Proteomic Analysis of the Extraembryonic Tissue from Cloned Porcine Embryos*§

Jung-Il Chae‡§, Seong-Keun Cho§¶, Jung-Woo Seo‡, Tae-Sung Yoon∥∥, Kyu-Sun Lee‡, Jin-Hoi Kim¶, Kyung-Kwang Lee‡, Yong-Mahn Han‡**‡‡, and Kweon Yu‡§§

Cloned animals developed from somatic cell nuclear transfer (SCNT) embryos are useful resources for agricultural and medical applications (1–3). Although various species of cloned animals have been successfully produced, a very low birth rate by the SCNT embryos has been observed (4). Embryonic, fetal, and postnatal death and other developmental abnormalities have been reported in the SCNT animals (5, 6). In addition, survived cloned neonates frequently show abnormal phenotypes like large offspring syndrome (7, 8).

The right number of cells in blastocysts is required for normal embryo development. However, the total number of cells in the blastocysts from the porcine SCNT embryos is smaller than the total of control blastocysts. SCNT embryos have a lower developmental competence to the blastocyst stage than control embryos (9). During embryo development, DNA methylation plays an important role for regulating gene expression. Genome wide demethylation occurs just after fertilization followed by de novo methylation as soon as differentiation occurs (10–12). According to a recent report, relatively normal demethylation occurs in the inner cell mass, not in the trophectoderm of the cloned blastocysts (13). This suggests that placenta development will be abnormal because trophectoderm produces extraembryonic tissue including placenta.

Oxidative stress occurs because of the production of reactive oxygen species (ROS), and antioxidant enzymes reduce oxidative stress by scavenging ROS. These ROS are free radicals and induce cellular damages (14). Pregnancy increases oxidative stress by increasing the metabolic activity in placental mitochondria and reduces the scavenging power of antioxidants (15).

Apoptosis is an important process during animal development and reproduction (16, 17). During pregnancy, apoptosis is physiologically important for normal placental growth and development (18, 19). Apoptotic stimuli induce the release of cytochrome c from mitochondria; the cytochrome c binds to Apaf1 (apoptotic protease-activating factor 1) for the formation of apoptosomes. Then apoptosomes activate Caspase 8, which cleaves pro-Caspase 3. An apoptotic process is also mediated via mitochondria-independent pathways that converge to the proteolytic activation of Caspase 3 (20). Antiapoptotic Bcl-2 plays an important role for preventing apoptosis in the syncytiotrophoblasts of placenta (21).

To investigate the reasons why the birth rate in the animals cloned by SCNT is so low, we examined the 26-day-old SCNT porcine fetus and extraembryonic tissue at which the sono-
gram can first detect pregnancy. We focused on the extraembryonic tissue, which is developed from trophoblasts, because of abnormal epigenetic reprogramming in the trophoblasts of the SCNT blastoderm embryos. The size of extraembryonic tissue from SCNT embryos at the 26th day was abnormally small compared with the wild type control. To find the differences at the molecular level in the extraembryonic tissue, proteomic analysis was performed. In the extraembryonic tissue from SCNT embryos, 12 protein spots were up-regulated, and 27 protein spots were down-regulated. In the Western blot analysis, antioxidant enzymes were down-regulated, and apoptosis marker proteins were up-regulated in the extraembryonic tissue from SCNT embryos. In the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) assay, apoptotic trophoblasts were observed in the placenta from SCNT embryos. These results indicate that apoptosis occurred in the extraembryonic tissue from SCNT embryos during early pregnancy. It may explain the low birth rate of the animals cloned by SCNT.

EXPERIMENTAL PROCEDURES

Extraembryonic Tissue—In vitro maturation, nuclear transfer, and embryo culture were performed according to previous reports (22, 23). Somatic cells were the fetal fibroblasts isolated from the F1 fetus produced by the crossing of inbred Duroc male and Landrace female pigs. Approximately 200 SCNT embryos were transferred to the oviducts of each synchronized recipient. Recipients were prepared as described previously (24). Three extraembryonic tissues from SCNT embryos and three control tissues at the 26th day of pregnancy were prepared.

Fig. 1. Normal and SCNT fetuses and extraembryonic tissue from 26th day of pregnancy. A, normal fetus and extraembryonic tissue from 26th day of pregnancy. B, SCNT fetus and extraembryonic tissue from 26th day of pregnancy. a and a', fetus; b and b', amnionic sac; c and c', placenta; d and d', extraembryonic tissue. The SCNT extraembryonic tissue was abnormally small compared with the control, whereas the size and shape of the fetus and amnionic sac look similar to each other. Bar, 5 mm.

Fig. 2. Two-dimensional gel electrophoresis. Proteins were isolated from normal and SCNT extraembryonic tissues, and 500 µg of total protein were loaded to the 2-DE gel. The first dimension was 18-cm pH 3–11 nonlinear IPG, and the second dimension was 10 and 12% gels (A and C, controls; B and D, SCNT extraembryonic tissue). The proteins were visualized by the silver staining. Among 2000 spots, 39 proteins were identified. In Tables I and II, 12 up-regulated and 27 down-regulated proteins are listed.
Silver staining kit (Amersham Biosciences) was used for 2-DE gels. The gels were fixed in 40% ethanol and destained in 10% acetic acid for 30 min and sensitized in ethanol glutardialdehyde. The peptides for MALDI-TOF and MALDI-TOF/TOF Calibration—

Table I

Up-regulated proteins in the SCNT extraembryonic tissue

Spot no.	Protein name	NCBI accession no.	Swiss-Prot accession no.	Method of ID	PMF (MS) Score Peptides matched	Peptides obtained	Sequence coverage %	Experimental Molecular mass	pl	Theoretical Molecular mass	pl	
1	LMNB1 protein (fragment)	Q6DC98	A		109	10	25	29	38,262	6.25	38,289	5.37
2	Annexin A2#	AAU85387	Q5Y2C7	A	180	18	45	45	38,012	7.43	38,795	6.49
3	Heterogeneous nuclear ribonucleoprotein H1	CAI24000	Q8117L	A	80	12	65	32	50,243	6.66	49,454	5.89
4	Annexin A1 (Annexin I) (Lipopartin I) (Calpain II) (Chromobindin-9) (p35) (phospholipase A2-inhibitory protein)	P19619	A		77	11	52	36	38,669	6.75	39,020	6.43
5	ABO44390 NID (aldose 1-epimerase)	BAB18973	Q9GKX6	A	71	7	25	23	38,245	7.21	38,020	6.31
6	Pyrroline-5-carboxylate reductase 1 isoform 1	Q58DT4	A		80	11	58	33	35,274	6.75	33,718	7.72
7	Hsp27	Q5S1U1	A, B		83	7	25	32	24,871	6.04	22,985	6.23
8	Ran, chain A	1IBRA	A		135	11	39	64	20,251	8.28	19,524	9.64
9	Voltage-dependent anion channel 1	Q9MZ16	A		81	8	38	34	28,725	6.45	30,822	8.62
10	Porcine hemoglobin (β subunit), chain B	1QPWB	A		106	8	23	79	15,322	8.42	16,082	6.76
11	Annexin A4	P08132	A		90	11	41	39	36,024	6.72	36,034	5.71
12	Lamin A#	BAA02476	P48678	A	73	10	40	26	47,742	6.48	47,792	6.63

Two-dimensional Gel Electrophoresis (2-DE)—2-DE was performed as described previously (25). IEF was carried out with the IPGphor unit (Amersham Biosciences) using precast 18-cm pH 3–11 nonlinear IPG gel strips (Amersham Biosciences). Total proteins from extraembryonic tissue were isolated with the protein extraction solution (1.0 mM PMSF, 1.0 mM EDTA, 1 μM pepstatin A, 1 μM leupeptin, and 0.1 μM aprotinin). 500 μg of total proteins were mixed with the rehydration solution (7 M urea, 30% (v/v) glycerol, and 2% (w/v) SDS). The second dimension separation was carried out using 10 and 12% SDS-PAGE gels. Then electrophoresis was performed using a Protean II xi 2-D cell (Bio-Rad) with 10 mA for first 20 min and 20 mA until the bromophenol blue reached the bottom of the gel. Electrophoresis was repeated three times in each sample to ensure reproducibility.

Staining 2-DE Gels— Silver staining kit (Amersham Biosciences) was used for 2-DE gels. The gels were fixed in 40% ethanol and 10% acetic acid for 30 min and sensitized in ethanol glutaraldehyde (25%, w/v), sodium thiosulfate (5%, w/v), and sodium acetate (17 g) for 30 min followed by three washes with water for 15 min each. Then the gels were immersed in silver nitrate (2.5%, w/v) and formaldehyde (37%, w/v) for 20 min, developed with sodium carbonate (6.25 g) and formaldehyde (37%, w/v) for 5 min, and stopped in EDTA-Na₂-2H₂O.

Proteomic Analysis— The silver-stained gels were scanned with the ImageScanner (Amersham Biosciences) and analyzed with the Phoretix Expression software 2005 version (Nonlinear Dynamics). Destaining and in-gel trypsin digestion of the protein spots were performed as described previously (26). Xcite (Shimadzu Biotech Co.), the automatic sample preparation system, was used for in-gel digestion, desalting, and plating. The desalting was performed with C₁₈ ZipTips (Millipore), and the samples were spotted with the 4-hydroxy-α-cyanocinnamic acid matrix solution onto a MALDI MS plate. In-gel digested peptides were analyzed with a MALDI MS/MS mass spectrometer, Ultraflex-TOF/TOF (Bruker Daltonics). Mass spectra were calibrated and processed using Flex Analysis and Biotool 2.2 software (Bruker Daltonics). Peptide mass fingerprinting (PMF) and MS/MS ion search were performed using MASCOT 2.0 software (Matrix Science) integrated with the Biotool 2.2 software. The Mass Spectrometry Protein Sequence Database (MSDB) (Version 09292005; 2,344,227 sequences) and The National Center for Biotechnology Information non-redundant (NCBI) (Version 04222006; 3,604,615 sequences) protein databases were searched with the following MASCOT settings: taxonomy as Mammalia (mammals); one incomplete tryptic cleavage allowed; peptide tolerance, 0.100 ppm; fragment tolerance, 1 ppm; monoisotopic mass; 1 + peptide charge state as 4-hydroxy-α-cyanocinnamic acid protonation; alkylation of cysteine by carbamidomethylation as a fixed modification; and oxidation of methionine as a variable modification. For PMF and MS/MS ion search, statistically significant (p < 0.05) matches by MASCOT 2.0 were regarded as correct hits. The threshold score were 67 in MSDB and 69–78 in NCBI database searches. For further analysis, two criteria were used: 1) porcine proteins matched were chosen although other species had higher ranked hits and 2) the protein matched to pI criteria were used: 1) porcine proteins matched were chosen although other proteins had higher ranked hits and 2) the protein matched to pI and molecular weight in the two-dimensional gel was chosen although other proteins had higher ranked hits.

MALDI-TOF and MALDI-TOF/TOF Calibration— The peptides for the calibration were: Bradykinin-[1-7] [M + H]⁺ mono (757.399), Angiotensin II-[M + H]⁺ mono (1046.541), Angiotensin I-[M + H]⁺ mono (1298.684), Substance P-[M + H]⁺ mono (1347.735), Bombesin-[M + H]⁺ mono (1619.822), Renin_Substrate-[M + H]⁺ mono (1758.933), ACTH_clip-[1-17]-[M + H]⁺ mono (2093.086),
Proteomic Analysis in the Cloned Extraembryonic Tissue

TABLE II

Down-regulated proteins in the SCNT extraembryonic tissue

Spot no.	Protein name	NCBI accession no.	Swiss-Prot accession no.	Method of ID	Peptides matched	Peptides obtained	Sequence coverage	Experimental Molecular mass (Da)	Theoretical Molecular mass (Da)	
13	Transferrin	S01384	A	424	46	96	68	80,122	78,971	
14	AF542068 NID (serum albumin)	AAN17824	P02769	A, B	93	13	40	18	72,011	71,274
15	Glutamate dehydrogenase (NAD(P) (EC 1.4.1.3) precursor	P00367	A	76	12	56	29	62,087	61,701	
16	alpha enolase (EC 4.2.1.11) (2-phospho-o-glycerate hydrolyase) (Non-neural enolase) (NNE) (enolase 1) (phosphopyruvate hydratase) (c-myc promoter-binding protein)	P06733	A	121	14	57	33	47,112	47,350	
17	Mus musculus 0 day neonate thymus cDNA, RIKEN full-length enriched library, clone: A430106 I2, product: hypothetical protein, full insert sequence (fragment)	Q9CTR0	A	71	12	63	35	35,044	35,531	
18	Pigment epithelium-derived factor; PEDF (AF017058 NID)	AAC05733	P97298	A, B	78	11	37	31	46,023	48,045
19	Adenosylhomocysteinase (EC 3.3.1.1) (S-adenosyl-L-homocysteine hydratase) (AdoHcyase)	Q710C4	A	119	13	40	18	48,332	54,216	
20	4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)	S32821	Q02110	A	125	15	62	51	45,887	45,216
21	Phosphoglycerate kinase 1 (EC 2.7.2.3)	Q7SIB7	A	108	19	69	48	45,125	44,798	
22	Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (EC 1.2.1.12)	DEPGG3	A	108	11	29	43	36,115	35,914	
23	Alcohol dehydrogenase (NADP+) (EC 1.1.1.12) (aldehyde reductase) (aldo-keto reductase family 1 member A1)	P50578	A	102	11	45	28	35,042	35,670	
24	Malate dehydrogenase (EC 1.1.1.37), chain A	1MLDA	A	188	19	50	59	35,003	33,390	
25	Apolipoprotein E	S33450	P18650	A	208	29	81	62	36,002	36,634
26	L-Lactate dehydrogenase (EC 1.1.1.27), chain M	DEPGLM	A	116	14	42	37	36,117	36,749	
27	Pro-alpha (I) collagen (fragment)	CAC38832	Q8ND8	A, B	95	8	22	30	32,987	32,134
28	Phosphoglycerate mutase 1 (EC 5.4.2.1) (EC 5.4.2.4) (EC 3.1.3.13) (phosphoglycerate mutase isozyme B) (PGAM-B) (PGAM-dependent PGAM1)	CAC38832	Q8ND8	A, B	95	8	22	30	32,987	32,134
29	Triose-phosphate isomerase 1	Q5E956	A	98	11	52	48	25,114	26,901	
30	Apolipoprotein A-I	A46018	P18648	A	164	14	35	49	30,147	30,312
31	Transthyretin precursor	S66595	P50390	A	152	10	28	70	16,185	16,185
32	Carboxypeptidase A1 precursor	NP_0.9409	A	78	10	46	26	47,024	47,320	
33	Thorinidoxin domain-containing 2*	AA9S05132	Q86V03	A	80	10	40	25	51,721	53,637
34	Peroxiredoxin 4	AA9S05132	Q9Z0V5	A	73	8	44	31	31,451	31,216
35	Peroxiredoxin 5*	AAG13452	Q9GLW8	A	134	11	43	53	18,034	17,484
36	CRY	Q8SQ26	Q8SQ26	A	110	12	51	39	34,377	35,504
37	TTN protein (fragment)	Q6NSG0	Q6NSG0	A	68.2	14	61	18	64,327	69,051
38	alpha-1-Antichymotrypsin 3	CAC07657	Q8GMA8	A	86	9	47	35	23,421	22,883
39	BC057898 NID	AAH57898	Q8JM90	A	75	10	95	68	14,702	15,026

* Score thresholds were 69–78 for NCBI database.

ACTH_clip-(18–39) [M + H]" mono (2465.198), and Somatostatin [M + H]" mono (3147.471).

Western Blot Analysis—Western blot analyses were performed as described previously (27). Antibodies used in this study were purchased from Santa Cruz Biotechnology.

Caspase 3 Activity—Enzymatic activity of Caspase 3 was measured using the fluorescence assay kit (Peptron). The assay is based on the spectrophotometric detection of the fluorogenic substrate, which is cleaved by the activated Caspase 3. Fluorescent signal was measured using the excitation wavelength at 360 nm and the emission...
sion wavelength at 460 nm with a microplate reader (Victor3, PerkinElmer Life Sciences).

TUNEL Assay—The paraffin sections of the normal and SCNT placenta from the 26th day of pregnancy were prepared. TUNEL assay was carried out using the In Situ Cell Death Detection kit (Roche Applied Science). Tissue was dissected in Ringer’s solution, fixed in PBS containing 4% formaldehyde for 25 min, digested with 20 μg/ml proteinase K for 15 min, and incubated with the TUNEL reaction mixture.

RESULTS AND DISCUSSION

Abnormally Small Extraembryonic Tissue from the SCNT Embryos—Abnormal epigenetic reprogramming in the trophoblasts of the SCNT porcine blastocysts (13) suggests that extraembryonic tissue development will be abnormal because trophoblasts generate extraembryonic tissue. SCNT extraembryonic tissue from the 26th day of pregnancy showed abnormally small size and shape (Fig. 1B) compared with the wild type control (Fig. 1A). Interestingly the size and shape of the fetus and amnionic sac of both the control and experimental samples were similar. Extraembryonic tissue is a multifunctional organ developed from both fetal and maternal origins. During the pregnancy, it provides nutrition, gas exchange, waste removal, and endocrine and immune support for the developing fetus (6). This abnormally small extraembryonic tissue from SCNT embryos indicates that one of the main reasons for the low birth rate of cloned animals is due to the defective development of extraembryonic tissue.

Proteomic Analysis of the SCNT Extraembryonic Tissue and Identifications of Up- and Down-regulated Proteins—To investigate differences between the normal and SCNT extraembryonic tissues at the molecular level, we performed proteomic analysis (Fig. 2). Among ~2000 spots in the two-dimensional gel, 39 protein spots were changed at least 2-fold in their intensities between the control and SCNT extraembryonic tissues. After protein identifications with mass spectrometry and protein database search, 12 up-regulated and 27 down-regulated proteins were found in the SCNT extraembryonic tissue. They are listed in Tables I and II.

Lamins A and B1; Annexins A1, A2, and A4; voltage-dependent anion channel, and Hsp27 proteins were up-regulated in the SCNT extraembryonic tissue. Lamin is a nuclear
envelop protein and is cleaved by the interleukin-converting enzyme family during apoptosis (29). Annexins, structural proteins exhibiting Ca
$^{2+}$-dependent binding activity to phospholipids, are known biomarkers for apoptosis (30). Voltage-dependent anion channel is a major component of the permeability transition pore complex of the mitochondrial megachannel and is associated with members of the Bcl-2 family (31). Hsp27 is an apoptotic regulator that interacts with the key components of apoptotic signaling (32). These up-regulated proteins indicate that apoptosis occurred in the SCNT extraembryonic tissue as shown in Fig. 1.

Glyceraldehyde-3-phosphate dehydrogenase, enolase, and lactate dehydrogenase, enzymes functioning in anaerobic glucose metabolism, were down-regulated in the SCNT extraembryonic tissue (Table II). Placenta of rodents and large mammals including humans is a glucose-dependent tissue with limited mitochondrial respiration and mainly anaerobic conversion of glucose to lactate (33). Glyceraldehyde-3-phosphate dehydrogenase converts glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate by the reduction of NAD$^{+}$ to NADH. Enolase catalyzes 2-phosphoglycerate to phosphoenolpyruvate, and lactate dehydrogenase catalyzes the conversion of pyruvate to lactate. These down-regulations may be because of the size reduction of the SCNT extraembryonic tissue.

Other down-regulated proteins were transferrin and apolipoprotein E (Table II). Transferrin is a main component of iron transport and metabolism and has a cytoprotective role. In the mouse model, transferrin inhibits Fas-mediated hepatocyte death and liver failure (34). Apolipoprotein is a main protein moiety of circulating high density lipoproteins and protects vascular endothelial cells from apoptosis (35). These down-regulated proteins also indicate that apoptosis occurred in the SCNT extraembryonic tissue.

Classification of the Regulated Proteins and Down-regulated Antioxidant Enzymes—Thirty-nine regulated proteins were classified by their molecular functions (Fig. 3A). The major category is the oxidoreductase activity category in which one up-regulated and nine down-regulated proteins were classified. Peroxiredoxin 4 is one of the down-regulated proteins (Table II). Exogenous and endogenous oxidative stresses generate ROS that damage the macromolecules and cause apoptosis (36). ROS are degraded by superoxide dismutase, peroxiredoxin, glutathione peroxidase (GPx), and catalase, which convert H$_2$O$_2$ to O$_2$ and H$_2$O. In the Western blot analysis, catalase and GPx proteins were down-regulated in the SCNT extraembryonic tissue (Fig. 3B and C). These proteomic and Western blot data suggest that ROS accumulated in the SCNT extraembryonic tissue and may cause apoptosis.
Up-regulated Hsp27 and Apoptotic Marker Proteins in the SCNT Extraembryonic Tissue—In the 2-DE analysis, one of the up-regulated proteins in the SCNT extraembryonic tissue was Hsp27 protein. It was confirmed by the Western blot analysis in which Hsp27 protein from the SCNT extraembryonic tissue was up-regulated 2.5 times more than the controls (Fig. 4). This result also suggests that apoptosis occurred in the SCNT extraembryonic tissue because up-regulated Hsp27 induces apoptosis through the activating Caspase cascade (37). In Fig. 4, two sets of samples show the same Hsp27 up-regulations, indicating that these up-regulations are not sample-specific.

To study apoptosis in the SCNT extraembryonic tissue, expression of apoptotic marker proteins, including Bcl-2, Caspasas, and PARP, was examined by Western blot analysis (Fig. 5A). Caspase 3 enzymatic activity in the SCNT extraembryonic tissue was also examined (Fig. 5B). Antiapoptotic Bcl-2 protein expression was decreased in the SCNT extraembryonic tissue compared with the control. Pro- and active Caspase 8 and active Caspase 3 proteins were up-regulated in the SCNT extraembryonic tissue. In the Caspase 3 enzymatic assay, the SCNT extraembryonic tissue had higher Caspase-3 enzymatic activity than that of the normal control tissue (Fig. 5B). These results demonstrate that apoptosis occurred in the SCNT extraembryonic tissue. In Fig. 5, two sets of samples show the same results of protein regulations, indicating that these results are not sample-specific.

TUNEL Assay in the SCNT Extraembryonic Tissue—To investigate apoptosis in vivo, TUNEL assay was performed with the placenta from the normal and SCNT extraembryonic tissues. A very small portion of the cells was TUNEL-positive in the normal placenta (Fig. 5C), whereas a large portion of the cells was TUNEL-positive in the SCNT placenta (Fig. 5D) (yellow and green colored cells). The apoptotic cells in the SCNT placenta were cytrophoblasts, which play an important role during the pregnancy for the growth and development of placenta (28). This result also demonstrates that apoptosis occurred in the SCNT extraembryonic tissue.

Conclusion—In the proteomic analysis using the abnormally small extraembryonic tissue on the 26th day of pregnancy from the SCNT embryos, 39 proteins were identified as differentially regulated proteins. Among the up-regulated proteins, Annexins and Hsp27 were found. They are closely related to the processes of apoptosis. Among down-regulated proteins, anaerobic glucose metabolism enzymes were found. These findings may be due to the size reduction of the SCNT extraembryonic tissue that resulted from apoptosis. In the Western blot analysis, antioxidant enzymes were down-regulated, and caspases were up-regulated. This indicates that oxidative stress may be a main cause for inducing apoptosis in the SCNT extraembryonic tissue. Results of TUNEL analysis provide evidence that apoptosis occurred in the SCNT placenta. These results demonstrate that a major reason for the low birth rate in cloned animals is abnormal apoptosis in the extraembryonic tissue during early pregnancy.

* This work was supported by a Korea National Research and Development Program grant of the Ministry of Science and Technology (M10417060006-05N1706-00610), the Research Project on the Production of Bio-organisms (ABC060512), and a grant from the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

REFERENCES

1. Betthauser, J., Forsberg, E., Augustein, M., Chidis, L., Eilertsen, K., Enos, J., Forsythe, T., Golueke, P., Jurgenla, G., Koppang, R., Lesmeister, T., Mallon, K., Mell, G., Misica, P., Pace, M., Pfizer-Genskow, M., Strchlenko, N., Voelker, G., Watt, S., Thompson, S., and Bishop, M. (2000) Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1053–1059

2. Dai, Y., Vaught, T. D., Boone, J., Chen, S. H., Phelps, C. J., Ball, S., Monahan, J. A., Jobst, P. M., McCreath, K. J., Larnborn, A. E., Cowell-Lucero, J. L., Wells, K. D., Colman, A., Polejaeva, I. A., and Ayares, D. L. (2002) Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255

3. Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., Samuel, M., Bonk, A., Rieke, A., Day, N. B., Murphy, C. N., Carter, D. B., Hawley, R. J., and Prather, R. S. (2002) Production of α1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092

4. Wakoayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R., and Mombaerts, P. (1999) Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 96, 14984–14989

5. Challavat-Palmer, P., Heyman, Y., and Renard, J. P. (2000) Cloning and associated physiopathology of gestation. Gynecol. Obstet. Fertil. 28, 633–642

6. Yang, L., Li, S., Kuro, B., Buckley, A., Buckley, D., Chen, C., Xu, X., Coss, D., and Walker, A. M. (2002) Maternal prolactin composition can permanently affect epidermal γ T cell function in the offspring. Dev. Comp. Immunol. 26, 849–860

7. Hill, J. R., Roussel, A. J., Cibelli, J. B., Edwards, J. F., Hooper, N. L., Miller, M. W., Thompson, J. A., Looney, C. R., Westhusin, M. E., Robl, J. M., and Stice, S. L. (1999) Clinical and pathologic features of cloned transgenic calves and fetuses. Theriogenology 51, 1451–1465

8. Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., Shin, T., Spencer, T. E., Thompson, J. A., Winger, Q. A., and Westhusin, M. E. (2000) Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794

9. Koo, D. B., Kang, Y. K., Park, J. S., Park, J. K., Chang, W. K., Lee K. K., and Han, Y. M. (2004) A paucity of structural integrity in cloned porcine blastocysts produced in vitro. Theriogenology 62, 779–789

10. Han, Y. M., Kang, Y. K., Koo, D. B., and Lee, K. K. (2003) Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 39–44

11. Reik, W., Santos, F., and Dean, W. (2003) Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 59, 21–32

12. Rideout, W. M., Ill, Eggan, K., and Jaenisch, R. (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098

Molecular & Cellular Proteomics 5.9
Proteomic Analysis in the Cloned Extraembryonic Tissue

13. Kang, Y. K., Park, J. S., Koo, D. B., Choi, Y. H., Kim, S. U., Lee, K. K., and Han, Y. M. (2002) Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. *EMBO J.* 21, 1092–1100

14. Takahashi, A., Masuda, A., Sun, M., Centonze, V. E., and Herman, B. (2004) Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). *Brain Res. Bull.* 62, 497–504

15. Wisdom, S. J., Wilson, R., McKillop, J. H., and Walker, J. J. (1991) Antioxidant systems in normal pregnancy and in pregnancy-induced hypertension. *Am. J. Obstet. Gynecol.* 165, 1701–1704

16. Dlouhy, M. Y., Haglund, B., Nisell, H., Otterblad, P. O., and Westgren, M. (1988) Fetal and neonatal mortality in the postterm pregnancy: the impact of gestational age and fetal growth restriction. *Am. J. Obstet. Gynecol.* 178, 726–731

17. Naeye, R. L. (1978) Causes of perinatal mortality excess in prolonged gestations. *Am. J. Epidemiol.* 108, 429–433

18. Axt, R., Meyberg, R., Mink, D., Wasemann, C., Reitnauer, K., and Schmidt, W. (1999) Immunohistochemical detection of apoptosis in the human term and post-term placenta. *Clin. Exp. Obstet. Gynecol.* 26, 56–59

19. Smith, S. C., Baker, P. N., and Symonds, E. M. (1997) Placental apoptosis in normal human pregnancy. *Am. J. Obstet. Gynecol.* 177, 57–65

20. Tsujimoto, Y., Cossman, J., Jaffe, E., and Croce, C. M. (1985) Involvement of the bcl-2 gene in human follicular lymphoma. *Science* 228, 1440–1443

21. Toki, T., Horiiuchi, A., Ichikawa, N., Mori, A., Niki, T., and Fujii, S. (1999) Inverse relationship between apoptosis and Bcl-2 expression in syncytiotrophoblast and fibrin-type fibrinoid in early gestation. *Mol. Hum. Reprod.* 5, 246–251

22. Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. (2000) Pig cloning by microinjection of fetal fibroblast nuclei. *Science* 289, 1188–1190

23. Yin, X. J., Cho, S. K., Park, M. R., Im, Y. J., Park, J. J., Jong, S. K., Kwon, D. N., Jun, S. H., Kim, N. H., and Kim, J. H. (2003) Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. *Zygote* 11, 167–174

24. Park, M. R., Cho, S. K., Lee, S. Y., Choi, Y. J., Park, J. Y., Kwon, D. N., Son, W. J., Paik, S. S., Kim, T., Han, Y. M., and Kim, J. H. (2005) A rare and often unrecognized cerebromeningitis and hemodynamic disorder a major cause of sudden death in somatic cell cloned piglets. *Proteomics* 5, 1928–1939

25. Lee, K. A., Shim, J. H., Kho, C. W., Park, S. G., Park, B. C., Kim, J. W., Lim, J. S., Choe, Y. K., Paik, S. G., and Yoon, D. Y. (2004) Protein profiling and identification of modulators regulated by the E7 oncoprotein in the C33A cell line by proteomics and genomics. *Proteomics* 4, 839–848

26. O’Neill, E., Brock, C. J., von Kriegsheim, A. F., Pearce, A. C., Dwek, R. A., Watson, S. P., and Hebestreit, H. F. (2002) Towards complete analysis of the platelet proteome. *Proteomics* 2, 288–295

27. Kim, H. R., Kang, J. K., Yoon, J. T., Seong, H. H., Jung, J. K., Lee, H. M., Sik Park, C., and Jin, D. I. (2005) Protein profiles of bovine placenta derived from somatic cell nuclear transfer. *Proteomics* 5, 4264–4273

28. Mu, J., Kanzaki, T., Shi, X., Tomimatsu, T., Fukuda, H., Shioji, M., Murata, Y., Sugimoto, Y., and Ichikawa, A. (2003) Apoptosis and related proteins in placenta of intrauterine fetal death in prostaglandin F1 receptor-deficient mice. *Biol. Reprod.* 68, 1968–1974

29. Tang, D. G., and Porter, A. T. (1996) Apoptosis: a current molecular analysis. *Pathol. Oncol. Res.* 2, 117–131

30. Reutelingsperger, C. P., Dumont, E., Thimister, P. W., van Genderen, H., Kenis, H., van de Eijnde, S., Heidendal, G., and Hofstra, L. (2002) Visualization of cell death in vivo with the annexin A5 imaging protocol. *J. Immunol. Methods* 265, 123–132

31. Newmeyer, D. D., and Ferguson-Miller, S. (2003) Mitochondria: releasing power for life and unleashing the machineries of death. *Cell* 112, 481–490

32. Concannon, C. G., Gorman, A. M., and Samali, A. (2003) On the role of HSP 27 in regulating apoptosis. *Apoptosis* 8, 61–70

33. Hauguel-de Mouzon, S., and Shafrir, E. (2001) Carbohydrate and fat metabolism and related hormonal regulation in normal and diabetic placenta. *Placenta* 22, 619–627

34. Lesnikov, V. A., Lesnikova, M. P., Shulman, H. M., Wilson, H. M., Hockenberg, D. M., Kocher, M., Pierpaoli, W., and Deeng, H. J. (2004) Prevention of Fat-mediated hepatic failure by transferring. *Lab. Invest.* 84, 342–352

35. Neve, B. P., Fruchtart, J. C., and Staelens, B. (2000) Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. *Biochem. Pharmacol.* 60, 1245–1250

36. Hussain, S. P., Amstad, P., He, P., Robles, A., Lupold, S., Kaneko, I., Ichimiyama, M., Sengupta, S., Mechanic, L., Okamura, S., Hofseth, L. J., Moake, M., Nagashima, M., Forrester, K. S., and Harris, C. C. (2004) p53-induced up-regulation of MnSOD and GPx but not catalase in PPAR alpha-negative mice. *Hepatology* 40, 1188–1190

37. Takeyama, S., Reed, J. C., and Homma, S. (2003) Heat-shock proteins as regulators of apoptosis. *Oncogene* 22, 9041–9047