Nitrogen fertiliser value of biogas slurry and cattle manure for maize (Zea mays L.) production

T. Mdlambuzi, P. Muchaonyerwa, M. Tsobo, M.E. Moshi

ARTICLE INFO

Keywords:
Maize yield
Nutrient uptake
Phosphorus
Potassium

ABSTRACT

Recovery of nutrients from biogas slurry (BGS) as a soil amendment, on low input smallholder farms in sub-Saharan Africa, could improve agricultural production and minimize contribution of the agroecosystems to CO2 emissions. Comparative effects of BGS and cattle manure (CM) on maize dry matter, grain yield, uptake of nitrogen (N), phosphorus (P) and potassium (K), and soil total N, extractable P and exchangeable K after harvest were studied, relative to chemical fertiliser (CF). The field experiment was conducted in the 2016/2017 and 2017/2018 growing seasons and was arranged in a randomized complete block design replicated four times with (i) BGS, (ii) CM and (iii) CF as the treatments. Each treatment was applied at 40, 80 and 120 kg N/ha. Additional P was added to BGS and CM to have the same added P as in the CF treatments. The CM treatment had higher dry matter than both BGS and CF in both seasons at each N rate. Maize grain yield from CF treatment was higher than the two organic fertilisers at each N rate, while the BGS treatment had higher grain yield than CM except at 40 kg N/ha. When applied at the same N rate, BGS resulted in lower P and K than CF, and had higher extractable P with lower exchangeable K when compared with CM. The findings imply that while BGS provided nutrients, it resulted in lower maize dry matter than CM and lower grain yield than CF, but raised total N and available P, over time.

1. Introduction

The decline in soil fertility associated with agricultural intensification and continuous cultivation, without replenishing nutrients, is a major problem for the agricultural sector (Gurung, 1997; Jones et al., 2013). Inadequate nutrient supply and poor soil quality are major constraints in low input agriculture (Khan et al., 2012). Intensive application of CF on smallholder farms is limited by their high costs, while on highly resourced farms intensive application has led to several issues such as pollution of water with nitrate and phosphate and loss of soil carbon (Nkoa, 2014). Problems associated with low soil fertility and nutrient management could be resolved by amendments with organic waste materials that positively influence soil fertility and crop productivity. Organic wastes need to be utilized to avoid waste or loss of nutrients to the environment (Smith et al., 2014). A vast range of organic fertilisers such as manures and compost have been considered as options to improve soil fertility. Instead of direct soil application, manure can also be used to produce biogas for energy, with the potential benefit of an organic fertiliser (biogas slurry) as a by-product from the same waste. Biogas slurry from anaerobic digestion of various organic wastes through the biogas technology has received great attention worldwide (Paul and Beauchamp, 1993; Islam, 2006; Weiland, 2010; Abubaker et al., 2012; Smith et al., 2014; Nyang’au et al., 2016).

Biogas slurry is reported to be rich in macro- and micronutrients in readily available forms, which are essential for plant growth and development (Ward et al., 2008; Smith et al., 2014; Kumar et al., 2015; Cao et al., 2016). The high nutrient composition of BGS suggests that it has the potential to be used as an organic fertiliser (Odlare et al., 2011) while providing a cheaper and safer alternative source of nutrients compared to chemical fertilisers (CF) (Khan et al., 2012). Biogas slurry has the potential to improve crop nitrogen (N) uptake, growth and yields, and adds the necessary organic carbon (OC) and improve soil quality (Ernst et al., 2008; Bachmann et al., 2011; Galvez et al., 2012). Furthermore, the nutrient cycling and liming effects of BGS could improve soil quality and...
crop yields, with insignificant negative effects (Nyang'au et al., 2016). The use of BGS as a nutrient source could reduce the need for the use of CF, reducing fertiliser costs, especially for farmers in the smallholder sector in the vicinity of biogas plants (Kumar et al., 2015). Several studies have reported that anaerobically digested cattle and pig slurry, which are sometimes referred to as BGS could improve structure, water-holding capacity and overall fertility of the soil, increase crop yields (Paul and Beauchamp, 1993; Nasir et al., 2012; Nasir et al., 2015; Malav et al., 2015a,b; Zheng et al., 2016) compared to CF and other organic composts. Several studies have reported that effects of CF and BGS are comparable in terms of crop yields (Dauden and Quilez, 2004; Nasir et al., 2012; Kumar et al., 2015).

A variety of BGS produced from different production systems contained 0.5–2.5% N, 0.5–1.9% phosphorus (P) and 0.6–2.2% potassium (K) (Khandeiwal and Mahdi, 1986; Demont et al., 1990; Surendra et al., 2014; Kumar et al., 2015). The variation in the nutrient composition of BGS could depend on the chemical composition of the feedstock and biogas production conditions used. For example, solid animal manure N, P and K could range between 0.4–0.8%, 0.6–0.8% and 0.5–0.7%, respectively, depending on feed and storage conditions (Surendra et al., 2014). Cattle manure (CM) is the most common organic waste on resource-poor farms in sub-Saharan Africa, and its nutrient composition is variable but is usually poorer than other regions due to the low quality of grazing on infertile soils (Mandirirangana et al., 2005; Gichangi et al., 2008). The CM is the most common feedstock for biogas production in the region, and the use of the BGS in agriculture, could contribute to soil fertility and offer a strategy for mitigating greenhouse gas emissions (Welland, 2010). The process of biogas production from the CM could change the chemical composition of the feedstock and possibly make the nutrients more labile in the slurry. For example, Khan et al. (2012) reported that BGS contains higher N compared to the solid animal manure feedstock. However, Bonten et al. (2014) argued that the N, P, K contents of BGS and solid animal manure could be similar, if ammonia volatilization is prevented during anaerobic digestion. There is a need to understand the fertiliser value of BGS in sub-Saharan Africa, and how it compares with the feedstock (CM).

Many studies comparing BGS from other different organic sources and the feedstocks (solid manures) have been conducted (Paul and Beauchamp, 1993; Möller and Müller, 2012; Bonten et al., 2014). However, in some cases other waste streams are added during anaerobic digestion, which hampers the comparison between BGS and solid animal manure. Therefore, there is a paucity of studies that compare the fertiliser value of BGS and the feedstock (CM). Furthermore, most studies on BGS are conducted under controlled environmental conditions (i.e laboratory or glasshouses), with little research work under field conditions especially in sub-Saharan Africa, where temperature and soil moisture fluctuate. Application of BGS could help smallholder farmers in South Africa, who generally apply CF at less than the recommended rates because of the high cost. Maize is among the most commonly grown crops on the smallholder farms of South Africa (DAFF, 2016). The threshold for soil nutrient levels for maize are 8 mg NO3-N kg–1, 8.5 mg P kg–1, 80–125 mg K kg–1 (FSSA, 2007; Ayodele and Omotoson, 2008; Billjon et al., 2008). It was hypothesized that, when applied at the same rate based on N, BGS produced from CM in sub-Saharan Africa will result in the same maize dry matter, grain yields and nutrient uptake as the feedstock (CM) and compound chemical fertiliser, with additional benefits of increasing available P under field conditions. The objective of this study was to determine the comparative effects of BGS and CM relative to CF on maize dry matter, grain yield and uptake of N, P and K of maize, and soil nutrient composition after crop harvest under field conditions.

2. Materials and methods

2.1. Site description

The study was conducted at the experimental station of the Agricultural Research Council-Vegetable and Ornamental Plants and the climatic and soil characteristics of the experimental site are as described by Mdliambuzi et al. (2021). The BGS and CM, experimental design and agronomic practices, including water management, are also as detailed in Mdliambuzi et al. (2021).

2.2. Plant sampling and analysis

Leaves of five randomly selected maize plants were sampled from each plot at the tasselling stage. The stems of the sampled plants were kept and included to the plants used for the determination of dry matter. All leaf samples were kept in well-labeled paper bags, oven-dried at 50 °C and ground to <0.5 mm using Fritsch Pulverisette mortar grinder. The ground plant samples were digested following the nitric acid-perchloric acid digestion method (Zasoski and Burau, 1977). Briefly, 0.5 g of dried plant material was digested with 7 ml nitric acid and 3 ml perchloric acid at 180 °C, brought up to volume in a 100 ml volumetric flask and analysed for P, K, Ca and Mg by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Total N was determined by dry combustion method (Jiminez and Ladhla, 1993). Maize grain yield was only determined in the 2016/2017 season because monkeys damaged the cobs just before harvest in the 2017/2018 season.

2.3. Selected physicochemical soil parameters after maize

After maize harvest, five soil subsamples were collected from the 0–20 cm depth of each plot using a bucket auger and mixed thoroughly to make a composite sample. The soil samples were analysed at the Agriculture Research Council’s Soil, Climate and Water (ARC-SCW) laboratory. Total N was determined using the Kjeldahl digestion method (Bremner and Mulvaney, 1982). Plant available P was extracted with Bray 1 extraction solution (Bray and Kurtz, 1945) followed by analysis on a Continuous Flow Auto Analyser 3, SEAL Analytical, Australia. Exchangeable K was extracted with 1M Ammonium acetate solution (NH4OAc) adjusted to a pH of 7.0 (Chapman, 1965; Hesse, 1971) and analysed with an ICP (ICPES-9820, Plasma Atomic Emission Spectrometer, Shimadzu Corporation, Japan).

2.4. Statistical analysis

The data for maize dry matter, grain yield, uptake of N, P, K and soil concentration of N, P, and K were statistically analysed as described by Mdliambuzi et al. (2021). Maize dry matter yield was correlated with uptake of N, P, K and with soil concentrations of total N, available P, exchangeable K using Pearson’s correlation analysis for each season using JMP statistical software (14th edition).

3. Results

3.1. Dry matter and grain yield

Maize dry matter yield increased with increase in N rate for all the treatments (p < 0.01) for both seasons (Figure 1). In both seasons, the BGS treatment resulted in the lower dry matter than CM and CF at all N application rates except at 40 kg N ha⁻¹ in the 2016/2017 season, where BGS was similar to CF. The CM had higher dry matter than CF at 40 and 80 kg N ha⁻¹ but not at 120 kg N ha⁻¹ where the two treatments had similar effects in the 2016/2017 season. In the 2017/2018 season the dry matter in the CF treatment was higher at 40 kg N ha⁻¹, similar at 80 kg N ha⁻¹ and lower at 120 kg N ha⁻¹ than CM. The highest dry matter was in CM at 80 kg N ha⁻¹ in the 2016/2017 season and at 120 kg N ha⁻¹ in the 2017/2018 season followed by CF. The dry matter yield for all treatments was generally higher in the 2017/2018 than the 2016/2017 season.

Maize grain yield increased with increasing N rate for all treatments (p < 0.01) (Figure 2). The CF treatment had higher grain yield than both BGS and CM, at each rate in the 2016/2017 season. The grain yield in the
BGS treatment was lower at 40 kg N ha\(^{-1}\), higher at 80 kg N ha\(^{-1}\), and similar at 120 kg N ha\(^{-1}\) when compared to CM.

3.2. Uptake of nitrogen, phosphorus and potassium

Increasing amendment rate increased N uptake by maize for all treatments (\(p < 0.01\)) in both seasons (Figure 3). The highest N uptake (higher than the other two) was from the CM treatment at 80 kg N ha\(^{-1}\) in the 2016/2017 and at 120 kg N ha\(^{-1}\) in the 2017/2018 season. In the 2016/2017 season, BGS had similar N uptake at 40 and 120 kg N ha\(^{-1}\) when compared with CM, which was similar to the CF treatment. In the 2017/2018 season, BGS resulted in lower N uptake than CF treatment at 40 and 120 kg N ha\(^{-1}\) (Table 2).

At each rate, the BGS treatment had lower P uptake than the CF and CM in both seasons except at 120 kg N ha\(^{-1}\) in the 2016/2017 season, where BGS resulted in similar P uptake with CM. The highest P uptake was in 120 kg N ha\(^{-1}\) of the CF in the 2016/2017 season and of the CM treatment in the 2017/2018 season. In both seasons, higher rates increased K uptake except in the 2017/2018 season, where K uptake in the BGS treatment did not change (Table 1). The CF treatment resulted in higher K uptake than both BGS and CM in both seasons. BGS treatment had lower K uptake than CM in both seasons except at 120 kg N ha\(^{-1}\) in 2016/2017, where the two treatments were similar.

3.3. Residual nutrients after maize

Increasing N application rate caused an increase in total N in the soil for all treatments in both seasons (Table 2). Total soil N in the BGS treatment was lower at 40 and 80 kg N ha\(^{-1}\) and higher at 120 kg N ha\(^{-1}\) than CM in the 2016/2017 season. In 2017/2018, BGS resulted in higher total N than CM treatment at all N application rates. At 40 and 80 kg N ha\(^{-1}\) BGS resulted in lower total N than CF with no difference at 120 kg N ha\(^{-1}\) in 2016/2017 season, while in the 2017/2018 season, BGS resulted into higher total N than CF treatment at 40 and 120 kg N ha\(^{-1}\) (Table 2).

The BGS treatment resulted in higher soil extractable P than CM at all N rates in both seasons except at 40 kg N ha\(^{-1}\) where CM had higher than BGS in the 2017/2018 season (Table 2). Extractable P in both BGS and CM treatments was lower than the CF treatment across all N application rates in both seasons, except at 80 kg N ha\(^{-1}\) in the 2017/2018 season where BGS had higher levels than CF treatment. The results showed lower exchangeable K in the BGS treatment than the CM treatment across all rates for both seasons except at 80 kg N ha\(^{-1}\) where BGS treatment had higher exchangeable K in 2017/2018 season. The CF treatment had higher exchangeable K than CM at all N rates for both seasons except at 120 kg N ha\(^{-1}\) in the 2016/2017 season (Table 2).

There was a strong positive correlation between maize dry matter and plant nutrient uptake for all three elements in both the 2016/2017 and 2017/2018 seasons (Table 3). Dry matter and soil concentrations of the different elements showed a weak positive correlation. Soil N and exchangeable K were the only elements that showed a highly stronger positive correlation in the 2016/2017 season, while in the 2017/2018 season, only P showed a slightly strongly positive correlation analysis (Table 3).

4. Discussion

The increase of maize dry matter and grain yield with the increasing rate of the amendments could be explained by higher uptake of N.
Table 1. Effect of increasing rate biogas slurry, cattle manure and chemical fertiliser (kg N ha-1) on uptake of phosphorus and potassium by maize.

Treatment	Season 2016/2017	Phosphorus uptake (kg ha-1)	Season 2017/2018	Phosphorus uptake (kg ha-1)		
BGS	0.69p	1.83bc	4.80bc	26.98e	37.69d	41.85cd
CM	3.99bc	5.88ab	4.49bc	37.92d	54.96b	46.29c
CF	3.93bc	3.13cd	7.16a	46.43c	46.50c	63.37a

Potassium uptake (kg ha-1)

Treatment	Season 2016/2017	Potassium uptake (kg ha-1)	Season 2017/2018	Potassium uptake (kg ha-1)		
BGS	26.98e	37.69d	41.85cd	43.09e	41.81d	38.35d
CM	37.92d	54.96b	46.29c	54.59f	63.66e	114.5a
CF	46.43c	46.50c	63.37a	100.2d	107.5c	117.6d

Different letters indicate significant differences based on Tukey test at p < 0.01.

Table 2. Effect of increasing rate of biogas slurry, cattle manure and chemical fertiliser (kg N ha-1) on total nitrogen, extractable phosphorus and exchangeable potassium in the soil after maize.

Treatment	Season 2016/2017	Total nitrogen (%)	Season 2017/2018	Total nitrogen (%)		
BGS	0.02a	0.03ab	0.05a	0.33bc	0.41b	0.47bc
CM	0.04b	0.04a	0.04b	0.27a	2.97a	5.90a
CF	0.03c	0.04a	0.05b	6.95d	8.60c	11.77b

Extractable phosphorus (mg kg-1)

Treatment	Season 2016/2017	Extractable phosphorus (mg kg-1)	Season 2017/2018	Extractable phosphorus (mg kg-1)		
BGS	0.99f	6.07e	11.29b	0.76d	14.87c	21.58a
CM	0.27c	2.97a	5.90a	0.20c	0.23a	0.24a
CF	6.95d	8.60c	11.77b	10.19d	11.44c	16.48a

Exchangeable potassium (cmolc kg-1)

Treatment	Season 2016/2017	Exchangeable potassium (cmolc kg-1)	Season 2017/2018	Exchangeable potassium (cmolc kg-1)		
BGS	6.94e	14.64b	14.84b	0.14d	0.20a	0.19a
CM	7.20f	9.30a	10.32a	0.16f	0.18f	0.31b
CF	10.19e	11.44c	16.48a	0.33c	0.88a	1.07a

Different letters indicate significant differences based on Tukey test at p < 0.01.
BGS and CM, even though the dry matter was lower than CM in the 2016/2017 season (only studied), was a result of higher uptake of P and K, especially at higher N rate (120 kg N ha$^{-1}$).

The organic sources (BGS and CM) released nutrients at a slower rate than CF, which explained the lower grain yield from both BGS and CM treatments (Xu et al., 2019). The grain yield in the BGS treatment, which was higher at 40 kg N ha$^{-1}$, lower at 80 kg N ha$^{-1}$, and similar at 120 kg N ha$^{-1}$, when compared to CM, indicated that the N fertiliser value of the two materials was equivalent, especially after correcting for P. Achieving similar yield between BGS and CM indicates that there is greater benefit in using CM to produce biogas (energy) followed by using the resultant BGS as an organic fertiliser. It needs to be noted that without additional P as single superphosphate, the benefits of the BGS, together with the CM, would have been limited by low availability of P. Additional P is required if significant yield benefits are to be derived from BGS originating from CM in sub-Saharan Africa. The benefits of the treatments (BGS, CM and CF) were dose-dependent as seen from the different plant nutrient uptake and soil nutrient reserves results (Tables 1, 2, and 3). While BGS gave lower yields than CF, its use as a basal fertiliser, with top dressing with mineral fertiliser, may increase yields while improving overall soil quality in low input smallholder agroecosystems in sub-Saharan Africa where similar soil and manure quality occur.

The higher total N, extractable P and exchangeable K in soil with the increasing rate was due to higher additions through the amendments. Abubaker et al. (2013), Bonten et al. (2014) and Xu et al. (2019) showed that the application of BGS and manure influenced nutrients in soil. The slower release of nutrients by BGS, as for CM, could be beneficial in meeting the nutritional requirements of the subsequent crop (Bharde et al., 2003). The higher extractable P, for both seasons, from the BGS treatment than the CM treatment could be attributed to the higher organic P added as BGS and lower uptake by maize. Although the P was corrected with straight fertiliser, the bulk in the BGS and CM was in organic form and needed to be mineralised, while higher amounts added as superphosphate to the CM (correction) than BGS resulted in greater uptake. While Tarkalson and Leyten (2009) argued that soils treated with either liquid or solid CM resulted in higher availability of P, the results of this study showed higher soil available P in CF than the organic sources. The BGS resulted in higher P than CM but both BGS and CM treatments were lower than the CF treatment in both seasons except at 120 kg N ha$^{-1}$ in 2017/2018 season. The higher soil nutrients observed after harvest in the second than the first season of planting for all treatments was a cumulative effect of the two years of application together with limited uptake in the first season, due to the lower biomass accumulation as a result of late planting. In the CF treatment, all the P was added in readily available form, while only a portion (correction using straight fertiliser) in the BGS and CM were readily available, with the rest requiring mineralisation. Zhang et al. (2006) indicated that the release of nutrients from organic waste sources, including manure, mostly occurs in the second season after application. The higher soil P in the BGS treatment than CM was a result of lower uptake by maize (Table 1), and higher pH (Mdlambuzi et al., 2021), which could have reduced fixation, making P more readily available. These benefits are in addition to the increased soil organic C reported in Mdlambuzi et al. (2021).

5. Conclusions

The study demonstrated that application of BGS to agricultural soils provided available N, P and K, which supported maize growth and built up soil reserves. The increase in dry matter and grain yield (first season) from BGS and CM was, however, lower compared to the N:P:K (3:2:1 (20)), when applied at the same rate of N. While BGS application resulted in lower uptake of N, P and K than CM, the soil under this treatment had higher available P. The relatively higher dry matter, nutrient uptake and soil nutrients after harvest of maize fertilised by BGS, and CM, showed cumulative effects of repeated application. The study has improved our understanding of the fertiliser value of BGS and its feedstock (CM) produced in sub-Saharan Africa on maize and has provided basis for research on the use of BGS as a source of nutrients for crop production especially for smallholder farmers. Where CF is not readily accessible, farmers could use CM to produce biogas and use the secondary product (BGS) with the same or even better nutrient value with the CM to improve soil fertility and crop yields. In the first season, BGS may need to be applied at double the rate of CF to achieve similar dry matter and grain yield. Further research should focus on the co-application of BGS with CF on crop productivity, soil quality and carbon dioxide emissions from agricultural soils.

Declarations

Author contribution statement

Mdlambuzi T.: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.

Muchaoanyerwa P.; Tsobo, M.: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Mosha M.E.: Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was supported by the National Research Foundation(Grant UID 97841).

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

Sincere gratitude to Dr. M. Moeletsi for his guidance and support throughout the study.

References

Abubaker, J., Cederlund, H., Athurson, V., Pell, M., 2013. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl. Soil Ecol. 72, 171–180.

Abubaker, J., Risberg, K., Pell, M., 2012. Biogas residues as fertilisers—effects on wheat growth and soil microbial activities. Appl. Energy 99, 126–134.

Ayoade, O.J., Onutoso, S.O., 2008. Nutrient management for maize production in soils of the savannah zone of South-Western Nigeria. Int. J. Soil Sci. 3 (1), 20–27.

Bachmann, S., Wentzel, S., Eichler-Löbermann, B., 2011. Co-digested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. J. Plant Nutr. Soil Sci. 174, 908–915.

Bharde, N.M., Shivov, Y.S., Singh, S., 2003. Effect of biogas slurry and neem oil treated urea sources on rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 48 (2), 73–77.

Bijl, J.J., Fouche, D.S., Botha, A.D.P., 2008. Threshold values and sufficiency limits for potassium in maize production sandy soils of South Africa. S. Afr. J. Plant Soil 25 (2), 65–70.

Bonten, L.T.C., Zwart, K.B., Rietra, R.P.J.J., Postma, R., de Haas, M.J.G., 2014. Is bio-gas residues (BGS) a potential alternative to commercial fertilisers? A review. Agric. Water Manag. 136, 73–87.

Bremen, M.H., Mulvaney, C.S., 1982. Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, pp. 595–624.
