Medicinal plants and natural products in amelioration of arsenic toxicity: a short review

Sanjib Bhattacharya

West Bengal Medical Services Corporation Ltd, Salt Lake City, Kolkata, West Bengal, India

ABSTRACT
Context: Chronic arsenic toxicity (arsenicism) is considered a serious public health menace worldwide, as there is no specific, safe, and efficacious therapeutic management of arsenicism.
Objectives: To collate the studies on medicinal plants and natural products with arsenic toxicity ameliorative effect, active pre-clinically and/or clinically.
Methods: Literature survey was carried out by using Google, Scholar Google and Pub-Med. Only the scientific journal articles found on the internet for last two decades were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded.
Results: Literature study revealed that 34 medicinal plants and 14 natural products exhibited significant protection from arsenic toxicity, mostly in preclinical trials and a few in clinical studies.
Conclusion: This research could lead to development of a potentially useful agent in clinical management of arsenicism in humans.

Introduction
Arsenic is the 20th most abundant natural element ubiquitous in earth’s crust and biosphere. It is introduced into soil and groundwater during weathering of rocks followed by subsequent leaching and runoff. It can also be introduced into soil and groundwater from anthropogenic activities (Singh 2006). Humans are exposed to arsenic predominantly through contaminated drinking water, whereas inhalation and skin absorption are minor routes of exposure (Shi et al. 2004). Chronic arsenic exposure through drinking water to humans leads to carcinogenesis of almost all organs, skin diseases (viz. hyper-pigmentation, hyperkeratosis) leading to cancers of skin and epithelial tissues; hepatic, renal, cardiovascular, respiratory, central nervous system, gastrointestinal, reproductive complications and children’s intellectual impairment; thereby increasing morbidity and mortality (Kapaj et al. 2006; Mazumder 2008). Chronic arsenic toxicity (arsenicism) due to drinking of arsenic contaminated ground water is a major environmental public health hazard throughout the world especially affecting India and Bangladesh.

Arsenicism leads to irreversible damage in several vital organs and arsenic is an established carcinogen. Despite the magnitude of this potentially fatal toxicity, there is no effective therapy for this disease; patients once affected may not recover even after remediation of the arsenic contaminated water. Arsenic toxicity is considered as a serious problem worldwide, as there is no specific, safe and efficacious therapeutic management of arsenicism. The need for an effective therapy for arsenicism is therefore obvious (Ratnaike 2003; Mazumder 2008).

Chelation therapy for arsenic toxicity is thought to be the specific therapy for relief of systemic clinical manifestations and reduction of arsenic stores in the body, reducing subsequent cancer risk. Chelating agents, namely DMSA (dimercaptosuccinic acid), DMPS (dimercaptopropanoic acid) and d-penicillamine were previously tried for treatment of chronic arsenic toxicity. However, their clinical usefulness for management of arsenicism is yet to be established (Mazumder et al. 1998, 2001; Sun et al. 2006). No treatment of proven benefit is currently available for routine use for arsenicism patients. Treatment options advocated are vitamin and mineral supplements and antioxidant therapy (Ratnaike 2003). The toxic effects of arsenic in human body and their conventional managements so far have been well studied and reviewed earlier (Abdul et al. 2015). But there is no comprehensive account on the studies on the alternative options for counteracting of arsenic toxicity.

The use of plant and plant products for treatment of diseases is as old as mankind. The major merits of plant based medicine seem to be their perceived efficacy, low incidences of serious adverse effects and low cost (Bhattacharya & Haldar 2013a). Literature survey reveals that from the last 10 years only experimental research has been escalated in pursuit of medicinal plants and natural products that could abrogate arsenic toxicity in animals and humans. Several medicinal plants and phytochemicals exhibited significant protection form experimentally induced arsenic toxicity in animal models. The objective of the present review is to summarize relevant preclinical and clinical research findings in this area.

Methods
Internet-assisted literature study was carried out by using Google, Scholar Google, and Pub-Med database search. Only the scientific
journal articles published and/or abstracted in internet during last two decades (1996–2016) were considered. The experimental preclinical and clinical studies on medicinal plants (crude, semi-pure, or enriched extracts thereof) and natural products were selected. Combination of natural products was regarded as a separate study. Here, minerals were not contemplated as natural products. The semi-synthetic or synthetic analogues of natural products were excluded from the present scope of compilation.

Results

Preclinical studies

Medicinal plants

Thirty-four medicinal plants are reported to possess arsenic toxicity ameliorative property in sub-chronic arsenic toxicity in experimental models. The details are summarized in Table 1.

Table 1. Medicinal plants with arsenic toxicity ameliorative potential.

Sl. No	Botanical name	Part/Constituents used	Experimental Model	Organ(s)/System/Cell line involved	References
1	Withania somnifera	Root	Rats	Testes, liver, kidney	Kumar et al., 2015a,b
2	Ipomea aquatica	Aerial parts	Mice	Liver, kidney, heart, brain and testes	Dua et al., 2015
3	Mentha piperita	Leaf	Mice	Liver	Sharma et al., 2007
4	Carica papaya	Fruit	Mice	Testes	Singh & Kumar 2013
5	Phyllanthus emblica	Leaf	Mice	Liver, kidney, and spleen	Sayed et al., 2015
6	Emblica officinalis	Fruit	Mice	Thymocytes	Singh et al., 2013
7	Pteris longifolia	Leaf	Rats	Liver	Kumar et al., 2015b
8	Triticum aestivum	Leaf	Rats	Liver, kidney	Lakshmi et al., 2015
9	Azadirachta indica	Leaf	Rats	Liver	Oyewole 2011
10	Tephrosia purpurea	Aerial parts	Rats	Liver	Basda et al., 2014
11	Irvingia gabonensis	Leaf	Rats	Liver	Gbadebesie et al., 2014
12	Eupatorium buniifolium	Aerial parts	–	Renal Vero cells	Soria et al., 2008
13	Lantana grisebachii	Aerial parts	–	Renal Vero cells	Soria et al., 2008
14	Mandevilla pentlandiana	Aerial parts	–	Renal Vero cells	Soria et al., 2008
15	Sebastiania commersoniana	Aerial parts	–	Renal Vero cells	Soria et al., 2008
16	Heterothalamus alienus	Aerial parts	–	Renal Vero cells	Soria et al., 2008
17	Boerhavia diffusa	Aerial parts	–	H9c2 cardiomyocytes	Vineetha et al., 2013
18	Camellia sinensis	Black and green tea	Mice	Liver	Sinha et al., 2010
19	Camellia sinensis	Green tea	Rats	Liver	Acharyya et al., 2014
20	Camellia sinensis	Black and green tea	Rabbits	Haematological	Raihan et al., 2009
21	Camellia sinensis	Tannin-rich fraction of green tea	Rats	Liver and Kidney	Chandronitha et al., 2010
22	Malus domestica	Peel	–	H9c2 cardiac myoblast cells	Vineetha et al., 2014
23	Vitis vinifera	Seed proanthocyanidin	Mice	Testes	Li et al., 2015
24	Vitis vinifera	Seed	Rats	Liver	Xinjuan et al., 2011
25	Lantana grisebachii	Phyto-extract	–	Lymphocyte cells	Soria et al., 2014
26	Chlorophyllum borivilianum	Root	Mice	Testes	Sharma & Kumar 2014
27	Terminalia arjuna	Whole plant	–	Chicken liver cell	Verma et al., 2007
28	Phyllanthus fraternus	Whole plant	–	Chicken liver cell	Verma et al., 2007
29	Trichosanthes dioica	Root	Rats	Liver, kidney, heart, brain	Bhattacharya & Haldar 2012a,b; 2013b
30	Trichosanthes dioica	Fruit	Rats	Liver, kidney	Bhattacharya & Haldar 2012bc, Bhattacharya et al., 2014
31	Moringa oleifera	Whole plant	–	Chicken liver cell	Verma et al., 2007
32	Moringa oleifera	Seed	Rats	Liver, Kidney	Gupta et al., 2005
33	Moringa oleifera	Leaf	Mice	Heart, Liver, Kidney	Sheikh et al., 2014
34	Corchorus olitorius	Leaves	Rats	Brain, Liver, Kidney, Heart	Das et al., 2010a, b, c
35	Psidium guajava	Leaves	Rats	Kidney, Haematological	Roy & Roy 2011; Tandan et al., 2012
36	Ocimum sanctum	Leaves	Rats	Liver, Kidney	Banu et al., 2009
37	Allium sativum	Bulb	Mice	Bone marrow	RoyChoudhury et al., 1996
38	Allium sativum	Bulb	Rats	Liver, Kidney, Ovary, Erythrocytes	Chowdhury et al., 2008; Adegboyega & Odunola 2012; Chowdhury et al., 2008
39	Allium sativum	Bulb	–	Human malignant melanoma cells (A375), human keratinocyte cells (HaCaT), human normal dermal fibroblast cells	Adegboyega & Odunola 2012; Chowdhury et al., 2008
40	Viscum album	Leaf	Rats	Erythrocytes	Adegboyega & Odunola 2012
41	Eichhornia crassipes	Root	Rats	Liver, spleen, kidney, lungs, skin	Quayum 2007
42	Zea mays	Fruit	Rats	Liver, kidney, heart, lungs, skin	Chowdhury et al., 2009
43	Spinacia oleracea	Aerial parts	Rats	Liver, spleen, kidney, lungs, skin	Umar 2007
44	Spirulina	Whole plant (algae)	Rats	Liver cells	Saha et al., 2005
Most of the studied plants are indigenous to the Indian subcontinent. These include certain putative medicinal plants recognized in Ayurveda, the traditional system of Indian medicine and worldwide, namely, Withania somnifera, Mentha piperita, Emblica officinalis (Phyllanthus emblica), Azadirachta indica, Boerhavia diffusa, Camellia sinensis, Vitis vinifera, Terminalia arjuna, Moringa oleifera, Ocimum sanctum and Allium sativum. The edible plants include Camellia sinensis, Vitis vinifera, Zea mays, Triticum aestivum, Trichosanthes dioica, Carica papaya, Spinacia oleracea and Allium sativum. The less known plants showing such effects in multiple organ systems of rodents include Ipomea aquatica, Trichosanthes dioica and Corchorus olitorius. Lower plant (algae) possessing this property is Spirulina.

Except garlic (juice) in most of the cases the crude extracts of dried plant materials using suitable solvents are used for the studies. In case of Camellia sinensis (tea leaf), and Vitis vinifera (grape seed) specific chemical constituent enriched extracts were employed and found beneficial effects in ameliorating multiple organ toxicities in rodents.

Except cells/cell lines most common intact models include rodents like mice and rats. Most commonly studied parameters are hematological and antioxidative parameters. Parameters specific for organs include those of liver, kidney, heart, brain, testes; while liver being the most common. Histopathology of these organs was also performed in some cases. Measurement of arsenic contents in concerned tissues was performed in few cases. Sodium arsenite (NaAsO2) is used most commonly as toxicant.

Natural products

Fourteen natural products were found to demonstrate arsenic-induced sub-chronic toxicity ameliorative effects mostly in intact rodent models. The details are summarized in Table 2. Among them three are vitamins, namely, ascorbic acid (vitamin C), α-tocopherol (vitamin E) and all-trans retinoic acid (vitamin A). Except the last one, rests are phytochemicals. Ascorbic acid, α-tocopherol and quercetin are also used as reference compounds in above mentioned studies on medicinal plant extracts. Ascorbic acid and α-tocopherol co-administration showed prominent ameliorative effect in several animal studies by modulating oxidative stress and apoptosis; indicating prospect of this combination for clinical regimen.

Development of novel formulation or pharmaceutical delivery systems like liposome and nanoencapsulation in case of quercetin, nanoencapsulation for curcumin improves the efficacy than their conventional administration in rodents. Commonly studied parameters were hematological and antioxidative parameters for organs as stated above. Histopathology of these organs was also performed in some cases. Measurement of arsenic contents in concerned tissues was performed in a few cases. Sodium arsenite (NaAsO2) and arsenic trioxide (As2O3) were both used as toxicant.

Clinical studies

All of these studies were carried out in Bangladesh. The clinically active agents are listed in Table 3. The putative dietary supplement Spirulina alone and in combination with zinc were found to be beneficial in patients of chronic arsenic poisoning (Sikder et al. 2000; Khan et al. 2001; Misbahuddin et al. 2006). Oral administration of oil from Allium sativum bulb was found to be effective in improvement of arsenic-induced keratosis affecting palms and soles of patients (Misbahuddin et al. 2013).

Table 2. Natural products with arsenic toxicity ameliorative potential.

Sl. No.	Name	Experimental model	Organ(s)/System/Cell line involved	References
1	Rutin	Rats	Behavioural and general	Sarközi et al., 2015
2	β-Carotene	Mice	Liver, Kidney	Das et al., 2015
3	Leutin	Mice	Testes, Liver	Niu et al., 2015; Li et al., (2016)
4	Diallyl trisulfide	Rats	Erythrocytes and lymphocytes	Prabu & Sumedha 2014
5	Silibinin	Rats	Kidney, Liver	Prabu & Muthumani 2012; Muthumani & Prabu 2012; 2013
6	Naringenin	Mice	Liver, Kidney	Roy et al., 2014
7	Naringenin	Mice, Kidney	Liver, Kidney	Mershiba et al., 2013
8	Genistein	Rats	Heart	Fan et al., 2013
9	Ascorbic acid	Rats	Liver, Kidney, Haematological	Singh & Rana 2007; Rana et al., 2010
10	Ascorbic acid	Mice	testes	Chang et al., 2007
11	α-Tocopherol	Mice	Liver, Kidney	Verma et al., 2004; Mittal & Flora 2007
12	Ascorbic acid + α-Tocopherol	Rats	Testes, Brain	Mukhopadhyay et al., 2013; Herrera et al., 2013; Kadirvel Flora 2007
13	Curcumin	Mice	Liver	Biswas et al., 2010; Gao et al., 2013
14	Curcumin	Rats	Liver, brain	Sankar et al., 2015; Yousef et al., 2008
15	Curcumin	–	Human Lymphocytes	Mukherjee et al., 2007
16	Quercetin	Rats	Liver, brain, testes	Ghosh et al., 2009; Jahan et al., 2015
17	Resveratrol	Cats	Liver, brain, lung	Zhang et al., 2014; Cheng et al., 2013, 2014
18	Resveratrol	Rats	Lung, Liver	Zhao et al., 2008
19	Resveratrol	Mice	Heart	Zhao et al., 2008
20	All-trans retinoic acid	Rats	Uterus	Chatterjee & Chatterji 2011
21	Arjunolic acid	Mice	Liver, heart, brain, kidney, testes	Manna et al., 2007, 2008a, b; Sinha et al., 2008a, b
Similar complications were also found surpassed by *Nigella sativa* seed oil (Bashar et al. 2014).

Improvement of symptoms of arsenicosis patients in Bangladesh have been reported to occur following use of vitamin A, C and E in two studies (Ahmad et al. 1998; Khandker et al. 2006). Vitamin E and selenium either alone or in combination, slightly improved arsenic-induced skin lesions in another study (Verret et al. 2005). Another more recent study in Bangladesh demonstrated vitamin C and E significantly improved arsenic induced keratotic skin lesions in arsenicosis patients (Melkonian et al. 2012). However, no placebo controlled trials with these vitamins have been carried out nor the toxicity of their long-term use has been ascertained.

Discussion and conclusion

Chronic arsenic toxicity results in multisystem disease. Apart from advising avoiding arsenic contaminated drinking water and certain symptomatic treatments, there are no evidence-based definitive treatment regimens to treat chronic arsenic toxicity in humans. Nevertheless, antioxidants have been advocated (Ratnaik 2003; Mazumder 2008); since the elicitation of oxidative stress by generation of free radicals during the metabolism of arsenic in body is considered to be involved in arsenic toxicity (Shi et al. 2004; Kim et al. 2015).

There is ample literature currently available on usefulness of crude medicinal plant extracts against experimental arsenic and other heavy-metal poisoning. These extracts in general exhibit antioxidant properties and thus show potential in reducing metal/metalloid induced oxidative stress. Most of the literature neither talk about their usefulness or capability in reducing body arsenic burden nor make any attempt to isolate, identify, or characterize the active constituent(s). This is the major shortcoming of most of these studies.

Present literature study revealed that all of the medicinal plants and natural products possessing arsenic toxicity alleviative effects simultaneously demonstrated good intrinsic antioxidant effect by suppression of arsenic-induced oxidative stress by multimodal augmentation of endogenous defence mechanisms that resulted in amelioration from arsenic toxicity. The 14 natural products (phytochemicals) tested are established nutraceuticals and these are all well reported as natural antioxidants. This indicates the beneficial role of antioxidant supplementation and strongly corroborates with the recommendation of antioxidant therapy to humans. However, the benefits of these compounds at cellular level need validation in human subjects with chronic arsenic toxicity.

In groundwater, arsenic may exist inorganically as both trivalent and pentavalent forms. Although both forms are potentially harmful to human health, trivalent arsenic is more toxic (Kapaj et al. 2006). In all the studies the test agents alleviated trivalent arsenical, i.e., sodium arsenite or arsenic trioxide-induced toxicity indicating their possible promise in management of groundwater arsenic toxicity in humans. Although all of these studies are pre-clinical and short term, few of these natural products, namely, vitamin A, C and E have already shown protective effect in clinical studies also.

So far the most studied combination of vitamin C and E in rodents and humans as well require further definitive clinical exploitation. More of such pre-clinically proven natural products should be introduced for clinical studies. These agents could be used alone or together with chelating agents (Flora et al. 2007). These agents may aid in disease reversal or may serve as disease modifying agents and thus could help in reducing the patient’s sufferings.

It is firmly believed that the present facts and findings, though principally observed in animal models, will have sustainable curative potential among the already afflicted populations, neutralizing impact on freshly emerging arsenicosis scenario and possible proactive prevention to those potentially susceptible to arsenicals exposure (Jomova et al. 2011). This research could lead to discovery of any potentially useful agent in clinical management of arsenicosis in humans in due course, which may act by distinct mechanism other than chelation like oxidative stress or apoptosis modulation. The current findings are quite encouraging for further mechanistic preclinical and appropriately designed clinical studies on medicinal plants and natural products especially, in management of chronic arsenic toxicity in humans.

Disclosure statement

The author declares that he has no conflict of interest.

References

Ahmad SA, Faruquee MH, Sayed MHSU, Khan MH, Jalil MA, Ahmed R, Hadi SA. 1998. Chronic arsenicosis: management by vitamin A, E, C regimens. J Prev Soc Med. 17:19–26.

Adegboyega AM, Odnuola OA. 2012. The modulatory effects of aqueous extracts of *Viscum album* and garlic on sodium arsenite induced toxicity in Wistar albino rat. J Chem Pharm Res. 4:4698–4701.

Ahmad SA, Faruquee MH, Sayed MHSU, Khan MH, Jalil MA, Ahmed R, Hadi SA. 1998. Chronic arsenicosis: management by vitamin A, E, C regimens. J Prev Soc Med. 17:19–26.

Banu GS, Kumar G, Murugesan AG. 2009. Effects of leaves extract of *Ocimum sanctum* L. on arsenic-induced toxicity in Wistar albino rats. Food Chem Toxicol. 47:490–495.

Bashar T, Misbahuddin M, Hossain MA. 2014. A double-blind, randomize, placebo-control trial to evaluate the effect of *Nigella sativa* on palmer arsenical keratosis patients. Bangladesh J Pharmacol. 9:15–21.

Baxla SL, Gora RH, Kerketta P, Patnaik S, Roy BK. 2014. Hepatoprotective activity of *Tephrosia purpurea* against arsenic induced toxicity in rats. Indian J Pharmacol. 46:197–200.

Bhattacharya S, Das SK, Haldar PK. 2014. Arsenic induced myocardial toxicity in rats: alleviative effect of *Trichosanthes dioica* fruit. J Diet Suppl. 11:248–261.
Bhattacharya S, Haldar PK. 2012a. Ameliorative effect of *Trichosanthes dioica* fruit ameliorates experimentally induced arsenic toxicity in male albino rats. Food Chem Toxicol. 50:191–199.

Bhattacharya S, Haldar PK. 2012b. Ameliorative effect of *Trichosanthes dioica* root against arsenic-induced brain toxicity in albino rats. Toxicol Environ Chem. 94:769–778.

Bhattacharya S, Haldar PK. 2012c. *Trichosanthes dioica* fruit ameliorates experimentally induced arsenic toxicity in male albino rats through the alleviation of oxidative stress. Biol Trace Elem Res. 148:232–241.

Bhattacharya S, Haldar PK. 2013a. The triterpenoid fraction from *Trichosanthes dioica* root suppresses experimentally induced inflammatory ascies in rats. Pharm Biol. 51:1477–1479.

Bhattacharya S, Haldar PK. 2013b. *Trichosanthes dioica* root alleviates arsenic induced myocardial toxicity in rats. J Environ Pathol Toxicol Oncol. 32:251–261.

Biswas J, Roy S, Mukherjee S, Sinha D, Roy M. 2010. Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pacific J Cancer Prev. 11:239–246.

Chandronitha C, Ananthi S, Ramakrishnan G, Lakshmisanundaram R, Gayathri V, Vasanthi HR. 2010. Protective role of tannin-rich fraction of *Camellia sinensis* in tissue arsenic burden in Sprague Dawley rats. Hum Exp Toxicol. 29:705–719.

Chang SI, Jbn B, Youn P, Park C, Park JD, Ryu DY. 2007. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol. 218:206–203.

Chatterjee A, Chatterji U. 2011. *All-trans* retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats. Toxicol Appl Pharmacol. 257:250–263.

Cheng Y, Yue J, Jiang H, Wang M, Gao L, Ma D, Zhang Z. 2014. Neuroprotective effect of resveratrol on arsenic trioxide-induced oxidative stress in feline brain. Hum Exp Toxicol. 33:737–747.

Cheng Y, Yue J, Xue J, Gao L, Ma D, Liu Y, Zhang Z. 2013. Resveratrol ameliorates the oxidative damage induced by arsenic trioxide in the feline lung. J Vet Med Sci. 75:1139–1146.

Chowdhury NJA, Misbahuddin M, Rahman MS. 2009. Corn extracts lower tissue arsenic level in rats. Bangladesh Med Res Counc Bull. 35:21–25.

Chowdhury R, Dutta A, Chaudhuri SR, Sharma N, Giri AK, Chaudhuri K. 2008. *In vitro* and *in vivo* reduction of sodium arsenite induced toxicity by *Ipomea aquatica* (Convolvulaceae). Food Chem Toxicol. 46:740–751.

Das AK, Bag S, Sahu R, Dua TK, Sinha MK, Gangopadhyay M, Zaman K, D unwanjee S. 2010a. Protective effect of *Corchorus olitorius* leaves on sodium arsenite-induced toxicity in experimental rats. Food Chem Toxicol. 48:326–335.

Das AK, D unwanjee S, Sahu R, Dua TK, Gangopadhyay M, Sinha MK. 2010c. Protective effect of *Corchorus olitorius* leaves against arsenic-induced oxidative stress in male albino rats. J Environ Pathol Toxicol Oncol. 29:64–70.

Das AK, Sahu R, Dua TK, Bag S, Gangopadhyay M, Sinha MK, D unwanjee S. 2010b. Arsenic-induced myocardial injury: Protective role of *Corchorus olitorius* leaves. Food Chem Toxicol. 48:1210–1217.

Das R, Das A, Roy A, Kumari U, Bhattacharya S, Haldar PK. 2015. β-Carotene ameliorates arsenic-induced toxicity in albino mice. Biol Trace Elem Res. 164:220–233.

DuaTK, D unwanjee S, Gangopadhyay S, Kanrar A, Zia-Ul-HaqM, Feo VD. 2015. Ameliorative effect of *Ipomea aquatica* on arsenic-induced toxicity in rats. Environ Toxicol Pharmacol. 40:581–589.

Herrera A, Pineda J, Antonio MT. 2013. Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ Toxicol Pharmacol. 36:414–426.

Jahan S, Ifthikhar N, Ullah H, Rukh G, Hussain I. 2015. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Syst Biol Reprod Med. 61:89–95.

Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M. 2011. Arsenic toxicity, oxidative stress and human disease. J Toxicol. 31:95–107.

Kadivel R, Sundaram K, Mani S, Samuel S, Elango N, Panneerselvam C. 2007. Supplementation of ascorbic acid and alpha-tocopherol prevents arsenic-induced protein oxidation and DNA damage induced by arsenic in rats. Hum Exp Toxicol. 26:939–946.

Kapai S, Peterson H, Liber K, Bhattacharya P. 2006. Human health effects from chronic arsenic poisoning- a review. J Environ Sci Health A Toxicohazard Subst Environ Eng. 41:239–246.

Khan MAK, Choudhury SAR, Misbahuddin M, Islam AZMM, Shahjahan M. 2001. Effects of *Spirulina* in the treatment of chronic arsenic poisoning in Bangladesh. Bangladesh J Med Sci. 7:223–231.

Khandker S, Dey RK, Islam AZMM, Ahmad SA, Al-Mahmud I. 2006. Arsenic-safe drinking water and antioxidants for the management of arsenciosis patients. Bangladesh J Pharmacol. 1:42–50.

Kim HS, Kim YJ, Seo YR. 2015. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev. 20:232–240.

Kumar A, Kumar R, Rahman MS, Iqbal MA, Anand G, Niraj PK, Ali M. 2015a. Phytotherapeutic effect of *Withania somnifera* against arsenic-induced testicular toxicity in Charles Foster rats. Avicenna J Phytomed. 5:335–346.

Kumari A, Kumar R, Rahman MS, Iqbal MA, Anand G, Niraj PK, Ali M. 2015b. Antioxidant effects of plants of Himalayan sub-origin against arsenic-induced toxicity. Biol Chem. 2015:99–109.

Lakshmi BVS, Sudhakar M, Sudha FJ, Gopal MV. 2015. Ameliorative effect of *Trichicum aestivum* Linn against experimentally induced arsenic toxicity in male albino rats. Der Pharmacia Lettre. 7:202–211.

Li SG, Ding YS, Niu Q, Xu XZ, Peng LJ, Ma RL, Jing MX, Feng GL, Liu JM, Guo SX. 2015. Grape seed proanthocyanidin extract alleviates arsenic-induced oxidative reproductive toxicity in male mice. Biomed Envir Sci. 28:272–280.

Li SG, Xu SZ, Niu Q, Ding YS, Peng LJ, Ma RL, Jing MX, Wang K, Ma XM, Feng GL, et al. 2016. Lutein alleviates arsenic-induced reproductive toxicity in male mice via Nrf2 signaling. Hum Exp Toxicol. 35:491–500.

Manna P, Sinha M, Sil PC. 2007. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin Pharmacol Toxicol. 101:333–338.

Manna P, Sinha M, Sil PC. 2008a. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol. 82:137–149.

Manna P, Sinha M, Sil PC. 2008b. Protection of arsenic-induced testicular oxidative stress by arjunolic acid. Redox Rep. 13:67–77.

Mazumder DNG, De BK, Santra A, Ghosh N, Das S, Lahiri S, Das T. 2001. Randomized placebo-controlled trial of 2.3-dimercapto-1-propanesulfonate (DMPS) in therapy of chronic arsenicism due to drinking arsenic-contaminated water. J Toxicol Clin Toxicol. 39:665–674.

Mazumder DNG, Ghoshal UC, Saha J, Santra A, De BK, Chatterjee A, Dutta S, Anjumanara 2006. Efficacy of spirulina extract plus zinc in patients of arsenicosis patients. Bangladesh J Pharmacol. 1:42–50.

Melkonian S, Argos M, Chen Y, Parvez F, Pierce B, Ahmed A, Islam T, Ahsan H. 2012. Intakes of several nutrients are associated with incidence of arsenic-related keratotic skin lesions in Bangladesh. J Nutr. 142:2128–2134.

Mershiba SD, Dassprakash MV, Saraswathy SD. 2013. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 40:3681–3689.

Misbahuddin M, Bashar T, Hossain MA. 2013. Effectiveness of garlic oil in the treatment of arsenical palmer keratos. Bangladesh J Pharmacol. 8:22–27.

Misbahuddin M, Islam AZMM, Khandker S, Mahmud IA, Islam N. 2008. Antioxidants. Environ Toxicol Pharmacol. 36:73–80.

Mittal M, Flora SJ. 2007. Vitamin E supplementation protects oxidative stress during arsenic and fluoride antagonism in male mice. Drug Chem Toxicol. 30:263–281.

Mukherjee S, Roy M, Dey S, Bhattacharya RK. 2007. A mechanistic approach for the toxicity of arsenic in human lymphocytes by curcumin, an active constituent of medicinal herb *Curcuma longa* Linn. J Clin Biochem Nutr. 41:32–42.

