Trigonal Prismatic Coordination of Discrete Rare Earth Ions, Enforced by the Polyoxotungstate [P₄W₂₇O₉₉(H₂O)]⁶⁻

Tuba Iftikhar, Natalya V. Izarova, Jan van Leusen, and Paul Kögerler

Abstract: A family of solution-stable polyanions [Na⊂(Ln₈-(H₂O))(W₉O₂⁴)₄P₄W₂₇O₉₉(H₂O)]ⁿ⁻ (L=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y) represent the first examples of polyoxometalates comprising a single lanthanide(lIII) or yttrium(III) ion in a rare trigonal prismatic O₆ environment. Their synthesis exploits the reactivity of the organophosphonate-functionalized precursor [P₁₄W₂₇O₉₉(C₄H₄P₂O₆)]⁶⁻ with heterometal ions and yields hydrated potassium or mixed lithium/potassium salts of composition KₓLn₄₊ₓ·Naᵧ⊂(Ln₈-(H₂O))(W₉O₂⁴)(H₂O)ₚ·nH₂O·mLiCl (x=8.5–11; y=0–2; n=24–34; m=0–1.5). The Dy, Ho, Er and Yb derivatives are characterized by slow magnetization relaxation.

Introduction

Lanthanide-containing polyoxometalates (POMs, discrete metal oxo clusters) exhibit potential in the areas of catalysis, molecular magnetism, photophysics, and materials science.[1] In such species, the POM frameworks act as rigid, all-inorganic metallogands that efficiently stabilize either multineurallanearthed oxo/hydroxo cores or a specific coordination geometry for a single lanthanide ion. In particular, they can induce highly unusual coordination environments for the heterometal.[2]

Lanthanide-containing POMs (Ln-POMs) were reported already in 1914 with the discovery of (NH₄)₂[HeMo₉O₄₆]·nH₂O by Barbieri,[3] yet it took until 1971 when Peacock and Weakley discovered that lacunary polyoxotungstates (POTs) and -molybdates, comprising vacant reactive sites due to removal of one or several M⁶⁺ constituents (M=Mo, W) from the parent polyoxometalates as a result of carefully controlled hydrolysis processes, act as polypeptide-donor ligands towards rare earth metal ions and were able to isolate [Ln(W₁₈O₆₃)₀²⁻]⁴⁻ (Ln=La, Pr, Nd, Sm, Eu, Ho, Er, Yb, Y, Z=9; Ln=Ce, Z=8) as well as some [Ln(α-XW₁₇O₆₃)₀²⁻]⁴⁻ (X=P³⁻, Si⁴²⁻) and [Ln(α₂-P₁₇W₁₇O₆₃)₀²⁻]⁴⁻ derivatives.[4]

Since then, the field of Ln-POMs has expanded enormously, and they now can be classified into three main subclasses: (a) polyoxometalates comprising a single Ln⁴⁺ ion; (b) species incorporating several segregated Ln⁴⁺ ions and (c) polymers integrating a polyoxo/hydroxo cluster of lanthanide ions or both lanthanide and transition metal ions stabilized by lacunary POMs as auxiliary ligands. Representative examples include (a) [Yb₃As₃W₂₆O₈₀(H₂O)₁₄]³⁺,[5] [Ln₉(H₂O)ₚP₄W₂₇O₉₉]¹⁺,[6,7] [Ln⁶(α₂-P₁₇W₁₇O₆₃)]¹⁺,[6,8] [(H₂O)ₚLn⁶(α₂-P₁₇W₁₇O₆₃)]¹⁺,[8] [Ln⁶As₅W₉₈O₉₉(2-picolinate)]¹²⁻ (Ln=Tb, Eu),[9] [Ce⁶As₈₁W₁₉O₆₃(H₂O)]¹⁺,[10] [Ce⁶Ge₁₂O₆₃(H₂O)]¹⁺,[11] [(Yb₁₂,μ₁₂-O)(μ₁₂-OH)(H₂O)]₁₄,[12] [(Ce₆,μ₁₂-O)(OH)(H₂O)]ₚ(W₁₇O₆₃)]¹⁺,[13] [Ln⁶Ge₁₂O₆₃(H₂O)]¹⁺,[14] [(M⁴⁺(piperazine)ₚ)(Ln¹₂)[Ge₁₂O₆₃(H₂O)]¹⁺ (M=Cu, Co, Ni; Ln=La, Ce).[15]

Due to the high magnetic moments combined with pronounced magnetic anisotropy of Ln⁴⁺ ions, caused by strong spin-orbit coupling, numerous Ln-POMs exhibit single-molecule magnet characteristics with high effective magnetization relaxation barriers.[16] [Er₄(W₁₈O₆₃)⁴⁺]⁴⁻ was among the first examples of single-ion magnets (SIMs).[17] In recent years, several other Ln-containing polyoxotungstate⁶⁻,⁷⁺ and -molybdate⁸⁺ SIMs as well as several Ln-POMs with polynuclear Ln cores⁹⁺ exhibiting SMM behavior were reported. Furthermore, the rigidity of the POM matrices, allowing for a control of the electronic structure of the Ln⁴⁺ ions, in conjunction with an ability of nanoscale polyanianic ligands to efficiently isolate a Ln⁴⁺ ion from intermolecular magnetic interactions renders Ln-POMs suitable candidates for quantum computing.[20] [Gd⁶(H₂O)ₚP₄W₂₇O₉₉]¹⁻,− polyanions diluted in crystals of the isostructural Y⁺ derivative may act as three-qubit processors implemented within a single Gd⁴⁺ ion.[21] In these species the Gd⁴⁺ center adopts an unusual O₁₀ coordination environment of idealized C₅₅ symmetry as well as an apical aqua ligand. For [Ho⁴⁺(W₁₈O₆₃)⁴⁺]⁴⁻, comprising Ho⁴⁺ ions in a distorted square-antiprismic coordination environment, quantum coherence could be significantly enhanced via atomic clock transitions, which translated into considerable...
coherence times even without drastic spin dilutions.[22] The potential of cuboid-shaped polyoxopalladato(l) clusters [LnPd$_2$O$_5$(PhAsO$_3$)$_3$]$_x$ incorporating Ln$^3+$ ions in a cubic O$_8$ environment as spin qubits was also discussed.[23]

We here report a series of novel \textit{(NaC(Ln$^3+$H$_2$O))(WO(H$_2$O))P$_2$W$_6$O$_{24}$[Sm1]} = Eu (Eu2), Gd (Gd3), Tb (Tb4), Dy (Dy5), Ho (Ho6), Er (Er7), Tm (Tm8), Yb (Yb9), Lu (Lu10) and Y (Y11) polyanion clusters comprising a single rare earth ion in a rare trigonal prismatic coordination environment, and their characterization in the solid and in aqueous solutions.

Results and Discussion

Synthesis and crystal structure

Lnx polyanions have been prepared in reactions of the phenylphosphonate-stabilized POT, [\(\text{P}^5\text{W}_{12}\text{O}_{40}\)\(_x\text{C}_6\text{H}_5\text{P}_2\text{O}_4\)]\(_{15-x}\) - (P$_2$W$_6$PhP) recently reported by us,[24] with the corresponding Ln$^3+$ salts in a 1:1 molar ratio in 0.5 M LiCl$_\text{aq}$ medium, acidified with concentrated H$_2$SO$_4$ to pH = 3.0 (resulting in a weak buffer medium) at 70 °C for 3 days and crystallized as the hydrated potassium or mixed potassium/lithium salts K$_x$Ln$_{2-x}$[\(\text{NaC(Ln}^3+\text{H}_2\text{O)}\][\(\text{WO(H}_2\text{O)}\)\(_x\text{P}_2\text{W}_{6}\text{O}_{24}\)]nH$_2$O·mLiCl (\(x = 8.5\text{--}11; y = 0\text{--}2; n = 24\text{--}34; m = 0\text{--}1.5\)). We note that without acidification of the aqueous LiCl solution the reaction mixture also results in a pH around 3.0 and polyanions Sm1 to Y11 are formed; however, in this case some additional Ln$^3+$ ions act as counterions for the Lnx POMs. A weak buffer medium circumvents this problem. We hypothesize that this allows to minimize local pH fluctuations during the reaction and hence decreases a decomposition rate of the POT precursor, thus preventing a presence of significant excess of Ln$^3+$ ions. Interestingly, all Lnx polyanions incorporate a Na$^+$ ion in their central cavity, although no Na$^+$ source was employed. This indicates that either Na$^+$ plays a crucial role in Lnx self-assembly or that the inner cavity of \([\text{Ln}^3+(\text{H}_2\text{O})\]WO(H$_2$O)[P$_2$W$_6$O$_{24}$]]$^{13-}$ is perfectly structured for the extraction of Na$^+$ ions from aqueous solutions. The most probable source of Na$^+$ cations are NaCl impurities present in LiCl.

Importantly, using a similar synthetic approach, namely reactions of P$_2$W$_6$PhP with 3d heterometals, we were also able to isolate Mn$^2+$ and Cu$^+$ derivatives of the same (P$_2$W$_6$) POM archetype as found in Lnx, [\(\text{NaC(Mn}^3+\text{H}_2\text{O)}\]WO(H$_2$O)[P$_2$W$_6$O$_{24}$]]$^{13-}$ and \([\text{KC(Cu}^3+\text{H}_2\text{O)}\]WO(H$_2$O)[P$_2$W$_6$O$_{24}$]]$^{14-}$, although the reactions for these derivatives were performed in a sodium acetate buffer medium with higher pH, 4.8.[25] This suggests that P$_2$W$_6$PhP represents a convenient precursor for the species of the (MP$_2$W$_6$) structural type, which until now could not be prepared by any other method. Thus, reactions of well-known \([\text{H}_2\text{P}_2\text{W}_{12}\text{O}_{40}]^{12-}\) (P$_2$W$_6$)\(_{26}\) and \([\text{H}_2\text{P}_2\text{W}_{12}\text{O}_{40}]^{12-}\) (P$_2$W$_6$)\(_{27}\) POMs with Ln$^3+$ ions at similar conditions did not result in Lnx polyanions. Instead, serious solubility problems and formation of large quantities of barely soluble or even insoluble precipitates were observed in these cases under otherwise identical or similar conditions, and no crystalline products could be isolated. Moreover, no Ln$^3+$ complexes of (P$_2$W$_6$) and (P$_2$W$_6$) are known.

Single-crystal X-ray diffraction reveals that all eleven compounds of this series crystallize in the monoclinic space group C2/c (Tables S1–S4 in Supporting Information). Deposition Numbers 2070893 (for K-Sm1), 2070894 (for K-Eu2), 2070895 (for K-Gd3), 2070896 (for K-Lb4), 2070897 (for K-Dy5), 2070898 (for K-Ho6), 2070899 (for K-Er7), 2070900 (for K-Tm8), 2070901 (for K-Yb9), 2071038 (for K-Lu10) and 2071039 (for K-Y11) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service. The compounds are virtually isostructural, differing only in site occupancy factors of some counterions and crystal water molecules. The Lnx clusters contain a \[(P_xW_2O_{20})(H_2O)]^{16-}\) (P$_2$W$_6$) POM matrix that fully encloses a single Ln$^3+$ (or Y$^3+$) ion and incorporates a Na$^+$ cation in its central cavity (Figure 1).

Formation of Lnx from P$_2$W$_6$PhP requires dissociation of phenylphosphonate groups from the precursor and slight rearrangement of its POM skeleton. Thus, in (P$_2$W$_6$), the (P$_2$W$_6$) moiety present in the precursor, formally a V-shaped dimer of two identical (P$_2$W$_6$) units corner-sharing four O atoms, is completed by two peripherally coordinated W$^{6+}$ ions, each of which binds to the open end of the (P$_2$W$_6$) building block, and a central W$^{6+}$ ion closing off the central cavity of the (P$_2$W$_6$) entity (Figure S2).

All W centers in Lnx assume the octahedral coordination geometry typical for POMs. Each W$_6$ center coordinates an O atom of a neighboring tetrahedral PO$_4$ group, one O atom from each of the two terminal W sites of (P$_2$W$_6$), and three oxo atoms, one of which is coordinated to the W$_6$ site and the second one to the Ln$^{3+}$ ion. The central W$_6$ ion coordinates to an O atom from both W$_6$ centers, an O atom from the (PW$_6$) belt of the each (P$_2$W$_6$) unit, a μ$_{3}$-O binding it to the Ln$^{3+}$ ion as well as an exo-oriented terminal aqua ligand (Figures 1 and S2–S3).

The Ln$^{3+}$ ions exhibit an unusually low coordination number of six and adopt a nearly C$_3v$-symmetric trigonal prismatic coordination geometry, with isoosceles trigonal faces (O–O: 2x 2.69/4.45 Å) and shortest inter-triangle–O–O distances of 2.82/2.87/2.97 Å. In this regard, the structure of Lnx polyanions is very similar to that of the (MnP$_2$W$_3$) POM that we recently reported.[26] One of the faces of the O$_3$ prism is defined by two O$_{12}$ atoms of the peripheral W$_{12}$ centers (one from each W$_6^6+$ ion) and a μ$_{3}$-O connecting it to W$_6$. The second trigonal face of the O$_3$ prism is formed by two oxygens of the (PW$_6$) belts of the (P$_2$W$_6$) units located on the opposite sides with respect to oxygen coordinated to W$_6$ and a H$_2$O ligand. Alternatively, the Ln coordination environment can be considered as pseudo-bicapped (above the rectangular faces) trigonal prism with two very long Ln–O contacts (2.698(9)–2.897(9) Å) to the O atoms of the (PO$_4$) groups in (P$_2$W$_6$) subunits (see Figure S3; the corresponding bond lengths for all Lnx are shown in Table S5).

Trigonal prismatic coordination of Ln$^{3+}$ ions is not unprecedented,[28] and has also some examples in Ln-POMs chemistry.[29–31] In a series of dinuclear Ln-POMs with the general formulæ \([\text{Ln}^3+(\text{H}_2\text{O})_2\text{Ln}^{3+}](\text{γ-SiW}_{10}\text{O}_{30})^{12-}\) (Ln$^3+$ = Gd, Dy; Ln$^{3+}$ = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb; Lu)
Dy, Eu, Yb, Lu \cite{9ab} and a giant 3d–4f nanocluster \([(GeW_{24}O_{60})_3(Dy^3\{\mu_3-OH\})_2(H_2O)_{10}][Co^3, Dy^{5+}\{\mu_3-OH\}_2(OH)_3]_{16-19c}\) reported in the last decade, all (for \(\text{Ln}_1\)) or some (for \(\text{Dy}_3\{\text{Co}_2\})\) \(\text{Ln}^\text{n}\) centers reside in (distorted) trigonal prismatic environments. In addition, it was also suggested that some Ce\(^{4f}\) ions in \([(H_2O)_n(\text{CeO})_3(PW_{23}O_{72})_{12-}\) species could lack a terminal aqua ligand, leading to a trigonal prismatic coordination environment.\cite{29} Nevertheless, six-coordinate \(\text{Ln}^\text{n}\) complexes remain extremely rare due to high ionic radii of the rare earth metal ions, and most of them display SMM behavior.\cite{28,30} The novel \(\{\text{P}_n\text{W}_m\}\) POM archetype appeared to be an ideal scaffold for stabilization of a distorted trigonal prismatic coordination geometry for a wide range of lanthanides and to our knowl-

Solution studies

\(^{31}P\) NMR and UV-Vis spectroscopy

Room-temperature \(^{31}P\) NMR measurements were initially performed on the diamagnetic K-Y11 derivative dissolved in 0.5 M LiCl aqueous solution acidified to pH ～3.0 with conc. H\(_2\)SO\(_4\). The obtained spectrum (Figure 2) exhibits two singlets at −11.28 and −11.57 ppm in an approximate 1:1 integral ratio, which corresponds very well to the presence of two types of symmetrically inequivalent \(P\) centers in Y11.

The signals of Y11 are significantly shifted upfield in comparison with singlets at −8.85 and −9.0 ppm observed for
the \([P_{W4}] \) skeleton in \(P_{W4} \)PhP in \(H_2O/D_2O \) since the P atoms of both structural types in Y11 are much better shielded from the external magnetic field due to binding of additional \(W^{VII}, Y^{IV} \) and \(Na^+ \) centers in the inner cavity of the polyoxophosphate state.

The \(^{31}P \) NMR spectrum recorded on a freshly prepared solution of K-Y11 is identical to spectra measured after 24 h and after 48 h, indicating high stability of Y11 in this aqueous medium.

We were also able to record room-temperature \(^{31}P \) NMR spectra for the other derivatives (Figures S21–S30). Most of them also exhibit two signals with relative intensities close to 1:1, one of which is significantly (or in case of Tb4, Dy5, Ho6 extremely) broadened. This broadened signal is directly attributed to the \(P^0 \) centers closest to the magnetic Ln\(^{III} \) ion.

For Gd3 only one broad signal could be observed, while the second one seems to be not visible due to the influence of the \(S = 7/2 \) Gd\(^{III} \) center (Figure S23).

In comparison to the spectrum of K-Y11 solution, the signals in the spectra for the other Ln\(_x\) derivatives are significantly shifted upfield or downfield, depending on Ln\(^{III} \) ions. The exact chemical shifts values for all Ln\(_x\) derivatives are shown in Table S7.

UV-Vis spectra and their evolution over 24 h (see Supporting Information) further support the integrity of the Ln\(_x\) polyanions in aqueous solutions.

Cyclic voltammetry

Room-temperature cyclic voltammograms (CVs) for representative polyanions of this series, that is, Eu2, Gd3, Tb4 and Y11, were recorded on 1 mM solutions of their hydrated salts in 2 M Li\(_2\)SO\(_4\)/H\(_2\)SO\(_4\) buffer (pH ~ 3.0). All polyanions exhibit similar electrochemical properties and for all of them five (quasi-) reversible redox process could be observed before solvent discharge (from \(-0.25 \) to \(-1.0 \) V; see Figures 3 and S33). The exact potential values for every wave in each case are provided in Table 1. All the redox couples should be attributed to the reduction of the W\(^{VI} \) centers in Ln\(_x\)(\(x = 2, 3, 4 \) and 11) to W\(^0 \) ions and their successive re-oxidation upon the increase of the potential. At that, the redox processes for Eu2 and Tb4 are observed at slightly more negative potentials in comparison to CV patterns of Gd3 and Y11 (Figure S33). No separate redox wave attributed to the reduction of Eu\(^{IV} \) (in Eu2) and Gd\(^{IV} \) (in Gd3) could be distinguished as the redox curves for these derivatives are very similar to those of Tb4 and Y11. The peak currents for all the waves are proportional to the scan rates (Figures S35, S36 and Table S9) indicating the diffusion-controlled electrode reactions.

pH-dependent measurements on solutions of KN-Gd3 showed that upon an increase of pH from 2.5 to 3.0 (2 M Li\(_2\)SO\(_4\)/H\(_2\)SO\(_4\) buffers) and then further to pH 4.8 (0.5 M NaOAc buffer) all redox waves are shifted towards more negative potentials (Figure S34, Table S8). This reflects that the reduction of W\(^{VI} \) in these polyanions is coupled with proton transfer as is very common for POTS\(_x\). The cyclic voltammogram recorded at pH 4.0 in non-buffered 2 M Li\(_2\)SO\(_4\)/H\(_2\)SO\(_4\) medium generally follows the same trend, however only three redox couples, two of which are not very well separated from each other, could be observed in this medium before solvent discharge (Figure S34).

![Figure 2. Room-temperature \(^{31}P \) NMR spectrum of K-Y11 dissolved in 0.5 M LiCl acidified to pH 3.0 with conc. H\(_2\)SO\(_4\). The spectra acquired immediately after dissolution of K-Y11 and after 48 h are identical.](image)

![Figure 3. Room-temperature cyclic voltammograms of a 1 mM solution of KL-Eu2, K-Gd3, KL-Tb4 and K-Y11 in 2 M LiSO\(_4\)/H\(_2\)SO\(_4\) medium (pH 3.0).](image)

Table 1. \(E_{1/2} \) values of redox couples observed in CV for KL-Eu2, K-Gd3, KL-Tb4 and K-Y11 in 2 M LiSO\(_4\)/H\(_2\)SO\(_4\) medium (pH 3.0)

Compound	\(E_{1/2} \) (V)	\(E_{1/2}^{0} \) (V)	\(E_{1/2}^{1/2} \) (V)	\(E_{1/2}^{2/3} \) (V)	\(E_{1/2}^{3/4} \) (V)
KL-Eu2	\(-0.32 \)	\(-0.42 \)	\(-0.51 \)	\(-0.65 \)	\(-0.75 \)
K-Gd3	\(-0.30 \)	\(-0.40 \)	\(-0.50 \)	\(-0.66 \)	\(-0.78 \)
KL-Tb4	\(-0.32 \)	\(-0.42 \)	\(-0.51 \)	\(-0.65 \)	\(-0.75 \)
K-Y11	\(-0.30 \)	\(-0.40 \)	\(-0.50 \)	\(-0.66 \)	\(-0.79 \)
A comparison of the CV curves obtained for Gd3 and previously reported (MnP$_2$W$_2$)$_x$ and (CuP$_2$W$_2$)$_x$ derivatives in 0.5 M NaOAc buffer (pH 4.8), see Figure S37, clarifies several aspects. Firstly, the first redox couple presumably attributed to the W6 centers directly bound to the heterometal ion appears at nearly the same potential of −0.405 V for the Mn3 and Gd3 derivatives, which both comprise the heterometal in trigonal prismatic coordination, and at a significantly more positive potential for the Cu2-based species (−0.305 V). The latter could be explained by a release of Cu2 ions from the POM due to its reduction to Cu$^+$. Secondly, all the other redox couples in the CV graph of Gd3 are shifted to more negative potentials in comparison to the CV curves of the transition metal derivatives, which suggests a higher redox stability for the Ln-POMs. At that, the two waves appearing at most negative potentials (−0.77 V and −0.88 V for Gd3) are shifted less than the first three waves. This confirms our previous proposition that these waves reflect redox activity of those W6 centers that are rather distant from the heterometal ion in the POM structure. The redox couple appearing at −0.535 V in the cyclic voltammogram of the Mn3 derivative is split into two processes for both Gd3 and Cu2-based polyanions.

Magnetic studies

The static magnetic susceptibility data of the paramagnetic Lnx compounds are shown in Figure 4. At 290 K and 0.1 T, the χ_mT values of the compounds are all within the expected range of the respective single Ln$^{3+}$ center (Figure 4a) expected: −0.32, 1.47 (KL-Eu2, ca. 1.5), 7.82 (K-Gd3, 7.6–7.9), 11.82 (KL-Tb4, 11.8–12.0), 13.57 (K-Dy5, 13.0–14.1), 13.53 (K-Ho6, 13.3–13.8), 11.14 (K-Er7, 11.0–11.3), 7.02 (K-Tm8, ~7.1) and 2.42 (KL-Yb9, ~2.5) cm3 K mol$^{-1}$. The χ_mT versus T curves are characterized by shapes typical for each lanthanide center: While χ_mT for the approximately isotropic Gd3 center in K-Gd3 with a well-isolated ground term remains essentially constant at all temperatures, the χ_mT versus T curves of the other compounds show temperature-dependent behaviors. At 2.0 K, the χ_mT values reach 0.04 (K-Sm1), 0.02 (KL-Eu2), 7.62 (K-Gd3, 10.26 (KL-Tb4), 11.15 (K-Dy5), 7.28 (K-Ho6), 8.22 (K-Er7), 1.65 (K-Tm8) and 1.05 cm3 K mol$^{-1}$ (KL-Yb9). In most cases, the temperature-dependent behavior of the anisotropic Ln$^3+$ centers is due to the thermal depopulation of the sufficiently energetically isolated, but split 2$J + 1$ energy states of the respective ground term, which can be characterized in terms of a mixture of the quantum numbers m_J. Exceptions are K-Sm1 and KL-Eu2, as their ground terms are close to excited terms, which can also significantly mix into the ground state. In addition, the Zeeman effect may cause weak drop-offs in the curves at the lowest temperatures (<3–4 K).

In Figure 4b, the molar magnetization M_m as a function of the applied magnetic field B is shown at 2.0 K. As expected for paramagnetic centers, M_m extrapolates to 0 $N_A \mu_B$ at 0 T. At fields lower than 1 T, M_m grows steeper than at larger fields. In case of K-Gd3, M_m almost saturates (7.0 $N_A \mu_B$) with a value of 6.9 $N_A \mu_B$ at 5.0 T. For all other compounds, roughly half ($\pm 1 N_A \mu_B$) of the saturation values ($g_J N_A \mu_B$) are found: 0.2 (K-Sm1), 0.1 (KL-Eu2), 4.9 (KL-Tb4), 5.6 (K-Dy5), 6.0 (K-Ho6), 4.6 (K-Er7), 3.1 (K-Tm8) and 1.7 $N_A \mu_B$ (KL-Yb9), in line with measurements of randomly oriented crystallites (powder samples) of significantly anisotropic centers, that is, the observed net magnetizations represent mean values over all magnetic axes.

Ac magnetic susceptibility data in static magnetic bias fields (0 to 1000 Oe) revealed that most of the compounds do not show relevant out-of-phase signals, which could be due to the relatively low ligand field symmetry (approx. C_{3v}) and the corresponding pronounced mixing of various m_J contributions into the multiplets.

Only K-Er7 shows (weak) analyzable signals at zero static bias field (Figure S41). While the signals of K-Dy5 (Figures 5, S38) and KL-Yb9 (Figures S42, S43) are optimized for fitting at 1000 Oe and 300 Oe, the weak signals of K-Ho6 barely change in the probed static field range, and are not suitable for fitting (Figures S39, S40).

Overall, the most pronounced out-of-phase susceptibility component can be observed for K-Dy5. In zero static bias field,
weak signals are detected for this sample (see Figure S38) that can be enhanced to a level sufficient for fitting purposes by application of a 1000 Oe bias field (Figure 5). We simultaneously fit the corresponding χ'' versus f and χ'' versus f curves at each temperature using a generalized Debye expression. The results in terms of the relaxation times τ are shown in Figure 5b. Since we find the distribution parameter of these relaxation times to be $\alpha = 0.57 \pm 0.03$, we consider multiple relaxation pathways in the subsequent fit of τ versus $1/T$ data. The best results are achieved by consideration of an Orbach slow relaxation process and quantum tunneling of magnetization described by the equation $\tau^{-1} = \tau_0^{-1} \exp(-U_{\text{eff}}/(k_B T)) + B$. The least-squares fit yields the attempt time $\tau_0 = (8.6 \pm 2.2) \times 10^{-7}$ s, the effective barrier $U_{\text{eff}} = (18.4 \pm 0.7)$ cm$^{-1}$, and the constant $B = (340 \pm 6)$ s$^{-1}$. Since vibrational modes of the ligands generally can influence the slow relaxation behavior, for example through phonon coupling, we explored this effect on the lanthanide ions in the Lnx polyanions. In their LnO$_{\text{water}}$O$_5$POT environment, the single H$_2$O ligand can be replaced by D$_2$O, and we tentatively assess this effect via deuteration of K-Dy$_5$. While a full discussion of the magnetism of deuterated K-Dy$_5$ (K-Dy$_5$-d) is given in the Supporting Information, we observe a noticeable change of the optimal static magnetic bias field (yielding maximum out-of-phase ac susceptibility components) and the associated relaxation parameters: For K-Dy$_5$-d, with a bias field of only 500 Oe (vs. 1000 Oe for K-Dy$_5$), we find $\tau_0 = (4.5 \pm 0.9) \times 10^{-7}$ s, the effective barrier $U_{\text{eff}} = (21.9 \pm 0.7)$ cm$^{-1}$, and the constant $B = (985 \pm 10)$ s$^{-1}$.

Fitting the signals of K-Er$_7$ at zero static bias field (see Figure S41) using the generalized Debye expression yields the relaxation times shown in the same figure. Their distribution parameter $\alpha = 0.35 \pm 0.05$ hints at multiple relaxation pathways. The best result is achieved by consideration of an Orbach slow relaxation process and quantum tunneling of magnetization, that is, considering the equation $\tau^{-1} = \tau_0^{-1} \exp(-U_{\text{eff}}/(k_B T)) + B$. The least-squares fit yields the attempt time $\tau_0 = (0.7 \pm 6.6) \times 10^{-10}$ s, the effective barrier $U_{\text{eff}} = (59 \pm 34)$ cm$^{-1}$, and the constant $B = (3427 \pm 94)$ s$^{-1}$. We note that the generally weak signals at the maxima of the χ'' versus f curves are rather noisy, which results in the slightly scattered data in the τ versus $1/T$ plot (particularly in the range 0.2–0.3 K$^{-1}$), and leads in turn to relatively large error margins of the fit parameters. The
analysis of KL-Yb9 at 300 Oe static bias field (Figure S43) in terms of the generalized Debye expression yields the τ versus 1/T plot with α ≈ 0.07 ± 0.03 shown in the same figure. Since α is close to zero, and the curve can be interpreted as linear in this representation within the statistical error margins of the Debye fit, we here consider only a single slow relaxation process (an Orbach process), that is, τ = τ_0 exp(U_{eff}/k_B T). The corresponding least-squares fit yields the attempt time τ_0 = (1.3 ± 0.3) × 10^{-5} s and the effective barrier U_{eff} = (3.3 ± 0.3) cm^{-1}. In summary, slow relaxation signals of sufficient magnitude are observed for the Dy-VI Er7 and Yb7 derivatives, however, only below 8 K, and the application of a static magnetic bias field is mandatory for quantitative interpretation, with the exception of K-Er7. The determined fit parameters are in the typical ranges found for such lanthanides.[31]

Conclusions

Coordination of lanthanide(III) or yttrium(III) ions to the seminal, highly labile [P,W₄], Wells-Dawson-type building block becomes possible when the recently reported phenylphosphonate-functionalized [P,W₄] dimer [P,W₄]PF₅ is employed. Reactions in weak buffer media result in a rearrangement of the POT framework towards a C₃-symmetric [P,W₄] structure, which can be considered as a partially reconstructed C₃-symmetric Preyssler-type cluster, and integration of both a single rare earth heterometal ion and a Na⁺ cation into specific binding pockets. The solution-stable products [Na(C₃Ln(H₂O))][WO(H₂O)] P₄W₁₀O₄₀[12] - (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Sm, Tb, Yb, Lu and Y) represent the first examples of POMs comprising a discrete, trigonal-prismatically coordinated lanthanide(III) or yttrium(III) ion. Electrochemical studies revealed redox behavior associated with five consecutive (quasi-)reversible redox couples attributed to proton-coupled W⁶⁺–W⁷⁺ transformations. The Dy, Ho, Er, and Yb derivatives display weak out-of-phase components in their ac magnetic susceptibility. For the Dy derivative, the exchange of the single water ligand with D₂O significantly affects the out-of-phase components and the parameters of the relevant relaxation processes.

Acknowledgements

We gratefully acknowledge financial support by Forschungszentrum Jülich, EU ERC Starting Grant 308051–MOLSPINTRON and German Science Foundation (Grant DFG-IZ-60/3-1). T.I. appreciates The Punjab Educational Endowment Fund (PEEF) for a doctoral fellowship (CMMS scholarship program). We thank Brigitte Jansen for TGA and Christina Houben for SQUID measurements. Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.
