BRAZILIAN PRIMES WHICH ARE ALSO SOPHIE GERMAIN PRIMES

Jon Grantham
Institute for Defense Analyses/Center for Computing Sciences, Bowie, Maryland
grantham@super.org

Hester Graves
Institute for Defense Analyses/Center for Computing Sciences, Bowie, Maryland
hkgrave@super.org

Received: 6/6/19, Revised: 12/9/19, Accepted: 4/23/20, Published: 5/8/20

Abstract
We disprove a conjecture of Schott that no Brazilian prime is a Sophie Germain prime. We compute all counterexamples up to 10^{46}. We prove conditional asymptotics for the number of Brazilian Sophie Germain primes up to x.

1. Introduction

The term “Brazilian numbers” comes from the 1994 Iberoamerican Mathematical Olympiad [8] in Fortaleza, Brazil, in a problem proposed by the Mexican math team. They became a topic of lively discussion on the forum mathematiques.net. Bernard Schott [5] summarized the results in the standard reference on Brazilian numbers.

Definition 1. A Brazilian number n is an integer whose base-b representation has all the same digits for some $1 < b < n - 1$.

In other words, n is Brazilian if and only if $n = m\left(\frac{b^n-1}{b-1}\right) = mb^{q-1} + \cdots + mb + m$, with $q \geq 2$. These numbers are A125134 in the Online Encyclopedia of Integer Sequences (OEIS).

A Brazilian prime (or “prime repunit”) is a Brazilian number that is prime; by necessity, $m = 1$ and $q \geq 3$. See A085104 in the OEIS for the sequence of Brazilian primes. In 2010, Schott [5] conjectured that no Brazilian prime is also a Sophie Germain prime.

\footnote{The term appears as “sensato” in the original problem [6]. The authors are puzzled by the discrepancy with [8].}
Sophie Germain discovered her eponymous primes while trying to prove Fermat’s Last Theorem; her work was one of the first major steps towards a proof.

Definition 2. A *Sophie Germain prime* is a prime \(p \) such that \(2p + 1 \) is also prime.

Germain showed that if \(p \) is such a prime, then there are no non-zero integers \(x, y, z \), not divisible by \(p \), such that \(x^p + y^p = z^p \). If \(p \) is a Sophie Germain prime, then we say that \(2p + 1 \) is a *safe prime*.

It is conjectured that there are infinitely many Sophie Germain primes, but the claim is still unproven. The Bateman-Horn conjecture [1] implies that the number of Sophie Germain primes less than \(x \) is asymptotic to \(2C \frac{x}{\log x} \), where

\[
C = \prod_{p > 2} \frac{p(p-2)}{(p-1)^2} \approx 0.660161.
\]

See [3] for further information about Sophie Germain primes.

2. Enumerating Counterexamples

To aid our search, we use a few lemmas.

Lemma 1. If \(p = \frac{b^q - 1}{b - 1} \) is a Brazilian prime, then \(q \) is an odd prime.

Proof. Recall \(x^q - 1 \) is divisible by the \(m \)th cyclotomic polynomial \(\Phi_m(x) \) for \(m \mid q \); therefore \(p \) can only be prime if \(q \) is also prime. Note that \(q > 2 \) because \(b < p - 1 \), so \(q \) is an odd prime. \(\square \)

The preceding lemma is also Corollary 4.1 of Schott [5].

Lemma 2. If \(p \) is a Brazilian prime and a Sophie Germain prime, then \(p \equiv q \equiv 2 \pmod{3} \) and \(b \equiv 1 \pmod{3} \).

Proof. If \(p \) is a Sophie Germain prime, then 3 cannot divide the safe prime \(2p + 1 \), so \(p \) cannot be congruent to 1 (mod 3). The number 3 is not Brazilian, so \(p \neq 3 \) and thus \(p \equiv 2 \pmod{3} \).

If \(3 \mid b \), then

\[
p = b^{q-1} + b^{q-2} + \cdots + b + 1 \equiv 1 \pmod{3},
\]

which is a contradiction. Lemma 1 states that \(q \) is an odd prime, so if \(b \equiv 2 \pmod{3} \), then \(p \equiv 1 \pmod{3} \), a contradiction. We conclude that \(b \equiv 1 \pmod{3} \), so that \(q \equiv p \pmod{3} \), and therefore \(q \equiv 2 \pmod{3} \). \(\square \)

For \(q = 5 \), we use a modification of the technique described in [7] to compute a table of length-5 Brazilian primes up to \(10^{46} \). We will describe this computation in full in a forthcoming paper [2]. Of these, 104890280 are Sophie Germain primes.
The smallest is $28792661 = 73^4 + 73^3 + 73^2 + 73 + 1$. We very easily prove the primality of Sophie German primes with the Pocklington-Lehmer test.

For $q \geq 11$, we very quickly enumerate all possibilities for $b \leq 10^{46/(q-1)}$. We find 22 Brazilian Sophie Germain primes for $q = 11$, and none for larger q. (We have $q < \log_2 10^{146} + 1 < 154$.) The smallest is

$$14781835607449391161742645225951 = 1309^{10} + 1309^9 + \cdots + 1309 + 1.$$

While we disprove Schott’s conjecture, we do have a related proposition.

Proposition 1. The only Brazilian prime which is a safe prime is 7.

Proof. If $p = b^{q-1} + \cdots + b + 1$ is a safe prime, then $b^{q-1} = \frac{1}{2}(b^{q-1} + \cdots + b)$ must also be prime. This expression, however, is divisible by $\frac{b(b+1)}{2}$, which is only prime when $b = 2$ and $p = 7$. □

The list of Brazilian Sophie Germain primes is A306845 in the OEIS. The first few counterexamples were also discovered by Giovanni Resta and Michel Marcus; see the comments for A085104.

3. Conditional Results

The infinitude of Brazilian Sophie Germain primes, as well as the asymptotic number of them, is the consequence of well-known conjectures.

Proposition 2. Assuming Schnizel’s Hypothesis H, there are infinitely many Brazilian Sophie Germain primes.

Proof. Recall that Hypothesis H [4] says that any set of polynomials, whose product is not identically zero modulo any prime, is simultaneously prime infinitely often. Take our two polynomials to be $f_0(x) = x^4 + x^3 + x^2 + x + 1$ and $f_1(x) = 2x^4 + 2x^3 + 2x^2 + 2x + 3$. Then $f_0(b)$ is Brazilian and $f_1(b) = 2f_0(b) + 1$. Rather than checking congruences, it suffices to note the existence of the above primes of this form to see that the conditions of Hypothesis H are satisfied. □

The Bateman-Horn Conjecture [1] implies a more precise statement about the number of Brazilian Sophie Germain primes.

Proposition 3. For an odd prime q, let $\Phi_q(x)$ be the qth cyclotomic polynomial. Assuming the Bateman-Horn Conjecture, the number of values of $b < x$ such that $\Phi_q(b)$ and $2\Phi_q(b) + 1$ are simultaneously prime is 0 or $\sim C_q \frac{x}{\log^2 x}$, for some positive constant C_q, depending on whether $\Phi_q(b)(2\Phi_q(b) + 1)$ is identically zero modulo some prime p.
Proof. This follows immediately from the Bateman-Horn conjecture, with \(C_q = \left(\prod_p \frac{1-N(p)/p}{1-1/p} \right)/q^2 \), where \(N(p) \) is the number of roots of \(\Phi_q(b)(2\Phi_q(b) + 1) \) modulo \(p \). \(\square \)

Corollary 1. Assuming the Bateman-Horn Conjecture, the number of Brazilian Sophie Germain primes up to \(x \) is \(\sim C \frac{x^{1/4}}{\log x} \), for some \(C \).

Proof. To find the number of Brazilian Sophie Germain primes less than \(y \) of the form \(\Phi_q(b) \) for a fixed \(q \), we apply the preceding proposition, substituting \(x = y^{1/(q-1)} \), and get \(\sim C' \frac{y^{1/(q-1)}}{\log y} \), with \(C'_q = C_q(q-1)^2 \). We sum over all \(q \equiv 2 \) (mod \(3 \)) and notice that the \(q = 5 \) term dominates. We can thus take \(C = C'_5 \). \(\square \)

Acknowledgement. Thanks to Enrique Treviño for helping track down the reference in [6], and to the referee for helpful comments.

References

[1] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, *Math. Comp.* 16 (1962), 363–367.

[2] J. Grantham and H. Graves, Goldbach variations, in preparation, 2020.

[3] P. Ribenboim, *The New Book of Prime Number Records*, Springer-Verlag, New York, 1996.

[4] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, *Acta Arith.* 4 (1958), 185–208; erratum 5 (1958), 259.

[5] B. Schott, Les nombres brésiliens, *Quadrature* (2010), 30–38.

[6] E. Wagner, G. T. de Araujo Moreira Carlos, P. Fauring, F. Gutiérrez, and A. Wykowski, *10 Olimpiadas Iberoamericanas de Matemática*, OEI, Madrid, 1996.

[7] M. Wolf, Some conjectures on primes of the form \(m^2 + 1 \), *J. Comb. Number Theory* 5 (2013), 103–131.

[8] R. E. Woodrow, The Olympiad corner, *Crux Mathematicorum* 24 (1998), 385–395.