Clinical opportunities in combining immunotherapy with radiation therapy

Steven E. Finkelstein* and Mayer Fishman*

1 21st Century Oncology Translational Research Consortium, Scottsdale, AZ, USA
2 Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA

Preclinical work in murine models suggests that local radiotherapy plus intratumoral syngeneic dendritic cells (DC) injection can mediate immunologic tumor eradication. Radiotherapy affects the immune response to cancer, besides the direct impact on the tumor cells, and other ways to coordinate immune modulation with radiotherapy have been explored. We review here the potential for immune-mediated anticancer activity of radiation on tumors. This can be mediated by differential antigen acquisition and presentation by DC, through changes of lymphocytes’ activation, and changes of tumor susceptibility to immune clearance. Recent work has implemented the combination of external beam radiation therapy (EBRT) with intratumoral injection of DC. This included a pilot study of coordinated intraprostatic, autologous DC injection together with radiation therapy with five HLA-A2(+) subjects with high-risk, localized prostate cancer; the protocol used androgen suppression, EBRT (25 fractions, 45 Gy), DC injections after fractions 5, 15, and 25, and then interstitial radioactive implant. Another was a phase II trial using neo-adjuvant apoptosis-inducing EBRT plus intra-tumoral DC in soft tissue sarcoma, to test if this would increase immune activity toward soft tissue sarcoma associated antigens. In the future, radiation therapy approaches designed to optimize immune stimulation at the level of DC, lymphocytes, tumor and stroma effects could be evaluated specifically in clinical trials.

Keywords: dendritic cells, immunotherapy, radiation effects, stereotactic radiosurgery, immune modulation

INTRODUCTION
RADIATION EFFECTS

A conventional view of radiation is an immune attenuator. In this perspective, damage, and destruction are the effects on living tissues — whether they are tumor, normal stroma, and parenchyma, or leukocytes. In the medical application of therapeutic radiation, this is a measured induction of apoptosis and other cell death within a carefully defined volume. The impact of radiation on leukocytes can be viewed in similarly detrimental terms, whether attenuating lymphocyte numbers as tolerable side effect (Johank et al., 2009; Lussom et al., 2009) a therapeutic effect, such as part of an allogeneic transplant protocol (Wei et al., 2004; Gupta et al., 2011), or precipitating a secondary malignancy (Brill et al., 1962). The measurement of accumulated radiation injuries, such as micronuclei and DNA breakage in circulating lymphocytes, has been proposed as a direct assay of individuals’ relative radiosensitivity (Minucci et al., 2005; Tang et al., 2008; Ishihara et al., 2012); that sensitivity can be relevant to either toxicity or to treatment efficacy.

We focus here on the effect of radiation on the bilateral relationship of tumor with the immune system, not just on the effects of radiation on the tumor or on the leukocytes, separately. Considered in isolation, radiation to any particular cell could be anticipated to have a detrimental impact. However, there is an opportunity in the interplay of tumor cell death, induced antigen expression on tumor cells, and inflammatory signals from the irradiated volume which affect lymphocyte and dendritic cell (DC) activation. Figure 1 contrasts the perspectives of isolated versus system effects of irradiation. Immunotherapeutic impacts can be coordinated with therapeutic tumor irradiation. In this way, the whole-therapeutic effect can exceed the sum of its parts.

PROCESSES OF CELLULAR IMMUNITY

Physiologic process of antigen presentation and lymphocyte activation are complex processes, and subject to modulation because of the tumor microenvironment (Fricke and Gabrilovich, 2006). Immature myeloid cells acquire antigen, whether by vaccination or through phagocytosis of material in the tumor microenvironment. These cells then mature, with acquisition of cell surface proteins such as MHC class I and II on which peptides derived from the antigen source can be presented, to interact with particular antigen-specific idiotypic receptors on T lymphocytes (discussed, for example, by Liao et al., 2004). Other maturational markers such as CD80, CD86 facilitate costimulation interactions, particularly the process of activation versus tolerogenic influence on those lymphocytes (these illustrated in Supaula et al., 2012, where the focus is on the PD-1/PDL-1 interaction, for example). The interaction of lymphocytes with the antigen-presenting cells, occurs in lymph nodes to which the DC migrate as part of the maturation process, and the subsequent potential anticancer effect of lymphocytes then is a consequence of lymphocytes’ expansion within the lymph node, circulation, and penetration into the tumor mass. Other lymphocyte pathways, such as natural killer (NK) cells, may be influenced by T cell activation and the
Another important impact can be clearance of other metastatic disease that was not clinically apparent because it was microscopic; this could lead to prevention of systemic recurrence as a consequence of radiation-triggered immune activation in the primary tumor.

Moravan et al. (2011) describe persistent inflammatory changes consisting of neutrophil and T cell infiltrates, within brains of C57BL/6 mice, as a specific and lasting effect of irradiation, in the absence of tumor. The protein CXCL16 (CXCL motif ligand 16) is released from irradiated tumor. This binds the CXCR6 receptor, found on activated effector T cells (Matsumura and Demaria, 2010). A murine model, including use of a CXCR6 knockout control mouse, demonstrated this mechanism of T cell infiltration to the tumor (Matsumura et al., 2008). Another group, surveying 63 cytokerines, found that CXCL16 levels went down after 30 Gy irradiation of skin (not tumor) in a murine model (Xiao et al., 2013). The specific relevance in clinical use remains to be elucidated.

High mobility group box 1 (HMGB1) is a protein which is released from some dying cells, including tumor cells killed by anthracyclines (Fucikova et al., 2011), and in a hyperthermia and radiation combination model (Schildkopf et al., 2010), and with radiation and chemotherapy combination treatments for colorectal cancer cell lines, particularly with the combination (Frey et al., 2012). The HMGB1 effect on DC can include maturation and a chronic inflammatory state (Fucikova et al., 2011). It is an important question whether a clinically relevant (adverse) changes of DC phenotype (Popovic et al., 2006) or of downstream T cell effector activity (Liu et al., 2011) occur from tumor-therapy-derived HMGB1. It is not clear if irradiation protocols leading to higher or lower systemic HMGB1 levels would be better for induction of a general anticancer immunophenotype.

In a clinical report on patients receiving primary, curative-intent fractionated external beam radiation therapy (EBRT) for prostate cancer, Hurwitz et al. (2010) describe observation of consistent systemic changes. These were increases of (systemic) levels of tumor-derived protein Hsp72 (heat shock protein), and of inflammatory cytokines IL-6 and TNF-α. Circulating CD8+ T cells and NK cells showed increases of 2.1- and 3.2-fold, respectively. While the changes of these particular proteins or leukocytes do not directly prove a functional augmentation of the systemic antitumor response, they are illustrative of impacts on the host's overall immunophenotype because of events within the tumor.

RADIATION EFFECTS: THE TUMOR

The fundamental mechanism of tumor regression following radiotherapy is by induction of DNA damage in the neoplastic cells. This accumulation of DNA breaks and consequent insufficient repair is the trigger for pathways including Bcl2 family apoptotic and anti-apoptotic proteins, p53-dependent, and independent pathways, or TRAIL (Tumor necrosis factor (TNF)-related apoptosis-inducing ligand) dependent mechanisms (Maduro et al., 2008; Roos and Kaina, 2012). However, this basic view is still not a complete picture of microenvironmental changes within tumor-associated endothelial cells, inflammatory infiltrates, or of systemic responses to the tumor. Areas of higher dose exposure, for example adjacent to brachytherapy seeds, or at hot-spots inside the bulk of the tumor may have markedly different pathways to cell death, emphasizing necrotic mechanisms not apoptotic ones (Nagorsen et al., 2003; Overwijk et al., 2003; Finkelstein et al., 2004; Klebanoff et al., 2004; Kakimura et al., 2007). Additionally, the time course of changes of antigen expression by the irradiated cells may be relevant, with different patterns that are dependent on radiotherapy techniques' dose-rate and energy level (Finkelstein et al., 2011).

Besides the phenomenon of cells dying within an irradiated tumor, several processes have specific relevance to immunotherapy. Some relate to inflammation and clearance of antigens within the irradiated volume. Of the most interest are the processes that influence acquisition of a more activated general immune phenotype or of a more activated tumor-specific immune phenotype. The most dramatic clinical outcome is when a distant tumor mass regresses, the abscopal effect. Clinical examples described as case reports (Kinglsey, 1975; Postow et al., 2012; Stammell et al., 2012) and preclinical examples are discussed in more detail below. Loss apparent outcomes, still with major clinical impact, may occur as well. These include accelerating or completing definitive clearance of the tumor which was being irradiated. Another important impact can be clearance of other metastatic disease that was not clinically apparent because it was microscopic; this could lead to prevention of systemic recurrence as a consequence of radiation-triggered immune activation in the primary tumor.

Moravan et al. (2011) describe persistent inflammatory changes consisting of neutrophil and T cell infiltrates, within brains of C57BL/6 mice, as a specific and lasting effect of irradiation, in the absence of tumor. The protein CXCL16 (CXCL motif ligand 16) is released from irradiated tumor. This binds the CXCR6 receptor, found on activated effector T cells (Matsumura and Demaria, 2010). A murine model, including use of a CXCR6 knockout control mouse, demonstrated this mechanism of T cell infiltration to the tumor (Matsumura et al., 2008). Another group, surveying 63 cytokerines, found that CXCL16 levels went down after 30 Gy irradiation of skin (not tumor) in a murine model (Xiao et al., 2013). The specific relevance in clinical use remains to be elucidated.

High mobility group box 1 (HMGB1) is a protein which is released from some dying cells, including tumor cells killed by anthracyclines (Fucikova et al., 2011), and in a hyperthermia and radiation combination model (Schildkopf et al., 2010), and with radiation and chemotherapy combination treatments for colorectal cancer cell lines, particularly with the combination (Frey et al., 2012). The HMGB1 effect on DC can include maturation and a chronic inflammatory state (Fucikova et al., 2011). It is an important question whether a clinically relevant (adverse) changes of DC phenotype (Popovic et al., 2006) or of downstream T cell effector activity (Liu et al., 2011) occur from tumor-therapy-derived HMGB1. It is not clear if irradiation protocols leading to higher or lower systemic HMGB1 levels would be better for induction of a general anticancer immunophenotype.

In a clinical report on patients receiving primary, curative-intent fractionated external beam radiation therapy (EBRT) for prostate cancer, Hurwitz et al. (2010) describe observation of consistent systemic changes. These were increases of (systemic) levels of tumor-derived protein Hsp72 (heat shock protein), and of inflammatory cytokines IL-6 and TNF-α. Circulating CD8+ T cells and NK cells showed increases of 2.1- and 3.2-fold, respectively. While the changes of these particular proteins or leukocytes do not directly prove a functional augmentation of the systemic antitumor response, they are illustrative of impacts on the host's overall immunophenotype because of events within the tumor.

RADIATION EFFECTS: THE LYMPHOCYTES

There is not significant systemic lymphopenia from prostate cancer EBRT, our group has observed (Finkelstein et al., 2012d). Others suggest that hypofractionated radiation therapy can mediate a decrease in CD34+ and CD8+ lymphocyte number, but not of NK and of B lymphocytes. This effect was counterbalanced in those patients receiving combined androgen blockade, with goserelin and flutamide, suggesting a converse effect of testosterone suppression (Johnke et al., 2003). In a report describing serial flow cytometry analyses lymphocytes of cervical cancer patients (stage IIB through IVA) being treated with larger field external beam irradiation and concomitant intracavitary brachytherapy again it was observed that total lymphocyte count went down. In the patients without progressive disease, the CD8+ T cell and NK cell percentages increased. The authors commented that these increases are consistent with a role of CD8+ T cell and tumor microenvironment, but do not require specific education and costimulation by DCs. Other antigen-presenting cells, such as macrophages, and inflammatory cells such as neutrophils may influence the tumor microenvironment (Brucke and Gabrilovich, 2006) in a way that indirectly, but overwhelmingly alters the polarization of macrophages, DC, or the activation state effector lymphocytes. Overall, the potential effect of radiation on the preponderance or phenotype of many cell types, some of which are discussed below, could influence availability of tumor antigens, the acquisition of the antigens by immature antigen-presenting cells, the migration of those cells to lymph nodes, the eventual polarization into tolerogenic or immunogenic phenotype, the efficiency of interaction with lymphocytes, the stimuli leading to intratumoral migration of lymphocytes, the extent of activation of the lymphocytes that are within the tumor, and the susceptibility of (still living) tumor cells to immune lysis. As for many anticancer pharmaceutical interventions, we are only beginning to understand the influences that irradiation can effect on this system.
FIGURE 1 | (A) Radiation effects in isolation. (B) Downstream theoretically favorable immune modulation after irradiation.
NK cell in definitive tumor clearance (Lissoni et al., 2005). This is comparable to the CXL16 mechanism discussed above (Matsumura et al., 2008).

Brachytherapy is a radiation therapy modality with markedly different kinetics of radiation exposure. In brachytherapy seed placement (Iodine 125 or Palladium 103) or radioembolization with Yttrium 90 microspheres (Carr and Metes, 2012), there is a longer exposure to radiation than with conventional external beam treatment, with potential for most of the circulating blood volume to be transiently in very close proximity of the radioactive source. Carr and Metes (2012) evaluated the impact on lymphocytes of Yttrium 90 embolization of hepatocellular cancer, with finding that there was an early decrease on T cell number (both CD4+ and CD8+) and B cell number (assayed by CD19), but not on NK cells or neutrophils. Over time, the deficits persisted significantly for some patients; an impaired recovery was associated with worse prognosis. This could reflect a disease impact on the lymphocyte repopulation, more so than an ongoing radio-isotope mediated suppression (Lissoni et al., 2005).

Radiation effects: The dendritic cells

The tumor microenvironment has potential to modulate the phenotype of DC to favor the pathologic tolerance of the tumor (Fricke and Gabrilovich, 2006). The focus of the therapeutic rationale for placing DC into the tumor microenvironment (discussed below) is that radiation will alter that effect, but the impact of radiation onto DC should be considered separately. Isolating the issue, higher doses of radiation (25–30 Gy) than would be used for brachytherapy was considered. Indeed, the impact onto DC should be considered separately. Isolating the issue, higher doses of radiation (25–30 Gy) than would be used for brachytherapy was considered. Indeed, the impact onto lymphocytes of Yttrium 90 embolization of hepatocellular cancer, with finding that there was an early decrease on T cell number (both CD4+ and CD8+) and B cell number (assayed by CD19), but not on NK cells or neutrophils. Over time, the deficits persisted significantly for some patients; an impaired recovery was associated with worse prognosis. This could reflect a disease impact on the lymphocyte repopulation, more so than an ongoing radio-isotope mediated suppression (Lissoni et al., 2005).

Radiation effects: The dendritic cells

The tumor microenvironment has potential to modulate the phenotype of DC to favor the pathologic tolerance of the tumor (Fricke and Gabrilovich, 2006). The focus of the therapeutic rationale for placing DC into the tumor microenvironment (discussed below) is that radiation will alter that effect, but the impact of radiation onto DC should be considered separately. Isolating the issue, higher doses of radiation (25–30 Gy) than would be used for brachytherapy was considered. Indeed, the impact onto lymphocytes of Yttrium 90 embolization of hepatocellular cancer, with finding that there was an early decrease on T cell number (both CD4+ and CD8+) and B cell number (assayed by CD19), but not on NK cells or neutrophils. Over time, the deficits persisted significantly for some patients; an impaired recovery was associated with worse prognosis. This could reflect a disease impact on the lymphocyte repopulation, more so than an ongoing radio-isotope mediated suppression (Lissoni et al., 2005).

In a next set of investigations, to test for antigen-presentation effects isolated from antigen processing, a modified DC/tumor system was used. The HLA-A2.1/Kb transgenic mice bear human HLA-A2; the modified tumor B-16A2/Kb does as well. When DC from these mice were prepared and treated as above, but then instead of being transduced with the adenovirus, the DC were instead pulsed with the immunodominant MART-127−35 peptide. These DC (or control DC that were pulsed but had not been irradiated) were used to vaccinate mice. 10 days after the last vaccination the mice were challenged with B-16A2/Kb tumor, it was found that mice in the group treated with the DC that had been irradiated had better survival, and a higher induced immu

The tumor microenvironment

Local immune suppression

The immune system in the cancer-bearing host cancer has defects that allow the tumor cells to evade clearance. The way that immune privilege is maintained is heterogeneous across different disease stages and patients. Some characteristics can be in terms of DC phenotype, an excess of myeloid-derived suppressor cells (MDSC) that are not mature DC, but rather suppress DC function to impair anticancer immunity (Almand et al., 2000). Other
characterization can focus on the tumor microenvironment. That kind of suppression can be observed to operate through elaboration of particular proteins which have receptors on DC and MDSC, in some models and some clinical examples. Those microenvironment derived molecules include vascular endothelial growth factor (VEGF), tumor growth factor β (TGFB), reactive oxygen species, the enzyme indoleamine-2,3-deoxygenase, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-8, interleukin-10 (reviewed by Fricke and Gabrilovich, 2006). Specific inhibition of these pathways can have a favorable impact on DC phenotype and the capacity for meaningful immunologically mediated anticancer response, for example a murine tumor model was induced to be immunologically rejected by use of VEGF depleting antibody (Gabrilovich et al., 1999); a clinical trial using sequential bevacizumab (humanized anti-VEGF antibody, Roche USA, Indianapolis, IN) and then low dose subcutaneous IL-2 did not demonstrate a significant clinical impact nor impact on DC phenotype for VEGF depletion (Finkelstein et al., 2010). However, in a clinical trial utilizing another VEGF depletion strategy, with a similar testing scheme, found no functional improvement as a consequence of ziv-aflibercept treatment (formerly “aflibercept,” also called VEGF-trap; Sanofi-Aventis, Bridgewater, NJ). Changes that were observable as flow cytometry defined phenotypic changes of DC from patients following treatment, however, were favorable (Fricke et al., 2007).

RATIONAL PLACEMENT OF DC VERSUS RADIATION THERAPY TIMING

Almost any radiation therapy protocol can be analyzed with respect to its theoretical immune impact, either on an anatomic or temporal perspective. From an anatomic perspective, regions of the treatment target volume with the highest doses could be anticipated to have higher and faster peaks of tumor cell death, and availability of antigenic material. Regions of lower dose could have radiation induced changes of antigen expression on the tumor cells. Leukocytes and stroma also would respond to irradiation, with variable amounts of induced regional inflammatory cytokines, or penetration with other inflammatory cells, such as macrophages and neutrophils. Since DC can be anticipated to potentially become activated when placed into this environment, that is a key rationale for intratumoral, versus intravenous or subcutaneous administration.

Considering a temporal perspective, the best time to introduce DC into an irradiated tumor is much less clearly defined. The onset of inflammatory changes may have a significant latency, particularly in conventionally fractionated treatment plans, with a high number of treatment fractions in the 180–200 cGy range. Placement of DC too early or too late could result in their exposure to a microenvironment more resembling an intact (immunosuppressive) tumor. The onset of apoptosis or other cell death, or changes of antigen expression on the tumors themselves is more difficult to predict in clinical tumors – when would DC have the richest supply? The potential that injected DC themselves would be irradiated, after acquiring antigen, but before migration out to lymph nodes also must be considered. The migration time appears relatively fast (on the order of a couple of days), but as Lao et al. (2004) found, the possibility of enhanced antigen presentation after DC irradiation is another theoretically favorable consideration.

INTRODUCTION OF DC INTO THE TUMOR LOCALE

Nikitina and Gabrilovich (2001) initially described the basic model of intratumoral DC injection coordinated with sub-curative irradiation of the primary tumor, in a model system using methA sarcoma (in Balb/C mice) and C3 tumor (in C57BL/6 female mice) tumors. Key findings for the combination treatment group (but not for the monotherapies or untreated controls) were longer survival of the mice, with higher T cell titer of tumor-specific tetramer peptides, and higher CD8 T cell response to tumor-specific peptides. Additionally DCs obtained from spleens of syngeneic mice and marked with fluorescent tracer that were injected subcutaneously were demonstrated to track into the irradiated tumor. Further, the T cell-mediated immunity was sufficient to reject tumor rechallenge. In sum, the unmanipulated DC that were placed into irradiated tumor-mediated systemic, lasting antitumor immunity, without any other systemic modulation (Nikitina and Gabrilovich, 2001).

In another murine tumor system (C57BL/6 female mice with the D5 tumor, which is a poorly immunogenic subclone of the B16-BL6 melanoma, and with the MCA295 fibrosarcoma), Teitz-Tennenbaum et al. (2003) observed superior survival in mice treated with a combined radiation and intratumoral DC injection protocol. Further they found that loading of the DC with antigen in situ was superior to ex vivo loading with irradiated tumor lysate. This contributes to the support of particular microenvironmental attributes of the irradiated tumor that mediate the changes on DC function and the consequent antitumor immune effect (Teitz-Tennenbaum et al., 2003). In further work with the D5 tumor, they found that the loading and presentation of D5-associated antigens by DC was enhanced by DS irradiation, independent of the low level of tumor cell death that was directly induced by radiation. Finally, trafficking of DC to regional tumors was better after tumor irradiation (Teitz-Tennenbaum et al., 2008), consistent with the findings of the earlier report discussed above (Nikitina and Gabrilovich, 2001). On the other hand, assays for several inflammatory cytokines (using cultures of tumor cells), including IL-12p70, TNF-α, IFN-γ, IL-6, and IL-10 did not show changes following the tumor irradiation, and tumor-specific CD8 T cells did not accumulate in the tumor (Teitz-Tennenbaum et al., 2008).

CLINICAL TRIALS OF RADIATION PLUS DENDRITIC CELLS

INTRATUMORAL DC INJECTION

Several groups have developed clinical trials toward a goal of more effective antitumor immune response by tumor irradiation coordinated with intratumoral placement of DC. Primary radiation therapy for treatment of clinically localized prostate cancer was studied in a pilot trial, by our group (Finkelstein et al., 2012a). While the technique of intraprostatic injection was described generations ago, in a canine model addressing therapy of benign hypertrophy (O’Connor and Ladd, 1936), this is the initial trial of intraprostatic injection of apheresis derived autologous DC. There are several features of the clinical scenario that could be favorable. These include the expectation that the local therapy could be definitive, the accessibility for an injection technique that can be standardized, and simultaneous use of androgen suppression, which may favor an increased capacity for
immune response (Windmill and Lee, 1999; Jhokke et al., 2005). Further, the bulk of residual (metastatic, extraprostatic) disease should be microscopic, at worst, in well-selected patients, and should have a multi-year latency until detectable recurrence, which could allowing time for immune clearance to go to completion. Disadvantages of this system, conversely, are that no immediate therapeutic effect is discernible. By limiting the inclusion to individuals with HLA-A*0201 haplotypes, it was hoped that it would thus be feasible to use an immunological endpoint to give a readout of an acquisition of a higher tier-specific CD8+ CTL. To this end, serial assays of the titer of T lymphocytes by response to stimulation with class 1-associated peptides were used with the ELISpot (enzyme-linked immunosorbent spot-forming) IFN-γ assay. This endpoint tested for specificity to the peptides, derived from PSA, PSMA, PAP, Her2/neu, and p53, representing prostate-associated and prostate cancer-associated proteins (Finkelstein et al., 2012a).

Inclusion required localized cancers, without radiologically identified metastasis, but with high-risk features (T-stage, PSA, Gleason score) for eventual recurrence. The five patients were treated with a conventional therapy schedule of 28 months’ androgen suppression, 45 cGy EBRT over 25 fractions, which was then followed by brachytherapy seed placement. Autologous DC were prepared from a single pretreatment apheresis, and injected after the 5th, 15th, and 25th radiation therapy fraction, in each case on a Friday, so as to give the injected DC about 72 h to potentially migrate out from the radiotherapy field, before the next (6th or 16th) fraction on the following Monday. Overall, the apheresis and injections were well tolerated. Some patients had detectable increases of titers for some of the peptides, but persisting elevations were not apparent. The low number of patients, and the heterogeneity of disease features, precludes a meaningful long-term efficacy assessment (Finkelstein et al., 2012a).

A second trial developed in our group addressed combined neo-adjuvant apoptosis-inducing EBRT plus intratumoral DC injection in larger group of patients, with soft tissue sarcoma (STS) diagnoses. The immunologic objective was to test for detectable increase of T lymphocyte titer on testing with autologous STS tumor cell lysate, using an ELISPOT assay (Finkelstein et al., 2012b). Patients with clinical stage T2N0M0 high-grade STS of the extremity, trunk, or chest wall were treated with standard neo-adjuvant EBRT 5040 cGy in 28 fractions of 180 cGy coordinated with additional DC injection, after weeks 2, 3, and 4. The DC were prepared from a pretreatment apheresis, ex vivo expansion and culture, and given as intratumoral injection of 10 million DC.

Secondary analyses included functional T cell activity, toxicity tabulation, primary tumor responses, and analysis of DC migration to lymph nodes, ex vivo. Seventeen patients completed neo-adjuvant EBRT with and DC injection. Fifty-two per cent showed anti-autologous tumor cell immune responses, as determined using pre- and post-treatment ELISPOT assays (Finkelstein et al., 2012b). This titer increased after the last DC injection.

Additionally, chromium release assays revealed that after the treatment there was a statistically-significant improvement of the functional cell-killer response to autologous STS lysate. Examination of the tumor from the post-radiation, definitive-intent surgery showed that the combination treatment was associated with a dramatic accumulation of intratumoral T cells. Presence of CD4+ T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of MDSC but not of regulatory T cells negatively correlated with the development of tumor-specific immune responses.

The treatment was well tolerated, with no toxicity higher than grade 2 was observed during combined DC/EBRT. Post-operative wound complications were observed in five of the 17 patients (29%), applying the NCIC criteria of a secondary operation for wound repair or wound management without secondary operation. Twelve of 17 patients (71%) were progression free after 1 year.

Image-guided visualization of cellular-based vaccine migration was demonstrated for each patient. Experiments with LDCs demonstrated that these antigen-presenting cells need at least 48 h to start to migrate from tumor site (Finkelstein et al., 2012b). This experience led to a multi-institutional trial which is currently accruing (Finkelstein et al., 2012c).

CONCLUSION

The coming years offer opportunities to transform the phenomenon of radiotherapy-induced anticancer immune response from isolated case reports into a predictable therapeutic goal. To this end, several components and perspectives must be unified and coordinated. One is the understanding of how to use systemic therapies to make the host lymphocyte compartment and antigen-presenting cell compartments be primed for stimulation. Some examples of immune modulators with the potential to be having a significant impact on the phenotypes of the DC compartment include ILR9 agonists (Brosy et al., 2010; Kim et al., 2012; Zhang et al., 2012) all trans retinoic acid (Morra et al., 2006), inhibitors of VEGF, TGF-β, or use of other cytokines (Annoy et al., 2005; Charo et al., 2005; Gattinoni et al., 2005; Klhobzoff et al., 2003, 2011; Zeng et al., 2005; Scung et al., 2012). Comparably, stimulation of the lymphocyte compartment with checkpoint inhibitors and cytokines also appears poised to make a significant contribution to clinical practice. It will be of interest to see if radiation therapy can be systematically used to advantage in combinations with those new agents as well.

Another component will be the ways to provide tumor-associated antigen to the immune system. While recombinant vaccines and tumor lysates and synthetic peptides have attributes of convenience and definable antigen sets, they cannot be considered interchangeable with tumor irradiation as a source. Unique features of tumor irradiation include simultaneous elaboration of subtle microenvironmental changes with the capacity to improve antigen presentation, total tumor as a source of antigen, elaboration of radiation-induced antigens, and provision of antigen even before or independent of radiation-induced cell kill. Further, evolving flexibility of radiation technique, particularly in relation to conventional fractionation, hypofractionation, brachytherapy, stereotactic radiosurgery techniques, and high intratumoral dose exposure may be particularly of interest for optimization of antigen production and repolarization of the tumor microenvironment. The best way for radiation to trigger an abscopal
response may be related to tumor effect, DC effect, lymphocyte effects, or indirect modulation of the way the tumor is affecting leukocyte compartments.

A third component of interest is cellular therapy, particularly intratumoral DC injection – many questions about timing with respect to irradiation, details of ex vivo preparation remain to be addressed empirically. Optimal host, disease, patient selection, and antigen loading could improve outcomes as well. The best volume and number of injected DC merits empiric study. Finally, as a necessary part of clinical development, there must be some focus on specific diagnoses.

In summary, it is clear that radiation is a modulator of the interaction of the tumor and immune compartments, and their relationships with each other. Careful study of the microenvironment of the irradiated tumor should lead to exciting opportunities for putatively localized anticancer treatments to allow for the irradiated tumor to be a catalyst for systemic anticancer response.
Opportunities combining immunotherapy with radiation therapy

Finkelstein and Fishman

Klobanoff, C. A., Gattinoni, L., Palmer, D. C., Murakami, T., Li, H., Hirata, C. S., Berman, J. A., et al. (2011). Determinants of successful CD4+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 3543–3552.

Liao, Y. F., Wang, C. C., Butterfield, L. H., Economou, J. S., Ribas, A., Mong, W. S., et al. (2006). Ionizing radiation affects human MAIT-1 melanoma antigen processing and presentation by dendritic cells. J. Immunol. 173, 2462–2469.

Lusson, F., Marquillie, S., Benotto, E., Marcusse, M., Brossi, F., Colkiage, M., et al. (2005). Radiotherapy-induced lymphopoenic changes in total lymphocyte count and in lymphocyte subpopulations under pelvic irradiation in gynecologic neoplasms. J. Biol. Regul. Homeost. Agents 19, 153–158.

Liu, Q. Y., Yao, Y. M., Yan, Y. H., Dong, N., and Song, Z. Y. (2011). High mobility group box 1 protein suppresses T-cell-mediated immunity via CD211c+CD24/CD38+B220+ dendritic cell differentiation. J. Immunol. 184, 209–216.

Mahara, J. H., de Vries, E. G., Meersma, T. J., et al. (2011). Tumors sensitizes HeLa cervical cancer cells to immunotherapy-induced apoptosis. Int. J. Cancer 128, 173–182.

Minicucci, E. M., Kowalski, L. P., Maia, L. M. A., Pereira, A., Ribeiro, L. R., de Camargo, J. L., et al. (2005). Cytokine gene expression in other forums, provided the original authors declare that the research was a single-center experience. Int. J. Radiat. Oncol. Biol. Phys. 61, 1034–1043.

Moraes, J. S., Wang, C. C., Butterfield, L. H., Economou, J. S., Ribas, A., Mong, W. S., et al. (2006). Ionizing radiation affects human MAIT-1 melanoma antigen processing and presentation by dendritic cells. J. Immunol. 173, 2462–2469.

Mirea, N., Fishman, M., Frick, I., Dunn, M., Nonger, A. M., Frost, T. J., et al. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307.

Morone, M. J., Obuchowski, J. A., Williams, J. P., and O’Brian, M. K. (2011). Cisplatin irradiation leads to acute and persistent neuroinflammation with delayed increases in T-cell infiltration and CD11c expression in C57BL/6 mouse brain. Radiat. Res. 167, 476–477.

Nagano, D., Pandhi, M., Dudley, M. E., Finkelstein, S. E., Rosenbarg, S. A., and Marcusse, M. M. (2005). Basal epigene selection by recombiant vaccinia-virus (VV)-infected mature or immature dendritic cells biased epigene selection by recombinant vaccinia-virus (VV)-infected mature or immature dendritic cells. Gene 105, 1764–1765.

Nikitina, E. V., and Gabrilovich, D. I. (2005). Combination of gamma irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice approach to treatment of advanced stage cancer. Int. J. Cancer 94, 825–835.

O’Conor, V. J., and Ladd, R. L. (1936). Functional studies of the thymus of male rats. J. Exp. Med. 63, 1014–1020.

Postow, M. A., Callahan, M. K., Barker, D. C., Muranski, P. R., Ji, Y., Hinrichs, C. A., and Marincola, F. M. (2003). Biased epitope selection by recombinant vaccinia-virus (rVV)-infected established tumors in mice. J. Immunol. 170, 335–341.

Rogers, J., Wang, T., Sklar, R., Whitfield, L., and Cohen, M. (2006). Mechanisms involved in radiation enhancement of intratumoral dendritic cell administration. Cancer Res. 66, 8346–8347.

Shen, S. K., Curtis, B. D., Crittenden, M., Walker, E., Coffey, T., Sivert, J. C., et al. (2012). Phase I study of intratumoral body radiotherapy and interleukin-2–tumor and immunologic responses. Sci. Transl. Med. 4, 175rv24.

Staunton, E. F., Woldeh, J. D., Guojie, S., Lee, N. Y., and Bresnand, I. (2012). The absent effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. doi:10.1016/j.ijrobp.2012.01.017 [Epub ahead of print].

Zeng, Y., Zhang, Y., Guo, L., Peng, Y., Luo, Q., and Xing, Y. (2008). Relationship between individual radiosensitivity and radiation encephalopathy of nasopharyngeal carcinoma after radiotherapy. Neuroradiol. Ostchol. 106, 510–514.

Zhang, H., Liu, S., Yi, Z., Xie, L., Da, J., Kandrali, E. A., Sun, B. R., Agrawal, S., et al. (2012). An on site autologous tumor vaccination with combined radiation therapy and TARGEN agent therapy. PLoS ONE 7, e43913. doi:10.1371/journal.pone.0043913.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 17 July 2012; accepted 29 October 2012; published online: 22 November 2012.

Copyright © 2012 Finkelstein and Fishman. This work was supported to Frontiers in Radiotherapy and Oncology: a specialty of Frontiers in Oncology. Copyright © 2012 Finkelstein and Fishman. This work was supported by the National Institutes of Health (Grant No. CA105072-06) to Finkelstein. Finkelstein and Fishman. This work was supported by the National Institutes of Health (Grant No. CA105072-06) to Finkelstein.

Finkelstein and Fishman

Opportunities combining immunotherapy with radiation therapy

Frontiers in Oncology | Radiation Oncology
November 2012 | Volume 2 | Article 168 | 8

"fnc-02-00169" — 2012/11/23 — 21:21 — page 8 — #8