Identification of Two Sox17 Messenger RNA Isoforms, with and without the High Mobility Group Box Region, and Their Differential Expression in Mouse Spermatogenesis

Yoshiakira Kanai,* Masami Kanai-Azuma,* Toshiaki Noce, § Takaomi C. Saigo, † Toshihiko Shiroishi, ‡ Yoshihiro Hayashi, § and Kazumori Yazaki*

*Department of Ultrastructural Research and †Department of Molecular Biology, the Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113; ‡Department of Molecular Reproduction and Development, Mitsubishi Kagaku Institute of Life Sciences, Machida-shi, Tokyo 194; §Department of Cell Genetics, National Institute of Genetics, Yata, Mishima 411; and ‡Department of Veterinary Anatomy, the University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract. Two different mRNA isoforms of the mouse Sox17 gene were isolated from adult mouse testis cDNAs. One form (referred to as form Sox17) encodes an Sry-related protein of 419 amino acids containing a single high mobility group box near the NH2 terminus, while the other form (referred to as form t-Sox17) shows a unique mRNA isoform of the Sox17 gene with a partial deletion of the HMG box region. Analysis of genomic DNA revealed that these two isoforms were produced at least by alternative splicing of the exon corresponding to the 5' untranslated region and NH2-terminal 102 amino acids. RNA analyses in the testis revealed that form Sox17 is expressed in spermatogonia, and the expression clearly declines from the early pachytene spermatocyte stage onward. In contrast, expression of form t-Sox17 began at the pachytene spermatocyte stage and was highly accumulated in round spermatids. Protein analyses revealed that t-Sox17 isoforms, as well as Sox17 isoforms, were translated into the protein products in the testis, although the amount of t-Sox17 products is lower in comparison to the high accumulation of t-Sox17 mRNA. By the electrophoretic mobility-shift assay and the random selection assay using recombinant Sox17 and t-Sox17 proteins, Sox17 protein is a DNA-binding protein with a similar sequence specificity to Sry and the other members of Sox family proteins, while t-Sox17 shows no apparent DNA-binding activity. Moreover, by a cotransfection experiment using a luciferase reporter gene, Sox17 could stimulate transcription through its binding site, but t-Sox17 had little effect on reporter gene expression. Thus, these findings suggest that Sox17 may function as a transcriptional activator in the premeiotic germ cells, and that a splicing switch into t-Sox17 may lead to the loss of its function in the postmeiotic germ cells.

The Sry gene on human and mouse Y chromosomes is the testis-determining gene that induces differentiation of the genital ridge into the testicular pathway (Sinclair et al., 1990; Gubbay et al., 1990; Koopman et al., 1991). It potentially encodes a DNA-binding protein containing the high mobility group (HMG)1 box that is present in several transcription factors such as T cell–specific factor TCF-1 (van de Wetering et al., 1991) and RNA polymerase I transcription factor UBF (Jantzen et al., 1990). Because the Sry protein synthesized in vitro binds to double-stranded DNA in a sequence-dependent manner (Harley et al., 1992, 1994), it is believed to function in testis determination by regulating the expression of other specific genes. Until now, several genes encoding Sry-related HMG box (termed as Sox gene) have been identified in mouse and human cDNA, and a member of this family has also been isolated in a number of other vertebrate and invertebrate species (Denny et al., 1992a,b; Chardard et al., 1993; Wright et al., 1993; Gozé et al., 1993). The amino acid sequences of Sox family genes are known to be highly conserved from humans to Drosophila (Denny et al., 1992a), and such strong evolutionary conservation suggests that Sox family genes may play important roles in the differentiation and development of the testis and the other cell types and tissues in many species. For example, Sox1, Sox2, Sox3, and Sox11 are known to

1. Abbreviations used in this paper: DIG, digoxigenin; EMSA, electrophoretic mobility-shift assay; GST, glutathione S-transferase; HMG, high mobility group; ORF, open reading frame; RT, reverse transcription; UTR, untranslated region.
be expressed in the developmental nervous system (Stevanović et al., 1993; Uwanogo et al., 1995; Iay et al., 1995; Kamachi et al., 1995). Sox4 is expressed in T lymphocytes and in some pre-B lymphocytes, and Sox4 protein mediates the enhancer effects of the AACAAATGAG motif in lymphocytes (van de Wetering et al., 1993). Recently, the human SOX9 gene was isolated from a translocation chromosome breakpoint of a sex-reversed patient with cam-

vanović et al., 1993; Uwanogo et al., 1995; Jay et al., 1995; Although functions of these Sox family genes in the adult may exert an important effect on mammalian spermatogenesis. Foster et al., 1994; Wagner et al., 1994; Wright et al., 1995).

In the mature adult testis, several Sox family genes are expressed. Sox5 is expressed stage specifically during spermatogenesis (Denny et al., 1992b). Sry is also expressed at a high level in the adult testis (Koopman et al., 1991; Rossi et al., 1993), and the most abundant Sry transcripts in adult testes are present as circular RNA molecules (Capel et al., 1993), although their functions in spermatogenesis are uncertain. Sox4 (van de Wetering et al., 1993), Sox6 (Sox-LZ) (Denny et al., 1992b; Takamatsu et al., 1995; Connor et al., 1995), and Sox9 (Foster et al., 1994; Wagner et al., 1994) are also reported to be expressed in the adult testis. Although functions of these Sox family genes in the adult testis remain elusive, such testicular expression leads us to the postulation that several members of this gene family may exert an important effect on mammalian spermatogenesis. In the present study, we isolated two different mRNA isoforms of the mouse Sox17 gene (form Sox17 and t-Sox17) from adult mouse testis cDNAs. Form Sox17 encodes an Sry-related protein of 419 amino acids containing a single HMG box near the NH2 terminus, while form t-Sox17 shows a unique mRNA isoform of the Sox17 gene with a partial deletion of the HMG box region. Moreover, we examined the expression patterns of these two Sox17 isoforms in the testis and revealed that the isoform with an intact HMG box region was expressed in spermatogonia, and that such expression decreased at the pachytyene spermatocyte stage. In contrast, expression of the unique form without the HMG box region began at the pachytene spermatocyte stage and was accumulated in round spermatids. Protein analyses revealed that t-Sox17 isoforms, as well as Sox17 isoforms, were translated into the protein products in the testis, although the amount of t-Sox17 products is lower in comparison to the high accumulation of t-Sox17 mRNA. To test the functional difference between Sox17 and t-Sox17, we examined their DNA-binding activity by the electrophoretic mobility-shift assay (EMSA) and the transactivation activity by a cotransfection experiment using a luciferase reporter gene. By EMSA, t-Sox17 showed no apparent DNA-binding activity, but Sox17 can specifically bind the AACAAAT motif. Moreover, by a cotransfection experiment, Sox17 could stimulate transcription through its binding site, but t-Sox17 had little effect on reporter gene expression. Thus, the Sox17 gene is the first Sox family gene that is found to produce multiisoforms with different expression profiles and DNA-binding activities. The biological significance of the differences between these two isoforms in spermatogenesis will be discussed.

Materials and Methods

Isolation of Sox17 cDNAs and Genomic DNA and Sequencing

To isolate Sry-related cDNA expressed in the testis, a mouse testis cDNA library constructed with λ gt11 (Clontech Laboratories, Palo Alto, CA) was screened at high stringency with a Sox9 HMG box probe. The Sox9 HMG box fragments were isolated from testis cDNAs by the degenerate PCR approach, as previously described (Denny et al., 1992a; Wright et al., 1993). As a result, two independent positive clones that coded a novel isoform of Sox17 cDNA (referred to as form t-Sox17) were isolated. Because these two clones encoded a unique isoform of the Sox17 gene with a partially deleted HMG box region, we further isolated the Sox17 cDNA (referred to as form Sox17) encoding an intact HMG box from testis cDNAs using an LA-PCR kit (Takara Biomedicals, Kyoto, Japan) in combination with two sets of primers (forward primer: 5'-ATGGCACCCTACACTCT-GCTGGCAGTTTT3' [+375 to +400] × reverse primer: 5' - CCAACCGCTGGCGTTGCTTTTGGC-3' [+884 to +908]; forward primer: 5' - AGGCCTAGCTTCGATCCTGCCTGCTCTC-3' [+564 to +587] × reverse primer: 5' - GCCTCAGGCCTCTAGTCTCCGTTGCGCAA-3' [+1913 to +1940]). Moreover, the mouse genomic library constructed with λ FIX II (Stratagene, La Jolla, CA) was screened, and three independent clones were isolated. Inserted or amplified DNA fragments were subcloned into pBlueScript KS+ (Stratagene). Nucleotide sequences were determined by the dyeoxy chain termination method (Sanger et al., 1977) using a Bca-

BEST sequencing kit (Takara Biomedicals).

Generation of Probes

For Northern and Southern blot hybridization, Apal-digested (+1249 to +1482; probe A in Fig. 2 a) and EcoRI-digested (+1750 to +2275; probe B) fragments of t-Sox17 were used as probes that recognize both isoforms. DNA fragments corresponding to the spliced exon (+564 to +963; probe C), which were isolated by PCR, were used as the probe specific for the Sox17 form. For the reverse transcription (RT) PCR analysis, the fragment digested with SacI and Apal (+336 to +1248 of t-Sox17) was used for detection of both Sox17 and t-Sox17 cDNAs. The isolated DNA fragments were labeled with [α-32P]dCTP (3,000 Ci/mmol) by a Megaprime DNA labeling system (Amersham, Buckinghamshire, UK). For in situ hy-

bridization analysis, the DNA fragments corresponding to probe B or C were subcloned into pBlueScript. Each clone was linearized with the appropriate restriction enzyme, and the sense and antisense RNA probes were generated by in vitro transcription using digoxigenin (DIG)-UTP with T3 and T7 RNA polymerase (Boehringer Mannheim Biochemica, Mannheim, Germany). The resulting sense and antisense DIG-labeled RNA probes were reduced to ~150-bp fragments by limited alkaline hy-

drolysis before hybridization to tissue sections.

Southern Blot Hybridization

Genomic DNAs were prepared from the liver of adult male mice and digested with BamHI, EcoRI, HindIII, or PstI. 10 μg of each DNA preparation were electrophoresed in 0.6% agarose-TBE gels and transferred to a nylon membrane (Hybond N; Amersham). Blots were hybridized with appropriate 32P-labeled DNA probes in a solution containing 50% forma-

mide, 5× SSC, 5× Denhardt’s, 1% SDS, 0.2 M sodium phosphate (pH 6.8), and 200 μg/ml denatured salmon sperm DNA (dsDNA) at 42°C for 12-14 h. Filters were finally washed with 0.1× SSC-0.1% SDS at 65°C for 1 h and autoradiographed with an x-ray film (X-Omat AR; Eastman Kodak, Rochester, NY).

Chromosomal Mapping of Sox17 Gene

Interspecific F1 hybrids of C57BL/6J and a Mus spretus-derived strain, SEG, were backcrossed to C57BL/6J. 50 interspecific back-cross progeny were scored for the segregation of RFLP of the Sox17 gene and microsatellite markers, D1Mit1, D1Mit4, D1Mit11, D1Mit12, D1Mit14, and D1Mit17. Map manager v2.5 was used to analyze the data generated in this study.

Northern Blot Hybridization and RT-PCR Analyses

Total RNAs were extracted from various tissues by the guanidinium thiocyanate method (Chirgwin et al., 1979). 25 μg of each extract were dena-
tured in formamide-formaldehyde buffer, electrophoresed in 1% formaldehyde-agarose gels, and transferred to a nylon membrane. Blots were hybridized with appropriate labeled DNA probes and washed with various stringencies as described above. For RT-PCR analysis, poly(A)+ RNAs were prepared from total RNA by oligo(dT) cellulose chromatography, and 0.2 μg of each poly(A)+ RNA preparation were reverse transcribed using random hexamers as primers with a RNA PCR kit following the instructions of the manufacturer (Perkin Elmer Cetus, Norwalk, CT). A reverse transcriptase-free reaction was performed as a control experiment. t-Sox17 and Sox17 cDNAs were separately amplified by PCR using the following primers: forward primer of t-Sox17: 5'-ATGCGCCACTCAGCTGGCGGT-3' [+375 to +400], forward primer of Sox17: 5'-GCCAAAGAGCAGCAGCGAACCCGGT-3' [+884 to +905], reverse primer of both forms: 5'-TCATGCGCTTCACCTGGCTT-3' [+1075 to +1094]. 5 μl of each sample were electrophoresed with 3% agarose gel and analyzed by Southern blot hybridization, as described above.

In Situ Hybridization

Adult testes were fixed in Bouin’s solution for 4 h, dehydrated in ethanol, cleared in xylene, and then routinely embedded in paraffin. Paraffin sections of 5-μm thickness were cut and subjected to in situ hybridization, as described in our previous study (Noce et al., 1992a,b). In short, deparaffinized sections were pretreated with 0.3% Triton X-100 in 10 mM PBS and 20 μg/ml proteinase K in Tris-HCl buffer (pH 7.5) containing CaCl₂, and then hybridized with DIG-labeled RNA probes in a solution containing 50% formamide, 10% dextran sulfate, 5x SSC, 1x Denhardt’s, 1% SDS, 100 μg/ml heparin, 10 mM DTT, and 1 mg/ml denatured tRNA and ssDNA at 45°C for 12-16 h. After treatment with RNase A (20 μg/ml; Sigma Immunochemicals, St. Louis, MO) at 37°C for 1 h, the specimens were finally washed twice with 0.1x SSC at 65°C for 1 h. The signals were detected by an immunological method using alkaline phosphatase-conjugated anti-DIG antibody and nitro blue tetrazolium as the chromogen (Boehringer Mannheim Biochemicals).

In Vitro Translation

RNA was synthesized from linearized pBluescript/Sox17 (+564 to +1940) and pBluescript/Sox17 (+1 to +2375) t-Sox17 cDNA by in vitro transcription with T3 and T7 RNA polymerase. After DNase I treatment, each 1 μg RNA was translated in a 50-μl reaction in the presence of 1 mM [35S]methionine (1,200 Ci/mmol) in a rabbit reticulocyte lysate system according to the instructions of the manufacturer (Amersham). Each protein sample was analyzed by SDS-PAGE and autoradiographed.

Antibody Production, Immunoblotting, and Immunofluorescence

Synthetic peptides corresponding to amino acids 25-39 of the predicted Sox17 NH₂-terminal region (AGLGGCPWAEKSLPL) or to amino acids 403-419 of the predicted Sox17 COOH-terminal region (VVSDASAVYVNCNPYD) were conjugated to KLH (Calbiochem, La Jolla, CA) via a heterobifunctional cross-linker, m-maleimidobenzoyl-N-hydroxysuccinimide ester (Pierce Chemical Co., Rockford, IL), as previously described (Saio et al., 1992, 1995). Rabbits were immunized with antigen conjugates (0.5-1 mg/ml) in a rabbit reticuloocyte lysate system according to the instructions of the manufacturer (Amersham). Each protein sample was analyzed by SDS-PAGE and autoradiographed.

Preparation of GST Fusion Proteins of Sox17 and Sox17 Expression in Mouse Spermatogenesis

Moreover, 20 testes were collected from mature male mice. After a rinsing with PBS, and each protein sample (30 μg/6-cm dish) was used for SDS-PAGE and immunoblotting. Moreover, DNA fragments of Sox17 deletion constructs (pCDM/Sox17 [343-419], pCDM/Sox17 [295-419], and pCDM/Sox17 [164-419], which are designated by the amino acid numbers of deletion borders) were prepared by PCR using a forward primer (5'-CACAAGCTTATGCTCGAATTCGGT-3') and a reverse primer (5'-TCATGCGCTTCACCTGGCTT-3') and a reverse primer of various lengths.

Preparation of GST Fusion Proteins of Sox17 and Sox17 Expression in Mouse Spermatogenesis

Moreover, 20 testes were collected from mature male mice. After a rinsing with PBS, and each protein sample (30 μg/6-cm dish) was used for SDS-PAGE and immunoblotting. Moreover, DNA fragments of Sox17 deletion constructs (pCDM/Sox17 [343-419], pCDM/Sox17 [295-419], and pCDM/Sox17 [164-419], which are designated by the amino acid numbers of deletion borders) were prepared by PCR using a forward primer (5'-CACAAGCTTATGCTCGAATTCGGT-3') and a reverse primer of various lengths.

As for effector plasmids of pCDM/Sox17 and pCDM/t-Sox17, the Sox17 (+564 to +1940) and t-Sox17 (+1 to +2375) t-Sox17 cDNA fragments were isolated by PCR from each cDNA clone and then inserted into the EcoRI site of pGEX-4T2 expression vector (Pharmacia Biotech). Each recombinant protein was produced in BL21 (DE3) host bacteria by IPTG induction and purified using glutathione-agarose beads (Smith and Johnson, 1988). The isolation of each recombinant protein was checked by Coomassie blue staining of SDS-polyacrylamide gels and Western blotting with the recombinant antiserum (10 μg/ml). Non-specific binding was also checked by the incubation of the sections or cells with rhodamine-conjugated goat anti-rabbit IgG alone.

Preparation of GST Fusion Proteins of Sox17 and Sox17 Expression in Mouse Spermatogenesis

Moreover, 20 testes were collected from mature male mice. After a rinsing with PBS, and each protein sample (30 μg/6-cm dish) was used for SDS-PAGE and immunoblotting. Moreover, DNA fragments of Sox17 deletion constructs (pCDM/Sox17 [343-419], pCDM/Sox17 [295-419], and pCDM/Sox17 [164-419], which are designated by the amino acid numbers of deletion borders) were prepared by PCR using a forward primer (5'-CACAAGCTTATGCTCGAATTCGGT-3') and a reverse primer of various lengths.

As for effector plasmids of pCDM/Sox17 and pCDM/t-Sox17, the Sox17 (+564 to +1940) and t-Sox17 (+1 to +2375) DNA fragments were isolated from each cDNA clone and then inserted into pCDM8. Moreover, DNA fragments of Sox17 deletion constructs (pCDM/Sox17 [343-419], pCDM/Sox17 [295-419], and pCDM/Sox17 [164-419], which are designated by the amino acid numbers of deletion borders) were prepared by PCR using a forward primer (5'-CACAAGCTTATGCTCGAATTCGGT-3') and a reverse primer of various lengths.
 HindIII site is underlined), and each reverse primer (5'-AGTCTAGAC-
for d295-419, and 5'-GCTCTAGAGCCCATCGCGCCCTAGTACAGGTG-
HindIII site is underlined), and each reverse primer (5'-AGTCTA-
CAGAGC-3' [+1517 to +1554] for d295-419, and 5'-GCTCTAGAC-
d164-419; bold sequences show the stop codon, and underline ones indi-
XbaI and then inserted into pCDM8. As for pCDM/Sox17[d286-346],
fragment corresponding to amino acid residues 347 to 419 (forward
otide +1497) in the Sox17 cDNA and XbaI in the downstream of cDNA,
BamHI or XbaI site is indicated by underline, respectively). The inserted
CAG-Y [+1688 to +1714] and reverse primer: 5'-CTTCTAGAAAGT-
primer:

The Journal of Cell Biology, Volume 133, 1996 670
1526
1521
1516
1511
1506
1501
1496
1491
1486
1481
1476
1471
1466
1461
1456
1451
1446
1441
1436
1431
1426
1421
1416
1411
1406
1401
1396
1391
1386
1381
1376
1371
1366
1361
1356
1351
1346
1341
1336
1331
1326
1321
1316
1311
1306
1301
1296
1291
1286
1281
1276
1271
1266
1261
1256
1251
1246
1241
1236
1231
1226
1221
1216
1211
1206
1201
1196
1191
1186
1181
1176
1171
1166
1161
1156
1151
1146
1141
1136
1131
1126
1121
1116
1111
1106
1101
1096
1091
1086
1081
1076
1071
1066
1061
1056
1051
1046
1041
1036
1031
1026
1021
1016
1011
1006
1001
996
991
986
981
976
971
966
961
956
951
946
941
936
931
926
921
916
911
906
901
896
891
886
881
876
871
866
861
856
851
846
841
836
831
826
821
816
811
806
801
796
791
786
781
776
771
766
761
756
751
746
741
736
731
726
721
716
711
706
701
696
691
686
681
676
671
666
661
656
651
646
641
636
631
626
621
616
611
606
601
596
591
586
581
576
571
566
561
556
551
546
541
536
531
526
521
516
511
506
501
496
491
486
481
476
471
466
461
456
451
446
441
436
431
426
421
416
411
406
401
396
391
386
381
376
371
366
361
356
351
346
341
336
331
326
321
316
311
306
301
296
291
286
281
276
271
266
261
256
251
246
241
236
231
226
221
216
211
206
201
196
191
186
181
176
171
166
161
156
151
146
141
136
131
126
121
116
111
106
101
96
91
86
81
76
71
66
61
56
51
46
41
36
31
26
21
16
11
6
1

Figure 1. Nucleotide sequences and the predicted amino acid sequences of t-Sox17 and Sox17 cDNAs. t-Sox17 and Sox17 cDNA sequences were combined. The capital letters represent t-Sox17 cDNA sequences, and M shows the predicted initiator methionine of the 873 ORF of t-Sox17. The Sox17 cDNA sequences are defined between the two arrows within which are identical to the PCR primers and show a 1257-bp ORF encoding a Sry-related protein of 419 amino acids with an intact HMG box (indicated by dashed lines) near the NH2 terminus. The boxed region indicates the 391-bp segment specific for Sox17 cDNA that encodes an initiation methionine and the upper half of the HMG box. Sequences of NH2-terminus 128 amino acids specific for the Sox17 form are represented by the lowercase letters within parentheses. The proline- and glutamine-rich region is indicated by the underline, and the dashed box indicates a nine-amino-acid stretch that is found at the COOH terminus of mouse Sox18 cDNA. Intron positions are indicated by arrowheads. Nucleotide sequences of these cDNAs were deposited in the GenBank database under accession Nos. D49473 (t-Sox17 form) and D49474 (Sox17 form).
was removed, and the cells were washed with cold PBS several times. After addition of the lysis buffer (Toyo Ink MFG, Tokyo, Japan), a part of the cell extract was separately reacted with luciferase (Luciferase Assay System; Promega) or β-galactosidase substrate (LumiGAL Detection Kit; Clontech), and then each activity was measured by the TD-4000 Lumiphotometer (Futaba Medical, Tokyo, Japan). Each luciferase level was normalized to β-galactosidase level, and the relative luciferase level for Sry-related gene expressed in the adult testis was determined to 13-galactosidase level, and the relative luciferase level for Sry-related gene expressed in the adult testis was determined to 1.

Results

Isolation of Soxl7 cDNAs and Genomic DNA

To isolate the Sry-related gene expressed in the adult testis, a mouse testis cDNA library was screened at high stringency with a Sox9 HMG box probe, and two independent clones that encode a novel mRNA isoform of the Sox17 gene were isolated. Sequence analysis by a GenBank DNA database search revealed that these clones were identical to mouse Sox17 cDNA in a partial sequence of the Sox17 HMG box region (Dunn et al., 1995), but they lacked the sequences corresponding to the upper half of the HMG box region. This unique clone contained a single open reading frame (ORF) of 873 bp after an initiation methionine located within the HMG box region, and it predicted a truncated 291-amino acid protein with a predicted molecular mass of 30.7 kDa which lacked most of the DNA-binding domain (Fig. 1 and 2a). To examine whether the clone without the HMG box region was a unique mRNA isoform of the Sox17 gene, we isolated the genomic clones of the Sox17 gene and the cDNA clones containing a complete ORF with an intact Sox17 HMG box from testis cDNAs, and compared their sequences with those of the clones without the HMG box region. The Sox17 cDNAs showed a 1,257-bp ORF encoding an Sry-related 419-amino acid protein with a predicted molecular mass of 44.6 kDa which contained a single intact HMG box near the NH₂ terminus (Figs. 1 and 2a), and they showed 100% identity at the nucleotide level to those of the unique clones, except for a 391-bp segment containing the initiation methionine and the upper half of Sox17 HMG box. Moreover, comparison of the genomic clones with those of the two cDNAs revealed that the Sox17 gene contains at least one intron in the center of the HMG box region and two introns in the 5’ untranslated region (UTR), and the inserted 391-bp segment of Sox17 cDNAs forms a single exon in the mouse Sox17 gene (Fig. 2, b and c). By genomic Southern blot analysis using probes A and B (indicated in Fig. 2a), which can hybridize both intact Sox17 cDNA and the unique cDNA without the HMG box region, a single band was found in all samples digested with various restriction enzymes (Fig. 3). Moreover, both of these probes detected the same 8.6-kb HindIII and 4.6-kb PstI bands in genomic mouse DNA as expected because the Sox17 cDNA sequences between the positions of probes A and B have no restriction sites of these enzymes.

In the DNA samples digested with BamHI or EcoRI, of which restriction site is included in the sequences, probe A or B hybridized the 5-kb BamHI and 9.3-kb EcoRI fragments or the 6-kb BamHI and 1.5-kb EcoRI fragments, respectively. Such fragments coincide exactly with the restriction map in our genomic clones (Fig. 2b). Therefore, this result proves that the clone without the HMG box region is an isoform of the Sox17 transcript produced at least by splicing out the 391-bp exon containing the upper half of the Sox17 HMG box. Since the clone without the HMG

![Figure 2](https://example.com/figure2.png)

Figure 2. (a) Schematic representation of Sox17 and t-Sox17 cDNAs. The box indicates the ORF (black box, HMG box; dashed box, proline/glutamine-rich region), and the bars indicate the noncoding regions in each isoform. Three bold lines indicate the position of each probe; probes A and B recognize both forms, and probe C is specific for form Sox17. A dashed bold line indicates a 391-bp segment that is deleted in form t-Sox17. (b) Genetic organization of the Sox17 gene. The box indicates the ORF (hatched box, HMG box), and the solid bars indicate the non-coding regions of Sox17 cDNA. B, BamHI; E, EcoRI; N, NotI. (c) Schematic representation of the genomic structure corresponding to the HMG box region of the Sox17 gene. The boxes indicate exons, and bars indicate introns. Form t-Sox17 is produced by at least splicing out the exon containing the initiation methionine and the upper half of the HMG box region.
box region is a unique mRNA isoform encoding a truncated Sox17 protein, which we termed as form t-Sox17. In this paper, we also referred to the Sox17 cDNA with an intact HMG box region as form Sox17. Moreover, the genotype of the back-cross progeny for Sox17 was determined by Southern analysis using the probe B. BamHI digestion gave RFLP between C3H/HeJ and SEG strains. Linkage analysis with 50 interspecific back-cross progeny mapped the Sox17 gene to chromosome 1. It is located in the region proximal to D1Mit1 with 2% recombination.

The sequences of the Sox17 HMG box region obtained in this study showed 90.6% and 74.3% similarity with mouse Sox18 HMG box (Dunn et al., 1995) and Sox9 HMG box (Wright et al., 1995) at the amino acid level, respectively. The sequences of the region outside the HMG box showed no significant homology. The COOH-terminal half of the predicted Sox17 protein, however, had a high proportion of proline residues, and a proline- and glutamine-rich region was observed near the COOH terminus, which is commonly found in human SOX9 (Foster et al., 1994) and mouse Sox9 (Wright et al., 1995). In addition, a stretch of nine amino acids, SDASSAVYY, at positions 7–15 from the COOH terminus was also found in the same positions of mouse Sox18 cDNA.

Northern Blot and RT-PCR Analyses of the Expression of Sox17 and t-Sox17 Isoforms

Northern blot analysis using probe B (3' UTR probe) revealed that three kinds of transcripts (~1.8, 2.8, and 3.1 kb) were expressed mainly in the lung and testis (Fig. 4 a). The 1.8- and 2.8-kb transcripts were observed at low levels in the lung, while the 3.1-kb transcript was expressed abundantly in the testis. Moreover, expression of the 3.1-kb transcript in the testis was regulated during postnatal development. The 3.1-kb transcript was not expressed in the immature testis on day 7 postpartum (p.p.), but it clearly appeared in the testis during days 14–28 p.p., and increased in the mature adult testis (Adult). The positions of rRNAs are marked by arrowheads. The lower panels show the 28S rRNA bands stained with acridine orange.
forms, as described in Materials and Methods. (a) At the adult testis of prepubertal mice of different ages (b). The PCR products can be detected, but the t-Sox17 form is expressed at a low level. (b) In prepubertal mice of different ages, the t-Sox17 form is expressed abundantly in the testis, predominantly in postmeiotic germ cells.

In Situ Hybridization Analysis

As described above, the testicular expression of each isoform was regulated differently during postnatal development. Moreover, we examined the localization of each isoform in the adult testis by in situ hybridization. When using probe B (the 3' UTR probe), which recognizes both forms Sox17 and t-Sox17, positive signals were mainly observed in the inner cell layer of seminiferous tubules of adult testis (Fig. 6, a and c). Late pachytene spermatocytes and the round, elongated spermatids were positive for hybridization with this probe, and more intense positive signals were notably restricted to early round spermatids (stages I–VII) (Fig. 6 d).

Analyses of Protein Products of Sox17 and t-Sox17 Isoforms

In vitro transcription and translation analysis using Sox17 (+564 to +1940) and t-Sox17 (+1 to +2375 of t-Sox17) cDNAs. By SDS-PAGE analysis, a doublet of the translated proteins was detected in both samples from Sox17 and t-Sox17 cDNAs. One band was ~0.4 kD smaller than another protein (Fig. 7 a),
Figure 6. In situ hybridization analysis showing the localization of the Sox17 and t-Sox17 isoforms in the adult testis by using probe B (3' UTR probe, a–d) and probe C (the probe specific for form Sox17, e–h). In the case of using probe B, which recognizes both forms Sox17 and t-Sox17, positive signals are observed mainly in the inner cell layer of seminiferous tubules of the adult testis (a and c). Late pachytene spermatocytes, and round, elongated spermatids are positive for hybridization with this probe, and more intense positive sig-
Figure 7. In vitro transcription/translation (a) and immunoblot (b) analyses of protein products of Sox17 and t-Sox17 mRNA isoforms. (a) Sox17 or t-Sox17 cDNA was transcribed and translated in vitro in the presence of [35S]methionine. Samples were analyzed by 12.5% SDS-PAGE and autoradiographed. (b) The protein sample of the COS cells transfected with pCDM8 alone, pCDM/t-Sox17, or pCDM/Sox17 was electrophoresed on a 12.5% SDS-polyacrylamide gel, and was immunoblotted by using anti-N15 (15-residue peptide [amino acid residues 25-39] of the Sox17 NH2-terminal region) or anti-C17 (17-residue peptide [amino acid residues 403-419] of the Sox17 COOH-terminal region) antibody or anti-recombinant Soxl7 antiserum. Anti-N15 antibody detects only the Sox17 protein product, while anti-recombinant Soxl7 antiserum or anti-C17 antibody recognized both Sox17 and t-Soxl7 proteins. Both Sox17 and t-Soxl7 proteins migrate slower than expected, possibly because of their high proline content. Molecular weight size standards are shown in the center.

which may be caused by the translation from the second methionine in each ORF (position 24 in Soxl7 ORF or position 20 in t-Soxl7 ORF). Moreover, the larger t-Soxl7 protein was ~14 kD smaller than the larger Sox17 protein, as predicted by their respective ORFs. To confirm the data using in vitro translation products, we raised three kinds of antisera (anti-N15 [15-residue peptide of amino acid residues 25-39 of the Sox17 NH2-terminal region], anti-C17 [17-residue peptide of amino acid residues 403-419 of the Sox17 COOH-terminal region], and anti-recombinant GST-Soxl7 antisera) in immunized rabbits, and we examined the expression of each protein product in the COS cells transfected with pCDM/t-Sox17 or pCDM/Sox17. On immunoblots of the protein extracts of the COS cells (Fig. 7b), both anti-recombinant Soxl7 antiserum and anti-C17 antibody detected a doublet of bands in the cells transfected with pCDM/t-Sox17, which resembles a doublet of in vitro translation products in size (Fig. 7a). In the extract of cells transfected with pCDM/Sox17, these antisera also detected a specific band with a similar size to the larger product of in vitro–translated Sox17 proteins. Moreover, immunoreactivity for anti-N15 antibody was present only in the protein extract of the cells transfected with pCDM/Sox17, and was not detected in the extracts with pCDM/t-Sox17. The detected band showed the same size as the one in the immunoblot using anti-recombinant Soxl7 antiserum or anti-C17 antibody.

On the immunoblots of the testicular crude extracts, we could not detect a specific band of both Sox17 and t-Sox17 products. To confirm the existence of both isoform products in the testis, the testicular extracts were analyzed by ion exchange HPLC. They were applied to a DEAE exchange column, and each eluted fraction was subjected to SDS-PAGE (12.5%) and immunoblotting (Fig. 8 a and b). As a result, the Sox17- and t-Sox17–specific bands were detected in the fractions eluted from 250 to 400 mM NaCl (Fig. 8 b). Sox17 products were eluted at the lower salt concentration (270-315 mM) in comparison with t-Sox17 products, which may reflect a deficiency of the HMG box region enriched with basic amino acids in the t-Sox17 isoform. These findings suggest that both Sox17 and t-Sox17 mRNAs isoforms are translated into the protein products, although the amount of t-Sox17 products in the testis appeared lower in comparison to the high accumulation of t-Sox17 mRNAs.

By immunofluorescence staining using anti-recombinant Sox17 antiserum, positive reactions are restricted to the nucleus of L929 cells transfected with pCDM/Sox17, suggesting that Sox17 is a nuclear protein like Sry and other Sox proteins (Fig. 9a). In the L929 cells transfected with pCDM/t-Sox17, positive reactions were observed both in the cytoplasm and nucleus (Fig. 9b). Similar patterns were also obtained in the COS cells transfected with pCDM/Sox17 or pCDM/t-Sox17 (Fig. 9c and d). Moreover, all of the L929 cells transfected with the COOH-terminal deletion constructs of pCDM/Sox17 (see Fig. 12a) exhibited a nuclear localization of each product (figure not shown). Such intracellular localization patterns in the transfection experiment clearly agree with a previous report showing that the NH2-terminal part of the HMG box domain functions as a nuclear localization signal in diverse HMG box proteins (Poulat et al., 1995). Thus, t-Sox17 is a truncated Sox17 protein lacking both the DNA-binding domain and nuclear localization signal, although a part of t-Sox17 protein can be transported into the nucleus. In the testicular sections stained with anti-recombinant Soxl7 antiserum, positive reactions were detected in the nucleus of the spermatogonia and the round spermatids (Fig. 9e). Moreover, some positive somatic cells were located in the testicular interstitium. The spermatocytes, however, showed

nals are especially restricted to early round spermatids (d). On the other hand, with probe C, the distribution of the signals shows a different pattern from probe B, and signals are mainly detected in the basal layer of the seminiferous tubules (e and g). The Sox17 form is expressed in spermatogonia, and this expression is clearly reduced from the early pachytene spermatocyte stage and onward (h). No appreciable positive signals were detected in Sertoli or Leydig cells with these antisense probes, although some positive somatic cells were located in the testicular interstitium (h, arrowhead). Moreover, sense probes show no appreciable positive signals in any sections of the testis (b and f). L, lumen of seminiferous tubules; Sg, spermatogonium; Sc, spermatocyte; St, spermatid; Ser, Sertoli cell; Ley, Leydig cell. a, b, e, and f, bar = 1 mm; c, d, g, and h, bar = 100 μm.
Immunoblot analyses of Soxl7 and t-Sox17 products in the testicular extracts fractionated by DEAE chromatography. The testicular extracts were applied to a DEAE ion exchange column and eluted with a linear salt gradient from 0 to 400 mM NaCl. Individual fractions eluted from 250 to 400 mM NaCl (fractions 12–19 from left to right) were electrophoresed on a 12.5% SDS-polyacrylamide gel, and were immunoblotted by using anti-N15 or anti-C17 antibody. (a) CBB staining pattern. M, molecular mass markers (from top to bottom, 112.0, 84.0, 53.2, 34.9, 28.7, and 20.5 kD). (b) Immunostaining patterns with anti-N15 or anti-C17 antibody. The boldfaced triangles indicate the Sox17 product, and the regular triangles indicate the t-Sox17 product. A control blot was stained by anti-C17 antibody preincubated with the antigenic hapten peptide (C17; 100 μM). Molecular mass size standards are shown on the center.

Figure 8. Immunoblot analyses of Sox17 and t-Sox17 products in the testicular extracts fractionated by DEAE chromatography. The testicular extracts were applied to a DEAE ion exchange column and eluted with a linear salt gradient from 0 to 400 mM NaCl. Individual fractions eluted from 250 to 400 mM NaCl (fractions 12–19 from left to right) were electrophoresed on a 12.5% SDS-polyacrylamide gel, and were immunoblotted by using anti-N15 or anti-C17 antibody. (a) CBB staining pattern. M, molecular mass markers (from top to bottom, 112.0, 84.0, 53.2, 34.9, 28.7, and 20.5 kD). (b) Immunostaining patterns with anti-N15 or anti-C17 antibody. The boldfaced triangles indicate the Sox17 product, and the regular triangles indicate the t-Sox17 product. A control blot was stained by anti-C17 antibody preincubated with the antigenic hapten peptide (C17; 100 μM). Molecular mass size standards are shown on the center.

We could not distinguish Soxl7 from t-Sox17 proteins on the sections because the anti-N15 antibody was disqualified due to histochemistry. Such staining patterns in the testis by anti-recombinant Sox17 antiserum, however, are in agreement with the mRNA expression patterns by in situ hybridization analysis. Thus, it suggests that the immunohistochemical reactions in the spermatogonia or those in the spermatids may reflect the localization of Soxl7 or t-Sox17 proteins, respectively. It further suggests that a switch from Soxl7 into t-Sox17 may occur both at protein and RNA levels.

In addition, no positive reaction of anti–recombinant Soxl7 was detected in L929 and COS cells transfected with pCDM8. The cytochemical control using the primary antiserum preincubated with GST-Soxl7 beads showed no specific positive reaction in the testis (Fig. 9 d) or in the L929 and COS cells transfected with pCDM/Soxl7 or pCDM/t-Soxl7 (not shown).

DNA-binding Activity of Soxl7 or t-Soxl7

It was shown previously that Sry and several Sox proteins have a sequence-specific DNA-binding activity to the AAC-AAT or AACAAAG motif (Denny et al., 1992b; van de Wetering et al., 1993; Harley et al., 1994). To test functional differences between Soxl7 and t-Sox17 protein products, we first examined the DNA-binding activity of recombinant GST-Soxl7 or t-Soxl7 protein by EMSA. The probes used were 32P-labeled oligonucleotides with partially self-complementary sequences that form a stem-loop structure and provide a 13-bp double-stranded region containing each motif (the oligonucleotides containing the motifs AACAT and AACAG are named SCS6 and SCS4, respectively). Both GST alone and GST–t-Soxl7 protein showed no detectable DNA binding to these oligonucleotides (Fig. 10 a). In contrast, GST-Soxl7 protein clearly showed DNA-binding activity to both SCS6 and SCS4, and its binding activity to SCS6 seemed to show a higher level compared with that of SCS4 (Fig. 10 a). The binding of Soxl7 to SCS6 was inhibited by the addition of unlabeled SCS6 oligonucleotides, while a set of different target sequences of other known transcription factors were unable to successfully compete this binding (Fig. 10 b). No appreciable competition with these nonspecific target oligonucleotides was observed in the case of Soxl7 protein and SCS4 binding (figure not shown). Thus, these data indicate that the Soxl7 protein is a DNA-binding protein with a sequence specificity similar to other members of the Sox family proteins.

Moreover, we selected the sequences binding to GST-Soxl7 or GST–t-Soxl7 from a pool of random DNA sequences using each recombinant protein. The 32P-labeled PCR products from alternate cycles of selection were analyzed by EMSA (Fig. 10 a). In the selection using GST-Soxl7, an appreciable enrichment for Soxl7-binding oligonucleotides was found by the third cycle of selection, and a large part of the PCR products from the fifth cycle of selection formed protein–DNA complexes. On the other hand, no DNA–protein complex was observed when using t-Soxl7 protein, even in the fifth cycle of selection, suggesting that t-Soxl7 protein shows no sequence-specific DNA-binding activity. The PCR products binding to GST-Soxl7 were sequenced after seven cycles of selection. As a result, all individual clones recovered were AT rich, and AACAT occurred in 19 of 31 clones (Fig 11 b), which confirms the results of the DNA binding of Soxl7 protein to SCS6 oligonucleotides (Fig. 10 a). Interestingly, in 29 of 31 clones, two copies of AACAT or its minor variants were found within the random 18-bp region of the original random oligonucleotide, which forms palindrome-like sequences composed of two inverted AACAT or its variant sites separated by three to five nucleotides. This result leads us to the possibility that the Soxl7 protein binds DNA cooperatively or as a dimer. However, the EMSA and immunoprecipitation analysis using in vitro–translated proteins could demonstrate neither a cooperative binding to DNA nor a direct interaction at present (data not shown).
Figure 9. Immunofluorescence analysis of Sox17 and t-Sox17 isoform protein products using anti-recombinant Sox17 antiserum, showing the intracellular localization in the transfected mammalian cells and distribution in the adult testis. a–d show the intracellular localization of Sox17 or t-Sox17 in L929 cells (a and b) and COS cells (c and d). In the cells transfected with pCDM/Sox17, positive reactions are restricted to their nucleus (a and c), while reactions are found both in the cytoplasm and nucleus in those with pCDM/t-Sox17 (b and d). e shows the distribution of positive reactions for anti-recombinant Sox17 antiserum in the adult testis, while f exhibits a cytochemical control in the testicular section. In the testis, positive reactions are detected in the nucleus of the spermatogonia and the round spermatids (e). Moreover, some positive somatic cells are located in the testicular interstitium. Such positive reactions have disappeared by the use of the primary antiserum preincubated with GST-Sox17 (f). L, lumen of seminiferous tubules; L interstitium; Sg, spermatogonium; Sc, spermatocyte; St, spermatid. Bar, 100 μm.

Transactivation Activities of Sox17 or Derivatives through Its Binding Motif

To test whether Sox17 could regulate transcription through the Sox17-binding site, the reporter plasmid containing four copies of the two inverted AACAAT motifs

Figure 10. EMSA on the DNA-binding activity of the GST-Sox17 or GST-t-Sox17 proteins to SCS6 (oligonucleotides containing the sequences AACAAT) or SCS4 (oligonucleotides containing the sequences AACAAAG). (a) Each purified GST fusion protein (∗1, 50 ng; ∗5, 250 ng/10 μl of total reaction buffer) was incubated with 32P-labeled SCS6 or SCS4. Neither GST nor GST–t-Sox17 protein showed detectable DNA-binding activity to these oligonucleotides, while GST-Sox17 protein clearly bound to both SCS6 and SCS4. Its binding activity to SCS6 seems to show a high level, compared with SCS4. (b) Competition analysis of the binding of GST-Sox17 (50 ng/10 μl of total reaction buffer) to 32P-labeled SCS6. Incubation was performed in the absence (no competitor) or presence of unlabeled SCS6 oligonucleotides or a set of oligonucleotides harboring consensus-binding sequences for other transcriptional factors at both ∗25 and ∗250 molar excesses. The binding of Sox17 to SCS6 is inhibited by the addition of unlabeled SCS6 oligonucleotides, while the nonspecific target oligonucleotides are unable to compete successfully this binding. Arrows indicate DNA–protein complexes, and arrowheads indicate a free probe.
The number of cycles is shown in each lane (0 indicates the ran-
number letters denote the common sequences flanking the ran-
in the case of using t-Sox17 protein, even in the fifth cycle of se-
clection, while no DNA-protein complex was observed
ment for Sox17-binding oligonucleotides was found by the third

In a selection using GST-Sox17, appreciable enrich-
heads indicate a free probe. (b) DNA sequences of oligonucle-
protein binding sites. Uppercase letters represent the random
bated with each recombinant protein (250 ng/10 ixl of total reac-

Sox17 protein. (a) EMSA of 32p-labeled random oligonucleotides
selection. Arrows indicate DNA-protein complexes, and arrow-
out for seven rounds of selection for GST-Sox17.

The Journal of Cell Biology, Volume 133, 1996 678

Figure 11. Random selection analysis from a pool of random DNA sequences using each recombinant GST-Sox17 or GST-t-
Sox17 protein. (a) EMSA of 32P-labeled random oligonucleotides from alternate cycles of selection by GST-Sox17 or GST-t-Sox17.
The number of cycles is shown in each lane (0 indicates the ran-
don proteins). PCR products at each cycle were labeled
protein with a single HMG box domain near the NH2 ter-

gene produces at least two mRNA isoforms: one encodes a

alternative splicing of this exon, we showed that the

non-Sox genes are divided into two groups, intronless

and multiexon genes. It is known that Sry, Sox3, and Sox4

are all intronless genes (Clepet et al., 1993; Stevanovic

et al., 1993; Schilham et al., 1993), while the Sox9 gene con-

contains at least two introns, one of which is located in the

HMG box region (Foster et al., 1994; Wagner et al., 1994;

Discussion

In the present study, two types of Sox17 cDNA clones were
isolated from an adult mouse testis cDNA library. Genomic
structural analysis revealed that the mouse Sox17 gene contains
two introns at the positions of the 5' UTR and the HMG box
region that forms a 391-bp exon containing the NH2-terminal
102 amino acids (from the initiation methionine to the upper
half of HMG box). By alternative splicing of this exon, we
showed that the Sox17 gene produces at least two mRNAs:
one encodes a protein with a single HMG box domain near the
NH2 terminus (Sox17), and another encodes a truncated protein
lacking most parts of the HMG box domain (t-Sox17). The
Sox17 gene is therefore the first member of Sox gene family
that produces multisoforms, one of which encodes a
truncated protein that lacks most of the DNA-binding
domain.

Sox family genes are divided into two groups, intronless
and multiexon genes. It is known that Sry, Sox3, and Sox4
are all intronless genes (Clepet et al., 1993; Stevanovic
et al., 1993; Schilham et al., 1993), while the Sox9 gene con-
tains at least two introns, one of which is located in the
HMG box region (Foster et al., 1994; Wagner et al., 1994;

(pH4×4-Luci) was constructed and cotransfected with
each effector plasmid (pCDM, pCDM/t-Sox17, or pCDM/
Sox17) into L929 cells (Fig. 12 a). Transfection of pCDM/
t-Sox17 into L929 cells gave no detectable stimulation of
luciferase, while the expression of Sox17 was able to acti-

ve transcription of the reporter gene about six- to seven-
fold (Fig. 12 b). Moreover, such transactivation by Sox17
was dependent on the presence of the AACAAT sites,
since Sox17 failed to promote luciferase expression from a
reporter gene lacking this sequence, pGL2-Luci (Fig. 12 c).
The similar results were also obtained in the transfection
experiments using Hela cells (not shown). To define the
domain involved in transactivation, the deletion muta-
ts of Sox17 were constructed (Fig. 12 a) and cotrans-
fected with pH4×4-Luci into L929 cells. As a result, trans-
fection of pCDM/Sox17(d343-419), which lacks the sequence

Downloaded from jcb.rupress.org on August 15, 2017
The Soxl7 HMG box domain also shows the most similar-gene than the intronless Sox family genes that contain duces, and they contain proline- and glutamine-rich regions side the HMG box, the COOH terminal halves of both Wright et al., 1995). Although Kanai et al., expression is clearly reduced at the early pachytene spermatial events: the mitotic proliferation of spermatogonia tality regulated in spermatogenesis. In mammalian sper Sox9, Sox17, and Sox18 genes.

The most interesting feature of the Sox17 gene in this study is the expression patterns of each isoform. Our RNA analyses revealed that both Sox17 and t-Sox17 isoforms are expressed in the spermatogenic cell lineage, and the expression of each isoform is differently and developmentally regulated in spermatogenesis. In mammalian spermatogenesis, male germ cells undergo three developmental events: the mitotic proliferation of spermatogonia (mitotic phase), the meiotic division of spermatocytes (meiotic phase), and the subsequent formation of haploid spermatids and their morphogenic changes into sperm (postmeiotic phase). According to the present analysis, the Sox17 form is expressed in spermatogonia, and such expression is clearly reduced at the early pachytene sperma-ocyte stage and onward; therefore, this leads us to the postulation that the Sox17 form may be associated with the mitotic phase of spermatogenesis. The recombinant Sox17 protein synthesized in vitro exhibits DNA-binding activity with a similar sequence specificity to other members of the Sox gene family. Moreover, by cotransfection experiments using a luciferase reporter gene, Sox17 could stimulate reporter gene expression through its binding site. These results therefore suggest that Sox17 may function as a transcriptional factor, activating (or repressing) the expression of other genes involved in the premeiotic phase of spermatogenesis, such as the spermatogonial proliferation and induction of meiosis.

On the other hand, form t-Sox17 shows a deletion of the region containing the upper half of HMG box region, and its product shows a truncated protein lacking most parts of the HMG box domain and the nuclear localization signal. Since the Sox17 gene contains a single HMG box, as do Sry and the other Sox family genes, the t-Sox17 isoform missing the DNA-binding domain may have no sequence-specific DNA-binding activity. This fact is also supported by no appreciable enrichment of t-Sox17-binding sequences in the random selection assay (Fig. 11 a). The functional significance of t-Sox17 isoform products is elusive at the present time. However, the expression of form t-Sox17 clearly shows a reciprocal proportion to that of form Sox17 in spermatogenesis. The t-Sox17 form begins expression in the pachytene spermatocyte, and its transcripts are highly accumulated in the round spermatids, in contrast with the appreciable reduction in Sox17 isoform expression at the meiotic phase. These findings suggest that Sox17 pre-mRNA is likely to be expressed in the spermatogenic cells from the mitotic through postmeiotic phases, and they further suggest that some changes in the...
pre-mRNA-processing machinery at the meiotic phase may induce the switch from the Sox17 isoform into t-Sox17 isoform.

In fact, the meiotic and postmeiotic germ cells are known to express aberrant forms of various substances such as Oct-2, CREB (cAMP-responsive element-binding factor), CREM (cAMP-responsive element modulator), and fer-T by alternative splicing (see review of Erickson, 1990; Eddy et al., 1993). This pattern suggests that mechanisms specific to meiotic and postmeiotic germ cells may alter pre-mRNA processing, which results in the production of a functionally different substance during these phases. For example, it is known that during the meiotic phase, a significant switch in the splicing of CREB transcripts leads to higher levels of the two isoforms that lack the leucine zipper domain and the nuclear translocation signals (Waeber et al., 1991; Ruppert et al., 1992). Moreover, CREM is expressed in the antagonist form in premeiotic germ cells, but an agonist isoform that acquires two glutamine-rich transactivation domains by alternative splicing is produced exclusively at the pachytene spermatocyte stage (Foulkes et al., 1992). It is therefore conceivable that similar mechanisms may lead to a significant switch from Sox17 to the t-Sox17 isoform during the meiotic phase, and this developmental switch may alter the function of Sox17 at the meiotic and postmeiotic phases.

It is most likely that a splicing switch at the meiotic phase leads to the loss of function of Sox17. At the present time, however, we can not rule out a possible role of truncated Sox17 protein, which lacks a DNA-binding domain, in postmeiotic germ cells. Among the HMG box family proteins, there are several reports showing that this family has important regulatory interactions with the other transcriptional factor; for example, the upstream binding factor (UBF) is reported to interact with SL-1 in a way that DNA binding by these factors is cooperative (Jantzen et al., 1992). Moreover, an HMG box protein, SSRP1, interacts specifically with the c-Myc oncoprotein, and SSRP1 affects c-Myc function in transfection experiments (Bunker and Kingston, 1995). The present immunofluorescence analysis, in combination with the transfection experiment, showed that a part of t-Sox17 protein was transported into the nucleus of L929 and COS cells in spite of t-Sox17 cDNA missing the region that corresponds to the nuclear localization signal. Moreover, in the testicular sections positive reactions were detected in the nucleus of the round spermatids by anti-Sox17 staining. These results suggest that t-Sox17 protein may interact with some nuclear proteins, even in the COS and L929 cells, and that t-Sox17 may be transported into the nucleus together with these proteins. Testing this hypothesis would require identifying the nuclear protein(s) that can interact specifically with t-Sox17 by the yeast two-hybrid system and etc.

The Sox17 form is not only expressed in the spermatogenic cell lineage, but in some other somatic cell lines as well. The present Northern and in situ hybridization analyses showed that form Sox17 is expressed in the lung and in some somatic cells located in the testicular interstitium. Moreover, RT-PCR analysis revealed that the t-Sox17 isoform is also expressed in the lung, although its expression level is quite low compared with that of form Sox17. The expression of both isoforms in somatic cell lines also stresses the biological importance of t-Sox17 isoform.

In conclusion, we found that a Sox17 gene is the first member of Sox gene family to encode functionally different mRNA isoforms by alternative splicing, and the expression of each isoform is regulated differently in spermatogenesis. We believe that identification of the Sox17 gene not only provides information about the transcriptional networks in spermatogenesis, but also a novel insight to the functional regulation of Sox family genes at the mRNA-processing level.

The authors wish to thank Dr. Hirokazu Fujimoto (Department of Molecular Reproduction and Development, Mitsubishi Kagaku Institute of Life Sciences) and Associate Professor Dr. Yoshimitsu Kanai (Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo) for their kind and helpful advice and discussions regarding this work; Dr. Peter Koopman for his helpful discussions and suggestions; and Dr. George Muscat for providing information about the Sox18 gene before publication; department director Dr. Hiroshi Hamada, Dr. Yukio Saijo (Department of Developmental Biology and Cancer Prevention, The Tokyo Metropolitan Institute of Medical Science), Associate Professor Dr. Masanichi Kurohmura, and Dr. Kentaro Tanemura (Department of Veterinary Anatomy, Faculty of Agriculture, University of Tokyo) for their helpful support; Mr. Issao Tsugiyama (Department of Veterinary Anatomy, University of Tokyo) for his expert care of laboratory mice; and Mrs. Hiroe Hayashi (Department of Ultrastructural Research, The Tokyo Metropolitan Institute of Medical Science) for her secretarial assistance.

This work was supported by financial grants from the Ministry of Education, Science, and Culture of Japan to Y. Kanai (Nos. 06660394 and 07660412), and the Japan Society for the Promotion of Science to M. Kanai-Azuma (No. 2786).

Received for publication 10 March 1995 and in revised form 23 January 1996.

References

Bunker, C.A., and R.E. Kingston. 1995. Identification of a cDNA for SSRP1, an HMG-box protein, by interaction with the c-Myc oncoprotein in a novel bacterial expression screen. Nucleic Acids Res. 23:269-276.

Capel, B., A. Swain, S. Nicois, A. Hacker, M. Walter, P. Koopman, P. Goodfellow, and R. Lovell-Badge. 1993. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019-1030.

Chardard, D., A. Chesnel, C. Gozé, C. Dournon, and P. Berta. 1993. Pw Soxl: the first member of the Sox gene family in Urodela. Nucleic Acids Res. 2:374-380.

Chirgwin, J.M., A.E. Przybyla, J.R. MacDonald, and W.J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 18:5294-5299.

Clepet, C., A.J. Schafer, A.H. Sinclair, M.S. Palmer, R. Lovell-Badge, and P.N. Goodfellow. 1993. The human SRY transcript. Hum. Mol. Genet. 2:2007-2012.

Connor, F., E. Wright, P. Denny, P. Koopman, and A. Ashworth. 1995. The Sry-related HMG-box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 23:3365-3372.

Denny, P., S. Swift, N. Brand, N. Dabhade, P. Barton, and A. Ashworth. 1992a. A conserved family of genes related to the testis determining gene, SRY. Nucleic Acids Res. 20:2887.

Denny, P., S. Swift, F. Connor, and A. Ashworth. 1992b. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO (Eur. Mol. Biol. Organ.) J. 11:3765-3772.

Durr, T.L., L. Mynen-Johnson, E.M. Wright, B.M. Hosking, P.A. Koopman, and G.E.O. Muscat. 1995. Sequence and expression of Sox18 encoding a new HMG-box transcription factor. Gene (Amst.). 161:223-225.

Eddy, E.M., J.E. Welch, and D.A. O'Brien. 1993. Gene expression during spermatogenesis. In Molecular Biology of the Male Reproductive System, D. de Kretser, editor. Academic Press, CA 181-232.

Erickson, R.P. 1990. Post-meiotic gene expression. Trends Genet. 6:264-269.

Foster, J.W., M.A. Dominguez-Steglich, S. Giuri, C. Kwok, P.A. Weller, M. Stevanović, J. Weissenbach, S. Mansour, I.D. Young, P.N. Goodfellow, D. Brook, and A.J. Schafer. 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature (Lond.). 372:525-530.
Jantzen, H.-M., A. Admon, S.P. Bell, and R. Tjian. 1990. Nucleolar transcrip-
gol, C., F. Poulat, and P. Berta. 1993. Partial cloning of SOX-11 and SOX-12,
two new human SOX genes. Nucleic Acids Res. 21:2943.
Gubbay, J., J. Collignon, P. Koopman, B. Capel, A. Economou, A. Möller-
berg, N. Vivian, P. Goodfellow, and R. Lovell-Badge. 1990. A gene mapping
to the sex-determining region of the mouse Y chromosome is a member of
a novel family of embryonically expressed genes. Nature (Lond.). 346:245-
250.
Harley, V.R., D.J. Jackson, P.J. Hextall, J.R. Hawkins, G.D. Berkovitz, S. Sock-
anathan, R. Lovell-Badge, and P.N. Goodfellow. 1992. DNA binding activity
derect SRY from normal males and XY females. Science (Wash. DC). 255:453-
456.
Harley, V.R., R. Lovell-Badge, and P.N. Goodfellow. 1994. Definition of a con-
sensus DNA binding site for SRY. Nucleic Acids Res. 22:1500–1501.
Jantzen, H.-M., A. Admon, S.P. Bell, and R. Tjian. 1990. Nucleolar transcription
factor HUFB contains a DNA-binding motif with homology to HMG box
proteins. Nature (Lond.). 344:830–836.
Jantzen, H.-M., A.M. Chow, D.S. King, and R. Tjian. 1992. Multiple domains of
the RNA polymerase I activator HUFB interact with the TATA-binding
protein complex hSL1 to mediate transcription. Genes Dev. 6:1950–1963.
Jay, P., C. Gozé, C. Marroliet, S. Taviaux, J.-P. Hardelin, P. Koopman, and P.
Berta. 1995. The human SOX11 gene: cloning, chromosomal assignment and
tissue expression. Genomics. 29:541–545.
Kamachi, Y., S. Sockanathan, Q. Liu, M. Breitman, R. Lovell-Badge, and H.
Kondoh. 1995. Involvement of SOX proteins in lens-specific activation of
crystallin genes. EMBO (Eur. Mol. Biol. Organ.) J. 14:3510–3519.
Koopman, P., J. Gubbay, N. Vivian, P. Goodfellow, and R. Lovell-Badge. 1991.
Male development of chromosomally female mice transgenic for
Sry
is expressed in the somatic
cells of male fetal gonads and in the germ cell line in the adult testis. Mol.
Repord. Dev. 34:369–375.
Rossi, P., S. Dolci, C. Albanesi, P. Grignaldi, and R. Geremia. 1993. Direct evidence
that the mouse sex-determining gene Sry is expressed in the somatic
cells of male fetal gonads and in the germ cell line in the adult testis. Mol.
Repord. Dev. 34:369–375.
Ruppert, S., T.J. Cole, M. Boshart, E. Schmid, and G. Schütz. 1992. Multiple
mRNA isoforms of the transcription activator protein CREB: generation by
alternative splicing and specific expression in primary spermatocytes. EMBO (Eur. Mol. Biol. Organ.) J. 11:1503–1512.
Saido, T.C., T. Iwatsubo, D.M.A. Mann, H. Shinada, Y. Ibara, and S. Kawa-
shima. 1995. Dominant and differential deposition of distinct β-amyloid pep-
tide species. A βA42 in senile plaques. Neuron. 14:457–466.
Saido, T.C., S. Nagao, M. Shiramine, M. Tsukaguchi, H. Sorinmachi, H. Mun-
fushi, T. Tsuichiya, H. Ito, and K. Suzuki. 1992. Autolytic transition of
α-calpain upon activation as resolved by antibodies distinguishing between
the pre- and post-autolysis forms. J. Biochem. 111:81–86.
Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463–5467.
Schilham, M.W., M. van Eijk, M. van de Wetering, and H.C. Clevers. 1993. The
murine Sox4 protein is encoded on a single exon. Nucleic Acids Res. 21:
2009.
Sinclair, A.H., P. Berta, M.S. Palmer, J.R. Hawkins, B.L. Griffiths, M.J. Smith,
J.W. Foster, A.-M. Frischaff, R. Lovell-Badge, and P.N. Goodfellow. 1990. A
gene from the human sex-determining region encodes a protein with homol-
gy to a conserved DNA-binding motif. Nature (Lond.). 346:240–244.
Smith, D.B., and K.S. Johnson. 1988. Single-step purification of polypeptides
expressed in Escherichia coli as fusions with glutathione S-transferase. Gene
(Amst.). 67:31–40.
Stevanovic, M., R. Lovell-Badge, J. Collignon, and P.N. Goodfellow. 1993.
Sox3 is an X-linked gene related to Sry. Hum. Mol. Genet. 2:2013–2018.
Takamatsu, N., H. Kanda, T. Tsuichiya, S. Yamada, M. Ito, S. Kabeno, T. Shib,
and S. Yamashita. 1995. A gene that is related to SRY and is expressed in the
testes encodes a leucine zipper-containing protein. Mol. Cell. Biol. 15:3759-
3766.
Uwanocho, D., M. Rex, E.J. Cartwright, G. Pearl, C. Healy, P.J. Scotting, and
P.T. Sharpe. 1995. Embryonic expression of the chicken Sox2, Sox1 and
Sox11 genes suggests an interactive role in neuronal development. Mech.
Dev. 49:23–36.
van de Wetering, M., M. Oosterwegel, D. Dooijes, and H. Clevers. 1991. Identifi-
cation and cloning of TCF-1, a T lymphocyte-specific transcription factor
containing a sequence-specific HMG box. EMBO (Eur. Mol. Biol. Organ.) J.
10:123–132.
van de Wetering, M., M. Oosterwegel, K. van Norren, and H. Clevers. 1993.
Sox4, an Sry-like HMG box protein, is a transcriptional activator in lympho-
ocytes. EMBO (Eur. Mol. Biol. Organ.) J. 12:3847–3854.
Waeber, G., T.E. Meyer, M. LéSier, H.L. Hermann, N. Gérard, and J.F. Ha-
bener. 1991. Developmental stage-specific expression of cyclic adenosine
3‘,5‘-monophosphate response element-binding protein CREB during sper-
matogenesis involves alternative exon splicing. Mol. Endocrinol. 5:1418–
1430.
Wagner, T., J. Wirth, J. Meyer, B. Zabel, M. Held, J. Zimmer, J. Pasantes, F.D.
Bricarelli, J. Keutel, E. Hustert, U. Wolf, et al. 1994. Autosomal sex reversal
and campomelic dysplasia are caused by mutations in and around the SRY-
related gene Sox9. Cell, 79:1111–1120.
Wilson, D., G. Sheng, T. Lecuit, N. Dostani, and C. Desplan. 1993. Cooperative
dimerization of paired class homeo domains on DNA. Genes Dev. 7:
2120–2134.
Wright, E., M.R. Hargrave, J. Christiansen, L. Cooper, J. Kun, T. Evans, U.
Gangadharan, A. Greenfield, and P. Koopman. 1995. The Sry-related gene
Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genet.
15:19–20.
Wright, E.M., B. Snop, and P. Koopman. 1993. Seven new members of the
Sox gene family expressed during mouse development. Nucleic Acids Res.
21:744.