Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data

Changyou Wang

Received: 10 May 2010 / Published online: 11 November 2010 © Mathematica Josephina, Inc. 2010

Abstract This paper establishes the local (or global, resp.) well-posedness of the heat flow of biharmonic maps from \(\mathbb{R}^n \) to a compact Riemannian manifold without boundary for initial data with small local BMO (or BMO, resp.) norms.

Keywords Biharmonic map · BMO space · Well-posedness

Mathematics Subject Classification (2000) 35K91 · 58J35

1 Introduction

For \(k \geq 1 \), let \(N \) be a \(k \)-dimensional compact Riemannian manifold without boundary, isometrically embedded in some Euclidean space \(\mathbb{R}^l \). Let \(\Omega \subset \mathbb{R}^n, n \geq 1 \), be a smooth domain. There are two second-order energy functionals for mappings from \(\Omega \) to \(N \), namely, the Hessian energy functional and tension field energy functional given by

\[
F(u) = \int_{\Omega} |\Delta u|^2, \quad E(u) = \int_{\Omega} |D\Pi(u)(\Delta u)|^2, \quad u \in W^{2,2}(\Omega, N),
\]

where \(\Pi : N_{\delta_N} \to N \) is the smooth nearest point projection from \(N_{\delta_N} = \{ y \in \mathbb{R}^l : \text{dist}(y, N) \leq \delta_N \} \) to \(N \) for some small \(\delta_N > 0 \), and

\[
W^{2,2}(\Omega, N) = \{ v \in W^{2,2}(\Omega, \mathbb{R}^l) : v(x) \in N \text{ for a.e. } x \in \Omega \}.
\]

Communicated by Jiaping Wang.

C. Wang (✉)
Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
E-mail: cywang@ms.uky.edu
Recall that a map \(u \in W^{2,2}(\Omega, N) \) is called an (extrinsic) biharmonic map (or intrinsic biharmonic map, resp.) if \(u \) is a critical point of \(F(\cdot) \) (or \(E(\cdot) \), resp.). Geometrically, a biharmonic map \(u \) to \(N \) enjoys the property that \(\Delta^2 u \) is perpendicular to \(TuN \). The Euler–Lagrange equation for biharmonic maps (see [17]) is:

\[
\Delta^2 u = \Delta(D^2 \Pi(u)(\nabla u, \nabla u)) + 2 \nabla \cdot \langle \Delta u, \nabla (D\Pi(u)) \rangle - \langle \nabla \Delta u, \Delta(D\Pi(u)) \rangle.
\] (1.1)

The Euler–Lagrange equation for intrinsic biharmonic maps (see [17]) is:

\[
\Delta^2 u = \Delta(D^2 \Pi(u)(\nabla u, \nabla u)) + 2 \nabla \cdot \langle \Delta u, \nabla (D\Pi(u)) \rangle - \langle \nabla \Delta u, \Delta(D\Pi(u)) \rangle + D\Pi(u)\left[D^2 \Pi(u)(\nabla u, \nabla u) \cdot D^3 \Pi(u)(\nabla u, \nabla u)\right] + 2D^2 \Pi(u)(\nabla u, \nabla u) \cdot D^2 \Pi(u)(\nabla u, \nabla (D\Pi(u))).
\] (1.2)

The study of biharmonic maps was initiated by Chang–Wang–Yang [2] in the late 1990s. It has since drawn considerable research interest. In particular, the smoothness of biharmonic maps (and intrinsic biharmonic maps) in \(W^{2,2} \) has been established in dimension 4 by [2] for \(N = S^{l-1} \) and by [16] for a general manifold \(N \). For \(n \geq 5 \), the partial regularity of the class of stationary biharmonic maps in \(W^{2,2} \) has been shown by [2] for \(N = S^{l-1} \) and by [16] for a general manifold \(N \). The reader can refer to Strzelecki [15], Angelesberg [1], Lamm–Riviere [11], Struwe [14], Scheven [12], Hong–Wang [4], and Wang [18] for further interesting results.

Motivated by the study of heat flow of harmonic maps, which has played a very important role in the existence of harmonic maps in various topological classes, it is very natural and interesting to study the corresponding heat flow of biharmonic maps. For \(\Omega = \mathbb{R}^n \), the heat flow of harmonic maps for \(u : \mathbb{R}^n \times \mathbb{R} \to N \) is given by

\[
\frac{\partial}{\partial t} u + \Delta^2 u = \Delta(D^2 \Pi(u)(\nabla u, \nabla u)) + 2 \nabla \cdot \langle \Delta u, \nabla (D\Pi(u)) \rangle - \langle \nabla \Delta u, \Delta(D\Pi(u)) \rangle \quad \text{in} \quad \mathbb{R}^n \times (0, +\infty),
\] (1.3)

\[
u_0|_{t=0} = u_0 \quad \text{on} \quad \mathbb{R}^n,
\] (1.4)

where \(u_0 : \mathbb{R}^n \to N \) is a given map.

Equations (1.3)–(1.4) was first investigated by Lamm in [8, 9], where for smooth initial data \(u_0 \in C^\infty(\mathbb{R}^n, N) \) the short time smooth solution was established. Moreover, such a short time smooth solution is proven to be globally smooth provided that \(n = 4 \) and \(\|u_0\|_{W^{2,2}(\mathbb{R}^4)} \) is sufficiently small. For large initial data \(u_0 \in W^{2,2}(\mathbb{R}^4) \), it was independently proved by Gastel [3] and Wang [19] that there exists a global weak solution to (1.3)–(1.4) that is smooth away from finitely many singular times.

It is a very interesting question to seek the largest class of rough initial data such that (1.3)–(1.4) is well-posed (either local or global) in suitable spaces. There has been interesting work on this type of question for the Navier–Stokes equation (see Koch–Tataru [7]), the heat flow of harmonic maps (see Koch–Lamm [6] and Wang [20]), and the Willmore flow, the Ricci flow, and the Mean curvature flow by Koch–Lamm [6].

The main goal of this paper is to investigate the well-posedness issue of (1.3) and (1.4) for initial data \(u_0 \) with small BMO norm.

To state our main result, we first introduce the BMO spaces.
Definition 1.1 For $0 < R \leq +\infty$, the local BMO space, $\text{BMO}_R(\mathbb{R}^n)$, is the space consisting of locally integrable functions f such that

$$\left[f\right]_{\text{BMO}_R(\mathbb{R}^n)} := \sup_{x \in \mathbb{R}^n, 0 < r \leq R} \left\{ r^{-n} \int_{B_r(x)} |f - f_{x,r}| \right\} < +\infty,$$

where $B_r(x) \subset \mathbb{R}^n$ is the ball with center x and radius r, and

$$f_{x,r} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f$$

is the average of f over $B_r(x)$. We say $f \in \text{VMO}(\mathbb{R}^n)$ if

$$\lim_{r \downarrow 0} \left[f\right]_{\text{BMO}_r(\mathbb{R}^n)} = 0.$$

For $R = +\infty$, we simply write $(\text{BMO}(\mathbb{R}^n), [\cdot]_{\text{BMO}(\mathbb{R}^n)})$ for $(\text{BMO}_\infty(\mathbb{R}^n), [\cdot]_{\text{BMO}_\infty(\mathbb{R}^n)})$.

For $0 < T \leq +\infty$, we also introduce the functional space X_T as follows

$$X_T = \left\{ f : \mathbb{R}^n \times [0, T] \to \mathbb{R} \| f \|_{X_T} \equiv \sup_{0 < t \leq T} \| f(t) \|_{L^\infty(\mathbb{R}^n)} + \left[f\right]_{X_T} < +\infty \right\},$$

where

$$\left[f\right]_{X_T} = \sup_{0 < t \leq T} \left(\sum_{i=1}^2 t^{\frac{i}{4}} \| \nabla f(t) \|_{L^\infty(\mathbb{R}^n)} \right) + \sup_{x \in \mathbb{R}^n, 0 < R \leq T} \left(R^{-n} \int_{P_R(x, R^4)} |\nabla f|^4 \right)^{\frac{1}{4}}$$

$$+ \sup_{x \in \mathbb{R}^n, 0 < R \leq T} \left(R^{-n} \int_{P_R(x, R^4)} |\nabla^2 f|^2 \right)^{\frac{1}{2}},$$

where $P_R(x, R^4) = B_R(x) \times [0, R^4]$ is the parabolic cylinder with center (x, R^4) and radius R. It is clear that $(X_T, \| \cdot \|_{X_T})$ is a Banach space. When $T = +\infty$, we simply write X for X_∞, $\| \cdot \|_{X_\infty}$ for $\| \cdot \|_{X_{\infty}}$, and $[\cdot]_{X}$ for $[\cdot]_{X_\infty}$.

The first theorem states

Theorem 1.2 There exists $\epsilon_0 > 0$ such that for any $R > 0$ if $[u_0]_{\text{BMO}_R(\mathbb{R}^n)} \leq \epsilon_0$, then there exists a unique solution $u \in X_{R^4}$ to (1.3)–(1.4) with small $[u]_{X_T}$. In particular, if $u_0 \in \text{VMO}(\mathbb{R}^n)$ then there exists $T_0 > 0$ such that (1.3)–(1.4) admits a unique solution $u \in X_{T_0}$ with small $[u]_{X_{T_0}}$.

As a direct corollary, we have the following global well-posedness result.

Theorem 1.3 There exists $\epsilon_0 > 0$ such that if $[u_0]_{\text{BMO}(\mathbb{R}^n)} \leq \epsilon_0$, then there exists a unique solution $u \in X$ to (1.3)–(1.4) with small $[u]_X$.
Now we turn to the discussion of the heat flow of intrinsic biharmonic maps. The equation of the heat flow of intrinsic biharmonic maps on \mathbb{R}^n is given by

\[
\partial_t u + \Delta^2 u = \Delta(D^2 \Pi(u)(\nabla u, \nabla u)) + 2\nabla \cdot (\Delta u, \nabla (D \Pi(u))) - (\Delta u, \Delta(D \Pi(u))) + D \Pi(u)(D^2 \Pi(u)(\nabla u, \nabla u) \cdot D^2 \Pi(u)(\nabla u, \nabla u) - (\Delta \Pi(u), \Delta(D \Pi(u))) + D \Pi(u)(D^3 \Pi(u)(\nabla u, \nabla u)(\nabla (D \Pi(u)))) \quad \text{in } \mathbb{R}^n \times (0, +\infty),
\]

(1.7)

\[
u\bigg|_{t=0} = u_0 : \mathbb{R}^n \rightarrow N.
\]

(1.8)

In [10], Lamm studied (1.7)–(1.8). Under the assumption that $n \leq 4$ and the section curvature of N is nonpositive, the global smooth solution to (1.7)–(1.8) was established in [10].

Analogous to Theorem 1.2 and 1.3, we obtain the following results on (1.7)–(1.8).

Theorem 1.4 There exists $\epsilon_0 > 0$ such that for any $R > 0$ if $[u_0]_{\text{BMO}_R(\mathbb{R}^n)} \leq \epsilon_0$, there exists a unique solution $u \in X_{R^2}$ to (1.7)–(1.8) with small $[u]_{X_T}$. In particular, if $u_0 \in \text{VMO}(\mathbb{R}^n)$ then there exists $T_0 > 0$ such that (1.7)–(1.8) admits a unique solution $u \in X_{T_0}$ with small $[u]_{X_{T_0}}$.

Theorem 1.5 There exists $\epsilon_0 > 0$ such that if $[u_0]_{\text{BMO}(\mathbb{R}^n)} \leq \epsilon_0$, then there exists a unique solution $u \in X$ to (1.7)–(1.8) with small $[u]_X$.

We remark that since $W^{1,n}(\mathbb{R}^n) \subset \text{VMO}(\mathbb{R}^n)$, it follows from Theorem 1.2 (or Theorem 1.4, resp.) that (1.3)–(1.4) (or (1.7)–(1.8), resp.) is uniquely solvable in X_{T_0} for some $T_0 > 0$ provided $u_0 \in W^{1,n}(\mathbb{R}^n, N)$; and is uniquely solvable in X provided $\|\nabla u_0\|_{L^n(\mathbb{R}^n)}$ is sufficiently small, via Theorem 1.3 (or Theorem 1.5, resp.).

We also remark that the techniques to handle the heat flow of biharmonic maps illustrated in this paper can be extended to investigate the well-posedness of the heat flow of polyharmonic maps for BMO initial data in any dimension. This will be discussed in a forthcoming paper [5].

The remainder of the paper is written as follows. In Sect. 2, we review some basic estimates on the biharmonic heat kernel, due to Koch–Lamm [6]. In Sect. 3, we outline some crucial estimates on the biharmonic heat equation. In Sect. 4, we prove the boundedness of the mapping operator S determined by the Duhamel formula. In Sect. 5, we prove Theorems 1.2 and 1.3. In Sect. 6, we prove Theorems 1.4 and 1.5.

2 Review of the Biharmonic Heat Kernel

In this section, we review some fundamental properties from Koch and Lamm [6] on the biharmonic heat kernel.

Consider the fundamental solution of the biharmonic heat equation:

\[
(\partial_t + \Delta^2) b(x,t) = 0 \quad \text{in } \mathbb{R}^n \times \mathbb{R}_+
\]
which is given by
\[b(x, t) = t^{-\frac{n}{4}} g \left(\frac{x}{t^{\frac{1}{4}}} \right), \]

where
\[g(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{i \xi \cdot |k|^4} dk, \quad \xi \in \mathbb{R}^n. \] (2.1)

The following lemma, due to Koch and Lamm [6] (Lemma 2.4), plays a very important role in this paper.

Lemma 2.1 For \(x \in \mathbb{R}^n \) and \(t > 0 \), the following estimates hold:
\[|b(x, t)| \leq ct^{-\frac{n}{4}} \exp \left(-\alpha \frac{|x|}{t^{\frac{1}{3}}} \right), \quad \alpha = \frac{32^\frac{1}{3}}{16}, \] (2.2)
\[|\nabla^k b(x, t)| \leq c(t^{\frac{1}{4}} + |x|)^{-n-k}, \quad \forall k \geq 1, \] (2.3)
\[\|\nabla^k b(\cdot, t)\|_{L^1(\mathbb{R}^n)} \leq ct^{-k^\frac{1}{4}}, \quad \forall k \geq 1. \] (2.4)

Moreover, there exist \(c, c_1 > 0 \) such that for \(0 \leq j \leq 4 \),
\[|\nabla^j b(x, t)| \leq ce^{-c_1|x|}, \quad \forall (x, t) \in \mathbb{R}^n \times (0, 1) \setminus \left(B_2 \times \left(0, \frac{1}{2} \right) \right). \] (2.5)

For the purpose of this paper, we also recall Carleson’s characterization of BMO spaces. Let \(S \) denote the class of Schwartz functions. Then the following property is well-known (see Stein [13]).

Lemma 2.2 Let \(\Phi \in S \) be such that \(\int_{\mathbb{R}^n} \Phi = 0 \). For \(t > 0 \), let \(\Phi_t(x) = t^{-n} \Phi \left(\frac{x}{t} \right), \quad x \in \mathbb{R}^n \). If \(f \in \text{BMO}(\mathbb{R}^n) \), then \(|\Phi_t * f|^2 \frac{dx dt}{t} \) is a Carleson measure on \(\mathbb{R}^n_{+1} \), i.e.,
\[\sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_0^r \int_{B_r(x)} |\Phi_t * f|^2 \frac{dx dt}{t} \leq C[u_0]^2_{\text{BMO}(\mathbb{R}^n)} \] (2.6)
for some \(C = C(n) > 0 \). If \(f \in \text{BMO}_R(\mathbb{R}^n) \) for some \(R > 0 \), then
\[\sup_{x \in \mathbb{R}^n, 0 < r \leq R} r^{-n} \int_0^r \int_{B_r(x)} |\Phi_t * f|^2 \frac{dx dt}{t} \leq C[u_0]^2_{\text{BMO}_R(\mathbb{R}^n)} \] (2.7)
for some \(C = C(n) > 0 \).

Recall that the solution to the Dirichlet problem of the inhomogeneous biharmonic heat equation
\[(\partial_t + \Delta^2)u = f \quad \text{on} \quad \mathbb{R}^n \times (0, +\infty), \] (2.8)
\[u = u_0 \quad \text{on} \quad \mathbb{R}^n \times \{0\} \] (2.9)
is given by the Duhamel formula:

$$u = G u_0 + S f$$

where

$$G u_0(x, t) := (b(\cdot, t) * u_0)(x) = \int_{\mathbb{R}^n} b(x - y, t) u_0(y)dy, \quad (x, t) \in \mathbb{R}^n \times (0, +\infty),$$

and

$$S f(x, t) = \int_0^t \int_{\mathbb{R}^n} b(x - y, t - s) f(y, s)dyds, \quad (x, t) \in \mathbb{R}^n \times (0, +\infty).$$

3 Basic Estimates for the Biharmonic Heat Equation

In this section, we provide some crucial estimates for the solution of the biharmonic heat equation with initial data in BMO spaces, including the estimate of the distance to the manifold N.

Lemma 3.1 For $0 < R \leq +\infty$, if $u_0 \in BMO_R(\mathbb{R}^n)$, then $\hat{u}_0 = G u_0$ satisfies the following estimates:

$$\sup_{x \in \mathbb{R}^n, 0 < r \leq R} r^{-n} \int_{P_r(x, r^4)} (|\nabla^2 \hat{u}_0|^2 + r^{-2} |\nabla \hat{u}_0|^2) \leq C [u_0]^2_{BMO_R(\mathbb{R}^n)},$$

and

$$\sup_{0 < t \leq R^4} \left(\sum_{i=1}^2 \|\nabla^i \hat{u}_0(t)\|_{L^\infty(\mathbb{R}^n)} \right) \leq C [u_0]_{BMO_R(\mathbb{R}^n)}.$$

If, in addition, $u_0 \in L^\infty(\mathbb{R}^n)$, then

$$\sup_{x \in \mathbb{R}^n, 0 < r \leq R} r^{-n} \int_{P_r(x, r^4)} |\nabla \hat{u}_0|^4 \leq C \|u_0\|^2_{L^\infty(\mathbb{R}^n)} \cdot [u_0]^2_{BMO_R(\mathbb{R}^n)}.$$

Proof For simplicity, we present the argument for $R = +\infty$. Let g be given by (2.1). Let $\Phi^i = \nabla^i g$ for $i = 1, 2$. Then it is clear that $\Phi^i \in \mathcal{S}$ and $\int_{\mathbb{R}^n} \Phi^i = 0$ for $i = 1, 2$. Hence by Lemma 2.2, $|\Phi^j \ast u_0|^2 dxdt / t$ is a Carleson measure on \mathbb{R}^{n+1}_+ for $i = 1, 2$. Direct calculations show, for $i = 1, 2$,

$$\Phi^i_t(x) = t^{-n} (\nabla^i g) \left(\frac{x}{t} \right) = t^i \nabla^i \left(\frac{t^{-n} g \left(\frac{x}{t} \right)}{t} \right) = t^i \nabla^i (g_t(x)),$$

where

$$g_t(x) = t^{-n} g \left(\frac{x}{t} \right).$$
Hence we have

\[(\Phi^i_{t} \ast u_0)(x) = t^i \nabla^i (g_t \ast u_0)(x).\]

Since the biharmonic heat kernel \(b(x,t) = g_{t^{1/4}}(x)\), we have

\[(\Phi^i_{t} \ast u_0)(x) = t^i \nabla^i \left(b(\cdot, t^{4}) \ast u_0 \right)(x) = t^i \nabla^i (G_{u_0})(x, t^{4}).\]

Thus we have, for \(i = 1, 2\),

\[C[u_0]^2_{\text{BMO}(\mathbb{R}^n)} \geq \sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_0^r \int_{B_r(x)} |\Phi^i_{t} \ast u_0|^2 \frac{dxdt}{t} \]

\[= \sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_0^r \int_{B_r(x)} t^{2i-1} |\nabla^i G_{u_0}|^2(x, t^{4}) dxdt \]

\[= \frac{1}{4} \sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_{P_r(x, r^4)} t^{\frac{2i-4}{4}} |\nabla^i G_{u_0}|^2(x, t) dxdt.\]

This clearly implies (3.1), since for \(i = 1, 2, t^{\frac{2i-4}{4}} \geq r^{2i-4}\) when \(0 \leq t \leq r^4\).

Since \(\hat{u}_0\) solves the biharmonic heat equation \((\partial_t + \Delta^2)\hat{u}_0 = 0\) on \(\mathbb{R}^n \times (0, +\infty)\), the standard gradient estimate implies that for any \(x \in \mathbb{R}^n\) and \(r > 0\),

\[r^{2} |\nabla \hat{u}_0|^2(x, r^4) + r^4 |\nabla^2 \hat{u}_0|^2(x, r^4) \leq Cr^{-n} \int_{P_r(x, r^4)} (r^{-2} |\nabla \hat{u}_0|^2 + |\nabla^2 \hat{u}_0|^2).\]

Taking the supremum over \(x \in \mathbb{R}^n\) and setting \(t = r^4 > 0\) yields (3.2).

For (3.3), observe that \(u_0 \in L^\infty(\mathbb{R}^n)\) implies \(\Phi^i_{t} \ast u_0 \in L^\infty(\mathbb{R}^n)\) and

\[\|\Phi^i_{t} \ast u_0\|_{L^\infty(\mathbb{R}^n)} \leq \|\Phi^i_{t}\|_{L^1(\mathbb{R}^n)} \|u_0\|_{L^\infty(\mathbb{R}^n)} \leq \|\nabla g\|_{L^1(\mathbb{R}^n)} \|u_0\|_{L^\infty(\mathbb{R}^n)} \]

\[\leq C \|u_0\|_{L^\infty(\mathbb{R}^n)}.\]

Hence

\[\sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_{P_r(x, r^4)} |\nabla G_{u_0}|^4 dxdt \]

\[= \sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_0^r \int_{B_r(x)} |\Phi^i_{t} \ast u_0|^4 \frac{dxdt}{t} \]

\[\leq \left(\sup_{t > 0} \|\Phi^i_{t} \ast u_0\|_{L^\infty(\mathbb{R}^n)} \right)^2 \cdot \sup_{x \in \mathbb{R}^n, r > 0} r^{-n} \int_0^r \int_{B_r(x)} |\Phi^i_{t} \ast u_0|^2 \frac{dxdt}{t} \]

\[\leq C \|u_0\|^2_{L^\infty(\mathbb{R}^n)} \cdot \|u_0\|^2_{\text{BMO}(\mathbb{R}^n)}.\]

This implies (3.3). \(\square\)

Now we prove an important estimate on the distance of \(\hat{u}_0\) to the manifold \(N\) in terms of the BMO norm of \(u_0\). More precisely,
Lemma 3.2 For any $\delta > 0$, there exists $K = K(\delta, N) > 0$ such that for $R > 0$ if $u_0 \in \text{BMO}_R(\mathbb{R}^n)$ then

$$\text{dist}(\hat{u}_0(x, t), N) \leq K [u_0]_{\text{BMO}_R(\mathbb{R}^n)} + \delta, \quad \forall x \in \mathbb{R}^n, \ 0 \leq t \leq \frac{R^4}{K^4}.$$ \hspace{1cm} (3.4)

In particular, if $u_0 \in \text{BMO}(\mathbb{R}^n)$ then

$$\text{dist}(\hat{u}_0(x, t), N) \leq K [u_0]_{\text{BMO}(\mathbb{R}^n)} + \delta, \quad \forall x \in \mathbb{R}^n, \ t \in \mathbb{R}_+.$$ \hspace{1cm} (3.5)

Proof Since (3.5) follows directly from (3.4), it suffices to prove (3.4). For any $x \in \mathbb{R}^n, t > 0$, and $K > 0$, denote

$$c^K_{x, t} = \frac{1}{|B_K(0)|} \int_{B_K(0)} u_0(x - t^{\frac{1}{4}}z)dz.$$

Let g be given by (2.1). Then, by a change of variables, we have

$$\hat{u}_0(x, t) = \int_{\mathbb{R}^n} g(y)u_0(x - t^{\frac{1}{4}}y)dy.$$

Applying Lemma 2.1, we have

$$\left| \hat{u}_0(x, t) - c^K_{x, t} \right| \leq \int_{\mathbb{R}^n} g(y)|u_0(x - t^{\frac{1}{4}}y) - c^K_{x, t}|dy$$

$$\leq \left\{ \int_{B_K(0)} + \int_{\mathbb{R}^n \setminus B_K(0)} \right\} g(y)|u_0(x - t^{\frac{1}{4}}y) - c^K_{x, t}|dy$$

$$\leq \int_{B_K(0)} ce^{-\alpha |y|^{\frac{4}{3}}} |u_0(x - t^{\frac{1}{4}}y) - c^K_{x, t}|dy$$

$$+ 2\|u_0\|_{L^\infty(\mathbb{R}^n)} \int_{\mathbb{R}^n \setminus B_K(0)} ce^{-\alpha |y|^{\frac{4}{3}}} dy$$

$$\leq K^n [u_0]_{\text{BMO}_{K^{1/4}}(\mathbb{R}^n)} + C_N \int_K^\infty e^{-ar^{\frac{4}{3}}} r^{n-1} dr$$

$$\leq \delta + K^n [u_0]_{\text{BMO}_{K^{1/4}}(\mathbb{R}^n)}$$ \hspace{1cm} (3.6)

provided we choose a sufficiently large $K = K(\delta, N) > 0$ so that

$$C_N \int_K^\infty e^{-ar^{\frac{4}{3}}} r^{n-1} dr \leq \delta.$$

On the other hand, since $u_0(\mathbb{R}^n) \subset N$, we have

$$\text{dist}(c^K_{x, t}, N) \leq \left| c^K_{x, t} - u_0(x - t^{\frac{1}{4}}y) \right|, \quad \forall y \in B_K(0)$$

and hence

$$\text{dist}(c^K_{x, t}, N) \leq \frac{1}{|B_K(0)|} \int_{B_K(0)} |c^K_{x, t} - u_0(x - t^{\frac{1}{4}}y)|dy \leq [u_0]_{\text{BMO}_{K^{1/4}}(\mathbb{R}^n)}.$$ \hspace{1cm} (3.7)
Putting (3.6) and (3.7) together yields (3.4) holds for \(t \leq \frac{R^4}{K^2} \). This completes the proof.

\[\square \]

4 Boundedness of the Operator \(\mathbb{S} \)

In this section, we introduce two more functional spaces and establish the boundedness of the operator \(\mathbb{S} \) between these spaces.

For \(0 < T \leq +\infty \), besides the space \(X_T \) introduced in Sect. 1, we need to introduce the spaces \(Y^1_T, Y^2_T \).

The space \(Y^1_T \) is the space consisting of functions \(f: \mathbb{R}^n \times [0, T] \rightarrow \mathbb{R} \) such that

\[
\| f \|_{Y^1_T} \equiv \sup_{0 < t \leq T} t \| f(t) \|_{L^\infty(\mathbb{R}^n)} + \sup_{x \in \mathbb{R}^n, 0 < r \leq T} \frac{r^{-n}}{4} \int_{P_r(x, r^4)} |f| < +\infty, \tag{4.1}
\]

and the space \(Y^2_T \) is the space consisting of functions \(f: \mathbb{R}^n \times [0, T] \rightarrow \mathbb{R} \) such that

\[
\| f \|_{Y^2_T} \equiv \sup_{0 < t \leq T} \frac{3}{2} t \| f(t) \|_{L^\infty(\mathbb{R}^n)} + \sup_{x \in \mathbb{R}^n, 0 < r \leq T} \left(\frac{r^{-n}}{4} \int_{P_r(x, r^4)} |f|^{\frac{3}{2}} \right)^{\frac{4}{3}} < +\infty. \tag{4.2}
\]

It is easy to see \((Y^i_T, \| \cdot \|_{Y^i_T})\) is a Banach space for \(i = 1, 2 \). When \(T = +\infty \), we simply denote \((Y^i, \| \cdot \|_{Y^i})\) for \((Y^i_T, \| \cdot \|_{Y^i_T})\) for \(i = 1, 2 \).

Let the operator \(\mathbb{S} \) be defined by (2.12). Then we have

Lemma 4.1 For any \(0 < T \leq +\infty \), if \(f \in Y^1_T \), then \(\mathbb{S} f \in X_T \) and

\[
\| \mathbb{S} f \|_{X_T} \leq C \| f \|_{Y^1_T}, \tag{4.3}
\]

for some \(C = C(n) > 0 \).

Proof We need to show the pointwise estimate

\[
\sum_{i=0}^{2} R^i |\nabla^i (\mathbb{S} f)(x, R^4)| \leq C \| f \|_{Y^1_T}, \quad \forall x \in \mathbb{R}^n, 0 < R \leq T^{\frac{1}{4}}, \tag{4.4}
\]

and the integral estimate for \(0 < R \leq T^{\frac{1}{4}} \):

\[
R^{-\frac{n}{2}} \| \nabla (\mathbb{S} f) \|_{L^4(P_R(x, R^4))} + R^{-\frac{n}{2}} \| \nabla^2 (\mathbb{S} f) \|_{L^2(P_R(x, R^4))} \leq C \| f \|_{Y^1_T}. \tag{4.5}
\]

By suitable scalings, we may assume \(T \geq 1 \). Since both estimates are translation and scale invariant, it suffices to show that both (4.4) and (4.5) hold for \(x = 0 \) and \(R = 1 \).
For \(i = 0, 1, 2 \), we have

\[
|\nabla^i S f(0, 1)| = \left| \int_0^1 \int_{\mathbb{R}^n} \nabla^i b(y, 1 - s) f(y, s) dy ds \right|
\]

\[
\leq \left\{ \int_{\frac{1}{2}}^1 \int_{\mathbb{R}^n} + \int_0^{\frac{1}{2}} \int_{B_2} + \int_0^{\frac{1}{2}} \int_{\mathbb{R}^n \setminus B_2} \right\} |\nabla^i b(y, 1 - s)||f(y, s)| dy ds
\]

\[
= I_1 + I_2 + I_3.
\]

Applying Lemma 2.1, we can estimate \(I_1, I_2, I_3 \) as follows.

\[
|I_1| \leq \left(\sup_{\frac{1}{2} \leq s \leq 1} \| f(s) \|_{L^\infty(\mathbb{R}^n)} \right) \left(\int_{\frac{1}{2}}^1 \| \nabla^i b(\cdot, 1 - s) \|_{L^1(\mathbb{R}^n)} ds \right)
\]

\[
\leq C \| f \|_{Y^1} \int_{\frac{1}{2}}^1 s^{-\frac{a}{2}} ds
\]

\[
\leq C \| f \|_{Y^1},
\]

\[
|I_2| \leq \left(\sup_{0 \leq s \leq \frac{1}{2}} \| \nabla^i b(\cdot) \|_{L^\infty(\mathbb{R}^n)} \right) \left(\int_{B_2 \times [0, \frac{1}{2}]} |f(y, s)| dy ds \right)
\]

\[
\leq C \int_{B_2 \times [0, \frac{1}{2}]} |f(y, s)| dy ds \leq C \| f \|_{Y^1},
\]

and

\[
|I_3| \leq \int_0^{\frac{1}{2}} \int_{\mathbb{R}^n \setminus B_2} |\nabla^i b(y, 1 - s)||f(y, s)| dy ds
\]

\[
\leq C \int_{\frac{1}{2}}^1 \int_{\mathbb{R}^n \setminus B_2} e^{-c_1 |y|} |f(y, s)| dy ds
\]

\[
\leq C \left(\sum_{k=2}^{\infty} k^{n-1} e^{-c_1 k} \right) \cdot \left(\sup_{y \in \mathbb{R}^n} \int_{P_1(y, 1)} |f(y, s)| dy ds \right)
\]

\[
\leq C \| f \|_{Y^1}.
\]

Now we want to show (4.5) by the energy method. Denote \(w = S f \). Then \(w \) solves

\[
(\partial_t + \Delta^2) w = f \quad \text{in } \mathbb{R}^n \times (0, +\infty); \quad w|_{t=0} = 0.
\]

(4.6)

Let \(\eta \in C_0^\infty(B_2) \) be a cutoff function of \(B_1 \). Multiplying (4.6) by \(\eta^4 w \) and integrating over \(\mathbb{R}^n \times [0, 1] \), we obtain

\[
\int_{\mathbb{R}^n \times [1]} |w|^2 \eta^4 + 2 \int_{\mathbb{R}^n \times [0, 1]} \Delta w \cdot \Delta (w \eta^4) = \int_{\mathbb{R}^n \times [0, 1]} f \cdot w \eta^4.
\]
This easily implies
\[
\int_{P_1(0,1)} |\nabla^2 w|^2 \\
\leq \int_{\mathbb{R}^n \times [0,1]} |\nabla^2 (\eta^2 w)|^2 \\
\leq C \int_{\mathbb{R}^n \times [0,1]} \left[|\nabla \eta|^2 |\nabla w|^2 + (|\Delta \eta| + |\nabla \eta|^2)|w|^2 \right] + C \int_{\mathbb{R}^n \times [0,1]} |f||w|\eta^2 \\
\leq C \left[\int_{(B_2 \setminus B_1) \times [0,1]} |\nabla w|^2 + |w|^2 + \|f\|_{L^1(B_2 \times [0,1])}\|w\|_{L^\infty(B_2 \times [0,1])} \right] \\
\leq C \left[\left(\int_0^1 t^{-\frac{1}{2}} dt \right) \cdot \left(\sup_{0 < t \leq 1} t^\frac{1}{2} \|\nabla w(t)\|^2_{L^\infty(\mathbb{R}^n)} \right) + \|w\|^2_{L^\infty(B_2 \times [0,1])} \\
+ \|f\|^2_{L^1(B_2 \times [0,1])} \right] \\
\leq C \left[\sup_{0 < t \leq 1} (\|w(t)\|^2_{L^\infty(\mathbb{R}^n)} + t^\frac{1}{2} \|\nabla w(t)\|^2_{L^\infty(\mathbb{R}^n)}) + \|f\|^2_{Y_1} \right] \\
\leq C \|f\|^2_{Y_1},
\] (4.7)

where we have used (4.4) in the last step.

For the \(L^4\) norm of \(\nabla w\) on \(P_1(0,1)\), recall that the Nirenberg inequality implies
\[
\|\nabla (\eta^2 w(t))\|^4_{L^4(\mathbb{R}^n)} \leq C \|\eta^2 w(t)\|^2_{L^\infty(\mathbb{R}^n)} \|\nabla^2 (\eta^2 w(t))\|^2_{L^2(\mathbb{R}^n)}.
\]

Integrating with respect to \(t \in [0,1]\) clearly implies
\[
\left(\int_{P_1(0,1)} |\nabla w|^4 \right)^{\frac{1}{4}} \leq C \sup_{0 \leq t \leq 1} \|w(t)\|^2_{L^\infty(\mathbb{R}^n)} \|\nabla^2 (\eta^2 w)\|^2_{L^2(\mathbb{R}^n \times [0,1])} \leq C \|f\|_{Y_1},
\]

where we have used both (4.4) and (4.7) in the last step. This completes the proof. \(\square\)

To handle the nonlinearities of the heat flow of biharmonic maps (1.3), we also need

Lemma 4.2 For \(0 < T \leq +\infty\), if \(f \in Y_1^n\), then for any \(1 \leq \alpha \leq n\), \(S(\frac{\partial f}{\partial x_\alpha}) \in X_T\) and
\[
\left\| S\left(\frac{\partial f}{\partial x_\alpha} \right) \right\|_{X_T} \leq C \|f\|_{Y_1^n}
\] (4.8)

for some \(C = C(n) > 0\).
Proof. The proof of (4.8) is similar to that of Lemma 4.1. We will prove that for any \(x \in \mathbb{R}^n \) and \(0 < R \leq T^{\frac{1}{4}} \), both the pointwise estimate:

\[
\sum_{i=0}^{2} R^i \left| \nabla^i \left(S \left(\frac{\partial f}{\partial x_\alpha} \right) \right) \right| (x, R^4) \leq C \| f \|_{Y^2_T}, \tag{4.9}
\]

and the integral estimate:

\[
R^{-\frac{n}{4}} \left\| \nabla \left(S \left(\frac{\partial f}{\partial x_\alpha} \right) \right) \right\|_{L^2(P_R(x, R^4))} + R^{-\frac{n}{2}} \left\| \nabla^2 \left(S \left(\frac{\partial f}{\partial x_\alpha} \right) \right) \right\|_{L^2(P_R(x, R^4))}
\leq C \| f \|_{Y^2_T}. \tag{4.10}
\]

By suitable scalings, we assume \(T \geq 1 \). Since both estimates are translation and scale invariant, it suffices to show that both (4.9) and (4.10) hold for \(x = 0 \) and \(R = 1 \). For \(1 \leq \alpha \leq n \), write \(W_\alpha = S(\frac{\partial f}{\partial x_\alpha}) \). For \(i = 0, 1, 2 \), we have

\[
\nabla^i W_\alpha(0, 1) = \int_{\mathbb{R}^n \times [0,1]} \nabla^i b(-y, 1 - s) \frac{\partial f}{\partial y_\alpha}(y, s) dy ds
\]

which implies

\[
\left| \nabla^i W_\alpha(0, 1) \right| \leq \int_0^1 \int_{\mathbb{R}^n} \left| \nabla^{i+1} b(y, 1 - s) \right| |f(y, s)| dy ds
\]

\[
= \left\{ \int_0^1 \int_{\mathbb{R}^n} + \int_{0}^{\frac{1}{2}} \int_{B_2} \right. + \left. \int_{0}^{\frac{1}{2}} \int_{\mathbb{R}^n \setminus B_2} \right\} |\nabla^{i+1} b(y, 1 - s)| |f(y, s)| dy ds
\]

\[
= I_4 + I_5 + I_6.
\]

Applying Lemma 2.1, we can estimate \(I_4, I_5, I_6 \) as follows.

\[
|I_4| \leq \left(\sup_{\frac{1}{2} \leq s \leq 1} \| f(s) \|_{L^\infty(\mathbb{R}^n)} \right) \left(\int_0^1 \| \nabla^{i+1} b(\cdot, 1 - s) \|_{L^1(\mathbb{R}^n)} ds \right)
\]

\[
\leq C \| f \|_{Y^2_T} \int_0^{\frac{1}{2}} s^{-\frac{i+1}{4}} ds
\]

\[
\leq C \| f \|_{Y^2_T},
\]

where we have used the fact \(\int_0^{\frac{1}{2}} s^{-\frac{i+1}{4}} ds < +\infty \) for \(i \leq 2 \).
\[|I_5| \leq \left(\sup_{0 \leq s \leq \frac{1}{2}} \| \nabla^{i+1} b(\cdot, 1-s) \|_{L^\infty(\mathbb{R}^n)} \right) \left(\int_{B_2 \times [0, \frac{1}{2}]} |f(y,s)|dyds \right) \]
\[\leq C \int_{B_2 \times [0, \frac{1}{2}]} |f(y,s)|dyds \leq C \| f \|_{Y^2}, \]

and since \(i + 1 \leq 3 \), we have
\[|I_6| \leq \int_0^{\frac{1}{2}} \int_{\mathbb{R}^n \setminus B_2} |\nabla^{i+1} b(y, 1-s)||f(y,s)||dyds \]
\[\leq C \int_0^{\frac{1}{2}} \int_{\mathbb{R}^n \setminus B_2} e^{-c_1 |y|} |f(y,s)||dyds \]
\[\leq C \left(\sum_{k=2}^{\infty} k^{n-1} e^{-c_1 k} \right) \cdot \left(\sup_{y \in \mathbb{R}^n} \int_{P_1(y,1)} |f(y,s)||dyds \right) \]
\[\leq C \| f \|_{Y^2}. \]

Putting together these estimates, we prove (4.9). Equation (4.10) can be done by the energy method as well. In fact, \(W_\alpha \) solves
\[
(\partial_t + \Delta^2) W_\alpha = \frac{\partial f}{\partial x_\alpha} \quad \text{in } \mathbb{R}^n \times (0, +\infty); \quad W_\alpha|_{t=0} = 0. \quad (4.11)
\]

Let \(\eta \in C^\infty_0(B_2) \) be a cutoff function of \(B_1 \). Multiplying (4.11) by \(\eta^4 W_\alpha \) and integrating over \(\mathbb{R}^n \times [0, 1] \), we obtain
\[
\int_{\mathbb{R}^n \times \{1\}} |W_\alpha|^2 \eta^4 + 2 \int_{\mathbb{R}^n \times [0,1]} \Delta W_\alpha \cdot \Delta(W_\alpha \eta^4) = -\int_{\mathbb{R}^n \times [0,1]} f \cdot \frac{\partial}{\partial x_\alpha}(W_\alpha \eta^4). \]

This implies
\[
\int_{P_1(0,1)} |\nabla^2 W_\alpha|^2 \]
\[\leq \int_{\mathbb{R}^n \times [0,1]} |\nabla^2 (\eta^2 W_\alpha)|^2 \]
\[\leq C \int_{\mathbb{R}^n \times [0,1]} \left[|\nabla \eta|^2 |\nabla W_\alpha|^2 + (|\Delta \eta| + |\nabla \eta|^2) |W_\alpha|^2 \right] \]
\[+ C \int_{\mathbb{R}^n \times [0,1]} |f|(|\nabla (\eta^2 W_\alpha)| + |W_\alpha||\nabla \eta|) \]
\[\leq C \left[\int_{(B_2 \setminus B_1) \times [0,1]} (|\nabla W_\alpha|^2 + |W_\alpha|^2) + \| f \|_{L^1(B_2 \times [0,1])} \| W_\alpha \|_{L^\infty(\mathbb{R}^n)} \right] \]
\[+ C \| f \|_{L^4(B_2 \times [0,1])} \| \nabla (\eta^2 W_\alpha) \|_{L^4(\mathbb{R}^n \times [0,1])} \]
\[= I_7 + I_8. \quad (4.12)\]
It is easy to see that

\[
|I_7| \leq C \left[\left(\int_0^1 t^{-\frac{1}{2}} dt \right) \cdot \left(\sup_{0 \leq t \leq 1} t^\frac{1}{2} \| \nabla W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^2 \right) \right. \\
+ \| W_\alpha \|_{L^\infty(B_2 \times (0, 1))}^2 + \| f \|_{L^1(B_2 \times (0, 1))}^2 \right] \\
\leq C \| f \|_{Y^2_1}^2
\]

where we have used the pointwise estimate (4.9) in the last step. In order to estimate \(I_8\), we first need to employ the Nirenberg inequality:

\[
\| \nabla (\eta^2 W_\alpha(t)) \|_{L^4(\mathbb{R}^n)}^4 \leq C \| \eta^2 W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^2 \| \nabla^2 (\eta^2 W_\alpha(t)) \|_{L^2(\mathbb{R}^n)}^2,
\]

which, after integrating with respect to \(t \in [0, 1] \), implies

\[
\| \nabla (\eta^2 W_\alpha) \|_{L^4(\mathbb{R}^n \times [0, 1])} \leq C \sup_{0 \leq t \leq 1} \| W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^\frac{1}{2} \| \nabla^2 (\eta^2 W_\alpha) \|_{L^2(\mathbb{R}^n \times [0, 1])}^\frac{1}{2}.
\]

Therefore, \(I_8\) can be estimated by

\[
|I_8| \leq C \| f \|_{L^4(\mathbb{R}^n \times [0, 1])} \sup_{0 \leq t \leq 1} \| W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^\frac{1}{2} \| \nabla^2 (\eta^2 W_\alpha) \|_{L^2(\mathbb{R}^n \times [0, 1])}^\frac{1}{2}
\]

\[
\leq \frac{1}{2} \int_{\mathbb{R}^n \times [0, 1]} |\nabla^2 (\eta^2 W_\alpha)|^2 + C \| f \|_{L^4(\mathbb{R}^n \times [0, 1])}^\frac{3}{2} \sup_{0 \leq t \leq 1} \| W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^2
\]

\[
\leq \frac{1}{2} \int_{\mathbb{R}^n \times [0, 1]} |\nabla^2 (\eta^2 W_\alpha)|^2 + C \| f \|_{L^4(\mathbb{R}^n \times [0, 1])}^\frac{3}{2} \sup_{0 \leq t \leq 1} \| W_\alpha(t) \|_{L^\infty(\mathbb{R}^n)}^2
\]

\[
\leq \frac{1}{2} \int_{\mathbb{R}^n \times [0, 1]} |\nabla^2 (\eta^2 W_\alpha)|^2 + C \| f \|_{Y^2_1}^2,
\]

where we have used (4.9) in the last step. Now we substitute the estimates of \(I_7\) and \(I_8\) into (4.12) and obtain

\[
\int_{P_1(0, 1)} |\nabla^2 W_\alpha|^2 \leq C \int_{\mathbb{R}^n \times [0, 1]} |\nabla^2 (\eta^2 W_\alpha)|^2 \leq C \| f \|_{Y^2_1}^2.
\]

This, combined with (4.13), also implies

\[
\int_{P_1(0, 1)} |\nabla W_\alpha|^4 \leq C \| f \|_{Y^2_1}^4.
\]

The proof of (4.10) is now completed. \(\square\)
5 Proof of Theorem 1.2 and 1.3

In this section, we will prove both Theorem 1.2 and 1.3. The idea is based on the fixed point theorem in a small ball inside X_T for the mapping operator determined by Duhamel's formula associated with (1.3)–(1.4).

First we need to extend $\tilde{\Pi} \equiv \Pi$ on N_{δ_N}.

Let

$$\mathcal{F}[u] = \Delta(D^2\tilde{\Pi}(u)(\nabla u, \nabla u)) - \langle \Delta u, \Delta(D\tilde{\Pi}(u)) \rangle + 2 \nabla \cdot \langle \Delta u, \nabla(D\tilde{\Pi}(u)) \rangle$$

be the right-hand side nonlinearity of (1.3). Then it is easy to see that

$$\mathcal{F}[u] = -\langle \Delta u, \Delta(D\tilde{\Pi}(u)) \rangle + \nabla \cdot \left(2\langle \Delta u, \nabla(D\tilde{\Pi}(u)) \rangle + \nabla(D^2\tilde{\Pi}(u)(\nabla u, \nabla u))\right)$$

$$= \mathcal{F}_1[u] + \nabla \cdot (\mathcal{F}_2[u]),$$

where

$$\mathcal{F}_1[u] = -\langle \Delta u, \Delta(D\tilde{\Pi}(u)) \rangle,$$

$$\mathcal{F}_2[u] = 2\langle \Delta u, \nabla(D\tilde{\Pi}(u)) \rangle + \nabla(D^2\tilde{\Pi}(u)(\nabla u, \nabla u)).$$

It is easy to see

$$|\mathcal{F}_1[u]| \leq C(|\nabla^2 u|^2 + |\nabla u|^4), \quad |\mathcal{F}_2[u]| \leq C(|\nabla^2 u||\nabla u| + |\nabla u|^3),$$

where $C > 0$ is a constant depending on $\|u\|_{L^\infty(\mathbb{R}^n)}$. With the notation as above, (1.3)–(1.4) can be written as

$$(\partial_t + \Delta^2)u = \mathcal{F}_1[u] + \nabla \cdot (\mathcal{F}_2[u]) \quad \text{in } \mathbb{R}^n \times (0, +\infty); \ |u|_{t=0} = u_0.$$ \hfill (5.4)

The first observation is

Lemma 5.1 For $0 < T \leq +\infty$, if $u \in X_T$, then $\mathcal{F}_1[u] \in Y^1_T$, $\mathcal{F}_2[u] \in Y^2_T$. Moreover,

$$\|\mathcal{F}_1[u]\|_{Y^1_T} \leq C \left([u]^2_{X_T} + [u]^4_{X_T}\right),$$

and

$$\|\mathcal{F}_2[u]\|_{Y^2_T} \leq C \left([u]^2_{X_T} + [u]^3_{X_T}\right).$$

Proof It follows directly from the Hölder inequality. \qed

By Duhamel's formula (2.10), the solution u to (1.3)–(1.4) is given by

$$u = \mathbb{G}u_0 + \mathcal{S}(\mathcal{F}_1[u]) + \mathcal{S}(\nabla \cdot (\mathcal{F}_2[u])).$$

Throughout this section, we denote

$$\tilde{u}_0 = \mathbb{G}u_0.$$
Now we define the mapping operator \mathbb{T} on X_{R^4} by letting
\[
\mathbb{T} u(x, t) = \hat{u}_0(x, t) + \mathbb{S}(\mathcal{F}_1[u])(x, t) + \mathbb{S}(\nabla \cdot (\mathcal{F}_2[u]))(x, t), \quad u \in X_{R^4}.
\]

(5.8)

The following property follows directly from Lemma 3.1.

Lemma 5.2 For any $R > 0$ and any initial map $u_0 : \mathbb{R}^n \to N$, $\hat{u}_0 \in X_{R^4}$ and
\[
\|\hat{u}_0\|_{L^\infty(\mathbb{R}^{n+1}_+)} \leq C \|u_0\|_{L^\infty(\mathbb{R}^n)}, \quad \left[\hat{u}_0\right]_{X_{R^4}} \leq C \left[u_0\right]_{\text{BMO}_{R}(\mathbb{R}^n)}^{\frac{1}{2}}.
\]

(5.9)

For $\epsilon > 0$, we define
\[
\mathbb{B}_\epsilon(\hat{u}_0) := \left\{ u \in X_{R^4} : \|u - \hat{u}_0\|_{X_{R^4}} \leq \epsilon \right\}
\]
to be the ball in X_{R^4} with center \hat{u}_0 and radius ϵ. By the triangle inequality, we have
\[
\|u\|_{L^\infty(\mathbb{R}^{n+1}_+)} \leq \epsilon + C \|u_0\|_{L^\infty(\mathbb{R}^n)}, \quad \left[u\right]_{X_{R^4}} \leq \epsilon + \left[u_0\right]_{\text{BMO}_{R}(\mathbb{R}^n)}, \quad \forall u \in \mathbb{B}_\epsilon(\hat{u}_0).
\]

(5.10)

In particular, we have

Lemma 5.3 For $0 < R \leq +\infty$, if $u_0 : \mathbb{R}^n \to N$ has $\left[u_0\right]_{\text{BMO}_{R}(\mathbb{R}^n)} \leq \delta_1$, then
\[
\|u\|_{L^\infty(\mathbb{R}^{n+1}_+)} \leq C + \epsilon, \quad \left[u\right]_{X_{R^4}} \leq C \epsilon^{\frac{1}{2}}, \quad \forall u \in \mathbb{B}_\epsilon(\hat{u}_0)
\]

(5.11)

for some $C = C(n, N) > 0$.

The proof of Theorem 1.2 is based on the following two lemmas.

Lemma 5.4 For any $\epsilon_1 > 0$, there exists $\delta_1 > 0$ such that for any $0 < R \leq +\infty$ if $u_0 : \mathbb{R}^n \to N$ has $\left[u_0\right]_{\text{BMO}_{R}(\mathbb{R}^n)} \leq \delta_1$, then \mathbb{T} maps $\mathbb{B}_{\epsilon_1}(\hat{u}_0)$ to $\mathbb{B}_{\epsilon_1}(\hat{u}_0)$.

Proof. By (5.8), we have
\[
\mathbb{T}(u) - \hat{u}_0 = \mathbb{S}(\mathcal{F}_1[u]) + \mathbb{S}(\nabla \cdot (\mathcal{F}_2[u])), \quad u \in \mathbb{B}_{\epsilon_1}(\hat{u}_0).
\]

Hence Lemmas 4.1, 4.2, 5.1, and 5.2 imply that for any $u \in \mathbb{B}_{\epsilon_1}(\hat{u}_0)$,
\[
\|\mathbb{T}(u) - \hat{u}_0\|_{X_{R^4}} \lesssim \|\mathbb{S}(\mathcal{F}_1[u])\|_{X_{R^4}} + \|\mathbb{S}(\nabla \cdot (\mathcal{F}_2[u]))\|_{X_{R^4}} \\
\lesssim \|\mathcal{F}_1[u]\|_{Y^1_{R^4}} + \|\mathcal{F}_2[u]\|_{Y^2_{R^4}} \\
\lesssim \left[u\right]_{X_{R^4}}^{2} \lesssim C \delta_1 \leq \epsilon_1,
\]

provided $0 < \delta_1 \leq \frac{\epsilon_1}{C}$. Hence $\mathbb{T} u \in \mathbb{B}_{\epsilon_1}(\hat{u}_0)$. This completes the proof. \qed
Lemma 5.5 For any $\epsilon_1 > 0$, $\theta_0 \in (0, 1)$, there exist $\delta_2 > 0$ depending on ϵ_1 and θ_0 such that for $0 < R \leq +\infty$ if $u_0 : \mathbb{R}^n \to N$ satisfies

$$[u_0]_{\text{BMO}_R(\mathbb{R}^n)} \leq \delta_2$$

then $T : \mathbb{B}_{\epsilon_1}(u_0) \to \mathbb{B}_{\epsilon_1}(u_0)$ is a θ_0-contraction map, i.e.,

$$\|T(u) - T(v)\|_{X_R^4} \leq \theta_0 \|u - v\|_{X_R^4}, \quad \forall u, v \in \mathbb{B}_{\epsilon_1}(u_0).$$

Proof For $u, v \in \mathbb{B}_{\epsilon_1}(u_0)$, we have

$$\|T(u) - T(v)\|_{X_R^4} \leq \|S(F_1[u] - F_1[v])\|_{X_R^4} + \|S(\nabla \cdot (F_2[u] - F_2[v]))\|_{X_R^4}$$

$$\lesssim \|F_1[u] - F_1[v]\|_{Y^1_R} + \|F_2[u] - F_2[v]\|_{Y^2_R}. \quad (5.12)$$

Since

$$F_1[u] - F_1[v] = -\langle \Delta u, \Delta(D\tilde{\Pi}(u)) \rangle + \langle \Delta v, \Delta(D\tilde{\Pi}(v)) \rangle$$

$$= \langle \Delta(u - v), \Delta(D\tilde{\Pi}(u)) \rangle + \langle \Delta v, \Delta(D\tilde{\Pi}(u) - D\tilde{\Pi}(v)) \rangle,$$

we have

$$|F_1[u] - F_1[v]| \leq C(|\Delta(u - v)|(|\Delta u| + |\nabla u|^2 + |\Delta v|)$$

$$+ |\Delta v|(|\nabla u| + |\nabla v|)|\nabla (u - v)|) + C|\Delta v||\nabla^2 u|$$

$$+ |\nabla^2 v||u - v|. \quad (5.13)$$

Hence

$$\|F_1[u] - F_1[v]\|_{Y^1_R} \leq C([u]_{X_R^4} + [v]_{X_R^4} + [u]^{2}_{X_R^4})\|u - v\|_{X_R^4}$$

$$+ [v]_{X_R^4}([u]_{X_R^4} + [v]_{X_R^4})\|u - v\|_{X_R^4} \leq C\delta_2^\frac{1}{2}\|u - v\|_{X_R^4},$$

where we have used Lemma 5.3 in the last step.

Since

$$|F_2[u] - F_2[v]| \leq 2(|\Delta u, \nabla(D\tilde{\Pi}(u)) - \langle \Delta v, \nabla(D\tilde{\Pi}(v)) \rangle|$$

$$+ |\nabla(D^2\tilde{\Pi}(u)(\nabla u, \nabla v)) - D^2\tilde{\Pi}(v)(\nabla v, \nabla v)|$$

$$\leq C(|\nabla u|\Delta(u - v) + |\Delta v|(|u - v| + |\nabla(u - v)|)$$

$$+ C(|\nabla u|(|\nabla u| + |\nabla v|)|\nabla(u - v)|$$

$$+ (|\nabla^2 u| + |\nabla^2 v||\nabla(u - v)|$$

$$+ C(|\nabla u| + |\nabla v|)|\nabla^2 (u - v)| + |\nabla v|^2|\nabla(u - v)|$$

$$+ |\nabla v||\nabla^2 v||u - v|,$$
we have
\[\|\mathcal{F}_2[u] - \mathcal{F}_2[v]\|_{X^4} \leq C\|(u)x_{x^4} + [v]x_{x^4} + [u]^2x_{x^4} + [v]^2x_{x^4}\|u - v\|_{X^4}\]
\[\leq C\delta^\frac{1}{2}\|u - v\|_{X^4}. \tag{5.14}\]

Putting (5.13) and (5.14) into (5.12), we obtain
\[\|\mathbb{T}u - \mathbb{T}v\|_{X^4} \leq C\delta^\frac{1}{2}\|u - v\|_{X^4}\]
provided \(\epsilon_2 = \delta^2(\theta_0, \epsilon_1) > 0\) is chosen to be sufficiently small. This completes the proof. \(\square\)

Proof of Theorem 1.2 It follows from Lemmas 5.4 and 5.5, and the fixed point theorem that there exists \(\epsilon_0 > 0\) such that for \(0 < R \leq +\infty\) if \([u_0]_{\text{BMO}_R(\mathbb{R}^n)} \leq \epsilon_0\), then there exists a unique \(u \in X^4\) such that
\[u = \hat{u}_0 + S(F[u]) \text{ on } \mathbb{R}^n \times [0, R^4),\]
or equivalently
\[u_t + \Delta^2 u = F[u] \text{ on } \mathbb{R}^n \times (0, R^4); \quad u|_{t=0} = u_0.\]

Now we need to show \(u(\mathbb{R}^n \times [0, R^4]) \subset N\). First, observe that Lemma 2.1 implies that for any \(x \in \mathbb{R}^n\) and \(t \leq \frac{R^4}{K^4}\),
\[\text{dist}(u(x, t), N) \leq \text{dist}(\hat{u}_0(x, t), N) + \|u - \hat{u}_0\|_{L^\infty(\mathbb{R}^n \times [0, R^4])}\]
\[\leq \delta + K^n [u_0]_{\text{BMO}_R(\mathbb{R}^n)} + \epsilon_0\]
\[\leq \delta + (1 + K^n)\epsilon_0 \leq \delta_N,\]
provided \(\delta \leq \frac{\delta_N}{2}\) and \(\epsilon_0 \leq \frac{\delta_N}{2(1 + K^n)}\). This yields \(u(\mathbb{R}^n \times [0, R^4]) \subset N_{\delta_N}\), the \(\delta_N\)-neighborhood of \(N\). This and the definition of \(\Pi(\cdot)\) imply that \(\Pi(u) = \Pi(\cdot)\).

Set \(Q(y) = y - \Pi(y)\) for \(y \in N_{\delta_N}\), and \(\rho(u) = \frac{1}{2}|Q(u)|^2\). Then direct calculations imply that for any \(y \in N_{\delta_N}\),
\[DQ(y)(v) = (\text{Id} - D\Pi(y))(v), \quad \forall v \in \mathbb{R}^l,\]
and
\[D^2Q(y)(v, w) = -D^2\Pi(y)(v, w), \quad \forall v, w \in \mathbb{R}^l.\]
Observe that \(\mathcal{F}[u]\) can be rewritten as
\[\mathcal{F}[u] = \Delta(D^2\Pi(u)(\nabla u, \nabla u)) + \nabla \cdot (D^2\Pi(u)(\Delta u, \nabla u)) + D^2\Pi(u)(\nabla \Delta u, \nabla u).\]
Direct calculations imply
\[
(\partial_t + \Delta^2)Q(u) \\
= DQ(u)(\partial_t u + \Delta^2 u) \\
\quad - \left[D^2 \Pi(u)(\nabla \Delta u, \nabla u) + \nabla \cdot (D^2 \Pi(u)(\Delta u, \nabla u)) + \Delta (D^2 \Pi(u)(\nabla u, \nabla u)) \right] \\
= DQ(u)(F[u]) - F[u] \\
= -D\Pi(u)(F[u]). \tag{5.15}
\]

Multiplying both sides of (5.15) by \(Q(u)\) and integrating over \(\mathbb{R}^n\), we obtain
\[
\frac{d}{dt} \int_{\mathbb{R}^n} \rho(u) + \frac{1}{2} \int_{\mathbb{R}^n} |\Delta (Q(u))|^2 = -\frac{1}{2} \int_{\mathbb{R}^n} \langle D\Pi(u)(F[u]), Q(u) \rangle = 0, \tag{5.16}
\]
where we have used the fact that \(Q(u) \perp T_{\Pi(u)} N\) and \(D\Pi(u)(F[u]) \in T_{\Pi(u)} N\) in the last step.

Since \(\rho(u)|_{t=0} = 0\), integrating (5.16) from 0 to \(\frac{R^4}{K^4}\) implies \(\rho(u) \equiv 0\) on \(\mathbb{R}^n \times [0, \frac{R^4}{K^4}]\). Thus \(u(\mathbb{R}^n \times [0, \frac{R^4}{K^4}]) \subset N\). Repeating the same argument for \(t \in [\frac{R^4}{K^4}, R^4]\) yields \(u(\mathbb{R}^n \times [\frac{R^4}{K^4}, R^4]) \subset N\). This completes the proof of Theorem 1.2. \(\square\)

Proof of Theorem 1.3 It follows directly from Theorem 1.2 with \(R = +\infty\). \(\square\)

6 Proof of Theorems 1.4 and 1.5

This section is devoted to the proof of both Theorems 1.4 and 1.5. Since the argument is similar to that of Theorem 1.2, we will only sketch it here.

Let \(\mathcal{H}[u]\) denote the right-hand side of (1.7). Then we have
\[
\mathcal{H}[u] = \mathcal{F}_1[u] + \nabla \cdot \mathcal{F}_2[u] + \mathcal{F}_3[u],
\]
where \(\mathcal{F}_1[u]\) and \(\mathcal{F}_2[u]\) are given by (5.2), while
\[
\mathcal{F}_3[u] = D\tilde{\Pi}(u)[D^2 \tilde{\Pi}(u)(\nabla u, \nabla u) \cdot D^3 \tilde{\Pi}(u)(\nabla u, \nabla u)] \\
\quad + 2D^2 \tilde{\Pi}(u)(\nabla u, \nabla u) \cdot D^2 \tilde{\Pi}(u)(\nabla u, \nabla (D\tilde{\Pi}(u))). \tag{6.1}
\]

It is clear that \(u \in X_{R^4}\) solves (1.7)–(1.8) iff
\[
u = \mathbb{G}u_0 + \mathbb{S}(\mathcal{F}_1[u]) + \mathbb{S}(\nabla \cdot \mathcal{F}_2[u]) + \mathbb{S}(\mathcal{F}_3[u]). \tag{6.2}
\]

Since \(\mathcal{F}_3[u]\) satisfies
\[
|\mathcal{F}_3[u]| \leq C|\nabla u|^4, \tag{6.3}
\]
for some \(C > 0\) depending on \(\|u\|_{L^\infty(\mathbb{R}^n)}\), it is easy to check
Claim 1. For $0 < R \leq +\infty$, if $u \in X_{R^4}$, then $\mathcal{F}_3[u] \in Y_{R^4}^1$ and

$$\|\mathcal{F}_3[u]\|_{Y_{R^4}^1} \leq C \|u\|_{X_{R^4}}.$$ \hfill (6.4)

This claim and Lemma 4.1 then imply

Claim 2. For $0 < R \leq +\infty$, if $u \in X_{R^4}$, then $S(\mathcal{F}_3[u]) \in X_{R^4}$ and

$$\|S(\mathcal{F}_3[u])\|_{X_{R^4}} \leq C \|u\|_{X_{R^4}}.$$ \hfill (6.5)

Now if we define the mapping operator \tilde{T} on X_{R^4} by

$$\tilde{T}[u] := G u_0 + S(\mathcal{F}_1[u]) + S(\nabla \cdot \mathcal{F}_2[u]) + S(\mathcal{F}_3[u]),$$ \hfill (6.6)

then Claims 1, 2, and Lemma 5.4 imply

Claim 3. For any $\epsilon_3 > 0$, there exists $\delta_3 = \delta_3(\epsilon_3) > 0$ such that for $0 < R \leq +\infty$, if $u_0 : \mathbb{R}^n \to N$ has $\|u_0\|_{\text{BMO}_{\mathbb{R}^n}} \leq \delta_3$, then \tilde{T} maps $B_{\epsilon_3}(u_0)$ to $B_{\epsilon_3}(\tilde{u}_0)$.

We need to show $\tilde{T} : B_{\epsilon_3}(u_0) \to B_{\epsilon_3}(\tilde{u}_0)$ is a contraction map. To see this, observe that direct calculations imply that for any $u, v \in B_{\epsilon_3}(\tilde{u}_0)$,

$$|\mathcal{F}_3[u] - \mathcal{F}_3[v]| \leq C \|u - v\|_{X_{R^4}} (|\nabla u|^3 + |\nabla (u - v)|) (|\nabla u|^3 + |\nabla v||\nabla u|^2 + |\nabla v|^2|\nabla u| + |\nabla u|^3))$$ \hfill (6.7)

for some $C > 0$ depending only on $\max\{|\|u\|_{L^\infty(\mathbb{R}^n)}, \|v\|_{L^\infty(\mathbb{R}^n)}\}$. Hence, combined with the proof of Lemma 5.5, we obtain

Claim 4. There exists $\delta_4 = \delta_4(\epsilon_3) > 0$ such that for $0 < R \leq +\infty$, if $u_0 : \mathbb{R}^n \to N$ has $\|u_0\|_{\text{BMO}_{\mathbb{R}^n}} \leq \delta_4$, then

$$\|\tilde{T}[u] - \tilde{T}[v]\|_{X_{R^4}} \leq C \delta_4 \|u - v\|_{X_{R^4}}, \quad \forall u, v \in B_{\epsilon_3}(\tilde{u}_0).$$ \hfill (6.8)

Now we can complete the proof of Theorem 1.4 as follows.

Completion of Proof of Theorem 1.4. Similar to Theorem 1.2, it follows from Claims 3 and 4 and the fixed point theorem that if there exists $\epsilon_0 > 0$ such that for $0 < R \leq +\infty$ if $\|u_0\|_{\text{BMO}_{\mathbb{R}^n}} \leq \epsilon_0$, then there exists a unique $u \in X_{R^4}$ that solves (1.7)–(1.8):

$$u_t + \Delta^2 u = \mathcal{H}[u] \quad \text{on } \mathbb{R}^n \times (0, R^4); \quad u|_{t=0} = u_0.$$

The same argument as in Theorem 1.2 implies $u(\mathbb{R}^n \times [0, \frac{R^4}{\kappa^2}]) \subset N_{\delta_N}$. Hence $\tilde{\Pi}(u) \equiv \Pi(u)$ on $\mathbb{R}^n \times [0, \frac{R^4}{\kappa^2}]$. Moreover, the same calculation as in (5.15) implies

$$(\partial_t + \Delta^2)(u - D\Pi(u)) = -D\Pi(u)(\mathcal{H}[u]),$$ \hfill (6.9)
and it follows that for \(0 \leq t \leq \frac{R^4}{K^2}\),
\[
\frac{d}{dt} \int_{\mathbb{R}^n} |u - D\Pi(u)|^2 + \int_{\mathbb{R}^n} |\Delta(u - D\Pi(u))|^2 = 0. \tag{6.10}
\]
This, combined with \(|u - D\Pi(u)|^2|_{t=0} = 0\), implies that \(u(\mathbb{R}^n \times [0, \frac{R^4}{K^2}]) \subset N\). Repeating the same argument then implies \(u(\mathbb{R}^n \times [0, R^4]) \subset N\). The proof is complete. \(\square\)

Proof of Theorem 1.5 It follows directly from Theorem 1.4 with \(R = +\infty\). \(\square\)

Acknowledgements This work was partially supported by NSF grants 0601182 and 1001115. This work was carried out while the author was visiting IMA as a New Directions Research Professorship. The author wishes to thank IMA for providing both financial support and an excellent research environment. The author also thanks the referee for his/her helpful suggestions.

References

1. Angelesberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006)
2. Chang, A., Wang, L., Yang, P.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52, 1113–1137 (1999)
3. Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geomun. 6(4), 501–521 (2006)
4. Hong, M., Wang, C.: Regularity and relaxed problems of minimizing biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 23(4), 425–450 (2005)
5. Huang, T., Wang, C.: Well-posedness for the heat flow of polyharmonic maps with rough initial data. Adv. Cal. Var. (to appear). doi:10.1515/ACV.2010.025
6. Koch, H., Lamm, T.: Geometric flows with rough initial data (2009). arXiv:0902.1488v1
7. Koch, H., Tataru, D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157(1), 22–35 (2001)
8. Lamm, T.: Biharmonischer Wärmefluß. Diplomarbeit Universität Freiburg (2001)
9. Lamm, T.: Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom. 26(4), 369–384 (2004)
10. Lamm, T.: Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differ. Equ. 22(4), 421–445 (2005)
11. Lamm, T., Riviere, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33(1–3), 245–262 (2008)
12. Scheven, C.: Dimension reduction for the singular set of biharmonic maps. Adv. Calc. Var. 1(1), 53–91 (2008)
13. Stein, E.: Harmonic Analysis. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)
14. Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differ. Equ. 33(2), 249–262 (2008)
15. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18(4), 401–432 (2003)
16. Wang, C.: Biharmonic maps from \(\mathbb{R}^4\) into a Riemannian manifold. Math. Z. 247, 65–87 (2004)
17. Wang, C.: Stationary biharmonic maps from \(\mathbb{R}^m\) into a Riemannian manifold. Commun. Pure Appl. Math. 57, 419–444 (2004)
18. Wang, C.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 21, 221–242 (2004)
19. Wang, C.: Heat flow of biharmonic maps in dimensions four and its application. Pure Appl. Math. Q. 3(2), 595–613 (2007), part 1
20. Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. (online first). doi:10.1007/s00205-010-0343-5