A Metalloprotease Inhibitor Blocks Shedding of the 80-kD TNF Receptor and TNF Processing in T Lymphocytes

By Paul D. Crowe,* Barbara N. Walter,* Kendall M. Mohler,† Carol Otten-Evans,‡ Roy A. Black,‡ and Carl F. Ware*

From the *Division of Biomedical Sciences, University of California, Riverside, California 92521, and †Immunex Corporation, Seattle, Washington 98101

Summary

TNF is synthesized as a 26-kD membrane-anchored precursor and is proteolytically processed at the cell surface to yield the mature secreted 17-kD polypeptide. The 80-kD tumor necrosis factor (TNF) receptor (TNFR80) is also proteolytically cleaved at the cell surface (shed), releasing a soluble ligand-binding receptor fragment. Since processing of TNF and TNFR80 occurs concurrently in activated T cells, we asked whether a common protease may be involved. Here, we present evidence that a recently described inhibitor of TNF processing N-{D,L-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl}L-3-(2'napthyl)-alanyl-L-alanine, 2-aminoethyl amide (TAPI) also blocks shedding of TNFR80, suggesting that these processes may be coordinately regulated during T cell activation. In addition, studies of murine fibroblasts transfected with human TNFR80, or a cytoplasmic deletion form of TNFR80, reveal that inhibition of TNFR80 shedding by TAPI is independent of receptor phosphorylation and does not require the receptor cytoplasmic domain.

Materials and Methods

Reagents and Cells. All cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum, 100 µg/ml streptomycin and penicillin and 2 mM glutamine (complete medium).
PBMC were obtained from healthy volunteers by Ficoll-Hypaque centrifugation (21) and washed and resuspended in complete medium. Effector T cells were obtained by culturing PBMC in complete medium containing anti-CD3 (OKT3) for 3 d followed by complete medium supplemented with rIL-2 (10 ng/ml) for 7 d. These cells were used as a model for differentiated effector T cells and, when indicated, were restimulated with anti-CD3 (20 ng/ml) and PMA (10 ng/ml), as described previously (19). The L.929 (murine fibrosarcoma) cell line stably expressing human TNFRs0 (Lp80) (19) was cultured in complete medium containing 400 µg/ml G418 (GIBCO, Grand Island, NY). Ionomycin was purchased from Sigma Chemical Co. (St. Louis, MO), and PMA was from LC Laboratories (Woburn, MA).

Flow Cytometry. Cells were stained with primary mAbs anti-TNFFRs0 (M1) (20) or anti-TNF (104C) at a concentration of 10 µg/ml for 30 min in ice-cold binding buffer (HBSS supplemented with 10% newborn calf serum, 10 µg/ml human IgG, 20 mM Hepes, pH 7.2, and 0.1% sodium azide). Washed cells were incubated with PE-conjugated goat anti-murine or goat anti-rat IgG (affinity purified, Southern Biotechnology Associates, Birmingham, AL) for 30 min, washed twice, and analyzed directly with a FACScan® instrument (Becton Dickinson, Mountain View, CA). Cell viability was >90% as monitored by propidium iodide staining.

Soluble TNFRs0 and TNF ELISA. Human peripheral blood T cells (PBT) were isolated via sequential purification with isopaque, SRBC-rosetting, and G10 passage, as previously described (22). PBT were stimulated with OKT3 (10 µg/ml, solid phase) and PMA (10 ng/ml) in the presence or absence of protease inhibitors. Protease inhibitors included TAPI (compound 2 in [4]), trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane (E64); N-carboxymethyl-Phe-Leu); and α-1-antitrypsin (all from Sigma). Soluble TNFRs0 and TNF levels were quantitated from culture supernatants obtained 24 h after activation. TNFRs0 levels were evaluated with a commercial ELISA (R & D Systems, Minneapolis, MN). Human TNF levels were quantitated with antibodies derived at Immunex Corp. (Seattle, WA). Briefly, maxisorp plates (Nunc, Roskilde, Denmark) were incubated overnight with anti-TNF mAb (M1), as described previously (19). Briefly, cells were incubated with 500 pM 1~I-M1 for 1 h at 4°C. Nonspecific binding was determined by incubation in the presence of unlabeled M1. Unbound mAb was removed by four washes with cold binding buffer and bound mAb quantitated by gamma counting.

Results and Discussion

TAPI Inhibits TNF Release and TNFRs0 Shedding in Activated T Lymphocytes. Resting effector T cells (activated 7 d earlier with anti-CD3) do not secrete detectable levels of TNF and do not express any surface TNF detectable by flow cytometry (Fig. 1 A). However, within 2 h of reactivation, using a combination of phorbol ester (PMA) and calcium ionophore, abundant surface TNF was present. Consistent with previous findings (4), surface TNF expression is greatly enhanced when effector T cells are activated in the presence of TAPI, reflecting inhibition of TNF processing.

In contrast to TNF, resting effector T cells constitutively express TNFRs0 on their surfaces. However, reactivation of these cells with PMA/calcium ionophore or PMA/OKT3 triggers rapid downregulation of TNFRs0 (Fig. 1, B and C [20]). In the presence of TAPI, activation-induced loss of surface TNFRs0 was significantly inhibited (Fig. 1, B and C). A time-course analysis of effector T cells activated with phorbol ester and anti-CD3 (PMA/OKT3) confirmed that TAPI inhibits downregulation of TNFRs0 (Fig. 1 D). However, TNFRs0 surface expression diminishes even in the presence of TAPI, albeit more slowly and incompletely than cells not treated with TAPI.

Previous studies have established that downregulation of TNFRs0 in activated effector T cells occurs by shedding, releasing a soluble fragment of the receptor from the cell surface (20). To determine if the inhibition of TNFRs0 downregulation seen in the presence of TAPI is due to blockade of shedding, soluble TNFRs0 production was quantitated by ELISA. As shown in Fig. 2 A, TAPI caused a dose-dependent reduction in the amount of soluble TNFRs0 detectable in culture supernatants from activated T cells. In the presence of 200 µM TAPI, shedding of TNFRs0 was inhibited by ~80%. The concentration of TAPI necessary for half-maximal inhibition of TNFRs0 shedding is between 25 and 50 µM, which is comparable to the concentration required for half-maximal inhibition of TNF release (~50 µM) by these same cells (4). In addition, examination of various protease inhibitors showed that those which do not block TNF release by activated T cells also fail to prevent TNFRs0 shedding (Fig. 2 B), further supporting the hypothesis that a similar protease mediates both of these processes.

Pulse-chase Analysis of TNF and TNFRs0 Processing in Activated T Cells. To investigate the effect of TAPI on synthesis and processing of TNF and TNFRs0 by activated effector T cells in more detail, a pulse-chase labeling experiment was performed (Fig. 3). To study TNF processing, effector T cells activated for 1 h with PMA/OKT3 were pulse-labeled for 30 min with 35S-S-Cys/Met in the presence or absence of TAPI, then chased with unlabeled Cys/Met. As expected, the 26-kD TNF propeptide was immunoprecipitated only from cell lysates, whereas the 17-kD secreted form of TNF was detected only in the supernatant (Fig. 3 A). The rapid loss of 26-kD cell-associated TNF during the chase
period and concomitant accumulation of the 17-kD form in the supernatant, but not intracellularly, indicates that the TNF propeptide is processed to the 17-kD form primarily at the cell surface. In contrast, when the pulse-chase is performed in the presence of TAPI (Fig. 3 B), cell-associated-26-kD

Figure 1. Enhanced expression of surface TNF and inhibition of TNFR$_{80}$ downregulation in activated effector T cells. PBT cells activated with OKT3 and cultured in IL-2 for 7 d were reactivated with a combination of PMA and ionomycin (A and B) or PMA/OKT3 (C) in the presence or absence of TAPI (200 μM). After 2 h, cells were harvested from culture and incubated on ice with either anti-TNF antisera (A), or anti-TNFR$_{80}$ mAb (B and C) for 30 min, then stained with PE-conjugated goat anti-mouse or anti-rat IgG for 30 min, as described in Materials and Methods. (D) PBT cells cultured as described above and reactivated with a combination of PMA and OKT3 in the presence (●) or absence (○) of TAPI (200 μM) were harvested from culture at various times and incubated with anti-TNF$_{80}$ mAb, then stained with PE-conjugated goat anti-rat IgG for analysis by flow cytometry.

Figure 2. Inhibition of secreted TNF and soluble TNFR$_{80}$ production by TAPI. Human PBTC were stimulated with plate-bound OKT3 and PMA in the presence of (A) various concentrations of TAPI or (B) other protease inhibitors (50 μM); α-antitrypsin was at 1 μg/ml. Supernatants were harvested and the levels of TNF and soluble TNFR$_{80}$ determined by ELISA. □ TNF, ■ TNFR$_{80}$.

TNF accumulates, but no secreted 17-kD TNF is detected, demonstrating that TAPI is acting at the cell surface to inhibit TNF processing. Accumulation of the 26-kD cell-associated polypeptide is followed by a gradual decrease in the density of its autoradiographic signal after 20 min, which probably reflects a decrease in specific activity as a consequence of continued protein synthesis during the chase and indicates that TAPI is not inhibiting protein synthesis.

Activated effector T cells rapidly downregulate TNFR$_{80}$ by proteolytic processing of the mature 80-kD protein at the cell surface, releasing a soluble 40-kD fragment of the extracellular domain (Fig. 3 C) (20). In the presence of TAPI, however, cell-associated 80-kD TNFR polypeptide accumulates and no soluble 40-kD fragment is detected in the supernatant, even after 80 min, confirming that proteolytic processing of TNFR$_{80}$ is inhibited (Fig. 3 D). In spite of this, processing of the 70-kD TNFR$_{80}$ precursor protein to the
Figure 3. Inhibition of TNF and TNF-R₆₀ processing in activated T lymphocytes by TAPI. Effector T cells incubated with PMA/anti-CD3 for 60 min were pulse-labeled for 30 min with ³⁵S-Cys/Met in the absence (A) or presence (B) of TAPI (200 μM), then chased with complete medium ± TAPI. At various times, an aliquot of cells was centrifuged, and TNF immunoprecipitated from the cell-free supernatants or from cell lysates, using rabbit anti-TNF antisera, was resolved by SDS-PAGE (12% gel) and autoradiography (8-d exposure). Processed TNF lacks two met residues, accounting for the lower autoradiographic band density relative to the 26-kD form. Effector T cells were pulse-labeled for 30 min with ³⁵S-Cys/Met in the absence (C) or presence (D) of TAPI (200 μM), then chased with complete medium containing PMA/anti-CD3 + TAPI. At various times, an aliquot of cells was centrifuged to prepare cell lysates and cell-free supernatants for immunoprecipitation, using anti-TNF-R₆₀ mAb (M1). TNF-R₆₀ was resolved by SDS-PAGE (10% gel) and autoradiography of the dried gel (10-d exposure).

80-kD form continues in the presence of TAPI, demonstrating that maturation of TNF-R₆₀ is not inhibited. Collectively, these findings clearly show that TAPI inhibits shedding of TNF-R₆₀ and suggest that the initial inhibition of down-regulation seen by flow cytometric analysis is also due to inhibition of shedding. The incongruity between surface staining and measurement of soluble receptor levels at later time points indicates that, when shedding is blocked, TNF-R₆₀ may be downregulated by an alternate process. In this regard, mutations in TNF-R₆₀, which inhibit proteolytic cleavage, do not block downregulation in response to PMA, indicating that multiple mechanisms for downregulating TNFR are operative (23). Furthermore, we have observed that TAPI has no effect on expression of CD4 which is downregulated by internalization after T cell activation (24), but TAPI partially inhibits downregulation of TNF-R₆₀, which is also subject to proteolytic cleavage (25) (data not shown) on neutrophils.

TAPI Inhibits Shedding of TNF-R₆₀ in L929-TNF-R₆₀-stable Transfectants. To further investigate the mechanism of inhibition of TNF-R₆₀ shedding in a more defined cellular system, mouse L929 cells stably transfected with human TNF-R₆₀ (Lp80) were activated with phorbol ester (PMA, 100 ng/ml) for 30 min in the presence or absence of TAPI, and surface TNF-R₆₀ levels were detected by a radioimmunoassay, using anti-TNF-R₆₀ mAb. As shown in Table 1, Lp80 shed ~73% of their receptors after stimulation with PMA, whereas, in the presence of TAPI, they shed only ~27% of their TNF-R₆₀ (63% inhibition). Thus, the protease which regulates shedding of human TNF-R₆₀ expressed in mouse cells is also sensitive to inhibition by TAPI.
Table 1. Shedding of TNFR₆₀ by Lp80 and Lp80Δcyt

	Control	TAPI
TNFR₆₀ expression		
(125I-M1 bound, cpm)		
Lp80		
- PMA	21,909 ± 212	20,466 ± 297
+ PMA	5,872 ± 206 (73)	14,973 ± 417 (27)
Lp80Δcyt		
- PMA	20,807 ± 1,012	21,572 ± 861
+ PMA	12,415 ± 624 (40)	17,762 ± 118 (18)

Cells (1.5 x 10⁵/well in 24-well plates) were preincubated with media only (control), and, then, TAPI (20 μM) for 90 min at 37°C, before activation with PMA (100 ng/ml) for 30 min. Specific 125I-M1 binding was determined by incubating cells with 125I-M1 (500 pM) for 1 h at 4°C. The results shown are means ± SEM of two separate experiments. Nonspecific binding cpm determined in the presence of 200-fold excess unlabeled M1 were 1,743 ± 106 for Lp80, and 2,289 ± 52 for Lp80Δcyt. Numbers in parentheses represent percent loss of specific 125I-M1 binding compared to unactivated cells.

Previously, we have shown that TNFR₆₀ is constitutively phosphorylated and that phosphorylation is a late processing event which precedes proteolytic cleavage of TNFR₆₀ (19). In addition, constitutive phosphorylation and shedding of TNFR₆₀ were blocked by the protein kinase inhibitor staurosporine, suggesting a link between receptor phosphorylation and proteolysis. As observed in Fig. 3 D, the gradual increase in apparent molecular mass of T cell–associated TNFR₆₀ in the presence of TAPI suggested that phosphorylation of TNFR₆₀ continues, even though shedding is blocked. However, to directly examine whether TAPI affects phosphorylation of TNFR₆₀, Lp80 cells were labeled with [32P]-orthophosphate in the presence or absence of TAPI before treatment with PMA. Cell extracts were then subjected to immunoprecipitation using M1. As shown in Fig. 4, TAPI did not inhibit constitutive phosphorylation of TNFR₆₀, but did block activation-induced loss of phosphorylated receptor. To confirm that inhibition of TNFR₆₀ shedding by TAPI is independent of receptor phosphorylation, L929 cells expressing a mutant form of the receptor lacking the entire cytoplasmic domain (Lp80Δcyt) were tested for activation-induced loss of TNFR₆₀ in the presence or absence of TAPI. Truncated TNFR₆₀ expressed by these cells is not phosphorylated but is shed in response to PMA, albeit more slowly and incompletely compared to cells expressing the full-length receptor (19). As seen in Table 1, Lp80Δcyt shed ~40% of their TNFR₆₀, but, in the presence of TAPI only, ~18% was shed (55% inhibition), clearly demonstrating that inhibition of TNFR₆₀ shedding by TAPI does not involve the receptor cytoplasmic domain, and, therefore, is independent of receptor phosphorylation.

In conclusion, the data presented here show that a cell-surface metalloprotease is involved in shedding of TNFR₆₀ by activated T lymphocytes. Furthermore, the observation that TNF processing and TNFR₆₀ shedding occur concomitantly and are similarly sensitive to inhibition by TAPI strongly suggests that these processes are coordinately regulated during T cell activation. Notably, the protease cleavage site in TNF (Ala2-Va1214) is also present in the extracellular domain of TNFR₆₀ (Ala213-Va1214) at a site consistent with the observed molecular weight of the shed receptor fragment (26). Thus, metalloprotease inhibitors such as TAPI may offer protection from the deleterious systemic effects of TNF at two levels simultaneously: first, by preventing the release of soluble TNF, and second, by blocking accumulation of shed TNFR; soluble TNF has been shown to stabilize TNF activity in vitro (10). It will be of interest to determine whether other members of the TNF ligand family or the TNFR family are also subject to coordinated proteolytic processing.

The authors would like to thank Bruce Hess and Michelle Seaberg for excellent technical assistance and Dr. Jeffrey Browning (Biogen, Inc.) for the gift of anti-TNF mAb 104C.

This work was supported by grants to C. F. Ware from the American Cancer Society, Inc. (IM663) and the Cigarette and Tobacco Surtax Fund of the State of California through the Tobacco-related Diseases Research Program (RT0261) and Public Health Service grant, National Institutes of Health RO1 AI33068.

Address correspondence to Dr. Carl F. Ware, Division of Biomedical Sciences, University of California, Riverside, CA 92521. The current address for Dr. Paul D. Crowe is Neurocrine Biosciences, Inc., 3050 Science Park Road, San Diego, CA 92121-1102.

Received for publication 17 October 1994.

1209 Crowe et al. Brief Definitive Report
References

1. Tracey, K.J., and A. Cerami. 1993. Tumor necrosis factor, other cytokines and disease. *Annu. Rev. Cell Biol.* 9:317–343.

2. Kriegler, M., C. Perez, K. DeFay, I. Albert, and S.D. Lu. 1988. A novel form of TNF cachectin is a cell surface cytokotoxic transmembrane protein: ramifications for the complex physiology of TNF. *Cell.* 53:45–53.

3. Perez, C., I. Albert, K. DeFay, N. Zachariades, L. Gooding, and M. Kriegler. 1990. A nonsecreted cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. *Cell.* 63:251–258.

4. Mohler, K.M., P.R. Sleath, J.N. Fitzner, D.P. Cerretti, M. Alderson, S.S. Kerwar, D.S. Torrance, C. Otten-Evans, T. Greenstreet, and K. Weerawarna. 1994. Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. *Nature (Lond.)* 370:218–220.

5. Gearing, A.J., F. Beckett, M. Christodoulou, M. Churchill, J. Clements, A.H. Davidson, A.H. Drummond, W.A. Gal- loway, R. Gilbert, and J.L. Gordon. 1994. Processing of tumor necrosis factor-alpha precursor by metalloproteinases. *Nature (Lond.)* 370:555–557.

6. McGeehan, G.M., J.D. Becherer, C.M. Boyer, B. Champion, K.M. Connolly, J.G. Conway, P. Furdon, S. Karp, and S. Kidao. 1994. Regulation of tumor necrosis factor-alpha processing by a metalloproteinase inhibitor. *Nature (Lond.)* 370:558–561.

7. Nophar, Y., O. Kemper, C. Brakebusch, H. Englemann, R. Zwang, D. Aderka, H. Holtmann, and D. Wallach. 1990. Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using an amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. *EMBO (Eur. Mol. Biol. Organ.)* J. 9:3269–3278.

8. Keller, R.A., K. Song, M.A. Onasch, W.H. Fischer, D. Chang, and G.M. Ringold. 1990. Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. *Proc. Natl. Acad. Sci. USA.* 87:6151–6155.

9. Van Zee, K.J., T. Kohno, E. Fischer, C.S. Rock, L.L. Mol- dawer, and S.F. Lowry. 1992. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. *Proc. Natl. Acad. Sci. USA.* 89:4845–4849.

10. Aderka, D., H. Englemann, Y. Maor, C. Brakebusch, and D. Wallach. 1992. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. *J. Exp. Med.* 175:323–329.

11. Gatanaga, T., C.D. Hwang, W. Kohr, F. Cappuccini, J.A. Lucci, E.W. Jefferes, R. Lentz, J. Tomich, R.S. Yamamoto, and G.A. Granger. 1990. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultraltratrans of human cancer patients. *Proc. Natl. Acad. Sci. USA.* 87:8781–8784.

12. Aderka, D., H. Englemann, V. Hornik, Y. Skornick, Y. Levo, D. Wallach, and G. Kushnati. 1991. Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. *Cancer Res.* 51:5602–5607.

13. Aderka, D., A. Wysenbeek, H. Englemann, A.P. Cope, F. Brennan, Y. Molad, V. Hornik, Y. Levo, R.N. Maini, M. Feldmann, et al. 1993. Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. *Arthritis Rheum.* 36:1111–1120.

14. Godfried, M.H., T. van der Poll, J. Jansen, J.A. Romijn, J.K. Schattenkerk, E. Endert, S.J. van Deventer, and H.P. Sauer- wein. 1993. Soluble receptors for tumor necrosis factor: a putative marker of disease progression in HIV infection. *AIDS (Phila.)* 7:33–36.

15. Olsson, L., M. Lantz, E. Nilsson, C. Peetre, H. Thysell, A. Grubb, and G. Adolf. 1989. Isolation and characterization of a tumor necrosis factor binding protein from urine. *Eur. J. Haematol.* 42:270–275.

16. Brockhaus, M., Y. Bar-Khayim, S. Gurwicz, A. Frensdorff, and N. Haran. 1992. Plasma tumor necrosis factor soluble receptors in chronic renal failure. *Kidney Int.* 42:663–667.

17. Cope, A.P., D. Aderka, M. Doherty, H. Englemann, D. Gibbons, A.C. Jones, F.M. Brennan, R.N. Maini, D. Wallach, and M. Feldmann. 1992. Increased levels of soluble tumor necrosis factor receptors in the sera and synovial fluid of patients with rheumatic diseases. *Arthritis Rheum.* 35:1160–1169.

18. deleuran, B.W., C.Q. Chu, M. Field, F.M. Brennan, T. Mitchell, M. Feldmann, and R.N. Maini. 1992. Localization of tumor necrosis factor receptors in the synovial tissue and cartilage-pannus junction in patients with rheumatoid arthritis. Implications for local actions of tumor necrosis factor alpha. *Arthritis Rheum.* 35:1170–1178.

19. Crowe, P.D., T.L. VanArsdale, R.G. Goodwin, and C.F. Ware. 1993. Specific induction of 80-kDa tumor necrosis factor receptor shedding in T lymphocytes involves the cytoplasmic domain and phosphorylation. *J. Immunol.* 151:6882–6890.

20. Ware, C.F., P.D. Crowe, T.L. VanArsdale, J.L. Andrews, M.H. Grayson, R. Jerzy, C.A. Smith, and R.G. Goodwin. 1991. Tumor necrosis factor (TNF) receptor expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. *J. Immunol.* 147:4229–4238.

21. Andrews, J.S., A.E. Berger, and C.F. Ware. 1990. Characterization of the receptor for tumor necrosis factor (TNF) and lymphotoxin (LT) on human T lymphocytes. TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma. *J. Immunol.* 144:2582–2591.

22. Armitage, R.J., B.M. Macduff, S.F. Ziegler, and S.K. Dower, D. Cosman, and K.G. Goodwin. 1992. Multiple cytokine secretion by IL-7-stimulated human T cells. *Cytokine.* 4:461–467.

23. Guille, M., L. Lindvall, I. Olsson, and A. Himmell. 1992. Involvement of an Asn/Val mutation in the production of a soluble form of a human tumor necrosis factor (TNF) receptor. Site-directed mutagenesis of a putative cleavage site in the p55 TNF receptor chain. *J. Immunol.* 137:1194–1201.

24. Hoxie, J.A., D.M. Matthews, K.J. Callahan, D.L. Cassel, and R.A. Cooper. 1986. Transient modulation and internalization of T4 antigen induced by phorbol esters. *J. Immunol.* 150:2194–2201.

25. Porteu, F., and C. Nathan. 1990. Shedding of tumor necrosis factor receptors by activated human neutrophils. *J. Exp. Med.* 172:599–607.

26. Smith, C.A., T. Davis, D. Anderson, L. Solom, M.P. Beck- mann, R. Jerzy, S.K. Dower, D. Cosman, and R.G. Goodwin. 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. *Science (Wash. DC).* 248:1019–1023.