REMARK ON THE ALEXANDER POLYNOMIALS OF PERIODIC KNOTS

MANABU OZAKI

To Yuko’s 29th birthday

Department of Mathematics,
School of Science and Engineering,
Kinki University,
Kowakae 3-4-1, Higashi-Osaka, 577-8502, JAPAN
e-mail: ozaki@math.kindai.ac.jp

1. INTRODUCTION

Let \(p \) be a prime number and \(K \) a non-trivial knot in \(S^3 \) which has period \(p \). Then the Alexander polynomial \(\Delta_K(t) \) of such a knot must have some distinguished properties as Murasugi \cite{3} have revealed.

In this note, we shall show that under a certain assumption on the Alexander polynomial \(\Delta_K(t) \), it is uniquely determined only by \(p \).

The proof will be done by applying number theory to Murasugi’s work \cite{3} on a necessary condition on \(\Delta_K(t) \) for periodic knots \(K \).

2. RESULT

For a knot \(K \) in \(S^3 \), we denote by \(\Delta_K(t) \in \mathbb{Z}[t] \) the Alexander polynomial of \(K \) normalized such that \(\Delta_K(0) \neq 0 \) and the leading coefficient of it is positive.

Our main result is the following:

Theorem 1. Let \(p \) be an odd prime number and \(K \subseteq S^3 \) a non-trivial periodic knot of period \(p \). If \(\Delta_K(t) \) is monic and has degree \(p - 1 \), then we have

\[
\Delta_K(t) = \sum_{n=0}^{p-1} (-1)^n t^n = t^{p-1} - t^{p-2} + \cdots - t + 1.
\]

For the case where degree \(p - 1 \) Alexander polynomials of \(p \)-periodic knots have general leading coefficients, we will show the following:

Theorem 2. Let \(p \) be an odd prime number and define \(\Pi(p) \) to be the set of all the \(p \)-periodic knots in \(S^3 \) whose Alexander polynomial has degree \(p - 1 \). Also, for a finite set \(S \) of prime numbers which does not
contain p, we define the set $\mathcal{D}(p, S) \subseteq \mathbb{Z}[t]$ to be the collection of all the $\Delta_K(t)$’s such that $K \in \Pi(p)$ and the leading coefficient of $\Delta_K(t)$ is prime to the prime numbers outside S. Then $\mathcal{D}(p, S)$ is finite and

$$\#\mathcal{D}(p, S) \leq \left(\frac{p+1}{2}\right)^{3 \cdot \frac{3(p-1)}{2} + \#S(Q(\zeta_p))},$$

where $S(Q(\zeta_p))$ denotes the set of all the primes of the p-th cyclotomic field $Q(\zeta_p)$ lying over the prime numbers in S.

Remark 1.

(1) If K is fibred, then $\Delta_K(t)$ is monic.

(2) For a non-trivial knot K of prime period p, if the leading coefficient of $\Delta_K(t)$ is prime to p, then $\deg \Delta_K(t) \geq p - 1$ (See Davis and Livingston\[2, Cor. 4.2\]).

3. Proof of Theorem 1.

Let T be a transformation of S^3 of order p such that $T(K) = K$ and it acts on K fixed point freely, and we denote by $B \subseteq S^3$ the set of the $\Delta^1_K(t)$'s such that $K \in \Pi(p)$ and the leading coefficient of $\Delta_K(t)$ is prime to the prime numbers outside S. Then $\mathcal{D}(p, S)$ is finite and

$$\#\mathcal{D}(p, S) \leq \left(\frac{p+1}{2}\right)^{3 \cdot \frac{3(p-1)}{2} + \#S(Q(\zeta_p))},$$

where $S(Q(\zeta_p))$ denotes the set of all the primes of the p-th cyclotomic field $Q(\zeta_p)$ lying over the prime numbers in S.

Let T be a transformation of S^3 of order p such that $T(K) = K$ and it acts on K fixed point freely, and we denote by $B \subseteq S^3$ the set of the fix points of T. Then B is the unknot and the quotient space S^3/T is homeomorphic to S^3, and we let \overline{K} and \overline{B} be the quotient knots of K and B in S^3/T, respectively. We write for $\Delta_{\overline{K}\cup\overline{B}}(t, u) \in \mathbb{Z}[t, u]$ the two-variable Alexander polynomial of the link $\overline{K}\cup\overline{B}$ with $\Delta_{\overline{K}\cup\overline{B}}(t, u) \not\equiv t\mathbb{Z}[t, u] \cup u\mathbb{Z}[t, u]$ (Note that $\Delta_{\overline{K}\cup\overline{B}}(t, u)$ is defined up to ± 1). We put λ the linking number of K and B.

It follows from Murasugi [3] that

(1) $$\Delta_K(t) = \Delta_{\overline{K}}(t) \prod_{i=1}^{p-1} \Delta_{\overline{K}\cup\overline{B}}(t, \zeta_p^i)$$

with a primitive p-th root of unity ζ_p. Also, by using Murasugi’s congruence [3],

$$\Delta_K(t) \equiv \pm t^j \left(\frac{t^\lambda - 1}{t - 1}\right)^{p-1} \Delta_{\overline{K}}(t)^p \pmod{p}$$

for some $j \in \mathbb{Z}$, we derive $\lambda = 2$ and $\Delta_{\overline{K}}(t) = 1$, because $\Delta_{\overline{K}}(t) \mid \Delta_K(t)$ in $\mathbb{Z}[t]$ by (11), $\deg \Delta_K(t) = p - 1$, and the leading coefficient of $\Delta_K(t)$ is prime to p. Hence we may assume that

(2) $$\Delta_{\overline{K}\cup\overline{B}}(t, \zeta_p^i) = g(\zeta_p^i)t - h(\zeta_p^i)$$

with some $g(u), h(u) \in \mathbb{Z}[u]$ for $1 \leq i \leq p - 1$ by (11).

Because $\Delta_K(t)$ is monic, we see that $\eta_1 := g(\zeta_p^i)$ is a unit of the ring $\mathbb{Z}[\zeta_p]$ by the relation $\prod_{i=1}^{p-1} g(\zeta_p^i) = 1$, which comes from (11). Also, since
the constant term of $\Delta_K(t)$ is equal to 1, we find that $\eta_2 := h(\zeta_p)$ is a unit of $\mathbb{Z}[\zeta_p]$. Hence if we put $\varepsilon := \eta_1^{-1}\eta_2 \in \mathbb{Z}[\zeta_p][\times]$, then we have

$$
\Delta_K(t) = \prod_{i=1}^{p-1} g(\zeta_p^i) \prod_{i=1}^{p-1} (t - g(\zeta_p^i)^{-1}h(\zeta_p^i)) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})} (t - \sigma(\varepsilon)).
$$

On the other hand, it follows from the second Torres condition (See [4]) that

$$
\Delta_K(t) = \frac{t^a \zeta_p^b \Delta_K(t, \zeta_p)}{J(t)} \quad \text{for some } a, b \in \mathbb{Z}.
$$

Then we find from (2) that

$$
\varepsilon = \eta_1^{-1} \eta_2 \in \mathbb{Z}[\zeta_p][\times],
$$

and

$$
h(\zeta_p^{-1}) = -\zeta_p^b g(\zeta_p), \quad g(\zeta_p^{-1}) = -\zeta_p^b h(\zeta_p).$$

Therefore, if we denote by $J \in \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ the complex conjugation, we have

$$
J(\varepsilon) = J(h(\zeta_p))/J(g(\zeta_p)) = h(\zeta_p^{-1})/g(\zeta_p^{-1}) = g(\zeta_p)/h(\zeta_p) = \varepsilon^{-1}.
$$

We need the following fact from the theory of cyclotomic fields (see [5, Prop.1.5]):

Lemma 1. For any $\varepsilon \in \mathbb{Z}[\zeta_p][\times]$, there exist $r \in \mathbb{Z}$ and $\varepsilon_0 \in \mathbb{Z}[\zeta_p + \zeta_p^{-1}][\times]$ such that

$$
\varepsilon = \zeta_p^r \varepsilon_0.
$$

By Lemma 1 and (3), we obtain

$$
\varepsilon^{-1} = J(\varepsilon) = J(\zeta_p)^r J(\varepsilon_0) = \zeta_p^{-r} \varepsilon_0 = \zeta_p^{-2r} \varepsilon,
$$

from which we derive

$$
\varepsilon = \pm \zeta_p^r.
$$

Because $\Delta_K(1) = \pm 1$ and $\Delta_K(-1) \neq 0$, we conclude that $\varepsilon = -\zeta_p^r$ with some $r \in \mathbb{Z}$ prime to p, and

$$
\Delta_K(t) = t^{p-1} - t^{p-2} + \cdots - t + 1
$$

by (3). Thus we have proved Theorem 1.

4. PROOF OF THEOREM 2

We will give the following proposition, from which we can easily derive Theorem 2:

Proposition 1. For a finite extension field F/\mathbb{Q}, a finite set S of prime numbers, and positive integer m, we define the set $\mathcal{P}(F, S, m) \subseteq \mathbb{Z}[t]$ to be the collection of $\Delta_K(t)$'s for the knots K in S^3 such that the leading coefficient of $\Delta_K(t)$ is prime to the prime numbers outside S, the splitting field $\text{Spl}(\Delta_K(t))$ of $\Delta_K(t)$ over \mathbb{Q} is contained in F, and
the multiplicity of each zero of \(\Delta_K(t) \) is at most \(m \). Then \(\mathcal{P}(F, S, m) \) is finite and we have
\[
\#\mathcal{P}(F, S, m) \leq (m + 1)^{3\cdot \pi[F : K] + \#(S(F) \cup \infty(F))},
\]
where \(S(F) \) and \(\infty(F) \) denote the set of the primes of \(F \) lying over the prime numbers in \(S \) and that of the archimedean primes of \(F \), respectively.

Proof. Let \(\Delta_K(t) \in \mathcal{P}(F, S, m) \). Then we have
\[
\Delta_K(t) = a \prod_{i=1}^{d} (X - \alpha_i)^{m_i} \in \mathbb{Z}[t]
\]
for some \(a \in \mathbb{Z} \) which is prime to the prime numbers outside \(S \), \(0 \leq d \in \mathbb{Z} \), distinct \(\alpha_i \)'s in \(F \), and \(1 \leq m_i \leq m \).

Let \(p \not\in S(F) \) be any non-archimedean prime of \(F \) and \(v_p \) a \(p \)-adic valuation of \(F \). Since \(a\alpha_i \) is integral over \(\mathbb{Z} \) and \(v_p(a) = 0 \), we see
\[
v_p(\alpha_i) = v_p(a\alpha_i) \geq 0.
\]
Because the constant term and the leading coefficient of \(\Delta_K(t) \) are coincide, we have
\[
a = \pm \prod_{i=1}^{d} \alpha_i^{m_i},
\]
from which we derive
\[
0 = v_p(a) = \sum_{i=1}^{d} m_i v_p(\alpha_i).
\]
Therefore we find that \(v_p(\alpha_i) = 0 \) for \(1 \leq i \leq d \), which means that \(\alpha_i \)'s are \(S(F) \)-units of \(F \).

On the other hand, \(a(1 - \alpha_i) = a - a\alpha_i \) is also integral over \(\mathbb{Z} \), we obtain
\[
v_p(1 - \alpha_i) = v_p(a(1 - \alpha_i)) \geq 0.
\]
Also, since \(\Delta_K(1) = \pm 1 \), we have
\[
a \prod_{i=1}^{d} (1 - \alpha_i)^{m_i} = \pm 1,
\]
from which we derive
\[
0 = v_p(\pm 1) = v_p(a) + \sum_{i=1}^{d} m_i v_p(1 - \alpha_i) = \sum_{i=1}^{d} m_i v_p(1 - \alpha_i).
\]
Hence \(v_p(1 - \alpha_i) = 0 \) for \(1 \leq i \leq d \), which means that \(1 - \alpha_i \)'s are also \(S(F) \)-units of \(F \).
Now we apply the following result from analytic number theory given by Evertse [1]:

Lemma 2. Let F be a finite extension of \mathbb{Q} and T a finite set of non-archimedean primes of F. Then the number of solutions (X, Y) of the equation

$$X + Y = 1$$

in the T-unit group of F is at most $3 \cdot 7^{[F: \mathbb{Q}]} + \#(T \cup \infty_F)$.

As we have seen in the above, $(\alpha_i, 1 - \alpha_i)$ is a solution in the $S(F)$-unit group of F of the equation $X + Y = 1$. Hence, it follows from Lemma 2 that the number of such α_i’s is at most $3 \cdot 7^{[F: \mathbb{Q}]} + \#(T \cup \infty_F)$. Therefore we obtain

$$\#\mathcal{P}(F, S, m) \leq (m + 1)^{3 \cdot 7^{[F: \mathbb{Q}]} + \#(T \cup \infty_F)}.$$

Now we will derive Theorem 2 from Proposition 1. Assume $K \in \mathcal{D}(p, S)$. Then, as the proof of Theorem 1, we find that

$$\Delta_K(t) = \prod_{i=1}^{p-1} (g(\zeta_p)t - h(\zeta_p))$$

for some $g(u), h(u) \in \mathbb{Z}[u]$, since the leading coefficient of $\Delta_K(t)$ is prime to p by $p \not\in S$ and $\deg \Delta_K(t) = p - 1$. Hence $\text{Spl}(\Delta_K(t)) \subseteq \mathbb{Q}(\zeta_p)$ and $\Delta_K(t) \in \mathcal{P}(\mathbb{Q}(\zeta_p), S, p^{-1})$ because $\Delta_K(t)$ has at least two distinct zeros. Therefore, applying Proposition 1, we complete the proof of Theorem 2 by using the facts $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p - 1$ and $\#\infty_{\mathbb{Q}(\zeta_p)} = \frac{p-1}{2}$. \hfill \Box

References

[1] J.-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75, 561–584.
[2] J. Davis, C. Livingston, Alexander polynomials of periodic knots, Topology 30 (1991), no. 4, 551–564.
[3] K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174.
[4] G. Torres, On the Alexander polynomial, Ann. of Math. 57 (1953), 57–89.
[5] L.C. Washington, Introduction to cyclotomic fields (2nd ed.), Graduate Texts in Mathematics 83 (1997), New York, Springer.