Parity mixing in the single particle states of quadrupole-octupole deformed nuclei

To cite this article: N Minkov et al 2010 J. Phys.: Conf. Ser. 205 012009

View the article online for updates and enhancements.
Parity mixing in the single particle states of quadrupole-octupole deformed nuclei

N Minkov¹, S Drenska¹, M Strecker² and W Scheid²

¹ Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigrad Road 72, BG–1784 Sofia, Bulgaria
² Institut für Theoretische Physik der Justus-Liebig-Universität, Heinrich-Buff-Ring 16, D–35392 Giessen, Germany
E-mail: nminkov@inrne.bas.bg

Abstract. The effect of parity mixing in the single particle (s.p.) states of odd-mass nuclei with quadrupole-octupole deformations is examined through a reflection-asymmetric deformed shell model. A strong coupling scheme between the parity mixed s.p. state and a coherent quadrupole-octupole vibration mode in the core is considered. The Coriolis decoupling factor is obtained in a projected form corresponding to the good total parity of the system. The average parity of the s.p. state and the decoupling factor are evaluated in several nuclei as functions of the quadrupole and octupole deformation parameters \(\beta_2 \) and \(\beta_3 \). It is found that the average s.p. parity obtains various dominant (+ or −) values in the \((\beta_2, \beta_3)\)-plane, while the s.p. wave function is strongly fragmented into components with different parities. It is shown that by comparing the behaviour of the decoupling factor in the \((\beta_2, \beta_3)\)-plane to values obtained in a collective quadrupole-octupole model one can determine physically reasonable regions for the deformation parameters.

1. Introduction

In odd-mass atomic nuclei with quadrupole-octupole shapes the coupling of the collective rotations and vibrations to the single-particle (s.p.) motion of the unpaired nucleon provides a split parity-doublet structure of the spectrum [1, 2]. It is known that the octupole deformation of the core can induce respective deformation in the s.p. potential [3]. In this situation, known as a strong coupling, the state of the odd nucleon appears without good parity. On its turn the parity-mixed s.p. state couples to the core state in a way that the total state of the nucleus remains with a good parity. The relevant wave function of the total state can be constructed if a particular model assumption for the behaviour of the core with respect to the reflection asymmetric (octupole) degree of freedom is made.

In the present work a coupling of the particle to a core performing coherent quadrupole-octupole vibrations and rotations [4] is considered. It will be seen that such a coupling scheme provides a reasonable physical framework to examine the effect of the parity mixing in the s.p. state on the total behaviour of the system as well as on the interaction between the collective and s.p. motions of the nucleus. The magnitude of the parity mixing is characterized by the expectation value of the parity operator in the s.p. state. For the s.p. states with \(z \)-projection of the angular momentum \(K = 1/2 \) the effect of the Coriolis interaction between the odd particle
and the rotating core has to be considered. Below it will be seen that the way in which this should be done essentially depends on the parity mixing.

The purpose of the present work is to examine the behaviour of the parity mixing and its effect on the Coriolis interaction in some odd-mass nuclei in dependence on the quadrupole and octupole deformations. The numerical evaluation of the Coriolis decoupling factor and the average parity is realized within a deformed shell model with reflection asymmetry in the basis of the axially deformed harmonic oscillator (ADHO) [5].

In sec. 2 the general Hamiltonian of the quadrupole-octupole vibrating and rotating core plus particle is considered. In sec. 3 the particle-core coupling scheme is considered. In sec. 4 the decoupling factor is determined. Numerical results and discussions are given in sec. 5.

2. Hamiltonian of quadrupole–octupole vibrating and rotating core plus particle

The Hamiltonian of an odd-mass nucleus with quadrupole–octupole degrees of freedom can be written in the form

\[H = H_{\text{coll}}^{\text{qoc}} + H_{\text{sp}} + H_{\text{coriol}}, \]

where \(H_{\text{coll}}^{\text{qoc}} \) corresponds to the collective quadrupole-octupole vibrations and rotation of the system, \(H_{\text{sp}} \) describes the motion of the odd particle (neutron or proton) in the field of the even-even core, while \(H_{\text{coriol}} \) represents the Coriolis interaction between the core and the particle. The quadrupole and octupole vibration modes in \(H_{\text{coll}}^{\text{qoc}} \) can be mixed through a centrifugal term if a dependence of the moment of inertia on the respective deformation variables \(\beta_2 \) and \(\beta_3 \) is assumed. The Coriolis part \(H_{\text{coriol}} \) can be superposed to the centrifugal term yielding the Hamiltonian

\[H' = H_{\text{coll}}^{\text{qoc}} + H_{\text{coriol}} = -\frac{\hbar^2}{2B_2} \frac{\partial^2}{\partial \beta_2^2} - \frac{\hbar^2}{2B_3} \frac{\partial^2}{\partial \beta_3^2} + \frac{1}{2} C_2 \beta_2^2 + \frac{1}{2} C_3 \beta_3^2 \]

\[+ \frac{j_z^2 - j_- j_+}{2(d_2 \beta_2^2 + d_3 \beta_3^2)}, \]

(2)

where \(B_2 \) and \(B_3 \) are effective quadrupole and octupole mass parameters and \(C_2 \) and \(C_3 \) are stiffness parameters for the respective oscillation modes. Here \(j_\pm = \hat{j}_x \pm i \hat{j}_y \) are the total angular momentum operators, while \(\hat{j}_x = j_x \pm j_y \) are the spherical components of the total intrinsic particle angular momentum \(\hat{j} \). In [4] the s.p. Hamiltonian \(H_{\text{sp}} \) was not considered explicitly and the contribution of the Coriolis part in (2) was treated phenomenologically by taking the decoupling factor as a free adjustable parameter. The Schrödinger equation for the Hamiltonian (2) was solved by assuming certain relations between the quadrupole and octupole stiffness and mass parameters which provide a coherent interplay between the both degrees of freedom. The obtained energy spectrum has a split parity-doublet structure with the wave function of the quadrupole-octupole oscillating core \(\Phi_{\text{vib}} \equiv \Phi_{\text{core}} \) determining core vibrating states with given parity \(\pi_c = (\pm) \) [4].

In the present work the single particle Hamiltonian \(H_{\text{sp}} \) is considered explicitly which allows one first, to construct an appropriate total wave function carrying detailed information for the motion of the odd nucleon in the reflection asymmetric s.p. potential, and second, to implement respectively a fully microscopic treatment of the Coriolis interaction by directly calculating the decoupling factor. For this purpose \(H_{\text{sp}} \) is taken in a form including a Woods-Saxon potential with axial quadrupole and octupole deformations [5]

\[H_{\text{sp}} = T + V_{\text{ws}} + V_{\text{s.o.}} + V_c, \]

(3)
where $V_{ws}(r, \beta) = V_0 \left[1 + \exp \left(\frac{\text{dist}_\Sigma(r, \beta)}{a} \right) \right]^{-1}$ is the Woods-Saxon potential with $\beta = (\beta_2, \beta_3, \beta_4, \beta_5, \beta_6)$ and $\text{dist}_\Sigma(r, \beta)$ being the distance between the point r and the nuclear surface represented by $R(\theta, \beta) = c(\beta)R_0 \left[1 + \sum_{\lambda=2,3,\ldots} \beta_\lambda Y_\lambda(\cos \theta) \right]$ ($c(\beta)$ is a volume conserving factor). $V_{s.o.}$ and V_c are the spin-orbit and Coulomb terms whose analytic form is given in [5]. Hamiltonian (3) is diagonalized in the ADHO basis $|Nn_\Lambda\Omega\rangle$. Due to the axial symmetry, Ω is equal to the third projection K of the total angular momentum I. The wave function for the odd particle is obtained as an expansion in the ADHO basis functions

$$F_\Omega = \sum_{Nn_\Lambda} C_{Nn_\Lambda}^{\Omega} |Nn_\Lambda\Omega\rangle. \quad (4)$$

The Hamiltonian (3) can be applied in the two cases of reflection-symmetric ($\beta_3 = 0$) and reflection-asymmetric ($\beta_3 \neq 0$) deformations of the s.p. potential. The respective s.p. wave functions, F_Ω, correspond to states with a good parity $\pi_{sp} = (+)$ or $(-)$ ($\beta_3 = 0$) and to mixed-parity states without determined parity ($\beta_3 \neq 0$). Since the parity of the basis states $|Nn_\Lambda\Omega\rangle$ is given by $(-1)^N$, in the first case the expansion (4) contains only terms with $N = \text{even}$ ($\pi_{sp} = +$), or $N = \text{odd}$ ($\pi_{sp} = -$). In the second case both terms with even and odd N are present in (4).

Thus in the case of a mixed s.p. state the expansion (4) contains components with both parities $\pi_{sp} = (-1)^N = +1$ and -1. Then the wave function F_Ω can be written as

$$F_\Omega = \sum_{\pi_{sp}=\pm1} F_\Omega^{(\pi_{sp})} = F_\Omega^{(+)} + F_\Omega^{(-)}, \quad (5)$$

where $F_\Omega^{(+)}$ contains only the positive parity components, while $F_\Omega^{(-)}$ contains the negative ones with

$$\hat{\pi}_{sp} F_\Omega^{(\pm)} = \pm F_\Omega^{(\pm)} . \quad (6)$$

Then the action of the s.p. parity operator $\hat{\pi}_{sp}$ on the function F_Ω gives

$$\hat{\pi}_{sp} F_\Omega = F_\Omega^{(+)} - F_\Omega^{(-)}. \quad (7)$$

The parity mixing in a given s.p. state is characterized by the expectation (average) value of the parity operator in this state

$$\langle \hat{\pi}_{sp} \rangle = \langle F_\Omega | \hat{\pi}_{sp} | F_\Omega \rangle = \sum_{Nn_\Lambda} (-1)^N |C_{Nn_\Lambda}^{\Omega}|^2 .$$

3. Total particle-core wave function

The total wave function for the Hamiltonian (1) with the ansatz (2) and (3) can be given in a symmetrized form providing a good total parity π and R_1 invariance of the system

$$\Psi_{IK}^{\pi} = \frac{1}{2} \mathcal{N}(1 + R_1) D_{MK}^I(\theta)(1 + \pi \hat{P}) \Phi_{core}^{\pi_c} F_K. \quad (8)$$

Here, $D_{MK}^I(\theta)$ is the rotation function and \mathcal{N} is a normalization factor. The operator $\hat{P} = \hat{r}_c \cdot \hat{\pi}_{sp}$ is a composition of the core and s.p. parity operators \hat{r}_c and $\hat{\pi}_{sp}$, respectively. The operator R_1 represents a rotation by an angle π about an axis perpendicular to the intrinsic z-axis and acts on the rotation, core and s.p. parts of the wave function, respectively, as follows

$$R_1 D_{MK}^I = (-1)^{I-K} D_{MK}^I, \quad R_1 \Phi_{core}^{\pi_c} = \hat{r}_c \Phi_{core}^{\pi_c} = \pi_c \Phi_{core}^{\pi_c}, \quad R_1 F_K = F_{-K}. \quad (9)$$
The core parity π_c is fixed so as $\pi_c = (+)$ for the split doublet counterparts containing the ground state (states shifted down), and $\pi_c = (-)$ for the states shifted up. According to the model of coherent quadrupole–octupole motion [4] the lower $\pi_c = (+)$ oscillating-core state is characterized by the function $\phi^+ (\phi) = \sqrt{2/\pi} \cos (\phi)$, while the next upper $\pi_c = (-)$ state is presented by $\phi^- (\phi) = \sqrt{2/\pi} \sin (2\phi)$, where ϕ is the quadrupole–octupole angular variable [see Eqs. (15) and (16) in [4]]. The full core wave function has the form $\Phi^{\pi_c \psi}(\eta, \phi) = \psi(\eta) \phi^{\pi_c}(\phi)$, where $\psi(\eta)$ is the “radial” part obtained in terms of Laguerre polynomials for the effective quadrupole-octupole deformation η [see Eq. (14) in [4]].

The s.p. wave function \mathcal{F}_K represents a mixture of two parts $\mathcal{F}_K^{(\pm)}$ with opposite parities. Under the above condition the operator $1 + \pi \hat{P}$ projects out the component $\mathcal{F}_K^{(+)}$ or $\mathcal{F}_K^{(-)}$ from \mathcal{F}_K providing a good total parity of the states in the split parity-doublet spectrum. Thus, if the lowest (ground) state (gs) of the doublet has a positive total parity, $\pi_{gs} = (+)$, the projected component is $\mathcal{F}_K^{(+)}$, while for a negative-parity of the ground state, $\pi_{gs} = (-)$, the projected component is $\mathcal{F}_K^{(-)}$. These two situations are shown schematically in Fig. 1. In the limiting case of $\beta_3 = 0$, the good parity of the s.p. state $\pi_{sp} = (+)$, or $(-)$ is restored. Then only the component $\mathcal{F}_K^{(+)}$ or $\mathcal{F}_K^{(-)}$ remains non-zero and the scheme reduces to a s.p. wave function $\mathcal{F}_K^{\pi_{sp}} \equiv \mathcal{F}_K^{(+)}$, or $\mathcal{F}_K^{(-)}$ with a good parity.

4. Decoupling factor for a parity-mixed s.p. state

When the system possesses reflection asymmetry the standard definition [1] for the Coriolis decoupling factor, $a = \langle \mathcal{F}_{1/2} \mid \hat{J}_+ \mid \mathcal{F}_{-1/2} \rangle$, needs to be modified in dependence on the considered core+particle coupling scheme. The modified decoupling factor a_{pc} (‘pc’ means particle-core) is determined through the matrix element

$$-\langle \Psi_{IM_\frac{1}{2}}^{\pi} \mid \hat{J}_- \hat{J}_+ \mid \Psi_{IM_\frac{1}{2}}^{\pi} \rangle = N^2 (-1)^{I + \frac{1}{2}} (I + \frac{1}{2}) \cdot a_{pc}. \quad (10)$$

Thus for the total wave function (8) with the transformation properties (9) and (7) the factor a_{pc} is obtained in the form

$$a_{pc} = \frac{1}{2} \pi_c \left(\left\langle \mathcal{F}_{1/2}^{(\pm)} \mid \hat{J}_- \hat{J}_+ \mid \mathcal{F}_{-1/2}^{(\pm)} \right\rangle + \pi \pi_c \left\langle \hat{\pi}_{sp} \mathcal{F}_{1/2}^{(\pm)} \mid \hat{J}_- \hat{J}_+ \mid \mathcal{F}_{-1/2}^{(\pm)} \right\rangle \right)$$

$$= \frac{1}{2} \pi_c \left((1 + \pi \pi_c) a^{(+)} + (1 - \pi \pi_c) a^{(-)} \right), \quad (11)$$

where

$$a^{(+)} = \left\langle \mathcal{F}_{1/2}^{(+)} \mid \hat{J}_+ \mathcal{F}_{1/2}^{(+)} \right\rangle, \quad a^{(-)} = \left\langle \mathcal{F}_{1/2}^{(-)} \mid \hat{J}_- \mathcal{F}_{-1/2}^{(-)} \right\rangle. \quad (12)$$
Table 1. Particular forms of the decoupling factor a_{pc} in dependence on the ground-state parity π_{gs} and the parity π of a given state.

π	π_{gs}	a_{pc}
$+$	$+$	$a_{(+)}$
$+$	$-$	$-a_{(+)}$
$-$	$+$	$-a_{(-)}$
$-$	$-$	$a_{(-)}$

with $\langle \mathcal{F}^{(+)}_{1/2}|\hat{j}_+|\mathcal{F}^{(-)}_{-1/2}\rangle = \langle \mathcal{F}^{(-)}_{1/2}|\hat{j}_+|\mathcal{F}^{(+)}_{-1/2}\rangle = 0$. The factors $a_{(+)}$ and $a_{(-)}$ represent projected matrix elements of the operator \hat{j}_+ in the subspaces of positive and negative parity components of the s.p. wave function, respectively. By using the expansion (4) they are obtained in the form

$$a_{\pm} = \sum_{Nn\Lambda} \sum_{N'n'\Lambda'} C_{N'n'}^{*} C_{Nn} C_{N'n\Lambda}^{1} \times \langle N'n'\Lambda'_{1/2}|\hat{j}_+|Nn\Lambda - 1/2\rangle,$$

(13)

where the matrix element of \hat{j}_+ between ADHO basis states (with N even or odd) can be calculated through an available analytic expression [6] (see also Table 1 in Ref. [7]).

It can be straightforward seen, that according to Eq. (11), the decoupling factor a_{pc} is reduced to $\pi a_{(+)} = \pm a_{(+)}$ when the downwards shifted sequence (containing the ground state) has positive total parity $\pi_{gs} = (+)$, and to $-\pi a_{(-)} = \mp a_{(-)}$ when this sequence has negative total parity $\pi_{gs} = (-)$. This is illustrated in Table 1 (see also Fig. 1). (Note that π_{gs} is the total parity in the ground state, while π_c is the core parity considered to be always $(+)$ in the ground state.) From Table 1 it is seen that for a given state I^π in the parity-doublet one can shortly write

$$a_{pc} = \pi \pi_{gs} a_{\pi_{gs}} = \pm \pi a_{\pm}.$$

(14)

Now one can easily obtain a correspondence between the values of the decoupling factor a_{qoc} fitted in the model of coherent quadrupole–octupole motion [4] and the values of the projected decoupling factors a_{\pm} in the present scheme. One has

$$a_{\text{coll}} = \pi a_{qoc} \leftrightarrow \pi \pi_{gs} a_{\pi_{gs}} = \pm \pi a_{\pm} = a_{pc},$$

which gives

$$a_{qoc} \leftrightarrow \pi_{gs} a_{\pi_{gs}} = \pm a_{\pm}.$$

(15)

In the limiting case $\beta_3 = 0$ of a good s.p. parity the quantity a_{pc} reduces to the standard Coriolis decoupling factor.

5. Numerical results and discussion

The numerical behaviour of the average s.p. model parity $\langle \hat{\pi}_{sp} \rangle$ and of the parity-projected decoupling factor a_{pc} was examined as a function of the quadrupole and octupole deformations in several odd-mass nuclei. Numerical calculations were performed on a net in the two-dimensional space of the parameters β_2 and β_3.

In Fig. 2 the behaviour of the average s.p. model parity in the nuclei 237U, and 249Cm is shown (upper plots) as a function of the octupole deformation β_3 at β_2 corresponding to the
The behaviour of the quantity $a^{(+)}$ (which determines the decoupling factor a_{pc} in the cases of a ground state with $K = 1/2^+$) as a function of β_2 and β_3 in the nucleus 239Pu is illustrated in Fig. 3. The left plot shows a two-dimensional surface containing the values of $a^{(+)}$ in the (β_2, β_3)-regions with $K = 1/2$. The right plot contains a contour which corresponds to the intersection of the two-dimensional surface with the plane determined by the decoupling parameter value $a_{\text{coll}} = -0.34$ fitted in the collective model [4]. This contour outlines deformation regions for...
Figure 3. The decoupling factor $a_{pc} = a^{(+)}$ in 239Pu as a function of β_2 and β_3. The flat area at $a^{(+)} = 0$ in the left plot and the white area in the contour plot (right) correspond to $K \neq 1/2$.

which the microscopically calculated decoupling factor a_{pc} provides a reasonable description of the split parity-doublet structure, perturbed by the Coriolis interaction, of the experimental spectrum in 239Pu. Two experimental guesses for the quadrupole deformation, $\beta_2 = 0.227$ (from an experimental data base for 239Pu) and 0.286 (from the core nucleus 238Pu) and one for the octupole deformation, $\beta_3 = 0.091$ (also from 238Pu), are given in the right plot of Fig. 3. It is seen that the couple of 238Pu core-deformations ($\beta_2 = 0.286, \beta_3 = 0.091$) lies exactly on the contour, while the value $\beta_2 = 0.227$ suggests a slightly larger octupole deformation $\beta_3 = 0.117$ for the odd-mass nucleus 239Pu. This result shows that by comparing the behaviour of the microscopically obtained decoupling factor a_{pc} in the (β_2, β_3)-plane to a value obtained in the collective model one can determine physically reasonable regions of quadrupole and octupole deformations in the considered nucleus. However, more detailed analysis of the possible deformation values and the corresponding dominant s.p. parity $|\hat{\pi}_{sp}\rangle$ should be done in order to draw a definite conclusion.

Finally, the obtained results indicate the possibility for a consistent collective and microscopic model description of the split parity-doublet spectra in odd-mass nuclei. This is the subject of further work.

Acknowledgements
This work is supported by DFG and by the Bulgarian Scientific Fund under contract F-1502/05.

References
[1] Bohr A and Mottelson B R 1975 Nuclear Structure vol 2 (New York: Benjamin)
[2] Butler P A and Nazarewicz W 1996 Rev. Mod. Phys. 68 349
[3] Leander G A and Sheline R K 1984 Nucl. Phys. A 413 375
[4] Minkov N, Drenski S, Yotov P, Lalkovski S, Bonatsos D and Scheid W 2007 Phys. Rev. C 76 034324
[5] Cwiok S, Dudek J, Nazarewicz W, Skalski J and Werner T 1987 Comp. Phys. Comm. 46 379
[6] Bonneau L 2008 Eléments de matrice de \hat{j}_+, \hat{j}_- dans la base asymptotique CENBG Bordeaux Preprint
[7] Boisson J P and Piepenbring R 1971 Nucl. Phys. A 168 385