Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms

Lidwina Priliani 1, Sukma Oktavianthi 1, Ria Hasnita 2,3, Hazrina T. Nussa 4, Rut C Inggriani 5, Clarissa A Febinia 1, Anom Bowolaksono 4, Rini Puspitaningrum 2, Rully A Nugroho 5, Ketut Suastika 6, Safarina G. Malik* 1

1 Eijkman Institute for Molecular Biology, Jakarta, Indonesia
2 Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta, Indonesia
3 Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
4 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
5 Faculty of Biology, Satya Wacana Christian University, Salatiga, Indonesia
6 Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia

Corresponding Author: Safarina G. Malik
Email address: ina@eijkman.go.id

Obesity prevalence is increasing worldwide, including in the Bali Province, Indonesia, a popular tourism destination area. The common single nucleotide polymorphisms (SNPs) rs9939609 and rs1421085 of the fat mass and obesity-associated (FTO) gene have been repeatedly reported as one of the important obesity genetic risk factors. We examined the associations of FTO rs9939609 and rs1421085 SNPs with obesity in the 612 unrelated Balinese subjects living in urban and rural areas. Linear and logistic regression analyses with adjustment for age and gender were employed to investigate the association between FTO genotypes, haplotypes and obesity parameters. We found that the FTO SNPs genotypes increased BMI by 1.25 kg/m² (p = 0.012) for rs9939609 AA and 1.12 kg/m² (p = 0.022) for rs1421085 CC, particularly in females and in rural population. Subjects carrying these genotypes also showed a tendency to maintain high BMI, regardless of their age. Our result showed that the FTO rs9939609 and rs1421085 risk alleles were associated with increased BMI and obesity in the Balinese.
Obesity in the Balinese is associated with FTO rs9939609 and rs1421085 single nucleotide polymorphisms

Lidwina Priliani¹, Sukma Oktavianthi¹, Ria Hasnita¹,²,³*, Hazrina T. Nussa¹,⁴*, Rut C. Inggriani¹,⁵*, Clarissa A. Febinia¹, Anom Bowolaksono⁴, Rini Puspitaningrum², Rully A. Nugroho⁵, Ketut Suastika⁶, Safarina G. Malik¹**

¹ Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
² Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
³ Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
⁴ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java 16424, Indonesia
⁵ Faculty of Biology, Satya Wacana Christian University, Salatiga, Central Java 50711, Indonesia
⁶ Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Universitas Udayana, Denpasar, Bali 80232, Indonesia

* These authors contribute equally

**Corresponding Author:
Safarina G. Malik
Jalan Diponegoro no. 69, Jakarta Pusat, 10430, Indonesia. Email address: ina@eijkman.go.id
Abstract

Obesity prevalence is increasing worldwide, including in the Bali Province, Indonesia, a popular tourism destination area. The common single nucleotide polymorphisms (SNPs) rs9939609 and rs1421085 of the fat mass and obesity-associated (FTO) gene have been repeatedly reported as one of the important obesity genetic risk factors. We examined the associations of FTO rs9939609 and rs1421085 SNPs with obesity in the 612 unrelated Balinese subjects living in urban and rural areas. Linear and logistic regression analyses with adjustment for age and gender were employed to investigate the association between FTO genotypes, haplotypes and obesity parameters. The minor allele frequency (MAF) for rs9939609 and rs1421085 were rather high, 0.42 and 0.41, respectively. We found that the FTO SNPs genotypes increased BMI by 1.25 kg/m² ($p = 0.012$) for rs9939609 AA and 1.12 kg/m² ($p = 0.022$) for rs1421085 CC, particularly in females and in rural population. Subjects carrying these genotypes also showed a tendency to maintain high BMI, regardless of their age. Our result showed that the FTO rs9939609 and rs1421085 risk alleles were associated with increased BMI and obesity in the Balinese.

Keywords

Obesity, Balinese, BMI, SNPs, FTO, rs9939609, rs1421085
Introduction

Rapid transition in lifestyle and diet towards excessive consumption of energy-dense food and reduction of physical activity results in rising obesity prevalence worldwide (World Health Organization). According to the National Basic Health Survey, obesity prevalence in Indonesia increases by 4.3% from 2007 to 2013, and 7% from 2013 to 2018, respectively (RISKESDAS, 2007, 2013, 2018). As a known leading risk factor for chronic non-communicable diseases (such as hypertension, type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), fatty liver, stroke, and some types of cancers), obesity contributes to economy and health burdens (Must et al., 1999; Basen-Engquist & Chang, 2011; Al-Goblan, Al-Alfi & Khan, 2014). As the risk of these chronic diseases increases and the quality of life decreases, the health care costs escalate (Withrow & Alter, 2011; Cawley & Meyerhoefer, 2012).

The complex interplay between environmental and multiple genetic factors that influence body mass index (BMI) has been proposed to trigger increased obesity and its comorbidities prevalences, with heritability estimated to be around 40–70% (Herrera & Lindgren, 2010). Among the significant obesity genetic risk factors, the common single nucleotide polymorphisms (SNPs) rs9939609 and rs1421085 in the fat mass and obesity-associated (FTO) gene have been consistently reported to be associated with obesity in distinct populations (Chang et al., 2008; Cha et al., 2008; Fawwad et al., 2015; Babenko et al., 2019).

Bali population has undergone rapid lifestyle transition from traditional to modern lifestyle in line with Bali’s escalating economic growth, most likely due to the increased tourism industry (Antara & Sumarniasih, 2017). Several studies showed the adoption of western diet, reduction of physical activities, increasing in socio-economic status and education are associated with
increase in adiposity (Huntsman, White & Gunung, 2005) and high obesity prevalence in the urban population (Suastika et al., 2011b). The obesity prevalence in Bali was 15.5%, higher than Indonesian obesity prevalence (14.8%) in 2013 (RISKESDAS, 2013). The interplay between genetics and lifestyle factors has been reported to contribute to obesity and its comorbidities in this population (Malik et al. 2011, Oktavianthi et al. 2012). In this study, we examined the association of FTO rs9939609 and rs1421085 with obesity in the Balinese of the Bali Province, Indonesia. We hypothesize that FTO gene variants play a role in modulating the increased of BMI and obesity risk in the Balinese.

Materials and Methods

Subjects, Study Design, Measurements

A cross-sectional study enrolling 612 participants from five locations (286 female and 326 male) in Bali Province, Indonesia, was conducted in 2008-2015 with written informed consent (Malik et al., 2011; Suastika et al., 2011b; Oktavianthi et al., 2012, 2018). The five locations represents urban (Legian and Denpasar) and rural (Penglipuran, Nusa Ceningan and Pedawa) settings, based on Statistics Indonesia’s criteria (Badan Pusat Statistik, 2010). The map and sample size of the five locations are shown in Supplementary Figure S1. Ethical approvals for this study were granted by the Eijkman Institute Research Ethics Commission (no. 32 on 27 October 2008 and no. 80 on 24 December 2014), and by the Faculty of Medicine Ethic Committee, Universitas Udayana (no. 690a/SKRT/X/2010 on 28 October 2010 and no. 1286/UN.14.2/Litbang/2014 on 18 September 2014). Collected demographic and anthropometric data include: age, gender, weight, height, and waist circumference (WC). Body mass index (BMI) was calculated as weight in kg divided by (height)2 in m2, while waist to height ratio (WHtR) was calculated as WC divided by height, both measured in the same unit. WHtR is a proxy for central (visceral) adipose
tissue (Swainson et al., 2017). The high BMI (BMI ≥25 kg/m²) and high WC (male ≥ 90 cm; female ≥ 80 cm) cut offs were according to the Asia-Pacific perspective redefining obesity in adult Asian, while the high WHtR cut off at ≥ 0.5 was based on previous reports (Lee et al., 1995; Hsieh & Yoshinaga, 1995; WHO Regional Office for the Western Pacific, 2000).

DNA extraction and genotyping

Genomic DNA was extracted as previously described (Malik et al., 2011). The FTO rs9939609 and rs1421085 variants were detected using amplification-refractory mutation system (ARMS) polymerase chain reaction (PCR). Detection of rs9939609 was performed using a previously published primer sets (Fawwad et al., 2015) while detection of rs1421085 was done using a novel primer sets, designed using Primer1 (Collins & Ke, 2012) and BioEdit® Sequence Alignment Editor (Ibis Bioscience, Carlsbed, CA, USA). Lists of outer and inner primers for ARMS-PCR is described in Supplementary Table S1. Optimization of the annealing temperature was done using the Veriti® 96 West Thermal Cycler [Applied Biosystem], while the ARMS-PCR was performed using GeneAmp® PCR System 9700 (Applied Biosystems, Foster City, CA, USA). ARMS-PCR conditions are described in Supplementary Table S1. PCR products were resolved on 2% agarose gel electrophoresis (Lonza, Basel, Switzerland). Confirmation of variant alleles were carried out by DNA sequencing using BigDye® Terminator v.3.1 Cycle Sequencing Kits, with ABI 3130xl Genetic Analyzer (Applied Biosystem).

Statistical analysis

Statistical analysis were carried out in R version 3.4.0 (www.r-project.org) with RStudio version 1.0.143 (www rstudio.com). The five sampling sites (four villages and one city) map was
generated from Google Static Maps using the "ggmap" and "ggrepel" packages. Continuous variables are presented as mean (±SD). All SNPs were tested for departure from Hardy–Weinberg equilibrium (HWE). Genotype distributions and linkage disequilibrium (LD) between SNP pairs were calculated using the "genetics" package (Warnes et al., 2019). Haplotypes were determined using expectation maximization (EM) algorithm as implemented in the "haplo.glm" function of the R "haplo.stats" library. Genetic associations analyses were conducted using both linear and logistic regression models with adjustments for age and gender (male/female). Significant level based on Bonferroni correction was set at 0.025 (p value = 0.050/2) (Nichols & Hayasaka, 2003).

Results

The Balinese characteristics

The characteristics of the study subjects are summarized in Table 1. The male to female ratio was comparable (53.3% vs. 46.7%). The Balinese showed a rather high mean of obesity parameter values (BMI 24.0 ± 4.83 kg/m2; WC 83.9 ± 11.6 cm; WHtR 0.53 ± 0.07). Genotype distribution for rs9939609 is TT 34%, TA 49%, and AA 17%; while for rs1421085 is TT 37%, TC 46%, and CC 18%. Minor allele frequency (MAF) for both variants were 0.42 and 0.41, respectively (Table 1). The rs9939609 and rs1421085 presented a high linkage disequilibrium with D' = 0.90 and r2 = 0.88.

FTO rs9939609 and FTO rs1421085 SNPs are associated with obesity

Of all the genetic models developed (Table S2 and S3), the recessive model was the most suitable for this population. In multiple linear regression analyses with recessive genetic model,
the minor rs9939609 AA and rs1421085 CC genotypes increased BMI by 1.25 kg/m^2 ($p = 0.012$) and by 1.12 kg/m^2 ($p = 0.022$), respectively. Multiple logistic regression results further confirmed these tendencies of increasing the odds of high BMI in subjects carrying the minor genotypes of both SNPs (odds ratio = 1.59, $p = 0.042$ for rs9939609; and odds ratio = 1.57, $p = 0.047$ for rs1421085). Of the non-genetic parameters, age was shown to influence BMI, and being male increased BMI and WC, while living in an urban setting increased all obesity parameters (Table 2).

To investigate the involvement of gender and environmental setting in relationship to FTO SNPs and obesity parameters, we conducted separate association analyses in male and female subjects (Table S4 and S5), as well as in urban and rural populations (Table S6 and S7). The significant associations between rs9939609 AA and the rs1421085 CC genotypes and increased BMI were only found in females in both linear (estimate = 1.97 kg/m2 and $p = 0.021$ for rs9939609 AA, estimate = 2.35 kg/m2 and $p = 0.005$ for rs1421085 CC genotypes) and logistic (odds ratio = 2.83 and $p = 0.003$ for rs9939609 AA, odds ratio = 3.36 and $p = 0.001$ for rs1421085 CC genotypes) regression analyses (Table 3).

These genotypes also presented distinct effects on obesity parameters in different environmental setting, as shown in Table 4. In urban, increased WC was inclined to be associated with the rs9939609 AA genotype in linear regression analysis (estimate = 3.04 cm, $p = 0.038$), and with the rs1421085 CC genotypes in logistic (odds ratio = 1.95, $p = 0.037$) regression analyses. Meanwhile in rural, rs9939609 AA showed a tendency to increase BMI by 1.53 kg/m^2 and the
rs1421085 CC genotypes demonstrated a significantly increased BMI by 1.65 kg/m2 ($p = 0.016$), and higher odds for high BMI (odds ratio = 2.25 and $p = 0.016$).

In haplotype analyses incorporating recessive genetic model, the AC haplotype consisting the minor alleles A of rs9939609 and C of rs1421085 was associated with obesity parameters (BMI by 0.73 kg/m2 ($p = 0.008$), WC by 1.47 cm ($p = 0.022$), respectively (Table S8). The AC haplotype demonstrated a tendency for increased WC by 1.99 cm ($p = 0.041$) in females (Table S9), and was also associated with increased BMI in rural population (Table S10).

FTO rs9939609 and FTO rs1421085 SNPs maintained high BMI in subjects older than the mean age of ≥ 46.6 years

The mean age of this population is 46.6 years old (Table 1). Our result showed that the obesity parameters (BMI, WC and WHtR) in subjects < 46.6 years have a tendency to increase, while in subjects ≥ 46.6 years, they have a tendency to decrease (Figure 1). Interestingly, subjects carrying the homozygous variants of both SNPs (rs9930609 AA and rs1421085 CC genotypes) sustained their high BMI regardless of their age, in contrast to the wild-type and heterozygous genotypes carriers which demonstrated a trend toward decreasing BMI with age. Meanwhile, the relationships between WC and WHtR and age are not modulated by the FTO genotypes (Figure 1).

Discussion

Association studies of the FTO gene with obesity or obesity-related traits have been reported in many populations across the world, confirming the strong association of FTO SNPs with BMI.
and/or obesity (Frayling et al., 2007; Scuteri et al., 2007; Hotta et al., 2008; Chang et al., 2008; Srivastava et al., 2016). A meta-analyses study demonstrated the correlation between FTO rs9939609 and rs1421085 with obesity in Hispanic, Caucasian, and Asian populations (Peng et al., 2011).

In Indonesian population, most report on FTO rs9939609 SNP association with obesity came from the western part of the country, namely North Sumatera (Lubis et al., 2017), Yogyakarta (Iskandar et al., 2018), West Sumatera (Susmiati et al., 2018), and DKI Jakarta (Daya et al., 2019). Despite the diversity of the Indonesian population (Karafet et al., 2010; Tumonggor et al., 2013) and the differences in sociocultural exposure, our report from Bali, which is located in the central part of Indonesia, showed that the FTO variants are also genetic risk factors for obesity in the Balinese, similar to previously reported populations from the western part of Indonesia.

In this study, we showed that having the FTO rs9939609 and rs1421085 SNPs risk alleles increase the risk for obesity. We have reported recently that individuals carrying the risk allele of rs9939609 demonstrated a higher risk to develop obesity due to preferences for high dietary fat intake (Daya et al., 2019). FTO might play a role in controlling feeding behaviour and energy expenditure (Fawcett & Barroso, 2010), the reduced of satiety responsiveness (Wardle et al., 2008), higher consumption of highly palatable food (Wardle et al., 2009), and loss of control over eating (Tanofsky-Kraff et al., 2009). Another study suggested a link between FTO, protein intake, and body weight (Merritt, Jamnik & El-Sohemy, 2018). All of these might influence the different effects of FTO on female vs. male, and urban vs. rural. In this study, we did not assess food intake, which is the limitation of this study.
Our current report indicated a gender-specific effect, where the associations of the A allele of rs9939609 and the C allele of rs14210845 with BMI were stronger in female than in male. These findings were consistent with previous studies in children and adolescents in Swedish and Chinese population (Jacobsson et al., 2008; Zhang et al., 2014). A meta-analysis study has found that 25 FTO SNPs including rs9939609 and rs1421085, were specifically associated with obesity in females only (Tan et al., 2014). This gender differences might be explained by the variation in body composition between males and females (Zillikens et al., 2008). A comparative study of twins in eight countries reported that there is a gender differences in the heritability of BMI (Schousboe et al., 2003). However, other studies have reported that the rs9939609 was associated with BMI in both gender (Frayling et al., 2007; Qi et al., 2008). These discrepancies may be due to distinct genetic background, environmental factors and sample sizes. Moderate sample size is another limitation of this study. Population-based studies with large sample size will be beneficial for further investigation of the possible interactions between FTO SNPs and genders.

In general the Balinese BMI tend to decrease by age, however, our result showed that high BMI is maintained in individual carrying the FTO rs9939609 and rs1421085 risk alleles. This may imply the long-lasting effect of FTO risk alleles in increasing the obesity risk, regardless of the age. The basal metabolic rate decreases along with age and will lead to metabolic abnormality (Henry, 2000). Our previous study showed that metabolic decline is more prominent in Balinese older subjects (Suastika et al., 2011a). Thus, awareness to maintain healthy lifestyle should begin from younger age to prevent obesity and its related comorbidities. A survey of nutritional habits
in teenagers reported that eating errors (i.e. irregular eating, skipping breakfast) were more
frequently observed in overweight and student having obesity as compared to the normal weight
ones, and emphasized the importance of conveying the knowledge on the causes of overweight
and obesity and the rules of healthy dieting (Zalewska & Maciorkowska, 2017).

Our previous studies in Balinese showed that the associations between genetic risk factors and
obesity were different in urban dan rural area. In this study and our previous study of ADRB3
SNP showed that the association between genetic risk factor and obesity were found in rural
(Malik et al., 2011). However, the association between UCP2 genetic risk factors and obesity
was only found in urban (Oktavianthi et al., 2012). Discrepancies between urban and rural might
be due to the influence of lifestyle and environmental exposures, as well as gene-environment
interaction. Urban and rural have their own environmental characteristics. The characteristics of
urban area include population density of \(\geq 5,000 \) persons/km\(^2\), less than 25 % work in the
agricultural sector and have more than 8 public facilities (i.e. high school, health center, roads
that can accommodate 4 wheeled motorized vehicles, factories, etc.). The characteristic of rural
area include population density of < 1000 and most of the land are used for farming (Mulyana,
2014). All of these might influence their lifestyle, from being active and hardworking as farmers
or fishermen into less active as hotel worker or small store owners. Urban people also consume
more ready-to-eat food and their food variation are lower than rural (Ghaisani, 2017).

Obesity is influenced by a complex interplay between multiple genes and environmental risk
factors, such as consumption of high energy dense food and sedentary lifestyle. These powerful
combination might predispose the high prevalence of obesity in urbans, which increased the risk
to develop non-communicable disease. Nevertheless, a recent report revealed that contrary to the major views, more than 80% of the global rise in mean BMI from 1985 to 2017 in some low- and middle-income countries was accounted for BMI increases in rural areas (NCD Risk Factor Collaboration (NCD-RisC), 2019).

Conclusion

The Balinese population showed a high MAF of the FTO rs9939609 and rs1421085 risk alleles that were associated with increased BMI and obesity. Considering that these risk alleles could have a long-lasting effect in this population, knowledge on healthy lifestyle and diet should be introduced and endorsed not only to the urban Balinese, but also to the rural population, although their average BMI are still within the normal range.

Additional Information and declarations

Funding

The research was supported by the block grant from the Government of Republic of Indonesia through the Ministry of Research, Technology and Higher Education for the Eijkman Institute for Molecular Biology.

Competing Interests

The authors declare there are no competing interests.

Author Contributions
Lidwina Priliani designed the experiments, analyzed the data, wrote the paper, prepared figures and/or tables, and reviewed drafts of the paper.

Sukma Oktavianthi analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, and reviewed drafts of the paper.

Ria Hasnita, Hazrina T. Nussa, Rut C. Inggriani, performed the experiments and data analyses.

Clarissa A. Febinia and Ketut Suastika contributed reagents/materials/analysis tools, and reviewed drafts of the paper.

Anom Bowolaksono, Rini Puspitaningrum and Rully A. Nugroho reviewed drafts of the paper.

Safarina G. Malik conceived and designed the study, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Human Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

Ethical approvals for this study were granted by the Eijkman Institute Research Ethics Commission (no. 32 on 27 October 2008 and no. 80 on 24 December 2014), and by the Faculty of Medicine Ethic Committee, Universitas Udayana (no. 690a/SKRT/X/2010 on 28 October 2010 and no. 1286/UN.14.2/Litbang/2014018 September 2014).

Acknowledgement
The authors are grateful to all volunteers for their participation in this study. The authors thanked Drs. Made Ratna Saraswati, Pande Dwipayana, Desak Made Wihandani, and I Wayan Weta for their support during sample collections. We thanked the field medical doctors, medical faculty students, clinical pathology laboratory and research assistants for their support in this study. We thanked dr. Ni Luh Made Agustini Leonita for her help in DNA isolation. We are grateful to Profs. Herawati Sudoyo and Sangkot Marzuki for their support and encouragements.

References

Al-Goblan AS, Al-Alfi MA, Khan MZ. 2014. Mechanism linking diabetes mellitus and obesity. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy* 7:587–591. DOI: 10.2147/DMSO.S67400.

Antara M, Sumarniasih MS. 2017. Role of Tourism in Economy of Bali and Indonesia. *Journal of Tourism and Hospitality Management* 5. DOI: 10.15640/jthm.v5n2a4.

Babenko V, Babenko R, Gamieldien J, Markel A. 2019. FTO haplotyping underlines high obesity risk for European populations. *BMC medical genomics* 12:46. DOI: 10.1186/s12920-019-0491-x.

Badan Pusat Statistik. 2010. *Peraturan kepala badan pusat statistik nomor 37 tahun 2010 tentang klasifikasi perkotaan dan perdesaan di Indonesia. Buku 3. Bali, Nusa Tenggara, Kalimantan, Sulawesi, Maluku dan Papua*. Badan Pusat Statistik.

Basen-Engquist K, Chang M. 2011. Obesity and Cancer Risk: Recent Review and Evidence. *Current oncology reports* 13:71–76. DOI: 10.1007/s11912-010-0139-7.
Cawley J, Meyerhoefer C. 2012. The medical care costs of obesity: an instrumental variables approach. *Journal of Health Economics* 31:219–230. DOI: 10.1016/j.jhealeco.2011.10.003.

Cha SW, Choi SM, Kim KS, Park BL, Kim JR, Kim JY, Shin HD. 2008. Replication of genetic effects of FTO polymorphisms on BMI in a Korean population. *Obesity (Silver Spring, Md.)* 16:2187–2189. DOI: 10.1038/oby.2008.314.

Chang Y-C, Liu P-H, Lee W-J, Chang T-J, Jiang Y-D, Li H-Y, Kuo S-S, Lee K-C, Chuang L-M. 2008. Common Variation in the Fat Mass and Obesity-Associated (FTO) Gene Confers Risk of Obesity and Modulates BMI in the Chinese Population. *Diabetes* 57:2245–2252. DOI: 10.2337/db08-0377.

Collins A, Ke X. 2012. Primer1: Primer design Web service for Tetra-Primer ARMS-PCR. *The Open Bioinformatics Journal* 6:55–58. DOI: Collins, Andrew and Ke, Xiayi (2012) Primer1: Primer design Web service for Tetra-Primer ARMS-PCR. The Open Bioinformatics Journal, 6, 55-58. (doi:10.2174/1875036201206010055 <http://dx.doi.org/10.2174/1875036201206010055>).

Daya M, Pujiangto DA, Witjaksono F, Priliani L, Susanto J, Lukito W, Malik SG. 2019. Obesity risk and preference for high dietary fat intake are determined by FTO rs9939609 gene polymorphism in selected Indonesian adults. *Asia Pacific Journal of Clinical Nutrition* 28:183–191. DOI: 10.6133/apjcn.201903_28(1).0024.

Fawcett KA, Barroso I. 2010. The genetics of obesity: FTO leads the way. *Trends in genetics: TIG* 26:266–274. DOI: 10.1016/j.tig.2010.02.006.

Fawwad A, Siddiqui IA, Zeeshan NF, Shahid SM, Basit A. 2015. Association of SNP rs9939609 in FTO gene with metabolic syndrome in type 2 diabetic subjects, recruited from a
tertiary care unit of Karachi, Pakistan. *Pakistan Journal of Medical Sciences* 31:140–145. DOI: 10.12669/pjms.311.6524.

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch A-M, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin M-R, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJF, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CNA, Doney ASF, Morris AD, Smith GD, Hattersley AT, McCarthy MI. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. *Science (New York, N.Y.)* 316:889–894. DOI: 10.1126/science.1141634.

Ghaisani L. 2017. Perkembangan Pola Konsumsi Pangan menurut Wilayah dan Tingkat Pendapatan di Provinsi Bali Tahun 2009-2015. Bogor: Institute Pertanian Bogor.

Henry CJ. 2000. Mechanisms of changes in basal metabolism during ageing. *European Journal of Clinical Nutrition* 54 Suppl 3:S77-91.

Herrera BM, Lindgren CM. 2010. The Genetics of Obesity. *Current Diabetes Reports* 10:498–505. DOI: 10.1007/s11892-010-0153-z.

Hotta K, Nakata Y, Matsuo T, Kamohara S, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Masuzaki H, Yoneda M, Nakajima A, Miyazaki S, Tokunaga K, Kawamoto M, Funahashi T, Hamaguchi K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Nakao K, Sakata T, Matsuzawa Y, Tanaka K, Kamatani N, Nakamura Y. 2008. Variations in the FTO gene are associated with severe obesity in the Japanese. *Journal of Human Genetics* 53:546–553. DOI: 10.1007/s10038-008-0283-1.
Hsieh SD, Yoshinaga H. 1995. Abdominal fat distribution and coronary heart disease risk factors in men-waist/height ratio as a simple and useful predictor. *International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity* 19:585–589.

Huntsman AC, White NG, Gunung K. 2005. Anthropometry, lifestyles and fat patterning in Balinese women. *Annals of Human Biology* 32:599–619. DOI: 10.1080/03014460500234244.

Iskandar K, Patria SY, Huriyati E, Luglio HF, Julia M, Susilowati R. 2018. Effect of FTO rs9939609 variant on insulin resistance in obese female adolescents. *BMC Research Notes* 11:300. DOI: 10.1186/s13104-018-3392-8.

Jacobsson JA, Danielsson P, Svensson V, Klovins J, Gyllensten U, Marcus C, Schiöth HB, Fredriksson R. 2008. Major gender difference in association of FTO gene variant among severely obese children with obesity and obesity-related phenotypes. *Biochemical and Biophysical Research Communications* 368:476–482. DOI: 10.1016/j.bbrc.2008.01.087.

Karafet TM, Hallmark B, Cox MP, Sudoyo H, Downey S, Lansing JS, Hammer MF. 2010. Major east-west division underlies Y chromosome stratification across Indonesia. *Molecular Biology and Evolution* 27:1833–1844. DOI: 10.1093/molbev/msq063.

Lee JS, Aoki K, Kawakubo K, Gunji A. 1995. A study on indices of body fat distribution for screening for obesity. *Sangyo Eiseigaku Zasshi = Journal of Occupational Health* 37:9–18.

Lubis SM, Fattah M, Damanik HA, Batubara JRL. 2017. Association of Fat Mass and Obesity-associated Gene (FTO) rs9939609 Variant with Early Onset Obesity among Batakinese...
and Chinese Children in Indonesia: A Case-control Study. *The Indonesian Biomedical Journal* 9:147–52. DOI: 10.18585/inabj.v9i3.322.

Malik SG, Saraswati MR, Suastika K, Trimarsanto H, Oktavianthi S, Sudoyo H. 2011. Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: a pilot study. *BMC research notes* 4:1. DOI: 10.1186/1756-0500-4-167.

Merritt DC, Jamnik J, El-Sohemy A. 2018. FTO genotype, dietary protein intake, and body weight in a multiethnic population of young adults: a cross-sectional study. *Genes & Nutrition* 13. DOI: 10.1186/s12263-018-0593-7.

Mulyana W. 2014. Rural-Urban Linkages: Indonesia Case Study. In: *Working Paper Series No 126. Working Group: Development with Territorial Cohesion. Territorial Cohesion for Development Program*. Rimisp, Santiago, Chile.

Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. 1999. The disease burden associated with overweight and obesity. *JAMA* 282:1523–1529.

NCD Risk Factor Collaboration (NCD-RisC). 2019. Rising rural body-mass index is the main driver of the global obesity epidemic in adults. *Nature* 569:260–264. DOI: 10.1038/s41586-019-1171-x.

Nichols T, Hayasaka S. 2003. Controlling the familywise error rate in functional neuroimaging: a comparative review. *Statistical Methods in Medical Research* 12:419–446. DOI: 10.1191/0962280203sm341ra.

Oktavianthi S, Saraswati MR, Suastika K, Dwipayana P, Sulifianti A, Hayati RF, Trimarsanto H, Febinia CA, Sudoyo H, Malik SG. 2018. Transcription factor 7-like 2 single nucleotide
polymorphisms are associated with lipid profile in the Balinese. *Molecular Biology Reports* 45:1135–1143. DOI: 10.1007/s11033-018-4265-x.

Oktavianthi S, Trimarsanto H, Febinia CA, Suastika K, Saraswati MR, Dwipayana P, Arindrarto W, Sudoyo H, Malik SG. 2012. Uncoupling protein 2 gene polymorphisms are associated with obesity. *Cardiovascular Diabetology* 11:41. DOI: 10.1186/1475-2840-11-41.

Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. 2011. FTO gene polymorphisms and obesity risk: a meta-analysis. *BMC medicine* 9:71. DOI: 10.1186/1741-7015-9-71.

Qi L, Kang K, Zhang C, van Dam RM, Kraft P, Hunter D, Lee C-H, Hu FB. 2008. Fat Mass–and Obesity-Associated (FTO) Gene Variant Is Associated With Obesity. *Diabetes* 57:3145–3151. DOI: 10.2337/db08-0006.

RISKESDAS. 2007. *Riset Kesehatan Dasar*. Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia.

RISKESDAS. 2013. *Riset Kesehatan Dasar*. Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia.

RISKESDAS. 2018. *Riset Kesehatan Dasar*. Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia.

Schousboe K, Willemsen G, Kyvik KO, Mortensen J, Boomsma DI, Cornes BK, Davis CJ, Fagnani C, Hjemborj J, Kaprio J, De Lange M, Luciano M, Martin NG, Pedersen N, Pietiläinen KH, Rissanen A, Saarni S, Sørensen TIA, Van Baal GCM, Harris JR. 2003. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. *Twin Research: The Official Journal of the International Society for Twin Studies* 6:409–421. DOI: 10.1375/136905203770326411.
Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR. 2007. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. *PLoS genetics* 3:e115. DOI: 10.1371/journal.pgen.0030115.

Srivastava A, Mittal B, Prakash J, Srivastava P, Srivastava N, Srivastava N. 2016. Association of FTO and IRX3 genetic variants to obesity risk in north India. *Annals of Human Biology* 43:451–456. DOI: 10.3109/03014460.2015.1103902.

Suastika K, Dwipayana P, Saraswati MR, Kuswardhani T, Astika N, Putrawan IB, Matsumoto K, Kajiwara N, Taniguchi H. 2011a. Relationship between age and metabolic disorders in the population of Bali. 2:47–52. DOI: 10.1016/j.jcgg.2011.03.001.

Suastika K, Gotera W, Budhiarta AA, Sutanegara IND, Gunadi IGN, Nadha KB, Wita W, Rina K, Santos A, Matsumoto K, Kajiwara N, Taniguchi H. 2011b. Prevalence of obesity, metabolic syndrome, impaired fasting glycemia, and diabetes in selected villages of Bali, Indonesia. *Journal of the ASEAN Federation of Endocrine Societies* 26:159–162. DOI: 10.15605/jafes.026.02.14.

Susmiati, Lipoeto NI, Surono IS, Jamsari J. 2018. Association of Fat Mass and Obesity-associated rs9939609 Polymorphisms and Eating Behaviour and Food Preferences in Adolescent Minangkabau Girls - SciAlert Responsive Version. 17:471–479. DOI: 10.3923/pjn.2018.471.479.
Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. 2017. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. *PloS One* 12:e0177175. DOI: 10.1371/journal.pone.0177175.

Tan L-J, Zhu H, He H, Wu K-H, Li J, Chen X-D, Zhang J-G, Shen H, Tian Q, Krousel-Wood M, Papasian CJ, Bouchard C, Pérusse L, Deng H-W. 2014. Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries. *PloS One* 9:e96149. DOI: 10.1371/journal.pone.0096149.

Tanofsky-Kraff M, Han JC, Anandalingam K, Shomaker LB, Columbo KM, Wolkoff LE, Kozlosky M, Elliott C, Ranzenhofer LM, Roza CA, Yanovski SZ, Yanovski JA. 2009. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. *The American Journal of Clinical Nutrition* 90:1483–1488. DOI: 10.3945/ajcn.2009.28439.

Tumonggor MK, Karafet TM, Hallmark B, Lansing JS, Sudoyo H, Hammer MF, Cox MP. 2013. The Indonesian archipelago: an ancient genetic highway linking Asia and the Pacific. *Journal of Human Genetics* 58:165–173. DOI: 10.1038/jhg.2012.154.

Wardle J, Carnell S, Haworth CMA, Farooqi IS, O’Rahilly S, Plomin R. 2008. Obesity associated genetic variation in FTO is associated with diminished satiety. *The Journal of Clinical Endocrinology and Metabolism* 93:3640–3643. DOI: 10.1210/jc.2008-0472.

Wardle J, Llewellyn C, Sanderson S, Plomin R. 2009. The FTO gene and measured food intake in children. *International Journal of Obesity (2005)* 33:42–45. DOI: 10.1038/ijo.2008.174.

Warnes G, Gorjanc with contributions from G, Leisch F, Man and M. 2019. *genetics: Population Genetics.*
WHO Regional Office for the Western Pacific. 2000. *The Asia-Pacific perspective: redefining obesity and its treatment*. Sydney: Health Communications Australia.

Withrow D, Alter DA. 2011. The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. *Obesity Reviews: An Official Journal of the International Association for the Study of Obesity* 12:131–141. DOI: 10.1111/j.1467-789X.2009.00712.x.

World Health Organization. Obesity and overweight. *Available at https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight* (accessed April 10, 2019).

Zalewska M, Maciorkowska E. 2017. Selected nutritional habits of teenagers associated with overweight and obesity. *PeerJ* 5:e3681. DOI: 10.7717/peerj.3681.

Zhang M, Zhao X, Cheng H, Wang L, Xi B, Shen Y, Hou D, Mi J. 2014. Age- and Sex-Dependent Association between FTO rs9939609 and Obesity-Related Traits in Chinese Children and Adolescents. *PLOS ONE* 9:e97545. DOI: 10.1371/journal.pone.0097545.

Zillikens MC, Yazdanpanah M, Pardo LM, Rivadeneira F, Aulchenko YS, Oostra BA, Uitterlinden AG, Pols H a. P, van Duijn CM. 2008. Sex-specific genetic effects influence variation in body composition. *Diabetologia* 51:2233–2241. DOI: 10.1007/s00125-008-1163-0.
Figure 1

Association between obesity parameters and age within FTO SNPs alleles

Upper panel: FTO rs9939609 showing (A) BMI, (B) WC, and (C) WHtR. Lower panel: FTO rs1421085 showing (D) BMI, (E) WC, and (F) WHtR.
Table 1 (on next page)

Characteristics and genotypes of studied subjects

Data are presented as mean (± SD) for age, weight, height BMI, WC, WHtR, and n (%) for gender and genotypes frequency. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio, MAF: minor allele frequencies, HWE: Hardy Weinberg equilibrium, LD: linkage disequilibrium. *n (%). The significant p-values are <0.05.
Table 1. Characteristics and genotypes of studied subjects

Variables	Total (n = 612)	Male (n = 326)	Female (n = 286)	Urban (n = 318)	Rural (n = 294)
Age (years)	46.6 ± 14.6	47.9 ± 13.1	45.0 ± 16.0	42.8 ± 12.7	50.7 ± 15.5
Weight (kg)	61.4 ± 14.6	66.3 ± 13.7	55.7 ± 13.6	66.7 ± 14.5	55.6 ± 12.4
Height (cm)	159.0 ± 8.9	165.0 ± 7.7	154 ± 6.1	162.0 ± 8.4	157.0 ± 8.7
BMI	24.0 ± 4.8	24.4 ± 4.5	23.5 ± 5.1	25.4 ± 4.7	22.5 ± 4.5
WC (cm)	83.9 ± 11.6	86.5 ± 11.4	81.0 ± 11.1	87.5 ± 11.2	80.0 ± 10.7
WHtR	0.5 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.5 ± 0.1	0.5 ± 0.1

FTO rs9939609*					
TT	208 (34)	103 (32)	105 (37)	116 (36)	92 (31)
TA	300 (49)	160 (49)	140 (49)	138 (43)	162 (55)
AA	104 (17)	63 (19)	41 (14)	64 (20)	40 (14)
p-value HWE	0.868	1	0.709	0.065	0.022
MAF	0.42	0.44	0.39	0.42	0.41

FTO rs1421085*					
TT	224 (37)	114 (35)	110 (38)	126 (40)	98 (33)
TC	280 (46)	146 (45)	134 (47)	135 (42)	145 (49)
CC	108 (18)	66 (20)	42 (15)	57 (18)	51 (17)
p-value HWE	0.209	0.140	0.901	0.059	0.905
MAF	0.41	0.43	0.38	0.39	0.42
LD Corr	0.88	0.87	0.90	0.88	0.89
D'	0.90	0.89	0.92	0.93	0.90

Data are presented as mean (± SD) for age, weight, height BMI, WC, WHtR, and n (%) for gender and genotypes frequency. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio, MAF: minor allele frequencies, HWE: Hardy Weinberg equilibrium, LD: linkage disequilibrium. *n (%). The significant p-values are <0.05.
Table 2 (on next page)

Associations of FTO SNPs with obesity*

*Recessive model. Statistical analysis was done using linear regression model, with adjustments for age, gender (male/female) and population (urban/rural). The model used for linear regression: outcome ~ SNPs + age + gender + population. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male’s WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold ($p < 0.025$).
Table 2. Associations of FTO SNPs with obesity*

	N = 612					
	BMI	WC	WHtR			
	Estimates	p	Estimates	p	Estimates	p
FTO rs9939609						
AA	1.25	**0.012**	1.51	0.190	0.01	0.363
Age (years)	-0.01	0.482	0.01	0.633	<0.01	**0.011**
Male	0.82	0.029	5.26	**<0.001**	<0.01	0.467
Urban	2.73	**<0.001**	7.49	**<0.001**	0.03	**<0.001**
FTO rs1421085						
CC	1.12	**0.022**	1.86	0.102	0.01	0.156
Age (years)	-0.01	0.438	0.01	0.679	<0.01	**0.013**
Male	0.82	0.029	5.24	**<0.001**	<0.01	0.444
Urban	2.80	**<0.001**	7.56	**<0.001**	0.03	**<0.001**

	N = 612					
		High BMI				
			High WC			
				High WHtR		
	Odds Ratio	p	Odds Ratio	p	Odds Ratio	p
FTO rs9939609						
AA	1.59	0.042	1.31	0.228	1.17	0.506
Age (years)	1.00	0.800	1.01	0.260	1.00	0.546
Male	1.67	**0.004**	0.53	**<0.001**	0.94	0.714
Urban	3.14	**<0.001**	2.77	**<0.001**	2.93	**<0.001**
FTO rs1421085						
CC	1.57	0.047	1.52	0.060	1.49	0.090
Age (years)	1.00	0.745	1.01	0.294	1.00	0.600
Male	1.67	**0.004**	0.53	**<0.001**	0.93	0.664
Urban	3.22	**<0.001**	2.81	**<0.001**	2.96	**<0.001**

*Recessive model. Statistical analysis was done using linear regression model, with adjustments for age, gender (male/female) and population (urban/rural). The model used for linear regression: outcome ∼ SNPs + age + gender + population. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male’s WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold (p < 0.025).
Table 3 (on next page)

Associations of FTO SNPs with obesity in male vs. female*

*Recessive model. Statistical analysis was done using logistic regression model while adjusting for age and population (urban/rural). The model used for linear regression: outcome ~ SNPs + age + population. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male’s WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold (p < 0.025).
Table 3. Associations of FTO SNPs with obesity in male vs. female*

	Male (n = 326)	Female (n = 286)										
	BMI	WC	WHtR	BMI	WC	WHtR						
	Estimates	p	Estimates	p	Estimates	p	Estimates	p	Estimates	p		
FTO rs9939609												
AA	0.69	0.242	0.83	0.569	<0.01	0.848	1.97	0.021	2.11	0.251	0.01	0.314
Age (years)	-0.02	0.186	-0.04	0.341	<0.01	0.331	-0.01	0.715	0.04	0.369	<0.01	0.053
Urban	3.44	<0.001	9.32	<0.001	0.04	<0.001	1.91	0.003	5.53	<0.001	0.02	0.014
FTO rs1421085												
CC	0.23	0.688	0.61	0.670	<0.01	0.850	2.35	0.005	3.48	0.056	0.02	0.067
Age (years)	-0.02	0.168	-0.04	0.323	<0.01	0.337	-0.01	0.693	0.04	0.395	<0.01	0.059
Urban	3.49	<0.001	9.36	<0.001	0.04	<0.001	2.03	0.002	5.66	<0.001	0.02	0.010

	High BMI	High WC	High WHtR	High BMI	High WC	High WHtR						
	Odds Ratio	p	Odds Ratio	p	Odds Ratio	p	Odds Ratio	p	Odds Ratio	p		
FTO rs9939609												
AA	1.02	0.948	1.11	0.73	1.08	0.795	2.83	0.003	1.61	0.185	1.22	0.586
Age (years)	0.99	0.359	1.00	0.991	0.99	0.388	1.00	0.871	1.01	0.26	1.01	0.204
Urban	4.43	<0.001	3.41	<0.001	3.62	<0.001	2.03	0.016	2.25	0.002	2.46	0.001
FTO rs1421085												
CC	0.90	0.716	1.32	0.343	1.53	0.175	3.36	0.001	1.85	0.085	1.41	0.344
Age (years)	0.99	0.361	1.00	0.958	0.99	0.359	1.00	0.850	1.01	0.270	1.01	0.214
Urban	4.45	<0.001	3.42	<0.001	3.63	<0.001	2.22	0.008	2.33	0.002	2.49	0.001

*R新模式。统计分析使用逻辑回归模型进行，同时调整年龄和人口（城市/农村）。

*The model used for linear regression: outcome ~ SNPs + age + population. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male's WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold (p < 0.025).
Associations of FTO SNPs with obesity in urban vs. rural*

*Recessive model. Statistical analysis was done using logistic regression model while adjusting for age and gender (male/female). The model used for linear regression: outcome ~ SNPs + age + gender. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male’s WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold (p < 0.025).
Table 4. Associations of FTO SNPs with obesity in urban vs. rural*

	Urban (n = 318)			Rural (n = 294)		
	BMI	WC	WHtR	BMI	WC	WHtR
	Estimates p	Estimates p	Estimates p	Estimates p	Estimates p	Estimates p
FTO rs9939609						
AA	1.09 0.097	3.04 0.038	0.02 0.088	1.53 0.043	-0.59 0.743	<0.01 0.694
Age (years)	0.03 0.192	0.14 0.003	<0.01 <0.001	-0.04 0.012	-0.09 0.026	<0.01 0.518
Male	1.28 0.021	6.22 <0.001	<0.01 0.978	-0.04 0.932	2.94 0.018	-0.02 0.044
FTO rs1421085						
CC	0.63 0.361	2.03 0.189	0.01 0.326	1.65 0.016	1.68 0.304	0.01 0.286
Age (years)	0.03 0.213	0.14 0.004	<0.01 <0.001	-0.04 0.010	-0.09 0.020	<0.01 0.460
Male	1.32 0.018	6.29 <0.001	<0.01 0.974	-0.05 0.915	2.87 0.021	-0.02 0.037

	High BMI Odds Ratio p	High WC Odds Ratio p	High WHtR Odds Ratio p	High BMI Odds Ratio p	High WC Odds Ratio p	High WHtR Odds Ratio p
FTO rs9939609						
AA	1.36 0.285	1.71 0.075	1.69 0.141	2.10 0.044	0.92 0.828	0.84 0.625
Age (years)	1.01 0.585	1.03 0.008	1.04 0.001	0.99 0.160	0.99 0.291	0.98 0.042
Male	2.17 0.001	0.55 0.017	0.91 0.726	1.02 0.936	0.41 <0.001	0.72 0.168
FTO rs1421085						
CC	1.19 0.567	1.95 0.037	1.75 0.143	2.25 0.016	1.20 0.585	1.38 0.304
Age (years)	1.00 0.610	1.03 0.010	1.04 0.001	0.99 0.140	0.99 0.269	0.98 0.034
Male	2.19 0.001	0.54 0.015	0.91 0.733	1.02 0.951	0.41 <0.001	0.71 0.148

*Recessive model. Statistical analysis was done using logistic regression model while adjusting for age and gender (male/female). The model used for linear regression: outcome ~ SNPs + age + gender. BMI: body mass index, WC: waist circumference, WHtR: waist to height ratio. High BMI: BMI ≥ 25; High WC: male’s WC ≥ 90 cm and female’s WC ≥ 80 cm; High WHtR: WHtR ≥ 0.5. The significant p-values after Bonferroni correction are indicated in bold (p < 0.025).