Correlations of equilibrium properties and electronic structure of pure metals

J. H. Dai 1, D. Y. He 2,* and Y. Song 1,*

1 School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, China
2 School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
* Corresponding author: hedy@jlu.edu.cn (D.Y.H.), sy@hitwh.edu.cn (Y.S.); Tel.: xxxx
Received: 09 August 2019; Accepted: 09 September 2019; Published: date

To explore the possible relationship between e_{bcp} and equilibrium properties of metals, we further calculated the electronic parameters and equilibrium properties of 24 binary alloys including AB and A:B (or AB$_3$) type alloys (Table S1). A parabolic relationship between bulk modulus and e_{bcp} for A$_3$B (or AB$_3$) type alloys was obtained as illustrated in Figure S1(a), but not for the AB type alloys, which shows a roughly linear relationship between bulk modulus and e_{bcp} with a mean squared error of 0.818 (Figure S1(b)). However, no strict correlation between e_{bcp} and cohesive energy or atomic volume was found.

![Figure S1](image)

Figure S1. The relationship between bulk modulus and e_{bcp} of (a) A$_3$B (or AB$_3$) type and (b) AB type binary alloys.

Alloys	Structure	e_{bcp} ($e/\text{Å}^3$)	B (GPa)	V (Å^3)	E_{coh} (eV)
AlFe	B2	0.2652	178.36	23.61	5.67
AlNi	B2	0.2351	157.66	24.21	4.98
HfRh	B2	0.2175	179.76	34.63	7.40
TiNi	B2	0.2255	163.83	27.10	6.04
TiTc	B2	0.2727	209.33	29.61	8.46
ZnAu	B2	0.1999	115.87	32.40	2.31
ZrCo	B2	0.2047	151.31	32.04	6.98
ZrOs	B2	0.2548	209.39	35.37	9.17
AlFe$_3$	L1$_2$	0.3493	215.49	44.72	6.17
AlNi$_3$	L1$_2$	0.3136	179.53	45.32	5.14
Compound	Structure	a (Å)	c (Å)	c/a ratio	
------------	-----------	-------	-------	-----------	
Cu3Au L12	0.2961	141.99	54.17	3.52	
HfRh3 L12	0.3325	223.97	60.79	7.08	
NbIr3 L12	0.4163	314.17	60.32	9.13	
NbRu3 L12	0.3626	267.28	58.83	8.70	
VIr3 L12	0.4503	324.77	56.23	8.65	
Zr3Al L12	0.2060	99.22	84.09	6.34	
Co3Ni D019	0.3440	237.25	83.64	5.92	
CoNi3 D019	0.3187	209.64	85.85	5.30	
HfTi3 D019	0.2355	114.68	147.50	6.45	
HfZr3 D019	0.2047	98.53	184.87	6.90	
Mg3Cd D019	0.1087	40.31	175.26	1.39	
MgCd3 D019	0.1006	44.41	175.88	0.99	
ZrNi3 D019	0.2821	170.85	105.52	6.02	
ZrTi3 D019	0.2255	108.23	149.61	6.42	