1. Introduction

Local gear faults produce short-duration non-stationary impacts, which excite the broad frequency band vibrations. The transient nature of these events means that conventional FFT-based signal processing methods are frequently insufficient. As the vibration signals generated by gear faults may exhibit a phase coupling between particular frequency components, high-order spectra have been successfully used to extract information concerning this fault-related vibration signal feature\(^{(1)}\). Due to the dependency of high-order spectra on signal component amplitudes, methods based on normalised high-order spectra such as, for example, bicoherence (normalised bispectrum) have been proposed\(^{(2)}\).

The transient non-stationary character of vibration generated by gear faults, which makes them difficult to capture with FFT-based methods, makes the wavelet transform, which preserves the temporal information, a particularly useful tool that has been successfully used for vibration transient detection\(^{(3-9)}\).

To benefit from the advantages of both approaches, that is the sensitivity to phase coupling between particular vibration signal components originating from the damaged gearbox meshing, the local time averaging interval \(\langle \ldots \rangle_1\), length has been shortened down to the meshing period \(T_{1,n}\), thanks to which localisation of the gear faults is possible\(^{(10)}\). The locally-averaged WB is given by:

\[
W(bW, f_1, f_2, t) = \frac{E \left\{ W_e(f_1, t) W_e^*(f_2, t) \right\}}{E \left\{ W_e(f_1, t) \right\} E \left\{ W_e^*(f_2, t) \right\}} \ldots (1)
\]

where the frequencies \(f_1, f_2\) and \(f\) fulfil the condition \(f_1 + f_2 = f\). \(\langle \ldots \rangle_1\) is the local time averaging operator, \(E\) is the ensemble averaging operator and \(W_e\) is the continuous wavelet transform of signal \(s(t)\) given by:

\[
W_e(a, t) = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} s(t') \psi^*\left(\frac{t' - t}{a}\right) dt' \ldots \ldots (2)
\]

where \(a\) and \(t\) are scale and time shift variables, \(*\) is the operator of complex conjugation and \(\psi\) denotes the complex Morlet wavelet expressed with:

\[
\psi(t') = \frac{1}{\sqrt{\pi} f_b} \left(e^{i 2 \pi f_b t'} - e^{-i \lambda (\pi f_b)^2} \right) e^{-i \pi / 4} \ldots \ldots (3)
\]

where \(f_b\) is the central frequency of the mother wavelet and \(f_b\) is the bandwidth parameter characterising the half-power bandwidth in the frequency domain, defining the balance between the time and frequency resolution of the wavelet transform. The equivalent of \(f_b\) in the time domain is \(t_{1,n}\). The product \(t_{1,n} f_b\) corresponds to the averaging interval \(\langle \ldots \rangle_1\) short enough to capture the temporal phase coupling between particular vibration signal components generated by gear faults in the selected frequency bandwidths. In previous research, WB has been successfully applied to the detection of artificially-created gearbox faults. This paper will present the application of WB in the detection of naturally-developing gear faults.

2. Application of wavelet bicoherence for observation of tooth micro-pitting development

2.1 The wavelet bicoherence and wavelet bicoherence feature

The locally-averaged WB has been proposed by von Milligan et al\(^{(10)}\) in the domain of turbulence analysis. To adapt the capabilities of WB to non-stationary signals, Combet and Gelman proposed instantaneous WB and the locally-averaged WB with a local time
number of oscillations of the Morlet wavelet within its half-power time-width.

To achieve optimal effectiveness of the detection of transients caused by a tooth fault, the width of the wavelet should match the length of these transients. Therefore, the $t \times f$ product defining the length of the wavelet should be set for every scale $a = f_0 / f$ (if f is a Morlet wavelet frequency) in the way that the time-width $at = t_a f / f$ of the analysing wavelet matches the meshing period $T_m [13-15].$

As the WB is dependent on two frequencies and time, it is difficult to visualise its results$[11,12].$ Therefore, the integrated WB (IWBC) modulus has been proposed as the WB feature given by:

$$I_{WB}(t) = \frac{1}{B_1 B_2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\phi_s(f, f_c, t)| df df_c . \ \ \ \ (4)$$

2.2 Test-rig and experimental set-up

Vibration measurements have been carried out on a 91.5 mm back-to-back test-rig at the Design Unit – Gear Research Centre of the University of Newcastle. The test-rig consisted of two identical gearboxes, A and B, featuring the same canter distance and ratio (16 teeth pinion, 24 teeth wheel). Gearboxes were connected with torsionally-compliant shafts. A servo-hydraulic torque actuator interposed between the gearboxes allowed for precise control and adjustment of the loading torque while running.

Gearbox A was the one on which the vibration signal was recorded in the axial direction together with a tacho signal. All signals were recorded with a 40 kHz sampling rate and anti-aliasing filters were applied. Because of the amplitude-frequency characteristics of the accelerometer, an active low-pass filter cut-off frequency was set to 13.5 kHz.

During the test, gears performed over 50 million cycles, i.e. shaft revolutions at a loading torque of 500 ±5 Nm with a pinion rotational speed of 3000 r/min. After each 10 million cycles, the experiment was stopped and the gears were examined, so the progress of the developing micro-pitting could be evaluated. After each break in the test the gears were reinstalled in the test-rig in exactly the same position so the development of damage on every gear tooth could be tracked. Figure 2 shows the estimation of the micro-pitting progress on the selected pinion teeth that had worn out the most during the experiment.

![Figure 1. Schematic and picture of the gearbox test-rig](image)

![Figure 2. Estimation of progressing micro-pitting on selected teeth of a pinion (T1 - tooth one ... T16 - tooth 16)](image)

2.3 Estimation of the diagnostic WB feature

2.3.1 Angular signal resampling

As the progress of micro-pitting on the pinion was the object of investigation, the vibration signal captured on a gearbox has been subjected to time synchronous averaging (TSA), extracting from the signal all frequencies related to the pinion. Therefore, the period of TSA was the period of one pinion revolution. Due to slight fluctuation of the pinion rotational speed, while estimating the TSA signal sections corresponding to the pinion, one full 360° revolution has been upsampled to an equal number of samples and then averaged.

2.3.2 Classical residual signal

The gear faults create low-energy impacts that hardly affect the levels of mesh harmonics and they are therefore not clearly visible in the TSA signal. Common practice is to subtract mesh harmonics from the TSA signal and in that way reduce it to a classical residual signal, which is subjected to further signal processing. Classical residual signal $r(t)$ has been obtained by subtracting the averaged tooth meshing vibration signal from the TSA signal in accordance with:

$$r(t) = m(t) - \frac{1}{N_t} \sum_{k=1}^{N_t} m(t - kT_m) . \ \ \ \ (5)$$

where $m(t)$ is a TSA signal, T_m is the mesh period and N_t is the number of teeth$[15].$

2.3.3 Wavelet transform calculation

WB calculation requires a choice of an optimal wavelet transform parameter f_c, the central frequency of the mother wavelet, and in this case the right wavelet time-width at parameter (Section 2.1). In the case of these research parameters, $f_c = 5$ rad/s and $at = T_m$, so 1/16 of the period of pinion rotation has been chosen. Wavelet scalograms obtained with these wavelet transform parameters for the gearbox at the beginning of the experiment and after 40 million and 50 million cycles has been shown below.

2.3.4 Wavelet bicoherence and the wavelet bicoherence feature

To allow precise localisation of the gear fault, the set-up of the local averaging $\langle \rangle$, is a key factor as it defines the time/angle resolution of the WB results. In this research, the local averaging was carried...
VIBRATION DIAGNOSIS

out using five consecutive samples, which determined the angle resolution of 1.76°. Figure 4 shows the WB maps estimated for the gearbox at the beginning of the experiment and after 40 million and 50 million cycles. The red squares mark the frequency ranges chosen for integrated WB modulus calculation in order to obtain the integrated WB (IWBC) feature.

Evaluation of the WB maps allows for selection of the relevant frequency bands, but it does not allow for fault localisation as they present the modulus of the complex WB integrated over time. The integrated WB (IWBC) modulus calculated for selected frequency bands indicates the exact gear angular position of the pinion at which phase-coupled signal components appear. Figure 5 shows the values of the integrated WB feature for 30 consecutive WB realisations, performed on a signal recorded at different stages of gearbox wear-out.

2.3.5 Fisher criterion

In order to verify the diagnostic capabilities of the WB technology and the sensitivity of the WB feature to the changes in the vibration signal generated by the degrading gearbox, the Fisher criterion (FC) was used. The FC was calculated using values of the integrated WB (IWBC) feature obtained from the vibration signal recorded at the beginning of the experiment (no defect) and the vibration signal recorded after 40 million and 50 million cycles (with defect). The FC estimation has been carried out for every angular position of the
VIBRATION DIAGNOSIS

The results obtained by the WB technology for signals recorded at the beginning of the experiment (no pitting), after 40 million cycles (0.3%-0.5% relative pitting) and after 50 million cycles (0.3%-0.7% relative pitting) allowed for the detection and localisation of damaged teeth. Figure 7 shows the values of the Fisher criterion after 40 million and after 50 million cycles obtained for damaged teeth 1, 15 and 16.

3. Conclusions

Wavelet bicoherence technology has already been applied to rolling element bearing and gearbox condition monitoring [8,11,12]. Nevertheless, in these cases, the vibration signals were generated by no-defect and damaged objects (gears/bearings) in which faults had been artificially implemented.

Figure 5. 30 consecutive realisations of the WB feature (IWBC) for the gearbox at: (a) the beginning of the experiment; (b) after 40 million cycles; (c) after 50 million cycles. Vertical lines mark the approximate angular position of the pinion teeth.

Figure 6. Averaged 30 consecutive realisations of the WB feature for the gearbox at the beginning of the experiment and after 40 million and 50 million cycles.

Figure 7. FC calculated for gearbox after 40 million and 50 million cycles. Vertical lines and numbers mark the approximate position of particular teeth. The numbers in squares indicate the teeth in which the pitting was measured (Figure 2).

\[FC(\theta) = \frac{(\mu_D(\theta) - \mu_{ND}(\theta))^2}{\sigma_D^2(\theta) + \sigma_{ND}^2(\theta)} \]

where \(\mu \) and \(\sigma \) are, respectively, the mean value and the standard deviation of the integrated WB feature calculated for each angle \(\theta \) over all WB realisations. Subscripts \(D \) and \(ND \) denote defect (after 40 million cycles or 50 million cycles) and no-defect gearbox conditions. Increased values of the Fisher criterion indicate the angular positions of the teeth that generated the signal consisting of frequency components between which the phase coupling detected by WB has changed the most during the research.

The results obtained by the WB technology for signals recorded at the beginning of the experiment (no pitting), after 40 million cycles (0.3%-0.5% relative pitting) and after 50 million cycles (0.3%-0.7% relative pitting) allowed for the detection and localisation of damaged teeth. Figure 7 shows the values of the Fisher criterion after 40 million and after 50 million cycles obtained for damaged teeth 1, 15 and 16.
This paper presents the results of research in which the WB technology has been used to diagnose initial micro-pitting that has developed naturally during the gearbox endurance test. The results obtained confirmed the diagnostic capabilities of the WB technology for the early detection of natural gearbox damage and the characterisation of damage propagation.

4. References
1. L Bouillaut and M Sidahmed, ‘Cyclostationary approach and bilinear approach: comparison, applications to early diagnosis for gearbox and classification method based on HOCS’, Mechanical Systems and Signal Processing, Vol 15, No 5, pp 923-943, 2001.
2. B E Parker Jr, H A Ware, D P Wipf, W R Tompkins and B R Clark, ‘Fault diagnostics using statistical change detection in the bispectral domain’, Mechanical Systems and Signal Processing, Vol 14, No 4, pp 561-570, 2000.
3. W J Wang and P D McFadden, ‘Application of wavelets to gearbox vibration signals for fault detection’, Journal of Sound and Vibration, Vol 192, No 5, pp 927-939, 1996.
4. W J Staszewski and G R Tomlinson, ‘Application of the wavelet transform to fault detection in a spur gear’, Mechanical Systems and Signal Processing, Vol 8, No 3, pp 289-307, 1994.
5. W Q Wang, F Ismail and M Farid Golnaraghi, ‘Assessment of gear damage monitoring techniques using vibration measurements’, Mechanical Systems and Signal Processing, Vol 15, No 5, pp 905-922, 2001.
6. G Dalpiaz, A Rivola and R Rubini, ‘Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears’, Mechanical Systems and Signal Processing, Vol 14, No 3, pp 387-412, 2000.
7. D Boulahbal, M Farid Golnaraghi and F Ismail, ‘Amplitude and phase wavelet maps for the detection of cracks in geared systems’, Mechanical Systems and Signal Processing, Vol 13, No 3, pp 423-436, 1999.
8. K C Gryllias, L Gelman, B Shaw and M Vaidhianathasamy, ‘Local damage diagnosis in gearboxes using novel wavelet technology’, In: Seventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM2010/MFPT 2010, Stratford-upon-Avon, UK, June 2010.
9. F Combet, L Gelman and G Lapayne, ‘Novel detection of local tooth damage in gears by the wavelet bicoherence’, Mechanical Systems and Signal Processing, Vol 26, pp 218-228, 2012.
10. B P von Millegan et al, ‘Wavelet bicoherence: a new turbulence analysis tool’, Physics of Plasmas, Vol 2, No 8, pp 3017-3032, 1995.
11. L Gelman, B Murray, T H Patel and A Thomson, ‘Diagnosis of bearings by novel non-linear non-stationary higher-order spectra’, In: Tenth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM2013/MFPT2013, Kraków, Poland, June 2013.
12. L Gelman, B Murray, T H Patel and A Thomson, ‘Vibration diagnostics of rolling bearings by novel non-linear non-stationary wavelet bicoherence technology’, Engineering Structures, Vol 80, pp 514-520, 2014.
13. F Combet and L Gelman, ‘Optimal filtering of gear signals for early damage detection based on the spectral kurtosis’, Mechanical Systems and Signal Processing, Vol 23, pp 652-668, 2009.