Droplets in the two-dimensional $\pm J$ spin glass: evidence for (non-) universality

A. K. Hartmann
Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany

Using mappings to computer-science problems and by applying sophisticated algorithms, one can study numerically many problems much better compared to applying standard approaches like Monte Carlo simulations. Here, using calculations of ground states of suitable perturbed systems, droplets are obtained in two-dimensional $\pm J$ spin glasses, which are in the focus of a currently very lively debate. Since a sophisticated matching algorithm is applied here, exact ground states of large systems up to $L^2 = 256^2$ spins can be generated. Furthermore, no equilibration or extrapolation to $T = 0$ is necessary. Three different $\pm J$ models are studied here: a) with open boundary conditions, b) with fixed boundary conditions and c) a diluted system where a fraction $p = 0.125$ of all bonds is zero. For large systems, the droplet energy shows for all three models a power-law behavior $E_D \sim L^D$ with $\theta_D < 0$. This is different from previous studies of domain walls, where a convergence to a constant non-zero value ($\theta_{dw} = 0$) has been found for such models. After correcting for the non-compactness of the droplets, the results are likely to be compatible with $\theta_D \approx -0.29$ for all three models. This is in accordance with the Gaussian system where $\theta_D = -0.287(4)$ ($\nu \approx 3.5$ via $\nu = -1/\theta_D$). Nevertheless, the disorder-averaged spin-spin correlation exponent η is determined here via the probability to have a non-zero-energy droplet, and $\eta \approx 0.22$ is found for all three models, this being in contrast to the behavior of the model with Gaussian interactions, where exactly $\eta = 0$.

Monte Carlo simulations [1, 2] and related approaches are common ways to study physical systems numerically, in particular for the usual case where no exact analytic solution can be provided. So far, it has only occasionally been recognized that by using mappings to computer-science problems and by applying sophisticated algorithms one can obtain in many cases results which are superior in comparison to using standard algorithms.

Here, Ising spin glasses are considered, which are the most-frequently studied systems in statistical physics [3, 4, 5, 6]. However, despite more than two decades of intensive research, many properties of spin glasses, especially in finite dimensions, are still not well understood. For two-dimensional spin glasses it is now widely accepted that no ordered phase for finite temperatures exists [7, 8, 9, 10] in this case. Nevertheless, the $\pm J$ model with a bimodal distribution of the interactions is in the center of a currently very lively debate [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], in particular whether the behavior is equivalent to that of the model with a Gaussian distribution of the interactions. One central question is whether the correlation length, when approaching $T_c = 0$, diverges algebraically $[22] \sim T^{-\nu}$, as for the Gaussian model, or like an exponential $[23] \sim T^{-2}e^{-C/T}$, formally equivalent to $\nu = \infty$. In particular, Ref. [18] claims evidence for a power-law divergence with the same critical exponent $\nu \approx 3.5$ as the Gaussian system, and that the spin-spin correlation exponent $\eta = 0$. This exponent is defined via $\langle (S_i S_{i+l}) \rangle J \sim l^{-\eta}$, $l \rightarrow \infty$ and the averages over the quenched disorder and the thermal average, respectively.

Unfortunately, most of the above cited work is based on finite-temperature calculations, in particular Monte Carlo simulations, hence an extrapolation $T \rightarrow T_c = 0$ is necessary. Also the systems are restricted in most cases to rather small sizes $L \leq 64$. Only in the case, where parallel tempering Monte Carlo simulations [16, 21] or the worm algorithm [15] have been used, sizes $L \leq 128$ could be considered. Consequently, in Ref. [21] it has been shown that the presently available finite-temperature data does not allow to draw final conclusions. In Ref. [14] also exact $T = 0$ properties are calculated (up to $L = 128$ for $L \times L$ systems and up to $L = 64$ for $9L \times L$ systems), but only the spin-spin correlation could be obtained by this approach.

Here, we go much beyond the previous work. Exact ground-state (GS) calculations [24] are applied, which allows to obtain GSs [10, 25, 26, 27] for large systems like $L = 480$. The method relies on mapping the GS calculation to a graph-theoretical problem and using sophisticated algorithms developed in computer science. By using suitable perturbations of the original systems, one can go beyond pure GS calculations and study excitations like domain walls (DWs) [10, 25] and droplets [26, 27]. Hence, large systems in exact equilibrium can be investigated and no extrapolation to $T = 0$ is necessary.

In Refs. [13, 24, 25, 26, 27] this approach has been used to show that for the two-dimensional spin glass with Gaussian disorder all assumptions made by the droplet theory [28, 29, 30, 31] are fulfilled. In particular the energy scaling of the basic excitations DWs and droplets follows power laws $E_{dw} \sim L^{\theta_{dw}}$ and $E_D \sim L^\theta_D$, respectively, with the same universal value $\theta = \theta_D = \theta_{dw}$, which is related to the correlation-length exponent via $\theta = -1/\nu = -0.287(4)$. On the other hand, for the $\pm J$ model, the average energy of DWs approaches a constant for large system sizes $L \geq 128$, i.e. $\theta_{dw} = 0$. This appears to be, via $\theta = 1/\nu$, compatible with an
The aforementioned approach for system sizes extensively in Refs. [26, 27]. In this work, droplet excitations for three different models with discrete distributions of the interactions are calculated using an approach which is based on exact GS calculations. This approach allows to consider large systems up to \(L = 256 \), no extrapolation of the temperature and no equilibration are necessary. The main result is that the scaling behavior is different from the scaling of DWs, i.e. \(\theta_D < 0 \). This is compatible with a power-law divergence of the correlation length, as recently claimed. After correcting for the non-compactness of the droplets [33], the results seem to be in all three cases the same as for the Gaussian model, hence Gaussian and discrete models appear to be in the same universality class regarding the low-temperature behavior. Furthermore, in this work the scaling of the spin-spin correlation function is studied, resulting in \(\eta \approx 0.22 \) for all three models.

The Hamiltonian which is studied here is the usual Ising spin glass model:

\[
H = - \sum_{\langle i,j \rangle} J_{ij} S_i S_j,
\]

where the spins \(S_i = \pm 1 \) lie on the sites of a square lattice with \(N = L^2 \) sites, the bonds \(J_{ij} \) couple nearest-neighbor sites on the lattice. \(J_{ij} = \pm J \) with equal probability for the quenched realizations of the disorder. Here systems with either open boundary conditions (bc) in all directions, for the initial GS calculation, or fixed bc always are studied. For the latter case, also diluted samples are considered, where each bond is set to zero with probability \(p = 0.125 \).

Here, droplets are considered, as introduced by Kawashima [33], which are lowest-energy excitations with respect to the GS. They consist of a connected cluster of spins, which include a certain pre-selected spin, here a center spin of the system. The spins at the boundary are fixed to their GS orientations. The energy scaling of these droplets is expected to follow a \(L^{\theta_D} \) scaling, where \(\theta_D = \theta_D V / D \) is related to the volume fractal dimension \(D_V \) of the droplets, the dimension \(D = 2 \) of the system and the usual droplet exponent \(\theta_D \). The main approach used here is based on mapping the GS calculation to the minimum-weight perfect matching problem and using sophisticated matching algorithms from graph theory. For details, please see the pedagogical description in Ref. [37]. The droplet calculation of each disorder realization is based on a sequence of \(2L \) suitable modifications of the disorder, each time followed by a GS calculation. The details of the algorithm [37] are described extensively in Refs. [26, 27].

Minimum-energy droplets have been obtained using the aforementioned approach for system sizes \(L = 6 \) to \(L = 256 \) (\(L = 160 \) for the fixed bc). All results are averages over many disorder realizations, the number of realizations is between 20000 for small sizes and 5000 for the largest sizes.

In Fig. 1 the average droplet energy \(E_D \) is shown as a function of system size in a double logarithmic plot. The solid line shows a fit to a power law with correction to scaling, while the dashed lines show the results of fits to a simple power laws.

In Fig. 1 the average droplet energy \(E_D \) is shown as a function of system size \(L \). For large system sizes, a power-law behavior is visible. This corresponds to a power-law divergence of the correlation length as observed recently by Jörg et al [18], as in contrast to the behavior of DWs for the \(\pm J \) model and other models exhibiting a quantized energy spectrum. A fit to the function \(AL^{\theta_D} \), for \(L \geq 32 \) yields \(\theta_D = -0.244(6) \) for open bc with a good quality of the fit [39] \(Q = 0.32 \). Similarly, \(\theta_D = -0.250(6) \) (\(Q = 0.82 \)) are obtained for fixed bc and \(\theta_D = -0.295(6) \) (\(Q = 0.64 \)) for the diluted systems.

To obtain the droplet exponent \(\theta_D \), the geometric properties of the droplet volumes are considered next. In Fig. 2 the volume \(V \) of the droplets is shown as a function of the system size \(L \) for the three different models. Note that due to the degeneracy of the models, droplets with many different values for the volume are possible. Unfortunately, unless through complete enumeration, no algorithm to sample GSs or droplets with the same weight/probability is known. Here, the degeneracy is broken, by selecting the droplets with the smallest surface [20], hence the behavior of the volume is not controllable and can give only a rough idea of the true behavior. When fitting a power law \(\sim L^{D_V} \) to \(V(L) \) of the open bc model, one obtains \(D_V = 1.81(1) \), \(D_V = 1.94 \) for fixed bc, while the behavior of the diluted system is compatible with \(D_V = 2 \). Via considering \(\theta_D = \theta_D V / D_V \), it appears likely that \(\theta_D \approx -0.29 \) universally for all three models. Since the low-temperature behavior is domi-
The differences observed in Fig. 1 are indeed through the universality of this result. This makes it likely that also the assumption of the droplet theory [28, 29, 30, 31], were the scaling behavior of droplets and DWs is different in the ±J case, the main reason [12] being the discreteness of the spectrum of excitations. This is opposed to the assumptions of the droplet theory [28, 29, 30, 31], where the behavior of all types of excitations is governed by one single exponent \(\theta = \theta_{\text{D}} = \theta_{\text{dw}} \).

Finally, to determine \(\eta \), here the relation [29] \(\langle (S_i S_{i+1})^2 \rangle_J = p(L) \) is used, where \(p(L) \) is the probability to have a droplet with non-zero energy. In Fig. 3 \(p(L) \) is shown as a function of system size. According droplet theory [29] one expects \(p(L) \sim L^{-\eta} \). When fitting for system sizes \(L > 32 \), we obtain in all three cases \(\eta \) close to \(\approx 0.22 \) with good qualities of the fits, showing the universality of this result. This makes it likely that also the behavior of the droplet energy model is universal, hence the differences observed in Fig. 1 are indeed through different fractal dimensions \(D_f \). Note that if one related the divergence of the correlation length to the Gaussian model at exactly \(T = 0 \), we can assume \(\eta_{\text{D}} \approx 0 \). Nevertheless, two spins are uncorrelated if there exists any zero-energy excitation separating them, hence one has to consider droplets as well, as performed here.

The result is compatible with \(\eta = 0.21 \) obtained [41] from \(T = 0 \) transfer-matrix calculations of the correlation function for \(L \leq 12 \). On the other hand, the claim \(\eta = 0 \) of Ref. [18], which is based on an extrapolation \(T \to 0 \) for small systems \(L \leq 64 \) is clearly ruled out. Even more, fits of the actual data obtained in Ref. [18] yielded, depending on the fits, also values \(\eta > 0 \). In Ref. [10] a value \(\eta = 0.138 \) was found via Monte-Carlo simulations at finite but low temperature for system sizes \(L \leq 128 \), but it was mentioned by the authors that their results are compatible with a “large range of \(\eta \) values”. Interestingly, at higher temperatures, a higher effective exponent \(\eta_{\text{eff}} \approx 0.2 \) was observed by the authors. A value \(\eta = 0.14(1) \) has been obtained in Ref. [14] but that result is obtained from studying only four different system sizes, and the result depends on the assumption that the correlation length at \(T = 0 \) diverges as \(L^{3/2} \). Note that for the Gaussian model at exactly \(T = 0 \), due to the uniqueness of the GS, we have \(\eta = 0 \), hence regarding this quantity, the two classes of models look non-universal.

One can understand by a simple scaling argument, why DWs and droplets can behave differently in the ±J model. We denote by \(q_l \) the probability that a zero-energy DW exists in a system of size \(l \). Since this probability approaches [10] a finite value \(\tilde{q} \) for about \(L \geq 100 \), we can assume \(q_l \approx \tilde{q} \) for simplicity. We look at the system at different scales \(l = l_0, l_1, l_2, \ldots, l_n = L \) \((l_0 > 1 \) arbitrary, \(k = \ln L / \ln l_0 \)), where we can assume the different DWs are independent. A non-zero
droplet exists only if on all scales no zero-energy closed DW exists, i.e. \(p(L) = \prod_{k=0}^{\infty} \eta^k \approx \eta^k = L^{-\nu} \) with \(-\nu = \ln \tilde{\eta} / \ln t_0 < 0 \). Hence, the probability for non-zero energy droplets decreases with a power-law (hence the mean droplet energy), while the probability for non-zero energy DWs (and the mean DW energy) saturates for \(L \to \infty \).

To summarize, droplet excitations for three different variants of the two-dimensional \(\pm J \) Ising spin glasses were studied. Here an advanced methodology from graph theory is used, based on mapping the GS calculation to the minimum-weight perfect matching problem, using sophisticated matching algorithms from computer science and studying sequences of suitable modified realizations of the disorder. This allows to treat at \(T = 0 \), without need for an extrapolation of the temperature, large systems up to \(L = 256 \) exactly. The average droplet energy shows a clear power-law behavior with exponent \(\theta_D < 0 \). It appears likely that when taking the non-compactness of the droplets into account, the same droplet exponent \(\theta_D \approx -0.29 \) emerges for all three models studied here, and hence the same value \(\nu = -1/\theta_D \approx 3.5 \) as for the model with Gaussian disorder is obtained. On the other hand, the value \(\eta \approx 0.22 \) for the exponent describing the decay of the spin-spin correlations is obtained for all three models, but this is clearly different from the Gaussian model, where \(\eta = 0 \). Remarkably, \(\theta_D \neq \theta_{DW} = 0 \) can be explained by a simple scaling argument.

The author thanks Ian Campbell, Ron Fisch, Helmut Katzgraber, Oliver Melchert, Mike Moore, Martin Weigel and Peter Young for interesting discussions. He is grateful to Oliver Melchert, Mike Moore and Peter Young for critically reading the manuscript. Financial support was obtained from the VolkswagenStiftung (Germany) within the program “Nachwuchsgruppen an Universit¨ aten” and from the European Community via the DYGLAGEMEM contract.

[1] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999).
[2] D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).
[3] K. Binder and A. Young, Rev. Mod. Phys. 58, 801 (1986).
[4] M. M´ezard, G. Parisi, and M. Virasoro, Spin glass theory and beyond (World Scientific, Singapore, 1987).
[5] K. Fischer and J. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991).
[6] A. P. Young, ed., Spin glasses and random fields (World Scientific, Singapore, 1998).
[7] H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jünger, and G. Rinaldi, J. Phys. A 29, 3939 (1996).
[8] N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 (1997).
[9] A. C. Carter, A. J. Bray, and M. A. Moore, Phys. Rev. Lett. 88, 077201 (2002).
[10] A. K. Hartmann and A. Young, Phys. Rev B 64, 180404 (2001).
[11] J. Houdayer, Eur. Phys. J. B 22, 479 (2001).
[12] C. Amoroso, E. Marinari, O. C. Martin, and A. Pagnani, Phys. Rev. Lett. 91, 087201 (2003).
[13] J. Lukic, A. Gallicchio, E. Marinari, O. C. Martin, and G. Rinaldi, Phys. Rev. Lett. 92, 117202 (2004).
[14] J. Poulter and J. A. Blackman, Phys. Rev. B 72, 104422 (2005).
[15] J.-S. Wang, Phys. Rev. E 72, 036706 (2005).
[16] H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71, 134404 (2005).
[17] R. Fisch, J. Stat. Phys. 125, 777 (2006).
[18] T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys. Rev. Lett. 96, 237205 (2006).
[19] R. Fisch, J. Stat. Phys. 125, 793 (2006).
[20] R. Fisch (2006), preprint cond-mat/0607022.
[21] H. G. Katzgraber, L. W. Lee, and I. A. Campbell, Phys. Rev. B 75, 014412 (2007).
[22] J.-S. Wang and R. H. Swendsen, Phys. Rev. B 48, 4840 (1988).
[23] L. Saul and M. Kardar, Nucl. Phys. B 432 [FS], 641 (1994).
[24] A. K. Hartmann and H. Rieger, Optimization Algorithms in Physics (Wiley-VCH, Weinheim, 2001).
[25] A. K. Hartmann, A. J. Bray, A. C. Carter, M. A. Moore, and A. P. Young, Phys. Rev. B 66, 224401 (2002).
[26] A. K. Hartmann and M. A. Moore, Phys. Rev. Lett. 90, 12720 (2003).
[27] A. K. Hartmann and M. A. Moore, Phys. Rev. B 69, 104409 (2004).
[28] W. L. McMillan, J. Phys. C 17, 3179 (1984).
[29] A. J. Bray and M. A. Moore, in Heidelberg Colloquium on Glassy Dynamics, edited by J. L. van Hemmen and I. Morgenstern (Springer, Berlin, 1987), p. 121.
[30] D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986).
[31] D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 386 (1988).
[32] A. J. Bray and M. A. Moore, J. Phys. C 17 (1984).
[33] N. Kawashima, J. Phys. Soc. Jpn. 69, 987 (2000).
[34] I. Bieche, R. Maynard, R. Rammal, and J. P. Uhry, J. Phys. A 13, 2553 (1980).
[35] F. Barahona, R. Maynard, R. Rammal, and J. Uhry, J. Phys. A 15, 673 (1982).
[36] U. Derigs and A. Metz, Math. Prog. 50, 113 (1991).
[37] Note that the meandering of the droplets mentioned in Ref. [26] occurs here even less frequently (no 3-way meandering at all) compared to the Gaussian system, hence one can be really sure that indeed exact minimum-energy excitations have been obtained.
[38] The quality \(Q \) of the fit states the probability \(\eta \approx \eta^k = \eta^k = L^{-\nu} \) with \(-\nu = \ln \tilde{\eta} / \ln t_0 < 0 \). Hence, the probability for non-zero energy droplets decreases with a power-law (hence the mean droplet energy), while the probability for non-zero energy DWs (and the mean DW energy) saturates for \(L \to \infty \).
[39] W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge University Press, Cambridge, 1995).
[40] O. Melchert and A. K. Hartmann (2007), preprint cond-mat/0704.2004.
[41] Y. Ozeki, J. Phys. Soc. Jpn. 59, 3531 (1990).