QUANTIZATIONS OF CHARACTER VARIETIES AND QUANTUM KNOT INVARIANTS

ADAM S. SIKORA

ABSTRACT. Let G be a simple complex algebraic group and \mathfrak{g} its Lie algebra. We show that the \mathfrak{g}-Witten-Reshetikhin-Turaev quantum invariants determine a deformation-quantization, $\mathbb{C}_q[X_G(\text{torus})]$, of the coordinate ring of the G-character variety of the torus. We prove that this deformation is in the direction of the Goldman’s bracket. Furthermore, we show that every knot $K \subset S^3$ defines an ideal I_K in $\mathbb{C}_q[X_G(\text{torus})]$. We conjecture that the homomorphism $\varepsilon : \mathbb{C}_q[X_G(\text{torus})] \to \mathbb{C}[X_G(\text{torus})]$, $q \to 1$, maps I_K to the ideal whose radical is the kernel of the map $\mathbb{C}[X_G(\text{torus})] \to \mathbb{C}[X_G(S^3 \setminus K)]$. This conjecture is related to AJ-conjecture for $sl(2, \mathbb{C})$. The results of this paper are inspired by the theory of q-holonomic relations between quantum invariants of Garoufalidis and Le. Along the way, we disprove Conjecture 2 in [Le2].

1. Statements of theorems and conjectures

1.1. Quantum link invariants. For a simple complex Lie algebra \mathfrak{g}, denote by $WRT_{\mathfrak{g}, V}(L)$ the (\mathfrak{g}, V)-Witten-Reshetikhin-Turaev invariant of a framed oriented link $L \subset S^3$ whose all components are labeled by a finite dimensional representation V, [RT]. It is a polynomial in $q^{\pm \frac{1}{D(\mathfrak{g})}}$, where $D(\mathfrak{g})$ is the smallest positive integer such that the dual Killing form, $(\cdot, \cdot) : \Lambda^*_\mathfrak{g} \times \Lambda^*_\mathfrak{g} \to \mathbb{Q}$, has all its values in \mathbb{Z}. (A denotes the weight lattice of \mathfrak{g}. The form is normalized so that $(\lambda, \lambda) = 2$ for all short roots λ.)

$$D(\mathfrak{g}) = \begin{cases} n & \text{for } \mathfrak{g} = sl(n) \\ 1 & \text{for } \mathfrak{g} = sp(2n), so(4n+1), E_6, F_4, G_2 \\ 2 & \text{for } \mathfrak{g} = so(4n), so(4n+3), E_7 \\ 3 & \text{for } \mathfrak{g} = E_6, \\ 4 & \text{for } \mathfrak{g} = so(4n+2). \end{cases}$$

Given a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and fixed positive roots of \mathfrak{g}, each finite dimensional irreducible representation of \mathfrak{g} is determined by its highest weight λ. We denote that representation by $V(\lambda)$. Then $\lambda \to WRT_{\mathfrak{g}, V(\lambda)}(L)$ is a function defined on the set of all dominant weights.

1.2. Extension to Verma modules. For the purpose of relating Witten-Reshetikhin-Turaev invariants of links to the topology of their complements, we need to extend the above function to the entire weight lattice of \mathfrak{g}. However, if λ is not dominant

1991 Mathematics Subject Classification. 57M27, 53D55, 46L65.
Key words and phrases. quantum invariant, knot, character variety, Goldman bracket, q-holonomic function, recursive ideal, quantization, skein module, quantum Weyl algebra.

q-quantum invariants are also called by the compact Lie group corresponding to the real compact form of \mathfrak{g}. For example $sl(n, \mathbb{C})$-quantum invariants are also called $SU(n)$-quantum invariants.
then all representations of \(g \) with highest weight \(\lambda \) are infinite dimensional. In fact, each \(\lambda \in \Lambda_g \) defines the Verma module \(M(\lambda) \) which is an infinite-dimensional indecomposable \(g \)-module of highest weight \(\lambda \) with the universal property that each indecomposable \(g \)-module of highest weight \(\lambda \) is a quotient of \(M(\lambda) \). Rozanski (for \(sl(2) \), [Re]) and Le (for all \(g \)) made the following surprising observation: Reshetikhin-Turaev construction of quantum invariants for knots (but not links) extends verbatim for all Verma modules of \(g \). (Details in Sec. [2]) Furthermore,

\[
J_{g,M(\lambda)}(K) = WRT_{g,V(\lambda)}(K),
\]

for all dominant weights \(\lambda \). Let

\[
\rho, \text{ where } \rho \text{ is the half-sum of positive roots of } g.
\]

We call it the \(g \)-Witten-Reshetikhin-Turaev function of \(K \). (The motivation for the shift by \(\rho \) comes from Proposition [3])

Example 2. For \(g = sl(2) \), \(\rho = 1 \in \Lambda_g = \mathbb{Z} \). \(J_{g,K}(0) = 0 \), \(J_{g,K}(1) = 1 \), and \(J_{g,K}(2) \) for a zero-framed knot \(K \) is the Jones polynomial of \(K \). More generally, \(J_{g,K}(n) \) is the Jones polynomial of \(K \) colored by the \(n \)-dimensional representation for \(n \geq 1 \) and \(J_{g,K}(n) = -J_{g,K}(-n) \) for negative \(n \).

Example 2. It follows from [Le1 1.4.4] that

\[
J_{g,U}(\lambda) = \frac{\sum_{w \in W} \text{sgn}(w)q^{(\lambda,w(\rho))}}{\sum_{w \in W} \text{sgn}(w)q^{(\rho,w(\rho))}},
\]

for the unknot \(U \) and for every \(\lambda \in \Lambda_g \). The sum is over the Weyl algebra of \(g \).

We are going to see that \(J_{g,K} \) has nice algebraic properties and it encodes the \(g \)-quantum invariants of \(K \) in a form which is very convenient for the purpose of relating them to the topology of \(S^3 \setminus K \).

1.3. \(q \)-holonomicity. The next statement follows immediately from the argument of the proof of [GH Thm 6] – see comments in Sec. [2]

Theorem 3. \(J_{g,K} \) a \(q \)-holonomic function on \(\Lambda_g \) for all \(g \neq G_2 \).

In order to define \(q \)-holonomicity of \(J_{g,K} \), consider the \(\mathbb{C}[q^{\pm1/D(\mathfrak{g})}] \)-vector space \(F(\Lambda_g, \mathbb{C}[q^{\pm1/D(\mathfrak{g})}]) \) of all \(\mathbb{C}[q^{\pm1/D(\mathfrak{g})}] \)-valued functions on \(\Lambda_g \) and consider two families of operators on it:

\[
E_\alpha f(\beta) = f(\alpha + \beta), \quad Q_\alpha f(\beta) = q^{(\alpha,\beta)} f(\beta),
\]

for all \(\alpha, \beta \in \Lambda_g \). Let \(\mathcal{A}_g \) be the algebra of \(\mathbb{C}[q^{\pm1/D(\mathfrak{g})}] \)-linear endomorphisms of \(F(\Lambda_g, \mathbb{C}[q^{\pm1/D(\mathfrak{g})}]) \) generated by \(E_\alpha \)'s and \(Q_\alpha \)'s for \(\alpha \in \Lambda_g \).

Proposition 4. \(\mathcal{A}_g \) is the \(\mathbb{C}[q^{\pm1/D(\mathfrak{g})}] \)-algebra of polynomials in non-commuting variables \(E_\alpha, Q_\beta, \alpha, \beta \in \Lambda_g \), subject to conditions:

\[
E_\alpha E_\beta = E_{\alpha + \beta}, \quad Q_\alpha Q_\beta = Q_{\alpha + \beta}, \quad E_\alpha Q_\beta = q^{(\alpha,\beta)} Q_\alpha E_\beta, \quad E_0 = Q_0 = 1.
\]

We call \(\mathcal{A}_g \) the quantum Weyl algebra of \(g \). \(\mathcal{A}_{sl(2)} \) is the \(q \)-Weyl algebra of [EQ] and \(q \)-torus algebra of [GE].

\[
\mathcal{A}_{sl(2)} = \mathbb{C}(E_1^{\pm1}, Q_1^{\pm1}) / E_1 Q_1 - q^{1/2} Q_1 E_1.
\]
algebra of GL and from other "quantum Weyl algebras" appearing for example in $[Ga1, Ga2, GL]$. For other g, A_g appears to be different from the q-torus algebra of $[GL]$ and from other "quantum Weyl algebras" appearing for example in $[DP, Gl] [Ha] [IZ, Ma] [Pa, Ri]$. For any $f : A_g \to \mathbb{C}[q^{\pm 1/D(g)}]$ the set

$$I_f = \{ P \in A_g : Pf = 0 \} \subset A_g$$

is a left-sided ideal in A_g called the recursive ideal of f, c.f. $[Ga1]$. This term reflects the fact that each element of I_f represents a recursive relation for f. Function f is q-holonomic iff I_f is q-holonomic, which intuitively means "as large as possible" (and, in particular, non-trivial). More precisely, a left ideal $I \triangleleft A_g$ is q-holonomic if its homological codimension is at least the rank of g, that is

$$\text{hed}(I) = \min \{ j : \text{Ext}_A^j (A_g/I, A_g) \neq 0 \} \geq \text{rank } g.$$

This definition is a modification of that of $[GL]$ to functions defined on A_g rather than on \mathbb{N}^n. We denote the recursive ideal of $J_{g,K}$ by $I_{g,K}$.

1.4. The action of the Weyl group. $J_{g,K}(\lambda)$ is equivariant with respect to the Weyl group W action:

Proposition 5. (Proof in Sec. 2)

$$J_{g,K}(w \cdot \lambda) = \text{sgn}(w) \cdot J_{g,K}(\lambda),$$

where $\text{sgn}(w) = \pm 1$ is the sign of $w \in W$.

In particular, $J_{g,K}(\lambda)$ vanishes for weights λ in the boundaries of Weyl chambers.

The Weyl group acts on $F(A_g, \mathbb{C}[q^{\pm 1/D(g)}])$ by $w \cdot f(\alpha) = f(w^{-1} \cdot \alpha)$. The inverse is needed to make sure that this is a left action.) Additionally, W acts on A_g via $w \cdot E_\alpha = E_{w^{-1} \cdot \alpha}$, $w \cdot Q_\alpha = Q_{w^{-1} \cdot \alpha}$, and the product $A_g \times F(A_g, \mathbb{C}[q^{\pm 1/D(g)}]) \to F(A_g, \mathbb{C}[q^{\pm 1/D(g)}])$ is W-equivariant. Furthermore, by Proposition 5, $w \cdot I_{g,K} = I_{g,K}$, for every $w \in W$.

We call the W-invariant part of the recursive ideal, $I_{g,K}^W \triangleleft A_g^W$, the invariant g-recursive ideal of K.

Proposition 6. (Proof in Sec. 2.2) (1) For the unknot U,

$$I_{\text{sl}(2,\mathbb{C}), U}^W = \langle E + E - (q^{1/2} + q^{-1/2}) , EQ + E^{-1}Q^{-1} - q(Q + Q^{-1}) \rangle.$$

(2) For the left-sided trefoil, $I_{\text{sl}(2,\mathbb{C}), K}^W$ is generated by elements

$$q^{5/4}(EQ^5 - EQ^{-1}Q^5) - q^{-7/4}(EQ^{-1} - E^{-1}Q) - q^{-3/4}(Q^5 + Q^{-5}) + q^{1/4}(Q + Q^{-1}),$$

$$q^3(EQ^6 + E^{-1}Q^6) + (q^{3/2} + q^{-3/2})(E + E^{-1}) - (q^{1/3} + q^{-5/3})(EQ^{-6} + E^{-1}Q^6) + (Q^6 + Q^{-6}) - 2(q + q^{-1}),$$

$$-q^{-7/2}(E^2Q^{-7} + E^{-2}Q^7) + q^3(EQ^{-7} + E^{-1}Q^7) + (q^2 - q^{-1})(EQ^{-3} + E^{-1}Q^3) - q(EQ^{-1} + E^{-1}Q) - (q^{1/2} - q^{-1/2})(Q^3 + Q^{-3}) + q^{-3/2}(Q + Q^{-1}).$$

(3) The generators of the invariant recursive ideal of the right-handed trefoil are obtained from those above after substitution $Q \to Q^{-1}, \ q \to q^{-1}$.

Conjecture 7. For every g and K, (1) $J_{g,K}$ is uniquely determined by a finite number of its values together with the recursive relations of $I_{g,K}$.

(2) $J_{g,K}$ is uniquely determined among W-equivariant functions (i.e. functions
satisfying the statement of Proposition 8 by a finite number of its values together with the recursive relations of $I_{g,K}$.

1.5. A_g^W is a quantization-deformation of the G-character variety of the torus. For a given complex reductive algebraic group G, denote the G-character variety of a finitely generated (discrete) group Γ by $X_G(\Gamma)$, c.f. Sec 3. Additionally, denote the connected component of the trivial character in $X_G(\Gamma)$ by $X_G^0(\Gamma)$. (If G is simply connected, for example if $G = GL(n, \mathbb{C}), SL(n, \mathbb{C}), Sp(n, \mathbb{C})$, then the G-character variety is connected, Rec, and hence $X_G^0(\Gamma) = X_G(\Gamma)$.) We often abbreviate $X_G(\pi_1(Y))$ and $X_G^0(\pi_1(Y))$ by $X_G(Y)$ and $X_G^0(Y)$ for a topological space Y. Goldman proved that for any closed orientable surface F, $X_G(F)$ is a singular holomorphic symplectic manifold, Go1, c.f. Sec. 4. This symplectic structure defines a Poisson bracket on the space of holomorphic functions on $X_G^0(F)$ called the Goldman bracket.

Theorem 8. (Precise statement in Cor. 22 and Thm. 23) (1) For every complex reductive algebraic group G and its Lie algebra g, A_g^W is a deformation-quantization of $\mathbb{C}[X_G^0(\text{torus})]$.

(2) For every classical group, $G = GL(n, \mathbb{C}), SL(n, \mathbb{C}), SO(n, \mathbb{C}), Sp(n, \mathbb{C})$, this deformation-quantization is in the direction of the Goldman bracket.

By FGSa, $A_{SL(2)}^W$ is the Kauffman bracket skein algebra of the torus. Therefore, Theorem 8(2) generalizes the result of BFK for torus to higher rank classical groups. We will discuss the relations between the present work and skein modules of higher rank (in particular those of S1) in an upcoming S2.

1.6. $I_{g,K}^W$ as a quantization of the G-representations of $\pi_1(S^3 \setminus K)$. By Theorem 8 we have a \mathbb{C}-algebra homomorphism

$$\varepsilon : A_g^W \rightarrow \mathbb{C}[X_G^0(\mathbb{Z}^2)]$$

given by evaluation $q = 1$.

Given a knot $K \subset S^3$, let M_K be the compactification of $S^3 \setminus K$ with boundary torus, $\partial M_K = T$. The embedding $\partial M_K \hookrightarrow M_K$ defines a homomorphism $\phi_K : \mathbb{C}[X_G^0(T)] \rightarrow \mathbb{C}[X_G^0(M_K)]$ whose kernel we denote by $A_{G,K}$. We call it the A_{G}-ideal of K. The $A_{SL(2, \mathbb{C})}$-ideal of K determines the A-polynomial of K of CCGLS. (That is the motivation for the name ”A_{G}-ideal”.)

Conjecture 9. The zero set of $\varepsilon(I_{g,K}^W) \subset \mathbb{C}[X_G^0(T)]$ is the closure of the image of $X_G^0(M_K) \rightarrow X_G^0(T)$. Equivalently,

$$\sqrt{\varepsilon(I_{g,K}^W)} = A_{G,K},$$

where $\sqrt{\cdot}$ denotes the nil-radical.

Let $\mathbb{Z}^2 = \langle L, M \rangle$. By Theorem 8 $\mathbb{C}[X_{SL(2, \mathbb{C})}(\mathbb{Z}^2)] = \mathbb{C}[E^{\pm 1}, Q^{\pm 1}, t], \quad \varepsilon(E) = E^{-1}, \quad \varepsilon(Q) = Q^{-1}$.

Under the isomorphism which will be defined in (7), the regular function $\tau_{a,b} \in \mathbb{C}[X_{SL(2)}(\mathbb{Z}^2)]$, $\tau_{a,b}(\rho) = tr\rho(L^a M^b)$, corresponds to $E^a Q^b + E^{-a} Q^{-b}$, for any $a, b \in \mathbb{Z}$.\footnote{Note that this statement implies in particular that up to an isomorphism $X_G^0(\text{torus})$ depends on the Lie algebra of G only.}
Corollary 11. For the unknot and for the trefoil Conjecture [2] holds. However, $\varepsilon(I^W_{sl(2,\mathbb{C}), U})$ is not divisible by w^2 and hence contained in $\varepsilon(I^W_{sl(2,\mathbb{C}), U})$. Therefore, $\sqrt{\varepsilon(I^W_{sl(2,\mathbb{C}), K})} = A_{G, K}$. On the other hand, $Q = 1$ does not belong to the ideal $\langle Q^2 - Q, w, EQ^2 - E^{-1}Q^{-4} \rangle$, since $(E, Q) = (1, -1)$ belongs to the zero set of that ideal. Consequently, $w(Q - Q^{-1}) \notin \varepsilon(I^W_{g, K})$.

Corollary 11 disproves [Le2, Conj. 2].

Theorem 12. For a given K and g implies that the characteristic and deformation varieties of Garoufalidis coincide and, in particular, AJ conjecture of [Ga2] holds and [Ga2] Question 1 has affirmative answer.

1.7. Acknowledgements. We would like to thank Charlie Frohman and Thang T. Q. Le for helpful discussion.

2. WRT knot functions and quantum Weyl algebras

For every g-module V, $V[[h]] = V \otimes \mathbb{C}[[h]]$ is a module over the quantum group $U_h(g)$. Let K' be a 1-tangle obtained by cutting a knot K open. Reshetikhin-Turaev construction associates with K' colored by a representation V of g (or $V[[h]]$) a morphism of $U_q(g)$-modules $V[[h]] \to V[[h]]$ which is in the center of $End_{U_q(g)}(V[[h]])$. (This is related to the fact that all 1-tangles commute under composition.) Consequently, if V is irreducible then, by Schur’s Lemma, the WRT invariant of K' is a scalar multiple of the identity. We denote that scalar by $WRT_g(V(K'))$. It lies in $\mathbb{C}[q^{\pm 1}] \subset \mathbb{C}[[h]]$, where $q = e^h$, and

$$WRT_g(U) = WRT_g(V(U)) \cdot WRT_g(V(K'))$$

where the WRT-invariant of the unknot is the quantum dimension of V,

$$WRT_g(V(U)) = \dim_q(V) = \frac{\sum_{w \in W} \text{sgn}(w) q^{(\lambda + \rho, w(\rho))}}{\sum_{w \in W} \text{sgn}(w) q^{(\rho, w(\rho))}}$$

and ρ is the half-sum of positive roots. Rozansky (for $sl(2)$ in [Ra]), Le for $sl(2)$, [HL], and for all g, [GL] Lemma 7.7, proved that Reshetikhin-Turaev definition of $WRT_g(V(K'))$ makes sense verbatim for all Verma modules V despite the fact that they are infinite dimensional. (This is not obvious, since Reshetikhin-Turaev construction involves quantum traces, which in case of infinite dimensional modules involve sums in $\mathbb{C}[q^{\pm 1}]$ which are a priori infinite. One has to prove that all but finitely many summands in all these sums vanish.)
2.1. Example: \(sl(n) \)-quantum invariants of the unknot. Let \(sl(n) \) be the algebra of traceless \(n \times n \) matrices. Consider the standard Cartan subalgebra of \(sl(n) \) composed of diagonal matrices:

\[
\mathfrak{h} = \left\{ \sum a_i E_{ii} : \sum a_i = 0 \right\}.
\]

The weights \(\alpha_i : \mathfrak{h} \to \mathbb{C} \), such that \(\alpha_i(E_{jj}) = \delta_{ij} \), generate the weight lattice of \(sl(n) \) and the Killing form on \(\mathfrak{h}^* \) is given by

\[
(\alpha_i, \alpha_j) = \begin{cases}
\frac{n-1}{2} & i = j \\
-\frac{1}{n} & i \neq j,
\end{cases}
\]

c.f. [FH] Formula 15.2]. The Weyl group \(W = S_n \) permutes the weights \(\alpha_1, ..., \alpha_n \).

The positive roots are \(\alpha_i - \alpha_j \), for \(i > j \), and

\[
\rho = \frac{n-1}{2} \alpha_1 + \frac{n-3}{2} \alpha_2 + ... - \frac{n-3}{2} \alpha_{n-1} - \frac{n-1}{2} \alpha_n.
\]

Let \(E_i = E_{\alpha_i}, i = 1, ..., n \). By [H],

\[
\sum_{i=1}^{n} E_i J_{sl(n,\mathbb{C}),U} = \frac{1}{S} \sum_{w \in W} \left(sgn(w) q^{(\lambda,w(\rho))} \sum_{i=1}^{n} q^{(\alpha_i,w(\rho))} \right),
\]

where

\[
S = \sum_{w \in W} sgn(w) q^{(\rho,w(\rho))}.
\]

Since \((\alpha_i, \rho) = \frac{1}{2}(n+1-2i) \), the second sum in (11) is equal to

\[
\sum_{i=1}^{n} q^{(\alpha_i,w(\rho))} = \sum_{i=1}^{n} q^{(w^{-1}(\alpha_i),\rho)} = \sum_{i=1}^{n} q^{(\alpha_i,\rho)} = \sum_{i=1}^{n} q^{\frac{n+1}{2}-2i} = [n],
\]

for every \(w \in S_n \), where \([n]\) is the \(n \)-th quantum integer, \([n]\) = \(\frac{q^{n/2}-q^{-n/2}}{q^{1/2}-q^{-1/2}} \).

Corollary 13. \(\sum_{i=1}^{n} E_i - [n] \) belongs to the \(sl(n) \)-recursive ideal of the unknot.

Proof of Proposition [S] (Suggested by T. Le): By [3] and [8],

\[
J_{\mathfrak{g},K}(\alpha) = J_{\mathfrak{g},U}(\alpha) \cdot WRT_{\mathfrak{g},M(\alpha-\rho)}(K').
\]

By [4],

\[
J_{\mathfrak{g},U}(w \cdot \alpha) = sgn(w) \cdot J_{\mathfrak{g},U}(\alpha).
\]

Therefore, it is enough to prove that \(WRT_{\mathfrak{g},M(\alpha-\rho)}(K') \) is invariant under the action of \(W \) on \(\alpha \).
For every positive element \(w \in W \) in Bruhat ordering (i.e. a product of reflections with respect of positive roots) and for every \(\alpha \in \Lambda_g \), \(M(\lambda - \rho) \) is a submodule of \(M(w \cdot \lambda - \rho) \), c.f. [Kn] Ch V.9 Problem 12\(^3\) This implies that

\[
WRT_{\mathfrak{g}, M(\lambda - \rho)}(K') = WRT_{\mathfrak{g}, M(w \cdot \lambda - \rho)}(K').
\]

Since positive elements in \(W \) generate \(W \), the proof is completed. \(\square \)

Lemma 14. Operators \(Q_\alpha E_\beta \), for \(\alpha, \beta \in \Lambda_g \), are linearly independent.

Proof. Suppose that

\[
\sum_{\alpha, \beta} c_{\alpha, \beta} Q_\alpha E_\beta = 0
\]

and \(c_{\alpha_0, \beta_0} \neq 0 \) for some \(\alpha_0, \beta_0 \in \Lambda_g \) such that

\[
(\beta_0, \beta_0) = \max\{ (\beta, \beta) : c_{\alpha, \beta} \neq 0 \text{ for some } \alpha \}
\]

and

\[
(\alpha_0, \alpha_0) = \max\{ (\alpha, \alpha) : c_{\alpha, \beta} \neq 0 \}.
\]

Fix an integer \(N > \max \{ (\beta_0, \beta_0), (\alpha_0, \alpha_0) : c_{\alpha, \beta} \neq 0 \} \) and let \(f : \Lambda_g \rightarrow \mathbb{C}[q^{\pm 1/D(\mathfrak{g})}] \),

\[
f(v) = \begin{cases} 1 & \text{if } v = kN\alpha_0 \text{ for some } k \in \mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}
\]

Then the value of \(\sum_{\alpha, \beta} c_{\alpha, \beta} Q_\alpha E_\beta f \) at \(-\beta_0 + kN\alpha_0\) is zero. On the other hand,

\[
\sum_{\alpha, \beta} c_{\alpha, \beta} Q_\alpha E_\beta f (-\beta_0 + kN\alpha_0) = \sum_{\alpha, \beta} c_{\alpha, \beta} q^{(\alpha, -\beta_0 + kN\alpha_0)} f(\beta - \beta_0 + kN\alpha_0).
\]

By the definitions of \(f \) and \(N \), the sum on the right equals

\[
\sum_{\alpha} c_{\alpha, -\beta_0 + kN\alpha_0} q^{(\alpha, -\beta_0 + kN\alpha_0)}.
\]

and by (13), its leading term is

\[
c_{\alpha_0, -\beta_0 + kN\alpha_0} q^{(\alpha_0, -\beta_0 + kN\alpha_0)}.
\]

It grows exponentially with \(k \) – a contradiction. \(\square \)

Proof of Proposition 4 Since relations (5) are obviously satisfied by the operators \(E_\alpha \) and \(Q_\beta \), \(\alpha, \beta \in \Lambda_g \), it is enough to prove that all other relations between these operators follow from (5). Let \(P \) be a polynomial in \(E_\alpha \)'s and \(Q_\beta \)'s, \(\alpha, \beta \in \Lambda_g \), which equals to the zero operator on \(F(\Lambda_g, \mathbb{C}[q^{\pm 1/D(\mathfrak{g})}]) \). Relations (5) make possible to express \(P \) as a sum

\[
P = \sum_{\alpha, \beta} c_{\alpha, \beta} Q_\alpha E_\beta,
\]

over \(\Lambda_g \times \Lambda_g \), with \(c_{\alpha, \beta} \in \mathbb{C}[q^{\pm 1/D(\mathfrak{g})}] \). By Lemma 14 all \(c_{\alpha, \beta} \)'s in the above sum vanish. Hence the relation \(P = 0 \) is a consequence of relations (5). \(\square \)

\(^3\)In Knapp’s book the Verma module \(M(\lambda) \) is denoted by \(V(\lambda + \rho) \).
2.2. Proof of Proposition 6: (1) By [FG, Sa], \(A_{sl(2,\mathbb{C})}^W \) is isomorphic to the Kauffman bracket skein module of the torus and, by [Ga1], \(I_{sl(2,\mathbb{C}),K}^W \) corresponds to the orthogonal ideal under that isomorphism. More specifically, the \(p/q \)-torus knot on the torus corresponds to \((-1)^p q^{-ab/4} (EpQ^4 + E^{-p}Q^{-q})\), [Ga1] Fact 4, and the \(t \) of [FG, Ge] is our \(q^{1/4} \). The orthogonal ideal of the unknot was computed in [FG]. It is generated by two elements:

\[
\text{longitude } + (t^2 + t^{-2}) \quad \text{and } \quad (1,1)\text{-curve } + t^3\text{-meridian}.
\]

Therefore, \(I_{sl(2,\mathbb{C}),U}^W \) is generated by \(E + E^{-1} - (q^{1/2} + q^{-1/2}) \) and \(EQ + E^{-1}Q^{-1} - q(Q + Q^{-1}) \).

(2) The orthogonal ideal of the left and right handed trefoil was computed in [Ge]. The result can be summarized as follows: For \(p, q \) coprime, let \((p, q) \) be the \(p/q \)-curve on the torus \(T \) considered as an element of the Kauffman bracket skein module of \(T \times I \), so that \((1,0)\) is the longitude and \((0,1)\) meridian with respect to the embedding \(T = \partial M_K \subset M_K \). For \(p, q \) such that \(\text{gcd}(p,q) = n \geq 0 \), let \((p, q) = T_n((p/n, q/n)) \), where \(T_n(x) \) is the \(n \)-th Chebyshev polynomial: \(T_0(x) = 2, T_1(x) = x, T_{n+1}(x) = xT_n(x) - T_{n-1} \). Then the Kauffman bracket peripheral ideal of the left-handed trefoil \(K \) is generated by elements:

\[
(1, -5) - t^{-8}(1, -1) + t^{-3}(0, 5) - t(0, 1),
(2, -6) - (t^6 + t^{-6})(1, 0) + (t^4 + t^{-4})(1, -6) + (0, 6) - 2(t^4 + t^{-4}),
(2, -7) + t^{-5}(1, -7) + (t^{-5} - t^{-1})(1, -3) - (t^5(1, -1) + (t^2 - t^{-2})1, 3) - t^{-6}(0, 1).
\]

Now the statement follows as in (1).

2.3. Proof of Proposition 10: (1) By Proposition 6,

\[
\varepsilon(I_{g,U}^W) = \langle E + E^{-1} - 2, EQ + E^{-1}Q^{-1} - Q - Q^{-1} \rangle.
\]

It remains to prove that this ideal coincides with \(A_{sl(2,\mathbb{C}),U} \subset \mathbb{C}[X_{SL(2,\mathbb{C})}(\mathbb{Z}^2)] \). It is easy to check that \(E + E^{-1} - 2 \) and \(EQ + E^{-1}Q^{-1} - Q - Q^{-1} \) belong to \(A_{sl(2,\mathbb{C}),U} \). We claim that these two elements generate \(A_{sl(2,\mathbb{C}),U} \). Let \(x_k = EQ^k + Q^{-1}Q^{-k} - (Q^k + Q^{-k}) \). Since \(x_0, x_1 \in A_{sl(2,\mathbb{C}),U} \) and \(x_{k+1} = (Q + Q^{-1})x_k - x_{k-1}, x_k \in A_{sl(2,\mathbb{C}),U} \), for all \(k \).

Any element of that ideal can be reduced by \(E + E^{-1} - 2 \) to a polynomial in \(\mathbb{C}[E^{\pm 1}, Q^{\pm 1}]^{\mathbb{Z}/2} \), of span at most 2 in \(E \). It is easy to see that any such element is of the form \(Ep + q + E^{-1}(p) \), where \(p, q \in \mathbb{C}[Q^{\pm 1}] \). Therefore any \(z \in A_{sl(2,\mathbb{C}),U} \) can be presented as

\[
\sum_k c_k x_k + w(Q),
\]

where \(c_k \in \mathbb{C} \) and \(w(Q) \in \mathbb{C}[Q^{\pm 1}] \). Since all \(x_k \)'s are in \(A_{sl(2,\mathbb{C}),U} \), \(w(Q) \in A_{sl(2,\mathbb{C}),U} \).

However, since the meridian of the unknot can be mapped to \(m = \left(\begin{array}{cc} m & 0 \\ 0 & m^{-1} \end{array} \right) \) for every \(m \in \mathbb{C}^* \), \(w(Q) = 0 \). Hence, every element of \(A_{sl(2,\mathbb{C}),U} \) is a linear combination of \(x_k \) modulo \(E + E^{-1} - 2 \).

(2) The generators of the invariant recursive ideal of the left-handed trefoil listed in Proposition 6(2) are equal to \(w(Q^2 - Q^{-2}), w(1 - E^{-1})(EQ^{-3} + Q^3), w(EQ^4 -

\[4\]We have independently verified that these polynomials generate \(P_{sl(2,\mathbb{C}),K} \). Please note the plus sign in the second term of the third generator, which is missing in [Ge].
$E^{-1}Q^{-4}$ for $q = 1$. In order to compute $A_{sl(2,\mathbb{C}),K}$ observe that since $(E - 1)(EQ^{-6} + 1)$ is the A-polynomial of the left handed-trefoil,

$$A_{sl(2,\mathbb{C}),K}^W = (w \cdot \mathbb{C}[E^{\pm 1}, Q^{\pm 1}]) \cap \mathbb{C}[E^{\pm 1}, Q^{\pm 1}]^{Z/2}.$$

Since $i(w) = -w$, every element of $A_{sl(2,\mathbb{C}),K}^W$ is of the form $w \cdot p$, where $i(p) = -p$. Hence p is a sum of monomials of the form $r_{a,b} = E^aQ^b - E^{-a}Q^{-b}$. Since $r_{a+1,b} = (E + E^{-1})r_{a,b} - r_{a-1,b}$, $r_{a,b+1} = (Q + Q^{-1})r_{a,b} - r_{a,b-1}$, p is a linear combination of $E - E^{-1}, Q - Q^{-1}, EQ - E^{-1}Q^{-1}$ with coefficients in $\mathbb{C}[E^{\pm 1}, Q^{\pm 1}]^{Z/2}$.

2.4. **Proof of Theorem 12** The characteristic variety of Garoufalidis is the Zariski closure of the zero set

$$Z(A_{G,K}) \subset Z(\mathbb{C}[A_{\mathfrak{g}}]) = (\mathbb{C}^*)^n \subset \mathbb{C}^n,$$

where n is the rank of \mathfrak{g}. Similarly, the deformation variety is the closure of

$$Z(\varepsilon(I_{\mathfrak{g},K})) \subset Z(\mathbb{C}[A_{\mathfrak{g}}]) = (\mathbb{C}^*)^n \subset \mathbb{C}^n.$$

Therefore, it is enough to prove that Conjecture 9 implies that for every K and \mathfrak{g}

$$\sqrt{\varepsilon(I_{\mathfrak{g},K})} = \sqrt{A_{G,K}}.$$

To show the inclusion "$\subset"$, it is enough to prove that $\varepsilon(I_{\mathfrak{g},K}) \subset \sqrt{A_{G,K}}$. For each $g \in I_{\mathfrak{g},K}$, the element $\varepsilon(g)$ is a root of the polynomial $\prod_{w \in W}(x - w \cdot \varepsilon(g)) = \sum c_kx^k$ with coefficients $c_k \in \varepsilon(I_{\mathfrak{g},K})$ for $k = 0, \ldots, N - 1$, where $N = |W|$ and $c_N = 1$. Assuming that Conjecture 9 holds, $\varepsilon(I_{\mathfrak{g},K}) \subset A_{G,K}$. Consequently, $\varepsilon(g)^N = -\sum_{k=0}^{N-1} c_k \varepsilon(g)^k \in A_{G,K}$ and $\varepsilon(g) \in \sqrt{A_{G,K}}$.

To show the inclusion "$\supset"$, it is enough to prove that $A_{G,K} \subset \sqrt{\varepsilon(I_{\mathfrak{g},K})}$. Each $h \in A_{G,K}$ is a root of the polynomial $\prod_{w \in W}(x - w \cdot h) = \sum c_kx^k$ with coefficients $c_k \in A_{G,K}^W = \sqrt{\varepsilon(I_{\mathfrak{g},K})}$. Consequently, $h^N = -\sum_{k=0}^{N-1} c_k h^k \in \sqrt{\varepsilon(I_{\mathfrak{g},K})}$. Hence, $h \in \sqrt{\varepsilon(I_{\mathfrak{g},K})}$.

Despite the fact that $A_{G,K}^W$ is equal its nil-radical, $A_{G,K}$ is often not equal to its nil-radical. Indeed, for the unknot, $(l - l^{-1})^2 \in A_{sl(2),U}$ but $(l - l^{-1}) \notin A_{sl(2),U}$!

Note that the conclusion of Theorem 12 is stronger than the AJ-conjecture of Garoufalidis for $\mathfrak{g} = sl(2)$, [Ga2, Conjecture 1], and its version for higher rank Lie algebras, [Ga2 Question 1].

3. Character varieties

3.1. **Introduction.** Let G be a complex reductive algebraic group. If Γ is a (discrete) group generated by $\gamma_1, \ldots, \gamma_n$ then the set of homomorphisms $\text{Hom}(\Gamma, G)$ can be identified with the set of points $(\rho(\gamma_1), \ldots, \rho(\gamma_n)) \in G^n$ taken over all representations $\rho : \Gamma \rightarrow G$. It is an algebraic set which up to an isomorphism does not depend on the choice of generators of Γ. The group G acts on $\text{Hom}(\Gamma, G)$ by conjugating representations and the categorical quotient of that action,

$$X_G(\Gamma) = \text{Hom}(\Gamma, G) / \Gamma$$

is called the G-character variety of Γ. In simple words $X_G(\Gamma)$ is an algebraic set together with a map $\pi : \text{Hom}(\Gamma, G) \rightarrow X_G(\Gamma)$ which is constant on all G-orbits.
and has the universal property that every map $\text{Hom}(\Gamma, G) \to Y$ which is constant on all G-orbits factors through π.

If Γ is the fundamental group of a topological space X, then $X_G(\Gamma)$ is called the G-character variety of X and it is abbreviated by $X_G(X)$.

Proposition 15. ([S3]) For $G = \text{SL}(n, \mathbb{C}), \text{O}(n, \mathbb{C}), \text{Sp}(2n, \mathbb{C})$, let $\tau_{\gamma} : X_G(\Gamma) \to \mathbb{C}$ be defined as $\tau_{\gamma}([\rho]) = \text{tr}(\rho(\gamma))$ for $\rho : \Gamma \to G \to \text{GL}(V)$, where V is the defining representation of G. (The faithful representation of the smallest dimension.) Then the algebra $\mathbb{C}[X_G(\Gamma)]$ is generated by τ_{γ} for all $\gamma \in \Gamma$.

Proposition 15 does not hold for $\text{SO}(n, \mathbb{C})$, [S3].

Goldman proved that for every complex reductive algebraic group G and any closed orientable surface F, $X_G(F) = X_G(\pi_1(F))$ is a singular holomorphic symplectic manifold. More specifically, let $X_G^{\text{sym}}(F)$ be the set of conjugacy classes of all representations $\rho : \pi_1(F) \to G$ such that $\rho(\pi_1(F))$ is not contained in a proper connected algebraic subgroup of G. $X_G^{\text{sym}}(F)$ is an open subset of $X_G(F)$ and a smooth (complex) manifold. Goldman defines holomorphic symplectic form on $X_G^{\text{sym}}(F)$. His construction utilizes the fact that the tangent space $T_{[\rho]}X_G(F)$ at $[\rho] \in X_G(F)$ represented by a representation $\rho : \pi_1(F) \to G$ is canonically isomorphic to $H^1(F, \text{Ad}_{\rho}\mathfrak{g})$. Let B be a non-degenerate symmetric bilinear form, $B : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, invariant under the adjoint G action. For classical groups, the standard choice is the trace form, $B(X, Y) = \text{tr}(XY)$, where the trace is defined by the embedding $G \subset \text{GL}(V) = \text{GL}(n, \mathbb{C})$, for the defining representation V of G. The induced cup product

$$\omega : H^1(F, \text{Ad}_{\rho}\mathfrak{g}) \times H^1(F, \text{Ad}_{\rho}\mathfrak{g}) \xrightarrow{\cup} H^2(F, \mathbb{C}) \cap [F] \mathbb{C},$$

defines a symplectic form on $T_{[\rho]}X_G^{\text{sym}}(F)$. Goldman proves by an argument from gauge theory that ω is closed, [Go1]. This is Goldman’s symplectic form.

3.2. Character varieties of the torus.

Character varieties are usually very difficult to describe as solution sets of explicit systems of polynomial equations. Even an explicit description of $X_G(\mathbb{Z}^2)$ is difficult in general, since the number of connected and irreducible components of this set is unknown. If G is simply connected, for example $G = \text{SL}(n, \mathbb{C})$ or $\text{Sp}(n, \mathbb{C})$, then $X_G(\mathbb{Z}^2)$ is connected, by [Ric]. However, $X_G(\mathbb{Z}^2)$ may be not connected in general: Points of $X_G(\mathbb{Z}^2)$ classify flat principal G-bundles over the torus. If E_ρ is the bundle corresponding to $[\rho] \in X_G(\mathbb{Z}^2)$ then the second obstruction class to the existence of a global section of E_ρ lies in $H^2(\mathbb{Z}^2, \pi_1(G)) = \pi_1(G)$, with the action of \mathbb{Z}^2 on $\pi_1(G)$ given by ρ, c.f. [Go2]. The obstruction map $F : X_G(\mathbb{Z}^2) \to \pi_1(G)$ is constant on connected components. Goldman conjectures that F maps bijectively connected components of $X_G(\mathbb{Z}^2)$ onto $\pi_1(G)$, for all semi-simple algebraic groups, [Go2].

As before, let $X_G^0(\Gamma)$ be the connected component of the trivial character. The proof of the following statement appears in [Th]. For the convenience of the reader we include the proof below.

Theorem 16. ([Th]) For any complex reductive algebraic group G and its Cartan subgroup (a maximal complex torus) \mathbb{T}, the map

$$\mathbb{T}^2 = \text{Hom}(\mathbb{Z}^2, \mathbb{T}) \to \text{Hom}(\mathbb{Z}^2, G) \to \text{Hom}(\mathbb{Z}^2, G)/G = X_G(\mathbb{Z}^2)$$

factors through an isomorphism $\chi : \mathbb{T}^2/W \to X_G^0(\mathbb{Z}^2)$, where the Weyl group W acts diagonally on $\mathbb{T} \times \mathbb{T}$.
Proof. Let us first give an elementary proof that \(\chi \) is onto for \(G = GL(n, \mathbb{C}) \) and \(SL(n, \mathbb{C}) \). For any commuting matrices \(g_1, g_2 \in G \) there is \(h \in G \) such that \(h g_1 h^{-1}, h g_2 h^{-1} \) are upper triangular. Furthermore, \(h \) can be chosen so that the entries of \(h g_1 h^{-1}, h g_2 h^{-1} \) above diagonal are uniformly arbitrarily small. Therefore, every representation \(\rho : \mathbb{Z}^2 \to G \) has an infinite sequence of conjugates approaching some \(\phi : \mathbb{Z}^2 \to \mathbb{T} \subset G \) in the classical topology and, hence, in the Zariski topology as well. Since all points are closed in \(X_G(\mathbb{Z}^2) \), every point in it is represented by some \(\phi : \mathbb{Z}^2 \to \mathbb{T} \).

In the proof of \(\chi \) being onto for every reductive \(G \) we follow an argument of [Th]. Denote the equivalence class of \(\rho \in \mathbb{Z}^2 \to G \) in \(X_G(\mathbb{Z}^2) \) by \([g_1, g_2]\), where \(g_1 = \rho(1, 0) \), \(g_2 = \rho(0, 1) \). Let \(h \) be a regular semisimple element of \(G \) and let \(T \) be its centralizer. Then every element in some open neighborhood of \(h \) in \(G \) is conjugated to a regular element in \(T \). Hence \([h, e]\) has an open neighborhood \(U \subset X_G(\mathbb{Z}^2) \) in complex topology whose every element is represented by \([g h' g^{-1}, k] = [h', g^{-1} k g]\), where \(h' \in T \) and \(h' \) is regular. Since \(T \) is the centralizer of \(h' \), \(g^{-1} k g \in T \). Hence we proved that the image of \(\chi \) contains the open set \(U \) in complex topology. Consequently, the image of \(\chi \) is dense in Zariski topology. However, by [Ric], the connected component \(\text{Hom}^0(\mathbb{Z}^2) \) of the trivial homomorphism in \(\text{Hom}(\mathbb{Z}^2, G) \) is irreducible for every connected reductive group \(G \). Therefore, \(\chi \) is onto.

To prove that \(\chi \) is 1-1, we need to show that if \(g_1, ..., g_N, g'_1, ..., g'_N \in T \) and \((g'_1, ..., g'_N) = g(g_1, ..., g_N) g^{-1}\) for some \(g \in G \) then \((g'_1, ..., g'_N) = w(g_1, ..., g_N)\), for some \(w \in W \) acting on \(T \). We follow an argument of Borel, [Bo], and Thaddeus, [Th]: The centralizer of \(g_1, ..., g_N, Z(g_1, ..., g_n) \subset G \) is a reductive group by [Hum] 26.2A since the proof there is valid not only for a subtorus but for any subset. \(T \) and \(g^{-1} T g \) are maximal tori in \(Z(g_1, ..., g_n) \) and, therefore, \(T \) is conjugate to \(g^{-1} T g \) by some \(h \in Z(g_1, ..., g_n) \). Then \(h g \in N(T) \) represents \(w \in W \) which sends \((g_1, ..., g_N)\) to \((g'_1, ..., g'_N)\).

More generally, one can prove that \(\chi : T^n / W \to X^0_G(\mathbb{Z}^n) \) is an embedding for every \(n \).

Let \(\Lambda_g \) be the weight lattice of the Lie algebra \(g \) of \(G \). Since every weight \(\alpha \in \Lambda_g \) is a homomorphism \(\alpha : T \to \mathbb{C}^* \) and a regular function on \(T \), there is an natural map \(L : \Lambda_g \to C[T] \). Extending it additively to the group ring of \(\Lambda_g \) we get a \(C \)-algebra homomorphism \(L : C[\Lambda_g] \to C[T] \).

Lemma 17. \(L : C[\Lambda_g] \to C[T] \) is an isomorphism of \(C \)-algebras.

Proof. Let \(\alpha_1, ..., \alpha_n : T \to \mathbb{C}^* \) be weights of a faithful representation \(V \) of \(G \). Since the intersection of the kernels of these group homomorphisms is trivial, \((\alpha_1, ..., \alpha_n)\) embeds \(T \) into \((\mathbb{C}^*)^n \). Consequently, \(\alpha_i \)’s generate \(C[T] \) and \(L \) is onto. To show that \(L \) is 1-1, note that \(L \) embeds the group \(\Lambda_g \) into the multiplicative group \((C[T])^*\) of the ring \(C[T] \). Since \(C[T] \simeq \mathbb{C}[x_1^\pm 1, ..., x_n^\pm 1] \), the elements of \((C[T])^* = \langle x_1^\pm 1, ..., x_n^\pm 1 \rangle \) are linearly independent in \(C[T] \). Hence \(L \) is 1-1.

Consequently, \(L \otimes L \) is an isomorphism between \(C[\Lambda_g^2] = C[\Lambda_g] \otimes C[\Lambda_g] \) and \(C[T^2] \) restricting to an isomorphism \(C[\Lambda_g^2]^W \to C[T^2]^W = C[T^2 / W] \).

Corollary 18. \(C[X^0_G(\mathbb{Z}^2)] \simeq C[\Lambda_g^2]^W \). Consequently, the algebraic variety \(X^0_G(\mathbb{Z}^2) \) depends on the Lie algebra of \(G \) only.
Example 19. If $G = SL(n, \mathbb{C})$ then $\mathbb{T} = \{(x_1, \ldots, x_n) \in (\mathbb{C}^\ast)^n : x_1 \cdot \ldots \cdot x_n = 1\}$ and $X_{SL(n, \mathbb{C})}(T) = \mathbb{T}^2/S_n$ where $\sigma(x_1, \ldots, x_n, y_1, \ldots, y_n) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)}, y_{\sigma(1)}, \ldots, y_{\sigma(n)})$, for $\sigma \in S_n$.

Corollary 20. For $G = SL(n, \mathbb{C}), SO(n, \mathbb{C}), O(n, \mathbb{C}), Sp(2n, \mathbb{C})$, the algebra $\mathbb{C}[X^n_G(\Gamma)]$ is generated by τ_γ for all $\gamma \in \Gamma$.

Proof. Since the embedding $X^n_G(\Gamma) \hookrightarrow X_G(\Gamma)$ induces an epimorphism $\mathbb{C}[X_G(\Gamma)] \twoheadrightarrow \mathbb{C}[X^n_G(\Gamma)]$, the statement follows immediately from Proposition 19 for $G = SL(n, \mathbb{C})$, $SO(n, \mathbb{C})$, $Sp(2n, \mathbb{C})$. For $G = SO(n, \mathbb{C})$ the statement follows Corollary 18. \hfill \square

4. DEFORMATION-QUANTIZATIONS

If (M, ω) is a holomorphic symplectic manifold then the space $\mathcal{H}(M)$ of holomorphic functions on it is a Poisson algebra, i.e. a commutative algebra together with a Poisson bracket: if $f, g \in \mathcal{H}(M)$ then
\begin{equation}
\{f, g\} = -V_f(g),
\end{equation}
where V_f is the Hamiltonian vector field of f defined by condition $\omega(V_f, W) = W(f)$ for every vector field W.

Theorem 24 in Sec. 6 implies:

Remark 21. For every classical group G and for every closed orientable surface F, the Poisson bracket on $\mathcal{H}(X^n_G(F))$ restricts to a Poisson bracket on $\mathbb{C}[X^n_G(F)]$.

For any \mathbb{C}-subalgebra $R \subset \mathbb{C}[[h]]$, let \mathbb{C}_0 be \mathbb{C} considered as an R-module via the homomorphism $\varepsilon : R \to \mathbb{C}$, $\varepsilon(h) = 0$. Let B be an associative R-algebra, such that the R-submodule of B generated by $\ker \varepsilon$ is an ideal. In this case, $B/(\ker \varepsilon) = B \otimes_R \mathbb{C}_0$. Let us assume that this ring is commutative.

Since $(B \otimes_R \mathbb{C}[[h]])/(h) = B \otimes_R \mathbb{C}_0$, for any $x, y \in B$, $x \cdot y - y \cdot x$ is divisible by h in $B \otimes_R \mathbb{C}[[h]]$ and, consequently,
\begin{equation}
\{x, y\} = \frac{1}{h}(x' \cdot y' - y' \cdot x') + hB \otimes_R \mathbb{C}[[h]]
\end{equation}
defines a unique element in $B \otimes_R \mathbb{C}_0$. It is easy to check that $\{x, y\}$ depends on the coset values of x and y in $B \otimes_R \mathbb{C}_0$ only and, therefore, $\{\cdot, \cdot\}$ descends to a bracket on $B \otimes_R \mathbb{C}_0$. Furthermore, it is a Poisson bracket.

Let A be a commutative algebra with a Poisson bracket $\{\cdot, \cdot\} : A \times A \to A$. We say that B as above is a deformation quantization of A in the direction of the $\{\cdot, \cdot\}$ if there is an isomorphism of Poisson algebras $\Psi : B \otimes_R \mathbb{C}_0 \to A$.

(Often, deformation-quantization is defined more restrictively with the conditions: $R = \mathbb{C}[[h]]$ and B is topologically R-free.)

Given the embedding $R = \mathbb{C}[q^{\pm 1/D(\mathfrak{g})}] \subset \mathbb{C}[[h]]$, $q = e^h$, \mathbb{C}_0 is the $\mathbb{C}[q^{\pm 1/D(\mathfrak{g})}]$-module \mathbb{C} via the homomorphism $q \to 1$. There is an isomorphism
\[\eta : \mathbb{A}_g^W \otimes \mathbb{C}_0 \to \mathbb{C}[\mathbb{A}_g^2]\]
\[\eta(E_\alpha) = (\alpha, 0), \eta(Q_\alpha) = (0, \alpha),\]
for $\alpha \in \mathbb{A}_g$, which restricts to an isomorphism
\[\eta : \mathbb{A}_g^W \otimes \mathbb{C}_0 \to \mathbb{C}[\mathbb{A}_g^2]^W\].

Therefore,
\begin{equation}
\Theta : \mathbb{A}_g^W \otimes \mathbb{C}_0 \xrightarrow{\eta} \mathbb{C}[\mathbb{A}_g^2]^W \to \mathbb{C}[T^2/W] \simeq \mathbb{C}[X^n_G(\mathbb{Z}^2)]
\end{equation}
is an isomorphism as well.
Corollary 22. \(\mathcal{A}_g^W \) together with (17) is a deformation-quantization of \(C[X_G^0(\mathbb{Z}^2)] \).

Now Theorem 8 can be stated more precisely as

Theorem 23. (Proof in Sec. 6) For classical Lie algebras, \(\mathfrak{g} = \mathfrak{sl}(n), \mathfrak{sp}(2n, \mathbb{C}), \) and \(\mathfrak{so}(n, \mathbb{C}) \), the above deformation-quantization is in the direction of the Goldman bracket\(^5\).

We conjecture that the above statement holds for the exceptional Lie algebras \(\mathfrak{g} \) as well.

5. Goldman bracket

Proposition 24. (1) For \(G = \text{SL}(n, \mathbb{C}) \) the Goldman bracket is given by

\[
\{\tau_\alpha, \tau_\beta\} = \sum_{p \in \alpha \cap \beta} \varepsilon(p, \alpha, \beta) \left(\tau_{\alpha_p \beta_p} - \frac{\tau_{\alpha \beta_p}}{n} \right),
\]

where \(\alpha, \beta \) are any smooth closed oriented loops in \(F \) in general position. (We identify closed oriented loops in \(F \) with conjugacy classes in \(\pi_1(F) \).) \(\alpha \cap \beta \) is the set of the intersection points and \(\alpha_p \beta_p \) is the product of \(\alpha \) and \(\beta \) in \(\pi_1(F, p) \), and \(\varepsilon(p, \alpha, \beta) \) is the sign of the intersection:

\[
\begin{array}{cccc}
\alpha & + & \beta & - \\
\downarrow & & \downarrow & \\
\beta & & \alpha & \\
\end{array}
\]

(2) For \(G = \text{SO}(n, \mathbb{C}), \text{Sp}(n, \mathbb{C}) \),

\[
\{\tau_\alpha, \tau_\beta\} = \sum_{p \in \alpha \cap \beta} \varepsilon(p, \alpha, \beta) \left(\tau_{\alpha_p \beta_p} - \tau_{\alpha_p \beta_p^{-1}} \right).
\]

Proof. Let \(f_\alpha = \text{Re} \tau_\alpha \) and \(\tilde{f}_\alpha = \text{Im} \tau_\alpha \). The formulas for Goldman bracket between \(f_\alpha \)'s and \(\tilde{f}_\alpha \)'s appear in [Go2]. Since Goldman’s \(B \) and \(f_\alpha \)'s are twice ours, the formulas for \(\text{SL}(n, \mathbb{C}) \) are

\[
\{f_\alpha, f_\beta\} = \frac{1}{2} \sum_{p \in \alpha \cap \beta} \varepsilon(p, \alpha, \beta) \left(f_{\alpha_p \beta_p} - f_{\alpha_p \beta_p^{-1}} \right),
\]

\[
\{f_\alpha, \tilde{f}_\beta\} = \{\tilde{f}_\alpha, f_\beta\} = \frac{1}{2} \sum_{p \in \alpha \cap \beta} \varepsilon(p, \alpha, \beta) \left(\tilde{f}_{\alpha_p \beta_p} - \tilde{f}_{\alpha_p \beta_p^{-1}} \right),
\]

Now (19) follows from

\[
\{\tau_\alpha, \tau_\beta\} = \{f_\alpha + i\tilde{f}_\alpha, f_\beta + i\tilde{f}_\beta\} = 2\{f_\alpha, f_\beta\} + 2i\{f_\alpha, \tilde{f}_\beta\}.
\]

Let \(G = \text{SO}(n, \mathbb{C}) \) or \(\text{Sp}(2n, \mathbb{C}) \) now. By [Go2],

\[\{f_\alpha, f_\beta\} = \left(f_{\alpha_p \beta_p} - f_{\alpha_p \beta_p^{-1}} \right) \]

5 By Remark 21, the Poisson bracket on \(C[X_G(T)] \) is well defined.
(Since \(so(n, \mathbb{C}) = o(n, \mathbb{C})\), the above formula holds for the Goldman bracket for \(SO(n, \mathbb{C})\) as well.) Furthermore, from [Go2, Lemma 1.11] and Goldman’s product formula, [Go2], we obtain additional formulas
\[
\{ \hat{f}_{\alpha}, \hat{f}_{\beta} \} = \{ f_{\alpha}, f_{\beta} \} = \sum_{p \in \alpha \cap \beta} \varepsilon(p, \alpha, \beta) \left(\hat{f}_{\alpha_p} - \hat{f}_{\alpha_p^{-1}} \right).
\]
\[
\{ \hat{f}_{\alpha}, \hat{f}_{\beta} \} = -\{ f_{\alpha}, f_{\beta} \}.
\]
Now (19) follows from (22).

In a torus \(T\), the signed number of the intersection points of any two curves \((a, b), (c, d)\) in \(T\) is
\[
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
\]
and, therefore, formulas (18) and (19) for Goldman bracket on \(\mathbb{C}[X_G(\mathbb{Z}^2)]\) simplify to

\[
\tau_{a,b}, \tau_{c,d} = \begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
\left(\tau_{a+b+c+d} - \frac{\tau_{a,b} \tau_{c,d}}{n} \right), \text{ for } G = SL(n, \mathbb{C}),
\]
and

\[
\tau_{a,b}, \tau_{c,d} = \begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
\left(\tau_{a+b+c+d} - \tau_{a-c,b-d} \right) \text{ for } G = SO(n, \mathbb{C}), Sp(2n, \mathbb{C}).
\]

6. PROOF OF THEOREM 23

In light of isomorphism (17), it is enough to prove that Poisson bracket (16) on \(A^{W}_p \otimes \mathbb{C}_0\), which we will denote here by \(\{ \cdot, \cdot \}_A\), coincides with Goldman bracket, (23) and (24), on \(\mathbb{C}[X_G(\mathbb{Z}^2)]\) which we denote here by \(\{ \cdot, \cdot \}_G\).

Furthermore, since Poisson brackets are skew-commutative and they satisfy Leibniz’ law:
\[
\{f, gh\} = \{f, g\} h + g\{f, h\}
\]
it is enough to prove that the above brackets coincide for algebra generators only. Hence Theorem 23 follows from Proposition 17 and Propositions 25 and 26.

Proposition 25. For \(G = SL(n, \mathbb{C})\)
\[
\Theta(\{ \tau_{a,b}, \tau_{c,d} \}_A) = \{ \Theta(\tau_{a,b}), \Theta(\tau_{c,d}) \}_G,
\]
for any \(a, b, c, d \in \mathbb{Z}\), where \(\Theta\) is defined in (17).

Proof. Let \(\alpha_i : h \to \mathbb{C}, i = 1, \ldots, n\) be the weights defined in Section 2.1. Denote \(E_{\alpha_i}\) and \(Q_{\alpha_i}\) by \(E_i\) and \(Q_i\) respectively. Then
\[
\Theta \left(\sum_{i=1}^{n} E_i^a Q_i^b \right) = \tau_{a,b}.
\]
Hence, by (10), \(\{ \Theta^{-1} \tau_{a,b}, \Theta^{-1} \tau_{c,d} \}_A\) is the image of
\[
\frac{1}{h} \left(\sum_{i=1}^{n} E_i^a Q_i^b \cdot \sum_{i=1}^{n} E_i^c Q_i^d - \sum_{i=1}^{n} E_i^c Q_i^d \cdot \sum_{i=1}^{n} E_i^a Q_i^b \right)
\]
in \(A^{W}_{SL(n, \mathbb{C})} \otimes \mathbb{C}_0\). By (5) and (9),
\[
\sum_{i=1}^{n} E_i^a Q_i^b \cdot \sum_{i=1}^{n} E_i^c Q_i^d = \sum_{i,j} E_i^a E_j^c Q_i^b Q_j^d \cdot \left\{ \begin{array}{ll}
\frac{1}{n} hbc & \text{for } i \neq j \\
\frac{1}{n-1} hbc & \text{for } i = j
\end{array} \right\} \mod h^2
\]
for \(q = e^h \). Hence (20) equals
\[
\sum_i \left(\frac{1}{n} - 1 \right) (bc - ad) E_i^{a+c} Q_i^{b+d} + \sum_{i \neq j} \frac{1}{n} (bc - ad) E_i^a E_j^c Q_i^b Q_j^d =
\]
\[
\begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \sum_i E_i^{a+c} Q_i^{b+d} - \frac{1}{n} \sum_{i,j} E_i^a E_j^c Q_i^b Q_j^d
\]
and, by (20), it equals to
\[
\begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot \left(\Theta^{-1} \tau_{a+b} - \frac{\Theta^{-1} \tau_{a,b} \cdot \Theta^{-1} \tau_{a,b}}{n} \right).
\]
Now the statement follows from (20). \(\square \)

Proposition 26. For \(G = SO(n, \mathbb{C}), Sp(2n, \mathbb{C}) \),
\[
\Theta \{ \tau_{a,b}, \tau_{c,d} \} = \{ \Theta(a,b), \Theta(c,d) \} G,
\]
for any \(a, b, c, d \in \mathbb{Z} \).

Proof. Let \(s_n \) be the \(n \times n \) matrix
\[
s_n = \begin{pmatrix} 0 & \ldots & 0 & 1 \\ 0 & \ldots & 1 & 0 \\ \vdots & \ldots & \vdots & \vdots \\ 1 & \ldots & 0 & 0 \end{pmatrix}.
\]
Define matrices
\[
B_m = \begin{pmatrix} 0 & s_n \\ s_n & 0 \end{pmatrix} y, \text{ for } m = 2n, \quad B_m(x, y) = \begin{pmatrix} 0 & s_n & 0 \\ s_n & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ for } m = 2n + 1,
\]
and \(\Omega_{2n} = \begin{pmatrix} 0 & -s_n \\ s_n & 0 \end{pmatrix} \).

Then \(Sp(2n) \subset SL(m, \mathbb{C}) \) for \(m = 2n \) and \(SO(m, \mathbb{C}) \subset SL(m, \mathbb{C}) \) are the groups of isomorphisms of \(\mathbb{C}^n \) preserving bilinear forms \((x, y) \to x^T \Omega_{m} y \) and \((x, y) \to x^T B_m y \), respectively. The advantage of this definition of \(SO(n, \mathbb{C}) \) over the “standard” one, \(SO(n, \mathbb{C}) = \{ A : A \cdot A^T = I_n, \ det(A) = 1 \} \), is that the intersection of the group of diagonal matrices in \(GL(n, \mathbb{C}) \) with \(SO(n, \mathbb{C}) \) (defined above) is a maximal torus in \(SO(n, \mathbb{C}) \). The Lie algebras \(so(m) \) and \(sp(m) \) for \(m \) even are spaces of matrices \(X \) such that \(B_m X + X B_m = 0 \) and \(\Omega_{m} X + X \Omega_{m} = 0 \) respectively. If \(g = sp(2n), so(2n), so(2n + 1) \), then \(H_i = E_{i_i} - E_{n+i,n+i} \), for \(i = 1, \ldots, n \), form a basis of its Cartan subalgebra \(\mathfrak{h} \). Furthermore, the vectors \(H_1, \ldots, H_n \) are of equal length and are mutually orthogonal with respect of the Killing form.

The weight lattice is generated by weights \(\alpha_1, \ldots, \alpha_n \) dual to \(H_1, \ldots, H_n \), \(\alpha_i(H_j) = \delta_{ij} \), and the dual Killing form on \(\mathfrak{h}^* \) is given by
\[(27) \quad (\alpha_i, \alpha_j) = \delta_{ij}. \]

The Weyl group is composed all signed permutations \(W = (\mathbb{Z}/2)^n \rtimes S_n \) for \(sp(2n) \) and \(so(2n + 1) \) and it is the subgroup of \((\mathbb{Z}/2)^n \rtimes S_n \) composed of signed permutations with an even number of sign changes, \((\mathbb{Z}/2)^{n-1} \rtimes S_n \), for \(so(2n) \).
Let $E_i = E_{\alpha_i}$ and $Q_i = Q_{\alpha_i}$ for $i = 1, \ldots, n$. We have

$$\Theta^{-1}(\tau_{a,b}) = \sum_{i=1}^{n} (E_i^a Q_i^b + E_i^{-a} Q_i^{-b}).$$

By (5) and (27),

$$E_i^a Q_i^b \cdot E_i^c Q_i^d = -hbc E_i^{a+c} Q_i^{b+d} \mod h^2,$$

for $q = e^h$. Therefore, $\Theta^{-1}(\tau_{a,b}) \cdot \Theta^{-1}(\tau_{c,d}) = -hbc \sum_{i=1}^{n} E_i^{a+c} Q_i^{b+d} + E_i^{-a-c} Q_i^{-b-d} - E_i^{-a-c} Q_i^{-b-d} - E_i^{a+c} Q_i^{b+d} \mod h^2$.

By (16),

$$\{\tau_{a,b}, \tau_{c,d}\}_A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \cdot (\tau_{a+c,b+d} - \tau_{a-c,b-d}).$$

Now the statement follows from (21).

\begin{flushright} \Box \end{flushright}

References

[BFK] D. Bullock, C. Frohman, J. Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, *J. of Knot Theory and Its Ramif.*, 8 (1999), no. 3, 265–277. arXiv: q-alg/9604013

[Bo] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, *Tohoku Math. J.*, 13 (1961), no. 2, 216–240.

[CCGLS] D. Cooper, M. Cullere, H. Gillet, D.D. Long, P. B. Shalen, Plane Curves Associated to Character Varieties of 3-manifolds, *Inventiones Math.* 118 (1994), 47–84.

[CP] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, 1994.

[DP] R. Díaz, E. Pariguan, Symmetric quantum Weyl algebras, *Ann. Math. Blaise Pascal* 11 (2004), no. 2, 187–203, arXiv:math.QA/0311128

[EO] P. Etingof, A. Oblomkov, Quantization, Orbifold Cohomology, and Cherednik Algebras, Jack, Hall-Littlewood and Macdonald polynomials, 171–182, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, arXiv:math.QA/0311005

[FG] C. Frohman, R. Gelca, Skein Modules and the Noncommutative Torus, *Trans. Amer. Math. Soc.* 352 (2000), no. 10, 4877–4888, arXiv:math/9806107

[FGL] C. Frohman, R. Gelca, W. Lofaro, The A-polynomial from noncommutative viewpoint, *Trans. of AMS* 354 (2002), no. 2, 735–747.

[FH] W. Fulton, J. Harris, Representation Theory, A First Course, Graduate Texts in Mathematics, Springer 1991.

[Ga1] S. Garoufalidis, Difference and differential equations for the colored Jones function, arXiv: math.GT/0306220

[Ga2] S. Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, *Geom. Topol. Monographs* Vol. 7, Proceedings of the Casson Fest, 291–399.

[GL] S. Garoufalidis, T. T. Le, The colored Jones function is q-holonomic, *Geom. and Topol.* 9 (2005), 1253–1293, arXiv: math.GT/0309214

[Ge] R. Gelca, Noncommutative trigonometry and the A-polynomial of the trefoil, *Math. Proc. Cambridge Philos. Soc.* 133 (2002), no. 2, 311–323.

[Gi] A. Giaquinto, J. Zhang, Quantum Weyl algebras, *J. Algebra* 176 (1995), no. 3, 861–881.

[Go1] W. Goldman, The symplectic nature of fundamental groups of surfaces, *Adv. in Math.* 54 (1984), 200–225.

[Go2] W. Goldman, Topological components of spaces of representations, *Invent. Math.* 93 (1988), 557–607.

[Ha] T. Hayashi, Q-Analogues of Clifford and Weyl Algebras – Spinor and Oscillator Representations of Quantum Enveloping Algebras, *Commun. Math. Phys.* 127 (1990), 129–144.

[Hu] J.E. Humphreys, Linear algebraic groups, Graduate Texts in Math. 21, Springer, 1975.
[HL] V. Huynh, T. T. Q. Le, On the colored Jones polynomial and the Kashaev invariant, *Fundam. Prikl. Mat.* 11 (2005), no. 5, 57–78; translation in *J. Math. Sci. (N. Y.)* 146 (2007), no. 1, 5490–5504, arxiv:math.GT/0503296

[JZ] N. Jing, J. Zhang, Quantum Weyl algebras and deformations of $U(G)$, *Pacific J. Math.* 171 (1995), no. 2, 437–454.

[Kn] A. W. Knapp, Lie groups beyond and introduction, Progress in Mathematics 140, Birkhäuser, 1996.

[KS] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Representations, Texts and Monographs in Physics, Springer, 1997.

[Le1] T. T. Q. Le, Integrality and symmetry of quantum link invariants, *Duke Math. J.* 102 (2000), 273–306.

[Le2] T. T. Q. Le, The Colored Jones Polynomial and the A-Polynomial of Two-Bridge Knots, *Adv. Math.* 207 (2006), no. 2, 782–804.

[Ma] W. Marcinek, On commutation relations for quons, *Rep. Math. Phys.* 41 (1998), no. 2, 155–172, arxiv:q-alg/9512015

[Pa] A. N. Panov, Representations of quantum orders, *Fundam. Prikl. Mat.* 11 (2005), no. 2, 157–167.

[Ro] L. Rozansky, The universal R-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, *Adv. Math.* 134 (1998), 1-31.

[RT] N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, *Comm. Math. Phys.* 127 (1990), no. 1, 1–26.

[Wi] L. Richard, Dérivations des algèbres de Weyl quantiques multiparamétrées et de certaines de leurs localisations simples, *Comm. Algebra* 33 (2005), no. 5, 1383–1407.

[Ric] R.W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, *Compositio Math.* 38 (1979), 311–327.

[Sa] P. Sallenave, Structure of the Kauffman bracket skein algebra of $T^2 \times I$, *J. Knot Theory Ramifications* 8 (1999), no. 3, 367–372.

[S1] A. S. Sikora, Skein Theory for SU(n)-quantum invariants, *Algebr. Geom. Topol.* 5 (2005), 865–897.

[S2] A. S. Sikora, in preparation

[S3] A. S. Sikora, Coordinate rings of character varieties, preprint.

[Th] M. Thaddeus, Mirror symmetry, Langlands duality, and commuting elements of Lie groups, *Internat. Math. Res. Notices* (2001), no. 22, 1169–1193, arxiv:math.AG/0009081

Dept. of Mathematics, 244 Math. Bldg.
University at Buffalo, SUNY
Buffalo, NY 14260, USA
asikora@buffalo.edu