CASE REPORT

ORBITAL CYSTICERCOSIS MASQUERADING AS INTERNUCLEAR OPHTHALMOPLEGIA
Nita Shanbhag¹, Taran Wanage², Shalakha Sobti³, Neha Vyas⁴, Nupur Bhatt⁵

HOW TO CITE THIS ARTICLE:
Nita Shanbhag, Taran Wanage, Shalakha Sobti, Neha Vyas, Nupur Bhatt. “Orbital Cysticercosis Masquerading as Internuclear Ophthalmoplegia”. Journal of Evidence based Medicine and Healthcare; Volume 2, Issue 32, August 10, 2015; Page: 4866-4874, DOI: 10.18410/jebmh/2015/680

ABSTRACT: A Muslim lady, 24 year old presented with complaints of headache, orbital pain and right eye adduction deficit mimicking Internuclear Ophthalmoplegia. However absence of diplopia in primary or left gaze made us look for another cause of ocular pain. A Type II Duane Syndrome was ruled out as there were no alterations in palpebral aperture on horizontal gazes. A painful swelling in right upper lid corner a week later made us suspect lacrimal gland inflammation. USG B scan revealed cysticercosis cyst with hyperdense scolex, around the lacrimal gland. USG did not show any EOM involvement. CT scan was done to rule out neuro-cysticercosis or any other cause of adduction deficit. Patient was successfully treated with Antihelminthics and Steroids. Orbital cysticercosis with Adduction deficit masquerading as internuclear ophthalmoplegia without muscle involvement is rare, hence been sent for publication.

KEYWORDS: Orbital Cysticercosis, Internuclear Ophthalmoplegia, Lacrimal gland, Duanes syndrome.

CASE REPORT: INTRODUCTION: Tapeworms of the genus Taenia can cause two different human diseases, Taeniasis and Cysticercosis. Taeniasis is an intestinal infection caused by the adult T. Solium and T. saginata. Cysticercosis, the most common ocular platyhelminth infestation in humans, is caused by encystment of the larvae (cysticercus cellulosae) of the tapeworm Taenia solium. Humans are the intermediate hosts in the life cycle. Cysticercosis is acquired by ingestion of infective Cysticerci in undercooked pork or ingestion of eggs of Taenia Solium in contaminated water, food, vegetables or regurgitation of eggs from the small intestine.[1] (Figure 1).

CASE REPORT: A Muslim lady 24 year old came with right orbital pain since 15 days. There were no signs of inflammation, no congestion. BCVA was 6/6 for both eyes. Anterior segment findings were normal. Pupil was normal size reacting to light and fundus was normal, intraocular pressure was 17mmhg. Extra ocular movements showed an adduction deficit in the right eye, of which the patient was unaware. She did not complain of diplopia. Our first thought was a Duane’s type II syndrome however there were no palpebral aperture changes on abduction or adduction.

To think this to be internuclear-opthalmoplegia, the lack of diplopia was contradictory to a third nerve involvement. Patient was referred for neurological evaluation. Patient on next visit presented with tender swelling in the lacrimal gland area with conjunctival congestion, all other findings remaining status quo. (Figure 2) (Figure 3) (Table 1). The patient was now sent for radiological evaluation. A USG B Scan showed a cyst with hyperdense echo in its center. (Figure 4) A diagnosis of cysticercosis around the lacrimal gland was done. A CT scan brain was done to rule out neuro-cysticercosis or any other cause of adduction deficit. (Figure 5)
CASE REPORT

Patient was treated with antihelmithics and steroids as the site was extraocular with no intraocular involvement. Albendazole was chosen over Praziquantel Albendazole 400mg twice a day for one month, along with oral Prednisolone one mg per kg of body weight was preferred treatment. Steroids were gradually tapered. Patient responded to above treatment with marked reduction in swelling, inflammatory signs and adduction deficit. (Figure 6) (Table 1)

DISCUSSION & REVIEW OF LITERATURE: Cysticercus cellulosae, the larval form of the pork tapeworm Taenia solium, is the causative organism of cysticercosis, in which humans are the intermediate hosts in the life cycle. Cysticercus cellulosae may become encysted in various bodily tissues, usually the eyes, central nervous system, and subcutaneous tissues (Figure 1). Acquired strabismus, diplopia, recurrent redness, and painful proptosis are some of the clinical signs in patients with orbital cysticercosis. Diagnosis of cysticercosis is based mainly on orbital imaging because of its highly specific appearance. Medical therapy is the main stay of treatment.

Taeniasis and Cysticercosis occur where sanitary conditions are poor and where raw and undercooked contaminated pork and beef are routinely consumed. It may also occur on ingestion of unwashed vegetables contaminated by cysticercus cysts.

Ocular and adnexal cysticercosis represents 13% to 46% of systemic disease. Ocular cysticercosis can involve any part of the eye, 4% involve the eyelid or orbit, 20% involve the subconjunctival space, 8% involve the anterior segment, and 68% involve the posterior segment (sub-retinal and intravitreal) although vitreous, subretinal and subconjunctival cysticercosis have been reported most often, the orbit is occasionally the site of cyst lodgement. Ocular involvement is usually unilateral but bilateral involvement may occur in cases of disseminated cysticercosis. in the eyelids it presents as a subcutaneous, painless, mobile mass with varying degrees of mechanical ptosis. In Conjunctiva it presents as painless or painful yellowish, nodular mass with congestion. Cysticercosis of extraocular muscle usually presents as recurrent pain, redness, ocular motility restriction, diplopia and ptosis. any muscle may be involved with greater predilection for superior and lateral rectus.

The diagnosis of myocysticercosis is based on clinical, serologic, and radiological findings. Diagnosis is made by stool examination and finding the eggs of proglottids of the worm. Serological tests used for the specific diagnosis of cysticercosis are indirect hemaggulination, indirect immunofluorescence, and immunoelectrophoresis such as ELISA. High resolution Ultrasonography (USG), computed tomography (CT) and Magnetic Resonance Imaging (MRI) help in detection of the orbital cyst.

B-scan ocular ultrasonography reveals a well-defined cystic lesion with clear contents and a hyperechoic area suggestive of a scolex. Typically, A-scan USG shows high amplitude spikes corresponding to the cyst wall and scolex. The scolex shows a high amplitude spike due to presence of calcareous corpuscles. CT scanning of the orbits show a hypodense mass with a central hyperdensity suggestive of the scolex. Usually, a solitary cyst with wall enhancement is observed. Adjacent soft-tissue inflammation may be present. The scolex may not be visible if the cyst is dead or ruptured and has surrounding inflammation. Concurrent neurocysticercosis may be present and should be excluded.
MRI may reveal a hypointense cystic lesion and hyperintense scolex within the extraocular muscle or elsewhere in the brain.[11-12] A complete blood count count may reveal eosinophilia.[13]

Gross examination of the live cyst may reveals a globular, elongated or oval, milky white cyst varying from 0.5 to 0.3cm in diameter with translucent wall and a white, opaque, dot-like area at one point, indicating the position of the scolex. It may transilluminates against light. On sectioning a live cyst, clear fluid is released, and a small 2–3mm nodule is seen on the inner wall of the capsule suggestive of an invaginated scolex with birefringent hooklets.[14]

Albendazole and praziquantel are the larvicidal drugs used in the treatment of cysticercosis in human. Albendazole has largely supplanted praziquantel because of slightly greater cure rates, decreased cost and increased availability. It has also been observed that patients not responding to praziquantel show a response to albendazole. (Table 2). It is of utmost importance to rule out intraocular and central nervous system involvement. Dying cysticercus releases its toxin and incites severe inflammatory reaction leading to vitritis and may lead to blindness. Prophylactic and concomitant administration of corticosteroids is recommended to avert an inflammatory response.that usually occurs 2-5 days after initiation of therapy. Neurocysticercosis has been treated successfully with oral albendazole and with praziquantel.

Surgical removal of the Cysticercus is the recommended treatment for subconjunctival space cysticercosis when adjacent to a muscle, great care needs to be taken as there could be an extension. If the cyst is adherent to the adjacent muscle, excision may be difficult. If the cyst wall is opened, the content should be aspirated and the area irrigated with hypertonic saline. Patient in whom, the cyst is opened during surgery, probably should be treated medically.

Subconjunctival abscess formation may occur due to release of toxins, which require drainage and removal of the cyst. Resolution of the cyst may take from a few days to months depending on the density of the surrounding inflammation. Based on the individual’s response to medical therapy, another course of medication may be required.

Serial B-scan ocular ultrasonography or CT scanning of the orbit helps to follow the resolution of the cyst, which is recognized by the disappearance of the scolex.

Cysticercosis can be prevented through practicing good hygiene measures, such as washing hands frequently, washing raw vegetables and fruits well before consumption to prevent fecal-oral transmission and avoiding consumption of raw or undercooked pork and other meat.

In conclusion orbital cysticercosis can have variety of presentation depending upon the site of lodgement and may mimic various neurological disorders putting the physician on the wrong track. A basic knowledge and understanding of the disease coupled with high index of suspicion could help us reach an early clinical diagnosis. USG B scan and CT scan can easily confirm the diagnosis. We are presenting this case, as despite the lack of involvement of extraocular muscles, there can be a mechanical restriction of ocular movements, mimicking nerve palsy, in our case an internuclear ophthalmoplegia.

The adduction deficit, improved because the cysticercus migrated sub-conjunctivally releasing the mechanical restriction. The patient was treated with systemic steroids and Albendazole (Table 2). If the lesion is extraocular localized to a particular site, surgical excision can be done alone depicting the characteristic histopathological findings. (Figure 7)
CASE REPORT

Medical line of management completely absolved the cyst and was chosen as it would resolve any other possible cysticerci elsewhere in the body. However these drugs should be avoided in intraocular lesions as their use may excite an inflammatory reaction within the eye and can lead to irreversible damage to the delicate structures of the eye.

Ocular Examination	First Visit	Second Visit	Third Visit
BCVA	6/6 - No Diplopia	Upper Lid Oedema	Normal
Ocular Adnexa	Normal	Conjunctival congestion With a Cystic Swelling superotemporally in the lacrimal gland area.	Clear and swelling markedly decreased in size
Conjunctiva/Sclera	Clear	Clear and markedly decreased in size	Clear
Cornea	Clear	Orthophoria in primary gaze with improvement in Adduction restriction	Full and free
Anterior Chamber	Well Formed	Orthophoria in primary gaze with improvement in Adduction restriction	Full and free
Iris	Color Pattern Normal. No signs of Kps / Flare or Cells	Orthophoria in primary gaze with improvement in Adduction restriction	Full and free
Pupil	Central circular reacting to light	Orthophoria in primary gaze with improvement in Adduction restriction	Full and free
Lens	Orthophoria in primary gaze with improvement in Adduction restriction	Clear	Clear
EOM	Orthophoria in primary gaze with improvement in Adduction restriction	Clear	Clear
Fundus Examination	Normal	Normal	Normal
IOP on Applanation	17 mm of Hg at each visit	17 mm of Hg at each visit	17 mm of Hg at each visit

Table 1: Right eye ocular examination on subsequent visits, Left eye being Wnl

Albbendazole	Praziquantel	
Mechanism of Action	Albbendazole sulphoxide active element - Larvicidal	It induces rapid contraction of schistosomes by a specific effect on permeability of the cell membrane destroys Larvae as well as Adult worm
Dosage	15 mg / kg / day x 1 month 400 mg BID x 1 month better absorbed with Fatty Food	50 mg / kg / day x 14 days Effect enhanced by High Carbohydrate diet, Cimetidine & Grape fruit juice
Side Effects	Lesser	More
agranulocytosis, liver function abnormalities, balding, nausea, vomiting, dizziness, headache	Lesser	More
CASE REPORT

Drug Reactions	With antiseizure drug dilantin and carbamazine and corticosteroids	
Effects on Cysts	Able to Eliminate 85% of Cysts	Able to Eliminate 75% of Cysts
Concomitant corticosteroid usage 1 mg.kg / day	Enhanced Potency as it reduces its elimination	Decreases blood levels reducing the potency
Cost	Lesser	More
Efficacy	Patients not responding to Praziquantel respond to Albendazole	May be given when non-responsive to Albendazole

Table 2: Antihelminthics for Cysticercosis.[15,16,17]

![Fig.1: Life Cycle of Taenia Solium](image)

[15,16,17]
CASE REPORT

Fig. 2: RE inflammatory swelling in lacrimal gland area

Fig. 3: EOMs in all cardial gazes depicting RE

Fig. 4: B Scan USG showing Cysticercosis cyst with scolex around
CASE REPORT

Fig. 5: CT scan showing cyst of cysticercosis around lacrimal gland

Fig. 6: Resolution of cyst and adduction deficit Post treatment

Fig. 7: Histopathology of cysticercosis
REFERENCES:
1. S.J. Ryan, “Ocular Cysticercosis retina” volume 2, The V.V Mosby, St. Louis, MO, USA, 2nd Edition 1994.
2. Grover AK, Puri P. Orbital myocysticercosis presenting as subconjunctival abscess. Ind J Ophthalmol 1996; 44(4):229 –31.
3. Bartholomew RS. Subretinal cysticercosis. Am. J Ophthal mol 1975; 79(4):252–7.
4. Kreger-Leite E, Jalkh AE, Quiroz H, Schepens CL. Intraocular cysticercosis. Am. J Ophthalmol 1985; 99(3): 252–7.
5. Pushker N, Mehta M, Meel R, Bajaj MS. Disseminated cysticercosis with multiple bilateral orbital cysts. Ophthal Plast Reconstr Surg 2009; 25(6):499-501.
6. Topilow HW, Yimoyines DJ, Freeman HM, et al. Bilateral multifocal intraocular cysticercosis. Ophthalmology Nov 1981; 88(11):1166-72.
7. Pushker N, Bajaj MS, Chandra M. Ocular and orbital cysticercosis. Acta Ophthalmol Scand 2001; 79(4): 408–13.
8. Pandey PK, Chaudhuri Z, Sharma P, Bhomaj S. Extraocular muscle cysticercosis: a clinical masquerade. J. Pediatr Ophthalmol Strabismus 2000; 37(5):273–8.
9. Sundaram PM, Jayakumar N, Noronha V. Extraocular muscle cysticercosis - a clinical challenge to the ophthalmologists. Orbit 2004; 23(4):255-62.
10. Honavar SG, Sekhar CG. Ultrasonological characteristics of extraocular cysticercosis. Orbit 1998; 17(4):271-84.
11. Rahalkar MD, Shetty DD, Kelkar AB, Kelkar AA, Kinare AS, Ambarekar ST. The many faces of cysticercosis. Clin. Radiol 2000; 55:668–74.
12. Murthy GR, Rao AV. Sub-conjunctival cysticercosis. Indian J Ophthalmol 1980; 28(2):77-8.
13. Genta RM, Connor DH. Infectious and parasitic diseases. In: Rubin E, Farber J (eds). Pathology. Philadelphia: Lippincott- Raven, 1999; 356–479.
14. Tripathi KD. Anthelmintics. In: Tripathi KD (ed). Essentials of Medical Pharmacology. New Delhi: Jaypee Brothers, 1999; 816–24.
15. Sotelo J, Escobedo F, Penagos P. Albendazole versus praziquantel for therapy of neurocysticercosis. Arch Neurol 1988; 45:532–4.
16. Takayanagui OM, Jardim E. Therapy for neurocysticercosis. Comparison between albendazole and praziquantel. Arch Neurol 1992; 49:290–94.
17. Sotelo J, Del Brutto OH, Penagos P et al. Comparison of therapeutic regimen of anticysticercal drugs for parenchymal brain cysticercosis. J. Neurol 1990; 237: 69–72.
AUTHORS:
1. Nita Shanbhag
2. Taran Wanage
3. Shalakha Sobti
4. Neha Vyas
5. Nupur Bhatt

4. 2nd Year Post Graduate Student, Department of Ophthalmology, D. Y. Patil Medical College and Research Centre.
5. 3rd year Post Graduate Student, Department of Ophthalmology, D. Y. Patil Medical College and Research Centre.

PARTICULARS OF CONTRIBUTORS:
1. Professor & HOD, Department of Ophthalmology, D. Y. Patil Medical College and Research Centre.
2. Assistant Professor, Department of Ophthalmology, D. Y. Patil Medical College and Research Centre.
3. Registrar, Department of Ophthalmology, D. Y. Patil Medical College and Research Centre.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Nita Shanbhag,
L5-301, Lok Kedar Off., J. S. Dosa Road,
Mulund, West Mumbai-400080.
E-mail: nita@eyesurgeon.in

Date of Submission: 02/08/2015.
Date of Peer Review: 03/08/2015.
Date of Acceptance: 04/08/2015.
Date of Publishing: 10/08/2015.