A study via density functional theory calculations of transition metal diselenide monolayers

S Daguer C¹, N De La Espriella¹,², and C Ortega López¹
¹ Universidad de Córdoba, Montería, Colombia
² Universidad del Sinú Elías Bechara Zainum, Montería, Colombia

E-mail: sdaguerc@correo.unicordoba.edu.co

Abstract. In this paper, the physical properties such as structural, electronic, and magnetic of vanadium diselenide, chromium diselenide, molybdenum diselenide and tungsten diselenide monolayers were studied. The calculations were performed in the hexagonal structure (1H) and using the density functional theory. The computational calculation shows that the exfoliation energies of four monolayers are 18.92 meV/Å², 19.83 meV/Å², 22.42 meV/Å², and 33.85 meV/Å², respectively. While the formation energies values per atom were −2.88 eV, −2.47 eV, −3.31 eV, and −3.98 eV, respectively. The monolayers are thermodynamically stable because the formation energies are negatives. Finally, the band structure study reveals that vanadium diselenide monolayer have a half-metallic ferromagnetic behavior, while the chromium diselenide, molybdenum diselenide and tungsten diselenide monolayers present a direct semiconductor character. Due to these properties the monolayers have potential application in micro, nano electronics, and spintronic devices.

1. Introduction

Successful exfoliation of graphene [1] and the identification of its superior physical and chemical properties drove the search for new bidimensional materials. This quest for new monolayers includes the monolayers of transition metal dichalcogenides (TMDs), where the transition metal is (TM) and the dichalcogen is (D). In fact, many of these monolayers exist nowadays such as vanadium dioxide (VO2) [2], chromium dioxide (CrO₂) [3], molybdenum dioxide (MoO₂) [4], tungsten dioxide (WO₂) [5] and vanadium disulfide (VS₂) [6].

Currently, a new TMDs monolayers. Namely, the diselenides have attracted the interest of researchers due to their promising applications in many technological fields such as rechargeable battery [7], sensors [8], catalysis [9], field effect transistors [10], microelectronics devices [11], spintronics [12] and nanoelectronics [13].

In this work, we study the energetic stability and the structural, electronic, and magnetic properties of transition metal diselenide (TMS₂) monolayers such as vanadium diselenide (VSe₂), chromium diselenide (CrSe₂), molybdenum diselenide (MoSe₂) and tungsten diselenide (WSe₂). These four diselenides have layered structured in volume. Hence, the interactions between two consecutive layers have a Van der Waals (vdW) nature [14]. This weak interaction between layers facilitates the obtention of VSe₂, CrSe₂, MoSe₂ and WSe₂ monolayers through a mechanic exfoliation method. The exfoliation energy of each monolayer is computed in this work.
2. Computational details
All calculations are based on the first principles method with polarized spin within the density functional theory framework using ultra-soft pseudopotentials \cite{15,16}. The effects of exchange-correlation were included in the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) \cite{17}. The computational calculations were accomplished with the Quantum Espresso code \cite{18}. A set of plane waves was used with a cutoff energy of 60 Ry and a $12 \times 12 \times 1$ k-point mesh was chosen for the integration in the first Brillouin zone. The monolayers were built using the periodic slab model in the layered hexagonal structure 1H with space group #187 using $2 \times 2 \times 1$ geometry. Each monolayer has a total of 12 atoms (four transition metals and eight selenides) as seen in Figure 1. In order to avoid interactions between two consecutive monolayers we used a vacuum region of 20 Å. The criteria for energy convergence and atomic forces were 10^{-6} Ry and 10^{-3} Ry/Bohr.

![Figure 1. Diselenides metal transition monolayer; (a) top view; (b) side view.](image)

The energetic stability of monolayers in diselenide transition metals was studied by calculating the cohesion and formation energies. The cohesion energy is understood as a measure of the binding strength between the atoms that constitute a material \cite{19}. The cohesion energy is given by Equation (1) \cite{20}.

$$E_{\text{Coh/atom}} = \frac{n_{\text{TM}}E_{\text{Tot(TM)}} + n_{\text{Se}}E_{\text{Tot(Se)}} - E_{\text{Tot(TMSe$_2$)}}}{n_{\text{Tot}}}.$$

(1)

where $E_{\text{Tot(TMSe$_2$)}}$ is the total energy of monolayer, $E_{\text{Tot(TM)}}$ is the total energy of the isolated transition metal (TM), n_{TM} is the total number of atoms in transition metals, $E_{\text{Tot(Se)}}$ is the total energy of a selenium atom, n_{Se} is the total number of selenium atoms and n_{Tot} is the total number of atoms in the monolayer. The formation energy is defined as the energy required to form a material from its corresponding elemental atoms. Mathematically speaking, it is defined in Equation (2) \cite{14}.

$$E_{\text{form/atom}} = \frac{E_{\text{coh(TMSe$_2$)}} - [n_{\text{TM}}E_{\text{coh(TM)}} + n_{\text{O}}E_{\text{coh(O)}}]}{n_{\text{Tot}}}.$$

(2)

Furthermore, in order to determine how easily a transition metal diselenide monolayer can be extracted, the exfoliation energy is computed. This corresponds to the energy required to mechanically extract one monolayer from the volume of diselenides and is defined in Equation (3) \cite{21}.
where $E_{\text{tot}}(\text{TMSe}_2)$ is the total energy of the monolayer, $E_{\text{tot/layer}}(\text{bulk})$ is the total energy of the volume per layer and A_0 is the area of the volume plane under equilibrium.

3. Results and discussion

In this section, we present and discuss the results regarding the structural and electronic properties of the transition metals diselenides monolayers considered in this work.

3.1. Structural properties

Figure 1 shows the top and side views of the TMSe$_2$ (TM = V, Cr, Mo and W), monolayers along with the main parameters that characterize structural relaxation: lattice constant a, distance between transition metal and selenium atoms $d_{\text{TM-Se}}$, distance between selenide atoms $d_{\text{Se-Se}}$ and the angle θ between the Se – TM – Se atoms. The resulting parameters along with the cohesion, formation and exfoliation energies are shown in Table 1. As seen in Table 1, the values obtained for the main structural parameters are consistent with the values reported by [14,21]. This ensures the reliability of our calculations.

Furthermore, the cohesion energies of the monolayers are positive which indicates that the atoms are strongly bonded between each other and that it is more energetically favorable for the atoms to be bonded in the monolayer compared to its free atoms. Additionally, the values of the formation energies are negative meaning that the monolayers are energetically stable, with WSe$_2$ being the most stable monolayer since its energy is more negative. We note that the formation energy for the MoSe$_2$ monolayer is slightly higher than the value stated in [14]. This discrepancy can be explained by the fact that this work uses GGA, and the referenced article uses the local density approximation (LDA).

The exfoliation energies for monolayers VSe$_2$, CrSe$_2$, MoSe$_2$ were obtained resulting in 18.92 meV/Å2, 19.83 meV/Å2 and 22.42 meV/Å2, respectively. These values are close to the exfoliation energy of graphene (21.00 meV/Å2) [22]. In contrast, the exfoliation energy obtained for the WSe$_2$ monolayer is 33.85 meV/Å2. According to Björkman et al. [23], monolayers are easily exfoliable when their energies remain within 15 meV/Å2 and 21 meV/Å2, while they are potentially exfoliable for energies ranging between 22 meV/Å2 and 130 meV/Å2.

Table 1. Mainly structural parameters, cohesion, formation, and exfoliation energies.

Monolayer	Method	a (Å)	$d_{\text{Se-Se}}$ (Å)	$d_{\text{TM-Se}}$ (Å)	θ (°)	$E_{\text{coh/atom}}$ (eV)	$E_{\text{form/atom}}$ (eV)	E_{Ext} (meV/Å2)
VSe$_2$	GGA	3.31	3.31	2.49	81.92	15.40	-2.88	18.92
	LDAa	3.24	3.17a	2.45a	80.49a	15.47a	-2.17a	-
CrSe$_2$	GGA	3.20	3.32	2.42	80.96	16.46	-2.47	19.83
	LDAa	3.13a	3.11a	2.38a	81.54a	-	-	-
MoSe$_2$	GGA	3.32	3.32	2.44	79.78	16.23	-3.31	22.42
	GGAb	3.33b	3.35b	2.55b	-	-	-2.25b	-
	LDAa	3.24a	3.32a	2.50a	83.05a	17.47a	-2.96a	-
WSe$_2$	GGA	3.35	3.34	2.55	81.23	18.45	-3.98	33.85
	GGAb	3.34b	3.34b	2.55b	-	-	-	-
	LDAa	3.25a	3.34a	2.51a	83.24a	19.07a	-	-

aAtaca et al [14], bErsan et al [21]

3.2. Electronic properties

Figure 2 shows the band structure of the monolayers considered in this research. The VSe$_2$ monolayer in Figure 2(a) exhibits a metallic and ferromagnetic behavior. Furthermore, the monolayer has a total magnetization different from zero, given that the spin-up electronic states (red lines) are not symmetrical to the spin-down electronic states (blue lines). The monolayer has a magnetic momentum of
1.975 $\mu\beta/V$ – atom. In contrast, the CrSe$_2$, MoSe$_2$, and WSe$_2$ monolayers have a semiconductor behavior with a direct gap located in the point K of the Brillouin zone and respective values of 0.77 eV, 1.50 eV and 1.61 eV. The gap obtained for WSe$_2$ is in agreement with previous theoretical (1.62 eV [24]) and experimental (1.50 eV [25]) results.

4. Conclusions

In summary, the structural and electronic properties of transition metal diselenide monolayers (vanadium diselenide, chromium diselenide, molybdenum diselenide, and tungsten diselenide) were studied using first-principles calculations. We concluded that monolayers vanadium diselenide, chromium diselenide, and molybdenum diselenide are energetically stable and easily exfoliable. Meanwhile, the tungsten diselenide monolayer is potentially exfoliable. The vanadium diselenide exhibiting a metallic behavior with a magnetic momentum of 1.975 $\mu\beta/V$ – atom. Monolayers chromium diselenide, molybdenum diselenide, and tungsten diselenide have a semiconductor behavior with direct band-gaps located in the K point and respective values of 0.77 eV, 1.50 eV and 1.61 eV.

Acknowledgments

The three authors wish to thank to the Centro de Investigaciones de la Universidad de Córdoba for your financial support through the FCB-13-17 project.

References

[1] Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Electric field effect in atomically thin carbon films Science 306(5696) 666
[2] Li X, Gloter A, Gu H, Luo J, Cao X, Jin P, Colliex C 2014 Discovery of nanoscale reduced surfaces and interfaces in VO$_2$ thin films as a unique case of prewetting Scripta Materialia 78-79 41
[3] Brown B, Lee M, Cle M, Nordquist C, Jordan T, Wolfe S L, Leonhardt D, Edney C, Custer J 2013 Electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO$_2$ thin films Journal of Applied Physics 113(17) 173704
[4] Humanfre-Tobar A, Murillo J F, Ortega-López C, Rodriguez-Martinez J A, Espitia J M 2020 Study of the structural and electronic properties of three- and two-dimensional transition-metal dioxides using first-principles calculations Computational Condensed Matter 25(5-6) e04098

[5] Yamamoto T, Ohnishi S, Watari N, Tanaka M 2002 Quasi-compounds of WO3 on a W (0 0 1) surface: cluster-model calculations Surface Science 511(1-3) 97

[6] Sugawara K, Nakata Y, Fuji K, Nakayama K, Souma S, Takahashi T, Sato T 2019 Monolayer VTe2: incommensurate fermi surface nesting and suppression of charge density waves Physical Review B 99 241404(R)

[7] Chang K, Chen W 2011 In situ synthesis of MoS2/graphene nonosheet composites with extraordinarily high electrochemical performance for lithium ion batteries Chemical Communications 47(14) 4252

[8] Zhang W, Chiu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y, Li L J 2014 Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures Scientific Report 4 3826

[9] Pan H 2014 Magnetic and electronic evolutions of hydrogenated VTe2 monolayer under tension Scientific Report 4 7524

[10] Radisavljevic B, Kis A 2013 Mobily engineering a metal- insulator transition in monolayer MoS2 Nature Materials 12 815

[11] Wang H, Yuan H, Hong S, Li Y, Cui Y 2015 Physical and chemical tuning of two- dimensional transition metal dichalcogenides Chemical Society. Review 44(9) 2664

[12] Zeng Q, Wang H, Fu W, Gong Y, Zhou W, Ajayan P M, Lou J, Liu Z 2015 Band engineering for novel two-dimensional atomic layers Small 11(16) 1868

[13] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 MoS2: nonosheet phototransistors with thickness-modulated optical energy gap Nano Letters 12(7) 3695

[14] Ataca C, Sahin H, Ciraci S 2012 Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure The Journal of Physical Chemistry C 116(16) 8983

[15] Vanderbilt D 1990 Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Physics Revie B 41 7892(R)

[16] Lasaonen K, Pasquarello A, Car R, Lee C, Vanderbilt D 1993 Car-parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials Physic Revie B 47 10142

[17] Peredew J P, Burke K, Ernzerhof M 1996 Generalized Gradient Approximation made simple Physic Review Letter 77(18) 3865

[18] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti L, Cococcioni M, Dabo I 2009 Journal of physic: Condensed Matter 21(39) 395502

[19] Haglund J, Fernandez A, Grimvall G, Körling M 1993 Theory of bonding in transition-metal carbides and nitrides Physics Review B 48 11685

[20] Berrio-Cordero G, Murillo J F, Ortega-López C, Rodríguez J A, Espitia J M 2019 Adsorption effect of a chromium atom on the structure and electronic properties of a single ZnO monolayer Physica B: Condensed Matter 565 44

[21] Ersan F, Ozyayin H D, Gökoğlu G, Aktürk E 2017 Theorical investigation of lithium adsorption, diffusion and coverage on MX2 (M=Mo, W; X=O, S, Se, Te) monolayer Applied Surface Science 425 301

[22] Jung J H, Park C H, Ihm J 2018 A rigorous method of calculating exfoliation energies from first principles Nano Letters 18(5) 2759

[23] Björkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Van der Waals bonding in layered compounds from advanced Density-Functional first-principles calculations Physical Review Letters 108 235502

[24] Ghosh C K, Sarkar D, Mitra M K, Chattopadhyay K K 2013 Equibaxial strain: tunable electronic structure and optical properties of bulk and monolayer MoSe2 Journal of Physics D: Applied Physics 46395304

[25] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2 Nano Letters 12(11) 5576