MICROSCOPIC DERIVATION OF THE KELLER-SEGEL EQUATION IN THE
SUB-CRITICAL REGIME

ANA CAÑIZARES GARCÍA AND PETER PICKL

ABSTRACT. We derive the two-dimensional Keller-Segel equation from a stochastic system of \(N \) interacting particles in the case of sub-critical chemosensitivity \(\chi < 8\pi \). The Coulomb interaction force is regularised with a cutoff of size \(N^{-a} \), with arbitrary \(a \in (0, 1/2) \). In particular we obtain a quantitative result for the maximal distance between the real and mean-field \(N \)-particle trajectories.

1. INTRODUCTION

The Keller-Segel equation \([14]\) is known as the classical model of chemotaxis, which in Biology refers to the movement of organisms guided by an external chemical substance and has been observed in some species of bacteria or amoeba. The Keller-Segel equation, concretely motivated by the behaviour of the unicellular organism \(Dictyostelium discoidium \), models a situation in which cells naturally spread out but under starvation circumstances also attract other cells by segregating an attractive chemical substance. We consider the two-dimensional Keller-Segel equation:

\[
\frac{\partial}{\partial t}\rho = \Delta \rho + \chi \nabla ((k \ast \rho) \rho), \quad \rho(0, \cdot) = \rho_0.
\]

Here \(\rho : [0, \infty) \times \mathbb{R}^2 \to [0, \infty) \) is the evolution of the cell population density for an initial value \(\rho_0 : \mathbb{R}^2 \to [0, \infty) \), the interaction force kernel \(k : \mathbb{R}^2 \to \mathbb{R}^2 \) is given by \(k(x) := \frac{x}{2\pi|x|^2} \) and the constant \(\chi > 0 \) denotes the chemosensitivity or response of the cells to the chemical substance. This model reflects the characteristic competition between diffusion and aggregation in such a chemotactical process. Mathematically this results in the interesting effect that in some cases smooth solutions exist for all times, while in others solutions blow up in finite time (corresponding to clustering of the cells). Furthermore, the existence of global solutions or the presence of blow-up events strongly depend on the dimension, mass and chemosensitivity of the system: in one dimension the solution exists globally, but in higher dimensions blow-up events in finite time may or may not occur depending on the initial mass \(M := \int_{\mathbb{R}^2} \rho_0(x) \) and the chemosensitivity \(\chi \). This role for the 2-dimensional description was completely understood for the first time less than a decade ago: if \(\chi M < 8\pi \), a global bounded solution exists, while for \(\chi M > 8\pi \) blow-up in finite time always takes place. Finally, if \(\chi M = 8\pi \) a global solution exists which possibly becomes unbounded as \(t \to \infty \) \([3]\), \([8]\), \([2]\). Here we work in a probabilistic setting and for convenience assume an initial mass \(M = 1 \). The threshold condition for the existence of global solutions is therefore at \(\chi = 8\pi \).

1. This form of the equation results from the Keller-Segel parabolic-elliptic system if the concentration of chemical substance is taken to be the Newtonian potential of the density of cells \([12]\).

2. A solution \(\rho(t, x) \) is said to blow up in finite time if \(\lim_{t \to T} \|\rho(t, \cdot)\|_{L^\infty} = \infty \) for some finite time \(T \).
Our purpose in this paper is to derive the deterministic macroscopic equation \(1\) in the sub-critical regime \(\chi \in (0, 8\pi)\) as the mean-field limit of the following microscopic stochastic \(N\)-particle system as \(N \to \infty\):

\[
\frac{dX_i^{(N)}}{dt} = -\frac{\chi}{N} \sum_{j \neq i} k(X_i^{(N)} - X_j^{(N)}) dt + \sqrt{2} dB_i^t, \quad i = 1, \ldots, N, \quad X_0^{(N)} \sim \prod_{i=1}^N \rho_0,
\]

where the process \(X_i^{(N)} : [0, \infty) \to \mathbb{R}^2\) denotes the trajectory of the \(i\)-th particle, \((B^i)_{i \in \mathbb{N}}\) is a family of 2-dimensional independent Brownian motions, \(X_i^{(N)} \in \mathbb{R}^{2N}\) denotes the vector \(X_t^{(N)} := (X_1^{(N)}, \ldots, X_N^{(N)})\), and at the initial time \(t = 0\) the particles are independently distributed according to the initial density \(\rho_0\). To this end we prove the property of propagation of chaos for regularised versions (with a cutoff depending on \(N\)) of these equations in Corollary 1. We obtain the propagation of chaos as a consequence of Theorem 1 where the real trajectories \(X_i^{(N)}\) are shown to remain close to the mean-field trajectories, defined by (3) below, if both started at the same point. The mean-field trajectories are given by the following equation:

\[
\frac{dY_i^t}{dt} = -\chi(k \ast \rho_t)(Y_i^t) dt + \sqrt{2} dB_i^t, \quad i = 1, \ldots, N, \quad Y_0^t = X_0^t,
\]

where \(\rho_t = \mathcal{L}(Y_t^{(N)})\) is the probability distribution of any of the i.i.d. \(Y_i^{(N)}\). We remark that the Keller-Segel equation \(1\) is Kolmogorov’s forward equation for any solution of \(3\), and in particular their probability distribution \(\rho_t\) solves \(1\).

The work of Cattiaux and Pédèches [6] is relevant for the existence of solutions of the stochastic particle system (2) and their properties. Furthermore, the derivation of the macroscopic equation \(1\) from the many-particle system (2) or propagation of chaos has been addressed in the past years by several mathematicians for modified problems: for a regularised interaction force \(k_f(x) := \frac{x}{|x|^2 + \varepsilon}\) in [12] and for a sub-Keller-Segel equation with a less singular force \(k_a(x) := \frac{x}{|x|^a + \varepsilon}, 0 < a < 1\), in [11]. More recently, great progress has been made for the purely Coulomb case \((a = 1)\): Fournier and Jourdain [10] proved the convergence of a subsequence for the particle system (2) by a tightness argument in the very sub-critical case \(\chi < 2\pi\) using no cutoff at all; the convergence of the whole sequence (and therefore propagation of chaos) was nevertheless not achieved. Liu et al. published in the past year several results on propagation of chaos of (2) [17], [13], [18], the last of them containing the strongest result available to date to our knowledge. We improve their result in two aspects. On the one hand our conditions (4) on the initial density \(\rho_0\) are weaker: Liu and Zhang assume \(\rho_0\) is compactly supported, Lipschitz continuous and \(\rho_0 \in H^4(\mathbb{R}^2)\). On the other hand our initial configuration for the \(N\) particles is less restrictive: ours are i.i.d. random variables on \(\mathbb{R}^2\), while their particles are distributed on a grid. Our approach adapts a method that seems to be powerful for deriving the mean-field limit of some \(N\)-particle systems with Coulomb interactions, which was presented by Boers, Pickl [4] and Lazarovizi, Pickl [16] for the derivation of the Vlasov-Poisson equation from an \(N\)-particle Coulomb system for typical initial conditions.

\[\text{We introduce the notation (N) for the number of particles in order to differentiate between these trajectories and the regularised ones. We nevertheless just use this notation during the introduction, since in the following sections we only work with the regularised equations.}\]
Conditions on the chemosensitivity and the initial density. We assume throughout this note a sub-critical chemosensitivity \(\chi \in (0, 8\pi) \) and the following conditions on the initial density \(\rho_0 \):

\[
\rho_0 \in L^1(\mathbb{R}^2, (1 + |x|^2)dx) \cap L^\infty(\mathbb{R}^2) \cap H^2(\mathbb{R}^2),
\]

\[
\rho_0 > 0,
\]

\[
\int_{\mathbb{R}^2} \rho_0(x)dx = 1,
\]

(4)

These conditions guarantee global existence, uniqueness and further good properties of the solution of the macroscopic equation (1). Section 3 reviews these results and the corresponding ones for the solutions of the microscopic system.

Regularisation of the interaction force. We introduce the following \(N \)-dependent regularisation of the Coulomb interaction force. Let \(\phi^j : \mathbb{R}^2 \to [0, \infty) \) be a radially symmetric, smooth function with the following properties:

\[
\phi^j(x) := \begin{cases} -\frac{1}{2\pi} \log |x|, & |x| \geq 2, \\ 0, & |x| \leq 1, \end{cases}
\]

\([\nabla \phi^j(x)] \leq (2\pi |x|)^{-1}, -\Delta \phi^j(x) > 0\) and \(|\partial_j^2 \phi^j(x)| \leq (\pi |x|^2)^{-1}\) for any \(x \in \mathbb{R}^2, i,j = 1, 2 \).

For each \(N \in \mathbb{N} \) and \(\alpha \in (0, 1/2) \), let \(\phi^N(x) = \phi^j(N^\alpha x) \) and consider the regularised interaction force \(k^N = -\nabla \phi^N \), which by construction satisfies

\[
k^N(x) := \begin{cases} \frac{x}{2\pi |x|^2}, & |x| \geq 2N^{-\alpha} \\ 0, & |x| \leq N^{-\alpha} \end{cases}
\]

and

\[
|\partial_i k^N(x)| \leq \begin{cases} \frac{1}{\pi |x|^2}, & |x| > N^{-\alpha} \\ 0, & |x| \leq N^{-\alpha} \end{cases}, & i = 1, 2.
\]

For an initial density \(\rho_0 \) satisfying the above conditions (4) and each \(N \in \mathbb{N} \) we consider the regularised Keller-Segel equation

(5) \[
\partial_t \rho^N = \Delta \rho^N + \chi \nabla ((k^N \ast \rho^N) \rho^N), \quad \rho^N(0, \cdot) = \rho_0,
\]

the regularised microscopic \(N \)-particle system, for \(i = 1, \ldots, N \),

(6) \[
dX_i^{(N),N} = -\frac{X_i^{(N),N}}{N} \sum_{j \neq i}^N k^N(X_i^{(N),N} - X_j^{(N),N})dt + \sqrt{2} dB^i_t, \quad i = 1, \ldots, N, \quad X_0^{(N),N} \sim \bigotimes_{i=1}^N \rho_0,
\]

and the regularised mean-trajectories

(7) \[
dY_i^{(N),N} = -\chi (k^N \ast \rho_i^N)(Y_i^{(N),N})dt + \sqrt{2} dB^i_t, \quad i = 1, \ldots, N, \quad Y_0^{(N),N} = X_0^{(N),N}
\]

where \(\rho_i^N \) denotes the probability distribution of \(Y_i^{(N),N} \), for any \(i = 1, \ldots, N \). As in the non-regularised version this implies that \(\rho^N \) solves the regularised Keller-Segel equation (5). For simplicity of notation, and since the number of particles \(N \) already becomes apparent by the dependency of \(N \) of the cutoff, we will just write \(X_i^{(N)} \) and \(Y_i^{(N)} \) instead of \(X_i^{(N),N} \) and \(Y_i^{(N),N} \), as well as \(X_i^{N} \).
and Y^N for the vectors $X^{(N),N}$ and $Y^{(N),N}$. It is also convenient to denote the regularised interaction force as
\begin{equation}
K^N_t(x_1, \ldots, x_N) := -\frac{1}{N} \sum_{j \neq i} k^N(x_i - x_j)
\end{equation}
and the mean interaction force as
\begin{equation}
\overline{K}^N_t(x_1, \ldots, x_N) := -\chi(k^N * \rho^N_t)(x_i),
\end{equation}
where $\rho^N_t = \mathcal{L}(Y^{i,N}_t)$. We need to introduce one last process: For times $0 \leq s \leq t$ and a random variable $X \in \mathbb{R}^{2N}$, independent of the filtration generated by B_t, let $Z^{X,N}_{t,s}$ be the process starting at time s at the position X and evolving from time s up to time t with the mean force \overline{K}. Put in another way, the process $Z^{X,N}_{t,s} = (Z^{X,1,N}_{t,s}, \ldots, Z^{X,N,N}_{t,s})$ is given by the solution of
\begin{equation}
dZ^{X,N}_{t,s} = \overline{K}^N_t(Z^{X,N}_{t,s})dt + \sqrt{2d}B^i_t, \quad i = 1, \ldots, N, \quad Z^{X,N}_{s,s} = X.
\end{equation}
This paper is organised as follows. In the next section we state our main result and the ensuing propagation of chaos. We comment on the existence and properties of solutions of equations (1)-(3) in Section 3. Section 4 is devoted to some preliminary results that we need for the proof of the main result, Theorem 1, which is then proven in Section 5. We conclude with the proofs of Propositions 2 and 3 introduced in Section 5.

Notation. For simplicity we write single bars $| \cdot |$ for norms in \mathbb{R}^n and $\| \cdot \|$ for norms in L^p spaces.

2. Main result

Let the chemosensitivity χ and the initial density ρ_0 satisfy condition (4), and for $N \in \mathbb{N}$ let X^N and Y^N be the real and mean-field trajectories solving the regularised microscopic equations (6) and (7), respectively. Our main result is that the N-particle trajectory X^N starting from a chaotic (product-distributed) initial condition $X^N_0 \sim \mathcal{N}_0(\rho_0)$ typically remains close to the purely chaotic mean-field trajectory Y^N with same initial configuration $Y^N_0 = X^N_0$ during any finite time interval $[0, T]$. More precisely, we prove that the measure of the set where the maximal distance $|X^N_t - Y^N_t|_{\infty}$ on $[0, T]$ exceeds $N^{-\alpha}$ decreases exponentially with the number of particles N, as the number of particles grows to infinity.

Theorem 1. Let $T > 0$ and $\alpha \in (0, 1/2)$. For each $\gamma > 0$, there exist a positive constant C_{γ} and a natural number N_0 such that
\begin{equation}
P(\sup_{0 \leq t \leq T} |X^N_t - Y^N_t|_{\infty} \geq N^{-\alpha}) \leq C_{\gamma} N^{-\gamma}, \quad \text{for each } N \geq N_0.
\end{equation}
The constant C_{γ} depends on the coefficient χ, the initial density ρ_0, the final time T, α and γ, and N_0 depends on ρ_0, T and α.

Note that if the interaction force were Lipschitz continuous the statement would easily follow from a Grönwall-type argument. In our case we do not have this good property, but we can prove that the regularised force K^N is locally Lipschitz with a bound of order $\log N$, which follows from Lemma 1 and the Law of large numbers as presented in Proposition 3. This Lipschitz bound is good enough to prove the statement for short times but for larger times we need to introduce a new intermediate process. This process is proved to be close to X^N_t by the same argument as before for short times.
and close to Y_t^N by a new argument introduced in Lemma [2] which compares the densities of the processes instead of comparing the trajectories.

We remark that Theorem [1] directly implies the propagation of chaos, or the weak convergence of the k-particle marginals for X_t^N and Y_t^N:

Corollary 1. Consider the probability density $\otimes_{i=1}^{N} \rho_i^N$ of Y_t^N and denote by Ψ^N the probability density of X_t^N. Then, for each $\gamma > 0$, there exist a positive constant C_γ and a natural number N_0 such that

$$
\sup_{0 \leq t \leq T} W_1((k)\Psi^N_{X_t^N}, \otimes_{i=1}^{N} \rho_i^N) \leq C_\gamma N^{-\gamma}
$$

holds for each $k \in \mathbb{N}$ and $N \geq N_0$. W_1 denotes the first Wasserstein distance, the constant C_γ depends on the coefficient χ, the initial density ρ_0, the final time T, α and γ and N_0 depends on ρ_0, T and α. Here the constant C_γ might be different from the one in Theorem [1].

3. Properties of solutions

3.1. Macroscopic equations.

Proposition 1. (Existence and convergence) Under assumption [4] for the chemosensitivity χ and the initial density ρ_0 the following holds:

i. For any $N \in \mathbb{N}$ and any $T > 0$, there exists $\rho^N \in L^2_\text{loc}([0, T]; H^1(\mathbb{R}^2)) \cap C([0, T]; L^2(\mathbb{R}^2))$ which solves (5) in the sense of distributions.

ii. The Keller-Segel equation (7) has a unique weak non-negative solution $\rho \in L^\infty_\text{loc} (\mathbb{R}^2; L^1(\mathbb{R}^2))$

satisfying the conservation of mass

$$
\int_{\mathbb{R}^2} \rho(x) dx = \int_{\mathbb{R}^2} \rho_0(x) dx \quad (= 1),
$$

the second moment equation

$$
\int_{\mathbb{R}^2} \rho(t, x)|x|^2 dx = 4 \left(1 - \frac{\chi}{8\pi}\right) t + \int_{\mathbb{R}^2} \rho_0(x)|x|^2 dx
$$

and the free energy inequality

$$
\mathcal{F}[\rho(t)] + \int_0^t \int_{\mathbb{R}^2} \rho \left|\nabla(\log \rho) + \chi (k \ast \rho)\right|^2 dx ds \leq \mathcal{F}[\rho_0],
$$

where the free energy \mathcal{F} is given by

$$
\mathcal{F}[\rho] := \int_{\mathbb{R}^2} \rho \log \rho dx - \frac{\chi}{2} \int_{\mathbb{R}^2} \rho (k \ast \rho) dx.
$$

iii. The sequence (ρ^N) of solutions of (5) converges weakly to the solution ρ of the Keller-Segel equation (7).

We refer to [3] and [9] for the proof. More precisely, the existence of the sequence ρ^N and the weak convergence of a subsequence of ρ^N to a weak solution of the Keller-Segel equation (1) were proved in [3]. Together with the uniqueness of the weak solution ρ of (1), which was proved in [9], it
follows the weak convergence of the whole sequence ρ^N (and not just a subsequence) to this unique solution ρ.

For the proof of Proposition 1 only $\rho_0 \in L^1(\mathbb{R}^2, (1 + |x|^2) dx)$, and not $\rho_0 \in L^1(\mathbb{R}^2, (1 + |x|^2) dx) \cap L^\infty(\mathbb{R}^2)$ as required in condition (4), is necessary. If moreover the initial density is bounded in L^∞ we find in Proposition 2 that the solutions of the Keller-Segel and the regularised Keller-Segel equations are uniformly bounded in L^∞ as well. Finally with the full condition $\rho_0 \in L^1(\mathbb{R}^2, (1 + |x|^2) dx) \cap L^\infty(\mathbb{R}^2) \cap H^2(\mathbb{R}^2)$ we prove some Hölder estimates in Proposition 3. The proofs of these two last propositions are contained in Section 6.

Proposition 2. (L$^\infty$ estimates) Assume χ and ρ_0 satisfy condition (4). Then for each $T > 0$ there exists a positive constant C such that

$$\sup_{t \in [0,T]} \|\rho^N_t\|_{\infty}, \sup_{t \in [0,T]} \|\rho_t\|_{\infty} \leq C$$

holds for the solution ρ^N of (5) and the solution ρ of (7).

Proposition 3. (Hölder estimates) Assume χ and ρ_0 satisfy condition (4). Then for each $T > 0$ there exist positive constants C_1 and C_2 depending on ρ_0 and T, such that for each $N \in \mathbb{N}$ and $t \in [0,T]$ the following estimates hold for the solution ρ^N of (5) and the solution ρ of (7):

i. $[\rho^N(t)]_{0,0,\alpha}, [\rho(t)]_{0,0,\alpha} \leq C_1$,

ii. $[kN * \rho^N(t)]_{1,1}, [k * \rho(t)]_{1,1} \leq C_2$.

3.2. Microscopic equations. We focus first on the interacting N-particle system (2) and its regularised version (6). Since for each $N > 0$ the kernel of (6) is globally Lipschitz continuous, the solution of (6) is strongly and uniquely well-defined. For the original singular situation (2) it is much more delicate. Cattiaux and Pédèches [6, Theorem 1.5] proved the following existence and uniqueness result:

Proposition 4. (Existence and uniqueness) Let $\mathcal{M} := \{ \text{there exists at most one pair } i \neq j \text{ such that } X^i = X^j \}$. Then, for $N \geq 4$ and $\chi < 8\pi \left(1 - \frac{1}{N-1}\right)$ there exists a unique (in distribution) non explosive solution of (2) starting from any $x \in \mathcal{M}$.

We continue with the mean-field N-particle system (3), its regularised version (7) and its regularised and linearised version (9). According to Proposition 3 the mean-field force K^N is Lipschitz in the space variable, uniformly in $t \in [0,T]$ and $N \in \mathbb{N}$. Therefore, the linear equation (9) has a unique strong solution. For the existence and uniqueness of solutions of the non-linear equations (3) and (7) we refer to [17, Theorem 2.2].

4. Preliminary results

4.1. Local Lipschitz bound for the regularised interaction force. The regularised interaction force K^N defined in (9) is locally Lipschitz, with a local Lipschitz bound depending on N. The proof of this statement is conducted in the following Lemma, which is formulated to include more general cutoffs that we will need to consider in this paper.

Lemma 1. Let $\nu = \nu(N)$ be a monotone increasing function of N with $\lim_{N \to \infty} \nu(N) = \infty$, and consider the force k^ν with cutoff at $\nu(N)^{-1}$, $k^\nu(x) := -\nabla(\phi^1(\nu x))$ for the bump function ϕ^1 defined
in Section[1] meaning in particular that \(k^v(x) \leq (2\pi|x|)^{-1} \) and

\[
k^v(x) = \begin{cases} \frac{x}{2|x|^2}, & |x| \geq 2v^{-1}, \\ 0, & |x| \leq v^{-1}. \end{cases}
\]

i. For each \(x, y \in \mathbb{R}^2 \) with \(|x - y| \leq 2v^{-1} \) it holds

\[|k^v(x) - k^v(y)| \leq l^v(y)|x - y|,
\]

where

\[l^v(y) := \begin{cases} \frac{16}{|y|^2}, & |y| \geq 4v^{-1}, \\ \frac{16}{v^2}, & |y| \leq 4v^{-1}. \end{cases}
\]

ii. Let the resulting force be \(K_i^v(x_1, \ldots, x_N) := -\frac{v}{N} \sum_{j \neq i} k^v(x_i - x_j) \) and define

\[L_i^v(y_1, \ldots, y_N) := -\frac{v}{N} \sum_{j \neq i} l^v(y_i - y_j).
\]

Then, for each \(x, y \in \mathbb{R}^{2N} \) with \(|x - y|_\infty \leq v^{-1} \) it holds

\[|K_i^v(x) - K_i^v(y)| \leq 2L_i^v(y)|x - y|_\infty.
\]

Proof. (i) By the Mean Value Theorem the bound

\[|k^v(x) - k^v(y)| \leq |Dk^v(z)||x - y|
\]

holds for some point \(z \) in the segment which joins \(x \) and \(y \). We distinguish between the following two cases:

Case 1: \(|y| \leq 4v^{-1} \).

Since the derivative of \(k^v \) is globally bounded by \(v^2/\pi \), and consequently by \(v^2 \) as well, it follows that

\[|k^v(x) - k^v(y)| \leq \|Dk^v\||x - y| \leq l^v(y)|x - y|.
\]

Case 2: \(|y| \geq 4v^{-1} \).

Since \(|z - y| \leq |x - y| \leq 2v^{-1} \), it follows that \(|z| \geq 2v^{-1} \). This means in particular that the derivative of \(k^v \) at \(z \) is bounded by \(|z|^{-2}/\pi \) and also that \(|z - y| \leq |z| \), so

\[|y|^2 \leq (|y - z| + |z|)^2 \leq (2|z|)^2 = 4|z|^2.
\]

Therefore,

\[
|k^v(x) - k^v(y)| \leq |Dk^v(z)||x - y| \\
\leq 2^{-1}|z|^{-2}|x - y| \\
\leq 2|y|^{-2}|x - y| \\
\leq l^v(y)|x - y|.
\]

Finally, (ii) follows directly from (i).
4.2. Law of large numbers. In the proof of the main theorem we define several “exceptional” sets and rely on the fact that the measure of these sets is exponentially small. This fact is proven in the next Proposition, a law of large numbers for our setting, for all these sets are events where the sample mean and expected values of some family of independent variables are not close. The steps we follow for this version of the law of large numbers are the standard ones, the only issue being that the k-th moments of the variables we consider are not bounded but instead grow with N to infinity.

We’ll see that their growth is nevertheless slow enough and we still obtain a rate of convergence which is faster than $C_\gamma N^{-\gamma}$ for any $\gamma > 0$, where $C_\gamma > 0$ is a constant depending on the choice of γ but not on N.

Proposition 5. (Law of large numbers) Let $\alpha, \delta > 0$ be such that $\alpha + \delta < 1/2$. For $N \in \mathbb{N}$ let Z^1, \ldots, Z^N be N independent random variables in \mathbb{R}^2 and assume that Z^i has a probability density that we denote by u^i, $i = 1, \ldots, N$. Let $h = (h_1, h_2) : \mathbb{R}^2 \to \mathbb{R}^2$ be a continuous function satisfying $|h(x)| \leq C_h \min\{N^\alpha, |x|^{-1}\}$. Define $H_i(Z) = (H^1_i(Z), H^2_i(Z)) := \frac{1}{N} \sum_{j \neq i} h(Z^i - Z^j)$ and the following sets

\[
S := \{ \sup_{1 \leq i \leq N} |H_i(Z) - \mathbb{E}(H_i(Z))| \geq N^{-(\alpha + \delta)} \},
\]

\[
\hat{S} := \{ \sup_{1 \leq i \leq N} |H_i(Z) - \mathbb{E}_{(\cdot \setminus i)}(H_i(Z))| \geq N^{-(\alpha + \delta)} \},
\]

where $\mathbb{E}_{(\cdot \setminus i)}$ stands for the expectation with respect to every variable but Z^i, that is, $\mathbb{E}_{(\cdot \setminus i)}(H_i(Z)) = \frac{1}{N} \sum_{j \neq i} (h \ast u^i)(Z^j)$.

Define $\epsilon := 1 - 2(\alpha + \delta)$ (strictly positive by assumption) and assume that, for each i,

\[
\log N \|u^i\|_\infty + \|u^i\|_\infty^2 \leq C_0 N^{\epsilon/2}
\]

holds for some constant C_0 independent of N and i. Then, for each $\gamma > 0$ there exists a constant C_γ (depending on γ, ϵ, C_0 and C_h) such that

\[
\mathbb{P}(S), \mathbb{P}(\hat{S}) \leq C_\gamma N^{-\gamma}.
\]

Proof. Because we can replace $\mathbb{E}(H_i(Z))$ by $\mathbb{E}_{(\cdot \setminus i)}(H_i(Z))$ in the proof, it is enough to prove the statement for the first set S. Also notice that since

\[
\mathbb{P}(\sup_{1 \leq i \leq N} |H_i(Z) - \mathbb{E}(H_i(Z))| \geq N^{-(\alpha + \delta)}) \leq \sum_{i=1, \nu = 1}^{N, 2} \mathbb{P}(|H^\nu_i(Z) - \mathbb{E}(H^\nu_i(Z))| \geq N^{-(\alpha + \delta)})
\]

holds, it suffices to prove that

\[
\mathbb{P}(|H^\nu_i(Z) - \mathbb{E}(H^\nu_i(Z))| \geq N^{-(\alpha + \delta)}) \leq C_\gamma N^{-\gamma}
\]

for each $\gamma > 0$, each $i = 1, \ldots, N$ and $\nu = 1, 2$. Let then $\gamma > 0$, $\nu \in \{1, 2\}$ and let us for simplicity take $i = 1$.

We use Markov’s inequality of order $2m$ and determine later the right choice of m for the given γ and the quantity $(\alpha + \delta)$ in the exponent of the allowed error $N^{-(\alpha + \delta)}$. For $j = 2, \ldots, N$ let us denote by Θ_j the (independent) random variables $\Theta_j := h^\nu(Z^1 - Z^j)$ and by μ_j its expected value

\[
\mu_j := \int h^\nu(z_1 - z_j)u^1(z_1)u^\nu(z_j)dz_1dz_j.
\]
The expectation on the right hand side can be estimated by using the multinomial formula

\[\mathbb{E}(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j)) \geq N^{-(\alpha+\delta)} \]

where

\[\mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right) \leq N^{2(\alpha+\delta)m} \mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right). \]

Now by Markov’s inequality

\[\mathbb{P}(|H(Z) - \mathbb{E}(H(Z))| \geq N^{-(\alpha+\delta)}) = \mathbb{P}(\left| \frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right| \geq N^{-(\alpha+\delta)}) \]

\[\leq N^{2(\alpha+\delta)m} \mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right) \]

The expectation on the right hand side can be estimated by using the multinomial formula

\[(x_2 + \ldots + x_N)^{2m} = \sum_{a_2 + \ldots + a_N = 2m} C_a \prod_{j=2}^N x_j^a, \]

where \(a = (a_2, \ldots, a_N) \) is a multiindex and \(C_a = \binom{2m}{a_2, \ldots, a_N} = \frac{(2m)!}{a_2! \ldots a_N!} \). Consequently

\[\mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right) = N^{-2m} \sum_{a_2 + \ldots + a_N = 2m} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j}). \]

Here note that if \(a_j = 1 \) for some \(j \) then the whole term is zero, since \(\mathbb{E}((\Theta_j - \mu_j)) = 0 \). Therefore we are left only with terms with at most \(m \) non-zero entries. If we denote by \(|a| \) the number of non-zero entries of the multiindex \(a \), the sum above simplifies to

\[\mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right) = N^{-2m} \sum_{|a| \leq m} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j}). \]

Next we estimate the \(a_j \)-th order moment of \(\Theta_j \), for \(a_j \leq 2m \): specifically we prove that

\[\mathbb{E}((\Theta_j - \mu_j)^{a_j}) \leq C_{h_j} C_0 N^{a_j(\alpha_j-2)+\epsilon/2}. \]

The \(a_j \)-th order moment of \(\Theta_j \) equals

\[\int_{\mathbb{R}^2} (h^v(z_1 - z_j) - \mu_j)^{a_j} u^j(z_j) u^j(z_j) dz_1 dz_j. \]

We factor the power in the integrand as

\[(h^v(z_1 - z_j) - \mu_j)^{a_j} = (h^v(z_1 - z_j) - \mu_j)^{a_j-2} (h^v(z_1 - z_j) - \mu_j)^2, \]

then estimate the term to the power \(a_j - 2 \) by its supremum norm and integrate only the second factor. It holds that

\[\| h^v(z_1 - z_j) - \mu_j \|_{\infty} \leq C \| h^v \|_{\infty} + \| (h^v * u^j) \|_{\infty} \leq C \| h \|_{\infty} \leq C_h N^\alpha. \]
After integrating the term to the second power we find

\[
\int_{\mathbb{R}^2} (h^r(z_1 - z_j) - \mu_j)^2 u^l(z_1) u^l(z_j) d\mathbf{z}_1 d\mathbf{z}_j = \mu_j^2 + 2 \mu_j \int_{\mathbb{R}^2} h^r(z_1 - z_j) u^l(z_1) u^l(z_j) d\mathbf{z}_1 d\mathbf{z}_j + \int_{\mathbb{R}^2} h^r(z_1 - z_j)^2 u^l(z_1) u^l(z_j) d\mathbf{z}_1 d\mathbf{z}_j \leq 3 \|h \ast u^l\|_\infty^2 + \|h^2 \ast u^l\|_\infty \\
\leq C_h (\|u^l\|_\infty^2 + \log N \|u^l\|_\infty) \\
\leq C_h C_0 N^{\varepsilon/2}.
\]

Altogether

\[
\mathbb{E}((\Theta_j - \mu_j)^{a_j}) = \int_{\mathbb{R}^2} (h^r(z_1 - z_j) - \mu_j)^{a_j} u^l(z_1) u^l(z_j) d\mathbf{z}_1 d\mathbf{z}_j \\
\leq \|h^r(z_1 - z_j) - \mu_j\|_{l^2}^{a_j-2} \int_{\mathbb{R}^2} (h^r(z_1 - z_j) - \mu_j)^2 u^l(z_1) u^l(z_j) d\mathbf{z}_1 d\mathbf{z}_j \\
\leq C_h C_0 N^{|a_j|+\varepsilon/2}.
\]

Let now \(k \leq m \) and consider only the multiindices \(a \) with \(k \) non-zero entries, that is with \(|a| = k \). It holds

\[
\sum_{a_2 + \ldots + a_N = 2m \atop |a| = k} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j}) \leq \sum_{a_2 + \ldots + a_N = 2m \atop |a| = k} C_a C_h^{2m} C_0^k N^{a(2m-2k)+\varepsilon k/2} \\
\leq \sum_{a_2 + \ldots + a_N = 2m \atop |a| = k} (2m)^{2m} C_h^{2m} C_0^m N^{a(2m-2k)+\varepsilon k/2},
\]

where we used that \(C_a = \binom{2m}{a_2, a_3, \ldots, a_N} \leq (2m)^{2m} \). Since the number of terms in the sum, i.e. the number of ways of choosing \(k \) numbers that add up \(2m \) counting all permutations, is bounded by \(N^k(2m)^k \), we find that

\[
\sum_{a_2 + \ldots + a_N = 2m \atop |a| = k} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j}) \leq (2m)^{3m} C_h^{2m} C_0^m N^{a(2m-2k)+\varepsilon k/2} N^k \\
(12) \leq C_m N^{2m} N^{k(1-2\alpha+\varepsilon/2)},
\]
for a constant $C_m > 0$ only depending on m, C_h and C_0. At this point we can estimate the desired expected value

$$
\mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right) = N^{-2m} \sum_{a_2 + \ldots + a_N = 2m} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j})
$$

$$
= N^{-2m} \sum_{k=1}^{m} \sum_{|a| = k} C_a \prod_{j \neq 1} \mathbb{E}((\Theta_j - \mu_j)^{a_j})
$$

$$
\leq C_m N^{-2m} \sum_{k=1}^{m} N^{2m} N^{k(1-2a+\frac{\epsilon}{2})}
$$

$$
\leq C_m N^{-2m} N^{m(2a+1-2a+\frac{\epsilon}{2})}
$$

$$
\leq C_m N^{-m(1-\frac{\epsilon}{2})},
$$

where we used (12) and the positivity of $1 - 2a + \epsilon/2$. Finally we find that

$$
\mathbb{P}(|H_1(Z) - \mathbb{E}(H_1(Z))| \geq N^{-(a+\delta)}) \leq N^{2(a+\delta)m} \mathbb{E} \left(\left(\frac{1}{N} \sum_{j \neq 1} (\Theta_j - \mu_j) \right)^{2m} \right)
$$

$$
\leq C_m N^{2(a+\delta)m} N^{-m(1-\frac{\epsilon}{2})}
$$

$$
= C_m N^{-m(1-2(a+\delta)-\frac{\epsilon}{2})}
$$

$$
\leq C_m N^{-m \epsilon/2} = \tilde{C}_\gamma N^{-\gamma}
$$

holds for $m = 2\gamma/\epsilon$, where $\tilde{C}_\gamma := C_{2\gamma/\epsilon}$ depends on γ, ϵ, C_0 and C_h. \qed

4.3. **Comparison of solutions of (9) starting at different points.** In this section we address the following question: how different is the action of the force K^N on two solutions of (9) that start at different points? An estimate of this difference will be very useful in the second case (for large times) of the proof of the main theorem and innovates the methods presented in [4] and [16]. The estimate is provided in Corollary 2. Recall that for each $x \in \mathbb{R}^{2N}$, $Z_{t,s}^x, N \in \mathbb{R}^{2N}$ denotes the process starting at point x at time s and evolving for times greater that s according to the mean-field force \overline{K}^N. That is, $Z_{t,s}^x$ solves (9) with constant initial condition x and initial time s. Furthermore $Z_{t,s}^x, N$ has the strong Feller property, implying in particular that it has a transition probability density. Since the processes $Z_{t,s}^x, N, \ldots, Z_{t,s}^x, N$ are independent, the joint transition probability density $u_{t,s}^{x,N}(z_1, \ldots, z_N)$ is given by the product $u_{t,s}^{x,N}(z_1, \ldots, z_N) := \prod u_{t,s}^{x,i,N}(z_i)$. Here each term $u_{t,s}^{x,i,N}$ is the transition probability density of $Z_{t,s}^{x,i,N}$ and also the solution of the linearised Keller-Segel equation

$$
\partial_t u_{t,s}^{x,i,N} = \Delta u_{t,s}^{x,i,N} - \nabla \cdot (f^N u_{t,s}^{x,i,N}), \quad u_{t,s}^{x,i,N} = \delta_{x_i},
$$

where $f^N_i := \chi k^N * \rho^N_i$ and ρ^N_i solves the regularised Keller-Segel equation (5) with initial condition ρ_0. Consider now the processes $Z_{t,s}^{x,N}$ and $Z_{t,s}^{y,N}$ for two different starting points $x, y \in \mathbb{R}^{2N}$. It is intuitively clear that the probability densities $u_{t,s}^{x,N}$ and $u_{t,s}^{y,N}$ are just a shift of each other. The next lemma gives an estimate for the L^∞ norm of each $u_{t,s}^{x,N}$ as well as for the distance in L^∞.

Lemma 2. There exists a positive constant C depending on ρ_0 and T such that for each $N \in \mathbb{N}$, any starting points $x, y \in \mathbb{R}^{2N}$ and any time $0 < t \leq T$ the following estimates for the transition probability densities $u^{x,N}_{t,s}$ resp. $u^{y,N}_{t,s}$ of the processes $Z^{x,N}_{t,s}$ resp. $Z^{y,N}_{t,s}$ given by (9) hold:

1. $\|u^{x,N}_{t,s}\|_\infty \leq C((t-s)^{-1} + 1)$.
2. $\|u^{x,N}_{t,s} - u^{y,N}_{t,s}\|_\infty \leq C((t-s)^{-3/2} + 1)|x - y|_\infty$.

Proof. Both estimates can be proved in the same way. We just give the proof for part (ii), which can be easily adapted for part (i). For simplicity of notation we assume $s = 0$ and write simply u^{x}_t instead of $u^{x,0,N}_{t,0}$. What we need to show is then that

$$\|u^{x}_i - u^{y}_i\|_\infty \leq C(t^{-3/2} + 1)|x_i - y_i|$$

holds for each $i = 1, \ldots, N$ and for a constant $C > 0$ depending only on ρ_0 and T. We show this inductively.

Let us then fix $i \in \{1, \ldots, N\}$ and define $v_i := u^{x}_i - u^{y}_i$. For a solution of (13) we see that

$$u^{x}_i = G(t) * \delta_{x_i} - \int_0^t G(t-s) * \text{div}(u^{x}_s f^N_s) \, ds$$

$$= G(t) * \delta_{x_i} - \int_0^t \nabla G(t-s) * (u^{x}_s f^N_s) \, ds,$$ \hspace{1cm} (14)

where $G(t, x) := \frac{1}{2\pi t} e^{x^2 / 2t}$ denotes the heat kernel. By substracting the corresponding equations for u^{x}_i and u^{y}_i it follows

$$v_i = G(t) * (\delta_{x_i} - \delta_{y_i}) - \int_0^t \nabla G(t-s) * (v_s f^N_s) \, ds$$

and consequently, for $p \in [1, \infty]$,

$$\|v_i\|_p \leq \|G(t) * (\delta_{x_i} - \delta_{y_i})\|_p + \int_0^t \|\nabla G(t-s) * (v_s f^N_s)\|_p \, ds$$
holds due to Bochner’s Theorem. Next we use Young’s inequality for convolutions. We split the last integral into two parts and use Young’s inequality with different exponents for each part

\[
\int_0^t \| \nabla G(t-s) \ast (v_s f_s^N) \|_p \, ds = \int_0^{t/2} \| \nabla G(t-s) \ast (v_s f_s^N) \|_p \, ds + \int_{t/2}^t \| \nabla G(t-s) \ast (v_s f_s^N) \|_p \, ds
\]

\[
\leq C \int_0^{t/2} \| \nabla G(t-s) \|_p \| v_s \|_1 \, ds + C \int_{t/2}^t \| \nabla G(t-s) \|_{3/2} \| v_s \|_q \, ds,
\]

where \(C := \sup_{0 \leq t \leq T} \| f_s^N \|_\infty \) is finite since \(\| f_s^N \|_1 \) is equal to \(\| \rho_0 \|_1 \) and by Proposition \(\| \rho_s^N \|_\infty \) is also uniformly bounded in \(t \in [0, T] \) and \(N \in \mathbb{N} \). The choice of the exponent \(r = 3/2 \) for the norm of \(\nabla G \) in the second integral is as good as any other choice \(r \in (1, 2) \) since we just need the term \(\| \nabla G \|_r \) to be integrable in \([0, t] \). Observe that with the previous bound for \(\| v_s \|_p \) and taking \(p_n := q \) and \(p_{n+1} := p \) in (15) we find

\[
\| v_s \|_{p_{n+1}} \leq \| G(t) \ast (\delta_{x_s} - \delta_{y_s}) \|_{p_{n+1}} + C \int_0^{t/2} \| \nabla G(t-s) \|_{p_{n+1}} \| v_s \|_1 \, ds + C \int_{t/2}^t \| \nabla G(t-s) \|_{3/2} \| v_s \|_p \, ds,
\]

where the relation between the exponents \(p_{n+1} = \frac{2}{3-p_0} \) follows from Young’s inequality. Therefore, if we are able to estimate \(\| v_s \|_1 \) we can then iteratively estimate the \(L^p \) norms of \(v_s \) for higher exponents. Since the function \(x \mapsto \frac{3}{3-x} \) on \([0, 3] \) is strictly monotone increasing, grows to infinity as \(x \) approaches 3 and its first derivative is non-decreasing, it is already clear that starting at \(p_1 = 1 \) the exponent \(p_k = \infty \) must be attained after a finite number \(k \) of steps. Specifically, if we take \(p_1 = 1 \), we reach the desired norm \(\| v_s \|_\infty \) after \(k = 4 \) steps. Below we go through the first two steps in detail, the last two can be completed analogously. We will need some estimates for the \(L^p \) norms of the heat kernel \(G \) and its derivative, which are given in Lemma.

Step \(k = 1, p_1 = 1 \): We compute the first norm directly using a Grönwall-type inequality.

\[
\| v_s \|_1 \leq \| G(t, \cdot - x_0) - G(t, \cdot - y_0) \|_1 + \int_0^t \| \nabla G(t-s) \ast (v_s f_s^N) \|_p \, ds
\]

\[
\leq \| G(t, \cdot - x_0) - G(t, \cdot - y_0) \|_1 + \int_0^t \| \nabla G(t-s) \|_1 \| v_s \|_1 \| f_s^N \|_\infty \, ds
\]

\[
\leq C \frac{|x_0 - y_0|}{t^{1/2}} + C \int_0^t (t-s)^{-1/2} \| v_s \|_1 \, ds.
\]

\(^4\)For two functions \(a, b : \mathbb{R}^n \to \mathbb{R} \) and exponents \(p, q, r \in [1, \infty] \) satisfying \(1 + \frac{1}{p} = \frac{1}{r} + \frac{1}{q} \) it holds

\[
\| a \ast b \|_r \leq \| a \|_p \| b \|_q.
\]
By Grönwall’s inequality we find
\[
\|v_1\| \leq C \frac{|x_0 - y_0|}{t_1^{1/2}} + C |x_0 - y_0| \int_0^t s^{-1/2}(t-s)^{-1/2} e^{C \int_0^t (t-s)^{-1/2} ds} ds \\
\leq C \frac{|x_0 - y_0|}{t_1^{1/2}} + C.C.t^{1/2} |x_0 - y_0|.
\]
Here we used that the integral \(\int_0^t s^{-1/2}(t-s)^{-1/2} \) is finite since it can be split into
\[
\int_0^t s^{-1/2}(t-s)^{-1/2} ds = \int_0^{t/2} s^{-1/2}(t-s)^{-1/2} ds + \int_{t/2}^t s^{-1/2}(t-s)^{-1/2} ds,
\]
and both terms are finite. Consequently
\[
\|v_1\| \leq C(t^{-1/2} + 1)|x_0 - y_0|
\]
holds for a constant \(C \) depending only on \(\sup_{0 \leq t \leq T} \|f_i^N\|_\infty \).

Step k = 2, \(p_2 = \frac{5}{3} \): Recall that the next exponent is computed via the relationship \(p_{n+1} = \frac{p_n}{3-p_n} \).
In this and the following steps we just need to substitute the found estimates into (16):
\[
\|v_i\|_{3/2} \leq \|G(t, \cdot - x_0) - G(t, \cdot - y_0)\|_{3/2} + C \int_0^t \|\nabla G(t-s)\|_{3/2}\|v_s\|_1 ds \\
\leq C \frac{|x_0 - y_0|}{t^{5/6}} + C |x_0 - y_0| \int_0^t (t-s)^{-5/6} (s^{-1/2} + 1) ds \\
\leq C \frac{|x_0 - y_0|}{t^{5/6}} + C |x_0 - y_0| \left(\int_0^{t/2} (t-s)^{-5/6} s^{-1/2} ds + \int_{t/2}^t (t-s)^{-5/6} s^{-1/2} ds \right) \\
\leq C(t^{-5/6} + t^{-1/3} + t^{1/6})|x_0 - y_0| = C \leq (t^{-5/6} + 1)|x_0 - y_0|.
\]
The last two steps with \(k = 3, p_3 = 3 \) and \(k = 4, p_4 = \infty \) are analogous. \(\square \)

As a consequence we find the following estimate:

Corollary 2. Let \(f \in L^1(\mathbb{R}^2) \) and define \(F : \mathbb{R}^{2N} \to \mathbb{R}^{2N} \) by \(F_i(z) := \frac{1}{N} \sum_{j \neq i} f(z_i - z_j) \), for \(i = 1, \ldots, N \). Then,
\[
|\mathbb{E}(F(Z_{t,s}^{x,y})) - \mathbb{E}(F(Z_{t,s}^{x,y}))|_\infty \leq C((t-s)^{-3/2} + 1)\|f\|_1 |x - y|_\infty
\]
holds for \(x, y \in \mathbb{R}^{2N}, t \in [0, T] \) and \(Z_{t,s}^{x,y}, Z_{t,s}^{x,y} \) given by (9).

Note that the interaction force \(K^N \) is a function of this kind.

Proof. Let \(i \in \{1, \ldots, N\} \).
\[
\mathbb{E}(F(Z_{t,s}^i))_i = \mathbb{E}(F_i(Z_{t,s}^i)) = \frac{1}{N} \sum_{j \neq i} f(z_i - z_j) u_{t,s}^i(z_i) u_{t,s}^i(z_j) dz_i dz_j.
\]
Therefore
\[
\|\mathbb{E}(F(Z_t^x))_i - \mathbb{E}(F(Z_t^y))_i\|_2 \leq \frac{1}{N} \left| \sum_{j \neq i} \int f(z_i - z_j) u_i^{x_i}(z_j) u_i^{y_i}(z_j) dz_i dz_j \right|
\]
\[
\leq \frac{1}{N} \left| \sum_{j \neq i} \int f(z_i - z_j) u_i^{x_i}(z_j) u_i^{y_i}(z_j) dz_i dz_j + \int f(z_i - z_j) u_i^{y_i}(z_j) u_i^{y_i}(z_j) dz_i dz_j \right|
\]
\[
\leq \frac{1}{N} \sum_{j \neq i} (\|u_i^{x_j} - u_i^{y_j}\|_\infty \|f \ast u_i^{x_j}\|_1 + \|u_i^{x_j} - u_i^{y_j}\|_\infty \|f \ast u_i^{y_j}\|_1)
\]
\[
\leq \frac{1}{N} \sum_{j \neq i} C(t^{-3/2} + 1) |x - y|_\infty (\|f\|_1 \|u_i^{x_j}\|_1 + \|f\|_1 \|u_i^{y_j}\|_1)
\]
\[
\leq C(t^{-3/2} + 1) \|f\|_1 |x - y|_\infty,
\]
by Lemma[2].

We finally collect some standard estimates for the heat kernel which we required in the proof of Lemma[2].

Lemma 3. (p-norm estimates of the heat kernel) Let \(G(t, x) := \frac{1}{2\pi t} \exp\left(-\frac{|x|^2}{2t}\right) \) and \(p \in [1, \infty] \). Then there exists a constant \(C > 0 \) such that the following holds:

i. \(\|G(t)\|_p \leq \frac{1}{t^{1-1/p}} \) and \(\|\nabla_x G(t)\|_p \leq \frac{1}{t^{1-1/p}} \).

ii. \(\|G(t, \cdot - x_0) - G(t, \cdot - y_0)\|_p \leq \frac{C|x_0 - y_0|}{t^{1/2-1/2p}} \).

Proof.

\[
\|G(t)\|_p \leq \frac{1}{t^{1-1/p}}
\]

For \(p = \infty \) the statement is clearly true.

For \(1 \leq p < \infty \)

\[
\|G(t)\|_p = \frac{1}{2\pi t} \left(\int \exp\left(-\frac{p|x|^2}{2t}\right) d^2x \right)^{1/p}
\]

\[
= \frac{C}{t^{1-1/p}} \left(\int \exp(-p|y|^2)d^2y \right)^{1/p}
\]

\[
\leq \frac{C}{t^{1-1/p}} \left(\int \exp(-|y|^2)d^2y \right)^{1/p}
\]

Next we show that \(\|\nabla_x G(t)\|_p \leq \frac{C}{t^{1/2-1/p}} \) for \(p \in [1, \infty] \). For \(p = \infty \), since \(a \exp(-a) \) is bounded, one has

\[
|\nabla_x G(t, x)| = \frac{1}{2\pi t^2} \exp\left(-\frac{|x|^2}{2t}\right) = \frac{C}{t^{1/2}} \frac{|x|}{t^{1/2}} \exp\left(-\frac{|x|^2}{2t}\right) \leq \frac{C}{t^{1/2}}.
\]
for \((t,x) \in \mathbb{R}^+ \times \mathbb{R}^2\). For \(1 \leq p < \infty\):

\[
\| \nabla_x G(t) \|_p = \frac{1}{2\pi t^2} \left(\int |x|^p e^{\left(-\frac{p|x|^2}{2t}\right)} \, dx \right)^{1/p}
\leq \frac{C}{t^{3/2-1/p}} \left(\int |y|^p e^{(-p|y|^2)\,dy} \right)^{1/p}
\leq \frac{C}{t^{3/2-1/p}} \left(\left\| 1 \cdot \exp \left(-\frac{p|y|^2}{2}\right) \left\|_\infty \right. \left(\int \exp \left(-\frac{|y|^2}{2}\right) \, dy \right)^{1/p}
\leq \frac{C}{t^{3/2-1/p}}.
\]

Let \(V(t,x) := G(t,x-x_0) - G(t,x-y_0)\). For \(p = \infty\), it follows from part i that

\[
|V(t,x)| \leq \| \nabla_x G(t) \|_\infty |x_0 - y_0| \leq C \frac{|x_0 - y_0|}{t^{3/2}}.
\]

For \(p = 1\) one can directly compute

\[
|V(t, \cdot)|_1 \leq C \frac{|x_0 - y_0|}{t^{1/2}}.
\]

For \(1 < p < \infty\) then

\[
\| V(t, \cdot) \|_p \leq \| V(t, \cdot) \|_\infty^{(p-1)/p} \| V(t, \cdot) \|_1^{1/p}
\leq C \left(\frac{|x_0 - y_0|}{t^{3/2}} \right)^{(p-1)/p} \left(\frac{|x_0 - y_0|}{t^{1/2}} \right)^{1/p}
= C \frac{|x_0 - y_0|}{t^{3/2-1/p}}.
\]

\hspace{1cm} \square

5. PROOF OF THE MAIN THEOREM

In this section we prove Theorem[1] where we compare the regularised real trajectory \(X^N\) given by \((6)\) to the regularised mean-field trajectory \(Y^N\) solving \((7)\) and show that both trajectories remain close with high probability if they start at the same point. This is done by two slightly different methods, depending on how big the elapsed time is. For large times we introduce the new process \(Z^N_{t,s}\) starting at an intermediate time \(s \in [0,t]\) and show it is close to \(X^N_t\) and to \(Y^N_t\). Recall that \(Z^N_{t,s}\) is given by \((9)\) with initial condition \(Z^N_{t,s} = X^N_s\). In order to simplify the notation we will omit the superindex in \(Z^N_{t,s}\) referring to the initial condition \(X^N_t\) and denote just by \(Z^N_{t,s}\) the solution of \((9)\) with initial condition \(Z^N_{t,s} = X^N_s\). In particular, the identities \(Z^N_{t,0} = Y^N_t\) and \(Z^N_{t,s} = X^N_t\) hold. Instead of directly considering the evolution of the difference \(|X^N_t - Y^N_t|_\infty\) we
Therefore, we can estimate
\begin{equation}
(17) \quad J^N_t := \min \left\{ 1, \sup_{0 \leq s \leq t} \sup_{0 \leq \tau \leq s} (N^\alpha f_N(s - \tau) |Z^N_{s,s} - Z^N_{s,s,t}|_{\infty} + N^{-\delta}) \right\}, \quad 0 \leq t \leq T,
\end{equation}
where \(C_N := 18(\log N)^{3/4} \) and \(f_N(t) := \max \left\{ \frac{4}{t \log N + (\log N)^{1/4}}, 1 \right\} \).

As we shall see the process \(J^N_t \) helps us control the maximal distance \(|Z^N_{s,s} - Z^N_{s,s,t}|_{\infty} \) for all intermediate times and the parameters in \(J^N \) are optimised for the desired rate of convergence. We now explain how to express our problem in terms of this new process. For \(s \geq \tau \geq 0 \) let
\[
N^\alpha |X^N_t - Y^N_t|_{\infty} \leq \sup_{0 \leq s \leq t} e^{C_N(T-s)} \sup_{0 \leq \tau \leq s} a(\tau, s).
\]
holds true, \(J^N_t \) < 1 implies that \(\sup_{0 \leq s \leq t} e^{C_N(T-s)} \sup_{0 \leq \tau \leq s} a(\tau, s) = J^N_t < 1 \), and \(|X^N_t - Y^N_t|_{\infty} \leq N^{-\alpha} \) follows. Moreover, since \(e^{C_N T} \) grows slower than \(N^\alpha \) for any \(\alpha > 0 \), there exists \(N_0 \in \mathbb{N} \) depending on \(T \) and \(\alpha \) such that if \(N \geq N_0 \) then \(J^N_0 = e^{C_N T} N^{-\delta} \) is bounded by some constant, say 1/2.

Therefore, we can estimate
\[
\mathbb{P}(\sup_{0 \leq t \leq T} |X^N_t - Y^N_t|_{\infty} \geq N^{-\alpha}) \leq \mathbb{P}(J^N_T \geq 1) \leq \mathbb{P}(J^N_T - J^N_0 \geq 1/2) \leq 2\mathbb{E}(J^N_T - J^N_0) = 2 \int_0^T \mathbb{E}(\partial^+_t J^N_s) ds.
\]

The problem then reduces to finding a constant \(C_\gamma \) for each \(\gamma > 0 \) such that
\[
\mathbb{E}(\partial^+_t J^N_t) \leq C_\gamma N^{-\gamma}.
\]

In order to compute the right-derivative of \(J^N_t \) we need the following lemma:

Lemma 4. Let \(g : [0, T] \times [0, T] \rightarrow \mathbb{R} \) be a right-differentiable function and consider the function
\[
f(t) := \sup_{0 \leq \tau \leq s \leq t} g(\tau, s) \text{ for } t \in [0, T].
\]
If the supremum of \(g \) is not attained at any point of the diagonal \(\{(s, s) : s \in [0, T]\} \) then the right-derivative of \(f \) satisfies
\[
\partial^+ f(t) \leq \max \{0, \partial^+ g(\tau, t)\},
\]
for any \(\tau \in [0, t] \) such that \((\tau, t) \) is maximal, meaning that \(f(t) = g(\tau, t) \). Here the right-derivative \(\partial^+_i \) for functions \(\varphi \) in one variable is defined as
\[
\partial^+_i \varphi(t) := \lim_{h \to 0^+} \frac{\varphi(t + h) - \varphi(t)}{h}.
\]
For functions in several variables we denote by \(\partial^+_i \) the partial right-derivative in the \(i \)-th variable.

Proof. Let us denote by \((\tau, s) \) any maximal point of \(g \) up to time \(t \), i.e., any point such that \(f(t) = g(\tau, s) \). We consider two cases. Assume first there exist \(\tau, s \) satisfying the condition \(0 \leq \tau \leq s < t \) such that \(f(t) = g(\tau, s) \). In this situation it is clear (since \(g \) is a right-continuous function)
that $g(\tau_i, s_i)$ is also the supremum of g over $0 \leq \tau \leq s \leq t + h$ for small enough $h > 0$. Therefore, $f(t + h) = f(t)$ for h in a small right-neighborhood of 0 and so is $\partial_+^t f(t) = 0$.

Next assume that the previous situation does not hold, that is, that the supremum of g over $0 \leq \tau \leq s \leq t$ is only attained when $s = t$. In this case we also know that the first coordinate τ_i of any maximal point must satisfy $\tau_i < s_i = t$, since we assumed that the supremum is not attained on the diagonal. Using Lagrange multipliers one can easily deduce that the partial right-derivatives at any maximal point satisfy $\partial_+^t g(\tau_i, t) = 0$ and $\partial_+^s g(\tau_i, t) > 0$: The level curve through (τ_i, t) is tangent to the border of the triangle $\{(\tau, s) \in \mathbb{R}^2 : 0 \leq \tau \leq s \leq t\}$ where we are looking for the supremum. In this situation all maximal points (τ, t) lie on the horizontal line $s = t$ which is part of the triangle’s border. This means that the right-gradient $(\partial_+^\tau, \partial_+^s)$ of g at any such point (τ, t) is proportional to the vector $(0, 1)'$, the outer normal to the triangle at (τ, t).

Coming back to the computation of the right-derivative of J^N_t [17], note that we can write it as

$$ J^N_t = \min \{1, \sup_{0 \leq \tau \leq s \leq t} g(\tau, s) \}, $$

where

$$ g(\tau, s) := e^{C_N(T-t)}(N^a f_N(s-r)\|Z_{t,s}^N - Z_{x,r}^N) + N^{-\delta}. $$

It is clear that $\partial_+^t J^N_t \leq \max \{0, \partial_+^t \sup_{0 \leq \tau \leq s \leq t} g(\tau, s) \}$ holds. Moreover, the function g satisfies the conditions of Lemma 4 above, since the diagonal points are minimal for g and therefore the supremum is not attained there. We can then apply the lemma to the function $\sup_{0 \leq \tau \leq s \leq t} g(\tau, s)$ and find the following estimate, which holds for any maximal point (τ, t) of g, $0 \leq \tau \leq t$:

\[
\partial_+^t J^N_t \leq \max \{0, -e^{C_N(T-t)}(C_N a(\tau, t) - N^a f^N_N(t-r)\|Z_{t,r}^N - Z_{t,t}^N) + e^{C_N(T-t)}N^a f^N_N(t-r)\|K^N(Z_{t,r}^N) - \overline{K}^N_t(Z_{t,t}^N)\| \}
\]

$$ =: \max \{0, h(\tau, t)\}. $$

Let us continue by trivially reducing the problem to a smaller set where $\|Z_{t,s}^N - Z_{x,r}^N\|_\infty \leq N^{-\alpha}$ holds for each $0 \leq \tau \leq s \leq t$. Consider the event $A_t := \{\partial_+^t J^N_t \geq 0\}$. Since $A_t \subseteq \{h(\tau, t) \geq \partial_+^t J^N_t\}$ it holds that

\[
\mathbb{E}(\partial_+^t J^N_t) = \mathbb{E}(\partial_+^t J^N_t | A_t^c) + \mathbb{E}(\partial_+^t J^N_t | A_t) \leq 0 + \mathbb{E}(\partial_+^t J^N_t | A_t) \leq \mathbb{E}(h(\tau, t) | A_t).
\]

We shall prove that the latter is bounded by $C_t N^{-\gamma}$ for some constant $C_t \geq 0$. Note that in A_t one has $J^N_t \leq 1$ and in particular $\sup_{0 \leq \tau \leq s \leq t} \|Z_{t,s}^N - Z_{x,r}^N\|_\infty \leq N^{-\alpha}$ holds. As a first estimate we can prove this by considering the bound $h(\tau, t)$ of the derivative $\partial_+^t J^N_t$ grows slower than N^2: Using that $|f^N_N(t-r)| = C \log N f^3_N(t-r) \leq C(\log N)^{3/2}$ and $\|K^N(Z_{t,r}^N) - \overline{K}^N_t(Z_{t,t}^N)\| \leq C N^\alpha$ also hold, we find that in A_t is

\[
|h(\tau, t)| \leq e^{C_N(T-t)}(C_N a(\tau, t) + N^a |f^N_N(t-r)||Z_{t,s}^N - Z_{t,t}^N|) + e^{C_N(T-t)}N^a f^N_N(t-r)\|K^N(Z_{t,r}^N) - \overline{K}^N_t(Z_{t,t}^N)\|
\]

\[
\leq C e^{C_N T}(\log N)^{3/4} + N^a(\log N)^{3/2} N^{-\alpha} + N^a(\log N)^{1/4} N^\alpha
\]

\[
\leq C e^{C_N T} N^{3/2} < C N^2.
\]
In order to prove $\mathbb{E}(\partial_t^+ J^N_i | A_i) \leq C_r N^{-\gamma}$ we distinguish between two cases depending on the difference $t - \tau$:

Case 1: $t - \tau \leq 2(\log N)^{-1}$.

Here we show that $h(\tau, t) \leq 0$ holds outside a set of exponentially small measure and use that the regularised force K^N is locally Lipschitz with constant of order $\log N$, which is a consequence of Lemma 5 and the law of large numbers (Proposition 5). Note that in the notation of Lemma 5 K^N is equal to $K^{\nu(N)}$ for $\nu(N) := N^a$ and so it is locally Lipschitz with bound $L^{\nu(N)}$, which was defined as

$$L^{\nu(N)}(y_1, \ldots, y_N) = -\frac{1}{N} \sum_{j \neq i} \nu(N)(y_i - y_j)$$

for

$$\nu(y) = \begin{cases} \frac{16}{\log^2}, & |y| \geq 4\nu^{-1} \\ \frac{1}{\nu^2}, & |y| \leq 4\nu^{-1}. \end{cases}$$

Let us just write L^N instead of $L^{\nu(N)}$ and denote by \overline{L}^N_t the averaged version of L^N given by

$$\overline{L}^N_{t,i}(y_1, \ldots, y_N) := -\nu(\rho^N_t) \nu(\bar{\nu}(y_i)).$$

Furthermore we consider the set

$$B^1_t := \{ |K^N(Y^N_i) - \overline{K}^N(Y^N_i)| \leq N^{-(a+\delta)} \cap \{ |L^N(Y^N_i) - \overline{L}^N_t(Y^N_i)| \leq C \} \}.$$

In this event the real force K^N acting on the i.i.d. particles Y^N_i is well approximated by the mean-field force \overline{K}^N_t, which is globally Lipschitz. Moreover, the local Lipschitz constant L^N_t of K^N_t is of order $O(\log N)$ in B^1_t. Indeed, since $l^{\nu(N)}(t) = l^1_1 + l^\infty_\nu \in L^1(\mathbb{R}^2) + L^\infty(\mathbb{R}^2)$ with integrable part satisfying $\|l^{\nu(N)}_1\|_1 = O(\log N)$ and ρ^N_t is bounded in $L^1(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)$ uniformly in N and $t \in [0, T]$, it holds that $\|\overline{L}^N_t\|_\infty$ is of order $O(\log N)$. Consequently the same estimate holds for L^N in the set B^1_t. Let us recall (13) and write

$$\mathbb{E}(\partial_t^+ J^N_i) \leq \mathbb{E}(h(\tau, t) | A_i) = \mathbb{E}(h(\tau, t) | A_i \backslash B^1_t) + \mathbb{E}(h(\tau, t) | A_i \cap B^1_t).$$

As a consequence of the law of large numbers (Proposition 5) the measure of the event $\Omega \backslash B^1_t$ decays to zero as N grows to infinity faster than any polynomial in N (see Proposition 6 at the end of this section). Since $h(\tau, t)$ grows in the set A_i polynomially in N only by estimate 19, we can find a positive constant C_r such that the first term in (21) satisfies

$$\mathbb{E}(h(\tau, t) | A_i \backslash B^1_t) \leq C_r N^{-\gamma}.$$

It is therefore enough to prove that $h(\tau, t) \leq 0$ holds in $A_i \cap B^1_t$.

Note that $h(\tau, t) \leq 0$ holds if for each (τ, t) where the supremum is attained the following inequality is true:

$$f_N(t - \tau) |K^N(Z^N_{t,t}) - \overline{K}^N_t(Z^N_{t,t})| \leq -f_N'(t - \tau) |Z^N_t - Z^N_{t,t}| + C_N(f_N(t - \tau) |Z^N_t - Z^N_{t,t}| + N^{-(a+\delta)}).$$

(22)
We next estimate the term $|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)|$ in the set in $A_i \cap B_i^1$ by splitting in three:

$$
|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)| \leq |K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)| + |K^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,0}^N)| + \overline{K}_i^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,t}^N).
$$

The last term is the least problematic, since the function \overline{K}_i^N is globally Lipschitz. As noted before, the term in the middle is small in the event B_i^1. For the first term we use that in this event the force K^N is locally Lipschitz: we can apply Lemma 1 with $\nu(N) = N^a$ and, since $|Z_{i,t}^N - Z_{i,0}^N| \leq N^{-a}$ in A_i and $|L^N(Y_t^N) - \overline{L}_t^N(Y_t^N)| \leq C$ in B_i^1, we find

$$
|K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)| \leq 2|L^N(Z_{i,0}^N)||Z_{i,t}^N - Z_{i,0}^N| \leq 2(C + \|L^N\|_\infty)Z_{i,t}^N - Z_{i,0}^N.
$$

Consequently,

$$
|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)| \leq |K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)| + |K^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,0}^N)|
\quad + \overline{K}_i^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,t}^N)
\leq 2(C + \log N)|Z_{i,t}^N - Z_{i,0}^N| + N^{-(\alpha + \delta)} + L|Z_{i,t}^N - Z_{i,0}^N|
\leq (2 \log N + 2C + L)|Z_{i,t}^N - Z_{i,0}^N| + L|Z_{i,t}^N - Z_{i,0}^N| + N^{-(\alpha + \delta)},
$$

where L is the Lipschitz constant of \overline{K}_i^N (uniform in $t \in [0,T]$). Now observe that, by the definition of J_i^N, $f_N(t - s)|Z_{i,t}^N - Z_{i,s}^N| \leq f_N(t - t)|Z_{i,t}^N - Z_{i,t}^N|$ holds for each $0 \leq s \leq t$. Therefore, we can choose a maybe greater N_0, depending now also on the Lipschitz constant L, such that for $N \geq N_0$ we find

$$
|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)| \leq 2(C + \log N)\frac{f_N(t - \tau)}{f_N(t)}|Z_{i,t}^N - Z_{i,\tau}^N| + L|Z_{i,t}^N - Z_{i,\tau}^N| + N^{-(\alpha + \delta)}
\leq 3 \log N f_N(t - \tau)|Z_{i,t}^N - Z_{i,\tau}^N| + N^{-(\alpha + \delta)}
\leq -\frac{f_N'(t - \tau)}{f_N(t - \tau)}|Z_{i,t}^N - Z_{i,\tau}^N| + \frac{C_N}{f_N(t - \tau)}N^{-(\alpha + \delta)},
$$

which proves (22). Here we used that $1 \leq f \leq C_N$ and $3 \log N (f_N(t - t))^2 \leq -f_N'(t - \tau)$. Consequently $h(t, t) \leq 0$ holds in the set $A_i \cap B_i^1$ and

$$
\mathbb{E}(\partial_t^+ J_i^N) \leq \mathbb{E}(h(t, t)|A_i \cap B_i^1) + \mathbb{E}(h(t, t)|A_i \cap B_i^1) \leq C_i N^{-\gamma}
$$

as required.

Case 2: $t - \tau \geq 2(\log N)^{-1}$.

The key now is to consider the process $Z_{i,s}^N$ starting at an appropriate intermediate time $s \in [0, t]$ and show that it is close to both the real trajectory X_i^N and the mean-field trajectory Y_i^N. That it is close to the real trajectory is proven by the same argument as in the previous case, since the elapsed time $t - s$ is small enough. We compare $Z_{i,s}^N$ to the mean-field trajectory by an entirely different
argument: we don’t look at their trajectories but at their densities, which are close in L^∞ thanks to the diffusive effect of the Brownian Motion (Lemma 9 and Corollary 10). We also need to split the interaction force K^N into $K^N = K_1^N + K_2^N$, where K_2^N is the result of choosing a wider cutoff of order $(\log N)^{-3/2}$ in the force kernel k and $K_1^N := K^N - K_2^N$. More precisely, let $k_2^N := k^{v_2(N)}$ for $v_2(N) := (\log N)^{-3/2}$ and define $k_1^N := k^N - k_2^N$. The i-th components of K_1^N and K_2^N are then given by

\[
(K_1^N)_i(x_1, \ldots, x_N) := -\frac{1}{N} \sum_{j \neq i} k_1^N(x_i - x_j)
\]

and

\[
(K_2^N)_i(x_1, \ldots, x_N) := -\frac{1}{N} \sum_{j \neq i} k_2^N(x_i - x_j).
\]

We denote the local Lipschitz bound for K_2^N given by Lemma 1 as $L_2 := L^\infty(N)$ and its averaged version as \overline{T}_2^N, defined analogously to \overline{T}_1^N. Let us denote by B_i^2 the intersection of the set B_i^1 from the previous case and the set $\{|L_2^N(Y_i^N) - \overline{T}_2^N(Y_i^N)| \leq C\}$ concerning the Lipschitz bound of the second part K_2^N of K^N:

\[
B_i^2 := B_i^1 \cap \{|L_2^N(Y_i^N) - \overline{T}_2^N(Y_i^N)| \leq C\}.
\]

We write again

\[
\mathbb{E}(\partial_t(J_N^i)) \leq \mathbb{E}(h(\tau, t)|A_i) = \mathbb{E}(h(\tau, t)|A_i \setminus B_i^2) + \mathbb{E}(h(\tau, t)|A_i \cap B_i^2).
\]

The first term is bounded as in the previous section: due to the exponential decay of the measure of $A_i \setminus B_i^2$ (proven in Proposition 6 below) in contrast to the milder polynomial growth of $h(\tau, t)$, we find a constant $C_\gamma \geq 0$ such that

\[
\mathbb{E}(h(\tau, t)|A_i \setminus B_i^2) \leq C_\gamma N^{-\gamma}.
\]

It remains to show that also $\mathbb{E}(h(\tau, t)|A_i \cap B_i^2) \leq C_\gamma N^{-\gamma}$ holds (for a possibly different constant C_γ, which we don’t rename for simplicity of notation).

Notice that $\mathbb{E}(h(\tau, t)|A_i \cap B_i^2) \leq C_\gamma N^{-\gamma}$ holds if the following inequality is true:

\[
f_N(t - \tau)\mathbb{E}(|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)||A_i \cap B_i^2) \leq -f_N^i(t - \tau)\mathbb{E}(|Z_{i,t}^N - Z_{i,t}^N||A_i \cap B_i^2)
\]

\[
+ C_\gamma f_N(t - \tau)\mathbb{E}(|Z_{i,t}^N - Z_{i,t}^N||A_i \cap B_i^2) + C_\gamma N^{-(\alpha + \delta)} \mathbb{P}(A_i \cap B_i^2)
\]

\[
+ C_\gamma N^{-\gamma}.
\]

To this end we write as before

\[
|K^N(Z_{i,t}^N) - \overline{K}_i^N(Z_{i,t}^N)| \leq |K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)| + |K^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,0}^N)|
\]

\[
+ |\overline{K}_i^N(Z_{i,0}^N) - \overline{K}_i^N(Z_{i,t}^N)|.
\]

The last two terms can be bounded in the same way as in the previous section, but for $|K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)|$ we can no longer use the corresponding Lipschitz bound from Lemma 1 directly. Here
we need to add the intermediate time $s = t - (\log N)^{-3/2}$ and to split the force into $K^N = K^N_1 + K^N_2$ as described in (23), which results in

$$|K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)| \leq |K^N(Z_{i,t}^N) - K^N(Z_{i,s}^N)| + |K^N(Z_{i,s}^N) - K^N(Z_{i,0}^N)|$$

$$\leq |K^N(Z_{i,t}^N) - K^N(Z_{i,s}^N)| + |K^N(Z_{i,s}^N) - K^N(Z_{i,0}^N)|$$

(27)

We can now use the Lipschitz bound for the first and third terms in (27): In $\mathcal{A}_t \cap B_2^2$ it holds that

$$|K^N(Z_{i,t}^N) - K^N(Z_{i,s}^N)| \leq 2|L^N(Z_{i,s}^N)||Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 6(C + \|\tilde{L}^N\|_\infty)||Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 12 \log N|Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 12 \log N\frac{f_N(t - \tau)}{f_N(t - s)}|Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 6(\log N)^{3/4}f_N(t - \tau)|Z_{i,t}^N - Z_{i,s}^N|,$$

(28)

since $f_N(s - r)|Z_{s,r} - Z_{s,r}| \leq f_N(t - \tau)|Z_{i,t}^N - Z_{i,s}^N|$ is true for each $0 \leq r \leq s \leq t$ and also $f_N(t - s) \geq 2(\log N)^{1/4}$. We analogously obtain the following estimate for the third term in (27)

$$|K^N_2(Z_{i,t}^N) - K^N_2(Z_{i,s}^N)| \leq 2|L^N(Z_{i,s}^N)||Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 2(\|\tilde{L}^N\|_\infty + C)|Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 4 \log \log N|Z_{i,t}^N - Z_{i,s}^N|$$

$$\leq 4 \log \log N\frac{f_N(t - \tau)}{f_N(t - s)}\left(\frac{1}{f_N(t - s)} + \frac{1}{f_N(t)}\right)|Z_{i,t}^N - Z_{i,s}^N|$$

(29)

The estimate provided by the local Lipschitz bound from Lemma 1 works for $|K^N(Z_{i,t}^N) - K^N(Z_{i,s}^N)|$ and $|K^N_2(Z_{i,t}^N) - K^N_2(Z_{i,s}^N)|$ because in the first term the elapsed time $t - s$ is small enough (so we can compensate the $\log N$ order coming from the derivative of K^N with $(f_N(t - s))^{-1}$) and in the other one the force K^N_2 has a milder derivative which is of order $\log \log N$ only. For the remaining term $|K^N(Z_{i,t}^N) - K^N(Z_{i,0}^N)|$ in (27) we use that the probability densities of $Z_{i,s}^N$ and $Z_{i,0}^N$ are close in L^∞ by Lemma 2 and its Corollary 2. Note that in order to complete the last argument we need independence of the particles and, although the mean-field particles $Z_{i,t}^N$, $Z_{i,0}^N$ are pairwise independent, this does not hold for the particles $Z_{i,s}^N$ starting at time s at the r.v. X_s^N and Y_s^N respectively, it is convenient to first fix the starting points at time s to be some given points $x, y \in \mathbb{R}^{2N}$ and to compare the corresponding (product distributed) processes $Z_{i,s}^x$ and $Z_{i,s}^y$. This being done, we can recover the original processes $Z_{i,s}^N$ and $Z_{i,0}^N$. For this reason, instead of considering the processes starting at time s at the r.v. X_s^N and Y_s^N respectively, it is convenient to first fix the starting points at time s to be some given points $x, y \in \mathbb{R}^{2N}$ and to compare the corresponding (product distributed) processes $Z_{i,s}^{'N}$ and $Z_{i,s}^{''N}$. This being done, we can recover the original processes $Z_{i,s}^N$ and $Z_{i,0}^N$ by...
writing $\mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2)$ as

$$
\int_{(x,y)\in(Z_{t,s}^N,Z_{t,0}^N)\cap(A_t\cap B_t^2)} \mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2) \, \mathbb{P}(X_s^N \in dx, Y_s^N \in dy).
$$

Let us then fix $x, y \in \mathbb{R}^2$ and write

$$
\mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2) = \mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2 \cap C_{t,s}^x,y)

+ \mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2 \cap C_{t,s}^{x,y}),
$$

where we introduced the new set

$$
C_{t,s}^{x,y} := \{|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| \leq N^{-(\alpha+\delta)}

\cap \{|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| \leq N^{-(\alpha+\delta)}\},
$$

for $s = t - (\log N)^{-3/2}$. By Proposition 6 below the measure of the set $\Omega \cap C_{t,s}^{x,y}$ is exponentially small. Also note that the bound given in Proposition 6 does not depend on the points x, y. Since K_1^N is of order $O(N^a)$ we can find a constant $C_\gamma > 0$ such that

$$
\mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2 \cap C_{t,s}^{x,y}) \leq C_\gamma N^{-\gamma}.
$$

Next we estimate $|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)|$ in the set $A_t \cap B_t^2 \cap C_{t,s}^{x,y}$. We write

$$
|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| \leq |K_1^N(Z_{t,s}^N) - \mathbb{E}(K_1^N(Z_{t,s}^N))| + |K_1^N(Z_{t,0}^N) - \mathbb{E}(K_1^N(Z_{t,0}^N))|

+ |\mathbb{E}(K_1^N(Z_{t,s}^N)) - \mathbb{E}(K_1^N(Z_{t,0}^N))|.
$$

In $C_{t,s}^{x,y}$ the first two terms are bounded. For the remaining term $|\mathbb{E}(K_1^N(Z_{t,s}^N)) - \mathbb{E}(K_1^N(Z_{t,0}^N))|$ we use the following fact: both processes $Z_{t,s}^N$ and $Z_{t,0}^N$ evolved according to the mean-field dynamics during a period of time $t - s$, which is long enough to ensure that the densities of $Z_{t,s}^N$ and $Z_{t,0}^N$ are close if their starting positions x and y are close. It follows that the difference $|\mathbb{E}(K_1^N(Z_{t,s}^N)) - \mathbb{E}(K_1^N(Z_{t,0}^N))|$ is also small in that case (Corollary 2). More precisely,

$$
|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| \leq |K_1^N(Z_{t,s}^N) - \mathbb{E}(K_1^N(Z_{t,s}^N))| + |K_1^N(Z_{t,0}^N) - \mathbb{E}(K_1^N(Z_{t,0}^N))|

+ |\mathbb{E}(K_1^N(Z_{t,s}^N)) - \mathbb{E}(K_1^N(Z_{t,0}^N))|

\leq 2N^{-(\alpha+\delta)} + \frac{|x - y|}{(t-s)^{3/2}} \|k_1^n\|_1,
$$

is true in the event $A_t \cap B_t^2 \cap C_{t,s}^{x,y}$. Consequently the expected value in $A_t \cap B_t^2$ for fixed starting points x, y can be bounded as:

$$
\mathbb{E}(|K_1^N(Z_{t,s}^N) - K_1^N(Z_{t,0}^N)| |A_t \cap B_t^2) \leq \frac{|x - y|}{(t-s)^{3/2}} \|k_1^n\|_1 + 2N^{-(\alpha+\delta)} \mathbb{P}(A_t \cap B_t^2) + C_\gamma N^{-\gamma}.
$$
Next, with (30) we find an estimate for the original processes

\[
\mathbb{E}(|k_1^N(Z_{t,s}^N) - k_1^N(Z_{t,0}^N)|, A_t \cap B_t^c) \leq \frac{\mathbb{E}([Z_{t,s}^N - Z_{t,0}^N]|, A_t \cap B_t^c)}{(t-s)^{3/2}} \|k_1^N\|_1 \\
+ 2N^{-(a+\delta)} \mathbb{P}(A_t \cap B_t^c) \\
+ C_f N^{-\gamma},
\]

where for the last inequality we used that \(t - s = (\log N)^{-3/2} \) and \(\|k_1^N\|_1 \leq (\log N)^{-3/2} \). Consequently,

\[
\mathbb{E}(|k_1^N(Z_{t,s}^N) - k_1^N(Z_{t,0}^N)|, A_t \cap B_t^c) \leq (\log N)^{3/4} \frac{f_N(t - \tau)}{f_N(s)} \mathbb{E}([Z_{t,s}^N - Z_{t,\tau}^N]|, A_t \cap B_t^c) \\
+ 2N^{-(a+\delta)} \mathbb{P}(A_t \cap B_t^c) + C_f N^{-\gamma} \\
\leq (\log N)^{3/4} f_N(t - \tau) \mathbb{E}([Z_{t,s}^N - Z_{t,\tau}^N]|, A_t \cap B_t^c) \\
+ 2N^{-(a+\delta)} \mathbb{P}(A_t \cap B_t^c) + C_f N^{-\gamma}.
\]

Together with (28) and (29) this covers all three terms appearing in (27). We can adapt \(N_0 \in \mathbb{N} \) chosen at the beginning of the proof so that for \(N \geq N_0 \):

\[
\mathbb{E}(|k^N(Z_{t,s}^N) - k^N(Z_{t,0}^N)|, A_t \cap B_t^c) \leq 7(\log N)^{3/4} f_N(t - \tau) \mathbb{E}([Z_{t,s}^N - Z_{t,\tau}^N]|, A_t \cap B_t^c) \\
+ 8 \log N f_N(t - \tau) \mathbb{E}([Z_{t,s}^N - Z_{t,\tau}^N]|, A_t \cap B_t^c) \\
+ 2N^{-(a+\delta)} \mathbb{P}(A_t \cap B_t^c) + C_f N^{-\gamma} \\
\leq 8(\log N)^{3/4} f_N(t - \tau) \mathbb{E}([Z_{t,s}^N - Z_{t,\tau}^N]|, A_t \cap B_t^c) \\
+ 2N^{-(a+\delta)} \mathbb{P}(A_t \cap B_t^c) + C_f N^{-\gamma}.
\]

Going back to (26) we use this last estimate for the first term, the bound

\[
|k^N(Z_{t,0}^N) - \overline{k_t}^N(Z_{t,0}^N)| \leq N^{-(a+\delta)}
\]

in \(A_t \cap B_t^c \) for the second term and the Lipschitz continuity of \(\overline{k_t}^N \)

\[
|\overline{k_t}^N(Z_{t,0}^N) - \overline{k_t}^N(Z_{t,\tau}^N)| \leq L|Z_{t,0}^N - Z_{t,\tau}^N| \leq L \left(1 + \frac{f_N(t - \tau)}{f_N(t)} \right) |Z_{t,0}^N - Z_{t,\tau}^N|.
\]
for the third. Bringing everything together, \((26)\) becomes

\[
\mathbb{E}(|K^N(Z_{t,t}^N) - \overline{K}_t^N(Z_{t,t}^N)|A_t \cap B_t^2) \leq 8(\log N)^{3/4}f_N(t - \tau)\mathbb{E}(|Z_{t,t}^N - Z_{t,t}^N||A_t \cap B_t^2)
+ 2N^{-(\alpha + \delta)}\mathbb{P}(A_t \cap B_t^2) + C_r N^{-\gamma}
+ N^{-(\alpha + \delta)}\mathbb{P}(A_t \cap B_t^2)
+ L(1 + f_N(t - \tau))\mathbb{E}(|Z_{t,t}^N - Z_{t,t}^N||A_t \cap B_t^2)
\leq 9(\log N)^{3/4}f_N(t - \tau)\mathbb{E}(|Z_{t,t}^N - Z_{t,t}^N||A_t \cap B_t^2)
+ 3N^{-(\alpha + \delta)}\mathbb{P}(A_t \cap B_t^2) + C_r N^{-\gamma},
\]

which is true if \(N\) is greater than some new \(N_0\) depending now also on the Lipschitz constant \(L\).

Finally, from \(f_N(t - \tau) \leq 2\) it follows that

\[
\mathbb{E}(|K^N(Z_{t,t}^N) - \overline{K}_t^N(Z_{t,t}^N)|A_t \cap B_t^2) \leq 18(\log N)^{3/4}\mathbb{E}(|Z_{t,t}^N - Z_{t,t}^N||A_t \cap B_t^2)
+ 3N^{-(\alpha + \delta)}\mathbb{P}(A_t \cap B_t^2) + C_r N^{-\gamma},
\]

proving \((25)\). As a consequence:

\[
\mathbb{E}(\partial^+ J_t^N) \leq \mathbb{E}(h(\tau, t)|A_t \cap B_t^2) + \mathbb{E}(h(\tau, t)|A_t \cap B_t^2) \leq 2C_r N^{-\gamma} \Rightarrow \hat{C}_r N^{-\gamma}.
\]

It just remains to estimate the measure of the complementary sets of \(B_t^1, B_t^2\) and \(C_t^{x,y}\) as defined in \((20), (24)\) and \((31)\). The constants \(T > 0, \alpha \in (0, 1/2)\) and \(\delta > 0\) are the ones we fixed at the beginning of this section.

Proposition 6. (Measure of the exceptional sets) For each \(\gamma > 0\) there exists a positive constant \(C_r\) such that

i. \(\mathbb{P}(S_{t,t}^1 \cup S_{t,t}^2 \cup S_{t,t}^3) \leq C_r N^{-\gamma}\) for each \(0 \leq t \leq T\), where

\[
S_{t,t}^1 := \{\|K^N(Y_t^N) - \overline{K}_t^N(Y_t^N)\|_\infty \geq N^{-(\alpha + \delta)}\},
S_{t,t}^2 := \{\|L_t^N(Y_t^N) - L_{t,t}^N(Y_t^N)\|_\infty \geq 1\},
S_{t,t}^3 := \{\|L_{2,t}^N(Y_t^N) - L_{2,t}^N(Y_t^N)\|_\infty \geq 1\}.
\]

Consequently \(\mathbb{P}(\Omega \setminus B_t^1) \leq C_r N^{-\gamma}\) and \(\mathbb{P}(\Omega \setminus B_t^2) \leq C_r N^{-\gamma}\) hold for each \(0 \leq t \leq T\).

ii. \(\mathbb{P}(\{K_t^N(Z_{t,t}^N) - \overline{K}_t^N(Z_{t,t}^N)\|_\infty \geq N^{-(\alpha + \delta)}\} \leq C_r N^{-\gamma}\) holds for any \(x \in \mathbb{R}^N\) and any \(T \geq t \geq s \geq 0\) satisfying \(t - s \geq (\log N)^{-\gamma}\) for some \(r > 0\). Consequently, \(\mathbb{P}(\Omega \setminus C_t^{x,y}) \leq 2C_r N^{-\gamma}\) for any \(x, y \in \mathbb{R}^N\) and \(0 \leq s \leq t \leq T\).

Proof. First note that the mean-field force \(\overline{K}_t^N(Y_t^N)\) can be written in terms of the expected value of \(K_t^N(Y_t^N) = \mathbb{E}_{(-i)(K_t^N(Y_t^N))}\) and therefore the first set \(S_{t,t}^1\) is equal to the set \(\{\sup_{1 \leq i \leq N} |K_t^N(Y_t^N) - \mathbb{E}_{(-i)(K_t^N(Y_t^N))} \geq N^{-(\alpha + \delta)}\}\). Moreover, \(Y_1^N, \ldots, Y_N^N\) are already pairwise independent and the \(L^\infty\)-norm of its probability density \(\rho_t^N\) is bounded uniformly in \(N\) and \(t \in [0, T]\) by Proposition 5. Therefore, from Proposition 5 it follows the existence of a constant \(C_r > 0\), independent of \(t\), with

\[
\mathbb{P}(S_{t,t}^1) = \mathbb{P}(\{K_t^N(Y_t^N) - \overline{K}_t^N(Y_t^N)\|_\infty \geq N^{-(\alpha + \delta)}\} \leq C_r N^{-\gamma},
\]

for each \(t \in [0, T]\).
The remaining sets S^2_1 and S^3_1 can be expressed in terms of the expected value of L^N_1 resp. L^N_2 in an analogous way. Also note that both $|N^{-a}L^N_1(x)|$ and $|N^{-a}L^N_2(x)|$ are bounded by $C\chi \min\{N^\alpha, |x|^{-1}\}$. Proposition 5 then implies for S^2_1 that

$$\mathbb{P}(|L^N(Y^N_t) - \overline{L}^N_t(Y^N_t)|_\infty \geq 1) = \mathbb{P}(N^{-a}|L^N(Y^N_t) - \overline{L}^N_t(Y^N_t)|_\infty \geq N^{-a}) \leq \mathbb{P}(N^{-a}|L^N(Y^N_t) - \overline{L}^N_t(Y^N_t)|_\infty \geq N^{-(\alpha + \delta)}) \leq C_\gamma N^{-\gamma},$$

and in the same manner that $\mathbb{P}(S^3_1) = \mathbb{P}(|L^N(Y^N_t) - \overline{L}^N_{2t}(Y^N_t)|_\infty \geq 1) \leq C_\gamma N^{-\gamma}$ for each $t \in [0, T]$.

Let $T \geq t \geq s \geq 0$ be such that $t - s \geq (\log N)^{-\tau}$ holds for some $r \geq 0$. First notice that for each fixed starting point $x \in \mathbb{R}^2$, the processes $Z^x, \ldots, Z^{x,N}$ are pairwise independent. Furthermore, the probability density $u^x_{t,s}$ of Z^x_t satisfies

$$\|u^x_{t,s}\|_\infty \leq C((t-s)^{-1} + 1) \leq C(\log N)^r$$

for $i = 1, \ldots, N$, by Lemma 2, meaning that the growth of $\|u^x_{t,s}\|_\infty$ is only logarithmic in N and consequently condition (11) is fulfilled independently of the times t, s and the exponent r. Therefore there exists a constant $C_\gamma > 0$ such that, for any such t, s:

$$\mathbb{P}(|K^N(Z^{x,N}_{t,s}) - \mathbb{E}(K^N(Z^{x,N}_{t,s}))|_\infty \geq N^{-(\alpha + \delta)}) \leq C_\gamma N^{-\gamma}.$$

\[\square \]

6. Proofs of Propositions 2 and 3

We now give the proof of Proposition 2.

Proof. One first proves the boundedness of ρ in L^p for each $1 < p < \infty$. The L^∞ estimate follows from this fact and the boundedness of $\nabla c = k * \rho$ by an iterative argument.

Step 1: Uniform bounds in L^p, $p < \infty$.

Notice that under the assumptions $\rho_0 \in L^p(\mathbb{R}^2)$ for each $p \in [1, \infty]$. Then $\rho \in L^\infty(0, T; L^p(\mathbb{R}^2))$ for any $T > 0$ and $1 \leq p < \infty$. See either [5, Proposition 17] or [9, Lemma 2.7] for a proof.

Step 2: Uniform bounds in L^∞.

For this step we follow [5, Lemma 3.2] and [15, Lemma 4.1]. The second reference is much more detailed but only handles bounded domains. The proof can nevertheless be adapted for the whole space \mathbb{R}^2 as described in the first paper.

The following computations are performed only formally. One can justify them by performing the proof for the solutions ρ^N of the regularised equation (5) and then passing to the limit.

Let $\rho_m := (\rho - m)_+$. First notice that $\nabla c = k * \rho$ is uniformly bounded: $\|k * \rho\|_\infty \leq C(\|\rho\|_3 + \|\rho\|_1)$ since $k \in k^{3/2} + L^\infty$, and the right hand side is uniformly bounded by the first step.
We then prove the inequality
\[
\frac{d}{dt} \int \rho_m^p \, dx \leq -C p^2 \| \nabla c \|_\infty^2 \int \rho_m^p \, dx + C^2 p^4 \| \nabla c \|_\infty^4 \left(\int \rho_m^{p/2} \, dx \right)^2 + C p^2 \| \nabla c \|_\infty^2 .
\]
(32)

From this we will conclude that \(\sup_{t \in [0,T]} \| \rho_m \|_p \) is bounded independently of \(p \). The proof is then complete after taking the limit \(p \to \infty \).

We first multiply on both sides of the Keller Segel equation \(1 \) by \(\rho_m^{p-1} \) and integrate to find
\[
\frac{1}{p} \frac{d}{dt} \int \rho_m^p \, dx = \int \nabla \cdot (\nabla \rho + \chi \nabla \rho) \rho_m^{p-1} .
\]

Let \(\Omega_i := \{ \rho(t) \geq m \} \) and notice that \(\Omega_i \) is uniformly bounded: \(1 = \| \rho(t) \|_1 \geq m|\Omega_i| \). Then the integral on the right hand side equals
\[
\int_{\Omega_i} \nabla \cdot (\nabla \rho + \chi(k \ast \rho) \rho) \rho_m^{p-1} = - \int_{\Omega_i} (\nabla \rho + \chi(k \ast \rho) \rho) \nabla \rho_m^{p-1} = -(p-1) \int_{\Omega_i} \rho_m^{p-2} |\nabla \rho_m|^2 + \chi(p-1) \int \rho \rho_m^{p-2} \nabla c \cdot \nabla \rho_m = -(p-1) \int \rho_m^{p-2} |\nabla \rho_m|^2 + \chi(p-1) \int \rho_m^{p-1} \nabla c \cdot \nabla \rho_m + \chi m(p-1) \int \rho_m^{p-2} \nabla c \cdot \nabla \rho_m .
\]
Using that \(\rho_m^{(p-k)/2} \nabla \rho_m^{p/2} = \frac{p}{2} \rho_m^{-(k/2+1)} \nabla \rho_m \) for any \(k \in \mathbb{R} \) the last expression equals
\[
-\frac{4(p-1)}{p^2} \int |\nabla \rho_m^{p/2}|^2 + \frac{2\chi(p-1)}{p} \int \rho_m^{p/2} \nabla c \cdot \nabla \rho_m^{p/2} + \frac{2\chi m(p-1)}{p} \int \rho_m^{(p-2)/2} \nabla c \cdot \nabla \rho_m^{p/2} .
\]

For the last two terms we use the following Young’s inequality: \(|a \cdot b| \leq \frac{1}{4} |a|^2 + |b|^2 \) for any two vectors \(a, b \in \mathbb{R}^2 \). Hence
\[
(p-1) \int \chi m \rho_m^{(p-2)/2} \nabla c \cdot \frac{2}{p} \nabla \rho_m^{p/2} \leq \frac{(p-1)}{p^2} \int |\nabla \rho_m^{p/2}|^2 + \frac{\chi^2 (p-1)}{2} \| \nabla c \|^2_\infty \int \rho_m^p
\]
and
\[
(p-1) \int \chi m \rho_m^{(p-2)/2} \nabla c \cdot \frac{2}{p} \nabla \rho_m^{p/2} \leq \frac{(p-1)}{p^2} \int |\nabla \rho_m^{p/2}|^2 + \frac{\chi^2 (p-1)}{2} \| \nabla c \|^2_\infty \int \rho_m^{p-2} \leq \frac{(p-1)}{p^2} \int |\nabla \rho_m^{p/2}|^2 + C(p-1) \| \nabla c \|^2_\infty \int (\rho_m^p + 1) \leq \frac{(p-1)}{p^2} \int |\nabla \rho_m^{p/2}|^2 + C(p-1) \| \nabla c \|^2_\infty \int \rho_m^p + C(p-1) \| \nabla c \|^2_\infty |\Omega_i| .
\]
All together
\[
\frac{d}{dt} \int \rho_m^p \, dx \leq \frac{-2(p-1)}{p} \int |\nabla \rho_m^{p/2}|^2 + C p (p-1) \int \rho_m^p + C p(p-1)
\]
\[
\leq - \int |\nabla \rho_m^{p/2}|^2 + C p^2 \int \rho_m^p + C p^2,
\]
for \(p \) big enough.

Now we use the Galiardo-Nirenberg-Sobolev inequality followed by Young’s inequality
\[
\|u\|_2^2 \leq C_{\text{GNS}} \|\nabla u\|_2 \|u\|_1 \leq \frac{C_{\text{GNS}}^2}{4} \|u\|_1^2 + \|\nabla u\|_2^2
\]
for \(u = \rho_m^{p/2} \):
\[
(C + 1)p^2 \int \rho_m^p \leq \frac{(C + 1)^2 C_{\text{GNS}}^2}{4} \left(\int \rho_m^{p/2} \right)^2 + \int |\nabla \rho_m^{p/2}|^2.
\]
Therefore
\[
\frac{d}{dt} \int \rho_m^p \, dx \leq -p^2 \int \rho_m^p + C p^4 \left(\int \rho_m^{p/2} \right)^2 + C p^2,
\]
which proves (32).

Let now \(w_j = \int \rho_m^{2j} \), \(S_j := \sup_{t \in [0,T]} \int \rho_m^{2j} \) for \(j \in \mathbb{N} \). Then
\[
\frac{d}{dt} w_j \, dx \leq -2^{2j} w_j + 2^{2j} (C 2^{2j} S_{j-1}^2 + C).
\]
The solution of
\[
\frac{d}{dt} v = -\varepsilon v + \varepsilon C
\]
is \(v(t) = e^{-\varepsilon t} v_0 + C(1 - e^{-\varepsilon t}) \). If we set \(v_0 = w_j(0) \) it holds
\[
w_j \leq v \leq w_j(0) + C 2^{2j} S_{j-1}^2 + C \leq \|\rho_0\|_\infty^2 \Omega_0 + C 2^{2j} S_{j-1}^2 + C.
\]
It follows that
\[
S_j = \sup_{t \in [0,T]} w_j \leq C \max\{\|\rho_0\|_\infty^2, 2^{2j} S_{j-1}^2 + 1\}.
\]
For \(\bar{S}_j := S_j \|\rho_0\|_\infty^{2j} \) holds the following:
\[
\bar{S}_j \leq C \max\{1, 2^{2j} \bar{S}_{j-1}^2 \}.
\]
Hence
\[
\log_+ \bar{S}_j \leq \max\{\log_+ C, \log_+ C 2^{2j} \bar{S}_{j-1}^2 \}
\]
\[
\leq 2 \log_+ \bar{S}_{j-1} + j \log 4 + C.
\]
which implies \(2^{-j} \log_+ \tilde{S}_j - 2^{-(j-1)} \log_+ \tilde{S}_{j-1} \leq j 2^{-j} \log 4 + C 2^{-j}\) for \(j \in \mathbb{N}\). Adding up both sides over \(j = 1, \ldots, J\) we find

\[
2^{-j} \log_+ \tilde{S}_j - \log_+ \tilde{S}_0 = \sum_{j=1}^{\infty} 2^{-j} \log_+ \tilde{S}_j - 2^{-(j-1)} \log_+ \tilde{S}_{j-1} \leq \sum_{j=1}^{\infty} j 2^{-j} \log 4 + C 2^{-j} \leq C.
\]

for a constant \(C\) independent of \(J\). Since \(\tilde{S}_0 \leq \sup_{t \in [0,T]} \frac{\|\rho(t)\|}{\|\rho_0\|_\infty}\) is also bounded, we conclude that

\[
S_j^{2^{-j}} = \left(\sup_{t \in [0,T]} \int \rho^2_m \right)^{2^{-j}} = \sup_{t \in [0,T]} \left(\int \rho^2_m \right)^{2^{-j}} \leq C
\]

for some constant \(C\) not depending on \(j\). We finally perform the limit \(j \to \infty\) and conclude

\[
\sup_{t \in [0,T]} \|\rho_m\|_\infty = \sup_{t \in [0,T]} \lim_{j \to \infty} \|\rho_m\|_{2^j} \leq \lim_{j \to \infty} \sup_{t \in [0,T]} \|\rho_m\|_{2^j} \leq C.
\]

We finish with the proof of Proposition \[5\]

Proof. 1 From the proof of \[9\] Lemma 2.8] follows that \(\rho\) and \(\rho^N\) are in \(C^{0,\alpha}((0, T) \times \mathbb{R}^2)\) for each \(N \in \mathbb{N}\) and \(0 < \alpha \leq 1/4\). For fixed positive \(\alpha \leq 1/4\) this means that for each \(t, s > 0\) and \(x, y \in \mathbb{R}^2\)

\[
|\rho(t, x) - \rho(s, y)| \leq C(|x - y|^a + |t - s|^a)
\]

holds for some positive constant \(C\), which depends on the norms of \(\rho, \partial_t \rho\) and \(\nabla \rho\) in \(L^p((0, T) \times \mathbb{R}^2)\) with \(p := \frac{1}{1-\alpha} \in (3, 4]\). Since \(\rho_0 \in L^2(\mathbb{R}^2) \subset L^{0,\alpha}(\mathbb{R}^2)\), by taking \(t = s\) above we find

\[
|\rho(t, x) - \rho(t, y)| \leq C \max \{|\rho\|_p, \|\partial_t \rho\|_p, \|\nabla \rho\|_p, \|\rho_0\|_{0,a}\} |x - y|^a,
\]

for each \(t \in [0, T]\) and \(x, y \in \mathbb{R}^2\), and the analogous inequality holds for \(\rho^N\). Let

\[
C_1 \geq C \max \{|\rho\|_{W^{1,a}((0, T) \times \mathbb{R}^2)}, \sup_{N \in \mathbb{N}} \|\rho^N\|_{W^{1,a}((0, T) \times \mathbb{R}^2)}, \|\rho_0\|_{0,a}\}.
\]

Then \(\rho, \rho^N \in L^\infty(0, T; C^{0,\alpha}(\mathbb{R}^2))\) and \(\{\rho(t)\}_{0,a}, \{\rho^N(t)\}_{0,a} \leq C_1\) for each \(N \in \mathbb{N}\) and \(t \in [0, T]\).

2 Let \(w = \phi \ast \rho = -\log |\cdot| \ast \rho\). We need to prove that \(-\nabla w^N = k^N \ast \rho^N\) and \(-\nabla w = k^* \ast \rho\) are Lipschitz continuous in \(\mathbb{R}^2\) uniformly in \(N \in \mathbb{N}\) and \(t \in [0, T]\). It is then easy to show that all second derivatives of \(u^N\) and \(u\) are uniformly bounded. More precisely, we find

\[
\|\partial_{ij} u^N(t)\|_{\infty} \leq C(\|\rho^N(t)\|_1 + \|\rho^N(t)\|_{\infty} + [\rho^N(t)]_{0,a}), \quad N \in \mathbb{N}
\]

and

\[
\|\partial_{ij} u(t)\|_{\infty} \leq C(\|\rho(t)\|_1 + \|\rho(t)\|_{\infty} + [\rho(t)]_{0,a}),
\]

for some constant \(C > 0\). These are uniformly bounded on \([0, T]\) and \(N \in \mathbb{N}\) by part ii] and Proposition \[5\]. We just write down the proof for the limiting case \(k^* \ast \rho\). For \(k^N \ast \rho^N\) the steps are completely analogous.

We split the integral as follows:

\[
\partial_{ij} u(t, x) = \int_{|x-y|\leq 1} \partial_{ij} \phi(x-y) \rho(y) dy + \int_{|x-y|>1} \partial_{ij} \phi(x-y) \rho(y) dy.
\]
The second term, since $\partial_{ij}\phi(x - y) \leq \frac{C}{|x-y|^4}$, is bounded by $C\|\rho\|_1$. For the first term we write

$$
\int_{|x-y|\leq 1} \partial_{ij}\phi(x - y)\rho(y)dy = \int_{|x-y|\leq 1} \partial_{ij}\phi(x - y)(\rho(y) - \rho(x))dy + \rho(x) \int_{|x-y|\leq 1} \partial_{ij}\phi(x - y)dy
$$

$$
= \int_{|x-y|\leq 1} \partial_{ij}\phi(x - y)(\rho(y) - \rho(x))dy - \rho(x) \int_{|x-y|=1} \partial_{ij}\phi(x - y)v_j(y)dS(y).
$$

Therefore in absolute value

$$
\left|\int_{|x-y|\leq 1} \partial_{ij}\phi(x - y)\rho(y)dy\right| \leq C[\rho(t)]_{0,a} \int_{|x-y|\leq 1} \frac{1}{|x-y|^{2-a}}dy + C\|\rho(t)\|_\infty.
$$

Putting all together we find

$$
\|\partial_{ij}u(t)\|_\infty \leq C(\|\rho(t)\|_1 + \|\rho(t)\|_\infty + [\rho(t)]_{0,a}).
$$

\[\square\]

Remark 1. Below we list the space embeddings we used in the proof.

i. $H^2(\mathbb{R}^2) \subseteq C^{0,a}(\mathbb{R}^2)$, for any $0 < a < 1$, by the Sobolev embedding theorem [7] Theorem 2.31.

ii. If $f \in L^2(0, T; H^2(\mathbb{R}^2)) \cap L^\infty(0, T; H^1(\mathbb{R}^2))$ then $\nabla_x f \in L^p((0, T) \times \mathbb{R}^2)$ for any $p \in (1, 4)$.

Since $W^{1,2}(\mathbb{R}^2) \subseteq L^q(\mathbb{R}^2)$ for any $2 \leq q < \infty$, we have that

\[
\nabla_x f \in L^2(0, T; L^q(\mathbb{R}^2)) \cap L^\infty(0, T; L^2(\mathbb{R}^2)), \quad \text{for } 2 \leq q < \infty.
\]

We then use the interpolation inequality

$$
\|u\|_{p_\theta} \leq \|u\|_{p_0}^{\theta} \|u\|_{p_1}^{1-\theta}, \quad \text{for } \theta \in [0, 1], \quad \frac{1}{p_\theta} = \frac{\theta}{p_0} + \frac{1-\theta}{p_1}
$$

and find

$$
\int_0^T \|\nabla_x f(t)\|_{p_\theta}^p dt \leq \sup_{t\in[0,T]} \|\nabla_x f(t)\|_{2}^\theta \int_0^T \|\nabla_x f(t)\|_{p_1}^{(1-\theta)p}.
$$

By choosing $\theta = 1/2$ it holds for $p < 4$ that $p(1-\theta) \leq 2$ and $p_1 = \frac{2p(1-\theta)}{2-\theta} = \frac{2p}{4-p} < \infty$, and so is the right hand side of the last inequality finite.

iii. $H^2(\mathbb{R}^2) \subseteq W^{2-2/p, p}(\mathbb{R}^2)$, for any $2 < p \leq 4$.

By the Sobolev embedding theorem for fractional spaces [11] Theorem 7.58 it holds

$$
H^2(\mathbb{R}^2) \subseteq W^{1+2/p, p}(\mathbb{R}^2), \quad \text{for any } 2 < p < \infty.
$$

Since $1 + 2/p \geq 2 - 2/p$ holds if $p \leq 4$, we conclude that

$$
H^2(\mathbb{R}^2) \subseteq W^{1+2/p, p}(\mathbb{R}^2) \subseteq W^{2-2/p, p}(\mathbb{R}^2), \quad \text{for any } 2 < p \leq 4.
$$
ACKNOWLEDGEMENTS

We are grateful to Martin Kolb, Detlef Dürr, Christian Stinner and Tomasz Cieslak for many valuable discussions on this topic and to Miguel de Benito Delgado for reading and improving the manuscript. We further acknowledge the financial support of the Studienstiftung des Deutschen Volkes.

REFERENCES

[1] Robert A. Adams. *Sobolev Spaces*. Academic Press, 1975.
[2] Adrien Blanchet, José A. Carrillo, and Nader Masmoudi. Infinite time aggregation for the critical Patlak-Keller-Segel model in R2. *Communications on Pure and Applied Mathematics*, 61(10):1449–1481, 2008.
[3] Adrien Blanchet, Jean Dolbeault, Benoît Perthame, and others. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. *Electronic Journal of Differential Equations*, 44, 2006.
[4] Niklas Boers and Peter Pickl. On Mean Field Limits for Dynamical Systems. *Journal of Statistical Physics*, 164(1):1–16, Jul 2016.
[5] Vincent Calvez and José A. Carrillo. Volume effects in the Keller–Segel model: energy estimates preventing blow-up. *Journal de mathématiques pures et appliquées*, 86(2):155–175, 2006.
[6] Patrick Cattiaux and Laure Pédèches. The 2-D stochastic Keller-Segel particle model: existence and uniqueness. *ArXiv:1601.08026 [math]*, Jan 2016. *ArXiv*: 1601.08026.
[7] Françoise Demengel and Gilbert Demengel. *Functional spaces for the theory of elliptic partial differential equations*. Springer, 2012.
[8] Jean Dolbeault and Benoît Perthame. Optimal critical mass in the two dimensional Keller–Segel model in R2. *Comptes Rendus Mathematique*, 339(9):611–616, 2004.
[9] Giani Egaña Fernández and Stéphane Mischler. Uniqueness and Long Time Asymptotic for the Keller–Segel Equation: The Parabolic–Elliptic Case. *Archive for Rational Mechanics and Analysis*, 220(3):1159–1194, Jun 2016.
[10] Nicolas Fournier and Benjamin Jourdain. Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes. *ArXiv:1507.01087 [math]*, Jul 2015. *ArXiv*: 1507.01087.
[11] David Godinho and Cristobal Quininao. Propagation of chaos for a sub-critical Keller-Segel model. *ArXiv:1306.3831 [math]*, Jun 2013.
[12] Jan Haškovec and Christian Schmeiser. Stochastic Particle Approximation for Measure Valued Solutions of the 2d Keller-Segel System. *Journal of Statistical Physics*, 135(1):133–151, Apr 2009.
[13] Hui Huang and Jian-Guo Liu. Error estimate of a random particle blob method for the Keller-Segel equation. *Mathematics of Computation*, May 2016.
[14] Evelyn F. Keller and Lee A. Segel. Initiation of slime mold aggregation viewed as an instability. *Journal of Theoretical Biology*, 26(3):399–415, Mar 1970.
[15] R. Kowalczyk. Preventing blow-up in a chemotaxis model. *Journal of Mathematical Analysis and Applications*, 305(2):566–588, May 2005.
[16] Dustin Lazarovici and Peter Pickl. A mean-field limit for the Vlasov-Poisson system. *ArXiv:1502.04608 [math-ph]*, Feb 2015. *ArXiv*: 1502.04608.
[17] Jian-Guo Liu and Rong Yang. A random particle blob method for the Keller-Segel equation and convergence analysis. *Math. Comp.*, to appear, 2015.
[18] Jian-Guo Liu and Yuan Zhang. Convergence of Stochastic Interacting Particle Systems in Probability under a Sobolev Norm. *ArXiv:1511.07014 [math]*, Nov 2015. *ArXiv*: 1511.07014.

LMU-MUNICH
E-mail address: caniz@math.lmu.de

LMU-MUNICH
E-mail address: pickl@math.lmu.de