MixBin: Towards Budgeted Binarization

Udbhav Bamba†, Neeraj Anand‡, Dilip K. Prasad‡ and Deepak K. Gupta†
†Transmute AI Lab (Texmin Hub), Indian Institute of Technology, ISM Dhanbad, India
‡Department of Computer Science, UiT The Arctic University of Norway, Tromso, Norway
{ubamba98,neerajanandfirst,dilipprasad,guptadeepak2806}@gmail.com

Abstract

Binarization has proven to be amongst the most effective ways of neural network compression, reducing the FLOPs of the original model by a large extent. However, such levels of compression are often accompanied by a significant drop in the performance of the model. There exist some approaches that reduce this performance drop by facilitating partial binarization of the network, however, a systematic approach to mix binary and full-precision parameters in a single network is still missing. In this paper, we propose a paradigm to perform partial binarization of neural networks in a controlled sense, thereby constructing budgeted binary neural network (B2NN). We present MixBin, an iterative search-based strategy that constructs B2NN through optimized mixing of the binary and full-precision components. MixBin allows to explicitly choose the approximate fraction of the network to be kept as binary, thereby presenting the flexibility to adapt the inference cost at a prescribed budget. We demonstrate through numerical experiments that B2NNs obtained from our MixBin strategy are significantly better than those obtained from random selection of the network layers. To perform partial binarization in an effective manner, it is important that both the full-precision as well as the binary components of the B2NN are appropriately optimized. We also demonstrate that the choice of the activation function can have a significant effect on this process, and to circumvent this issue, we present BinReLU, an integral component of MixBin, that can be used as an effective activation function for the full-precision as well as the binary components of any B2NN. Experimental investigations reveal that BinReLU outperforms the other activation functions in all possible scenarios of B2NN: zero-, partial- as well as full binarization. Finally, we demonstrate the efficacy of MixBin on the tasks of classification and object tracking using benchmark datasets.

1. Introduction

Convolutional neural networks (CNNs) have led to several breakthroughs in the field of computer vision and image processing, especially because of their capability to extract extremely complex features from the images. However, these deep CNN models are extremely computation-hungry and require significant power to process. For example, a ResNet18 classification model comprises 1.9 million parameters, each represented in full-precision using 32-bits, and accounts for a total of 1.8 billion floating point operations (FLOPs) for the ImageNet dataset [31]. For most of the problems, these deep CNN models are overparameterized, and there is enormous scope of reducing their sizes with minimal to almost no drop in the performance of the models. The popular approaches for effective model compression include dropping the non-important set of parameters or channels (pruning) [20], distilling knowledge of the dense teacher network into a light-weight student network (distillation) [11], converting 32-bit representations of the parameters to half-precision or even lower (quantization) [14], and converting all the parameters of network to 1-bit representations (binarization) [5].

Among the methods outlined above, binarization is very effective in drastically reducing the size of the model and increasing the inference speed. In its basic form, binarization involves changing all the weights and activations to 1-bit representation and implementing the convolutions with bitwise XNOR operations [29]. However, due to the significantly reduced representation, the performance of the binarized network is significantly lower than its dense counterpart. To circumvent this, several approaches exist such as binarizing only the weights and keeping the activations as full-precision [4], parallely stacking multiple binarized layers [18], using special layers such as squeeze-and-excitation blocks [24] and retaining skip connections as full-precision modules in a ResNet-type binary network [21]. All the above methods exploit partial binarization of the network such that the extent of performance drop due to binarization is low. However, there still does not exist a systematic ap-
approach to perform intermediate levels of compression in a more controlled sense. A solution as such would provide the flexibility of analyzing the drop in the performance of the model at different levels of model compression, thereby allowing to choose a right balance between the size of the compressed model and the drop in performance. Beyond this, such an approach would provide the control on using binarization to perform hardware-specific compression, thereby allowing the compressed model to exploit the full computational power budget of the target hardware.

In this paper, we propose a paradigm to perform partial binarization of neural networks in a controlled sense, thereby constructing budgeted binary neural network (B2NN). Our B2NN approach relies on identifying the right set of convolutional layers of a network that should be binarized, and the rest of the network is retained as full-precision.

A straightforward approach to select layers to binarize is through random sampling, and we experimentally demonstrate that this is not very effective. While the network itself can be made very light, the performance of the compressed variant deteriorates significantly. We numerically demonstrate that binarizing different parts of a CNN has very different effect on the performance of the compressed model, thus making it important that the right set of target layers are identified for building the right B2NN. This is shown in Figure 1, and we see that for a similar computational budget, keeping the later layers of a network as full-precision boosts its performance significantly, while more binarization towards the end of the network architecture has an adverse effect. We discuss this aspect further in a later section of this paper.

To overcome the issue outlined above, we present MixBin, an iterative search strategy that constructs B2NN through optimized mixing of the binary and full-precision components. MixBin allows to explicitly choose the fraction of the network to be kept as binary, thereby presenting the flexibility to approximately adapt the inference cost to a prescribed budget (referred further as budgeted binarization). We demonstrate through numerical experiments that B2NNs obtained from our MixBin strategy are significantly better than those obtained from random selection of the network layers. Our MixBin is stable with respect to the employed initialization scheme, and we demonstrate that when following different trajectories for iterative selection of the layers to binarize, the results obtained for different choices of the FLOP budget are approximately similar. Beyond this, we demonstrate that MixBin is path independent. This implies that for any prescribed budget, the performance of the final B2NN obtained from iterative binarization of parts of a full-precision model (MixBin-shrink) is approximately similar to that obtained when a fully binary network is iteratively converted into a B2NN (MixBin-grow). Lastly, MixBin leads to B2NNs which are transferable across datasets, implying that a compressed model designed on one dataset fairs well on other datasets as well.

To perform partial binarization in an effective manner, it is important that both the components of the B2NN are appropriately optimized. For a full-precision network, it is common to use ReLU activations, however, since it discards values below 0, this activation function does not work well for BNNs. On the other hand, it is common to use Hard-Tanh or identity as activation function for BNNs [21, 28]. Through experiments, we demonstrate later in this paper, that these activations are also not suited for B2NNs. Clearly an activation function suited for B2NN construction is still missing in the existing literature. To circumvent this issue, we present BinReLU, an integral component of MixBin, that can be used as an effective activation function for the full-precision as well as the binary components of any B2NN. Experimental investigations reveal that BinReLU outperforms the other activation functions in all possible scenarios of B2NN: zero-, partial- as well as full binarization.

Contributions. The contributions of this paper can be summarized as follows.

- We introduce budgeted binary neural networks (B2NNs), compressed variants of the dense full-precision models obtained through partial binarization. B2NN relies on identifying the right set of layers that are to be retained as binary or full-precision.
- We present MixBin, an iterative search strategy to compress a model through partial binarization in an optimized sense. The inherent design of MixBin facilitates budgeted binarization, allowing to develop...
light-weight models that maximally exploit the available compute resources. Further, the resultant B2NNs are transferable in nature, thereby when trained on one dataset, these work well on other datasets as well.

• We demonstrate that MixBin can be used to ‘grow’ a binary network through converting part of it to full-precision as well as ‘shrink’ a real-valued network through its partial binarization. For a given choice of FLOPs, we demonstrate that both the above routes result in models with almost similar performance.

• Mixing full-precision and binary layers requires that both the components are properly optimized in a single framework, and to facilitate this, we present BinReLU activation function, an integral part of MixBin, which works well for the B2NN frameworks.

• To demonstrate the efficacy of MixBin, we conduct experiments on various classification models for the popular benchmark datasets. We further demonstrate that when used for object tracking, MixBin results in light-weight yet very efficient trackers that are almost optimally compressed.

2. Related Work

Neural networks are known to be overparameterized for most of the tasks that they are used for [7]. This overparameterization causes increased FLOPs with little to no effect on the model accuracy, and creates undesired additional latency when deploying these models in production. There exist several work that focus on addressing these issues by making neural networks models more efficient.

First among these is through inducing efficient components in the neural network design, such as using residual networks with bottleneck blocks [9], SqueezeNets, which replace some of the 3×3 convolutions with 1×1 [13], using depthwise separable convolutions as in MobileNet [12] and neural architecture search [26, 32, 37]. Another approach to design efficient networks involves distilling the information of large networks into smaller networks (knowledge distillation) [1, 11, 30, 33, 35]. Further, there exist works that aim at compressing the original network itself through identifying the undesired or less desired weights or filters of a network and removing them. Examples of pruning include removing weights/connections through ranking scores calculated via L1/L2 norms of parameters [7, 10, 17], identifying the channels to remove based on the activations resulting from the respective layer [23], using derivatives to identify the parts to remove [6, 15] and learning masks that represent the parts to retain or remove [16, 20, 34]. A last but equally effective direction of efficient network design is through quantization of the weights and/or activations of a network to represent it with a reduced number of bits [2, 8, 14, 36].

Quantizing a given network refers to representing each weight or activation with reduced number of bits, such as half-precision (16-bits) or 8-bits. An extreme case of quantization is network binarization where the 32-bit representations are directly scaled down to 1-bit each [5]. Due to the replacement of the conventional convolution operation with a bitwise operation, a significant computational gain is observed. Further, adding the channelwise scaling the binary weights allows to scale BNNs to largescale datasets such as ImageNet [29].

Binarization is a very effective method for compressing the networks and making them efficient, however, due to significant reduced representation of the network, the performance is significantly reduced. There exist several works that attempt to find a right balance between the drop in model performance and the extent of compression in the model. For example, ABCNet proposes to stack multiple parallel layers together to use multiple binary layers to together increase the representation capability of the network [18]. In BiRealNet [21], skip connections are represented as real-valued and it has been shown to boost the performance. Other recent binarization methods that improve performance include Reactnet [22], IR-Net [28] and SA-BNN [19].

Most of the approaches listed above attempt to find representations in between a fully binary network and a fully real-valued one. However, there is no straightforward method to design networks comprising binary components that make efficient use of the available computational memory and delivering maximum possible performance. The closest towards this goal is the hybrid binary network that performs selective binarization through locally converting the activations to full-precision and retaining the rest of the network as binary [27]. However, this approach also provides limited flexibility in terms of full exploitation of the mixing between binary and full-precision components. Our MixBin strategy effectively mixes the binary and full-representations for weights as well as activations to build B2NNs that are well optimized.

3. MixBin

3.1. Background

Binary neural networks (BNNs), also referred as 1-bit neural networks, are neural network models that use binary weight parameters and binary activations in the intermediate layers of the network, excluding the first and the last. Sign(\cdot) function is used to convert real-valued weights/activations to their binary counterparts and the con-
versions can be mathematically stated as

\[
a_b = \text{Sign}(a_r) = \begin{cases}
-1 & \text{if } a_r < 0 \\
+1 & \text{otherwise}
\end{cases} \\
w_b = \text{Sign}(w_r) = \begin{cases}
-1 & \text{if } w_r < 0 \\
+1 & \text{otherwise}
\end{cases}
\]

where \(a_r\) and \(w_r\) denote the real-valued (full-precision) activations and weights, and \(a_b\) and \(w_b\) the corresponding binary variants.

Compared to the full-precision model where 32-bit representations are used for every parameter, BNNs, with their 1-bit representations, can lead up to \(32\times\) memory saving. Further, since the activations are also chosen as binary, the convolution (*) operation is implemented as a bitwise XNOR (\(\oplus\)) operation and a bit-count operation. It is represented as

\[
a_r \ast w_r = \alpha \odot (a_b \oplus w_b)
\]

where \(\alpha \in \mathbb{R}_{>0}^{c_{out}}\) contains the channelwise scaling factors and \(\odot\) denotes the elementwise multiplication operation. For \(w_r \in \mathbb{R}^{c_{out} \times c_{in} \times k_h \times k_w}\), the scaling factor \(\alpha_i \in \alpha\) can be mathematically represented as

\[
\alpha_i = \frac{1}{n} \sum_{\tau} w^{(i)}_r
\]

denoting summation of the matrix along all dimensions except \(c_{out}\), and \(n = c_{in} \times k_h \times k_w\). Here, \(c_{in}\), \(k_h\) and \(k_w\) denote the input channel dimension, kernel height and width, respectively. For more details related to the scaling, see [29].

3.2. Budgeted binary neural network (B2NN)

Although BNN leads to significant memory and computation gain, it has been experimentally demonstrated that the performance of BNNs can be significantly lower than their full-precision counterparts. Clearly, reducing 32-bits to 1-bit in all parts of the network is not the effective way, and budgeted binary neural network alleviates this issue. Among the various layers of a given CNN for example, B2NN identifies the right set of layers that are to be converted to 1-bit representation, and the rest are retained as full-precision. Below we provide the mathematical description of B2NN.

Let \(\mathcal{F} : \mathbb{R}^d \rightarrow \mathbb{R}^c\) denote a neural network comprising a set of weights \(\mathbf{W}\), activations \(\mathbf{A}\), and input and output layers. For \(\mathcal{F}\) comprising \(n\) hidden layers, this implies, we have \(\mathbf{W} = \{w_1, w_2, \ldots, w_n, w_{n+1}\}\) and \(\mathbf{A} = \{a_1, a_2, \ldots, a_n\}\). Note here that \(w_{n+1}\) performs a fully-connected mapping between the output of the final convolutional layer and the output of the model. During binarization, it is common to retain the input, output and \(w_{n+1}\) as full-precision. For methods that perform complete binarization, \(w_i \forall i \in [1, n]\) and \(a_i \forall i \in [1, n]\) are converted from full-precision to binary. However, as stated earlier, this dips the performance of the resultant BNN significantly, and alternatively some of the works retain \(a_i\) as full-precision.

B2NN couples \(a_i\) and \(w_i\) together as \(\mathbf{\Theta}_i = \{a_i, w_i\}\) and performs binarization on a subset \(\Phi \subset \Theta\), where \(\Theta = \{\mathbf{\Theta}_1, \Theta_2, \ldots, \Theta_n\}\). During the generic mathematical problem that we solve with B2NN can be stated as follows.

\[
\Phi^* = \arg \min_{\Phi \subset \Theta} \mathcal{L}(\mathcal{F}(\Phi, \mathbf{\Theta} - \Phi, \mathbf{x}, \mathbf{y})
\]

s.t. \(B(\Phi - \mathbf{\Phi}, \mathbf{\Theta}) \leq B_0\),

where \(\Phi^*\) denotes the optimized subset of layers that are binarized, and \(\mathcal{L}(\cdot)\) denotes the function to be minimized on the dataset \((\mathbf{x}, \mathbf{y})\) when making this selection. Further, \(B(\cdot)\) denotes the budget function and \(B_0\) refers to the prescribed limit. In this paper, we use FLOPs budget for compressing the networks.

Effect of binarizing different parts of a network. The performance of the constructed B2NN model depends on the choice of \(\Phi\). A simple and straightforward approach to construct B2NN is to randomly sample \(\Phi\) from the set of layers defined by \(\Theta\). While the resultant B2NN is compressed in the desired manner, the performance of the resultant model can be significantly deteriorated, and this is demonstrated in Figure 1. We further demonstrate that binarizing layers from different parts of the network can affect the performance of the resultant B2NN differently. As shown in Figure 1, keeping more full-precision layers towards the end of the network favors its performance. And binarizing the later layers affects the performance of the resultant B2NN adversely. Clearly, mixing full-precision and binary layers randomly is not the right choice, and this issue is tackled by the proposed MixBin strategy.

MixBin. It is an iterative search strategy designed to identify the right layers of any given network to be converted to binary or full precision, one-by-one. The approach of MixBin is described in Algorithm 1. For the \(k\) out of \(n\) layers to be binarized, the \(j\)th step of binarization, where \(j \in [1, k]\), can be stated as finding the optimal layer \(\mathbf{\Theta}_j^* \in \mathbf{\Theta}_{(j)}\) to be binarized. It can be mathematically stated as follows.

\[
\mathbf{\Theta}_j^* = \arg \min_{\mathbf{\Theta} \subset \mathbf{\Theta}_{(j)}} \mathcal{L}(\mathcal{F}(\mathbf{\Theta}, \mathbf{\Theta}_{(j)} - \mathbf{\Theta}, \mathbf{x}, \mathbf{y})
\]

s.t. \(B(\mathbf{\Theta} - \mathbf{\Phi}, \mathbf{\Theta}_{(j)} - \mathbf{\Theta}) \leq B_0\),

where \(\mathbf{\Theta}_{(j)} = \mathbf{\Theta} - \Phi_{(j)}\). Here, \(\Phi_{(j)}\) denotes the layers that have already been binarized in the previous \(j - 1\) steps and is defined as \(\Phi_{(j)} = \{\mathbf{\Theta}_{(1)}, \mathbf{\Theta}_{(2)}, \ldots, \mathbf{\Theta}_{(j-1)}\}\), where \(\mathbf{\Theta}_{(j)}^*\) denotes the optimal layer chosen at the \(j\)th step of binarization to obtain B2NN. For calculating \(\mathbf{\Theta}_{(j)}^*\), we perform
brute search over all elements of $\Theta(j)$ and choose the layer, which when binarized, maximizes the performance of the intermediate B2NN model.

The approach described above states how MixBin iteratively converts a full-precision model into a binary one. Alternatively, MixBin can also be used in a reverse order to convert a binary neural network into a B2NN. The underlying strategy is still the same, and it involves converting the layers of a binary model into full-precision, in an iterative manner.

Algorithm 1: MixBin (Shrink) Approach

Given:
- Empty set $\{\}$;
- Current layer chosen θ_j;
- Optimal layer chosen θ^*_j;
- Current objective function \mathcal{L};
- Optimal objective function \mathcal{L}^*;

Input:
- Network weight set Θ

Output:
- Binarized weight set Φ

\[
\begin{align*}
\Phi & \leftarrow \{\} \\
\text{for } j = 1 \ldots k & \text{ do} \\
\mathcal{L}^* & \leftarrow \infty \\
\text{for } \theta_j \in \Theta & \text{ do} \\
\mathcal{L} & \leftarrow \text{MixBin}(\Phi, \Theta - \theta_j, \theta_j) \\
& \text{if } \mathcal{L} < \mathcal{L}^* \text{ then} \\
& \quad \mathcal{L}^* \leftarrow \mathcal{L} \\
& \quad \theta^*_j \leftarrow \theta_j \\
& \text{end} \\
\Phi & \leftarrow \text{PUSH}(\theta^*_j) \\
\Theta & \rightarrow \text{POP}(\theta^*_j) \\
\end{align*}
\]

3.3. BinRELU activation function

The proposed BinReLU activation function is designed to enhance the stability of the full-precision as well as binary components of a B2NN in general. Mathematically, BinReLU can be stated as

\[
f(x) = \begin{cases}
-1 & \text{if } x \leq -1 \\
0 & \text{otherwise}
\end{cases}
\]

where x and $f(x)$ denote the input and output of the activation function.

Figure 2 shows the BinReLU function together with ReLU, HardTanh and Identify mappings. For full-precision networks, ReLU is considered a very effective choice of activation, however, since it eliminates the activation information below 0, it does not work well for binary networks. For BNNs, either of HardTanh or Identity functions are preferred. However, both these activations do not work well for the real-valued networks (Figure 3). Note that an identity mapping works well for BNN since for such cases, non-linearity is inherently introduced through the squashing of the activation values to -1 and 1 using $\text{Sign}(\cdot)$ as denoted in Eq. 1. BinReLU is inspired from the other activations stated here in a sense that it preserves the characteristics of ReLU for positive activations and keeps them real-valued, and also ensures that the activation information between -1 and 0 is preserved.

4. Experiments

4.1. Experimental setup

We have conducted multiple experiments to demonstrate the efficacy of the MixBin approach as well as the BinReLU activation function. We demonstrate the efficacy of MixBin on the tasks of image classification and object tracking. First, we describe the detailed setup for the presented experiments followed by results and insights for each of them.

Image classification. For image classification, we conduct experiments to compress CIFAR-ResNet20 (referred further as cResNet20), MobileNetV2 and VGG11 models...
Table 1. Demonstrating the transferability of \textit{MixBin} compressed models trained on TinyImageNet and transferred to CIFAR100 dataset. FLOPs for full precision network is 1.4×10^8.

Remaining FLOPs (%)	MixBin (Shrink)	Random	Transfer from TinyIN
50.94	68.20	63.66	67.01
37.32	68.02	66.24	67.44
20.82	66.62	63.30	66.21
14.22	65.86	63.28	65.86

Figure 4. Performance scores obtained at different compression levels for three different model and data combinations.

on CIFAR100 and as well as compress ResNet18 on TinyImageNet (TinyIM) dataset. The choice of smaller architectures like cResNet20 and MobileNetV2 help us to ensure that the architectures do not overfit on smaller and simpler CIFAR-100 dataset (still more than 10% absolute accuracy drop in performance FP32 vs binary). Further, TinyImageNet is considered to be a good proxy for ImageNet and it can be used to demonstrate that \textit{MixBin} is scalable to complex datasets. For this task, we used ResNet18 architecture. Note that we also conducted experiments with more complex and higher-resolution images, however, in the context of object tracking.

\textbf{Object tracking}. Object tracking is an interesting task to study the generalization of deep learning models, especially because the training and test set differ significantly for this task. In this paper, we consider the task of object tracking using the popular SiamFC model [3], and train and compress the tracker on GOT-10K train set. The performance of the trackers resulting from MixBin is evaluated compressed models trained on TinyImageNet and transferred to CIFAR100 dataset.

\textbf{Cross Entropy Loss was used with label smoothing of 0.01. We use step learning rate strategy to decay learning rate by 0.1 after 50% and 75% of the total epochs. For CIFAR100, models were trained for 160 epochs with RandomCrop and RandomHorizontalFlip augmentations whereas for TinyImageNet the number of epochs were reduced to 120, and RandomAffine and RandomHorizontalFlip were used as augmentations.}

\textbf{SiamFC} was trained with a batch size of 8 at an initial learning rate of 10^{-2} using SGD optimizer with momentum 0.9 and weight decay 5×10^{-4}. We use Exponential learning rate scheduler with gamma value of 0.59 and final learning rate of 10^{-5}. All experiments were trained for 50 epochs. Please refer to open-source implementation of \url{https://github.com/huanglianghua/siamfc-pytorch} for further details.

\textbf{FLOPs calculation}. We calculate floating point operations (FLOPs) based on the code publicly available at \url{https://github.com/Swall0w/torchstat/}. For the calculations, batch size of 1 is assumed. For B2NNs, total FLOPs of the network is equal to the sum of FLOPs of the full-precision layers as well as the binary counterpart. FLOPs for binary counterpart are calculated based on the convention presented in [21], i.e., to divide the full-precision FLOPs by 64.

\textbf{4.2. Choice of activation function}

We study here the effect of different activations including BinReLU on the performance of B2NNs obtained at different choices of the FLOP budget. We compare our results with ReLU, Identity and HardTanh functions since these are the popular choices for full-precision and BNN models, respectively. Figure 3 shows the performance scores for the different activation functions obtained for the classification of samples from the CIFAR100 dataset using cResNet20 model.

We observe that BinReLU outperforms the other activation functions for all the constructions of B2NN and levels performance with ReLU for the fully real-valued network. While ReLU seems to produce good results for the full-precision model, it fails
severely for almost all constructions of B2NNs. For compressed models with FLOPs reduced to around 40% of the original model, the performance of the model drops by approximately 50%. Identity mapping seems to work at very low FLOPs, but as expected the performance dips when the model moves more towards a full precision one, the reason accounting to the fact that the extent of nonlinearity gets reduced as more full-precision components are added. Further, as observed HardTanh seems to be the second most reliable choice, however, the performance obtained with this activation is significantly lower than BinReLU at all levels of compression. Clearly, BinReLU seems to be a well suited choice for building B2NNs.

4.3. MixBin: B2NN with iterative search

We experimentally study how the compressed models obtained using MixBin fair against those where the layers to binarize are chosen randomly. Further, we conduct additional experiments to provide deeper insights into MixBin. In this regard, we conduct multiple experiments and the results are stated below.

Iterative identification of target layers. First we investigate how iteratively applying MixBin leads to well compressed models. We base our comparison in terms of measuring the classification accuracy at the same level of FLOPs. Note that FLOPs reported here refer to sum of the FLOPs from the full-precision part of the network and BOPs from binary parts. We compare the results of MixBin with B2NNs constructed from random selection of binary layers, and the obtained results are presented in Figure 4.

From the Figure 4, we see that MixBin outperforms the results of random selection by large margins at most of the FLOP budgets. This backs the efficiency claim of MixBin in designing efficient B2NNs for any given choice of FLOP budgets. An interesting insight is that for the initial levels of compression, the performance of the model is quite stable with almost no significant drop in the performance of the model. For some cases we see that the performance increases slightly and then starts dipping again when the model is further compressed. The reason for initial increase can be associated with reduced overparameterization and better generalization of the resultant B2NN on the test dataset. At larger compression levels, the performance of the B2NNs starts dipping faster denoting that the representation capability of the network is relatively insufficient for the target dataset.

Invariance to the direction of MixBin construction. As described earlier, MixBin can be operated in two different modes, grow and shrink, referring to conversions from binary to full precision and full precision to binary, respectively. Figure 4 shows the results for both the modes. It is evident from the plots that MixBin is approximately invariant to the direction of B2NN construction, implying that for any given FLOP budget, approximately similar model performance can be obtained by binarizing full precision components or converting binary parts to real-valued.

Effect of random seed. The resultant models obtained from MixBin are stable with respect to the initialization seed used to train the models. We confirm this through running MixBin with three different random seeds and related results are presented in Figure 5. We observe that the performance scores for the 3 runs do not differ by significant margins at all compression levels. Further, all the 3 cases consistently outperform the model with random selection of the binary layers. These observations confirm that the compression strategy of MixBin is not sensitive to the choice of initialization.

4.4. Transferability of MixBin models

The generalizibility of the compressed models obtained from MixBin can be assessed based on the extent to which they are transferable across datasets. This implies analyzing how well a model compressed on dataset performs on another dataset. In this regard, we present results for the scenario of model transfer from TinyIN to CIFAR100 dataset and the results are reported in Table 1. From the results, we see that the performance of the transferred models is approximately similar to those obtained directly on CIFAR100 on the respective budgets. Moreover the scores of the transferred models are consistently superior over the random selection method. These results clearly demonstrate the transferability of the B2NNs obtained from MixBin.

4.5. Building light-weight budgeted object trackers

Object tracking is an application domain that benefits among the most from model compression. When deployed on low-power devices, object trackers need to be light-weight and deliver desired inference speed based on the target hardware. In this regard, we demonstrate the application of MixBin to design light-weight object trackers. We analyze the stability of the compressed variants...
of the SiamFC model at various FLOPs budgets and analyze how well it fairs against random compression.

Figure 6 shows the results for various compressed variants of SiamFC. Each data point on the plot corresponds to one or more layers of the SiamFC backbone converted from full-precision to binary. SiamFC model uses AlexNet backbone with 5 convolutional layers and different combinations are experimented where some of the layers are kept as full-precision and the rest as binary. Some example combinations are ‘FBBBB’, ‘FBBBF’ and ‘FBBBB’, among others. Note that the first layer is always retained as full-precision. From Figure 6, we see that the the compressed models obtained from MixBin in shrink mode as well as grow mode are almost always better than any other choice of compression, thereby confirming that the results of MixBin at intermediate budgets are generally close to optimal for the SiamFC object tracking problem. This clearly demonstrates that MixBin is an effective method to design compressed models in an optimized sense for tasks such as object tracking and possibly object detection, such that the performance on these tasks is maximized.

4.6. Discussion

The experimental results presented in the paper demonstrate the efficacy of MixBin. In this section, we briefly discuss some additional aspects that need to be explained for the wide acceptance of this approach. We discuss them below.

Is MixBin the optimal choice? We have demonstrated that MixBin can mix the full-precision and binary components in an optimized sense, and this is achieved through iteratively finding a locally optimal solution. However, this does not assure that the presented solution will be globally optimal. The goal of MixBin is to validate the hypothesis that full-precision and binary components can be combined in a single network. Based on these findings we are interested to build a first-principle approach based solution to this problem however, it is beyond the scope of this paper.

How is MixBin different from Mixed-precision quantization? Mixed-precision quantization facilitates converting parts of the full-precision network to lower order representations. However, most such works limit the representation to a minimum of 4-bits [25] and there is still enormous scope to reduce the representation size through combining binarized parts. We believe that partial binarization would in itself be very important independent of quantization, especially because it can be combined with quantized modules as well similar to the full-precision ones.

How will MixBin fair on ImageNet? Imagenet is a very large-scale dataset and the related experiments are computationally very demanding. Due to reason, we avoid experiments on this dataset. We believe TinyImageNet is a very good representative dataset for ImageNet, and we limit ourselves to the latter. However, it would be of interest to explore it further on ImageNet, and this is something we would be interested to pursue in future.

5. Conclusions and Future Work

In this paper, we have proposed a strategy to perform partial binarization of neural networks in a controlled sense, thereby constructing budgeted binary neural networks (B2NN). We presented MixBin, an iterative search-based strategy that constructs B2NN through optimized mixing of the binary and full-precision components. MixBin allows to explicitly choose the approximate fraction of the network to be kept as binary, thereby presenting the flexibility to adapt the inference cost to a prescribed budget. Numerical experiments conducted on various datasets and model choices support our claim that the B2NNs obtained from our MixBin strategy are significantly better than those obtained from random selection of the network layers. To perform partial binarization in an effective manner, we have also presented BinReLU, an integral component of MixBin, that can be used as an effective activation function for the full-precision as well as the binary components of any B2NN. Experimental investigations reveal that BinReLU outperforms the other activation functions in all possible scenarios of B2NN: zero-, partial- as well as full binarization.

Limitations and future work. The presented MixBin strategy is the first step towards mixing full-precision and binary layers together in an effective manner, and it performs significantly better than the random choice. However, we believe that this is still not the optimal solution, and a more principled strategy can be developed with further research on this aspect.

References

[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Conference on Neural Information Processing Systems (NeurIPS), 2014.
[2] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Aciq: Analytical clipping for integer quantization of neural networks. ArXiv, abs/1810.05723, 2018.
[3] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. Fully-convolutional siamese networks for object tracking. In European Conference on Computer Vision Workshops (ECCVW), 2016.
[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks with weights and activations constrained to +1 or -1. arXiv: Learning, 2016.
[5] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1. arXiv: Learning, 2016.
[6] Xin Dong, Shangyu Chen, and Simo Jialin Pan. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Conference on Neural Information Processing Systems (NeurIPS), 2017.
[7] Jonathan Frankele and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv: Learning, 2019.
[8] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A survey of quantization methods for efficient neural network inference. ArXiv, abs/2103.13630, 2022.
[9] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
[10] Yihui He, X. Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. *IEEE International Conference on Computer Vision (ICCV)*, pages 1398–1406, 2017. 3

[11] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. *ArXiv*, abs/1503.02531, 2015. 1, 3

[12] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. *ArXiv*, abs/1704.04861, 2016. 3

[13] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and 1mb model size. *ArXiv*, abs/1602.07360, 2016. 3

[14] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper. *ArXiv*, abs/1806.08384, 2018. 3

[15] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network pruning based on connection sensitivity. *ArXiv*, abs/1810.02340, 2019. 3

[16] C. Lemaire, A. Achkar, and P. Jodoin. Structured pruning of neural networks with budget-aware regularization. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9108–9116, 2019. 3

[17] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets. *ArXiv*, abs/1608.07810, 2017. 3

[18] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. *ArXiv*, abs/1711.11294, 2017. 1, 3

[19] Chunlei Liu, Peng Chen, Bohan Zhuang, Chunhua Shen, Baochang Zhang, and Wenrui Ding. Sa-bnn: State-aware binary neural network. In *AAAI Conference on Artificial Intelligence*, 2021. 3

[20] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In *International Conference on Computer Vision (ICCV)*, 2017. 1, 3

[21] Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Binarizing deep network towards real-network performance. *International Journal of Computer Vision*, 128(1):202–219, 2020. 1, 2, 3, 6

[22] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise binary neural network with generalized activation functions. *ArXiv*, abs/2003.03488, 2020. 3

[23] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. *IEEE International Conference on Computer Vision (ICCV)*, pages 5068–5076, 2017. 3

[24] Brais Martínez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural networks with real-to-binary convolutions. *ArXiv*, abs/2003.11535, 2020. 1

[25] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming oscillations in quantization-aware training, 2022. 8

[26] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search via parameter sharing. In *International Conference on Machine Learning (ICML)*, 2018. 3

[27] Ameya Prabhu, Vishal Batchu, Rohit Gajawada, Sri Aurobindo Manugala, and Anoop Namboodiri. Hybrid binary networks: Optimizing for accuracy, efficiency and memory. In *IEEE Winter Conference on Applications of Computer Vision (WACV)*, pages 821–829, 2018. 3

[28] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and backward information retention for accurate binary neural networks. *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2247–2256, 2020. 2, 3

[29] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In *European Conference on Computer Vision (ECCV)*, 2016. 1, 3, 4

[30] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. *CoRR*, abs/1412.6550, 2015. 3

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision*, 115(3):211–252, 2015. 1

[32] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile. *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2815–2823, 2019. 3

[33] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. *ArXiv*, abs/1910.10699, 2020. 3

[34] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak Gupta. Chipnet: Budget-aware pruning with heaviside continuous approximations. In *International Conference on Learning Representations (ICLR)*, 2021. 3

[35] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Özlem Aslan, Shengjie Wang, Abdel rahman Mohamed, Matthai Philipose, Matthew Richardson, and Rich Caruana. Do deep convolutional nets really need to be deep and convolutional? *arXiv: Machine Learning*, 2017. 3

[36] Xiandong Zhao, Ying Wang, Xuyi Cai, Chuanming Liu, and Lei Zhang. Linear symmetric quantization of neural networks. In *International Conference on Computer Vision (ICCV)*, 2017. 3

[37] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. *ArXiv*, abs/1611.01578, 2017. 3