Title
Search for a heavy neutral particle decaying into an electron and a muon using 1 fb\(^{-1}\) of atlas data

Permalink
https://escholarship.org/uc/item/1cn7s1rr

Journal
European Physical Journal C, 71(12)

ISSN
1434-6044

Authors
Aad, G
Abbott, B
Abdallah, J
et al.

Publication Date
2011-12-07

DOI
10.1140/epjc/s10052-011-1809-9

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Search for a heavy neutral particle decaying into an electron and a muon using 1 fb$^{-1}$ of ATLAS data

The ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 14 September 2011 / Revised: 31 October 2011 / Published online: 7 December 2011
© CERN for the benefit of the ATLAS collaboration 2011. This article is published with open access at Springerlink.com

Abstract A search is presented for a high mass neutral particle that decays directly to the $e^\pm\mu^\mp$ final state. The data sample was recorded by the ATLAS detector in $\sqrt{s} = 7$ TeV pp collisions at the LHC from March to June 2011 and corresponds to an integrated luminosity of 1.07 fb$^{-1}$. The data are found to be consistent with the Standard Model background. The high $e^\pm\mu^\mp$ mass region is used to set 95% confidence level upper limits on the production of two possible new physics processes: tau sneutrinos in an R-parity violating supersymmetric model and Z'-like vector bosons in a lepton flavor violating model.

Short-lived particles that decay into two oppositely signed leptons of different flavors, $e^\pm\mu^\mp$ ($e\mu$), $e^\pm\tau^\mp$ ($e\tau$), or $\mu^\pm\tau^\mp$ ($\mu\tau$), are predicted by a number of extensions to the Standard Model (SM). Examples include sneutrinos in R-parity violating (RPV) supersymmetric (SUSY) models [1], and extra gauge Z' bosons with lepton flavor violating (LFV) interactions [2]. This Letter reports a search for an excess of high invariant mass $e\mu$ ($m_{e\mu}$) events over SM predictions in pp collisions at $\sqrt{s} = 7$ TeV at the LHC. The $e\mu$ final state is chosen due to its clean detector signature and low SM background in the high $m_{e\mu}$ region. Similar searches with the $e\mu$ final state have been reported previously by the CDF, D0 and ATLAS Collaborations [3–8]. In this Letter, we report an updated search with a data sample approximately 30 times larger than used for the previous ATLAS search [8] with improved sensitivity to new physics.

The ATLAS detector [9] is a multi-purpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle.1

The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field and by a hermetic electromagnetic calorimeter system, which provides three-dimensional reconstruction of particle showers up to $|\eta| < 4.9$. For $|\eta| < 2.5$, the electromagnetic calorimeter is finely segmented and plays an important role in electron identification. The muon spectrometer (MS) is based on three large superconducting toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters. Three stations of drift tubes and cathode strip chambers enable precise muon track measurements, and resistive-plate and thin-gap chambers provide muon triggering capability.

The data sample used in this analysis was collected using single lepton (e or μ) triggers, between March and June 2011. The total integrated luminosity is 1.07 ± 0.04 fb$^{-1}$ [10, 11]. The trigger efficiency is measured to be 100%, with a precision of 1%, for $e\mu$ candidates that pass the default selection criteria described below.

To select $e\mu$ candidates, the electron candidate is required to have $p_T > 25$ GeV and to have pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. It is further required to pass the “medium” [12] quality definition, which is based on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. In addition, the electron is required to be isolated in the calorimeter with $E_T^{\Delta R<0.4} < 10$ GeV, where $E_T^{\Delta R<0.4}$ is defined as the transverse energy deposited in the calorimeter within a cone of radius $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.4$ around the electron cluster. Corrections have been applied to account for energy leakage from the electron and energy deposition inside the isolation cone due to additional pp collisions. The muon candidate must be reconstructed in both the ID and the MS, and

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (R, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

* e-mail: atlas.publications@cern.ch
have \(p_T > 25 \text{ GeV} \) and \(|\eta| < 2.4\). Furthermore, the muon is required to be isolated in the ID with \(p_T^{\Delta R<0.4} < 10 \text{ GeV} \), where \(p_T^{\Delta R<0.4} \) is defined as the scalar sum of the \(p_T \) of tracks associated to the primary vertex, within a cone of radius \(\Delta R = 0.4 \) around the muon track. Only tracks with \(p_T > 1 \text{ GeV} \) are used. Furthermore, only electrons separated from muons by \(\Delta R > 0.2 \) are considered.

The \(e\mu \) candidate events are required to have exactly one electron and one muon with opposite charge satisfying the above selection criteria. Furthermore, events have to contain at least one primary vertex reconstructed with at least three associated tracks of \(p_T > 500 \text{ MeV} \).

The SM processes that can produce an \(e\mu \) signature can be divided into two categories: processes such as \(Z/\gamma^* \rightarrow \tau\tau, \tau\bar{\tau} \), single top, \(WW, WZ \) and \(ZZ \), which can produce electrons and muons in the final state, and processes, referred to as fake background in this Letter, such as \(W/Z + \gamma, W/Z + \text{jets} \) and \(\text{multijet} \) events where the photon or one or two jets are reconstructed as leptons.

The contributions from processes listed in the first category as well as photon-related backgrounds are estimated using Monte Carlo (MC) samples generated at \(\sqrt{s} = 7 \text{ TeV} \). The detector response simulation [13] is based on the GEANT4 program [14]. Lepton reconstruction and identification efficiencies, energy scales and resolutions in the MC are corrected to the corresponding values measured in the data in order to improve the modeling of the background. The MC predictions are normalized to the data sample based on the integrated luminosity and cross sections of various physics processes. Top production is generated with MC@NLO [15–17] for \(t\bar{t} \) and single top, the Drell–Yan process is generated with PYTHIA [18], and the diboson processes are generated with HERWIG [19, 20]. Higher order corrections have been applied to the cross sections predicted by these generators [21–23]. The \(W/Z + \gamma \) contribution in the fake background comes from the \(W(\rightarrow \mu\nu)\gamma \) and \(Z(\rightarrow \mu\mu)\gamma \) processes, where the photon is reconstructed as an electron. This background is estimated using events generated with MADGRAPH [24].

The uncertainties for the \(t\bar{t} \) and single top cross sections are taken to be 10% [25, 26] and 9% [27], respectively. The cross sections for \(W/Z + \gamma, Z/\gamma^* \rightarrow \tau\tau, WW, WZ \) and \(ZZ \) are assigned uncertainties of 10%, 5%, 7%, 7%, and 5%, respectively; these uncertainties arise from the choice of PDF, from factorization and renormalization scale dependence and from \(\alpha_s \) variations. The integrated luminosity uncertainty and other smaller systematic uncertainties from the lepton trigger, reconstruction and identification efficiencies, energy (momentum) scale and resolution have been added in quadrature and are included in the total uncertainty.

The remaining fake backgrounds arise from the \(W/Z + \text{jets} \) and \(\text{multijet} \) processes, where leptons are present from \(b \)- or \(c \)-hadron decays or at least one jet is misidentified as a lepton. Such lepton candidates are collectively referred to as “non-prompt leptons” in this Letter. These jet fake backgrounds account for \(\sim 30\% \) of the expected \(e\mu \) data yield and are estimated from data using a \(4 \times 4 \) matrix background estimation method described below. A looser lepton quality selection (called “loose” lepton here) is defined for each lepton type in addition to the default quality selection (called “tight” lepton here). For loose muons, the isolation requirement is dropped. For loose electrons, the “loose” electron identification criteria as defined in Ref. [12] are used and the isolation requirement is also dropped. The tight and loose lepton selections are then used to classify events where both leptons pass the loose requirements into four categories, depending on whether both leptons subsequently pass the tight requirement (\(N_{pp} \)), only one lepton fails the tight requirement and the other lepton passes the tight requirement (\(N_{pf} \) or \(N_{fp} \)), or both leptons fail the tight requirement (\(N_{ff} \)). The sample composition can be estimated by solving a linear system of equations:

\[
(N_{pp}, N_{pf}, N_{fp}, N_{ff})^T = \epsilon (N_{e\mu}, N_{e\mu}, N_{e\mu}, N_{e\mu})^T,
\]

where \(N_{e\mu} \) is the number of events with two prompt leptons (or two non-prompt leptons), while \(N_{e\mu} \) and \(N_{e\mu} \) are the numbers of events with one prompt lepton and one non-prompt lepton.

The matrix \(\epsilon \) contains the probabilities for a loose quality lepton to pass the tight quality selection for both prompt and non-prompt leptons. The probability for prompt leptons (non-prompt leptons) is estimated by applying the loose and tight selections on \(Z/\gamma^* \rightarrow ee/\mu\mu \) events (a sample of dijet events). To take into account the lepton \(p_T \) dependence of the two probabilities, the matrix equation is inverted for each event, giving four weights, corresponding to the four combinations of prompt and non-prompt leptons. These weights are then summed over all events to yield the total number of events with one or more non-prompt leptons. The overall jet fake background is found to be \(1175 \pm 32 \) (stat) events. The breakdown of these contributions is estimated to be \(N_{e\mu} = 375 \pm 30 \) (stat), \(N_{e\mu} = 89 \pm 13 \) (stat) and \(N_{e\mu} = 711 \pm 8 \) (stat). The overall systematic uncertainty of 10% comes mainly from the uncertainty on the probability for a loose quality non-prompt muon to pass the tight quality selection.

Table 1 shows the number of events selected in data and the estimated background contributions with their uncertainties (both statistical and systematic uncertainties are included). A total of 4053 \(e\mu \) candidates are observed, while the expectation from SM processes is \(4145 \pm 250 \) events. The \(m_{e\mu} \) distribution is presented in Fig. 1 for data and background contributions. The distribution of observed events is compared to the expected background using a Kolmogorov–Smirnov test with statistical uncertainties only [28, 29]. The test probability is 56%, consistent with the absence of a new physics signal.

Table 2 shows the numbers of observed and predicted background events in eleven high \(e\mu \) mass regions. Good
Considered. The RPV sneutrino couplings allowed in the superyrwa model and of an LFV muon flavor couplings. Rare muon decay searches have placed extremely stringent limits on the combination of the mass and the coupling to $e\mu$ in such models [2]. The $e\mu$ searches at hadron colliders are not able to match the sensitivity of dedicated $\mu \rightarrow e$ conversion experiments. A limit on the production cross section times branching ratio to $e\mu$ is placed on the Z′-like boson model to represent the production of vector particles that can decay to the $e\mu$ final state. To calculate the efficiency and acceptance, the Z′ is assumed to have the same quark and lepton couplings as the SM Z except a non-zero Z′ to $e\mu$ coupling, which is assumed to be the same as the Z′ to ee coupling. The cross section is 0.61 pb for $m_{Z'}=700$ GeV [34]. MC samples with Z′ masses ranging from 0.7 to 2 TeV are generated with PYTHIA.

Both $\tilde{\nu}_\tau$ and Z′ samples are processed through the standard chain of the ATLAS simulation and reconstruction. The overall product of acceptance and efficiency is 36% for $m_{\tilde{\nu}_\tau}=100$ GeV and increases to 64% for $m_{\tilde{\nu}_\tau}=1$ TeV. The corresponding number is ~ 60% for Z′ with mass $m_{Z'}=700$ GeV to $m_{Z'}=2$ TeV. The predicted $m_{e\mu}$ distributions for a $\tilde{\nu}_\tau$ with $m_{\tilde{\nu}_\tau}=650$ GeV and a Z′ with $m_{Z'}=700$ GeV are also shown in Fig. 1.

Table 1: Estimated backgrounds in the selected sample, together with the observed event yield. The total integrated luminosity is 1.07 fb$^{-1}$

Process	Number of events
$t\bar{t}$	1580±170
Jet fake	1175±120
$Z/\gamma^* \rightarrow \tau\tau$	750 ± 60
WW	380 ± 31
Single top	154 ± 16
$W/Z + \gamma$	82 ± 13
WZ	22.4±2.3
ZZ	2.48±0.26
Total background	4145±250
Data	4053

Table 2: Estimated total backgrounds in the selected sample, together with the observed event yields for 11 high $e\mu$ mass regions

$m_{e\mu}$	Data	SM prediction
>200 GeV	286	288 ± 22
>250 GeV	152	136 ± 11
>300 GeV	70	67 ± 6
>350 GeV	35	34.0 ± 3.0
>400 GeV	22	17.7 ± 1.7
>450 GeV	10	10.5 ± 1.2
>500 GeV	7	6.8 ± 0.9
>550 GeV	3	4.3 ± 0.6
>600 GeV	3	2.4 ± 0.4
>650 GeV	1	1.49 ± 0.31
>700 GeV	0	1.07±0.25

Fig. 1: Observed and predicted $e\mu$ invariant mass distributions. Signal simulations are shown for $m_{\tilde{\nu}_\tau}=650$ GeV and $m_{Z'}=700$ GeV. The couplings $\lambda_{311}^{\prime}=0.10$ and $\lambda_{312}^{\prime}=0.05$ are used for the RPV $\tilde{\nu}_\tau$ model. The production cross section is assumed to be the current published limit of 0.178 pb for the LFV Z′ model [8]. The ratio plot at the bottom includes only statistical uncertainties.
The $m_{\mu\mu}$ spectrum is examined for the presence of a new heavy particle. For each assumed $m_{\tilde{\nu}}$ value in the range 100 GeV to 2 TeV, a search region, which depends on the simulated $e\mu$ mass resolution, is used.\(^2\) The number of observed and predicted background and signal events in each search range are used to set an upper limit on $\sigma(pp \rightarrow \tilde{\nu}) \times \text{BR}(\tilde{\nu} \rightarrow e\mu)$. A Bayesian method [35] is used with a uniform prior for the signal cross section for a given $m_{\tilde{\nu}}$. Figure 2a shows the expected and observed 95% confidence level (C.L.) limits, as a function of $m_{\tilde{\nu}}$, together with the limits previously published by ATLAS [8], which were based on 35 pb\(^{-1}\) of data, and the expected ±1 and ±2 standard deviation uncertainty bands. For a $\tilde{\nu}$ with a mass of 100 GeV (1 TeV), the limit on the cross section times branching ratio is 135 (4.5) fb. The limits obtained extend 7 (34) times beyond the previous ATLAS results.

The theoretical cross sections for $\lambda'_{311} = 0.10$, $\lambda_{312} = 0.05$ and $\lambda_{311} = 0.11$, $\lambda_{312} = 0.07$ are also shown. Tau sneutrinos with a mass below 1.32 (1.45) TeV are excluded, assuming coupling values $\lambda'_{311} = 0.10$ and $\lambda_{312} = 0.05$ ($\lambda'_{311} = 0.11$ and $\lambda_{312} = 0.07$). The limits are significantly better than the limits from the previous ATLAS analysis using 35 pb\(^{-1}\) of data. The 95% C.L. observed upper limits on λ_{311}, as a function of $m_{\tilde{\nu}}$, are shown in Fig. 2b for three values of λ_{312}, together with the exclusion region obtained from the D0 experiment [7] and previously by the ATLAS experiment [8]. The limits on λ'_{311} are tighter than the D0 results for $m_{\tilde{\nu}} > 270$ GeV sneutrinos assuming $\lambda_{312} = 0.07$. Better sensitivity can be obtained for $m_{\tilde{\nu}} < 270$ GeV by applying selection cuts on missing transverse energy and number of jets in the event to improve the signal and background ratio, but it will make the search model-dependent.

A similar method is used to set limits on the LFV Z'-like vector boson; however, as opposed to the sneutrino limits, a unique mass window is defined for each potential signal mass. The 95% C.L. upper limits on $\sigma(pp \rightarrow Z') \times \text{BR}(Z' \rightarrow e\mu)$ are shown in Fig. 3. The expected limit is the same as the observed limit for the high mass points because both the median background event count expectation and the observed number of events are zero. For a Z' with mass of 0.7 TeV (1.0 TeV), the limit on the cross section times branching ratio is 9.6 fb (4.8 fb). This result improves upon previous ATLAS limits by roughly a factor of 20 (40).

In conclusion, a search has been performed for high mass $e\mu$ events using pp collision data at $\sqrt{s} = 7$ TeV recorded by the ATLAS detector. The observed $m_{e\mu}$ distribution is found to be consistent with SM predictions. With no evidence for new physics, 95% C.L. exclusion limits are placed on the production cross sections and RPV coupling values of the tau sneutrinos in an RPV SUSY model, and tau sneutrinos with a mass below 1.32 (1.45) TeV are excluded, assuming coupling values $\lambda'_{311} = 0.10$ and $\lambda_{312} = 0.05$ ($\lambda'_{311} = 0.11$ and $\lambda_{312} = 0.07$). The results presented here are the most stringent results to date for $m_{\tilde{\nu}} > 270$ GeV.

More stringent constraints are also set on the production cross sections of Z' bosons in an LFV model. These two benchmark models can be used to represent the production of any narrow scalar and vector particles that can decay to the $e\mu$ final state.

\(^2\)The search region is normally defined to be $(m_{\tilde{\nu}} - 3\sigma, m_{\tilde{\nu}} + 3\sigma)$, where σ is the expected $m_{e\mu}$ resolution (e.g., $\sigma = 11$ GeV for $m_{e\mu} = 400$ GeV). If $m_{\tilde{\nu}} - 3\sigma < 700$ GeV and $m_{\tilde{\nu}} + 3\sigma > 700$ GeV, the region above $m_{\tilde{\nu}} - 3\sigma$ is used. If $m_{\tilde{\nu}} - 3\sigma > 700$ GeV, the region above 700 GeV is used. The mass window changes around 700 GeV because the MC statistics is not sufficient in the $m_{e\mu} > 700$ GeV region.
Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DST/NRF and ANRS, South Africa; INFN, Italy; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MENRTS, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Fig. 3 The observed 95% C.L. upper limits on $\sigma(pp \to Z') \times \text{BR}(Z' \to e\mu)$. The expected limits are also shown together with the expected ± 1 and ± 2 standard deviation uncertainty bands. The observed and expected limits overlap as discussed in the text.

The ATLAS Collaboration

G. Aad, B. Abbott, J. Abdallah, A.A. Abdelalim, A. Abdessalam, O. Abdinov, B. Abi, M. Abolins, H. Abramowicz, H. Abreu, E. Acerbi, B.S. Acharya, D.L. Adams, T.N. Addy, J. Adelman, et al.
A. Maio124a, b, S. Majewski24, Y. Makida66, N. Makovec115, P. Maleev121, F. Malek55, U. Maliti63, D. Malon2, C. Malone143, S. Maltezos8, V. Malyshev107, S. Malyukov29, R. Mameghani98, J. Mamuzic12b, A. Manabe66, L. Mandelli89a, I. Mandic24, R. Mandrysch15, J. Maneire124a, P.S. Mangearem88, I.D. Manjavides65, A. Mann54, P.M. Manning137, A. Manousakis-Katsikakis8, B. Mansouli136, A. Manz99, A. Mapelli29, L. Mapelli29, L. March80, J.F. Marchand29, F. Marchese133a, 133b, G. Marchiori79, M. Marcisovsky125, A. Marin21, C.P. Marine161, F. Marroqui133a, R. Marshall82, Z. Marshall29, F.K. Martens158, S. Marti-Garcia167, A.J. Martin175, B. Martin29, B. Martin88, F.F. Martin20, J.P. Martin39, Ph. Martin55, T.A. Martin17, V.J. Martin5, B. Martin dit Latour40, S. Martin-Haugh149, M. Martinez115, V. Martinez Outschoorn57, A.C. Martyniuk82, M. Marx22, F. Marzano132a, A. Marzin111, L. Masetti81, T. Mashimo155, R. Mashinistov94, J. Massik82, A.L. Maslennikov107, I. Massa19a, 19b, G. Massaro105, N. Massol4, P. Mastrandrea132a, 132b, A. Mastrobertini50a, M. Mori57, J. Morin75, Y. Morita66, A.K. Morley29, G. Mornacchi29, S.V. Morozov94, J.D. Morris75, L. Morpadopoulou9, A. Paramonov5, W. Park24, w, M.A. Parker27, F. Parodi50a, 50b, J.A. Parsons34, U. Parzefall48, E. Pasqualucci132a, A. Passeri34a, F. Pastore134a, 134b, Fr. Pastore29, G. Pästztor9x, S. Pataraia74, N. Patel150, J.R. Patzer82, S. Patricelli102a, 102b, T. Pauly29, M. Pecsya144a, M.I. Pedraza Morales172, S.V. Peleganchuk107, H. Peng32b, R. Pengo29, A. Penson34, J. Pennelli61, M. Perantoni23a, K. Perez34, y, T. Perez Cavalcanti41, E. Perez Codina11, M.T. Pérez García-Estañ167, V. Perez
(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

28 Department of Physics, Carleton University, Ottawa ON, Canada

29 CERN, Geneva, Switzerland

30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

31 (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Hefei; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China

33 Laboratoire de Physique Corpusculaire, Clermont Université et Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

34 Nevis Laboratory, Columbia University, Irvington NY, United States of America

35 Niels Bohr Institute, University of Copenhagen, København, Denmark

36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

39 Physics Department, Southern Methodist University, Dallas TX, United States of America

40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

41 DESY, Hamburg and Zeuthen, Germany

42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

44 Department of Physics, Duke University, Durham NC, United States of America

45 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

51 (a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

56 Department of Physics, Hampton University, Hampton VA, United States of America

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Science, Hiroshima University, Hiroshima, Japan

60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

61 Department of Physics, Indiana University, Bloomington IN, United States of America

62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

63 University of Iowa, Iowa City IA, United States of America

64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

67 Graduate School of Science, Kobe University, Kobe, Japan

68 Faculty of Science, Kyoto University, Kyoto, Japan
