Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program

Jing-Dan Han¹, Xia Li², Chen-Kun Jiang¹, Gane K.-S. Wong³,⁴,⁵, Carl J. Rothfels⁶ and Guang-Yuan Rao¹∗

¹ School of Life Sciences, Peking University, Beijing, China, ² RDFZ XiShan School, Beijing, China, ³ Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, ⁴ Department of Medicine, University of Alberta, Edmonton, AB, Canada, ⁵ BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China, ⁶ University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA

Seeds are one of the most significant innovations in the land plant lineage, critical to the diversification and adaptation of plants to terrestrial environments. From perspective of seed evo-devo, the most crucial developmental stage in this innovation is seed maturation, which includes accumulation of storage reserves, acquisition of desiccation tolerance, and induction of dormancy. Based on previous studies of seed development in the model plant Arabidopsis thaliana, seed maturation is mainly controlled by the LAFL regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family. In the present study, molecular evolution of these LAFL genes was analyzed, using representative species from across the major plant lineages. Additionally, to elucidate the molecular mechanisms of the seed maturation program, co-expression pattern analyses of LAFL genes were conducted across vascular plants. The results show that the origin of AFL gene family dates back to a common ancestor of bryophytes and vascular plants, while LEC1-type genes are only found in vascular plants. LAFL genes of vascular plants likely specify their co-expression in two different developmental phrases, spore and seed maturation, respectively, and expression patterns vary slightly across the major vascular plants lineages. All the information presented in this study will provide insights into the origin and diversification of seed plants.

Keywords: seed maturation program, LAFL network, gene structure, expression analysis, phylogenetic analysis

INTRODUCTION

Seeds, as propagules and dispersal units, play very important roles in the adaptation of seed plants to terrestrial environments (Kenrick and Crane, 1997; Becker and Marin, 2009; Radoeva and Weijers, 2014). Seed development is an intricate process, which can be divided into two conceptually distinct phases: embryo morphogenesis and seed maturation (Goldberg et al., 1994; Harada, 1997; Gutierrez et al., 2007). Seed maturation, which includes all of the events occurring after cell division has ceased within the embryo (following Harada, 1997), can be considered as a developmental module that is added after embryogenesis. It is accomplished with the accumulation of nutrient reserves, the acquisition of desiccation tolerance, the desiccation of seeds.
the suppression of precocious germination, and the induction of dormancy (Goldberg et al., 1994; Harada, 1997); these features are each thought to be important in the adaptation of plants to variable and harsh terrestrial environments. Overall, it was considered that seed maturation is a more recently derived adaptation program of land plants (Harada, 1997; Santos-Mendoza et al., 2008).

According to previous studies, especially of Arabidopsis, the seed maturation program involves complex regulatory networks that regulate a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family (Verdier et al., 1997; Santos-Mendoza et al., 2008). This BAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks that regulates a large set of genes (Verdier et al., 2013; Righetti et al., 2015).

According to previous studies, especially of Arabidopsis, the seed maturation program involves complex regulatory networks that regulate a large set of genes (Verdier et al., 2013; Righetti et al., 2015). The LAFL network is one of those regulatory networks, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family (Verdier et al., 1997; Santos-Mendoza et al., 2008). This network was considered to be responsible for the ABA-dependent activation of ABA-responsive genes, through the ABA-response element (ABRE; Hill et al., 1996; Bies-ethave et al., 1999; Ezcurre et al., 2000). The B3-domain, composed of about 100 AAs, has been shown to act as a DNA binding domain (Suzuki et al., 1997; Nag et al., 2005). The A-domain of this gene family (Giraudat et al., 1992; Suzuki et al., 1997). The A-domain is a functional acidic activation domain found at the N-terminal (McCarty et al., 1991). The B1-domain consists of about 30 amino acids (AAs) involved in the physical interaction with the bZIP transcription factor, such as ABI5 (ABSCISIC ACID INSENSITIVE5; Nakamura et al., 2001). The B2-domain consists of about 15 AAs, which have been shown to be responsible for the ABA-dependent activation of ABA-regulated genes, through the ABA-response element (ABRE; Hill et al., 1996; Bies-ethave et al., 1999; Ezcurre et al., 2000). The B3-domain, composed of about 100 AAs, has been shown to act as the DNA binding domain (Suzuki et al., 1997; Nag et al., 2005). For the AFL family genes, ABI3 has all the recognized domains of this gene family (Giraudat et al., 1992; Suzuki et al., 1997). FUS3 contains the A, B1, B2, and B3 domains, but the A-domain in the C-terminal (Lu et al., 2010). LEC2 has only the B2 and B3 domains. In the monocots, there are different names for AFL genes. For example, five AFL gene homologs are found in Oryza sativa, e.g., OsVP1, OsLFL1, and OsIDEF5. OsVP1, which contains A, B1, B2, and B3 domains, is homologous with Arabidopsis AtABI3 (Hattori et al., 1994), and OsLFL1 is homologous with Arabidopsis AtFUS3 (Peng et al., 2008). Another three OsIDEF5s are considered to be AtLEC2 type genes, but the relationship among them remains unclear (Kobayashi et al., 2007; Sreenivasulu and Wobus, 2013).

In Arabidopsis, AFL genes are mainly expressed in embryo development, but at different developmental stages. AtLEC2 is expressed at early stages of embryogenesis, while AtABI3 and AtFUS3 are highly expressed at late stages (Stone et al., 2001; Kroj et al., 2003; Gazzarrini et al., 2004; Tsuchiya et al., 2004; To et al., 2006; Santos-Mendoza et al., 2008; Fatihi et al., 2016). According to studies in other plants, the AFL family genes are generally expressed in reproductive organs. For instance, OsLFL1 is expressed exclusively in spikes and young embryos (Peng et al., 2008). In Zea mays, ZmaAFL1 genes are preferentially expressed in pollen and caryopses (Grimalt et al., 2015), and in Chamaecyparis nootkatensis, a gymnosperm species, its CnABI3 was detected in the megagametophytes and mature dormant embryos (Zeng and Kermode, 2004).

LEC1-type (LEC1 and L1L) genes are of the intron-less type of the NF-YB family, which are derived from the intron-rich ones, and their earliest occurrence appears to be in a common ancestor of vascular plants (Yang et al., 2005; Xie et al., 2008). LEC1 and L1L genes are highly expressed in embryonic cells and extra-embryonic tissues during seed development (Lotan et al., 1998; Kwong et al., 2003). Expression and function analyses of LEC1 homologs in other species indicate that LEC1 is essential for seed maturation (Stephenson et al., 2007; Cao et al., 2011; Salvini et al., 2012; Tang et al., 2015). In seedless vascular plants (lycophytes and ferns), the expression of LEC1 is restricted to reproductive structures. In Selaginella moellendorffii (a lycophyte), high expression of SmoLFC1 was found in strobili, where megasporangia and microsporangia are located (Kirkbride et al., 2013). Additionally, the maximal expression of AcaLEC1 was detected in mature sporangia of the fern Adiantum capillus-veneris (Fang et al., unpublished data).

Complex interactions between the AFL genes were found in Arabidopsis. For instance, the expression of LEC1 can activate ABI3, FUS3, and LEC2, whereas the ectopic expression of LEC2 up-regulates LEC1 activity in vegetative tissues (Kagaya et al., 2005b; Stone et al., 2007; Guo et al., 2013). The function of AFL genes involves many aspects of seed maturation including seed storage protein (SSP), late-embryogenesis- abundant (LEA) proteins, hormone metabolism, and signaling pathways (Pary et al., 1994; Nakamura et al., 2001; Kagaya et al., 2005a,b; Alonso et al., 2009; Yamamoto et al., 2009).

The LAFL network is crucial for seed maturation, and great efforts have been made to investigate the functions of this network genes in Arabidopsis, but little attention was paid to the evolution of the network as a whole. With the increased availability of genomic data and a refined understanding of the distribution of AFL genes, this work is now feasible. To better understand the origin and evolution of AFL genes, we performed phylogenetic analyses on an extensive dataset of NF-YB and AFL gene family sequences, focusing particularly on previously underrepresented groups, such as algae, bryophytes, monilophytes, and “early diverging” angiosperms. In addition, we analyzed expression patterns of the LAFL network using online databases and our newly generated qRT-PCR data from S. moellendorffii and A. capillus-veneris (representing lycophytes and monilophytes, respectively). With these data, coupled with aforementioned phylogenetic analyses and cis-element information, we elucidate the evolution of AFL genes and their association with the seed maturation program.
MATERIALS AND METHODS

Gene Family Datasets

LAFL genes belong to two gene families: the NF-YB gene family and the AFL gene family, where the latter is a member of the B3 superfamily. To build our dataset of AFL genes, we first queried the Pfam database for B3 superfamily genes from three chlorophytes (Volvox carteri, Chlamydomonas reinhardtii, and Chlorella variabilis), one moss (Physcomitrella patens), one lycophyte (S. moellendorffii), and six flowering plants (Brachypodium sylvaticum, Oryza sativa, Zea mays, Populus trichocarpa, Glycine max, and A. thaliana; Supplementary Table S1); this search resulted in 730 sequences. Then, for a better understanding of the evolution of the AFL gene family specifically, we BLASTed the coding sequences of Arabidopsis ABI3, FUS3 and LEC2 against four primary sources: Phytozome, ConGenIE, the Klebsormidium flaccidum Genome Project (Hori et al., 2014), and the OneKP database. These queries yielded 253 sequences spanning 68 species representing all major lineages of land plants. The retrieved sequences generally span the complete coding region, but some lack a few AAs at either end. The retrieved sequences range from 200 to 800 AAs in length (Supplementary Table S2).

To obtain sequences of the NF-YB gene family, we BLASTed Arabidopsis LEC1 and LIL coding sequences against five primary sources: NCBI (National Center for Biotechnology Information), Phytozome, ConGenIE, the Klebsormidium flaccidum Genome Project, and the OneKP project. In total, 263 sequences spanning 29 species were collected, ranging from 100 to 300 AAs in length (Supplementary Table S3).

Sequence Alignment

All alignments were performed at AA level. For the phylogenetic analysis of the B3 superfamily, only the B3 domain was used for alignment. For the NF-YB and AFL gene families, full-length protein sequences were used. These sequences were aligned with the MAFFT webserver (Katoh and Standley, 2013). Based on sequence characteristics, we selected an alignment strategy of FFT-NS-1 (NF-YB gene family), FFT-NS-1(B3 superfamily), and E-INS-i (AFL gene family), respectively.

Phylogenetic Analysis

The final alignments were analyzed using ProtTest (Abascal et al., 2005) to choose the best-fitting AA model; the JTT + I + G substitution model was selected for all alignments according to the AIC and BIC selection criteria. Maximum likelihood (ML) phylogenetic analyses were performed with RaxML (Stamatakis, 2006) to choose the best-fitting AA model; the JTT + I + G substitution model was selected for all alignments according to the AIC and BIC selection criteria. Maximum likelihood (ML) phylogenetic analyses were carried out, respectively (Figures 1B, 2B). In addition, phylogeny reconstruction of the NF-YB family was performed using the data set containing 263 sequences of 29 species with whole genome sequences (Supplementary Figure S3). To explore the relationship of LEC1-type genes and NF-YB family genes in non-vascular plants, 65 sequences of 26 species were used for further phylogenetic analysis (Table 1 and Figure 4).

Gene Structure and cis-Elements Analysis

For the AFL gene family, we characterized their AA composition and the position of the B1, B2 and B3 domains, because these are known as identification criteria for AFL genes (McCarty et al., 1991; Giraudat et al., 1992; Suzuki et al., 1997; Nag et al., 2005; Lu et al., 2010). The AA composition of B1, B2, and B3 domains was analyzed by the WebLogo online (Figures 2D, 3D). We performed the intron-exon and position analyses of the NF-YB family genes by using their full-length DNA sequences (Figure 4 and Supplementary Table S3).

To characterize cis-elements in the 5′ flanking region of LAFL genes, the 1.5 kb fragment containing promoter and 5′ UTR of six AFL genes and 40 LEC1-type genes were analyzed by PLACE (this database is temporarily terminated now) and MatInspector (Genomatix Software Suite11) online (Figures 3, 4 and Supplementary Table S5). Promoter sequences of A. capillus-veneris LEC1 were cloned through genome walking (primers in Supplementary Table S4).

Expression Analysis by qRT-PCR

To investigate the expression of LAFL genes in different vascular plants, the publicly available expression data as well as the expression data of LEC1 homologs in S. moellendorfii and A. capillus-veneris (SmoLEC1 expression data in Kirkbride et al., 2013, AcaLEC1 unpublished expression data) were used to construct an expression heat map, where analyzed species include one monocot (rice), two eudicots (Arabidopsis and soybean), and one gymnosperm (Pinus abies; Supplementary Figure S3). In addition, we chose S. moellendorfii and A. capillus-veneris as non-seed plant representatives using qRT-PCR to characterize AFL genes expression patterns at different developmental stages. With respect to sampling for these two species, S. moellendorfii roots, shoots, microphylls, strobili, and bulbils were collected in the field (Sichuan Province, voucher specimen was deposited in Peking University Herbarium, PEY). For replicates. Trees were observed and edited for presentation using FigTree v1.4.2. Based on phylogenetic reconstruction of the B3 superfamily (Supplementary Figure S1), we re-built a dataset with an ingroup sample of 253 AFL genes, and an outgroup of 11 B3 genes from four algal species for further phylogenetic analysis of AFL gene family (Figures 1A, 2A, Table 1, and Supplementary Table S2). For bryophytes and vascular plants, further phylogenetic analyses were carried out, respectively (Figures 1B, 2B). In addition, phylogeny reconstruction of the NF-YB family was performed using the data set containing 263 sequences of 29 species with whole genome sequences (Supplementary Figure S3). To explore the relationship of LEC1-type genes and NF-YB family genes in non-vascular plants, 65 sequences of 26 species were used for further phylogenetic analysis (Table 1 and Figure 4).
Han et al. Evolutionary Analysis of LAFL Genes

FIGURE 1 | Phylogenetic relationships of plant AFL gene family and the details of bryophyte. (A) ML unrooted tree of the plant AFL gene family comprising 264 sequences from 72 taxa (Table 1; for species names see Supplementary Table S2). (B) ML rooted tree of bryophyte AFL using green algae B3 sequences as outgroups (black). Numbers on the branches indicate bootstrap values calculated from 1,000 replicates. Only values higher than 50% are shown. (C) Domain structure of each clade and type, two clades divided into 10 types in total. (D) Amino acids (AAs) characteristic of the B1 and B2 domain. The sequence logo was generated using WebLogo (weblogo.berkeley.edu).

FIGURE 2 | Phylogenetic relationships of plant AFL gene family and the details of the part of vascular plant. (A) ML phylogenetic relationships of plant AFL gene family comprising 264 sequences from 72 taxa (Table 1 for species names see Supplementary Table S2). (B) ML rooted tree of vascular plant AFL using PpaABI3 sequences as outgroups (black). Numbers at the branches indicate bootstrap values calculated from 1,000 replicates. Only values higher than 50% are shown. (C) Domain structure of each clade and type, three clades divided into 10 types in total. (D) AAs characteristic of the B1 and B2 domain. The sequence logo was generated using WebLogo (weblogo.berkeley.edu). (E) Expression pattern analysis of several AFL genes; expression levels are calculated using the database GENEVESTIGATOR, ConGenIE (Supplementary Figure S3), and data from previous studies (Zeng et al., 2003; Zhang and Xue, 2013).
TABLE 1 | Sampling in LAFL genes phylogenies.

Classification	AFL species (sequences)	LEC1-type species (sequences)
Green algae	Chlorophyta 3 (5)	B3 2 (2)
	Charophyta 1 (6)	Charophyta 1 (1)
Land plant (embryophytes)	Moss 9 (66)	AFL 2 (10)
Non-seed plant	Liverwort 4 (9)	AFL 1 (2)
Bryophyte	Hornwort 5 (6)	AFL 1 (1)
Pteridophyte	Liverwort 3 (6)	AFL 1 (6)
Seed plant	Monilophyte 11 (30)	AFL 1 (5)
Gymnosperm	Conifer 1 (5)	AFL 2 (2)
Angiosperm	Basal 1 (5)	LEC1-type
Monocot	7 (35)	LEC1-type
Eudicot	27 (91)	LEC1-type
Total numbers	72 (264)	26 (65)

FIGURE 3 | AFL mRNA levels in various organs of non-seed plants examined by qRT-PCR.

The CCAAT-box cis-elements of the promoter 1.5 kb region of three SmoAFL genes are highlighted in yellow blocks with an arranged number. Selaginella moellendorffii (A–C), ro, roots; sh, shoots; mi, microphylls; st, strobili; bu, bulbils. Adiantum capillus-veneris (D–F), ro, roots; sh, shoots; cle, curled leaves; yle, young leaves; dle, developed leaves; isp, immature sporangia; msp, mature sporangia; yga, young gametophytes; rga, reproductive gametophytes; em, embryos. The detail of each gene domain structure see Supplementary Figure S4.

RESULTS

Phylogenetic Analysis of LAFL Genes

The sequence retrieval and phylogenetic analysis of the B3 gene superfamily showed that no AFL sequences were found in A. capillus-veneris, samples were collected from plants cultivated in the greenhouse of Peking University (Voucher specimen was deposited in PEY). We chose roots, shoots, curled leaves, young leaves, fully developed leaves, immature sporangia, mature sporangia, immature gametophytes, reproductive gametophytes, and embryos as materials (Li et al., 2013). Total RNA of plant materials was isolated with Plant RNA Extraction Reagent (Invitrogen, USA) and purified with an RNaseasy Mini kit according to the manufacturer’s instructions (Qiagen, Germany). The RNA was then converted to cDNA by reverse transcription with FastQuant RT Kit (Tiangen, China). The qRT-PCR was performed on an Applied Biosystems 7500 Real-Time PCR System (ABI) using cDNA templates mixed with primers (Supplementary Table S4) and SYBR® Premix Ex Tax Mix (Takara, Japan). SmoACTIN and AcaACTIN were selected as the internal standard gene (primer sequences in Supplementary Table S4). Relative expression was calculated via delta-delta threshold method ($2^{-\Delta \Delta \text{CT}}$; Livak and Schmittgen, 2001). Results were summarized as means ± SE of three biological repeats.
Chlorophytes and Charophytes (Supplementary Figure S1 and Table S1). The B3 domain of AFL genes is highly conserved in seed plants (Supplementary Table S2). According to phylogenetic analysis of AFL genes in land plants, the cluster of bryophytes and vascular plants can be recognized although they were not strongly supported in the tree (Figures 1A, 2A).

Phylogenetic analysis of bryophyte AFL genes showed them to form two clades, clade I and clade II (Figure 1B). Clade I is composed of sequences from liverworts and mosses, while clade II has sequences from liverworts, mosses and hornworts. Mosses have many more AFL gene homologs than do liverworts or hornworts (Figure 1B and Table 1).

In the phylogenetic tree of vascular plant AFL genes, three major clades, clade I (lycophyte AFL clade), clade II, and clade III (ABI3 clade) can be recognized (Table 1 and Figure 2B). Clade I is composed of all lycophyte AFL genes including those of LEC2 type and ABI3 type (Figure 2B). All monilophyte ABI3 genes cluster with seed-plant ABI3 genes as a clade with strong support (clade III) (Figure 2B), while monilophyte LEC2 type genes group with the remaining seed plant LEC2 and FUS3 genes in clade II (Figure 2B). These results indicated that lycophyte AFL clade represents an ancient lineage of AFL gene family, and monilophyte AFL genes are more closely with those of seed plants. In the clade II, we can find five gene types with strong support, i.e., LEC2 type, FUS3 type, LFL1 type, PabFL type, and IDEF type, respectively (Figures 2B,C). In the genome of the gymnosperm P. abies, there were five AFL sequences, and three of them (PabAFLA/B/C) are associated with FUS3 and LFL1 types. In the “early diverging” angiosperm Amborella trichopoda genome (Albert et al., 2013), there were three AFL sequences, none of them of FUS3 type. One ABI3 gene was clustered in the seed plant ABI3 type clade strong support, one was clustered with the LEC2 type sequences and the other was clustered in the IDEF clade.

Phylogenetic analyses of the NF-YB family showed that LEC1-type genes formed a clade and were only present in vascular plants (Figure 4 and Supplementary Figure S3, Table S3), in agreement with previous results (Xie et al., 2008). The number of LEC1-type genes in lycophytes, monilophytes, conifers, “early diverging” angiosperms, monocots, and eudicots averages 1.0, 1.0, 2.0, 1.0, 2.0, and 2.7 per species, respectively (Table 1). AcaLEC1 of the fern A. capillus-veneris was cloned and identified by this study for first time.
Gene Structure Analysis of LAFL Genes

Domain structure analysis of bryophyte AFL genes showed that clade I genes only have one B3 domain in the C-terminal. This structure is similar to B3 genes in green algae. In clade II, ABI3 type genes were easily recognized by the A domain, B1 (about 30 AA), B2 (about 14 AA) and B3 (about 100 AA) domain, while ABI3-like genes lack of the A domain. LEC2 type genes had one unstable B2 domain in middle position and B3 domain in C-terminal. Notably, liverworts only had the clade I and ABI3-like AFL genes. We did not find FUS3 type genes in bryophytes (Figures 1C,D), suggesting that FUS3 may not arise. Domain structure analysis of vascular plant AFL genes showed that there were nine structure types in three clades with specific B2 domain AA characteristics (Figure 2D).

Our analyses of NF-YB gene sequences revealed that: (1) the NF-YB sequences restricted to algae are of the intron-rich type; (2) the liverwort Marchantia polymorpha contains both an intron-rich and an intron-less NF-YB gene; (3) six sequences occur in moss Physcomitrella patens including both plants with an intron-rich and intron-less ones; (4) LEC1-type genes, belonging to intron-less NF-YB genes, were only found in vascular plants. All those findings suggest that the intron-less type of NF-YB genes was derived from the intron-rich ones through gene duplication and intron loss in early land plants (Figure 4C, Table 1, and Supplementary Figure S3).

Cis-Element Prediction of LAFL Genes

According to comparative analysis of cis-elements in regulatory region of AFL gene pairs between the seed plant Arabidopsis and the non-seed plant S. moellendorffii, we found that there was CCAAT-box in AthABI3, AthFUS3, AthLEC2, SmoAFLB, and SmoAFLC (Figure 4 and Supplementary Table S5). By cis-elements prediction in the promoter region of 40 LEC1-type genes, we found that (1) LEC1 had more cis-elements than do LIL genes in seed plants; (2) there is not a significant difference in cis-element components in LEC1 genes from seed and non-seed plants: almost all the cis-elements identified in Arabidopsis can be found in the LEC1 promoter of S. moellendorffii and A. capillus-veneris (Figure 4B and Supplementary Table S5).

Expression Pattern Analyses of LAFL Genes

LAFL gene expression was restricted to seed development in Arabidopsis but occurs both in maturing seeds and inflorescences in other species, e.g., soybean, rice, and maize (Figure 4D and Supplementary Figure S4). For LAFL genes of P. abies (a gymnosperm), they were mainly expressed in leaves and cones. SmoLEC1 and AcaLEC1 were each only expressed in strobili and mature sporangia, and were not detected in tissues undergoing embryogenesis (Figure 4D).

The qRT-PCR results showed that the mRNA levels of SmoAFLA (lycophyte ABI3 type) were nearly identical across organs (roots, shoots, microphylls, strobili, and bulbils) of S. moellendorffii. The levels of mRNA of SmoAFLB and SmoAFLC (lycophyte LEC2 type) were higher in strobili than other organs. In A. capillus-veneris (a fern) the levels of mRNA of AcaAFLA (one monilophyte ABI3 type) were higher in shoots and mature sporangia than other organs. The mRNA of AcaAFLB (another monilophyte ABI3 type) and AcaAFLC (monilophyte LEC2 type) were only detected in mature sporangia (Figure 3 and Supplementary Figures S2, S4).

DISCUSSION

LAFL Network and Seed Maturation

Previous studies showed that many genes are involved in seed maturation (Goldberg et al., 1994; Harada, 1997; Radoeva and Weijers, 2014). Among them, the AFL family of B3 transcription factors (TFs) and the LEC1-type of NF-YB TFs, which together form LAFL regulatory network, are considered to play key roles in seed maturation. Although there were studies on the evolution of LEC1-type genes (Xie et al., 2008), AFL genes (Li et al., 2010; Carbonero et al., 2016), this study presents a comprehensive analysis of LAFL genes by integrating their phylogeny, gene structure, cis-elements and expression patterns together for a better understanding of the evolution of seed maturation programs during plant evolution.

Evolution and Function Differentiation of AFL Genes

According to our extensive phylogenic and gene structure analyses, LEC2 type and ABI3 type genes evolved in a common ancestor of bryophytes and vascular plants, and their gene structure is very conservative. However, FUS3 type genes were only found in seed plants (Figures 1, 2), suggesting that FUS3 genes originate relatively late in the AFL family.

In embryophytes, LEC2 type genes had one B2 domain in a middle position and a B3 domain in the C-terminal. In the seedless species S. moellendorffii (lycophyte) and A. capillus-veneris (fern), the expression pattern of LEC2 type genes (SmoAFLB, SmoAFLC, and AcaAFLC) was restricted to shoots (S. moellendorffii) and maturing spores (both S. moellendorffii and A. capillus-veneris; Figure 3). In the “early diverging” angiosperm Amborella trichopoda, there were three AFL genes. One of them is of ABI3 type, and the other two are LEC2 type and IDEF type, respectively. Interestingly, IDEF type genes were identified only from monocots, and have only B3 domain in C-terminal (Kobayashi et al., 2007), which is different from LEC2 gene structure (Figure 2C). In rice, OsaIDEF transcripts are constitutively present in roots, leaves, inflorescences, and seeds. In eudicots, LEC2 plays central roles in seed embryogenesis and morphogenesis (Figure 2 and Supplementary Figure S4). All these data suggest that LEC2 and IDEF type genes diverged very early, and LEC2 type genes may be lost in monocots.

During the review of this manuscript, Carbonero et al. (2016) published their work on the AFL family. In agreement with our results, they suggest that the origin of the AFL family traces back to a common ancestor of bryophytes and vascular plants, and that this family has expanded in the angiosperms. However, due to different sampling regimes and sequence coverage, there are some different results between these two studies, especially relating to the evolution of LEC2 genes. According to Carbonero...
et al. (2016), seven *LEC2* genes were described from three monocots, *Oryza sativa*, *Brachypodium distachyon* and * Hordeum vulgare* (all grasses), but the relationship of those seven genes with other AFL homologs needs to be verified; differences in gene structure, phylogenetic position, and expression pattern suggests that these may not be *LEC2* genes.

Considering *ABI3* genes of land plants, there is a clear evolutionary trajectory according to our study. Phylogenetically, monilophyte *ABI3* genes are more closely related to those of seed plants, rather than to lycophyte *ABI3* types. In *P. abies* (gymnosperm) and *Amborella trichopoda* (“early diverging” angiosperm), there was only one *PabABI3* and *AtrABI3* sequence, respectively. This may be due to the lack of a lineage-specific whole genome duplication (WGD) in these species (Albert et al., 2013; Nystedt et al., 2013). Expression patterns of *SmoAFLA* (*S. moellendorfii*, one lycophyte *ABI3* type) are more similar to those of bryophyte *ABI3* genes, which are only expressed in vegetative tissues (Figure 3; Khandelwal et al., 2010). The expression of *AcaAFLA* and *AcaAFLB* (*A. capillus-veneris*), two monilophyte *ABI3* type genes are found in shoots and spore maturation, which are consistent with that of *PabABI3* (*P. abies*) (Figures 2B,C,E). This suggest the expression pattern of *ABI3* genes has slightly differentiated across major land plant lineages.

FUS3 type genes appear to have originated relatively late because they are restricted to the seed plant clade. Three *PabAFL* sequences (*PabAFL*, *B*, and *C*) from the gymnosperm *P. abies* belong to *Pab-FL* (*FUS3* and *LFL*) type clade, which is associated with *FUS3* type and *LFL* type. These finding, coupled with expression patterns of *PabAFLA/B/C* genes suggest that the *Pab-FL* type may represent ancestral *FUS3/LFL* gene function. There is no *FUS3* type member in *Amborella trichopoda*, which suggests that *FUS3* type genes likely originated in a common ancestor of seed plants and were subsequently lost in *Amborella*. In eudicots and monocots, *FL* genes are divided to *FUS3* type and *LFL* type, respectively. Os*LFL1*, involved in the photoperiodic flowering of rice and expressed exclusively in spikes and young embryos, is functionally similar to *AthFUS3* in Arabidopsis (*Peng et al., 2008; Tiedemann et al., 2008*). The *FUS3* type (found only in eudicots) and the *LFL* type (restricted to monocots) are clustered together with strong bootstrap support, and they have similar domain structure and functions (Figures 2B,C,E, 3).

Evolution of the LEC1-Type Genes

As members of the LAFL network, *LEC1*-type genes are CCAAT-binding factors (CBFs), which are present in all euukaryotes (Forsburg and Guarente, 1989; Mantovani, 1999; Matuoka and Chen, 2002; Siefers et al., 2009; Dolfini et al., 2012). There is no clear correlation between expression patterns and the classification of *NF-YB* family genes with an exception of the *LEC1*-type genes, which are considered seed-specific (Stephenson et al., 2007; Salvini et al., 2012). Arabidopsis *LEC1*-type genes (*AthLEC1* and *AthL1L*) have significant functions at late stages of embryogenesis (Lotan et al., 1998; Kwong et al., 2003). Our phylogenetic analyses of the *NF-YB* gene family support some findings of previous studies, e.g., only one intron-rich type of *NF-YB* genes occurs in chlorophytes, the intron-less genes are derived from the intron-rich ones, and *LEC1*-type genes are restricted to vascular plants (Xie et al., 2008; Cagliari et al., 2014; Table 1 and Figures 4A,C).

In addition, there are some new findings, e.g., only one copy of the intron-rich type of *NF-YB* genes is found in the alga *Klebsormidium flaccidum*, which is considered to be one of the closest relatives of land plants (Hori et al., 2014). The liverwort *Marchantia polymorpha*, one of the earliest diverged land plants (Rövekamp et al., 2016), has two copies of *NF-YB* genes in its genome, one of which is intron-rich and the other intron-less. The six copies found in the moss *Physcomitrella patens*, have been proven to originate from duplication events (Yang et al., 2005; Rensing et al., 2008; Xie et al., 2008). In addition, our analyses demonstrate that there is only one copy of *LEC1*-type genes in the genome of *S. moellendorfii* (lycophyte), *A. capillus-veneris* (fern), *P. abies* (gymnosperm), and *Amborella trichopoda* (“early diverging” angiosperm). These data support that *LEC1* and *L1L* genes result from the duplication of *LEC1*-type genes likely occurring after the origin of extant angiosperms (Table 1 and Figures 4A,C).

The cis-Element Prediction and Co-expression of LAFL Genes

The LAFL network has been considered to play central roles in seed maturation, and LAFL genes regulate different facets of this developmental process by their interactions with up- and down-stream genes (Harada, 1997; Santos-Mendoza et al., 2008; Fatih et al., 2016; González-Morales et al., 2016). The cis-element prediction shows that *LEC1* genes of seed plants and non-seed plants have similar cis-elements, suggesting the *LEC1*-type genes could be regulated by similar regulators (Figure 4). Among the *cis-elements* of *LEC1*, *RYREPART* and *ABRE* are thought to be very important for *LEC1* activity. The *RYREPEAT* is considered to be a RY-like element, and the binding site of the B3 domain (Braybrook et al., 2006; Mönke et al., 2012; Wang and Perry, 2013; Tang et al., 2015). The *ABRE* is functionally important in many ABA-regulated genes (Fan et al., 2015). Additionally, *LEC1*, as a subunit of the CCAAT-box binding factor (CBF), activates its downstream genes by the CCAAT-box element (Junker et al., 2012). According to the CCAAT-box element prediction of *AFL* genes in *S. moellendorfii*, there is a CCAAT-box element in the regulatory region ofits AFL* genes, e.g., *SmoAFLB* and *SmoAFLC* (Figure 3).

The findings presented in this study suggest that a partial LAFL network, consisting of *ABI3* and *LEC2* genes, arose in a common ancestor of land plants, and then became more complex with the occurrence of *FUS3* and *LEC1* genes. With evolution of vascular plants, LAFL network genes likely specify their co-expression in two different developmental processes, spore and seed maturation, respectively. The co-expression of LAFL genes in these two processes alone or simultaneously, which correspond to two reproductive structures, suggest that the biological process involved in spore maturation is similar to those of seed maturation.
AUTHOR CONTRIBUTIONS

J-DH analyzed data and drafted the manuscript. XL and C-KJ provided some samples and analyzed sequences. G-YR designed the research.

FUNDING

This work was supported by the National Natural Science Foundation of China (NSFC, Grant no. 91231105).

REFERENCES

Abascal, F., Zardoya, R., and Posada, D. (2005). ProTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105. doi: 10.1093/bioinformatics/bti263

Albert, V. A., Babatzuk, W. B., Der, J. P., Leebens-Mack, J., Ma, H., Palmer, J. D., et al. (2013). The Amborella genome and the evolution of flowering plants. Science 342, 1241089. doi: 10.1126/science.1241089

Alonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlers, A., Diaz, I., Dietrich, K., et al. (2009). A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21, 1747–1761. doi: 10.1016/j.planchex.2008.06.098

Becker, B., and Marin, B. (2009). Streptophyte algae and the origin of embryos. Ann. Bot. 103, 999–1004. doi: 10.1093/aob/mcp044

Bies-Ètheve, N., da Silva Conceição, A., Koornneef, M., Léon-Kloosterziel, K., Valon, C., and Delseny, M. (1999). Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation. Plant Mol. Biol. 6, 1045–1054. doi: 10.1007/A100625212202

Braybrook, S. A., Stone, S. L., Park, S., Bui, A. Q., Le, B. H., Fischer, R. L., et al. (2006). Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 103, 3468–3473. doi: 10.1073/pnas.0511331103

Cagliari, A., Turchetto-Zolet, A. C., Korbes, A. P., dos Santos Maraschin, F., Margis, R., and Margis-Pinheiro, M. (2014). New insights on the evolution of Leafy cotedledon1 (LEC1) type genes in vascular plants. Genomics 103, 380–387. doi: 10.1016/j.ygeno.2014.03.005

Cao, S., Kamimoto, R. W., Siriwardana, C. L., Risinger, J. R., and Holt, B. F. III (2011). Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One 6:e21805. doi: 10.1371/journal.pone.0021805

Carbonero, P., Iglesias-Fernández, R., and Vicente-Carbajosa, J. (2016). The AFL subfamily of B3 transcription factors: evolution and function in angiosperm species. J. Exp. Bot. 6, 871–880. doi: 10.1093/jxb/erw458

Dolfini, D., Gatta, R., and Mantovani, R. (2012). NF-Y and the transcriptional activation of CCAAT promoters. Crit. Rev. Biochem. Mol. Biol. 47, 29–49. doi: 10.3109/10409238.2011.628970

Ezzurica, I., Wycliffe, P., Nehlin, L., Ellerström, M., and Rask, L. (2000). Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J. 24, 57–66. doi: 10.1046/j.1365-313X.2000.00857.x

Fan, K., Shen, H., Bub, N., Li, F., Yuan, S., Wang, M., et al. (2015). Molecular evolution and species-specific expansion of the NAP members in plants. J. Integr. Plant Biol. 57, 673–687. doi: 10.1111/jipb.12344

Fathi, A., Boulard, C., Bouyer, D., Baud, S., Dubreucq, B., and Lepiniec, L. (2016). Deciphering and modifying LAFL transcriptional regulatory network in seeds for improving yield and quality of storage compounds. Plant Sci. 250, 198–204. doi: 10.1016/j.plantsci.2016.06.013

Forsburg, S. L., and Guarente, L. (1989). Identification and characterization of HAP4, a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178. doi: 10.1101/gad.3.8.1166

Forsburg, S. L., and Guarente, L. (1989). Identification and characterization of HAP4, a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3, 1166–1178. doi: 10.1101/gad.3.8.1166

ACKNOWLEDGMENT

We are grateful to Prof. Ji Yang of Fudan University for discussions, and two reviewers for their critical comments on the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.00439/full#supplementary-material
its regulation of FUSCA3 and ABRICIS ACID INSENSITIVES. Plant Cell Physiol. 46, 399–406. doi: 10.1093/pcp/pcp048
Kalai, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst101
Kennick, P., and Crane, P. (1997). The origin and early evolution of plants on land. Nature 389, 33–39. doi: 10.1038/37918
Khandelwal, A., Cho, S. H., Marelle, H., Sakata, Y., Perroud, F. P., Pan, A., et al. (2010). Role of ABA and ABI3 in desiccation tolerance. Science 327, 546–546. doi: 10.1126/science.1183672
Kirbride, R. C., Fischer, R. L., and Harada, J. J. (2013). LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propogules of Selaginella moellendorfii. PLoS ONE 8:e76971. doi: 10.1371/journal.pone.0066791
Kobayashi, T., Ogo, Y., Itai, R. N., Nakanishi, H., Takahashi, M., Mori, S., et al. (2007). The transcription factor IDEFL1 regulates the response to and tolerance of iron deficiency in plants. Proc. Natl. Acad. Sci. U.S.A. 104, 19150–19155. doi: 10.1073/pnas.0707101010
Kroj, T., Savino, G., Valon, C., Giraudat, J., and Parcy, F. (2003). Regulation of storage protein gene expression in Arabidopsis. Development 130, 6005–6073. doi: 10.1242/dev.00814
Kwong, R. W., Bui, A. Q., Lee, H., Kwong, L. W., Fischer, R. L., Goldberg, R. B., et al. (2003). LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 5–18. doi: 10.1105/tpc.006973
Li, X., Fang, Y. H., Yang, J., Bai, S. N., and Rao, G. Y. (2013). Overview of the B subunit of a CAAT binding factor. Mol. Biol. Rep. 39, 6449–6465. doi: 10.1007/s11033-012-1463-9
Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., and Lepiniec, L. (2008). Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54, 608–620. doi: 10.1111/j.1365-313X.2008.03461.x
Siefers, N., Dang, K. K., Kimimoto, R. W., Bynum, W. E., Tayrose, G., and Holt, B. F. (2009). Tissue-specific expression patterns of Arabidopsis NP FX transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol. 149, 625–641. doi: 10.1104/pp.108.130591
Stone, S., Braybrook, S., Paula, S., Kwon, L., Meuser, J., Pelletier, J., et al. (2007). Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 3511–3516. doi: 10.1073/pnas.0712364105
Stone, S. L., Kwon, L. W., Yee, K. M., Pelletier, J., Lepiniec, L., Fischer, R., et al. (2007). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. U.S.A. 98, 11806–11811. doi: 10.1073/pnas.10413498
Su, C., McCarty, D. R., Hattori, T., Carson, C. B., Vasil, V., Lazar, M., and Vasil, I. K. (1991). The Viriparious-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66, 895–905. doi: 10.1016/0092-8674(91)90436-3
Mönke, G., Seifert, M., Keilwagen, J., Möhr, M., Grosse, L., Hähnel, U., et al. (2012). Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res. 40, 8240–8254. doi: 10.1093/nar/gks94
Nag, R., Maity, M. K., and DasGupta, M. (2005). Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin. Plant Mol. Biol. 59, 821–838. doi: 10.1007/s11103-005-1387-z
Nakamura, S., Lynch, T. J., and Finkelstein, R. R. (2001). Physical interactions between ABA response loci of Arabidopsis. Plant J. 26, 627–635. doi: 10.1046/j.1365-313X.2001.01086.x
Nambara, E., Naito, S., and McCourt, P. (1992). A mutant of Arabidopsis is defective in seed development and storage protein accumulation is a new ABI3 allele. Plant J. 2, 435–441. doi: 10.1111/j.1365-313X.1992.00435.x
Nystedt, B., Street, N. R., Wetterborn, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584. doi: 10.1038/nature12211
Parcy, F., Valon, C., Raynal, M., Goubier-Cornella, P., Delseny, M., and Giraudat, J. (1994). Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6, 1567–1582. doi: 10.1105/tpc.6.11.1567
Peng, L. T., Shia, Z. Y., Lia, L., Shen, G. Z., and Zhang, J. L. (2008). Overexpression of transcription factor OsLFL1 delays flowering time in Orzya sativa. J. Plant Physiol. 165, 876–885. doi: 10.1016/j.jplph.2007.07.010
Radoeva, T., and Weijers, D. (2014). A roadmap to embryo identity in plants. Trends Plant Sci. 19, 709–716. doi: 10.1016/j.tplants.2014.06.009
Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., et al. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69. doi: 10.1126/science.1150646
Riggheti, K., Vu, J., Pelletier, S., Vu, B., Glash, E., Lalanne, D., et al. (2015). Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27, 2692–2708. doi: 10.1105/tpc.15.00632
Rovekamp, M., Bowman, J. L., and Grossniklaus, U. (2016). Marchantia MpRkD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26, 1–8. doi: 10.1126/cub.2016.05.028
Salvini, M., Sani, E., Fambri, M., Pistelli, L., Pucciarelli, C., and Pugliesi, C. (2012). Molecular analysis of a sunflower gene encoding an homologous of the B subunit of a CAAT binding factor. Mol. Biol. Rep. 39, 6449–6465. doi: 10.1007/s11033-012-1463-9
Tiedemann, J., Rutten, T., Mönke, G., Vorwieger, A., Rolletschek, H., Meissner, D., et al. (2008). Dissection of a complex seed phenotype: novel insights of FUSCA3 defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 4, 33–45. doi: 10.1142/S0219720010005129
Tiemann, P., and Crane, P. (1997). Diversification of the AFL subfamily B3 genes during land plant evolution. Plant J. 13, 591–601. doi: 10.1046/j.1365-313X.1997.00429.x
A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18, 1642–1651. doi: 10.1105/tpc.105.039925

Tsuchiya, Y., Nambara, E., Naito, S., and McCourt, P. (2004). The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis. Plant J. 37, 73–81. doi: 10.1046/j.1365-313X.2003.01939.x

Verdier, J., Torres-Jerez, I., Wang, M., Andriankaja, A., Allen, S., He, J., et al. (2013). Establishment of the lotus japonicus gene expression atlas (LjGEA) and its use to explore legume seed maturation. Plant J. 74, 351–362. doi: 10.1111/tjp.12119

Wang, F., and Perry, S. E. (2013). Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 161, 1251–1264. doi: 10.1104/pp.112.212282

Xie, Z., Li, X., Glover, B. J., Bai, S. N., Rao, G. Y., Luo, J., et al. (2008). Duplication and functional diversification of HAP3 genes leading to the origin of the seed-developmental regulatory gene, LEAFY COTYLEDON1 (LEC1), in nonseed plant genomes. Mol. Biol. Evol. 25, 1581–1592. doi: 10.1093/molbev/msn105

Yamamoto, A., Kagaya, Y., Toyoshima, R., Kagaya, M., Takeda, S., and Hattori, T. (2009). Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J. 58, 843–856. doi: 10.1111/j.1365-313X.2009.03817.x

Yang, J., Xie, Z., and Glover, B. J. (2005). Asymmetric evolution of duplicate genes encoding the CCAAT-binding factor NF-Y in plant genomes. New Phytol. 165, 623–632. doi: 10.1111/j.1469-8137.2004.01260.x

Zeng, Y., and Kermode, A. R. (2004). A gymnosperm ABI3 gene functions in a severe abscisic acid-insensitive mutant of Arabidopsis (abi3-6) to restore the wild-type phenotype and demonstrates a strong synergistic effect with sugar in the inhibition of post-germinative growth. Plant Mol. Biol. 56, 731–746. doi: 10.1007/s11103-004-4952-y

Zeng, Y., Raimondi, N., and Kermode, A. R. (2003). Role of an ABI3 homologue in dormancy maintenance of yellow-cedar seeds and in the activation of storage protein and Em gene promoters. Plant Mol. Biol. 51, 39–49. doi: 10.1023/A:1020762304937

Zhang, J.-J., and Xue, H.-W. (2013). OsLEC1/OsHAP3E participates in the determination of meristem identity in both vegetative and reproductive developments of rice. J. Integr. Plant Biol. 55, 232–249. doi: 10.1111/jipb.12025