A higher taxonomic richness does not ensure the functional resilience of saproxylic beetle communities in evergreen Quercus forests

DIANA PÉREZ-SÁNCHEZ,1© NorMAN W. H. MAson,2 Hervé Brustel,3 EudAroD GAланЕ1,4 and eSтеFAніа Mісо1,4
1Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Alicante, Spain, 2Landcare Research, Hamilton, New Zealand, 3Ecole d’Ingénieurs de Purpan, Université de Toulouse, UMR INP INRAE, Toulouse, France and 4Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO, University of Alicante, Alicante, Spain

Abstract. 1. Despite the fact that insects are suffering a global decline, little is known about the extent to which species loss affects functional diversity. Thus, to understand the relationship between taxonomic and functional diversity metrics, we focused on saproxylic beetles, which perform vital functions in forest ecosystems.
2. Beetles were collected monthly for a year using flight interception traps placed in three protected areas of mature evergreen Mediterranean Quercus forests. Five morphological traits, one phenological trait, and one physiological surrogate trait were measured, and trophic guild identities were determined. Two taxonomic and six functional metrics were assessed to determine their relationships.
3. Taxonomic and functional diversity patterns, as well as trait patterns, differed depending on the protected areas, as they were influenced by habitat and microhabitat characteristics. Generally, a high number of species tended to support high values of functional richness, but did not ensure high values of functional redundancy, thus affecting the resilience of communities.
4. A 5% of species loss strongly affected the functional redundancy of communities, making them more vulnerable. Functional richness, however, was not affected, since it was associated with a high number of redundant species. Thus, the way species loss affected communities is highly dependent on the presence of rare or redundant species.
5. Taxonomic and functional diversity metrics should be used as complementary tools for conservation purposes. In this way, the comparative analysis of taxonomic and functional patterns may help to predict the vulnerability of saproxylic assemblages to changes or disturbances.

Key words. Forest conservation, functional diversity, functional redundancy, functional traits, management strategies, Mediterranean region.

Introduction

Insects are facing a significant decline at a planetary level (Homburg et al., 2019; Sánchez-Bayo & Wyckhuys, 2019). The ecological consequences of this drop, however, are still unknown. Since species have different roles within the ecosystem, changes in the taxonomic richness, abundance, or composition can have an impact on a range of ecosystem-level processes and therefore on ecosystem functioning (Naeem & Wright, 2003; Petchey & Gaston, 2006). Traditionally, a high number of species have been associated with higher functional diversity values (Tilman, 2001). Yet other aspects, such as the functional roles of species or their rarity within communities, may play a bigger part in the functioning of the community (Santini et al., 2017). This makes it necessary to ascertain how
different facets of insect diversity, such as taxonomic and functional dimensions, are related (Santini et al., 2017).

Many studies about functional diversity in plant communities have linked specific functional traits to ecosystem functions and services, thus allowing improvement management and conservation practices (see references in Drenovsky et al., 2012; Lozanovska et al., 2018; van der Plas, 2019). Conversely, the current state of knowledge of the functional diversity of insects seems to be still insufficient to fulfill such purposes. This has resulted in a poor understanding of the relationship between taxonomic diversity and functional diversity, which may be key to defining the consequences of species loss for ecosystems, an issue that is yet to be resolved (Cadotte et al., 2011). Numerous studies on insects have found that perturbations or habitat fragmentation can alter both ecosystem functioning and taxonomic diversity equally, because coexisting organisms have different functional characteristics (Audino et al., 2014; Luiza-Andrade et al., 2017; González et al., 2018; Martello et al., 2018). However, other studies have found different trends in taxonomic diversity and functional diversity, linking this decoupling to the functional identity of the species (Correa et al., 2019; Santonandré et al., 2019). That is, the stability and resilience of ecosystem services in the face of loss or changes of species may be more influenced by the species’ function than their numbers (Tilman et al., 1997; Oliver et al., 2015). Moreover, species loss in natural communities is not random; it can depend on a range of factors such as population size or sensitivity to environmental stress (Mouillot et al., 2013; Engel et al., 2017). All this makes it necessary first to analyse the relationship between different biodiversity metrics, such as taxonomic and functional measurements, so as to help calibrate the extent to which a large number of species may ensure ecosystem functions or a small number may jeopardise them. And second, we need to understand how species loss (both random or directed) can affect functional metrics, in order to determine how ecosystem functioning may react to future perturbations or changes (Engel et al., 2017; Leclerc et al., 2020).

One target group that allows to analyse the relationship between functional and taxonomic diversity metrics is saproxylic beetles, which depend on dead wood during some part of their life cycle (Speight, 1989; Alexander, 2008). Not only do they make up about one-third of the world’s insect diversity (Ulyshen & Sobotník, 2018), but they also are a highly diverse, complex, and functionally important group for forest ecosystems. In this way, saproxylic beetles contribute to several key ecosystem functions in forests, as they play a significant role in the maintenance of nutrient cycling and trophic complexity. In addition, saproxylic predators naturally control forest pests and some adults are pollinators (Speight, 1989; Micó et al., 2011; Sánchez-Galván et al., 2014). Due to the significance of saproxylic insects, and particularly of their ecosystem services, many attempts have been made to understand the environmental factors that affect their biodiversity. Most studies have focused on taxonomic diversity (e.g. Müller & Bütler, 2010; Bouget et al., 2012; Quinto et al., 2014; García-López et al., 2016), whereas little is known about the relationship between the taxonomic and functional diversity of saproxylic beetles or how species loss can affect functional metrics.

Within this framework, we used the data of saproxylic beetle communities of three protected areas in the Iberian Peninsula dominated by mature evergreen Quercus species. The objective was two-fold: on the one hand, to assess the relationship between the taxonomic and functional diversity patterns, and on the other, to test the sensitivity of saproxylic beetle functional diversity to possible species loss (Petchey & Gaston, 2002; Cadotte et al., 2011; Parisi et al., 2018).

Taxonomic diversity may not necessarily be a reliable surrogate for the functional diversity of saproxylic groups, so both approaches should be used as complementary tools in conservation studies. In fact, since saproxylic beetles are strongly affected by environmental filters relating to habitat and micro-habitat (e.g. Okland, 1996; Gibb et al., 2006; Micó et al., 2015; García-López et al., 2016; Kissick et al., 2018; Parmain & Bouget, 2018), we believe that the various taxonomic and functional diversity metrics would not necessarily change in the same direction. For example, communities in a preserved area, with a small number of species, may be able to maintain their functional diversity, while at the same time, other metrics, such as functional redundancy or rarity, may reflect the vulnerability of these communities to future changes (Scheffer et al., 2015; Kissick et al., 2018; Martello et al., 2018; Thorn et al., 2018). Moreover, we expect that the loss of species (whether random or directed) would affect the functional richness and resilience of communities in different ways, since species can have different functional roles in communities (Mason et al., 2005; Carmona et al., 2017; Viole et al., 2017). In addition, we anticipate that the analysis of trait patterns would help to better understand the diversity of each assemblage and to identify potential vulnerabilities regarding preservation functions (Watts & Mason, 2015; Micó et al., 2020).

Achieving our objectives would allow us not only to highlight the importance of using both taxonomic diversity and functional diversity when proposing appropriate conservation measures, but also to detect the vulnerability of functionally relevant communities, such as saproxylic beetles, even in protected areas, despite the number of species.

Materials and methods

Study area

Evergreen Quercus forests were surveyed in three protected areas in the Spanish Mediterranean region separated by a distance of between 200 and 480 km (Fig. 1): Cabañeros National Park (hereinafter, Cabañeros), Sierra Espadán Natural Park (hereinafter, Sierra Espadán), and Font Roja Natural Park (hereinafter, Font Roja). The dominant trees in all three parks are evergreen mature Quercus species; a description of the characteristics of each park is given in Table 1.

Sampling strategy

Fifteen sites were selected within the three protected areas, which best represented the vegetation’s structural variability within each area (see Table S1 for details).
In Sierra Espadán, three sites (separated by a maximum distance of 6 km) in *Quercus suber* forests were selected: two of the sites were located in a valley and had a highly complex undergrowth; and in the third, the undergrowth was sparser, and the cork oaks undergo occasional management.

In Font Roja, the three selected sites in *Quercus rotundifolia* forests were located on an altitudinal gradient (from 1087 to 1275 m) and separated by a maximum of 1 km. They presented the same forest composition with homogeneous tree size, shallow, and sun exposure, and little undergrowth.

Cabañeros presented the highest woodland heterogeneity because of variations in tree species composition and had both open and closed landscape structures. So, we selected nine sites, separated by a maximum distance of 24 km: three in a *Q. suber* forest with the trees of similar size, undergrowth, and deadwood in soil; and six in a *Q. rotundifolia* forest, of which four were in ‘la Raña’, typified by savanna-type open vegetation with sparse undergrowth, and two were on a private land with denser vegetation.

Since the samples were collected in protected areas, three flight interception traps were placed on each site, which ensures the minimum number of replications. Thus, nine traps were installed in both Sierra Espadán and Font Roja, and 27 traps were set up in Cabañeros. All the traps were kept in the field for one year, from April 2015 to June 2016. The collector bottle in each trap was replaced monthly, using propylene glycol as a preservative. The beetle specimens were stored in alcohol until their species were identified, with the collaboration of several taxonomists (see Acknowledgements). The nomenclature was based on the Fauna Europaea (http://www.faunaeur.org/), the study by Bouchard et al. (2011), and the Catalogue of Palaearctic Coleoptera (Löbl & Smetana, 2004, 2006, 2007, 2008, 2010). The specimens were added to the Entomological Collection of Alicante University (CEUA) and deposited at the CIBIO Research Institute (University of Alicante, Spain).

**Functional trait selection**

Four different types of functional traits (morphological, trophic, phenological, and a surrogate for physiological) were chosen to characterise the assemblages (Table 2).

Of the five morphological traits, three were directly measured for each specimen (body length, antenna length, and eye surface), whereas two (robustness and elytra ratio) were calculated based on a combination of other morphological measures (Table 2, Fig. 2). The morphological measurements were taken from up to 11 individuals per species, when possible, to capture
within-species variations (Fountain-Jones et al., 2015). A stereomicroscope (Leica M205C and LEICA Application Suite software version 4.8) were used for the measurements. After calculating each trait’s mean per species, it was standardised using body size, following the study by Barton et al. (2011).

The single phenological trait (the beetles’ active period or active months) was calculated as the number of months that the adult beetles of each species were captured; it was thus used as a surrogate for the number of months that the beetles were active (Moretti et al., 2017). The trophic trait was the abundance of each species in the feeding guild (Watts & Mason, 2015; Moretti et al., 2017; Table 2).

Finally, regarding the surrogates for the physiological traits, we measured the parks’ air temperature (Table 2). We installed one data logger (HOBO U23 Pro v2 Temperature/RH Data Loggers with U23-001 sensor) in each site in Font Roja and Sierra Espadán. In Cabaneros, the temperature data were obtained from the ‘Alcorroquerà’ meteorological station located inside the park, which belongs to the Global change Monitoring Network in National Parks of Spain’s Ministry for Agriculture, Food and Environment (MAPAMA, 2017).

In order to simplify our analytical model, we performed three successive principal component analyses (PCAs), removing the previously discarded traits at each new analysis. The first was performed using only the residuals of the morphological traits. Its first two axes explained nearly 99% of the variation, body length having the main coefficient, whereas the second axis captured the rest of the morphological traits (Table S2). For the second PCA, to which we added the surrogates for the physiological traits, the first three axes explained nearly 90% of the variance and, therefore, we decided to keep TRangeAct and TmeanAct (see Table 2 for the definitions of the abbreviations) as independent physiological traits (Table S2). In the last PCA, which included the added phenological trait, the first three axes explained nearly 96% of the variance. Since TRangeAct and active months were closely correlated, we decided to remove TRangeAct (Table S2). The final traits that we used for the rest of the analysis were body length, robustness, elytra ratio, both sensory traits (body length-corrected eye area and antenna length as residuals), TmeanAct, active months, and all the trophic guilds (Table 2).

Data analysis

To verify the inventory completeness of our sampling, both for each park and for all the parks together, we calculated the sample coverage estimator, which measures the proportion of the total number of individuals in a community that belongs to the species represented in the sample (Chao & Jost, 2012). We used the ‘SPADE’ package in r version 3.4.3 (Chao & Shen, 2010; Chao et al., 2016; r Core Team, 2017).

To analyse the differences, between the parks, in the patterns of diversity metrics for taxonomic diversity and functional diversity, we calculated two and six metrics for each park, respectively. Due to the data’s non-normality, we looked for

| Protected area (coordinates) | Area (ha) | Altitude (m) | Annual temperature (mean; min; max) (°C) | Annual precipitation range (mm) | Main arboreal formations | Traditional management |
|-----------------------------|----------|-------------|------------------------------------------|--------------------------------|--------------------------|------------------------|
| Cabaneros National Park (39°23.47 N, 4°29.14 W) | 40 865 | 620–1500 | (13–16); −12; 40 | 500–750 | Q. rotundifolia Lam and Q. suber L. | Before its designation as a national park (1995): agricultural management of ‘la Raña’, cork harvesting and hunting activities |
| Sierra Espadán Natural Park (39°52 N, 0°17.30 W) | 31 180 | 300–1100 | 16; −2; 39 | 800 | Q. suber with a complex undergrowth of ferns (several species), holly (Ilex aquifolium L.), heather (Erica scoparia L.), juniper (Juniperus communis L.) and strawberry trees (Arbutus unedo L.) | Traditional cork harvesting in the more accessible areas |
| Font Roja Natural Park (38°38.51 N, 0°32.46 W) | 3000 | 800–1356 | (15–20); 5; 25 | 402–479 | Mainly Q. rotundifolia with some Q. faginea and Acer granatense Boiss. | Important tourist destination Fire prevention methods (shredding of deadwood in some parts of the park) |

The altitude, annual temperature (mean, minimum, and maximum), and annual precipitation (range or mean), as well as the main arboreal formation and its current or previous management are provided for each area. See references for Cabaneros in Balasch I Blanch & Ruiz (1998), for Sierra Espadán in Aneto Publicaciones (2010) and for Font Roja in Bonet & Terrones (2016).
Table 2. Definitions and justification of use (with references) of functional traits of saproxylic beetles, as well as the functional groups to which the traits belonged, and how they were measured.

| Functional trait group | Trait | Definition and measurement | Justification for use (and references) |
|------------------------|-------|----------------------------|---------------------------------------|
| Morphological traits (mm) | Body length* | Total lateral length from the anterior of head to the apex of the abdomen | One of the most highly informative traits for beetles. It may provide information about: - Microhabitat use - Dispersal ability - Foraging behaviour and - Movement through complex environments (Forsythe, 1987; Ribera & Nilsson, 1995; Cunningham & Murray, 2007; Barton et al., 2011; Fountain-Jones et al., 2017; Gillespie et al., 2017) |
| Antenna length* | Maximum length from the base of the antenna to its apex (residual when body length-corrected) | Both sensory traits can vary between trophic or taxonomic groups (Fountain-Jones et al., 2015) and they may indicate: - Microhabitat use and structure - Lifestyle of species - Ability to locate new microhabitats or prey (Ribera et al., 1999b; Woodcock et al., 2010; Talarico et al., 2011) |
| Eye surface (mm²)* | Area contained within the outline of the eye perimeter (residual when body length-corrected) | It can be used as: - An indicator of the microhabitat - As a protective trait (Barton et al., 2011; Fountain-Jones et al., 2017) |
| Robustness* | Combination of the body length-corrected maximum dorsal width of the head and the body length-corrected maximum width, length, and lateral depth of the pronotum (Barton et al., 2011; Micó et al., 2020; Pérez-Sánchez et al., 2020) | It may provide information about: - Flight capacity of the beetles (in the Carabidae short elytron length is linked to better dispersal efficiency) - Microhabitat use (longer elytra may provide protection for the wings in harsh environments, Forsythe, 1987; Ribera et al., 1999a; Barton et al., 2011; Johansson et al., 2012, Fountain-Jones et al., 2015) |
| Elytra ratio* | Body length-corrected elytra ratio: ratio of maximum lateral length of the elytra to the measure of maximum lateral length from meso-metathorax to the apex of the abdomen (lower ratios mean exposed abdomen) | It could be related to: - Species interactions - Community structure - Dispersal capacity - Response to changes in the environment (smaller temporal windows of activity may reduce the resilience to changes in the environment, because of the lack of time for finding proper microhabitats and mates; Gillespie et al., 2017; Moertrti et al., 2017) |
| Trophic traits (trophic guilds) | Predator guild* | Abundance of predator beetles | Since each trophic guild responds differently to pressures and ecosystems, guilds provide information about: - The resource use of each assemblage, and - Possible responses of communities to different pressures (Fountain-Jones et al., 2017) |
| Saprophagous guild* | Abundance of saprophagous beetles | - |
| Saproxylophagous guild* | Abundance of saproxylophagous beetles | - |
| Xylophagous guild* | Abundance of xylophagous beetles | - |
| Xylomycetophagous guild* | Abundance of xylomycetophagous beetles | - |
| Phenological trait | Active months* | Number of months that adult beetles were active | - |
| Physical traits (as a surrogate) | TmaxAct | Environmental maximum temperature of the months when the adult beetle was active (°C) | Although measured as the air temperature of each protected area, these traits can provide information on: - The temperature niche of adult activity for each species, - Tolerance to abiotic conditions - The extent of the range of each species (helping to understand how climate change can affect species distribution; Fountain-Jones et al., 2015; Moertrti et al., 2017) |
| TminAct | Environmental minimum temperature of the months when the adult beetle was active (°C) | - |
| TrangeAct | Difference between the environmental maximum and minimum temperatures of the months when the adult beetle was active (°C) | - |
| TmeanAct* | Environmental mean temperature of the months when the adult beetle was active (°C) | - |
| WSD | Weighted mean of the environmental temperature of the months with maximum abundance of adult beetles | - |

*Final traits used for statistical analysis.

significant differences using the nonparametric Kruskal–Wallis test (Ostertagová et al., 2014; De La Riva et al., 2017).

For taxonomic diversity, we calculated species richness (S) and the number of effective species using Hill numbers, or true diversity of order 1 (D), since it weights each species according to its frequency in the sample (Jost, 2006; Scheiner, 2012). True diversity was calculated as the exponent of the Shannon index using the ‘SPADE’ package in R (Chao & Shen, 2010).

For functional diversity, we calculated functional richness, functional evenness after removing the effect of the number of species, functional evenness, functional divergence, functional redundancy (after removing the effect of the number of species), and functional rarity. Functional richness is the amount of trait space occupied by the species present within a community (Mason et al., 2005; Laliberté & Legendre, 2010). Functional evenness is the regularity of the distribution of species abundances in the occupied functional trait space.
Fig. 2. Schematic representation of the morphological trait measurements in each individual through (a) dorsal view and (b) lateral view. Maximum dorsal width of the head and the body and maximum width, length, and lateral depth of the pronotum were used to create Robustness, whereas Elytra length and meso-metathorax and abdomen length were used to create the Elytra ratio. Information and definition of traits in Table 2. Illustration by Sara Pérez-Sánchez.

(Mason et al., 2005; Laliberté & Legendre, 2010). Functional divergence measures the degree to which species abundances in a community are distributed towards the edges of the occupied trait space. Functional redundancy refers to the diversity of species performing similar functions in the ecosystem and represents community resilience (Mason et al., 2005; Villéger et al., 2008; Laliberté & Legendre, 2010; Pillar et al., 2013; Carmona et al., 2016; McPherson et al., 2018). Finally, the functional rarity of species in each park was calculated as the combination of functional distinctiveness (whether a species is more or less functionally close to the rest of the community) and taxon scarcity (a local-scale feature of a species with low relative abundance in the community; Grenié et al., 2017; Violle et al., 2017). We used ‘FD’ (Laliberté et al., 2015), ‘SYNCSA’ (Debastiani & Pillar, 2012), and ‘funrar’ packages (Grenié et al., 2017) in r (R Core Team, 2017).

Since both functional richness and redundancy are strongly dependent on the taxonomic richness, we divided the functional redundancy by its upper bound (species richness – 1) (Carmona et al., 2017), while we applied a null model for functional richness (Mason et al., 2013). We generated 999 randomised abundance matrices, through the ‘trialswap’ randomisation algorithm (Miklós & Podani, 2004). For each park, we calculated the standardised effect size (SES) as the difference between the observed functional richness and the mean of the 999 matrix simulations divided by the standard deviation of the simulated values.
(de Bello, 2012); the $P$-value was calculated as the proportion of expected functional richness values that were less or more extreme (i.e. $\geq$ or $\leq$) than the observed value (Götzenberger et al., 2016). For the null model, we used the ‘randomizeMatrix’ function of the ‘picante’ package in R (Kembel et al., 2010; r Core Team, 2017).

In order to determine the strength and direction of the relationships between the two taxonomic metrics and the five functional metrics (without considering the functional richness dependent on taxonomic richness), we performed Spearman rank correlation tests (Vieira et al., 2013; Morelli et al., 2018). They were conducted for each protected area separately and also for the three protected areas together (at a regional level).

In addition, to uncover how the loss of species (reduction in species richness) may influence the functional richness and redundancy of the communities for each protected area, we applied three species extinction scenarios, the first with a random loss of species. However, since extinctions in nature are not random, we also modelled a directed loss of species in the other two species extinction scenarios. To do this, we focused on the fact that rare species (understood as those represented only by few individuals or restricted to particular habitats – functionally rare species) are considered to be more vulnerable to loss and affected by changes or perturbations (Mouillot et al., 2013; Violle et al., 2017). Therefore, for one of the directed scenarios, we considered the functional distinctiveness or rarity of each species (the uncommonness of a species’ traits compared to other species’ traits in an assemblage; Grenié et al., 2017; Violle et al., 2017), while for the second scenario, we considered the abundance of each species (by removing the less abundant species). Species extinction was applied to all scenarios by removing intervals of 5% (from 5 to 70% species loss) from each protected area’s total richness. In addition, to detect at which point significant differences of functional richness and redundancy appeared between the loss intervals, we applied the Kruskal–Wallis test between the species loss intervals.

Finally, to analyse trait patterns between parks, the selected traits were first weighted according to the number of individuals per trap (community weighted mean; Watts & Mason, 2015). Due to the data’s non-normality, we then looked for significant differences between parks using the nonparametric Kruskal–Wallis test (Ostertagová et al., 2014; De La Riva et al., 2017).

**Results**

The sample coverage estimator for the group of parks showed that our inventory completeness was 82.2% accurate. It was also high for each park, with 89.4% for Cabaneros, 82.2% for Font Roja, and 91.3% for Sierra Espadán. The total number of specimens collected during the sampling year in the three parks was 14 127. It spanned 288 species and 44 families (Table S3). Sierra Espadán presented the highest number of species (189 species), followed by Cabaneros (178 species) and Font Roja (94 species), with the lowest species richness. Of the 288 identified species, the 242 species (13 616 individuals, belonging to 43 families) for which all traits were measured were included in the analysis (Table S4).

Sierra Espadán presented a greater taxonomic richness than Font Roja and Cabaneros (Kruskal–Wallis: $X^2 = 21.20; P < 0.001$; Fig. 3). However, when using the true diversity of order 1 ($X^2 = 5.36; P = 0.07$), Sierra Espadán had the lowest values and Cabaneros the highest. Sierra Espadán was the only protected area to present a different functional richness ($X^2 = 9.57; P = 0.008$), with higher values than the other areas. However, when the effect of the number of species was removed from functional richness (using ‘trialswap’ randomisation), significant differences were found between Font Roja and Cabaneros ($X^2 = 12.48; P = 0.002$), Font Roja presenting the highest values and Cabaneros the lowest (Fig. 3). Moreover, the results from null models showed that the observed functional richness of Sierra Espadán was significantly lower than the expected functional richness ($SES = -0.21, P = 0.05$). Finally, although functional evenness ($X^2 = 0.89; P = 0.64$) did not show variations between parks, the rest of the metrics showed significant differences between Sierra Espadán and the other parks (Fig. 3). Sierra Espadán presented the highest functional divergence ($X^2 = 10.22; P = 0.006$) and functional rarity ($X^2 = 15.54; P < 0.001$), whereas an opposite pattern was found for functional redundancy ($X^2 = 21.49; P < 0.001$), Sierra Espadán having the lowest (Fig. 3).

Results of the relationship between the taxonomic and the functional metrics showed that at a regional level (considering all protected areas together), both species richness and true diversity were positively related to the functional richness and the SES.Functional Richness (after ‘trialswap’ randomisations), but negatively related to the functional redundancy (Table 3, Fig. 4). In addition, true diversity was also negatively related to functional rarity and functional divergence (Table 3, Fig. 4). Conversely, when analysing the relationship between the taxonomic and functional metrics for each protected park, the results changed, and only two relationships common to the three areas were significant: the negative association between the taxonomic richness and functional redundancy, and the negative association between true diversity and functional rarity (Table 3, Figure S1).

The three species loss scenarios at a regional level (across all three parks) showed the functional redundancy pattern, which suffered a strong decline in the first percentage of species loss (5%) (Fig. 5b). On the other hand, functional richness (using the ‘trialswap’ randomisation – SES.Functional Richness) hardly changed in the face of species loss, showing only a very slight increase in the scenarios with a species loss of over 50% (Fig. 5a).

In each park, functional redundancy showed the same pattern as at a general level, suffering a strong decline in the first percentage of species loss (5%) and then slightly increasing (Figures S2–S4). In addition, SES.Functional Richness also showed the same patterns at a general level (without any abrupt change or with only a very slight increase when species loss was over 50%), except in the case of Sierra Espadán, for which SES.Functional Richness significantly increased when 5% of the species were lost (Figures S2–S4).
Fig. 3. Boxplots of taxonomic diversity and functional diversity of each park. Richness refers to the taxonomic richness; True diversity is the true diversity index of order 1; and SES.Functional Richness refers to functional richness after removing the effect of the number of species. Different letters indicate significant differences based on the Kruskal–Wallis test ($P < 0.05$). The central rectangle indicates the second and third quartiles and the black line the median value. Red points indicate mean values and whiskers, the lower and upper quartiles. Black points indicate possible outliers.

Table 3. Spearman rank correlation test results between (a) the taxonomic richness and the functional diversity metrics, and (b) true diversity and the functional diversity metrics, for each park separately and for the three parks together (regional).

|                      | Cabañeros       | Font Roja       | Sierra Espadán | Regional       |
|----------------------|-----------------|-----------------|----------------|----------------|
| (a) Taxonomic richness |                 |                 |                |                |
| Functional richness  | $0.77$ $<0.001$ | $0.61$ $0.1$    | $0.38$ $0.34$  | $0.75$ $<0.001$|
| SES.Functional Richness | $0.83$ $<0.001$ | $0.76$ $0.03$   | $0.54$ $0.15$  | $0.47$ $<0.001$|
| Functional evenness  | $-0.20$ $0.399$ | $0.2$ $0.61$    | $-0.83$ $0.008$| $-0.17$ $0.26$ |
| Functional divergence | $-0.61$ $0.001$ | $0.56$ $0.13$   | $0.48$ $0.213$ | $0.07$ $0.64$  |
| Functional redundancy | $-0.92$ $<0.001$| $-0.81$ $0.011$ | $-0.67$ $0.05$ | $-0.96$ $<0.001$|
| Functional rarity    | $-0.42$ $0.031$ | $0.44$ $0.25$   | $0.68$ $0.06$  | $0.27$ $0.07$  |
| (b) True diversity    |                 |                 |                |                |
| Functional richness  | $0.77$ $<0.001$ | $0.29$ $0.46$   | $-0.15$ $0.68$ | $0.33$ $0.026$ |
| SES.Functional Richness | $0.76$ $<0.001$ | $0.4$ $0.29$    | $-0.14$ $0.71$ | $0.32$ $0.035$ |
| Functional evenness  | $-0.17$ $0.4$   | $0.42$ $0.27$   | $0.39$ $0.31$  | $0.07$ $0.66$  |
| Functional divergence | $-0.69$ $<0.001$| $-0.06$ $0.88$  | $-0.26$ $0.49$ | $-0.56$ $<0.001$|
| Functional redundancy | $-0.45$ $0.019$ | $0.24$ $0.56$   | $0.90$ $0.003$ | $0.03$ $0.86$  |
| Functional rarity    | $-0.84$ $<0.001$| $-0.69$ $0.043$ | $-0.93$ $0.001$| $-0.82$ $<0.001$|

Significance correlations are in bold.
Fig. 4. Correlation graphs (with the results of the Spearman rank correlation test indicating the correlation’s significance and strength) between (a) taxonomic richness and the rest of functional diversity metrics, and (b) true diversity and the rest of functional diversity metrics. Linear trends are drawn only for significant correlations ($P < 0.05$).
**Discussion**

It is worth highlighting that although higher taxonomic diversity values generally support higher functional richness values, they can come with low functional redundancy values. In fact, our results show that the predominance of functionally rare or redundant species in a community can play a major role if a loss

© 2021 The Authors. *Ecological Entomology* published by John Wiley & Sons Ltd on behalf of Royal Entomological Society

*Ecological Entomology, 46*, 1215–1229
Saproxylic beetles’ functional diversity

of species occurs, having an impact on the communities’ functional vulnerability to perturbations or changes. In addition, we found differences between taxonomic and functional diversity metrics and trait patterns in each protected area, suggesting that various habitat and microhabitat factors strongly influence both facets of biodiversity.

The comparison of the taxonomic and functional diversity patterns of each protected area showed that communities with small numbers of species (i.e. Font Roja) can present high functional diversity, whereas communities with large numbers of species (i.e. Espadán) may be less resilient because functionally rare species predominate. However, when analysing the relationships between taxonomic and functional metrics for each park and at a regional level (considering all the protected areas together), some common relationships were found. An increase in taxonomic diversity was related to an increase in functional richness (after randomisations), but to a decrease in both the functional redundancy and functional rarity. This indicates that although communities with higher numbers of species are using a greater portion of the niche space (Mason et al., 2005; Morelli et al., 2018; Pellissier et al., 2018), they may also be more highly specialised in the use of resources (Bihn et al., 2010; Farias & Jaksic, 2011; Morelli et al., 2018), for what the disappearance of species may have strong effects on the ecosystem functioning, making communities more vulnerable to changes or perturbations (Pillar et al., 2013; Ricotta et al., 2016; Violle et al., 2017).

Various species loss scenarios showed that although functional richness seems not to be affected by a species reduction at a regional level, the functional redundancy is strongly affected even when only 5% of species are lost, regardless of whether the species loss is random or directed (Fig. 5). This may be because functional richness is associated with a high number of redundant species, ensuring communities against species loss by exercising buffer functions (Winfree et al., 2015). However, this may also imply that functional redundancy will be strongly affected by species loss, causing a considerable decrease in the communities’ functional resilience (Mouillot et al., 2013; Carmona et al., 2016; Engel et al., 2017; Stotz et al., 2021). Conversely, when a community is dominated by functionally rare species with low functional redundancy, as in the case of Sierra Espadán, despite the fact that the communities may be generally more vulnerable, those rare species might be sustaining the functional diversity (Figures S2–S4; Mouillot et al., 2013; Kissick et al., 2018). Thus, when species are lost, a compensation effect

© 2021 The Authors. Ecological Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society

Ecological Entomology, 46, 1215–1229

Fig. 6. Boxplot of the distribution of functional traits (using the community weighted mean [CWM]) in the three sampled parks. Different letters indicate significant differences based on the Kruskal–Wallis test (P < 0.05). The central rectangle indicates the second and third quartiles, and the black line the median value. Red points indicate mean values and whiskers lower and upper quartiles. Black points indicate possible outliers. References, abbreviations, and trait information are given in Table 2.
may occur, increasing the community’s functional richness and explaining a lower degree of the functional redundancy change (Larsen et al., 2005; Mouillot et al., 2013; Winfree et al., 2015).

According to all those results, a community with high values of taxonomic and functional richness together with high values of functional redundancy could be the best in maintaining ecosystem functions and buffering perturbations. However, saproxylic communities are very complex and are composed of numerous functional groups, which not only allow several key roles in ecosystems, but also respond differently to environmental changes (Johansson et al., 2007; Wetherbee et al., 2020). This makes it difficult to predict how communities are going to respond (Kozák et al., 2021). In this sense, our approach has allowed to detect saproxylic communities more fragile to changes or perturbations, as in the case of Sierra Espadán with lower values of functional redundancy and higher values of functional rarity. However, and as we have seen, the predominance of functional rare species may also mean that the functional diversity of that community could be better maintained in the face of a loss of species, avoiding a sharp drop in its resilience.

Functional trait patterns

Generally, saproxylic assemblages of each protected area showed different patterns of functional traits, some of which could be used to better understand what is underlying the taxonomic and functional metrics. In this sense, some functional traits can provide information about the main characteristics of the development of microhabitat species. For example, the smaller eyes and longer antennae, combined with less robust bodies found in Font Roja, may indicate the possible dominance of beetles exploiting confined microhabitats such as those inside wood or under bark (Micó et al., 2020); larger eyes, shorter antennae, and robust bodies, as found in Sierra Espadán (Fig. 6), may indicate that the main microhabitats driving saproxylic diversity in this park are more open, e.g. tree hollows (Ribera et al., 1999b; Talarico et al., 2011; Micó et al., 2020).

In addition, some other trait patterns could indicate possible perturbations within an area or a high sensitivity to change, as in the case of Font Roja and Sierra Espadán, respectively. Thus, communities with low dispersal ability (i.e. small body size and high relative length of elytra) may be more sensitive to changes or perturbations (Ribera et al., 1999b; Barton et al., 2011; Talarico et al., 2011; Johansson et al., 2012). However, the role of these traits in saproxylic beetle communities would need to be further explored, in order to properly determine their ecosystem services and to test to what extent they can help to predict vulnerabilities.

To conclude, both approaches (taxonomic and functional) should be used as complementary tools when making management and conservation decisions, since a higher number of species may not ensure the functional resilience of communities.

ACKNOWLEDGEMENTS

We are grateful for the support and dedication for determining the saproxylic beetle species by Calmont B., Castro A., Courtin O., Lencina J.L., Liberti G., Otero J.C., Rose O., Soldati F., Stuben P., Verdugo A., Vienna P.P., Viñolas A., and Zapata J.L. In addition, we would like to thank the translation service of ‘Centro Superior de Idiomas’ of the University of Alicante for their help with the revision and correction of the language. Financial support was provided by the research Project ‘Ministerio de Ciencia e Innovación y fondos EUFEDER’ (CGL201231669), ‘Ministerio de economía, industria y competitividad’ (CGL2016-78181-R), and ‘Generalitat Valenciana’ (PROMETEO/2013/034 and AICO 2020/192). This research is part of Diana Pérez-Sánchez PhD studies, funded by ‘Ministerio de Educación, Cultura y Deporte’, through the fellowship FPU14/03721. The authors declare no conflicts of interest.

Author contribution

D.P.-S., E.G., and E.M. conceived the ideas, designed methodology, and collected the data; D.P.-S. and N.W.H.M. analysed the data; and D.P.-S. and E.M. led the writing of the manuscript. H.B. lead part of the species identification process. All authors contributed critically to the drafts and gave final approval for publication.

[Correction added on 30-July, after first online publication: Author Contribution section has been updated]

Data availability statement

Data available in article supplementary material

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Information about the sites sampling in each protected area, including the name of the site, the tree species sampled in each site, the number of flight interception in each site, and the coordinates of each site.

Table S2. Summary of principal component analysis performed on a) the residuals of the morphological traits; b) the morphological and surrogate of physiological traits; and c) the morphological and surrogate of physiological and the phenological traits. High coefficients are shown in bold.

Table S3. List of identified species with the families and subfamily they belong, abundances (number of individuals), and trophic group of each one.

Table S4. List of species used for the analyses with the families and subfamily they belong and number of measured individuals.

Figure S1. Correlation graphs for each park (blue squares represent Sierra Espadán Natural Park; red triangles represent Font Roja Natural Park, and green circles represent Cabañeros National Park) between a) taxonomic richness and the rest of functional diversity metrics; and b) true diversity and the rest of functional diversity metrics. The results of Spearman rank correlation tests are shown in Table 3, only for significantly correlations ($P < 0.05$) linear trends are drawn.

© 2021 The Authors. Ecological Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society

Ecological Entomology, 46, 1215–1229
Figure S2. Boxplots representation of SES. Functional Richness (functional richness after removing the effect of the number of species), and functional redundancy as the loss of random species increases by 5 percent (from 0 to 70% species loss) for each protected area (Cabañeros National Park, Font Roja natural park and Sierra Espadán natural park). Different letters indicate significant differences according to the Kruskal–Wallis test between intervals (P < 0.05). The central rectangle indicates the second and third quartiles, and the black line the median value. Red points indicate mean values and “whiskers” lower and upper quartiles. Black points indicate possible outliers.

Figure S3. Boxplot representation for each protected area (Cabañeros National Park, Font Roja Natural Park, and Sierra Espadán Natural Park) of SES. Functional Richness (functional richness after removing the effect of the number of species) and functional redundancy, considering the species loss scenarios of functionally rare species (intervals going from 0 to 70% species loss). Different letters indicate significant differences based on the Kruskal–Wallis test between intervals (P < 0.05). The central rectangle indicates the second and third quartiles, and the black line the median value. Red points indicate mean values and whiskers lower and upper quartiles. Black points indicate possible outliers.

Figure S4. Boxplot representation for each protected area (Cabañeros National Park, Font Roja Natural Park, and Sierra Espadán Natural Park) of SES. Functional Richness (functional richness after removing the effect of the number of species) and functional redundancy, considering the species loss scenarios of the less abundant species (intervals going from 0 to 70% species loss). Different letters indicate significant differences based on the Kruskal–Wallis test between intervals (P < 0.05). The central rectangle indicates the second and third quartiles, and the black line the median value. Red points indicate mean values and whiskers lower and upper quartiles. Black points indicate possible outliers.

References

Alexander, K.N.A. (2008) Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Revue d’écologie, 10, 9–13.

Aneto Publicaciones. (2010) Sierra D’Espadà. Guías de los parques naturales de la Comunitat Valenciana. Comunitat Valenciana, Spain: Aneto Publicaciones S.L.

Audino, L.D., Louzada, J. & Comita, L. (2014) Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biological Conservation, 169, 248–257.

Balasch, I., Blanch, E. & Ruiz, Y. (1998) El Parque Nacional de Cabañeros. Maximíngulas verdes, 1st edition. Barcelona, Spain: GeoPlaneta.

Barton, P.S., Gibb, H., Manning, A.D., Lindenmayer, D.B. & Cunningham, S.A. (2011) Morphological traits as predictors of diet and micro-habitat use in a diverse beetle assemblage. Biological Journal of the Linnean Society, 102, 301–310.

Bihm, J.H., Gebauer, G. & Brandl, R. (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91, 782–792.

Bonet, A. & Terrones, B. (2016) La Font Roja: guia per a la visita: flora, fauna i patrimoni. Alicante, Spain: Publicacions de la Universitat d’Alacant.

Bouchard, P., Bousquet, Y., Davies, A.E., Alonso-Zaragoza, M.A., Lawrence, J.F., Lyal, C.H. et al. (2011) Family-groups names in Coleoptera (Insecta). ZooKeys, 88, 1–972.

Bouget, C., Nusillard, B., Pineau, X. & Ricou, C. (2012) Effect of deadwood position on saproxylic beetles in temperate forests and conservation interest of oak snags. Insect Conservation and Diversity, 5, 264–278.

Cadotte, M.W., Carscadden, K. & Mirochnick, N. (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079–1087.

Carmona, C., Bello, F., Mason, N.W.H. & Lept, J. (2016) Traits without borders: integrating functional diversity across scales. Trends in Ecology & Evolution, 31, 382–394.

Carmona, C., Guerrero, I., Morales, M.B., Óñate, J.J., Peco, B. & Llorens, L. (2017) Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Functional Ecology, 31, 427–435.

Chao, A. & Jost, L. (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533–2547.

Chao, A., Ma, K.H., Hsieh, T.C. & Chiu, C.-H. (2016) SpadeR: Species-Richness Prediction and Diversity Estimation with R.

Chao, A. & Shen, T.-J. (2010) Program SPADE (Species Prediction And Diversity Estimation). Program and User’s Guide published at URL http://chao.stat.nthu.edu.tw. 71.

Correa, C.M.A., Braga, R.F., Puker, A. & Korasaki, V. (2019) Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. Journal of Insect Conservation, 23, 89–99.

Cunningham, S.A. & Murray, W. (2007) Average body length of arboreal and aerial beetle (Coleoptera) assemblages from remnant and plantation Eucalyptus forests in southwestern Australia. Oecologia, 151, 303–312.

de Bello, F. (2012) The quest for trait convergence and divergence in community assembly: are null models the magic wand? Global Ecology and Biogeography, 21, 312–317.

De La Riva, D.G., Hladun, K.R., Vindola, B.G. & Trumble, J.T. (2017) Arthropod communities in a selenium-contaminated habitat with a focus on ant species. Environmental Pollution, 220, 234–241.

Debastiani, V.J. & Pillar, V.D. (2012) SYNCSA–R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28, 2067–2068.

Drenovsky, R.E., Grewel, B.J., D’Antonio, C.M., Funk, J.L., James, J.J., Molinari, N. et al. (2012) A functional trait perspective on plant invasion. Annals of Botany, 110, 141–153.

Engel, F.G., Lewandowska, A.M., Eggers, S.L. & Matthiessen, B. (2017) Manipulation of non-random species loss in natural phytoplankton: qualitative and quantitative evaluation of different approaches. Frontiers in Marine Science, 4, 1–12.

Farias, A.A. & Jaksic, F.M. (2011) Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloé island, Chile. The Journal of Animal Ecology, 80, 809–817.

Forsythe, T.G. (1987) The relationship between body form and habit in some Carabidae (Coleoptera). Journal of Zoology, 211, 643–666.

Fountain-Jones, N.M., Baker, S.C. & Jordan, G.J. (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 40, 1–13.

Fountain-Jones, N.M., Jordan, G.J., Burridge, C.P., Wardlaw, T.J., Baker, T.P., Forster, L. et al. (2017) Trophic position determines functional and phylogenetic recovery after disturbance within a community. Functional Ecology, 31, 1441–1451.

© 2021 The Authors. Ecological Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society

Ecological Entomology, 46, 1215–1229
García-López, A., Galante, E. & Micó, E. (2016) Saproxylic beetle assemblage selection as determining factor of species distributional patterns: implications for conservation. *Journal of Insect Science, 1*(16), 1–7.

Gibb, H., Pettersson, R.B., Hjältén, J., Hilszczanski, J., Ball, J.P., Johansson, T. et al. (2006) Conservation-oriented forestry and early successional saproxylic beetles: responses of functional groups to manipulated dead wood substrates. *Biological Conservation, 129*, 437–450.

Gillespie, M.A.K., Birkenmeier, T. & Sverdrup-Thygeson, A. (2017) Interactions between body size, abundance, seasonality, and phenology in forest beetles. *Ecology and Evolution, 7*, 1091–1100.

González, E., Buffa, L., Defagó, M.T., Molina, S.I., Salvo, A. & Valladares, G. (2018) Something is lost and something is gained: loss and replacement of species and functional groups in ant communities at fragmented forests. *Landscape Ecology, 33*, 2089–2102.

Götzenberger, L., Botta-Dukát, Z., Lepi, J., Pártel, M., Zobel, M. & de Bello, F. (2016) Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. *Journal of Vegetation Science, 27*, 1275–1287.

Grenié, M., Denelle, P., Tucker, C.M., Munoz, F. & Violle, C. (2017) funrar: an R package to characterize functional rarity. *Diversity and Distributions, 23*, 1365–1371.

Homburg, K., Drees, C., Boutaud, E., Nolte, D., Schuett, W., Zumstein, Jost, L. (2006) Entropy and diversity. *Johansson, T., Hjältén, J., Gibb, H., Hilszczanski, J., Stenlid, J., Ball, J.P. et al. (2007) Variable response of different functional groups of saproxylic beetles to substrate manipulation and forest management: Implications for conservation strategies. *Forest Ecology and Management, 242*, 496–510.

Jost, L. (2006) Entropy and diversity. *Oikos, 113*, 363–375.

Kembl, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D. et al. (2010) Picante: R tools for integrating phylogenies and ecology. *Bioinformatics, 26*, 1463–1464.

Kissick, A.L., Dunning, J.B., Jr., Fernandez-Juricic, E. & Holland, J.D. (2018) Different responses of predator and prey functional diversity to fragmentation. *Ecological Applications, 28*, 1853–1866.

Kozák, D., Svitok, M., Wiezik, M., Mikoláš, M., Thorn, S., Buechling, A. et al. (2021) Historical disturbances determine current taxonomic, functional and phylogenetic diversity of saproxylic beetle communities in temperate primary Forests. *Ecosystems, 24*, 37–55.

Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. *Ecology, 91*, 299–305.

Laliberté, E., Legendre, P. & Shipley, B. (2015) FD: Measuring Functional Diversity From Multiple Traits, and Other Tools for Functional Ecology.

Larsen, T.H., Williams, N.M. & Kremen, C. (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning: altered community structure disrupts function. *Ecology Letters, 8*, 538–547.

Leclerc, C., Villéger, S., Marino, C. & Bellard, C. (2020) Global changes threaten functional and taxonomic diversity of insular species worldwide. *Diversity and Distributions, 26*, 402–414.

Löbl, I. & Smetanova, A. (2004) *Catalogue of Palaearctic Coleoptera*. Stenstrup, Denmark: Apollo Books.

Löbl, I. & Smetana, A. (2006) *Catalogue of palaearctic coleoptera*. Stenstrup, Denmark: Apollo Books.

Löbl, I. & Smetana, A. (2007) *Catalogue of palaearctic coleoptera*. Stenstrup, Denmark: Apollo Books.

Löbl, I. & Smetana, A. (2008) *Catalogue of Palaearctic Coleoptera*. Stenstrup, Denmark: Apollo Books.

Löbl, I. & Smetana, A. (2010) *Catalogue of Palaearctic Coleoptera*. Stenstrup, Denmark: Apollo Books.

Lozanovska, I., Ferreira, M.T. & Aquiar, F.C. (2018) Functional diversity assessment in riparian forests – multiple approaches and trends: a review. *Ecological Indicators, 95*, 781–793.

Luisa-Andrade, A., Brasil, L.S., Benone, N.L., Shimano, Y., Farias, A.P.J., Montag, L.F. et al. (2017) Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. *Ecological Indicators, 82*, 478–483.

MAPAMA. (2017) *Red de Parques Nacionales*. Red de seguimiento de datos, https://www.miteco.gob.es/es/red-parques-nacionales/red-seguimiento/acceso-datos.aspx.

Martello, F., de Bello, F., Morini, M.S.d.C., Silva, R.R., Souza-Campana, D.R.D., Ribeiro, M.C. et al. (2018) Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. *Scientific Reports, 8*, 3266.

Mason, N.W.H., de Bello, F., Mouillot, D., Pavone, S. & Dray, S. (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. *Journal of Vegetation Science, 24*, 794–806.

Mason, N.W.H., Mouillot, D., Lee, W.G. & Wilson, J.B. (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. *Oikos, 111*, 112–118.

McPherson, J.M., Yeager, L.A. & Baum, J.K. (2018) A simulation tool to scrutinise the behaviour of functional diversity metrics. *Methods in Ecology and Evolution, 9*, 200–206.

Micó, E., García-López, A., Sánchez, A., Juárez, M. & Galante, E. (2015) What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? *Journal of Insect Conservation, 19*, 141–153.

Micó, E., Juárez, M., Sánchez, A. & Galante, E. (2011) Action of the saproxylic scarab larva Cetonia aurataformis (Coleoptera: Scarabaeoidea: Cetoniidae) on woody substrates. *Journal of Natural History, 45*, 2527–2542.

Naeem, S. & Wright, J.P. (2003) Disentangling biodiversity effects on ecosystem functioning: derivingsolutionstoaseeminglyinsurmountable problem. *Ecology Letters, 6*, 567–579.

Okland, B. (1996) A comparison of three methods of trapping saproxylic beetles. *European Journal of Entomology, 93*, 195–210.
