The Genus *Chlorociboria*, Blue-Green Micromycetes in South Korea

Dong Liu¹, Huan Wang²*, Jung Shin Park¹ and Jae-Seoun Hur¹,*

¹Korean Lichen Research Institute (KoLRI), Sunchon National University, Suncheon 57922, Korea
²Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agriculture University, Changchun 130118, China

Abstract The species of the genus *Chlorociboria* Seaver are very common on the forest floor, and can be easily distinguished by small and numerous blue-green fruitbody, especially the blue substrate dyed with xylindrin produced by this group. This genus has rather high species diversity in the Southern Hemisphere, while a little attention was paid to this group in East Asia area. During a field survey in South Korea, several *Chlorociboria* specimens were collected. Based on morphological and phylogenetic analyses, three species of *Chlorociboria* were reported, including one new record in South Korea and one new record in Jeju Island. The key to the species of *Chlorociboria* from South Korea is provided.

Keywords *Chlorociboria*, Molecular phylogeny, New record, South Korea

The genus *Chlorociboria* Seaver belonging to Helotiales is distributed worldwide and is very common on the hardwood debris of sugar maple, poplar, birch, beech, alder, and oak, as well as the softwoods pine and cedar [1, 2]. This genus characterized by its small and numerous blue-green fruitbody typically grows on green-blue-stained wood. The green-blue staining of wood debris caused by infection with *Chlorociboria* species makes this fungus easy to recognize on the forest floor. The blue-green pigment (xylindrin) produced by *Chlorociboria* species has no important applications because of the lack of easily obtainable natural or synthetic xylindrin [2].

The genus *Chlorociboria* was erected by Seaver (1936) [3] and then placed in the family Helotiaecae, tribe Helotieae [4]. Later, Dixon [1, 5] monographed three genera *Chlorosplenium*, *Chlorociboria*, and *Chlorencoelia*, and accepted four species in *Chlorociboria*, with one divided into two geographically distinct subspecies. Recently, 15 species were recorded in New Zealand, including 13 new species and 1 new subspecies; while phylogenetic analyses revealed that the genus *Chlorociboria* is a monophyletic group belonging to the Helotiales clade based on neighbor-joining and parsimony analysis [6]. Approximately 19 species have been discovered worldwide mainly based on the spore size and shape [1, 6-
but only two species have been recorded in the South Korea mainland and Ulleung Island [9, 10]. During a field survey in 2016, several specimens of Chlorociboria were collected. Based on morphological and phylogenetic analyses, three species were confirmed, including one new record in South Korea. The distribution (Fig. 1) and key to the Chlorociboria species in South Korea are described here.

MATERIALS AND METHODS

Specimens and morphological observation. The samples collected from South Korea were preserved in Korean Lichen Research Institute. Specimen examination and hand-sectioning was conducted under a dissecting microscope (SMZ 745T, Nikon, Tokyo, Japan). All anatomical

Taxon	Collection No.	Accession No.	Location
Botrytis cinerea	isolated, 1423.K	Z3765	Norway
Sclerotinia sclerotiorum	926.P	Z3799	Norway
C. aeruginascens	76435 (PDD)	AY755349	New Zealand
C. aeruginascens	167755 (TRTC)	JX843712	Canada
C. aeruginascens	167754 (TRTC)	JX948104	Canada
C. aeruginascens	19709 (TU)	LT158477	Estonia
C. aeruginascens	BHI-F393 (FH)	KX077900	USA
C. aeruginascens	266501 (HAMAS)	KC904942	China
C. aeruginascens	D. Liu 16044 (KoLRI)	KY744737	South Korea
C. aeruginascens	KA12-1799 (KH)	KR673649	South Korea
C. aeruginascens subsp. australis	74101 (PDD)	AY755351	New Zealand
C. aeruginascens subsp. australis	74101 (holotype, PDD)	JRN45358	New Zealand
C. argentinensis	77447 (PDD)	AY755368	New Zealand
C. argentinensis	--	JN944356	New Zealand
C. argentinensis	81292 (PDD)	AY755360	New Zealand
C. aeruginosa	167753 (TRTC)	JX948103	Canada
C. aeruginosa	F19715 (UBC)	HQ604856	Canada (British Columbia)
C. aeruginosa	D. Liu 163361 (KoLRI)	KY744738	South Korea
C. pardoleta	71611 (PDD)	AY755333	New Zealand
C. postoensis	60009 (PDD)	AY755352	New Zealand
C. postoensis	266511 (HAMAS)	KC904943	China
C. postoensis	D. Liu 163383 (KoLRI)	KY744739	South Korea
C. postoensis	D. Liu 163393 (KoLRI)	KY744740	South Korea
C. macrospora	73994 (PDD)	AY755343	New Zealand
C. macrospora	73994 (PDD)	NR119518	New Zealand
C. duriligna	81278 (PDD)	AY755341	New Zealand
C. duriligna	81278 (PDD)	NR119517	New Zealand
C. duriligna	--	JN943468	New Zealand
C. spathulata	776955 (PDD)	AY755342	New Zealand
C. spathulata	--	JN943463	New Zealand
C. procera	74093 (PDD)	AY755345	New Zealand
C. albohymenia	70089 (PDD)	AY755347	New Zealand
C. campbeltensis	74019 (PDD)	AY755357	New Zealand
C. campbeltensis	74019 (PDD)	NR119521	New Zealand
C. awakinoana	71672 (PDD)	AY755340	New Zealand
C. awakinoana	--	JN943461	New Zealand
C. clavula	73914 (PDD)	AY755346	New Zealand
C. clavula	--	JN943465	New Zealand
C. aeruginella	105442 (TU)	LT158478	Estonia
C. halonata	71675 (PDD)	AY755354	New Zealand
C. halonata	71610 (PDD)	AY755355	New Zealand
C. spiralis	77771 (holotype, PDD)	NR119519	New Zealand
C. spiralis	77771 (PDD)	AY755348	New Zealand

Letters in bold indicate newly generated sequences in this study.
DNA isolation, PCR, and DNA sequencing. Total genomic DNA was extracted from freshly collected specimens using the NucleoSpin Plant II Kit (Clontech Laboratories, Mountain View, CA, USA) following the manufacturer’s instructions. The internal transcribed spacer (ITS) region was generated for new records. Primers pairs ITS1F [11]/ITS4 [12] were used to amplify the ITS. Protocols for PCR amplification and sequencing were conducted as described by Liu et al. [13].

Sequence alignment. Newly generated ITS sequences and selected sequences of Chlorociboria from GenBank (Table 1) were assembled using SeqMan (DNASTar packages) and edited by BioEdit 7.09 [14], and then automatically aligned with MAFFT v7.273 [15]. Ambiguous regions were identified and excluded using Gblocks [16] with the following parameters: for a conserved position, 24; minimum number of sequences for a flanking position, 25; maximum number of contiguous non-conserved positions, 3; minimum length of a block, 2; and allowed gap positions, with half.

Phylogenetic analysis. Maximum likelihood (ML) optimality criterion and Bayesian inference were used to construct phylogenetic trees. Gaps were regarded as missing. TIM + I + G were selected best-fitted substitution models based on the Akaike Information Criterion using jModelTest 3.7 [17]. Bayesian inference analyses were performed with MrBayes v3.1.2 [18] using 4 chains and run for 1 million generations. Trees were sampled every 100 generations. Chain convergence was determined using Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure sufficiently large estimated sample size values. The stop rule was used when parallel Markov chain Monte Carlo runs converged (estimated sample size value > 200). Phylogenetic trees were summarized using the sump and sumt commands with burn-ins discarded. Bayesian posterior probabilities were estimated from the frequencies of branches among all trees, and clades with posterior probabilities ≥ 0.95 were considered as significantly supported. ML inferences were made using RAxML v7.2.6 [19] with the GTR-GAMMA model. Bootstrap frequencies were estimated from the consensus tree built with 2,000 trees obtained from nonparametric bootstrapping pseudoreplicates. Botrytis cinerea and Sclerotinia sclerotiorum were selected as the outgroup.

RESULTS AND DISCUSSION

The ITS matrix aligned by MAFFT, contains 47 sequences, including 16 species and 1 subspecies of Chlorociboria, and the matrix contains 496 sets. After Gblocks, 44 positions were ambiguously aligned and 452 (91%) positions were reserved for phylogenetic analyses. The phylogenetic tree is shown in Fig. 2. In contrast to previous studies [2, 6], the ITS phylogenetic tree in this study indicated that the species of Chlorociboria forms a strongly supported monophyletic clade except for with C. argentinensis. Chlorociboria poutouensis from Korea is more closely related to the China collection (KC904943) than the New Zealand specimen (AY755352). Based on morphological and phylogenetic analyses, three species were confirmed in South Korea, and C. poutouensis was newly reported in South Korea.

Taxonomy.

Chlorociboria aeruginascens (Nyl.) Kanouse ex C.S. Ramamurthi, Korf & L.R. Batra (Fig. 3A, D, G, J).

≡ Peziza aeruginosa Pers per Pers.: Fr (var.) b. subgrisea Fr. Syst. Mycol 2: 130 (1822).

≡ Peziza poutouensis Nyl., Not. Sälsk. Fauna Fl. Förh. 10: 42 (1869).

Apothecia superficial, develop on decayed or decorticated stump or wood, solitary to gregarious, usually several apothecia arising from the same dark mycelial patch; disc cup-shape and discoid, < 1.5 mm, blue-green to dark blue; receptacle glabrous when fresh and tomentose when dry, concolorous with disc or much more aeruginous; stipe central to the much smaller ascospores (5.6–7.5 × 1–1.8 μm). Apothecia consist of 10–42 (1869).

Phylogeny

Apothecia show in Fig. 1. In contrast to previous studies [2, 6], the ITS phylogenetic tree in this study indicated that the species of Chlorociboria forms a strongly supported monophyletic clade except for with C. argentinensis. Chlorociboria poutouensis from Korea is more closely related to the China collection (KC904943) than the New Zealand specimen (AY755352). Based on morphological and phylogenetic analyses, three species were confirmed in South Korea, and C. poutouensis was newly reported in South Korea.

RESULTS AND DISCUSSION

The ITS matrix aligned by MAFFT, contains 47 sequences, including 16 species and 1 subspecies of Chlorociboria, and the matrix contains 496 sets. After Gblocks, 44 positions were ambiguously aligned and 452 (91%) positions were reserved for phylogenetic analyses. The phylogenetic tree is shown in Fig. 2. In contrast to previous studies [2, 6], the ITS phylogenetic tree in this study indicated that the species of Chlorociboria forms a strongly supported monophyletic clade except for with C. argentinensis. Chlorociboria poutouensis from Korea is more closely related to the China collection (KC904943) than the New Zealand specimen (AY755352). Based on morphological and phylogenetic analyses, three species were confirmed in South Korea, and C. poutouensis was newly reported in South Korea.
description of Dixon (1975) [1] based on materials from the United States, Canada, and China, the South Korean collections have smaller apothecia (<2 mm vs. disc < 5 mm in diam.). The blue-green straining into the wood is deeper than that appearing on the *C. aeruginosa*, frequently up to 5 mm; this species is a new record of Jeju Island.

Chlorociboria aeruginosa (Oeder) Seaver ex C. S. Ramamurthi, Korf & L. R. Batra (Fig. 3B, 3E, 3H and 3K). = *Helvella aeruginosa* Oeder, Fl. Danic. 3: tab. 534: 2 (1770).
Genus Chlorociboria in South Korea 61

≡ Helotium aeruginosum (Oeder) Gray, Nat. Arr. Brit. Pl. (London) 1: 661 (1821).
≡ Chlorosplenium aeruginosum (Oeder) De Not., Discom.: 22 (1864).
≡ Chlorosplenium discoideum Massee, Brit. Fung. -Fl. (London) 4: 286 (1895).

Apothecia superficial, develop on decayed or decorticated stump or wood, solitary to gregarious, but never with several apothecia arising from the same mycelial patch; disc cup-shape and discoid, 0.5–3 mm, blue-green to dark blue; receptacle glabrous when fresh and tomentose when dry, concolorous with disc or much more aeruginous; stipe central or slightly eccentric, up to 1.8 mm, concolorous with receptacle, typically becomes dark towards the base; hymenium hyaline to aeruginous, 68–106.6 μm; subhymenium hyaline, textura intricata, 6–20 μm; medullary excipulum hyaline, textura loosely intricata, 125–280.5 μm; ectal excipulum textura angularis, hyaline to blue-green, 26–40 μm, surface cells giving rise to straight or coiled, strongly granulate tomentum hyphae; asci cylindric-clavate, slightly tapered towards the apex and long stalk, 58–78 × 5.3–6.8 μm, 8-ascospores; ascospores fusiform-elliptic, with blunt apices, hyaline or with green content, prominently biguttulate or with several smaller guttules, (11.7)12.45–16.58(16.98) μm.

Fig. 3. Photographs of Chlorociboria spp. from South Korea. C. aeruginascens (D. Liu 16044): A, Habitat; D, Vertical section of apothecia; G, Asci; J, Ascospores. C. aeruginosa (D. Liu 163361): B, Habitat; E, Vertical section of apothecia; H, Asci; K, Ascospores. C. poutouensis (D. Liu 163425): C, Habitat; F, Vertical section of apothecia; I, Asci; L, Ascospores (scale bars: A = 0.5 mm, B, C = 1 mm, D, F = 200 μm, E = 100 μm, G, H = 20 μm, I = 25 μm, J–L = 10 μm).
2.3–3.2 μm.

Habitat: This species grows on decayed and decorticat ed wood such as *Abies*, *Alnus*, *Betula*, *Carpinus*, *Salix*, *Pinus*, and *Quercus*.

Specimen examined: Korea, Gangwon-do, Jeongseon-gun, Gohan-eup, 37°11′25.03″ N, 128°53′31.31″ E, 900 m, on rotten wood, 22 Sep 2016, D. Liu 163361.

Remarks: This species is easily distinguished by the size of ascospores and granulate tomentum hyphae. The blue-green straining typically invades the surface of the wood.

Chlorociboria poutouensis P. R. Johnst. (Fig. 3C, 3F, 3I and 3L).

Apothecia superficial, develop on decay or decorticat ed stump or wood, solitary to gregarious, never with several apothecia arising from the same dark mycelial patch; disc cup-shape and discoid, 0.8–3 mm, white to slightly blue-green when fresh, bright yellow to orange when dry; receptacle glabrous aeruginous or dark blue-green; stipe central or slightly eccentric, up to 1.2 mm, dark blue-green near top, typically becomes black toward the base; hymenium hyaline to aeruginous, 80–110 μ; subhymenium hyaline, textura intricata, 20–31 μ; medullary excipulum hyaline, textura loosely intricata, 170–190 μ; ectal excipulum textura angularis, blue-green, 40–70 μ, surface cells giving rise to straight or coiled few to numerous tomentum hyphae; asci cylindric-clavate, slightly tapered towards the apex and long stalk, 80–100 × 7.5–9 μ; 8-ascospores; ascospores fusiform-elliptic, with blunt or slightly sharp apices, hyaline or with green content, prominently biguttulate or with several smaller guttules, (9.79)12.65–17.48 × 3.1–4.2 μ.

Habitat: This species grows on decayed and decorticat ed wood such as *Alnus*, *Betula*, *Carpinus*, *Salix*, *Quercus*.

Specimen examined: Korea, Gangwon-do, Gohan-eup, 37°1′56.41″ N, 128°13′34.35″ E, 726 m, on the rotten stump, 24 Sep 2016, D. Liu 163380, 163383; Gyeonggi-do, Y ongmun-myeon, Y angpyeong-gun, Gohan-eup, 37°1′52.39″ N, 128°15′50.50″ E, 800 m, on the rotten stump, 25 Sep 2016, D. Liu 163393; Gyeonggi-do, Namyangju-si, Sudong-myeon, Mt. Chungnyeong, 35°22′14.92″ N, 126°44′14.21″ E, 335 m, on rotten wood, 28 Sep 2016, D. Liu 163425.

Remarks: *Chlorociboria poutouensis* is distinguished by a hymenium more or less white or pale yellow when fresh and yellow to orange when dry. This species was recently recorded in China [20] and New Zealand [6]; compared with their description, specimens in South Korea shared similar characters in disc, stipe, asci, and ascospores, but the hymenium is shorter.

Key to Chlorociboria in Korea

1. Never with several apothecia arising from the same dark mycelial patch; the blue-green straining typically invades the wood surface (< 3 mm); ascospores large, 12.45–17.48 × 2.3–4.2 μ ... 2

2. Disc less white to pale yellow when fresh and bright yellow to orange when dry; ascospores sharper and wider ... *C. aeruginascens*

Acknowledgements

This work was supported by a grant from the Korean Forest Service Program (KNA 2017) through Korean National Arboretum and the Korea National Research Resource Center Program (NRF-2014M3A9B8002115).

REFERENCES

1. Dixon JR. *Chlorosplenium* and its segregates. II. The genera *Chlorociboria* and *Chloroencoelia*. Mycotaxon 1975;51:193–237.

2. Tudor D, Margaritescu S, Sánchez-Ramírez S, Robinson SC, Cooper PA, Moncalvo JM. Morphological and molecular characterization of the two known North American *Chlorociboria* species and their anamorphs. Fungal Biol 2014;118:732–42.

3. Seaver FJ. Photographs and descriptions of cup-fungi: XXIV. *Chlorociboria*. Mycologia 1936;28:390–4.

4. Seaver FJ. The North-America cup-fungi (inoperculates). New York: The Author; 1951.

5. Dixon JR. *Chlorosplenium* and its segregates. I. Introduction and the genus *Chlorosplenium*. Mycotaxon 1974;1:65–104.

6. Johnston PR, Park D. *Chlorociboria* (fungi, Helotiales) in New Zealand. N Z J Bot 2005;43:679–719.

7. Huhtinen S, Laukka T, Döbbeler P, Stenroos S. Six novels to European bryosymbiotic Discomycetes. Nova Hedwigia 2010;90:413–31.

8. Pärnel K, Baral HO, Tamm H, Põldmaa K. Evidence for the polyphyly of *Encoelia* and *Encoelioideae* with reconsideration of respective families in Leotiomyces. Fungal Divers 2017; 82:183–219.

9. Park PJ, Lee JY, Otani Y. Taxonomical studies on Discomycetes in Korea (I). Kor J Mycol 1985;13:27–40.

10. Kim CS, Jo JW, Kwag YN, Sung GH, Lee SG, Kim SY, Shin CH, Han SK. Mushroom flora of Ulleung-gun and a newly recorded *Bovista* species in the Republic of Korea. Mycobiology 2015;43:239–57.

11. Gardes M, Bruns TD. ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113–8.

12. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315–22.

13. Liu D, Wang XY, Li JW, Qian ZG, Wang LS. Contributions to the lichen flora of the Hengduan Mountains, China (6): revisional study of the genus *Canoparmelia* (lichenized Ascomycota, Parmeliaceae). Plant Divers Resour 2014;36:781-
7. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95-8.

14. Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016;32:1933-42.

15. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540-52.

16. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008;25:1253-6.

17. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754-5.

18. Stamatakis A. RAXML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688-90.

19. Ren F, Zhuang WY. The genus *Chlorociboria* (Helotiales, Ascomycota) in China. Mycosistema 2014;33:916-24.