Graft choices for anterolateral ligament knee reconstruction surgery: Current concepts

Byron Chalidis, Charalampos Pitsilos, Dimitrios Kitridis, Panagiotis Givissis

Abstract

The anterolateral ligament (ALL) is a primary structure of the anterolateral complex of the knee that contributes to internal rotational stability of the joint. Injury of the ALL is commonly associated with rupture of the anterior cruciate ligament. If left untreated, ALL lesions may lead to residual anterolateral rotational instability of the knee after anterior cruciate ligament reconstruction, which is a common cause of anterior cruciate ligament graft failure. The function of the ALL can be restored by lateral extraarticular tenodesis or anterolateral ligament reconstruction (ALLR). In the lateral extraarticular tenodesis procedure, a strip of the iliotibial band is placed in a non-anatomical position to restrain the internal rotation of the tibia, while in ALLR, a free graft is fixed at the insertion points of the native ALL. Gracilis and semitendinosus grafts have mainly been utilized for ALLR, but other autografts have also been suggested. Furthermore, allografts and synthetic grafts have been applied to minimize donor-site morbidity and maximize the size and strength of the graft. Nevertheless, there has been no strong evidence to fully support one method over another thus far. The present review presents a detailed description of the graft choices for ALLR and the current literature available in regard to the effectiveness and outcomes of published surgical techniques.

Key Words: Anterolateral ligament; Reconstruction; Lateral extraarticular tenodesis; Anterior cruciate ligament; Hamstrings; Gracilis; Semitendinosus

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: There is no convincing evidence regarding the biomechanical and functional superiority of either lateral extraarticular tenodesis or anterolateral ligament reconstruction procedures during anterior cruciate ligament reconstruction. Although hamstrings remain the most common graft choice for anterolateral ligament reconstruction, other autografts as well as allografts and synthetic grafts have been applied. Further research and comparative studies should be carried out to identify the most effective graft material and technique for the restoration of rotational knee stability in the presence of residual instability after anterior cruciate ligament reconstruction.

Citation: Chalidis B, Pitsilos C, Kitridis D, Givissis P. Graft choices for anterolateral ligament knee reconstruction surgery: Current concepts. World J Clin Cases 2022; 10(24): 8463-8473
URL: https://www.wjgnet.com/2307-8960/full/v10/i24/8463.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i24.8463

INTRODUCTION

The anterolateral ligament (ALL) is an independent structure of the anterolateral complex of the knee along with the lateral collateral ligament (LCL), the iliotibial band (ITB) and the anterolateral joint capsule[1,2]. There is no consensus so far on whether ALL bony attachment is located posterior and proximal or anterior and distal to the lateral femoral epicondyle or just on the lateral epicondylar together with the LCL attachment[3-7]. Its course is anterodistal and superficial to the LCL and its distal insertion midway between the anterior border of the fibular head and the Gerdy’s tubercle of the tibia [8]. The ALL is a nonisometric structure that tenses during knee flexion and internal tibial rotation and shows the greatest length change at 90° of flexion[9]. As a distinct structure of the anterolateral complex of the knee, the ALL seems to contribute to internal rotational stability of the joint, but its role in resisting rotational as well as anteroposterior instability in an anterior cruciate ligament (ACL) deficient knee is still controversial[10-13].

An ALL lesion is presented as a midsubstance strain and tear or avulsion of its bony insertion on the tibia, which is known as a Segond fracture[14]. The injury is most commonly associated with ACL rupture[5]. Concomitant ACL and ALL deficiency may result in increased knee rotational instability, which may not be restored by isolated anterior cruciate ligament reconstruction (ACLR)[15]. The incidence of positive pivot shift after ACLR could rise to 34% of operated cases, and many studies have demonstrated that additional ALL reconstruction (ALLR) decreases knee laxity and ACL graft failure rate and improves patient-reported outcomes[16-20]. On the other hand, simultaneous ALLR has been associated with overconstrained internal rotation and subsequent knee joint stiffness[21,22]. Furthermore, there is some evidence that ALLR does not decrease the rotational laxity of the knee to a desirable degree and its role in improving the postoperative function is limited[23,24]. Thus, simultaneous ACLR and ALLR have been suggested mainly in cases of grossly unstable pivot-shift and revision ACL surgery[25,26]. Moreover, indications for ALLR may include young patients who participate in pivoting activities as well as knees with chronic ACL deficiency or concomitant meniscal tears requiring surgical repair[27].

LITERATURE SEARCH

We conducted a narrative review using the MEDLINE online database regarding ALLR. The initial search applying the keywords “Anterolateral Ligament Reconstruction” led to 807 results. After abstract and full-text screening, 22 studies describing the results of ALLR in ACLR surgery were enrolled for further assessment (Figure 1). The extracted data were analyzed and organized to present the different reported methods of ALLR during ACLR in respect to graft choice, proximal and distal attachment location, stabilization technique and knee fixation angle (Table 1).

GRAFT TYPES AND TECHNIQUES

So far, many grafts have been applied for the restoration of ALL function, but no consensus exists regarding the ideal graft type and fixation technique. Controversies are based on the anatomic parameters of ALL regarding its bony origin and its length changes during knee motion. They are referred to graft material choice as well as graft insertion site location and fixation angle[6,8,23,28-33]. All the applied procedures aim to restore the knee kinematics in case of ALL deficiency and include either the lateral extraarticular tenodesis (LET) or ALLR techniques. The main principle of the LET
Ref.	ACL graft type	ALL graft type	Femoral fixation point	Tibial fixation point	Fixation Technique	Knee flexion/rotation
Lemaire and Combelles et al. [36], 1980	BTB (hole for ITB graft)	ITB	Above the lateral epicondyle, proximal to the LCL insertion	Maintain attachment to Gerdy’s tubercle	Two bone tunnels, suture on itself	30° flexion/external rotation
Andrews and Sanders et al. [41], 1983	ITB (two strips)	Lateral femoral epicondyle	Maintain attachment to Gerdy’s tubercle	Suture strips together at medial femoral epicondyle after passing through two parallel lateral-to-medial tunnels	90° flexion/external rotation	
Amiri et al. [42], 1988	ITB	Above the lateral epicondyle, proximal to the LCL insertion	Maintain attachment to Gerdy’s tubercle	Suture fixation to ITB after passing through the lateral intermuscular septum	90° flexion/external rotation	
Christel and Djian [37], 2002	ITB	Above the lateral epicondyle, proximal to the LCL insertion	Maintain attachment to Gerdy’s tubercle	Interference screw	30° flexion	
Mathew et al. [38], 2018	ITB	Anterior and proximal to the lateral gastrocnemius tendon	Maintain attachment to Gerdy’s tubercle	Richards staple and sutures to itself	60° flexion/neutral rotation	
Abu-Sulema et al. [39], 2021	ITB	Above the lateral epicondyle, proximal to the LCL insertion	Maintain attachment to Gerdy’s tubercle	Suture fixation to ITB after passing through the lateral intermuscular septum	30° flexion/neutral rotation	
Colombet et al. [49], 2010	Quadruple (Semitendinosus double-bundle and gracilis double-bundle) or Double (single-bundle each)	Gracilis - Semitendinosus (one bundle each)	Proximal to lateral epicondyle	Gerdy’s tubercule	Absorbable screws at each fixation point	90° flexion/neutral rotation
Helito et al. [29], 2015	Quadruple (semitendinosus triple-bundle and gracilis single-bundle)	Gracilis (single-bundle)	3-4 mm below the halfway point on the Blumensaat’s line in the AP direction	5-10 mm below the lateral tibial plateau, between fibular head and Gerdy’s tubercle	One 5 mm metal anchors at each fixation point	60-90° of flexion/mm
Smith et al. [45], 2015	Semitendinosus graft	Gracilis (double-bundle)	Anterior to lateral femoral epicondyle	Midway between fibular head and the Gerdy’s tubercle, 11 mm distal to joint line	4.75 or 5.5 mm bioabsorbable knotless suture anchor at each fixation point	30° of flexion/neutral rotation
Ferreira et al. [40], 2016	Semitendinosus triple-bundle	Gracilis (double-bundle)	8 mm posterolaterally from lateral epicondyle	9-13 mm distal to joint line, between fibular head and the Gerdy’s tubercle	Interference screw 2 mm larger than tunnel	45-60° flexion/mm
Sonnery-Cottet et al. [44], 2016	Semitendinosus SAMBBA	Gracilis (double-bundle)	Proximal and posterior to lateral epicondyle	One supralateral margin of the Gerdy’s tubercle and one midway between fibular head and the Gerdy’s tubercle	4.75 or 5.5 mm bioabsorbable knotless suture anchor at each fixation point	Full extension/neutral rotation
Delaloye et al. [47], 2018	Internal brace	Gracilis (double-bundle)	Proximal and posterior to lateral epicondyle	Bone tunnel: One point just anterior to the fibular head and second posterior to Gerdy’s tubercle	4.75 bioabsorbable knotless suture anchor at femoral fixation point	Full extension/neutral rotation
Saitoh et al. [18], 2018	Quadruple (Semitendinosus triple-bundle and gracilis single-bundle)	Gracilis (single-bundle)	Proximal and posterior to lateral epicondyle	Bone tunnel: One point just anterior to the fibular head and second posterior to Gerdy’s tubercle	Ethibond suture around the graft	Full extension/neutral rotation
Goncharov et al. [46], 2019	BTB autograft	Gracilis or Semitendinosus tendon autograft	Proximal to lateral epicondyle	10 mm distal to joint line, between fibular head and the Gerdy’s tubercle	Interference screws	Full extension/mm
Author(s)	Type of Graft	Anatomical Position	Fixation Method	knee flexion/rotation		
-----------	---------------	---------------------	-----------------	----------------------		
Kim et al [50], 2020	Semitendinosus autograft	Proximal and posterior to lateral epicondyle	Midway between fibular head and the Gerdy’s tubercle	Interference screw at femur, adjustable length loop button at tibia	30° flexion/neutral rotation	
Escudeiro de Oliveira et al [52], 2021	Quintuple, Semitendinosus double-bundle, gracilis double-bundle and peroneous longus single-bundle	Proximal and posterior to lateral epicondyle	15 mm distal to joint line, between fibular head and the Gerdy’s tubercle	Interference screws	30° flexion/nm	
Josipovic et al [33], 2020	Quintuple, Semitendinosus double-bundle, Plantaris longus double-bundle	Proximal and posterior to lateral epicondyle	10 mm distal to joint line, between fibular head and the Gerdy’s tubercle	Interference screw at tibia	Full extension/nm	
Wagih and Elguindy [59], 2016	Polyester tape	Distal and anterior to lateral femoral condyle	Midpoint between the Gerdy’s tubercle and the fibular head	Cortical suspension button proximally, tie on a bone bridge of two bone tunnels distally	30° flexion/nm	
Lee et al [25], 2019	Tibialis anterior tendon allograft	Gracilis tendon allograft	Proximal and posterior to lateral epicondyle	Interference screws	30° flexion/neutral rotation	
Chahla et al [57], 2016	Semitendinosus allograft	4.7 mm proximal and posterior to LCL insertion site	9.5 mm distal to joint line, between fibular head and the Gerdy’s tubercle	Interference screws	30° flexion/nm	
Fernández et al [38], 2020	Achilles tendon allograft	Achilles tendon allograft	Proximal and posterior to lateral epicondyle	Staple at distal site	30° flexion/neutral rotation	
Benum [42], 1982	Patellar tendon (lateral one-third with proximal bone block)	Femoral origin of LCL	Maintain attachment to tibial tubercle	Staple at femoral side	45° flexion/external rotation	

ACL: Anterior cruciate ligament; ALL: Anterolateral ligament; AP: Anteroposterior; BTB: Bone-patellar tendon-bone; LCL: Lateral collateral ligament; ITB: Iliotibial band; nm: Not mentioned; SAMBBA: Single anteromedial bundle biological augmentation.

Figure 1 Flow-chart of graft types. ALLR: Anterolateral ligament reconstruction, LET: Lateral extraarticular tenodesis.

The procedure is the use of a strip of ITB that is stabilized proximally above the knee joint while its tibial insertion to Gerdy’s tubercle remains intact [34]. On the other hand, the ALLR aims to restore the ALL native features by fixing a free tendon graft between the anatomical femoral and tibial insertion points of the ALL [35].
AUTOGRAFTS

Iliotibial band
The ITB is exclusively used for the LET procedure. Lemaire[36] was the first who described the LET technique in cases of chronic ACL injuries. In the original procedure, the ITB was identified and a strip of 1 cm wide and 18 cm long was harvested, leaving the attachment to Gerdy’s tubercle intact. The graft was first passed in a distal to proximal direction under the LCL. Then, it was introduced to the distal femur through a bone tunnel above the lateral epicondyly and proximal to the LCL insertion. Consequently, it was passed again under the LCL in a proximal to distal direction and finally fixed to the tibia through a bone tunnel at Gerdy’s tubercle and sutured on itself. Fixation was completed in 30° of knee flexion and some tibial external rotation. In cases of combination with ACLR, LET allows for independent ACL graft choice. The authors also proposed a variation of the original technique by fixing the strip of ITB into the femoral tunnel that was created for bone-patellar tendon-bone graft ACLR.

Many modifications of the Lemaire procedure have been described referring to harvesting a shorter strip of tendon[37,38]. In addition, the graft may be stabilized proximally with sutures to the ITB after passing through the lateral intermuscular septum or with either a staple or an interference screw[37-40]. Andrews and Sanders[41] described a technique where two strips of ITB were harvested and passed through two parallel lateral-to-medial femoral tunnels and sutured together.

Moreover, variable knee flexion angles have been recommended during fixation, including 30°, 60° and 90°[38,39,42]. In respect to tibial rotation, older studies suggested that the tibia should be maintained in external rotation, but no specific angle was defined[40,41]. However, that position has been related to excessive restriction of internally rotatory movement and abnormal knee kinematics[34,43]. This overconstraint along with the non-anatomic nature of the LET procedure may lead to gradual elongation of the graft and subsequent recurrent rotational instability[43]. As a result, most recent studies have advocated a neutral rotation position for ITB graft fixation[38,39].

Gracilis tendon
Gracilis tendon (GT) is a commonly used autograft for ALLR. The free tendon graft is fixed proximally on the lateral femoral epicondyle and distally between the fibular head and Gerdy’s tubercle after passing between the ITB and LCL[19]. Most frequently, the graft is introduced proximal and posterior to lateral femoral, but a more anterior position has also been described[44,45]. Femoral fixation can be performed with an interference screw or an anchor[45,46]. The same principles are followed when concomitant ACLR is performed with either hamstrings graft, bone-patellar tendon-bone graft or internal brace[44-47].

The tibial attachment of the graft is placed between the fibular head and Gerdy’s tubercle approximately 5 to 13 cm distal to the lateral joint line[29,48]. Fixation is accomplished using an interference screw or an anchor[29,49]. Some authors have described ALLR in an inverted V-shaped fashion. Specifically, the graft is introduced in a tibial bone tunnel extending anterior to the fibular head and posterior to Gerdy’s tubercle and then is fixed at the femoral side with an anchor or with sutures around the graft[18,47]. Sonnery-Cottet et al[44] completed tibial fixation of the graft with two suture anchors. The first one was placed on the superolateral margin of the Gerdy’s tubercle and the other one midway between the fibular head and Gerdy’s tubercle.

During combined ALLR and ACLR using hamstring tendon autograft, a single graft is usually used for both procedures. After ACLR, the remaining graft is passed through a bone tunnel to the lateral surface of the distal femur, proximally and posteriorly to the lateral epicondyle[18,48]. Helito et al[29] identified the ALLR femoral tunnel location using fluoroscopy, aiming approximately 3-4 mm below the halfway point of the Blumensaat’s line in the anteroposterior direction. Furthermore, Ferreira et al[48] used a triple semitendinosus tendon (ST) graft for ACLR and a double GT graft for ALLR. Another combination is a four-strand ACL graft formed by a triple ST bundle and a single GT bundle, while the remaining GT is used for ALLR[29]. Colombet[49] also described the use of a quadruple ACL graft composed of two ST and two GT bundles. A double-bundle graft for ALLR was created from the excess tendon tissue of the bundles.

There is no consensus regarding the ideal fixation angle of a GT graft. Several different knee angles have been reported so far including full extension, 30°, 45° to 60°, 60° to 90° and 90°[29,45,47-49]. In contrast, it has been generally accepted that the tibia should be maintained in neutral rotation at the time of graft stabilization[18,44,45].

Semitendinosus tendon
Apart from GT, the ST has been also widely used for ALLR[46]. Kim et al[50] harvested the contralateral ST for ALLR, as the ipsilateral ST had been already used for ACLR during the same or previous procedure. The double-bundle graft was first attached on the tibia (midway between the fibular head and Gerdy’s tubercle) using an adjustable length loop button, then passed deep to ITB and finally fixed posterior and proximal to the lateral femoral epicondyle with an interference screw, while the knee was positioned in 30° of flexion and neutral rotation. Additionally, Zarins and Rowe[51] proposed simultaneous ACLR and ALLR using only the ipsilateral ST. After proximal release, the ST was passed...
through the knee joint for ACLR, then exerted through a lateral femoral bone tunnel and tied to the ITB keeping the knee in 60° of flexion and tibial external rotation.

Peroneus longus

Escudeiro de Oliveira et al[52] reconstructed the ALL with an ipsilateral peroneus longus (PL) tendon graft and the ACL with a quintuple graft composed of a double-bundle ST, a double-bundle GT and a single-bundle PL. Specifically, the quintuple graft was initially used for ACLR, and the excess PL material was passed through a femoral tunnel, proximal and posterior to the lateral epicondyle, and was attached distally between the fibular head and Gerdy’s tubercle at 15 mm from the joint line. An interference screw was used in each attachment site, and during fixation the knee was kept at mild valgus and 30° of flexion. The authors supported the option of PL graft for ALLR as it could be easily harvested with minimal invasiveness. It was associated with low donor site morbidity and allowed adequate concomitant ACLR in combination with hamstring tendon autograft.

Plantaris longus

Josipovic et al[53] presented a technique of ALLR using the ipsilateral plantaris longus tendon. A quintuple graft composed of a three-strand ST and a two-strand GT was used for ACLR and a two-strand plantaris longus graft, which substituted the ALL, sutured to the quintuple graft. After the ACL graft fixation, the plantaris longus tendon was passed through a bone tunnel posterior and proximal to the lateral femoral epicondyle and fixed with an interference screw 10 mm distally from the joint line and midway between the fibular head and Gerdy’s tubercle, while the knee was fully extended. Although the authors reported good short-term results, there was a lack of data regarding the effectiveness of the technique.

Quadriceps and patellar tendon grafts

Historically, Marshall et al[54] presented the Marshall-MacIntosh procedure using an autograft of quadriceps tendon-prepatellar retinaculum-patellar tendon for concomitant ACL and ALL reconstruction. The distal attachment of the extensor apparatus to the tibial tubercle was preserved, and the graft was passed through a tibial and femoral bone tunnel over the top of the lateral femoral condyle and fixed on Gerdy’s tubercle. Dupont et al[55] presented a modification of the technique by harvesting a free graft including the bony attachment of the quadriceps tendon-prepatellar retinaculum-patellar tendon on the tibial tubercle. Additionally, Benum[42] reported the use of the lateral one-third of the patellar tendon with a proximal bone block for ALLR. The distal attachment on the tibial tubercle was preserved, and the graft was fixed with staples to the femoral origin of LCL.

ALLOGRAFTS

Some authors have recommended the application of allografts for ALLR, even in primary surgery, emphasizing the advantages of no donor site morbidity and availability of larger and longer grafts[56]. However, the use of allografts has been mainly suggested in revision surgery, where autografts may be not available in sufficient quantity[57]. Lee et al[25] used a GT allograft for ALLR in combination with tibialis anterior allograft for ACLR in the setting of revision surgery. Comparing ACLR with and without ALLR, they reported better outcomes after at least 3 years in terms of residual pivot shift, subjective IKDC score and Tegner score, return to the preinjury level of sports activity and possibility of revision surgery when ALLR was additionally performed. Chahla et al[57] underwent ALLR using an ST allograft mainly in cases requiring revision ACL surgery. However, they did not present any postoperative outcomes. Fernández et al[58] used an Achilles tendon allograft for both ACLR and ALLR in patients with previously failed ACLR and significant bone loss. They performed a two-stage procedure to fill the bone defect with a bone graft and to subsequently reconstruct the ACL and ALL. Still, no postsurgical outcome was reported.

SYNTHETIC GRRAFTS (POLYESTER TAPE)

Wagih and Elguindy[59] reported an ALLR technique using polyester tape. The synthetic ligament was attached proximally anterior and distal to the lateral femoral condyle with a cortical suspensory button. Distally, the graft was inserted between the Gerdy’s tubercle and the fibular head and stabilized via sutures that tied on the medial side of the tibia through two bone tunnels. During fixation, the knee was placed in 30° of flexion. The authors suggested that polyester tape ALLR might be worth further investigation as it was a minimally invasive technique without donor site morbidity. Furthermore, the material could offer adequate strength with minimal possibility of laxity and postoperative failure. However, no details about the postoperative outcome were provided.
BIOMECHANICAL EVALUATION

The combination of ACLR with LET or ALLR can restore residual rotational laxity after isolated ACLR [60]. However, the LET procedure has been related to postoperative overconstraint after isolated ACLR [34]. In a cadaveric study, Smith et al [34] reported similar results and equivalent restoration of knee kinematics between ALLR and LET after ACLR. Regarding knee position during graft fixation, Inderhaug et al [61] in a controlled ACLR laboratory study found that knee laxity was equally restored when ITB graft tenodesis was performed at 0°, 30° or 60° of knee flexion. On the other hand, ALLR using a GT graft achieved normal kinematics only when fixation was performed in full extension. Conversely, in another cadaveric study, Geeslin et al [62] found that both LET and ALLR were effective in reducing internal tibial rotation independently of the knee flexion angle or graft tension.

Additionally, Monaco et al [63] noticed that ALLR with GT showed superior biomechanical properties than LET, while the native ALL had lower failure load and stiffness compared to both grafts. Ra et al [64] found that LET resulted in similar rotational stability but worse anterior instability compared to ALLR. On the contrary, Spencer et al [65] reported that ALLR was less effective in reducing anterolateral rotational laxity than the LET procedure. Deviandri and van der Veen [66] used LET in four patients with residual rotational instability after ACLR and reported a significant improvement of knee kinematics.

In a recent meta-analysis, Yin et al [67] reported superior knee kinematics after combined ACLR and ALLR or LET compared to isolated ACLR in ACL deficient knees. Similarly, Littlefield et al [19] in a systematic review identified that supplementary ALLR during ACLR improved anterior tibial translation and internal knee rotation and resulted in a lower incidence of graft failure.

CLINICAL EVIDENCE

Current literature suggests that combined ACLR with ALLR or LET can improve clinical outcomes and decrease the possibility of ACL graft failure compared to isolated ACLR [43]. Beckers et al [68] observed that both LET and ALLR during ACLR provided superior Lysholm Score and reduced ACL re-rupture rate. Na et al [69] in a systematic review found that ALLR or LET along with ACLR were related to superior subjective IKDC, Tegner and Lysholm scores than isolated ACLR. However, the LET was associated with higher postoperative stiffness and complications than ALLR. Sonnery-Cottet et al [70] using data from 270 patients noticed that combined ACLR with ALLR led to a lower reoperation rate and better long-term graft survivorship but similar overall complication risk compared to isolated ACLR. The authors reported a 5-fold increase in the risk of ACL graft failure after a mean of 104 mo in cases of isolated ACLR. Similarly, in a systematic review of de Lima et al [71] the simultaneous ALLR and ACLR were related to better clinical outcomes than single ACLR, including higher success in return to sport and lower ACL graft rupture rate. The advantages and disadvantages of each technique are summarized in Table 2.

DISCUSSION

Restoration of rotational stability is of paramount importance in the ACL injured knee. Apart from intraarticular ACLR, additional extraarticular procedures may be required to improve knee function and stability and minimize the risk for ACL graft failure. These include the LET and the ALLR with variable modifications of each procedure regarding the graft choice and fixation technique. Semitendinosus and gracilis are the main tendon grafts for ALLR, but other autografts such as peroneus longus, plantaris longus and quadriceps-patellar tendons have also been applied. Allografts and synthetic grafts are usually preferred in revision ACLR procedures where there is limited availability of autograft material for both ACLR and ALLR. Although all the available grafts for LET and ALLR may improve knee rotational stability, few studies with a relatively short follow-up and a small number of patients have been published so far. Therefore, there is inconclusive evidence to favor one method over the others in terms of biomechanical properties and clinical outcomes. Further large-scale studies are required to clarify the benefit of ALLR during primary or revision ACLR procedures. Particularly, future randomized control trials should compare ACLR with or without ALLR in young, active and high-demand patients by using different graft types. The research should focus on the subgroup of patients with large pivot-shift and operated meniscal tears aiming to find a potential correlation between ALLR and failure of ACLR under these conditions.

CONCLUSION

According to the current review and existing literature, there is no convincing evidence regarding the
Table 2 Lateral extraarticular tenodesis and anterolateral ligament reconstruction Techniques: Advantages and disadvantages[39,72,73]

Advantages	Disadvantages
1. Lateral extraarticular tenodesis	Non-anatomic procedure
Improvement of rotational knee stability	Possible over-constraining
Reduction of ACL graft failure rate	May add pain to postoperative rehabilitation
Reproducible, easy-to-learn technique	Muscle herniation, if ITB closure is not performed in proper way
Inexpensive procedure, especially when using high-resistance suture	
No risk of tunnel coalition when fixed with sutures proximally	
2. Anterolateral ligament reconstruction	Need ability to identify anatomic landmarks
Improvement of rotational knee stability	Use of allograft or synthetic results in increased cost
Reduction of ACL graft failure rate	Use of autograft requires additional surgery for graft harvest and possible
Preserves iliotibial band	donor site morbidity
Avoids lateral collateral ligament attachment	
Secure graft fixation allows for early motion and accelerated anterior cruciate ligament rehabilitation	

ACL: Anterior cruciate ligament; ITB: Iliotibial band.

biomechanical and functional superiority of either LET or ALLR procedures during ACLR. Although hamstrings remain the most common graft choice for ALLR, other autografts as well as allografts and synthetic grafts have been applied with satisfactory results and low complication rate. However, a pooled analysis of all published raw data would further improve the quality of the review and related evidence despite the heterogeneity of the studies.

FOOTNOTES

Author contributions: Chalidis B and Kitridis D designed the research; Pitsilos C analyzed the data; Chalidis B and Pitsilos C wrote the paper; Givissis P supervised the paper; All authors read and approved the final manuscript.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Greece

ORCID number: Byron Chalidis 0000-0003-1305-2734; Charalampos Pitsilos 0000-0002-3091-866X; Dimitrios Kitridis 0000-0002-6063-8650; Panagiotis Givissis 0000-0002-8649-1159.

S-Editor: Wang LL

L-Editor: Filipodia

P-Editor: Wang LL

REFERENCES

1. Caterine S, Litchfield R, Johnson M, Chronik B, Getgood A. A cadaveric study of the anterolateral ligament: re-introducing the lateral capsular ligament. *Knee Surg Sports Traumatol Arthrosc* 2015; 23: 3186-3195 [PMID: 24929656 DOI: 10.1007/s00167-014-3117-z]

2. Musahl V, Herbst E, Burnham JM, Fu FH. The Anterolateral Complex and Anterolateral Ligament of the Knee. *J Am Acad
Reconstructed Knees With Associated Injury to the Anterolateral Structures?

Noyes FR, Lee DW

The anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees.

10.1007/s00167-017-4472-3

Drews BH, Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle.

Patel RM, Years.

Cruciate and Anterolateral Ligament Reconstruction in the Professional Athlete: Clinical Outcomes From the Scientific

Rosenstiel N

Ligament Reconstruction.

Saithna A

reconstructed knees on rotatory stability: A biomechanical study on human cadavers.

10.1016/j.arthro.2016.05.010

Ferretti A, Stability in the Anterior Cruciate Ligament-Intact Knee: Defined by Tibiofemoral Compartment Translations and Rotations.

Huser LE

the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee.

Kittl C

Reconstruction Combined with Lateral Extra-articular Tenodesis or Anterolateral Ligament Reconstruction.

Am J Sports Med

Patel RM, et al, Association with the Segond fracture.

Dodds AL

10.1007/s10195-016-0392-0

Ferretti A, The Anterolateral Ligament: An Anatomic Analysis.

Orthop Surg

33-40678 DOI: 10.1177/0363546515614312

Huser LE, Noyes FR, Jurgensmeier D, Levy MS, Anterolateral Ligament and Iliotibial Band Control of Rotational

Stability in the Anterior Cruciate Ligament-Intact Knee: Defined by Tibiofemoral Compartments Translations and Rotations.

Arthroscopy 2017; 33: 595-604 [PMID: 27964969 DOI: 10.1016/j.arthro.2016.08.034]

Ferretti A, Monaco E, Fabbri M, Maestri B, De Carli A. Prevalence and Classification of Injuries of Anterolateral

Knee Surg Sports Traumatol Arthrosc 2017; 25: 135-153 [PMID: 28716255 DOI: 10.1016/j.sas.2016.08.009]

Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AA. The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. Am J Sports Med 2016; 44: 345-354 [PMID: 26657572 DOI: 10.1177/0363546515614312]

Huser LE, Noyes FR, Jurgensmeier D, Levy MS, Anterolateral Ligament and Iliotibial Band Control of Rotational

Stability in the Anterior Cruciate Ligament-Intact Knee: Defined by Tibiofemoral Compartments Translations and Rotations. Arthroscopy 2017; 33: 147-154 [PMID: 27313937 DOI: 10.1016/j.arthro.2016.05.010]

Tavol E, Eljaja S, Jensen JT, Siersma VD, Krogsgaard MR. The role of the anterolateral ligament in ACL insufficient and reconstructed knees on rotary stability: A biomechanical study on human cadavers. Scand J Med Sci Sports 2016; 26: 960-966 [PMID: 26247376 DOI: 10.1111/smss.12524]

Prodromos CC, Joyce BT, Shi K, Keller BL. A meta-analysis of stability after anterior cruciate ligament reconstruction as a function of hamstring versus patellar tendon graft and fixation type. Arthroscopy 2005; 21: 1202 [PMID: 16226648 DOI: 10.1016/j.arthro.2005.08.036]

Nitr M, Rasmussen MT, Williams BT, Moulton SG, Cruz RS, Dornan GJ, LaPrade RF. An In Vitro

Robotic Assessment of the Anterolateral Ligament, Part 2: Anterolateral Ligament Reconstruction Combined With Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2016; 44: 593-601 [PMID: 26831632 DOI: 10.1177/0363546516618203]

Saitinha A, Thaunat M, Delaloye JR, Ouanezar H, Fayard JM, Sonnery-Cottet B. Combined ACL and Anterolateral

Ligament Reconstruction. JBJS Essent Surg Tech 2018; 8: e2 [PMID: 30233974 DOI: 10.1101/jbssst.17.00045]

Littlefield CP, Belk JW, Houck DA, Kraeutler MJ, LaPrade RF, Chahla J, McCarty EC. The Anterolateral Ligament of the Knee: An Updated Systematic Review of Anatomy, Biomechanics, and Clinical Outcomes. Arthroscopy 2021; 37: 1654-1666 [PMID: 33340678 DOI: 10.1016/j.arthro.2020.12.190]

Rosenstiel N, Praz C, Ouanezar H, Saitinha A, Fournier Y, Hager JP, Thaunat M, Sonnery-Cottet B. Combined Anterior Cruciate and Anterolateral Ligament Reconstruction in the Professional Athlete: Clinical Outcomes From the Scientific Anterior Cruciate Ligament Network International Study Group in a Series of 70 Patients With a Minimum Follow-Up of 2 Years. Arthroscopy 2019; 35: 885-892 [PMID: 30704884 DOI: 10.1016/j.arthro.2018.09.020]

Pavel RM, Brophy RH. Anterolateral Ligament of the Knee: Anatomy, Function, Imaging, and Treatment. Am J Sports Med 2018; 46: 217-223 [PMID: 28320209 DOI: 10.1177/0363546517769502]

Schoen JM, Moatshe G, Brady AW, Serra Cruz R, Chahla J, Dornan GJ, Turnbull TL, Geubeisen L, LaPrade RF. Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle. Am J Sports Med 2016; 44: 2546-2556 [PMID: 27407086 DOI: 10.1177/0363546516552607]

Drews BH, Kessler O, Franz W, Durselen L, Freutel M. Function and strain of the anterolateral ligament part I: biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25: 1132-1139 [PMID: 28258329 DOI: 10.1007/s00167-017-4472-3]

Stenz-Olesen K, Nielsen ET, de Raedt S, Jorgensen PB, Sorensen OG, Kaptein B, Srballe K, Stillling M. Reconstructing the anterolateral ligament does not decrease rotational knee laxity in ACL-reconstructed knees. Knee Surg Sports Traumatol Arthrosc 2017; 25: 1125-1131 [PMID: 28318889 DOI: 10.1007/s00167-017-4500-3]

Lee DW, Kim JG, Cho SI, Kim DH. Clinical Outcomes of Isolated Revision Anterior Cruciate Ligament Reconstruction or in Combination With Anatomic Anterolateral Ligament Reconstruction. Am J Sports Med 2019; 47: 324-333 [PMID: 30604051 DOI: 10.1177/0363546518815888]

Noyes FR, Huser LE, Jurgensmeier D, Walsh J, Levy MS. Is an Anterolateral Ligament Reconstruction Required in ACL-Reconstructed Knees With Associated Injury to the Anterolateral Structures? Am J Sports Med 2017; 45: 1018-1027 [PMID: 28056513 DOI: 10.1177/0363546516682233]
Chalidis B et al. Review of ALLR grafts

27 Sonnery-Cottet B, Lutz C, Daggett M, Dalmay F, Freychet B, Niglis L, Imbert P. The Involvement of the Anterolateral Ligament in Rotational Control of the Knee. *Am J Sports Med* 2016; 44: 1209-1214 [PMID: 26865395 DOI: 10.1177/0363545416625282]

28 Imbert P, Lutz C, Daggett M, Niglis L, Freychet B, Dalmay F, Sonnery-Cottet B. Isometric Characteristics of the Anterolateral Ligament of the Knee: A Cadaveric Navigation Study. *Arthroscopy* 2016; 32: 2017-2024 [PMID: 27157662 DOI: 10.1016/j.arthro.2016.02.007]

29 Helito CP, Bonadio MB, Gobbi RG, da Mota E, Albuquerque RF, Pécora JR, Camanho GL, Demange MK. Combined Intra- and Extra-articular Reconstruction of the Anterior Cruciate Ligament: The Reconstruction of the Knee Anterolateral Ligament. *Arthrosc Tech* 2015; 4: e239-e244 [PMID: 26258037 DOI: 10.1016/j.eats.2015.02.006]

30 Wytrykowski K, Swider P, Reina N, Murgier J, Lafosse JM, Chiron P, Cavaignac E. Cadaveric Study Comparing the Biomechanical Properties of Grafts Used for Knee Anterolateral Ligament Reconstruction. *Arthroscopy* 2016; 32: 2288-2294 [PMID: 27161509 DOI: 10.1016/j.arthro.2016.03.004]

31 Ahn JH, Patel NA, Lin CC, Lee TQ. The anterolateral ligament of the knee joint: a review of the anatomy, biomechanics, and anterolateral ligament surgery. *Knee Surg Relat Res* 2019; 31: 12 [PMID: 32660576 DOI: 10.1186/s43019-019-0012-4]

32 Inderhaug E, Stephen JM, Williams A, Amis AA. Biomechanical Comparison of Anterolateral Procedures Combined With Anterior Cruciate Ligament Reconstruction. *Am J Sports Med* 2017; 45: 347-354 [PMID: 28027653 DOI: 10.1177/0363545516681555]

33 Kraeutler MJ, Welton KL, Chahla J, LaPrade RF, McCarty EC. Current Concepts of the Anterolateral Ligament of the Knee: Anatomy, Biomechanics, and Reconstruction. *Am J Sports Med* 2018; 46: 1235-1242 [PMID: 28426251 DOI: 10.1177/0363545517701920]

34 Sletto EL, Mikula JM, Schon JM, Marchetti DC, Kheir MM, Turnbull TL, LaPrade RF. Biomechanical Results of Lateral Extra-articular Tenodesis Procedures of the Knee: A Systematic Review. *Arthroscopy* 2016; 32: 2592-2611 [PMID: 27324970 DOI: 10.1016/j.arthro.2016.04.028]

35 Sonnery-Cottet B, Daggett M, Fayard JM, Ferretti A, Helito CP, Lind M, Monaco E, de Palau VBC, Thaunat M, Wilson A, Zaffagnini S, Zijl J, Claes S. Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee. *J Orthop Traumatol* 2017; 18: 91-106 [PMID: 28220268 DOI: 10.1007/s10195-014-0449-8]

36 Lemaire M, Combelles F. Plastic repair with fascia lata for old tears of the anterior cruciate ligament (author's transl). *Rev Chir Orthop Reparatrice Appar Mot* 1980; 66: 523-525 [PMID: 6451004]

37 Christel P, Djian P. [Antero-lateral extra-articular tenodesis of the knee using a short strip of fascia lata]. *Rev Chir Orthop Reparatrice Appar Mot* 2002; 88: 508-513 [PMID: 12399717]

38 Mathew M, Dhillon A, Getgood A. Anterolateral Ligament Reconstruction or Extra-Articular Tenodesis: Why and When? *Clin Sports Med* 2018; 37: 75-86 [PMID: 29173559 DOI: 10.1016/j.csm.2017.07.011]

39 Abusleme S, Strömback L, Caracciolo G, Zamorano H, Cheyre J, Vergara F, Yahiez R. Lateral Extra-articular Tenodesis: A Technique With an Iliotibial Band Strand Without Implants. *Arthroscopy Tech* 2021; 10: e85-e89 [PMID: 33532213 DOI: 10.1016/j.eats.2020.09.029]

40 Amirault JD, Cameron JC, MacIntosh DL, Marks P. Chronic anterior cruciate ligament deficiency. Long-term results of MacIntosh's lateral substitution reconstruction. *J Bone Joint Surg Br* 1988; 70: 622-624 [PMID: 3403611 DOI: 10.1302/0301-620x.70a4.3403611]

41 Andrews JR, Sanders R. A "mini-reconstruction" technique in treating anterolateral rotatory instability (ALRI). *Clin Orthop Relat Res* 1983; 93-96 [PMID: 6822011]

42 Benum P. Anterolateral rotary instability of the knee joint. Results after stabilization by extraarticular transposition of the lateral part of the patellar ligament. A preliminary report. *Acta Orthop Scand* 1982; 53: 613-617 [PMID: 7102280 DOI: 10.3109/1745367820922627]

43 Engbrehtsen L, Lew WD, Lewis JL, Hunter RE. The effect of an iliotibial tenodesis on intraarticular graft forces and knee joint motion. *Am J Sports Med* 1990; 18: 169-176 [PMID: 2343985 DOI: 10.1177/036354559001800210]

44 Sonnery-Cottet B, Barbosa NC, Tuteja S, Daggett M, Kajetanek C, Thaunat M. Minimally Invasive Anterolateral Ligament Reconstruction in the Setting of Anterior Cruciate Ligament Injury. *Arthrosc Tech* 2016; 5: e211-e215 [PMID: 27274456 DOI: 10.1016/j.eats.2015.11.005]

45 Smith JO, Yesen SK, Lord B, Wilson AJ. Combined anterolateral ligament and anatomic anterior cruciate ligament reconstruction of the knee. *Knee Surg Sports Traumatol Arthrosc* 2015; 23: 3151-3156 [PMID: 26387120 DOI: 10.1007/s00167-015-3783-5]

46 Goncharov EN, Koval OA, Dubrov VE, Bezgulov EN, Filimonova AM, Goncharov NG. Clinical experience with combined reconstruction of the anterior cruciate and anterolateral ligaments of the knee in sportsmen. *Int Orthop* 2019; 43: 2781-2788 [PMID: 31051952 DOI: 10.1007/s00264-019-04409-8]

47 Delaoye JR, Mural J, Vieira TD, Siathna A, Barth J, Ouanez H, Sonnery-Cottet B. Combined Anterior Cruciate Ligament Repair and Anterolateral Ligament Reconstruction. *Arthrosc Tech* 2019; 8: e23-e29 [PMID: 30899647 DOI: 10.1016/j.eats.2018.08.025]

48 Ferreira Mde C, Zidan FF, Miduati FB, Fortuna CC, Mizutanii BM, Abdalla RJ. Reconstruction of anterior cruciate ligament and anterolateral ligament using interlinked hamstrings - technical note. *Rev Bras Ortop* 2016; 51: 466-470 [PMID: 27517028 DOI: 10.1016/j.rbo.2015.08.021]

49 Colombe P D. Navigated intra-articular ACL reconstruction with additional extra-articular tenodesis using the same hamstring graft. *Knee Surg Sports Traumatol Arthrosc* 2011; 19: 384-389 [PMID: 20811736 DOI: 10.1007/s00167-010-1223-0]

50 Kim MS, Koh JI, In Y. Isometric Anterolateral Ligament Reconstruction Using the Semitendinosus Tendon With Suspensory Tibial Fixation. *Arthrosc Tech* 2020; 9: e941-e945 [PMID: 32714802 DOI: 10.1016/j.eats.2020.03.017]

51 Zarins B, Rowe CR. Combined anterior cruciate-ligament reconstruction using semitendinosus tendon and iliotibial tract. *J Bone Joint Surg Am* 1986; 68: 160-177 [PMID: 3944155]
Tenodesis in Combined ACL and Anterolateral Capsular Injury. \[DOI: 10.1186/s40634-021-00368-5\]

McGuire DA, Wolchock JC. Extra-articular lateral reconstruction technique. \textit{Arthroscopy} 2000; \textit{16}: 553-557 [PMID: 10882455 DOI: 10.1016/j.arthro.2019.11.001]

Maestro Fernández A, Pipa Muñiz I, Rodríguez García N. Two-Stage Anterior Cruciate Ligament Reconstruction
Revision Surgery for Severe Bone Defects With Anterolateral Ligament Reconstruction Technique. \textit{Arthroscopy} 2020; \textit{9}: e327-e337 [PMID: 32226739 DOI: 10.1016/j.eats.2019.04.032]

Wagh AM, Elguindy AM. Percutaneous Reconstruction of the Anterolateral Ligament of the Knee With a Polyester Tape. \textit{Arthroscopy} 2016; \textit{5}: e691-e697 [PMID: 27709023 DOI: 10.1016/j.eats.2016.02.028]

Jette C, Gutiérrez D, Sastre S, Llusa M, Combalia A. Biomechanical comparison of anterolateral ligament anatomical reconstruction with a semi-anatomical lateral extra-articular tenodesis. A cadaveric study. \textit{Knee} 2019; \textit{26}: 1003-1009 [PMID: 31427244 DOI: 10.1016/j.knee.2019.07.007]

Inderhaug E, Stephen JM, Williams A, Amis AA. Anterolateral Tenodesis or Anterolateral Ligament Complex Reconstruction: Effect of Flexion Angle at Graft Fixation When Combined With ACL Reconstruction. \textit{Am J Sports Med} 2017; \textit{45}: 3089-3097 [PMID: 28898106 DOI: 10.1177/03635465177224222]

Geeslin AG, Moutshe G, Chahla J, Krueckeberg BM, Muckenhirn KJ, Dornan GJ, Coggin S, Brady AW, Getgood AM, Godin JA, LaPrade RF. Anterolateral Knee Extra-articular Stabilizers: A Robotic Study Comparing Anterolateral Ligament Reconstruction and Modified Lemaire Lateral Extra-articular Tenodesis. \textit{Am J Sports Med} 2018; \textit{46}: 607-616 [PMID: 29260024 DOI: 10.1177/0363545617745268]

Monaco E, Lanzetti RM, Fabбри M, Redler A, De Carlì A, Ferretti A. Anterolateral ligament reconstruction with autologous grafting: A biomechanical study. \textit{Clin Biomech (Bristol, Avon)} 2017; \textit{44}: 99-103 [PMID: 28384527 DOI: 10.1016/j.clinbiomech.2017.03.013]

Ra HJ, Kim JH, Lee DH. Comparative clinical outcomes of anterolateral ligament reconstruction versus lateral extra-articular tenodesis in combination with anterior cruciate ligament reconstruction: systematic review and meta-analysis. \textit{Arch Orthop Trauma Surg} 2020; \textit{140}: 923-931 [PMID: 32140829 DOI: 10.1007/s00402-020-03393-8]

Spencer L, Burkhart TA, Tran MN, Rezansoff AJ, Deo S, Caterine S, Getgood AM. Biomechanical analysis of simulated clinical testing and reconstruction of the anterolateral ligament of the knee. \textit{Am J Sports Med} 2015; \textit{43}: 2189-2197 [PMID: 26093007 DOI: 10.1177/0363545615589166]

Deviantri R, van der Veen HC. Isolated lateral extra-articular tenodesis enhance better rotatory knee joint stability post-primary ACL repair: Four cases report and literature review. \textit{Int J Surg Case Rep} 2021; \textit{84}: 106167 [PMID: 34229212 DOI: 10.1016/j.ijscr.2021.106167]

Yin J, Yang K, Zheng D, Xu N. Anatomic reconstruction of the anterior cruciate ligament of the knee with or without reconstruction of the anterolateral ligament: A meta-analysis. \textit{J Orthop Surg (Hong Kong)} 2021; \textit{29}: 2309499020985195 [PMID: 33410381 DOI: 10.1177/2309499020985195]

Beckers L, Vivaçaqua T, Firth AD, Getgood AM. Clinical outcomes of contemporary lateral augmentation techniques in primary ACL reconstruction: a systematic review and meta-analysis. \textit{J Exp Orthop} 2021; \textit{8}: 59 [PMID: 34383156 DOI: 10.1186/s40634-021-00368-5]

Na BR, Kwak WK, Seo HY, Seon JK. Clinical Outcomes of Anterolateral Ligament Reconstruction or Lateral Extra-articular Tenodesis Combined With Primary ACL Reconstruction: A Systematic Review With Meta-analysis. \textit{Orthop J Sports Med} 2021; \textit{9}: 23259671211023099 [PMID: 34541068 DOI: 10.1177/23259671211023099]

Sonney-Cottet B, Haidar I, Rayes J, Fradin T, Ngbilo C, Vieira TD, Freychet B, Ouanezar H, Saithna A. Long-term graft rupture rates after combined ACL and anterolateral ligament reconstruction versus isolated ACL reconstruction: A matched-pair analysis from the SANTI study group. \textit{J Bone Joint Surg Am} 2021; \textit{49}: 2889-2897 [PMID: 34351825 DOI: 10.1177/0363545220982990]

Ariel de Lima D, de Lima LL, de Souza NGR, de Moraes Perez RA, Sobrado MF, Guimarães TM, Helti CP. Clinical outcomes of combined anterior cruciate ligament and anterolateral ligament reconstruction: a systematic review and meta-analysis. \textit{Knee Surg Relat Res} 2021; \textit{33}: 33 [PMID: 34556187 DOI: 10.1186/s43019-021-00115-1]

Guether D, Irrázaval S, Bell KM, Rahemai-Azar AA, Fu FH, Deboki RE, Musahl V. The role of extra-articular tenodesis in combined ACL and anterolateral capsular injury. \textit{J Bone Joint Surg Am} 2017; \textit{99}: 1654-1660 [PMID: 28976430 DOI: 10.1099/00013611-19880100-00005]

Smith PA, Bley JA. Minimally Invasive Anterolateral Ligament Reconstruction of the Knee. \textit{Arthrosc Tech} 2016; \textit{5}: e1449-e1455 [PMID: 28560142 DOI: 10.1016/j.eats.2016.08.017]
