Design and Fabrication of Wheelchair CUM Stretcher

Yash Shah, Neel Patel, Nischay Patel, Shail Patel, Piyush Surani

Abstract: The wheelchair and stretcher are very widely used in hospitals, airports, train stations, shopping malls, etc. This design here is a modified wheelchair stretcher as needed. This machine converts the wheelchair into a stretcher. The chair transforms into a stretcher when the levers are operated. The stretchers can be detached from the main frame according to the convenience of the patient and doctors can make it easier access to the patient with less effort and transport. The folding mechanism enables a large number of stretchers arranged in chair form to be accommodated in a comparatively smaller space. In hospitals, patients have to be moved from a wheelchair to a stretcher, from a stretcher to a bed, from a bed to a wheelchair or vice versa; which creates unsafe conditions for patients. A wheelchair stretcher is required to facilitate mobility for the disabled patient.

Keywords: Wheelchair, Stretcher, Space, Patient’s Mobility.

I. INTRODUCTION

The concept of Design and Fabrication of Wheelchair cum Stretcher is useful for disabled patient’s mobility. DISABILITY is the term that has been used for many decades. According to Oxford Etymology, “disability” is used in many contexts, namely 1650 as a sport called “CAP IN HAND”, 1750 used in horse races, 1870 it is “Any race or competition in which the competitors try to equalize the odds, by giving an advantage to the less efficient or a disadvantage to the most efficient”. Finally, the first use of disability to designate a mental or physical disability is recorded in a caption from 1915: The disabled child. Since 1915 the word “DISABILITY / DISABILITY” has been the trade name for people with physical or mental disabilities.

II. PROBLEM DEFINITION

The proportion of patients in India is increasing day by day. In hospitals, patients have to move from the wheelchair to the stretcher, from the stretcher to the bed, from the bed to the wheelchair or vice versa; which creates unsafe conditions for patients. Moving patients to hospitals is a common problem for nurses.

III. PROJECT SCOPE

Propose a design that reduces caregiver effort and provides safer transfer for patients in hospitals.

IV. DESIGN CALCULATION

Wheels With A Load:
- Body: Mass : 35 Kg
- Weight of Body (Newton): 343.43 N
- Weight of Human: 120 Kg
- Human Weight (Newton): 1177.211 N
- Rack and Pinion(Follower): Mass : 3.401 Kg
- Weight of Rack and Pinion (Newton): 33.354 N
- Force: 343.43 + 1177.21 + 33.354 = 1553.904 N

Wheels with Force on each:
- Force = \(F_1 = F_2 = \frac{\text{Force}}{4} = \frac{1553.904}{4} = 388.474 \text{ N} \)

Load on Back Rest:
- Link Inclination : 20°
- Weight of Human : 40 Kg
- Frame: Mass: 10.001 Kg
- Force = (40.001 + 9.301) * 9.81001 = 483.63011 N
- Force Actual = F * sin20° = 263 N

Leg Rest with Load:
- Inclined Link Angle : 10°
- Weight of Human: 40.001 Kg
- Frame : Mass : 10.001 Kg
- Force = (40.001 + 10.001) * 9.8101 = 491.501 N
- Actual Force Magnitude = 266.8254 N

Analysis Stress:
- Front Wheels Stress:
 \[\text{Front Wheel Stress} = 10 \text{ mm Stress(Bending)} = \sigma_b \]
 \[= \frac{My}{I} \]
 \[\text{Moment(1)(Front)} = F_1 * \left(\frac{l}{2}\right) = 388.474 \times 20 \]
 \[= 7769.48 \text{ N.mm} \]

 \[y = \frac{d_1}{2} = \frac{10}{2} = 5 \text{ mm} \]

 \[I = \frac{64 \times d_1^4}{N} = 490.8739 \text{ mm}^4 \]

 \[\sigma_b = 79.13927 \times \frac{N}{mm^2} \]

 \[\text{Shear Stress} = \tau = \frac{TR}{I} \]

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Manuscript received on June 03, 2021.
Revised Manuscript received on June 09, 2021.
Manuscript published on June 30, 2021.

* Correspondence Author
 Yash Shah*, UG Students, Mechanical Engineering, Indus University, Ahmedabad (Gujarat), India.
 Neel Patel, UG Students, Mechanical Engineering, Indus University, Ahmedabad (Gujarat), India.
 Nischay Patel, UG Students, Mechanical Engineering, Indus University, Ahmedabad (Gujarat), India.
 Shail Patel, B.Tech, Mechanical Engineering, Indus University, Ahmedabad (Gujarat), India.
 Piyush Surani, Professor, Mechanical Engineering, Indus University, Ahmedabad (Gujarat), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Design and Fabrication of Wheelchair CUM Stretcher

\[Torque(T) = F_f1 \times \left(\frac{l}{2} \right) = 388.474 \times 20 \]
\[= 7769.48 \text{ N} \cdot \text{mm} \]

\[R = \frac{d_1}{2} = 5 \text{ mm} \]
\[J = \frac{32}{32} d_1^4 = 981.7478 \text{ mm}^4 \]
\[\tau = 39.56 \frac{N}{\text{mm}^2} \]

Rear Wheel Stress:
shaft Diameter \(d_2\) Rear Wheel = 10 mm
Stress(Bending) = \(\sigma_b = \frac{My}{I} \)

Moment(2)(Rear) = \(F_f1 \times \left(\frac{l}{2} \right) = 388.474 \times 50 \)
\[= 19423.7 \text{ N} \cdot \text{mm} \]

\[y = \frac{d_1}{2} = 10 \text{ mm} \]
\[I = \frac{I}{64} = 490.8739 \text{ mm}^4 \]
\[\sigma_b = 197.848 \frac{N}{\text{mm}^2} \]

Shear Stress = \(\tau = \frac{TR}{J} \)

\[Torque(T) = F_f1 \times \left(\frac{l}{2} \right) = 388.474 \times 50 \]
\[= 19423.7 \text{ N} \cdot \text{mm} \]

\[R = \frac{d_1}{2} = 5 \text{ mm} \]
\[J = \frac{32}{32} d_1^4 = 981.7478 \text{ mm}^4 \]
\[\tau = 98.92 \frac{N}{\text{mm}^2} \]

Factor of Safety:
\[F.O.S = \frac{\text{Ultimate Tensile Stress on Material}}{\text{Maximum Stress Generated in Material}} \]
\[= \frac{500}{197.848} = 2.52 \]

V. 3D DESIGN

Retrieval Number: 100.1/ijeat.E27540610521
DOI:10.35940/ijeat.E27540610521
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering and Sciences Publication
© Copyright: All rights reserved.
VI. CONNECTION GRAPH

Connection Graph of Transmitter

Connection Graph of Receiver

VII. LIST OF COMPONENT WITH ESTIMATION

Sr.No	Part Name	Quantity in KG/Piece	Rate	Amount in RS
1	SS Box Pipe	30 feet	80	2400
2	Seal	1 Set	3500	3500
3	Iron Rod	3 feet	100	300
4	Self Rotating Trolley Wheel	2 Nos	400	800
5	Spring	4 Nos	190	400
6	Locking Nobs	4 Nos	50	200
7	4 Inch Hinges	8 Nos	150	1200
8	4 Inch Rubber wheel	2 Nos	240	480
9	RF Remote	1 Nos	1900	1900
10	Wiper Motor	1 nos	1600	1600
11	Rack	1 Nos	1600	1600
12	Pinion	1 Nos	400	400
13	DC motor	1 Nos	3800	3800
14	wooden Plate	1 Nos	600	600
15	DC Motor Mounting Clamp	2 Nos	20	80
	Total			**19260**

REFERENCES

1. Richard C. Simpson Phd, “Smart Wheelchairs”, Department Of Rehabilitation Science And Technology, University Of Pittsburgh, Pa(2005)
2. Sumedh. J. Suryawanshi, Dr. K. Janardhan Reddy “Product Development Of Wheelchair For People Disabled In Legs”, (2013)(Smbs2013)
3. Roger Bostelman, James Albus“ A Multipurpose Robotic Wheelchair And Rehabilitation Device For The Home”, (NistGaithersburg), (2007)
4. Prof. R.S. Nipanikar, Vinay Gaikwad, Chetan Choudhari, Ram Gosavi, Vishal Harne“Automatic Wheelchair For Physically Disabled Persons”, (2013)(Ijarece)
5. Prof Piyush Surani “Design And Development Of Conceptual wheelchair Cum Stretcher”, Indus University (2021)
6. Mohan Kumar R., Lohit H. S., Manas Ranjan Mishra, Md. Basheer Ahamad, “Design Of Multipurpose Wheel Chair For Physically Challenged And Elder People” Department Of Design, M. S. Ramaiah School Of Advanced Studies, Bangalore.(2012)
7. Jingtao Chen, Bing Teng, Yali Yang, “Design Of The Wheelchair Bed” Shanghai University Of Engineering Science Shanghai201620, China, (2013) •HuiHsu, Hsueh- Yu C1hen, JenYu Liu And Chien-Liang Chen, “Dual-Purpose Wheelchair Mechanism” Designs Meng, Proceedings Of The International Multi conference Of Engineers And Computer Scientists 2009 Volli Imexs2009, March 18 -20, 2009, Hong Kong(2009)
8. Mst. Nasima Bagum, Choudhury Abul Anam Raashed, Sanjoy Kar, “Designing An Automated WheelChairWithStair Crossing Facility”, International Journal Of Scientific & Engineering Research, Volume3, Issue4, April-2012(Iss22 295518). (2012)
9. Po Er Hsu , Yeh Liang Hsu Jun Ming Lul And Cheng Hao Chang,“Seat Adjustment Design Of An Intelligent Robotic Wheelchair Based On The Stewart Platform” Regular Paper, Geront technology Research Center ,Yuan Ze University Taoyuan, Taiwan.(2013)
AUTHORS PROFILE

Yash Shah. UG Student, Mechanical Engineering, Indus University, Ahmedabad, Gujarat, India. Research work done in Design and Fabrication of Wheelchair cum Stretcher.

Neel Patel. UG Student, Mechanical Engineering, Indus University, Ahmedabad, Gujarat, India. Research work done in Design and Fabrication of Wheelchair cum Stretcher.

Nischay Patel. UG Student, Mechanical Engineering, Indus University, Ahmedabad, Gujarat, India. Research work done in Design and Fabrication of Wheelchair cum Stretcher.

Shail Patel. B.Tech, Mechanical Engineering, Indus University, Ahmedabad, Gujarat, India. Design and Development Engineer. Research work done in various domains of Mechanical Engineering.