DEGENERATE SINGULARITIES OF ONE DIMENSIONAL
FOLIATIONS

V. FERRER AND I. VAINSENCHER

ABSTRACT. We give formulas for the degrees of the spaces of foliations in $\mathbb{P}^2$
with a dicritical singularity of prescribed order. Blowing up such singularity
induces, generically, a foliation with all but finitely many leaves transversal to
the exceptional line; we also find the degree of the locus defined by imposing
a leaf of total contact with the exceptional line.

INTRODUCTION

Holomorphic foliations are an offspring of the geometric theory of polynomial dif-
fferential equations. Following the trend of many branches in Mathematics, interest
has migrated to global aspects. Instead of focusing on just one curve, or surface, or
metric, or differential equation, try and study their family in a suitable parameter
space. The geometry within the parameter space of the family acquires relevance.
For instance, the family of hypersurfaces of a given degree correspond to points
in a projective space; geometric conditions on hypersurfaces usually correspond
to interesting subvarieties in the parameter space, e.g., the discriminant. Hilbert
schemes have their counterpart in the theory of polynomial differential equations,
to wit, the spaces of foliations.

Holomorphic foliations of degree $d$ on the complex projective plane $\mathbb{P}^2$ are de-
efined by nonzero twisted 1–forms, $\omega = \sum a_i dz_i$, with homogeneous polynomials
$a_i(z_0, z_1, z_2)$ of degree $d + 1$, up to scalar multiples, satisfying $\sum a_i z_i = 0$. The
parameter space of foliations of degree $d$ is a projective space $\mathbb{P}^N$ (cf.\,[2]).

The purpose of this work is to compute the dimensions and degrees of the sub-
varieties of $\mathbb{P}^N$ corresponding to foliations displaying certain degenerate singular-
ities. Given an integer $k \geq 2$ we study the locus, $M_k \subset \mathbb{P}^N$, of foliations with
a singularity of order $\geq k$. These are foliations defined in local coordinates by a
holomorphic 1–form that can be written as $\omega = a_k dx + b_k dy + \text{higher order terms}$,
with $a_k(x, y), b_k(x, y)$ homogeneous polynomials of degree $k$. It turns out that $M_k$
is the birational image of an explicit projective bundle over $\mathbb{P}^2$. This enables us to
find a formula for the degree of $M_k$.

Another interesting type of non-generic foliation presents a so called dicritical
singularity of order $k$: require $a_k x + b_k y$ to vanish. This defines a closed subset
$D_k \subset M_k$. A characteristic feature of a foliation with a dicritical singularity is the
fact that all but finitely many leaves of the foliation induced on the blowup at the
singular point are transversal to the exceptional line. We say a foliation with such
a singularity has the property of maximal contact ($MC$ for short) if some leaf of

Key words and phrases. holomorphic foliations, singularities, enumerative geometry.
The authors were partially supported by CNPQ.
the induced foliation has a contact of order $k$ with the exceptional line. Thus we may consider the subvariety $C_k \subset D_k$ consisting of dicritical foliations with $MC$.

Requiring a leaf of a foliation to be tangent to a line at a given point defines a hyperplane in the parameter space $\mathbb{P}^N$. Therefore, the degree of each of the loci $C_k \subset D_k \subset M_k \subset \mathbb{P}^N$ can be rephrased loosely as the number of foliations with a singularity of the chosen type and further tangent to the appropriate number of flags (point, line) in $\mathbb{P}^2$. It turns out that the degrees of $C_k, D_k, M_k$ are expressed as explicit polynomials in $k, d$.

This fits into the tradition of classical enumerative geometry: answers to questions such as determining the number of plane algebraic curves that have singularities of prescribed orders, besides passing through an appropriate number of points in general position, are often given by “node” polynomials. There is also a wealth of results and conjectures on generating functions for counting suitably singular members of linear systems of curves on surfaces, cf. Göttsche [4], Kleiman and Piene [9]. We hope similar results can be formulated in the setting of foliations.

1. The space of foliations

The main reference for this material is Jouanolou [7]. A projective 1-form of degree $d$ in $\mathbb{P}^2$ is a global section of $\Omega^1_{\mathbb{P}^2} \otimes \mathcal{O}_{\mathbb{P}^2}(d+2)$, for some $d \geq 0$.

We denote by $S_d$ the space $\text{Sym}_d(\mathbb{C}^3)^\vee$ of homogeneous polynomials of degree $d$ in the variables $z_0, z_1, z_2$. We write $\partial_i = \partial / \partial z_i$, thought of as a vector field basis for $\mathbb{C}^3$. The dual basis will also be written as $dz_0, dz_1, dz_2$ whenever we think of differential forms. Recalling Euler sequence

(1) \[ 0 \to \Omega^1_{\mathbb{P}^2}(d+2) \to \mathcal{O}_{\mathbb{P}^2}(d+1) \otimes S_1 \to \mathcal{O}_{\mathbb{P}^2}(d+2) \to 0 \]

and taking global sections we get the exact sequence

(2) \[ 0 \to H^0(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(d+2)) \to S_{d+1} \otimes S_1 \xrightarrow{\iota_R} S_{d+2} \to 0 \]

where $\iota_R(\sum a_i z_i) = \sum a_i z_i$ is the contraction by the radial vector field. Thus a 1-form $\omega \in H^0(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(d+2))$ can be written in homogeneous coordinates as

\[ \omega = a_0 dz_0 + a_1 dz_1 + a_2 dz_2 \]

where the $a_i$’s are homogeneous polynomials of degree $d + 1$ satisfying

\[ a_0 z_0 + a_1 z_1 + a_2 z_2 = 0. \]

The space of foliations of degree $d$ in $\mathbb{P}^2$ is the projective space

\[ \mathbb{P}^N = \mathbb{P}(H^0(\Omega^1_{\mathbb{P}^2}(d+2))) \]

of dimension

\[ N = 3(d+2) - \binom{d+1}{2} - 1 = d^2 + 4d + 2. \]

We have $\Omega^1_{\mathbb{P}^2} \otimes \mathcal{O}_{\mathbb{P}^2}(d+2) = \text{Hom}(T_{\mathbb{P}^2}, \mathcal{O}_{\mathbb{P}^2}(d+2))$. Any nonzero

\[ \omega : T_{\mathbb{P}^2} \to \mathcal{O}_{\mathbb{P}^2}(d+2) \]

induces a (singular, integrable) distribution of dimension one subspaces given by $p \mapsto \ker \omega_p$. A nonzero multiple of $\omega$ yields the same distribution.

1.1. Singularities. The singular scheme of $\omega$ is defined by the ideal sheaf image of $\omega \otimes \mathcal{O}_{\mathbb{P}^2}(-d-2) : T_{\mathbb{P}^2} \otimes \mathcal{O}_{\mathbb{P}^2}(-d-2) \to \mathcal{O}_{\mathbb{P}^2}$. If finite, it consists of $f_{p, 2}(\mathcal{O}_{\mathbb{P}^2}(d+2)) = d^2 + d + 1$ points. In local coordinates, say around $0 = [0, 0, 1] \in \mathbb{P}^2$, writing $\omega = adx + bdy$ the singular scheme of $\omega$ is given by the ideal $(a, b)$. We say 0 is a nondegenerate singularity if the jacobian determinant $|\partial(a, b)/\partial(x, y)|$ is nonzero.
A generic $1$-form has only nondegenerate (hence isolated) singularities; see [7, p. 87]. The order of the singularity $0$ is $\nu_0(\omega) = \min\{\text{order}_0(a), \text{order}_0(b)\}$. It can easily be checked that this is independent of the choice of coordinates.

In fact, if $\mathcal{I}$ is the ideal sheaf of the singular scheme, then for each $p \in \mathbb{P}^2$ there is a unique nonnegative integer $k$ such that the stalk at $p$ satisfies $\mathcal{I}_p \subset \mathfrak{m}_p^k$ and $\mathcal{I}_p \not\subset \mathfrak{m}_p^{k+1}$, where $\mathfrak{m}$ denotes the ideal sheaf of $p$. Thus, setting $E = \Omega^{1}_{\mathbb{P}^2} \otimes \Omega_{\mathbb{P}^2}(d+2)$, we see that the order of the singularity $p$ is at least $k$ iff the image of $\omega$ in the quotient $E/\mathfrak{m}_p^kE$ is zero.

1.2. Jet bundles. The preceding discussion entices us to recall the notion of jet bundles associated to a vector bundle, cf. [5, 16.7], [10]. Let $E$ be a vector bundle over a smooth projective variety $X$. For $k \geq 0$ the $k$th-jet bundle associated to $E$, denoted $P^k(E)$, is a fiber bundle over $X$ with fiber over $x \in X$ given by

$$P^k(E)_x = (\Omega^{1}_X/m^{k+1}_x) \otimes E_x$$

where $m_x$ is the maximal ideal of the point $x$.

For each $k \geq 0$ we have exact sequences

$$0 \rightarrow \text{Sym}_{k+1} \Omega^{1}_X \otimes E \rightarrow P^{k+1}(E) \rightarrow P^k(E) \rightarrow 0.$$  

Consider the evaluation map

$$ev : X \times H^0(X, E) \rightarrow E$$

given by $ev(x, s) = (x, s(x))$. The map $ev$ lifts to natural maps fitting into the following commutative diagram:

$$
\begin{array}{ccc}
X \times H^0(X, E) & \xrightarrow{ev_k} & P^k(E) \\
\downarrow ev_{k-1} & & \downarrow \\
P^{k-1}(E) & & 
\end{array}
$$

We think of $ev_k(s)$ as the Taylor expansion of $s$ truncated at order $k+1$. We include for the reader’s convenience the following

1.3. Lemma of global generation. Notation as in (i) above, given $k$, replacing $E$ by a sufficiently high twist $E \otimes L^m$ by an ample line bundle $L$, we have that

(i) the map $ev_k$ is surjective.

(ii) Set $W_x = \{s \in H^0(X, E) \mid (ev_{k-1})_x(s) = 0\}$. Then

$$(ev_k)_x(W_x) = (\text{Sym}_k \Omega^{1}_X \otimes E)_x.$$  

Proof. Let $\mathcal{J}$ be the ideal of the diagonal of $X \times X$. Consider the projection maps $p_i : X \times X \rightarrow X, i = 1, 2$. We have the exact sequence of sheaves over $X \times X$,

$$
\begin{array}{cccc}
\mathcal{J}^{k+1} & \xrightarrow{1} & \mathcal{J}^{k+1} \\
\downarrow & & \downarrow \\
\mathcal{J}^k & \xrightarrow{1} & \mathcal{O} & \xrightarrow{1} \mathcal{O}/\mathcal{J}^k \\
\downarrow & & \downarrow \\
\mathcal{J}^k/\mathcal{J}^{k+1} & \xrightarrow{1} & \mathcal{O}/\mathcal{J}^{k+1} & \xrightarrow{1} \mathcal{O}/\mathcal{J}^k.
\end{array}
$$

Tensoring by $p^*_2E \otimes L^m$ and taking $(p_1)_*$ yields

$$
\begin{array}{cccc}
\text{Sym}_k \Omega^{1}_X \otimes E \otimes L^m & \xrightarrow{(p_1)_*} & P^k(E \otimes L^m) & \xrightarrow{(p_1)_*} P^{k-1}(E \otimes L^m). \\
\end{array}
$$
Surjectivity of \( ev_k \) follows upon killing \((R^1 p_1)_*(\mathcal{J}^{k+1} \mathcal{E} \otimes \mathcal{L}^m)\). Similarly, (ii) follows from the identification \( W_x = (p_1)_*(\mathcal{J}^k \mathcal{E} \otimes \mathcal{L}^m)_x \).

1.4. Singularities of order \( k \). We apply the previous lemma to \( \mathcal{E} = \Omega^1_{\mathbb{P}^2}, \mathcal{L} = \mathcal{O}_{\mathbb{P}^2}(1) \). In order to simplify the notation we set for short in the sequel

\[
\Omega = \Omega^1_{\mathbb{P}^2} \quad \text{and} \quad V := H^0(\Omega(d + 2)).
\]

1.5. Remark. Fix \( k \leq d + 1 \). It follows from the explicit calculation of \( H^i(\mathbb{P}^2, \Omega(d + 2)) \) that the conclusions of the previous lemma hold for \( m = d + 2 \). Hence

(i) \( ev_k \) is surjective for \( k \leq d + 1 \) and

(ii) \( ev_k(\ker(ev_{k-1})) = \text{Sym}_k \Omega \otimes \Omega(d + 2) \).

We describe the locus \( M_k \subset \mathbb{P}^N \) of foliations of given degree \( d \) that have some singularity of order \( \geq k \).

1.6. Proposition. For \( 1 \leq k \leq d + 1 \), denote by

\[
M_k = \{ [\omega] \in \mathbb{P}^N \mid [\omega] \text{ has a singularity of order at least } k \}.
\]

Then we have

\[
\text{cod}_{\mathbb{P}^N} M_k = k(k + 1) - 2
\]

and

\[
\text{deg}(M_k) = \int_{\mathbb{P}^2} c_2(\mathcal{P}^{k-1}(\Omega(d + 2))).
\]

Proof. Define

\[
\mathcal{M}_k = \ker(ev_{k-1} : \mathbb{P}^2 \times V \to \mathcal{P}^{k-1}(\Omega(d + 2))).
\]

In view of the previous remark, we see that \( \mathcal{M}_k \) is a vector subbundle of \( V \) of co-rank equal to \( \text{rank} \mathcal{P}^{k-1}(\Omega(d + 2)) \). By construction, the projective bundle associated to \( \mathcal{M}_k \) is the incidence variety,

\[
P(\mathcal{M}_k) = \{ (p, [\omega]) \in \mathbb{P}^2 \times \mathbb{P}^N \mid p \text{ is a singularity of } [\omega] \text{ and } \nu_p(\omega) \geq k \}.
\]

Let \( q : P(\mathcal{M}_k) \to \mathbb{P}^N \) denote the projection in the second factor. We have \( M_k = q(P(\mathcal{M}_k)) \). It is easy to check that \( q \) is generically injective. It follows that \( \text{deg}(M_k) = \int s_2(\mathcal{M}_k) \cap [\mathbb{P}^2] \). Since \( s_2(\mathcal{M}_k) = c_2(\mathcal{P}^{k-1}(\Omega(d + 2))) \), the assertions now follow from [3].

Using the proposition we may now derive an explicit formula for the degree of \( M_k \subset \mathbb{P}^N \). See also the script in §5. We find

1.7. Corollary. The degree of \( M_k \) is given by

\[
\frac{1}{2} k(k + 1) \left( (k^2 + k - 1) (d^2 - (2k - 3)d) + \frac{1}{4} (4k^4 - 8k^3 - 7k^2 + 21k - 6) \right).
\]

□

2. Dicritical singularities

If \( \omega \in H^0(\mathbb{P}^2, \Omega(d + 2)) \) and \( p \) is a singularity of \( \omega \), we say that \( p \) is dicritical if the local expression of \( \omega \) is

\[
\omega_p = a_k dx + b_k dy + h.o.t
\]

with \( a_k x + b_k y = 0 \). In the case \( k = 1 \), we say that \( p \) is a radial singularity.

Observe that this condition is equivalent to

\[
\omega_p = f(x, y)(ydx - xdy) + h.o.t
\]
for some homogeneous polynomial $f$ of degree $k - 1$.

The main result of this section is the following.

2.1. Proposition. For all $1 \leq k \leq d$ there exists a subbundle $D_k$ of $\mathcal{M}_k \to \mathbb{P}^2$ such that

(i) $P(D_k) = \{(p, [\omega]) \in \mathbb{P}^2 \times \mathbb{P}^N \mid p$ is a dicritical singularity of $[\omega]$ with $\nu_p(\omega) \geq k\}$.

(ii) Set $D_k = q(P(D_k))$. Then the codimension of $D_k$ in $\mathbb{P}^N$ is $k(k + 2)$ and

(iii) the degree of $D_k$ is the coefficient of the degree two part of $c(P^{k-1}(\Omega(d + 2)))c(Sym_{k+1} \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2))$.

2.2. Remark. Before proceeding to the proof of the proposition, we explain an invariant way of expressing the condition that a singularity be dicritical. Suppose that $E$ is a vector bundle of rank 2. Then for all $k \geq 1$ we have the following exact sequence (e.g., see [2, Appendix 2 A2.6.1]),

$$0 \to \wedge^2 E \otimes \text{Sym}_{k-1} E \to \text{Sym}_k E \otimes E \xrightarrow{P_k} \text{Sym}_{k+1} E \to 0,$$

where the first map is given by

$$(a \wedge b \otimes c) \mapsto (ac \otimes b) - (bc \otimes a)$$

and the second by multiplication, i.e.,

$$a \otimes b \mapsto ab.$$

Say $x, y$ form a local basis for $E$. Then for $a_k, b_k \in \text{Sym}_k E$, we have that $a_kx + b_ky = 0$ in $\text{Sym}_{k+1} E$ if there is some $c \in \text{Sym}_{k-1} E$ such that $a_k \otimes x + b_k \otimes y$ is equal to the image of $x \wedge y \otimes c$, to wit, $xc \otimes y - yc \otimes x$.

2.3. Construction of $D_k$. We have the following diagram,

```
\begin{tikzcd}
\text{Sym}_k \Omega \otimes \Omega(d + 2) \\
\mathcal{P}^k(\Omega(d + 2)) \ar{u}[left]{J_k} \ar{d}[right]{\mathcal{P}^{k-1}(\Omega(d + 2))} \\
\mathcal{M}_k \ar{dr}[below]{\mathcal{T}_k} \\
\mathcal{V} \ar{u}[left]{\mathcal{E}_{\mathcal{V}}} \ar{d}[right]{\mathcal{P}_k} \ar{uu}[below]{\mathcal{P}^{k-1}(\Omega(d + 2))}
\end{tikzcd}
```

The map $J_k$ defined in the previous diagram is surjective in view of remark 1.5. We obtain the surjective map

$$\mathcal{M}_k \xrightarrow{J_k} \text{Sym}_k \Omega \otimes \Omega(d + 2) \xrightarrow{P_k} \text{Sym}_{k+1} \Omega(d + 2).$$

Explicitly, on the fiber over $p \in \mathbb{P}^2$ the map is as follows:

$$T_k(p, \omega) = (p, a_kx + b_ky)$$

where

$$\omega_p = a_k dx + b_k dy + h.o.t.$$ is the local expression of $\omega$ in a neighborhood of $p$. Set

$$D_k := \ker \left( \mathcal{M}_k \xrightarrow{T_k} \text{Sym}_{k+1} \Omega(d + 2) \right)$$
Thus $D_k$ is a vector bundle of rank $= \text{rank}(\mathcal{M}_k) - (k + 2)$. Recalling 2.2 we see that the projective bundle associated to $D_k$ is the incidence variety, $\mathbb{P}(D_k) = \{(p, [\omega]) \in \mathbb{P}^2 \times \mathbb{P}^N \mid p \text{ is a dicritical singularity of } [\omega] \text{ with } \nu_p(\omega) \geq k\}$. It can be shown that $q$ is generically injective. Hence the degree of $D_k$ is given by $\int s_2(D_k) \cap [\mathbb{P}^2]$. This finishes the proof of the proposition 2.1. □

A formula for the degree of $D_k$ can be made explicit.

2.4. Corollary. The degree of $D_k$ is given by

$$(k + 1)^2 \left[ \frac{1}{2}(k^4 + k^2 - 2k + 2) - (k^3 + k^2 + k - 1)d + \frac{1}{2}(k^2 + 2k + 2)(k + 1)^2 d^2 \right].$$

□

2.5. Remarks. (i) We have by construction the following diagram:

\[
\begin{array}{ccc}
\mathcal{D}_k & \xrightarrow{d_k} & \text{Sym}_{k-1} \Omega \otimes \wedge^{2} \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2) \\
\downarrow & & \downarrow \\
\mathcal{M}_k & \xrightarrow{J_k} & \text{Sym}_k \Omega \otimes \Omega(d + 2) \\
& \xrightarrow{T_k} & \text{Sym}_{k+1} \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2) \\
\end{array}
\]

By definition of $D_k$ we obtain a map $d_k : D_k \rightarrow \text{Sym}_{k-1} \Omega \otimes \wedge^{2} \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2)$ given in the fibers by $d_k(p, \omega) = f(x, y)dx \wedge dy$ where $f$ is a polynomial of degree $k - 1$.

(ii) In the case $k = 1$ we have

$$\omega = \lambda(ydx - xdy) + \text{h.o.t.}$$

with $\lambda \in \mathbb{C}$ i.e., a radial singularity. Thus 2.1 and 2.4 give formulas for the codimension and degree of the space of foliations with a radial singularity:

\[
\begin{cases}
\text{cod}_{\mathbb{P}^N} D_1 = 3 \\
\deg D_1 = 10d^2 - 8d + 4.
\end{cases}
\]

(iii) In the case $k = d + 1$ the map $J_{d+1} : \mathcal{M}_{d+1} \rightarrow \text{Sym}_{d+1} \Omega_{p_2}^1 \otimes \Omega(d + 2)$ is no longer surjective: its image is $\text{Sym}_d \Omega \otimes \wedge^{2} \Omega_{p_2}^1 \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2)$. Indeed, suppose that $\omega$ is a form of degree $d + 1$ which has $p$ as singularity of order $d + 1$. Then a local expression of $\omega$ is

$$\omega_p = a_{d+1}dx + b_{d+1}dy$$

but this form defines a projective form of degree $d + 1$ in $\mathbb{P}^2$ if and only if

$$a_{d+1}x + b_{d+1}y = 0$$

i.e. if $p$ is a dicritical singularity. Therefore we can write

$$\omega_p = f(x, y)(ydx - xdy)$$

for some homogeneous polynomial $f$ of degree $d$, i.e. $\omega_p \in \text{Sym}_d \Omega_{p_2}^1 \otimes \wedge^{2} \Omega_{p_2}^1$. Hence

$T_{d+1} : \mathcal{M}_{d+1} \xrightarrow{J_{d+1}} \text{Sym}_{d+1} \Omega \otimes \Omega(d + 2) \xrightarrow{P_{d+1}} \text{Sym}_{d+2} \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2)$
is the zero map. This shows that $\mathcal{M}_{d+1} = \mathcal{D}_{d+1}$ i.e., a foliation of degree $d$ a singularity of order $d + 1$ is automatically dicritical.

3. Maximal contact

Consider a degree $d$ form $\omega \in H^0(\mathbb{P}^2, \Omega(d + 2))$ with a dicritical singularity at $p = [0:0:1]$ of order $k \geq 2$. Denote by

$$\pi : \tilde{\mathbb{C}}^2 \to \mathbb{C}^2$$

the blowup of $\mathbb{C}^2$ at $p$. Write $\omega$ in local coordinates $(x, y)$ around $0 \in \mathbb{C}^2$ as

$$\omega = \sum_{j=k}^{d+1} a_j dx + b_j dy$$

where $a_j, b_j$ are homogeneous polynomials of degree $j$. The blowup of $\mathbb{C}^2$ at $(0,0)$

$$\tilde{\mathbb{C}}^2 = \{(x, y), [s : t] | tx = sy\} \subset \mathbb{C}^2 \times \mathbb{P}^1$$

is covered by the usual two charts

$$V_0 = \{((x, y), [1 : t]) | tx = y\} \simeq \{(x, t) | t, x \in \mathbb{C}\},$$

$$V_1 = \{((x, y), [s : 1]) | x = sy\} \simeq \{(s, y) | s, y \in \mathbb{C}\}.$$ 

Over $V_0$ we have $dy = tdx + xdt$. Thus

$$\pi^*(\omega)(x, t) = \sum_{j=k}^{d+1} a_j(x, tx)dx + b_j(x, tx)(tdx + xdt) =$$

$$\sum_{j=k}^{d+1} (a_j(x, tx) + tb_j(x, tx))dx + x(ta_j(x, tx)dx + ta_j(x, tx)dt) =$$

$$x^k \sum_{j=k}^{d+1} x^{j-k} [(a_j(1, t) + tb_j(1, t))dx + x\alpha_1 \lambda dx].$$

Since $p = (0,0)$ is a dicritical singularity we have

$$\omega = f(x, y)(ydx - xdy) + h.o.t$$

where $f$ is a polynomial of degree $k - 1$; so $a_k = yf(x, y)$, $b_k = -xf(x, y)$.

Hence we may write

$$\pi^*(\omega)(x, t) = x^k (xb_k(1, t)dt + x\alpha) = x^{k+1}(-f(1,t)dt + \alpha)$$

where $\alpha$ is a 1-form. The strict transform of $\omega$ is

$$\tilde{\omega} = -f(1,t)dt + (a_{k+1} + tb_{k+1})dx + x\alpha_1$$

for some 1-form $\alpha_1$. Over $V_0$ the exceptional divisor is given by $x = 0$, and by (6) we have

$$\tilde{\omega} \wedge dx = -f(1,t)dt \wedge dx + x\alpha_1 \wedge dx.$$

The leaves of $\tilde{\omega}$ passing through each point $(0, t_0)$ with $f(1,t_0) \neq 0$ are transverse to the exceptional divisor. On the other hand, the points $(0, t_0)$ such that $f(1,t_0) = 0$ but aren’t singularities of $\tilde{\omega}$ are exactly the points of tangency of $\tilde{\omega}$ with the exceptional divisor.
Next, we study the relationship between the multiplicity of \( t_0 \) as a zero of \( f(1,t) \) and the order of tangency of the leaf of \( \tilde{\omega} \) with the exceptional divisor at \((0,t_0)\).

3.1. Lemma. The intersection multiplicity of a leaf of \( \tilde{\omega} \) with the exceptional divisor at a point \((0,t_0)\) is the multiplicity of \( t_0 \) as zero of \( f(1,t) \) plus one.

Proof. We may assume \( t_0 = 0 \). By \((\ast)\) we have that \( \tilde{\omega} \) has the following form
\[
\tilde{\omega} = (-f(1,t) + x F(x,t))dt + (g(t) + x G(x,t))dx
\]
with \( f(1,0) = 0 \). Observe that \( g(0) \neq 0 \) because we are assuming that \( p := (0,0) \) is a nonsingular point of \( \tilde{\omega} \). Let \( h(x,y) = 0 \) be a local equation for a leaf of \( \tilde{\omega} \) through \((0,0)\), where \( h \) is a non constant holomorphic function. We have
\[
(\tilde{\omega} \wedge dh)(p) = -g(0) \frac{\partial h}{\partial x}(p) dt \wedge dx = 0.
\]
Hence \( \frac{\partial h}{\partial x}(p) = 0 \neq \frac{\partial h}{\partial x}(p) \). Therefore, we can find a local analytic parameterization of \( h = 0 \) of the form \( y = t, x = \gamma(t) \) defined in a neighborhood of \( t = 0 \) such that
\[
\begin{cases}
\gamma(0) = 0 \\
\gamma'(0) = \frac{\partial h}{\partial x}(p)/\frac{\partial h}{\partial y}(p) = 0
\end{cases}
\]
Since \( \gamma(t,t) \) parameterizes a leaf of \( \tilde{\omega} \) we find that
\[
f(1,t) + \gamma(t) F(\gamma(t),t) + \gamma'(t)(g(t) + \gamma(t) G(\gamma(t),t)) \equiv 0.
\]
Hence, repeatedly differentiating with respect to \( t \) yields
\[
\gamma^{(j)}(0) = 0 \quad \forall j \leq r \implies \gamma^{(r+1)}(0) = \frac{\partial^r f(1,0)}{g(0)}.
\]
Now, \( \gamma \) has intersection multiplicity \( n \) with \( x = 0 \) at \((0,0)\) if the first non-vanishing derivative of \( x(\gamma(t),t) = \gamma(t) \) at \( 0 \) is precisely \( n \). Thus the intersection multiplicity of \( h = 0 \) with \( x = 0 \) is \( n \) if and only if \( t = 0 \) is a zero of order \( n - 1 \) of \( f(1,t) \). \( \square \)

From the above Lemma we have that if \( \omega \in D_k \), then the order of tangency of the leaves of \( \omega \) with the exceptional divisor is \( \leq k \), and is equal to \( k \) precisely in the case that \( f = t^k - 1 \) where \( l \) is a polynomial of degree one.

3.2. Degree of the MC locus. Recall that we say that a form \( \omega \) has the MC property if it has a dicritical singularity \( p \) of order \( k \) such that the strict transform of \( \omega \) under the blowup of \( p \) has a leaf with maximal order of contact with the exceptional divisor of the blowup.

Consider a form with a dicritical singularity of order \( k \),
\[
\omega = f(x,y)(ydx - xdy) + h.o.t.
\]
(i.e. \( f \) is a polynomial of degree \( k - 1 \)). Then \( \omega \) has the MC property if and only if \( f(1,t) = (t-t_0)^{k-1} \) or \( f(s,1) = (s-s_0)^{k-1} \), i.e.
\[
f(x,y) = (ax + by)^{k-1} \text{ for some } a,b \in \mathbb{C}.
\]
Therefore we can parameterize the set of forms that has the MC property as follows. The Veronese-type map \( \Omega \rightarrow \text{Sym}_{k-1} \Omega \) induces an embedding
\[
v_k : \mathbb{P}(\Omega \otimes \wedge^2 \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2)) \rightarrow \mathbb{P}(\text{Sym}_{k-1} \Omega \otimes \wedge^2 \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2))
\]
which locally is given by \( v_k(p,l \otimes (ydx - xdy)) = (p, l^{k-1} \otimes (ydx - xdy)) \). In order to simplify the notation set
\[
\mathcal{E} := \Omega \otimes \wedge^2 \Omega \otimes \mathcal{O}_{\mathbb{P}^2}(d + 2)
\]
and
\[ \mathcal{E}_k := \text{Sym}_{k-1} \Omega \otimes \wedge^2 \Omega \otimes \mathcal{O}(d+2). \]

Define
\[ V_k := v_k(\mathcal{P}(\mathcal{E})) \subset \mathcal{P}(\mathcal{E}_k) \]

### 3.3. Lemma.
The codimension of \( V_k \) in \( \mathcal{P}(\mathcal{E}_k) \) is \( k-2 \) and its cycle class is
\[ [V_k] = uH_{k-2}^k + vhH_{k-3}^k + wh^2 H_{k-4}^k \cap \mathcal{P}(\mathcal{E}_k) \]
where \( H_k \) (resp. \( h \)) denotes the relative hyperplane class of \( \mathcal{P}(\mathcal{E}_k) \) (resp. \( \mathbb{P}^2 \)) and
\[ u = (k-1), \]
\[ v = -\frac{1}{4}(k-1)(k-2)(3k+2d-5), \]
\[ w = \frac{1}{4}(k-2)(k-1)^2(9k^2 - 47k + 12kd - 60d + 72 + 12d^2). \]

**Proof.** It is clear that \( \text{cod}(V_k) = \dim \mathcal{P}(\mathcal{E}_k) - \dim \mathcal{P}(\mathcal{E}) = k-2 \). Recalling that the Chow ring \( A_*(\mathcal{P}(\mathcal{E}_k)) \) is generated by \( H_k \) and \( h \) (see [3, Thm. 3.3., p. 64]) we can express
\[ [V_k] = uH_{k-2}^k + vhH_{k-3}^k + wh^2 H_{k-4}^k \cap \mathcal{P}(\mathcal{E}_k). \]

With this notation, the relative hyperplane class of \( \mathcal{P}(\mathcal{E}) \) is \( H_2 \), and we have \( v_k(H_k) = (k-1)H_2 \). Consider the following diagram:

\[
\begin{array}{ccc}
\mathbb{P}(\mathcal{E}) & \xrightarrow{v_k} & \mathcal{P}(\mathcal{E}_k) \\
\downarrow{\rho} & & \uparrow{=} \\
\mathbb{P}^2 & & 
\end{array}
\]

To find the coefficient \( u \) we multiply by \( h^2H_k \) both sides of (7) to obtain:
\[ h^2H_k \cap v_k(\mathcal{P}(\mathcal{E})) = uh^2H_{k-1}^k \cap \mathcal{P}(\mathcal{E}_k). \]

By the projection formula we have:
\[ h^2v_k((k-1)H_2 \cap \mathcal{P}(\mathcal{E})) = uh^2H_{k-1}^k \cap \mathcal{P}(\mathcal{E}_k). \]

Applying \( \pi_* \) to this last equation we find
\[ (k-1)h^2 \cap \pi_* (H_2 \cap \rho^*\mathbb{P}^2) = uh^2\pi_* (H_{k-1}^k \cap \pi^*\mathbb{P}^2) \]
\[ (k-1)h^2 \cap s_0(\mathcal{E}) \cap \mathbb{P}^2 = uh^2 \cap s_0(\mathcal{E}_k) \cap \mathbb{P}^2. \]

Hence \( u = k-1 \). Next, multiplying (7) by \( hH_2^k \) we get
\[ hH_2^k \cap v_k(\mathcal{P}(\mathcal{E})) = uhH_{k}^k \cap \mathcal{P}(\mathcal{E}_k) + vh^2H_{k-1}^k \cap \mathcal{P}(\mathcal{E}_k). \]

Hence the projection formula gives us
\[ h(k-1)^2 \cap v_k (H_2^k \cap \mathcal{P}(\mathcal{E})) = uhH_{k}^k \cap \mathcal{P}(\mathcal{E}_k) + vh^2H_{k-1}^k \cap \mathcal{P}(\mathcal{E}_k). \]

Applying \( \pi_* \) we obtain
\[ h(k-1)^2 \rho_2 (H_2^k \cap \mathcal{P}(\mathcal{E})) = uh\pi_* (H_{k}^k \cap \pi^*\mathbb{P}^2) + vh^2\pi_* (H_{k-1}^k \cap \pi^*\mathbb{P}^2), \]
\[ (k-1)^2 h s_1(\mathcal{E}_k) \cap \mathbb{P}^2 = ((k-1)hs_1(\mathcal{E}_k) + vh^2 s_0(\mathcal{E}_k)) \cap \mathbb{P}^2. \]

hence \( v = (k-1)^2 s_1(\mathcal{E}_k) - (k-1)s_1(\mathcal{E}_k). \)

Similarly we obtain \( w = [(k-1)^2 s_2(\mathcal{E})-us_2(\mathcal{E}_k)-vh s_1(\mathcal{E}_k)] \cap [\mathbb{P}^2]. \)

The lemma follows from the calculation of the Segre classes of \( \mathcal{E} \) and \( \mathcal{E}_k \). Observe that \( \wedge^2 \Omega = \mathcal{O}(-3) \), so that \( \mathcal{E} = \Omega(d-1) \) and \( \mathcal{E}_k = \text{Sym}_{k-1} \Omega \otimes \mathcal{O}(d-1) \). These classes can be computed with SCHUBERT [8]. □
By Remark (2.3) we have a rational map $\psi_k$ as in the diagram

\[ \psi_k : \mathbb{P}(D_k) \dashrightarrow \mathbb{P}(E_k) \]

Set $\Gamma_k := \psi_k^{-1}(V_k) \subset \mathbb{P}(D_k)$. Thus

\[ \Gamma_k = \{(p, [\omega]) \mid \omega_p = l^{k-1}(ydx - xdy) + h.o.t \text{ for some } l \in \Omega_p \}. \]

The image

\[ C_k := q(\Gamma_k) \subset \mathbb{P}^N \]

parameterizes the space of foliations with the $MC$ property.

### 3.4. Lemma

We have

(i) $\operatorname{codim}_{\mathbb{P}(D_k)} \Gamma_k = \operatorname{codim}_{\mathbb{P}(E_k)} \forall_k = k - 2$.

(ii) Let $Z \subset \mathbb{P}(D_k)$ denote the indeterminacy locus of $\psi_k$. Then

\[ \operatorname{codim}_{\mathbb{P}(D_k)}(Z) = k. \]

**Proof.** Since $\psi_k$ (cf. diagram) is induced by a surjective map of vector bundles, its fibers have the same dimension $n$. Therefore $\dim \Gamma_k = \dim \forall_k + n$, and $\dim \mathbb{P}(D_k) = \dim \mathbb{P}(E_k) + n$. Hence the equality for the codimension follows: $\operatorname{codim}_{\mathbb{P}(D_k)}(Z) = \operatorname{rank}(\operatorname{Sym}_{k-1} \Omega \otimes \wedge^2 \Omega(d + 2)) = k$. □

We may now find the degree of the locus of dicritical foliations with maximal contact.

### 3.5. Proposition

(i) The codimension of $C_k$ in $\mathbb{P}^N$ is

\[ \operatorname{codim}_{\mathbb{P}^N} C_k = k^2 + 3k - 2. \]

(ii) The degree of $C_k$ is given by the formula

\[ \frac{(k-1)}{2} \left[ 1 + 4k^6 + 20k^5 - 15k^4 - 66k^3 + 211k^2 - 218k + 112 - (2k^5 + 7k^4 + 2k^3 + 24k^2 - 49k + 44)d + (k^4 + 2k^3 + 10k^2 + k + 16)d^2 \right]. \]

**Proof.** First of all, the restriction $q|_{\Gamma_k}$ is generically injective. For instance, it can be checked that the 1-form

\[ \omega = (z_2^{d-(k-1)}(z_0 + z_1)^{k-1} + z_0^d + z_1^d)(z_1 dz_0 - z_0 dz_1) \]

has $p = [0 : 0 : 1]$ as its unique singularity with order $k$ and $p$ is a reduced point of the fiber $(q|_{\Gamma_k})^{-1}([\omega])$. To compute the codimension observe that

\[ \operatorname{codim}_{\mathbb{P}^N} C_k = \operatorname{codim}_{\mathbb{P}^N} D_k + \operatorname{codim}_{\mathbb{P}(D_k)} C_k = k(k+2) + k - 2 = k^2 + 3k - 2. \]

Put $n = \dim \Gamma_k$. By lemma (2.3)(ii) we have that $\dim Z < n$, hence $A_n(Z) = 0$. Using the excision exact sequence (cf. [3, Prop. 1.8, p. 21])

\[ A_n(Z) \rightarrow A_n(\mathbb{P}(D_k)) \rightarrow A_n(\mathbb{P}(D_k) \setminus Z) \rightarrow 0, \]

we deduce that

\[ A_n(\mathbb{P}(D_k)) \cong A_n(\mathbb{P}(D_k) \setminus Z). \]
Therefore, using that the class $\psi_k^* [\mathbb{V}_k]$ is known in $\mathbb{P}(\mathcal{D}_k) \setminus Z$, we can do the computations in $A_*(\mathbb{P}(\mathcal{D}_k))$. Recalling $[S]$, $\psi_k$ is a linear projection, we have that $\psi_k^* H_k = H := c_1(\mathcal{O}_{\mathbb{P}(\mathcal{D}_k)}(1))$. Therefore

$$
\deg C_k = \deg q_* \Gamma_k = \int H^n \cap \lbrack \mathcal{D}_k \rbrack = \int H^n \cap \psi_k^* [\mathbb{V}_k] =
$$

(Lemma 3.3) $$\int (uH^{n+k+2} + vhH^{n+k-3} + wh^2H^{n+k-4}) \cap [\mathbb{P}(\mathcal{D}_k)] =$$

$$\int (uH^{r+1} + vh + wh^2) \cap [\mathbb{P}^2(\mathcal{D}_k)],$$

where $r = \text{rank} \mathcal{D}_k$. Applying $p_1^*$ and using the definition of Segre class we see that what we are calculating is:

$$\int (w_2(\mathcal{D}_k) + v s_1(\mathcal{D}_k) + w s_0(\mathcal{D}_k) \cap [\mathbb{P}^2]).$$

From Lemma 3.3 we know the values of $u, v, w$. The classes $s_1(\mathcal{D}_k)$ and $s_2(\mathcal{D}_k)$ are known from [5] and the beginning of the proof of 1.6. We finish using SCHUBERT [8].

4. Concluding remarks

It is worth mentioning that for foliations of degree $d \geq 2$, the scheme of singularities completely determines the foliation. Moreover, the schemes of $d^2 + d + 1$ points that can occur as singular scheme of a foliation are known, cf. [11]. It would be nice to work out the enumerative geometry of the loci of foliations with scheme of singularities subject to collisions.

The reader is invited to check that formulas similar to 1.7, 2.4 and 3.5 can be written down for an arbitrary surface. Precisely, given a smooth, projective surface $X$, we may fix an ample divisor class $h$ and look at the space of foliations $\mathbb{P}^N = \mathbb{P}(H^0(\Omega_X^1 \otimes \mathcal{O}(d+2))$ for $d \gg 0$. The degree of $M_k$ can be written as

$$\frac{1}{72} k(k+1)(4k^4 + 8k^3 - 5k - 6) c_1^2 + ((24k^3 + 36k^2 - 12k - 12)d + 48k^3 - 72k^2 - 24k - 24)c_1 h + 6(k^2 + 6 + 4)c_2 + 36(d + 2)^2 (k^2 + k - 1) h^2,$$

where we set for short $c_1 = c_1(\mathcal{V}_X)$. Substituting in the Chern numbers for $\mathbb{P}^2$, $(h^2 = 1, c_1 h = -3, c_2 = 3)$ reproduces [1.7] We include a script below.

5. SCHUBERT/Maple script

with(schubert): DIM:=2; omega:=bundle(2,c); f:=expand(Symm(k,omega));

G:=convert(%,list); s0:=sum(i, 'j'=0..k-1): s0:=factor(%);

s1:=sum('j', 'j'=0..k-1): s1:=factor(%); s2:=sum('j^2', 'j'=0..k-1):

s2:=factor(%); s3:=sum('j^3', 'j'=0..k-1): s3:=factor(%);

G:=g[1]:=[]: for i to nops(g) do if has(g[i],k^3) then print(i):

l:=[op(i),i]: g[i]:=subs(k^3=s3,g[i]) fi od;g;

G:=g[1]:=[]: for i to nops(g) do if not i in l then

if has(g[i],k^2) then print(i): l:=[op(i),i]: g[i]:=subs(k^2=s2,g[i]) fi fi od;g;

G:=g[1]:=[]: for i to nops(g) do if not i in l then

if has(g[i],k) then print(i):

l:=[op(i),i]: g[i]:=subs(k=s1,g[i]) fi fi od; g[1]:=[s0];

collect(convert(g,`+`,t)); omega*0((d+2)*h); mTaylor(%*%,-t,3);

chern(2,%); factor(%); #P2: c1^2=9*h^2,c2=3*h^2,c1=-3*h^2

subs(c1^2=9*h^2,%); subs(c2=3*h^2,%); subs(c1=-3*h,%); print(indets(%));

factor(%); subs(h=1,%); collect(%,d);
References

[1] A. Campillo and J. Olivares. Polarity with respect to a foliation and Cayley-Bacharach Theorems. J. reine angew. Math. 534, 95-118 (2001).
[2] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150. New York etc.: Springer-Verlag, (1994).
[3] W. Fulton. Intersection Theory. Springer-Verlag, New York. (1985).
[4] L. Göttsche. A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196, 523–533, eprint alg-geom/9711012 (1998).
[5] A. Grothendieck et J. Dieudonné. Éléments de Géométrie Algébrique IV-4. Publ. Math. IHES, 32, 5–361 (1967).
[6] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. 52. New York - Heidelberg - Berlin: Springer-Verlag, (1977).
[7] J.P. Jouanolou. Equations de Pfaff algébriques. Lectures Notes in Mathematics, 708. Springer-Verlag, (1979).
[8] S. Katz and S.A. Stromme. Schubert: a maple package for intersection theory, http://www.mi.uib.no/schubert/
[9] S.L. Kleiman and R. Piene. Node polynomials for families: methods and applications. Math. Nachr. 271, 69–90, (2004).
[10] R. Piene. Numerical characters of a curve in projective n-space. In: Holm, P. (ed.) Real and complex singularities. Proceedings, Oslo 1976, pp. 475-496. Sijthoff & Noordhoff (1977).