Synthesis, characterization and photocatalytic performance of iron molybdate (Fe$_2$(MoO$_4$)$_3$) for the degradation of endosulfan pesticide

S Parveen1, I A Bhatti1,2,8, T Javed1, M Mohsin1, M T Hussain1, M I Khan1, S Naz6,8 and M Iqbal1,2

1 Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
2 Department of Chemistry, Government College Women University, Faisalabad, 38040, Pakistan
3 Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
4 Department of Applied Sciences, National Textile University, Faisalabad, 38040, Pakistan
5 Department of Physics, The University of Lahore, Lahore, 53700, Pakistan
6 Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, Pakistan
7 Department of Chemistry, The University of Lahore, Lahore, 53700, Pakistan
8 Authors to whom any correspondence should be addressed.

E-mail: bosalvee@yahoo.com, saima.naz@ue.edu.pk and ambreenashar2013@gmail.com

Keywords: iron molybdate, photocatalysis, advanced oxidation process, endosulfan, pesticides

Abstract
Iron molybdate was prepared via simple solution chemistry method and the photocatalytic degradation of a pesticide (endosulfan) was investigated under visible light irradiation. As-prepared (Fe$_2$(MoO$_4$)$_3$) was characterized using scanning electron microscope (SEM), x-ray diffraction (XRD), energy dispersive x-ray spectra (EDX), diffused reflectance spectroscopy (DRS) and Zeta particle sizer techniques. The iron molybdate crystallite size was 36 nm, while grain size was in the range of 160–340 nm. The particles of polymetallic compound were spherical, highly porous and with fluffy texture indicating high surface area. DRS revealed Fe$_2$(MoO$_4$)$_3$ was active under visible region since band gap value calculated was 2.7 eV. Response surface methodology (RSM) was employed for the optimization of photocatalytic activity (PCA) of Fe$_2$(MoO$_4$)$_3$ as a function of catalyst dose, H$_2$O$_2$ dose, solution pH and concentration of endosulfan and up to 77% degradation was achieved at optimum conditions, which was monitored by UV/vis spectroscopy. In response to endosulfan degradation, the chemical oxygen demand (COD) and total organic carbon (TOC) were reduced up to 76% and 67%, respectively. Results revealed that iron molybdate is highly efficient photocatalyst for the degradation of endosulfan under solar light irradiation and could possibly be used for the treatment of endosulfan containing wastewater.

1. Introduction

Pesticides applications have been increased to many folds since last three decades to manage pests and to enhance the crops yield. Complex structure makes the pesticides persistent organic pollutants, which are responsible for diverse genotoxic and cytotoxic effects to living organisms. Endosulfan (C$_8$H$_4$Cl$_3$O$_2$S) is an organochlorine pesticide, which is a highly stable and has been detected in the environment at elevated concentration [1–4]. Endosulfan is responsible for various ill effects i.e., endocrine disruptor human primary hepatocytes, convulsions, restlessness, induce seizures, cause cancer, affect central nervous system, reproductive system disorders, gastrointestinal diseases, physiological disorders and muscular hyper twitching. Endosulfan is banned in various countries and endosulfan (isomers and sulfate) are added to the Stockholm convention list of persistent organic pollutants and suggested to stop the application of endosulfan [5].

Different techniques have been employed for the removal of endosulfan such as biological methods (bacterial degradation, fungal biodegradation, phytoremediation), photocatalysis, ozonation, photocatalysis, adsorption (organic and inorganic materials-derived adsorbents) and membrane separation [6–18]. A comparative efficacies for endosulfan degradation are presented in table 1. The reported techniques showed promising efficiency for endosulfan removal. However, all the techniques are not equal regarding cost and...
efficiency [19–23]. Some techniques are responsible for secondary pollution and produce toxic degradation intermediate. Advanced oxidation processes (AOPs) has been emerged as an one of efficient techniques for the destruction of pollutants [24, 25].

Semiconductor oxides, metal oxides and their composites have been used as photocatalysts to carry out AOPs. AOPs degrade the pollutants by generating highly reactive oxidizing specie (‘OH) at ambient conditions. However, band gap of semiconductor is important regarding excitation using UV or solar light and materials bearing small band gap are active under visible light, which is of paramount importance in photocatalysis for destruction of organic pollutants [43, 44]. Heterostructured metal oxides constituting molybdates, tungstate and vanadates are important families that exhibit narrow band gap for harvesting solar light for catalysis. Molybdates adopt tetrahedral coordination with relative large bivalent cations; (Sr, Pb, Ba and Ca) ionic radius (>0.99 Å) and exists in Scheelite type structure and have relative ionic radius (<0.77 Å) with bivalent cation (Co, Ni, Mg, Mn, Zn) and overall, it adopt six-fold coordinated octahedral geometry and constitute Wolframite geometry [45]. Previously, iron molybdate shown promising efficiency as photocatalyst for the removal of endosulfan, heptachlor and Rhodamine B dye and the efficiency was reported to be very promising [28, 46–49].

In view of aforementioned facts, present study was focused on the preparation and characterization of iron molybdate and techniques i.e., scanning electron microscope (SEM), x-ray diffraction (XRD), energy dispersive x-ray spectra (EDX) and Zeta particle sizer were employed for the characterization . Response surface methodology (RSM) was employed for the optimization of photocatalytic activity (PCA) for the degradation of endosulfan as a function of catalyst dose, H2O2 dose, solution pH and concentration of endosulfan (figure 1), a pesticide that is banned due to its high toxicity to human being and other living organisms.

S. no	Treatment methods	Endosulfan removal	References
1	Trichosporon cutaneum	A 60.36% α-endosulfan, 70.73% β-endosulfan and 52.08% endosulfan sulfate was removed	[26]
2	*Pseudomonas* sp.	A 70%–80% endosulfan removal within three days	[27]
3	Fe2 in iron turning waste is responsible	A 85% of endosulfan (20 μg l−1) in 10 min	[28]
4	*Paenibacillus* sp. JTTSM08, *Bacillus* sp. PRB77 and *Bacillus* sp. PRB101	A degradation of 92% at 5 mg kg−1 endosulfan conc. was observed for PRB101 after 120 days	[29]
5	*Psillimonas* sp. JW2 and *Bordetella* petrii NS	JW2 degraded 100% and 91.5% of α- and β-endosulfan, and NS degraded 95.1% and 90.3% of α- and β-endosulfan, respectively.	[30]
6	*Rhodococcus koreensis* strain S1-1	Endosulfan sulphate reduced to 2.11 μM from 12.25 μM in 14 d at 30 °C	[31]
7	*Pseudomonas* aeruginosa.	A 96% of endosulfan after 288 h under static conditions and complete removal after 28 days	[32]
8	Gamma irradiation induced degradation	A 99.5% (1.30 μM) endosulfan sulphate was observed at an absorbed dose of 1020 Gy and removal efficiency of endosulfan sulphate was affected by the pH removal efficiency of 99.5%, 98.3% and 31.3% at pH 6.2, pH 10.0, and pH 2.6, respectively	[33]
9	Zero-valent zinc	>90% endosulfan was degraded in 180 min. The degradation was accelerated under acidic conditions	[34]
10	TiO2/UV radiation	Endosulphan removal efficiency 80%–99%	[35]
11	TiO2/solar radiation	Endosulphan complete mineralization	[36]
12	UV/HSO3−/Fe2+	Degradation efficiency of 99.0% at UV fluence of 360 mj cm−2	[37]
13	UV/S2O82−, UV/HSO3−, and UV/H2O2	A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mj cm−2, was achieved, respectively,	[38]
14	Ag doped nano TiO2	Complete endosulfan removal	[36]
15	Oxonation	A 97% of beta-endosulfan 6-mg min −1 ozone dosages and at a pH of 4 for 60 min	[39]
16	Phytoremediation- vegetative filter strips	A 98% endosulfan removal	[40]
17	TFC-SR2 and TFC-SR3 nanofiltration membrane	A 80%–95% endosulfan removal	[41]
18	Adsorption- lateritic red and latosol soils	A 0.209 and 0.186 mg g−1 for α-endosulfan in lateritic red and latosol soil, respectively, and 0.148 and 0.140 mg g−1 for β-endosulfan in lateritic red and latosol soil, respectively.	[42]
19	Fe3(MoO4)2/ solar light	A 77% endosulfan removal	Present study
2. Material and methods

2.1. Chemicals and reagents
The chemicals and reagents used were of analytical grade and procured from Sigma-Aldrich Chemical Co, USA i.e., metal nitrates (Fe), ammonium salts, ethylene glycol. The solutions were prepared in deionized water (Millipore Corp., Milli-Q, 18.2 MΩ cm at 25 °C) and working standards of desired concentration was prepared by dilution method.

2.2. Synthesis procedure
Iron molybdate was prepared following reported methods with slight modification [50, 51]. Briefly, a 7.51 g of iron nitrate and 4.94 g of ammonium molybdate were dissolved in 200 ml deionized water separately (ammonium heptamolybdate and iron nitrate were mixed at ratio of 1:5) and both solutions were mixed drop wise with continuous slow stirring. Later, 5 ml of ethylene glycol was added and stirred the solution for 120 min. The sample was washed with water and ethanol several times to remove the impurities. The precipitate was dried at 70 °C for 5 h. The characterization of synthesized material was carried out by XRD (Joel JDX-3532 diffractometer), SEM (Quanta 250 FEI, USA), EDX (INCA Oxford instruments, UK) and Zeta particle size analyzer (Malvern).

2.3. Photocatalytic activity
The PCA was evaluated by degrading endosulfan (pesticide) under solar light irradiation. For solar light generation, solar simulator (150 W Xe lamp having cutoff filter (λ > 420 nm)) was used. For the optimization of PCA, response surface methodology was employed and central composite design (CCD) was used for experimental runs (table 2). The experimental conditions (catalyst load, pH, H2O2 concentration and endosulfan concentration are shown in table 3). Before irradiation, the mixture was stirred for 30 min in dark to attain the adsorption–desorption equilibrium between catalyst surface and endosulfan. The sample was irradiated for 1 h under ambient conditions. Then, 2 ml sample was withdrawn, filtered by Millipore filter and analyzed for endosulfan residual concentration by UV/Visible spectrophotometry (CE Cecil 7200, UK) and HPLC, which are regarded as efficient analytical techniques [52–54]. The percentage degradation was estimated using relation shown in equation (1). To evaluate the pure photolysis effect, blank experiment was also performed under similar conditions. The endosulfan percentage degradation was estimated by concentration difference method, while TOC was measured at 590 nm as already reported [55]. The COD and TOC were measured of those samples treated at optimum conditions. High performance liquid chromatographic (HPLC) was performed to analyze the endosulfan and its metabolites. The system equipped with C18 column and UV detector at 240 nm (50 Hz, 0.05 s) was used. Eluents (water and acetonitrile) were used as mobile phase after

Table 2. Experimental ranges of under study parameters.

Name	Units	Symbols	Low (-1)	Middle(0)	High (+1)
Catalyst load	g L⁻¹	A	0.5	1	1.5
pH	—	B	3	6	9
H2O2 conc.	%	C	3	5	7
Endosulfan conc.	mg L⁻¹	D	10	20	30

Figure 1. Structure of endosulfan (C9H6Cl6O3S) used for PCA evolution of Fe2(MoO4)3.
filtration and degasification at 70:30 volume ratio with flow rate \(0.6 \text{ ml min}^{-1}\) and injection volume 1 \(\mu\text{l}\). The highest detection of endosulfan and its metabolites was achieved at 243 nm.

\[
\text{Degradation}(\%) = \frac{C_o - C_f}{C_o} \times 100 \tag{1}
\]

3. Results and discussion

3.1. Characterization

The XRD pattern of iron molybdate synthesized by precipitation is shown in figure 2. XRD patterns revealed sharp and well defined peaks without any impure phase. The diffraction pattern obtained are attributed to the pure form of monoclinic iron molybdate (ICPDS 35-0183) \[56\]. The highest and broadest peak appeared at 22 degree \(2\theta\) indicating small crystallite size. Estimation of average size of crystallite \(L\) of iron molybdate particles was done using Debye-Scherer’s relation (equation (2)).

\[
L = \frac{0.9\lambda}{\beta \cos \theta} \tag{2}
\]

Where, \(k = 0.9\) (constant), \(\lambda = 1.54 \text{ Å}\), \(\beta = \text{FWHM}\), \(\theta = 2\theta/2\). \(L\) corresponds to the average size of crystallite (nm), \(\beta\) represents the full width at half maximum peak intensity (0.3944) and \(\theta\) is the Bragg’s angle of diffraction. The average crystallite size of iron molybdate particles was found to be 36 nm.

The elemental analysis of iron molybdate was performed by EDX and results are shown in figure 3. The peaks obtained correspond to the elements O, Mo and Fe. The percentages of O, Mo and Fe were 65.90, 18.75 and 15.35 (\%), respectively. The EDX analysis also revealed the purity of the prepared iron molybdate since no additional peak was observed the spectrum.

SEM analysis was also performed to investigate the morphology and surface texture properties of iron molybdate and results are shown figure 4. SEM images obtained clearly revealed the highly porous and fluffy texture ranging in size of 50–55 nm. These fluffy and small grain shaped iron molybdate particles have great potential for catalytic properties. The photocatalytic properties strongly relates with particle size, geometry and morphology. Therefore, the grain size distribution was investigated by Zeta particle sizer and response is shown.

Run	Catalyst load (g l\(^{-1}\))	pH	\(\text{H}_2\text{O}_2\)	Endosulfan conc. mg l\(^{-1}\)	Degradation (\%)
1	1.5	9	7	10	64
2	1.5	9	3	10	54
3	1.5	9	3	30	64
4	0.5	9	3	30	25
5	1.5	3	3	30	51
6	0.5	3	7	10	64
7	0.5	9	7	30	45
8	0.5	3	3	10	42
9	0.15	6	5	20	37
10	1.84	6	5	20	73
11	1	0.95	5	20	54
12	1	11.04	5	20	38
13	1	6	1.63	20	45
14	1	6	8.36	20	73
15	1	6	5	31.8	87
16	1	6	5	36.81	59
17	1	6	5	20	77
18	1	6	5	20	77
19	1	6	5	20	77
20	1	6	5	20	78
21	1	6	5	20	79

Table 3. Experimental layout and percentage degradation of endosulfan (predicted versus observed degradation).
in figure 5. The grain size distribution was in the range of 160–340 nm (with average particle size of 250 nm). The large grain size indicated the polycrystalline nature of the compound synthesized consisting of many crystallites. The large particle size also revealed the high surface charge of iron molybdate which caused agglomeration of particles.

Diffused reflectance spectrum of iron molybdate was recorded in the range of 200–800 nm and maximum absorption capacity of iron molybdate particles (upto 50%) was found in visible region >380 nm (figure 6). The astounding absorbing capacity was found in visible region, which anticipated the remarkable photocatalytic property under solar light [57]. The band gap was calculated using data of diffused reflectance spectra following Kubelka Munk relationship as shown in equation (3). The band gap calculated was 2.7 eV which supported the results of DRS for harvesting sunlight in visible region.

\[
[F(R) \times E]^\frac{1}{2}
\]

(3)
Figure 4. SEM analysis of iron molybdate.

Figure 5. Zeta sizer distribution of iron molybdate.

Figure 6. (Left) Diffused reflectance spectrum and (right) band gap energy of Fe₂(MoO₄)₃.
3.2. RSM for PCA optimization

Central composite design (CCD) was employed for the optimization of PCA under response surface methodology. Effects of various operational parameters were studied to deduce the optimal conditions for maximum degradation of pesticide (endosulfan). The experimental conditions are shown in table 2 and experimental run along with degradation of endosulfan is shown in table 3. The residual values indicate a good relationship between predicted and observed values. A polynomial equation elaborating the effectiveness and individual and cumulative influences of process variables. Where Y is the percentage degradation, whiles A, B, C and D are coded values for the influencing parameters (concentration of endosulfan, catalyst load, H_2O_2 and pH).

Fitting of the model was carried out through sequential process and selection of model summary was carried out through model summary statistics. The elaboration of the optimal response and model fitting was assessed through lack of fit test (table 4) and ANOVA is shown in table 5.

\[
\text{Degradation}(Y) = +A77.42 + 10.7A - 4.39B + 8.21C - 8.32D - 3.45AB - 2.38AC + 3.58BD - 7.79A^2 - 10.97B^2 - 6.38C^2 - 1.43D^2
\]

(4)

The efficacy of the model was also evaluated on the basis of F and P values. Smaller the P value and larger value of F indicates the best fitting of the model [58, 59]. From ANOVA lower value of prob. $P < 0.005$ indicates that variables have significant effect on response [58]. In similar fashion, other variables also ensured significance of the model since F value has 0.01% of noise value. The regression analysis reveals that A, B, C, D, AB, AD, A^2, B^2, C^2 and D^2 variables have significant effect on degradation, while BC, CD, BD and AC are insignificant with

Source	Sum of squares	Df	Mean square	Std. Dev.	Pred. R2	PRESS	F-value	p-value
(A) Linear	3092.17	12	257.681	13.9135	0.164 41	4875.33	198.216	<0.0001
2FI	2960.63	6	493.438	17.2216	−6.6307	44 521.8	379.568	<0.0001
Quadratic	2.067 15	2	1.033 57				0.795 06	0.512
Cubic	0	0						
Pure Error	5.2	4	1.3					

Source	Sum of Squares	Df	Mean Square	F- value	p-value
Mean versus Total	75 960.4	1	75 960.4		
Linear	3092.17	12	257.681	198.216	<0.0001
Quadratic versus 2FI	2960.63	6	493.438	379.568	<0.0001
Cubic versus Quadratic	2958.56	4	739.64	610.672	<0.0001
Cubic	0	0			
Pure Error	5.2	4	1.3		

Table 4. (A) lack of fit tests and model summary statistics of model compound degraded by iron molybdate (B) Sequential model sum of squares (Type I) of model compound degraded by iron molybdate.

Table 5. Analysis of variance (ANOVA) of endosulfan degradation using iron molybdate.
P > 0.05. Model fitting was further verified by R^2 which endorses quadratic model with R^2 values 0.999. Predicted and experimental values relies very close to each other, which revealed that the CCD is very effective for the optimization of conditions for endosulfan degradation and at optimum conditions of process variable, up to 79% degradation of endosulfan was observed. The optimum conditions were; 1.00 g l$^{-1}$ catalyst dose, pH 6, 5% H$_2$O$_2$ and endosulfan concentration of 20 mg l$^{-1}$. Verification of as predicted values was done by running experiments under the optimum conditions and up to 77% degradation of the endosulfan was observed, which is in good agreement with predicted values by RSM.

3.3. Effect of process variables on degradation

3.3.1. Effect of catalyst dosage

The 3D response surfaces and contour plots of pH, H$_2$O$_2$ and endosulfan concentration and catalyst load are shown in figure 7. In advanced oxidation processes, catalysts with narrow band gap was employed, which is active under solar light that promotes the electrons to conduction bands and resultantly, hydroxyl radicals are generated, which oxidize the organic pollutants in aqueous media. Iron molybdate on irradiation leads to the promotion of electron from valence to conduction band leaving behind a hole bearing positive charge, which is principally responsible for generation of hydroxyl radicals by reacting with water $[44, 60–62]$. Moreover, conduction band promoted electrons also become a source for the generation of strong oxidizing species such as superoxide and per hydroxyl radical on reacting with dissolved oxygen $[63]$. Dissolved oxygen plays a dual role in PCA; firstly, it accepts a photo-promoted free electrons from conduction band and inhibits the recombination of free electron to hole. Secondly, it generates per hydroxyl and super oxide radicals and these species have strong potential to completely degrade the organic pollutant in aqueous environment (equations (5)–(8)) $[44, 57, 60, 62]$. Seeking the optimum concentration of catalyst, different concentration of the catalyst were employed ranging from (0.5–1.5 g l$^{-1}$) and catalyst dose of 1.0 g l$^{-1}$ was found optimum for the degradation of the endosulfan. Beyond this, the PCA did not change considerably.

\[\text{Fe}_2(\text{MoO}_4) + h\nu \rightarrow h^+ + e^- \] \hspace{1cm} (5)

\[\text{O}_2 + e^- \rightarrow \text{O}_2^- \] \hspace{1cm} (6)

\[h^+ + \text{H}_2\text{O} \rightarrow \text{OH}^- \]

Figure 7. 3D-response surface curves and contours depicting effect of process variables on endosulfan degradation (A) catalyst load versus pH (B) H$_2$O$_2$ versus catalyst load (C) pH versus conc. of endosulfan.
3.3.2. Effect of pH
The pH of solution is an important parameter for photocatalysis, which controls the generation of reactive species. The PCA was enhanced due to the formation of hydroxyl radicals in the acidic medium range of pH 2.5–3.5. Under basic condition, the OH decreased; hence the PCA was also decreased. Moreover, the decomposition of H₂O₂ into O₂ and H₂O is accelerated under alkaline condition instead of OH generation [43]. Also, at pH < 3.0, hydrogen peroxide converted in to a stable oxonium ion (e.g., H₃O₂⁺) and the scavenging effect of the OH by H⁺ is enhanced. To evaluate the influence of initial pH of solution on PCA, endosulfan was degradation in the pH ranging of 3–9. Under alkaline conditions, the degradation rate was slow due to electrostatic repulsion between anionic structure and negatively charged catalyst surface [64]. This adsorption took place which was probably due to negatively charged oxygen over carboxylic group with the Fe³⁺ or Mo⁶⁺ cations through a Lewis acid–base reaction. It is found that the degradation efficiency of endosulfan was 79% for 1.0 g L⁻¹ catalyst dose, pH 6, 5% H₂O₂ and endosulfan concentration of 20 mg l⁻¹. It can be explained by the solid acid characteristics of Fe₂(MoO₄)₃, which are proved by both the low PZC and the presence of strong acid sites. The PZC of Fe₂(MoO₄)₃ is 2.94, beyond this deprotonation occurs and an acidic microenvironment formed on the surface of Fe₂(MoO₄)₃ particles. Moreover, by increasing the solution pH, more protons are subtracted from the surface of the Fe₂(MoO₄)₃, leading to a more acidic environment. It compensates the negative influence due to increase in solution pH. In this case, the surface of Fe₂(MoO₄)₃ plays an acid–base buffering role. However, it was observed in the present study that the PCA decreases apparently when the solution pH raised to 8.0. This phenomenon could be supported by description of strong alkaline condition that is resulted due to lower oxidation ability of OH, the reduction of OH due to the decomposition of H₂O₂ into O₂ and H₂O [24].

3.3.3. Effect of endosulfan concentration
The influence of the initial endosulfan concentration on the attainment of steady state for maximum degradation was studied by varying the initial concentration (10 to 30 mg l⁻¹). Results revealed that an increased endosulfan initial concentration did not affect the degradation rate; however, it appears to have a pronounced effect on TOC mineralization. Indeed, at 180 min of reaction time the median TOC percentage removal was 67%, 62% and 52% for initial endosulfan concentration, respectively. The irradiation time necessary to achieve complete mineralization tends to increase with the pollutant concentration. Moreover, a higher concentration of the pollutant may saturate the active sites on photocatalyst surface and reduce the photonic efficiency leading to photocatalyst deactivation [43]. Apparently, this was the case with the endosulfan mineralization, and results showed that higher endosulfan concentration require longer reaction period (at a given catalyst dose) for achieving sufficient mineralization.

![Figure 8. Percentage reduction in COD of endosulan treated using iron molybdate under solar light irradiation.](image_url)
3.4. Water quality parameters

The COD and TOC of endosulfan was also evaluated before and after treatment and results are shown in figures 8–9. The removal of both TOC and COD was found correlated with PCA. Initially, the degradation rate was low, which was enhanced considerably since TOC and COD removal enhanced with reaction time. COD removal of 10 mg l\(^{-1}\) concentration was found to be 76% and by increasing concentration, COD removal decreased and 64% COD removal was observed for 20 mg l\(^{-1}\) of endosulfan concentration. However, at initial concentration of 30 mg l\(^{-1}\), the rate of mineralization slowed down and COD removal reduced to 51%. Similarly, TOC was also evaluated of endosulfan treated at optimized conditions and in correlation with mineralization of the endosulfan, the TOC was reduced and up to 67% when treated at optimum conditions. At higher initial concentration, the PCA was reduced and TOC removal was also reduced. For 20 mg l\(^{-1}\) of endosulfan concentration, 62% TOC removal was observed and for 30 mg l\(^{-1}\) initial concentration, the COD removal was 52%. The improvement in water quality parameters indicates that the iron molybdate is efficient to treat the wastewater containing pesticides, which are otherwise difficult to treat. Under the current scenario of environmental pollution [4, 15–18, 65–68], there is need to develop and utilize efficient materials that are active under solar light and iron molybdate proved to be highly efficient since the activity was considerable under solar light that could possibly be used for the degradation of pesticides in wastewater.

4. Conclusion

Iron molybdate was successfully prepared by precipitation route, which was characterized by SEM, XRD, EDX and Zeta particle sizer. The PCA was evaluated by degrading endosulfan pesticide under solar light irradiation. The iron molybdate size was in the range of 160–340 nm with average particle size of 250 nm. The particles were highly porous with fluffy texture having band gap value of 2.7 eV. The iron molybdate PCA was significantly affected by catalyst dose, H\(_2\)O\(_2\) dose, solution pH and concentration of endosulfan and at optimum conditions, up to 77% endosulfan degradation was achieved along with 64% COD and 67% TOC reductions. Results revealed that iron molybdate is highly efficient catalyst for the degradation of endosulfan and could possibly be used for the degradation of wastewater contains endosulfan under solar light irradiation.

Acknowledgments

The Endowment Fund Secretariat, University of Agriculture, Faisalabad is gratefully acknowledged for providing research grant to carry out this research work (time efficient cost effective and stand-alone nanophotocatalytic wastewater technology for irrigation, project identification No. 1553).
References

[1] Qamar A et al 2017 Survey of residual pesticides in various fresh fruit crops: a case study Polish Journal of Environmental Studies 26 2703–9
[2] Iqbal M 2016 Vicia faba bioassay for environmental toxicity monitoring: a review Chemosphere 144 785–802
[3] Abbas M et al 2018 Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: a review Sci. Total Environ. 626 1295–309
[4] Iqbal M et al 2019 Biosassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review Chemistry International 5 1–80
[5] Mudhoo A et al 2019 Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: a review Chem. Eng. J. 360 912–28
[6] Sasmaz M, Obek E and Sasmaz A 2016 Bioaccumulation of uranium and thorium by lemmna minor and lemmna gibba in Pb-Zn tailing water Bulletin of Environmental Contamination and Toxicology 97 832–7
[7] Palutoglu M et al 2018 Phytoremediation of cadmium by native plants grown on mining soil Bulletin of Environmental Contamination and Toxicology 100 293–7
[8] Fazal-ur-Rehman M 2018 Methodological trends in preparation of activated carbon from local sources and their impacts on production: a review Chem. Int. 4 1109–19
[9] Ghezali S et al 2018 Adsorption of 2,4,6-trichlorophenol on bentonite modified with benzylmethyltetraethylammonium chloride Chem. Int. 4 24–32
[10] Bisbi N E and Asoluka C A 2018 Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water Chem. Int. 4 32–9
[11] Mansouri S et al 2018 Elaboration of novel adsorbent from Moroccan oil shale using Plackett–Burman design Chem. Int. 4 7–14
[12] Alasadi A M, Khalil F I and Awad A M 2019 Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and kinetics studies Chem. Int. 5 258–68
[13] Sasmazy A and Sasmaz M 2009 The phytoremediation potential of stromium of indigenous plants growing in a mining area Environ. Exp. Bot. 67 139–44
[14] Sasmaz M et al 2016 Bioaccumulation of thallium by the wild plants grown in soils of mining area Int. J. Phytorem. 18 1164–70
[15] Ogundipe K D and Babarinde A 2017 Comparative study on batch equilibriumbiosorption of Cd(II), Pb(II) and Zn(II) using plantain (Musa paradisiaca) flower: kinetics, isotherm, and thermodynamics Chem. Int. 3 135–49
[16] Chham A et al 2018 The use of insoluble mater of Moroccan oil shale for removal of dyes from aqueous solution Chem. Int. 4 467–76
[17] Chidi O and Kelvin R 2018 Surface interaction of sweet potato peels (Ipomoea batata) with Cd(II) and Pb(II) ions in aqueous medium Chem. Int. 4 221–9
[18] Chikwe T N, Ekpo R E and Okoye I 2018 Competitive adsorption of organic solvents using modified and unmodified calcium bentonite clay mineral Chem. Int. 4 4230–9
[19] Bhatti H N et al 2018 Biocomposite application for the phosphate ions removal in aqueous medium Journal of Materials Research and Technology 7 300–7
[20] Kausar A et al 2019 Preparation and characterization of chitosan/clay composite for direct Rose FRN dye removal from aqueous media: comparison of linear and non-linear regression methods Journal of Materials Research and Technology 8 1161–74
[21] Manzoor Q et al 2019 Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater Journal of Materials Research and Technology 8 75–86
[22] Qureshi N et al 2019 Synthesis of fluorescent di-dansyl substituted ethoxy compound: a selective sensor for antimony and thallium metals detection Journal of Materials Research and Technology 8 1576–80
[23] Zafar M N et al 2019 Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles Journal of Materials Research and Technology 8 713–25
[24] Iqbal M and Bhatti J A 2015 Gamma radiation (H2O2) treatment of a nonylphenol ethoxylates: degradation, cytotoxicity, and mutagenicity evaluation, I. Hazard. Mater. 299 351–60
[25] Iqbal M et al 2017 Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of biosorbs Chemosphere 168 590–8
[26] Singh N S, Sharma R and Singh D K 2019 Identification of enzyme(s) capable of degrading endosulfan and endosulfan sulfate using in silico techniques Enzyme Microb. Technol. 124 32–40
[27] Zaffar H et al 2018 A newly isolated Pseudomonas sp. can degrade endosulfan via hydrolytic pathway Pestic. Biochem. Physiol. 152 69–75
[28] Abbas T et al 2019 Iron turning waste media for treating Endosulfan and Heptachlor contaminated water Exp. Bot. 80 258–69
[29] Rani R et al 2019 Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IIITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil Chemosphere 225 479–89
[30] Kong L et al 2018 Influence of isolated bacterial strains on the in situ biodegradation of endosulfan and the reduction of endosulfan-contaminated soil Ecotoxicology and Environmental Safety 160 75–83
[31] Ito K et al 2016 Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate Biochem. Biophys. Res. Commun. 473 1094–9
[32] Narkhede C P et al 2015 Studies on endosulfan degradation by local isolate Pseudomonas aeruginosa Biocatalysis and Agricultural Biotechnology 4 259–65
[33] Shah N S et al 2015 Kinetic and mechanism investigation on the gamma irradiation induced degradation of endosulfan sulfate Chemosphere 121 18–23
[34] Cong L et al 2015 Rapid degradation of endosulfan by zero-valent zinc in water and soil J. Environ. Manage. 150 451–5
[35] Sivagami K et al 2016 Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor Ecotoxicology and Environmental Safety 134 327–31
[36] Thomas J, Kumar K P and Chitra K 2011 Synthesis of Ag doped nano TiO2 as efficient solar photocatalyst for the degradation of endosulfan. Adv. Sci. Lett. 4 108–14
[37] Shah NS et al 2015 Comparative studies of various iron-mediated oxidative systems for the photochemical degradation of endosulfan in aqueous solution J. Photochem. Photobiol., A 306 80–96
[38] Shah NS et al 2013 Efficient removal of endosulfan from aqueous solution by UV-C / peroxides: a comparative study J. Hazard. Mater. 263 584–92
[39] Yaragam M and Kinaci C 2004 β-endosulfan removal from water by ozone oxidation Water Sci. Technol. 48 511–7
[40] Mersie W et al 2003 Abating endosulfan from runoff using vegetative filter strips: the importance of plant species and flow rate Agriculture, Ecosystems and Environment 97 215–23
[41] De Munari A, Semiao A JC and Antizer-Ladisa B 2013 Retention of pesticide Endosulfan by nanofiltration: influence of organic matter–pesticide complexation and solute–membrane interactions Water Res. 47 3484–96
[42] Qian S et al 2017 Adsorption and desorption characteristics of endosulfan in two typical agricultural soils in Southwest China Environmental Science and Pollution Research 24 11993–503
[43] Qureshi K et al 2019 Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation. J. Molec. Liq. 285 778–89
[44] Ata S et al 2018 Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation Diamond Relat. Mater. 90 26–31
[45] Zhuravlev V et al 2011 Analysis of solid solutions stability in scheelite-type molybdates and tungstates J. Solid State Chem. 184 2785–9
[46] Rashad M M et al 2017 Photo-Fenton-like degradation of Rhodamine B dye from waste water using iron molybdate catalyst under visible light irradiation Environmental Nanotechnology, Monitoring and Management 8 175–86
[47] Seevakan K et al 2016 One-pot synthesis and characterization studies of iron molybdenum mixed metal oxide (Fe2 (MoO4)3) nano-photocatalysts. Advanced Science, Engineering and Medicine 8 566–72
[48] Umaphathy V et al 2016 Synthesis and characterization of Fe2 (MoO4)3 nano-photocatalyst by simple sol–gel method. J. Nanosci. Nanotechnol. 16 987–93
[49] Seevakan K et al 2018 Microwave combustion synthesis, magneto–optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application Ceram. Int. 44 13879–87
[50] Nitbaya V et al 2011 Synthesis and characterization of FeV2O7 nanoparticles. Mater. Res. Bull. 46 1654–8
[51] Ding Y et al 2008 General synthesis and phase control of metal molybdate hydrates MMoO4.n H2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg. Chem. 47 7813–23
[52] Ayode N A, Oladoye P O and Jegede D O 2018 Extraction and quantification of phthalates in plastic coca-cola soft drinks using high performance liquid chromatography (HPLC). Chem. Int. 4 885–90
[53] Desta K and Amare M 2017 Validated UV-visible spectrometry using water as a solvent for determination of chloroquine in tablet samples Chem. Int. 3 288–95
[54] Shindy H, Gomaa M and Harb N 2016 Novel carbocyanine and bis carbocyanine dyes: synthesis, visible spectra studies, solvatochromism and halochromism Chem. Int. 2 222–31
[55] Nasir B, Shaukat A and Munawar I 2014 Application of advanced oxidations processes for the treatments of textile effluents Asian J. Chem. 26 1882–6
[56] Bethencourt M et al 2003 Inhibitor properties of ‘green’ pigments for paints Prog. Org. Coat. 46 280–7
[57] Nazar N et al 2017 Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: growth mechanism and photo-catalytic activity Int. J. Biol. Macromol. 106 1205–10
[58] Iqbal M et al 2016 Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste Ecol. Eng. 88 265–75
[59] Ahamd M Z et al 2017 Detoxification of photo-catalytically treated 2-chlorophenol: optimization through response surface methodology Water Sci. Technol. 76 323–36
[60] Bibi I et al 2017 Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: growth mechanism and photocatalytic activity evaluation Int. J. Biol. Macromol. 103 783–90
[61] Bibi I et al 2019 Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye Journal of Materials Research and Technology 8 6115–24
[62] Bibi I et al 2017 Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity Adv. Powder Technol. 28 2035–43
[63] Jamil A et al 2019 Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization Journal of Materials Research and Technology 9 1119–28
[64] Ashar A et al 2016 Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: nonylphenol ethoxylate degradation under UV and solar irradiation J. Alloys Compd. 678 126–36
[65] Aalagheb M M, Shammout M W and Awwad A M 2020 Nano platelets kaolinite for the adsorption of toxic metal ions in the environment Chem. Int. 6 49–55
[66] Alkherraz A M, Ali A K and Elsherif K M 2020 Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies Chem. Int. 611–20
[67] Hamilton-Amachree A and Iroha N B 2020 Corrosion inhibition of API 5L X80 pipeline steel in acidic environment using aqueous extract of Thevetia peruviana Chem. Int. 6 117–28
[68] Sağınz S et al 2011 Decolorization potential of some reactive dyes with crude laccase and laccase-mediated system Appl. Biochem. Biotechnol. 163 346–61