Moment properties for two-type continuous-state branching processes in Lévy random environments

Shukai Chen and Xiangqi Zheng*
School of Mathematics and Statistics, Fujian Normal University
Fuzhou, 350007, People’s Republic of China
School of Mathematics, East China University of Science and Technology,
Shanghai, 200237, People’s Republic of China
E-mail: skchen@mail.bnu.edu.cn and zhengxq@ecust.edu.cn

Abstract. We first derive the recursions for integer moments of two-type continuous-state branching processes in Lévy random environments. We show that the nth moment of the process is a polynomial of the initial value of the process with at most n degree. Meanwhile, the criteria for the existence of f-moment of the process is also established under some natural conditions.

Key words and Phrases: Moment property, continuous-state branching process, random environment.

AMS subject classification number: 60J80; 60K37; 60H20; 60G51

1 Introduction and main results

The branching model in continuous time and state called continuous state branching process (CB-process) was first introduced by Jiřina [5]. This model can be regarded as the scaling limits of classical Galton-Watson branching processes, see [3] [10] [11]. Suppose that $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ is a filtered probability space satisfying the usual hypotheses. Given $\sigma \geq 0, b \in \mathbb{R}$ constants. Let $m(dz)$ be a σ-finite measure on $[0, \infty)$ satisfying $\int_0^\infty (z \land z^2) m(dz) < \infty$. Suppose that $\{B(t)\}$ is a standard (\mathcal{F}_t)-Brownian motion and $\{M(ds, dz, du)\}$ is a (\mathcal{F}_t)-Poisson random measure with intensity $dsm(dz)du$ and $\tilde{M}(ds, dz, du) = M(ds, dz, du) - dsm(dz)du$ is the compensated measure. We assume those two noises are independent. By Theorem 3.1 in [4], there is a unique positive strong solution to

$$X(t) = X(0) + \int_0^t \sqrt{2\sigma X(s)}dB(s) + \int_0^t \int_0^{X(s-)} z \tilde{M}(ds, dz, du) - \int_0^t bX(s)ds + \int_0^t \int_1^{X(s-)} z M(ds, dz, du) \quad (1.1)$$

and the solution $\{X(t) : t \geq 0\}$ is a CB-process with branching mechanism ϕ satisfying a Lévy-Khintchine’s type

$$\phi(\lambda) = b\lambda + \sigma\lambda^2 + \int_0^\infty (e^{-\lambda z} - 1 + \lambda z 1_{\{z \leq 1\}}) m(dz), \quad \lambda \geq 0.$$
Based on [11], [6] studied the moment property of CB-processes. Indeed, suppose that \(f \) is a positive continuous function on \([0, \infty)\) satisfying

Condition A. There exist constants \(c \geq 0 \) and \(K > 0 \) such that

(A1) \(f \) is convex on \([c, \infty)\);

(A2) \(f(xy) \leq K f(x)f(y) \) for all \(x, y \in [c, \infty) \).

If \(\{X(t) : t \geq 0\} \) is the strong solution of equation (1.1) with \(P(X(0) > 0) > 0 \), then for any \(t > 0 \), the equivalent condition of \(Ef(X(t)) < \infty \) is \(Ef(X(0)) < \infty \) and \(\int_1^\infty f(z)m(dz) < \infty \). Later, [7] generalised the result to continuous-state branching processes in Lévy random environments (CBRE-processes). A CBRE-process \(\{Y(t) : t \geq 0\} \) can be seen as the unique strong solution of

\[
Y(t) = Y(0) - \int_0^t bY(s)ds + \int_0^t \sqrt{2\sigma Y(s)}dB(s) + \int_0^t \int_1^\infty \int_0^1 Y(s-)zM(ds, dz, du)
+ \int_0^t \int_0^1 \int_0^\infty z\tilde{M}(ds, dz, du) + \int_0^t Y(s-)dL(s),
\]

(1.2)

where \(b, \sigma, B, M \) are the same as that in (1.1), \(\{L(t) : t \geq 0\} \) is a \((\mathcal{F}_t)\)-Lévy process defined by

\[
L(t) = \beta t + \sigma_1 B(t) + \int_0^t \int_{\mathbb{D}_1} (e^z - 1)\tilde{N}(ds, dz) + \int_0^t \int_{\mathbb{D}_1^c} (e^z - 1)N(ds, dz),
\]

(1.3)

where \(\mathbb{D}_1 = [-1, 1], \beta \in \mathbb{R}, \sigma_1 \geq 0, \{B(t)\} \) is a standard \((\mathcal{F}_t)\)-Brownian motion and \(\{N(ds, dz)\} \) is a \((\mathcal{F}_t)\)-Poisson random measure on \((0, \infty) \times \mathbb{R} \) with intensity \(ds\nu(dz) \), \(\nu \) is a \(\sigma \)-finite measure satisfying \(\int_0^\infty (1 \wedge z^2)\nu(dz) < \infty \). In particular, when \(L(t) \equiv 0 \) for all \(t \geq 0 \), the CBRE-process reduces to a CB-process with branching mechanism \(\phi \). An associated Lévy process \(\{\xi(t) : t \geq 0\} \) is defined by

\[
\xi(t) = at + \sigma_1 B(t) + \int_0^t \int_{\mathbb{D}_1} z\tilde{N}(ds, dz) + \int_0^t \int_{\mathbb{D}_1^c} zN(ds, dz),
\]

(1.4)

where \(a = \beta - \frac{1}{2}\sigma_1^2 - \int_{\mathbb{D}_1} (e^z - 1 - z)\nu(dz) \). Clearly, the two processes \(\{\xi(t) : t \geq 0\} \) and \(\{L(t) : t \geq 0\} \) generate the same filtration. We refer to [4, 14] for more details of CBRE-processes. Under the hypothesis \(P(Y(0) > 0) > 0 \), [7] showed that \(Ef(Y(t)) < \infty \) for any \(t > 0 \) if and only if \(Ef(Y(0)) < \infty \), \(\int_1^\infty f(z)m(dz) < \infty \) and \(\int_1^\infty f(e^z)\nu(dz) < \infty \), here the function \(f \) satisfies **Condition A**. A recursion formula of the \(n \)-moment of such processes is also established in [7].

A two-type continuous-state branching process in Lévy random environment (two-type CBRE-process) with a slightly stronger moment condition on the branching mechanism was constructed by [13], where the environment process is still defined by (1.3) or (1.4), and the branching mechanism \(\phi = (\phi_1, \phi_2) \) is a function from \(\mathbb{R}_+^2 \) to itself with the following representations,

\[
\phi_1(\lambda) = b_{11}\lambda_1 + b_{12}\lambda_2 + c_1\lambda_1^2 + \int_{\mathbb{R}_+^2} (e^{-\langle \Lambda, z \rangle} - 1 + \lambda_1 z_1)m_1(dz),
\]

\[
\phi_2(\lambda) = b_{21}\lambda_1 + b_{22}\lambda_2 + c_2\lambda_2^2 + \int_{\mathbb{R}_+^2} (e^{-\langle \Lambda, z \rangle} - 1 + \lambda_2 z_2)m_2(dz).
\]
Here, \((b_{ij})\) is a \((2 \times 2)\)-matrix with \(b_{12}, b_{21} \leq 0, c_1, c_2 \geq 0, m_1, m_2\) are \(\sigma\)-finite measures on \(\mathbb{R}^2_+\) supported by \(\mathbb{R}^2_+ \setminus \{0\}\), satisfying

\[
\int_{\mathbb{R}^2_+ \setminus \{0\}} (z_1 \wedge z_1^2 + z_2) m_1(dz) + \int_{\mathbb{R}^2_+ \setminus \{0\}} (z_2 \wedge z_2^2 + z_1) m_2(dz) < \infty.
\]

A two-dimensional Markov process \(\{X(t) = (X_1(t), X_2(t)) : t \geq 0\}\) is a CBRE-process if its transition semigroup \(\{P_t : t \geq 0\}\) is determined by

\[
\int_{\mathbb{R}^2_+} e^{-(\lambda, y)} P_t(x, dy) = E \left[\exp \left\{ -\langle x, \phi_{0,t}(\xi, \lambda) \rangle \right\} \right],
\]

where \(r \mapsto \phi_{r,t}(\xi, \lambda) = (\phi_{r,t}^{(1)}(\xi, \lambda), \phi_{r,t}^{(2)}(\xi, \lambda))\) is the unique solution to

\[
\phi_{r,t}^{(i)}(\xi, \lambda) = e^{\xi(t) - \xi(r)} \lambda_i - \int_r^t e^{\xi(s) - \xi(r)} \phi_i(\phi_{s,t}(\xi, \lambda)) \, ds, \quad i = 1, 2, \quad r \leq t \in \mathbb{R}
\]

and we take \(r = 0\) in (1.3).

Let \(\{B_1(t)\}\) and \(\{B_2(t)\}\) be two standard \((\mathcal{F}_t)\)-Brownian motions, \(\{M_1(ds, du, dz)\}\) and \(\{M_2(ds, du, dz)\}\) be two \((\mathcal{F}_t)\)-Poisson random measures on \((0, \infty)^4\) with characteristic measures \(m_1\) and \(m_2\), respectively, \(\{M_1(ds, du, dz)\}\) and \(\{M_2(ds, du, dz)\}\) are associated compensated measures. We assume those random elements are mutually independent. It was proved in [13] that a two-type CBRE-process with branching mechanism \(\phi = (\phi_1, \phi_2)\) and environment \(\{\xi(t) : t \geq 0\}\) or \(\{L(t) : t \geq 0\}\) can also be seen as the unique non-negative strong solution to

\[
X_1(t) = X_1(0) - \int_0^t \left(b_{11}X_1(s) + b_{21}X_2(s) \right) \, ds + \int_0^t \sqrt{2c_1X_1(s)} \, dB_1(s) \\
+ \int_0^t \int_0^s \int_{\mathbb{R}^2_+ \setminus \{0\}} z_1 M_1(ds, du, dz) + \int_0^t X_1(s-) \, dL(s) \\
+ \int_0^t \int_0^s \int_{\mathbb{R}^2_+ \setminus \{0\}} z_1 M_2(ds, du, dz), \quad (1.6)
\]

\[
X_2(t) = X_2(0) - \int_0^t \left(b_{12}X_1(s) + b_{22}X_2(s) \right) \, ds + \int_0^t \sqrt{2c_2X_2(s)} \, dB_2(s) \\
+ \int_0^t \int_0^s \int_{\mathbb{R}^2_+ \setminus \{0\}} z_2 M_1(ds, du, dz) + \int_0^t X_2(s-) \, dL(s) \\
+ \int_0^t \int_0^s \int_{\mathbb{R}^2_+ \setminus \{0\}} z_2 M_2(ds, du, dz). \quad (1.7)
\]

In particular, when \(L(t) \equiv 0\) for all \(t \geq 0\), the two-type CBRE-process reduces to a two-type CB-process with branching mechanism \(\phi\). One can refer to [2], [12], [13] for more details on the multi-type continuous-state branching processes. Moreover, using the tool of stochastic differential equations, Barczy, Li and Pap [3] calculate the \(n\)-moment of multi-type continuous-state branching process. Our result is an extension of [3]. Let \(\{X(t) = (X_1(t), X_2(t)) : t \geq 0\}\) be the strong solution of the stochastic equation system (1.6)–(1.7). We calculate the integer moment recursions of \(\{X(t) = (X_1(t), X_2(t)) : t \geq 0\}\) and the equivalent condition for the existence of \(f\)-moment.
Theorem 1.1. (n-moment)

Suppose that there exists an integer \(n \geq 2 \) such that
\[
E\|X(0)\|^n < \infty, \quad \int_{\mathbb{R}_+^2 \setminus \{0\}} \|z\|^n(m_1 + m_2)(dz) < \infty, \quad \int_1^\infty e^nz(dz) < \infty.
\]
Then,
\[
E[X_1(t)]^n = E[X_1(0)]^n e^{n\bar{\xi}_1(t)} + \sum_{j=0}^{n-2} A_{n,j}^1 \int_0^t E\xi_1(s-j)^{j+1}Ee^{n\xi_1(t)-n\bar{\xi}_1(s)}ds
\]
\[
+ \sum_{j=0}^{n-1} B_{n,j}^1 \int_0^t E\xi_1(s-j)X_2(s-E)Ee^{n\xi_1(t)-n\bar{\xi}_1(s)}ds
\]
and
\[
E[X_2(t)]^n = E[X_2(0)]^n e^{n\bar{\xi}_2(t)} + \sum_{j=0}^{n-2} A_{n,j}^2 \int_0^t E\xi_2(s-j)^{j+1}Ee^{n\xi_2(t)-n\bar{\xi}_2(s)}ds
\]
\[
+ \sum_{j=0}^{n-1} B_{n,j}^2 \int_0^t E\xi_2(s-j)X_1(s-E)Ee^{n\xi_2(t)-n\bar{\xi}_2(s)}ds,
\]
where \(\bar{\xi}_1(t) = \xi(t) - b_1 t, \ \bar{\xi}_2(t) = \xi(t) - b_2 t, \)
\[
A_{n,j}^1 = \binom{n}{j} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^{n-j}m_1(dz), \quad 0 \leq j < n-2,
\]
\[
A_{n,j}^2 = \binom{n}{n-2} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^{n-j}m_1(dz) + c_1 n(n-1), \quad j = n-2,
\]
\[
B_{n,j}^1 = \binom{n}{j} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^{n-j}m_2(dz), \quad j < n-1,
\]
\[
B_{n,j}^2 = \binom{n}{n-1} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^{n-j}m_2(dz) - b_{21} n, \quad j = n-1,
\]
\[
A_{n,j}^2 = \binom{n}{j} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_2^{n-j}m_2(dz), \quad j < n-2,
\]
\[
A_{n,j}^2 = \binom{n}{n-2} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_2^{n-j}m_2(dz) + c_2 n(n-1), \quad j = n-2,
\]
\[
B_{n,j}^2 = \binom{n}{j} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_2^{n-j}m_1(dz), \quad j < n-1,
\]
\[
B_{n,j}^2 = \binom{n}{n-1} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_2^{n-j}m_1(dz) - b_{12} n, \quad j = n-1.
\]
Moreover, for each \(t \geq 0, k = 1, 2, \cdots, n \) and \(i = 1, 2 \), there exists a polynomial function \(Q_{i,t,k} : \mathbb{R}_+^2 \rightarrow \mathbb{R}_+ \) having degree at most \(k \) such that,
\[
E[X_i(t)]^k = E[Q_{i,t,k}(X(0))].
\]
Theorem 1.2. (\(f\)-moment)

Suppose that \(\mathbf{P}(\|\mathbf{X}(0)\| > 0) > 0\). Suppose further that \(f\) satisfies Condition A. Then for any \(t > 0\), \(\mathbf{E}f(\|\mathbf{X}(t)\|) < \infty\) if and only if

\[
\mathbf{E}f(\|\mathbf{X}(0)\|) < \infty, \quad \int_{\{\|z\| \geq 1\}} f(\|z\|)(m_1 + m_2)(dz) < \infty, \quad \int_1^{\infty} f(\varepsilon^2)\nu(dz) < \infty.
\]

The proofs will be given in the next two sections.

Notation. For any \(\{x(t) : t \geq 0\}\) taking values in \(\mathcal{S}\), the space of two-dimensional functions with cádlág paths, write \(x(t) = (x_1(t), x_2(t))\). For any \(x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2_+,\) write \(y \geq x\) if \(y_1 \geq x_1\) and \(y_2 \geq x_2\). Throughout this paper, we make the conventions

\[
\int_{a}^{b} = \int_{[a, b]} \quad \text{and} \quad \int_{a}^{\infty} = \int_{(a, \infty)}
\]

for any \(b \geq a \geq 0\). Given a function \(f\) defined on a subset of \(\mathbb{R}\), we write

\[
\Delta_z f(x) = f(x + z) - f(x) \quad \text{and} \quad D_z f(x) = \Delta_z f(x) - f'(x)z
\]

for \(x, z \in \mathbb{R}\) if the right-hand side is meaningful.

2 \(n\)-moment of two-type CBRE processes

In this section, we derive the recursions of integer moments of the process with the help of truncated processes \(\{\mathbf{X}^{(k)}(t) : t \geq 0\}\) \((k = 1, 2, \cdots)\) defined as the unique non-negative strong solution of the following equation system

\[
X_1^{(k)}(t) = X_1^{(k)}(0) + \int_0^t \sqrt{2c_1 X_1^{(k)}(s)} dB_1(s) - \int_0^t \left(b_{11} X_1^{(k)}(s) + b_{21} X_2^{(k)}(s)\right) ds
\]

\[
+ \int_0^t \int_{\mathbb{R}^2_+ \setminus \{0\}} z_1 1_{\{\|z\| \leq k\}} M_1(ds, du, dz) + \int_0^t X_1^{(k)}(s-)dL^{(k)}(s)
\]

\[
+ \int_0^t \int_{\mathbb{R}^2_+ \setminus \{0\}} z_1 1_{\{\|z\| \leq k\}} M_2(ds, du, dz),
\]

\[
X_2^{(k)}(t) = X_2^{(k)}(0) + \int_0^t \sqrt{2c_2 X_2^{(k)}(s)} dB_2(s) - \int_0^t \left(b_{12} X_1^{(k)}(s) + b_{22} X_2^{(k)}(s)\right) ds
\]

\[
+ \int_0^t \int_{\mathbb{R}^2_+ \setminus \{0\}} z_2 1_{\{\|z\| \leq k\}} M_1(ds, du, dz) + \int_0^t X_2^{(k)}(s-)dL^{(k)}(s)
\]

\[
+ \int_0^t \int_{\mathbb{R}^2_+ \setminus \{0\}} z_2 1_{\{\|z\| \leq k\}} M_2(ds, du, dz),
\]

where \(\{L^{(k)}(t) : t \geq 0\}\) is a Lévy processes with the following Lévy-Itô decomposition,

\[
L^{(k)}(t) = \beta t + \sigma_1 W(t) + \int_0^t \int_{\mathbb{D}_1} (\varepsilon^2 - 1) \tilde{N}(ds, dz) + \int_0^t \int_{\mathbb{D}_1} (\varepsilon^2 1_{\{z \leq k\}} - 1) N(ds, dz).
\]
The associated Lévy process \(\{ \xi^{(k)}(t) : t \geq 0 \} \) is defined by

\[
\xi^{(k)}(t) = at + \sigma_1 W(t) + \int_0^t \int_{D_1} z \tilde{N}(ds, dz) + \int_0^t \int_{D_i^c} z 1_{\{z \leq k\}} N(ds, dz).
\]

As \(k \to \infty \), the truncated sequence \(\{X^{(k)}(t) : t \geq 0\}_{k \geq 1} \) converges increasingly to \(\{X(t) : t \geq 0\} \). And we will prove it through the following two propositions.

Proposition 2.1. For all \(n_2 \geq n_1 > 1 \),

\[
P\left(X^{(n_1)}(t) \leq X^{(n_2)}(t) \text{ for all } t \geq 0 \right) = 1.
\]

Proof. Fix \(n_1, n_2 \) with \(n_2 \geq n_1 > 1 \). Define \(\zeta(t) = X^{(n_1)}(t) - X^{(n_2)}(t) \).

\[
\zeta_1(t) \leq \zeta_1(0) + \int_0^t \left(\sqrt{2c_1 X_1^{(n_1)}(s)} - \sqrt{2c_1 X_1^{(n_2)}(s)} \right) dB_1(s)
\]

\[
+ \int_0^t [-b_{11} \zeta_1(s) - b_{21} \zeta_2(s)] ds
\]

\[
+ \int_0^t \int_{\mathbb{R}_2^+ \backslash \{0\}} \int_{\mathbb{R}_2^+ \{0\}} \int_{\mathbb{R}_2^+ \{0\}} z_1 1_{\{\|z\| \leq n_2\}} M_1(ds, du, dz)
\]

\[
+ \int_0^t \int_{\mathbb{R}_2^+ \{0\}} \int_{\mathbb{R}_2^+ \{0\}} z_1 1_{\{\|z\| \leq n_2\}} M_2(ds, du, dz)
\]

\[
+ \int_0^t \zeta_1(s-) dL^{(n_2)}(s).
\]

For \(m \geq 1 \), define \(\tau_m := \inf\{t \geq 0 : X_1^{(n_1)}(t) \lor X_1^{(n_2)}(t) \lor X_2^{(n_1)}(t) \lor X_2^{(n_2)}(t) \geq m\} \). For \(t \geq 0 \), choose a decreasing sequence \(\{a_k\} \) such that \(a_0 = 1 \), \(a_k \to 0 \), \(\int_{a_k}^{a_{k-1}} z^{-1} dz = k \) for \(k \geq 1 \). Let \(x \mapsto \psi_k(x) \) be non-negative functions on \(\mathbb{R} \) supported by \((a_k, a_{k-1}) \), and satisfying \(\int_{a_k}^{a_{k-1}} \psi_k(x) dx = 1 \), \(0 \leq \psi_k(x) \leq 2 \) for \(k \geq 1 \), define a twice-differentiable non-negative function

\[
\varphi_k(z) = \int_0^z dy \int_0^y \psi_k(x) dx, \quad z \in \mathbb{R}.
\]

By Itô’s formula,

\[
\varphi_k[\zeta_1(t \land \tau_m)]
\]

\[
\leq \varphi_k[\zeta_1(0)] + \int_0^{t \land \tau_m} \varphi_k'[\zeta_1(s)] [-b_{11} \zeta_1(s) - b_{21} \zeta_2(s)] ds
\]

\[
+ \int_0^{t \land \tau_m} \varphi_k''[\zeta_1(s)] c_1(\sqrt{X_1^{(n_1)}(s)} - \sqrt{X_1^{(n_2)}(s)})^2 ds + \frac{1}{2} \int_0^{t \land \tau_m} \varphi_k'(\zeta_1(s)) \sigma^2 \zeta_1^2(s) ds
\]

\[
+ \int_0^{t \land \tau_m} \int_{\mathbb{R}_2^+ \backslash \{0\}} \Delta_{z_1} \varphi_k(\zeta_1(s-)) \zeta_2(s-) 1_{\{\|z\| \leq n_2\}} 1_{\{\zeta_2(s-) > 0\}} m_2(dz) ds
\]

\[
- \int_0^{t \land \tau_m} \int_{\mathbb{R}_2^+ \backslash \{0\}} \Delta(-z_1) \varphi_k(\zeta_1(s-)) \zeta_2(s-) 1_{\{\|z\| \leq n_2\}} 1_{\{\zeta_2(s-) \leq 0\}} m_2(dz) ds
\]
By Taylor's expansion, when \(\zeta \):

\[
\int_0^{t \wedge \tau_m} \int_{\mathbb{R}_2^+ \setminus \{0\}} D_{z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2 \}} \mathbf{1}_{\{\zeta_1(s-) > 0 \}} m_1(dz) ds
\]

\[
- \int_0^{t \wedge \tau_m} \int_{\mathbb{R}_2^+ \setminus \{0\}} D_{-z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2 \}} \mathbf{1}_{\{\zeta_1(s-) \leq 0 \}} m_1(dz) ds
\]

\[
+ \int_0^{t \wedge \tau_m} \mathbb{E}_{1} D_{\zeta_1(s-)(e^z-1)} \varphi_k(\zeta_1(s-)) \nu(dz) ds
\]

\[
+ \int_0^{t \wedge \tau_m} \mathbb{E}_{1} \Delta_{\zeta_1(s-)(e^z-1)} \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2 \}} \nu(dz) ds + \text{mart.}
\]

It is not hard to see that, as \(k \to \infty \),

\[
\varphi''(\zeta_1(s))(\zeta_1(s))^2 \to 0,
\]

\[
\varphi''(\zeta_1(s)) \left(\sqrt{X_1^{(n_1)}(s)} - \sqrt{X_1^{(n_2)}(s)} \right)^2 \to 0.
\]

Moreover,

\[
0 \leq \Delta_{z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{\zeta_2(s-) \geq 0 \}} \leq z_1 \zeta_2(s-) +.
\]

Since \(z \mapsto \varphi(z) \) is nondecreasing,

\[
\Delta_{-z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{\zeta_2(s-) \leq 0 \}} \geq 0.
\]

By Taylor's expansion, when \(\zeta_1(s-) > 0 \),

\[
D_{z_1} \varphi_k(\zeta_1(s-)) = z_1^2 \int_0^1 \varphi''(\zeta_1(s-)) + tz_1)(1-t) dt
\]

\[
= z_1^2 \int_0^1 \psi_k(\zeta_1(s-)) + tz_1)(1-t) dt
\]

\[
\leq z_1^2 \int_0^1 \frac{2}{k(\zeta_1(s-)) + tz_1)(1-t) dt
\]

\[
\leq \frac{z_1^2}{k \zeta_1(s-)}.
\]

Meanwhile,

\[
D_{z_1} \varphi_k(\zeta_1(s-)) \leq \varphi_k(\zeta_1(s-)) + z_1) - \varphi_k(\zeta_1(s-)) \leq z_1.
\]

Thus,

\[
\int_{\mathbb{R}_2^+ \setminus \{0\}} D_{z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2 \}} \mathbf{1}_{\{\zeta_1(s-) > 0 \}} m_1(dz)
\]

\[
= \int_{\mathbb{R}_2^+ \setminus \{0\}} D_{z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2, z_1 > 1 \}} \mathbf{1}_{\{\zeta_1(s-) > 0 \}} m_1(dz)
\]

\[
+ \int_{\mathbb{R}_2^+ \setminus \{0\}} D_{z_1} \varphi_k(\zeta_1(s-)) \varphi_k(\zeta_1(s-)) \mathbf{1}_{\{||z|| \leq n_2, z_1 \leq 1 \}} \mathbf{1}_{\{\zeta_1(s-) > 0 \}} m_1(dz)
\]

\[
\leq \int_{\mathbb{R}_2^+ \setminus \{0\}} z_1 \zeta_1(s-) \mathbf{1}_{\{||z|| \leq n_2 \}} \mathbf{1}_{\{\zeta_1(s-) > 0 \}} \mathbf{1}_{\{z_1 > 1 \}} m_1(dz)
\]
Hence,

\[\int_{\mathbb{R}_+^2 \setminus \{0\}} \frac{z_1^2}{k\zeta_1(s^-)^2} \zeta_1(s^-) 1_{\{\|z\| \leq n_2\}} 1_{\{\zeta_1(s^-) > 0\}} 1_{\{z_1 \leq 1\}} m_1(dz)\]

\[= \zeta_1(s^-)^+ \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 1_{\{\|z\| \leq n_2, z_1 > 1\}} m_1(dz) + \frac{1}{k} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^2 1_{\{\|z\| \leq n_2, z_1 \leq 1\}} m_1(dz).\]

Similarly, when \(z \in \mathbb{D}_1\), \(\zeta_1(s^-) > 0\),

\[D_{\zeta_1(s^-)(e^z - 1)} \varphi_k(\zeta_1(s^-))\]

\[= \zeta_1^2(s^-)(e^z - 1)^2 \int_0^1 \psi_k[\zeta_1(s^-)(t(e^z - 1) + 1)](1 - t) dt\]

\[\leq \zeta_1^2(s^-)(e^z - 1)^2 \int_0^1 \frac{2(1 - t)}{\zeta_1(s^-)[t(e^z - 1) + 1]} dt\]

\[\leq \zeta_1(s^-)(e^z - 1)^2.\]

Hence,

\[\int_0^{t \wedge \tau_m} \int_{\mathbb{D}_1} D_{\zeta_1(s^-)(e^z - 1)} \varphi_k(\zeta_1(s^-)) \nu(dz) ds\]

\[\leq \int_0^{t \wedge \tau_m} \int_{\mathbb{D}_1} \zeta_1(s^-)(e^z - 1)^2 \nu(dz) ds.\]

Then,

\[\varphi_k[\zeta_1(t \wedge \tau_m)] \leq \varphi_k(\zeta_1(0)) + \int_0^{t \wedge \tau_m} \varphi_k'[\zeta_1(s)][-b_{11}\zeta_1(s) - b_{21}\zeta_2(s)] ds\]

\[+ \int_0^{t \wedge \tau_m} \varphi_k''(\zeta_1(s)) c_1(\sqrt{X_1^{(n_1)}(s)} - \sqrt{X_1^{(n_2)}(s)})^2 ds\]

\[+ \frac{1}{2} \int_0^{t \wedge \tau_m} \varphi_k''(\zeta_1(s)) \sigma^2 \zeta_1^2(s) ds\]

\[+ \int_0^{t \wedge \tau_m} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 \zeta_2(s^-) 1_{\{\|z\| \leq n_2\}} m_2(dz) ds\]

\[+ \int_0^{t \wedge \tau_m} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 \zeta_1(s^-) 1_{\{\|z\| \leq n_2\}} 1_{\{z_1 > 1\}} m_1(dz) ds\]

\[+ \frac{1}{k} \int_0^{t \wedge \tau_m} \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1^2 1_{\{\|z\| \leq n_2\}} 1_{\{z_1 \leq 1\}} m_1(dz) ds\]

\[+ \int_0^{t \wedge \tau_m} \int_{\mathbb{D}_1} \zeta_1(s^-)(e^z - 1) 1_{\{z \leq n_2\}} \nu(dz) ds\]

\[+ \int_0^{t \wedge \tau_m} \int_{\mathbb{D}_1} \zeta_1(s^-)(e^z - 1)^2 \nu(dz) ds + mart.\]

Taking expectations on both sides, and letting \(k \to \infty\), we can find constant \(C_1\) large enough such that,

\[E[\zeta_1(t \wedge \tau_m)^+] \leq C_1 \int_0^t E[\zeta_1(s \wedge \tau_m)^+] + \zeta_2(s \wedge \tau_m)^+] ds.\]
Symmetrically, there exists C_2 such that,

$$
E[\zeta_2(t \wedge \tau_m)^+] \leq C_2 \int_0^t E[\zeta_1(s \wedge \tau_m)^+ + \zeta_2(s \wedge \tau_m)^+]ds.
$$

Let $C = C_1 + C_2$,

$$
E[\zeta_1(t \wedge \tau_m)^+ + \zeta_2(t \wedge \tau_m)^+] \leq C \int_0^t E[\zeta_1(s \wedge \tau_m)^+ + \zeta_2(s \wedge \tau_m)^+]ds.
$$

By Gronwall’s inequality,

$$
E[\zeta_1(t \wedge \tau_m)^+ + \zeta_2(t \wedge \tau_m)^+] = 0, \forall t \geq 0.
$$

Since $\{X^{(n_1)}(t) : t \geq 0\}$ and $\{X^{(n_2)}(t) : t \geq 0\}$ are càdlàg, $\tau_m \to \infty$, as $m \to \infty$. Thus $P\{X^{(n_1)}(t) \leq X^{(n_2)}(t), \forall t \geq 0\} = 1$.

Proposition 2.2. $E(||X(t) - X^{(k)}(t)||) \to 0$ and $X^{(k)}(t) \uparrow X(t)$ P-a.s. as $k \to \infty$ for all $t \geq 0$. Moreover, If $E||X(t)|| < \infty$, then $\int_1^\infty e^{z\nu}(dz) < \infty$.

Proof. Define $\xi^{(k)}(t) := \xi(k)(t) - b_i t$, $i = 1, 2$. Applying Itô’s formula to $e^{\xi^{(k)}(t)} X^{(k)}(t)e^{-\xi^{(k)}(t)}$ and $e^{\xi^{(k)}(t)} X^{(k)}(t)e^{-\xi^{(k)}(t)}$, independently, where $e_1 = (1, 0)$, one can see that

$$
X^{(k)}_1(t) = X_1(0)e^{\xi^{(k)}(t)} + \int_0^t e^{\xi^{(k)}(t) - \xi^{(k)}(s)} \sqrt{2c_1 X^{(k)}_1(s)} dB_1(s)
$$

and

$$
X_1(t) = X_1(0)e^{\xi^{(k)}(t)} + \int_0^t e^{\xi^{(k)}(t) - \xi^{(k)}(s)} \sqrt{2c_1 X_1(s)} dB_1(s)
$$

Hence,

$$
X_1(t) \leq X^{(k)}_1(t) + \int_0^t e^{\xi^{(k)}(t) - \xi^{(k)}(s)} \sqrt{2c_1 [X_1(s) - X^{(k)}_1(s)]} dB_1(s)
$$
where

\[\text{Moment properties for two-type CBRE-processes} \]

\[\int_0^t b_2 [X_2(s) - X_2^{(k)}(s)] e^{\xi_2^{(k)}(s)} \xi_2^{(k)}(s) \, ds \]

\[+ \int_0^t \int_{X_1^{(k)}(s)} X_1^{(k)}(s) \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 e^{\xi_1^{(k)}(t)} - \xi_1^{(k)}(s) M_1(ds, du, dz) \]

\[+ \int_0^t \int_{X_2^{(k)}(s)} X_2^{(k)}(s) \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 e^{\xi_1^{(k)}(t)} - \xi_1^{(k)}(s) M_2(ds, du, dz) \]

\[+ \int_0^t \int_{\mathbb{R}_+} X_1(s) e^{\xi_1^{(k)}(t)} - \xi_1^{(k)}(s) (e^{\xi_1^{(k)}(|s| > k)} - 1) N(ds, dz). \]

Notice that \(t \mapsto E e^{m \xi_1^{(k)}(t)} \) is locally bounded for every \(m \geq 0 \). If \(E \|X(t)\| < \infty \), then

\[\left\{ \int_0^t e^{-\xi_1^{(k)}(s)} \sqrt{2c_1[X_1(s) - X_1^{(k)}(s)]} dB_1(s) : t \geq 0 \right\} \]

and

\[\left\{ \int_0^t X_1^{(k)}(s) \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 e^{-\xi_1^{(k)}(s)} M_1(ds, du, dz) : t \geq 0 \right\} \]

are martingales w.r.t. the filtration \(\mathcal{F}_t \). Hence

\[E \int_0^t e^{\xi_1^{(k)}(t) - \xi_1^{(k)}(s)} \sqrt{2c_1[X_1(s) - X_1^{(k)}(s)]} dB_1(s) \]

\[= E \left[e^{\xi_1^{(k)}(t)} \right] E^\xi \left(\left\{ \int_0^t e^{-\xi_1^{(k)}(s)} \sqrt{2c_1[X_1(s) - X_1^{(k)}(s)]} dB_1(s) \right\} \right) \]

\[= 0, \]

where \(E^\xi \) is the quenched law given \(\{\xi(t) : t \geq 0\} \) or \(\{L(t) : t \geq 0\} \). Similarly,

\[E \int_0^t X_1^{(k)}(s) \int_{\mathbb{R}_+^2 \setminus \{0\}} z_1 e^{-\xi_1^{(k)}(s)} M_1(ds, du, dz) = 0. \]

Taking expectations on both sides,

\[E[X_1(t) - X_1^{(k)}(t)] \]

\[\leq \int_0^t \left[\int_{\mathbb{R}_+^2} z_1 m_2(dz) - b_2 \right] E[X_2(s) - X_2^{(k)}(s)] E e^{\xi_2^{(k)}(t) - \xi_2^{(k)}(s)} ds \]

\[+ \int_{\mathbb{R}} (e^{\xi_1^{(k)}(|s| > k)} - 1) \nu(dz) \int_0^t E X_1(s) e^{\xi_1^{(k)}(t) - \xi_1^{(k)}(s)} ds. \]

Symmetrically,

\[E[X_2(t) - X_2^{(k)}(t)] \]

\[\leq \int_0^t \left[\int_{\mathbb{R}_+^2} z_2 m_1(dz) - b_1 \right] E[X_1(s) - X_1^{(k)}(s)] E e^{\xi_1^{(k)}(t) - \xi_1^{(k)}(s)} ds \]
\[+ \int_{\mathbb{R}} (e^{\xi_1(z)} - 1) \nu(dz) \int_{0}^{t} \mathbb{E}X_2(s^-)\mathbb{E}e^{\xi_1(t) - \xi_1^*(t)}Y_1(dz). \]

Since \(E\|X(t)\| < \infty \), \(\int_{\mathbb{R}} (e^{\xi_1(z)} - 1) \nu(dz) < \infty \). Thus,

\[\int_{\mathbb{R}} (e^{\xi^*_{1}(z)}) - 1) \nu(dz) = \int_{\mathbb{R}} (e^{\xi^*} - 1) 1_{1(|z| > k)} \nu(dz) \]

tends to 0 as \(k \to \infty \). Then by taking limits of \(k \to \infty \) and Gronwall’s inequality, we get the conclusion. \(\square \)

Proof of Theorem 1.1:

Step 1. Denote \(\tilde{\beta} = a + \frac{1}{2} \sigma_1^2 + \int_{D_1} (e^z - 1 - z) \nu(dz) + \int_{D_1^*} (e^z - 1) \nu(dz), \)** By Lemma 3.2 in \([7]\),

\[Ee^{\xi(t)} = e^{\tilde{\beta} t}, \forall t \geq 0. \]

According to the formula (40) in \([15]\),

\[E^F[\exp\{-\langle \lambda, X(t) \rangle \}|\mathcal{F}_t] = \exp\{-\langle \lambda, X(r), \nu_r(t)(\xi, \lambda) \rangle \}, \quad t \geq r \geq 0. \]

Taking derivatives with respect to \(\lambda = 0^+ \) on both sides, we have,

\[E^\xi(X(t)|\mathcal{F}_r) = e^{\xi(t) - \xi(r)}e^{(r-t)b^\top}X(r). \]

Hence for any \(\mathcal{F}_r \)-measurable function \(F \),

\[E\left(Fe^{-\tilde{\beta} t}e^{b^\top}X(t)\right) = E\left(Fe^{-\tilde{\beta} t}e^{b^\top}E^\xi(X(t)|\mathcal{F}_r)\right) \]
\[= e^{-\tilde{\beta} t}e^{b^\top}E\left(Fe^{(r-t)b^\top}X(r)\right) \]
\[= e^{-\tilde{\beta} t}e^{b^\top}e^{\tilde{\beta} - \tilde{\beta} t}E\left(Fe^{(r-t)b^\top}X(r)\right) \]
\[= E\left(Fe^{-\tilde{\beta} r}e^{b^\top}X(r)\right), \]

where \(b \) is a 2 \times 2 matrix with \(\bar{b}_{11} = b_{11}, \bar{b}_{22} = b_{22}, \bar{b}_{12} = b_{12} - \int_{\mathbb{R}^2_+} z_2 m_1(dz), \bar{b}_{21} = b_{21} - \int_{\mathbb{R}^2_+} z_1 m_2(dz). \) Thus, \(\mathcal{M}(t) = e^{-\tilde{\beta} t}e^{b^\top}X(t) \) is a two-dimensional martingale, and

\[E\mathbb{X}(t) = \left[E\frac{\nu_0(t)(\xi, \lambda)}{d\lambda} \right]|_{\lambda = 0^+}. \]

Step 2. Denote

\[\beta(n) = an + \frac{\sigma^2n^2}{2} + \int_{D_1} (e^z - 1 - nz) \nu(dz) + \int_{D_1^*} (e^z - 1) \nu(dz). \]

Since \(\int_{1}^{\infty} e^z \nu(dz) < \infty \), by similar arguments of Lemma 3.2 in \([7]\), for any integer \(m \leq n \), we have

\[Ee^{n\xi_1(s)} \leq C_m(t) := \exp\{(\beta(m) - b_{11}m)\mathbf{t}) \vee 0\} < \infty, \quad s \in [0, t], \]

where \(\xi_1(s) = \xi(s) - b_{11} s. \) Applying Itô’s formula to \([X_1(t) e^{-\xi(t)}]^n\),
Moment properties for two-type CBRE-processes

\[[X_1(t)e^{-\xi_1(t)}]^n \]
\[= \sum_{j=0}^{n-2} A_{n,j}^1 \int_0^t [X_1(s)]^{j+1}e^{-n\xi_1(s)}ds - \int_0^t b_{21}n[X_1(s)]^{n-1}X_2(s)e^{-n\xi_1(s)}ds \]
\[+ n \int_0^t [X_1(s)]^{n-1}e^{-n\xi_1(s)}\sqrt{2c_1X_1(s)}dB_1(s) + [X_1(0)]^n \]
\[+ \sum_{j=0}^{n-1} (n \int_0^t \int_1^{X_1(s)} \int_{\mathbb{R}_1^+ \setminus \{0\}} X_1(s-)^j z_1^{-n-j}e^{-n\xi_1(s)}M_1(ds, du, dz) \]
\[+ \int_0^t \int_0^1 \int_{\mathbb{R}_1^+ \setminus \{0\}} \left([X_1(s) + z_1]^n - [X_1(s)]^n \right) e^{-n\xi_1(s)}M_2(ds, du, dz), \]

By a standard stopping time argument, we can see that
\[\int_0^t [X_1(s)]^{n-1}e^{-n\xi_1(s)}\sqrt{2c_1X_1(s)}dB_1(s) \]
and
\[\int_0^t \int_0^1 \int_{\mathbb{R}_1^+ \setminus \{0\}} X_1(s-)^j z_1^{-n-j}e^{-n\xi_1(s)}M_1(ds, du, dz) \]
are local martingales. Therefore, there exists a sequence of stopping times \(\tau_k \) such that
\[\mathbb{E}^\xi[X_1(t \land \tau_k)e^{-\xi_1(t \land \tau_k)}]^n = \mathbb{E}^\xi[X_1(0)]^n + \sum_{j=0}^{n-2} A_{n,j}^1 \mathbb{E}^\xi \int_0^{t\land \tau_k} [X_1(s)]^{j+1}e^{-n\xi_1(s)}ds \]
\[+ \sum_{j=0}^{n-1} B_{n,j}^1 \mathbb{E}^\xi \int_0^{t\land \tau_k} [X_1(s)]^{j}X_2(s)e^{-n\xi_1(s)}ds, \]

Therefore,
\[\mathbb{E}[X_1(t \land \tau_k)]^n \]
\[= \mathbb{E}[X_1(0)]^n \mathbb{E}e^{n\xi_1(t \land \tau_k)} + \sum_{j=0}^{n-2} A_{n,j}^1 \mathbb{E}(e^{n\xi_1(t \land \tau_k)} \int_0^{t\land \tau_k} [X_1(s)]^{j+1}e^{-n\xi_1(s)}ds) \]
\[+ \sum_{j=0}^{n-1} B_{n,j}^1 \mathbb{E}(e^{n\xi_1(t \land \tau_k)} \int_0^{t\land \tau_k} [X_1(s)]^{j}X_2(s)e^{-n\xi_1(s)}ds). \] (2.2)

By Fubini’s Theorem,
\[\mathbb{E}(e^{n\xi_1(t \land \tau_k)} \int_0^{t\land \tau_k} [X_1(s)]^{j}X_2(s)e^{-n\xi_1(s)}ds) \]
\[\leq \int_0^t \mathbb{E}[X_1(s \land \tau_k)]^{j}X_2(s \land \tau_k) \mathbb{E}e^{n\xi_1(s \land \tau_k) - \xi(s \land \tau_k)} \] (2.3)
and
\[\mathbb{E}(e^{n\xi_1(t \land \tau_k)} \int_0^{t\land \tau_k} [X_1(s)]^{j+1}e^{-n\xi_1(s)}ds) \]
and

\[\mathcal{M}(t) = e^{-\beta t} e^{ib^T X(t)} \text{ is a martingale.} \]

Hence, for any positive integer \(m \) and \(s \in [0,t] \),

\[E[X_1(s)]^m = e^{m \beta s} E[e^{s \beta^T \mathcal{M}(s)}] \]

\[\leq e^{m \beta s} E[E[e^{-s \beta^T \mathcal{M}(s)}]^{m}] \]

\[\leq e^{m \beta s} ||e^{-s \beta^T}||^m |\mathcal{M}(s)|^m] \]

\[\leq e^{m \beta s} ||e^{-s \beta^T}||^m (\sqrt{2})^m E[(\mathcal{M}(0))^{m}(\mathcal{M}(t))^{m}] \]

\[\leq e^{m \beta s} ||e^{-s \beta^T}||^m (\sqrt{2})^m E|\mathcal{M}(t)|^m \]

\[\leq e^{m \beta s} ||e^{-s \beta^T}||^m |\mathcal{M}(t)|^m \]

\[\leq O(t, m) E \| X(t) \|^m \]

(2.5)

where \(O(t, m) := \sup_{n \leq m \ s \in [0,t]} e^{m \beta s} ||e^{-s \beta^T}||^m |\mathcal{M}(t)|^m \). Symmetrically,

\[E[X_2(t \wedge \tau_k)]^n \leq C_n(t) \left[E[X_2(0)]^n + \sum_{j=0}^{n-2} A_{n,j}^2 \int_0^t E[X_2(t \wedge \tau_k)]^{j+1} ds \right. \]

\[+ \sum_{j=0}^{n-1} B_{n,j}^1 \int_0^t E[X_2(t \wedge \tau_k)]^{j+1} ds \left. \right] \]

and

\[E[X_2(s)]^m \leq O(t, m) E \| X(t) \|^m, \quad s \in [0,t], \]

(2.6)

where \(C_n(t) := \exp\{[(\beta m) - b_{22} m] t/4\} \). Define \(\tilde{C}_n(t) := C_n(t) \vee C_n'(t), A_{n,j} := A_{n,j}^1 \vee A_{n,j}^2, B_{n,j} := B_{n,j}^1 \vee B_{n,j}^2 \). From above, it is obvious that for \(i = 1, 2 \),

\[E[X_i(t \wedge \tau_k)]^n \leq \tilde{C}_n(t) \left[E[X_i(0)]^n + t \sum_{j=0}^{n-2} A_{n,j} O(t, n) E \| X(t) \|^{j+1} ds \right. \]

\[+ t \sum_{j=0}^{n-1} B_{n,j} O(t, n) E \| X(t) \|^{j+1} ds \left. \right]. \]

By (2.5) and (2.4), \(t \mapsto E \| X(t) \|^m \) is locally bounded under the assumption that \(E \| X(t) \|^m < \infty \). By induction one can find a finite function \(g_n(t) \) s.t.

\[g_n(t) \geq \tilde{C}_n(t) \left[E[X_i(0)]^n + t \sum_{j=0}^{n-2} A_{n,j} O(t, n) E \| X(t) \|^{j+1} ds \right. \]

(2.4)
Thus, by Fatou’s Lemma, for \(i = 1, 2, \)

\[
E[X_i(t)]^n \leq \lim \inf_{k \to \infty} E[X_i(t \land \tau_k)]^n \leq g_n(t) < \infty,
\]

which implies \(E\|X(t)\|^n < \infty. \)

Step 3. Applying Itô’s formula to \([e^{1}X^{(k)}(t) \exp\{-\bar{\xi}_1^{(k)}(t)\}]^n,\)

\[
[X_1^{(k)}(t)e^{-\bar{\xi}_1^{(k)}(t)}]^n = [X_1(0)]^n - \int_0^t b_{21}n[X_1^{(k)}(s)]^{n-1}X_2^{(k)}(s)e^{-n\bar{\xi}_1^{(k)}(s)}ds
\]

\[
+ n \int_0^t [X_1^{(k)}(s)]^{n-1}e^{-n\bar{\xi}_1^{(k)}(s)}\sqrt{2c_1X_1^{(k)}(s)}dB_1(s)
\]

\[
+ \int_0^t n(n-1)c_1[X_1^{(k)}(s)]^{n-1}e^{-n\bar{\xi}_1^{(k)}(s-)}ds
\]

\[
- \int_0^t \int_{\mathbb{R}_+^2 \setminus \{0\}} n[X_1^{(k)}(s)]^{n}e^{-n\bar{\xi}_1^{(k)}(s)}z_11_{\{\|z\| \leq k\}}m_1(dz)ds
\]

\[
+ \sum_{j=0}^{n-1} \binom{n}{j} \int_0^t \int_{\mathbb{R}_+^2 \setminus \{0\}} X_1^{(k)}(s-)^jz_1^{n-j}1_{\{\|z\| \leq k\}}e^{-n\bar{\xi}_1^{(k)}(s)}M_1(ds, du, dz)
\]

\[
+ \sum_{j=0}^{n-1} \binom{n}{j} \int_0^t \int_{\mathbb{R}_+^2 \setminus \{0\}} X_2^{(k)}(s-)^jz_1^{n-j}1_{\{\|z\| \leq k\}}e^{-n\bar{\xi}_1^{(k)}(s)}M_2(ds, du, dz).
\]

Since \(E\|X^{(k)}(t)\| < \infty \) and \(Ee^{n\bar{\xi}_1^{(k)}(t)} < \infty \) for each positive integer \(n, \) and \(X^{(k)}(t) \uparrow X(t), \)

\(\bar{\xi}_1^{(k)}(t) \uparrow \bar{\xi}_1(t), \)

almost surely for \(P \) as \(k \to \infty, \) we have

\[
[X_1^{(k)}(t)]^n = [X_1^{(k)}(0)]^n e^{n\bar{\xi}_1(t)} - \int_0^t b_{21}n[X_1^{(k)}(s)]^{n-1}X_2^{(k)}(s)e^{n(\bar{\xi}_1^{(k)}(t)-\bar{\xi}_1^{(k)}(s))}ds
\]

\[
+ \int_0^t n(n-1)c_1[X_1^{(k)}(s)]^{n-1}e^{n(\bar{\xi}_1^{(k)}(t)-\bar{\xi}_1^{(k)}(s-))}ds
\]

\[
+ \sum_{j=0}^{n-2} \binom{n}{j} \int_0^t \int_{\mathbb{R}_+^2 \setminus \{0\}} X_1^{(k)}(s-)^jz_1^{n-j}1_{\{\|z\| \leq k\}}e^{n(\bar{\xi}_1^{(k)}(t)-\bar{\xi}_1^{(k)}(s))}m_1(dz)ds
\]

\[
+ \sum_{j=0}^{n-1} \binom{n}{j} \int_0^t \int_{\mathbb{R}_+^2 \setminus \{0\}} X_1^{(k)}(s-)^jX_2^{(k)}(s-)^{n-j}z_1^{n-j}1_{\{\|z\| \leq k\}}e^{n(\bar{\xi}_1^{(k)}(t)-\bar{\xi}_1^{(k)}(s))}m_2(dz)ds + \text{mart.}
\]

Taking expectation on both sides and letting \(k \to \infty, \) we get the desired result by monotone convergence theorem. \(\square \)
3 \(f \)-moment of two-type CBRE processes

In this section, we present the equivalent condition for the existence of \(\mathbb{E}f(\|X(t)\|) \), where \(f \) is a nonnegative continuous function \([0, \infty)\) satisfying \textbf{Condition A}. By discussions in [I], pp.154, this condition can be changed by

\textbf{Condition B}. There exists constants \(K > 0 \) such that

\begin{enumerate}[(B1)]
 \item \(f \) is convex and nondecreasing on \([0, \infty)\);
 \item For all \(x, y \in [0, \infty) \), \(f(xy) \leq Kf(x)f(y) \);
 \item For all \(x \in [0, \infty) \), \(f(x) > 1 \).
\end{enumerate}

\textbf{Proposition 3.1}. Suppose that \(f \) satisfies \textbf{Condition B}. Then for any \(t \geq 0 \) and \(y \geq x \in \mathbb{R}^2_+ \), \(\mathbb{E}f(\|X(t, y)\|) < \infty \) if and only if \(\mathbb{E}f(\|X(t, x)\|) < \infty \), where \(\{X(t, x) : t \geq 0\} \) is a unique strong solution on \(\mathbb{R}^2_+ \) to (1.7) starting from any fixed point \(x \in \mathbb{R}^2_+ \).

\textbf{Proof}. Denote \(X^k(t, x) = X(t, kx) - X(t, (k-1)x) \). By the quenched branching property, \(\{X^k(t, x) : t \geq 0\}, \ k = 1, 2, \ldots \) are independently identically distributed. For \(z \in [0, \infty) \), denote \([z]\) as the integer part of \(z \). For any \(y \geq x \in \mathbb{R}^2_+ \), define \(r(x, y) := \lfloor y_1/x_1 \rfloor \lor \lfloor y_2/x_2 \rfloor \). It is clear that \(r(x, y) \leq \|y_1/x_1 \lor y_2/x_2\| \). By \textbf{Condition B},

\[
\mathbb{E}^\xi[f(\|X(t, y)\|)1_{\{t < \tau_0(y)\}}] = \mathbb{E}^\xi[f(\|\sum_{k=1}^{\tau_0(y)} X^k(t, x) + X(t, y) - X(t, r(x, y)x)\|)1_{\{t < \tau_0(y)\}}] \\
\leq Kf(1 + ||y_1/x_1, y_2/x_2||)E^\xi[f(\|X(t, x)\|)1_{\{t < \tau_0(x)\}}],
\]

where \(\tau_0(x) = 0, \tau_0(x) represents the \(n \)th jumping time that the jump size of \(\{X(t, x) : t \geq 0\} \) falls into \(\mathbb{D}_2 := \mathbb{R}^2_+ \setminus \{0, 1\}^2 \). Taking expectation on both sides and letting \(n \to \infty \),

\[
\mathbb{E}[f(\|X(t, y)\|)] \leq Kf(1 + ||y_1/x_1, y_2/x_2||)\mathbb{E}[f(\|X(t, x)\|)].
\]

The desired result follows. \(\square \)

\textbf{Proposition 3.2}. Suppose that \(f \) satisfies \textbf{Condition B}, and \(\mathbb{E}f(\|X(t, x)\|) < \infty \) for some \(x \in \mathbb{R}^2_+ \) and some \(t \geq 0 \). Then \(\mathbb{E}f(\|X(t)\|) < \infty \) if and only if \(\mathbb{E}f(\|X(0)\|) < \infty \).

\textbf{Proof}. Some simple calculations lead to,

\[
\mathbb{E}f(\|X(t)\|) \leq \frac{1}{2}K^2f(2)[f(1) + \mathbb{E}f(\|X(0)\|)]\mathbb{E}[f(\|X(t, 1)\|)].
\]

By Proposition 3.1 we have \(\mathbb{E}f(\|X(t, 1)\|) < \infty \). Then \(\mathbb{E}f(\|X(0)\|) < \infty \) leads to \(\mathbb{E}f(\|X(t)\|) < \infty \). Conversely, we suppose that \(\mathbb{E}f(\|X(t)\|) < \infty \). According to Step 1, \(\mathcal{M}(t) = e^{-\beta t}e^{\beta t}X(t) \) is a two-dimensional martingale, then

\[
\mathbb{E}f(\|\mathcal{M}(t)\|) \leq K^2f(e^{\beta t})f(||e^b||)\mathbb{E}f(\|X(t)\|) < \infty.
\]

Moreover, by the convexity of \(f \),

\[
\mathbb{E}f(\|X(0)\|) = \mathbb{E}f(\|\mathcal{M}(0)\|) \leq \mathbb{E}f(\mathcal{M}_1(0) + \mathcal{M}_2(0))
\]
Therefore
\[
\frac{1}{2}K f(2)\left[\mathbb{E}f(M_1(0)) + \mathbb{E}f(M_2(0))\right]
\]
\[
\leq \frac{1}{2}K f(2)\left[\mathbb{E}f(M_1(t)|F_0) + \mathbb{E}f(M_2(t)|F_0)\right]
\]
\[
\leq K f(2)\mathbb{E}\left[\mathbb{E}[\|M(t)\|]|F_0]\right]
\]
\[
\leq K f(2)\mathbb{E}\left[f(\|M(t)\|)|F_0]\right]
\]
\[
= K f(2)\mathbb{E}f(\|M(t)\|).
\]

Finally, the desired result follows. □

Lemma 3.3. Suppose that f satisfies Condition B, and for any $n \geq 1$, $\int_{\|z\| \geq 1} \|z\|^n (m_1 + m_2)(dz)$ and $\int_1^\infty e^{nz}\nu(dz)$ are finite. Then for any $x \in \mathbb{R}_+^2$, $t \mapsto \mathbb{E}f(\|X(t, x)\|)$ is locally bounded on $[0, \infty)$.

Proof. From the previous section, we have $\mathbb{E}f(\|X(t, x)\|)^n < \infty$. In view of pp.160 in [16] and the proof of Lemma 3.7 in [6], there exist a constant $c > 0$ and a positive integer n such that for all $z \geq 1$, $f(e^{nz}) \leq ce^{nz}$. Then
\[
\mathbb{E}f(\|X(t, x)\|) \leq (f(1) + c\mathbb{E}[\|X(t, x)\]|^n) < \infty.
\]

Since for $i = 1, 2$, $f(M_i(t, x))$ is an \mathcal{F}_t-submartingale, for $t \in [0, T]$,
\[
\mathbb{E}f(\|M(t, x)\|) \leq \mathbb{E}f(M_1(t, x) + M_2(t, x))
\]
\[
\leq \frac{1}{2}K f(2)\left[\mathbb{E}f(M_1(t, x)) + \mathbb{E}f(M_2(t, x))\right]
\]
\[
\leq \frac{1}{2}K f(2)\left[\mathbb{E}f(M_1(T, x)) + \mathbb{E}f(M_2(T, x))\right]
\]
\[
\leq K f(2)\mathbb{E}f(\|\mathcal{M}(T, x)\|)
\]
\[
\leq K f(2)\mathbb{E}f(\|\mathcal{M}(T, x)\|).
\]

Hence,
\[
\mathbb{E}f(\|X(t, x)\|) = \mathbb{E}f([\beta_t e^{-\beta T} + \beta_t e^{\mu}\mathbb{E}X(t, x)]) \leq K f(2)\left[\|\beta_t e^{-\beta T}\|f(||e^{\mu}\| \vee 1)\mathbb{E}(\|X(T, x)\|)\right].
\]

Therefore $t \mapsto \mathbb{E}f(\|X(t, x)\|)$ is locally bounded on $[0, \infty)$. □

For $x \in \mathbb{R}_+^2$, let $\theta_0(x) = 0$ and $\theta_n(x) = \theta_n'(x) \wedge \theta_n''(x)$ for $n \geq 1$, where
\[
\theta_n'(x) = \inf \{t > \theta_{n-1}(x) : \xi_t - \xi_{t-} > 1\},
\]
\[
\theta_n''(x) = \inf \{t > \theta_{n-1}(x) : [X_1(t, x) - X_1(t-, x)] \wedge [X_2(t, x) - X_2(t-, x)] > 1, \xi_t = \xi_{t-}\}.
\]

Let $J(dt)$ be the distribution of $\theta_1(1)$, that is $J(dt) = \mathbb{E}(\theta_1(1) \in dt)$. Define
\[
\mu_n(t) := \mathbb{E}[f(\|X(t, 1)\|); t < \theta_1(1)].
\]

Notice that $\mu_0(t) = 0$.

Proposition 3.4. Suppose that f satisfies Condition B and
\[
\int_{\|z\| \geq 1} f(\|z\|)(m_1 + m_2)(dz) < \infty, \quad \int_1^\infty f(e^z)\nu(dz) < \infty.
\]

Then, for any $x \in \mathbb{R}_+^2$, $t \mapsto \mathbb{E}f(\|X(t, x)\|)$ is locally bounded on $[0, \infty)$.

Proof. Recall that \(\{X(t, 1) : t \geq 0\} \) is the strong solution with initial value \(1 = (1, 1) \). On the same probability space, define \(R(t, x) \) to the strong solution of the following equation system:

\[
R_1(t) = x_1 + c_1 \int_0^t \int_0^{R_1(s)} W_1(ds, du) + \int_0^t (-b_1 R_1(s) - b_2 R_2(s))ds \\
+ \int_0^t \int_0^{R_1(s)} z_1 \tilde{M}_1(ds, du, dz) \\
+ \int_0^t \int_0^{R_2(s)} z_2 M_2(ds, du, dz) \\
+ \int_0^t \int_{D_1} R_1(s)(e^z - 1) \tilde{N}(ds, dz) \\
+ \int_0^t \int_{-\infty}^{R_1(s)} R_2(s)(e^z - 1) N(ds, dz) \tag{3.2}
\]

and

\[
R_2(t) = x_2 + c_2 \int_0^t \int_0^{R_2(s)} W_2(ds, du) + \int_0^t (-b_2 R_1(s) - b_2 R_2(s))ds \\
+ \int_0^t \int_0^{R_1(s)} z_1 M_1(ds, du, dz) \\
+ \int_0^t \int_0^{R_2(s)} z_2 \tilde{M}_2(ds, du, dz) \\
+ \int_0^t \int_{D_1} R_2(s)(e^z - 1) \tilde{N}(ds, dz) \\
+ \int_0^t \int_{-\infty}^{R_2(s)} R_2(s)(e^z - 1) N(ds, dz). \tag{3.3}
\]

Let \(W' \) be the space consisting of all càdlàg paths \(t \mapsto x(t) \) from \([0, \infty)\) to \(\mathbb{R}^2 \) with Skorokhod topology. Let \(\mathfrak{G} = \sigma\{x(s) : s \geq 0\}, \mathfrak{G}_t = \sigma\{x(s) : 0 \leq s \leq t\}, t \geq 0 \) be natural filtrations on \(W' \). Denote \(\mathbb{P}_x \) the distribution of \(\{X(t, x) : t \geq 0\} \) on \(W' \), then \((W', \mathfrak{G}, \mathfrak{G}_t, \mathbb{P}_x) \) is a canonical realization of the two-dimensional CBRE process with branching mechanism \(\phi \). Denote \(\sigma_n \) the stopping time of \(\{x(t) : t \geq 0\} \) corresponding to the stopping time \(\theta_n(x) \) of \(\{X(t, x) : t \geq 0\} \). And \(\mathbb{E}_x \) stands for the mathematical expectation with respect to \(\mathbb{P}_x \). Then,

\[
\mu_n(t) = \mathbb{E}[f(\|X(t, 1)\|)1_{\{t < \theta_n(1)\}}] + \mathbb{E}[f(\|X(t, 1)\|)1_{\{\theta_n(1) \leq t < \theta_n(1)\}}] \\
= \mathbb{E}[f(\|R(t, 1)\|)] + \mathbb{E}\{1_{\{\theta_n(1) \leq t\}} \mathbb{E}[f(\|X(t, 1)\|)1_{\{t < \theta_n(1)\}}] \mathbb{E}_x(\phi_1(1))\} \\
\leq \mathbb{E}[f(\|R(t, 1)\|)] + \mathbb{E}\{1_{\{\theta_n(1) \leq t\}} \mathbb{E}_x(\phi_1(1))f(\|x(t - \theta_1(1))\|)1_{\{t < \theta_n(1) < \sigma_n - 1\}}\} \\
\leq \mathbb{E}[f(\|R(t, 1)\|)] \\
+ \mathbb{E}\{1_{\{\theta_n(1) \leq t\}} \mathbb{E}_x(R(\theta_1(1) + \Delta x(\theta_1(1)))f(\|x(t - \theta_1(1))\|)1_{\{t - \theta_1(1) < \sigma_n - 1\}}\})].
\]

Without loss of generalization, suppose \(m_1(D_2), m_2(D_2) \) and \(\nu(1, \infty) \) are positive. Denote

\[
\tilde{m}_1(dz) = \frac{1_{\{z \in D_2\}}}{m_1(D_2)}m_1(dz),
\]
\[\hat{m}_2(\mathrm{d}z) = \frac{1_{\{z \in \mathbb{D}_2\}}}{m_2(\mathbb{D}_2)} m_2(\mathrm{d}z), \]
\[\nu(\mathrm{d}z) = \frac{1_{\{z \in (1, \infty)\}}}{\nu(1, \infty)} \nu(\mathrm{d}z). \]

By assumption, \(M_1(\mathrm{d}s, \mathrm{d}u, \mathrm{d}z) \), \(M_2(\mathrm{d}s, \mathrm{d}u, \mathrm{d}z) \) and \(N(\mathrm{d}s, \mathrm{d}z) \) are mutually independent, \[
\mathbb{E}\{1_{\{\theta(1) \leq t\}} \mathbb{E}(R(\theta(1)) + \Delta X(\theta(1)))|f(\|x(t - \theta(1))\|)|1_{\{t - \theta(1) < \sigma_{n-1}\}}\} \]
\[\leq \int_0^t J(\mathrm{d}s) \int_{\mathbb{D}_2} \int_1^\infty \mathbb{E}\{e^s R(\mathrm{d}s, 1) + u + v|f(\|x(t - s)\|)|1_{\{t - s < \sigma_{n-1}\}}\} \hat{m}_1(\mathrm{d}u) \hat{m}_2(\mathrm{d}v) \nu(\mathrm{d}z). \]

According to (3.1), the above is no more than \[
K \int_0^t \mu_{n-1}(t - s) J(\mathrm{d}s) \int_{\mathbb{D}_2} \int_1^\infty \mathbb{E}(e^s R(t, 1) + u + v + 1) \hat{m}_1(\mathrm{d}u) \hat{m}_2(\mathrm{d}v) \nu(\mathrm{d}z). \]

On the other hand,
\[
\int_{\mathbb{D}_2} \int_1^\infty \mathbb{E}(e^s R(s, 1) + u + v + 1) \hat{m}_1(\mathrm{d}u) \hat{m}_2(\mathrm{d}v) \nu(\mathrm{d}z)
\leq K f(4) \int_{\mathbb{D}_2} \int_1^\infty \mathbb{E}(1 + e^s R(s, 1) + u + v + 1) \hat{m}_1(\mathrm{d}u) \hat{m}_2(\mathrm{d}v) \nu(\mathrm{d}z)
\leq \frac{1}{4} K f(4) \left[K \int_1^\infty f(e^z) \nu(\mathrm{d}z) \mathbb{E}(R(s, 1)) + \int_{\mathbb{D}_2} f(\|z\|) \hat{m}_1(\mathrm{d}z) \right.
\left. + \int_{\mathbb{D}_2} f(\|z\|)(\hat{m}_1 + \hat{m}_2)(\mathrm{d}z) + f(1) \right]
\leq \frac{1}{4} K f(4) \left[\sup_{0 \leq t \leq T} \mathbb{E}(R(t, 1)) \right] K \int_1^\infty f(e^z) \nu(\mathrm{d}z)
\leq \int_{\mathbb{D}_2} f(\|z\|)(\hat{m}_1 + \hat{m}_2)(\mathrm{d}z) + f(1) \right].

Let \(O_1(T) = \sup_{0 \leq t \leq T} \mathbb{E}(R(t, 1)) \),
\[
O_2(T) := \frac{1}{4} K f(4) \left[O_1(T) K \int_1^\infty f(e^z) \nu(\mathrm{d}z) + \int_{\mathbb{D}_2} f(\|z\|)(\hat{m}_1 + \hat{m}_2)(\mathrm{d}z) + f(1) \right].
\]

The finiteness of \(O_1(T) \) and \(O_2(T) \) follow from Lemma 3.3, \(\int_{\|z\| \geq 1} f(\|z\|)(m_1 + m_2)(\mathrm{d}z) < \infty \) and \(\int_1^\infty f(e^z) \nu(\mathrm{d}z) < \infty \). Then we have for any \(t \in [0, T] \),
\[
\mu_n(t) \leq O_1(T) + O_2(T) \int_0^t \mu_{n-1}(t - u) J_1(\mathrm{d}u).
\]

On the other hand, according to Lemma 2 on pp.145 of [1], there exists a positive function \(t \mapsto \mu(t) \) bounded on \([0, T]\) s.t.
\[
\mu(t) = O_1(T) + O_2(T) \int_0^t \mu(t - u) J_1(\mathrm{d}u).
\]
Recall that $\mu_0(t) = 0$. It is clear that $\mu_n(t) \leq \mu(t)$ for all $n = 0, 1, 2, \ldots$ and $0 \leq t \leq T$. As n tends to infinity, we have

$$\mathbb{E}f(||X(t, x)||) \leq \lim_{n \to \infty} \mu_n(t) \leq \mu(t).$$

Using Proposition 3.1, it is obvious that for any $x \in \mathbb{R}^2_+$, $t \mapsto \mathbb{E}f(||X(t, x)||)$ is locally bounded on $[0, \infty)$. \hfill \Box

Proof of Theorem 1.2:

The sufficiency comes from Proposition 3.2 and Proposition 3.4 Conversely, if for some $t > 0$, $\mathbb{E}f(||X(t)||) < \infty$. Let $J_1(dt) = \mathbb{E}(\rho_1 \in dt)$, where

$$\rho_1 = \inf \{ t > 0 : [X_1(t) - X_1(t-)] \wedge [X_2(t) - X_2(t-)] > 1, \xi_t = \xi_{t-} \}.$$

Clearly, $\mathbb{E}\{1_{\rho_1 < t}\mathbb{E}[f(||X(t)||)]\mathcal{F}_{\rho_1}\} \leq \mathbb{E}f(||X(t)||)$. By the strong Markov property,

\[
\begin{align*}
&\mathbb{E}\{1_{\rho_1 < t}\mathbb{E}[f(||X(t)||)]\mathcal{F}_{\rho_1}\} \\
&= \mathbb{E}\{1_{\rho_1 < t}\mathbb{E}_X(\rho_1)[f(||x(t - \rho_1)||)]\} \\
&\geq \mathbb{E}\{1_{\rho_1 < t}\mathbb{E}_\Delta X(\rho_1)[f(||x(t - \rho_1)||)]\} \\
&\geq \mathbb{E}\{1_{\rho_1 < t}J_1(ds) \int_{\mathbb{R}^2_+ \setminus \{0\}} \mathbb{E}_z f(||x(t - s)||) \bar{m}_1(dz)\} \\
&= \mathbb{E}\{1_{\rho_1 < t}J_1(ds) \int_{\mathbb{R}^2_+ \setminus \{0\}} \mathbb{E}_z f(||X(t - s, z)||) \bar{m}_1(dz)\} \\
&= \mathbb{E}\{1_{\rho_1 < t}J_1(ds) \int_{\mathbb{R}^2_+ \setminus \{0\}} \mathbb{E}_z f(||R(t - s, z)||) \bar{m}_1(dz)\},
\end{align*}
\]

In the above equations, $\{R(t, z) : t \geq 0\}$ is the strong solution of (3.2) with initial value z. Since $t \mapsto J_1(0, t]$ is strictly increasing, there exists some $s \in (0, t]$, such that

$$\int_{\mathbb{R}^2_+ \setminus \{0\}} f(||R(t - s, z)||) \bar{m}_1(dz) < \infty.$$

By Proposition 3.2, $\int_{\mathbb{R}^2} f(||z||) \bar{m}_1(dz) < \infty$. Then $\int_{\mathbb{R}^2} f(||z||) m_1(dz) < \infty$. Similarly, $\int_{\mathbb{R}^2} f(||z||) m_2(dz) < \infty$. In conclusion, $\int_{||z|| \geq 1} f(||z||)(m_1 + m_2)(dz) < \infty$. Similarly, define $\rho_2 = \inf \{ t > 0 : \xi(t) - \xi(t-1) > 1 \}$, $J_2(dt) = \mathbb{P}(\rho_2 \in dt)$. By the strong Markov property,

\[
\begin{align*}
&\mathbb{E}\{1_{\rho_2 < t}\mathbb{E}[f(||X(t)||)]\mathcal{F}_{\rho_2}\} \\
&= \mathbb{E}\{1_{\rho_2 < t}\mathbb{E}_X(\rho_2)[f(||x(t - \rho_2)||)]\} \\
&\geq \int_{t}^\infty \mathbb{E}\{1_{\rho_2 < t}\mathbb{E}_x(\rho_2)[f(||x(t - \rho_2)||)]\} \hat{\nu}(dz) \\
&\geq \int_{0}^t \mathbb{E}\{1_{\rho_2 > \epsilon}J_2(ds) \int_{t}^\infty \mathbb{E}_z f(||x(t - s)||) \hat{\nu}(dz)\} \\
&= \int_{0}^t \mathbb{E}\{1_{\rho_2 > \epsilon}J_2(ds) \int_{t}^\infty \mathbb{E}f(||X(t - s, e^z\epsilon)||) \hat{\nu}(dz)\} \\
&\geq \int_{0}^t \mathbb{E}\{1_{\rho_2 > \epsilon}J_2(ds) \int_{t}^\infty \mathbb{E}f(||R(t - s, e^z\epsilon)||) \hat{\nu}(dz)\},
\end{align*}
\]
where \(\{R(t, e^\varepsilon) : t \geq 0\} \) is the strong solution of (3.2)–(3.3) starting from \(e^\varepsilon \) with \(\varepsilon \in \mathbb{R}_+^2 \setminus \{0\} \) s.t. \(P(R(t-s) > \varepsilon) > 0 \). Thus \(t \mapsto J_2(0,t] \) is strictly increasing. Therefore, there exists \(s \in (0,t] \) such that

\[
\int_1^\infty Ef\left(\|R(t-s, e^\varepsilon)\|\right)\hat{\nu}(dz) < \infty.
\]

By Proposition 3.2,

\[
\int_1^\infty f(e^\varepsilon)\hat{\nu}(dz) \leq Kf(\|\varepsilon\|^{-1}) \int_1^\infty f(\|e^\varepsilon\|)\hat{\nu}(dz).
\]

Hence, \(\int_1^\infty f(e^\varepsilon)\nu(dz) < \infty \) and \(Ef(\|X(0)\|) < \infty \).}

4 Future research

In this paper we calculate the integer moments and \(f \)-moment for fixed \(t \geq 0 \), where \(f \) is a function on \([0, \infty) \). The case when \(f \) is a bivariate function and the moment behavior as \(t \to \infty \) is still to be explored. Also, some probability distributions can be uniquely determined by the integer moments, see [17] and [18] for instance. And we are interested in the moment determinacy of CB-processes for fixed \(t \geq 0 \) and also the limit as \(t \to \infty \). Furthermore, since we are discussing two-type CBRE-process here, another direction for the future is to allow the number of types going up to countable infinity, like the authors in [9] did.

Acknowledgments

Heartfelt thanks are given to Professor Jordan Stoyanov for his valuable comments on this work. The authors also thank Doctor Lina Ji and Doctor Rongjuan Fang for their useful discussions and suggestions. This paper is supported by Special Fund for Central Universities SLK13223001.

Declarations

- The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript.
- The data that support the findings of this study are available on request from the corresponding author.

References

[1] Athreya, K. B. and Ney, P. E. *Branching Processes*. Berlin: Springer, 1972.
[2] Barczy, M., Li, Z. and Pap, G. Stochastic differential equation with jumps for multitype continuous state and continuous time branching processes with immigration. *ALEA Lat Am J Probab Math Stat.*, 2015, **12**(1):129-169.

[3] Barczy, M., Li, Z. and Pap, G. Moment formulas for multitype continuous state and continuous time branching process with immigration. *J. Theor. Probab.*, 2016, **29**(3): 958-995.

[4] He, H., Li, Z. and Xu, W. Continuous-State Branching Processes in Lévy Random Environments. *J. Theor. Probab.*, 2018, **31**: 1952-1974.

[5] Jiřina M. Stochastic branching processes with continuous state space. *Czechoslov. Math. J.*, 1958, **8**: 292-313.

[6] Ji, L. and Li, Z. Moments of Continuous-state Branching Processes with or Without Immigration. *Acta Math Appl Sin Engl Ser.*, 2020, **36**, 361-373.

[7] Ji, L. and Zheng, X. Moments of Continuous-State Branching Processes in Lévy Random Environments. *Acta Math. Sci. Engl. Ser.*, 2019, **39**: 781-796.

[8] Kawazu, K. and Watanabe, S. Branching processes with immigration and related limit theorems. *Theory Probab. its Appl.*, 1971, **16**: 36-54.

[9] Kyprianou, A. E. and Palau S. Extinction properties of multi-type continuous-state branching processes. *Stoch Process Their Appl*, 2018, **128**(10): 3466-3489.

[10] Li, Z. A limit theorem for discrete Galton-Watson branching processes with immigration. *J Appl Probab*, 2006, **43**: 1103-1142.

[11] Li, Z. *Measure-Valued Branching Markov Processes*. Heidelberg: Springer, 2011.

[12] Ma, C. A limit theorem of two-type Galton-Watson branching processes with immigration.*Stat Probab Lett*, 2009, **79**, no. 15, 1710-1716.

[13] Ma, R. Stochastic equations for two-type continuous-state branching processes with immigration and competition. *Stat Probab Lett*, 2014, **91**: 83-89.

[14] Palau, S. and Pardo, J C. Branching processes in a Lévy random environment. *Acta Appl Math*, 2018, **153**(1): 55-79.

[15] Qin, Y. and Zheng, X. Stochastic equations and ergodicity for two-type continuous-state branching processes with immigration in Lévy random environments. *Math. Methods Appl. Sci.*, 2020, **43**: 8363-8378.

[16] Sato, K I. *Lévy Processes and Infinitely Divisible Distributions*. Cambridge university press, 1999.

[17] Stoyanov, J. M, Lin, G. D. and Kopanov, P. New checkable conditions for moment determinacy of probability distributions. *Theory Probab. its Appl*. 2020, 65(3): 497-509.

[18] Stoyanov J. M. Moment properties of probability distributions used in stochastic financial models. RECENT ADVANCES IN FINANCIAL ENGINEERING 2014: Proceedings of the TMU Finance Workshop 2014. 2016: 1-27.