In vitro Maintenance of Olfactory Mucosa with Enriched Olfactory Ensheathing Cells

Neetu Singh1,2*, Saroj C Gopal2, Rajeshwar N Srivastava2, Tulika Chandra2, Satya P Agarwal1, Sanjay K Singh4, Devendra K Gupta5 and Anil K Balapure8

1Department of Biochemistry, King George’s Medical University, Lucknow-226 003, India
2Department of Pediatric Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221005, India
3Department of Orthopedic Surgery, King George’s Medical University, Lucknow-226 003, India
4Department of Transfusion Medicine, King George’s Medical University, Lucknow-226 003, India
5Department of Otorhinolaryngology, King George’s Medical University, Lucknow-226 003, India
6Department of ENT Surgery, Comprehensive ENT Care and Cure, Lucknow-226 024, India
7King George’s Medical University, Lucknow-226 003, India
8Tissue and Cell Culture Unit (TCCU), CSIR-Central Drug Research Institute, Lucknow-226001, India

*Authors have contributed equally

Volume 3 • Issue 1 • 1000132

In vitro Maintenance of Olfactory Mucosa with Enriched Olfactory Ensheathing Cells

Keywords: Olfactory ensheathing cells; Neonate Rat Olfactory Bulb; Human Olfactory Mucosa; Axonal regeneration; GFAP; p75NTR

Introduction

The nasal mucosa regulates olfaction and is unique in its locale, neuronal characteristic communicating directly with external environs, easy extractability with functional loss, regeneration etc. Consequently, this tissue is adult stem cells repertoire for cell therapy.

The human olfactory mucosa consists of a pseudo-stratified columnar epithelium placed on a highly cellular lamina propria. The olfactory epithelium has four cell types: Ciliated Bipolar Olfactory Receptor Neuron, Sustentacular, Microvillar and Basal Cells [1]. The lamina propria contains Axon Fasicles, Blood Vessels, Connective Tissue, Olfactory Ensheathing Cells (OECs) and Bowman’s Glands [1]. Recently, highly proliferative Olfactory Ecto-Mesenchymal Stem Cells (OE-MSCs) similar to bone marrow MSCs have been identified in lamina propria with a tendency to differentiate into neural cells [2]. Hence, the permanent neurogenesis (regenerate olfactory receptor neurons) owes to bi-compartmental stem cells of the mucosa, namely the basal cells of olfactory epithelium and OE-MSCs in underlying lamina propria. The OECs-a unique line of glial cells support the transition of axons of the olfactory receptor neurons from the peripheral nervous system (olfactory epithelium) to the central nervous system (olfactory bulb) [1]. Principally, OECs share similar phenotypic properties with both Astrocytes and Schwann cells have become a potential candidate for the transplant-mediated repair of the damaged Spinal Cord Injury (SCI) [3-5]. Further, the autologous, migratory and mingling property of OECs in central nervous system may provide an appropriate niche for the development of neurons [6]. OECs can be identified immuno-cytchemically through Low-Affinity Nerve Growth Factor Receptor p75 (p75NTR) and Glial Fibrillary Acidic Protein (GFAP) [6]. Their plasticity has also been described through altered morphology and antigen expression in response to culture media composition [7,8] cell density [9] and axon contact [10]. More, OECs also phagocytize cellular debris after injury in vivo [11] or in vitro [12]. Taken together, the above observations imply that OECs are regulated by the environment created by its adjoining cell types as well as culture conditions. Therefore, mixed culture population of enriched OECs under specified culture conditions in the niche of different cell types (Basal cells, OE-MSCs) may prove a promising approach for cell therapy during spinal cord injury.

Hence, the manuscript describes the culture of explants of human

Received January 23, 2013; Accepted February 08, 2013; Published February 11, 2013

Citation: Singh N, Gopal SC, Srivastava RN, Chandra T, Agarwal SP, et al. (2013) In vitro Maintenance of Olfactory Mucosa with Enriched Olfactory Ensheathing Cells. J Stem Cell Res Ther 2: 132. doi:10.4172/2157-7633.1000132

Copyright: © 2013 Singh N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
OM through middle turbinate region in a defined culture media. The method was first established with two-day-old Sprague-Dawley Neonate Olfactory Bulb derived OECs. Briefly, after collection, the olfactory mucosa was sliced without any enzymatic treatment and cultured for 40 days. At day 21, the process of neurogenesis and axonal remyelination was observed morphologically. Besides >95% of purified population of OECs with flattened morphology/GFAP/p75NTR positivity was observed on trypsinization. Hence, direct transplantation of cultured OM in spinal cord injured patients compared to purified OECs may be a better approach.

Materials and Methods

Dulbecco’s Modified Eagle’s Medium (DMEM), Ham’s F12, N-[2-Hydroxyethyl] piperazine-N′-2-ethanesulfonic acid (HEPES), Penicillin G, Streptomycin sulfate, Gentamicin sulfate, Dulbecco’s Phosphate Buffered Saline (PBS), Bovine Serum Albumin (BSA), Human Epidermal Growth Factor (EGF), Human Transforming Growth Factor-α (TGF-α), Cholera Toxin, Hydrocortisone, Non-Essential Amino Acids were purchased from Sigma Chemical Co., St. Louis, MO, USA. Fetal Calf Serum (FCS) was procured from Gibco BRL Laboratories, New York, USA. Antibodies against Active Caspase-3, Active Caspase-8 and Active Caspase-9 were purchased from BioVision Research Products (Mountain View, CA, SA). FITC Caspase-3, Active Caspase-8 and Active Caspase-9 were purchased from BioVision Research Products (Mountain View, CA, SA). FITC Conjugated Secondary Antibody for Immunofluorescence Staining. Alkaline Phosphatase Staining

Eclipse Ti Inverted Phase Contrast Microscope. Western blotting

1.0 × 10^6 cells were cultured in T-25 flasks until day 30. Pellet was disrupted in lysis buffer acquired from Cell Lysis M™ Cell Lysis reagent, Sigma Chemical Co. (St. Louis, MO, USA) with protease and phosphatase inhibitor cocktail as per manufacturer’s protocol. The supernatant was estimated for protein content [13]. 30 μg of protein per lane was processed for western blotting by 12.5% SDS-PAGE and transferred to nitrocellulose membranes. Membranes were probed with the appropriate primary antibodies against Active Caspase-3, Active Caspase-8, Active Caspase-9, p53, phospho (Ser-15) p53, and ExtrAvidin® Alkaline Phosphatase Staining kit as well as BCIP/NBT tablets were from Sigma Chemical Co. (St. Louis, MO, USA). All other chemicals used were of analytical grade.

Surgical extraction and culture of olfactory bulb of 2 day-Neonate

2-day Neonate Sprague–Dawley was procured from the Division of Laboratory Animals from our institute maintained under standard animal care conditions. The study was approved by the Institutional Animal Ethics Committee. The animals were gently wiped with 70% ethanol in a laminar flow for ensuring aseptic conditions and decapitated. The olfactory bulbs were harvested after rapid removal of the skin and skull. The bulbs excised from six neonates were placed in a chilled 35-mm petri dish containing 2 ml of Ham’s F12 medium, pH 7.4, penicillin (100 U/ml), streptomycin (100 μg/ml), and gentamicin (60 μg/ml) supplemented with 10% FCS and 10 mM HEPES. The tissue was finely macerated and transferred to a T-25 flask/6-well plate/fresh medium each day. All primary antibodies were diluted in 1% Bovine Serum Albumin in chilled PBS. The cells were examined and photographed by a Nikon Eclipse Ti Inverted Phase Contrast Microscope.

Results and Discussion

Of the two options available for obtaining OECs from the tissue, we chose the non-enzymatic method in which the tissue slices left undisturbed for five days causes adherence of the explants to the plastic surface and subsequent emergence of the cell population [14].
Our approach has also been reaffirmed by Delorme et al. [2] that non-enzymatic methods conserve the quality of the both stem cells and OECs. Explantation causes minimal trauma to the tissue which is critical for cell quality. However, procedural constraints and absence of cells emanating at day 0 did not permit immuno-cytochemical quantification of the component cell types.

Primarily we isolated, cultured and characterized the OECs from 2-day old Sprague Dawley Olfactory Bulb. The cells emanating from the undisturbed tissue mass were greater in magnitude than on the periphery as a function of growth by day 5 (Figure 1A). However, the rate of cell multiplication enhanced subsequently reaching > 75% and were confluent by day 9 (Figure 1B) and 13 (Figure 1C) respectively. Microscopic examination suggested interspersed, dense population of heterogeneous cells distinctly containing at least two cell types through spatial juxtapositioning of unstained and immunostained areas through GFAP (Figure 2A). Our results are consistent with those obtained by Pixley [3] and Huang et al. [15]; they have also suggested the presence of two major cell types. The smaller, spindle shaped astrocyte like cells and the flattened bigger structures resembling Schwann cells were also noticed in our studies (Figure 2B). Among this cell population, p75NTR specifically stained spindle-shape astrocyte like cells (Figure 2C). Interestingly, the dichotomy between two cell types; Schwann-OEC (spindle-like morphology), expressing both p75NTR [16] and GFAP [17] and astrocyte-like OEC (flattened morphology) expressing only GFAP [5] have also been explained by Barnett and Roskams [18] (Figures 2B and 2C) Conspicuously, the intensity of GFAP/p75NTR stain was relatively intense around the anchored, day 13 residual tissue mass inner-core cells than those in the immediate vicinity versus the periphery.

In the present study, in order to evaluate the yield of OECs, the complete human OM biopsy was cultured for 40 days. OM post-collection was non-enzymatically sliced cultured and characterized morphologically, immuno-cytochemically and through western blotting. Initially, we observed the spherical clusters (due to absence of enzymatic treatment) which were morphologically similar to those developed through olfactory ecto-mesenchymal stem cells (OE-MSCs) as reported by Delorme et al. [2] (Figure 3A). The human OM survived and proliferated optimally in culture medium giving rise to 20-30% cell population by day 9 when left undisturbed (Figure 3B). On day 21, the anchored tissue allowed copious emergence of densely juxtaposed cell population radiating all around (Figure 3C). In certain areas, a densely packed monolayer-like population with occasional presence of olfactory neuronal network is also noticeable in the same cell mass. In sparsely populated area, intense inter-cellular gap junctions containing cells resembling typical neuronal characteristics was noticed (Figure 3C). Parallel staining of day 21 samples revealed ~70% GFAP and p75NTR positively stained cell mass superimposable over unstained cells suggesting enrichment of OECs (Figures 4A and 4B). The cloistered manner in which majority of the cells assimilating GFAP and p75NTR is indicative of their wrap-around, ensheathing, encapsulating characteristic around neuronal network (Figures 4A and 4B). Physiologically this may be relevant to the known, spatial, directional migration of these cells in the neuronal differentiation. Both spindle shaped astrocyte like and the flattened sheet like structures resembling Schwann cells were also noticed (Figure 5). The composition of cells in the culture vessel was of single flattened sheet like morphology (Figure 6). By day 30, the cellular morphology transformed into a more firm sheet like structure throughout the area viewed with neurogenesis (Figures 7A-7D) owing to the presence of other cell types (fibroblast-like cells, mesenchymal stem cells, connective cells, immune cells and pericytes [19-21] with enriched OECs. Absence of Active Caspases 3, 8, 9 and phospho-p53 further supported the facts (Figure 8). Hence, we...
conclude that the defined media i.e. the supplemented growth factors in the primary culture allowed the cells to overcome the problem of limited life span and enriched the OECs. More, low concentrations of cholera toxin stimulated the cell growth and increased the number of passages in primary OM cells [22] through stimulation of basal and forskolin-amplified adenylate cyclase activity [23]. EGF a structural homologue of TGF-α, both exerting their actions through EGF receptor [24] were mitogenic to OM [25]. Insulin and hydrocortisone further supported the proliferation and differentiation of the cells [26]. However, these growth factors did not modulate the expression of p75NTR and GFAP staining except that they stimulated the proliferation/stratification until 6 weeks and passaging on day 21 which stopped in serum alone on 30th day [5]. Further, by 6 weeks the cultured cell mass displayed

Figure 2: The confluent flask was immuno-cytochemically characterized on day 13 through Glial Fibrillary Acidic Protein (GFAP) from 2-day-old Neonate of Sprague-Dawley strain. Microscopic examination (Nikon Eclipse Ti Phase Contrast Microscope) suggested dense population of heterogeneous cells through spatial juxta-positioning of unstained and immunostained areas through GFAP (A). Moreover, both spindle shaped astrocyte like cells and the flattened sheet like Schwann cells were also observed through GFAP staining (B). However, FITC labelled p75NTR Protein stained cells on day 13 specifically stained only spindle-shape astrocyte like cells (C). The cells were photographed on magnification 10X.

Figure 3: The human Olfactory mucosa (OM) explants were placed in T-25 flask in 1:1 Dulbecco’s modified Eagle’s medium (DMEM)/ Ham’s F12 containing penicillin, streptomycin, gentamicin, bovine insulin, Human epidermal growth factor (EGF), Transforming Growth Factor-α (TGF-α), cholera toxin, hydrocortisone, Non-essential amino acids (NEAAs), 10% FCS and 10 mM HEPES in a humidified 5% CO\textsubscript{2} incubator at 37°C. Spherical clusters were observed on day 5 (A), a mixed population of cells emanating around the explants from the undisturbed flask on day 9 (B) and the attached explants allowed abundant emergence of dense cell population radiating all around with axonal junctions in sparse populated area with occasional presence of olfactory neuronal network is also marked on day 21 (C). The cells were photographed through Nikon Eclipse Ti Phase Contrast with magnification 10X.
degenerative changes where the cell morphology appeared dissoluting proven through GFAP immunostaining and other supporting studies [12]. This is also in agreement with the phase contrast microscopy pictures (Figure 9).

Many reports have been published on culturing of OECs through OM biopsies since isolation of olfactory mucosa is a less invasive protocol. Most importantly, Choi et al. [27] reported differential yield...
of autologous OECs and reported no undesirable effects without any neurological improvement at 12 months post-transplantation. Through above and our studies, we conclude and propose that OECs with other cell types, rather than pure OECs may produce optimal transplant-mediated repair. Li et al. [32] also supported the enhanced efficacy of mixed culture (50:50 ratios of OECs with olfactory nerve fibroblast-like cells) compared to pure OECs. Our findings help define appropriate conditions for OM attachment, initiation of cells, extrusion, proliferation, differentiation and migration. Additionally, enriched populace of OECs may prove their potential as therapeutic for human spinal cord injury and cochlear damage. However, there are several important practical issues that will need to be solved before they reach general clinical application.

Passaging of confluent cells

The cultured explants from the neonate rat OB versus human OM displayed heterogeneity in terms of multiplication of cells resulted in achievement of cell confluency by day 13 (Figure 10) and 21(Figures 11A and 11B) respectively. Following trypsinization through standard procedures, the cells were microscopically examined and immunologically evaluated on day 4 (rat OB) and day 7 (human OM) respectively in the two cases. We found the cells resembling those from the parent flask without any apparent alteration (Figures 10, 11A and 11B). Different methods like differential adhesion of OECs with respect to other cells [33]; with Thy1.1 complement lysis [34]; through immunopanning (anti-p75NTR) [35]; using magnetic nanoparticles; through FACS [4] have been utilized for purifying OECs. However, we tried purification of OECs through differential adhesion. We enriched/cultured the OECs for day 21 and on trypsinization we obtained >90% population positive for p75NTR as well as GFAP in the flask (Figures 11A and 11B).
The heterogeneous cellular confluency achieved by day 21 through human OM was trypsinized. Following trypsination through trypsin and osteogenic properties. Stem Cells Dev 19: 853-866.

Delorme B, Nivet E, Gaillard J, Häupl T, Ringe J, et al. (2010) The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev 19: 853-866.

Hanks CT (1979) Insulin and hydrocortisone influences on cultured rat tongue epithelium. Arch Oral Biol 24: 765-786.

Choi D, Li D, Law S, Powell M, Raisman G (2008) A prospective observational study of the yield of olfactory ensheathing cells cultured from biopsies of septal solo or in need of a friend? Trends Neurosci 27: 54-60.

Barnett SC, Chang L (2004) Olfactory ensheathing cells and CNS repair: going solo or in need of a friend? Trends Neurosci 27: 54-60.

20. Tomé M, Lindsay SL, Riddell JS, Barnett SC (2009) Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 27: 2196-2208.

21. Lindsay SL, Riddell JS, Barnett SC (2010) Olfactory mucosa for transplant-mediated repair: a complex tissue for a complex injury? Glia 58: 125-134.

22. Stamper MR (1982) Cholera Toxin Stimulation of Human Mammary Epithelial Cells in Culture. In Vitro 18: 479-490.

23. Macleod KG, Milligan G (1990) Biphasic regulation of adenylyl cyclase by cholera toxin in neuroblastoma × glioma hybrid cells is due to the activation and subsequent loss of the α subunit of the stimulatory GTP binding proteins (Gα). Cell Signal 2: 139-151.

24. Todaro GJ, Fryling C, De Larco JE (1980) Transforming growth factors produced by certain human tumor cells: Polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77: 126-134.

25. Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48: 193-216.

26. Hanks CT (1979) Insulin and hydrocortisone influences on cultured rat tongue epithelium. Arch Oral Biol 24: 765-776.

27. Chol D, Li D, Law S, Powell M, Raisman G (2008) A prospective observational study of the yield of olfactory ensheathing cells cultured from biopsies of septal nasal mucosa. Neurosurgery 62: 1140-1144.

28. Girard SD, Devêze A, Nivet E, Gepner B, Roman FS, et al. (2011) Isolating Nasal Olfactory Stem Cells from Rodents or Humans. J Vis Exp.

29. Féront F, Perry C, Cochran J, Licina P, Nowitzke A, et al. (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128: 2951-2960.

30. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, et al. (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29: 191-203.
31. Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, et al. (2009) Autologous mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47: 887-895.

32. Li Y, Field PM, Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 18: 10514-10524.

33. Nash HH, Borke RC, Anders JJ (2001) New Method of Purification for Establishing Primary Cultures of Ensheathing Cells From the Adult Olfactory Bulb. Glia 34: 81-87.

34. Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41: 224-236.

35. Ramón-Cueto A, Nieto-Sampedro M (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol 127: 232-244.