Dithiocarbamates effectively inhibit the α-carbonic anhydrase from Neisseria gonorrhoeae

Simone Giovannuzzi, Nader S. Abutaleb, Chad S. Hewitt, Fabrizio Carta, Alessio Nocentini, Mohamed N. Seleem, Daniel P. Flaherty, and Claudiu T. Supuran

Abstract
Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase inhibitors (CAIs), were investigated for inhibition of the α-class carbonic anhydrase (CA, EC 4.2.1.1) from Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates (DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. Kᵢs ranging between 83.7 and 827 nM were measured for a series of 31 DTCs that incorporated various aliphatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less than or equal to 8 µg/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may lead to development of novel antigonococcal agents.

1. Introduction
A decade ago, prokaryotic carbonic anhydrases (CAs, EC 4.2.1.1) were proposed as drug targets for development of novel antibacterials. CAs catalyze the interconversion between CO₂ and bicarbonate, which generate a pH imbalance; CAs are widespread in bacteria and play an important role in various metabolic functions. Bacteria encode at least four genetic families of CAs, including the α-, β-, γ-, and ϵ-CAs, with many species containing more than one class and more than one CA isoform; however the functions of these different CAs have only recently started to be understood in detail. Although comprehensive in vitro inhibition studies of bacterial CAs are available, these results have only recently been validated in vivo. Seminal reports of Flaherty’s and Seleem’s groups showed that in some bacteria, such as in vancomycin-resistant enterococci (VRE) or Neisseria gonorrhoeae, clinically used sulphonamide CA inhibitors (CAIs) possess potent antibacterial activity. N. gonorrhoeae is a sexually transmitted pathogen that is becoming a global health concern due to increased resistance to a wide range of antibiotics, including cephalosporins. Acetazolamide, the CAI par excellence, and some of its newly designed derivatives were recently shown to be bacteriostatic against N. gonorrhoeae with minimum inhibitory concentration values as low as 0.25 µg/mL and no toxicity observed to host cells. Sulphonamides, of which acetazolamide belongs to, are one of the main classes of CAIs, and their interaction with bacterial CAs from various pathogens has been extensively studied in the last decade. As there is an urgent need for novel antibacterials, including antigonococcal agents, a deeper investigation of CA and profiling various classes of CAIs may be of great interest. A previous study of anion inhibitors found interesting inhibitory effects of N,N-diethyl-dithiocarbamate, which was as a low micromolar inhibitor of the α-CA N. gonorrhoeae (NgCA). Based upon this previous study, we investigated dithiocarbamates as inhibitors of NgCA.

2. Materials and methods
2.1. Enzymology and CA activity and inhibition measurements
An Applied Photophysics stopped-flow instrument was used to assay the CA-catalysed CO₂ hydration activity. Phenol red (0.2 mM) was used as a pH indicator, working at the absorbance maximum of 557 nm, with 10 mM HEPES (pH 7.4) as a buffer, and in the presence of 10 mM NaClO₄ to maintain constant ionic strength, in order to follow the initial rates of the CA-catalysed CO₂ hydration reaction for a period of 10–100 s. The CO₂ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5–10% of the reaction were used to determine the initial velocity. The uncatalyzed rates were determined in the same manner and subtracted from the total activity.
observed rates. Stock solutions of inhibitors (10–20 mM) were prepared in distilled-deionized water, and dilutions up to 0.01 μM were done thereafter with the assay buffer. Inhibitor and enzyme solutions were preincubated together for 15 min at room temperature prior to the assay, in order to allow for the formation of the E-I complex. The inhibition constants were obtained by non-linear least-squares methods using Prism 3 and the Cheng-Prusoff equation, as reported earlier13,14, and represent the mean from at least three different determinations. The NgCA concentration in the assay system was 6.3 nM. The NgCA was used as a recombinant enzyme obtained in-house, as described earlier5,15,16.

2.2. Chemistry
DTCs 1–30 were previously reported by one of our groups17,18 and were of > 99% purity. DTC 31, acetazolamide, buffers and other reagents are commercially available from Sigma-Aldrich (Milan, Italy).

2.3. Bacterial strains and media
Strains and media used in this study were previously reported by our group5,19. N. gonorrhoeae strains used in the study were clinical isolates obtained from the Centers for Disease Control and Prevention (CDC). Media and reagents were purchased commercially: brucella broth, IsoVitaleX, and chocolate II agar plates (Becton, Dickinson and Company, Cockeysville, MD, USA), yeast extract and dextrose (Fisher Bioreagents, Fairlawn, NJ, USA), protease peptone (Oxoid, Lenexa, KS, USA), haematin, pyridoxal, and nicotinamide adenine dinucleotide (NAD) (Chem-Impex International, Wood Dale, IL, USA), and phosphate buffered saline (PBS) (Corning, Manassas, VA, USA).

2.4. Antibacterial activity of DTCs against N. gonorrhoeae strains
The (MICs of DTCs compounds were carried out using the broth microdilution method as described previously5,19. Briefly, bacterial strains were grown for 24 h on GC chocolate agar II, at 37°C in presence of 5% CO2. Then a bacterial suspension equivalent to 1.0 McFarland standard was prepared and diluted in brucella broth supplemented with yeast extract, protease peptone, haematin, pyridoxal, NAD, and IsoVitaleX, to achieve a bacterial concentration of about 1 x 10^6 CFU/mL. Test agents were added in the 96-well plates and serially diluted along the plates. Plates were then, incubated for 24 h at 37°C either aerobically or in the presence of 5% CO2 before determining the MICs as observed visually.

3. Results and discussion
Sulphonamide-type CAIs were first used to inhibit growth of N. gonorrhoeae in vitro in the 1960s; however, it was not until the 1990s that Carter’s group reported the presumed presence of CAs in N. gonorrhoeae by using a monospecific antibody prepared against the purified Neisseria sicca enzyme13. This enzyme was thereafter purified and characterised in 1997 by Lindskog’s group16, who showed that NgCA is an α-class enzyme that possesses a high catalytic activity, with a \(k_{cat} \) for the CO2 hydration reaction of \(1.7 \times 10^5 \) s\(^{-1}\). The same group showed that NgCA was inhibited by metal complexing anions such as cyanide, cyanate, thiocyanate, and azide (as determined by using the esterase activity of the enzyme with 4-nitrophenyl acetate as a substrate) as well as by the sulphonamide acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulphonamide)13. Thereafter, we reported a comprehensive anion inhibition study of NgCA (5b), which found that the most effective inhibitors were sulfamide, sulphamic acid, and \(N,N-diethyl-dithiocarbamate \). This compound possesses the \(\text{CS}_2 \) group reported the presumed presence of CAs (hCAs) to bind in a monodentate fashion to the metal ion from the enzyme’s active site to displace the nucleophile (water or hydroxide ion) that is essential in the catalytic process17. The X-ray structure of TTC bound to hCA II led thereafter to the discovery of DTCs and their derivatives (monothiocarbamates and xanthenes) as potent CAIs18,20. X-ray crystallography of some DTCs bound to hCA II demonstrated that their ZBG is coordinated in a monodentate fashion to the metal ion whereas the organic scaffold facilitates in a range of favourable interactions with the active site amino acid residues18 – Figure 1.

Thus, we decided to investigate a series of previously reported DTCs18, types 1–30 together with the \(N,N-diethyl \) derivative 31, for their interaction with NgCA (Table 1). The following structure-activity relationship (SAR) may be observed from the data presented in Table 1:

i. The most effective NgCA inhibitors among the investigated DTCs were compounds 1, 20 and 29, which showed \(K_s \) in the range of 83.7–136 nM. It is interesting to note that both

![Figure 1](image-url). (A) Surface representation of hCA II active site in adduct with superimposed trithiocarbonate (cyan, PDB 3K7K) and the DTC morpholinocarbodithioate 23 (magenta, PDB 3PSA). The hydrophobic half of the CA active site is shown in red, and the hydrophilic one in blue; the proton shuttle residue His64 is shown in green. Cartoon view of hCA II active site in complex with B) trithiocarbonate and C) DTC 23.
Table 1. Inhibition constants (K_is) of DTC inhibitors 1–31 against hCA I, II, and NgCA by a stopped flow CO$_2$ hydration assay, using acetazolamide (AAZ) as the standard drug12.

DTC	Structure	K_i (nM)a	hCA I	hCA II	NgCA
1	![Structure](image1)	97.5	48.1	83.7	
2	![Structure](image2)	425	107.0	259	
3	![Structure](image3)	85.9	35.8	568	
4	![Structure](image4)	295	24.3	438	
5	![Structure](image5)	706	41.7	413	
6	![Structure](image6)	683	13.2	538	
7	![Structure](image7)	485	80.1	827	
8	![Structure](image8)	337	78.7	514	
9	![Structure](image9)	290	45.4	297	
10	![Structure](image10)	428	60.7	367	
11	![Structure](image11)	615	65.9	473	
12	![Structure](image12)	494	48.7	482	
13	![Structure](image13)	496	80.5	242	
14	![Structure](image14)	109	8.9	335	

(continued)
DTC	Structure	K_i (nM)\(^a\)
15	![Structure 15](image1)	910 47.9 451
16	![Structure 16](image2)	240 18.9 518
17	![Structure 17](image3)	252 30.1 731
18	![Structure 18](image4)	84.7 78.5 672
19	![Structure 19](image5)	434 60.2 723
20	![Structure 20](image6)	415 67.2 84.4
21	![Structure 21](image7)	66.5 17.3 454
22	![Structure 22](image8)	0.97 0.95 554
23	![Structure 23](image9)	0.88 0.95 483
24	![Structure 24](image10)	69.9 25.4 654
25	![Structure 25](image11)	43.1 50.9 460
26	![Structure 26](image12)	1838 55.5 522
Table 1. Continued.

DTC	Structure	Ki (nM)a	hCA I	hCA II	NgCA
27	![Structure](image)	157	27.8	577	
28	![Structure](image)	31.9	13.5	276	
29	![Structure](image)	12.6	0.92	136	
30	![Structure](image)	48.4	40.8	365	
31b	![Structure](image)	790	3100	5100	
AAZ	![Structure](image)	–	250	12.0	75.0

*Mean from three different assays, determined using a stopped flow technique (errors were in the range of ± 5–10% of the reported values); bfrom ref. [5b].

20 and 29 possess the same scaffold of piperazine-dithiocarbamate. However, in the case of 29 a second DTC function is incorporated, whereas for 20, a bulkier cyclohexyl-aminocarbonylmethyl moiety is present. This leads to an increased inhibitory effect in the case of 20 compared to 29 (84.4 versus 136 nM, Table 1), probably due to favourable contacts between the bulky tail and amino acid residues from the active site. The second observation pertains to compounds 1 and 2. Derivative 1 incorporated two ZBGs, the DTC and the sulphonamide ones, whereas the second structurally related derivative (2) lacks the sulphonamide moiety. It is likely in the case of 1 that sulphonamide is the dominant interacting group and participates in the enzyme inhibition process by binding to the zinc ion in the active site. This is however impossible for 2, which exhibited 3.1 times weaker NgCA inhibitory activity compared to 1. However, derivative 2 still significantly inhibited the NgCA CO2 hydrase activity with a Ki of 259 nM.

ii. Another small group of DTCs, including 2, 9, 13, and 28 showed Ks in the range of 242–297 nM, which indicates that they are effective NgCA inhibitors. The next most effective inhibitors showed Ks between 300 and 500 nM and included 4, 5, 10–12, 14, 15, 21, 23, 25, and 30. These compounds incorporated a variety of diverse aliphatic, aromatic, and heterocyclic scaffolds, and are derivatives of both primary and secondary amines. This proves that many diverse chemical entities may lead to the development of efficient DTC inhibitors of NgCA (Table 1).

iii. The least effective inhibitors were 3, 6–8, 16–19, 22, 26, and 27, which showed Ks in the range of 514–827 nM. Finally, 31, the lead compound was the least effective DTC inhibitor, with a Ks of 5100 nM. In contrast, acetazolamide, a sulphonamide derivative, was an effective NgCA inhibitor, with an activity in the same range as the most effective DTCs mentioned above (Table 1).

iv. Many of the investigated DTCs were much more effective as inhibitors against hCA II than NgCA, whereas their activity on hCA I was in the same range as against the bacterial enzyme, i.e. in the high nanomolar range.

A subset of DTCs were selected for antibacterial testing against three clinical strains of N. gonorrhoeae. It has previously been established that bacteria will become less susceptible to CAIs in conditions that contain elevated levels of CO2.21 Molecules were assayed in both ambient air conditions as well as conditions containing 5% CO2 to assess for activity at the proposed intracellular NgCA. The three strains tested displayed reduced susceptibility towards the molecules under elevated CO2 conditions suggesting that inhibition of NgCA is, at least partially, responsible for the antimicrobial activity of these molecules. The control antibiotic azithromycin, which has a different mechanism of action, did not display differential activity based on the culture conditions. This result provides confidence that the difference in CO2 levels did not have unintended effects on the bacteria that would result in non-specific reduced susceptibility to the test agent.

It was observed that in this cohort, three DTCs, 1, 22, and 24 exhibited moderate antagononococcal activity. DTC 1 was the most potent molecule with a MIC value of 1–2 µg/mL against N. gonorrhoeae (Table 2). This was followed by 22 (MIC = 2–4 µg/mL) and 24 (MIC = 4–8 µg/mL). DTCs 23 and 25 each displayed weak antibacterial activity against N. gonorrhoeae with MIC values ranging from 8 to 32 µg/mL. It is interesting to note that while 1 was the
most potent molecule against both NgCA and *N. gonorrhoeae*, the DTCs that exhibited moderate potency against *N. gonorrhoeae* (22 and 23) were among the weaker analogues versus NgCA (Kᵢ > 500 nM). Moreover, the weakest DTCs, in terms of antigonococcal activity, were 23, 25, 28, 29, and 30 with MIC values > 8 μg/mL; however, these molecules were more potent inhibitor of NgCA with activities in the range of 136–460 nM. Several of these molecules contain polar functional groups such as morpholine (23), piperazine (28) and Di-DTC (29) moieties that may have an adverse effect on molecule accumulation within the Gram-negative bacterial cell, thus leading to reduced antigonococcal activity. As for DTC 25, this molecule contains hydrophobic linear alkyl chains that give rise to additional rotatable bonds that also may have an adverse effect on accumulation into Gram-negative bacterial cell22,23. In summary, while the DTCs displayed moderate-to-weak antibacterial activity against the *N. gonorrhoeae* strains tested, the data does suggest that the DTC functionality may be a useful modification to incorporate into a drug design campaign for development of new anti-gonococcal agents.

4. Conclusions

NgCA, a high-activity z-CA present in the genome of *N. gonorrhoeae*, was investigated for potential inhibition by a series of 31 DTCs derived from both primary and secondary amines. NgCA was inhibited by all investigated derivatives, with Kᵢ in the range of 83.7 nM – 5.1 μM. The most effective NgCA inhibitors were contained piperazine-dithiocarbamates that showed activity with Kᵢ < 140 nM; however, these molecules did not display antibacterial activity in vitro against *N. gonorrhoeae*. Conversely, DTCs containing more hydrophobic amines did exhibit moderate antibacterial activity even though these analogs possessed reduced NgCA activity. This data suggests that DTCs could be incorporated as the zinc-binding groups in place of sulphonamides, into more traditional CAI molecular scaffolds. Since antibiotic resistance is well documented against many *N. gonorrhoeae* strains worldwide, finding alternative chemotypes to presently used drugs is relevant. Our study provides interesting steps regarding developing these types of enzyme inhibitors.

Disclosure statement

The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding

CTS thank the Italian Ministry for University and Research (MIUR), project FISR2019_04819 BacCAD. The research program was partially funded by a Purdue Institute for Drug Discovery Programmatic Grant (to M.N.S. and D.P.F.) and NIH/NIAID 1R01AI148523 (to M.N.S and D.P.F.). Fabrizio Carta (F-C.) is grateful to “Bando di Ateneo per il Finanziamento di Progetti Competitivi per Ricercatori a Tempo Determinato (RTD) dell’Università di Firenze” 2020–2021”, and Fondazione Cassa di Risparmio di Firenze (Grant Number ECR2018.1001) for partially supporting this work.

ORCID

Alessio Nocentini http://orcid.org/0000-0003-3342-702X
Mohamed N. Seleem http://orcid.org/0000-0003-0939-0458
Daniel P. Flaherty http://orcid.org/0000-0002-8305-0606
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. (a) Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011;2:34. (b) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem 2021;13:1619–22.
2. (a) Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963–82.(b) Campestre C, De Luca V, Carradori S, et al. Carbonic anhydrases: new perspectives on protein functional role and inhibition in *Helicobacter pylori*. Front Microbiol 2021;12:629163.(c) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med
(a) Smith KS, Jakubzik C, Whittam TS, Ferry JG. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci USA 1999;96:15184–9.(b) Abuaita BH, Withey JH. Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 2009;77:4111–20.(c) Merlin C, Masters M, McAteer S, Coulson A. Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 2003;185:6415–24.(d) Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial \(\alpha\)-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territii. J Enzyme Inhib Med Chem 2020;35:1060–8.

4. (a) Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem 2020;63:9540–62.(b) Abutaleb NS, Elkhayf A, Flaherty DP, Selem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother 2021;65:e01715–20.(c) Abutaleb NS, Elhassanny AEM, Flaherty DP, Selem MN. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ 2021;9:e11059.

5. (a) Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis 2021;7:1969–84.(b) Nocentini A, Hewitt CS, Mastrolonato MD, et al. Anion inhibition studies of the \(\alpha\)-carbonic anhydrases from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2021;36:1061–6.

6. (a) Golparian D, Sánchez-Busó L, Cole M, Unemo M. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes are consistent with genomic phylogeny and provide simple nomenclature, rapid visualization and antimicrobial resistance (AMR) lineage predictions. J Antimicrob Chemother 2021;76:940–60.(c) Dedeoglu N, De Luca V, Petreni A, et al. Effect of sulfonamides and their structurally related derivatives on the activity of \(\alpha\)-carbonic anhydrase from Burkholderia territii. Int J Mol Sci 2021;22:571.

7. (a) Kaur J, Cao X, Abutaleb NS, et al. Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Med 2021;13:51.(b) Jacobsson S, Cole MJ, Sperini G, on behalf of The Euro-GASP Network, et al. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in Europe and patients' gender, sexual orientation and anatomical site of infection, 2009–2016. BMC Infect Dis 2021;21:273.(c) Aho EL, Ogle JM, Finck AM. The human microbiome as a focus of antibiotic discovery: Neisseria mucosa displays activity against Neisseria gonorrhoeae. Front Microbiol 2020;11:577762.

8. (a) Murray AB, Aggarwal M, Pinard M, et al. Structural mapping of anion inhibitors to \(\beta\)-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. ChemMedChem 2018;13:2024–9.(b) Pinard MA, Lotlikar SR, Boone CD, et al. Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem 2015;23:4831–8.

9. (a) Matsumoto Y, Miyake K, Ozawa K, et al. Bicarbonate and unsaturated fatty acids enhance capsular polysaccharide synthesis gene expression in oral streptococci, Streptococcus anginosus. J Biosci Bioeng 2019;128:511–7.(b) Capasso C, Supuran CT. An overview of the carbonic anhydrases from two pathogens of the oral cavity: Streptococcus mutans and Porphromonas gingivalis. Curr Top Med Chem 2016;16:2359–68.(c) Dedeoglu N, De Luca V, Isik S, et al. Cloning, characterization and anion inhibition study of a \(\beta\)-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans. Bioorg Med Chem 2015;23:2995–3001.(d) Burghout P, Vullo D, Scorza Zafar A, et al. Inhibition of the \(\beta\)-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules: Toward innovative drug design of antifungicides? Bioorg Med Chem 2011;19:243–8.

10. (a) Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020;15:671–86.(b) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.(c) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020;40:2485–565.

11. (a) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.(b) Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem 2016;31:689–94.(c) Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem. 2021;36:561–80.(d) Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2012;27:759–72.(e) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.

12. Khalilah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.

13. (a) Petreni A, De Luca V, Scaloni A, et al. Anion inhibition studies of the Zn(II)-bound \(\alpha\)-carbonic anhydrase from the Gram-negative bacterium Burkholderia territii. J Enzyme Inhib Med Chem 2021;36:372–6.(b) De Luca V, Petreni A, Nocentini A, et al. Effect of sulfonamides and their structurally related derivatives on the activity of \(\alpha\)-carbonic anhydrase from Burkholderia territii. Int J Mol Sci 2021;22:571.

14. (a) Angeli A, Pintale M, Maier SS, et al. Inhibition of \(\alpha\), \(\beta\), \(\gamma\), \(\delta\), \(\zeta\)- and \(\eta\)-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J Enzyme Inhib Med Chem 2019;34:644–50.(b) Urbanakis LJ, Di Fiore A, Azizi L, et al. Biochemical and structural characterization of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis. J Enzyme Inhib Med Chem 2020;35:1292–9.

15. (a) Fordman CT, Laurell AB. The effect of carbonic anhydrase inhibitor on the growth of Neisseriae. Acta Pathol Microbiol Scand 1965;65:450–6.(b) Nafi BM, Miles RJ, Butler LO, et al. Expression of carbonic anhydrase in neisseriae and other heterotrophic bacteria. J Med Microbiol 1990;32:1–7.

16. (a) Chiricuta LC, Elleby B, Jonsson BH, Lindskog S. The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 1997;244:755–60.(b) Elleby B,
Chirica LC, Tu C, et al. Characterization of carbonic anhydrase from *Neisseria gonorrhoeae*. Eur J Biochem 2001;268:1613–9.

17. (a) Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. X-ray crystal studies of the carbonic anhydrase II-trithiocarbonate adduct—an inhibitor mimicking the sulfonamide and urea binding to the enzyme. Bioorg Med Chem Lett 2010;20:474–8. (b) Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of transmembrane isoforms IX, XII, and XIV with less investigated anions including trithiocarbonate and dithiocarbamate. Bioorg Med Chem Lett 2010;20:1548–50.

18. (a) Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Commun 2012;48:1868–70. (b) Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 2012;55:1721–30. (c) Syrjänen L, Tolvanen ME, Hilvo M, et al. Characterization, bioinformatic analysis and dithiocarbamate inhibition studies of two new α-carbonic anhydrases, CAH1 and CAH2, from the fruit fly *Drosophila melanogaster*. Bioorg Med Chem 2013;21:1516–21.

19. (a) Alhashimi M, Mayhoub A, Seleem MN. Repurposing salicylamide for combating multidrug-resistant *Neisseria gonorrhoeae*. Antimicrob Agents Chemother 2019;63:e01225–19. (b) Seong YJ, Alhashimi M, Mayhoub A, et al. Repurposing fenamic acid drugs to combat multidrug-resistant *Neisseria gonorrhoeae*. Antimicrob Agents Chemother 2020;64:e02206–19. (c) Elkashif A, Seleem MN. Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant *Neisseria gonorrhoeae*. Sci Rep 2020;10:1–9.

20. (a) Vullo D, Durante M, Di Leva FS, et al. Monothiocarbamates strongly inhibit carbonic anhydrases in vitro and possess intraocular pressure lowering activity in an animal model of glaucoma. J Med Chem 2016;59:5857–67. (b) Carta F, Akdemir A, Scozzafava A, et al. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo. J Med Chem 2013;56:4691–700.

21. (a) Sanders E, Maren TH. Inhibition of carbonic anhydrase in *Neisseria*: effects on enzyme activity and growth. Mol Pharmacol 1967;3:204–15. (b) Nafi BM, Miles RJ, Butler LO, et al. Expression of carbonic anhydrase in neisseriae and other heterotrophic bacteria. J Med Microbiol 1990;32:1–7.

22. Richter MF, Drown BS, Riley AP, et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 2017;545:299–304.

23. (a) Urbanski LJ, Bua S, Angeli A, et al. Sulphonamide inhibition profile of *Staphylococcus aureus* β-carbonic anhydrase. J Enzyme Inhib Med Chem 2020;35:1834–9. (b) Fan SH, Ebner P, Reichert S, et al. MpsAB is important for *Staphylococcus aureus* virulence and growth at atmospheric CO₂ levels. Nat Commun 2019;10:3627.