MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in *Medicago truncatula*

Chenggang Liu\(^{1,2}\), Ji Hyung Jun\(^1\) and Richard A. Dixon\(^{1,2}\)
Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401

\(^1\)Current address: University of North Texas, Department of Biological Sciences, 1155 Union Circle #305220, Denton, TX 76203-5017
\(^2\)Address correspondence to Chenggang.liu@unt.edu, Richard.Dixon@unt.edu

Running title: MYB5 and MYB14 in *Medicago*

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (http://www.plantphysiol.org/) is: Richard A. Dixon (Richard.Dixon@unt.edu).

\(^W\) Online version contains Web-only data.
ABSTRACT

In Arabidopsis, the major MYB protein regulating proanthocyanidin (PA) biosynthesis is TT2, named for the transparent testa phenotype of tt2 mutant seeds that lack PAs in their coats. In contrast, the MYB5 transcription factor mainly regulates seed mucilage biosynthesis and trichome branching, with only a minor role in PA biosynthesis. We here characterize MYB5 and MYB14 (a TT2 homolog) in the model legume Medicago truncatula. Over-expression of Mt MYB5 or Mt MYB14 strongly induces PA accumulation in M. truncatula hairy roots and both myb5 and myb14 mutants of Medicago exhibit darker seed coat color than wild-type plants, with myb5 also showing deficiency in mucilage biosynthesis. myb5 mutant seeds have a much stronger seed color phenotype than myb14. The myb5 and myb14 mutants accumulate, respectively, about 30% and 50% of the PA content of wild-type plants, and PA levels are reduced further in myb5 myb14 double mutants. Transcriptome analyses of over-expressing hairy roots and knockout mutants of Mt MYB5 and Mt MYB14 indicate that Mt MYB5 regulates a broader set of genes than Mt MYB14. Moreover, we demonstrate that Mt MYB5 and Mt MYB14 physically interact and synergistically activate the promoters of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR), the key structural genes leading to PA biosynthesis, in the presence of Mt TT8 and Mt WD40-1. Our results provide new insights into the complex regulation of PA and mucilage biosynthesis in Medicago.

Keywords: condensed tannin, forage legume, hairy roots, metabolic engineering, seed coat, transcription factor.
INTRODUCTION

Flavonoids are ubiquitous secondary metabolites synthesized by the general phenylpropanoid pathway. Flavonols, anthocyanins and proanthocyanidins are the three major classes of flavonoids widely distributed in the plant kingdom. Flavonols function as UV protectants (Li et al., 1993), can be required for pollen fertility (Mo et al., 1992), and act as co-pigments with anthocyanins to modify flower and leaf color (Bloor, 1997). Anthocyanins are responsible for the red, purple and blue color in various plant organs, especially in flowers, leaves, fruits and seeds. Proanthocyanidins (PAs, also called condensed tannins), are present in the seed coats of many plants, and confer astringency of fruits, leaves, stems and seeds and hence function as herbivore feeding deterrents. PAs also contribute to seed coat color, becoming brown when oxidized (Albert et al., 1997). Besides their important roles in plant physiological processes, PAs also have pharmaceutical and agricultural value. PA monomers and their derivatives (epicatechin, catechin, epigallocatechin, gallocatechin, epicatechin-gallate, epigallocatechin-gallate) in green tea have been shown to have numerous biological activities, including antibacterial, antioxidant, anti-tumor and cancer preventive activities (Molan et al., 2009). Moderate PA content in the diet of ruminant animals can prevent potentially lethal pasture bloat (Li et al., 1996) and improve availability of by-pass protein out of the rumen (Naumann, 2013). Unfortunately, alfalfa, the most widely grown forage legume, contains almost no PAs in leaves and stems. Therefore, there is great interest to develop PA-containing alfalfa beneficial for grazing animals.

Most of the steps in the biosynthetic pathways to anthocyanin and PAs are shared (Supplemental Fig. S1). Leucoanthocyanidins are the first branch point between the anthocyanin and PA biosynthesis pathways. They can be oxidized to anthocyanidins by leucocyanidin dioxygenase (LDOX) or reduced to flavan-3-ols (catechins) by leucoanthocyanidin reductase (LAR) (Tanner et al., 2003). The second branch point between anthocyanin and PA biosynthesis pathways is anthocyanidin, which can be glycosylated by UDP glycosyltransferases (UGTs) to produce anthocyanins or reduced to (epi)flavan-3-ols (e.g. epicatechin) by anthocyanidin reductase (ANR) (Xie et al., 2003; Xie et al., 2004). Epicatechin can also be glycosylated and then transported to the vacuole by a MATE transporter (Pang et al., 2008; Zhao and Dixon, 2009), where it is believed to be polymerized by a laccase to form PA oligomers (Pourcel et al., 2005).
The regulation of anthocyanin and PA biosynthesis is controlled by a ternary complex of transcription factors, called the MBW complex, consisting of MYB, bHLH and WD40 transcription factors (Baudry et al., 2004). Among these, WD40 transcription factors are required for both anthocyanin and PA biosynthesis. It is the MYBs, and to a lesser extent the bHLHs, that determine the specificity of gene activation for anthocyanin and PA biosynthesis. In Arabidopsis, a trichome specific bHLH (EGL3) and PA specific bHLH (TT8) have redundant functions in PA biosynthesis (Zhang et al., 2003). The MYBs specific to the anthocyanin pathway are PAP1 (MYB75) in Arabidopsis and LAP1 in Medicago truncatula (Borevitz et al., 2000; Peel et al., 2009). Homologs of PAP1 and LAP1 have been discovered in various plant species (Espley et al., 2007; Azuma et al., 2008; Lin-Wang et al., 2010). In Arabidopsis, TT2 (At MYB123) is the major MYB transcription factor regulating the PA biosynthesis pathway. tt2 mutants almost completely lose PA accumulation in the seed coat (Nesi et al., 2001). TT2-related PA-regulating MYB transcription factors have also been discovered in Lotus (Lj TT2a, b, c) (Yoshida et al., 2008), poplar (MYB134) (Mellway et al., 2009) and clover (Ta MYB14) (Hancock et al., 2012).

At MYB5, a MYB transcription factor regulating trichome branching in leaves and mucilage accumulation in seed coats, plays only a minor role in PA biosynthesis in Arabidopsis (Gonzalez et al., 2009; Li et al., 2009). However, over-expression of Vv MYB5a and Vv MYB5b (the homologs of At MYB5 in grapes) in tobacco induces PA accumulation in flowers (Deluc et al., 2006; Deluc et al., 2008). Dk MYB4 (the homolog of At MYB5 in persimmon) has been demonstrated to regulate PA accumulation in persimmon fruits, and over-expression or knock-down of Dk MYB4 respectively induces or reduces PA accumulation in persimmon callus. Moreover, the PA accumulation deficiency in a non-astringent persimmon variety was shown to be associated with the low expression level of Dk MYB4 (Akagi et al., 2009). These results indicate that MYB5-like transcription factors may play more important roles in PA biosynthesis in some plants than in Arabidopsis. However, there are no direct genetic data to support the relative importance of MYB5-related transcription factors, compared with TT2 homologs, in these plants.

Here, we provide genetic evidence to demonstrate that Mt MYB5, the homolog of At MYB5 in M. truncatula, plays a pivotal role in PA biosynthesis. We isolated mutants of Mt MYB5 and Mt MYB14 (a close ortholog of the TT2-related Ta MYB14) and characterized their phenotypes. Both myb5 and myb14 mutants exhibit darker seed coats than wild-type. Strikingly,
myb5 mutants have a stronger phenotype than myb14 mutants. Medicago MYB5 and MYB14 physically interact, and synergistically activate transcription from the ANR and LAR promoters in the presence of Mt TT8 and Mt WD40-1, providing a revised model for regulation of the PA biosynthesis pathway.

RESULTS
Identification of Mt MYB5 and Mt MYB14
A WD-40 protein is a key component of the transcriptional complex that activates PA-biosynthetic genes (Lepiniec et al., 2006; Pang et al., 2009), and we recently reported that the MYB transcription factor Mt PAR (Proanthocyaninin Regulator) can activate the promoter of Medicago WD40-1 in yeast (Verdier et al., 2012). To search for new positive regulators of WD40-1, which may therefore also play a role in PA biosynthesis, we performed a yeast one-hybrid (Y1H) screen against a cDNA library of young seeds harvested at 10 days after pollination (DAP). We found five MYB transcription factors able to activate the WD40-1 promoter in this assay. The activation activities of these MYB proteins were confirmed by using the full-length cDNAs to perform the Y1H assay a second time. Among these MYB transcription factors, two show similarity to Arabidopsis mucilage regulators, two show similarity to Arabidopsis MYB4 and one (Medtr3g083540) shows high similarity to known transcription factors activating PA biosynthesis. The fact that most of the genes identified by Y1H screening are related to known functions of WD40 proteins in plants suggests that these transcription factors are probably true regulators of Medicago WD40-1. Here, we report the detailed characterization of the PA biosynthesis regulator encoded by Medtr3g083540.

Medtr3g083540 encodes a 304 amino acid R2R3 MYB transcription factor that belongs to a MYB family that includes At MYB5, Vv MYB5a/b, and Dk MYB4. Alignment of Medtr3g083540 with these MYBs indicated that the R2R3 domain is highly conserved among this family (Supplemental Fig. S2, Supplemental file 1). More importantly, Medtr3g083540 contains the C1 and C3 C-terminal motifs shared by all MYB5-like proteins except Dk MYB4, which lacks the C3 motif (Supplemental Fig. S2, Supplemental file 1). Hence, we name Medtr3g083540 as Mt MYB5. MYB5 activated the Medicago WD40-1 promoter in the yeast one hybrid assay, but not the promoter of the PA biosynthetic pathway gene ANR, activation of
which may require additional factors that are not present in the yeast assay (see below) (Figure 1A).

Arabidopsis TT2 is the best studied MYB transcription factor regulating PA biosynthesis (Nesi et al., 2001). No *Medicago* homolog of TT2 could be found in earlier versions of the *M. truncatula* genome database. However, a homology search using the At TT2 protein sequence to blast the *Medicago* genome version Mt3.5v4 (Young et al., 2011) resulted in the positive identification of contig_238935_1 as the closest homolog of At TT2 in *Medicago* (Supplemental Fig. S3; Supplemental file 2; in the most recent *Medicago* genome Mt4.0v1, contig_238935 is assembled as Medtr4g125520.1). Contig_238935_1 has only one amino acid difference from Mt MYB14-2 (AFJ53058.1), which is the *Medicago* ortholog of *Trifolium arvense* MYB14, a protein that induces PA accumulation in red clover and alfalfa (Hancock et al., 2012). We conclude that contig_238935_1 is a new allele of Mt MYB14-2, the single amino acid difference probably being due to the fact that the two genes were cloned from different ecotypes of *M. truncatula*. Y1H assay indicated that, similar to Mt PAR and Mt MYB5, Mt MYB14 is also able to activate the promoter of Mt WD40-1, but not ANR, in yeast (Fig. 1A).

As a first step to analyze the functions of Mt MYB5 and Mt MYB14, we performed phylogenetic analysis of MYBs known to regulate PA biosynthesis. In general, these MYBs form two clades in the phylogenetic tree. One includes Mt MYB5-related proteins, the other includes At TT2, Mt PAR, Vv MYBPA2, Lj TT2s and MYB14-like proteins (Fig. 1B, Supplemental file 3). Among these TT2-related MYBs, MYB14s and Lj TT2s are closely clustered. Inspection of the multiple alignment of these proteins reveals that besides the high homology at their N termini, these MYBs also share considerable amino acid identity at their C-terminal regions (Supplemental Fig. S3).

To experimentally demonstrate that Mt MYB14 and Mt PAR are functional orthologs of At TT2, we complemented Arabidopsis *tt2* mutant plants with Mt *PAR* and Mt *MYB14* driven by Arabidopsis *ANR* promoter (ProBan). For comparison, Mt *MYB5* was also included in the complementation experiments. As shown in Supplemental Fig. S4, both Mt PAR and Mt MYB14 rescued the Arabidopsis *tt2* phenotype (leading to dark seed coats), supporting the conclusion that Mt PAR and Mt MYB14 are functional orthologs of Arabidopsis TT2. Although Xu et al. (2014) observed that At MYB5 could partially rescue the *tt2* phenotype, we did not observe such rescue with Mt MYB5.
We next performed qRT-PCR to check the transcript levels of MYB5 and MYB14 in different Medicago tissues. Both MYB5 and MYB14 are highly expressed in seeds (Fig. 1C). MYB5 is also highly expressed in flowers and moderately expressed in roots. There is moderate MYB14 expression level in flowers. These different expression patterns suggest that MYB5 might have broader roles than MYB14 in Medicago.

MYB5 Promotes PA Accumulation in Medicago Hairy Roots

To demonstrate that Mt MYB5 can promote PA accumulation in planta, we generated MYB5 over-expressing transgenic hairy roots in M. truncatula ecotype A17. Control roots were transformed with a β-glucuronidase (GUS) construct. Some lines of MYB5 transformed hairy roots showed retarded growth (Figure 2A), whereas growth was unaffected in other lines. Staining with dimethylaminocinnamaldehyde (DMACA) suggested that both the retarded and normal growing hairy roots accumulated large amounts of PAs (Fig. 2A, bottom panels). To avoid negative growth effects, we selected normally growing roots (derived from line #7) for further analysis. There was no significant difference in anthocyanin accumulation between GUS-control and MYB5 over-expressing roots (Fig. 2B). In contrast, both soluble and insoluble PA levels were strongly induced in MYB5 over-expressing roots, reaching 250 and 500 μg per g fresh weight (FW), respectively (Fig. 2C and 2D).

PA profiling by normal phase HPLC coupled with post-column DMACA derivatization indicated that most of the soluble PA-like DMACA-positive material accumulating in MYB5 over-expressing lines was of relatively low molecular weight (Fig. 2E); epicatechin monomer elutes at a retention time of approximately 15 min in this HPLC system (Pang et al., 2013). Since DMACA can react with other unknown metabolites, we then performed the more diagnostic phloroglucinolysis analysis to determine the nature and composition of putative PAs in MYB5 over-expressing lines after purification of the soluble PAs on Sephadex LH20 resin. Our results indicated that epicatechin is the main component of the PAs accumulating in MYB5 over-expressing hairy roots, both as starter and extension unit (Supplemental Fig. S5). The average degree of polymerization of the soluble PAs calculated by this method (ratio of extension unit to starter unit peak areas) was determined to be approximately 31. Taken together, our data indicate that the high molecular weight DMACA-positive metabolites accumulating in MYB5 over-
expressing lines are authentic PAs and similar to those occurring naturally in the *Medicago* seed coat (Pang et al., 2007).

We utilized ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to determine whether the monomer flavan-3-ols also accumulate in MYB5-expressing hairy roots. This analysis revealed significant levels of epicatechin and epicatechin-3′-O-glucoside in MYB5 over-expressing lines; these compounds were barely detectable in GUS controls (Supplemental Fig. S6).

MYB14 Promotes PA Accumulation in *Medicago* Hairy Roots

To confirm the function of Mt MYB14 as a PA regulator, we generated MYB14 over-expressing hairy roots in *M. truncatula* A17. Unlike MYB5, over-expression of MYB14 did not result in growth retardation of hairy roots (Fig. 3A). Over-expression of MYB14 reduced the anthocyanin content to about half of GUS control lines (Fig. 3B). DMACA staining and quantification of soluble and insoluble PAs demonstrated that MYB14 strongly induced PA accumulation in hairy roots (Fig. 3A, C, D). Phloroglucinolysis and UPLC-MS analysis confirmed the presence of similar types of epicatechin-rich PAs, and similar accumulation of free epicatechin and epicatechin-3′-O-glucoside, as observed in MYB5 over-expressing hairy roots (Supplemental Fig. S5 and Supplemental Fig. S7). The mean DP of the PAs was somewhat higher in the MYB14 lines than the MYB5 lines (Supplemental Fig. S5A, B).

Phenotypes of *Medicago myb5* Mutants

To better understand the functions of Mt MYB5, we screened the *Tnt1* retrotransposon mutagenized *M. truncatula* R108 population (Tadege et al., 2008) to isolate *myb5* mutants. In total, we obtained three independent lines of MYB5 *Tnt1* insertion mutants. All three *Tnt1* insertions were located in the first exon of the *MYB5* gene (Fig. 4A). RT-PCR could not detect the full length *MYB5* transcript in any of the three lines, indicating that all three were null mutants (Supplemental Fig. S8A). There were no visible phenotypic differences in the vegetative organs between mutant and wild-type plants during the whole developmental period under our growth conditions. However, striking differences were observed in mature seeds, which exhibited a conspicuous dark-red color, whereas wild-type seeds are light yellow (Fig. 4B, top panels). The dark-red pigments in mutant seeds are not extractable by acidic methanol or 70%
acetone solutions, suggesting that these pigments are cross-linked in the seed coat (see discussion). DMACA-stained mutant seeds displayed a much lighter blue color than wild-type seeds, suggesting that the PA content in mutant seeds was reduced (Fig. 4B, bottom panels). Quantification of soluble PAs by the DMACA method indicated that mutant seeds accumulated approximately 30% of the PA content of wild-type seeds (Fig. 4C). However, quantification of insoluble PAs by the butanol-HCl method did not detect differences between mutant and wild-type (Supplemental Fig. S9). The butanol-HCl method relies on hydrolysis of PAs into anthocyanidin monomers, and cannot therefore distinguish anthocyanidin released from true PAs and anthocyanidin released from non-PA complexes, the presence of which is suggested by the dark-red color of the myb5 mutant seeds. Profiling of the soluble PA fraction by normal phase HPLC coupled with DMACA staining indicated that the myb5 mutant seeds produce, besides a lower amount of total soluble PAs, a more diverse range of small PA oligomers (Fig. 4D). Phloroglucinolysis analysis did not detect any difference in PA monomer composition or mean degree of polymerization between mutant and wild-type seeds (Supplemental Fig. S10).

At MYB5 has been demonstrated to positively regulate mucilage biosynthesis in the Arabidopsis seed. To test whether Mt MYB5 is also involved in mucilage biosynthesis in Medicago, we stained the myb5 mutant seeds with ruthenium red, a dye used to detect mucilage (Western et al., 2001). Similar to the AT myb5 mutant, Mt myb5 mutant seeds exhibited much lighter ruthenium red staining that wild-type seeds, indicating that the mutant seeds accumulate much less mucilage in the seed coat (Fig. 4E, top panel).

To determine if there are any differences in seed coat morphology between the myb5 mutant and wild-type, we examined the seed coat epidermal cells by SEM. In wild-type seeds, the epidermal cells are tightly arranged to form a smooth dome-like surface, with the cell walls between neighboring cells tightly sealed. In contrast, in mutant seeds, there were many cracks between the epidermal cells, and many epidermal cells were wrinkled with irregular shape (Fig. 4E, bottom panel). The cells were also generally somewhat smaller than in the wild type, reflecting the overall somewhat smaller size of the seeds themselves (Fig. 4B,E).

Phenotypes of Medicago myb14 Mutants

We isolated two independent myb14 mutants from the Medicago Tnt1 insertion mutant population (Fig. 5A). myb14-1 and myb14-2 harbor Tnt1 insertions in the second exon and the
second intron, respectively (Fig. 5A). \textit{MYB14} transcripts could not be detected in line \textit{myb14-1}, whereas very low levels of \textit{MYB14} transcripts were detected in line \textit{myb14-2}, indicating that \textit{myb14-1} is a null mutant and \textit{myb14-2} is a hypomorphic mutant (Supplemental Fig. S8B and 8C). Both \textit{myb14-1} and \textit{myb14-2} seeds display slightly but noticeably darker red-brown color than wild-type seeds, suggesting that the reduction of \textit{MYB14} transcripts in hypomorphic \textit{myb14-2} is sufficient to cause a similar phenotype as in the null mutant (Fig. 5B). Compared with the \textit{myb5} mutant, the seed color of \textit{myb14} is closer to that of the wild type. To exclude the possibility that the different phenotype of the \textit{Medicago myb14} is a result of gene redundancy, we used qPCR with two pairs of primers, one primer pair located in the conserved R2R3 domain and the other located in the divergent C-terminal region, to measure the \textit{Medicago MYB14} gene copy number. Results from both primer pairs indicated that \textit{MYB14} is a single copy gene in the \textit{Medicago} genome (Supplemental Fig. S11).

\textit{myb14} mutants accumulate approximately 50\% the PA level of wild-type seeds (Figure 5C). Similar to \textit{myb5} mutants, we could not detect differences in levels of insoluble PAs between \textit{myb14} mutant and wild-type seeds by the butanol-HCl method (Supplemental Fig. S7). Based on the same rationale, we conclude that insoluble PA levels in \textit{myb14} mutant seed cannot be determined by the butanol-HCl method due to the presence of insoluble anthocyanin moieties. No differences in mucilage staining were observed in \textit{myb14} mutant seeds compared to wild type (Supplemental Fig. S12).

To dissect the genetic interaction between \textit{MYB5} and \textit{MYB14} in \textit{Medicago}, we generated the \textit{myb5 myb14} double-knockout mutant by crossing \textit{myb5-1} and \textit{myb14-1}. The seed coat color of the double mutant exhibited a more uniform dark red-brown color than the single mutant of \textit{myb5}, which typically exhibits a lighter red-brown color at one end of the seed (Fig. 5B, arrow). These results suggest that MtMYB5 and MtMYB14 act redundantly to regulate PA biosynthesis. The soluble PA content in the double mutant was reduced to approximately 20\% of that of the wild type (Fig. 5D).

Gene Expression Profiling of MtMYB5 and MtMYB14 Overexpressing Hairy Roots and Mutant Seeds

To gain insights into MYB5- and MYB14-regulated genes in \textit{Medicago}, we performed transcriptome analysis of hairy roots by Affymetrix microarray analysis. We considered the
genes for which the transcript level changed by more than two fold, and with a statistical significance of p<0.05, as differentially expressed genes. In total, 628 and 460 probesets were induced in MYB5 and MYB14 over-expressing hairy roots, respectively (Supplemental Datasets 1 and 2). qRT-PCR analysis was performed on a set of selected genes to confirm the microarray results (Fig. 6B and 6C). Genes involved in the PA and anthocyanin biosynthesis pathways were highly induced (Fig. 6A and 6B). Noticeably, ANR, the gene responsible for epicatechin synthesis, was induced by 255-fold (second strongest induced) and 985-fold (strongest induced) in MYB5 and MYB14 overexpressing hairy roots, respectively, consistent with the observation that these hairy roots accumulate large amounts of PAs. One hundred and forty nine probesets were induced more than 2-fold by both MYB5 and MYB14 (Supplemental Dataset 3). Known PA and flavonoid biosynthesis genes, such as ANR, LAR, UGT72L1, LDOX, CHS and F3’H, were among the common induced genes. Interestingly, an aldehyde dehydrogenase and a vacuolar acid invertase gene were also highly induced by both MYB5 and MYB14, possibly indicating that sugar metabolism is altered to accommodate the high level of PA biosynthesis in these roots.

Transcripts encoding the transcription factors Mt TT8 (Medtr1g072320.1, the putative homolog of Arabidopsis TT8) and Mt WD40-1 (Pang et al. 2009), which are the integral components of the MBW complex and essential for the activation of PA pathway structural genes, were also up-regulated in transgenic hairy roots. Mt TT8 (probeset Mtr.22479.1.S1_at) was induced 2.6- and 2.1-fold by Mt MYB5 and Mt MYB14, respectively. Mt WD40-1 (Mtr.39774.1.S1_at) was induced 2.6-fold by Mt MYB14, but less than 2-fold by Mt MYB5. Because of the relatively low level of induction of these genes compared to that of the PA pathway structural genes, qRT-PCR was performed to quantify the expression levels of Mt TT8 and Mt WD40-1 in hairy roots. The results confirmed that both Mt MYB5 and Mt MYB14 can induce Mt TT8 and Mt WD40-1 (Fig. 6B, C).

One MYB transcription factor gene, Medtr5g079670.1, represented by two probesets (Mtr.16432.1.S1_at and Mtr.34401.1.S1_s_at), was induced 53- to 80- and 10-fold by MYB5 and MYB14, respectively (Supplemental Dataset 3). Blast analysis of the GenBank database indicated that Medtr5g079670.1 belongs to the class of Arabidopsis MYB4-like proteins. Proteins in this family typically are transcriptional repressors, and this particular Medicago gene shows high sequence similarity to the known anthocyanin biosynthesis suppressor, At MYBL2.
To identify transcript changes underlying the phenotypes of the *myb5* and *myb14* mutant seeds, we performed Affymetrix microarray analysis. Seeds of mutant and wild-type plants at 12 DAP were dissected from pods for isolation of RNA. Two biological replicates were collected, and transcript levels compared to those of wild-type plants. Nine hundred and ninety one genes (500 down-regulated and 491 up-regulated >2 fold) were differentially expressed in *myb5* seeds (Supplemental Dataset 4), whereas only 151 genes were differentially expressed (100 down-regulated and 51 up-regulated >2 fold) in *myb14* seeds (Supplemental Dataset 5).

We analyzed the 500 down-regulated genes in *myb5* seeds by PathExpress (Goffard and Weiller, 2007) to identify the potential metabolic pathways associated with these genes. This indicated that flavonoid biosynthesis and sugar metabolism are the main pathways down-regulated in the *myb5* mutant seeds (p value <0.01) (Supplemental Table 1), consistent with the low PA and mucilage phenotypes of *myb5* mutant seeds. The flavonoid pathway genes PAL, CHS, F3'H, DFR, LDOX, LAR, UGT72L1 and GST, were all down-regulated in *myb5* seeds. ANR, which is highly induced by MYB5 over-expression in hairy roots, was only slightly down-regulated in the *myb5* seeds. However, LAR, another key structural gene for PA biosynthesis, was down-regulated more than 6-fold. The down-regulation of the above genes was subsequently confirmed by qRT-PCR from independent biological samples (Fig. 6D). It is noteworthy that most of the above genes belong to multigene families in the *Medicago* genome, but only a subset of each gene family was down-regulated in *myb5* seeds, suggesting that different gene family members might be involved in different flavonoid biosynthetic pathways. Medtr5g079670.1, the putative repressor highly induced in hairy roots, was the most strongly down-regulated gene in *myb5* seeds (Fig. 6D, Supplemental Dataset 4). The strong down-regulation of an anthocyanin repressor was associated with up-regulation of certain anthocyanin biosynthesis genes; two genes encoding anthocyanin acyltransferase and three genes encoding DFR were up-regulated more than two-fold in *myb5* seeds (Supplemental Dataset 4).

Genes encoding glycosyl hydrolase and α/β fold hydrolase are down-regulated in Arabidopsis *myb5* mutant seeds and were assumed to be associated with mucilage biosynthesis (Gonzalez et al., 2009; Li et al., 2009). Similarly, many genes encoding glycoside hydrolases and other cell wall carbohydrate modifying enzymes are down-regulated in Mt *myb5* mutant seeds (Supplemental Table 2). The homolog of one gene in Arabidopsis that has been directly demonstrated to be involved in mucilage biosynthesis (*mum2*, Supplemental Table 2) was down-
regulated in myb5 seeds. Interestingly, genes encoding the aldehyde dehydrogenase and vacuolar acid invertase identified in MYB5 over-expressing hairy roots were also down-regulated in myb5 seeds, suggesting they are probable targets of MYB5 (Fig. 6D). These enzymes are typically involved in carbohydrate and/or lipid metabolism, suggesting they are probably associated with mucilage biosynthesis in the Medicago seed coat.

Analysis of 100 down-regulated genes in myb14 seeds by PathExpress indicated that flavonoid biosynthesis was likely the only pathway significantly affected (Supplemental Table 3), with ANR, UGT72L1 and CHS being down-regulated more than two-fold in myb14 seed. Subsequent qRT-PCR analysis confirmed the microarray data (Fig. 6D). One gene encoding flavonoid 3', 5'-hydroxylase (F35H1), which was down-regulated slightly less than 2-fold in myb5 and myb14 seeds (54% of wild-type) on the basis of microarray analysis, was found to be down-regulated by more than 2-fold by qRT-PCR analysis. The results show that loss of function of MYB14 only affects a small set of genes in the PA biosynthesis pathway, consistent with its less severe phenotypic effect than loss of function of MYB5. Unlike myb5 mutant seeds, no gene implicated in mucilage biosynthesis was down-regulated in myb14 seeds.

MYB5 and MYB14 Physically Interact and Synergistically Activate the ANR and LAR Promoters in the Presence of Mt TT8 and Mt WD40-1

MYB transcription factors interact with bHLH and WD40 transcription factors to form an MBW complex (Lepiniec et al., 2006). To test the hypothesis that MYB5 and MYB14 form complexes with Medicago bHLH and WD40 transcription factors to regulate the PA biosynthesis pathway, we conducted transient promoter activation assays in Arabidopsis protoplasts. The promoters of Medicago ANR and LAR were cloned in front of the firefly luciferase reporter gene (Fig. 7A). The reporter constructs were co-transfected into the protoplasts with various effectors driven by the constitutive CaMV 35S promoter (Fig. 7A). In addition to MYB5 and MYB14, the effectors included one bHLH transcription factor Mt TT8 and Mt WD40-1 (Pang et al., 2009).

Both MYB5 and MYB14 alone were able to weakly activate the ANR promoter (Fig. 7B); this contrasts with their inability to interact with the promoter in the yeast one-hybrid assay (Fig. 1). MYB5 alone had higher activation activity than MYB14 alone (23-fold versus 3.8-fold). When MYB5 and MYB14 were co-transfected with TT8 and WD40-1, the ANR and LAR promoter activities were strongly activated. We observed a 1,965-fold induction when MYB5
was co-transfected with TT8 and WD40-1 and a 794-fold induction when MYB14 was co-
transfected with TT8 and WD40-1. These results support the hypothesis that MYB5 and MYB14
are independently able to form a complex with TT8 and WD40-1 to activate the ANR promotor.
We also observed low transactivation, 2.8- and 1.8-fold, for TT8 and WD40-1 alone,
respectively, which, as with the low level of transactivation by MYB5 or MYB14 alone, likely
reflects the non-specific formation of complexes with endogenous Arabidopsis activators. All
these data are consistent with the operation of a classical MBW ternary complex.

To test whether MYB5 and MYB14 act redundantly in separate ternary complexes, we
cotransfected the protoplasts with all four transcription factors, resulting in a 12,400-fold
activation of the ANR promotor (Fig. 7B). Because the induction activity of the combination of
all four transcription factors is more than four times higher than the sum of the activation by
MYB5 and MYB14 ternary complexes with TT8 and WD40-1, we conclude that MYB5 and
MYB14 are able to activate the ANR promotor synergistically.

We next tested the activation activities of these transcription factors on the promotor of
LAR (Fig. 7C). Similar results were obtained to those with the ANR promotor. A weak activation
activity was observed for MYB5 alone (20-fold) and MYB14 alone (2.8-fold). When TT8 and
WD40-1 were co-transfected with MYB5 or MYB14, we observed 51-fold and 127-fold
induction activities, respectively. Similar to the results with the ANR promotor, the highest
induction activity (448-fold) was observed when all four transcription factors were co-
transfected. This activation is 2.5 times higher than the sum of the transactivation activities of the
MYB5 and MYB14 complexes with TT8 and WD40-1. We therefore conclude that MYB5 and
MYB14 also synergistically activate the LAR promotor.

To determine whether the apparent synergistic action between MYB5 and MYB14
reflects the existence of a MYB5/MYB14 complex on the same promotor, we performed
bimolecular fluorescence complementation (BiFC) assays between MYB5 and MYB14 in the
presence of WD40-1, TT8 and the ANR promotor. We transfected the Arabidopsis protoplasts
with MYB5 fused with the C terminal half of EYFP (YFPc:MYB5) and MYB14 fused with the
N terminal half (YFPn:MYB14) along with TT8, WD40-1 and the ANR promotor. The
complementary YFP signals between MYB5 and MYB14 were readily observed when TT8 and
WD40-1 were co-transfected with the BiFC plasmids (Figure 7D, Top left). In contrast, when
TT8 or WD40-1 were omitted, no complementary YFP signal could be observed (Figure 7D,
bottom left and middle, respectively), indicating that MYB5 and MYB14 form the complex in a TT8 and WD40-1 dependent manner. It is noteworthy that the complementary YFP signals between MYB5 and MYB14 are multiple spotted signals, suggesting that MYB5 and MYB14 are parts of multiple transcription foci. The complementary YFP signals between MYB5 and TT8 were more diffuse (Fig. 7D, top middle), similar to those of full length EYFP fused with MYB5 (YFPf:MYB5, Fig. 7D, top right), suggesting that the interaction between MYB5 and TT8 is not dependent on transcription foci. Taken together, our results strongly suggest that MYB5 indeed forms a complex with MYB14, and that this is part of a quaternary complex with TT8 and WD40-1 for the high level trans-activation of PA biosynthesis.

DISCUSSION

Both MYB5 and MYB14 are PA Regulators in *Medicago*

Medicago MYB5 belongs to a small family of MYB transcription factors characterized by their highly conserved R2R3 domains at the N terminus and two other highly conserved motifs, C1 and C3, at the C terminus. Although members of this family have been shown to be involved in PA biosynthesis, loss of function mutants of these transcription factors result in quite different phenotypes in different species, suggesting that the mechanisms underlying transcriptional control of PA biosynthesis may be different in different species. In Arabidopsis, loss of function of At *myb5* does not affect the expression level of genes related to PA biosynthesis. The involvement of At MYB5 in PA biosynthesis is only apparent when At *myb5* and At *tt2* are both knocked out, indicating that At MYB5 plays only a minor role in PA biosynthesis (Gonzalez et al., 2009). In persimmon, complete loss of PA in non-astringent type (NA-type) fruit is associated with mutation of Dk *myb4*, and most of the structural genes in PA biosynthesis are turned off (Akagi et al., 2009), suggesting that Dk MYB4 is the major regulator, if not the sole regulator, of PA biosynthesis in persimmon. Interestingly, in petunia, the MYB TF PH4 regulates vacuolar acidification but has no effect on anthocyanin content (Quattrocchio et al., 2006). No PA-related phenotype was reported in *ph4* mutants, but mutation of the gene encoding PH5, a proton pump which is the direct target of PH4, drastically reduces the PA content in seeds and produces the typical lighter seed color of PA-deficient mutants (Verweij et al. 2008). In contrast to these observations, Mt *myb5* mutants accumulate significantly reduced levels of soluble PAs in the seed coats, but exhibit a dark-red seed coat color (presumably arising from an
anthocyanin-related compound, see discussion below), suggesting that the regulatory architecture at the anthocyanin/PA branch in *Medicago* is distinctly different from that in the other systems described above.

TT2 is the major MYB regulator of PA biosynthesis in Arabidopsis. MYB14 is the most closely related MYB to TT2 in *Medicago*, but was only identified after a re-annotation of the genome sequence MT3.5v4 (Young et al., 2011). Hancock et al. (2012) reported that over-expression of Ta MYB14 (the homolog of Mt MYB14 in *Trifolium arvense*) could induce PA accumulation in leaf tissues of *Trifolium* and alfalfa, consistent with our result that Mt MYB14 is able to promote PA accumulation in *Medicago* hairy roots. Mt PAR, another TT2-related MYB TF in *M. truncatula*, also promotes PA accumulation in *Medicago* hairy roots and alfalfa plants (Verdier et al. 2012). PA accumulation is also induced by strong expression of Arabidopsis TT2 in *Medicago* hairy roots (Pang et al., 2008). These results indicate that there is some degree of promiscuity as regards the MYB components of the MBW complex, at least in heterologous systems.

In many plants, the color of the seed coat is mainly determined by its anthocyanin and PA contents. Seed coats with high PA and low anthocyanin content exhibit bright brown colors due to PA oxidization. In contrast, seed coats with high anthocyanin content exhibit a dark red color. In soybean, the recessive *i* allele, which releases *CHS* from silencing, results in high anthocyanin accumulation in the seed coat which can be dark brown or even black depending on other loci such as *R* and *T* (Tuteja et al., 2004; Yang et al., 2010). In contrast, the dominant *I* allele, which silences *CHS* expression and hence blocks both anthocyanin and PA biosynthesis, results in a completely colorless seed coat. In Arabidopsis, most of the mutants isolated from screening for seed coat color display various degrees of reduced color to colorless phenotypes (transparent testa, *tt* mutants), indicating that these mutations abolish or reduce both anthocyanin and PA biosynthesis. So far in Arabidopsis, only the *ban* mutant, which harbors a mutation in the *ANR* gene, contains high anthocyanin content in the seed coat and hence exhibits a dark-red seed coat phenotype (Devic et al., 1999; Xie et al., 2003). The *ban* phenotype supports the exclusive role of *ANR* in PA biosynthesis. In soybean, three varieties with red-brown seed coats are associated with reduced *ANR* mRNA levels (Kovinich et al., 2012).

The *tt2* mutant of Arabidopsis exhibits a strong transparent testa phenotype, suggesting that TT2 regulates both the anthocyanin and PA pathways (Nesi et al., 2001). Mutation of At
MYB5 does not result in a transparent testa phenotype, although the *tt2 myb5* double mutant exhibits a slightly stronger transparent testa phenotype than *tt2* alone (Gonzalez et al., 2009), suggesting that At MYB5 can regulate both anthocyanin and PA pathways in Arabidopsis. Unlike mutants of their homologs in Arabidopsis, both Mt *myb5* and Mt *myb14* mutant seeds exhibit darker color than wild type *Medicago* seeds, with Mt *myb5* exhibiting the stronger phenotype in terms of seed color. Due to the fact that these pigments are resistant to acid methanol and aqueous acetone extraction, their identity cannot be determined at present. However, given the fact that anthocyanin and PA biosynthesis share most of the biosynthetic steps, it is reasonable to assume these pigments are some kind of cross-linked anthocyanin related compound. One plausible hypothesis to interpret the seed color phenotypes is that both MYB5 and MYB14 mainly regulate PA biosynthesis with little or no effect on anthocyanin biosynthesis, allowing for the accumulation of anthocyanins (which are then further processed, for example by oxidation) in the seed coat and hence the darker seed color.

Downstream Targets of MYB5 and MYB14 in Medicago

Gene expression profiling of MYB5 or MYB14 over-expressing hairy roots revealed that both genes strongly induce the expression of structural genes specific to the PA biosynthesis pathway. ANR was induced more than 250-fold in MYB5 over-expressing hairy root, and 985-fold in MYB14 over-expressing hairy roots. These extremely high values mirror the effects of high over-expression of AtTT2 in *Medicago* hairy roots (Pang et al., 2008), and are in part explicable in terms of extremely low ANR expression in control tissues. As in At TT2 expressing *Medicago* hairy roots, UGT72L1, a glycosyltransferase specific for epicatechin (Pang et al., 2008), was also highly induced in MYB5 and MYB14 expressing hairy roots. Besides PA pathway specific genes, genes encoding enzymes functioning upstream of ANR or LAR, such as *CHS, F3’H*, and *DFR*, which could potentially be involved in both anthocyanin and PA biosynthesis, were also induced by MYB5 and MYB14. However, compared with ANR, these genes are induced with much lower fold increase, suggesting that they might be induced through a secondary, feedback/forward mechanism. Mt TT8 and Mt WD40-1, the two essential components of the MBW complex, are up-regulated around 2-3-fold, suggesting that there is a self-activating feedback regulation for the complex. In petunia, two MYB anthocyanin activators (DPL and PHZ) also
up-regulate AN1 (TT8 homolog) and AN11 (WD40 homolog) (Albert et al. 2014), consistent with the present results.

In addition to structural and regulatory genes, both MYB5 (strongly) and MYB14 (weakly) induced the expression of the MYB transcription factor Medtr5g079670 in hairy roots. Moreover, Medtr5g079670 is down-regulated in myb5 mutant seed, suggesting that MYB5 is a major regulator of this gene. Medtr5g079670 belongs to the MYB4-like transcription factor family, members of which have been characterized as transcriptional repressors (Jin et al., 2000). Interestingly, over-expression At MYB5 in Arabidopsis also induces an anthocyanin biosynthesis suppressing MYB transcription factor, At MYBL2 (Dubos et al., 2008; Matsui et al., 2008). Similar to Medtr5g079670, At MYBL2 is also significantly down-regulated in the At myb5 mutant (Li et al. 2009). Medtr5g079670 is the most similar gene to At MYBL2 in the Medicago genome, and therefore might also function as an anthocyanin suppressor in Medicago. Unlike At MYBL2, which has a truncated R2 domain, Medtr5g079670 has a more typical complete R2R3 domain, suggesting that structurally different MYB transcription factors might fulfill similar functions in different species. One MYB suppressor from petunia, Ph MYB27, which shows high homology to Medtr5g079670, was recently reported to suppress anthocyanin biosynthesis (Albert et al. 2014). One possible role for Medtr5g079670 in PA biosynthesis could therefore be to suppress the anthocyanin specific pathway so that metabolic flux can be more efficiently directed to PA biosynthesis.

Similar to loss of function of At MYB5, the Medicago myb5 mutant also produces less seed mucilage. Microarray gene expression profiling of the mutant seeds revealed that many genes encoding glycoside hydrolase and cell wall carbohydrate metabolism are down-regulated in the mutant seeds. One of the glycoside hydrolases, Medtr3g088520 (Mtr.17284.1.S1_at), shows high similarity with Arabidopsis MUM2. The mum2 mutant has defects in mucilage exclusion upon seed hydration (Huang et al., 2011). A gene annotated as encoding a putative aldehyde dehydrogenase is the most strongly induced gene in MYB5 over-expressing hairy roots, although the function of this gene (flavonoid or mucilage biosynthesis) and its potential aldehyde substrate in Medicago, are currently unclear.

Striking observations from the current study are that myb5 mutant seeds exhibit a more conspicuous dark-red seed color than myb14 seed, and less soluble PA can be extracted from myb5 seeds. In contrast to the minor role of MYB5 in PA biosynthesis in Arabidopsis, these
results suggest that Mt MYB5 plays at least as important a role as Mt MYB14 (orthologous to At TT2) in PA biosynthesis in *Medicago*. However, examination of the expression levels of major PA pathway structural genes did not reveal significant difference between *myb5* and *myb14* seeds. Instead, a putative anthocyanin repressor, Medtr5g079670, appeared to be exclusively down-regulated in *myb5* seeds. One hypothesis to explain the more conspicuous seed coat color of the *myb5* mutant is that the anthocyanin repressor is essential to direct the metabolic flux to PA biosynthesis. In this way, knock-out of *myb5* will cause metabolic flux to be redirected to anthocyanin biosynthesis, as well as via the down-regulation of the PA pathway structural genes. The combination of these two effects results in the stronger phenotype seen in the *myb5* seeds. Another possible hypothesis is that *myb5* predominantly regulates some unknown steps, such as epicatechin transport and condensation. The petunia homolog of Mt MYB5 directly regulates a vacuolar proton pump (PH5) which is essential for PA transport (Verweij et al. 2008). It will be interesting to investigate whether a similar proton pump exists in *Medicago*. An acid vacuolar invertase is strongly down-regulated in *myb5* seeds; this might possibly affect the vacuolar osmotic pressure and consequently affect PA accumulation in the vacuoles.

A Model for Regulation of PA Biosynthesis in Medicago

The current model for regulation of PA biosynthesis is mainly based on results from Arabidopsis, where TT2, TT8 and TTG1 form a ternary complex to activate PA biosynthesis genes (Baudry et al., 2004). In grapes, Vv MYB5a and Vv MYB5b can activate the Vv ANR promoter in the presence of At EGL3, suggesting that MYB5 proteins are also part of a similar ternary complex (Deluc et al., 2008). In our transactivation assays using Arabidopsis protoplasts, we observed that Mt MYB5 and Mt MYB14 alone can weakly activate both the ANR and LAR promoters, with MYB5 showing somewhat higher activity than MYB14. When Mt TT8 and Mt WD40-1 were included in the assay, the activation by Mt MYB5 and Mt MYB14 increased dramatically, supporting the ternary complex model. However, the highest transactivation activity was observed when all four transcription factors were co-transfected, and the effects of MYB5 and MYB14 were synergistic rather than additive. That this involves a previously unsuspected quaternary complex is suggested by the observation that BiFC analysis revealed a physical interaction between MYB5 and MYB14, but only in the presence of TT8 and WD40-1.
It was recently reported that petunia MYB27 functions as a co-suppressor by forming a quaternary complex with a second activator MYB, bHLH and WD40 TFs (Albert et al., 2014). This parallels our model in which MYB5 and MYB14 can form a quaternary complex with Mt TT8 and Mt WD40-1. Previous work has suggested the presence of two MYB molecules in transcriptional complexes for activation of anthocyanin biosynthesis. For example, Kong et al. (2012) proposed a model to explain how different configurations of bHLH protein (maize R) dimerization can function as a switch that directs the MBW complex to be tethered to different promoters. In either of the two configurations, there are two MYB molecules (maize C1) in the complex. It is tempting to speculate that the two MYB molecules can be present as a homo-dimer or, as suggested by the present work and that of Albert et al. (2014), as a hetero-dimer. Such heterodimers may consist of two transcriptional activators with synergistic activities, or an activator and a repressor. The promoters of ANR and LAR have both MYB and bHLH binding sites; it remains to be determined exactly how the transcriptional complex is assembled on these promoters.

Recently, we discovered that another Medicago MYB transcription factor, PAR, also regulates PA biosynthesis in the Medicago seed coat (Verdier et al., 2012). Unlike loss of function of MYB5 and MYB14, the par mutant exhibits a lighter seed coat color than wild type, indicating that PAR either regulates both anthocyanin and PA biosynthesis or does not negatively regulate the anthocyanin pathway. The mechanism by which PAR, MYB5 and MYB14 together orchestrate PA biosynthesis is currently under investigation.

EXPERIMENTAL PROCEDURES

Plant Materials

Medicago truncatula ecotype R108 was used as wild type for comparison with *Tnt1* insertion mutants. The tobacco *Tnt1* insertion mutagenized *Medicago* population was screened to identify MYB5 and MYB14 mutants as described by (Tadege et al., 2008). Seeds were scarified with concentrated sulfuric acid for 10 min, then washed with a large amount of water five times to remove sulfuric acid. Scarified seeds were sterilized with 10% bleach for 10 min and then rinsed five times with sterile water. *myb5* mutant seeds were sterilized with 10% bleach without sulfuric acid scarification. Sterilized seeds were vernalized at 4°C for 4 days on moist, sterile filter paper.
Vernalized seeds were germinated on filter paper for 5 days before transfer to soil in pots. The plants were grown in a greenhouse set at 12h/12h day/night cycle, 24°C.

Yeast One-Hybrid Screening and Assays
The *Medicago* WD40-1 promoter reporter yeast strain was generated as described in Verdier et al. (2012). A cDNA library was constructed from RNAs of 10 DAP seeds of *M. truncatula* A17 using the CloneMiner™ II cDNA Library Construction Kit (Invitrogen). The cDNA library was then cloned into pAG425GPD-ccdB (Alberti et al., 2007) to generate the library for yeast screening. The library plasmid DNA was used to transform the WD40-1 promoter reporter strain. Positive colonies were selected on yeast leucine dropout medium supplemented with 200 ng/mL aureobasidin A. To reconfirm the Y1H results from screening, full length cDNAs of putative effectors were cloned into pAG425GPD-ccdB and Y1H assays were performed as described in (Verdier et al., 2012).

Complementation of Arabidopsis *tt2* with Mt MYB5, Mt PAR and Mt MYB14
The Arabidopsis ANR (Banyuls) promoter was amplified by the Ban-pro-F/Ban-pro-R primer pair from genomic DNA and cloned into pMDC32 (Curtis and Grossniklaus, 2003) at the HindIII and KpnI sites to replace the 35S promoter. The resulting plasmid pMDC32-ProBan was used to generate pMDC32-ProBan:MYB5, pMDC32-ProBan:PAR and pMDC32-ProBan:MYB14 by LR reactions. The resulting binary vectors were used to transform the Arabidopsis *tt2* mutant (Salk_005260) by floral dip method (Clough and Bent, 1998).

Plasmid Constructions for Generating MYB5 and MYB14 Over-Expressing Plants
To generate binary vectors for MYB5 and MYB14 over-expression, the cDNA sequences were amplified by RT-PCR from seed RNA using the primer pairs MtMYB5-F/MtMYB5-R and MtMYB14-F/MtMYB14-R, respectively (Supplemental Table 4 for all oligonucleotide primers used in the present work). Amplified cDNAs were first cloned into pENTR/D TOPO vectors and then cloned into pB7GW2D binary vector by LR recombination reaction to generate MtMYB5- and MtMYB14-pB7GW2D binary vectors. These binary vectors were transformed into *A. rhizogenes* strain ARqua1, and hairy roots were generated by transforming *M. truncatula* ecotype A17 with *A. rhizogenes* as described in the *Medicago* Handbook at
RNA Isolation, qRT-PCR and DNA Microarray Analysis

RNAs from plant tissues except seeds were isolated using the RNeasy Plant Mini Kit (Qiagen). Except for root samples, which were collected from 1 week old seedlings grown on half MS supplemented with 1% sucrose, all other tissues were collected from soil-grown plants. RNAs from seeds were isolated from 12 DAP seeds using Plant RNA Reagent (Invitrogen). Isolated RNAs were treated with DNase I and then purified by RNeasy MinElute Cleanup Kit (Qiagen). Cleaned RNAs were used to perform reverse transcription with SuperScript® III Reverse Transcriptase (Invitrogen). qRT-PCR analysis was performed on an ABI 7900HT qPCR machine according to the manufacturer’s instructions. Three technical replicates were used for each gene and statistics were performed with Excel. Three biological replicates for hairy root samples and two biological replicates for 12 DAP seeds were used to perform microarray analyses using the *Medicago* GeneChip (Affymetrix) according to the manufacturer’s instructions. Raw data were normalized by robust multichip averaging (RMA) method. Presence and absence calls for probe sets were obtained by using the dCHIP algorithm (Li and Wong, 2001). Type I family-wise error rate was calculated by using a Bonferroni corrected P value (threshold 0.05). To identify differentially regulated probe sets, we used a P value threshold of 5% and at least a twofold difference between transformant/mutant lines and their respective controls.

DMACA- and Ruthenium Red-Staining

To visualize PAs, seeds were soaked in water for 2 h, then stained with 1% DMACA solution (1% DMACA in 1:1 methanol: concentrated HCl) for 1 h. Stained seeds were then washed in 70% ethanol for 1 h. To visualize mucilage, seeds were stained with 0.01% aqueous ruthenium red solution for 10 min and then washed in water.

Quantification of PAs

For hairy roots, approximately 0.2g fresh tissue was used for extraction of the soluble PA fraction. For seeds, plant materials were first ground to a powder in liquid nitrogen, and freeze dried for 16 h. Approximately 50 mg of freeze-dried materials were then extracted. Extraction was three times with 1 mL 70% acetone, 0.5% acetic acid, as described by Pang et al. (2008).
Assay of soluble PAs (with DMACA reagent) and insoluble PAs (with butanol-HCl was performed as described previously (Pang et al. 2008).

Determination of PA Composition by Normal and Reverse Phase HPLC
All analyses, including size estimation by HPLC followed by post-column derivatization with DMACA, and phloroglucinolysis, were performed as described by Pang et al. (2008).

UPLC Analysis of PA Monomers
Ten mg lyophilized tissue powders were extracted with 80% methanol containing 18 μg mL$^{-1}$ umbelliferone (internal standard) for 4 h at 4 °C with constant agitation. Samples were then centrifuged at 3,000 x g for 15 min. The supernatants were transferred to liquid chromatography vials and analyzed by UPLC-ESI-QTOF-MS system (Waters, ACQUITY UPLC) according to the procedure as described in (Pang et al., 2009).

Promoter Transactivation Assays
To construct luciferase reporter constructs, approximate 2 kb genomic sequences upstream of the translation start codons of the ANR and LAR genes were PCR amplified from $M. truncatula$ A17 genomic DNA using the primer pairs ANRP2K-F/ANRP2K-R and LARP2k-F/LARP2K-R, respectively (Supplemental Table 4), and cloned into p2GW7 to replace the 35S promoter in the vector. A firefly luciferase gene was then cloned into this vector to generate the promoter::luciferase reporter construct. The cDNAs of the effector transcription factors were first cloned into pENTRD vector and then cloned into p2GW7 by LR reaction to form the 35S::effector constructs. A $Renilla$ luciferase gene was also cloned into p2GW7 to form the reference gene construct. Arabidopsis protoplasts were isolated and transformed as described by Sheen et al. (http://molbio.mgh.harvard.edu/sheenweb/protocols_reg.html). Two ug of each plasmid for reporters and effectors, and 100 ng $Renilla$ luciferase expressing vector (internal control for transfection efficiency) were used to transform 100 μL batches of protoplasts (~1 x 106 cells/mL). The Dual-Luciferase® Reporter Assay kit (Promega) was used to quantify the luciferase activities according to the manufacturer’s instructions. A GloMax® 96 Microplate Luminometer (Promega) was used to read the luciferase activities.
Bimolecular Fluorescence Complementation Assays (BiFC)

The constructs for BiFC assays were constructed by cloning the indicated genes into Gateway destination vectors pSAT4-DEST-nEYFP-C1 and pSAT5-DEST-cEYFP-C1 (https://www.bio.purdue.edu/people/faculty/gelvin/nsf/protocols_vectors.htm). Arabidopsis protoplasts were isolated and transfected as described above. Images were acquired with Zeiss LCM 710 microscope.

Accession numbers

Sequence data from this article can be found in the GenBank/EMBL libraries under the following accession numbers: MYB5 (XM_003601561, Medtr3g083540.1), MYB14 ((Mt3.5v4 contig_238935_1, Mt4.0v1 Medtr4g125520.1), TT8 (XM_003590608, Medtr1g072320.1).

SUPPLEMENTAL DATA

The following materials are available in the online version of this article.

Supplemental Figure S1. Biosynthesis pathway of proanthocyanidin.

Supplemental Figure S2. Mt MYB5 is the homolog of At MYB5.

Supplemental Figure S3. Mt MYB14 is the homolog of At MYB14.

Supplemental Figure S4. Multiple alignment of the homologs of Mt MYB14.

Supplemental Figure S5. Genetic complementation of Arabidopsis tt2 with Mt Myb14, Mt Par and Mt Myb5.

Supplemental Figure S6. Phloroglucinolysis analysis of PAs in MYB5 and MYB14 over-expressing hairy roots.

Supplemental Figure S7. UPLC-MS detection of epicatechin and epicatechin-3’-O- glucoside ions in hairy roots over-expressing MYB5.

Supplemental Figure S8. UPLC-MS detection of epicatechin and epicatechin-3’-O- glucoside ions in hairy roots over-expressing MYB14.

Supplemental Figure S9. RT-PCR to detect MYB5 and MYB14 transcripts in myb5 and myb14 mutant seeds.

Supplemental Figure S10. Butanol-HCl analysis of insoluble PA-like material in R108, myb5 and myb14 mutant seeds.
Supplemental Figure S10. Phloroglucinolysis analysis of soluble PAs in the seeds of wild-type (R108), myb5-1 and myb14-1.

Supplemental Figure S11. Measurement of MYB14 copy number in the Medicago truncatula genome by qPCR.

Supplemental Figure S12. Ruthenium red staining showing that mucilage levels in myb14 are similar to those in wild-type R108.

Supplemental Table 1. PathExpress analysis of genes down-regulated in myb5 mutant seeds (Pathways with P<0.01 are highlighted)

Supplemental Table 2. Genes putatively involved in mucilage biosynthesis that are down-regulated in seeds of the Medicago myb5 mutant.

Supplemental Table 3. PathExpress analysis of genes down-regulated in myb14 mutant seeds (Pathway with P<0.01 is highlighted).

Supplemental Table 4. List of oligonucleotide sequences used in this study.

Supplemental Dataset 1. Differentially expressed genes in MYB5 over-expressing hairy roots.

Supplemental Dataset 2. Differentially expressed genes in MYB14 over-expressing hairy roots.

Supplemental Dataset 3. Genes up-regulated more than two-fold by both MYB5 and MYB14.

Supplemental Dataset 4. Differentially expressed genes in myb5 mutant seeds.

Supplemental Dataset 5. Differentially expressed genes in myb14 mutant seeds.

ACKNOWLEDGMENTS
We thank Drs. Xianzhi He and Chunxiang Fu for generating transgenic hairy roots and alfalfa plants, Drs Jiangqi Wen and Xiaofei Chen for screening for Medicago Tnt1 insertion mutants, Dr. Yuhong Tang for microarray analysis, and Dr Stephen Temple for critical reading of the manuscript. This work was supported by the United States Department of Agriculture/National Institute of Food and Agriculture (2010-65115-20373), Forage Genetics International and The Samuel Roberts Noble Foundation.

AUTHOR CONTRIBUTIONS
C.L. and R.A.D. designed the research; C.L. and J.H.J performed research; C.L., J.H.J. and R.A.D. analyzed data; C.L. and R.A.D. wrote the paper.
FIGURE LEGENDS

Figure 1. Identification and expression of Mt MYB5 and Mt MYB14.

A, MYB5 and MYB14 activate the Mt WD40-1 promoter, but not the ANR promoter, in yeast one-hybrid assays. The promoters of WD40-1 and ANR were cloned in front of the aureobasidin A resistance (AbAr) gene and integrated into Y1G Gold yeast (Clontech) to generate reporter strains. The reporter strains were transformed with the effector transcription factors (MYB5 and MYB14), and growth recorded in the presence or absence of aureobasidin A.

B, Phylogenetic tree of MYB transcription factors related to At MYB5 and At TT2. Protein sequences were obtained from GenBank with the following accession numbers: At MYB5 (NP_187963.1), Dk MYB4 (BAI49721.1), Vv MYB5a (NP_001268108.1), Vv MYB5b (NP_001267854.1), Mt MYB5 (XP_003601609.1), PH4 (AAY51377.1), BNLGHi233 (AAK19611.1), At TT2 (NP_198405.1), Lj TT2a (BAG12893.1), Lj TT2b (BAG12894.1), Lj TT2c (BAG12895.1), Ta MYB14-2 (AFJ53054.1), Mt MYB14-2 (Mt3.5v4 contig_238935_1, Mt4.0v1 Medtr4g125520.1), Mt PAR (XP_003627264.1), Pt MYB134 (ACR83705.1), Vv PA1 (NP_001268160.1), Vv PA2 (NP_001267953.1). The phylogenetic tree was constructed by the neighbor joining method with 1000 bootstrap replicates by software MEGA6.0 (http://www.megasoftware.net/). Numbers indicate the percentage of confidence.

C, Transcript levels of MYB5 and MYB14 in different organs of M. truncatula as determined by qRT-PCR. Reactions were performed as technical triplicates, error bars indicate standard deviations.

Figure 2. Over-expressing Mt MYB5 in M. truncatula A17 hairy roots induces PA accumulation.

A, Unstained (top panels) and DMACA-stained (bottom panels) GUS (transformed with vector harboring the GUS gene) and two independent transgenic MYB5 over-expressing hairy root lines.

B, Anthocyanin levels quantified after extraction by measurement of absorbance at 550 nm, and expressed as cyanidin-3-O-glucoside equivalents.
C, Soluble PA levels as quantified with DMACA reagent and expressed as epicatechin equivalents.

D, Insoluble PA levels as quantified by the butanol-HCl method and expressed as procyanidin B1 equivalents.

E, Soluble PA profiles as determined by normal phase HPLC with post-column DMACA derivatization. GUS: control lines overexpressing GUS. MYB5, Mt MYB5 over-expressing line #7. Three independent biological samples of line #7 were analyzed in B-D. Error bars denote standard deviations. **p<0.01, Student’s t test, n=3.

Figure 3. Over-expressing Mt MYB14 in M. truncatula A17 hairy roots induces PA accumulation.

A, Unstained (top panels) and DMACA-stained (bottom panels) GUS (transformed with vector harboring the GUS gene) and two independent transgenic MYB14 over-expressing hairy roots.

B, Anthocyanin levels. C, Soluble PA levels. D, Insoluble PA levels. Each was determined as in the legend to Figure 2. GUS: control lines overexpressing GUS. MYB14: MtMYB14 over-expressing line #3. Three independent biological samples of line #3 were analyzed in B-D. Error bars denote standard deviations. **p<0.01, Student’s t test, n=3.

Figure 4. Phenotypes of myb5 null mutants.

A, Positions of the Tnt1 insertions in the MYB5 gene in the mutant lines myb5-1 (NF11932), myb5-2, (NF12338) and myb5-3 (NF13006). Solid boxes indicate exons and thinner line indicates the intron.

B, Seed coat phenotypes of myb5 null mutants. myb5 mutant seed coats display a dark reddish color (top panel). DMACA staining (bottom panel) indicates that myb5 mutants accumulate less PA than wild type (WT).

C, Soluble PA levels in mature dry seeds of wild-type and myb5 mutant seeds. Three biological replicates were analyzed. Error bars indicate standard deviations. **p<0.01, Student’s t test, n=3.
D, Normal phase HPLC analysis, with post column derivatization with DMACA, of soluble PA fractions from wild-type (R108) and myb5-1 mutant.

E, Ruthenium red staining (top panels) and SEM images (bottom panels, all three images are at the same magnification) of seeds of ecotype R108 (WT) and myb5 mutants.

Figure 5. Seed phenotypes of myb14 and myb5 myb14 double mutants.

A, Tnt1 retrotransposon insertion positions in the MYB14 gene. Arrows indicate the insertion positions in myb14-1 (NF14565) and myb14-2 (NF84). Solid boxes indicate exons and thinner lines indicate introns.

B, The seed color phenotypes of myb14 and myb5 single mutants and the myb5 myb14 double mutant. Note the lighter color at the end of the seed (arrow).

C and D, Soluble PA levels in myb14 -1, myb5-1 and myb5-1 myb14-1 (myb5 myb14) mutants as determined by the DMACA method. All quantifications used three independent biological replicates. Error bars indicate standard deviations. **p<0.01, *p<0.05, Student’s t test, n=3.

Figure 6. Genes regulated by MYB5 and MYB14.

A, Scheme of the flavonoid pathway leading to PA production. Squares denote genes which are up-regulated in MYB5 and MYB14 over-expressing hairy roots based on Affymetrix microarray analysis. Triangles denote genes which are down-regulated in myb5-1 mutant seeds. Dots denote genes which are down-regulated in myb14-1 mutant seeds.

B and C qRT-PCR analysis to confirm the up-regulation of genes in MYB5 and MYB14 over-expressing hairy roots, respectively. n.d., not detected. Transcript levels were normalized to Mt Actin2 transcript levels.

D, qRT-PCR to measure the transcript levels of down-regulated genes in seeds (12DAP) of the myb5-1 and myb14-1 mutants. ALDH: aldehyde dehydrogenase; F35H: flavonoid 3′,5′-hydroxylase; AVT: acid vacuolar invertase; TT8: Mt TT8; WD40-1: Mt WD40-1. All qRT-PCR analyses were performed on one independent biological replicate (separate from those used for the microarray analysis), giving technical triplicates; error bars indicate standard deviations.
Figure 7. MYB5 and MYB14 synergistically activate the ANR and LAR promoters in the presence of Mt WD40-1 and Mt TT8 in Arabidopsis protoplasts.

A, Schematic diagram showing the structures of reporter and effector constructs.

B and C, Activation of the ANR and LAR promoters in transient assays in Arabidopsis protoplasts. Various combinations of Medicago effectors (MYB5, MYB14, TT8 and WD40-1) were used to transfet Arabidopsis protoplasts along with ANR promoter (B) or LAR promoter (C) reporter constructs. Firefly luciferase activities were quantified and normalized to Renilla luciferase (transfection efficiency control) activities. Vertical axis is plotted as log2 -fold to better show the smaller effects of single effectors. These effects may in part involve complexes with endogenous Arabidopsis effectors.

D, BiFC assay showing the physical interaction between MYB5 and MYB14. EYFP C terminal half (YFPc) and EYFP N terminal half (YFPn) were fused with the indicated genes and used to transfet Arabidopsis protoplasts. As positive controls, the interaction between MYB5 and TT8 was confirmed by BiFC (Top, middle) and the full length EYFP (YFPf) fused with MYB5 was also included. As a negative control, Arabidopsis At-MYB46 fused with YFPc was used to co- transfet protoplasts with YFPn:MYB14 in the presence of TT8 and WD40-1 (bottom, right). EYFP signals were rendered as green and chloroplast autofluorescence was rendered as red.

References
Akagi T, Ikekami A, Tsujimoto T, Kobayashi S, Sato A, Kono A, Yonemori K (2009) DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 151: 2028-2045

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26: 962-980

Albert S, Delseny M, Devic M (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. Plant J 11: 289-299

Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24: 913-919
Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theoret Appl Genet 117: 1009-1019

Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39: 366-380

Bloor SJ (1997) Blue flower colour derived from flavonol—anthocyanin co-pigmentation in Ceanothus papillosus. Phytochemistry 45: 1399-1405

Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-239

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in Planta. Plant Physiol 133: 462-469

Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Merillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140: 499-511

Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147: 2041-2053

Devic M, Guilleminet J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19: 387-398

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55: 940-953

Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49: 414-427
Gonzalez A, Mendenhall J, Huo Y, Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325: 412-421

Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from *Trifolium arvense* activates proanthocyanidin biosynthesis in the legumes *Trifolium repens* and *Medicago sativa*. Plant Physiol 159: 1204-1220

Huang J, DeBowles D, Esfandiari E, Dean G, Carpita NC, Haughn GW (2011) The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage. Plant Physiol 156: 491-502

Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19: 6150-6161

Kong Q, Pattanaik S, Feller A, Werkman JR, Chai C, Wang Y, Grotewold E, Yuan L (2012) Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc Natl Acad Sci U S A 109: E2091–E2097

Kovinich N, Saleem A, Arnason JT, Miki B (2012) Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts. J Agric Food Chem 60: 574-584

Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and Biochemistry of seed flavonoids. Ann Rev Plant Biol 57: 405-430

Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proc Natl Acad Sci U S A 98: 31-36

Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parish RW (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21: 72-89

Li Y-G, Tanner G, Larkin P (1996) The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70: 89-101
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetname S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10: 50

Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55: 954-967

Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150: 924-941

Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213-7217

Molan AL, De S, Meagher L (2009) Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins. Int J Food Sci Nutr 60: 497-506

Naumann HD, Muir, J. P., Lambert, B. D., Tedeschi, L. O., Kothmann, M. M. (2013) Condensed tannins in the ruminant environment: A perspective on biological activity. J Agric Sci 1: 8-20

Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114

Pang Y, Cheng X, Huhman D, Ma J, Peel G, Yonekura-Sakakibara K, Saito K, Shen G, Sumner L, Tang Y, Wen J, Yun J, Dixon R (2013) Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis. Planta 238: 139-154

Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A 105: 14210-14215

Pang Y, Wenger JP, Saathoff K, Peel GJ, Wen J, Huhman D, Allen SN, Tang Y, Cheng X, Tadege M, Ratet P, Mysore KS, Sumner LW, Marks MD, Dixon RA (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151: 1114-1129
Peel GJ, Pang Y, Modolo LV, Dixon RA (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in *Medicago*. Plant J 59: 136-149

Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17: 2966-2980

Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291

Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278: 31647-31656

Tuteja JH, Clough SJ, Chan W-C, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in *Glycine max*. Plant Cell 16: 819-835

Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in *Medicago truncatula*. Proc Natl Acad Sci USA 109: 1766-1771

Verweij W, Spelt C, Di Sansebastiano G-P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10: 1456-1462

Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from *Medicago truncatula* and *Arabidopsis thaliana*. Arch Biochem Biophys 422: 91-102

Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399

Xu W, Grain D, Bobet S, Le Gourrierc J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytologist 202: 132-144
Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC (2010) Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 101: 757-768

Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49: 157-169

Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barve V, Bardner P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez A-M, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong D-H, Jing Y, Jocker A, Kenton SM, Kim D-J, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun J-H, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Seguens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang B-B, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: 520-524

Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859-4869

Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3’-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21: 2323-2340
Figure 1. Identification and expression of Mt MYB5 and Mt MYB14. A, MYB5 and MYB14 activate the Mt WD40-1 promoter, but not the ANR promoter, in yeast one-hybrid assays. The promoters of WD40-1 and ANR were cloned in front of the aureobasidin A resistance (AbA') gene and integrated into Y1G Gold yeast (Clontech) to generate reporter strains. The reporter strains were transformed with the effector transcription factors (MYB5 and MYB14), and growth recorded in the presence or absence of aureobasidin A.

B, Phylogenetic tree of MYB transcription factors related to At MYB5 and At TT2. Protein sequences were obtained from GenBank with the following accession numbers: At MYB5 (NP_187963.1), Dk MYB4 (BAI49721.1), Vv MYB5a (NP_001268108.1), Vv MYB5b (NP_001268108.1), At MYB5 (XP_003601609.1), PH4 (AAY51377.1), BNLGHi233 (AAK19611.1), At TT2 (NP_198405.1), Lj TT2a (BAG12893.1), Lj TT2b (BAG12894.1), Lj TT2c (BAG12895.1), Ta MYB14-2 (AFJ53054.1), Mt MYB14-2 (Medtr4g125520.1), Mt PAR (XP_003627264.1), Pt MYB134 (ACR83705.1), Vv PA1 (NP_001268160.1), Vv PA2 (NP_001267953.1). The phylogenetic tree was constructed by the neighbor joining method with 1000 bootstrap replicates by software MEGA6.0 (http://www.megasoftware.net/). Numbers indicate the percentage of confidence.

C, Transcript levels of MYB5 and MYB14 in different organs of M. truncatula as determined by qRT-PCR. Reactions were performed as technical triplicates, error bars indicate standard deviations.
Figure 2. Over-expressing Mt MYB5 in *M. truncatula* A17 hairy roots induces PA accumulation.
A, Unstained (top panels) and DMACA-stained (bottom panels) GUS (transformed with vector harboring the *GUS* gene) and two independent transgenic MYB5 over-expressing hairy root lines.
B, Anthocyanin levels quantified after extraction by measurement of absorbance at 550 nm, and expressed as cyanidin-3-O-glucoside equivalents.
C, Soluble PA levels as quantified with DMACA reagent and expressed as epicatechin equivalents.
D, Insoluble PA levels as quantified by the butanol-HCl method and expressed as procyanindin B1 equivalents.
E, Soluble PA profiles as determined by normal phase HPLC with post-column DMACA derivatization. GUS: control lines overexpressing GUS. MYB5, Mt MYB5 over-expressing line #7. Three independent biological samples of line #7 were analyzed in B-D. Error bars denote standard deviations. **p<0.01, Student’s t test, n=3.
Figure 3. Over-expressing Mt MYB14 in *M. truncatula* A17 hairy roots induces PA accumulation. A, Unstained (top panels) and DMACA-stained (bottom panels) GUS (transformed with vector harboring the GUS gene) and two independent transgenic MYB14 over-expressing hairy roots. B, Anthocyanin levels. C, Soluble PA levels. D, Insoluble PA levels. Each was determined as in the legend to Figure 2. GUS: control lines overexpressing GUS. MYB14: MtMYB14 over-expressing line #3. Three independent biological samples of line #3 were analyzed in B-D. Error bars denote standard deviations. **p<0.01, Student’s t test, n=3.**
Figure 4. Phenotypes of *myb5* null mutants.

A, Positions of the *Tnt1* insertions in the *MYB5* gene in the mutant lines *myb5*-1 (NF11932), *myb5*-2 (NF12338) and *myb5*-3 (NF13006). Solid boxes indicate exons and thinner line indicates the intron.

B, Seed coat phenotypes of *myb5* null mutants. *myb5* mutant seed coats display a dark reddish color (top panel). DMACA staining (bottom panel) indicates that *myb5* mutants accumulate less PA than wild type (WT).

C, Soluble PA levels in mature dry seeds of wild-type and *myb5* mutant seeds. Three biological replicates were analyzed. Error bars indicate standard deviations. **p<0.01, Student’s t test, n=3.

D, Normal phase HPLC analysis, with post column derivatization with DMACA, of soluble PA fractions from wild-type (R108) and *myb5*-1 mutant.

E, Ruthenium red staining (top panels) and SEM images (bottom panels, all three images have the same scale bar) of seeds of ecotype R108 (WT) and *myb5* mutants.
Figure 5. Seed phenotypes of myb14 and myb5 myb14 double mutants.
A, Tnt1 retrotransposon insertion positions in the MYB14 gene. Arrows indicate the insertion positions in myb14-1 (NF14565) and myb14-2 (NF84). Solid boxes indicate exons and thinner lines indicate introns.
B, The seed color phenotypes of myb14 and myb5 single mutants and the myb5 myb14 double mutant. Note the lighter color at the end of the seed (arrow).
C and D, Soluble PA levels in myb14-1, myb5-1 and myb5-1 myb14-1 (myb5 myb14) mutants as determined by the DMACA method. All quantifications used three independent biological replicates. Error bars indicate standard deviations. **p<0.01, *p<0.05, Student’s t test, n=3.
Figure 6. Genes regulated by MYB5 and MYB14.

A, Scheme of the flavonoid pathway leading to PA production. Squares denote genes which are up-regulated in MYB5 and MYB14 over-expressing hairy roots based on Affymetrix microarray analysis. Triangles denote genes which are down-regulated in myb5-1 mutant seeds. Dots denote genes which are down-regulated in myb14-1 mutant seeds.

B and C qRT-PCR analysis to confirm the up-regulation of genes in MYB5 and MYB14 over-expressing hairy roots, respectively. n.d., not detected. Transcript levels were normalized to Mt Actin2 transcript levels.

D, qRT-PCR to measure the transcript levels of down-regulated genes in seeds (12DAP) of the myb5-1 and myb14-1 mutants. ALDH: aldehyde dehydrogenase; F35H: flavonoid 3’,5’-hydroxylase; AVT: acid vacuolar invertase; TT8: Mt TT8; WD40-1: Mt WD40-1. All qRT-PCR analyses were performed on one independent biological replicate (separate from those used for the microarray analysis). Error bars indicate standard deviations.
Figure 7. MYB5 and MYB14 synergistically activate the ANR and LAR promoters in the presence of Mt WD40-1 and Mt TT8 in Arabidopsis protoplasts.
A, Schematic diagram showing the structures of reporter and effector constructs.
B and C, Activation of the ANR and LAR promoters in transient assays in Arabidopsis protoplasts. Various combinations of Medicago effectors (MYB5, MYB14, TT8 and WD40-1) were used to transf ect Arabidopsis protoplasts along with ANR promoter (B) or LAR promoter (C) reporter constructs. Firefly luciferase activities were quantified and normalized to Renilla luciferase (transfection efficiency control) activities. Vertical axis is plotted as log2 -fold to better show the smaller effects of single effectors. These effects may in part involve complexes with endogenous Arabidopsis effectors.
D, BiFC assay showing the physical interaction between MYB5 and MYB14. EYFP C terminal half (YFPc) and EYFP N terminal half (YFPn) were fused with the indicated genes and used to transf ect Arabidopsis protoplasts. As positive controls, the interaction between MYB5 and TT8 was confirmed by BiFC (Top, middle) and the full length EYFP (YFPf) fused with MYB5 was also included. As a negative control, Arabidopsis At-MYB46 fused with YFPc was used to co-transfect protoplasts with YFPn:MYB14 in the presence of TT8 and WD40-1 (bottom, right). EYFP signals were rendered as green and chloroplast autofluorescence was rendered as red.