Polarized and Transversity GPDs in Kaon Leptoproduction

S. V. Goloskokov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980 Russia

Abstract—We study the kaon leptoproduction on the basis of the handbag approach. We consider the leading-twist contribution together with the transversity twist-3 effects which were found to be important in the description of pseudoscalar meson production. We present our predictions for the cross section and spin asymmetries in the kaon leptoproduction.

DOI: 10.1134/S1063779614010365

In this report, we analyze the process of kaons leptoproduction at large photon virtualities within the handbag approach, where the amplitudes factorize [1] into hard subprocesses and GPDs which keep the soft physics. Different applications of GPDs were discussed at this conference [2]. At the leading-twist accuracy the reactions of kaon production are sensitive only to the GPDs \tilde{H} and \tilde{E} which contribute to the amplitudes for longitudinally polarized virtual photons [3]. It was observed that to be consistent with experimental data on the pion leptoproduction the contributions of transversity GPDs H_T and E_T are needed [4]. Within the handbag approach the transversity GPDs are accompanied by the twist-3 meson wave function.

We consider here the transversity H_T and E_T effects in the leptoproduction of kaons. We present the model results for the cross section of the $K^\pm \Lambda$ and $K^\pm \Sigma^0$ leptoproduction [4] and predictions for the spin asymmetry in these reactions. It is shown that the H_T effects are essential in the $K^\pm \Lambda$ channel while in the $K^\pm \Sigma^0$ leptoproduction the E_T contribution is important.

In what follows, we calculate the meson leptoproduction on the basis of the handbag approach. The hard subprocess amplitudes are calculated within the modified perturbative approach [5] in which the quark transverse degrees of freedom as well as gluonic radiation, condensed in a Sudakov factor, are taken into account.

The proton non-flip or helicity-flip amplitudes for longitudinally polarized photons $\mathcal{M}^K_{\mp,0+}$ can be written in the form:

$$
\mathcal{M}^K_{\mp,0+} \propto \left[P^K_{\mp,0+} + \langle \tilde{H}^K \rangle \right];
$$

$$
\mathcal{M}^K_{\pm,0+} \propto \sqrt{-t} \left(m + M_N^2 \right) \left[P^K_{\mp,0+} + \zeta (\tilde{E}^K) \right].
$$

The amplitudes (1) dominate at large Q^2. The corresponding amplitudes with transversally polarized photons are suppressed as $1/Q$.

The P^K terms in (1) represent a kaon pole which appears in this reaction for charged kaon production. We use the kaon–barion coupling constants [4]

$$
g_{K^\mp pA} \sim -13.3; \quad g_{K^\mp p^\prime A} \sim -3.5,
$$

which are close to SU(3) predictions.

The second terms in (1) accumulate the handbag contribution to the kaons production amplitude. The $\langle \tilde{F} \rangle$ in (1) is a convolution of GPD \tilde{F} with the hard subprocess amplitude $\mathcal{H}(\langle \tilde{F} \rangle)$:

$$
\langle \tilde{F} \rangle = \sum_K \int_{\mathcal{R}} \mathcal{H}(\langle \tilde{F} \rangle, \mathcal{F}(\langle \tilde{F} \rangle, \mathcal{F}(\langle \tilde{F} \rangle, t)).
$$

The proton–hyperon transition GPDs in (3) can be related with the proton GPDs by using the SU(3) flavor symmetry [6]

$$
F(p \rightarrow \Lambda) \sim [2F^u - F^d - F^s];
$$

$$
F(p \rightarrow \Sigma^0) \sim [F^d - F^s].
$$

It was found that the asymptotically dominant leading-twist contributions are not sufficient to describe the experimental results on leptoproduction of pseudoscalar mesons [4]. The data require also the contributions from the transversity GPDs.

We estimate this contribution to the $\mathcal{M}_{0\pm,++}$ amplitudes by the transversity GPDs H_T, E_T, which are considered together with the twist-3 meson wave function [4] in the hard subprocess amplitude

$$
\mathcal{M}^{K,tw3}_{0+,0+} \propto \int_{\mathcal{R}} \mathcal{H}_{0+,0+}(\tilde{x}, \mathcal{F}(\langle \tilde{F} \rangle, t)) H_T^K,
$$

$$
\mathcal{M}^{K,tw3}_{0-,0-} \propto \int_{\mathcal{R}} \mathcal{H}_{0-,0-}(\tilde{x}, \mathcal{F}(\langle \tilde{F} \rangle, t)) E_T^K.
$$
The H_T GPD is connected with transversity PDFs as
\[
H^a_T(x, 0, 0) = \delta^a(x); \quad \text{and} \quad \delta^a(x) = CN_T^a x^{1/2}(1-x)[q_u(x) + \Delta q_d(x)].
\]
We parameterize the PDF δ using the model [7]. The double distribution representation [8] is used to calculate GPD H_T. Due to different signs of H^a_T and H^d_T we find a quite large H_T contribution $K^+\Lambda$ and much smaller effect in the $K^+\Sigma^0$ production (4).

The information on \bar{E}_T is available only from the lattice QCD estimations [9]. It was found that \bar{E}_T^u and \bar{E}_T^d should to be quite large, have the same sign and a similar size. From (4) we can conclude that the \bar{E}_T contributions to different kaon production channels should be similar.

The large transversity H_T effects in the $K^+\Lambda$ channel provide to the large σ_T cross section without a forward dip which dominated with respect to σ_L, see Fig. 1 (Left). For the $K^+\Sigma^0$ production the H_T contribution is much smaller and the \bar{E}_T effects become essential. It provides the cross section with a forward dip, Fig. 1 (Right). In both cases σ_T determined by the transversity H_T and \bar{E}_T contribution is large at low Q^2 with respect to the leading twist σ_L cross section. Note that the twist-3 effects decrease rapidly with Q^2 growing and at sufficiently high Q^2 the σ_L will predominate.

In Fig. 2, we show our predictions for the moments of A_{UT} asymmetry for kaon production. The $\sin(\phi_s)$ moment of asymmetry determined mainly by the H_T contributions to different kaon production channels should be similar.
contribution is quite large in the $K^+\Lambda$ production, Fig. 2 (Left). In the $K^+\Sigma^0$ channel this moment of A_{UT} asymmetry is much smaller, Fig. 2 (Right). The $\sin(\phi - \phi_s)$ moment of A_{UT} asymmetry is predicted to be not small in this process, Fig. 2 (Right) with respect to the $K^+\Lambda$ production.

To summarize, in this report we considered kaon leptoproduction within the handbag approach. We calculated the leading twist and twist-3 transversity contributions together. It was found that the H_T and E_T contribution was quite large. They produce σ_T which at low Q^2 exceeds substantially the leading twist σ_L cross section. We observe the same effect for most reactions of the pseudoscalar meson leptoproduction [4]. The role of transversity effects can be investigated in future COMPASS and JLAB12 experiments.

ACKNOWLEDGMENTS

This work is supported in part by the Russian Foundation for Basic Research, Grant 12-02-00613 and by the Heisenberg–Landau program.

REFERENCES

1. X. Ji, Phys. Rev. D 55, 7114 (1997); A. V. Radyushkin, Phys. Lett. B 380, 417 (1996); J. C. Collins et al., Phys. Rev. D 56, 2982 (1997).
2. P. Kroll, These Proceedings.
3. S. V. Goloskokov and P. Kroll, Euro. Phys. J. C 65, 137 (2010).
4. S. V. Goloskokov and P. Kroll, Euro. Phys. J. A 47, 112 (2011).
5. J. Botts and G. Sterman, Nucl. Phys. B 325, 62 (1989).
6. L. L. Frankfurt, P. V. Pobylitsa, M. V. Polyakov, and M. Strikman, Phys. Rev. D 60, 014010 (1999).
7. M. Anselmino et al., Nucl. Phys. Proc. Suppl. 191, 98 (2009).
8. I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 61, 074027 (2000).
9. M. Gockeler et al., “QCDSF and UKQCD collaborations,” Phys. Rev. Lett. 98, 222001 (2007).