Remodeling of *Mycobacterium tuberculosis* lipids regulates *prpCD* during acid growth arrest

Jacob J. Baker and Robert B. Abramovitch*

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 48824, United States.

*Corresponding Author

Robert B. Abramovitch

E-mail: abramov5@msu.edu

Phone: (517) 884-5416

Fax: (517) 353-8957
Abstract

Mycobacterium tuberculosis (Mtb) establishes a state of non-replicating persistence when it is cultured at acidic pH with glycerol as a sole carbon source. Growth can be restored by spontaneous mutations in the *ppe51* gene or supplementation with pyruvate, supporting that acid growth arrests is a genetically controlled, adaptive process and not simply a physiological limitation associated with acidic pH. Transcriptional profiling identified the methylcitrate synthase and methylcitrate dehydratase genes (*prpC* and *prpD*, respectively) as being selectively induced during acid growth arrest. *prpCD* along with isocitrate lyase (*icl*) enable Mtb to detoxify propionyl-CoA through the methylcitrate cycle. The goal of this study was to examine mechanisms underlying the regulation of *prpCD* during acid growth arrest. Induction of *prpCD* during acid growth arrest was reduced when the medium was supplemented with vitamin B12 (which enables an alternative propionate detoxification pathway) and enhanced in an *icl* mutant (which is required for the propionate detoxification), suggesting that Mtb is responding to elevated levels of propionyl-CoA during acidic growth arrest. We hypothesized that an endogenous source of propionyl-CoA generated during metabolism of methyl-branched lipids may be regulating *prpCD*. Using Mtb radiolabeled with 14C-propionate or 14C-acetate, it was observed that lipids are remodeled during acid growth arrest, with triacylglycerol being catabolized and sulfolipid and trehalose dimycolate being synthesized. Blocking TAG lipolysis using the lipase inhibitor tetrahydrolipstatin, resulted in enhanced *prpC* induction during acid growth arrest, suggesting that lipid remodeling may function, in part, to detoxify propionate. Notably, *prpC* was not induced during acid growth arrest when using lactate instead of glycerol. We propose that metabolism of glycerol at acidic pH may result in the accumulation of propionyl-CoA and that lipid remodeling may function as a detoxification mechanism.
Importance

During infection, *Mycobacterium tuberculosis* (Mtb) colonizes acidic environments, such as the macrophage phagosome and granuloma. Understanding regulatory and metabolic adaptations that occur in response to acidic pH can provide insights into mechanisms used by the bacterium to adapt to the host. We have previously shown that Mtb exhibits pH-dependent metabolic adaptations and requires anaplerotic enzymes, such as Icl1/2 and PckA, to grow optimally at acidic pH. Additionally, we have observed that Mtb can only grow on specific carbon sources at acidic pH. Together these findings show that Mtb integrates environmental pH and carbon source to regulate its metabolism. In this study, it is shown that Mtb remodels its lipids and modulates the expression of propionyl-CoA detoxifying genes *prpCD* when grown on glycerol at acidic pH. This finding suggests that lipid remodeling at acidic pH may contribute to detoxification of propionyl-CoA, by incorporating the metabolite into methyl-branched cell envelope lipids.
Introduction

Survival of *Mycobacterium tuberculosis* (Mtb) during infection requires sensing and adapting to the diverse and adverse environments of the host. Growing evidence suggests that the mechanisms of Mtb adaptation during infection are unique from those required during *in vitro* culture. First, many genes dispensable for growth *in vitro* have been shown to be essential during infection(1, 2). Similarly, past efforts that identified antimycobacterial drugs with potent *in vitro* activity have been unable to achieve *in vivo* efficacy, possibly due to the distinct *in vivo* environment and the physiological state of Mtb in response to that environment(3). Thus, development of effective therapy for Mtb requires careful consideration of the environmental conditions encountered by Mtb during infection.

A growing body of research supports that adaptation to acidic pH is important to Mtb pathogenesis. Mtb colonizes mildly acidic environments (~pH 6.5-5.0) in the macrophage phagosome and induces genes regulated by the acidic pH-inducible PhoPR two component regulator(4-6). Mutants that are defective in maintaining cytosolic pH-homeostasis (*e.g.* marP(7, 8)) or altering gene expression in response to acidic pH (*phoPR*(5)) are strongly attenuated for growth in macrophages and infected mice(5, 7, 9), supporting that acid tolerance and pH-dependent adaptations are required for Mtb pathogenesis.

Mtb growth at acidic pH in minimal medium requires host-associated carbon sources that function at the intersection of glycolysis and the TCA cycle (*e.g.* pyruvate, acetate, oxaloacetate and cholesterol)(10). In contrast, in other tested carbon sources (such as glucose or glycerol), Mtb fully arrests its growth at acidic pH, establishes a state of non-replicating persistence (NRP), and becomes tolerant to antibiotics(11). Growth-arrested Mtb is resuscitated by the addition of pyruvate showing that growth arrest is due to a pH-dependent checkpoint on metabolism or nutrient acquisition. Additionally,
mutations in PPE51 enable Mtb to grow in acidic medium with glycerol as a sole carbon
source, demonstrating that acid growth arrest is a regulated process. This acidic pH- and
carbon source-dependent NRP is a new model of Mtb persistence, that is referred to as
acid growth arrest(11), and provides new opportunities to conduct studies examining
mechanisms underlying how pH regulates Mtb growth, metabolism, persistence and
transcriptional networks.

Transcriptional profiling identified several genes with strong induction at acidic
pH, independent of carbon source, including genes associated with anaplerotic
metabolism (e.g. icl1, pckA, ppdK, and mez), respiration (e.g. type 2 NADH
dehydrogenase, ndh), and amino acid/nitrogen metabolism (e.g. arginine biosynthesis,
argCDFGHR). Icl1/2 and pckA are induced at acidic pH in both carbon sources and we
have previously shown that they are required for optimal growth and metabolic
remodeling at acidic pH(11). In addition to inducing genes involved in the anaplerotic
node, we also observed that Mtb induces a subset of genes specifically during acidic pH
growth arrest(10). Notably, these genes were not induced at acidic pH when
supplemented with the growth permissive carbon source pyruvate. Among these acidic
pH growth arrest-induced genes were two genes involved in the methylcitrate cycle,
encoding methylcitrate synthase and methylcitrate dehydratase (prpC and prpD,
respectively). prpCD, along with icl1 which is also a methylisocitrate lyase, have been
characterized for their role in the detoxification of propionyl-CoA intermediates generated
from the catabolism of cholesterol as well as branched- and odd-chain fatty acids (12-16). The prpCD operon is induced by cholesterol, propionate and hypoxia and this
induction is dependent on the SigE-regulated Rv1129c regulator (16, 17). However, Mtb
cultured at acidic pH in a defined minimal medium does not have an exogenous source
of propionyl-CoA, cholesterol or other branched chain precursors. Given the lack of an
obvious propionyl-CoA source in the minimal medium conditions of acidic pH growth
arrest, understanding the mechanisms of induction of prpCD at acidic pH could provide further insights into the metabolic state of Mtb at acidic pH. Mtb remolds its lipids at acidic pH, including the induction of sulfolipid, 2,3-diacyltrehaloses (DAT) and penta-acyltrehaloses (PAT)(10). These lipids and other long-chain fatty acids contain methyl-branched lipids, which are preferentially labelled when Mtb is provided 14C-propionate(18, 19). The goal of this study was to test the hypothesis that prpCD is induced during acid growth arrest due to presence of endogenous propionyl-CoA released during lipid remodeling.

Results

Transcriptional induction of prpCD during acidic growth arrest

Induction of prpCD at acidic pH in minimal medium with glycerol as a sole carbon source was verified by quantitative PCR (Figure 1A). We hypothesized that the observed prpCD induction is the result of increased endogenous production of propionyl-CoA during acidic pH growth arrest. Previous work has shown that supplementation of vitamin B12 is able to relieve the requirement for prpCD-mediated propionyl-CoA metabolism by opening the alternative methylmalonyl pathway (14). The supplementation of vitamin B12 significantly reduced prpCD expression at both pH 7.0 and pH 5.7 (Figure 1B). Similarly, in the Δicl1/2 mutant that lacks methylisocitrate lyase activity, prpC expression was increased ~2-fold at pH 5.7 as compared to WT Mtb (Figure 1C). Together, these results support the proposal that prpCD induction at acidic pH is linked to propionyl-CoA metabolism.

Because prpCD expression at acidic pH responds to changes in propionyl-CoA metabolism, we sought to identify the source of propionyl-CoA that could lead to prpCD induction. The rich medium 7H9+OADC may contain some propionyl-CoA sources from the supplemented albumin, therefore, we tested whether there was carryover of these
carbon sources into the minimal medium culture. After washing Mtb cultures 3 times in
minimal medium prior to transfer to acid growth arrest medium, prpC was still induced
following 3 days of acidic growth arrest (Figure 1D). Furthermore, Mtb grown from a
frozen stock grown exclusively in minimal medium containing glycerol as a single carbon
source still induced prpC at pH 5.7 with glycerol as a sole carbon source (Figure 1D).
Together, these results suggest that the induction of prpCD is not due to an exogenous
propionyl-CoA source.

*Mtb cell envelope remodeling under acidic pH growth arrest modulates prpCD
induction.*

Given the absence of an exogenous propionyl-CoA source, we hypothesized that
one source of propionate during pH 5.7 growth arrest could be the breakdown of Mtb cell
envelope or storage lipids. To test this hypothesis, Mtb was cultured in rich medium in
the presence of 14C-propionate or 14C-acetate for 3 weeks in order to radiolabel Mtb
lipids. This radiolabeled Mtb was then inoculated into minimal medium at pH 5.7
containing glycerol as a single carbon source and the relative abundance of lipid species
was measured over time during pH 5.7 growth arrest. The total radioactivity of the
samples decreased by less than 10% through the 12-day time course (Figure 2A);
however, over the same time period the relative abundance of radiolabeled
triacylglycerol (TAG) decreased to one-fourth of the initial concentration while the
relative abundance of both trehalose dimycolate (TDM) and sulfolipid (SL) increased ~4-
fold (Figure 2B-H). This result suggests that during pH 5.7 growth arrest, Mtb may utilize
endogenous TAG to remodel its cell wall through the increased synthesis of both TDM
and SL.

To test the hypothesis that lipid remodeling is a source of endogenous propionyl-
CoA during pH 5.7 growth arrest, we sought to disrupt the ability of Mtb to metabolize
TAG to SL and TDM. The addition of the lipase inhibitor tetrahydrolipstatin (THL) to Mtb cultures blocked the remodeling of Mtb TAG to SL and TDM (Figure 3A-C). Interestingly, despite blocking lipid remodeling, treatment with THL increased prpC expression during pH 5.7 growth arrest 3-fold compared to DMSO treated Mtb (Figure 3D). This result suggests that lipid remodeling of TAG to SL and TDM is not a source of prpCD induction at acidic pH; instead, the increase in prpC induction with addition of THL suggests that lipid remodeling at acidic pH may act as a mechanism to relieve propionyl-CoA stress.

Given that endogenous lipid remodeling does not appear to be the source of prpC induction at acidic pH, we sought to better understand the conditions leading to prpCD induction. Interestingly, although Mtb arrests growth at pH 5.7 with lactate as a single carbon source(10), induction of prpCD is not observed in Mtb cultured with lactate as a single carbon source (Figure 3E). This observation suggests that prpCD induction during pH 5.7 growth arrest is glycerol-dependent rather than growth arrest dependent. The observation that prpCD induction at pH 5.7 does not appear to be required for Mtb growth arrest is consistent with the previous finding that the role of icl1/2 in growth regulation appears to be independent of the methylcitrate cycle (11).

Discussion

Transcriptional profiling experiments first indicated that prpCD were induced at acidic pH, but only in the presence of glycerol and not pyruvate. Under conditions of robust growth (acidic pH with pyruvate as a carbon source), prpCD is slightly repressed at pH 5.7 as compared to pH 7.0. The loss of prpCD induction in the presence of vitamin B12 is strongly suggestive that this response is dependent on enhanced accumulation of propionyl-CoA. Interestingly, another cistron that showed the same expression pattern (induced in glycerol and repressed in pyruvate at pH 5.7), includes the Rv2557 and Rv2558 genes. These genes have been previously shown to be induced during
starvation and in human granulomas (20). Although, it has previously been shown that
Mtb uptakes glycerol during acid growth arrest (11), it is possible that due to a metabolic
adaptation that it cannot efficiently utilize glycerol for growth, and thus acid growth
arrest, may have some similarities to a carbon starvation response. This would be
consistent with the observed TAG catabolism, where it could be utilized as an energy
source.

Our initial hypothesis was that prpCD is induced during acid growth arrest due to
the production of propionyl-CoA generated during lipid remodeling. Lipid remodeling was
observed during acid growth arrest, with TAG being catabolized and TDM and SL being
synthesized. However, inhibiting lipases with THL resulted in further induction of prpCD,
a finding contrary to the initial hypothesis. Rather, this finding suggests that lipid
remodeling at acidic pH may instead contribute to detoxification of propionyl-CoA, by
incorporating the metabolite into methyl-branched cell envelope lipids. The metabolic
coupling of propionyl-CoA metabolism to lipid synthesis at acidic pH is consistent with
previous work showing lipid synthesis as a readily usable sink for propionyl-CoA
incorporation (16, 21, 22). Unlike in this previous work, during acidic pH growth arrest in
glycerol-containing medium, the source of propionyl-CoA appears to be endogenous
rather than exogenously supplied.

The induction of prpCD during acid growth arrest was shown to be dependent on
glycerol being present in the media, suggesting that the induction of prpCD is dependent
on metabolism of glycerol at acidic pH (Figure 4A). To our knowledge, glycerol
metabolism leading to the production of propionyl-CoA has not been documented in Mtb.
However, in other bacterial species, three separate pathways for the production of
propionyl-CoA have been described (23). One of these pathways, the propanediol
pathway, involves the conversion of methylglyoxal to propionate (24). Given that
methylglyoxal can accumulate in Mtb as a byproduct of dihydroxyacetone phosphate
(DHAP) metabolism, particularly after inhibition of glycolysis (3), we speculate that
prpCD induction at acidic pH could be secondary to production of propionyl-CoA via this
propanediol pathway or a related pathway (Figure 4B). However, whether Mtb contains
enzymes capable of performing this metabolism is not known. Endogenous production of
propionyl-CoA does not appear to be a necessary component of acidic pH growth arrest
as growth arrested Mtb cultured in minimal medium with lactate does not induce prpCD
at acidic pH; however, understanding this response could uncover additional aspects of
Mtb metabolic remodeling that occurs during acidic pH growth arrest.

Methods

Bacterial strains and growth conditions

Bacterial growth and strains are as previously described (11). Briefly, all Mtb
experiments, unless otherwise stated, were performed with Mtb strain CDC1551.
 Cultures were maintained in 7H9 Middlebrook medium supplemented with 10% OADC
and 0.05% Tween-80 and incubated with 5% CO₂. All single carbon source experiments
were performed in MMAT defined minimal medium as described by Lee et al. (22): 1 g/L
KH₂PO₄, 2.5 g/L Na₂PO₄, 0.5 g/L (NH₄)₂SO₄, 0.15 g/L asparagine, 10 mg/L MgSO₄,
50 mg/L ferric ammonium citrate, 0.1 mg/L ZnSO₄, 0.5 mg/L CaCl₂, and 0.05%
Tyloxapol. Medium was buffered using 100 mM MOPS (pH 6.6–7.0) or MES (pH 5.7–
6.5) (25).

RNA extraction and real time PCR

Mtb cultures were grown at 37°C in T-25 vented, standing tissue culture flasks in 8 mL of
a defined minimal medium seeded at an initial OD₆₀₀ of 0.25. After three days, total
bacterial RNA was stabilized and extracted as previously described (4). Semi-
quantitative real-time PCR was performed using previously described methods (5).
Vitamin B12 was supplemented at 10 µg/mL and tetrahydrolipstatin (THL) was added
at a concentration of 20 µM. All experiments were conducted with at least two biological replicates and repeated at least twice.

Analysis of mycobacterial lipids

For lipid remodeling experiments, bacterial cultures were grown in 7H9 +10% OADC with either 8 μCi of [1,2 \(^{14}\)C] sodium acetate or [1-\(^{14}\)C] sodium propionate. Following 15 days of labeling, the bacteria were pelleted and resuspended in the minimal medium containing glycerol as a single carbon source buffered to either pH 7.0 or pH 5.7. At day 0, 6, and 12, two 1 mL aliquots were pelleted and fixed in 4% paraformaldehyde, and the remaining bacteria were pelleted, washed, and the lipids extracted as described previously (10). Total radioactivity and \(^{14}\)C incorporation were determined by scintillation counting of the fixed samples and the total extractable lipids, respectively. To analyze lipid species, 5,000 counts per minute (CPM) of the lipid sample was spotted at the origin of 100 cm\(^2\) silica gel 60 aluminum sheets. To separate sulfolipid for quantification, the TLC was developed with a chloroform:methanol:water (90:10:1 v/v/v) solvent system (18). To separate TAG for quantification, the TLC was developed with a hexane:diethyl ether:acetic acid (80:20:1, v/v/v) solvent system (5). To examine TDM and TMM accumulation the TLC was developed in a chloroform:methanol:ammonium hydroxide (80:20:2 v/v/v) solvent system. Radiolabeled lipids were detected and quantified using a phosphor screen and a Typhoon Imager, and band density quantified using ImageQuant software (26). Radiolabeling experiments, lipid extractions and TLCs were repeated in at least two independent biological replicates with similar findings in both replicates.
Acknowledgements

We thank Prof. John McKinney for the generous gift of the ∆icl1/2 mutant and matched wild type control strain used in this study. JB was supported by a Robert J. Schultz student research award. This study was supported by funding from the Michigan State University start-up funds, AgBioResearch and grants from the NIH-NIAID (U54AI057153 and R01AI116605).

Author Contributions

JB conducted the experiments and JB and RBA designed the experiments, analyzed the data and wrote the manuscript.
References

1. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR, Jr., Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735-738.

2. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. P Natl Acad Sci USA 107:9819-9824.

3. Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhlen K, Phong WY, Patel V, Beer D, Walker JR, Duraiswamy J, Jiricek J, Keller TH, Chatterjee A, Tan MP, Ujjini M, Rao SP, Camacho L, Bifani P, Mak PA, Ma I, Barnes SW, Chen Z, Plouffe D, Thyalaran P, Ng SH, Au M, Lee BH, Tan BH, Ravindran S, Nanjundappa M, Lin X, Goh A, Lakshminarayana SB, Shoen C, Cynamon M, Kreiswirth B, Dartois V, Peters EC, Glynne R, Brenner S, Dick T. 2009. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature communications 1:57.

4. Rohde KH, Abramovitch RB, Russell DG. 2007. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352-364.

5. Abramovitch RB, Rohde KH, Hsu FF, Russell DG. 2011. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 80:678-694.

6. Rohde KH, Veiga DF, Caldwell S, Balazsi G, Russell DG. 2012. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8:e1002769.

7. Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S. 2008. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat Med 14:849-854.

8. Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L. 2016. Mycobacterial Acid Tolerance Enables Phagolysosomal Survival and Establishment of Tuberculous Infection In Vivo. Cell Host Microbe 20:250-258.

9. Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C. 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41:179-187.
10. **Baker JJ, Johnson BK, Abramovitch RB.** 2014. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol Microbiol **94**:56-69.

11. **Baker JJ, Abramovitch RB.** 2018. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci Rep **8**:4168.

12. **Munoz-Elias EJ, McKinney JD.** 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med **11**:638-644.

13. **Eoh H, Rhee KY.** 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A **111**:4976-4981.

14. **Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V, Dawes SS.** 2008. Functional characterization of a vitamin B-12-dependent methylmalonyl pathway in *Mycobacterium tuberculosis*: Implications for propionate metabolism during growth on fatty acids. J Bacteriol **190**:3886-3895.

15. **VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, Crowe AM, Eltis LD, Perola E, Deininger DD, Wang T, Locher CP, Russell DG.** 2015. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog **11**:e1004679.

16. **Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, Bertozzi CR, Sassetti CM.** 2012. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol **19**:218-227.

17. **Datta P, Shi L, Bibi N, Balazsi G, Gennaro ML.** 2011. Regulation of central metabolism genes of Mycobacterium tuberculosis by parallel feed-forward loops controlled by sigma factor E (sigma(E)). J Bacteriol **193**:1154-1160.

18. **Asensio JG, Maia C, Ferrer NL, Barilone N, Laval F, Soto CY, Winter N, Daffe M, Gicquel B, Martin C, Jackson M.** 2006. The virulence-associated two component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in *Mycobacterium tuberculosis*. J Biol Chem **281**:1313-1316.

19. **Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I.** 2006. The *Mycobacterium tuberculosis* PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol **60**:312-330.

20. **Gordhan BG, Smith DA, Kana BD, Bancroft G, Mizrahi V.** 2006. The carbon starvation-inducible genes Rv2557 and Rv2558 of Mycobacterium tuberculosis...
are not required for long-term survival under carbon starvation and for virulence in SCID mice. Tuberculosis (Edinb) **86**:430-437.

21. Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD, Bertozzi CR, Leary JA, Cox JS. 2007. Lipidomics reveals control of *Mycobacterium tuberculosis* virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A **104**:5133-5138.

22. Lee W, Vanderven BC, Fahey RJ, Russell DG. 2013. Intracellular *Mycobacterium tuberculosis* exploits host-derived fatty acids to limit metabolic stress. J Biol Chem.

23. Reichardt N, Duncan SH, Young P, Belenguer A, Leitch C, Scott KP, Flint HJ, Louis P. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal **8**:1323-1335.

24. Saxena RK, Anand P, Saran S, Isar J, Agarwal L. 2010. Microbial production and applications of 1,2-propanediol. Indian Journal of Microbiology **50**:2-11.

25. Piddington DL, Kashkouli A, Buchmeier NA. 2000. Growth of *Mycobacterium tuberculosis* in a defined medium is very restricted by acid pH and Mg2+ levels. Infect Immun **68**:4518-4522.

26. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature methods **9**:671-675.
Figure 1. prpCD is induced at acidic pH and responds to alterations in propionyl-CoA metabolism. A) Quantitative real time PCR (qPCR) of prpC and prpD mRNA at pH 7.0 and pH 5.7 with glycerol as a single carbon source confirms that prpCD are induced during acidic pH growth arrest. * Significantly induced (p<0.05) at pH 5.7 relative to pH 7.0 (t test). B) prpCD expression at pH 7.0 and pH 5.7 is reduced with addition of vitamin B12. * Significantly induced (p<0.05) at pH 5.7 relative to pH 7.0 (t test). C) prpC expression at pH 7.0 and pH 5.7 is increased in the Δicl1/2 mutant. * Significantly induced (p<0.05) at in icl1/2 mutant relative to WT (t test). D) prpC induction at pH 5.7 in minimal medium with glycerol as a single carbon is observed in Mtb that was maintained prior to the experiment in 7H9+OADC rich medium-(Gly [7H9]), in 7H9+OADC and washed 3 times in PBS + 0.05% Tween 80 (Gly [Washed]), and in Mtb cultured in minimal medium with glycerol as a single carbon source buffered to pH 7.0 (Gly [MMAT]). * Significantly induced (p<0.05) at pH 5.7 relative to pH 7.0 (t test). All experiments repeated at least twice with two independent biological replicates.
Figure 2. Mtb utilizes endogenous TAG for the synthesis of TDM and SL at acidic pH. Mtb was grown in the presence of 14C-acetate or 14C-propionate for 3 weeks prior to transferring to minimal medium containing glycerol as a single carbon source buffered to pH 5.7. A) Total radioactivity of Mtb whole cells over time. Over 12 days a ~10% reduction in radioactivity was observed. B) Relative lipid species abundance of triacylglycerol (TAG), sulfolipid (SL), and trehalose dimycolate (TDM) over time in Mtb labelled with 14C-acetate (Ace) or 14C-propionate (Prop). C-H) Thin Layer Chromatography (TLC) images showing relative abundance of TAG, SL and TDM at 0, 6, and 12 days after transfer of 14C-acetate- (C-E) or 14C-propionate- (F-H) labeled Mtb to acidic pH growth arrest (D0, D6, and D12, respectively).
Figure 3. Inhibition of lipid remodeling at acidic pH increases prpC induction. A-C) Remodeling of radiolabeled TAG, TDM, and SL at day 0 (D0) and after incubation for 6 days at pH 7.0 or pH 5.7 (D6 7.0 or D6 5.7, respectively) in minimal medium with glycerol as a single carbon source with or without the addition of the lipase inhibitor tetrahydrolipstatin (WT or +THL, respectively). Addition of THL blocks the ability of Mtb to undergo lipid remodeling. D) Addition of THL increases prpC expression at pH 7.0 and pH 5.7. *Significantly induced (p<0.05) at pH 5.7 relative to pH 7.0 (t test). E) prpC is not induced at pH 5.7 with lactate as a single carbon source. Fold change is relative to Mtb grown in glycerol as a sole carbon source at pH 7.0.
Figure 4. Models for \textit{prpCD} induction and metabolism remodeling during acidic pH growth arrest.

A) \textit{prpCD} is induced during acidic pH growth arrest when glycerol is present in the medium, but not when lactate is the single carbon source. It is speculated that the metabolism of glycerol may lead to \textit{de novo} synthesis of propionyl-CoA. The increased expression of \textit{prpCD} in the absence of \textit{Mtb} lipid remodeling of triacylglycerol (TAG) to sulfolipid (SL) and trehalose dimycolate (TDM) suggests that \textit{Mtb} uses lipid remodeling as a sink for propionyl-CoA.

B) Speculative metabolic pathway for the generation of propionate from glycerol that has been observed in microbes found in the human gut (23).