A novel approach to improve corrosion resistance of Mg alloy by co-extrusion

Bo Feng, Changjian Yan, Xiaowei Feng, Juan Wang and Kaihong Zheng

1 Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, People’s Republic of China
2 Guangdong Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, People’s Republic of China
3 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials; Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
4 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, People’s Republic of China

E-mail: fengbo_1989@163.com, fxwcsu@163.com and Zhkaihong2003@163.com

Keywords: magnesium alloy, aluminum alloy, bimetal composite, co-extrusion, microstructure, corrosion resistance

Abstract

In this study, Mg/Al composite rod with a thin 6082 aluminum alloy coated AZ31 magnesium alloy was successfully prepared by co-extrusion. Microstructure and texture of the extruded Mg/Al rod were systematically studied. A comparative study about electrochemical behavior of the Mg core and the Al sleeve was also addressed. Our results show that, co-extrusion can greatly refine grains of Mg alloy, but does not change the texture component. The 6082 sleeve exhibits a much better corrosion resistance than the AZ31 core. This study provided a novel approach to improve corrosion resistance of Mg alloy. The Al sleeve served as a barrier to protect the Mg alloy from corrosion.

1. Introduction

Magnesium alloys are desirable candidates as structural materials due to their low density and high specific strength [1–7]. Unfortunately, Mg has a quite low standard electrode potential \(E_{\text{Mg}}^0 = -2.37 \text{ V} \) and the naturally formed oxide or hydroxide layer on Mg alloys substrate is loose and porous, which leads to a poor corrosion resistance [8, 9]. The poor corrosion resistance has become one of the main limitations for their applications. Some efforts have been proposed for improving the corrosion resistance of Mg alloys, such as alloying [10, 11], physical vapor deposition (PVD) [12, 13], electroplating [14], anodic oxidation [15], micro arc oxidation [16] and chemical vapor deposition (CVD) [17].

Bimetal composites that combine the advantages of two metals are beneficial to improve mechanical properties [18–23]. Various laminated composites were prepared by accumulative roll bonding (ARB), which can effectively refine grain size and improve mechanical properties [24–29]. Besides ARB processing, co-extrusion processing is widely used to prepare bimetal composite [30–34]. Generally, the constructions and fractions of each component in composite can be accurately regulated by co-extrusion.

Aluminum alloys also have low density, excellent performances as well as a desirable corrosion resistance [35]. The naturally formed Al oxide layer is compact and capable of self-healing, which can effectively improve the corrosion resistance of Al alloys [36]. Therefore, if Mg alloy product can wear a thin Al alloy coat, the corrosion resistance of the Mg products can be effectively improved without an obvious increase in weight. In this study, we provide a new type of surface treatment for extruded Mg alloy rod using plastic processing. A thin Al sleeve coated Mg alloy was prepared by co-extrusion. The thin Al sleeve served as a barrier to protect Mg alloy from corrosion. The influence of co-extrusion processing on the microstructure and texture of Mg/Al rod were systematically studied. A comparative study about electrochemical behavior of the Al sleeve and the Mg core was also addressed and discussed.
2. Materials and methods

2.1. Fabrication of Mg/Al bimetal rod

As-cast AZ31 Mg alloy and 6082 Al alloy were used for preparation of Mg/Al bimetal rod. The as-received 6082 was machined into hollow cup with an inner diameter of 62 mm and an outer diameter of 80 mm. A Mg cylinder (62 mm in diameter) was cut and filled into Al hollow cup as demonstrated in figure 1. Mg/Al billet was annealed at 450 °C for 1.5 h and immediately extruded at 450 °C using an extrusion ratio 79:1 and an extrusion rate of 0.8 m min⁻¹. The final Mg/Al rod was a diameter of 9 mm and a core about 7 mm in diameter. For a comparison, a monolithic AZ31 extruded rod was also prepared using the same extrusion conditions. The final AZ31 extruded rod was a diameter of 9 mm.

2.2. Microstructure and electrochemical analyses

Microstructure of Mg/Al rod was examined using a scanning electron microscope (SEM) and electron back scattering diffraction (EBSD) mapping. Elemental distribution near the interface was identified using energy-dispersive spectroscopy (EDS) mapping. Samples for EBSD mapping were mechanically ground and electrochemically polished in AC2 electrolyte for Mg alloy and perchloric acid solution for Al alloy. EBSD mapping were conducted on a SEM (FEI Nova 400) equipped with a HKL-EBSD system. The step size for EBSD mapping was 0.4 μm. All EBSD date were analyzed through Channel 5 software.

Electrochemical behavior of the Al sleeve and the Mg rod in a 3% NaCl solution was investigated using a potential dynamic polarization test and an electrochemical impedance spectroscopy (EIS) analysis. The specimens for electrochemical tests of Al sleeve were cut from Mg/Al rod. The ends of specimens were sealed using resins to avoid the contact between Mg core and electrolyte. Samples for electrochemical tests of Mg core were cut from the monolithic extruded Mg rod. A scanning rate of 0.5 mV s⁻¹ was used in potentiodynamic polarization test and the impedance data were recorded from 100 kHz to 10 mHz using a 10 mV sinusoidal perturbing signal at open circuit potential. EIS data recording started after the samples was exposed to the test solution for 0.5 h. Equivalent circuits (EC) that not only match the physical structure of electrode system, but also generate similar impedance responses were used to analyze the EIS spectra.

3. Results and discussion

3.1. Microstructure and texture

Cross sectional SEM micrographs acquired from a region near the interface of Mg/Al rod were present in figure 2. The Al sleeve and Mg rod exhibit a good bonding condition. A uniform diffusion layer with a thickness of about 5 μm is discerned. It is also noticed that this diffusion layer contains two sublayers (figure 2(b)). The EDX mapping results further show that the sublayer adjacent to Al sleeve contains a higher Al content and a lower Mg content, while a lower Al content and a higher Mg content exist in the sublayer close to Mg core (figure 2(c)). This reaction layer often appears in Mg/Al bimetallic constructions [30, 32, 37–39]. It has been found that the sublayer close to Mg contains much Mg₁₇Al₁₂ and Mg₂Al₃ generally forms in the sublayer adjacent to Al [32].

Microstructure and texture of the monolithic Mg rod, Mg core and Al sleeve in Mg/Al rod were shown in figures 3–5, respectively. Grain size distribution of the Mg rod, Mg core and Al sleeve were also given in figure 6. As seen in figures 3 and 6(a), the average grain size of Mg rod is about 20 μm. The Mg rod exhibits a typical extrusion texture with basal pole largely perpendicular to the extrusion direction (ED) [40]. Microstructure and texture of Mg core in Mg/Al rod were presented in figure 4. The average grain size of Mg core is about 3 μm (figure 6(b)). Obviously, the grain size of Mg alloys can be greatly refined by Mg/Al composite structure. It should be pointed out that the Mg core also exhibits a typical extrusion texture (figure 4(b)). Therefore, the
Figure 2. Cross sectional SEM micrographs of Mg/Al rod: (a) low magnification, (b) high magnification, (c) EDS mapping.

Figure 3. (a) Inverse pole figure, (b) pole figure and (c) misorientation angle distribution of the monolithic extruded Mg rod. ED and RD refer to the extrusion direction and radial direction, respectively.

Figure 4. (a) Inverse pole figure, (b) pole figure and (c) misorientation angle distribution of Mg core in Mg/Al rod. ED and RD refer to the extrusion direction and radial direction, respectively.
co-extrusion processing hardly changes the texture component of Mg alloy. Microstructure and texture of Al sleeve were also given in figure 5. The Al sleeve has a fully recrystallized grain structure containing an average grain size of about 2 \(\mu \text{m} \) (figure 6(c)). The Al sleeve exhibits a typical double fiber texture, with \(\langle 100 \rangle \) and \(\langle 111 \rangle \) parallel to the ED.

As seen in figures 3 and 4, the EBSD results show that the co-extrusion can greatly refine the grain size of Mg alloys. Generally, a strong friction shear exists at the interface during co-extrusion\(^{41}\). A higher shear strain is often beneficial for grain refinement during dynamic recrystallization\(^{42}\). Therefore, the friction shear at interface contributes to refine grains of Mg alloy. In our previous study, it was found that the difference in thermal conductivity between sleeve and core could greatly affect the microstructure of composite rods\(^\text{43, 44}\). In this study, the thermal conductivity of 6082 Al alloy (200 W m\(^{-1}\) K\(^{-1}\)) are about two times higher than that of AZ31 Mg alloy (70 W m\(^{-1}\) K\(^{-1}\))\(^\text{45, 46}\). Therefore, the heating during extrusion process is largely conducted by Al sleeve, which contributes to refine grains of Mg core. In addition, both the Mg rod and Mg core in Mg/Al rod exhibit a typical extrusion texture with basal pole largely perpendicular to the ED (figures 3 and 4). The results show that co-extrusion does not change the texture types of Mg alloy, which is mostly caused by the shear stress is generally axisymmetrical around the ED. The similar results were reported in our recent publications\(^\text{30–32}\).

3.2. Electrochemical behavior

Potentiodynamic polarization curves of the Mg core and the Al sleeve in a 3% NaCl solution were given in figure 7. Corrosion potential and corrosion current density derived from the polarization curves are listed in table 1. Corrosion potential of Al sleeve (about \(-0.654 \text{ V}\)) is about 0.85 V more positive than that of Mg core (about \(-1.503 \text{ V}\)). Al sleeve exhibits a corrosion current density of about 2 orders of magnitude lower than
Mg core. The lower corrosion current density value indicated that the Al sleeve exhibited a much better corrosion resistance than the Mg core [47].

Electrochemical behavior of Mg core and Al sleeve is further analyzed using EIS and the results are given in figure 8. The Nyquist plot of Mg core is composed of two loops, one high frequency capacitive loop and another one low frequency inductive loop. An enlarged capacitive loop at high frequency region and a Warburg impedance at low frequency region are seen in the spectrum of Al sleeve. The high frequency behavior of EIS was related to electrolyte penetration, including water uptake and electrolyte intrusion [48]. Usually, the low frequency region of EIS has an electrode control process combined with the contribution from localized defects to overall impedance [49].

The EIS plot for the Mg core and Al sleeve is further analyzed using equivalent circuit (EC). EC that considers both the physical structure of electrode system and the impedance response are proposed and given in figure 9. Rs was the solution resistance. Rct and CPEAl described the high frequency capacitive loop. Rct was the charge transfer resistance and CPEAl represented the electric double layer capacity. Rs and L described the low frequency inductive loop. W is Warburg impedance component that is linked up with the concentration and diffusion related processes [47]. The fitted parameters of EC components are listed in table 2. The charge transfer resistance (Rct) of Al sleeve (1.49E4 Ω·cm²) is about 2 orders of magnitude higher than that of Mg core (126 Ω·cm²), indicating a much better corrosion resistance.

Various adhesive and corrosion resistant coatings, e.g. anodic coatings, chemical conversion coatings and ceramic coatings prepared by physical vapor deposition, have been successfully fabricated on Mg alloy to improve corrosion resistance [12, 13]. However, the coatings on Mg alloy are vulnerable to pitting corrosion, as these corrosion pits generally do not possess self-healing ability [9]. Once corrosion pits appear, the whole protective coating of Mg alloy will result in a fast failure. Although micro arc oxidation can greatly improve the corrosion resistance of Mg alloy, a high cost greatly limits its range of applications [16]. Unlike Mg alloy, the naturally formed Al oxide layer on Al alloy is compact and capable of self-healing [36]. Thus, Al alloy product generally has much better corrosion performance than Mg alloy. The electrochemical tests in the present study strongly show that the as-used Al sleeve has much better corrosion resistance than Mg core. In this study, Mg

Table 1. Electrochemical properties of Mg core and Al sleeve in a 3% NaCl solution.

Sample	Corrosion potential/V	Corrosion current density/(A·cm⁻²)
Mg core	−1.503 ± 0.01	(1.93 ± 0.03) × 10⁻⁴
Al sleeve	−0.654 ± 0.02	(1.81 ± 0.05) × 10⁻⁶

Figure 7. Potentiodynamic polarization curves of Mg core and Al sleeve.
AZ31 rod with a thin Al 6082 sleeve was prepared by co-extrusion. If the thin Al sleeve totally coated Mg alloy by co-extrusion, the corrosion resistance of Mg/Al rod is equivalent to the Al sleeve, which can greatly improve the corrosion resistance of Mg alloy. Therefore, this study provides a novel approach to improve corrosion resistance of Mg alloy by co-extrusion.

4. Conclusions

In this study, Mg/Al rod with a thin 6082 Al alloy coated AZ31 Mg alloy was successfully prepared by co-extrusion. Microstructure and texture of the extruded Mg/Al rod were systematically studied. A comparative study about electrochemical behavior of the Mg core and the Al sleeve was also addressed. This study provided a novel approach to improve corrosion resistance of Mg alloy. The conclusions are as follows:

(1) Co-extrusion can greatly refine grains of Mg alloy, but does not change the typical extrusion texture.
(2) The Al 6082 sleeve exhibits a much better corrosion resistance than the Mg AZ31 core.

Table 2. Parameters of EC components derived from EIS fitting.

Sample	$R_s/\Omega \cdot cm^2$	$Y_{dl}/\Omega^{-1} \cdot cm^{-2} \cdot s^n$	n_{al}	$R_c/\Omega \cdot cm^2$	$L/H \cdot cm^2$	$R_L/\Omega \cdot cm^2$
Mg core	3.93 ± 0.5	(4.78 ± 0.2)E-5	0.89 ± 0.02	126 ± 11	71.12 ± 5.21	137.60 ± 15.3
Al sleeve	5.25 ± 0.6	(5.73 ± 0.4)E-6	0.92 ± 0.03	(1.49 ± 0.1)E4	—	—

Figure 8. EIS spectra of (a) Mg core and (b) Al sleeve in a 3% NaCl solution.

Figure 9. Equivalent circuits for analysis of EIS spectra: (a) Al sleeve and (b) Mg core.

AZ31 rod with a thin Al 6082 sleeve was prepared by co-extrusion. If the thin Al sleeve totally coated Mg alloy by co-extrusion, the corrosion resistance of Mg/Al rod is equivalent to the Al sleeve, which can greatly improve the corrosion resistance of Mg alloy. Therefore, this study provides a novel approach to improve corrosion resistance of Mg alloy by co-extrusion.
Acknowledgments

This study is supported by Guangdong Academy of Science Fund (2020GDASYL-20200101001 and 2019GDASYL-0502009), National Natural Science Foundation of China (51905111), Guangdong Province Key Area R&D Program (2019B101942001), Guangdong Special Support Program (2017TQ04C645) and Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials (HKDNM2019022).

ORCID iDs

Bo Feng @ https://orcid.org/0000-0003-2747-0953

References

[1] Zeng Z, Stanford N, Davies C H J, Nie J F and Birbilis N 2018 Magnesium extrusion alloys: a review of developments and prospects Int. Mater. Rev. 64 27–62
[2] Wu Z, Ahmad R, Yin B, Sandlöbes S and Curtin W A 2018 Mechanistic origin and prediction of enhanced ductility in magnesium alloys Science 359 147–52
[3] Wang X J et al 2018 What is going on in magnesium alloys? J. Mater. Sci. Technol. 34 245–7
[4] Zeng Z, Nie J F, Xu S W, Davies C H J and Birbilis N 2017 Super–formable pure magnesium at room temperature Nat. Commun. 8 972–7
[5] Guan B, Xin Y, Huang X, Wu P and Liu Q 2019 Quantitative prediction of texture effect on Hall–Petch slope for magnesium alloys Acta Mater. 173 142–52
[6] Yan C, Xin Y, Wang C, Liu H and Liu Q 2020 Microstructure and texture evolution of the β-Mg17A12 phase in a Mg alloy with an ultra-high Al content J. Mater. Sci. Technol. 32 89–99
[7] Jiang D, Dai Y, Zhang Y, Liu C and Yu K 2019 Effects of Strontium addition on microstructure, mechanical properties, corrosion properties and cytotoxicity of Mg–1Zn–1Mn alloy Mater. Res. Express 6 056556
[8] Atrens A, Song G-L, Cao F, Shi Z and Bowen P K 2013 Advances in Mg corrosion and research suggestions J. Magnes. Alloy 1 177–200
[9] Tokunaga T, Ohno M and Matsuura K 2018 Coatings on Mg alloys and their mechanical properties: a review J. Mater. Sci. Technol. 34 1119–26
[10] Arrabal R, Pardo A, Merino M C, Mohedano M, Casajús P, Paucar K and Garces G 2012 Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt.% NaCl solution Corros. Sci. 55 301–12
[11] Liu J, Song Y, Chen J, Chen P, Shan D and Han E-H 2016 The special role of anodic second phases in the micro–galvanic corrosion of EW75 Mg alloy Electrochim. Acta 189 180–5
[12] Kiohosseini S R, Afghar A, Mojtahedzadeh Larjani M and Yousefpour M 2017 Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering Appl. Surf. Sci. 401 172–80
[13] Wu G, Dai W, Zhang H and Wang A 2013 Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AIN/Al coating Surf. Coat. Tech. 205 2067–73
[14] Yang H, Guo X, Chen X and Birbilis N 2014 A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg- alloy AZ91D Corros. Sci. 79 41–9
[15] Moon S and Nam Y 2012 Anodic oxidation of Mg–Sn alloys in alkaline solutions Corros. Sci. 65 494–501
[16] Li Y, Yang S and Nguyen T 2020 Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg–Ca alloy Surf. Coat. Tech. 395 125923
[17] Zhong C, Liu F, Wu Y, Le J, Liu L, He M, Zhu J and Hu W 2012 Protective diffusion coatings on magnesium alloys: a review of recent developments J. Alloys Compd. 520 11–21
[18] Ashby M F and Brechet Y J M 2003 Designing hybrid materials Acta Mater. 51 5801–21
[19] Engelhardt M, Grittmann N, von Senden Genannt Haverkamp H, Reimche W, Bornmann D and Bach F-W 2012 Extrusion of hybrid sheet metals J. Mater. Process. Technol. 212 1030–42
[20] Hao S, Cui L, Jiang D, Han X, Ren Y, Jiang J, Liu Y, Liu Z, Mao S and Wang Y 2013 A transforming metal nanocomposite with large elastic strain, low modulus, and high strength Science 339 1191–4
[21] Saito Y, Utsunomiya H, Tsuji N and Sakai T 1999 Novel ultra-high straining process for bulk materials: development of the accumulative roll-bonding (ARB) process Acta Mater. 42 579–83
[22] Sankaran A, Vakilzadeh Madam S, Nouri A and Barnett M R 2012 Attaining high compressive strains in pure Mg at room temperature by encasing with pure Al Surf. Mater. 66 725–8
[23] Zok F, Jansson S, Evans A and Nardon V 1991 The mechanical behavior of a hybrid metal matrix composite Metall. Trans. A 22 2107–17
[24] Carpenter J S, Vogel S C, DeDonne J E, Hammon D L, Beyerlein I J and Mara N A 2012 Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding Acta Mater. 60 1576–86
[25] Ghahremani L, Mahdavian M M, Reihanian M and Mahmoudinia M 2016 Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties Mater. Sci. Eng. A 661 179–86
[26] Yousefi Mehr V, Toroghinejad M R and Rezaiean A 2014 Mechanical properties and microstructure evolutions of multilayered Al–Cu composites produced by accumulative roll-bonding process and subsequent annealing Mater. Sci. Eng. A 601 40–7
[27] Motevali P D and Eghbal B 2015 Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite produced by accumulative roll bonding Mater. Sci. Eng. A 628 135–42
[28] Chang H, Zheng M Y, Xu C, Fan G D, Broekmeier H G and Wu K 2012 Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature Mater. Sci. Eng. A 543 249–56
[29] Hosseini M, Pardis N, Danesh Maneh H, Abbasi M and Kim D-I 2017 Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB) Mater. Des. 113 128–36
Feng B, Xin Y, Guo F, Yu H, Wu Y and Liu Q 2016 Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve Acta Mater. **120**, 379–90

Feng B, Xin Y, Sun Z, Yu H, Wang J and Liu Q 2017 On the rule of mixtures for bimetal composites Mater. Sci. Eng. A **704**, 173–80

Feng B, Xin Y, Hu Y, Hong R and Liu Q 2016 Mechanical behavior of a Mg/Al composite rod containing a soft Mg sleeve and an ultra hard Al core Mater. Sci. Eng. A **675**, 204–11

Feng B, Xin Y, Hong R, Yu H, Wu Y and Liu Q 2015 The effect of architecture on the mechanical properties of Mg–3Al–1Zn rods containing Hard Al alloy cores Ser. Mater. **98**, 56–9

Feng B, Sun Z, Wu Y, Feng X, Wang J and Zheng K 2020 Microstructure and mechanical behavior of Mg ZK60/Al 1100 composite plates fabricated by co-extrusion J. Alloys Compd. **842**, 155676

Williams J C and Starke E A 2003 Progress in structural materials for aerospace systems Acta Mater. **51**, 5775–99

Melchers R E 2014 Bi-modal trend in the long-term corrosion of aluminium alloys Corros. Sci. **82**, 239–47

Li G, Jiang W, Guan F, Zhu J, Zhang Z and Fan Z 2021 Microstructure, mechanical properties and corrosion resistance of A356 aluminum/AlZ91D magnesium bimetal prepared by a compound casting combined with a novel Ni–Cu composite interlayer J. Mater. Process. Technol. **288**, 116874

Jiang Z, Fan Z, Jiang W, Li G, Wang J and Li H 2018 Interfacial microstructures and mechanical properties of Mg/Al bimetal produced by a novel liquid–liquid compound casting process J. Mater. Process. Technol. **261**, 149–58

Jiang W, Li G, Fan Z, Wang L and Liu F 2016 Investigation on the interface characteristics of Al/Mg bimetallic castings processed by lost foam casting Metall. Mater. Trans. A **47**, 2462–70

Kim B, Park C H, Kim H S, You B S and Park S S 2014 Grain refinement and improved tensile properties of Mg–3Al–1Zn alloy processed by low-temperature indirect extrusion Scr. Mater. **76**, 21–4

Osakada K, Limb M and Mellor P 1973 Hydrostatic extrusion of composite rods with hard cores Int. J. Mech. Sci. **15**, 291–307

Seipp S, Wagner M F X, Hockauf K, Schneider I, Meyer L W and Hockauf M 2012 Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing Int. J. Plast. **35**, 155–66

Negendank M, Mueller S and Reimers W 2012 Coextrusion of Mg–Al macro composites J. Mater. Process. Technol. **212**, 1954–62

Thirumurugan M, Rao S A, Kumar S and Rao T S 2011 Improved ductility in ZM21 magnesium–aluminium macrocomposite produced by co-extrusion J. Mater. Process. Technol. **211**, 1637–42

Wu Y, Feng B, Xin Y, Hong R, Yu H and Liu Q 2015 Microstructure and mechanical behavior of a Mg AZ31/Al 7050 laminate composite fabricated by extrusion Mater. Sci. Eng. A **640**, 454–9

Xin Y, Hong R, Feng B, Yu H, Wu Y and Liu Q 2015 Fabrication of Mg/Al multilayer plates using an accumulative extrusion bonding process Mater. Sci. Eng. A **640**, 210–6

Zhang Y, Yan C, Wang F and Li W 2005 Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution Corros. Sci. **47**, 2816–31

Mansfeld F, Jeanjaquet S L and Kendig M W 1986 An electrochemical impedance spectroscopy study of reactions at the metal/coating interface Corros. Sci. **26**, 735–42