Recent Advances in the Chemistry of Heavier Group 14 Enolates

Michael Haas* [a]

Dedicated to Professor Harald Stueger

HEAVIER GROUP 14 ENOLATES

First Isolated Silenolate

First Isolated Germenate

Sila-Aldol Chemistry

High Performance Photoinitiators

M = Si, Ge, Sn

Chem. Eur. J. 2019, 25, 15218 – 15227

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Abstract: Recently heavier Group 14 enolates showed their importance and applicability in a broad range of chemical transformations. They were found to be key intermediates during the synthesis of photoinitiators, as well as during the formation of complex silicon frameworks. This Minireview presents general strategies towards the synthesis of heavier Group 14 enolates (HG 14 enolates). Structural properties, as well as their spectroscopic behavior are outlined. This study may aid future development in this research area.

1. Introduction

The chemistry of metal enolates is thoroughly investigated and understood to a very high degree.[1] Moreover, the classical aldol reaction is one of the most important biosynthetic tools for life on earth.[2, 3] Although the first report on the synthesis of heavier Group 14 enolates by Bravo-Zhivotovskii and co-workers was in 1989,[4] the synthesis and characterizations of these derivatives is still a challenging endeavor. In 2003 Ottos-son succeeded in isolating a silenolate, which had a high thermal stability, in order to perform a complete structural analysis.[5] Historically speaking the preparation of HG 14 enolates was mainly triggered by the need of substrates for spectroscopic studies on these compounds. Quite recently the Steuergroup successfully isolated the first tetraacetyl substituted germanes and stannanes, and showed their ability to serve as long-wavelength photoinitiators with superior potential.[6, 7] During these reactions the key intermediates are HG 14 enolates, which allows a straightforward access to these highly desirable compounds. Another milestone in the chemistry of HG 14 enolates was the report of the first silyl-aldol reaction, which emphasizes the tight connection between silicon and carbon chemistry.[8] This new synthetic strategy must be considered as a powerful alternative to standard coupling techniques, such as the Wurtz reaction,[9] hydrosilylation,[10] as well as transition-metal-catalyzed silicon-carbon coupling reactions.[11] Moreover, this novel synthetic method provides a straightforward access to structurally complex silicon frameworks, in quantitative yield. With these findings, HG 14 enolates demonstrate their importance and applicability in a broad range of chemical transformations.

HG 14 enolates can exist in two possible isomeric structures (Scheme 1). 1-HG 14 enolates are still undiscovered, due to the low stability of a metal-carbon double bond.[12] With regard to 2-HG 14 enolates, numerous reports on this compound class exist. As for metal enolates, two resonance structures for 2-HG 14 enolates are possible: in the enol form (I), the negative charge is primarily located on the oxygen atom, whilst in the keto form (II) the negative charge resides predominantly on the silicon atom (Scheme 1).[13, 14] The dominant structure of metal enolates is generally the enol form and preferably occurs in solid state, as well as in solution.[15, 16] HG 14 enolates show a significantly different resonance behavior. The position of the equilibrium is strongly influenced by the chosen alkali metal, the solvent system, as well as the substituent at the carbonyl-moiety.

In this Minireview, we first present the most important strategies reported towards the synthesis of heavier Group 14 enolates with a particular emphasis on structural assignments and spectroscopic behavior. Then we focus on the recent advances in this field and give a brief outlook.

2. Silenolates

2.1. Lithium-silenolates

The first synthesized silenolates were lithium-silenolates by the group of Bravo-Zhivotovskii.[4] They reported on the synthesis of silenolates and introduced the general strategy of reacting a germyl-lithium reagent with an acylsilane in order to generate silenolates (Scheme 2). These silenolates were found to be relatively unstable, with a half-life time of approximately 12 h. However, the decomposition products resulting from 1 were not identified.

In a follow up paper, Apeloig and Bravo-Zhivotovskii succeeded in the identification of a possible degradation process.
They found that an excess of the used base (e.g., two-fold excess) leads to the formation of a 1:2 mixture of the trisilacyclobutane 2 and of (adamantoyl)adamantylcarbinol 3. (Scheme 3. Note: Stirring for 48 h at room temperature followed by aqueous work-up). The mechanism is rather complex and involves three silenolate moieties, as well as a Peterson elimination in order to obtain compound 2 and 3. For the complete mechanism the reader is referred to the original publication.\[15\]

J. Ohshita and M. Ishikawa expanded this strategy and introduced more precursor molecules, as well as the use of different lithium reagents.\[16, 17\] Additionally, they extensively explored the chemistry of their synthesized lithium-silenolates. During the course of their studies concerning the chemical reactivity of acylpolysilanes with organolithium reagents, they found that the reaction of acylpolysilanes with silyllithium reagents resulted in the formation of lithium-silenolates 4a–d in solution (Scheme 4). These lithium silenolates are thermally unstable. 4a is moderately stable at room temperature. 4b undergoes a fast degradation even at temperature below −80°C. 4c,d are more stable than 4b, but undergo uncharacterized degradation processes at room temperature. Therefore, all chemical manipulations were performed in situ.

The reaction of 4a–d with H₂O resulted in the formation of bis(trimethylsilyl)acylsilanes 5a–d in nearly quantitative yields (Scheme 5). The reaction of 4a–d with alkyl halides led to the formation of alkylated acylsilanes in all cases. Additionally, 4a was also reacted with allyl and benzoyl halides. Again the lithium-silenolate 4a reacts at the silicon center to give benzylmesitylbis(trimethylsilyl)silane (7) and allylmesitylbis(trimethylsilyl)silane (8) in good yields.

Metal enolates are known to react with chlorosilanes under the formation of a silyl enol ether.\[15,16\] Ohshita and Ishikawa further studied the reactivity of 4a–d towards the reaction with chlorosilanes. Interestingly, the reactions of lithium-silenolates 4a–d with chlorosilanes underwent two different pathways. The chosen pathway is dependent on the substituent at the carbonyl group. 4a,b, which bear an aryl substituent at the carbonyl group, form the Brook-type silenes 9a,b. On the other hand 4c,d with alkyl groups at the carbonyl group form the acylsilanes 10a,b (Scheme 6). The cause for the different

Dr. Michael Haas graduated in chemistry at Graz University of Technology (Austria) in 2012 and received his Ph.D. in 2015 under the supervision of Prof. H. Stueger. From 2017–2018 he was working as a postdoctoral fellow at the Monash University in the group of Prof. C. Jones (Australia). Currently he started his independent career at Graz University of Technology (Austria). His research interests cover the synthesis of novel low-valent Group 14 compounds and the design of new acyl Group 14 photo initiators.
reactivity was determined by NMR spectroscopy. The negative charge in 4c,d is moderately localized on the central silicon atoms, whereas in 4a,b the negative charge is effectively delocalized over the silicon atoms and carbonyl groups. This reactivity was also found by other groups, which will be discussed in more detail later in this review.

Furthermore, they also demonstrated that oxidative coupling of lithium-silenolates with palladium(II) chloride leads to the formation of bis(acyl)polysilanes 11a,c,d. This was the first example of polysilanes with two silicon-acyl bonds on the adjacent silicon atoms (Scheme 7). Moreover, they reacted their lithium-silenolates with various acid chlorides and obtained the first examples of di- and tetraacylsilanes 12a–e and 13a,b (Scheme 7).

Recently Apeloig and co-workers used a different approach towards the generation of lithium-silenolates. They synthesized them by metal-halogen exchange between silyl-lithium reagents (in excess) and bromo-acylsilanes in hexane. With this methodology they were able to isolate their silenolates and obtained the first examples of di- and tetraacylsilanes 12a–e and 13a,b (Scheme 7).

Scheme 7. Reactivity of 4a,c,d with acid chlorides.

Recently Apeloig and co-workers used a different approach towards the generation of lithium-silenolates. They synthesized them by metal-halogen exchange between silyl-lithium reagents (in excess) and bromo-acylsilanes in hexane. With this methodology they were able to isolate their silenolates and obtained the first examples of di- and tetraacylsilanes 12a–e and 13a,b (Scheme 7).

Reactivity of 4a,c,d with acid chlorides.

Recently Apeloig and co-workers used a different approach towards the generation of lithium-silenolates. They synthesized them by metal-halogen exchange between silyl-lithium reagents (in excess) and bromo-acylsilanes in hexane. With this methodology they were able to isolate their silenolates and obtained the first examples of di- and tetraacylsilanes 12a–e and 13a,b (Scheme 7).

Reactivity of 4a,c,d with acid chlorides.
This cascade represents the first example of an intramolecular Sila-Peterson reaction, where the formed silene is trapped by the present oxygen nucleophile intramolecularly (For the complete mechanism the reader is referred to the original publication). Upon the addition of Mel to a freshly prepared toluene solution of 21, the corresponding methylated bicyclic adduct 22 was formed in the diastereomeric ratio of endo:exo = 2:1.

Interestingly the same reaction set-up for 18c led to complete degradation of 18c to uncharacterized material. They assumed that, in the case of alkyl-substituted systems, the negative charge could not be distributed in the same way as in compound 21 and the primarily formed carbanion reacted further under the applied reaction conditions.
3. Germenolates

3.1. Lithium-germenolates

Again the first synthesized germenate was a lithium-germenolate by the group of Bravo-Zhivotovskii.\[4\] They reported briefly on the formation of this lithium-germenolate \(24\) from the reaction of a nacylgermane with \(\text{Et}_3\text{GeLi}\) (Scheme 1).\[4\] Spectroscopic and structural data of \(23\) were not given.

Our group also succeeded in the isolation and characterization of the first cyclic germenate. Therefore, the corresponding acyl-1,4-digermylcyclohexasilanes were reacted with 1.05 equiv. of KOTBu (see Scheme 16).\[25\] The stability of these cyclic germenolates is comparable to their silicon homologs. After addition of [18]-cr-6 in toluene, we were able to grow crystals of the 1:1 [18]-cr-6 adducts of \(25\) and \(25\), which were suitable for single-crystal X-ray crystallography (see Section 5).

The reactivity of \(25\) versus chlorosilanes parallels that observed earlier for silenolates. Thus, \(25\), with an alkyl group attached to the carbonyl moiety, reacted with \(\text{Me}_3\text{SiCl}\) at 0°C under formation of the corresponding cyclic acylergmane \(26\), while the aryl-substituted compounds \(25\), under the same conditions, exclusively afforded the O-silylated germenes \(26\) (Scheme 17).

Furthermore our group demonstrated the possibility to generate the first examples of dianionic germenate \(27\), which were synthesized by the reaction of the corresponding cyclic acylergmanes with 2.1 equiv. of KOTBu (see Scheme 18). After addition of [18]-cr-6 in toluene we were able to grow crystals of the 1:2 [18]-cr-6 adducts of \(27\) and \(27\), which were suitable for single-crystal X-ray crystallography (see Section 5).\[26\]

3.2. Potassium-germenolates

Potassium-germenolates were found to be crucial intermediates for the synthesis of tetraacylgermanes.\[30\] To verify this assumption tris(trimethylsilyl)acylgermane \(24\) was reacted with 1.05 equiv. of KOTBu (see Scheme 15). A quantitative formation of the corresponding germenate was observed. The molecular structure of \(24\), as determined by single-crystal X-ray crystallography, and the complete set of consistent NMR data can be found in Section 5.
Synthesis of cyclic dianionic potassium-germenolates.

Reactivity of H_2Rg with chlorosilanes.

The use of crown ethers leads to an even stronger high field shift of the central silicon atom (^{29}Si) with respect to the silyl anions.

The measured ^{29}Si chemical shifts of the Si atom of 15 are $\delta = -78.7$ ppm in THF and $\delta = -93.8$ ppm when [18]-cr-6 is present. The measured ^{13}C NMR shifts of the central silicon atom of the silenolate, which adopts the keto resonance structure were found in the region of $\delta = 262$ to $\delta = 274$ ppm, which are typical for sp^2 hybridization, and close to the ones measured for the corresponding acyl-derivatives. The measured ^{29}Si NMR shifts for the central silicon atom of the silenolate, which adopts the enol form is $\delta = 8.4$ ppm. This is significantly downfield shifted compared to keto derivatives, and in the region for ^{29}Si shifts of silicon atoms of a Si-C double bond. No ^{13}C NMR spectrum for this compound is reported. The exact values for the reported HG 14 enolates are depicted in Table 1.

Compd.	^{29}Si NMR [ppm]	^{13}C NMR [ppm]	Compd.	^{29}Si NMR [ppm]	^{13}C NMR [ppm]
4a	$-55.9^{[a]}$	$262.7^{[a]}$	18c	$-70.0^{[e]}$	$265.1^{[e]}$
4b	$-70.5^{[a]}$	$274.1^{[a]}$	24	$-$	$280.9^{[a]}$
4d	$-70.3^{[a]}$	$274.3^{[a]}$	25a	$-$	$281.6^{[a]}$
14b	$8.4^{[a]}$	$-$	25b	$-$	$279.5^{[a]}$
15	$-78.7^{[a]}$	$271.1^{[a]}$	25c	$-$	$281.9^{[a]}$
18a	$-93.8^{[a]}$	$268.8^{[a]}$	27a	$-$	$282.45^{[a]}$
18b	$-73.1^{[a]}$	$264.7^{[a]}$	27b	$-$	$282.78^{[a]}$

[a] measured in 70 % THF + 30 % [D$_8$]THF at -40 °C; [b] solid-state isotropic NMR; [c] measured in [D$_{18}$]THF at RT; [d] measured in [D$_{18}$]THF with [18]-cr-6 at RT; [e] measured in C$_{60}$ with [18]-cr-6 at RT; [f] measured in THF with D$_2$O capillary at RT.

The measured 13C NMR shifts of the central silicon atom and 29Si NMR shifts of the carbonyl atoms.

4. Stannenolates

No stable stannenolates are reported so far. Recently our group published a paper on previously unknown tetracylstanananes. During their formation, stannenolates were found to be crucial intermediates.$^{[7]}$

5. Characterization and Bonding in Group 14 Enolates

In the following section, the spectroscopic behavior, as well as important structural features of HG 14 enolates will be discussed. Moreover, a short summary of theoretical studies concerning HG 14 enolates will be given.

5.1. NMR spectroscopy

The chemical shift of the central metal atom for HG 14 enolates is strongly influenced by the dominant resonance structure, the solvent as well as the used counter ion. The 29Si NMR chemical shifts of the central silicon atom of silenolates, which adopt the keto resonance structure, were found in the region from $\delta = -59$ to $\delta = -93$ ppm. The measured 29Si NMR shifts are in the typical range for silyl anions.$^{[27]}$ The use of crown ethers leads to an even stronger high field shift of the central silicon atoms (29Si) chemical shifts of the Si atom of 15 are $\delta = -78.7$ ppm in THF and $\delta = -93.8$ ppm when [18]-cr-6 is present. The measured 13C NMR shifts of the central silicon atom of the silenolate, which adopts the keto resonance structure were found in the region of $\delta = 262$ to $\delta = 274$ ppm, which are typical for sp^2 hybridization, and close to the ones measured for the corresponding acyl-derivatives. The measured 29Si NMR shifts for the central silicon atom of the silenolate, which adopts the enol form is $\delta = 8.4$ ppm. This is significantly downfield shifted compared to keto derivatives, and in the region for 29Si shifts of silicon atoms of a Si-C double bond. No 13C NMR spectrum for this compound is reported. The exact values for the reported HG 14 enolates are depicted in Table 1.

5.2. UV/Vis spectroscopy

To gain more insight into the electronic nature of silenolates, as well as of germenolates, our group recorded the absorption spectra of $18a, c$ and $25a-c$ and assigned the longest wavelength absorption through time-dependent density functional in combination with the polarizable continuum model (TDDFT-PCM) calculations at the B3LYP/6-31+G(d,p) level. All HG 14 enolates exhibit an intense absorption maximum between 400 and 500 nm. According to calculations, these bands are unequivocally assigned to a HOMO \rightarrow LUMO or a HOMO \rightarrow LUMO $+1$ transition. The HOMOs mainly correspond to the p_z orbital of the metal atom with little variation in shape and energy. Upon excitation, electron density is displaced into the π^*-orbital of the carbonyl moiety (LUMO or LUMO $+1$). The LUMOs of the aryl-substituted species showed additionally conjugation of the carbonyl and the aromatic π-systems, which results in the observed bathochromic shifts of the corresponding absorption bands. The obtained experimental and computational data are summarized in Table 2. Therefore, silenolates $18a, c$ and $25a-c$ are best described as acyl metal anions (keto form in Scheme 1) in solution, irrespective of the nature of the R group attached to the carbonyl moiety. In contrast to that, Apeloig also calculated the HOMO orbitals for their silenolates with enol character and found that they have pronounced π-character.$^{[21]}$

5.3. Structural assignments

All silenolates adopting the keto resonance structure, which were characterized by single-crystal X-ray crystallography, have...
potassium as the counter ion. Generally, they have a strong pyramidal central silicon atom with an elongated Si–C single bond. Two examples of these compounds are depicted in Figure 1. Selected bond lengths \(d(\text{Å}) \) and selected sum of valence angles \(\Sigma \alpha \text{Si} \), and \(\Sigma \alpha \text{C} \) [deg] for the silenolates are illustrated in Table 3.

All silenolates adopting the enol resonance structure, which were characterized by single-crystal X-ray crystallography, have lithium as counter ion. Generally, they have a planar central silicon atom and the central Si–C bond shows double bond character. One example is depicted in Figure 1.

All germenolates, which were characterized by single-crystal X-ray crystallography, have potassium as counter ion and adopt the keto resonance structure. Generally, they have a strong pyramidal central germanium atom with an elongated Ge–C single bond. One example of these compounds is depicted in Figure 1. Selected bond lengths \(d(\text{Å}) \) and selected sum of valence angles \(\Sigma \alpha \text{Ge} \) and \(\Sigma \alpha \text{C} \) [deg] for the germenolates are depicted in Table 4.

5.4. Theoretical studies

The keto–enol equilibrium in metal silenolates has also been investigated computationally. Apeloig et al. found that in non-solvent media the enol-form of the silenolate dominates. The effective solvation of the cation, for example, by crown ethers, results in the formation of the keto-form.

Additionally, Ottosson et al. revealed in a related study that coordination of a solvated metal ion to the oxygen atom in silenolates results in shorter Si–C bond lengths, a smaller degree of pyramidalization around the central silicon atom, and a lower charge difference at the carbon and at the silicon atom (\(\Delta q(\text{SiC}) \)) compared to the naked silenolate [22]

6. Recent Advances

The synthesis and characterization of HG 14 enolates was mainly triggered by fundamental investigations in the field of main group chemistry. This changed drastically when the Stueger group found an elegant synthetic protocol towards the synthesis of the first tetracyclobutane substituted germanes and stannanes. Moreover, these compounds showed their ability to serve as long-wavelength photoinitiators with superior potential.

During these reactions, the key intermediates are HG 14 enolates, which allows a straightforward access to these highly desirable compounds. Another important discovery in the chemistry of HG 14 enolates was the report of the first silaaldol reaction. In the following section of this review these recent advances will be summarized.

6.1. Tetraacylgermanes and -stannanes as photoinitiators

Photoinitiators (PIs) play a very important role in a wide range of industrial processes (coatings, adhesives, dental filling materials, and the manufacture of 3D objects). Among the promising PI systems, tetraacylgermanes and tetraacylstannanes can act as suitable radical precursors generating acyl- and metal-centered radicals upon irradiation, which add very rapidly to double bonds of various monomers. Moreover, they offer the advantages of significantly redshifted absorption bands and reduced toxicity compared to the frequently applied phosphorus-based PIs.

Furthermore, the synthetic protocol is very robust, one-pot, and outperforms the methods in the synthesis of state-of-the-art photoinitiators. The Stueger group discovered that the reaction of a potassium germanide and stannide...

Table 2. Experimental and TDDFT-PCM B3LYP/6-31 + G(d,p)//B3LYP/6-31 + G(d,p) calculated absorption bands \(\lambda \) in THF for the potassium-HG 14 enolates 18a,c and 24a,c.

\(\lambda_{\text{max,exp}} \) [nm]	\(\lambda_{\text{max,calc}} \) [nm]	Assignment	
18a/Si	448	429	\(p_d \rightarrow \pi^*(\text{CO/aryl}) \) \(\text{HOMO} \rightarrow \text{LUMO} \)
18c/Si	438	418	\(p_d \rightarrow \pi^*(\text{CO}) \) \(\text{HOMO} \rightarrow \text{LUMO} \)
25a/Ge	442	426	\(p_d \rightarrow \pi^*(\text{CO/aryl}) \) \(\text{HOMO} \rightarrow \text{LUMO} \)
25b/Ge	463	496	\(p_d \rightarrow \pi^*(\text{CO/aryl}) \) \(\text{HOMO} \rightarrow \text{LUMO} \)
25c/Ge	422	412	\(p_d \rightarrow \pi^*(\text{CO}) \) \(\text{HOMO} \rightarrow \text{LUMO} \)

Table 3. Selected bond lengths \(d(\text{Å}) \) and sum of valence angles \(\Sigma \alpha \text{Si} \) and \(\Sigma \alpha \text{C} \) [deg] for silenolates.

\(d(\text{Å}) \)	14b	14c	15	18b	18c
\(d(\text{Å}) \)	1.822(7)	1.811(2)	1.926(3)	1.966(2)	1.874(2)
\(d(\text{Å}) \)	1.858(12)	1.858(2)	2.086(2)	2.131(3)	2.252(4)
\(d(\text{Å}) \)	2.795(2)	2.871(4)	3.714(1)	3.603(2)	4.393(1)
\(\Sigma \alpha(\text{Si}) \)	360.0	359.9	317.8	316.7	326.8
\(\Sigma \alpha(\text{C}) \)	360.0	360.0	359.7	359.9	359.7

Table 4. Selected bond lengths \(d(\text{Å}) \) and sum of valence angles \(\Sigma \alpha \text{Ge} \) and \(\Sigma \alpha \text{C} \) [deg] for germenolates.

\(d(\text{Å}) \)	24	25b	25c	27a
\(d(\text{Å}) \)	2.004(7)	2.007(5)	2.063(2)	2.035(3)
\(d(\text{Å}) \)	1.249(2)	1.236(6)	1.231(3)	1.252(4)
\(d(\text{Å}) \)	2.782(10)	2.733(4)	2.740(2)	2.758(8)
\(d(\text{Å}) \)	3.947(4)	3.855(6)	3.613(9)	3.423(2)
\(\Sigma \alpha(\text{Ge}) \)	310.5	304.6	310.7	314.0
\(\Sigma \alpha(\text{C}) \)	359.8	359.9	359.9	359.6
with 4.1 equiv of acid fluorides leads to the exclusive formation of tetraacylgermanes or tetraacylstannanes in high yields. The mechanism is outlined in Scheme 19. HG 14 enolates were determined as crucial intermediates of this reaction.

6.2. Sila-aldol chemistry

The classical aldol reaction, with its power in the reversible formation of carbon-carbon bonds, is one of the most important organic reaction types. The aldol reaction for silicon-based compounds, were unknown until our group reported on the first sila-aldol reaction. This reaction provides a straightforward access to structurally complex silicon frameworks. The starting point for the development of this transformation was the reaction of 1,4-bis-(acyl)cyclo-hexasilane with KO\textsubscript{t}Bu. As expected, the base abstracted one SiMe\textsubscript{3} group to give monosilenolate. Monosilenolate immediately reacted further in the proposed sila-aldol reaction. Interestingly, the silicon-carbon addition product was not directly observed by NMR spectroscopy, as this reaction selectively led to the formation of the bicyclic carbanion in an ensuing anionic rearrangement cascade (Scheme 20). This transformation introduces a pioneering strategy for the formation of silicon-carbon bonds by establishing a further link between the two related fields of silicon and carbon chemistry. The sila-aldol reaction provides a significant addition to the synthetic methods available for the formation of a new class of silicon-based compounds.

7. Conclusions and Outlook

Given that the chemistry of HG 14 enolates is relatively young, we have summarized in a concise and a complete way, the most important synthetic strategies towards this compound class. We have also shown their reactivity towards selected examples of electrophiles and trapping agents. Furthermore, we have summarized the spectroscopic behavior and the structural data for HG 14 enolates.

Inspired by the promising potential of tetraacylgermanes and -stannanes acting as long-wavelength photoinitiators, we have highlighted their synthesis, where HG 14 enolates are crucial intermediates during their formation. More research towards the chemistry of this new photoinitiator class is likely to emerge soon.

The sila-aldol chemistry has been shown to be highly efficient in the formation of complex silicon framework. This new synthetic strategy can be a powerful alternative to standard coupling techniques, such as the Wurtz reaction, hydrosilylation, as well as transition-metal-catalyzed silicon-carbon coupling reactions.

Acknowledgements

I thank the FWF (Vienna, Austria) for financial support (project number J 3999-N34)

Conflict of interest

The authors declare no conflict of interest.

Keywords: germenate\ls metal enolates \ls sila-aldol chemistry \ls silenolates \ls stannenolates
