Comparative Genomic Analysis and Phenotypic Characterization of Bronchoscope-Associated Klebsiella Aerogenes

Fang Huang
Disinfection & Sterilization Center, The First Affiliated Hospital, College of Medicine, Zhejiang University

Shuang Li
Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University

Xiaohui Chi
Zhejiang University First Affiliated Hospital Institute of Infectious Diseases: Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases

Peipei Wen
Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University

Hao Fu
Zhejiang University First Affiliated Hospital Institute of Infectious Diseases: Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases

Lingjiao Wu
Zhejiang University First Affiliated Hospital Institute of Infectious Diseases: Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases

Lan Lou
Disinfetion & Sterilization Center, the first Affiliated Hospital, College of Medicine, Zhejiang University

Hao Xu (✉ xuhao0523@zju.edu.cn)
Zhejiang University First Affiliated Hospital Institute of Infectious Diseases: Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases

Junjun Mo
Disinfection & Sterilization Center, The First Affiliated Hospital, College of Medicine, Zhejiang University

Research

Keywords: Klebsiella aerogenes, bronchoscope-associated, MLST, whole-genome sequencing, comparative genomics analysis

DOI: https://doi.org/10.21203/rs.3.rs-100056/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Bronchoscopes has been linked to the outbreaks of nosocomial infections. We aim to investigate the phenotypic and genomic profiles of bronchoscope-associated *Klebsiella aerogenes* isolates, and their association with genome public available isolates from human and environment.

Methods: We performed a prospective single-center study sampling echoendoscopes after clinical use and after normal decontamination procedures. Bacterial screening was conducted by culturing the sample on Mueller-Hinton agar plates. Antimicrobial susceptibility testing was performed using the broth microdilution method. Whole-genome sequencing of *K. aerogenes* isolates was performed using an Illumina HiSeq system and comparative genomics analysis were conducted.

Results: Over the 5-month period, a total of 358 isolates and 13 isolates were recovered from samples after clinical procedures and samples after decontamination procedures, respectively. Antimicrobial susceptibility testing found 7 *K. aerogenes* isolates to exhibit low-level resistance to antimicrobial agents. Among 7 *K. aerogenes* isolates, we found 5 sequence types (STs). Whole genome sequencing and comparison analysis observed the genetic diversity in our bacterial collection, which clustered into three main clades. Furthermore, we identified a total of 43 antimicrobial resistance genes in the *K. aerogenes* core genomes. As expected, human isolates encoded more antimicrobial resistance genes than that environmental isolates.

Conclusions: This study first described the phenotypic and genomics characteristics of bronchoscope-associated *K. aerogenes*. The present observations demonstrated that broadly investigation of specific pathogens using publicly available global genomes offered the opportunity to identify prevalent clones associated with various hosts, sources, and geographical locations.

Background

Flexible bronchoscopes are the medical devices widely used for diagnostic and therapeutic procedures. Usually they are heat labile and complex, which lead to difficult to clean [1]. Patient-ready reusable, flexible bronchoscopes were contaminated and damaged, and pose a serious threat to patient safety [2]. It is well documented that some nosocomial outbreaks have occurred linked to contaminated or inadequately disinfected bronchoscopes in literature [3, 4]. Moreover, recent studies determined that microbial transmission occurred even when proper cleaning and disinfection protocols are followed with standard guidelines [5, 6]. Recently, endoscopes have been suggested as point sources of nosocomial Enterobacteriaceae infections [7, 8]. Previous investigations have shown significant reduction of microbial contaminants with cleaning alone and recommendations require cleaning to be performed promptly following use [5, 9, 10]. In China, the microbiology data onto cleaning and disinfection of endoscopes is unclear. Moreover, bronchoscope-associated microbial profiles and phenotypic characteristics are largely unknown.
Klebsiella is a gram-negative, rod-shaped, anaerobic bacterium, which is a commensal microorganism living in the mouth and gut. However, Klebsiella is now resistant to many antimicrobial agents including one of the latest antibiotics-carbapenem, which represents a serious challenge to the public health [11, 12]. Klebsiella aerogenes belongs to the genus Klebsiella. It has been documented as important opportunistic and multi-resistant bacterial pathogens for patients during the past decades in clinical settings [13–15]. It is widely associated with bloodstream, skin and soft tissue, respiratory, and urinary tract infections [16]. Recently, the emergence of carbapenem-resistant K. aerogenes and colistin-resistant K. aerogenes isolates in China is of concern [17–20]. However, the genetic background of K. aerogenes isolates recovered from clinical settings in China remains largely unknown.

We hypothesized that bacterial colonization of medical instruments may associate with the clinical transmission of multidrug-resistant (MDR) K. aerogenes isolates in clinical settings. The aims of the current study were to evaluate the bronchial bacterial colonization in the disinfection and sterilization center, and to investigate the phenotypic characteristics and genomic complexity of of K. aerogenes strains isolated from bronchoscope samples.

Material And Methods

Setting

From January 2019 to May 2019, the study was conducted in the Disinfection & Sterilization Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, where both gastrointestinal and respiratory endoscopes are reprocessed. During the study period, procedures in our institution were performed using bronchoscopes (model BF260) (Olympus, Japan). The cleaning of bronchoscopes was carried out with an enzymatic detergent solution, endozyme. Manual disinfection was performed by soaking the device into 2% glutaraldehyde.

Sampling

Samples were collected under aseptic conditions from bronchoscopes following clinical procedures and after usual decontamination procedures by flushing thoroughly with 10 mL of sterilized phosphate buffered saline (PBS) as described previously [21]. Collected samples were put in cool-boxes with ice-packs (4-8°C) upon collection and transported in 4 hours to laboratory.

Bacterial isolation and identification

All samples were plated on Mueller-Hinton agar plates (Oxoid, UK) using the sterile swab. The agar plates were incubated for 18–24 hours at 37°C. Single colony was selected from each species per sample. All of the positive cultures were selected for identification. Bacterial identification was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) (Bruker, Leipzig, Germany), and further checked by PCR and sequencing.

Antimicrobial susceptibility testing
The minimum inhibitory concentrations (MICs) of 9 *K. aerogenes* isolates was determined using the agar dilution method according to the Clinical and Laboratory Standards Institute (CLSI) standards [22]. 19 antimicrobials were tested as described previously [23]. Antimicrobial susceptibility testing for colistin and tigecycline were performed by the microbroth dilution method as described by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org/). The MIC results were interpreted using the CLSI standards (Third Edition: M45).

Whole genome sequencing (WGS) and *in silico* analysis

WGS was performed on all *K. aerogenes* strains identified in this work.

The extracted genomic DNA was evaluated by agarose gel electrophoresis. The concentration and purity of genomic DNA were determined using NanoDrop 2000 (Thermo Scientific, Waltham, USA) and Qubit® version 2.0 fluorometer (Thermo Scientific), respectively. The sequencing library was prepared by using Illumina Nextera XT kit (Illumina, San Diego, USA). A-tailed fragments were ligated with paired-end adaptors and PCR-amplified with a 500-bp insert. WGS was performed with an Illumina NovaSeq 6000 platform (Novogene Co., China). PCR adapter reads and low-quality reads from the paired-end and mate-pair library were filtered using in-house pipeline. Paired reads were then assembled into a number of scaffolds using Velvet version 1.2.10 [24]. Multilocus sequence typing (MLST) analysis was performed as described previously [25]. ARGs were identified using the ResFinder 2.1 database [26].

Phylogenetic analysis of *K. aerogenes* isolates

To further characterized the evolutionary relationship among *K.aerogenes* isolates, we created a core genome-based phylogenetic tree using 7 *K. aerogenes* genomes sequenced in this study and 51 randomly selected publicly available *K. aerogenes* genomes (Table S1). The isolate collection includes strains from humans (n = 44), the environment (n = 9) and other sources (n = 5) that were widely distributed over time and geographical locations. All collection genomes were annotated using Prokka [27] and RAST tool [28]. The core genes in the genomes of *K. aerogenes* genomes were identified using Prokka [27] and Roary [29]. Maximum likelihood-based phylogenetic reconstruction was performed with RAxML version 8.2.10 using generalized time reversible (GTR) + Γ nucleotide substitution model [30]. One hundred bootstrap replicates were evaluated to determine branch support. A maximum-likelihood phylogenetic tree based on the core single nucleotide polymorphism alignments was generated using FastTree [31]. Phylogenetic tree visualizations were produced using the Interactive Tree of Life (https://itol.embl.de/).

Results And Discussion

Bacterial isolation and identification

Over the 5-month period, 250 bronchoscopes were sampled and 500 samples were collected, including 250 samples after clinical procedures and 250 samples after usual decontamination procedures. All bronchoscope samples were tested for bacterial screens. A total of 358 isolates and 13 isolates were
recovered from samples after clinical procedures and samples after decontamination procedures, respectively (Table S2 and Table S3). This might explain by the low-level contamination with environmental and skin bacteria, since bronchoscope samples were collected after the clinical procedures without any disinfection or cleaning processes. Of note, most of the detected microorganisms were Gram-positive bacteria, such as Staphylococcus epidermidis (n = 69), Streptococcus salivarius (n = 42), and Streptococcus oralis (n = 23). Among the Gram-negative bacilli isolates, most of them were that belong to the Enterobacteriaceae group (Table S2 and Table S3). Outbreaks and pseudo-outbreaks associated with bronchoscopes have been well documented in the literature [32]. These nosocomial infections commonly associated with Mycobacterium spp. and Enterobacteriaceae isolates [33-37]. Moreover, K. aerogenes was found in both groups (before and after the cleaning procedures). All this prompted us to further investigated the phenotypic and genomic characteristics of 7 K. aerogenes identified in this work.

AST and MLST of K. aerogenes isolates

AST results of 7 K. aerogenes isolates were detailed in Table 1. The full resistance rate was observed for amoxicillin-clavulanic acid and cefoxitin (100%). All the isolates were susceptible to piperacillin-tazobactam, cefuroxime, ceftazidime, ceftriaxone, cefoperazone-sulbactam, cefepime, ertapenem, amikacin, levofloxacin, tigecycline, trimethoprim-sulfamethoxazole. Interestingly, 5 isolates were intermediate to imipenem. Among 7 K. aerogenes isolates, we found 5 sequence types (STs), which were ST135 (n = 2) and ST1358 (n = 2), followed by ST1357 (n = 1), ST1359 (n = 1), and ST1363 (n = 1). K. aerogenes is reported to associated with nosocomial infections and displaying multidrug resistance [16], and the most prevalent STs were ST93 and ST4 [38]. However, we didn't detect any multidrug resistant K. aerogenes in this work. Furthermore, STs of K. aerogenes found in this work have not been described in the literature. These data suggested that these colonized isolates may have an environmental origin.

Whole genome sequencing and comparison analysis

Roary matrix-based gene sequence analysis generated a large pan-genome of 18,105 gene clusters of 58 full genomes. The whole-genome phylogeny (Figure 1) revealed a population structure that was generally concordant with MLST (data not shown). Genetic diversity was observed in our bacterial collection, which clustered into three main clades. The 2 ST1358 strains identified in this study were aggregated in 1 clade with 1 ST1364 human isolate from Spain, which suggested that ST1358 and ST1364 might originate from the same ancestor. The results also indicate that 11 ST93 isolates and 9 ST56 were clustered into one separate sub-cluster, respectively, which exhibited a slight difference in the core genome sequence. Recent studies found that ST93 was the most prevalent clone in the global K. aerogenes genome database, which indicated that ST93 might be dominant sequence type global clones in clinical settings [13, 39]. Furthermore, the emergence of fecal carriage and human infection MDR K. aerogenes isolates resistant to multiple antibiotics, especially resistant to carbapenems is considered a substantial threat to public health [17, 40]. Although phenotypic and genomic evidence from the current study revealed that isolates recovered in this work are not multi-resistant, active surveillance of bronchoscope-associated K. aerogenes isolates would improve our understanding on the population structure of this species. Of note,
all isolates recovered from this study have a close relation to environmental or human isolates. A recent study investigated the population structure, virulence, and antimicrobial resistance in K. aerogenes [38]. Their findings showed that K. aerogenes has an open pangenome and a large effective population size, which is in line with our results.

Resistant determinants of K. aerogenes isolates

We identified a total of 43 antimicrobial resistance genes in the K. aerogenes core genomes (Figure 2). The resistome of K. aerogenes comprise a high number of antibiotic efflux pumps as well as narrow and extended spectrum β-lactamases. As expected, human isolates encoded more antimicrobial resistance genes than those environmental isolates. Of note, 3 isolate from this work possessed only one resistance gene, fosA, which is consistent with phenotypic characteristics.

Conclusion

In this study, we described the phenotypic and genomics characteristics of bronchoscope-associated K. aerogenes, although it is limited by the relatively small number of strains identified and which are not multi-resistant. The expanding of K. aerogenes in the surveyed disinfection and sterilization center may associate with the environmental transmission. These results may lead to a better understanding of genetic background and population structure of K. aerogenes.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Accession numbers

All genome assemblies of K. aerogenes isolates were deposited in GenBank and are registered under BioProject accession no. PRJNA633774.

Funding

This study was supported by funding from the National Key Research and Development Program of China (No. 2016YFD0501105); the National Natural Science Foundation of China (No. 81741098); the Mega-projects of Science Research of China (2018ZX10733402-004); and the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No.2018ZH010). Scientific Research Fund of Zhejiang Provincial Education Department (Y202043398)
Competing interests

All the authors reports no conflicts of interest in this work.

Authors’ contributions

Each author is expected to have made substantial contributions to the conception.

Acknowledgements

Not applicable

References

1. DiazGranados CA, Jones MY, Kongphet-Tran T, White N, Shapiro M, Wang YF, Ray SM, Blumberg HM: Outbreak of Pseudomonas aeruginosa infection associated with contamination of a flexible bronchoscope. Infect Control Hosp Epidemiol 2009, 30(6):550-555.
2. Zamani A: Rigid bronchoscopy-induced bacterial translocation: is it a real threat? Eur Respir J 2004, 23(2):352; author reply 352-353.
3. Agerton T, Valway S, Gore B, Pozsik C, Plikaytis B, Woodley C, Onorato I: Transmission of a highly drug-resistant strain (strain W1) of Mycobacterium tuberculosis. Community outbreak and nosocomial transmission via a contaminated bronchoscope. JAMA 1997, 278(13):1073-1077.
4. Srinivasan A, Wolfenden LL, Song X, Mackie K, Hartsell TL, Jones HD, Diette GB, Orens JB, Yung RC, Ross TL et al: An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003, 348(13):1073-1077.
5. Ofstead CL, Quick MR, Wetzler HP, Eiland JE, Heymann OL, Sonetti DA, Ferguson JS: Effectiveness of Reprocessing for Flexible Bronchoscopes and Endobronchial Ultrasound Bronchoscopes. Chest 2018, 154(5):1024-1034.
6. Galdys AL, Marsh JW, Delgado E, Pasculle AW, Pacey M, Ayres AM, Metzger A, Harrison LH, Muto CA: Bronchoscope-associated clusters of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2019, 40(1):40-46.
7. Gastmeier P, Vonberg RP: Klebsiella spp. in endoscopy-associated infections: we may only be seeing the tip of the iceberg. Infection 2014, 42(1):15-21.
8. Chapman CG, Siddiqui UD, Manzano M, Konda VJ, Murillo C, Landon EM, Waxman I: Risk of infection transmission in curvilinear array echoendoscopes: results of a prospective reprocessing and culture registry. Gastrointest Endosc 2017, 85(2):390-397 e391.
9. Liu B, Tong S: An investigation of Stenotrophomonas maltophilia-positive culture caused by fiberoptic bronchoscope contamination. BMC Infect Dis 2019, 19(1):1072.
10. Alfa MJ, DeGagne P, Olson N, Fatima I: EVOTECH endoscope cleaner and reprocessor (ECR) simulated-use and clinical-use evaluation of cleaning efficacy. BMC Infect Dis 2010, 10:200.
11. Fasciana T, Gentile B, Aquilina M, Ciammaruconi A, Mascarella C, Anselmo A, Fortunato A, Fillo S, Petralito G, Lista F et al. Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. *BMC Infect Dis* 2019, 19(1):928.

12. Zheng B, Xu H, Lv T, Guo L, Xiao Y, Huang C, Zhang S, Chen Y, Han H, Shen P et al. Stool Samples of Acute Diarrhea Inpatients as a Reservoir of ST11 Hypervirulent KPC-2-Producing Klebsiella pneumoniae. *mSystems* 2020, 5(3).

13. Malek A, McGlynn K, Taffner S, Fine L, Tesini B, Wang J, Mostafa H, Petry S, Perkins A, Graman P et al. Next-Generation-Sequencing-Based Hospital Outbreak Investigation Yields Insight into Klebsiella aerogenes Population Structure and Determinants of Carbapenem Resistance and Pathogenicity. *Antimicrob Agents Chemother* 2019, 63(6).

14. Pereira RS, Dias VC, Ferreira-Machado AB, Resende JA, Bastos AN, Andrade Bastos LQ, Andrade Bastos VQ, Bastos RV, Da Silva VL, Diniz CG. Physiological and molecular characteristics of carbapenem resistance in Klebsiella pneumoniae and Enterobacter aerogenes. *J Infect Dev Ctries* 2016, 10(6):592-599.

15. Cunha BA, McDermott B, Nausheen S. Single daily high-dose tigecycline therapy of a multidrug-resistant (MDR) Klebsiella pneumoniae and Enterobacter aerogenes nosocomial urinary tract infection. *J Chemother* 2007, 19(6):753-754.

16. Shen X, Liu L, Yu J, Cao X, Zhan Q, Guo Y, Wang L, Yu F. Coexistence of bla NDM-1 and rmtC on a Transferrable Plasmid of a Novel ST192 Klebsiella aerogenes Clinical Isolate. *Infect Drug Resist* 2019, 12:3883-3891.

17. Liu Q, Liu L, Li Y, Chen X, Yan Q, Liu WE. Fecal Carriage and Epidemiology of Carbapenem-Resistant Enterobacteriaceae Among Hospitalized Patients in a University Hospital. *Infect Drug Resist* 2019, 12:3935-3942.

18. Hao M, Shen Z, Ye M, Hu F, Xu X, Yang Y, Wu S, Lin D, Qin X, Wang M. Outbreak Of Klebsiella pneumoniae Carbapenemase-Producing Klebsiella aerogenes Strains In A Tertiary Hospital In China. *Infect Drug Resist* 2019, 12:3283-3290.

19. Liao W, Quan J, Liu L, Zhao D, Jiang Y, Du X, Zhao F, Yu Y, Zhou Z. New insights into the mechanisms of colistin resistance in Klebsiella aerogenes of clinical origin. *Int J Antimicrob Agents* 2020, 55(6):105990.

20. Ma DY, Huang HY, Zou H, Wu ML, Lin QX, Liu B, Huang SF. Carbapenem-Resistant Klebsiella aerogenes Clinical Isolates from a Teaching Hospital in Southwestern China: Detailed Molecular Epidemiology, Resistance Determinants, Risk Factors and Clinical Outcomes. *Infect Drug Resist* 2020, 13:577-585.

21. Jorgensen SB, Bojer MS, Boll EJ, Martin Y, Helmersen K, Skogstad M, Struve C. Heat-resistant, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in endoscope-mediated outbreak. *J Hosp Infect* 2016, 93(1):57-62.

22. CLSI: Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA, USA: Clinical and Laboratory Standards Institute. 2017.
23. Zheng B, Zhang J, Ji J, Fang Y, Shen P, Ying C, Lv J, Xiao Y, Li L: Emergence of Raoultella ornithinolytica coproducing IMP-4 and KPC-2 carbapenemases in China. Antimicrob Agents Chemother 2015, 59(11):7086-7089.

24. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

25. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP, Feldgarden M, Chapman SB, Reis-Cunha JL, Shea TP, Young S et al: Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A 2017, 114(5):1135-1140.

26. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV: Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012, 67(11):2640-2644.

27. Seemann T: Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014, 30(14):2068-2069.

28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M et al: The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014, 42(Database issue):D206-214.

29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J: Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31(22):3691-3693.

30. Stamatakis A: RAXML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30(9):1312-1313.

31. Price MN, Dehal PS, Arkin AP: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009, 26(7):1641-1650.

32. Guy M, Vanhems P, Dananche C, Perraud M, Regard A, Hulin M, Dauwalder O, Bertrand X, Crozon-Clauzel J, Floccard B et al: Outbreak of pulmonary Pseudomonas aeruginosa and Stenotrophomonas maltophilia infections related to contaminated bronchoscope suction valves, Lyon, France, 2014. Euro Surveill 2016, 21(28).

33. Dickson A, Kondal P, Hilken L, Helgesen M, Sjolin W, Jensen D: Possible pseudotransmission of Enterobacter cloacae associated with an endobronchial ultrasound scope. Am J Infect Control 2018, 46(11):1296-1298.

34. Mehta AC, Muscarella LF: Bronchoscope-Related "Superbug" Infections. Chest 2020, 157(2):454-469.

35. Kirschke DL, Jones TF, Craig AS, Chu PS, Mayernick GG, Patel JA, Schaffner W: Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003, 348(3):214-220.

36. Bringhurst J, Weber DJ, Miller MB, Jones MC, Rivera MP, Akulian J, Rutala WA, Sickbert-Bennett EE: A bronchoscopy-associated pseudo-outbreak of Mycobacterium mucogenicum traced to use of contaminated ice used for bronchoalveolar lavage. Infect Control Hosp Epidemiol 2020, 41(1):124-126.
37. Campos-Gutierrez S, Ramos-Real MJ, Abreu R, Jimenez MS, Lecuona M: *Pseudo-outbreak of Mycobacterium fortuitum in a hospital bronchoscopy unit*. Am J Infect Control 2019.

38. Passarelli-Araujo H, Palmeiro JK, Moharana KC, Pedrosa-Silva F, Dalla-Costa LM, Venancio TM: *Genomic analysis unveils important aspects of population structure, virulence, and antimicrobial resistance in Klebsiella aerogenes*. FEBS J 2019, **286**(19):3797-3810.

39. Passarelli-Araujo H, Palmeiro JK, Moharana KC, Pedrosa-Silva F, Dalla-Costa LM, Venancio TM: *Molecular epidemiology of 16S rRNA methyltransferase in Brazil: RmtG in Klebsiella aerogenes ST93 (CC4)*. An Acad Bras Cienc 2019, **91**(suppl 1):e20180762.

40. Tian D, Wang B, Zhang H, Pan F, Wang C, Shi Y, Sun Y: *Dissemination of the bla NDM-5 Gene via IncX3-Type Plasmid among Enterobacteriaceae in Children*. mSphere 2020, **5**(1).

Figures
Figure 1

Maximum-likelihood phylogeny of 58 representative global K. aerogenes isolates. The trees were constructed using Roary software. The tips of branches are colored according to hosts, countries, and sources. Red words indicate the 8 strains in this study.
Figure 2

Antimicrobial resistance genes identified in the genomes of K. aerogenes isolates by analyzing the WGS data. The antimicrobial resistance genes (ARGs) are shown on the bottom. Yellow indicates the presence of the ARGs, and blue indicates the absence of the ARGs.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementalmaterials.docx