Dual-input DC/DC Converter for Solar Energy Harvesting Applications

A Jenifer, Y Sukhi, B P Nivethitha, Jagadeeswari, and S Pavithra
R.M.K Engineering College, Kavaraipettai-601206, Tamil Nadu, India
Email: *ajr.eee@rmkec.ac.in

Abstract. In this article, a high-level DC / DC converter is introduced with an external CVS circuit. Theory and experimental results indicate that the control mechanism has a double input design that in particular decreases the cost of the PV generation system. The ZVS auxiliary circuit suggested effectively increases the performance of the converter. The power and control system is straightforward, much like the traditional two-phase booster conversion system.

Keywords: Boost; dual-input; dc/dc; ZVT; harvesting

1. Introduction
The research on harvesting power from renewable energy resources gained increased demand over the years. Electrical powers generated are usually vulnerable to changes in the environment and to variants in load [3]. The Power Electronic Interface is also predicted to effectively control several power supplies [1]. However, it increases the PEI size and also it increases the cost [2]. Hence Multiple Input Converters (MIC) is used, and it is divided into two categories. To overcome the poor coupling single primary winding MICs are used [4]. These MICs have a simplistic transforming framework, and this features hard switching. Figure 1 explains the Circuit diagram.

![Circuit diagram]

Figure1: Circuit diagram

Unisolated MICs were used to increase device performance and power density [5]. Both dual-input dc / dc converters composed of buck / boost have the disadvantage that they extra support from two DC-DC outlets concurrently or independently with a basic arrangement [6]. Such dual PEIs may be
drawn from two power converters concurrently or independently with a fundamental structure. The proposed converter can operate in two modes: Hybrid drive mode and non-continuous drive mode[8]. This article analyses double-input DC / DC converter verification [7].

2. Existing System
By altering the transformer's turn ratio, isolated converters will obtain high voltage conversion gains. However, these converters typically has poor performance issues and a wide ripple of input current. Unisolated high-step dc / dc converters, such as high step inductor-based topology, can be divided into 5 classes, cascaded converters, switched condenser diodeshift multipliers (DCMs) [9]. Nevertheless, almost all of these switches are connected by one PV line. Two multiple - input DC / DC converters, a significant number of electronic components on the existing control circuit, will incur significant conduction losses. Three types of step-by - step DC / DC DC converters with some normal advantages are suggested, as all sources of power can supply amount of energy, lower ripple voltage on semiconductors and lower line power ripples. However, due to hard swapping, the performance of such topologies is comparatively poor [10].

3. Proposed System
This paper discusses a modern Ac-ac, non-differential PWM-based H-bridge standardised converter[12]. The DFVC can conveniently As dispersed flexible voltage packaging mark both the voltage sag and swell in a wide range. Without a momentous change, the converter may conduct continually and bipolar voltage transitions, and thanks to a mixture of different PWM modulations, the control technology expands. In comparison, the proposed converter uses few passive components, thus reducing the expense of the proposed converter Figure 1 displays the circuit diagram.

3.1 Operating Principle
The converter is based on two boost converter integrations. Figure 2 shows the DCM conditions versus duty cycle and T The normal voltage increase in the converter drive mode

\[\frac{V_0}{V_{in}} = 1/1-D. \]

Where D is the operation circle. S1,S2 with an extra dead band on and off.

![Figure 2: DCM conditions versus duty cycle and T](image)

DCM and HCM are interested in two feasible operations: one boosts converters in DCM and one in CCM[12]. In Figure 2 are shown the DCM conditions against the operating cycle and T. In mode, the
operation of DCM and HCM is independently discussed. According to the s1 mode analysis s2 is enabled by ZVS, so switching losses can be reduced [11].

HCM only has five modes of operation 1[t0-t1]: At t0, vds1 decreases to zero. S1 turns with zero VL1 equal to v1. Hence, iL1 increases linearly. MODE~2[t1-t2]: At t1, s1 turns off. iL1 increases to its peak. In MODE-3: [t3-t4] At t2 vds2 decreases to zero IL1 decreases to zero .IL2 increases linearly, Which indicates the end of the mode. IL1 decreases to zero at t3 in MODE-4[t3-t4]: D eventually rotates with a slight di / dt. MODE-5[t4-t5]: iL1 is still zero at t4. Via the D and s1 output parasitic capacitor, iL2 continues. Then Vds reduces the types of particles of il2 to charge c. Pellucid mode analysis in HCM as S1 switches on. While ZVS of S2 can also be made sure by correctly drafting the parameters of the circuit. The diode is switched off at once with a small di / dt. As a result, reverse recovery and swapping loss can be limited to a minimum [15].

4. Circuit Modelling and analysis
A steady state analysis can be used to obtain the voltage conversion ratio[13]. In all operations, DCM and HCM have several facets and fundamental analytical methods are universal[1] The ideal band (2) is small enough to be neglected by all components (3). The output is high enough, in particular with a very minimal dc voltage is shown in figure 3. To facilitate an effective architecture, efficiency is studied Theoretical model builds on the following suppositions. Figure 4 shows the capacitors and two inputs, Figure 5 explains the Transformer with 6 secondary windings of 12V capacity and Figure 6 explains the Inductor with coils[14].

Figure 3: Two complementary switches that work in complementary on and off conditions

Figure 4: capacitors and two inputs
5. Experimental Results
A prototype of a circuit is constructed to test proof of concept. To capture the digital controller's ADC, a low-pass filter is used. Embraced PI algorithm to achieve a powerful system behavior Figure 3 shows complementary switches, Figure 4 shows primary and secondary input circuits. Circuit study show that the device works with tiny switching frequency in DCM. For a limited dead-band, the observational effect of the HCM obligation ratio is around 0.7. The oscillation in DCM is removed by the presence of a CCM in the HCM operation. Due to the front voltage decline, the electrode loss is triggered. In the withdrawn phase and adsorption loss, the MOSFET problem is due to its ringing loss. Components count, soft swamping, and rating power are included in the reference range. Despite the maximum duty cycle and the lowest power, the experimental findings indicate that efficiency is high and output is satisfactory is shown in figure 7.
6. Conclusion

This paper establishes an adjunct circuit-based a double-input ordered DC-DC PWM converters that can be used for solar energy harvesting applications. Performance is extremely high compared to conventional converters. To modify the output voltage, the detailed PWM control signals and operating concepts are provided. In particular, with the greatest duty cycle and lowest power, the power controller ensures good performance. The integrated prototype converts a stable 45 V dc energy output with 91.8 percent conversion at an output voltage of 10.1 W into two 12 V dc inputs.

References

[1] Danyali, S., Aazami, R., Moradkhani, A., & Haghi, M. (2021). A new dual-input three-winding coupled-inductor based DC-DC boost converter for renewable energy applications. International Transactions on Electrical Energy Systems, 31(1), e12686.
[2] Sun, J., Zhang, H., Wang, Y., & Fu, M. (2021). Optimal tracking control of switched systems applied in grid-connected hybrid generation using reinforcement learning. Neural Computing and Applications, 1-12.
[3] Binxin Zhu, Qingdian Zeng, Yao Chen “A Dual-Input High step-up Dc/Dc converter with ZVT auxiliary circuit” IEEE Transactions on Energy Conversion, 2019.
[4] Bagoria, N., & Goar, V. A Research on Hidden Markov Model and K-means Bank based on Bank Anti-Fraud Detection Model.
[5] Ashraf, H., Jeong, Y., & Lee, C. H. (2021). Underwater Ambient-Noise Removing GAN Based on Magnitude and Phase Spectra. IEEE Access, 9, 24513-24530.
[6] Balaji, A., Shanthini, E. R., Roosham, M. J., & Sivaram, V. (2021, January). Robust Design of Smart Lawn Cutter for Gardening Companion. In IOP Conference Series: Materials Science and Engineering (Vol. 1012, No. 1, p. 012005). IOP Publishing.
[7] Pandiaraj, R. "Tidal Power Generation using DC Generators with Power Converter." International Journal of MC Square Scientific Research, Vol. 10, no. 2, pp. 1-7, 2018.
[8] Arunkumar, S. "POULTRY FARM COOLING SYSTEM BASED HYBRID DC MICROGRID." International Journal of MC Square Scientific Research, Vol. 9, no. 1, pp. 137-145, 2017.
[9] Visvanathan, K., and SANJAY S. CHAUDHARY. "A new vector control for Brushless DC Motor using effective photovoltaic power source." International Journal of MC Square Scientific Research, Vol. 7, no. 1, pp. 151-169, 2015.
[10] Visvanathan, K., and SANJAY S. CHAUDHARY. "A new vector control for Brushless DC Motor using effective photovoltaic power source." *International Journal of MC Square Scientific Research*, Vol. 7, no. 1, pp 151-169, 2015.

[11] Okwoli, A. A., E. U. Oki, and S. A. Yunisa. "THE NEXUS BETWEEN BANKS'CAPITAL STRUCTURE AND CAPITAL ADEQUACY IN NIGERIA: A VECTOR ERROR CORRECTION MECHANISM APPROACH."

[12] Pistol, Luminita, RaduBucea-Manea-Tonis, and RocsanaBucea-Manea-Tonis. "Machine Learning Algorithm for Learning Natural Languages."

[13] A. Mir, R. Zitoune, F. Collombet, and B. Bezzazi, “Study of mechanical and thermomechanical properties of jute/epoxy composite laminate,” *J. Reinf. Plast. Compos.*, vol. 29, no. 11, pp. 1669–1680, 2010, doi: 10.1177/0731684409341672.

[14] Bachchan, A. A., Das, P. P., & Chaudhary, V. (2021). Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Materials Today: Proceedings.

[15] K. Ramanaiah, A. V. Ratna Prasad, and K. Hema Chandra Reddy, “Mechanical, thermophysical and fire properties of sansevieriafiber-reinforced polyester composites,” *Mater. Des.*, vol. 49, pp. 986–991, 2013, doi: 10.1016/j.matdes.2013.02.056.