Superconductivity in chromium nitrides Pr$_3$Cr$_{10-x}$N$_{11}$ with strong electron correlations

Wei Wu1,2, Kai Liu3, Yanjie Li1,2, Zhenhai Yu4, Desheng Wu1,2, Yuting Shao1,2, Shihang Na1,2, Gang Li1,5, Ruizhen Huang2,6, Tao Xiang1,2,6 and Jianlin Luo1,2,5,*

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 4School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 5Songshan Lake Materials Laboratory, Dongguan 523808, China and 6Kavli Institute for Theoretical Sciences, Beijing 100190, China

*Corresponding authors. E-mail: jlluo@iphy.ac.cn

INTRODUCTION

The 3d transition-metal oxides or pnictides exhibit rich quantum phases with novel quantum states, such as long-range magnetic orders, charge or spin density waves, metal-insulator transitions, high-\(T_c\) superconductivity and colossal magneto-resistance. In particular, unconventional high-\(T_c\) superconductivity has been discovered in cuprates as well as in iron-based superconductors [1,2]. Many compounds with 3d transition-metal elements can become superconducting at low temperatures. However, it is relatively difficult to find a superconducting material in chromium-based compounds because most Cr-based compounds have strong magnetism, which generally is not in favor of superconductivity. In fact, CrAs, A$_2$Cr$_3$As$_3$ and ACr$_3$As$_3$ (A = Na, K, Rb, Cs) are the only Cr-based superconductors so far [3–6].

Superconductivity in CrAs was discovered in 2014 [3,4]. CrAs undergoes a first-order antiferromagnetic transition with a double helical spin structure at \(T_N \approx 265\) \(\text{K}\) [3,7,8]. A bulk superconductivity with \(T_c \approx 2\) \(\text{K}\) emerges above a pressure \(P_c \approx 8\) kbar, where the antiferromagnetic order is completely suppressed. Both the NMR and neutron-scattering measurements for CrAs under high pressure revealed that there are strong magnetic fluctuations and line nodes may exist in the superconducting gap function [9–13], as in Sr$_2$RuO$_4$ or some heavy fermion superconductors [14,15]. After the discovery of superconductivity in CrAs, superconductivity has also been found in the quasi-1D compounds A$_2$Cr$_3$As$_3$ (A = K, Rb, Cs) [3,4]. The upper critical field \(H_{c2}\) of K$_2$Cr$_3$As$_3$ is about three times larger than the Pauli-paramagnetic limit.

In this paper, we report a novel Cr-based nitride superconductor with a cubic structure, Pr$_3$Cr$_{10-x}$N$_{11}$, which was first synthesized and characterized by Broil et al. in 1995 [16]. The compound crystallizes in space group \(Fm-3m\) (No. 225)
with lattice constant $a = 12.891$ Å. It contains 192 atoms in a face-centered cubic (FCC) cell with three kinds of building blocks, as illustrated in Fig. 1a. The building blocks are Pr$_6$N$_9$, Cr$_8$N$_{13}$, and Cr$_6$. Previous studies showed that there are Cr vacancies in the lattice structure. However, no low-temperature physical properties were reported [16,17]. Our key finding of this study is the observation of superconductivity in Pr$_3$Cr$_{10-x}$N$_{11}$ with $T_c \sim 5.25$ K. The high-quality samples have a shielding fraction of 85% at 2 K from zero-field-cooled (ZFC) magnetic susceptibility and a prominent superconducting peak in the specific-heat measurement. A relatively large upper critical field is found at the zero-temperature limit, $H_{c2}(0) \sim 12.6$ T, which is larger than the Pauli-paramagnetic pair-breaking field. From electronic structure calculations, we find that the density of states (DOS) at the Fermi energy are predominately contributed by Cr 3d electrons.

The present results demonstrate that Pr$_3$Cr$_{10-x}$N$_{11}$ is the first Cr-based superconductor discovered in chromium nitrides and it represents a rare example that possibly unconventional superconductivity emerges in a 3D system with strong electron correlations.

RESULTS AND DISCUSSION

Sample and characterization

Polycrystalline samples of Pr$_3$Cr$_{10-x}$N$_{11}$ were prepared by direct reactions of the corresponding binary nitrides with solid reaction. Synthesized powder shows a dark-brown color and is air-sensitive, as it is easily oxidized to Pr$_2$O$_3$ within a few hours. Figure 1b shows the General Structure Analysis System (GSAS) refinement of Pr$_3$Cr$_{10-x}$N$_{11}$ under ambient conditions, which indicates that Pr$_3$Cr$_{10-x}$N$_{11}$ crystallized in an FCC structure with space group $Fm\overline{3}m$. All the Pr$_3$Cr$_{10-x}$N$_{11}$ reflections can be well indexed based on a cubic cell with lattice parameter $a = 12.8521$ Å, which is consistent with those reported in the literature ($a = 12.891$ Å) [16], indicating their ideal composition. A small amount of raw reactant Cr$_2$N was marked with a red vertical bar.

Temperature-dependent resistivity in Pr$_3$Cr$_{10-x}$N$_{11}$

Figure 2a shows the temperature-dependent resistivity for Pr$_3$Cr$_{10-x}$N$_{11}$ from 1.8 to 300 K at zero field. The normal-state resistivity is metallic, with no phase transition observed. At low temperatures, a sharp superconducting transition is observed with onset T_c of about 5.25 K, as shown in the inset of Fig. 2a. The T_c of Pr$_3$Cr$_{10-x}$N$_{11}$ is higher than that of CrAs with $T_{c\text{max}} \sim 2$ K under pressure and is close to K$_2$Cr$_3$As$_3$ with $T_c \sim 6.1$ K [12].

The new superconductor Pr$_3$Cr$_{10-x}$N$_{11}$ shows a relatively large upper critical field. Figure 2b shows resistivity data in magnetic fields up to 9 T. As the field increases, the transition temperature T_c shifts to a lower temperature and the transition width is gradually broadened, similar to the iron-based superconductors [18,19]. The upper critical field H_{c2} curve obtained from the field-dependent transition temperatures shows a remarkably high critical field of 12.6 T using the formula $H_{c2}(T) = H_{c2}(0)(1 - t^2)$, where t is the reduced temperature $t = T/T_c$ and of 22 T using the Werthamer—Helfand—Hohenberg (WHH) theory [20]. On the other hand, the Pauli-paramagnetic limit for the upper critical field is $H_P = 1.847 T_c \approx 9.6$ T in the case of an isotropic full
superconducting gap without considering spin–orbit coupling [21,22]. The $H_{c2}(0)$ in Pr$_3$Cr$_{10-x}$N$_{11}$ is 130% as large as H_0. Usually, the high superconducting upper critical field can be originated from multi-band effects, the strong–coupling effect, the spin-triplet pairing and the strong spin–orbit coupling effect in a low-dimensional system [23–25]. The origin of large $H_{c2}(0)$ in Pr$_3$Cr$_{10-x}$N$_{11}$ needs to be further studied. The obtained $\mu_0H_{c2}(0)$ allows us to estimate the Ginzburg–Landau coherence length $\xi = 51 \text{ Å}$ according to the relationship: $\mu_0H_{c2}(0) = \Phi_0/2\pi\xi^2$, where $\Phi_0 = 2.067 \times 10^{-15}$ Wb is the magnetic flux quantum.

Magnetic-susceptibility measurements in Pr$_3$Cr$_{10-x}$N$_{11}$

The bulk superconductivity in Pr$_3$Cr$_{10-x}$N$_{11}$ was confirmed by magnetic-susceptibility measurements. Figure 3a shows susceptibility χ at low temperatures with ZFC and field cool (FC) under a magnetic field of 30 Oe. χ starts to drop below T_c and the diamagnetic signal tends to saturate at low temperatures. The shielding fraction estimated from the ZFC magnetic susceptibility at 2 K is 85%, confirming bulk superconductivity in the sample. The normal-state susceptibility χ increases with decreasing temperature in Pr$_3$Cr$_{10-x}$N$_{11}$, showing a Curie–Weiss behavior as shown in the inset of Fig. 3a. Such behavior is different from that of isostructural material La$_3$(Cr$_{10-x}$N$_{11}$), which shows a Pauli paramagnetism with a nearly temperature-independent susceptibility [16]. Since La$^{3+}$ ion has no occupied 4f electrons while each Pr$^{3+}$ ion has two occupied 4f electrons, it is natural to attribute the Curie–Weiss behavior of $\chi(T)$ in Pr$_3$Cr$_{10-x}$N$_{11}$ to the magnetic moments of Pr$^{3+}$ 4f electrons. Using a Curie–Weiss fit with formula $\chi(T) = \chi_0 + C/(T-\theta)$, we obtained the effective moment of each Pr ion at about 3.6 μ_B, which is very close to the calculated moment of 3.5 μ_B for Pr$^{3+}$ by Hund’s rule. The negative value of θ indicates the correlations between Pr ions are antiferromagnetic.

Further confirmation of superconductivity is shown by the magnetic hysteresis of the sample measured at 2 K in Fig. 3b, which displays the typical magnetic hysteresis curve for a type-II superconductor. From the inset of Fig. 3b, the lower critical magnetic fields H_{c1} of 170 Oe can be obtained.

Specific-heat measurements

Figure 4a shows the specific-heat coefficient C/T as a function of T^2 from 2 to 10 K at the zero field. The bulk nature of superconductivity is confirmed by a pronounced anomaly around $T_c = 5.25$ K, consistently with the resistivity and susceptibility measurements. Extrapolating C/T to zero temperature gives a residual value of $\gamma_0 = 0.061$ mJ g$^{-1}$ K$^{-2}$. As indicated previously, there is raw reactant phase Cr$_2$N in the sample. We measured the specific heat of Cr$_2$N and found that it can be well fitted by $C = \gamma T + \beta T^3$ below 10 K with $\gamma = 22$ mJ mol$^{-1}$ K2 and $\beta = 0.0373$ mJ mol$^{-1}$ K4. Given the residual specific-heat γ_0 origin from the Cr$_2$N phase, we can then obtain the specific heat of pure Pr$_3$Cr$_{10-x}$N$_{11}$ by subtracting that of Cr$_2$N from the total specific heat, as shown in the inset of Fig. 4a.

Above T_c, the good linear T^2 dependence of C/T indicates that the normal-state specific heat consists of two parts of contributions: the electronic part, which is proportional to T, and the phonon part, which is proportional to T^3 at low temperatures. By fitting the normal-state specific heat C with the formula $C = \gamma_n T + \beta T^3$, we find that $\gamma_n = 173$ mJ K$^{-2}$ mol$^{-1}$ and $\beta = 1.186$ mJ K$^{-4}$ mol$^{-1}$. The normal-state electronic coefficient γ_n is proportional to the DOS at the Fermi level. Assuming that most of the DOS comes from the Cr 3d electrons, the value of γ_n per mole Cr is $\gamma_n =$...
Figure 4. (a) The specific-heat coefficient C/T of Pr$_3$Cr$_{10}$N$_{11}$ as a function of T^2. The inset shows C/T versus T^2 for a sample with Cr$_2$N. (b) Temperature dependence of normalized electronic specific-heat C_e/T.

Figure 5. Local density of states (LDOS) for Pr, Cr$_1$, Cr$_2$ and N atoms in Pr$_3$Cr$_{10}$N$_{11}$. Inset shows a primitive cell with the yellow, blue, maroon and gray balls representing Pr, Cr$_1$, Cr$_2$ and N atoms, respectively. The atomic vacancy at the Cr$_2$ site is highlighted by a red dashed circle.

17.3 mJ K$^{-2}$ mol$^{-1}$ for Pr$_3$Cr$_{10}$N$_{11}$, which is much larger than the corresponding value for CrAs (∼7 mJ K$^{-2}$ mol$^{-1}$) and MnP (∼8.3 mJ K$^{-2}$ mol$^{-1}$) at ambient pressure [11,26] and it is slightly less than that for K$_2$Cr$_3$As$_3$ (∼23.3 mJ K$^{-2}$ mol Cr$^{-1}$) and KCr$_3$As$_3$ (∼27.1 mJ K$^{-2}$ mol Cr$^{-1}$) [14,27,28]. The relatively large γ_e for Pr$_3$Cr$_{10}$N$_{11}$ indicates strong correlations of Cr 3d electrons. The Debye temperature θ_D obtained from β is 339 K.

In Fig. 4b, the normalized specific-heat jump at T_c is found to be $\Delta C/\gamma_e T_c = 1.51$. This value is much smaller than those of K$_2$Cr$_3$As$_3$ (∼2.5) and LaNiAsO (∼1.9), which are regarded as strong-coupling superconductivity [14,27,29]. The normalized $\Delta C/\gamma_e T_c$ reflects the coupling strength between the conducting electrons and the pairing glue. We can then estimate the electron–phonon coupling constant $\lambda = 0.6$ from the modified McMillian formula [25,30,31]:

$$\lambda = 1.04 + \mu^* \ln(\omega/1.2T_c)$$

where μ^* is a Coulomb pseudopotential and ω is a logarithmic averaged phonon frequency. ω can be determined from the specific-heat jump at T_c using the formula: $\Delta C/\gamma_e T_c = 1.43[1 + 53(T_c/\omega)2\ln(\omega/3T_c)]$. Taking $\mu^* = 0.10$ and $T_c = 5.25$ K, we obtained $\omega = 320$ K and $\lambda = 0.6$. For such a small electron–phonon coupling constant, the large $H_{c2}(0)$ value is not likely due to the strong-coupling effect.

Theoretical calculations

In order to examine which atomic species contribute most around the Fermi level (E_F), we have plotted the local density of states (LDOS) for Pr$_3$Cr$_{10}$N$_{11}$ as shown in Fig. 5. Electronic structure calculations show that the DOS at the Fermi energy are contributed predominantly by Cr 3d electrons, implying that the superconductivity results mainly from the condensation of Cr 3d electrons similar to that in CrAs [32]. The primitive cell of Pr$_3$Cr$_{10}$N$_{11}$ is shown in the inset of Fig. 5, in which there are two types of nonequivalent Cr atoms, labeled as Cr$_1$ and Cr$_2$, respectively. Both the Cr$_1$ and Cr$_2$ atoms have large contributions around E_F, mainly originating from the 3d orbitals of Cr atoms. In contrast, the vast majority of states for Pr and N atoms are far from the Fermi level. A higher density of Cr$_2$ vacancies, such as in Pr$_3$Cr$_{9.5}$N$_{11}$, does not change the results very much. According to our calculations, the total DOS of Pr$_3$Cr$_{9.5}$N$_{11}$ at the Fermi level $N(E_F)$ is about 173 states/(eV×f.u.). As a result, the corresponding calculated electronic specific-heat coefficient $\gamma_e = 17.4$ mJ K$^{-2}$ mol$^{-1}$. Experimentally, the measured γ_e for Pr$_3$Cr$_{10}$N$_{11}$ is about 173 mJ K$^{-2}$ mol$^{-1}$—about 10 times more than the band calculations, which indicates the strong mass-enhancement effect.

CONCLUSION

Superconductivity in Pr$_3$Cr$_{10}$N$_{11}$ shows several novel characters. First, electronic structure calculations show that most of DOS at Fermi energy is contributed by Cr 3d electrons, suggesting that the superconductivity is originated from the condensation of Cr 3d electrons. So Pr$_3$Cr$_{10}$N$_{11}$ is the first Cr-based superconductor discovered in nitrides. A few other known Cr-based superconductors (CrAs, A$_2$Cr$_3$As$_3$ and ACr$_2$As$_3$ (A = K, Rb, Cs, Na)) are arsenide. Superconductivity in CrAs emerges in the vicinity of a quantum critical point and antiferromagnetic spin fluctuations associated with the quantum criticality could act as an important glue medium for Cooper pairing. Superconductivity in the quasi-1D compounds A$_2$Cr$_3$As$_3$
(A = K, Rb, Cs) shows non-s-wave pairing. Both of them show an unconventional pairing mechanism. So the Cr d-electrons play an important role in electron correlations and possibly unconventional superconductivity in Pr$_3$Cr$_{10-x}$N$_{11}$ with Cr d-electrons.

Second, Pr$_3$Cr$_{10-x}$N$_{11}$ has a relatively large upper critical field $H_{c2}(0) \sim 12.6$ T, exceeding the Pauli limit of the paramagnetic pair-breaking field; this is rare in 3D-structure superconductors. The upper critical field provides very important information on the superconducting pairing. This behavior resembles that unconventional superconducting in K$_2$Cr$_3$As$_3$ in which H_{c2} is three times the Pauli-paramagnetic limit that is regarded as evidence of spin-triplet superconductivity.

Last but not least, the measured γ_e for Pr$_3$Cr$_{10-x}$N$_{11}$ is about 173 mJ mol$^{-1}$ K$^{-2}$, equivalent to 17.3 mJ K$^{-2}$ mol Cr$^{-1}$. This γ value is close to that of K$_2$Cr$_3$As$_3$ (mJ K$^{-2}$ mol Cr$^{-1}$), indicating enhanced electron correlations in Pr$_3$Cr$_{10-x}$N$_{11}$. The experimental value of γ_e is about 10 times higher than the electronic calculations. This large renormalization factor cannot be explained by electron–phonon interactions and thus quantum fluctuations might be involved.

In conclusion, we report the experimental result for a novel Cr-based superconductor nitrides Pr$_3$Cr$_{10-x}$N$_{11}$ with a cubic lattice structure. Bulk superconductivity with $T_c \sim 5.25$ K is observed from the resistivity, susceptibility and specific-heat measurements. Further theoretical and experimental studies are needed to determine the pairing symmetry and the corresponding mechanism, especially the role of Cr 3d electrons, for the observed superconductivity in Pr$_3$Cr$_{10-x}$N$_{11}$.

METHODS

Sample preparation

Polycrystalline samples of Pr$_3$Cr$_{10-x}$N$_{11}$ were prepared by direct reactions of the corresponding binary nitrides, starting with PrN (99%) and a mixture of the chromium nitrides (CrN and Cr$_2$N) in a mass ratio of 4:6. The operations were all performed in an Ar-filled glovebox. Cold-pressed pellets of the mixtures were sealed in an evacuated quartz tube ($<10^{-4}$ Pa). The pellets were gradually heated in 1 day to 1000°C, held at that temperature for 50 hours, then cooled to the room temperature in the furnace. The products were again ground in a glovebox, pressed into pellets, wrapped in Ta foil and heated in an evacuated quartz tube at 1165°C for 120 hours. It is worth noting that, after this treatment, the samples were usually still contaminated by the binary nitrides. The treatment of these samples with diluted hydrochloric acid only dissolved the rare-earth nitrides. In between these treatments, the pellets were ground to a fine powder, the decomposed rare-earth nitride was dissolved in hydrochloric acid and fresh rare-earth nitride was added again to the mixture to maintain the proper composition. The reaction temperature was carefully selected to avoid decomposition of the products, meanwhile obtaining a good crystallization. In our study, we found that Pr$_3$Cr$_{10-x}$N$_{11}$ partially decomposed above 1200°C. Synthesized powder shows a dark-brown color and is air-sensitive, as it is easily oxidized to Pr$_2$O$_3$ within a few hours.

Measurements

The electrical transport measurement was carried out on a physical-property measurement system (PPMS-9, Quantum Design). The resistivity was measured by a standard four-probe method, employing silver-paste contacts cured at room temperature, used for resistivity measurements, with the electric current applied in an arbitrary direction. The magnetic susceptibility was measured in a Quantum Design SQUID VSM. The specific-heat measurements were performed up to 9 T in a PPMS.

Theoretical modeling

We carried out first-principles electronic structure calculations on Pr$_3$Cr$_{10-x}$N$_{11}$. The first-principles calculations were performed using the projector augmented-wave method [33], as implemented in the VASP package [34]. The generalized gradient approximation of the Perdew–Burke–Ernzerhof type [35] was adopted for the exchange-correlation function.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Zhao Yu Liu and Prof. Shi Liang Li (Institute of Physics) for their help in experiments.

FUNDING

This work was supported by the National Basic Research Program of China (2017YFA0302901, 2014CB921500), the National Natural Science Foundation of China (11674375, 11634015) and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (XDB07020200).

Conflict of interest statement. None declared.
REFERENCES

1. Bednorz JG and Müller KZ. Possible high T_c superconductivity in the Ba—La—Cu—O system. Z Phys B-Condens Mat 1986; 64: 189–93.

2. Kamihara Y, Watanabe T and Hirano M et al. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05—0.12) with $T_c = 26$ K. J Am Chem Soc 2008; 130: 3296–7.

3. Wu W, Cheng JG and Matsubayashi K et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. J Phys Soc Japan 2014; 83: 238–41.

4. Bao JK, Liu JY and Ma CW et al. Superconductivity in quasi-one-dimensional $K_2Cr_3As_3$ with significant electron correlations. Phys Rev X 2015; 5: 5568–77.

5. Tang ZT, Bao JK and Liu Y et al. Unconventional superconductivity in quasi-one-dimensional RbCr_3As_3. Phys Rev B 2015; 91: 020506; Tang ZT, Bao JK and Wang Z et al. Superconductivity in quasi-one-dimensional CsCr_3As_3 with large interchain distance. Sci China Mater 2015; 58: 16–20; Mu GG, Ruan BB and Pan BJ et al. Superconductivity at 5 K in quasi-one-dimensional Cr-based KCCr_3As_3 single crystals. Phys Rev B 2017; 96: 140504; Liu T, Mu OG and Pan BJ et al. Superconductivity at 7.3 K in 133-type Cr-based RbCr_3As_3 single crystals. Europhys Lett 2017; 120: 27006.

6. Cheng JG, Matsubayashi K and Wu W et al. Pressure induced superconductivity on the border of magnetic order in MnP. Phys Rev Lett 2015; 114: 117001.

7. Cheng JG and Luo JL. Special issue on pressure-induced superconductivity in CrAs and MnP. J Phys Condens Matter 2017; 29: 440301.

8. Kotevaga H, Nakahara S and Tou H et al. Superconductivity of 2.2 K under pressure in Helimagnet CrAs. J Phys Soc Japan 2014; 83: 238–41.

9. Wang Q and Hao YQ et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat Commun 2014; 5: 5508.

10. Shen Y, Wang Q and Hao YQ et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat Commun 2014; 5: 5508.

11. Chen GF, Li Z and Wu D et al. Superconductivity at 5 K in quasi-one-dimensional CrAs and MnP. J Physical Soc Japan 2014; 83: 238–41.

12. Cheng JG, Matsubayashi K and Wu W et al. Pressure induced superconductivity on the border of magnetic order in MnP. Phys Rev Lett 2015; 114: 117001.

13. Matsuda M, Ye F and Dissanayake SE et al. Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation. Phys Rev B 2015; 91: 020409.

14. Shen Y, Wang Q and Hao YQ et al. Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity. Phys Rev B 2016; 93: 060503.

15. Matsuda M, Ye F and Dissanayake SE et al. Pressure dependence of the magnetic ground states in MnP. Phys Rev B 2016; 93: 100405.

16. Matsuda M, Lin FK and Yu R et al. Evolution of magnetic double helix and quantum criticality near a dome of superconductivity in CrAs. Phys Rev X 2018; 8: 031017.

17. Mackenzie AP, Haselwimmer RKW and Tyler AW et al. Extremely strong dependence of superconductivity on disorder in Sr$_2$RuO$_4$. Phys Rev Lett 1998; 80: 161–4.

18. Mathur ND, Grosche FM and Julian SR et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 1998; 394: 39–43.

19. Broil S and Jeitschko W. The ternary rare earth chromium nitrides Ce_2CrN_3 and $\text{Ln}_3\text{Cr}_{10-x}\text{N}_{11}$ with $\text{Ln} = \text{La, Ce, Pr}$. Z Naturforsch B 1995; 50b: 905–12.

20. Chevire F, Ranjan C and Disalvo F. Synthesis, crystal and electronic structures of La$_9$Cr$_2$N$_6$. Solid State Commun 2009; 149: 273–6.

21. Chen GF, Li Z and Li G et al. Superconducting properties of the Fe-based layered superconductor LaFeAsO$_{1-y}$F$_y$. Phys Rev Lett 2008; 101: 057007.

22. Shen Y, Wang Q and Hao YQ et al. Superconductivity at 5 K under pressure in Helimagnet CrAs. J Phys Soc Japan 2014; 83: 238–41.

23. Cheng JG, Matsubayashi K and Wu W et al. Pressure induced superconductivity on the border of magnetic order in MnP. Phys Rev Lett 2015; 114: 117001.

24. Bao JK, Liu JY and Ma CW et al. Superconductivity in quasi-one-dimensional $K_2\text{Cr}_3\text{As}_3$ with significant electron correlations. Phys Rev X 2015; 5: 5568–77.

25. Tang ZT, Bao JK and Liu Y et al. Unconventional superconductivity in quasi-one-dimensional RbCr_3As_3. Phys Rev B 2015; 91: 020506; Tang ZT, Bao JK and Wang Z et al. Superconductivity in quasi-one-dimensional CsCr_3As_3 with large interchain distance. Sci China Mater 2015; 58: 16–20; Mu GG, Ruan BB and Pan BJ et al. Superconductivity at 5 K in quasi-one-dimensional Cr-based KCCr_3As_3 single crystals. Phys Rev B 2017; 96: 140504; Liu T, Mu OG and Pan BJ et al. Superconductivity at 7.3 K in 133-type Cr-based RbCr_3As_3 single crystals. Europhys Lett 2017; 120: 27006.

26. Cheng JG, Matsubayashi K and Wu W et al. Pressure induced superconductivity on the border of magnetic order in MnP. Phys Rev Lett 2015; 114: 117001.

27. Cheng JG and Luo JL. Special issue on pressure-induced superconductivity in CrAs and MnP. J Phys Condens Matter 2017; 29: 440301.

28. Kotevaga H, Nakahara S and Akamatsu R et al. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using 75As-nuclear Quadrupole resonance. Phys Rev Lett 2015; 114: 117002.

29. Keller L, White JS and Frontzek M et al. Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation. Phys Rev B 2015; 91: 020409.

30. Shen Y, Wang Q and Hao YQ et al. Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity. Phys Rev B 2016; 93: 060503.

31. Kotevaga H, Nakahara S and Akamatsu R et al. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using 75As-nuclear Quadrupole resonance. Phys Rev Lett 2015; 114: 117002.

32. Matsuda M, Ye F and Dissanayake SE et al. Pressure dependence of the magnetic ground states in MnP. Phys Rev B 2016; 93: 100405.

33. Matsuda M, Lin FK and Yu R et al. Evolution of magnetic double helix and quantum criticality near a dome of superconductivity in CrAs. Phys Rev X 2018; 8: 031017.

34. Mackenzie AP, Haselwimmer RKW and Tyler AW et al. Extremely strong dependence of superconductivity on disorder in Sr$_2$RuO$_4$. Phys Rev Lett 1998; 80: 161–4.

35. Mathur ND, Grosche FM and Julian SR et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 1998; 394: 39–43.

36. Broil S and Jeitschko W. The ternary rare earth chromium nitrides Ce_2CrN_3 and $\text{Ln}_3\text{Cr}_{10-x}\text{N}_{11}$ with $\text{Ln} = \text{La, Ce, Pr}$. Z Naturforsch B 1995; 50b: 905–12.