ON AN IDENTITY FOR ZEROS OF BESSEL FUNCTIONS

ÁRPÁD BARICZ, DRAGANA JANKOV MAŠIREVIĆ, TIBOR K. POGÁNY, AND RÓBERT SZÁSZ

Abstract. In this paper our aim is to present an elementary proof of an identity of Calogero concerning the zeros of Bessel functions of the first kind. Moreover, by using our elementary approach we present a new identity for the zeros of Bessel functions of the first kind, which in particular reduces to some other new identities. We also show that our method can be applied for the zeros of other special functions, like Struve functions of the first kind, and modified Bessel functions of the second kind.

1. Introduction and Main Results

In 1977 F. Calogero [2] deduced the following identity

\begin{align}
\sum_{n \geq 1, n \neq k} \frac{1}{j_{\nu,n}^2 - j_{\nu,k}^2} &= \frac{\nu + 1}{2j_{\nu,k}^2},
\end{align}

where \(\nu > -1\), \(k \in \{1, 2, \ldots\}\) and \(j_{\nu,n}\) stands for the \(n\)th positive zero of the Bessel function of the first kind \(J_\nu\). Calogero’s proof [2] of (1.1) is based on the infinite product representation of the Bessel functions of the first kind and on the clever use of an equivalent form of the Mittag-Leffler expansion

\begin{align}
\left. J_{\nu+1}(x) \right/ J_\nu(x) &= \sum_{n \geq 1} \frac{2x}{j_{\nu,n}^2 - x^2},
\end{align}

where \(\nu > -1\). Note that in [2] it was pointed out that results like (1.1) are related to the connection between the motion of poles and zeros of special solutions of partial differential equations and many-body problems. In 1986 Ismail and Muldoon [6] mentioned that (1.1) can be obtained also by evaluating the residues of the functions in (1.1) at their poles. In this paper our aim is to present an alternative proof of (1.1) by using only elementary analysis. Our proof is based on the Mittag-Leffler expansion (1.2), recurrence relations, the Bessel differential equation and on the Bernoulli-Hospital rule for the limit of quotients. Moreover, by using our idea we are able to prove the following new results.

Theorem 1. If \(\nu > -1\) and \(k \in \{1, 2, \ldots\}\), then we have

\begin{align}
\sum_{n \geq 1, n \neq k} \frac{1}{j_{\nu,n}^4 - j_{\nu,k}^4} &= -\frac{1}{2j_{\nu,k}^2} \sum_{n \geq 1} \frac{1}{j_{\nu,n}^2 + j_{\nu,k}^2} + \frac{\nu + 2}{4j_{\nu,k}^2},
\end{align}

In particular, for all \(k \in \{1, 2, \ldots\}\) we have

\begin{align}
\sum_{n \geq 1, n \neq k} \frac{1}{n^4 - k^4} &= -\frac{\pi}{4k^3} \coth(k\pi) + \frac{7}{8k^4},
\end{align}

Moreover, for all \(k \in \{1, 3, \ldots\}\) we have

\begin{align}
\sum_{n \geq 1, n \neq k, n \text{ is odd}} \frac{1}{n^4 - k^4} &= -\frac{\pi}{8k^4} \tanh \left(\frac{k\pi}{2} \right) + \frac{3}{8k^4}.
\end{align}

As far as we know the above results are new and as we can see below our method can be applied for the zeros of other special functions, like Struve functions and modified Bessel functions of the second kind. Our proof in this case is based on the corresponding Mittag-Leffler expansion for Struve functions, recurrence relations, the Struve differential equation and on the Bernoulli-Hospital rule for the limit of quotients. During the
Theorem 3. For all \(\nu \in \mathbb{N} \) and \(j \in \{1, \ldots, n\} \) we have

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}} = \frac{1 - 2z_{\nu,j} - 2\nu}{2z_{\nu,j}}.
\]

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k}^2 - z_{\nu,j}^2} = \frac{1 - z_{\nu,j} - \nu}{2z_{\nu,j}} - \frac{1}{2z_{\nu,j}} \sum_{k=1}^{n} \frac{1}{z_{\nu,k} + z_{\nu,j}}.
\]

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k}^4 - z_{\nu,j}^4} = \frac{2 - \nu - z_{\nu,j}}{4z_{\nu,j}^2} - \frac{1}{4z_{\nu,j}} \sum_{k=1}^{n} \left(\frac{1}{z_{\nu,j}^2 + z_{\nu,k}^2} + \frac{2z_{\nu,j}}{z_{\nu,j}^2 + z_{\nu,k}^2} \right).
\]
2. Proofs

In this section we are going to present the proof of \[(1.1)\] and of Theorems \[(2)\] \[(3)\] and \[(4)\]

Proof of (1.1). We start with the following identities

\[(2.1)\] \[j_{\nu,k} J_{\nu}''(j_{\nu,k}) + J_{\nu}'(j_{\nu,k}) = 0,\]

\[(2.2)\] \[J_{\nu+1}(j_{\nu,k}) + J_{\nu}'(j_{\nu,k}) = 0,\]

\[(2.3)\] \[j_{\nu,k} J_{\nu+1}'(j_{\nu,k}) - (\nu + 1) J_{\nu}'(j_{\nu,k}) = 0,\]

which readily follow from the fact that \(J_{\nu}\) is a particular solution of the Bessel differential equation \[(7)\] p. 217], that is, satisfies

\[x^2 J_{\nu}''(x) + x J_{\nu}'(x) + (x^2 - \nu^2) J_{\nu}(x) = 0,\]

and from the recurrence relations \[(7)\] p. 222]

\[(2.4)\] \[x J_{\nu}'(x) - \nu J_{\nu}(x) = -x J_{\nu+1}(x),\]

\[x J_{\nu+1}'(x) + (\nu + 1) J_{\nu+1}(x) = x J_{\nu}(x).\]

By using the Mittag-Leffler expansion \[(1.2)\] we obtain that

\[\Omega_1 = \sum_{n \geq 1} \frac{1}{J_{\nu,n} - j_{\nu,k}} = \lim_{x \to j_{\nu,k}} \left(\frac{J_{\nu+1}(x)}{2x J_{\nu}(x)} - \frac{1}{J_{\nu,k} - x} \right) = \lim_{x \to j_{\nu,k}} \frac{(j_{\nu,k}^2 - x^2) J_{\nu+1}(x) - 2x J_{\nu}(x)}{(j_{\nu,k}^2 - x^2) J_{\nu}(x)}.\]

Now, applying the Bernoulli-Hospital rule two times and the relations \[(2.1)\], \[(2.2)\] and \[(2.3)\] we get

\[\Omega_1 = \frac{1}{2 j_{\nu,k}} \lim_{x \to j_{\nu,k}} \frac{(j_{\nu,k}^2 - x^2) J_{\nu+1}'(j_{\nu,k}) - 4x J_{\nu+1}'(x) - 4x J_{\nu}'(x) - 2x J_{\nu}(x)}{(j_{\nu,k}^2 - x^2) J_{\nu}'(j_{\nu,k}) - 4x J_{\nu}'(x) - 2x J_{\nu}(x)} = \frac{\nu + 1}{2 j_{\nu,k}}.\]

Proof of Theorem 1 Let us denote with \(I_{\nu}\) the modified Bessel function of the first kind or Bessel function of the first kind with purely imaginary argument. By using the Weierstrassian products \[(7)\] p. 235]

\[2^\nu \Gamma(\nu + 1) x^{-\nu} I_{\nu}(x) = \prod_{n \geq 1} \left(1 - \frac{x^2}{j_{\nu,n}^2} \right), \quad 2^\nu \Gamma(\nu + 1) x^{-\nu} I_{\nu}(x) = \prod_{n \geq 1} \left(1 + \frac{x^2}{j_{\nu,n}^2} \right),\]

we obtain

\[2^{2\nu} \Gamma^2(\nu + 1) x^{-2\nu} J_{\nu}(x) I_{\nu}(x) = \prod_{n \geq 1} \left(1 - \frac{x^4}{j_{\nu,n}^4} \right).\]

Logarithmic differentiation gives

\[-\frac{2\nu}{x} \frac{J_{\nu}(x)}{I_{\nu}(x)} + \frac{J_{\nu}'(x)}{I_{\nu}(x)} = -\sum_{n \geq 1} \frac{4x^3}{j_{\nu,n}^3 - x^4},\]

which in view of \[(2.4)\] and its analogue

\[x I_{\nu}'(x) - \nu I_{\nu}(x) = x I_{\nu+1}(x),\]

can be rewritten as

\[\frac{1}{4x^2} \left(\frac{J_{\nu+1}(x)}{J_{\nu}(x)} - \frac{I_{\nu+1}(x)}{I_{\nu}(x)} \right) = \sum_{n \geq 1} \frac{1}{j_{\nu,n}^2 - x^2}.\]
By using the above Mittag-Leffler expansion we obtain that

\[
\Omega_2 = \sum_{n \geq 1, n \neq k} \frac{1}{j_{\nu,n}^2 - j_{\nu,k}^2} = \lim_{x \to j_{\nu,k}} \left(\frac{J_{\nu+1}(x)}{4x^3J_{\nu}(x)} - \frac{I_{\nu+1}(x)}{4xI_{\nu}(x)} - \frac{1}{j_{\nu,k}^2 - x^2} \right)
\]

\[
= \lim_{x \to j_{\nu,k}} \left(\frac{J_{\nu+1}(x)}{4x^3J_{\nu}(x)} - \frac{1}{j_{\nu,k}^2 - x^2} \right) - \frac{I_{\nu+1}(j_{\nu,k})}{4j_{\nu,k}^2J_{\nu}(j_{\nu,k})}
\]

\[
= \lim_{x \to j_{\nu,k}} \left(\frac{1}{j_{\nu,k}^2 + x^2} \frac{(j_{\nu,k}^2 + x^2)J_{\nu+1}(x)}{4xJ_{\nu}(x)} - \frac{x^2 j_{\nu,k}^2}{j_{\nu,k}^2 - x^2} \right) - \frac{I_{\nu+1}(j_{\nu,k})}{4j_{\nu,k}^2J_{\nu}(j_{\nu,k})}
\]

Now, applying again the Bernoulli-Hospital rule two times and the relations (3.1), (2.7), and (2.8) we get

\[
\Omega_3 = \lim_{x \to j_{\nu,k}} \frac{1}{j_{\nu,k}^2 + x^2} \frac{(j_{\nu,k}^2 + x^2)J_{\nu+1}(x) - x^2 j_{\nu,k}^2}{4xJ_{\nu}(x)}
\]

\[
= \frac{1}{8j_{\nu,k}^5} \lim_{x \to j_{\nu,k}} \left(j_{\nu,k}^4 - x^4 \right) J_{\nu+1}(x) - 4x^3J_{\nu}(x)
\]

\[
= \frac{1}{8j_{\nu,k}^5} \lim_{x \to j_{\nu,k}} \left(j_{\nu,k}^4 - x^4 \right) J_{\nu+1}(x) - 8x^3J_{\nu+1}(x) - 12x^2J_{\nu+1}(x) - 24xJ_{\nu}(x) + x^4J_{\nu}(x) - 8x^3J_{\nu}(x) + 2J_{\nu}(x)
\]

\[
= \frac{1}{8j_{\nu,k}^5} \left(-8j_{\nu,k}^3J_{\nu+1}(j_{\nu,k}) - 12j_{\nu,k}^3J_{\nu+1}(j_{\nu,k}) - 24j_{\nu,k}^3J_{\nu}(j_{\nu,k}) - 4j_{\nu,k}^3J_{\nu}(j_{\nu,k}) \right) = \nu + 2
\]

Finally, by using the Mittag-Leffler expansion

(2.5)

\[
\frac{I_{\nu+1}(x)}{I_{\nu}(x)} = \sum_{n \geq 1} \frac{2x}{j_{\nu,n} + x^2}
\]

the proof of (1.5) is complete. Now, by taking \(\nu = \frac{1}{2} \) and \(\nu = -\frac{1}{2} \) in (1.5) we get (1.4) and

\[
\sum_{n \geq 1} \frac{1}{(2n-1)^2 - (2k-1)^2} = -\frac{\pi}{8(2k-1)^3} \tanh \left(\frac{(2k-1)\pi}{2} \right) + \frac{3}{8(2k-1)^2},
\]

which is equivalent to (1.3). Here we used the Mittag-Leffler expansion [7] p. 126]

\[
\coth(x) = \frac{1}{x} + 2x \sum_{n \geq 1} \frac{1}{x^2 + n^2 \pi^2}
\]

and (2.5) for \(\nu = -\frac{1}{2} \) together with [7] p. 254]

\[
I_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sinh x, \quad I_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cosh x, \quad \tanh x = \frac{I_{-\frac{1}{2}}(x)}{I_{\frac{1}{2}}(x)}.
\]

Moreover, we have used the fact that for \(n \in \{1, 2, \ldots \} \) we have \(j_{\frac{1}{2},n} = n\pi \) and \(j_{-\frac{1}{2},n} = \frac{(2n-1)\pi}{2} \) since \(J_{\frac{1}{2}}(x) \) is proportional to \(\sin x \) and \(J_{-\frac{1}{2}}(x) \) is proportional to \(\cos x \), that is, we have [7] p. 228]

\[
J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x, \quad J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x.
\]

\[\square\]

Proof of Theorem 2 The proof is quite similar to the proof of (1.1). We start with the following identities

(2.6) \[h_{\nu,k} H_{\nu}''(h_{\nu,k}) + H_{\nu}'(h_{\nu,k}) = \frac{h_{\nu,k}^\nu}{\sqrt{\pi} 2^{\nu-1} \Gamma \left(\nu + \frac{1}{2} \right)} \]

(2.7) \[H_{\nu-1}(h_{\nu,k}) - H_{\nu}'(h_{\nu,k}) = 0, \]

(2.8) \[h_{\nu,k} H_{\nu-1}'(h_{\nu,k}) - \nu H_{\nu}'(h_{\nu,k}) = h_{\nu,k} H_{\nu}''(h_{\nu,k}), \]
which readily follow from the fact that \(H_\nu \) is a particular solution of the Struve differential equation [7] p. 288, that is, satisfies
\[
x H_\nu''(x) + H_\nu'(x) + x \left(1 - \frac{\nu^2}{x^2} \right) H_\nu(x) = \frac{x^\nu}{\sqrt{\pi} 2^{\nu-1} \Gamma(\nu + \frac{1}{2})},
\]
and from the recurrence relations [7] p. 292
\[
\begin{align*}
2 H_\nu'(x) + \nu H_\nu(x) &= x H_{\nu - 1}(x), \\
H_{\nu - 1}(x) + x H_{\nu - 1}'(x) &= (\nu + 1) H_{\nu}'(x) + x H_\nu''(x).
\end{align*}
\]
By using the Mittag-Leffler expansion [1] Lemma 1
\[
\frac{H_{\nu - 1}(x)}{H_\nu(x)} = \frac{2\nu + 1}{x} - \sum_{n \geq 1} \frac{2x}{h_{\nu,n}^2 - x^2}
\]
we obtain that
\[
\Omega_4 = \sum_{n \geq 1, n \neq k} \frac{1}{h_{\nu,n}^2 - h_{\nu,k}^2} = \lim_{x \to h_{\nu,k}} \left(\frac{2\nu + 1}{2x^2} \frac{H_{\nu - 1}(x)}{2xH_\nu(x)} - \frac{1}{h_{\nu,k}^2 - x^2} \right)
\]
\[
= \frac{2\nu + 1}{2h_{\nu,k}} - \lim_{x \to h_{\nu,k}} \frac{(h_{\nu,k}^2 - x^2)H_{\nu - 1}(x) + 2xH_\nu(x)}{(h_{\nu,k}^2 - x^2)H_\nu(x)}.
\]
Now, applying the Bernoulli-Hospital rule two times and the relations (2.6), (2.7) and (2.8) we get
\[
\Omega_5 = \frac{1}{2h_{\nu,k}} \lim_{x \to h_{\nu,k}} \frac{(h_{\nu,k}^2 - x^2)H_{\nu - 1}(x) + 2xH_\nu(x)}{(h_{\nu,k}^2 - x^2)H_\nu(x)}
\]
\[
= \frac{1}{2h_{\nu,k}} \lim_{x \to h_{\nu,k}} \frac{(h_{\nu,k}^2 - x^2)H_{\nu - 1}'(x) - 4xH_{\nu - 1}'(x) - 2H_{\nu - 1}(x) + 4H_\nu'(x) + 2xH_\nu''(x)}{(h_{\nu,k}^2 - x^2)H_\nu'(x) - 4xH_\nu'(x) - 2H_\nu(x)}
\]
\[
= \frac{1}{2h_{\nu,k}} \left(-\nu h_{\nu,k}H_{\nu - 1}'(h_{\nu,k}) - 2H_{\nu - 1}(h_{\nu,k}) + 4H_\nu'(h_{\nu,k}) + 2h_{\nu,k}H_\nu''(h_{\nu,k}) \right)
\]
\[
= \nu - 1 + \frac{h_{\nu,k}^{-2}}{\sqrt{\pi} 2^{\nu-1} \Gamma(\nu + \frac{1}{2}) H_\nu(h_{\nu,k})}
\]
which completes the proof of (1.7). Now, to prove (1.8) observe that by means of (1.7) and the analogous of (1.6) for the zeros of Struve functions we have
\[
\sum_{n \geq 1, n \neq k} \frac{1}{h_{\nu,n}^2 - h_{\nu,k}^2} = \frac{1}{2h_{\nu,k}} \sum_{n \geq 1, n \neq k} \frac{1}{h_{\nu,n}^2 - h_{\nu,k}^2} - \frac{1}{2h_{\nu,k}} \sum_{n \geq 1, n \neq k} \frac{1}{h_{\nu,n}^2 + h_{\nu,k}^2}
\]
\[
= \frac{1}{2h_{\nu,k}} \left(\nu + 2 - \frac{h_{\nu,k}^{-2}}{\sqrt{\pi} 2^{\nu-1} \Gamma(\nu + \frac{1}{2}) H_\nu(h_{\nu,k})} \right) - \frac{1}{2h_{\nu,k}} \left(\sum_{n \geq 1} \frac{1}{h_{\nu,n}^2 + h_{\nu,k}^2} - 1 \right),
\]
which completes the proof. \(\square\)

Proof of Theorem 3. First we note that if \(\nu = n + \frac{1}{2} \) and \(n \in \mathbb{N} \), then for all \(z \in \mathbb{C} \) there holds
\[
(2.10) \quad \frac{2^{1-\nu}}{\Gamma(\nu)} z^\nu e^z K_\nu(z) = \prod_{k=1}^{n} \left(1 - \frac{z}{z_{\nu,k}} \right),
\]
which by using logarithmic differentiation yields the next result
\[
(2.11) \quad \frac{K_{\nu+1}(z)}{K_\nu(z)} = 1 + \frac{2\nu}{z} - \sum_{k=1}^{n} \frac{1}{z - z_{\nu,k}}.
\]
We note that the equality (2.11) is already known [3, Lemma 3.2] and it is a corresponding Mittag–Leffler expansion for \(K_\nu \). Now, let us notice that from (2.11) it follows that

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}} = \lim_{z \to z_{\nu,j}} \left(\frac{K_{\nu+1}(z)}{K_\nu(z)} - 1 - \frac{2\nu}{z} - \frac{1}{z_{\nu,j} - z} \right) = \lim_{z \to z_{\nu,j}} \frac{z_{\nu,j} - z - \nu - 1}{z_{\nu,j} - z - \nu} K_{\nu+1}(z) - (\nu + 1) K_\nu(z) - z K_\nu(z).
\]

On the other hand, by using the fact that \(K_\nu \) is a particular solution of the modified Bessel differential equation, i.e., there holds

\[z^2 K_\nu''(z) + z K_\nu'(z) - (\nu^2 + \nu) K_\nu(z) = 0, \]

and in view of the relations

\[z K_\nu'(z) = \nu K_\nu(z) - z K_{\nu+1}(z), \]

\[z K_{\nu+1}(z) + (\nu + 1) K_\nu(z) = -z K_\nu(z), \]

we obtain the next identities for all \(k \in \{1, 2, \ldots, n\} \)

\[
(2.12) \quad z_{\nu,k} K_{\nu+1}(z_{\nu,j}) + K_\nu(z_{\nu,k}) = 0,
\]

\[
(2.13) \quad K_\nu'(z_{\nu,k}) = -K_{\nu+1}(z_{\nu,k})
\]

and

\[
(2.14) \quad z_{\nu,k} K_{\nu+1}'(z_{\nu,j}) + (\nu + 1) K_{\nu+1}(z_{\nu,j}) = 0.
\]

Applying the Bernoulli-Hospital rule two times and in view of (2.12), (2.13) and (2.14) we get

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}} = -z_{\nu,j} K_{\nu+1}'(z_{\nu,j}) - 2z_{\nu,j} K_{\nu+1}'(z_{\nu,j}) + 2(z_{\nu,j} + 2\nu - 1) K_\nu(z_{\nu,j}) - 2 K_{\nu+1}(z_{\nu,j}) \frac{K_{\nu}'(z_{\nu,j})}{K_\nu(z_{\nu,j})},
\]

which completes the proof of (1.11).

Now, we focus on the identities (1.11) and (1.12). These can be deduced by using the next relations

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}} = \frac{1}{2z_{\nu,j}} \sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}} - \frac{1}{2z_{\nu,j}} \sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} + z_{\nu,j}}
\]

and

\[
\sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}^2} = \frac{1}{2z_{\nu,j}} \sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} - z_{\nu,j}^2} - \frac{1}{2z_{\nu,j}} \sum_{k=1, k \neq j}^{n} \frac{1}{z_{\nu,k} + z_{\nu,j}}
\]

Alternatively, the identities (1.11) and (1.12) can be deduced as follows. First, let us notice that from (2.10) it follows that

\[
(2.15) \quad \prod_{k=1}^{n} \left(1 - \frac{z_{\nu,k}^2}{z_{\nu,j}} \right) = 2(1 - \nu) \frac{z_{\nu,j} K_\nu(z_{\nu,j}) K_\nu(-z_{\nu,j})}{2^n \Gamma(\nu)^2}.
\]

Logarithmic differentiation of the previous expression gives

\[
-\sum_{k=1}^{n} \frac{2z_{\nu,k}^2}{z_{\nu,k} - z} = \frac{2\nu}{z} K_\nu'(z) - \frac{K_\nu'(z)}{K_\nu(z)} - \frac{K_\nu'(z)}{K_\nu(-z)},
\]

which can be rewritten as follows

\[
\sum_{k=1}^{n} \frac{1}{z_{\nu,k}^2 - z^2} = \frac{K_{\nu+1}(z)}{2z K_\nu(z)} - \frac{K_{\nu+1}(-z)}{2z K_\nu(-z)} - \frac{2\nu}{z^2}.
\]
This in turn implies that

\[(2.16) \quad \sum_{k=1, k \neq j}^{n} \frac{1}{z^2 \nu, k - z^2 \nu, j} = \lim_{z \to -z_{\nu,j}} \left(\frac{K_{\nu+1}(z)}{2z K_{\nu}(z)} - \frac{2\nu}{z^2} - \frac{1}{z^2 \nu, j - z^2} \right) = \frac{K_{\nu+1}(-z_{\nu,j})}{2z \nu, j K_{\nu}(-z_{\nu,j})} =: K_1 - K_2. \]

By using the Bernoulli-Hospital rule, two times, and then the relations \[(2.12), (2.13) \text{ and } (2.14),\] we can conclude that

\[(2.17) \quad K_1 = \frac{1}{4z_{\nu,j}^2} \lim_{z \to -z_{\nu,j}} \frac{z(z_{\nu,j}^2 - z^2)K_{\nu+1}(z) - 4\nu(z_{\nu,j}^2 - z^2)K_{\nu}(z) - 2z^2 K_{\nu}(z)}{(z_{\nu,j}^2 - z) K_{\nu}(z)} = \frac{-4z_{\nu,j}^2 K_{\nu}''(z_{\nu,j}) - 4z_{\nu,j}^2 K_{\nu+1}'(z_{\nu,j}) - 2(4z_{\nu,j} - 8\nu z_{\nu,j}) K_{\nu}''(z_{\nu,j}) - 6z_{\nu,j} K_{\nu+1}(z_{\nu,j})}{-8z_{\nu,j}^2 K_{\nu}'(z_{\nu,j})} = 1 - \frac{3\nu}{2z_{\nu,j}^2}. \]

Using the substitution \(z \mapsto -z_{\nu,j}\) from \[(2.11),\] it follows that

\[(2.18) \quad K_2 = \frac{1}{2z_{\nu,j}^2} - \frac{\nu}{z_{\nu,j}^2} + \frac{1}{2z_{\nu,j}} \sum_{k=1}^{n} \frac{1}{z_{\nu,k} + z_{\nu,j}}. \]

Combination of \((2.16), (2.17) \text{ and } (2.18)\) yields the proof of \((1.11)\).

Similarly, let us notice that from \[(2.15),\] using the substitution \(z \mapsto i z\) it follows that

\[\prod_{k=1}^{n} \left(1 + \frac{z^2}{z_{\nu,k}^2} \right) = \frac{2z^{2\nu} K_{\nu}(iz) K_{\nu}(-iz)}{2^{2n} \Gamma(\nu)^2}, \]

which in turn implies that

\[\prod_{k=1}^{n} \left(1 - \frac{z^2}{z_{\nu,k}^2} \right) = \frac{4(-1)^{\nu} z^{2\nu} K_{\nu}(z) K_{\nu}(-z) K_{\nu}(iz) K_{\nu}(-iz)}{2^{2n} \Gamma(\nu)^4}. \]

Logarithmic differentiation of the previous expression gives

\[-\sum_{k=1}^{n} \frac{4z^3}{z_{\nu,k}^4 - z^4} = \frac{4\nu}{z} K_{\nu}'(z) - \frac{K_{\nu}'(z)}{K_{\nu}(z)} - \frac{i K_{\nu}'(iz)}{K_{\nu}(iz)} - \frac{i K_{\nu}'(-iz)}{K_{\nu}(-iz)}. \]

which can be rewritten as

\[\sum_{k=1}^{n} \frac{4z^3}{z_{\nu,k}^4 - z^4} = \frac{8\nu}{z} + \frac{K_{\nu+1}(z)}{K_{\nu}(z)} - \frac{K_{\nu+1}(-z)}{K_{\nu}(-z)} + \frac{i K_{\nu+1}(iz)}{K_{\nu}(iz)} - \frac{i K_{\nu+1}(-iz)}{K_{\nu}(-iz)}. \]

Consequently we have

\[(2.19) \quad \sum_{k=1, k \neq j}^{n} \frac{1}{z^4 \nu, k - z^4 \nu, j} = \lim_{z \to -z_{\nu,j}} \frac{K_{\nu+1}(z)}{2z K_{\nu}(z)} - \frac{8\nu}{z^4} - \frac{4z^3}{z_{\nu,j}^4 - z^4} + \frac{1}{4z_{\nu,j}^4} \left(-\frac{K_{\nu+1}(-z_{\nu,j})}{K_{\nu}(-z_{\nu,j})} + i \frac{K_{\nu+1}(iz_{\nu,j})}{K_{\nu}(iz_{\nu,j})} - i \frac{K_{\nu+1}(-iz_{\nu,j})}{K_{\nu}(-iz_{\nu,j})} \right) =: K_3 + K_4. \]

By using again the Bernoulli-Hospital rule two times, and then the relations \[(2.12), (2.13) \text{ and } (2.14),\] we obtain that

\[(2.20) \quad K_3 = \frac{1}{16z_{\nu,j}^4} \lim_{z \to -z_{\nu,j}} \frac{z(z_{\nu,j}^4 - z^4)K_{\nu+1}(z) - 8\nu(z_{\nu,j}^4 - z^4)K_{\nu}(z) - 4z^4 K_{\nu}(z)}{(z_{\nu,j}^4 - z) K_{\nu}(z)} = \frac{-4z_{\nu,j}^4 K_{\nu}''(z_{\nu,j}) - 8z_{\nu,j}^4 K_{\nu+1}'(z_{\nu,j}) + 32z_{\nu,j}^4 (2\nu - 1) K_{\nu}'(z_{\nu,j}) - 20z_{\nu,j}^4 K_{\nu+1}(z_{\nu,j})}{-32z_{\nu,j}^4 K_{\nu}'(z_{\nu,j})} = \frac{2 - 7\nu}{4z_{\nu,j}^4}. \]
Finally, from (2.11) it holds

\begin{equation}
(2.21)
K_4 = \frac{1}{z_{\nu,j}^3} \left(-1 + \frac{6\nu}{z_{\nu,j}} - \sum_{k=1}^{n} \left(\frac{1}{z_{\nu,j} + z_{\nu,k}} + \frac{i}{i z_{\nu,j} - z_{\nu,k}} + \frac{i}{i z_{\nu,j} + z_{\nu,k}} \right) \right)
\end{equation}

\begin{equation}
= \frac{1}{z_{\nu,j}^3} \left(-1 + \frac{6\nu}{z_{\nu,j}} - \sum_{k=1}^{n} \left(\frac{1}{z_{\nu,j} + z_{\nu,k}} + \frac{2z_{\nu,j}}{z_{\nu,j}^2 + z_{\nu,k}^2} \right) \right).
\end{equation}

From (2.19), (2.20) and (2.21) the desired formula (1.12) immediately follows. □

Acknowledgement. The first author is grateful to Christophe Vignat for providing an alternative proof of (1.3) as well as for the useful discussions during the process of writing this paper.

References

[1] Á. Baricz, S. Ponnusamy, S. Singh, Turán type inequalities for Struve functions, Proc. Amer. Math. Soc. (submitted).
[2] F. Calogero, On the zeros of Bessel functions, Lett. Nuovo Cimento 20(7) (1977) 254–256.
[3] E.M. Ferreira, J. Sesma, Zeros of the Macdonald function of complex order, J. Comput. Appl. Math. 211 (2008) 223–231.
[4] Y. Hamana, The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math. 49 (2012) 853–868.
[5] Y. Hamana, H. Matsumoto, T. Shirai, On the zeros of the Macdonald functions, arXiv: 1302.5154v1.
[6] M.E.H. Ismail, M.E. Muldoon, Certain monotonicity properties of Bessel functions, J. Math. Anal. Appl. 118 (1986) 145–150.
[7] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010.
[8] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1944.

Department of Economics, Babeș-Bolyai University, 400591 Cluj-Napoca, Romania and Institute of Applied Mathematics, John von Neumann Faculty of Informatics, Óbudai University, 1034 Budapest, Hungary
E-mail address: bariczoci@yahoo.com

Department of Mathematics, University of Osijek, 31000 Osijek, Croatia
E-mail address: djankov@mathos.hr

Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia
E-mail address: poganj@pfri.hr

Department of Mathematics and Informatics, Sapientia Hungarian University of Transylvania, 540485 Târgu-Mureș, Romania
E-mail address: rszasz@ms.sapientia.ro