A 68\,\mu\text{W} 31\,\text{kS/s} Fully-Capacitive Noise-Shaping SAR ADC with 102 dB SNDR

Lieuve B. Leene† *, Shiva Letchumanan‡ *, Timothy G. Constandinou† *
*Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK
‡Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, UK
Email: {l.leene, t.constandinou}@imperial.ac.uk

Abstract— This paper presents a 17 bit analogue-to-digital converter that incorporates mismatch and quantisation noise-shaping techniques into an energy-saving 10 bit successive approximation quantiser to increase the dynamic range by another 42 dB. We propose a novel fully-capacitive topology which allows for high-speed asynchronous conversion together with a background calibration scheme to reduce the oversampling requirement by 10\times compared to prior-art. A 0.18\,\mu\text{m} CMOS technology is used to demonstrate preliminary simulation results together with analytic measures that optimise parameter and topology selection. The proposed system is able to achieve a FoM of 183 dB for a maximum signal bandwidth of 15.6\,kHz while dissipating 68\,\mu\text{W} from a 1.8\,V supply. A peak SNDR of 102 dB is demonstrated for this rate with a 0.201 mm2 area requirement.

I. INTRODUCTION

Analogue-to-digital converter (ADC) efficiency remains to be the highlight for many current developments in both industry and academia. It used to be the case that oversampling converters ($\Delta\Sigma$ ADCs) and successive-approximation register converters (SAR ADCs) found separate application domains where this factor peaks. State-of-the-art ADCs however have mixed these two digitisation techniques to improve performance beyond a 170\,dB Schreier Figure-of-Merit (FoM$\Delta\Sigma$) [1]–[5]. This trend is in-part driven by the growing bio-metric and bio-medical electronics market that necessitates low-power high dynamic-range signal acquisition as many phenomena of interest exhibit signal dynamics with several orders of magnitude in variation. For example a peripheral neuro-modulation device with digitally assisted artifact rejection [6] requires over >100\,dB of dynamic range to detect micro-volt level sensory neuron activity in the presence of large mili-volt level interference from stimulation or motor-unit activity which is the application of interest that motivated this work.

The emerging ADC topologies for bio-sensors use multi-stage noise shaping or pipe-lined operation where multiple quantisers are integrated together and the quantisation error of the first quantiser is either resolved by another quantiser after amplification or may be used directly with an alternate feedback mechanism to similarly resolve additional bits. The noise-shaping SAR (NS-SAR) [2], [7] however adopts a different approach by sampling and converting the input multiple times while simultaneously employing multiple feedback mechanisms that up-modulate any conversion errors out of the signal bandwidth. In this way the signal can be resolved with much finer precision once the output is decimated and the out-of-band frequency components are filtered out.

Here we present a novel fully-capacitive NS-SAR topology using active higher-order noise shaping that achieves state-of-the-art efficiency for high resolution signal acquisition. The proposed configuration is shown in Fig. 1. This figure summarises which signals are processed by each block in a closed-loop fashion to resolve the sampled analogue input signal V_{IN}. The main data-conversion mechanism is based on the conventional SAR controller that uses the comparator decisions K to successively set the MSB and LSB bits [8]. However to augment this operation two separate noise-shaping mechanisms are added; one for quantisation noise, $H(z^{-1})$, and another for mismatch noise by means of data-weighted averaging (DWA) together with mismatch-error shaping techniques (MES).

The NS-SAR approach is advantageous because the first several bits can be resolved rapidly using SAR and the remaining bits are resolved using $\Delta\Sigma$ modulation over several samples with reduced oversampling-ratio (OSR) to yield a significant overall improvement in conversion efficiency. Reusing the sampling mechanism of the SAR allows the quantisation residue left on V_{DAC} to be directly integrated by the loop filter $H(z^{-1})$ that off-sets future conversions and shapes the
quantisation noise as $1/(1+\alpha H(z^{-1}))$. The main drawback here in comparison to high-resolution $\Delta\Sigma$ modulators is that, while the conversion is faster, the mismatch in the high-resolution DAC must be carefully mitigated. This is where the DWA [9] and MES [10] are introduced to eliminate mismatch errors. DWA manipulates the selection of elements used within the MSB capacitive DAC such that the capacitor mismatch is not only decorrelated from the input but is also shaped with a $(1-z^{-1})$ characteristic. The MES module in the LSB section directly off-sets the sampled input using past conversion results to realise a FIR feedback structure such as $(1-z^{-1})$ or $(1-2z^{-1}+z^{-2})$ high-pass characteristics to minimise signal-band noise components.

The rest of this paper is organised as follows; Sec. II will relate the main design parameters to conversion precision in relation to primary noise sources. Once these are established the circuit implementation is presented in Sec. III together with simulation results in Sec. IV and Sec. VI will then conclude this work.

II. NS-SAR Design

Comparing with other data-converters, the NS-SAR topology is quite complex with a large number of design parameters that need to be optimised for efficient operation. Below, several of these parameters are discussed in relation to the ADC precision explaining the proposed configuration. Following the single-ended configuration shown in Fig. 1, we will estimate the expected sampling noise power (SNP), quantisation noise power (QNP), and mismatch noise power (MNP) for the signal bandwidth of $fs/(2 OSR)$ where fs is the sampling speed. This formulation is purposely presented in brief since it based on established theory from [11] but it does well to illustrate several trade-off considerations quantitatively when configuring this topology for a particular precision requirement.

$$SNP \approx \frac{kT}{C_T} \cdot \frac{2.4}{OSR}$$ (1)

The expression in Eq. 1 should be a familiar representation for evaluating the input-referred sampling noise associated with a switched-capacitor integrator. In particular, this corresponds to the input being sampled with a total capacitive value of C_T using kT as the Boltzman temperature factor. The second term simply arises from averaging the input over OSR cycles together with a correction factor of 2.4 due to the integrator topology in $H(z^{-1})$ [12].

Fig. 2 shows the estimated resolution for several capacitor values assuming we use an input sinusoid with maximum signal power (SP) given a 1.8 V ADC reference voltage as V_{DD}. Inevitably, achieving high resolution implies a large sampling capacitance or a large oversampling ratio. Typically the former is preferred because increasing the capacitive load also decreases the mismatch power from the capacitive DACs.

$$QNP \approx \left(\frac{V_{DD}^2}{2\pi} \cdot 3^{-2\tau_T} + \frac{V_{DD}^2}{2\piN} \right) \cdot \frac{\pi^{2M}}{12(1+2M)OSR^{1+2M}}$$ (2)

$$MNP \approx \left(\frac{\pi^2 \cdot 2^{-2D}}{3 \cdot 2^K \cdot OSR^3} + \frac{\pi^{2E} \cdot 2^{-2K}}{(1+2E)OSR^{1+2E}} \right) \cdot \frac{\sigma^2 \cdot V_{DD}^2}{3}$$ (3)

The MNP is evaluated in Eq. 3 with respect to the MES noise shaping order E, the number of bits D used to calibrate each capacitor in the MSB DAC in an idealised way. K represents the MSB DAC resolution as N, the loop filter order as M, and the number of time constants we allow the capacitive DAC to settle as τ in order to estimate QNP. This construction shows that settling and quantisation errors are shaped by the loop filter reducing the noise power by the term outside the brackets. Both in Fig. 3 and in the formulation we observe a strong dependency with regard to M as long as we provide sufficient settling time during SAR conversion. This result suggests that the noise-shaping feedback must avoid driving the capacitive DAC with active amplifiers during successive-approximation to avoid slowing down the conversion speed or equivalently increasing the power requirement of each amplifier. We can also confirm here that the order of the loop filter does not need to be very high if the QNP needs to match the SNP.

The expression in Eq. 2 parametrises the overall SAR resolution as N, the loop filter order as M, and the number of time constants we allow the capacitive DAC to settle as τ in order to estimate QNP. This construction shows that settling and quantisation errors are shaped by the loop filter reducing the noise power by the term outside the brackets. Both in Fig. 3 and in the formulation we observe a strong dependency with regard to M as long as we provide sufficient settling time during SAR conversion. This result suggests that the noise-shaping feedback must avoid driving the capacitive DAC with active amplifiers during successive-approximation to avoid slowing down the conversion speed or equivalently increasing the power requirement of each amplifier. We can also confirm here that the order of the loop filter does not need to be very high if the QNP needs to match the SNP.

Fig. 2. ADC precision as a function of oversampling ratio with respect to SNP while varying sampling capacitance C_T. The above trends are used to optimise the FOMs in a similar fashion to [3] by correlating hardware requirements with power and accuracy estimators for several configurations. Given an initial 18 bit target precision, we propose the following configuration: $C_T=50pF$, $M=2$, $\tau=5$, $K=5$, $D=4$, $E=2$ with the OSR set to 16 to ease the decimation effort.
the MES code on DAC_{L1/L2}. A_{2/3} are simultaneously integrating quantisation errors and sampling the result \(V_{X2/X3}\) with respect to \(V_{DAC}\) on \(C_5\) and \(C_7\).

SAR V_{DAC} then converges to virtual ground by switching the input to DAC_{M/L1/L2} while quantisation errors from prior conversions are removed by grounding the bottom plate of \(C_{6/7}\). This also disconnects \(A_{1/2/3}\) from \(V_{DAC}\).

QNF Finally DAC_{M/L1/L2} is held and the resulting quantisation residue left on \(V_{DAC}\) is amplified by \(A_1\) on \(V_{X1}\). \(C_{2/4}\) samples the voltages \(V_{X1/X2}\) which are used to integrate during the following SMP phase.

This configuration scales well for varying loop filter structures as 80% of the power is dissipated by \(A_1\) and the total sampling noise is dominated by \(C_T\). The comparator uses a conventional strong-arm topology that is carefully designed to minimise offset since this offset will be at the output of \(A_1\) after amplification which can diminish the output swing. Conversely the noise and distortion characteristics of the analogue filtering chain is proportionally reduced when the signal is fed back onto the capacitor array during sampling as the attenuation ratio \(C_{6/7}/C_T\) inverts the amplification ratio with good matching.

The MSB DAC calibration mechanism is uses a digital shuffling technique to identify mismatch by switching out different sets of capacitors that will only incur voltage fluctuation on \(V_{DAC}\) in the presence of mismatch [15]. These errors are then amplified by \(A_1\) after the SAR & QNF process and digitally tunes each MSB capacitor using a capacitive sub-DAC. The sign of each shuffling result is accumulated to digitally tune each MSB capacitor using a capacitive sub-DAC. The SWA randomises the capacitor selection mechanism during shuffling.

IV. Simulation Results

The proposed NS-SAR has been designed and validated using a commercially available 180nm TSMC technology.
TABLE I
PERFORMANCE SUMMARY AND COMPARISON WITH STATE OF THE ART

Spec.	This Work	[16]	[15]	[4]	[5]	[3]	[7]	[2]
Year	2018	2018	2018	2018	2018	2017	2016	2012
Tech. [nm]	180	180	180	28	40	180	55	65
Supply [V]	1.8	1.8	1.85	1.1	1.2	2.5/1.1	1.2	1.2
Power [W]	68u	7.93µ	12.9m	4.2m	140µ	5.16µ	15.7µ	806µ
Topology	NS-SAR	∆Σ-SAR	SAR	CT-∆Σ	∆Σ-SAR	∆Σ-SAR	NS-SAR	NS-SAR
DAC Res. [b]	10	9	20	4	7	8	12	8
NS-Order	2†	1	0	2†	3	2	1†	1†
OSR	16	256	1	16	12	24	256	4
BW [Hz]	15.6k	1k	500k	10M	40k	100k	4k	11M
SNDR [dB]	102	85	102	94	84	67	96.1	62
Area [mm²]	0.201	0.68	4	0.1	0.07	0.02	0.07	0.03
FoM S [dB]	183*	166	176	168	169	170	180	164

* Estimated based on post-layout simulation results where FoM_S = SNDR + 10log_{10}(BW/P).
† FIR & digital noise-coupling poles excluded.

Fig. 6. Post-layout simulation result showing the noise-shaped output spectrum from a -3 dBFS input sinusoid at 6.5 kHz. (1P6M HV BCD GEN II). All sub-circuits have been integrated with reconfigurable ∆Σ, DWA, MES, and calibration modes to fully characterise post-silicon performance that will confirm the evaluation in Sec. II. This circuit uses an analogue and digital supply at 1.8 V, a 1 µA current reference to bias A_{1-3}, and a 0.9 V common-mode reference for V_CM-based capacitor switching. Preliminary post-layout simulation results are shown in Fig. 6. This demonstrates the ADC can resolve 17 bits of precision without distortion while using an external clock of 1 MHz where one cycle is used to sample the input and one cycle is used for conversion plus quantisation noise shaping and another cycle is optionally used for background calibration. The last phase can be skipped if the MSB capacitors are already tuned to speed-up signal conversion to 31.25 kS/s since temperature and voltage variations over time during normal operation will typically not corrupt the calibrated capacitor characteristics.

The layout for this ADC is shown in Fig. 7. A large majority of silicon area is dedicated towards the MSB capacitive array as the sampling noise must be suppressed. The switched capacitor integrator can be relatively small because the internal loop-filter gain reduces its sampling noise. The digital core takes up a considerable amount of area and power budget primarily as a result of using a 180 nm CMOS technology where more advanced technologies may lead to further improvements if the 1.8 V rating can be maintained. Each MSB capacitor is trimmed using a 8 bit sub-DAC that tunes about 5% of the 1.7 pF unit capacitance which accommodates well over 3σ of the expected capacitor mismatch as well as wafer level variations that may not be captured by the typical mismatch model. The performance measures for the proposed ADC are shown in Table I. Again we highlight the fact that while all these works have highly optimised power budgets, this topology is able to achieve over 100 dB SNDR with a 10× lower oversampling ratio than prior art for this level precision. While this does imply a marginally increased area requirement, the peak efficiency can be achieved over a greater span of sampling frequencies. Note that this particular TSMC process kit does not allow post-layout Monte-Carlo so the calibration will be validated using post-silicon results.

V. ACKNOWLEDGEMENT
This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grants EP/M020975/1 & EP/R024642/1.

VI. CONCLUSION
This work presents a 17 bit Noise Shaping SAR ADC with reduced oversampling ratio and a purely capacitive implementation which enables in state-of-the-art conversion efficiency over a large range of sampling frequencies. In comparison with conventional over-sampling ADCs simulation results suggest this NS-SAR is able to achieve 102 dB SNDR...
with substantially lower noise-shaping requirements with comparable or reduced circuit complexity while achieving better power efficiency. We also demonstrated a high-level parameter selection methodology that is used to optimise the FoMs and identify the factors limiting ADC precision.

REFERENCES

[1] Y. Chae, K. Souri, and K. A. A. Makinwa, “A 6.3µW 20bit incremental zoom-ADC with 6ppm INL and 1µV offset,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3019–3027, Dec 2013. [Online]: http://dx.doi.org/10.1109/JSSC.2013.2278737

[2] Y. Shu, L. Kuo, and T. Lo, “An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1kHz BW in 55 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2928–2940, Dec 2016. [Online]: http://dx.doi.org/10.1109/JSSC.2016.2592623

[3] L. B. Leene and T. G. Constandinou, “A 0.016 mm²12 b ∆Σ SAR with 14 fJ/conv. for ultra low power biosensor arrays,” IEEE Trans. Circuits Syst. I, vol. 64, no. 10, pp. 2655–2665, Oct 2017. [Online]: http://dx.doi.org/10.1109/TCSI.2017.2703580

[4] I. Jang et al., “A 4.2mW 10MHz BW 74.4b SNDR continuous-time delta-sigma modulator with SAR-assisted digital-domain noise coupling,” IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 1139–1148, April 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2778284

[5] A. Moradi, J. Anders, J. Becker, and M. Ortmanns, “A nyquist rate SAR ADC employing incremental sigma delta DAC achieving peak SFDR=107 dB at 80kS/s,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1493–1507, May 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2776299

[6] A. E. Mendrela et al., “A bidirectional neural interface circuit with active stimulation artifact cancellation and cross-channel common-mode noise suppression,” IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 955–965, April 2016. [Online]: http://dx.doi.org/10.1109/JSSC.2015.2506651

[7] J. A. Fredenburg and M. P. Flynn, “A 90MS/s 11MHz bandwidth 62b SNDR noise-shaping SAR ADC,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2898–2904, Dec 2012. [Online]: http://dx.doi.org/10.1109/JSSC.2012.2217874

[8] B. P. Ginsburg and A. P. Chandrakasan, “500MS/s 5bit ADC in 65nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739–747, April 2007. [Online]: http://dx.doi.org/10.1109/JSSC.2007.892169

[9] B. H. Leung and S. Sutarja, “Multibit sigma - delta A/D converter incorporating a novel class of dynamic element matching techniques,” IEEE Trans. Circuits Syst. II, vol. 39, no. 1, pp. 35–51, Jan 1992. [Online]: http://dx.doi.org/10.1109/82.204108

[10] M. Aboudina and B. Razavi, “A new DAC mismatch shaping technique for sigmadelta modulators,” IEEE Trans. Circuits Syst. II, vol. 57, no. 12, pp. 966–970, Dec 2010. [Online]: http://dx.doi.org/10.1109/TCSII.2010.2083172

[11] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters. IEEE, 2017. [Online]: http://dx.doi.org/10.1002/9781119258308

[12] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11, pp. 2358–2368, Nov 2005. [Online]: http://dx.doi.org/10.1109/TCSI.2005.853909

[13] J. Liu, G. Wen, and N. Sun, “Second-order DAC MES for SAR ADCs,” IET Elec. Letters, vol. 53, no. 24, pp. 1570–1572, 2017. [Online]: http://dx.doi.org/10.1049/el.2017.3138

[14] R. Sekimoto et al., “A 0.5 V 5.2 fJ/conversion-step full asynchronous SAR ADC with leakage power reduction down to 650pW by boosted self-power gating in 40nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2628–2636, Nov 2013. [Online]: http://dx.doi.org/10.1109/JSSC.2013.2274851

[15] H. Li et al., “A signal-independent background-calibrating 20 b 1MS/S SAR ADC with 0.3ppm INL,” in IEEE Proc. ISSCC, Feb 2018, pp. 242–244. [Online]: http://dx.doi.org/10.1109/ISSCC.2018.8310274

[16] S. Choi et al., “An 84.6 dB-SNDR and 98.2 dB-SFDR residue-integrated SAR ADC for low-power sensor applications,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 404–417, Feb 2018. [Online]: http://dx.doi.org/10.1109/JSSC.2017.2774287