Genotype-dependent and non-gradient patterns of RSV gene expression

Felipe-Andrés Piedra*1, Xueting Qiu3, Michael N. Teng6, Vasanthi Avadhanula1, Annette A. Machado1, Do-Kyun Kim4, James Hixson4, Justin Bahl3,5, Pedro A. Piedra1,2

1Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
2Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
3Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
4Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
5Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore
6Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America

*Corresponding author
E-mail: Felipe-Andres.Piedra@bcm.edu
Abstract

Respiratory syncytial virus (RSV) is a nonsegmented negative-strand (NNS) RNA virus and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3’ promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription. However, recent reports show data that appear inconsistent with a gradient. To better understand RSV transcriptional regulation, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and cotton rats infected with virus isolates belonging to four different genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were genotype-specific and non-gradient, where mRNA levels from the G (attachment) gene exceeded those from the more promoter-proximal N (nucleocapsid) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. While the GS signal sequences were highly conserved, their alignment with N protein in the helical ribonucleocapsid, i.e., N-phase, was variable, suggesting polymerase recognition of GS signal conformation affects transcription initiation. The effect of GS N-phase on transcription efficiency was tested using dicistronic minigenomes. Ratios of minigenome gene expression showed a switch-like dependence on N-phase with a period of seven nucleotides. Our results indicate that RSV gene expression is in part sculpted by polymerases that initiate transcription with a probability dependent on GS signal N-phase.
Author Summary

RSV is a major viral pathogen that causes significant morbidity and mortality, especially in young children. Shortly after RSV enters a host cell, transcription from its nonsegmented negative-strand (NNS) RNA genome starts at the 3’ promoter and proceeds sequentially. Transcriptional attenuation is thought to occur at each gene junction, resulting in a gradient of gene expression. However, recent studies showing non-gradient levels of RSV mRNA suggest that transcriptional regulation may have additional mechanisms. We show using RSV isolates belonging to four different genotypes that gene expression is genotype-dependent and one gene (the G or attachment gene) is consistently more highly expressed than an upstream neighbor. We hypothesize that variable alignment of highly conserved gene start (GS) signals with nucleoprotein (i.e., variable GS N-phase) can affect transcription and give rise to non-gradient patterns of gene expression. We show using dicistronic RSV minigenomes wherein the reporter genes differ only in the N-phase of one GS signal that GS N-phase affects gene expression. Our results suggest the existence of a novel mechanism of transcriptional regulation that might play a role in other NNS RNA viruses.
Introduction

Respiratory syncytial virus (RSV) can infect individuals repeatedly and is the most common pathogen associated with severe lower respiratory tract disease in children worldwide [1-5]. Numerous host-related and environmental risk factors for severe disease are known [6-8] while viral factors are less clear.

RSV is a nonsegmented negative-strand (NNS) RNA virus classified into two major subgroups, A and B, largely distinguished by antigenic differences in the attachment or G protein [9, 10]. The two subgroups are estimated to have diverged from an ancestral strain over 300 years ago [11] and have evolved into multiple co-circulating genotypes [11-15].

The RNA genome of RSV is embedded in interlinking and helix-forming subunits of nucleocapsid (N) protein, together forming the ribonucleocapsid (RNP) complex [16, 17]. Viral mRNA are not encapsidated [17, 18]. Formation of the RNP complex requires high concentrations of N protein and a 5’ terminal dinucleotide AC synthesized by the polymerase independently of template [18, 19]. Each subunit of N protein binds a seven nucleotide stretch of RNA via contacts with the sugar phosphate backbone, causing the RNA to adopt a conformation with a distinct configuration of solvent-exposed and buried nucleobases [16, 17]. Exposed nucleobases can presumably interact directly with viral polymerases bound to the RNP complex [16]. Moreover, the alignment of the viral RNA to the N protein within the RNP (N-phase) will determine its pattern of exposed and buried bases. The effects of N-phase on promoter recognition have been explored in RSV and some paramyxoviruses [18, 20-23]. N-phase affects RNA synthesis by
paramyxoviral RNA polymerases but, in RSV, promoter recognition is strongly
determined by the proximity of the promoter sequence to the 3' terminus of the genome;
replication is abolished if the core promoter starts six or more nucleotides from the 3'
end [23]. Unlike its effects on promoter recognition and replication, the effects of N-
phase on transcription are unexplored.

Transcription in RSV and other NNS viruses is sequential, with genes transcribed
in their order of occurrence from the 3' promoter of the genome [18, 24-29]. Each of the
ten genes of RSV contains essential gene start (GS) and gene end (GE) signals
flanking the open reading frame (ORF) [30-32]. Transcription is initiated at the GS signal
which also serves as a capping signal on the 5' end of the nascent mRNA [18, 33, 34].
The polymerase then enters elongation mode until it reaches a GE signal, where the
mRNA is polyadenylated and released [18, 30]. Two genes overlap at the 5' end of the
RSV genome. The GE signal of matrix 2 (M2) occurs downstream of the GS signal of
the large polymerase (L) gene. The polymerase must return from the M2 GE signal for
full-length L mRNA to be made [35], suggesting that transcribing polymerases scan the
RSV genome bidirectionally for a new GS signal after terminating transcription. Indeed,
scanning polymerase dynamics may be a universal feature of NNS virus transcription
[18, 36-38].

By homology with other NNS viruses, it is widely assumed that transcription in
RSV follows a gradient, where the extent to which a gene is transcribed falls with its
distance from the 3' promoter [29, 39, 40]. Earlier studies reported data consistent with
a gradient [39, 41, 42]; however, recent studies show mRNA abundances that peak at
the G gene, which is located in the middle of the genome [40, 43]. We recently reported
the G gene to be the most abundant in clinical samples obtained from RSV/A- and RSV/B-infected infants [44]. Thus, existing data suggest that patterns of RSV gene expression are more variable than has been assumed.

Here we explored the natural diversity of patterns of RSV gene expression by using qPCR to measure mRNA abundances of five different RSV genes (NS1, NS2, N, G, F) from isolates that we sequenced belonging to both subgroups and four different genotypes (RSV/A/GA1, RSV/A/ON, RSV/B/GB1, RSV/B/BA). Genotype-dependent patterns were observed, all diverging from a gradient and all showing higher levels of G mRNA than expected. Transcript stabilities did not account for the non-gradient patterns of mRNA levels. We analyzed GS signal sequence and N-phase, and hypothesized that GS signal N-phase can affect RSV gene expression on the basis of our findings. We found evidence supporting this hypothesis by measuring gene expression from RSV minigenomes encoding two reporter genes, where minigenomes differed only in the N-phase of one GS signal.
Results

RSV mRNA abundances

Oligonucleotide standards of known concentration were used to convert cycle threshold (C_T) values measured by real-time PCR for mRNA targets (Fig 1A) to mRNA abundances. Twenty oligonucleotide standards and sets of reagents (primers and probe) were needed to quantify 20 mRNA targets (five genes in four isolates). All reagents gave rise to a similar range of C_T values for standards at equal concentrations (Fig 1B).

Relative mRNA levels

RSV isolates from both major subgroups (A and B) and four different genotypes (A/GA1/Tracy, A/ON/121301043A, B/GB1/18537, B/BA/80171) were used to infect HEp-2 cells (MOI = 0.01). Total mRNA abundances began to plateau at ~48 hours post-infection (pi) for all isolates (Fig 2A), consistent with the presence of significant viral cytopathic effect beyond this time-point. Relative mRNA levels were calculated for each isolate at each time-point by dividing the abundance of each mRNA by the total mRNA abundance (Fig 2B). Relative mRNA levels reached steady-state between four and 24 hours pi (Fig 2B).

Consistent with sequential transcription, the relative levels of NS1 mRNA decreased for all isolates after four hours pi (GA1: -12%; ON: -5%; GB1: -6%; BA: -22%). Percent reductions were greater for the two RSV isolates, GA1 and BA, with lower total mRNA at four hours pi (avg. of GA1 and BA = 170 ± 70 mRNA/reaction vs. avg. of ON and GB1 = 890 ± 170 mRNA/reaction).
All four sets of steady-state mRNA levels were non-gradient, with levels of G mRNA exceeding levels of N mRNA (Fig 3). Steady-state mRNA levels also showed both subgroup- and genotype-specific differences (Fig 3). Between subgroups, relative levels of NS1 and NS2 were most different (Fig 3), with the two being similar in RSV/A, and with NS1 levels exceeding NS2 by a factor of ~5 in RSV/B (Fig 3). Within RSV/A, the level of NS1 exceeded NS2 in the GA1 isolate, and was matched by NS2 in the ON isolate (Fig 3). In RSV/B, the level of G mRNA exceeded N in the BA isolate (~5-fold greater) more than it did in the GB1 isolate (~2-fold greater) (Fig 3). Furthermore, genotype-specific steady-state mRNA levels were comparable in A549, Vero, and HEp2 cell lines (Fig 4A).

We explored whether relative mRNA levels might change in the context of a fully immunocompetent host. A pair of cotton rats was infected with each virus isolate and both lung lavage (LL) and nasal wash (NW) samples were collected at four days pi. Relative mRNA levels were genotype-specific and similar in cotton rat LL and NW samples, and comparable to those measured in vitro (Fig 4B).

RSV mRNA stabilities

The observed divergence from a transcription gradient could be the result of differential stability of the RSV mRNAs. Therefore, we measured transcript stabilities by blocking transcription using the RSV RNA-dependent RNA polymerase (RdRp) inhibitor GS-5734 then monitoring mRNA levels by qPCR over time. Decay was measured for all five mRNAs from each of the four isolates in HEp-2 cells (Fig 5A). Exponential decay functions were fit to the data and half-lives were calculated from the decay constants. Half-lives ranged from 10 to 27 hours with a mean of 16 ± 5 hours (Fig 5B). Distributions
of mRNA stabilities varied among the isolates, with GA1 having the greatest uniformity and lowest mean (= 12 ± 1 hours) (Fig 5A). Gene expression patterns were estimated by correcting measured mRNA abundances for degradation and recalculating relative mRNA levels (mRNA expressed = measured mRNA # * e^{(decay constant * 24 hr)}). Estimated levels of gene expression remained non-gradient; thus, differential mRNA stabilities do not account for the non-gradient patterns observed (Fig 5C). These data indicate that relative mRNA levels are 1) more strongly shaped by gene expression than decay and 2) can safely be interpreted to reflect levels of gene expression.

GS signal sequence and N-phase

Whole genome sequences of the four RSV isolates were obtained by next-generation sequencing and analyzed for differences in GS signals that might help explain the non-gradient gene expression patterns observed. GS signals were highly conserved, with a single U to C substitution at position ten of the G gene GS signal (Fig 6A).

We analyzed GS signal sequences for their alignment with N protein, as the alignment of a GS signal with bound N protein will affect its conformation and determine its configuration of solvent-exposed and buried nucleobases [16]. The alignment of a GS signal with N protein (N-phase) might therefore affect interactions with scanning polymerases and alter the likelihood of transcription initiation. We estimated the N-phase of each GS signal by calculating the remainder resulting from dividing the number of nucleotides separating the GS signal from the L GE signal by seven (the number of nucleotides bound by one subunit of N). The L GE signal was used as a proxy as the exact 5' terminus of each RSV genotype is not known. Thus, the estimated
GS signal N-phase will differ from the actual N-phase if the nucleotide length beyond the end of the L GE signal is not equal to an integer multiple of seven. However, every GS signal N-phase within a genotype would be uniformly affected, making estimated intra-genotype differences equal to actual intra-genotype differences. GS signal N-phase was highly variable, making it a potential source of the variation observed in patterns of gene expression (Fig 6B).

Minigenomes to assess the effect of changing GS signal N-phase on gene expression

We hypothesized that changing GS signal N-phase would alter the likelihood of transcription initiation. To test our hypothesis, we designed plasmids encoding RSV minigenomes containing two reporter genes (Renilla luciferase and Firefly luciferase) each flanked by GS and GE signals [45, 46] (Fig 7A). We specifically altered the N-phase of the Firefly GS signal by introducing single nucleotide insertions within the adjoining 5’ untranslated region (UTR) along with compensatory single nucleotide deletions within the adjoining intergenic region (Fig 7B). In this way, both the total length of the minigenome and the N-phase of all other sequences were fixed (Fig 7B). If gene expression occurred independently of GS signal N-phase, ratios of luciferase activity would remain constant. Measured ratios of luciferase activity showed a switch-like dependence on GS signal N-phase, with four states resulting in relatively high activity, two states with low, and one state with intermediate activity (Fig 7C). Ratios increased by as much as 50% relative to the minimum measured (Fig 7C). Thus the N-phase of the Firefly luciferase GS signal affected the relative level of gene expression, and by
inference, transcription initiation (Fig 7C). Furthermore, ratios of luciferase activity were consistent with a periodicity of seven nucleotides (Fig 7C).

Discussion

We observed genotype-dependent and non-gradient patterns of RSV gene expression. We hypothesize that non-gradient patterns require a mechanism to alter the likelihood of transcription initiation at different GS signals. GS signal sequences were highly conserved but varied in alignment with N protein, or N-phase, providing a potential source of biased transcription initiation. Using RSV minigenomes, we showed that varying GS signal N-phase can affect gene expression. These unexpected findings highlight gaps in our knowledge of RSV transcription and raise important issues relevant to future studies.

Accurate mRNA abundance measurements by qPCR require reagents that bind target without any mismatches [47, 48]. Perfectly designed and distinct sets of reagents can amplify target with variable efficiency, as the amplification efficiency depends on the physicochemical properties of the reagents (the free energies of different intra- and intermolecular interactions) and the qPCR conditions used. For our 20 oligonucleotide standards, we found the lowest melting temperature from each set of reagents correlated positively with amplification efficiencies and negatively with cycle threshold values (S1 Fig). These correlations indicate that physicochemical differences in the primers and probes can account for the minor variation observed in the amplification of
oligonucleotide standards, and support the accuracy of our approach to measuring viral mRNA abundances.

A gene expression gradient has been widely assumed for RSV, but supporting data come from a modest number of studies and are largely restricted to laboratory-adapted isolates (Long and A2) from the prototypic GA1 genotype of subgroup A. The first measurements were made by Collins and Wertz (1983) using an A2 strain in HEp-2 cells [28, 42, 49]. They discovered the gene order of RSV and found it was approximated by decreasing mRNA abundances measured by northern blot [28, 42, 49]. Barik later reported a gradient by dot blot hybridization of radiolabeled mRNAs produced in vitro using ribonucleoprotein (RNP) complex from an RSV Long strain and cell extract from uninfected HEp-2 cells [41]. Over a decade later, Boukhvalova et al. measured a gradient-like pattern by qPCR of mRNA abundances from an RSV Long strain grown in A549 cells [39]. In contrast, Aljabr et al. recently reported mRNA abundances by RNA-Seq from an A2 strain in HEp-2 cells that are inconsistent with a gradient. The most abundant mRNA they observed was associated with the G gene [40]. Levitz et al. reported the G gene to be the most highly expressed gene at later time-points in A549 cells infected with isolates from the RSV/B subgroup [43]. Thus, recent published data indicate that patterns of RSV gene expression vary and do not always follow a gradient. Here, we report data from isolates belonging to four different genotypes (GA1, ON, GB1, BA) showing variable and non-gradient patterns of gene expression and all with an apparent excess of G mRNA.

Studies of transcription in RSV and other NNS RNA viruses show that gene expression depends on a variety of factors. Among the factors affecting RSV gene
expression are sequences of GS and GE signals [30-32], intergenic (IG) sequences that can change how efficiently transcription is terminated or initiated [50, 51], and other factors including polymerase mutations and sequences of unknown function [52, 53]. Our minigenome experiments add GS signal N-phase to the list of factors involved in RSV gene expression.

Our minigenome data suggest that polymerases preferentially initiate transcription at GS signals with certain solvent-exposed nucleobases (3C and 10U of the RSV GS signal). What accounts for this preference, and what events follow GS signal recognition and lead to either transcription initiation or continued scanning is unknown. It is interesting that the U to C substitution in position ten of the G gene GS signal has been shown to result in less not more transcription [30]. Thus, additional factor(s) beyond GS signal N-phase may account for over-expression of the G gene. It is worth stating that transcription initiation, being a molecular event, must be stochastic. RSV transcription is therefore sequential but likely not obligatorily sequential. A relative excess of G gene mRNA can occur from polymerases, more often than not, failing to initiate transcription at the N gene before initiating at the G gene. It is also possible that the N gene is usually expressed before the G gene, but G mRNA accumulates more because of polymerase scanning and increased re-initiation of transcription at G. Either scenario might contribute and both are consistent with the ultraviolet (UV) transcriptional mapping data underlying sequential transcription [24-26, 28].

Differences in luciferase activities from minigenomes are smaller than the differences observed in viral mRNA levels. Several factors might help explain this finding. First, the viral polymerase complex proteins (M2-1, N, P, L) that drive RNA
synthesis in the minigenome system are over-expressed by transfection of plasmids encoding codon-optimized genes. This over-abundance of polymerase proteins might not accurately represent the situation during RSV infection. Minigenomes are also proxies for full-length genomes, being shorter and having a simpler genetic structure. For instance, dicistronic minigenomes contain one pair of GS and GE signals straddling a single intergenic sequence while genomes contain nine variably spaced pairs of GS and GE signals straddling nine intergenic sequences of variable sequence and length. Interactions of transcribing and scanning polymerases with the structurally complex RSV genome might, in nonobvious ways, bias the expression of some genes over others. There could also be differences in the stability of the mRNAs or proteins for Renilla versus Firefly luciferase. Finally, concentrations of both luciferase proteins may have reached saturating intracellular levels prior to measurement (24 hr pi). Saturating protein concentrations would underrepresent differences in mRNA levels.

Our results show that transcription initiation by the RSV polymerase depends in part on GS signal N-phase. This potentially helps explain our and other recent observations of 1) non-gradient and 2) variable patterns of gene expression. The functional importance of genotype-dependent patterns of gene expression demands exploration. Finally, GS signal N-phase-regulated transcription initiation might also play a role in other NNS viruses.
Materials and Methods

Virus strains

RSV isolates were initially genotyped as described [13, 54] by sequencing a 270 bp fragment in the second hypervariable region of the G gene. RSV/A/GA1/Tracy and RSV/B/GB1/18537 are prototypic strains isolated in 1989 and 1962, respectively [13], while RSV/A/ON/121301043A and RSV/B/BA/80171 are contemporaneous strains isolated in 2013 and 2010, respectively [55, 56].

Cell-lines and cotton rats

HEp-2 (ATCC CCL-23), A549 (ATCC CCL-185), and Vero (ATCC CCL-81) were cultured in minimal essential medium (MEM) containing 10% fetal bovine serum (FBS), 1 µg/ml penicillin, streptomycin, and amphotericin B (PSA), and supplemented with L-glutamine.

Male and female *Sigmodon hispidus* cotton rats were bred and housed in the vivarium in Baylor College of Medicine. Cotton rats were ~75 to 150 g of body weight at the start of the experiments.

Viral replication in cell culture and cotton rats

The media from 70-90% confluent HEp-2, A549, or Vero cells in 24-well plates was aspirated, and 0.2 ml of virus diluted in MEM containing 2% FBS with antibiotics, antifungal, and L-glutamine (2% FBS-MEM) was added to replicate wells for each of the time-points to be acquired. Plates were incubated at 37°C and 5% CO₂ for 1 hour. Following infection, virus-containing media was aspirated and replaced with 1 ml of pre-warmed 2% FBS-MEM. Plates were incubated at 37°C and 5% CO₂ until sample
collection. At each time point, the media was aspirated and infected monolayers were lysed with 1X RIPA buffer and pelleted by centrifugation. The supernatant was flash frozen in a mixture of dry ice and 95% ethanol then stored at -80°C.

Eight- to ten-week-old male and female cotton rats were sedated and inoculated intranasally with 10^5 plaque forming units (pfu) of RSV as described [57]. Cotton rats were euthanized on day 4 post-infection. Nasal wash (NW) samples were collected from each cotton rat by disarticulating the jaw and washing with 2 ml of collection media (= Iscove’s media containing 15% glycerin and mixed 1:1 with 2% FBS-MEM) through each nare, collecting the wash from the posterior opening of the pallet. Lung lavage (LL) samples were collected after the left lung lobe was removed and rinsed in sterile water to remove external blood contamination and weighed. The left lobe was transpleurally lavaged using 3 mL of collection media. Both NW and LL fluids were stored at -80°C.

RNA extraction and reverse transcription

Viral RNA was extracted from clarified cell lysates or samples obtained from cotton rats as described [55] by using the Mini Viral RNA Kit (Qiagen Sciences, Germantown, Maryland) and automated platform QIAcube (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Complementary DNA (cDNA) was generated using the SuperScript™ IV First-Strand Synthesis System and oligo(dT)$_{20}$ primers according to the manufacturer’s instructions (ThermoFisher Scientific).

RSV mRNA abundance measurements

Accurate mRNA abundance measurements by qPCR require reagents that bind target without any mismatches [47, 48]. Twenty sets of target-specific primers and
probes (from five mRNA targets for four virus isolates) were designed using whole genome sequences obtained by next-generation sequencing. C_T values were measured using the StepOnePlus Real-Time PCR System (ThermoFisher Scientific). Thresholding was performed according to the manufacturer's instructions [58].

Oligonucleotide standards were used to convert sample C_T values to mRNA abundances. Twenty oligonucleotide standards identical in sequence to the 20 targets of the specific primers and probes described above were purchased from IDT®, received lyophilized and resuspended in TE buffer pH 8. Each oligonucleotide standard was diluted to 4x106 molecules/µl and further diluted serially to a concentration of 40 molecules/µl in TE buffer. Duplicate C_T values were measured for each dilution and an average C_T was calculated. Average C_T values and known amounts (molecules/rxn) were used to construct a standard curve for each oligonucleotide standard.

For cDNAs derived from in vitro cell lysate or cotton rat samples, C_T values were measured in duplicate and used to calculate an average. Each average sample C_T value was converted to an mRNA abundance using the linear relationship determined for the appropriate oligonucleotide standard C_T vs. log10 of the oligonucleotide standard amount (molecules/rxn).

RSV mRNA stability measurements

Samples of HEp-2 cells infected with virus isolates at an MOI of 0.01 were collected from single wells of 24-well plates at multiple time-points up to 48 hours after addition of 100 µM GS-5734. GS-5734 is a monophosphate prodrug of an adenosine nucleoside analog that binds a broad range of viral RNA-dependent RNA polymerases.
(RdRps) and acts as an RNA chain terminator [59, 60]. Samples were collected as described above using 1X RIPA buffer to lyse infected cells, clarifying the lysate by centrifugation, and flash-freezing and storing the clarified lysate at -80°C. Viral RNA were extracted and converted to cDNA using oligo(dT)$_{20}$ primers. Transcript levels from RNase P (a host housekeeping gene) were measured using qPCR reagents acquired from the Centers for Disease Control and Prevention (CDC) and used to correct viral mRNA levels for well-to-well variation in the amount of sample obtained. Exponential decay functions were fit to the normalized data and used to calculate half-lives. Estimates of the amounts of mRNA expressed up to 24 hours pi were made by correcting the observed mRNA abundances at 24 hours pi for degradation using the exponential decay constants calculated (the number of expressed = the number of observed * $e^{(\text{decay constant} \times 24 \text{ hr})}$) and assuming production of all observed mRNA at $t = 0$ hours post-infection. This unrealistic assumption maximizes the effect of different rates of decay on the estimated levels of total expressed mRNA.

Whole genome sequencing and assembly

cDNAs for sequencing were generated from viral RNA using the SuperScript™ VILO™ cDNA Synthesis Kit and random hexamers (ThermoFisher Scientific). cDNAs were amplified using specific primers, and PCR products of each sample were purified and pooled [61]. Pooled PCR products (1 µg) were digested with the NEBNext dsDNA fragmentase kit (New England BioLabs, Inc., Ipswich, MA). Fragmented DNA was end-repaired with the NEBNext End Repair Module (New England BioLabs, Inc.). End-repaired DNA was ligated with the Ion P1 adaptor and unique Ion Xpress barcode adaptors (KAPA Adapter Kit 1–24; KAPABiosystems). Agencourt AMPure XP beads
(Beckman Coulter, Inc., Brea, CA) were used to selectively capture DNA between 100 and 250 bp in length. All reaction products were purified with the Isolate II PCR kit (Bioline USA, Inc.). These libraries underwent nick translation and amplification. Experion Automated Electrophoresis System (Bio-Rad Laboratories, Inc., Hercules, CA) was used to confirm fragment lengths and molar concentrations. Equal molar amounts of all libraries were pooled and libraries were sequenced by Ion Proton™ System (ThermoFisher Scientific) generating 150 bp reads. Raw data, FASTQ and BAM files, were generated by the Torrent Suite™ Software (version 5.0.4; ThermoFisher Scientific).

Reads were assembled by Iterative Refinement Meta-Assembler (IRMA), which was designed for highly variable RNA viruses with more robust assembly and variant calling [62, 63]. IRMA v0.6.7 (https://wonder.cdc.gov/amd/flu/irma/) was used with an assembly module specifically designed for RSV.

Estimates of gene start (GS) signal N-phase

GS signal N-phase was estimated from whole genome sequences using the end of the L (polymerase) GE signal [30]. The L GE signal (3'-UCAAUAUUUUUU-5'; genome sense) was used as a proxy for the 5' end of the RSV genome. N-phase was calculated by determining the number of bases between the last U of the L GE and the first C of the GS (3'-CCCCGUUUAAU-5') then dividing by seven, representing the number of bases encapsidated by a single N molecule.

Minigenome experiments
RSV minigenomes contained Renilla luciferase and Firefly luciferase genes flanked by the RSV A2 leader (le)-NS1 GS and L GE-trailer (Tr) sequences [45, 46]. The Renilla and Firefly luciferase genes were separated by an N/M GE signal, SH-G intergenic (IG) sequence, and F GS signal of variable N-phase. The N-phase of the F GS signal was altered by sequentially deleting the nucleotide immediately 3’ to the GS and inserting the same nucleotide immediately 5’ of the F GS signal. Eight constructs were constructed assuming the periodicity of seven nucleotides established by Tawar et al. [16]. Minigenomes were co-transfected into BSR-T7 cells with expression plasmids encoding codon-optimized N, P, L, and M2-1 genes [45, 46]. Firefly and Renilla luciferase activities were measured at 24 hours post-transfection using Dual Luciferase Reagent (Promega) [46].

Ethics Statement

All experimental protocols were approved by the Baylor College of Medicine’s Institutional Animal Care and Use Committee (IACUC) (license # AN-2307). All experiments were conducted in accordance with the Guide for Care and Use of Laboratory Animals of the National Institutes of Health, as well as local, state and federal laws.

Accession numbers

Sequences reported in this study were deposited in GenBank database under accession numbers MG813977-MG813995.
Acknowledgements

Thanks to Michel Perron of Gilead for providing the viral RdRp inhibitor GS-5734 for use in experiments to measure RSV transcript stabilities. Thanks to Brian Gilbert from the Department of Molecular Virology and Microbiology at Baylor College of Medicine for providing the cotton rats needed to perform RSV infection studies. We thank Kim Tran for technical assistance.
References

1. American Academy of Pediatrics Subcommittee on D, Management of B. Diagnosis and management of bronchiolitis. Pediatrics. 2006;118(4):1774-93. doi: 10.1542/peds.2006-2223. PubMed PMID: 17015575.

2. Hasegawa K, Tsugawa Y, Brown DF, Mansbach JM, Camargo CA, Jr. Temporal trends in emergency department visits for bronchiolitis in the United States, 2006 to 2010. Pediatr Infect Dis J. 2014;33(1):11-8. doi: 10.1097/INF.0b013e3182a5f324. PubMed PMID: 23934206; PubMed Central PMCID: PMCPMC3984903.

3. Mansbach JM, Piedra PA, Teach SJ, Sullivan AF, Forgey T, Clark S, et al. Prospective multicenter study of viral etiology and hospital length of stay in children with severe bronchiolitis. Arch Pediatr Adolesc Med. 2012;166(8):700-6. doi: 10.1001/archpediatrics.2011.1669. PubMed PMID: 22473882; PubMed Central PMCID: PMCPMC3394902.

4. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545-55. doi: 10.1016/S0140-6736(10)60206-1. PubMed PMID: 20399493; PubMed Central PMCID: PMCPMC2864404.

5. Zorc JJ, Hall CB. Bronchiolitis: recent evidence on diagnosis and management. Pediatrics. 2010;125(2):342-9. doi: 10.1542/peds.2009-2092. PubMed PMID: 20100768.

6. Simoes EA. Environmental and demographic risk factors for respiratory syncytial virus lower respiratory tract disease. J Pediatr. 2003;143(5 Suppl):S118-26. PubMed PMID: 14615710.

7. Sommer C, Resch B, Simoes EA. Risk factors for severe respiratory syncytial virus lower respiratory tract infection. Open Microbiol J. 2011;5:144-54. doi: 10.2174/1874285801105010144. PubMed PMID: 22262987; PubMed Central PMCID: PMCPMC3258650.
8. Stein RT, Bont LJ, Zar H, Polack FP, Park C, Claxton A, et al. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatr Pulmonol. 2017;52(4):556-69. doi: 10.1002/ppul.23570. PubMed PMID: 27740723; PubMed Central PMCID: PMCPMC5396299.

9. Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res. 2011;162(1-2):80-99. doi: 10.1016/j.virusres.2011.09.020. PubMed PMID: 21963675; PubMed Central PMCID: PMCPMC3221877.

10. Johnson PR, Spriggs MK, Olmsted RA, Collins PL. The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A. 1987;84(16):5625-9. PubMed PMID: 2441388; PubMed Central PMCID: PMCPMC298915.

11. Zlateva KT, Lemey P, Moes E, Vandamme AM, Van Ranst M. Genetic variability and molecular evolution of the human respiratory syncytial virus subgroup B attachment G protein. J Virol. 2005;79(14):9157-67. doi: 10.1128/JVI.79.14.9157-9167.2005. PubMed PMID: 15994810; PubMed Central PMCID: PMCPMC1168771.

12. Agoti CN, Munywoki PK, Phan MVT, Otieno JR, Kamau E, Bett A, et al. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol. 2017;3(1):vex006. doi: 10.1093/ve/vex006. PubMed PMID: 28458916; PubMed Central PMCID: PMCPMC5399923.

13. Tapia LI, Shaw CA, Aideyan LO, Jewell AM, Dawson BC, Haq TR, et al. Gene sequence variability of the three surface proteins of human respiratory syncytial virus (HRSV) in Texas. PLoS One. 2014;9(3):e90786. doi: 10.1371/journal.pone.0090786. PubMed PMID: 24625544; PubMed Central PMCID: PMCPMC3953119.

14. Schobel SA, Stucker KM, Moore ML, Anderson LJ, Larkin EK, Shankar J, et al. Respiratory Syncytial Virus whole-genome sequencing identifies convergent evolution of
sequence duplication in the C-terminus of the G gene. Sci Rep. 2016;6:26311. doi: 10.1038/srep26311. PubMed PMID: 27212633; PubMed Central PMCID: PMCPMC4876326.

15. Bose ME, He J, Shrivastava S, Nelson MI, Bera J, Halpin RA, et al. Sequencing and analysis of globally obtained human respiratory syncytial virus A and B genomes. PLoS One. 2015;10(3):e0120098. doi: 10.1371/journal.pone.0120098. PubMed PMID: 25793751; PubMed Central PMCID: PMCPMC4368745.

16. Tawar RG, Duquerroy S, Vonrhein C, Varela PF, Damier-Piolle L, Castagne N, et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science. 2009;326(5957):1279-83. doi: 10.1126/science.1177634. PubMed PMID: 19965480.

17. Ruigrok RW, Crepin T, Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol. 2011;14(4):504-10. doi: 10.1016/j.mib.2011.07.011. PubMed PMID: 21824806.

18. Noton SL, Fearns R. Initiation and regulation of paramyxovirus transcription and replication. Virology. 2015;479-480:545-54. doi: 10.1016/j.virol.2015.01.014. PubMed PMID: 25683441; PubMed Central PMCID: PMCPMC4424093.

19. Noton SL, Fearns R. The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus. RNA. 2011;17(10):1895-906. doi: 10.1261/rna.2813411. PubMed PMID: 21878549; PubMed Central PMCID: PMCPMC3185921.

20. Murphy SK, Ito Y, Parks GD. A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3' terminus. J Virol. 1998;72(1):10-9. PubMed PMID: 9420195; PubMed Central PMCID: PMCPMC109344.

21. Tapparel C, Maurice D, Roux L. The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is
essential for replication. J Virol. 1998;72(4):3117-28. PubMed PMID: 9525637; PubMed Central PMCID: PMCPMC109762.

22. Vulliemoz D, Roux L. "Rule of six": how does the Sendai virus RNA polymerase keep count? J Virol. 2001;75(10):4506-18. doi: 10.1128/JVI.75.10.4506-4518.2001. PubMed PMID: 11312321; PubMed Central PMCID: PMCPMC114204.

23. Samal SK, Collins PL. RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J Virol. 1996;70(8):5075-82. PubMed PMID: 8764015; PubMed Central PMCID: PMCPMC190462.

24. Abraham G, Banerjee AK. Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976;73(5):1504-8. PubMed PMID: 179088; PubMed Central PMCID: PMCPMC430325.

25. Ball LA, White CN. Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1976;73(2):442-6. PubMed PMID: 174107; PubMed Central PMCID: PMCPMC335925.

26. Collins PL, Hightower LE, Ball LA. Transcriptional map for Newcastle disease virus. J Virol. 1980;35(3):682-93. PubMed PMID: 7420539; PubMed Central PMCID: PMCPMC288862.

27. Collins PL, Mink MA, Stec DS. Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A. 1991;88(21):9663-7. PubMed PMID: 1946383; PubMed Central PMCID: PMCPMC52778.

28. Dickens LE, Collins PL, Wertz GW. Transcriptional mapping of human respiratory syncytial virus. J Virol. 1984;52(2):364-9. PubMed PMID: 6492254; PubMed Central PMCID: PMCPMC254535.

29. Whelan SP, Barr JN, Wertz GW. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol. 2004;283:61-119. PubMed PMID: 15298168.
30. Kuo L, Fearns R, Collins PL. Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol. 1997;71(7):4944-53. PubMed PMID: 9188557; PubMed Central PMCID: PMCPMC191725.

31. Kuo L, Grosfeld H, Cristina J, Hill MG, Collins PL. Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol. 1996;70(10):6892-901. PubMed PMID: 8794332; PubMed Central PMCID: PMCPMC190738.

32. Sutherland KA, Collins PL, Peeples ME. Synergistic effects of gene-end signal mutations and the M2-1 protein on transcription termination by respiratory syncytial virus. Virology. 2001;288(2):295-307. doi: 10.1006/viro.2001.1105. PubMed PMID: 11601901.

33. Barik S. The structure of the 5' terminal cap of the respiratory syncytial virus mRNA. J Gen Virol. 1993;74 (Pt 3):485-90. doi: 10.1099/0022-1317-74-3-485. PubMed PMID: 8445369.

34. Liuzzi M, Mason SW, Cartier M, Lawetz C, McCollum RS, Dansereau N, et al. Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. J Virol. 2005;79(20):13105-15. doi: 10.1128/JVI.79.20.13105-13115.2005. PubMed PMID: 16189012; PubMed Central PMCID: PMCPMC1235819.

35. Fearns R, Collins PL. Model for polymerase access to the overlapped L gene of respiratory syncytial virus. J Virol. 1999;73(1):388-97. PubMed PMID: 9847343; PubMed Central PMCID: PMCPMC103844.

36. Barr JN, Tang X, Hinzman E, Shen R, Wertz GW. The VSV polymerase can initiate at mRNA start sites located either up or downstream of a transcription termination signal but size of the intervening intergenic region affects efficiency of initiation. Virology. 2008;374(2):361-70. doi: 10.1016/j.virol.2007.12.023. PubMed PMID: 18241907; PubMed Central PMCID: PMCPMC2593140.
37. Brauburger K, Boehmann Y, Krahling V, Muhlberger E. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior. J Virol. 2016;90(4):1898-909. doi: 10.1128/JVI.02341-15. PubMed PMID: 26656691; PubMed Central PMCID: PMCPMC4733972.

38. Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology. 2004;318(2):463-73. PubMed PMID: 15015496.

39. Boukhvalova MS, Prince GA, Blanco JC. Respiratory syncytial virus infects and abortively replicates in the lungs in spite of preexisting immunity. J Virol. 2007;81(17):9443-50. doi: 10.1128/JVI.00102-07. PubMed PMID: 17596309; PubMed Central PMCID: PMCPMC1951413.

40. Aljabr W, Touzelet O, Pollakis G, Wu W, Munday DC, Hughes M, et al. Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. J Virol. 2016;90(10):4876-88. doi: 10.1128/JVI.02349-15. PubMed PMID: 26656699; PubMed Central PMCID: PMCPMC4859727.

41. Barik S. Transcription of human respiratory syncytial virus genome RNA in vitro: requirement of cellular factor(s). J Virol. 1992;66(11):6813-8. PubMed PMID: 1404620; PubMed Central PMCID: PMCPMC240184.

42. Collins PL, Wertz GW. cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci U S A. 1983;80(11):3208-12. PubMed PMID: 6190173; PubMed Central PMCID: PMCPMC394009.

43. Levitz R, Gao Y, Dozmorov I, Song R, Wakeland EK, Kahn JS. Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus. PLoS One. 2017;12(9):e0184318. doi: 10.1371/journal.pone.0184318. PubMed PMID: 28877226; PubMed Central PMCID: PMCPMC5587315.
44. Piedra FA, Mei M, Avadhanula V, Mehta R, Aideyan L, Garofalo RP, et al. The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis. PLoS One. 2017;12(3):e0172953. doi: 10.1371/journal.pone.0172953. PubMed PMID: 28267794; PubMed Central PMCID: PMCPMC5340370.

45. Dochow M, Krumm SA, Crowe JE, Jr., Moore ML, Plemper RK. Independent structural domains in paramyxovirus polymerase protein. J Biol Chem. 2012;287(9):6878-91. doi: 10.1074/jbc.M111.325258. PubMed PMID: 22215662; PubMed Central PMCID: PMCPMC3307299.

46. Teng MN, Tran KC. Use of Minigenome Systems to Study RSV Transcription. Methods Mol Biol. 2016;1442:155-64. doi: 10.1007/978-1-4939-3687-8_11. PubMed PMID: 27464693.

47. Boyle B, Dallaire N, MacKay J. Evaluation of the impact of single nucleotide polymorphisms and primer mismatches on quantitative PCR. BMC Biotechnol. 2009;9:75. doi: 10.1186/1472-6750-9-75. PubMed PMID: 19715565; PubMed Central PMCID: PMCPMC2741440.

48. Suss B, Flekna G, Wagner M, Hein I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J Microbiol Methods. 2009;76(3):316-9. doi: 10.1016/j.mimet.2008.12.003. PubMed PMID: 19135484.

49. Collins PL, Huang YT, Wertz GW. Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. J Virol. 1984;49(2):572-8. PubMed PMID: 6546401; PubMed Central PMCID: PMCPMC255499.

50. Hardy RW, Harmon SB, Wertz GW. Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination. J Virol. 1999;73(1):170-6. PubMed PMID: 9847319; PubMed Central PMCID: PMCPMC103820.
51. Moudy RM, Sullender WM, Wertz GW. Variations in intergenic region sequences of Human respiratory syncytial virus clinical isolates: analysis of effects on transcriptional regulation. Virology. 2004;327(1):121-33. doi: 10.1016/j.virol.2004.06.013. PubMed PMID: 15327903.

52. Cartee TL, Megaw AG, Oomens AG, Wertz GW. Identification of a single amino acid change in the human respiratory syncytial virus L protein that affects transcriptional termination. J Virol. 2003;77(13):7352-60. PubMed PMID: 12805433; PubMed Central PMCID: PMCPMC164798.

53. Harmon SB, Wertz GW. Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology. 2002;300(2):304-15. PubMed PMID: 12350361.

54. Peret TC, Hall CB, Schnabel KC, Golub JA, Anderson LJ. Circulation patterns of genetically distinct group A and B strains of human respiratory syncytial virus in a community. J Gen Virol. 1998;79 (Pt 9):2221-9. doi: 10.1099/0022-1317-79-9-2221. PubMed PMID: 9747732.

55. Avadhanula V, Chemaly RF, Shah DP, Ghantoji SS, Azzi JM, Aideyan LO, et al. Infection with novel respiratory syncytial virus genotype Ontario (ON1) in adult hematopoietic cell transplant recipients, Texas, 2011-2013. J Infect Dis. 2015;211(4):582-9. doi: 10.1093/infdis/jiu473. PubMed PMID: 25156562.

56. Nicholson EG, Schlegel C, Garofalo RP, Mehta R, Scheffler M, Mei M, et al. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis. J Infect Dis. 2016;214(4):649-55. doi: 10.1093/infdis/jiw191. PubMed PMID: 27190183; PubMed Central PMCID: PMCPMC4957440.

57. Stobart CC, Rostad CA, Ke Z, Dillard RS, Hampton CM, Strauss JD, et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat Commun. 2016;7:13916. doi: 10.1038/ncomms13916. PubMed PMID: 28000669; PubMed
Central PMCID: PMCPMC5187593 for the Company. M.L.M., C.C.S., A.L.H., J.M. and C.A.R. are co-inventors of RSV vaccine technology subject to evaluation in this paper. The vaccine technology has been optioned to Meissa by Emory University. The remaining authors declare no competing financial interests.

58. AB StepOne and StepOnePlus Real-Time PCR Systems - Relative Standard Curve and Comparative CT Experiments. 2008.

59. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7:43395. doi: 10.1038/srep43395. PubMed PMID: 28262699; PubMed Central PMCID: PMCPMC5338263.

60. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-5. doi: 10.1038/nature17180. PubMed PMID: 26934220; PubMed Central PMCID: PMCPMC5551389.

61. Agoti CN, Otieno JR, Munywoki PK, Mwihuri AG, Cane PA, Nokes DJ, et al. Local evolutionary patterns of human respiratory syncytial virus derived from whole-genome sequencing. J Virol. 2015;89(7):3444-54. doi: 10.1128/JVI.03391-14. PubMed PMID: 25609811; PubMed Central PMCID: PMCPMC4403408.

62. Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E. Erratum to: Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics. 2016;17(1):801. doi: 10.1186/s12864-016-3138-8. PubMed PMID: 27737640; PubMed Central PMCID: PMCPMC5064889.

63. Shepard SS, Meno S, Bahl J, Wilson MM, Barnes J, Neuhaus E. Viral deep sequencing needs an adaptive approach: IRMA, the iterative refinement meta-assembler. BMC Genomics. 2016;17:708. doi: 10.1186/s12864-016-3030-6. PubMed PMID: 27595578; PubMed Central PMCID: PMCPMC5011931.
Supporting Information Legends

S1 Fig. Amplification efficiencies positively correlate and C_T values negatively correlate with the minimum melting temperature (min. T_m) of the target-specific qPCR reagents used. (a) Pearson correlation for amplification efficiencies vs. min. Tm: $R=0.57$, $p=0.0086$. (b) Pearson correlations for C_T values measured at the extremes of target quantity (200 and 2×10^7 molecules / rxn) vs. min. Tm: $R=-0.65$, $p=0.002$ and $R=-0.66$, $p=0.0015$, respectively.
Fig 1. qPCR-based measurements of mRNA abundances from five RSV genes and four different virus isolates using oligonucleotide standards. (a) Five of 10 RSV genes were chosen for mRNA abundance measurements by qPCR. The 5 genes (NS1, NS2, N, G, & F) span half of the nucleotide length of the 15.2 kb genome and its entire gene length minus the final two genes, M2 and L. (b) Known amounts of different oligonucleotide standards were detected over a similar range of cycle threshold (C_T) values. Twenty different oligonucleotide standards at known concentrations were needed (4 virus isolates x 5 mRNA targets) to convert C_T values measured for viral mRNA targets into mRNA abundances. Each dot represents the mean C_T of duplicate measurements of an oligonucleotide standard at a known concentration or quantity (= number of molecules / qPCR rxn). Dots of like color are dilutions of the same oligonucleotide standard.

Fig 2. Total mRNA abundances plateau beyond 48 hours post-infection and relative mRNA levels reach steady-state soon after the start of infection. (a) Total mRNA abundances (= NS1+NS2+N+G+F) from HEp-2 cells infected with different isolates of RSV (MOI = 0.01) begin to plateau by ~48 hours post-infection (pi). Each dot (RSV/A/GA1Tracy [pale blue]; RSV/A/ON/121301043A [dark blue]; RSV/B/GB1/18537 [light green]; RSV/B/BA/80171 [dark green]) represents the mean and error bars the standard deviation of two independent experiments (n=2). For each independent experiment, the mean was calculated from duplicate measurements and used in subsequent calculations. (b) Relative mRNA levels reach steady-state sometime between four and 24 hours pi. Histograms depicting relative mRNA levels are shown for all measured time-points (4, 24, 48, 72 hr pi) and all four isolates (color scheme same
as (a)). Each bar depicts the mean mRNA # / total mRNA # of the indicated species and error bars show the standard deviation (n = 2). For each independent experiment, the mean was calculated from duplicate measurements and used in subsequent calculations.

Fig 3. Relative mRNA levels are genotype-specific and non-gradient. Grey bars depict relative mRNA levels expected from an expression gradient resulting from a 20% decrease in transcription at every gene junction. Each dot depicts the mean mRNA # / total mRNA # observed for the indicated species and isolate (RSV/A/GA1Tracy [pale blue]; RSV/A/ON/121301043A [dark blue]; RSV/B/GB1/18537 [light green]; RSV/B/BA/80171 [dark green]) in HEp-2 cells (MOI = 0.01) at steady-state. Steady-state mean relative mRNA levels and standard deviation were calculated using the mean of each relevant time-point (24, 48, 72 hours post-infection). The mean of each time-point was calculated from two independent experiments, and the mean from each experiment was calculated from duplicate measurements as described.

Fig 4. Relative mRNA levels are comparable in different cell lines and in nasal wash and lung lavage samples from infected cotton rats. (a) Relative mRNA levels are comparable in different cell lines. Viral mRNA levels were measured from infected A549 (in yellow), Vero (in orange), and HEp-2 (in blue) cell lines (MOI = 0.01) at 24 hours post-infection (pi). Each bar depicts the mean mRNA # / total mRNA # of the indicated species and error bars show the standard deviation (n = 2). For each independent experiment, the mean was calculated from duplicate measurements and used in subsequent calculations. (b) Relative mRNA levels are comparable in lung lavage (LL) and nasal wash (NW) samples from infected cotton rats. Each bar depicts
the mean mRNA # / total mRNA # of the indicated species and error bars show the standard deviation calculated from duplicate measurements of the same sample. Results from LL samples collected 4 days pi are shown in blue (cotton rat A = light blue; cotton rat B = dark blue) and NW samples shown in green (cotton rat A = light green; cotton rat B = dark green).

Fig 5. Transcript stabilities do not account for non-gradient patterns, indicating that relative mRNA levels strongly reflect RSV gene expression. (a) Viral mRNAs decay after addition of GS-5734, a viral polymerase inhibitor. Viral mRNA levels were divided by RNase P mRNA levels to control for well-to-well variation in the amount of sample obtained, then normalized. Each dot represents the mean normalized mRNA # and error bars the standard deviation of two independent experiments (n=2). For each independent experiment, a mean was calculated from the means of two different samples; and each sample mean was obtained from duplicate measurements. (b) Decay constants obtained from exponential decay functions fit to each data set were used to calculate mRNA half-lives (RSV/A/GA1Tracy [pale blue]; RSV/A/ON/121301043A [dark blue]; RSV/B/GB1/18537 [light green]; RSV/B/BA/80171 [dark green]). (c) Transcript stabilities cannot account for non-gradient mRNA levels. Grey bars depict relative mRNA levels expected from an expression gradient resulting from a 20% decrease in transcription at every gene junction. Each dot depicts the mean expressed mRNA # / total expressed mRNA # estimated for the indicated mRNA species and virus isolate in HEp-2 cells (MOI = 0.01) at 24 hours post-infection (mRNA expressed = mRNA # observed * e^{(decay constant * 24 hr)}).
Fig 6. GS signal sequence is highly conserved but alignment with N protein (N-phase) is variable, revealing a potential source of genotype-specific and non-gradient gene expression patterns. (a) GS signals are highly conserved and show only a U to C substitution at position ten of the G gene GS signal. (Genomic, i.e., negative-strand, sequence displayed). (b) GS signals have variable N-phase. Diagrams show the estimated GS signal N-phase for each gene whose mRNA levels were measured (NS1 (cyan), NS2 (green), N (tawny), G (purple), & F (charcoal)) from the 4 virus isolates used.

Fig 7. Gene expression changes with GS signal N-phase in minigenomes encoding two luciferase enzymes. (a) A minigenome encoding two reporter genes, the second with variable GS signal N-phase. RSV minigenomes contained Renilla and Firefly luciferase genes separated by an N GE signal, SH/G intergenic (IG) sequence, and F GS signal of variable N-phase. (b) The F GS signal and neighboring sequences in minigenomes with variable GS signal N-phase. In *italics*: SH-G intergenic (IG) sequence; in **bold**: consensus GS signal sequence; *underlined*: F GS signal sequence block. (Genomic, i.e., negative-strand, sequence displayed). (c) Changing ratios of Firefly to Renilla luciferase activity indicate that GS signal N-phase can affect gene expression. Each bar represents the mean and error bars the standard deviation of measurements of four samples taken at 24 hr pi from a single experiment.
Fig 1.

(a) Schematic representation of a viral genome showing the locations of different genes. The genome is labeled with genes such as NS1, NS2, N, P, M, SH, G, F, M2, and L. The 3' and 5' ends are indicated, and the total length is 15.2 kb.

(b) Scatter plot illustrating the relationship between Ct values and target quantities. The plot shows a linear trend with decreasing Ct values as the target quantity increases.
Fig 2.
Fig 3.
Fig 4.
Fig 4
Fig 5.
a. NS1, NS2, N, F
 GA1 CCCCGUUUUAU
 ON
 GB1
 BA

G
 CCCCGUUUUAC

b.

Fig 6.
Fig 6
Fig 7.