The in vitro activity of isavuconazole against Mucorales isolates measured by EUCAST E.Def 9.2 and CLSI M38-A2 methodologies was investigated in comparison with those of amphotericin B, posaconazole, and voriconazole. Seventy-two isolates were included: 12 of Lichtheimia corymbifera, 5 of Lichtheimia ramosa, 5 of group I and 9 of group II of Mucor circinelloides, 9 of Rhizomucor pusillus, 26 of Rhizopus microsporus, and 6 of Rhizopus oryzae. Species identification was confirmed by internal transcribed spacer (ITS) sequencing. EUCAST MICs were read on day 1 (EUCAST-d1) and day 2 (EUCAST-d2), and CLSI MICs were read on day 2 (CLSI-d2). Isavuconazole MIC₅₀₈ (range) (mg/liter) by EUCAST-d1, CLSI-d2, and EUCAST-d2 were 1 (0.125 to 16), 1 (0.125 to 2), and 4 (0.5 to >16), respectively, across all isolates. The similar values for comparator drugs were as follows: posaconazole, 0.25 (<0.03 to >16), 0.25 (0.06 to >16), and 1 (0.06 to >16); amphotericin, 0.06 (<0.03 to 0.5); 0.06 (<0.03 to 0.25), and 0.125 (<0.03 to 1); voriconazole, 16 (2 to >16), 8 (1 to >16), and 16 (8 to >16), respectively. Isavuconazole activity varied by species: Lichtheimia corymbifera, 1 (0.5 to 2); 1 (1 to 2), and 2 (1 to 4); Lichtheimia ramosa, 0.25 (0.125 to 0.5); 1 (0.5 to 2), and 2 (0.5 to 4); Rhizomucor pusillus, 0.5 (0.5 to 1); 1 (0.125 to 1), and 2 (1 to 2); Rhizopus microsporus, 1 (0.5 to 4); 0.5 (0.125 to 1), and 4 (1 to 8); and Rhizopus oryzae, 1 (0.5 to 4); 1 (0.125 to 2), and 4 (0.5 to 8), respectively, were more susceptible than Mucor circinelloides: group I, 8 (4 to 8), 4 (2 to 4), and 16 (2 to 16), respectively, and group II, 8 (1 to 16), 8 (1 to 8), and 16 (4 to >16), respectively. This was also observed for posaconazole. The essential agreement was best between EUCAST-d1 and CLSI-d2 (75% to 83%). Isavuconazole displayed in vitro activity against Mucorales isolates with the exception of Mucor circinelloides. The MICs were in general 1 to 3 steps higher than those for posaconazole. However, in the clinical setting this may be compensated for by higher exposure at standard dosing.

Isavuconazole is a new broad-spectrum azole with activity against various yeasts and molds (1). It is administered as a water-soluble prodrug, isavuconazolium sulfate, which is available as cyclodextrin-free intravenous (i.v.) and oral (p.o.) formulations. Following administration, the prodrug is immediately and completely converted by plasma esterases to isavuconazole, which inhibits biosynthesis of ergosterol, an essential component of fungal membranes. Currently, amphotericin B and posaconazole are the only two compounds recommended for treatment of Mucorales infections in Europe, only amphotericin B is recommended for primary treatment, and only amphotericin B is licensed for treatment of these infections (2, 3). The clinical efficacy of isavuconazole against infections due to Mucorales species has been evaluated in a phase III study leading to its approval by the FDA for the primary treatment of mucormycosis (March 2015). An overall success rate of 31.4% (14.3% and 17.1%, complete and partial response, respectively) was reported at the end of treatment among 37 patients with Mucorales monoinfection (4). Twenty-one of these patients were matched and compared with patients from the FungiScope registry treated with an amphotericin B formulation (a third of the patients received conventional amphotericin B) (5). The median treatment duration was 108 days for isavuconazole and 18 days for amphotericin B, with approximately one-third of the patients receiving additional posaconazole therapy in the amphotericin B patient group. Overall survival rates on days 42 and 84 were similar (5).

The in vitro activity of isavuconazole has been studied using the EUCAST and CLSI methodologies against Candida and Aspergillus; however, data on in vitro activity against isolates of the Mucorales order are sparse and particularly so for EUCAST testing (6–9). The purpose of this study was to investigate and compare the in vitro activities against clinical isolates of the Mucorales order by the EUCAST and CLSI reference methodologies and to compare the activities with those of amphotericin B, posaconazole, and voriconazole. Such data are crucial for clarifying the correlation between in vitro and in vivo responses and for future development of epidemiological cutoff values (ECOFFs/ECVs) and clinical breakpoints.

MATERIALS AND METHODS

Mucorales isolates and species identification. A total of 72 clinical Mucorales isolates were included. The isolates were obtained in 1998 to 2014 from samples or pure cultures referred to the mycology reference laboratory at the Statens Serum Institut, Denmark. Seventy isolates were confirmed to originate from nonsterile specimens, whereas no informa-
TABLE 1 Overview of MIC ranges, MIC_{50} values, and proportions of Mucorales species isolates for which MICs fall within the wild-type MIC range for *A. fumigatus* when susceptibility is tested by EUCAST (E.Def 9.2) and CLSI (M38-A2) methodologies

Antifungal compound and species	Visual reading result	MIC_{50} (mg/liter)	% of MICs below A. fumigatus ECOFF	% of MICs below A. fumigatus ECOFF
Amphotericin B	EUCAST, day 1	≤0.03 to 0.125	≥0.03 to 0.25 0.125 100	≥0.03 to 0.125 0.125 100
	EUCAST, day 2	≤0.03 to 0.125	≥0.03 to 0.06 0.06 100	≥0.03 to 0.125 0.06 100
	CLSI, day 2	≤0.03 to 0.125	≥0.03 to 0.06 0.06 100	≥0.03 to 0.125 0.06 100
Isavuconazole	EUCAST, day 1	0.5 to 2 1 100	1 to 4 2 67 1 to 4 2 67 1 to 2 1 83	
	EUCAST, day 2	0.5 to 4 2 60	0.5 to 2 1 80 0.5 to 2 1 80	
	CLSI, day 2	0.5 to 4 2 60	0.5 to 2 1 80 0.5 to 2 1 80	
Voriconazole	EUCAST, day 1	0.06 to 0.25 0.125 100	0.125 to 0.5 0.25 75 0.125 to 0.5 0.25 75	
	EUCAST, day 2	≥0.03 to 0.125	0.06 to 0.5 0.5 40 0.06 to 0.5 0.5 40	
	CLSI, day 2	≥0.03 to 0.125	0.06 to 0.5 0.5 40 0.06 to 0.5 0.5 40	

a EUCAST MICs for one *Lichtheimia ramosa* isolate and one *Rhizomucor pusillus* isolate could not be evaluated on day 1 due to insufficient growth.

b CLSI MICs for one *Mucor circinelloides* group I isolate could not be evaluated due to no growth on day 2.

c Amphotericin B, 1 mg/liter; posaconazole, 0.25 mg/liter; isavuconazole, 2 mg/liter; voriconazole, 1 mg/liter (13, 15-17).

d Amphotericin B, 2 mg/liter; posaconazole, 0.5 mg/liter; isavuconazole, 1 mg/liter; voriconazole, 1 mg/liter (18, 19).

e MIC ranges and MIC_{50} values for Mucorales species isolates were determined by EUCAST (E.Def 9.2) and CLSI (M38-A2) methodologies.

Susceptibility testing. Susceptibility testing was performed using the EUCAST E.Def 9.2 and the CLSI M38-A2 methodologies (11, 12). All isolates were cultured twice on Sabouraud dextrose agar (SSI Diagnostika, Hillerød, Denmark) before susceptibility testing to ensure viability. Stock solutions (5,000 mg/liter) in dimethyl sulfoxide (DMSO) and manufacturers were as indicated: DMSO, Sigma-Aldrich, Vallensbæk Strand, Denmark (catalog no. D8779); isavuconazole, Astellas Pharma Inc., Tokyo, Japan; amphotericin B, Sigma-Aldrich; posaconazole, Merck, Ballerup, Denmark; voriconazole, Pfizer A/S, Ballerup, Denmark. The drug concentration range studied was 0.03 to 16 mg/liter for all compounds. For both methods, plates were made in one batch, immediately frozen (<−80°C), and used as soon as thawed. Incubated plates were incubated at 35°C and read visually (blinded to the species identity) at days
1 (EUCAST-d1) and 2 (EUCAST-d2) for the EUCAST methodology and only at day 2 (CLSI-d2) for the CLSI plates as growth was insufficient at day 1. The MIC was the lowest drug concentration that prevented any discernible growth (100%) as defined in the reference methodologies. The ATCC 6258 strain of *Candida krusei* was included as a control strain. Amphotericin B, isavuconazole, posaconazole, and voriconazole MIC ranges were as follows with the reference quality control (QC) ranges in parentheses (all values in milligrams per liter):

![Graph showing MIC ranges for various Mucorales species](http://aac.asm.org/)

FIG 1 Isavuconazole, posaconazole, voriconazole, and amphotericin B MICs against various *Mucorales* species determined by EUCAST (endpoint reading after 1 day of incubation) and CLSI (endpoint reading after 2 days of incubation) methodologies. MIC ranges for wild-type *A. fumigatus* are shown as shaded areas for comparison. x axes, MIC (milligrams per liter); y axes, number of isolates.
EUCAST-d1, 0.5 (0.125 to 1), ≤0.03 (not established but 0.015 to 0.125 in the work of Howard et al. [13]), ≤0.03 to 0.06 (0.015 to 0.06), and 0.125 to 0.25 (0.03 to 0.25) (14); EUCAST-d2 (no reference ranges established for the day 2 reading), 0.5, ≤0.03 to 0.06, ≤0.03, and 0.25; and CLSI-d2, 0.25 to 0.5 (1 to 4), ≤0.03 to 0.06 (not established), 0.125 (0.125 to 1), and 0.25 to 0.5 (0.125 to 1) (12).

Clinical breakpoints have not been defined for *Mucorales* isolates. However, as amphotericin B, isavuconazole, posaconazole, and voriconazole have documented clinical efficacy against wild-type *Aspergillus fumigatus*, we hypothesized that these four agents may also have clinical efficacy against *Mucorales* isolates for which MICs were within the MIC range for wild-type *A. fumigatus*. Hence, isolates were classified as potentially susceptible (pot-S) when the MIC was below the defined epidemiological cutoff values for *A. fumigatus*: amphotericin B, 1 mg/liter for the EUCAST and 2 mg/liter for the CLSI method; posaconazole, 0.25 mg/liter for the EUCAST and 0.5 mg/liter for the CLSI method; isavuconazole, 2 mg/liter for the EUCAST and 1 mg/liter for the CLSI method; and voriconazole, 1 mg/liter for both methods (13, 15–19).

Comparison between EUCAST and CLSI. The percent essential agreement (±1 2-fold dilution) between the EUCAST and the CLSI methods was calculated for each species. The median and range of 2-fold dilution differences between the two methods were also calculated. In order to calculate the exact differences between the methods, off-scale MICs (≤0.03 and >16 mg/liter) were excluded from this analysis.

The categorical agreement between the two methods was calculated as percentage of isolates classified as pot-S or non-pot-S by both methods. Finally, categorical agreement was also calculated for posaconazole using 1 mg/liter as the MIC cutoff value, recognizing the notable difference in posaconazole susceptibility between *Mucor circinelloides* and the other species and the fact that a cutoff value at 0.25 mg/liter bisected the combined posaconazole MIC distribution of non-*Mucor circinelloides* species.

RESULTS

The *in vitro* activity of isavuconazole was species dependent. The EUCAST-d1 isavuconazole MIC ranges were 0.125 to 4 mg/liter across *Lichtheimia corymbifera, Lichtheimia ramosa, Rhizomucor pusillus, Rhizopus microsporus,* and *Rhizopus oryzae* but somewhat higher against *Mucor circinelloides* groups I and II (1 to 16 mg/liter) (Table 1; Fig. 1). Similarly, the CLSI-d2 isavuconazole MIC ranges were 1 to 8 mg/liter for *Mucor circinelloides* groups I and II in comparison with 0.125 to 2 mg/liter for the other species. Overall, the isavuconazole MIC$_{50}$ across all species was 1 mg/liter for both EUCAST-d1 and CLSI-d2 and with almost identical MIC ranges (0.125 to 16 mg/liter for EUCAST-d1 and 0.125 to 8 mg/liter for CLSI-d2). Reading the EUCAST plates after 2 days of incubation elevated the MICs 1 to 2 steps but did not change the overall species-dependent susceptibility pattern (Table 1 and Fig. 2).

The overall MIC$_{50}$ for amphotericin B and posaconazole were 0.06 and 0.25 mg/liter, respectively, when determined by either the EUCAST-d1 or the CLSI-d2 method and again with almost identical MIC ranges (Table 1). The *in vitro* activity of posaconazole varied by species, with *Mucor circinelloides* group II being the least susceptible species by both methods (MIC$_{50}$ 2 mg/liter; range, 0.125 to >16 mg/liter). In comparison, the amphotericin B *in vitro* activity was more uniform with species-specific MIC$_{50}$ between ≤0.03 and 0.25 mg/liter when determined by EUCAST-d1, ≤0.03 to 0.125 mg/liter by CLSI-d2, and 0.06 to 0.5 mg/liter by EUCAST-d2. Finally, the MIC ranges for voriconazole were 2 to >16, 1 to >16, and 8 to >16 mg/liter obtained by EUCAST-d1,
CLSI-d2, and EUCAST-d2 reading, respectively, with MIC_{50} of 8 to >16 mg/liter.

Based on the hypothesis that *Mucorales* isolates could be regarded as potentially susceptible (pot-S) when the MIC was within the wild-type MIC range for *A. fumigatus*, the proportion of such (pot-S) isolates was calculated (Table 1). All isolates were pot-S to amphotericin B independently of which susceptibility test was used, but only 0 to 3% were classified as pot-S to voriconazole. For isavuconazole, 77% of the isolates were pot-S by EUCAST-d1 and CLSI-d2 testing with significant variation between the species, e.g., 0 and 11% were pot-S for *Mucor circinelloides* groups I and II, respectively, but 80 to 100% were pot-S for the other species. For posaconazole, 47% and 87% were pot-S by EUCAST-d1 and CLSI-d2 testing, respectively, including all *Lichtheimia* and *Rhizomucor pusillus* isolates but only 11% of *Mucor circinelloides* group II isolates. For the other species (*Mucor circinelloides* group I, *Rhizopus microsporus*, and *Rhizopus oryzae*), more were classified as pot-S by the CLSI-d2 (75 to 100%) than by the EUCAST-d1 (12 to 50%) methodology.

The best essential agreement was found between the CLSI-d2 method and the EUCAST-d1 method, with overall essential agreement ranging from 75% for isavuconazole to 83% for amphotericin B. The median (range) 2-fold dilution differences were 0 (–3 to 4) (Table 2). The essential agreement was highest for *Lichtheimia corymbifera* (100%) across amphotericin B, posaconazole, and isavuconazole and 7/8, 88%, for voriconazole) and lowest for amphotericin B against *Rhizopus oryzae* (16/6, 17%), isavuconazole against *Rhizopus microsporus* (14/26, 54%), and posaconazole against *Mucor circinelloides* group II (3/7, 43%) and *Rhizomucor pusillus* (5/8, 63%). The essential agreement between the CLSI-d2 method and the EUCAST-d2 method was 38% to 61% and lowest for isavuconazole.

The overall categorical agreement between the CLSI-d2 method and the EUCAST-d1 method ranged from 91% for isavuconazole, 93% for posaconazole (with the 1 mg/liter cutoff), to 100% for amphotericin B. For isavuconazole, the lowest categorical agreement was found for *Rhizopus oryzae* (4/6, 67%). For posaconazole, the categorical agreement between EUCAST-d1 and CLSI-d2 was calculated using the *A. fumigatus* ECOFF of 0.25 mg/liter as well as 1 mg/liter to avoid bisecting the non-*Mucor circinelloides* MIC distributions. The agreement was highest using the 0.25-mg/liter cutoff for *Mucor circinelloides* overall (85% versus 69%) and *Mucor circinelloides* group II in particular (100% versus 67%) but using 1 mg/liter for *Rhizopus microsporus* (85%) versus 69%), and *Mucor circinelloides* group I (50% versus 75%).

Finally, the pharmacokinetic characteristics of isavuconazole in comparison with those for the other mold-active azoles were compared (Table 3) (20–27). The isavuconazole minimum concentration of drug in serum (C_{min}) (3.91 mg/liter) and area under the concentration-time curve (AUC) (97.9 mg · h/liter) were 6- to 3-fold higher than the similar parameters for posaconazole oral solution (0.64 mg/liter and 17.2 mg · h/liter, respectively) and i.v. formulation (1.07 mg/liter and 34.3 mg · h/liter, respectively) (Table 3).

DISCUSSION

Overall, the MICs correlated with the well-accepted clinical antifungal spectrum associated with efficacy and failure. Thus, the MICs for voriconazole, which has no clinical efficacy against *Mucorales* infections, were high and above the MIC range correlated with clinical efficacy for *A. fumigatus* (15, 17, 19). In contrast, amphotericin B MICs fell in the MIC range that for other mold and yeast species normally would predict susceptibility (15, 16, 18,
Drug	Route or form of administration	Patient group (reference)	Dosage	Day(s) when steady state reached	Mean $C_{\text{max}}, \text{mg/liter}^d$	Mean $C_{\text{min}}, \text{mg/liter}^d$	Mean $C_{\text{av}}, \text{mg/liter}^d$	Mean total body CL/F (liters/h)	Mean $t_{1/2}$ (h)d	Mean $AUC_{24\text{h}}, \text{mg} \cdot \text{h/liter}^d$	Fraction unbound (%)	Mean V/F (liters/kg)d	
Isoviconazole	Oral or i.v.	Patients with IA (n = 222) (20)	200 mg TID on days 1–2, 200 mg QD	14	0.98–1	3.91 (49)	2.4 (44)	100 (50–150)	97.9 (58)	1 >5 (44)			
Posaconazole	Oral suspension	Febrile neutropenic patients or patients with refractory invasive fungal disease (n = 23) (21)	400 mg BID	7–10	0.54–0.75	0.85 (82)	0.64 (98)	0.72 (86)	76.1 (78)	31.7 (42)	17.2 (86)	2 44 (84)	5.6–187
Gastroresistant tablet (day 8)	Neutropenic patients receiving cytotoxic chemotherapy for AML or MDS (n = 32) (22)	300 mg BID on day 1, 300 mg QD	7–10	0.54–0.75	1.96 (33)	[0.343–2.55]	1.46 (38)	35 (41)	11.8–62.3				
i.v. (day 14)	Neutropenic patients receiving cytotoxic chemotherapy for AML or MDS (n = 19) (23)	300 mg BID on day 1, 300 mg QD	1	2.61 (39)	1.07 (30)	1.43 (42)	34.3 (42)	5.8–187					
Voriconazole	Oral	Adult patients with IA (n = 43) (24)	400 mg BID on day 1, 200 mg QD	5–7	0.82 (15)	3.57 (48.5)a	0.83 (197)	11.52 (73)a	36 (119)	2.6 (96)			
Adult patients with proven or probable IA on combination therapy with anidulafungin (n = 454) (25)	6 mg/kg of body wt BID on day 1, 4 mg/kg BID for 7 days, 300 mg BID	5–7	0.64 (24)	2.04 (54)	5.30 (11)	66 (45)	45–55b	2.38 (15–26)					
i.v.	Adult patients with IA (n = 43) (24)	6 mg/kg BID on day 1, 4 mg/kg BID	1	2.54 (231)	90.4 (168)	45–55b	2.6 (96)	5.8–187					
Adult patients with proven or probable IA on combination therapy with anidulafungin (n = 454) (25)	6 mg/kg BID on day 1, 4 mg/kg BID	1	3.10 (52)	5.30 (11)	102 (43)	2.38 (15–26)	5.8–187						

aData obtained from reference 26.
bData obtained from reference 27.
cAbbreviations: IA, invasive aspergillosis; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; TID, three times daily; QD, once daily; BID, twice daily; C_{max}, maximum concentration of drug in serum; C_{min}, minimum concentration of drug in serum; C_{av}, average concentration of drug in serum; CL, clearance; F, bioavailability; $t_{1/2}$, half-life; $AUC_{24\text{h}}$, area under the concentration-time curve at 24 h; V, volume of distribution.
dPharmacokinetic data in parentheses are percent coefficients of variation; data in brackets are ranges.
This observation is somewhat reassuring as susceptibility testing of molds is challenging and the correlation with clinical outcome is often debated.

By EUCAST and CLSI susceptibility testing, isavuconazole MICs for the Mucorales isolates were similar to those found for Aspergillus species, with the exception of Mucor circinelloides, which was notably less susceptible than the other species across all methods and endpoints (13, 29). Accordingly, 83 to 100% of the isolates were classified as pot-S using EUCAST-d1 and CLSI-d2 across all isolates except Mucor circinelloides. This observation suggests species-specific differential clinical efficacy against the clinically relevant Mucorales species. A similar pattern was found for posaconazole, which was also found to be less active against Mucor circinelloides and against Mucor circinelloides group II in particular, and even for voriconazole, the MICs against Mucor circinelloides were the highest ones. However, in addition to this species-specific differential activity, some additional and method-dependent differential activity was noted. For example, Rhizopus microsporus was clearly less susceptible than Lichtheimia species and Rhizomucor pusillus to posaconazole when susceptibility was tested by the EUCAST method but not when tested by the CLSI method. Similarly, Rhizopus spp. were more susceptible to isavuconazole than Lichtheimia spp. when tested by the CLSI method but not when tested by the EUCAST method. The clinical impact of these observations, if any, remains to be understood, but they clearly demonstrate that clinical breakpoints have to be species as well as method specific in order to provide the same categorization of isolates as susceptible or resistant. Whereas no species-specific in vivo outcome data have been published for infections due to Mucor species isolates, in vivo data suggest isavuconazole efficacy against isolates of Rhizopus. Thus, a successful clinical outcome of rhinocerebral mucormycosis by a Rhizopus oryzae isolate with a MIC of 1 mg/liter has been reported after isavuconazole salvage therapy with trough plasma levels maintained at 1.3 to 3.24 mg/liter (30). Moreover, preclinical studies showed that high doses of isavuconazole were as effective as high-dose liposomal amphotericin B against experimental mucormycosis by a Rhizopus delemar isolate with a MIC of 0.125 mg/liter (31).

The isavuconazole MIC90s across the isolates were 2 dilution steps higher than those for posaconazole and 4 steps higher than those for amphotericin B. Direct comparisons of MICs across compounds are, however, not meaningful because bioavailability and pharmacokinetic and pharmacodynamics parameters associated with clinical efficacy are different among compounds and drug classes (Table 3) (20–27). For theazole drugs, outcome is best predicted by the AUC/MIC ratio. Noticeably, the AUC for isavuconazole is 4 to 6 times higher than that for posaconazole, which may compensate for the 2-dilution-step-lower MIC and explain the clinical efficacy observed in the clinical trial despite higher MICs (Table 3). Some support for this hypothesis was further derived from the observations made when adopting the ECOFF/ECVs for these four agents for A. fumigatus as potential breakpoints for susceptibility. Thus, all isolates were rightfully classified as susceptible to amphotericin B and virtually none were classified as susceptible to voriconazole, and interestingly, more isolates were classified as potentially susceptible to isavuconazole than to posaconazole independently of which susceptibility testing method was used. Therefore, this study provides some in vivo support for the assumption that isavuconazole may be an appropriate choice for most Mucorales species with the exception of Mucor circinelloides.

The EUCAST susceptibility plates were read on day 1, whereas the CLSI plates were read on day 2 due to a lack of visible growth after the first day of incubation. This difference is most likely explained by the 10-fold-lower inoculum used for the CLSI method and the 10-fold-lower glucose concentration, test conditions which are associated with lower growth rates for Candida species. When the reading of the EUCAST plates was repeated on day 2, the MICs rose approximately 2 dilutions for the three azoles and 1 dilution for amphotericin B, leading to a marked decrease in the categorical agreement with CLSI-d2 results for isavuconazole and posaconazole. Similarly, MICs reported in the literature for day 2 readings are in general higher than the EUCAST-d1 MICs presented here (6, 7). It is a well-known phenomenon that MICs rise with extended time of incubation and also that MIC endpoints may vary considerably across methods and endpoint criteria in general and also specifically for isavuconazole and Mucorales (32).

Hence, standardization is key and future clinical breakpoints should be specific for the method, species, and incubation time used.

ACKNOWLEDGMENTS

The study was supported by a grant from Basilea.

We thank Birgit Brandt for excellent technical assistance. M.C.A. has received research grants and travel grants from and has been paid for talks on behalf of Astellas, Basilea, Gilead, Merck Sharp & Dohme, and Pfizer. She has been on the advisory board for Merck and Gilead. R.H.J. has received grant support from Gilead Sciences and travel grants from Gilead, Merck Sharp & Dohme, Pfizer, and Astellas. J.M. has received research grants, travel grants, and honoraria from Astellas, Gilead, Merck Sharp & Dohme, and Pfizer.

REFERENCES

1. Miceli MH, Kaufman CA. 15 July 2015. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis http://dx.doi.org/10.1093/cid/civ571.
2. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, Lanterieri F, Pagano L, Skiaida A, Akova M, Arendrup MC, Boekhout T, Chowdhary A, Cuena-Estrella M, Freiberger T, Guine a J, Guarro J, de Hoog S, Hope W, Johnson E, Kathuria S, Lackner M, Lass-Florl C, Lortholary O, Meis JF, Meletiadis J, Munoz P, Richardson M, Roilides E, Tortorano AM, Ullmann AJ, van Diepening a C, Verweij P, Petrikos G. 2014. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect 20(Suppl 3):S5–S52. http://dx.doi.org/10.1111/1469-0691.12371.
3. Skiaida A, Lanterieri F, Groll AH, Pagano L, Zimmerli S, Herbrecht R, Lortholary O, Petrikos GL. 2013. Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 98:492–504. http://dx.doi.org/10.3324/haematol.2012.065110.
4. Marty FM, Perfect JR, Cornely OA, Mullane KM, Rahav G, Lee M, Ito M, Maher R, Zeijler B, Ostrosky-Zeichner L. 2014. An open-label phase 3 study of isavuconazole (VITAL): focus on mucormycosis, poster 824. IDWeek 2014 Abstr.
5. Vehreschild MJGT, Vehreschild JJ, Marty FM, Perfect J, Ostrosky-Zeichner L, Rahav G, Zeijler B, Lee M, Maher R, Lovell C, Engelhardt M, Cornely OA. 2014. Primary treatment of invasive mucormycosis (IM) with isavuconazole (VITAL Study) or amphotericin formulations (Fungiscope): case-match analysis, poster 1152. 56th ASH Annu Meet.
6. Perkhofer S, Lechner V, Lass-Florl C. 2009. In vivo activity of isavuconazole against Aspergillus species and zygomycetes according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 53:1645–1647. http://dx.doi.org/10.1128/AAC.01530-08.
