Pragmatic, Evidence-Based Approach to Coding for Abdominal Wall Reconstruction

Benjamin K. Pouluse, MD, MPH

wexnermedical.osu.edu/CACH
Disclosure Statement

Pouloue – Salary support as Director of Quality and Outcomes for the ACHQC; research funding (Advanced Medical Solutions and BD); consulting (Ethicon)
The Problem

AWR?

CPT 15734
Consequences

- Nobody has precisely defined AWR
- ACS Bulletin excluded MIS approaches from billing for CPT 15734 regardless of what was performed
- No recognition of the work performed for a Rives-Stoppa repair without TAR
Goals

- Precisely define AWR
- Link the performance of VHR and AWR to the actual work performed and with appropriate billing codes using data
- Remove the MIS restriction
How CPT Codes get Assigned wRVUs

- Clinical vignettes
- Time
- Surveys
Defining Abdominal Wall Reconstruction

- CMS definition…defined by the ACHQC
- AWR = Ventral hernia repair + myofascial release
- Myofascial release = an abdominal wall fascial layer separated from a muscular layer
Myofascial Releases

- Posterior rectus sheath incision (Rives)
- Transversus abdominis release
- External oblique release
- Anterior rectus sheath release(s)
No Myofascial Release

Myofascial Release

External Oblique Release

Posterior Rectus Sheath Release

Tranversus Abdominis Release
Clinical Vignettes/Scenarios

- VHR with mesh and no release (NR)
- VHR with mesh and posterior sheath release (PRS)
- VHR with mesh and PRS with transversus abdominis release or external oblique release (PRS-TA/EO)
Primary Outcome Measure

- Operative time
 - 0-59 minutes
 - 60-119 minutes
 - 120-179 minutes
 - 180-239 minutes
 - 240+ minutes
Secondary Outcome Measures

- Disease severity measures
- 30 day postoperative outcomes

(These were selected to determine if patients had increased levels of complexity going from: NR->PRS->PRS-TA/EO)
Results

Between 2013 – 2020:
- 7287 NRS
- 2425 PRS
- 5534 PRS-TA/EO
Results

	NR (7287)	PRS (n = 2425)	PRS-TA/EO (n = 5534)	p value
Incisional hernia (%)	59%	89%	97%	< 0.001
Centers for disease control wound class (%)				
Class 1 (clean)	96%	86%	77%	< 0.001
Class 2 (clean-contaminated)	3%	9%	13%	
Class 3 (contaminated)	1%	4%	9%	
Class 4 (dirty)	0%	1%	1%	
Operative approach (%)				< 0.001
Open	29%	71%	82%	
Laparoscopic	37%	1%	0%	
Robotic-assisted	28%	24%	12%	
MIS converted to open	1%	3%	1%	
Laparoscopic-hybrid	4%	0%	0%	
Robotic-hybrid	1%	1%	5%	
Mesh location (%)				< 0.001
Intraperitoneal	100%	0%	0%	
Retromuscular	0%	91%	54%	
Retromuscular and preperitoneal	0%	9%	46%	
Fascial closure achieved (%)	80%	99%	96%	< 0.001

The bold values indicate statistical significance.

*NR (no myofascial release), PRS posterior rectus sheath myofascial release, PRS-TA/EO PRS with transversus abdominis release or external oblique release.
Results

EHS classification—midline	NR (n = 7287)	PRS (n = 2425)	PRS-TA/EO (n = 5534)	p value
M1—subxiphoidal	5%	12%	29%	p < 0.001
M2—epigastric	35%	66%	77%	
M3—umbilical	69%	83%	86%	
M4—infraumbilical	14%	48%	70%	
M5—suprapubic	4%	14%	25%	
No midline component	7%	3%	5%	

EHS classification—lateral				p < 0.001
L1—subcostal	3%	1%	6%	
L2—flank	6%	4%	14%	
L3—iliac	4%	2%	11%	
L4—lumbar	0%	0%	2%	
No lateral component	88%	94%	74%	

EHS classification—width				p < 0.001
W1—< 4 cm	59%	12%	1%	
W2—≥ 4—10 cm	35%	68%	24%	
W3—≥ 10 cm	6%	20%	75%	

The bold values indicate statistical significance.
Results – Operative Time
Results – Secondary Outcomes

Outcome	NR (7287)	PRS (n = 2425)	PRS-TA/EO (n = 5534)	p value
Patients undergoing recurrent repair (%)	21%	37%	50%	< 0.001
Transverse hernia width (cm, median (interquartile range))	3 (2, 5)	6 (5, 9)	13 (9, 16)	< 0.001
Length of hospital stay (days, median (interquartile range))	0 (0, 1)	3 (1, 4)	5 (3, 7)	< 0.001
Any non-infectious complication at 30 days (%)	12%	21%	29%	< 0.001
Surgical site infection at 30 days (%)	1%	3%	6%	< 0.001
Surgical site occurrence requiring procedural intervention at 30 days (%)	2%	4%	8%	< 0.001

The bold values indicate statistical significance

\(^a\)NR no myofascial release, PRS posterior rectus sheath myofascial release, PRS-TA/EO PRS with transversus abdominis release or external oblique release
Summary

- AWR = Ventral hernia repair + myofascial release
- Myofascial release = an abdominal wall fascial layer separated from a muscular layer
Summary

Ohio State Center for Abdominal Core Health
Summary

- PRS (Rives-Stoppa) deserves its own code reflective of the additional work performed
- Coding should be based on the myofascial releases performed, regardless of approach
- MIS approaches should be equally as able to bill for AWR codes as open approaches
Summary

- Use CPT 14301/14302 (Adjacent tissue transfer) for Rives-Stoppa without TA/EO
- Use 15734 for Rives-Stoppa with TA or if EO performed
- Do not code for both 14301 and 15734
- Do not code for four instances of 15734
Adjacent Tissue Transfer Hernia Area = 3 * (1/2 Hernia Length) * (1/2 Hernia Width)
Example 1 – Open Rives Stoppa, 12cm x 8cm defect (total surface area 3*6*4=72cm²)

CPT Code	wRVU
49560	12
49568	5
14301	13
TOTAL	**30**

(Lap chole = 10 wRVU)
Example 2 – Open Rives Stoppa VHR with TAR, 20cm x 10cm defect

CPT Code	wRVU
49560	12
49568	5
15734	23
15734-59 (converts to -51)	23
TOTAL	**63**

(Lap chole = 10 wRVU)
Example 3 – MIS eTEP, 8cm x 6cm defect (total surface area 3*4*3=36cm²)

CPT Code	wRVU
49654	14
14301	13
TOTAL	27

(Lap chole = 10 wRVU)
Example 4 – Robotic TAR with 20cm x 10cm defect

CPT Code	wRVU
49654	13
15734	23
15734-59 (converts to -51)	23
TOTAL	59

(Lap chole = 10 wRVU)
A pragmatic, evidence-based approach to coding for abdominal wall reconstruction

Abdominal Core Health Quality Collaborative

Received: 16 May 2021 / Accepted: 12 July 2021
© The Author(s) 2021
