Research Article

Studying the Effect of Titania Additions on some properties of Porcelain

Abbas K. Saadon, Kirem Ali J., Shatha H. Mahdi
Department of Physics, College of Education for Pure Science Ibn-AL-Haitham, University of Baghdad, IRAQ.
*Correspondent Author Email: Abbas Karim@yahoo.com

Abstract
The paper presents the production of porcelain for the ceramic by inexpensive natural raw materials, the principal raw materials of porcelain composition was selected consisting of 50% kaolin, 25% feldspar, 25% silica, the sample synthesized were characterize by X-ray diffraction (XRD) technique, than study the effect additives at different concentration form titanium oxide (TiO₂) at (2, 5, 10, 15, 20) wt% on some physical and dielectric properties of porcelain. The samples are prepared by the conventional manufacturing method. The physical and dielectric properties of porcelain show that change considerably with the substitute sample. It was found that the increase of the titanium oxide (TiO₂) additives of all our sample produce increasing in dielectric constant and bulk density, while decreasing with open porosity and dielectric loss tangent.

Keyword: porcelain, feldspar, TiO₂, dielectric constant, dielectric loss tangent.

Introduction
One of the product materials madding by heat treatment is the ceramic. It is treatment of substance or mixture of non-metallic substance and inorganic metal material [1]. The producer of ceramic hardness is the porcelain, the porcelain make the ceramic white, intensive impermeable, and semitransparent to liquid that means the porcelain is good mixture of composite materials composing mainly of feldspar, caoling and silica materials raw, porcelain have many good characteristic features that means loads, chemical influence and resistance to mechanical stresses which exposing then beside satiable electric resistance [2]. Oxide of metal titanium TiO₂ is occurring naturally in several types of many mineral sands and rocks. The titanium was the ninth common element in the crust earth [3] [4] [5] [6] [7] [8].

Masrtennikove G. M etal [4] had been studied the effect of addition of TiO₂ on fired properties of porcelain material reparation, they founded that four classes of addition normally used for porcelain, however the first kinds is including addition that controlling the coagulation thixotroics structure of porcelain suspension on the other hand it control of transition to condensation structure.

The second kind refers that additives which enhancing the sintering process and helping the transformation condense structure to the crystalline structure and the crystalline pseudo coagulation structure, the other kinds is including additive which enhancement the crystal structure of the new forms, the advantage and possibility of using the waste glass as fluxing in poscelaintiles without deterioration in mechanical properties had been investigation by Baker [5], Baker find
that the addition of waste glass enhance consequently and vitrification some surface and mechanical properties.

Materials and Methods
In this paper, we can prepare the porcelain material using elementary material, low cost and foundation of nature freely (50% kaolin, 25% feldspar, 25% silica). These materials are mixing by this ratio and mixture stay at 24 hours. After mixing the sample of this material are pressing (7 ton) to result a bulk of materials.

Since, that bulk of material input furnace \(5\, ^\circ C\) \(\text{min}^{-1}\) (electric furnace) at 1300°C for three hours and cooling \(5\, ^\circ C\) \(\text{min}^{-1}\) this mixture to room temperature and made a powder to study the effect of X-Ray diffraction. The ranges of angle 2\(\Theta\) are (5–80 degrees).

In this paper, we study and evaluated the inter atomic spacing (d), Millar indices (hkl).

However we added the Titania (2, 5, 10, 15, 20 wt%) to the porcelain and the material mixing with each other for 10 hours by circumference 1.5 cm and width 0.7 and sintering this sample in oven with 1300°C for 4 hours at air.

The density and porosity of sample have been studied by using Archimedes with water as the immersion medium and we measurement the dielectric constant using LCR meter range (50 HZ to 1 MHz).

Results and Discussion
X–Ray diffraction analysis Figure (1) show that the pattern of X-ray diffraction for porcelain that producing by traditional method from traditional materials.

Philips X-ray diffraction meter was using to tasting these samples. All six samples was translation at rang angle 2\(\Theta\) from (10-80) degrees with spectroscopic velocity (10 deg/min) estimation all modes that to fulfilment evaluation. the inter atomic spacing c and miller indices (hkl).

Bulk density and open porosity: data in Figure 2 and 3 show that, variation in open porosity and bulk density with amount of TiO₂ addition that’s added at sintering (1300°C).

We can show the property improvement due to additive incorporation that view in the curve Figures 5 to 6.

2\(\Theta\)(degrees)	d (Å)	hkl
21.15	4.19	100
26.58	3.34	101
26.96	3.3	006
33.45	2.6	116
35.39	2.52	300
39.71	2.26	161
40.57	2.22	111
41.07	2.19	200
42.70	2.11	223
50.36	1.81	003
55.12	1.60	103
60.14	1.53	211
60.85	1.13	113

Figure 1: X-ray diffraction of composition (kaolin, feldspar, silica).

It was evident that high reduction in porosity founded when the porcelain sample which was due that the mass transport occurred as a results of glass phase formation.

The phase of glass formed enters in the pores presented in the compact and fills, due to these spherical pores were forming and also the compact gets dandified.

The two Figures (4, 5) show that the variation of dielectric constant and dielectric loss tangent as a function of TiO₂ that addition (Wt %) for porcelain.

Figures (4, 5 show that the dielectric constant value was increased when compared dielectric loss tangent with increasing TiO₂ additive (wt %). It may be due to the presence of some micrograms in the ceramic insulators when these crakes wave observing mainly near the quartz particles and those regions of the cry stalling phase was absent [6].
Conclusions

The experimental results obtained show that local raw materials are quite suitable for porcelain can be produced. The presence of TiO₂ additives (Wt %) in porcelain increased the bulk density and dielectric constant, while the open porosity and dielectric loss tangent to decreasing value.

References

[1] Alshamri, A. K, 2007, the effect of mineralizes on ceramic body and studing some physical properties, thesis MCS, college of sciences for women, Baghdad university.
[2] Al-Bermany, K. J, (2009), Enhancement mechanical and rheological properties and some is different industrial application, j. of collage of Education, No.2. Vol.2.
[3] Boffetta P. Gaboriean V, Nadon L, Parent M – E, weider pass E, siemiatycli J, (2001), Exposure to titanium dioxide and risk of lung cancer in a population – based study from Montreal, Scand, J. work Environ Health ,27(4), pp.227 – 232.
[4] Maslennikavo. G. N, and Platov. Y. T,(2013), the process of porcelain formation in presence of additives (areview),glass and ceramic, vol .55,no.1-2.
[5] Bark. I. M,2013, effect of waste glass and zircon on ceramic properties and microstructure of porcelain tiles, Advances in apple ce-
[6] Verm a. A., Theakur. O. P., and Mendirate. R. A., 2005, study the physical and dielectric properties of ferrit-Sic comsite, material science and engineering, vol.116, no.1, pp.1-6.

[7] Liebermann, J. Avoiding quartz in alumina porcelain for high-voltage insulators. American Ceramic Society Bulletin, 2001, 80.6: 37-42.

[8] De Sola, Esther Ruiz, et al. Solubility and microstructural development of TiO₂-containing 3Al₂O₃·2SiO₂ and 2Al₂O₃·SiO₂ mullites obtained from single-phase gels. Journal of the European Ceramic Society, 2007, 27.7: 2647-2654.

[9] fadhil,A. ch. Fadaa,Q. S; Innam. W. and Zahraa,F;2015, the influence of magnesia addition and sintering temp on the properties of synthesized electrical porcelain.; Eng. of tech Journal, 33, part A(2).