A lower bound on permutation codes of distance $n - 1$

Sergey Bereg and Peter J. Dukes*

June 22, 2021
Permutation Codes
 Definition
 Elementary bounds
 Codes from MOLS
Main Result
 Proof sketch
References
A *permutation code* of length n and distance d is a subset $\Gamma \subseteq S_n$ such that the Hamming distance between distinct elements of Γ is at least d.

\[\{1234, 2143, 3412\} \]

A larger one:

\[\{1234, 2143, 3412, 4321\} \]

Including any additional permutation will decrease the minimum distance.
Permutation Codes

A *permutation code* of length n and distance d is a subset $\Gamma \subseteq S_n$ such that the Hamming distance between distinct elements of Γ is at least d.

Example

A permutation code of length 4 and distance 4:

\[\{1234, 2143, 3412\}\]
Permutation Codes

A permutation code of length n and distance d is a subset $\Gamma \subseteq S_n$ such that the Hamming distance between distinct elements of Γ is at least d.

Example

A permutation code of length 4 and distance 4:

$$\{1234, 2143, 3412\}$$

A larger one:

$$\{1234, 2143, 3412, 4321\}.$$

Including any additional permutation will decrease the minimum distance.
Let $M(n, d)$ denote the maximum size of a permutation code of length n and distance d.

- $M(n, n) = n$ (Latin square)
- $M(n, 2) = n!$ (all S_n)
- $M(n, 3) = n!/2$ (alternating group)
- $M(n, d) \leq n!/ (d-1)!$ (Johnson bound)
- $M(n, d) \leq n!/ \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{n}{k} D_k$ (sphere-packing bound)
Elementary values/bounds

Let $M(n, d)$ denote the maximum size of a permutation code of length n and distance d.

- $M(n, n) = n$ (Latin square)
- $M(n, 2) = n!$ (all S_n)
- $M(n, 3) = n!/2$ (alternating group)
Elementary values/bounds

Let \(M(n, d) \) denote the maximum size of a permutation code of length \(n \) and distance \(d \).

- \(M(n, n) = n \) (latin square)
- \(M(n, 2) = n! \) (all \(S_n \))
- \(M(n, 3) = n!/2 \) (alternating group)

\[
\begin{align*}
M(n, d) &\leq \frac{n!}{(d - 1)!} \quad \text{(Johnson bound)} \\
M(n, d) &\leq \frac{n!}{\sum_{k=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{k} D_k} \quad \text{(sphere-packing bound)}
\end{align*}
\]

\(d = n-1 \rightarrow M(n, n-1) \leq n(n-1) \).
Codes from MOLS

Let $N(n)$ denote the maximum number of MOLS of side length n.

Colbourn-Kløve-Ling (2004): $N(n) \geq r \Rightarrow M(n, n-1) \geq rn$. (Take all rn transversals and convert to permutations.)

Beth (1984): $N(n) \geq n^{1/14.8}$ for sufficiently large n.

Therefore, $M(n, n-1) \geq n^{1+14.8} \geq n^{1.0675}$ for large n.
A partial converse

We have $M(6, 5) = 18$ in spite of $N(6) = 1$.

Example

Here is a convenient code of size 12 given as ‘orthogonal’ partial latin squares.

\[
\begin{array}{cccc}
1 & 4 & 3 & 2 \\
2 & 1 & 4 & 3 \\
3 & 2 & 1 & 4 \\
3 & 4 & 2 & 1 \\
4 & 1 & 2 & 3 \\
2 & 3 & 4 & 1 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 5 & 6 & 2 \\
5 & 2 & 6 & 1 \\
2 & 6 & 5 & 1 \\
1 & 2 & 6 & 5 \\
6 & 1 & 5 & 2 \\
5 & 2 & 1 & 6 \\
\end{array}
\quad
\begin{array}{cccc}
6 & 4 & 3 & 5 \\
6 & 5 & 3 & 4 \\
4 & 5 & 3 & 6 \\
5 & 3 & 6 & 4 \\
4 & 6 & 5 & 3 \\
3 & 5 & 4 & 6 \\
\end{array}
\]
Main Result

Theorem (B.-D., 2020)

\[M(n, n - 1) \geq n^{1.0797} \] for sufficiently large \(n \).
Main Result

Theorem (B.-D., 2020)

\[M(n, n - 1) \geq n^{1.0797} \text{ for sufficiently large } n. \]

Sketch of proof:

- \(M(q, q - 1) \geq q(q - 1) \text{ for prime powers } q. \)
Main Result

Theorem (B.-D., 2020)

\[M(n, n - 1) \geq n^{1.0797} \text{ for sufficiently large } n. \]

Sketch of proof:

- \(M(q^2, q^2 - 1) \sim q^4 \) for prime powers \(q \).
Main Result

Theorem (B.-D.,2020)

\[M(n, n - 1) \geq n^{1.0797} \text{ for sufficiently large } n. \]

Sketch of proof:

\begin{itemize}
 \item \[M(q^2, q^2 - 1) \sim q^4 \text{ for prime powers } q. \]
 \item \[M(q^2 + 1, q^2) \geq q^3 \text{ for prime powers } q. \]
\end{itemize}
Main Result

Theorem (B.-D., 2020)

\[M(n, n - 1) \geq n^{1.0797} \] for sufficiently large \(n \).

Sketch of proof:

- \(M(q^2, q^2 - 1) \sim q^4 \) for prime powers \(q \).
- \(M(q^2 + 1, q^2) \geq q^3 \) for prime powers \(q \).
- Adapt Wilson’s construction for MOLS.
- Apply a number sieve.

Q: Can we raise the exponent for MOLS and/or PC?
Thank you
S. Bereg and P.J. Dukes, A lower bound on permutation codes of distance $n - 1$. *DCC* (2020) 88, 63–72.

T. Beth, Eine Bemerkung zur Abschätzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren. *Abh. Math. Sem. Univ. Hamburg* 53 (1983), 284–288.

R.M. Wilson, Concerning the number of mutually orthogonal Latin squares. *Discrete Math.* 9 (1974), 181–198.