Electronic Supplementary Information (ESI) for RSC Advances.

Silyl diol ester as a new selectivity control agent in MgCl$_2$-supported Ziegler-Natta systems for Propylene polymerization: catalyst structure and polymer properties

Fatemeh Poorsank, Hassan Arabi * and Nona Ghasemi Hamedani

Department of Polymerization Engineering, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran

E-mail: h.arabi@ippi.ac.ir

Figure S1 Synthetic route of silyl diol ester

Figure S2 Synthetic route of 9, 9-bis (methoxymethyl) fluorene
Figure S3 SEM photograph of cross-section of catalyst A3 particle and the element distribution data. The curves on the particle are the element distributions along the line (top to bottom): Cl, Mg, Si and Ti.
Figure S4 Molecular weight distribution of catalysts: B and A₃
Figure S5: Effect of ED/cat ratio on fraction percentage of different sites
Table S1. Effect of the ED/cat ratio on the performances of the catalyst catalyst A

ED\(^a\)/Cat	0	0.5	0.66	1
Activity\(^b\)	2.06	1.3	1.53	1.48
I.I (\%)\(^c\)	97.6	96.3	97.4	96.3
\(M_n\)	84000	141000	152000	134600
\(M_w\)	647000	964000	943000	887000
PDI	7.71	6.85	6.22	6.59

*external donor: C-donor; \(^b\) polymerization conditions: 20 mg catalyst, TEA/cat: 10, \(^c\) xylene solubility.

Table S2. Effect of the TEA/cat ratios on the performances of the catalyst A

TEA/Cat	5	10	20
Activity	0.98	1.53	1.39
I.I (\%)\(^b\)	95.6	97.4	96.72
\(M_n\)	133000	152000	76000
\(M_w\)	943000	943000	758000
PDI	7.07	6.22	10.00

*Polymerization conditions: 20 mg catalyst, ED/cat= 0.66, external donor: C-donor, \(^b\) xylene solubility.
Table S3. Hydrogen response of catalysts: A₃, D and B

Catalyst	H₂ (mmol)	Activity	I.I	MFR
D	2.25	2.69	98.7	16.91
D	4.5	4.32	99.3	24.1
D	9	3.94	98.74	57.88
D	13.5	2.11	98.74	117.38
A₃	1.12	2.45	98.78	4.55
A₃	2.25	3.48	96.66	7.18
A₃	4.5	2.02	96.03	14.9
A₃	6.75	2.16	95.68	21.1
A₃	13.5	3.40	93.97	67.1
B	2.25	4.34	99.7	17.85
B	4.5	3.75	99.2	35.37
B	9	4.04	98.46	120.44

Table S4. Result of deconvolution the MWD curve of catalysts: A₃ and B

Site 1	Site 2	Site 3	Site 4	Site 5	Site 6			
Catalyst	Fₐ	Mₐ	Fₐ	Mₐ	Fₐ	Mₐ	Fₐ	Mₐ
B	20.8	2.43	35.56	6.64	28.53	17.89	15.11	46.29
Table S5. Effect of ED/cat ratio on active centers of catalyst A₃

TEA/Cat	TEA/ED	Fᵣᵃ	Mᵸᵇ	Fᵣ	Mᵸ	Fᵣ	Mᵸ	Fᵣ	Mᵸ	Fᵣ	Mw
10	0	5.53	1.18	22.88	3.61	29.93	10.97	28.87	37.32	12.79	130.98
10	10	10.96	2.61	21.67	7.97	32.3	26.69	22.72	62.67	12.34	157.26
10	15	10.81	3.03	23.45	8.73	28.43	26.45	24.11	61.84	13.2	171.22
10	20	9.74	2.79	21.30	7.9	25.37	21.77	31.89	59.71	11.69	190.95

ᵃFᵣ was the weight percentage of the fraction produced by a certain active center in catalyst.
ᵇ Weight average molecular weight, in 10⁴ g/mol.
