Androgen-Regulated Cardiac Metabolism in Aging Men

Genaro Barrientos1,2, Paola Llanos2,3, Carla Basualto-Alarcón4,5 and Manuel Estrada 1*

1 Programa de Fisiología y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile, 2 Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Universidad de Chile, Santiago, Chile, 3 Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas (ICOD), Universidad de Chile, Santiago, Chile, 4 Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile, 5 Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile

The prevalence of cardiovascular mortality is higher in men than in age-matched premenopausal women. Gender differences are linked to circulating sex-related steroid hormone levels and their cardio-specific actions, which are critical factors involved in the prevalence and features of age-associated cardiovascular disease. In women, estrogens have been described as cardioprotective agents, while in men, testosterone is the main sex steroid hormone. The effects of testosterone as a metabolic regulator and cardioprotective agent in aging men are poorly understood. With advancing age, testosterone levels gradually decrease in men, an effect associated with increasing fat mass, decrease in lean body mass, dyslipidemia, insulin resistance and adjustment in energy substrate metabolism. Aging is associated with a decline in metabolism, characterized by modifications in cardiac function, excitation-contraction coupling, and lower efficacy to generate energy. Testosterone deficiency -as found in elderly men- rapidly becomes an epidemic condition, associated with prominent cardiometabolic disorders. Therefore, it is highly probable that senior men showing low testosterone levels will display symptoms of androgen deficiency, presenting an unfavorable metabolic profile and increased cardiovascular risk. Moreover, recent reports establish that testosterone replacement improves cardiomyocyte bioenergetics, increases glucose metabolism and reduces insulin resistance in elderly men. Thus, testosterone-related metabolic signaling and gene expression may constitute relevant therapeutic target for preventing, or treating, age- and gender-related cardiometabolic diseases in men. Here, we will discuss the impact of current evidence showing how cardiac metabolism is regulated by androgen levels in aging men.

Keywords: testosterone, cardiac diseases, aging men, cardiac metabolism, glycolysis, AMPK, PGC1α, sirtuins

INTRODUCTION

The multifactorial origin of cardiovascular diseases compels a comprehensive approach that incorporates lifestyle modification with an appropriate selection of medications for energy-regulation and its co-morbid conditions (1–4). In a physiological scenario, cardiometabolic adaptations involve a complex relationship among mechanisms responding to energy needs and substrate availability, in order to maintain homeostasis (5–7). During senescence, reduced ATP generation in the heart impairs normal contractile performance. There is a positive association...
between cardiac failure in age-related pathologies and insulin resistance, diabetes, sarcopenia and cardiovascular diseases (8, 9).

According to a 2019 update article from the American Heart Association, almost one in three adult men have some type of cardiovascular disease (10). Women are known to suffer cardiac disease 10–20 years later than men, which supports the hypothesis that physiological estrogen levels confer cardioprotective effects (11–14). In the past decades, the effect of sex-related steroid hormones on the cardiovascular system has been predominantly focused on estrogen actions, whereas research concerning the beneficial cardiac effects of androgens has been limited.

There is an extensive body of information indicating that administration of supraphysiologic doses of testosterone and cognate anabolic steroids induce adverse cardiovascular effects by triggering cardiac hypertrophy and heart failure (15). Although androgens have been considered previously to cause adverse cardiac outcomes, recent studies support favorable effects of these hormones on cardiovascular homeostasis (16–18). Many clinical publications over the past few years have indicated that very low levels of plasma testosterone are associated with pathophysiological processes, such as dyslipidemias, metabolic syndrome and diabetes type 2, which are considered as the underlying mechanisms involved in age-related cardiovascular diseases in men (19–23). Low circulating testosterone levels, as found in late-onset hypogonadism and elderly men, have also been associated with different types of heart diseases (24, 25). Moreover, epidemiological reports show that decreased testosterone concentration is a predictor of mortality in senior men (26).

A recent report from the Mayo Clinic (2018) exhaustively reviewed and analyzed the main clinical publications over the past 10 years related to testosterone levels, testosterone administration and their impact on the cardiovascular system (27). Pharmacological replacement of testosterone prevents heart disease, improves exercise-induced myocardial ischemia, dilates the coronary arteries, and decreases insulin resistance (28, 29). The overall evidence indicates that physiological testosterone levels are beneficial for the male cardiovascular system, while low testosterone concentration is linked to unfavorable metabolic profile and increased cardiovascular risk (27).

Aging, at same time, is associated with a gradual decline of testosterone levels in men (30). Plasma levels of androgens fluctuate throughout life. During childhood and before puberty, testosterone concentrations are usually lower in males than females. After puberty, testosterone levels increase in males, peaking at the age of 20–25. Thereafter, during aging, testosterone levels decrease (31–33). A cross-sectional study reported that in men over 40 years-old, total circulating testosterone levels decrease around 0.8% per year, while both free and albumin-bound testosterone levels decrease by 2%. In addition, plasma levels of sex hormone binding globulin (SHBG) increases by 1.6% per year, which may further decrease the bioavailable testosterone concentrations in elderly men (30, 34). Circulating SHBG levels in humans are influenced by different factors, such as nutritional state, metabolism, hormonal factors and aging (34–37).

Testosterone is well-known for both its androgenic properties and its anabolic effects. This steroid hormone induces changes on organs and tissues promoting the adoption of the adult male phenotype (38). In the heart, testosterone associates key physiological input for metabolism and protein synthesis (39). Cardio-specific and concentration-dependent effects of testosterone are modulated by its circulating plasma levels, cellular metabolism, modulation of intracellular transduction pathways and androgen receptor expression (15, 18).

Age-related andropause is characterized by diminished plasma testosterone concentration in adult men. With the increasing aging of the world population, andropause is quickly becoming an epidemic condition associated with metabolic disorders and prominent cardiovascular risks (32, 40, 41). Decreased testosterone concentrations in older men are linked to changes in body composition, like increase of fat mass and reduction of lean body mass, dyslipidemia, insulin resistance, and reduced glucose metabolism (22). The relationship between metabolic and cardiovascular risk in humans is evident in men suffering from hypogonadism, a condition in which the reduced functional activity of the gonads causes a decrease in testosterone levels (42). Hypogonadal men exhibit higher prevalence of cardiometabolic disorders compared to those with normal physiological levels of androgens (43). Retrospective studies of testosterone prescription databases have generated controversial and opposite results. Although testosterone replacement therapy to handle men hypogonadism it has been obtainable since 1939 (44), the apprehensions regarding the safety of testosterone treatment in men with cardiovascular diseases persist. However, to date, few systematic controlled studies have been performed to evaluate adverse events on cardiovascular system by testosterone administration (45–47). A recent randomized trial suggested that testosterone administration could increase cardiovascular risk in certain clinical populations, and it was suggested that pre-existing comorbidities as well as circulating lipid disturbances could influence the risk of cardiovascular events in older men. By contrast, several cross-sectional studies have demonstrated higher prevalence of cardiovascular diseases among men with low testosterone levels, and that replacement reduces cardiovascular risk (48, 49). Likewise, subjects with low plasma testosterone concentrations are more prone to develop insulin resistance and diabetes, as well as central obesity and heart failure (21, 50, 51).

Similar responses have been observed in elderly men exhibiting diminished testosterone concentrations, which result in hormonal and metabolic alterations associated with increased risk for developing cardiomyopathies (52). Androgen supplementation is a focus of emerging interest for the treatment of age-related metabolic diseases and muscle wasting (29, 53). Accordingly, male sex steroids can regulate cardiometabolic functionality and energy production through transcriptional and post-transcriptional mechanisms, and therefore, can offer insights into energy spreading pathways and their mechanistic control during aging (54). The mechanisms by which testosterone contributes to beneficial metabolic actions on the development of metabolic syndrome and diabetes type 2 are revised and discussed by Kelly and Jones and these effects
seem to involve multiple targets of lipid and carbohydrate metabolism (55).

Additionally to testosterone reduction in elderly men, low concentrations of testosterone are also found in late-onset hypogonadism, reduction of testicular volume and malfunction of the androgen production machinery, systemic accelerated testosterone metabolism and expression of defective androgen receptors (24, 25, 42, 56). In skeletal muscle, physiological testosterone levels regulate a host of metabolic enzymes and transcription factors that regulate the expression of nuclear-encoded mitochondrial oxidative phosphorylation proteins (57). In the elderly, the ATP production machinery is less efficient, and this condition represents an energy dilemma. Metabolic unbalance during aging in men must be resolved by adjusting the energy substrates and the expression of metabolic genes (58–64). Age-related cardiac metabolic adaptations must regulate energy demands with fuel supply under switching nutrient conditions. The impact of testosterone administration to increase skeletal muscle mass is recognized, but its therapeutic use in aging men is still controversial and the underlying mechanisms remain to be defined. Recent reports indicate that testosterone therapy increases the expression of fibroblast growth factor 2 (FGF2) and decreases myogenic regulatory factor 4 (MRF4) and myostatin in skeletal muscle from men suffering hypogonadotropic hypogonadism, suggesting that the expression of these proteins contribute to muscle growth after testosterone therapy (65).

CELLULAR MECHANISMS OF TESTOSTERONE ACTION

As it is well known, the hypothalamic-pituitary-gonadal axis modulates testosterone production. The hypothalamus produces and secretes gonadotrophin-releasing hormone (GnRH), which stimulates the pituitary to induce the pulsatile secretion of luteinizing hormone (LH), which then prompts the Leydig cells of the testes to produce testosterone (66, 67), which, in turn, exerts a negative feedback on GnRH and gonadotropin secretion. As age progresses, both the amount of Leydig cells and their ability to produce testosterone are reduced, contributing to lower circulating levels of androgens in elderly men (22, 30). However, other authors have argued that there is not a reduction of Leydig cell mass with aging, and that the main defect occurs in intracellular cell signaling and cholesterol transport (68). During obesity and aging, a raise in the activity of aromatase enzyme converts testosterone into estrogens in men, further reducing circulating plasma levels and the ability of testosterone to exert its appropriate metabolic actions (40, 69).

The main mechanism of action of testosterone involves direct binding to the intracellular androgen receptor (70–72), which is a member of the nuclear/steroid receptor superfamily. These receptors are proteins capable of binding their ligands in the cytoplasm or nucleus, and directly activating gene transcription (73, 74). The androgen receptor is a 110 kDa protein with three major functional regions for transactivation, a DNA binding domain and a hormone binding domain (75). After ligand binding, intracellular receptors are translocated to the nucleus, where they dimerize and bind to androgen response elements (ARE) to regulate target genes (74). Once bound to the hormone, other regulatory proteins or transcriptional coactivators can bind to the testosterone-androgen receptor complex to stabilize the promoter, thus achieving differential effects of this hormone either in a concentration-dependent or tissue-specific manner (76).

Previously, we and others have reported that testosterone also activates non-transcriptional signal transduction pathways, like extracellular signal-regulated kinase (ERK), phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) and Ca^{2+}-calmodulin-dependent protein kinase II (CaMKII) (77–80). In cardiomyocytes, testosterone induces hypertrophy through activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway (79) and glucose uptake by AMP-activated protein kinase (AMPK) activation (80). Overall, these evidences suggest that the effects of testosterone involve activation of anabolic and catabolic pathways. Thus, integration of transcriptional and non-transcriptional signals supplies cooperative mechanisms to support energy production under metabolic demand in cardiomyocytes.

As was mentioned above, SHBG is a protein that binds and transports testosterone within the bloodstream and regulates its bioavailability and access to extravascular target tissues (35, 81). Following the “free hormone hypothesis,” there is a proportion of testosterone bound to SHBG with high affinity, the rest corresponds to free testosterone which is either loosely bound to albumin, or unbound to proteins (82, 83). Free testosterone can cross the plasma membrane and it associates directly with androgen receptors; therefore, it is regarded as the bioavailable fraction, which is responsible for the biological activity of this hormone (84). SHBG levels have been negatively correlated with insulin levels (85), and in a meta-analysis that included cross-sectional and prospective observational studies, Brand et al. found an inverse relationship between total testosterone and free testosterone with SHBG levels, and metabolic syndrome (86, 87) raising the question about the role that intracellular androgen binding protein levels play in endocrine cellular physiology.

EFFECTS OF TESTOSTERONE ON THE CARDIOVASCULAR SYSTEM

Testosterone influences the cardiovascular system by acting directly on cardiac cells, the vascular tree, and by regulating cholesterol levels (88–90). In particular, exonogous administration of supra-physiological testosterone concentrations has been reported to produce cardiac hypertrophy, ventricular remodeling, cardiac failure, and sudden cardiac death (39, 91, 92). In humans and experimental animal models, testosterone has been related with higher risk of coronary artery disease through negative effects on plasma lipid and lipoprotein profiles, which may induce thrombosis and dilated cardiomyopathy (15, 39, 88–90, 93). It has been suggested that testosterone replacement therapy can increase blood viscosity and develop myocardial infarction, underscoring that in each individual patient with various comorbidities, one
or more thrombosis mechanism/s may be playing an effect. However, a systematic review meta-analysis in men did not clearly show a significant association between testosterone use and higher risk of venous thromboembolism (94).

On the other hand, at normal physiological levels, androgen actions are necessary for a range of biological processes, including protein synthesis and cardiomyocyte metabolism. Androgens also induce other hemodynamic consequences, including vascular bed relaxation, thus reducing after-load and rapidly increasing cardiac contractility, which increases cardiac output (95). In humans, the effect of a 3-year testosterone administration did not increase atherosclerosis progression (96); however, another study showed that testosterone treatment of elderly men increased the volume of coronary artery plaques (97). The effects of androgen supplementation on plasma lipids depend on the dose, the route of administration and the subject population. In patients with congestive heart failure, testosterone would exert a beneficial role by improving functional capacity, cardiovascular parameters and quality of life (98). Interestingly, testosterone replacement therapy can reduce circulating levels of inflammatory mediators, including interleukin (IL)-1β and tumor necrosis factor α (TNF-α), as well as total cholesterol in patients with simultaneous coronary artery disease and testosterone deficiency (99, 100). The possible health risks and benefits of long-term testosterone replacement on older men with andropause caused by reduced testosterone concentrations are unknown. An interesting hypothesis has been postulated by Herring et al. suggesting that testosterone may simultaneously benefit and harm the cardiovascular system by different pathways (101). Caminiti et al. (102) reported that in elderly patients with congestive heart failure, testosterone replacement therapy improves functional capacity in, large-muscle strength, and glucose handling. The improvement of functional capacity and muscular strength are correlated with the higher plasma testosterone levels (102).

Hypertension is a risk factor for developing cardiovascular diseases. In adult men, hypertension is more frequent and occurs earlier than in women of similar age (103–105). In men, blood pressure rise has been associated with the effects and differences of sex-related steroid hormones. The different ranges in blood pressure in men, compared to women, remain until 60 years of age. Various epidemiological studies have reported that in men under 60 years old the systolic blood pressure is 6–7 mm Hg higher than in women, while diastolic pressure is higher by 3–5 mm Hg (106). On the other hand, in women over 60 years of age, blood pressure gradually increases, reaching a similar prevalence than in elderly men. The reduction of estrogens and the change in the estrogen/androgen ratio seems to be relevant for the increase in blood pressure in postmenopausal women (107, 108). An inverse relationship between systolic pressure and plasma testosterone levels has been reported in men, and an increased prevalence of hypertension in men with decreased free circulating androgens (104). The positive results of testosterone replacement are well documented. In randomized, double-blind, case-control clinical studies, the administration of hormones was associated with reduction of vascular tone (109). A beneficial role of testosterone was found in patients with congestive heart failure, by improving functional capacity, cardiovascular parameters, and quality of life (98). Several reports have suggested that testosterone vasodilatory action is mediated by the smooth muscle cell through ion channel modulation, modulating either potassium channel opening and/or calcium channel inactivation (110).

ANDROGEN ACTIVATES INTRACELLULAR PLAYERS RELATED TO CARDIAC METABOLISM

The heart demands a continuous supply of energy to maintain muscle excitation-contraction coupling, and other intracellular adaptations, including fine-tuning in the expression of genes, ion homeostasis, signaling pathways, energetic balance and survival signals (58, 63, 111). Under normal conditions, cardiomyocytes prompt and effectively decode metabolic signals to evoke intracellular settings that improve cardiac functions to maintain an adequate energy balance that preserves work output and efficiency of the heart (112, 113). In the fetal period, glucose is the main energetic substrate for ATP generation in the heart, switching to fatty acid in adults to adjust to increased energy demands (63). Thus, in adult cardiomyocytes, under normal conditions, ATP is mostly produced by fatty acid β-oxidation. Glucose represents another substrate metabolized by glycolysis. Fatty acids are transported into the mitochondria by the enzyme carnitine palmitoyl transferase 1 (CPT-1). Glycolysis requires glucose uptake, which occurs in cardiac cells through glucose transporter 1 (GLUT1) and GLUT4 (113). Inside the cell, glucose can be phosphorylated by hexokinase and further metabolized to pyruvate. Both, β-oxidation and glycolysis produce acetyl-CoA to generate NADH and FADH2 via the citric acid cycle. These metabolites are later used by mitochondria to generate ATP through the electron transport chain. Aerobic respiration pathways by oxidative phosphorylation, produces up to 60% of their energy from fatty acid and triglyceride metabolism, 35% from carbohydrate metabolism, and 5% from amino acid metabolism. These metabolic pathways are regulated through substrate/product ratio, rate of enzyme action and gene expression of metabolic enzymes and transporters (9, 113).

Preference in energy substrate utilization may change in response to substrate availability or metabolic deregulation in cardiomyocytes (9, 113, 114). Under testosterone stimulation, the heart experiences a series of adaptive processes that enable acute metabolic changes for functional demands. If demand for increased effort is repeated or continuous, structural and metabolic changes occur (115). Dynamic adjustments of energy-generating machinery under either low- or high-testosterone inputs compel critical adaptive responses from cardiomyocytes to maintain work output and efficiency of the heart (63, 116, 117). Disturbed feedback between energy requirements and production impairs mitochondrial function and energetic efficiency of cardiomyocytes (118–120).
Testosterone Improves Mitochondrial Function in Cardiac Cells

Transcriptional control of mitochondrial energy-generating machinery involves coordinated expression of proteins from two distinct genomes. Due to the limited coding capacity of mitochondrial DNA, nuclear encoded genes are also required (121). Mitochondrial enzymes are regulated through allosteric, post-translational, and transcriptional modifications (122). Testosterone regulates the expression of mitochondrial genes encoded by the nuclear genome and also, through direct action on mitochondria (123–125). Thus, by regulating cytosolic and mitochondrial pathways, testosterone exerts metabolic functions, with a possible feedback system between energy-producing mechanisms and cardiometabolic actions of testosterone in cardiomyocytes. Previous studies have shown that testosterone enhances the expression of mitochondria-encoded subunits of the respiratory chain, modulating mitochondrial respiratory function promoting functional efficiency (57, 126). In addition, androgens have direct interactions with respiratory chain complexes (123). In skeletal muscle cells, overexpression of androgen receptors increases mitochondrial enzyme activities and oxygen consumption (127). Following orchiectomy, young male mice show a decrease in the expression of genes associated with energy metabolism and oxidative phosphorylation, a phenotype that was reversed by testosterone treatment (61). With advancing age, androgen levels decrease and cardiac cells exhibit less mitochondrial number and lower energy production efficiency (57).

Androgen receptor signaling controls the transcription of several metabolic genes by engaging nuclear coactivator and corepressor proteins (128). In cardiac cells, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) stimulates mitochondrial biogenesis (129). PGC-1α is associated with cardiac energy metabolism through its upstream regulators and downstream targets (130) and it is highly expressed in the heart (131). The PGC-1α N-terminal domain interacts with proteins containing histone acetyltransferase activity, which allows remodeling of chromatin structure and transcriptional activation (132). Adjacent to the N-terminus, PGC-1α contains a regulatory domain with a LXXLL motif that interacts with nuclear receptors (133, 134). The PGC-1α C-terminus recruits proteins that facilitate its interaction with the transcription initiation machinery (135). Moreover, PGC-1α also regulates cardiac metabolism coactivating several transcription factor partners, including the androgen receptor (129). Also, testosterone up-regulates transcription of the nuclear respiratory factor-1 (NRF1), which controls the expression of mitochondrial respiratory chain complex proteins (136). NRF1 promoter contains putative ARE motifs in the DNA capable of binding the androgen receptor (125). It has been proposed that testosterone has a key modulatory role over NRFs and PGC-1α modulating mitochondrial biogenesis and metabolism (137). Moreover, androgens induce transcriptional and posttranslational regulation of Drp1, a key protein in the mitochondrial fission machinery (57, 123, 138). In contrast, low testosterone levels are associated with reduced expression of mitochondrial respiratory genes (126). In young male mice orchiectomy reduces the expression of genes associated with energy metabolism, oxidative phosphorylation, and ubiquinone pathways (139). Androgen receptor overexpression in cardiomyocytes increases mitochondrial enzyme activities and oxygen consumption (139). Testosterone administration, together with low-intensity physical exercise, increases mitochondrial biogenesis, increasing mitochondrial quality, and enhancing spontaneous physical activity, respiration and muscle mass (70). Therefore, the expression of metabolic genes related to testosterone may represent an important therapeutic modality to prevent or treat age- and gender-related cardiac diseases.

AMPK and Cardiac Metabolism

AMPK is a serine/threonine kinase considered a fundamental intracellular energy sensor that regulates cell metabolism (6). AMPK is activated in response to physiological or pathological stimuli that reduce cell energy levels, by sensing the AMP/ATP ratio (140). AMPK modulates the activity of acetyl-coenzyme carboxylase, which in turn affects the levels of malonyl-coenzyme A, which is a key cellular energy regulator. AMPK coordinates metabolic pathways by limiting ATP expenditure and promoting ATP production to adjust to energy demands. In general, AMPK stimulates catabolic processes (141). Thus, AMPK promotes: (1) fatty acid β-oxidation, increasing their input to mitochondria and by activating enzymes such as carnitine palmitoyltransferase-1; (2) Glycolysis, increasing glucose uptake by GLUT4 and activating enzymes such as phosphofructokinase-2. Furthermore, activated AMPK can deliver energy status information through transcription factors to regulate gene expression of key proteins related to energy producing routes (142). A recent report has indicated that intramuscular injections of testosterone increase the expression and phosphorylation of AMPKα in adipose tissue and skeletal muscle biopsies of hypogonadal patients; these findings suggest that testosterone therapy may improve insulin sensitivity in obesity-associated hypogonadotropic hypogonadism men (143).

It has been well accepted that AMPK is cardioprotective (6). AMPK deficiency exacerbates cardiac necrosis and apoptosis following ischemic-reperfusion injury in transgenic mice expressing a dominant negative form of AMPK. Furthermore, the hearts of these mice show loss of contractile force and low ATP levels, suggesting that AMPK plays a crucial role in cardiac function (144, 145). Additionally, AMPK activation with AICAR blocks cardiac hypertrophy induced by several pro-hypertrophic stimuli, mainly by its inhibitory effect on the mTORC1 pathway (146). Metabolism during compensated cardiomyocyte growth implicates that anabolic processes are associated with controlled catabolic processes. In a prior work, we reported that stimulation of cardiomyocytes with testosterone during a short-time (<15 min) increases AMPK phosphorylation through CaMKII in a concentration- and time-dependent manner (80). Once AMPK is activated, GLUT4 translocation to the plasma membrane increases, thus increasing glucose uptake (147). Therefore, increased glucose uptake and
utilization may be an adaptive response, because ATP production from glucose consumes less oxygen than that from fatty acids.

Integrated Metabolic Actions of Testosterone and the AMPK/PGC-1α Axis in Cardiomyocytes

Metabolic information obtained through cytosolic energy sensors must be decoded by specific downstream metabolic pathways to improve energy production capacity. Moreover, PGC-1α interacts physically and functionally with well-known transcription factors involved in cardiomyocyte metabolism and growth (135). In fact, proximal PGC-1α promoter has different putative DNA binding sites to bind transcription factors involved in re-expression of gene programs during cardiac metabolism and cardiomyocyte growth, such as GATA4 and Myocyte-enhancer factor 2 (MEF2). Mutations in these transcription factors affect PGC-1α promoter activity (148, 149). Some authors have reported that MEF2C and histone deacetylase 5 (HDAC5) have both, positive and negative modulation of PGC-1α expression (135). Thus, PGC-1α represents a metabolic regulator by modulating gene expression and cell growth, suggesting that the activation of the AMPK-PGC-1α pathway is critical for the metabolic actions of androgens in the heart.

PGC-1α is activated by exposure to cold, fasting, exercise and various stimuli that promote oxidative metabolism (150, 151). Signaling pathways associated with these stimuli include p38 MAP kinase, β-adrenergic/cAMP, nitric oxide, AMPK, and CaMKII. These diverse pathways modulate PGC-1α activity by increasing PGC-1α expression, nuclear transactivation and its downstream regulated genes (141, 152, 153). In the heart, PGC-1α expression increases sharply at birth, coincident with a perinatal shift from glucose metabolism to fat oxidation (154). Different reports have indicated that low PGC-1α expression correlates with pathological energy mechanisms and heart failure (153, 155). In young or ovariectomized animals models, sex steroids control mitochondrial energy production modulating the transcriptional and post-transcriptional machinery (123).

In the heart of neonatal mice, overexpression of PGC-1α increases total mitochondrial mass (130, 156). In contrast, in adult mouse hearts, PGC-1α overexpression results in modest mitochondrial biogenesis, followed by cardiomyopathy associated with mitochondrial abnormalities (157). PGC-1α, together with PPARY, coactivates the enhancement of genes involved in the fatty acid β-oxidation pathway (116, 133, 158). Conversely, PGC-1α induces GLUT4 expression in skeletal muscle, resulting in increased glucose uptake, which, in turn, significantly reduces plasma glucose levels (159). Furthermore, normal mitochondria biogenesis is activated in response to changes in the ATP/ADP ratio and subsequent AMPK activation, which increases PGC-1α expression (156, 160). AMPK activation by AICAR increases β-oxidation of fatty acids by direct action on β-oxidation enzymes and by PGC-1α and PPARY activation. Additionally, in response to chronic energy deprivation, mitochondrial biogenesis is dependent on AMPK (6, 141). In prostate cancer cells, testosterone promotes cell growth in an AMPK-dependent pathway, which allows metabolic changes by increasing PGC-1α-dependent mitochondrial biogenesis (141, 161). In mice, treatment with testosterone increases PGC1α expression levels (136), while low levels of testosterone are associated with reduced expression of PGC-1α (125, 162). Furthermore, androgen receptor-deficient mice express low levels of PGC-1α (162).

Effect of Sirtuins on Cardiac Metabolism

Protein acetylation/deacetylation play central roles in modulating cellular machinery related to metabolism (163). Mitochondria-mediated energy pathways contain acetylated proteins implicated in the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid β-oxidation and glucose metabolism (163). In the heart, the protein sirtuin 3 (SIRT3) is a key regulator of mitochondrial function that adjusts energy availability, fuel sources and metabolic enzymes (164). Abnormal function of SIRT3 in pathophysiological processes is considered as the underlying mechanism of cardiovascular diseases (165–168). In cardiac cells SIRT3 is a stress-responsive deacetylase that protects these cells from damage induced by genotoxic and oxidative stress-mediated agents. It has been shown that the increased expression of SIRT3 protects murine cardiomyocytes from genotoxic and oxidative stress-mediated cell death (169, 170). Current evidence associates impaired SIRT3 activity with higher risk of aging-associated illnesses like cardiovascular disease (164, 171, 172). Therefore, altered expression of SIRT3 may be the consequence of impaired upstream metabolic signaling that influences PGC-1α activity, including AMPK and SIRT1 (129, 154). SIRT3 KO mice show cardiac mitochondrial function impairment and signs of premature aging (173). In addition, mice display contractile defects, such as a decrease of cardiac power, cardiac output, and developed pressure (171, 174). Porter et al. reported that decreased SIRT3 levels might raise the sensitivity of both heart cells and adult cardiac muscle to ischemia-reperfusion injury. This might contribute to a higher level of ischemia-reperfusion damage in the aged heart (175). Moreover, testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes (176).

AMPK/PGC-1α interaction is critical for the up-regulation of mitochondrial function and SIRT3 activity (177, 178). SIRT3 can also deacetylate and activate liver kinase B1 (LKB1) that, on its own, increases the activity of AMPK. NAD+ is considered an inhibitor of cardiac hypertrophic signaling pathways and it is regulated to prevent cardiac hypertrophy and heart failure (6, 140). Interestingly, disruption of the CD38 gene in male mice enhances cardiac function by elevating serum testosterone levels and producing a general increase in NAD+ tissue concentration (179). A key metabolic regulator is AMPK, which controls mitochondrial homeostasis and metabolism by acting as an energy sensor (150, 159, 180). Moreover, the cytosolic deacetylase SIRT1 activates PGC-1α in cardiomyocytes to increase transcriptional activity and mitochondrial biogenesis (181). In the nucleus, androgen receptor signaling stimulates PGC-1α to increase the expression of various nuclear-encoded mitochondrial genes, including oxidative phosphorylation genes (137). SIRT3 is an important regulator of energy homeostasis and basal production of ATP. The heart expresses high
levels of SIRT3, leading to a marked reduction of ATP in its absence (182). However, SIRT3 can boost ATP levels in mitochondria due to the acetylation process, which diminishes with age (178). Aging-induced tissue fibrosis is mediated by Glycogen Synthase Kinase 3β (GSK3β) (183). Therefore, deacetylation of GSK3β by SIRT3 might reduce the tissue fibrosis associated to aging (165). Moreover, mitochondrial DNA content and activity, protein synthesis, oxidative capacity and ATP production are impaired by oxidative stress and free radicals. Regulated ROS production mediates redox signaling of transcription factors involved in mitochondrial biogenesis. However, an excess in the generation of mitochondrial ROS promotes oxidative stress that causes dysfunction and reduces mitochondrial biogenesis. Interestingly, SIRT3 reduces cardiac hypertrophy through increasing Foxo3α-dependent antioxidant defense mechanisms, suggesting that SIRT3 is an endogenous negative regulator of cardiac hypertrophy that protects the heart by suppressing cellular levels of ROS in mice (165). Thus, age-induced oxidative stress could be the underlying process that impairs mitochondrial biogenesis and downregulation of genes required for mitochondrial function and biogenesis induced by testosterone in cardiac cells.

A decline in cardiometabolic adaptations possibly reflects several age-associated changes, including a decrease in circulating testosterone levels (184). Thus, prevention of androgen deficiency might improve cardiovascular outcomes and extend longevity. Because cardiomyocytes must meet energy demands with fuel supply under switching nutrient conditions, the responses to androgen signaling in the elderly would not be able to produce enough ATP for anabolic effects, resulting in reduced energetic efficiency in cardiomyocytes. As was mentioned above, despite that testosterone controls gene-expression programs related to energy metabolism—a crucial requisite for the induction of energy-producing mechanisms in mitochondria—there is limited information about the signaling pathways interlinking metabolism and growth mediated by changes in circulating plasma testosterone levels and their effect on cardiometabolic homeostasis.

Testosterone Metabolites in Aging

Testosterone can be transformed by the enzyme 5α reductase to 5α-dihydrotestosterone (DHT) mainly in skin, liver, hair follicles and prostate, where it acts locally (74). DHT is considered one of the main endogenous androgens (185). DHT binds to androgen receptors and induces the transcription of gene targets like testosterone. However, the dissociation constant of DHT-androgen receptor complex is 2–5 times lower than testosterone adduct, while DHT has a 10-fold higher potency on the signaling, which means that the effects of DHT and testosterone are different, but complementary (75).

Some reports suggest that DHT induces cardiac hypertrophy in cultured rat cardiomyocytes (186, 187) and in a rat model (188). On the other hand, treatment with finasteride, which inhibits the transformation of testosterone to DHT, reduces both cardiac hypertrophy and remodeling (187, 189). Evidence has indicated that the conversion of testosterone to DHT is required for mediating some of the effects of androgen on the cardiovascular system. In patients with mutations in type 2 5α reductase enzyme or finasteride treatment, the DHT levels are lower than healthy men but the androgenic phenotype is preserved. Nonetheless, these patients still show significant levels of circulating DHT. These results suggest that the conversion of testosterone to DHT is not essential for mediating its effects on muscle mass and strength (190). However, other studies have indicated that DHT may be an important risk predictor for cardiovascular disease in aging men. Healthy androgen levels are associated to survival and the total mortality of senior men displaying midrange concentrations of T and DHT is lower than men with low androgen levels, whereas those with higher DHT levels have shown lower ischemic heart disease mortality (191).

In men, estrogen levels increase during aging (192). Testosterone is converted to estradiol by the aromatase enzyme (193, 194), which is mainly expressed in adipose tissue (195). However, other factors also increase circulating estrogen levels, including impaired liver function, zinc deficiency, obesity, excessive use of alcohol and, environmental estrogens. Furthermore, estrogen levels are increased in men by various medications, such as statins and some blood pressure medications, antidepressants, and nonsteroidal anti-inflammatory drugs. In the case of obesity, aromatase activity increases estrogen levels and reduces testosterone levels (196). In turn, the generated estradiol exerts a negative feedback effect on LH secretion, further reducing plasma testosterone concentrations (192). In healthy men, pharmacological inhibition of aromatase reduces insulin sensitivity. Furthermore, patients with CYP19 aromatase mutations display reduced muscle and fat mass, and suffer insulin resistance (69, 196). Experimental gene selection data suggest that aromatization of testosterone to estradiol may be important in mediating the effects of androgens on body composition. The effects of testosterone on lean mass, muscle size, and strength were not reduced when its conversion to estradiol was inhibited by the treatment with aromatase inhibitors. However, the effects of testosterone on fat mass and sexual desire seemed to be mediated by estradiol (197). These results suggest that the different effects of sex hormones are complex and dependent on the relative levels of testosterone, DHT and estradiol, factors associated with health in elderly men. More studies are required to evaluate the mechanism by which androgens might influence the cardiovascular system in older men, in order to determine the risks and benefits of clinical intervention.

Given the important roles of androgens in normal physiology of men, abnormal low levels must be considered as one of the main causes implicated in several disorders and pathological conditions in aging men. In the context of human disease relevance, androgen deficiency treated with testosterone prescriptions at physiological concentrations has been associated with lower cardiometabolic risk and treatment outcomes. In 2015 the international expert consensus panel suggested that we need more research regarding the cardioprotective benefits of testosterone replacement, implying that there is enough evidence about the safety of testosterone therapy in hypogonadal and aging men and that the future research should be to study the suitable therapeutic options for age-related cardiovascular diseases (198).
CONCLUSION AND FUTURE RESEARCH

Age-related cardiometabolic actions of testosterone are tightly regulated by its circulating plasma concentrations. This is an essential aspect regarding male physiology, since testosterone levels decline in older men, concomitantly increasing metabolic- and gender-related cardiovascular diseases. Further research on cardiometabolic testosterone effects are required to determine their effective cardiac properties. By applying controlled, randomized studies, working to attain physiological testosterone concentrations, we will obtain new data to understand the role of testosterone as a metabolic modulator that can improve ATP production, and, in parallel, increase cardiac performance. These further studies on the divergent energy-controlling mechanisms that mediate testosterone effects and testosterone-related metabolic gene expression, may represent an important therapeutic modality for preventing or treating gender-related cardiac diseases.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT) Grant 1151118 (to ME) and 1190406 (to PL).
patients with metabolic syndrome. *Korean J Urol.* (2011) 52:566–71. doi: 10.4111/jku.2011.52.8.566
29. Kloner RA. Testosterone replacement therapy: new data on efficacy and cardiovascular safety. *J Cardiovasc Pharmacol Ther.* (2016) 22:54–5. doi: 10.1177/1074284916646938
30. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. *J Clin Endocrinol Metab.* (2002) 87:589–98. doi: 10.1210/jcem.87.2.28201
31. Shores MM, Moceri VM, Gruenewald DA, Brodkin KI, Matsumoto AM, Kivlahan DR. Low testosterone is associated with decreased function and increased mortality risk: a preliminary study of men in a geriatric rehabilitation unit. *J Am Geriatr Soc.* (2004) 52:2077–81. doi: 10.1111/j.1532-5415.2004.52562.x
32. Handelman DJ, Liu PY. Andropause: invention, prevention, rejuvenation. *Trends Endocrinol Metab.* (2005) 16:39–45. doi: 10.1016/j.tem.2005.01.002
33. Schaap LA, Pluijm SM, Deeg DJ, Penninx BW, Nicklas BJ, Lips P, et al. Low testosterone levels and decline in physical performance and muscle strength in older men: findings from two prospective cohort studies. *Clin Endocrinol.* (2008) 68:42–50. doi: 10.1111/j.1365-2265.2007.02997.x
34. Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. *Diabetes Care.* (2000) 23:690–4. doi: 10.2337/diacare.23.4.690
35. Carlstrom K, Eriksson A, Stege R, Rannevik G. Relationship between serum testosterone and sex hormone-binding globulin in adult men with intact or absent gonadal function. *Prog Cardiovasc Dis.* (2010) 52:107–16. doi: 10.1016/j.pcad.2010.01.002
36. Eichholzer M, Barbir A, Basaria S, Dobs AS, Feinleib M, Guallar E, et al. Adverse events associated with testosterone administration. *Circulation.* (1998) 97:1500–11. doi: 10.1161/01.CIR.97.15.1500
37. Van Cauter E, Ambrosini A, Karssemeijer N, Rakos J, Bajema IM, Van Der Schouw YT, et al. Testosterone modulates gene expression pathways regulating nutrient balance, growth, and energy metabolism. *Horm Metab Res.* (2013) 45:618–26. doi: 10.1055/s-0033-1350599
38. Vorona L, Irish M, Zong H, Feldman HA. Testosterone and metabolic syndrome: a meta-analysis study. *J Sex Med.* (2011) 8:272–83. doi: 10.1111/j.1743-6191.2010.01991.x
39. Kivlahan DR, Horton ES, McKinlay JB. Testosterone and cardiovascular disease in men: a meta-analysis study. *J Sex Med.* (2011) 8:1195–202. doi: 10.1111/j.1743-6191.2011.02195.x
40. Haffner SM. Sex hormones, obesity, fat distribution, type 2 diabetes and insulin resistance: epidemiological and clinical correlation. *Int J Obes Relat Metab Disord.* (2000) 24(Suppl 2):S56–8. doi: 10.1038/sj.ijo.0801279
41. Borst SE, Shuster JJ, Zou B, Ye F, Jia H, Wokhu A, et al. Cardiovascular actions of testosterone and other steroids in rat cardiomyocytes: a systematic review and meta-analysis. *BMC Med.* (2014) 12:211. doi: 10.1186/1741-7015-12-211
42. Giagulli VA, Triggiani V, Corona G, Carbone D, Licchelli B, Tafaro E, et al. Evidence-based medicine update on testosterone replacement therapy (TRT) in male hypogonadism: focus on new formulations. *Curr Pharm Des.* (2011) 17:1500–11. doi: 10.2174/1381612117961971760
43. Borst SE, Shuster JJ, Zou B, Ye F, Jia H, Wokhu A, et al. Cardiovascular toxicity of anabolic steroids. *Postgrad Med.* (2011) 95:2790–9. doi: 10.1210/jc.2009-2680
44. Kelly DM, Jones TH. Testosterone: a metabolic hormone in health and disease. *J Endocrinol.* (2013) 217:R25–45. doi: 10.1530/JEO-12-0455
45. Parker D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. *Diabetes Care.* (2007) 30:911–7. doi: 10.2337/dc06-1426
46. Dayton RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Siders K, et al. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. *Mayo Clin Proc.* (2007) 82:29–39. doi: 10.4065/M0025-6196(11)60964-6
47. Haddad RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Siders K, et al. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. *Mayo Clin Proc.* (2007) 82:29–39. doi: 10.4065/M0025-6196(11)60964-6
48. Haddad RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Siders K, et al. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. *Mayo Clin Proc.* (2007) 82:29–39. doi: 10.4065/M0025-6196(11)60964-6
...Simental JA, Sar M, Wilson EM. Domain functions of the androgen receptor. *Endocr Rev.* (2008) 29:258–79. doi: 10.1210/er.2007-0168

71. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger A, et al. Androgen receptor-interacting nuclear proteins. *Biochem Soc Trans.* (2000) 28:401–5. doi: 10.1042/bst0284001

72. Janne OA, Moilanen AM, Poukka H, Rouleau N, Karvonen U, Kotajärvi N, et al. Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. *Ann N Y Acad Sci.* 1992. doi: 10.1111/j.1749-6632.1992.tb04001.x

73. Sim털ental JA, Sar M, Wilson EM. Domain functions of the androgen receptor. *J Steroid Biochem Mol Biol.* (1992) 43:37–41. doi: 10.1006/jsbm.1992.0015

75. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. *Andrology* (2012) 4:37–41. doi: 10.1111/j.1749-6632.2012.00095.x

77. Heinlein CA, Chang C. The roles of androgen receptors and androgen binding proteins in nongenomic androgen actions. *Biochem Soc Trans.* (2000) 28:401–5. doi: 10.1042/bst0284001

78. Vicencio JM, Ibarra C, Estrada M, Chiong M, Soto D, Parra V, et al. Mammalian expression of the human sex steroid-binding protein of plasma (SBP or SHBG) and testis (ABP). Characterization of the recombinant protein. *Eur J Biochem.* (1992) 210:89–4.

84. Hammes A, Andreassen TK, Spoelgen R, Raila J, Hubner N, Schulz H, et al. Haemoglobin in middle-aged and older men. *Clin Endocrinol.* (2011) 74:572–8. doi: 10.1111/j.1365-2265.2010.03951.x

88. English KM, Mandour O, Steeds RP, Diver MJ, Jones TH, Channer KS. Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. *Eur Heart J.* (2001) 22:890–4. doi: 10.1053/euhj.1999.1877

92. Oskui PM, French WJ, Harrington MJ, Mayeda GS, Burstein RL, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in octocephymized male rats. *Cardiovasc Res.* (2003) 57:28–36. doi: 10.1016/S0008-6363(02)00673-9

96. Mirdamadi A, Garakyaraghi M, Pourmoghaddas A, Bahmani A, Mahmoudi H, Dargahi H. Beneficial effects of testosterone therapy on functional exercise capacity, cardiovascular parameters, and quality of life in patients with congestive heart failure. *Biomed Res Int.* (2014) 2014:392432. doi: 10.1155/2014/392432

98. Maldini CJ, Pugh PJ, Jones RD, Jones TH, Channer KS. Testosterone as a protective factor against atherosclerosis–immunomodulation and influence upon plaque development and stability. *J Endocrinol.* (2013) 217:378–80. doi: 10.1677/JOE-13-00443

100. Malik CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. *Clin Endocrinol Metab.* (2004) 39:3133–8. doi: 10.1210/jc.2003-0310069

101. Haring MJ, Uitterdijk PM, Haverkamp R, Kalsbeek AJ, van der Geest KS, Channer KS. Testosterone and the cardiovascular system: a comprehensive review of the basic science literature. *J Am Heart Assoc.* (2013) 2:e000271. doi: 10.1161/JAHA.113.000271

102. Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. *Cardiovasc Res.* (2002) 53:688–708. doi: 10.1016/S0008-6363(01)00527-2

103. Fogari R, Preti P, Zoppini A, Fogari E, Rinaldi A, Corradi L, et al. Serum testosterone levels and arterial blood pressure in the elderly. *Hypertens Res.* (2005) 28:625–30. doi: 10.1209/hypex.2005.28.625
119. Abel ED, Doenst T. Mitochondrial adaptations to physiological vs. functional responses in blood pressure regulation. *Kidney Blood Press Res.* (2008) 31:71–9. doi: 10.1159/0001191417

120. Stamler J, Stamler R, Riedlinger WF, Algere G, Roberts RH. Hypertension screening of 1 million Americans. Community Hypertension Evaluation Clinic (CHEC) program, 1973 through 1975. *JAMA.* (1976) 235:2299–306. doi: 10.1001/jama.1976.03290170036062

121. Akkad AA, Halligan AW, Abrams K, al-Azzawi F. Differing responses in pathological cardiac hypertrophy. *Blood Press Res.* (2003) 10:19–28. doi: 10.1080/01940109728664156

122. Villena JA, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F. Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory coactivator binding groove. *Mol Cell Endocrinol.* (2012) 352:57–69. doi: 10.1016/j.mce.2011.08.007

123. Doeg KA, Polomski LL, Doeg LH. Androgen control of mitochondrial function and impaired granulosa cell differentiation in androgen receptor knockout mice. *Int J Mol Sci.* (2015) 16:9831–49. doi: 10.3390/ijms16059831

124. Wang RS, Chang HY, Kao SH, Kao CH, Wu YC, Yeh S, et al. Abnormal mitochondrial function and impaired granulosa cell differentiation in PC-3 prostatic carcinoma cells. *J Mol Endocrinol.* (2004) 33:121–32. doi: 10.1677/jme.0.0330121

125. Barrientos et al. Age-Related Cardiometabolic Actions of Testosterone. *Horm Metab Res.* (2009) 41:560–9. doi: 10.1055/s-0039-1685491

126. Li YX, Jiang B, Li Y, Xia F, Yu J, Yang LZ, et al. Mitochondrial apoptotic pathways: a mechanism for low androgen-induced vascular endothelial injury in male rats. *Horm Metab Res.* (2011) 43:374–7. doi: 10.1055/s-0031-1271745

127. Fernando SM, Rao P, Niel L, Chatterjee D, Stagliar M, Monks DA. Myocyte androgen receptors increase metabolic rate and improve body composition by reducing fat mass. *Endocrinology.* (2010) 151:3125–32. doi: 10.1210/en.2010-0018

128. de Vos et al. Androgen receptor coregulators: recruitment via the androgen receptor knockout mice. *J Biol Chem.* (1998) 273:12629–34. doi: 10.1074/jbc.273.20.12629

129. Duncan JG, Finck BN. The PPARalph3-PGC-1alpha axis controls cardiac energy metabolism in healthy and diseased myocardium. *PPAR Res.* (2008) 2008:253817. doi: 10.1155/2008/253817

130. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. *J Clin Invest.* (2000) 106:847–56. doi: 10.1172/JCI10268

131. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. *Cell Metab.* (2005) 1:239–71. doi: 10.1016/j.cmet.2005.03.002

132. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator network that controls energy expenditure. *Mol Cell Biol.* (2009) 29:10243–50. doi: 10.1128/MCB.01221-09

133. Tian R. Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart. *Curr Hypertens Rep.* (2009) 11:904–19. doi: 10.1007/s11906-009-0052-7

134. Villena JA, Vinas O, Mampel T, Iglesias R, Giralt M, Villarroya F. Regulation of mitochondrial biogenesis in brown adipose tissue: nuclear respiratory factor-2/GA-binding protein is responsible for the transcriptional regulation of the gene for the mitochondrial ATP synthase beta subunit. *Biochim J.* (1998) 331:121–7. doi: 10.1042/bj3310121

135. Doeg KA, Polomski LL, Doeg LH. Androgen control of mitochondrial and nuclear DNA synthesis in male sex accessory tissue of castrate rats. *Endocrinology,* (1972) 90:1633–8. doi: 10.1210/endo-90-6-1633

136. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. *Front Endocrinol.* (2012) 3:9831–49. doi: 10.3390/ijms16059831

137. Duncan JG, Finck BN. The PPARalph3-PGC-1alpha axis controls cardiac energy metabolism in healthy and diseased myocardium. *PPAR Res.* (2008) 2008:253817. doi: 10.1155/2008/253817
alpha in men with hypogonadism and Type 2 diabetes. *J Clin Endocrinol Metab.* (2020) 105:dgz288. doi: 10.1210/clinem/dgz288

144. Pang T, Rajapurohitam V, Cook MA, Karmazyn M. Differential AMPK phosphorylation sites associated with phenylephrine vs. antihypertrophic effects of adenosine agonists in neonatal rat ventricular myocytes. *Am J Physiol Heart Circ Physiol.* (2010) 298:H1382–90. doi: 10.1152/ajpheart.00424.2009

145. Meng R, Pei Z, Zhang A, Zhou Y, Cai X, Chen B, et al. AMPK activation enhances PPARalpha activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. *Arch Biochem Biophys.* (2011) 511:1–7. doi: 10.1016/j.abb.2011.04.010

146. Li Y, Chen C, Yao F, Su Q, Liu D, Xue R, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. *Arch Biochem Biophys.* (2014) 558:79–86. doi: 10.1016/j.abb.2014.06.023

147. Klip A. The function of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. *PLoS ONE.* (2012) 7:e30915. doi: 10.1371/journal.pone.0030915

148. Desjardins CA, Naya FJ. The function of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. *J Cardiovasc Dev Dis.* (2016) 3:26. doi: 10.3390/jcd3003026

149. Leick L, Hellsten Y, Fentz J, Lynghy SS, Wozjatzewski JF, Hidalgo J, et al. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. *Am J Physiol Endocrinol Metab.* (2009) 297:E92–103. doi: 10.1152/ajpendo.0076.2009

150. Cortes R, Rivera M, Rosello-Lleti E, Martinez-Dolz L, Almenar L, Azorin I, et al. Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. *PLoS ONE.* (2008) 3:e3614. doi: 10.1371/journal.pone.003614

151. Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, et al. Transcriptional coactivators PGC-1alpha and PGC-1beta control overlapping programs required for perinatal maturation of the heart. *Dev Biol.* (2011) 353:162–77. doi: 10.1016/j.ydbio.2011.04.010

152. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Roles of histone deacetylation and AMP kinase in regulation of heart size. *Can J Physiol Pharmacol.* (2016) 94:72–80. doi: 10.1139/cjpp-2015-0152

153. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 suppresses age-related cardiac hypertrophy. *Aging Cell.* (2010) 9:592–606. doi: 10.1111/j.1474-9726.2010.00586.x

154. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Roles of histone deacetylation and AMP kinase in regulation of heart size. *Aging Cell.* (2010) 9:592–606. doi: 10.1111/j.1474-9726.2010.00586.x

155. Tennakoon JB, Shi Y, Han JI, Tsouko E, White MA, Burns AR, et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. *Oncogene.* (2013) 32:5251–61. doi: 10.1038/onc.2013.463

156. Bause AS, Haigis MC. SIRT3 regulation of mitochondrial oxidant stress. *Exp Gerontol.* (2013) 48:634–9. doi: 10.1016/j.exger.2012.08.007

157. Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock M, Cimolai MC, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. *Basic Res Cardiol.* (2015) 110:36. doi: 10.1007/s00395-015-0493-6

158. Yang W, Gao B, Li N, Wang J, Qiu C, Zhang G, et al. SIRT3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. *Biochim Biophys Acta.* (2017) 1863:1973–83. doi: 10.1016/j.bbagen.2016.10.021

159. Hafern AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of Cytb at lysine 166 suppresses age-related cardiac hypertrophy. *Aging.* (2010) 2:914–23. doi: 10.18632/aging.100252

160. Koentges C, Pfeil K, Meyer-Steenbuch M, Lother A, Hoffmann MM, Odening KE, et al. Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. *Can J Physiol Pharmacol.* (2016) 94:72–80. doi: 10.1139/cjpp-2015-0152

161. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. *Am J Physiol Heart Circ Physiol.* (2014) 306:H1602–9. doi: 10.1152/ajpheart.0027.2014

162. Altieri P, Barisone C, Lazzarini E, Garuti A, Beznate GP, Canepa M, et al. Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes. *J Am Heart Assoc.* (2016) 5:e002383. doi: 10.1161/JAHA.115.002383

163. Giralt A, Hondares E, Villena JA, Ribas F, Diaz-Delfin J, Giralt M, et al. Peroxisome proliferator-activated receptor-gamma co-activator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. *J Biol Chem.* (2011) 286:16958–66. doi: 10.1074/jbc.M110.23390

164. Giralt A, Villarroya F, Sirt3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. *Biochem J.* (2012) 444:1–10. doi: 10.1042/BJ20120030

165. Gan L, Jiang W, Xiao YF, Deng L, Gu LD, Guo ZY, et al. Disruption of CD38 gene enhances cardiac function by elevating serum testosterone in the male null mice. *Life Sci.* (2011) 89:491–7. doi: 10.1016/j.lfs.2011.07.020

166. Ramjiwan A, Bagchi RA, Blunt A, Albak L, Cavasin MA, Horn TR, et al. Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1alpha gene expression in hypoxia. *Am J Physiol Cell Physiol.* (2013) 304:C164–72. doi: 10.1152/ajpcell.00262.2012

167. Planavila A, Iglesias R, Giralt M, Villarroya F. Sirt3 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic...
dysregulation, and inflammation. *Cardiovasc Res.* (2011) 90:276–84. doi: 10.1093/cvr/cvq376

182. Ahn TG, Yang G, Lee HM, Kim MD, Choi HY, Park KS, et al. Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. *Biochem Pharmacol.* (2013) 85:1525–33. doi: 10.1016/j.bcp.2013.02.020

183. Frame S, Cohen P, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. *Mol. Cell.* (2001) 7:1321–7. doi: 10.1016/S1097-2765(01)00253-2

184. Hyde Z, Norman PE, Flicker L, Hankey GJ, Almeida OP, McCaul KA, et al. Low free testosterone predicts mortality from cardiovascular disease but not other causes: the Health in Men Study. *J Clin Endocrinol Metab.* (2012) 97:179–89. doi: 10.1210/jc.2011-1617

185. Swerdloff RS, Dudley RE, Page ST, Wang C, Salameh WA. Anabolic androgenic steroid-induced acute myocardial infarction with multiorgan failure. *Proc (Bayl Univ Med Cent).* (2018) 31:334–6. doi: 10.1080/08998280.2018.1460130

186. Froese N, Wang L, Luo D, Zhang M, Chen S, Wang Y, et al. Effect of testosterone on myocardial infarction in mice. *J Mol Cell Cardiol*. (2018) 122:114–24. doi: 10.1016/j.yjmcc.2018.08.011

187. Xu X, Wang L, Luo D, Zhang M, Chen S, Wang Y, et al. Effect of testosterone synthesis and conversion on serum testosterone levels in obese men. *Horm Metab Res.* (2018) 50:661–70. doi: 10.1055/a-0658-7712

188. Fleischer S, Kimura A, Hino Y, Kato Y, Nishigori H, et al. Anti-androgenic therapy with finasteride improves cardiac function, attenuates remodeling and reverts pathologic gene-expression after myocardial infarction in mice. *J Mol Cell Cardiol*. (2018) 122:114–24. doi: 10.1016/j.yjmcc.2018.08.011

189. Hossain M, Xu X, Wang L, Luo D, Zhang M, Chen S, Wang Y, et al. Effect of testosterone on myocardial infarction with multiorgan failure. *Proc (Bayl Univ Med Cent).* (2018) 31:334–6. doi: 10.1080/08998280.2018.1460130

190. Froese N, Wang L, Luo D, Zhang M, Chen S, Wang Y, et al. Effect of testosterone synthesis and conversion on serum testosterone levels in obese men. *Horm Metab Res.* (2018) 50:661–70. doi: 10.1055/a-0658-7712

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Barrientos, Llanos, Basualto-Alarcón and Estrada. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.