ON LAPORTA’S 4-LOOP SUNRISE FORMULAE

YAJUN ZHOU

ABSTRACT. We prove Laporta’s conjecture

\[
\int_0^\infty \frac{dx_1}{x_1} \int_0^\infty \frac{dx_2}{x_2} \int_0^\infty \frac{dx_3}{x_3} \int_0^\infty \frac{dx_4}{x_4} \frac{1}{(1 + \sum_{k=1}^4 x_k)(1 + \sum_{k=1}^4 \frac{1}{x_k}) - 1} = \frac{4}{3} \int_0^\pi d\phi_1 \int_0^\pi d\phi_2 \int_0^\pi d\phi_3 \int_0^\pi d\phi_4 \frac{1}{4 - \sum_{k=1}^4 \cos \phi_k},
\]

which relates the 4-loop sunrise diagram in 2-dimensional quantum field theory to Watson’s integral for 4-dimensional hypercubic lattice. We also establish several related integral identities proposed by Laporta, including a reduction of the 4-loop sunrise diagram to special values of Euler’s gamma function and generalized hypergeometric series:

\[
\frac{4\pi^{5/2}}{\sqrt{3}} \left\{ \frac{\sqrt{\pi}}{2^6} \left\lfloor \frac{\Gamma \left(\frac{1}{3} \right) }{\sqrt{\pi}} \right\rfloor ^9 _4 F_3 \left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \left| \frac{1}{3} \frac{1}{3} \frac{1}{3} \right| \right) - \frac{2^4}{3} \left\lfloor \frac{\sqrt{\pi}}{\Gamma \left(\frac{1}{3} \right) } \right\rfloor ^9 _4 F_3 \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \left| \frac{1}{3} \frac{1}{3} \right| \right) \right\}.
\]

CONTENTS

1. Introduction 1
 1.1. Laporta’s empirical formulae for 4-loop sunrise 1
 1.2. Strategies for proving Laporta’s formulae and their analogs 2
2. Laporta’s formulae for 4-loop sunrise \textbf{IKM}(1, 5; 1) 3
 2.1. Watson’s hypercubic integral and 4-loop sunrise 3
 2.2. Hypergeometric reduction of 4-loop sunrise 6
3. Analogs of Laporta’s 4-loop sunrise formulae 9
 3.1. Bailey–Meijer reductions of certain hypergeometric series 11
 3.2. Mellin–Barnes representations of some Bessel moments 14
 3.3. Representations for \textbf{IKM}(1, 5; 3) 22
 3.4. Representations for \textbf{IKM}(2, 4; 1) and \textbf{IKM}(2, 4; 3) 26
Acknowledgments 26
References 26

Date: January 9, 2018.
Keywords: Watson integrals, Bessel functions, Feynman integrals, sunrise diagrams
MSC 2010: 33C05, 33C10, 33C20 (Primary) 81T18, 81T40, 81Q30 (Secondary).
1. INTRODUCTION

1.1. Laporta’s empirical formulae for 4-loop sunrise. In 2-dimensional quantum field theory, the 4-loop sunrise diagram refers to the following object:

\[
 = 2^4 \int_0^\infty I_0(t)[K_0(t)]^5 dt
\]

\[
 = \int_0^\infty \frac{dx_1}{x_1} \int_0^\infty \frac{dx_2}{x_2} \int_0^\infty \frac{dx_3}{x_3} \int_0^\infty \frac{dx_4}{x_4} \frac{1}{(1+\Sigma_{k=1}^4 x_k)^3(1+\Sigma_{k=1}^4 \frac{1}{x_k})}.
\]

(1.1.1)

Here, in the configuration space, the Feynman diagram is represented by a single integral over the variable \(t \), which involves modified Bessel functions

\[
 I_0(t) = \frac{1}{\pi} \int_0^\pi e^{t \cos \theta} d\theta \quad \text{and} \quad K_0(t) = \int_0^\infty e^{-t \cosh u} du;
\]

(1.1.2)

in the Schwinger parameter space, the Feynman diagram is represented by a quadruple integral over a rational function in the variables \(x_1, x_2, x_3 \) and \(x_4 \). It is a well-established fact (see, for example, [11, §§9.1–9.2] or [33, §8]) that the aforementioned single and quadruple integral representations are equivalent to each other.

Numerical experiments have led to still more integral representations for the 4-loop sunrise diagram. Some of these empirical formulae have remained long-standing conjectures. For example, in 2008 and 2017, Laporta suggested that [24, (72) and (81)]

\[
 = \frac{4}{3} \int_0^\pi d\phi_1 \int_0^\pi d\phi_2 \int_0^\pi d\phi_3 \int_0^\pi d\phi_4 \frac{1}{4 - \Sigma_{k=1}^4 \cos \phi_k},
\]

(1.1.3)

and (see [24, (69) and (72)] and [25, (28)]

\[
 = \frac{4 \sqrt{\pi^3}}{27} \int_0^1 \left(2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \right) \right)^2 \frac{dx}{\sqrt{1-x}}
\]

\[
 = \frac{4 \sqrt{\pi^3}}{27} \left\{ \left(\frac{\Gamma\left(\frac{7}{3}\right)}{\Gamma\left(\frac{2}{3}\right)} \right)^2 \frac{\Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{5}{6}\right)} 4F_3 \left(\begin{array}{c} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ \frac{2}{3}, \frac{5}{6}, \frac{5}{6} \end{array} \right) \right\} + \frac{\left(\frac{\Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{1}{3}\right)} \right)^2 \Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{5}{6}\right)} 4F_3 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{5}{6} \\ \frac{2}{3}, \frac{5}{6}, \frac{5}{6} \end{array} \right) \right) \}
\]

(1.1.4)

Here, the quadruple integral is a 4-dimensional analog of a famous problem solved by G. N. Watson [35], the (generalized) hypergeometric series is defined by

\[
 \phi \Gamma_q \left(\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right) = 1 + \sum_{n=1}^{\infty} \frac{\prod_{j=1}^p (a_j) \Gamma_n \Gamma_n}{\prod_{k=1}^q (b_k) n!} x^n
\]

(1.5)

with \((a)_n = \prod_{m=0}^{n-1} (a + m) \) being the rising factorial, and the gamma function is given by [32, p. 163, (3)]

\[
 \Gamma(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+s)} + \int_1^\infty e^{-ts} t^{s-1} dt,
\]

(1.6)

for \(s \in \mathbb{C} \setminus \mathbb{Z} \leq 0 \).

Using the Legendre–Gauß multiplication formula for Euler’s gamma function, one can simplify the ratios of gamma functions in (1.1.4), so that only \(\Gamma\left(\frac{1}{3}\right) \) is retained in the final presentation.
The results are
\[
\frac{\Gamma\left(\frac{3}{4}\right)^2 \Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{5}{4}\right)^2 \Gamma\left(\frac{3}{4}\right)} = \frac{\sqrt{3}}{2\pi} \left\{ \frac{\Gamma\left(\frac{3}{4}\right)}{\sqrt{\pi}} \right\}^9, \quad \frac{\Gamma\left(\frac{3}{4}\right)^2 \Gamma\left(-\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)^2 \Gamma\left(\frac{3}{4}\right)} = \frac{2^4}{3} \left\{ \frac{\sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)} \right\}^9,
\]
hence the formula stated in the abstract. Hereafter, we will always implement such a policy of reducing gamma factors.

1.2. Strategies for proving Laporta’s formulae and their analogs. In §2 of this work, we verify both (1.1.3) and (1.1.4), through manipulations of certain infinite series, along with applications of previous results on Watson integrals [20, 21] and Feynman diagrams [1, [38]. A major tool in our proof is the Meijer G-function, which is defined by an integral of Mellin–Barnes type:
\[
G_{p,q}^{m,n} \left(z \mid a_1, \ldots, a_p ; b_1, \ldots, b_q \right) := \frac{1}{2\pi i} \int_C \prod_{j=1}^n \frac{1}{\Gamma(1-a_j-s) \prod_{k=1}^m \Gamma(b_k+s)} \frac{ds}{z^s}. \tag{1.2.1}
\]
Here, the contour C is chosen such that the right-hand side of the equation above represents the sum over the residues of
\[
\prod_{j=1}^n \frac{1}{\Gamma(1-a_j-s) \prod_{k=1}^m \Gamma(b_k+s)} \frac{1}{\prod_{j=n+1}^p \Gamma(a_j+s) \prod_{k=m+1}^q \Gamma(1-b_k-s) z^s} \tag{1.2.2}
\]
at all the poles in \(\prod_{j=1}^n \Gamma(1-a_j-s) \). Empty products, by convention, are equal to unity.

In §3, we study some analogs of Laporta’s 4-loop sunrise formulae, namely, hypergeometric representations for several Bessel moments
\[
\text{IKM}(a, b; n) := \int_0^\infty I_0(t)^a (K_0(t))^b t^n dt \tag{1.2.3}
\]
satisfying \(a + b = 6 \) and \(a, b \in \mathbb{Z}_{>0} \). Extending the techniques in §2 with Bailey’s hypergeometric identity [2, (3.4)] and Vanhove’s differential equations [33, §9], we prove the following integral evaluations proposed by Laporta [25, (29)] and Broadhurst (private communication on Nov. 10, 2017):
\[
\int_0^\infty I_0(t)(K_0(t))^5 t (1 - 8t^2) dt = \frac{7\pi^3}{108\sqrt{3}} \int_0^1 \left[\text{\(_2F_1 \) \left(\left. \begin{array}{c} -\frac{1}{3}, \frac{1}{3} \\ 1 \end{array} \right| x \right) \right]^2 \frac{dx}{\sqrt{1-x}}
\]
\[
= \frac{7\pi^{5/2}}{36\sqrt{3}} \left\{ \frac{\sqrt{3}}{2^7} \left\{ \frac{\Gamma\left(\frac{3}{4}\right)}{2\sqrt{\pi}} \right\}^9 \text{\(_4F_3 \)} \left(\left. \begin{array}{c} -\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3} \\ 1 \end{array} \right| 1 \right) + \frac{5}{7} \frac{2^4}{3} \left\{ \frac{\sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)} \right\}^9 \text{\(_4F_3 \)} \left(\left. \begin{array}{c} -\frac{7}{6}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{3} \\ 1 \end{array} \right| 1 \right) \right\}, \tag{1.2.4}
\]
as well as the following identities discovered by Laporta [25, (27)] and Broadhurst (see [13, §2.2], [14, §2.2], [15, §2.1], [17, §3.1], [16, §3.1]):
\[
\text{IKM}(2, 4; 1) = \frac{\pi^2}{30} \int_0^1 \text{\(_2F_1 \)} \left(\left. \begin{array}{c} \frac{1}{3}, \frac{5}{3} \\ 1 \end{array} \right| x \right) \text{\(_2F_1 \)} \left(\left. \begin{array}{c} \frac{1}{3}, \frac{5}{3} \\ 1 \end{array} \right| 1 - x \right) \frac{dx}{\sqrt{1-x}}
\]
\[
= \frac{3\pi^{3/2}}{20} \left\{ \frac{\sqrt{3}}{2^6} \left\{ \frac{\Gamma\left(\frac{3}{4}\right)}{2\sqrt{\pi}} \right\}^9 \text{\(_4F_3 \)} \left(\left. \begin{array}{c} \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{3} \\ 1 \end{array} \right| 1 \right) + \frac{2^4}{3} \left\{ \frac{\sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)} \right\}^9 \text{\(_4F_3 \)} \left(\left. \begin{array}{c} \frac{1}{7}, \frac{7}{6}, \frac{7}{6}, \frac{4}{3} \\ 1 \end{array} \right| 1 \right) \right\}, \tag{1.2.5}
\]
We also establish a similar result for $\text{IKM}(2,4;1) - 8 \text{IKM}(2,4;3)$:

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t(1 - 8t^2) \, dt = \frac{7\pi^{3/2}}{60} \left\{ \frac{\sqrt{3}}{2^7} \left[\Gamma \left(\frac{3}{4} \right) \right]^9_4 F_3 \left(\begin{array}{c} -\frac{1}{2}, \frac{3}{4}, \frac{3}{4}, \frac{5}{6} \\ -\frac{1}{6}, \frac{5}{6}, \frac{5}{6} \end{array} ; 1 \right) - \frac{524}{7} \left[\Gamma \left(\frac{1}{3} \right) \right]^9_4 F_3 \left(\begin{array}{c} -\frac{7}{6}, -\frac{1}{2}, -\frac{5}{3}, \frac{2}{5} \\ -\frac{5}{6}, \frac{1}{3}, \frac{1}{3} \end{array} ; 1 \right) \right\}.
\]

During the course of our proof, we also obtain other hypergeometric representations of Bessel moments. For example, we may equate (1.2.4) with

\[
\frac{\pi^2}{2^{1/3}} \left[\frac{\sqrt{\pi}}{\Gamma \left(\frac{3}{4} \right)} \right]^6_5 F_4 \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{2}, \frac{3}{2}, \frac{2}{3}, \frac{5}{3} \\ \frac{7}{6}, \frac{7}{6}, \frac{13}{6}, 3 \end{array} ; 1 \right),
\]

in view of (3.3.47).

Here, we point out that the Bessel moment $\text{IKM}(1,5;3)$ contributes a term to Laporta’s 4-loop perturbative expansion of electron’s $g - 2$ in $(4 - \epsilon)$-dimensional quantum electrodynamics [24, 25]. The Bessel moments $\text{IKM}(2,4;1)$ and $\text{IKM}(2,4;3)$ did not appear in Laporta’s final result, but were indispensable to the following non-linear sum rule for Feynman diagrams:

\[
\det \begin{pmatrix} \text{IKM}(1,5;1) & \text{IKM}(1,5;3) \\ \text{IKM}(2,4;1) & \text{IKM}(2,4;3) \end{pmatrix} = \frac{\pi^4}{576}.
\]

The determinant above had been discovered by Broadhurst–Mellit (see [18, (5.7)] and [12, (113)]) through numerical experiments, before a proof was found [40, §3]. Plugging the hypergeometric representations of Bessel moments into the Broadhurst–Mellit determinant formula (1.2.8), we obtain

\[
1 = \frac{7}{40} \left[F^3 \left(\begin{array}{c} \frac{1}{2}, \frac{2}{3}, \frac{2}{3}, \frac{5}{6} \\ \frac{2}{5}, \frac{4}{5}, \frac{4}{5} \end{array} ; 1 \right) - \frac{1}{5} \left[\frac{1}{6}, \frac{5}{6}, \frac{5}{6} \right] \right] + \frac{1}{4} \left[F^3 \left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1 \\ \frac{2}{3}, \frac{5}{6}, \frac{5}{6} \end{array} ; 1 \right) - \frac{7}{6}, -\frac{1}{2}, -\frac{1}{3}, \frac{2}{5} \right] \left(\begin{array}{c} -\frac{5}{6}, \frac{1}{3}, \frac{1}{3} \end{array} ; 1 \right).
\]

2. Laporta’s Formulae for 4-Loop Sunrise $\text{IKM}(1,5;1)$

2.1. Watson’s Hypercubic Integral and 4-Loop Sunrise. We now consider the 4-dimensional Watson integral for the simple cubic lattice:

\[
W^4_S(x) := \frac{1}{4\pi^4} \int_0^\pi d\phi_1 \int_0^\pi d\phi_2 \int_0^\pi d\phi_3 \int_0^\pi d\phi_4 \frac{1}{1 - \frac{1}{4} \sum_{k=1}^4 \cos \phi_k}.
\]

Laporta’s conjecture in (1.1.3) essentially says

\[
W^4_S(1) = \frac{12}{\pi^4} \int_0^\infty I_0(t)[K_0(t)]^5 t \, dt \equiv \frac{12}{\pi^4} \text{IKM}(1,5;1).
\]

Proposition 2.1.1 (Watson integrals and Bessel moments). For all $x \in [0,1]$, we have

\[
W^4_S(x) = \frac{4}{\pi^2} \int_0^\infty [I_0(xt)]^2 I_0(t)[K_0(t)]^2 t \, dt,
\]

and this incorporates (2.1.2) as a special case.
Proof. Following Guttmann \cite{21} \S 3.1, we transcribe an identity of Glasser–Montaldi \cite{20} (8) as follows:

\[
\frac{1}{4\pi^4} \int_0^\pi d\phi_1 \int_0^\pi d\phi_2 \int_0^\pi d\phi_3 \int_0^\pi d\phi_4 \left(\frac{\sum_{k=1}^n \cos \phi_k}{4} \right)^{2n} = \frac{(2n)!}{2^{2(3n+1)} (n!)^2} \sum_{j,k,\ell,m \in \mathbb{Z} \geq 0} \frac{n!}{j!k!\ell!m!}^2,
\]

\[(2.1.4)\]

where \(n \) is a non-negative integer. Meanwhile, from the work of Bailey–Borwein–Broadhurst–Glasser \cite{1}, \S 4.1, we know that

\[
\int_0^\infty I_0(t) [K_0(t)]^3 t^{2n+1} \, dt = \frac{(n!)^2 \pi^2}{2^{4(n+1)}} \sum_{j,k,\ell,m \in \mathbb{Z} \geq 0} \frac{n!}{j!k!\ell!m!}^2
\]

\[(2.1.5)\]

holds for all non-negative integers \(n \). Thus, we may prove \((2.1.3)\) by termwise summation, bearing in mind that

\[
[I_0(xt)]^2 = \sum_{n=0}^\infty \frac{(2n)!}{n!} \frac{x^n t^{2n}}{2^n}.
\]

\[(2.1.6)\]

Finally, the integral identity \(\pi^2 \int_0^\infty [I_0(t)]^3 [K_0(t)]^3 t \, dt = 3 \int_0^\infty I_0(t) [K_0(t)]^5 t \, dt \) has been proved in

\[38, \text{ Lemma 3.1}, \] so \((2.1.2)\) is recovered. \(\blacksquare \)

We note that there have been previous efforts to represent \(W^S_4(1) \) (that is, the 4-loop sunrise diagram, up to a normalizing constant) as single integrals over familiar functions. For example, using Abel transforms, Glasser–Montaldi \cite{21} (8), (A13) and Glasser–Guttman \cite{19} (3)–(4) have shown that

\[
W^S_4(1) = \frac{2}{\pi^3} \int_0^1 \frac{K(k_+)}{\sqrt{1-x^2}} \, dx
\]

\[(2.1.7)\]

where

\[
k_\pm^2 = \frac{1}{2} \left[1 \pm x^2 \sqrt{1 - \frac{x^2}{4}} - \left(1 - \frac{x^2}{2} \right) \sqrt{1 - x^2} \right]
\]

\[(2.1.8)\]

and

\[
K(\sqrt{\lambda}) = \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - \lambda \sin^2 \phi}} = \frac{\pi}{2} \text{F}^1_2 \left(\frac{1}{2}, \frac{1}{2} \left| \lambda \right) \right.
\]

\[(2.1.9)\]

is the complete elliptic integral of the first kind. One can also build more recondite single integral representations for \(W^S_4(1) \), whose integrands involve closed-form expressions of the 3-dimensional Watson integral for the simple cubic lattice:

\[
W^S_3(x) \equiv \frac{1}{3\pi^3} \int_0^\pi d\phi_1 \int_0^\pi d\phi_2 \int_0^\pi d\phi_3 \frac{1}{\sqrt{1 - \sum_{k=1}^3 \cos \phi_k}},
\]

\[(2.1.10)\]

such as the following formulae established by Joyce–Zucker \cite{23}, (3.32), (3.42)):

\[
W^S_3(x) = \frac{2 - \sqrt{1 - x^2}}{3 + x^2} \left[2F_1 \left(\frac{1}{2}, \frac{3}{2} \left| \frac{16x^2[9 - 5x^2 - (9 - x^2)\sqrt{1 - x^2}]^2}{9(3 + x^2)^4} \right) \right] ^2
\]

\[(2.1.11)\]

\[
W^S_3(x) = \frac{1 - 9p^4}{3(1 - p)^3(3p + 1)} \left[2F_1 \left(\frac{1}{2}, \frac{1}{2} \left| \frac{16p^3}{(1 - p)^3(3p + 1)} \right) \right] ^2
\]

\[(2.1.12)\]
where
\[p = \sqrt{\frac{1 - \sqrt{1 - \frac{x}{9}}}{1 + \sqrt{1 - x^2}}} \] \hspace{1cm} (2.1.13)

There is another type of integral representation involving hypergeometric integrands, which in turn, is inspired by arithmetic considerations. Let \(\eta(z) := e^{\pi iz/12} \prod_{n=1}^{\infty} (1 - e^{2\pi inz}) \) be the Dedekind \(\eta \) function, defined for complex numbers \(z \) with a positive imaginary part. It was conjectured in [12, (111)] and proved in [39, Theorem 4.2.5] that

\[8\pi^2 L(f_{4,6}, 2) = -32\pi^4 \int_0^{i\infty} f_{4,6}(z) \, dz, \] \hspace{1cm} (2.1.14)

for a weight-4 level-6 modular form \(f_{4,6}(z) = [\eta(z)\eta(2z)\eta(3z)\eta(6z)]^2 \). Parametrizing modular forms with hypergeometric functions, as in the proof of [39, Theorems 4.2.5 and 4.2.6], we obtain

\[
W_4^S(1) = \frac{\sqrt{3}}{\pi} \int_0^{\infty} 2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{u^2(9 + u)}{(3 + u)^3} 2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{1 - u^2(9 + u)}{(3 + u)^3} \frac{u}{(3 + u)^2} \, du
\]
\[
= \frac{2\sqrt{3}}{\pi} \int_{-1}^{1} 2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{u^2(9 + u)}{(3 + u)^3} 2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{1 - u^2(9 + u)}{(3 + u)^3} \frac{u}{(3 + u)^2} \, du. \] \hspace{1cm} (2.1.15)

Here, we point out that last integral representation is actually equivalent to a formula of Bailey–Borwein–Broadhurst–Glasser [11, (223)]

\[
\int_0^{1/3} [I_0(t)]^3[K_0(t)]^3 \, dt \equiv \text{IKM}(3, 3; 1)
\]
\[
= \frac{8}{\pi} \int_0^{1/3} \frac{y}{(3y + 1)(1 - y)^3} K \left(\frac{1 - 3y + 1 + y^2}{1 - 3y + 1 + y^2} \right) K \left(\frac{16y^3}{(1 + 3y)(1 - y)^3} \right) \, dy, \] \hspace{1cm} (2.1.16)

according to \(W_4^S(1) = \frac{4}{\pi^2} \text{IKM}(3, 3; 1) \) [cf. (2.1.3)] and Ramanujan’s cubic transformations [6, pp. 112–114] for elliptic integrals:

\[
2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{27p^2(1 + p)^2}{4(1 + p + p^2)^3} = \frac{2}{\pi} \frac{1 + p + p^2}{\sqrt{1 + 2p}} K \left(\frac{p^3(2 + p)}{1 + 2p} \right),
\]
\[
2F_1 \left(\begin{array}{c} 1/3, 2/3 \\ 1 \end{array} \right) \frac{27p^2(1 + p)^2}{4(1 + p + p^2)^3} = \frac{2}{\pi} \frac{1 + p + p^2}{\sqrt{3 + 6p}} K \left(\frac{1 - p^3(2 + p)}{1 + 2p} \right), \] \hspace{1cm} (2.1.17)

where \(p = \frac{2y}{1 - y} \) and \(y = \sqrt{\frac{1 + u}{9 + u}} \).

In what follows, we construct one more integral representation for \(W_4^S(1) \), by Fourier analysis.

Proposition 2.1.2 (Parseval representation for \(W_4^S(1) \)). We have the following formula:

\[
W_4^S(1) = \frac{2}{\pi^3} \int_0^{\infty} K \left(\frac{1}{1 + ix} \right) K \left(\frac{1}{1 - ix} \right) \frac{dx}{1 + x^2}. \] \hspace{1cm} (2.1.18)

Proof. Following Glasser–Montaldi [20, (4), (5), (6b)] and Zucker [41, (6.6)–(6.8)], we deduce

\[
W_4^S(1) = \frac{1}{\pi^4} \int_0^{\infty} dt \int_0^{\pi} d\phi_1 \int_0^{\pi} d\phi_2 \int_0^{\pi} d\phi_3 \int_0^{\pi} d\phi_4 e^{-4t + t(\cos \phi_1 + \cos \phi_2 + \cos \phi_3 + \cos \phi_4)}
\]
\[
= \int_0^{\infty} e^{-4t} [I_0(t)]^4 \, dt. \] \hspace{1cm} (2.1.19)
By a special case of the Lipschitz–Hankel formula [36, §13.22(2)], we have
\[
\int_0^\infty e^{-2t} [I_0(t)]^2 e^{-i\omega t} \, dt = \frac{1}{2} \frac{2}{2+i\omega} K \left(\frac{2}{2+i\omega} \right), \quad \forall \omega \in (-\infty,0) \cup (0,\infty).
\] (2.1.20)

According to Parseval’s theorem in Fourier analysis, we then obtain
\[
W^S_4(1) = \frac{2}{\pi^2} \int_{-\infty}^{\infty} K \left(\frac{2}{2+i\omega} \right) K \left(\frac{2}{2-i\omega} \right) \frac{d\omega}{4+\omega^2},
\] (2.1.21)
which is equivalent to the claimed identity. \ ■

Unfortunately, we have not found straightforward hypergeometric transformations from any of the aforementioned single integrals to Laporta’s representation in (1.1.4). Therefore, we will use different methods for the proof of Laporta’s hypergeometric sunrise formulae.

2.2. Hypergeometric reduction of 4-loop sunrise.

Now, we employ Mellin transforms and Meijer G-functions to prove (1.1.4).

Proposition 2.2.1 (Hypergeometric evaluation of 4-loop sunrise). We have the following identity:

\[
\mathcal{R} = 2^4 \int_0^\infty I_0(t)[K_0(t)]^5 t \, dt
\]
\[
= \frac{4\pi^{5/2}}{\sqrt{3}} \left\{ \frac{\sqrt{3} \left[\Gamma \left(\frac{1}{3} \right) \right]}{2^6 \left[\sqrt{\pi} \right]} \right\}^9 \, {}_2F_3 \left(\left. \begin{array}{c} 1/3, 1/3, 1/3 \\ 2/3, 5/6, 5/6 \end{array} \right| 1 \right) - \frac{2^4}{3} \left\{ \frac{\sqrt{\pi}}{\Gamma \left(\frac{1}{3} \right)} \right\}^9 \, {}_2F_3 \left(\left. \begin{array}{c} 7/6, 7/6, 4/3 \\ 2/3, 2/3, 2/3 \end{array} \right| 1 \right). \] (2.2.1)

Proof. Combining [39, (3.1.11)] with [29, (3.6)], we put down
\[
\int_0^\infty I_0(xt)I_0(t)[K_0(t)]^3 t \, dt = \frac{\pi^2}{4(4-x^2)^3} F_2 \left(\left. \begin{array}{c} 1/3, 1 \\ 1, 1 \end{array} \right| -\frac{108x^2}{(4-x^2)^3} \right),
\] (2.2.2)
for \(x \in [0,2) \). We can rewrite the formula above by a contour integral representation of \({}_3F_2 \) [31, §4.6.2]:
\[
\int_0^\infty I_0(xt)I_0(t)[K_0(t)]^3 t \, dt
\]
\[
= \frac{\pi^2}{4(4-x^2)^3} \frac{1}{2\pi i} \int_{\delta-i\infty}^{\delta+i\infty} \frac{\sqrt{3} \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{1}{2} - s \right) \Gamma \left(\frac{2}{3} - s \right) \Gamma (s) \left[\frac{108x^2}{(4-x^2)^3} \right]^{-s}}{2\pi^{3/2}[\Gamma(1-s)]^2} \, ds, \] (2.2.3)
where \(\delta \in (0, \frac{1}{3}) \).

By the Neumann addition formula [36, §11.2(1)], we have
\[
[I_0(t)]^2 = \frac{2}{\pi} \int_0^\pi I_0(2t \cos \theta) \, d\theta,
\] (2.2.4)
so we can exploit Euler’s beta integral to compute
\[
\int_0^\infty [I_0(t)]^3[K_0(t)]^3 t \, dt
\]
\[
= \frac{1}{2\pi i} \int_{\delta-i\infty}^{\delta+i\infty} \frac{\Gamma \left(\frac{1}{3} - s \right) \left[\Gamma \left(\frac{1}{2} - s \right) \right]^2 \Gamma \left(\frac{2}{3} - s \right) \Gamma \left(\frac{s}{6} \right) \Gamma \left(\frac{s}{6} + \frac{1}{6} \right)}{32\pi^{3/2}[\Gamma(1-s)]^2} \, ds \] (2.2.5)
for $\delta \in \left(\frac{1}{6}, \frac{1}{3}\right)$. According to the Whipple–Meijer formula \([31, \S 4.6.2]\), the right-hand side of the equation above evaluates to

$$
\frac{\sqrt{3\pi}}{4} \left\{ \frac{\sqrt{3}}{2^6} \left[\frac{\Gamma(\frac{1}{3})}{\sqrt{\pi}} \right] \right. ^9 \begin{array}{c}
4F_3 \left(\left. \begin{array}{c}
\frac{1}{6}, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}
\end{array} \right| 1 \right) -
\frac{2^4}{3} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right] \right. ^9 \begin{array}{c}
4F_3 \left(\left. \begin{array}{c}
\frac{1}{7}, \frac{7}{6}, \frac{4}{3}, \frac{1}{3}
\end{array} \right| 1 \right)
\end{array}
\right\},
$$

(2.2.6)

which is also the same as $\frac{3}{\pi^2} \int_0^\infty I_0(t) [K_0(t)]^5 \, dt$.

Proposition 2.2.2 (Laporta’s single integral for 4-loop sunrise). We have

\[
\int_0^1 2F_1 \left(\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right| x \right) \frac{dx}{\sqrt{1-x}}
= G^{2,2}_{4,4} \left(1 \left| \begin{array}{c}
\frac{1}{7}, \frac{7}{6}, \frac{4}{3}, \frac{1}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right. \right) = \frac{3}{4\pi^2} G^{2,4}_{4,4} \left(1 \left| \begin{array}{c}
\frac{1}{7}, \frac{7}{6}, \frac{4}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right. \right)
= \frac{9}{\sqrt{\pi}} \left(\frac{\sqrt{3}}{2^6} \left[\frac{\Gamma(\frac{1}{3})}{\sqrt{\pi}} \right] \right) ^9 \begin{array}{c}
4F_3 \left(\left. \begin{array}{c}
\frac{1}{6}, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}
\end{array} \right| 1 \right) - \frac{2^4}{3} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right] \right. ^9 \begin{array}{c}
4F_3 \left(\left. \begin{array}{c}
\frac{1}{7}, \frac{7}{6}, \frac{4}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right. \right)
\right\}.
\tag{2.2.7}
\]

Proof. First, we transcribe \([5, \text{ p. 316, (15)}]\) as follows:

\[
\int_0^1 2F_1 \left(\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right| 1-t \right) t^{s-1} \, dt = \frac{[\Gamma(s)]^2}{\Gamma(s-v)\Gamma(s+v+1)}, \quad \text{Re} s > 0.
\tag{2.2.8}
\]

By Mellin convolution, we have

\[
\int_0^1 2F_1 \left(\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \right| 1-t \right) t^\alpha \, dt
= \frac{1}{2\pi i} \int_{\delta-i\infty}^{\delta+i\infty} \frac{[\Gamma(\alpha+1-s)]^2[\Gamma(s)]^2 \, ds}{\Gamma(s-v)\Gamma(s+v+1)\Gamma(\alpha+1-s-v)\Gamma(\alpha+2-s+v)},
\tag{2.2.9}
\]

where $\alpha \in (-1, \infty), \delta \in (0, \alpha+1)$. Setting $\alpha = -1/2, v = -1/3$ in the equation above, we can verify the first equality in (2.2.7).

Before proving the second equality in (2.2.7), we note that the Meijer G-function

\[
G^{2,2}_{4,4} \left(z \left| \begin{array}{c}
\frac{1}{7}, \frac{7}{6}, \frac{4}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right. \right)
\tag{2.2.10}
\]

is annihilated by a fourth-order differential operator \([26, (34)]:\)

\[
z \left(z \frac{d}{dz} + \frac{1}{3} \right) \left(z \frac{d}{dz} + \frac{1}{2} \right) \left(z \frac{d}{dz} + \frac{2}{3} \right) - \left(z \frac{d}{dz} \right)^2 \left(z \frac{d}{dz} - \frac{1}{6} \right) \left(z \frac{d}{dz} + \frac{1}{6} \right).
\tag{2.2.11}
\]

More generally, the kernel space of this differential operator is spanned by four functions:

\[
\begin{align*}
f_1(z) &= \frac{1}{z^{1/6}} 4F_3 \left(\left. \begin{array}{c}
\frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}
\end{array} \right| z \right),

f_2(z) &= z^{1/6} 4F_3 \left(\left. \begin{array}{c}
\frac{1}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{2}
\end{array} \right| z \right),

f_3(z) &= 4F_3 \left(\left. \begin{array}{c}
\frac{1}{3}, \frac{1}{2}, \frac{2}{3}
\end{array} \right| z \right),

f_4(z) &= G^{2,4}_{4,4} \left(z \left| \begin{array}{c}
\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
\end{array} \right. \right) \left(z \left| \begin{array}{c}
\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
\end{array} \right. \right) \left(z \left| \begin{array}{c}
\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
\end{array} \right. \right) \left(z \left| \begin{array}{c}
\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}
\end{array} \right. \right).
\end{align*}
\tag{2.2.12}
\]
which exhibit the following asymptotic behavior, as $z \to 0^+$:
\[
\begin{align*}
f_1(z) &= \frac{1}{z^{1/6}} + \frac{z^{5/6}}{50} + O(z^{11/6}), \\
f_2(z) &= z^{1/6} + \frac{5z^{7/6}}{49} + O(z^{13/6}), \\
f_3(z) &= 1 + \frac{2z}{35} + O(z^2), \\
f_4(z) &= 2\sqrt{3}\pi(6 - \log z) + \frac{2\sqrt{3}\pi(109 - 70\log z)}{1225} + O(z^2\log z).
\end{align*}
\]

Comparing the list above with
\[
G_{4,4}^{2,2}\left(\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right) = \frac{3\sqrt{3}(6 - \log z)}{2\pi} + \frac{3\sqrt{3}\pi(109 - 70\log z)}{2450\pi} + O(z^2\log z),
\]
we can show that
\[
G_{4,4}^{2,2}\left(\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right) = \frac{3}{4\pi^2} G_{4,4}^{2,2}\left(\begin{array}{c}
\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right),
\]
which embodies the second equality in (2.2.7) as a special case.

To prove the last equality in (2.2.7), we apply residue calculus to the Mellin–Barnes integral representation of the Meijer G-function in question. Concretely speaking, by closing the contour rightwards, we have
\[
\begin{align*}
\frac{3}{4\pi^2} G_{4,4}^{2,2}\left(\begin{array}{c}
\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\
0, 0, -\frac{1}{6}, \frac{1}{6}
\end{array} \right) &= \frac{3}{4\pi^2} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma\left(\frac{1}{3} - s\right) \Gamma\left(\frac{1}{2} - s\right) \Gamma\left(\frac{2}{3} - s\right) \Gamma(s)^2}{\Gamma\left(\frac{5}{6} - s\right) \Gamma\left(\frac{7}{6} - s\right)} \, ds \\
&= \frac{3}{4\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma\left(\frac{1}{6} - n\right) \Gamma\left(\frac{1}{3} - n\right) \Gamma\left(\frac{1}{2} - n\right) \Gamma\left(\frac{5}{6} - n\right) \Gamma\left(\frac{7}{6} - n\right)}{n! \Gamma\left(\frac{1}{3} - n\right) \Gamma\left(\frac{1}{2} - n\right) \Gamma\left(\frac{5}{6} - n\right)} \\
&\quad \times \left[-\psi^{(0)}\left(\frac{1}{3} - n\right) - \psi^{(0)}\left(\frac{2}{3} - n\right) + \psi^{(0)}\left(\frac{1}{6} - n\right) + \psi^{(0)}\left(-\frac{1}{6} - n\right) + 2\psi^{(0)}(n+1) - 2\psi^{(0)}\left(n + \frac{1}{2}\right) \right] \\
&\quad + \frac{3}{4\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma\left(-\frac{1}{3} - n\right) \Gamma\left(-\frac{1}{6} - n\right) \Gamma\left(-\frac{1}{2} - n\right) \Gamma\left(-\frac{5}{6} - n\right) \Gamma\left(-\frac{7}{6} - n\right)}{n! \Gamma\left(-\frac{1}{3} - n\right) \Gamma\left(-\frac{1}{2} - n\right) \Gamma\left(-\frac{5}{6} - n\right)} \\
&= \frac{3}{4\pi^2} \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \frac{\Gamma\left(\frac{1}{3} - s\right) \Gamma\left(\frac{1}{2} - s\right) \Gamma\left(\frac{2}{3} - s\right) \Gamma(s)^2}{\Gamma\left(\frac{5}{6} - s\right) \Gamma\left(\frac{7}{6} - s\right)} \, ds \\
&= -\frac{1}{4\pi^2} \sum_{n=0}^{\infty} \frac{\Gamma\left(-\frac{1}{6} - n\right) \Gamma\left(\frac{1}{6} - n\right) \Gamma\left(\frac{1}{3} - n\right) \Gamma\left(\frac{5}{6} - n\right)}{(n!)^2 \Gamma\left(-\frac{1}{3} - n\right) \Gamma\left(-\frac{1}{2} - n\right) \Gamma\left(-\frac{5}{6} - n\right)} \\
&\quad \times \left[-\psi^{(0)}\left(\frac{1}{3} - n\right) - \psi^{(0)}\left(\frac{2}{3} - n\right) + \psi^{(0)}\left(\frac{1}{6} - n\right) + \psi^{(0)}\left(-\frac{1}{6} - n\right) + 2\psi^{(0)}(n+1) - 2\psi^{(0)}\left(n + \frac{1}{2}\right) \right].
\end{align*}
\]
Eliminating the last series from the last pair of equations, we obtain

\[
\frac{3}{4\pi^2} G_{4,4}^{2,4} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2} \mid 0, 0, -\frac{1}{6}, \frac{1}{6} \right)
\]

\[
= \frac{3}{16\pi^2} \left\{ \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma \left(\frac{1}{6} - n \right) \Gamma \left(\frac{5}{6} - n \right) \Gamma \left(n + \frac{1}{3} \right)^2}{n! \Gamma \left(\frac{1}{2} - n \right) \Gamma \left(\frac{1}{2} - n \right)} + \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma \left(\frac{1}{6} - n \right) \Gamma \left(\frac{5}{6} - n \right) \Gamma \left(n + \frac{2}{3} \right)^2}{n! \Gamma \left(\frac{1}{2} - n \right) \Gamma \left(\frac{1}{2} - n \right)} \right\}
\]

\[
= \frac{9}{\sqrt{\pi}} \frac{\sqrt{3}}{2^6} \left[\Gamma \left(\frac{1}{3} \right) \right]^{-9} \quad 4F3 \left[\frac{1}{3}, \frac{1}{2}, \frac{7}{6}, \frac{5}{6} \mid \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right] - \frac{24}{3} \left[\sqrt{\pi} \right]^{-9} \quad 4F3 \left[\frac{1}{2}, \frac{3}{2}, \frac{5}{6}, \frac{5}{6} \mid \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right],
\] (2.2.18)

by direct summation.

Remark: If all the poles in \(\prod_{j=1}^{n} \Gamma(1-a_j-s) \) (resp. \(\prod_{k=1}^{m} \Gamma(b_k+s) \)) are simple in \((1,2,1)\), then the Meijer G-function \(G_{p,q}^{m,n} \) decomposes into a linear combination of \(\eta F_{p-1} \) (resp. \(\eta F_{q-1} \)), as indicated in [4, 5.3(6)] (resp. [4, 5.3(5)]). Such a standard decomposition does not apply to the two \(\eta \)-functions in (2.2.7).

3. Analogos of Laporta’s 4-loop sunrise formulae

3.1. Bailey–Meijer reductions of certain hypergeometric series. In the notations of Zudilin [43, Proposition 2] and Borwein–Straub–Wan [4, Figure 3], we paraphrase an identity of Bailey [2, (3.4)] in terms of the Meijer G-function:

\[
\Gamma(a, b, c, d, e, f)
\]

\[
= \Gamma(1-a-b) \Gamma(1-a-c) \Gamma(1-a-d) \Gamma(1-a-e) \Gamma(1-a-f) \times
\]

\[
\times G_{4,4}^{2,4} \left[\frac{a-e-f, 1-b, 1-c, 1-d}{0, 1-a-b-c-d, e-a, f-a} \right].
\] (3.1.1)

Proposition 3.1.1 (Bailey representations of 4-loop sunrise). We have

\[
\int_{0}^{1} \left[2 \eta F_{1} \left(\frac{1}{3}, \frac{2}{3} \mid 1 \right) x \right]^{2} \frac{dx}{\sqrt{1-x}} = \frac{9}{2} \eta F_{6} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}, \frac{5}{6} \mid \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right)
\]

\[
= 2^{14/3} \sqrt{3} \left[\Gamma \left(\frac{1}{3} \right) \right]^{6} \eta F_{5} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}, \frac{5}{6} \mid \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right)
\]

\[
= 3 \sqrt{3} 2^{1/3} \left[\Gamma \left(\frac{1}{3} \right) \right]^{6} \eta F_{4} \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}, \frac{5}{6}, \frac{1}{6}, \frac{1}{6} \right).
\] (3.1.2)

Proof: There are 24 different choices of \(a, b, c, d, e, f \) that make Bailey’s identity applicable to the special \(G_{4,4}^{2,4} \) appearing in (2.2.7). Due to the invariance of the generalized hypergeometric series

\[
\eta F_{6} \left(\frac{a_1, \ldots, a_7}{b_1, \ldots, b_6} \mid 1 \right) := 1 + \sum_{n=1}^{\infty} \frac{\prod_{j=1}^{7} (a_j)^n}{\prod_{k=1}^{6} (b_k)^n n!}
\]

under permutations of its parameters, we are left with only three distinct forms of \(\eta F_{6} \) as outputs from Bailey’s identity. One of them simplifies to \(\eta F_{5} \) (resp. \(\eta F_{4} \)), with cancelations from \(a_1 = b_1 \) (resp. \(a_1 = b_1, a_2 = b_2 \)). This explains all the stated results.

■
Remark Following Wan [34, Theorem 1], we recapitulate a special case of Zudilin’s integral formula [42]:

\[
\int_0^1 \int_0^1 \frac{x^{a_2-1} y^{a_3-1} z^{a_4-1} (1-x)^{a_0-a_2-a_3} (1-y)^{a_0-a_3-a_4} (1-z)^{a_0-a_4-a_5}}{(1-x[1-y(1-z)])^{a_1}} \, dx \, dy \, dz \\
= \frac{\Gamma(a_0+1) \prod_{j=2}^4 \Gamma(a_j) \prod_{j=1}^4 \Gamma(a_0+1-a_j-a_{j+1})}{\prod_{j=1}^5 \Gamma(a_0+1-a_j)} \\
\times \, _7F_6 \left(\begin{array}{c} a_0, 1 + \frac{a_0}{2}, a_1, a_2, a_3, a_4, a_5 \\ \frac{a_0}{2}, 1 + a_0 - a_1, 1 + a_0 - a_2, 1 + a_0 - a_3, 1 + a_0 - a_4, 1 + a_0 - a_5 \end{array} \right) \right| 1 ,
\]

(3.1.4)

where the chosen indices \(a_0, a_1, \ldots, a_5\) ensure convergence of both sides. Using

\[
\int_0^1 \frac{dy}{\sqrt{y(1-y)(y-\xi)^2}} = \frac{2\pi}{\sqrt{3}} \, _2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} | 1-\xi \right) ,
\]

(3.1.5)

\[
\int_0^1 \frac{dx}{\sqrt{\frac{x}{(1-x)^2}[1-x(1-y(1-z))]}} = \frac{2\pi}{\sqrt{3}} \, _2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} | 1-y(1-z) \right) ,
\]

(3.1.6)

and a variation on Wan’s method [34, p. 124], we can show that

\[
\int_0^1 \left[_2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} | 1-\xi \right) \right]^2 \frac{d\xi}{\sqrt{\xi}} = \frac{\sqrt{3}}{2\pi} \int_0^1 \frac{dy}{\sqrt{y(1-y)(y-\xi)^2}} \int_0^1 \frac{d\xi}{\sqrt{\frac{x}{(1-x)^2}[1-x(1-y(1-z))]}},
\]

\[
\xi = y(1-z) \\
\]

\[
= \frac{3}{4\pi^2} \int_0^1 \int_0^1 \int_0^1 \frac{(1-x)(1-y)^{-1}}{\sqrt{y(1-y)^2}} \frac{dxdydz}{\sqrt{1-y(1-z)^3}}.
\]

(3.1.7)

Setting \(a_0 = \frac{1}{2}, a_1 = \frac{1}{3}, a_2 = \frac{2}{3}, a_3 = \frac{1}{2}, a_4 = \frac{1}{3}, a_5 = \frac{2}{3}\) in (3.1.4), we immediately recover the first equality in (3.1.2) from Zudilin’s formula. \(\square\)

Remark At present, aside from [cf. (2.1.14)]

\[
\frac{4\sqrt{3}\pi^3}{27} \int_0^1 \left[_2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} | x \right) \right]^2 \frac{dx}{\sqrt{1-x}} = 8\pi^2 L(f_{4,6}, 2) = -32\pi^4 \int_0^{i\infty} [\eta(z)\eta(2z)\eta(3z)\eta(6z)]^2 dz,
\]

(3.1.8)

we are not able to further reduce the special values of \(pF_{p-1}\) (with \(p \in \{7, 6, 5, 4\}\)) appearing in (2.2.7) and (3.1.2) to more familiar mathematical constants. However, we do not exclude the possibility of finding their closed-form evaluations in future efforts. Later in this article, we will also keep some generalized hypergeometric expressions “unevaluated”, due to our current lack of quantitative understanding for them. \(\square\)

\footnote{It is arguable whether \(L(f_{4,6}, 2)\) should count as a closed-form evaluation in its own right. As one may recall, Bloch–Kerr–Vanhove [17] and Samart [33] have expressed the 3-loop sunrise diagram \(2^3 \int_0^\infty I_0(t)(K_0(t))^3 \, dt\) as \(\frac{\Gamma_6}{\pi^6} L(f_{3,15}, 2)\), for a modular form \(f_{3,15}(z) = [\eta(3z)\eta(5z)^2] + [\eta(z)\eta(15z)]^2\) of weight 3 and level 15. Meanwhile, according to the work of Rogers–Wan–Zucker [28], such a special \(L\)-value can be reduced to a product of gamma values at rational arguments, thus leaving us a formula \(2^3 \int_0^\infty I_0(t)(K_0(t))^3 \, dt = \frac{1}{30\sqrt{5}} \Gamma \left(\frac{1}{15} \right) \Gamma \left(\frac{2}{15} \right) \Gamma \left(\frac{4}{15} \right) \Gamma \left(\frac{7}{15} \right)\) (see [33, Theorem 2.2.2] for a simplified proof of this integral identity). At the time of writing, it is not clear to us if the special \(L\)-value \(L(f_{4,6}, 2)\) admits a similar reduction.}
3.2. Mellin–Barnes representations of some Bessel moments. To prepare for computations later in this article, we represent certain linear combinations of Feynman diagrams as Meijer G-functions.

Lemma 3.2.1 (Mellin–Barnes representations for Feynman integrals). For $u \in (0, 4)$, we have

\[
\int_0^\infty I_0(\sqrt{ut})[K_0(t)]^4 t\,dt + 4 \int_0^\infty K_0(\sqrt{ut})I_0(t)[K_0(t)]^3 t\,dt = \frac{\sqrt{3}\pi^{3/2}}{2\pi i} \Gamma\left(\frac{1}{3} - s\right) \Gamma\left(\frac{1}{2} - s\right) \Gamma(s) \left(\frac{108u}{(4-u)^3} \right)^{-s} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \frac{ds}{\Gamma(1-s)\Gamma(s + 1/2)} \tag{3.2.1}
\]

and

\[
\int_0^\infty K_0(\sqrt{ut})[I_0(t)]^2[\phi_0(t)]^2 t\,dt + \int_0^\infty I_0(\sqrt{ut})I_0(t)[K_0(t)]^2 t\,dt = \frac{\sqrt{3}}{8\pi^2(4-u)} \frac{1}{2\pi i} \Gamma\left(\frac{1}{3} - s\right) \Gamma\left(\frac{1}{2} - s\right) \Gamma(s) \left(\frac{108u}{(4-u)^3} \right)^{-s} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \frac{ds}{\Gamma(1-s)\Gamma(s + 1/2)} \tag{3.2.2}
\]

Proof. From [40, Lemma 4.2], we know that the left-hand sides of both (3.2.1) and (3.2.2) are annihilated by Vanhove’s third-order differential operator [33, Table 1, $n = 4$]

\[
u^2(u-4)(u-16) \frac{d^3}{du^3} + 6u(u^2 - 15u + 32) \frac{d^2}{du^2} + (7u^2 - 68u + 64) \frac{d}{du} + (u - 4). \tag{3.2.3}
\]

Suppose that the left-hand side of either (3.2.1) or (3.2.2) takes the form $\frac{1}{4-u} g\left(\frac{-108u}{(4-u)^3}\right)$, and set $w = \frac{-108u}{(4-u)^3}$, then we can check that $g(w)$ satisfies the following homogeneous differential equation:

\[
9(w-1)w^2 g'''(w) + \frac{27}{2} (3w-2) w g''(w) + (29w-9) g'(w) + g(w) = 0. \tag{3.2.4}
\]

Thus, the function $g(w)$ must be a linear combination of three solutions:

\[
\begin{align*}
g_1(w) &= \frac{1}{3} \frac{2}{3} \frac{2}{3} \binom{w}{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}}, \\
g_2(w) &= \frac{2}{3} \frac{3}{3} \binom{w}{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}}, \\
g_3(w) &= \frac{3}{3} \frac{3}{3} \binom{w}{-w, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}}.
\end{align*} \tag{3.2.5}
\]

The exact contribution from each member in this basis set can be determined by asymptotic analysis, which will occupy the rest of this proof.

First, we consider (3.2.1). In [39, Propositions 3.1.2 and 5.1.4], we have effectively shown that

\[
\int_0^\infty I_0(\sqrt{ut})[K_0(t)]^4 t\,dt + 4 \int_0^\infty K_0(\sqrt{ut})I_0(t)[K_0(t)]^3 t\,dt = \pi^4 \int_0^\infty J_0(\sqrt{ut})[J_0(t)]^4 t\,dt = \frac{\pi^4 p_4(\sqrt{u})}{6 \sqrt{u}} \tag{3.2.6}
\]

holds for $0 < u < 4$. Here, $J_0(x) := \frac{2}{\pi} \int_0^{\pi/2} \cos(x \cos \varphi) d\varphi$ is the Bessel function of the first kind and zeroth order, while $p_4(x) := \int_0^\infty J_0(xt)[J_0(t)]^4 xt\,dt$, $x > 0$ is Kluyver’s probability density for the
distance \(x \) traveled by a rambler walking in the Euclidean plane, taking 4 consecutive and independent unit steps, each aiming at uniformly distributed directions \([9]\). As \(u \to 0^+ \), we compare

\[
\begin{align*}
\frac{1}{4-u} g_1 & \left(-\frac{108u}{(4-u)^3} \right) = \frac{1}{4} + O(u), \\
\frac{1}{4-u} g_2 & \left(-\frac{108u}{(4-u)^3} \right) = \frac{\pi^{3/2}}{2\sqrt{3}} \left(-i\pi + \log \frac{64}{u} \right) + O(u \log u) , \tag{3.2.7}
\end{align*}
\]

with the asymptotic behavior of Klyuyver’s probability density \([9] \; \text{Example 4.3 and Theorem 4.4} \]

\[
\frac{p_4(\sqrt{u})}{\sqrt{u}} = -\frac{3\log u}{4\pi^2} + O(1), \tag{3.2.8}
\]

we arrive at an expression

\[
\frac{p_4(\sqrt{u})}{\sqrt{u}} = \frac{3\sqrt{3}}{2\pi^{7/2}(4-u)} \left[\frac{2i\pi^{5/2}}{\sqrt{3}} g_1 \left(-\frac{108u}{(4-u)^3} \right) + g_2 \left(-\frac{108u}{(4-u)^3} \right) \right]
= \frac{1}{4-u} \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \frac{3\sqrt{3} \Gamma \left(\frac{3}{2} - s \right) \Gamma \left(\frac{2}{3} - s \right) \Gamma(s)^2}{2\pi^{5/2} \Gamma(1-s) \Gamma(s + \frac{1}{2})} \left(-\frac{108u}{(4-u)^3} \right)^{-s} ds. \tag{3.2.9}
\]

This proves \((3.2.1)\).

Next, we study \((3.2.2)\), which essentially says that

\[
\int_0^{\infty} K_0(\sqrt{u}t) [I_0(t)]^2 [K_0(t)]^2 t \, dt
= \frac{\sqrt{3}}{8\pi^{3/2}(4-u)} g_3 \left(-\frac{108u}{(4-u)^3} \right) - \frac{\pi^2}{4(4-u)} g_1 \left(-\frac{108u}{(4-u)^3} \right). \tag{3.2.10}
\]

We need two stages of asymptotic analysis to verify the identity above, which will be described in the two paragraphs to follow.

As \(u \to 0^+ \), we have \([\text{cf.} \; 40 \; \text{Proposition 2.5}]\)

\[
\begin{align*}
\int_0^{\infty} K_0(\sqrt{u}t) [I_0(t)]^2 [K_0(t)]^2 t \, dt
& = \frac{1}{2} \int_0^{\infty} K_0(\sqrt{ut}) I_0(t) K_0(t) \, dt \\
& + \int_0^{\infty} K_0(\sqrt{ut}) I_0(t) K_0(t) \left[I_0(t) K_0(t) - \frac{1}{2t} \right] \, dt \\
& = \frac{1}{2} \int_0^{\infty} K_0(\sqrt{ut}) I_0(t) K_0(t) \, dt + O(\log u), \tag{3.2.10}
\end{align*}
\]

where Bailey’s integral formula \([\text{cf.} \; 3, (3.3)]\) leads us to

\[
\begin{align*}
\frac{1}{2} \int_0^{\infty} K_0(\sqrt{ut}) I_0(t) K_0(t) \, dt
& = \frac{1}{2\sqrt{u}} \mathcal{K} \left(\frac{\sqrt{1 - i\sqrt{(4-u)/u}}}{2} \right) \mathcal{K} \left(\frac{\sqrt{1 + i\sqrt{(4-u)/u}}}{2} \right) \\
& = \frac{1}{32} \log^2 \frac{4}{u} + O(\log u). \tag{3.2.11}
\end{align*}
\]
So far, we know that [cf. the last line in (3.2.7), and the first equality in (3.2.9)]

\[
\int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t \, dt = \frac{\sqrt{3}}{8\pi^{3/2}(4-u)^{3/2}}g_3\left(-\frac{108u}{(4-u)^3}\right) + \frac{A}{4-u}g_1\left(-\frac{108u}{(4-u)^3}\right) + \frac{Bp_4(\sqrt{u})}{\sqrt{u}}
\]

(3.2.12)

for certain constants \(A\) and \(B\).

In the regime where \(u \to 4^-\), we have

\[
\begin{align*}
\frac{1}{4-u}g_1\left(-\frac{108u}{(4-u)^3}\right) &= \frac{3}{2^{14/3}\pi} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{3}}\right]^6 - \frac{\sqrt{u}}{2\pi} + O(4-u), \\
p_4(\sqrt{u}) &= \frac{3\sqrt{3}}{2^{14/3}\pi^2} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{3}}\right]^6 + O(4-u), \\
\frac{1}{4-u}g_3\left(-\frac{108u}{(4-u)^3}\right) &= \frac{\pi^{5/2}}{2^{5/3}\sqrt{3}} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{3}}\right]^6 - \frac{\pi^{5/2}\sqrt{4-u}}{\sqrt{3}} + O(4-u).
\end{align*}
\]

(3.2.13)

As we may recall, soon after the following evaluation

\[
\int_0^\infty K_0(2t)[I_0(t)]^2[K_0(t)]^2 t \, dt = \frac{\pi}{2^{20/3}} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{3}}\right]^6
\]

(3.2.14)

had been conjectured by Bailey–Borwein–Broadhurst–Glasser [101], (101]), the same was verified by Broadhurst [10]. Now that \(\int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t \, dt\) admits a Taylor expansion in a neighborhood of \(u = 4\), with its leading coefficient given by the right-hand side of (3.2.14), we must have \(A = -\frac{\pi}{4}, B = 0\) in (3.2.12), thereby proving (3.2.2).

\[\square\]

Remark For completeness, we give another proof of (3.2.14), along with some generalizations. Our methods are largely independent of those employed in [10].

First, we note that the evaluation

\[
\int_0^\infty I_0(2t)[I_0(t)]^2[K_0(t)]^2 t \, dt = \frac{3\pi}{2^{20/3}} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{3}}\right]^6
\]

(3.2.15)

follows from (2.2.2) and the first line in (3.2.13).

Then, for \(\ell \in \mathbb{Z}_{>0}\) and \(\lambda, \mu \in (0, \infty)\), we consider a vanishing contour integral

\[
\int_{-i\infty}^{i\infty} z[H_0^{(1)}(z)]^\ell[H_0^{(2)}(z)]^\ell[\pi I_0(\lambda z)H_0^{(1)}(\mu z)H_0^{(2)}((\lambda + \mu)z)] \, dz = 0,
\]

(3.2.16)

where the contour closes to the right, thanks to asymptotic expansions of the Hankel functions in the \(|z| \to \infty\) regime [36, §7.2]. Spelling out the Hankel functions along the imaginary axis in terms of modified Bessel functions, we arrive at a sum rule

\[
i \int_0^\infty [K_0(t)]^\ell[\pi I_0(t) + iK_0(t)]^\ell[\pi I_0(\lambda t) + iK_0(\lambda t)][\pi I_0(\mu t) + iK_0(\mu t)]K_0((\lambda + \mu)t) t \, dt
\]

\[
-(-1)^\ell \int_0^\infty [K_0(t)]^\ell[\pi I_0(t) - iK_0(t)]^\ell K_0(\lambda t)K_0(\mu t)[\pi I_0((\lambda + \mu)t) - iK_0((\lambda + \mu)t)] t \, dt = 0.
\]

(3.2.17)

Setting \(\lambda = \mu = 1\) in (3.2.17), we obtain a cancelation formula that is valid for every \(\ell \in \mathbb{Z}_{>0}:

\[
i \int_0^\infty [K_0(t)]^\ell[\pi I_0(t) + iK_0(t)]^\ell+2K_0(2t) t \, dt
\]

\[
-(-1)^\ell \int_0^\infty [K_0(t)]^\ell+2[\pi I_0(t) - iK_0(t)]^\ell[\pi I_0(2t) - iK_0(2t)] t \, dt = 0.
\]

(3.2.18)
This incorporates
\[\int_0^\infty I_0(2t)I_0(t)[K_0(t)]^2 t \, dt = 3 \int_0^\infty K_0(2t)[I_0(t)]^2[K_0(t)]^2 t \, dt \quad (3.2.19) \]
as a special case (real part for \(\ell = 1 \)).

3.3. **Representations for IKM(1,5;3).** Towards our goal of proving
\[\int_0^\infty I_0(t)[K_0(t)]^5 t(1-8t^2) \, dt = \frac{7\pi^3}{108\sqrt{3}} \int_0^1 \left[\, _2F_1 \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3} \\ 1 \end{array} \mid x \right) \right]^2 \frac{dx}{\sqrt{1-x}}, \quad (3.3.1) \]
we begin with two lemmata concerning diagrams of sunrise type, namely,
\[\int_0^\infty I_0(t)[K_0(t)]^5 t^{2m+1} \, dt \quad (3.3.2) \]
for \(m \in \{0,1,2\} \).

Lemma 3.3.1 (Alternative integral representations for **IKM(1,5;3) and IKM(1,5;5)**). We have the following identities:
\[\int_0^\infty I_0(t)[K_0(t)]^3 t^3 \, dt = \frac{\pi^2}{3} \int_0^\infty I_0(t)K_0(t) \left\{ [I_0(t)]^2[K_0(t)]^2 - \frac{1}{4t^2} \right\} t^3 \, dt, \quad (3.3.3) \]
\[\int_0^\infty I_0(t)[K_0(t)]^5 t^5 \, dt = \frac{\pi^2}{3} \int_0^\infty I_0(t)K_0(t) \left\{ [I_0(t)]^2[K_0(t)]^2 - \frac{1}{4t^2} - \frac{1}{16t^4} \right\} t^5 \, dt. \quad (3.3.4) \]

Proof. As a variation upon \[32\] (3.13)), we study a vanishing contour integral
\[\lim_{T \to \infty} \int_{-iT}^{iT} H_0^{(1)}(z)H_0^{(2)}(z) \left\{ [H_0^{(1)}(z)H_0^{(2)}(z)]^2 - \frac{4}{\pi^2 z^2} \right\} z^3 \, dz = 0, \quad (3.3.5) \]
where \(H_0^{(1)}(z) \) and \(H_0^{(2)}(z) \) are cylindrical Hankel functions. By pairing up the integrand at \(z = it \) and \(z = -it \), and using the fact that
\[H_0^{(1)}(it)H_0^{(2)}(it) = \frac{4K_0(|t|)}{\pi^2} \left[K_0(|t|) - \frac{\pi i t}{|t|} I_0(|t|) \right], \quad \forall t \in (-\infty,0) \cup (0,\infty), \quad (3.3.6) \]
we may reduce the vanishing contour integral into our claimed result in (3.3.3).

The proof of (3.3.4) founds on a similar principle.

Lemma 3.3.2 (A sum rule for Bessel moments). We have the following vanishing identity:
\[\int_0^\infty I_0(t)[K_0(t)]^5 t(2-85t^2+72t^4) \, dt = 0. \quad (3.3.7) \]

Proof. In [\[1, \S6.2\]], Bailey–Borwein–Broadhurst–Glasser reported that (3.3.7) is correct up to 1200 decimal places. We now prove this sum rule using Vanhove’s fourth-order differential operator \[33\], Table 1, \(n = 5 \]
\[\bar{L}_4 := u^2(u-25)(u-9)(u-1)\frac{d^4}{du^4} + 2u(5u^3 - 140u^2 + 777u - 450)\frac{d^3}{du^3} \]
\[+ (25u^3 - 518u^2 + 1839u - 450)\frac{d^2}{du^2} \]
\[+ (3u-5)(5u-57)\frac{d}{du} + (u-5), \quad (3.3.8) \]
which satisfies \(\bar{L}_4 \int_0^\infty I_0(\sqrt{u}t)K_0(t)[K_0(t)]^4 t \, dt = -\frac{15}{2} \quad [40, \text{Lemma 4.2}] \). Differentiating under the integral sign in the identity below,
\[\frac{d}{du} \left\{ \bar{L}_4 \int_0^\infty I_0(\sqrt{u}t)K_0(t)[K_0(t)]^4 t \, dt \right\} = 0, \quad (3.3.9) \]
before specializing to \(u = 1 \), we arrive at \(\frac{1}{2} \int_0^\infty I_0(t)(K_0(t))^5 t(2 - 85t^2 + 72t^4) \, dt = 0 \), as claimed.

Remark In \(1 \S 6.1 \), Bailey–Borwein–Broadhurst–Glasser reported that \(\int_0^\infty [I_0(t)]^2(K_0(t))^4 t(2 - 85t^2 + 72t^4) \, dt = 0 \) is correct up to 1200 decimal places. This sum rule can be proved by a similar procedure as in the lemma above, namely, by considering

\[
\frac{d}{du} \left\{ \bar{L}_4 \int_0^\infty I_0(\sqrt{u}t)I_0(t)(K_0(t))^4 t \, dt \right\} = 0
\]

at \(u = 1 \).

Proposition 3.3.3 (Mellin–Barnes integrals for \(\text{IKM}(1,5;2n+1), n \in \{0,1,2\} \)). (a) Setting

\[
\phi(s) := \frac{\pi^3 \Gamma(\frac{3}{5} - s) \Gamma(\frac{3}{5} - s) \Gamma(s - \frac{1}{6}) \Gamma(s + \frac{1}{6})}{72\sqrt{3}[\Gamma(1-s)]^2 [\Gamma(s + \frac{1}{2})]^2},
\]

we have

\[
\int_0^\infty I_0(t)(K_0(t))^5 t \, dt \equiv \text{IKM}(1,5;1)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \, ds,
\]

\[
\int_0^\infty I_0(t)(K_0(t))^5 t^3 \, dt \equiv \text{IKM}(1,5;3)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \left[3(5-6s) + \frac{1}{2} - \frac{2}{3} \right] \, ds - \frac{2\pi^{5/2}}{27\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9,
\]

\[
\int_0^\infty I_0(t)(K_0(t))^5 t^5 \, dt \equiv \text{IKM}(1,5;5)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \left[\frac{25}{54(7-6s)} + \frac{43}{108(5-6s)} + \frac{23}{4(2s+1)} - \frac{45}{2(2s+3)} + \frac{68}{27} \right] \, ds
\]

\[
\quad - \frac{43\pi^{5/2}}{486\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9 - \frac{5\pi^{5/2}}{331776} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{\pi}} \right]^9.
\]

Moreover, we have the following vanishing identity:

\[
0 = \frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \left[\frac{100}{3(7-6s)} + \frac{1}{3(5-6s)} + \frac{329}{2s+1} - \frac{1620}{2s+3} + 240 \right] \, ds
\]

\[
\quad - \frac{5\pi^{5/2}}{4608} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{\pi}} \right]^9 - \frac{2\pi^{5/2}}{27\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9.
\]

(b) We have

\[
\frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \left(\frac{1}{5-6s} - \frac{2}{1+2s} + 1 \right) \, ds = \frac{2\pi^{5/2}}{9\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9,
\]

which entails

\[
\int_0^\infty I_0(t)(K_0(t))^5 t^3 \, dt = \frac{1}{2\pi i} \int_{\frac{3}{4} - i\infty}^{\frac{3}{4} + i\infty} \phi(s) \left[\frac{5}{6(5-6s)} - \frac{1}{6} \right] \, ds - \frac{5\pi^{5/2}}{27\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9.
\]
Proof: (a) One can verify (3.3.12) by counting the residues at \(s = n + \frac{1}{3}, n + \frac{2}{3} \) for \(n \in \mathbb{Z}_{\geq 0} \), before comparing to the hypergeometric identity in (2.2.1). Here, contour closure is permissible, due to the leading asymptotic behavior

\[
\phi(s) \sim \frac{\pi^3}{72\sqrt{3s^2}} \left[\frac{3}{2\cos(2\pi s) + 1} - 1 \right], \quad s \to \infty. \tag{3.3.18}
\]

We begin our treatment of (3.3.13) with an analog of the Neumann addition formula in (2.2.4), namely

\[
I_0(t)K_0(t) = \frac{2}{\pi} \int_0^\pi K_0(2t \cos \theta) \, d\theta, \tag{3.3.19}
\]

as well as an integral formula \(\int_0^\infty K_0(\sqrt{u}t) \, dt = \frac{1}{u} \) for \(u > 0 \) [36, §13.21(8)], which lead us to

\[
\pi^2 \int_0^\infty I_0(t)K_0(t) \left\{ [I_0(t)]^2[K_0(t)]^2 - \frac{1}{4t^2} \right\} t^3 \, dt
\]

\[
= \pi \int_0^\infty \left(\int_0^{4} \left\{ [I_0(t)]^2[K_0(t)]^2 - \frac{1}{4t^2} \right\} \frac{K_0(\sqrt{u}t) \, du}{\sqrt{u}(4-u)} \right) t^3 \, dt
\]

\[
= \pi \int_0^{4} \left\{ \int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t^3 \, dt - \frac{1}{4u} \right\} \frac{du}{\sqrt{u}(4-u)}. \tag{3.3.20}
\]

Writing

\[
\varphi(u, s) := \frac{\sqrt{3}}{8\pi^{3/2}} \frac{\Gamma\left(\frac{1}{3}-s\right)\Gamma\left(\frac{1}{2}-s\right)\Gamma\left(\frac{2}{3}-s\right)\Gamma(s)}{4-u} \left[\frac{108u}{(4-u)^3} \right]^{-s} \left\{ \frac{108u}{(4-u)^3} \right\}^{-s}
\]

\[
= \frac{\sqrt{3} \cot^2(\pi s)\Gamma\left(\frac{1}{3}-s\right)\Gamma\left(\frac{1}{2}-s\right)\Gamma\left(\frac{2}{3}-s\right)\Gamma(s)}{8 \pi} \left[\frac{108u}{(4-u)^3} \right]^{-s} \tag{3.3.21}
\]

for \(u \in (0, 4) \), while referring to (2.2.3) and (3.2.2), we obtain

\[
\int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t \, dt = \frac{1}{2\pi i} \int_\frac{i}{4}^{\frac{1}{4}+i\infty} \varphi(u, s) \, ds
\]

\[
= \frac{1}{2\pi i} \int_\frac{i}{4}^{\frac{1}{4}+i\infty} \varphi(u, s) \left[1 - \left(\frac{4-u}{4} \right)^{1-3s} \left(1 - \frac{3s-1}{4}u \right) \right] \, ds
\]

\[
+ \frac{1}{2\pi i} \int_\frac{i}{4}^{\frac{1}{4}+i\infty} \varphi(u, s) \left(\frac{4-u}{4} \right)^{1-3s} \left(1 - \frac{3s-1}{4}u \right) \, ds. \tag{3.3.22}
\]

Shifting contours while picking up residues, we arrive at a decomposition

\[
\int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t \, dt
\]

\[
= \frac{1}{2\pi i} \int_\frac{i}{4}^{\frac{1}{4}+i\infty} \varphi(u, s) \left[1 - \left(\frac{4-u}{4} \right)^{1-3s} \left(1 - \frac{3s-1}{4}u \right) \right] \, ds
\]

\[
+ \frac{1}{2\pi i} \int_\frac{i}{4}^{\frac{3}{4}+i\infty} \varphi(u, s) \left(\frac{4-u}{4} \right)^{1-3s} \, ds - \frac{1}{2\pi i} \int_\frac{1}{4}^{-i\infty} \varphi(u, s) \left(\frac{4-u}{4} \right)^{1-3s} \frac{3s-1}{4} \, ds
\]

\[
+ \log u \frac{\log u}{32} \frac{\log u}{4096} + \frac{\pi^2}{96} + \frac{9\log^2 u}{8}. \tag{3.3.23}
\]
Consequently, in view of the Bessel differential equation \(\left(u \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial u} \right) K_0(\sqrt{u}t) = \frac{t^2}{4} K_0(\sqrt{u}t) \), we have the following identity for \(u \in (0, 4) \):

\[
\int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t^3 \, dt - \frac{1}{4u} = \frac{4}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \left(u \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial u} \right) \left\{ \varphi(u, s) \left[1 - \left(\frac{4-u}{4} \right)^{1-3s} \right] \right\} \, ds + \frac{4}{2\pi i} \int_{\frac{3}{4}-i\infty}^{\frac{3}{4}+i\infty} \left(u \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial u} \right) \left[\frac{\varphi(u, s)}{4} \right]^{1-3s} \frac{3s-1}{4} u \, ds. \quad (3.3.24)
\]

Now, we complete the integration over \(u \) in (3.3.20), by applying the explicit formula for \(\varphi(u, s) \) to the equation above, and invoking the Fubini theorem for exchanging the order of integrations in absolutely convergent double integrals. The result reads:

\[
\int_0^4 \left\{ \int_0^\infty K_0(\sqrt{u}t)[I_0(t)]^2[K_0(t)]^2 t^3 \, dt - \frac{1}{4u} \right\} \frac{du}{\sqrt{u}(4-u)} = - \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \frac{\sqrt{3}\pi \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{2}{3} - s \right) [\Gamma(s)]^3}{2 \Gamma \left(s - \frac{1}{2} \right) \Gamma \left(s + \frac{3}{2} \right)} \left\{ \frac{2^{2(s-2)} 3s^3 - 5s^2 - s + 1}{3^{3s}} \right\} \left(\frac{2^{2(s-2)} 3s^3 - 5s^2 - s + 1}{\Gamma(1-s)} \right) \, ds + \frac{1}{36 \cos(3\pi s)} \left(\frac{\pi}{4} - \frac{\pi}{6} - \frac{\pi}{6} \right) \Gamma(s) \, ds + \frac{1}{2\pi i} \int_{\frac{3}{4}-i\infty}^{\frac{3}{4}+i\infty} \frac{2^{2(s-2)} \sqrt{3}\pi \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{2}{3} - s \right) [\Gamma(s)]^3}{2 \Gamma \left(1-s \right) \Gamma \left(s + \frac{3}{2} \right)} \, ds + \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \frac{2^{2(s-2)} \sqrt{3}\pi \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{2}{3} - s \right) [\Gamma(s)]^3}{4 \Gamma \left(1-s \right) \Gamma \left(s + \frac{1}{2} \right) \Gamma \left(s + \frac{3}{2} \right)} \, ds. \quad (3.3.25)
\]

We can shift the contour of the penultimate integral to \(\text{Re} s = \frac{1}{4} \), without encountering any singularities on the way. This further allows us to combine the last two integrals, and turn the expression above into:

\[
- \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \frac{\sqrt{3}\pi \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{2}{3} - s \right) [\Gamma(s)]^3}{2 \Gamma \left(s - \frac{1}{2} \right) \Gamma \left(s + \frac{3}{2} \right)} \left\{ \frac{2^{2(s-2)} 3s^3 - 5s^2 - s + 1}{3^{3s}} \right\} \left(\frac{2^{2(s-2)} 3s^3 - 5s^2 - s + 1}{\Gamma(1-s)} \right) \, ds + \frac{(2s - 1)\pi \cos(\pi s)}{36 \cos(3\pi s)} \Gamma \left(\frac{\pi}{4} - \frac{\pi}{6} - \frac{\pi}{6} \right) \Gamma(s) \, ds - \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \frac{\sqrt{3}\pi \Gamma \left(\frac{1}{3} - s \right) \Gamma \left(\frac{2}{3} - s \right) [\Gamma(s)]^3}{2 \Gamma \left(s - \frac{1}{2} \right) \Gamma \left(s + \frac{3}{2} \right)} \frac{2^{2(s-2)} 3s^3 - 5s^2 - s + 1}{3^{3s}} \frac{\Gamma(1-s)}{\Gamma(1-s)} \, ds. \quad (3.3.26)
\]
Counting residues at \(s = \frac{1}{3} \) and \(s = \frac{2}{3} \) in the last integrand, we may further simplify our result into

\[
\frac{3}{\pi} \int_0^\infty I_0(t)[K_0(t)]^5 t^3 \, dt
= \pi \int_0^\infty I_0(t)K_0(t) \left\{ [I_0(t)]^2K_0(t)^2 - \frac{1}{4t^2} \right\} t^3 \, dt
\]

\[
= \frac{1}{2\pi i} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{\pi^2 \cos(\pi s)}{24\sqrt{3}\cos(3\pi s)} \left(1 - 2s \right) \Gamma\left(\frac{1}{3} - s \right) \Gamma\left(\frac{2}{3} - s \right) \Gamma(s) \frac{\left[\Gamma(s) \right]^2}{\Gamma\left(\frac{1}{3} \right) \Gamma\left(\frac{2}{3} - s \right) \Gamma\left(\frac{2}{3} - s \right)} \, ds
+ \frac{\pi^{3/2}}{1920} \left[\frac{\Gamma\left(\frac{1}{3} \right)}{\sqrt{\pi}} \right]^9 - \frac{\pi^{3/2}}{21\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3} \right)} \right]^9.
\]

(3.3.27)

Summing over residues at \(s = n + \frac{1}{3} \) and \(s = n + \frac{2}{3} \) for \(n \in \mathbb{Z}_{>0} \), we can evaluate last formula as

\[
\frac{\pi^{3/2}}{1920} \left[\frac{\Gamma\left(\frac{1}{3} \right)}{\sqrt{\pi}} \right]^9 \left[1 - \frac{8\pi^{3/2}}{21\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3} \right)} \right]^9 \right] 4F_3\left(\begin{array}{c} -\frac{1}{6}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3} \\ -\frac{1}{6}, \frac{1}{2}, \frac{11}{6} \end{array} \right) 1
= \frac{\pi^{3/2}}{7040} \left[\frac{\Gamma\left(\frac{1}{3} \right)}{\sqrt{\pi}} \right]^9 \left[1 + \frac{16\pi^{3/2}}{91\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3} \right)} \right]^9 \right] 4F_3\left(\begin{array}{c} \frac{1}{6}, \frac{3}{2}, \frac{5}{3}, \frac{5}{3} \\ \frac{5}{6}, \frac{7}{6}, \frac{7}{6}, \frac{19}{6} \end{array} \right) 1.
\]

(3.3.28)

The same sum of hypergeometric series is also produced by the following expression:

\[
\frac{3}{\pi} \left\{ \frac{1}{2\pi i} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \Phi(s) \left[\frac{1}{3(5-6s)} + \frac{1}{2s+1} - \frac{2}{3} \right] ds - \frac{2\pi^{5/2}}{27\sqrt{3}} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3} \right)} \right]^9 \right\}.
\]

(3.3.29)

because the trailing constant cancels out the residue at \(s = \frac{5}{6} \), and the series expansions agree, term by term, with the residue contributions at the poles \(s = n + \frac{1}{3}, n + \frac{2}{3} \) for \(n \in \mathbb{Z}_{>0} \). Thus, we have confirmed (3.3.13).

With essentially the same set of ideas, we can use (3.3.4) to demonstrate (3.3.14).

Transcribing (3.3.7) using (3.3.12)–(3.3.14), we arrive at (3.3.15).

(b) To facilitate further analysis, we write \(C_+ \) for the union of infinitesimal clockwise circular contours centered at \(\{ n + \frac{1}{3} \mid n \in \mathbb{Z}_{\geq 0} \} \cup \{ n + \frac{2}{3} \mid n \in \mathbb{Z}_{\geq 0} \} \). This notation allows us to compress the right-hand sides of (3.3.13)–(3.3.15) into the form

\[
\frac{1}{2\pi i} \int_{C_+} \Phi(s) \, ds,
\]

(3.3.30)

without the trailing constants.

Equipped with the reflection formula \(\Phi(s) = \Phi\left(\frac{1}{2} - s \right) \) and the recursion for Euler’s gamma function, we have

\[
\frac{1}{2\pi i} \int_{C_+} \Phi(s) \left(\frac{1}{7-6s} - \frac{1}{4} \right) ds
= \frac{1}{2\pi i} \int_{C_+} \Phi(s) \left[\frac{6}{7-6s} + \frac{1}{2(5-6s)} - \frac{3}{4(1-s)} - \frac{1}{4} \right] ds
\]

(3.3.31)

upon a reflection \(s \mapsto \frac{3}{2} - s \), which subsequently rearranges to

\[
0 = \frac{1}{2\pi i} \int_{C_+} \Phi(s) \left[\frac{5}{7-6s} + \frac{1}{2(5-6s)} - \frac{3}{4(1-s)} \right] ds
= \frac{1}{2\pi i} \int_{C_+} \Phi(s) \left[\frac{5}{7-6s} + \frac{1}{2(5-6s)} - \frac{3}{2(1+2s)} \right] ds.
\]

(3.3.32)
Here, in the last step, we have applied the reflection $s \to \frac{1}{2} - s$ to the last summand of the integrand. Likewise, by reflection and rearrangements, we obtain

$$
\frac{1}{2\pi i} \int_{C_*} \Phi(s) \left(\frac{1}{2} - \frac{1}{1+2s} \right) \, ds
$$

$$
= \frac{1}{2\pi i} \int_{C_*} \Phi(s) \left[\frac{12}{7-6s} + \frac{3}{7(5-6s)} - \frac{1}{1+s} - \frac{18}{7(2-s)} + \frac{1}{2} \right] \, ds
$$

(3.3.33)

and its equivalent form

$$
0 = \frac{1}{2\pi i} \int_{C_*} \Phi(s) \left[\frac{12}{7-6s} + \frac{3}{7(5-6s)} - \frac{1}{1+2s} - \frac{36}{7(3+2s)} \right] \, ds.
$$

(3.3.34)

Using (3.3.32) and (3.3.34), we can eliminate the terms related to $\frac{1}{7-6s}$ and $\frac{1}{1+2s}$ from (3.3.15), which brings us

$$
0 = \frac{1}{2\pi i} \int_{C_*} \Phi(s) \left[\frac{1}{5-6s} - \frac{2}{1+2s} + 1 \right] \, ds.
$$

(3.3.35)

Employing the equation above, we rewrite (3.3.13) as

$$
\int_0^\infty I_0(t)[K_0(t)]^3 t^3 \, dt = \frac{1}{2\pi i} \int_{C_*} \Phi(s) \left[\frac{5}{6(5-6s)} - \frac{1}{6} \right] \, ds.
$$

(3.3.36)

Replacing the contour C_* by the vertical line running from $\frac{1}{4} - i\infty$ to $\frac{1}{4} + i\infty$, we can convert the last two displayed equations into the claimed identities. □

Remark At an earlier stage of the current work, we attempted to retrieve (3.3.13) from the “finite part” of the following divergent integral:

$$
\frac{4\pi}{3} \int_0^4 \left[\left(u \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial u} \right) \int_0^\infty I_0(\sqrt{ut})I_0(t)[K_0(t)]^3 t \, dt \right] \frac{du}{\sqrt{u(4-u)}}.
$$

(3.3.37)

Our previous “renormalized” calculations began with an expression for the indefinite integral

$$
= \frac{4^{2s-1}\pi}{3} \left[s^2 B_{\frac{3}{4}} \left(-s - \frac{1}{2}, 3s - \frac{5}{2} \right) + (s-1)(4s-1)B_{\frac{3}{4}} \left(\frac{1}{2} - s, 3s - \frac{5}{2} \right)
+(1-2s)^2 B_{\frac{3}{4}} \left(\frac{3}{2} - s, 3s - \frac{5}{2} \right) \right]
$$

(3.3.38)

in terms of incomplete beta functions, which are analytic continuations of $B_z(a,b):= \int_0^z t^{a-1}(1-t)^{b-1} \, dt$ for $\Re a > 1$. We then forcibly set $u = 4$ in the indefinite integral, and referred back to the Mellin–Barnes representation for $\int_0^\infty I_0(\sqrt{ut})I_0(t)[K_0(t)]^3 t \, dt$ in (2.2.3), before arriving at the integrand in (3.3.13). Later afterwards, we found that such formal arguments can be turned to rigorous computations, with appropriate subtractions and contour shifts before invocations of the Fubini theorem, as described in the proof above. □

With the foregoing preparations, we can prove the integral identity announced in (1.2.4).
Proposition 3.3.4 (Meijer reduction of the Broadhurst–Laporta integral). (a) We have

\[
\int_0^1 \left[2F_1 \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3} \\ 1 \end{array} \left| x \right. \right) \right]^2 \frac{dx}{\sqrt{1-x}} = G_{2.2}^{4.4} \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ 0, 1, -\frac{5}{6}, -\frac{1}{6} \end{array} \right) = \frac{-3}{4\pi^2} G_{2.2}^{4.4} \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ 0, 1, -\frac{5}{6}, -\frac{1}{6} \end{array} \right)
\]

\[
= \frac{3}{\sqrt{\pi}} \left\{ \frac{\sqrt{3}}{2^2} \left[\frac{\Gamma(1/3)}{\sqrt{\pi}} \right]^9 \right\}_{4F_3} \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ -\frac{1}{6}, \frac{5}{6}, \frac{5}{6} \end{array} \right) + 5 \frac{2^4}{7} \frac{\sqrt{\pi}}{\Gamma(1/3)} \frac{4F_3}{4F_3} \left(\begin{array}{c} -\frac{7}{6}, -\frac{1}{3}, -\frac{2}{3} \\ -\frac{5}{6}, -\frac{1}{3}, \frac{1}{3} \end{array} \right)
\]

\[
= \frac{6561}{3850} \gamma F_6 \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ \frac{3}{4}, \frac{1}{3}, \frac{1}{6}, \frac{13}{6}, \frac{17}{6}, \frac{17}{6} \end{array} \right).
\]

(b) The following identity holds:

\[
\int_0^\infty I_0(t)[K_0(t)]^5 t(1-8t^2) dt = \frac{7\pi^3}{108\sqrt{3}} \int_0^1 \left[2F_1 \left(\begin{array}{c} -\frac{1}{3}, \frac{1}{3} \\ 1 \end{array} \left| x \right. \right) \right]^2 \frac{dx}{\sqrt{1-x}}.
\]

Proof. (a) Using a hypergeometric identity

\[
2F_1 \left(\begin{array}{c} -\nu, \nu \\ 1 \end{array} \left| 1-t \right. \right) = t \left(1 + \frac{1-t}{\nu} \frac{d}{dt} \right) 2F_1 \left(\begin{array}{c} -\nu, \nu + 1 \\ 1 \end{array} \left| 1-t \right. \right),
\]

we can deduce a Mellin transform formula

\[
\int_0^1 2F_1 \left(\begin{array}{c} -\nu, \nu \\ 1 \end{array} \left| 1-t \right. \right) t^{s-1} dt = \frac{\Gamma(s)\Gamma(s+1)}{\Gamma(s+1-\nu)\Gamma(s+1+\nu)}, \quad \text{Res} > 1.
\]

from (2.2.8). Consequently, Mellin convolution brings us

\[
\int_0^1 \left[2F_1 \left(\begin{array}{c} -\nu, \nu \\ 1 \end{array} \left| 1-t \right. \right) \right]^2 t^\alpha dt
\]

\[
= \frac{1}{2\pi i} \int_{\delta-i\infty}^{\delta+i\infty} \frac{\Gamma(\alpha+1-s)\Gamma(\alpha+2-s)\Gamma(s)\Gamma(s+1)}{\Gamma(s+1-\nu)\Gamma(s+1+\nu)} ds.
\]

where \(\alpha \in (-1, \infty), \delta \in (0, \alpha + 1). \) This incorporates the first equality in (3.3.39), as a special case.

To prove the second equality in (3.3.39), simply investigate the kernel space of the following differential operator:

\[
z \left(z \frac{d}{dz} - \frac{1}{3} \right) \left(z \frac{d}{dz} + \frac{1}{3} \right) \left(z \frac{d}{dz} + \frac{1}{2} \right) - \left(z \frac{d}{dz} - \frac{1}{2} \right) z \frac{d}{dz} \left(z \frac{d}{dz} + \frac{5}{6} \right),
\]

in a similar fashion as its counterpart in Proposition 2.2.2.

The third equality in (3.3.39) follows from residue calculus, as in the proof of the last equality in Proposition 2.2.2.

To prove the last equality in (3.3.39), simply set \(a = \frac{3}{2}, b = \frac{3}{2}, c = \frac{1}{3}, d = -\frac{1}{3}, e = \frac{4}{3}, f = \frac{2}{3} \) in (3.1.1). (We note that there are actually 48 different choices of \(a, b, c, d, e, f \) in Bailey’s identity that fit the special \(G_{2.2}^{4.4} \) in question, producing four different \(\gamma F_6 \) forms in total. The
In the last step, we note that 2(1 − 3s) becomes 5 − 6s as we trade s for 1 − s. Meanwhile, according to (3.3.12) and (3.3.36), we have

\[
\int_0^\infty I_0(t)[K_0(t)]^5t(1-8t^2)dt = -\frac{1}{3}\frac{1}{2\pi i} \int_{C_*} \phi(s) \left(\frac{20}{5-6s} - 7\right) ds
\]

Pairing up the last two displayed equations, we arrive at our destination.
Remark As we set \(a_0 = n + \frac{1}{2}, a_1 = \frac{2}{3}, a_2 = n + \frac{1}{3}, a_3 = \frac{1}{3}, a_4 = n + \frac{1}{2}, a_5 = \frac{2}{3} - n \) in Zudilin’s integral formula (3.1.4), we obtain

\[
\frac{2^{11/3} \pi^{7/2} \left[\Gamma \left(n + \frac{1}{3} \right) \right]^2 \Gamma \left(n + \frac{1}{2} \right) \Gamma \left(n + \frac{3}{2} \right) \Gamma \left(\frac{1}{3} \right)^4}{\Gamma \left(\frac{1}{3} \right)^4} 2F_6 \left(\begin{array}{c} \frac{1}{2}, \frac{2}{3}, \frac{2}{3} - n, \frac{1}{2}, n + \frac{1}{2} \\ \frac{1}{3}, n + \frac{1}{2}, \frac{1}{2} \end{array} \right) = \int_0^1 \int_0^1 \frac{[xz(1-z)]^n}{(1-x[1-y(1-z)])^{2/3} \sqrt{1-x} y^{2/3} \sqrt{1-y} \sqrt{(1-z)^{2/3}}} \, dx \, dy \, dz \quad (3.3.52)
\]

For \(n = 0 \) and \(n = 1 \), we have just proved that the expression above evaluates to

\[
2^{4/3} \frac{24}{\pi} \text{IKM}(1,5;1) \quad \text{and} \quad 2^{4/3} \frac{32}{21 \pi} \text{IKM}(1,5;1) - 256 \text{IKM}(1,5;3)
\]

respectively. Numerically, we have also found that for small positive integers \(n \), the last triple integral can be written in the following form:

\[
2^{4/3} \frac{a_n \text{IKM}(1,5;1) + b_n \text{IKM}(1,5;3)}{\pi}, \quad \text{where} \quad a_n, b_n \in \mathbb{Q}. \quad (3.3.54)
\]

For example,

\[
a_2 = \frac{5359616}{24508575}, \quad b_2 = -\frac{47263744}{24508575} \quad (3.3.55)
\]

Since the denominators of the rational numbers \(a_n, b_n \) grow far too impetuously, we cannot use the formulations above to draw any definitive conclusion about the arithmetic nature for \(\text{IKM}(1,5;1) \) or \(\text{IKM}(1,5;3) \). We hope that some experts in Diophantine approximation will refine such identities in the future. \(\square \)

3.4. Representations for \(\text{IKM}(2,4;1) \) and \(\text{IKM}(2,4;3) \)

In Laporta’s calculation of 4-loop contribution to electron’s \(g - 2 \) [25, (27)], the final result did not involve the following Feynman diagram with two pairs of external legs

\[
= 2^3 \int_0^\infty [I_0(t)]^2 [K_0(t)]^4 t \, dt \equiv 2^3 \text{IKM}(2,4;1), \quad (3.4.1)
\]

but this diagram did appear in the \(\epsilon \)-expansion of master integrals.

In the next two propositions, we will verify the following integral identity

\[
\int_0^\infty [I_0(t)]^2 [K_0(t)]^4 t \, dt = \frac{\pi^2}{30} \int_0^1 2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \right) x \, 2F_1 \left(\begin{array}{c} \frac{1}{3}, \frac{2}{3} \\ 1 \end{array} \right) \frac{1-x}{\sqrt{1-x}} \, dx \quad (3.4.2)
\]

by turning both sides into special values of generalized hypergeometric series.

Proposition 3.4.1 (Broadhurst–Laporta representations). We have

\[
= 2^3 \int_0^\infty [I_0(t)]^2 [K_0(t)]^4 t \, dt
\]

\[
= \frac{6\pi^{3/2}}{5} \left\{ \frac{\sqrt{3}}{2^6} \left(\frac{\Gamma \left(\frac{1}{3} \right)}{\sqrt{\pi}} \right)^9 4F_3 \left(\begin{array}{c} \frac{1}{6}, \frac{1}{3}, \frac{1}{2} \\ \frac{2}{3}, \frac{5}{6}, \frac{5}{6} \end{array} \right) \left(\frac{1}{4} \right) \right\} + \frac{2^4}{5} \left\{ \frac{\sqrt{\pi}}{\Gamma \left(\frac{1}{4} \right)} \right\} \left(\frac{1}{4} \right) \right\} \left(\frac{1}{4} \right)
\]

\[
= \frac{4\pi^2}{5} 4F_3 \left(\begin{array}{c} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \\ \frac{5}{6}, 1, \frac{7}{6} \end{array} \right) \left(\frac{1}{4} \right), \quad (3.4.3)
\]

as indicated by Laporta [25, (27)] and Broadhurst (see [13, §2.2], [14, §2.2], [15, §2.1], [17, §3.1], [16, §3.1]).
Proposition 3.4.2 (Broadhurst integral). We have

\[
\int_0^1 2F_1 \left(\frac{1}{3}, \frac{2}{3} \middle| \frac{1}{1-x} \right) 2F_1 \left(\frac{1}{3}, \frac{2}{3} \middle| 1 \right) \frac{dx}{\sqrt{1-x}} = \frac{3}{4 \sqrt{2\pi^2}} G_{4,4}^{2,4} \left(\begin{array}{c} \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \\ 0, 0, \frac{1}{4}, \frac{1}{4} \end{array} \right) = 34F_3 \left(\begin{array}{c} \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \\ \frac{5}{6}, \frac{7}{6}, \frac{4}{3} \end{array} \right) \right).
\]
Proof. We paraphrase [31, (3.1.41)] as follows:

\[
\begin{align*}
\sin^2(v\pi) \frac{1}{\pi^2} 2\pi i \int_{\delta-i\infty}^{\delta+i\infty} \frac{[\Gamma(s)]^2 \Gamma(v+1-s)\Gamma(-v-s)\Gamma(\frac{1}{2}-s)}{\sqrt{\pi} \Gamma(1-s)} \frac{ds}{[4\pi(1-x)]^s},
\end{align*}
\]

where \(0 < \delta < \min\{v+1,-v\}, 0 < x < 1\). This allows us to compute

\[
\int_0^1 2F_1 \left(\begin{array}{c} -v, v+1 \\ 1 \end{array} \right) \left(x \right) 2F_1 \left(\begin{array}{c} -v, v+1 \\ 1 \end{array} \right) \left(1-x \right) \frac{dx}{\sqrt{1-x}}
\]

\[
= \sin^2(v\pi) \frac{1}{\sqrt{2}\pi^2} 2\pi i \int_{\delta-i\infty}^{\delta+i\infty} \frac{[\Gamma(\frac{1}{2}-s)]^2 [\Gamma(s)]^2 \Gamma(-s-v)\Gamma(-s+v+1)}{\Gamma(\frac{1}{4}-s)\Gamma(\frac{5}{4}-s)} \frac{ds}{[4\pi(1-x)]^s},
\]

where \(0 < \delta < \min\{v+1,-v\}, 0 < x < 1\). This allows us to compute

\[
\int_0^1 2F_1 \left(\begin{array}{c} -v, v+1 \\ 1 \end{array} \right) \left(x \right) 2F_1 \left(\begin{array}{c} -v, v+1 \\ 1 \end{array} \right) \left(1-x \right) \frac{dx}{\sqrt{1-x}}
\]

\[
= \sin^2(v\pi) \frac{1}{\sqrt{2}\pi^2} G_{4,4}^{2,4} \left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, -v, v+1 \\ 0, 0, -\frac{1}{4}, \frac{1}{4} \end{array} \right).
\]

Setting \(v = -\frac{1}{3}\) in the equation above, and \(a = \frac{1}{7}, b = \frac{1}{3}, c = \frac{2}{3}, d = \frac{1}{2}, e = \frac{3}{4}, f = \frac{1}{4}\) in Bailey’s identity (3.1.1), we arrive at the last expression in (3.4.11).

In the next two propositions, we establish hypergeometric representations for \(\text{IKM}(2,4;3)\), as stated in (1.2.6).

Proposition 3.4.3 (Mellin–Barnes integrals for \(\text{IKM}(2,4;2n+1), n \in \{0,1,2\}\)). (a) Setting

\[
\Psi(s) := \frac{\Gamma\left(\frac{1}{3}-s\right)\Gamma\left(\frac{1}{2}-s\right)\Gamma\left(\frac{2}{3}-s\right)\Gamma\left(s-\frac{1}{6}\right)\Gamma\left(s+\frac{1}{6}\right)}{80\sqrt{3}\Gamma(1-s)\Gamma(s+\frac{1}{2})} = \frac{9\Phi(s)}{5\pi \sin(2\pi s)},
\]

we have

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t \, dt = \text{IKM}(2,4;1)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \Psi(s) \, ds,
\]

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t^3 \, dt = \text{IKM}(2,4;3)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \Psi(s) \left[\frac{1}{3(5-6s)} + \frac{1}{2s+1} - \frac{2}{3} \right] \, ds + \frac{4\pi^{3/2}}{45} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9,
\]

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t^5 \, dt = \text{IKM}(2,4;5)
\]

\[
= \frac{1}{2\pi i} \int_{\frac{1}{4}-i\infty}^{\frac{1}{4}+i\infty} \Psi(s) \left[\frac{25}{54(7-6s)} + \frac{43}{108(5-6s)} + \frac{23}{4(2s+1)} - \frac{45}{2(2s+3)} + \frac{68}{27} \right] \, ds
\]

\[
+ \frac{43\pi^{3/2}}{405} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9 - \frac{\pi^{3/2}}{18432\sqrt{3}} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{\pi}} \right]^9.
\]
Moreover, we have the following vanishing identity:

\[
0 = \frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \Psi(s) \left[\frac{100}{3(7-6s)} + \frac{1}{3(5-6s)} + \frac{329}{2s+1} - \frac{1620}{2s+3} + 240 \right] ds
- \frac{\pi^{3/2}}{256\sqrt{3}} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{\pi}} \right]^9 + \frac{4\pi^{3/2}}{45} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9.
\]

(b) We have

\[
\frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \Psi(s) \left(\frac{1}{5-6s} - \frac{2}{1+2s} + 1 \right) ds = -\frac{4\pi^{3/2}}{15} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9,
\]

which entails

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t^3 dt = \frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \Psi(s) \left[\frac{5}{6(5-6s)} - \frac{1}{6} \right] ds + \frac{2\pi^{3/2}}{9} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9.
\]

Proof: The derivations of these formulae, in a similar vein as the proof of Proposition 3.3.3, are left to diligent readers.

Proposition 3.4.4 (Hypergeometric reduction of IKM(2,4;3)). We have

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t(1-8t^2) dt = \frac{7}{240\sqrt{3}} G_{4,4}^{3,3} \left(1 \left| \begin{array}{c} -\frac{1}{2}, -\frac{2}{3}, -\frac{4}{3}, -\frac{1}{2} \\ \frac{5}{6}, -\frac{1}{6}, 1, 0 \end{array} \right. \right)
= \frac{7\pi^{3/2}}{60} \left\{ \frac{\sqrt{3}}{2} \left[\frac{\Gamma\left(\frac{1}{3}\right)}{\sqrt{\pi}} \right]^9 4F3 \left(\begin{array}{c} -\frac{1}{2}, -\frac{1}{6}, -\frac{1}{3}, -\frac{5}{9} \\ -\frac{1}{5}, -\frac{5}{9}, 0 \end{array} \right| 1 \right) - \frac{5\pi^2}{7}\frac{24}{3} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9 4F3 \left(\begin{array}{c} -\frac{7}{9}, -\frac{1}{2}, -\frac{1}{3}, -\frac{5}{3} \\ -\frac{5}{6}, -\frac{1}{6}, 0 \end{array} \right| 1 \right) \right\}
= \frac{9\pi^2}{550} 4F3 \left(\begin{array}{c} \frac{2}{3}, -\frac{4}{3}, -\frac{3}{4}, -\frac{1}{2}, -\frac{5}{9} \\ 0, \frac{13}{6}, \frac{17}{6} \end{array} \right| 1 \right).
\]

Proof: Arguing as in Proposition 3.3.4(b), we have

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4 t(1-8t^2) dt
= \frac{1}{3} \frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \Psi(s) \left(\frac{20}{5-6s} - 7 \right) ds
- \frac{16\pi^{3/2}}{9} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9
= \frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \Psi(s) \left(\frac{10}{5-6s} + \frac{5}{1+3s} - 7 \right) ds
- \frac{16\pi^{3/2}}{9} \left[\frac{\sqrt{\pi}}{\Gamma\left(\frac{1}{3}\right)} \right]^9.
\]

Checking the definition of $G_{4,4}^{3,3}$ against the integrand

\[
\Psi(s) \left(\frac{10}{5-6s} + \frac{5}{1+3s} - 7 \right) = -\frac{7\Gamma\left(\frac{1}{3} - s\right)\Gamma\left(\frac{1}{3} - s\right)\Gamma\left(\frac{3}{2} - s\right)\Gamma\left(s - \frac{5}{6}\right)\Gamma\left(s - \frac{1}{6}\right)\Gamma(s+1)}{240\sqrt{3}\Gamma(1-s)\Gamma\left(s + \frac{1}{2}\right)},
\]

(3.4.23)
we can verify the first equality in (3.4.21). Summing over all the residues of the last integrand at \(n - \frac{1}{3}, n + \frac{1}{3}, n + \frac{1}{2} \), where \(n \in \mathbb{Z}_{\geq 0} \), we arrive at

\[
\int_0^\infty [I_0(t)]^2[K_0(t)]^4t(1 - 8t^2)\,dt
= \frac{7\pi^{3/2}}{30} \left\{ \frac{\sqrt{3}}{2^7} \left[\frac{\Gamma(\frac{1}{4})}{\sqrt{\pi}} \right]^9 \text{_4F_3} \left(\begin{array}{c}
-\frac{1}{2}, \frac{1}{6}; \frac{1}{3}, \frac{3}{4}; 1 \\
-\frac{1}{6}; \frac{5}{6}; \frac{1}{3}; \frac{1}{3}
\end{array} \right) - \frac{5}{24} \left[\frac{\sqrt{\pi}}{\Gamma(\frac{1}{3})} \right]^9 \text{_4F_3} \left(\begin{array}{c}
-\frac{7}{6}, -\frac{1}{2}; -\frac{3}{5}, \frac{1}{3}; 1 \\
-\frac{5}{6}; \frac{1}{6}; \frac{1}{3}; \frac{1}{3}
\end{array} \right) \right\}
- \frac{9\pi^2}{550} \text{_4F_3} \left(\begin{array}{c}
\frac{5}{9}, \frac{1}{3}, \frac{2}{3}; 2, \frac{13}{6}, \frac{17}{6}; 1 \\
\end{array} \right) \right)
\]

(3.4.24)

Similar to what we did in proof of Proposition 3.4.1, we evaluate the following contour integral

\[
\frac{1}{2\pi i} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \frac{\Gamma(-\frac{1}{3} - s)\Gamma(\frac{1}{3} - s)\Gamma(\frac{3}{4} - s)\Gamma(s + 1)}{\Gamma(1 - s)\Gamma(s + \frac{1}{2})\Gamma(\frac{7}{6} - s)\Gamma(\frac{11}{6} - s)} \, ds
\]

(3.4.25)

in two ways, to verify the last equality in (3.4.21). Thus, all the relations in (3.4.21) are true. ■

Acknowledgments. This research was supported in part by the Applied Mathematics Program within the Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

A large proportion of this work has been assembled from my research notes on hypergeometric series, which were prepared at Princeton in 2012. I thank Prof. Weinan E (Princeton University and Peking University) for running a seminar on mathematical problems in quantum fields at Princeton, covering both 2-dimensional and \((4 - \epsilon)\)-dimensional theories.

I am grateful to Dr. David Broadhurst for many fruitful communications on recent progress in the arithmetic properties of Feynman diagrams. In particular, I thank him for suggesting the challenging integral identity in (1.2.4).

References

[1] David H. Bailey, Jonathan M. Borwein, David Broadhurst, and M. L. Glasser. Elliptic integral evaluations of Bessel moments and applications. *J. Phys. A*, 41(20):205203 (46pp), 2008. [arXiv:0801.0891v2](https://arxiv.org/abs/0801.0891v2) [hep-th].
[2] W. N. Bailey. Some transformations of generalized hypergeometric series, and contour integrals of Barnes’s type. *Quart. J. Math.*, 3:168–182, 1932.
[3] W. N. Bailey. Some infinite integrals involving Bessel functions (II). *J. London Math. Soc.*, S1-11(1):16–20, 1936.
[4] Harry Bateman. *Higher Transcendental Functions*, volume I. McGraw-Hill, New York, NY, 1953. (compiled by staff of the Bateman Manuscript Project: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, Francesco G. Tricomi, David Bertin, W. B. Fulks, A. R. Harvey, D. L. Thomsen, Jr., Maria A. Weber and E. L. Whitney).
[5] Harry Bateman. *Table of Integral Transforms*, volume II. McGraw-Hill, New York, NY, 1954. (compiled by staff of the Bateman Manuscript Project: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, Francesco G. Tricomi, David Bertin, W. B. Fulks, A. R. Harvey, D. L. Thomsen, Jr., Maria A. Weber and E. L. Whitney).
[6] Bruce C. Berndt. *Ramanujan’s Notebooks (Part V)*. Springer-Verlag, New York, NY, 1998.
[7] Spencer Bloch, Matt Kerr, and Pierre Vanhove. A Feynman integral via higher normal functions. *Compos. Math.*, 151(12):2329–2375, 2015. [arXiv:1406.2664v3](https://arxiv.org/abs/1406.2664v3) [hep-th].
[8] Jonathan M. Borwein, Armin Straub, and James Wan. Three-step and four-step random walk integrals. *Exp. Math.*, 22(1):1–14, 2013.
[9] Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin. Densities of short uniform random walks. *Canad. J. Math.*, 64(5):961–990, 2012. (With an appendix by Don Zagier) arXiv:1103.2995v2 [math.CA].

[10] David Broadhurst. Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function. arXiv:0801.4813v3 [hep-th], 2008.

[11] David Broadhurst. Multiple zeta values and modular forms in quantum field theory. In C. Schneider and J. Blümlein, editors, *Computer Algebra in Quantum Field Theory*, Texts & Monographs in Symbolic Computation, pages 33–73. Springer-Verlag, Vienna, Austria, 2013. https://link.springer.com/chapter/10.1007%2F978-3-7091-1616-6_2

[12] David Broadhurst. Feynman integrals, L-series and Kloosterman moments. *Commun. Number Theory Phys.*, 10(3):527–569, 2016. arXiv:1604.03057v1 [physics.gen-ph].

[13] David Broadhurst. Feynman integrals from Feynman diagrams with up to 22 loops. In *Workshop on Multi-loop Calculations: Methods and Applications*, Paris, France, June 7, 2017. Séminaires Internationaux de Recherche de Sorbonne Universités. https://multi-loop-2017.sciencesconf.org/data/program/Broadhurst.pdf

[14] David Broadhurst. Combinatorics of Feynman integrals. In *Combinatoire Algébrique, Résurgence, Moules et Applications*, Marseille-Luminy, France, June 28, 2017. Centre International de Rencontres Mathématiques. http://library.cirm-math.fr/Record.htm?idlist=29&record=19282814124910000969

[15] David Broadhurst. Feynman integrals, beyond polylogs, up to 22 loops. In *Amplitudes 2017*, Edinburgh, Scotland, UK, July 12, 2017. Higgs Centre for Theoretical Physics. https://indico.ph.ed.ac.uk/event/26/contribution/21/material/slides/0.pdf

[16] David Broadhurst. Combinatorics of feynman integrals. In *Programme on “Algorithmic and Enumerative Combinatorics”*, Vienna, Austria, Oct. 17, 2017. Erwin Schrödinger International Institute for Mathematics and Physics. http://www.mat.univie.ac.at/~kratt/esi4/broadhurst.pdf

[17] David Broadhurst. Feynman integrals, L-series and Kloosterman moments. In *Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory*, Zeuthen, Germany, Oct 23, 2017. KMPB Conference at DESY. https://indico.desy.de/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=18

[18] David Broadhurst and Anton Mellit. Perturbative quantum field theory informs algebraic geometry. In *Loops and Legs in Quantum Field Theory*. PoS (LL2016) 079, 2016. https://pos.sissa.it/archive/conferences/260/079/LL2016_079.pdf

[19] M. L. Glasser and A. J. Guttmann. Lattice Green function (at 0) for the 4D hypercubic lattice. *J. Phys. A*, 27(21):7011–7014, 1994.

[20] M. L. Glasser and E. Montaldi. Staircase polygons and recurrent lattice walks. *Phys. Rev. E*, 48:R2339–R2342, 1993.

[21] Anthony J. Guttmann. Lattice Green functions and Calabi–Yau differential equations. *J. Phys. A: Math. Theor.*, 42:232001 (6pp), 2009.

[22] G. S. Joyce. Singular behaviour of the lattice Green function for the d-dimensional hypercubic lattice. *J. Phys. A*, 36(4):911–921, 2003.

[23] G. S. Joyce and I. J. Zucker. On the evaluation of generalized Watson integrals. *Proc. Amer. Math. Soc.*, 133(1):71–81, 2005.

[24] S. Laporta. Analytical expressions of three- and four-loop sunrise Feynman integrals and four-dimensional lattice integrals. *Internat. J. Modern Phys. A*, 23(31):5007–5020, 2008. arXiv:0803.1007v4 [hep-ph].

[25] Stefano Laporta. High-precision calculation of the 4-loop contribution to the electron g –2 in QED. *Physics Letters B*, 772(Supplement C):232–238, 2017. arXiv:1704.06996 [hep-th].

[26] C. S. Meijer. On the G-function. II. *Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam*, 49:344–356, 1946.
[27] Niels Nielsen. *Handbuch der Theorie der Gammafunktion*. Teubner, Leipzig, Germany, 1906.
[28] M. Rogers, J. G. Wan, and I. J. Zucker. Moments of elliptic integrals and critical L-values. *Ramanujan J.*, 37(1):113–130, 2015. [arXiv:1303.2259v2][math.NT].
[29] Mathew D. Rogers. New $5F_4$ hypergeometric transformations, three-variable Mahler measures, and formulas for $1/\pi$. *Ramanujan J.*, 18(3):327–340, 2009. [arXiv:0704.2438v4][math.NT].
[30] Detchat Samart. Feynman integrals and critical modular L-values. *Commun. Number Theory Phys.*, 10(1):133–156, 2016. [arXiv:1511.07947v2][math.NT].
[31] Lucy Joan Slater. *Generalized Hypergeometric Functions*. Cambridge University Press, Cambridge, UK, 1966.
[32] Elias M. Stein and Rami Shakarchi. *Complex Analysis*, volume II of *Princeton Lectures in Analysis*. Princeton University Press, Princeton, NJ, 2003.
[33] Pierre Vanhove. The physics and the mixed Hodge structure of Feynman integrals. In *String-Math 2013*, volume 88 of *Proc. Sympos. Pure Math.*, pages 161–194. Amer. Math. Soc., Providence, RI, 2014. [arXiv:1401.6438][hep-th].
[34] James G. Wan. Moments of products of elliptic integrals. *Adv. Appl. Math.*, 48:121–141, 2012.
[35] G. N. Watson. Three triple integrals. *Quart. J. Math.*, 10:266–276, 1939.
[36] G. N. Watson. *A Treatise on the Theory of Bessel Functions*. Cambridge University Press, Cambridge, UK, 2nd edition, 1944.
[37] Yajun Zhou. Kontsevich–Zagier integrals for automorphic Green’s functions. I. *Ramanujan J.*, 38(2):227–329, 2015. [arXiv:1312.6352v4][math.CA].
[38] Yajun Zhou. Hilbert transforms and sum rules of Bessel moments. *Ramanujan J.*, 2017. (to appear) doi:10.1007/s11139-017-9945-y [arXiv:1706.01068][math.CA].
[39] Yajun Zhou. Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. [arXiv:1706.08308][math.NT], 2017.
[40] Yajun Zhou. Wronskian factorizations and Broadhurst–Mellit determinant formulae. [arXiv:1711.01829][math.CA], 2017.
[41] I. J. Zucker. 70+ years of the Watson integrals. *J. Stat. Phys.*, 145:591–612, 2011.
[42] W. Zudilin. Very well-poised hypergeometric series and multiple integrals. *Russ. Math. Surv.*, 57:824–826, 2002. — В. В. Зудилин. Совершенно уравновешенные гипергеометрические ряды и кратные интегралы. Успехи матем. науки, 57(4):177–178, 2002.
[43] Wadim Zudilin. Arithmetic of linear forms involving odd zeta values. *J. Théor. Nombres Bordeaux*, 16(1):251–291, 2004.

Program in Applied and Computational Mathematics (P ACM), Princeton University, Princeton, NJ 08544

E-mail address: yajunz@math.princeton.edu
Current address: Academy of Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, P. R. China
E-mail address: yajun.zhou.1982@pku.edu.cn