group X of G such that $A \cap X = \{1\}$, $G = AX$ and the conjugation action of X on A is faithful and irreducible.

Proof. Suppose that G is a finite solvable JND-group but not JNA-group. By Corollary 2.2 G is monolithic. Let K be the monolith of G. Then G/K is a nonabelian Dedekind. Thus by \[10\] 5.3.7, p.143, $|G^{(1)}/K| = 2$. Since K is characteristically simple and abelian, it is an elementary abelian p-group of order p^n for some prime p \[10\] 3.3.15 (ii), p.87.

Assume that $G^{(1)}$ is abelian. If $p \neq 2$, then $G^{(1)}$ contain unique element of order 2 and so $Z(G) \neq 1$. By Proposition 3.1 this is a contradiction. Thus $p = 2$. Now by Proposition 3.1 G is not nilpotent and by Lemma 3.2 G is a JNT-group. So by Case 6.2 and its Subcases 6.211, 6.212, 6.22 and 6.222 in \[11\] pp.202-208, there is no finite JNT-group which is not JNA and has a minimal normal subgroup isomorphic to an elementary abelian 2-group.
Assume that \(G^{(1)} \) is nonabelian. Then \([G^{(1)}, K] \neq 1\), for \(|G^{(1)}/K| = 2\). Now since \(G \) is a finite nonnilpotent JNT-group and \([G^{(1)}, K] \neq 1\), by Case 6.1 of [11, p.202], there is a nontrivial normal subgroup \(A \) of \(G \), a solvable \(T \)-subgroup \(X \) of \(G \) such that \(A \cap X = \{1\} \), \(G = AX \) and the conjugation action of \(X \) on \(A \) is faithful and irreducible. Further, since \(K \subseteq A \) and the conjugation action of \(X \) on \(A \) is irreducible, \(K = A \). So \(X \cong G/A = G/K \) is a nonabelian Dedekind group.

Conversely, suppose that \(G = AX \), \(A \cap X = \{1\} \), \(X \) is a nonabelian Dedekind subgroup, \(A \) is an elementary abelian \(p \)-group and also the monolith of \(G \). Since \(A \) is solvable and \(G/A \cong X \) is nonabelian Dedekind and so solvable, \(G \) is solvable. Further, since \(A \) is the monolith of \(G \) and \(G/A \cong X \) is nonabelian Dedekind, \(G \) is JND but not JNA.

The following proposition lists some more properties of finite solvable JND-groups which are not JNA-groups.

Proposition 3.5. Let \(G, A \) and \(X \) be as in the Lemma 3.4. Then

(i) The stabilizer of any nontrivial element of \(A \) is trivial.

(ii) \(|X| \) divides \(p^n - 1 \), in particular \(p \) and \(|X|\) are coprime.

(iii) \(X \cong Q_8 \times A_o \), where \(A_o \) is a cyclic group of odd order.

Proof. Let \(a \in A, a \neq 1 \). Assume that the stabilizer \(\text{stab}_X(a) \) of \(a \) in \(X \) is nontrivial. Assume that \(x \in \text{stab}_X(a), x \neq 1 \). Since \(G/A \) is a Dedekind group, \(\langle x \rangle A \subseteq G \). Thus \(Z(\langle x \rangle A) \) is a nontrivial normal subgroup of \(G \) (for \(a \in Z(\langle x \rangle A) \)) and so \(A \subseteq Z(\langle x \rangle A) \), for \(A \) is the monolith of \(G \). But this is a contradiction, for the conjugation action of \(X \) on \(A \) is faithful. This proves (i). Now (ii) is implied by the class equation for the action of \(X \) on \(A \).

Further, by [11, Lemma 1, p.185], there is an extension field \(E \) of \(\mathbb{Z}_p \) such that \(Z(X) \cong Y \leq E^* \) and \(E = \mathbb{Z}_p(Y) \), where \(E^* \) denote the multiplicative group of \(E \). Clearly \(E \) is a finite field, so \(E^* \) is a cyclic group. This implies \(X \cong Q_8 \times A_o \), where \(A_o \) is a cyclic group of odd order [10, 5.3.7, p.143]. This proves (iii).
4 Finite nonsolvable JND-groups

Recall that a group is semisimple [10, p.89] if its maximal solvable normal subgroup is trivial. Also a maximal normal completely reducible subgroup is called the CR-radical [10, p.89].

Proposition 4.1. Let G be a finite nonsolvable JND-group. Then G is a semisimple group.

Proof. Assume that G has a nontrivial normal solvable subgroup N. Then G/N is a Dedekind group. Hence by [10, 5.3.7, p.143], G/N is solvable. But then G is solvable, a contradiction. □

Now we fix some notations for the rest of the section. For a group G, we denote $\text{Inn } G$ for the inner automorphism subgroup of $\text{Aut } G$, the automorphism group of G and $\text{Out } G$ for the outer automorphism group of G. Let H denote a finite nonabelian simple group. Consider the semidirect product $(\text{Aut } H \times \ldots \times \text{Aut } H) \rtimes S_r$ and $(\text{Out } H \times \ldots \times \text{Out } H) \rtimes S_r$, where S_r acts on $(\text{Aut } H \times \ldots \times \text{Aut } H)$ as well as on $(\text{Out } H \times \ldots \times \text{Out } H)$ by permuting the coordinates. Let

$$\tilde{\nu} : (\text{Aut } H \times \ldots \times \text{Aut } H) \rtimes S_r \longrightarrow (\text{Out } H \times \ldots \times \text{Out } H) \rtimes S_r$$

be the homomorphism defined by $\tilde{\nu}(x_1, x_2, \ldots, x_r, x_{r+1}) = (x_1 \text{Inn } H, \ldots, x_r \text{Inn } H, x_{r+1})$. We denote by β the projection of $(\text{Out } H \times \ldots \times \text{Out } H) \rtimes S_r$ onto the $(r + 1)$-th factor S_r, which is obviously a homomorphism.

Lemma 4.2. Let H be a finite nonabelian simple group. Then $\text{Out } H$ does not contain a subgroup isomorphic to the quaternion group Q_8 of order 8.

Proof. If H is isomorphic to either alternating group Alt_n of degree n or to a Sporadic simple group, then $|\text{Out}(H)| \leq 4$ (see [12, 2.17, 2.19, p.299] and [6, Table 2.1C, p.20]), so the Lemma follows in this case. If H is isomorphic
to a finite simple group of Lie type, then the Lemma follows by [4, Theorem 2.5.12, p.58].

Corollary 4.3. Let H be a finite nonabelian simple group. Then for any $m \in \mathbb{N}$, $Out H \times \ldots \times Out H$ does not contain a subgroup isomorphic to the quaternion group Q_8 of order 8.

Proof. Assume that α is an injective homomorphism from Q_8 to $Out H \times \ldots \times Out H$. Let $u = (x_1, x_2, \ldots, x_m)$ denote an element of $\alpha(Q_8)$ of order 4. Then there is t ($1 \leq t \leq m$) such that x_t is of order 4. Let p_t denote the projection of $Out H \times \ldots \times Out H$ onto the t-th factor. Then $(p_t \circ \alpha)(Q_8)$ is a subgroup of $Out H$ which contains an element of order 4. Since a homomorphic image of Q_8 containing an element of order 4 is isomorphic to Q_8, $(p_t \circ \alpha)(Q_8) \cong Q_8$. By Lemma [1.2], this is impossible. □

Theorem 4.4. A finite nonsolvable group G is JND-group if and only if there exists a finite nonabelian simple group H, a natural number r and a Dedekind group $D \subseteq (Out H \times \ldots \times Out H) \rtimes S_r$ such that

(i) the usual action of $\beta(D)$ on the set $\{1, 2, \ldots, r\}$ is free and transitive, and

(ii) $G \cong \tilde{\nu}^{-1}(D)$,

where all the notations have meaning described as after the Proposition [4.1]. Further, G is JND but not JNA if and only if D is a nonabelian Dedekind group and r is even.

Proof. Suppose that G is a nonsolvable JND-group. By Corollary [2.2], G is monolithic. Let K denote the monolith of G. Since G is nonsolvable and K is characteristically simple, by [10, 3.3.15 (ii), p.87], there exists a
finite nonabelian simple group H and a natural number r such that $K \cong (H \times \ldots \times H)$.

By Proposition 1, G is semisimple. We show that K is the CR-radical of G. Let N be the CR-radical of G containing K. Then N is semisimple [5, Lemma, p.205]. Assume that $N \neq K$. Then there exists nontrivial completely reducible normal subgroup L of N which is complement of K in N. Now since $L \cong N/K$ and G/K is a Dedekind group, L is solvable [10, 5.3.7, p.143]. Further, since nontrivial normal subgroup of a semisimple group is semisimple [5, Lemma, p.205], L is also semisimple. This is a contradiction.

Now by [10, 3.3.18 (i), p.89], there exists $G^* \cong G$ such that $(\text{Inn} H \times \ldots \times \text{Inn} H)^r \leq G^* \leq (\text{Aut} H \times \ldots \times \text{Aut} H)^r \rtimes S_r$. We identify G with G^* and H with \text{Inn} H. Thus K is identified with $(\text{Inn} H \times \ldots \times \text{Inn} H)^r$.

Take $D = G/K \subseteq (\text{Out} H \times \ldots \times \text{Out} H)^r \rtimes S_r$. Then D is a Dedekind group and $G \cong \mathcal{v}^{-1}(D)$. This proves (ii).

Next, we claim that $\beta(D)$ acts transitively on the set of symbols $\{1, 2, \ldots, r\}$. Let O denote an orbit of the natural action of $\beta(D)$ on $\{1, 2, \ldots, r\}$. Consider the subgroup $M_O = \{(x_1, x_2, \ldots, x_r, 1) | x_i \in \text{Inn} H \text{ and } x_i = 1 \text{ if } i \notin O\} \subseteq (\text{Aut} H \times \ldots \times \text{Aut} H)^r \rtimes S_r$. It is easy to observe that for each element of G, the $(r + 1)$-th coordinate is an element of $\beta(D)$. This implies that M_O is a normal subgroup of G contained in K. But K is the monolith of G, so $M_O = K$. This proves that $O = \{1, 2, \ldots, r\}$.

Now, we show that the action of $Z(\beta(D))$ on $\{1, 2, \ldots, r\}$ is free. Suppose that an element u of $Z(\beta(D))$ fixes a symbol a under the natural action of $\beta(D)$ on $\{1, 2, \ldots, r\}$. Clearly u fixes each element of the orbit $\beta(D).a$ of a which is $\{1, 2, \ldots, r\}$. This implies $u = 1$. So, no nontrivial element of $Z(\beta(D))$ will fix any symbol in $\{1, 2, \ldots, r\}$.

If D is abelian, then $Z(\beta(D)) = \beta(D)$ and so the action of $\beta(D)$ is free. If D is nonabelian Dedekind group, then by the structure Theorem for Dedekind groups [10, 5.3.7, p.143], there exists a nonnegative integer t and an abelian group A_o of odd order such that we can write $D = Q_8 \times (\mathbb{Z}_2)^t \times A_o$. Thus for any $x \in \beta(D)$, either $x \in Z(\beta(D))$ or $1 \neq x^2 \in Z(\beta(D))$. This implies that a noncentral element x also does not fix any symbol of set
\{1, 2, \ldots, r\} (for then \(1 \neq x^2 \in \mathbb{Z}(\beta(D))\) will fix that symbol). Thus action of \(\beta(D)\) on \{1, 2, \ldots, r\} is free and transitive. In particular \(r = |\beta(D)|\). This proves (i).

Now, assume that \(G\) is JND but not JNA. Then by Corollary 4.3, \(\beta(Q_8) \neq 1\) and so 2 divides \(|\beta(D)| = r\).

Conversely, suppose that there exists a Dedekind group \(D \subseteq \langle \text{Out } H \times \ldots \times \text{Out } H \rangle \rtimes S_r\) for some \(r \in \mathbb{N}\) and a nonabelian finite simple group \(H\) such that, the usual action of \(\beta(D)\) on \{1, 2, \ldots, r\} is free and transitive. Let \(G = \widetilde{\nu}^{-1}(D)\). We will show that \(G\) is a JND-group. By [10, 3.3.18 (ii), p.89], \(G\) is semisimple with CR-radical \(K = \langle \text{Inn } H \times \ldots \times \text{Inn } H \rangle\) and \(\text{Inn } H \times \ldots \times \text{Inn } H \leq G \leq \langle \text{Aut } H \times \ldots \times \text{Aut } H \rangle \rtimes S_r\). We will show that \(K\) is the monolith of \(G\).

Since \(K = K^{(1)}\), \(K\) is contained in all terms of the derived series of \(G\). Further, since \(G\) is semisimple, there is smallest nonnegative integer \(n\) such that \(G^{(n)} = G^{(n+i)}\) for all \(i \in \mathbb{N}\). This implies that \(G^{(n)} / K\) is a perfect group. But since \(G^{(n)} / K\) is Dedekind and so solvable [10, 5.3.7, p.143], \(G^{(n)} = K\). Let \(N\) be a nontrivial normal subgroup of \(G\). Since a nontrivial normal subgroup of a semisimple group is semisimple [5, Lemma, p.205] and a semisimple group has trivial center, \(N \cap K \neq \{1\}\). By [7, Theorem 2, p.156], \(N \cap K = N_1 \times N_2 \times \ldots \times N_r\), where \(N_i \leq \text{Inn } H\) and at least one \(N_i \neq 1\).

Now since \(N_i = \text{Inn } H\) and \(\beta(D)\) acts transitively on \(\text{Inn } H \times \ldots \times \text{Inn } H\), so \(N \cap K = \text{Inn } H \times \ldots \times \text{Inn } H = K\), that is \(K \subseteq N\). This proves that \(K\) is the monolith of \(G\). Thus \(G\) is JND-group. Further, if \(D\) is nonabelian Dedekind group, then \(G\) is JND but not JNA.}

\[\square\]

Remark 4.5. Let \(G\) be finite just nonsolvable (JNS) (respectively just non-nilpotent (JNN)) group. Let \(n\) be the smallest nonnegative integer such that \(G^{(n)} = G^{(n+k)}\) (respectively \(\gamma_n(G) = \gamma_{(n+k)}(G)\)) for all \(k \in \mathbb{N}\). Then it is easy to see that \(G^{(n)}\) (respectively \(\gamma_{(n+1)}(G)\)) is the monolith of \(G\).
The idea of the proof of the above theorem can be used to show that:
A finite nonsolvable group G is JNS-group (respectively JNN-group) if and only if there exists a finite nonabelian simple group H, a natural number r and a solvable (respectively nilpotent) group $D \subseteq (\text{Out } H \times \ldots \times \text{Out } H) \rtimes S_r$ such that

(i) the usual action of $\beta(D)$ on the set $\{1, 2, \ldots, r\}$ is transitive, and
(ii) $G \cong \tilde{\nu}^{-1}(D)$,

where all the notations have meaning described as after the Proposition 4.1.

Acknowledgement: We thank Professor Ramji Lal for suggesting the problem and for several stimulating discussions.

References

[1] R. Baer. Situation der untergruppen and struktur der gruppe. *S. B. Heidelberg Akad. Mat. Nat.* 2 (1933), 12-17.

[2] W. Burnside. *Theory of groups of finite order* (Dover Publications, Inc., second edition, 1955).

[3] Silvana Franciosi, Francesco de Giovanni. Solvable groups with many nilpotent quotients. *Proc. Roy. Irish Acad. Sect. A.* (1) 89 (1989), 43-52.

[4] Daniel Gorenstein, Richard Lyons, Ronald Solomon. *The classification of the finite simple groups*. Mathematical surveys and Monographs (3)(40) (Amer. Math. Soc., 1998)

[5] A. G. Kurosh. *The theory of groups*, vol. 2 (Chelsea Publishing Company New York, N. Y., 1956).

[6] M.W. Liebeck, C.E. Praeger and J. Saxl. *The maximal factorisations of the finite simple groups and their automorphism groups*. Mem. Amer. Math. Soc. 432 (American Mathematical Society, 1990).

[7] Michael D. Miller. On the lattice of normal subgroups of a direct product. *Pacific J. Math.* (2) 60 (1975), 153-158.
[8] M. F. Newman. On a class of metabelian groups. *Proc. London Math. Soc.* (3) **10** (1960), 354-364.

[9] M. F. Newman. On a class of nilpotent groups. *Proc. London Math. Soc.* (3) **10** (1960), 365-375.

[10] D. J. S. Robinson. *A course in the theory of groups* (Springer-Verlag, 1996).

[11] D. J. S. Robinson. Groups whose homomorphic images have a transitive normality relation. *Trans. Amer. Math. Soc.* **176** (1973), 181-213.

[12] Michio Suzuki. *Group Theory I* (Springer-Verlag, 1982).