Trends in Malignant Glioma Monoclonal Antibody Therapy

Ivan Chekhonin* and Olga Gurina

Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation; Fundamental and Applied Neurobiology Department, Serbsky State Scientific Centre of Social and Forensic Psychiatry, Moscow, Russian Federation

Abstract: Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

Keywords: Angiogenesis, bevacizumab, glioma, monoclonal antibodies, nimotuzumab, passive immunotherapy.

1. INTRODUCTION

Gliomas make up almost 80% of malignant tumors, among them glioblastoma multiforme (GBM) constitutes about 45% [1]. Low standard chemotherapeutic and neuro-radiological approach effectiveness due to intensive invasive tumor growth makes sense of searching for effective anti-glioma medications, including those based on antibodies to glioma-associated antigens [2].

Application of antibodies for brain tumor therapy is mainly explained by their unique biological properties: highly specific affinity of complementarity-determining regions, and avidity – general antigen binding stability. Tumor immunotherapy gained a new impulse after an epochal discovery of hybridoma technology by G.Köhler and C.Milstein in 1975 [3]. The breakthrough hybridoma method made possible to harvest B-lymphocytes from the spleen of immunized mice, immortalize those cells and produce almost unlimited amounts of antibodies, which are specific only to a single epitope of an antigen [4]. Although this technology could afford gaining highly purified murine monoclonal antibodies, using them for therapy is complicated by anti-mouse antibodies generation, which abrogates specific therapeutic agent functions [5]. The main keys to this problem include producing chimeric, humanized or fully human antibodies by substitution of murine genetic sequences for human ones [6].

Nevertheless, according to Gedeon et al., [7] even applying fully human antibodies has several limitations. For example, a monoclonal antibody Fc fragment may bind to FcyRIIb-receptors on macrophage or lymphocyte surface and thus a therapeutic agent function is inhibited [8]. Moreover, IgG1 is able to bind non-effector cells, e.g. platelets [9], reducing a general antibody effect. All antibodies introduced into the bloodstream
face the problem of permeating the blood-brain barrier (BBB). It is a consequence of big molecular mass and bulky antibody molecule size, as well as of endothelial and choroid plexus neonatal receptor FcRN, which was proved responsible for antibody secretion from interstitial fluid back into bloodstream in a rat model [10].

Complications mentioned above force the investigators to design new approaches to antibody-based therapy of central neural system diseases and glial tumors in particular. In order to avoid these complications a new technology of combining different antibody fragments appeared. The sum of these fragments has a lower molecular mass than an antibody but provides required affinity and avidity. Among such combinations it is necessary to list single-chain variable fragments (scFv), which are produced by peptide-linker heavy chain (VH) and light chain (VL) variable domain fusion [11]; antigen-binding fragments (Fabs), bispecific antibodies (fused antigen-specific moieties of different specificity) [12], bispecific scFvs (bi-scFvs) [13]. It is also possible to cotranslate a VH and VL of different antibodies and vice versa and combine two products yielding a bispecific diabody [14].

Therapeutic monoclonal antibodies gained suffixes according to international nomenclature – “omab” for murine antibodies, “ximab” for chimeric antibodies, “zumab” for humanized antibodies and “umab” for fully human antibodies [15].

2. APPLICATION OF MONOCLONAL ANTIBODIES

2.1. VEGF Antagonists

As GBM is characterized by a high vasculatization degree, one of the alternative therapeutic methods is angiogenesis inhibition. Glioma endotheliocytes express high levels of vascular endothelial growth factor (VEGF-A), which correlates with the tumor grade [16]. VEGF-A belongs to a glycoprotein family, which also includes VEGF-B, VEGF-C, VEGF-D and placental growth factor. VEGF specifically binds to receptors (VEGFR-1, VEGFR-2, VEGFR-3), activating signaling cascades leading to blood and lymphatic vessel endotheliocytes proliferation and stimulating vascular invasion [17]. Bevacizumab (molecular mass 149 kDa) is a humanized IgG1 monoclonal antibody specific to all isoforms of VEGF-A [18]. According to clinical study results mentioned in a review of Narita et al. [19], single-agent bevacizumab effectiveness was proved for recurrent GBM [20] [21]. Han et al. performed a meta-analysis including 91 clinical trials of different therapeutic agents in GBM, which showed a strong correlation between progression-free survival (PFS) and overall survival (OS). The latter fact gives an opportunity to substitute OS by PFS, which results to earlier data assessment [22]. Initially bevacizumab and irinotecan combination effectiveness for radiographic and clinical outcomes was proved by Stark-Vance in 2005 [23]. Later the combination was thoroughly studied by Vredenburgh et al., [24], Friedman et al. (BRAIN study) [25] and Kreisl et al. [26] (Table 1). Although PFS and OS were quite similar among all three studies, BRAIN was the only to include a parallel control group treated with bevacizumab alone (patients treated by Kreisl et al. received single-agent bevacizumab before tumor progression). The latter fact is critical to assess the bevacizumab effectiveness. As for BRAIN, we can say that only PFS improved with irinotecan addition, which is though very important, given the severity of GBM. FDA approval of bevacizumab for recurrent GBM was gained on the basis of BRAIN trial [25] and a study conducted by Kreisl et al. [26]. The European Medicines Agency denied bevacizumab registration because two studies listed above did not contain a bevacizumab-non receiving patient control group [27].

Reardon et al. studied a possibility of adding etoposide as an alternative pair to bevacizumab in treatment of recurrent GBM (27 patients) and grade III gliomas (32 patients). Median OS was 11.6 and 15.8 months and 6-month PFS was achieved in 44.4% and 40.6% respectively [28]. Another trial performed by Reardon et al. (25 patients) tested a regimen of bevacizumab, carboplatin and irinotecan in patients with GBM who progressed on single-agent bevacizumab. Median OS and PFS were 5.8 months and 2.3 months, 6-month PFS was reached in 16% of all cases [29]. Desjardins et al. proposed a therapeutic combination of low-dose temozolomide and bevacizumab (32 patients). Median OS and PFS were 9.25 months and 3.95 months, respectively, 6-month OS was 62.5%, 6-month PFS was 18.8% [30]. Quant et al. studied advantages of replacing a chemotherapeutic bevacizumab pair after reveal-
ing progression of GBM (54 patients). The authors’ hope was to potentiate the tumor sensitivity to bevacizumab after chemotherapy replacement, but they concluded that a progressing malignant glioma did not react to any of the combinations [31]. These results coincide with data obtained by Norden et al. who used irinotecan, carboplatin and carmustine as second agents after the malignant glioma progression onset (55 patients) granted chemotherapeutic agent change effectiveness only in single cases [32]. In combination with sorafenib in recurrent GBM (54 patients) bevacizumab did not show outcome improvement (median OS and PFS were 5.6 and 2.9 months, 6-month PFS was 20.4%) [33], as well as with temsirolimus (13 patients, median OS was 3.75 months, median PFS was 2 months) [34].

In the light of bevacizumab studies, the nitrosourea application for recurrent GBM has gained a new impulse. Vaccaro et al. have been studying the combination bevacizumab and fotemustine regimen in a heterogenic population of patients with recurrent GBM, as well as with lower grade, albeit anaplastic recurrent gliomas (26 patients in total). The median PFS for patients with GBM 3 months (4 months for patients with anaplastic gliomas). 6-months PFS in the whole population was 23.1%, the median OS was 6 months, although the last two scores were not differentiated by the glioma histotype [35]. Soffietti et al. conducted a trial to test a bevacizumab and fotemustine regimen in a group of patients suffering from recurrent GBM (n=54). As the median PFS was 5.2 months; the 6-months PFS was 42.6% and the median OS was 9.1 months, the authors have concluded a failure to prove a combination success over existing regimens (either bevacizumab alone or in combination) [36]. That implies not the bevacizumab and fotemustine ineffectiveness per se, but lack of breakthrough achievements against a ground of previous studies. A double-agent regimen applied to grade III glioma resulted in PFS of 5 months and median OS of 8.6 months [37].

Intra-arterial injection of bevacizumab was proved effective for increasing its local concentration in the peritumoral zone. Boockvar et al. proved doses up to 15 mg/kg to be safe [38]. Burkhardt et al. studied 14 patients with recurrent GBM, who received bevacizumab intra-arterially after pharmacological BBB disruption. In this study median OS (8.8 months) was lower than median PFS (10 months), because 4 patients died before the beginning of neurovisualization-detectable progression [39].

Several patients, who received bevacizumab, had a neurological improvement, and for 30-70% patients it was possible to reduce corticosteroid doses [20, 40]. According to Bähr et al., bevacizumab induced a kind of magnetic resonance imaging (MRI) lesions (T1 hypointensive, diffusion-restricted), which correlated with survival benefit in patients with recurrent GBM [41]. According to MRI data, 35% of recurrent GBM were characterized by progression of predominantly non-enhancing lesions after bevacizumab discontinuation related to tumor progression [42]. Seystahl and Weller showed that even decreasing of contrast enhancement cannot be regarded as a criterion of tumor reversion, because it can also be a consequence of BBB restoration [43, 44]. In several cases bevacizumab discontinuation can lead to a rebound effect result-

Table 1. Results of bevacizumab and irinotecan combination clinical studies.

Clinical Study Data	Number of Patients	Progression-free Survival, Months	Overall Survival, Months	6-month Progression-Free Survival, %
Vredenburgh et al., 2007 [24]	35	6.0	10.5	46.0
Friedman et al., 2009 single-agent bevacizumab [25]	85	4.2	9.2	42.6
Friedman et al., 2009 bevacizumab + irinotecan [25]	82	5.6	8.7	50.3
Kreisl et al., 2009 [26]	48	4.0	7.75	29.0
ing in tumor reversion back to its pre-treatment size or even in increasing of contrast enhancement lesion diameter up to 50% [45]. Clark et al. showed that survival of iteratively operated patients treated with bevacizumab was lower than that of patients who did not receive antiangiogenic therapy [46]. An abrupt bevacizumab discontinuation can also provoke brain oedema, which is why a gradual dose decrease is recommended [19].

The history of bevacizumab in newly diagnosed GBM is younger. Lai et al. studied a triple therapeutic combination of radiotherapy, temozolomide and bevacizumab in newly diagnosed GBM (70 patients). Median OS and PFS were 19.6 months and 13.6 months, respectively (the figures for a double combination without bevacizumab in European Organization for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada (EORTC-NCIC) study were 14.6 and 6.9 months, respectively) [47, 48]. Chinot et al. refer to an independent study, where bevacizumab-containing 3-component therapy twice improved OS of patients with newly diagnosed GBM [49]. Nevertheless, larger ones do not confirm the data of two trials mentioned above. Gilbert et al. conducted a double-blind randomized placebo-controlled clinical bevacizumab trial (Radiation Therapy Oncology Group 0825, 621 patient), which was introduced intravenously as a temozolomide co-therapeutic agent and radiotherapy for newly diagnosed GBM. According to the study results, no significant difference in OS between bevacizumab receiving group and placebo group (15.7 and 16.1 months, respectively) was detected. PFS was greater in bevacizumab group (10.7 months vs. 7.3 months in placebo group), although it was also characterized by complications such as arterial hypertension, thromboembolism, neutropenia, cognitive deterioration and decrease in life quality [50]. As for the last point, the bevacizumab influence on life quality is not fully understood. Chinot et al. showed in AVAglio trial (911 patients) that although bevacizumab as a third component (besides temozolomide and radiotherapy) did not increase life quality, it was sustained on a constant level for a longer period than in placebo group. On the other hand, PFS in AVAglio study was practically the same as in RTOG 0825 (10.6 months in bevacizumab group vs. 6.2 months in placebo group) [51].

The latest study to be reported, the BELOB multicentre phase II clinical trial (148 patients), conducted by Taal et al. [52] concerns recurrent GBM. The authors divided all patients into 3 groups receiving bevacizumab alone, lomustine alone and a combination of both medications. Assuming the historical BRAIN trial results as a sample [25], the survival rate of 9 months was taken as a reference. This decision fully coincides with the FDA ground to approve bevacizumab for recurrent GBM and OS/PFS standard of bevacizumab combination effectiveness outlined by Soffietti et al. [36]. 9-month OS was 38% in the bevacizumab group, 43% in the lomustine group, 63% in the bevacizumab plus lomustine group. The median OS was 8 months in the bevacizumab group, as well as in the lomustine group, 12 months in the combination group. 6-month PFS was 16% in the bevacizumab group, 13% in the lomustine group, 42% in the combination group. Unlike earlier trials, BELOB showed particularly modest 6-month PFS on single-agent bevacizumab therapy. Van den Bent et al. suggest that the more a medication is used in the general population (“a less selected recurrent GBM population”) [52], the worse outcomes in comparison to the initial trials are. They also believe that the trial results do not recommend the single-agent bevacizumab for recurrent GBM studies continuation. Hence they assume that only a combination of bevacizumab and lomustine deserves further investigation in a phase III study [53, 54]. Such a study has been conducted by the EORTC, the estimate completion date is September 2015 [55]. As for newly diagnosed GBM, H.S.Friedman underlines the role of the FDA review of the AVAglio and RTOG 0825 trials to come, which can shed light on the single-agent bevacizumab problem [56].

In BELOB trial context, Taal et al. found out that isocitrate dehydrogenase (IDH) wild-type tumors were associated with median OS of 9 months, whereas IDH mutant GBM patients had 20 monthsmedian OS, although the number of patients with IDH mutant tumors was quite small to draw significant outcomes from (nevertheless, this question deserves further exploration) [52].

In most studies bevacizumab was used in doses of 10 mg/kg every 2 weeks, but according to Wong et al., who conducted a meta-analysis of trials published in 2005-2009, there was no differ-
ence between 5 mg/kg and 10-15 mg/kg doses [57].

2.2. VEGFR and PDGFR Antagonists

The VEGF/VEGFR intracellular signaling pathway can be blocked on the transmembrane receptor level. Ramucirumab, a monoclonal antibody to VEGFR-2, has successfully undergone phase III clinical trial as a therapeutic agent for gastric cancer and gastro-esophageal junction carcinoma [58]. Korchagina et al. consider selective VEGFR-2 inhibition, supported by hypoxia-inducible factor 1 and placental growth factor suppression, as a perspective means of glioma targeted therapy [59]. According to Ikeda et al., VEGFR-1 has a much weaker tyrosine kinase activity [60] and can abrogate VEGF angiogenetic effect exerted via VEGFR-2, acting as a natural angiogenesis inhibitor [43].

Glioma-associated angiogenesis stimulation is triggered not only by VEGFR, but also by other growth factors, for example, platelet-derived growth factor (PDGF) and its receptors (PDGFRα and PDGFRβ), belonging to a receptor tyrosine kinase family [61]. IMC-3G3 (olaratumab) is a fully human antibody (IgG1), which specifically binds to PDGFRα but does not react with PDGFRβ [62]. IMC-3G3 showed ability to inhibit tumor growth by 65% in a murine model of U118 GBM xenotransplanted cells. Phase I clinical trial revealed that IMC-3G3 is well-tolerated and does not cause specific adverse effects [63]. A ramucirumab and IMC-3G3 for recurrent GBM clinical trial was conducted, but there are no results yet [64].

2.3. Antagonists of Hepatocyte Growth Factor and its c-Met Receptor

Scatter factor/hepatocyte growth factor (SF/HGF) and its tyrosine kinase receptor c-Met are hyperexpressed in many tumors including glial ones, and HGF/c-Met expression levels correlate with tumor aggressiveness [65]. Cao et al. have obtained anti-HGF antibodies, but later it was determined that three epitopes on HGF surface should be blocked in order to fully inhibit its signaling via c-Met [66]. Burgess et al. solved this problem, designing 5 fully human monoclonal antibodies IgG2 to an epitope located in HGF β-chain (presumably, positions 507-585). These antibodies, injected into herotopic U87 and U118 glioma xenotransplants in mice, inhibited tumor growth and stimulated apoptosis [67]. The preparation of monoclonal antibodies to HGF (AMG 102, rilotumumab) sensitized subcutaneously transplanted U87 cells to radiation in a murine model [68]. In a similar experiment, AMG 102 increased temozolomide and docetaxel effectiveness [69] and reduced isotope accumulation in positron emission tomography [70]. Effectivity and tolerability of AMG 102 were studied in phase II clinical trial published in 2011 [71]. AMG 102 was introduced systemically to 58 patients with recurrent GBM (previously in doses of 10 and 20 mg/kg). Median OS was 6.5 months in the first cohort and 5.4 months in the second one. PFS was 4.1 weeks and 4.3 weeks, respectively. Median time since initial diagnosis was 16 and 14 months respectively. Forty-eight percent of patient have undergone anti-angiogenic treatment before enrollment. One patient with low-grade glioma was enrolled into the study by a protocol violation. There was also one patent, whose tumor was considered to have “other” histological type.

Mitra et al. showed benefits for nude mice with orthotopically transplanted U87 GBM treated with ficlatuzumab, a monoclonal antibody targeting HGF, and temozolomide (in 8 of 10 mice the course of GBM wasn’t accompanied by clinical symptoms, as opposed to single-agent ficlatuzumab, where only 1 of 9 mice survived) [72].

New perspective of antibody therapy was revealed as Martens et al. obtained one-armed antibodies to c-Met (onartuzumab, OA5D5). Injection of onartuzumab into orthotopically transplanted U87 GBM (HGF and c-Met positive) in a murine model resulted in tumor growth inhibition by 95% (decrease in proliferation by 75%, vascular density by 90%, apoptosis induction by 60%). G55 xenotransplants (c-Met positive and HGF-negative) did not react to onartuzumab [73]. This fact is a proof of natural c-Met agonist essential role in therapeutic function of the onartuzumab. Onartuzumab pharmacokinetics was studied in phase I and II clinical trials regarding recurrent non-small cell lung cancer [74].

Noteworthy, Navis et al. described a tumor-promoting mutant MET receptor localized cytoplasmatically in 6% of all high-grade gliomas. The auto-enhancing activity and transmembrane
domain lack makes the antigen inaccessible for the antibodies, rendering all antibody-based efforts to silence it ineffective [75].

2.4. Antagonists of EGFR and its Mutant Variant EGFRvIII

Monoclonal antibodies to epidermal growth factor receptor (EGFR) extracellular domain include chimeric (cetuximab), humanized (nimotuzumab) and fully human (panitumumab). ESMO approved cetuximab and panitumumab for metastatic RAS-wild type colorectal cancer treatment [76]. In phase II clinical trial of cetuximab monotherapy in patients with recurrent GBM (n=55) median OS was 5 months, but it did not correlate with EGFR amplification, as well as response to therapy. PFS was 1.9 months, 6-months OS and PFS were 37.9% and 7.3%, respectively [77]. Blesa et al. reported a case, where a combination of cetuximab and bevacizumab resulted in 20-month delay of pontine GBM [78]. A cetuximab, bevacizumab and irinotecan triple therapy did not prove to be more effective than bevacizumab and irinotecan combination [79]. Yi et al. showed synergism of cetuximab and DC101 (murine monoclonal antibodies to VEGFR-2) in HM55-BGIV-101 GBM cells transplanted to mice. The first medication exerted its activity through satellite tumor inhibition; the second one decreased the main tumor volume [80].

One of the earliest nimotuzumab and radiotherapy combination studies in newly diagnosed high-grade gliomas was performed by Ramos et al. [81], where patients with newly diagnosed GBM (16 patients), anaplastic astrocytoma (AA) (12 patients) and anaplastic oligodendroglioma (1 patient) were enrolled after debulking surgery. The median OS in patients with GBM was 17.47 months (not reached in AA population). Another study, conducted by Solomon et al. [82], included nimotuzumab plus radiotherapy or radiotherapy plus placebo groups of patients (n=70) with newly diagnosed high-grade gliomas, where debulkment was not an essential criterion for patient selection. The median OS was 17.76 months and 12.63 months in nimotuzumab and placebo cohorts, respectively (integrative data for tumors of all histological groups, GBM and anaplastic astrocytoma). For newly diagnosed GBM, median OS was 8.4 months (nimotuzumab cohort) vs. 8.36 months (placebo cohort). Data provided by Solomon et al. in 2014 (35 patients), showed median OS gain of nimotuzumab and radiotherapy in GBM and AA (12.4 months and 27.0 months, respectively vs. 8.0 and 12.2 months on single radiotherapy) [83].

Westphal et al. conducted a phase III clinical trial in patients with newly diagnosed GBM (142 patients), combining nimotuzumab application, surgical treatment, radiotherapy and temozolomide. Although median OS did not differ significantly (22.3 months in nimotuzumab-receiving cohort vs. 19.6 months in control group), a significant increase in patient survival was detected in EGFR positive and methylated O6-methylguanine-DNA methyltransferase (MGMT) groups [84].

Chinese researchers obtained noteworthy results for nimotuzumab in both newly diagnosed and recurrent malignant gliomas [85]. The only point to underline is that the results were not differentiated according to the exact tumor grade (III or IV). That is why it is quite difficult to refer the data to a specific histotype. Hong et al. performed a placebo-controlled phase I/II clinical study (41 patients) where nimotuzumab was combined with radiochemotherapy. The median OS in the study and control groups were 16.5 and 10.5 months, respectively (significant difference), but the 1-year survival rate difference did not show clinical significance [86].

Of particular concern is nimotuzumab application in recurrent malignant gliomas. In 2015 Yang et al. have reviewed their clinical study published in 2011 in Chinese (14 patients), where nimotuzumab was combined with chemotherapy [85]. The median PFS was 4 months and 6-month PFS was 30.6%. The effect of nimotuzumab was assessed as “moderate”, albeit the medication was well-tolerated [87]. Chong et al. have tried nimotuzumab and rapamycin combination in temozolomide-resistant cell lines, which could act as a model of recurrent GBM. The combination was effective in Asian patient-derived human glioma cell lines expressing wild-type EGFR, Caucasian patient-derived human glioma cell lines expressing either wild-type EGFR or EGFRvIII and U87MG cell line. Of particular interest is the EGFR-null Gli36 cell line, where nimotuzumab and rapamy-
cin were also effective (the exact mechanism is unclear) [88].

Results of nimotuzumab in children and adolescents suffering primarily from diffuse intrinsic pontine glioma (DIPG) remain controversial, showing results varying from modest [89] to encouraging [90]. The nimotuzumab, vinorelbine and radiotherapy combination in DIPG is of particular interest and needs further studies [91].

EGFRVIII mutation is caused by 801 base-containing deletion, which results in loss on extracellular part of the receptor and its constitutive activity [7, 92]. Monoclonal antibodies to extracellular domain of EGFRVIII (mAb 806 and their humanized analogues ABT 806) are capable of decreasing the mutant receptor autophosphorylation. They react with tumors, which express EGFRVIII or amplify and overexpress EGFR, but not with normal tissues [93]. mAb 806 potentiated the sensitivity of glioma xenotransplants to radiotherapy [94]. Wang et al. obtained CH12 antibodies to exon-4-deleted EGFR gene product. In vivo CH12 inhibited growth and metastases of such a mutant EGFR expressing U87 GBM more selectively than cetuximab [95].

Gedeon et al. have designed a bi-scFv to EGFRVIII and a T-cell coreceptor CD3. The bi-scFv enhanced the T-cell antitumoral response [7]. An in vivo experiment showed that systemic bi-scFv introduction into orthotopically transplanted EGFRVIII-expressing U87 glioma resulted in a complete tumor regression in 75% of the mice population but was not effective in case of EGFRVIII-negative gliomas [7, 13].

During the World Federation of Neuro-Oncology 4th Quadrennial Meeting (21-2 4th November 2013) the Phase II study (ReACT) interim results of bevacizumab and rindopepimut, a peptide vaccine with EGFRVIII epitope in recurrent GBM, were reported [96]. Several interim trial results were also announced by Celldex Therapeutics, Inc. on the 14th of November 2014 [97]. These two announcements differ in terms of OS and 6-month PFS. The OS in the combination group (bevacizumab-naïve patients) was 12 months (for both data), whereas in the bevacizumab group this rate reached 7.9 months in 2013 (8.8 month in 2014). The median PFS was 3.7 and 2.0 months in 2013, and, according to the last update, 6-month PFS was achieved in 27% and 11%, respectively. As for bevacizumab resistant patients treated with bevacizumab and rindopepimut, the median OS was 5.6 months in 2013 (5.1 months in 2014); 6-month and 2-month PFS in 2013 were 8% and 29%, respectively. According to ClinicalTrials.gov (NCT01498328), the estimate primary completion date of the study is June 2015 [98].

3. DISCUSSION

Fine, describing clinical trials of bevacizumab in newly diagnosed GBM, marks that although there is an increase in PFS in RTOG 0825 [48] and AVAglio [104], the median OS is practically same as in control group. The author explains this fact by potential bevacizumab ability to lower vascular permeability in GBM and thus to hinder lesions progression according to MRI [105]. That is why the most widely spread antibody-based medication in GBM application expediency, at any rate in newly diagnosed GBM, was challenged.

As for recurrent GBM, we find it noteworthy not only to assess median OS and PFS, but also to search for a correlation between median OS after monoclonal antibody treatment enrollment and median time from initial diagnosis. Unfortunately, several bevacizumab clinical trials have failed to provide information about the latter criterion. We have found six studies where authors have listed median time from initial diagnosis among other data (Fig. 1). Although this number is too small to draw outcomes from, we tested these figures for a correlation, but did not find significant one (R=0.57; p=0.086). Nevertheless, even such a modest trial selection may suffice, as correlation between PFS and OS among these studies is more manifest (R=0.68, p=0.04), which coincides with much more detailed and circumstantial results obtained by Han et al. [22]. We deliberately included not only bevacizumab-naïve patients concerning studies into the analysis. Patients in the study conducted by Reardon et al. (2011) have received bevacizumab either at recurrence (52%) or after the initial diagnosis (48%) [29]. Desjardins et al. (2012) have enrolled 12% bevacizumab-pretreated patients [30].

The crucial problem to solve is why several patients with recurrent GBM respond to bevacizumab, while others fail to do it. The origin of such a predisposition is still not discovered. Ac-
According to H.S. Friedman, the difference between the bevacizumab effect in newly diagnosed and recurrent GBM has a lot to deal with the patterns of progression, which is predominantly angiogenic [99] or invasive, respectively [32, 56]. This statement is also proved by the BELOB outcomes, where 20 patients showed median OS data similar to that in AVAglio study, suggesting a role of patient selection [53]. More to the mentioned above, it is necessary to underline the growing importance of IDH mutation and MGMT methylation status in patients entering clinical trials, as some of the phenotypes are connected with a higher survival. We think that a trend is emerging to assess genetic profile of patients to be subjected to anti-glioma treatment. In particular, results obtained by Lai et al. show that bevacizumab treatment in newly diagnosed GBM is more efficient in patients with methylated MGMT than in ones with unmethylated MGMT previously gaining benefit on temozolomide [47]. In RTOG 0825 study, Gilbert et al. suggested prognostic value of MGMT methylation status per se, which did not differ in bevacizumab and control groups. The median OS and PFS in MGMT methylated tumors were 23.2 months and 14.1 months, compared to 14.3 months and 8.2 months, respectively, in unmethylated MGMT tumors. In BELOB trial [52], 7 of 8 IDH-mutant (and prognostically favorable) patients also had a methylated MGMT promoter, which scatters the role of IDH mutation in tumor response prediction and demands further clinical trials. In a study performed by Westphal et al., unmethylated MGMT phenotype patients treated with nimotuzumab showed OS improvement [84]. We assume that MGMT methylated phenotype is prognostically positive, regardless of antibody-based treatment, but in case of less favored unmethylated MGMT phenotype application of nimotuzumab is preferred (Fig. 2).

4. PERSPECTIV TARGETS FOR PASSIVE IMMUNOTHERAPY

Unconjugated antibody therapy has several alternative as application of immunotoxins, radio-
immunotherapy and conjugates of antibodies to nanoparticles. Noteworthy, not only “canonical” antigens are used to generate antibodies. According to De Bonis et al., radioimmunotherapy targets include, besides EGFRvIII, tenascin-C (an extracellular matrix protein), podoplanin (a transmembrane glycoprotein and thrombocyte aggregation factor), extra-domain B of fibronectin, αvβ3 integrin and H1 histone [100]. Chandramohan et al. have reviewed immunotoxins to EGFR, EGFRvIII, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), human transferrin receptor, α2-interleukin (IL) 13, glycoprotein nonmetastatic melanoma protein B, high molecular weight melanoma-associated antigen, folate receptor β, podoplanin [101-103]. Piao et al. have designed an immunotoxin based on scFv to 3′-isoLM1 and 3′,6′-isoLD1 gangliosides [104]. Wang et al. have obtained an scFv-based immunotoxin to multidrug resistance protein 3 [105].

We should separately shortly review antigens, which present a potential for future glioma immunotherapy. Among these it is necessary to list cytokines, growth factors and their receptors, for example, neuropilin-1 (a VEGF signaling coreceptor) [106], Tie2 angiopoietin receptor [107], transforming growth factor β [108], mature brain-derived growth factor [109], monocyte chemoattractant protein-1 [110], CD25 (an IL2 receptor)
[111], IL6 receptor [112], CXC chemokine receptor type 4 [113]. Of particular interest are semaphorins, which exhibit their functions via neuropilins and plexins. Initially, they were described as axon guidance molecules in central nervous system, but later their functions were revealed to be localized far beyond the brain [114]. Class 2 and 3 semaphorins are secreted proteins, while semaphorins 1,4,5,6 are transmembrane proteins. Nowadays, the most well described in gliomagenesis semaphorins belong to class 3, but even their role remains controversial, as this subfamily is quite heterogenic [115]. More to the mentioned above, in general tumorogenesis conception, contrary to that in gliomas, neuropilin-1 and semaphorin 3 associated pathways are thought to stimulate vessel maturation and thus increase tumor perfusion, abrogating tumor-associated hypoxia and suppressing tumor growth [114, 116].

Some experts believe in success of death-domain associated receptor-targeting therapy (DR5 [117], CD95 [12]). Several authors suggest a role of stem-cell markers in glioma progression (CD133 [118], stage-specific embryonic antigen-4 [119]). There is also a rationale in targeting molecules responding for cell-substrate interactions (vascular cell adhesion molecule 1 [120], β1 integrin [121], CD44 – a galuronan receptor [122], neuron-glial antigen 2 (NG2) [123]). CD47, an integrin-associated protein, is upregulated in more than 90% of autopsy GBM specimens, according to results of Stanford Stem Cell Biology and Regenerative Medicine [96, 124]. Higgins et al. have constructed a Mab-Zap immunotoxin (targeting moiety chemically conjugated to saporin, a ribosome-blocking protein) to NG2 and ganglioside GD3A, which proved to be more effective than targeting either of these antigens [125].

Intracellular signaling pathway mediating molecules are also perspective targets in high-grade glioma therapy. Selective inhibition of some signaling molecules can result in tumor growth arrest. These are src-homology 3-domain GRB2-like 1 [126], G-protein coupled receptor-associated sorting protein 1 [127], receptor tyrosine kinase EphA3 [128], receptor tyrosine kinase Mer [129], receptor tyrosine phosphatase β/C, FERM-domain of Pyk2 tyrosine kinase [130] (Pyk2 promotes the post anti-VEGF treatment C6 glioma cell invasion [131]). Phosphatidylinositol in complex with β2-glycoprotein I [132] and calcium-binding protein S100A4 [133] also deserve attention.

Chitinase-like protein YKL-40 (with no enzymatic activity) is also a potential antigen for targeted therapy [134]. Relative YKL-39 is also highly expressed in gliomas, but it acts in opposite direction, inhibiting tumor cells proliferation [135].

Noteworthy, targeting co-stimulation and co-inhibition T-lymphocyte molecules also present a perspective in glioma treatment. These are CD137 – a receptor from the tumor necrosis factor superfamily [136], the immune checkpoint ligand programmed death-1 (PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4). Wainwright et al. showed that inhibition of PD-L1, CTLA-4 (the first two with monoclonal antibodies) and tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) (the latter with D-1-methyltryptophan, a low-molecular inhibitor) was followed by tumor Treg depletion and almost 100% survival of mice with orthotopically transplanted GL261 glioma cell line, but only in presence of CD4+ and CD8+ T-cells [137]. The authors have also found surprising that PD-L1/CTLA-4 blocking agents administered at day 14 after the tumor implantation showed almost the same survival rate in mice as the triple-agent therapy. Moreover, they insist on reassessing existing treatment patterns, because temozolomide may cause lymphopenia and thus abrogate the tumor-suppressing immune response [138]. A clinical trial is ongoing to outline benefits of combining CTLA-4 and PD-L1 blockade by ipilimumab and nivolumab in patients with recurrent GBM [139]. Agonistic CD40 monoclonal antibodies in combination with cyclooxygenase-2 inhibitor celecoxib enhance CD4+ and CD8+-dependent anti-glioma immunity [140].

Yusubalieva et al. have demonstrated therapeutic effect of monoclonal antibodies to second extracellular loop of connexin-43, which appeared to inhibit the size of C6 glioma xenotransplants in a rat model and prolong the life span of the animals [141]. The antibodies were also used in combination with temozolomide and radiotherapy in the same model. The authors report that radiotherapy potentiated the effect of anti-connexin-43 antibodies but it was abrogated by temozolomide [142].
These results present an evidence that connexin-43 can be considered as a perspective targeting molecule for treatment of GBM.

We assume that future glioma passive immunotherapy will be based on more potent cytotoxic abilities of targeted medications. This is why plain antibodies should serve as vectors to introduce cytotoxic moieties into tumors. Hence, the search for new therapeutic targets for high-grade gliomas is going on further. We hope that these researches, as well as ones revealing genuine glioma etiology and pathogenesis will create a background for significant progress of tumor treatment.

CONFLICT OF INTEREST

I. Chekhonin declared no potential conflict of interest. O. Gurina declared no potential conflict of interest.

ACKNOWLEDGEMENTS

I. Chekhonin and O. Gurina contributed equally to this work.

REFERENCES

[1] Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol 2014; 16(7): 896-913.
[2] Le Rhun E, Taillibert S, Chamberlain MC. The future of high-grade glioma: Where are we and where are we going. Surg Neurol Int 2015; 6(Suppl 1): S9-S44.
[3] Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495-7.
[4] Modjtahedi H, Ali S, Essapen S. Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull 2012; 104(1): 41-59.
[5] Sethu S, Govindappa K, Alhaidari M, et al. Immunogenicity to biologics: mechanisms, prediction and reduction. Arch Immunol Ther Exp (Warsz) 2012; 60(5): 331-44.
[6] Gets DR, Gets MT, McCarthy DP, et al. Have we overestimated the benefit of human(ized) antibodies? MAbs 2010; 2(6): 682-94.
[7] Gedeon PC, Choi BD, Hodges TR, et al. An EGFRvIII-targeted bispecific T-cell engager overcomes limitations of the standard of care for glioblastoma. Expert Rev Clin Pharmacol 2013; 6(4): 375-86.
[8] Seeling M, Nimmeijahn F. Releasing the Brakes: Targeting FcγRIIB on B Cells to Enhance Antibody-Dependent Lymphoma Immunotherapy. Cancer Cell 2015; 27(4): 427-8.
[9] Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost 2015; DOI: 10.1111/jth.12905
[10] Cooper PR, Ciambrone GJ, Kliwinski CM, et al. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res 2013; 1534: 13-21.
[11] Zhu X, Bidlingmaier S, Hashizume R, et al. Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells. Mol Cancer Ther 2010; 9(7): 2131-41.
[12] Herrmann T, Grosse-Hovest L, Otz T, et al. Construction of optimized bispecific antibodies for selective activation of the death receptor CD95. Cancer Res 2008; 68(4): 1221-7.
[13] Choi BD, Kuan CT, Cai M, et al. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc Natl Acad Sci USA 2013; 110(1): 270-5.
[14] Kamada H, Taki S, Nagano K, et al. Generation and characterization of a bispecific diabody targeting both EPH receptor A10 and CD3. Biochem Biophys Res Commun 2015; 456(4): 908-12.
[15] World Health Organization. Essential medicines and health products. INN stems. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2013 (Stem book 2013). [cited: 9th Apr 2015]. Available from: www.who.int/medicines/services/innm/stembook/en/
[16] Jang FF, Wei W, De WM. Vascular endothelial growth factor and basic fibroblast growth factor expression positively correlates with angiogenesis and peritumoural brain oedema in astrocytoma. J Ayub Med Coll Abbottabad 2008; 20(2): 105-9.
[17] Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1(3): 219-27.
[18] Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 2006; 6(9): 714-27.
[19] Narita Y. Drug review: Safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol 2013; 43(6): 587-95.
Trends in Malignant Glioma Monoclonal Antibody Therapy

[20] Nagane M, Nishikawa R, Narita Y, et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 2012; 42(10): 887-95.

[21] Chamberlain MC, Johnston SK. Salvage therapy with single agent bevacizumab for recurrent glioblastoma. J Neurooncol 2010; 96(2): 259-69.

[22] Han K, Ren M, Wick W, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro Oncol 2014; 16(5): 696-706.

[23] Stark-Vance V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Neuro Oncol 2005; 7(3): 369.

[24] Vredenburgh JJ, Desjardins A, Herndon JE, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13(4): 1253-9.

[25] Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27(28): 4733-40.

[26] Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27(5): 740-5.

[27] Wick W, Weller M, van den Bent M, et al. Bevacizumab and recurrent malignant gliomas: a European perspective. J Clin Oncol 2010; 28(12): e190-2.

[28] Reardon DA, Desjardins A, Vredenburgh JJ, et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 2009; 101(12): 1986-94.

[29] Reardon DA, Desjardins A, Peters KB, et al. Phase 2 study of carboplatin, irinotecan, and bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. Cancer 2011; 117(23): 5351-8.

[30] Desjardins A, Reardon DA, Coan A, et al. Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 2012; 118(5): 1302-12.

[31] Quant EC, Norden AD, Drappatz J, et al. Role of a second chemotherapy in recurrent malignant glioma patients who progress on bevacizumab. Neuro Oncol 2009; 11(5): 550-5.

[32] Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70(10): 779-87.

[33] Galanis E, Anderson SK, Lafky JM, et al. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial. Clin Cancer Res 2013; 19(17): 4816-23.

[34] Lassen U, Sorensen M, Gaziel TB, et al. Phase II study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme. Anticancer Res 2013; 33(4): 1657-60.

[35] Vaccaro V, Fabi A, Vidiri A, et al. Activity and safety of bevacizumab plus fotemustine for recurrent malignant gliomas. Biomed Res Int 2014; DOI: 10.1155/2014/351252.

[36] Soffietti R, Trevisan E, Bertero L, et al. Bevacizumab and fotemustine for recurrent glioblastoma: a phase II study of AINO (Italian Association of Neuro-Oncology). J Neurooncol 2014; 116(3): 533-41.

[37] Lombardi G, Farina P, Della Puppa A, et al. An overview of fotemustine in high-grade gliomas: from single agent to association with bevacizumab. Biomed Res Int 2014; DOI: 10.1155/2014/698542.

[38] Boockvar JA, Tsiouris AJ, Hofstetter CP, et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 2011; 114(3): 624-32.

[39] Burkhardt JK, Riina H, Shin BJ, et al. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg 2012; 77(1): 130-4.

[40] Vredenburgh JJ, Cloughesy T, Samant M, et al. Corticosteroid use in patients with glioblastoma at first or second relapse treated with bevacizumab in the BRAIN study. Oncologist 2010; 15(12): 1329-34.

[41] Bahr O, Harter PN, Weise LM, et al. Sustained focal antitumor activity of bevacizumab in recurrent glioblastoma. Neurology 2014; 83(3): 227-34.

[42] Iwamoto FM, Abrey LE, Beal K, et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 2009; 73(15): 1200-6.

[43] Seystahl K, Weller M. Is there a world beyond bevacizumab in targeting angiogenesis in glioblastoma? Expert Opin Investig Drugs 2012; 21(5): 605-17.

[44] Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade...
gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28(11): 1963-72.

[45] Zuniga RM, Torcuator R, Jain R, et al. Rebound tumour progression after the cessation of bevacizumab therapy in patients with recurrent high-grade glioma. J Neurooncol 2010; 99(2): 237-42.

[46] Clark AJ, Lamborn KR, Butowski NA, et al. Neurosurgical management and prognosis of patients with glioblastoma that progresses during bevacizumab treatment. Neurosurgery 2012; 70(2): 361-70.

[47] Lai A, Tran A, Nghiemphu PL, et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2011; 29(2): 142-8.

[48] Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459-66.

[49] Chinot OL, de La Motte Rouge T, Moore N, et al. AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 2011; 28(4): 334-40.

[50] Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370(8): 699-708.

[51] Gilbert MR, Sulman EP, Mehta MP. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370(21): 2048-9.

[52] Taal W, Oosterkamp HM, Walenkamp AM, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014; 15(9): 943-53.

[53] van den Bent MJ, Taal W. Bevacizumab alone or in combination with chemotherapy in glioblastomas?--authors' reply. Lancet Oncol 2014; 15(11): e473-4.

[54] Villanueva MT. CNS cancer: it takes two to tango. Nat Rev Clin Oncol 2014; 11(9): 502.

[55] Bevacizumab and Lomustine for Recurrent GBM. ClinicalTrials.gov: a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. [updated 9th Feb 2015; cited: 4th Apr 2015]. Available from: www.clinicaltrials.gov/ct2/show/NCT01290939?term=NCT01290939&rank=1

[56] Desjardins A, Friedman HS. Bevacizumab therapy for glioblastoma: a passionate discussion. CNS Oncol 2014; 3(1): 1-3.

[57] Wong ET, Gautam S, Malchow C, et al. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw 2011; 9(4): 403-7.

[58] Liguigli W, Tomasello G, Toppo L, et al. Ramucirumab for metastatic gastric or gastroesophageal junction cancer: results and implications of the REGARD trial. Future Oncol 2014; 10(9): 1549-57.

[59] Korchagina AA, Shein SA, Gurina OI, et al. VEGFRs in neoplastic angiogenesis and prospects for therapy of brain tumors. Vestn Ross Akad Med Nauk 2013; (11): 104-14.

[60] Ikeda T, Sun L, Tsuruoka N, et al. Hypoxia down-regulates sFlt-1 (sVEGFR-1) expression in human microvascular endothelial cells by a mechanism involving mRNA alternative processing. Biochem J 2011; 436(2): 399-407.

[61] Helder CH, Westernmark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283-316.

[62] Loizos N, Xu Y, Huber J, et al. Targeting the platelet-derived growth factor receptor alpha with a neutralizing human monoclonal antibody inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol Cancer Ther 2005; 4(3): 369-79.

[63] Chio ARE, Sweeney C, Youssoufian H, et al. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFR alpha) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73(3): 595-604.

[64] Ramucirumab or Anti-PDGFR Alpha Monoclonal Antibody IMC-3G3 in Treating Patients With Recurrent Glioblastoma Multiforme. ClinicalTrials.gov: a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. [updated 15th September 2014; cited: 5th May 2015]. Available from: www.clinicaltrials.gov/ct2/show/NCT00895180?term=IMC3G3

[65] Koochekpour S, Jeffers M, Rulong S, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57(23): 5391-8.

[66] Cao B, Su Y, Oskarsson M, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459-66.

[67] Wong ET, Gautam S, Malchow C, et al. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw 2011; 9(4): 403-7.

[58] Liguigli W, Tomasello G, Toppo L, et al. Ramucirumab for metastatic gastric or gastroesophageal junction cancer: results and implications of the REGARD trial. Future Oncol 2014; 10(9): 1549-57.

[59] Korchagina AA, Shein SA, Gurina OI, et al. VEGFRs in neoplastic angiogenesis and prospects for therapy of brain tumors. Vestn Ross Akad Med Nauk 2013; (11): 104-14.

[60] Ikeda T, Sun L, Tsuruoka N, et al. Hypoxia down-regulates sFlt-1 (sVEGFR-1) expression in human microvascular endothelial cells by a mechanism involving mRNA alternative processing. Biochem J 2011; 436(2): 399-407.

[61] Heldin CH, Westernmark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79(4): 1283-316.

[62] Loizos N, Xu Y, Huber J, et al. Targeting the platelet-derived growth factor receptor alpha with a neutralizing human monoclonal antibody inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol Cancer Ther 2005; 4(3): 369-79.

[63] Chio ARE, Sweeney C, Youssoufian H, et al. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFR alpha) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73(3): 595-604.

[64] Ramucirumab or Anti-PDGFR Alpha Monoclonal Antibody IMC-3G3 in Treating Patients With Recurrent Glioblastoma Multiforme. ClinicalTrials.gov: a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. [updated 15th September 2014; cited: 5th May 2015]. Available from: www.clinicaltrials.gov/ct2/show/NCT00895180?term=IMC3G3

[65] Koochekpour S, Jeffers M, Rulong S, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 1997; 57(23): 5391-8.

[66] Cao B, Su Y, Oskarsson M, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459-66.

[67] Wong ET, Gautam S, Malchow C, et al. Bevacizumab for recurrent glioblastoma multiforme: a meta-analysis. J Natl Compr Canc Netw 2011; 9(4): 403-7.
factor/c-Met-dependent human tumors. Cancer Res 2006; 66(3): 1721-9.

[68] Buchanan IM, Scott T, Tandle AT, et al. Radiosensitization of glioma cells by modulation of Met signaling with the hepatocyte growth factor neutralizing antibody, AMG102. J Cell Mol Med 2011; 15(9): 1999-2006.

[69] Jun HT, Sun J, Rex K, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res 2007; 13(22 Pt 1): 6735-42.

[70] Rex K, Lewis XZ, Gobalakrishnan S, et al. Evaluation of the antitumor effects of rilotumumab by PET imaging in a U-87 MG mouse xenograft model. Nucl Med Biol 2013; 40(4): 458-63.

[71] Wen PY, Schiff D, Cloughesy TF, et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol 2011; 13(4): 437-46.

[72] Mittra ES, Fan-Minogue H, Lin FI, et al. Preclinical efficacy of the anti-hepatocyte growth factor antibody ficlatuzumab in a mouse brain orthotopic glioma model evaluated by bioluminescence, PET, and MRI. Clin Cancer Res 2013; 19(20): 5711-21.

[73] Martens T, Schmidt NO, Eckerich C, et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 2006; 12(20 Pt 1): 6144-52.

[74] Xin Y, Jin D, Eppler S, et al. Population pharmacokinetic analysis from phase I and phase II studies of the humanized monovalent antibody, onartuzumab (MetMAb), in patients with advanced solid tumors. J Clin Pharmacol 2013; 53(11): 1103-11.

[75] Navis AC, van Lith SA, van Duijnhoven SM, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol 2015; 130(1): 131-44.

[76] Van Cutsem E, Cervantes A, Nordlinger B, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 (Suppl 3): iii1-9.

[77] Neyns B, Sadones J, Joosens E, et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 2009; 20(9): 1596-603.

[78] Blesa JM, Molla SB, Esparcia MF, et al. Durable complete remission of a brainstem glioma treated with a combination of bevacizumab and cetuximab. Case Rep Oncol 2012; 5(3): 676-81.

[79] Hasselbalch B, Lassen U, Hansen S, et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010; 12(5): 508-16.

[80] Yi D, Hua TX, Lin HY, et al. Antitumor treatment efficacy by targeting epidermal growth factor receptor and vascular endothelial growth factor receptor-2 in an orthotopic human glioblastoma model. J Neuroonc 2011; 104(1): 93-101.

[81] Ramos TC, Figueredo J, Catala M, et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther 2006; 5(4): 375-9.

[82] Solomon MT, Selva JC, Figueredo J, et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013; DOI: 10.1186/1471-2407-13-299.

[83] Solomon MT, Miranda N, Jorrin E, et al. Nimotuzumab in combination with radiotherapy in high grade glioma patients: a single institution experience. Cancer Biol Ther 2014; 15(5): 504-9.

[84] Westphal M, Heese O, Steinbach JP, et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 2015; 51(4): 522-32.

[85] Yang QY, Guo CC, Chen ZP. Profile of nimotuzumab in the treatment of high-grade glioma. Onco Targets Ther 2015; 8: 819-25.

[86] Hong J, Peng Y, Liao Y, et al. Nimotuzumab prolongs survival in patients with malignant gliomas: A phase I/II clinical study of concomitant radiochemotherapy with or without nimotuzumab. Exp Ther Med 2012; 4(1): 151-7.

[87] Yang QY, Shen D, Sai K, et al. Nimotuzumab in combination with chemotherapy for patients with malignant gliomas. Zhonghua Zhong Liu Za Zhi 2011; 33(3): 232-5.

[88] Chong DQ, Toh XY, Ho IA, et al. Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status. BMC Cancer 2015; 15: 255.

[89] Bartels U, Wolff J, Gore L, et al. Phase 2 study of safety and efficacy of nimotuzumab in pediatric patients with progressive diffuse intrinsic pontine glioma. Neuro Oncol 2014; 16(11): 1554-9.
[90] Bode U, Massimino M, Bach F, et al. Nimotuzumab treatment of malignant gliomas. Expert Opin Biol Ther 2012; 12(12): 1649-59.

[91] Massimino M, Biassoni V, Miceli R, et al. Results of nimotuzumab and vinorelbine, radiation, and re-irradiation for diffuse pontine glioma in childhood. J Neurooncol 2014; 118(2): 305-12.

[92] Mineo JF, Bordron A, Baroncini M, et al. Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol 2007; 85(3): 281-7.

[93] Reilly EB, Phillips AC, Buchanan FG, et al. Characterization of ABT-806, a Humanized Tumor-Specific Anti-EGFR Monoclonal Antibody. Mol Cancer Ther 2015; DOI: 10.1158/1535-7163.mct-14-0820

[94] Johns TG, McKay MJ, Cvrljevic AN, et al. MAb 806 enhances the efficacy of ionizing radiation in glioma xenografts expressing the de2-7 epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 2010; 78(2): 572-8.

[95] Wang H, Shi B, Zhang Q, et al. Growth and metastasis suppression of glioma xenografts expressing exon 4-deletion variant of epidermal growth factor receptor by monoclonal antibody CH12-mediated receptor degradation. Faseb j 2012; 26(1): 73-80.

[96] Dixit S. Immunotherapy for high-grade glioma. Future Oncol 2014; 10(6): 911-5.

[97] Rindopepimut Vaccine With Bevacizumab Ups Survival in Recurrent Glioblastoma. Cancer Network. [updated 17th Nov 2014; cited: 10th May 2015]. Available from: www.cancernetwork.com/sno-2014/rindopepimut-vaccine-bevacizumab-ups-survival-recurrent-glioblastoma

[98] A Study of Rindopepimut/GM-CSF in Patients With Relapsed EGFRvIII-Positive Glioblastoma (ReACT). ClinicalTrials.gov: a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. [updated 10th Dec 2014; cited: 3th Apr 2015]. Available from: www.clinicaltrials.gov/ct2/show/NCT01498328

[99] Pope WB, Xia Q, Paton VE, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology 2011; 76(5): 432-7.

[100] De Bonis P, Lofrese G, Anile C, et al. Radioimmunotherapy for high-grade glioma. Immunotherapy 2013; 5(6): 647-59.

[101] Chandramohan V, Sampson JH, Pastan I, et al. Toxin-based targeted therapy for malignant brain tu-
[113] Cheng Z, Zhou S, Wang X, et al. Characterization and application of two novel monoclonal antibodies against human CXCR4: cell proliferation and migration regulation for glioma cell line in vitro by CXCR4/SDF-1alpha signal. Hybridoma (Larchmt) 2009; 28(1): 33-41.

[114] Bussolino F, Giraudo E, Serini G. Class 3 semaphorin in angiogenesis and lymphangiogenesis. Chem Immunol Allergy 2014; 99: 71-88.

[115] Law JW, Lee AY. The role of semaphorins and their receptors in gliomas. J Signal Transduct 2012; DOI: 10.1155/2012/902854

[116] Carrer A, Moimas S, Zacchigna S, et al. Neuropilin-1 identifies a subset of bone marrow Gr1- monocytes that can induce tumor vessel normalization and inhibit tumor growth. Cancer Res 2012; 72(24): 6371-81.

[117] Weber TG, Osl F, Renner A, et al. Apoptosis imaging for monitoring DR5 antibody accumulation and pharmacodynamics in brain tumors noninvasively. Cancer Res 2014; 74(7): 1913-23.

[118] Emlet DR, Gupta P, Holgado-Madruga M, et al. Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Res 2014; 74(4): 1238-49.

[119] Lou YW, Wang PY, Yeh SC, et al. Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A 2014; 111(7): 2482-7.

[120] Zhan Q, Yue W, Shaoshan H. The inhibitory effect of photodynamic therapy and of an anti-VCAM-1 monoclonal antibody on the in vivo growth of C6 glioma xenografts. Braz J Med Biol Res 2011; 44(5): 489-90.

[121] Carbonell WS, DeLay M, Jahangiri A, et al. beta1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res 2013; 73(10): 3145-54.

[122] Yoshida T, Matsuda Y, Naito Z, et al. CD44 in human glioma correlates with histopathological grade and cell migration. Pathol Int 2012; 62(7): 463-70.

[123] Poli A, Wang J, Domingues O, et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget 2013; 4(9): 1527-46.

[124] Boukhari A, Alhosin M, Bronner C, et al. CD47 activation-induced UHRF1 over-expression is associated with silencing of tumor suppressor gene p16INK4A in glioblastoma cells. Anticancer Res 2015; 35(1): 149-57.

[125] Higgins SC, Fillmore HL, Ashkan K, et al. Dual Targeting NG2 and GD3A Using Mab-Zap Immunotoxin Results in Reduced Glioma Cell Viability In Vitro. Anticancer Res 2015; 35(1): 77-84.

[126] Matsutani T, Hiwasa T, Takiguchi M, et al. Autologous antibody to src-homology 3-domain GRB2-like 1 specifically increases in the sera of patients with low-grade gliomas. J Exp Clin Cancer Res 2012; DOI: 10.1186/1756-9966-31-85

[127] Zheng X, Chang F, Zhang X, et al. G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker. Exp Mol Pathol 2012; 93(1): 111-5.

[128] Day BW, Stringer BW, Al-Ejeh F, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 2013; 23(2): 238-48.

[129] Rogers AE, Le JP, Sather S, et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology. Oncogene 2012; 31(38): 4171-81.

[130] Loftus JC, Yang Z, Tran NL, et al. The Pyk2 FERM domain as a target to inhibit glioma migration. Mol Cancer Ther 2009; 8(6): 1505-14.

[131] Xu CS, Wang ZF, Dai LM, et al. Induction of proline-rich tyrosine kinase 2 activation-mediated C6 glioma cell invasion after anti-vascular endothelial growth factor therapy. J Transl Med 2014; DOI: 10.1186/1479-5876-12-148.

[132] He J, Yin Y, Luster TA, et al. Antiphosphatidylserine antibody combined with irradiation damages tumor blood vessels and induces tumor immunity in a rat model of glioblastoma. Clin Cancer Res 2009; 15(22): 6871-80.

[133] Liang J, Piao Y, Holmes L, et al. Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res 2014; 20(1): 187-98.

[134] Shao R, Hamel K, Petersen L, et al. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 2009; 28(50): 4456-68.

[135] Areshkov PO, Avdieiev SS, Balynska OV, et al. Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U373 cells but have the different influence on cell proliferation. Int J Biol Sci 2012; 8(1): 39-48.

[136] Newcomb EW, Lukyanov Y, Kawashima N, et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 2010; 173(4): 426-32.
[137] Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20(20): 5290-301.

[138] Wainwright DA, Lesniak MS. Menage a trois: Sustained therapeutic anti-tumor immunity requires multiple partners in malignant glioma. Oncoimmunology 2014; DOI: 10.4161/onci.28927

[139] A Study of the Efficacy and Safety of Nivolumab vs Bevacizumab and of Nivolumab With or Without Iplimumab in Glioblastoma Patients at Different Stages of Treatment (CheckMate 143). ClinicalTrials.gov: a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world, [updated 30th Mar 2015; cited: 4th Apr 2015]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02017717

[140] Kosaka A, Ohkuri T, Okada H. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells. Cancer Immunol Immunother 2014; 63(8): 847-57.

[141] Yusubalieva GM, Baklaushev VP, Gurina OI, et al. Antitumor effects of monoclonal antibodies to connexin 43 extracellular fragment in induced low-differentiated glioma. Bull Exp Biol Med 2012; 153(1): 163-9.

[142] Yusubalieva GM, Baklaushev VP, Gurina OI, et al. Treatment of poorly differentiated glioma using a combination of monoclonal antibodies to extracellular connexin-43 fragment, temozolomide, and radiotherapy. Bull Exp Biol Med 2014; 157(4): 510-5.