A PRODUCT OF GAMMA FUNCTION VALUES AT FRACTIONS WITH THE SAME
DENOMINATOR

GREG MARTIN

ABSTRACT. We give an exact formula for the product of the values of Euler’s Gamma function evaluated at all rational numbers between 0 and 1 with the same denominator in lowest terms; the answer depends on whether or not that denominator is a prime power. A consequence is a surprisingly nice formula for the product of value of the Gamma function evaluated at the points of a Farey sequence.

Note: Since writing this note, I have been informed that Theorem 1 was already proved by Sándor and Tóth [5].

The purpose of this note is to establish the following classical-seeming theorem concerning Euler’s Γ-function evaluated at fractions that have the same denominator in lowest terms. The statement of the theorem uses (coincidentally) Euler’s function \(\phi(n) \), the number of integers between 1 and \(n \) that are relatively prime to \(n \), as well as von Mangoldt’s function \(\Lambda(n) \), defined to be \(\log p \) if \(n = p^r \) is a prime or a power of a prime and 0 otherwise.

Theorem 1. For \(n \geq 2 \),

\[
\prod_{k=1}^{n} \Gamma \left(\frac{k}{n} \right) = \frac{(2\pi)^{\phi(n)/2}}{\exp(\Lambda(n)/2)} = \begin{cases}
(2\pi)^{\phi(n)/2} / \sqrt{p} & \text{if } n = p^r \text{ is a prime power}, \\
(2\pi)^{\phi(n)/2} & \text{otherwise}.
\end{cases}
\]

A few special cases of this theorem have been noted before (\(n = 2, 3, 4, 6 \) for example), and it follows for prime \(n \) from equation (1) below. Nijenhuis [4, page 4] established, by a more indirect method, the special case of the theorem where \(n \equiv 2 \pmod{4} \).

Proof. Gauss’s multiplication formula [11, equation (3.10)] says that

\[
\prod_{k=0}^{n-1} \Gamma \left(\frac{z+k}{n} \right) = (2\pi)^{(n-1)/2} n^{1/2-z} \Gamma(z)
\]

for any complex number \(z \) for which both sides are defined; taking \(z = 1 \) yields

\[
\prod_{k=1}^{n} \Gamma \left(\frac{k}{n} \right) = (2\pi)^{(n-1)/2} n^{-1/2}.
\]

Define the two functions

\[
F(n) = \sum_{k=1}^{n} \log \Gamma \left(\frac{k}{n} \right) \quad \text{and} \quad R(n) = \sum_{k=1}^{n} \log \Gamma \left(\frac{k}{n} \right),
\]

2000 Mathematics Subject Classification. 33B15 (11B65).
It is immediate from these definitions that \(F(n) = \sum_{d|n} R(d) \); hence Möbius inversion \([3, \text{second displayed equation after equation (2.10)}]\) yields
\[
R(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right).
\]
From equation (1) we see that \(F(n) = \log \left(\frac{(2\pi)^{(n-1)/2}n^{-1/2}}{2^{n-1}/2}\right) \), and so
\[
R(n) = \frac{1}{2} \log 2 \pi \sum_{d|n} \mu(d) n^{\frac{1}{2}} - \frac{1}{2} \log 2 \pi \sum_{d|n} \mu(d) - \frac{1}{2} \sum_{d|n} \mu(d) \log \frac{n}{d}.
\]
Each of these three divisor sums is standard in number theory (see \([3]\), where they appear as the first displayed equation in the proof of Theorem 2.1, equation (1.20), and the displayed equation before equation (2.10), respectively): as long as \(n \geq 2 \), we have
\[
R(n) = \left(\frac{1}{2} \log 2 \pi\right) \phi(n) - 0 - \frac{1}{2} \Lambda(n).
\]
Taking exponentials of both sides establishes the theorem.

It was known in the nineteenth century that the geometric mean of the \(\Gamma \) function on the interval \((0, 1]\) is \(\sqrt{2\pi} \), in the sense that
\[
\int_0^1 \log \Gamma(x) \, dx = \frac{1}{2} \log 2 \pi.
\]
(One can deduce this, for example, by integrating the Weierstrass formula \([1, \text{equation (2.9)}]\)
\[
\log \Gamma(z) = -\gamma z - \log z + \sum_{j=1}^{\infty} \left(\frac{1}{j} - \log \left(1 + \frac{1}{j}\right)\right)
\]
term by term; another proof uses the reflection formula \(\Gamma(z)\Gamma(1-z) = \pi \csc \pi z \) together with a known evaluation of the integral \(\int_0^{1/2} \log(\sin \pi x) \, dx \). Therefore if we multiply together \(n \) values of the \(\Gamma \) function on points in this interval, we would expect the product to be comparable to \((2\pi)^{n/2} \). We can deduce from first principles that the product will be less than \((2\pi)^{n/2} \) if we sample the \(\Gamma \) function at \(\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}, \) since \(\Gamma \) is decreasing on that interval; in fact, equation (1) tells us that the product will be less by a factor of precisely \(1/\sqrt{2\pi n} \). Applying equation (1) twice, at \(2n \) and \(n \), and dividing shows that we do better to sample at the midpoints, rather than the right-hand endpoints, of \(n \) intervals of equal length:
\[
\prod_{k=1}^{n} \Gamma\left(\frac{2k-1}{2n}\right) = \frac{(2\pi)^{n/2}}{\sqrt{2}}.
\] (2)

Theorem [1] tells us that sampling at the \(\phi(n) \) points \(\{\frac{k}{n} : 1 \leq k \leq n, (k, n) = 1\} \) curiously gives us exactly the default expectation \((2\pi)^{\phi(n)/2} \), unless \(n \) is a prime power.

Finally, we comment that the \(\Lambda \)-function satisfies the identity \([3, \text{Section 2.2.1, exercise 1(a)}]\)
\[
\sum_{n=1}^{N} \Lambda(n) = \log \left(\text{lcm}[1, 2, \ldots, N]\right).
\]
This allows us to compute the product of the \(\Gamma \)-function sampled over points in a Farey sequence. Let \(F_N \) denote the set of all rational numbers in the open interval \((0, 1)\) whose denominator in

Footnotes:

[3]: Reference to a specific text or source.

[1]: Reference to another text or source.

[2]: Footnote or reference marker added for citation purpose.
lowest terms is at most \(N \) (note that usually one includes the fractions \(\frac{0}{1} \) and \(\frac{1}{1} \) in this Farey sequence, but here we do not). Applying Theorem \(\Pi \) to \(n = 2, 3, \ldots, N \) and multiplying the identities together yields the formula

\[
\prod_{r \in F_N} \frac{\Gamma(r)}{\sqrt{2\pi}} = \left(\text{lcm}[1, 2, \ldots, N] \right)^{-1/2}.
\]

(3)

It was noted by Luschny and Wehmeier [2] that this last equation is equivalent, via the reflection formula \(\Gamma(z)\Gamma(1 - z) = \pi \csc \pi z \), to the identity

\[
\text{lcm}[1, 2, \ldots, N] = \frac{1}{2} \left(\prod_{r \in F_N, r \leq 1/2} 2 \sin \pi r \right)^2;
\]

in fact they found an alternate proof using cyclotomic polynomials.

REFERENCES

[1] E. Artin, *The Gamma Function* (translated by M. Butler), Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston (1964).
[2] A. Luschny and S. Wehmeier, “The \(\text{lcm}(1, 2, \ldots, n) \) as a product of sine values sampled over the points in Farey sequences”, preprint. http://arxiv.org/abs/0909.1838
[3] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I: Classical Theory*, Cambridge University Press (2007).
[4] P. Nijenhuis, “Small Gamma products with simple values”, preprint. http://arxiv.org/abs/0907.1689
[5] J. Sándor and L. Tóth, “A remark on the gamma function”, *Elem. Math.* 44 (1989), no. 3, 73–76.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, ROOM 121, 1984 MATHEMATICS ROAD, CANADA V6T 1Z2

E-mail address: gerg@math.ubc.ca