The obesity epidemic is on the rise, and approximately one-third of the world’s population is now overweight or obese [1]. Although genetic factors are involved in body weight, obesity is caused by many factors, including lifestyle, metabolism, and environmental factors. In obese people, excessive fat accumulation negatively affects almost all body’s physiological functions. With the increase of fat cells, the production of inflammatory cytokines from fat cells increases. On the other hand, cytokines and anti-inflammatory chemokines decrease, leading to a mild systemic inflammation [2]. Interleukin (IL)-1 is an inflammatory cytokine with various physiological and pathological functions and plays an important role in health and disease. The levels of this interleukin in obese people are higher than people with a normal

ABSTRACT

Aims: Physical inactivity is associated with low-grade systemic inflammation and increased risk of chronic diseases. Beneficial effects of caffeine on adipocytes metabolism and its anti-inflammatory properties have been reported. This study aimed to evaluate the impact of 12 weeks of combined training and caffeine on plasma levels of inflammatory and anti-inflammatory indices in obese men.

Methods & Materials: In a quasi-experimental trial, 44 obese men were purposefully and accessibly selected and assigned into four groups each 11 samples: 1) control, 2) combined (resistance-endurance) training, 3) caffeine, and 4) combined training with caffeine. The study subjects received 6 mg of caffeine per kilogram of body weight daily for 12 weeks. The combined training program was performed for 12 weeks, 3 sessions per week. The plasma levels of inflammatory (interleukin [IL]-1β) and anti-inflammatory (IL-10) indices were measured using an ELISA kit. The obtained data were analyzed by dependent t test, 1-way ANOVA, and Tukey post hoc test at the significant level of P<0.05.

Findings: The results showed that 12 weeks of combined training, caffeine, and combined training-caffeine significantly reduced IL-1β levels and increased IL-10 in obese men at posttest compared to the pretest (P=0.001). Also, changes in IL-1β and IL-10 levels were greater in the combined training-caffeine group (P=0.001).

Conclusion: Combined training with caffeine positively affects body composition and improves inflammatory and anti-inflammatory indices in obese people.

Key words: Combined training, Caffeine, Interleukin-1β, Interleukin-10, Obesity
weight and are involved in developing chronic inflammation caused by obesity [5-3]. In contrast, IL-10 plays a key role in regulating the immune response and limiting inflammation. IL-10 suppresses inflammation through various mechanisms, including inhibiting the synthesis of inflammatory cytokines, such as IL-1β, and suppressing nuclear factor (NF)-κB and c-Rel activity in macrophages [6]. Evidence suggests that low circulating IL-10 is associated with obesity, cardiovascular disease, and type 2 diabetes [7]. In adults, IL-10 plays a protective role against obesity [8].

Exercise is recommended because it improves energy balance and potentially affects inflammatory signaling cascades. Regular exercise is associated with an anti-inflammatory status characterized by higher levels of anti-inflammatory markers, such as IL-10, and lower levels of inflammatory cytokines, including IL-1β [9, 10]. According to studies, 8 weeks of resistance training causes a significant increase in IL-10 in obese women [10]. However, Fath Elahyan et al. did not observe a significant change in IL-10 levels in diabetic women after a period of combined (resistance-endurance) training despite a substantial decrease in IL-1β expression [11]. Also, in one study, the results showed that IL-1β did not change significantly after 8 weeks of resistance training in obese men [12].

In exercise, some herbal supplements boost muscle growth and burn fat. Caffeine (1,3,7-trimethylxanthine) is a heterocyclic organic compound with a purine base called xanthine, which consists of a pyrimidine ring attached to an imidazole ring [13]. It is an alkaloid because it is a plant metabolite derived from purine nucleotides and has a heterocyclic nitrogen atom [14]. Caffeine consumption stimulates consumers' consciousness, improves mood, and secrets catecholamines that benefit human behavior [15]. In addition, caffeine has other beneficial effects, such as antioxidant and anti-inflammatory properties that are very important for human health [16]. Caffeine consumption is associated with reduced inflammation in humans, and treatment of human macrophages with caffeine inhibits IL-1β secretion [17]. Caffeine has also been shown to increase serum levels of the anti-inflammatory cytokine IL-10 [18].

The effects of exercise on inflammatory factors have always been of interest to researchers. The anti-inflammatory effects of exercise can be caused by reducing fat accumulation. Metabolic pressure exerted by exercise correlates to the type, duration, and intensity of exercise. Since the sports activities vary in terms of intensity, duration, and organs involved, different exercise programs seem to affect weight loss and inflammation [19]. Besides all the positive effects of both types of endurance and resistance training, due to more variety and less pressure, combined (resistance-endurance) exercise has a greater impact on weight loss and body fat mass than each of these exercises alone [20]. On the other hand, caffeine can be effective in reducing inflammation and improving the body composition of obese people by reducing inflammatory factors. However, the interactive effects of combined exercise and caffeine on inflammatory and anti-inflammatory agents in obese individuals are unclear. Therefore, considering the potential benefits of caffeine and regular physical exercise in reducing obesity and the potentially beneficial consequences of their interactive effect, this study investigated the impact of 12 weeks of combined exercise and caffeine on plasma inflammatory and anti-inflammatory parameters in obese men.

2. Materials and Methods

The present research is an applied study, and its method is quasi-experimental. This study was approved by the Ethics Committee with the number IR.IAU.M.REC.1399.009 in Islamic Azad University, Ayatollah Amoli Branch in 2020. The study population consists of obese male volunteers in Tehran selected through a call in public and administrative centers. Accordingly, after initial clinical evaluations, including taking history of cardiovascular disease, clinical and diagnostic examinations, 44 obese men (aged 23-32 years) with a body mass index above 30 who were not on drug treatment were selected based on the inclusion criteria. The study subjects completed a health form to ensure disease-free and personal satisfaction. The inclusion criteria were chronic diseases according to the medical history questionnaire (cardiovascular disease, diabetes, various cancers, and kidney and gastrointestinal disorders or any injury or problem that restricts them from engaging in physical activity), with BMI ≥ 30, and waist-to-height ratio > 0.5 and no history of exercise in the last six months, no record of sleep disorders, no smoking and not taking any supplements, alcohol, caffeinated substances, and drug treatment. The exclusion criteria were the absence of more than one session in the exercise program, the occurrence of accidents, injuries, contracting diseases, and the occurrence of any interfering factor that affected the effective participation of the subjects in the training sessions. In a separate session after the medical examination, the purpose of the study and how to perform it were explained to the subjects. After filling in the personal information questionnaire and signing the consent form, each subject came to the test site the next day to perform the tests. At the beginning of the session, anthropometric features, including height, weight, and body composition, were measured. In the second session, the subjects were tested for determining a maximum repetition. Subjects were then homogeneously divided into 4 groups based on maximum repetition and demographic
characteristics (each group with 11 people): 1) control, 2) caffeine, 3) exercise (resistance-endurance), and 4) caffeine plus exercise. After three days, the subjects went to the laboratory, and their blood samples were taken to assess the levels of IL-1β and IL-10. The experimental groups then performed a 12-week combined exercise and caffeine intervention program. In the end, anthropometric and blood sampling features were obtained again.

Exercise protocol

The combined (resistance-endurance) exercise protocol was performed for 12 weeks, 3 sessions per week. Subjects in the training group, after 5 minutes of warm-up, performed circular resistance activity (3 sets with 14 repetitions in 50% of one maximum repetition and 30 seconds rest between each station and 2 minutes rest between each turn for 6 stations) (1-3). Stations included squats, chest presses, back of the machine legs, shoulders, ankles, and boat [21]. Then, after 10 minutes of rest, they performed aerobic activity with an intensity of 70% of the maximum heart rate for 30 minutes. To determine a maximum of one repetition (1RM), the subjects of the 1RM resistance training group were taken by the Barziski method. In this way, weight is selected for the subject that the subjects do a maximum of 6-8 repetitions. The weight was then placed in the appropriate formula with the repetitions. Measurements were taken for all 6 stations.

Caffeine consumption

The caffeine group received 6 mg of caffeine per kilogram of body weight per day (manufactured by the German company Merck and licensed by the Ministry of Health with registration number 0225.02584.01). Subjects in the caffeine with exercise group consumed 3 mg per kg body weight twice a day on training days, 90 minutes before and 30 minutes after the exercise. The control group also continued their daily activities and only received a placebo of 6 mg per kilogram of body weight [22].

Sampling and measurement of laboratory variables

To evaluate biochemical variables, blood sampling was performed after 12 to 14 hours of fasting before and 12 weeks after the intervention (72 hours after the last training session). At each stage, 10 mL of blood was taken from the brachial vein of the subjects’ right arm at rest and in a sitting position by a laboratory expert. Blood samples were stored at -80°C after centrifugation, and plasma separation was done after the tests were performed. To prevent the effect of circadian rhythm, blood sampling was performed at certain times of the day (8 AM to 10 AM). Plasma IL-1β was measured using an ELISA kit (Abcam Company of America) with a detection range of 15.6-500 pg/mL, a sensitivity of 6.5 pg/mL, and a coefficient of variations of 4.5%-8.7%. Plasma IL-10 was measured using an ELISA kit (Abcam Company of America) with a detection range of 9.4-300 pg/mL, the sensitivity of 1.4 pg/mL, and coefficient of variations of 3.2%-5.2%

Statistical analysis

The Shapiro-Wilk test was used to ensure the normal distribution of variables. After the normality of the data distribution was determined, the dependent t test, 1-way analysis of variance, and Tukey’s post hoc test were used to compare the mean changes in protein levels of the groups. The significance level was considered P<0.05 in all cases. All statistical operations were performed with SPSS software version 23.

3. Results

Table 1 indicates the mean and standard deviation of anthropometric characteristics of subjects in different groups. Analysis of the results of plasma IL-1β in obese men using repetitive analysis of variance with intergroup factor showed that regardless of the type of group, there was a significant difference between before and after 12 weeks of the research period in plasma IL-1β value (P<0.001). Also, the interaction between the studied groups and the time of the study showed a significant difference in plasma IL-1β levels (P<0.0001). The highest change in plasma IL-1β levels was observed in the combined training with caffeine group and the lowest in the caffeine group. Based on the results of the Tukey post hoc test, plasma IL-1β levels had a significant decrease in the combined training group, caffeine group, and combined training-caffeine compared to the control group (P=0.001). Plasma IL-1β levels were significantly reduced in the combined training with caffeine group compared to the caffeine and combined training groups (P=0.0001). Also, plasma IL-1β levels significantly decreased in the combined training group compared to the caffeine group (P=0.003). The results of the paired t test to examine the intragroup changes in plasma IL-1β levels showed that the difference between before and after in the combined training, caffeine, and combined with caffeine training groups was significant (P<0.0001, P<0.0001, P<0.0001, respectively) (Figure 1).

Analysis of the results obtained on plasma IL-10 levels in obese men using repeated-measures ANOVA with intergroup factor showed that regardless of the type of study, there is a significant difference between times before and after 12 weeks of the study period in plasma IL-10 levels (P
Also, the interaction between the studied groups and the time of the study showed a significant difference in plasma IL-10 levels ($P < 0.0001$). The highest change in plasma IL-10 levels was observed in the combined training with caffeine group, and the lowest was observed in the caffeine group. Based on the results of the Tukey post hoc test, plasma IL-10 levels had a significant increase in the combined training group, caffeine, and combined training with

Figure 1. Changes in Plasma IL-1β Levels in Obese Men by Different Groups

*Significant difference compared to pretest, # significant difference compared to the control group, ¥ Significant difference compared to the caffeine group, € Significant difference compared to the caffeine group and combined exercise ($P \geq 0.05$).

Figure 2. Changes in Plasma IL-10 Levels in Obese Men by Different Groups

* Significant difference compared to the pretest, # Significant difference compared to the control group, ¥ Significant difference compared to the caffeine group ($P \geq 0.05$).
Table 1. The Mean and Standard Deviation of anthropometric characteristics of subjects in different groups

Group	Variable	Mean±SD		
	Control	Caffeine	Combined Training	Combined Training - Caffeine
Age (y)	27±3	28±2	27±3	29±4
Height (cm)	170.2±5.61	169.8±4.91	174.2±4.6	171.6±9.00
Weight (kg)	98.9±8.40	96.1±9.51	97.3±10.21	95.4±9.46
Body mass index (kg/m²)	33.9±3.54	33.6±2.48	32.3±3.33	32.5±4.74

caffeine compared to the control group (P=0.001). Also, plasma IL-10 levels increased significantly in the combined training and combined training with caffeine groups compared to the caffeine group (P=0.001). The results of the paired t test to examine the intragroup changes in plasma IL-10 levels showed that the difference between before and after in the control groups (P=0.014), combined training, caffeine, and combined training with caffeine is significant (P<0.001, P<0.001, P<0.001, respectively) (Figure 2).

4. Discussion

The current study results showed that 12 weeks of combined exercise intervention significantly reduced IL-1β levels and increased IL-10 in obese men. Significant decrease in IL-1β levels and increase in IL-10 in obese men in the current study are consistent with the results of some previous studies [9, 10, 23, 24]. The results of Balducci et al. show that IL-1β decreases when people perform high-intensity aerobic and resistance training for 12 months. However, anti-inflammatory cytokine (IL-10) was increased only in the combined training group [23]. These results suggest that the anti-inflammatory effects of exercise are related to the nature of the exercise and its duration. Combined training (aerobic and resistance) is much more effective in reducing inflammatory markers than resistance or aerobic training alone, despite consuming the same calories. The exact mechanism of the effects of training on reducing inflammation is not yet fully understood. However, training protocols that reduce body fat and significantly improve body mass index are effective in reducing inflammatory factors and increasing anti-inflammatory factors [25]. IL-1β is an inflammatory cytokine that is chronically elevated in obesity and can destroy β cells and alter insulin sensitivity [26]. IL-1β is positively correlated with body mass index (BMI) [27], so after 12 weeks of combined training, weight and body mass index decreased, which could be a possible reason for the results. IL-10 is more elevated in response to an increase in inflammatory cytokines to suppress them. One of the reasons for the increase in IL-10 after training is the increase in fat oxidation and thus the reduction of adipose tissue, including splanchnic fat. It has been shown that a decrease in adipose mass along with a reduction in the penetration of macrophages into adipose tissue and the conversion of M1 macrophage monocytes to the M2 macrophage monocyte phenotype causes anti-inflammatory cytokines, such as IL-10 to increase and pro-inflammatory cytokines to decrease [28]. Another mechanism involved in increasing IL-10 is an increase in IL-6 due to training. Training increases muscle metabolism and leads to an increase in IL-6 in muscle and blood. A high IL-6 level increases IL-10 secretion in macrophages [29]. In addition, long-term exercise reduces the production of atherogenic cytokine mononuclear cells, such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), while increases producing anti-inflammatory cytokines, such as IL-10 [30]. These multiple effects of exercise turn resting cytokine balances into anti-inflammatory states. According to molecular mechanisms, by negatively regulating the activity of nuclear factor-kappa b (NF-κB), the exercise increases the secretion of IL-10 by monocytes and T cells through the Th2 pathway [31]. Contrary to the results of the current study, no significant change in IL-1β was reported after 10 weeks of resistance and aerobic training in inactive and overweight young men [32]. The inconsistency can be attributed to the baseline level of cytokines and the type of training. A base level of cytokines and repetition of training affect the results. In another study by Rahimian et al., after 8 weeks of resistance training with an intensity of 60% to 85% of a maximum repetition, a significant change was not observed in IL-10 levels in obese women [33]. The discrepancy in the reported research can be related to factors, such as the health status and initial weight of the subjects and the insufficient duration of the training period. It seems that resistance training in the current study can be a good way to reduce chronic inflammation in obese people.
The current study results also showed that 12 weeks of caffeine consumption significantly reduced IL-1β levels and increased IL-10 in obese men. Few studies have shown that chronic caffeine consumption reduces inflammatory damage and chronic inflammation in the liver and brain [34, 35], consistent with the current study results. These studies have attributed the protective effect of caffeine to its antioxidant properties and reduced activation of resident macrophages (Cooper cells) and microglia. In addition, caffeine consumption reduces the expression of inflammatory cytokines in blood monocytes and macrophages and suggests that it may locally reduce chronic inflammation (expression of inflammatory cytokine IL-1β) [36-38]. Studies have shown that caffeine, as an oral alkaloid in coffee, blocks adenosine receptors, increases cyclic adenosine monophosphate, decreases the production of free bases, produces prostaglandins, and expresses the gene for inflammatory factors and the production of proinflammatory cytokines. The current study results also support that caffeine reduces chronic inflammation in obese people. In the current study, the combined training for 12 weeks with caffeine had more beneficial effects on body composition and improved plasma interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) levels in obese men. These findings are consistent with the results of some previous research [18, 39]. The effect of regular caffeine consumption, physical activity, and inactivity (including any sedentary activity) on the inflammatory status in healthy people has been studied. Caffeine consumption was a negative predictor of anti-inflammatory protein [18]. One of the possible mechanisms involved in changing the level of IL-10 by caffeine is increasing the level of cyclic adenosine monophosphate in muscle [40]. Caffeine is an adenosine receptor antagonist. Chronic caffeine consumption may increase the expression of adenosine A2A receptors and extracellular adenosine levels. Therefore, increasing ADA activity indicates compensatory properties to reduce adenosine levels and neutralize caffeine antagonist function [41]. Caffeine consumption during training can increase changes in the immune response and facilitate lipolysis and glycogenolysis to provide energy to skeletal muscle and other tissues during and after the exercise. Caffeine may improve training performance by inhibiting glycogen phosphorylase enzymes and reducing glycogen deficiency [42]. In addition, caffeine accelerates the release of β-endorphins, epinephrine, cortisol and increases IL-6 levels, and these changes in the immune response contribute to the benefits of caffeine in training performance [40]. Caffeine supplementation with combined training has been more effective in reducing the inflammatory status of obese subjects than either of these interventions alone. Therefore, caffeine consumption in combination with training is likely to have more benefits for obese people prone to inflammation. Combined training was one of the strengths of the current study because it can have different responses and adaptations than other training programs. There were some limitations in the current study, such as the lack of measurement of other inflammatory and anti-inflammatory factors in obese subjects. However, more research is needed in this area.

5. Conclusion

Briefly, the current study results showed that combined training with caffeine has a beneficial effect on body composition and improves inflammatory and anti-inflammatory indicators in obese people. It is suggested that combined training and caffeine intervention be considered a treatment method to reduce chronic inflammation in obesity.

Ethical Considerations

Compliance with ethical guidelines

This research was carried out with the approval of the Ethical Committee of the Islamic Azad University, Ayatollah Amoli Branch (IR.IAU.M.REC.1399.009).

Funding

This research is extracted from a PhD dissertation that has been conducted with the support of the Vice Chancellor for Research of the Islamic Azad University, Ayatollah Amoli Branch.

Authors’ contributions

All authors contributed to the current article, equally.

Conflicts of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
مقدمه

این مقاله به‌عنوان مطالعه در زمینه‌ی فیزیولوژی ورزشی در رابطه با اثرات مثبت و منفی تمرینات ترکیبی و کافئین بر سیستم‌های ایمنی و ایمنی و درجه پایین‌تر و در نتیجه افزایش خطر ابتلا به بیماری‌های آلرژیک را مباحثه می‌کند. اثرات مثبت و منفی تمرینات ترکیبی و کافئین بر سیستم‌های ایمنی و ایمنی هفته‌های ثبت شده است. هدف از این تحقیق بررسی تأثیر ترکیبی و ضدالتهابی پلاسما در مردان چاق بود.

مواد و روش‌ها

مردان چاق به صورت هدفمند و در دسترس انتخاب و به چهار گروه تقسیم شدند. آزمودنی ها روزانه 11 تمرین ترکیبی کافئین و 11 تمرین ترکیبی کافئین و 11 تمرین ترکیبی کافئین و 11 تمرین ترکیبی کافئین در یک کارآزمایی نیمه‌تجربی، به ازای هر کیلوگرم وزن بدن به مدت 12 هفته و سه جلسه در هفته اجرا شد. پلاسما با استفاده از کیت الایزا اندازه‌گیری شد. داده‌ها با استفاده از آزمون تی وابسته، آنالیز واریانس یک‌طرفه و آزمون تعقیبی توکی در سطح P<0/05 شد. نتایج نشان داد که تمرین ترکیبی، کافئین و تمرین ترکیبی کافئین موجب کاهش معنی‌دار سطوح IL-1β و افزایش معنی‌دار سطوح IL-10 و IL-1β در مردان چاق در پس آزمون نسبت به پیش آزمون شد.

نتایج نشان داد که تمرین ترکیبی به همراه کافئین تأثیر مطلوبی بر ترکیب بدنی و بهبود شاخصهای ایمنی و ایمنی در مردان چاق دارد.

کلیدواژه‌ها:

ترمین ترکیبی، کافئین، NF-kB، IL-10، IL-1β
عوامل مداخله گری که بر شرکت مؤثر آزمودنی‌ها در تمرین‌های ورزشی، بروز حادثه، آسیب، ابتلا به بیماری‌های کافئین‌دار و درمان‌دارویی. همچنین معیارهای خروج آزمودنی‌ها مربوط به اختلالات خواب، عدم مصرف هر نوع مکمل، سیگار و الکل، مواد غیرقابل‌پذیری در یک هفته مطابق با توجه به پرسش نامه سابقه پزشکی (بیماری‌های قلبی عروقی) بیان شده بود. معیارهای ورود به مطالعه یا شرایط جسمانی که تحت درمان دارویی نبودند، بر اساس معیارهای ورود، انتخاب آزمودنی‌ها شد. بر این اساس، پس از ارزیابی های بالینی برخی از آزمودنی‌ها در مردان چاق می‌توانند نظراتی را در مورد شرکت و عدم شرکت در تحقیق انتخاب کنند. معیارهای ورود شامل سایتوکاین‌های التهابی از جمله IL-1β، IL-2، IL-12، ای‌گه فاز 1-اول، الکترولیت‌های آلکلی، چربی و هرگونه مشکلی که آن‌ها را از شرکت برای فعالیت‌های ورزشی برداشته‌اند. نتایج حاکی از عدم تغییر معنی‌داری در WHtR 11-18، 11-18 می‌باشد، بنابراین پس از هفت هفته تمرین، متوسط WHtR در مردان چاق به 0.52 ± 0.02 می‌رسد.

مواد و روش‌ها
پژوهش حاضر از نوع کاربردی و روش آن نیمه‌تجربی است. این پژوهش در مردان چاق داوطلب شهر تهران، با توجه به پرسش‌نامه سابقه پزشکی (بیماری‌های قلبی عروقی) انجام شد. جامعه آماری پژوهش مردان چاق داوطلب در دانشگاه آزاد اسلامی واحد آیت اللّه آملی در سال 1399.009 به دست آمد. پژوهش حاضر از نوع کاربردی و روش آن نیمه‌تجربی است. این پژوهش در مردان چاق داوطلب شهر تهران، با توجه به پرسش‌نامه سابقه پزشکی (بیماری‌های قلبی عروقی) انجام شد. جامعه آماری پژوهش مردان چاق داوطلب در دانشگاه آزاد اسلامی واحد آیت اللّه آملی در سال 1399.009 به دست آمد.
وزارت بهداشت با شماره ثبت جدول شماره 459 پلاسما نشان داد که تفاوت بین قبل و بعد در گروه تمرین پلاسما کاهش معنی‌داری در گروه تمرین ترکیبی - کافئین معنی‌داری در گروه تمرین ترکیبی، کافئین و تمرین ترکیبی - پلاسما کاهش (P = 0.02584). نتایج آزمون تحلیل واریانس یک طرفه نشان می‌دهد بین تمرین و کنترل از آزمون آنالیز واریانس یک طرفه و آزمون تعقیبی تکرار استفاده شد. بعد از حذف اثر پیش آزمون تفاوت معنی‌داری وجود دارد. پلاسما در مردان چاق در گروه‌های مختلف نیز نشان داده شده است. میانگین و انحراف معیار ویژگی‌های متغیرهای میلی گرم بر میلی لیتر و سطح معنی‌داری در همه موارد درصد مورد سنجش قرار گرفت. کلیه عملیات آماری با نرم‌افزار SPSS 11.0 اجرا شد. سطح معنی‌داری در همه آزمون‌ها در زمان معینی از روز (ساعت 9:00) میلی گرم بر میلی لیتر، حساسیت -10 و پیکوگرم بر میلی لیتر 12 و 3000 پیکوگرم بر میلی لیتر با استفاده از کیت الایزا (شرکت امریکا) با دامنه تشخیصی 4-0001 و 4-0001 درصد تکرار در فرمول مناسب گذاشته شد. برای هر شش تکرار را انجام دادند. سپس آزمودنی‌ها به صورت هم‌گون بر اساس حداکثر تکرار (RM) انتخاب شدند. سپس آزمودنی‌ها به صورت هم‌گون بر اساس حداکثر تکرار (RM) انتخاب شدند. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. سپس آزمودنی‌ها به صورت هم‌گون بر اساس حداکثر تکرار (RM) انتخاب شدند. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه نمونه‌گیری و اندازه‌گیری متغیرهای آزمایشگاهی انجام شد. در هر مرحله توسط کارشناس آزمایشگاه N manufactured in Greece. Complexity analysis showed no meaningful differences among treatment groups.
منوسیت‌های ماکروفاژی نوع در مردان جوان غیرفعال و دارای اضافه وزن گزارش شده است و بررسی نتایج درون گروه سپاهی سطح 10 IL-6، سپاهی - 10 (بدن کاراری)، تمرین تطبیقی، کافئین و تمرین تطبیقی - کافئین ممکن می‌باشد.

پیشنهادی تجزیه و حاضری نشان داده داده نمایندگی مداخله تمرین تطبیقی (کافئین، کافئین، کافئین، کافئین، کافئین، کافئین، کافئین، کافئین) و وزن و شاخص توده بدن کاهش یافت که می‌تواند باعث تخریب سوسک و ساز عضلانی شده و منجر به افزایش این بالا می‌رود و می‌تواند باعث درمان کاهش چربی و بهبود معنی‌دار شاخص توده بدن می‌شود. در حالی که تمرین تطبیقی با ورزش برای افزایش فنوتیپ مونوسیت های ماکروفاژی نوع 1 ممکن است. به نظر می‌رسد که تمرین تطبیقی و وزن و شاخص توده بدن کاهش یافته و بهبود معنی‌دار نشان داده است. کاهش معنی‌دار سطوح افزایش یافته و بهبود معنی‌دار نشان داده است.

5. Tumor Necrosis Factor alpha
6. Interferon gamma
7. IL-6
8. BMI
9. تغییر معنی‌دار
10. همکاران نشان دادند سطوح
11. پاییز
12. شماره
13. و در مطالعه چون ویژه است
14. این تحقیق به صورت مزمن در چاقی بالا می‌رود و می‌تواند باعث درمان کاهش چربی و بهبود معنی‌دار شاخص توده بدن می‌شود. در حالی که تمرین تطبیقی با ورزش برای افزایش فنوتیپ مونوسیت های ماکروفاژی نوع 1 ممکن است. به نظر می‌رسد که تمرین تطبیقی و وزن و شاخص توده بدن کاهش یافته و بهبود معنی‌دار نشان داده است. کاهش معنی‌دار سطوح افزایش یافته و بهبود معنی‌دار نشان داده است.

پیشنهادی تجزیه و حاضری نشان داده داده نمایندگی مداخله تمرین تطبیقی (کافئین، کافئین، کافئین، کافئین، کافئین، کافئین، کافئین، کافئین) و وزن و شاخص توده بدن کاهش یافت که می‌تواند باعث تخریب سوسک و ساز عضلانی شده و منجر به افزایش این بالا می‌رود و می‌تواند باعث درمان کاهش چربی و بهبود معنی‌دار شاخص توده بدن می‌شود. در حالی که تمرین تطبیقی با ورزش برای افزایش فنوتیپ مونوسیت های ماکروفاژی نوع 1 ممکن است. به نظر می‌رسد که تمرین تطبیقی و وزن و شاخص توده بدن کاهش یافته و بهبود معنی‌دار نشان داده است. کاهش معنی‌دار سطوح افزایش یافته و بهبود معنی‌دار نشان داده است.

5. Tumor Necrosis Factor alpha
6. Interferon gamma
7. IL-6
8. BMI
9. تغییر معنی‌دار
10. همکاران نشان دادند سطوح
11. پاییز
12. شماره
13. و در مطالعه چون ویژه است
14. این تحقیق به صورت مزمن در چاقی بالا می‌رود و می‌تواند باعث درمان کاهش چربی و بهبود معنی‌دار شاخص توده بدن می‌شود. در حالی که تمرین تطبیقی با ورزش برای افزایش فنوتیپ مونوسیت های ماکروفاژی نوع 1 ممکن است. به نظر می‌رسد که تمرین تطبیقی و وزن و شاخص توده بدن کاهش یافته و بهبود معنی‌دار نشان داده است. کاهش معنی‌دار سطوح افزایش یافته و بهبود معنی‌دار نشان داده است.
عواملی از جمله وضعیت تندرستی و وزن اولیه آزمودنی ها و طول مدت دوره تمرین مرتبط دانست. به نظر می رسد تمرینات مقاومتی در تحقیق حاضر، می تواند راهکار مناسبی برای کاهش التهاب مزمن در افراد چاق باشد.

همچنین نتایج تحقیق حاضر نشان داد که مصرف کافئین موجب کاهش میزان یک تیول سطح IL-1β در مردان چاق می‌شود. همچنین محققان مشاهده کردند که مصرف کافئین می‌تواند به دلیل اثرات آنتی اکسیدانی و کاهش فعال شدن ماکروفاژهای مقیم (سلول‌های کوبی) و میکروگلیا، علاوه بر اینکه می‌تواند به تغییرات سطح تیول‌ها در مردان چاق کمک کند. به علاوه، تمرین ترکیبی بر اینترلوکین یک تیول می‌تواند اثرات مثبتی داشته باشد.

تصویر 1. تغییرات سطح IL-1β، IL-10 و IL-10 در مردان چاق بر حسب گروه‌های مختلف

• تفاوت معنی‌دار نسبت به گروه کنترل
• تفاوت معنی‌دار نسبت به گروه کنترل

تصویر 2. نتایج تحقیق حاضر نشان داد که مصرف کافئین می‌تواند به دلیل اثرات آنتی اکسیدانی و کاهش فعال شدن ماکروفاژهای مقیم (سلول‌های کوبی) و میکروگلیا، علاوه بر اینکه می‌تواند به تغییرات سطح تیول‌ها در مردان چاق کمک کند.

شیرین قلی‌نژادی و همکاران. تاثیر تمرین ترکیبی و کافئین بر پاتولوژی IL-10 در مردان چاق. پاییز ۱۴۰۰، شماره ۱۲. صفحه ۴۴۱-۴۳۲.
تمرين ترکيبي و کافئین به عنوان یک روشه درماني جهت کاهش التهاب مزمن در چاقی‌ها مشابه است. انجام تمرین ترکيبي از نقاط قوت تحقیق حاضر آوازه در این مطالعه است که این نوع تمرین در مقابل سادگاهي‌هاي متفاوتی است. به ارتفاعاتي تمرین دنيگر به همراه دلوهه، دانشمند محضی‌هاي، نيز در حضور دانشجو و چاله که خود كاملاً به عنوان این پژوهش در چاله‌هاي مصرف کافئین، بیانگر خاصیت A2A براي شناخت فعالیت A2A می‌باشد. مصرف کافئین احتمالاً کاهش سطح این پیشنهاد می‌نماید. تلاش برای تجربه در پاسخ ایمنی و بهبود شاخص‌های التهابی و ضدالتهابی در افراد چاق دارد.
References

[1] Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019; 92-6.10. [DOI:10.1016/metabolism.2018.09.005] [PMID]

[2] Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care. 2010; 33(12):e147-67. [DOI:10.2337/dc10-9990] [PMCID]

[3] Moschen AR, Molinar C, Enrich B, Geiger S, Ebenbichler CF, Tilg H. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Molecular Medicine. 2011; 17(7-8):840-5. [DOI:10.1111/j.1600-065X.2012.01145.x] [PMID]

[4] Tack CJ, Stienstra R, Joosten LAB, Netea MG. Inflammation links excess fat to insulin resistance: The role of the interleukin-1 family. Immunological Reviews. 2012; 249(1):239-52. [DOI:10.1111/j.1600-065X.2012.01145.x] [PMID]

[5] Zaki M, Kamal S, El-Bassyouni H, Hussein MAEA, Tawfeek HM, Giri-rass M, et al. Osteopontin, malondialdehyde and interleukin-1β levels in patients with insulin resistance and dyslipidemia in obese Egyptian women. Biomedical and Pharmacology Journal. 2020; 13(2):687-95. [DOI:10.13055/j/bjp/192]

[6] Rahim SS, Khan N, Boddupalli CS, Hasnain SE, Mukhopadhay S. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells also involves c-rel transcription factor. Immunology. 2005; 114(3):313-21. [DOI:10.1111/j.1365-2567.2005.02070.x] [PMID]

[7] Bosutti A, Malaponte G, Zanetti M, Castellino P, Peer M, Guarnieri G, et al. Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3. The Journal of Clinical Endocrinology and Metabolism. 2008; 93(8):3226-9. [DOI:10.1210/jc.2007-1684] [PMID]

[8] Chang J, Chang C, Chien EY. Association between interleukin 1β and interleukin 10 concentrations: A cross-sectional study in young adolescents in Taiwan. BMJ Pediatrics. 2013; 13:123. [DOI:10.1186/1471-2431-13-123] [PMID]

[9] Behboudi L, Eizadi M. The modifying impact of long-term endurance training on inflammatory cytokine IL-6 and IL-10 plasma levels in response to a treadmill exercise test. Journal of the International Society of Sports Nutrition. 2020; 17(1):47. [DOI:10.1186/s12970-020-00375-4] [PMID]

[10] Bhatnagar JS, Tandon S, Gaur D, Kaur A. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]

[11] Faye K, Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, et al. Anti-inflammatory therapy strategies. PLoS Computational Biology. 2014; 10(8):e1004038. [DOI:10.1371/journal.pcbi.1004038] [PMID]

[12] Schubert MM, Hall S, Leveritt M, Grant G, Sabapathy S, Desbrow B. Exercise test. Journal of the International Society of Sports Nutrition. 2020; 17(1):47. [DOI:10.1186/s12970-020-00375-4] [PMID]

[13] Zou J, Hofmann A, Lebrun-Camblin C, Beneke R, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nature Medicine. 2017; 23(2):174-84 [DOI:10.1038/nm.4267] [PMID]

[14] Vezza L, Martinez S, Aguilo A, Tauler P. Caffeine supplementation induces higher IL-6 and IL-10 plasma levels in response to a treadmill exercise test. Journal of the International Society of Sports Nutrition. 2020; 9(1):57. [DOI:10.1186/s12970-020-00375-4] [PMID]

[15] Moschen AR, Molnar C, Enrich B, Geiger S, Ebenbichler CF, Tilg H. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Molecular Medicine. 2011; 17(7-8):840-5. [DOI:10.1111/j.1600-065X.2012.01145.x] [PMID]

[16] Calvert SP, Hall S, Leveritt M, Grant G, Sabapathy S, Desbrow B. Exercise test. Journal of the International Society of Sports Nutrition. 2020; 17(1):47. [DOI:10.1186/s12970-020-00375-4] [PMID]

[17] Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]

[18] Mehrabani J, Damirchi A, Rahmaninia F. The effect of two aerobic modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]

[19] Ogunbode AM, Owolabi MO, Olayinka Ogunbode Ol, Ogunniyi A. Factors associated with obesity and weight reduction among people with obesity: A systematic review. Journal of Molecular Pathophysiology. 2020; 9(1):1-13. [DOI:10.5455/jmjp.20190717044204]

[20] Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]

[21] Schubert MM, Hall S, Leveritt M, Grant G, Sabapathy S, Desbrow B. Exercise test. Journal of the International Society of Sports Nutrition. 2020; 17(1):47. [DOI:10.1186/s12970-020-00375-4] [PMID]

[22] Vezza L, Martinez S, Aguilo A, Tauler P. Caffeine supplementation induces higher IL-6 and IL-10 plasma levels in response to a treadmill exercise test. Journal of the International Society of Sports Nutrition. 2020; 9(1):57. [DOI:10.1186/s12970-020-00375-4] [PMID]

[23] Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]

[24] Mehrabani J, Damirchi A, Rahmaninia F. The effect of two aerobic training intensities on lipocalin-2, interleukin-2 levels and insulin resistance index in sedentary obese men. Sport Physiology. 2014; 6(21):95-108. [DOI:10.1186/s12970-020-00375-4] [PMID]

[25] Selvin E, Paynter NP, Erlinger TP. The effect of weight loss on C reactive protein: A systematic review. Archives of Internal Medicine. 2007; 167(1):31-9. [DOI:10.1001/archinte.167.1.31] [PMID]

[26] Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutrition Research. 2020; 80:1-17 [DOI:10.1016/j.nutres.2020.05.005] [PMID]

[27] Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, Metabolism, and Cardiovascular Diseases. 2010; 20(8):628-17. [DOI:10.1016/j.numecd.2009.04.015] [PMID]
[28] Trayhurn P, Wood IS. Signaling role of adipose tissue: Adipokines and inflammation in obesity. Biochemical Society Transactions. 2005; 33(Pt 5):1078-81. [DOI:10.1042/BST20051078] [PMID]

[29] Lankster GI. Exercise and cytokines. Gleeson M. Immune function in sport and exercise. 2nd ed. Tehran: Hatmi 2015; 304-323.

[30] Taddei S, Galetta F, Virdis A, Ghidoni L, Salvetti G, Franzoni F, et al. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation. 2000; 101(25):2896-901. [DOI:10.1161/01.CIR.101.25.2896] [PMID]

[31] Nicklas BJ, Hsu FC, Brinkley TJ, Church T, Goodpaster BH, Kritchevsky SB, et al. Exercise training and plasma c-reactive protein and interleukin-6 in elderly people. Journal of the American Geriatrics Society. 2008; 56(11):2045-52. [DOI:10.1111/j.1532-5415.2008.01994.x] [PMID] [PMCID]

[32] Taheri Kalani A, Nikseresht M. [The effect of 10 weeks resistance and aerobic training on inflammatory cytokines in sedentary overweight men (Persian)]. Journal of Iran University of Medical Science. 2015; 23(5):17-26. http://sjimu.medilam.ac.ir/article-1-2134-en.html

[33] Rahimian Mashhad Z, Attarzadeh Hosseini SR, Rashid Lamir A, Sardar MA, Nekoei S, Gili R. [Effect of aerobic and resistance exercise programs on arterial stiffness, serum I6L and IL10 in obese women (Persian)]. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2020; 23(2):20-9. http://ijogi.mums.ac.ir/article_15960.html

[34] Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, et al. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain Research. 2010; 1309:116-25. [DOI:10.1016/j.brainres.2009.10.054] [PMID]

[35] Lu X, Chen Z, Li J, Zhang L, Liu H, Huang C, et al. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflammation Research. 2010; 59(8):635-45. [DOI:10.1007/s00011-010-0176-6] [PMID]

[36] Chavez-Valdez R, Wills-Karp M, Ahlawat R, Cristofalo EA, Nathan A, Gauda EB. Caffeine modulates TNF-alpha production by cord blood monocytes: The role of adenosine receptors. Pediatric Research. 2009; 65(2):203-8. [DOI:10.1203/PDR.0b013e31818466b1] [PMID]

[37] Dray C, Daviaud D, Guigne C, Valet P, Castan-Laurell I. Caffeine reduces TNF alpha up-regulation in human adipose tissue primary culture. Journal of Physiology and Biochemistry. 2007; 63(4):329-36. [DOI:10.1007/BF03165764] [PMID]

[38] Lee C. Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clinica Chimica Acta. 2000; 295(1-2):141-54. [DOI:10.1016/S0009-8981(00)00201-1] [PMID]

[39] Tauler P, Martinez, S, Martinez P, Lozano, L, Moreno C, Aguiló, A. Effects of caffeine supplementation on plasma and blood mononuclear cell interleukin-10 levels after exercise. International Journal of Sport Nutrition and Exercise Metabolism. 2016; 26(1):8-16. [DOI:10.1123/ijcnem.2015-0052] [PMID]

[40] Tauler P, Martinez S, Moreno C, Monjo M, Martinez P, Aguiló A. Effects of caffeine on the inflammatory response induced by a 15-km run competition. Medicine and Science in Sports and Exercise. 2013; 45(7):1269-76. [DOI:10.1249/MSS.0b013e31828578a] [PMID]

[41] Ribeiro JA, Sebastiao AM. Caffeine and adenosine. Journal of Alzheimer’s Disease. 2010; 20(Suppl 1):S3-15. [DOI:10.3233/JAD-2010-1379] [PMID]

[42] Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Critical Reviews in Food Science and Nutrition. 2005; 45(7-8):S3-62. [DOI:10.1080/1040-830491379245] [PMID]
