How the spherical modes of gravitational waves can be detected despite only seeing one ray

Alejandro Torres-Orjuela

Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China, People’s Republic of China

E-mail: atorres@hku.hk

Received 6 December 2023; revised 18 March 2024
Accepted for publication 22 April 2024
Published 7 May 2024

Abstract
The spherical modes of gravitational waves (GWs) have become a major focus of recent detection campaigns due to the additional information they can provide about different properties of the source. However, GW detection is restricted to only detecting one ray and hence it is not obvious how we can extract information about angular properties. In this note, we introduce a new gauge that makes visible GW detection does not only contain information on the second time derivative but also on the angular derivatives of the GW. In particular, we show that the angular derivatives are of the same order as the time derivatives of the wave thus allowing us to constrain the spherical modes. To further illustrate the detection of the spherical modes, we discuss how the evolution of the orbit of the source and thus the phase of the wave depends on them.

Keywords: gravitational waves, spherical modes, detection

1. Introduction
Since the first detection by LIGO in 2015 [1] gravitational wave (GW) detection is an increasingly growing field. Up to date, we do not only have detected almost 100 signals from GW sources but also the information we can extract from a signal has increased [2–4]. A particularly interesting part of this ‘new information’ we can get from detection is the spherical modes
of GWs, which allow us to obtain information that otherwise would remain latent [4–6]. Some prominent examples are breaking the degeneracy between the inclination and the distance of the source, detecting the precession of binaries, detecting the gravitational kicks induced during the merger, or detecting a constant center-of-mass velocity of the source [5–11]. Moreover, as long as the wavelength of GWs is much smaller than the horizon of the Universe—which is the case for all astrophysical sources detected by current and planned detectors—then they propagate along null cones, or in other words, they fulfill Huygens’ principle [12]. Therefore, GWs can be described as a superposition of spherical waves and it is only natural to assume they always maintain some form of sphericity even when being far from the source where the plane wave limit is usually applied.

A major contribution to the detection of the spherical modes has to be accredited to recent efforts in developing waveform models that contain information about the subdominant spherical modes [13–19]. Having waveform models containing the spherical modes, matched filtering techniques can be used to extract information about them when detected [20, 21]. Nonetheless, matched filtering with sophisticated waveform models only allows us to extract the information and is no answer to how the information is detected in the first place.

Let us illustrate this problem in more detail for the spherical modes of GWs. If we have a signal containing information about the spherical modes then matched filtering can tell us that the information is there. But how does the information about the spherical modes get into the signal? Obviously, the answer is that we get the signal from GW detectors—be them laser interferometry detectors like LIGO, Virgo, KAGRA, TianQin, or LISA [22–27] or atom interferometry detectors like AION, MIGA, ZAIGA, MAGIS, or AEDGE [28–33]. However, this is only pushing the question to another level. Because we have to ask now, how do these detectors see the spherical modes of GWs? In the end, spherical modes are related to the angular properties of the source but we only observe the source from one ray thus looking like we should not have any information about spherical properties. Even assuming we see different rays at different detectors, measuring this difference would require much better accuracy than current detectors have. Considering a typical GW source with a strain of 10^{-22} at a distance of several Mpc and assuming LIGO and KAGRA are separated by the diameter of the earth, we would require a detection accuracy of 10^{-38} to see an angular difference between the incoming rays, which is over 15 orders below what current detectors can achieve [4].

We discuss the case of precession, where we even have a time-dependent effect on the spherical modes, to further illustrate the problem [7, 11]. Precessing systems can be described using a time-dependent coordinate system that tracks the precession and finding a preferred direction of such a coordinate system can greatly facilitate the comparison between different precessing systems. Nevertheless, an infinite number of different spherical mode decompositions are equally plausible representations of the information obtained from a single ray. Time dependence provides additional information to constrain possible spherical decompositions but also means tracking the evolution of the system, rather than just considering its spherical properties. For cases where there is no time-dependent effect on the spherical modes, their detection should be possible. In the end, the spherical modes of a GW are related to the physical properties of the system, as the case of precessing binaries makes evident.

In this note, we discuss how the spherical modes of GWs can be detected despite only seeing one ray. We structure the discussion as follows. In section 2, we introduce the equations determining GWs and discuss how the standard traceless-transverse (TT) gauge is established. Afterward, we review in section 3 the geodesic deviation as the underlying idea of GW detection and show that using the TT gauge spherical modes seem to not be determined. In section 4, we first discuss briefly the spherical decomposition of GWs and then introduce a new gauge, which we call spherical gauge. We repeat the calculation of the geodesic deviation using the
spherical gauge in section 5 and show how the angular derivatives of a GW affect a detector. In section 6, we discuss how the spherical modes affect the phase of the GW to illustrate how their detection is performed. We conclude this note by drawing conclusions in section 7.

Through this note, we use geometrical units \((G = c = 1)\), Einstein’s sum convention to sum over indices appearing twice, and Greek indices run over all coordinates while Latin indices only run over the spatial coordinates \((\mu, \nu, \rho, \ldots = 0, 1, 2, 3)\) and \(i, j, k, \ldots = 1, 2, 3\).

2. Wave equation and TT gauge

GWs were first established as a vacuum solution to Einstein’s field equations in the weak field limit [34]. In this limit, the metric can be written as

\[
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu},
\]

(1)

where \(\eta_{\mu\nu}\) is the Minkowsky metric and \(h_{\mu\nu}\) is the perturbation or GW which is much smaller than 1. The wave is then described by the field or wave equation

\[
\Box h_{\mu\nu} = 0
\]

(2)

together with the harmonic gauge (also called Lorentz or de Donder gauge)

\[
\partial_\mu \bar{h}_{\mu\nu} = 0,
\]

(3)

where \(\Box\) denotes the d’Alembert operator, \(\bar{h}_{\mu\nu} \coloneqq h_{\mu\nu} - (\eta_{\mu\nu}/2)h\) is the ‘trace-reversed’ wave and \(h \coloneqq \eta_{\mu\nu} h_{\mu\nu}\) is the trace of \(h_{\mu\nu}\) [35].

In General Relativity GWs have two degrees of freedom \(h_+\) and \(h_\times\) [36], but the requirement for the wave \(h_{\mu\nu}\) to be symmetric and imposing the harmonic gauge in equation (3) only constrains the solution to six degrees of freedom. Therefore, we are free to perform an additional coordinate transformation, or in other words to choose an additional gauge, \(x^\mu \rightarrow x^\mu + \alpha^\mu\), with \(\alpha^\mu\) of the order of \(h_{\mu\nu}\) and fulfilling \(\Box \alpha^\mu = 0\), so that the trace-reversed wave becomes

\[
\bar{h}_{\mu\nu} \rightarrow \bar{h}_{\mu\nu} - \partial_\nu \alpha_\mu - \partial_\mu \alpha_\nu + \eta_{\mu\nu} \partial_\rho \alpha^\rho.
\]

(4)

Note that this transformation is consistent with the harmonic gauge and thus indeed constrains four more degrees of freedom.

To finally constrain the gauge we have to impose four conditions on \(\alpha^\mu\). Here we review the standard case of imposing the TT gauge [36]. We first demand the wave to be trace-free

\[
h = 0
\]

(5)

from which follows that the trace-reversed wave and the wave are equal, i.e. \(\bar{h}_{\mu\nu} = h_{\mu\nu}\). The second set of constraints we impose is

\[
h_{00} = 0.
\]

(6)

Imposing this property together with the harmonic gauge gives us \(\partial_\nu h_{00}^0 = 0\). This implies that \(h_{00}\) is constant in time which for a GW is equivalent to saying it vanishes. Therefore, we get

\[
h_{0\mu} = 0.
\]

(7)

The properties of the wave after imposing the TT gauge are that it is trace-free, making it equal to the trace-reversed wave, and that all components along the time coordinate vanish. However, this does not mean that the wave takes the familiar form of only having components in the plane perpendicular to the wave vector. This particularly simple form is derived for the case of plane waves [35].
3. GW detection

The underlying idea for the detection of GWs using interferometers is that of geodesic deviation [22–26]. In this case, the motion of two particles moving along close geodesics is considered to describe the effect of a gravitational field by describing how the particles deviate from each other. This deviation is described by [36]

$$\frac{d^2 \xi^\alpha}{d\tau^2} + R^\alpha_{\beta\gamma\delta} \frac{dx^\beta}{d\tau} \frac{dx^\gamma}{d\tau} = 0,$$ \hspace{1cm} (8)

where ξ^α is the deviation vector connecting the two particles, $R^\alpha_{\beta\gamma\delta}$ is the Riemann tensor [37], x^β denotes the geodesic and τ is the proper time along the geodesic.

We simplify equation (8) by considering a detector at rest. In this case, the derivatives of the geodesic reduce to the time vector and the proper time is equal to coordinate time [38]. Thus, we get

$$\partial_0 \partial_0 \xi^i + \frac{1}{2} \delta_{ij} \partial_0 \partial_0 h_{jk} \xi^k = 0.$$ \hspace{1cm} (9)

Last we can use that for GWs the Riemann tensor takes the form [36]

$$R^\alpha_{\beta\gamma\delta} = \frac{1}{2} \eta^{\alpha\rho} (\partial_\beta \partial_\gamma h_{\delta\rho} + \partial_\delta \partial_\rho h_{\beta\gamma} - \partial_\gamma \partial_\rho h_{\beta\delta} - \partial_\delta \partial_\rho h_{\beta\gamma}),$$ \hspace{1cm} (10)

to get

$$\partial_0 \partial_0 \xi^i - \frac{1}{2} \delta_{ij} (\partial_0 \partial_0 h_{0j} + \partial_0 \partial_0 h_{0k} - \partial_0 \partial_0 h_{0k} - \partial_0 \partial_0 h_{0j}) \xi^k = 0,$$ \hspace{1cm} (11)

where δ_{ab} denotes the Kronecker delta and we ignored ξ^0 because GWs do not affect the time component of a 4-vector while the spatial components of the same vector are not affected by its time component when interacting with GWs.

If we now consider a GW in the usual TT gauge where $h_{0\mu} = 0$, equation (11) reduces to

$$\partial_0 \partial_0 \xi^i + \frac{1}{2} \delta_{ij} \partial_0 \partial_0 h_{jk} \xi^k = 0.$$ \hspace{1cm} (12)

Thus we recover the classical statement that the arm of a detector is stretched and squeezed in lockstep with the GW. However, we do not see how the spherical modes of GWs could be detected. The deviation of the geodesic only depends on the time derivative of the wave and because we only see one ray this means there should be no information about the angular properties. Having said this, it is important to note that this is a description of the wave in only one particular gauge. Using another gauge the other information contained by the wave will become more obvious.

4. Spherical gauge

We want to introduce a new gauge for GWs which we call spherical gauge. This gauge will allow us to show how the spherical modes of the wave can be detected. However, before introducing the spherical gauge we give a brief overview of the decomposition of GWs in spherical modes.

The two polarizations of GWs h_+ and h_\times can be combined to define the so-called complex amplitude [39]

$$H := h_+ - i h_\times,$$ \hspace{1cm} (13)
where i is the imaginary unit. This complex amplitude can then be decomposed using spin = -2 spherical harmonics, $-2Y^{\ell,m}(\theta,\phi)$, to obtain [39, 40]

$$H(t,r,\theta,\phi) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} H^{\ell,m}(t,r) -2Y^{\ell,m}(\theta,\phi),$$

where

$$H^{\ell,m}(t,r) := \int d\Omega H(t,r,\theta,\phi) -2Y^{\ell,m}(\theta,\phi)$$

are the GW spherical modes and $-2Y^{\ell,m}(\theta,\phi)$ means the complex conjugate of the spin = -2 spherical harmonics. The spherical modes then contain the information about the evolution of the wave in time and its dependence on the distance, while the $-2Y^{\ell,m}(\theta,\phi)$ contain the information about the angular properties of the wave.

The spin = -2 spherical harmonics represent an orthonormal base for functions of the angular coordinates θ,ϕ

$$\hat{d}\Omega -2Y^{\ell,m}(\theta,\phi) -2\bar{Y}^{\ell,m}(\theta,\phi) = \delta_{\ell\ell'}\delta_{mm'}.$$

Moreover, they have relatively simple derivatives along the angular coordinates

$$\partial_\theta -2Y^{\ell,m}(\theta,\phi) = \frac{1}{2} \left(\sqrt{(\ell - m)(\ell + m + 1)} -2Y^{\ell,m+1}(\theta,\phi)e^{-i\phi} - \sqrt{(\ell + m)(\ell - m + 1)} -2Y^{\ell,m-1}(\theta,\phi)e^{+i\phi} \right),$$

$$\partial_\phi -2Y^{\ell,m}(\theta,\phi) = im -2Y^{\ell,m}(\theta,\phi).$$

\subsection*{4.1. The spherical gauge}

Let us now introduce the spherical gauge. A GW has to fulfill equations (2) and (3), while we are still free to use a coordinate transformation as in equation (4). By this additional coordinate transformation, we constrain four more degrees of freedom so that the wave only has the two polarizations h_+ and h_\times [36].

From the coordinate transformation, we are free to impose four conditions on the wave. If the trace of a matrix vanishes in one coordinate system it also vanishes in all other coordinate systems. Therefore, we (have to) keep the condition that the trace of the wave vanishes, $\bar{h} = 0$. This condition again guarantees that the trace-reversed wave and the wave are equal. The second set of conditions we impose is that

$h_{\alpha} = 0$.

This condition is similar to the condition of the TT gauge (cf equation (6)) but now the radial components instead of the time components vanish.

Analogous to the case of the TT gauge, if the h_{α} vanish $h_{0\alpha}$ also has to vanish. Therefore, we get that in spherical gauge the wave is trace-free and the radial components are all equal to zero

$h = 0$ and $h_{\alpha\nu} = 0$.

Note that the spherical gauge and the TT gauge have different coordinate conditions (cf equations (6) and (19)) and thus represent different gauges. Nevertheless, they only differ by a constant rotation of the time coordinate and the radial coordinate. Therefore, the spherical
coordinates θ and ϕ, which we want to study, are not affected by this transformation allowing us to interpret them in the usual way we know from the TT gauge. Before we move on to discuss the detection of GWs expressed in spherical gauge, we discuss the properties of the wave.

4.2. Time components in spherical gauge

We know a GW has only two degrees of freedom h_+ and h_\times [36]. Therefore, we can express any component of the wave as

$$h_{\mu\nu} = p_{\mu\nu} h_+ + c_{\mu\nu} h_\times,$$

where $p_{\mu\nu}$ and $c_{\mu\nu}$ are real constant numbers.

Let us assume all $h_{0\mu}$ vanish. In this case we have $p_{0\mu} = c_{0\mu} = 0$ and from the trace free condition we get $p_{0\phi} = -p_{0\theta}$ and $c_{0\phi} = -c_{0\theta}$. Using this information together with the harmonic gauge in equation (3) for the θ and ϕ coordinates gives us

$$0 = p_{\theta\theta} \partial_\theta h_+ + c_{\theta\theta} \partial_\theta h_\times + p_{\theta\phi} \partial_\phi h_+ + c_{\theta\phi} \partial_\phi h_\times,$$

$$0 = p_{\phi\theta} \partial_\theta h_+ + c_{\phi\theta} \partial_\theta h_\times - p_{\phi\phi} \partial_\phi h_+ - c_{\phi\phi} \partial_\phi h_\times.

Summing the two equations we then get

$$0 = (p_{\theta\phi} + p_{\phi\theta}) \partial_\theta h_+ + (c_{\theta\phi} + c_{\phi\theta}) \partial_\theta h_\times + (p_{\theta\phi} - p_{\phi\theta}) \partial_\phi h_+ + (c_{\theta\phi} - c_{\phi\theta}) \partial_\phi h_\times.

(24)

Using that $h_+ = \Re[H]$ and $h_\times = -i \Im[H]$ (cf equation (13)) and the partial derivatives of the spin = -2 harmonics in equations (17) and (18) we can see that the derivatives of the polarizations all differ by more than just a constant factor. Therefore, the $\partial_\theta h_+$, $\partial_\phi h_+$, $\partial_\theta h_\times$ and $\partial_\phi h_\times$ are linearly independent and equation (24) is only fulfilled if all coefficients vanish independently. However, this is only possible for

$$p_{\theta\phi} = p_{\phi\theta} = c_{\theta\phi} = c_{\phi\theta} = 0,$$

(25)

thus implying that the whole wave vanishes.

In a similar way it can be shown that the h_{0i} have to vanish if $h_{00} = 0$, thus again implying that the whole wave would vanish. Analyzing again the different cases where only one of the $h_{0\mu}$ is equal to zero, we find that h_{00} never vanishes and that only one of h_{00} and $h_{0\phi}$ can vanish at the same time ($h_{0\theta} = 0$ from the spherical gauge condition).

4.3. Derivatives of the wave in spherical gauge

Any system that emits GWs has a different number of dynamical fields that travel away from the source [37]. However, only those fields that decrease as $1/r$, where r is the distance from the source, are called GWs and can be detected by a distant observer [36]. Therefore, for detection, it is important to understand which components of the GW decrease as $1/r$. We start noticing that if the component of a GW $h_{\mu\nu}$ decreases as $1/r$, its first and second time derivatives also decrease as $1/r$ to the leading order [36], i.e.

$$\partial_\theta h_{\mu\nu}, \partial_\phi \partial_\theta h_{\mu\nu} \propto \frac{1}{r},

(26)

Note that the r we refer to is the distance between the source and the observer which for the spherical gauge can differ from the radial coordinate r due to the rotation applied to the time coordinate and the radial coordinate.
However, for the spatial derivatives, this is not necessarily true, and in particular, the derivatives along the angular coordinates \(\theta \) and \(\phi \) often decrease at higher orders.

We analyze how the angular derivatives of a GW in spherical gauge decrease to judge if they can be detected. Using the harmonic gauge in equation (3), we get

\[
\partial_i h_{ij} = \partial_0 h_{0j}.
\]

(27)

Deriving the previous equation along \(j \) and applying again the harmonic gauge condition, we then find

\[
\partial_i \partial_j h_{ij} = \partial_0 \partial_0 h_{00}.
\]

(28)

From the analysis in the previous section, we know that \(h_{00} \) cannot vanish, which for GWs is analogous to saying it decreases as \(1/r \). Now because its second time derivative also decreases as \(1/r \) and from the spherical gauge condition in equation (19) we know the radial components vanish, we see from equation (27) that to leading order

\[
\partial_0 \partial_i h_{0i} \propto \frac{1}{r}.
\]

(29)

Therefore, we get that in spherical gauge the second derivatives of the wave along the angular coordinates decrease as \(1/r \), at least for some of the components. That means that they, in principle, can be detected in the same way as other properties of the wave. Now it only remains to analyse to what extent a detector is sensitive to these derivatives.

5. Geodesic deviation in spherical gauge

We reconsider the geodesic deviation induced by a GW but now using the spherical gauge. Applying the spherical gauge none of the terms in equation (11) vanish and then using the harmonic gauge in equation (3), we find for the geodesic deviation

\[
\partial_0 \partial_0 \xi^i - \frac{1}{2} \delta^{ij} (\partial_i \partial_j h_{ij} + \partial_i \partial_j h_{ik} - \partial_j \partial_i h_{00} - \partial_0 \partial_0 h_{0k}) \xi^k = 0.
\]

(30)

We see from equation (30) that in spherical gauge the geodesic deviation in principle can depend on the angular derivatives of the wave. We further know from the analysis in section 4.3 that several of the derivatives along the angular coordinates decrease as \(1/r \) and thus are detectable.

Nevertheless, for better comprehension, we consider a two-arm detector where one of the arms lies along the \(\theta \) and the other along the \(\phi \) coordinate. In this case and only keeping those terms decreasing as \(1/r \), equation (30) reduces to

\[
\partial_0 \partial_0 \xi_\theta - \left(\partial_\theta \partial_\theta h_{\theta\theta} + \partial_\theta \partial_\phi h_{\theta\phi} - \frac{1}{2} \partial_\theta \partial_\theta h_{00} \right) \xi_\theta = 0,
\]

(31)

and

\[
\partial_0 \partial_0 \xi_\phi - \left(\partial_\phi \partial_\phi h_{\phi\phi} + \partial_\theta \partial_\phi h_{\theta\phi} - \frac{1}{2} \partial_\phi \partial_\phi h_{00} \right) \xi_\phi = 0.
\]

(32)

This means that when expressing a GW in spherical gauge, we find that the detection depends on its second angular derivatives. In addition, we see that the detection still depends on the second time derivative of the wave and thus reduces to the case known for the TT gauge (cf equation (12)) when ignoring the spherical properties of the wave.
6. Dependence of the phase on the spherical modes

We have shown that GWs contain information about the spherical modes even when detecting only one ray. Therefore, we are in principle able to detect them although it is still not obvious how we detect spherical modes in practice, in particular, when the TT gauge is used to interpret detection. To clarify this last point, we discuss in this section how the spherical modes affect the main observable in GW detection—the phase of the wave [21].

The relation between the phase of a GW and its spherical modes is, in general, non-trivial due to the nonlinearity of General Relativity and how the spherical modes change as the phase evolves. Therefore, we consider the illustrative case of a pair of compact objects far from the merger. In this case, the orbit of the binary can be approximated to be Keplerian, and establishing a relation between the phase and the spherical modes is possible. Before we derive this relation, we point out that this case is illustrative but not unrealistic as GW sources can have a significant number of strong spherical modes far from the merger when they have a high eccentricity or there is a high mass ratio between the two components of the binary [41–43].

For a Keplerian orbit, the total energy of the source and the period of the orbit are, respectively,

\[E = \frac{M}{2a}, \quad (33) \]
\[P = 2\pi \sqrt{\frac{a^3}{M}}. \quad (34) \]

Combining these two equations and using that the orbital frequency of a Keplerian orbit is \(\omega_o := \frac{2\pi}{P} \), we get

\[\omega_o = \sqrt{\frac{8E^3}{32\pi M}}. \quad (35) \]

The energy carried away from the source by GWs to infinity can be expressed in terms of the spherical modes \[44 \]

\[\dot{E} = \frac{1}{16\pi} \sum_{\ell,m} |\dot{h}_{\ell,m}|^2, \quad (36) \]

where a dot indicates a time derivative, \(h_{\ell,m} := rH_{\ell,m} \), and we ignored the time derivative of \(1/r \) as it decreases as \(1/r^2 \), \(r \) being the distance between the source and the observer.

Taking the time derivative of the orbital frequency in equation (35) and using equation (36), we obtain

\[\dot{\omega}_o = \frac{3\sqrt{8}}{32\pi M} \sqrt{E} \sum_{\ell,m} |\dot{h}_{\ell,m}|^2. \quad (37) \]

The phase of a GW is the integral of the frequency of the wave over time \(\Phi_{GW} = \int \omega_{GW} dt \) while the frequency of the wave is proportional to the orbital frequency of the source’s orbit. Therefore, we get that the phase of the wave is proportional to the time integral of the sum of the absolute value of the spherical modes

\[\Phi_{GW} \propto \int \sum_{\ell,m} |\dot{h}_{\ell,m}|^2 \, dt. \quad (38) \]

From equation (38), we see that two sources with different spherical modes will have a different GW phase due to their different evolution in time. At the same time, it becomes
obvious why we need a high signal-to-noise ratio to detect the spherical modes as weak subdominant modes only change the phase marginally. Moreover, if the difference in the spherical modes of two sources is negligible then we are not able to turn them apart due to a similar evolution of their phase.

7. Conclusions

The spherical modes of GWs have become a major focus of recent detection campaigns due to the additional information they can provide. Nevertheless, detection is usually restricted to say we have detected spherical modes because of a better result when using matched filtering techniques. Although this may work well in an everyday business it is no explanation to the fundamental question of detecting a physical property. One even could think that by detecting only one ray of a GW, we should not be able to extract any information about the angular properties of the source and hence the spherical modes. At first glance, this picture even seems to be confirmed when considering detection using the usual TT gauge.

In this note, we introduced a new gauge, which we call spherical gauge. We showed that using the spherical gauge the geodesic deviation and hence detection does not only depend on the second time derivative of the wave—as for the TT gauge—but also on the angular derivatives. We further consider the behavior of the angular derivatives to show that they decrease as \(1/r\), thus being of the same order as the wave. That the detection also depends on the angular derivatives makes clear why we can detect GW spherical modes. Having information about the value of a function and its derivatives allows us to constrain an equation to a better degree. This is equally true for the spin \(\ell = -2\) spherical harmonics which are the basis of spherical mode decomposition. To better illustrate the actual detection of spherical modes, we discuss how spherical modes relate to the evolution of the source’s orbit and thus the phase of the GW. We see that using an appropriate gauge the information GW detection contains about the spherical properties of the source becomes evident and we understand why this information can be extracted using matched filtering techniques.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

Many thanks to Xian Chen for numerous challenging and thus extremely helpful discussions on the detection of GW spherical modes. I further thank Carlos F. Sopuerta for insightful comments about the effect of spherical modes on the phase of GWs. A special word of thanks is due to the anonymous referees for their comments and questions that helped to greatly improve the discussion and presentation of our results. This work was partially supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302001).

Conflict of interest

The author has no conflict of interest to disclose.
References

[1] Abbott B P et al (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett. 116 061102
[2] Abbott B P et al (LIGO Scientific Collaboration and Virgo Collaboration) 2019 GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs Phys. Rev. X 9 031040
[3] Abbott R et al (LIGO Scientific Collaboration and Virgo Collaboration) 2021 GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run Phys. Rev. X 11 021053
[4] LIGO Scientific Collaboration et al 2021 GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run (arXiv:2111.03606)
[5] Abbott R et al (LIGO Scientific Collaboration and Virgo Collaboration) 2020 GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object Astrophys. J. Lett. 896 L44
[6] Abbott R et al (LIGO Scientific Collaboration and Virgo Collaboration) 2020 GW190412: observation of a binary-black-hole coalescence with asymmetric masses Phys. Rev. D 102 043015
[7] Schmidt P, Hannam M, Husa S and Ajith P 2011 Tracking the precession of compact binaries from their gravitational-wave signal Phys. Rev. D 84 024046
[8] Bustillo J C, Clark J A, Laguna P and Shoemaker D 2018 Tracking black hole kicks from gravitational-wave observations Phys. Rev. Lett. 121 191102
[9] Torres-Orjuela A, Amaro Seoane P, Xuan Z, Chua A J,K, Rosell M J,B and Chen X 2021 Exciting modes due to the aberration of gravitational waves: measurability for extreme-mass-ratio inspirals Phys. Rev. Lett. 127 041102
[10] Torres-Orjuela A, Chen X and Amaro Seoane P 2021 Excitation of gravitational wave modes by a center-of-mass velocity of the source Phys. Rev. D 104 123025
[11] Uilliam J M, Akcay S and Thompson J E 2024 A survey of four precessing waveform models for binary black hole systems (arXiv:2402.06781)
[12] Malec E and Wylezek G 2005 The Huygens principle and cosmological gravitational waves in the Regge Wheeler gauge Class. Quantum Grav. 22 3549–53
[13] Cotesta R, Buonanno A, Bohé A, Taracchini A, Hinder I and Ossokine S 2018 Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics Phys. Rev. D 98 084026
[14] Cotesta R, Marsat S and Pürrer M 2020 Frequency-domain reduced-order model of aligned-spin effective-one-body waveforms with higher-order modes Phys. Rev. D 101 124040
[15] Khan S, Ohme F, Chatziioannou K and Hannam M 2020 Including higher order multipoles in gravitational-wave models for precessing binary black holes Phys. Rev. D 101 024056
[16] London L, Khan S, Fauchon-Jones E, García C, Hannam M, Husa S, Jiménez-Forteza X, Kalaghatgi C, Ohme F and Pannarale F 2018 First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries Phys. Rev. Lett. 120 161102
[17] Ossokine S et al 2020 Multipolar effective-one-body waveforms for precessing binary black holes: construction and validation Phys. Rev. D 102 044055
[18] Pan Y, Buonanno A, Taracchini A, Kidder L E, Mroué A H, Pfeiffer H P, Scheel M A and Szilágyi B 2014 Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism Phys. Rev. D 89 084006
[19] Field S E, Galley C R, Hesthaven J S, Kaye J and Tiglio M 2014 Fast prediction and evaluation of gravitational waveforms using surrogate models Phys. Rev. X 4 031006
[20] Li T G F 2013 Extracting physics from gravitational waves: testing the strong-field dynamics of general relativity and inferring the large-scale structure of the Universe PhD Thesis Vrije Universiteit Amsterdam
[21] Sathyaprakash B S and Schutz B F 2009 Physics, astrophysics and cosmology with gravitational waves Living Rev. Relativ. 12 2
[22] Accadia T et al 2012 Virgo: a laser interferometer to detect gravitational waves J. Instrum. 7 3012
[23] Amaro-Seoane P et al 2017 Laser interferometer space antenna (arXiv:1702.00786)
[24] Kagra Collaboration 2019 KAGRA: 2.5 generation interferometric gravitational wave detector Nat. Astron. 3 35–40
[25] LIGO Scientific Collaboration 2015 Advanced LIGO Class. Quantum Grav. 32 074001
[26] Luo J et al 2016 TianQin: a space-borne gravitational wave detector Class. Quantum Grav. 33 035010
[27] Torres-Orjuela A et al 2023 Detection of astrophysical gravitational wave sources by TianQin and LISA (arXiv:2307.16628)
[28] Badurina L et al 2020 AION: an atom interferometer observatory and network J. Cosmol. Astropart. Phys. JCAP05(2020)011
[29] Camuel B et al 2018 Exploring gravity with the MIGA large scale atom interferometer Sci. Rep. 8 14064
[30] Zhan M-S et al 2020 ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna Int. J. Mod. Phys. D 29 1940005
[31] Abe M et al 2021 Matter-wave atomic gradiometer interferometric sensor (MAGIS-100) Quantum Sci. Technol. 6 044003
[32] El-Neaj Y A et al 2020 AEDGE: atomic experiment for dark matter and gravity exploration in space EPJ Quantum Technol. 7 6
[33] Abend S et al 2023 Terrestrial very-long-baseline atom interferometry: workshop summary (arXiv:2310.08183)
[34] Einstein A 1916 Näherungsweise integration der feldgleichungen der gravitation Sitzungsber. Kgl. Preuss. Akad. Wiss. 688–96
[35] Carroll S M 1997 Lecture notes on general relativity (arXiv:gr-qc/9712019)
[36] Maggiore M 2008 Gravitational Waves. Volume 1: Theory and Experiments (Oxford University Press)
[37] Misner C W et al 2017 Gravitation (Princeton University Press)
[38] Torres-Orjuela A, Chen X, Cao Z, Amaro-Seoane P and Peng P 2019 Detecting the beaming effect of gravitational waves Phys. Rev. D 100 063012
[39] Ruiz M, Alcubierre M, Núñez D and Takahashi R 2008 Multipole expansions for energy and momenta carried by gravitational waves Gen. Relativ. Gravit. 40 2467
[40] Goldberg J N, Macfarlane A J, Newman E T, Rohrlich F and Sudarshan E C G 1967 Spin-s Spherical Harmonics and J. Math. Phys. 8 2155–61
[41] Drasco S and Hughes S A 2006 Gravitational wave snapshots of generic extreme mass ratio inspirals Phys. Rev. D 73 024027
[42] Peters P C and Mathews J 1963 Gravitational radiation from point masses in a Keplerian orbit Phys. Rev. 131 435–40
[43] Torres-Orjuela A 2023 Detecting intermediate-mass black hole binaries with atom interferometer observatories: using the resonant mode for the merger phase AVS Quantum Sci. 5 045002
[44] Gerosa D, Hebert F and Stein L C 2018 Black-hole kicks from numerical-relativity surrogate models Phys. Rev. D 97 104049