Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host

Helene Velly*, Robert A. Britton*, and Geoffrey A. Preidis

*Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA

ABSTRACT

Undernutrition remains one of the most pressing global health challenges today, contributing to nearly half of all deaths in children under five years of age. Although insufficient dietary intake and environmental enteric dysfunction are often inciting factors, evidence now suggests that unhealthy gut microbial populations perpetuate the vicious cycle of pathophysiology that results in persistent growth impairment in children. The metagenomics era has facilitated new research identifying an altered microbiome in undernourished hosts and has provided insight into a number of mechanisms by which these alterations may affect growth. This article summarizes a range of observational studies that highlight differences in the composition and function of gut microbiota between undernourished and healthy children; discusses dietary, environmental and host factors that shape this altered microbiome; examines the consequences of these changes on host physiology; and considers opportunities for microbiome-targeting therapies to combat the global challenge of child undernutrition.

KEYWORDS
bile acids; enteropathogens; gastrointestinal motility; glycans; inflammation; intestinal mucus; kwashiorkor; marasmus; metabolomics; severe acute malnutrition; stunting

Undernutrition remains a scourge of global child health

Undernutrition, a pathologic state in which dietary intake fails to meet the body’s energy or nutrient requirements, may arise from insufficient quantity of macronutrients or micronutrients, abnormally high energy expenditures, impaired absorption or assimilation of nutrients, or any combination thereof. Undernutrition afflicts more than 800 million individuals, disproportionately burdening young children. Despite recent progress by the Millennium Development Goals, 159 million of the world’s 667 million children under 5 y of age remain stunted (low height-for-age) and 50 million children exhibit wasting (low weight-for-height), reflecting chronic and acute undernutrition, respectively. Each year, undernutrition claims 3.1 million child lives – 45% of all global child deaths.

Undernutrition is at the heart of a “vicious cycle” in which an altered gut microbiota (“dysbiosis”), often containing enteropathogens from an unsanitary environment, triggers a subclinical constellation of intestinal pathologies that include inflammation, barrier dysfunction, predilection to pathogen invasion, altered transit, and malabsorption. Collectively known as environmental enteric dysfunction (EED), these pathologies promote growth failure and persistent dysbiosis. When this vicious cycle is present during a critical early developmental window, children are at increased risk of life-long co-morbidities including short stature, decreased fitness and earning potential, cognitive impairment, obesity, type 2 diabetes mellitus, and cardiovascular diseases. This article will summarize recent observational and mechanistic studies that have advanced our understanding of precisely how the gut microbiome differs in undernourished children, of the ways in which microbial communities and functions become altered in the nutrient-deprived host, and of mechanisms by which these alterations contribute to the pathophysiologies that perpetuate this vicious cycle (Fig. 1).

Undernourished children have distinct patterns of gut bacterial community configurations

In 1958 P.M. Smythe, working in South Africa, was among the first to study gut bacteria in children with severe acute malnutrition and stunting.
kwashiorkor, a severe edematous form of protein-energy undernutrition. Although his “attempt to show the spread of bacteria up the intestinal tract” was limited by the culture-dependent microbiological techniques available at the time, he detected a surprising number of coliform bacteria in gastric aspirates. Over the next two decades, bacterial overgrowth in the proximal gastrointestinal tract would be confirmed among undernourished children in Guatemala, Aboriginal Australia, Indonesia, Brazil, and the Gambia, and among adults with tropical sprue and acute undernutrition in Bengal. Small bowel biopsies confirmed the co-existence of altered mucosal architecture and inflammation. Although invasive sampling is no longer performed strictly for research purposes, these early studies confirmed both altered bacterial populations and altered intestinal physiology in undernutrition.

Decades later, culture-independent high-throughput microbial DNA sequencing technologies reinvigorated studies that sought to more precisely define the altered fecal bacterial populations in undernourished children, with the hope that such work would shed light on how dysbiosis might contribute to impaired weight gain and how microbiome-targeting therapies might be used to improve a child’s nutritional status. These observational studies revealed two key findings. First, undernutrition is associated with decreased fecal microbial community richness (fewer unique taxa). In one study of preschool-aged Bangladeshi children, stool from undernourished children contained just 57% of the richness found in healthy subjects. Unexpectedly, decreased richness also was detected in stool from children with marasmus, a non-edematous form of severe undernutrition, compared to those with kwashiorkor, a severe edematous form, in a cohort of 87 Ugandan children ages 6–59 months hospitalized for nutritional rehabilitation; healthy subjects were not included in this study. The second key finding is that altered proportional representations of specific bacterial...
groups are found in undernutrition. For example, overabundance of Proteobacteria was present in undernourished children in Bangladesh20 and India.18 Although functional consequences are difficult to infer from phylum-level changes, fecal microbial communities from both undernourished cohorts included increased proportions of pathogenic taxa within Proteobacteria, including \textit{Enterobacter}, \textit{Escherichia}, \textit{Klebsiella}, and \textit{Shigella}, as confirmed elsewhere.19,25 It should be noted that a similar pattern (increased proportions of Proteobacteria with decreased microbial diversity) is found in inflammatory bowel disease.26 On the other hand, genera containing potentially beneficial organisms are depleted in the undernourished gut. \textit{Roseburia}, \textit{Faecalibacterium}, and \textit{Butyrivibrio} (important sources of butyrate for colonocytes), as well as \textit{Lactobacillus} and \textit{Bifidobacterium} (which can decrease inflammation, strengthen gut barrier function, inhibit pathogens, and mediate other beneficial effects under certain conditions), are deficient in stool from undernourished children.18,20,25 Together, these data suggest that the characteristic fecal microbiota of the undernourished child contains decreased richness, increased relative abundance of genera containing pathogens, and loss of genera containing potentially beneficial organisms.

\textbf{Undernourished children have delayed gut microbiota maturity}

A child’s intestinal microbiota gains complexity over time – most rapidly during the transition from exclusive breast or formula feeding to a diet consisting of a variety of solid foods.27,28 As community richness and diversity increase, the functional potential of the microbiota increases as well. For example, acquisition of members of the genus \textit{Bacteroides} broadens the genomic repertoire for carbohydrate hydrolysis, xenobiotic detoxification, and vitamin biosynthesis.29 Thus, it was hypothesized that the decreased microbial community richness found in undernourished children might translate to delayed acquisition of important microbial functions. To test this hypothesis, Smith et al. prospectively followed 317 Malawian twin pairs through age 36 months.21 Half of these pairs remained well-nourished, but 135 pairs became discordant for acute undernutrition, prompting therapeutic feeding to be administered to both twins. Metagenomic DNA was extracted from multiple (range 4–17) fecal samples over time from both members of nine same-gender healthy twin pairs and 13 same-gender twin pairs discordant for kwashiorkor (308 total metagenomes). Microbial genes isolated from healthy children followed a distinct pattern of maturation with increasing age. Although no specific microbial genes or taxa were consistently discriminatory for kwashiorkor, the rate of microbiome maturation was delayed in children who developed kwashiorkor.21 Statistical techniques have not been standardized for complex study designs involving multi-dimensional data sets sampled over time and with more than one subject per household. Nonetheless, this study nicely illustrates the power of large prospective analyses of twin pairs discordant for nutritional phenotypes despite similar genetics and feeding practices.

The concept of microbiota maturity in early postnatal development was further developed by Subramanian et al.,22 who collected monthly stool samples from 50 unrelated Bangladeshi children through the first two years of life. In a subset of 12 children with consistently healthy growth, relative abundances of taxa identified by 16S sequencing were regressed against the child’s age at the time of fecal collection, and a set of 24 age-discriminatory taxa were identified using a Random Forests machine-learning algorithm. A “relative microbiota maturity” index and a “microbiota for age Z score” (MAZ) were defined. MAZ positively correlated with weight-for-height \textit{Z} scores, and among 64 severely undernourished children requiring hospital admission for nutritional rehabilitation, microbiota maturity was significantly impaired. Separately, a 25-taxon age-discriminatory model was constructed for the above-mentioned Malawian cohort, in which MAZ also positively correlated with weight-for-height and weight-for-age \textit{Z} scores.30 Interestingly, the Bangladeshi and Malawian 25-taxon models had 9 taxa in common, with members of the \textit{Bifidobacterium}, \textit{Faecalibacterium}, and \textit{Lactobacillus} genera among each model’s top 5 most age-discriminatory microbes. These studies were the first to directly correlate gut microbiota maturity to age-based anthropometric indices. The etiology of microbiota immaturity is likely multi-factorial, and will be discussed in the following section.

\textbf{Dietary factors that alter the gut microbiome in undernutrition}

A child’s intestinal microbiota is initially shaped by numerous perinatal factors. These include maternal nutritional status, immunity, and microbiome; delivery and early feeding modalities; antibiotic usage; and
sanitation, hygiene, and pathogen exposure. Post-weaning, food availability and dietary traditions vary worldwide. Individuals in developing regions typically consume cereal- and plant-based diets rich in complex plant polysaccharides, in contrast to the energy-dense animal-derived foods and processed carbohydrates featured in Western diets. The type and amount of dietary carbohydrate are likely partially responsible for the fecal microbial community differences reported between healthy children from sub-Saharan Africa and those from Europe. Compared to healthy Italian children, stool from healthy children in Burkina Faso contained greater proportions of the phylum Bacteroidetes, with specific enrichment of genera (Prevotella and Xylanibacter) that harbor enzymes for metabolizing non-digestible dietary cellulose and xylans, key constituents of the Burkina Faso diet. Thus, a culture’s dietary carbohydrate composition could drive selection for bacteria containing the genomic repertoire to metabolize these nutrients as energy sources.

Mechanistically, the establishment of microbial communities along the intestine’s longitudinal axis is a multifactorial and perhaps even partly random process, and is directed to an extent by dietary carbohydrates. Simple carbohydrates are absorbed in the small intestine, leaving non-digestible complex polysaccharides, most importantly the glycans, as key determinants of microbial populations in the colon. Complex interactions form between dietary glycans, the host, and gut microbes that vary widely in the types of glycans they metabolize. For example, the genus Bacteroides contains an expansive repertoire of glycan-degrading enzymes that metabolize resistant starches, plant cell wall polysaccharides, inulin, and cellulose, into short chain fatty acids and other products that the intestine can absorb. Bacteroides are among the most effective degraders of animal-derived glycoproteins in the colon, which could help explain why the genus is enriched in individuals consuming Western animal-based diets and less abundant in those consuming plant-based diets, and raises the possibility that a microbiota’s inability to convert non-digestible dietary components into energy forms accessible to the host could have deleterious effects on growth. For example, human milk oligosaccharides (HMOs) are glycans that shape the infant gut microbiota. Among their many functions, HMOs serve as metabolic substrates for beneficial microbes including Bifidobacterium longum subspecies infantis. Recent evidence that sialylated (sialyllacto-N-tetraose b) and fucosylated (2-fucosyllactose and lacto-N-fucopentaose I) HMOs may play a role in infant growth via the microbiome was presented by Charbonneau et al., who analyzed breast milk from 88 Malawian mothers. Concentrations of total, fucosylated and sialylated HMOs were higher among mothers of healthy compared to severely stunted 6-month-old infants, and in a second cohort of 215 mothers, total and sialylated HMO concentrations were increased in milk from mothers of healthy versus moderately stunted infants. The authors linked sialylated milk oligosaccharides to lean body mass gain using a mouse model, as described later.

Other glycans are endogenous to the gut and may serve as substrates for microbiota in the context of a glycan-deficient diet. Some bacteria such as Akkermansia muciniphila and Bacteroides thetaiotaomicron can derive carbon and energy from the O-linked glycan structural components of intestinal mucus. When dietary N-linked glycans become limited, these bacteria increase transcription of a variety of enzymes including hexosaminidases, α-fucosidases, and sialidases to metabolize endogenous O-linked glycans. Accordingly, A. muciniphila appears to have a competitive growth advantage in breast milk deprived undernourished neonatal mice, which contain fewer microbial genes that metabolize N-linked glycans. Although it remains to be determined whether enrichment of mucophilic microbes might harm or benefit the undernourished host, the balance and variation of dietary and endogenous polysaccharides appears to influence microbial community composition.

Dey et al. provided further evidence of the impact of regional diets on microbiota function by transplanting six groups of gnotobiotic mice with fecal microbes derived from one of six healthy adults with various ethnic dietary patterns. Each humanized mouse model was challenged successively with diets simulating those of the six ethnicities, and gastrointestinal transit times were approximated as the elapsed time between a bolus gavage of carmine red dye and the initial appearance of dye in the stool. The authors report that turmeric, a staple in the traditional Bangladeshi diet, can alter microbiome composition and function as well as intestinal motility. Turmeric slowed transit by altering bile acid metabolism via mechanisms

GUT MICROBES
described later. Carmine red has inherent limitations as an indicator of motility, and intestinal transit time is influenced by many factors including dietary polysaccharides, short chain fatty acids, and other microbial-derived metabolites, including those that regulate host production of serotonin and the incretin hormone GLP-1. Nonetheless, given that intestinal motility could influence both appetite and the efficiency of energy extraction from ingested nutrients, these data highlight the intersection of diet, microbiota, and neurogastroenterology as an important area of future research.

Dietary deficiencies also can alter the microbiota. Deletion of the mouse angiotensin I converting enzyme (peptidyl-dipeptidase) 2 (Ace2), which is required for the expression of an enterocyte amino acid transporter, results in tryptophan deficiency with microbial dysbiosis that is due to transcriptional repression of ileal antimicrobial peptides. Compared to tryptophan-sufficient animals, both Ace2-deficient mice and wild type mice maintained on a tryptophan-deficient diet had more profound weight loss and more severe intestinal damage with chemical-induced colitis. These effects were ameliorated by tryptophan supplementation and recapitulated in tryptophan-sufficient gnotobiotic mice colonized by the dysbiotic gut microbes. Thus, deficiency of a specific amino acid may be linked to microbial dysbiosis and enteric dysfunction. Given the variations in dietary intake among children of differing cultures and nutritional states, it will be important to elucidate which of these factors impacts microbiome function and host physiology to a clinically meaningful extent.

Environmental and host factors that shape the gut microbiome of undernourished children

For children of diverse genetic backgrounds who live amidst poor sanitation and ubiquitous enteropathogens, diet is just one of many factors that shape the intestinal microbiota. Pathogens can alter microbial populations via multiple mechanisms, including secretion of toxins, competition for nutrients, and promotion of inflammation. *Vibrio cholerae* metabolizes a variety of intestinal mucus components, using altered mucus secretion as a competitive advantage to colonize despite resistance from commensal bacteria. *Salmonella enterica* serovar Typhimurium (S. Typhimurium) expresses virulence genes that induce inflammation, inhibit the growth of commensal communities, and enhance the pathogen’s ability to colonize and invade.

Inflammation alone alters gut microbial communities, as observed in mice with inflammation triggered by dextran sodium sulfate (DSS) or IL-10 deficiency, although possible effects of DSS metabolism by bacteria or compensatory immune changes cannot be excluded. Inflammation may disrupt the microbiota by three key mechanisms. First, inflammation triggers an immune response, releasing antimicrobial peptides into the intestinal lumen; this response innately defends against pathogens but also can target subsets of commensal microbes. Second, inflammation increases luminal oxygen levels. Oxygen normally diffuses from the mucosal capillary network toward the lumen, creating an oxygen gradient that tightly regulates microbes within oxic, microoxic, and anoxic zones. This gradient helps shape microbial ecology, with facultative anaerobes near the mucosal surface and strict anaerobes in the anoxic lumen, and influences bacterial transcriptional programs. The increase in luminal oxygen during inflammation selectively promotes the growth of aerotolerant microbes, especially Enterobacteriaceae and its pathogens. It is not known whether the oxygen gradient is disrupted by the rapid transit rates of non-inflammatory diarrhea. Third, inflammation generates reactive oxygen and nitrogen species which shape microbial populations by facilitating respiration among certain bacteria. Reactive oxygen species combine with luminal sulfur compounds to form the oxidation product tetrathionate. Bacteria such as S. Typhimurium that can utilize tetrathionate as an electron acceptor for respiration have a selective growth advantage over bacteria that cannot. Given that inflammation is a hallmark of EED, these mechanisms likely help shape the microbial dysbiosis observed in undernourished children.

A disrupted gut microbiota increases enteropathogenic potential

High-throughput sequencing of the whole bacterial metagenome (not just the 16S rRNA gene) facilitated the initial discovery of fecal microbiome immaturity in undernourished Malawian children, but also proposed potential functional consequences of dysbiosis in the undernourished child. For example, stool from
undernourished Indian and Bangladeshi children contained decreased abundance of bacterial genes involved in nutrient metabolism and an overabundance of genes that mediate virulence and pathogenesis.18,19

Gut microbiota containing low diversity are less resistant to enteropathogens.71 In mice, disrupting the microbiota with antibiotics72 or inflammation73 exacerbates \textit{S. Typhimurium} colitis and colonization potential. Thus, the loss of microbial diversity observed in undernutrition could place children at higher risk of more frequent and more severe enteropathogen infections, perpetuating the vicious cycle of EED, inflammation, and impaired growth. Intriguingly, similar effects can be replicated in mice by gut microbes that are not typically considered to be pathogenic. A low-protein, low-fat chow led to moderate microbes that are not typically considered to be pathogenic. A low-protein, low-fat chow led to moderate growth stunting but not the classic small bowel histopathology seen in EED.74 However, repetitive administration of a seven-bacterium combination of members of the Bacteroidales order and commensal \textit{Escherichia coli}, none of which are pathogenic when administered individually, induced robust intestinal histopathology and exacerbated stunting, barrier dysfunction, inflammation, gut microbial dysbiosis, and both colonization and systemic invasion of \textit{S. Typhimurium}. Importantly, the seven-bacterium mixture failed to reproduce any of these effects in normal-weight mice receiving an isocaloric control diet,74 illustrating the complex interdependency of microbial, host, and dietary factors in EED.

\textit{Dysbiosis can impact dietary energy harvest, de novo micronutrient synthesis, and bile acid homeostasis}

Energy harvest by gut bacteria contributes substantially to host metabolism. By converting non-digestible dietary components into forms of energy that epithelial cells may absorb, the microbiota contribute to an estimated 10\% of an adult’s caloric requirement.75 However, stool from underweight Indian children was deficient in microbial genes that ferment complex plant oligosaccharides and peptidoglycans.18 Similarly, decreased abundance of cecal and colonic \textit{Bacteroides} and loss of their genes capable of metabolizing N-linked glycans were observed in a neonatal mouse model of protein-energy undernutrition.46 Thus, dysbiosis could result in less efficient energy extraction from the diet.

Gut bacteria are also capable of \textit{de novo} micronutrient biosynthesis. Some microbes can synthesize amino acids by salvaging and recycling nitrogen from a variety of dietary or endogenous sources (e.g., urea, ammonia),76 although the extent to which these contribute to an individual’s total protein requirement is poorly defined. Nonetheless, amino acid metabolism is among the most significantly perturbed biological pathways in metabolomic analyses of severely undernourished children77 and in undernourished mice,74,78 rats,79 and pigs.80 Similarly, vitamin K and a subset of the water-soluble B vitamins are synthesized by members of the gut microbiota.81 Depletion of these strains could theoretically impact the vitamin status of the host. A myriad of vitamin deficiencies are found in undernourished children,82 and metabolomic analyses in multiple studies of protein-energy undernutrition have revealed altered concentrations of intermediates in vitamin-metabolizing pathways.74,77,78 Whether correcting dysbiosis can ameliorate specific micronutrient deficiencies remains to be explored.

Gut microbes also influence host physiology by regulating the bile acid pool. When glycine- or taurine-conjugated bile acids enter the small intestine, their emulsification properties facilitate uptake of dietary lipids and fat-soluble vitamins and their antimicrobial properties regulate gut microbial communities. Some bacterial genomes encode enzymes that enhance their ability to survive in bile.83,84 These enzymes include bile salt hydrolase (BSH),85 which enables certain members of \textit{Bacteroides}, \textit{Lactobacillus}, and other genera to remove the glycine and taurine groups from primary bile acids,86 and 7-\alpha-dehydroxylase,87 which members of genera including \textit{Clostridium} use to convert primary to secondary bile acids. These microbial activities could have profound influences on host physiology including gastrointestinal transit and lipid metabolism. Dey et al. reported that turmeric slows gastrointestinal transit in gnotobiotic mice by increasing concentrations of conjugated bile acids taurohyodeoxycholic acid and tauro-muricholic acid sulfate; transit time was normal if the recipient microbiome was enriched in the BSHs that deconjugate these bile acids.47 Furthermore, intestinal expression of cloned BSH alters bile acid concentrations in plasma, liver, and stool, influences transcription of host genes involved in lipid metabolism, and decreases serum
cholesterol, liver triglycerides, and weight gain. Gut microbiota can impact expression of genes related to bile acid transport and metabolism in the ileum and bile acid synthesis in the liver by reducing concentrations of taurine-conjugated β-muricholic acid, a nuclear farnesoid X receptor antagonist. Although it is not yet known the extent to which altered microbial populations contribute to the abnormal bile acid profiles observed in children and mice with protein-energy undernutrition or EED, altered bile acid pools could influence energy metabolism, absorption of dietary fat and fat-soluble vitamins, and ultimately weight gain.

Lessons learned from transplantation of human-derived microbes into gnotobiotic mice

The most convincing evidence to date of a causal link between gut microbial dysbiosis and growth impairment in undernutrition is found in studies of gnotobiotic mice colonized with fecal microbes from healthy vs. underweight children. From the 317-twin Malawian cohort described earlier, the authors selected three twin-pairs ages 16–21 months who were discordant for undernutrition. Frozen stool samples from these six donors were transplanted into separate groups of gnotobiotic mice. In two of the three twin pairs, microbes from the child with kwashiorkor induced greater weight loss vs. microbes from the healthy twin when mice were given a low-protein low-fat chow designed to mimic the donors’ Malawian diet. Discordant weight loss was not observed when mice consumed standard chow. Transmission of donor nutritional phenotype via the microbiota has been confirmed in gnotobiotic mice colonized by microbial communities derived from multiple other undernourished vs. healthy Malawian children, illustrating a direct causality between gut microbes and growth impairment.

Four key concepts have emerged from studies transplanting child-derived fecal microbes into gnotobiotic animals. First, microbiota growth potential is dependent on the age of the donor host. With fecal samples from 19 healthy and undernourished Malawian donors, microbiota from 6-month-old infants induced greater weight gain vs. microbiota from 18-month-old children. Second, many of the taxa observed to be growth-discriminatory in children from Malawi and Bangladesh were also found to be growth-discriminatory when transplanted into mice. In particular, two probiotic species, *B. longum* and *Faecalibacterium prausnitzii*, improved growth trajectories in undernourished mice. Third, growth-discriminatory microbiota have widespread systemic effects that are measurable in multiple ways, including body composition, bone morphology, and metabolite profiling in serum, stool, intestinal lumen, muscle, liver, and brain. These studies reveal perturbations in metabolites associated with carbohydrate and amino acid catabolism, tricarboxylic acid and urea cycle intermediates, acylcarnitines, N-linked glycans, and one-carbon metabolism – pathways that also are among those perturbed in undernourished children and models of undernutrition that employ conventionally reared mice. Fourth, IgA-bound fecal microbes from undernourished hosts can produce pathology resembling EED under certain dietary conditions. Using a fluorescence-activating cell sorting approach, Kau et al. isolated viable IgA-targeted microbes from gnotobiotic recipients of fecal bacteria from a 21-month-old Malawian with kwashiorkor or from the child’s healthy twin. IgA-bound microbes (most prominently, members of the family Enterobacteriaceae) from recipients of the undernourished human donor induced systemic inflammation, weight loss, intestinal epithelial barrier disruption, and mortality when transplanted into another set of gnotobiotic mice maintained on a Malawian diet; this pathology was ameliorated by feeding these mice standard chow or by co-administering IgA-bound microbes from the healthy twin of the child with kwashiorkor. Whether similar effects would be observed following transplantation of the subset of bacteria not targeted by IgA is unknown. Together, these gnotobiotic mouse models provide evidence of a causal link between dysbiosis and growth impairment.

Microbiome-targeting therapies have thus far demonstrated limited efficacy for undernutrition

Given our recent progress in understanding mechanisms by which gut microbes may cause impaired growth in undernourished children, microbiome-targeting therapies hold promise as adjuvant treatments for nutritional rehabilitation. In the outpatient setting, an undernourished child is typically treated with ready-to-use therapeutic food (RUTF) composed of nut paste, sugar, vegetable oil and milk powder...
fortified with vitamins and minerals. However, RUTF can be expensive and often must be imported. Furthermore, long-term outcomes in meta-analyses have demonstrated mixed results. To date, only four large randomized, placebo-controlled trials have sought specifically to improve growth in undernourished children by targeting the gut microbiome during refeeding (Table 1).

Synbiotic 2000 Forte is a fermented milk that contains four probiotic lactic acid bacteria (Pediococcus pentosaceus 16:1, Leuconostoc mesenteroides 23–77:1, Lactobacillus paracasei ss. paracasei F-19, and Lactobacillus plantarum 2362; total of 10^11 colony-forming units) and prebiotic fermentable fibers (oat bran rich in β-glucans, inulin, pectin, and resistant starch; 2.5 g of each). In a randomized, double-blind placebo-controlled efficacy trial enrolling 795 children admitted to a Malawian hospital for nutritional rehabilitation, synbiotic-fortified RUTF, given daily throughout the duration of inpatient and outpatient treatment (median 33 days), improved neither nutritional cure nor other clinical outcomes compared to unfortified RUTF. This probiotic/prebiotic combination had not been identified by preclinical models or observational studies within this patient population. Thus, it would be premature to conclude from this negative result that the microbiome is not amenable to manipulation by probiotics and prebiotics to promote weight gain during refeeding.

As an alternative strategy, elimination of pathogenic elements of the microbiota could be achieved with antibiotics. Promising results were found in a randomized, double-blind, placebo-controlled trial enrolling 2767 Malawian children receiving RUTF as outpatient therapy for severe acute undernutrition. Children receiving placebo had a slightly increased relative risk of both RUTF failure and mortality compared to those receiving either of two oral antibiotic regimens (amoxicillin 80–90 mg/kg/day or cefdinir 14 mg/kg/day, each divided twice daily for seven days) over a 12-week follow-up period. However, two subsequent double-blind placebo-controlled trials did not find antibiotics to be beneficial. First, among 2412 children in Niger with severe acute undernutrition, seven days of amoxicillin (80 mg/kg/day divided twice daily) had no significant effect on nutritional recovery over an eight-week period compared to placebo. Second, among 1778 children who had recovered from severe acute undernutrition in one of four Kenyan hospitals, six months of oral co-trimoxazole (120 mg/day if <6 months of age; 240 mg/day if >6 months) had no effect on mortality during the 12-month study period. It is possible that the beneficial effect on growth observed in the Malawian trial resulted from microbiota restructuring. However, the cohort of 64 undernourished Bangladeshi children studied by Subramanian et al. exhibited only a transient restoration of gut microbiota maturity that was lost four months after inpatient treatment. More importantly, any potential benefit of routine antibiotic use would need to be weighed carefully against the threat of antimicrobial resistance, drug reactions, and other adverse effects, such as increased adiposity that could predispose the undernourished child to metabolic diseases later in life.

What will it take to improve a child’s nutritional status with microbiome-targeting therapies?

Despite the current lack of evidence from clinical trials, preclinical models offer hope that microbiome remodeling could soon help treat childhood EED and undernutrition. In gnotobiotic mice maintained on a representative Malawian diet and colonized by fecal microbes from severely undernourished Malawian children, growth impairment was ameliorated either

| Table 1. Randomized controlled trials that evaluate microbiome-targeting therapies to improve nutritional status in undernourished children. |
|-----------------|-----------------|-----------------|
| Intervention | Setting | Number of Study Participants | Result |
| Synbiotic 2000 Forte | Malawi | 795 | No significant effect on nutritional cure |
| Amoxicillin or cefdinir | Malawi | 2767 | Placebo increased risk of treatment failure (RR 1.32 [1.04–1.68] vs amoxicillin; RR 1.64 [1.27–2.11] vs cefdinir) and mortality (RR 1.55 [1.07–2.24] vs amoxicillin; RR 1.80 [1.22–2.64] vs cefdinir) |
| Amoxicillin | Niger | 2412 | No significant effect on nutritional recovery |
| Co-trimoxazole | Kenya | 1778 | No significant effect on mortality |

Note: RR, relative risk followed by 95% confidence interval in brackets.
by co-housing these mice with animals receiving healthy microbiota, facilitating microbial transfer by coprophagy, or by gavaging a consortium of five bacteria cultured from healthy donors (although only *Ruminococcus gravis* and *Clostridium symbiosum* actually colonized recipient mice). Germ-free mice were mildly underweight gain, as evidenced in an elegant study by Schwarzer et al.96 Vitamin-deprived, chronically undernourished by a protein-, fat-, and carbohydrate-deficient diet, monocolonization by one probiotic strain, *Lactobacillus plantarum* NIZO2877, but not *L. plantarum* WJL, restored growth and somatotropic axis signaling to levels observed in conventionally-reared animals with decreased concentrations of insulin-like growth factor-1 (IGF-1) and IGF-1 binding protein 3, which mediate postnatal growth via the somatotropic axis. Recombinant IGF-1 injections increased body weight and longitudinal growth in germ-free but not conventionally-reared mice, whereas treatment with an IGF-1 receptor inhibitor impaired growth in mice with intact microbiota, suggesting that gut microbes promote growth in part through the somatotropic axis. In gnotobiotic mice chronically undernourished by a protein-, fat-, and vitamin-deficient diet, monoclonization by one probiotic strain, *Lactobacillus plantarum* NIZO2877, but not *L. plantarum* WJL, restored growth and somatotropic axis signaling to levels observed in conventionally-reared mice with intact microbiota. Decreased expression of IGF-1 also has been reported in jejunal of undernourished mice with EED, while decreased plasma IGF-1 has been detected in severely undernourished children. Mechanisms by which bacteria affect somatotropic axis signaling remain uncharacterized.

Another preclinical model demonstrated promising results with a prebiotic. Gnotobiotic mice maintained on a representative Malawian diet received a defined 25-strain community (of which 19 strains successfully colonized) isolated from a stunted Malawian infant enrolled in the HMO study by Charbonneau et al.42 Given the range of dietary, environmental, and host factors that may contribute to growth impairment, it is unlikely that a single therapeutic agent will fully restore a healthy balance of microbial functions, systemic metabolites, and micro- and macronutrients in all cases of child undernutrition. Rather, development of low-cost biomarkers from easily accessible body fluids will enable personalized therapies to address an individual’s specific...
functional deficiencies with the appropriate combination of microbiome-targeting agents (Fig. 2). Delivering these therapies will present new challenges, including ensuring the safety of live bacteria ingested by undernourished and immunocompromised children, lowering the cost of large-scale production of prebiotics, and navigating the challenges associated with distribution in resource-constrained settings (e.g., lack of refrigeration, cultural acceptability, sustainable local production). Nonetheless, the remarkable insights gained in the last few years alone provide hope that harnessing the power of gut microbes, their enzymes, and their signaling molecules may soon yield a much-needed breakthrough against the global scourge of childhood undernutrition.

References

[1] Food and Agriculture Organization of the United Nations (FAO), International Fund for Agricultural Development, World Food Programme. The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO, 2015

[2] United Nations Children’s Fund (UNICEF), World Health Organization (WHO), World Bank Group. Child malnutrition estimates: levels and trends in child malnutrition. Key findings of the 2015 Edition. New York: UNICEF, WHO, World Bank Group, 2015

[3] Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013; 382:427-51; PMID:23746772; http://dx.doi.org/10.1016/S0140-6736(13)60937-X

[4] Guerrant RL, Oria RB, Moore SR, Oria MO, Lima AA. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev 2008; 66:487-505; PMID:18752473; http://dx.doi.org/10.1111/j.1753-4887.2008.00082.x

[5] Preidis GA, Hill C, Guerrant RL, Ramakrishna BS, Tannock GW, Versalovic J. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 2011; 140:8-14; PMID:21075108; http://dx.doi.org/10.1053/j.gastro.2010.11.010

[6] Keusch GT, Denno DM, Black RE, Duggan C, Guerrant RL, Lavery JV, Natario JP, Rosenberg IH, Ryan ET, Tarr PI, et al. Environmental enteric dysfunction: pathogenesis, diagnosis, and clinical consequences. Clin Infect Dis 2014; 59:S207-S12; PMID:25305288; http://dx.doi.org/10.1093/cid/ciu485

[7] Guerrant RL, DeBoer MD, Moore SR, Scharf RJ, Lima AA. The impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol 2013; 10:220-9; PMID:23229327; http://dx.doi.org/10.1038/nrgastro.2012.239

Figure 2. Challenges and opportunities for developing personalized gut microbiota-directed therapies to treat child undernutrition. Green, potential beneficial mechanisms of action; red, most significant challenges to overcome.
[8] Smythe PM. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 1958; 2:724-7; PMID:13588987; http://dx.doi.org/10.1016/S0140-6736(58)91336-9
[9] Dammin GJ. The pathogenesis of acute diarrhoeal disease in early life. Bull World Health Organ 1964; 31:29-32; PMID:14203892
[10] Mata LJ, Jimenez F, Cordon M, Rosales R, Prera E, Schneider RE, Viteri F. Gastrointestinal flora of children with protein–calorie malnutrition. Am J Clin Nutr 1972; 25:118-26; PMID:4627875
[11] Gracey M, Stone DE. Small-intestinal microflora in Australian Aboriginal children with chronic diarrhoea. Aust N Z J Med 1972; 2:215-9; PMID:4564048; http://dx.doi.org/10.1111/j.1445-5994.1972.tb03065.x
[12] Gracey M, Suharjono, Sunoto, Stone DE. Microbial contamination of the gut: another feature of malnutrition. Am J Clin Nutr 1973; 26:1170-4; PMID:4201213
[13] Maffei HV, Nobrega FJ. Gastric pH and microflora of normal and diarrhoeic infants. Gut 1975; 16:719-26; PMID:274; http://dx.doi.org/10.1136/gut.16.9.719
[14] Heyworth B, Brown J. Jejunal microflora in malnourished Gambian children. Arch Dis Child 1975; 50:27-33; PMID:1092272; http://dx.doi.org/10.1136/adc.50.1.27
[15] Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra R, Mazumder DN, Sen NN. Tropical sprue and malnutrition in West Bengal. I. Intestinal microflora and absorption. Am J Clin Nutr 1970; 23:1545-58; PMID:4921335
[16] Gorbach SL, Mitra R, Jacobs B, Banwell JG, Chatterjee BD, Mazumder DN. Bacterial contamination of the upper small bowel in tropical sprue. Lancet 1969; 1:74-7; PMID:4178002; http://dx.doi.org/10.1016/S0140-6736(69)91091-5
[17] Schneider RE, Viteri FE. Morphological aspects of the duodenoejunal mucosa in protein-calorie malnourished children and during recovery. Am J Clin Nutr 1972; 25:1092-102; PMID:4627874
[18] Ghosh BS, Gupta SS, Bhattacharya T, Yadav D, Barik A, Chowdhury A, Das B, Mande SS, Nair GB. Gut microbiomes of Indian children of varying nutritional status. PLoS One 2014; 9:1-13
[19] Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS. Metagenome of the gut of a malnourished child. Gut Pathog 2011; 3:1-7; PMID:21281494; http://dx.doi.org/10.1186/1757-4749-3-7
[20] Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H, Alam NH, Endtz HP, Cravioto A, Ali SI, Nakaya T, et al. Gut microbiota of healthy and malnourished children in Bangladesh. Front Microbiol 2011; 2:1-7; PMID:21716958; http://dx.doi.org/10.3389/fmicb.2011.00228
[21] Smith MJ, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, et al. Gut microbiomes of Malawian twins discordant for kwashiorkor. Science 2013; 339:548-54; PMID:23367771; http://dx.doi.org/10.1126/science.1229000
[22] Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014; 510:417-21; PMID:24896187
[23] Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T, Gordon JJ. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 2016; 352:1533-41; PMID:27339978; http://dx.doi.org/10.1126/science.aad9359
[24] Kristensen KH, Wiese M, Ryttel MJ, Ozcam M, Hansen LH, Namusoko H, et al. Gut microbiota in children hospitalized with oedematous and non-oedematous severe acute malnutrition in Uganda. PLoS Negl Trop Dis 2016; 10:1-11; http://dx.doi.org/10.1371/journal.pntd.0004369
[25] Dinh DM, Ramadass B, Kattula D, Sarkar R, Braunstein P, Tai A, Wanke CA, Hassoun S, Kane AV, Naumova EN, et al. Longitudinal analysis of the intestinal microbiota in persistently stunted young children in South India. PLoS One 2016; 11:1-17; http://dx.doi.org/10.1371/journal.pone.0155405
[26] Mukhopadhyaya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012; 9:219-30; PMID:22349170; http://dx.doi.org/10.1038/nrgastro.2012.14
[27] Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, Mølgaard C, Michaelsen KF, Licht TR. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014; 80:2889-900; PMID:24584251; http://dx.doi.org/10.1128/AEM.00342-14
[28] De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poulet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study of children in Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691-6; PMID:20679230; http://dx.doi.org/10.1073/pnas.1005963107
[29] Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 2011; 1:4578-85; http://dx.doi.org/10.1073/pnas.1000081107
[30] Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkavey O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016; 352:1533-41; PMID:27339978; http://dx.doi.org/10.1126/science.aad9359
[31] Grzeskowiak L, Collado MC, Mangani C, Maleta K, Laithinen K, Ashorn P, Isolauri E, Salminen S. Distinct gut microbiota in southeastern African and northern European infants. J Pediatr Gastroenterol Nutr 2012; 54:812-6; PMID:22228076; http://dx.doi.org/10.1097/MPG.0b013e318249039c
[32] Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrisat B, Stanton TB. Bacteria, phages and pigs: the
effects of in-feed antibiotics on the microbiome at different gut locations. Isme J 2014; 8:1566-76; PMID:24522263; http://dx.doi.org/10.1038/ismej.2014.12
[33] Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14:20-32; PMID:26499895; http://dx.doi.org/10.1038/nrnmicro3552
[34] Koropatkin NM, Cameron EA, Martens EC. How glycans metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012; 10:323-35; PMID:22491358
[35] Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3:289-306; PMID:22572875; http://dx.doi.org/10.4161/gmic.19897
[36] Yatsunenko T, Rey FE, Manary MJ, Trehan I, Domínguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486:222-7; PMID:22699611
[37] Bogdanove J, Mehring Le-Doare K. Human milk oligosaccharides. Early Hum Dev 2015; 91:619-22; PMID:26375354; http://dx.doi.org/10.1016/j.earlhumdev.2015.09.001
[38] Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 2016; 164:859-71; PMID:26989329; http://dx.doi.org/10.1016/j.cell.2016.01.024
[39] Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54:1469-76; PMID:15388697; http://dx.doi.org/10.1099/ijs.0.02873-0
[40] Martens EC, Chiang HC, Gordon JJ. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008; 4:447-57; PMID:18996345; http://dx.doi.org/10.1016/j.chom.2008.09.007
[41] Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhrer JD, Gordon JJ. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307:1955-9; PMID:15790854; http://dx.doi.org/10.1126/science.1109051
[42] Preidis GA, Ajami NJ, Wong MC, Bessard BC, Conner ME, Petrotsios JF. Composition and function of the undernourished neonatal mouse intestinal microbiome. J Nutr Biochem 2015; 26:1050-7; PMID:26070414; http://dx.doi.org/10.1016/j.jnutbio.2015.04.010
[43] Dey N, Wagner VE, Blanton LV, Cheng J, Fontana L, Haque R, Ahmed T, Gordon JL. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 2015; 163:95-107; PMID:26406373; http://dx.doi.org/10.1016/j.cell.2015.08.059
[44] Kashyap PC, Marcobal A, Ursell LK, Larache M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 2013; 144:967-77; PMID:23380084; http://dx.doi.org/10.1053/j.gastro.2013.01.047
[45] Soret R, Chevalier J, De Coppet P, Pouppeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138:1772-82; PMID:20152836; http://dx.doi.org/10.1053/j.gastro.2010.01.053
[46] Reigstad CS, Salmonson CE, Rainey JF, III, Szurszewski JH, Lindner DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb J 2013; 29:1395-403; PMID:23550456; http://dx.doi.org/10.1096/fj.14-255998
[47] Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161:264-76; PMID:25860609; http://dx.doi.org/10.1016/j.cell.2015.02.047
[48] Wichmann A, Allahyar A, Greiner TU, Plovier H, Lunzen GO, Larsson T, Drucker DJ, Delzenne NM, Cani PD, Bäckhed F, et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 2013; 14:582-90; PMID:24237703; http://dx.doi.org/10.1016/j.chom.2013.09.012
[49] Preidis GA, Chumpitazi BC, Shulman RJ. The microbiome in neurogastroenterology. Springer International, Switzerland (Faure C, Thapar N, Di Lorenzo C, Eds.) 2016
[50] Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 2012; 487:477-81; PMID:22837003; http://dx.doi.org/10.1038/nature11228
[51] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the gut microbiome. Nature 2012; 487:477-81; PMID:22837003; http://dx.doi.org/10.1038/nature11228
human gut microbiota. Nature 2012; 489:220-30; PMID:22972295; http://dx.doi.org/10.1038/nature11550

[56] Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009; 136:2015-31; PMID:19462507; http://dx.doi.org/10.1053/j.gastro.2009.01.072

[57] David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, Begum Y, Qadri F, LaRocque RC, Turnbaugh PJ. Gut microbial succession follows acute secretory diarrhea in humans. MBio 2015; 6:00381-15

[58] Ellis CN, LaRocque RC, Uddin T, Krastins B, Mayo-Smith LM, Sarracino D, Karlsson EK, Rahman A, Shirin T, Bhuiyan TR, et al. Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 2015; 83:1089-103; PMID:25561705; http://dx.doi.org/10.1128/IAI.02765-14

[59] Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, Martinelli N, Moscati L, Manuali E, et al. Salmonella enterica serovar typhimurium exploits inflammation to modify swine intestinal microbiota. Front Cell Infect Microbiol 2016; 5:1-13; http://dx.doi.org/10.3389/fcimb.2015.00106

[60] Stecher B, Robbani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 2007; 5:2177-89; PMID:17760501; http://dx.doi.org/10.1371/journal.pbio.0050244

[61] Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2:119-29; PMID:18005726; http://dx.doi.org/10.1016/j.chom.2007.06.010

[62] Maharshak N, Packey CD, Ellermann M, Manick S, Siddle JP, Huh EY, Plevy S, Sartor RB, Carroll IM. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 2013; 4:316-24; PMID:23822920; http://dx.doi.org/10.4161/gmic.25486

[63]Steher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectr 2015; 3:297-320

[64]Sanchez de Medina F, Romero-Calvo I, Mascaraque C, Martinez-Augustin O. Intestinal inflammation and mucosal barrier function. Inflamm bowel dis 2014; 20:2394-404; PMID:25222662; http://dx.doi.org/10.1097/MIB.0000000000000204

[65] Morris RL, Schmidt TM. Shallow breathing bacterial life at low O2. Nat Rev Microbiol 2013; 11:205-12; PMID:23411864; http://dx.doi.org/10.1038/nrmicro2970

[66] Albenberg L, Espioga TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014; 147:1055-63; PMID:25046162; http://dx.doi.org/10.1053/j.gastro.2014.07.020

[67] Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, Mounier J, Prévost MC, Sansonetti P, Tang CM. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 2010; 465:355-61; PMID:20436458; http://dx.doi.org/10.1038/nature09870

[68] Kuwano Y, Kawahara T, Yamamoto H, Teshima-Kondo S, Tominaga K, Masuda K, Kishi K, Morita K, Rokutan K. Interferon-gamma activates transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol 2006; 290:C433-C43; PMID:16162660; http://dx.doi.org/10.1152/ajpcell.00135.2005

[69] Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010; 467:426-9; PMID:20864996; http://dx.doi.org/10.1038/nature09415

[70] Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013; 339:708-11; PMID:23393266; http://dx.doi.org/10.1126/science.1232467

[71] Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013; 13:790-801; PMID:24096337; http://dx.doi.org/10.1038/nri3535

[72] Ferreira RB, Gill N, Billing BP, Antunes LC, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One 2011; 6:e20338

[73] Mooney JP, Lokken KL, Byndloss MX, George MD, Velazquez EM, Faber F, Butler BP, Walker GT, Ali MM, Potts R, et al. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Sci Rep 2015; 5:1-11; http://dx.doi.org/10.1038/srep14603

[74] Brown EM, Wlodarska M, Billing BP, Vonaeisch P, Han J, Reynolds LA, Arrieta MC, Uhrig M, Scholz R, Partida O, et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat Commun 2015; 6:1-16

[75] Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70:567-90; PMID:2181501

[76] Bergen WG. Small-intestinal or colonic microbiota as a potential amino acid source in animals. Amino Acids 2015; 47:251-8; PMID:25466904; http://dx.doi.org/10.1007/s00726-014-1875-z

[77] Freemark M. Metabolomics in nutrition research: biomarkers predicting mortality in children with severe acute malnutrition. Food Nutr Bull 2015; 36:S88-S92; PMID:25902620; http://dx.doi.org/10.1177/15648265150361S114
[78] Preidis GA, Keaton MA, Campeau PM, Bessard BC, Conner ME, Hotez PJ. The undernourished neonatal mouse metabolome reveals evidence of liver and biliary dysfunction, inflammation, and oxidative stress. J Nutr 2014; 144:273-81; PMID:24381221; http://dx.doi.org/10.3945/jn.113.183731

[79] Wu Z, Li M, Zhao C, Zhou J, Chang Y, Li X, Gao P, Lu X, Li Y, Xu G. Urinary metabonomics study in a rat model in response to protein-energy malnutrition by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Molecular Biosystems 2010; 6:2157-63; PMID:20717558; http://dx.doi.org/10.1039/c005291d

[80] Jiang P, Stanstrup J, Thymann T, Sangild PT, Dragsted LO. Progressive changes in the plasma metabolome during malnutrition in juvenile pigs. J Proteome Res 2016; 15:447-56; PMID:26629656; http://dx.doi.org/10.1021/acs.jproteome.5b00782

[81] LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013; 24:160-8; PMID:22940212; http://dx.doi.org/10.1016/j.copbio.2012.08.005

[82] Reddy V. Fat-soluble vitamin deficiencies in children in relation to protein energy malnutrition and environmental stress. Prog Clin Biol Res 1981; 77:109-17; PMID:6801687

[83] Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29:625-51; PMID:16102595; http://dx.doi.org/10.1016/j.femsre.2004.09.003

[84] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47:241-59; PMID:16299351; http://dx.doi.org/10.1194/jlr.R500013-JLR200

[85] Drasar BS, Hill MJ, Shiner M. The deconjugation of bile salts by human intestinal bacteria. Lancet 1966; 1:1237-8; PMID:4161209; http://dx.doi.org/10.1016/S0140-6736(66)90242-X

[86] Joyce SA, Shanahan F, Hill C, Gahan CGM. Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes 2014; 5:669-74; PMID:25483337; http://dx.doi.org/10.4161/gmic.2014.6.6.68996

[87] Narushima S, Itoha K, Miyamoto Y, Park SH, Nagata K, Kuruma K, Uchida K. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. J Proteome Res 2014; 13:44721-6; PMID:24799697; http://dx.doi.org/10.1073/pnas.1323599111

[88] Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, Hyyöläinen T, Orešič M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17:225-35; PMID:23395169; http://dx.doi.org/10.1016/j.cmet.2013.01.003

[89] Mehta HC, Saini AS, Singh H, Dhatt PS. Biochemical aspects of malabsorption in marasmus. Br J Nutr 1984; 51:1-6; PMID:6418198; http://dx.doi.org/10.1079/BJN19840003

[90] Mehta HC, Saini AS, Singh H, Dhatt PS. Biochemical aspects of malabsorption in marasmus: effect of dietary rehabilitation. Br J Nutr 1985; 54:567-75; PMID:2939688; http://dx.doi.org/10.1079/BJN19850143

[91] Redmond AO, Hansen JD, McHutchon B. Abnormal bile salt metabolism in kwashiorkor. S Afr Med J 1972; 46:617-8; PMID:5039011

[92] Schneider RE, Viteri FE. Luminal events of lipid absorption in protein-calorie malnourished children; relationship with nutritional recovery and diarrhea. II. Alterations in bile acid content of duodenal aspirates. Am J Clin Nutr 1974; 27:788-96

[93] Zhang L, Voskuijl W, Mouzaki M, Groen AK, Alexander J, Bourdon C, Wang A, Versloot CJ, Di Giovanni V, Wanders RJ, et al. Impaired bile acid homeostasis in children with severe acute malnutrition. PLoS One 2016; 11:1-13

[94] Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T, Trehan I, Manary MI, Liu TC, Stappenbeck TS, Maleta KM, et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 2015; 7:1-32; http://dx.doi.org/10.1126/scitranslmed.aad8588

[95] Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016; 351:854-7; PMID:26912894; http://dx.doi.org/10.1126/science.aad8588

[96] Ssemba RD, Shadnell M, Ashour FAS, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Kraemer K, Khadeer MA, Ferrucci L, et al. Child stunting is associated with low circulating essential amino acids. Ebiomimetics 2016; 6:246-52; PMID:27211567; http://dx.doi.org/10.1016/j.ebiom.2015.02.030

[97] Ssemba RD, Zhang P, Gonzalez-Freire M, Moaddel R, Trehan I, Maleta KM, Ordiz MI, Ferrucci L, Manary MJ. The association of serum choline with linear growth failure in young children from rural Malawi. Am J Clin Nutr 2016; 104:191-7; PMID:27281303; http://dx.doi.org/10.1016/j.ajcn.2015.09.034

[98] Schirmacher V, Enderle R, Schärer S, Walter T, Wehrli C, Röhrich M, Rüegsegger P, Reitan J, Jansen EM. Sestrin 3 regulates growth and survival in a genetically defined model in response to protein-energy malnutrition. PLoS One 2015; 10:131961; http://dx.doi.org/10.1371/journal.pone.0131961

[99] Briend A, Lacsala R, Prudhon C, Mounier B, Grellety Y, Golden MH. Ready-to-use therapeutic food for treatment of marasmus. Lancet 1999; 353:1767-72; PMID:10579302; http://dx.doi.org/10.1016/S0140-6736(99)00779-2
[100] Manary MJ. Local production and provision of ready-to-use therapeutic food (RUTF) spread for the treatment of severe childhood malnutrition. Food Nutr Bull 2006; 27:S83-9; PMID:17076214; http://dx.doi.org/10.1177/15648265060273S305

[101] Ashworth A. Efficacy and effectiveness of community-based treatment of severe malnutrition. Food Nutr Bull 2006; 27:S24-48; PMID:17076212; http://dx.doi.org/10.1177/15648265060273S303

[102] Lenters LM, Wazny K, Webb P, Ahmed T, Bhutta ZA. Treatment of severe and moderate acute malnutrition in low- and middle-income settings: a systematic review, meta-analysis and Delphi process. BMC Public Health 2013; 13:1-15; PMID:23280303; http://dx.doi.org/10.1186/1471-2458-13-1

[103] Schooneees A, Lombard M, Musekiwa A, Nel E, Volmink J. Ready-to-use therapeutic food for home-based treatment of severe acute malnutrition in children from six months to five years of age. Cochrane Database Syst Rev 2013; 61-90

[104] Kerac M, Bunn J, Seal A, Thindwa M, Tomkins A, Sadler K, Bhwere P, Collins S. Probiotics and prebiotics for severe acute malnutrition (PRONUT study): a double-blind efficacy randomised controlled trial in Malawi. Lancet 2009; 374:136-44; PMID:19595348; http://dx.doi.org/10.1016/S0140-6736(09)60884-9

[105] Trehan I, Goldbach HS, LaGronne LN, Meuli GJ, Wang RJ, Maleta KM, Manary MJ. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med 2013; 368:425-35; PMID:23363496; http://dx.doi.org/10.1056/NEJMoa1202851

[106] Isanaka S, Langendorf C, Berthe F, Gnegne S, Li N, Ousmane N, Harouna S, Hassane H, Schafer M, Adehossi E, et al. Routine amoxicillin for uncomplicated severe acute malnutrition in children. N Engl J Med 2016; 374:444-53; PMID:26840134; http://dx.doi.org/10.1056/NEJMoa1507024

[107] Berkley JA, Ngari M, Thititi J, Mwalekwa L, Timbwa M, Hamid F, Ali R, Shangala J, Mturi N, Jones KD, et al. Daily co-trimoxazole prophylaxis to prevent mortality in children with complicated severe acute malnutrition: a multicentre, double-blind, randomised placebo-controlled trial. The Lancet Global health 2016; 4:e464-73; PMID:27265353; http://dx.doi.org/10.1016/S2214-109X(16)30096-1

[108] Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488:621-6; PMID:22914093; http://dx.doi.org/10.1038/nature11400

[109] Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158:705-21; PMID:25126780; http://dx.doi.org/10.1016/j.cell.2014.05.052

[110] Maldonado Galdeano C, Novotny Nunez I, de Moreno de LeBlanc A, Carmuega E, Weill R, Perdigon G. Impact of a probiotic fermented milk in the gut ecosystem and in the systemic immunity using a non-severe protein-energy-malnutrition model in mice. BMC Gastroenterol 2011; 11:1-14; PMID:21211058; http://dx.doi.org/10.1186/1471-2458-11-1

[111] Bartz S, Mody A, Hornik C, Bain J, Muehlbauer M, Kiyimba T, Kiboneka E, Stevens R, Bartlett J, St Peter JV, et al. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab 2014; 99:2128-37; PMID:24606092; http://dx.doi.org/10.1210/jc.2013-4018

[112] Reyes A, Blanton LV, Cao S, Zhao G, Manary M, Trehan I, Smith MI, Wang D, Virgin HW, Rohwer F, et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc Natl Acad Sci U S A 2015; 112:11941-6; PMID:26351661; http://dx.doi.org/10.1073/pnas.1514285112

[113] Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCullin S, Ngom-Bru C, Neville T, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. Ebiomedicine 2016; 4:124-37; PMID:26981577; http://dx.doi.org/10.1016/j.ebiom.2015.12.023