Innovative Technologies for Protective Structures Upon Creating Environmentally Safe Urban Systems

M Y Klimenko¹, T P Kasharina¹, E S Sidenko¹

¹Platov South-Russian State Polytechnic University (NPI), 346428, Novocherkassk, Prosveschenia Street, 132, Russia

E-mail: klimdaver@bk.ru

Abstract. The article deals with the issues of sustainable development, which should meet the needs of the present and future generation – the environmental safety of urban systems including socio-economic and intellectual impact on human processes occurring in the environment, preservation and improvement of the quality of life. Rational use of natural resources is the main task of the modern social state. Ideal zoning of territories in and around the city should primarily be carried out in such a way that gradually, as the distance from the city increases, so the environment becomes cleaner and gradually nature would become absolutely virgin. For this purpose the spatial structure of ecological skeleton of settlement is offered. One of the directions of ensuring ecological safety of construction and municipal economy is ecorestoration of landscapes, which includes restoration of properties: of soil, water, atmosphere, relief and lithosphere; flora and fauna. It may encompass returning the contaminated landscape or its separate components to a state close to the natural one. The main problems of ecology of urban systems are revealed. The generalizing coefficient of influence of city (technical) systems on environment is offered including an assessment of morphological, technical, hydrotechnical, hydrobiological and biological changes of flora and fauna, water quality in adjacent water objects (water intakes); ecotoxicological and social changes; sanitary and hygienic diseases; effects of space-related changes and emergencies.

1. Introduction

In modern society, people have a significant impact on the development of the events, and they must solve the most important problems: to create a harmony of environmental and material needs; develop a safe industrial civilization; recreate and preserve the Earth’s environment. Nature and humanity are developing simultaneously, influencing each other, while the evolutionary process is much slower than the socio-economic development of society, so it is necessary to limit its anthropogenic impact, to create the noosphere, i.e. the sphere of mind, limiting the impact on nature, to destroy it not by ecological disasters. Environmental impact assessment should be planned and developed in conjunction with technical (including intellectual), environmental and socio-political assessments, i.e. with the establishment of an environmental infrastructure.

In addition, the rational use of natural resources is also the main task of the modern social state [1-5], which should be reflected in the laws enacted by the state [6].
2. Main part

Ideal zoning of territories in and around the city should primarily be carried out in such a way that gradually, as the distance from the city grows, so the environment would become cleaner and gradually nature would become absolutely virgin. The infrastructure of Novocherkassk partially corresponds to this skeleton. (Fig. 1). The sizes of necessary zones are appealing. For cities with a population of over 1 million inhabitants, the width of the restricted development zone should be 35–40 km, with a population of 0.5–1 million – 25–30 km, with a population of 100-500 thousand inhabitants – 20–25 km. Behind the restricted development zone there is an active development zone. For cities with population from 100 to 500 thousand people its width will be in average from 30 -35 km to 40-50 km.

These dimensions are very conventional, they do not take into account many functions assigned to the natural zone around the city, and the influence of a number of different factors, for example, the time of the year, landscape type, degree of pollution, the cumulative effect of anthropogenic impacts.

The idea of ecological zoning of territories of the city and adjacent natural landscapes, creation of green zones, which are entrusted with the task of processing urban pollution and maintaining the ecological balance, is not fully developed and is not completely ecological.

1-centers of regional settlement systems; 2- the same, but for communal ones; 3-other places of settlement; 4- main communications; 5...7 – zone of development of the respectively limited, preemptive, active; 8... 10 - zones of respectively ecological equilibrium, buffer, compensatory; 11, 12 – borders of systems of settlement - regional and communal, respectively

Figure 1. Zoning scheme.

This applies to almost all elements of landscapes: soil, terrain, vegetation, wildlife, water in all water bodies (rivers, lakes, seas, soil), air, lithosphere, etc. (table 1). Ecological restoration may consist of returning the polluted landscape or some of its components to a state close to the former natural (for example, when transferring a ground object to an underground space with the creation of a square or park on the surface), or in creating a new natural landscape on the disturbed territory (for
example, creating an artificial lake on the site of an open abandoned quarry for extraction of any raw materials).

Ecological restoration of polluted landscapes brings real positive results, if it is of a systemic nature, it involves the constant greening of technologies that earlier contributed to the landscape pollution. Thus, positive results of cleaning of the Great lakes in the USA, the river Rhine in Germany, etc are known. In Japan, the air in Tokyo is much cleaner today due to the greening, it returned back to the 70s of the last century by air quality. These are the usual positive results of technologies greening which lead to ecological restoration of landscape components [7-12].

Table 1. The main directions of ecological landscape representation.

No.	Recovery item	Green bio restoration of the landscape
1	Soil	Natural long-term recovery without intervention, Flushing, aeration, introduction of humus, phytomelioration, Microbial recovery
2	Waters	Natural long-term recovery without intervention, Reduction of water consumption and the closed loop, Deep cleaning of water and silt in reservoirs
3	Atmosphere	Greening, deep air purification from impurities, The revegetation, permaculture, Deodorization, odoration by natural smells
4	Relief and lithosphere	Prosthetics of broken and missing forms, Restoration of destroyed territories, Erosion control measures
5	Flora and fauna	Recreation of natural landscape, arrangement of sustainable cultural landscape, Preservation of environmentally sound natural territory with creation of green zones and corridors, Arrangement of protected natural areas with impermeable boundaries

All of the above leads to the fact that in order to ensure environmental safety it is necessary to create criteria for sustainable development at the local level. The main criteria are:
1. Establishment of working relations between the city plan and the state territorial planning;
2. Enabling people to participate in decision-making, assessing and protecting nature's diversity;
3. Achieving a harmonious unity and proportionate combination of functionality, aesthetics in architecture, construction, taking into account all local influences;
4. Access to skills, knowledge and information; the opportunity to find a satisfactory job in a multi-stage economy; fair wages;
5. Efficient use of resources; reduction of losses; recycling of materials; limitation of pollution that does not threaten natural ecosystems; health care, access to life services, goods, etc.;
6. Development of the rights and obligations of the city residents.

On the basis of this, the structure of planning for sustainable development (LIA – local issues of action) is formed. Here we develop an assessment of the state of the living environment and indicators of it in a particular city, that is, in the ecological system created by people.

The urban environment is a complex ecosystem consisting of two subsystems, one natural and one anthropogenic, each divided into subsystems of a lower order. The reliability of the ecosystem depends on the stability of equilibrium, survivability and safety (Fig.2) [13-20].
Constant monitoring of the living environment state will allow to objectively judge the improvement or deterioration of it for making decision on the development of the urban environment, for outlining measures to restore it.

We propose new technologies, measures and determination of the General coefficient of influence of urban (technical) systems on the environment.

Conditionally K_{2S} - coefficient of influence of city systems on the environment, can be represented in a scoring system in the following form:

$$K_{2S}=K_m+K_t+K_{gh}+K_G+K_{kv}+K_{er}+K_S+K_Z+K_k$$

where $K_m=0 \ldots \pm 1$ - coefficient of morphological changes, taking into account changes in the territorial planning of the city and its infrastructure; $K_t=0 \ldots \pm 1$ – coefficient of technical changes, i.e. change (reconstruction, functional direction, etc.). buildings and structures of urban development); $K_{gh}=0 \ldots \pm 1$ is the coefficient of hydraulic changes that affect the hydrochemical composition of the soil and water by using different additives to mortar and materials in construction, falling as waste into the environment; $K_G=0 \ldots \pm 1$ – ratio of bionatural hydrobiological changes of flora and fauna, in comparison with previous years; $K_{kv}=0 \ldots \pm 1$ is the coefficient of water quality in adjacent water objects (water intakes), including their growth in emissions of urban enterprises; $K_{er}=0 \ldots \pm 1$ - the coefficient of ecotoxicological changes, which takes into account the spread in the territory of the city; $K_S=0 \ldots \pm 1$ - the coefficient of social change, i.e. the qualitative variable composition of urban residents, i.e. the increase in number of pensioners, taking into account new professions, etc., compliance with the rights and obligations of residents of urban systems; $K_Z=0 \ldots \pm 1$ the coefficient that determines the sanitary and hygienic composition of diseases characteristic of the city and changes depending on the quality of urban development, i.e. the presence of rubbish dumps etc. in the urban environment; $K_k=0 \ldots \pm 1$ - coefficient of influence of space changes, of the emergencies worsening quality of the life environment.

Obtaining the coefficient of impact of urban systems K_{2S} with its maximum value $K_{2S}=9$ points means that in terms of ecology, the urban system copes with the effects of natural and technical systems, and the minimum value $K_{2S}=-9$ points indicate the inactivity of local administrative organizations.

3. Conclusion
With the aim of creating environmentally friendly urban systems, based on the leverage ratio of urban systems K2S, taking into account the main environmental problems of the city, criteria of sustainable development at the local (local) level as well as the main directions of ecorestoration landscape today,
we have already formed a number of innovative technologies for the urban systems protective structures from natural-technogenic impact [21, 22].

The application of the proposed evaluation criteria and schemes in the creation of environmentally friendly urban systems is one of the possible ways of progressive harmonious development of people, technologies and biosphere territory.

4. References
[1] Ilyichev V A 2013 Biosphere compatibility-the principle that allows building a paradigm of life in harmony with the planet Earth Biosphere compatibility: man, region, technology 1 4-5
[2] Bakaeva N V 2010 To the formulation of the problem of managing the city life support systems based on the concept of biosphere compatibility Digest of VII Crimean international scientific-practical conference "Geometric and computer modeling: energy saving, ecology, design" (Simferopol, national Academy of environmental protection and resort construction 423-427
[3] Eliseeva T P 2013 Modern problems of development of socio - economic and environmental systems Monograph, edited by Eliseeva T P: Shakhty, ICOIP (branch) DGTU 291
[4] Magomadova H A 2012 Problems of socio-ecological and economic efficiency of interaction between society and nature Engineering Bulletin of Don 1 URL: http://www.ivdon.ru/magazine/archive/n1y2012/666
[5] Forbes R McDougall, Peter R, White, Marina Franke, Peter Hindle 2009 Integrated Solid Waste Management: A Life Cycle Inventory 513 URL: ru.bookzz.org/ireader/780419
[6] The order of the Government of the Russian Federation of 16.02.2008 N 87 (edition of 26.03.2014) On structure of sections of project documentation and requirements to their contents
[7] Maksimov I E 1995 The state and prospects of the environmental protection systems use in solving waste problems Municipal and industrial waste: methods of neutralization and recycling: Analit. reviews A series of Ecology/SPSL
[8] Bagryantsev G I 1995 Thermal neutralization and processing of industrial and household waste Municipal and industrial waste: methods of neutralization and recycling – Analit. reviews A series of Ecology/SPSL
[9] Bernadiner M N 1990 Fire recycling and disposal of industrial waste Moscow: Chemistry 30
[10] Bikbulatov I H 2001 Heat treatment of sewage sludge in sludge isolated cards Environmental Engineering 1 16-21
[11] 1999 Activities and technical solutions to protect the agro-industrial complex from flooding and erosion and landslide processes Novocherkassk: NGMA 24
[12] Kasharina T P, Kasharin D V etc 1999 Guidelines for monitoring the design and operation of lightweight dams with water outlets for small and medium-sized rivers Novocherkassk: NGMA 24
[13] Kashirina T P 2017 Environmental infrastructure and safety in urban construction South-Russian state Polytechnic University (NPI) named after M. I. Platov Novocherkassk: URGU (NPI)234
[14] Klimenko M Yu 2011 Ecological safety and reliability of building structures in the design and operation Reliability and durability of construction materials, structures and foundations: materials of the VI International Scientific 184-187
[15] Kasharina T P 2011 Environmental safety and reliability of structures in the design and operation VOLGASU Bulletin, series "Construction and architecture" 25(44)
[16] SNiPiP 2.07.01-89* "Urban Planning. Planning and development of urban and rural settlements"
[17] SanPiN 42-128-4690-88 "Sanitary rules of the maintenance of settlements territories"
[18] Mityagin S D 2016 Urban Planning The era of change St. Petersburg: Architect 279
[19] Urban planning and territorial planning in new Russia SPb. Publishing House “Architect”
[20] Zazulya V A 2016 Construction exports reference dictionary Publishing house "ZODCHIY", St. Petersburg 568
[21] Pat. 2517585 S2 Russia IPC E02D27/08 (2006.01) Method of creating protective multi-membrane systems of artificial bases and foundations of buildings and structures and the device for its implementation / T P Kasharina, D V Kasharin, M S Bunyaev, M Y Klimenko - Announced 06.03.2012; Publ. 20.09.2013

[22] Pat. 2604933 C2 Russia IPC E02B 3/02 (2006.01) The arrangement of protective system of urban development and method of its erection / Etc. Kasharina, D V Kasharin, M Y Klimenko, K S Kandupyan, E S Sidenko – Stated 26.02.2015; Publ. 20.09.2016