A $(4+\epsilon)$-approximation for k-connected subgraphs

Zeev Nutov

The Open University of Israel nutov@openu.ac.il

Abstract. We obtain approximation ratio $2(2+\frac{1}{\nu})$ for the (undirected) k-Connected Subgraph problem, where $\nu \approx \frac{1}{2}(\log k n - 1)$ is the largest integer such that $2^{\nu-1}k^{2\nu+1} \leq n$. For large values of n this improves the 6-approximation of Cheriyan and Végh [4] when $n = \Omega(k^3)$, which is the case $\nu = 1$. For k bounded by a constant we obtain ratio $4+\epsilon$. For large values of n our ratio matches the best known ratio 4 for the augmentation version of the problem [28,29], as well as the best known ratios for $k = 6,7$ [22]. Similar results are shown for the problem of covering an arbitrary crossing supermodular biset function.

1 Introduction

A graph is k-connected if it contains k internally disjoint paths from every node to any other node. We consider the following problem on undirected graphs:

k-Connected Subgraph
Input: A graph $G = (V,E)$ with edge costs $\{c_e : e \in E\}$ and an integer k.
Output: A minimum cost k-connected spanning subgraph of G.

For undirected graphs, the problem is NP-hard for $k = 2$ (the case $k = 1$ is the MST problem), even when all edges in G have unit costs. This is since any feasible solution with $n = |V|$ edges is a Hamiltonian cycle. For directed graphs the problem is NP-hard already for $k = 1$, by a similar reduction. Let $\bar{\rho}(k,n)$ and $\rho(k,n)$ denote the best possible approximation ratios for the directed and undirected variants, respectively. A standard bi-direction reduction gives $\rho(k,n) \leq 2\bar{\rho}(k,n)$, while by [24] $\rho(k,n) \geq \bar{\rho}(k-n/2,n/2)$ for $k \geq n/2 + 1$. All in all we get that for $k \geq n/2 + 1$ the approximability of directed and undirected cases is the same, up to a 2 factor. This however does not exclude that the undirected case is easier when n is much larger than k.

In the k-Connectivity Augmentation problem \tilde{G} contains a spanning $(k-1)$-connected subgraph of cost 0. A feasible solution for the k-Connected Subgraph problem can be obtained by solving sequentially ℓ-Connectivity Augmentation problems for $\ell = 1, \ldots k$, but this reduction usually invokes a factor of $H(k)$ in the ratio, where $H(k)$ denotes the k-th harmonic number. Several ratios for k-Connected Subgraph were obtained in this way, c.f. [5,23,8,28]. The currently best known ratios for the general and the augmentation version, for both directed and undirected graphs, are summarized in Table 1.
General Augmentation

- **Undirected**
 - 6 if \(n \geq k^3\) (see also [14])
 - \(\lceil (k+1)/2 \rceil\) if \(k \leq 7 \) [29, 22]
 - \(k + 1\) if \(k \leq 6 \) [22]
- **Directed**
 - \(O\left(\ln(\frac{n}{n-k} \cdot \ln k)\right)\) [28]
 - \(O\left(\ln(\frac{n}{n-k} \cdot \ln n)\right)\) [28]

Directed Augmentation

- **Undirected**
 - \(O\left(\ln(\frac{n}{n-k})\right)\) [28]
 - \(H(\mu) + 1\) [29]
 - \(H(\mu) + 3/2\) [29]
- **Directed**
 - \(O\left(\ln(n - k)\right)\) [28]
 - \(O\left(\ln(n - k)\right)\) [28]

| Table 1. Known approximation ratios for \(k\)-Connected Subgraph and \(k\)-Connectivity Augmentation problems. Here \(\mu = \left\lfloor \frac{n}{(n-k)/2} + 1 \right\rfloor\), and note that if \(\mu = 1\) then \(k \in \{1, 2\}\), and that if \(n \geq 3k - 2\) then \(\mu = 2\) and \(H(\mu) = 3/2\). |

Note that we consider the node-connectivity version of the problem, for which classic techniques like the primal dual method [17] and the iterative rounding method [20, 9] do not seem to be applicable directly. Ravi and Williamson [32] gave an example of a \(k\)-Connectivity Augmentation instance when the primal dual method has ratio \(\Omega(k)\). A related example of Aazami, Cheriyan and Laekhanukit [1] rules out the iterative rounding method. On the other hand, several works showed that the problem can be decomposed into a small number of "good" sub-problems. However, attempts to achieve a constant ratio for \(k = n - o(n)\) (e.g., for \(k = n - \Theta(\sqrt{n})\)) failed even in the easier augmentation case, thus Cheriyan and Végh [4] suggested the following question:

What ratio can we achieve when \(n\) is lower bounded by a function of \(k\)?

This essentially addresses the issue of "asymptotic approximability" – as a function of the single parameter \(k\), for all sufficiently large \(n\). For undirected graphs Cheriyan and Végh [4] gave an elegant 6 approximation when \(n \geq k^4\), and this bound was slightly improved to \(n \geq k^3\) in [16].

Note that the “asymptotic approximability” question seems almost settled for the augmentation version: by [28, 29] for both directed and undirected graphs we have a constant ratio unless \(k = n - o(n)\); furthermore, for undirected graphs we have ratio 4 for \(n \geq 3k - 2\) (ratio 3 for directed graphs) [29], and this is also the best known ratios when \(k = 6, 7\) for the general version [22].

From now and on we consider undirected graphs, unless stated otherwise. Note that 4 is a current “lower bound” on the “asymptotic approximability” of the problem, in the sense that no better ratio is known for much easier sub-problems. Our main result shows that this “lower bound” is (almost) achievable.

Theorem 1. \(k\)-Connected Subgraph admits approximation ratio \(2(2 + 1/\ell)\) where \(\ell\) is the largest integer such that \(n \geq k[(k^2 - 1)(2k^2 - 3k + 2)^{\ell-1} + 1]\).

Note that \(\ell \approx \frac{1}{2}(\log_k n - 1)\) and that Theorem [11] implies ratio 5 for \(n \geq 2k^5\) and ratio \(4 + \epsilon\) if \(k\) is bounded by a constant. In fact, we prove a generalization of Theorem [11] stated in biset function terms, see the next section.

We note that our result can be used to improve approximation ratios for the Min-Cost Degree Bounded \(k\)-Connected Subgraph problem, see [16].

We refer the reader to [31, 30] for surveys on approximation algorithms for node-connectivity problems, and to [11, 13] for a survey on polynomially solvable cases. Here we briefly mention the status of some restricted \(k\)-Connected Subgraph problems.
Costs	Undirected	Directed
{0, 1}	\(\min(2, 1 + \frac{k-1}{n})\) \[18\]	in \(\mathcal{P}\) \[12\]
{1, \(\infty\)}	\(1 - \frac{1}{n} + \frac{1}{2^k} \leq 1 + \frac{1}{2^k}\) \[13\] (see also \[27\]) \(1 - \frac{1}{n} + \frac{1}{2^k} \leq 1 + \frac{1}{2^k}\) \[13\] (see also \[27\])	\(2 + k/n\) \[22\]
metric	\(2 + (k - 1)/n\) \[22\]	\(2 + k/n\) \[22\]

Table 2. Known approximation ratios of \(k\)-Connected Subgraph problems.

We may assume that the input graph \(\hat{G}\) is complete, by assigning infinite costs to “forbidden” edges. Under this assumption, except for general edge costs, three main types of costs are considered in the literature:

- \{0, 1\}-costs: Here we are given a graph \(G\), and the goal is to find a minimum size set \(J\) of new edges (any edge is allowed) such that \(G \cup J\) is \(k\)-connected.
- \{1, \(\infty\}\}-costs: Here we seek a \(k\)-connected spanning subgraph of \(\hat{G}\) with minimum number of edges.
- metric costs: The costs satisfy the triangle inequality \(c_{uv} \leq c_{uw} + c_{wv}\) for all \(u, w, v \in V\).

The currently best known approximation ratios for these costs types are summarized in Table 2, and we mention some additional results. For \{0, 1\}-costs the complexity status of the problem is not known for undirected graphs, but for any constant \(k\) an optimal solution can be computed in polynomial time \[19\]. When \(\hat{G}\) contains a spanning \((k-1)\)-connected subgraph of cost 0 the \{0, 1\}-costs case can be solved in polynomial time for any \(k\) \[33\]. In the case of \{1, \(\infty\}\}-costs, directed 1-Connected Subgraph admits ratio 3/2 \[34\]. In the case of metric costs 2-Connected Subgraph admit ratio 3/2 \[15\].

2 Biset functions and \(k\)-connectivity problems

While edge-cuts of a graph correspond to node subsets, a natural way to represent a node-cut of a graph is by a pair of sets called a “biset”.

Definition 1. An ordered pair \(\mathcal{A} = (A, A^+)\) of subsets of \(V\) with \(A \subseteq A^+\) is called a biset; \(A\) is the inner part and \(A^+\) is the outer part of \(\mathcal{A}\), and \(\partial \mathcal{A} = A^+ \setminus A\) is the boundary of \(\mathcal{A}\). The co-set of \(\mathcal{A}\) is \(A^* = V \setminus A^+\); the co-biset of \(\mathcal{A}\) is \(\mathcal{A}^* = (A^*, V \setminus A)\). We say that \(\mathcal{A}\) is void if \(A = \emptyset\), co-void if \(A^+ = V\) (namely, if \(A^* = \emptyset\)), and \(\mathcal{A}\) is proper otherwise.

A biset function assigns to every biset \(\mathcal{A}\) a real number; in our context, it will always be an integer (possibly negative).

Definition 2. An edge covers a biset \(\mathcal{A}\) if it goes from \(A\) to \(A^*\). For an edge-set/graph \(J\) let \(\delta_J(\mathcal{A})\) denote the set of edges in \(J\) covering \(\mathcal{A}\). The residual function of a biset function \(f\) w.r.t. \(J\) is defined by \(f^J(\mathcal{A}) = f(\mathcal{A}) - |\delta_J(\mathcal{A})|\). We say that \(J\) \(f\)-covers \(\mathcal{A}\) if \(|\delta_J(\mathcal{A})| \geq f(\mathcal{A})\), and we say that \(J\) covers \(f\) or that \(J\) is an \(f\)-cover if \(|\delta_J(\mathcal{A})| \geq f(\mathcal{A})\) for all \(\mathcal{A}\).
In biset terms, Menger’s Theorem says that the maximum number of internally disjoint st-paths in G equals to $\min\{|\partial A| + |\delta_G(A)| : s \in A, t \in A^*\}$. Consequently, G is k-connected if and only if $|\delta_G(A)| \geq k - |\partial A|$ for every proper biset A; note that non-proper bisets cannot and are not required to be covered. Thus G is k-connected if and only if G covers the k-connectivity biset function f_{k-CS} defined by

$$f_{k-CS}(A) = \begin{cases} k - |\partial A| & \text{if } A \text{ is proper} \\ 0 & \text{otherwise} \end{cases}$$

We thus will consider the following generic problem:

Biset-Function Edge-Cover

Input: A graph $\hat{G} = (V, \hat{E})$ with edge costs and a biset function f on V.

Output: A minimum cost edge-set $E \subseteq \hat{E}$ that covers f.

This LP is particularly useful if the biset function f has good uncrossing/supermodularity properties. To state these properties, we need to define the intersection and the union of bisets.

Definition 3. The *intersection* and the *union* of two bisets A, B are defined by $A \cap B = (A \cap B, A^+ \cap B^+)$ and $A \cup B = (A \cup B, A^+ \cup B^+)$. The biset $A \setminus B$ is defined by $A \setminus B = (A \setminus B, A^+ \setminus B)$. We say that A, B intersect if $A \cap B \neq \emptyset$, and cross if $A \cap B \neq \emptyset$ and $A^+ \cup B^+ \neq V$.

The following properties of bisets are easy to verify.

Fact 1 For any bisets A, B the following holds. If A is a directed/undirected edge e covers one of $A \cap \hat{B}, A \cup \hat{B}$ then e covers one of A, B; if e is an undirected edge, then if e covers one of $A \setminus \hat{B}, B \setminus A$, then e covers one of A, B. Furthermore $|\partial A| + |\partial B| = |\partial(A \cap \hat{B})| + |\partial(A \cup \hat{B})| = |\partial(A \setminus \hat{B})| + |\partial(B \setminus A)|$.

For a biset function f and bisets A, B the supermodular inequality is

$$f(A \cap \hat{B}) + f(A \cup \hat{B}) \geq f(A) + f(B).$$

We say that a biset function f is supermodular if the supermodular inequality holds for all A, B, and modular if the supermodular inequality holds as equality for all A, B: f is symmetric if $f(A) = f(A^*)$ for all A. Using among others Fact 1 one can see the following.
– For any directed/undirected graph G the function $-d_G(\cdot)$ is supermodular.
– The function $|\partial(\cdot)|$ is modular.
– For any $R \subseteq V$ the function $|A \cap R|$ is modular.

We say that a biset A is f-positive if $f(A) > 0$. Some important types of biset functions are given in the following definition.

Definition 4. A biset function f is intersecting/crossing supermodular if the supermodular inequality holds whenever A, B intersect/cross; f is positively intersecting supermodular if the supermodular inequality holds for any pair of intersecting f-positive bisets.

Biset-Function Edge-Cover with positively intersecting supermodular f admits a polynomial time algorithm due to Frank [10] that for directed graphs computes an f-cover of cost $\tau(f)$ (this also can be deduced using the iterative rounding method); for undirected graphs the cost is at most $2\tau(f)$, by a standard bi-direction reduction. Note however that the function f_{k-CS} that we want to cover is obtained by zeroing an intersecting supermodular function on co-void bisets, but f_{k-CS} itself is not positively intersecting supermodular.

In general, changing a supermodular function on void bisets gives an intersecting supermodular function, while changing an intersecting supermodular function on co-void bisets gives a crossing supermodular function (not all crossing supermodular functions arise in this way – see [13]). In particular, zeroing a supermodular function on non-proper bisets gives a crossing supermodular function. For example, the k-connectivity function f_{k-CS} is obtained in this way from the modular function $k - |\partial A|$; thus f_{k-CS} is crossing supermodular.

A common way to find a “cheap” partial cover of f_{k-CS} is to find a 2-approximate cover of the fan function g_R obtained by zeroing the function $k - |\partial A| - |A \cap R|$ on void bisets, where $R \subseteq V$ with $|R| = k$. Note that g_R is intersecting supermodular and that g_R is non-positive on co-void bisets (e.g., $g_R((V, \emptyset)) = k - 0 - k = 0$). Fan functions were used in many previous works on k-CONNECTED SUBGRAPH problems starting from Khuller and Raghavachari [21], and also by Cheriyan and Végh [4]. In fact, covering g_R is equivalent to the following connectivity problem. Let us say that a graph is k-in-connected to r if it has k internally disjoint vr paths for every $v \in V$. Construct a graph G_r by adding to G a new node r and a set F_r of zero cost edge from each $v \in R$ to r; then $H = (V \cup \{r\}, J_r)$ is a k-in-connected to r spanning subgraph of G_r if and only if $J = J_r \setminus F_r$ covers g_R. The problem of finding an optimal k-in-connected spanning subgraph can be solved in strongly polynomial time for directed graphs [13] (see also [10]), and this implies a 2-approximation for undirected graphs.

Fan functions are considered as the “strongest” intersecting supermodular functions for the purpose of finding a partial cover of f_{k-CS}. However, an inclusion minimal directed cover J of a fan function may be difficult to decompose, since J may have directed edges with tail in R; this is so since a fan function requires to cover to some extent bisets A with $A \cap R \neq \emptyset$. We therefore use a different type of functions defined below, that are “weaker” but have “better” decomposition properties.
For \(R \subseteq V \) the area function of \(f \) is defined by

\[
f_R(\mathcal{A}) = f(\mathcal{A}) - \max_{\mathcal{A}} f(\mathcal{A}) \cdot |A \cap R| .
\]

Note that \(f_R(\mathcal{A}) = f(\mathcal{A}) \) if \(A \subseteq V \setminus R \) and \(f_R(\mathcal{A}) \leq 0 \) otherwise, so \(f_R \) requires to \(f \)-cover only those bisets whose inner part is contained in the “area” \(V \setminus R \).

In the next two lemmas we give some properties of area functions. Let us denote

\[
k_f = 1 + \max\{|\partial \mathcal{A}| : f(\mathcal{A}) > 0\} .
\]

Lemma 2. If \(|R| \geq k_f \) then: \(f_R \) is non-positive on co-void bisets, \(f_R \) is intersecting supermodular if \(f \) is, and \(f_R \) is positively intersecting supermodular if \(f \) is crossing supermodular and \(|R| \geq 2k_f - 1 \).

Proof. The first two statements are easy, so we prove only the last statement. Let \(\mathcal{A}, \mathcal{B} \) be intersecting \(f_R \)-positive bisets. Then \(A \cap R = B \cap R = \emptyset \), and thus \((A \cap B) \cap R = (A \cup B) \cap R = \emptyset \). Consequently, \(f_R = f \) on the bisets \(\mathcal{A}, \mathcal{B}, \mathcal{A} \cap \mathcal{B}, \mathcal{A} \cup \mathcal{B} \). Moreover, \(A^* \cap B^* \cap R \neq \emptyset \), since \(|\partial \mathcal{A} \cup \partial \mathcal{B}| < 2(k_f - 1) + 1 \leq |R| \).

Thus \(\mathcal{A}, \mathcal{B} \) must cross, and since \(f \) is crossing supermodular

\[
f_R(\mathcal{A}) + f_R(\mathcal{B}) = f(\mathcal{A}) + f(\mathcal{B}) \leq f(\mathcal{A} \cap \mathcal{B}) + f(\mathcal{A} \cup \mathcal{B}) = f_R(\mathcal{A} \cap \mathcal{B}) + f_R(\mathcal{A} \cup \mathcal{B}) .
\]

Consequently, the supermodular inequality holds for \(\mathcal{A}, \mathcal{B} \) and \(f_R \). \(\square \)

For \(S \subseteq V \) let \(\gamma(S) \) denote the set of edges in \(\vec{E} \) with both end in \(S \). Consider the following algorithm for covering \(f_R \).

Algorithm 1: Area-Cover(\(\vec{G}, c, f, R \))

1. bidirect the edges in \(\gamma(V \setminus R) \) and direct into \(R \) the edges in \(\delta(R) \)
2. compute an optimal directed edge-cover \(I' \) of \(f_R \)
3. return the underlying undirected edge set \(I \) of \(I' \)

If \(f_R \) is positively intersecting supermodular, then step 2 in the algorithm can be implemented in polynomial time if the Biset-LP for \(f_R \) can be solved in polynomial time. In many specific cases strongly polynomial algorithms are available. E.g., if \(f \) is obtained by zeroing the function \(k - |\partial \mathcal{A}| \) on void bisets then we can use the Frank-Tardos algorithm [14] or the algorithm of Frank [10] for finding a directed min-cost \(k \)-in-connected subgraph – in the above reduction described for covering a fan function \(g_R \), the edge set \(F_r \) will have \(k = \max_{\mathcal{A}} f(\mathcal{A}) \) parallel directed edges from each \(v \in R \) to the root \(r \).

The following lemma relates the cost of the solution computed by Algorithm 1 to the Biset-LP value.

Lemma 3. Let \(f_R \) be positively intersecting supermodular and let \(x \) be a feasible Biset-LP solution for covering \(f_R \). Then Algorithm 1 returns an \(f_R \)-cover \(I \) of cost \(c(I) \leq \sum_{e \in \delta(R)} c_e x_e + 2 \sum_{e \in \gamma(V \setminus R)} c_e x_e \).
Proof. Edges in $\gamma(R)$ do not cover f_R-positive bisets, hence they can be removed. Let E' be the bi-direction of E, where each undirected edge e with ends u,v is replaced by two arcs uv, vu of cost c_e and value x_e each. Let x' be obtained by zeroing the value of arcs leaving R; these arcs do not cover f-positive bisets.

We claim that:

$$c(I) \leq c(I') \leq \sum_{e \in E'} c_e x'_e = \sum_{e \in \delta(R)} c_e x_e + 2 \sum_{e \in \gamma(V \setminus R)} c_e x_e$$

The first inequality is obvious. The second inequality is since f_R is positively intersecting supermodular and since x' is a directed feasible Biset-LP solution for f_R while I' is an optimal one. The equality is by the construction. \qed

Assuming that for any residual function of f^I of f, Algorithm\[1\] can be implemented in polynomial time whenever f^I_R is positively intersecting supermodular, and that the Biset-LP for covering f^I can be solved in polynomial time, we prove the following theorem that implies Theorem 1.

Theorem 2. Undirected Biset-Function Edge-Cover with symmetric crossing supermodular f admits approximation ratio $2(2+1/\ell)$, where ℓ is the largest integer such that:

- $n \geq (2k_f - 1)(2k_f^2 - 3k_f + 2)^\ell + 1$ for symmetric crossing supermodular f.
- $n \geq k_g[(2k_g^2 - 3k_g + 2)^\ell + 1]$ if f is obtained by zeroing an intersecting supermodular function g on co-void bisets,
- $n \geq k[(k^2 - 1)(2k^2 - 3k + 2)^{\ell - 1} + 1]$ if $f = f_{k-CS}$.

3 Covering crossing supermodular functions (Theorem 2)

A biset function f is **positively skew-supermodular** if the supermodular inequality or the co-supermodular inequality $f(A \setminus B) + f(B \setminus A) \geq f(A) + f(B)$ holds for f-positive bisets. The corresponding Biset-Function Edge-Cover problem, when f is positively skew-supermodular, admits ratio 2 (assuming the Biset-LP can be solved in polynomial time) [9]; see also [11,10] for a simpler proof along the proof line of [25] for the set functions case.

We say that A, B **co-cross** if $A \setminus B$ and $B \setminus A$ are both non-void, and that A, B **independent** if they do not cross nor co-cross. One can verify that A, B are independent if and only if at least one of the following holds: $A \subseteq \partial B$, or $A^* \subseteq \partial B$, or $B \subseteq \partial A$, or $B^* \subseteq \partial A$. A biset function f is **independence-free** if no pair of f-positive bisets are independent. It is easy to see that if f is symmetric and if $|A| \geq k_f$ holds for every f-positive biset A then f is independence-free.

Lemma 4 ([19]). Let f be a symmetric crossing supermodular biset function. If A, B are not independent then the supermodular or the co-supermodular inequality holds for A, B and f. Thus if f is independence-free then f is positively skew-supermodular.
Proof. If A, B cross then the supermodular inequality holds for A, B. Assume that A, B co-cross. Then A and B^* cross, and thus the supermodular inequality holds for A, B^* and f. Note that (i) $A \setminus B = A \cap B^*$; (ii) $A \cup B^*$ is the co-biset of $B \setminus A$, hence $f(A \cup B^*) = f(B \setminus A)$, by the symmetry of f. Thus we get $f(A \setminus B) + f(B \setminus A) = f(A \cap B^*) + f(A \cup B^*) \geq f(A) + f(B^*) = f(A) + f(B)$. \hfill \Box

This suggests a two phase strategy for covering an “almost” supermodular function f. First, find a “cheap” edge set J such that the residual function f^J will be independence-free so f^J will have “good uncrossing properties”. Second, use some “known” algorithms to cover f^J. The idea is due to Jackson and Jordán \cite{19}, and it is also the basis of the algorithm of Cheriyan and Végh \cite{4} (see also \cite{26} where the same idea was used for a related problem). Specifically, if f is crossing supermodular, we will seek a cheap J that f-covers all bisets A with $|A| \leq k_f - 1$; by Lemma \ref{lem:cheap-edges} the residual function f^J will be positively skew-supermodular so we can use the 2-approximation algorithms of \cite{9} to cover f^J.

The algorithm of Cheriyan and Végh \cite{4} finds an edge J as above of cost \leq 4\tau(f), by covering two fan functions. Our algorithm covers a pair of area functions. In fact, we will cover a sequence of $\ell \geq \ell$ pairs of area functions, and with the help of Lemma \ref{lem:sum-costs} will show that the sum of their costs is at most $2\tau(\ell + 1)$; we choose the cheapest pair cover that will have cost \leq 2\tau(1 + 1/\ell).

For an integer p let $U(f, p) = \bigcup \{A : f(A) > 0, |A| \leq p\}$ be the union of inner parts of size \leq p of the f-positive bisets. Note that if $R \subseteq V \setminus U(f, p)$ and if I covers f_R then $f^I(\partial R) \leq 0$ whenever $|A| \leq p$. Thus from Lemma \ref{lem:cheap-edges} we get:

Corollary 1. If $R \subseteq V \setminus U(f, k_f)$ and if I' is an f_R-cover, then the residual function $f^{I'}$ of f w.r.t. I' is independence-free and thus is positively skew-supermodular.

Thus we just need to find $R \subseteq V \setminus U(f, k_f)$ with $|R| \geq k_f$ and compute a 2-approximate cover of f_R – the residual function will be independence-free and thus positively skew-supermodular. However, such R may not exist, e.g., for $f = f_{k-CS}$ we have $U(f, k) = V$. The idea of Cheriyan and Végh \cite{4} resolves this difficulty as follows: first find a “cheap” edge set I such that $|U(f^I, k_f)| \leq n - k_f$ will hold for the residual function f^I, and only then compute for f^I an edge set I' as in Corollary \ref{cor:cheap-edges}. Then the function $f^{I \cup I'}$ is independence-free and thus is positively skew-supermodular.

Variants of the next lemma were proved in \cite{416} (our bound is just slightly better), and we use it to show that I as above can be a cover of an area function, provided that n is large enough. Let us say that a biset family F is **weakly posi-uncrossable** if for any $A, B \in F$ such that both bisets $A \setminus B, B \setminus A$ are non-void, one of them is in F. If f is crossing supermodular and symmetric then the family F of f-positive bisets is weakly posi-uncrossable, see \cite{416}.

Lemma 5 (\cite{416}). Let F be a weakly posi-uncrossable biset family, let $p = \max_{A \in F} |A|, q = \max_{A \in F} |\partial A|, U = \bigcup_{A \in F} A$, and let ν be the maximum number of pairwise inner part disjoint bisets in F. Then $|U| \leq \nu(2q(p - 1) + p)$.
Proof. Let \(\mathcal{F}' \) be an inclusion minimal subfamily of \(\mathcal{F} \) such that \(\bigcup_{\mathcal{A} \in \mathcal{F}'} \mathcal{A} = U \).

By the minimality of \(|\mathcal{F}'| \), for every \(\mathcal{A}_i \in \mathcal{F}' \) there is \(v_i \in A_i \) such that \(v_i \notin A_j \) for every \(j \neq i \). For every \(i \) let \(C_i \) be an inclusion minimal member of the family \(\{ \mathcal{C} \in \mathcal{F} : \mathcal{C} \subseteq \mathcal{A}_i, v_i \in \mathcal{C} \} \), where here \(A \subseteq B \) means that \(A \subseteq B \) and \(A^+ \subseteq B^+ \).

Since \(\mathcal{F} \) is weakly posi-uncrossable, the minimality of \(C_i \) implies that exactly one of the following holds for any \(i \neq j \):

- \(v_i \in \partial C_j \) or \(v_j \in \partial C_i \);
- \(C_i = C_i \setminus C_j \) or \(C_j = C_j \setminus C_i \).

Construct an auxiliary directed graph \(\mathcal{J} \) on node set \(\mathcal{C} = \{ C_i : \mathcal{A}_i \in \mathcal{F}' \} \). Add an arc \(C_i C_j \) if \(v_i \in \partial C_j \). The in-degree in \(\mathcal{J} \) of a node \(C_i \) is at most \(|\partial C_i| \leq q \). Thus every subgraph of the underlying graph of \(\mathcal{J} \) has a node of degree \(\leq 2q \).

A graph is \(d \)-degenerate if every subgraph of it has a node of degree \(\leq d \). It is known that any \(d \)-degenerate graph is \((d + 1) \)-colorable. Hence \(\mathcal{J} \) is \((2q + 1) \)-colorable, so its node set can be partitioned into at most \(2q + 1 \) independent sets, say \(C_1, C_2, \ldots \), where the bisets in each independent set are pairwise inner part disjoint. W.l.o.g. we may assume that \(C_1 \) is a maximal subfamily in \(\mathcal{C} \) of pairwise inner part disjoint bisets, so any \(\mathcal{C} \in \mathcal{C} \setminus C_1 \) intersects some biset in \(C_1 \). Let \(\mathcal{F}'_1 \) be the subfamily of \(\mathcal{F}' \) that corresponds to \(C_1 \), so \(|\mathcal{F}'_1| = |C_1| \leq \nu \). Let \(U_i = \bigcup_{\mathcal{A} \in \mathcal{F}_1} \mathcal{A} \).

An easy argument shows that \(|U_1| \leq \nu p \) and that \(|U_i \setminus U_1| \leq \nu(p - 1) \) for \(i \geq 2 \). Consequently, \(|U| \leq \nu p + 2\nu \nu(p - 1) \), as claimed. \(\square \)

Corollary 2. If \(f \) is symmetric crossing supermodular and if \(I \) is a cover of \(f_R \) then \(|U(f^I, k_f) \cup R| \leq |R|(2k_f^2 - 3k_f + 2) \).

Proof. Denote \(r = |R|, r' = |U(f^I, k_f) \cap R| \), and \(k = k_f \). Substituting \(q + 1 = p = k_f \) and observing that \(\nu \leq r' \) in Lemma 5 we get

\[
|U(f^I, k_f) \cup R| \leq r'[(2(k - 1)^2 + k) + (r - r')] \leq r[(2(k - 1)^2 + k) = r(2k^2 - 3k + 2)
\]

as required. \(\square \)

Let us skip for a moment implementation details, and focus on bounding the cost of an edge set \(J \) computed by the following algorithm.

Algorithm 2: GROWING-COVER(\(\hat{G}, c, f \))

1. let \(\emptyset \neq R_1 \subset V \)
2. for \(i = 1 \) to \(\ell \) do
 3. \(I \leftarrow \text{AREA-COVER}(\hat{G}, c, f, R_i) \)
 4. \(R_{i+1} \leftarrow U(f^I, k_f) \cup R_i \)
 5. \(I' \leftarrow \text{AREA-COVER}(\hat{G}, c, f, V \setminus R_{i+1}) \)
 6. \(J_i \leftarrow I \cup I' \)
3. return the cheapest edge set \(J \) among the edge sets \(J_1, \ldots, J_\ell \) computed

Let us fix some optimal Biset-LP solution \(x \). For an edge set \(F \) the \(x \)-cost of \(F \) is defined as \(\sum_{e \in F} c_e x_e \). Let us use the following notation:
\(\tau = \sum_{e \in E} c_e x_e \) is the optimal solution value.

- \(\gamma_i \) is the \(x \)-cost of the edges with both ends in \(R_i \).
- \(\delta_i \) is the \(x \)-cost of the edges with one end in \(R_i \) and the other in \(V \setminus R_i \).
- \(\bar{\gamma}_i \) is the \(x \)-cost of the edges with both ends in \(V \setminus R_i \).

Clearly, for any \(i \) we have

\[
\tau = \gamma_i + \delta_i + \bar{\gamma}_i
\]

By Lemma 3 the cost of the covers \(I, I' \) computed at iteration \(i \) is bounded by

\[
c(I) \leq \delta_i + 2\bar{\gamma}_i \\
c(I') \leq \delta_{i+1} + 2\bar{\gamma}_{i+1}
\]

Thus we get

\[
c(J_i) \leq (\delta_i + 2\bar{\gamma}_i) + (\delta_{i+1} + 2\bar{\gamma}_{i+1}) = (\delta_i + \bar{\gamma}_i + \gamma_i) + (\delta_{i+1} + \bar{\gamma}_{i+1} + \gamma_i + 1) - (\bar{\gamma}_{i+1} - \gamma_{i+1}) = 2\tau + (\bar{\gamma}_i - \gamma_i) - (\bar{\gamma}_{i+1} - \gamma_{i+1})
\]

Summing this over \(\ell \) iterations and observing that the sum is telescopic we get

\[
\sum_{i=1}^{\ell} c(J_i) \leq 2\ell \tau + \sum_{i=1}^{\ell} [(\bar{\gamma}_i - \gamma_i) - (\bar{\gamma}_{i+1} - \gamma_{i+1})] = 2\ell \tau + (\bar{\gamma}_1 - \gamma_1) - (\bar{\gamma}_{\ell+1} - \gamma_{\ell+1}) = 2\tau (\ell + 1) - (2\gamma_1 + \delta_1 + \bar{\gamma}_{\ell+1} + \delta_{\ell+1})
\]

Thus there exists an index \(i \) such that

\[
c(J_i) \leq 2\tau (1 + 1/\ell)
\]

Note that if \(R_{i+1} = R_i \) for some \(i \) then \(c(J_i) \leq c(I) + c(I') \leq 2\delta_i + 2\bar{\gamma}_i + 2\bar{\gamma}_i = 2\tau \), hence in this case the algorithm can terminate with \(J = J_i \) and \(c(J) \leq 2\tau \).

Next we use Corollary 2 to lower bound \(n \) to ensure that the algorithm will have \(\ell \) iterations. Let \(r = |R_1| \), and \(r \) is also a lower bound on \(n - |R_\ell| \). To see the bounds on \(n \) in Theorem 2 note the following.

- In the case of intersecting supermodular \(f \) we choose \(r = 2k_f - 1 \) and need \(r(2k_f^2 - 3k_f + 2)^{\ell} \leq n - r \), namely, \(n \geq (2k_f - 1) [(2k_f^2 - 3k_f + 2)^\ell + 1] \).
- If \(f \) is obtained by zeroing an intersecting supermodular function \(g \) on covoid bisets we choose \(r = k_g \) and need \(r(2k_g^2 - 3k_g + 2)^{\ell} \leq n - r \), namely, \(n \geq k [(2k_g^2 - 3k_g + 2)^\ell + 1] \).
- When \(f = f_{k-\text{cs}} \), 10 shows a choice of \(R_1 \) such that \(|R_2| \leq k^3 - k \). We need \((k^3 - k)(2k^2 - 3k + 2)^{\ell-1} \leq n - k \), namely \(n \geq k [(k^2 - 1)(2k^2 - 3k + 2)^{\ell-1} + 1] \).
To get a polynomial time implementation we need to find in step 4 the set $R_{i+1} = R_i \cup U(f^i, k_f)$ in polynomial time. We modify the algorithm by relaxing the step 4 condition $R_{i+1} = R_i \cup U(f^i, k_f)$ to $R_i \subseteq R_{i+1} \subseteq R_i \cup U(f^i, k_f)$ (so $R_1 \subseteq R_2 \subseteq \ldots$ will be a nested family), but require that for each $J_i = I \cup I'$ the algorithm will compute a cover F_i of f^{I_i} of cost $c(F_i) \leq 2 \tau(f^{I_i})$. This can be done in the same way as in [4], as follows.

The iterative rounding 2-approximation algorithm of [9] for covering a positively skew supermodular biset function, when applied on an arbitrary biset function h, either returns a 2-approximate cover J of h, or a failure certificate: a pair \mathcal{A}, \mathcal{B} of bisets with $h(\mathcal{A}) > 0$ and $h(\mathcal{B}) > 0$ for which both the supermodular and the co-supermodular inequality does not hold. In our case this can happen only if \mathcal{A}, \mathcal{B} are independent, by Lemma 4.

Now consider some iteration i of the algorithm. Since $f^{I' \cup I}$ is symmetric, then by interchanging the roles of $\mathcal{A}, \mathcal{A}^*, \mathcal{B}, \mathcal{B}^*$, we can assume w.l.o.g. that our failure certificate \mathcal{A}, \mathcal{B} satisfies $\mathcal{A} \subseteq \partial \mathcal{B}$. We thus apply the following procedure. Start with $R_{i+1} = R_i$. Then iteratively, find I' as in step 5 and apply the 2-approximation algorithm of [9] for covering $h = f^{I \cup I'}$: if the algorithm returns an edge set F of cost $c(F) \leq 2 \tau(h)$, we keep the current R_{i+1}, set $J_i \leftarrow I \cup I'$ and $F_i \leftarrow F$, and continue to the next iteration. Else, we have a failure certificate pair \mathcal{A}, \mathcal{B} of h-positive bisets with $\mathcal{A} \subseteq \partial \mathcal{B}$. Then $\mathcal{A} \subseteq U(f^I, k_f)$ and $\mathcal{A} \setminus R_{i+1} \neq \emptyset$ (since I' f-covers bisets whose inner part is contained in R_{i+1}), and we can apply the same procedure with a larger candidate set $R_{i+1} \leftarrow R_{i+1} \cup \mathcal{A}$.

This concludes the proof of Theorem 2.

References

1. A. Aazami, J. Cheriyan, and B. Laekhanukit. A bad example for the iterative rounding method for mincost k-connected spanning subgraphs. Discrete Optimization, 10(1):25–41, 2013.
2. V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph. J. of Algorithms, 32(1):21–30, 1999.
3. J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs via matching. SIAM J. on Computing, 30(2):528–560, 2000.
4. J. Cheriyan and L. Végh. Approximating minimum-cost k-node connected subgraphs via independence-free graphs. SIAM J. on Computing, 43(4):1342–1362, 2014.
5. J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. on Computing, 32(4):1050–1055, 2003.
6. Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs. J. of Algorithms, 32(1):31–40, 1999.
7. A. Ene and A. Vakilian. Improved approximation algorithms for degree-bounded network design problems with node connectivity requirements. In STOC, pages 754–763, 2014.
8. J. Fakcharoenphol and B. Laekhanukit. An $O(\log^2 k)$-approximation algorithm for the k-vertex connected spanning subgraph problem. SIAM J. on Computing, 41(5):1095–1109, 2012.
9. L. Fleischer, K. Jain, and D. Williamson. Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. *J. Comput. Syst. Sci.*, 72(5):838–867, 2006.
10. A. Frank. Rooted k-connections in digraphs. *Discrete Applied Mathematics*, 157(6):1242–1254, 2009.
11. A. Frank. *Connections in Combinatorial Optimization*. Oxford University Press, 2011.
12. A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. *J. on Comb. Theory B*, 65:73–110, 1995.
13. A. Frank and T. Király. A survey on covering supermodular functions. In W. Cook, L. Lovasz, and J. Vygen, editors, *Research Trends in Combinatorial Optimization*, pages 87–126. Springer, Berlin, 2009.
14. A. Frank and E. Tardos. An application of submodular flows. *Linear Algebra and its Applications*, 114/115:329–348, 1989.
15. G. Fredrickson and J. Jájá. On the relationship between the biconnectivity augmentation and traveling salesman problem. *Theoretical Computer Science*, 19(2):189–201, 1982.
16. T. Fukunaga, Z. Nutov, and R. Ravi. Iterative rounding approximation algorithms for degree-bounded node-connectivity network design. *SIAM J. on Computing*, 44(5):1202–1229, 2015.
17. M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved approximation algorithms for network design problems. In *SODA*, pages 223–232, 1994.
18. B. Jackson and T. Jordán. A near optimal algorithm for vertex connectivity augmentation. In *IS ACA*, pages 313–325, 2000.
19. B. Jackson and T. Jordán. Independence free graphs and vertex connectivity augmentation. *J. of Comb. Theory B*, 94:31–77, 2005.
20. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. *Combinatorica*, 21(1):39–60, 2001.
21. S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity problems. *Journal of Algorithms*, 21:434–450, 1996.
22. G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set covers. *Algorithmica*, 37:75–92, 2003.
23. G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. *SIAM J. on Computing*, 35(1):247–257, 2005.
24. Y. Lando and Z. Nutov. Inapproximability of survivable networks. *Theoretical Computer Science*, 410(21-23):2122–2125, 2009.
25. V. Nagarajan, R. Ravi, and M. Singh. Simpler analysis of LP extreme points for traveling salesman and survivable network design problems. *Oper. Res. Lett.*, 38:156–160, 2010.
26. Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies. *ACM Trans. Algorithms*, 9(1):1–1:16, 2012.
27. Z. Nutov. Small k-edge-covers in k-connected graphs. *Discrete Applied Math.*, 161(13-14):2101–2106, 2013.
28. Z. Nutov. Approximating minimum-cost edge-covers of crossing biset-families. *Combinatorica*, 34(1):95–114, 2014.
29. Z. Nutov. Improved approximation algorithms for minimum cost node-connectivity augmentation problems. *Theory Comput. Syst.*, 62(3):510–532, 2018.
30. Z. Nutov. The k-connected subgraph problem. In T. Gonzalez, editor, *Approximation Algorithms and Metaheuristics*, chapter 12, pages 213–232. Chapman & Hall, 2018.
31. Z. Nutov. Node-connectivity survivable network problems. In T. Gonzalez, editor, *Approximation Algorithms and Metaheuristics*, chapter 13. Chapman & Hall, 2018.
32. R. Ravi and D. P. Williamson. Erratum: an approximation algorithm for minimum-cost vertex-connectivity problems. *Algorithmica*, 34(1):98–107, 2002.
33. L. Végh. Augmenting undirected node-connectivity by one. *SIAM J. Discrete Math.*, 25(2):695–718, 2011.
34. A. Vetta. Approximating the minimum strongly connected subgraph via a matching lower bound. In *SODA*, pages 417–426, 2001.