STRATEGIC MAPS AS A FORM OF FUNCTIONAL STRATEGIES OF MOTOR TRANSPORT ENTERPRISES IN UKRAINE IMPLEMENTATION

ABSTRACT

The article is devoted to the current issues on improving the strategic management of motor transport enterprises in Ukraine that provide cargo transportation service. Its main objective is to form and implement a strategy for developing motor transport enterprises on the basis of a strategic map as a form of functional strategies implementation.

In the course of the research the authors used such methods as: system and comparative analysis, abstract-logical and tabular-graphic methods, method of expert evaluations.

It has been determined that the practice of strategic management requires the use of various tools in the process of strategy development, and a special place among them belongs to strategic maps. A strategic map of the sphere of cargo transportation by road has been developed. The map consists of nine stages, five of which include level 1 - a strategic map of the sphere of activity (field) and 4 stages - level 2 - map developing for an individual enterprise. The dynamics and structure of the volume of transported goods and cargo turnover by types of transport in Ukraine have been analyzed. Currently, the analysis of the market of cargo transportation by road is the first stage of the process of developing a strategic map. The mission and key strategic goals of cargo transportation by road have been formulated; the factors of development and technological trends that affect the sphere of cargo transportation by road now, in the near future and in the coming years have been identified. Indicators (key figures) for each business projection have been defined: finances; market (market position, customer relations, marketing); management (internal business processes); personnel; the carrier’s safety and business reputation. A strategic map for the field of cargo transportation by road has been formed. Strategic maps are based on a balanced scorecard and are a tool for achieving optimal balance of a number of economic factors, and achieving such balance is a strategic goal of the company.

Keywords: strategic management, development strategy, strategic maps, motor transport enterprises, sphere of cargo transportation by motor transport

JEL Classification: L91, M11

INTRODUCTION

In the conditions of turbulence of the external environment the efficiency of the business entity is determined, first of all, by the ability to recognize threats in time, to adapt to market conditions and to resist the instability of the external environment. Thus, strategic management is a condition for the successful operation of a motor transport enterprise which is a cargo carrier.

The development of a strategy is necessary for the development and adoption of scientifically sound, long-term, fundamentally important management decisions, which the company should be guided in its production, sales, financial, investment and other activities in order to obtain sustainable and dominant competitive advantages in the target market.
ANALYSIS OF RESEARCH AND PROBLEM STATEMENT

Issues on strategic management of motor transport enterprises are the field of scientific interests of many domestic scientists. Formation of the strategic management system of motor transport enterprises, analysis of the factors influencing it, developing mechanism of formation of advancement of transport services strategy, stimulation of demand and offer for these services are presented in the most detailed way in researches by N. Popova, V. Shynkarenko [1], K. Zheleznyak [2], Yu. Mazur [3] and others. A. Bratus, L. Karbovska, O. Lozhachevska, T. Navrotska [4] study the current state and trends in the development of cargo transportation by road in the EU and Ukraine and develop transport infrastructure in Ukraine.

The objective of the research is the further development of scientific and methodological provisions and making practical recommendations for formation and implementation of strategies for the development of motor transport enterprises on the basis of a strategic map as a form of functional strategies implementation.

RESEARCH RESULTS

Current practice of strategic management of socio-economic systems of different levels requires the development of various tools. Strategic maps, which are a form of functional strategies implementation, occupy a special place in the system of strategic plans. The concept of strategic maps was introduced by R. Kaplan and D. Norton in 1992. Under strategic maps they understand the presentation of strategy and strategic goals at each level of company management, used to implement and control the strategy, adjusting strategic goals [5]. They give an idea of the main aspects of enterprise development. Strategic maps are designed to align the company’s short-term goals with its mission and long-term strategic goals. Strategic maps show three points in time: yesterday, today and tomorrow. After all, the efforts of the company’s managers, which they make now to improve the financial situation tomorrow, can yield results only the day after tomorrow.

Strategic maps are based on a balanced scorecard and are a tool for achieving optimal balance of a number of economic factors, and achieving such balance is a strategic goal of the company. Thus, strategic maps are a way of coordinating the goals of activities and monitoring their achievement using both financial and non-financial indicators, which is completely new for describing the company’s activities. They contain a system of carefully selected indicators (few but sufficient to perform control functions), which are used to implement and promote a coherent concept of the company’s strategic development.

It is expedient to develop strategic maps in a cascade: level 1 is a strategic map of the sphere of activity (field); level 2 is a map of the enterprise as a whole; level 3 are maps of structural units of the enterprise. Cascading leads to an improvement in the quality of strategic management at all organizational levels, as strategic goals and directions and measures for the implementation of higher levels and units can be consistently redirected to BSC of lower levels, that ultimately constitutes vertical integration of goals. At present, it is increasingly likely that the strategic goals of the entire enterprise or large units will be achieved. Also, the problems of each of the cargo carrier are related to the problems of cargo transportation sphere.

The process of developing a strategic map for the field of cargo transportation by road includes the following stages (Figure 1).
Stage 1. Analysis of the market of cargo transportation by road

Stage 2. Formulating mission and key strategic goals in the sphere of cargo transportation by road

Stage 3. Defining factors of development and technological trends, which affect the sphere of cargo transportation now, in near future and in coming years

Stage 4. Defining indicators (key figures) for each business projection: finance; market; management; personnel; the carrier's safety and business reputation

Stage 5. Creating a strategic map for the field of cargo transportation by road

Stage 6. Analysis of the factors of the internal and external environment of the studied enterprises

Stage 7. Carrying out rating estimation of efficiency of cargo carriers' by motor transport activity on the basis of system of the balanced indicators

Stage 8. Developing a strategic map for the studied enterprises which are cargo carriers by motor transport

Stage 9. Monitoring the strategy implementation, its adjusting

Figure 1. Stages of developing a strategic map for companies those provide cargo transportation services by road

Stage 1. Analysis of the market of cargo transportation by road. Dynamics and structure of the volume of transported goods and cargo turnover by kinds of transport in Ukraine in 2016-2020 are presented in Table 1.

Table 1. Dynamics and structure of the volume of transported goods and cargo turnover by kinds of transport in Ukraine in 2016–2020

Kinds of transport	2016	2017	2018	2019	2020	Rate of change 2020 to 2016 %
Transport, total	1543	1582	1643	1579	1641	106.4
Railway	343	339	322	313	306	89.2
Structure, % overall volume	22.2	21.4	19.6	19.8	18.6	-3.6 p.p.
Road (motor)	1086	1122	1206	1147	1232	113.4
Structure, % overall volume	70.4	70.9	73.4	72.6	75.1	4.7 p.p.
Other	114.1	121.1	115.1	119.1	103.1	90.4
Structure, % overall volume	7.4	7.7	7.0	7.5	6.3	-1.1 p.p.

Cargo turnover by kinds of transport (mln t)
Transport
Railway
Structure, % overall volume
Road (motor)
Structure, % overall volume
Other
Structure, % overall volume

Source: compiled and calculated according to statistical reporting [6; 7]

In terms of volume and share of transported goods, the largest share is occupied by road (motor) transport - 70.4-75.1%, railway transport and - 18.6-22.2%, the share of other kinds of transport (water, air and pipeline) is 6.3-7.7%. During 2016–2020 the share of road transport increased by 4.7 p.p. (percentage points), railway transport decreased by 3.6 p.p., and other kinds of transport by 1.1 p.p. [6; 7].
Regarding cargo turnover, the largest share is occupied by railway transport - 51.2-56.4%, the share of other kinds of transport - 23.1–30.5%, among which pipeline transport amounted to - 22.1-29.4%, the share of road transport - 16.9-20.8%. Based on the analysis of indicators (see Table 1) it is established that in 2020, compared to 2016, the cargo turnover of road transport increased by 12.2%, railway transport decreased by 6.4%, and other kinds of transport by 26.5% [6; 7].

Stage 2. Formulating mission and key strategic goals in the sphere of cargo transportation by road. The mission is to meet the needs of the economy and society in competitive, high quality and safe transport services.

The main strategic goal (mission) is detailed in such key strategic goals as: meeting the needs of consumers in transport services; formation of their loyalty; ensuring transparency in the management of the transport sector, reducing corruption; balancing supply and demand for services of cargo transportation by road; ensuring the requirements of carriers’ good reputation and professional competence; reduction of harmful impact of vehicles on the environment; application of innovative technologies and processes aimed at improving efficiency; ensuring energy efficiency of transport processes and rational use of resources; development of transport infrastructure and road safety [3].

Stage 3. Defining factors of development and technological trends, which affect the sphere of cargo transportation now, in near future and in coming years.

These are such as: digitalization of trucks; introduction of new software; changing the dynamics and structure of domestic and international markets; changes in processes due to the introduction of new equipment [8; 9].

1). Digital technologies allow creating added value by changing business processes and models. Technological trends that determine the digitalization of cargo transport are: the functioning of online services and electronic exchanges, transport safety systems (ADAS, ITS, V2C / V2X); information exchange systems (V2V, V2I and V2V).

Digital services help automate a number of processes and make it easier for carriers to solve everyday tasks. One example is mobile applications for ordering a car for cargo transportation. Electronic services are not just convenient, they also provide a real opportunity to save. For example, the functions of dispatchers are taken over by databases and algorithms. One of the advantages of such services is the ability to track the movement of the carrier, resulting in accurately predicted time of arrival, reduced downtime in the queues for loading / unloading. Instead of daily expectations, trucks make additional flights, i.e. the efficiency of transport on some individual applications can increase by a huge ratio. That is why services and companies engaged in transportation increasingly face the task of full digitalization.

The role of intermediary is performed by electronic exchanges and online transportation services. Currently in Ukraine there are about 20 electronic road transport exchanges. Among them, the most famous are such as:

Trans.eu (Area) is one of the most popular European transport platforms, it is used in the daily work of more than 36,200 companies, more than 650,000 offers of free cargos and vehicles are placed every day, real estimates and feedback of companies are displayed.

Della.ua is a resource present in all CIS countries. Interesting is the service function-tracking price proposals for cargo transportation within each country, as well as on popular international routes.

Degruz.com is a Ukrainian stock exchange founded in 2006. Today it has more than 90,000 registered companies and private entrepreneurs. The exchange works mainly with direct owners of cargo, the number of applications is from 7,000 per day depending on the season.

Lardi-trans.com. is a Ukrainian stock exchange, which has been operating since 1999 and is popular with carriers and shippers of Belarus, Russia, the Republic of Moldova, Kazakhstan and the Baltic States (Lithuania, Latvia, Estonia). Every day more than 50,000 applications for cargo transportation and free transport offers are posted on the site.

The Uber Freight service acts as an intermediary in the market of cargo transportation, uniting the owners of transport and cargo. The Uber Freight platform launched in May 2017 in the United States and is now available in 48 states; in 2018 the service began to be used by carriers from the Netherlands, Germany, Canada and Poland. In March of the same year Uber Freight tested the first unmanned truck on the US route. In Sweden the delivery of goods by unmanned electric trucks (Einride), which move on public roads, has been launched. This will save on transportation costs by 60%, compared to trucks with diesel engines.

Transport safety systems (ADAS, ITS, V2C / V2X, etc.) are used to reduce freight accidents, save cargo, reduce environmental impact, so there is a gradual automation of vehicles, from existing driver assistance systems (ADAS) to a fully autonomous vehicle that does not require any action of the human driver. At the same time, «smart» road infrastructure
- intelligent transport systems (ITS) - is being developed, systems of the car communication with other cars, infrastructure, pedestrians and other road users (V2X), without which the unmanned vehicle implementation becomes impossible [6].

Automation of cargo transportation should be considered in a broader aspect means that not only to increase safety (reduce the number of road accident victims, increase the safety of cargo), but also to: save fuel and reduce harmful emissions; simplification of the process of driving a car; increase operational efficiency (real-time planning, reduction of truck downtime); reduction of labor costs (automation of transport gradually reduces the need for drivers).

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) information exchange systems. Vehicle-to-Vehicle (V2V) is a wireless communication system that allows two cars to exchange information about the state of the road without human intervention. Thus, Connected Car will be able to receive information about the speed, location of the car in Online mode. Vehicle-to-infrastructure (V2I) is a wireless communication system that allows cars to exchange information with infrastructure objects, such as traffic lights, road signs, etc. and, conversely, to receive information from them [6].

Impact on business. Digital solutions have already gone beyond just information and communication technologies (ICTs) means that they help to create new business models, types of operations, marketplaces and services that can become new sources of income [8].

Impact on consumers is improving the quality of customer service and corporate customers, expanding opportunities for personalization of online ordering systems, order tracking, payment for services.

2). The introduction of new software includes the following technological trends: intelligent transport systems; business process robotics (RPA); blockchain solution (DLT - distributed registry technology); solutions based on artificial intelligence; preventive maintenance, surveillance and control by drones.

Intelligent transport systems (ITS) are systems that integrate modern control technologies with telematics, designed to automatically search and adopt the most effective scenarios for managing technical means and its elements in order to ensure mobility at the established level of technical user service (TS). A distinctive feature of intelligent transport systems is the automatic (or with minimal involvement of the operator) formation of real-time control effects on objects. To do this, the system must have feedback, which provides automatic transmission of operational data on the operation of technical facilities to the control unit. Based on them, predictive management decisions are developed with the help of mathematical models [6].

Robotic Process Automation (RPA) is the automation of repetitive business processes based on the installation of software that uses user interfaces to work with applications and components «on top» of the underlying IT architecture, repeating actions that usually carried out by a person.

The advantages of robotic systems (RPA) are: increasing the efficiency of business processes; reduction of labor costs to solve current problems; minimizing the risk of errors and the impact of the human factor; reduction of costs for the implementation of some operations.

Blockchain is a multifunctional and multilevel information technology designed for reliable accounting of various assets. This technology covers all areas of economic activity and has many areas of application. The main areas of application of the blockchain in the transport and logistics sector are: automation of warehousing processes; digitization and automation of document flow; payment automation; tracking; identification of product authenticity, etc. [6].

Advantages of the blockchain are: security means end-to-end identification of product authenticity, transparency of operations, efficiency means automation of document processing; transparency means a simpler and more reliable mechanism for tracking and verifying sources; reliability means that the information added to the network is extremely difficult to change.

Solutions based on artificial intelligence are computer systems that are able to perceive the external environment, learn and act on the basis of data obtained from it, as well as in accordance with the tasks assigned to them. Artificial intelligence is the scientific knowledge and technology of creating intelligent machines, programs, services, applications that enable technology to perform those functions that have always been the prerogative of a person.

Precautionary maintenance, surveillance and control by drones are: intelligent technologies consisting of software, data analysis and monitoring tools (as well as drones and sensors) to prevent failure or downtime of equipment or facilities and to ensure maximum efficiency in the use of assets. Assignment of preventive maintenance means forecasting future events, cost savings and ensuring effective response to emerging needs; observation of infrastructure and park with the help of drones, etc. Drones are becoming an increasingly popular tool for preventive maintenance in various fields due to the fact that they provide high cost and time savings, as well as measurement accuracy.
3). Technological trends of the factor of change of dynamics and structure of domestic and international markets are such as: entering the e-commerce market of big business; investments of companies engaged in online commerce in logistics; CEP solutions for e-commerce; decisions based on the principles of the economy of shared consumption; consolidation of logistics.

Changes in the structure of the online commerce market have been caused by the fact that online sales channels have attracted the interest of large companies and brand owners, as the availability of an online store is gradually becoming the industry standard for traditional stores; access to qualified personnel helps to overcome barriers to product entry; by investing in online marketing and search engine optimization (SEO), companies are rapidly increasing their share of the online commerce market.

In order to close the value chain in the long run companies engaged in online commerce are beginning to invest in logistics. Companies that provide CEP services (courier delivery / express delivery / parcel delivery) are trying to develop unique solutions for online trade: delivery from the store / to the store; information on services provided to customers / CRM2 integration; additional services such as: consumer lending, electronic payments, security of payment transactions, automation of marketing / identification of potential customers or credit scoring. In the long run, such solutions stimulate the transition to multi-channel sales.

The «rental economy» is being replaced by the economy of shared consumption; it is already manifested in supply chain management, trucking and freight forwarding. In order to increase the efficiency and profitability of the network within or between sub-segments, business and services are consolidated.

4). Changes in processes due to the introduction of new equipment are caused by the influence of the following technological trends: robotization of storage systems (including drones); electric mobility; warehousing systems using virtual (VR) and augmented reality (AR); optimization of delivery on the «last mile» slot.

This will create opportunities for business development: increase the efficiency of warehousing through the use of new transport technologies; solving the problem of lack of qualified specialists in the transport and logistics industry due to the automation of basic operational processes; further robotization of delivery on the «last mile» slot, provides increased reliability, speed and efficiency. Due to changes in the processes due to the introduction of new equipment, consumers and employees of companies will communicate less and less with each other and more and more - with machines, as a result, such changes will lead to greater flexibility of services; reducing the cost of operation in the long run will stimulate the transition of consumers from traditional to electric motors and electric cars can reduce the negative impact on the environment by reducing fuel consumption.

Thus, the introduction of new equipment will increase the efficiency of delivery and storage, but it is necessary to invest in new technologies.

Stage 4. Defining indicators (key figures) for each business projection: finance; market (market position, customer relations, marketing); management (internal business processes); personnel; the carrier’s safety and business reputation.

The main business projections, efficiency criteria and indicators for rating the effectiveness of cargo carriers by road activity are presented in Table 2.

The main business projections	Efficiency criteria	Indicators	Source of information
Finance	Profit-earning capacity	Gross income ratio	R1 Balance sheet (statement of financial position)
		Net profit ratio	Statement of financial outcomes (statement of comprehensive income)
		Return on assets	
Financial firmness	Current ratio	R4	
	Quick ratio	R5	
	Absolute liquidity ratio	R6	
	Ratio of financial stability (autonomy)	R7	

(continued on next page)
Table 2. (continued)

The main business projections	Efficiency criteria	Indicators	Source of information	
Market (market position, customer relations, marketing)	Market position	Market share, %	R8	Information of the Agency for Infrastructure Development of the Stock Market of Ukraine
	Customer relations	Customer-oriented approach	R9	Questionnaire of consumers of transport services (clients)
	Marketing	Quality of services (speed of delivery, timeliness)	R10	
		Complexity of services (additional services)	R11	
		Flexibility of pricing policy (level of prices / tariffs for transportation)	R12	
		Level of service	R13	
Management (internal business processes)	Production efficiency	Profitability of production	R14	Statement of financial outcomes (statement of comprehensive income)
		Ratio of cost of goods sold	R15	Balance sheet (statement of financial position)
		Vehicle renewal ratio	R16	
Technology	Survey of management staff of the enterprises	Technical equipment with modern means of communication	R17	
Personnel	Effective personnel management	Staffing (average annual number of employees)	R18	Information of the Agency for Infrastructure Development of the Stock Market of Ukraine
		Level of qualified specialists in the total number of employees, %	R19	Information of the department (service) of the personnel of the enterprises
		Average salary, thousand UAH	R20	
		Advanced training (number of employees trained)	R21	
Safety and the carrier's impeccable business reputation	Observeance of safety of motor transportations	Number of traffic violations	R22	Information of the State Service for Transport Safety (for the last two years)
		The total number of accidents due to the fault of the enterprise	R23	
		Number of violations of requirements for transportation of dangerous goods	R24	
	The carrier's business reputation	Number of violations of the mode of drivers' work and rest	R25	
		The number of violations of the maximum weight and dimensions of vehicles	R26	

Stage 5. Creating a strategic map for the field of cargo transportation by road.

Stages 6–8 are used in the development of level 2 means a map of an individual enterprise.

Stage 6. Analysis of the factors of the internal and external environment of the studied enterprises.

Stage 7. Carrying out rating estimation of efficiency of cargo carriers by motor transport activity on the basis of system of the balanced indicators.

Stage 8. Developing a strategic map for the studied enterprises which are cargo carriers by motor transport, which includes: specification of strategic goals of the studied enterprises; linking strategic goals with causal chains means building a strategic map; selection of indicators, determining the relationship of indicators with business processes; development of strategic measures.

Table 3 presents a fragment of the strategic map for the field of cargo transportation by road.

Strategic goals have the status of decisive and key goals of enterprises-carriers of goods by road. In order to plan and ensure the process of achieving the goals, appropriate financial and non-financial indicators are developed for each of them, which, in turn, determine the target, planned and actual values. Achieving the developed goals is designed to ensure the implementation of strategic measures. The result of this stage provides a common understanding of the strategy and is the starting point for continuous monitoring strategy implementation. Only after informing about BSC in the organization, transfer of goals to lower levels, creation of an adequate system of planning and reporting and adaptation of management systems and employees' motivation BSC becomes the concept of management.
Table 3. A fragment of the strategic map for the field of cargo transportation by road

Strategic goals	Mission: meeting the needs of the economy and society in competitive, high quality and safe transport services
Meeting the consumers’ needs in transport services; formation of their loyalty	▪ Ensuring transparency in the management of the transport sector, reducing corruption; ▪ Balancing supply and demand for cargo transportation by road services.

Factors of development

- Digitization of carriers of freights
- Introduction new software

Technological trends

- Online services and electronic exchanges; transport safety systems
- Intelligent transport systems; business process robotics (RPA); Blockchain solution (DLT technology of distributed registers)

Basic business projections

Finance

- Increase of revenue and profit by expanding interaction with customers through digital channels; reducing the cost of customer service

Market (market position, consumers, marketing)

- Meeting customer’s needs with absolutely new services; expanding opportunities for online marketing
- Blockchain-based solutions will help improve service quality while reducing costs

Management (internal business processes)

- Automation of production processes due to the use of artificial intelligence and robotization of business processes
- The use of unmanned trucks (artificial intelligence) will increase efficiency and reduce the delivery time of commercial goods

Personnel

- Reduction of the negative effect of the lack of qualified specialists
- Robotization of business processes will help solve the problem of lack of specialists

Safety and the carrier’s impeccable business reputation

- The use of ITS for the analysis of traffic flows will allow you to quickly respond to unforeseen situations on the way to transport
- Solutions based on artificial intelligence will help increase the security of systems (exclusion of the human factor)

Forecast horizon

2020	2025	2030	2035	2040

Limitations

- Insufficient efficiency of state regulation and control, corruption
- Low level of development of transport infrastructure and highways
- Insufficient public and private funding for the transport sector
- Imperfection of the legal framework, its inconsistency with European law
- Low level of transport and environmental safety
- Weak supply with qualified personnel

Stage 9. Monitoring the strategy implementation, its adjusting.

The BSC implementation does not end with the development of strategic goals, causal chains, indicators, targets and strategic measures for one organizational unit. To ensure the long-term implementation of the strategy formulated in the BSC, it must be integrated into the management system [10]. Only with the completion of the implementation phase a balanced scorecard acts as a management concept, not just a scorecard.

CONCLUSIONS

Thus, the efficiency of the business entity is determined primarily by the ability to adapt to market conditions, timely identify threats and resist the instability of the external environment, so strategic management is a necessary condition for successful business. Current practice of strategic management of socio-economic systems on different levels requires the development of various tools. Strategic maps, which are a form of functional strategies implementation, occupy a
special place in the system of strategic plans. Strategic maps are understood as a statement of strategy and strategic goals at each level of the company’s management, which are used to implement and control the strategy, adjust strategic goals. Strategic maps are based on a balanced scorecard and are a tool for achieving optimal balance of a number of economic factors, and achieving such a balance is a strategic goal of the company.

They create opportunities for the integration of long-term strategy, formulated on the basis of BSC, in the enterprise’s management and strategic planning, coordination of short-term goals of the company with its mission and long-term strategic goals and ensuring strategy implementation, control and adjustment of strategic goals.

REFERENCES / ЛІТЕРАТУРА

1. Popova, N., & Shynkarenko, V. (2016). Personnel development at enterprises with regard to adaptation to the VUCA world. The Economic Annals-XXI, 156 (1-2), 88-91. Retrieved October 18, 2021, from http://soskin.info/userfiles/file/Economic-Annals-pdf/DOI/eav156-0020.pdf.

2. Zhelezniak, K. L. (2012). Vybіr stratehії rozvytku avtotransportnoho pidpryiemstva yk elementa frahmentarnoi haluзи [The choice of strategy for the development of the motor transport enterprise as an element of the fragmentary industry]. Visnyk Natsionalnoho transportnoho universytetu - Bulletin of the National Transport University, 26, 147-150 [in Ukrainian].

3. Mazur, Yu. V. (2020). Formuvannia popyty і propozytii na rynku posluh perevezenня vantazhіv avtomobilnym transportom [Formation of supply and demand in the market of freight transport services by road]. Molodyi vchenyi - Young scientist, 5 (81), 10-16 [in Ukrainian].

4. Karbovska, L., Bratus, H. Lozhachevskaya, O. Zhelezniak, K., & Navrotska, T. (2019). State and trends of the road goods transportation field development in Ukraine. Journal of Advanced Research in Law and Economics, Vol 10, 4, 1022-1031. Retrieved December 18, 2020, from https://journals.aserspublishing.eu/jarle/article/view/4713.

5. Kaplan, R. S., & Norton D. P. (2005). Strategicheskie fakty. Transformaciya nematerialnyh aktivov v materialnye rezultaty [Strategic facts. Transformation of intangible assets into tangible results]. Moscow: ZAO «Olimp-Biznes» [in Russian].

6. Transformation of intangible assets into tangible results]. Moscow: ZAO «Olimp-Biznes» [in Russian].

7. Pyat’ faktorov, vliyayushchih na razvitie transportno-logisticheskoi otnoshenii. Obzor tendenciij razvitiya transporta i logistiki v 2019 godu [Five factors influencing the development of the transport and logistics industry. Overview of transport and logistics development trends in 2019]. (2019). Retrieved October 28, 2021, from https://www.pwc.ru/ru/transportation-logistics/assets/obzor-tendentsiy-razvitiya-transporta-i-logistik-v-2019.pdf [in Russian].

8. Derzhavna služba statystyky Ukrainy. (2021). Transport Ukrainy, 2020 [Transport of Ukraine, 2020]. Kyiv. Retrieved October 28, 2021, from http://www.ukrstat.gov.ua [in Ukrainian].

9. Boyko, L., Bieliaieva, N., & Bay, S. (2020). Problems and prospects of digital economy development in Ukraine. International Journal of Advanced Science and Technology, 29 (8s), 2322-2328. http://dx.doi.org/10.35940/ijrte.29.8s.2322-2328.

10. Ilchenko, V., Bondarenko, V., Koroliova, O., & Petrovska, S. (2020). Analysis of digital technology impact on improving the environmental status. International Journal of Advanced Science and Technology, 29 (6s), 1087-1093.

11. Braun, M. G. (2005). Sbalansirovannaya sistema pokazateley: na marshrute vnedeniya [Balanced scorecard: on the route of implementation]. Moscow: Al'pina Biznes Buks [in Russian].
стратегії, особливо місце серед них належить стратегічним картам. Розроблено стратегічну карту сфери перевезень вантажів автомобільним транспортом, яка складається з дев'яти етапів, п'ять з яких включає 1 рівень - стратегічна карта сфери діяльності (галузі) і 4 етапи - 2 рівень - розроблення карти для окремого підприємства. Проаналізовано динаміку і структуру обсягу перевезених вантажів і вантажообігу за видами транспорту в Україні. Наразі аналіз ринку перевезень вантажів автомобільним транспортом є першим етапом процесу розроблення стратегічної карти. Сформульовано місію і ключові стратегічні цілі сфери перевезень вантажів автомобільним транспортом; визначено фактори розвитку та технологічні тренди, які впливають на сферу перевезень вантажів автомобільним транспортом нині, у недалекому майбутньому й у перспективі. Визначено індикатори (ключові показники) щодо кожної бізнес-проєкції: фінанси; ринок (ринкова позиція, відносини із споживачами, маркетинг); управління (внутрішні бізнес-процеси); персонал; безпека і ділова репутація перевізника. Сформовано стратегічну карту для сфери перевезень вантажів автомобільним транспортом. Стратегічні карти ґрунтуються на збалансованій системі показників і є інструментом досягнення оптимальної збалансованості низки економічних факторів, а досягнення такої збалансованості - стратегічна мета компанії.

Ключові слова: стратегічне управління, стратегія розвитку, стратегічні карти, автотранспортні підприємства, сфера перевезень вантажів автомобільним транспортом

JEL Класифікація: L91, M11