Complete WMAP Constraints on Bandlimited Inflationary Features

Cora Dvorkin and Wayne Hu

1Kavli Institute for Cosmological Physics, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637
2Department of Physics, University of Chicago, Chicago, IL 60637
3Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637

Using a principal component (PC) basis that accommodates order unity features in the slow roll parameters as fine as 1/10 of a decade across more than 2 decades of the inflationary expansion, we test slow roll and single field inflation with the WMAP7 data. Detection of any non-zero component would represent a violation of ordinary slow roll and indicate a feature in the inflaton potential or sound speed. Although one component shows a deviation at the 98% CL, it cannot be considered statistically significant given the 20 components tested. The maximum likelihood PC parameters only improves 2ΔlnL by 17 for the 20 parameters associated with known glitches in the WMAP power spectrum at multipoles ℓ < 60. We make model-independent predictions for the matching glitches in the polarization spectrum that would test their inflationary origin. This complete analysis for bandlimited features in the source function of generalized slow roll can be used to constrain parameters of specific models of the inflaton potential without requiring a separate likelihood analysis for each choice. We illustrate its use by placing bounds on the height and width of a step-like feature in the potential proposed to explain the glitch at 20 ≤ ℓ ≤ 40. Even allowing for the presence of features in the temperature spectrum, single field inflation makes sharp falsifiable predictions for the acoustic peaks in the polarization whose violation would require extra degrees of freedom.

I. INTRODUCTION

Observed glitches in the WMAP power spectrum of cosmic microwave background (CMB) temperature fluctuations have motivated many studies of features in the initial conditions. Most of these studies have focused on the reconstruction of the curvature power spectrum through parametric, minimally parametric or regularized inverse techniques (e.g. [2–12]).

Reconstruction of the curvature spectrum suffers from two potential issues. Given that fine scale features are observable at high wavenumber, parametric models are not complete unless a very large number of parameters are employed. Secondly, not all curvature power spectra can arise from physical mechanisms in the early universe making parametric models potentially overcomplete and subject to fitting the noise instead of fitting the physics. For example, a delta function in the initial curvature spectrum would be highly observable but not expected to arise in any physical model.

For the purposes of testing inflationary models of the initial conditions one can instead try to constrain the shape of the inflaton potential under the assumption that inflation arises from a single scalar field with a canonical kinetic term. Specific potentials have been used to test the origin of the low quadrupole moment, the glitches at multipole moments ℓ = 20 – 40 and glitches near the WMAP beam scale [1, 13, 14]. On the other hand, model-independent reconstruction approaches have implicitly or explicitly assumed a slowly varying inflaton potential [15, 20].

Sharp features in the inflaton potential cause features in the temperature power spectrum [21, 22]. As long as those features are of small amplitude, inflation continues uninterrupted but certain slow roll parameters are neither constant nor necessarily small. The generalized slow roll (GSR) approach [23, 24] can be used to analyze such cases. In particular to good approximation there is a single source function that encodes observable features in the inflation potential [25] for canonical kinetic terms or the sound speed for non-canonical terms [27]. This function is also closely related to the source of corresponding bispectrum features [28]. In previous work, we studied the strong constraints on this function imposed by the precise and featureless measurements around the first acoustic peak through a low order principal components decomposition [29].

In this paper, we extend our previous analysis to a basis of 20 principal components for the source function of inflationary features. This basis is complete for models where the features vary no more rapidly than 10 per decade of the expansion or about 4 per efold during inflation. In §II we review the GSR and principal components technique. In Appendix A we describe numerical techniques used to reduce the computation time of the analysis. We test the validity of the GSR approximation in Appendix B. We present the results of the WMAP likelihood analysis in §IV. In §V we develop tests of single field inflation and consider applications to specific classes of potentials. We discuss these results in §V.

II. METHODOLOGY

We use the generalized slow roll (GSR) approximation and principal components to study features generated by single-field inflation. We refer the reader to Ref. [29] for details but provide a brief description here. Features arise from a single source function that describes the deviation from slow roll in the background (§IIA) which we can be
decomposed into a basis of principal components that is complete for bandlimited models sampled at a maximal rate per efold (§II B).

A. Generalized Slow Roll

Under the GSR approximation, features in the curvature power spectrum are generated by a single source function of the background evolution of the inflaton \(\phi \)

\[
G'(\ln \eta) \equiv -2(\ln f)' + \frac{2}{3}(\ln f)'' ,
\]

where

\[
f = \frac{2\pi \dot{\phi} \eta}{H} .
\]

Primes here and below denote derivatives with respect to \(\ln \eta \) where \(\eta = \int_t^{t_{end}} dt'/a(t') \) is the conformal time to the end of inflation and we take units of \(M_{pl} = \left(8\pi G\right)^{-1/2} = 1 \).

In the ordinary slow roll approximation, the curvature power spectrum is given by \(\Delta^2_R \approx f^{-2} \) since

\[
\epsilon_H = \frac{1}{2} \left(\frac{\dot{\phi}}{H} \right)^2 , \quad \eta \approx \frac{1}{aH} .
\]

In the GSR approximation, the curvature power spectrum is instead determined by features in the source function through

\[
\ln \Delta^2_R(k) \approx G(\ln \eta_{\text{min}}) + \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} W(k\eta)G'(\ln \eta) + \ln[1 + I_2(I_1)] ,
\]

where integrating \(G' \) gives

\[
G(\ln \eta) = -2 \ln f + \frac{2}{3}(\ln f)' .
\]

Here the non-linear correction is given by

\[
I_1(k) = \frac{1}{\sqrt{2}} \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} X(k\eta)G'(\ln \eta) .
\]

We take \(\eta_{\text{min}} = 1 \) Mpc and \(\eta_{\text{max}} = 10^5 \) Mpc which more than covers the range observable to WMAP. The window functions

\[
W(u) = \frac{3\sin(2u)}{2u^3} - \frac{3\cos(2u)}{u^2} - \frac{3\sin(2u)}{2u} , \quad X(u) = \frac{3}{u^3}(\sin u - u \cos u)^2 ,
\]

define the linear and nonlinear response of the curvature spectrum to \(G' \) respectively. Accuracy of the GSR approximation requires the nonlinear response, as quantified by \(I_2 \), to remain below order unity. We call this the GSR condition (see Appendix B).

FIG. 1: The first 20 principal components of the GSR source \(G' \) as a function of conformal time to the end of inflation, in order of increasing variance from bottom to top. 20 PC components suffice to represent inflationary features observable to WMAP that vary no more rapidly than \(\sim 1/4 \) of an efold. Here and below, dashed red lines represent power law conditions with zero amplitude in the PC components.
B. Principal Component Analysis

The principal components of the WMAP7 Fisher matrix provide an efficient basis with which to decompose the source function \(\mathbf{G} \)

\[
G' (\ln \eta) = 1 - n_s + \sum_{a=1}^{N} m_a S_a (\ln \eta),
\]

where the eigenfunctions \(S_a \) are constructed following Ref. 29 by sampling at a rate of 10 per decade in \(\ln \eta \) or equivalently 4.3 per efold of inflation across \(\eta = [1 - 10^5]\) Mpc. In terms of the width of features in the potential, this limit corresponds to \(\Delta \phi \approx \epsilon H / \sqrt{3} \). This rate is sufficient to capture models that describe the glitches in the WMAP7 power spectrum (see IV for a discussion of the limitations imposed by the sampling).

The amplitudes \(m_a \) then can be incorporated into a Markov Chain Monte Carlo (MCMC) likelihood analysis of the WMAP data. As described in Appendix A we slightly modify the original approach 29 to improve the convergence properties of the MCMC analysis. Since a constant \(G' \) described by \(n_s \) is equivalent to tilt in the curvature spectrum and \(G / G_{\text{min}} \) is equivalent to a normalization parameter we replace them with effective parameters \(G' \) and \(A_c \). Specifically \(G' \) is an average of \(G' \) for \(30 < \eta / \text{Mpc} < 400 \) and \(A_c \) is the normalization of the temperature power spectrum \(C_{T}^{TT} \) at the first peak \(\ell = 220 \) relative to a fiducial choice that fits the WMAP7 data. From these two phenomenological parameters we can derive constraints for the tilt \(n_s \) and curvature power spectrum normalization \(A_c \) (see Appendix A).

Since a signal-to-noise analysis shows that 20 out of the 50 principal components are required for a complete representation of the WMAP data at our bandlimit 29, we choose \(N = 20 \) for our analysis. These first 20 principal components are shown in Fig. 1. Note that the first 10 components resemble local Fourier modes around \(\eta \approx 10^2 \) Mpc where the well-constrained first acoustic peak gets its power. It is not until components 11-20 that horizon scale features at low multipole or \(10^3 - 10^4 \) Mpc are represented.

We use the MCMC method to determine joint constraints on the 20 PC amplitudes and cosmological parameters

\[
p_{\mu} = \{m_1, \ldots, m_{20}, A_c, \bar{G}, \tau, \Omega_b h^2, \Omega_c h^2, \theta\}.
\]

Here \(\tau \) is the reionization optical depth, \(\Omega_b h^2 \) is the physical baryon density, \(\Omega_c h^2 \) is the physical dark matter density and \(\theta \) is the angular size of the sound horizon at recombination.

The MCMC algorithm samples the parameter space evaluating the likelihood \(L(x|p) \) of the data \(x \) given each proposed parameter set \(p \) (e.g. see 30, 51). The posterior distribution is obtained using Bayes’ Theorem,

\[
P(p|x) = \frac{L(x|p)P(p)}{\int d\theta \ L(x|p)P(p)},
\]

where \(P(p) \) is the prior probability density. We place non-informative tophat priors on all parameters in Eq. (9). To ensure the validity of the GSR approximation we also place a tophat prior on

\[
I_{1, \text{max}} = \max_{k} |I_1(k)|.
\]

As shown in Appendix B a value of \(I_{1, \text{max}} = 1 / \sqrt{2} \) is sufficient to ensure accuracy of the GSR approximation.

Fig. 2 shows the maximal contribution to the amplitude of the first 20 PCs considered individually. This parameter must be less than order unity for the GSR approximation to be accurate, and we typically place a prior of \(I_{1, \text{max}} < 1 / \sqrt{2} \).

![FIG. 2: Sensitivity of the nonlinearity parameter](image-url)

For the WMAP7 data 34, we use the optimized approximate likelihood from Ref. 29. In addition, we utilize data from BICEP and QUAD which include polarization constraints 35, 38. We calculate the CMB power spectra with gravitational lensing turned off and the default sparse sampling in \(\ell \) (accuracy_boost=1). We correct for these approximations in post-processing by importance sampling as described in Appendix A before presenting the results in the next section. The main effect is a \(\sim 0.5 \sigma \) upwards shift in the \(\Omega_b h^2 \) posterior to compensate the smoothing effect of lensing.
TABLE I: Power law (PL) parameter results: means, standard deviations (left subdivision of columns) and maximum likelihood values (right subdivision of columns) with CMB data (WMAP7 + BICEP + QUAD) and all data (+UNION2 +H0 +BBN) in a flat universe. H0 and ΩΛ constraints are derived from the other parameters.

Parameters	All Data	CMB Only
1000h₀h²	2.279 ± 0.107	2.277 ± 0.233
Ω₀h²	0.1127 ± 0.0055	0.1101 ± 0.116
θ	1.0411 ± 0.0030	1.0402 ± 1.0417
τ	0.086 ± 0.016	0.096 ± 0.088
G²	0.0122 ± 0.0268	0.0055 ± 0.0191
ln[10¹⁰A_s]	0.0032 ± 0.0117	0.0036 ± 0.0032
m₁	0.0048 ± 0.0073	0.0060 ± 0.0025
m₂	0.0152 ± 0.0122	0.0163 ± 0.0120
m₃	-0.0120 ± 0.0181	-0.0042 ± 0.0140
m₄	0.0427 ± 0.0190	0.0460 ± 0.0327
m₅	0.0198 ± 0.0256	0.0050 ± 0.0168
m₆	-0.0156 ± 0.0325	-0.0089 ± 0.0142
m₇	-0.0061 ± 0.0354	-0.0015 ± 0.0060
m₈	0.0278 ± 0.0486	0.0285 ± 0.0403
m₉	-0.1239 ± 0.0731	-0.1436 ± 0.0970
m₁₀	0.0336 ± 0.0609	0.0219 ± 0.0282
m₁₁	0.0759 ± 0.0908	0.0225 ± 0.0590
m₁₂	-0.0917 ± 0.1027	-0.1604 ± 0.0702
m₁₃	-0.0947 ± 0.1129	-0.1895 ± 0.0764
m₁₄	0.1116 ± 0.1616	0.2069 ± 0.0561
m₁₅	-0.0199 ± 0.2042	0.0617 ± 0.0191
m₁₆	0.1066 ± 0.0975	0.1318 ± 0.0837
m₁₇	-0.1253 ± 0.2688	-0.1953 ± 0.1094
m₁₈	-0.5089 ± 0.2938	-0.6131 ± 0.3322
m₁₉	0.2239 ± 0.3773	0.2737 ± 0.1524
m₂₀	-0.0742 ± 0.4070	0.0011 ± 0.2472
nₘ	1.0299 ± 0.0671	1.1296 ± 1.0075
ln[10¹⁰A_s]	3.0387 ± 0.0582	3.0358 ± 3.0446
H₀	71.03 ± 2.28	71.22 ± 71.08
Ωₐ	0.730 ± 0.026	0.739 ± 0.731
−2 ln L	8140.06	7608.39

TABLE II: 20 principal component (PC) parameter results: means, standard deviations (left subdivision of columns) and maximum likelihood (ML) values (right subdivision of columns). Fiducial results are for all data and nonlinearity prior I₁,max = 1/√2, left columns, with variations shown in center and right columns. Parameters nₘ − Ωₐ are derived from the chain parameters. The difference in likelihood 2Δ ln L is given for the ML values and taken with respect to the corresponding PL maximum likelihood model in Tab. I.
FIG. 3: Constraints on the 20 PC amplitudes from the all-data analysis with an $I_{1,\text{max}} < 1/\sqrt{2}$ prior. The only significant deviation from the $m_a = 0$ PL expectation (red dashed line) is $m_4 = 0.0427 \pm 0.0190$. The impact of the prior can be visualized by taking the maximum amplitude of an individual m_a that satisfies the prior (solid lines), which implies that only $m_{17} - m_{20}$ are significantly prior limited. The maximum likelihood model is shown as starred points.

In order to ensure that models are compatible with a reasonable cosmology we add non-CMB constraints from the UNION2 supernovae dataset [40], the SHOES $H_0 = (74.2 \pm 3.6)$ km/s/Mpc measurement [37] and a big bang nucleosynthesis constraint of $\Omega_b h^2 = 0.022 \pm 0.002$. These data mainly constrain the energy density components of the universe rather than the inflationary initial conditions. We call the combination of CMB and external data the “all data” analysis. We address the impact of the $I_{1,\text{max}}$ prior and the non-CMB data in \textsection III B below.

III. MCMC RESULTS

In this section, we present the results of the Markov Chain Monte Carlo (MCMC) analysis in the principal component (PC) space of the GSR source function. We discuss the results of our fiducial all data analysis in \textsection III A and address the impact of priors and non-CMB data in \textsection III B.

A. All Data

For our fiducial results we use the all-data combination of CMB and external data described in the previous section. To establish a baseline for the PC results we start with the $m_a = 0$ power law (PL) case, $\Delta^2_k = A_s (k/k_p)^{n_s-1}$. Table II gives the mean, standard deviation of the posterior probabilities, and the maximum likelihood (ML) parameter values for the power law model.

For the PC analysis, we take 20 components and a nonlinearity tophat prior of $I_{1,\text{max}} < 1/\sqrt{2}$ (see \textsection II B). Table III gives the parameter constraints as well as the maximum likelihood PC model (left columns).

The improvement in the ML PC model over the ML power law model is $2\Delta \ln \mathcal{L} = 17$ for 20 extra parameters and so is not statistically significant in and of itself. Of course, specific inflationary models may realize this improvement with a smaller set of physical rather than phenomenological parameters (see \textsection IV B), and so it is interesting to examine more closely the origin of this improvement.

The main improvement comes from $\ell \leq 60$ in the TT part of the WMAP likelihood with $2\Delta \ln \mathcal{L} = 11.9$. We shall see in \textsection IV A that these improvements are largely associated with known features in the WMAP temperature

FIG. 4: Parameter probability distributions from the all-data analysis in a flat universe with $I_{1,\text{max}} = 1/\sqrt{2}$. Dashed lines represent the posteriors with approximations for the low ℓ polarization likelihood and $C\ell$ accuracy used to run the MCMC (see Appendix); solid lines represent posteriors corrected by importance sampling. Red dashed lines represent corrected posteriors for power law models.
power spectrum.

In terms of the principal components, the improvements are localized in only a few of the 20 parameters. Fig. 3 plots these m_a constraints and ML values. Most of the components are consistent with zero at the $\sim 1\sigma$ level. Components $m_{17} - m_{20}$ are constrained in part by the $I_{1,\text{max}}$ prior not just the data.

As in the 5 PC analysis of [29], the single most discrepant parameter between the PL and PC cases is m_4 corresponding to a feature centered around $\eta \sim 300\text{Mpc}$ and resembling a local running of the tilt. Fig. 4 shows the posterior probability distributions of the parameters. An m_4 value as extreme as the power law value of $m_4 = 0$ is disfavored at 98.2% CL compared with 94.8% for 5 PCs and WMAP7 alone. The increase in significance by a fraction of a σ arises because of the correlation between m_4 and the higher principal components. Perhaps more importantly, freedom in the higher PCs allows large m_4 without the need to make large adjustments to the cosmological parameters that would violate non-CMB constraints. On the other hand, one event out of 20 showing a 98% exclusion is not that unlikely.

The poorly constrained $a > 10$ modes allow large amplitude deviations and in fact even marginally prefer them. This explains why including the higher components can change results on the lower components. Large amplitude deviations in the high order components make the modes no longer statistically independent as they would be for infinitesimal deviations. Still constraints and ML values. Most $a > 10$ events show the maximum likelihood model with the stronger $I_{1,\text{max}}$ prior. Even at low ℓ the differences are much smaller than cosmic variance. In particular the posterior distribution of power in the quadrupole moment for models in the chain shown in Fig. 5 differ negligibly.

Some of this robustness in the low multipole moments is due to the impact of the non-CMB data. Without the external data, the quadrupole distribution extends to smaller quadrupole moments due to the ability to reduce the integrated Sachs-Wolfe effect by lowering the cosmological constant in the absence of constraints on the acceleration of the expansion (see Fig. 5). In this case the data may prefer more extreme inflationary models that further lower the quadrupole that are excluded by our nonlinearity prior on $I_{1,\text{max}}$.

The main impact on parameters of removing the non-CMB data is to allow a wider range in $\Omega_c h^2$ (see Table II). In contrast to the 5PC analysis [29], this wider range though has little impact on the PC parameters. In particular the higher order PC components allow compensation of the effects of m_4 across the acoustic peaks without the need to vary $\Omega_c h^2$ substantially. For similar reasons, we expect our flatness prior to have little impact on the PC results aside from weakening the constraints on Ω_A and $\Omega_c h^2$ and small shifts of the location of features in G' with the angular diameter distance degeneracy.

IV. APPLICATIONS

In order to test the robustness of the fiducial results of the last section, we run separate MCMC chains with different choices for the nonlinearity prior and data sets.

We first examine the impact of our $I_{1,\text{max}}$ prior by reanalyzing the all-data case with $I_{1,\text{max}} = 1/2$ instead of $1/\sqrt{2}$ (see Tab. II). The main impact of tightening the prior is on $m_{18} - m_{20}$ as is expected from Fig. 3. These components mainly affect the low ℓ multipoles. In spite of this fact the prior on $I_{1,\text{max}}$ has very little impact on the behavior of favored models at low ℓ. In Fig. 7 we show the maximum likelihood model with the stronger $I_{1,\text{max}}$ prior. The main impact on parameters of removing the non-CMB data is to allow a wider range in $\Omega_c h^2$ (see Table II). In contrast to the 5PC analysis [29], this wider range though has little impact on the PC parameters. In particular the higher order PC components allow compensation of the effects of m_4 across the acoustic peaks without the need to vary $\Omega_c h^2$ substantially. For similar reasons, we expect our flatness prior to have little impact on the PC results aside from weakening the constraints on Ω_A and $\Omega_c h^2$ and small shifts of the location of features in G' with the angular diameter distance degeneracy.

A. Testing Slow Roll and Single Field Inflation

Here we discuss applications of the fiducial 20 PC analysis of [IIA]. In [IVA] we place constraints on and devise tests of slow roll and single field inflation in a model independent manner. Alternately, as a complete observational basis for efold bandlimited models, the PC analysis places constraints on any such model that satisfies the GSR condition. We use running of the tilt and a step in the inflaton potential as example test cases in [IVA].

B. Robustness Tests
FIG. 5: The temperature (left) and E-mode polarization (right) power spectra posterior using the all-data PC constraints and a prior of $I_{1,\text{max}} = 1/\sqrt{2}$. The shaded area encloses the 68% CL region and the upper and lower curves show the upper and lower 95% CL limits. The maximum likelihood (ML) model is shown as the thick black central curve, and the power law ML model is shown in red dashed lines. The blue points with error bars show the 7-year WMAP measurements.

FIG. 6: Parameter decomposition of the temperature power spectrum difference between the power law (PL) and PC maximum likelihood (ML) models shown in Fig. 5 (bottom panel). The curves include cumulative changes in parameters between the models starting with the cosmological parameters, adding the normalization A_c and effective tilt \bar{G}', $m_1 \ldots m_5$, etc. until the full PC ML parameters are utilized.

FIG. 7: Comparison of the maximum likelihood models of the three MCMCs of Tab. II: the all-data analysis with $I_{1,\text{max}} = 1/\sqrt{2}$ (black curve), all-data with $I_{1,\text{max}} = 1/2$ (blue curve), and CMB data with $I_{1,\text{max}} = 1/\sqrt{2}$ (red curve). The smallness of the differences indicates robustness of our results to the priors and external data sets.

If the inflaton carries non-canonical kinetic terms then the relationship is modified to include variations in the sound speed c_s.

Since the PC decomposition only represents features in G' across the observable domain, one should consider the constraints on the m_as as defining a PC filtered version of the inflaton potential $V(\phi)$ through the approximate relation

$$G'(\ln \eta) \approx 3\left(\frac{\dot{V}}{V}\right)^2 - 2\frac{V_{\phi\phi}}{V}. \quad (12)$$
of G':

$$G'_{20} (\ln \eta) = \sum_{a=1}^{20} m_a S_a (\ln \eta).$$ \hspace{1cm} (13)$$

Any significant deviation from zero of this function would indicate a violation of ordinary slow roll. We can extract the posterior probability of G'_{20} by considering its values on a continuous set of samples of η as derived parameters.

In Fig. 8 we plot both the ML model and the 68% and 95% posterior bands. Note that $G'_{20} = 0$ lies within the 95% CL regime for all η. These functional constraints differ from a full reconstruction of G' in that the PCs filter out deviations at $\eta < 20$ Mpc and $\eta > 10^4$ Mpc as well as deviations that are too high frequency to satisfy our bandlimit.

In the well-constrained regime of $30 < \eta/\text{Mpc} < 400$ constraints are both tight and consistent with $G'_{20} = 0$. Only nearly zero mean high frequency deviations are allowed in this regime. Nonetheless, the poorly constrained $m_{10} - m_{20}$ components allow, but do not strongly prefer, large oscillatory features between $10^3 \lesssim \eta/\text{Mpc} \lesssim 10^4$. In fact $G'_{20} = 0$ lies noticeably outside the 68% CL bands only for the dip and bump between 1000 – 2000 Mpc and a bump at 70 – 100 Mpc.

We can associate the most significant features with the corresponding effects on the observable power spectra themselves. Figure 8 shows the 68% and 95% range in the power spectra posterior. The 1000 – 2000 Mpc feature in fact corresponds to the $\ell = 20 – 40$ dip and bump in the temperature power spectrum. The 70 – 100 Mpc feature corresponds to a glitch at $\ell \sim 600 – 700$ \cite{13, 14}. While the $\eta \gtrsim 10^4$ Mpc regime is limited by our priors on the amplitude of deviations through $I_{1,\text{max}}$ we have shown that the data do not favor a feature corresponding to a low quadrupole $\ell = 2$ unless acceleration constraints are omitted (see \cite{13, 14}).

Finally, we can examine the posterior distributions of the E-mode polarization. These predictions are not significantly constrained by the polarization data sets employed. Instead these distributions are limited mainly by the common origin of the temperature and polarization spectra from single field inflation. These serve as predictions for future measurements. For example, the low significance features in the temperature power spectrum predict corresponding ones in the E-mode polarization which have yet to be measured and can be used to test the hypothesis of their inflationary origin at substantially higher joint significance \cite{33}. In particular, one expects a $\sim 26\%^{+13\%}_{-17\%}$ enhancement in the EE power spectrum at $\ell = 39$ and a $\sim -37\%^{+17\%}_{-3\%}$ deficit around $\ell = 25$. The skew distribution in the latter case reflects the difficulty in constructing models with low power out of the principal components rather than the data disfavoring such models. Models that actually explain the low TT power at $\ell = 25$ predict low EE power as well.

Even in the acoustic regime where the polarization predictions are tight and do not suggest the presence of features, these predictions are of interest. If future observations violate them, then not only will slow-roll inflation be falsified but all single field inflationary models, including those with sound speed variations, as long as they satisfy our weak prior constraint on acceptable models: the efold bandlimit and small GSR non-linearity $I_{1,\text{max}} < 1/\sqrt{2}$. Such a violation might indicate other degrees of freedom breaking the relationship between the temperature and polarization fields, e.g. isocurvature modes in multifield inflation or trace amounts of cosmological defects. For $\ell \lesssim 30$ violation could alternately indicate a more complicated reionization scenario \cite{33}.

Currently these bounds and tests apply to the $\ell < 800$ regime measured by WMAP but will soon be extended by high resolution ground based experiments and Planck.

\section{Constraining Inflationary Models}

We can also apply the model independent principal component analysis to any specific set of models that satisfy the GSR condition $I_{1,\text{max}} < 1/\sqrt{2}$ and bandlimit of features no sharper than about $1/4$ efold. To place constraints on the parameters of a model, one projects the source function G' of the model onto the principal components

$$m_a = \frac{1}{\ln \eta_{\text{max}} - \ln \eta_{\text{min}}} \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} S_a (\ln \eta) G' (\ln \eta)$$ \hspace{1cm} (14)$$
as a function of parameters and compares it to the joint posterior probability distributions of the components. Likewise one can construct G'_{20} from the result and compare it with Fig. 8.

In fact, the means and covariance matrix C of the components m_a form a simple but useful representation of the
compare the original linear data analysis and statistic the ML PC model gives an improvement of ΔG to the posteriors. For exam-
ple the likelihood is shown as the thick black central curve, and the power law ML model is shown in red dashed lines.

The curvature power spectrum for this model has a local α of $k\eta$ where the tilt of
Δ^2 is ~ 1.55 over PL to be compared with $-2\Delta^2 = 6.85 \pm 0.02$ for the smaller value, it produces substantially
less deviations at high and low η. Thus the simple χ^2 approximation captures the information on α in the 20 PC posterior to
$\sim 0.5\sigma$.

We can further test the completeness of the 20 PC decomposition of α by going to 50 PCs. In this case $\alpha = -0.026 \pm 0.023$ showing that 20 PCs completely describe the observable properties of α. In fact, 5 PCs are enough to describe the observable properties of α in this case; a direct MCMC analysis gives $\alpha = -0.026 \pm 0.020$. Fig. 11 shows that the full posterior distributions of α for these cases are indistinguishable within the errors. We also show the simple χ^2 approximation which is shifted by $\sim 0.5\sigma$ as expected.

The posterior distributions are skewed to negative values of α. For example the ML model of the 50 PC chain has $\alpha = -0.021$ to be compared with a mean of -0.026. For large negative α, the linear G' model no longer matches a running of the tilt due to the I_1 terms in Eq. (15). In Fig. 12 we show an example with $n_0 = 0.96$ and $\eta_0 = 145$ Mpc for $\alpha = dn_0/d\ln k = -0.09$ and -0.02. While the α model closely matches constant $dn_0/d\ln k$ for the smaller value, it produces substantially less deviations at high and low k. This bias explains the difference between constraints on the linear α model and running of the tilt found in [29]. For example, with the same data sets and priors running of the tilt gives
FIG. 11: Posterior probability distribution of α from a direct MCMC analysis constructed from 50 PCs (black/solid curve), 20 PCs (red curve), and 5 PCs (blue curve). The distribution from the χ^2 approximation is shown in black/dashed curve.

FIG. 12: Initial curvature power spectrum of a model with running of the tilt ($dn_s/d\ln k = -0.02, -0.09, 0.02$, solid curves) compared to a model with a linear deviation in $G' (\alpha = -0.02, -0.09, 0.02$, dashed curves). For the -0.02 case, the two models are similar whereas for -0.09 the running of the tilt model has larger deviations from scale free conditions at low and high k.

$dn_s/d\ln k = -0.018 \pm 0.019$. Note the ML $\alpha = -0.021$ from the 50PC chain is consistent with this constraint.

Another example is the step potential which has been employed to explain the glitches in the power spectrum at $\ell \approx 20 - 40$

$$V(\phi) = \frac{1}{2} m^2 \phi^2 \left[1 + c \tanh \left(\frac{\phi - \phi_s}{d} \right) \right]. \quad (20)$$

For simplicity, we fix $\phi_s = 14.668$ so that the feature appears at the correct position to explain the glitches. Although we set the smooth part of the potential to correspond to an $m^2 \phi^2$ model with $m = 7.126 \times 10^{-6}$ for the projection onto PCs, in the analysis we retain the freedom to adjust the amplitude and tilt as usual. This leaves us with 2 additional parameters c and d to control the amplitude and width of the step.

The constraints on (c, d) from the χ^2 approximation are shown in Fig. 13 (top panel). Note that the crude χ^2 analysis correctly picks out the favored parameters which can explain the glitches [38]. The minimum χ^2 model is $c = 0.0015, d = 0.026$ and is favored over the PL $m_a = 0$ (or $c = 0$) model by $\Delta \chi^2 = -10.2$. Although the χ^2 analysis assumes that the joint posterior in m_a is a multivariate Gaussian, it does not make that assumption for parameter probabilities. With the distorted shape of the confidence region, the 68% contour corresponds to $\Delta \chi^2 = 2.5$, 95% contour to 8.6 and 99.7% contour to 13.3, compared with the more stringent 2.3, 6.2 and 11.6 obtained for Gaussian distributions in (c, d). Here and below we take a prior of $d > 0.005$ due to our bandlimit of $1/4$ efold (see below).

We again compare this with a full analysis of the joint 20 PC posteriors. As in the case of α, the projection onto the two dimensional $m_a(c, d)$ space leaves us with too few samples in the original 20 PC chain to reliably ex-
The step potential model captures the main feature seen in the fiducial all-data analysis (shaded 68% CL area).

We instead run a direct MCMC analysis on the 20 PC description with \(m_a(c,d) \). These results are shown in Fig. 13 in blue points. The maximum likelihood model has \(c = 0.0016 \), \(d = 0.025 \) and is favored over PL \(m_a = 0 \) (or \(c = 0 \)) by \(2\Delta \ln L = 9.1 \). These values are fully consistent with the simple \(\chi^2 \) analysis. This improvement is a substantial fraction of the total of 17 available to the 20 PCs from Tab. II and is achieved with 3 parameters: \(c, d \) and implicitly \(\phi_s \), the location of the step.

The filtered \(G'_{20} \) source for both the ML and minimum \(\chi^2 \) model are shown in Fig. 14 and are consistent with the posteriors of the fiducial all data analysis. Furthermore, the \(\chi^2 \) analysis correctly picks out the best fit region and qualitatively recovers its distorted shape. The main difference is that the confidence region is slightly underestimated.

Finally, we test the completeness of the 20 PC description of the step model by conducting a separate MCMC analysis with \(m_a(c,d) \). These results are shown in Fig. 13 in blue points. The maximum likelihood model has \(c = 0.0016 \), \(d = 0.025 \) and is favored over PL \(m_a = 0 \) (or \(c = 0 \)) by \(2\Delta \ln L = 9.1 \). These values are fully consistent with the simple \(\chi^2 \) analysis. This improvement is a substantial fraction of the total of 17 available to the 20 PCs from Tab. II and is achieved with 3 parameters: \(c, d \) and implicitly \(\phi_s \), the location of the step.

The filtered \(G'_{20} \) source for both the ML and minimum \(\chi^2 \) model are shown in Fig. 13 and are consistent with the posteriors of the fiducial all data analysis. Furthermore, the \(\chi^2 \) analysis correctly picks out the best fit region and qualitatively recovers its distorted shape. The main difference is that the confidence region is slightly underestimated.

V. DISCUSSION

We have conducted a complete study of constraints from the WMAP7 data on inflationary features beyond the slow roll limit. Using a principal component (PC) basis that accommodates order unity features as fine as 1/10 of a decade across more than 2 decades of the inflationary expansion, we find no significant deviations from slow roll. Although one component shows a deviation at the 98% CL, it cannot be considered statistically significant given the 20 components tested. The maximum likelihood PC parameters only improves \(2\Delta \ln L \) by 17 for the 20 parameters added.

On the other hand, specific inflationary models may access this improvement with fewer physical parameters. Most of the improvement comes from fitting features in the temperature power spectrum at multipoles \(\ell \leq 60 \) with the known glitch at \(20 \leq \ell \leq 40 \) comprising a large fraction.

From our analysis, we also extract predictions for the
corresponding features in the polarization power spectrum that can be used to test their inflationary origin independently of a specific choice for the inflaton potential (cf. [38]). In particular, one expects a $\sim 26\%$ enhancement in the EE power spectrum at $\ell = 39$ and a $\sim 37\%$ deficit around $\ell = 25$ if the temperature features have an inflationary origin. Outside of the range of these low ℓ features, the predictions are very precise and any violation of them in future observations would falsify single field inflation independently of the potential.

Our constraints can also be used to test any single field model that satisfies our conditions. Most of the information from the likelihood analysis is distilled in the means and covariance of the principal components themselves which we make publicly available [11]. Two models illustrate this encapsulation: a linear source model that approximates running of the tilt and a step potential model that fits the features at $\ell = 20 - 40$. A simple χ^2 analysis approximates the joint parameter posteriors despite its highly non-Gaussian form for the step parameters. This procedure greatly simplifies the testing of inflationary models with features in that parameter constraints on any model that satisfies our conditions can be simply approximated without a case-by-case likelihood analysis.

Acknowledgments: We thank Peter Adshead and Mark Wyman for useful conversations. This work was supported by DOE contract DE-FG02-90ER-40560 and the Packard Foundation.

Appendix A: MCMC Optimization

1. Parameterization

We seek to define amplitude and tilt parameters for the MCMC that are nearly orthogonal to the PC parameters in order to improve the convergence properties of the MCMC chains.

A constant G' is equivalent to tilt n_s and hence PC components that have long positive or negative definite stretches become degenerate with tilt and cause problems for MCMC convergence. Instead of a constant tilt, we define a new chain parameter to be the average of G' across a narrower range that is better associated with the observables

$$
G' = \frac{1}{\ln \eta_2 - \ln \eta_1} \int_{\eta_1}^{\eta_2} \frac{d\eta}{\eta} G',
$$

where specifically, we choose $\eta_1 = 30$ Mpc and $\eta_2 = 400$ Mpc to roughly minimize the variance of G' in the chain (see Fig. [I]).

Next, we replace the normalization parameter $G(\ln \eta_{\text{min}})$ with

$$
A_s \equiv \ln \Delta^2_R(k_p),
$$

where in practice we choose $k_p = 0.05$ Mpc$^{-1}$.

The effective tilt and normalization parameters bring the model of the power spectrum from Eq. (1) to

$$
\ln \Delta^2_R = \ln \left[A_s \left(\frac{k}{k_p} \right)^{-G'} \right] + \sum_{a=1}^{N} m_a [W_a(k) - \bar{W}_a(k_p)]
$$

$$
+ \ln \left[1 + \frac{1}{2} \left(\frac{\pi}{2} G' + \sum_{a=1}^{N} m_a \bar{X}_a(k) \right)^2 \right]
$$

$$
- \ln \left[1 + \frac{1}{2} \left(\frac{\pi}{2} G' + \sum_{a=1}^{N} m_a \bar{X}_a(k_p) \right)^2 \right],
$$

where

$$
\bar{W}_a(k) = \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} W(k\eta)(S_a(\ln \eta) - \bar{S}_a),
$$

$$
\bar{X}_a(k) = \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} X(k\eta)(S_a(\ln \eta) - \bar{S}_a),
$$

and

$$
\bar{S}_a = \frac{1}{\ln \eta_2 - \ln \eta_1} \int_{\eta_1}^{\eta_2} \frac{d\eta}{\eta} S_a.
$$

Note that we can recover the tilt n_s, equivalent to the average of G across the whole range η_{min} to η_{max}, as

$$
n_s = (1 - G') + \sum_{a=1}^{20} m_a \bar{S}_a,
$$

and keep it as a derived parameter in the chain.

Given the oscillatory nature of the k-space response to the PC eigenfunctions through \bar{W}_a and \bar{X}_a and the geometric projection from k to angular multipole ℓ, normalization at a given k does not correspond simply to normalization at a given ℓ. Since the observations best constrain the amplitude of the temperature power spectrum near the first acoustic peak at $\ell \approx 220$ it is advantageous to use an ℓ-space normalization in the MCMC and then transform back to A_s.

Let us define a phenomenological parameter A_c which renormalizes the angular power spectra as

$$
C^{XY}_{\ell} = c^{\ln A_s} \frac{C^{TT}_{\ell}^{\text{fid}}}{C^{TT}_{\ell}^{\text{fid}}} \tilde{C}^{XY}_{\ell},
$$

Here $C^{TT}_{\ell}^{\text{ fid}}$ is the temperature power spectrum at the first peak of a fiducial model that fits the WMAP7 data. We use $C^{TT}_{\ell}^{\text{ fid}} = 0.747 \mu K^2$. Thus if $A_c = 0$, $C^{TT}_{\ell} = C^{TT}_{\ell}^{\text{ fid}}$ regardless of the PC parameters.

We can recover constraints on the k-space normalization by considering A_s as a derived parameter. If we compute the original C^{XY}_{ℓ} with the $A_s = A_s^{\text{ fid}}$ of the fiducial model, then the true A_s is given by

$$
\ln A_s = \ln A_c + \ln(C^{TT}_{\ell}^{\text{ fid}} / C^{TT}_{\ell}^{\text{ fid}}) + \ln A_s^{\text{ fid}}.
$$

In summary, we replace the parameters n_s and $G(\ln \eta_{\text{min}})$ with G' and A_c in order to reduce parameter degeneracies that would otherwise inhibit chain convergence.
2. Likelihood corrections

To speed up the calculation of the WMAP and other CMB likelihoods we employ three approximations when running the chains. Firstly, we use a fitting function for the low ℓ WMAP7 polarization likelihood as described in [29]. Secondly, we calculate the CMB power spectra with gravitational lensing artificially turned off. Thirdly, we use the default ℓ-space sampling of CAMB that is designed for smooth underlying power spectra. Each of these approximations produce small errors in the likelihood evaluation that we can correct by importance sampling the chain.

The advantage of correcting these approximations in a postprocessing step is twofold. The chains may be thinned due to the high correlation between samples in the chain. Secondly, postprocessing elements of the thinned chains is embarrassingly parallel unlike the running of the original chain.

In practice, when we satisfy our convergence criterion described in the main text, we thin the chains by a factor of half of the correlation length. We have tested that with such thinning we reproduce the posteriors of the original chains. Next we compute the CMB power spectra of the thinned chains with lensing turned on and a higher ℓ-space sampling (CAMB “accuracy boost” 2). We use these high accuracy power spectra to correct the chain multiplicity for the change in the likelihood.

In Fig. 16 we show as an example the posteriors coming directly from power law (PL) chains (in blue/solid curves), the chains with all corrections (in blue/dashed lines) and finally all corrections but lensing (in red/dashed lines). These should be compared with results from a separate chain run with all the corrections turned on from the start (in black/solid lines). Importance sampling accurately models the impact of the small corrections for all parameters. The leading correction is on $\Omega_b h^2$ from lensing.

In Fig. 17 we show the impact of the corrections on the PC chain using m_{18} as an example with the largest correction. The correction on PC parameters is extremely small and again dominated by lensing.

Appendix B: GSR Accuracy

To test the accuracy of the GSR approximation in the PC space, we need to consider the inverse problem: construct an inflationary model that matches a desired G' for which we can solve exactly for the curvature power spectrum.

In the forward direction, given an inflationary model we can compute the exact curvature spectrum by first evaluating the background behavior of the model through

$$g(\ln \eta) = \frac{f''}{f} - 3\frac{f'''}{f} = \frac{3}{2}G' + \left(\frac{f'}{f}\right)^2,$$

and then solving the equation

$$\frac{d^2y}{dx^2} + \left(1 - \frac{2}{x^2}\right)y = \frac{g}{x^2}y,$$

where $x = k\eta$, subject to the usual Bunch-Davies initial conditions. The curvature power spectrum is then given
\[\Delta_R^2 = \lim_{x \to 0} x^2 \frac{|y|^2}{f^2}. \]

(B3)

FIG. 18: Fractional difference in temperature power spectra between GSR and the exact inflationary solution for the maximum likelihood model from the all-data analysis (in black lines) as well as a model that saturates the prior \(I_{1,\text{max}} = 1/\sqrt{2} \) from the chain (in blue lines). For reference, the ML model has \(I_{1,\text{max}} = 0.66 \).

\[r' - 3r = \frac{3}{2} G', \]

(B4)

which has the general solution

\[r = \frac{3}{2} \eta^3 \int \frac{d\tilde{\eta}}{\tilde{\eta}} \tilde{\eta}^{-3} G' + C \eta^3. \]

(B5)

Let us choose the integration constant

\[C = -\frac{3}{2} \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\tilde{\eta}}{\tilde{\eta}} \tilde{\eta}^{-3} G', \]

(B6)

and assume \(G' \) vanishes outside this range. We then get

\[r = -\frac{3}{2} \eta^3 \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\tilde{\eta}}{\tilde{\eta}} \tilde{\eta}^{-3} G', \]

(B7)

for \(\eta > \eta_{\text{min}} \) and

\[r = -\frac{3}{2} \eta^3 \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\tilde{\eta}}{\tilde{\eta}} \tilde{\eta}^{-3} G', \]

(B8)

for \(\eta < \eta_{\text{min}} \). With this numerical solution we construct \(g \) as

\[g = \frac{3}{2} G' + r^2. \]

(B9)

This suffices to specify the source for \(y \) in Eq. (B2). Finally, to get the curvature power spectrum we need \(f \) at some \(\eta_{\text{lim}} \ll k_{\text{max}}^{-1} \). However since this quantity is independent of \(k \), it is absorbed into our normalization definition. In Fig. (18) we take parameters from the all-data chain and use this technique to calculate the temperature power spectra of matching inflationary models exactly. Even for the model that saturates the \(I_{1,\text{max}} = 1/\sqrt{2} \) prior, the WMAP likelihood difference between the exact and GSR calculation is \(|2 \Delta \ln L| = 0.4 \).

Using the step model chain from [13] we can explore the accuracy of the GSR approximation as a function of \(I_{1,\text{max}} \) independently of the prior taken in the all data analysis. Specifically, we take a model from the chain that defines \(G' \) and construct the matching full inflationary model as above.

Recall that to construct \(G' \), we solve for the background evolution of \(\phi \) in the step potential of Eq. (20). This specifies the \(m^2 \phi^2 \) model source through Eq. (11), which we call \(G_m' \). To allow for a retiling of the spectrum, we add an extra constant parameter \(\tilde{G}_p' \) to the model source to form the full source

\[G'(\ln \eta; c, d, \tilde{G}_p') = G_m'(\ln \eta; c, d) + \tilde{G}_p'. \]

(B10)

The GSR approximation then tells us that the curvature spectrum is given by

\[\ln \Delta_R^2 = \ln \left[A_s \left(\frac{k}{\bar{k}_p} \right)^{-G_p'} \right] + I_m(k) - I_m(k_p) \]

(B11)

with

\[I_m(k) = \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} W(k \eta) G_m' \]

(B12)

\[+ \ln \left[1 + \frac{1}{2} \frac{\pi}{2} \tilde{G}_p' + \int_{\eta_{\text{min}}}^{\eta_{\text{max}}} \frac{d\eta}{\eta} X(k \eta) G_m' \right]^2. \]
In Fig. 19 we compare the impact of taking this power spectrum to a full inflationary calculation with matching source \([10]\) on the WMAP likelihood. For the full calculation of Eq. \([3]\), we take \(\Delta_p^2(k_p) = A_s\) to define the normalization \(f\). Since \(I_{1,\text{max}}\) increases monotonically with \(c\), we show models with maximum likelihood parameters in uniform bins of \(c\). Note that the maximal error increases with \(I_{1,\text{max}}\) but does not exceed order unity at \(I_{1,\text{max}} < 1/\sqrt{2}\).

For reference, to compute a matching 20 PC representation as in Fig. 15 we take the amplitudes of the principal components from Eq. \([14]\) and use Eq. \([11]\) to define

\[
G' = \bar{G}'_p + \frac{1}{\ln \eta_2 - \ln \eta_1} \int_{\eta_1}^{\eta_2} \frac{d\eta'}{\eta} \bar{G}'_m(\ln \eta) . \tag{B13}
\]

and keep the normalization \(A_s\) fixed.

\[\text{http://cosmologist.info/cosmomc}\]

\[\text{http://background.uchicago.edu/wmap_fast}\]

\[\text{http://cosmologist.info/cosmomc}\]