D-dimer and fibrinogen levels in normal pregnant women in Sudan

Abstract

During normal pregnancy a number of changes in blood clotting and fibrinolysis have been demonstrated in comparison to non-pregnant women. Pregnancy is characterized by a hypercoagulable state due to a number of alterations of both blood coagulation and fibrinolysis. May be, this state protects from fatal hemorrhage during delivery, but it can also favor thromboembolic events. This phenomenon, apparently caused by hormonal changes, creates continuous changes of the levels of clotting and fibrinolytic factors during the whole period. A progressive increase in plasma D-dimer, considered as an index of the entity of the changes in fibrin deposition and consequent lysis, has been demonstrated in normal pregnancy. The evaluation of D-dimer was poorly investigated and only a few clinical studies were performed to clarify the usefulness of this test. However D-dimer increase does not necessarily mean the existence of a condition of Hypercoagulability. Increase the risk of experiencing one of the leading causes of death and disability stroke.

Introduction

In pregnant women various differences in blood clotting and fibrinolysis have been demonstrated in comparison to non-pregnant women. Pregnancy is characterized by a hypercoagulable state due to a number of alterations of both blood coagulation and fibrinolysis. May be, this state protects from fatal hemorrhage during delivery, but it can also favor thromboembolic events. This phenomenon, apparently caused by hormonal changes, creates continuous changes of the levels of clotting and fibrinolytic factors during the whole period. A progressive increase in plasma D-dimer, considered as an index of the entity of the changes in fibrin deposition and consequent lysis, has been demonstrated in normal pregnancy. The evaluation of D-dimer was poorly investigated and only a few clinical studies were performed to clarify the usefulness of this test. However D-dimer increase does not necessarily mean the existence of a condition of Hypercoagulability. Increase the risk of experiencing one of the leading causes of death and disability stroke.

Objectives

I. To determine the D-dimer and fibrinogen levels in pregnant women in Khartoum State, Sudan

II. To compare D-dimer and fibrinogen in pregnant and in control
women in Khartoum State, Sudan

III. To verify if D-dimer and fibrinogen tests may be used in pregnancy as a screening test for a rapid evaluation of thrombosis in pregnant women

Materials and methods

Participants
The participants of this study is 40 (66.7%) normal pregnant Sudanese females from age 32.6±3.67 compared with 20 (33.3%) normal non pregnant women as control group attended Khartoum Teaching Hospital, and Omdurman maternity Hospital in Khartoum state. categorized in to three different age groups (A: 20-28year; B: 29-39year; C: above 40year).

Samples
1.8ml of Veinus blood was taken from all participants in citrated vacuum containers (1volume of 3.8% Trisodium citrate: 9 volume of blood), then PPP (platelets poor plasma) obtained by centrifugation of samples in 4000rpm for 15 minutes then the supernatant was immediately separated which is PPP plasma, stability of the sample: +15 to +25c for 8 hours or saved in -8°C for longer processing. SPSS ver. 22 program was used for analysis of data.

Procedures

Fibrinogen
Multifibren* U kit from Dade Behring Company was used for Quantitative determination of fibrinogen in plasma by using BFT II semi-automated analyzer from Siemens company.

Principle: The Multifibren* U test is sensitive to a deficiency of fibrinogen or inhibition of thrombin. It measures the formation of a fibrin clot by the action of thrombin on fibrinogen Thrombin is added to citrated plasma at 37°C. The time taken for the mixture to clot and the appearance of the clot noted.

Method: Bring Multifibren* U reagent and all samples to +37°C before using, into a test tube pre warmed to +37°C pipette, Sample-100µL, Incubate for 60 seconds at +37°C, Multifibren* U (+37°C)-200µL and determine coagulation time.

Normal range of fibrinogen: (1.8–3.5g/l)

D dimer
Principle: The latex agglutination method used to detect crosslinked fibrin D-dimers is identical to the test for FDP, the latex beads are coated with a monoclonal antibody directed specifically against fibrin D-dimer in human plasma or serum. Because there is no reaction with fibrinogen, the need for serum is eliminated and measurements can be performed on plasma samples.

Reagents: Reagents from Siemens manufacturer kits for the measurement of D-dimers. These usually contain the latex suspension, dilution buffer, and positive and negative controls.

Method: The manufacturer’s protocol should be followed. Undiluted plasma is mixed with one drop of latex suspension on a glass slide and the slide is gently rocked for the length of time recommended in the kit. If macroscopic agglutination is observed, dilutions of the plasma are made until agglutination can no longer be seen.

Interpretation: Agglutination with the undiluted plasma indicates a concentration of D-dimers in excess of <0.2mg/l. The D-dimer level can be quantified by multiplying the reciprocal of the highest dilution showing a positive result by 0.2 to give a value in mg/l.

Normal range: Plasma levels in normal subjects are <0.2mg/l. There has been much study of D-dimer assays as a useful way of excluding thrombosis, but there is naturally a compromise between sensitivity and specificity, especially when a rapid turnaround time is required. The lack of an international standard and the poor correlation between kits means that the use of kits for this purpose should be validated individually. Latex test using automated analyzers may provide an acceptable compromise. These tests have now been incorporated into clinical guidelines according to their sensitivity.

Results
Regarding age groups as appears in Table 1 about 60% of participants were from the first group (20–28y). D-dimer was performed for 41 pregnant women and 19 normal healthy non pregnant women as control sample. The data analyzed by using Independent Samples Test (2 tailed) shows significant increase levels of D-dimer in test group (mean 0.23±0.036) compared with control (mean-0.136±0.007) Table 2, P<0.013 Table 3 (Figure 1).

Table 1 Age groups frequency

Age	Frequency	Percentage
20-28	35	59.50%
29-39	19.4	32.40%
Above 40	5.6	8.10%
Total	60	100%

Table 2 Group Statistics (D-dimer)

codes	N	Mean	Std. deviation	Std. error mean
D-dimer				
test	41	0.232	0.23087	0.03606
cont	19	0.136	0.03095	0.0071

Table 3 Independent Samples Test (D-dimer)

Levene’s test for equality of variances	t-test for Equality of means						
F	Sig.	t	df	Sig. (2-tailed)	Mean difference	Std. Error difference	95% Confidence interval of the difference
-------------	-------	------	-----	----------------	----------------	----------------------	---
6.555	0.013	1.79	58	0.079	0.09564	0.05342	-0.01131 – 0.20258
		2.602	43.019	0.013	0.09564	0.03675	0.02153 – 0.16974
D-dimer and fibrinogen levels in normal pregnant women in Sudan

Fibrinogen also performed for same groups, but no significant differences found between the two groups by using Independent Samples Test in SPSS program ver. 22 Figure 2 (mean 3.66±0.94 for test and 3.78±0.72g/l for control) Table 4 P<0.58 Table 5

Figure 1 D-dimer compares means.

Table 4 Group Statistics

codes	N	Mean	Std. deviation	Std. error mean	
Fibrinogen	test	40	3.6565	0.94716	0.14976
	cont	20	3.7785	0.7172	0.16037

Table 5 Fibrinogen Independent Samples Test

t-test for Equality of means

t	df	Sig. (2-tailed)	Mean difference	Std. Error difference
-0.507	58	0.614	-0.122	0.24058
-0.556	48.586	0.581	-0.122	0.21942

Discussion

Pregnancy is characterized by a hypercoagulable state due to a number of alterations of both blood coagulation and fibrinolysis, Francalanci et al.21 suggests that levels of D-dimer up to 685 μg/L (increase levels) may be reached at the end of physiological pregnancy. The thing which we found in our study about levels of D-dimer in pregnant women with is significantly levels of D-dimer in test group compared with control P<0.013 Table 2. On other hand regarding Fibrinogen levels we found no significant differences found between the test (mean 3.66±0.94 for test and 3.78±0.72g/l for control) P=0.58. Also Roger et al.,22 determined that an emerging need to reconsider fibrinogen and D-dimer values from a different aspect in pregnancy compared to non-pregnant reference intervals. New reference ranges are suggested to be established in pregnancy.22

No previous study in Sudan had taken this relationship between fibrinogen and D-dimer levels in normal pregnant Sudanese women, although Fatima et al.23 suggests that the level of fibrinogen and D-dimer is significantly increased in preeclampsia pregnant women when compared with normal pregnant women.23

Conclusion

From this study, it is concluded that the level of D-dimer is significantly increased in pregnant women when compared with normal non pregnant women, While no significant differences founded in fibrinogen level between the two groups.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

1. Stirling Y, Woolf L, North WR, et al. Haemostasis in normal pregnancy. Thromb Haemost. 1984;52(2):176–182.
2. Wright JG, Cooper P, Astedt B, et al. Fibrinolysis during normal human pregnancy: complex inter–relationship between plasma levels of tissue plasminogen activator and inhibitors and the euglobulin clot lysis time. Br J Haematol. 1988;69(2):253–258.
3. Bremme K, Ostlund E, Almqvist I, et al. Enhanced thrombin generation and fibrinolytic activity in normal pregnancy and the puerperium. Obstet Gynecol. 1992;80(1):132–137.
4. Schjetlein R, Haugen G, Wissløff F. Markers of intravascular coagulation and fibrinolysis in preeclampsia: association with intrauterine growth retardation. Acta Obstet Gynecol Scand. 1997;76(6):541–546.
5. Bellart J, Gilabert R, Anglès A, et al. Tissue factor levels and high ratio of fibrinopeptide A: D–dimer as a measure of endothelial procoagulant disorder in pre–eclampsia. Br J Obstet Gynaecol. 1999;106(6):594–597.
6. Sattar N, Greer IA, Rumley A, et al. A longitudinal study of the relationships between haemostatic, lipid and oestradiol changes during normal pregnancy. Thromb Haemost. 1999;81(1):71–75.
7. Nolan TE, Smith RP, Devoe LD. Maternal plasma D–dimer levels in normal and complicated pregnancies. Obstet Gynecol. 1993;81(2):235–238.
8. Francalanci I, Comeglio P, Alessandrello Liotta A, et al. D–dimer plasma levels during normal pregnancy measured by specific ELISA. Int J Clin Lab Res. 1997;27(1):65–67.
9. Seljeflot, Eritsland J, Andersen P. Global fibrinolytic capacity assessed by the s–DD test. Correlation between basal and stimulated values.
D-dimer and fibrinogen levels in normal pregnant women in Sudan

10. Bellart J, Gilabert R, Fontcuberta J, et al. Fibrinolysis changes in normal pregnancy. J Perinat Med. 1997;25(4):368–372.

11. Chabloz P, Reber G, Boehlen F, et al. TAFI antigen and D-dimer levels during normal pregnancy and at delivery. Br J Haematol. 2001;115(1):150–152.

12. Bellart J, Gilabert R, Miralles RM, et al. Endothelial cell markers and fibrinopeptide A to D-dimer ratio as a measure of coagulation and fibrinolysis balance in normal pregnancy. Gynecol Gynecol Obstet Invest. 1998;46(1):17–21.

13. Ho CH, Yang ZL. The predictive value of the hemostasis parameters in the development of preeclampsia. Thromb Haemost. 1992;67(2):214–218.

14. Dee Kay C, David A Puleo, Rena Bizios. An introduction to tissue–biomaterial interactions. USA: John Wiley & Sons; 2003.

15. Théroux P, Fuster V. Acute coronary syndromes unstable angina and non–Q–wave myocardial infarction. Circulation. 1998;97(12):1195–1206.

16. Karinde Boer, Jan W.ten Cate, Auguste Sturk, et al. Enhanced thrombin generation in normal and hypertensive pregnancy. Am J Obstet Gynecol. 1989;160(1):95–100.

17. Bonnaar J. Acute and chronic coagulation problems in pregnancy. In: Poller L, editor. Recent Advances in Blood Coagulation. Edinburgh: Churchill Livingstone; 1977. p. 363.

18. Keeling DM, Wright M, Baker P, et al. D-dimer for the exclusion of venous thromboembolism: comparison of a new automated latex particle immunoassay (MDA D-dimer) with an established enzyme-linked fluorescent assay (VIDAS D-dimer). Clin Lab Haematol. 1999;21(5):359–362.

19. Hur H, Lee Y, Park H, et al. A Plausible Method for the Diagnosis of Genetic Disorders Using Full Length cDNA. J Biomed Lab Sci. 2001;7:1–5.

20. BTSSoCCPEGD Group. British Thoracic Society guidelines for the management of suspected acute pulmonary embolism. Thorax. 2003;58(6):470–484.

21. Isa Franealanci, Paolo Comeglio, Agatina Alessandrello Liotta, et al. D-dimer concentrations during normal pregnancy, as measured by ELISA. Thrombosis Research. 1995;78(5):399–405.

22. Réger B, Péterfalvi A, Litter I, et al. Challenges in the evaluation of D-dimer and fibrinogen levels in pregnant women. Thromb Res. 2013;131(4):e183–e187.

23. Fatima MA Elkhider, Asrar M Khair, Amira AK Humeida. Evaluation of plasma fibrinogen and plasma D-dimer Levels among Sudanese preeclamptic pregnant women in Omdurman Maternity Hospital. Laboratory medicine journal. 2017;3(1):29–35.