Charged-particle multiplicity measurement in proton–proton collisions at $\sqrt{s} = 0.9$ and 2.36 TeV with ALICE at LHC

The ALICE Collaboration

K. Aamodt79, N. Abel42, U. Abeysekara77, A. Abrahantes Quintana41, A. Abramyan113, D. Adamová87, M.M. Aggarwal25, G. Aglieri Rinella39, A.G. Agostini18, S. Aguilar Salazar65, Z. Ahammed54, A. Ahmad2, N. Ahmad2, S.U. Ahsan49b, R. Akimov101, A. Akimov48, D. Aleksandrov70, B. Alessandro106, R. Alfaro Molina65, A. Alici13, E. Almaráz Aviña65, J. Alme8, T. All42c, V. Altini3, S. Altinpinar31, C. Andrei17, A. Andronic41, G. Anelli39, V. Angelov42c, C. Anson27, T. Antićić14, F. Antonini39d, S. Antonini13, K. Antoni36, D. Antończyk36, P. Antonioli14, A. Anzo65, L. Aphelgetche73, H. Appelshäuser46, S. Arcelli13, R. Arceo65, A. Arend36, N. Armento93, R. Arnaldi106, T. Aronsson74, I.C. Arsene79e, A. Asryan99, A. Augustinus39, R. Averbeck31, T.C. Awes76, J. Äystö48, M.D. Azmi2, S. Bablok43a, M. Bach55, A. Badalà24, Y.W. Baek49b, S. Bagnasco106, R. Ballache31f, R. Bala105, A. Baldisseri90, A. Baldit26, J. Bán7, R. Barbera33, G.G. Barnaföldi39, L. Barnby12, V. Barret87, J. Bartke39, F. Barile3, M. Basile13, V. Basmanov95, N. Bastid26, B. Bathy72, G. Batigame10,15, B. Batyunya34, C. Baumann72, I.G. Bearden28, B. Becker40g, I. Belikov100, R. Bellwied15, E. Belmont-Moreno65, A. Beloglianni4, L. Benhabib73, S. Beole105, I. Berceanu17, A. Bercuci31h, E. Berdermann31, Y. Berdnikov38, L. Betev39, A. Bhasin47, A.K. Bhati25, L. Bianchi105, N. Bianchi37, C. Bianchin80, J. Bielcik32, J. Bínlíková87, A. Bilandzic3, L. Bimbot78, E. Biocai105, A. Blanc26, F. Blanco23a, F. Blanco43b, D. Blau70, C. Blume36, M. Boccioli39, N. Bock27, A. Bogdanov69, H. Bogıld8, M. Bogolyubsky84, J. Bohm97, L. Boldizsár18, M. Bombara56, C. Bonomati60a, M. Bondila48, H. Borel90, V. Borschchov50, A. Borisov53, C. Bortolin80a, S. Bose53, L. Bosio102, F. Bossù105, M. Botje3, S. Böttger42, G. Bourdaud73, B. Boyer8, M. Braun99, P. Braun-Munzinger31, L. Bravina79, M. Bregant102, T. Breytner42, G. Bruckner39, R. Brun39, E. Bruna74, G.E. Bruno5, D. Budnikov95, H. Buesching36, P. Buncic39, O. Busch43, Z. Buthelezi22, D. Caffarrì80, X. Cai11, H. Caines74, E. Camacho66, P. Camerini102, M. Campbell39, V. Canoa Roman93, G.P. Capitani17, G. Cara Romeo14, F. Carena39, W. Carena39, F. Carminati39, A. Casanova Diaz37, M. Caselle39, J. Castillo Castellanos90, J.F. Castillo Hernandez31, V. Catanesi17, E. Cattaruzza102, C. Cavicchioli39, P. Cerello106, V. Chambert78, B. Chang97, S. Chapelard39, A. Charpy, J.L. Charvet90, S. Chattopadhyay53, S. Chattopadhyay54, M. Cherney77, C. Cheshkov39, B. Cheynis62, E. Chiavassa105, V. Chibante Barroso39, D.D. Chinellato21, P. Chochula39, K. Choi56, M. Chojnacki107, P. Christakoglou107, C.H. Christensen28, P. Christiansen61, T. Chjuo104, F. Chuman44, C. Ciclado20, L. Cifarelli13, F. Cindolo14, J. Cleymons22, O. Cohabogulp15, J.-P. Coffin100, S. Coli60, A. Colla39, G. Conesa Balbastre37, Z. Conesa del Valle32m, E.S. Conner111, P. Constantín43, G. Contin102, J.G. Contreras66, Y. Corrales Morales105, T.M. Cormier33, P. Cortese3, I. Cortés Maldonado39, M.R. Cosentino21, F. Costa39, M.E. Cotallo63, E. Cresci60, P. Crochet26, E. Cuautle6, L. Cunqueiro37, J. Cussonneau73, A. Daines13, H.H. Dalsggaard28, A. Danu66, I. Das53, S. Das53, A. Dash11, S. Dash11, G.O.V. de Barros94, A. De Caro91, G. de Cataldo6, J. de Cuveland42c, A. De Falco19, M. De Gaspari43, J. Gheesling90, D. Grégoire90, N. De Groote10, S. De Pasquale91, R. De Remigis106, R. de Roeij10, G. de Vaux22, H. Delagrange73, G. Deliaca1, A. Deloff108, V. Demanov95, E. Dénès18, A. Deppman94, G. D’Erasmo10, D. Derckx99, A. Devauchelle20, D. Di Bari55, C. Di Giglio31k, S. Di Liberto39, A. Di Mauro99, P. Di Nezza37, M. Di Laria73, L. Díaz64, R. Díaz48, T. Dietel72, R. Divia30, O. Djuvsland8, V. Dobretsov70, A. Dobrin61, T. Dobrowolski108, B. Döngius31, I. Domínguez14, D.M. Don85, O. Dorchy79, A.K. Dubey54, J. Dubuisson39, L. Ducroux62, P. Dupieux62, A.K. Dutta Majumdar53, M.R. Dutta Majumdar53, D. Elia6, D. Emschermann43o, A. Enokizono76, B. Espagnon78, M. Estienne73, S. Estumi40, D. Evans12, S. Evrard9, G. Eyyubova79, C.W. Fahjan39p, D. Fabris51, J. Faivre40, D. Falchieri13, A. Fantoni31, M. Fasel31, O. Fateev34, R. Fearick22, A. Fedunov34, D. Fehlker13, V. Fekete15, D. Felea6a, B. Fenton-Olsen29b, G. Feofilov99, A. Fernández Téllez35, E.G. Ferreiro93, A. Ferretti105, R. Ferretti39, M.A.S. Figueredo84, S. Filchagin88, R. Fini4, F.M. Fiona3, E.M. Fiore3, M. Fiori18b, Z. Fodor18, S. Foertsch22, P. Foka11, S. Fokin70, F. Formenti39, E. Fragiacomo103, M. Frągiakadakis4, U. Frankenfeld31, A. Frolov75, U. Fuchs39, F. Furano39, C. Fuggetta10, M. Fusco Girard13, J.J. Gaardhoje28, S. Gadrat40, M. Gagliardi105, A. Gago59, M. Gallio105, P. Ganoti4, M.S. Ganti54, C. Garabatos31,
Abstract Charged-particle production was studied in proton–proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range $|\eta| < 1.4$. In the central region ($|\eta| < 0.5$), at 0.9 TeV, we measure charged-particle pseudorapidity density $dN_{ch}/d\eta = 3.02 \pm 0.01(stat.)^{+0.08}_{-0.05}(syst.)$ for inelastic interactions, and $dN_{ch}/d\eta = 3.58 \pm 0.01(stat.)^{+0.12}_{-0.12}(syst.)$ for non-single-diffractive interactions. At 2.36 TeV, we find $dN_{ch}/d\eta = 3.77 \pm 0.01(stat.)^{+0.28}_{-0.12}(syst.)$ for inelastic, and $dN_{ch}/d\eta = 4.43 \pm 0.01(stat.)^{+0.17}_{-0.12}(syst.)$ for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is $24.7 \pm 0.5(stat.)^{+5.2\%}_{-2.8\%}(syst.)$ for inelastic and $23.7 \pm 0.5(stat.)^{+4.8\%}_{-1.9\%}(syst.)$ for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton–antiproton data and to model predictions.

1 Introduction

Whenever entering a new energy regime with hadron colliders, it is important to measure the global characteristics of the collisions. These interactions, dominated by soft (i.e. small-momentum-transfer) processes, are useful to study QCD in the non-perturbative regime, and to constrain phenomenological models and event generators. Such studies are also important for the understanding of backgrounds for measurements of hard and rare interactions.

ALICE [1] has measured the pseudorapidity density of charged particles produced in proton–proton collisions at a centre-of-mass energy $\sqrt{s} = 900$ GeV [2] with low statistics from the first collisions at the CERN Large Hadron Collider (LHC) [3]. Results were given for two normalizations:

- inelastic (INEL); this corresponds to the sum of all inelastic interactions (non-diffractive ND, single-diffractive SD, and double-diffractive DD) with the trigger biases corrected for each event class individually according to their respective estimated abundances and trigger efficiencies;
- non-single-diffractive (NSD); here the corrections are applied to non-diffractive and double-diffractive processes only, while removing, on average, the single-diffractive contribution.

The corrections to INEL and NSD samples are based on previous experimental data and simulations with Monte Carlo event generators. Charged-particle pseudorapidity density in pp collisions at LHC was also published by the CMS collaboration for NSD interactions [4], and by the ATLAS collaboration for a different event selection [5], not directly comparable with our measurements and those of CMS.

We have used the first high energy proton–proton collisions at the LHC at a centre-of-mass energy $\sqrt{s} = 2.36$ TeV,
as well as a larger statistics data sample at $\sqrt{s} = 0.9$ TeV, to determine the pseudorapidity density of charged-primary particles, $dN_{ch}/d\eta$, in the central pseudorapidity region ($|\eta| < 1.4$). According to commonly used models [6–12], an increase in $dN_{ch}/d\eta$ of 17–22% for INEL events and of 14–19% for NSD events is expected in 2.36 TeV collisions relative to 0.9 TeV collisions.

We also studied the distribution of the multiplicity of charged particles in the central pseudorapidity region ($|\eta| < 1.3$). The multiplicity distribution of charged particles (the probability $P(N_{ch})$ that a collision has multiplicity N_{ch}) can be described by KNO scaling [13] over a wide energy range. KNO scaling means that the distribution $P(N_{ch})$ for collisions with a certain multiplicity N_{ch} can be described by a function $P(z)$, where $z = N_{ch}/\langle N_{ch} \rangle$, is independent of energy. In full phase space, scaling holds up to the top ISR energy (pp at $\sqrt{s} = 62.2$ GeV) [14]. Deviations from scaling are observed at higher energies, starting at 200 GeV with pp collisions at the SppS collider [15]. However, in limited central η-intervals scaling has been found to hold up to 900 GeV. The UA5 collaboration [16] observed scaling for non-single-diffractive events in restricted central η-intervals and its progressive violation with increasing η-ranges. The UA1 collaboration [17] also observed scaling in a larger interval $|\eta| < 2.5$. In inelastic events, deviation from KNO scaling was observed in full phase space already at ISR energies [14]. Such deviations are generally attributed to semi-hard gluon radiation (minijets) and to multi-parton scattering.

The Negative-Binomial Distribution (NBD) [18] describes multiplicity distributions in full phase space up to 540 GeV; however, this description is not successful at 900 GeV [19]. NBD describes the distributions up to 1.8 TeV in limited η-intervals ($|\eta| < 0.5$) [20]. For larger η-intervals and in full phase space, only the sum of two NBDs provides a reasonable fit [21, 22].

Comparing these multiplicity measurements with the predictions of Monte Carlo generators used by the LHC experiments will allow a better tuning of these models to accurately simulate minimum-bias and underlying-event effects. A recent review of multiplicity measurements at high energies can be found in [23].

This article is organized as follows: a description of the ALICE detector subsystems used in this analysis is presented in Sect. 2; Sect. 3 is dedicated to the definition of the event samples; Sect. 4 to data analysis; in Sect. 5 systematic uncertainties are discussed; the results are given in Sect. 6 and Sect. 7 contains the conclusions.

1 Primary particles are defined as prompt particles produced in the collision and all decay products, except products from weak decays of strange particles.

2 The ALICE experiment and data collection

The ALICE experiment consists of a large number of detector subsystems which are described in detail in [1]. This analysis is based mainly on data from the Silicon Pixel Detector (SPD), since it has the largest pseudorapidity coverage in the central region and is located closest to the interaction region, implying a very low momentum cut-off and a small contamination from secondary particles.

The SPD detector surrounds the central beryllium beam pipe (3 cm radius, 0.23$^\circ$ of a radiation length) with two cylindrical layers (at radii of 3.9 and 7.6 cm, 2.3$^\circ$ of a radiation length) and covers the pseudorapidity ranges $|\eta| < 2$ and $|\eta| < 1.4$ for the inner and outer layers, respectively. The number of inactive (dead or noisy) individual pixels is small, about 1.5%, but in addition some 17% of the total area is currently not active, mostly because of insufficient cooling flow in some of the detector modules. The number of noise hits in the active pixels of the SPD was measured with a random trigger to be of the order of 10^{-4} per event. The SPD was aligned using cosmic-ray tracks [24] collected prior to the collider run and tracks from collisions recorded at $\sqrt{s} = 0.9$ TeV.

Information from two scintillator hodoscopes, called VZERO counters, was used for event selection and background rejection. These counters are placed on either side of the interaction region at $z = 3.3$ m and $z = -0.9$ m. They cover the regions $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$ and record both amplitude and time of signals produced by charged particles.

The central detector subsystems are placed inside a large solenoidal magnet which provides a field of 0.5 T. For the 2.36 TeV data taking the VZERO detectors were not turned on. Therefore, the trigger conditions, the analysis and the systematic errors differ slightly between the two data sets (see below).

Because of the low interaction rate it was possible to use a rather loose trigger for collecting data. At 0.9 TeV, the minimum-bias trigger required a hit in either one of the VZERO counters or in the SPD detector; i.e. essentially at least one charged particle anywhere in the 8 units of pseudorapidity covered by these trigger detectors. At the higher energy, the trigger required at least one hit in the SPD detector ($|\eta| < 2$). The events were collected in coincidence with the signals from two beam pick-up counters (BPTX), one on each side of the interaction region, indicating the presence of passing bunches.

The bunch intensity was typically 5×10^9 protons, giving a luminosity of the order of 10^{26} cm$^{-2}$ s$^{-1}$. This value corresponds to a rate of a few Hz for inelastic proton–proton collisions and a negligible pile-up probability for events in the same bunch crossing.
counters were used to remove beam–gas or beam–halo reject beam-induced background. At 0.9 TeV, the VZERO because of the different detector configurations. Slightly different event selections were applied after data re-

3 Event selection and corrections to INEL and NSD event classes

Slightly different event selections were applied after data re-

For both data samples, an offline selection is applied to reject beam-induced background. At 0.9 TeV, the VZERO counters were used to remove beam–gas or beam–halo events by requiring their timing signals, if present, to be compatible with particles produced in collision events (see [2] for more details). At both energies, this background was also rejected by exploiting the correlation between the number of clusters of pixel hits and the number of tracklets (short track segments in the SPD, compatible with the event vertex, as described below). From the analysis of our control triggers, we found that background events typically have a large number of pixel hits compared with the number of tracklets pointing to the reconstructed vertex.

At 0.9 TeV, for the INEL analysis, we used the triggered event sample requiring a logical OR between the signals from the SPD and VZERO detectors (MBOR). However, for the NSD analysis we selected a subset of the total sample by requiring a coincidence between the two sides of the VZERO detectors (MBAND). This requires the detection of at least one charged particle in both the forward and backward hemispheres, which are separated by 4.5 units of pseudorapidity. In this subset, single-diffraction events are suppressed, therefore, model dependent corrections and associated systematic errors are reduced (see below). The selection efficiencies, MBOR for INEL events and MBAND for NSD events, are multiplicity dependent as illustrated in Fig. 2. As expected, the MBAND selection has a low efficiency for SD events, in particular at low multiplicities, where they contribute most. After these selections, the remaining background at 0.9 TeV was estimated, and corrected for, with the help of the control triggers. The background events (99% of which have no reconstructed tracklets) correspond to about 2% of the events in the INEL sample and to less than 0.01% in the NSD sample.

The 2.36 TeV data sample was triggered by at least one hit in the SPD (MBSPD) and this selection was used for both INEL and NSD analyses. After rejecting the background using the correlation between the number of pixel hits and the number of tracklets, the remaining background (93% of which has no reconstructed tracklets) was estimated to be 0.7%. We have assumed that the correlation between the number of clusters of pixels and the number of tracklets is similar at both energies because accelerator and detector conditions did not change significantly between the two data collection periods.

In both data samples, the cosmic-ray contamination, estimated from the control triggers and from absolute rates, is negligible. Additional crosschecks of background levels were made by visual scanning of a few hundred selected events.

The number of collision events used in this analysis corresponds to about 150 000 and 40 000 interactions for the 0.9 and 2.36 TeV data, respectively.

The efficiencies of our selections and their sensitivities to variations in the relative fractions of event classes were studied using two different Monte Carlo generators, PYTHIA...
In order to classify an event as diffractive, the diffractive mass was normalized to the data in the mass regions covered by the corresponding experiments. In the earlier measurements, the fraction of SD events in the Monte Carlo generators but we adjusted the fractions to the measured values. The values used take into account an increase of the DD fractions due to the pseudorapidity-gap definition as described in [33]. Note that the correction arising from unmeasured DD events is small, both because the cross section for DD is small and because the event selection efficiency is large in our samples.

Measurements of double-diffraction cross sections are available from UA5 [27] at 0.9 TeV and CDF [33] at 1.8 TeV. Experimentally, DD events are defined by requiring a minimum pseudorapidity gap (of about 3 units), where no charged particles are detected. When implementing these experimental cuts in the event generators, the results were widely fluctuating and inconsistent with the measurements, possibly because the occurrence of large rapidity gaps is very sensitive to the model assumptions and process parameterizations. Therefore, for classification of DD events we used the process type information provided by the generators but we adjusted the fractions to the measured values. The values used take into account an increase of the DD fractions due to the pseudorapidity-gap definition as described in [33]. Note that the correction arising from unmeasured DD events is small, both because the cross section for DD is small and because the event selection efficiency is large in our samples.

The relative fractions of SD and DD events, as measured in [27, 30, 33] are summarized in Table 1, along with our calculated trigger and selection efficiencies. The relative fractions for SD and DD vary very slowly with energy, therefore, we used the measurements available at 1.8 TeV for the 2.36 TeV sample.

4 Analysis method

The analysis method is based on using hits in the two SPD layers to form short track segments, or tracklets. This method is similar to that used by the PHOBOS experiment with the first heavy-ion data from RHIC [34]. We start with the reconstruction of the position of the interaction vertex by correlating hits in the two silicon-pixel layers. The vertex resolution achieved with this simple method depends on the track multiplicity, and is typically 0.1–0.3 mm in the longitudinal (\(z\)) and 0.2–0.5 mm in the transverse direction. For events with only one SPD tracklet, the \(z\)-vertex position is determined by the point of closest approach to the mean beam axis. A vertex was reconstructed for 83% of events in the MB\(_{OR}\) selection and for 93% of events in the MB\(_{AND}\) selection. At the higher energy, in the MB\(_{SPD}\) selection 93%...
of events have a vertex reconstructed. Events with vertices within $|z| < 10$ cm are used in this analysis.

Using the reconstructed vertex as the origin, we calculate the differences in azimuthal ($\Delta \varphi$, bending plane) and polar ($\Delta \theta$, non-bending direction) angles of two hits, one in the inner and one in the outer SPD layer. Hit combinations, called tracklets, are selected by a cut on the sum of the squares of $\Delta \varphi$ and $\Delta \theta$, with a cut-off at 80 mrad and 25 mrad, respectively. The cut imposed on the difference in azimuthal angles would reject charged particles with a transverse momentum below 30 MeV/c; however, the effective transverse-momentum cut-off is determined by particle absorption in the material and is approximately 50 MeV/c. If more than one hit in a layer matches a hit in the other layer, only the hit combination with the smallest angular difference is used.

For the pseudorapidity-density measurement, all events with vertex in the range $|z| < 10$ cm are used. For multiplicity-distribution measurements, the whole η-interval considered has to be covered by the acceptance of the SPD, for every event. Therefore, only events from a limited z-range of collision vertices are used for the two largest η-intervals, which reduces the available event statistics. At 0.9 TeV these reductions are 15% for $|\eta| < 1.0$ and 60% for $|\eta| < 1.3$, and at 2.36 TeV 4% for $|\eta| < 1.0$ and 46% for $|\eta| < 1.3$.

The number of primary charged particles is estimated by counting the number of tracklets. This number was corrected for:

- geometrical acceptance, detector and reconstruction efficiencies;
- contamination by weak-decay products of long-lived particles (K_0^0, Λ, etc.), gamma conversions and secondary interactions;
- undetected particles below the 50 MeV/c transverse-momentum cut-off;
- combinatorial background caused by an accidental association of hits in the two SPD layers, estimated from data by counting pairs of hits with a large $\Delta \varphi$.

The probability of an additional collision in the same bunch crossing (pile-up) at the estimated luminosity is below 10^{-3}. The effect on both multiplicity density and multiplicity distribution measurements due to such events has been found to be negligible. Particular attention was paid to events having zero or one charged tracklets in the SPD acceptance. For the 0.9 TeV sample, the number of zero-track events for $|z| < 10$ cm was estimated using triggered events without a reconstructed vertex. At 2.36 TeV, due to the different trigger (see Sect. 2), we have to use Monte Carlo simulations to estimate this number and therefore the results are more model-dependent than those at 0.9 TeV. As a consequence, the size of systematic uncertainties on average multiplicity is bigger at 2.36 TeV than that at 0.9 TeV.

The total number of collisions used for the normalization was calculated from the number of events with reconstructed vertex selected for the analysis and the number of triggered events without vertex. The latter number was corrected for beam-induced and accidental background as measured with the control triggers (see Sect. 2). A small correction, determined from simulations, is applied to the number

Event Type	Data [27]	PYTHIA	PHOJET	
SD	0.153 ± 0.023	0.189 (0.223)	0.152 (0.191)	
DD	0.095 ± 0.060	0.123	0.066	0.107 ± 0.031

Event Type	Data [30, 33]	PYTHIA	PHOJET
SD	0.159 ± 0.024	0.167 (0.209)	0.126 (0.161)
DD	0.127	0.057	

Event Type	MBOR	MBAND	MBOR	MBAND
SD	0.77	0.29	0.86	0.34
DD	0.92	0.49	0.98	0.77
ND	1.00	0.98	1.00	0.96
INEL	0.95	0.97	0.86	0.90
NSD	0.92	0.94	0.94	0.97

Event Type	MBSPD	MBSPD
SD	0.55	0.62
DD	0.63	0.79
ND	0.99	0.99
INEL	0.86	0.90
NSD	0.94	0.97

Corresponding fractions calculated using PYTHIA and PHOJET are given for events within the diffractive-mass range covered experimentally (see text), and also without the restriction on diffractive-mass (parentheses). (b) Selection efficiencies for different classes of events: at 0.9 TeV, where the MBOR selection was used for INEL sample and MBAND for NSD sample; at 2.36 TeV, where the selection using the SPD only was used for both INEL and NSD samples.
of tracks due to events with no reconstructed vertex. In order to get the normalization for INEL and NSD events, we further corrected the number of events for the selection efficiency for these two event classes. For NSD events, we subtracted the single-diffractive contribution. The selection efficiencies depend on the charged-particle multiplicity, as shown in Fig. 2 for the 0.9 TeV data sample for different event classes (INEL, NSD, and SD). At both energies, the efficiency is close to 100% for multiplicities of one or above for the INEL class, and reaches 90% for multiplicities above two for the NSD class. The averaged combined corrections in number of events due to the vertex-reconstruction and the selection efficiencies for INEL collisions are 5% and 24% for 0.9 TeV and 2.36 TeV data, respectively. This correction is larger at the higher energy because of significantly smaller pseudorapidity coverage of the MBSPD selection compared with the MB OR selection and the necessity for large correction for zero-multiplicity events at this energy. For NSD collisions, at both energies, these event-number corrections are small (2% and 1% for 0.9 TeV and 2.36 TeV data, respectively) as a consequence of partial cancelation between adding non-observed ND and DD events, and subtracting triggered SD events. The resulting model-dependent correction factors due to the selection efficiencies applied to averaged charged-particle multiplicities for the NSD samples are 0.973 and 1.014 for 0.9 TeV and 2.36 TeV data, respectively.

The multiplicity distributions, measured in three \(\eta \)-intervals, are shown in Fig. 3 for raw data at both energies. The method used to correct the raw measured distributions for efficiency, acceptance, and other detector effects, is based on unfolding with \(\chi^2 \) minimization with regularization [35]. The detector response was determined with the same Monte Carlo simulation as described above. Figure 4 illustrates the detector response matrix \(R_{mt} \) for \(|\eta| < 1 \), which gives the conditional probability that a collision with multiplicity \(t \) is measured as an event with multiplicity \(m \). Therefore, each column is normalized to unity. This matrix characterizes the properties of the detector and does not depend on the specific event generator used for its determination, apart from second-order effects due to, for example, differences in particle composition and momentum spectra, discussed in Sect. 5. As this matrix is practically independent of energy, it is shown for the 0.9 TeV case only. The unfolded spectrum \(U(N_{ch}) \) is found by minimizing

\[
\chi^2(U) = \sum_m \left(\frac{M_m - \sum_t R_{mt} U_t}{e_m} \right)^2 + \beta F(U),
\]

where \(R \) is the response matrix, \(M \) is the measured spectrum, \(e \) is the estimated measurement error, and \(\beta F(U) \) is a regularization term that suppresses high-frequency components in the solution. The only assumption made about the shape of the corrected spectrum is that it is smooth. The smoothness is imposed by the choice

\[
F(U) = \sum_t \frac{(U'_t)^2}{U_t} = \sum_t \frac{(U_{t-1} - U_t)^2}{U_t},
\]

which minimizes the fluctuations with respect to a constant constraint imposed by first derivatives. The regularization coefficient \(\beta \) is chosen such that, after minimization, the contribution of the first term in (1) is of the same order as the number of degrees of freedom (the number of bins in the unfolding).

The unfolded spectrum is corrected further for vertex reconstruction and event selection efficiencies (see Fig. 2).
The behaviour of the deconvolution method is illustrated in Fig. 5 for the case $|\eta| < 1.0$ at $\sqrt{s} = 0.9$ TeV showing that the normalized residuals are well-behaved over the whole measured multiplicity range. The χ^2 difference between the measured raw distribution and the corrected distribution folded with the response matrix is $\chi^2/ndf = 36.7/35 = 1.05$. Similar behaviour is observed for other η intervals and at 2.36 TeV.

We checked the sensitivity of our results to

- The value of the regularization coefficient β.
- Changing the regularization term, defined in (2), to:

$$ F(U) = \sum_t \frac{(U_{t+1} - 2U_t + U_{t-1})^2}{U_t}, $$

which minimizes the fluctuations with respect to a linear constraint imposed by second derivatives.
- Changing the unfolding procedure. An unfolding based on Bayes’ theorem [36, 37] produces consistent results. It is an iterative procedure using the relations:

$$ \tilde{R}_{tm} = \frac{R_{mt} \cdot P_t}{\sum_{t'} R_{mt'} P_{t'}}, \quad U_t = \sum_m \tilde{R}_{tm} M_m, $$

with an a priori distribution P. The result U of an iteration is used as a new a priori P distributions for the following iteration.
- Variation of convergence criteria and initial distribution. For both unfolding procedures we checked that the results are insensitive to the details of the convergence criteria and a reasonable choice of initial distributions.

The details of this analysis are described in [38].

5 Systematic uncertainties

In order to estimate the systematic uncertainties, the above analysis was repeated:

- varying the $\Delta\phi$ and $\Delta\theta$ cuts used for the tracklet definition by $\pm 20\%$;
- varying the density of the material in the tracking system, thus changing the material budget by $\pm 10\%$;
- allowing for detector misalignment by an amount of up to 100 μm;
- varying the composition of the produced particle types with respect to the yields suggested by the event generators by $\pm 30\%$;
- varying the non-observed-particle yield below the transverse momentum cut-off for tracklet reconstruction by $\pm 30\%$;
- varying the ratios of the ND, SD, and DD cross sections according to their measured values and errors shown in Table 1, thus evaluating the uncertainty in the normalization to INEL and NSD events;
- varying the thresholds applied to VZERO counters, both in simulation and in data (for the 0.9 TeV sample).

The results are summarized in Table 2 using the corrections calculated with PYTHIA tune D6T. Whenever corrections obtained with PHOJET give a different value, the difference is used in calculating an asymmetric systematic uncertainty. These two models were chosen because they predict respectively the lowest and the highest charged-particle densities for INEL collisions at both energies (see Sect. 6).

The SPD efficiencies for trigger and for pixel hits are determined from the data. The SPD trigger efficiency is determined to be 98% with negligible uncertainty based on analysis of the trigger information recorded in the data stream for events with more than one tracklet. The detector efficiency is determined from pixel-hit distributions, and checked by tracklet reconstruction. The uncertainty on the detector acceptance and efficiency due to the limited hit statistics and the current alignment precision of the detector is estimated by this method to be 1.5%. The uncertainty in background corrections was estimated according to the description in Sect. 3.

The total systematic uncertainty on the pseudorapidity density measurement at 0.9 TeV is smaller than 2.5% for INEL collisions and is about 3.3% for NSD collisions. At 2.36 TeV, the corresponding uncertainties are below 6.7% and 3.7% for INEL and NSD collisions, respectively. For all cases, they are dominated by uncertainties in the cross sections of diffractive processes and their kinematics.

To evaluate the systematic error on the multiplicity distribution, a new response matrix was generated for each change listed above and used to unfold the measured spectrum. The difference between these unfolded spectra and
Table 2 Contributions to systematic uncertainties in the measurements of the charged-particle pseudorapidity density and of the multiplicity distribution. For pseudorapidity densities, when two values are given, they correspond to the pseudorapidities 0.0 and 1.4, respectively. The sign of the event-generator uncertainties indicates if the result using PHOJET corrections is higher (positive sign) or lower (negative sign) than that using PYTHIA corrections. For multiplicity distributions the values are given for $|\eta| < 1.0$. Multiple values indicate uncertainties for respective multiplicities shown in parentheses.

Uncertainty	d$N_{ch}/d\eta$ analysis 0.9 TeV	d$N_{ch}/d\eta$ analysis 2.36 TeV	$P(N_{ch})$ analysis 0.9 TeV	$P(N_{ch})$ analysis 2.36 TeV
Tracklet selection cuts	negl.	negl.	negl.	negl.
Material budget	negl.	negl.	negl.	negl.
Misalignment	negl.	negl.	negl.	negl.
Particle composition	0.5–1.0%	0.5–1.0%	included in detector efficiency	included in detector efficiency
Transverse-momentum spectrum	0.5%	0.5%	included in detector efficiency	included in detector efficiency
Contribution of diffraction (INEL)	0.7%	2.6%	3–0% (0–5)	5–0% (0–5)
Contribution of diffraction (NSD)	2.8%	2.1%	24–0% (0–10)	12–0% (0–10)
Event-generator dependence (INEL)	+1.7%	+5.9%	8–0% (0–5)	25–0% (0–10)
Event-generator dependence (NSD)	−0.5%	+2.6%	3–5–1% (0–10–40)	32–8–2% (0–10–40)
Detector efficiency	1.5%	1.5%	2–4–15% (0–20–40)	3–0–9% (0–8–40)
SPD triggering efficiency	negl.	negl.	negl.	negl.
VZERO triggering efficiency (INEL)	negl.	n/a	negl.	n/a
VZERO triggering efficiency (NSD)	0.5%	n/a	1%	n/a
Background events	negl.	negl.	negl.	negl.
Total (INEL)	$^{+2.5\%}_{-1.8\%}$	$^{+6.7\%}_{-3.1\%}$	9–4–15% (0–20–40)	25–0–9% (0–10–40)
Total (NSD)	$^{+3.3\%}_{-3.5\%}$	$^{+3.7\%}_{-2.5\%}$	24–5–15% (0–10–40)	32–8–9% (0–10–40)

Table 2 summarizes the systematic uncertainties for the multiplicity distribution measurements. Note that the uncertainty is a function of the multiplicity which is reflected by the ranges of values. Further details about the analysis, corrections, and the evaluation of the systematic uncertainties are in [38].

Both the pseudorapidity density and multiplicity distribution measurements have been cross-checked by a second analysis employing the Time-Projection Chamber (TPC) [1]. It uses tracks and vertices reconstructed in the TPC in the pseudorapidity region $|\eta| < 0.8$. The pseudorapidity density is corrected using a method similar to that used for the SPD analysis. The results of the two independent analyses are consistent.

6 Results

In this section, pseudorapidity density and multiplicity distribution results are presented for two centre-of-mass energies and compared to results of other experiments and to models. For the model comparisons we have used QGSM [6], three different tunes of PYTHIA, tune D6T [9], tune ATLAS-CSC [10] and tune Perugia-0 [11], and PHOJET [12]. The PYTHIA tunes have been developed by three independent groups extensively comparing Monte Carlo distributions to underlying-event and minimum-bias Tevatron
data. Data from hadron colliders at lower energies have been used to fix the energy scaling of the parameters. Tune D6T uses the old PYTHIA multiple scattering and Q^2-ordered showers, whereas the two other tunes use the new multiple-scattering model provided by PYTHIA 6.4 and transverse-momentum-ordered showering. Perugia-0 was not tuned for diffractive processes, which affects the validity of this tune for the lowest multiplicities. For final-state-radiation and hadronization, Perugia-0 adds parameters fitted to LEP data. The charged-particle density in the central rapidity region is mainly influenced by the infrared cut-off for parton scattering at the reference energy (1.8 TeV) and its energy dependence.

Figure 6 (left) shows the charged-particle density as a function of pseudorapidity obtained for INEL and NSD interactions at a centre-of-mass energy $\sqrt{s} = 0.9$ TeV compared to p\bar{p} data from the UA5 experiment [40], and to pp NSD data from the CMS experiment [4]. The result is consistent with our previous measurement [2] and with UA5 and CMS data. Figure 6 (right) shows the measurement of $dN_{ch}/d\eta$ for INEL and NSD interactions at $\sqrt{s} = 2.36$ TeV compared to CMS NSD data [4] and to PYTHIA tune D6T and PHOJET calculations. Our results for NSD collisions are consistent with CMS measurements, systematically above the PHOJET curve, and significantly higher than the distribution obtained with the PYTHIA tune D6T. Note that in the CMS pseudorapidity-density measurement the contribution from charged leptons was excluded. This implies that the CMS value is expected to be approximately 1.5% lower than in our result, where charged leptons are counted as primary particles.

The pseudorapidity density measurements in the central region ($|\eta| < 0.5$) are summarized in Table 3 along with model predictions obtained with QGSM, PHOJET and three different PYTHIA tunes. Note that QGSM is not readily available as an event generator and the predictions for some of the event classes were obtained analytically by the authors of [6]. At both energies, PYTHIA tune D6T and PHOJET yield respectively the lowest and highest charged-particle densities for INEL collisions.

Because part of the systematic uncertainties cancels in the ratio of the multiplicity densities between the two energies, these ratios are compared to model calculations as well. The main contribution to the systematic uncertainties in the measurement of charged-particle densities comes from the estimate of the number of events with zero tracks. Therefore, in addition to the two event classes (INEL and NSD) introduced so far, results are also presented for inelastic events with at least one charged particle produced in the region $|\eta| < 0.5$, labeled as INEL > 0. These values were obtained as the mean values of the corresponding corrected multiplicity distributions for $N_{ch} > 0$ (see Fig. 8).

The consistency between data and model calculations varies with event class and the collision energy. PYTHIA tunes D6T and Perugia-0 significantly underestimate the charged-particle density in all event classes and at both energies. ATLAS-CSC tune, PHOJET, and QGSM are closer to the data and describe the average multiplicity reasonably well, at least for some of the classes and energies listed in Table 3. However, the relative increase in charged-particle density is underestimated by all models and tunes, most significantly for the event class with at least one charged particle in the central region (INEL > 0). The increase
Table 3: Charged-particle pseudorapidity densities measured by ALICE in the central pseudorapidity region ($|\eta| < 0.5$), for inelastic (INEL), non-single-diffractive (NSD), and inelastic with $N_{ch} > 0$ (INEL > 0) proton–proton collisions at centre-of-mass energies of 0.9 TeV and 2.36 TeV. The ratios of multiplicity densities between the two energies are also given. Data at $\sqrt{s} = 0.9$ TeV are compared to CMS NSD data [4] and UA5 NSD and INEL pp data [40]. Data at $\sqrt{s} = 2.36$ TeV are compared to CMS NSD data. For ALICE and CMS measurements, the first error is statistical and the second one is systematic; no systematic uncertainty is quoted by UA5. These data are also compared to predictions for pp collisions from different models: QGSM [6], PYTHIA tune D6T [9] (a), tune ATLAS-CSC [10] (b), and tune Perugia-11 [11] (c), and PHOJET [12].

Experiment	ALICE pp	CMS pp	UA5 pp	QGSM	PYTHIA \(a\)	PYTHIA \(b\)	PYTHIA \(c\)	PHOJET	
\(\sqrt{s} = 0.9\) TeV									
INEL	3.02 ± 0.01^{+0.08}_{-0.05}	3.09 ± 0.05	2.98	3.21					
NSD	3.58 ± 0.01^{+0.12}_{-0.12}	3.48 ± 0.02 ± 0.13	3.43 ± 0.05	3.67					
INEL > 0	4.20 ± 0.01 ± 0.03								
\(\sqrt{s} = 2.36\) TeV									
INEL	3.77 ± 0.01^{+0.25}_{-0.12}			3.65	2.81	2.94	3.76		
NSD	4.43 ± 0.01^{+0.17}_{-0.12}	4.47 ± 0.04 ± 0.16	4.14	4.20					
INEL > 0	5.13 ± 0.03 ± 0.03			3.95	5.05	4.18	4.62		
Ratios									
INEL	1.247 ± 0.005^{+0.057}_{-0.028}	1.22	1.20	1.20	1.20	1.17			
NSD	1.237 ± 0.005^{+0.046}_{-0.011}	1.28 ± 0.014 ± 0.026	1.19	1.19	1.19	1.18	1.14		
INEL > 0	1.226 ± 0.007 ± 0.010			1.16	1.16	1.16	1.14		

Predicted by all PYTHIA tunes is 16% (14% for PHOJET), whereas the observed increase is substantially larger (22.6 ± 0.7 ± 1.0)%.

Figure 7 shows the centre-of-mass energy dependence of the pseudorapidity density in the central region. The data points are obtained in the $|\eta| < 0.5$ range from this experiment and from [40–48]. When necessary, corrections were applied for differences in pseudorapidity ranges, fitting the pseudorapidity distributions around $\eta = 0$.

Using parameterizations obtained by fitting a power-law dependence on the centre-of-mass energy, extrapolations to the centre-of-mass energy of $\sqrt{s} = 7$ TeV give $dN_{ch}/d\eta = 4.7$ and $dN_{ch}/d\eta = 5.4$ for INEL and for NSD interactions, respectively. At the nominal LHC energy of $\sqrt{s} = 14$ TeV, the same extrapolations yields $dN_{ch}/d\eta = 5.4$ and $dN_{ch}/d\eta = 6.2$ for INEL and for NSD collisions, respectively.

The multiplicity distributions of charged particles were measured in three pseudorapidity intervals at both energies. These distributions, corrected as described above, are shown in Fig. 8 (left) and Fig. 8 (right) respectively, for $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 2.36$ TeV for NSD events. The difference between the multiplicity distributions for NSD and for INEL events only becomes significant at low multiplicities (see Fig. 9), as expected.

In the two larger pseudorapidity intervals, small wavy fluctuations are seen at multiplicities above 25. While visually they may appear to be significant, one should note that the errors in the deconvoluted distribution are correlated over a range comparable to the multiplicity resolution (see Fig. 4). We studied the significance of these fluctuations assuming an exponential shape of the corrected distribution in the corresponding multiplicity range. Applying the response matrix to this smooth distribution and comparing...
Corrected multiplicity distributions in three pseudorapidity ranges for NSD events. The solid lines show NBD fits. Error bars represent statistical uncertainties and shaded area systematic ones. Left: data at $\sqrt{s} = 0.9$ TeV. The ALICE measurement for $|\eta| < 0.5$ is compared to the UA5 data at the same energy [19]. In the inset the ratio of these two measurements is shown, the shaded area represents our combined statistical and systematic uncertainty, and the error bars those of UA5. Right: data at $\sqrt{s} = 2.36$ TeV. Note that for $|\eta| < 1.0$ and $|\eta| < 1.3$ the distributions have been scaled for clarity by the factor indicated.

Expanded views of the low-multiplicity region of corrected multiplicity distributions for INEL and NSD events, left for 0.9 TeV and right for 2.36 TeV data. The gray bands indicate the systematic uncertainty. Distribution for NSD events are not normalized to unity but scaled down in such a way that the distributions for INEL and NSD events match at high multiplicities, which makes the difference at low multiplicity clearly visible. Left: data at $\sqrt{s} = 0.9$ TeV. Right: data at $\sqrt{s} = 2.36$ TeV. Note that for $|\eta| < 1.0$ and $|\eta| < 1.3$ the distributions have been scaled for clarity by the factor indicated.

With the measured raw distribution, we find differences of up to two standard deviations in some of the corresponding raw data bins. Therefore, we conclude that while the structures are related to fluctuations in the raw data, they are not significant, and that the uncertainty bands should be seen as one-standard-deviation envelopes of the deconvoluted distributions. Similar observations for a different deconvolution method were made by UA5 in [19].

The multiplicity distributions were fitted with a Negative-Binomial Distribution (NBD) and at both energies satisfactory descriptions were obtained, as shown in Fig. 8. Fitting the spectra with the sum of two NBDs, as suggested in [49], did not significantly improve the description of the data.

A comparison of the data to the multiplicity distributions obtained with the event generators is shown in Fig. 10 for $|\eta| < 1.0$. At low multiplicities (<20) discrepancies are observed at both energies and for all models. At high multiplicities and for the 0.9 TeV sample, the PHOJET model agrees well with the data. The PYTHIA tunes D6T and Perugia-0 underestimate the data at high multiplicities and the ATLAS-CSC tune is above the data in this region. At 2.36 TeV, ATLAS-CSC tune of PYTHIA and, to some extent, PHOJET are close to the data. The ratios of data over Monte Carlo calculations are very similar in all three
Fig. 10 Comparison of measured multiplicity distributions for INEL events to models for the pseudorapidity range $|\eta| < 1.0$. Predictions are shown based on the PHOJET model [12] (solid line) and PYTHIA tunes: D6T [9] (dashed line), ATLAS-CSC [10] (dotted line), and Perugia-0 [11] (dash-dotted line). The error bars for data points represent statistical uncertainties, the shaded areas represent systematic uncertainties. Left: data at 0.9 TeV. Right: data at 2.36 TeV. For both cases the ratios between the measured values and model calculations are shown in the lower part with the same convention. The shaded areas represent the combined statistical and systematic uncertainties.

Pseudorapidity ranges and suggests that the stronger rise with energy seen in the charged-particle density is, at least partly, due to a larger fraction of high-multiplicity events.

From these multiplicity distributions we have calculated the mean multiplicity and first reduced moments

$$C_q \equiv \frac{\langle N_{\text{ch}}^q \rangle}{\langle N_{\text{ch}} \rangle},$$

summarized in Table 4. For $|\eta| < 0.5$ and $|\eta| < 1.0$ our results are compared to the UA5 measurement for pp collisions at $\sqrt{s} = 0.9$ TeV [19]. Note that the mean multiplicities quoted in this table are those calculated from the multiplicity distributions and are therefore slightly different from the values given in Table 3. The value of the pseudorapidity density obtained when averaging the multiplicity distribution for $|\eta| < 0.5$ is consistent with the value obtained in the pseudorapidity-density analysis. This is an important consistency check, since the correction methods in the pseudorapidity-density and multiplicity-distribution analyses are different.

Our data are consistent with UA5 proton–antiproton measurements at 900 GeV (Fig. 8a and Table 4). The energy dependence of the reduced moments C_q, shown in Fig. 11, indicates a slight increase, which is not significant given the size of our systematic uncertainties. Systematic uncertainties are assumed to be uncorrelated between energies. A similar conclusion about the shape evolution of multiplicity distributions can be drawn from Fig. 12, where we compare our measurements, plotted in terms of KNO variables, at the two energies and UA5 pp data at $\sqrt{s} = 0.2$ and 0.9 TeV, for NSD collisions and pseudorapidity interval $|\eta| < 0.5$. While KNO scaling gives a reasonable description of the data from 0.2 to 2.36 TeV, the ratio between the 0.9 TeV and 2.36 TeV data shows a slight departure from unity above $z = 4$.

7 Conclusion

We report high-statistics measurements of the charged-primary particle pseudorapidity density and multiplicity distributions in proton–proton collisions at centre-of-mass energies of 0.9 TeV and 2.36 TeV with the ALICE detector. The results at 0.9 TeV are consistent with UA5 pp measurements at the same energy. At both energies, our data are consistent with the CMS measurement, and compared to various models for which they provide further constraints. None of the investigated models and tunes describes the average multiplicities and the multiplicity distributions well. In particular, they underestimate the increase in the average multiplicity seen in the data between 0.9 TeV and 2.36 TeV. At 0.9 TeV, the high-multiplicity tail of the distributions is best described by the PHOJET model, while at 2.36 TeV, PYTHIA tune ATLAS-CSC is closest to the data.

The multiplicity distributions at both energies and in pseudorapidity ranges up to $|\eta| < 1.3$ are described well
Table 4 Mean multiplicity and C_q-moments (5) of the multiplicity distributions measured by UA5 [19] in proton–antiproton collisions at $\sqrt{s} = 0.9$ TeV, and by ALICE at $\sqrt{s} = 0.9$ TeV and 2.36 TeV, for NSD events in three different pseudorapidity intervals. The first error is statistical and the second systematic error bars represent the combined statistical and systematic uncertainties. The data at 0.9 TeV are displaced horizontally for visibility.

| $|\eta| < 0.5$ | $|\eta| < 1.0$ | $|\eta| < 1.3$ |
|---------------|---------------|---------------|
| $\langle N_{ch} \rangle$ | $\langle N_{ch} \rangle$ | $\langle N_{ch} \rangle$ |
| C_2 | C_2 | C_2 |
| C_3 | C_3 | C_3 |
| C_4 | C_4 | C_4 |

Fig. 11 Energy dependence of the C_q-moments (5) of the multiplicity distributions measured by UA5 [19] and ALICE at both energies for NSD events in two different pseudorapidity intervals. The error bars represent the combined statistical and systematic uncertainties. The data at 0.9 TeV are displaced horizontally for visibility.

Fig. 12 Comparison of multiplicity distributions in KNO variables measured by UA5 [18, 19] in proton–antiproton collisions at $\sqrt{s} = 0.2$ TeV and 0.9 TeV, and by ALICE at $\sqrt{s} = 0.9$ TeV and 2.36 TeV, for NSD events in $|\eta| < 0.5$. In the lower part the ratio between ALICE measurements at 0.9 TeV and 2.36 TeV is shown. The error bars represent the combined statistical and systematic uncertainties.

Acknowledgements The ALICE collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.

with negative binomial distributions. The shape evolution of the multiplicity distributions with energy was studied in terms of KNO-scaling variables, and by extracting reduced moments of the distributions. A slight, but only marginally significant evolution in the shape is visible in the data for $z > 4$, possibly indicating an increasing fraction of events with the highest multiplicity. This issue will be studied further using the data collected from forthcoming higher-energy runs at the LHC.
The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:

- Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia;
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education and Science (CMOE) and the Ministry of Science and Technology of China (MSTC);
- Ministry of Education and Youth of the Czech Republic;
- Danish National Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;
- The European Research Council under the European Community’s Seventh Framework Programme;
- Helsinki Institute of Physics and the Academy of Finland;
- French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France;
- German BMF and the Helmholtz Association;
- Hungarian OTKA and National Office for Research and Technology (NKTH);
- Department of Atomic Energy and Department of Science and Technology of the Government of India;
- Istituto Nazionale di Fisica Nucleare (INFN) of Italy;
- MEXT Grant-in-Aid for Specially Promoted Research, Japan;
- Joint Institute for Nuclear Research, Dubna;
- Korea Foundation for International Cooperation of Science and Technology (KICOS);
- CONACYT, DGAPA, México, ALFA-EC and the HELEN Program (High-Energy physics Latin-American–European Network);
- Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;
- Research Council of Norway (NFR);
- Polish Ministry of Science and Higher Education;
- National Authority for Scientific Research—NASR (Autontatea Naționala pentru Cercetare Stiintifica—ANCS);
- Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS;
- Ministry of Education of Slovakia;
- CIEMAT, EELA, Ministerio de Educación y Ciencia of Spain, Xunta de Galicia (Conselleria de Educación), CEA/DE, Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);
- Ukraine Ministry of Education and Science;
- United Kingdom Science and Technology Facilities Council (STFC);
- The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. ALICE Collaboration, K. Aamodt et al., J. Instrum. 3, S08002 (2008)
2. ALICE Collaboration, K. Aamodt et al., Eur. Phys. J. C 65, 111 (2010)
3. L. Evans, P. Bryant, J. Instrum. 3, S08001 (2008)
4. CMS Collaboration, V. Khachatryan et al., J. High Energy Phys. 2010, 02041 (2010)
5. ATLAS Collaboration, G. Aad et al., Phys. Lett. B 688(1), 21–42 (2010)
6. A.B. Kaidalov, M.G. Poghosyan, Eur. Phys. J. C (2009, to be published). arXiv:0910.2050 [hep-ph]
7. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)
8. T. Sjöstrand, S. Mrenna, P. Skands, J. High Energy Phys. 2006, 05026 (2006)
9. M.G. Albrow et al. (Tev4LHC QCD Working Group), arXiv: hep-ph/051012 (2006), DGT (109) tune
10. A. Moraes (ATLAS Collaboration), ATLAS Note ATL-COM- PHYS-2009-119 (2009), ATLAS CSC (306) tune
11. P.Z. Skands, in Multi-Parton Interaction Workshop, Perugia, Italy, 28–31 Oct. 2008 (2009). arXiv:0905.3418 [hep-ph]. Perugia-0 (320) tune
12. R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 1459 (1995)
13. Z. Koba, H.B. Nielsen, P. Olesen, Nucl. Phys. B 40, 317 (1972)
14. A. Breakstone et al., Phys. Rev. D 30, 528 (1984)
15. UA5 Collaboration, G.J. Alner et al., Phys. Lett. B 167, 476 (1986)
16. UA5 Collaboration, G.J. Alner et al., Phys. Lett. B 138, 304 (1984)
17. UA1 Collaboration, C. Albajar et al., Nucl. Phys. B 335, 261 (1990)
18. UA5 Collaboration, G.J. Alner et al., Phys. Lett. B 160, 193 (1985)
19. UA5 Collaboration, R.E. Ansmore et al., Z. Phys. C 43, 357 (1989)
20. CDF Collaboration, F. Rimondi et al., in 23rd Int. Symp. on Multiparticle Dynamics (1993), Aspen, Colorado, 12–17 Sep. 1993 (World Scientific, Singapore, 1994), p. 400
21. A. Giovannini, R. Ugocicini, Phys. Rev. D 59, 094020 (1999). Erratum Phys. Rev. D 69, 059903 (2004)
22. A. Giovannini, R. Ugocicini, Phys. Rev. D 60, 074027 (1999)
23. J.F. Grosse-Oetringhaus, K. Reygers, to be published in J. Phys. G, arXiv:0912.0023 [hep-ex] (2009)
24. ALICE Collaboration, K. Aamodt et al., JINST 5, P03003 (2010)
25. ALICE Collaboration, R. Brun et al., Nucl. Instrum. Methods A 502, 339 (2003)
26. R. Brun et al., 1995 GEANT3 User Guide, CERN Data Handling Division DDE/841 and 1994 CERN Program Library Long Write-up, W5013, GEANT Detector Description and Simulation Tool
27. UA5 Collaboration, R.E. Ansmore et al., Z. Phys. C 33, 175 (1986)
28. UA4 Collaboration, D. Bernard et al., Phys. Lett. B 186, 227 (1987)
29. A.B. Kaidalov, M.G. Poghosyan, arXiv:0909.5156 [hep-ph] (2009)
30. N.A. Amos et al., Phys. Lett. B 301, 313 (1993)
31. F. Abe et al., Phys. Rev. D 50, 5535 (1994)
32. S. Klimenko, J. Konigsberg, T.M. Liss, Fermilab preprint, Fermilab-PUB-0741 (2003)
33. CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 87, 141802 (2001)
34. PHOBOS Collaboration, B.B. Back et al., Phys. Rev. Lett. 85, 3100 (2000)
35. V. Blobel, in 8th CERN School of Comp.—CSC’84, Aiguablava, Spain, 9–22 Sep. 1984, CERN–85-09 (1985), p. 88
36. G. D’Agostini, Nucl. Instrum. Methods A 362, 487 (1995)
37. G. D’Agostini, CERN Report CERN-99-03 (1999)
38. J.F. Grosse-Oetringhaus, Ph.D. thesis, University of Münster, Germany, CERN–THESIS–2000-033 (2009)
39. G. Cowan, in Advanced Statistical Techniques in Particle Physics, Durham, England, 18–22 Mar 2002 (Durham Univ., Durham, 2002), p. 248
40. UA5 Collaboration, G.J. Alner et al., Z. Phys. C 33, 1 (1986)
41. W. Thome et al., Nucl. Phys. B 129, 365 (1977)
42. UA5 Collaboration, K. Alpgård et al., Phys. Lett. B 112, 183 (1982)
43. M. Ambrosio et al., AIP Conf. Proc. 85, 602 (1982)
44. PHOBOS Collaboration, R. Noucier et al., J. Phys. G 30, S1133 (2004)
45. STAR Collaboration, B.I. Abelev et al., Phys. Rev. C 79, 034909 (2009)
46. UA5 Collaboration, G.J. Alner et al., Phys. Rep. 154, 247 (1987)
47. UA1 Collaboration, C. Albajar et al., Nucl. Phys. B 335, 261 (1990)
48. CDF Collaboration, F. Abe et al., Phys. Rev. D 41, 2330 (1990)
49. Ch. Fuglesang, in Multiparticle Dynamics—Festschrift for Leon Van Hove, La Thuile, Italy, 10–22 Mar. 1989 (World Scientific, Singapore, 1989), p. 193