Correlational research on facial and clinical characteristics of adolescents with obsessive-compulsive disorder

Yanrong Wang
Ningxia Medical University

Shaohua Chang
Ning An Hospital

Xiaomin Ma
Ningxia Medical University

Jiying Li
Ningxia Medical University

Ruixia Zhang
Ningxia Medical University

jianqun fang (✉ fjq-7887@163.com)
Ningxia Medical University

Research article

Keywords: adolescent, obsessive-compulsive disorder, neurodevelopment, facial characteristics

DOI: https://doi.org/10.21203/rs.3.rs-362348/v1

License: ☺ ☑ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

We examined the relationship between facial morphological features and clinical characteristics of adolescents with obsessive-compulsive disorder (OCD). The enrolled study sample comprised 40 adolescents diagnosed with OCD using the Obsessive Compulsive Inventory Child Version (OCI-CV) and 38 healthy controls (HCs). Facial photos, 21 facial diameters, and nine facial angles were collected using image software. In males, lower lip red height was significantly lower in OCD patients than in HCs (P < 0.05); no significant differences were observed in other facial indicators (all P > 0.05). In females, the nasolabial angle was smaller in OCD patients than in HCs (P < 0.05); no significant differences were observed in other facial indicators (all P > 0.05). The difference in lower lip red height between the OCD group and HC group was positively correlated with mental neutralization symptoms (r = 0.401, P < 0.05). Our findings highlight the relationship between facial and clinical characteristics in OCD patients.

1. Introduction

Research over the last two decades has identified obsessive–compulsive disorder (OCD) in children and adolescents as one of the most common psychiatric illnesses affecting youth. Epidemiological studies have reported a lifetime prevalence of 1–3% in pediatric populations \(^1\) and 30–50% of adult patients develop OCD during childhood and adolescence \(^2\). OCD in youth is typically a chronic and debilitating disorder \(^3\), and the morbid dysfunction caused by OCD commencing in youth may interfere with the trajectory of normal development during critical periods. This may impede the consolidation of processes such as identity and personality formation, social and educational mastery, and future orientation \(^3\). Given the high prevalence, morbidity, and functional impairments associated with OCD in children, early detection is crucial.

Children with OCD often present with neurodevelopmental disorders such as tic disorder and attention deficit hyperactivity disorder, which are underpinned by a common biological basis. The neurodevelopmental model of OCD, proposed by Rosenberg and Keshavan, theorizes that neurodevelopmental changes in the ventral striatal circuit of the prefrontal lobe are associated with the initial symptoms of OCD \(^4\). Growing neuroimaging evidence has highlighted asymmetries and subtle changes in subcortical structures (e.g., thalamus and globus pallidus) in children with OCD, but these changes are absent in adult OCD patients \(^5\). A recent genomic study of mental diseases including OCD, autism, attention deficit hyperactivity disorder, and tic disorder demonstrated that pleiotropic risk sites are enriched in genes related to neurogenesis and neurodevelopment, and are expressed in the second trimester peak \(^6\). These findings support the neurodevelopmental hypothesis of OCD in children. However, the neurodevelopmental origin and potential causes of OCD have not been elucidated.

Minor physical anomalies (MPAs) refer to subtle morphological abnormalities of the craniofacial region and limbs. These abnormalities do not result in obvious cosmetic or functional sequelae. MPAs are markers of abnormal fetal morphogenesis in the early or middle trimester of pregnancy and originate from the ectoderm alongside the fetal brain. As MPAs are affected by genetic and prenatal factors, they
may be used as neurodevelopmental indicators\cite{7}. MPAs include minor deformities and phenotypic variations, and are stable over time. Minor deformities are underpinned by qualitative defects after organogenesis during embryogenesis. Phenotypic genetic variation refers to the quantitative defects that occur after organogenesis and are equivalent to the variation in normal human body measurements. Therefore, screening for MPAs can be achieved via physical measurements\cite{8}. Previous studies have suggested that the incidence of MPAs is higher in patients with neurodevelopmental disorders such as schizophrenia, autism, and Tourette’s syndrome than health\cite{8,9,10}. However, there is currently a paucity of studies on MPAs in children with OCD.

Abnormal craniofacial morphology in MPAs is one of the most consistent anatomical phenotypes of neurodevelopmental disorders\cite{11}. Atypical facial features are observed in many developmental disorders, such as 22q11.2 deletion syndrome and fetal alcohol syndrome\cite{12,13}. Facial morphological abnormalities vary from subtle to severe. During embryonic development, brain and facial tissues both originate from the neuroectoderm and reciprocally affect their development. Genetic or environmental events that interfere with early fetal development will result in morphological abnormalities\cite{14}. If these deformities are sufficiently prominent, they can be qualitatively identified and classified by inspection, which is currently practiced in clinical genetics and pediatrics\cite{15}. If abnormal facial morphology is not evident, traditional anthropometric techniques can be used to quantify and grade this morphological disorder. Based on standard anatomical landmarks of individual facial features, facial abnormalities can be measured using manual or conventional two-dimensional photographs\cite{16}, and biological significance can be determined based on morphological assessments. Facial deformity is the most easily measured index of brain malformation, which can reflect abnormal brain structure and function via facial abnormalities.

Facial morphology is largely determined by genetic factors\cite{17}. Technological advancements in facial morphological measurements using abnormal facial features to bridge clinical phenotypes and genotypes will enable the identification of genes associated with OCD. Identification of facial abnormalities using face recognition technology\cite{18} may be facilitate early screening and auxiliary diagnosis of OCD. Based on the neurodevelopmental hypothesis of OCD in children and adolescents, this study selects facial morphological features as the observational indicators of neurodevelopment, and explores the correlation between facial features and clinical symptoms of adolescents with OCD by measuring the dimensions of the subjects’ facial photos.

2. Methods

2.1. Participants

Participants were 15- to 17-year-old students studying at two high schools in Ningxia Hui Autonomous Region, China. In total, 2,400 students were approached. We enrolled 40 students diagnosed with OCD group and 38 matched for age and sex health controls. The Child Obsessive Compulsive Scale (OCI-CV) was used to screen for obsessive-compulsive symptoms. A high-risk obsessive-compulsive symptoms group (OCI-CV \geq 20 points) and non-obsessive-compulsive symptoms group (OCI-CV = 0 points) were
screened. Two groups of participants were diagnosed using the MINI interview scale by two attending psychiatrists based on the DSM-5 OCD diagnostic criteria and Yale-Brown Obsessive-Compulsive Scale score ≥ 16 points.

To be eligible for participation in the study, participants were required to fulfill the following inclusion criteria: (1) aged 15–17 years old, met the DSM-5 diagnostic criteria for OCD and had a Yale-Brown Obsessive-Compulsive Scale score ≥ 16 points; (2) first onset and were not treated with serotonin reuptake inhibitors or other psychotropic drugs; (3) obsessive-compulsive symptoms were not secondary to other mental and/or physical diseases; (4) no color vision weakness or blindness; and (5) were right-handed. Participants were excluded from participation if they had: (1) a previous history of depression, panic disorder and/or schizophrenia; (2) severe brain diseases or unstable physical diseases; (3) alcohol or other substance dependence; (4) neurological or hormonal diseases; (4) mental retardation were precluded cooperation in experiments; (5) serious lack of dentition, facial plastic surgery, orthodontic correction, history of surgery, and/or history of trauma; and (6) overweight or wasting.

2.2. Procedures

Participants completed all measurements via face-to-face surveys, which were conducted by research staff who received rigorous training prior to fieldwork.

The study was approved by the Ethics Committee of the General Hospital of Ningxia Medical University (no.2018–131).

All participants provided written informed consent after receiving a complete description of the study. Informed consent was obtained from a parent or guardian for participants under 16 years old, after being informed of the study objectives.

2.3. Measures

2.3.1. Assessment of obsessive-compulsive symptoms

2.3.1.1. The Obsessive-Compulsive Inventory-Child Version (OCI-CV)

The OCI-CV was compiled by Foa et al.\cite{20} to measure obsessive-compulsive symptoms in children and adolescents aged 7–17 years. The OCI-CV comprises 21 items and uses a 3-point Likert-type scale ranging from 0 (never) to 2 (always). The score ranges from 0–42 points and includes six dimensions: obsessive-compulsive, hoarding, cleaning, sorting, and mental suspicion/vigilance. The total scores of each dimension were added, with higher scores indicating more severe obsessive-compulsive symptoms. The Chinese version revised by Xing et al.\cite{21} has demonstrated good reliability and validity in adolescents.

2.3.2. The Yale Brown Obsessive Compulsive Scale (YBOCS)

The YBOCS was compiled by Goodman et al.\cite{22} in 1989 to assess the severity of obsessive-compulsive symptoms in patients with OCD. The scale comprises 10 items used to assess the severity of obsessive thinking and behavior. Each item uses a five-level scoring method of 0–4 points. The total score of the scale is 0–40. The scores of the obsessive thinking and compulsive behavior subscales range from 0–
20, with higher scores indicating more serious obsessive-compulsive symptoms. Mild, moderate, severe, and extremely severe obsessive-compulsive symptoms are indicated by total scores of 8–15, 16–23, 24–31, and 32–40, respectively. The Chinese version has been demonstrated to have good structural and content validity\cite{23} and was used to assess the severity of obsessive-compulsive symptoms in OCD patients in this study.

2.4. Facial soft tissue measurement method: two-dimensional photo measurements

2.4.1. Filming locations

Two fixed classrooms in the school were selected for measurements. The classrooms were required to be quiet and bright, with suitable temperature and good lighting. The sitting positions and photo locations of participants were fixed.

2.4.2. Posture

For orthographic photographs, participants adopted a natural head position, staring ahead with their heads on the Frankfurt plane. For the positive and lateral positions, the sagittal plane of the participant’s head was positioned parallel to the plane of the background screen, and the Frankfurt plane was parallel to the ground. The facial muscles relaxed naturally, and the hair was combed behind the ears to expose the forehead and ears. Tooth occlusion was positioned at the largest occlusion.

2.4.3. Photographic tools and photography methods

A Canon EOS700D single-lens reflex digital camera with 18 million pixels was selected. A blue background curtain marked with measurement signs was hung on the classroom wall. Participants were seated in a fixed position. The camera was fixed on a tripod and kept parallel to the ground. The object distance (distance from the lens to the tip of the nose) was 150 cm. The lens center was aligned with the tip of the nose. The shutter speed was 1/60 s. The focal length was 72 mm. The aperture was F3.5. The horizontal and vertical lines of the lens were required to overlap the eye-ear plane and center line of the face, respectively. The shutter was pressed at this time to obtain a facial image. Frontal and lateral photographs were obtained for each participant.

2.4.4. Photo measurement method

Anteroposterior and lateral photo data of the two groups were imported into a computer for storage. Digimizer professional medical measurement image software was used to perform fixed-point measurements of the photographs within a period.

2.4.5. Determination of facial soft tissue measurement indexes

Using the facial morphometric method established by Farkas\cite{16}, 21 facial diameters(see Table 1), and 9 facial angles were measured(see Table 2).
facial diameter	abbreviation	Measurement of facial diameter
Minimum forehead width (upper face width)	ft-ft	The straight-line distance between left and right frontal and temporal points
Face width (central face width)	zy-zy	The straight-line distance between the zygomatic points on the left and right sides
Interocular width (intercanthal width)	en-en	The straight-line distance between the inner corners of the left and right eyes
Eye cleft width (left and right)	en-ex	The horizontal distance from the inner canthal point to the perpendicular to the ipsilateral outer canthal point
Eye cleft height (left and right)	ps-pi	The distance between the midpoints of the upper and lower eyelid margins
Mandibular angle width (lower face width)	go-go	The straight-line distance between the left and right mandibular corner points
Nasal width	al-al	The straight-line distance between the left and right nose points
Philtrum width	ms-ms	The distance between midpoints of cristae
Philtrum length	sn-ls	The distance from the lower nose to upper lip
Oral fissure width	ch-ch	The straight-line distance between the left and right corners
Lip height	ls-li	The straight-line distance between the upper lip point and lower lip
Distance between the high points of the lip arch	cp-cp	The distance between the high points of the lip arch
Forehead distance	tr-n	The projection distance from the hairline point to root point of the nose
nasal height	n-sn	The straight-line distance from the base of the nose to point below the nose
Nasal length	n-prn	The distance from the base of the nose to tip of the nose
Full lip height	sn-sto	The straight-line distance from the point of the nose to point of the cleft
Upper lip height	ls-sto	The vertical distance between the midpoint of the upper lip and cleft point
Lower lip high	sto-li	The vertical distance between the midpoint of the lower lip and cleft point
Facial diameter	Abbreviation	Measurement of facial diameter
---------------------------------	--------------	--------------------------------
Nose high profile	n-sn	The linear distance from the base of the nose to point below the nose from the side
Long nose profile	n-prn	The distance from the base of the nose to tip of the nose from the side
Jaw height	sto-gn	The distance from the point of the mouth to submental point

Table 2
Facial angle
Full surface coign
Surface coign
Upper lip and chin process angle
Lower lip and chin process angle
Nasofrontal angle
Angle of nasal process
Chin Angle of upper and lower lip
Nasolabial angle
Chin lip groove angle
2.5. Statistical analyses

All analyses were conducted using SPSS software (version 21.0, IBM Corp., Armonk, NY, USA). All reported p-values are two-tailed. The level of statistical significance was set at p < .05. Frequencies/percentages and means/standard deviations describe the distributions of participants according to demographic characteristics. T-test and chi-square test were used to compare two groups. Data were tested for normality, the correlation between facial and clinical features was analyzed by Pearson correlation.

3. Results

3.1. Sample characteristics

The study consisted of 78 adolescents (n = 40 in the OCD group and n = 38 in the healthy control (HC) group) aged 15–17 years old (M = 16.25, SD = 0.87). Table 3 presents detailed information on demographics (sex, age, BMI, and years of education) and Y-BOCS score data. The average Y-BOCS score of OCD patients (M = 24.23, SD = 5.45) was higher than that of HCs (M = 1.71, SD = 2.19).

Variable	OCD	HC	t/x2	P value
Male	20(50%)	20(52.6%)	0.054	0.816
Mean age	16.25 ± 0.87	16.24 ± 0.59	0.079	0.938
BMI(kg/m²)	20.39 ± 3.28	20.77 ± 2.36	-0.592	0.555
Years of education	10.80 ± 1.04	10.61 ± 0.86	0.904	0.369
Y-BOCS score	24.23 ± 5.45	1.71 ± 2.19	23.716	0.000**

Note: ***:P < 0.001

3.2. Comparison of facial radial lines between OCD and HC

Lower lip height in OCD patients was significantly lower than that in HCs (Table 4). No significant differences were observed in the other 20 facial diameters (all P > 0.05).
Table 4
Comparison of Lower lip height (± s)

	n	Lower lip height	t	P value
			-2.415	0.018*
OCD	40	7.68 ± 1.69		
HC	38	8.56 ± 1.52		
Male		-2.427	0.020*	
OCD	20	7.86 ± 1.83		
HC	20	9.12 ± 1.44		
Female		-0.890	0.379	
OCD	20	7.51 ± 1.56		
HC	18	7.94 ± 1.39		

Note: *: P < 0.05

3.3. Comparison of facial angle between OCD and HC groups

The nasolabial angle in female and male OCD patients was significantly lower than that in the control group (Table 5). No significant differences were observed in other facial angles (all P > 0.05).
Table 5
Comparison of Nasolabial angle (± s)

n	Nasolabial angle	t	P value
40	93.69 ± 9.20		0.177
38	97.06 ± 12.51		
20	94.82 ± 10.06		
20	93.50 ± 10.59		
20	92.56 ± 8.35	-2.618	0.013*
18	101.03 ± 11.48		

Note: *:P < 0.05

3.4. Relationship between facial and clinical features in OCD and HC groups

Lower lip height in the OCD group was positively correlated with the mental neutralization dimension (r = 0.401, P < 0.05). No correlation was observed with other symptom dimensions (Table 6). Lower lip height in male OCD patients was not correlated with the OCI-CV. Nasolabial angle in female OCD patients was not correlated with the OCI-CV.

Table 6
Correlation between lower lip red height and clinical features in OCD and control group (± s)

OCI-CV	r value	P value
Total score for OCD symptoms	0.252	0.116
Obsessional thoughts	-0.009	0.957
Hoarding	0.055	0.736
Washing	0.057	0.729
Sort	-0.263	0.101
Mental neutralization	0.401	0.010*
Suspicion/examination	0.042	0.797

Note: *:P < 0.05
4. Discussion

Childhood OCD is a neurodevelopmental subtype of OCD which shares a biological basis with neurodevelopmental disorders such as schizophrenia, autism, and tic disorder\cite{24, 25}. Growing neuroimaging and neuropsychological evidence indicates that OCD in children is a neurodevelopmental disorder distinct to OCD in adults\cite{26}. Facial morphology shares the strongest embryonic relationship with the brain and is the most consistent anatomical phenotype of neurodevelopmental disorders\cite{11}. Neurodevelopmental risk markers generally change before the appearance of clinical symptoms and play a prominent role in early clinical detection, auxiliary diagnosis, and prognosis. Reports on neurodevelopmental risk markers such as neurological soft signs and cortical folding in OCD exist\cite{27, 28}, but data on facial morphology as a neurodevelopmental risk marker for OCD are lacking.

In this study, we compared the facial morphology of adolescent OCD patients with that of HCs. We observed that the lower lip redness of OCD patients was significantly lower than that of HCs, suggestive of thinner lower lips in OCD patients. The lower lip redness of male OCD patients was significantly lower than that of male HCs, indicating that the lower lips of male OCD patients were thinner. The nasolabial angle of female OCD patients was significantly smaller than that of female HCs. Lip angle reflects morphological changes of the nose and upper lip. An upturned nose tip or protruding upper lip will lead to a smaller angle. The facial morphology differences of the aforementioned OCD patients were concentrated in the nose and lips. Facial brain development occurs in the early and second trimester of pregnancy. Facial brain morphogenesis is a major midline process. The abnormal facial morphology of OCD patients centered in the nose and lips, which are located along the facial midline. During embryonic development, the mid-face is filled with cranial neural crest cells, which modulate forebrain development\cite{14}. The nose and lips develop from the frontal nasal process of the embryonic primordia. According to the embryonic model, specific brain regions and areas of craniofacial abnormalities are linked. Therefore, abnormal frontal nasal derivatives in OCD may be related to the front and back of embryonic brain regions.

The frontal and posterior diencephalon correspond to the frontal and thalamic regions, respectively\cite{16}. This is consistent with structural abnormalities of the putamen/globus pallidus, thalamus, prefrontal cortex, and caudate nucleus in children with OCD\cite{29}. Patients with mental disorders such as schizophrenia and bipolar disorder may have abnormal facial morphology\cite{14}, typically concentrated in the frontonasal area\cite{30}. Collectively, these results suggest a potential shared biological basis of schizophrenia and OCD.

We observed that the nasolabial angle of female OCD patients was smaller than that of HCs. The nasolabial angle reflects morphological changes of the nose and upper lip, indicating that the nose tip was upturned or upper lip was protruding, suggesting that female OCD patients had a higher degree of
Facial protrusion. During the development of the facial and brain, the face grows forward faster than the brain; this difference in growth may underpin the decrease in forebrain growth and protrusion of the anterior midface[31]. Based on the correspondence between embryonic facial and brain development, it is speculated that frontal cortical development in female OCD patients was diminished. This result is consistent with the neurobiological basis of abnormal frontal cortical development in children with OCD[26][18]]. However, this result was not observed in male OCD patients, possibly due to the small sample size and limited measurement accuracy of the two-dimensional photographic facial measurement method. Future studies should expand the sample size and employ three-dimensional face laser-scanning technology to clarify these issues.

The heritability of facial morphological features can reach 75%; with minimal interference from environmental factors, these traits remain stable and are regulated by corresponding genes. Abnormal facial morphology can reflect abnormal brain morphology and is easier to measure than brain structure. Facial morphological variation can be used for in-body functional research[32]. Genetic studies of the face have reported that the DCHS2 gene is associated with nasolabial angle and nose protrusion; lip morphology is related to genes ACAD9, HOXDcluster, FREM1, and RAB7A[33]. Based on this, it is speculated that the above-mentioned genes may be related to OCD candidate genes, which will be further verified in future studies.

In this study, correlational analysis between facial and clinical features of adolescents with OCD or HCs revealed that the lower lip redness of facial features was positively correlated with mental neutrality. This suggests that OCD patients with different symptom dimensions may have different facial features. Due to the high heritability of facial morphology and corresponding genetic underpinnings, it is speculated that the dimension of mental neutralization symptoms may be more hereditary and may be modulated by the relevant genes. Completion of the facial genetic maps, advancements in three-dimensional facial imaging quantitative analysis, and application of facial recognition technology in disease diagnosis[18], pathogenic genes underpinning OCD may be identified based on facial morphological variation in the future.

This study adopted the method of measuring participants’ facial features in frontal and lateral two-dimensional photographs. This method only permitted two-dimensional, but not three-dimensional, structural features of the face to be obtained. This may have overlooked minor variations in facial features. Future research should employ facial 3D laser scanning photographic technology or artificial intelligence face recognition technology to collect facial images and use computer deep-learning technology to analyze facial feature images to obtain more facial variation information. Further, the use of facial features as neurodevelopmental indicators did not verify the relationship between facial and brain morphology. In the future, this approach can be combined with brain magnetic resonance imaging to improve the extrapolation of results. In addition, we identified facial feature-related variation in adolescents with OCD and used human facial genetic maps to speculate on susceptibility genes that were associated with OCD, but causative mechanisms could not be verified. Animal models or \textit{in vivo}
studies should be performed in the future to clarify the relationship between related genes and OCD. The cross-sectional design limited our ability to infer temporal and potential causal effects between facial characteristics and OCD in adolescents. The sample size of this study was small, the results obtained may not be generalizable. Future research should use larger sample sizes with longitudinal or cross-lag designs to provide insight into causal mechanisms.

5. Summary

In conclusion, this study identified a correlation between facial features and OCD. Male OCD patients had a thinner lower lip and female OCD patients had smaller nasolabial angles. The facial features of adolescents with OCD were positively correlated with lower lip redness and mental neutrality.

Abbreviations

OCI-CV: Child Obsessive Compulsive Scale
MPAs: Minor physical anomalies
OCD: obsessive-compulsive disorder
HC: healthy control
YBOCS: The Yale Brown Obsessive Compulsive Scale

Declarations

Ethics approval and consent to participate

The protocol for this study was approved by the Ethics Committee of the General Hospital of Ningxia Medical University. All participants provided written informed consent after receiving a complete description of the study. Informed consent was obtained from a parent or guardian for participants under 16 years old.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
All authors declared no conflict of interest.

Funding

This study was funded by by the key research and development projects of Ningxia (grant number: 2019BFG02006). The funding source did not play any role in study design; in the collection, analysis, and interpretation of data; in the writing of the paper; and in the decision to submit the article for publication.

Authors' Contributions

YRW: writing – original draft, writing – review and editing; SHC: case diagnosis and inclusion, data curation and software, writing – original draft; XMM: writing – review and editing; JYL: data curation; RXZ: writing – review and editing; JQF: funding acquisition, project administration, supervision. All authors contributed to and have approved the final manuscript.

Acknowledgements

The authors wish to thank all the people who participated in this study.

References

[1] Flament MF, Whitaker A, Rapoport JL. 1988. Obsessive Compulsive Disorder in Adolescence: An Epidemiological Study. Journal of the American Academy of Child & Adolescent Psychiatry 27:764-771.

[2] Ruscio AM, Stein DJ, Chiu WT, Ruscio Kessler RC. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15:53-63.

[3] Berg CZ, Rapoport JL, Whitaker A, Davies M, Leonard H, Swedo SE, Braiman S, Lenane M. (1989). Childhood obsessive compulsive disorder: a two-year prospective follow-up of a community sample. J Am Acad Child Adolesc Psychiatry 28:528-533.

[4] Rosenberg DR, Keshavan MS. 1998. Toward a Neurodevelopmental Model of Obsessive–Compulsive Disorder. Biological Psychiatry 43:623-640.

[5] Kong X, Boedhoe PSW, Abe Y, Alonso P, Ameis SH, Arnold PD, Assogna F, Baker JT. (2019). Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium. Biological Psychiatry.

[6] Smoller JW. (2019). Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 179:1469-1482.

[7] Myers L, Anderlid BM, Nordgren A, Willfors C, Kuja-Halkola R, Tammimies K, Bölte S. (2017). Minor physical anomalies in neurodevelopmental disorders: a twin study. Child Adolesc Psychiatry Ment Health 11:57.
[8] Manouilenko I, Eriksson JM, Humble MB, Bejerot S (2014) Minor physical anomalies in adults with autism spectrum disorder and healthy controls. Autism Res Treat 2014:743482.

[9] Lin AS, Chang SS, Lin SH, Peng YC, Hwu HG, Chen WJ (2015) Minor physical anomalies and craniofacial measures in patients with treatment-resistant schizophrenia. Psychol Med 45:1839-1850.

[10] Tényi T, Gádoros J, Csábi G, Jeges G, Gyenge E, Trixler M (2003) Minor physical anomalies in Tourette syndrome. European Neuropsychopharmacology 13:S449-S450.

[11] Waddington JL, Katina S, O’Tuathaigh Colm MP Bowman, Adrian W (2017) Translational Genetic Modelling of 3D Craniofacial Dysmorphology: Elaborating the Facial Phenotype of Neurodevelopmental Disorders Through the “Prism” of Schizophrenia. Current Behavioral Neuroscience Reports 4:322-330.

[12] Prasad S, Katina S, Hennessy RJ, Murphy KC, Bowman AW, Waddington JL (2015) Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis. Am J Med Genet A 167A:529-536.

[13] Valentine M, Bihm D, Wolf L, Hoyme HE, May PA, Buckley D, Kalberg W, Abdul-Rahman OA (2017) Computer-Aided Recognition of Facial Attributes for Fetal Alcohol Spectrum Disorders. Pediatrics 140.

[14] Ralph M, Benedikt H, Nathan MY (2015) Facial Morphogenesis: Physical and Molecular Interactions Between the Brain and the Face. Current Topics in Developmental Biology 115.

[15] Sanchez-Lara PA (2015) Clinical and Genomic Approaches for the Diagnosis of Craniofacial Disorders. Curr Top Dev Biol 115:543-559.

[16] Deutsch CK, Levy DL, Price SFR (2015) Quantitative Measures of Craniofacial Dysmorphology in a Family Study of Schizophrenia and Bipolar Illness. Schizophrenia bulletin 41:1309-1316.

[17] Claes P (2018) Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat Genet 50:414-423.

[18] Gurovich, Yaron H, Yair B, Omri N, Guy F, Nicole G, Dekel BS, Lina K, Peter MK, Susanne BZ, Martin B, Lynne MG, Karen W (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nature Medicine 25:60-64.

[19] Association APA (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition (DSM-V). Arlington, VA: American Psychiatric Publishing.

[20] Foa EB, Coles M, Huppert JD, Jonathan DP, Radhika VF, Martin EM, John (2010) Development and Validation of a Child Version of the Obsessive Compulsive Inventory. Behavior Therapy 41:121-132.
[21] CAO Xing, WANG Jian-ping, WANG Xin-rui, GAO Yang. (2013) Psychometric Properties of Obsessive Compulsive Inventory-child Version in Chinese Adolescents. Chinese Journal of Clinical Psychology 21:553-557.

[22] Goodman WK, Price LH, Rasmussen SA (1989) The Yale Brown Obsessive Compulsive Scale (Y-BOCS): Part I. Validity. Archives of General Psychiatry 46:1012-1016.

[23] Xu Yong, Zhang Haiyin. (2006) The reliability and validity of the Chinese version of Yale Brown obsessive–compulsive scale. Shanghai Archives of Psychiatry 18:321-323.

[24] Cauda F, Costa T, Nani A, Fava L, Palermo S, Bianco F, Duca S, Tatu K, Keller R (2017) Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?: A voxel-based meta-analysis. Autism Res 10:1079-1095.

[25] Ekinci O, Erkan EA (2020) Neurological Soft Signs and Clinical Features of Tic-Related Obsessive-Compulsive Disorder Indicate a Unique Subtype. J Nerv Ment Dis 208:21-27.

[26] Abramovitch A, Mittelman A, Henin A (2012) Neuroimaging and neuropsychological findings in pediatric obsessive–compulsive disorder: a review and developmental considerations. Neuropsychiatry 2:313-329.

[27] Jaafari N, Fernandez De La CL, Grau M, Knowles E, Radua J, Wooderson S, Segalas C, Alonso P, Phillips ML, Menchon JM, Mataix-Cols D (2013) Neurological soft signs in obsessive-compulsive disorder: two empirical studies and meta-analysis. Psychol Med 43:1069-1079.

[28] Rus OG, Reess TJ, Wagner G, Zaudig M, Zimmer C, Koch K (2017) Hypogyrification in obsessive-compulsive disorder. Psychological Medicine 47:1053-1061.

[29] Chaim H, Dick JV, Else DH, Chaim HA, Dick JV, De Haan AC, Frits B (2009) Paediatric obsessive–compulsive disorder, a neurodevelopmental disorder Evidence from neuroimaging. Neuroscience and Biobehavioral Reviews 33:818-830.

[30] Hennessy RJ, Baldwin PA, Browne DJ, Kinsella A, Waddington JL (2010) Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: Comparisons with schizophrenia. Schizophrenia Research 122:63-71.

[31] Hennessy RJ, Kinsella A, Waddington JL (2002) 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism. Biological Psychiatry 51:507-514.

[32] Xiong Z, Dankova G, Howe LJ, Lee MK (2019) Novel genetic loci affecting facial shape variation in humans. Elife 8.
[33] Richmond S, Howe LJ, Lewis S, Stergiakouli E, Zhurov A (2018) Facial Genetics: A Brief Overview. Front Genet 9: 462.