The rainbow connection number of the power graph of a finite group

Xuanlong Ma Min Feng Kaishun Wang*

Sch. Math. Sci. & Lab. Math. Com. Sys., Beijing Normal University, Beijing, 100875, China

Abstract

This paper studies the rainbow connection number of the power graph \(\Gamma_G \) of a finite group \(G \). We determine the rainbow connection number of \(\Gamma_G \) if \(G \) has maximal involutions or is nilpotent, and show that the rainbow connection number of \(\Gamma_G \) is at most three if \(G \) has no maximal involutions. The rainbow connection numbers of power graphs of some nonnilpotent groups are also given.

Key words: rainbow path; rainbow connection number; finite group; power graph.

2010 MSC: 05C25; 05C15.

1 Introduction

Given a connected graph \(\Gamma \), denote by \(V(\Gamma) \) and \(E(\Gamma) \) the vertex set and edge set, respectively. Define a coloring \(\zeta : E(\Gamma) \to \{1, 2, \ldots, k\}, k \in \mathbb{N} \), where adjacent edges may be colored the same. A path \(P \) is rainbow if any two edges in \(P \) are colored distinct. If \(\Gamma \) has a rainbow path from \(u \) to \(v \) for each pair of vertices \(u \) and \(v \), then \(\Gamma \) is rainbow-connected under the coloring \(\zeta \), and \(\zeta \) is called a rainbow \(k \)-coloring of \(\Gamma \). The rainbow connection number of \(\Gamma \), denoted by \(rc(\Gamma) \), is the minimum \(k \) for which there exists a rainbow \(k \)-coloring of \(\Gamma \).

The rainbow connection number of a graph \(\Gamma \) was introduced by Chartrand et al. [6]. It was showed in [7, 23] that computing \(rc(\Gamma) \) is NP-hard. Actually, it has been proved in [23], that for any fixed \(t \geq 2 \), deciding if \(rc(\Gamma) = t \) is NP-complete. Some topics on restrict graphs are as follows: oriented graphs [8], graph products [15], hypergraphs [4], corona graphs [9], line graphs [21], Cayley graphs [22], dense graphs [20] and sparse random graphs [12]. Most of the results and papers that dealt with it can be found in [19].

In this paper we study the rainbow connection number of the power graph of a finite group. We always use \(G \) to denote a finite group with the identity \(e \). The power graph \(\Gamma_G \) has the vertex set \(G \) and two distinct elements are adjacent if one is a power of the other. Chakrabarty et al. [5] introduced the power graph of a
semigroup. Recently, many interesting results on power graphs have been obtained, see [2, 3, 10, 11, 16–18]. A detailed list of results and open questions on power graphs can be found in [1].

In G, an involution x is maximal if any cyclic subgroup does not contain x except $\langle x \rangle$. Denote by M_G the set of all maximal involutions of G. We shall use M_G to discuss the rainbow connection number of Γ_G.

This paper is organized as follows. In Section 2 we express $rc(\Gamma_G)$ in terms of $|M_G|$ if $M_G \neq \emptyset$. In Section 3 we show that $rc(\Gamma_G) \leq 3$ if $M_G = \emptyset$. In particular, we determine $rc(\Gamma_G)$ if G is nilpotent. The rainbow connection numbers of power graphs of some non-nilpotent groups are also given.

2 $M_G \neq \emptyset$

In this section we shall prove the following theorem.

Theorem 2.1 Let G be a finite group of order at least 3. Then

$$rc(\Gamma_G) = \begin{cases} 3, & \text{if } 1 \leq |M_G| \leq 2; \\ |M_G|, & \text{if } |M_G| \geq 3. \end{cases}$$

We begin with the following lemma.

Lemma 2.2 $rc(\Gamma_G) \geq |M_G|$.

Proof. Let $M_G = \{z_1, \ldots, z_m\}$. Observe that e is the unique vertex adjacent to z_i in Γ_G, where $i = 1, \ldots, m$. Hence, for each pair of maximal involutions z_i and z_j, the path from z_i to z_j is unique, which is $\langle z_i, e, z_j \rangle$. Suppose ζ is a rainbow k-coloring of Γ_G. Then $|\langle \{z_i, e\} : i = 1, \ldots, m \rangle| = m$, and so $k \geq m$, as desired. \hfill \square

For $x \in G$, let $[x] = \{y \in G : \langle y \rangle = \langle x \rangle\}$. Then $\{[x] : x \in G\}$ is a partition of G.

Lemma 2.3 $rc(\Gamma_G) \leq \max\{|M_G|, 3\}$.

Proof. Suppose that $\{[x_1], \ldots, [x_s]\}$ and $\{[x_{s+1}], \ldots, [x_{s+t}]\}$ are partitions of $\{x \in G : |x| \text{ is even at least } 4\}$ and $\{x \in G : |x| \text{ is odd at least } 3\}$, respectively. For $1 \leq i \leq s$, let u_i be the involution in $\langle x_i \rangle$. Write $M_G = \{z_1, \ldots, z_m\}$ and

$$E_1 = \{[x, x_i] : x \in \bigcup_{i=1}^{s+t} ([x_i] \setminus \{x_i\}) \cup \{u_i, x_i\} : i = 1, \ldots, s\},$$

$$E_2 = \{[e, x_i] : i = 1, \ldots, s + t\} \cup (\bigcup_{i=1}^s \{u_i, x\} : x \in [x_i] \setminus \{x_i\}) \cup (\bigcup_{j=1}^t \{e, z_j\} : j = 1, \ldots, m\}.$$

The sets of edges E_1, E_2 and $\{[e, z_j] : j = 1, \ldots, m\}$ are showed in Figure 1.

Let $k = \max\{|M_G|, 3\}$. Define a coloring

$$\zeta : E(\Gamma_G) \to \{1, \ldots, k\}, \quad f \mapsto \begin{cases} i, & \text{if } f \in E_i, \quad \text{where } i = 1, 2, 3; \\ j, & \text{if } f = \{e, z_j\}, \quad \text{where } j = 1, \ldots, m. \end{cases}$$

In order to get the desired inequality, we only need to show that ζ is a rainbow k-coloring of Γ_G. Pick a pair of non-adjacent vertices v and w of Γ_G. It suffices
to find a rainbow path from \(v \) to \(w \) under the coloring \(\zeta \). If \(\zeta(\{e, v\}) \neq \zeta(\{e, w\}) \), then \((v, e, w)\) is a desired rainbow path. Now suppose \(\zeta(\{e, v\}) = \zeta(\{e, w\}) \). Then \(\{v, w\} \not\subseteq (M_G \cup \{e\}) \). Without loss of generality, assume \(v \in V(\Gamma_G) \setminus (M_G \cup \{e\}) \). As shown in Figure 1, there exists a vertex \(v' \in V(\Gamma_G) \setminus (M_G \cup \{e\}) \) such that

\[
\{\zeta(\{e, v\}), \zeta(\{e, v'\}), \zeta(\{v, v'\})\} = \{1, 2, 3\},
\]

which implies that \((v, v', e, w)\) is a rainbow coloring, as desired.

Combining Lemmas 2.2 and 2.3, we get the following.

Proposition 2.4 If \(|M_G| \geq 3\), then \(rc(\Gamma_G) = |M_G|\).

For a prime \(p \), let \(s_p(G) \) denote the number of subgroups of order \(p \) in \(G \).

Lemma 2.5 ([13, Section 4, I]) Let \(p \) be a prime dividing the order of \(G \). Then

\[s_p(G) \equiv 1 \pmod{p}. \]

Lemma 2.6 Let \(p \) be a prime dividing \(|G| \). If \(rc(\Gamma_G) = 2 \), then \(s_p(G) = 1 \).

Proof. Suppose for the contrary that \(s_p(G) \neq 1 \). It follows from Lemma 2.5 that \(s_p(G) \geq 3 \). Let \(\langle y_1 \rangle, \langle y_2 \rangle \) and \(\langle y_3 \rangle \) be pairwise distinct subgroups of order \(p \) in \(G \). Note that, for \(i \neq j \), there is no cyclic subgroup containing \(\langle y_i \rangle \) and \(\langle y_j \rangle \). Hence, the path from \(y_i \) to \(y_j \) with length 2 is unique, which is \((y_i, e, y_j)\). For any rainbow \(k \)-coloring \(\zeta \) of \(\Gamma_G \), we deduce that \(\zeta(\{e, y_1\}), \zeta(\{e, y_2\}) \) and \(\zeta(\{e, y_3\}) \) are pairwise distinct, which implies that \(k \geq 3 \), contrary to \(rc(\Gamma_G) = 2 \). \(\square \)

By Lemmas 2.2, 2.3 and 2.6, we get the following result.

Proposition 2.7 If \(|M_G| = 2\), then \(rc(\Gamma_G) = 3\).

Proposition 2.8 If \(|G| \geq 3\) and \(|M_G| = 1\), then \(rc(\Gamma_G) = 3\).

Proof. It follows from Lemma 2.3 that \(rc(\Gamma_G) \leq 3 \). Suppose for the contrary that \(rc(\Gamma_G) \leq 2 \). If \(rc(\Gamma_G) = 1 \), then \(\Gamma_G \) is a complete graph, and so \(G \) is a cyclic group.
of prime power order by [5, Theorem 2.12], contrary to $|G| \geq 3$ and $|M_G| = 1$. In the following assume that $rc(\Gamma_G) = 2$.

Suppose that G is a 2-group. By Lemma 2.6, the involution is unique, which implies that G is cyclic or generalised quaternion by [14, Theorem 5.4.10 (ii)], a contradiction.

Suppose that $|G|$ has a prime divisor p at least 3. Let x be an element of G with $|x| = p$. Write $M_G = \{z\}$. It follows from Lemma 2.6 that $\langle x \rangle$ and $\langle z \rangle$ are normal subgroups in G. Note that $\langle x \rangle \cap \langle z \rangle = \langle e \rangle$. So $\langle x \rangle \langle z \rangle$ is a cyclic group, contrary to the fact that z is maximal. \hfill \Box

Proof of Theorem 2.1: It follows from Propositions 2.4, 2.7 and 2.8. \hfill \Box

For $n \geq 3$, let D_{2n} be the dihedral group of order $2n$, and let \mathbb{Z}_2^n be the elementary abelian 2-group. Note that $M_{D_{2n}}$ consists of n reflections and $M_{\mathbb{Z}_2^n}$ consists of nonidentity elements. By Theorem 2.1, we get the followings.

Example 1 For $n \geq 3$, we have $rc(\Gamma_{D_{2n}}) = n$ and $rc(\Gamma_{\mathbb{Z}_2^n}) = 2^n - 1$.

3 $M_G = \emptyset$

In this section we study the rainbow connection number of Γ_G when G has no maximal involutions.

For a positive integer n, let $D(n)$ be the set of all divisors of n. Denote by ϕ the Euler’s totient function. In view of [24, Part VIII, Problem 45], one has $\phi(n) \geq |D(n)| - 2$. For $x \in G$, recall that $[x] = \{y \in G : \langle y \rangle = \langle x \rangle\}$. Write

$$E_1(\langle x \rangle) = \bigcup_{i=1}^{[D(n)]-2} \{x_i, y : y \in \langle x \rangle, |y| = d_i\},$$

where $[x] = \{x_1, \ldots, x_{\phi(|x|)}\}$ and $D(n) = \{1, d_1, \ldots, d_{[D(n)]-2}, |x|\}$. See Figure 2.

![Diagram](image)

Figure 2: The partition of $V(\Gamma_{\langle x \rangle})$ and the set of edges $E_1(\langle x \rangle)$

Theorem 3.1 Let G be a finite group with no maximal involutions.

(i) If G is cyclic, then

$$rc(\Gamma_G) = \begin{cases}
1, & \text{if } |G| \text{ is a prime power;} \\
2, & \text{otherwise.}
\end{cases}$$

(ii) If G is noncyclic, then $rc(\Gamma_G) = 2$ or 3.
Proof. (i) Write $G = \langle x \rangle$. If $|x|$ is a prime power, then Γ_G is a complete graph by [5, Theorem 2.12], and so $rc(\Gamma_G) = 1$. Now suppose that $|x|$ is not a power of any prime. Then $rc(\Gamma_G) \geq 2$. With reference to (1), write $E_1 = E_1(\langle x \rangle)$. It is clear that $E_1 \subseteq E(\Gamma_G)$. Let $E_2 = E(\Gamma_G) \setminus E_1$. Define a coloring

$$
\zeta : E(\Gamma_G) \to \{1, 2\}, \quad f \mapsto i \text{ if } f \in E_i.
$$

In order to get the desired result, we only need to show that ζ is a rainbow 2-coloring. For any pair of nonadjacent vertices v and w, there exist distinct indices i and j in $\{1, \ldots, |D(\langle x \rangle)| - 2\}$ such that $|v| = d_i$ and $|w| = d_j$. It follows from Figure 2 that (v, x, w) is a rainbow path under the coloring ζ, as desired.

(ii) It is immediate from Lemma 2.3. \hfill \square

We first give two examples for computing $rc(\Gamma_G)$ when G is noncyclic with no maximal involutions. The generalized quaternion group which is given by

$$Q_{4n} = \langle x, y : x^n = y^2, x^{2n} = 1, y^{-1}xy = x^{-1}, \quad n \geq 2. \quad (2)$$

Example 2 If n is odd, then $rc(\Gamma_{Q_8 \times \mathbb{Z}_n}) = 2$.

Proof. There are exactly three maximal cyclic subgroup in $Q_8 \times \mathbb{Z}_n$, which we denote by $\langle x_1 \rangle$, $\langle x_2 \rangle$ and $\langle x_3 \rangle$. It is easy to see that $|x_1| = |x_2| = |x_3| = 4n$. Let C be a subgroup of order $2n$ in $\langle x_1 \rangle$. Then $C = \langle x_i \rangle \cap \langle x_j \rangle$ for $1 \leq i < j \leq 3$. Write $D(n) = \{d_1, \ldots, d_t\}$. Let B_i, C_i and D_i be the set of generators of the subgroup of order $4d_i$ in $\langle x_1 \rangle$, $\langle x_2 \rangle$ and $\langle x_3 \rangle$, respectively. Consequently, we have

$$V(\Gamma_{Q_8 \times \mathbb{Z}_n}) = C \cup \bigcup_{i=1}^{t} (B_i \cup C_i \cup D_i),$$

$$E(\Gamma_{Q_8 \times \mathbb{Z}_n}) = E(\Gamma_{\langle x_1 \rangle}) \cup E(\Gamma_{\langle x_2 \rangle}) \cup E(\Gamma_{\langle x_3 \rangle}).$$

The partition of $V(\Gamma_{Q_8 \times \mathbb{Z}_n})$ is showed in Figure 3, where u is the unique involution.

![Figure 3: The partition of $V(\Gamma_{Q_8 \times \mathbb{Z}_n})$ and the set of edges E_1'](image)

With reference to (1), there exists a unique vertex $x_3' \in [x_3]$ such that $\{u, x_3'\} \in E_1(\langle x_3 \rangle)$. Write

$$E_1' = \bigcup_{i=1}^{t} \{\{e, x\} : x \in B_i\} \cup \{\{u, x\} : x \in C_i\},$$

$$E_1 = E_1' \cup E_1(\langle x_1 \rangle) \cup E_1(\langle x_2 \rangle) \cup (E_1(\langle x_3 \rangle) \setminus \{\{u, x_3'\}\}).$$

5
It is clear that \(E_1 \subseteq E(\Gamma_{Q_8 \times Z_n}) \). Write \(E_2 = E(\Gamma_{Q_8 \times Z_n}) \setminus E_1 \). Define a coloring

\[
\zeta : E(\Gamma_{Q_8 \times Z_n}) \rightarrow \{1, 2\}, \quad f \mapsto k \text{ if } f \in E_k.
\]

For \(i = 1, 2, 3 \), let \(\Delta_i \) be the subgraph of \(\Gamma_{(x_i)} \) induced on \(V(\Gamma_{(x_i)}) \setminus \{e, u\} \). Similar to the proof of Theorem 3.1 (i), we deduce that \(\zeta|_{E(\Delta_i)} \) is a rainbow 2-coloring of \(\Delta_i \). If vertices \(v \) and \(w \) satisfy \(u \notin \{v, w\} \) and \(\{v, w\} \not\subseteq V(\Delta_i) \) for any \(i \in \{1, 2, 3\} \), then \((v, e, u, w) \) or \((v, u, w, e) \) is a rainbow path under \(\zeta \) from Figure 3. If \(v \) is a vertex that is not adjacent to \(u \), there exists a vertex \(x''_3 \in [x_3] \setminus \{x'_3\} \) such that \(\{x''_3, v\} \in E_1(\langle x_3 \rangle) \), and so \((u, x''_3, v) \) is a rainbow path under \(\zeta \). It follows that \(\zeta \) is a rainbow 2-coloring of \(\Gamma_{Q_8 \times Z_n} \). We accomplish the proof. \qed

Example 3 If \(n \geq 3 \), then \(rc(\Gamma_{Q_{4n}}) = 3 \).

Proof. With reference to (2), we have \(y^{-1} = x^n y \) and \((x^i y)^{-1} = x^{2n-i} y \) for \(i \in \{1, \ldots, n-1\} \), which implies that

\[
V(\Gamma_{Q_{4n}}) = \{e, x, \ldots, x^{2n-1}\} \cup \left(\bigcup_{i=0}^{n-1} \{x^i y, (x^i y)^{-1}\} \right),
\]

\[
E(\Gamma_{Q_{4n}}) = E(\Gamma_{(x)}) \cup \bigcup_{i=0}^{n-1} E(\Gamma_{(x^i y)}),
\]

as shown in Figure 4. It follows from Theorem 3.1 that \(rc(\Gamma_{Q_{4n}}) = 2 \) or 3. Suppose

![Figure 4: \(\Gamma_{Q_{4n}} \)](image)

for the contrary that there exists a rainbow 2-coloring \(\zeta \) of \(\Gamma_{Q_{4n}} \).

Assume that \(n = 3 \). Without loss of generality, let \(\zeta(\{e, x^2\}) = 1 \). Then \(\zeta(\{e, x^i y\}) = 2 \) for \(i \in \{0, 1, 2\} \). Hence, for \(0 \leq i < j \leq 2 \), the rainbow path from \(x^i y \) to \(x^j y \) is \((x^i y, x^3, x^j y) \), which implies that \(\zeta(\{y, x^3\}) \), \(\zeta(\{x y, x^3\}) \) and \(\zeta(\{x^2 y, x^3\}) \) are pairwise distinct, a contradiction. Therefore \(rc(\Gamma_{Q_{12}}) = 3 \).

In the following, assume that \(n \geq 4 \). Let \(\Delta \) be the induced subgraph of \(\Gamma_{Q_{4n}} \) on the vertices \(\{e, x, y, xy, x^2 y, x^3 y, x^n\} \). Then \(\zeta|_{E(\Delta)} \) is a rainbow 2-coloring of \(\Delta \).

Claim. There exists a rainbow path from \(e \) to \(x^n \) with length 2 under \(\zeta|_{E(\Delta)} \) in \(\Delta \). In fact, if \(\zeta|_{E(\Delta)}(\{e, x^i y\}) = \zeta|_{E(\Delta)}(\{x^i y, x^n\}) \) for each \(i \in \{0, 1, 2, 3\} \), then there exist two distinct indices \(j \) and \(k \) in \(\{0, 1, 2, 3\} \) such that

\[
\zeta|_{E(\Delta)}(\{e, x^i y\}) = \zeta|_{E(\Delta)}(\{x^i y, x^n\}) = \zeta|_{E(\Delta)}(\{e, x^k y\}) = \zeta|_{E(\Delta)}(\{x^k y, x^n\}),
\]
which implies that there is no rainbow path from \(x^j y \) to \(x^k y \) under \(\zeta|_{E(\Delta)} \) in \(\Delta \), a contradiction. Hence, the claim is valid.

Let \(\Delta_0 \) be the graph obtained from \(\Delta \) by deleting the edge \(\{e, x_n\} \). Then \(\Delta_0 \) is isomorphic to the complete bipartite graph \(K_{2,5} \). By Claim, we have \(rc(K_{2,5}) = 2 \), contrary to [6, Theorem 2.6].

For a noncyclic group \(G \) with no maximal involutions, it is difficult for us to determine which groups \(G \) satisfy \(rc(\Gamma_G) = 2 \). However, we give a sufficient condition.

Proposition 3.2 If \(G \) is a group of order \(p^n q \) for positive integer \(n \), where \(p, q \) are distinct primes and \(p < q \), such that the following conditions hold, then \(rc(\Gamma_G) = 2 \).

(i) Each Sylow \(p \)-subgroup is cyclic and the Sylow \(q \)-subgroup is unique.

(ii) The intersection of all Sylow \(p \)-subgroups is of order \(p^{n-1} \).

(iii) \(p^{n-1} \geq q \).

Proof. Note that the number of Sylow \(p \)-subgroups is \(q \). Suppose that \(\{P_1, \ldots, P_q\} \) is the set of all Sylow \(p \)-subgroups, and \(Q \) is the unique Sylow \(q \)-subgroup. Then \(\bigcap_{i=1}^q P_i \) and \(Q \) are cyclic and normal in \(G \). Hence, there exists an element \(x \) of order \(p^{n-1}q \) such that \((\bigcap_{i=1}^q P_i)Q = \langle x \rangle \), and so the set of all cyclic subgroups of \(G \) is

\[
\{P_1, \ldots, P_q\} \cup \{\langle y \rangle : y \in \langle x \rangle\}.
\]

For \(1 \leq i \leq q \), let \(A_i \) be the set of all generators of \(P_i \). By (iii) we choose pairwise distinct elements \(u_1, \ldots, u_{q-1} \) in \((\bigcap_{i=1}^q P_i) \setminus \{e\} \). With reference to (1), write

\[
E'_1 = \{e, y\} : y \in \bigcup_{i=1}^q A_i \cup \bigcup_{i=1}^{q-1} \{\{u_i, y\} : y \in A_i\},
\]

\[
E_1 = E'_1 \cup E_1(\langle x \rangle).
\]

The set \(E'_1 \) is showed in Figure 5. It is clear that \(E_1 \subseteq E(\Gamma_G) \). Let \(E_2 = E(\Gamma_G) \setminus E_1 \).

![Figure 5: \(V(\Gamma_G) \) and the set of edges \(E'_1 \)](image)

Define a coloring

\[
\zeta : E(\Gamma_G) \longrightarrow \{1, 2\}, \quad f \mapsto k \text{ if } f \in E_k.
\]

In order to get the desired result, we only need to show that \(\zeta \) is a rainbow 2-coloring of \(\Gamma_G \). It follows from Theorem 3.1 that \(\zeta|_{E(\Gamma_{\langle x \rangle})} \) is a rainbow 2-coloring
of $\Gamma_{\langle x \rangle}$. Pick any pair of nonadjacent vertices z and w such that $\{z, w\} \not\subseteq V(\Gamma_{\langle x \rangle})$. It suffices to find a rainbow path from z to w under ζ. Without loss of generality, assume that $z \in \bigcup_{i=1}^{q} A_i$. If $w \in \bigcup_{i=1}^{q} A_i$, then there exist indices i and j in $\{1, \ldots, q\}$ with $i < j$ such that $z \in A_i$ and $w \in A_j$, and so (z, u_i, w) is a desired rainbow path. If $w \in V(\Gamma_{\langle x \rangle})$, then (z, e, w) is a desired rainbow path.

By Proposition 3.2, we have the following example.

Example 4 Let $G = \langle a, b : a^{27} = b^7 = e, a^{-1}ba = b^2 \rangle \cong \mathbb{Z}_{27} \rtimes \mathbb{Z}_7$. Then $rc(\Gamma_G) = 2$.

The following sufficient condition for $rc(\Gamma_G) = 3$ is immediate from Theorem 3.1 and Lemma 2.6.

Proposition 3.3 Suppose that G is a noncyclic group with no maximal involutions. If there exists a prime p dividing $|G|$ such that the subgroup of order p in G is not unique, then $rc(\Gamma_G) = 3$.

Finally, we determine the rainbow connection number of the power graph of a nilpotent group.

Corollary 3.4 Let G be a noncyclic nilpotent group with no maximal involutions. Then

$$rc(\Gamma_G) = \begin{cases} 2, & \text{if } G \text{ is isomorphic to } Q_8 \times \mathbb{Z}_n \text{ for some odd number } n; \\ 3, & \text{otherwise.} \end{cases}$$

Proof. It follows from Theorem 3.1 that $rc(\Gamma_G) = 2$ or 3. Suppose $rc(\Gamma_G) = 2$. Then for any prime p dividing $|G|$, the subgroup of order p in G is unique by Proposition 3.3. By [14, Theorem 5.4.10 (ii)], the Sylow p-subgroups are cyclic for any odd prime p, which implies that 2 is a divisor of $|G|$ and the Sylow 2-subgroup is isomorphic to Q_{2^m} for $m \geq 3$. Hence we get $G \cong Q_{2^m} \times \mathbb{Z}_n$ for some odd number n. Let H be a subgroup of G that is isomorphic to Q_{2^m}.

Claim. For any pair of nonadjacent vertices x and y of Γ_H, there does not exist a vertex in $G \setminus H$ adjacent to both x and y in Γ_G. Suppose for the contrary that $\{\{x, z\}, \{y, z\}\} \subseteq E(\Gamma_G)$ for some $z \in G \setminus H$. Then $x = z^s$ and $y = z^t$ for some integers s and t, which implies that $x, y \in \langle z \rangle$. Note that $|x|$ and $|y|$ are powers of 2. Therefore x and y are adjacent, a contradiction. Hence, the claim is valid.

By Claim, one gets $rc(\Gamma_H) = 2$. It follows from Example 3 that $m = 3$, and so $G \cong Q_8 \times \mathbb{Z}_n$. By Example 2, we get the desired result.

Acknowledgement

This research is supported by National Natural Science Foundation of China (11271047, 11371204).
References

[1] J. Abawajy, A. Kelarev and M. Chowdhury, Power graphs: A survey, *Electron. J. Graph Theory Appl.*, 1 (2) (2013), 125–147.

[2] P.J. Cameron, The power graph of a finite group, II, *J. Group Theory*, 13 (6) (2010), 779–783.

[3] P.J. Cameron and S. Ghosh, The power graph of a finite group, *Discrete Math.*, 311 (13) (2011), 1220–1222.

[4] R.P. Carpentier, H. Liu, M. Silva and T. Sousa, Rainbow connection for some families of hypergraphs. *Discrete Math.*, 327 (2014), 40–50.

[5] I. Chakrabarty, S. Ghosh and M.K. Sen, Undirected power graphs of semigroups, *Semigroup Forum*, 78 (3) (2009), 410–426.

[6] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, *Math. Bohem.*, 133 (1) (2008), 85–98.

[7] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, *J. Comb. Optim.*, 21 (3) (2011), 330–347.

[8] P. Dorbec and I. Schiermeyer, E. Sidorowicz and Éric Sopena, Rainbow connection in oriented graphs, *Discrete Appl. Math.*, 179 (2014), 69–78.

[9] D. Estetikasari and S. Sy, On the rainbow connection for some corona graphs. *Appl. Math. Sci. (Ruse)*, 7 (97-100) (2013), 4975–4980.

[10] M. Feng, X. Ma and K. Wang, The structure and metric dimension of the power graph of a finite group, *European J. Combin.*, 43 (2015), 82–97.

[11] M. Feng, X. Ma and K. Wang, The full automorphism group of the power (di)graph of a finite group, preprint arXiv:1406.2788v1 [math.GR] 2014.

[12] A. Frieze and C.E. Tsourakakis, Rainbow connection of sparse random graphs, *Electron. J. Combin.*, 19 (4) (2012), Paper 5, 19 pp.

[13] G. Frobenius, Verallgemeinerung des Sylow’schen Satzes, Berliner Sitzungsber, 1895.

[14] D. Gorenstein, Finite Groups(Second Edition), Chelsea Publishing Co., New York, 1980.

[15] T. Gologranc, M. Gašper and I. Peterin, Rainbow connection and graph products, *Graphs Combin.*, 30 (3) (2014), 591–607.

[16] A.V. Kelarev and S.J. Quinn, Directed graph and combinatorial properties of semigroups, *J. Algebra*, 251 (2002), 16–26.

[17] A.V. Kelarev and S.J. Quinn, A combinatorial property and power graphs of semigroups, *Comment. Math. Uni. Carolinae*, 45 (1) (2004), 1–7.
[18] A.V. Kelarev, S.J. Quinn and R. Smolikova, Power graphs and semigroups of matrices, *Bull. Austral. Math. Soc.*, **63** (2001), 341–344.

[19] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: a survey, *Graphs Combin.*, **29** (1) (2013), 1–38.

[20] X. Li, M. Liu and I. Schiermeyer, Rainbow connection number of dense graphs, *Discuss. Math. Graph Theory*, **33** (3) (2013), 603–611.

[21] X. Li and Y. Sun, Upper bounds for the rainbow connection numbers of line graphs, *Graphs Combin.*, **28** (2) (2012), 251–263.

[22] H. Li, X. Li and S. Liu, The (strong) rainbow connection numbers of Cayley graphs on Abelian groups, *Comput. Math. Appl.*, **62** (11) (2011), 4082–4088.

[23] V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, Preprint, Rostock Inst. für Informatik, 2009.

[24] G. Pólya and G. Szegö, Problems and Theorems in Analysis II, New York, 1976.