Supplementary Materials for the paper

Mendelian Randomization Identifies CpG Methylation Sites with Mediation Effects for Genetic Influences on BMD in Peripheral Blood Monocytes

Part 1. Power analysis of using logistic regression to detect DMC

We performed simulation analysis to calculate the power of detecting methylation difference great than 0.05 using logistic regression. We considered the following two different scenarios:

In scenario 1, the ground truth is that the difference in methylation statistically caused solely by BMD group is 0.05. To make it concise, we use a model of simple logistic regression, in which the only predictor variable of DNA methylation value at a CpG site is the BMD group. However, this scenario could also represent the case that one or more covariates have been adjusted.

In scenario 2, the total effect of BMD and other covariates on the mean difference in methylation is set to be 0.05. We used a model of multiple logistic regression, which contains five predictor variables (age, BMI, drinking status, smoking status, and 1st PC of methylation), same as what we used in the real differential methylation analysis.

At a CpG locus, the methylation data y_{ij} of subject i group j is simulated by equation (1)(2), where z_{ijn} is the methylation status of subject i group j sequence n; $i = 1, 2 \ldots I_j$; $I_0 = 54$; $I_1 = 64$; $j = 0, 1$; $n = 1, \ldots, N_{ij}$. In both scenarios, we control two parameters that affect the power, the coverage of the CpG site in each subject (N_{ij}) and the probability of methylation in the low BMD group (p_0). The group difference is set to be 0.05, i.e. $p_1 = p_0 + 0.05$.

$$y_{ij} = \sum_{n=1}^{N_{ij}} z_{ijn} \sim \text{binomial} \left(N_{ij}, p_j \right) \quad (1)$$

$$z_{ijn} \sim \text{Bernoulli} \left(p_j \right) \quad (2)$$

The logistic regression in equation (3) was then fitted for the simulated data. The covariate part was omitted in scenario 1. In scenario 2, five covariates are simulated according to the group-specific parameters in Table 1. For each parameter setting, the regression was replicated 1000 times. The empirical power is calculated as the number of times the null hypothesis ($H_0; \delta = 0$) is rejected over the number of replications. It is important to keep in mind that the sample size of
(3) is the number of z_{ijn} instead of y_{ij}, thus the sample size is $\Sigma_{ij} N_{ij}$. This fact has also been pointed out in the original paper of *methylKit* package.

$$\log \frac{p}{1 - p} = \beta_0 + \delta BMD + \sum_{m=1}^{5} \beta_m x_m \quad (3)$$

Figure S5-a shows the power versus p_0 (varies from 0.1 to 0.9) at a mean coverage of 30 in the two scenarios. In scenario 1, the power of detecting 0.05 difference caused by BMD group is constantly greater than 80% regardless of the change of p_0. The power curve makes a U-shape with lower power at $p_0=0.5$ and higher power at $p_0=0.1$ and 0.9. In scenario 2, the power is very close to 80% for detecting the methylation difference in the BMD group adjusting for other covariates. There’s a U-shape in the power curve but not as apparent as the simple logistic regression model (scenario 1).

Figure S5-b shows the power versus mean coverage with $p_0=0.5$ in the two scenarios. The power increases in both scenarios with the increase of mean coverage. The power curve vs coverage at p_0 of other values should be superior to the power curve shown in Figure S5-b, because power at $p_0=0.5$ is the lowest as we demonstrated in Figure 5-a.
Part 2. Supplementary figures

Figure S1. Scree Plot of Principal Component of Methylation
Figure S2. Scree Plot of the Principal of Components of SNP
Figure S3. Heatmap of the methylation values of the 693 DMC with mean difference ≥ 0.1. The rows represent CpG loci and the columns represent subjects. The methylation level in each row is scaled to a Z-score. Both row and column are clustered by ‘hclust’ algorithm by R package pheatmap.
Figure S4. Histogram of mean coverage of DMCs with difference > 0.05.
Figure S5. Plot of power versus a. p_0 at a mean coverage of 30; b. mean coverage at $p_0 = 0.5$ in the two scenarios.
Figure S6. Network of enriched terms. Each node represents an enriched term and is colored by its cluster name.
Part 3. Supplementary tables

Table S13. Top six clusters with their representative enriched GO terms. "Count" is the number of genes in the user-provided lists with membership in the given ontology term. "%" is the percentage of all of the user-provided genes that are found in the given ontology.

GO	Category	Description	Count	%	Log10(P)	Log10(q)
GO:0033866	GO Biological Processes	nucleoside bisphosphate biosynthetic process	3	17.65	-4.85	-1.01
GO:0006694	GO Biological Processes	steroid biosynthetic process	3	17.65	-3.48	-0.07
GO:0048732	GO Biological Processes	gland development	3	17.65	-2.49	0.00
GO:0019932	GO Biological Processes	second-messenger-mediated signaling	3	17.65	-2.47	0.00
GO:0051656	GO Biological Processes	establishment of organelle localization	3	17.65	-2.29	0.00
GO:0033674	GO Biological Processes	positive regulation of kinase activity	3	17.65	-2.15	0.00
Table S14. Metrics of overdispersion, zero-inflation and mean coverage of the 30 identified mediator DMCs

chr	start	prob	varEs	varOb	scalar	coverage	nZero	Gene
1	22571385	0.62	27.66	350.12	12.66	35.46	12	MIR4418
2	31719473	0.81	21.21	698.75	32.95	78.73	2	SRD5A2
4	957285	0.78	11.02	150.67	13.67	24.29	5	DGKQ/SLC26A1
6	32222711	0.79	160.94	22254.76	138.28	307.54	0	XXbac-BPG154L12.4
7	1062527	0.44	59.75	2112.08	35.35	105.18	31	C7orf50
8	58127658	0.83	87.69	17359.24	197.97	372.78	0	RP11-513O17.2
9	71682281	0.57	50.40	1649.50	32.73	91.58	10	PRKACG
9	96362114	0.63	54.39	2147.44	39.48	114.21	9	PHF2
10	42739065	0.21	147.05	3509.43	23.87	301.19	0	RP11-313J2.1
12	48723325	0.72	129.87	25037.68	192.79	283.64	7	SENP1
14	75441795	0.44	37.03	707.09	19.09	60.42	23	TMED10
16	81248716	0.59	124.57	7322.34	58.78	251.15	3	PKD1L2
16	89167395	0.18	11.88	102.84	8.66	36.37	68	ACSF3
17	1944903	0.06	22.58	487.86	21.61	181.55	46	DPH1
17	1944905	0.06	24.00	486.42	20.26	181.45	40	DPH1
17	42246289	0.57	11.28	55.42	4.91	19.91	8	C17orf53
17	43828617	0.81	18.98	522.06	27.51	48.86	4	MAPT
17	43894548	0.78	5.57	20.26	3.64	8.98	6	CRHR1
17	44060776	0.80	5.36	41.00	7.65	12.76	5	ARHGAP27
17	44337590	0.07	47.58	1040.95	21.88	238.20	61	ARL17B
17	44337597	0.07	47.84	1017.07	21.26	238.38	60	ARL17B
17	44337604	0.07	47.59	1005.52	21.13	238.07	57	ARL17B
17	44337613	0.07	47.82	1021.04	21.35	238.03	61	ARL17B
17	44337617	0.08	49.55	1035.92	20.91	238.09	46	RP11-995C19.2
17	44337622	0.08	48.32	1016.35	21.04	237.69	45	RP11-995C19.2
17	80053590	0.26	28.69	43.75	1.52	23.38	35	FASN
17	80086159	0.49	28.98	651.03	22.46	54.62	27	FASN
21	46677414	0.52	32.45	245.25	7.56	46.62	1	LINC00334
22	46504167	0.40	94.62	492.30	5.20	102.52	5	FLJ27365

Columns
1 chromosome, 2 base position, 3 mean methylation level, 4 estimated variance, 5 observed variance, 6 overdispersion scalar, 7 mean coverage, 8 number of zeros, 9 if the evidence of association is low, 10 causal mQTL overlapped gene
