Fabrication and Electrical Properties of Stacked Graphene Monolayers

Jing-Jing Chen¹, Jie Meng¹, Da-Peng Yu¹,² & Zhi-Min Liao¹,²

¹State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P.R. China,
²Collaborative Innovation Center of Quantum Matter, Beijing, China.

We develop a simple method to fabricate the two-stacked graphene monolayers and investigate the electronic transport in such a system. The independence of the two graphene monolayers gives rise to the asymmetric resistance-gate voltage curves and an eight-fold degeneracy of Landau level. The position of the maximum resistance of the transfer curves shifts towards higher gate voltage with increasing magnetic field, which is attributed to the magnetic field induced interlayer decoupling of the stacked graphene monolayers.

Results

Monolayer graphene was grown using CVD method on Cu foils²⁰. The monolayer graphene has a Hall mobility ~3900 cm²/V·s. Figure 1(a) displays the back-gate voltage (V_g) dependence of the resistivity and Hall conductivity of a typical monolayer graphene device at 1.8 K and 14 T. The Hall plateaus at ±2, 6, 10... are well formed, which show good quality of the monolayer graphene. The MR curves at two back-gate voltages of 0 V and 7 V at 1.8 K are shown in Fig. 1(b). The MR shows clear Shubnikov-de Haas (SdH) oscillations.

The as-grown monolayer graphene was used to fabricate the two-stacked graphene monolayers based on our transfer techniques²⁰. A new method was developed to fabricate the stacked graphene monolayers without any PMMA between the graphene layers. Details of the fabrication of the stacked graphene monolayers are shown in Fig. 2(a). First, a PMMA thin layer was spin-coated on a monolayer graphene surface grown on copper foil. The
Cu foil was then dissolved by FeCl₃ saturated solution for 30 min. The graphene/PMMA film was washed three times by 60°C deionized (DI) water. Another monolayer graphene on copper foil was used to fish out the graphene/PMMA film from deionized water. After the Cu foil was dissolved and the film was rinsed, the two-stacked graphene monolayers/PMMA film was then patterned into microstamps via electron beam lithography (EBL) and O₂ plasma etching. Because of the face-to-face superposition of clean graphene surfaces, there is no lattice coupling between graphene layers. A weak D band as shown in Fig. 3(a), the two-stacked graphene monolayers were patterned into Hall bar configuration with a length of 6 μm and a width of 2 μm. The electrodes were formed by 5 nm/75 nm Ti/Au thin film. The back-gate voltage dependence of the longitudinal resistance (Rₘₜₜ) at 1.9 K is displayed in Fig. 3(b). The maximum of the resistance locates at Vᵣₑₜᵢᵢ = 37.5 V and the transfer curve exhibits asymmetric behavior with respect to 37.5 V. In particular, the two graphene monolayers may have different Dirac points because the bottom graphene contacts with the SiO₂ layer while the top graphene is exposed to the atmosphere. Besides, with screening taken into account the carrier density in top graphene will be less sensitive to gate voltage than that of the bottom graphene. The Rₓₓ − Vᵣₑₜᵢᵢ curve can be explained by the parallel conduction of the two independent monolayer graphene sheets. The total conductivity can be expressed as σ = σₜ + σᵣₑₜᵢᵢ, where the conductivities of top and bottom graphene are σₜ = nₑμₑₜ and σᵣₑₜᵢᵢ = nₑμᵣₑₜᵢᵢ, respectively. μₑₜ and μᵣₑₜᵢᵢ are the carrier mobilities in the top/bottom graphene sheets, respectively.

As shown in Fig. 2(a), the two-stacked graphene monolayers were transferred onto arbitrary substrate. The optical image of typical two-stacked graphene monolayers transferred on SiO₂/Si substrate is shown in Fig. 2(b). Figure 2(c) shows the Raman spectrum of the two-stacked graphene monolayers, which is nearly the same as the monolayer graphene. It means that there is no lattice coupling between graphene layers. A weak D band implies a bit of lattice defects in graphene.

Figure 2 | Fabrication and characterization of two-stacked graphene monolayers. (a) Details of the fabrication process of the two-stacked graphene monolayers/PMMA microstamps. (b) Optical image of typical two-stacked graphene monolayers transferred on SiO₂/Si substrate. (c) Raman spectrum of the two-stacked graphene monolayers.
element. When V_g is between $V_{D,T}$ and $V_{D,B}$, the slope for the two graphene sheets, where $V_{D,T}$, $V_{D,B}$ are the Dirac neutral points, C_T and C_B are the capacitances between the top/bottom graphene sheets and the gate electrode. Then the total conductivity $\sigma = C_T \epsilon \mu |V_g - V_{D,T}| + C_B \epsilon \mu |V_g - V_{D,B}|$, where ϵ is the charge element. When V_g is between $V_{D,T}$ and $V_{D,B}$, the slope for $\sigma - V_g$ curve is $C_T \epsilon \mu / C_T \epsilon \mu = 1$ and is much smaller than $C_B \epsilon \mu / C_T \epsilon \mu$. So the resistance is less sensitive to the back-gate voltage between $V_{D,T}$ and $V_{D,B}$. Figure 3(b) shows that the resistance is less sensitive to the back-gate voltage near the $V_g = 37.5$ V.

We investigated the magnetotransport at low temperatures, as shown in Fig. 4. Unlike the pristine monolayer graphene (see Fig. 1(b)), the two-stacked graphene monolayers exhibit large positive MR background superimposed with SDH oscillations. This is probably due to the discrepancy of the carrier mobilities in the two graphene monolayers. In particular, the electrons deflect from the current direction without the Hall voltages balancing the Lorentz force in the two graphene monolayers simultaneously. We estimated the average Hall mobility at $V_g = 0$ V to be 2500 cm2/V·s. It is worth noting that the Hall resistivity increased with increasing the magnetic field and then decreasing above 6 T for a back-gate voltage of 40 V. This is also observed in graphene with electron-hole coexistence in disordered graphene. In our system, electrons exist in the bottom graphene and holes in the top graphene when applied a back-gate voltage of 40 V.

Discussion

Figures 4(c) and 4(d) display the gate voltage dependence of the resistance at various magnetic fields. As shown in Fig. 4(c), the SDH oscillations are not as clear as that in monolayer graphene (see Fig. 1(a)). At 14 T, the interspace of the two neighboring oscillation valleys near the Dirac point is $\Delta V_g = 40$ V, corresponding to the difference of the carrier density $\Delta n = 2.7 \times 10^{12}$ cm$^{-2}$ due to the gate efficiency of the SiO$_2$ dialectical layer. The number of carrier states of each Landau level is $\Delta n = g eB/\hbar$, where g is the degeneration factor of the Landau level, \hbar is the Planck’s constant. Therefore, we can calculate that g equals 8 for the two-stacked graphene monolayers. At 300 K, we also clearly observed that the position of the resistance maxima shifts toward higher gate voltage as increasing the magnetic field (Fig. 4(d)), which indicates that the tunability of

Figure 3 Devices based on two-stacked graphene monolayers. (a) Optical image of a two-stacked graphene monolayers patterned into Hall bar configuration. (b) The longitudinal resistance R_{xx} as a function of back gate voltage V_g at 1.9 K.

Figure 4 Magnetotransport in two-stacked graphene monolayers. (a) The magnetoresistance described as $R_{xx}(B)/R_{xx}(0)-1$ at $V_g = 0$, 20 V and 40 V at 1.9 K. (b) Hall resistance at $V_g = 0$, 20 V and 40 V at 1.9 K. (c, d) Longitudinal resistance R_{xx} as a function of the back-gate voltage at various magnetic fields at (c) 1.9 K, and (d) 300 K.
the carrier density by gate voltage decreases with increasing magnetic field. The weakening tunability of the carrier density by gate voltage may be due to the decoupling between the two-stacked graphene monolayers under high magnetic field, as graphene is of diamagnetic nature.

In summary, we develop a new method of mass production of two-stacked graphene monolayers with a clean interface. We perform Raman and electronic transport measurements on our two-stacked graphene monolayers. The Raman spectrum similar to that of a monolayer graphene shows that the two graphene monolayers remain independent. The electronic transport properties of the two-stacked graphene monolayers are quite different from monolayer and bilayer graphene. We observe the asymmetric resistance-gate voltage curves and the maxima of the resistance-gate voltage curves shift with the magnetic field. The SdH oscillations indicate the 8-fold degeneracy of each Landau level.

Methods
Monolayer graphene was grown on Cu foils in a tube furnace by CVD method. PMMA thin film was used to carry the graphene after etching Cu. Another Cu/graphene was used to stack with the graphene/PMMA. The graphene/graphene/PMMA thin film was then patterned into microstamps using PMMA as resist and EBL technique. The graphene/graphene/PMMA film was then suspended after etching the Cu. The graphene/graphene/PMMA microstamps were transferred and printed onto SiO2/Si substrate using a micromanipulator under an optical microscope. The two-stacked graphene monolayers were then fabricated into Hall bar geometry using EBL and oxygen plasmas etching. Metal electrodes were fabricated to contact with the graphene Hall Bar by another round of EBL and metal deposition using electron-beam evaporation. The devices were placed in an Oxford cryostat instrument with temperature ranging from 300 K to 1.5 K and magnetic field up to 14 T. The electrical signals were measured using low frequency lock-in techniques.

Acknowledgments
This work was supported by MOST (Nos. 2013CB934600, 2013CB932602), NSFC (Nos. 11274014, 11234001), and the Program for New Century Excellent Talents in University of China (No. NCET-12-0002).

Author contributions
Z.M.L. conceived and designed the study. J.J.C. performed the experiments. J.M. fabricated the graphene microstamps. D.P.Y. gave scientific advice. J.J.C. and Z.M.L. wrote the manuscript. All authors contributed to discussion and reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chen, J.-J., Meng, J., Yu, D.-P. & Liao, Z.-M. Fabrication and Electrical Properties of Stacked Graphene Monolayers. Sci. Rep. 4, 5065; DOI:10.1038/srep05065 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images in this article are included in the article’s Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/