Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cardiovascular diseases are scarcely reported in donkeys, probably linked to their limited athletic attitude and low frequency of poor performance-related examinations. Reports on treatments for cardiovascular pathologies are anecdotal in donkeys. Respiratory tract anatomy shows important differences between horses and donkeys. Donkeys and mules can act as reservoirs spreading many viral, bacterial, and parasitic infectious respiratory diseases. Mosquito and tick-borne encephalitis have been reported in these species in the later years, and even donkeys are being used as sentinels in some areas to detect these emerging diseases. Management and treatment of lithiases can be transferable from horses; however, the same assumption must still be demonstrated for acute and chronic renal diseases. Ocular pathologies are similar to horses, with corneal ulcers frequently observed. Lameness is a common problem in donkeys, with laminitis as the most reported cause followed by pedal abscess.
Normal echocardiographic parameters have also been reported in healthy donkeys [10–12]. Amory et al [10] described normal values of echocardiographic dimensions and functional indexes, as well as quantitative reference values for Doppler flow in healthy donkeys. Again, those references must be taken with caution because marked variations can be seen depending on the breed, body size, age, growth rate, and training of the animal. In some studies, body size appears to be the key factor affecting the chamber dimension, with donkeys showing smaller chambers compared with horses but similar dimensions compared with ponies. When echocardiographic parameters are adjusted to body weight, donkeys display a lower left ventricular mass index, bigger left ventricular internal diameter index, and relative wall thickness compared with horses. Tricuspid and mitral peak flow velocities are also reported as lower in donkeys than horses. While some of these differences could be attributed to training disparities (left ventricular mass index), the rest of them are likely idiosyncratic to donkeys. This issue should be taken into account during the diagnosis and monitoring of cardiac patients. Finally, clinicians should know that standardized imaging techniques for guided M-mode and Doppler measurements previously described for horses can also be applied to donkeys.

Several cardiac acquired and congenital anomalies have been documented in donkeys, including ventricular septal defect, truncus arteriosus, Adams-Stokes syndrome, pseudotruncus arteriosus, third-degree atrioventricular (AV) block, myocardial disease, valvular sclerosis or thickening, and atrial fibrillation [6,13,14]. Third-degree AV block seems to be a common cardiac conduction disorder in donkeys, particularly in small breeds [15]. Signs of third-degree AV block include weakness, syncope episodes, and collapse [15]. Pacemakers have been successfully placed in donkeys with third-degree AV block [16,17].

It has been reported that 2% of donkeys have an audible murmur [6], considerably fewer than horses (50%–80%) [18]. This apparently lower prevalence could be related to a low sensitivity of cardiac auscultation in this species (due to wider subcutaneous fat, longer hair, and thicker skin) and also probably differences in sampled population. Of interest for clinicians, and considering that donkeys live longer than horses, aortic regurgitation can be frequently found in geriatric donkeys, even without an audible murmur.

Regarding antidyssrhythmic drugs, verapamil (0.3 mg/kg/IV) has been studied in healthy nonpregnant jennies. Transient secondary effect such as sinus tachycardia (8 out of 10), wandering pacemaker (1/10), first-degree AV block (1/10), and second-degree AV block (1/10) were observed; therefore, caution should be taken when we use this drug (verapamil) as treatment for supraventricular arrhythmias in donkeys [8]. Tharwat and Al-Sobayil [19] studied the effects of intravenous digoxin (14 μg/kg) in healthy donkeys. No variations were observed in electrocardiogram; biochemistry; and acid-base, electrolytic, or cardiac troponin I plasmatic concentrations. Thus, digoxin appears to be a plausible treatment for arrhythmias and heart failure in donkeys, with a wider safety range compared with horses [20].

Glycoside toxicity due to Oleander spp. ingestion has been described in a 9-year-old gelding miniature donkey [21]. The animal showed depression, tachycardia, irregular rhythm, poor peripheral pulse quality, and congestive mucous membranes, as well as ventricular tachyarrhythmia (monitored by radiotelemetry), high plasmatic levels of CKmb, and acute renal failure. No murmurs or echocardiography changes were evidenced. Unsuccessful cardioversion was attempted with lidocaine (even at a 40 μg/kg/min dosage) and procainamide (1 mg/kg/min). Finally, a loading dose of phenytoin (10 mg/kg intravenously) followed by a maintenance dose (3 mg/kg/IV q 12 hours) allowed the return to sinus rhythm.

Caution should be kept in mind in areas where these plants can be found.

Cardiotoxicity of several antibiotics is widely known in donkeys. An example is tilmicosin, a macrolide commonly used in respiratory diseases in some species [22]. Doses used in horses (10 mg/kg) have been shown to induce transient and short-lasting changes in cardiac function and indexes measured by echocardiography in donkeys [23].

3. Respiratory Tract

Any described respiratory disease in horses could probably affect donkeys, although certain idiosyncrasies must be considered. For example, anatomically, nasolacrimal conduit nasal opening is located dorsolateral in donkeys, whereas it is in the lateral wall of the external nares in mules [24]. Nasal cavity is strikingly narrower in donkeys compared with horses. Clinicians should be aware of this particularity, which predisposes donkeys to epistaxis during nasogastric tubing or endoscopy. Moreover, guttural pouch opening is slightly more horizontally oriented (important during the endoscopic maneuver to gain access into the pouch), pharynx is narrower (predisposing to collapse during endoscopy), and epiglottis and aryepiglottic folds are commonly smaller in donkeys than horses [25–27]. The carotid arterial tree is also anatomically different between both species [28], which could be related with the low described incidence of guttural pouch mycosis in donkeys [29]. The specific anatomy of those arteries in donkeys should be carefully studied before arterial coil embolization. Other respiratory clinical differences between both species are caused by their dissimilar behavior and attitude, for example, their insensitive cough reflex compared with horses [27]. Because donkeys are markedly stoic and rarely intensely trained, clinical signs are noticed later, and early diagnosis due to poor performance is rare in donkeys. Considering all these factors, most donkeys with respiratory disturbances are attended with more chronic and severe diseases states than horses, which undoubtedly should be considered when a prognosis is provided in this species.

Congenital defects of the upper respiratory tract have been reported in donkeys, such as choanal atresia, laryngeal deformities [30], and cleft palate [27].

Normal cellular population in bronchoalveolar lavages (BALs) and transtracheal washes (TTWs) has also been described in donkeys, showing variations in the differential leukocyte counts compared with horses (which could be of marked importance in these fluids). Bronchoalveolar lavage description was similar to horses, but slightly higher macrophage percentages were observed [31]. On the other hand, TTW showed higher neutrophil and eosinophil counts in healthy donkeys compared with horses [25]. Perhaps these findings could be attributed to the breed and age of those animals used in this study.

Dynamic pulmonary tests have also been described in donkeys, showing higher total pulmonary resistance and respiratory rates, whereas pulmonary compliance was lower than in horses [25].

It is not the goal of this section to describe each respiratory pathology of donkeys in detail but to list the common ones and underlie reported interspecific differences. In a population of 1,444 geriatric donkeys, pulmonary fibrosis was the most frequent disease (35.2%), followed by tracheal collapse (8.7%), guttural pouch disease (4.9%), lower pulmonary and pleural diseases—including recurrent airway obstruction and pneumonia (4%)—sinusitis (0.8%), and lung neoplasia (0.4%) (Fig. 1 and Supplementary Material 1) [14]. Exercise-induced pulmonary hemorrhage has not been described in donkeys to the authors’ knowledge.

Pulmonary fibrosis, common in elderly donkeys, shows pathological findings similar to pleuroparenchymal fibroelastosis in
A 10-year-old Andalusian jack with maxillary sinusitis secondary to oronasal fistula between 207 and 208 diastemata. (A) Lateral head radiography showing a fluid line in the rostral aspect of maxillary sinus. (B) Left maxillary sinuscopy; note molar roots and the accumulation of exudate into the sinus, caused by alimentary material penetrating through the oronasal fistula.

This fact could potentially make the donkey an interesting experimental model for this human disease. Asinine herpesvirus 4 (AHV-4) and AHV-5 have been isolated and proposed as potential causative agents for this condition [33]. One can speculate that this condition is equivalent to equine multinodular pulmonary fibrosis—linked to equine herpesvirus 5 (EHV-5)—in horses. Pulmonary fibrosis can be confused with severe donkey asthma because resting respiratory effort, tachypnea, and cough are features of both conditions. Absence of pulmonary sounds is frequent with pulmonary fibrosis (although pulmonary sounds can be challenging to hear in fat donkeys). The diagnosis is based on thoracic radiography, which usually shows a diffuse interstitial pattern. The value of BAL in the diagnosis of pulmonary fibrosis is unclear. Intracellular inclusion bodies identified in respiratory epithelial cells of horses with pulmonary fibrosis have not been demonstrated in donkeys. Thoracic ultrasonography is not diagnostic but can confirm the presence pulmonary parenchymal disease. Computed tomography (CT) and magnetic resonance imaging (MRI) are helpful in people but not feasible for donkeys. Pulmonary function tests and lung biopsy are useful ancillary diagnostic tools. Treatment for pulmonary fibrosis is similar to pulmonary interstitial diseases in horses and includes steroids, antifibrotic drugs (i.e., pentoxifylline), and bronchodilators. The pharmacology and efficacy of antiviral drugs such as acyclovir or valacyclovir have not been evaluated in donkeys.

Tracheal collapse is a frequent finding in elderly donkeys [34]. Distal cervical trachea and thoracic inlet are the most common affected areas. Evidence is usually null, and diagnosis is elusive, being a necropsy finding in some animals. A link between tracheal collapse and pulmonary fibrosis has been proposed although not definitively proved, in a study. It is thought that a higher inspiratory effort and subsequent higher intrathoracic pressure could promote pulmonary fibrosis or vice versa, even in donkeys with moderate-severe asthma [27]. Clinical presentation depends on the collapse degree, from no signs to audible inspiratory and expiratory effort, tachypnea, chronic coughing, inspiratory honking noises, or even acute respiratory distress in severe forms. Final diagnosis is based on endoscopy and radiology. Stent placement has not been described in donkeys yet.

Similar to horses, primary pulmonary neoplasia is rare (0.4% incidence) and difficult to diagnose, being commonly confused with other respiratory diseases. Incidence is higher in elderly donkeys, and signs are variable, from chronic and progressive dyspnea to nasal discharge, cough, weight loss, or fever [27]. A complete examination is necessary, including biochemistry (anemia, leukocytosis, and hyperglobulinemia are common features), endoscopy, thoracic radiography, cytological analysis of pleural effusions (if present), BAL, and pulmonary biopsy [35]. Both primary and secondary pulmonary neoplasia have a poor prognosis [36,37].

As previously mentioned, exercise-induced pulmonary hemorrhage has not been described in donkeys. Because intense training and exercise are not usual in this species, this finding could be expected. Nonetheless, readers should remind that apart from exercise, alveolar blood capillaries can also be damaged by other causes of excessive low intraalveolar pressure (laryngeal hemiplegia, tracheal collapse, intense respiratory effort due to pulmonary fibrosis, and so forth). Animals suffering from any of the aforementioned diseases could display hemoptysis to some degree.

Concerning infectious respiratory diseases, the role of donkeys and mules as reservoir should always be kept in mind. In show events, contact between horses with donkeys or mules is often not regulated or supervised and could be an avenue for cross infections [38]. Cohabitation between those species should also be strongly supervised and carefully registered. Moreover, strict deworming and vaccination programs should be implemented in farms with presence of various species.

Influenza is the most common infectious respiratory disease in donkeys [39], with cases reported worldwide, including the United States [40], Nigeria [41], Pakistan [42], Egypt [43], Spain [44], France [45], Morocco [46], and China [47]. Donkeys are apparently more susceptible than horses to this virus [48]. Avian influenza (H5N1) has been reported in three Egyptian donkeys [49]. Clinical signs and diagnosis are similar to horses. Influenza susceptibility in mules is unknown. Unfortunately, owners and veterinarians are not aware of donkeys’ higher susceptibility to influenza, and vaccination programs are not common in this species. At this moment, horse vaccine could be administer to donkeys, until that a specific donkey vaccine is marketed.

Donkeys can be infected by EHV-1 and EHV-4 [50], as well as specific asinine herpesviruses (AHV-1, AHV-2, AHV-3, AHV-4, AHV-5, and AHV-6). Not every asinine variant causes respiratory disease in donkeys. Horses can also get infected with asinine viruses, leading to clinical disease or becoming asymptomatic carriers [51]. Mules can be infected but rarely show signs [52]. Clinical signs, diagnosis, and treatment are similar to horses [27]. AHV-3 diagnosis can be challenging because a negative polymerase chain reaction but positive cytopathogenic effect can be seen. Moreover,
complement fixation can yield false negative results due to the anticomplement activity of donkey and mule serum [53]. Till date, there are no available vaccines for asinine herpesviruses. Nonetheless, although no studies evaluating cross protection have been reported, equine vaccine protocols and products could be used in donkeys while specific ones are available.

Clinical disease from natural equine arteritis virus infection has not been reported in donkeys or mules; however, there are donkey-specific strains (KY-84; asinine-94) with limited transmission to horses [54]. Fever, mild depression, nasal and ocular discharges, and ventral edema were reported in donkeys infected experimentally [55]. The study supports species-specific resistance and the presence of subclinical infections [54]. Sero positivity has been documented in asymptomatic donkeys in South Africa [55], Morocco [55], Zimbabwe [55], Brazil [56], and Turkey [50].

Exotic respiratory infectious diseases affecting donkeys and mules include African horse sickness and glanders (Burkholderia mallei). Donkeys and mules appear to be more prone to glanders than horses [53,57], but African horse sickness is less severe and rarely fatal in donkeys [58], which may have epidemiological implications because donkeys and mules can act as carriers [59].

Myocytic pneumonia due to Aspergillus spp. was documented in five Albino Asinara donkey foals [60]; all animals died, and final diagnosis was reached via culture in postmortem specimens. No radiographic or echographic examinations were performed. The authors suggested that immunosuppression (e.g., herpesvirus pneumonia) could have facilitated fungal invasion. No evidence of gastrointestinal disease was found, contrary to systemic aspergillosis in horses [60]. Whether this condition is important for the general donkey population or merely a finding in those reported Asinara donkeys is still unclear.

Donkeys can host high numbers of adult lungworms (Dictyocaulus arnfieldi), showing minimal to no clinical signs compared with horses and acting as carriers. High prevalence (68%–87.5% for donkeys and 29% for mules) has been reported worldwide [61,62]. Therefore, horses and donkeys grazing together should be avoided, and pastures where donkeys have been grazing should be considered infested unless a strict routine deworming program has been implemented in those animals. Diagnosis is achieved via fecal examination (Baermann method). Bronchoalveolar lavage cytology may help, showing eosi nophilic inflammation (keeping in mind differences in leucocyte percentages compared with horses) and rarer larval stages. Macrocyclic lactones (ivermectin and moxidectin) and benzimidazoles (fenbendazole, oxfendazole, and albendazole) are effective against this parasite. A pour on eprinomectin treatment has also been seen to be efficient in a couple studies [27,63]. Rhinohrostesia has been described in African and European donkeys [64]. This upper respiratory tract myiasis can cause respiratory (even neurological if larvae migrate to the brain) signs such as dyspnea, wheezing, snorting, respiratory stridor, face rubbing, or sinusitis. Parasitic charge determines the clinical presentation. Lower tract disease is rarely seen with these parasites. Diagnosis is commonly reached via endoscopy.

Donkeys’ respiratory pharmacology is a poorly studied field, and clinicians are forced to use information available for horses. Nonetheless, antibiotics and anti inflammatory drugs must be adequately dosed in donkeys following their proper needs.

4. Neurology

Although neurological problems can be seen in donkeys, with similar causes to other equids, many physiological variables of importance for neurological diagnosis have not been established in donkeys yet. For example, a complete description of the normal X-ray findings in the cervical area is lacking (of interest for the diagnosis of cervical stenotic myelopathy). Intravertebral and intervertebral ratios and measurements (useful for the diagnosis of this disease) are undescribed in this species as well. Normal cranial CT or MRI image descriptions are also lacking, and only one case report has described CT and MRI findings in a donkey with severe brain trauma [65]. On the other hand, although only for miniature donkeys [66], reference values for cerebrospinal fluid parameters have been established. Total (2–4 cells/μL) and differential cell count, specific gravity, glucose, urea, total protein, total calcium, phosphorus, magnesium, chloride, sodium, and potassium concentrations were measured. No gender differences were found, and only phosphorus was different between donkeys and horses (4 vs. 2.4 mg/dL, respectively). Nonetheless, care must be taken when interpreting these data in different donkey breeds. Finally, Nollet et al [67] described a transcranial magnetic stimulation technique for the diagnosis of nervous disorders in donkeys.

Infectious encephalitis can affect donkeys showing similar signs to those described in horses. Exotics (until recently) neurological vector-borne diseases are becoming common in template areas. This finding should probably be related to global warming because vector populations are now able to reproduce and maintain annual population in nontraditional areas. As an example, the first outbreak in Spain of West Nile virus (WNV) in equids and humans was confirmed in 2010 with 102 affected horses and 18 dead ones [68]; despite of seropositivity was seen earlier, in 2005 [69]. Although neither donkeys nor mules were affected in that outbreak, 7.3% of them have been reported as serologically positive in a previous study on 90 farms in Southern Spain. In other European WNV outbreaks, donkeys and mules were affected [70].

Japanese viral encephalitis has been described in donkeys in Asia, India, and Australia, with similar signs to WNV encephalitis [71,72]. This pathology is not reported in equids in Europe or America although wild migratory and resident birds have been proved to be carriers [73]. New emerging flaviviruses have been reported in horses all around the world, such as Usutu and Saint Louis virus encephalitis [74,75], but they have not been described in donkeys at this moment.

Other mosquito-borne viral encephalitides caused by alphaviruses (Eastern equine encephalitis, Western equine encephalitis, and Venezuelan equine encephalitis) are well documented both in donkeys and mules [76,77]. Donkeys are used to develop vaccines against these viruses [78]. Venezuelan equine encephalitis signs are usually mild in donkeys and mules [79], thus they could act as carriers and propagate the disease to horses and people. Vaccination strategies for horses also apply to donkeys.

There is a current controversy over equid alpha and gammaherpesviruses (EHV and ASH), mostly concerning their nomenclature, pathogenicity, and similarity. ASH-3 is thought to be similar to EHV-1 according to their glycoprotein G nucleotide sequence [80]. Other studies have also detected EHV-1-like viruses in healthy donkeys, raising questions about their pathogenicity in this species [81]. A neurological condition similar to EHV-1 myeloencephalitis can be seen in donkeys [82], but its prevalence is lower than horses (even when affecting unvaccinated animals).

Borna disease has also been described both in donkeys and mules [83,84]. As an example, Borna positivity in Chinese donkeys (blood and brain samples) is 10% [85].

Rabies can still be seen in some African areas both in donkeys and mules [86,87]. Several cases have also been reported in the United States. In these examples, donkeys were tested due to bites to humans. Main rabies signs in this species are aggressiveness, parasyis, chewing, and salivation [86]. Other examples of donkeys tested positive to rabies have been reported in Asia [88] and the Middle East [89].
Equine coronavirus infection has been shown to induce neurologic signs (head pressing, depression, ataxia, recumbency, and seizures) in donkeys, most probably due to intestinal hyperammonemia and secondary encephalopathy [90,91]. The presence of concurrent digestive signs could help in the diagnosis of these patients.

Equine emerging tick-borne neurological diseases has been reported in donkeys (because tick bites are highly prevalent in this species due to their common extensive management). Neurosporosis has been described all over the world, from Europe [92] to South America [93,94]. Lyme disease (Borrelia spp.) has also been observed causing neurological disease in donkeys in Europe [95,96]. To the author’s knowledge, equine protozoal myeloencephalitis (Sarcocystis neurona) has not been reported in donkeys, and this species is thought to be resistant [97]. Nonetheless, in a commonly neglected species as this one, the lack of reports should not be considered synonym of resistance to a disease.

Concerning other parasites, we could assume that verminous myelitis is probably more common in donkeys than other equids in some countries (due to their poor prophylactic anthelmintic control). Even so, only one case report of a 2-year-old male donkey showing weakness, ataxia, progressive paraparesis, and tetraplegia is reported [98].

Noninfectious neurological diseases have also been reported in donkeys and mules. Degenerative myeloencephalopathy could be expected to be common in donkeys due to the low vitamin E and poor-quality forage they are usually fed. Nonetheless, there are few reports in donkeys [99], and none in mules. Affected donkeys show similar clinical signs as horses (weakness, symmetric ataxia, a wide-based posture, and spasticity). Vitamin E deficiency has also been reported in donkey foals [100], but at this time, serum reference range and/or requirements for different age groups have not been published.

Compressive myelopathy occurs sporadically in donkeys and mules, but literature about this condition is lacking. Cervicoventral malformation (stenotic myelopathy and Wobbler’s syndrome), trauma, abscesses, neoplasia, and fractures can also be causes of compressive myelopathy in donkeys. These animals show a symmetric—more severe in hindlimbs—ataxia. Diagnosis is similar to horses, by means of lateral cervical radiography, CT or MRI, and cerebrospinal fluid collection. Clinicians should remember that species-specific X-ray descriptions of the cervical area and reference ranges for intravertebral and intervertebral ratios are not available in donkeys at this moment.

Leukoencephalomalacia due to fumonisin B1 intoxication was described in 100 donkeys in Mexico [101]. Donkeys showed ataxia, hyperesthesia, circling, head pressing, blindness, and hyporexitability, similar signs to equine Venezuelan encephalitis. In fact, Venezuelan encephalitis should be a top differential for any neurological condition affecting multiple donkeys or equids in an area. Pyrrolizidine alkaloid toxicity can also cause neurological signs (due to the hepatic damage and associated encephalopathy) in this species [102].

5. Urinary System

Urinary tract diseases are not commonly reported in donkeys, which could be due to a truly low prevalence, unapparent clinical signs, lack of recognition by the veterinarian or owner, or infrequent evaluation of blood chemistry. Similar to disorders in other systems, diagnosis is often late (Fig. 2A).

In one postmortem survey of renal lesions in 100 donkeys, tubulointerstitial nephritis (50%), cystitis (19%), renal fibrosis, and cysts (13%) were the most common lesions found in the urinary tract [103]. Hyperkalemia and hyponatremia were the most frequent biochemistry alterations in donkeys with renal disease [103]. Dysuria, stranguria, and pollakiuria were the most frequent clinical signs in these donkeys. Streptococcus spp. (43.3%), Escherichia coli (20%), and Corynebacterium spp. (10%) are the most common bacterial isolates in donkeys with urinary tract infections [104]. Congenital abnormalities of the urinary tract have also been reported in donkeys, such as one 3-week-old miniature donkey with incomplete urethra (hypospadia), which was successfully surgically resolved [105].

Studies on neither acute renal disease (ARD) nor chronic renal disease (CRD) in donkeys have been addressed, which markedly limit the scientific certainty of any treatment. Nonetheless, while a more profound understanding of those pathologies is achieved in this species, a similar medical management to horses could be advisable. In ARD, forced diuresis with fluid therapy and a furosemide continuous infusion could be helpful, followed by vasopressor drugs administration in severe cases (Fig. 2B). In patients with CRD, a low-calcium and low-protein diet should be implemented, along with high-quality grass and supplements such as soy oil, minerals, and vitamins.

Nephrolithiasis, ureterolithiasis, cystolithiasis, and ureterolithiasis have been reported in donkeys (Fig. 2C) [103,106,107]. Animals are usually referred due to hematuria and pollakiuria. Calculi removal can be achieved through lithotripsy, urethrostomy, laparoscopic cystotomy, and laparocystotomy (Fig. 2C), using similar technique as those previously described for horses [107].

Other causes of hematuria in donkeys include Halicephalobus gingivalis (formerly Microcena deletrix) infection [108,109] and idiopathic renal hematuria [110]. Halicephalobus gingivalis infection can be diagnosed by means of urinary analysis or renal ultrasound where an anechoic mass compatible with a parasitic granuloma can be occasionally observed. Idiopathic renal hematuria has only been described in an 18-year-old mule, with resolution after unilateral nephrectomy via a ventral midline celiotomy [109].

Klossiella equi infection has also been described in donkeys [111,112]. This is often a necropsy finding because clinical signs from this coccidian parasite are not apparent. Renal infection by Leptospira spp. has been documented in donkeys. In a study, 60% (9/15) of Moroccan donkeys were positive at least to one strain, but only three animals (20%) were positive against pathogenic ones [113].

Most drugs used in horses and ponies with renal disorders have not been investigated in donkeys; therefore, correct dosing and safety are unknown (many clinicians presume them to be similar to horses, which should not be a universal assumption). Moreover, nephrotoxicity due to several commonly used drugs has also been proved in donkeys. For example, renal congestion, interstitial nephritis, and gastric glandular ulcers were seen in a group of miniature donkeys treated with flunixin meglumine (1 mg/kg/IV PO), ketoprofen (2.2 mg/kg/IV), and phenylbutazone (4.4 mg/kg/IV or PO) twice daily during 12 days. Animals treated with phenylbutazone also showed anorexia and mild diarrhea [114]. High doses of gentamicin can also induce acute kidney disease in donkeys, with elevation in the levels of interleukin-1β, interleukin-6, and gamma interferon, as well as acute phase proteins. Interestingly, when this treatment was accompanied with vitamin C, inflammatory and acute disease markers significantly decreased [115]. In a similar way, other antioxidant products, such as selenium, have been proven to reduce azotemia in a donkey model with acute kidney disease induced by exercise [116].

6. Ophthalmology

There are significant differences in donkeys’ ocular anatomy compared with horses. Their eyeball is usually slightly more...
sunken, and they commonly possess a thicker periocular hair (Fig. 3). These differences together with their stoical behavior and their common extensive or semi-wild management make one more difficult to detect initial and mild lesions in donkeys. Thus, clinicians are commonly faced with severe, recurring, and chronic pathologies, and a certain loss of sight is a usual finding in these animals during the examination.

Normal ocular ultrasonographic appearance has been described in donkeys, demonstrating marked idiosyncrasies in ocular biometry compared with horses. Donkeys possess a smaller eyeball (corrected for their body size). Finally, weight and age have been proven to affect lens size (elderly donkeys and those between 100 and 200 kg showing larger lens) [117].

Donkeys suffer similar ocular pathologies than horses. Incidence is usually high, and in some developing countries, such as Ethiopia, 86.4% donkeys present some ophthalmological condition [118] although this percentage should be understood to be true only for working animals in that location. Most frequent ocular pathology in donkeys are corneal ulcers. Their bigger conjunctival sac -compared with horses- and the mentioned populous periocular hair provide an ideal environment for foreign bodies. Their corneal surface is slightly larger and more convex than horses, which also predisposes them to corneal ulcer. Due to their behavior, the typical florid signs shown in horses (blepharospasm, epiphora, photophobia, and so forth) are later seen in donkeys. Corneal ulcer’s treatment is similar to that described in horses, relying on a medical approach and surgery in severe cases. Several surgical techniques have been reported in donkeys for corneal ulcers resolution, such as the use of a porcine urinary bladder extracellular matrix graft in a miniature donkey with severe unilateral keratomalacia [119]. When medically treating donkeys with corneal ulcers and, if atropine is administered, gut motility, fecal production, and heart rate should be closely monitored [120].
reflex tear production can be overwhelming, a 15 seconds evaluation is preferred, with an average 8.8 mm result [122]. If available, larger strips could be more appropriate for this test in donkeys. The effect of an iodine contrast medium has also been investigated in donkeys. Three milliliters of iohexol did not change tear production [123] and neither altered tear composition [124], contrary to oil-based mediums such as amiodorizate. A dacryoadenitis extending to the duct due to Histoplasma spp. has also been reported in this species [125].

Both primary and secondary (due to corneal ulcers, nasolacrimal duct obstructions, trauma, and so forth) conjunctivitis can be observed in donkeys. Again, dusty environments and high fly population could be related to these pathologies. Treatment with a combined antibiotics ocular preparation can be curative. Most frequent bacteria isolated from healthy donkeys' conjunctiva are *Staphylococcus* spp. (65%) and *Enterobacteriaceae* (25%) [126]. Recently, the emerging human pathogen bacteria *Kocuria* spp. has been isolated in donkeys [127]. These results should be kept in mind when establishing treatment in chronic, recurrent, and nonresponsive conjunctivitis. Fungi can also be normally found in donkeys' conjunctiva. Nardoni et al [128] isolated at least one fungal microorganism in 79.4% healthy donkeys, with *Aspergillus* spp. (33%) being the most frequent genus, followed by *Penicillium* spp., *Cladosporium* spp., and *Acremonium* spp. This fungal flora should also be kept in mind when treating complicated ulcers. In addition, conjunctival flora depends on geographical distribution, and this issue must be considered for treatment [127].

Recurrent anterior uveitis seems to show a lower prevalence in donkeys compared with horses. This finding could be explained by the low frequency of ocular examinations in this species along with a certain degree of inattention by the owners and a semi-extensive management. Treatment and prognosis are similar to those described in horses because species-specific studies are lacking at this time.

Owing to their longevity, donkeys have been shown to be prone to lens pathologies such as cataracts and lens luxation. Both intracapsular and extracapsular surgical approaches have been reported for cataracts in this species, with similar complications than in horses [129].

Fundus pathologies, such as bilateral complete colobomas, can be observed in donkeys. Retinography and fluorangiography have been validated for donkeys [130]. Fundus differences (shape, color, and location of structures) are not prominent between donkeys and horses [131].

Ocular parasitism has also been described in donkeys, mostly by *Onchocerca* spp. [132] and *Setaria equina* [133]. Habronemiasis in the medial aspect of the conjunctiva is also a common finding in some regions [118].

Blindness can be challenging to detect in donkeys, mostly by owners. Donkeys usually remember and recognize their environment extremely well, and they are not frequently used in sport activities. Moreover, due to their gregarious behavior, it is not unusual to observe a paddock mate, guiding a blind animal. In addition to the aforementioned causes, blindness due to trauma with secondary phthisis bulbii has been reported in this species [118].

Periocular neoplasia, mostly sarcoïds, can be observed in donkeys. Detailed information can be found in Section 7.

7. Dermatology

Although donkeys and horses share dermatoses, their clinical presentation and response to treatment may vary for a number of reasons, including thicker hair coat in donkeys, variable response to disease (e.g., pruritus threshold, and inflammatory response), and pharmacological properties of drugs used. Disorders tend to be
detected later due to the natural behavior of donkeys as well as management practices.

Congenital dermatoses have been rarely reported in donkeys, with dermoid cysts being the most commonly observed [134]. Excision is the treatment of choice.

Traumatic skin lesions are probably the most common problem in working donkeys around the world. Secondary bacterial or parasitic infection is common, as well as chronification due to continuous trauma.

Similar to horses, sarcoids are the most frequent cutaneous tumors in donkeys. In one study, the head and ears were the most prevalent location (51%), with male donkeys, showing predisposition to their development, although a convincing reason for this has not been reported yet [135]. Surgical excision can be effective if the lesion is completely removed. Cryosurgery, laser surgery, intralesional Bacillus Calmette-Guerin injections, radiotherapy (if available), and topical chemotherapy with drugs such as cisplatin and 5-fluorouracil can be used in a similar way to horses. Other skin tumors observed in donkeys are squamous cell carcinomas, fibromas, fibrosarcomas, melanomas, and epithelioid lymphomas [136].

Ringworm is the most reported cutaneous fungal disease in donkeys, culturally caused by Trichophyton verrucosum or T. mentagrophytes. Clinical signs are those typically seen in equids, such as alopecia, scaling, centrifugally expanding circular (shape can vary) patches of alopecia, and lack of pruritus [137]. Although dermatophytosis can spontaneously resolve in some animals, clipping, topical washes with enilconazole and chlorhexidine, powder, potassium iodide administration, and sunbathing can help [138].

Parasitic dermatoses are commonly observed in donkeys. Besnoitiosis (Besnoitia bennetti) has been reported all around the world, independently of the climate, and affecting almost every donkey breed [139]. Typical clinical signs include presence of tissue cysts (approximately of 1 mm in diameter) in sclera, nasal and buccal mucosa, limbs, and perineum along with dermatitis. Treatment with trimethoprim-sulfamethoxazole [140] resolved the signs in one donkey [141]. Cutaneous habronemiasis has also been described in donkeys, mostly affecting the medial canthus, shoulder and pectoral regions, knee and fetlock joints, abdominal wall, and prepuce.

Insect hypersensitivity is seen in donkeys, mostly related to Stomoxys calcitrans and Culicoides spp. Signs of hypersensitivity to Culicoides spp. can vary between horses and donkeys [142]. In donkeys, intense pruritus, exudative dermatitis, lichenification, self-induced lesions, and crusts on the legs and head are more common than lesions on the withers, rump, and tail. Moreover, bilateral alopecia along the trunk midline (sweet itch syndrome) is rarely observed. Management and environmental actions (housing, blankets, insect repellents, and so forth) should be encouraged in these animals, same as in affected horses. Concerning bacterial dermatoses, folliculitis and furunculosis can appear in donkeys as secondary problems in pruritic conditions. Dermatophilus congolensis infection (rain scald or rain rot) has been reported in donkeys worldwide, with animals showing small scabs and raised tufts of hair in the back, shoulders, and neck [135]. Parenteral trimethoprim-sulfamethoxazole and topical iodide or chlorhexidine washings are usually used. Other less reported bacterial dermatoses are those caused by Staphylococcus spp., or Corynebacterium pseudotuberculosis. Deep abscesses have also been seen by the authors secondary to bites or traumatic wounds. Cultures and histopathology can aid in the diagnosis of bacterial skin diseases in asses. Independent of the primary agent, affected animals should be clipped out, maintained dry and clean, and an adequate treatment with antibiotic should be established based on antibiogram.

8. Musculoskeletal

Detailed studies about the epidemiology, types, and clinical signs of lameness in donkeys are only available for working animals. This population showed a strikingly high prevalence (90% in one study), mainly in the hindlimbs, which could be in part attributed to unique anatomical features, type of physical activity, and age [143,144]. In general, musculoskeletal diseases in donkeys are similar to those described in horses, but some anatomical idiomsyncrasies must be considered. Foot lesions appear to be the main cause of lameness (65% of the cases), and this structure is the one where differences between both species are more marked [145]. The dorsal hoof wall is more vertical in donkeys than horses (5°–10°), and their hoof-pastern axis is more upright [146]. The frog does not typically extend as far toward the toe as in horses (important when we apply a soft support in this area in cases of laminitis). In addition, the sole is more rounded in donkeys, with a U-shape (again important for corrective shoeing in laminitis and soft-tissue problems such as desmitis or tendinitis). For a more detailed description of donkeys’ hoof idiomsyncrasies, readers should consult the referenced bibliography [147]. The aforementioned anatomical differences are linked to radiographical specific findings in donkeys. For example, a negative phalangeal rotation angle can be seen in healthy donkeys [148]. The distance between the proximal limit of the hoof wall and the extensor process (founder distance) is greater in average-sized donkeys than that in horses (10–13 mm vs. 3–5 mm, respectively) [149,150]. Finally, the mean integument depth is 25% greater in donkeys than horses (16.2 mm vs. 11–13 mm, respectively) [149]. Knowledge of these hoof measurements can aid the clinician during the diagnosis and monitoring of hoof disturbances in donkeys.

Laminitis is a very common cause of lameness in donkeys (Fig. 4 and Supplementary Material 2). Because donkeys are not intensely trained, are usually in an extensive environment and less prone to express pain signs than horses, the diagnosis is typically later. Digital pulse, painful reactions to hoof testers and reluctance to move are the typical clinical signs. In chronic cases, rotation of the third phalanx, sinking, bone remodeling, and demineralization, as well as typical growth rings can be found. Most laminitis in donkeys are endocrine in their origin (metabolic syndrome and pituitary pars intermedia dysfunction). Therefore, along with X-ray images, endocrine tests should be performed in any donkey with laminitis. Treatment, for both acute and chronic cases, is similar to horses: soft support for the frog (bedding, soft pack, and soft shoes), nonsteroidal anti-inflammatory drugs, rest, and farrier. In cases with long evolution and without response to those measures, we could propose to the owner surgical techniques such as neurectomy and deep digital flexor tenotomy.

Pedal abscesses are also a common cause of lameness in donkeys, probably due to poor feet care and environmental conditions (high humidity, low hygienic paddocks, and so forth.) (Fig. 5). Clinical signs are similar to horses. The presence of solar or coronary band drainage supports the diagnosis. Radiology is valuable for the diagnosis and assessing the extent of the lesion. Treatment consists of drainage, local antiseptics, local antibiotics (metromidazol), soaking in various astringent solutions, bandaging, analgesics, and rest.

Long hooves are a frequent problem that may predispose donkeys to excessive coffin bone remodeling. Other pathologies such as white line disease, interphalangeal joint contracture and luxations, and keratomas have been also observed in this species but less frequently [147,151,152].

Hip fractures and coxofemoral luxations in small- to medium-sized donkeys (<250 kg) secondary to fall down appears to be
frequent [153]. An oblique lateral projection in standing sedated donkeys can be diagnostic for those cases [154]. Moreover, femoral head osteotomy has been described for donkeys with such diseases [155]. Conformational abnormalities such as carpal valgus, cow hocks, and broken-forward hoof-pastern axis in hindlimbs are described in this species [145].

Deep and superficial digital flexor tendinitis (23%–47%), suspensory desmitis (16%–31%), and digital flexor tendon sheath swelling (62%–77%) are frequent problems associated with fore and hindlimb lameness in working donkeys [145]. A spinal origin of the lameness has been described in donkeys as well. Cervical and thoracolumbar reduced flexibility and pain has been linked to lameness of spinal origin [145]. Overwork and overloading in working animals or intervertebral disc protrusions could be the cause for this back pain [156].

Chronic myopathic changes (fiber size variation and internal nuclei) were the most frequent histological finding in donkeys and mules with muscular pathologies in a retrospective study [157]. Muscle atrophy secondary to starvation or gastrointestinal disorders as well as degenerative muscular lesions and myonecrosis due to selenium deficiency were also seen in this study [157]. Biopsy sampling and histochemical techniques useful for myopathies are described in donkeys and mules [158]. Exertional rhabdomyolysis, polysaccharide storage myopathy, grass sickness, and atypical myopathy have been described in donkeys or mules [157,159–162].

Tetanus is uncommon in donkeys [160]. Anecdotal reports state that donkeys are resistant to botulism; however, authors’ clinical experience challenges this notion [163,164]. This disease has also been observed in mules [165].

Neoplasia -mainly osteosarcoma- have also been reported as causing lameness [166–168]. Hypertrophic osteopathy or Marie’s disease was diagnosed in a 16-year-old gelding with
granulomatous interstitial pneumonia. Exostoses from fluoride toxicity can also cause lameness [169].

9. Conclusions

Anatomical, physiological, pathological, and pharmacological idiosyncrasies must be considered when diagnosing and treating sick donkeys. Donkeys' stoicism, longevity, and ability to thrive even with chronic and insidious pathologies are linked to a typically late diagnosis. Prevalence and resistance to many infectious diseases is strikingly different to horses, which should be remembered in farm where both species coexist.

Acknowledgments

Financial disclosure: Researchers received funding from Plan Propio de Investigacion from the University of Cordoba (Spain) and from Programa Operativo de fondos FEDER Andalucía (Spain).

Supplementary Data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jevs.2018.02.025.

References

[1] Laus F, Saptopena A, Faillace V, Veronesi F, Ravagnan S, Beribe F, et al. Clinical investigation on Thelersia equi and Babesia caballi infections in Italian donkeys. BMC Vet Res 2015;11:100–6.
[2] Mendoza FJ, Perez-Ecija RA, Monreal L, Estepa JC. Coagulation profiles of healthy Andalusian donkeys are different than those of healthy horses. J Vet Intern Med 2011;25:967–70.
[3] Mendoza FJ, Perez-Ecija RA, Toribio RE, Estepa JC. Thyroid hormone concentrations differ between donkeys and horses. Equine Vet J 2013;45:214–8.
[4] Perez-Ecija A, Mendoza FJ. Characterisation of clotting factors, anticoagulant protein activities and viscoelastic analysis in healthy donkeys. Equine Vet J 2017;49:734–8.
[5] Burden F, Thiemann A. Donkeys are different. J Equine Vet Sci 2015;35:376–82.
[6] Roberts SL, Dukes-McEwan J. Assessment of cardiovascular disease in the donkey: clinical, echocardiographic and pathological observations. Vet Rec 2016;179:384.
[7] Rezakhani A, Yazdanimehr MM. Normal echocardiographic parameters of domestic donkeys (Equus asinus). J Vet Med A Physiol Pathol Clin Med 1977;24:672–9.
[8] Kojevari GA, Rezakhani A, Torki E. The effects of verapamil hydrochloride on echocardiographic (ECG) parameters of domestic donkey (Equus asinus). J Vet Med Sci 2007;27:499–503.
[9] Escudero A, Gonzalez JR, Benedito JL, Prieto FR, Ayala I. Echocardiographic parameters in the clinically healthy Zamaro-leones donkey. Res Vet Sci 2009;87:458–61.
[10] Amory H, Bertrand P, Delvaux V, Sandersen C. Doppler echocardiographic reference values in healthy donkeys. In: NS M, Taylor T, editors. Veterinary care of donkeys. IVIS; 2004.
[11] Hassan E, Torad F. Two-Dimensional and M-Mode echocardiographic measurements in the healthy donkey (Equus asinus). J Equine Vet Sci 2015;35:283.
[12] Roberts SL, Dukes-McEwan J. Echocardiographic reference ranges for sedentary donkeys in the UK. Vet Rec 2016;179:332.
[13] Dyson DA, Gibson JC, Gibson BK. Cardiac myopathy in a donkey foal. Vet Rec 1975;97:294–6.
[14] Morrow LD, Smith KC, Piercy RJ, du Toit N, Burden FA, Olmos G, et al. Retrospective analysis of post-mortem findings in 1,444 aged donkeys. J Comp Pathol 2011;144:145–56.
[15] Declerdt A. Prevalence of cardiovascular disease in donkeys. Vet Rec 2016;179:382–3.
[16] Berg F, Weber Planzelt S, Wenel J, Oeppert G. Use of an internal pacemaker in a donkey with the Adams-Stokes syndrome. Tierarztl Umsch 1973;28:618–8.
[17] Pilibor P, Vrins A, Salomon Y, Difruscia R. Implantation of a programmable atrioventricular pacemaker in a donkey with complete atrioventricular block and syncope. Equine Vet J 1993;25:248–51.
[18] Young LE, Rogers K, Wood JL. Heart murmurs and valvular regurgitation in thoroughbred rachehorses; epidemiology and associations with athletic performance. J Vet Intern Med 2008;22:418–26.
[19] Tharwat M, Al-Sobayil F. Influence of the cardiac glycoside digoxin on cardiac troponin I, acid-base and electrolyte balance, and haematobiochemical parameters in healthy donkeys (Equus asinus). BMC Vet Res 2014;10:6.
[20] Button C, Gross DR, Johnston JT, Yakanat GJ. Digoxin pharmacokinetics, bioavailability, efficacy, and dosage regimens in the horse. Am J Vet Res 1980;41:1388–95.
[21] Smith PA, Aldridge RM, Kittleston MD. Oleanol toxicosis in a donkey. J Vet Intern Med 2003;17:111–4.
[22] Clark C, Dowling PM, Ross S, Woodbury M, Boison JG. Pharmacokinetics of tilmicosin in equine tissues and plasma. J Vet Pharmacol Ther 2008;31:66–70.
[23] Youseff MA, Ibrahim HM, Farag ESM, El-Khodery SA. Effects of tilmicosin phosphate administration on echocardiographic parameters in healthy donkeys (Equus asinus): an experimental study. J Equine Vet Sci 2016;38:24–9.
[24] Adams MF, Castro JR, Morandi F, Reese RE, Reed RB. The nasolacrimal duct of the mule: anatomy and clinical considerations. Equine Vet Educ 2013;25:328–42.
[25] Delvaux V, Kirschvink N, Amory H, Buxton V, Art T, Lekeux P. Spécificités de la fonction cardiorespiratoire de l’âne (Equus asinus). Pratique Vétérinaire Equine 2001;33:21–8.
[26] Fores P, Lopez J, Rodriguez A, Harran R. Endoscopy of the upper airways and the proximal digestive tract in the donkey (Equus asinus). J Equine Vet Sci 2001;21:17–20.
[27] Thiemann AK. Respiratory disease in the donkey. Equine Vet Educ 2012;24:465–78.
[28] Hayah N. A study of the anatomical variations of the carotid arterial tree in Equidae. Glasgow, UK: University of Glasgow; 2012.
[29] Laus F, Paggi E, Cerquetella M, Spaziante D, Sartenaer A, Tesei B. Cattural pouch mycosis in a donkey (Equus asinus): a case report. Vet Med 2010;55:561–5.
[30] Barton AK, Ohnesorge B. Concurrent unilateral chonal atresia and congenital laryngeal deformity in a miniature donkey. Vet Rec 2009;164:93–4.
[31] Campi C, El Mohaine B, Lamrini H, Crane M. Working mules and donkeys: preliminary observations on videoendoscopic anatomy of the upper airway tract and BAL cytology. Proceedings of the 10th International Congress of the World Equine Veterinary Association. 2008. p. 548–9.
[32] Miele A, Dhalwal K, Du Toit N, Murchison JT, Dhalwal C, Brooks H, et al. Chronic pleuropulmonary fibrosis and elastosis of aged donkeys similarities to human pleuroparenchymal fibroelastosis. Chest 2014;145:1325–32.
[33] Klebooker SB, Schommer SK, Johnson PJ, Ehlers B, Turnquist SE, Boucher M, et al. Association of two newly recognized herpesviruses with interstitial pneumonia in donkeys (Equus asinus). J Vet Diagn Invest 2002;14:273–80.
[34] Powell RJ, du Toit N, Burden FA, Dixon PM. Morphological study of tracheal shape in donkeys with and without tracheal obstruction. Equine Vet J 2010;42:136–41.
[35] Davis EG, Rush BR. Diagnostic challenges: equine thoracic neoplasia. Equine Vet Educ 2013;25:96–107.
[36] Sokkar SM, Mahmoud AM. Adrenocortical carcinoma in a donkey. Dtsch Tierarztl Wochenschr 2003;110:176–7.
[37] Du Toit N, Genovese LM, Dalziel RG, Smith SH. Pulmonary angiocentric lymphoma (lymphomatoid granulomatosis) in a donkey. J Comp Pathol 2012;146:24–9.
[38] Finney S, Collins JA, Duggan V. An investigation of the equine infectious disease threat represented by the presence of donkeys at mixed equestrian events in Ireland. Irish Vet J 2015;58:11.
[39] Rose MA, Beveridge WS. Influenza in horses and donkeys in Britain. 1969. Vet Rec 1970;86:768.
[40] Pusterla N, Kass PH, Mapes S, Johnson C, Barnett DC, Vaala V, et al. Surveillance programme for important equine infectious respiratory pathogens in the USA. Vet Rec 2011;169:6.
[41] Abubakar MB, Er-Yuguda AD, Baba SS. Serological evidence of influenza virus infections in domestic animals and birds in North-Eastern Nigeria. J Food Agr Environ 2008;6:57–70.
[42] Sadeq MA, Tijani AN, Anwul MS, Mustapha AR, Gulani I. Isolation and characterization of H3N8 equine influenza virus: epidemiology, diagnosis and vaccine development. J Comp Pathol 2010;143:35–43.
[43] Boukharta M, Elharrak M, Ennaji M. Seroepidemiological study on equine influenza virus type A in Morocco. Eur J Sci Res 2012;68:147–58.
[44] Jurado-Tarifa E, Daly JM, Perez-Ecija RA, Barba-Recreo M, Mendoza FJ, Ahsuwail MK, Garcia-Bocanegra I. Epidemiological survey of equine influenza in Andalusia, Spain. Prev Med Vet 2018;151:52–9.
[45] Abdel-Moneim AS, Abdel-Ghany AE, Shany SA. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys. J Biomed Sci 2010;17:25.
Rosa R, Costa EA, Marques RE, Oliveira TS, Furtini R, Bom Lyons ET, Tolliver SC, Drudge JH, Swerczek TW, Crowe MW. Lungworms (Angiostrongylus cantonensis) infection: prevalence in donkeys in the state of Minas Gerais state, Brazil. J Anim Vet Adv Med Vet Zootec 2007;5:977–99.

Khan I, Ali S, Gwida M, Elschner MC, Ijaz M, Anjum AA, et al. Prevalence of antibodies against Neospora caninum in cattle from different districts of Pakistan. J Vet Sci 2011;12:341–349.

Giannitti F, Diab S, Mete A, Stanton JB, Fielding L, Crossley B, et al. Necrotizing fasciitis due to beta-hemolytic streptococci in a horse with postoperative sepsis. J Vet Med A Physiol Pathol Clin Med 1998;45:299–302.

Zhang L, Wang X, Zhan QL, Wang ZH, Xu MM, Zhu D, et al. Evidence for the presence of avian bornavirus of the Japanese encephalitis virus genotype 1 in a donkey. J Vet Diagn Invest 2008;20:820–827.

Bisgaard BM, Edelkamp MO, Parvizi F. Equine encephalitis viruses: epidemiology, diagnosis and treatment. Am J Vet Res 1993;43:981–989.

Zimmer MA, Stahl GH, Early AB, Chiarelli JJ. Radioiodination of IgM antibodies. Immunology 1970;20:107–114.

Garcia-Bocanegra I, Jaen-Tellez JA, Napp S, Arenas-Montes A, Fernandez-Moreno A, Delgado F, et al. Analysis of cerebrospinal fluid and serum samples for the presence of antibodies against FIV. J Vet Med A Physiol Pathol Clin Med 2005;52:719–723.

Verdonck F, Merlevede I, Goddeeris BM, Cox E. Vitamin E deficiency and decreased serum immunoglobulin concentrations in a population of donkeys. J Vet Med A Physiol Pathol Clin Med 1998;45:299–302.

Ficorilli N, Studdert MJ, Crabb BS. The nucleotide sequence of asinine herpesvirus-2 (AHV-2) DNA. J Gen Virol 1996;77(Pt 7):1511–1518.

Wahlberg N, Stenfors P, Bengtsson B. Serological and virological responses of donkeys to intranasal inoculation with the KU-84 strain of equine arteritis virus. J Comp Pathol 1995;121:207–211.

Lopes H, Timo PJ, Tengelsen LA. Clinical, virological and serological responses of donkeys to intranasal inoculation with the KU-84 strain of equine arteritis virus. J Comp Pathol 1995;121:207–211.

Mackenzie RM, Designs J, Parrav D. Venezuelan equine encephalitis virus comparison of infectivity and virulence of strains V-38 and P676 in donkeys. Am J Trop Med Hyg 1994;50:249–254.

Ficorilli N, Studdert MJ, Crabb BS. The nucleotide sequence of equine herpesvirus 3 glycoprotein E indicates that the donkey virus is closely related to equine herpesvirus 1. Arch Virol 1995;140:1653–1662.

Paweska JT, Gers, T, van Heerden J. Serological relationship between a donkey alphaherpesvirus (isolate M7/91) and equid herpesvirus type 1 and 5. J Vet Diagn Invest 1999;11:47–50.

Vengust M, Wen X, Biehnle D. Herpesvirus-associated neurological disease in a donkey. J Vet Diagn Invest 2008;20:820–827.

Bisgaard BM, Edelkamp MO, Parvizi F. Equine encephalitis viruses: epidemiology, diagnosis and treatment. Am J Vet Res 1993;43:981–989.

Grabner A, Herzog S, Lange-Herbst H, Frese K. Antemortem diagnosis of Borrelia burgdorferi in equids. Pferdeheilkunde 2002;18:359–362.

Zhang L, Wang X, Zhan QL, Wang ZH, Xu MM, Zhu D, et al. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014;159:1941–1948.

Sternak S, et al. Demonstration of Usutu virus antibodies in horses, Croatia. Vector Borne Zoonotic Dis 2013;13:772–777.

Gamboa-Borrego RM, Designs J, Parrav D. Venezuelan equine encephalitis virus comparison of infectivity and virulence of strains V-38 and P676 in donkeys. Am J Trop Med Hyg 1994;50:249–254.

Ficorilli N, Studdert MJ, Crabb BS. The nucleotide sequence of equine herpesvirus 3 glycoprotein E indicates that the donkey virus is closely related to equine herpesvirus 1. Arch Virol 1995;140:1653–1662.

Paweska JT, Gers, T, van Heerden J. Serological relationship between a donkey alphaherpesvirus (isolate M7/91) and equid herpesvirus type 1 and 5. J Vet Diagn Invest 1999;11:47–50.

Vengust M, Wen X, Biehnle D. Herpesvirus-associated neurological disease in a donkey. J Vet Diagn Invest 2008;20:820–827.

Bisgaard BM, Edelkamp MO, Parvizi F. Equine encephalitis viruses: epidemiology, diagnosis and treatment. Am J Vet Res 1993;43:981–989.

Grabner A, Herzog S, Lange-Herbst H, Frese K. Antemortem diagnosis of Borrelia burgdorferi in equids. Pferdeheilkunde 2002;18:359–362.

Zhang L, Wang X, Zhan QL, Wang ZH, Xu MM, Zhu D, et al. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014;159:1941–1948.

Sternak S, et al. Demonstration of Usutu virus antibodies in horses, Croatia. Vector Borne Zoonotic Dis 2013;13:772–777.

Gamboa-Borrego RM, Designs J, Parrav D. Venezuelan equine encephalitis virus comparison of infectivity and virulence of strains V-38 and P676 in donkeys. Am J Trop Med Hyg 1994;50:249–254.

Ficorilli N, Studdert MJ, Crabb BS. The nucleotide sequence of equine herpesvirus 3 glycoprotein E indicates that the donkey virus is closely related to equine herpesvirus 1. Arch Virol 1995;140:1653–1662.

Paweska JT, Gers, T, van Heerden J. Serological relationship between a donkey alphaherpesvirus (isolate M7/91) and equid herpesvirus type 1 and 5. J Vet Diagn Invest 1999;11:47–50.

Vengust M, Wen X, Biehnle D. Herpesvirus-associated neurological disease in a donkey. J Vet Diagn Invest 2008;20:820–827.

Bisgaard BM, Edelkamp MO, Parvizi F. Equine encephalitis viruses: epidemiology, diagnosis and treatment. Am J Vet Res 1993;43:981–989.

Grabner A, Herzog S, Lange-Herbst H, Frese K. Antemortem diagnosis of Borrelia burgdorferi in equids. Pferdeheilkunde 2002;18:359–362.

Zhang L, Wang X, Zhan QL, Wang ZH, Xu MM, Zhu D, et al. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch Virol 2014;159:1941–1948.

Sternak S, et al. Demonstration of Usutu virus antibodies in horses, Croatia. Vector Borne Zoonotic Dis 2013;13:772–777.

Gamboa-Borrego RM, Designs J, Parrav D. Venezuelan equine encephalitis virus comparison of infectivity and virulence of strains V-38 and P676 in donkeys. Am J Trop Med Hyg 1994;50:249–254.

Ficorilli N, Studdert MJ, Crabb BS. The nucleotide sequence of equine herpesvirus 3 glycoprotein E indicates that the donkey virus is closely related to equine herpesvirus 1. Arch Virol 1995;140:1653–1662.

Paweska JT, Gers, T, van Heerden J. Serological relationship between a donkey alphaherpesvirus (isolate M7/91) and equid herpesvirus type 1 and 5. J Vet Diagn Invest 1999;11:47–50.

Vengust M, Wen X, Biehnle D. Herpesvirus-associated neurological disease in a donkey. J Vet Diagn Invest 2008;20:820–827.

Bisgaard BM, Edelkamp MO, Parvizi F. Equine encephalitis viruses: epidemiology, diagnosis and treatment. Am J Vet Res 1993;43:981–989.
Laus F, Paggi E, Marchegiani A, Cerquetella M, Spaziante D, Faillace V, Tesei B, Abdalla WG, Suliman EA, Abdo EL, Gabbar MA. A report on Trichophyton Hussein HS, Elsammani SE. Onchocerca raillieti prevalence and pathology in Donisa A, Muste A, Beteg F, Krupaci A. Morphological characteristics of horse Tabatabaei Naeini A, Haghshenas MR, Ziaei Darounkolaei MR, Ouji N, Ziaei Misk NA, Makady FM, Sayed AM. Cataract extraction in the donkey - eval- Tabatabaei Naeini A, Darounkolaei NZ. Effect of iohexol on tear production Foti M, Fisichella V, Giacopello C. Detection of methicillin-resistant El-Ashker M, Abdelhamid F, Risha E, Salama M, El-Sebaei M. Vitamin C Frei S, Kummer M, Furst A, Eser MW. Cystoliths in the horse - a retrospective White SD. Donkey dermatology. Vet Clin North Am Equine Pract 2013;29: El-Ashker M, Abdelhamid F, Risha E, Salama M, El-Sebaei M. Vitamin C Kojouri GA, Shari Arnold CE, Taylor T, Chaf Benkirane A, Noury S, Hartskeerl RA, Goris MGA, Ahmed A, Nally JE. Pre- Rezae A, Bahrami S, Ansari M. Klossiella equi in a donkey

[43x85]

[132]

[43x180]

[131]

[43x340]

[124]

[43x220]

[129]

[43x395]

[122]

[43x555]

[115]

[43x690]

[109]

[113]

[112]

[120]

[154]

[159]

[152]

[150]

[147]

[149]

[145]

[144]

[141]

[138]

[137]

[136]

[135]

[134]

[133]

[132]

[131]

[130]

[129]

[128]

[127]

[126]

[125]

[124]

[123]

[122]

[121]

[120]

[119]

[118]

[117]

[116]

[115]

[114]

[113]

[112]

[111]

[110]

[109]

[108]

[107]

[106]

[105]

[104]

[103]

[102]

[101]

[100]

[99]

[98]

[97]

[96]

[95]

[94]

[93]

[92]

[91]

[90]

[89]

[88]

[87]

[86]

[85]

[84]

[83]

[82]

[81]

[80]

[79]

[78]

[77]

[76]

[75]

[74]

[73]

[72]

[71]

[70]

[69]

[68]

[67]

[66]

[65]

[64]

[63]

[62]

[61]

[60]

[59]

[58]

[57]

[56]

[55]

[54]

[53]

[52]

[51]

[50]

[49]

[48]

[47]

[46]

[45]

[44]

[43]

[42]

[41]

[40]

[39]

[38]

[37]

[36]

[35]

[34]

[33]

[32]

[31]

[30]

[29]

[28]

[27]

[26]

[25]

[24]

[23]

[22]

[21]

[20]

[19]

[18]

[17]

[16]

[15]

[14]

[13]

[12]

[11]

[10]

[9]

[8]

[7]

[6]

[5]

[4]

[3]

[2]

[1]