A DECOMPOSITION OF THE CURVATURE TENSOR
ON $SU(3)/T(k,l)$ WITH A $SU(3)$-INARIANT METRIC

Heui-Sang Son*, Joon-Sik Park**, and Yong-Soo Pyo***

Abstract. In this paper, we decompose the curvature tensor (field) on the homogeneous Riemannian manifold $SU(3)/T(k,l)$ with an arbitrarily given $SU(3)$-invariant Riemannian metric into three curvature-like tensor fields, and investigate geometric properties.

1. Introduction

Let $(V, < , >)$ be an n-dimensional real inner product space. In this paper, we use the notion of a curvature-like tensor of type $(1,3)$ on $(V, < , >)$ (cf. (2.1)). We put

$L(V) := \{ L \mid L \text{ is a curvature-like tensor on } (V, < , >) \}$,

$L_1(V) := \{ L \in L(V) \mid L(u,v) = c \ u \wedge v \text{ for } u,v \in V \text{ and some } c \in \mathbb{R} \}$,

$L_\omega(V) := \{ L \in L(V) \mid \text{the Ricci tensor } Ric_L \text{ of } L \text{ is zero} \}$,

$L_2(V) := \{ L \in L_1(V) \mid < L, L' > = 0 \text{ for all } L' \in L_\omega(V) \}$.

Then $L(V)$ is decomposed into the orthogonal direct sum $L_1(V) \oplus L_\omega(V) \oplus L_2(V)$. Let $L = L_1 + L_\omega + L_2$ ($L \in L(V)$) be the decomposition corresponding to $L_1(V) \oplus L_\omega(V) \oplus L_2(V)$. The component L_ω of $L \in L(V)$ is said to be the Weyl tensor of L. The curvature-like tensors L_1, L_ω, L_2 of $L = L_1 + L_\omega + L_2 \in L(V)$ are given in terms of the Ricci tensor Ric_L and the scalar curvature S_L of L (cf. Lemma 2.1).

In this paper, using Lemma 2.1 we decompose the curvature tensor on the homogeneous Riemannian manifold $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$ into three curvature-like tensor fields. On the manifold $SU(3)/T(k,l)$, we deal with an arbitrary $SU(3)$-invariant Riemannian metric $g = g_{(\lambda_1,\lambda_2,\lambda_3)}$.

Received December 11, 2014; Accepted April 29, 2015.
2010 Mathematics Subject Classification: Primary 53C30, 53C25.
Key words and phrases: curvature tensor field, homogeneous space, Weyl tensor, Ricci tensor.
Correspondence should be addressed to Yong-Soo Pyo, yspo@pknu.ac.kr.
Geometric properties on $SU(3)/T(k, l)$ have been studied by many mathematicians (cf. [1, 6, 9, 10]).

Now, let R be the curvature tensor (field) on the homogeneous manifold $(SU(3)/T(k, l), g(\lambda_1, \lambda_2, \lambda_3))$, and $R = R^{(1)} + R^\omega + R^{(2)}$ the orthogonal decomposition of the curvature tensor R corresponding to

$$\mathfrak{L}(T_o(G/H)) = \mathfrak{L}_1(T_o(G/H)) \oplus \mathfrak{L}_\omega(T_o(G/H)) \oplus \mathfrak{L}_2(T_o(G/H))$$

(cf. Lemma 2.1), where $G := SU(3)$, $H := T(k, l)$ and $O := \{T(k, l)\}$.

Let m be the subspace of $su(3)$ such that $B(m, t(k, l)) = 0$ and $\text{Ad}(h)m \subset m$ $(h \in T(k, l))$, where $su(3)$ is the Lie algebra of $SU(3)$, B is the negative of the Killing form of $su(3)$, $t(k, l)$ is the Lie algebra of $T(k, l)$, and Ad is the adjoint representation of $SU(3)$ on $su(3)$.

In this paper, we represent the curvature-like tensors $R^{(1)}$, R^ω and $R^{(2)}$ in the orthogonal decomposition $R = R^{(1)} + R^\omega + R^{(2)}$ $(\in \mathfrak{L}_1(V) \oplus \mathfrak{L}_\omega(V) \oplus \mathfrak{L}_2(V))$ of the curvature tensor R on $(SU(3)/T(k, l), g(\lambda_1, \lambda_2, \lambda_3))$ for $(k, l) \in D$, where

$$D := \mathbb{Z}^2 \setminus \{(0, t), (t, 0), (t, t), (t, -t), (t, -2t), (2t, -t) \mid t \in \mathbb{R}\}$$

(cf. Theorem 4.3). And then, under the condition $(k, l) \in D \subset \mathbb{Z}^2$, we obtain the Ricci tensor $Ric^{(2)}$ of the component $R^{(2)}$ of the curvature $R = R^{(1)} + R^\omega + R^{(2)}$ on the homogeneous space $(SU(3)/T(k, l), g(\lambda_1, \lambda_2, \lambda_3))$ (cf. Corollary 4.4). Furthermore, we estimate the Ricci curvature $r^{(2)}$ of the curvature-like tensor $R^{(2)}$ (cf. Proposition 4.5).

2. Preliminaries

Let $(V, <, >)$ be an n-dimensional real inner product space and $\mathfrak{gl}(V)$ the vector space of all endomorphisms of V. We denote by $\mathfrak{L}(V)$ the vector space of all tensors of type $(1, 3)$ on V which satisfy the following properties:

$$L : V \times V \rightarrow \mathfrak{gl}(V)$$

is an \mathbb{R}-bilinear map such that, for all $v_1, v_2, v_3, v_4 \in V$,

$$(2.1) \quad < L(v_1, v_2)v_3, v_4 > - < L(v_2, v_1)v_3, v_4 >= - < L(v_1, v_2)v_4, v_3 >,
\quad < L(v_1, v_2)v_3, v_4 > + < L(v_2, v_3)v_1, v_4 > + < L(v_3, v_1)v_2, v_4 >= 0.$$
A tensor $L \in \mathcal{L}(V)$ (of type $(1,3)$ on (V,\langle , \rangle) which satisfies the condition (2.1)) is called a curvature-like tensor (cf. [3, 4]). If $L \in \mathcal{L}(V)$, then we get from (2.1)

\[(2.2) \quad \langle L(v_1, v_2)v_3, v_4 \rangle = \langle L(v_3, v_4)v_1, v_2 \rangle \quad (v_1, v_2, v_3, v_4 \in V).\]

From now on, let $\{e_i\}_{i=1}^n$ be an orthonormal basis of (V,\langle , \rangle). The Ricci tensor Ric_L of type $(0,2)$ with respect to a curvature-like tensor L on V is defined by

\[(2.3) \quad \text{Ric}_L(v, w) := \sum_{i=1}^n \langle L(e_i, v)w, e_i \rangle \quad (v, w \in V).\]

The Ricci tensor Ric_L of type $(1,1)$ with respect to $L \in \mathcal{L}(V)$ is defined by

\[(2.4) \quad \langle \text{Ric}_L(v), w \rangle := \text{Ric}_L(v, w) \quad (v, w \in V).\]

For $L \in \mathcal{L}(V)$, we obtain from (2.1) \sim (2.4)

\[
\text{Ric}_L(v, w) = \langle \text{Ric}_L(v), w \rangle = \text{Ric}_L(w, v) = \langle \text{Ric}_L(w), v \rangle
\]

for $v, w \in V$.

The trace of Ric_L for $L \in \mathcal{L}(V)$

\[(2.5) \quad S_L := \sum_{i=1}^n \langle \text{Ric}_L(e_i), e_i \rangle = \sum_{i,j=1}^n \langle L(e_j, e_i)e_i, e_j \rangle
\]

is called the scalar curvature with respect to $L \in \mathcal{L}(V)$. The sectional curvature $K_L(\sigma)$ ($L \in \mathcal{L}(V)$) for each plane $\sigma = \{v, w\}_{\mathbb{R}}(\subset V)$ is defined by

\[
K_L(\sigma) = \frac{\langle L(v, w)w, v \rangle}{\langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle^2}.
\]

In general, the inner product \langle , \rangle on $\mathcal{L}(V)$ is defined by

\[(2.6) \quad \langle L, L' \rangle = \sum_{i,j,k,l=1}^n L_{ijk}^l \cdot L'_{ij}^l,
\]

where $L_{ijk}^l = \langle L(e_i, e_j)e_k, e_l \rangle$.

Let $\mathfrak{L}_1(V)$ be the subspace of $\mathcal{L}(V)$ which consists of all elements $L \in \mathcal{L}(V)$ such that

$L(v, w) = cv \wedge w$ for $v, w \in V$ and some $c \in \mathbb{R}$.

Here $v \wedge w$ is an element of $\mathfrak{gl}(V)$ which is defined by

\[v \wedge w : V \ni z \mapsto (v \wedge w)(z) = \langle w, z \rangle - \langle v, z \rangle \wedge w \in V.\]
We put
\[L_{1}(V) := \{ L \in \mathcal{L}(V) \mid <L, L'> = 0 \text{ for all } L' \in L_{1}(V) \}. \]
Then \(L_{1}(V) \perp = \{ L \in \mathcal{L}(V) \mid S_L = 0 \}. \) In fact, for \(L \in \mathcal{L}(V) \) and \(L' \in L_{1}(V) \), we get from (2.5) and (2.6), and the definition of \(L_{1}(V) \)
\begin{equation}
< L, L' > = 2c S_L,
\end{equation}
where \(L'(v, w) = cv \wedge w \) for some \(c \in \mathbb{R} \). From (2.7), we obtain the following:
\[< L, L' > = 0 \text{ for all } L' \in L_{1}(V) \iff 2c S_L = 0 \text{ for all } c \in \mathbb{R} \iff S_L = 0. \]
Putting
\[\{ L \in L_{1}(V) \mid \text{Ric}_L = 0 \} =: L_{\omega}(V) \]
and
\[\{ L \in L_{1}(V) \mid < L, L' > = 0 \text{ for all } L' \in L_{\omega}(V) \} =: L_{2}(V), \]
we get the orthogonal direct sum decomposition of \(\mathcal{L}(V) \) as follows:
\[\mathcal{L}(V) = L_{1}(V) \oplus L_{\omega}(V) \oplus L_{2}(V). \]
Putting together the results above, we obtain the following (cf. [5, Chapter 5])

Lemma 2.1. Let \(V \) be an \(n(\geq 3) \)-dimensional real inner product space and \(L \in \mathcal{L}(V) \). Then components \(L_1 \in L_{1}(V) \), \(L_\omega \in L_{\omega}(V) \) and \(L_2 \in L_{2}(V) \) of \(L(= L_{1} + L_{\omega} + L_{2}) \) are given as follows:
\begin{equation}
L_{1}(u, v) = \frac{S_L}{n(n-1)} u \wedge v,
L_{2}(u, v) = \frac{1}{n-2} \left(\text{Ric}_L(u) \wedge v + u \wedge \text{Ric}_L(v) - \frac{2S_L}{n} u \wedge v \right),
L_{\omega}(u, v) = L(u, v) - \frac{1}{n-2} \left(\text{Ric}_L(u) \wedge v + u \wedge \text{Ric}_L(v) \right),
\end{equation}
\begin{equation}
= \frac{S_L}{(n-1)(n-2)} u \wedge v.
\end{equation}

Proof. The fact that \(L_1, L_2, L_\omega \) appeared in (2.8) belong to \(\mathcal{L}(V) \) is easily verified. And, \(L = L_{1} + L_{\omega} + L_{2} \). Moreover from straightforward computations we get
\[S_{L_{2}} = 0, \quad \text{Ric}_{L_{\omega}} = 0, \quad < L_{2}, L_{\omega} > = 0. \]
Thus the proof of Lemma 2.1 is completed. \(\square \)
3. Inequivalent isotropy irreducible representations in
$SU(3)/T(k,l)$

3.1. Isotropy irreducible representations

Let G be a compact connected semisimple Lie group and H a closed subgroup of G. The homogeneous space G/H is reductive, that is, in the Lie algebra g of G there exists a subspace m such that $g = h + m$ (direct sum of vector subspaces) and $\text{Ad}(h) m \subset m$ for all $h \in H$, where h is the subalgebra of g corresponding to the identity component H_o of H and $\text{Ad}(h)$ denotes the adjoint representation of H in m.

Let $\tau_x (x \in G)$ be the transformation of G/H which is induced by x. Taking differentials of τ_x at $p_o := \{H\} \in G/H$, we obtain the fact that the tangent space $T_{p_o}(G/H) = m$ is $\text{Ad}(H)$-invariant. The homogeneous space G/H is said to be isotropy irreducible if $(T_{p_o}(G/H), \text{Ad}(H))$ is an irreducible representation.

3.2. Inequivalent isotropy irreducible summands in
$SU(3)/T(k,l)$

Here and from now on, without further specification, we use the following notations:

$G = SU(3), \ g :$ the Lie algebra of $SU(3), \ i = \sqrt{-1},$

$T = T(k,l) = \{\text{diag}[e^{2\pi ik\theta}, e^{2\pi il\theta}, e^{-2\pi i(k+l)\theta} | \theta \in \mathbb{R}] \} \text{ for } (k,l) \in \mathbb{Z}^2$
and $|k| + |l| \neq 0,$

$t(k,l) :$ the Lie algebra of $T(k,l), \ \gamma = k^2 + kl + l^2,$

$(X,Y)_0 = B(X,Y) = -6 \text{Trace}(XY), \ X,Y \in g :$ the negative of the Killing form of $g.$

Let E_{ij} be a real 3×3 matrix with 1 on entry (i,j) and 0 elsewhere. And we put

$$X_1 = \frac{1}{\sqrt{12}}(E_{12} - E_{21}), \quad X_2 = \frac{i}{\sqrt{12}}(E_{12} + E_{21}),$$
$$X_3 = \frac{1}{\sqrt{12}}(E_{13} - E_{31}), \quad X_4 = \frac{i}{\sqrt{12}}(E_{13} + E_{31}),$$
$$X_5 = \frac{1}{\sqrt{12}}(E_{23} - E_{32}), \quad X_6 = \frac{i}{\sqrt{12}}(E_{23} + E_{32}),$$

(3.1)
\[X_7 = \frac{i}{\sqrt{36\gamma}} \text{diag}[(k + 2l), -(2k + l), (k - l)], \]
\[X_8 = \frac{i}{\sqrt{12\gamma}} \text{diag}[k, l, -(k + l)]. \]

Then \(\{X_1, \cdots, X_7\} \) (resp. \(\{X_8\} \)) is an orthonormal basis of \(m \) (resp. \(t(k, l) \)) with respect to \((\cdot, \cdot)_0\) such that
\[g = m + t(k, l) \text{ and } (m, t(k, l))_0 = 0. \]

If we put \(\{X_1, X_2\}_R = m_1, \{X_3, X_4\}_R = m_2, \{X_5, X_6\}_R = m_3, \) and \(\{X_7\}_R = m_4, \) then \(m_i \) are irreducible \(\text{Ad}(T) \)-representation spaces.

In general, two representations \((\mu_1, V_1)\) and \((\mu_2, V_2)\) of a Lie group \(G \) are called equivalent if there exists a linear isomorphism \(\rho \) of \(V_1 \) onto \(V_2 \) such that \(\rho \circ \mu_1(x) = \mu_2(x) \circ \rho \) for all \(x \in G \).

Park obtained the following

Theorem 3.1. ([9]) Assume that \(|k| + |l| \neq 0 \) \((k, l \in \mathbb{Z})\). Then a necessary and sufficient condition for \((m_i, \text{Ad}(T(k, l)))\) \((i = 1, 2, 3, 4)\) to be mutually inequivalent is
\[k \neq 0, \ l \neq 0, \ k \neq \pm l, \ k \neq -2l \text{ and } l \neq -2k. \]

4. A decomposition of the curvature tensor on \(SU(3)/T(k, l) \) with an arbitrarily given \(SU(3) \)-invariant Riemannian metric

4.1. The curvature tensor field on a homogeneous Riemannian space

Let \(G \) be a compact connected semisimple Lie group and \(H \) a closed subgroup of \(G \). We denote by \(g \) and \(h \) the corresponding Lie algebras of \(G \) and \(H \), respectively. Let \(B \) be the negative of the Killing form of \(g \). We consider the \(\text{Ad}(H) \)-invariant decomposition \(g = h + m \) with \(B(h, m) = 0 \). Then the set of \(G \)-invariant symmetric covariant 2-tensor fields on \(G/H \) can be identified with the set of \(\text{Ad}(H) \)-invariant symmetric bilinear forms on \(m \). In particular, the set of \(G \)-invariant Riemannian metrics on \(G/H \) is identified with the set of \(\text{Ad}(H) \)-invariant inner products on \(m \) (cf. [2, 5, 8, 9]).

Let \(< , > \) be an inner product which is invariant with respect to \(\text{Ad}(H) \) on \(m \), where \(\text{Ad} \) denotes the adjoint representation of \(H \) in \(g \).
This inner product $< , >$ determines a G-invariant Riemannian metric $g_{<,>}$ on G/H.

For the sake of the calculus, we take a neighborhood V of the identity element e in G and a subset N (resp. N_H) of G (resp. H) in such a way that

(i) $N = V \cap \exp(m)$, $N_H = V \cap \exp(h)$,
(ii) the map $N \times N_H \ni (c,h) \mapsto ch \in N \cdot N_H$ is a diffeomorphism,
(iii) the projection π of G onto G/H is a diffeomorphism of N onto a neighborhood $\pi(N)$ of the origin $\{H\}$ in G/H. Here, $\{\exp(tX) \mid t \in \mathbb{R}\}$ for $X \in g$ is a 1-parameter subgroup of G.

Now for an element $X \in m$, we define a vector field X^* on the neighborhood $\pi(N)$ of $\{H\}$ in G/H by

$$X^*_\pi(c) := (\tau_c)_*X_{\pi(c)} \in T_{\pi(c)}G/H \quad (c \in N),$$

where τ_c denotes the transformation of G/H which is induced by c. Let $\{X_i\}_i$ be an orthonormal basis of the inner product space $(m, < , >)$. Then $\{X_i\}_i$ is an orthonormal frame on $\pi(N) \subset G/H$.

On the other hand, the connection function α (cf. [7, p.43]) on $m \times m$ corresponding to the invariant Riemannian connection of $(G/H, g_{< , >})$ is given as follows (cf. [7, p.52]):

$$\alpha(X,Y) = \frac{1}{2}\{[X,Y]_m + U(X,Y)\} \quad (X,Y \in m),$$

where $U(X,Y)$ is determined by

$$2 < U(X,Y), Z > = < [Z, X]_m, Y > + < X, [Z, Y]_m >$$

for $X, Y, Z \in m$, and X_m denotes the m-component of an element $X \in g = h + m$. Let ∇ be the Levi-Civita connection on the Riemannian manifold $(G/H, g_{< , >})$. Then on $\pi(N)$ $(\nabla X \cdot Y^*)_\pi(N) = \alpha(X,Y) (X,Y \in m)$. Moreover, the expression for the value at $p_o := \{H\} \in G/H$ of the curvature tensor field is as follows (cf. [7, p.47]):

$$R(X,Y)Z = \alpha(X,\alpha(Y,Z)) - \alpha(Y,\alpha(X,Z))$$

$$- \alpha([X,Y]_m, Z) - [[X,Y]_h, Z] \quad (X,Y,Z \in m),$$

where X_m (resp. X_h) denotes the m - component (resp. h -component) of an element $X \in g = h + m$.

In general, the Ricci tensor field Ric of type $(0,2)$ on a Riemannian manifold (M, g) is defined by

$$Ric(Y,Z) = Trace \{X \mapsto R(X,Y)Z\} \quad (X,Y,Z \in \mathfrak{X}(M)).$$
Let \(\{ Y_j \}_j \) be an orthonormal basis of the inner product \((\mathfrak{m}, \langle , \rangle)\). Since the group \(G \) is unimodular, we obtain the fact (cf. [2, p.184]) that
\[
\sum_j U(Y_j, Y_j) = 0.
\]
Using (4.1), (4.2) and (4.3), we obtain the following expression (cf. [2, p.184-185]) for the value at \(p_o \) of the Ricci tensor field \(\text{Ric} \) on \((G/H, g_{< , >})\):
\[
\text{Ric}(Y,Y) = -\frac{1}{2} \sum_j \langle [Y,Y_j]_{\mathfrak{m}}, [Y,Y_j]_{\mathfrak{m}} \rangle + \frac{1}{2} B(Y,Y) + \frac{1}{4} \sum_{i,j} \langle [Y_i,Y_j]_{\mathfrak{m}}, Y \rangle^2
\]
for \(Y \in \mathfrak{m} \), where \(B \) is the negative of the Killing form of the Lie algebra \(\mathfrak{g} \).

4.2. Ricci tensor fields on inequivalent isotropy irreducible homogeneous spaces

We retain the notation as in Section 4.1. The set of \(G \)-invariant symmetric tensor fields of type \((0,2)\) on \(G/H \) can be identified with the set of \(\text{Ad}(H) \)-invariant symmetric bilinear forms on \(\mathfrak{m} \). In particular, the set of \(G \)-invariant metrics on \(G/H \) is identified with the set of \(\text{Ad}(H) \)-invariant inner products on \(\mathfrak{m} \).

Let \(\langle , \rangle_o \) be an \(\text{Ad}(G) \)-invariant inner product on \(\mathfrak{g} \) such that \((\mathfrak{m}, \mathfrak{h})_o = 0 \). For the sake of simplicity, we put \(\langle , \rangle_o =: B \). Let \(\mathfrak{m} = \mathfrak{m}_1 + \cdots + \mathfrak{m}_q \) be an orthogonal \(\text{Ad}(H) \)-invariant decomposition of the space \((\mathfrak{m}, B)\) such that \(\text{Ad}(H)_{\mathfrak{m}_i} \) is irreducible for \(i = 1, \ldots, q \), and assume that \((\mathfrak{m}_i, \text{Ad}(H)) \) are mutually inequivalent irreducible representations. Then, the space of \(G \)-invariant symmetric tensor fields of type \((0,2)\) on \(G/H \) is given by
\[
\{ \lambda_1 B|_{\mathfrak{m}_1} + \cdots + \lambda_q B|_{\mathfrak{m}_q} \mid \lambda_1, \ldots, \lambda_q \in \mathbb{R} \}
\]
and the space of \(G \)-invariant Riemannian metrics on \(G/H \) is given by
\[
\{ \lambda_1 B|_{\mathfrak{m}_1} + \cdots + \lambda_q B|_{\mathfrak{m}_q} \mid \lambda_1 > 0, \ldots, \lambda_q > 0 \}
\]
In fact, for an arbitrarily given \(\text{Ad}(H) \)-invariant inner product \(< , > \) on \(\mathfrak{m} \), we have \(< , > |_{\mathfrak{m}_i} = \lambda_i B|_{\mathfrak{m}_i} \) on each \(\mathfrak{m}_i \) by the help of Shur’s lemma ([cf. [12, 13]]), and \(< \mathfrak{m}_i, \mathfrak{m}_j > = 0 \) for \(i, j \ (i \neq j) \) since \((\mathfrak{m}_i, \text{Ad}(H)) \) are mutually inequivalent (cf. [8, 9, 11]).

Note that the Ricci tensor field \(\text{Ric} \) of a \(G \)-invariant Riemannian metric on \(G/H \) is a \(G \)-invariant symmetric tensor field of type \((0,2)\) on
A decomposition of the curvature tensor on $SU(3)/T(k,l)$

G/H, and we identify Ric with an $\text{Ad}(H)$-invariant symmetric bilinear form on \mathfrak{m}. Thus, if $(m_i, \text{Ad}(H))$ are mutually inequivalent irreducible representations, then Ric is written as

$$\text{Ric} = y_1B\mid_{m_1} + \cdots + y_qB\mid_{m_q}$$

for some $y_1, \ldots, y_q \in \mathbb{R}$.

4.3. The Ricci tensor field and the scalar curvature on $SU(3)/T(k,l)$ with an arbitrarily given $SU(3)$-invariant metric

We retain the notation as in Section 4.2. In this section, we assume that the isotropy irreducible representations $(m_i, \text{Ad}(T(k,l)))$ ($i = 1, 2, 3, 4; k, l \in \mathbb{Z}$) are mutually inequivalent. For the sake of simplicity, we put

$$D := \mathbb{Z}^2 \setminus \{(0,t), (t,0), (t,t), (t,-t), (t,-2t), (2t,-t) \mid t \in \mathbb{Z}\}.$$

Let $(\ , \)_0$ be the negative of the Killing form of $\mathfrak{su}(3)$, and $< \ , \ >$ an arbitrarily given $\text{Ad}(T(k,l))$-invariant inner product on \mathfrak{m}. By Theorem 3.1, we obtain the fact that the isotropy irreducible representations $(m_i, \text{Ad}(T(k,l)))$ $(i = 1, 2, 3, 4; k, l \in \mathbb{Z})$ are mutually inequivalent if and only if (k,l) in $T(k,l)$ belongs to D. Since $(m_i, \text{Ad}(T(k,l)))$ are mutually inequivalent, for the inner product $< \ , \ >$ on \mathfrak{m} there are corresponding positive numbers $\lambda_1, \lambda_2, \lambda_3$ and λ_4 such that

$$\begin{align*}
X_1/\sqrt{\lambda_1} &=: Y_1, & X_2/\sqrt{\lambda_1} &=: Y_2, & X_3/\sqrt{\lambda_2} &=: Y_3, \\
X_3/\sqrt{\lambda_2} &=: Y_4, & X_5/\sqrt{\lambda_3} &=: Y_5, & X_6/\sqrt{\lambda_3} &=: Y_6, \\
X_7/\sqrt{\lambda_4} &=: Y_7
\end{align*}$$

is an orthonormal basis of \mathfrak{m} with respect to the inner product $< \ , \ >$, by virtue of (3.1), Theorem 3.1 and (4.5). This inner product $< \ , \ >$ determines a $SU(3)$-invariant Riemannian metric $g_{(\lambda_1,\lambda_2,\lambda_3,\lambda_4)}$ on $SU(3)/T(k,l)$.

From now on, we normalize $SU(3)$-invariant Riemannian metrics on $SU(3)/T(k,l)$ by putting $\lambda_4 = 1$, and denote by $g_{(\lambda_1,\lambda_2,\lambda_3)}$ the metric defined by

$$\lambda_1B\mid_{m_1} + \lambda_2B\mid_{m_2} + \lambda_3B\mid_{m_3} + B\mid_{m_4}.$$

By virtue of (3.1), (4.4), (4.6) and (4.7), we obtain the following result.

Lemma 4.1. ([9]) Assume that $(k,l) \in D$. Then the Ricci tensor Ric on the Riemannian homogeneous space $(SU(3)/T(k,l), g_{(\lambda_1,\lambda_2,\lambda_3)})$...
is given as follows:

\[
\begin{align*}
Ric(Y_i, Y_j) &= 0 \ (i \neq j), \\
Ric(Y_1, Y_1) &= Ric(Y_2, Y_2) = \frac{\lambda_1^2 - \lambda_2^2 - \lambda_3^2 + 6\lambda_2\lambda_3}{12\lambda_1\lambda_2\lambda_3} - \frac{(k + l)^2}{8\gamma\lambda_1^2}, \\
Ric(Y_3, Y_3) &= Ric(Y_4, Y_4) = \frac{\lambda_2^2 - \lambda_3^2 - \lambda_1^2 + 6\lambda_3\lambda_1}{12\lambda_1\lambda_2\lambda_3} - \frac{l^2}{8\gamma\lambda_2^2}, \\
Ric(Y_5, Y_5) &= Ric(Y_6, Y_6) = \frac{\lambda_3^2 - \lambda_1^2 - \lambda_2^2 + 6\lambda_1\lambda_2}{12\lambda_1\lambda_2\lambda_3} - \frac{k^2}{8\gamma\lambda_3^2}, \\
Ric(Y_7, Y_7) &= \frac{1}{8\gamma} \left\{ \frac{(k + l)^2}{\lambda_1^2} + \frac{l^2}{\lambda_2^2} + \frac{k^2}{\lambda_3^2} \right\},
\end{align*}
\]

where \(\gamma := k^2 + kl + l^2\).

The trace of the Ricci tensor \(Ric\) of a Riemannian manifold \((M, g)\), (i.e., \(\sum_j Ric(e_j, e_j)\), where \(\{e_j\}_j\) is a (locally defined) orthonormal frame on \((M, g)\)), is called the scalar curvature of \((M, g)\).

By virtue of Lemma 4.1, we get

Lemma 4.2. ([9]) The scalar curvature \(S_{(\lambda_1, \lambda_2, \lambda_3)}\) of the Riemannian homogeneous space \((SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})\), \((k, l) \in D\), is given as follows:

\[
S_{(\lambda_1, \lambda_2, \lambda_3)} = \frac{-(\lambda_1^2 + \lambda_2^2 + \lambda_3^2) + 6(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)}{6\lambda_1\lambda_2\lambda_3} - \frac{1}{8\gamma} \left\{ \frac{(k + l)^2}{\lambda_1^2} + \frac{l^2}{\lambda_2^2} + \frac{k^2}{\lambda_3^2} \right\},
\]

where \(\gamma := k^2 + kl + l^2\).

4.4. A decomposition of the curvature tensor field on

\((SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})\)

We retain the notation as in Section 4.3. Let \(\nabla\) be the Levi-Civita connection on the homogeneous space \((SU(3)/T(k, l), g_{(\lambda_1, \lambda_2, \lambda_3)})\) and \(\nabla R\) the curvature tensor field with respect to \(\nabla\).

For the sake of convenience, we use the following notations:
A decomposition of the curvature tensor on $SU(3)/T(k,l)$

$$V := \mathcal{T}(SU(3)/T(k,l)),$$

$$(V, g_{(\lambda_1, \lambda_2, \lambda_3)}|V) = (V, \langle , \rangle), \quad \nabla R =: R,$$

$${\mathcal{L}}(V) := \{L | L is a curvature-like tensor on V\},$$

$${\mathcal{L}}_1(V) := \{L \in {\mathcal{L}}(V) | L(X, Y) = c X \wedge Y \text{ for } X, Y \in V$$

and some $c \in \mathbb{R}\},$$

$${\mathcal{L}}_\omega(V) := \{L \in {\mathcal{L}}(V) | \text{the Ricci tensor of } L \text{ is zero}\},$$

$${\mathcal{L}}_2(V) := \{L \in {\mathcal{L}}_1(V) | \langle L, L' \rangle = 0 \text{ for all } L' \in {\mathcal{L}}_\omega(V)\}.$$ Then, we get the orthogonal direct sum decomposition of $\mathcal{L}(V)$ as follows:

$${\mathcal{L}}(V) = {\mathcal{L}}_1(V) \oplus {\mathcal{L}}_\omega(V) \oplus {\mathcal{L}}_2(V).$$

So, the curvature tensor R at $p_0(=\{T(k,l)\})$ of the homogeneous space $(SU(3)/T(k,l), g_{(\lambda_1, \lambda_2, \lambda_3)})$ is uniquely decomposed as

$$R = R^{(1)} + R^{\omega} + R^{(2)}$$

$$(R^{(1)} \in {\mathcal{L}}_1(V), \quad R^{\omega} \in {\mathcal{L}}_\omega(V), \quad R^{(2)} \in {\mathcal{L}}_2(V)).$$

The curvature-like tensor R^{ω} appeared in (4.8) is said to be the Weyl tensor (field) of the curvature tensor field R on $(SU(3)/T(k,l), g_{(\lambda_1, \lambda_2, \lambda_3)})$.

Then, by virtue of (2.8), Lemmas 4.1 and 4.2, we obtain

\textbf{Theorem 4.3. Let $R^{(1)}$, R^{ω} and $R^{(2)}$ be the curvature-like tensors appeared in the curvature tensor $R = R^{(1)} + R^{\omega} + R^{(2)} \in {\mathcal{L}}_1(V) \oplus {\mathcal{L}}_\omega(V) \oplus {\mathcal{L}}_2(V))$ on $(SU(3)/T(k,l), g_{(\lambda_1, \lambda_2, \lambda_3)})$. Assume that (k,l) belongs to D. Then}

$$R^{(1)}(Y_i, Y_j) = \frac{1}{42} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j,$$

$$R^{(2)}(Y_i, Y_j) = \frac{1}{5} \{\text{Ric}(Y_i) \wedge Y_j + Y_i \wedge \text{Ric}(Y_j)\} - \frac{2}{35} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j,$$

$$R^{\omega}(Y_i, Y_j) = R(Y_i, Y_j) - \frac{1}{5} \{\text{Ric}(Y_i) \wedge Y_j + Y_i \wedge \text{Ric}(Y_j)\}$$

$$+ \frac{1}{30} S_{(\lambda_1, \lambda_2, \lambda_3)} Y_i \wedge Y_j,$$

where $\{Y_i\}_{i=1}^7$ is an orthonormal basis on (m, \langle , \rangle) and $S_{(\lambda_1, \lambda_2, \lambda_3)}$ is the scalar curvature of $(SU(3)/T(k,l), g_{(\lambda_1, \lambda_2, \lambda_3)}).$
In general, the Ricci curvature r of a Riemannian manifold (M, g) with respect to a nonzero vector $v \in TM$ is defined by

$$r(v) = \frac{\text{Ric}(v, v)}{||v||^2_g}.$$

From Theorem 4.3, we get

Corollary 4.4. Let $R^{(2)}$ be the curvature-like tensor appeared in the curvature tensor $R = R^{(1)} + R^\omega + R^{(2)}$ on $(SU(3)/T(k, l), g(\lambda_1, \lambda_2, \lambda_3))$, where $(k, l) \in D$. Then the Ricci tensor of $R^{(2)}$ is given as follows:

$$\text{Ric}^{(2)}(Y_i, Y_j) = -\frac{1}{7} S(\lambda_1, \lambda_2, \lambda_3) \delta_{ij} + \text{Ric}(Y_i, Y_j).$$

By the help of Lemma 4.1 and Corollary 4.4, we obtain

Proposition 4.5. Assume that $(k, l) \in D, k > l > 0,$ and

$$\lambda \geq \frac{3l^2}{10(k^2 + kl + l^2)}$$

in $(SU(3)/T(k, l), g(\lambda, \lambda, \lambda_3))$, $\lambda > 0$. Then the Ricci curvature $r^{(2)}$ of the curvature-like tensor $R^{(2)}$ in the curvature tensor $R = R^{(1)} + R^\omega + R^{(2)}$ on $(SU(3)/T(k, l), g(\lambda, \lambda, \lambda_3))$ is estimated as follows:

$$r^{(2)}(Y_i) = r^{(2)}(Y_2) \leq r^{(2)}(Y_7),$$

where $r^{(2)}(Y_i) = \text{Ric}^{(2)}(Y_i, Y_i)$ for $i = 1, 2, \ldots, 7$.

References

[1] S. Aloff and N. R. Wallach, *An infinite family of distinct 7-manifolds admitting positively Riemannian metrics*, Bull. Amer. Math. Soc. 81 (1975), 93-97.

[2] A. L. Besse, *Einstein Manifolds*, Springer Verlag, 1987.

[3] P.-Y. Kim, J.-S. Park, and Y.-S. Pyo, *Harmonic maps between the group of automorphisms of the quaternion algebra*, J. Chungcheong Math. Soc. 25 (2012), no. 2, 331-339.

[4] H. W. Kim, J.-S. Park, and Y.-S. Pyo, *Torsion tensor forms on induced bundles*, J. Chungcheong Math. Soc. 26 (2013), no. 4, 793-798.

[5] K. Nomizu, *Invariant affine connections on homogeneous spaces*, Amer. J. Math. 76 (1954), 33-65.

[6] J.-S. Park, *Curvatures on SU(3)/T(k, l)*, Tokyo J. Math. 17 (1994), no. 2, 281-289.

[7] J.-S. Park, *Curvatures on SU(3)/T(k, l)*, Kyushu J. Math. 67 (2013), 55-65.
A decomposition of the curvature tensor on $SU(3)/T(k,l)$

[10] H. Urakawa, *Numerical computation of the spectra of the Laplacian on 7-dimensional homogeneous manifolds $SU(3)/T_{k,l}$*, SIAM J. Math. Anal. **15** (1984), 979-987.

[11] H. Urakawa, *The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold*, Compositio Math. **59** (1986), 57-71.

[12] N. Wallach, *Harmonic Analysis on Homogeneous Spaces*, Dekker, New York, 1973.

[13] M. Y. Wang, *Some examples of homogeneous Einstein manifolds in dimension seven*, Duke Math. J. **49** (1982), 23-28.

* Department of Applied Mathematics
 Pukyong National University
 Busan 608-737, Republic of Korea
 E-mail: sonheuisang@hanmail.net

**
Department of Mathematics
Pusan University of Foreign Studies
Busan 609-815, Republic of Korea
E-mail: iohpark@pufs.ac.kr

Department of Applied Mathematics
Pukyong National University
Busan 608-737, Republic of Korea
E-mail: yspo@pknu.ac.kr