AURORA: Auditing PageRank on Large Graphs

Presented By Jian Kang

Jian Kang Meijia Wang Nan Cao Yinglong Xia Wei Fan Hanghang Tong
Ranking on Graphs: PageRank

- Webpages are no longer independent
- Rank the webpages by their importance/relevance
More Applications

- Recomender System [Gori’07]
- Social Network Analysis [Weng’10]
- Sports Team Management [Radicchi’11]
- Biology [Singh’07]
PageRank: Formulation

Assumption:
- A webpage is important if it is linked by many other webpages

Formulation:
- Iteratively solve the following linear system
 \[r = cA r + (1 - c)e \]
 - Mathematically elegant, only topological information is needed

Many Variants Exist:
- Personalized PageRank
- Random Walk with Restart
- And so on
Why Auditing PageRank?

- **Problem:** end-users do not understand how the results were derived

- **Potential Outcomes:**
 - Render crucial explainability of ranking algorithms
 - Optimize network topology
 - Identify vulnerabilities in the network (e.g. preventing adversarial attacks)
Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions
Prob. Def.: PageRank Auditing Problem

Given:

- (1) adjacency matrix A;
- (2) PageRank r;
- (3) loss function over PageRank vector $f(r)$;
- (4) user-specific element type (edges vs. nodes vs. subgraph);
- (5) integer budget k.

Find: a set of k influential graph elements

Intuitive Example:
AURORA Formulation

- **Intuition:** find a set of influential elements that have largest impact on the loss function over PageRank vector.

- **Optimization Problem:**
 \[
 \max_S \Delta f = \left(f(r) - f(r_S) \right)^2
 \]
 \(s.t. \quad |S| = k \)

- **Choices of Loss Function:**

 - **Square**

 TABLE II: Choices of \(f(\cdot) \) functions and their derivatives

 | Descriptions | Functions | Derivatives | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
 | \(L_p \) norm | \(f(r) = ||r||_p \) | \(\frac{\partial f}{\partial r} = \frac{r_0||r||_p^{p-2}}{||r||_p^{p-1}} \) |
 | Soft maximum | \(f(r) = \log(\sum_{i=1}^{n} \exp(r(i))) \) | \(\frac{\partial f}{\partial r} = \left[\frac{\exp(r(i))}{\sum_{i=1}^{n} \exp(r(i))} \right] \) |
 | Energy norm | \(f(r) = r'Mr \) | \(\frac{\partial f}{\partial r} = (M + M')r \) |

 (\(M \) in Energy Norm is a Hermitian positive definite matrix.)
Challenges

- C1: Measure of Influence
- C2: Optimality
- C3: Scalability
Challenges

C1: Measure of Influence

- Understanding Black-box Machine Learning Models
 - Quantify influence by perturbing features or training data.
 - **Obs:** Inconsistent with unsupervised graph ranking settings.

- Influence Maximization
 - Measure the size of ‘infected’ nodes in information propagation process.
 - **Obs:** fundamentally different from finding influential elements in graph ranking settings.

- **Question:** how to define the influence in the context of graph ranking?

[1] Adler, P., Falk, C., Friedler, S. A., Nix, T., Rybeck, G., Scheidegger, C., Smith, B., & Venkatasubramanian, S. (2018). Auditing black-box models for indirect influence. *Knowledge and Information Systems, 54*(1), 95-122.

[2] Koh, P. W., & Liang, P. (2017, July). Understanding Black-box Predictions via Influence Functions. In *International Conference on Machine Learning* (pp. 1885-1894).

[3] Kempe, D., Kleinberg, J., & Tardos, É. (2003, August). Maximizing the spread of influence through a social network. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 137-146). ACM.
Challenges

- **C2: Optimality**
 - Finding a set of influential graph elements is NP due to its combinatorial nature.
 - **Question**: how to find a set of influential graph elements accurately?

- **C3: Scalability**
 - **Question**: how to scale up the influential elements finding process?
Definition: Graph Element Influence

- **Graph Element Influence**
 - The influence of an edge \((i, j)\) is defined as the derivative of \(f(\mathbf{r})\) w.r.t. the edge.
 \[
 II(i, j) = \frac{df(\mathbf{r})}{dA(i, j)}
 \]
 - The influence of a node \(i\) is defined as the aggregation of all in and out edges.
 \[
 II(i) = \sum_{j=1, j \neq i}^{n} II(i, j) + II(j, i)
 \]
 - The influence of a subgraph \(S\) is defined as the aggregation of all edges in the subgraph.
 \[
 II(i) = \sum_{i,j \in S}^{n} II(i, j)
 \]
Calculating Influence

- **Method:**
 - Define $Q = (I - cA)^{-1}$, PageRank: $r = (1 - c)Qe$
 - Apply chain rule
 $$\frac{\partial f(r)}{\partial A(i,j)} = \text{Tr}[(\frac{\partial f(r)}{\partial r})' \frac{\partial r}{\partial A(i,j)}] = 2cr(j)\text{Tr}[r'Q(:,i)]$$

- **Matrix Form Solution:**
 $$\frac{df(r)}{dA} = \begin{cases} \frac{\partial f(r)}{\partial A} + (\frac{\partial f(r)}{\partial A})' - \text{diag} \left(\frac{\partial f(r)}{\partial A} \right), & \text{if } A \text{ is undirected graph} \\ \frac{\partial f(r)}{\partial A}, & \text{if } A \text{ is directed graph} \end{cases}$$

where $\frac{\partial f(r)}{\partial A} = 2cQ'rr'$, each element in $\frac{\partial f(r)}{\partial A}$ is $\frac{\partial f(r)}{\partial A(i,j)}$

- **Limitation:** $Q'rr'$ is an $n \times n$ full matrix, need $O(n^2)$ space
- **Question:** how to scale up to large graphs?
Scale Up

Solution: exploring low-rank structure

- Note that PageRank $r = (1 - c)Qe$

$$\frac{\partial f(r)}{\partial A} = 2cQ'r'r'$$

- Reduce $O(n^2)$ space to $O(n)$ space
Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions
AURORA Algorithms

- **Goal:** select a set of k influential graph elements

- **Observation:**
 - $\frac{\partial f(r)}{\partial A}$ is a non-negative matrix, so does $\frac{df(r)}{dA}$.
 - Enjoys diminishing returns property \(\Rightarrow \text{submodular function} \)

- **Greedy Strategy:**
 - iteratively select the most influential element in each round;
 - remove the selected element and re-rank;
 - repeat above procedure k rounds.

- **Challenges:** computationally expensive to calculate $\frac{\partial f(r)}{\partial A}$

- **How to speed up?** \(\Rightarrow \text{power iterations} \)
Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions
AURORA Generalizations: Normalized PageRank

- **Intuition:** normalize PageRank vector to magnitude of 1
- **Key Idea:** divide each PageRank score with the sum of all PageRank scores
- **Formulation:**
 - Let $S(r) = \sum_{i=1}^{n} r(i)$, then
 \[
 \frac{\partial f(r)}{\partial A} = cQ'(-\frac{2f(r)}{S(r)}1 + \frac{2}{S(r)}r)r'
 \]
- **Solution:** apply similar strategy as AURORA
- More details in the paper
AURORA Generalizations: NoN

- **NoN** (Network of Networks) is defined as a triplet $< G, A, \theta >$.
 - G: main network
 - A: domain-specific networks
 - θ: mapping function

- **Ranking on NoN:**

 $$\min J(r) = cr'(I_n - A)r + (1 - c)\|r - e\|_F^2 + 2ar'Yr$$

 - within-network smoothness
 - query preference
 - cross-network consistency

 - equivalent to PageRank with transition matrix $W = \frac{c}{c+2a}A + \frac{2a}{c+2a}Y$

- **Solution:** Apply similar strategy as AURORA

[1] Ni, J., Tong, H., Fan, W., & Zhang, X. (2014, August). Inside the atoms: ranking on a network of networks. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1356-1365). ACM.
AURORA Generalizations: Attributed Networks

- **Intuition**: find influential attributes in attributed networks.
- **Key Idea**: treat attributes as *attribute nodes* and form an *augmented graph*.
- **Supporting Node Attributes**:
 - (1) A: node-to-node adjacency matrix;
 - (2) W: attribute-to-node adjacency matrix.
 - Form an augmented graph $G = \begin{pmatrix} A & W' \\ W & A' \end{pmatrix}$
- **Supporting Edge Attributes**:
 - Let A be an $n \times n$ adjacency matrix and x be the number of different edge attributes.
 - Embed edge attributes into edge-nodes.
 - Form an $(n + x) \times (n + x)$ augmented graph.
- **Solution**: Apply similar strategy as AURORA

[1] Tong, H., Faloutsos, C., Gallagher, B., & Eliassi-Rad, T. (2007, August). Fast best-effort pattern matching in large attributed graphs. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 737-746). ACM.
[2] Pienta, R., Tamersoy, A., Tong, H., & Chau, D. H. (2014, October). Mage: Matching approximate patterns in richly-attributed graphs. In *Big Data (Big Data), 2014 IEEE International Conference on* (pp. 585-590). IEEE.
Roadmap

- Motivations ✓
- AURORA Formulation ✓
- AURORA Algorithms ✓
- AURORA Generalizations ✓
- Experimental Results
- Conclusions
Datasets

- Over 10+ real-world datasets

Category	Network	Type	Nodes	Edges
SOCIAL				
Karate	U	U	34	78
Dolphins	U	U	62	159
WikiVote	D	D	7,115	103,689
Pokec	D	D	1,632,803	30,622,564
COLLABORATION				
GrQc	U	U	5,242	14,496
DBLP	U	U	42,252	420,640
NBA	U	U	3,923	127,034
cit-DBLP	D	D	12,591	49,743
cit-HepTh	D	D	27,770	352,807
cit-HepPh	D	D	34,546	421,578
PHYSICAL				
Airport	D	D	1,128	18,736
OTHERS				
Lesmis	U	U	77	254
Amazon	D	D	262,111	1,234,877

(In Type, U means undirected graph; D means directed graph.)
Experimental Settings

- Evaluation Metric
 - Effectiveness: difference in $f(r)$
 - Efficiency: running time

- Baseline Methods

AURORA (Our Methods)	Baseline Methods
AURORA-E	Brute force
AURORA-N	Random selection
AURORA-S	Top-k degree
	PageRank
	HITS
Effectiveness: Fixed Budget
(Higher is Better)

- Observation: AURORA outperforms baseline methods
Observation: AURORA outperforms baseline methods.
Efficiency

- **Observation:** linear complexity w.r.t. k and m
Case Study on Airport Dataset

- **Goal:** find important airline routes and airports

- **Results:**

Task	PageRank	AURORA
Edge Auditing	ATL-LAS	**DEN-ATL**
	ATL-DFW	**LAX-ORD**
Node Auditing	SFO	**CLT**

DEN serves as a major hub airport to connect west and east coasts.

It directly connects Los Angeles (LAX) and Chicago (ORD), two largest cities in United States.

Busiest Airports: CLT(6th) > SFO (7th).
Proximity: existence of LAX and SJC.
Case Study on NBA Dataset

- **Goal:** find a team in collaboration network
- **Query:** Allen Iverson
- **Results:**

Task	PageRank	AURORA
Subgraph Auditing (Graph size: 5)	Allen Iverson	Allen Iverson
	Larry Hughes	Larry Hughes
	Theo Ratliff	Theo Ratliff
	Joe Smith	Joe Smith
	Drew Gooden	**Drew Gooden**
		Tim Thomas

NEVER played with Allen Iverson.
Roadmap

- Motivations
- AURORA Formulation
- AURORA Algorithms
- AURORA Generalizations
- Experimental Results
- Conclusions
Conclusions

- **Problem:**
 - PageRank Auditing Problem
- **Solution:**
 - Family of AURORA algorithms
 - Near-optimal results
 - Scalability
- **Results:**
 - Outperform other baseline methods
 - Achieves linear time complexity
 - Finds intuitive and meaningful explanations
- **More details in the paper**