INTRODUCTION

Pathogenic organisms possess the remarkable ability to hijack the cellular machinery of host cells to their advantage. Viruses in particular manipulate several physiological cellular pathways to prevent antiviral responses and to create an environment that facilitates their survival and propagation.

A common strategy to create a more conducive milieu to viral development consists in exploiting cellular post-translational modifications (PTMs) mechanisms.

Between the numerous PTMs occurring in cells, small ubiquitin-like modifier (SUMO)ylation is emerging as a key PTM that controls the function of a plethora of proteins and biological processes. Given its central regulatory role, the SUMOylation pathway is widely exploited by viruses, whose proteins can either modify and/or be modified by the SUMOylation system with various consequences.

The aim of this review is therefore focused on the mechanisms through which viruses exploit the SUMOylation pathway and the implications for viral infections and diseases. First, we will describe the general characteristics of the SUMO cycle and the enzymes involved in this pathway. Next, we will give a comprehensive overview on the latest findings on viral proteins and SUMOylation interplay, focusing in particular on the mechanisms that can promote viral infections by altering the SUMO system.

SUMO PATHWAY

The SUMO is a member of the ubiquitin-like proteins (Ubls) family. The common feature of Ubls is that they
are attached to a target protein amino group of a lysine residue through similar but distinct enzymatic cascades\(^\text{[1]}\). After conjugation, Ubls reversibly alter protein functions, without the need for new protein synthesis, thus providing cells with a rapid and versatile mechanism to quickly respond to changes in the surrounding environment.

SUMOylation was identified as a reversible PTM in 1996\(^\text{[2]}\). There are four different genes in the human genome coding for the different SUMO modifiers: SUMO-1, -2, -3 and -4. SUMO-2 and -3 are nearly identical in sequence, differing from each other by only three N-terminal residues, and are therefore collectively referred to as SUMO-2/3\(^\text{[3]}\). On the contrary, SUMO-2/3 significantly diverge from SUMO-1, sharing only about 45% similarity with its sequence\(^\text{[4]}\). Finally, a SUMO-4 isoform has been described\(^\text{[5]}\), which shares 86% homology with SUMO-2.

In humans, while SUMO-1 and SUMO-2/3 are ubiquitously expressed, SUMO-4 expression seems to be restricted to kidneys, lymph nodes and spleen\(^\text{[6]}\).

SUMO-1 conjugation has been implicated in the regulation of physiological processes because it is virtually all bound to target proteins, while SUMO-2/3 appears to be more widely expressed as a pool of free non-conjugated proteins, readily available for stress responses\(^\text{[7]}\). SUMO-4 is probably not conjugated under normal conditions and its biological role is still unclear\(^\text{[8]}\). Moreover, the different SUMO paralogs do preferentially conjugate some substrates\(^\text{[9,10]}\), although other proteins can be equally modified by SUMO-1 or SUMO-2/3\(^\text{[5,11]}\).

SUMO attachment to target proteins is mediated by enzymatic reactions (schematized in Figure 1) that catalyze the formation of an isopeptide bond between the SUMO C-terminus and the ε-amino group of an internal lysine in the target, generally but not necessarily found within a SUMO modification consensus motif, \(\psi KxEx\)\(^\text{[12,13]}\) (where \(\psi\) is a bulky aliphatic residue, \(X\) is any residue).

Interestingly, SUMO-2/3 also bear the \(\psi KxEx\) motif and therefore can be SUMOylated, forming chains on substrate proteins through their internal lysine residues\(^\text{[14]}\). Although the formation of SUMO-1 chains has also been observed both \textit{in vitro} and \textit{in vivo} via non canonical consensus sites\(^\text{[15,17]}\), usually SUMO-1 acts as terminator of SUMO-2/3 polymeric chains\(^\text{[16]}\). Although target proteins are predominantly conjugated to monomeric SUMO, SUMO chains also play roles in replication, turnover of SUMO targets, mitosis and meiosis\(^\text{[18]}\).

SUMO proteins are 11 kDa and, similarly to most other Ubls, are synthesized as inactive precursor proteins carrying an extension of variable length (ranging from 2 to 11 amino acids). These primary translated products undergo a C-terminal cleavage to expose the diglycine motif that will be linked to the target proteins. Removal of this C-terminal end is mediated by a specific protease belonging to the sentrin-specific proteases (SENP) family\(^\text{[19]}\). In addition to its role in SUMO processing, SENP activity is also required for SUMO depolymerization and deconjugation from its substrates\(^\text{[20]}\), as detailed below.

The mature form of SUMO is conjugated to the target proteins by a three-step enzymatic cascade, very similar to the ubiquitin pathway but involving different enzymes: E1 activating enzyme, E2 conjugating enzyme and E3 ligases (Figure 1).

SUMO E1 is a 110 kDa protein, composed of a heterodimer of SUMO-activating enzyme subunit (SAE) 1/2 subunits (also known as AOS1-UBA2\(^\text{[21,22]}\)). During each conjugation cycle, SAE1/2 activate SUMO proteins\(^\text{[23]}\) through the formation of a high-energy thioester bond between SAE2 and the C-terminal portion of SUMO\(^\text{[24]}\). Activated SUMO is then transferred to the E2 enzyme ubiquitin-conjugating 9 (Ubc9). Opposite to the ubiquitin pathway, where numerous conjugating enzymes have been described, Ubc9 is the only known SUMO-conjugating enzyme\(^\text{[25,26]}\), and is essential for viability in most eukaryotes\(^\text{[26]}\). Although Ubc9 itself can transfer SUMO to targets\(^\text{[27]}\), specific SUMO E3 ligases are required for efficient modification.

SUMO E3 ligases can be classified into three groups on the basis of their similarity to the ubiquitin E3 ligases and in their mechanism of action, but they share the ability to act as a bridge between the Ubc9-SUMO complex and the target protein, functioning as substrate recognizers\(^\text{[28]}\). The first group encompasses members of the protein inhibitor of activated STAT (PIAS) family (PIAS1, PIAS3, PIASxα, PIASxβ and PIASxγ, reviewed in\(^\text{[29]}\)). In
addition to the PIAS proteins, other secretory protein (SP)-RING domain-containing proteins function as SUMO E3 ligases (TOPORS, MUL1 and MMS21). All these members contain a RING domain (SP, Siz/PIAS-RING) similar to the one found in ubiquitin E3 ligases. The second group is represented exclusively by the nucleoporin RanBP2 that seems to act as a composite E3 ligase in the RanBP2/RanGAP1/SUMO1/Ub9 complex. The third group comprises E3 ligases lacking the RING-domain such as the polycomb member Pc2, histone deacetylase (HDAC)4, HDAC7, the G-protein Rhox, the RNA-binding protein translated in liposarcoma and tumor-necrosis-factor-associated protein 7. Moreover, members of the diverse tripartite motif (TRIM) family have been very recently discovered as a new group of SUMO E3 ligases, requiring TRIM (defined by a RING domain, one or two zinc-binding domains and a coiled-coil dimerization region) to stimulate the conjugation of both SUMO-1 and SUMO-2/3 to target proteins.

SUMOylation is a reversible process, governed by SUMO-specific proteases belonging to the SENP family and by the recently found DeSUMoylating-isopeptidase (DeSI) proteins. Six true human SENP proteins have been described so far (SENP1, 2, 3, 5, 6, 7), differing in their cellular distribution, selectivity for SUMO maturation and deconjugation towards different SUMO paralogs. SENP1 and SENP2 are specific for both SUMO-1 and SUMO-2/3 processing and deconjugation, whereas SENP5 and SENP5 act preferentially on SUMO2/3. SENP6 and SENP7 seem involved mainly in deconjugating SUMO2/3 chains (see citations therein). Finally, SENP8 shows substrate specificity to another Ubl, NEDD8. All the SENPs localize to the nucleus or nucleus-associated structures; on the contrary, DeSI (-1 and -2) proteins localize also in the cytoplasm and show deSUMOylation but not processing activity for SUMO1 and for both monomeric and polymeric SUMO2/3 chains.

Most cellular SUMO targets are transcription factors and usually SUMOylation exerts an inhibitory effect on their transactivating activity, by sequestering the transcription factor in ProMyelocyticLeukemia nuclear bodies (PML-NBs), a nuclear domain whose assembly requires an active and efficient SUMOylation pathway.

Usually, after undergoing SUMOylation, the substrate protein is recognized by a binding partner containing a SUMO-interaction motif (SIM). This interplay can lead to an altered binding with interacting proteins or DNA, promotes the recruitment of another SIM-containing effector, and affects the stability, localization or enzymatic activity of the SUMOylated protein. Through these mechanisms, SUMOylation regulates a number of cellular processes, such as transcriptional regulation, mRNA maturation, meiosis, mitosis, chromatin remodeling, ion channel activity, cell growth and apoptosis.

Therefore, because of SUMOylation marked involvement in the regulation of cell functions, it is easy to understand why viruses have evolved a variety of mechanisms to exploit this system to their advantage.
logical significance of this interplay is still obscure.

A hallmark of viral infection is the increase of host transcription to sustain viral replication. Gam1 is an early gene expressed by chicken embryo lethal orphan (CELO) Adenovirus that has the remarkable ability to inhibit global SUMOylation. Work from our group demonstrated that Gam1 decreases the overall SUMOylation by interaction and consequent degradation of the E1 heterodimer \(^{49,50}\). Specifically, Gam1 recruits both SAE1 and SAE2 into Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and subsequently targets SAE1 for ubiquitylation and degradation. SAE2 depletion is not tightly related to Gam1, but is rather an effect of SAE1 disappearance \(^{51}\). As SUMOylation status of only selected proteins encoded by the plant pathogen Geminivirus alters the SUMOylation pattern of the host cell, AL1 protein is an essential gene for CELO replication \(^{52,53}\). Moreover, HDAC1-containing chromatin remodeling complexes are known to be exploited by viruses to regulate the progression of their infection \(^{54}\). Interestingly, a replication deficient ∆Gam1 CELO virus \(^{55}\) can be rescued by HDAC inhibitors treatment \(^{56}\), suggesting the existence of a cross talk between cellular SUMOylation and acetylation that can be subverted and exploited by Gam1, an essential gene for CELO replication \(^{57}\).

While Gam1 promotes broad changes in the global SUMOylation pattern of the host cell, AL1 protein encoded by the plant pathogen Geminivirus alters the SUMOylation status of only selected proteins \(^{35}\). AL1 is the only plant pathogen protein described so far as interacting with the SUMO pathway \(^{58}\), by associating with

Table 1 Viral life cycle and small ubiquitin-like modifier pathway

Virus	Protein	Interaction with SUMO	Proposed impact on viral or cellular activity	Ref.
Chicken embryo lethal orphan Adenovirus	Gam1	Overall SUMOylation decrease through SAE1/2 degradation and reduced Ubc9 expression	Cellular transcriptional activation [49,50]	
Geminivirus	AL1	Interference with HDAC1 SUMOylation of selected host factors	PML-NBs dispersion [51]	
Adenovirus	EIB-55K	E3 ligase SUMO-1 specific	Viral replication [57,58]	
Kaposi’s sarcoma-associated herpesvirus	K-bZip	E3 ligase SUMO-2/3 specific	Regulator of cell cycle and apoptosis [59,60]	
Vaccinia	E3	SUMOylated	Cellular transformation [63]	
Bovine papillomavirus	E1	SUMOylated	Interaction with PML-NBs [62,64]	
Human papillomavirus	L2	SUMOylated	Increase in cellular SUMO 2/3 conjugation [65,66]	
Moloney murine leukemia	CA	SUMOylated	Virus replication [75]	
Influenza A	NS1	SUMOylated	Virus replication [78]	
Cytomegalovirus	IE1	SUMOylated	Virus replication [80,81]	
Epstein-Barr	IE2	Interaction with SUMOylated proteins	Viral replication [82]	
UL44	SUMOylated	Interaction with Ubc9	Viral replication [83]	
BZLF1	SUMOylated	Interaction with SUMOylated proteins	Viral replication and reactivation of latent infections [84]	
Rta	SUMOylated	Interaction with SUMOylated proteins	Reactivation of latent infections [85,86,88]	
BGLF4	SUMOylated	Interaction with SUMOylated proteins	Reactivation of latent infections [87]	
Hantaan	NP	Interaction with Ubc9 and SUMO-1	Virus assembly [95,96]	
Mason-Pfizer; human immunodeficiency	Gag	Interaction with Ubc9	Virus assembly [97]	
Influenza A	M1	SUMOylated	Virus assembly [102,103]	
Ebola Zaire	VP35	SUMOylated	IFN inhibition [109,111]	
Herpes simplex type-1	ICP0	E3 ubiquitin ligase activity against SUMOylated proteins	PML-NBs dispersion [115-117]	
Varicella zoster	ORF61	Interaction with SUMOylated proteins	PML-NBs dispersion [120,121]	
Encephalomyocarditis	5C	Interaction with selected host factors	PML degradation [122]	

The table schematizes known viral proteins interacting with the small ubiquitin-like modifier (SUMO) pathway, with a brief description of their relationship with the SUMOylation machinery and the proposed biological outcome. References are also reported (see text for further details). SAE: SUMO-activating enzyme subunit; HDAC: Histone deacyetylase; PML-NBs: ProMyelocyticLeukaemia nuclear bodies; IFN: Interferon.
the plant E2 conjugating enzyme SCE1. As mentioned, AL1-SCE1 complex in plants does not produce an overall alteration of host proteins, but seems to modulate the SUMOylation level of selected host factors to create an environment suitable for viral infection. E1B-55K is an Adenoviral early protein that functions as an E3 SUMO ligase that specifically conjugates SUMO-1 but not SUMO-2/3 to p53, inhibiting its transcriptional activity\[25]. Indeed, expression of E1B-55K protein induces p53 SUMOylation\[25] and E1KB-55K/p53 co-localization to PML-NBs, thus restricting p53 nuclear mobility in living cells\[25]. p53 sequestration in PML-NBs seems to be a prerequisite to the altered p53 localization and activity observed in Adenovirus infected cells, preceding and addressing its ubiquitin-proteasome dependent degradation in cytoplasmic aggresomes\[25]. Notably, E1B-55K associates with PML-NBs at early times after infection\[25\], as does p53\[25\]. Hence, since p53 is one of the most recognized regulators of cell cycle arrest and apoptosis, the p53-SUMO-1 conjugation could be a key event in the oncogenic transformation of primary cells induced by Adenoviruses. Interestingly, E1B-55K is also itself SUMOylated by all SUMO paralogs in a phosphorylation-dependent manner\[25\] and both SUMOylation\[25\] and phosphorylation\[25\] are required for its activity. In addition, the recent findings that E1B-55K itself interacts with Ubc9 strongly highlight that this viral protein extensively cooperates with the SUMO pathway to promote Adenovirus lifespan\[25\].

The K-bZIP protein encoded by Kaposi's sarcoma-associated herpes virus (KSHV) is another viral protein that utilizes the SUMO pathway to alter the host cell cycle. K-bZIP is a strong transcriptional repressor whose activity, similarly to E1-55K, depends on SUMOylation\[25\], catalyzed by K-bZip itself\[25\]. Other similarities to the adenoviral protein include the PML-NBs localization\[25\] and the ability to recruit p53 to PML-NBs\[25\]. Finally, K-bZIP also exhibits E3 SUMO ligase activity but, unlike E1-55K, shows preferential selectivity towards SUMO-2/3 paralogs\[25\]. Notably, p53 SUMO-2/3 conjugation catalyzed by K-bZIP enhances p53 transcription factor ability, suggesting a p53-mediated growth arrest by prolongation of the G1 phase of the cell cycle\[25\]. Growth arrest is a common outcome of herpes viruses infection\[25\], that poses the cell in a specific phase of the cell cycle, encouraging viral replication and protecting the host cells from undergoing apoptosis.

An additional viral protein that takes advantage of the SUMO pathway to regulate the cellular apoptotic process is the E3 protein encoded by Vaccinia virus. Indeed, recent findings\[25\] demonstrate that E3 SUMO-1 or SUMO-2 modification has a negative effect on E3 transcriptional transactivation of the p53-upregulated modulator of apoptosis and APAF-1 genes. Therefore, these results could indicate that SUMO conjugation is a negative regulator of the transcriptional activation of p53 by E3.

Also, bovine papillomavirus (BPV) E1, the major initiation protein for BPV replication\[25\], is SUMO modified but, opposite to Vaccinia virus E3, only by the SUMO-1 paralog\[25\]. This covalent modification is required for E1 intranuclear localization and influences viral replication activity\[25\].

A40R is another Vaccinia virus protein that interacts with the SUMO system to accomplish its function. Vaccinia are unique among DNA viruses because DNA replication occurs entirely in discrete cytoplasmic structures enveloped by endoplasmic reticulum (mini-nuclei) membrane, rather than in the nucleus of the infected host cell\[25\]. A40R gene product is SUMO-1 modified, but unlike what has been described so far, this modification appears to be very stable and not subjected to SENP deconjugating activity\[25\]. Consistently, all other viral proteins SUMO-1 modified are localized into the nucleus, while A40R-SUMO-1 expression has been found in the cytosolic side of endoplasmic reticulum, the same membranes that wrap the virus replication sites. The specific localization of A40R strongly suggests a role for SUMOylation in Vaccinia replication\[25\].

Also, Moloney murine leukemia retrovirus capsid protein (CA) utilizes a similar mechanism. In fact, this protein interacts simultaneously with both Ubc9 and E3 ligase PIASy\[73\], resulting in covalent transfer of SUMO-1 to CA. Surprisingly, suppression of SUMO-1 attachment by CA mutations at Ubc9 or PIASy binding sites blocks virus replication \[in vivo\], but does not affect late stages of viral gene expression or virion assembly\[73\]. On the contrary, Rous sarcoma virus (RSV) CA-Ubc9 interaction and SUMO-1 conjugation does not influence RSV replication\[73\].

Nonstructural protein 1 (NS1) is one of the major factors involved in Influenza A virus replication\[73\]. NS1 is able to interact with human Ube9 and is preferentially modified by SUMO-1\[73\]. This characteristic seems to be conserved among most Influenza virus strains, underlining the importance of SUMO modification in Influenza virus infection. SUMO-1 modification enhances the stability of NS1 and its ability to suppress host protein expression causing an acceleration in viral replication rate\[73\].

Cytomegalovirus (CMV) immediate early 1 (IE1) is a viral protein that acts as a key regulator of early events in virus infection cycle together with IE2. While IE2 activates a wide range of viral and cellular promoters, IE1 only modestly promotes both cellular and viral transcription\[73\]. However, SUMO modification of IE1 contributes to efficient CMV replication by enhancing the expression of IE2 mRNA derived from the same transcription unit, by a yet unidentified post-translational mechanism\[73\]. Furthermore, IE2 is also SUMOylated by both non-covalent and covalent SUMO-modification\[73\]. IE2 SUMOylation is necessary for the function of this viral transcription factor and for human CMV replication\[73\].

This interaction enhances the transactivation activity
of IE2, playing a further role in the progression of the CMV lytic cycle[83].

Recently, Loregien’s group reported the first evidence of SUMOylation of a viral DNA-polymerase processivity factor: the UL44 protein from human CMV[84]. UL44 strongly binds to cellular Ubc9 and is widely SUMOylated during CMV infection, with accumulation at a later time post-infection. Interestingly, UL44 SUMOylation is dependent on its correct dimerization and proper DNA binding. CMV infection in cells overexpressing SUMO1 protein results in increased viral replication and viral titer, as well as a faster relocalization of UL44 from replicative foci, suggesting that UL44 SUMOylation could perhaps support later functions important for viral propagation[84].

Finally, other interesting examples of viral proteins SUMO-modified are Epstein-Barr virus (EBV), BZLF1 (also known as Zta), Rta and BGLF4 proteins.

EBV is usually maintained under latent conditions in B lymphocytes and to proliferate it must enter the lytic cycle driven by BZLF1 and Rta. BZLF1 is post-translationally modified by both SUMO-1[85] and SUMO-2/3[86]. BZLF1 is a transcriptional activator involved in the re-activation of EBV[85], allowing its switch from latent to lytic stage, characteristic of the EBV infection cycle. SUMOylation of BLZF1 plays a key role in this mechanism, negatively affecting its transcriptional activity. In fact, SUMOylated BLZF1 associates with HDAC3 and this association allocates HDAC3 to BLZF1-responsive promoters, repressing the transcription of BLZF1-induced genes[85]. Furthermore, the SUMO-mediated repression of BLZF1 is reverted by the action of a specific protein kinase (EBV-PK) that, by inhibiting BLZF1 SUMO-conjugation, promotes the transcription of BLZF1 target genes and replication of the viral genome[85].

Similarly, also Rta SUMOylation, mediated by the adaptor cellular protein RanBPM, enhances its transactivation activity and promotes viral replication of the latent EBV virus[85].

BGLF4 is a protein kinase that phosphorylates both viral and host proteins[86], strongly contributing to the EBV infection cycle. BGLF4 carries SIM motifs responsible for its binding to SUMO-2 conjugated proteins. The SUMO binding function of BGLF4, among others, is also required to enhance the production of extracellular virus during EBV lytic replication and to disperse PML-NBs[87]. Indeed, BGLF4 seems to inhibit SUMOylation, thus promoting activation of the EBV BGLF4 protein (see above), probably by SIM-mediated recruitment and phosphorylation on SUMOylated BGLF4[87].

SUMO and virus assembly

Virus assembly is the result of a series of protein-protein and protein-lipid interactions that permits localization of different viral components at sites of virus budding. Although specific for each virus strain, virus assembly typically involves the expression of late genes that direct capsid assembling and enveloping. Besides its key role in the activity of the early expressed viral proteins that drive viral replication, SUMOylation also plays fundamental roles in viral assembly processes (Figure 2).

L2, together with L1, is a structural protein of the human papillomavirus (HPV) capsid critical for the generation of infectious viral particles as well as in early events of HPV infection[88]. L2 is preferentially modified by SUMO2/3, affecting its stability[89]. In fact, SUMOylated L2 has an increased half-life compared to the non-SUMOylated mutant. Moreover, the effect of SUMOylation negatively affects L2 capacity to interact with its physiological interactor L1, suggesting a mechanism by which capsid assembly may be modulated in HPV infected cells[89]. Moreover, L2 also increases the overall SUMO-2/3 conjugation of host proteins[89].

Nucleocapsid protein (NP) of Hantaan virus (HTNV) is a structural protein that, through its oligomerization and ability to bind RNA[90], is involved in viral assembly in the infected cell. Ubc9 and SUMO-1 interaction with NP[90] determines its localization at the perinuclear region where viral replication occurs[91] and, therefore, could regulate the assembly of the HTNV. Notably, Ubc9 was also identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey[92] and Human Immunodeficiency viruses[93-100], regulating viral assembly, trafficking and Env incorporation. However, these activities are not dependent on Ubc9 conjugation activity, indicating that SUMOylation may not be strictly required for assembly of these viruses[93].

A large body of evidence shows that Influenza A virus M1 protein is essential for viral assembly and budding[101]. M1, together with other viral proteins are SUMOylated during Influenza virus infection[102,103]. Moreover, abolishment of M1 SUMOylation resulted in dramatic reduction of the virus titer in the culture fluid, accompanied by accumulation of intracellular viral proteins and viral RNA, indicating that SUMOylation of M1 modulates the assembly of Influenza A virus. On the other hand, other steps of the viral life cycle, such as virus entry, RNA replication and translation, are not affected by M1 SUMOylation[104].

SUMOylation and viral host immune evasion

Multicellular organisms normally fight infections via their immune system. The immune system recognizes and combats invading foreign agents through two main canonical pathways, the innate and adaptive immunity. In addition, intrinsic cellular defenses are also employed by the host to clear viral infections[105]. Intrinsic resistance represents the first line of intracellular antiviral defense that employs the classical pathogen recognition receptors (PRRs), shared by the innate immunity response, to sense viruses and to rapidly produce antiviral molecules in order to limit the initial stages of infection. Consequently and not surprisingly, viruses have evolved a variety of mechanisms to overcome cellular defenses and SUMO represents one of the most exploited pathways to this end (Figure 3).

The intrinsic and innate immune responses are primed by the activation of PRRs, such as the toll-like receptors and retinoic acid-inducible gene 1 which, in turn, lead to...
The production of the pro-inflammatory IFN type antiviral action implicated in the downstream effect of INF-mediated mechanisms to escape the intrinsic immune system. However, viruses also possess a large number of mechanisms to escape from the host innate immune system. This is not surprising, considering that the intrinsic response is developed by DNA viruses to overcome cellular defense disperse PML-NBs: one rapid way to achieve this goal is by hijacking the SUMOylation pathway. Earlier during infection, PML-NBs components are quickly recruited at sites closely associated with the viral genome in a SUMO-dependent manner, promoting the transcription of anti-viral genes. However, ICP0 counteracts this PML-NBs response targeting SUMOylated proteins for degradation, thanks to its E3 ligase activity. This HSV-response is strictly required for its infection cycle, since in this way ICP0 inhibits cellular mechanisms that would otherwise repress viral transcription. Interestingly, it has been shown that ICP0 falls in the SUMO targeted ubiquitin ligases (STUbLs) family, a class of RING finger ubiquitin ligases that contains SIMs. Therefore, through its SIM motifs, ICP0 binds to important SUMOylation factors in PML-NBs that, in turn, are degraded by the E3 ubiquitin ligase activity of its RING motif. This dual action of ICP0 efficiently counteracts intrinsic antiviral resistance to HSV-1 infection.

Like ICP0, KHSV K-Rta protein also belongs to the STUbLs family. Indeed, K-Rta contains SIM motifs and conjugates ubiquitin to SUMO and SUMO-chains, disrupting PML-NBs in a ubiquitin ligase dependent fashion.

A similar mechanism is also conducted by Varicella Zoster virus protein ORF61. Indeed, ORF61 colocalizes and disperses PML-NBs shortly after virus entry in its target cell. It also contains three SIM motifs through which it counteracts intrinsic SUMO-promoted anti-viral control by PML-NBs. Consistently, ORF61 SIM mutants are unable to disperse PML and the overall degree of virus infection is dramatically impaired when SUMO-conjugation is inhibited. As for ICP0, PML-NBs dispersal by ORF61 is a two-step process accomplished by different protein domains: the ORF61 SIMs that recognize SUMOylated PML protein in PML-NBs and the RING domain that executes their dispersal. However, ORF61 RING domain does not share the E3 ligase activity with ICP0 and is thus not able to degrade PML-NBs. A similar PML-NBs disruption mechanism seems to be also carried out by the already described EBV BGLF4 protein.

While in all the examples described above viruses extensively interact with a number of proteins in PML-NBs, encephalomyocarditis virus (EMCV) counteracts antiviral pathway targeting the PML protein alone. In fact, during infection, PML is first transferred by EMCV from the nucleoplasm to the nuclear matrix and then the viral protease 3C induces PML degradation. Both PML delocalization and degradation are a consequence of covalent SUMO-1, -2 and -3 conjugation promoted by EMCV.

Figure 3 Viral proteins exploit small ubiquitin-like modifier to promote immune escape from innate and intrinsic responses. Schematic representation of the strategies used by viral proteins to counteract host innate and intrinsic responses through small ubiquitin-like modifier (SUMO). Viral proteins are designated with their acronym. S stands for SUMO. The asterisk (*) indicates that the marked viral protein has not been formally shown to directly influence cellular antiviral activity by exploiting SUMOylation, but indications of a mechanism link are known. See text for further details on exploitation of the SUMO machinery by single viral proteins. IFN: Interferon; IRF: IFN regulatory factor; PML-NBs: ProMyelocyticLeukemia nuclear bodies.
In addition to the ability to be itself SUMOylated (see above) for its transactivation functions, CMV IE1 also efficiently inhibits the intrinsic antiviral response by preventing the accumulation of SUMOylated forms of PML. In this regard, CMV seems to behave as EMCV, since IE1 does not induce PML degradation.

CONCLUSION

In recent years, SUMOylation has emerged as a major regulator system involved in a variety of cellular processes. SUMO is indeed conjugated to a number of proteins that in turn can interact with many other partners through the SUMO interacting (SIM) motifs. Therefore, the SUMOylation machinery virtually affects and directs most of cellular activities, crucially regulating cellular homeostasis. Thus, exploiting SUMOylation represents a very convenient way to quickly promote and sustain pathogen survival in the host.

Virtues, in particular, exploit SUMOylation in several key steps of their intracellular life and, importantly, they also use the SUMO pathway to subvert the immune response of the host (Table 1). Both DNA and RNA viruses can use SUMOylation to promote viral genes transcription, virus assembly (Figure 2) and immune evasion (Figure 3), using apparently different mechanisms. Some viral proteins (i.e., E3, E1, L2, A4OR, CA, IE1, IE2, BLZF1, Rta, BGLF4, M1, E1B-55k, K-bZip, UL44) are modified by SUMO in order to activate their function; alternatively, they can influence the SUMOylation level of a specific target protein (AL1, VP35) or the global SUMOylation status of infected cells (Gam1, ICP0, K-Rta, L2). Finally, other viral products could interact with SUMO components or with host SUMO-containing proteins (NP, Gag, 3C, ORF61), usually through a SIM motif, or mimicking SUMOylation enzymes (K-bZIP, E1B-55K). Remarkably, the same virus (KSHV, CMV, EBV, Vaccinia Virus, Papillomavirus) can exploit the SUMO pathway through various proteins, as well as the same protein (Gam1, IE1, IE2, E1B-55K, K-bZIP, BGLF4) can interact with SUMO using several mechanisms perhaps also to promote different steps of viral infection.

It is interesting to note that the vast majority of viral proteins known to interact with the SUMOylation system are immediate-early or early proteins, suggesting a crucial role for SUMO in counteracting viral infection.

What we can learn from the complex network of interplay between the SUMO pathway and viruses in the virus-host interactions is that the same crucial pathway modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 1996; 135: 1457-1470 [PMID: 8978815 DOI: 10.1083/jcb.135.6.1457]

REFERENCES

1 Hochstrasser M. Origin and function of ubiquitin-like pro-
Eriksson JE, Sistonen L. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem 2010; 285: 19224-19232 [PMID: 20388717 DOI: 10.1074/jbc.M110.106955]

Dejean A. SUMO: of branched proteins and nuclosomes. Trends Biochem Soc Trans 2010; 35: 46-49 [PMID: 20744033 DOI: 10.1042/STB20100046]

Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein SUMO-1. J Biol Chem 1999; 274: 10618-10624 [PMID: 10187856 DOI: 10.1074/jbc.274.15.10618]

Gong L, Li B, Millas S, Yeh ET. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 1999; 448: 185-189 [PMID: 10217437 DOI: 10.1016/S0014-5793(99)00367-1]

Lois LM, Lima CD. SUMO-specific proteases: a twist in the tail. Trends Cell Biol 2007; 17: 370-376 [PMID: 17768054 DOI: 10.1016/j.tcb.2007.08.002]

Desterro JM, Rodriguez MS, Kemp GD, Hay RT. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 1999; 274: 15008-15015 [PMID: 10440024 DOI: 10.1074/jbc.274.20.15008]

Johnson ES, Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smtp3. J Biol Chem 1997; 272: 26799-26802 [PMID: 9341106 DOI: 10.1074/jbc.272.43.26799]

Desterro JM, Thomson J, Hay RT. Ubc9 conjugates SUMO but not ubiquitin. FEBS Lett 1997; 417: 297-300 [PMID: 9409737 DOI: 10.1016/S0014-5793(97)01305-7]

Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T. Ub9c is essential for viability of higher eukaryotic cells. Exp Cell Res 2002; 280: 212-221 [PMID: 12513887 DOI: 10.1016/s0014-4827(02)00234-6]

Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 2002; 108: 345-356 [PMID: 11853669 DOI: 10.1016/s0092-8674(02)00630-x]

Melchior F, Schergaut M, Pichler A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 2003; 28: 612-618 [PMID: 14670902 DOI: 10.1016/S0968-0004(03)00092-2]

Jackson PK. A new RING for SUMO: wresting transcriptional responses into nuclear bodies with PIAS family proteins. Biochim Biophys Acta 2009; 1792: 155-162 [PMID: 19162180]

Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B, Hay RT. NEDD1, a highly conserved cysteine protease that deSUMOylates Cullins. J Biol Chem 2003; 278: 25637-25643 [PMID: 12730221 DOI: 10.1074/jbc.M212948200]

Shin EJ, Shin HM, Nam E, Kim WS, Kim JH, Oh BH, Yun Y. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep 2012; 13: 339-346 [PMID: 22370726 DOI: 10.1038/embor.2012.5]

Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005; 15: 536-541 [PMID: 16095902 DOI: 10.1016/j.gde.2005.07.004]

Seeler JS, Dejean A. SUMO: of branched proteins and nuclear bodies. Oncogene 2001; 20: 7243-7249 [PMID: 11704852 DOI: 10.1038/sj.onc.1204758]

Müller S, Matunis MJ. Deconjugation of SUMO: a multiple protein ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 1998; 17: 61-70 [PMID: 9427741 DOI: 10.1093/emboj/17.1.61]

Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 2007; 8: 550-555 [PMID: 17545995 DOI: 10.1038/sj.emboj.7400980]

Wilson VG. SUMO regulation of cellular processes. Dordrecht: Springer, 2009 [DOI: 10.1007/978-90-481-2649-1]

Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S. A mechanism for inhibiting the SUMO pathway. Mol Cell 2004; 16: 549-561 [PMID: 15446615 DOI: 10.1016/j.molcel.2004.11.007]

Boggio R, Passafaro A, Chiocca S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J Biol Chem 2007; 282: 15376-15382 [PMID: 17392274 DOI: 10.1074/jbc.M700889200]

Colombo R, Boggio R, Seiser C, Draetta GF, Chiocca S. The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase. 1. EMBO Rep 2002; 3: 1062-1068 [PMID: 12393750 DOI: 10.1093/embor/req213]

David G, Neptune MA, DePinho RA. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 2002; 277: 23658-23663 [PMID: 11960997 DOI: 10.1074/jbc.M206290200]
with the promyelocytic leukemia virus (PML) bodies and recruits its p53 to the PML bodies. *Virology* 2001; 286: 446-455

58 *Flemington* EK. Herpesvirus lytic replication and the cell cycle: arresting new developments. *J Virol* 2001; 75: 4475-4481

59 *González-Santamaría* J, Campagna M, García MA, Marcos-Villar L, González D, Gallego P, Lopitz-Otsoa F, Guerra S, Rodríguez MS, Esteban M, Rivas C. Regulation of vaccinia virus E3 protein by small ubiquitin-like modifier proteins. *J Virol* 2011; 85: 12890-12900 [DOI: 10.1128/JVI.00628-11]

60 *Wilson* VG, Ludes-Meyers J. A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. *J Virol* 1991; 65: 5314-5322 [PMID: 1654443]

61 *Rangasamy* D, Wilson VG. Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. *J Biol Chem* 2000; 275: 30487-30495 [DOI: 10.1074/jbc.M003898200]

62 *Rangasamy* D, Woytek K, Khan SA, Wilson VG. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. *J Biol Chem* 2000; 275: 37999-38004 [DOI: 10.1074/jbc.M007777200]

63 *Roberts* KL, Smith GL. Vaccinia virus morphogenesis and dissemination. *Trends Microbiol* 2008; 16: 472-479 [PMID: 18798694 DOI: 10.1016/j.tim.2008.07.009]

64 *Palacios* S, Perez LH, Welsch S, Schleich S, Chimielarska K, Melchior F, Locker JK. Quantitative SUMO-1 modification of a vaccinia virus protein is required for its specific localization and prevents its self-association. *Mol Biol Cell* 2005; 16: 2822-2835 [PMID: 15800065 DOI: 10.1091/mbc.E04-11-1005]

65 *Yueh* A, Leung J, Bhattacharyya S, Perrone LA, de los Santos K, Pu SY, Goff SP. Interaction of moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection. *J Virol* 2006; 80: 342-352 [PMID: 16352559 DOI: 10.1128/JVI.80.1.342-352.2006]

66 *Spidel* JL, Wilson CB, Craven RC, Wills JW. Genetic studies of the beta-hairpin loop of Rous sarcoma virus capsid protein. *J Virol* 2007; 81: 1288-1296 [PMID: 17093186 DOI: 10.1128/JVI.01551-06]

67 *Hale* BG, Randall RE, Ortin J, Jackson D. The multifunctional NS1 protein of influenza A viruses. *J Gen Virol* 2008; 89: 2359-2376 [PMID: 18796704 DOI: 10.1099/vir.0.2008/004606-0]

68 *Xu* K, Klenk C, Liu B, Keiner B, Cheng J, Zheng BJ, Li L, Han Q, Wang C, Li T, Chen Z, Shu Y, Liu J, Klenk HD, Sun B. Modification of nonstructural protein 1 of influenza A virus by SUMO1. *J Virol* 2011; 85: 1086-1098 [PMID: 21047957 DOI: 10.1128/JVI.00877-10]

69 * Castillo JP*, Kowalkif TJ. Human cytomegalovirus immediate early proteins and cell growth control. *Gene* 2002; 290: 19-34 [PMID: 12062798 DOI: 10.1016/S0378-1119(02)00556-8]

70 *Spengler* ML, Kurapatwinski K, Black AR, Azizkhan-Clifford J. SUMO-1 modification of human cytomegalovirus IE1/IE2. *J Virol* 2002; 76: 2990-2996 [PMID: 11861884 DOI: 10.1128/JVI.76.6.2990-2996.2002]

71 *Nevels* M, Brune W, Shenk T. SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. *J Virol* 2004; 78: 7805-7812 [PMID: 15220454 DOI: 10.1128/JVI.17.4.7805-7812.2004]

72 *Berndt* A, Hofmann-Winkler H, Tavalai N, Hahn G, Stamminger T. Importance of covalent and noncovalent SUMO interactions with the major human cytomegalovirus transactivator IE2p86 for viral infection. *J Virol* 2009; 83: 12881-12894 [PMID: 19812159 DOI: 10.1128/JVI.01525-09]

73 *Kim* ET, Kim YE, Huh YH, Ahn JH. Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. *J Virol* 2010; 84: 8111-8122 [PMID: 20591406 DOI: 10.1128/JVI.00459-10]
54 Singaligar E, Alvisi G, Segre CV, Mercorelli B, Muratore G, Winkler M, Hsiao HH, Urlaub H, Ripalda A, Chioca S, Palu G, Lorigan A. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630 [PMID: 23166733 DOI: 10.1371/journal.pone.0049630]

55 Adamson AL, Kenney S. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 2001; 75: 2388-2399 [PMID: 11160742 DOI: 10.1128/JVI.75.5.2388-2399.2001]

56 Hagemeier SR, Dickerson SJ, Meng Q, Yu X, Mertz JE, Kenney SC. Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 2010; 84: 4383-4394 [PMID: 20181712 DOI: 10.1128/JVI.02369-09]

57 Wen W, Iwaki D, Yamamoto K, Maruo S, Kanda T, Takada K. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 2007; 81: 1037-1042 [PMID: 17092827 DOI: 10.1128/JVI.01416-06]

58 Murata T, Hotta N, Toyama S, Nakayama S, Chiba S, Isomura H, Ohshima T, Kanda T, Tsurumi T. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 2010; 285: 23925-23935 [PMID: 20516603 DOI: 10.1074/jbc.M109.055356]

59 Chang LK, Liu ST, Kuo CW, Wang WH, Chuang JY, Bianchi E, Hong YR. Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBP2. J Mol Biol 2008; 379: 231-242 [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011]

60 Gershburg E, Pagano JS. Conserved herpes virus herpes kinases. Biochim Biophys Acta 2008; 1784: 203-212 [PMID: 17881303]

61 Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, Hayward SD. SUMO binding to the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86: 5412-5421 [PMID: 22398289 DOI: 10.1128/JVI.00314-12]

62 Holm gren SC, Patterson NA, Ozbun MA, Lambert PF. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol 2005; 79: 3938-3948 [PMID: 15767396 DOI: 10.1128/JVI.79.7.3938-3948.2005]

63 Marusin MB, Menuck N, Lien C, Banks L, Grm HS. Modification of human papillomavirus minor capsid protein L2 by sumoylation. J Virol 2010; 84: 11585-11589 [PMID: 20739540 DOI: 10.1128/JVI.00269-10]

64 Gött P, Stohlwasser R, Schützler P, Darai G, Bautz EK. RNA binding of recombinant nucleocapsid proteins of hantaviruses. Virology 1993; 194: 332-337 [PMID: 8480424 DOI: 10.1016/virology.1993.1263]

65 Lee BH, Yoshimatsu K, Maeda A, Ochiai K, Morimitsu M, Araki O, Gino M, Morikawa S, Arikawa J. Association of the nucleocapsid protein of the Seoul and Hantaan hantavirus with small ubiquitin-like modifier-1 related molecules. Virus Res 2003; 98: 83-91 [PMID: 14609633 DOI: 10.1016/j.virusres.2003.09.001]

66 Maeda A, Lee BH, Yoshimatsu K, Saigo M, Kurane I, Arikawa J, Morikawa S. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (UbC9). Virology 2003; 305: 288-297 [PMID: 12573574 DOI: 10.1006/viro.2002.1767]

67 Weldon RA, Sarkar P, Brown SM, Weldon SK. Mason-Pfizer monkey virus Gag proteins interact with the human sumo conjugating enzyme, hUbC9. Virology 2003; 314: 62-73 [PMID: 14517060 DOI: 10.1016/s0042-6822(03)00348-9]

68 Gurur C, Berthoux L, Luban J. Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1. J Virol 2005; 79: 910-917 [PMID: 15613319 DOI: 10.1128/JVI.79.2.910-917.2005]
virus type 1 genomes. PLoS Pathog 2011; 7: e1002123 [PMID: 21779164 DOI: 10.1371/journal.ppat.1002123]

116 **Cuchet D**, Sykes A, Nicolas A, Orr A, Murray J, Sirna H, Heeren J, Bartelt A, Everett RD. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 2011; 124: 280-291 [PMID: 21172801 DOI: 10.1242/jcs.075390]

117 **Boutell C**, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, McFarlane S, Everett RD. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog 2011; 7: e1002245 [PMID: 21949651 DOI: 10.1371/journal.ppat.1002245]

118 **Uzunova K**, Göttscke K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ. Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 2007; 282: 34167-34175 [PMID: 17726242 DOI: 10.1074/jbc.M706505200]

119 **Campbell M**, Izumiya Y. Post-Translational Modifications of Kaposi’s Sarcoma-Associated Herpesvirus Regulatory Proteins - SUMO and KSHV. Front Microbiol 2012; 3: 31 [PMID: 22347876]

120 **Reichelt M**, Brady J, Arvin AM. The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 2009; 83: 3904-3918 [PMID: 19193797 DOI: 10.1128/JVI.02137-08]

121 **Wang L**, Oliver SL, Sommer M, Rajamani J, Reichelt M, Arvin AM. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog 2011; 7: e1002157 [PMID: 21901090 DOI: 10.1371/journal.ppat.1002157]

122 **El-Mchichi B**, Regad T, Marouli MA, Rodriguez MS, Aminev A, Gerbaut S, Escriou N, Dianoux L, Chebel-Alix MK. SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010; 84: 11634-11645 [PMID: 20826694 DOI: 10.1128/JVI.01321-10]

123 **Lee HR**, Kim DJ, Lee JM, Choi CY, Ahn BY, Hayward GS, Ahn JH. Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 2004; 78: 6527-6542 [PMID: 15165746 DOI: 10.1128/JVI.78.12.6527-6542.2004]