ABSTRACT

Purpose A multitude of different versions of the same medication with different inactive ingredients are currently available. It has not been quantified how this has evolved historically. Furthermore, it is unknown whether healthcare professionals consider the inactive ingredient portion when prescribing medications to patients.

Methods We used data mining to track the number of available formulations for the same medication over time and correlate the number of available versions in 2019 to the number of manufacturers, the years since first approval, and the number of prescriptions. A focused survey among healthcare professionals was conducted to query their consideration of the inactive ingredient portion of a medication when writing prescriptions.

Results The number of available versions of a single medication have dramatically increased in the last 40 years. The number of available, different versions of medications are largely determined by the number of manufacturers producing this medication. Healthcare providers commonly do not consider the inactive ingredient portion when prescribing a medication.

Conclusions A multitude of available versions of the same medications provides a potentially under-recognized opportunity to prescribe the most suitable formulation to a patient as a step towards personalized medicine and mitigate potential adverse events from inactive ingredients.

KEY WORDS dosage forms · excipients · oral solid · pharmacometrics

INTRODUCTION

Inactive ingredients, also known as excipients, are defined by the FDA as those that are not the active compounds in a given formulation (1), but it is a distinction that can be dependent on the dose. For instance, simethicone and polyethylene glycol are two examples of chemicals that are commonly utilized as
inactive ingredients but are also the key active ingredient in widely-used over-the-counter medications (2). When added in low quantities to oral solid dosage forms, inactive substances in a formulation are not intended to have a direct therapeutic effect, but they can have important chemical properties that facilitate absorption or product characteristics such as taste, color, or shelf-life (3). The amount of a given inactive ingredient in an approved product can serve as a precedent and help to facilitate the development of new products that use that excipient below established levels (1).

Patients can experience adverse events triggered by a wide range of substances designated as inactive ingredients. For example, a small number of patients are allergic to inactive ingredients, typically food derivatives, dyes, or preservatives (4–7). Patients with celiac disease or gluten sensitivity may experience adverse effects by gluten-containing inactive ingredients (8,9). Artificial or fermentable sugars can further cause gastrointestinal distress in intolerant patients or those with irritable bowel syndrome (10). A majority of medications may contain such ingredients, and it is common for different products containing the same active pharmaceutical ingredient (API) to contain different inactive ingredients (4). However, there has been scant published work seeking to quantify the change in the use of inactive ingredients over time and whether healthcare providers are considering the multiplicity of inactive ingredients when prescribing a medication. Here, we sought to evaluate the historical evolution of different formulations available in US medications. Furthermore, we sought to query physicians about their awareness of inactive ingredients and whether they consider the excipients when evaluating a patient who reports an adverse reaction to an oral medication.

MATERIALS AND METHODS

Historic Data Analysis

We extracted the listed active ingredients, inactive ingredients, and NDC codes for all oral solid dosage forms marketed in the United States from the National Institute of Health’s Pillbox (version 201605) (11). The names of active and inactive ingredients were then subsequently processed as previously described (4). Briefly, we standardized names of ingredients to lowercase, corrected spelling errors, and standardized formatting. A “formulation” was defined as a unique combination of specific inactive ingredients and active ingredients, in which the active and inactive ingredients could occur in any order in their respective list. This does not account for differences in quantities since this information is not currently available. Using the NDC codes from Pillbox data as a reference, we extracted from DrugBank 5.0 (12) the identity of the manufacturer, the marketing data, and the date the product was discontinued, if applicable. This generated a list of all marketed oral solid dosage forms with their active and inactive ingredients, their marketing period, and their manufacturer. We further processed this data in KNIME (13) as well as in Python using pandas to group different marketed dosage forms of the same API, thereby enabling us to track the number of available formulations and the number of manufacturers over time. For each API, we correlated the number of currently available formulations (number of solid dosage forms with active marketing in 2019) with the years since products containing the specific API were first approved (2019 - first marketing year for this API), the number of manufacturers (producing this API in 2019), and the number of prescriptions in 2019. The latter was extracted from the MEPS top 300 prescribed medicines file from the ClinCalc DrugStats Database (clincalc.com) and manually linked to our data through the name of the API.

Survey

Study data was collected and managed using the REDCap electronic data capture tools (version 7.4.19) hosted at Partners Healthcare (14). A PDF of the complete survey instrument is included as a supplement (Electronic Supplementary Material). Data that could identify study participants was not collected, and the survey was determined to be exempt by the Partners Healthcare IRB. Surveys were distributed via internal listservs with electronic reminders to the internal medicine house staff at the Brigham and Women’s Hospital (219 recipients), endocrinology fellows and faculty within Partners Healthcare (85 recipients), and gastroenterology fellows and faculty within Partners Healthcare (94 recipients). Determination of a chemical’s status as an active ingredient, inactive ingredient, or both was based on queries of the NIH pillbox data (11) and the FDA’s Inactive Ingredient Database (15). The word “magnesium” was used on the survey and was intended to mean magnesium oxide, which is used both as an API and an inactive ingredient. “Cellulose” is an inactive ingredient, although the chemically related “methylcellulose” is used as an active ingredient. To capture such differences, we here exclusively focused on the “inactive ingredient” classification. Similarly, although “gluten” can be present in pharmaceutical products through contamination, it is itself not used purposefully as either active or inactive pharmaceutical compound and was therefore here considered “neither”. One ingredient that was included in the surveys but not included in the analysis was mercury. We decided that mercury was potentially confusing to
participants: it is not an API or an inactive ingredient in FDA-approved medications, but it is an API in homeopathic drugs in the Pillbox database (e.g. NDC Codes 54,973–3134-1 and 48,951–7043-4) and, in compounds like thimerosal, can be found as a component of inactive ingredients in injectable formulations (16).

Statistical Analysis and Plotting

Data was analyzed in Python (version 2.7.6) using the NumPy (www.numpy.org) and SciPy (www.scipy.org) libraries. Survey data was visualized using SankeyMatic (www.sankeymatic.com). Other plots were generated using matplotlib (www.matplotlib.org). All plots were processed in Inkscape (version 0.91). Statistical tests and statistical analysis were performed in Python (version 2.7.6) and Prism (version 7.03). Specifically, for analyzing the correlations between the number of available formulations in 2019 and the number of manufacturers in 2019, years in production, and number of prescriptions in 2019, we determined the Pearson correlation coefficient and calculated a two-sided \(p \) value using a beta distribution as implemented in scipy.stats.pearsonr. For the analysis of correlations between the survey responses, we calculated Fisher’s exact test using the unconditional Maximum Likelihood Estimate as implemented in scipy.stats.fisher_exact. Results were not corrected for multiple testing since even without this correction all differences in responses were insignificant. To analyze differences in the error rates of different classes of ingredients for the quiz, we imported the data into Prism and performed an ordinary one-way ANOVA without matching. Error rates were further contextualized by comparing mean values and one standard deviation.

RESULTS

The Number of Available Formulations Has Increased Exponentially

By combining medication formulation data with marketing data, we were able to investigate how the number of available formulations per API has changed over time. We found that the number of formulations per API varied depending on the active ingredient investigated (Fig. 1a), but we generally observed an overall increase in the number of available formulations in the last forty years (Fig. 1b). The medications acetaminophen (286), ibuprofen (245), diphenhydramine hydrochloride (226), and aspirin (212) had more than 200 available formulations in the year 2019, excluding combination products. On average, there were 8.75 alternative formulations available per medication in 2019. Notably, the number of available formulations seems to be most strongly correlated (Fig. 1c) to the number of manufacturers producing the product \((r = 0.84, p = 3e-63)\) rather than the number of years a medication has been on the market \((r = 0.21, p = 2e-3)\) or
the number of annual prescriptions of the medication ($r = 0.38$, $p = 1 \times 10^{-9}$).

Survey among Healthcare Professionals Reveals Limited Awareness

88 completed surveys were received (22% response rate). Residents in internal medicine ($n = 49$, 55.7%) slightly outnumbered attending physicians ($n = 30$, 34.1%), with the most common specialty being gastroenterology (63.9% of specialists, $n = 23$) (Table I). In addressing baseline attitudes towards generic medications, the survey first presented a scenario where a patient with celiac disease and an intolerance to lactose is started on generic metformin and develops diarrhea without any additional allergic symptoms (Table II). Most professionals would only select a single intervention (71 respondents, 81%), while some others (16, 18%) selected two strategies, and one participant selected three strategies (Fig. 2a, Table I). The majority of providers ($n = 49$, 55.7%) indicated that they would offer reassurance, while others would document an intolerance ($n = 20$, 22.7%) or switch classes ($n = 20$, 22.7%) (Fig. 2a, Table II). A smaller number would switch to a branded version of the drug ($n = 9$, 10.2%) or switch to a different generic manufacturer ($n = 10$, 11.4%).

Almost all ($n = 79$, 89.8%) of the providers had encountered a patient who insisted that there was a difference between the generic and branded form of a medication at some point in their career ($n = 79$), and approximately 94% ($n = 74$) of these providers had encountered at least one patient who made this assertion in the past year (Fig. 2c, Table II). Approximately half of these providers ($n = 41$, 51.9%) believe that there is a difference between generic products (Table III), but when asked about the components of generic and branded drugs, 100% ($n = 88$) correctly recognized that they both had the same active ingredients and 95.4% ($n = 84$) recognized that they have different inactive ingredients (Table IV). Less than half of providers know where to find the inactive ingredients in their patients’ medications ($n = 36$, 40.9%), and while 75% ($n = 27$) of that subset have looked up these ingredients, only 25% ($n = 9$) do it more than once a month (Fig. 2c).

When asked to identify whether chemicals are active ingredients, inactive ingredients, neither, or both, more than 66%

Table 1	Demographics of Survey Respondents
Gender ($n = 88$)	No. (%)
Male	42 (47.7%)
Female	46 (52.3%)
I prefer not to answer	0 (0%)
Role as a provider ($n = 88$)	
Medical resident	49 (55.7%)
Attending specialist provider	30 (34.1%)
Fellow	6 (6.8%)
Other	2 (2.3%)
Nurse practitioner	1 (1.1%)
Subspecialty practice or training ($n = 36$)	
Gastroenterology	23 (63.9%)
Endocrinology	12 (33.3%)
Cardiology	1 (2.8%)
Years since completing training ($n = 88$)	
Still in training	55 (62.5%)
<5 years	12 (13.6%)
5–10 years	6 (6.8%)
11–20 years	5 (5.7%)
21–30 years	5 (5.7%)
>30 years	5 (5.7%)
Practice Setting ($n = 88$)	
Inpatient	5 (5.7%)
Outpatient	10 (11.4%)
Both inpatient and outpatient	72 (81.8%)
Neither	1 (1.1%)
Percentage of time devoted to clinical activities ($n = 30$)	
No clinical time	1 (3.3%)
<25% clinical time	8 (26.7%)
26–50% clinical time	4 (13.3%)
>50% clinical time	17 (56.7%)

Table 2	Provider Reactions to Medication-Attributed Symptoms
A patient with well-controlled celiac disease and lactose intolerance was started on generic metformin and now presents with mild abdominal pain, bloating, and diarrhea. Which of the following would you do next? Please select all that would apply ($n = 88$)	
Document a medication allergy	0 (0%)
Document a medication intolerance	20 (22.7%)
Switch to branded metformin	9 (10.2%)
Switch to another manufacturer	10 (11.4%)
Switch classes	20 (22.7%)
Provide reassurance only	49 (55.7%)
Have you ever experienced a patient who insists that the generic form of a medication or tablet affects them differently than the branded version of the same medication?	
No	9 (10.2%)
Yes	79 (89.8%)
If yes, how often has this happened in the past year? ($n = 79$)	
None	5 (6.3%)
One to two times	45 (57%)
Three or more times	29 (36.7%)
If yes, is there a difference in the products or is this patient preference? ($n = 79$)	
Difference	38 (48.1%)
Patient preference	41 (51.9%)
of participants were able to successfully identify compounds that were either active or inactive ingredients (Fig. 2b, Table IV). However, less than 30% correctly identified any of the three compounds that can be designated as both active and inactive ingredient, depending on the concentration. Error rates differed significantly between the different ingredient classes (one-way ANOVA, p = 0.006) and were lowest for active ingredients (3.4%), higher for inactive ingredients (22% ± 8%) and highest for ingredients that can serve both as active or inactive ingredients (80% ± 10%).

Table 3 Generic Skepticism Index (23) and Knowledge of Active and Inactive Ingredients. Participants Responses on a Five-Point Scale of Drug Skepticism and True/False Questions on the Definition of Active and Inactive Ingredients

	Strongly disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	Strongly agree	Skeptics [23]
Have similar efficacy	1 (1.1%)	2 (2.3%)	3 (3.4%)	34 (38.6%)	48 (54.5%)	6 (6.8%)
Have similar safety profiles	0 (0%)	2 (2.3%)	0 (0%)	24 (27.3%)	62 (70.5%)	2 (2.3%)
Cause more adverse events	46 (52.3%)	31 (35.2%)	8 (9.1%)	3 (3.4%)	0 (0%)	11 (12.5%)
Have the same active ingredients	True	False				
Have the same inactive ingredients	88 (100%)	0 (0%)				
	4 (4.5%)	84 (95.5%)				
DISCUSSION

Generic drugs comprise ~90% of prescriptions in the United States (17) and save hundreds of billions of dollars annually (18), but the formulation differences between different medications is potentially a misunderstood and underappreciated factor by healthcare providers and patients. For some commonly prescribed medications, there are hundreds of different versions of the same medication available to patients today. Our data suggests that this is mostly driven by different manufacturers, where multiple manufacturers produce different formulations for the same medication. However, this is likely still an underestimate of the true variability. For example, manufacturers are required to list the inactive ingredients included in a formulation but not the amounts at which these ingredients are included—which can vary greatly between products (19).

Patient hypersensitivity or intolerance to a new medication can be challenging for both patients and health care providers, but the range of available formulations could represent an underrecognized clinical opportunity. When a patient experiences medication side effects, it is sometimes difficult to attribute those symptoms to the API or an inactive ingredient. Incorrectly parsing the difference could mean switching to costlier or less effective medications rather than switching generic manufacturers. Our survey focused on intolerance and allergy symptoms, but there is increasing evidence that certain inactive ingredients may be helpful when prescribing medications and understanding side effects, and this could be worth emphasizing to prescribing clinicians. Innovative novel formulations as well as expanding clinical decision making to consider currently available formulations will both provide currently unrecognized opportunities to control adverse effects as well as impacting adherence to and the pharmacokinetics of lifesaving medications.

CONCLUSIONS

Together, this data shows that formulation heterogeneity is an increasing and potentially under-recognized source of medication-related adverse events, patient discomfort, and non-compliance. Considering both the active and inactive ingredients may be helpful when prescribing medications and understanding side effects, and this could be worth emphasizing to prescribing clinicians. Innovative novel formulations as well as expanding clinical decision making to consider currently available formulations will both provide currently unrecognized opportunities to control adverse effects as well as impacting adherence to and the pharmacokinetics of lifesaving medications.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded in part by: Swiss National Science Foundation Fellowships P2EZP3_168827 and P300P2_177833 (DR), the Department of Medicine Residency Program (SB), MGH Cancer Center T32 2T32CA071345-21A1 (SB), the Alexander von Humboldt Foundation Feodor Lynen Fellowship (CS), the NIH grant EB000244 (GT), the Division of Gastroenterology at Brigham and Women’s Hospital, the Department of Mechanical Engineering at MIT and Karl van Tassel (1925) Career Development Professorship (GT), and the MIT-IBM Watson AI Lab (DR, CS, GT). We are grateful to Professor R. Langer for invaluable guidance and comments on this work. Complete details of all relationships for profit and not for profit for G.T. can be found at the following link: www.dropbox.com/sh/szi7vnr4a2ajb56/AABs5N5i0q9Aft1IqJAE-T5a?dl=0. S.M.B. has a consulting relationship with Two River Consulting, Third Rock Ventures and is an equity holder in Kronos Bio Inc. C.S. is employed by Bayer AG, Berlin, Germany. D.R. acts as a consultant for the pharmaceutical and biotechnology industry.
and a mentor for the German Accelerator Life Sciences. D.R., S.B., and G.T. are co-inventors on a provisional patent application 62/811, 502 encompassing systems and algorithms capable of quantifying and providing inactive ingredient burden in medications.

REFERENCES

1. FDA. 21 CFR 210.3(b)(7). 2018.
2. Best over-the-counter (OTC) drugs for common ailments - Consumer Reports [Internet]. 2013. Available from: https://www.consumerreports.org/cro/2013/07/compare-over-the-counter-drugs-for-common-ailments-consumer-reports/index.htm
3. Abrantes CG, Duarte D, Reis CP. An overview of pharmaceutical excipients safe or not safe? J Pharm Sci. 2016;105:2019–26.
4. Reker D, Blum SS, Steiger C, Anger KE, Sommer JM, Fanikos J, et al. ‘Inactive’ ingredients in oral medications. Sci Transl Med. 2019;11:eaau6753.
5. Kelso JM. Potential food allergens in medications. J Allergy Clin Immunol. 2014;133:1509–20.
6. Nagel-Edwards KM, Ko JY. Excipient choices for special populations. Int J Pharm Compd [Internet]. 2008;12:426–30. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-77949515503&partnerID=40&md5=ad64acc83bd473f3414d22d483088011.
7. Brandstetter RD, Conetta R, Glazer B. Lactose Intolerance Associated with Intal Capsules. New Engl J Med [Internet]. Massachusetts Medical Society; 1986 [cited 2018 Apr 12];315:1613–4. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM198612183151615.
8. FDA. Gluten in Drug Products and Associated Labeling Recommendations. Draft Guid. 2017;
9. King AR. Gluten Content of the Top 200 Medications: Follow-Up to the Influence of Gluten on a Patient’s Medication Choices. Hosp Pharm [Internet]. SAGE Publications; 2013 [cited 2018 Apr 13];48:736–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24421547.
10. Gibson PR. Use of the low-FODMAP diet in inflammatory bowel disease. J Gastroenterol Hepatol. 2017;32(Suppl 1):40–2.
11. NLM. Pillbox [Internet]. Available from: pillbox.nlm.nih.gov
12. Wishart DS, Feunang YD, Gao AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res [Internet]. Oxford University Press; 2018 [cited 2018 Dec 5];46:D1074–82. Available from: http://academic.oup.com/nar/article/46/D1/D1074/4602867.
13. Berthold MR, Cehron N, Dill F, Gabriel TR, Kotter T, Meintr, et al. KNIME: The Konstanz information miner. Data Anal Mach Learn Appl [Internet]. Springer; 2008;319–326. Available from: https://www.knime.com/.
14. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inf. 2009;42:377–81.
15. FDA. Inactive Ingredient Search for Approved Drug Products [Internet]. Available from: https://www.accessdata.fda.gov/scripts/cder/iig
16. Thimerosal in Vaccines Thimerosal | Concerns | Vaccine Safety | CDC. 2018.
17. Aitken M, Kleinrock M. The global use of medicine in 2019 and outlook to 2023. Data Sci: IQVIA Inst. Hum; 2019.
18. AAM. Generic Drug Access & Savings Report. 2018:2018.
19. Eadala P, Waud JP, Matthews SB, Green JT, Campbell AK. Quantifying the ‘hidden’ lactose in drugs used for the treatment of gastrointestinal conditions. Aliment Pharmacol Ther. 2009 Mar;29(6):677–87.
20. Aungst BJ. Absorption enhancers: applications and advances. APPS J [Internet]. Springer; 2012 [cited 2017 Jul 18];14:10–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22105442.
21. Reker D, Shi Y, Kirtane AR, Hess K, Zhong GJ, Crane E, et al. Machine learning uncovers food-and excipient-drug interactions. Cell Rep. 2020 Mar 17;30(11):3710–6.
22. Potten J, Armstrong D, Zou L, Fekete A, Huang XP, Torosyan H, et al. The activities of drug inactive ingredients on biological targets. Science. 2020 Jul 24;369(6502):403–13.
23. Kesselheim AS, Gagne JJ, Eddings W, Franklin JM, Ross KM, Fulchino LA, et al. Prevalence and predictors of generic drug skepticism among physicians: Results of a national survey. JAMA Intern. Med. 2016. p. 845–7.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.