Analysis on the source of scale-forming ions in water injection wells of No.1 structure in Nanpu Oilfield

Mingbang Tian 1, *, rongkun Yan 2, Dong Chen 1
1 Ruifeng Chemical Company of Jidong Oilfield, Tangshan, Hebei, China
2 Jidong Oilfield Onshore Operation Area, Tangshan, Hebei, China

*Corresponding author e-mail: Mingbang@petrochina.com.cn

Abstract. In order to define the working in the Nanpu oilfield no. 1 injection Wells into scale ion source structure, introducing the Stiff - Davis, prediction of calcium carbonate scale, combining this method with actual production, the scale formation prediction model is set up, find out critical calcium ions concentration, calculated the critical calcium content. According to the content of nanpu oil field in three-phase water outlet ion data, using linear regression method, set up at different times of calcium ion content change curve, compared with critical calcium ion content, find the fouling ion source. Through research shows that working in the nanpu oilfield no. 1 main scale structure type is calcium carbonate scale, the main scale ion Ca^{2+} and HCO_3^- from high pressure well liquid.

Keywords: Stiff-Davis method; Calcium carbonate scale formation; Critical calcium ion concentration; High density pressure well liquid.

1. Introduction
No.1 structure in Nanpu Oilfield is in the stage of water injection development, and serious scaling occurs in the wellbore pipeline and bottom hole of water injection well. Scaling reduces the inner diameter of pipeline and the cross-sectional area of water flow, which leads to the increase of water injection pressure and affects the water injection efficiency. Combined with the actual scaling situation of water injection wells in No.1 structure of Nanpu Oilfield, the scaling trend prediction model suitable for No.1 structure of Nanpu Oilfield was selected, and the Stiff-Davis method was introduced to predict calcium carbonate scaling.

2. Scaling status of water injection wells in No.1 structure of Nanpu Oilfield
From 2012 to April 2013, scaling phenomenon was found in many water injection wells during the operation of No.1 structure in Nanpu Oilfield, and the shaft scaling was serious. A total of 10 scaling water injection wells were found, including 2 in Nanpu Oil Production Zone 1, 1 in Nanpu Oil Production Zone 2 and 7 in Oil Production Zone 3. There are 109 water injection wells in Nanpu Oilfield, including 72 water injection wells in No.1 structure, accounting for 66% of the water injection wells. The water source of water injection wells in No.1 structure comes from the sewage treatment station in No.1 oil production area of Nanpu Oilfield.

See fig. 1 for statistics of scaling of water injection wells in No.1 structure of Nanpu oilfield.
Figure 1. Scale statistics of injection wells in No.1 structure of Nanpu Oilfield

See fig. 2 for the flow direction of water injection source in injection well of No.1 structure in Nanpu oilfield

Figure 2. Trend map of water injection source of injection well of No.1 structure in Nanpu Oilfield

3. Type of scale
Spectral analysis of scale samples from Nanpu injection wells is shown in Figure 2.
It can be seen from the figure that the scale type is mainly calcium carbonate and a small amount of magnesium carbonate. Magnesium carbonate is more soluble than calcium carbonate, and its solubility in distilled water is four times greater than that of calcium carbonate. Therefore, for most water containing both magnesium carbonate and calcium carbonate, any condition that reduces the solubility of magnesium carbonate and calcium carbonate will first form calcium carbonate scale.

The water quality of every link of Nanpu No.1 structure water injection source was analyzed, and the report showed that calcium ion was generally 3-8 times of magnesium ion. Therefore, the main scale type of water injection wells in Nanpu No.1 structure is calcium carbonate scale.

4. Prediction model
The scale samples taken from scaling wells in Nanpu Oilfield were dried, burned and dissolved in acid, and the scale samples were tested by acid titration. The test results showed that the scale types were mainly calcium carbonate, a small amount of magnesium carbonate, a small amount of sulfate scale, iron compound scale and organic scale, and the main scale-forming ions were Ca$^{2+}$ and HCO$_3^-$ [1].
4.1. **Prediction of calcium carbonate scaling by Stiff-Davis method [2]**

Scale formation of calcium carbonate is predicted according to Stiff-Davis method (see Formula 1)

\[\text{SI} = A - \text{pCa} - \text{pAlk} - K \]

(1)

In the formula:
- \(A \) —— Actual measured PH value of water sample;
- \(\text{pCa} \) —— The negative logarithm of \(\text{Ca}^{2+} \) concentration in mol/L;
- \(\text{pAlk} \) —— The negative logarithm of total alkalinity, which is the sum of \(\text{HCO}_3^- \) and \(\text{CO}_3^{2-} \) concentrations in water, and the concentration unit is mol/L;
- \(K \) —— Stiff-Davis constant is a function of temperature and ionic strength;
- \(\text{SI} \) —— Saturation index, also called scaling index.

When \(\text{SI} \) is less than 0, CaCO₃ is unsaturated and will not scale. When \(\text{SI} \) is greater than 0, CaCO₃ is saturated and may scale.

First, the formula (2) is obtained by transforming the formula (1)

\[\text{pCa} = A - \text{pAlk} - K - \text{SI} \]

(2)

When \(\text{SI} = 0 \), that is, when calcium carbonate is saturated in water, the formula (3) for calculating the critical calcium ion concentration can be derived

\[\text{C}_{\text{cr}} = 10^{-\text{pCa}} = 10^{-(A - \text{pAlk} - K - \text{SI})} \]

(3)

Then, the formula (4) for calculating the critical calcium ion content can be obtained

\[\text{N}_{\text{cr}} = \text{C}_{\text{cr}} \times 40 \text{g} \]

(4)

If the critical value of calcium ion content at different temperatures can be calculated and compared with the calcium ion content in water-based analysis, it can be predicted whether there is scaling tendency of calcium carbonate in No.1 structure of Nanpu Oilfield.

4.2. **Definite solution condition**

It can be seen from formula 1-1 that the factors affecting calcium carbonate saturation index mainly depend on \(\text{pCa} \), \(\text{pAlk} \), \(a \) and \(K \).

\(K \) is a constant, which can be obtained by looking up the table. It is necessary to know the ionic strength, which \(I \approx \text{TDS} \text{ (mg/L)} / 58400 \). TDS is the total salinity [2].

The water source of injection well in Nanpu No.1 structure, that is, the water delivered outside the sewage treatment station of No.1 oil production area in Nanpu Oilfield, has been kept at PH 7.0, so \(A = 7.0 \).

Under normal pressure, the total salinity and alkalinity of sewage from No.1 structure in Nanpu Oilfield from April 2010 to February 2013 are taken as the research objects (see Figure 5 and Figure 6)
Figure 5. Change curve of total alkalinity

It can be seen from the above figure that the total salinity and total alkalinity of sewage from No.1 structure in Nanpu Oilfield change smoothly, and it can be obtained by calculation that the average total salinity is 3,701 mg/L; Average total alkalinity = 19.58 mmol/l.

By verifying the maximum and minimum values of total salinity and total alkalinity, it is found that the total salinity and total alkalinity have little effect on calcium carbonate scaling in the actual production process and can be ignored, so the total salinity and total alkalinity can be averaged.

5. Model solving
When TDS=3701mg/L, I≈0.06 is calculated, and K values at different temperatures are found (see Table 1)

Table 1. K value at different temperatures

Temperature (°C)	10	20	25	30	40	50	60	70	80	90
K	2.6	2.4	2.2	2.1	1.9	1.7	1.6	1.3	1.2	1.0

When total alkalinity =19.58mmol/L, the negative logarithm of total alkalinity Palk=1.71 can be obtained by calculation.

According to the formulas (1-3, 1-4), the critical calcium ion concentration and content at different temperatures can be calculated (see Table 2)

Table 2. Critical calcium ion content at different temperatures

Temperature (°C)	P裢常数	K	Pal	KPal	Pca	Critical calcium ion concentration	Critical calcium ion content
10		2.6	2.69	2.04	81.6		
20		2.4	2.89	1.29	51.6		
25		2.2	3.09	0.81	32.4		
30		2.1	3.19	0.64	25.6		
40		1.9	3.39	0.41	16.4		
50		1.7	3.59	0.26	10.4		
60		1.6	3.69	0.2	8		
70		1.3	3.99	0.1	4		
80		1.2	4.09	0.08	3.2		
90		1	4.29	0.05	2		

Because the conditions of water-based analysis are normal pressure and room temperature, and the room temperature is close to 20°C. At 20°C and normal pressure, the critical scaling calcium ion content of No.1 structural sewage in Nanpu Oilfield is 51.6 mg/L.
6. Source analysis of calcium ion
According to the flow direction of water injection source of No.1 structural injection well in Nanpu Oilfield, the source of scaling ions was traced back upstream from the water delivery outside the No.1 oil production area in Nanpu Oilfield by using the method of reverse push.

6.1. Water-based analysis of water outlet of three-phase separator
Because the water from the water outlet of the three-phase separator passes through the crude oil dehydration and sewage treatment system during the water transfer from Nanpu 1-1 artificial island, the only foreign liquids entering the system in this process are Laoye temple sewage and added chemicals, the main chemicals are: Three-phase demulsifier is polyether, reverse demulsifier is polyquaternary ammonium salt, coagulant and coagulant aid are inorganic polyaluminium chloride and bactericide is biquaternary ammonium salt, which do not contain scale-forming ions and basically do not change water property [3].

Moreover, the calcium ion content of Laoye temple sewage is lower than the critical ion content, and the total alkalinity and salinity are close to the average value of external water delivery, so there is no scaling trend under normal pressure (see Table 3).

Name	Mg$^{2+}$ mg/L	Ca$^{2+}$ mg/L	HCO$_3^-$ mg/L	CO$_3^{2-}$ mg/L	Total salinity mg/L	Total alkali mmol/L	PH value
Laoye temple sewage	12	47	1235	77	3146	22.80	7.0

Therefore, the data of calcium ion content in the water outlet of the three-phase separator in the first oil production area of Nanpu Oilfield is analyzed and studied. The change of calcium ion content in a period of time was taken as the research object, and compared with the critical scaling calcium ion content at 20°C and normal pressure.

From July, 2012 to December, 2012, the change of calcium ion content in water outlet of Nanpu 1-1 artificial island in No.1 structure of Nanpu Oilfield is shown in Figures 7, 8 and 9.

Figure 6. Change curve of calcium ion content in 1# three-phase separator

Figure 7. Change curve of calcium ion content in 2# three-phase separator
Through comparative analysis, it can be seen that the water outlets of the three-phase separators have scaling trends in different degrees, among which the scaling trend of the water outlet of No.2 three-phase separator is serious, that is, the fluid from the third oil production area of Nanpu Oilfield.

6.2. Water-based analysis of system incoming liquid
The comparative analysis of the water outlet of the three-phase separator shows that the system fluid from each oil production area in Nanpu Oilfield has scaling tendency to varying degrees. Therefore, the water property of the system fluid from each production area of Nanpu Oilfield is analyzed. The system fluid from each oil production area of Nanpu Oilfield includes three parts: produced water from oil well, produced water from water source well and kill fluid.

6.2.1. Comparative analysis of produced water from oil wells. Select representative wells in different blocks and horizons as research objects, conduct water-based analysis, and compare and analyze calcium ion content with critical scaling calcium ion content. See tables 4, 5, 6, 7 and 8

Oil well number	Sampling date	Production horizon	Mg$^{2+}$ mg/L	Ca$^{2+}$ mg/L	HCO$_3^-$ mg/L	CO$_3^{2-}$ mg/L	Total salinity mg/L	Total alkali mmol/L	PH value	Remarks
NP11-X130	2012.06.09	NmII	6	10	580	85	1352	12.32	7	
NP1-4A2-P3	2012.12.23	NgII	0	5	968	66	1810	18.04	7	
NP1-4A15-P251	2012.06.09	NgIV	2	8	451	42	2161	8.8	7	
NP1-32C1	2013.03.08	EdI	6	15	1935	66	4735	33.9	7	
NP11-L8-X204	2013.03.08	EdI	13	7	3971	131	6698	69.44	8	
NP11-C1-X206	2013.03.08	EdI	17	25	2069	66	4530	36.09	7	
NP11-X118	2012.04.03	NgII	3	15	601	82	1367	12.58	7	
NP1-4A4-X501	2012.05.19	NgIV	1	3	1133	135	3339	23.06	7.5	
NP118-1	2012.08.17	NgIV	1	20	578	62	2406	11.53	7	

Oil well number	Sampling date	Production horizon	Mg$^{2+}$ mg/L	Ca$^{2+}$ mg/L	HCO$_3^-$ mg/L	CO$_3^{2-}$ mg/L	Total salinity mg/L	Total alkali mmol/L	PH value	Remarks
NP12-X812	2013.02.24	EdIII	9	20	400	66	986	8.75	7	
NP12-X805	2012.05.14	EdIII	4	20	2008	0	5469	32.91	7.5	
NP1-29X90	2013.02.23	NgIV	33	15	2402	131	6450	43.74	8	
NP1-29	2012.05.24	NgIV	15	35	1785	135	6433	33.75	7	
Table 6. Analysis of produced water from oil wells in the third oil production area

Oil well number	Sampling date	Production horizon	Mg2+ mg/L	Ca2+ mg/L	HCO3- mg/L	CO32- mg/L	Total salinity mg/L	Total alkali mmol/L	PH value	Remarks
NP13-1942	2013.03.03	EdI	6	30	898	0	3172	14.72	7	
NP13-X1106	2012.02.25	EdI	4	27	3370	98	9690	58.51	7	
NP13-X1058	2012.06.17	NgI	1	9	686	34	1364	12.38	7	
NP13-X1026	2012.12.31	EdII	6	32	3017	46	6278	50.98	7	
NP13-1152	2012.10.30	EdIII	2	12	4088	0	7626	66.99	7	
NP13-X1702	2012.12.27	O	18036	32335	3863	0	146759	4.5		

Well killing fluid with specific gravity of 1.25 was used for oil test on October 25, 2012. Blowout prevention on December 6th and completion on December 17th.

Table 7. Analysis of produced water from oil wells in the fourth oil production area

Oil well number	Sampling date	Production horizon	Mg2+ mg/L	Ca2+ mg/L	HCO3- mg/L	CO32- mg/L	Total salinity mg/L	Total alkali mmol/L	PH value	Remarks
NP41-X4536	2012.06.08	EsI	3	10	4599	120	7114	79.38	7.5	
NP42-X4322	2013.01.20	NgI	2	5	740	0	1595	12.13	7	
NP41-4218	2013.01.20	NgII	2	21	723	0	2168	11.84	7	
NP41-4128	2012.09.06	NgIII	3	11	642	75	1905	13.02	7	
NP41-4110	2012.09.06	NmIII	7	32	795	105	1841	16.53	7	

Table 8. Analysis of produced water from oil wells in the fifth oil production area

Oil well number	Sampling date	Production horizon	Mg2+ mg/L	Ca2+ mg/L	HCO3- mg/L	CO32- mg/L	Total salinity mg/L	Total alkali mmol/L	PH value	Remarks
NP23-P2003	2012.11.06	O	163	486	1062	0	16399	17.41	6	2012.10.21 Overhaul and completion. Use 1.25 kill hydraulic well.
NP23-P2009	2011.12.17	O	272	1941	125	0	11847	2.05	5.5	On November 24, 2011, the oil was tested, overflowing and replacing 150 cubic meters of 1.25 kill fluid.
NP23-P2006	2013.01.30	O	3	19	2065	0	5500	33.84	7	
NP23-X2110	2011.02.07	NgII	1	6	717	0	1062	11.76	7	
NP23-X2408	2013.03.07	NgII	1	5	485	0	795	7.95	7	
NP23-X2402	2012.03.12	NgIII	3	47	1589	0	3936	26.04	7	
NP23-X2407	2011.05.06	EdI	5	9	2866	68	4294	49.22	8	
NP23-X2411	2011.11.30	EdI	4	8	1610	62	2486	28.44	7	
NP23-X2212	2012.08.30	EdI	2	22	1039	286	3558	26.54	8	
According to the above analysis, there is no scaling trend in the produced water of oil wells except the three wells in Ordovician in the third and fifth oil production areas. The three wells are analyzed and studied: First, they all use high density kill fluid; Second, before using high-density kill fluid, the average calcium ion content in historical water analysis is about 20mg/L and not more than 51.6mg/L.

6.2.2. Comparative analysis of produced water from water source wells. The water property of the produced water entering the water source well of the sewage treatment system in Nanpu No.1 Oil Production Zone is analyzed, as shown in Table 9.

Table 9. Analysis of produced water from water source wells in Nanpu Oilfield

Oil well number	Sampling date	Mg$^{2+}$ mg/L	Ca$^{2+}$ mg/L	HCO$_3^-$ mg/L	CO$_3^{2-}$ mg/L	Total salinity mg/L	Total alkali mmol/L	PH value
B3	2009.12.02	3	10	313	0	912	5.13	7
NP23-X2403	2009.12.03	2	6	595	0	976	9.75	7
NP23-X2540	2009.12.03	0	2	563	31	961	10.26	7
B1-1	2009.12.24	2	10	282	31	816	5.64	7
NP23-X2540	2010.05.06	0	2	599	0	908	9.82	7
NP23-X2403	2010.05.06	0	3	570	0	960	9.35	7
B7-11	2010.05.14	1	12	354	16	1049	6.34	7
NP11-X130	2010.06.09	6	10	580	85	1352	12.32	7
NP23-X2228	2012.01.11	0	4	631	0	955	10.35	7
NP23-X2245	2012.01.11	0	3	581	0	880	9.53	7
NP101X8	2012.10.23	1	3	547	32	1189	10.02	7
NP23-X2228	2013.03.07	0	4	293	17	526	5.36	7
NP23-X2403	2013.03.07	0	2	313	0	734	5.13	7

The ratio analysis shows that the calcium ion content is lower than the critical scaling calcium ion content, and there is no scaling trend.

6.2.3. Comparative analysis of killing fluid water property. The well killing fluid entering the sewage treatment system of Nanpu No.1 Oil Production Area is analyzed.

6.2.3.1 Component analysis of kill fluid

1) Low density formula (density 1.01-1.20g/cm3): 1% clay anti-swelling agent TRFP-1+1% potassium chloride +0.02% sodium sulfite+water + (0-26%) sodium chloride.

2) High density formula (1.25 ~ 1.35 g/cm3): 1% clay anti-swelling agent TRFP-1+1% potassium chloride +0.02% sodium sulfite+0.2%EDTANa$_2$ (EDTA complexing agent) +0.1% HEC (HEC tackifier) + water + (26-40%) calcium chloride.

It can be seen that the low density kill fluid does not contain calcium ions, while the high density kill fluid contains a large amount of calcium ions.

6.2.3.2 Water-based analysis of kill fluid

Table 10. For water-based analysis of high-density kill fluid.

Name	Mg$^{2+}$ mg/L	Ca$^{2+}$ mg/L	SO$_4^{2-}$ mg/L	HCO$_3^-$ mg/L	CO$_3^{2-}$ mg/L	Total salinity mg/L	Total alkali mmol/L	PH value
High density kill fluid	2907	182156	34445	116124	0	757864	1903.04	6.50

It can be seen from the above table that scaling ions of injection wells in No.1 structure of Nanpu Oilfield originate from calcium chloride in high-density kill fluid.
7. Summary
(1) In No.1 structure of Nanpu Oilfield operation area, the main scale type is carbonate scale, most of which is calcium carbonate scale, and there is a small amount of magnesium carbonate scale, which mainly forms scale ions Ca²⁺ and HCO₃⁻.

(2) By using Stiff and Davis methods, the critical scaling calcium ion content of water conveyance outside No.1 structure in Nanpu Oilfield operation area at normal pressure and room temperature is calculated to be 51.6mg/L, which can be compared with the calcium ion content in the water-based analysis report to judge whether there is scaling trend.

(3) It is determined that the main scaling ions Ca²⁺ and HCO₃⁻ in water injection wells of No.1 structure in Nanpu Oilfield come from high-density kill fluid, which has defined the goal and laid a foundation for scaling control of No.1 structure water injection wells in Nanpu Oilfield.

References
[1] China national petroleum corporation SY/T 0600-1997. Prediction of scaling trend of oilfield water 1997.
[2] Chen Haiyang, Ren Hongxian, Hou Xinghua. Formation and prediction of scale, [J]. Foreign Oilfield Engineering, 02, 1995.
[3] Jiang Wei, Zheng Yunping, Si Xianfeng. Summary of oil field water prediction research [J]. Special oil and gas reservoirs, 05, 2006.