Altered MicroRNA Expression Profiles in Activated Mast Cells Following IgE-FcεRI Cross-Linking with Antigen

Yaoshu Teng Ruxin Zhang Hongzhi Yu Hong Wang Zhicong Hong Wenjie Zhuang Yu Huang

Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China

Key Words
MiRNA • Microarray • Mast cell • Immunoglobulin E • Fc receptor

Abstract

Background/Aims: MicroRNAs (miRNAs) are critical regulators of immune responses and immunologic disorders. However, little is known about miRNA expression and function during mast cell differentiation, proliferation and activation. This study aimed to determine the miRNA expression profiles in mast cells stimulated by immunoglobulin E (IgE) and antigen and to analyze the potential functions of specific miRNAs. Methods: Bone marrow-derived mast cells (BMMCs) generated from differentiated mouse bone marrow cells were untreated (Unstimu) or stimulated with IgE-antigen complexes for 1 h or 6 h (Stimu). The miRNA profiles were evaluated by miRNA microarray. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Results: Seven significantly up-regulated and 10 down-regulated miRNAs were identified in the 1 h Stimu group relative to the Unstimu group (fold change>2; P<0.05). Of 8 miRNAs randomly selected from the 17 identified, the expression levels of 6 were confirmed by quantitative real-time PCR (qRT-PCR). The potential target genes of several candidate miRNAs were enriched in FcεRI signaling, response to stimulus and cellular exocytosis. Conclusion: The expression of many miRNAs changes following IgE-FcεRI cross-linking in activated mast cells, and these miRNAs probably play key regulatory roles in core signaling pathways and biological behaviors. Evaluating the functions of these characteristic miRNAs will further our understanding of IgE-associated allergic disease pathogenesis and the development of therapeutic strategies.
Introduction

Type I hypersensitivity responses are immediate-type allergic reactions initiated by immunoglobulin E (IgE) antibodies and antigens, which are involved in the critical pathogenesis of IgE-associated allergic diseases, such as allergic rhinitis, asthma and atopic dermatitis. These reactions are triggered in IgE-sensitized individuals upon re-exposure to an innocuous antigen (allergen). Mast cells in the exposed tissue, which act as effector cells, can be immediately activated within seconds of allergen exposure. The activation of mast cells subsequently induces the secretion of inflammatory mediators, which leads to a series of allergic responses and disorders. For example, allergic rhinitis symptoms, including sneezing, nasal obstruction, nasal itching and rhinorrhea, occur when allergenic proteins come into contact with the mucous membranes of the nose. Current drug treatments for IgE-associated allergic diseases can effectively relieve allergic symptoms; however, such treatments are largely palliative rather than curative. Therefore, it is essential to elucidate the potential mechanisms of allergic diseases and to identify more effective treatments.

Mast cells are derived from hematopoietic precursors in the bone marrow but mature locally. These cells are widely distributed throughout vascularized tissues, particularly near surfaces that are exposed to pathogens and allergens [1]. In type I hypersensitivity responses, mast cells are typically activated by the antigen-induced cross-linking of specific IgE-bound high-affinity Fc receptors (FcεRI) on cell membranes [2-5]. Upon cell activation, a variety of biologically active pharmacological mediators that are pre-stored in cytoplasmic granules, including histamine, heparin, proteoglycans, and proteases, are rapidly released into the extracellular milieu. Additionally, multiple proinflammatory cytokines and lipid mediators are de novo synthesized and secreted [1, 6, 7]. Mast-cell proliferation, migration and adherence are also immediately initiated. Additionally, accumulating evidence has demonstrated that IgE can also induce a wide variety of biological responses of mast cells even in the absence of antigen, such as up-regulation of the FcεRI, survival, cytokine production, histamine synthesis, and adhesion to fibronectin, which is referred to as “monomeric IgE” responses [8-12]. Several intercellular molecules, such as spleen tyrosine kinase (Sky) and phospholipase Cγ (PLCγ), are involved in the signaling cascade following IgE binding to FcεRI or FcεRI aggregation, and regulate a series of IgE-mediated biological processes in stimulated mast cells [9, 13-15]. However, in these processes, the regulatory mechanisms that are involved in the expression of these signal molecules have not been extensively studied.

MiRNAs are a class of short, non-coding RNAs that have emerged as key post-transcriptional regulators of the expression of protein-coding genes. MiRNAs can specifically bind to target sites in the 3' untranslated region (3' UTR) of messenger RNAs (mRNAs), thereby triggering mRNA degradation or inhibiting mRNA translation [16-18]. The importance of miRNAs in many physiological and pathological processes has been well established. Interestingly, several miRNAs have also been found to be involved in rapid biological responses associated with acute stimulation, inflammation or injury [19-24]. For example, Srivastava et al. [20] found that 11 miRNAs had significantly altered expression in roots of *Brassica juncea* exposed to arsenate for 1 h. Mai et al. [21] reported that expression levels of miR-20a, -21, -19b, -34a, -34c, -140, and -200b were significantly down-regulated in MC3T3-E1 cells subjected to 1 h of fluid shear stress (FSS) at 12 dyn/cm². Additionally, an increasing number of studies have identified altered miRNA expression in diverse immune responses and immunologic disorders [25-33]. In contrast, the expression and function of specific miRNAs during the differentiation, proliferation and activation of mast cells has received little attention [34-41]. Mayoral et al. [37] reported that miR-221-222 were detectably up-regulated in BMMMC stimulated for 1 h or 24 h with PMA and ionomycin, and regulated cell cycle checkpoints in mast cells in response to acute stimulation. Only individual miRNAs have been implicated in mast cell degranulation and cytokine production because of their role in the post-transcriptional fine-tuning mechanisms of gene expression, which are associated with the FcεRI signaling pathway [35, 36, 38, 42]. Furthermore, little is
to known about a global signature of miRNA expression in response to IgE-mediated mast cell activation or the regulatory network between miRNAs and their target genes during this biological event.

Considering that the mRNA expression levels of inflammatory mediators and signal molecules usually begin to be significantly changed 1 h after mast cell activation following IgE-FceRI cross-linking with antigen [43, 44], we presumed that miRNA expression may be initiated at this time point to regulate the stability and expression levels of these mRNAs by post-transcriptional mechanism. Therefore, in this study, we characterized the miRNA expression profiles in BMMCs stimulated with IgE-Ag complexes for 1 h using a miRNA microarray and observed a dynamic regulation of the expression levels of selected miRNAs following different time points (1 h and 6 h) after BMMC activation. In addition, we analyzed the potential roles of selected miRNAs using bioinformatics methods to build a unique miRNA regulatory network that was closely linked to mast cell activation. This study aimed to lay a foundation for further investigations of the underlying mechanisms of IgE-associated allergic diseases that are caused by mast cell activation.

Materials and Methods

Preparation and culture of BMMCs

Male BALB/c mice (8-10 weeks old) were purchased from the Medicine Laboratory Animal Center of Fudan University, Shanghai, China. The animal experimental protocols were approved by the Animal Care and Use Committee of Fudan University. Mouse BMMCs were prepared as previously described [43, 45]. Briefly, BMMCs were generated by the in vitro differentiation of bone marrow cells that were isolated from the femurs and tibia of the BALB/c mice. Bone marrow cells were cultured at a concentration of 0.5-1.0×10⁶ cells/ml in RPMI 1640 medium that was supplemented with 10% heat-inactivated fetal calf serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 0.1 mM nonessential amino acids (Gibco, Invitrogen, Grand Island, NY, USA), 10 ng/ml recombinant murine interleukin (IL)-3 (Peprotech, Rocky Hill, NJ, USA) and 10 ng/ml recombinant murine stem cell factor (SCF; Peprotech). Non-adherent cells were transferred to fresh medium at least once a week.

After 3-4 weeks of culture, more than 95% of the cells were BMMCs as determined by toluidine blue staining and flow cytometric analysis using a combination of fluorescein isothiocyanate (FITC)-conjugated anti-mouse FcεRIα Armenian hamster IgG (clone MAR-1; eBioscience, San Diego, CA, USA) and phycoerythrin (PE)-conjugated anti-mouse CD117(c-Kit) Rat IgG (clone 2B8; eBioscience). Cell viability was determined by a trypan blue dye exclusion assay and was more than 98%.

BMMC stimulation

BMMCs were either left resting (Unstimu group) or were stimulated with IgE-Ag complexes for 1 h or 6 h (1 h or 6 h Stimu group). According to a previously described method [43, 46], the cells were suspended at a density of 1×10⁶ cells/ml in fresh IL-3- and SCF-supplemented medium. To stimulate cells via FcεRI, the cells were sensitized with 2 μg/ml mouse anti-dinitrophenyl (DNP) monoclonal IgE (clone SPE-7; Sigma-Aldrich) overnight at 37°C. After washed twice with phosphate-buffered saline (PBS), the cells were suspended in Tyrode's buffer (10 mM HEPES, pH 7.4, 137 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl₂, 5.6 mM glucose, 0.3 mM NaH₂PO₄, and 0.1% bovine serum albumin) at 2×10⁶ cells/ml. The cells were challenged by the addition of 40 ng/ml DNP-Human Serum Albumin (DNP-HAS; Biosearch Technologies, Novato, CA, USA) and incubation for 1 h or 6 h at 37°C. The samples were collected by centrifugation at 120 g for 5 min at 4°C.

RNA extraction

Total RNA, including miRNA, was extracted from all of the cell samples and purified using the mirVana™ miRNA Isolation Kit (Cat# AM1560, Ambion, Austin, TX, USA) following the manufacturer’s instructions. The RNA concentrations were quantified using a NanoDrop spectrophotometer (Thermo Fisher; Waltham, MA, USA). The integrity and quality of RNA was confirmed using an Agilent Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, USA), and only the RNA samples with an RNA integrity number (RIN)≥6.0 and 28S/18S>0.7 were used for the miRNA array analysis and reverse transcription (RT).
miRNA microarray assay

The RNA samples were further analyzed at Shanghai Biotechnology Corporation (Shanghai, China) using the Agilent Mouse miRNA Microarray (8×60K; version 19.0), which contains capture probes for a total of 1,247 mouse miRNAs based on the Sanger miRBase database (release 14.0). First, the miRNA molecules in total RNA were labeled using the miRNA Complete Labeling and Hyb Kit (Cat# 5190-0456, Agilent technologies, Santa Clara, CA, USA) according to the manufacturer’s protocols. Each microarray slide was hybridized using 100 ng Cy3-labeled RNA in a hybridization oven (Cat# G2545A, Agilent technologies) under conditions of 55°C and 20 rpm for 20 hours. After hybridization, the slides were washed twice using the Gene Expression Wash Buffer Kit (Cat# 5188-5327, Agilent Technologies) in staining dishes (Cat# 121, Thermo Shandon, Waltham, MA, USA). The slides were scanned using the Agilent Microarray Scanner (Cat#G2565BA, Agilent Technologies), and the intensity of each hybridization signal was extracted using the default settings in the Feature Extraction software program (version 10.7, Agilent Technologies). Normalized data were obtained using the Quantile algorithm in the Gene Spring software program (version 11.0, Agilent Technologies), and these data were transformed to base 2. A relative fold change >2 in the differential expression of miRNAs and a P value <0.05 were considered significant. The Gene Cluster (version 3.0) and Java TreeView software programs were used to perform the hierarchical cluster analysis of differentially expressed miRNAs and to visualize the miRNAs.

qRT-PCR

Total RNA was reverse transcribed into cDNA using the miScript II RT Kit (Qiagen, USA). To validate the quantity of miRNA, qRT-PCR was performed using the 7900 HT Sequence Detection System (ABI, USA) with the miRcute miRNA qPCR Detection Kit (SYBR Green; Tiangen, China) according to the manufacturer’s instructions. For mRNA analysis, RNA extracts were reverse transcribed into cDNA using SuperScript III Reverse Transcriptase (Invitrogen). The synthesized cDNA was then quantified by SYBR green assay. All primers were synthesized by Invitrogen (Shanghai, China) and their sequences were presented in Table 1. RNU6 and β-actin were used as endogenous references for miRNAs and mRNAs, respectively, and the expression levels were calculated using the formula $2^{-\Delta\Delta Ct}$ ($\Delta Ct= Ct_{miRNA/mRNA} - Ct_{RNU6/\beta-actin}$). The experiments were independently performed three times in triplicate.

Prediction and enrichment analysis of miRNA target genes

The target genes for all of the significantly differentially expressed miRNAs were predicted using multiple public bioinformatics databases, including TargetScan Mouse Release 6.2 (http://www.targetscan.org/), miRanda (http://www.microrna.org/) and miRWalk (http://mirwalk.uni-hd.de/), which were comparatively analyzed using miWalk online tool. Predicted targets were included in at least two databases. miRDB (http://mirdb.org/miRDB/) was a supplement only when some miRNAs were not in three miRNA databases above. The gene ontology (GO) and cellular pathway analyses of the predicted target genes were conducted using an online functional annotation tool (DAVID, http://david.abcc.ncifcrf.gov/). GO terms and pathways with a P value<0.01 and a false discovery rate (FDR) <0.01 were retained.

miRNA target gene network construction

Based on the functions of the target genes in the enrichment analysis, several interesting genes were selected, and a regulatory miRNA target gene network was constructed and visualized using the Cytoscape software. The correlation between the miRNAs and their target genes is presented in an image drawn using Adobe Illustrator CS6 (Adobe Systems, Inc.).

Table 1. Primer sequences used for qRT-PCR

Symbol	Primer (5’ to 3’)
mmu-miR-92b-3p	TATTTCAGCTGTCGTCGGG
mmu-miR-874-3p	CCTGACCTAGGAGACCCA
mmu-miR-5117-5p	GGCAATGAGTATGTGAAATTAAAGGTTA
mmu-miR-3113-5p	GCTCTAGCCCTTTGTCGGG
mmu-miR-212-5p	ACCGCAGTTAAGACTGCTTACT
mmu-miR-21a-3p	CAACGACGTCGATGGAAGA
mmu-miR-125a-3p	ACAAGTGAGTGCTTTGAGGGA
mmu-miR-721	CAGTGCAATTTAAAGGGGA
RNU6	GCCGCTTCTGGCAGCAGCAT
Lyn	F:AACTTCCGGCTGCTTACT
Scamp1	R:TTGCTTCTCTGCTCTCTCT
Vav3	F:ATGCAAGCTCATTCTCTCTCATG
Csf2	R:ATGGCCCTGCTTCAAGGGAAT
β-actin	F:GGCCCTTGGAGAAGCTTAAAGG
	R:GGAGAAGCTTGGTGGAGACCTT
	F:AGAGCCTAGCTGCTGAC
	R:CCATACCAAGAAGGCGGCT
Statistical analysis
Statistical analyses were performed using the SPSS software for Windows (version 16.0; SPSS, Inc., Chicago, IL, USA). The differences between the two groups were determined using a two-tailed Student’s t-test. P<0.05 was considered statistically significant.

Results

Significantly altered miRNA expression in activated BMMCs following IgE-FceRI cross-linking
To identify the miRNAs that were potentially involved in IgE-mediated mast cell activation, we examined the miRNA expression profiles of BMMCs in the 1 h Stimu group and the Unstimu group using the miRNA microarray platform. The cluster analyses revealed that a total of 17 miRNAs were significantly differentially expressed in the BMMCs from the 1 h Stimu group relative to those from the Unstimu group (fold change>2; P<0.05; Fig. 1A). Among these altered miRNAs, 7 were up-regulated and 10 were down-regulated. Notably, miR-21a-3p and miR-3113-5p were the most remarkably up-regulated and down-regulated miRNAs in activated BMMCs according to the bioinformatics algorithm (Table 2).

Validation of the candidate miRNAs by qRT-PCR
To validate our microarray data, qRT-PCR was performed to quantify the expression levels of 8 miRNAs that were randomly selected from 17 differentially expressed miRNAs in the microarray experiment. The qRT-PCR results for 6 miRNAs (miR-21a-3p, miR-212-5p, miR-125a-3p, miR-5117-5p, miR-5117-3p and miR-3113-5p) were consistent with the microarray results, and the results for miR-92b-3p and miR-721 were inconsistent, resulting...
Teng et al.: MicroRNA Profiles in Activated Mast Cells

Table 2. List of differentially expressed miRNAs between the 1 h Stimu group and the Unstimu group detected by miRNA microarray assay

miRNA	Accession No.	log2 Fold change (vs. Unstimu group)	P value
mmu-miR-21a-3p	MIMAT004628	4.959	5.41E-03
mmu-miR-23a-5p	MIMAT0017019	4.464	5.34E-03
mmu-miR-222-5p	MIMAT0017061	4.085	7.57E-03
mmu-miR-212-5p	MIMAT0017053	1.830	1.64E-02
mmu-miR-212-3p	MIMAT0000659	1.645	8.64E-05
mmu-miR-132-3p	MIMAT0001444	1.458	2.24E-06
mmu-miR-92b-3p	MIMAT0004899	1.103	4.90E-02
mmu-miR-3113-5p	MIMAT0014959	-6.684	4.22E-05
mmu-miR-874-3p	MIMAT0004853	-5.734	1.46E-06
mmu-miR-5117-5p	MIMAT0020625	-5.057	1.61E-05
mmu-miR-3058-3p	MIMAT0014814	-4.796	3.05E-03
mmu-miR-6392-3p	MIMAT0025142	-3.962	8.70E-03
mmu-miR-3472	MIMAT0015643	-3.441	2.38E-02
mmu-miR-149-3p	MIMAT0016990	-1.251	7.94E-04
mmu-miR-5109	MIMAT0020617	-1.118	9.45E-03
mmu-miR-721	MIMAT0003515	-1.078	3.53E-04
mmu-miR-125a-3p	MIMAT004528	-1.014	1.57E-03

in a concordance rate of 75.0% (6/8). Furthermore, of these 6 miRNAs, miR-21a-3p and miR-212-5p were up-regulated in the 1 h Stimu group, whereas miR-125a-3p, miR-5117-5p, miR-874-3p and miR-3113-5p were down-regulated 1 h after IgE-dependent BMMC activation (Fig. 1B). To observe a dynamic regulation of these 6 miRNAs following different time points after BMMC activation, we found that the expression levels of these miRNAs except

Fig. 2. Measurement of miRNA expression levels using qRT-PCR at different time points (1 h and 6 h) after BMMC activation. The results were representative of three independent experiments. Data are represented as mean±SD (standard deviation). * P<0.05.
miR-5117-5p and miR-3113-5p remained to be significantly altered in BMMCs stimulated with IgE-Ag complexes for 6 h (Fig. 2).

GO analysis of miRNA target genes

To investigate the biological functions of the differentially expressed miRNAs, we used public online databases to obtain miRNA-regulated putative target genes. We performed a GO function analysis of miRNA targets to obtain the significantly over-represented GO terms ($P<0.01$; FDR<0.01). The results indicated that several important GO terms were possibly related to cell activation, such as intracellular signal transduction, protein phosphorylation, metabolic process, positive regulation of gene

Target Gene	Accession No.	miRNA
Trim72	NM_001079932	miR-3113-5p
Lgl1	NM_001159404	miR-874-3p
Myo5a	NM_010864	miR-222-5p
Stx3	NM_152220	miR-149-3p
Stxbp1	NM_001113569	miR-212-5p
Unc13b	NM_021468	miR-21a-3p
Lin7c	NM_011699	miR-21a-3p
Rala	NM_019491	miR-21a-3p; miR-5117-5p
Rapgef4	NM_019688	miR-21a-3p
Scamp5	NM_020270	miR-149-3p
Exoc8	NM_198103	miR-3058-3p
Exoc5	NM_207214	miR-212-3p
Scamp1	NM_029153	miR-125a-3p
Mical3	NM_153396	miR-3058-3p
Stxbp51	NM_172440	miR-23a-5p
Exoc3	NM_177333	miR-3113-5p
expression, response to stimulus, and exocytosis. (Fig. 3A-3C). Furthermore, in the biological process of exocytosis, several miRNAs (miR-3113-5p, miR-874-3p, miR-21a-3p, miR-3058-3p, and miR-125a-3p) may regulate the expression of a distinct set of target genes that are associated with cellular exocytosis (Table 3).

Specific miRNAs involved in the FceRI signaling pathway in mast cells through targeting signal molecule genes

To determine whether the differentially expressed miRNAs regulated the expression levels of signal molecule genes in response to the IgE-mediated activation of mast cells, we conducted a pathway analysis. We discovered 38 significant pathways of the putative targets of these miRNAs, including the chemokine signaling pathway, the phosphatidylinositol signaling system, the FceRI signaling pathway, the calcium signaling pathway, and the MAPK signaling pathway (Fig. 3D). As illustrated in Fig. 4, various miRNAs (miR-5117-5p, miR-212-5p, miR-874-3p, and miR-149-3p) potentially regulated the expression of critical signal molecules in the FceRI signaling pathway upon IgE-mediated mast cell activation.

The miRNA target gene network reflecting the potential mechanism of IgE-mediated BMMC activation

To visualize the complex potential relationship between miRNAs and putative target genes and to provide some valuable clues for further exploring the potential function and regulatory mechanism of specific miRNAs following IgE-mediated BMMC activation, we constructed an interaction network of miRNAs and target genes. As shown in Fig. 5A, more than ten target genes were predicted for each miRNA. Several genes were considered the potential targets of two or more miRNAs. Two genes (Akt3 and Pip4k2c) were the predicted targets of miR-149-3p and miR-212-5p. Plnxa2 was the predicted target of miR-3113-5p, miR-149-3p and miR-212-5p. In addition, to determine whether the mRNA expression levels of predicted target genes were altered accordingly during IgE-mediated BMMC activation, we selectively analyzed their expression levels by qRT-PCR and found that the mRNA expression levels of Lyn, Scamp1, Vav3 and Csf2 were significantly up-regulated following down-regulation of corresponding miRNAs, which indicated that bioinformatics data on target gene prediction should be considered to be reliable (Fig. 5B).
Mast cells are bone marrow-derived cells and are well known as key effector cells in IgE-associated immune responses and allergic diseases [47, 48]. The cells are activated mainly via the IgE- and antigen-mediated crosslinking of FcεRI. Besides rapid degranulation of mast cells, the cell proliferation, migration and adherence are gradually initiated, and proinflammatory cytokines and lipid metabolites are de novo synthesized after IgE and antigen stimulation [1, 6, 49]. In this study, we found that the mRNA expression levels of some key signaling molecule genes (Lyn, Scamp1, Vav3 and Csf2) were significantly altered in activated mast cells following IgE-FcεRI cross-linking with antigen. However, it is vital to adequately clarify whether and how the expression of intracellular signaling molecule genes is fine-tuned at the post-transcriptional level in these biological processes. Such information will contribute to the discovery of potential therapeutic targets for the control of mast cell activation in IgE-associated allergic disorders.

As an epigenetic regulator of gene expression, miRNAs play important roles in the regulation of various cell processes, including cell differentiation, proliferation, apoptosis, function and responses to environmental stimulation [31, 50-52]. Nevertheless, the miRNA expression profiles and regulatory functions of mast cells following their physiological and pathophysiological responses have not been extensively documented. A miRNA microarray analysis is typically performed to select differentially expressed miRNAs before beginning...
MiRNAs are emerging as endogenous negative regulators of protein expression by combining with the 3′ UTR of target miRNAs, thereby inhibiting protein production or destabilizing target transcripts [16-18]. In a study that aimed to understand how miRNAs regulate the various biological behaviors of mast cells, Mayoral et al. [37] discovered that miR-221-222, a family of miRNAs, was significantly up-regulated following mast cell stimulation. Under mast cell resting and stimulated conditions, the individual or combined overexpression of miR-221 and miR-222 resulted in an increase in the number of cells in the prominent G0/G1 peak with correspondently fewer cells in the G2/M phase. Furthermore, their study further shed light on the miR-221-222 transcriptional regulation mechanism that enabled miR-221-222 to regulate the cell cycle through partially inhibiting p27Kip1 protein expression after acute stimulation. Additionally, in response to mast cell stimulation through IgE-antigen complexes, miR-221 had several mast cell-specific, activation-dependent functions that affected the extent of degranulation, cytokine production and cell adherence [36]. In contrast, another miRNA, miR-146a, promotes mast cell apoptosis but not cytokine synthesis [34]. During mast cell differentiation from bone marrow cells, the expression levels of miR-126 are down-regulated, and miR-126 positively regulates mast cell proliferation and FcεRI-mediated cytokine production via enhancing ERK activity and suppressing sprouty-related, EVH1 domain containing 1 (Spred1) expression [35]. In addition, miR-142-3p promotes FcεRI-mediated degranulation in mast cells [38]. With respect to the relationship between miRNAs and pathological conditions that are caused by malignant mast cell proliferation, Lee et al. [53] reported that the miR-539 and miR-381 cluster was significantly down-regulated by c-Kit signaling, and the expression of these two miRNAs decreased Mitf protein levels and c/EBPα expression [35]. In addition, miR-142-3p promotes FcεRI-mediated degranulation in mast cells [38]. With respect to the relationship between miRNAs and pathological conditions that are caused by malignant mast cell proliferation, Lee et al. [53] reported that the miR-539 and miR-381 cluster was significantly down-regulated by c-Kit signaling, and the expression of these two miRNAs decreased Mitf protein levels and the colony-forming ability of mastocytosis cell lines. To determine the impact of the global depletion of miRNAs on mast cells, Oh et al. [39] found that global miRNA expression was indispensable for murine mast cell development in vivo. MiRNAs have favorable roles in regulating mast cell differentiation, proliferation and activation; however, current data are preliminary, and future studies are needed to confirm the functions of miRNAs in mast cells.

The identification of miRNA target genes is widely considered to be an important step toward understanding miRNA regulatory mechanisms. Therefore, target prediction programs, as bioinformatics analysis tools, were run to detect the potential target genes of the candidate miRNAs from the microarray data in this study. To our knowledge, a large number of miRNA-target prediction databases have been established using different computational algorithms, most of which are publicly available. However, the single prediction database is quite limited to generate a list of target genes, which probably produces a huge amount of false positive and false negative results. Thus, it is very essential to carry out a comprehensive analysis of multiple databases. TargetScan and miRanda are well-known databases that are extensively used to predict biological targets of miRNAs on the basis of imperfect base-pairing between miRNA and target mRNA 3′ UTR. However, emerging evidence shows a
novel mode of action of miRNAs by which they may directly regulate target gene expression by binding to promoter and amino acid coding regions. For this reason, Dweep et al. [54] have presented miRWALK database, which is used to predict all the possible miRNA binding sites by “walking” on the genes of three genomes (i.e. all protein coding genes, and their 10 kb upstream flanking regions and mitochondrial genes). In addition, it hosts predicted and validated miRNA binding sites information and integrates eight established databases for a comprehensive and comparative study. Therefore, in this study, we comprehensively analyzed the potential target genes of miRNAs using dry lab approaches mainly through three public databases above, and found ten to hundreds of target genes for each miRNA. A GO function enrichment analysis was subsequently conducted. Interestingly, a potential relationship was detected between several genes and cellular exocytosis. MiR-3113-5p may promote cellular exocytosis and intercellular mediator secretion via targeting Trim72 and Exoc3. The target gene of miR-125a-3p was Scamp1, which was closely linked with exocytosis. These findings suggest that these miRNAs may participate in the secretion processes of inflammatory mediators in activated mast cells. Our pathway analysis further confirmed that several putative targets were associated with pivotal signaling pathways that are involved in IgE-mediated mast cell activation, such as the FcεRI signaling pathway, the calcium signaling pathway, and the MAPK signaling pathway. The potential target of miR-5117-5p was Lyn, which was associated with the FcεRI signaling pathway. PI3K was the target of multiple miRNAs (miR-23a-5p, miR-21a-3p and miR-149-3p). PI3K is a core signaling molecule in the FcεRI signaling pathway. Collectively, the data from this study indicate that miRNAs may be a vital contributor to important biological behaviors and signaling pathways of activated mast cells.

This study provides informative data on the global miRNA profiles of activated mast cells following IgE-FcεRI cross-linking with antigen and the potential functions of miRNAs using bioinformatics methods, which will contribute to the identification of novel therapeutic targets for treating IgE-associated allergic diseases that are caused by mast cell activation.

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 81170893).

Disclosure Statement

All of the authors declare that they have no conflicts of interest.

References

1 Galli SJ, Nakae S, Tsai M: Mast cells in the development of adaptive immune responses. Nat Immunol 2005;6:135-142.

2 Sedgwick JB, Calhoun WJ, Gleich GJ, Kita H, Abrams JS, Schwartz LB, Volovitz B, Ben-Yaakov M, Busse WW: Immediate and late airway response of allergic rhinitis patients to segmental antigen challenge. Characterization of eosinophil and mast cell mediators. Am Rev Respir Dis 1991;144:1274-1281.

3 Holgate ST, Salvi SS: Mast cell tryptase as a proinflammatory mediator in late-phase asthmatic response. Curr Allergy Asthma Rep 2002;2:105-106.

4 Riley JP, Fuchs B, Sjoberg L, Nilsson GP, Karlsson L, Dahlén SE, Rao NL, Adner M: Mast cell mediators cause early allergic bronchial constriction in guinea-pigs in vivo: A model of relevance to asthma. Clin Sci (Lond) 2013;125:533-542.

5 Manikandan J, Kothandaraman N, Hande MP, Pushparaj PN: Deciphering the structure and function of FcεRI/mast cell axis in the regulation of allergy and anaphylaxis: A functional genomics paradigm. Cell Mol Life Sci 2012;69:1917-1929.

6 Galli SJ, Kalesnikoff J, Grimbaldston MA, Piliponsky AM, Williams CM, Tsai M: Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu Rev Immunol 2005;23:749-786.
7 Hill PB, MacDonald AJ, Thornton EM, Newlands GF, Galli SJ, Miller HR: Stem cell factor enhances immunoglobulin E-dependent mediator release from cultured rat bone marrow-derived mast cells: Activation of previously unresponsive cells demonstrated by a novel ELISPOT assay. Immunity 1996;8:326-333.

8 Asai K, Kitaura J, Kawakami T, Kawakami Y, Yamagata N: Regulation of mast cell survival by IgE. Immunity 2001;14:791-800.

9 Liu Y, Furuta K, Teshima R, Shirata N, Sugimoto Y, Ichikawa A, Tanaka S: Critical role of protein kinase CII in activation of mast cells by monomeric IgE. J Biol Chem 2005;280:38976-38981.

10 Hsu C, MacGlashan DJ: IgE antibody up-regulates high affinity IgE binding on murine bone marrow-derived mast cells. Immunol Lett 1996;52:129-134.

11 Yamaguchi M, Lantz CS, Oettgen HC, Katona IM, Fleming T, Miyajima I, Kinet JP, Galli SJ: IgE enhances mouse mast cell Fc(epsilon)RI expression in vitro and in vivo: Evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med 1997;185:663-672.

12 Kawakami T, Galli SJ: Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2002;2:773-786.

13 Abramson J, Pedt J: Regulation of the mast cell response to the type I Fc epsilon receptor. Immunol Rev 2007;217:231-254.

14 Gilfillan AM, Tkaczyk C: Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 2006;6:218-230.

15 Frossi B, Rivera J, Hirsch E, Puellio C: Selective activation of Fyn/P13K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition. J Immunol 2007;178:2549-2555.

16 Ambros V: The functions of animal microRNAs. Nature 2004;431:350-355.

17 Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.

18 Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD: MicroRNAs: New regulators of immune cell development and function. Nat Immunol 2008;9:839-845.

19 Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, Laye MJ: The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 2014;9:e87308.

20 Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF: Identification and profiling of arsenic-stressed-induced microRNAs in Brassica juncea. J Exp Bot 2013;64:303-315.

21 Mai ZH, Peng ZL, Zhang JL, Chen L, Liang HY, Cai B, Ai H: MiRNA expression profile during fluid shear stress-induced osteogenic differentiation in MC3T3-E1 cells. Chin Med J (Engl) 2013;126:1544-1550.

22 Yehya N, Yerrapreddy A, Tobias J, Margulies SS: MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics 2012;13:154.

23 Guo L, Huang ZX, Chen XW, Deng QK, Yan W, Zhou MJ, Ou CS, Ding ZH: Differential expression profiles of microRNAs in NIH3T3 cells in response to UVB irradiation. Photochem Photobiol 2009;85:765-773.

24 Drummond MJ, Glynn EL, Round JL, Scholz RL, Rasmussen BB: Essential amino acids increase MicroRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J Nutr 2009;139:2279-2284.

25 Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, Hou L, Nguyen C, Solon M, Barczak AJ, Zlock LT, Blagev DP, Finkbeiner WE, Ansel KM, Arron JR, Pearson D, Woodruff PG: Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med 2012;186:965-974.

26 Tomankova T, Petrek M, Gallo J, Kriegova E: MicroRNAs: Emerging regulators of Immune-Mediated diseases. Scand J Immunol 2012;75:129-141.

27 Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Belloch R, Ansel KM: MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 2011;35:169-181.

28 Roy S, Sen CK: MiRNA in innate immune responses: Novel players in wound inflammation. Physiol Genomics 2011;43:557-565.

29 Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y, Hua H, Shudong Y, Jie Z: Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy 2011;25:e242-e246.

30 O’Connell RM, Kohn D, Gibson WS, Round JL, Schoz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D: MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010;33:607-619.

31 Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, Matloubian M, Belloch R, Ansel KM: MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 2011;35:169-181.
Teng at al.: MicroRNA Profiles in Activated Mast Cells

Cell Physiol Biochem 2015;35:2098-2110

DOI: 10.1159/000374016
Published online: April 07, 2015
© 2015 S. Karger AG, Basel
www.karger.com/cpb

32 Lu TX, Rothenberg ME: Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol 2013;132:3-13, 14.
33 Chou WW, Wang YT, Liao YC, Chuang SC, Wang SN, Juo SH: Decreased microRNA-221 is associated with high levels of TNF-alpha in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol Biochem 2013;32:127-137.
34 Rusca N, Deho L, Montagner S, Zielinski CE, Sica A, Sallusto F, Monticelli S: MiR-146a and NF-kappaB1 regulate mast cell survival and T lymphocyte differentiation. Mol Cell Biol 2012;32:4432-4444.
35 Ishizaki T, Tamiyà T, Taniguchi K, Morita R, Kato R, Okamoto F, Saeki K, Nomura M, Nojima Y, Yoshimura A: MiR126 positively regulates mast cell proliferation and cytokine production through suppressing Spredl1. Genes Cells 2011;16:803-814.
36 Mayoral RJ, Deho L, Rusca N, Bartonicek N, Saini HK, Enright AJ, Monticelli S: MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS One 2011;6:26133.
37 Mayoral RJ, Pipkin ME, Pashkov M, van Nimwegen E, Rao A, Monticelli S: MicroRNA-221-222 regulate the cell cycle in mast cells. J Immunol 2009;182:433-445.
38 Yamada Y, Kosaka K, Miyazawa T, Kurata-Miura K, Yoshida T: MiR-142-3p enhances FcεRI-mediated degranulation in mast cells. Biochem Bioph Res Co 2014;443:980-986.
39 Oh SY, Brandal S, Kapur R, Zhu Z, Takemoto CM: Global microRNA expression is essential for murine mast cell development in vivo. Exp Hematol 2014;42:919-923.
40 Xiang Y, Eyers F, Young IG, Rosenberg HF, Foster PS, Yang M: Identification of MicroRNAs regulating the developmental pathways of bone marrow derived mast cells. PLoS ONE 2014;9:e98139.
41 Biehahn K, Orinsky Z, Vigorito E, Goyeneche-Patio DA, Mirkhimozadeh F, Foger N, Buffle-Pauss S: MiRNA-155 controls mast cell activation by regulating the PI3Kgamma pathway and anaphylaxis in a mouse model. Allergy 2014;69:752-762.
42 Deho L, Monticelli S: Human mast cells and mastocytosis: Harnessing microRNA expression as a new approach to therapy? Arch Immunol Ther Exp (Warsz) 2010;58:279-286.
43 Ord T, Ord D, Kuise S, Plaa M: Trib3 is regulated by IL-3 and affects bone marrow-derived mast cell survival and function. Cell Immunol 2012;280:68-75.
44 Shin J, Pan H, Zhong XP: Regulation of mast cell survival and function by tuberous sclerosis complex 1. Blood 2012;119:3306-3314.
45 Frossi B, Rivera J, Hirsch E, Puillo C: Selective activation of Fyn/P3K and p38 MAPK regulates IL-4 production in BMMC under nontoxic stress condition. J Immunol 2007;178:2549-2555.
46 Peng Y, Power MR, Li B, Lin TJ: Inhibition of IKK down-regulates antigen + IgE-induced TNF production by mast cells: A role for the IKK-IkappaB-NF-kappaB pathway in IgE-dependent mast cell activation. J Leukoc Biol 2005;77:975-983.
47 Kulesnikov J, Galli SJ: New developments in mast cell biology. Nat Immunol 2008;9:1215-1223.
48 Gomi K, Zhu FG, Marshall JS: Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. J Immunol 2000;165:6545-6552.
49 Mirzahosseini A, Dalmadi B, Cusotra P: Histamine receptor H4 regulates mast cell degranulation and IgE induced FceRI up-regulation in murine bone marrow-derived mast cells. Cell Immunol 2013;283:38-44.
50 Shin KK, Kim YS, Kim JD, Bae YC, Jung JS: MiR-137 controls proliferation and differentiation of human adipose tissue stromal cells. Cell Physiol Biochem 2014;33:758-768.
51 Martinz-Nunez RT, Louafi F, Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 2011;286:1786-1794.
52 Shimbo K, Miyaki S, Ishitoh B, Kato Y, Kubo T, Shimose S, Ochi M: Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 2014;445:381-387.
53 Lee VN, Brandal S, Noel P, Wentzel E, Mendell JT, McDevitt MA, Kapur R, Carter M, Metcalfe DD, Takemoto CM: KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood 2011;117:3629-3640.
54 Dweep H, Sticht C, Pandey P, Gretz N: MiRWalk - Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011;44:839-847.