Primordial lepton asymmetries in the precision cosmology era:
Current status and future sensitivities from BBN and the CMB

Miguel Escudero,1,∗ Alejandro Ibarra,1,† and Victor Maura1,‡

1Physik-Department, Technische Universität, München, James-Franck-Straße, 85748 Garching, Germany

Using a new sample of extremely metal poor systems, the EMPRESS survey has recently reported a primordial helium abundance that is 3σ smaller than the prediction from the standard big bang nucleosynthesis (BBN) scenario. This measurement could be interpreted as a hint for a primordial lepton asymmetry in the electron neutrino flavor. Motivated by the EMPRESS results, we present a comprehensive analysis of the lepton asymmetry using measurements of the abundances of primordial elements, along with cosmic microwave background (CMB) data from Planck. Assuming that there is no dark radiation in our Universe, we find an electron neutrino chemical potential \(\eta_e = 0.043 \pm 0.015 \), which deviates from zero by 2.9σ. If no assumption is made on the abundance of dark radiation, the chemical potential is \(\eta_e = 0.046 \pm 0.021 \), which deviates from zero by 2.2σ. We also find that this result is rather insensitive to the choice of nuclear reaction rates.

If the true helium abundance corresponds to the EMPRESS central value, future CMB observations from the Simons Observatory and CMB-S4 will increase the significance for a nonzero lepton asymmetry to 4σ and 5σ respectively, assuming no dark radiation, or to 3σ when no assumption is made on the abundance of dark radiation.

I. INTRODUCTION

We appear to be living in a Universe composed mostly by matter and with very little antimatter [1]. This strongly suggests the existence of a mechanism generating a primordial asymmetry between baryons and antibaryons in the very early Universe [2]. The abundance of baryons in the Universe has now been measured with \(\lesssim 1\% \) precision using observations of the cosmic microwave background (CMB) [3], and by comparing the observed and predicted primordial element abundances as synthesized during big bang nucleosynthesis (BBN) [4–7]. These observations point to a baryon asymmetry, defined as the number density of baryons minus antibaryons normalized to the photon number density, given by \(\eta_B \equiv (n_B - n_{\bar{B}})/n_\gamma = (6.14 \pm 0.04) \times 10^{-10} \) [3].

However, much less is known about the primordial lepton asymmetries, \(\eta_{e,\alpha} \), with \(\alpha = e, \mu, \tau \). Naively one would expect the lepton and baryon asymmetries to be of similar magnitude, due to sphaleron transitions in the early Universe [8–11]. However, this does not necessarily need to be the case. Indeed, several scenarios have been constructed where the lepton asymmetries at the time of BBN can be much larger than the baryon asymmetry. In these scenarios the lepton asymmetry is typically generated at temperatures below the sphaleron freeze-out via Affleck-Dine leptogenesis [12, 13], decays of topological defects [14], freeze-in leptogenesis [15, 16], resonant-leptogenesis [17, 18] or Q-ball decays [19, 20]. Furthermore, there are scenarios where large lepton asymmetries are generated before sphaleron freeze-out but in which the total lepton asymmetry in the Universe is zero [21], see also [22] for new further cosmological constraints on such scenarios.

The main effect of a nonzero electron lepton asymmetry at the time of BBN is to change the value of the primordial helium abundance, \(Y_P \) [23–30]. This happens because electron neutrinos participate in processes that interconvert protons and neutrons, such as the weak interaction process \(n\nu_e \leftrightarrow p\bar{e}^- \). At the time of BBN, corresponding to \(T_\gamma \simeq 0.073 \text{MeV} \) [31], almost all of the neutrons present in the plasma form \(^4\text{He} \). Therefore, any excess of \(\nu_e \) over \(\bar{\nu}_e \) in the early Universe will translate into a smaller abundance of neutrons, and correspondingly to a smaller helium abundance compared to the Standard Model expectation.

The most common method to determine the primordial helium abundance consists in measuring the helium abundance in metal poor galaxies, and extrapolating the value to zero metallicity [32–36]. Alternatively, the helium abundance could be measured in intergalactic gas clouds [37]. In a cosmological context, the helium abundance at the time of recombination affects the number of free electrons, thus leaving an imprint in the CMB temperature and polarization power spectra at small angular scales [38, 39]. A summary of recent determinations is shown in Fig. 1, and show a fairly good agreement with the Standard Model expectations. On the other hand, very recently the EMPRESS survey [40] increased the sample of extremely metal poor systems, and reported a value for the primordial helium abundance which is 3σ smaller than the value predicted by the Standard Model [25], suggesting the existence of a nonzero (electron) lepton asymmetry.

Motivated by the recent result by the EMPRESS survey, we will undertake a comprehensive study of current BBN and CMB constraints on the lepton asymmetries.
The implications of a nonzero lepton asymmetry in BBN and the CMB have been studied in the past (for reviews, see e.g. [23–26]). The effect of a lepton asymmetry in cosmology depends critically upon its flavor. As discussed in the introduction, a nonzero asymmetry in the electron-neutrino flavor alters the helium abundance by changing the rate of proton-to-neutron conversions in the early Universe. More concretely, it leads to a shift in the primordial helium abundance of [25]:

$$Y_p(\xi_{\nu_e}) \simeq Y_p|_{\text{SBBN}} \times e^{-0.96 \xi_{\nu_e}},$$

where $Y_p|_{\text{SBBN}}$ refers to the primordial helium abundance in the standard BBN scenario, namely when the neutrino chemical potential vanishes, $Y_p|_{\text{SBBN}} = 0.24709 \pm 0.00017$ [25]. A nonzero lepton asymmetry also affects the abundances of the rest of the light elements. For deuterium the effect is [25]:

$$D/H_p|_{\xi_{\nu_e}} \simeq D/H_p|_{\text{SBBN}} \times e^{-0.53 \xi_{\nu_e}}.$$

where again, $D/H_p|_{\text{SBBN}}$ refers to the value of the primordial deuterium abundance for a zero lepton asymmetry. It is important to note, however, that in contrast to helium, this abundance is strongly sensitive to the baryon energy density, $D/H_p \propto (\Omega_B h^2)^{-1.6}$ [50]. Therefore, the sensitivity to ξ_{ν_e} from D/H_p is lost unless $\Omega_B h^2$ is given as an input by other methods.

In addition, the presence of a nonzero asymmetry alters the energy density carried out by neutrinos. It is important to stress that this effect is independent of the flavor of the asymmetry or its sign. This explicitly amounts to a contribution to the number of effective relativistic neutrino species of:

$$\Delta N_{\text{eff}} = \sum_{\alpha} \frac{c_{\mu,\tau}}{7} \left[\frac{30}{\pi} \left(\frac{\xi_\alpha}{\pi} \right)^2 + 15 \frac{1}{\pi} \left(\frac{\xi_\alpha}{\pi} \right)^4 \right],$$

where $\Delta N_{\text{eff}} \equiv N_{\text{eff}} - N_{\text{eff}}^{\text{SM}}$ with $N_{\text{eff}}^{\text{SM}} = 3.044(1)$ [49, 51–53]. Due to neutrino oscillations in the early Universe, one expects $|\xi_{\nu_e}| \simeq |\xi_{\nu_\mu}| \simeq |\xi_{\nu_\tau}|$ [54–57]. Therefore, and in view of the current constraints on the electron lepton asymmetry $|\xi_{\nu_e}| \lesssim 0.1$, the modification on ΔN_{eff} due to a nonzero chemical potential is expected to be $\Delta N_{\text{eff}} \lesssim 0.01$, much smaller than the current sensitivity of experiments. In what follows we will therefore focus only on the impact of the nonzero lepton asymmetry on Y_p.

The primordial lepton asymmetry is normally parametrized by the (comoving) neutrino chemical potential, ξ_ν, through [24]:

$$\eta_{L_\nu} = \frac{n_{\nu_\alpha} - n_{\bar{\nu}_\alpha}}{n_\gamma} = \frac{1}{12 \zeta(3)} \left(\frac{T_{\nu}}{T_\gamma} \right)^3 \left(\pi^2 \xi_{\nu_\alpha} + \xi_{\nu_\alpha}^3 \right),$$

$$\simeq 0.25 \xi_{\nu_\alpha} \left[1 + \xi_{\nu_\alpha}^2 / \pi^2 \right],$$

where $\zeta(3) \simeq 1.20206$, and where in the last step we have used the value of T_γ/T_ν expected from neutrino decoupling in the Standard Model [49].

We will analyze the electron neutrino chemical potential from the BBN and CMB data for two possible cosmological scenarios, namely when $N_{\text{eff}} = N_{\text{eff}}^{\text{SM}} = 3.044$ or
when N_{eff} differs from the SM expectation (corresponding respectively to scenarios without or with dark radiation).

In our analysis we will mainly focus on the implications of the recent helium measurement by EMPRESS [40]:

$$Y_P|_{\text{EMPRESS}} = 0.2370^{+0.0034}_{-0.0033},$$ \hspace{1cm} (5)

which is 3.0σ lower than the standard BBN prediction. However, we will also consider for comparison the recommended PDG-21 value [58]:

$$Y_P|_{\text{PDG-21}} = 0.245 \pm 0.003.$$ \hspace{1cm} (6)

We will also include the measurement of the primordial deuterium abundance, which is typically used to constrain the baryon energy density. The PDG recommended value reads [58]:

$$D/H_P|_{\text{PDG-21}} = (2.547 \pm 0.025) \times 10^{-5},$$ \hspace{1cm} (7)

which is largely based on the analysis of [59].

Lastly, we will also use results from Planck CMB observations [38], which provide independent determinations of $\Omega_b h^2$, Y_P and N_{eff}. Concretely, assuming the standard cosmological model, the Planck collaboration reports a baryon energy density

$$\Omega_b h^2|_{\text{Planck}} = 0.02242 \pm 0.00014,$$ \hspace{1cm} (8)

from combining the full temperature and polarization data, together with CMB lensing and baryon acoustic oscillations.

The Planck collaboration has also made an analysis of the CMB data under the assumption that $N_{\text{eff}} = N_{\text{SM}}$ but allowing for a non-standard primordial helium abundance. The determination of Y_P is correlated with $\Omega_b h^2$ and reads [39]:

$$\Omega_b h^2|_{\text{Planck}} = 0.02239 \pm 0.00018,$$ \hspace{1cm} (9a)

$$Y_P|_{\text{Planck}} = 0.242 \pm 0.012,$$ \hspace{1cm} (9b)

$$\rho(\Omega_b h^2, Y_P) = 0.663,$$ \hspace{1cm} (9c)

where ρ represents the correlation coefficient. Lastly, the Planck collaboration has analyzed the CMB data allowing also for variations in N_{eff}. For this scenario, the determination of $\Omega_b h^2$, Y_P and N_{eff} reads:

Planck

$$\Omega_b h^2|_{\text{Planck}} = 0.02238 \pm 0.00019,$$ \hspace{1cm} (10a)

$$Y_P|_{\text{Planck}} = 0.245 \pm 0.018,$$ \hspace{1cm} (10b)

$$N_{\text{eff}} = 2.97 \pm 0.29,$$ \hspace{1cm} (10c)

$$\rho(\Omega_b h^2, Y_P) = +0.273,$$ \hspace{1cm} (10d)

$$\rho(\Omega_b h^2, N_{\text{eff}}) = +0.270,$$ \hspace{1cm} (10e)

$$\rho(N_{\text{eff}}, Y_P) = -0.686.$$ \hspace{1cm} (10f)

with their corresponding correlation coefficients.

To calculate the abundances of the primordial elements we use the public code PArthENoPE-v3.0 [60–62]. This code takes into account all nuclear reaction rates and weak processes relevant for the nucleosynthesis process in the presence of a primordial lepton asymmetry. At present, there is agreement between all the outputs of this code and the codes used by the other leading groups performing global BBN analyses [25, 50], with the exception of the primordial deuterium abundance. After the measurement by the LUNA collaboration of the $d + p \to ^3\text{He} + \gamma$ rate [4], the error budget in the theoretical prediction of the deuterium abundance arises from the lack of detailed knowledge of the rates for $d + d \to n + ^3\text{He}$ and $d + d \to p + ^3\text{H}$. For these processes each of the groups uses a slightly different set of rates [5–7], which impacts the theoretical prediction of the deuterium abundance. For a fixed value of $\Omega_b h^2 = 0.02236$, each group reports:

$$D/H_P|_{\text{Yeh et al. 22}} = (2.49 \pm 0.08) \times 10^{-5},$$ \hspace{1cm} (11a)

$$D/H_P|_{\text{Pisanti et al. 21}} = (2.52 \pm 0.07) \times 10^{-5},$$ \hspace{1cm} (11b)

$$D/H_P|_{\text{Pitrou et al. 21}} = (2.45 \pm 0.04) \times 10^{-5},$$ \hspace{1cm} (11c)

While the results of Yeh et al. [7] and Pisanti et al. [5] are (within error bars) in good agreement with each other, Pitrou et al. [6] reports a significantly smaller value. In order to assess the impact of this uncertainty in the determination of the primordial lepton asymmetry, we will perform two separate analyses using the rates of Pisanti et al. [5] (PArthENoPE) and of Pitrou et al. [6] (PRIMAT).

Our main results are summarized in Figs. 2 and 3 for cosmological scenarios without and with dark radiation, respectively (see also Table 1). In Fig. 2 we show the 1 and 2σ confidence regions for ξ_{ν_e} and $\Omega_b h^2$, fixing $N_{\text{eff}} = N_{\text{eff}}|_{\text{SM}} = 3.044$. The left figure shows that current constraints on the (electron) lepton asymmetry ξ_{ν_e} are dominated by BBN data, and in particular by the primordial helium abundance, with a strong dependence on the value of Y_P chosen for the analysis. The new EMPRESS result points to a positive lepton asymmetry, $\xi_{\nu_e} = 0.043 \pm 0.015$ [EMPRESS],

\hspace{1cm} (12)

which is different from zero with a $\sim 3\sigma$ significance. Instead, if one adopts the PDG-21 recommended value,
used in the analysis. The preferred values of ξ_{ν_e}, which amounts to a 2σ confidence range of $\Omega_b h^2$, are fairly insensitive to the choice of the nuclear reaction rates, while the right panel compares the favored regions for two choices of the nuclear reaction rates (PArthENoPE or PRIMAT) adopting the EMPRESS measurement of the helium abundance.

In Fig. 3 we show the 1 and 2σ confidence regions for ξ_{ν_e} and ΔN_{eff}, corresponding to a scenario with dark radiation. The left panel shows that also in this cosmological scenario the determination of ξ_{ν_e} is dominated by BBN data. On the other hand, the Planck measurements of N_{eff} break the positively correlated degeneracy between ξ_{ν_e} and ΔN_{eff}, thereby reducing slightly the allowed range of ξ_{ν_e}. As for the scenario without dark radiation, the preferred region of parameter space strongly depends on the value of the primordial helium abundance used in the analysis. The preferred values of ξ_{ν_e} and N_{eff}, using the EMPRESS determination of Y_P, are:

$$\xi_{\nu_e} = 0.046 \pm 0.021, \quad [Y_P + D/H]_P + \text{CMB} \quad (14a)$$
$$N_{\text{eff}} = 3.12 \pm 0.20, \quad \text{EMPRESS + Planck} \quad (14b)$$

which amounts to a 2σ preference for a nonzero lepton asymmetry (see Table I for a quantitative statement). If one adopts instead the PDG-21 recommended value one finds:

$$\xi_{\nu_e} = 0.006 \pm 0.019, \quad [Y_P + D/H]_P + \text{CMB} \quad (15a)$$
$$N_{\text{eff}} = 3.03 \pm 0.20, \quad \text{PDG-21 + Planck} \quad (15b)$$

yielding no preference for a nonzero lepton asymmetry.

The conclusions on ξ_{ν_e} do not depend strongly on the choice of the nuclear reaction rates, as shown in the right panel of Fig. 3. On the other hand, the preferred values for ΔN_{eff} can vary sizably depending on this choice. More concretely, using PRIMAT rates and the EMPRESS determination of Y_P we find:

$$\xi_{\nu_e} = 0.052 \pm 0.020, \quad [Y_P + D/H]_P + \text{CMB} \quad (16a)$$
$$N_{\text{eff}} = 3.29 \pm 0.19, \quad \text{EMPRESS + Planck} \quad (16b)$$

while for the PDG-21 recommended value,

$$\xi_{\nu_e} = 0.014 \pm 0.018, \quad [Y_P + D/H]_P + \text{CMB} \quad (17a)$$
$$N_{\text{eff}} = 3.19 \pm 0.18, \quad \text{PDG-21 + Planck} \quad (17b)$$

which should be compared to Eq. (14) and Eq. (15), respectively.

It is noteworthy that if one requires ΔN_{eff} to be positive, as occurs in most models of dark radiation then the preference for a positive lepton asymmetry further increases. We, however, note that in the few cosmological settings that feature $\Delta N_{\text{eff}} < 0$, notably MeV-scale reheating [63, 64] and scenarios with MeV-scale electrophilic particles [65, 66], these models actually lead to a higher Y_P, see [67, 68] and would thus enhance the tension with the EMPRESS measurement.
agreement with the results reported by the collabora-
tor forecast performed in [66] which is in very good
agreement with the upcoming Simons Observatory and the
prospects for detecting a nonzero primordial asym-
metry with the PRIMAT rates are practically identical). In the up-
coming CMB-S4.

To this end, we take the baseline covariance matrix
from the PRIMAT, EMPRESS, and the Simons Observatory
to the relevant parameters of our analysis Y_P, N_{eff} and $\Omega_b h^2$ [45]. Once marginalized
over the rest of cosmological parameters, they read [66]:

\[
\begin{align*}
\text{Simons Observatory} & \\
\sigma(\Omega_b h^2) &= 0.000073, \quad (19a) \\
\sigma(Y_P) &= 0.0066, \quad (19b) \\
\sigma(N_{\text{eff}}) &= 0.11, \quad (19c) \\
\rho(\Omega_b h^2, Y_P) &= 0.33, \quad (19d) \\
\rho(\Omega_b h^2, N_{\text{eff}}) &= 0.072, \quad (19e) \\
\rho(N_{\text{eff}}, Y_P) &= -0.86. \quad (19f)
\end{align*}
\]

For CMB-S4, we use the results from the Fisher ma-
trix forecast performed in [66] which is in very good
agreement with the results reported by the collabora-
tion [47, 48]. The relevant parameters read:

\[
\begin{align*}
\text{CMB−S4} & \\
\sigma(\Omega_b h^2) &= 0.000047, \quad (19a) \\
\sigma(Y_P) &= 0.0043, \quad (19b) \\
\sigma(N_{\text{eff}}) &= 0.081, \quad (19c) \\
\rho(\Omega_b h^2, Y_P) &= 0.22, \quad (19d) \\
\rho(\Omega_b h^2, N_{\text{eff}}) &= 0.25, \quad (19e) \\
\rho(N_{\text{eff}}, Y_P) &= -0.84. \quad (19f)
\end{align*}
\]

For the central value of the baryon density we will take
$\Omega_b h^2 = 0.02242$, as favored by Planck CMB observations, see Eq. (8). For Y_P we will consider two possibilities, ei-
ther $Y_P = Y_P |_{\text{BBN}} = 0.2469$ or $Y_P = Y_P |_{\text{PRIMAT, EMPRESS}} = 0.2370$, in order to make forecasts for the cases where
the helium abundance coincides with the standard BBN prediction, or when it is lower as hinted by EMPRESS.

For both, we consider also a direct astrophysical deter-
mination with an error bar of 0.003 which matches the
precision of current determinations. Finally, for N_{eff} we
will either choose $N_{\text{eff}}^{\text{SM}} = 3.044$, as expected in the Stan-
dard Model, or the central value inferred from the current
full analysis of BBN and CMB data using PArthEnoPE
rates, namely $N_{\text{eff}} = 3.12$, see Eq. (14b).

In Fig. 4 we present the results of our forecast, taking
for concreteness the PArthEnoPE rates (the results for
the PRIMAT rates are practically identical). In the up-
per panels of Fig. 4 we show the sensitivity to ξ_{ν_e} from
the PRIMAT, EMPRESS, and the Simons Observatory (left) or CMB-S4 (right) as a function of $\Omega_b h^2$ for a scenario with a fixed $N_{\text{eff}} = 3.044$. We compare this sensitivity to the one obtained from
current CMB+BBN data. We note that the Simons Ob-
servatory on its own has the power to reach a sensitivity to ξ_{ν_e} that will be competitive with current combined

FIG. 3. Same as Fig. 2, in the plane of ξ_{ν_e} and ΔN_{eff}, without making assumptions on the dark radiation content in the
Universe.

IV. FORECASTS FOR THE SIMONS OBSERVATORY AND CMB-S4

Future CMB observations will be instrumental to fur-
ther probe the hint for a nonzero lepton asymmetry from
PRIMAT. The reason is twofold. First, they will pro-
vide an independent and precise measurement of Y_P, and
second, they will yield an unprecedented sensitivity to
N_{eff} which, as shown e.g. in Fig. 3, is positively cor-
related with ξ_{ν_e}. In this section we consider specifically
the prospects for detecting a nonzero primordial asym-
metry with the upcoming Simons Observatory and the
projected CMB-S4.
TABLE I. Summary of constraints or forecasts on the primordial (electron) lepton asymmetry, ξ_{ν_e}, from considering several combinations of BBN and CMB data, for cosmological scenarios without or with dark radiation, and for two possible choices of the nuclear reaction rates. See main text for details.

Y_P	Data Sets	Nuclear Rates	ξ_{ν_e}	N_{eff}	Pref $\xi_{\nu_e} \neq 0$	χ^2_{min}		
CMB	Planck	PArthEnoPE	0.022 ± 0.053	3.044	0.4σ	0.002 ± 0.094		
		PRIMAT	0.022 ± 0.053	3.044	0.4σ	0.002 ± 0.094		
		PArthEnoPE	0.004 ± 0.092	2.97 ± 0.29	0.0σ	0.002 ± 0.094		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P$	PArthEnoPE	0.043 ± 0.015	3.044	2.9σ	0.046 ± 0.021	
		PRIMAT	0.042 ± 0.015	3.044	2.9σ	0.052 ± 0.020		
		PArthEnoPE	0.040 ± 0.015	3.044	2.7σ	0.063 ± 0.026		
		PRIMAT	0.030 ± 0.014	3.044	2.1σ	0.079 ± 0.023		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.040 ± 0.014	3.044	2.8σ	0.034 ± 0.014
		PRIMAT	0.063 ± 0.026	3.39 ± 0.31	2.4σ	0.034 ± 0.014		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.040 ± 0.014	3.044	2.4σ	0.034 ± 0.014
		PRIMAT	0.040 ± 0.014	3.044	2.8σ	0.046 ± 0.021		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.008 ± 0.013	3.044	0.6σ	0.007 ± 0.013
		PRIMAT	0.007 ± 0.013	3.044	0.6σ	0.007 ± 0.013		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.006 ± 0.013	3.044	0.5σ	0.006 ± 0.013
		PRIMAT	0.006 ± 0.013	3.044	0.5σ	0.006 ± 0.013		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.008 ± 0.013	3.044	0.6σ	0.008 ± 0.013
		PRIMAT	0.008 ± 0.013	3.044	0.6σ	0.008 ± 0.013		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.018 ± 0.024	3.21 ± 0.31	0.7σ	0.014 ± 0.018
		PRIMAT	0.018 ± 0.024	3.21 ± 0.31	0.7σ	0.014 ± 0.018		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.008 ± 0.013	3.044	0.3σ	0.008 ± 0.013
		PRIMAT	0.008 ± 0.013	3.044	0.3σ	0.008 ± 0.013		
EMPRESS $Y_P = 0.2370(34)$	$Y_P + D/H	_P + \Omega_b h^2	_{\text{Planck}}$	PArthEnoPE	0.01 ± 0.019	3.03 ± 0.20	0.3σ	0.01 ± 0.019
		PRIMAT	0.01 ± 0.019	3.03 ± 0.20	0.3σ	0.01 ± 0.019		

The lower panels of Fig. 4, we leave N_{eff} as an unconstrained parameter. As expected, the reach of the Simons Observatory and of CMB-S4 worsen when relaxing the assumptions on the cosmological scenario. We
obtain:

$$
\sigma(\xi_{\nu_e}) \simeq 0.04, \quad \text{[Simons Obs.]} \quad (21a)
$$
$$
\sigma(N_{\text{eff}}) \simeq 0.11, \quad \text{[Simons Obs.]} \quad (21b)
$$
$$
\sigma(\Delta \nu) \simeq 0.02, \quad \text{[CMB–S4]} \quad (21c)
$$
$$
\sigma(N_{\text{eff}}) \simeq 0.08, \quad \text{[CMB–S4]} \quad (21d)
$$

Yet, the combination of EMPRESS with CMB experiments will significantly narrow down the allowed ranges for ξ_{ν_e} and ΔN_{eff}, and would strengthen the case for a nonzero lepton asymmetry, should the EMPRESS hint be correct. Concretely, while current data only give a 2σ significance for a nonzero lepton asymmetry (when leaving N_{eff} unconstrained), the combination with the Simons Observatory or CMB-S4 would increase the significance to $\sim 3\sigma$. Concretely, we obtain

$$
\xi_{\nu_e} = 0.047 \pm 0.016, \quad \text{[EMPRESS + SimonsObs.]} \quad (22a)
$$
$$
N_{\text{eff}} = 3.12 \pm 0.07, \quad \text{[EMPRESS + SimonsObs.]} \quad (22b)
$$
$$
\xi_{\nu} = 0.045 \pm 0.014, \quad \text{[EMPRESS + CMB–S4]} \quad (22c)
$$
$$
N_{\text{eff}} = 3.12 \pm 0.06, \quad \text{[EMPRESS + CMB–S4]} \quad (22d)
$$

Let us finalize this section commenting on the possible role of the primordial deuterium abundance as a third (independent) probe of a primordial lepton asymmetry, along with the CMB and the helium data. The current measurement is limited by statistics, however it is expected to improve substantially in the near future.

FIG. 4. 1 and 2σ C.L. forecast regions for ξ_{ν_e} and $\Omega_b h^2$ for a scenario without dark radiation (top panels), or ξ_{ν_e} and ΔN_{eff} for a scenario without making assumptions on the amount of dark radiation (bottom panels) from nucleosynthesis data, the upcoming Simons Observatory (left panels) or the projected CMB-S4 (right panels), and their combination.
with the advent of 30m class optical/near-infrared telescopes [69]. On the other hand, the theoretical prediction for D/H [69] is currently limited by uncertainties in the $d+d \rightarrow n + ^3\text{He}$ and $d+d \rightarrow p + ^4\text{H}$ reaction rates. Therefore, in order to provide a competitive probe of the lepton asymmetry, it is mandatory to measure more precisely these reactions, or improve the theoretical modeling [70].

V. CONCLUSIONS

The recent measurement of the primordial helium abundance by EMPRESS could be an indication for a nonzero lepton asymmetry in the electron neutrino flavor. Motivated by this new measurement, we have performed a global analysis of the primordial lepton asymmetries using both BBN and CMB data. Our main results are summarized in Fig. 5, which shows the current constraints on the lepton asymmetry (parametrized by the neutrino chemical potential ξ_{ν_e}) and its correlation with the baryon asymmetry ($\Omega_b h^2$) and with the amount of dark radiation in the Universe (parametrized by the extra contributions to the effective number of neutrino species, ΔN_{eff}): quantitative results are reported in Table I.

We have found that the determination of the lepton asymmetry is currently dominated by the helium abundance, and is strongly dependent on the dataset considered, ranging from a $\sim 3\sigma$ indication for a nonzero lepton asymmetry when using the EMPRESS data, to no significant indication when using the PDG-21 recommended value (see Fig. 2 and Table I). Our conclusions are in agreement with other recent works also analyzing the implications of the EMPRESS measurements on the cosmological parameters [40, 44].

Further, we have also investigated the impact of the uncertainties in the nuclear reaction rates for the determination of the lepton asymmetry, taking specifically the rates from PArthENoPE and from PRIMAT. We have concluded that the choice of nuclear reaction rates does not affect significantly the determination of the lepton asymmetry, both when N_{eff} is fixed and when it is allowed to float.

Finally, we have also performed a forecast of the sensitivity to the lepton asymmetry from the upcoming Simons Observatory and the future CMB-S4. These experiments, by themselves, will have a sensitivity to the lepton asymmetry which is comparable to our current global fit. Should the helium abundance be lower than the SM prediction, the CMB data from the Simons Observatory, combined with the results from EMPRESS, will strengthen the hint for a nonzero lepton asymmetry to $\sim 3\sigma$ if no assumption is done on the cosmological parameters, and $\sim 4\sigma$ if it is assumed that the Universe does not contain dark radiation. With the future CMB-S4 data the significance would increase to $\sim 5\sigma$.

If confirmed, this result would hint toward new physics generating a lepton asymmetry at low temperatures, to prevent its conversion into a baryon asymmetry by sphaleron processes. The construction of possible models and their possible signals deserves in our opinion further investigation.

Acknowledgments

This work was supported by the Collaborative Research
Center SFB1258 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2094 - 390783311. M.E. is supported by a Fellowship of the Alexander von Humboldt Foundation. We gratefully acknowledge the use of the public BBN code PArthEnoPE-v3.0 [60–62].

[1] E. W. Kolb and M. S. Turner, *The Early Universe*, Front. Phys. 69 (1990) 1.
[2] V. A. Rubakov and D. S. Gorbunov, *Introduction to the Theory of the Early Universe: Hot big bang theory*, World Scientific, Singapore, 2017, 10.1142/10447.
[3] PLANCK collaboration, N. Aghanim et al., *Planck 2018 results. VI. Cosmological parameters*, Astron. Astrophys. 641 (2020) A6 [1807.06209].
[4] V. Mossa et al., *The baryon density of the Universe from an improved rate of deuterium burning*, Nature 587 (2020) 210.
[5] O. Pisanti, G. Mangano, G. Miele and P. Mazzella, *Primordial Deuteron after LUNA: concordances and error budget*, JCAP 04 (2021) 020 [2011.11537].
[6] C. Pitrou, A. Coc, J.-P. Uzan and E. Vangioni, A new tension in the cosmological model from primordial deuterium?, *Mon. Not. Roy. Astron. Soc.* 502 (2021) 2474 [2011.11320].
[7] T.-H. Yeh, J. Shelton, K. A. Olive and B. D. Fields, Probing physics beyond the standard model: limits from BBN and the CMB independently and combined, JCAP 10 (2022) 046 [2207.13133].
[8] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation, in the Early Universe, Phys. Lett. B 155 (1985) 36.
[9] S. Y. Khlebnikov and M. E. Shaposhnikov, *The Statistical Theory of Anomalous Fermion Number Nonconservation*, Nucl. Phys. B 308 (1988) 885.
[10] J. A. Harvey and M. S. Turner, *Cosmological baryon and lepton number in the presence of electroweak fermion number violation*, Phys. Rev. D 42 (1990) 3344.
[11] H. K. Dreiner and G. G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221].
[12] A. Casas, W. Y. Cheng and G. Gelmini, *Generation of large lepton asymmetries*, Nucl. Phys. B 538 (1999) 297 [hep-ph/9709298].
[13] A. D. Dolgov and D. P. Kirilova, *ON PARTICLE CREATION BY A TIME DEPENDENT SCALAR FIELD*, Sov. J. Nucl. Phys. 51 (1990) 172.
[14] B. Bajc, A. Riotto and G. Senjanovic, Large lepton number of the universe and the fate of topological defects, Phys. Rev. Lett. 81 (1998) 1355 [hep-ph/9710415].
[15] T. Asaka and M. Shaposhnikov, *The νMSM, dark matter and baryon asymmetry of the universe*, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013].
[16] T. Asaka, S. Blanchet and M. Shaposhnikov, The τνMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065].
[17] A. Pilaftsis and T. E. J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342].
[18] D. Borah and A. Dasgupta, Large Neutrino Asymmetry from TeV Scale Leptogenesis in the Light of Helium Anomaly, 2206.14722.
[19] M. Kawasaki, F. Takahashi and M. Yamaguchi, Large lepton asymmetry from Q balls, Phys. Rev. D 66 (2002) 043516 [hep-ph/0205101].
[20] M. Kawasaki and K. Murai, Lepton asymmetric universe, JCAP 08 (2022) 041 [2203.09713].
[21] J. March-Russell, H. Murayama and A. Riotto, The Small observed baryon asymmetry from a large lepton asymmetry, JHEP 11 (1999) 015 [hep-ph/9908396].
[22] V. Domcke, K. Kamada, K. Mukaida, K. Schmitz and M. Yamada, A new constraint on primordial lepton flavour asymmetries, 2208.03237.
[23] S. Sarkar, *Big bang nucleosynthesis and physics beyond the standard model*, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260].
[24] F. Iocco, G. Mangano, G. Miele, O. Pisanti and P. D. Serpico, *Primordial Nucleosynthesis: from precision cosmology to fundamental physics*, Phys. Rept. 472 (2009) 1 [0809.0631].
[25] C. Pitrou, A. Coc, J.-P. Uzan and E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions, Phys. Rept. 754 (2018) 1 [1801.08023].
[26] J. Lesgourgues, G. Mangano, G. Miele and S. Pastor, *Neutrino Cosmology*, Cambridge University Press, 2, 2013.
[27] P. D. Serpico and G. G. Raffelt, *Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology*, Phys. Rev. D 71 (2005) 127301 [astro-ph/0506162].
[28] G. Mangano, G. Miele, S. Pastor, O. Pisanti and S. Sarikas, Updated BBN bounds on the cosmological lepton asymmetry for non-zero θ13, Phys. Lett. B 708 (2012) 1 [1110.4335].
[29] Y.-Z. Chu and M. Cirelli, *Sterile neutrinos, lepton asymmetries, primordial elements: How much of each?*, Phys. Rev. D 74 (2006) 055015 [astro-ph/0608206].
[30] V. Simha and G. Steigman, *Constraining The Universal Lepton Asymmetry*, JCAP 08 (2008) 011 [0806.0179].
[31] V. F. Mukhanov, *Nucleosynthesis without a computer*, Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073].
[32] E. Aver, D. A. Berg, K. A. Olive, R. W. Pogge, J. J. Salzer and E. D. Skillman, *Improving helium abundance determinations with Leo P as a case study*, JCAP 03 (2021) 027 [2010.04180].
[33] V. Fernández, E. Terlevich, A. Díaz and R. Terlevich, A Bayesian direct method implementation to fit emission line spectra: Application to the primordial He abundance determination, Mon. Not. Roy. Astron. Soc. 487 (2019) 3221 [1905.09215].
[34] T. Hsyu, R. J. Cooke, J. X. Prochaska and M. Bolte, *The PHLEK Survey: A New Determination of the Primordial Helium Abundance*, Astrophys. J. 896 (2020) 77 [2005.12290].
[35] M. Valerdi, A. Peimbert and M. Peimbert, *Chemical abundances in seven metal-poor H II regions and a
