Helical Repeat Structure of Apoptosis Inhibitor 5 Reveals Protein-Protein Interaction Modules*1,3

Byeong-Gu Han1,51, Kyounghoon Kim1,51, Sang Jae Lee51, Kyung-Chae Jeong51, Jea-Won Cho5, Kyung Hee Noh1, Tae Woo Kim1, Soon-Jong Kim52, Hye-Jin Yoon5, Se Won Suh5, Sangho Lee5, and Byung Il Lee52

From the 1Biomolecular Function Research Branch, Division of Convergence Technology, Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Korea, the 2Department of Chemistry and Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea, the 3Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 136-701, Korea, the 4Department of Chemistry, Mokpo National University, Chonnam 534-729, Korea, and the 5Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea

\textbf{Background:} Up-regulated in various cancers, API5 prevents apoptosis under growth factor deprivation.

\textbf{Results:} We have determined the crystal structure of API5 with the HEAT and ARM repeat and show that Lys-251 acetylation is important for its function.

\textbf{Conclusion:} API5 likely serves as a scaffold for multiprotein complex with its cellular function regulated by lysine acetylation.

\textbf{Significance:} Structural basis of API5 function is important in targeting anti-apoptosis.

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all \(\alpha\)-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells.

Apoptosis, a programmed cell death process, plays important roles in sculpting the developing organism and in maintaining cell number homeostasis (1, 2). It is also critical for effective cancer chemotherapy (3). Two main pathways of apoptosis have been studied extensively. The extrinsic pathway is mediated by interactions between the death receptors and death ligands. This induces the formation of the death-inducing signaling complex and caspase-8 (4). The intrinsic pathway, which is triggered by radiation, drugs, reactive oxygen species, and radicals, begins with the release of cytochrome \(c\) from mitochondria, which ultimately activates caspase-9 (4, 5). These pathways converge downstream, as both caspase-8 and caspase-9 activate caspase-3 (4, 6). Activated caspases cleave specific target proteins, such as protein kinases, cytoskeletal proteins, and DNA repair proteins, initiating apoptosis (6, 7). The characteristic markers of apoptosis include cell and nuclear shrinkage, DNA cleavage into nucleosomal fragments, chromatin aggregation, and apoptotic body formation (8). Because the precisely regulated events of apoptotic cell death are frequently altered in cancers, proteins in the apoptotic pathway can represent good targets for anti-cancer drugs (9).

Inhibitor of apoptosis (IAP)3 family proteins are negative regulators of apoptosis and were characterized originally as physical inhibitors of caspases (10). Eight IAP proteins have been identified, and each of these proteins contains an \(~\)70-amino acid BIR (baculovirus IAP repeat) domain that mediates protein recognition and interactions (11). Some IAPs include additional domains, such as a RING (really interesting new gene) domain, UBA (ubiquitin-associated domain), or CARD (caspase recruitment domain). Anti-cancer drugs that target IAPs by mimicking the N-terminal IAP binding motif (Ala-Val-Pro-Ile) of Smac are currently in clinical trials for some solid tumors and lymphomas (12).

API5 (apoptosis inhibitor 5), also known as AAC-11 protein (anti-apoptosis clone 11), FIF (fibroblast growth factor 2-interacting factor), and MIG8 (cell migration-inducing gene 8), is a relatively poorly studied apoptosis-inhibiting nuclear protein that does not contain a baculovirus IAP repeat domain. The API5 gene has been found in animals, protists, and plants (13). The expression of API5 prevents apoptosis following growth factor deprivation, and this protein is up-regulated in various

* This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by Ministry of Education, Science, and Technology Grant 2010-0020993 (to B. I. L.).

\textbf{The atomic coordinates and structure factors (codes 3UOR and 3Y6A) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).}

\textbf{1} This article contains supplemental “Materials and Methods” and Figs. S1–S3.

1 These authors contributed equally to this work.

2 To whom correspondence should be addressed: Biomolecular Function Research Branch, Div. of Convergence Technology, Research Inst., National Cancer Ctr., Goyang, Gyeonggi 410-769, Korea. Tel.: 82-31-920-2223; Fax: 82-31-920-2006; E-mail: bilee@ncr.re.kr.

3 The abbreviations used are: IAP, inhibitor of apoptosis; r.m.s.d., root mean square deviation; PDB, Protein Data Bank; EJC, exon junction complex.
cancer cells (14–19). Non-small cell lung cancer patients whose cancers express API5 have a poorer prognosis than patients with non-API5-expressing cancers, and overexpression of API5 promotes the invasion and inhibits apoptosis in cervical cancer cells (15, 17, 20). It has been suggested that API5 suppresses E2F1 transcription factor-induced apoptosis (21). A recent study also suggested that API5 is phosphorylated by PIM2 kinase and inhibits apoptosis in hepatocellular carcinoma cells through NF-κB (nuclear factor-κB) (22). Various API5 interaction partners have been identified. API5 interacts with high molecular mass forms of fibroblast growth factor 2 (FGF-2), which are involved in cell proliferation and tumorigenesis (16). API5 also binds to and regulates Acinus, a protein involved in chromatin condensation and DNA fragmentation during apoptosis (23). Moreover, the inhibition of API5 increases anticancer drug sensitivity in various cancer cells (23). Recently, the chromatin remodeling enzyme ALC1 (amplified in liver cancer 1) and two DEAD box RNA helicases were identified as binding partners of API5 (13, 24). From these data, API5 has been regarded as a putative metastatic oncoogene and therefore represents a therapeutic target for cancer treatment (23). The rational design of inhibitors of API5 will be aided by determination of its three-dimensional structure. Additionally, the lack of sequence similarity between API5 and other known proteins has made it difficult to predict its molecular function. Therefore, structural information about API5 will be helpful in elucidating its molecular function.

We determined the crystal structure of human API5 to elucidate the molecular basis of its anti-apoptotic function. API5 contains a multiple helices, forming HEAT and ARM (Armadillo)-like repeats, which are known to function in protein-protein interactions. This study thus reveals that API5 acts as a mediator of protein interactions.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—The human API5 gene (full-length (1–504), API5ΔC (1–454)) was amplified by PCR and cloned into pET28b (+) (Novagen) using NdeI and NotI restriction sites. This construction adds a 21-residue tag including His6 to the N-terminal of the recombinant protein, facilitating protein purification. The mutants (K251Q, K251R, and K251A) of the API5 gene were prepared by QuikChange site-directed mutagenesis method using the wild type plasmid as the PCR template. The wild type and mutant proteins were overexpressed in *Escherichia coli* Rosetta2(DE3) cells (Novagen). The cells were grown at 37 °C in 4 liters of Terrific Broth medium to an A600 of 0.7, and expression of the recombinant protein was induced with 0.5 mM isopropyl β-D-thiogalactospyranoside at 37 °C. The cells were grown at 37 °C for 16 h after isopropyl β-D-thiogalactospyranoside induction and were harvested by centrifugation at 3000 × g for 10 min at 4 °C. The cell pellet was suspended in ice-cold lysis buffer (25 mM Tris·HCl, pH 7.4, 138 mM NaCl, 2 mM KCl, 10% (v/v) glycerol, 1 mM phenylmethylsulfonyl fluoride, and 0.8 μM leucine) and homogenized by sonication. The first purification step utilized a Ni2+ nitrilotriacetic acid column (Qiagen) for affinity purification via the N-terminal His6 tag. The eluent was pooled and concentrated. The protein sample was diluted 10-fold with buffer (50 mM Tris·HCl, pH 8.0, 80 mM NaCl, and 1 mM DTT). Further purification was conducted using a HiTrap Q ion exchange chromatography column (GE Healthcare) equilibrated with buffer (50 mM Tris·HCl, pH 8.0, 80 mM NaCl, and 1 mM DTT). The protein was eluted using a linear gradient of 0–1.0 M sodium chloride in the same buffer. The final purification step was gel filtration on a HiLoad 16/60 Superdex 200 prep-grade column (GE Healthcare) equilibrated with buffer containing 20 mM sodium citrate, pH 5.5, 200 mM NaCl, and 1 mM DTT. The purified API5 protein was concentrated to ~20 mg/ml using an YM10 membrane (Millipore). Human α-thrombin (Enzyme Research Laboratories) or porcine trypsin (Promega) was used to remove the fusion tag or to achieve limited proteolysis, respectively.

Crystallization, X-ray Data Collection, and Structure Determination—The best crystals were obtained with a reservoir solution of 10% PEG 6000 and 100 mM bicine, pH 9.0, using the API5ΔC protein. For x-ray diffraction data collection, crystals were transferred to a cryoprotectant solution (10% PEG 6000, 100 mM Bis-Tris, pH 6.0, and 30% ethylene glycol) and mounted on nylon loops. Data of API5ΔCs (wild type and K251Q mutant) were collected using an ADSC Quantum CCD detector at the 4A and 6C experimental stations, Pohang Light Source, Korea and an ADSC Quantum 4 CCD detector at the BL-1A experimental station, Photon Factory, Japan, respectively. Intensity data were processed and scaled using the program HKL2000 (25). Selenium sites were located with SOLVE (26) using two MAD data sets. Initial phases were improved using the program RESOLVE (26). Manual model building was performed using the program COOT (27), and the model was refined with the program PHENIX (28) and Refmac (29), including bulk solvent correction. As the test data for the calculation of Rfree, 5% of the data were randomly set aside (30). The refined models were evaluated using MolProbity (31).

Analytical Ultracentrifugation—Equilibrium sedimentation experiments were performed using a Beckman ProteomeLab XL-A analytical ultracentrifuge in 20 mM sodium citrate buffer, pH 5.5, containing 200 mM NaCl at 20 °C. Absorbances of API5 samples were measured at 235, 240, and 280 nm using a two-sector cell at two different speeds (12,000 and 16,000 rpm) and two different concentrations (4.90 and 9.80 μM) with a loading volume of 180 μl. The calculated partial specific volumes at 20 °C were 0.7452 and 0.7416 cm3/g for API5, respectively. The buffer density was 1.01424 g/cm3. For mathematical modeling using non-linear least-squares curve fitting, the fitting function for homogeneous models was used, as described elsewhere (32). The model was selected by examining the weighted sum or square values and weighted root mean square deviation (r.m.s.d.) values.

Cell Viability Test—Jurkat cells were grown in RPMI 1640 media supplemented with 10% fetal bovine serum (WelGENE). Transient transfection was performed with Lipofectamine LTX and Plus Reagent (Invitrogen) according to the manufacturer’s instructions. Briefly, 2.3 × 105 Jurkat cells were seeded in the medium onto a 24-well plate. After 1 h, the cells in each well were transfected with 0.6 μg of each DNA construct (full-length API5 wild type, K251R, K251Q, and K251A, respectively). After 3 h, the serum-free medium was exchanged with...
RPMI1640 medium containing 10% fetal bovine serum to stabilize the transfected cells. After an additional 12-h incubation, the culture medium was exchanged with serum-free RPMI 1640 to perform a starvation test. Following a 48-h incubation, the cell viability in each well was determined using a Presto cell proliferation assay kit (Invitrogen) according to the manufacturer’s instructions.

Immunoprecipitation and Western Blotting—To monitor the oligomerization state of API5 in cells, full-length HA-API5 and 3×FLAG-API5 were co-transfected into HeLa cells and immunoprecipitated. Whole cell lysates prepared in lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate), were used for immunoprecipitation. Each lysate was mixed with a binding buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 1 mM EDTA) supplemented with protease inhibitor cocktails (Roche Applied Science). The mixture was incubated overnight at 4 °C with antibodies (diluted 1:100). A/G-agarose beads were then added, incubated at 4 °C for 3 h, and washed four times with the binding buffer. The immune complex was released from the beads by boiling in sample buffer and was visualized by Western blotting. Western blotting was carried out using established protocols. The primary antibodies used were anti-HA (Santa Cruz Biotechnology), anti-FLAG (Cell Signaling Technology), and anti-β-actin (Abcam).

To test protein stability in cells, full-length wild type API5 or mutants API5 (K251R and K251Q) was transfected into HeLa cells. At 22 h after transfection, the cells were treated with 10 μg/ml of cycloheximide for 4 h. Then, the cells were collected, and protein levels were analyzed by Western blotting. For the deacetylase inhibition experiments, suberoylanilide hydroxamic acid was pretreated for 20 h to the wild type API5-transfected HeLa cells before cycloheximide treatment.

RESULTS

Structure Determination and Overall Structure—We obtained crystals of full-length and trypsin-treated API5. However, only the crystals of trypsin-treated API5 were suitable for structure determination. From N-terminal amino acid sequencing and MALDI-TOF analysis, we found that the N-terminal fusion tag and ~50 amino acid residues at the C-terminal of recombinant API5 were removed by trypsin and that the trypsin-treated form of API5 corresponded to residues 1–454. The crystal structure of API5ΔC was solved by multiwavelength anomalous dispersion and refined to 2.50 and 2.60 Å resolution for wild type and K251Q (acylation mimic) mutant structures, respectively. The refined models of wild type and K251Q mutant exhibited working and free R-values of 21.6 and 24.2%, and 21.3 and 25.0%, respectively, with good stereochemistry (Table 1). One subunit of API5ΔC was found to be present in the asymmetric unit of the crystal. The structures of wild type and K251Q mutant are highly similar to each other, with an r.m.s.d. of 0.32 Å for 424 Cα atom pairs (supplementary Fig. S1).

The API5ΔC monomer presented an elongated, all α-helical repeat structure, forming a right-handed superhelix with approximate dimensions of 100 × 35 × 50 Å (Fig. 1A). It consisted of 19 α-helices (α1–α19) and two 310 helices. Each helix was observed to be paired with its neighboring helix to form an antiparallel helix pair. Residues 277–278, 322–335, 365–366, 430–431, and 447–454, as well as the four extra N-terminal residues (Gly-Ser-His-Met), artificially added by cloning into pET-28b, were deleted in the crystal. The C-terminal region of API5 (residues 455–504), which contains a nuclear localization signal (Fig. 2) between residues 454–475 and is predicted to be disordered by IUPRED (33), was readily removed by trypsin. Additionally, an electron density map calculated using low resolution (~6 Å) x-ray diffraction data from full-length API5 did not show this C-terminal region, supporting its hypothesized flexibility (data not shown). Several positively charged patches were found on the concave surface of the API5ΔC protein, whereas mainly negatively charged residues were positioned on the convex side (Fig. 1B). The positively or negatively charged patches were well conserved in various species (Fig. 1C). Basic patches were also found near the putative leucine zipper region (heptad leucine repeat). However, a basic DNA binding region typically followed by a leucine zipper of other leucine repeat proteins, was not found to be present in API5 (Fig. 2).

Searches using the DALI server were carried out to identify structurally similar proteins (34). Because the structure of API5ΔC can be divided into two regions, DALI searches were performed separately for the N-terminal half (α1–α11) and the C-terminal half (α12–α19). The N-terminal half of API5 structurally aligns with the HEAT repeat regions of importin β (PDB code 1O6P, Z-score = 13.1; r.m.s.d. = 4.7 Å for 190 structurally aligned residues), the TOG2 domain of Msps (PDB code 2QK2, Z-score = 12.2; r.m.s.d. = 4.5 Å for 176 structurally aligned residues), and protein phosphatase 2A (PDB code 2C5W, Z-score = 11.8, r.m.s.d. = 1.8 Å for 87 structurally aligned residues). Although the sequence identities between the structurally aligned regions and API5 were only ~10–12%, the overall folds were quite similar. The C-terminal half of API5 is structurally similar to the core region of the U-box-containing ubiquitin ligase E4 protein Ufd2p (PDB code 2Q1Z, residues 461–747). The Z-score and r.m.s.d. values for the aligned 195 amino acid pairs were 8.3 and 4.4 Å, respectively. The amino acid sequences were also quite different between API5 and Ufd2p (lower than 11% sequence identity), although the three-dimensional structures were quite similar, including the characteristic long helix pair (α18–α19). The second most similar protein to the C-terminal half of API5 was p120 catenin (PDB code 3L6Y, Z-score = 7.7, r.m.s.d. = 3.3 Å for the aligned 152 amino acid pairs). Ufd2p and p120 catenin have been classified as ARM-like repeat proteins. These results indicate that the N-terminal half of API5 adopts the characteristic HEAT repeat structure, which is composed of pairs of antiparallel helices, whereas the C-terminal half of API5 shows an ARM-like repeat structure. Superposition of API5 and the structurally similar protein is shown in Fig. 3. The interhelix turns between antiparallel helices are relatively short (between two and four residues) in the HEAT repeats of API5, resulting in a tight fold of the repeat structure, whereas the turns in the ARM-like repeat regions are longer (6 to 22 residues) (Fig. 2).

The amino acid sequence of API5 contains an LxxLL motif (16). The LxxLL motif forms a short amphipathic α-helix and is
	Selenomethionine 1	Selenomethionine 2	Wild type	K251Q
Data collection				
X-ray source	PLS-4A	PLS-6C	PLS-6C	PF-BL1A
Space group	P2_1_2, 2_1	P2_1_2, 2_1	P2_1_2	P2_1_2
Native cell parameters, $a = 46.42\,\text{Å}, b = 88.61\,\text{Å}, c = 136.29\,\text{Å}, \alpha = \beta = \gamma = 90^\circ$				
Data set	Selenium (peak)	Selenium (edge)	Selenium (peak)	Selenium (edge)
Resolution (Å)	50.0-3.10 (3.21-3.10)	50.0-3.10 (3.21-3.10)	50.0-3.60 (3.73-3.60)	50.0-3.50 (3.63-3.50)
Redundancy (%)	7.9 (8.1)	7.9 (8.1)	10.3 (8.6)	7.8 (7.0)
Completeness (%)	99.4 (100.0)	99.5 (100.0)	99.9 (99.3)	99.8 (98.9)
R_f / σ_r	50.7 (6.7)	49.5 (5.9)	32 (4.7)	31.8 (3.9)
R_{merge} (%)	6.5 (34.9)	5.8 (39.4)	12.8 (49.7)	10.4 (51.0)
Rephasing				
No. of Se sites	5	6		
Figure of merit (before/after RESOLVE)	0.61/0.76			
Refinement				
Resolution (Å)	50.0-2.50	50.0-2.60		
No. of reflections	18,082	17,022		
R_{work}/R_{free} (%)	21.6/24.2	21.3/25.0		
No. of atoms (protein/water)	3,389/119	3,382/60		
Average B-factors (protein/water) (Å²)	47.7/46.4	59.2/49.9		
Ramachandran plot (%)				
Favored	95.18	95.17		
Outliers	0.00	0.00		
Rotamer outliers (%)	0.53	0.79		
PDB code	3U0R	3V6A		

* Values in the parentheses refer to the highest resolution shells.
* Values obtained using Refmac (29).
* Values obtained using MolProbity (31).
usually found in nuclear receptor-cofactor interaction regions (35, 36). The LxxLL motif in API5 is positioned in α6 (Figs. 1A, 2, 4A). However, the three leucine residues in this motif are not located on the surface of the protein and likely do not play any role in protein-protein interactions. Instead, because they are located in the interior of the protein, they may contribute to the stability of the HEAT repeat by forming hydrophobic interactions with neighboring α-helices. Leu-102 interacts with Ala-120, Ile-124 of α7, and Leu-86 of α5. Leu-105 and Leu-106 interact with Val-117 and Phe-114 of α7, respectively (Fig. 4A). This finding is consistent with a previous report indicating that the replacement of these conserved leucine residues does not abolish FGF-2 binding (16).

Assessment of API5 Oligomerization and Heptad Leucine Repeat Region—The heptad repeat of leucine residues between residues 370 and 391 in API5 has been predicted to be a leucine zipper without a basic DNA-binding region (14). Therefore, it has been suggested that API5 may form a dimer in solution. However, the crystal structure of API5ΔC indicates that API5 is monomeric and that the putative leucine zipper (α18) does not interact with the corresponding helix of another subunit. Instead, it interacts with α19 of the same subunit (Figs. 1A and 4B). Two sets of low resolution data were collected from crystals of full-length API5 (~6 Å resolution) or API5ΔC (~4 Å resolution) grown under different crystallization conditions. Protein molecules positioned by the molecular replacement method indicate that both API5 and API5ΔC are monomeric under different crystallization conditions (data not shown).

Because the oligomeric state of API5 in the crystal was found to be different from the predicted dimeric state, the relevant oligomeric state of API5 in solution was further investigated by analytical ultracentrifugation (Fig. 5A). The estimated molecular mass (54,949 Da (±234)) agreed with the calculated molecular mass for an API5ΔC monomer, including the fusion tag (53,521 Da). The full-length API5 protein was also found to be monomeric, indicating minimal effects of the C-terminal truncation on the oligomeric structure of API5. The estimated molecular mass of full-length API5 (60,129 Da (±1,164)) agreed with the calculated molecular mass for the full-length API5 monomer including the fusion tag (58,934 Da).

Additionally, we transiently expressed HA-tagged and 3×FLAG-tagged full-length API5 in HeLa cells and performed
Structure of Apoptosis Inhibitor 5

	α1	α2	α3	α4	α5	α6	α7	α8	α9	α10	α11	α12	α13	α14	α15	α16	α17	α18	α19
Human	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	TLTTPRSVDGR	TLTTPRSVDGR	YWCLLYSFQG	YWCLLYSFQG	
Mouse	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	TLTTPRSVDGR	TLTTPRSVDGR	YWCLLYSFQG	YWCLLYSFQG	
Chicken	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	TLTTPRSVDGR	TLTTPRSVDGR	YWCLLYSFQG	YWCLLYSFQG	
Salmon	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	TLTTPRSVDGR	TLTTPRSVDGR	YWCLLYSFQG	YWCLLYSFQG	
Drosophila	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	MPTTVELYNY	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	DLCEDBVS1RRQA1KPHGATC	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	SQ1LOGEDIVRRA	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	VSCGQLYL8LYAQRADFC	TLTTPRSVDGR	TLTTPRSVDGR	YWCLLYSFQG	YWCLLYSFQG	

LxxLL

- Human: DLCEDBVS1RRQA1KPHGATC
- Mouse: DLCEDBVS1RRQA1KPHGATC
- Chicken: DLCEDBVS1RRQA1KPHGATC
- Salmon: DLCEDBVS1RRQA1KPHGATC
- Drosophila: DLCEDBVS1RRQA1KPHGATC

LxxLL

- Human: SQQLOGEDIVRRA
- Mouse: SQQLOGEDIVRRA
- Chicken: SQQLOGEDIVRRA
- Salmon: SQQLOGEDIVRRA
- Drosophila: SQQLOGEDIVRRA

LxxLL

- Human: VSCGQLYL8LYAQRADFC
- Mouse: VSCGQLYL8LYAQRADFC
- Chicken: VSCGQLYL8LYAQRADFC
- Salmon: VSCGQLYL8LYAQRADFC
- Drosophila: VSCGQLYL8LYAQRADFC

LxxLL

- Human: TLTTPRSVDGR
- Mouse: TLTTPRSVDGR
- Chicken: TLTTPRSVDGR
- Salmon: TLTTPRSVDGR
- Drosophila: TLTTPRSVDGR

LxxLL

- Human: YWCLLYSFQG
- Mouse: YWCLLYSFQG
- Chicken: YWCLLYSFQG
- Salmon: YWCLLYSFQG
- Drosophila: YWCLLYSFQG

NLS

- Human: DARQ1NPPSGKS
- Mouse: DARQ1NPPSGKS
- Chicken: DARQ1NPPSGKS
- Salmon: DARQ1NPPSGKS
- Drosophila: DARQ1NPPSGKS

- Human: VSCGQLYL8LYAQRADFC
- Mouse: VSCGQLYL8LYAQRADFC
- Chicken: VSCGQLYL8LYAQRADFC
- Salmon: VSCGQLYL8LYAQRADFC
- Drosophila: VSCGQLYL8LYAQRADFC
immunoprecipitation experiments (Fig. 5B). No interaction was found between HA-tagged API5 and 3×FLAG-tagged API5. This result shows that API5 does not homodimerize in cells. However, we cannot rule out the possibility that API5 heterodimerize with other leucine zipper-containing proteins under specific cellular conditions. Taken together, we unexpectedly discovered that API5 is monomeric and that its putative leucine zipper helix does not participate in dimerization. Three of the four leucine residues in the heptad repeat (Leu-377, Leu-384, and Leu-391) exhibit hydrophobic interactions with hydrophobic residues in Leu-377 and Leu-377 and Leu-384 interact with Ile-425 and Ile-421, respectively, and Leu-391 is close to Leu-415 (Fig. 4B). Leu-370 does not interact with other residues.

Lysine Acetylation and Its Effect on Cancer Cells—A global mass analysis showed that Lys-251 of API5 is acetylated in cells (37). Amino acid sequence alignment showed that this lysine residue is strictly conserved across a number of species (Fig. 2). Lys-251 is positioned in a loop between α13 and α14, which is extended from the protein (Fig. 1B). This finding suggests that acetyltransferases or deacetylases can easily access this residue.

API5 plays important roles in the inhibition of cell death under serum deprivation conditions (14, 15). Therefore, we tested whether lysine acetylation affected cell viability 48 h after the transient transfection under serum deprivation conditions (Fig. 6A). We made an acetylation-deficient, a constitutive acetylation mimic, and an uncharged mutant (K251R, K251Q, and K251A, respectively) (37, 38). Wild type API5 inhibited cell death by serum starvation compared with untreated or control vector-transfected cells. The K251R mutant exhibited even higher cell viability. However, the K251Q mutant did not inhibit apoptosis efficiently compared with the wild type API5 and the K251R mutant. The K251A mutant did not have anti-apoptotic function. This result means that the inhibition of apoptosis by API5 can be negatively regulated by Lys-251 acetylation. We tried to find the structural basis for anti-apoptotic function by lysine acetylation from the structure of K251Q mutant. However, no significant structural differences were found (supplemental Fig. S1).
We also tested whether lysine acetylation affected API5 protein stability. After 22 h of transfection, protein synthesis was stopped by treatment with cycloheximide, and the protein level was monitored by Western blot analysis after 4 h of treatment. The K251Q mutant was more stable than the wild type API5 and the K251R mutant (Fig. 6B). Similar results were also found when deacetylase inhibitor suberoylanilide hydroxamic acid was treated (Fig. 6C). Therefore, we conclude that the regulation of API5 function by lysine acetylation may occur via effects on protein stability. However, we could not detect any ubiquitination of API5 at Lys-251, suggesting the proteasome-independent degradation pathway (data not shown).

The cellular localization of API5 also was monitored to determine whether lysine acetylation affected the nuclear transport of API5. All of the wild type and mutants API5 (K251R and K251Q) were observed in the cell nuclei, implying that lysine acetylation did not affect cellular localization (supplemental Fig. S2). The analysis of the API5 and FGF-2 interaction detected by in vitro immunoprecipitation method using the purified recombinant API5 and FGF-2 did not show any significant FGF-2 binding differences between wild type and mutant API5s (supplemental Fig. S3).

DISCUSSION

In this study, we determined the crystal structure of human API5 and found that API5 contains protein-protein interaction modules, such as HEAT and ARM repeats (Fig. 1A). Different types of helix repeat, including HEAT, ARM, ankyrin, tetratricopeptide, and leucine-rich variant repeats, have been found in many proteins and have diverse functional roles in mediating protein-protein interactions (39). The elongated structure of API5 is well suited for interactions with multiple binding partners, similar to the roles of other repeat proteins (40).

![FIGURE 5. Oligomerization of API5. A, analytical ultracentrifugation analysis. Distributions of the residuals according to both a monomer (1×, circle) and a dimer (2×, square) models. The random distributions of residuals for the monomer (1×) model indicate that API5ΔC exists as a homogeneous monomer in solution. B, immunoprecipitation (IP) and Western blot (WB) analysis with anti-FLAG and anti-HA API5. No interaction was found between FLAG-API5 and HA-API5, ruling out the possibility of API5 homodimerization.](image)

![FIGURE 6. Effects of API5 acetylation at Lys-251. Wild type API5, an acetylation-deficient mutant (K251R), a constitutive acetylation mimic mutant (K251Q), and an uncharged mutant (K251A) were transiently expressed. A, effects on cell viability under conditions of serum deprivation. The K251Q and K251A mutants do not inhibit apoptosis efficiently. B, effects of Lys-251 acetylation on protein stability. Cycloheximide (CHX) treatment was used to inhibit protein synthesis, and Western blot (WB)/normalized densitometry analysis was performed to monitor protein stability in cells. C, effects on protein stability when deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was co-treated with cycloheximide to wild type API5-transfected cells.](image)
ARM repeat-containing protein (e.g. β-catenin) in complex with the interacting proteins have been determined (44–47). In many curved HEAT repeat proteins, protein-protein interactions are mediated by the concave surface of the protein, regardless of the surface charge distribution, and the protein-protein interaction surface involving the ARM repeat proteins usually span the entire range of the repeat. The charged concave or convex side of the API5 is well conserved across a number of species. This suggests that binding partners can bind to these regions.

It has been reported that high molecular mass FGF-2 interacts with API5 in the nucleus, and immunoprecipitation results suggest that two separate regions corresponding to three helices (α6 and α15–α16) of API5 are important for FGF-2 binding (16). The α6 is exposed to the convex surface of API5, and α15–α16 are exposed on both the concave and convex surfaces. Analyses of surface properties indicated that the convex side of API5 is highly negatively charged, whereas FGF-2 is highly positively charged (Fig. 1B). Although hydrophobic interactions may also be important for binding, we predict that the positively charged high molecular mass FGF-2 likely binds to the negatively charged convex surface of API5, as determined from previous immunoprecipitation results and surface electrostatic potential (16).

It has been reported that API5 binds to Acinus and protects it from cleavage by caspase-3, resulting in an inhibition of apoptosis (23). Acinus has been identified as a component of an ASAP (apoptosis and splicing-associated protein) complex and an exon junction complex (EJC) (48, 49). API5 and Acinus interact with each other through the heptad leucine repeat region of API5, which seems to be important for API5 function and may therefore represent a potential therapeutic target for anti-cancer drugs (23). Mutation of leucine residues (Leu-384 and Leu-391) in the heptad leucine repeat region abrogates the anti-apoptotic effects of API5 (14, 23). Because Leu-384 and Leu-391 contribute to hydrophobic interactions with other hydrophobic residues in α19, mutation of these residues might cause a distortion of the local structure of API5, thus affecting protein-protein interactions, rather than inhibiting the dimerization. Because API5 is monomeric and the heptad leucine repeat of API5 is structurally distinct from that of other leucine zippers, API5 provides a unique opportunity for anti-cancer drug discovery through targeting of this region. How-
Structure of Apoptosis Inhibitor 5

Furthermore, since we show that the API5 function is regulated by lysine acetylation, identifying the lysine acetyltransferases and deacetylases that act on API5 should also yield a better understanding of the mechanisms that regulate API5 function.

Acknowledgments—We thank the staff at the Pohang Light Source (beamlines 4A and 6C) and the Photon Factory (BL-1A) for assistance.

REFERENCES

1. Meier, P., Finch, A., and Evan, G. (2000) Apoptosis in development. Nature 407, 796–801
2. Danial, N. N., and Korsmeyer, S. J. (2004) Cell death: Critical control points. Cell 116, 205–219
3. Igney, F. H., and Krammer, P. H. (2002) Death and anti-death: Tumor necrosis factor family receptors and death receptor function. Nat. Rev. Cancer 2, 277–288
4. Yang, S. Y., Sales, K. M., Fuller, B., Seifalian, A. M., and Winslet, M. C. (2010) API5: a novel anti-apoptotic protein. Trends Mol. Med. 15, 225–233
5. Altermi, D. C. (2010) Survivin and IAP proteins in cell death mechanisms. Biochim. J. 430, 199–205
6. Ghobrial, I. M., Witzig, T. E., and Adjie, A. A. (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin. 55, 178–194
7. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996) Human ICE/CED-3 protein: a caspase that catalyzes the cleavage of poly(ADP-ribose) polymerase and brings about cell death. Cell 87, 171
8. Wyllie, A. H., Kerr, J. F., and Currie, A. R. (1980) Cell death: The significance of the apoptotic process. Int. Rev. Cytol. 68, 251–306
9. Kasibhatla, S., and Tseng, B. (2003) Why target apoptosis in cancer treatment? Mol. Ther. 2, 573–580
10. Salvesen, G. S., and Duckett, C. S. (2002) IAP proteins: Blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401–410
11. Srinivasula, S. M., and Ashwell, J. D. (2008) IAPs: What's in a name? Mol. Cell 30, 123–135
12. Pyrd-Hansen, M., and Meier, P. (2010) IAPs: From caspase inhibitors to modulators of NF-κB, inflammation, and cancer. Nat. Rev. Cancer 10, 561–574
13. Li, X., Gao, X., Wei, Y., Deng, L., Ouyang, Y., Chen, G., Li, X., Zhang, Q., and Wu, C. (2011) Rice APOTOPSIS INHIBITOR5 coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23, 1416–1434
14. Tewari, M., Pejchalova, K., Rosenbloom, B. E., Rosenfelt, F. P., Tran, E. L., Krejci, P., Pejchalova, K., Rosenbloom, B. E., Rosenfelt, F. P., Tran, E. L., Laurell, H., and Wilcox, W. R. (2007) The antiapoptotic protein Api5 and its partner, high molecular weight FGFR2, are up-regulated in B cell chronic lymphoid leukemia. J. Leukoc. Biol. 82, 1363–1364
15. Wang, Z., Liu, H., Liu, B., Ma, W., Xue, X., Chen, J., and Zhou, Q. (2010) Gene expression levels of CSNK1A1 and AAC-11, but not NME1, in tumor tissues as prognostic factors in NSCLC patients. Med. Sci. Monit. 16, 357–364
16. Morris, E. J., Michaud, W. A., Li, J. Y., Moon, N. S., Rocco, J. W., and Dyson, N. J. (2006) Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PloS Genet. 2, e196
17. Ren, K., Zhang, W., Shi, Y., and Gong, J. (2010) Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-κB pathway. Pathol. Oncol. Res. 16, 229–237
18. Krijft, P., Piddubnyak, V., Faye, A., Rain, I. C., Michel, L., Calvo, F., and Poyet, J. L. (2009) The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation. EMBO J. 28, 1576–1588
19. Ahel, D., Horejsi, Z., Wiechens, N., Polo, S. E., García-Wilson, E., Ahel, I., Flynn, H., Skehel, M., West, S. C., Jackson, S. P., Owen-Hughes, T., and Boulton, S. J. (2009) Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALCI. Science 325, 1240–1243
20. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307–326
21. Terviliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861
22. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
23. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Duch, I. W., Echols, N., Headd, J. I., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terviliger, T. C., and Zwart, P. H. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221
24. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255
25. Brünger, A. T. (1992) Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475
26. Chen, V. B., Arendall, W. B., 3rd, Headd, J. I., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21
27. Deng, L., Hong, C. K., Lee, S., Kim, C. S., Kim, S. J., Kim, S. I., and Bhee, S. (2007) Structural and functional insights into intramolecular fructosyl transfer by inulin fructotransferase. J. Biol. Chem. 282, 8414–8423
28. Dozátani, Z., Czaizmok, V., Tompa, P., and Simon, I. (2005) IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434
29. Holm, L., and Rosenström, P. (2010) Dali server: Conservation mapping in 3D. Nuclear Acids Res. 38, W545–549
30. Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997) A putative motif in transcriptional co-activators mediates binding to nuclear hormone receptors. Nature 387, 733–736
31. Plevin, M. J., Mills, M. M., and Ikura, M. (2007) The Lasso: A multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 30, 66–69
32. Choudhary, C., Kumar, C., Gnädig, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V., and Mann, M. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840
33. Sorgaard, B. T., Robzyk, K., Wang, D., Marcu, M. G., Tsutsumi, S., Beebe, K., Cotter, R. J., Felts, S., Tolf, D., Kornitz, L., Rosen, N., and Neckers, L. (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell 25, 151–159
34. Groves, M. R., and Barford, D. (1999) Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389
35. Tu, D., Li, W., Ye, Y., and Brunger, A. T. (2007) Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc. Natl. Acad. Sci. U.S.A. 104, 15599–15606
36. Vetter, I. R., Arndt, A., Kutay, U., Görlich, D., and Wittinghofer, A. (1999) Structural view of the Ran-Importin β interaction at 2.3 Å resolution. Cell 97, 635–646
37. Cho, U. S., and Xu, W. (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445, 53–57
43. Goldenberg, S. J., Cascio, T. C., Shumway, S. D., Garbutt, K. C., Liu, J., Xiong, Y., and Zheng, N. (2004) Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. *Cell* 119, 517–528

44. Choi, H. J., Gross, J. C., Pokutta, S., and Weis, W. I. (2009) Interactions of plakoglobin and β-catenin with desmosomal cadherins: Basis of selective exclusion of α- and β-catenin from desmosomes. *J. Biol. Chem.* 284, 31776–31788

45. Sampietro, J., Dahlberg, C. L., Cho, U. S., Hinds, T. R., Kimelman, D., and Xu, W. (2006) Crystal structure of a β-catenin-BCL9-Tcf4 complex. *Mol. Cell* 24, 293–300

46. Xing, Y., Clements, W. K., Kimelman, D., and Xu, W. (2003) Crystal structure of a β-catenin-axin complex suggests a mechanism for the β-catenin destruction complex. *Genes Dev.* 17, 2753–2764

47. Huber, A. H., and Weis, W. I. (2001) The structure of the β-catenin-E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. *Cell* 105, 391–402

48. Schwerk, C., Prasad, J., Degenhardt, K., Erdjument-Bromage, H., White, E., Tempest, P., Kidd, V. J., Manley, J. L., Lahti, J. M., and Reinberg, D. (2003) ASAP, a novel protein complex involved in RNA processing and apoptosis. *Mol. Cell Biol.* 23, 2981–2990

49. Tange, T. Ø., Shibuya, T., Jurica, M. S., and Moore, M. J. (2005) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. *RNA* 11, 1869–1883

50. Yang, X. J. (2004) Lysine acetylation and the bromodomain: A new partnership for signaling. *Bioessays* 26, 1076–1087

51. Yang, X. J., and Seto, E. (2008) Lysine acetylation: Codified cross-talk with other post-translational modifications. *Mol. Cell* 31, 449–461

52. Zeng, L., and Zhou, M. M. (2002) Bromodomain: An acetylysin binding domain. *FEBS Lett.* 513, 124–128

53. Shen, H. (2009) UAP56, a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. *BMB Rep* 42, 185–188

54. Sträßer, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondón, A. G., Aguilera, A., Struhl, K., Reed, R., and Hurt, E. (2002) TREX is a conserved complex coupling transcription with messenger RNA export. *Nature* 417, 304–308

55. Le Hir, H., and Andersen, G. R. (2008) Structural insights into the exon junction complex. *Curr. Opin. Struct. Biol.* 18, 112–119

56. Ma, N. F., Hu, L., Fung, J. M., Xie, D., Zheng, B. J., Chen, L., Tang, D. J., Fu, L., Wu, Z., Chen, M., Fang, Y., and Guan, X. Y. (2008) Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. *Hepatology* 47, 503–510

57. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. (2010) ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. *Nucleic Acids Res.* 38, W529–533