Hepatorenal Syndrome: A Way for Early and Accurate Diagnosis

Mohammad A. Aboul-Ezz1, Ali Abdel Rahim1, Ahmed El-Mikkawy1, Mohammad A. Elkady1, Mohamed A. Elrefaiy1, Samia El-Shishtawy2, Osama Mosbah3, Khaled Mabrouk4, Mostafa Elshafie4, Omar M. Sabry5

1Department of Hepato-Gastroenterology, Theodor Bilharz Research Institute, Giza, Egypt; 2Department of Nephrology, Theodor Bilharz Research Institute, Giza, Egypt; 3Department of Clinical Chemistry, Theodor Bilharz Research Institute, Giza, Egypt; 4Department of Radiology, Theodor Bilharz Research Institute, Giza, Egypt; 5Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt

Abstract

BACKGROUND: Hepatorenal syndrome (HRS) is a devastating consequence of liver cirrhosis that is clinically categorized into two subtypes. Acute malfunction of renal role, as measured by an elevation in blood creatinine, significantly underestimates the loss in renal function in cirrhotic individuals; more accurate biomarkers are desperately required in cirrhotic patients.

AIM: The present study set out to uncover new biomarkers for the early prediction of AKI in cirrhotic cases. A comprehensive panel of biomarkers was investigated to get a clear insight into the pathogenesis of HRS.

PATIENTS AND METHODS: Participants in this study were 70 individuals from the hepatogastroenterology unit of the Theodor Bilharz Research Institute (TBRI). Detailed medical data and a physical examination were recorded. Three groups of patients have been identified; Group 1: 30 cases with compensated liver cirrhosis and normal kidney functions. Group 2: 20 cases with decompensated liver cirrhosis and normal kidney functions. Group 3: 20 cases with decompensated liver cirrhosis proved hepatorenal syndrome Type 2 h. The following biomarkers were detected in serum using the sandwich-ELISA method: Human L-arginine ELISA kit, human neutrophil gelatinase related lipocalin (NGAL), human renin, human nitric oxide (NO), and human renin.

RESULTS: There was a highly significant difference between Groups 1 and 2 in NITRIC and ADMA. Significant differences between Groups 2 and 3 in NGAL, noradrenalin, and SDMA were observed. There was a significant difference (Group 2 vs. Group 3) in renin, NITRIC, ADMA, and L-ARGININE. There was highly significant differentiation (Group 2 vs. Group 3) in NGAL, noradrenalin, and SDMA. There was highly significant variation as per odd ratio and confidence interval between (Group 3 vs. Group 2) in NGAL.

CONCLUSION: Assessment of renal biomarkers in individuals with decompensated cirrhosis gives critical information on the etiology of AKI. Further, it may aid in the diagnosis and prognosis of AKI. Renin, NITRIC, ADMA, and L-ARGININE could be used as biomarkers to indicate HRS in individuals with advanced cirrhosis.

Introduction

HRS is a serious side effect of liver cirrhosis related to a raised risk of death and disease, glomerular filtration rate decreases because of anomalies in the renal circulatory system that exceed compensatory measures. As cirrhosis, alcoholic hepatitis, or metastatic tumors are the most common causes of portal hypertension, people with this condition might suffer from fulminant hepatic failure for any reason [1], [2]. A liver transplant or the utilization of vasoconstrictor medicines can enhance renal function by maintaining enough renal blood flow. The hepatorenal syndrome was categorized into two clinical subtypes: Type 1 is a rapid decline in renal function manifested by a doubling of initial serum creatinine to at least 2.5 mg/dL or a 50% decrease in initial 24-h creatinine clearance to < 20 mL/min at < 2 weeks and Type 2 is as a progressive decline in renal function that did not meet the Type 1 criteria [3].
SBP), resulting from the sepsis-induced exacerbation of circulatory dysfunction [6]. HRS can also develop with large-volume paracentesis (LVP) [7]. Bile cast (or choleric) nephropathy has been found in cirrhosis cases and increased serum bilirubin levels over a long time [8].

Acute renal impairment, as defined by an elevated in serum creatinine, underestimates the decrease in renal function observed in cirrhotic individuals because of impaired hepatic generation of creatine (creatinine precursor), inaccurate measurement of creatinine by calorimetric techniques in elevated serum bilirubin, and decreased muscle mass, and creatinine tubular secretion. Consequently, more precise indicators are required in persons with cirrhosis [9]. Tubular proteins upregulated in response to injury (neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding protein, and kidney injury molecule-1), tubular proteins secreted throughout cellular damage (N-acetyl-β-D-glucosaminidase, α-glutathione S-transferase), inflammation markers (interleukin-18), and plasma proteins with diminished tubular reabsorption (retinol-binding protein, α-1-microglobulin, and β-2-microglobulin) [10]. Individuals with cirrhosis have the most investigated biomarker, NGAL, differentiating ATN from AKI-HRS with the maximum diagnostic accuracy. In addition, urine NGAL levels are a powerful predictor of sudden death in the short-term. Nonetheless, the findings are encouraging and need additional investigation [11].

Aim of the work

This study targeted identifying novel biomarkers for the diagnosis of HRS in cirrhotic individuals. A comprehensive panel of biomarkers was investigated to get a clear insight into the pathogenesis of HRS.

Patients and Methods

Study population and demographic information

This work was conducted at Hepato-Gastroenterology Department, Theodor Bilharz Research Institute, Egypt, and all subjects signed a written informed permission form under the 1975 declaration of Helsinki’s ethical standards. This work was approved by the ethics committee at TBRI.

Between January 2019 and March 2022, this trial enrolled a total of 70 individuals. All individuals involved in this study underwent a full thorough history and clinical examination. All individuals were hospitalized in the clinic for gastroenterology in TBRI. All subjects had liver cirrhosis. HRS was diagnosed in 20 patients with cirrhosis, while 50 patients did not have HRS. The hepatorenal syndrome was diagnosed by the latest criteria suggested by the International Ascites Club. The criteria included: Cirrhosis with ascites, low glomerular filtration, serum creatinine over 133 μmol/L (over 1.5 mg/dL), proteinuria < 500 mg/day, absence of shock, absence of bacterial infection, loss of fluid, impaired kidney function after cessation of diuretic treatment (serum creatinine value which remains at the level of ≥ 133 μmol/L for at least 48 h, after administration of albumin dose 1–100 gr/kg a day), treatment without nephrotoxic drugs, and absence of parenchymal renal disease (patient does not have proteinuria > 500 mg/day, no microhematuria >50 erythrocytes, and no pathological findings of ultrasound examination of the kidneys).

Individuals were categorized into three groups: Group 1: 30 cases with compensated liver cirrhosis and normal kidney functions. Group 2: 20 cases with decompensated liver cirrhosis and normal kidney functions. Group 3: 20 cases with Type 2 h.

Sample collection and storage

About two vacutainer tubes were used to withdraw venous blood samples through a single aseptic venipuncture from patients. 2 ml were collected into EDTA vacutainer for CBC. 2 ml were collected into a serum separator vacutainer tube for blood chemistry and special investigations. Blood was permitted to clot by keeping it undisturbed for 10–20 min at room temperature. Centrifugation at 2000–3000 rpm for 20 min was used to dislodge the clot. The supernatant was carefully collected and stored at −20°C until used for viral marker assays.

Laboratory investigations involving

Qantas, an automated cell counter made by Boule Diagnostics in Sweden, was used to get a complete blood picture. Blood chemistry such as (serum albumin, aspartate aminotransferase (AST), urea, alanine aminotransferase (ALT), and creatinine) was conducted on Olympus AU480 Chemistry Analyzer, Beckman Coulter, USA. The viral markers such as hepatitis B surface antigen (HBsAg), and HCV immunoglobulin G (HCV IgG) were carried out on ADVIA Centaur CP Immunoassay System, Siemens, Germany.

Special investigations

The biomarkers of interest were detected in serum using the sandwich-ELISA method. Human L-arginine ELISA kit (Cat No In-Hu4073), Human Neutrophil Gelatinase Associated Lipocalin (NGAL) ELISA kit (Cat No In-Hu3931), Human Noradrenalin (NA)
Table 1: Demographic data and laboratory investigations

Parameters	Group 1 N = 30	Group 2 N = 20	Group 3 N = 20	p-value
Demographic data				
Age	40.2 ± 14.1	43.6 ± 13.5	53.3 ± 12.7	0.4
Sex	0.04*	0.01**	0.02*	
Age	40.2 ± 14.1	43.6 ± 13.5	53.3 ± 12.7	0.4
Sex	0.04*	0.01**	0.02*	
Sex	0.04*	0.01**	0.02*	
Laboratory investigations				
Hgb	12.1 ± 2.0	10.8 ± 1.7	9.3 ± 2.3	0.04*
RBCs	4.9 ± 0.5	3.5 ± 0.7	3.2 ± 1.0	0.001**
Hct	37.8 ± 5.9	32.0 ± 4.5	26.1 ± 8.6	0.001**
TLC	7.4 ± 1.8	8.2 ± 4.7	7.2 ± 3.3	0.001**
Neutrophil	57.4 ± 12.1	68.0 ± 12.2	70.3 ± 15.3	0.001
Lymph	36.9 ± 11.3	26.0 ± 12.1	22.6 ± 11.9	0.001**
Monocyte	3.7 ± 1.1	4.9 ± 1.9	3.2 ± 1.2	0.001**
Eosin	2.2 ± 0.6	2.3 ± 0.9	1.9 ± 0.6	0.8
Platelets	274.5 ± 63.0	163.8 ± 49.3	76.3 ± 20.5	0.001**
AST	19.8 ± 7.4	77.4 ± 58.6	65.6 ± 14.2	0.001**
ALT	17.6 ± 11.2	55.7 ± 38.9	52.0 ± 30.2	0.001**
S. albumin	4.1 ± 0.4	3.0 ± 0.7	2.2 ± 0.6	0.001**
Creatinine	0.8 ± 0.2	1.2 ± 0.2	5.7 ± 1.3	0.001**
Urea	26.8 ± 9.0	39.7 ± 9.2	181.8 ± 55.1	0.001**
INR	1.1 ± 0.1	1.7 ± 0.3	2.7 ± 0.5	0.001**
BIL	0.4 ± 0.2	3.5 ± 0.5	7.8 ± 11.4	0.001**

Age, Hgb, RBCs, Hct, TLC, Neutrophil, Lymph, Monocyte, Eosin, Platelets, AST, ALT, S. albumin, Creatinine, Urea, INR, and BIL are expressed as Mean ± SD. While sex is expressed as frequency and percent. *p < 0.05 is significant. **p < 0.01 is highly significant. *p = 0.01 is greatly significant.
Table 2: Studied biomarkers

Group 1 N = 30	Group 2 N = 20	Group 3 N = 20	p-value	OR (95% CI)							
Studied biomarkers											
Nitric											
Nitric	>2.3	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>1.5	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>1.0	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>0.5	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric											
Nitric	>2.3	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>1.5	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>1.0	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**
Nitric	>0.5	100.0	66.7	100.0	6.67	100.0	66.7	100.0	6.67	0.01*	0.01**

RBCs, neutrophils, lymphocytes, TLC, eosinophil, AST, and ALT.

The results indicated a significant difference between (Group 2 vs. Group 1) (p < 0.05) regarding renin (cutoff >1.3, sensitivity 71%, specificity 66%) and in noradrenalin (cutoff >21.2, sensitivity 100%, specificity 36%) (Table 3, Figures 1 and 2). Our findings demonstrated a highly significant variation between (Group 2 vs. Group 1) (p < 0.01) in NITRIC (cutoff >4.2, sensitivity 100%, specificity 46%), and ADMA (cutoff >99, sensitivity 100%, specificity 63%) (Table 3, Figures 1 and 2). As shown in (Table 3, Figures 1 and 2), there was no considerable difference between (Group 2 vs. Group 1) in the remaining markers.

Discussion

Hepatorenal syndrome (HRS) is a disorder in which persons with severe liver disease have reduced kidney function. People with hepatorenal syndrome do not have a known cause of kidney impairment, and their kidneys are structurally normal [2], [3]. This distinguishes HRS as a distinct pathophysiologic condition that enables the study of the interaction of vasoconstrictor and vasodilator systems in renal circulation [4], [8], [12]. The present study enrolled
90 individuals with liver cirrhosis at the TBRI's Hepatogastroenterology Department. They were divided into three groups: Group 1 comprised 30 individuals with compensated liver cirrhosis and normal kidney function; Group 2 comprised 20 individuals with decompensated liver cirrhosis and normal kidney function; and Group 3 comprised 20 cases with decompensated liver cirrhosis and renal impairment.

We investigated many biomarkers and their relationship with HRS in this study. Regarding NGAL, our result showed a significant difference between Group 3 and Group 1 ($p = 0.001$), and Group 2 ($p = 0.001$). This result is similar to other findings, which indicated another result by Yap and his colleagues, who found that the baseline urinary NGAL was significantly associated with HRS development [13]. Further study showed that urine NGAL is highly effective at identifying ATN from other forms of AKIs in cirrhosis [14].

Nitric oxide (NO) is a vasodilator that is thought to be involved in renal perfusion. Preliminary
evidence, primarily from animal tests, indicates that persons with cirrhosis produce more nitric oxide, even though NO suppression has no finding in renal vasoconstriction due to changes implemented in PG synthesis. When both NO and PG generations are suppressed, a significant vasoconstriction of the kidney occurs. Vasoconstrictor action may well be the dominant system in HRS, although it is not clear whether this is due to decreased vasodilatory activity, or the other way around. Our results showed a substantial difference between Groups 3 and 1 (p = 0.001), and 2 (0.02). In several individuals with decompensated cirrhosis, systemic endotoxemia is hypothesized to boost NO production in cirrhosis. Increased plasma nitrite/nitrate levels in individuals with decompensated cirrhosis are symptomatic of increased NO generation [15]. Cirrhosis cases and ascites had higher plasma RAAS activity and antidiuretic hormone levels, and a high serum NO level is related to reduced urine salt excretion as well as elevated plasma RAAS activity and antidiuretic hormone concentrations [15], [16].

NO is more concentrated in portal venous plasma than peripheral venous plasma, implying enhanced splanchnic NO generation [17]. While there is widespread agreement that NO plays a role in peripheral vasodilation, there is still debate on whether an important factor in hyperdynamic circulation’s emergence and maintenance is NO [18]. Even though the vasodilating effect of NO would be expected to offset renal vasoconstriction, this is not the case in HRS, despite increasing levels of NO. To date, no one knows why this is happening, but one theory put up by Lluch et al. [19] is that the high levels of asymmetric dimethylarginine in terminal liver failure act as an

![Figure 2: (a and b) ROC Curve analysis of the studied biomarkers in the studied groups](image)

![Figure 3: Protein-protein interaction network of the studied biomarkers](image)
antagonist to the high levels of NO in the blood, causing renal vasoconstriction in HRS.

In cases with HRS, the sympathetic nervous system is hyperactive, culminating with renal vasoconstriction and increased salt retention [20]. Our findings indicated a significant difference in noradrenaline levels between Groups 3 and 1 (p = 0.001) and 2 (p = 0.001). Numerous investigations have demonstrated increased catecholamine release in the renal and splanchnic vascular beds [21]. Since the 1980s, the relevance of hepatorenal innervation has been recognized. The increased intrahepatic pressure enhanced the function of the efferent renal sympathoadrenergic system [22]. Vasoconstriction of the kidney’s afferent arterioles decreased renal plasma flow and GFR while increasing sodium and water reabsorption through the tubules. More than half of individuals with decompensated liver disease have activated the renin-angiotensin-aldosterone system (RAAS), which is heightened in those with HRS [23], [24]. Our findings indicated that Group 3 had a significantly greater renin level than Group 2 (p = 0.02), Group 1 (p = 0.001), as well as Group 2, had a significantly higher renin level than Group 1 (p = 0.03). Increased angiotensin II levels protect the kidneys by selectively constricting the efferent glomerular arterioles.

Increased plasma renin release followed by an increase in angiotensin II formation was found in refractory ascites and HRS, indicating a role of RAAS in the development of HRS. Angiotensin II helps to maintain vascular tone in patients with advanced liver disease, but has no role in healthy controls or patients with compensated cirrhosis, suggesting that this mediator contributes to vascular dysfunction in cirrhosis [25].

ADMA is an endogenous direct inhibitor of the enzyme nitric oxide (NO) synthase, which participates in NO synthesis. NO participates in the maintenance of vascular tonus. Increased concentration of ADMA in the blood of patients with decompensated liver cirrhosis reduces the synthesis of NO, whereby intrahepatic vascular resistance is increased [26]. ADMA is hydrolyzed by the action of the enzyme dimethylarginine dimethylaminohydrolase (DDAH). Compared to ADMA, SDMA has indirect inhibitory effect on NO synthase. SDMA can disturb the synthesis by competing in the transport against L-arginine on the level of cell membrane [27], [28].

Our study shows an increased level of ADMA and SDMA in Group 3, compared to Group 2 and Group 1. Some studies [29] have demonstrated that increased ADMA level in blood of patients with decompensated liver cirrhosis is probably the result of DDAH enzyme activity exhaustion. Increased level of ADMA has a causative role in the development of HRS. Accumulation of ADMA in patients with liver cirrhosis causes liver damage. Accumulation of ADMA inhibits NO synthase thereby causing vasoconstriction of the kidney blood vessels. Thus, blood flow through the kidney is interrupted, in other words, glomerular filtration is reduced and SDMA is retained in the kidney. Compared to ADMA, SDMA is not broken down by the action of DDAH enzyme but is excreted as such through the kidneys [30], [31].

Conclusion

Renin, Nitric Oxide, ADMA, SDMA, and L-arginine may act as biomarkers for advanced cirrhotic patients to indicate HRS. Integrating biomarkers into clinical decision-making can enhance therapy accuracy by identifying patients who have structural injury underlying their AKI. Additional study is required to characterize biomarkers unique to HRS.

References

1. Appenrodt B, Lammert F. Renal failure in patients with cirrhosis: Novel classifications, biomarkers, treatment. Visc Med. 2018;34(4):246-52. https://doi.org/10.1159/000492587
2. Mindikoglu AL, Pappas SC. New developments in hepatorenal syndrome. Clin Gastroenterol Hepatol. 2018;16(2):162-77.e1. https://doi.org/10.1016/j.cgh.2017.05.041
3. Simonetto DA, Gines P, Kamath SK. Hepatorenal syndrome: Pathophysiology, diagnosis, and management. BMJ. 2020;370:m2687. https://doi.org/10.1136/bmj.m2687
4. Angeli P, Gines P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations of the international club of ascites. Gut. 2015;64(4):531-7. https://doi.org/10.1136/gutjnl-2014-308874
5. Zardi EM, Abbate A, Zardi DM, Dobrina A, Margiotta D, Van Tassell BW, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539-49. https://doi.org/10.1016/j.jacc.2009.12.075
6. Hämälä S, Parisinos C, Ryan J, O’Brien A. Effectiveness of intravenous albumin therapy to prevent spontaneous bacterial peritonitis, renal dysfunction and death in adults with cirrhosis: A protocol for a systematic review. BMJ Open. 2019;9(1):e025664. https://doi.org/10.1136/bmjopen-2018-025664
7. Alsebaey A, Rewisha E, Waked I. Paracentesis-induced circulatory dysfunction: Are there albumin alternatives? Egypt Liver J. 2020;10:39. https://doi.org/10.1186/s43066-020-00047-7
8. Bräsen JH, Mederacke YS, Schmitz J, Diaihovets K, Khalifa A, Hartleben B, et al. Cholemic nephropathy causes acute kidney injury and is accompanied by loss of aquaporin 2 in collecting ducts. Hepatology. 2019;69(5):2107-19. https://doi.org/10.1002/hep.30499
Evidence for the pathophysiological role of asymmetric dimethylarginine. A validated score predicts acute kidney injury.

9. Sujan R, Cruz-Lemini M, Altamirano J, Simonetto DA, Maiwall R, Axley P, et al. A validated score predicts acute kidney injury and survival in patients with alcoholic hepatitis. Liver Transpl. 2018;24(12):1655-64. https://doi.org/10.1002/lt.25328
PMID:30153377

10. Allegrètt AS, Solá E, Ginès P. Clinical application of kidney biomarkers in cirrhosis. Am J Kidney Dis. 2020;76(5):710-9. https://doi.org/10.1053/j.ajkd.2020.03.016
PMID:32622560

11. Huelin P, Solà E, Elia C, Solè C, Risso A, Moreir R, et al. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis: A prospective study. Hepatology. 2019;70(1):319-33. https://doi.org/10.1002/hep.30592
PMID:30810244

12. Tsien CD, Rabie R, Wong F. Acute kidney injury in patients with advanced cirrhosis. Dig Liver Dis. 2017;49(2):202-6. https://doi.org/10.1016/j.dld.2016.11.001
PMID:27876501

13. Yap DY, Seto WK, Fung J, Chok SH, Chan SC, Chan GC, et al. Serum and urinary biomarkers that predict hepatorenal syndrome patients with advanced cirrhosis. Dig Liver Dis. 2017;49(2):202-6. https://doi.org/10.1016/j.dld.2016.11.001
PMID:27876501

14. Allegretti AS, Parada XV, Endres P, Zhao S, Krinsky S, St Hillen SA, et al. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: A prospective study. Clin Transl Gastroenterol. 2021;12(5):e00359. https://doi.org/10.14309/c tg.0000000000000359
PMID:33979307

15. Mahmoud WA, Abdelkader NA, Mansor A. Could serum nitrate and nitrite levels possibly predict hepatorenal syndrome? Indian J Gastroenterol. 2014;33(3):274-80. https://doi.org/10.1007/s12664-013-0427-x
PMID:24287875

16. Dragicevic M, Košuta I, Kruezi E, Lovrenčić MV, Mrzljak A. Association of asymmetric dimethylarginine and nitric oxide with cardiovascular risk in patients with end-stage liver disease. Medicina. 2020;56(11):622. https://doi.org/10.3390/ medicina56110622
PMID:33218157

17. Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol. 2013;19(11):1707-17. https://doi.org/10.3748/wjg.v19.i11.1707
PMID:23555159

18. Ferguson JW, Dover AR, Chia S, Cruden NL, Hayes PC, Newby DE. Inducible nitric oxide synthase activity contributes to the regulation of peripheral vascular tone in patients with cirrhosis and ascites. Gut. 2006;55(4):542-6. https://doi.org/10.1136/gut.2005.079652
PMID:16299635

19. Lluch P, Mauricio MD, Vila JM, Segarra G, Medina P, Del Olmo JA, et al. Accumulation of symmetric dimethylarginine in hepatorenal syndrome. Exp Biol Med (Maywood). 2006;231(1):70-5. https://doi.org/10.1177/153537020623100108
PMID:16380646

20. Vink EE, Blankestijn PJ. Evidence and consequences of the central role of the kidneys in the pathophysiology of sympathetic hyperactivity. Front Physiol. 2012;3:29. https://doi.org/10.3389/ fphys.2012.00029
PMID:22363298

21. Harper D, Chandler B. Splanchnic circulation. BJ A Educ. 2016;16(2):66-71. https://doi.org/10.1093/bjaeeaccp/mkv017

22. Estrela HF, Damâsios ES, Fonseca EA, Bergamaschi CT, Campos RR. Differential sympathetic vasmotor activation induced by liver cirrhosis in rats. PLoS One. 2016;11(4):e0152512. https://doi.org/10.1371/journal.pone.0152512
PMID:27055088

23. Mura VL, Pascoli MD. Renin angiotensin aldosterone system in cirrhosis: There is room to try. Dig Liver Dis. 2019;51(2):297-8. https://doi.org/10.1016/j.dld.2018.07.038
PMID:30220630

24. Mousa N, Soliman R, Elgamal H, El-Eraky A, Awad M. Hepatorenal syndrome: Update on pathogenesis and management. Med J Viral Hepat. 2018;2(2):7-14. https://doi.org/10.1016/MJ V H.2018.55735

25. Demirtas S, Can M, Yarpuzlu A. Hepatorenal syndrome. J Lab Med. 2006;30(5):272-9. https://doi.org/10.1515/JLM.2006.998

26. Cardouñel AJ, Cui H, Samouilov A, Johnson W, Keams P, Tsaí AL, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem. 2007;282(2):879-87. https://doi.org/10.1074/jbc.M603606200
PMID:17082183

27. Mockeree RV, Vairapann B, Jalan R. The puzzle of endothelial nitric oxide synthase dysfunction in portal hypertension: The missing piece? Hepatology. 2007;46(3):943-6. https://doi.org/10.1002/hep.21905
PMID:17879360

28. Siroen MP, Wiest R, Richir MC, Teerlink T, Rauwerda JA, Drescher FT, et al. Transjugular intrahepatic portosystemic shunt-placement increases arginine/asymmetric dimethylarginine ratio in cirrhotic patients. World J Gastroenterol. 2008;14(47):7214-9. https://doi.org/10.3748/wjg.14.7214
PMID:19084936

29. Pope AJ, Karuppiah K, Cardouñel AJ. Role of the PRMT-DDAHADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res. 2009;60(6):481-5. https://doi.org/10.1016/j.phrs.2009.07.016
PMID:19682581

30. Ueda S, Yamagishi S, Matsumoto Y, Kaida Y, Fujimi-Hayashida A, Koike K, et al. Involvement of asymmetric dimethylarginine (ADMA) in glomerular capillary loss and sclerosis in a rat model of chronic kidney disease (CKD). Life Sci. 2009;84(23-24):853-6. https://doi.org/10.1016/j.lfs.2009.03.018
PMID:19351540

31. Richir MC, Bouwman RH, Teerlink T, Siroen MP, De Vries TP, Van Leeuwen PA. The prominent role of nitric oxide synthase activity in the pathophysiology of impaired hepatic function. JPEN J Parenter Enteral Nutr. 2008;32(6):613-21. https://doi.org/10.1177/01486807108321702
PMID:18974239