Impairment of Neutrophil Functions and Homeostasis in COVID-19 Patients: Association With Disease Severity

Chloé Loyer
Sorbonne Université Campus Pierre et Marie Curie: Sorbonne Universite Campus Pierre et Marie Curie

Arnaud Lapostolle
Sorbonne Université Campus Pierre et Marie Curie: Sorbonne Universite Campus Pierre et Marie Curie

Tomas Urbina
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Alexandre Elabbadi
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Jean-Rémi Lavillegrand
Assistance Publique - Hopitaux de Paris

Thomas Chaigneau
Sorbonne Université Campus Pierre et Marie Curie: Sorbonne Universite Campus Pierre et Marie Curie

Coraly Simoes
Sorbonne University Pierre and Marie Curie Campus: Sorbonne Universite Campus Pierre et Marie Curie

Julien Dessajan
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Cyrielle Desnos
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Mélanie Morin-Brureau
Sorbonne University Pierre and Marie Curie Campus: Sorbonne Universite Campus Pierre et Marie Curie

Yannick Chantran
Assistance Publique - Hôpitaux de Paris: Assistance Publique - Hopitaux de Paris

Pierre Aucouturier
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Bertrand Guidet
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Guillaume Voiriot
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Hafid Ait-Oufella
Assistance Publique Hopitaux de Paris: Assistance Publique - Hopitaux de Paris

Carole Elbim (✉️ carole.elbim@sorbonne-universite.fr)
Impairment of neutrophil functions and homeostasis in COVID-19 patients: Association with disease severity

Chloé Loyer¹,², Arnaud Lapostolle¹,², Tomas Urbina²,³, Alexandre Elabbadi⁴, Jean-Rémi Lavillegrand²,⁵,⁶, Thomas Chaigneau¹,², Coraly Simoes¹,², Julien Dessajan²,⁴, Cyrielle Desnos²,⁴, Mélanie Morin-Brureau¹,², Yannick Chantran¹,²,⁷, Pierre Aucouturier¹,²,⁷, Bertrand Guidet²,³, Guillaume Voiriot²,⁴, Hafid Ait-Oufella²,³,⁶, & Carole Elbim¹,²*

¹Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, Centre de Recherche Saint-Antoine, Paris, France.
²Sorbonne Université
³Service de Médecine Intensive-Réanimation, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France.
⁴Service de Médecine Intensive-Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.
⁵Service d’Anesthésie-Réanimation, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France.
⁶Inserm U970, Cardiovascular research center, Université de Paris
⁷Département d’Immunologie Biologique, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France.

* Corresponding Author: Carole Elbim, INSERM, UMRS 938, CdR Saint- Antoine, Hôpital St-Antoine, F-75012, Paris, France. Phone number: (33) 1 49 28 46 21. E-mail: carole.elbim@upmc.fr
Abstract

Background: Emerging data based on analyses of peripheral and pulmonary immune responses to SARS-CoV-2 increasingly suggest that a dysregulated immune response underpins the development of severe disease in COVID-19 patients. Neutrophils are key components of early innate immunity that, if not tightly regulated, contribute to uncontrolled systemic inflammation. We sought to decipher the role of neutrophil phenotypes, functions, and homeostasis in COVID-19 disease severity and outcome.

Methods: This longitudinal study compares peripheral whole-blood neutrophils from 90 COVID-19 ICU patients with those of 22 SARS-CoV-2–patients hospitalized for severe community-acquired pneumonia (CAP) and 38 healthy controls. We also assessed correlations between these phenotypic and functional indicators and markers of endothelial damage as well as disease severity.

Results: At ICU admission, the circulating neutrophils of the COVID-19 patients showed continuous basal hyperactivation not seen in CAP patients, associated with higher circulating levels of soluble E- and P-selectin, which reflect platelet and endothelial activation. Furthermore, COVID-19 patients had expanded aged-angiogenic and reverse transmigrated neutrophil subsets — both involved in endothelial dysfunction and vascular inflammation. Simultaneously, COVID-19 patients had significantly lower levels of neutrophil oxidative burst in response to bacterial formyl peptide, an abnormality that was greater in superinfected than non-superinfected COVID-19 patients. Moreover, patients dying of COVID-19 had significantly higher expansion of aged-angiogenic neutrophil subset and greater impairment of oxidative burst response than survivors.

Conclusions: These data suggest that neutrophil exhaustion may play a central role in the pathogenesis of severe COVID-19 and identify angiogenic neutrophils as a potentially harmful subset involved in fatal outcome.
Key words: COVID-19, neutrophil, oxidative burst, angiogenic neutrophils, vascular inflammation
Graphical abstract. Neutrophil hyperactivation and exhaustion are specific features of COVID-19 compared to community acquired pneumonia in SARS-CoV-2 patients. Angiogenic neutrophils represent a potentially harmful subset involved in fatal outcome.
Background

The rising pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to worldwide economic harm and deaths. The spectrum of clinical manifestations in SARS-CoV-2-infected patients (SARS-CoV-2+) ranges from asymptomatic to severe acute respiratory distress syndrome (ARDS) and multiple organ involvement [1]. Emerging data and clinical reports increasingly suggest that severe COVID-19 reflects a confluence of micro-vascular damage related to endothelial dysfunction and/or impaired angiogenesis, and dysregulated inflammation [2].

Neutrophils, the most abundant leukocytes in the blood, are known for providing immediate frontline protection against rapidly dividing bacteria and fungi. A growing body of evidence implicates neutrophils, via their generation of reactive oxygen species (ROS), neutrophil extracellular traps (NETs), and ability to act as antigen-presenting cells, in the host response to viral infections [3, 4]. However, the inappropriate activation of neutrophils can lead to oxidative stress and uncontrolled systemic inflammation that damage the capillary endothelium and disrupt the thrombo-protective state of endothelial cells [5]. Unexpected recent data have shown that polymorphonuclear neutrophils are functional, versatile, and phenotypically diverse [6]. Specific subpopulations of neutrophils that have great tissue-destructive potential are implicated in endothelial dysfunction, angiogenesis, and vascular inflammation: (i) senescent neutrophils become overactive, produce strong ROS responses, and express high levels of CXCR4 [7]; (ii) neutrophils have been observed to perform reverse transendothelial migration (rTEM), re-entering the circulation and then potentially spreading throughout the body via the bloodstream, transmigrating into other organs and contributing to more injuries to more organs and to systemic inflammation [8]; (iii) pro-angiogenic neutrophils [9] are reported to migrate to hypoxic tissue and participate in neovascularization [10].
Studies conducted during the first COVID-19 wave reported the robust generation of neutrophil extracellular traps (NETs) in patients with severe COVID-19 [11,12], the presence in the circulation of immature and suppressive myeloid cells, including neutrophils, as well as neutrophilic infiltrates in the lung [17]. In addition, although substantial evidence points toward a vascular disease process as a contributor to COVID-19 pathogenesis, no data about senescent, rTEM, or angiogenic neutrophils in COVID-19 patients have been reported. Finally, as the success of dexamethasone treatment in oxygen-dependent COVID-19 patients might be explained by its anti-inflammatory as well as its clear vasoconstrictive effects, there is a real need to re-evaluate the neutrophil compartment taking this treatment into account.

We characterized in detail the phenotypes and longitudinal functions of fresh whole-blood circulating neutrophils in a large cohort of severely ill COVID-19 patients (n=90) in the ICU receiving steroid therapy, comparing them with those of 22 SARS-CoV-2− patients hospitalized for severe community-acquired pneumonia (CAP) and 38 healthy controls similar for sex and age. We also assessed correlations between these phenotypic and functional indicators and markers of endothelial damage as well as disease severity.
Materials and Methods

Study design

This study enrolled 90 COVID-19 patients admitted to the intensive care units (ICUs) of Saint-Antoine and Tenon Hospitals (Paris, France) with moderate-to-severe ARDS according to the Berlin definition [18] and SARS-CoV-2 infection confirmed by reverse transcription polymerase chain reaction (RT-PCR) tests of nasopharyngeal swab samples. At admission, we prospectively collected the following data for each: demographic information, including age, sex, body mass index (BMI), comorbidities according to the Charlson index, dates of first symptoms, hospital and ICU admissions, and vital signs. The SOFA score was calculated at admission and every 3 days until discharge or death. The following data regarding medical management in the ICU were collected daily: mechanical ventilation settings after intubation (mode, PEEP, FiO₂, respiratory rate, tidal volume, and plateau pressure), duration of mechanical ventilation, use of advanced therapies for acute respiratory failure (neuromuscular blocking agents, inhaled pulmonary vasodilators, prone positioning, and extracorporeal membrane oxygenation), antiviral therapies and immunomodulatory agents (i.e., interleukin-6-receptor antagonists and corticosteroids) with time from symptom onset to initiation, and any acute kidney injury, acute cardiac injury, pulmonary embolism or deep venous thrombosis.

A second cohort included 22 patients admitted to Saint-Antoine and Tenon Hospitals ICU with non-SARS-CoV-2 community-acquired pneumonia (CAP). All episodes of pneumonia were classified as severe and required invasive mechanical ventilation. A third cohort consisted of 38 age-matched healthy controls (HCs), with blood biochemical and hematological values within normal range.

Whole blood was sampled, kept on ice, and transported immediately to the laboratory for neutrophil analysis. COVID-19 patients provided samples at their inclusion on ICU admission (Day 1). Analysis at day 1 was performed a median of 10 days after the onset of
symptoms. When possible, follow-up samples were obtained at 3 days and at 7 days after the baseline sample (Day 1) for COVID-19 patients. CAP patients gave a single blood sample at 2-3 days after ICU admission, and HCs also donated blood only once.

Determination of neutrophil subsets

The neutrophil subsets were assessed by using 10-color flow cytometry (Gallios Flow Cytometer; Beckman Coulter, Fullerton, Calif). The detailed staining procedure is described in the Methods section in this article's Online Repository.

Determination of adhesion molecule expression on resting and stimulated neutrophils

Heparin whole-blood samples (500 µL) were either kept on ice or incubated with PBS or 10^6 M bacterial peptide formyl-methionyl-leucyl-phenyl-alanine (fMLP) (Sigma Chemical Co., St Louis, MO) for 5 minutes. Samples were stained with PE-anti-human CD11b (clone 2LPM19c, Dakopatts, Glostrup, Denmark) and APC-anti-human CD62L (clone DREG-56, BD Biosciences) as previously reported [19]. Samples were then analyzed by means of flow cytometry, as described in the Methods section in Additional file 1.

Measurement of neutrophil oxidative burst

Superoxide anion (O_2^-) production by neutrophils was measured with a flow cytometry-based assay derived from the hydroethidine (HE) oxidation technique, as previously described [19]. Heparinized whole-blood samples (500 µL) were loaded for 15 min with 1500 ng/mL HE (Sigma Chemical Co., St Louis, MO) at 37°C and then incubated for 45 min at 37°C with PBS, TNF-α (5 ng/mL, R&D Systems, Minneapolis, MN), lipopolysaccharide (LPS) from *E. coli* serotype R515 (TLR4 agonist, 10 ng/mL, Alexis Biochemicals, San Diego, CA) or ssRNA with
6 UUGU repeats/LyoVec™ (TLR8 Agonist, 50 µg/ml, InvivoGen, Toulouse, France). Samples were then treated with PBS or 10^-6 M fMLP (Sigma Chemical Co., St Louis, MO) for 5 minutes. Samples were then analyzed by means of flow cytometry, as described in the Methods section in Supplementary Materials section.

Measurement of soluble pro- and anti-inflammatory mediators

Whole-blood samples were centrifuged for 15 min at 1000 g within 30 min of collection. Soluble cytokines (IL-6, and IL-10), junctional adhesion molecule (JAM-)C, LTB4, neutrophil elastase (NE), VEGF, and VEGF-R1 were detected from serum by ELISA. Cryostored samples frozen at -80°C and diluted according to the manufacturer’s instructions were assayed (R&D Systems).

Statistics

The freely available software Rstudio 1.0.143 (http://www.rstudio.com/) was used for statistical analysis. All tests were two-tailed, with a significance level of α = 0.05. When a parametric test was used, normality of distribution was tested with the Shapiro-Wilk test. Differences between groups were assessed with the chi-square test or ANOVA, followed by the Tukey post-hoc test, as appropriate. ANOVA, adjusted for age, was used to compare neutrophil markers between the COVID-19 groups and controls (with age as a covariate). Bonferroni correction was used for multiple comparisons. Linear partial correlation analysis, with adjustment for covariates, identified correlations.
Results

Demographics and baseline characteristics of COVID-19 and CAP patients

Clinical and biological characteristics of the 90 COVID-19 and the 22 CAP patients are shown in Table 1 and Table E1. All patients received oxygen therapy and antibiotics during hospitalization. 50% required invasive mechanical ventilation, and 4.3% extracorporeal membrane oxygenation. Most hospitalized patients had at least one comorbidity, regardless of SARS-CoV-2 status. A lower proportion of SARS-CoV-2– subjects had comorbidities associated with a risk of severe COVID-19 compared with SARS-CoV-2+ patients.

Circulating neutrophils from COVID-19 patients are hyperactivated and bind to platelets

From day 1 to day 7, expression of CD62L decreased and that of CD11b increased on resting neutrophils from patients with COVID-19, in comparison with neutrophils from HCs and CAP patients (Fig. 1a and b). This finding indicates the basal hyperactivation of the COVID-19 patients' circulating neutrophils. The serum level of granule-derived proteins released by activated neutrophils, e.g., NE and LTB4 (Fig. E1a and b) also rose in these patients, compared with HCs, and thus confirmed their phenotype of enhanced circulating neutrophil degranulation. Because neutrophils are reported to trigger microbicidal mechanisms on activation [20], we measured neutrophil production of ROS and found its basal production by unstimulated neutrophils slightly higher in the COVID-19 patient group than in HCs and CAP patients (Fig. 1c).

Activated neutrophils from COVID-19 patients can interact with platelets via CD11b/CD18 [21,22]. Consistently with these reports, we found higher circulating levels of neutrophil-platelet aggregates (NPAs) in the COVID-19 patient group than in HCs (Fig. 1d and
Reduced functional responses of circulating neutrophils from COVID-19 patients

Optimal stimulation with the bacterial peptide fMLP induced normal L-selectin shedding in the COVID-19 patient group (Fig. 1g). In contrast, fMLP-induced CD11b translocation was significantly lower in these patients than in HCs and CAP patients (Fig. 1h). ROS production by non-primed neutrophils was significantly lower in CAP and COVID-19 patients than in HCs. Under TNF and LPS priming conditions followed by fMLP stimulation, ROS production from day 1 to day 7 was much lower in both COVID-19 and CAP patients than in HCs and, importantly, significantly lower in COVID-19 than CAP patients (Fig. 1i and j). We also analyzed the capacity of neutrophils from COVID-19 patients to produce ROS after priming with TLR8 agonist to directly address the importance of neutrophil sensing of SARS-CoV-2 RNA [23] in the regulation of ROS production. Oxidative burst was strongly impaired in COVID-19 patients compared with HCs (Fig. E1c).

Impaired neutrophil homeostasis in COVID 19 patients

Neutrophils are typically regarded as terminally differentiated cells that progress from immature neutrophils in the bone marrow to circulating mature inactive neutrophils that can, upon priming and subsequent activation in inflammatory conditions, extravasate into tissues and fulfill their effector functions. In accordance with previous studies performed during the first COVID-19 wave [24-26], we observed the presence of a heterogenous population of mature and immature (CD16\text{low}CD10\text{low}) neutrophils in COVID-19 patients (Fig. E1d). No correlation was found between the decrease in ROS production in priming conditions and the
percentage of immature neutrophils ($P=0.32$ and $P=0.077$ for TNF and LPS priming respectively).

At the other end of the spectrum, mature neutrophils in the circulatory system, nearing the end of their lifetime, may acquire a specific phenotype. This “aged” neutrophil phenotype is defined by reduced CD62L expression and the presence of CXCR4. Conversely, in contexts of acute inflammation [28] and healthy aging [29], an immunosuppressive subset of CD16$^{\text{bright}}$/CD62L$^{\text{dim}}$ neutrophils shows reduced proinflammatory properties(26). The percentage of the senescent CXCR4$^{\text{high}}$/CD62L$^{\text{low}}$ neutrophil subset was slightly higher at day 3 and day 7 in COVID-19 patients than in HCs (Fig. 2a), whereas the percentage of the CD16$^{\text{dim}}$/CD62L$^{\text{bright}}$ immunosuppressive subset as well as the ratio of senescent to immunosuppressive subsets did not significantly differ between patients and HCs from inclusion to day 7 (Fig. 2b and c).

Among CXCR4$^{\text{high}}$ aged neutrophils, a specific subpopulation of CD49b$^{\text{high}}$ and VEGF-R1$^{\text{high}}$ neutrophils has pro-angiogenic properties [9] and is reported to migrate to hypoxic tissue and to participate in neovascularization [10]. Unexpectedly, we observed an expansion in the circulation of this angiogenic neutrophil subset in COVID-19 patients at day 1 (Figure 2d and e) and persisting at day 3 and day 7 (Fig 2e), together with a decrease in the expression of CD49b (Fig. 2f) and VEGF-R1 (Fig. 2g and h) on the surface of angiogenic neutrophils. Because proteolytic cleavage of VEGF-R1 from lung epithelial cell surface has been reported during ARDS [30], we measured the level of soluble VEGF-1-receptor1 (sVEGF-R1) and found higher sVEGF-R1 levels in the COVID-19 patient group from day 1 to day 7 than in HCs (Fig. 2i). Accordingly, sVEGF-R1 levels were negatively correlated with VEGF-R1 expression at the neutrophil surface in COVID-19 patients (Fig. 2j).
The proportion of circulating reverse-migrated neutrophils is highest in COVID-19 patients

The LTB4-NE axis is reported to induce cleavage of endothelial JAM-C, which plays a role in tight junction formation, leukocyte adhesion, and transendothelial migration. Proteolytic cleavage of endothelial JAM-C leading to soluble JAM-C (sJAM-C) has been reported to be instrumental in promoting neutrophil rTEM in vivo [31]. Circulating JAM-C levels were significantly higher at day 1 in COVID-19 patients than in HCs and CAP patients (Figure 3a). Accordingly, we found a higher percentage of rTEM neutrophils in COVID-19 patients at day 1, day 3, and day 7 than in HCs (Fig. 3b and c). Consistent with the previous data demonstrating the involvement of angiogenesis in the regulation of neutrophil reverse migration [32], we observed a positive correlation between the percentages of circulating rTEM neutrophils and angiogenic neutrophils in COVID-19 patients (Fig. 3d).

Neutrophil abnormalities are associated with vascular inflammation in COVID-19 patients

Each membrane-bound endothelial selectins has a soluble form that can be measured in the plasma and is used as a marker of endothelial injury and vascular inflammation [33, 34]. At inclusion, COVID-19 patients had higher soluble P- and E-selectin levels than the HCs (Fig. 4a and b). Furthermore, soluble P-selectin levels in COVID-19 patients were positively correlated with markers of neutrophil activation, i.e., CD11b expression (Fig. 4c) and LTB4 (Fig. 4d), as well as the circulating levels of JAM-C (Fig. 4e) and the percentage of rTEM neutrophils (Fig. 4f). We next measured soluble levels of VEGF, which is reported to be critical in the regulation of both vascular permeability and endothelial cell survival [35] and observed higher circulating levels of sVEGF in COVID-19 patients as compared to than in HCs and CAP patients (Fig. 4g).
Consistent with the fact that soluble VEGF-R1 is a physiological antagonist of VEGF [36], sVEGF levels were negatively correlated with sVEGF-R1 in COVID-19 patients (Fig. 4h).

As expected [37], circulating levels of IL-6 and IL-10 were higher in ICU COVID-19 patients (Fig. 4i and j). At day 1, the ROS production in response to fMLP correlated negatively with that of IL-10 (Fig. 4k).

Neutrophil abnormalities are associated with clinical severity of COVID-19

To investigate the relation between the neutrophil markers and lung or other organ failures in COVID-19, we distinguished respiratory from non-respiratory SOFA scores. Unlike some previous studies, neutrophil counts in COVID-19 patients at ICU admission did not correlate with the SOFA, the respiratory SOFA and the non-respiratory SOFA scores (Fig. E2a, b, c). However, neutrophil counts in COVID-19 patients at day 3 and day 7 post-admission correlate with the SOFA scores measured at the same time (Fig. E2d-i).

At ICU admission, the neutrophil surface CD62L expression was not significantly associated with the non-respiratory SOFA score (Fig. E3a) but was negatively associated with high global SOFA and respiratory SOFA scores after adjustment for demographic and laboratory variables (Fig. 5a and b). In addition, higher circulating of LTB4 and NE, two neutrophil hyperactivation markers, were positively associated with high global SOFA and respiratory SOFA scores (Fig. 5c and d). Higher percentage of senescent and immunosuppressive subsets were positively associated with respiratory SOFA score (Fig. 5e and f). We also observed a negative association between VEGF-R on angiogenic neutrophil surfaces and a high global SOFA score at ICU admission of COVID-19 patients (Fig. 5g). Finally, the percentages of rTEM and angiogenic neutrophil subsets analyzed at day 3 were positively associated with the respiratory SOFA score calculated at the same time (Fig. 5h and i).
In accordance with previous data [38], we found a positive association between IL-10 measured at inclusion and global SOFA at day 1 (Fig. E3b) as well as between IL-6 and IL-10 measured at inclusion and global SOFA at day 7 (Fig. E3c and E3d).

COVID-19 patients who died had higher percentage of angiogenic neutrophil subset and greater impairment of neutrophil oxidative burst than survivors did

COVID-19 patients were classified into two groups according to their outcome at day 60. The COVID-19 patients who died had significantly higher percentage of circulating angiogenic neutrophils (Fig. 6a) as well as lower expression of VEGF-R1 (Fig. 6b) associated with higher soluble VEGF-1 (Fig. 6c) at day 1, than survivors. Similar results were observed at day 7 (Fig. 6d-f). At COVID-19 patients' admissions to the ICU, ROS production in response to fMLP by un-primed, LPS-primed or TNFα-primed neutrophils did not differ between these two groups (Fig. 6g-i) but was lower at day 7 in patients who died than survivors (Fig. 6j-l). In parallel, the COVID-19 patients who died had significantly higher levels of soluble IL-10, an anti-inflammatory cytokine reported to inhibit ROS production by activated neutrophils [39] (Fig. E4a). In contrast, the patients who died and those who survived did not differ for neutrophil count, neutrophil basal activation state, percentages of immature, senescent and immunosuppressive subsets, or soluble levels of various pro-inflammatory mediators (Fig. E4b-p).

As 74% of the deceased patients who died had superinfections during their hospitalization, we analyzed the neutrophil markers according to the occurrence of bacterial or fungal superinfections. ROS production by fMLP-stimulated neutrophils, measured at day 1 and day 7, was significantly lower, in superinfected than non-superinfected COVID-19 patients (Fig. E5a and d). Moreover, at day 7, TNF and LPS-primed neutrophils produced significantly fewer ROS in superinfected than non-superinfected COVID-19 patients (Fig. E5e and f).
Discussion

This extensive investigation of the phenotype and function of peripheral neutrophils from 90 COVID-19 ICU patients used whole blood to minimize any potential bias related to isolation procedures and took the proinflammatory cytokine environment into account. Our results demonstrated that these patients' circulating neutrophils showed continuous basal hyperactivation from their admission to the ICU — hyperactivation not evidenced in CAP patients. The positive association of lower L-selectin expression and higher circulating levels of NE and LTB4 with the respiratory SOFA score suggests the impact of these abnormalities on lung dysfunction. Our critically ill COVID-19 patients had a median SOFA-score of 3.5, reflecting a predominantly isolated respiratory failure, showing that the SARS-CoV-2 infection itself rather than the multiorgan dysfunction associated with severe forms triggers these neutrophil function modifications. SARS-CoV-2 infects human cells by attaching to angiotensin-converting enzyme 2 (ACE2) expressed on the epithelial cell lining of the lungs, arteries, heart, kidneys, and intestines. Although neutrophils do not express ACE2, a recent report describes their expression of CD147 [40], was recently shown to act as a receptor for SARS-CoV-2 in cell lines of epithelial origin [41]. Moreover, the highly glycosylated nature of the SARS-CoV-2 spike protein [42] increases its likelihood of binding to CD147, which has three Asn glycosylation sites [43] at the neutrophil surface. It is thus possible that the virus can attach to the neutrophil surface, where it can induce various cellular programs that lead to cell hyperactivation and exhaustion.

Neutrophil hyperactivation increases the circulating concentrations of granule-derived proteins released by activated neutrophils, e.g., NE which might be involved, at least in part, in the JAM-C cleavage and increased neutrophil reverse transendothelial migration [8]. While these neutrophils' departure from an inflammation site resolves this local inflammation, they may then spread throughout the body via the bloodstream, transmigrating into other organs and...
contributing to more organ injuries and systemic inflammation [44]. Reverse migrated neutrophils show prolonged lifespans and delayed apoptosis [45], which could contribute to persistent and amplified inflammation.

The positive correlation of higher CD11b expression at the neutrophil surface with higher levels of NPAs and of circulating P-selectin suggests that platelets are in a preactivated state and may thus contribute to microthrombotic complications in severely ill patients. P-selectin is also stored in and expressed by endothelial cells, and its elevated plasma levels in patients might also reflect endothelial cell activation and damage [46]. Consistently with this finding, we found elevated levels of sE-selectin in COVID-19 but not CAP patients. The presence of all these biomarkers speaks in favor of endotheliopathy in our patients, in line with previous studies [47, 48].

Hyperactivation of circulating neutrophils may be involved in the impaired neutrophil oxidative burst observed in COVID-19 patients in response to bacterial formyl peptides and could indicate functional neutrophil tolerance/exhaustion. Such an impairment might also be related at least in part to the corticosteroid treatment administered to all patients in our cohort [49]. As neutrophils play a key role in the defense against bacterial and fungal infections, these modifications could contribute to the increased susceptibility to the hospital-acquired bacterial and fungal infections that are emerging as a common secondary complication among COVID-19 patients. In accordance with previous data [50], secondary infections, which are observed in 41% of COVID-19 patients in our cohort, are significantly associated with lower 60-day survival. Moreover, ROS production by TNF and LPS-primed neutrophils in response to formyl peptides was significantly lower in COVID-19 patients who died compared to survivors as well as in superinfected patients compared with non-superinfected patients.
During follow-up, we observed an increase in the percentage of longer-lived CXCR4high neutrophils in COVID-19 patients. It has been proposed that gut microbiota regulate neutrophil aging [7]. Recent studies report gut dysbiosis in COVID-19 patients [51, 52]. Furthermore, previous intestinal dysbiosis observed in type 2 diabetes, obesity, hypertension, coronary heart disease, and in other age-related disorders are involved in the deregulation of the inflammatory immune response to SARS-CoV-2, which promotes infection, dissemination, and severity in patients with comorbidities [53]. In addition, glucocorticoid signaling in humans is proposed to drive diurnal aging in neutrophils [54].

Neutrophil aging may favor a pro-inflammatory phenotype, and the presence of aged neutrophils in the circulation may predispose individuals to vascular inflammation, independently of NET formation [55]. The increased percentage of pro-angiogenic neutrophils in blood from COVID-19 patients may be related at least in part to decreased expression of VEGF-R1 at neutrophil surface, a probable consequence of metalloprotease-mediated ectodomain cleavage [56]. Accordingly, we found higher soluble levels of VEGF-R1 in COVID-19 patients, correlated with the decreased expression of VEGF-R1 on the surface of angiogenic neutrophils. This abnormality might limit neutrophil recruitment to hypoxic areas [9] increasing the percentage of circulating angiogenic neutrophils. This subset is characterized by the ability to release high quantities of MMP-9 [9] thought to be involved in the pathogenesis of inflammatory vascular diseases [57]. Importantly, COVID-19 patients who died had significantly higher percentage of circulating angiogenic neutrophils and lower expression of VEGF-R1 on angiogenic neutrophils than survivors. Accordingly, soluble VEGF-R1 was significantly increased in COVID-19 patients who died.

Our study has several limitations. First, the CAP population consists of patients with severe pneumonia driven by multiple pathogens, both bacterial and viral and is not perfectly matched to our COVID-19 patient cohort. Second, we did not perform functional testing of
neutrophil subsets. However, our results are based on a large population and include a kinetic analysis that adds to the current knowledge regarding the COVID-19–related impact on neutrophil functions.

Conclusions

In summary, our study highlights neutrophil hyperactivation and impaired homeostasis during severe COVID-19 — both abnormalities that might play a central role in endothelial dysfunction, angiogenesis, and vascular inflammation. This study also demonstrates that neutrophil exhaustion appears to play a central role in the pathogenesis of severe COVID-19 and identifies angiogenic neutrophils as a potential harmful subset involved in fatal outcome.
Declarations section

Ethical approval and consent to participate
The Ethics Committee of “COMITE DE PROTECTION DES PERSONNES ILE DE FRANCE X GHT Grand Paris Nord-Est –CH Robert Ballanger” approved the study, and all subjects provided written informed consent before participating.

Consent for publication
Consent for publication was provided by all authors

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interest
The authors declare that they have no competing interests

Funding
Not applicable

Author’s contributions
C.E.: conceived the study, designed the experiments, and supervised the project; C.L., A.L., T.C. and C.S. performed experiments; C.L., A.L. and C.E.: analyzed data; C.L., A.L., T.U., M.M.B, Y.C., P.A., G.V., H.A. and C.E.: interpreted results of experiments; T.U., A.E., J.R.L., J.D., C.D., B.G., G.V., and H.A.: involved in patient recruitment and characterization; C.L. and C.E.: prepared the figures; C.L. and C.E.: drafted manuscript; C.L., A.L., T.U., A.E., J.R.L.,
T.C., C.S., J.D., C.D., M.M.B, Y.C., P.A., B.G., G.V., H.A. and C.E.: edited, reviewed, and approved the final version of manuscript.

Acknowledgments

The authors gratefully acknowledge Annie Munier from the LUMIC flow cytometry facility.

Abbreviations used:

ACE2: Angiotensin-converting enzyme 2
ARDS: Acute respiratory distress syndrome
CAP: Community-acquired pneumonia
COVID-19: Coronavirus disease 2019
CRP: C-reactive protein
fMLP: N-Formylmethionyl-leucyl-phenylalanine
HC: Healthy control
HE: Hydroethidin
ICU: Intensive care unit
JAM-C: Junctional adhesion molecule-C
LTB4: Leukotriene B4
MMP-9: Matrix metalloproteinase-9
NE: Neutrophil elastase
NETs: Neutrophil extracellular traps
NPA: Neutrophil-platelet aggregate
PMN: Polymorphonuclear neutrophils
ROS: Reactive oxygen species (ROS)
rTEM: reverse transendothelial migration

SOFA: Sequential Organ Failure Assessment

TLR: Toll-like receptor

References:

1. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.

2. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128.

3. Galani IE, Andreakos E. Neutrophils in viral infections: Current concepts and caveats. J Leukoc Biol. 2015;98(4):557–564.

4. Drescher B, Bai F. Neutrophil in viral infections, friend or foe? Virus Res. 2013;171(1):1–7.

5. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–182.

6. Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol. 2019;19(4):255–265.

7. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528-532.

8. de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol. 2016(6):16:378–391.

9. Massena S, Christoffersson G, Vågesjö E, Seignez C, Gustafsson K, Binet F, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood. 2015;126(17):2016–2026.

10. Campbell EL. Hypoxia-recruited angiogenic neutrophils. Blood. 2015;126(17):1972–1973.

11. Janiuk K, Jabłońska E, Garley M. Significance of NETs Formation in COVID-19. Cells. 2021;10(1):151.

12. Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–1179.

13. Aschenbrenner AC, Mouktaroudi M, Krämer B, Oestreich M, Antonakos N, Nuesch-Germano M, et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 2021;13(1):7.
14. Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021;5(5):1164–1177.

15. Sacchi A, Grassi G, Bordoni V, Lorenzini P, Cimini E, Casetti R, et al. Early expansion of myeloid-derived suppressor cells inhibits SARS-CoV-2 specific T-cell response and may predict fatal COVID-19 outcome. Cell Death Dis. 2020;11(10):921.

16. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, Ket al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell. 2020;182(6):1419-1440.e23.

17. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135–1140.

18. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–2533.

19. Dong Y, Lagarde J, Xicota L, et al. Neutrophil hyperactivation correlates with Alzheimer's disease progression. Ann Neurol. 2018(2);83:387-405.

20. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010(5);33:657–670.

21. Simon DI, Chen Z, Xu H, Li CQ, Dong J f, McIntire LV, et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med. 2000;192(2):193–204.

22. Zuchtriegel G, Uhl B, Puhr-Westerheide D, Pörnbacher M, Lauber K, Krombach F, et al. Platelets Guide Leukocytes to Their Sites of Extravasation. PLoS Biol. 2016;14(5):e1002459.

23. Moreno-Eutimio MA, López-Macias C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226–229.

24. Carissimo G, Xu W, Kwok I, Abdal MY, Chan Y-H, Fong S-W, et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat Commun 2020(1);11:5243.

25. Reyes L, A Sanchez-Garcia M, Morrison T, Howden AJM, Watts ER, Arienti S, et al. ----A type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDS--. Wellcome Open Res. 2021;6:38.

26. Spijkerman R, Bongers SH, Bindels BJJ, Tinnevelt GH, Giustarini G, Jorritsma NKN, et al. Flow cytometric evaluation of the neutrophil compartment in COVID-19 at hospital presentation: A normal response to an abnormal situation. J Leukoc Biol. 2021;109(1):99–114.
27. Metzemaekers M, Cambier S, Blanter M, Vandooren J, de Carvalho AC, Malengier-Devlies B, et al. Kinetics of peripheral blood neutrophils in severe coronavirus disease 2019. Clin Transl Immunol. 2021;10(4):e1271.

28. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers J-W, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1):327–336.

29. Sauce D, Dong Y, Campillo-Gimenez L, Casulli S, Bayard C, Autran B, et al. Reduced Oxidative Burst by Primed Neutrophils in the Elderly Individuals Is Associated With Increased Levels of the CD16bright/CD62Ldim Immunosuppressive Subset. J Gerontol A Biol Sci Med Sci. 2017;72(2):163–172.

30. Mura M, Han B, Andrade CF, Seth R, Hwang D, Waddell TK, et al. The early responses of VEGF and its receptors during acute lung injury: implication of VEGF in alveolar epithelial cell survival. Crit Care Lond Engl. 2006;10(5):R130.

31. Colom B, Bodkin JV, Beyrau M, Woodfin A, Ody C, Rourke C, et al. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo. Immunity. 2015;42(6):1075–1086.

32. Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, et al. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood. 2011;118(3):712–722.

33. Ruchaud-Sparagano MH, Walker TR, Rossi AG, Haslett C, Dransfield I. Soluble E-selectin acts in synergy with platelet-activating factor to activate neutrophil beta 2-integrins. Role of tyrosine kinases and Ca2+ mobilization. J Biol Chem. 2000;275(21):15758–15764.

34. André P, Hartwell D, Hrachovinová I, Saffaripour S, Wagner DD. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc Natl Acad Sci. U S A 2000;97(25):13835–13840.

35. Mura M, dos Santos CC, Stewart D, Liu M. Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol Bethesda Md. 1985 2004;97(5):1605–1617.

36. Raikwar NS, Liu KZ, Thomas CP. Protein kinase C regulates FLT1 abundance and stimulates its cleavage in vascular endothelial cells with the release of a soluble PIGF/VEGF antagonist. Exp Cell Res. 2013;319(17):2578–2587.

37. Sayah W, Berkane I, Guermache I, Sabri M, Lakhal FZ, Yasmine Rahali S, et al. Interleukin-6, procalcitonin and neutrophil-to-lymphocyte ratio: Potential immune-inflammatory parameters to identify severe and fatal forms of COVID-19. Cytokine. 2021;141:155428.

38. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–1130.
39. Elbim C, Reglier H, Fay M, Delarche C, Andrieu V, El Benna J, et al. Intracellular pool of IL-10 receptors in specific granules of human neutrophils: differential mobilization by proinflammatory mediators. J Immunol Baltim Md. 1950 2001;166(8):5201–5207.

40. Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829–2845.

41. Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020(1);5:283.

42. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–604.

43. Huang W, Luo W-J, Zhu P, Tang J, Yu X-L, Cui H-Y, et al. Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem J. 2013;449(2):437–448.

44. Yoo SK, Huttenlocher A. Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. J Leukoc Biol. 2011(5);89:661–667.

45. Buckley CD, Ross EA, McGettrick HM, Osborne CE, Haworth O, Schmutz C, et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol. 2006;79(2):303-11.

46. Pawelczyk M, Glabinski A, Kaczorowska B, Baj Z. sP- and sE-selectin in stroke patients with metabolic disorders. Neurol Neurochir Pol. 2018;52(5):599–605.

47. Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020;46(6):1105–1108.

48. Dupont A, Rauch A, Staessens S, Moussa M, Rosa M, Corseaux D, et al. Vascular Endothelial Damage in the Pathogenesis of Organ Injury in Severe COVID-19. Arterioscler Thromb Vasc Biol. 2021;41(5):1760–1773.

49. Dandona P, Aljada A, Ghanim H, Mohanty P, Hamouda W, Al-Haddad W. Acute suppressive effect of hydrocortisone on p47 subunit of nicotinamide adenine dinucleotide phosphate oxidase. Metabolism. 2001(5);50:548–552.

50. Buehler PK, Zinkernagel AS, Hofmaenner DA, Wendel Garcia PD, Acevedo CT, Gómez-Mejia A, et al. Bacterial pulmonary superinfections are associated with longer duration of ventilation in critically ill COVID-19 patients. Cell Rep Med. 2021;2(4):100229.

51. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159(3):944-955.e8.
52. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;71(10):2669–2678.

53. Viana SD, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res Rev. 2020;62:101123.

54. Ella K, Csépányi-Kőmi R, Káldi K. Circadian regulation of human peripheral neutrophils. Brain Behav Immun. 2016;57:209–221.

55. Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, Weiss LA, et al. A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity. 2019;50(2):390-402.e10.

56. Raikwar NS, Liu KZ, Thomas CP. Ectodomain cleavage of FLT1 regulates receptor activation and function and is not required for its downstream intracellular cleavage. Exp Cell Res. 2016;344:103–111.

57. Sorbi D, French DL, Nuovo GJ, Kew RR, Arbeit LA, Gruber BL. Elevated levels of 92-kd type IV collagenase (matrix metalloproteinase 9) in giant cell arteritis. Arthritis Rheum. 1996;39(10):1747–1753.
Table 1. Characteristics of COVID-19 patients participating in the study

Characteristics	Total N= 90	Survivors N= 70	Non-survivors N=20	P value
Men (N, %)	57 (63%)	41 (59%)	16 (80%)	NS
Age (years, SD)	63 ± 11	64 ± 11	70 ± 8	<0.0001
SOFA score Day 1	3.5 [0-12]	3.05 [0-12]	4.65 [0-11]	0.0065
Body mass index				
<30	47 (52%)	34 (49%)	13 (65%)	NS
>30	40 (44%)	35 (50%)	5 (25%)	NS
Comorbidity (N, %)				
Arterial hypertension	60 (67%)	46 (66%)	14 (70%)	NS
Diabetes mellitus	35 (39%)	25 (36%)	10 (50%)	NS
Chronic renal failure	5 (6%)	1 (1%)	4 (20%)	0.0038
Cirrhosis	1 (1%)	1 (1%)	0 (0%)	NS
Previous cancer:	2 (2%)	1 (1%)	1 (5%)	NS
Hematological malignancy:	1 (1%)	0 (0%)	1 (5%)	NS
Immune Deficiency	11 (12%)	9 (10%)	2 (2%)	NS
Treatment (N, %)				
Corticosteroids	90 (100%)	70 (100%)	20 (100%)	NS
Tocilizumab	9 (10%)	9 (13%)	0 (0%)	NS
Organ support therapy (N, %)				
Sedative drugs	48 (53%)	31 (44%)	17 (85%)	0.0018
Mechanical ventilation	50 (56%)	32 (46%)	18 (90%)	<0.0001
Prone positioning	47 (52%)	30 (43%)	17 (85%)	0.0009
Hemodialysis	9 (10%)	4 (6%)	5 (25%)	0.0234
Biological data (mean) [min-max]				
Neutrophil count (G/L)	7.59 [0.78-22.8]	7.63 [1.88-22.8]	7.52 [0.78-15.4]	NS
Lymphocyte count (G/L)	0.76 [0.12-1.87]	0.78 [0.3-1.87]	0.70 [0.12-1.57]	NS
CRP (mg/L)	152 [0-428]	157 [0-428]	146 [23-402]	NS
Fibrinogen (g/L)	6,9 [4,84-9]	6,4 [5,65-9]	6,95 [4,84-7,9]	NS

Abbreviations: SOFA, Sequential Organ Failure Assessment; CRP, C-reactive protein; NS, not significant.

Sex, risk factors, and type of treatment were compared with the χ^2 test. The Mann-Whitney test was used to compare quantitative variables.
Figure legends

Fig. 1. Phenotypic and functional characterization of circulating neutrophils from COVID-19 patients

a, b Surface expression of CD62L (a) and CD11b (b) on resting neutrophils (PMNs) was studied in whole-blood samples maintained at 4°C and stained with specific monoclonal antibodies. Results are expressed as mean fluorescence intensity (MFI). c Production of ROS by unstimulated neutrophils was studied with dihydroethidium (DHE) oxidation after treatment of whole-blood samples for 50 minutes with PBS; results are expressed as MFI.

d, e, f Analysis of neutrophil-platelet aggregates (NPA). d Gating strategy and representative dot plots of flow cytometry analysis. e NPA levels, expressed as percentage of neutrophils that bind platelets. f Correlation of the percentage of NPA with CD11b expression at the neutrophil surface.

g, h Analysis of capacity for L-selectin shedding (g) and neutrophil degranulation (h) in response to stimulation. CD62L and CD11b expression were analyzed after incubation of whole-blood samples for 45 minutes with PBS or fMLP (10^{-6} M). Results are expressed as a stimulation index (SI; MFI of stimulated sample/MFI of unstimulated sample)

i, j ROS production by stimulated neutrophils was measured after pretreatment of whole-blood samples for 45 minutes with PBS, TNF-α (TNF, 5 ng/mL) or LPS (TLR4 agonist, 10 ng/mL). One histogram representative of ROS production by LPS-primed samples from a control (white), a CAP patient (grey) and a COVID-19 patient (black) (i). Results are expressed as SI (j).

Samples came from age-matched healthy controls (HCs) (n=38), CAP patients (n=22) and COVID-19 patients at day 1 (n=53), day 3 (n=49) and day 7 (n=40). Values are means ± SEM. * P<0.05, **P<0.01, ***P<0.001, adjusted for age.
Fig. 2. Impaired homeostasis of circulating neutrophils in COVID-19 patients

a, b, c Analysis of senescent and immunosuppressive neutrophil subsets in COVID-19 patients. Whole-blood samples were incubated for 45 minutes at 4°C with Pe-Cy7-anti-human CXCR4, PE-anti-human CD11b, and APC-anti-human CD62L (a) or with FITC-anti-human CD16, PE-anti-human CD11c, Pe-Cy7-anti-human CD11b, and APC-anti-human CD62L (b) antibodies.

a Percentages of the CXCR4$^{\text{bright}}$/CD62L$^{\text{dim}}$ senescent PMN subset.

b Percentages of the CD16$^{\text{bright}}$/CD62L$^{\text{dim}}$ immunosuppressive PMN subset.

c Ratio between the senescent and the immunosuppressive PMN subsets.

d, e, f, g, h Analysis of the angiogenic neutrophil subset in COVID-19 patients. Whole-blood samples were incubated for 45 minutes at 4°C with FITC-anti-human VEGF-R1 and BV-481-anti-human CD49d.

d Representative dot plot of angiogenic CD49d$^{\text{bright}}$ neutrophils gated according to forward-scattered light (FSC)/CD49d expression.

e Percentages of the CD49d$^{\text{bright}}$ angiogenic neutrophil subset.

f Expression of CD49d expression on angiogenic neutrophils; results are expressed in MFI.

g One histogram representative of VEGF-R1 expression on angiogenic neutrophils from a control (white) and a COVID-19 patient (black).

h Expression of VEGF-R1 on angiogenic neutrophils; results are expressed as MFI.

Samples came from age-matched healthy controls (HCs) (n=38), CAP patients (n=22) and COVID-19 patients at day 1 (n=53), day 3 (n=49) and day 7 (n=40).

i Soluble VEGF-R1 was quantified by ELISA in HCs and COVID-19 patients at day 1 (n=82), day 3 (n=33) and day 7 (n=32); results are as pg/ml.

Values are means ± SEM.

j Correlation between expression of VEGF-R1 on angiogenic neutrophils and soluble VEGF-R1 in COVID-19 patients.

* $P<0.05$, **$P<0.01$, ***$P<0.001$, adjusted for age.
Fig. 3. COVID-19 patients have higher levels of soluble JAM-C and of neutrophil reverse transendothelial transmigration.

a Soluble JAM-C (sJAM-C) was quantified by ELISA; results are expressed as pg/ml.

b, c Quantification of neutrophils undergoing reverse-endothelial transmigration (reverse transmigrated neutrophils, rTEM). Whole-blood samples were incubated for 45 minutes at 4°C with FITC-anti-human CD181 and PE-anti-human CD54 antibodies. b Representative dot plots of the neutrophil phenotype according to CXCR4 and CD62L expression in an HC (left) and a COVID-19 patient (right); c Percentage of rTEM neutrophils.

d Correlation between the percentages of rTEM and angiogenic neutrophil subsets in COVID-19 patients.

Samples came from age-matched healthy controls (HCs) (n=38), CAP patients (n=22), and COVID-19 patients at day 1 (n=53), day 3 (n=49), and day 7 (n=40). Values are means ± SEM. * P<0.05, **P<0.01, ***P<0.001, adjusted for age.
Fig. 4. Neutrophil abnormalities are associated with vascular inflammation in COVID-19 patients

a, b, c, d, e, f Evaluation of soluble markers of endothelial activation. Levels of soluble P-selectin (a) and E-selectin (b) were quantified by ELISA; results are expressed as pg/ml. Correlation between soluble P-selectin and CD11b expression on neutrophils (c), circulating LTB4 levels (d), circulating JAM-C level (e) and the percentage of rTEM neutrophils (f).

g, h, i, j; k Measurement of circulating levels of cytokines. Soluble VEGF was quantified by ELISA; results are as pg/ml (g). Correlation between soluble VEGF and VEGF-R1 (h). IL-6 (i), and IL-10 (j) were quantified by ELISA; results are as pg/ml. Correlation between soluble IL-10 and ROS production by fMLP-stimulated neutrophils (k).

All samples came from age-matched healthy controls (HC, n=40) and COVID-19 patients at day 1 (n=53), day 3 (n=49) and day 7 (n=40). Values are means ± SEM. *Significantly different from controls $P<0.05$, **$P<0.01$, ***$P<0.001$, adjusted for age.

Fig. 5. Association between neutrophil parameters and disease severity in COVID-19 patients.

a, b Correlation between CD62L expression on the surface of resting neutrophils from COVID-19 patients at ICU admission and global SOFA (a) and respiratory SOFA scores (b)

c, d Correlation between circulating levels of LTB4 (c) and neutrophil elastase (d) from COVID-19 patients at ICU admission and global SOFA score.

e, f Correlation between the percentage of the CXCR4$^{\text{bright}}$/CD62L$^{\text{dim}}$ senescent PMN subset (e) and the percentage of the CD16$^{\text{bright}}$/CD62L$^{\text{dim}}$ immunosuppressive PMN subset (f) from COVID-19 patients at ICU admission and respiratory SOFA score.

g Correlation between VEGF-R expression (MFI) at the surface of angiogenic neutrophils from COVID-19 patients at ICU admission and the global SOFA score.
h Correlation between the percentage of reverse transmigrated neutrophils in COVID-19 patients 3 days post-inclusion and respiratory SOFA calculated at the same time.

i Correlation between the percentage of angiogenic neutrophils in COVID-19 patients 3 days post-inclusion and respiratory SOFA calculated at the same time.
Fig. 6. COVID-19 patients who died had higher percentage of angiogenic neutrophils and greater impairments of neutrophil oxidative burst than survivors did

a, b, c, d, e, f Analysis of the angiogenic neutrophil subset in COVID-19 patients. Percentages of the CD49d^{bright} angiogenic neutrophil subset measured at day 1 (a) and day 7 (d). Expression of VEGF-R1 on angiogenic neutrophils measured at day 1 (b) and day 7 (e); results are expressed as MFI. Soluble VEGF-R1 was quantified by ELISA at day 1 (c) and day 7 (f); results are expressed as pg/mL.

g, h, i, j, k, l ROS production in response to fMLP by unprimed-neutrophils at day 1 (g) and day 7 (j), by LPS-primed neutrophils at day 1 (h) and day 7 (k), and TNFα–primed neutrophils at day 1 (i) and day 7(l).

All measurements came from deceased COVID-19 patients or survivors at day 60 post-ICU inclusion. Values are means ± SEM. Statistical significance as determined by the nonparametric Mann-Whitney test is indicated. *Significantly different $P<0.05$, **$P<0.01$, ***$P<0.001$
Fig. 1

a) CD62L expression on resting PMNs
b) CD11b expression on resting PMNs
c) ROS production by resting PMNs
d) CD16b expression on resting PMNs
 - HC: 2.83%
 - COVID-19: 17.32%
e) CD16+CD41+ cells (%)
 - HC CAP Day1 Day3 Day7
 - COVID-19
f) NPA (%) vs. CD11b expression on resting PMNs
 - r=0.62
 - P<0.0001
g) fMLP-induced CD62L shedding (SI)
 - HC CAP Day1 Day3 Day7
 - COVID-19
h) CD62L expression on stimulated PMNs
 - HC CAP Day1 Day3 Day7
 - COVID-19
i) ROS production by stimulated PMNs
 - IMLP TNF + IMLP LPS + IMLP
j) DHE fluorescence intensity
 - WC HC CAP COVID-19
Fig. 3

(a) Circulating levels of JAM-C (pg/ml)

(b) Reverse transmigrated PMNs (%)

(c) Angiogenic PMNs (%)

(d) CD 54

HC CAP Day1 Day3 Day7 COVID-19

COVID-19

Angiogenic PMNs (%)

r=0.63

P<0.0001

CXCR4

0.81 %

12.08 %
Fig. 4

a) Circulating levels of P-selectin (pg/ml) vs. day.

b) Circulating levels of E-selectin (pg/ml) vs. day.

c) CD11b expression on resting PMNs.

d) Circulating levels of LTB4 (pg/ml) vs. circulating levels of P-selectin (pg/ml).

e) Circulating levels of JAM-C (pg/ml) vs. circulating levels of P-selectin (pg/ml).

f) Reverse transmigrated PMNs (%).

g) Circulating levels of P-selectin (pg/ml) vs. soluble VEGF (pg/ml).

h) Soluble VEGF (pg/ml) vs. soluble VEGF-R1 (pg/ml).

i) Soluble IL-10 (pg/ml) vs. Soluble VEGF (pg/ml).

j) Soluble IL-10 (pg/ml) vs. ROS production by fMLP-stimulated PMNs.
Fig. 5

a. CD62L expression on resting PMNs

b. CD62L expression on resting PMNs

c. Circulating levels of LTβ4 (pg/ml)

d. Circulating levels of elastase (ng/ml)

e. Circulating levels of elastase (ng/ml)

f. Circulating levels of elastase (ng/ml)

g. VEGF-R1 expression on angiogenic PMNs

h. Reverse transmigrated PMNs (%)

i. Angiogenic PMNs (%)

SOFA Day 1

Respiratory SOFA Day 3

Respiratory SOFA Day 3

Respiratory SOFA Day 3

Respiratory SOFA Day 3

r=-0.35
P=0.0169

r=-0.35
P=0.0169

r=-0.5
P=0.0005

r=0.5
P=0.0005

r=0.53
P=0.0001

r=0.37
P=0.0059

r=-0.35
P=0.0169

r=0.5
P=0.0005

r=0.53
P=0.0001

r=-0.37
P=0.0059

r=0.37
P=0.0059

r=0.42
P=0.0033

r=-0.42
P=0.0033

r=0.32
P=0.00318

r=0.32
P=0.00318

r=0.44
P=0.0042

r=-0.44
P=0.0042

r=0.42
P=0.0046

r=-0.42
P=0.0046
Supplementary Methods

DAY 7

ROS production by fMLP-stimulated PMNs

Angiogenic PMNs (%)

ROS production by LPS-primed PMNs

VEGF-R1 expression on angiogenic PMNs

ROS production by TNF-primed PMNs

Soluble VEGF-R1(pg/ml)

Survivors

Deceased

Fig. 6
Determination of neutrophil subsets

The neutrophil subsets were analyzed with the Gallios flow cytometer. To investigate the senescent CXCR4bright/CD62Ldim neutrophil subset, whole-blood samples collected on lithium heparinate and kept on ice were incubated for 45 min with PE-Cy7-anti-human CXCR4 (clone 12G5, Sony Biotech, San Jose, CA), PE-anti-human CD11b (clone ICRF44, BD Biosciences), and APC-anti-human CD62L (BD Biosciences) antibodies; for the immunosuppressive CD16bright/CD62Ldim neutrophil subset, for 45 min with FITC-anti-human CD16 (clone 1D3, Beckman Coulter, Brea, CA), PE-anti-human CD11c (clone 3.9, Sony Biotech), PE-Cy7-anti-human CD11b (clone Bear 1, Beckman Coulter), and APC-anti-human CD62L (BD Biosciences) antibodies; for the angiogenic subset with BV-421-anti-CD49d and FITC-anti-VEGF-R1 (BD Biosciences) antibodies, and for the rTEM neutrophil subset, for 45 min with FITC-anti-human CD81 (BD Biosciences) and PE-anti-CD54 (BD Biosciences) antibodies. To discriminate between immature (CD16low/high/CD10−) and mature (CD16high/CD10+) subsets, samples kept on ice were incubated for 45 min with PE-anti-human CD16b (clone CLB-gran11.5, BD Biosciences) and FITC-anti-human CD10 (clone HI10a, BD Biosciences) antibodies. To investigate neutrophil-platelet aggregates (NPAs), whole-blood samples collected on Anticoagulant Citrate-Dextrose solution (ACD) were incubated for 45 min with PE-anti-human CD16b (clone CLB-gran11.5, BD Biosciences), APC-anti-human CD15 (clone HI98, BD Biosciences) and FITC-anti-human CD41b (clone HIP2, BD Biosciences) antibodies.

The blood was then lysed with BD FACS lysing solution, and the cells were then resuspended with Cell Fix 1X (BD Biosciences) (Dong et al. Ann Neurol. 2018 Feb;83(2):387-405).

Flow cytometry analysis
After staining, the blood was then lysed with BD FACS lysing solution, and the cells were then resuspended with Cell Fix 1X (BD Biosciences). Cells were analyzed with a Gallios™ flow cytometer and the data with Kaluza software (Beckman Coulter). Neutrophil expression of surface molecules and ROS production were determined by using forward and side scatter to identify the granulocyte population and to gate out other cells and debris. The purity of the gated cells was assessed by using FITC- or PE-conjugated CD3, CD45, CD14, and CD15 antibodies. Ten thousand events were analyzed per sample, and fluorescence pulses amplified by 4-decade logarithmic amplifiers. In all cases, unstained cells were run, and the photomultiplier settings adjusted so that the unstained cell population appeared in the lower left-hand corner of the fluorescence display. In the multicolor analysis, single-cell controls were used to optimize signal compensation. All results were obtained with the use of a constant photomultiplier gain value.
Table E1. Characteristics of SARS-CoV-2+ patients hospitalized for severe community-acquired pneumonia (CAP) participating in the study

Characteristics	Total N=22	Survivors N=17	Non-survivors N=5	P value
Men (N, %)	14 (64%)	10 (59%)	4 (80%)	NS
Age (years, SD)	69 ±17	66 ± 18	78 ± 6	NS
SOFA#	6 [1-13]	5 [1-13]	11 [4 -13]	0,0264
Body mass index				
<30	16 (73%)	13 (76%)	3 (60%)	NS
>30	5 (23%)	4 (24%)	1 (20%)	NS
Comorbidity (N, %)				
Arterial hypertension	10 (45%)	7 (41%)	3 (60%)	NS
Diabetes mellitus	6 (27%)	5 (29%)	1 (20%)	NS
Cardiovascular disease	14 (64%)	10 (59%)	4 (80%)	NS
Chronic respiratory disease	2 (9%)	2 (12%)	0 (0%)	NS
Chronic renal failure	2 (9%)	1 (6%)	1 (20%)	NS
Cirrhosis:	2 (9%)	2 (12%)	0 (0%)	NS
Previous cancer	2 (9%)	1 (6%)	1 (20%)	NS
Treatment (N, %)				
Corticosteroids	2 (9%)	2 (12%)	0 (0%)	>0,9999

Abbreviations: SOFA, Sequential Organ Failure Assessment; NS, not significant.

Sex, risk factors, and type of treatment were compared with the χ^2 test. The Mann-Whitney test was used to compare quantitative variables.
Legend of Supplementary figures

Fig. E1. Phenotype and homeostasis of neutrophils in COVID-19

a, b Circulating levels of NE (a) and LTB4 (b) were quantified by ELISA in healthy controls (HCs) and COVID-19 patients. Results are expressed as pg/ml.

c ROS production after TLR8 priming in HCs and COVID-19 patients. ROS production by stimulated neutrophils was measured after pretreatment of whole-blood samples for 45 minutes with TLR8 agonist (ssRNA with 6 UUGU repeats/LyoVec™, 10 ng/ml). Results are expressed as a stimulation index (SI; MFI of stimulated sample/MFI of unstimulated sample)

d Percentage of circulating immature neutrophiles in HCs and COVID-19 patients. Whole-blood samples were incubated for 45 minutes at 4°C with anti-human CD16b and anti-human CD10 antibodies.

All samples came from age-matched HCs (n=38) and COVID-19 patients at day 0 (n=53), day 3 (n=49) and day 7 (n=40). Values are means ± SEM. *Significantly different from controls \(P < 0.05\), **\(P < 0.01\), ***\(P < 0.001\), adjusted for age.

Fig. E2. Association between neutrophil count from COVID-19 patients and disease severity

a, b, c Correlation between neutrophil count from COVID-19 patients at ICU admission with their SOFA score (a), respiratory SOFA score (b) and non-respiratory SOFA score (c) at the same time

d, e, f Correlation between neutrophil count from COVID-19 patients at day 3 post-admission with their SOFA score (d), respiratory SOFA score (e) and non-respiratory SOFA score (f) at the same time
g, h, i Correlation between neutrophil count from COVID-19 patients at day 7 with their SOFA score (g), respiratory SOFA score (h) and non-respiratory SOFA score (i) at the same time.

Figure E3. Association between neutrophil alterations and soluble cytokine levels from COVID-19 patients with disease severity.

a Correlation between CD62L expression at the neutrophil surface and non-respiratory SOFA score at ICU inclusion.

b Correlation between IL-10 level measured at ICU inclusion and global SOFA score at the same time.

c, d Correlation between IL-6 (c) and IL-10 (d) levels measured at ICU inclusion and global SOFA score at day 7.

Fig. E4. Comparison of neutrophil phenotype and homeostasis in COVID-19 patients who died and survivors

a Soluble levels of IL-10 were quantified by ELISA.
b Neutrophil count.
c, d Surface expression of CD62L and CD11b on resting neutrophils; results are expressed as MFI.
e ROS production by unstimulated neutrophils; results are expressed in MFI.
f, g, h, i Percentages of the immature CD10\(^{\text{low}}\), the CXCR4\(^{\text{bright}}\)/CD62L\(^{\text{dim}}\) senescent, the CD16\(^{\text{bright}}\)/CD62L\(^{\text{dim}}\) immunosuppressive PMN, and the rTEM CD54\(^{\text{high}}\), CXCR1\(^{\text{low}}\) subsets.

j, k, l, m, n Soluble VEGF, JAM-C, E-selectin, P-selectin and IL-6 were quantified by ELISA; results are expressed as pg/ml.
o, p Circulating level of CRP and Fibrinogen.

All measurements were performed at ICU inclusion and came from deceased COVID-19 patients or survivors at day 60 post-ICU inclusion. Values are means ± SEM. Statistical significance as determined by the nonparametric Mann-Whitney test is indicated. *Significantly different \(P<0.05 \)
Fig. E5. Greater impairments of neutrophil oxidative burst in superinfected than non-superinfected COVID-19 patients

ROS production in response to fMLP by unprimed neutrophils at day 1 (a) and day 7 (d), by LPS-primed neutrophils at day 1 (b) and day 7 (e), and TNFα-primed neutrophils at day 1 (c) and day 7 (f).

All measurements came from superinfected COVID-19 patients (measurements performed at day 1, n=17 and measurements performed at day 7, n=16) or nonsuperinfected during ICU stay (measurements performed at day 1, n=33 and measurements performed at day 7, n=24). Values are means ± SEM. Statistical significance as determined by the nonparametric Mann-Whitney test is indicated. *Significantly different $P<0.05$, **$P<0.01$
Fig. E1

a

Circulating levels of NE (pg/ml)

HC Day1 Day2 Day3 COVID-19

b

Circulating levels of LTB4 (pg/ml)

HC Day1 Day3 Day7 COVID-19

c

ROS production by neutrophils stimulated by TLR7/8 agonist(IS)

HC Day1 Day3 Day7 COVID-19

d

CD16-CD10- neutrophils (%)

HC Day1 Day3 Day7 COVID-19
Fig. E2

a. DAY 1

PMN count (G/L)

SOFA Day 1

r = 0.07
P = 0.4925

b. DAY 1

PMN count (G/L)

Respiratory SOFA Day 1

r = -0.17
P = 0.1004

c. DAY 1

PMN count (G/L)

Non Respiratory SOFA Day 1

r = 0.05
P = 0.6346

d. DAY 3

PMN count (G/L)

SOFA Day 3

r = 0.26
P = 0.0168

e. DAY 3

PMN count (G/L)

Respiratory SOFA Day 3

r = 0.24
P = 0.0289

f. DAY 3

PMN count (G/L)

Non Respiratory SOFA Day 1

r = 0.27
P = 0.0141

g. DAY 7

PMN count (G/L)

SOFA Day 7

r = 0.38
P = 0.0024

h. DAY 7

PMN count (G/L)

Respiratory SOFA Day 7

r = 0.32
P = 0.0099

i. DAY 7

PMN count (G/L)

Non Respiratory SOFA Day 1

r = 0.43
P = 0.0004
Fig. E3

a
Non Respiratory SOFA Day 1

- CD62L expression on resting PMNs
- $r = -0.02$, $P = 0.91$

b
SOFA Day 1

- Soluble IL-10 (pg/ml)
- $r = 0.47$, $P < 0.0001$

c
SOFA Day 7

- Soluble IL-10 (pg/ml)
- $r = 0.40$, $P = 0.011$

d
Respiratory SOFA Day 7

- Soluble IL-6 (pg/ml)
- $r = 0.38$, $P = 0.0049$
Fig. E4

- Soluble P-selectin (pg/ml)
- Reverse transmigrated PMNs (%)
- ROS production by resting PMNs
- Soluble IL-10 (pg/ml)
- Soluble IL-6 (pg/ml)
- Soluble VEGF (pg/ml)
- CD16-CD10- neutrophils (%)
- CD62L expression
- PMN count (G/L)
- Circulating levels of JAM-C (pg/ml)
- CXCR4bright/CD62Ldim PMNs (%)
- CD62L expression
- Soluble E-selectin (pg/ml)
- CD16bright/CD62Ldim PMNs (%)
- CD11b expression

Survivors
Deceased
Fig. E5

ROS production by fMLP-stimulated PMNs

ROS production by LPS-primed PMNs

ROS production by TNF-primed PMNs

DAY 1

A

B

C

DAY 7

D

E

F

Surperinfected COVID-19 patients

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No