DOES THE STELLAR DISTRIBUTION FLARE? A COMPARISON OF STELLAR SCALE HEIGHTS WITH LAB H I DATA

P. M. W. Kalberla1, J. Kerpl, L. Dedes1, and U. Haud2

1 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany; pkalberla@astro.uni-bonn.de
2 Tartu Observatory, 61602 Tõravere, Estonia

Received 2014 May 21; accepted 2014 August 21; published 2014 September 25

ABSTRACT

The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

Key words: Galaxy: disk – Galaxy: kinematics and dynamics – Galaxy: stellar content – Galaxy: structure – ISM: structure

Online-only material: color figures

1. INTRODUCTION

Observations of the H I gas distribution in the Milky Way galaxy have shown early on that the H I distribution is warped (Westerhout 1962). Furthermore, the scale height of the density distribution increases systematically with galactocentric radius R (Lozinskaya & Kardashev 1963). Because of the strength of this effect, this phenomenon was described as flaring. However, for the stars, the situation appeared to be different. A constant scale height was reported by most of the observers.

Flaring of H I gas is a natural phenomenon revealing the radial mass distribution of the Milky Way galaxy. Considering the barometric equation, the gravitational force balances gas pressure and turbulent motions. Pressure and turbulence can be characterized by the velocity dispersion σ_z of the objects under consideration as a function of R. It is a well-established fact that the surface density distributions of stars and gas in most of the galaxies decrease exponentially with R (Freeman 1970; Bigiel & Blitz 2012). Consequently, the gravitational forces $k_z(R)$ perpendicular to the plane decrease with R. Since the velocity dispersion of the H I gas distribution is approximately independent of R (e.g., Spitzer 1968) the associated scale height $h_z(R)$ of the gas increases exponentially with R.

Lozinskaya & Kardashev (1963) were the first to describe the warping and flaring of H I gas in detail. They also noted that stars do not share the gaseous flaring and deduced from this different behavior that flaring cannot be caused by gravitational effects. Alternatively, they proposed that regular magnetic fields cause the gaseous flaring. Today we know that the magnetic fields are oriented predominantly parallel to the Galactic plane, with a strength of a few μG (Beck & Wielebinski 2013) on average. X-shaped halo fields are sometimes observed, indicating an opening of the field lines with R similar to the flaring H I layer. Unambiguous proof that magnetic forces cause the H I layer to flare is still missing (Gressel et al. 2013).

As with the distribution of the baryonic matter, flaring might be also affected by the dark matter distribution. Olling (1995) demonstrated that the shape of the flaring H I layer is affected by the flattening of the dark matter component. Olling & Merrifield (2000, 2001), and later Narayan & Jog (2002), Kalberla (2003), Narayan et al. (2005), and Kalberla et al. (2007) applied this basic idea to model the Milky Way mass distribution using full-sky H I data. According to these investigations, it became evident that stellar flaring is also expected to be observed (Jog 2007). Olling & Merrifield (2000, 2001) assumed constant scale heights for the stellar distribution and note that their results do not depend on the details of the vertical distribution. Contrary to this, Kalberla (2003) and Kalberla et al. (2007) found interrelations between the scale heights of all model components. Vertical changes in the mass distribution affect the scale heights of the other components. Their aim was eventually to match the mass model to the observed H I flaring. Several axisymmetric spheroidal halo models were considered, but neither oblate nor prolate models fitted all observations at the same time; the solutions were found to depend on the radial scales considered. The best fit was obtained with an isothermal dark matter distribution in a thick disk and an associated ring in the Galactic plane at $13 < R < 18.5$ kpc. Such an axisymmetric model is certainly only an approximation because it is evident from the H I distribution that toward the southern sky (approximately in direction to the Magellanic System) there is more gas and baryonic mass (Kalberla et al. 2007; Kalberla & Dedes 2008). These findings agree well with the orientation of the minor axis of the triaxial mass distribution derived by Law et al. (2009).

So far the stellar distributions appear to behave differently. The constant scale height of stars (van der Kruit & Searle 1982) demands an exponential fall-off of the velocity dispersion proportional to R (Lewis & Freeman 1989). This, however, is hard to understand physically since the radial decrease in surface density needs to be precisely compensated by the fall-off of the stellar vertical velocity dispersion σ_z (van der Kruit & Freeman 2011, see Section 3.2.3 for discussion).

For most studies of stellar population synthesis, flaring is either not considered or only minor corrections of $k_{\text{bare}} = 1 + 0.054 (R - R_{\text{flare}})$ to the stellar scale height for $R > R_{\text{flare}}$ with $R_{\text{flare}} = 9.5$ kpc are applied (Gyuk et al. 1999; Reylé et al. 2009). Recently, Polido et al. (2013) used the relation $k_{\text{exp}} = e^{0.4(R - R_0)}/R_0$.
2. EVIDENCE FOR FLARING FROM OBSERVATIONS

2.1. Preliminaries

The determination of scale heights depends on the determination of distances to the objects under consideration. The distance scale is tied to R_\odot. Here we use $R_\odot = 8$ kpc, the standard value used for stellar data in the publications mentioned below.

From the barometric equation, the flaring amplitude at a particular position depends on the velocity dispersion of the component under investigation. Accordingly, to quantify flaring, one needs to distinguish between the underlying disk populations (either thin or thick) since they are characterized by different velocity dispersions. Both components may have different radial scale lengths and a mix could therefore mimic a pseudo-flaring. We distinguish between thin and thick disk components in the following discussion.

H_I distances are derived as kinematical distances and depend on the rotation curve used, and hence on the Galactic mass model. For stellar distance determination, photometric distances are mostly used. Using the luminosity function (Wainscoat et al. 1992) the differential star counts along the line of sight can be converted to space densities. Star counts need to be corrected for extinction. The completeness of the sample and selection effects need to be investigated carefully. Moreover one needs to investigate potential signatures for a warp. Such details have been taken into account by the publications discussed below but will not be subject of our paper.

2.2. H_I and CO

Observations of the H_I gas in the outer part of the Milky Way have early on shown significant changes of the scale heights with radius R. Burton (1976) derived for $R > 7.6$ kpc the flaring relation $h(R) = 1 + 0.19(R - 7.6)$. For $R = 2 R_\odot$ the flaring in H_I is about a factor of two stronger compared to heights used by Gyuk et al. (1999), Reylé et al. (2009), and Polido et al. (2013).

The molecular gas distribution in the Milky Way also shows flaring consistent with H_I data (Kalberla et al. 2007, Figure 15), Bronfman et al. (1988), Wouterloot et al. (1990), and Malhotra (1994) analyzed CO as a tracer of the molecular gas distribution.

In the following we will consider more recent H_I Leiden/Argentine/Bonn (LAB) survey data (Kalberla et al. 2005) and flaring compilations from Kalberla et al. (2007), Kalberla & Dedes (2008), and Kalberla & Kerp (2009).

2.3. Cepheids

Feast et al. (2014, F14) report the detection of five classical Cepheid stars toward the Galactic bulge 1–2 kpc above the plane. Distances were derived from the well-calibrated period–luminosity relationship. These stars were observed in two colors, so that their distances and reddenings could be determined simultaneously. The puzzling result, however, is that these massive young stars ($age \leq 130 \times 10^6$ yr) are located very high above the Galactic plane. Because they are observed toward both Galactic hemispheres, this finding is interpreted as a strong indication for stellar flaring at distances of $13 < R < 22$ kpc. Feast et al. (2014) conclude that the derived heights are consistent with H_I flaring according to Kalberla et al. (2007).

2.4. 2MASS

2.4.1. The Thin Disk

Alard (2000, A00) was the first to report on evidence for the flaring of stars but his contribution remains unpublished. He analyzed three stripes of Two Micron Sky Survey (2MASS) data oriented perpendicular to the Galactic plane with $|b| < 50^\circ$ toward the longitudes $l = 66^\circ$, $l = 180^\circ$, and $l = 240^\circ$. 5.6 10^6 stars in 169 lines of sight were analyzed. We plot the results in Figure 1.

Figure 1. Exponential scale heights for the stellar thin disk from (Alard 2000, A00) for Galactic longitudes $l = 66^\circ$, 180°, and 240°. The red solid line (plotted only for $R > 12$ kpc) is derived from H_I data according to Kalberla et al. (2007) after matching the gaseous scale heights to those of the stellar component. The green dashed line shows flaring curves as expected from the H_I mass model; the black solid line is the exponential approximation (5).

(A color version of this figure is available in the online journal.)

2.4.2. The Old Stellar Population

Lopez-Corredoira et al. (2002, LC02) selected two well-defined samples for the determination of stellar flaring, red clump giants and old disk stars, limited in apparent K-band magnitude to 14.0. Young stars and spiral arms were avoided. 2MASS data were used within distances $4 < R < 15$ kpc. The basic assumption was that their sample is dominated by the old disk population. A relaxed distribution is expected with well-defined scale heights.

Both samples were found to give consistent results. Lopez-Corredoira et al. (2002) derive the best fit flaring for $h_z(R_\odot) = 0.285$ kpc

$$ h_z(R) = h_z(R_\odot)exp((R - R_\odot)/(12 - 0.6 R)) \quad (1) $$

for $R < 15$ kpc and conclude that their result agrees well with Alard (2000) for $R < 12$ kpc. We plot this fit in Figure 2.

2.4.3. Red Clump and Red Clump Giant Stars

Momany et al. (2006, M06) used 2MASS red clump and red clump giant stars, selected at fixed heliocentric distances $D = 2.8, 7.5$ and 16.6 kpc. These objects are good standard candles for estimating distances and were chosen under the assumption that they may suffer the least external contamination by nearby dwarfs. The authors find indications for a stellar flaring but did
not attempt to parameterize it. We therefore show their data in Figures 2 and 3. While the $D = 2.8$ kpc sample appears to be more representative for a thin disk ($h_z(R) \sim 0.35$ kpc), the $D = 7.5$ and 16.6 kpc sample shows a flaring with an intermediate local scale height of $h_z(R) \sim 0.65$ kpc, more characteristic for a thick disk.

2.5. SDSS

Hammersley & López-Corredoira (2011, H11) used stars of type F8V to G5V from Sloan-Digital Sky Survey (SDSS) data release DR7 (Abazajian et al. 2009). Five fields for $150^\circ < l < 223^\circ$ and $11^\circ < b < 31^\circ$ were chosen. They modeled the thin disk assuming an admixture from the thick disk (density 9% of that of the thin disk) with a common flare for both components according to

$$h_z,\text{thin/thick}(R) = \begin{cases} h_z,\text{thin/thick}(\odot), & R \leq 16 \text{ kpc} \\ h_z,\text{thin/thick}(\odot) \exp \left(\frac{R - 16}{R_{\text{ft}}} \right), & R > 16 \text{ kpc}. \end{cases}$$

(2)

For $R < 16$ kpc they obtained a flare with a radial scale length $h_{\text{ft}} = 4.5 \pm 1.5$ kpc. Local thin and thick disk scale heights were fixed to $h_z,\text{thin}(\odot) = 0.186$ kpc and $h_z,\text{thick}(\odot) = 0.631$ kpc. The corresponding thin disk flaring curve is plotted in Figure 2.

2.6. SDSS-SEGUE

Lopez-Corredoira & Molgo (2014, LC14) used stars of type F8V-G5V from the SDSS-Sloan Extension for Galactic Understanding and Exploration (SDSS-SEGUE) constrained to $R < 30$ kpc and $|z| < 15$ kpc. To avoid strong extinction within the Galactic plane, they only used stars within $8^\circ < |b| < 22^\circ$. The radial scale length and the local scale heights for the thin and thick disks were fitted in regions with $|z| < 3$ kpc, $R < 15$ kpc. For a second-order flaring fit, all regions with $1.5 < |z| < 3.5$ kpc, $7.5 < R < 30$ kpc were used. They obtain

$$h_z,\text{thin}(R) = h_z,\text{thin}(\odot) \left(1 - 0.037(R - \odot) + 0.052(R - \odot)^2 \right),$$

$$h_z,\text{thick}(R) = \begin{cases} h_z,\text{thick}(\odot), & R < R_{\text{ft}} \\ h_z,\text{thick}(\odot)(1 + 0.021(R - \odot) + 0.006(R - \odot)^2), & R \geq R_{\text{ft}} \end{cases},$$

(3)

with local scale heights $h_z,\text{thin}(\odot) = 0.24$ kpc and $h_z,\text{thick}(\odot) = 0.71$ kpc for $R_{\text{ft}} = 6.9$ kpc. We plot the results in Figures 2 and 3.

2.7. Pulsars

Yusifov (2004, Y04) analyzed 1412 Pulsars from the ATNF database (Manchester et al. 2005). Distances to the pulsars are estimated from the observed dispersion measure and a model of the free electron distribution in the Milky Way (Cordes & Lazio 2002). It is currently assumed that such distances are accurate to 30%.

For $5 < R < 18$ kpc the flare was fitted by

$$h_z(R) = h_z(\odot) \exp((R - \odot)/14.),$$

(4)

with $h_z(\odot) = 0.58$ kpc, also plotted in Figure 3.

3. COMPARING FLARING DATA

In Figure 1 we plot exponential scale heights h_z derived by Alard (2000, A00) in comparison to the LAB Hα flaring of Kalberla et al. (2007). To allow a direct comparison we scale the gaseous flaring curve to the scale height of the thin stellar disk. A similar ansatz was implicitly used by Feast et al. (2014) to prepare their Figure 1. This approach (red line in Figure 1; plotted only for $R > 12$ kpc) is model independent.

The flaring derived from the best fit mass model by Kalberla et al. (2007) is marked by the green dashed line. The agreement of the observed Hα scale heights with this mass model is good for $R < 18$ kpc. At larger distances the Hα data show considerable scatter with systematic deviations between the northern and southern hemispheres, while the model is axisymmetric.
(Kalberla & Dedes 2008, Figure 4). For $R < 18 \text{kpc}$ the agreement of the stellar flaring from Alard (2000) with the scaled HI data is excellent, suggesting a common origin for both. Even the dip at $R \sim 18 \text{kpc}$, attributed to the presence of a massive ring in the mass model of Kalberla et al. (2007), is consistently visible in both data sets. The dark matter disk and ring model was constructed to model details of the HI gas distribution in the Milky Way, in particular the observed flaring.

The $R,|z|$ positions of the Cepheids (Feast et al. 2014, F14) were included in Figure 1 for comparison. They are located at radial distances 22 to 30kpc beyond the Galactic center region. Obscuration may be considerable, which reduces the observability of Cepheids at lower $|z|$. It needs to be taken into account that the 2MASS data points represent the scale heights derived for an ensemble of objects, while the Cepheid data are from merely five individual objects. Alard (2000) analyzed in total 5.6×10^6 stars; this explains why his data points show a smooth flaring distribution, essentially without any scatter.

The Alard (2000) sample is by far the largest sample available to us while the Feast et al. (2014) Cepheid sample is rather restricted but has well-defined distances. Next we discuss the other observations.

3.1. A common Flaring Model for Stars and Gas?

Because the best fit mass model derived from the gaseous flaring by Kalberla et al. (2007) and Kalberla & Dedes (2008) is not generally accepted, we focus our discussion in the following on a simple exponential flaring as proposed by Kalberla & Kerp (2009, Section 3.1.4).

$$h_z(R) = h_z(R_0) \exp((R - R_0)/9.22),$$

(5)

with $R_0 = 8.0 \text{kpc}$ fits the global HI flaring for $5 < R < 33 \text{kpc}$ well. This relation is based on the finding that the HI distribution in the Milky Way shows an exponential decline with radius R for both surface density $\Sigma(R)$ and mid-plane volume density $n_0(R)$. For such a double exponential distribution, $h_z(R) \propto \Sigma(R)/n_0(R)$ also needs to be exponential.

If stars flare in a similar way to the HI gas, Equation (5) should apply to all stellar populations, regardless of the local scale height $h_z(R_0)$. We intend to test this hypothesis. In the following we distinguish between observations from the thin and thick stellar disks. According to Dehnen & Binney (1998), the thin disk has a scale height of $h_z(R_0) = 0.18 \text{kpc}$, the thick disk $h_z(R_0) = 1.0 \text{kpc}$. For the following discussion we have chosen to separate thin and thick disk data according to the gap in scale heights of our sample at $0.35 < h_z(R_0) < 0.65 \text{kpc}$.

In Figure 2 we plot the exponential approximation for $h_z(R_0) = 0.1, 0.2, 0.3, \text{and} 0.4 \text{kpc}$ according to Equation (5) to cover a range that is characteristic for the thin stellar disk. We compare this with flaring fits according to Hammersley & López-Corredoira (2011, H11) for $h_z(R_0) = 0.186 \text{kpc}$, López-Corredoira & Molgo (2014, LC14) for $h_z(R_0) = 0.240 \text{kpc}$, and López-Corredoira et al. (2002, LC02) for $h_z(R_0) = 0.285 \text{kpc}$. There is a common trend that stellar flaring at large galactocentric distance R is much stronger than expected from Equation (5). In Figure 2 we add data from Momany et al. (2006, M06) for $h_z(R_0) = 0.35 \text{kpc}$, which cover a restricted range only but are within the uncertainties consistent with the HI flaring.

In Figure 3 we indicate a set of exponential flaring curves for scale heights of $h_z(R_0) = 0.2, 0.4, 0.6, \text{and} 0.8 \text{kpc}$ (black lines). Also shown are observational fits from Yusifov (2004, Y04; blue dotted) and Lopez-Corredoira & Molgo (2014, LC14; red). Data points are from Momany et al. (2006, M06). We find a general trend that is opposite to Figure 2. The observed flaring at large radial distances falls below the expectations.

From our working hypothesis that stars share the gaseous flaring, which was supported by Alard (2000) and Feast et al. (2014), we come to the striking result that stellar flaring appears to depend on the scale height $h_z(R_0)$ of the objects. Thin disk populations show a very strong flaring for large distances R, while thick disk stars in this range are below the expectations.

The velocity dispersion of the HI gas is on average constant. The exponential flaring curves according to Equation (5) therefore apply to the isothermal case $\sigma_z(R) = \text{const}$. Taking the results from Figures 2 and 3 at face value, it is evident from the barometric equation that the velocity dispersions σ_z for the thin disk populations from our sample must increase with R while for the thick disk populations a decrease is necessary.

It is beyond the scope of this paper to discuss in detail the uncertainties and possible systematical errors in the determination of stellar flaring. Figure 5 of Lopez-Corredoira & Molgo (2014) may be characterizing the situation best; the uncertainties are very significant and there is a cross-over for the thin and thick disk flaring curves at $R \sim 18 \text{kpc}$. It is in general difficult to disentangle thin and thick disk objects at large radial distances R. It is possible that at large distances the thin disk gets increasingly contaminated by thick disk stars, and the opposite is observed for thick disks, which are contaminated by thin disk stars. Mixing up the contributions could lead to biases but it would be a surprise that most of the investigations that went into Figures 2 and 3 are affected by similar problems.

4. DISCUSSION

The question of whether stellar flaring needs to be included in Galactic mass models has been controversial for decades (Rohlfs & Breitschmann 1981). The most recent mass models still assume that the stellar disk has a constant scale height independent of galactocentric radius R (e.g., Dehnen & Binney 1998; Olling & Merrifield 2000, 2001; Klypin et al. 2002; McMillan 2011). Flaring was explicitly disregarded in the recent empirical modeling of the Milky Way disk (Sharma & Bland-Hawthorn 2013). The authors state: “The choice of the radial dependence is motivated by the desire to produce disks in which the scale height is independent of radius” (Sharma et al. 2014, p. 5). The same constraint was applied to recent investigations of the kinematic parameters of the Milky Way disk using the Radial Velocity and Geneva–Copenhagen stellar surveys (Sharma et al. 2014). Here we want to scrutinize the constant scale height paradigm in general.

Considering the gaseous components, a major source of uncertainty stems from unknown contributions due to the pressure support from magnetic fields and cosmic rays (Lockman & Gehman 1991). Boulares & Cox (1990) studied such contributions for a magnetic field perpendicular to the Galactic plane. On large scales, however, the fields are found to be predominantly parallel to the plane (Beck & Wielebinski 2013). Therefore we expect that magnetic fields are important only for local fluctuations in HI scale heights, e.g., related to supernova remnants. Observational evidence for a common flaring of stars and gas disfavors the magnetic field hypothesis by Lozinskaya & Kardashev (1963) immediately.

In summary, we obtain compelling evidence for a common flaring of gas and stars in the Milky Way galaxy. HI, Cepheids, 2MASS, SDSS, and pulsar data all show consistently increasing
scale heights proportional to R. Flaring at large distances R from the Galactic center appears to be strong for the thin disk but weaker for the thick stellar disk. Whether or not this indicates distinctly different kinematical properties of the associated velocity dispersions $\sigma_z(R)$ of thin and thick disk stars is an interesting but open question.

We thank Martin Lopez-Corredoira and Yazan Al Momany for distributing their data and the anonymous referee for constructive criticism. P.K. and L.D. acknowledge support from Deutsche Forschungsgemeinschaft, grant KA1265/5, and J.K. from grant KE757/7. U.H. was supported by institutional research funding IUT26-2 of the Estonian Ministry of Education and Research.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Alard, C. 2000, arXiv:astro-ph/0007013
Beck, R., & Wielebinski, R. 2013, in Planets, Stars and Stellar Systems, ed. T. D. Oswalt & G. Gilmore (Dordrecht: Springer), 641
Bigiel, F., & Blitz, L. 2012, ApJ, 756, 183
Boulares, A., & Cox, D. P. 1990, ApJ, 365, 544
Bronfman, L., Cohen, R. S., Alvarez, H., May, J., & Thaddeus, P. 1988, ApJ, 324, 248
Burton, W. B. 1976, ARA&A, 14, 275
Cordes, J. M., & Lazio, T. J. W. 2002, arXiv:astro-ph/0207156
Dehnen, W., & Binney, J. 1998, MNRAS, 294, 429
Feast, M. W., Menzies, J. W., Matsunaga, N., & Whitelock, P. A. 2014, Natur, 509, 342
Freeman, K. C. 1970, ApJ, 160, 811
Gressel, O., Elstner, D., & Ziegler, U. 2013, A&A, 560, A93
Gyuk, G., Flynn, C., & Evans, N. W. 1999, ApJ, 521, 190
Hammersley, P. L., & López-Corredoira, M. 2011, A&A, 527, A6
Jog, C. J. 2007, in Island Universes, Astrophysics and Space Science Proceedings, ed. R. S. de Jong (Dordrecht: Springer), 137
Kalberla, P. M. W. 2003, ApJ, 588, 805
Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
Kalberla, P. M. W., & Dedes, L. 2008, A&A, 487, 951
Kalberla, P. M. W., Dedes, L., Kerp, J., & Haud, U. 2007, A&A, 469, 511
Kalberla, P. M. W., & Kerp, J. 2009, A&A, 47, 27
Klypin, A., Zhao, H., & Somerville, R. S. 2002, ApJ, 573, 597
Law, D. R., Majewski, S. R., & Johnston, K. V. 2009, ApJL, 703, L67
Lewis, J. R., & Freeman, K. C. 1989, AJ, 97, 139
Lockman, F. J., & Gehman, C. S. 1991, ApJ, 382, 182
López-Corredoira, M., Cabrera-Lavers, A., Garzón, F., & Hammersley, P. L. 2002, A&A, 394, 883
Lopez-Corredoira, M., & Molgo, J. 2014, A&A, 567, A106
Lozinskaya, T. A., & Kardashev, N. S. 1963, SvA, 7, 161
Malhotra, S. 1994, ApJ, 433, 687
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993
McMillan, P. J. 2011, MNRAS, 414, 2446
Momany, Y., Zaggia, S., Gilmore, G., et al. 2006, A&A, 451, 515
Narayan, C. A., & Jog, C. J. 2002, A&A, 394, 89
Narayan, C. A., Saha, K., & Jog, C. J. 2005, A&A, 440, 523
Olling, R. P. 1995, AJ, 110, 591
Olling, R. P., & Merrifield, M. R. 2000, MNRAS, 311, 361
Olling, R. P., & Merrifield, M. R. 2001, MNRAS, 326, 164
Polido, P., Jablonski, F., & Lépine, J. R. D. 2013, ApJ, 778, 32
Reylé, C., Marshall, D. J., Robin, A. C., & Schultheis, M. 2009, A&A, 495, 819
Rohlfs, K., & Kreitschmann, J. 1981, Ap&SS, 79, 289
Sharma, S., & Bland-Hawthorn, J. 2013, ApJ, 773, 183
Sharma, S., Bland-Hawthorn, J., Binney, J., et al. 2014, ApJ, 793, 51
Spitzer, L. 1968, Diffuse Matter in Space (New York: Interscience)
van der Kruit, P. C., & Freeman, K. C. 2011, ARA&A, 49, 301
van der Kruit, P. C., & Searle, L. 1982, A&A, 110, 61
Wainscoat, R. J., Cohen, M., Volk, K., Walker, H. J., & Schwartz, D. E. 1992, ApJS, 83, 111
Westerhout, G. 1962, in IAU Symp. 15, Problems of Extra-Galactic Research, ed. G. C. McVittie (New York: Macmillan), 70
Wouterloot, J. G. A., Brand, J., Burton, W. B., & Kwee, K. K. 1990, A&A, 230, 21
Yusifov, I. 2004, in The Magnetized Interstellar Medium, ed. B. Uyaniker, W. Reich, & R. Wielebinski (Katlenburg-Lindau: Copernicus Gmbh), 165