Hydra: Leveraging Functional Slicing for Efficient Distributed SDN Controllers

Yiyang Chang∗, Ashkan Rezaei†, Balajee Vamanan†, Jahangir Hasan‡, Sanjay Rao∗ and T. N. Vijaykumar∗

∗School of Electrical and Computer Engineering, Purdue University
Email: {chang256, sanjay, vijay}@purdue.edu
†Department of Computer Science, University of Illinois at Chicago
Email: {arezae4, bvamanan}@uic.edu
‡Google Inc.
Email: jahangir@google.com

Abstract—The conventional approach to scaling Software-Defined Networking (SDN) controllers today is to partition switches based on network topology, with each partition being controlled by a single physical controller, running all SDN applications. However, topological partitioning is limited by the fact that (i) performance of latency-sensitive (e.g., monitoring) SDN applications associated with a given partition may be impacted by co-located compute-intensive (e.g., route computation) applications; (ii) simultaneously achieving low convergence time and response times might be challenging; and (iii) communication between instances of an application across partitions may increase latencies. To tackle these issues, in this paper, we explore functional slicing, a complementary approach to scaling, where multiple SDN applications belonging to the same topological partition may be placed in physically distinct servers. We present Hydra, a framework for distributed SDN controllers based on functional slicing. Hydra chooses partitions based on convergence time as the primary metric, but places application instances across partitions in a manner that keeps response times low while considering communication between applications of a partition, and instances of an application across partitions. Evaluations using the Floodlight controller show the importance and effectiveness of Hydra in simultaneously keeping convergence times on failures small, while sustaining higher throughput per partition and ensuring responsiveness to latency sensitive applications.

I. INTRODUCTION

Software-Defined Networking (SDN) is becoming prevalent in datacenter and enterprise networks [1], [2]. The central idea behind SDN is to consolidate control plane functionality (e.g., routing, access control) at a logically centralized controller which monitors and manipulates network state [3], [4]. An SDN controller for a small network with hundreds of switches could be hosted on a single physical server. However, as networks grow in size and functionality, the controller’s compute and memory requirements exceed one single server’s capacity. Therefore, large datacenter and enterprise networks distribute the controller functionality over multiple servers or VMs [5], [6], [7], [8].

Real SDN deployments typically consist of several tens of SDN applications for diverse network tasks such as routing, load-balancing, security, and Quality of Service (see Figure 1). Because these applications handle different events (e.g., link failure vs. path lookup) and perform diverse functions, they impose varying demands on the underlying machine resources.

Fig. 1: An example SDN network
Hydra is relevant for both reactive controllers (where rules are installed after examining the first packet of each flow), and proactive controllers (where rules are pre-installed in switches) [10]. Our optimization formulation is agnostic to the choice of the model. Our formulation considers the packet-in rates, which may be high for reactive SDNs and low for proactive SDNs, and the rates, among other factors, influence the best partition chosen by Hydra. Our evaluation shows a range of packet-in rates to capture a continuum of this choice.

In summary, we make the following contributions:

- We propose functional slicing, which adds a new dimension to partitioning and provides more flexibility.
- We introduce a communication-aware placement algorithm that leverages functional slicing and avoids its potential shortcomings.
- We evaluate Hydra using Floodlight [11] controller and show the effectiveness of Hydra’s key techniques – functional slicing, communication-aware placement, and prioritization.

The rest of the paper is organized as follows. Section II presents an overview of Hydra’s approach, and Section III delves into the details of Hydra. Section IV describes our experimental methodology and Section V presents our results. Section VI discusses related work. Finally, Section VII concludes the paper.

II. HYDRA RATIONALE

We begin by discussing alternative ways to scale SDN controllers, and present Hydra’s approach and rationale:

Topological partitioning: Current distributed controllers [5], [6], [7], [8], de facto assume topological partitioning of the network into multiple controller domains, with one controller instance per domain. Each controller instance runs all the control-plane applications (e.g., topology modules, heart-beat handler that monitors switch failures) but handles events only from the switches in its own partition. Figure 2a shows an example of topological partitioning where each partition contains two switches and the four applications (f1 through f4) run on each controller. While topological partitioning helps with scaling, the sustainable throughput is still limited by...
the fact that the compute and memory capabilities must be sufficient to handle all applications in that partition. Increasing the number of partitions to reduce partition sizes may not be feasible due to network administrator constraints and since this may potentially increase route convergence time when recomputing paths on a switch or link failure. Finally, state changes in any partition of an application may need to be propagated to other partitions in order to maintain consistency of the application’s global network state, and flow set up (e.g., for a QoS application) may involve communications across application instances located in different partitions.

Pure functional slicing: Functional slicing partitions the control-plane functions belonging to the same topological partition and places the functions in different servers. Figure 2b shows an example of functional slicing for the same network as in Figure 2a. The example shows the four functions \(f_1() \) through \(f_4() \) split across four controllers each of which covers the entire network (i.e., all the four topological partitions in Figure 2a). While this tackles some of the issues with topological partitioning, the sustainable throughput may now be bottlenecked by the most demanding application. Further, pure functional slicing may worsen the latency to handle critical packet-in events because the control-plane functions needed to handle each such event may be spread across multiple machines (i.e., kernel overheads and networks delays would lie in the critical path of packet-in event-handlers).

Hydra’s approach: With Hydra, we explore a hybrid scheme that employs a combination of topological and functional slicing to reduce both convergence times and packet-in processing latencies. Figure 2c shows an example of our hybrid slicing for the same network as in Figure 2a. The example shows two topological partitions. Each controller and two functional partitions of each of the topological partitions, so that only two servers for each function have to converge as opposed to the four servers in topological partition in Figure 2a. At the same time, an event involving all four functions needs communication only between two servers as opposed to four servers in functional slicing in Figure 2b.

While Hydra separates computationally-intensive applications (i.e., path re-computation) from the other two categories, Hydra shields real-time applications (e.g., heart-beats) from latency-sensitive applications (e.g., path lookup) using thread prioritization. Hydra assigns the highest priority to real-time applications and second highest priority to latency-sensitive applications.

III. Hydra

In this section, we discuss Hydra’s communication-aware placement algorithm. Recall that Hydra leverages functional slicing to calculate the number of partitions that minimizes convergence time, without negatively impacting real-time and latency-sensitive applications or violating administrative constraints.

A. Finding the right partition size

In the first step, we compute the number of partitions by considering only the most critical computationally intensive application that directly impacts convergence time on failures. Often, the topology (route computation) application is the most critical application. While the exact number of partitions that minimizes convergence time is implementation dependent, in general, as we increase the number of partitions (starting from 1), the convergence time would decrease as the computation gets parallelized across partitions. But, after some point, the communication overheads between parallel computing instances would start to overwhelm the benefits from parallelization. Thus, it is reasonable to expect a U-curve with the best partition size somewhere in the middle. But, Hydra’s placement algorithm does not depend on the relationship between convergence time and the number of partitions.

B. Communication-aware placement: formulation

Hydra takes as input the different (topological) partitions of applications and their demands (CPU and memory), resource constraints (i.e., CPU, memory, and number of servers), and the communication graph to calculate the best placement of the applications’ partitions that minimizes latency. We assume that computationally-intensive applications (e.g., path computation) are isolated by placing those applications in separate machines (or VMs); simple prioritization might be sufficient in some cases as well. We cast placement of the applications’ partitions as an integer linear programming (ILP) optimization problem. Because our problem is NP hard, we identify a efficient heuristic that can solve it in reasonable time.

Let \(P \) be the number of topological partitions, \(N \) the number of SDN applications deployed in the network, and \(S \) the
number of physical servers dedicated for the SDN control-plane. We want to bin-pack $P \times N$ application slices within S server machines such that the average packet-in processing latency is minimized.

We represent the communication between the different application slices using a communication graph whose vertices are application slices. Thus, there are $P \times N$ vertices in this graph. The edges in the graph denote communication between slices. Communication can occur between two different applications in the same partition (e.g., packets permitted by a firewall module may then be forwarded to a load-balancer), as well as between two slices of the same application in different partitions (e.g., a bandwidth reservation application between a source and destination in two different partitions will require communication between the application slices in the two partitions).

Let d_{ij} denote the communication cost between two slices. Because we are interested in latency, the communication cost denotes the additional latency overhead if the slices are placed in different machines. Let A_i denote a vertex in the communication graph where $i \in [1, P \times N]$. Then, depending on placement, we have the vector $F[i] = k$ which denotes that application slice A_i is placed in machine k.

Objective function: Next, we model latency of latency-sensitive events. Because these events typically traverse multiple application slices, event-handling latency would depend on the total communication cost across these application slices (i.e., path delay). Let $E = \{e_1, e_2, ..., e_r\}$ be the events of interest, with their associated paths, $\{p_1, p_2, ..., p_r\}$, in the communication graph. Naturally, each path is a sequence of edges in the graph.

Then, the cost of an event is given by:

$$\forall p_m \in P, \quad t_{lat}(p_m) = \sum_{<i,j> \in p_m, F[i] \neq F[j]} d_{ij}$$

In this formulation, two slices would incur latency overhead of d_{ij} when placed in different servers but no overhead when co-located in the same physical machine.

We can assign a weight (e.g., relative priority, probability) to each event and calculate the weighted latency as follows.

$$t_{lat} = \sum_{p_m \in \{p_1, p_2, ..., p_r\}} \gamma(p_m) t_{lat}(p_m)$$

The weights could be relative priorities of the events based on semantic knowledge or could just be event probabilities. Our objective is to minimize equation (2) subject to capacity (i.e., CPU and memory), latency, and correctness constraints.

Capacity constraints: Let the compute and memory capacity of each server be R_{cpu} and R_{mem}, respectively. Let A_i’s compute and memory requirements be C_i and M_i, respectively. Then, we have the following constraints based on CPU and memory capacities.

1. $\max_k \left(\sum_{\forall i: F[i] = k} C_i \right) \leq R_{cpu}$
2. $\max_k \left(\sum_{\forall i: F[i] = k} M_i \right) \leq R_{mem}$

real-time constraints: We can bound the latency for real-time applications using an additional constraint of the form:

$$t_{lat}(p_m) \leq \text{deadline}_m$$

where p_m is a path of a real-time event m in the graph.

C. Communication-aware placement: simplification

The final form of the objective function t_{lat} is the linear combination $t_{lat} = \sum_{F[i] \neq F[j]} \alpha_{ij} d_{ij}$, for some coefficients α_{ij}. If we ignore the constraints (i.e., equations (4) and (3)), we see that t_{lat} only depends on the weight of the edge-cut between the partitions and our aim is to find such a mapping F. If we ignore only equation (4), the problem reduces to the well-known multi-constraint graph partitioning problem. If each vertex A_i is assigned a vector of weights (C_i, M_i) denoting the compute and memory requirement of each slice, then the problem is equivalent to finding a k-way partitioning such that the partitioning satisfies a constraint associated with each weight, while attempting to minimize the weight of edge-cut. Because multi-constraint graph partitioning is a known NP-hard problem, we employ heuristic methods from which deliver high quality results in reasonable time. While our heuristic solution ignores equation (4), we did not observe appreciable degradation in our experiments.

D. Discussion

We discuss dynamic load adaptation and fault tolerance. **Load adaptation:** Some previous papers ([5], [13]) argue for the controller’s partitioning and placement to change according to instantaneous load from switches (e.g., packet-in rate). However, such dynamic re-partitioning and placement requires applications to re-partition and migrate their state which drastically affects controller performance and offsets the cost advantage of dynamic re-partitioning. This cost of reorganizing state applies to controllers that store state locally as well as to those that use a distributed datastore. While controllers that store state locally must aggregate/split/migrate their state whenever partitioning/placement changes [13], controllers that use a distributed datastore must reshard their datastore whenever the partitioning changes [5]. Because the cost of provisioning for the peak load is a small fraction (e.g., dedicating 100 servers for a 100,000-server datacenter is only 0.1%) of total cost of ownership (TCO) of large datacenters, we provision enough servers to accommodate the peak load and do not change our partitioning based on packet-in rate (load). Nevertheless, if desired, Hydra’s placement algorithm is fast enough to respond to load variations.
Fault tolerance: For fault tolerance reasons, it may be desirable to replicate SDN controllers in each partition, either using a simple master-slave design for each partition, or a more strongly consistent approach based on the Paxos algorithm [14]. While fault tolerance mechanisms are orthogonal to our work, it is easy to generalize Hydra to handle the placement of replicas. Specifically, a simple approach is to replicate the configuration produced in the previous section as many times as needed for adequate fault tolerance. If it is also desirable to consolidate the number of physical controller machines, our model could be extended by including additional variables for each replica, and using the same placement algorithms described in the previous section. To ensure that replicas of a given application/partition slice are not placed on the same physical host, additional constraints may be added to require replicas be placed in different hosts. Finally, there might be additional requirements that parts of the network supplied by different power sources need controller isolation for fault tolerance. This constraint can be added to our formulation by requiring that applications corresponding to these partitions not be co-located with each other.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the details of our implementation and our evaluation methodology.

SDN Applications: We use the Floodlight SDN controller [11], which is a widely used OpenFlow controller. We evaluate four control-plane functions:

1. **Shortest path computation** (DJ): Shortest path computation based on Dijkstra’s algorithm, which runs whenever a new link (switch) is discovered or an existing link (switch) fails.
2. **Firewall** (FW): Filters packet-in messages based on a set of rules.
3. **Route Lookup** (RL): Returns the complete path based on source/destination pair in a packet-in header.
4. **Heart-beat handler** (HB): Generates and forwards heart-beat messages between switches and controllers;

DJ is a **computationally intensive** intensive application; FW and RL are **latency-sensitive** applications and are invoked during path setup; HB is **real-time** application -- if a heart-beat is not processed within a deadline (i.e., heart-beat interval), a spurious link/switch failure would result which would trigger DJ. While a production SDN deployment would include tens of applications, it is hard for researchers to study a large number of applications at production scales.

Load Generation: Hydra’s evaluation requires large topologies with a few thousand switches. Because network emulators such as Mininet model both control and data plane, they do not scale beyond a few tens of switches [5]. Therefore, we use CBtnch [15]. CBtnch generates packet-in events that stress the control-plane without modeling a full-fledged data-plane. While the current implementation of CBtnch generates random packet-in messages (to potentially non-existent destinations), we modified CBtnch to generate packets that are meaningful to our topology. We use a reactive model of SDN in our experiments. However, our results are generalizable to both pro-active or reactive models.

Topology: Datacenters typically employ hierarchical topologies which provide high bisection bandwidth and good fault tolerance [16], [17], [18]. Our datacenter topology is a fat-tree with 2560 switches. The topology is organized into 512 core switches, and 32 pods, with each pod containing 32 Top of Rack (ToR) switches.

V. RESULTS

In this section, we compare Hydra to Topological slicing for the three types of applications. Recall that we care about different metrics depending on the application type -- lower missed heart-beats (deadlines) for real-time applications (HB), lower latency (higher throughput) for latency-sensitive applications (FW,RL), and lower convergence time for computationally-intensive applications (DJ).

We begin by showing how convergence time varies with the number of partitions which enables us to choose the right partition size. Then we show how our communication-aware placement co-locates different application slices. Because our placement depends on CPU and memory utilization, we show CPU and memory utilizations which are sensitive to a variety of parameters such as packet-in rates, topology sizes, and other parameters. After placement, we compare missed heart-beats for HB and throughput (at near-saturation high loads, throughput is a proxy for latency as queuing becomes the dominant latency component) for FW and RL.

A. Convergence Time

We study convergence time for our fat-tree topology with 2560 switches. Because fat-tree is hierarchical, it is straightforward to create partitions by grouping neighboring pods. For example, we can create two partitions by grouping 16 pods in one partition and the other 16 in the other partition (each pod contains 32 ToR switches). Recall that convergence time is the time to recalculate shortest paths after a link failure. So, to measure convergence time, we take down a random link in our fat-tree which could be a border link (i.e., core link) or a partition-local link (i.e., ToR or aggregate links). We then measure the time required for all partitions to recompute their...
paths which includes time for inter-partition communication. While all neighboring partitions need to recompute on a border-link failure, a local link failure might also require partitions to advertise new costs to other partitions similar to BGP. For each partition size, we simulate 100 random link failures.

We show the average convergence time for DJ vs. number of partitions (partition size) in figure 3. We vary the number of partitions (ToR switches per partition) as 1 (1024), 2(512), 4(256), 8(128), 16(64), and 32(32) along X-axis and show convergence time along Y-axis. We see that convergence time decreases rapidly as we increase the number of partitions from 1 to 8 due to amortization of compute from parallelization. However, after 8, convergence time starts to climb as communication overhead overwhelms gains from parallelization. Because topological slicing co-locates other applications with DJ, higher number of partitions are needed to accommodate the aggregate CPU and memory requirements. In contrast, Hydra’s functional slicing enables us to choose the best partition size (e.g., 8 in this case), independent of other applications.

B. Communication-aware placement

We start by showing the CPU and memory demands of applications. For these measurements, we ran Floodlight controller on our machine with 4 cores of CPU and 64 GB of memory. The demand of each application depends on the amount of application state and controller’s load. Application state impacts both CPU and memory usage – applications maintain state in memory and look up state for each packet-in message. RL must keep local topology information which depends on the partition size. The number of firewall rules impacts FW’s state overhead. In our experiments, we use 50,000 firewall rules which is typical for large networks. DJ maintains both local and global topology information. DJ’s CPU usage depends on link failure rate and partition size. We simulate a random link failure every 10 seconds which is reasonable for large networks. From figure 3, we expect that DJ’s CPU usage to be highly sensitive to partition size. HB’s CPU and memory usage are minimal – its CPU usage slowly grows with heart-beat frequency but negligible overall.

The CPU demands of applications also depend on load (i.e., rate at which the controller receives packet-in messages from switches). We modified C Bench to precisely control packet rate. Our base controller saturates around 50,000 packets per second. Therefore, we make measurements from 10,000 to 50,000 packets per second. Even without any applications, SDN controllers run some common functions (e.g., south-bound OpenFlow protocol handlers) which cannot be turned off. Therefore, we initially measure the idle CPU and memory usage without any applications (no incoming packets to the controller) which represents the overhead of starting a new controller instance. The overhead is about 15% CPU usage and 512MB of memory. We enable applications one-by-one and measure CPU and memory usage for each application (excluding idle overhead) at 100 ms intervals. We discard initial and final samples to capture steady-state usage.

Figure 4 shows the CPU requirements of different applications as we vary the load. DJ and HB do not depend on load – DJ’s CPU usage depends on partition size and link failure rate (1 every 10 seconds), and HB’s usage depends on heartbeat frequency (we ran HB at 10/second and 100/second but they are both insignificant). We show DJ for varying partition sizes – for example, DJ(4P) is for 4 partitions each with one fourth the number of switches as DJ(1P). We observe that DJ’s CPU usage reduces with increasing number of partitions due to reduced number of switches. As discussed in the previous section, with topological slicing, the state overheads of other applications (e.g., RL, FW) determine the partition size which negatively impacts convergence time. For instance, we can see that the combined CPU usage of Idle, RL, FW, HB, and DJ(4P) is close to 100% (15 + 45 + 7 + 3 + 25) for higher loads. In fact, only when there are more than 8 partitions, the combined CPU usage falls well below 100% (servers usually operate at less than 90% loads to provide reasonable response times). Therefore, topological slicing is forced to choose a partition size of 16 or more which leads to high convergence times (see figure 3). Hydra, on the other hand, separates DJ from other applications, enabling DJ to use the best partition size.

Memory usage is largely independent of load. Table I shows the average memory overheads of DJ, FW, and RL for the one partition case containing all switches. From the table, it is clear that memory does not impact our placement in our controller as all of applications comfortably fit within our memory capacity. However, we expect production controllers to have large state overheads that will not fit within one server’s memory. We do not show HB’s memory overhead as it is negligible.

	DJ	RL	FW
Mem	6.25 GB	3.75 GB	1.25 GB

Recall from section IV that our communication graph has
only one edge between RL and FW, as RL and FW are the only applications that lie in the critical path of flow’s path setup; DJ and HB do not have edges between them or to either RL or FW. From figure 4 and table I, it is straightforward to see the difference between Topological slicing’s and Hydra’s placement decisions. Topological partitioning requires 16 controller instances (16 partitions) requiring 16 cores. Each instance would host all the applications. In contrast, Hydra creates 8 network partitions (minima in figure 3). For each partition, it assigns two controller instances which run on separate CPU cores. While one controller instance hosts DJ for that partition, another instance hosts all the other applications – RL, FW, and HB. While we could manually calculate optimal placements in this simple controller, deployment-scale controllers would likely consist of tens of applications with complex communication patterns, and, therefore, would require a rigorous approach such as Hydra. Unfortunately, it is harder for researchers to experiment with production-scale controllers without access to production-scale networks and workloads.

C. Latency-sensitive applications

In this experiment, we compare the performance of latency-sensitive applications in one network partition. Recall that Hydra creates 8 network partition (1/8th switches) as opposed to topological slicing which creates 16 partitions (1/16th switches). In figure 5, we compare the scalability of latency-sensitive applications in Hydra vs. topological slicing. We show load (injected packets per second) along X-axis and the achieved throughput after route lookup (RL) and firewall processing (FW) along Y-axis. As we can see, Hydra scales well beyond 60,000 packets per second whereas topological slicing saturates at about 40,000. As a result, latency-sensitive events incur high queuing inside the controller in the case of topological slicing. It is also interesting to note that even though Hydra handles events from a larger number of switches, the latency-sensitive applications (RL and FW) are isolated from the load spikes caused by computationally-intensive DJ application, thanks to functional slicing.

D. Real-time applications

Separating computationally-intensive DJ application also helps our real-time heart-beats (HB) application. Figure 6 shows the CDF of heart-beat latency between Hydra and topological slicing. Our default heart-beat frequency is 10 heart-beats per second. We see a marked difference between the two – while Hydra’s 95th and 99th %-iles are about 10 ms, topological slicing’s 95th %-ile is about 30 ms. With a deadline of 100 ms (i.e., periodicity of heart-beats), topological slicing would suffer about 3% missed deadlines, whereas Hydra would not miss any. While 3% may look like a small number, but penalty for missed deadlines is very high (i.e., missed deadlines trigger expensive path recomputation which would further exacerbate the problem).

E. Isolating the impact of prioritizing

In this section, we isolate the gains from prioritizing real-time applications over latency-sensitive applications. In figure 7, we compare the CDF of heart-beat latency between Hydra
with and without prioritization. The responses are received in a
timely fashion when HB is prioritized over RL, but modestly
degrades when not prioritized. In figure 8, we increase the
heart-beat rate to 100 per second to facilitate quicker failure
detection. We see that almost all HB messages meet the
deadline when prioritized but no messages meet the deadline
when not prioritized. In fact, some HB messages take as long
as 1800 ms to get a response. Thus, prioritization improves
timeliness of real-time applications beyond functional slicing.

VI. RELATED WORK

While there is a plethora of research on SDN, a systematic
analysis of controller partitioning and placement is not widely
studied. Onix [8] focuses on providing APIs for control-plane
and state distribution. Beehive [19] enables applications to
express their state-dependence and uses the inferred state-
dependence to co-locate functions within each application.
In contrast, Hydra considers event-processing pipeline across
applications and considers others constraints (e.g., CPU load,
memory) to partition applications as well as the state (i.e.,
topology).

Hyperflow [7] improves controller performance by pro-
actively synchronizing state but does not deal with parti-
tioning. Kandoo [6] offloads switch-local events to switches
but does not address a large subset of events that are not
local to the switch. ElastiCon [5] topologically partitions the
controller based on CPU load. In contrast, Hydra employs a hybrid of topological and functional partitioning. A few
other papers address the placement of the controller on the
network to reduce network delays and to topologically-slice
the network for better performance [20], [21]. But none of
them employ functional slicing and they do not target specific response times and convergence costs. While some papers
[8], [5] argue for a logically-separate, globally-consistent,
distributed datastore for storing state to ease communication among different controllers, others [13] prefer that the state be
distributed among controller instances like many distributed
or parallel applications today. Nevertheless, our optimization
formulation is agnostic to the choice of state management.
In our evaluation, we use Floodlight [11] which assumes
the latter alternative where there is no separate datastore but other communication costs (e.g., datastore) can be easily
incorporated into our model.

VII. CONCLUSION

In this paper, we have presented Hydra, a framework for
distributing SDN control functions across servers. Hy-
dra combines well-known topological slicing with our novel
functional slicing and distributes applications based on their
communication pattern. We have demonstrated the importance of functional slicing and communication-aware placement in the scalability of SDN with extensive evaluations.

Our results, while promising, are only a start. First, while
we evaluated using applications that are available publicly
controllers, we expect Hydra’s benefits to be even higher with
large-scale deployments. Getting access to production SDN
deployments can enable larger-scale evaluations, which is an
interesting direction for future work. Second, we are building
a more comprehensive system based on functional slicing,
that can handle other issues such as incrementally placing
applications as loads drastically change and incorporating
consistency guarantees into the model.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed software defined wan,” in Proceedings of the ACM SIGCOMM, ACM, 2013, pp. 3–14.
[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer, “Achieving high utilization with software-driven wan,” in Proceedings of the ACM SIGCOMM, 2013, pp. 15–26.
[3] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4d approach to network control and management,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 41–54, 2005.
[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.
[5] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Elasticon: An elastic distributed sdn controller,” in Proceedings of the ANCS, 2014, pp. 17–26.
[6] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and scalable offloading of control applications,” in Proceedings of the HotSDN, 2012, pp. 19–24.
[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for openflow,” in Proceedings of INMWWREN, 2010, pp. 3–3.
[8] T. Koponen, M. Casado, N. Gude, J. Stibring, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A distributed control platform for large-scale production networks,” in Proceedings of OSDI, 2010, pp. 1–6.
[9] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint graph partitioning,” in Proceedings of the ACM/IEEE Conference on Supercomputing, SC 1998, November 7-13, 1998, Orlando, FL, USA, 1998, p. 28.
[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “Devflow: Scaling flow management for high-performance networks,” in Proceedings of the ACM SIGCOMM, 2011, pp. 254–265.
[11] “Floodlight,” http://www.projectfloodlight.org.
[12] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Dec. 1998.
[13] A. Krishnamurthy, S. P. Chandrasekaran, and A. Gember-Jacobson, “Pratyaasta: An efficient elastic distributed sdn controller,” in Proceedings of the HotSDN, New York, NY, USA: ACM, 2014, pp. 133–138.
[14] L. Lampart, “Puxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25, 2001.
[15] “Controller benchmark.” http://www.openflowhub.org/display/floodlightcontroller/Cbench.
[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” in Proceedings of the ACM SIGCOMM 2008, 2008, pp. 63–74.
[17] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012, 2012, pp. 115–126.
[18] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-level adaptive routing for improved latency and throughput in datacenter networks,” in Proceedings of CoNEXT, 2014, pp. 149–160.
[19] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a simple abstraction for scalable software-defined networking,” in Proceedings of HotNets-XIII, 2014, pp. 13:1–13:7.
[20] A.-W. Tam, K. Xi, and H. Chao, “Use of devolved controllers in data center networks,” in INFOCOM WKSHPS, April 2011, pp. 596–601.
[21] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in Proceedings of HotSDN, 2012, pp. 7–12.