Abstract
Recent work on multilingual dependency parsing focused on developing highly multilingual parsers that can be applied to a wide range of low-resource languages. In this work, we substantially outperform such “one model to rule them all” approach with a heuristic selection of languages and treebanks on which to train the parser for a specific target language. Our approach, dubbed TOWER, first hierarchically clusters all Universal Dependencies languages based on their mutual syntactic similarity computed from human-coded URIEL vectors. For each low-resource target language, we then climb this language hierarchy starting from the leaf node of that language and heuristically choose the hierarchy level at which to collect training treebanks. This treebank selection heuristic is based on: (i) the aggregate size of all treebanks subsumed by the hierarchy level and (ii) the similarity of the languages in the training sample with the target language. For languages without development treebanks, we additionally use (ii) for model selection (i.e., early stopping) in order to prevent overfitting to development treebanks of closest languages. Our TOWER approach shows substantial gains for low-resource languages over two state-of-the-art multilingual parsers, with more than 20 LAS point gains for some of those languages. Parsing models and code available at: https://github.com/codogogo/towerparse.

1 Introduction
Syntactic parsing – grounded in a wide variety of formalisms (Taylor et al., 2003; De Marneffe et al., 2006; Hockenmaier and Steedman, 2007; Nivre et al., 2016, inter alia) – has been the backbone of natural language processing (NLP) for decades, and an indispensable preprocessing step for tackling higher-level language understanding tasks. A recent major paradigm shift in NLP towards large-scale pretrained language models (PLMs) (Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020) and their end-to-end fine-tuning for downstream tasks has reduced the downstream relevance of supervised syntactic parsing. What is more, there is more and more evidence that PLMs implicitly acquire rich syntactic knowledge through large-scale pretraining (Hewitt and Manning, 2019; Chi et al., 2020) and that exposing them to explicit syntax from human-coded treebanks does not offer significant language understanding benefits (Kuncoro et al., 2020; Glavaš and Vulić, 2021). In order to implicitly acquire syntactic competencies, however, PLMs need language-specific corpora at the scale at which it can only be obtained for a tiny portion of world’s 7,000+ languages. For the remaining vast majority of languages – with limited-size monolingual corpora – explicit syntax still provides valuable linguistic bias for more sample-efficient learning in downstream NLP tasks.

Reliable syntactic parsing requires annotated treebanks of reasonable size: this prerequisite is, unfortunately, satisfied for even fewer languages. Despite the multi-year, well-coordinated annotation efforts such as the Universal Dependencies (Nivre et al., 2016, 2020) project, language-specific treebanks are unlikely to appear anytime soon for most world languages. This renders the transfer of syntactic knowledge from high-resource languages with annotated treebanks a necessity. A truly zero-shot transfer for low-resource languages assumes a set of training treebanks from resource-rich source languages and a target language without any syntactic annotations. Effectively, the task is then to identify the subset of source treebanks, the parser trained on which would yield the best parsing performance for the target language. An exhaustive search over all possible subsets of source treebanks is not only computationally intractable\(^1\) but also

\(^1\)One can create \(2^N - 1\) different training sets from a
uninformative in true zero-shot scenarios in which there is no development treebank (i.e., any syntactically annotated data) for the target language. Most existing transfer methods therefore either (1) choose one (or a few) best source languages for each target language (Rosa and Zabokrtsky, 2015; Agić, 2017; Lin et al., 2019; Litschko et al., 2020) or (2) train a single multilingual parser on all available treebanks; such parsers, based on pre-trained multilingual encoders, currently produce best results in low-resource parsing (Kondratyuk and Straka, 2019; Üstün et al., 2020). Other transfer approaches, e.g., based on data augmentation (Şahin and Steedman, 2018; Vania et al., 2019), violate the zero-shot transfer by assuming a small target-language treebank – a requirement unfulfilled for most world languages.\(^2\)

In this work, we propose a simple and effective heuristic for selecting a good set of source treebanks for any given low-resource target language. In our approach, named TOWER, we first hierarchically cluster all Universal Dependencies (UD) languages. To this end, we compute syntactic similarity of languages by comparing manually coded vectors of their syntactic properties from the URIEL database (Littell et al., 2017). We then iteratively ‘climb’ that language hierarchy level by level, starting from the leaf node of the target language. We stop ‘climbing’ (i.e., select the set of source treebanks subsumed by the current hierarchy level), when the relative decrease in linguistic similarity of the training sample w.r.t. the target language outweighs the increase in size of the training sample. We additionally exploit the linguistic similarity between the target language and its closest sources with existing development treebanks to inform a model selection (that is, early-stopping) heuristic. TOWER substantially outperforms state-of-the-art multilingual parsers – UDPipe (Straka, 2018), UDify (Kondratyuk and Straka, 2019), and UDapter (Üstün et al., 2020) on low-resource languages, while offering comparable performance for high-resource languages.

2 Climbing the Tower of Treebanks

Constructing the Tower. We start by hierarchically clustering the set of 89 languages from Universal Dependencies \(^3\) based on their syntactic similarity. To this end, we represent each language with its \textit{syntax.knn} vector from the URIEL database (Littell et al., 2017). Features of these 103-dimensional vectors correspond to individual syntactic properties from manually coded linguistic resources such as WALS (Dryer and Haspelmath, 2013) and SSWL (Collins and Kayne, 2009). URIEL’s \textit{syntax.knn} strategy replaces feature values missing in those resources with kNN-based predictions (cf. (Littell et al., 2017) for more details). We then carry out hierarchical agglomerative clustering with Ward’s linkage (Anderberg, 2014) with Euclidean distances between URIEL vectors guiding the clustering. Figure 1 shows a dendrogram of one part of the resulting hierarchy. We display the complete hierarchy in the Appendix. The syntax-based clustering largely reflects memberships in language (sub)families, with a few notable exceptions: e.g., Tagalog (\textit{tl}), from the Austronesian family appears to be syntactically similar to (and is joined with) Scottish (\textit{gd}), Irish (\textit{ga}), and Welsh (\textit{cy}) from the Celtic branch of the Indo-European family.

Treebank Selection (TBS). For a given test treebank, we start climbing the hierarchy from the leaf node of the treebank’s language. Let \(s_l\) denote the number of climbing steps we take from the target leaf node \(l\). If the target test treebank also has the corresponding training portion, in-treebank training constitutes the first training configuration (we denote this configuration with \(s_l = -1\)). For resource-rich languages with several training treebanks, we create the next training sample by concatenating all of those treebanks (we denote this level with \(s_l = 0\)).\(^4\) For low-resource target lan-

\(^2\)For the vast majority of world languages there does not exist a single manually annotated syntactic tree.

\(^3\)We worked with the UD version 2.5.

\(^4\)For example, for the Russian test treebank \textit{SynTagRus}, the training set at \(s_l = -1\) consists of the train portion of the same \textit{SynTagRus} treebank; at \(s_l = 0\), we concatenate
guages without any training treebanks, the first training sample is collected at \(s_l = 1 \), where the language is joined with other languages. The training set corresponding to a hierarchy level (i.e., each \textit{join} in the tree) concatenates all training treebanks of all languages (i.e., leaf nodes) of the respective hierarchy subtree.\(^5\)

Let \(\{ S_n \}_{l=0}^{N} \) be the set of training configurations collected by climbing the hierarchy starting from the target language \(l \) and let \(S_n = \bigcup \{ T_k \}_{k=1}^{K} \) be the \(n \)-th training set consisting of \(K \) training treebanks. As we climb the hierarchy (i.e., as \(n \) increases), the training set \(S_n \) is bound to grow; at the same time, the sample of training languages becomes increasingly dissimilar w.r.t. the target language \(l \). In other words, as we climb higher up the induced syntactic hierarchy of languages, we train on more data but from a mixture of (syntactically) more distant languages. Let \(l_k \) be the language of the training treebank \(T_k \). We then quantify the syntactic similarity \(\text{sim}(S_n, l) \) between the training set \(S_n \) and the target language \(l \) as follows:

\[
\text{sim}(S_n, l) = \frac{1}{|S_n|} \sum_{k=1}^{K} |T_k| \cdot \cos(l_k, l) \tag{1}
\]

with \(\cos(l_k, l) \) as cosine similarity between UREIL vectors of \(l_k \) and \(l \), and relative sizes of individual treebanks \(|T_k|/|S_n| \) as weights. We then use the following simple heuristic to select the best training set \(S_n \): we stop climbing when the relative growth of the training set becomes smaller than the relative decrease of the similarity with the target language, i.e., we select the smallest \(n \) for which the following condition is satisfied:

\[
\frac{|S_{n+1}|}{|S_n|} < \frac{\text{sim}(S_n, l)}{\text{sim}(S_{n+1}, l)} \tag{2}
\]

Model Selection (MS). Early stopping based on the model performance on a development set (\textit{dev}) is an important mechanism for preventing model overfitting in supervised machine learning. In a truly zero-shot transfer setup, on the one hand, we do not have any development data in the target language. Model selection based on the development set of the source language, on the other hand, overfits the model to the source language, which may hurt effectiveness of the cross-lingual transfer (Keung et al., 2020; Chen and Ritter, 2020). For test treebanks with a respective development portion, \textsc{Tower} uses that development set for model selection. For low-resource languages \(l \) without development treebanks, we compile a proxy development set \(D_l = \bigcup \{ D_k \}_{k=1}^{K} \) by collecting all development treebanks \(D_k \) from the hierarchy level closest to \(l \) that encompasses at least one treebank with a development set.\(^6\) Intuitively, the more syntactically similar \(D_l \) is to \(l \), the more beneficial the model selection based on \(D_l \) will be for performance on \(l \), the optimal model checkpoint w.r.t. \(l \) should be closer to the model checkpoint exhibiting best performance on \(D_l \). Accordingly, with \(M \) as the model checkpoint with best performance on \(D_l \), we select the model checkpoint \(M' = \text{arg min} \{ \text{sim}(D_l, l) \cdot M \} \) (see Eq.(1)) as the “optimal” checkpoint for the target language \(l \).

Shallow Biaffine Parser. \textsc{Tower} employs the shallow biaffine parser of Glavaš and Vulić (2021), stacked on top of the pretrained XLM-R (Conneau et al., 2020). Compared to the standard biaffine parser (Dozat and Manning, 2017; Kondratyuk and Straka, 2019; Üstün et al., 2020), this shallow variant forwards word-level representations (aggregated from subword output) directly into biaffine products, bypassing deep feed-forward transformations that produce dependent- and head-specific vectors (Dozat and Manning, 2017). The shallow variant is reported to perform comparably (Glavaš and Vulić, 2021), while being faster to train.

3 Evaluation and Discussion

Treebanks and Baselines. We evaluate \textsc{Tower} on 138 (test) treebanks from Universal Dependencies (Nivre et al., 2020).\(^7\) We compare \textsc{Tower} against two state-of-the-art multilingual parsers: (1) \textsc{UDify} (Kondratyuk and Straka, 2019) couples the multilingual BERT (mBERT) (Devlin et al.,

\(^5\)Note that the number of climbs \(s_l \) needed to reach some hierarchy level depends on the language \(l \): e.g., the hierarchy level joining Tagalog (\(d_l \)) with Scottish, Irish, and Welsh (\{gd, ga, cy\}) is reached in \(s_l = 1 \) climbs from Tagalog, \(s_l = 2 \) climbs from Scottish and \(s_l = 3 \) climbs from Irish and Welsh.

\(^6\)E.g., \(D_l \) for \(l=cy \) consists of development portions of ga and gd treebanks, whereas \(D_l \) for \(l=cy \) consists only of the development set of ga.

\(^7\)We work with UD v2.5. Due to mismatches between XLM-R’s subword tokenizer and word-level treebank tokens we skip: all Chinese treebanks, Assyrian (AS), Old Russian (RNC and TOROT), Skolt Sami (Giellagas), Japanese (Modern and BCCWJ), A. Greek (Perseus), Gothic (PROIEL), Coptic (Scriptorium), O.C Slavonic (PROIEL) and Yoruba (YTB).
Table 1: Parsing performance (UAS, LAS) on different UD treebank subsets for state-of-the-art multilingual parsers UDify and UDapter and variants of our TOWER method. Bold: best performance in each column.

Model	∩UDify UAS	∩UDify LAS	∩UDapt UAS	∩UDapt LAS	HIGH UAS	HIGH LAS	LOW UAS	LOW LAS
UDify	80.9	73.9	–	–	89.2	85.3	39.9	22.2
UDapter	–	–	63.8	52.8	90.9	87.6	43.9	29.3
TOWER	82.4	74.3	68.9	56.0	90.0	86.3	53.7	33.8
-TBS	80.8	73.2	62.8	51.7	89.4	85.6	51.2	30.1
-MS	82.1	74.1	67.9	55.2	89.4	85.6	51.2	32.2
-TBS-MS	80.7	83.1	62.4	51.3	89.4	85.6	45.9	29.0

Model	ar (PADT)	en (EWT)	eu (BDT)	fi (TDT)	he (HTB)	hi (HDTB)	it (ISDT)	ja (GSD)	ko (GSD)	ru (STR)	sv (TB)	tr (IMST)
UDify	82.9	88.5	81.3	90.1	89.0	88.8	88.8	89.0	88.8	88.8	88.8	88.8
UDapter	82.1	74.1	67.9	55.2	89.4	85.6	51.2	32.2	85.7	85.7	85.7	85.7
TOWER	82.4	74.3	68.9	56.0	90.0	86.3	53.7	33.8	89.0	89.0	89.0	89.0
-TBS	80.8	73.2	62.8	51.7	89.4	85.6	47.0	30.1	84.4	84.4	84.4	84.4
-MS	82.1	74.1	67.9	55.2	89.4	85.6	51.2	32.2	85.7	85.7	85.7	85.7
-TBS-MS	80.7	83.1	62.4	51.3	89.4	85.6	45.9	29.0	84.4	84.4	84.4	84.4

Figure 2: LAS performance of UDify, UDapter and TOWER on 12 high-resource treebanks (top figure), and 11 low-resource languages (bottom figure).

Training and Optimization Details. We limit input sequences to 128 subword tokens. We use XLM-R Base with \(L = 12 \) layers and hidden size \(H = 768 \) and apply a dropout \((p = 0.1) \) on its outputs before forwarding them to the shallow parsing head. We train in batches of 32 sentences and optimize parameters with Adam (Kingma and Ba, 2015) (starting learning rate \(10^{-5} \)). We train for 30 epochs, with early stopping based on dev loss.\(^8\)

Results and Discussion. We show detailed results for all 138 treebanks in the Appendix. In Table 1, we show averages over different treebank subsets: treebanks on which both TOWER and (1) UDify (∩UDify; 111 treebanks) and (2) UDapter (∩UDapt; 39 treebanks) have been evaluated, (3) 12 high-resource languages on which UDapter was trained (HIGH) and (4) 11 low-resource treebanks (LOW) for which all three models have been evaluated. We show LAS scores for languages from

\(^8\)For low-resource languages without the dev set, we use the proxy \(D_1 \) (see 2). We checkpoint the model (i.e., measure the dev loss) 10 times per epoch and stop training when the loss does not decrease over 10 consecutive checkpoints.
HIGH and LOW in Figure 2. Similar trends are observed with UAS scores.

TOWER outperforms UDify and UDapter in all setups except HIGH, with especially pronounced gains for LOW. This renders TOWER particularly successful for the intended use case: low-resource languages without any training data. Admittedly, the fact that TOWER is built on XLM-R, whereas UDify and UDapter use mBERT, impedes the direct “apples-to-apples” comparison. Two sets of results, however, strongly suggest that it is TOWER’s heuristics (TBS & MS) that drive its performance rather than the XLM-R (instead of mBERT) encoder. First, UDapter outperforms TOWER on high-resource languages with large training treebanks (i.e., the HIGH setup). For these languages, however, TOWER effectively does not employ its heuristics: (i) TBS selects the large language-specific treebank(s), as adding any other language prohibitively reduces the perfect similarity\(\text{sim}(S_0, l) = 1\) (see Eq. (1)); (ii) MS is not used because each high-resource treebank has its own dedicated dev set. Secondly, removing TOWER’s heuristics (see -TBS-MS in Table 1) brings its performance slightly below that of UDapter, rendering TBS (primarily) and MS (rather than the XLM-R encoder) crucial for TOWER’s gains. Comparing -TBS and -MS reveals that, somewhat expectedly, selecting the “optimal” training sample (TBS) contributes to the overall performance more than the heuristic early stopping (MS).

Looking at individual low-resource languages (Fig. 2), we observe largest gains for Amharic (am) and Sanskrit (sa). While Sanskrit benefits from TOWER selecting training languages from the same family (Marathi, Urdu, and Hindi), Amharic (Afro-Asiatic family), interestingly, benefits from treebanks of syntactically similar languages from another family (cf. the full TOWER hierarchy in the Appendix) – Tamil and Telugu (Dravidian family). Similarly, Tagalog (Austronesian language) parsing massively benefits from training on Scottish and Irish treebanks (Indo-European, Celtic).

4 Conclusion

We proposed TOWER, a simple yet effective approach to the crucial problem of source language selection for multilingual and cross-lingual dependency parsing. It leverages the language hierarchy, induced from syntax-based manually coded URIEL language vectors, and simple treebank selection heuristics to inform the source selection. A wide-scale UD evaluation and comparisons to current state-of-the-art multilingual dependency parsers validated the effectiveness of TOWER, especially in low-resource languages. Moreover, while the main experiments in this work were based on one particular state-of-the-art parsing architecture, TOWER is fully independent of the chosen underlying parsing model, and thus widely applicable.

Acknowledgments

Goran Glavaš is supported by the Baden Württemberg Stiftung (Eliteprogramm, AGREE grant). The work of Ivan Vulić is supported by the ERC Consolidator Grant LEXICAL: Lexical Acquisition Across Languages (no. 648909).

References

Željko Agić. 2017. Cross-lingual parser selection for low-resource languages. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies, pages 1–10.

Michael R. Anderberg. 2014. Cluster Analysis for Publications. Academic Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. In Proceedings of NeurIPS 2020.

Yang Chen and Alan Ritter. 2020. Model selection for cross-lingual transfer using a learned scoring function. arXiv preprint arXiv:2010.06127.

Ethan A. Chi, John Hewitt, and Christopher D. Manning. 2020. Finding universal grammatical relations in multilingual BERT. In Proceedings of ACL 2020, pages 5564–5577.

Chris Collins and Richard Kayne. 2009. Syntactic structures of the world’s languages.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of ACL 2020, pages 8440–8451.

Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. 2006. Generating typed dependency parses from phrase structure parses. In Proceedings of LREC 2006, pages 449–454.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 2019, pages 4171–4186.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency parsing. In Proceedings of ICLR 2017.

M. S. Dryer and M. Haspelmath. 2013. WALS Online. Max Planck Institute for Evolutionary Anthropology, Leipzig.

Goran Glavaš and Ivan Vulić. 2021. Is supervised syntactic parsing beneficial for language understanding? An empirical investigation. In Proceedings of EACL 2021, pages 3090–3104.

John Hewitt and Christopher D. Manning. 2019. A structural probe for finding syntax in word representations. In Proceedings of NAACL-HLT 2019, pages 4129–4138.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A corpus of CCG derivations and dependency structures extracted from the Penn Treebank. Computational Linguistics, 33(3):355–396.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In Proceedings of ICML 2019, pages 2790–2799.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas Bhawardj. 2020. Don’t use English dev: On the zero-shot cross-lingual evaluation of contextual embeddings. In Proceedings of EMNLP 2020, pages 549–554.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of ICLR 2015.

Dan Kondratyuk and Milan Straka. 2019. 75 languages, 1 model: Parsing Universal Dependencies universally. In Proceedings of EMNLP-IJCNLP 2019, pages 2779–2795.

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano, and Joakim Nivre. 2019. Deep contextualized word embeddings in transition-based and graph-based dependency parsing - a tale of two parsers revisited. In Proceedings of EMNLP-IJCNLP 2019, pages 2755–2768.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried, Dani Yogatama, Laura Rimell, Chris Dyer, and Phil Blunsom. 2020. Syntactic structure distillation pretraining for bidirectional encoders. Transactions of the ACL, 8:776–794.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zipi Li, Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junxian He, Zhihong Zhang, Xueze Ma, Antonios Anastasopoulos, Patrick Litell, and Graham Neubig. 2019. Choosing transfer languages for cross-lingual learning. In Proceedings of ACL 2019, pages 3125–3135.

Robert Litschko, Ivan Vulić, Željko Agić, and Goran Glavaš. 2020. Towards instance-level parser selection for cross-lingual transfer of dependency parsers. In Proceedings of COLING 2020, pages 3886–3898.

Patrick Littell, David R Mortensen, Ke Lin, Katherine Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL and lang2vec: Representing languages as typological, geographical, and phylogenetic vectors. In Proceedings of EACL 2017, pages 8–14.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. 2016. Universal Dependencies v1: A multilingual treebank collection. In Proceedings of LREC 2016, pages 1659–1666.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing multilingual treebank collection. arXiv preprint arXiv:2004.10643.

Jonas Pfieffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020. AdapterHub: A framework for adapting Transformers. In Proceedings of EMNLP 2020: System Demonstrations, pages 46–54.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig, and Tom Mitchell. 2018. Contextual parameter generation for universal neural machine translation. In Proceedings of EMNLP 2018, pages 425–435.

Rudolf Rosa and Zdenek Zabokrtsky. 2015. Klcpos3-a language similarity measure for delexicalized parser transfer. In Proceedings of ACL-JCNLP 2015, pages 243–249.

Gözde Gül Şahin and Mark Steedman. 2018. Data augmentation via dependency tree morphing for low-resource languages. In Proceedings of EMNLP 2018, pages 5004–5009.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 197–207.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini. 2003. The Penn treebank: An overview. In Treebanks, pages 5–22.
Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan van Noord. 2020. UDapter: Language adaptation for truly universal dependency parsing. In Proceedings of EMNLP 2020.

Clara Vania, Yova Kementchedjhieva, Anders Søgaard, and Adam Lopez. 2019. A systematic comparison of methods for low-resource dependency parsing on genuinely low-resource languages. In Proceedings of EMNLP 2019, pages 1105–1116.
Appendix

Treebank	Method	UAS	LAS
Afrikaans	UDpipe	89.38	86.58
AfriBooms (af)	UDify	89.97	83.48
	TOWER	85.26	85.28
Akkadian	UDify	27.65	4.54
PISANDUB (akk)	UDify	26.4	8.2
	TOWER	33.45	6.12
Amharic	UDify	17.38	3.49
ATT (am)	UDapte	12.8	5.9
	TOWER	72.64	38.41
Ancient Greek	UDpipe	85.93	82.11
PROIEL (grc)	UDify	78.91	72.66
	TOWER	85.04	79.85
Arabic NYUAD (ar)	TOWER	33.53	15.94
Arabic PDT (ar)	UDify	87.54	82.94
	UDify	87.72	82.88
	UDapte	88.66	84.42
	TOWER	88.92	83.72
Arabic PUD (ar)	UDify	76.17	67.07
	TOWER	75.94	59.72
Armenian	UDpipe	78.62	71.27
ArmTDP (hy)	UDpipe	85.63	78.61
	TOWER	86.57	80.51
Bambara CRB (bm)	UDify	30.28	8.6
	UDapte	28.7	8.1
	TOWER	31.33	8.03
Basque BDT (eu)	UDpipe	86.11	82.86
	UDify	84.94	80.97
	UDapte	87.25	83.33
	TOWER	84.28	80.02
Belarusian HSE (be)	UDapte	78.58	72.72
	UDify	91.82	87.19
	UDapte	84.16	79.33
	TOWER	86.40	81.56
Bhojpuri BHTB (bho)	UDapte	52.9	37.34
	TOWER	52.62	35.86
Breton KEB (hr)	UDify	63.52	39.84
	UDapte	72.91	58.5
	TOWER	67.73	44.47
Bulgarian BTB (bg)	UDify	93.38	90.35
	UDip	95.54	92.4
	TOWER	95.67	92.03
Buryat BDT (b)	UDpipe	32.6	18.83
	UDip	48.43	26.28
	UDapte	88.18	28.89
	TOWER	51.53	29.16
Catalan AnCor (ca)	UDify	93.22	91.06
	UDip	94.25	92.33
	TOWER	94.04	92.08
Croatian SET (hr)	UDip	91.1	86.78
	UDify	94.08	89.79
	TOWER	92.22	87.02
Czech CAC (cs)	UDip	92.99	90.71
	UDify	94.33	92.41
	TOWER	94.91	92.10
Czech CLIT (cs)	UDip	86.9	84.03
	UDify	91.69	89.96
	TOWER	94.11	91.38
Czech Fictree (cs)	UDip	92.91	89.75
	UDify	95.19	92.77
	TOWER	95.12	91.83
Czech PDT (cs)	UDip	93.33	91.31
	UDify	94.73	92.88
	TOWER	95.01	92.41
Czech PUD (cs)	UDify	92.59	87.95
	TOWER	93.26	87.06
Danish	UDpipe	86.88	84.31
DDT (da)	UDify	87.76	84.5
	TOWER	85.60	82.14
Dutch	UDpipe	91.37	88.38
Alpino (nl)	UDapte	94.23	90.38
	TOWER	93.42	90.31
Dutch	UDify	90.2	86.39
LassySmall (nl)	UDify	94.34	91.22
	TOWER	92.45	88.29
English ESL (en)	UDapte	88.63	86.97
	TOWER	90.96	88.5
English EWT (en)	UDapte	93.12	89.67
	TOWER	92.16	89.29
English GUM (en)	UDify	87.27	84.12
	TOWER	89.07	86.61
English LinES (en)	UDify	84.15	79.71
	TOWER	87.33	83.71
English PUD (en)	UDify	91.52	88.66
	TOWER	90.89	87.33
Erzya	UDify	79.57	65.37
	TOWER	80.26	65.92
Faroese	UDify	80.26	65.92
	TOWER	79.57	65.37
Estonian EDT (et)	UDify	88.0	85.18
	TOWER	89.55	86.67
Estonian EWT (et)	UDify	89.24	87.08
	TOWER	88.80	84.54
Finnish	UDify	90.68	87.89
	TOWER	91.91	89.05
Finnish PUD (fi)	UDify	89.76	86.58
	TOWER	88.24	82.48
Finnish TDT (fi)	UDify	89.88	87.46
	TOWER	86.42	82.03
French FQB (fr)	UDify	91.87	89.01
	TOWER	92.78	90.22
French FTB (fr)	UDify	93.36	87.00
	TOWER	28.04	14.80
French GSD (fr)	UDify	90.65	88.06
	TOWER	93.6	91.45
French PUD (fr)	UDify	90.55	88.06
	TOWER	90.02	83.52
French ParTUT (fr)	UDify	92.17	89.63
	TOWER	87.90	79.33
French Sequoia (fr)	UDify	92.37	90.73
	TOWER	92.53	90.05
French Spoken (fr)	UDify	82.9	77.53
	TOWER	85.24	80.01
Galician	UDpipe	86.44	83.82
CTG (gl)	UDify	84.75	80.89
	TOWER	83.85	80.65
Treebank	Method	UAS	LAS
------------------	----------	-------	-------
Galician	UDPipe	82.72	77.69
	UDify	84.08	76.77
	TOWER	77.37	66.87
TreeGal (gl)			
German	UDPipe	85.53	81.07
GSD (de)	UDify	87.81	83.59
	TOWER	89.11	84.19
German HDT (de)	TOWER	97.65	96.54
German LIT (de)	TOWER	86.55	78.74
German PUD (de)	UDify	89.86	84.46
	TOWER	89.15	81.02
Greek	UDPipe	92.1	87.99
GDT (el)	UDify	94.33	92.15
	TOWER	94.13	91.16
Hebrew	UDPipe	89.7	86.86
HTB (he)	UDify	91.63	88.11
	UDapter	91.86	88.75
	TOWER	90.71	87.05
Hindi	UDPipe	94.85	91.83
HDTB (hi)	UDify	95.13	91.46
	UDapter	95.29	91.96
	TOWER	95.12	91.42
Hindi PUD (hi)	UDify	71.64	58.42
	TOWER	73.02	50.68
Hungarian	UDPipe	84.04	79.73
Szeged (hu)	UDify	89.68	84.88
	TOWER	87.87	81.02
Indonesian	UDPipe	85.31	78.99
GSD (id)	UDify	86.45	80.1
	TOWER	83.71	76.84
Indonesian PUD (id)	UDify	77.47	56.9
	TOWER	76.71	53.16
Irish	UDPipe	80.39	72.34
IDT (ga)	UDify	80.05	69.28
	TOWER	80.33	66.80
Italian	UDPipe	93.49	91.54
ISDT (it)	UDify	95.54	93.69
	UDapter	95.32	93.46
	TOWER	94.47	91.98
Italian PUD (it)	UDify	94.18	91.76
	TOWER	94.13	89.01
Italian	UDPipe	92.64	90.47
ParTUT (it)	UDify	95.96	93.68
	TOWER	95.06	91.57
Italian	UDPipe	95.33	93.73
PoSTWITA (it)	UDify	94.37	92.08
	TOWER	94.87	92.84
Japanese	UDPipe	95.06	93.73
GSD (ja)	UDify	94.37	92.08
	UDapter	94.87	92.84
	TOWER	92.58	89.44
Japanese PUD (ja)	UDify	94.89	93.62
	TOWER	91.12	88.41
Karelian	UDPipe	61.86	48.35
KKPP (krl)	UDify	62.18	45.60
Kazakh	UDPipe	53.3	33.38
KTB (kk)	UDify	74.77	63.66
	UDapter	74.13	60.74
	TOWER	73.70	59.88
Komi Permyak	UDPipe	36.89	23.05
UH (koi)	UDify	42.36	25.81
Komi Zyrian	UDPipe	36.01	22.12
IKDP (kpv)	UDify	40.87	24.71
Komi Zyrian	UDify	28.85	12.99
Lattice (kpv)	UDapter	28.4	12.5
	TOWER	33.29	17.33
Korean	UDPipe	87.7	84.24
GSD (ko)	UDify	87.74	84.26
	TOWER	89.39	85.91
Korean	UDPipe	88.42	86.48
Kaist (ko)	UDify	87.57	84.52
	TOWER	88.78	86.11
Korean PUD (ko)	UDify	63.57	46.89
	TOWER	61.78	38.40
Japanese	UDPipe	45.23	34.32
Moksha JR (mdf)	UDify	35.86	20.4
	TOWER	26.37	12.1
Latvian	UDPipe	72.00	51.02
Lithuanian	UDPipe	91.06	88.8
ALKSNIS (lt)	UDify	92.43	90.12
	TOWER	91.25	87.07
Lithuanian	UDPipe	71.12	61.28
HSE (lt)	UDify	78.33	69.6
	TOWER	73.53	62.16
Livvi KKPP (olo)	UDapter	79.06	69.34
	TOWER	79.25	65.47
Mbya Guarani	UDapter	57.86	43.34
Dooley (gun)	TOWER	62.77	44.62
Mbya Guarani	UDapter	83.76	75.56
Thomas (gun)	TOWER	76.64	67.31
Naija	UDify	70.63	61.41
NSC (pcm)	UDapter	79.37	67.72
	TOWER	61.01	44.4
North Sami	UDPipe	78.3	73.49
Giella (sme)	UDify	74.3	67.13
	TOWER	53.53	42.05
Norwegian	UDPipe	92.39	90.49
Bokmaal (no)	UDify	93.97	92.18
	TOWER	94.77	93.12
Norwegian	UDPipe	89.09	90.01
Nynorsk (no)	UDify	94.34	92.37
	TOWER	93.96	91.65
Norwegian	UDPipe	68.08	60.07
NynorskLIA (no)	UDify	75.4	69.6
	TOWER	75.43	69.82
Old French	UDPipe	91.74	86.83
SRCMF (fr)	UDify	91.74	86.65
	TOWER	89.75	83.48
Persian	UDPipe	90.05	86.66
Seraji (fa)	UDify	89.59	82.84
	TOWER	91.29	87.43
Treebank	Method	UAS	LAS
------------------------	------------	-------	-------
Polish LFG (pl)	UDPipe	96.58	94.76
	UDify	96.67	94.58
	TOWER	97.06	95.18
Polish PDB (pl)	TOWER	94.99	89.95
Polish PUD (pl)	TOWER	94.13	87.44
Portuguese Bosque (pt)	UDPipe	91.36	89.04
	UDify	91.37	87.84
	TOWER	91.30	88.29
Portuguese GSD (pt)	UDPipe	93.01	91.63
	UDify	94.22	92.54
	TOWER	93.80	91.98
Portuguese PUD (pt)	UDify	87.02	80.17
	TOWER	87.27	77.86
Romanian Nonstandard (ro)	TOWER	89.12	84.2
	UDify	90.36	85.26
	TOWER	90.59	84.41
Romanian RRT (ro)	UDify	91.31	86.74
	TOWER	93.16	88.56
	TOWER	93.61	87.70
Romanian SiMoNERo (ro)	TOWER	91.19	86.75
Russian GSD (ru)	UDPipe	88.15	84.37
	UDify	90.71	86.03
	TOWER	91.85	88.28
Russian PUD (ru)	UDify	93.51	87.14
	TOWER	93.59	88.26
Russian SynTagRus (ru)	UDify	93.8	92.32
	UDify	94.53	93.13
	UDapter	94.04	92.74
	TOWER	95.28	93.75
Russian Taiga (ru)	UDify	75.45	69.11
	UDify	84.02	77.78
	TOWER	84.83	77.71
Sanskrit UFA (sa)	UDify	40.21	18.56
	UDapter	44.32	22.22
	TOWER	63.05	44.66
Scottish Gaelic ARCOSG (gd)	TOWER	81.32	73.82
Serbian SET (sr)	UDPipe	92.7	89.27
	UDify	95.68	91.95
	TOWER	94.36	90.93
Slovak SNK (sk)	UDify	89.82	86.9
	TOWER	95.92	93.87
	TOWER	93.77	90.87
Slovenian SSJ (sl)	UDify	92.96	91.16
	UDify	94.74	93.07
	TOWER	94.91	93.50
Slovenian SST (sl)	UDify	73.51	67.51
	UDify	80.37	75.03
	TOWER	78.64	73.10
Spanish AnCorA (es)	UDify	92.34	90.26
	TOWER	92.99	90.5
	TOWER	92.67	90.44
Spanish GSD (es)	UDify	90.71	88.03
	TOWER	90.82	87.23
	TOWER	92.12	89.64

Treebank	Method	UAS	LAS
Spanish PUD (es)	UDify	90.45	83.08
	TOWER	89.66	80.23
Swedish LinES (sv)	UDify	86.07	81.86
	TOWER	88.77	85.49
Swedish PUD (sv)	UDify	89.17	86.1
	TOWER	89.20	84.95
Swedish Sign Language	UDIfy	89.63	86.61
SSLC (swl)	TOWER	91.91	89.03
	TOWER	92.62	90.26
	TOWER	89.70	86.60
Tamil	UDify	74.11	66.37
	TOWER	79.34	71.29
	TOWER	70.28	64.05
	TOWER	71.28	64.36
Telugu	UDify	91.26	85.02
	TOWER	92.23	89.91
	TOWER	83.52	71.1
	TOWER	90.43	81.97
Thai PUD (th)	UDify	49.05	26.06
	TOWER	78.23	53.80
Turkish GB (tr)	UDIfy	64.04	40.07
	TOWER	84.78	69.52
	TOWER	91.78	74.32
Turkish PUD (tr)	UDIfy	74.19	67.56
	TOWER	74.56	67.44
	TOWER	76.97	69.63
	TOWER	77.90	70.00
Ukrainian IU (uk)	UDIfy	88.29	85.25
	TOWER	92.83	90.3
	TOWER	92.54	89.89
Upper Sorbian UFAL (hsb)	UDify	85.58	34.54
	TOWER	71.55	62.82
	TOWER	62.28	54.2
	TOWER	70.98	60.90
Urdu	UDIfy	87.3	81.62
	TOWER	89.73	82.84
	TOWER	87.43	81.62
Uyghur	UDIfy	78.46	67.09
UD (ug)	TOWER	65.89	48.8
	TOWER	79.11	66.41
Vietnamese VTB (vi)	UDify	70.38	62.56
	TOWER	74.11	66.0
	TOWER	72.40	63.50
Warlpiri UFAL (wbp)	UDify	21.66	7.96
	TOWER	24.2	12.1
	TOWER	31.85	16.24
Welsh CCG (cy)	UDify	70.75	54.43
	TOWER	77.22	57.56
Wolof	UDIfy	69.06	58.13

Warlpiri UFAL (wbp)	UDify	21.66	7.96
	TOWER	24.2	12.1
	TOWER	31.85	16.24
Welsh CCG (cy)	UDIfy	70.75	54.43
	TOWER	77.22	57.56
Wolof	UDIfy	69.06	58.13
Figure 3: Dendrogram of the full syntax-based hierarchical clustering of 89 languages from UD v2.5. Languages are denoted with their ISO 639-1 codes.