Research Article

Clinicohaematological profile of aplastic anaemia in BRIMS, Teaching Hospital, Bidar

Vijay Kumar B.A.*,1, Shivraj G. Biradar1, Veerendra Patil2, Prithviraj M. Biradar1, Hivkumar Mithare1 and Ashish Kumar Sharma1

1Department of Medicine, Bidar Institute of Medical Sciences, Bidar, India
2Department of Pathology, Bidar Institute of Medical Sciences, Bidar, India

*Correspondence Info:
Dr. Vijay Kumar B.A.,
Associate Professor,
Department of Medicine,
Bidar Institute of Medical Sciences, Bidar, India
E-mail- dranananddmfm@gmail.com

Abstract

Objectives: There is a scarcity of clinical data in the field of aplastic anaemia from rural India. Present study was conducted in BRIMS, Teaching Hospital, Bidar to find out the clinicohaematological profile and the possible aetiological factors in patients with aplastic anaemia.

Methodology: The study population (n=100) included 25 children with male to female ratio 4.93:1. Weakness was present in all cases and pallor was present in 74.70% cases. Fever, bleeding episodes and localized infection were found in 55.42%, 48.19% and 27.71% cases respectively. There was no difference in clinical manifestation between children and adult except occurrence of fever (p=0.0365).

Results: We identified possible aetiological factors in 32.53% cases as relevant drug intake in 10.84%, exposure of chemicals in 13.25% and hepatitis in 8.43% cases. We found low mean haemoglobin (3.81±1.71gd/l), leucocyte and platelet count (3.05±1.3 and 37.30±35X10^3/cm^3) respectively. There was no difference in clinicohaematological profile between children and adult except for platelet which was significantly lower in children (p=0.003).

Keywords: Aplastic Anaemia, rural population, Bidar District, Clinical profile haematological profile, aetiological factor.

1. Introduction

Chronic Apalsic anemia (AA) is a disorder of haemopoietic stem cells, sometimes induced by a variety of environmental factors such as drugs, chemicals and infection. Although in many cases the precise aetiology cannot be obtained, a search for aetiology is necessary for better management and prevention. Wide clinical and geographical variations in the prevalences and presentations of AA have been reported 1. AA is a relatively common haematological disease in the east 2-3. The reported incidence is as high as 7.2 per million in the age group of 15 to 24 years 4. Among the various aetiologic factors, the role of insecticides is significant in the less developed countries 5. The diagnosis of AA relies on the finding of peripheral blood pancytopenia and hypocellular marrow with increased fat spaces in the absence of any other disease 6.

However, diagnosis is sometimes difficult due to the presence of residual hypercellular areas (hot pocket) of haemopoiesis 7. Very few studies have been carried out regarding the incidence and clinicohaematological features of AA in India 8-9. BRIMS, Teaching Hospital caters patients from rural areas of Bidar District and Rural areas of Medak dist Telangana (state) as the blood bank of this institute has the facilities of component separation, almost all patients with haematological disorders are referred to this institution. The present study was undertaken to find out the clinicohaematological pattern of AA; to identify the possible aetiological factors, to compare the clinicohaematological patterns of AA between adult and children, and to estimate the approximate prevalence of disease in the rural areas of Bidar district.

2. Material and method

The present study was undertaken in BRIMS during the period of 2 years. All cases diagnosed at or referred to this institution with AA were included in the study.

All cases, except those not willing to give written informed consent, were subjected to a detailed clinical history to assess the severity and complication of diseases like history suggestive of local or systemic infection, bleeding manifestations and symptoms due to anaemia (weakness); and to identify the possible aetiologic factors that included present past drug intake, exposure to insecticides, fungicides, herbicides and fertilizers, exposure to radiation, past or present history of jaundice, suggestive family history etc. The probability of congenital AA was evaluated in children as per International Fanconi Anemia Registry scoring 10. All cases were then undergone details clinical examination with special emphasis on degree of anaemia, presence of infection, purpura or bleeding manifestations, enlargement of liver, spleen or lymph node, sternal tenderness, gum hypertrophy and liver disease. Investigations included complete blood count (CBC) including reticulocyte count, and the changes of different parameters were compared against the standard normal values 11. Bone marrow examination was done from two different sites. Aspiration was done and smears were stained by Leishman’s and Prussian blue stain (for iron content). For the histological sections, marrow particle were concentrated, fixed in equal amount 15% formalin and absolute alcohol solution and stained with haematoxylin and eosin (H&E) and Prussian blue technique 12. Trephine biopsy was done by Jamshidi’s needle and fixed in formal saline, stained by H&E and reticulocyte stain. Biochemical examinations including liver function test (LFT), serum urea and creatinine, fasting blood sugar, and hepatitis B surface antigen (HBsAg) and antihepatitis C virus (anti HCV) done in all cases.

The cases were classified at presentation as moderate AA when bone marrow cellularity was less than 50% and 2 or 3 cytopoenias noted: absolute neutrophilic count (ANC) below 1,500/cmm, absolute reticulocyte count (ARC) below 40,000/cmm and platelet count less than 100,000/cmm; without meeting the criteria of severe AA (bone marrow cellularity <30% and 2 or 2 cytopoenias: ANC< 500/cmm, ARC;
Vijay Kumar B.A. et al

20,000/cmm, platelet count, 20,000/cmm). Rest of the cases were classified as mild AA when bone marrow hypocellularity and two or three cytopenias persisted for more than 6 weeks, but not so severe to fulfill the criteria for moderate AA. Standard statistical methods were used for analysis of data.

3. Observations

100 cases of AA consisting of 83 males (83.13%) and 17 females (16.87%) were included in this study. The male to female ratio was 4.93:1 children (less than 15 years of age) accounted for 25 cases (25.30%) (Table 1).

Table 1: Showing the Demographic Pattern of the Study population

Parameter	Adults (n=75)	Children’s (n=25)	Total (n=100)
Sex (male: female)	52.10 (5.2:1)	17.4 (4.25:1)	69.14 (4.93:1)
Age Range (years)	18 to 65	6 to 14.5	6 to 65
Mean age (years)	31.04 ±12.59	11.36 ±2.83	26.40 ±13.95

Table 2: Distribution of Cases according Clinical Manifestations

Clinical manifestations	Adults (n=75)	Children’s (n=25)	Total (n=100)
Insidious onset	70 (93.55%)	21 (85.71%)	91 (91.57%)
Weakness	75 (100%)	25 (100%)	100 (100%)
Pallor	50 (66.13%)	25 (100%)	75 (75%)
Fever	38 (48.39%)	17 (76.19%)	55 (55.42%)
Bleeding	38 (48.39%)	10 (47.62%)	48 (48.19%)
Infection	22 (29.03%)	6 (23.81%)	28 (27.71%)
Hepatomegaly	5 (6.45%)	3 (12.05%)	8 (8.43%)

Table 3: peripheral Blood Parameters in the study population

Parameters	Mean (Standard deviation)	Range	Mean (Standard deviation)	Range	Mean (Standard deviation)	Range
Haemoglobin 9g/dl	1.35-9.40	30.72 ±1.73	2.2-8.5	4.15±1.65	1.35-9.40	3.81±1.71
Total leucocytes (X10^9/cmm)	0.80-9.70	2.99 ±1.47	1.5-4.8	3.238±0.985	0.80-9.70	3.05±1.3
Platelets (X10^9/cmm)	8.00-9.00	4.52 ±3.28	10.0-68.00	27.95±17.27	1.00-1900.00	37.30±35
Neutrophils (%)	3-84	32.26 ±22.92	2-75	24.5±17.1	3-84	30.25±21.76
Lymphocytes (%)	14-97	65.30 ±23.82	23-98	73±17.4	14-97	67.27±22.50

Table 4: Showing the grade Aplastic Anaemia and Average count of Different peripheral blood parameters

Degree of aplastic anemia	Bone marrow cellularity (%)	Absolute neutrophil count (%)	Platelet count (%)	Absolute reticulocyte count (%)
Severe	31 (37.35%)	33 (39.76%)	34 (40.96%)	41 (49.40%)
Moderate	49 (59.04%)	40 (48.19%)	45 (54.22%)	38 (45.78%)
Mild or no reduction	3 (3.6%)	10 (12.05%)	4 (4.82%)	4 (4.82%)

Bone marrow examination revealed adequate sampling with decreased cellularity in all cases. Histological section of the aspirated marrow particles revealed better architectural relationship between the cellular and fat components. Bone marrow in aspirated smears (Leishman x100) and trephine biopsy revealed increased reduction of cellularity (~30%) was noted in 37 cases (37.35%). An absence of cell trail in aspirated material was noted in 78 cases (78.31%). Presence of hot spots i.e. Focal areas of hypercellular marrow (H&E x50) were observed in 23 cases (22.89%) and mild dyserythropoietic changes were noticed in 23 cases (22.89%).

Abnormalities in LFT (raised liver enzymes and /or hypoproteinemia) were detected in 6 cases (6.02%), while normal renal function was noted in all cases. HBsAg was positive in 2 cases (2.41%) and anti-HCV was not detected in any case. Moderate AA was most prevalent at the time or presentation (n=59 cases, 59.04%), and that was followed by severe AA (n=37:37.35%). Mild AA at the time of presentation was least frequent and was noted in 4 cases (3.61%) (Table 4).

4. Discussion

Children accounted for 25.30% of the total cases of AA in this study, while in the west this age group accounts for 16.4% of the total cases of AA. However different studies showed that AA is more common in children in Asia, accounting for up to 30% cases. A study at Mumbai (Bombay) India reported 29% cases occurred under the age of 10 year. In this study, the male to female ratio was 4.93, which was higher compared to other studies conducted in the orient (1.4 to 4.1) and India (1.31).

IJBAR (2014) 05 (10) www.ssjournals.com
Vijay Kumar B.A. et al

The increased ratio of fat to cellular areas as well as architectural pattern of fat spaces confirms the diagnosis of AA. However, bone marrow aspiration may be inconclusive due to presence of hypercellular foci, and bone marrow biopsy is helpful to exclude proliferative and infiltrative marrow disease and thereby establishes the diagnosis of AA. In the present study, the clinical features along with peripheral blood picture suggested and bone marrow examination confirmed the diagnosis of all cases. We observed that the marrow yield was satisfactory with plenty of hypopcellular particle obtained in all cases, and focal hypercellularity in 23 cases (22.89%). According to Zhang et al.3, the confirmation of AA requires correlation of different diagnosis techniques, and trephine biopsy alone can detect 93.6% of cases. We have used different techniques (bone marrow aspiration smears, histological section of aspirated particle and trephine biopsy) to increase the diagnostic accuracy. Normal or raised marrow iron found in this study might reflect decreased iron utilization by the marrow and occasional areas of active erythropoiesis.

The probable aetiology was identified in 33 cases (32.53%) in this series. Among them 13 (13.25%) had a history of exposure to insecticides and fertilizers, 11 (10.84%) had suggestive drug history of hepatitis before the onset of symptoms AA. However we could not definitely establish the aetiological factors as the role of fertilizer and insecticides could not be analysed by detecting traces of organ phosphorus and other compounds due to lack of sophisticated laboratory facility in this institution. An escalating use of insecticides and fertilizer, particularly in the tea plantation area, might be a contributing factor of AA. There are some reported cases of AA due to insecticides from the South East Asia14. we did not find any case of congenital AA which is in contrast to the 10.81% of cases as reported by Mehta et al.6. However in that study the diagnosis of congenital AA was done solely on clinical basis. We have observed similar clinical features of children with AA with that of adult. However the occurrence of fever indicating local or systemic infection were found to be significantly higher (p=0.0365) when compared with the adult patients. Associate malnutrition might be a contributory factor in children for increased susceptibility of infection.

BRIMS Teaching Hospital, is the only referral center in 4 rural northern districts of West Bengal with a modern blood bank, and this area does not have private set-up with blood component separation unit. It can be assumed that patients of AA attending this institute approximately reflect the occurrence of AA in that area, was 9,929,208 according to that data of census 2001 of India8. So, the estimated prevalence of AA (total 74 cases from these districts in 2.5 years) was 2.98/million population per year. However a population-based study is required to ascertain the true incidence of AA in the area.

It was found that AA was major non-malignant haematological disorder of northern rural districts of West Bengal. The clinical manifestations and bone marrow morphology were almost identical in adults and children. We noted that concurrent exa

5. Conclusion

It was concluded that aplastic anaemia is a major non-malignant haematological disease in this part of India and, an increasing use of chemicals in agricultural and tea garden areas might be the responsible factor. Larger population bases study is suggested.

Reference

1. International Agranulocytosis and Aplastic Anaemia Study. Incidence of aplastic anaemia: relevance of diagnostic criteria. Blood. 1987;70:1718–21.
2. Issaragrisil S, Sriratianstavorn C Pinkijagum A, Vannasaeng S, Porapakkham Y, Leaverton PE, et al –incidence of aplastic anaemia in Bangkok. The Aplastic Anaemia Study Group. Blood 1991;77:2166-8.
3. Young NS, Issaragrisil S, Chieh CW, Takaku F – Aplastic anaemia in the Orient. Br Haematol 1986;62: 1-6.
4. Sanchez-Medial L, Castanedo JP, García-Rojas F – Insecticides and aplastic anaemia. N Engl J Med 1963;269: 1365-7.
5. Kansu E, Erslev AJ – Aplastic anaemia: with ‘hot pockets’. Scand J Haematol 1976;17:326-31.
6. Mehta BC, Bhatt PD, Patel JC – Aplastic anaemia: a study of 37 cases. India J Med Sci 1973; 27: 440-7.
7. Krishna Das KV – Hypoplastic anemias as a seen in Kerala. J Assoc physicians India 1977; 25:715-21.
8. Auerbach AD, Rogatko A. Scjareder-kirth TM – International Fanconi Anemia Registry: relation of clinical symptoms to diepyoxybutane sensitivity. Blood 1989:73:391-6.
9. Perkins SL– Normal blood and bone marrow values in humans. In: Greer JP, Foerster J, Jukens NJ, Rodgers GM, Parakevas F, Glader B, editor. Wintrobe’s Clinical Haematology, 11th ed. Philadelphia: Lippincott Williams & Wilkins 2003:2697-706.
10. Lewis SM, Bain BJ, Bates I editors- Dacie and Lewis Practical Haematology 10th ed. Edinburgh: Churchill Livingstone 2006:116-26.
11. Howard SC, Naidu PE, Hu XJ, Jeng MR, Rodriguez – Galindo C, Rieman MD, et al Natural History of Moderate aplastic anaemia in children. Pediatr Blood Cancer 2004; 43:545-51.
12. Camitta BM, Storb R, Thomas ED – Aplastic anaemia (second of two parts): Pathogenesis, diagnosis, treatment and prognosis. N Engl J Med 1982; 306:712-8.
13. Miller DR, O’Reilly RJ – Aplastic Anemia in Miller Dr, editor Blood diseases of Infancy and Childhood in the Tradition of Carl H Smith. 7th ed. St Louis: Mosby, 1995:499-538.
14. Chuansumrit A, Hathirat P, Isarangkura P – Acquired aplastic anaemia in children: a review of 100 patients southeast Asian J Trop Med Public Health 1990; 21:313-20.
15. Zhang MH, Yi HQ, Zhang JX – Clinical diagnosis of aplastic anemia. Chung Hua Nei Ko Tsa Chih 1991; 30:265-7.