Group of L-homeomorphisms and permutation groups

Sini P
Deptartment of Mathematics, University of Calicut, Calicut University P.O., 673635, Kerala, India.
E-mail: sinimecheri@gmail.com

Abstract. A subgroup G of the symmetric group $S(P)$ of all permutations of a set P is called L_f-representable on P if there is an L-topology δ on P with the group of L-homeomorphisms of $(P, \delta) = G$. In this paper we study the L_f-representability of some subgroups of the symmetric group.

1. Introduction
The problem of representing a permutation group as the the group of homeomorphisms of a topological space was studied in [1, 2, 3, 4, 5]. Johnson T P [6, 7, 8] and Ramachandran P T [9, 10] studied analogous problem in L-topological spaces. This paper is a continuation of this problem. The permutation group generated by cycle and some normal subgroups of the symmetric group $S(P)$ on P can be expressed as the L-homeomorphism group of an L-topological space when $|L| \geq |P|$ [6]. Ramachandran P T [9, 10] studied the representability of the cyclic group generated by a cycle and the group generated by arbitrary product of infinite cycles when $L \neq \{0,1\}$. A subgroup G of the group $S(P)$ of all permutations of a set P is called L_f-representable on P if there is an L-topology δ on P with the L-homeomorphism group of $(P, \delta) = G$ [11]. In [11], we studied some properties of L_f-representable permutation groups and determined L_f-representability of dihedral groups. Here we study the L_f-representability of semi-regular subgroups of $S(P)$ and alternating group.

2. Preliminaries
Here we give some basic definitions in permutation groups and L-topology, which we will be used in this paper. For more details see [12, 13, 14]. Through out this paper P stands for a non empty set and L for an F-lattice.

A bijection of a set P onto P is called a permutation of P. The set of all permutations of P forms a group under permutation multiplication. This group is called the symmetric group[12]. We denote the symmetric group by $S(P)$ and S_n to denote the special group...
$S(P)$ when $P = \{1, 2, \ldots, n\}$. A subgroup of $S(P)$ is said to be a permutation group [12]. If P is a finite set with cardinality n, then the alternating group A_n is the set of all even permutations in S_n. Note that for $n \neq 4$, A_n is the only non trivial proper normal subgroup of S_n. If $n = 4$, S_n has another non-trivial normal subgroup \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.

If P is an infinite set and $g \in S(P)$. Then support of g is defined by $supp(g) = \{p \in P : g(p) \neq p\}$. A permutation having finite support is called a finitary permutation [13]. Let $FS(P) = \{g \in S(P) : g$ is a finitary permutation$\}$ Let $g \in FS(P)$. Then g is a product of finite number of transpositions. A finitary permutation g is said to be even if it can be expressed as a product of even number of transpositions and odd if it can be written as a product of odd number of transpositions. The set $\{g \in FS(P) : g$ is even $\}$ is the alternating group $A(P)[13]$.

Let P be any set. Then a subgroup H of $S(P)$ is semi-regular [12] if any non identity permutation in H has no fixed points. Also H is regular if H is transitive and semi-regular.

Let L be a complete lattice, then an L-subset f of P is a function from P to L. The set of all L-subsets of P is denoted by L^P. A completely distributive lattice L with an order reversing involution $h: L \rightarrow L$ is called an F-lattice. Let P and Q be two sets and $g : P \rightarrow Q$ be a function. Then for any L-set f in P, $g(f)$ is an L-set in Q defined by $g(f)(q) = \bigvee\{f(p) : p \in P, g(p) = q\}$ if $g^{-1}(q) \neq \emptyset$ and $g(f)(q) = 0$ if $g^{-1}(q) = \emptyset$. For an L-set f' in Q, we define $g^{-1}(f')(p) = f'(g(p))$ for all $p \in P$.

Let $\delta \subseteq L^P$ and if δ satisfies (i) $\emptyset, 1 \in \delta$, (ii) $f_1 \wedge f_2 \in \delta$ for all $f_1, f_2 \in \delta$ and (iii) $\forall \mathcal{A} \in \delta$ for all $\mathcal{A} \subseteq \delta$ then δ is said to be an L-topology on P and (P, δ) is an L-topological space or L-ts in short. Every element in δ is called an L-open subset of P. Let (P, δ) be an L-topological space, $\mathcal{B} \subseteq \delta$. \mathcal{B} is called a base of δ, if $\delta = \{\forall \mathcal{A} : \mathcal{A} \subseteq \mathcal{B}\}$ and $\forall \mathcal{A} \subseteq \delta$ is called a subbase of δ, if the family $\{\wedge \mathcal{B} : \mathcal{B} \in \mathcal{S}^{<\omega} \setminus \{\emptyset\}\}$ is a base, where $\mathcal{S}^{<\omega}$ denote the family of all finite subsets of \mathcal{S}.

Let (P, δ) and (Q, δ') be any two L-ts and g be a function from (P, δ) to (Q, δ'). Then (i) g is said to be an L-continuous map from P to Q, if $g^{-1}(f') \in \delta$ for every $f' \in \delta'$ where $g^{-1}(f')$ means $f' \circ h$ and (ii) g is said to be L-open if the image of every L-open subset of P as an L-open one in Q. Now g is said to be an L-homeomorphism if it is (i) bijective (ii) L-continuous and (iii) L-open. Thus $g \in S(P)$ is an L-homeomorphism of (P, δ) on to itself if and only if $f \in \delta \Leftrightarrow f \circ g \in \delta$. The set of all L-homeomorphisms of an L-ts (P, δ) onto itself is a group under function composition, which is a subgroup of $S(P)$. It is called the group of L-homeomorphisms or L-homeomorphism group of (P, δ) and is denoted by $GLH(P, \delta)$.

3. L_f-representability of semi-regular permutation groups
In this section we prove that semi-regular permutation groups on P are L_f-representable on P provided $|L| \geq |P|$.

Theorem 3.1. Let G be a semi-regular permutation group on P. If $|L| \geq |P|$, then there exists an L-topology δ on P with $GLH(P, \delta) = G$.

Proof. Let $f : P \rightarrow L$ be an L-set such that f is one-one and f take the values 0 and 1.
We can define such a one-one function since \(|L| \geq |P|\). By the well-ordering Theorem, well-order the group \(G\) with order relation \(<\). Define \(S = \{f_i = f \circ g_i : g_i \in G\}\). Let \(\delta\) be the \(L\)-topology having the subbase \(S\). Then any element of \(\delta\) is of the form \(\bigvee_{i \in I}(\bigwedge_{j \in J_i} f_j)\) where \(I\) is an index set and \(J_i\) is finite for each \(i \in I\).

Claim: \(GLH(P, \delta) = G\)

Let \(g \in G\) and \(f_i \in S\). Then \(g^{-1}(f_i) = f_i \circ g = (f \circ g_i) \circ g = f \circ (g_i \circ g)\). Since \(g, g_i \in G\), \(g_i \circ g\) is in \(G\). Let \(g_i \circ g = g_k\) for some \(k\). Then it follows that \(g^{-1}(f_i) = f \circ g_k = f_k\). Hence \(g^{-1}(f_i)\) is in \(\delta\). By similar arguments we can prove that \(g(f_i) \in \delta\). So \(g\) is an \(L\)-homeomorphism on \(P\). Thus

\[
G \subseteq GLH(P, \delta) \tag{1}
\]

Conversely assume that \(g \in GLH(P, \delta)\). Then \(g^{-1}(f) \in \delta\). Now \(g^{-1}(f) = f \circ g = \bigvee_{i \in I}(\bigwedge_{j \in J_i} f_j)\). Note that \(f\) takes the value 0 and hence \(f \circ g(p) = 0\) for some \(p \in P\). It follows that for all \(i \in I\), we can find a \(j_i \in J_i\) with \(f_{j_i}(p) = 0\). Now \(f\) takes the value 1 implies that there exists some \(q \in P\) such that \(f \circ g(q) = 1\). This implies that there exists some \(i_0 \in I\) such that \(\bigwedge_{j \in J_{i_0}} f_j(q) = 1\). It follows that \(|J_{i_0}| = 1\) and hence \(j_i = k\) for all \(i \in I\).

\[
f \circ g = \bigvee_{i \in I, j \in J_i}(f_j) = \bigvee_{i \in I \setminus \{i_0\}, j \in J_i}(f_j) \bigvee_{j \in J_{i_0}} f_j = \bigvee_{i \in I \setminus \{i_0\}, j \in J_i} f_k = f_k = f \circ g_k.
\]

Thus we get \(g = g_k\) and hence \(g \in G\). So

\[
GLH(P, \delta) \subseteq G \tag{2}
\]

From Equations 1 and 2, it follows that \(G\) is \(L_f\)-representable on \(P\).

Corollary 3.2. *Every regular permutation group on \(P\) is \(L_f\)-representable when \(|L| \geq |P|\).*

Proof. We have a regular permutation group is semi-regular. Proof follows from Theorem 3.1. \(\square\)

Assume that \(P\) is a finite set with \(|P| \leq |L|\). Then any subgroup of \(S(P)\), which is transitive and abelian is regular and hence \(L_f\)-representable on \(P\).
4. \textit{L}$_f$-representability of alternating groups

In [6], Johnson T P proved that the alternating group can be represented as $GLH(P, \delta)$ for some L-topology, when $|P| \leq L$. So if $|P| \leq L$, then the alternating group $A(P)$ is L_f-representable on P.

Here we enquire the L_f-representability of $A(P)$ when $|P| > |L|$.

\textbf{Theorem 4.1.} Let $|P| \geq 4$ and $|L| < |P|$. Then the alternating group $A(P)$ is not L_f-representable on P.

\textit{Proof.} Suppose that $A(P)$ is L_f-representable on P. Then $A(P) = GLH(P, \delta)$ for some δ on P.

Now we claim that if $(p,q) \circ g \in GLH(P, \delta)$ for every transposition (p,q) in P, then $g \in GLH(P, \delta)$. Let $g \notin A(P)$. It follows that g is not an L-homeomorphism on (P, δ). So we get least one $f \in \delta$ with $f \circ g \notin \delta$ or $f \circ g^{-1} \notin \delta$. Now since $|L| < |P|$ and $f \in \delta$ implies that f is not one to one. So there exist at least two points $\alpha, \beta \in P$ such that $f(\alpha) = f(\beta)$. Suppose $f \circ g \notin \delta$. Since g is a permutation on P and $\alpha, \beta \in P$ gives that there exist $\alpha_1, \beta_1 \in P$ such that $g(\alpha_1) = \alpha$ and $g(\beta_1) = \beta$ and hence $(f \circ g)(\alpha_1) = (f \circ g)(\beta_1)$.

Consider $(\alpha, \beta) \circ g$. Here we prove that $f \circ ((\alpha, \beta) \circ g) = f \circ g$.

For, if $p \in P \setminus \{\alpha_1, \beta_1\}$,

$$f \circ ((\alpha, \beta) \circ g)(p) = f \circ (\alpha, \beta)(g(p)) = f \circ g(p).$$

If $p = \alpha_1$, then

$$f \circ (\alpha, \beta)(\alpha_1) = f \circ (\alpha, \beta)(g(\alpha_1)) = f \circ (\alpha, \beta)(\alpha) = f(\beta) = f(\alpha) = f \circ g(\alpha_1) = f \circ g(p).$$

Similarly if $p = \beta_1$ we get $f \circ ((\alpha, \beta) \circ g)(\beta_1) = f \circ g(\beta_1)$. Thus

$$(f \circ (\alpha, \beta) \circ g)(p) = (f \circ g)(p) \text{ for all } p \in P.$$

It follows that there is an $f \in \delta$ such that $f \circ (\alpha, \beta) \circ g \notin \delta$. So we get a transposition (α, β) with $(\alpha, \beta) \circ g \notin GLH(P, \delta)$.

Similarly if $f \circ g^{-1} \notin \delta$, then we can prove that $f \circ g^{-1} \circ (\rho, \xi) = f \circ g^{-1}$ where $\alpha = g^{-1}(\rho)$ and $\beta = g^{-1}(\xi)$. Thus in this case also there exists $f \in \delta$ such that $f \circ (g^{-1} \circ (\rho, \xi)) \notin \delta$. Hence $((\rho, \xi) \circ g)^{-1} \notin GLH(P, \delta)$. Here also there is a transposition $((\rho, \xi) \circ g)^{-1}$ such that $((\rho, \xi) \circ g)^{-1} \notin GLH(P, \delta)$. So if $g \notin GLH(P, \delta)$, then there exists a transposition (p,q) such that $(p,q) \circ g \notin GLH(P, \delta)$. It follows that if $(p,q) \circ g \in GLH(P, \delta)$ for every transposition (p,q) in P, then $g \in GLH(P, \delta)$, which is a contradiction since $GLH(P, \delta) = A(P)$ and the alternating group $A(P)$ does not satisfy this if $|P| > 3$. So there exist no L-topology δ on P such that $GLH(P, \delta) = A(P)$. \hfill \Box
5. L_f-representability of normal subgroups of S_n

Now we investigate the L_f-representability of normal subgroups of S_n when $|L| = 3$.

The alternating group A_n is not L_f-representable when $|L| < n$. If $n = 4$, then S_n has another normal subgroup and we determine the L_f-representability of that subgroup.

If $L = \{0,1\}$, then L^P is isomorphic to the power set of P. So if a permutation group G on P is represented as a homeomorphism group of a topological space, then G is L_f-representable on P. The simplest F-lattice other than $L = \{0, 1\}$ is $L = \{0, l, 1\}$ with the order $0 < l < 1$. Also note that any F-lattice other than $\{0,1\}$ contains a sublattice isomorphic to $L = \{0,l,1\}$.

Here we use the following Theorem in [10].

Theorem 5.1. Let L and L' be two complete and distributive lattices such that L is isomorphic to a sublattice of L'. Then if G is a permutation group which can be expressed as $GLH(P, \delta)$ for an L-fuzzy topology δ_1 on P, then G can also be expressed as $GLH(P, \delta_2)$ for some L'-fuzzy topology δ_2 on P.

Using Theorem 5.1, we deduce the following.

Let L and L' be two F-lattices such that L is isomorphic to a sublattice of L'. Then if a permutation group G is L_f-representable on an arbitrary set P, then G is also L'_f-representable on P.

Theorem 5.2. If $G = \{I, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$, then G is L_f-representable on $P = \{1,2,3,4\}$ if and only if $L \neq \{0,1\}$.

Proof. Assume that $L \neq \{0,1\}$. Let $L = \{1, l, 0\}$ and δ be the L-topology having base

$$\mathcal{B} = \{h_1, h_2, h_3, h_4\}$$

where h_i, $i = 1, 2, 3, 4$ are L-subsets of P defined as follows

$$h_1(1) = l, h_1(2) = 0, h_1(3) = l, h_1(4) = 0$$

$$h_2(1) = 0, h_2(2) = l, h_2(3) = 0, h_2(4) = l$$

$$h_3(1) = 1, h_3(2) = l, h_3(3) = l, h_3(4) = 1$$

$$h_4(1) = l, h_4(2) = 1, h_4(3) = 1, h_4(4) = l$$

Now we claim that $GLH(P, \delta) = G$. Reader can easily check that every element g of G is an L-homeomorphism of (P, δ) onto itself. Hence $G \subseteq GLH(P, \delta)$.

Suppose g is an L-homeomorphism on P. So $g^{-1}(f)$ and $g(f)$ are in δ for all $f \in \delta$. Now consider $g^{-1}(h_1)$ and $g^{-1}(h_2)$. Then either $g^{-1}(h_1) = h_1$ and $g^{-1}(h_2) = h_2$ or $g^{-1}(h_1) = h_2$ and $g^{-1}(h_2) = h_1$.

Case 1: $g^{-1}(h_1) = h_1$ and $g^{-1}(h_2) = h_2$

That is $h_1 \circ g = h_1$ and $h_2 \circ g = h_2$. This gives that $g(1) = 1$ or 3 and $g(2) = 2$ or 4. If $g(1) = 1$, then $g(3) = 3$. Suppose $g(2) = 4$. So $g(4) = 2$. Hence $g = (2, 4)$. Then $h_2 \circ g \neq h_3$ or h_4. Hence g is not an L-homeomorphism on P, which is a contradiction. So if $g(1) = 1$, then $g = I$.

Now suppose $g(1) = 3$, then $g(3) = 1$. Suppose $g(2) = 2$. So $g(4) = 4$. Hence $g = (1, 3)$. Then $h_3 \circ g \neq h_3$ or h_4. Hence g is not an L-homeomorphism, which is also a contradiction. So if $g(1) = 3$, then $g = (1, 3)(2, 4)$.

Case 2: \(g^{-1}(h_1) = h_2 \) and \(g^{-1}(h_2) = h_1 \)

In this case \(g(1) = 2 \) or 4 and \(g(2) = 3 \) or 1. If \(g(1) = 2 \), then \(g(3) = 4 \). Suppose \(g(2) = 3 \). So \(g(4) = 1 \). Hence \(g = (1, 2, 3, 4) \). Then \(h_3 \circ g \neq h_3 \) or \(h_4 \). Hence \(g \) is not an L-homeomorphism, which is a contradiction. So if \(g(1) = 2 \), then \(g = (1, 2)(3, 4) \).

Now suppose \(g(1) = 4 \), then \(g(3) = 2 \). Suppose \(g(2) = 1 \). So \(g(4) = 3 \). Hence \(g = (1, 4, 3, 2) \). Then \(h_3 \circ g \neq h_3 \) or \(h_4 \). Hence \(g \) is not an L-homeomorphism, which is a contradiction. So if \(g(1) = 4 \), then \(g = (1, 4)(2, 3) \).

So if \(g \) is an L-homeomorphism on \(P \), then \(g \in G \). Thus \(GLH(P, \delta) \subseteq G \). Then \(GLH(P, \delta) = H \).

Let \(L = \{0, 1\} \), the crisp case. Ramachandran P T proved that there exists no topology \(\tau \) on \(P \) with the homeomorphism group of \((P, \tau) = G \). So if \(G \) is \(L_f \)-representable, then \(L \neq \{0, 1\} \). This completes the proof.

Remark 5.3. Johnson T P[6] proved that the above group \(G \) is \(L_f \)-representable if \(|L| \geq 4 \). Here we get \(G \) is \(L_f \)-representable on \(P \) if \(L \neq \{0, 1\} \).

Acknowledgments

The suggestions and guidance from Dr. Ramachandran P T, Former Professor, University of Calicut during the preparation of this paper are acknowledged.

References

[1] Ramachandran P T 1985 *Some Problems in Set Topology Relating Group of Homeomorphisms and Order* Ph. D. Thesis Cochin University of Science and Technology India

[2] Ramachandran P T 1991 *Internat. J. Math. Math. Sci.* Groups of homeomorphisms and normal subgroups of the group of permutations \(\mathbf{14} \) 475-80

[3] Sini P and Ramachandran P T 2012 *Bull. Kerala Math. Assoc.* On the Group of Homeomorphisms \(\mathbf{9} \) 55-61

[4] Sini P and Ramachandran P T 2016 *International Journal of Pure and Applied Mathematics* On \(t \)-representability of Cyclic Subgroups of Symmetric Group- \(\mathbf{106} \) 851-57

[5] Sini P 2019 *Palestine Journal of Mathematics* The Group of Homeomorphisms and the Cyclic Group of Permutations \(\mathbf{8} \) 53-60

[6] Johnson T P 1990 *Some problems on lattices of fuzzy topologies and Related Topics* Ph.D. Thesis Cochin University of Science and Technology India

[7] Johnson T P 1992 *Fuzzy sets and Systems* The group of fuzzy homeomorphisms \(\mathbf{45} \)

[8] Johnson T P 2000 *J. Math. Anal. Appl* The group of L-fuzzy homeomorphisms and the group of permutations on the ground set \(\mathbf{245} \) 423-29

[9] Ramachandran P T 2000 *Proc. Int. Conf. Analysis and Applications* A note on the Group of L-fuzzy Homeomorphis, Irinjalakkuda India

[10] Ramachandran P T 2002 *Proc. National Conf. Mathematical Modelling* The group of Homeomorphisms and the L-fuzzy homeomorphisms Kottayam India

[11] Sini P 2016 *Proc. Int. Conf. IC-AMMN* On \(L_f \)-representability of permutation groups FISAT Angamaly India

[12] Dixon J D and Mortimer B 1996 *Permutation groups* (New York: Springer-Verlag)

[13] Meenaxi B Dugald M et al 1997 *Notes on infinite permutation Groups* (India: Hindusthan Book Agency)

[14] Liu Y M and Luo M K 1997 *Fuzzy Topology* (Singapore: World Scientific)