Abstract

Objective. Telemedicine and telementoring have had a significant boost across all medical and surgical specialties over the last decade and especially during the COVID-19 pandemic. The aim of this scoping review is to synthesize the current use of telemedicine and telementoring in otolaryngology and head and neck surgery.

Data Sources. PubMed and Cochrane Library.

Review Methods. A scoping review search was conducted, which identified 469 articles. Following full-text screening by 2 researchers, 173 articles were eligible for inclusion and further categorized via relevant subdomains.

Conclusions. Virtual encounters and telementoring are the 2 main applications of telemedicine in otolaryngology. These applications can be classified into 7 subdomains. Different ear, nose, and throat subspecialties utilized certain telemedicine applications more than others; for example, almost all articles on patient engagement tools are rhinology based. Overall, telemedicine is feasible, showing similar concordance when compared with traditional methods; it is also cost-effective, with high patient and provider satisfaction.

Implications for Practice. Telemedicine in otolaryngology has been widely employed during the COVID-19 pandemic and has a huge potential, especially with regard to its distributing quality care to rural areas. However, it is important to note that with current exponential use, it is equally crucial to ensure security and privacy and integrate HIPAA-compliant systems (Health Insurance Portability and Accountability Act) in the big data era. It is expected that many more applications developed during the pandemic are here to stay and will be refined in years to come.

Keywords
telemedicine, telehealth, rhinology, otolaryngology, otology, audiology, laryngology

Received October 22, 2021; accepted December 16, 2021.
Regardless of the current trend that has accelerated the adoption of telemedicine, its development in the specialty of otorhinolaryngology–head and neck surgery has been slow: it was first described in 1994, with the number of publications increasing steadily over the years.

With this in mind, we aim to provide an up-to-date evaluation of the various applications of telemedicine in otorhinolaryngology–head and neck surgery. However, due to the broad nature of the question and the fact that the quality of published data is limited and heterogeneous, a systematic review could not be performed; hence, a scoping review was conducted.

Materials and Methods

For methodology, we followed the PRISMA-ScR checklist (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews).

Information Sources and Search Strategy

Articles were searched in the PubMed database with the following thread of keywords:

(telemed* [tw] OR telehealth [tw] OR “tele-medicine”[tw] OR “tele-health” [tw] OR “e-consult” [tw] OR “e-consultation” [tw] OR econsult* [tw] OR telediagnosis* [tw] OR “tele-diagnostics” [tw] OR telemedicine [mesh] OR “video consultation” [tw] OR “video consultation” [tw] OR Video consultations” [tw] OR “Video visits” [tw] OR “video visits” [tw] OR “tele mentoring” [tw] OR telementor* [tw] OR ((mentor* [ti] OR mentoring [mesh]) AND (telemed* [ti] OR “telemedicine” [mesh])) AND (“Otolaryngology” [Mesh] OR “Otorhinolaryngologic Surgical Procedures” [Mesh] OR “Otorhinolaryngologic Diseases”[Mesh] OR “Otolaryngologic Procedures” [Mesh] OR “Otolaryngologic Diseases” [Mesh] OR “Otolaryngologic Procedures” [Mesh] OR “Otolaryngologic Diseases” [Mesh]) AND ENGLISH [lang] NOT (“animals” [mesh] NOT “humans” [mesh]).

Articles were also searched in the Cochrane Library databases with the following thread of keywords: telemicine AND ENT; telemicine AND otolaryngology; telehealth AND ENT; telehealth AND otolaryngology. The date of the last search was December 15, 2020.

Eligibility Criteria

Eligibility criteria were peer-reviewed studies that described the application of telemedicine in the otolaryngology specialty. Due to the scarcity of available literature, no restrictions were set on patient demographics and study design; thus, case reports were also included. Research articles that did not describe the application of telemedicine in the field of otolaryngology were excluded. Reviews, editorials, commentaries, and all other nonresearch trial articles on telemedicine in otolaryngology were excluded.

Selection of Sources of Evidence

Search results from databases were downloaded and uploaded to Covidence, an online organizer platform where duplicates were removed. Using the eligibility criteria, 2 reviewers (A.Y. and D.K.) independently screened the titles and abstracts of all included articles. For full-text screening, the 2 reviewers independently screened the articles, and conflicts were resolved by discussion. The final full-text screened cohort was confirmed with a third reviewer (M.L.).

Data Extraction

Eligible full-text articles were read independently by the 2 reviewers to extract information regarding year published, study design, subspecialty, type of telemedicine, disease of focus diagnosis/prognosis, participant number/sample size, and outcomes. Level of evidence was determined by study design (1, randomized controlled study; 2, prospective cohort study, controlled study; 3, retrospective controlled study; 4, case report, case series).

Results

The search yielded 469 results, and after removal of duplicates, 461 were eligible for initial screening. All titles and abstracts were screened. An overall 408 articles were eligible for full-text screening. A total of 235 articles were excluded as they did not fit the inclusion criteria: article type was not original research; article did not focus on application of telemedicine in otolaryngology; or there was no full text available or no access. Full-text review was performed on the remaining 173 articles, and data were extracted (Figure 1).

Of all studies that fit the inclusion criteria, 18 focused on rhinology or skull base surgery, 33 on laryngology/head and neck surgery, 35 on comprehensive otolaryngology–head and neck surgery, 85 on otology or audiology subspecialty, 1 on maxillofacial surgery, and 1 on multiple subspecialties. In general, there has been a significant increase in the annual number of articles published on telemedicine in otolaryngology overall and for subspecialties (Figure 2).

For ease of review, we classified the articles per the approach used for telemedicine.

Virtual Encounters

A total of 164 articles were identified. Virtual encounters (VEs) were defined as consultations held by telephone- or video-based platforms (with real-time audio and/or visual communication with minimal latency) and store-and-forward telepractice services. These commonly included clinical assessments with the patients presenting to an ear, nose, and throat (ENT) specialist while connected from a remote site, and they encompass tele-screening, tele-rehabilitation, and post-operative follow-up via patient engagement tools. Applications of VE were classified into 5 subdomains: patient-physician interaction (Supplemental Table 1a and 1b, available online), physician-physician interaction (Supplemental Tables S2a and S2b), patient engagement tools (Supplemental Tables S3a and...
S3b), tele-screening (Supplemental Tables S4a and S4b), and tele-rehabilitation (Supplemental Table S5a and S5b). Most studies focused on feasibility6-75 or investigated concordance rates4,76-151 between ≥2 cohorts, while a few examined the cost savings.152-154

Physician-Patient Interaction. Prior to COVID-19, studies and case reports demonstrated the feasibility of remote tele-visits15,16,23,70 and sufficiency in providing patients with preliminary diagnoses, reducing referral wait time, allowing for postoperative tele-follow-up visits, or preventing unnecessary in-person otolaryngology visits.7,8,11,13,68,155

A major theme identified was antibiotic prescription patterns in the course of tele-management. For treatment of sinusitis, feasibility of VE was supported in literature,14,83-85 but results on prescription patterns were contradicting. Some studies reported that physicians were more likely to prescribe antibiotics during tele-visits as compared with face-to-face (FTF) visits,83 while others noted the opposite.84,85 One study found no significant difference among methods of visit in adherence to antibiotic prescription guidelines.150 For management of acute respiratory tract infections, a group of researchers noted that patient satisfaction was highest in those who had an antibiotic and corticosteroid prescribed during the tele-visit.67

A few studies focused on remote cochlear implant (CI) management, and feasibility was supported,18-20,97 as patients with CIs or hearing aids can use tele-visits to undergo pure tone audiometry (PTA), tympanometry, and speech tests. Remote programming of CI is also possible, and when compared with CI programmed in-person, there was no significant difference in patients’ performance at 3 months according a group of researchers.151 Patient satisfaction for the telemedicine experience was high.21-23,73,151 However, as expected, performance of audiology or speech tests was suggested to be better in a sound-treated booth.28,96 For PTA conducted in a non–sound-treated booth, results were promising,110,111 and others reported the test and retest thresholds between remote and in-person testing to be similar.112,113 With regard to concordance rates, results were contradicting. Threshold differences of PTA conducted in remote sound booths were clinically acceptable and equivalent to in-person testing,102-108 although 1 study found more errors generated when the personal computer–based audiometer was used in a telemedicine setup as compared with in-person appointment settings.109

Figure 1. Search strategy flowchart.
Figure 2. Trend in number of publications. OHNS, otolaryngology–head and neck surgery.
Most studies showed acceptable to high agreement between diagnosis made via telemedicine and that made through FTF encounters,\textsuperscript{76-79,82,86-92,122} yet 2 noted discordance.\textsuperscript{80,81} Common concerns for this discrepancy were with regard to image/recording quality of the physical examination.\textsuperscript{6,8,29,156} A higher percentage of video otoscopy recording taken by nonphysicians was lower quality and unusable than that taken by physicians.\textsuperscript{17,80,121,124} In a pediatric study, this was shown to improve upon appropriate training of parents on how to use an otoscope.\textsuperscript{20} In contrast, usefulness of endoscopic videos taken by health care personnel can be limited.\textsuperscript{25,118,148,149}

Nonetheless, when VEs were utilized for CI management, studies demonstrated no significant differences in performance of CIs, session duration, neural responses, electrode-specific measure, and threshold and comfort levels\textsuperscript{18,93-101,123} as compared with those managed in person. When VE was used for dysphagia evaluations, results suggested that remote evaluation yielded substantial levels of agreement for treatment recommendations and subjective severity ratings as compared with traditional FTF evaluations,\textsuperscript{114,117} with comparable efficacy. According to cost-efficiency analysis, tele-visits are more cost-efficient than in-person appointments.\textsuperscript{86} At an institution level, the cost reduction was achieved after the number of tele-visits surpassed the threshold to pay off the fixed costs from the initial technology installment; for example, in 1 study this was reported at a threshold of 35 patients per year.\textsuperscript{11,152,153}

During COVID-19, there has been a surge in literature describing the implementation and efficacy of the tele-clinic,\textsuperscript{155-168} especially when compared with a similar period prior to the pandemic.\textsuperscript{157,162} Some studies reported no-shows to be more frequent when the tele-visit was utilized,\textsuperscript{158} while others noted attendance to increase.\textsuperscript{160,168} Some reported reasons for no-shows included technical issues\textsuperscript{158,159} or patients declining it due to no direct physical examination.\textsuperscript{165} While there are numerous studies investigating the efficacy of otoscopes for “at home” use, during the pandemic, only 1 case series reported the use of a commercially available otoscope by patients for telemedicine purposes.\textsuperscript{167} Nonetheless, patient satisfaction with telehealth encounters was high or improved as compared with standard care after implementation of the tele-clinics.\textsuperscript{161,164,166} Furthermore, studies showed that patients preferred continued use of tele-visits in addition to,\textsuperscript{160,163} and in some studies even instead of,\textsuperscript{161} FTF office appointments.

**Patient Engagement Tools.** Various mobile- and internet-based platforms have been developed to facilitate patient engagement. Almost all articles except for 2 were published in the field of rhinology, which included management of allergy-related symptoms,\textsuperscript{30,31,69,125,126} patient-reported outcomes measuring after sinusonal surgery,\textsuperscript{32} and remote nasal airflow evaluation.\textsuperscript{33,34} Studies noted that mobile patient engagement tools aided with physician-patient communication efficacy,\textsuperscript{125} helped diagnose allergies,\textsuperscript{30} held advantages in improving adherence rate and average daily use of prescribed medications for patients with allergies,\textsuperscript{31,69,126} allowed for remote nasal airflow evaluation,\textsuperscript{33,34} and yielded high patient response rates when tracking patient-reported outcome measures.\textsuperscript{32} For nonrhinology articles, one group showed the feasibility of using an online consultation service to connect potential patients interested in maxillofacial surgery to physicians who answered inquiries.\textsuperscript{27} Another study investigated the utility of a mobile instant messenger in the postoperative management of pediatric tonsillectomy and found this to improve compliance with at-home care instructions.\textsuperscript{66}

**Physician-Physician Interaction.** Twelve studies focused on tele-consultations, during which physicians remotely consulted another physician for better case management. Remote consultations among physicians were shown to be feasible and able to prevent unnecessary encounters for general otolaryngology outpatient clinics,\textsuperscript{35,36} as well as more specialized audiologic management of CI cases.\textsuperscript{37,38} ICT also allowed for remote observation and consultation for laryngeal intubation\textsuperscript{39,40} and extubation.\textsuperscript{41} Results indicated that physician-physician tele-consultations had good interrater agreement for diagnostic indicators\textsuperscript{127,128} and management recommendations\textsuperscript{129} for patients with dysphagia. Virtual consultations among physicians also accurately predicted otologic surgery as compared with those from in-person appointments.\textsuperscript{130} Two studies evaluated diagnostic accuracy for patients whose imaging was sent via ICT. The study population consisted of emergency ENT patients and pediatric patients with lateral neck x-rays. Results for both studies showed high accuracy.\textsuperscript{4,131}

**Tele-screening.** In tele-screening (ie, telemedicine for the purpose of screening), the 18 eligible articles mostly focused on the field of otology. Almost exclusively, technology was used for hearing screening. These were described in articles from America,\textsuperscript{42,132} Australia,\textsuperscript{43,47} Brazil,\textsuperscript{43} Canada,\textsuperscript{49} Germany,\textsuperscript{71} India,\textsuperscript{74,134} Kenya,\textsuperscript{72} South Africa,\textsuperscript{49-51,75} and Tajikistan.\textsuperscript{52} In general, results suggest feasibility. Tele-screening resulted in increased screening coverage, shortened referral waiting time, decreased outpatient and failure-to-attend appointments at tertiary centers from a remote community, and reduced costs.\textsuperscript{43,48,50,51,71} Testing and identification during tele-screening were also suggested to be reliable and comparable to in-person screening.\textsuperscript{42,52,132-134} In a rare study that investigated tele-screening in the adult population, it was found that an online screening test was feasible, but only a small portion of participants provided their contact information to proceed with a hearing evaluation and hearing aid trial.\textsuperscript{49}

**Tele-rehabilitation.** In tele-rehabilitation, the 27 articles were mainly in the field of otology, audiology, laryngology, or head and neck cancer. The feasibility and effectiveness of various online-delivered or software-based therapies were investigated (eg, acceptance and commitment, auditory-verbal, cognitive-behavioral, voice, speech, and swallow) to manage tinnitus, chronic vestibular syndromes, hearing loss,
deafness, speech/voice pathology, and dysphagia. In articles focused in otology and audiology, tele-rehabilitation groups showed improvement in tinnitus severity, vertigo severity, and hearing aid problems, with no significant difference in improvements from in-person therapy. In articles concerned with the field of laryngology, tele-rehabilitation suggested cost-effectiveness and improvements in vocal fold function, acoustic and physiologic parameters, nodule sizes, patient perceptions of voice-related quality of life, vocal self-evaluation skill, and vocal pattern. Comparable levels of agreement were achieved between online and FTF environments. Moreover, a higher adherence rate than that of patient-directed therapy was found. Overall, patient and therapist satisfaction rates on tele-rehabilitation were also high.

**Telementoring**

Nine studies evaluated the concept of telementoring (ie, mentoring by means of telecommunication or computer networks). Detailed results are illustrated in Supplemental Tables S6a and S6b (available online). Overall, results are encouraging and certainly show the feasibility of this approach. When in-person surgical guidance and telementoring endoscopic sinus surgery were compared, no significant differences in clinical outcomes were observed. Yet, the authors recommend that only surgeons of a certain training level and experience be telementored intraoperatively when acting as the primary surgeon. Telementoring procedures have also been described, including intubation, laryngoscopy, otoscopy, and nasopharyngoscopy, and a study identified a $25,450 reduction in travel expenses after implementing a tele-clinic, demonstrating the potential of significant financial savings. However, Melo et al found that only the in-person group showed a statistically significant difference in pre- and posttraining performances for the overall score and individual topic scores when compared with remotely trained community health workers for nonprocedural tasks.

**Discussion**

This scoping review of the literature provides an up-to-date summary of the current applications of telemedicine in otolaryngology and rhinology in particular, including the latest studies on the widespread use of telemedicine during the COVID-19 pandemic. We aim to discuss our results related to the various subdomains that we have identified to appreciate the extensive work that has been done in this field. Interestingly, subspecialties focused on different subdomains of telemedicine, as summarized in Figure 3.

VE is one of the oldest and most common applications of telemedicine in otolaryngology, and coincidentally, most articles in telemedicine focused on this and related strategies. When VE was compared with in-person appointments, results
were promising, with only a few studies reporting discrepancies. Most studies demonstrated moderate (κ = 0.41-0.60) to substantial (κ = 0.61-0.80) diagnostic agreement between VE and FTF evaluations. A major issue is the quality of the physical examination being conducted remotely, which obviously has a lot of limitations. However, VE has been found to expand health coverage, prevent unnecessary visits, and save travel costs. With the development of adaptors for mobile-based endoscopes, mobile/internet-based patient engagement platforms, and internet-based examination and analysis software, the applications of VE will be advanced.

The use of patient engagement tools was most widespread in rhinology, possibly because the subspecialty deals with the management of many common chronic conditions. Regardless of subspecialty, studies have shown that these tools can enhance diagnostic accuracy, management, and follow-up efficacy, as well as facilitate more efficient communication and improve adherence to medications. Regardless of subspecialty, studies have shown that these tools can enhance diagnostic accuracy, management, and follow-up efficacy, as well as facilitate more efficient communication and improve adherence to medications. Tele-rehabilitation has been applied in most subspecialties. One study investigated the feasibility of providing therapy via a mobile app, pointing toward the likely future applications of many tele-rehabilitation services. With the development of interactive smart tools and artificial intelligence, tele-rehabilitation in times ahead may not even require a therapist but deal with many common tasks via programmed branching logics and permutations.

Tele-screening has been applied for screening of otologic conditions, in particular the remote screening of hearing disorders, mainly in the pediatric population. It is another subset of telemedicine that has been increasingly incorporating automated algorithms to aid with its purposes. Results show great potential for tele-screening in rural communities with regard to the demonstrated testing reliability of remote hearing tests, cost-effectiveness, increase in the local screening rate, and efficient referral workflow. While tele-screening is still limited on the global level, this concept and the related technologies have a huge potential for more widespread use.

Tele-consultation has been utilized among providers within and beyond the confines of the country. It is also useful in connecting ENT providers with those from different specialties in emergency situations or when a complex case is encountered requiring multidisciplinary care, underscoring its potential in the field of otorhinolaryngology.

Telementoring is another subdomain of telemedicine that we identified, and studies show that this can be an invaluable tool for the training. Surgical telementoring was mainly utilized and tested within the field of rhinology. Surgical telementoring was mainly utilized and tested within the field of rhinology. While studies show a positive experience, many identify the balance between high-quality video/audio transmission and reduction of lag time as a key challenge, but technological advances should easily overcome this in the years to come. It is intriguing to imagine that commercially available technologies, such as augmented or virtual reality, will be implemented in the use of surgical telementoring in ENT. Other technologies, such as Google glasses, allow for visualization of the entire operating room, which provides the mentor with the important aspect of situational awareness. Furthermore, with holistic projection of augmented or virtual reality via the glasses or on the screen, this may enhance the mentoring experience. While only a few articles reported the feasibility of tele-education in the field of otorhinolaryngology so far, this area of research shows great potential. One limitation is that surgical specialties, including ENT, require a high level of hands-on experience and FTF teaching for the initial period of surgical training. However, for training and mentoring the advanced surgical trainee, this concept represents an extremely useful adjunct in the education of the next generation of surgeons and physicians.

Taking all this into account, different subdomains of telemedicine have been assessed for different measurable outcomes. The most commonly investigated outcomes that we encountered during our analysis were feasibility, cost-efficiency, patient and/or physician satisfaction, waiting time, concordance between remote and local physicians, validity, reliability, and diagnostic accuracy of telemedicine. Interestingly, we observed a wide range of mean ages of adult patients surveyed, from 20 to 66 years, and some studies also examined satisfaction among older patients. Moreover, various studies on the pediatric population reported parent satisfaction. On the whole, the majority of patients have been pleased with their telemedicine experience, especially with the reduced traveling costs. The introduction of new telemedicine platforms and familiarization with these technologies for other purposes in daily life will facilitate the encounters and certainly improve patient satisfaction.

While this review aims to provide a detailed overview of the current applications of telemedicine in otorhinolaryngology, there are limitations. Due to the broad nature of the question and the fact that the quality of published data is limited and heterogeneous, a systematic review could not be performed; hence, a more limited review (ie, scoping review) was conducted.

While it appears that telemedicine has more advantages than disadvantages, this approach must continue to be critically appraised, and more rigorous research needs to be conducted and demonstrate patient benefit at high levels of evidence to allow for its widespread adoption. While telemedicine does reduce traveling costs for patients and provide outreach care for those in rural areas, the patient must be aware of and consent to many limitations. Moreover, patients may prefer FTF appointments as they can facilitate the encounter by building a better rapport between the patient and the physician. Certain aspects of the clinical evaluation, such as endoscopies, will yield more information if performed by an experienced health care provider FTF, rather than by patients themselves. Details lost in the transmission of audio and video data is also a problem, as the physician’s perception and understanding of the patient can be limited by the
technical quality of the VE. Moreover, some patients may not have access to such technology. All examinations, as far as the VE allows, should be standardized for all examination and analysis devices that can be self-administered by patients at home. The active engagement of patients in familiarizing themselves with the newly devised systems is crucial to allow providers to make accurate diagnoses.

The telemedicine market has shown exponential growth in recent years, but at the same time it is important to ensure security and privacy for the patient by the use of HIPAA-compliant systems (Health Insurance Portability and Accountability Act) that are integrated in the existing patient management software. This will allow for possible recording of parts of the examination and/or photodocumentation and will facilitate billing and coding. While telemedicine allows for easy access to care, licensing requirements need to be taken into account, in particular for patients who live in other states and who have never presented FTF in the state for which the physician’s license has been granted.

Implications for Practice

COVID-19 has brought telemedicine center stage, but many studies had already demonstrated the huge potential of this concept. From VE to tele-education, telematching, and platform development to allow for self-examination and rehabilitation at home, telemedicine is here to stay and will be further developed in years to come.

Acknowledgments

We thank Christopher Stave, Lane Medical Library, Stanford University, for his invaluable help and guidance during the literature search and scoping review.

Author Contributions

Angela Yang, design, data acquisition, data analysis and interpretation, drafting, revision; Dayoung Kim, design, data acquisition, data analysis and interpretation, drafting, revision; Peter H. Hwang, conception, design, data interpretation, revision, final approval; Matt Lechner, conception, design, data interpretation, revision, final approval

Disclosures

Competing interests: None.
Sponsorships: None.
Funding source: None.

Supplemental Material

Additional supporting information is available at http://journals.sagepub.com/doi/suppl/10.1177/2473974X211072791

References

1. Gagnon M-P, Desmartis M, Labrecque M, et al. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. J Med Syst. 2012;36(1):241-277. doi:10.1007/s10916-010-9473-4
2. World Health Organization, ed. Telemedicine: Opportunities and Developments in Member States—Report on the Second Global Survey on Ehealth. World Health Organization; 2010.
3. Mick P, Murphy R. Aerosol-generating otolaryngology procedures and the need for enhanced PPE during the COVID-19 pandemic: a literature review. J Otolaryngol Head Neck Surg. 2020;49(1):29. doi:10.1186/s40463-020-00424-7
4. Yamamoto LG, Inaba AS, DiMauro R. Personal computer tele-radiology interhospital image transmission to facilitate tertiary pediatric telephone consultation and patient transfer: soft-tissue lateral neck and elbow radiographs. Pediatr Emerg Care. 1994;10(5):273-277. doi:10.1097/00006565-199410000-00007
5. Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-473. doi:10.7326/M18-0850
6. Crump WJ, Driscoll B. An application of telemedicine technology for otorhinolaryngology diagnosis. Laryngoscope. 1996;106(5, pt 1):595-598. doi:10.1007/00005537-199605000-00014
7. Hofstetter PJ, Kokesh J, Ferguson AS, Hood LJ. The impact of telehealth on wait time for ENT specialty care. Telemed J E Health. 2010;16(5):551-556. doi:10.1089/tmj.2009.0142
8. Haegen TW, Cupp CC, Hunsaker DH. Teleotolaryngology: a retrospective review at a military tertiary treatment facility. Otolaryngol Head Neck Surg. 2004;130(5):511-518. doi:10.1016/j.otohns.2004.01.010
9. Smith AC, Williams J, Agnew J, Sinclair S, Youngberry K, Wootton R. Realtime telemedicine for paediatric otolaryngology pre-admission screening. J Telemed Telecare. 2005;11(suppl 2):S86-S89. doi:10.1258/135763305775124821
10. Blakeslee DB, Grist WJ, Stachura ME, Blakeslee BS. Practice of otolaryngology via telemedicine. Laryngoscope. 1998;108(1, pt 1):1-7. doi:10.1007/00005537-199801000-00001
11. Dorrian C, Ferguson J, Ah-See K, et al. Head and neck cancer assessment by flexible endoscopy and telemedicine. J Telemed Telecare. 2009;15(3):118-121. doi:10.1258/jtt.2009.003004
12. Rimmer RA, Christopher V, Falck A, et al. Telemedicine in otolaryngology outpatient setting—single center head and neck surgery experience. Laryngoscope. 2018;128(9):2072-2075. doi:10.1002/lary.27123
13. Walijee H, Sood S, Markey A, Krishnan M, Lee A, De S. Is nurse-led telephone follow-up for post-operative obstructive sleep apnoea patients effective? A prospective observational study at a paediatric tertiary centre. Int J Pediatr Otorhinolaryngol. 2020;129:109766. doi:10.1016/j.ijpitol.2019.109766
14. Penza KS, Murray MA, Myers JF, Furst JW, Pecina JL. Management of acute sinusitis via e-visit. Telemed J E Health. 2021;27(5):532-536. doi:10.1089/tmj.2020.0047
15. Arriaga MA, Nuss D, Scrantz K, et al. Telemedicine-assisted neurotology in post-Katrina Southeast Louisiana. Otol Neurotol. 2010;31(3):524-527. doi:10.1097/MAO.0b013e3181edd69d
16. Viirre E, Warner D, Balch D, Nelson JR. Remote medical consultation for vestibular disorders: technological solutions and case report. Telemed J. 1997;3(1):53-58. doi:10.1089/tmj.1.1997.3.53
17. Ramkumar V, Rajendran A, Nagarajan R, Balasubramaniyan S, Suresh DK. Identification and management of middle ear disorders in a rural cleft care program: a telemedicine approach. *Am J Audiol.* 2018;27(3S):455-461. doi:10.1044/2018_AJA-IMIA3-18-0015

18. Slager HK, Jensen J, Kozlowski K, et al. Remote programming of cochlear implants. *Otol Neurotol.* 2019;40(3):e260-e266. doi:10.1097/MAO.0000000000002119

19. Shapiro WH, Huang T, Shaw T, Roland JTJ, Lalwani AK. Remote intraoperative monitoring during cochlear implant surgery is feasible and efficient. *Otol Neurotol.* 2008;29(4):495-498. doi:10.1097/MAO.0b013e181692838

20. Steuerwald W, Windmill I, Scott M, Evans T, Kramer K. Stories from the webcams: Cincinnati Children’s Hospital Medical Center audiology telehealth and pediatric auditory device services. *Am J Audiol.* 2018;27(3S):391-402. doi:10.1044/2018_AJA-IMIA3-18-0010

21. Kuzovkov V, Yanov Y, Levin S, et al. Remote programming of MED-EL cochlear implants: users’ and professionals’ evaluation of the remote programming experience. *Acta Otolaryngol.* 2014;134(7):709-716. doi:10.3109/00016489.2014.892212

22. Cullington H, Kitterick P, Weal M, Margol-Gromada M. Feasibility of personalised remote long-term follow-up of people with cochlear implants: a randomised controlled trial. *BMJ Open.* 2018;8(4):e019640. doi:10.1136/bmjopen-2017-019640

23. Burns CL, Ward EC, Hill AJ, Kularatna S, Kenny LM. Randomized controlled trial of a multisite speech pathology telepractice service providing swallowing and communication intervention to patients with head and neck cancer: evaluation of service outcomes. *Head Neck.* 2017;39(5):932-939. doi:10.1002/hed.24706

24. Maurrasse SE, Schwanke TW, Tabae A. Smartphone capture of flexible laryngoscopy: optics, subsite visualization, and patient satisfaction. *Laryngoscope.* 2019;129(9):2147-2152. doi:10.1002/lary.27803

25. Demant MN, Jensen RG, Bhutta MF, Laier GH, Lous J, Homoe P. Smartphone otoscopy by non-specialist health workers in rural Greenland: a cross-sectional study. *Int J Pediatr Otorhinolaryngol.* 2019;126:109628. doi:10.1016/j.ijporl.2019.109628

26. Erkkola-Anttinen N, Irjala H, Laine MK, Tälttinen PA, Löytytyniemi E, Ruohola A. Smartphone otoscopy performed by parents. *Telemed J E Health.* 2019;25(6):477-484. doi:10.1089/ tmj.2018.0062

27. Brockes C, Schenkel JS, Buehler RN, Grätz K, Schmidt-Weitmann S. Medical online consultation service regarding maxillofacial surgery. *J Cranio maxillofac Surg.* 2012;40(7):626-630. doi:10.1016/j.jcmaxs.2012.03.018

28. Goehring JL, Hughes ML, Baudhuin JL, et al. The effect of technology and testing environment on speech perception using telehealth with cochlear implant recipients. *J Speech Lang Hear Res.* 2012;55(5):1373-1386. doi:10.1044/1092-4388(2012/11-0358)

29. Lundberg T, Westman G, Hellstrom S, Sandstrom H. Digital imaging and telemedicine as a tool for studying inflammatory conditions in the middle ear—evaluation of image quality and agreement between examiners. *Int J Pediatr Otorhinolaryngol.* 2008;72(1):73-79. doi:10.1016/j.ijporl.2007.09.015

30. Bianchi A, Tsilochristou O, Gabrielli F, Tripodi S, Mattiardi PM. The smartphone: a novel diagnostic tool in pollen allergy? *J Invest Allergol Clin Immunol.* 2016;26(3):204-207. doi:10.18176/jiaci.0060

31. Costa C, Menesatti P, Brighetti MA, et al. Pilot study on the short-term prediction of symptoms in children with hay fever monitored with e-health technology. *Eur Ann Allergy Clin Immunol.* 2014;46(6):216-225.

32. Khanwalker AR, Shen J, Kern RC, et al. Utilization of a novel interactive mobile health platform to evaluate functional outcomes and pain following septoplasty and functional endoscopic sinus surgery. *Int Forum Allergy Rhinol.* 2019;9(4):345-351. doi:10.1002/air.22273

33. Seren E. Web-based analysis of nasal sound spectra. *Telemed J E Health.* 2005;11(5):578-582. doi:10.1089/tmj.2005.11.578

34. Choi H, Park I-H, Yoon HG, Lee H-M. Wireless patient monitoring system for patients with nasal obstruction. *Telemed J E Health.* 2011;17(1):46-49. doi:10.1089/tmj.2010.0105

35. Kohlert S, Murphy P, Tse D, Liddy C, Akfham A, Keely E. Improving access to otolaryngology—head and neck surgery expert advice through eConsultations. *Laryngoscope.* 2018;128(2):350-355. doi:10.1002/lary.26677

36. Gilani S, Bommakanti K, Friedman L. Electronic consultations in otolaryngology: a pilot study to evaluate the use, content, and outcomes in an academic health system. *Ann Otol Rhinol Laryngol.* 2020;129(2):170-174. doi:10.1177/0003489817698435

37. McRackan TR, Noble JH, Wilkinson EP, et al. Implementation of image-guided cochlear implant programming at a distant site. *Otolaryngol Head Neck Surg.* 2017;156(5):933-937. doi:10.1177/0194599817698435

38. Kokesh J, Ferguson AS, Patricoski C, LeMaster B. Traveling an audiologist to provide otolaryngology care using store-and-forward telemedicine. *Telemed J E Health.* 2009;15(8):758-763. doi:10.1089/tmj.2009.0046

39. Sibert K, Ricci MA, Caputo M, et al. The feasibility of using ultrasound and video laryngoscopy in a mobile telemedicine consult. *Telemed J E Health.* 2008;14(3):266-272. doi:10.1089/ tmj.2007.0050

40. Mosier J, Joseph B, Sackles JC. Telebation: next-generation telemedicine in remote airway management using current wireless technologies. *Telemed J E Health.* 2013;19(2):95-98. doi:10.1089/ tmj.2012.0093

41. Newmark JL, Ahn YK, Adams MC, Bittner EA, Wilcox SR. Use of video laryngoscopy and camera phones to communicate progression of laryngeal edema in assessing for extubation: a case series. *J Intensive Care Med.* 2013;28(1):67-71. doi:10.1177/ 088586612437528

42. Ciccia AH, Whitford B, Krumm M, McNeal K. Improving the access of young urban children to speech, language and hearing screening via telehealth. *J Telemed Telecare.* 2011;17(5):240-244. doi:10.1258/jtt.2011.100810

43. Smith AC, Armfield NR, Wu W-I, Brown CA, Mickan B, Perry C. Changes in paediatric hospital ENT service utilisation following the implementation of a mobile, indigenous health screening
70. Pedersen S, Holand U. Tele-endoscopic otorhinolaryngological examination: preliminary study of patient satisfaction. *Telemed J.* 1995;1(1):47-52. doi:10.1089/tmj.1.1995.1.47

71. Delb W, Merkel D, Pilotorget K, Schmitt J, Pinkert PK. Effectiveness of a TEOAE-based screening program: can a patient-tracking system effectively be organized using modern information technology and central data management? *Ear Arch Otorhinolaryngol.* 2004;261(4):191-196. doi:10.1007/s00405-003-0662-3

72. Yancey KL, Cheromei LJ, Muhando J, Reppart J, Netterville JL, Jayawardena ADL. Pediatric hearing screening in low-resource settings: incorporation of video-otoscopy and an electronic medical record. *Int J Pediatr Otorhinolaryngol.* 2019;126:109633. doi:10.1016/j.ijporl.2019.109633

73. Cullington HE, Ayegyam-Prempeh A. Person-centred cochlear implant care: assessing the need for clinic intervention in adults with cochlear implants using a dual approach of an online speech recognition test and a questionnaire. *Cochlear Implants Int.* 2017;18(2):76-88. doi:10.1080/14670100.2017.1279728

74. Gupta N, Chawla N, Gupta D, Dhawan N, Janaki VR. Community triage of otology patients using a store-and-forward telemedicine device: a feasibility study. *Ear Nose Throat J.* 2017;96(7):246-249.

75. van Wyk T, Mahomed-Asmail F, Swanepoel DW. Supporting hearing health in vulnerable populations through community care workers using mHealth technologies. *Int J Audiol.* 2019; 58(11):790-797. doi:10.1080/14992027.2019.1649478

76. Seim NB, Philips RHW, Mattrka LA, et al. Developing a synchronous otolaryngology telemedicine clinic: prospective study to assess fidelity and diagnostic concordance. *Laryngoscope.* 2018;128(5):1068-1074. doi:10.1002/lary.26929

77. Heneghan C, Sclafani AP, Stern J, Ginsburg J. Telemedicine applications in otolaryngology. *IEEE Eng Med Biol Mag.* 1999; 18(4):53-62. doi:10.1109/51.775489

78. Sclafani AP, Heneghan C, Ginsburg J, Sabini P, Stern J, Dolitsky JN. Teleconsultation in otolaryngology: live versus store and forward consultations. *Otolaryngol Head Neck Surg.* 1999;120(1):62-72. doi:10.1016/S0194-5989(99)70371-2

79. Yulzari R, Bretler S, Avraham Y, Sharabi-Nov A, Even-Tov E, Gilbey P. Mobile technology-based real-time teleotolaryngology care facilitated by a nonotolaryngologist physician in an adult population. *Ann Otol Rhinol Laryngol.* 2018;127(1):46-50. doi:10.1177/0003489417745089

80. Ullah R, Gilliland D, Adams D. Otolaryngology consultations by real-time telemedicine. *Ulster Med J.* 2002;71(1):26-29.

81. Melcer T, Hunsaker D, Crann B, Coala L, Deniston W. A prospective evaluation of ENT telemedicine in remote military populations seeking specialty care. *Telemed J E Health.* 2002;8(3):301-311. doi:10.1089/15305620260353199

82. Smith AC, Dowthwaite S, Agnew J, Wootton R. Concordance between real-time telemedicine assessments and face-to-face consultations in paediatric otolaryngology. *Med J Aust.* 2008;188(8):457-460.

83. Mehrotra A, Paone S, Martich GD, Albert SM, Shevchik GJ. A comparison of care at e-visits and physician office visits for sinusitis and urinary tract infection. *JAMA Intern Med.* 2013;173(1):72-74. doi:10.1001/2013.jamainternmed.305

84. Johnson KM, Dumkow LE, Burns KW, Yee MA, Egwuatu NE. Comparison of diagnosis and prescribing practices between virtual visits and office visits for adults diagnosed with sinusitis within a primary care network. *Open Forum Infect Dis.* 2019;6(9):ofz393. doi:10.1093/ofid/ofz393

85. Davis CB, Marzec LN, Blea Z, et al. Antibiotic prescribing patterns for sinusitis within a direct-to-consumer virtual urgent care. *Telemed J E Health.* 2019;25(6):519-522. doi:10.1089/tmj.2018.0100

86. Jacobs SP, Newman D, Dean D, Richards A, McConnon KM. An innovative approach to improve ear, nose and throat surgical access for remote living Cape York Indigenous children. *Int J Pediatr Otorhinolaryngol.* 2017;100:225-231. doi:10.1016/j.ijporl.2017.07.011

87. Lundberg T, Biagio L, Laurent C, Sandström H, Swanepoel DW. Remote evaluation of video-otoscopy recordings in an unselected pediatric population with an otitis media scale. *Int J Pediatr Otorhinolaryngol.* 2014;78(9):1489-1495. doi:10.1016/j.ijporl.2014.06.018

88. Kokesh J, Ferguson AS, Patricoski C, et al. Digital images for postsurgical follow-up of tympanostomy tubes in remote Alaska. *Otolaryngol Head Neck Surg.* 2008;139(1):87-93. doi:10.1016/j.otohns.2008.04.008

89. Patricoski C, Kokesh J, Ferguson AS, et al. A comparison of in-person examination and video otoscope imaging for tympanostomy tube follow-up. *Telemed J E Health.* 2003;9(4):331-344. doi:10.1089/153056203772744653

90. Biagio L, Swanepoel DW, Laurent C, Lundberg T. Video-otoscopy recordings for diagnosis of childhood ear disease using telehealth at primary health care level. *J Telemed Telecare.* 2014;20(6):300-306. doi:10.1177/1357633X14510138

91. Eikelboom RH, Mbao MN, Coates HL, Atlas MD, Gallop MA. Validation of tele-otology to diagnose ear disease in children. *Int J Pediatr Otorhinolaryngol.* 2005;69(6):739-744. doi:10.1016/j.ijporl.2004.12.008

92. Lundberg T, Biagio de Jager L, Swanepoel DW, Laurent C. Diagnostic accuracy of a general practitioner with video-otoscopy collected by a health care facilitator compared to traditional otoscopy. *Int J Pediatr Otorhinolaryngol.* 2017;99:49-53. doi:10.1016/j.ijporl.2017.04.045

93. Hughes ML, Sevier JD, Choi S. Techniques for remotely programming children with cochlear implants using pediatric audiological methods via telepractice. *Am J Audiol.* 2018;27(3S):385-390. doi:10.1044/2018_AJA-IMIA-18-0002

94. Wesarg T, Wasowski A, Skarzynski H, et al. Remote fitting in Nucleus cochlear implant recipients. *Acta Otolaryngol.* 2010;130(12):1379-1388. doi:10.3109/00016489.2010.492480

95. Hughes ML, Goehring JL, Sevier JD, Choi S. Measuring sound patterns for sinusitis within a direct-to-consumer virtual urgent care. *Telemed J E Health.* 2019;25(6):519-522. doi:10.1089/tmj.2018.0100
a validation study. *J Speech Lang Hear Res.* 2012;55(4):1112-1127. doi:10.1044/1092-4388(2011/11-0237)

97. Lohmann AR, Carlson ML, Sladen DP. Intraoperative cochlear implant device testing utilizing an automated remote system: a prospective pilot study. *Otol Neurotol.* 2018;39(3):313-317. doi:10.1097/MAO.0000000000001719

98. Campos PD, Ferrari DV. Teleaudiology: evaluation of tele-consultation efficacy for hearing aid fitting. *J Soc Bras Fonoaudiol.* 2012;24(4):301-308. doi:10.1590/s2179-64912012000400003

99. Goehring JL, Hughes ML. Measuring sound-processor threshold levels for pediatric cochlear implant recipients using conditioned play audiometry via telepractice. *J Speech Lang Hear Res.* 2017;60(3):732-740. doi:10.1044/2016_JSLHR-H-16-0184

100. Sevier JD, Choi S, Hughes ML. Use of direct-connect for remote speech-perception testing in cochlear implants. *Ear Hear.* 2019;40(5):1162-1173. doi:10.1097/AUD.0000000000000693

101. Fletcher KT, Dicken FW, Adkins MM, et al. Audiology telemedicine evaluations: potential expanded applications. *Otolaryngol Head Neck Surg.* 2019;161(1):63-66. doi:10.1177/1043869919835541

102. Crowell ES, Givens GD, Jones GL, Brechtelsbauer PB, Yao J. Audiology telepractice in a clinical environment: a communication perspective. *Ann Otol Rhinol Laryngol.* 2011;120(7):441-447. doi:10.1177/000348941112000704

103. Yao J, Givens GD, Wan Y. A Web services-based distributed system with browser-client architecture to promote tele-audiology assessment. *Telemed J E Health.* 2009;15(8):777-782. doi:10.1089/tmj.2009.0031

104. Givens GD, Elangovan S. Internet application to tele-audiology—”nothin’ but net.” *Am J Audiol.* 2003;12(2):59-65. doi:10.1044/1059-0889(2003)011

105. Yao J, Wan Y, Givens GD. Using web services to realize remote hearing assessment. *J Clin Monit Comput.* 2010;24(1):41-50. doi:10.1007/s10877-009-9208-6

106. Givens GD, Blanarovich A, Murphy T, Simmons S, Blach D, Elangovan S. Internet-based tele-audiometry system for the assessment of hearing: a pilot study. *Telemed J E Health.* 2003;9(4):375-378. doi:10.1089/153056203772744707

107. Yao JJ, Yao D, Givens G. A browser-server-based tele-audiology system that supports multiple hearing test modalities. *Telemed J E Health.* 2015;21(9):697-704. doi:10.1089/tmj.2014.0171

108. Swanepoel DW, Koekemoer D, Clark J. Intercontinental hearing assessment—a study in tele-audiology. *J Telemed Telecare.* 2010;16(5):248-252. doi:10.1258/jtt.2010.090906

109. Choi JM, Lee HB, Park CS, Oh SH, Park KS. PC-based tele-audiometry. *Telemed J E Health.* 2007;13(5):501-508. doi:10.1089/tmj.2007.0085

110. Jacobs PG, Silaski G, Wilmington D, et al. Development and evaluation of a portable audiometer for high-frequency screening of hearing loss from ototoxicity in homes/clinics. *IEEE Trans Biomed Eng.* 2012;59(11):3097-3103. doi:10.1109/TBME.2012.2204881

111. Whitton JP, Hancock KE, Shannon JM, Polley DB. Validation of a self-administered audiometry application: an equivalence study. *Laryngoscope.* 2016;126(10):2382-2388. doi:10.1002/lary.25988

112. Margolis RH, Brett G, Feeney MP, Killion MC, Saly GL. Home hearing test: within-subjects threshold variability. *Ear Hear.* 2018;39(5):906-909. doi:10.1097/AUD.0000000000000551

113. Masalski B, Kręcicki T. Self-test web-based pure-tone audiometry: validity evaluation and measurement error analysis. *J Med Internet Res.* 2013;15(4):e71. doi:10.2196/jmir.2222

114. Malandraki GA, McCullough G, He X, McWeeny E, Perlman AL. Teledynamic evaluation of oropharyngeal swallowing. *J Speech Lang Hear Res.* 2011;54(6):1497-1505. doi:10.1044/1092-4388(2011/10-0284)

115. Morrell K, Hyers M, Stuchiner T, et al. Telehealth stroke dysphagia evaluation is safe and effective. *Cerebrovasc Dis.* 2017;44(3-4):225-231. doi:10.1159/000478107

116. Kantarcigil C, Sheppard JJ, Gordon AM, Friel KM, Malandraki GA. A telehealth approach to conducting clinical swallowing evaluations in children with cerebral palsy. *Res Dev Disabil.* 2016;55:207-217. doi:10.1016/j.ridd.2016.04.008

117. Burns CL, Ward EC, Hill AJ, Phillips N, Porter L. Conducting real-time videofluoroscopic swallow study via telepractice: a preliminary feasibility and reliability study. *Dysphagia.* 2016;31(3):473-483. doi:10.1007/s00455-016-9701-2

118. Akhtar M, Van Heukelom PG, Ahmed A, et al. Teledermic physical examination utilizing a consumer device demonstrates poor concordance with in-person physical examination in emergency department patients with sore throat: a prospective blinded study. *Telemed J E Health.* 2018;24(10):790-796. doi:10.1089/tmj.2017.0240

119. Lozada KN, Morton K, Stepan K, Capo J, Chai RL. The clinical impact of bedside fiberoptic laryngoscopic recording on a tertiary consult service. *Laryngoscope.* 2018;128(4):818-822. doi:10.1002/lary.26821

120. Wu C-J, Wu S-Y, Chen P-C, Lin Y-S. An innovative smartphone-based otosonendoscope and its application in mobile health and teleotolaryngology. *J Med Internet Res.* 2014;16(3):e71. doi:10.2196/jmir.2959

121. Shah MU, Sohal M, Valdez TA, Grindle CR. iPhone otoscopes: currently available, but reliable for tele-otoscopy in the hands of parents? *Int J Pediatr Otorhinolaryngol.* 2018;106:59-63. doi:10.1016/j.ijporl.2018.01.003

122. Shah MU, Lotterman S, Roberts D, Eisen M. Smartphone telemedical emergency department consults for screening of nonacute dizziness. *Laryngoscope.* 2019;129(2):466-469. doi:10.1002/lary.27424

123. Rodriguez C, Ramos A, Falcon JC, Martinez-Beneyto P, Gault A, Boyle P. Use of telemedicine in the remote programming of cochlear implants. *Cochlear Implants Int.* 2010;11(suppl 1):461-464. doi:10.1179/146761010X12671177204624

124. Biagio L, Swanepoel DW, Adeyemo A, Hall JW 3rd, Vinck B. Asynchronous video-otoscopy with a telehealth facilitator. *Telemed J E Health.* 2013;19(4):252-258. doi:10.1089/tmj.2012.0161
125. Cingi C, Yorgancioglu A, Cingi CC, et al. The “physician on call patient engagement trial” (POPET): measuring the impact of a mobile patient engagement application on health outcomes and quality of life in allergic rhinitis and asthma patients. *Int Forum Allergy Rhinol.* 2015;5(6):487-497. doi:10.1002/alr.21468

126. Pizzulli A, Perna S, Florack J, et al. The impact of telemonitoring on adherence to nasal corticosteroid treatment in children with seasonal allergic rhinoconjunctivitis. *Clin Exp Allergy.* 2014;44(10):1246-1254. doi:10.1111/cea.12386

127. Malandraki GA, Markaki V, Georgopoulos VC, Bauer JL, Kalogeropoulos I, Nanas S. An international pilot study of asynchronous teleconsultation for oropharyngeal dysphagia. *J Telemed Telecare.* 2013;19(2):75-79. doi:10.1177/1357663312474963

128. Furukawa M, Furukawa MK, Mizojiri G, Matsuda H. Telemedicine in laryngology. *Telemed J.* 1998;4(4):329-333. doi:10.1089/tmj.1998.4.329

129. Mayadevi M, Thankappan K, Limbachiya SV, et al. Preoperative planning for ear surgery using store-and-forward telemedicine. *Otolaryngol Head Neck Surg.* 2010;143(2):253-257. doi:10.1016/j.otohns.2010.04.265

130. Eze N, Lo S, Bray D, Toma AG. The use of camera mobile phone to assess emergency ENT radiological investigations. *Clin Otolaryngol.* 2005;30(3):230-233. doi:10.1111/j.1365-2273.2005.00982.x

131. Lancaster P, Krumm M, Ribera J, Klich R. Remote hearing screenings via telehealth in a rural elementary school. *Am J Audiol.* 2008;17(2):114-122. doi:10.1044/1059-0889(2008/07-0008)

132. Botasso M, Sanches SGG, Bento RF, Samelli AG. Telediometry as a screening method in school children. *Clinics (Sao Paulo).* 2015;70(4):283-288. doi:10.6061/clinics/2015(04)11

133. Ramkumar V, Hall JW, Nagarajan R, Shankaranarayan VC, Kumaravelu S. Tele-ABR using a satellite connection in a mobile van for newborn hearing testing. *J Telemed Telecare.* 2013;19(5):233-237. doi:10.1177/1357663313494691

134. Kleinstäuber M, Weise C, Andersson G, Probst T. Personality traits predict and moderate the outcome of Internet-based cognitive behavioural therapy for chronic tinnitus. *Int J Audiol.* 2018;57(7):538-544. doi:10.1080/14992027.2018.1432902

135. Henry JA, Thielen ME, Zaugg TL, et al. Telephone-based progressive tinnitus management for persons with and without traumatic brain injury: a randomized controlled trial. *Ear Hear.* 2019;40(2):227-242. doi:10.1007/AUD.0000000000000609

136. van Vugt VA, van der Wouden JC, Essery R, et al. Internet based vestibular rehabilitation with and without physiotherapy support for adults aged 50 and older with a chronic vestibular syndrome in general practice: three armed randomised controlled trial. *BMJ.* 2019;367:l5922. doi:10.1136/bmj.l5922

137. Thorén ES, Öberg M, Andersson G, Lunner T. Internet interventions for hearing loss. *Am J Audiol.* 2015;24(3):316-319. doi:10.1044/2015_AJA-15-0009

138. Havenga E, Swanepoel DW, le Roux T, Schmid B. Tele-intervention for children with hearing loss: a comparative pilot study. *J Telemed Telecare.* 2017;23(1):116-125. doi:10.1177/13576633X15617886

139. Constantinescu G, Waite M, Dorman D, et al. A pilot study of telepractice delivery for teaching listening and spoken language to children with hearing loss. *J Telemed Telecare.* 2014;20(3):135-140. doi:10.1177/1357663314528443

140. Rangarathnam B, McCullough GH, Pickett H, Zraick RI, Tulunay-Ugur O, McCullough KC. Telepractice versus in-person delivery of voice therapy for primary muscle tension dysphonia. *Am J Speech Lang Pathol.* 2015;24(3):386-399. doi:10.1044/2015_AJSLP-14-0017

141. Mashima PA, Birkmire-Peters DP, Syns MJ, Holtel MR, Burgess LPA, Peters LJ. Telehealth: voice therapy using telecommunications technology. *Am J Speech Lang Pathol.* 2003;12(4):432-439. doi:10.1044/1058-0360(2003/089)

142. Pizzulli A, Perna S, Florack J, et al. The impact of telemonitoring on adherence to nasal corticosteroid treatment in children with seasonal allergic rhinoconjunctivitis. *Clin Exp Allergy.* 2014;44(10):1246-1254. doi:10.1111/cea.12386

143. Theodoros DG, Hill AJ, Russell TG. Clinical and quality of life outcomes of speech treatment for Parkinson’s disease delivered to the home via telerehabilitation: a noninferiority randomized controlled trial. *Am J Speech Lang Pathol.* 2016;25(2):214-232. doi:10.1044/2015_AJSLP-15-0005

144. Constantinescu G, Theodoros D, Russell T, Ward E, Wilson S, Wootton R. Treating disordered speech and voice in Parkinson’s disease online: a randomized controlled non-inferiority trial. *Int J Lang Commun Disord.* 2011;46(1):1-16. doi:10.3109/13682822.2010.484848

145. Constantinescu G, Theodoros D, Russell T, Ward E, Wilson S, Wootton R. Assessing disordered speech and voice in Parkinson’s disease: a telerehabilitation application. *Int J Lang Commun Disord.* 2010;45(6):630-644. doi:10.3109/13682820903470569

146. Ward EC, Burns CL, Theodoros DG, Russell TG. Impact of dysphagia severity on clinical decision making via telerehabilitation. *Telemed J E Health.* 2014;20(4):296-303. doi:10.1089/tmj.2013.0198

147. Ward EC, Sharma S, Burns C, Theodoros D, Russell T. Validity of conducting clinical dysphagia assessments for patients with normal to mild cognitive impairment via telerehabilitation. *Int J Audiol.* 2010;49(5):460-472. doi:10.1080/13674140903248816

148. Cha D, Shin SH, Kim J, et al. Feasibility of asynchronous and automated telemedicine in otolaryngology: prospective cross-sectional study. *JMIR Med Inform.* 2020;8(10):e23680. doi:10.2196/23680

149. Birol H, Niazi MKK, Essig G, et al. Digital otoscopy videos versus composite images: a reader study to compare the accuracy of ENT physicians. *Laryngoscope.* 2021;131(5):E1668-E1676. doi:10.1002/lary.29253

150. Halpren-Ruder D, Chang AM, Hollander JE, Shah A. Quality assurance in telehealth: adherence to evidence-based indicators. *Telemed J E Health.* 2019;25(7):599-603. doi:10.1089/tmj.2018.0149
151. Ramos A, Rodriguez C, Martinez-Beneyto P, et al. Use of teledicine in the remote programming of cochlear implants. Acta Otolaryngol. 2009;129(5):533-540. doi:10.1080/00016480802294369

152. Xu CQ, Smith AC, Scuffham PA, Wootten R. A cost minimisation analysis of a telepaediatric otolaryngology service. BMC Health Serv Res. 2008;8:30. doi:10.1186/1472-6963-8-30

153. Phillips R, Seim N, Mattrka L, et al. Cost savings associated with an outpatient otolaryngology telemedicine clinic. Laryngoscope Investig Otolaryngol. 2019;4(2):234-240. doi:10.1002/iio2.244

154. Wall LR, Kularatna S, Ward EC, et al. Economic analysis of a three-arm RCT exploring the delivery of intensive, prophylactic swallowing therapy to patients with head and neck cancer during (chemo)radiotherapy. Dysphagia. 2019;34(5):627-639. doi:10.1007/s00455-018-9960-1

155. Qualliotine JR, Orosco RK. Self-removing passive drain to facilitate postoperative care via telehealth during the COVID-19 pandemic. Head Neck. 2020;42(6):1305-1307. doi:10.1002/ hed.26203

156. Fieux M, Duret S, Bawazeer N, Denoix L, Zauuche S, Tringali S. Teledmedicine for ENT: effect on quality of care during COVID-19 pandemic. Eur Ann Otorhinolaryngol Head Neck Dis. 2020;137(4):257-261. doi:10.1016/j.anorl.2020.06.014

157. Jiang W, Magit AE, Carvalho D. Equal access to telemedicine during COVID-19 pandemic: a pediatric otolaryngology perspective. Laryngoscope. 2021;131(5):1175-1179. doi:10.1002/lary.29164

158. Kolb CM, Born K, Banker K, Barth PC, Aaronson NL. Improving attendance and patient experiences during the expansion of a telehealth-based pediatric otolaryngology practice. Otolaryngol Head Neck Surg. 2021;164(5):952-958. doi:10.1177/019459982095917

159. Govil N, Raol N, Tey CS, Goudy SL, Alfonso KP. Rapid telemedicine implementation in the context of the COVID-19 pandemic in an academic pediatric otolaryngology practice. Int J Pediatr Otorhinolaryngol. 2020;139:110447. doi:10.1016/j.jirop.2020.110447

160. Darr A, Senior A, Argyriou K, et al. The impact of the coronavirus (COVID-19) pandemic on elective paediatric otolaryngology outpatient services—an analysis of virtual outpatient clinics in a tertiary referral centre using the modified paediatric otolaryngology telemedicine satisfaction survey (POTSS). Int J Pediatr Otorhinolaryngol. 2020;138:110383. doi:10.1016/j.jirop.2020.110383

161. Zammit M, Siau R, Williams C, Hussein A. Patient satisfaction from ENT telephone consultations during the coronavirus disease 2019 pandemic. J Laryngol Otol. Published online November 17, 2020. doi:10.1017/S0022215120002480

162. Belcher RH, Phillips J, Virgin F, et al. Pediatric otolaryngology telehealth in response to COVID-19 pandemic: lessons learned and impact on the future management of pediatric patients. Ann Otol Rhinol Laryngol. 2021;130(7):788-795. doi:10.1117/003489420976163

163. Vijayasundaram K, Karthikeyan P, Mehta SD. Proficiency of virtual follow-up amongst tinnitus patients who underwent intratympanic steroid therapy amidst COVID 19 pandemic. Am J Otolaryngol. 2020;41(6):102680. doi:10.1016/j.amjot.2020.102680

164. Svider PF, Setzen M, Ow R, Folbe AJ, Eloy JA, Johnson AP. Incorporation of teledicine by rhinologists: the COVID-19 pandemic and beyond. Am J Otolaryngol. 2020;41(6):102567. doi:10.1016/j.amjot.2020.102567

165. Ohlstein JF, Garner J, Takashima M. Telemedicine in otolaryngology in the COVID-19 era: initial lessons learned. Laryngoscope. 2020;130(11):2568-2573. doi:10.1002/lary.29030

166. Layfield E, Triantafillou V, Prasad A, et al. Telemedicine for head and neck ambulatory visits during COVID-19: evaluating usability and patient satisfaction. Head Neck. 2020;42(7):1681-1689. doi:10.1002/hed.26285

167. Jayawardena ADL, Mankarious LA, Keamy DG, Cohen MS. Pediatric, family-centered, “at-home” otologic physical examination in the COVID-19 era. Otolaryngol Head Neck Surg. 2020;163(5):1061-1063. doi:10.1177/01945998209434776

168. Kasle DA, Torabi SJ, Savoca EL, Judson BL, Manes RP. Outpatient otolaryngology in the era of COVID-19: a data-driven analysis of practice patterns. Otolaryngol Head Neck Surg. 2020;163(1):138-144. doi:10.1177/0194599820928987

169. Snyderman CH, Gardner PA, Lanisnik B, Ravnik J. Surgical telementoring: a new model for surgical training. Laryngoscope. 2016;126(6):1334-1338. doi:10.1002/lary.25753

170. Burgess LP, Holtel MR, Sym SJ, Birkmire-Peters DP, Peters LJ, Mashima PA. Overview of telemedicine applications for otolaryngology. Laryngoscope. 1999;109(9):1433-1437. doi:10.1097/00005537-199909000-00014

171. Burgess LPA, Sym SJ, Holtel MR, Birkmire-Peters DP, Johnson RE, Ramsey MJ. Teledicine: teleproctored endoscopic sinus surgery. Laryngoscope. 2002;112(2):216-219. doi:10.1097/00005537-200202000-00003

172. Klapan I, Simić L, Risavi R, et al. Tele-3-dimensional computer-assisted functional endoscopic sinus surgery: new dimension in the surgery of the nose and paranasal sinuses. Otolaryngol Head Neck Surg. 2002;127(6):549-557. doi:10.1067/mhn.2002.129732

173. Klapan I, Simić L, Pasarić K, et al. Realtime transfer of live video images in parallel with three-dimensional modelling of the surgical field in computer-assisted telesurgery. J Telemed Telecare. 2002;8(3):125-130. doi:10.1177/1357633X0200800301

174. Berg BW, Beamis EK, Murray WB, Boedeker BH. Remote videolaryngoscopy skills training for pre-hospital personnel. Stud Health Technol Inform. 2009;142:3-33.

175. Prescher H, Grover E, Mosier J, et al. Telepresent intubation supervision is as effective as in-person supervision of procedurally naive operators. Telemed J E Health. 2015;21(3):170-175. doi:10.1089/tmj.2014.0090

176. Faulkner J, Taylor E, Nessen S, Boedeker D, Boedeker B. Development of a tele ENT program to support distant military treatment facilities for the European regional medical command. Stud Health Technol Inform. 2014;196:101-106.

177. Melo TM de, Alvarenga K de F, Blasca WQ, Taga MF de L. Community health agents training on hearing health: effectiveness of videconference. Pro Fono. 2010;22(2):139-145. doi:10.1590/s0104-56872010000200012