Therapeutic siRNA: state of the art

Bo Hu¹, Liping Zhong², Yuhua Weng¹, Ling Peng³, Yuanyu Huang⁴, Yongxiang Zhao² and Xing-Jie Liang⁴

RNA interference (RNAi) is an ancient biological mechanism used to defend against external invasion. It theoretically can silence any disease-related genes in a sequence-specific manner, making small interfering RNA (siRNA) a promising therapeutic modality. After a two-decade journey from its discovery, two approvals of siRNA therapeutics, ONPATTRO™ (patisiran) and GIVLAARI™ (givosiran), have been achieved by Alnylam Pharmaceuticals. Reviewing the long-term pharmaceutical history of human beings, siRNA therapy currently has set up an extraordinary milestone, as it has already changed and will continue to change the treatment and management of human diseases. It can be administered quarterly, even twice-yearly, to achieve therapeutic effects, which is not the case for small molecules and antibodies. The drug development process was extremely hard, aiming to surmount complex obstacles, such as how to efficiently and safely deliver siRNAs to desired tissues and cells and how to enhance the performance of siRNAs with respect to their activity, stability, specificity and potential off-target effects. In this review, the evolution of siRNA chemical modifications and their biomedical performance are comprehensively reviewed. All clinically explored and commercialized siRNA delivery platforms, including the GalNAc (N-acetylgalactosamine)–siRNA conjugate, and their fundamental design principles are thoroughly discussed. The latest progress in siRNA therapeutic development is also summarized. This review provides a comprehensive view and roadmap for general readers working in the field.

Signal Transduction and Targeted Therapy (2020) 5:101 ; https://doi.org/10.1038/s41392-020-0207-x

INTRODUCTION

Gene therapy is a promising therapeutic platform because it targets disease-causing genes in a sequence-specific manner, which enables more precise and personalized treatment of diverse life-threatening diseases.¹ By introducing a certain nucleic acid modality to the desired tissue of the patient, gene expression can be downregulated, augmented or corrected. Small interfering RNA (siRNA), microRNA (miRNA) and inhibitory antisense oligonucleotides (ASOs) are representative molecules used to trigger gene inhibition, whereas plasmid DNA, messenger RNA (mRNA), small activating RNA (saRNA), splicing-modulatory ASOs and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) systems are usually employed to increase or correct target gene expression.²⁻⁴ Currently, many therapeutic programs have been explored to treat certain diseases.

RNA interference (RNAi) is a natural defense mechanism for the invasion of exogenous genes.⁵⁻⁶ RNAi modalities, e.g., siRNA and miRNA, can knockdown the expression of target genes in a sequence-specific way (Fig. 1) by mediating targeted mRNA degradation (for siRNA and miRNA) or mRNA translation repression (for miRNA). As a result of the slight differences between siRNA and miRNA, siRNA can typically trigger more efficient and specific gene silencing than miRNA, whereas one miRNA may compromise the expression of several different target genes simultaneously. Hence, siRNA and miRNA have different roles in pharmaceutical practice.

Since the establishment of the RNAi concept in 1998, siRNA therapies have experienced many ups and downs. In 2001, Tuschl et al.⁷ successfully silenced the expression of a specific gene by introducing chemically synthesized siRNA into mammalian cells, leading to the emergence of a developmental upsurge. Although siRNA therapy once suffered due to the obstacles of its stability, specificity and delivery, advances in chemical modification and delivery brought the field to a robust and rapidly developing area of research again in recent years. After a 20-year journey, the United States Food and Drug Administration (FDA) and the European Commission (EC) approved ONPATTRO™ (patisiran, ALN-TTR02) as the first commercial RNAi-based therapeutic for the treatment of hereditary amyloidogenic transthyretin (hATTR) amyloidosis with polyneuropathy in adults in 2018.²⁻⁸ Recently, the FDA-approved GIVLAARI™ (givosiran, ALN-AS1) for the treatment of adults with acute hepatic porphyria (AHP).⁹⁻¹² siRNA has innate advantages over small molecular therapeutics and monoclonal antibody drugs because siRNA executes its function by complete Watson–Crick base pairing with mRNA, whereas small molecule and monoclonal antibody drugs need to recognize the complicated spatial conformation of certain proteins. As a result, there are many diseases that are not...
treatable by small molecule and monoclonal antibody drugs since a target molecule with high activity, affinity and specificity cannot be identified. In contrast, theoretically, any gene of interest can be targeted by siRNA since only the right nucleotide sequence along the targeting mRNA needs to be selected. This advantage confers the siRNA modality with a shorter research and development span and a wider therapeutic area than small molecule or antibody drugs, especially for those genes that are unfeasible for development with such strategies.

Although siRNA holds promising prospects in drug development, several intracellular and extracellular barriers limit its extensive clinical application. Naked and unmodified siRNA possesses some disadvantages, such as (1) unsatisfactory stability and poor pharmacokinetic behavior and (2) the possible induction of off-target effects. The phosphodiester bond of siRNA is vulnerable to RNases and phosphatases. Once it is systematically administered into circulation, endonucleases or exonucleases throughout the body will quickly degrade siRNA into fragments, thus preventing the accumulation of intact therapeutic siRNA in the intended tissue. In theory, siRNA only functions when its antisense strand is completely base-paired to the target mRNA. However, a few mismatches are tolerated by the RNA-induced silencing complex (RISC), which may lead to undesired silencing of those genes with a few nucleotide mismatches. In addition, the RISC-loaded sense strand of siRNA may also knockdown the expression of other irrelevant genes. Moreover, unformulated and unmodified siRNA may lead to the activation of Toll-like receptor 3 (TLR3) and adversely affect the blood and lymphatic systems. These discoveries have raised many concerns about the undesirability of the antisense components of siRNA. Other investigations demonstrated that siRNA classes with sequences of 21 nucleotides and interferon-γ. Bevasiranib and AGN211745 are siRNA therapeutics developed for the treatment of age-related macular degeneration. The VEGFA-targeting bevasiranib and VEGFR1-targeting AGN211745 are unmodified and slightly modified siRNAs, respectively. Moreover, Kleinman and colleagues further demonstrated that siRNA classes with sequences of 21 nucleotides or longer, regardless of which genes they target, can suppress CNV in mice compared to bevasiranib and AGN211745. These findings eventually led to the termination of the clinical investigation of bevasiranib in 2009.

Chemically modified siRNAs, such as siRNAs with substitution of the 2′-OH with a 2′-O-methyl (2′-OMe) or 2′-methoxymethyl (2′-MOE) group or the substitution of certain nucleotides with locked nucleic acid (LNA), unlocked nucleic acid (UNA), or glycol nucleic acid (GNA) (Fig. 2), can efficiently suppress immunostimulatory siRNA-driven innate immune activation, enhance activity and specificity, and reduce off-target-induced toxicity. To enhance the potency and reduce the potential toxicity of siRNA, numerous chemical modification geometries have been established and tested.

siRNA MODIFICATION

During the early stages of developing siRNA therapeutics, many agents were designed based on completely unmodified or slightly modified siRNA to arrive at appropriate tissue and then silence the target gene. These molecules can mediate gene silencing in vivo, especially in tissues that receive local drug administration, e.g., eyes. However, limited efficacy and potential off-target effects may be observed with these modalities. For example, Kleinman and colleagues observed that bevasiranib and AGN211745 triggered significant activation of toll-like receptor 3 (TLR3) and its adapter molecule TRIF, inducing the secretion of interleukin-12 and interferon-γ. Bevasiranib and AGN211745 are siRNA therapeutics developed for the treatment of age-related macular degeneration. The VEGFA-targeting bevasiranib and VEGFR1-targeting AGN211745 are unmodified and slightly modified siRNAs, respectively. Moreover, Kleinman and colleagues further demonstrated that siRNA classes with sequences of 21 nucleotides or longer, regardless of which genes they target, can suppress CNV in mice compared to bevasiranib and AGN211745. These findings eventually led to the termination of the clinical investigation of bevasiranib in 2009.

Chemically modified siRNAs, such as siRNAs with substitution of the 2′-OH with a 2′-O-methyl (2′-OMe) or 2′-methoxymethyl (2′-MOE) group or the substitution of certain nucleotides with locking nucleic acid (LNA), unlocked nucleic acid (UNA) or glycol nucleic acid (GNA) (Fig. 2), can efficiently suppress immunostimulatory siRNA-driven innate immune activation, enhance activity and specificity, and reduce off-target-induced toxicity. To enhance the potency and reduce the potential toxicity of siRNA, numerous chemical modification geometries have been established and tested. As a result, several modification patterns and delivery platforms have been employed in clinical studies. Here, the detailed evolution and advances in the modification and delivery technologies of siRNA are comprehensively summarized and discussed. This review provides an overview and a handbook for reviewing siRNA therapeutic development.

Fig. 1 Schematic illustrations of the working mechanisms of miRNA (a) and siRNA (b)
Fig. 2 Structures of chemical modifications and analogs used for siRNA and ASO decoration. According to the modification site in the nucleotide acid, these structures can be divided into three classes: phosphonate modification, ribose modification and base modification, which are marked in red, purple and blue, respectively. R = H or OH, for RNA or DNA, respectively. (S)-cEt-BNA (S)-constrained ethyl bicyclic nucleic acid, PMO phosphorodiamidate morpholino oligomer.
According to the natural structure of nucleotides, chemical modifications can be placed at the phosphate backbone, the ribose moiety or the base. Typically, these modifications are simultaneously introduced in siRNA. For example, the combination of 2'-OMe and phosphorothioate (PS) modifications facilitates the systemic administration of cholesterol-conjugated siRNA and achieves efficient gene silencing in vivo. In addition, the combination of 2'-OMe and 2'-deoxy-2'-fluoro (2'-F) has been used for ONPATTRO® (Figs. 2, 3). For QPL-1007, a naked and unformulated siRNA therapeutic, 2'-OMe was alternatively incorporated into the antisense strand, and an inverted deoxyribosyl moiety and an L-DNA cytidine nucleotide were used in the sense strand (Figs. 2, 3). Moreover, modifications with phosphorothioate (PS), 2'-OMe, 2'-F and 2'-deoxy were employed for incisilin (ALN-PCCs), an siRNA therapeutic for the treatment of hypercholesterolemia. Overall, the precise modification of siRNA can increase its efficacy, specificity, and stability and reduce its toxicity and immunogenicity. Detailed information will be discussed in the following sections.

Phosphonate modification
Phosphorothioate (PS) linkage has previously been used in antisense oligonucleotide (ASO) modification. This modification was achieved by leveraging a sulfur atom to replace one oxygen atom in the sugar-phosphate backbone of DNA or RNA (Fig. 3). Moreover, phosphonate modifications can endow modified oligonucleotides with resistance to nucleases, and these molecules more readily combine with plasma proteins, especially albumin than their unmodified counterparts, which may result in a longer circulation time. Although some data have shown that PS modification reduces the binding affinity between the oligonucleotide and its target sequence to some extent and aggravates chemistry-related toxicities with a high PS content, phosphonate modification is still very important and necessary for both siRNA and ASO because, compared with unmodified oligonucleotides, PS-modified oligonucleotides are more hydrophobic and stable molecules with higher affinity to certain proteins. Appropriately protein binding may prolong the half-life of oligonucleotides in circulation, and the half-life of the elimination phases may be as long as a few days. Protein binding is typically beneficial for the cell entry of oligonucleotides; however, too much protein binding showed a positive correlation with in vivo toxicity. Hence, the position and number of PS linkages are pivotal for their application. For siRNA modification, Alnylam introduced two PS linkages at the first two nucleotides at the 5'-end of the sense strand and two PS linkages at the first two nucleotides at both the 5'-end and the 3'-end of the antisense strand of siRNA (Fig. 3). Moreover, compared to the parent siRNA without modifications, the PS linkage-containing siRNA has a barely changed in vivo biodistribution profile, as it predominantly accumulates in clearance organs, e.g., liver, kidneys and intestines, followed by glandular tissues, bone marrow, adipocytes and lymph nodes.

Notably, there are two configurations for PS linkages, namely, Rp and Sp isomers (Fig. 2). Verdine and colleagues (team from Wave Life Sciences) demonstrated that the stereochemistry of PS significantly influences the pharmacologic performance of ASOs. PS linkages with the Sp configuration are more stable than those with the Rp configuration. More importantly, they unveiled that stereopure ASOs with a triplet stereochemical code, SpSpR, make the target RNA more vulnerable to RNase H1 in vitro and achieve a more durable inhibition profile in vivo than stereorandom ASOs. However, Østergaard et al. (team from Ionis Pharmaceuticals) disclosed that controlling PS chirality markedly affects the interactions between the ASOs and RNase H1; however, this modulation failed to enhance the overall therapeutic effects. The sequence and design of ASOs are the primary drivers that determine the performances of gapmer ASOs. In addition, recently disclosed patents filed by Alnylam reported that the chirality of PS linkages may markedly influence siRNA performance. The terminal chiral PS linkages at the 3'- and 5'-ends of the antisense strand of siRNA prefer Sp and Rp configurations, respectively. The chiral PS number can be 1, 2 or 3 at the 3'-end and 1 or 2 at the 5'-end of the siRNA antisense strand. In addition, the chiral PS linkages at the 5'-end of the siRNA sense strand can adopt either an Sp or an Rp configuration and are positioned at the first internucleotide linkage at the 5'-end of the sense strand. Overall, the chirally modified siRNA can comprise four, five or more terminal, chirally modified PS linkages.

In addition, other residues have been identified and successfully used to replace the phosphodiester group in oligonucleotides and change the properties of intact strands, including phosphorodithioate (PS2), methylphosphonate (MP), methoxypropylphosphonate (MOP) and peptide nucleic acid (PNA) (Fig. 2). PS modification can increase the affinity between RISC and siRNA. The site-specific incorporation of MP and MOP modifications has been used to reduce ASO protein binding since the PS backbone is negatively charged, whereas alkylphosphonate linkages are charge neutral. As a result, the MOP linkage incorporated at position 2 or 3 from the 5'-end of the DNA gap significantly mitigated the hepatotoxicity of ASOs. In addition, both PNA- and phosphorodiesters are very meaningful modifications to make siRNA or ASO molecules more druggable, although these modifications are not as predominant as PS. PNA is also typically used to modify detection probes for capturing and detecting certain nucleic acid targets.

In addition, phosphonate modification with various analogs at the 5'-end of siRNA or single-stranded siRNA (ss-siRNA) is a newly developed but important decoration strategy to enhance siRNA activity. The 5'-phosphate of exogenously introduced siRNA is required for RISC loading. A 5'-phosphate can be modified via either phosphorylation in cells mediated by Clp1 (cleavage and polyadenylation factor I subunit 1) or chemical synthesis in the laboratory. However, the natural 5'-phosphate can also be removed by dephosphorylation in cells. Together with the demand to enhance siRNA stability, researchers have identified a series of analogs that have similar conformation and steroidal electronic properties to natural phosphates but are resistant to dephosphorylases. As a result, 5'- (E)-vinyl phosphate (5'- (E)-VP), 5'-methylphosphonate (5'-MOP), 5'-C-methyl with phosphate, 5'-phosphorothioate, etc., were designed and evaluated in vitro and in vivo (Fig. 2). Among these strategies, 5'- (E)-VP decoration, which substitutes bridge oxygen and carbon with E-vinyl phosphonate moieties at the 5'-end, is the most potent and metabolically stable mechanism. The replaced hydrophobic substitutions enhance the stability of intact oligonucleotides and are favorable for RISC loading. Ionis Pharmaceuticals first developed and own the intellectual property rights to the 5'- (E)-VP structure. This technology was first applied to ss-siRNA and achieved ideal pharmacodynamic and pharmacokinetic profiles. Modifying ss-siRNA with 5'- (E)-VP and other specific modification structures enables potent repression of targeted gene expression by ss-siRNA in vivo. Inspired by this finding, the 5'- (E)-VP modification was further applied to double-stranded siRNA. Data have revealed that this modification improves siRNA accumulation and residence time in tissue and enhances siRNA potency in vivo by elevating Argonaute-2 binding.

Ribose modification
Ribose modifications at the 2' position have been widely used to protect siRNA from attacking ribonucleases, which require the 2'-OH group for the hydrolysis of RNA. Notably, 2'-O-methyl (2'-OMe) (Fig. 2) is a naturally occurring ribosugar and the most frequently used modification in drug development so far because this molecule can enhance stability by blocking the nucleophilic 2'-OH group. In addition, 2'-OMe also shows increased affinity for its target mRNA and reduced immunogenicity in the body. Based
Fig. 3 Representative designs for the chemical modification of siRNA. The sequences and modification details for ONPATTRO®, QPI-1007, GIVLAARI™ and inclisiran are included. The representative siRNA modification patterns developed by Alnylam (STC, ESC, advanced ESC and ESC+) and arrowhead (AD1-3 and AD5) are shown. Dicerna developed four GalNAc moieties that can be positioned at the unpaired G–A–A–A nucleotides of the DsiRNA structure. 2′-OMe 2′-methoxy, 2′-F 2′-fluoro, GNA glycol nucleic acid, UNA unlocked nucleic acid, SS sense strand, AS antisense strand.
on 2′-OMe, a series of analogs have been identified, among which 2′-O-methoxymethyl (2′-O-MOE) (Fig. 2) is one of the most useful and popular analogs of 2′-OMe. Moreover, 2′-O-MOE shows higher binding affinity for RNA than 2′-OMe with a 0.9–1.7 °C change in ΔT_m per modified nucleotide, which further increases the capability of the modified siRNA to resist nuclease attack.32

Another widely used 2′-OH substitution is 2′-deoxy-2′-fluoro (2′-F)69 (Fig. 2). Highly electronegative fluorine makes the modified siRNA readily adopt a C3′-endo conformation, providing considerable benefits in binding affinity, with a ΔT_m of \sim2.5 °C per modified nucleotide.32 Interestingly, 2′-arabino-fluoro (2′-Ara-F), an alternative fluorino substitution form, can also be used to modify nucleic acid therapeutics, e.g., antisense oligonucleotides65,66,70 and siRNA.71

Both 2′-O-benzyl and 2′-O-methyl-4-pyridine (2′-O-CH2Py(4)) were well tolerated when they were incorporated on the guide strand of siRNA in vivo72 (Fig. 2). siRNA with modifications of four 2′-O-benzyl or six 2′-O-CH2Py(4) showed comparable activity with the unmodified siRNA in vivo, and increased activity was even achieved when these modifications were placed at the 8 and 15 positions on the siRNA guide strand.

In addition, 2′-C, 4′-C, and even the whole sugar ring were placed on the guide strand of siRNA.78 Data have shown that the incorporation of LNAs increases the DNA melting temperature up to 8 °C per LNA.77 Given the successes of LNAs, many more bicyclic and even tricyclic analogs, including ethyl-bridged nucleic acids (ENAs),78 constrained ethyl (cEt) nucleic acids5 and tricyclic-DNA,76 have been engineered and incorporated into RNA or DNA strands in succession. Moreover, PMOs57 do not look like classic nucleotides, as the ribose subunit has been substituted with a morpholine subunit. PMOs are uncharged at physiological pH and are not substrates of RNase H. Therefore, they are mainly used to block RNA splicing or translation.78

Base modification

Base replacement is of great benefit to nucleic acid-based drug development. For instance, the substitution of pseudouridine,79 2-thiouridine,80 N6-methyladenosine,80 5-methylcytidine81 (Fig. 2) or other base analogs of uridine and cytidine residues can reduce innate immune recognition while making ASOs more resistant to nucleases. However, the artificial base substitution of ASOs, similar to siRNA, is basically at the stage of research and development. Pharmaceutical corporations still hold a prudent attitude toward these molecules. Instead, these companies prefer to use naturally occurring base structures, e.g., 5mC and 6mA, to modify certain bases(s), probably because of concerns about the safety of the metabolized unnatural residues that potentially might be incorporated into the genome.

N-ethylpyridine triazole-modified adenosine analogs with Hoogsteen or Watson–Crick (WC) facial localization have also been used to modify siRNA,82–85 which can disrupt nucleotide/TLR8 interactions and therefore reduce the immunogenicity of siRNA. N-ethylpyridine 7-EC triazole (7-EEA, 7-ethyl-8-aza-7-deazaadenosine) can pair well with uridine and form an A-form helix structure. This molecule will be recognized as adenosine by Avian myeloblastosis virus reverse transcriptase in RNA strands.65

In addition, 6′-phenylpyrrolocytosine (PheP) is a cytosine mimic showing excellent base pairing fidelity, thermal stability and high fluorescence.86 PheP-containing siRNA shows gene-silencing activity comparable to that of the parent molecule, and its fluorescent properties make it useful for fluorescence-based detection or monitoring or for exploring the cellular uptake and trafficking of siRNA in cells.

The internal uridine substitution of 2,4-difluorotolylribonucleoside (rF) is well tolerated by siRNA activity.87 The base pairing between rF and adenosine (A) is relatively unstable compared to the uridine–adenosine pair because the fluorine atom is more hydrophobic than uridine and cannot serve as a hydrogen bond acceptor.

Zhang and colleagues88 reported that a 5-nitroindole modification at position 15 of the siRNA passenger strand greatly reduced the activity of the passenger strand, whereas the effectiveness of the siRNA guide strand was barely affected. This modification provided a practical strategy to reduce the passenger strand-mediated off-target effects.

siRNAs containing 5-fluoro-2′-deoxyuridine (FdU) moieties can suppress targeted gene expression. The effects depend on the locations of the FdU substitution. In addition, these modified siRNAs quickly release FdU after entering the cell, thereby further inducing a variety of DNA-damage repair and apoptosis pathways and ultimately triggering cell death. These findings provide a strategy for siRNA-based cancer therapy.88

Moreover, many other less common base analogs have also been used in siRNA modifications. Their application helps researchers better understand the mechanism of gene silencing and helps develop new methods to mitigate off-target effects caused by harmful protein binding or undesired targeting of mRNA.89

Modification patterns used in clinical studies or for commercial siRNA

Early siRNA therapeutic programs typically employ partial or slight modifications by using 2′-OMe, 2′-F or PS.90,91 e.g., alternative 2′-OMe modifications were placed in the antisense strand of QPI-1007, whereas just one L-DNA was used in the sense strand. After making great efforts to understand the effects of various modifications on siRNA activity, specificity and toxicity, researchers have realized that heavy modification of siRNA, even full-length embellishment, probably do not affect siRNA activity. Furthermore, these judicious modification strategies can significantly enhance the siRNA stability or biocompatibility. As a result, several different, interrelated modification patterns have been proposed and validated preclinically and clinically.

Standard template chemistry (STC) (Fig. 3) is a universal modification pattern established by Alnylam Pharmaceuticals. When the lengths of sense and antisense siRNA are 21 and 23 nt, respectively (referred to as “S21nt” and “AS23nt”, respectively, in the following description), 2 PS linkages are placed at the 3′ terminus of the antisense strand, three consecutive 2′-F moieties are incorporated at positions 9, 10 and 11 of the sense strand from the 5′-end, and consecutive 2′-OMe modifications are placed at positions 11, 12 and 13 of the antisense strand from the 5′-end. Moreover, alternative 2′-OMe and 2′-F moieties are employed at other positions in both strands. It is worth mentioning that 2′-OMe and 2′-F are complementarily used for all positions of both strands of siRNA (Fig. 3). It is considered that placing three consecutive 2′-F moieties, instead of larger groups, at the middle of the sense strand aims to facilitate the cleavage and removal of the sense strand in RISC, as release of the sense strand is the prerequisite of RISC activation. PS linkages and OMe positioned at the terminals are used to enhance the capability of siRNA to resist degrading enzyme attack.

The STC design (e.g., as used in revusiran) has been proven to remarkably enhance siRNA stability and affinity without
compromising intrinsic RNAi activity. ALN-AT3, another STC-modified RNAi therapeutic, also showed potent and durable gene silencing after single subcutaneous (s.c.) administration. How-
however, the clinical investigation of revusiran was discontinued due to unbalanced death between revusiran- and placebo-treated groups. Although the detailed investigation report by Alnylam illustrated that the deaths of revusiran-treated patients were not correlated with the test drug, there are still strong concerns regarding STC-modified siRNA therapeutics. Hence, the next generation of modification patterns, called enhanced stabilization chemistry (ESC) (Fig. 3), was proposed. This design includes four more PS linkages at the 5′-end of the antisense strand and the 3′-end of the sense strand. Another important change was the reduction in 2′-F substitutions, probably because heavy use of 2′-F may magnify toxicity. These changes markedly enhanced siRNA potency and duration compared with the changes inherent to the STC design. Advancement allowed us to achieve the desired pharmacodynamic effect at a significantly lower dose, with a markedly reduced dosing frequency. Cemdisiran (ALN-CC5) achieved potent gene silencing as long as more than 1 year after receipt of a single dose of the testing therapeutic in a phase 1/2 clinical study (Fig. 4f), representing an unprecedented milestone in pharmaceutical history. Moreover, the newly approved GIVOZAR™ is an siRNA therapeutic based on the ESC design (Fig. 3).

In addition, Alnylam comprehensively optimized the modification design variants (DVs) of the ESC strategy across multiple siRNAs with an iterative screening approach to further enhance stability without compromising intrinsic RNAi activity. As a result, advanced ESC designs, e.g., DV18 and DV22, were proposed (Figs. 3 and 4a–e). Compared to the former scheme, the advanced strategy maintains six PS linkages at three strand terminals; however, this modification scheme significantly reduces the proportion of 2′-F moieties. Only 10 and 8 2′-F substitutions are used in two strands for the advanced ESC designs of DV18 and DV22, respectively. For DV18, the 2′-F modifications are positioned at sites 7, 9, 10 and 11 in the sense strand and sites 2, 6, 8, 9, 14 and 16 in the antisense strand (all from the 5′-ends of the strands). Compared with DV18, DV22 has the 2′-F modifications at 8 and 9 in the antisense strand further replaced with 2′-OMe (Figs. 3 and 4a). Both the DV18 and DV22 designs can achieve significantly higher liver exposure and RISC loading and more potent and durable gene silencing than the parent design in preclinical species, including nonhuman primates (Fig. 4b–e). The underlying
mechanisms were not fully unveiled in Alnylam’s literature. However, Zheng et al. demonstrated that modification of the 14th position of the siRNA guide strand could eliminate its gene-silencing activity by reducing RISC loading and target degradation, and the larger the modification group used was, the higher the reduction efficiency. Song et al. further proved that decorations at positions 9 and 10 (for siRNA with a 19 nt/19 nt structure) markedly reduced the activity of the unmodified strand of siRNA without disturbing the potency of the modified strand. In light of this, the specificity and activity of siRNAs could be improved by introducing 2′-MOE at the cleavage site of the siRNA. These observations are in line with the rationales of advanced ESC designs.

Furthermore, investigators from Alnylam have disclosed that the hepatotoxicity of GalNAc (N-acetylglactosamine)-siRNA conjugates is attributed to off-target gene silencing mediated by miRNA-like recognition between siRNA and a mistargeted RNA. Researchers have demonstrated that disorganizing the nucleotides of the seed region without changing the 2′-OMe, 2′-F or PS content or placing a GNA at position 7 of the siRNA antisense strand can markedly alleviate off-target effects and mitigate hepatotoxicity because these modifications affect the binding of siRNA with undesired target miRNA in a seed region-specific manner. The employment of GNA in the siRNA seed region is the main technical characteristic for the ESC+ design compared to advanced ESC designs (Fig. 3). Several investigational siRNA therapeutics of Alnylam, e.g., ALN-AAT02, ALN-HBV02, and ALN-AGT, utilize the ESC+ design as the modification pattern.

In addition to Alnylam, Arrowhead Pharmaceuticals (Arrowhead)-head proposed a series of new modification designs (Fig. 3) by combining the modification patterns (e.g., inverted bases) of siRNAs with 2′-OMe/2′-F decorations similar to the aforementioned STC and ESC modification patterns. Typically, the modification strategies proposed by Arrowhead are characterized by placing inverted deoxothymidine (idT) at the strand terminus and/or termini, including UNA and X (without nucleoside base), flanking the UAU or UAUUU motif(s), conjugating the siRNA with cholesterol or other hydrophobic substrates, etc. These designs are currently being investigated in clinical trials. Dicerna Pharmaceuticals (Dicerna) employed their proprietary dicer-substrate siRNA (DsiRNA) technology to develop RNAi therapeutics. In addition, these researchers also established a series of DsiRNA modification chemistries. For instance, three consecutive 2′-F moieties may be placed at positions 9, 10, and 11 in the sense strand of siRNA from the 5′-end, and the other sites may use alternative 2′-OMe and 2′-F moieties in the flanking sequence. One example of a constant flanking sequence is ‘GCAGCCGAAAAGGUGC’, which contains inner complementary pairing motifs of ‘GCAGCC’ and ‘GGCUUG’. Consecutive 2′-OMe moieties may be used to modify these motifs, and consecutive RNA or DNA nucleosides without additional 2′ modifications may be employed for the bubble motif of GAAA. Moreover, DNA nucleosides can also be placed at sites 2, 12, 16, 18, 20 and 21 in the antisense strand from the 5′-end. PS linkages may be incorporated into the antisense strand at specific sites, as well as within the constant flank sequence (Fig. 3). The ligands may be placed at the bubble sequence. Silence Therapeutics and other RNA-based biotech companies, such as Arbutus Biopharma, OliX Pharmaceuticals and Suzhou Ribo Life Science, have all been devoted to developing state-of-the-art siRNA modification chemistries to establish fruitful drug development pipelines.

siRNA DELIVERY AND DRUG DEVELOPMENT

Barriers to siRNA delivery

RNAi modalities (siRNAs and miRNAs) need to employ proteins (such as Argonaute and Tar RNA binding protein) in the cytoplasm. A series of barriers need to be circumvented for systematically administered exogenous siRNA before it can achieve gene silencing, such as nuclease degradation and short-lived circulation, immune recognition in blood circulation, accumulation in desired tissue, effective transmembrane trafficking, and escape from endosomes and lysosomes to the cytoplasm. By incorporating chemical modifications, the challenges of stability against serum nucleases and avoiding immune recognition have been substantially reduced. However, other problems remain to be solved.

In blood circulation, unspecific binding and glomerular filtration both hamper the accumulation of siRNA in desired tissues. The neutral surface charge of siRNA-loaded nanoformulations is beneficial for avoiding unfavorable protein binding in circulation. However, protein decoration or protein corona formation is required for nanoformulation and attachment to specific tissues or cells for some delivery systems. For instance, ionizable lipid nanoparticles (iLNPs) primarily accumulate in the liver by interacting with serum lipoproteins, e.g., apolipoprotein E3 (ApoE3), which leads to specific recognition by the receptor, e.g., low-density lipoprotein receptor (LDLR). In contrast, ligand–siRNA conjugates can transport siRNA to desired tissues and cells by specific recognition and interactions between the ligand, e.g., a carbohydrate, peptide, antibody, aptamer, small molecule, etc., and the surface receptor. This active targeting strategy not only reduces siRNA accumulation in unintended tissues, thus decreasing or avoiding undesired side effects and toxicity, but also achieves potent gene silencing at a low dosage. Active targeting is achieved by conjugating a polyamidoamine dendrimer or GalNAc–siRNA conjugates have all achieved efficient siRNA delivery to hepatocytes (Figs. 5, 6). The relatively high molecular weight (−13–16 kD) and net negative charge prevent artificial siRNA from crossing the cell membrane. Hence, we attempted to determine whether any cell can internalize siRNA without a carrier, leading to the conclusion that naked siRNA can only be taken up by a few cell types, e.g., retinal ganglion cells (RGCs) and neurons. In addition, researchers have also been devoted to identifying various carriers to achieve efficient transmembrane delivery. As a result, cationic cell-penetrating peptides (CPPs) become a choice at the early stage. CPPs, typically tailed with arginine-rich sequences, can form bidentate bonds by the interaction between the guanidinium groups and the negative phosphates, sulfates and carboxylates on the cell surface. This interaction causes membrane pore formation, leading to the cellular uptake of siRNA. As another strategy, the negative charge of siRNA can be neutralized by positively charged lipids or polymers, conferring siRNA the ability to more readily bind to the membrane and become easily internalized via adsorptive pinocytosis.

Finally, siRNAs must effectively escape from endosomes and lysosomes to the cytoplasm, where antisense strands of siRNAs need to be loaded into RISCs. Many delivery systems employ a pH-sensitive unit to respond to pH changes in the endosome and lysosome, where they will absorb H+, presenting a positive charge on the surface. Then, the osmotic pressure will increase in the endosome or lysosome, resulting in the internal flow of Cl− and H2O. Finally, these changes may cause membrane disruption and siRNA release to the cytoplasm. This so-called ‘proton sponge
Fig. 5 Schemes of representative clinically studied siRNA formulations and their pharmacodynamic performance. a–g Schemes of a lipid nanoparticles, b DPC™ or EX-1™, c TRiM™, d GalNAc-siRNA conjugates, e LODER™, f iExosomes and g GalXC™. h Efficacy of ONPATTRO® (a liposome formulation) in healthy volunteers, in which siRNA targeting PCSK9 is formulated in lipid nanoparticles.34 Copyright Massachusetts Medical Society, 2013. i Levels of urinary aminolevulinic acid (ALA) and porphobilinogen (PBG) after once-monthly and once quarterly doses of GIVLAARI™ in acute hepatic porphyria (AHP) patients. Copyright Alnylam Pharmaceuticals, 2019. j Reduction of plasma PCSK9 after a single increasing dose of inclisiran.38 Copyright Massachusetts Medical Society, 2017. k Serum HBsAg reduction in hepatitis B patients who received the treatment of a single dose of ARC-520 (1–4 mg/kg) (formulated with DPC2.0) on a background of daily oral NUCs.264 PBO, patients on NUC therapy receiving placebo injection. NUCs nucleos(t)ide viral replication inhibitors. The error is shown as the SEM. Copyright American Association for the Advancement of Science, 2017. l Antitumor effect of siG12D-LODER™ combined with chemotherapy in locally advanced inoperable pancreatic cancer in a patient. A computed tomography (CT) scan was performed before and after (nine months later) the administration of siG12D-LODER™. The tumor measured 35.42 and 26.16 mm in the longest diameter, respectively. m PANC-1 tumor growth in animals receiving iExosomes or other control formulations.238 N = 3 mice per group. Copyright Macmillan Publishers Limited, part of Springer Nature, 2017. n The 24-h Uox (urinary oxalate) values of healthy volunteers and patients treated with a single dose of Nedosiran (DCR-PHXC, a GalXC™ therapeutic) (3 and 6 mg/kg).265 Copyright Dicerna Pharmaceuticals, 2020. o Reduction of serum AAT in volunteers receiving a single dose of ARO-AAT (a TRiM™ therapeutic, 35–300 mg).266 The error bars show the SEM. Copyright Arrowhead Pharmaceuticals, 2019.
siRNA delivery platforms that have been evaluated preclinically and clinically. Varieties of lipids or lipidoids, siRNA conjugates, peptides, polymers, exosomes, dendrimers, etc. have been explored and employed for siRNA therapeutic development by biotech companies or institutes. The chemical structures of the key component(s) of the discussed delivery platforms, including Dlin-DMA, Dlin-MC3-DMA, C12-200, cKK-E12, GalNAc-siRNA conjugates, MLP-based DPC2.0 (EX-1), PNP, PEI, PLGA-based LODER, GDDC4, PAsp(DET), cyclodextrin-based RONDEL™ and dendrimer generation 3 are shown. Dlin-DMA (1,2-dilinoleyloxy-3-dimethylaminopropane), Dlin-MC3-DMA (6Z,9Z,28Z,31Z-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) butanoate, DPC Dynamic PolyConjugates, MLP membrane-lytic peptide, CDM carboxylated dimethyl maleic acid, PEG polyethylene glycol, NAG N-acetylgalactosamine, PNP polypeptide nanoparticle, PEI poly(ethyleneimine), LODER LOcal Drug EluteR, PLGA poly(lactide-co-glycolic acid), PTMS PEG-PTMA-P(GMA-S-DMA) poly(ethylene glycol)-co-poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl))] ethane methacrylate-co-poly(dimethylamino glycicyld im methyl acrylate), GDDC4 PG-P(DPAx-co-DMAEMAy)-PCB, where PG is guanidinated poly(aminioethyl methacrylate) PCB is poly(carboxybetaine) and P(DPAx-co-DMAEMAy) is poly(dimethylaminoethyl methacrylate-co-diisopropylethyl methacrylate), PEG-PAsp(DET) polyethylene glycol-b-poly(N′-(N-(2-aminoethyl)-2-aminoethyl) aspartamide), PBAVE polymer composed of butyl and amino vinyl ether, RONDEL™ RNAi/oligonucleotide nanoparticle delivery
effect’ or ‘colloid osmotic pressure effect’ results in membrane destabilization116–119 or membrane swelling,120,121 respectively. However, the underlying mechanism of endosomal release remains to be further illuminated. Only 1–2% of internalized LNP-loaded siRNAs were released into the cytoplasm, and this only occurred within a limited time frame after internalization.122,123 Hence, further understanding the escape mechanism and how to enhance the escape efficiency is of great importance for siRNA drug development. Recently, Wang and colleagues124 developed novel endoplasmic reticulum (ER) membrane-modified hybrid nanoparticles (EHCh/siRNA NPs). Compared with unmodified nanoparticles, they showed much higher RNAi activity in vitro and in vivo. The functional proteins on the ER membrane have an important role in intracellular trafficking of siRNA, helping siRNA reach the cytoplasm through the endosome–GoGli–ER pathway instead of the endosome–lysosome pathway, thereby avoiding the lysosomal degradation of siRNA. In addition, electroporation enables siRNA to directly cross the cell membrane, which also constitutes an effective approach to circumvent the endosomal escape issue.125–131

To date, two RNAi therapeutics, ONPATTRO® and GIVLAARI™, have been approved for commercial application, and two siRNAs, lumasiran (ALN-GO1) and inclisiran, have been submitted for new drug application (NDA) to the FDA. Seven siRNAs are undergoing phase 3 clinical studies, and more candidates are in the early developmental stage. Various delivery systems, e.g., LNPs, DPC™, TRIM™, GalNAc–siRNA conjugates, LODER™ polymers, exosomes and polypeptide nanoparticles (PNPs), have been explored (Figs. 5, 6). Based on these systems, plentiful drug pipelines have been established. We discuss this information in the following sections.

Naked siRNA-based therapeutics
Naked siRNA can be defined as a system that contains no delivery system that is associated with siRNA either covalently or noncovalently.132 Because no protective effect is offered by the delivery vehicle, siRNA should be modified carefully to be resistant to enzymatic degradation and extend its circulation time in the bloodstream. As siRNA is naturally filtered to the kidney, it can be used to silence kidney-expressed genes and treat renal diseases.132 Alternatively, a feasible strategy for naked siRNA drug development is the local injection of this molecule into specific organs that are relatively closed off and contain few nucleases, e.g., the eye.

QPI-1002 (JSNP)132,133 and QPI-100736,134 were developed by Quark Pharmaceuticals (Table 1). QPI-1002 is a 19-base pair, 2′-O-methylated, blunt and naked siRNA135 targeting p53 for treating acute kidney injury (phase 2) and delayed graft function (phase 3). The sequence of the sense strand is 5′-GAAGAAAAATTCTCAGAAA-3′.135 Because of their small sizes, most siRNAs accumulate in the kidney after being intravenously administered, achieving concentrations 40 times greater than those in other organs, followed by rapid entry into proximal tubule cells. An in vitro study determined that QPI-1002 elicited near-complete p53 mRNA elimination at a transfection concentration of 0.5 nM. Furthermore, bilateral renal-clamp studies were conducted to identify the effect of siRNA on the preservation of kidney function. Compared with PBS-treated animals, siRNA-treated animals showed ischemia with decreased serum creatinine levels from 3.7 mg/dL to 1.9 mg/dL. Adverse effects (AEs) were found only when the dose was higher than 1000 mg/kg in nonhuman primates and higher than 800 mg/kg in rats.133 A phase 1 clinical study (NCT00554359) of QPI-1002 revealed an ideal safety profile.36,132

QPI-1007 is a caspase-2-targeted siRNA without formulation that was developed to treat acute primary angle closure glaucoma (phase 2) and nonarteritic anterior ischemic optic neuropathy (NAION, phase 3). This molecule is administered via intravitreal injection. It is modified by 2′-OMe in the antisense strand, an L-DNA cytidine nucleotide is located before the last nucleotide at the 3′-end, and the sense strand has an inverted deoxybasic residue at the 5′-end36 (Fig. 3).

Preclinical investigations have validated the potent gene silencing of QPI-1007 in cells and have demonstrated its curative effects on optic nerve-damaged animal models. Data36 have shown that QPI-1007 triggered over 80% gene suppression in HeLa cells and exhibited an IC50 of −0.8 nM against human caspase-2 mRNA. In animal models, eyes treated with siRNA showed a dose-dependent increase in RGC survival from 5 to 20 μg. In particular, in animals dosed with 20 and 35 μg QPI-1007, RGC densities in the injured eye recovered to close to healthy levels (−98%). Furthermore, a phase 1/2a clinical trial (NCT01064505) reported that most common AEs, such as conjunctival hemorrhage, conjunctival edema, eye irritation, and eye pain, were typical of intravitreal injection, and no serious adverse effects (SAEs) were observed. By comparing the best-corrected visual acuity (BCVA) following a single dose of QPI-1007 with natural history historical controls from the Ischemic Optic Neuropathy Decompression Trial (IONDT, 1998), which is the most comprehensive survey of the disease and serves as the gold standard in the field, it was concluded that QPI-1007 significantly protected the optic nerve as the proportions of subjects who lost 3 lines of visual acuity were markedly decreased. The proportions were 0%, 0% and 3.6% at months 3, 6 and 12, respectively, following a single dose of QPI-1007. In contrast, the proportions for natural history controls were 9%, 15% and 16% at months 3, 6 and 12, respectively. Currently, an international multi-centered phase 2b/3 clinical trial is being conducted in the United States, China, Israel and other countries and regions.

ALN-RSV01 (asvasiran sodium), a naked siRNA that targets the respiratory syncytial virus (RSV) nucleocapsid (N) gene and inhibits viral replication, was explored for the potential treatment or prevention of RSV infection. The sequences of ALN-RSV01 are as follows: sense strand (5′–3′): GGCCUCUAGCAAGAUCAGGdTdT; and antisense strand (5′–3′): CUUGACUUGCUAGAACGcdTdT.137 ALN-RSV01 was administered via inhalation with an investigational electronic nebulizer. Although the clinical study of ALN-RSV01 has been terminated, clinical data indicate that it is well tolerated in vivo38 and may have beneficial effects on long-term allograft function in lung transplant patients infected with RSV (NCT00658086).139,140 Another clinical result reported in 2016 showed that ALN-RSV01 may help prevent bronchiolitis obliterans syndrome (BOS) after lung syncytial virus infection in lung transplant recipients.141

Lipid and lipidoid-based nanoparticles

Representative lipid materials. Lipid or lipidoid nanoparticles (LNPs) (Figs. 5a and 6) were originally developed as vehicles for DNA-based drugs. Subsequently, LNPs have been increasingly used for siRNA delivery because these vesicles can protect entrapped siRNA from nuclease attack and renal clearance and transport siRNA to targeted tissues and cells.132–134 Canonical siRNA-LNPs comprise similar components, e.g., cationic or ionizable lipids, DSPC (1,2-distearoyl-sn-glycerol-3-phosphocholine), and cholesterol and polyethylene glycol (PEG) lipids.142 siRNA-LNPs predominately accumulate in the liver, spleen and kidney after being intravenously injected.

According to the different charge properties of siRNA-binding lipids under neutral conditions, LNPs may be divided into several classes: ionizable LNPs, cationic LNPs and neutral LNPs. Ionizable LNPs are nearly unchanged during circulation but become protonated in a low pH environment, e.g., in the endosomes and lysosomes. These molecules may interact with apolipoprotein E3 (ApoE3), which transports lipids to hepatocytes. Cationic LNPs exhibit a constitutive positive charge in blood circulation and in endosomes or lysosomes. Cationic LNPs also primarily accumulate
Therapeutic name	Condition(s)	Modification chemistry	Delivery system	Target(s)	Sponsor	Phase	NCT ID	References
ONPATTRO® (patisiran, ALN-TTR02)	TTR-mediated amyloidosis	2'-OMe, 2'-F	LNP (DLin-MC3-DMA)	TTR	Alnylam Pharmaceuticals	Approved	NCT03862807, NCT03997383, NCT0759379, NCT02510261, NCT01617967, NCT01559077, NCT02939820, NCT01961921, NCT01960348, NCT02053454, NCT03431896	35,180
GIVLAARI™ (givosiran, ALN-AS1)	Acute hepatic porphyrias	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	ALAS1	Alnylam Pharmaceuticals	Approved	NCT02452372, NCT02949830, NCT03505853, NCT03338816, NCT04056481	9,10
Lumasiran (ALN-GO1)	Primary hyperoxaluria type 1	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	HAO1	Alnylam Pharmaceuticals	3	NCT03905694, NCT03681184, NCT02706886, NCT0330451	267
Vutrisiran (ALN-TTRSC02)	Amyloidosis	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	TTR	Alnylam Pharmaceuticals	3	NCT03759379, NCT03814187, NCT03851705, NCT03705234, NCT0319416, NCT0306077, NCT03399370, NCT03400800, NCT03397121, NCT02314442, NCT02597127, NCT01437059, NCT02963361	38
Inclisiran (ALN-PCSsc)	Hypercholesterolemia	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	PCSK9	Alnylam Pharmaceuticals	3	NCT03814187, NCT03851705, NCT03705234, NCT0319416, NCT0306077, NCT03399370, NCT03400800, NCT03397121, NCT02314442, NCT02597127, NCT01437059, NCT02963361	213
Fitusiran (ALN-AT3SC)	Hemophilia	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	AT	Alnylam Pharmaceuticals partnered with Genzyme	3	NCT03549871, NCT03974113, NCT03754790, NCT0341702, NCT03417245	213
Cemdisiran (ALN-CC5)	Complement-mediated diseases	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	C5	Alnylam Pharmaceuticals	2	NCT03899840, NCT03841448	269,269
ALN-AAT02	Alpha-1 liver disease	PS, 2'-OMe, 2'-F	GalNAc-siRNA conjugate	AAT	Alnylam Pharmaceuticals	1/2	NCT03767829, NCT03943407	269,271
ALN-AGT	Hypertension	PS, 2'-OMe, 2'-F, GNA	GalNAc-siRNA conjugate	AGT	Alnylam Pharmaceuticals	1	NCT03946449, NCT03362242, NCT03942592	272
ARO-AAT	Alpha-1 antitrypsin deficiency	PS, 2'-OMe, 2'-F, inverting base	GalNAc-siRNA conjugate	AAT	Arrowhead Pharmaceuticals	2/3	NCT03365947	273
ARO-HBV	Hepatitis B	GalNAc-siRNA conjugate	HBV gene			1/2	NCT03365947	
Therapeutic name	Condition(s)	Modification chemistry	Delivery system	Target(s)	Sponsor	Phase	NCT ID	References
-----------------	--------------	------------------------	-----------------	-----------	---------	-------	--------	------------
ARO-APOC3	Hypertriglyceridemia, familial chylomicronemia	PS, 2′-OMe, 2′-F, inverted base	GalNAc-siRNA conjugate	ApoC3	Arrowhead partnered with Janssen Arrowhead Pharmaceuticals	1	NCT03783377	274
ARO-ANG3	Hypertriglyceridemia	PS, 2′-OMe, 2′-F, inverted base	GalNAc-siRNA conjugate	ANGPTL3	Arrowhead Pharmaceuticals	1	NCT03747224	275
AMG 890	Cardiovascular disease	Undisclosed	GalNAc-siRNA conjugate	Lp(a)	Arrowhead Pharmaceuticals partnered with Amgen	2	NCT03626662	276,277
ND-L02-s0201	Idiopathic pulmonary fibrosis	Undisclosed	LNP, vitamin A	HSP47	Bristol-Myers Squibb	2	NCT03538301	159,278
DCR-PHXC	Primary hyperoxaluria	Undisclosed	GalNAc-siRNA conjugate	LDHA	Dicima Pharmaceuticals	3	NCT03847909	218,219
DCR-HBVS	Hepatitis B	Undisclosed	GalNAc-siRNA conjugate	HBV gene	Dicima Pharmaceuticals	1	NCT03772249	14,219
SV40 vectors carrying siRNA	Bcr-Abl	Undisclosed	Pseudoviral (SV40) particles	Chronic myeloid leukemia	Haddassah Medical Organization	NS	NCT00257647	279
BMT101	Hypertrophic scar	Undisclosed	cp-asiRNA	CTGF	Hugel	2	NCT04012099	216
SXLO1	Advanced cancers	Undisclosed	NA	AR	Institut Claudius Regaud	1	NCT02866916	280
Mesenchymal stromal cell-derived exosomes with KRAS-G12D-targeting siRNA	Pancreatic cancer	Unknown	Exosome	Kras G12D Mutation	M.D. Anderson Cancer Center	1	NCT03608631	281
siRNA-EphA2-DOPC	Advanced cancers	Undisclosed	Liposome	EphA2	M.D. Anderson Cancer Center	1	NCT01591356	282
NU-0129	Gliosarcoma	Undisclosed	Gold nanoparticle	BCL2L12	Northwestern University	1	NCT03020017	283
OLX10010	Hypertrophic cicatrix	2′-OMe, PS	cp-asiRNA (cholesterol-siRNA conjugate)	CTGF	Olix Pharmaceuticals	1	NCT03569267	284
TD101	Pachyonychia congenita	Undisclosed	None	Keratin 6A N17/1K mutant p53	Pachyonychia Congenita Project	1	NCT00716014	285
QPI-1002 (ISNP)	Delayed graft function, other complication of kidney transplant	2′-OMe	None	Quark Pharmaceuticals	3	NCT03410897	132	
QPI-1007	Nonarteritic anterior ischemic optic neuropathy	2′-OMe	None	Caspase-2	Quark Pharmaceuticals	3	NCT01965106	134
PF-655 (PF-04523655)	Choroidal neovascularization, diabetic retinopathy, diabetic macular edema	2′-OMe	None	RTP801	Quark Pharmaceuticals	2	NCT01445899	286
PSCT19 (MiHA-loaded PD-L-silenced DC vaccination)	Hematological malignancies	Undisclosed	Ex vivo transfection	PD-L1/L2	Radboud University	1/2	NCT02528682	287,288
Therapeutic name	Condition(s)	Modification chemistry	Delivery system	Target(s)	Sponsor	Phase	NCT ID	References
-----------------	--------------	------------------------	-----------------	-----------	---------	-------	--------	------------
RXI-109 (sd-rxRNA)	Hypertrophic scar	Undisclosed	None	CTGF	RXi Pharmaceuticals	2	NCT02599064	289
Atu027	Pancreatic ductal carcinoma, advanced solid tumors	2′-OMe	AtuPlex	PKN3	Silence Therapeutics GmbH	1/2	NCT01808638	157,175,290
SLN124	Nontransfusion-dependent thalassemia low-risk myelodysplastic syndrome	Undisclosed	GalNAc-siRNA conjugate	TMPRSS6	Silence Therapeutics plc	1	NCT04176653	157,175,290
siG12D-LODER	Pancreatic ductal adenocarcinoma, pancreatic cancer	Undisclosed	Polymeric matrix	KRAS G12D	Silenseed Ltd	2	NCT01676259	289
STP705 (cotsiranib)	Hypertrophic scar	Undisclosed	HKP	TGF-β1 and COX-2	Simoaomics	1/2	NCT02956317	237
STP705	Bowen’s disease cutaneous squamous cell carcinoma in situ	Undisclosed	Histidine-lysine co-polymer (HKP) peptide	TGF-β1 and COX-2	Simoaomics	1/2	NCT04293679	237
Tivanisiran (SYL1001)	Dry eye disease, ocular pain	Undisclosed	None	TRPV1	Sylentis, S.A	3	NCT03108664	292,293
Bamosiran (SYL040012)	Ocular hypertension, glaucoma	Undisclosed	None	ADRB2	Sylentis, S.A	2	NCT01227291	294,295
APN401 (siRNA-transfected PBMCs)	Solid tumors that are metastatic or cannot be removed by surgery	Undisclosed	Ex vivo siRNA electroporated PBMCs	Cbl-b/DC	Wake Forest University Health Sciences	1	NCT03087591	296,297
Cobomarsen (MRG-106)	Blood cancers (cutaneous T cell lymphoma, adult T cell lymphoma/leukemia, diffuse large B cell lymphoma, chronic lymphocytic leukemia, mycosis fungoides)	LNA (antimiR)	NA	MicroRNA-155	miRagen Therapeutics	2	NCT02580552	298
Remlarsen (MRG-201)	Pathologic fibrosis (cutaneous fibrosis, idiopathic pulmonary fibrosis, keloid, etc.)	2′-OMe, 2′-F, mismatch, PS, Chol (microRNA-29b mimic)	NA	CTGF	miRagen Therapeutics	2	NCT03601052	299,300
MRG-110 (S95010)	Ischemic conditions (heart failure, incisional complications, wound healing)	LNA (antimiR)	NA	MicroRNA-92	miRagen Therapeutics	1	NCT03603431	301
ALN-HBV02 (VIR-2218)	Hepatitis B	PS, 2′-OMe, 2′-F, GNA	GalNAc-siRNA conjugate (ESC)	HBV gene	Alnylam Pharmaceuticals	1/2	NCT03672188	302
ARO-HiF-2	Clear cell renal cell carcinoma (cRCC)	PS, 2′-OMe, 2′-F, Bi	TRiM (RGD-siRNA conjugate)	HIF-2α	Arrowhead Pharmaceuticals	1	NCT04169711	302
ALN-APP	Cerebral amyloid angiopathy	PS, 2′-OMe, 2′-F	Undisclosed	APP	Alnylam pharmaceuticals	Predclinical	N/A	302
ARO-ENaC	Cystic fibrosis	PS, 2′-OMe, 2′-F	TRiM (EpL-siRNA conjugate)	αENaC	Arrowhead Pharmaceuticals	Predclinical	N/A	302
Therapeutic name	Condition(s)	Modification chemistry	Delivery system	Target(s)	Sponsor	Phase	NCT ID	References
------------------	--------------	------------------------	----------------	-----------	---------	-------	--------	------------
ARO-AMG1	Undisclosed	PS, 2′-OMe, 2′-F,iB	TRiM	Undisclosed	Arrowhead Pharmaceuticals	Preclinical	N/A	
SLN360	Cardiovascular disease	Undisclosed	GalNAc-siRNA	Lp(a)	Silence Therapeutics	Preclinical	N/A	
SLN226	Alcohol use disorders	Undisclosed	Conjugate	ALDH2	Silence Therapeutics	Preclinical	N/A	
AB-729	Hepatitis B	Undisclosed	GalNAc-siRNA	HBV gene	Arbutus Biopharma Corporation	Preclinical	N/A	
s-PT-LODER	Prostate cancer	Undisclosed	Polymeric matrix (LODER polymer)	HSP90	Silenseed Ltd	Preclinical	N/A	
RBD1016	Hepatitis B	Undisclosed	GalNAc-siRNA conjugate	HBV gene	Suzhou Ribo Life Science Co., Ltd	Preclinical	N/A	
RB-HLP002	Hyperlipidemia	Undisclosed	GalNAc-siRNA conjugate	Undisclosed	Suzhou Ribo Life Science Co., Ltd	Preclinical	N/A	
SYL16011	Allergic conjunctivitis (ophthalmology)	Undisclosed	Naked siRNA	Orai1	Sylentis, S.A.	Preclinical	N/A	
SYL1801	Choroidal neovascularization (CNV)	Undisclosed	Naked siRNA	NRARP	Sylentis, S.A.	Preclinical	N/A	
DCR-BCAT	Cancer	Undisclosed	EnCore Lipid Nanoparticle	CTNNB1	Dicema Pharmaceuticals, Inc.	Preclinical	N/A	
DCR-AATsc	Antitrypsin deficiency, liver disease	Undisclosed	GalNAc-DsRNAEX conjugate	AAT	Dicema Pharmaceuticals, Inc.	Preclinical	N/A	
OXL301A	Age-related macular degeneration/retinal fibrosis	Undisclosed	cp-asRNA	CTGF	OliX pharmaceuticals, Thea	Preclinical	N/A	

2′-F 2′-fluoro substitution, 2′-OMe 2′-methoxy group substitution, LNA locked nucleic acid, LNP lipid nanoparticle, DLin-MC3-DMA (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino)butanoate, TTR transthyretin, PS phosphorothioate linkage, GalNAc N-acetyl-D-galactosamine, HAO1 hydroxyacid oxidase 1, ALAS1 delta-aminolevulinate synthase 1, PCSK9 proprotein convertase subtilisin/kexin type 9, AT antithrombin, CS complement component 5, AAT alpha-1 antitrypsin, AGT angiotensinogen, cp-asRNA asymmetric siRNA, HBV hepatitis B virus, ApoC3 apolipoprotein C3, ANGPTL3 angiopoietin-like 3, Lp(a) lipoprotein (a), HSP47 heat shock protein 47, LDHA lactate dehydrogenase A, CTGF connective tissue growth factor, AR androgen receptor, EphA2 EPH receptor A2 (ephrin type-A receptor 2), DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine, BCL2L12 B cell lymphoma 2-like protein 12, RTP801 (Ddit4) DNA-damage-inducible transcript 4, PD-L1 programmed death-ligand 1, PD-L2 programmed death-ligand 2, PKN3 protein kinase N3, HKP histidine-lysine co-polymer, TRPV1 transient receptor potential cation channel subfamily V member 1, ADRB2 β2 adrenergic receptor, PBMC peripheral blood mononuclear cell, TGF-β1 transforming growth factor beta 1, Cox-2 cyclooxygenase-2, Cbl-b casitas-B-lineage lymphoma protein-β, DC dendritic cell, APP amyloid precursor protein, ENaC epithelial sodium channel alpha subunit, HIF-2α hypoxia-inducible factor-2α, ALDH aldehyde dehydrogenase, HSP90 heat shock protein 90, Orai1 Orai calcium release-activated calcium modulator 1, NRARP NOTCH-regulated ankyrin repeat protein, CTNNB1 catenin beta-1 (β-catenin), NS not specified, N/A not available.
in hepatocytes; however, this is independent of the ApoE3 interaction. Electrostatic-induced nonspecific binding with plasma protein and relatively higher immunogenicity may cause cationic LNPs to be less efficacious\(^{146}\) and more toxic in vivo than ionizable LNPs.\(^{147}\) As a consequence, most pharmaceutical firms and institutes have made efforts to develop novel ionizable lipids to achieve efficient hepatocyte-targeted delivery of siRNA with minimal side effects. For example, research teams from Arbutus Biopharma, Alnylam Pharmaceuticals and the Massachusetts Institute of Technology continue to establish lipid-based delivery systems. Three generations of lipid delivery systems have been developed by Arbutus and Alnylam (Fig. 6). They employed DLin-DMA (1,2-dilinoleoyl-3-dimethylaminopropane),\(^{148}\) DLin-MC3-DMA ((Z,Z,Z,2,28,3,32)-hexatriaconta-6,9,28,31-tetraen-19-yl-4-(dimethylamino) butanolate)\(^{149}\) and L319 (di(Z)-non-2-en-1-y)-9-[(4-(dimethylamino) butanoyl) oxy] heptadecanediol)\(^{150}\) as the key lipids and exhibited median effective doses (ED\(_{50}\)) of 1, 0.005 and <0.01 mg/kg, respectively, when loaded with anti-factor VII siRNA and injected via the tail vein. DLin-DMA was used to develop TKM-080301,\(^{150}\) ALN-VSP\(^{151}\) and ALN-TTR01,\(^{34}\) whereas DLin-MC3-DMA was employed in ALN-TTR02\(^{152}\) and ALN-PCS\(^{152}\) development. L319 was derived from DLin-MC3-DMA by incorporating a bioconjugatable linkage within hydrophobic alkyl chains.\(^{153}\) It is readily degraded in vivo, and the metabolite of L319 is a potential substrate for the \(\beta\)-oxidation pathway of fatty acids. L319 is rapidly eliminated from intracellular compartments (plasma, liver and spleen) and is excreted in vivo, which suggests high tolerance of L319-LNPs throughout the body. Moreover, several other RNAi therapeutics also employ liposomes as delivery materials, e.g., ALN-VSP,\(^{151}\) ALN-PCS,\(^{152}\) MRX34,\(^{183}\) Aru027,\(^{175,184}\) ARB-1467,\(^{185}\) ARB-1740,\(^{186,187}\) etc. The clinical studies of all these therapeutics are currently discontinued. ARB-1467 and ARB-1740 are generation 1 and generation 2 anti-HBV modalities, respectively, developed by Arbutus Pharma. \(\beta\)-oxidation pathway of fatty acids. L319 is rapidly eliminated from intracellular compartments (plasma, liver and spleen) and is excreted in vivo, which suggests high tolerance of L319-LNPs throughout the body. Moreover, several other RNAi therapeutics also employ liposomes as delivery materials, e.g., ALN-VSP,\(^{151}\) ALN-PCS,\(^{152}\) MRX34,\(^{183}\) Aru027,\(^{175,184}\) ARB-1467,\(^{185}\) ARB-1740,\(^{186,187}\) etc. The clinical studies of all these therapeutics are currently discontinued. ARB-1467 and ARB-1740 are generation 1 and generation 2 anti-HBV modalities, respectively, developed by Arbutus Pharma. ARB-1740 is a clinically investigated and liposome-formulated RNAi agent that contains three siRNAs targeting different regions of the HBV genome.\(^{186,187}\) However, the study of ARB-1740 has been suspended because Arbutus transferred their liver-targeted delivery system from liposomes to GalNAc-siRNA conjugates.

Lipid-employed siRNA therapeutics. ONPATTRO® is a chemically modified anti-transthyretin (TTR) siRNA formulated in liposomes (Figs. 5a, h and 7). The lipid components of ONPATTRO® include DLin-MC3-DMA (Fig. 6), DSPC, cholesterol and PEG-DMG (RI-2,3-bis(octadecyl)propyl-1-(methoxy polyethylene glycol 2000) caramate) at a molar ratio of 50/10/38.5/1.5.\(^{107}\) The active pharmaceutical ingredient (API, siRNA) of ONPATTRO® is modified with eleven 2′-O-ribose (nine in the sense strand and two in the antisense strand) and four 2′-deoxy thymidine (two in the sense strand and two in the antisense strand, all at the 3′-end) moieties. Before ONPATTRO®, Alnylam advanced ALN-TTR01 to a phase 1 clinical study (NCT01148953). The API of ALN-TTR01 is the same as that of ONPATTRO®, whereas the delivery system for ALN-TTR01 comprises DLin-DMA,\(^{148,179}\) cholesterol, DSPC and PEG-DMG. A phase 1 study of ONPATTRO® (NCT01617967) showed a good dose-dependent pattern for TTR protein reduction.\(^{188}\) Overall, this drug was well tolerated by subjects, although pretreatment with antihistamines, nonsteroidal antihistamines or glucocorticoids was needed to reduce the incidence of infusion-related reactions. Phase 2 and 3 studies reached both the primary and secondary endpoints of the studies, according to the outcomes regarding the modified Neuropathy Impairment Score +7 (mNIS +7) and the Norfolk Quality of Life Diabetic Neuropathy (QoL-DN) score. Based on these achievements, the FDA and the EC approved the commercial use of ONPATTRO® in August 2018. In addition, TKM-080301 (TKM-PLK1) is another DLin-DMA-based LNP formulation.\(^{152}\) TKM-080301 was developed by Tekmira Pharmaceuticals and contains anti-PLK1 (polo-like kinase 1) siRNA for the treatment of solid cancer. Preclinical studies have shown ideal antineoplastic activity in xenograft tumor models, and the inhibition of PLK1 expression was maintained at 7–10 days after receipt of a single dose of TKM-080301.\(^{182}\) No measurable immune activation or myelosuppressive effects were manifested, and limited toxicity was observed in the liver and spleen. In the phase 1/2 clinical test (NCT02191878), the patients received 28 days of treatment at escalating doses of TKM-080301 from 0.15 to 0.9 mg/kg through a 30-min i.v. infusion once a week. Dose-limiting toxicities (DLTs) and adverse grade 3 reactions were observed in two patients at a dose of 0.9 mg/kg/week, and the maximum tolerated dose (MTD) was 0.75 mg/kg/week.\(^{36,150}\) In another clinical trial (NCT01262235), TKM-080301 was dosed at 0.6 or 0.75 mg/kg/week, and the treatment lasted for 18 cycles (4 weeks per cycle). As a result, tumor reduction was achieved, but some serious AEs (SAEs) were also observed.\(^{150}\) Moreover, several other RNAi therapeutics also employ liposomes as delivery materials, e.g., ALN-VSP,\(^{151}\) ALN-PCS,\(^{152}\) MRX34,\(^{183}\) Aru027,\(^{175,184}\) ARB-1467,\(^{185}\) ARB-1740,\(^{186,187}\) etc. The clinical studies of all these therapeutics are currently discontinued. ARB-1467 and ARB-1740 are generation 1 and generation 2 anti-HBV modalities, respectively, developed by Arbutus Pharma. ARB-1740 is a clinically investigated and liposome-formulated RNAi agent that contains three siRNAs targeting different regions of the HBV genome.\(^{186,187}\) However, the study of ARB-1740 has been suspended because Arbutus transferred their liver-targeted delivery system from liposomes to GalNAc-siRNA conjugates.
Accordingly, another anti-HBV siRNA therapeutic, AB-729, is undergoing a phase 1a/1b study and positive preliminary clinical results have been disclosed recently.

DPC™ and TRiM™ delivery platforms

Characteristics of DPC™ and TRiM™ delivery platforms. DPC™ or EX-1™ is a delivery system established by Arrowhead (Fig. 5b). The first-generation DPC (DPC 1.0) technology is characterized by a polymer backbone (polymer composed of butyl and amino vinyl ether, PBAVE) reversibly attached to siRNA, a shielding agent (PEG), and the targeting ligand by a bifunctional maleamate linkage. In detail, PEG and the targeting ligand are alternatively linked to polymers with carboxylated dimethyl maleic acid (CDM) bonds (Fig. 6). These bonds will be cleaved within the acidic environment in endosomes and lysosomes, which will expose the positively charged amino groups of the polymer backbone and trigger the influx of H^+ and Cl^-, resulting in the elevation of endosomal osmotic pressure and the inflow of H_2O. The import of H^+, Cl^- and H_2O causes the destabilization and swelling of the endosomally bound membrane, which are benefits of the ‘proton sponge effect’ and ‘increased colloidal osmotic pressure’. In addition, siRNAs are covalently conjugated to the polymer backbone by disulfi de linkage, which will also be degraded in the environment with glutathione, releasing siRNA into the cytoplasm. Increased endosomosomal escape was accomplished by selective activation in endosomes and lysosomes, which ensures an effective interaction with other membranes before endocytosis is prevented.

For the second-generation DPC (DPC 2.0) platform, siRNA is modified with cholesterol instead of being conjugated with the polypeptide (melittin-like peptide, a kind of membrane-lytic peptide, MLP) (Figs. 5b and 6). It is worth mentioning that efficacious siRNA delivery could be achieved following the intravenous coinjection of GalNAc-modified MLP and cholesterol-conjugated siRNA (chol-siRNA). In addition, chol-siRNA can also be used in combination with GalNAc and PEG-masked PBAVE, a formulation that constitutes generation 1.5 of DPC technology. Regrettably, although biomarkers were reduced by more than 99% in HBV patients receiving a single dose of ARC-520, an siRNA therapeutic employing DPC2.0 technology, Arrowhead stopped the clinical development of this drug because one monkey died during the long-term toxicity evaluation. In addition, clinical studies of two other DPC2.0-based siRNA therapies were discontinued, and Arrowhead transferred their delivery platform from DPC to TRiM™ (Targeted RNAi Molecule) (Fig. 5c). The TRiM™ platform comprises a highly potent RNA trigger (siRNA), targeting ligands, linkers, and structures that enhance pharmacokinetic performance if needed. The targeting moiety is covalently conjugated to the siRNA directly. The targeting ligands can be selected from GalNAc, RGD motifs (ligands of integrin $\alpha\beta_3$ and $\alpha\beta_5$) and the $\alpha\beta_6$ ligand, which are designed to transport siRNA to hepatocytes, cancer cells and lung epithelial cells, respectively. These molecules can trigger efficacious gene silencing in the targeted tissue and potentially may reduce the risk of intracellular metabolite accumulation, thus reducing the in vivo toxicity.

DPC or TRiM employed therapeutics. ARC-520 is a DPC2.0-based siRNA therapeutic containing two siRNAs, siHBV-74 and siHBV-77 elicited the greatest level of gene knockdown among ~140 candidates. Coadministration of these two siRNAs showed further gene knockdown and could be used to target 99.64% of all genotypes of HBV transcripts. Thus, ARC-520 containing these two siRNAs was proposed to combat HBV infection. In preclinical studies, ARC-520 significantly inhibited the expression of the 2.4/2.1 kb preS1/S transcripts and the 3.5 kb transcripts and reduced HBsAg levels in a dose-dependent manner, which was well maintained for ~1 month in HBV-transgenic mice. A phase 1 study (NCT01872065) of ARC-520 showed that it was well tolerated at a dose of up to 2 mg/kg after a single dosing of ARC-520 intravenously. There was no difference between the placebo and ARC-520 groups with respect to adverse event frequency and severity. Only mild or moderate adverse events were observed. In another phase 1 study (NCT02535416), healthy adult volunteers were administered ARC-520 from 4 to 6 mg/kg at varying infusion rates, and no treatment-emergent adverse events were observed. A phase II study of ARC-520 (Heparc-2001) demonstrated that HBsAg was markedly decreased in treatment-naive and HBeAg-positive patients (Fig. 5k); however, if the patients were HBeAg-negative or previously had received treatment with nucleos(t)ide viral replication inhibitors (NUCs), the therapeutic effect was significantly reduced. More importantly, this study observed that HBsAg could be expressed from

Fig. 7 Tissues targeted by siRNA and miRNA therapeutics currently being investigated at the clinical stage. The corresponding therapeutic names are shown beside the tissues.
integrated HBV DNA in the host genome, in addition to expression from cccDNA. These findings uncovered an unrecognized source of HBsAg, leading to changes in the trial design and expectations for the end point of new treatments for chronic HBV.

ARC-521, another siRNA therapeutic based on the DPC2.0 delivery system, was designed as a complement to ARC-520, targeting HBV mRNA transcripts from both cccDNA and integrated DNA. This drug is expected to be most suitable for patients who have lower levels of viral cccDNA. In a clinical trial (NCT02797522) of ARC-521, healthy volunteers received single escalating doses of 0.6, 1.0, 2.0, 4.0, 5.0 and 6.0 mg/kg ARC-521, and chronic HBV patients received up to three doses (Q28 days) of ARC-521 at multiple dose levels of 2.0, 4.0 and 6.0 mg/kg. All participants were pretreated with oral antihistamine and acetaminophen 2 h prior to ARC-521 dosing. No deaths or dropouts due to AEs or SAEs were reported in healthy volunteers. No injection reactions or laboratory abnormalities were reported as adverse effects, and no clinically significant alanine transaminase (ALT) elevations were reported in healthy volunteers. One SAE of elevated transaminases occurred in a patient at one month after a single ARC-521 dose, which may have been due to viral flare secondary to fluctuating HBV DNA and NUC nonadherence. In addition, the expression of HBsAg and HBV programs based on the DPC2.0 or EX-1 delivery system. Instead, safety and treatment effect on intrahepatic and circulating AAT that severely damages the liver and lungs. Two clinical trials have been due to viral.

ARC-AAT was developed to treat alpha-1 antitrypsin deficiency that severely damages the liver and lungs. Two clinical trials (NCT02363946 and NCT02900183) were performed to evaluate the safety and treatment effect on intrapulmonary and circulating AAT levels after ARC-AAT injection. Unfortunately, deaths were reported at the highest dose in a nonhuman primate toxicity study of ARC-520. As a result, Arrowhead stopped all three programs based on the DPC2.0 or EX-1 delivery system. Instead, Arrowhead launched programs based on the TRIM™ platform, including ARO-AAT and ARO-HBV (Table 1, Fig. 7). According to the data disclosed by Arrowhead, with the exception of being well tolerated at all doses tested, three monthly doses of 300 mg ARO-AAT™ led to the suppression of AAT in serum to a level below 20% of normal levels. ARO-HBV employs two siRNAs that reduce all measurable viral viral products and interfere with the upstream reverse transcription process in HBV patients. Data from a phase 1/2 study (NCT03369479) showed that a single dose of multiple doses of up to 400 mg of ARO-HBV was well tolerated in the patients and volunteers. Furthermore, patients receiving 3-month doses of ARO-HBV and entecavir or tenofovir showed up to −3.8 log10 HBsAg reduction. More comprehensive studies are ongoing.

GalNAc-siRNA conjugates

Characteristics of GalNAc-siRNA conjugate platforms. Although patisiran, a liposome-based RNAi formulation, reached commercial application, Alnylam still stopped all other liposome-based programs, as the GalNAc-siRNA conjugate delivery platform is superior to that of liposomes regarding both potency and safety for the liver-targeted delivery of siRNA. GalNAc is a ligand of the asialoglycoprotein receptor (ASGPR), which is an endocytic receptor that is highly and specifically expressed on the membrane surface of hepatocytes (~500,000 copies/cell) but barely expressed by other cells. ASGPR and clathrin-mediated endocytosis can efficiently transport galactose-derived ligands from the cell surface to the cytoplasm. In this process, ASGPR is presented on the cell surface within 15 min. Early structure–activity studies revealed that tetravalent and trivalent ligands exhibit orders of magnitude higher affinity than monovalent and bivalent ASGPR when the spacing is ~20 Å. Hence, trivalent or tetravalent GalNAc moieties are covalently conjugated to siRNA with a proprietary linker structure (Figs. 5d and 6).
studies (Table 1, Fig. 7). Recently, only four months after receiving new drug application (NDA) from Alnylam, the FDA-approved GIVLAARI™ for the treatment of AHP,99 a genetic disorder resulting in the buildup of toxic porphyrin molecules that are formed during the production of heme (which helps bind oxygen in the blood), GIVLAARI™, an amionicoleucinic acid synthase 1 (ALAS1)-targeting RNAi therapeutic, is the first GaINAc-conjugate RNAi therapeutic worldwide. As mentioned above, ESC modification confers siRNA more stability, which allows quarterly dosing at significantly lower dosages. According to the phase 1 clinical data disclosed by Alnylam, givosiran dosed at 2.5 mg/kg once-monthly significantly reduced the levels of ALAS1 mRNA, delta aminoleucinic acid (ALA) and porphobilinogen (PBG), with higher than 80% inhibition efficiency, which was accomplished with a 79% decrease in the mean annualized attack rate compared to that of the placebo. In the ENVISION phase 3 study, patients receiving givosiran showed a 74% mean reduction in the annualized rate of composite porphyria attacks compared to those receiving placebo, with an acceptable overall safety and tolerability profile (Fig. 5).10

In addition, inclisiran and lumasiran have been submitted to the FDA for new drug commercialization evaluation, and fitusiran (ALN-AT3) and vutrisiran (ALN-TTRsc02) are undergoing phase 3 clinical trials (Table 1, Fig. 7). Fitusiran was used for the treatment of hemophilia and rare bleeding disorders (RBDs) and functions by inhibiting the expression of antithrombin (AT). This drug employs the ESC-GalNAc delivery platform developed by Alnylam. A phase 2 study (NCT02554773)94,212,213 showed that 50 or 80 mg of fitusiran (lower than 2.5 mg/kg) per month resulted in an antithrombin reduction of 78–88% from baseline. The phase 2 trial of inclisiran (NCT02963311),18,214-216 an siRNA targeting proprotein convertase subtilisin kexin type 9 (PCSK9), also exhibited potent and durable gene silencing and a reduction in low-density lipoprotein cholesterol (LDL-C) (Fig. 5j). Lumasiran is an RNAi modality for treating primary hyperoxaluria type 1 (PH1) that functions by inhibiting the expression of glycolate oxidase. Phase 1/2 studies of lumasiran revealed a mean maximal reduction in urine oxalate (Uox) of 75% relative to baseline across all cohorts (1 mg/kg monthly, 3 mg/kg monthly, and 3 mg/kg quarterly; N = 20). All lumasiran-treated patients experienced a mean maximal decrease of 77% in the ratio of urinary oxalate to creatinine, an additional measure of oxalate reduction that addresses the variability inherent in 24-h urine collections. An acceptable safety and tolerability profile was also observed in the phase 1/2 studies. Moreover, a phase 1 clinical investigation of vutrisiran (NCT02797847)217 showed that the reductions in serum TTR were well maintained for as long as 1 year after a single dose of vutrisiran for all six dose groups from 5 to 300 mg. Cemedisiran, ALN-AAT02, ARO-HBV and DCR-PHXC are undergoing phase 2 trials (Table 1, Fig. 7). Cemedisiran (Fig. 4f) and ALN-AAT02 are two programs developed by Alnylam for the treatment of complement-mediated diseases and AAT deficiency-associated liver disease (alpha-1 liver disease) and function by targeting the C5 component of the complement pathway and alpha-1 antitrypsin (AAT), respectively. Cemedisiran and ALN-AAT02 utilize the ESC-GalNAc delivery platform and the ESC-Plus (ESC+GalNAc) delivery platform, respectively, developed by Alnylam (Figs. 3, 5d and 6). ARO-HBV and nedosiran (DCR-PHXC) were developed by Arrowhead and Dicerna for curing hepatitis B and primary hyperoxaluria (PH), respectively. DCR-PHXC can inhibit the expression of lactate dehydrogenase A (LDHA), thus blocking the excess production of oxalate, leading to a cure for all three genetic forms of PH (type 1, 2 and 3), a rare, inherited, liver metabolic disorder. The current treatment approaches for PH are either poorly effective or highly invasive.718 In an ongoing study of DCR-PHXC-101 in healthy volunteers and patients719 (phase 1, NCT03392896), the patients were divided into three cohorts that received different doses of DCR-PHXC via subcutaneous administration. The 24-h Uox values for three of the five patients who received 1.5 mg/kg of DCR-PHXC reached near-normalization levels at one or more postdose time points, and their mean maximal 24-h Uox reduction was 51% (range: 28–72%). When the dose was doubled, the 24-h Uox values for 4 out of 5 subjects reached normalization at one or more postdose time points, and their mean maximal 24-h Uox reduction was 71% (range: 62–80%). For the third cohort receiving 6 mg/kg DCR-PHXC, the mean maximal 24-h Uox reduction reached 76% (range: 58–100%). The 24-h Uox values were not disclosed because the values for 2 patients did not return to within 80% of the lowest baseline 24-h Uox measurement (Fig. 5n).

AMG 890 (formerly ARO-LPA, ARO-ANG3, ARO-APOC3, ARO-AAT) (Fig. 5o), DCR-HBVS, ALN-AAT01 and AB-729 were evaluated in phase 1 clinical trials (Table 1, Fig. 7). These therapeutics were developed to treat cardiovascular disease, dyslipidemia, hyperglycemia, alpha-1 liver disease, hepatitis B, hypertension and hepatitis B and function by targeting apolipoprotein A (Apo(a)), angiotriptin-like 3 (ANTPL3), apolipoprotein C3 (ApoC3), AAT, the HBV gene, angiotensinogen (AGT) and the HBV gene, respectively. Moreover, many other candidates have been explored preclinically for liver-related diseases, e.g., ALN-HBV02 (VIR-2218), SLN360, SLN226, RB10106, RB-HLPP02 and DCR-A1AT.2

LODER™ and siG12D-LODER™ Local Drug EluteR (LODER™)220,221 is a biodegradable polymeric matrix derived from polyactic-co-glycolic acid (PLGA) with a small cylindrical rod ~1 nm in diameter and ~5 nm in length (Figs. 5e and 6). According to Silenseed, LODER™ is the first siRNA delivery system that allows RNAi drugs to be directly delivered into solid tumors. LODER™ enables the slow and stable release of locally delivered drugs. The siRNA in LODER™ was protected from degradation when incubated in phosphate buffer solution or in mouse liver tissue homogenate for over 2 months.

siG12D-LODER™ is a G12D-mutated KRAS-targeting siRNA therapeutic entrapped in LODER™. Preclinical studies performed in rats and mice showed robust tumor treatment effects at a dose of 0.32 mg/kg. According to preclinical evaluation data collected from 192 rats, siG12D-LODER™ revealed ideal safety profiles in all animals receiving repeated subcutaneous doses of the studied formulation at days 1, 14 and 28.222 In phase 1/2a studies (NCT01188785 and NCT01676259), siG12D-LODER in combination with chemotherapy (gemcitabine or FOLFIROX) was used as a first-line treatment for inoperable locally advanced pancreatic cancer (LAPC) patients. Three escalating dose cohorts (0.025, 0.75 and 3.0 mg) were employed in this study. The main adverse events were grade 1 or 2 in severity (89%), and serious adverse events (SAEs) occurred in five patients. Tumor progression was not observed for 12 patients according to the CT scan data (Fig. 5l). Stable disease was achieved in 10 of 12 patients, and partial response was observed in 2 patients. The median overall survival of siG12D-LODER-treated patients was 15.12 months, and the 18-month survival reached 38.5% of patients.

Based on LODER™ delivery technology, Silenseed developed siPT-LODER™, aiming to cure prostate cancer and si-GBMT-LODER™ as a treatment for brain cancer, which are in the preclinical and research stages, respectively.

Other platforms

Polymers17,114,115,223 (e.g., PEI,231 PTMS,115 GDDC114 and PAsp (DET)232 constitute additional important siRNA delivery platforms. Similar to LNPs, polymers can achieve high cellular uptake and endosomal escape because they are positively charged. Besides LODER™, the cyclodextrin-based RONDEL™ is another polymer platform that was developed by Calando Pharmaceuticals and was once investigated in a phase 1 clinical study234,235 (Fig. 6). Repeatability, manufacture-controllability, safety and biodegradability are the key issues that researchers need to pay attention to
when studying polymers. Therefore, designing simple, biodegradable, targeted or naturally occurring polymers is a potential development direction for polymer-based platforms.

In addition, some other systems are also important for siRNA therapeutic development, which include (i) the EDV™ nanocell platform developed by EnGeneIC,238 (ii) the HKP delivery system employed by Sirnaomics, Inc.237 (Fig. 6); (iii) extracellular vesicles or exosomes derived from various cell types (Fig. 5f, m);16,238,239 (iv) peptides;240–243 (v) dendrimers;244–246 (vi) RNA nanoparticles (e.g., three-way-junction, 3WJ);247–250 and (vii) inorganic nanoparticles251–253 (Fig. 6). These platforms also exhibited satisfactory delivery efficiency in the preclinical and/or clinical stages.

To date, hepatocyte-targeted delivery of siRNA has been well resolved by leveraging GalNAc-siRNA conjugates. In the following days, researchers will develop extrahepatic siRNA delivery strategies. Recently, central nervous system (CNS) and eye-targeted delivery platforms have been established by conjugating a lipophilic moiety to the siRNA, according to the descriptions in Alnylam’s patent (WO2019217459A1).254 Arrowhead successfully delivered siRNA to renal cancer cells and lung epithelial cells probably by employing RGD motifs or small molecules as the targeting moieties.255 In addition, various lipids or fatty acids have also been used to modify oligonucleotides, including siRNA256–260 and ASOs,261–263 to achieve robust gene silencing in extrahepatic tissues, e.g., heart, lung, kidney, skeletal muscle, brain, etc. This progress remarkably extends the diseases that can be treated by RNAi therapeutics.

CONCLUSIONS
Due to the mechanism of action of siRNA, this molecule can be used to target nearly all disease-related genes of interest. The duration of drug research and development is also much shorter than that for small molecules, monoclonal antibodies and proteins. After the successful commercialization of ONPATTRO® and GIVLAARI™ for the treatment of rare diseases, siRNA therapy will achieve another milestone soon for treating common diseases, e.g., dyslipidemia, as excellent phase 3 data have been collected from several clinical studies of icisiran.

Benefiting from long-term and constant innovations in exploring modification geometries and delivery systems, the effective dose and half-life of the siRNA modalities were reduced from milligrams to 10−3 mg and prolonged from months to months, respectively. GalNAc–siRNA conjugates with sophisticated chemical modifications enable quarterly or twice-yearly subcutaneous administration of siRNA therapeutics, which is a great achievement that had never been realized in the history of pharmaceuticals. These improvements will exert widespread and far-reaching impacts on the whole medical industry, e.g., on drug development, government management, patient treatment, payment patterns of medical insurance, financial investments from the capital market, etc.

After studying GalNAc–siRNA conjugation for hepatic delivery of siRNA, researchers will devote themselves to developing extrahepatic delivery platforms. Several important advances have been achieved for renal, CNS and ocular targeted delivery of siRNA. Therefore, state-of-the-art siRNA technologies will definitely change our life in the future.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (31871003, 31901533), the Hunan Provincial Natural Science Foundation of China (2018JJ1019, 2019JS0196), the Hu-Xiang Young Talent Program (2018RS03094), the Fundamental Research Funds for the Central Universities (3052018065) and the Beijing Institute of Technology Research Fund Program for Young Scholars. It was also supported, in part, by grants from the National Science and Technology Major Project of China (2019ZX09301-132), Program for Changjiang Scholars and Innovative Research Team in University of China (IRT_15R13).

AUTHOR CONTRIBUTIONS
Y.H., B.H. and L.Z. wrote the paper. Y.H. organized the figures. Y.W. contributed to summarizing the clinical activities of siRNAs. X.-J.L., Y.Z., and L.P. provided insightful discussions and comments on the manuscript. Y.H., X.-J.L. and Y.Z. revised the manuscript and supervised the project.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Ann. Rev. Med. 70, 273–288 (2019).
2. Deng, Y. et al. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 37, 801–825 (2019).
3. Deng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020).
4. Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target Ther. 5, 1 (2020).
5. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).
6. Carolyn Napoli, C. L. & Richard, J. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).
7. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
8. Huang, Y. Y. Approval of the first-ever RNAi therapeutics and its technological development history. Prog. Biochem. Biophys. 46, 313–322 (2019).
9. Sardh, E. et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N. Engl. J. Med. 380, 549–558 (2019).
10. Bissell, D. M. et al. ENVISION, a phase 3 study of safety and efficacy of givosiran, an investigational RNAi therapeutic, in acute hepatic porphyria patients. Hepatology 70, 100A–101A (2019).
11. da Paula Brandao, P. R., Titze-de-Almeida, S. S. & Titze-de-Almeida, R. Leading R. N. A. Interference therapeutics part 2: silencing delta-aminolevulinic acid synthase 1, with a focus on givosiran. Mol. Diagn. Ther. 24, 61–68 (2020).
12. Agarwal, S. et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid (siRNA), givosiran, in patients with acute hepatic porphyria. Clin. Pharmacol. Ther. https://doi.org/10.1002/cpt.1802. (2020).
13. Cho, W. G. et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. PNAS 106, 7137–7142 (2009).
14. Hu, B. et al. Clinical advances of siRNA therapeutics. J. Gene Med. 21, e3097 (2019).
15. Guo, D. X. et al. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant. Cancer Cells Nano-Micro Lett. 11, 13 (2019).
16. Zheng, Z. et al. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release 311–312, 43–49 (2019).
17. Zheng, M. et al. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 31, e1903277 (2019).
18. Kim, M., Kim, G., Hwang, D. W. & Lee, M. Delivery of high mobility group box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J. Biomed. Nanotechnol. 15, 2401–2412 (2019).
19. Liu, J. et al. Effective gene silencing mediated by polypeptide nanoparticles LAH4-L1-siMDR1 in multi-drug resistant human breast cancer. J. Biomed. Nanotechnol. 15, 531–543 (2019).
20. Wang, Y., Li, C., Du, L. & Liu, Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chin. Chem. Lett. 31, 275–280 (2020).
21. Chen, Y. et al. A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chin. Chem. Lett. 31, 1153–1158 (2020).
22. Ma, J. et al. Preparation of poly(glutamic acid) shielding micelles self-assembled from polylysine-b-polyphenylalanine for gene and drug co-delivery. Chinese Chem. Lett. https://doi.org/10.1016/j.ccl.2020.02.034 (2020).
23. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).
24. Barakat, M. R. & Kaiser, P. K. VEGF inhibitors for the treatment of neovascular age-related macular degeneration. Expert Opin. Investig. Drugs 18, 637–646 (2009).

25. Reich, S. J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216 (2003).

26. Shen, J. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 13, 235–234 (2006).

27. Sioud, M., Furset, G. & Gekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2'-modified RNAs. Biochem Biophy. Res. Commun. 361, 122–126 (2007).

28. Song, X. et al. Site-specific modification using the 2'-methoxyethylnucleoside group improves the specificity and activity of siRNAs. Mol. Ther. Nucleic Acids 9, 239–250 (2017).

29. Fluiert, K., Mook, O. R. & Baas, F. The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol. 487, 189–203 (2009).

30. Braunsen, J. B. al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res. 38, 5761–5773 (2010).

31. Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target- driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

32. Khvorova, A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N. Eng. J. Med. 376, 4–7 (2017).

33. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

34. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

35. Rozema, D. B. in Annual Reports in Medicinal Chemistry, Vol 50: Platform Technologies in Drug Discovery and Validation Vol 50 Annual Reports in Medicinal Chemistry (ed. Goodnow, R. A.) 17–59 (Elsevier Academic Press Inc, 2017).

36. Yu, R. Z. et al. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab. Dispos. 35, 460–468 (2007).

37. Geselowitz, D. A. & Neckers, L. M. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res. Dev. 5, 213–217 (1995).

38. Liang, X. H., Sun, H., Shen, W. & Crooke, S. T. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res. 43, 2927–2945 (2015).

39. Crooke, S. T. et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35, 230–237 (2017).

40. Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650 (2019).

41. Migawa, M. T. et al. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gaperi ASOs by modulating interactions with cellular proteins. Nucleic Acids Res. 47, 5465–5479 (2019).

42. Uyechi, L. S., Gagné, L., Thurston, G. & Szoka, F. C. Jr Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther. 8, 828–836 (2001).

43. Huang, Y. et al. Pharmacokinetic behaviors of intravenously administered siRNA in glandular tissues. Theranostics 6, 1528–1541 (2016).

44. Huang, Y. & Liang, Z. Pharmacokinetic profiles of naked and nano-formulated siRNAs in glandular tissues. Nanomed. Nanotechnol. Biol. Med. 14, 1773 (2018).

45. Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 35, 845–851 (2017).

46. Ostergaard, M. E. et al. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gaperi anti-sense oligonucleotides. Nucleic Acids Res. 48, 1691–1700 (2020).

47. Uyechi, L. S., Gagné, L., Thurston, G. & Szoka, F. C. Jr Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther. 8, 828–836 (2001).

48. Huang, Y. et al. Pharmacokinetic behaviors of intravenously administered siRNA in glandular tissues. Theranostics 6, 1528–1541 (2016).

49. Huang, Y. & Liang, Z. Pharmacokinetic profiles of naked and nano-formulated siRNAs in glandular tissues. Nanomed. Nanotechnol. Biol. Med. 14, 1773 (2018).

50. Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 35, 845–851 (2017).

51. Ostergaard, M. E. et al. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gaperi anti-sense oligonucleotides. Nucleic Acids Res. 48, 1691–1700 (2020).
82. Valenzuela, R. A. et al. Base modification strategies to modulate immune stimulation by an siRNA. ChemBioChem. 16, 262–267 (2015).

83. Phelps, K. J. et al. Click modification of RNA at adenosine: structure and reactivity of 7-ethyl- and 7-triazolyl-8-aza-7-deazadenosine in RNA. ACS Chem. Biol. 9, 1780–1787 (2014).

84. Ibarra-Suza, J. M. et al. 7-Substituted 8-aza-7-deazadenosines for modification of the siRNA major groove. Org. Biomol. Chem. 10, 6491–6497 (2012).

85. Peacock, H., Fostvedt, E. & Beal, P. A. Minor-groove-modulating adenine replacements control protein binding and RNAi activity in siRNAs. ACS Chem. Biol. 5, 1115–1124 (2010).

86. Wahba, A. S. et al. Phenylpyrrolocytosine as an unobtrusive base modification for monitoring activity and cellular trafficking of siRNA. ACS Chem. Biol. 6, 912–918 (2011).

87. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for pharmacodynamic of GalNAc-siRNA conjugates. Chembiochem. 13, 1940–1945 (2012).

88. Wu, S. Y. et al. Development of modified siRNA molecules incorporating 5-fluoro-2-deoxyuridine residues to enhance cytotoxicity. Nucleic Acids Res. 41, 4650–4659 (2013).

89. Peacock, H., Kannan, A., Beal, P. A. & Burrows, C. J. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem. 76, 7295–7300 (2011).

90. Watts, J. K., Deleavey, G. F. & Damha, M. J. Chemically modified siRNA: tools and applications. Drug Discov. Today 13, 842–855 (2008).

91. Dar, S. A., Thakur, A., Qureshi, A. & Kumar, M. siRNAmod: a database of chemical modifications to siRNA major groove. Nucleic Acids Res. 45, 10969–10977 (2017).

92. Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

93. Janas, M. M. et al. Safety evaluation of 2’-deoxy-2’-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res. 47, 3306–3320 (2019).

94. Alnylam. FDA Approves First Treatment for Inherited Rare Disease https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/0212194s000lbl.pdf 1–11 (The U.S. Food and Drug Administration, 2019).

95. Zheng, J. et al. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J. 27, 4017–4026 (2013).

96. Turner, A. M. et al. Heparatic-targeted RNA interference provides robust and persistent knockdown of alpha-1 antitrypsin levels in ZZ patients. J. Hepatology. 69, 378–384 (2018).

97. Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat. Trademark Off. US20190144859, 1–240 (2019).

98. US. Silence nucleic acid linked to a trivalent glycoconjugate. US Pat. Trademark Off. 1–52 (2019).

99. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. Proc. Natl Acad. Sci. USA 104, 12982–12987 (2007).

100. Stendal, E. G., Trantow, B. M., Vargas, J. R. & Wender, P. A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res. 46, 2944–2954 (2013).

101. Hafiez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polymeric nucleic acids. Gene Ther. 8, 1188–1196 (2001).

102. Torcillini, V. P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8, 343–375 (2006).

103. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

104. Zapp et al. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).

105. Li, J. et al. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control Release 142, 416–421 (2010).

106. Dominiksa, M. & Dykhoom, D. M. Breaking down the barriers: siRNA and endosome escape. J. Cell Sci. 123, 1183–1189 (2010).

107. Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

108. Takahashi, H., Tsuchiya, Y., Otsuka, T. & Ueda, K. siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31, 653–658 (2013).

109. Qiu, C. et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat. Commun. 10, 2702 (2019).

110. Huang, D. et al. Continuous vector-free gene transfer with a novel microfluidic chip and nanonoodle array. Curr. Drug Deliv. 16, 164–170 (2019).

111. Huang, E. H., Chen, W. & Gordijn, R. E. Efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip. 11, 163–172 (2011).

112. Huang, D., Yuan, Y. & Li, Z. Transdermal delivery of nucleic acid mediated by punching and electroporation. Methods Mol. Biol. 2050, 101–112 (2020).

113. Huang, D. et al. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics 8, 2361–2376 (2018).

114. Huang, D. et al. Eflectroporation for eficient delivery of nucleic molecules into animal tissues with irregular surface shapes. Sci. Rep. 5, 7618–7618 (2015).

115. Zhao, D. et al. A flow-through cell electroporation device for rapidly and eficiently transfecting massive amounts of cells in vitro and ex vivo. Sci. Rep. 6, 18469–18469 (2016).

116. Wei, Z. et al. A laminar flow electroporation system for efficient DNA and siRNA delivery. Anal. Chem. 83, 5881–5887 (2011).

117. Demirjan, S. et al. Safety and tolerability study of an intravenously administered small interfering ribonucleic acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int. Rep. 2, 836–843 (2017).

118. Thompson, J. D. et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 22, 255–264 (2012).

119. Solano, E. C. et al. Toxicological and pharmacokinetic properties of QPI-1007, a chemically modified synthetic siRNA targeting caspase 2 mRNA, following intravitreal injection. Nucleic Acid Ther. 24, 258–266 (2014).

120. Mohlitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol. 20, 1754–1764 (2009).

121. Ahmed, Z. et al. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis. 2, e173 (2011).

122. Alvarez, R. et al. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob. Agents Chemother. 53, 3952–3962 (2009).

123. DeVincenzo, J. et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSVO1, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antivir. Res. 77, 225–231 (2008).

124. Zamora, M. R. et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 183, 531–538 (2011).

125. DeVincenzo, J. et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl Acad. Sci. USA 107, 8800–8805 (2010).

126. Bettelheim, J. et al. ALN-RSVO1 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J. Heart Lung Transpl. 35, 213–221 (2016).
Advanced GalNAc-siRNA Platform and Its Therapeutic Applications

Takemoto, H. & Nishiyama, N. Functional polymer-based siRNA delivery carrier that recognizes site-specific biomarkers. J. Control. Release 267, 90–99 (2017).

Guo, S. et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly-(N, N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly (ethylene glycol) for gene delivery. Biomater. 32, 4283–4292 (2011).

Lin, D. et al. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGridated polycaprolactone nanoparticles in siRNA delivery. Biomaterials 32, 8730–8742 (2011).

Huang, Y. et al. Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminomethyl methacrylate) for targeted siRNA delivery. Biomater. 33, 4653–4664 (2012).

Lin, D. et al. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale 5, 4291–4301 (2013).

Han, S. et al. Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomater. 48, 45–55 (2015).

Zhang, T. et al. Fluorinated oligothymidine nanomaterials for efficient siRNA-mediated gene silencing in serum-containing media by effective endosomal escape. Nano Lett. 18, 6301–6311 (2018).

Suma, T. et al. Enhanced stability and gene silencing ability of siRNA-loaded polycarbamate complexes formulated from polysapramide derivatives with a repetitive array of amino groups in the side chain. Biomater. 33, 2770–2779 (2012).

Liu, Y. et al. Charge conversional biomimetic nanocomplexes as a multi-functional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 20, 1637–1646 (2020).

Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6, 659–668 (2009).

Davis, M. E. et al. Evidence of siRNA in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

van Zandwijk, N. et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18, 1386–1396 (2017).

Zhou, J. et al. Simultaneous silencing of TGF-beta1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis. Oncotarget 8, 80651–80665 (2017).

Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

Lu, M. & Huang, Y. Bioinspired exosome-like therapeutics and delivery nano-platforms. Biomater. 242, 119925 (2020).

Huang, Y. et al. Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomater. 4, 494–510 (2016).

Huang, Y. et al. Systemic administration of siRNA via cRGD-containing peptide. Sci. Rep. 5, 12458 (2015).

Kim, S. S. et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol. Ther. 18, 923–932 (2010).

Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

Dong, Y. et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc. 140, 16264–16274 (2018).

Zhou, J. et al. Systemic administration of combinatorial disRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther. 19, 2228–2238 (2011).

Liu, X. et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew. Chem. Int. Ed. Engl. 53, 11822–11827 (2014).

Cui, D. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles co-delivering synthetic anti-angiogenic and pro-apoptotic genes: a multi-targeted therapy. Biomater. 38, 494–505 (2016).

Kamerkar, S. et al. The valency of fatty acid ligand for the asialoglycoprotein receptor. J. Control. Release 339, 709–717 (2017).

Several Advanced GalNAc-siRNA Platform and Its Therapeutic Applications. https://www.silence-therapeutics.com/media/1799/2018-boston-tides.pdf 1–36 (Silence, 2018).

Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

Apponi, L. et al. Stereochimistry enhances pharmacological properties of APOC3 antisense oligonucleotides. J. Hepatol. 68, 5137–5137 (2018).

van der Ree, M. H. et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1b, double-blind, randomised controlled trial. Lancet 389, 709–717 (2017).

SuzhouRibofLifeScience. Compound, conjugates and use and kit thereof. World Intell. Prop. Organ. WO2019128661, 1–271 (2019).

Sanhueza, C. A. et al. Efficient Liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. J. Am. Chem. Soc. 139, 3528–3536 (2017).

WaveLifeSciences. Oligonucleotide compositions and methods of use thereof. World Intell. Prop. Organ. WO2018223073, 1–773 (2018).

Pasi, K. J. et al. A subcutaneously administered investigational RNAi therapeutic that recognizes site-specific biomarkers. J. Control. Release 267, 67–78 (2019).

Strat, A. L., Ghicici, C. M., Luponoru, C. E. & Mitu, F. New class of drugs: therapeutic RNA inhibition of PCSK9 as a specific LDL-c lowering therapy. Rev. Med. Virol. 20, 485–503 (2010).

Fitzgerald, K. et al. ALN-PCSSc, an RNAi investigational agent that inhibits PCSK9 with potential for effective quarterly or possibly bi-annually dosing: results of single-blind, placebo-controlled, phase 1 single-ascending dose (SAD), and multi-dose (MD) trial in adults with elevated LDL-C, on and off statins. Circulation 132, 2275–2277S (2015).

Hassan, M. FOURIER & PCSK9 RNA: towards enhancing durability and efficacy of PCSK9 inhibitors. Glob. Cardiol. Sci. Pr. 2017, 13 (2017).

Alnylam. Phase 1 Study of ALN-TTRsc02, a Subcutaneously Administered Investigational RNAi Therapeutic for the Treatment of Transthyretin-Mediated Amyloidosis. http://www.alnylam.com/wp-content/uploads/2018/03/10-TTR-SC02_FINAL.pdf (2018).

Bindo, M. et al. Molecular basis of primary hyperoxaluria: clues to innovative therapy. Unithl. 47, 67–78 (2019).

Dicerna. Corporate Overview. Jefferies Global Healthcare Conference 2019. http://investors.dicerna.com/static-files/6ca8fc3c-2696-459a-bbca-a8a93ec68903 1–22 (2019).

Zorče Khvalkovec, E. et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20723–20728 (2013).

Amotz Shemi, E. Z. K. et al. Multistep, effective drug distribution within solid tumors. Oncotarget 7, 3956–39575 (2017).

Ramot, Y. et al. Preclinical safety evaluation in rats of a polymeric matrix containing an siRNA drug used as a local and prolonged delivery system for pancreatic cancer treatment. Toxicol. Pathol. 44, 855–865 (2016).

Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6, 24560–24570 (2015).

Shemi, A. & Khvalkovec, Z. RNA interference compositions targeting heat shock protein 90 and methods of use thereof. US Pat. Trademark Off. US20170283803A1, 1–20 (2017).

Takemoto, H. & Nishiyama, N. Functional polymer-based siRNA delivery carrier that recognizes site-specific biomarkers. J. Control. Release 267, 90–99 (2017).

Guo, S. et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly(N, N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly (ethylene glycol) for gene delivery. Biomater. 32, 4283–4292 (2011).

Lin, D. et al. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGridated polycaprolactone nanoparticles in siRNA delivery. Biomaterials 32, 8730–8742 (2011).
