The maximum sum of sizes of cross-intersecting families of subsets of a set

Peter Borg

Department of Mathematics
Faculty of Science
University of Malta
Malta
peter.borg@um.edu.mt

Carl Feghali

Computer Science Institute of Charles University
Prague
Czech Republic
feghali.carl@gmail.com

Abstract

A set of sets is called a family. Two families A and B of sets are said to be cross-intersecting if each member of A intersects each member of B. For any two integers n and k with $1 \leq k \leq n$, let $\binom{[n]}{\leq k}$ denote the family of subsets of $[n] = \{1, \ldots, n\}$ that have at most k elements. We show that if A is a non-empty subfamily of $\binom{[n]}{\leq r}$, B is a non-empty subfamily of $\binom{[n]}{\leq s}$, $r \leq s$, and A and B are cross-intersecting, then

$$|A| + |B| \leq 1 + \sum_{i=1}^{s} \left(\binom{n}{i} - \binom{n-r}{i} \right),$$

and equality holds if $A = \{[r]\}$ and B is the family of sets in $\binom{[n]}{\leq s}$ that intersect $[r]$.

1 Introduction

Unless stated otherwise, we shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). It
is to be assumed that arbitrary sets and families are finite. We call a set A an r-element set if its size $|A|$ is r, that is, if it contains exactly r elements.

The set $\{1, 2, \ldots\}$ of positive integers is denoted by \mathbb{N}. For $m \geq 0$ and $n \geq 0$, the set $\{i \in \mathbb{N}: m \leq i \leq n\}$ is denoted by $[m, n]$. We abbreviate $[1, n]$ to $[n]$. Note that $[0]$ is the empty set \emptyset, and $[n] = \{1, \ldots, n\}$ for $n \geq 1$. For a set X, the power set of X (the set of subsets of X) is denoted by 2^X. For any integer $r \geq 0$, the family of r-element subsets of X is denoted by $\binom{X}{r}$, and the family of subsets of X of size at most r is denoted by $\binom{X}{\leq r}$. Thus, $\binom{X}{r} = \bigcup_{i=0}^{r} \binom{X}{i}$. If $x \in X$ and $\mathcal{F} \subseteq 2^X$, then we denote the family of sets in \mathcal{F} which contain x by $\mathcal{F}(x)$. We call $\mathcal{F}(x)$ a star of \mathcal{F} if $\mathcal{F}(x) \neq \emptyset$.

We say that a set A intersects a set B if A and B have at least one common element (that is, if $A \cap B \neq \emptyset$). A family \mathcal{A} is said to be intersecting if every two sets in \mathcal{A} intersect. Note that the stars of a family \mathcal{F} are the simplest intersecting subfamilies of \mathcal{F}. If \mathcal{A} and \mathcal{B} are families such that each set in \mathcal{A} intersects each set in \mathcal{B}, then \mathcal{A} and \mathcal{B} are said to be cross-intersecting.

One of the most popular endeavours in extremal set theory is that of determining the size of a largest intersecting subfamily of a given family \mathcal{F}. This started in [10], which features the classical result, known as the Erdős-Ko-Rado (EKR) Theorem, that says that if $r \leq n/2$, then the size of a largest intersecting subfamily of $\binom{[n]}{r}$ is the size of $\binom{[n]}{r-1}$ of any star of $\binom{[n]}{r}$. There are many proofs of the EKR Theorem. Two of them are particularly short and beautiful: Katona’s [20], which introduced the elegant cycle method, and Daykin’s [8], which uses a fundamental result known as the Kruskal–Katona Theorem [21, 23] (see also [11, 22]). The EKR Theorem gave rise to some of the highlights in extremal set theory [1, 12, 17, 22, 28] and inspired many results, including generalizations (see, for example, [3, 27]), that establish how large a system of sets can be under certain intersection conditions; see [4, 9, 11, 13, 15, 18, 19].

A natural question to ask about intersecting subfamilies of a given family \mathcal{F} is how large they can be. For cross-intersecting families, two natural parameters arise: the sum and the product of sizes of the families. The problem of maximizing the sum or the product of sizes of cross-t-intersecting subfamilies of a given family \mathcal{F} has been attracting much attention. Many of the results to date are referenced in [5, 6, 7].

Hilton and Milner [17] proved that, for $1 \leq r \leq n/2$, if \mathcal{A} and \mathcal{B} are non-empty cross-intersecting subfamilies of $\binom{[n]}{r}$, then $|\mathcal{A}| + |\mathcal{B}| \leq \binom{n}{r} - \binom{n-r}{r} + 1$, and equality holds if $\mathcal{A} = \{[r]\}$ and $\mathcal{B} = \{B \in \binom{[n]}{r}: B \cap [r] = \emptyset\}$. To the best of the authors’ knowledge, this was the first result on the sizes of cross-intersecting families. Simpson [26] obtained a streamlined proof by means of the compression (also known as shifting) technique, which was introduced in the seminal EKR paper [10] and has proven to be a very useful tool in extremal set theory ([13] is a recommended survey on the properties and uses of compression operations). Frankl and Tokushige [16] instead used the Kruskal–Katona Theorem to establish the following stronger result: if $1 \leq r \leq s$, $n \geq r+s$, $\mathcal{A} \subseteq \binom{[n]}{r}$, $\mathcal{B} \subseteq \binom{[n]}{s}$, and \mathcal{A} and \mathcal{B} are cross-intersecting and non-empty, then $|\mathcal{A}| + |\mathcal{B}| \leq 1 + \binom{n}{s} - \binom{n-r}{s} - \binom{n-s}{s}$, and equality holds if $\mathcal{A} = \{[r]\}$ and $\mathcal{B} = \{B \in \binom{[n]}{s}: B \cap [r] = \emptyset\}$. The attainable upper bound on the maximum product of sizes for $1 \leq r \leq s \leq n/2$ was established in [24, 25].

In this paper, we solve the analogous maximum sum problem for the case where $\mathcal{A} \subseteq \binom{[n]}{\leq r}$ and $\mathcal{B} \subseteq \binom{[n]}{\leq s}$, using the compression technique. The following is our result, proved in the next section.
We now prove Theorem 1.

Theorem 1 If \(n \geq 1 \), \(1 \leq r \leq s \), \(A \subseteq \binom{[n]}{\leq r} \), \(B \subseteq \binom{[n]}{\leq s} \), and \(A \) and \(B \) are cross-intersecting and non-empty, then

\[
\left| A \right| + \left| B \right| \leq 1 + \sum_{i=1}^{s} \left(\binom{n}{i} - \binom{n-r}{i} \right),
\]

and equality holds if \(A = \{[r]\} \) and \(B = \{B \in \binom{[n]}{r}: B \cap [r] \neq \emptyset\} \).

The analogous problem for the product of sizes was solved in [2].

2 Proof of Theorem 1

We now prove Theorem 1.

For any \(i, j \in [n] \), let \(\delta_{i,j}: 2^{[n]} \rightarrow 2^{[n]} \) be defined by

\[
\delta_{i,j}(A) = \begin{cases}
(A \setminus \{j\}) \cup \{i\} & \text{if } j \in A \text{ and } i \notin A; \\
A & \text{otherwise},
\end{cases}
\]

and let \(\Delta_{i,j}: 2^{[n]} \rightarrow 2^{[n]} \) be the compression operation defined by

\[
\Delta_{i,j}(A) = \{\delta_{i,j}(A): A \in \mathcal{A}\} \cup \{A \in \mathcal{A}: \delta_{i,j}(A) \in \mathcal{A}\}.
\]

Note that \(\Delta_{i,j} \) preserves the size of a family \(A \), that is,

\[
\left| \Delta_{i,j}(A) \right| = \left| A \right|.
\]

We will need this equality together with the following basic fact, which we prove for completeness.

Lemma 1 If \(\mathcal{A} \) and \(\mathcal{B} \) are cross-intersecting subfamilies of \(2^{[n]} \), then, for any \(i, j \in [n] \), \(\Delta_{i,j}(\mathcal{A}) \) and \(\Delta_{i,j}(\mathcal{B}) \) are cross-intersecting subfamilies of \(2^{[n]} \).

Proof. Suppose \(A \in \Delta_{i,j}(\mathcal{A}) \) and \(B \in \Delta_{i,j}(\mathcal{B}) \). If \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \), then \(A \cap B \neq \emptyset \). Suppose \(A \notin \mathcal{A} \) or \(B \notin \mathcal{B} \). We may assume that \(A \notin \mathcal{A} \). Then, \(A = \delta_{i,j}(A') \neq A' \) for some \(A' \in \mathcal{A} \), so \(i \notin A' \), \(j \in A' \), \(i \in A \), and \(j \notin A \). Suppose \(A \cap B = \emptyset \). Then, \(i \notin B \), \(B \in \mathcal{B} \setminus \Delta_{i,j}(\mathcal{B}) \), and hence \(B, \delta_{i,j}(B) \in \mathcal{B} \). Thus, \(A' \cap B \neq \emptyset \) and \(A' \cap \delta_{i,j}(B) \neq \emptyset \). Since \(A \cap B = \emptyset \) and \(A' \cap B \neq \emptyset \), \(A' \cap B = \{j\} \). This yields \(A' \cap \delta_{i,j}(B) = \emptyset \), a contradiction. \(\square \)

If \(i < j \), then \(\Delta_{i,j} \) is called a left-compression. A family \(\mathcal{F} \subseteq 2^{[n]} \) is said to be compressed if \(\Delta_{i,j}(\mathcal{F}) = \mathcal{F} \) for every \(i, j \in [n] \) with \(i < j \) (that is, if \(\mathcal{F} \) is invariant under left-compressions). Thus, \(\mathcal{F} \) is compressed if and only if \((\mathcal{F} \setminus \{j\}) \cup \{i\} \in \mathcal{F} \) for every \(i, j \in [n] \) and every \(F \in \mathcal{F} \) such that \(i < j \in F \) and \(i \notin F \).

A subfamily \(\mathcal{A} \) of \(2^{[n]} \) that is not compressed can be transformed to a compressed subfamily of \(2^{[n]} \) as follows. We choose one of the left-compressions that change \(\mathcal{A} \), and we apply it to \(\mathcal{A} \) to obtain a new subfamily of \(2^{[n]} \). We keep on repeating this (always applying a left-compression to the last family obtained) until a family that is
invariant under each left-compression is obtained (such a point is indeed reached, because if \(\Delta_{ij}(\mathcal{F}) \neq \mathcal{F} \subseteq 2^n \) and \(i < j \), then \(0 < \sum_{G \in \Delta_{i,j}(\mathcal{F})} \sum_{b \in G} b < \sum_{F \in \mathcal{F}} \sum_{a \in F} a \)).

If \(\mathcal{A}, \mathcal{B} \subseteq 2^n \) such that \(\mathcal{A} \) and \(\mathcal{B} \) are cross-intersecting, then, by Lemma [1] we can obtain \(\mathcal{A}^*, \mathcal{B}^* \subseteq 2^n \) such that \(\mathcal{A}^* \) and \(\mathcal{B}^* \) are compressed and cross-intersecting, \(|\mathcal{A}^*| = |\mathcal{A}| \), and \(|\mathcal{B}^*| = |\mathcal{B}| \). Indeed, similarly to the procedure above, if we can find a left-compression that changes at least one of \(\mathcal{A} \) and \(\mathcal{B} \), then we apply it to both \(\mathcal{A} \) and \(\mathcal{B} \), and we keep on repeating this (always performing this on the last two families obtained) until we obtain \(\mathcal{A}^*, \mathcal{B}^* \subseteq 2^n \) such that \(\mathcal{A}^* \) and \(\mathcal{B}^* \) are compressed.

Proof of Theorem [1]. We prove the result by induction on \(n \). The result is trivial for \(n \leq 2 \). Consider \(n \geq 3 \).

Suppose \(r \geq n \). Then, \(s \geq n \) and \(\binom{n}{\leq s} = \binom{n}{s} = 2^n \). Since \(\mathcal{A} \) and \(\mathcal{B} \) are cross-intersecting, \([n]\setminus A \notin B \) for each \(A \in \mathcal{A} \). Thus, \(B \subseteq 2^n \setminus \{[n]\setminus A: A \in \mathcal{A}\} \), and hence \(|B| \leq 2^n - |A| \). We have \(|A| + |B| \leq 2^n = 1 + |\{B \in 2^n: B \cap [n] \neq \emptyset\}| = 1 + |\{B \in (\frac{n}{s}) \setminus B \cap [r] \neq \emptyset\}| \).

Now suppose \(r < n \). If \(s > n \), then \(\binom{n}{\leq s} = 2^n = \binom{n}{\leq n} \). Thus, we may assume that \(s \leq n \). Since \(r < n \) and \(r \leq s \), we have

\[
 r < s \quad \text{or} \quad s < n. \tag{1}
\]

As explained above, we may assume that \(\mathcal{A} \) and \(\mathcal{B} \) are compressed.

Let \(\mathcal{A}_0 = \{A \in \mathcal{A}: n \notin A\} \), \(\mathcal{A}_1 = \{A \setminus \{n\} : n \in A \in \mathcal{A}\} \), \(\mathcal{B}_0 = \{B \in \mathcal{B} : n \notin B\} \), and \(\mathcal{B}_1 = \{B \setminus \{n\} : n \in B \in \mathcal{B}\} \). We have \(\mathcal{A}_0 \subseteq \binom{n-1}{s} \), \(\mathcal{A}_1 \subseteq \binom{n-1}{s} \), \(\mathcal{B}_0 \subseteq \binom{n-1}{s} \), and \(\mathcal{B}_1 \subseteq \binom{n-1}{s} \). Clearly, \(\mathcal{A}_0 \) and \(\mathcal{B}_0 \) are cross-intersecting. Since \(\mathcal{A} \) and \(\mathcal{B} \) are compressed, we clearly have that \(\mathcal{A}_0, \mathcal{A}_1, \mathcal{B}_0, \) and \(\mathcal{B}_1 \) are compressed. Thus, \([r'] \in \mathcal{A}_0 \) for some \(r' \in [r] \), and if \(s < n \), then \([s'] \in \mathcal{B}_0 \) for some \(s' \in [s] \).

Let \(\mathcal{C} = \{A \in \mathcal{A}_1 : A \cap B = \emptyset \text{ for some } B \in \mathcal{B}_1\} \). For each \(C \in \mathcal{C} \), let \(\bar{C} = [n-1] \setminus C \), \(C' = C \cup \{n\} \), and \(\bar{C}' = C \cup \{n\} \). Let \(\bar{C} = \{C : C \in \mathcal{C}\} \). For each \(C \in \mathcal{C} \), \(C' \in \mathcal{A} \) as \(C \in \mathcal{A}_1 \).

Suppose \(C \in \mathcal{C} \). Let \(\mathcal{D}_C = \{B \in \mathcal{B}_1 : B \cap C = \emptyset\} \). Suppose that there exists some \(B \in \mathcal{D}_C \) such that \(B \neq \bar{C} \). Then, \(B \subseteq [n-1] \setminus C \), and hence \(|n-1| \setminus (B \cup C) \neq \emptyset \). Let \(x \in [n-1] \setminus (B \cup C) \). Since \(B \in \mathcal{B}_1 \), \(B \cup \{n\} \in \mathcal{B} \). Let \(D = \delta_{x,n}(B \cup \{n\}) \). Since \(x \notin B \cup \{n\} \), \(D \in \mathcal{B} \). Since \(\mathcal{B} \) is compressed, \(D \in \mathcal{B} \). However, since \(x \notin C' \) and \(B \cap C = \emptyset \), we have \(C' \cap D = \emptyset \), which is a contradiction as \(\mathcal{A} \) and \(\mathcal{B} \) are cross-intersecting. Thus, \(\mathcal{D}_C \subseteq \{\bar{C}\} \). Since \(C \in \mathcal{C} \), we have \(\mathcal{D}_C \neq \emptyset \), so \(\mathcal{D}_C = \{\bar{C}\} \).

We have therefore shown that for any \(C \in \mathcal{C} \), \(\bar{C} \) is the unique set in \(\mathcal{B}_1 \) that does not intersect \(C \). Since \(C' \in \mathcal{A} \) and \(C' \cap \bar{C} = \emptyset \), the cross-intersection condition gives us \(\bar{C} \notin \mathcal{B}_0 \). Thus,

\[
 B_0 \cap \bar{C} = \emptyset. \tag{2}
\]

Let \(\mathcal{A}' = \mathcal{A}_1 \setminus \mathcal{C} \) and \(\mathcal{B}' = \mathcal{B}_0 \cup \bar{C} \). Clearly, \(\mathcal{A}' \subseteq \binom{n-1}{s} \), \(\mathcal{B}' \subseteq \binom{n-1}{s} \), \(\mathcal{A}_0 \) and \(\mathcal{B}_0 \) are cross-intersecting (as \(\bar{C} \subseteq \mathcal{B}_1 \)), and \(\mathcal{A}_1 \) and \(\mathcal{B}_1 \) are cross-intersecting.

Claim 1 \(|\mathcal{A}_0| + |\mathcal{B}_0'| \leq 1 + |\{B \in \binom{n-1}{s} : B \cap [r] \neq \emptyset\}| \).

Proof. Since \(\mathcal{A}_0 \) is non-empty (as \([r'] \in \mathcal{A}_0 \)), the claim follows by the induction hypothesis if \(\mathcal{B}_0' \) is non-empty too, and this is the case if \(s < n \) (as we then have \([s'] \in \mathcal{B}_0' \)).
Suppose $s = n$ and $B'_0 = \emptyset$. By (1), $r \leq s - 1$. Since $s = n$, the sets in \mathcal{A}_0 intersect $[s - 1]$ (note that $\emptyset \notin \mathcal{A}$ as $B \neq \emptyset$), so \mathcal{A}_0 and $\{[s - 1]\}$ are cross-intersecting. By the induction hypothesis, $|\mathcal{A}_0| + |\{[s - 1]\}| \leq 1 + \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$, so $|\mathcal{A}_0| + |B'_0| = |\mathcal{A}_0| \leq \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

Claim 2 $|A'_1| + |B_1| \leq \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

Proof. The claim is immediate if $A'_1 = \emptyset$ and $B_1 = \emptyset$.

If $A'_1 \neq \emptyset$ and $B_1 \neq \emptyset$, then, by the induction hypothesis, $|A'_1| + |B_1| \leq 1 + \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

If $A'_1 = \emptyset$ and $B_1 \neq \emptyset$, then $|A'_1| + |B_1| = |B_1| \leq \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$ (as $[r] \in \mathcal{A}$), so $|A'_1| + |B_1| \leq \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

Finally, suppose that $A'_1 \neq \emptyset$ and $B_1 = \emptyset$.

Suppose $B = \{[n]\}$. Then, $s = n$. By the definition of A'_1, we have $\emptyset \notin A'_1$, so A'_1 and $\{[s - 1]\}$ are cross-intersecting (as $s = n$). By the induction hypothesis, $|A'_1| + |\{[s - 1]\}| \leq 1 + \{|B \in \binom{[n - 1]}{r} : B \cap [r - 1] \neq \emptyset\}$, so $|A'_1| + |B_1| = |A'_1| \leq \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

Now suppose $B \neq \{[n]\}$. Then, since B is compressed and non-empty, $[s^*] \in B$ for some $s^* \in [s] \cap [n - 1]$. Thus, A'_1 and $\{[s^*]\}$ are cross-intersecting. If $s^* \leq s - 1$, then the claim follows as in the preceding paragraph. Suppose $s^* = s$. Let $\mathcal{E} = \{A \in A'_1 : 1 \in A\}$ and $\mathcal{E}' = A'_1 \setminus \mathcal{E}$. Then, \mathcal{E}' is a subfamily of $\binom{\binom{[n - 1]}{r - 1}}{s^* - 1}$ and its sets intersect the $(s - 1)$-element set $[2, s]$. Let $\mathcal{F} = \{B \in \binom{[n - 1]}{r} : 1 \in B\}$ and $\mathcal{F}' = \{B \in \binom{[n - 1]}{r} : B \cap [2, r] \neq \emptyset\}$. Since $A'_1 \subseteq \binom{[n - 1]}{r} \subseteq \binom{[n - 1]}{s - 1}$, $|\mathcal{E}| \leq |\mathcal{F}|$. By the induction hypothesis, $|\mathcal{E}'| + |\{[2, s]\}| \leq |\mathcal{F}| + |\mathcal{F}'|$. We have $|A'_1| + |B_1| = |A'_1| = |\mathcal{E}| + |\mathcal{E}'| \leq |\mathcal{F}| + |\mathcal{F}'| = \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$.

We have

$$|A| + |B| = |A_0| + |A_1| + |B_0| + |B_1|$$

$$= (|A_0| + |B'_0|) + (|A'_1| + |B_1|) + |\mathcal{C}| - |\mathcal{C}|$$

(by 2)

$$= (|A_0| + |B'_0|) + (|A'_1| + |B_1|).$$

Therefore, by Claims 1 and 2, $|A| + |B| \leq 1 + \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\} + \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\} = 1 + \{|B \in \binom{[n - 1]}{r} : B \cap [r] \neq \emptyset\}$. □

Acknowledgements. Peter Borg was supported by grant MATRP14-20 of the University of Malta. Carl Feghali was supported by grant 19-21082S of the Czech Science Foundation.

References

[1] R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125–136.

[2] P. Borg, A cross-intersection theorem for subsets of a set, Bull. London Math. Soc. 47 (2015), 248–256.
[3] P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), 167–185.

[4] P. Borg, Intersecting families of sets and permutations: a survey, Int. J. Math. Game Theory Algebra 21 (2012), 543–559.

[5] P. Borg, The maximum sum and the maximum product of sizes of cross-intersecting families, European J. Combin. 35 (2014), 117–130.

[6] P. Borg, The maximum product of sizes of cross-intersecting families, Discrete Math. 340 (2017), 2307–2317.

[7] P. Borg, The maximum product of weights of cross-intersecting families, J. London Math. Soc. 94 (2016), 993–1018.

[8] D.E. Daykin, Erdős–Ko–Rado from Kruskal–Katona, J. Combin. Theory Ser. A 17 (1974), 254–255.

[9] M. Deza and P. Frankl, The Erdős–Ko–Rado theorem—22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419–431.

[10] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313–320.

[11] P. Frankl, Extremal set systems, in: R.L. Graham, M. Grötschel and L. Lovász (Eds.), Handbook of Combinatorics, Vol. 2, Elsevier, Amsterdam, 1995, pp. 1293–1329.

[12] P. Frankl, The Erdős–Ko–Rado Theorem is true for $n = ckt$, Proc. Fifth Hung. Comb. Coll., North-Holland, Amsterdam, 1978, pp. 365–375.

[13] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Surveys in Combinatorics, Cambridge Univ. Press, London/New York, 1987, pp. 81–110.

[14] P. Frankl and Z. Füredi, A new short proof of the EKR theorem, J. Combin. Theory Ser. A 119 (2012), 1388–1390.

[15] P. Frankl and N. Tokushige, Invitation to intersection problems for finite sets, J. Combin. Theory Ser. A (2016) 144, 157–211.

[16] P. Frankl and N. Tokushige, Some best possible inequalities concerning cross-intersecting families, J. Combin. Theory Ser. A 61 (1992), 87–97.

[17] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369–384.

[18] F.C. Holroyd, C. Spencer and J. Talbot, Compression and Erdős–Ko–Rado graphs, Discrete Math. 293 (2005), 155–164.
[19] F.C. Holroyd and J. Talbot, Graphs with the Erdős–Ko–Rado property, Discrete Math. 293 (2005), 165–176.

[20] G.O.H. Katona, A simple proof of the Erdős–Chao Ko–Rado theorem, J. Combin. Theory Ser. B, 13(1972), pp. 183–184.

[21] G.O.H. Katona, A theorem of finite sets, in: Theory of Graphs, Proc. Colloq. Tihany, Akadémiai Kiadó, 1968, pp. 187–207.

[22] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329–337.

[23] J.B. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251–278.

[24] M. Matsumoto and N. Tokushige, The exact bound in the Erdős–Ko–Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90–97.

[25] L. Pyber, A new generalization of the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85–90.

[26] J.E. Simpson, A bipartite Erdős–Ko–Rado theorem, Discrete Math. 113 (1993), 277–280.

[27] J. Talbot, Intersecting families of separated sets, J. London Math. Soc. 68 (1) (2003), 37–51.

[28] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247–257.