Dilated cardiomyopathy as the first presentation of coeliac disease: association or causation?

Authors: Peysh Patel, Fraser Smith, Niamh Kilcullen and Nigel Arnis

Global ventricular impairment is a frequent presentation in clinical practice, but dissection of causative mechanisms from clinical associations is challenging. We present the case of a 19-year-old man who presented with dilated cardiomyopathy as the first presentation of coeliac disease. The manifestation of iron deficiency anaemia prompted gastroenterology input and enabled accurate diagnosis. It is unclear whether coeliac disease was simply coexistent or directly implicated in pathophysiology. Mechanisms may relate to nutritional deficiencies or autoimmune myocarditis arising from cross-reactivity. We advocate early multidisciplinary involvement in such contexts to aid with management strategy. Despite adherence to a gluten-free diet, ventricular dysfunction persisted and he has been referred to a cardiac transplant centre.

KEYWORDS: Coeliac disease, cardiomyopathy, heart failure, micronutrient deficiency

Case presentation

A 19-year-old man was admitted via the Emergency Department (ED) with a 6-week history of exertional breathlessness, associated with orthopnoea, paroxysmal nocturnal dyspnoea and self-limiting coryzal symptoms. There was no history of chest pain, palpitations or syncope. His past medical history was unremarkable, with no background of alcohol excess or recreational drug use. On assessment, he was haemodynamically stable. Examination revealed a grade 3/6 pansystolic murmur, loudest in the apex with radiation to the axilla. There were bibasal coarse crackles on lung auscultation. Jugular venous pressure was not visualised but there was no peripheral oedema. Abdomen was soft and non-tender, with no suggestion of ascites.

Initial testing revealed a profound microcytic anaemia, with a haemoglobin of 6.5 g/dL and a mean corpuscular volume of 60 fL. Renal, liver and thyroid function were normal, as were inflammatory markers. Electrocardiogram (ECG) confirmed new left bundle branch block (LBBB) with a QRS duration of 166 ms. Chest X-ray showed borderline cardiomegaly with a cardiothoracic ratio of 0.52. There was thickening in the horizontal fissure and upper lobe diversion, but no florid pulmonary oedema or consolidation. Rectal examination was unremarkable.

Diagnosis

Based on the initial presentation, differential diagnosis includes cardiomyopathy with prior myocarditis potentially implicated in aetiology. However, this patient also has concurrent anaemia which is of unclear origin.

Initial management and prognosis

Three units of cross-matched blood were transfused with furosemide cover, and he was transferred to the coronary care unit. He was maintained on telemetry but no dysrhythmias were observed. Subsequent echocardiography showed a dilated left ventricle when indexed to body surface area with global hypokinesia and severe systolic dysfunction. There was moderate to severe functional mitral regurgitation into a severely dilated left atrium. Right ventricle was non-dilated with preserved function. Based upon initial findings, a working diagnosis of dilated cardiomyopathy (DCM) secondary to suspected myocarditis was made. He was commenced on conventional pharmacotherapy for heart failure.

Further blood profiling confirmed a low ferritin (21 μg/L) with normal folate and vitamin B12 levels. Haemolysis screen returned negative, although interpretation was limited in view of sampling post-transfusion. Serology excluded presence of autoimmune disease or viral infection. Thiamine, zinc, selenium and lead levels were normal.

After consultation with the haematologists, ferrous sulphate and ascorbic acid were commenced.

Further imaging via cardiac magnetic resonance imaging (MRI) (see Fig 1) corroborated findings from echocardiography, with a quantified ejection fraction of 23. Late gadolinium enhancement confirmed extensive, dense fibrosis affecting both endocardial and epicardial regions with associated myocardial oedema on T2 weighted (oedema) imaging (T2WI). In view of these novel findings, a decision was made to proceed with angiography which confirmed normal coronaries.

Case progression and outcome

The presence of iron deficiency anaemia prompted gastroenterology input, and a push enteroscopy was recommended to visualise the...
coronary angiography is appropriate in those with a convincing
to windows or where the underlying aetiology is unclear. Lastly,
marginally considered for select cohorts, such as those with poor acoustic
to windowing, although alternative imaging modalities such as cardiac MRI are
in the history of this patient, echocardiography is the mainstay for diagnosis
ventricular tachycardia, which are of prognostic significance. As with this patient, echocardiography is appropriate in those with a convincing
history or with a high-risk profile.

Discussion

Coeliac disease is a multisystem, autoimmune disorder in which there is chronic and permanent intolerance to gluten. Although not
an autoimmune disorder per se, it is associated with other autoimmune diseases, such as rheumatoid arthritis and thyroid disease.

Coeliac disease is defined by the presence of left ventricular dysfunction associated with chamber dilatation. The differentials
are broad, but may include alcohol excess, chemotherapeutic
agents and myocarditis. A small cohort of patients has true
idiopathic DCM where the aetiology is unknown, although
potential related to an autoimmune pathogenesis.

Further investigations can aid with diagnosis of DCM. Chest X-ray
may show cardiomegaly or pulmonary congestion in the context of
decompenasation. ECG classically confirms sinus tachycardia, but features such as left ventricular strain and bundle branch
block (BBB) may also be observed. Ambulatory ECG monitoring
is beneficial in identifying significant dysrhythmias, such as
ventricular tachycardia, which are of prognostic significance. As
with this patient, echocardiography is the mainstay for diagnosis
although alternative imaging modalities such as cardiac MRI are
considered for select cohorts, such as those with poor acoustic
windows or where the underlying aetiology is unclear. Lastly,
coronary angiography is appropriate in those with a convincing
history or with a high-risk profile.

There is sparse data in the literature to investigate the
relationship between coeliac disease and DCM. A single-centre
study found a positive association between coeliac disease
and idiopathic DCM compared to the general population,
where diagnoses were confirmed via biopsy specimens.1 This
was corroborated with findings from a large Swedish cohort study, in
which the risk of idiopathic DCM was found to be 73% greater in
patients with coeliac disease and maintained in subanalyses after
adjustment for confounders.2 Various hypotheses have been suggested to explain underlying
mechanisms. A causative aetiology may be related to the
phenomenon of antigenic mimicry, with an autoimmune
response directed at antigenic components of both myocardium
and small bowel. Autoantibodies may have shared affinity to
antigen epitopes in different tissues or, alternatively, different
antigens could mimic TTG epitopes. Indeed, patients diagnosed
with coeliac disease that adhere to gluten abstinence have
been shown to demonstrate significant recovery of ventricular
volumes and function, with adjunct suppression of dysrhythmic
potential.3 Other propositions implicate nutritional deficiencies
in pathogenesis. Chronic anaemia results in a hyperdynamic
state due to neurohormonal activation secondary to peripheral
vasodilatation, and can progress to cardiac failure.4 Malabsorption
can additionally result in micronutrient deficits, such as thiamine,
calcium, selenium and carnitine. These are perceived as critical
mechanistic components of myocardial contractility and
deficiency may have precipitant or exacerbating effects. Moreover,
cardiac failure is associated with gut oedema, secondary to
arterial insufficiency and venous stasis with associated endothelial
dysfunction. This reciprocal negative interaction may potentiate
nutritional deficits.5

Key learning points

- This case is one of only a handful in the literature which
explores the potential relationship between coeliac disease
and DCM.
- It highlights the imperative need for adequate screening in all
patients with DCM.
- In particular, index of suspicion should be raised in the context of
concomitant nutritional deficiencies.
- A multidisciplinary approach was of significant benefit in
formulating the correct diagnosis and instigating a targeted
management strategy.

Fig 1. Four chamber (a) and
parasternal short axis (b) views
on cardiac MRI confirming
dilated left ventricle, severe left
ventricular systolic dysfunction
(EF 23%) and extensive fibrotic
deposition.
Coeliac disease and dilated cardiomyopathy

Consent to publish
The patient’s written consent was obtained prior to submission of this manuscript.

References
1 Curione M, Barbato M, De Biase L et al. Prevalence of coeliac disease in idiopathic dilated cardiomyopathy. Lancet 1999; 354: 222–3.
2 Emilsson L, Andersson B, Elfström P, Green PH, Ludvigsson JF. Risk of idiopathic dilated cardiomyopathy in 29,000 patients with celiac disease. J Am Heart Assoc 2012; 1:e001594.
3 Frustaci A, Cuoco L, Chimenti C et al. Celiac disease associated with autoimmune myocarditis. Circulation 2002; 105: 2611–8.
4 Mehta PA, Dubrey SW. High output heart failure. QJM 2009; 102:235–41.
5 Witte KK, Clark AL, Cleland JG. Chronic heart failure and micronutrients. J Am Coll Cardiol 2001; 37:1765–74.

Address for correspondence: Dr Peysh A Patel, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK.
Email: peysh@doctors.org.uk