Neural networks can be trained to solve partial differential equations (PDEs) by using the PDE residual as the loss function. This strategy is called “physics-informed neural networks” (PINNs), but it currently cannot produce high-accuracy solutions, typically attaining about 0.1% relative error. We present an adversarial approach that overcomes this limitation, which we call competitive PINNs (CPINNs). CPINNs train a discriminator that is rewarded for predicting mistakes the PINN makes. The discriminator and PINN participate in a zero-sum game with the exact PDE solution as an optimal strategy. This approach avoids squaring the large condition numbers of PDE discretizations, which is the likely reason for failures of previous attempts to decrease PINN errors even on benign problems. Numerical experiments on a Poisson problem show that CPINNs achieve errors four orders of magnitude smaller than the best-performing PINN. We observe relative errors on the order of single-precision accuracy, consistently decreasing with each epoch. To the authors’ knowledge, this is the first time this level of accuracy and convergence behavior has been achieved. Additional experiments on the nonlinear Schrödinger, Burgers’, and Allen–Cahn equation show that the benefits of CPINNs are not limited to linear problems.

1 INTRODUCTION

PDE-constrained deep learning. Partial differential equations (PDEs) model physical phenomena like fluid dynamics, heat transfer, electromagnetism, and more. The rising interest in scientific machine learning motivates the study of PDE-constrained neural network training (Lavin et al., 2021). Such methods can exploit physical structure for learning or serve as PDE solvers in their own right.

Physics informed networks. Lagaris et al. (1998) represent PDE solutions as neural networks by including the square of the PDE residual in the loss function, resulting in a neural network-based PDE solver. Raissi et al. (2019) recently refined this approach further and called it “physics informed neural networks (PINNs),” initiating a flurry of follow-up work. PINNs are far less efficient than classical methods for solving most PDEs, but are promising tools for high-dimensional or parametric PDEs (Xue et al., 2020) and data assimilation problems. The training of PINNs also serves as a model problem for the general challenge of imposing physical constraints on neural networks, an area of fervent and increasing interest (Wang et al., 2021b; Li et al., 2021; Donti et al., 2021).

Training pathologies in PINNs. PINNs can, in principle, be applied to all PDEs, but their numerous failure modes are well-documented (Wang et al., 2021a; Liu et al., 2021; Krishnapriyan et al., 2021). For example, they are often unable to achieve high-accuracy solutions. The first works on PINNs reported relative L_2 errors of about 10^{-3} (Raissi et al., 2019). The authors are unaware of PINNs achieving errors below 10^{-5}, even in carefully crafted, favorable settings. Higher accuracy is required in many applications.

Existing remedies. A vast and growing body of work aims to improve the training of PINNs, often using problem-specific insights. For example, curriculum learning can exploit causality in time-dependent PDEs (Krishnapriyan et al., 2021; Wang et al., 2022a; Wight & Zhao, 2020). Krishnapriyan et al. (2021) also design curricula by embedding the PDE in a parametric family of problems of varying difficulty. Other works propose adaptive methods for selecting the PINN collocation points
Adaptive algorithms for weighing components of the PINN loss function have also been proposed (Wang et al., 2022b; van der Meer et al., 2022). Despite these improvements, the squared residual penalty method used by such PINNs imposes a fundamental limitation associated with conditioning, which is discussed next.

The key problem: Squared residuals. Virtually all PINN-variants use the squared PDE residual as loss functions. For a linear PDE of order \(s \), this is no different than solving an equation of order \(2s \), akin to using normal equations in linear algebra. The condition number \(\kappa \) of the resulting problem is thus the square of the condition number of the original one. Solving discretized PDEs is an ill-conditioned problem, inhibiting the convergence of iterative solvers and explaining the low accuracy of most previous PINNs. It is tempting to address this problem using penalties derived from \(p \)-norms with \(p \neq 2 \). However, choosing \(p > 2 \) leads to worse condition numbers, whereas \(p < 2 \) sacrifices the smoothness of the objective. The convergence rates of gradient descent on (non-)smooth convex problems suggest that this trade is unfavorable (Bubeck et al., 2015).

Weak formulations. Integration by parts allows the derivation of a weak form of a PDE, which for some PDEs can be turned into a minimization formulation that does not square the condition number. This procedure has been successfully applied by E & Yu (2017) to solve PDEs with neural networks (Deep Ritz). However, the derivation of such minimization principles is problem-dependent, limiting the generality of the formulation. Deep Ritz also employs penalty methods to enforce boundary values, though these preclude the minimization problem’s solution from being the PDE’s exact solution. Liao & Ming (2019) proposed a partial solution to this problem. The work most closely related to ours is by Zhang et al. (2020), who proposes a game formulation based on the weak form.

Competitive PINNs. We propose Competitive Physics Informed Neural Networks (CPINNs) to address the above problems. CPINNs are trained using a minimax game between the PINN and a discriminator network. The discriminator learns to predict mistakes of the PINN and is rewarded for correct predictions, whereas the PINN is penalized. We train both players simultaneously on the resulting zero-sum game to reach a Nash equilibrium that matches the exact solution of the PDE.

Summary of contributions. A novel variant of PINNs, called CPINNs, is introduced, replacing the penalty employed by PINNs with a primal-dual approach. This simultaneously optimizes the PINN and a discriminator network that learns to identify violations of the PDE and boundary constraints. We optimize PINNs with competitive gradient (CGD) (Schafer & Anandkumar, 2019) and compare their performance to regular PINNs trained with Adam. On a two-dimensional Poisson problem, CPINNs achieve a relative accuracy of almost \(10^{-8} \), improving over PINNs by four orders of magnitude. To the best of our knowledge, this is the first time a PINN-like network was trained to this level of accuracy. We compare PINNs with CPINNs on a nonlinear Schrödinger equation, a viscous Burgers’ equation, and an Allen-Cahn equation. In all but the last case, CPINNs improve over PINNs trained with a comparable computational budget.

2 Competitive PINN formulation

We formulate CPINNs for a PDE of the general form

\[
A[u] = f, \quad \text{in } \Omega
\]

\[
u = g, \quad \text{on } \partial\Omega,
\]

where \(A[\cdot] \) is a (possibly nonlinear) differential operator and \(\Omega \) is a domain in \(\mathbb{R}^d \) with boundary \(\partial\Omega \). To simplify notation, we assume that \(f, g, \) and \(u \) are real-valued functions on \(\Omega, \partial\Omega, \) and \(\Omega \cup \partial\Omega \), respectively. One can extend both PINNs and CPINNs to vector-valued such functions if needed.

2.1 Physics Informed Neural Networks (PINNs)

PINNs approximate the PDE solution \(u \) by a neural network \(\mathcal{P} \) mapping \(d \)-variate inputs to real numbers. The weights are chosen such as to satisfy equation 1 and equation 2 on the points \(x \subset \Omega \) and \(\mathbf{\overline{x}} \subset \partial\Omega \). The loss function used to train \(\mathcal{P} \) has the form

\[
\mathcal{L}^{\text{PINN}}(\mathcal{P}, x, \mathbf{\overline{x}}) = \mathcal{L}_{\Omega}^{\text{PINN}}(\mathcal{P}, x_{\Omega}) + \mathcal{L}_{\partial\Omega}^{\text{PINN}}(\mathcal{P}, \mathbf{\overline{x}}),
\]

where \(\mathcal{L}_{\Omega}^{\text{PINN}}(\mathcal{P}, x_{\Omega}) \) and \(\mathcal{L}_{\partial\Omega}^{\text{PINN}}(\mathcal{P}, \mathbf{\overline{x}}) \) are the loss functions on the domain and boundary, respectively.
where \(L_{\partial \Omega}^{\text{PINN}} \) measures the violation of the boundary conditions equation 2 and \(L_{\Omega}^{\text{PINN}} \) measures the violation of the PDE of equation 1. They are defined as

\[
L_{\Omega}^{\text{PINN}}(\mathcal{P}, x) = \frac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} (A[\mathcal{P}](x_i) - f(x_i))^2
\]

\[
L_{\partial \Omega}^{\text{PINN}}(\mathcal{P}, \mathcal{F}) = \frac{1}{N_{\partial \Omega}} \sum_{i=1}^{N_{\partial \Omega}} (\mathcal{P}(\mathcal{F}_i) - g(\mathcal{F}_i))^2.
\]

Here, \(N_{\Omega} \) and \(N_{\partial \Omega} \) are the number of points in the sets \(x \) (interior) and \(\mathcal{F} \) (boundary), and \(x_i \) and \(\mathcal{F}_i \) are the \(i \)-th such points in \(x \) and \(\mathcal{F} \).

PINNs approximate the exact solution \(u \) of the PDE by minimizing the loss in equation 3. However, optimizing this loss using established methods such as gradient descent, ADAM, or LBFGS often leads to unacceptably large errors or an inability to train at all (Wang et al., 2021a; 2022b). This pathology has been attributed to the bad conditioning of the training problem (Krishnapriyan et al., 2021). Next, we introduce CPINNs, a game-based formulation designed to mitigate these problems.

2.2 Competitive Physics Informed Neural Networks (CPINNs)

CPINNs introduce one or more discriminator networks \(\mathcal{D} \) with input \(x \in \mathbb{R}^d \) and outputs \(\mathcal{D}_\Omega(x) \) and \(\mathcal{D}_{\partial \Omega}(x) \). \(\mathcal{P} \) and \(\mathcal{D} \) compete in a zero-sum game where \(\mathcal{P} \) learns to solve the PDE, and \(\mathcal{D} \) learns to predict the mistakes of \(\mathcal{P} \). This game is defined as a minimax problem

\[
\max_{\mathcal{P}} \min_{\mathcal{D}} L_{\Omega}^{\text{CPINN}}(\mathcal{P}, \mathcal{D}, x) + L_{\partial \Omega}^{\text{CPINN}}(\mathcal{P}, \mathcal{D}, \mathcal{F}),
\]

where

\[
L_{\Omega}^{\text{CPINN}}(\mathcal{D}, \mathcal{P}, x) = \frac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} \mathcal{D}_\Omega(x_i) (A[\mathcal{P}](x_i) - f(x_i)),
\]

\[
L_{\partial \Omega}^{\text{CPINN}}(\mathcal{D}, \mathcal{P}, \mathcal{F}) = \frac{1}{N_{\partial \Omega}} \sum_{i=1}^{N_{\partial \Omega}} \mathcal{D}_{\partial \Omega}(\mathcal{F}_i) (\mathcal{P}(\mathcal{F}_i) - g(\mathcal{F}_i)).
\]

Here, \(\mathcal{D}_\Omega(x_i) \) and \(\mathcal{D}_{\partial \Omega}(\mathcal{F}_i) \) can be interpreted as bets by the discriminator that the PINN will over- or under-shoot equation 1 and equation 2. Winning the bet results in a reward for \(\mathcal{D} \) and a penalty for \(\mathcal{P} \), and a lost bet has the opposite effect.

The Nash equilibrium of this game is \(\mathcal{P} \equiv u \) and \(\mathcal{D} \equiv 0 \). Thus, iterative algorithms for computing Nash equilibria in such zero-sum games can be used to solve the PDE approximately. This work focuses on the CGD algorithm of Schäfer & Anandkumar (2019). Still, CPINNs can be trained with other proposed methods for smooth game optimization (Korpelevich, 1977; Mescheder et al., 2017; Balduzzi et al., 2018; Gemp & Mahadevan, 2018; Daskalakis et al., 2018; Letcher et al., 2019). In our experiments, \(\mathcal{P} \) and \(\mathcal{D} \) are fully connected networks with hyperbolic tangent and ReLU activation functions, respectively. Each network’s number of layers and neurons depends on the PDE problem.

2.3 Avoiding Squares of Differential Operators

Multiagent methods for solving PDEs may seem unorthodox, yet they are motivated by observations in classical numerical analysis. Consider the particular case of a linear PDE and networks \(\mathcal{P}, \mathcal{D} \) with outputs that depend linearly on their weight-vectors \(\pi \) and \(\delta \) resulting in the parametric form

\[
\mathcal{P}(x) = \sum_{i=1}^{\dim(\pi)} \pi_i \psi_i(x), \quad \mathcal{D}(x) = \sum_{i=1}^{\dim(\delta)} \delta_i \phi_i(x),
\]

for basis functions sets \(\{\psi_i\}_{1 \leq i \leq \dim(\pi)} \) and \(\{\phi_i\}_{1 \leq i \leq \dim(\delta)} \). We focus our attention on the PDE constraint in equation 1, which is evaluated at a set \(x \) of \(N_{\Omega} \) points. Defining \(A \in \mathbb{R}^{N_{\Omega} \times \dim(\pi)} \) and \(f \in \mathbb{R}^{N_{\Omega}} \), this leads to

\[
A_{ij} := A[i][\psi_j](x_i), \quad f_i := f(x_i)
\]
and the discretized PDE

\[A\pi = f. \] (11)

PINNs solve equation 11 via a least squares problem

\[\min_{\pi} ||A\pi - f||^2, \] (12)

trading the equality constraint for a minimization problem with solution \(\pi = (A^T A)^{-1} A^T f. \)

Since the matrix \((A^T A) \) is symmetric positive-definite, one can solve it with specialized algorithms such as the conjugate gradient method (CG) (Shewchuk, 1994). This approach is beneficial for well-conditioned nonsymmetric matrices but inappropriate for ill-conditioned \(A \) (Axelsson, 1977). This is because \(\kappa(A^T A) = \kappa(A)^2 \), resulting in slow convergence of iterative solvers. Differential operators are unbounded. Thus, their discretization leads to ill-conditioned linear systems. Krishnapriyan et al. (2021) argue that the ill-conditioning of equation 12 causes the optimization difficulties they observe.

CPINNs turn the discretized PDE in equation 11 into the saddlepoint problem

\[\min_{\pi} \max_{\delta} \delta^T (A\pi - f). \] (13)

The solution to this problem is the same as that of the system of equations

\[
\begin{bmatrix}
0 & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
\pi \\
\delta
\end{bmatrix} =
\begin{bmatrix}
0 \\
f
\end{bmatrix}, \quad \text{with} \quad \kappa \left(
\begin{bmatrix}
0 & A^T \\
A & 0
\end{bmatrix}
\right) = \kappa(A). \] (14)

By turning equation 11 into the saddle point problem of equation 13 instead of the minimization form of equation 12, CPINNs avoid squaring the condition number.

In light of the above, deciding between PINNs and CPINNs is the nonlinear analog of an old dilemma in numerical linear algebra: should one trade solving a linear system for a least-squares problem? This trade allows using simpler algorithms like CG at the cost of a squared condition number. Yet, it is rarely beneficial for the ill-conditioned systems arising from discretized PDEs. As demonstrated in the following experiments, the complexity of solving multiagent problems is a price worth paying.

3 RESULTS

3.1 OVERVIEW

This section compares PINNs and CPINNs on a series of model problems. The code used to produce the experiments described below can be found under github.com/comp-physics/CPINN. We study a two-dimensional Poisson problem (section 3.2), a nonlinear Schrödinger equation (section 3.3), a viscous Burgers’ equation (section 3.4), and the Allen-Cahn equation (section 3.5). Throughout the previous sections, we train PINNs using Adam and CPINN using adaptive competitive gradient descent (ACGD) (Schäfer et al., 2020b). The latter combines CGD of Schäfer & Anandkumar (2019) with an Adam-like heuristic for choosing step sizes.

ACGD uses GMRES (Saad & Schultz, 1986) and the Hessian vector products obtained by automatic differentiation to solve the linear system defining the CGD update. Thus, iterations of (A)CGD are considerably more expensive than those of Adam. To account for this difference fairly, we also provide the number of forward passes through the neural network required by the two methods. An Adam iteration amounts to a single forward pass and an ACGD iteration to two forward passes, plus two times the number of GMRES iterations. We also tried other optimizers for both PINNs and CPINNs but found them inferior to Adam and ACGD. A comparison is presented in section 3.6.

3.2 POISSON EQUATION

We begin by considering a two-dimensional Poisson equation:

\[\Delta u(x, y) = -2 \sin(x) \cos(y), \quad x, y \in [-2, 2] \] (15)

with Dirichlet boundary conditions

\[
u(x, -2) = \sin(x) \cos(-2), \quad u(-2, y) = \sin(-2) \cos(y),
\]
\[
u(x, 2) = \sin(x) \cos(2), \quad u(2, y) = \sin(2) \cos(y).
\]
Figure 1: Comparison of CPINN and PINN on the Poisson problem of equation 15 in terms of relative error. CPINN has a faster convergence rate and reduces the L_2 error to 1.7×10^{-8}, whereas the PINN case has an L_2 error of 1.2×10^{-4} even with a larger computational budget.

This problem has the manufactured solution

$$u(x, y) = \sin(x) \cos(y).$$

(16)

The PINN implementation has losses

$$\mathcal{L}_{\partial\Omega}^{\text{PINN}} = \frac{1}{N_{\partial\Omega}} \sum_{i=1}^{N_{\partial\Omega}} (P(x_i, y_i) - u(x_i, y_i))^2,$$

(17)

$$\mathcal{L}_{\Omega}^{\text{PINN}} = \frac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} \left(P_{xx}(x_i, y_i) + P_{yy}(x_i, y_i) + 2 \sin(x_i) \cos(y_i) \right)^2,$$

(18)

and the CPINN losses are

$$\mathcal{L}_{\partial\Omega}^{\text{CPINN}} = \frac{1}{N_{\partial\Omega}} \sum_{i=1}^{N_{\partial\Omega}} D_{\partial\Omega}(x_i) (P(x_i, y_i) - u(x_i, y_i)),$$

(19)

$$\mathcal{L}_{\Omega}^{\text{CPINN}} = \frac{1}{N_{\Omega}} \sum_{i=1}^{N_{\Omega}} D_{\Omega}(x_i) \left(P_{xx}(x_i, y_i) + P_{yy}(x_i, y_i) + 2 \sin(x_i) \cos(y_i) \right).$$

(20)

Figure 2 (a) shows the exact solution of the PDE and the absolute error of the best models trained using (b) PINN and (c) CPINN, as well as an example of the discriminator output (d). The CPINN achieves lower errors than the PINN by a factor of about 10^6 throughout most of the domain.
Figure 3: Comparison of CPINN and PINN on the nonlinear Schrödinger equation \(21\) in terms of relative errors. After 200,000 training iterations, PINN cannot reduce the \(L_2\) error further, plateauing about \(4 \times 10^{-3}\), whereas CPINN reduces the error to \(6 \times 10^{-4}\) under a smaller computational budget.

Figure 4: The relative errors of CPINNs (current) and PINNs on the Burgers’ equation.

Figure 1 shows the relative \(L_2\) error of a PINN and a CPINN on the Poisson problem. CPINN shows a faster convergence rate regarding the number of forward passes and training epochs, and its accuracy is higher than that of PINN by 4 orders of magnitude.

3.3 Nonlinear Schrödinger Equation

In this subsection, we apply the competitive PINN methodology to solve the Schrödinger equation

\[
u_t + \frac{1}{2} u_{xx} + |u|^2 u = 0, \quad x \in [-5, 5], \quad t \in [0, \pi/2],
\]

where \(u(t, x)\) is the complex-valued solution and

\[
u(0, x) = 2 \text{sech}(x), \quad u(t, -5) = u(t, 5), \quad u_x(t, -5) = u_x(t, 5)
\]

are the initial and boundary conditions.

The best results for CPINNs and PINNs are presented in fig. 3. CPINN reached an \(L_2\) relative error of \(6 \times 10^{-4}\) after \(4.2 \times 10^3\) training iterations with \(4.1 \times 10^6\) forward passes. PINN reached an \(L_2\) relative error of \(5 \times 10^{-5}\) after \(6.2 \times 10^6\) training iterations, equivalent to \(6.2 \times 10^6\) forward passes.

3.4 Burgers’ Equation

We next consider the case of the viscous Burgers’ equation. This nonlinear second-order equation is

\[
u_t + uu_x - (0.01/\pi) u_{xx} = 0, \quad x \in [-1, 1], \quad t \in [0, 0],
\]
Figure 5: Relative error for the Allen–Cahn equation. A CPINN and a PINN that uses the curriculum learning approach of Wight & Zhao (2020) are shown. CPINN does not outperform this particular PINN, which may be due to the overall low accuracy of both methods.

which has parameters matching Raissi et al. (2019). $u(t, x)$ is the solution of the PDE and

$$u(0, x) = -\sin(\pi x), \quad u(t, -1) = u(t, 1) = 0$$

are the initial and boundary conditions. A comparison to CPINNs is presented in fig. 4. CPINN exhibits an improved convergence rate and continues to reduce the error, whereas the progress of PINN eventually stagnates.

3.5 Allen–Cahn Equation

We next consider the one-dimensional Allen–Cahn equation with periodic boundary conditions, a cubically nonlinear equation given by

$$u_t - 0.0001u_{xx} + 5u^3 - 5u = 0, \quad x \in [-1, 1], \quad t \in [0, 1]$$

(25)

where $u(t, x)$ is the solution of the PDE and

$$u(0, x) = x^2 \cos(\pi x), \quad u(t, -1) = u(t, 1), \quad u_x(t, -1) = u_x(t, 1)$$

(26)

are the initial and boundary conditions. This example follows Raissi et al. (2019), and we use their training and testing data.

Raissi et al. (2019) does not report the performance of a standard PINN and instead shows the performance of a problem-specific modification that exploits the temporal structure of the problem. Wight & Zhao (2020) observe that this problem is difficult to solve directly for PINNs and propose a curriculum learning approach to remedy this problem.

We use the approach of Wight & Zhao (2020) for PINNs and a suitable adaptation for CPINN. On this problem, CPINN is modestly outperformed by PINNs. This may be due to the overall slow convergence that prevents us from reaching the regime where PINNs start to plateau. It is also possible that our adaption of the curriculum learning approach of Wight & Zhao (2020) to CPINNs could be improved.

3.6 Other Optimizers

We repeated our experiments with the Poisson problem using different optimizers to distinguish the effects of CPINN and ACGD. We use Adam and SGD for PINNs, and basic CGD (BCGD, without adaptive step sizes), ACGD, ExtraSGD, and ExtraAdam for CPINNs (Korpelevich, 1977; Gidel et al., 2019). We observe that combined with CPINN, the nonadaptive algorithms BCGD and extragradient improve over PINN trained with (the equally nonadaptive) SGD. The latter even begins to improve over PINNs trained with Adam after sufficient iterations.

We could not achieve training via ExtraAdam on the CPINN strategy. The ACGD optimizer achieves much better results than all others. We conclude that CPINN improves over PINN, but the full realization of the CPINN advantage is enabled by the robust and adaptive training afforded by ACGD.
Figure 6: Comparison of PINNs and CPINNs with different optimizers for the Poisson problem.

Table 1: Performance of CPINNs and PINNs on the 2D Poisson problem of equation 15.

Optimizer	Iterations	L^2 Rel. Error	$\mathcal{L}_{\text{PINN}}^{(0)}$	$\mathcal{L}_{\text{CPINN}}^{(0)}$	$\mathcal{L}_{\text{CPINN}}^{(4)}$
PINN Adam	3×10^7	1.2×10^{-4}	1.4×10^{-8}	8.4×10^{-8}	5.5×10^{-9}
PINN SGD	2.2×10^7	1.3×10^{-3}	1.1×10^{-6}	5.2×10^{-7}	6.3×10^{-7}
PINN ACGD	4.8×10^4	1.7×10^{-8}	2.1×10^{-14}	2×10^{-14}	6×10^{-16}
PINN CGD	6×10^5	3.5×10^{-4}	5.1×10^{-7}	3.5×10^{-7}	1.7×10^{-7}
PINN ExtraAdam	8.5×10^6	1.6	1.6×10^6	1.6×10^6	0.2
PINN ExtraSGD	8.5×10^6	1.2×10^{-4}	1.2×10^{-7}	9.2×10^{-8}	3×10^{-8}

4 Connections to existing work

Saddle point formulations arise in Petrov–Galerkin and mixed finite-element methods, which use different finite-dimensional function spaces to represent the solution (called trial functions) and measure the violation of the equations (called test functions) (Quarteroni & Valli, 2008; Fortin & Brezzi, 1991). The neural networks introduced here, \mathcal{P} and \mathcal{D}, are nonlinear analogs of trial and test spaces. Unlike our approach, Deep Petrov–Galerkin of Shang et al. (2022) only parameterizes the trial space by a neural network and uses a conventional discretization such as finite elements for the test space. They only train the last layer while keeping all other layers fixed after initialization.

Saddle point problems in PDEs can be interpreted geometrically and have a game-theoretic interpretation (Lemaire, 1973). In a complementary game-theoretic approach, Owhadi (2017) cast computation as a game between a numerical analyst and an environment, using ideas from decision theory (Wald, 1945). Saddle point problems also arise from the introduction of Lagrange multipliers, which are used to cast a constrained optimization problem as an unconstrained saddle point problem (Brezzi, 1974). These discriminators can be viewed as neural-network-parametrized Lagrange multipliers that enforce distributional equality (in GANs) or satisfaction of the PDE (in CPINNs).

Our work is thus related to recent efforts that combine CGD with Lagrange multipliers to solve constrained optimization problems arising from reinforcement learning and computer graphics (Bacon et al., 2019; Yu et al., 2021; Soliman et al., 2021). The need for constrained training of neural networks also arises in other applications, resulting in an increasing body of work on this topic (Pathak et al., 2015; Donti et al., 2021; Lokhande et al., 2020; Fioretto et al., 2020).

Following section 1, Deep Ritz exploits the fact that some PDEs can be cast as minimization problems without squaring the condition number (E & Yu, 2017), expressing equation 11 as

$$\min_{\pi} \frac{\pi^T A \pi}{2} - \pi^T f,$$

for a symmetric positive definite matrix A. Such a formulation is not always available, and even if it exists, one still must enforce the PDE boundary conditions (Liao & Ming, 2019). Zang et al. (2020)
uses a weak PDE formulation to derive a minimax formulation. In the notation of section 2.3, their approach is similar to using the zero-sum game
\[
\min_{\pi} \max_{\delta} \log \left((\pi^T A\delta)^2 \right) - \log \left(\|\delta\|^2 \right).
\]

Wang et al. (2021a) and Xu et al. (2021) adapted the penalty weights in PINNs during training to improve accuracy. Different from the D output of CPINNs, these weights are multiplied with the square violation of the equality constraint, which is always greater than zero. Therefore, they do not correspond to a meaningful zero-sum game because the optimal discriminator strategy, in this case, drives all weights to infinity. Alternatively, Krishnapriyan et al. (2021) recommends the use of curriculum learning. They train the initial PINN on a better-conditioned variant of the original problem that slowly transforms into the target problem during training.

5 DISCUSSION

This work introduced CPINNs, an agent-based approach to the neural-network-based solution of PDEs. CPINNs are crafted to avoid the ill-conditioning resulting from traditional PINNs least squares loss functions. Section 3 showed that CPINNs trained with ACGD improve upon the accuracy of PINNs trained with a comparable computational budget and can solve PDEs beyond even single-precision floating-point accuracy, the first approach with this capability.

With CPINNs, one can now achieve single-precision errors, but significant computation is still required. This is due to the number of CG iterations performed for each ACGD step. Reducing this overhead is a direction for future work. Potential solutions to this problem include cheaper approximate solutions of the matrix inverse, different iterative solvers, or the recycling of Krylov subspaces (Paige & Saunders, 1975; Parks et al., 2006).

The present experiments used the same training points for each iteration, following Raissi et al. (2019). In the future, we will investigate the effects of batch stochasticity on training accuracy. We also plan to investigate competitive mirror descent (CMD) for partial differential inequalities and contact problems (Schäfer et al., 2020a; Lions, 1972) and, more generally, CPINN-like approaches to other problems involving the constrained training of neural networks.

ACKNOWLEDGMENTS

This research was supported in part through research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of Technology, Atlanta, Georgia, USA. We thank Hongkai Zheng for maintaining the CGDs package used to conduct this work.

REFERENCES

Owe Axelsson. Solution of linear systems of equations: Iterative methods. In Sparse matrix techniques, pp. 1–51. Springer, 1977.

Pierre-Luc Bacon, Florian Schäfer, Clement Gehring, Animashree Anandkumar, and Emma Brunskill. A Lagrangian method for inverse problems in reinforcement learning. In Optimization in RL workshop at NeurIPS, 2019.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. The mechanics of n-player differentiable games. In International Conference on Machine Learning, pp. 354–363. PMLR, 2018.

Franco Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Publications mathématiques et informatique de Rennes, (S4):1–26, 1974.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4):231–357, 2015.
Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with optimism. In International Conference on Learning Representations, 2018.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Rethinking the importance of sampling in physics-informed neural networks. arXiv:2207.02338, 2022.

Priya L. Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with hard constraints. In International Conference on Learning Representations, 2021.

Weinan E and Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6:1–12, 2017.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and Michele Lombardi. Lagrangian duality for constrained deep learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 118–135. Springer, 2020.

Michel Fortin and Franco Brezzi. Mixed and hybrid finite element methods, volume 3. New York: Springer-Verlag, 1991.

Weinan E and Bing Yu. The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6:1–12, 2017.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and Michele Lombardi. Lagrangian duality for constrained deep learning. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 118–135. Springer, 2020.

Michel Fortin and Franco Brezzi. Mixed and hybrid finite element methods, volume 3. New York: Springer-Verlag, 1991.

Ian Gemp and Sridhar Mahadevan. Global convergence to the equilibrium of GANs using variational inequalities. arXiv:1808.01531, 2018.

Gauthier Gidel, Hugo Berard, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality perspective on generative adversarial nets. arXiv:1802.10551, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

G. M. Korpelevich. Extragradient method for finding saddle points and other problems. Matekon, 13 (4):35–49, 1977.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Mahoney. Characterizing possible failure modes in physics-informed neural networks. arXiv:2109.01050, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

Alexander Lavin, Hector Zenil, Brooks Paige, David Krakauer, Justin Gottschlich, Tim Mattson, Anima Anandkumar, Sanjay Choudry, Kamil Rocki, Atılım Güneş Baydin, et al. Simulation intelligence: Towards a new generation of scientific methods. arXiv:2112.03235, 2021.

B. Lemaire. Saddle-point problems in partial differential equations and applications to linear quadratic differential games. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 27(1):105–160, 1973.

Alistair Letcher, David Balduzzi, Sébastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel. Differentiable game mechanics. The Journal of Machine Learning Research, 20(1):3032–3071, 2019.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794, 2021.

Yulei Liao and Pingbing Ming. Deep Nitsche method: Deep Ritz method with essential boundary conditions. arXiv:1912.01309, 2019.

JL Lions. Partial differential inequalities. Russian Mathematical Surveys, 27(2):91, 1972.

Ziming Liu, Yunyue Chen, Yuanqi Du, and Max Tegmark. Physics-Augmented Learning: A new paradigm beyond Physics-Informed Learning. arXiv:2109.13901, 2021.
Vishnu Suresh Lokhande, Aditya Kumar Akash, Sathya N Ravi, and Vikas Singh. FairALM: Augmented Lagrangian method for training fair models with little regret. In European Conference on Computer Vision, pp. 365–381. Springer, 2020.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of GANs. Advances in neural information processing systems, 30, 2017.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure Engineering, 36(8):962–977, 2021.

Houman Owhadi. Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Review, 59(1):99–149, 2017.

Christopher C Paige and Michael A Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

Michael L Parks, Eric De Sturler, Greg Mackey, Duane D Johnson, and Spandan Maiti. Recycling Krylov subspaces for sequences of linear systems. SIAM Journal on Scientific Computing, 28(5):1651–1674, 2006.

Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks for weakly supervised segmentation. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1796–1804, 2015.

Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations, volume 23. Springer Science & Business Media, 2008.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.

Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.

Florian Schäfer and Anima Anandkumar. Competitive gradient descent. In NeurIPS, 2019.

Florian Schäfer, Anima Anandkumar, and Houman Owhadi. Competitive Mirror Descent. arXiv:2006.10179, 2020a.

Florian Schäfer, Hongkai Zheng, and Anima Anandkumar. Implicit competitive regularization in GANs. arXiv:1910.05852, 2020b.

Yong Shang, Fei Wang, and Jingbo Sun. Deep Petrov-Galerkin method for solving partial differential equations. arXiv:2201.12995, 2022.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University, 1994.

Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. Constrained Willmore surfaces. ACM Transactions on Graphics (TOG), 40(4):1–17, 2021.

Remco van der Meer, Cornelis W Oosterlee, and Anastasia Borovykh. Optimally weighted loss functions for solving PDEs with neural networks. Journal of Computational and Applied Mathematics, 405:113887, 2022.

Abraham Wald. Statistical decision functions which minimize the maximum risk. Annals of Mathematics, pp. 265–280, 1945.
Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in physics-informed neural networks. *SIAM Journal of Scientific Computing*, 43:A3055–A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. *Science advances*, 7(40), 2021b.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training physics-informed neural networks. *arXiv:2203.07404*, 2022a.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent kernel perspective. *Journal of Computational Physics*, 449:110768, 2022b.

Colby L Wight and Jia Zhao. Solving Allen–Cahn and Cahn–Hilliard equations using the adaptive physics informed neural networks. *arXiv:2007.04542*, 2020.

Rui Xu, Dongxiao Zhang, Miao Rong, and Nanzhe Wang. Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single-and two-phase flow. *Journal of Computational Physics*, 436:110318, 2021.

Tianju Xue, Alex Beatson, Sigrid Adriaenssens, and Ryan Adams. Amortized finite element analysis for fast PDE-constrained optimization. In *International Conference on Machine Learning*, pp. 10638–10647. PMLR, 2020.

Jing Yu, Clement Gehring, Florian Schäfer, and Animashree Anandkumar. Robust reinforcement learning: A constrained game-theoretic approach. In *Learning for Dynamics and Control*, pp. 1242–1254, 2021.

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-dimensional partial differential equations. *Journal of Computational Physics*, 411:109409, 2020.

Hongkai Zheng. CGDs. *https://github.com/devzhk/cgds-package*, 2020.

A Appendix

This appendix contains details on the experiments mentioned in Section 3.

All PINN models and CPINN generators use the hyperbolic tangent as the activation function. Discriminators in CPINNs contain ReLU as the activation function. The number of neurons and layers in the neural networks varies for each equation. We use the GMRES-based ACGD implementation of Zheng (2020), available under the MIT license at *https://github.com/devzhk/cgds-package*, as well as the implementation of ExtraGradient methods available under the MIT license at *https://github.com/GauthierGidel/Variational-Inequality-GAN*. For the experiments in section 3.4, 3.5, 3.3 we use the training and testing data sets from *https://github.com/maziarraissi/PINNs/tree/master/main*, which are available under the MIT license.

A.1 Poisson Equation

For the Poisson equation, we use 5,000 training points within the domain $[-2, 2] \times [-2, 2]$, 50 training points on each side of the domain boundary. We randomly selected all training points with Latin Hypercube sampling. The PINN model contains 3 hidden layers with 50 neurons in each layer. The discriminator in the CPINN contains 4 hidden layers with 50 neurons in each layer.

The PINNs are trained with Adam (Kingma & Ba, 2014) and SGD (Ruder, 2016). Adam and ACGD both use a learning rate of 10^{-3}, beta values $\beta_1 = 0.99$ and $\beta_2 = 0.99$. The ϵ of Adam and ACGD are each set to 10^{-5} and 10^{-6}, respectively (all parameters following the usual naming conventions).
A.2 Schrödinger’s Equation

We use Latin Hypercube sampling to randomly select 20 000 training points within the domain and 50 points on each boundary.

We test several different network configurations and hyperparameters. This includes combinations of number of neurons per layer for each network, including 100 and 200 neurons per layer; learning rates of 10^{-5}, 10^{-4}, 5×10^{-4}, 10^{-3}, 10^{-2}, and 2×10^{-2}; and Adam and ACGD β values of (0.99, 0.99) and (0.9, 0.99).

We chose 10^{-4} and 10^{-3} as the learning rate, (0.9, 0.999) and (0.99, 0.99) as the β values, 10^{-8} and 10^{-6} as the ϵ for Adam and ACGD, respectively. The iterative linear solve of the ACGD optimizer uses a relative tolerance of 10^{-7} and absolute tolerance of 10^{-20}.

The PINN presented in fig. 3 contains 4 hidden layers with 100 neurons per layer, and the discriminator in CPINN contains 4 hidden layers with 200 neurons per layer.

A.3 Burgers’ Equation

For the Burgers’ equation, we use Latin Hypercube sampling to randomly select 10 000 training points within the domain, 100 points at the initial condition and 100 points for each boundary condition specified in eq. (24).

The PINN model contains 8 hidden layers with 60 neurons per layer, and the discriminator in the CPINN contains 8 hidden layers with 60 neurons per layer.

The β of Adam and ACGD are (0.99, 0.99), and the learning rates of both optimizers are 10^{-3}. The ϵ are 10^{-8} and 10^{-6} for Adam and ACGD, respectively. The iterative linear solve of the ACGD optimizer had a relative tolerance of 10^{-7} and an absolute tolerance of 10^{-20}.

A.4 Allen-Cahn Equation

For the Allen Cahn equation, we randomly select 10 000 training points within the domain for the PDE constraint in eq. (25), 100 and 256 points for the initial condition and boundary condition specified in eq. (26), respectively. The learning rates of Adam and ACGD are both 10^{-3}; the β of Adam and ACGD are (0.99, 0.99), and the ϵ are 10^{-8}, 10^{-6}, respectively.

The PINN model contains 4 hidden layers with 128 neurons per layer for the adaptive sampling method experiments. The discriminator in the CPINN contains 4 hidden layers with 256 neurons per layer. GMRES was used as the inner iterative solver in ACGD, with a relative tolerance of 10^{-7} and an absolute tolerance of 10^{-20}.

For the curriculum learning approach, we divide the 10 000 points into 10 subsets based on the time coordinate. Once the L_{PNN}^{11} on the current training set is less than 10^{-7}, we include the next subset of collocation points in the training.

A.5 Other optimizers

In addition to ACGD and Adam, we also use SGD, CGD (Schäfer & Anandkumar, 2019), ExtraAdam and ExtraSGD (Gidel et al., 2019) to approximate the solution of equation 6 in section 3.6. We test several hyperparameter combinations for each optimizer. The learning rates vary included 10^{-4}, 5×10^{-4}, 10^{-3}, 10^{-2}, and 2×10^{-2}. The β of Adam and ACGD are (0.99, 0.99). We tested several β values for Adam and ACGD but did not observe meaningful changes to our results or conclusions when varying them. For the ExtraAdam optimizer, we tested several pairs of β values, from 0.3, 0.5, 0.7, 0.9, 0.99, though none of them provide accuracy competitive with the other optimizers. For CGD, SGD and ExtraSGD, the learning rates are 10^{-2}. The CGD optimizer uses conjugate gradient as the iterative solver with relative tolerance 10^{-12} and absolute tolerance 10^{-20}.