Least Periods of k-Automatic Sequences

Daniel Goč and Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1
Canada
dgoc@cs.uwaterloo.ca, shallit@cs.uwaterloo.ca

May 2, 2014

Abstract

Currie and Saari initiated the study of least periods of infinite words, and they showed that every integer $n \geq 1$ is a least period of the Thue-Morse sequence. We generalize this result to show that the characteristic sequence of least periods of a k-automatic sequence is (effectively) k-automatic. Through an implementation of our construction, we confirm the result of Currie and Saari, and we obtain similar results for the period-doubling sequence, the Rudin-Shapiro sequence, and the paperfolding sequence.

1 Introduction

In a recent paper, Currie and Saari [5] initiated the study of the least periods of infinite words. If $x = a_1 \cdots a_n$ is a finite word, then we say x has period $p \geq 1$ if $a_i = a_{i+p}$ for $1 \leq i \leq n - p$. For example, alfalfa has period 3 and entanglement has period 9. If $x = a_0a_1a_2\cdots$ is an infinite word, then a factor of x is a contiguous subword of the form $a_ia_{i+1}\cdots a_j$ for some i, j with $0 \leq i \leq j + 1$; we write it as $x[i..j]$. (If $i = j + 1$ then the factor is ϵ, the empty string.)

Currie and Saari were interested in the set of all positive integers that can be the least period of some finite nonempty factor of x. They explicitly computed the set of least periods for some famous infinite words, such as the Thue-Morse sequence.

The Thue-Morse sequence $t = 0110100110010110\cdots$ is defined by letting $t[n]$ be the sum of the bits in the binary expansion of n, taken modulo 2. They proved that every positive integer can be the least period of the Thue-Morse sequence.

The Thue-Morse sequence is one of a much larger class of infinite words called “automatic”. Roughly speaking, an infinite word x is k-automatic if there is a deterministic finite
automaton taking the base-k representation of n as input, with transitions leading to a state with output $x[n]$. For more details, see [4, 2].

In this note, we prove that if x is k-automatic, then so is the characteristic sequence of the least periods of x. Our method gives an explicit way to construct the automaton accepting the base-k representation of the least periods of x. Using an implementation developed by the first author, we then reprove the Currie-Saari result for Thue-Morse using a short finite computation, and we find similar results for three other classic sequences.

2 The main result

Theorem 1. If x is a k-automatic sequence, then the characteristic sequence of least periods of x is (effectively) k-automatic.

Proof. Using the method developed in [1, 3], it suffices to construct a predicate $L(n)$ that is true if n is a least period and false otherwise, using a logical language restricted to addition, subtraction, indexing into x, comparisons, logical operations, and the existential and universal quantifiers.

It is easy to express the predicate P that n is a period of the factor $x[i..j]$, as follows:

$$P(n, i, j) = x[i..j - n] = x[i + n..j] = \forall t \text{ with } i \leq t \leq j - n \text{ we have } x[t] = x[t + n].$$

Using this, we can express the predicate LP that n is the least period of $x[i..j]$:

$$LP(n, i, j) = P(n, i, j) \text{ and } \forall n' < n \neg P(n', i, j).$$

Finally, we can express the predicate that n is a least period as follows

$$L(n) = \exists i, j \geq 0 \text{ with } 0 \leq i + n \leq j - 1 \ LP(n, i, j).$$

The construction is effective, and there is an algorithm that, given the automaton generating x, will produce an automaton generating the characteristic sequence of least periods of x.

3 Computations

Currie and Saari [5, Thm. 2] proved

Theorem 2. For each integer $n \geq 1$, the Thue-Morse word has a factor of period n.

We implemented the algorithm in [6] to convert the automaton generating a k-automatic sequence x to the automaton accepting the characteristic sequence of least periods of x. Using this, we were able to verify the result above using a short computation. (In contrast, Currie and Saari used four pages of rather intricate case reasoning.)

We also carried out the same computation for three other famous infinite words:
• The period-doubling sequence \(d = d_0d_1 \cdots \) defined by \(d_n = 1 \) if \(t[n] \neq t[n + 1] \), and 0 otherwise;

• The paperfolding sequence \(p \), defined as the limit of the finite words \(p_0 = 0 \) and \(p_{i+1} = p_i 0 \overline{p_i}R \), where \(\overline{0} = 1 \), \(\overline{1} = 0 \), and \(wR \) denotes the mirror image or reversal of the word \(w \);

• The Rudin-Shapiro sequence \(r = r_0r_1 \cdots \) defined by counting the number of (possibly overlapping) occurrences of 11 in the binary representation of \(n \), taken modulo 2.

Our results can be summarized as follows:

Theorem 3. For each integer \(n \geq 1 \), the period-doubling sequence and the Rudin-Shapiro sequence have a factor of least period \(n \).

For the paperfolding sequence, the least periods are given by the integers whose base-2 representations are accepted by the automaton below. The least omitted least period is 18, and there are infinitely many. In the limit, exactly \(57/64 \) of all integers are least periods of the paperfolding sequence.

![Figure 1: A finite automaton accepting least periods of the paperfolding sequence](image)

Proof. The first results were obtained through our algorithm. A summary of our computations appears below:
For the result about the paperfolding sequence, we take the automaton computed by the algorithm (displayed in Figure 1) and compute the transition matrices \(M_a, a \in \{0, 1\} \), containing a 1 in row \(i \) and column \(j \) if there is a transition on \(a \) from state \(i \) to state \(j \). Then \((M^n)_{i,j}\), where \(M := M_0 + M_1 \), gives the number of words taking the automaton from state \(i \) to state \(j \). A short computation gives that each row of \(\lim_{n \to \infty} 2^{-n}M^n\) equals

\[
\frac{1}{64}[0, 16, 8, 4, 2, 10, 5, 4, 2, 6, 3].
\]

All states except 7 and 11 are accepting, so the density of least periods is given by \((64 - 4 - 3)/64 = 57/64\), as claimed.

\[\square\]

References

[1] J.-P. Allouche, N. Rampersad, and J. Shallit. Periodicity, repetitions, and orbits of an automatic sequence. *Theor. Comput. Sci.* **410** (2009), 2795–2803.

[2] J.-P. Allouche and J. Shallit. *Automatic Sequences: Theory, Applications, Generalizations*, Cambridge, 2003.

[3] E. Charlier, N. Rampersad, and J. Shallit. Enumeration and decidable properties of automatic sequences. In G. Mauri and A. Leporati, eds., *Developments in Language Theory — 15th International Conference, DLT 2011*, Vol. 6795, Springer, 2011, pp. 165–179.

[4] A. Cobham. Uniform tag sequences. *Math. Systems Theory* **6** (1972), 164–192.

[5] J. D. Currie and K. Saari. Least periods of factors of infinite words. *RAIRO – Theor. Inf. Appl.* **43** (2009), 165–178.

[6] D. Goč, D. Henshall, and J. Shallit. Automatic theorem-proving in combinatorics on words. In N. Moreira and R. Reis, eds., *CIAA 2012*, Lect. Notes in Comput. Sci., Vol. 7381, Springer, 2012, pp. 180–191.