OCT Angiography: A promising tool in Glaucoma

Priya Saraf, Neha Sachdeva, Hage Amung
Department of Ophthalmology, Guru Nanak Eye Centre, New Delhi, India.

Abstract
Optical Coherence Tomography Angiography, a non-invasive imaging modality detects blood flow through the motion contrast generated by erythrocytes (RBC). It provides a quantitative assessment of microcirculation of the retina and choroid in various layers.

Keywords: OCTA, Glaucoma, SSADA, Vessel density, Flow index, Microvascular dropouts, Radial peripapillary slab, Choroidal slab

Introduction
Optical Coherence Tomography Angiography, a non-invasive imaging modality detects blood flow through the motion contrast generated by erythrocytes (RBC). It provides a quantitative assessment of microcirculation of the retina and choroid in various layers.

Principle
OCTA uses laser light reflectance of surface of moving red blood cells to accurately depict vessels through different segmented areas of the eye. The scan consists of multiple individual A-scans, compiled into a B-scan to produce cross-sectional structural information. Same tissue area is imaged multiple times, and differences are analyzed between scans (over time), thus permitting detection of zones containing high flow rates (with marked changes between scans) and zones with slower/ no flow (similar among scans).

OCTA Algorithms
Various commercially available OCTA devices incorporate several algorithms to interpret variances in OCT signal.

- Split spectrum amplitude decorrelation angiography (SSADA) in Angiovue, RTVue-XR SD-OCT, Optovue Inc, Fremont, CA, uses variation in intensity of OCT signal to identify blood vessels.
- Full spectrum amplitude decorrelation angiography (FS-ADA) in Spectralis OCT2 Module, Heidelberg Engineering, Heidelberg, Germany, uses variation in entire intensity spectrum of OCT signal to identify blood vessels.
- OCT Ratio analysis (OCTARA) in DRI OCT Triton, Topcon, Japan) uses full spectrum of OCT signal for blood vessel delineation, thereby preserving axial resolution.
- Optical microangiography OCTA algorithm (OMAG) in Angioplex, Cirrus HD-OCT, Carl Zeiss Meditec Inc., Dublin, CA, uses variation in intensity as well as phase difference of OCT signals for vessel delineation.

OCTA Scans and Parameters
Quantification is done using various parameters

- Vessel density: Ratio of area occupied by vessels divided by total measured area.
- Flow index: Average decorrelation value in SSADA algorithm.
- Parapapillary deep-layer microvascular dropout (MvD): Complete loss of chorio-capillaries in localized regions of parapapillary atrophy.

Figure 1: OCTA images. a) Radial peripapillary capillary (RPC) network. b) Superficial Radial vascular network in the macular region (Source: Akman A et al. Optical coherence tomography in glaucoma: A practical guide. Springer, 2018: p.351)
Deeper slab: Extends from 15 µm below inner plexiform layer to 30 µm below retinal pigment epithelium reference line in RTVue –XR SD OCT or from IPL to RPE in Cirrus HDOCT.9,11

Relevance of OCTA in Glaucoma
Functional damage in glaucoma is assessed by visual field testing and structural damage by thinning of retinal ganglion cell layer and retinal nerve fiber layer by optical coherence tomography. Ocular coherence tomography provides objective information on retinal layers’ thickness, with a high repeatability and reproducibility and has been in use both for pre-perimetric disease and diagnose progression in advanced glaucoma.13,14,19

The limitations in OCT in advanced glaucoma come from the floor effect where OCT parameters reach a base, beyond which little change is visible with increasing severity of glaucoma.14 This effect is delayed for OCTA where vessel density eventually reaches the floor, for very advanced disease. Thus, OCTA detects changes in advanced glaucoma which are invisible to OCT.

Early pre-perimetric disease also can be picked up earlier than structural OCT, with emphasis on early vascular changes.40,41

• Primary open angle glaucoma (POAG): Reduced flow index and vessel density within both Optic nerve head slab and in peripapillary region (RPC slab) have been demonstrated in eyes with POAG compared with normal. 3,15 Reduced vessel densities in superficial macular regions also have been reported with more pronounced decrease correlated with severity of disease.12,16 Choroidal slab documents deep-layer microvascular dropout in glaucomatous eyes.17,18

Vascular derangement by OCTA has been confirmed by reporting negative correlation of foveal avascular zone with inner retinal layer thickness and visual field indices.38

Normal tension glaucoma (NTG): OCTA parameters are lower with significant correlation with both OCT and visual field indices primarily with mean deviation.19,20 This finding however is not corroborated by other studies.20,21 The technology is being used to evaluate early macular circulation in open angle glaucoma, normal tension glaucoma and ocular hypertension (OHT). Impaired vasculature before significant disease has been demonstrated in both OAG and NTG with lower superficial vessel density than control normal.36 Vessel loss differences have been identified with lower deep vessel density in NTG group compared to controls and larger FAZ compared to OHT group.36

Primary angle closure glaucoma (PACG): OCTA measurements are reduced in PACG eyes especially after acute episode of angle closure.14,22,23 Mean vessel density has been found to be less in PACG eyes compared to severity matched POAG eyes.24 Inferior temporal peripapillary vessel density loss has been identified to be more in POAG eyes than PACG eyes despite similar vision and intraocular pressure.39 Angle closure eyes document more evenly distributed reduction of vessels.

• Pseudo-exfoliation glaucoma: Studies have reported greater reduction of vessel densities compared to POAG eyes of similar disease severity.25,26

• High Myopia: For glaucoma in high myopia visual field is often difficult to interpret. Shin JW et al proved OCTA to be better in linking these field parameters compared to OCT thickness. Microvasculature dropout in peripapillary choroid in high myopia eyes by OCTA aids in diagnosis, where segmentation errors make retinal nerve fiber layer thickness measures unreliable by conventional OCT.37

• Advanced glaucoma: Visual field indices show a higher concordance with OCTA than with OCT.39 This could be due to less pronounced floor effect seen in OCTA.31 Radial peripapillary capillary slab, has been found to be the better biomarker in advanced disease.32

Figure 2: Representative vascular, structural images of two eyes with mild-to-moderate and severe glaucomatous damage. a) Glaucomatous eye with mild neuroretinal rim loss, localized vascular drop-out of RPCs (yellow and green arrowheads), enlargement of foveal avascular zone FAZ and peripapillary retinal nerve fiber layer thinning. b) Glaucomatous eye with advanced cupping, widespread vascular drop-out of the RPC and macular region, irregular, enlarged FAZ and diffuse pRNFL loss (Source: Akman A et al. Optical coherence tomography in glaucoma: A practical guide. Springer, 2018: p.352)
• **Post trabeculectomy surgery:** Confirming the vascular theory, OCTA documented almost 60% improvement in peripapillary retinal microvascular post filtering surgery in POAG along with reduction in lamina cribrosa depth.\(^{27}\)

• **Anterior segment OCTA:** AS-OCTA images are found useful for objective assessment of conjunctival hyperemia and aid in understanding pathophysiology of post-trabecular aqueous humour outflow.\(^{28}\)

Limitations

- **Motion artifacts:** OCTA detects RBC movements to generate contrast. Being extremely motion sensitive, the technology is prone to motion artifacts with movements like heartbeats, respirations, saccadic eye movements, blinking causing errors.\(^{33,34,14}\) Increasing scanning speed, decreasing image area and eye tracking technology are being used to reduce these.

- **Shadowing/ masking effect:** Signal attenuation may occur due to media opacities like cataract, hemorrhages, PVD, PED creating false negative OCTA flow pattern.

- **Projection artifacts:** It is caused by superficial vessel signal projecting onto deep retinal and choroidal circulation, affecting detection of microvascular dropouts (MvD).\(^{33,34,13}\) Newer generation OCTA like projection resolved OCTA reduce this.

Conclusion

OCTA is a promising tool for diagnosing and monitoring glaucoma patients, especially in situations where OCT has limitations like advanced disease and myopia. The technology has corroborated vascular etiology of glaucoma and would be useful to identify effect of treatment on retinal blood flow parameters.

References

1. Koustenis A, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101(1):16-20

2. Spaide RF, Klangnik JM, Cooney MJ. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2015;133(1):45

3. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012;3:3127–37

4. Jia Y, Tan O, Tokayer J, Potssaid B, Wang Y, Liu J et al. Split-spectrum amplitude-decoration angiography with optical coherence tomography. Opt Express 2012;20:4710–25

5. Coscas G, Lupidi M, Coscas F. Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects. Dev Ophthalmol 2016;56:1–5

6. Stanga PE, Tsamis E, Papavannis A, Stringa F, Cole T, Jalil A.Swept-Source Optical Coherence Tomography Angio (Topcon Corp, p, Japan): Technology Review. Dev Ophthalmol 2016;56:13–7

7. Wang RK, An L, Francis P, Wilson DJ. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 2010;35:1467–9

8. AnL,JohnstoneM,WangRK.Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects. J Biomed Opt 2012;17:116018

9. Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G et al. ZEISS AngioplexTM Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects. Dev Ophthalmol 2016;56:18–29

10. Liu L, Edmunds B, Takasagawa HL, Tehrani S, Lombardi LH, Morrison JC et al. Projection-Resolved Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. Am J Ophthalmol 2019;207:99–109

11. Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M. Optical Coherence Tomography Angiography Using the Optovue Device. Dev Ophthalmol 2016;56:6–12

12. Takasagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology 2017;124:1589–99

13. Shin JW, Lee J, Kwon J, Choi J, Kook MS: Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol 2017;101:1666–1672.

14. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, et al: Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol. 2017;177:106–115

15. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014;121:1322–32

16. Liu L, Jia Y, Takasagawa HL, Peuchauer AD, Edmunds B, Lombardi L et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015;133:1045–52

17. Suh MH, Zhangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA et al. Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology 2016;123:2509–18

18. Lee EF, Kim TW, Lee SH, Kim JA. Underlying Microstructure of Parapapillary Deep-Layer Capillary Dropout Identified by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2017;58:1621–7

19. Chen C-L, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C et al: Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci 2016;57:OCT475–OCT48

20. Scrispeuma NK, Garcia PM, Bavier RD, Chui TYP, Krawitz BD, Mo S et al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest Ophthalmol Vis Sci 2016;57:OCT611–OCT620.

21. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S et al. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am J Ophthalmol 2016;171:75–83

22. Zhu L, Zong Y, Yu J, Jiang C, He Y, Jia Y et al. Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical Coherence Tomography Angiography. J Glaucoma 2018;27:322–7

23. Zhang S, Wu C, Liu L, Jia Y, Zhang Y, Zhang Y et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am J Ophthalmol 2017;182:194–200

24. Rao HL, Sreenivasahal S, Riyazuddin M, Dasari S, Dixit S, Venugopal JP et al. Choroidal Microvascular Dropout in Primary Angle Closure Glaucoma. Am J Ophthalmol 2019;199:184–92

25. Suwan Y, Geyman LS, Fard MA, Tantravorasirn A, Chai TY, Rosen RB et al. Peripapillary Perfused Capillary Density in Exfoliation Syndrome and Exfoliation Glaucoma versus POAG and Healthy Controls: An OCTA Study. Asia Pac J Ophthalmol...
26. Park JH, Yoo C, Girard MJA, Mari JM, Kim YY. Peripapillary Vessel Density in Glaucomatous Eyes: Comparison Between Pseudoexfoliation Glaucoma and Primary Open-angle Glaucoma. J Glaucoma 2018;27:1009–16.

27. Shin JW, Sung KR, Uhm KB, Jo J, Moon Y, Song MK et al. Peripapillary Microvascular Improvement & Lamina Cribrosa Depth Trabeculectomy POAG. Inv Oph Vis Sci 2017;48(15):5993-9.

28. Akagi T, Uji A, Okamoto Y, Suda K, Kameda T, Nakanishi H et al. ASOCT angiography imaging of conjunctiva & intrasclera in treated OAG. 2019;208:313-22.

29. Shin JW, Kwon J, Lee J, Kook MS. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol 2018 (In Press).

30. Gahahari E, Bowd C, Zangwill LM, Proudfoot J, Hasenstab KA, Hou H et al. Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma. Am J Ophthalmol 2019;204:51–61.

31. Moghimi S, Bowd C, Zangwill LM, Penteadro RC, Hasenstab K, Hou H et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology 2019;126:980–8.

32. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z et al. Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology 2017;124:709–19.

33. Venugopal JP, Rao HL, Weinreb RN, Dasari S, Riyazuddin M, Pradhan ZS et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol 2018;102:352–7.

34. Hollo G. Intrasession and Between-Visit Variability of Sector Peripapillary Angioflow Vessel Density Values Measured with the Angiovue Optical Coherence Tomograph in Different Retinal Layers in Ocular Hypertension and Glaucoma. PLoS One 2016;11:e0161631.

35. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep 2017;7:42201.

36. Chao SC, Yang SJ, Chen HC, Sun CC, Liu CH, Lee CY. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. J Ophthalmol. 2019 Jan 15;2019:7419470.

37. Na Hyun-Min, Lee EJ, Lee SH, Kim Tae-Woo. Evaluation of Peripapillary Choroidal Microvasculature to Detect Glaucomatous Damage in Eyes with High Myopia, Journal of Glaucoma. 2020;29(1):39-45.

38. Igarashi R, Ochiai S, Togano T, Sakaue Y, Suetake A, Ikawa R et al. Foveal Avascular Zone Measurement via Optical Coherence Tomography Angiography and its Relationship with the Visual Field in Eyes with Open-angle Glaucoma. Journal of Glaucoma. 2020;29(1):39-45.

39. Hou T Y, Kuang TM, Ko YC, Chang YF, Liu CJ, Chen MJ. Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma. Sci Rep. 2020 Mar 27;10(1):5608.

40. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One 2017;12:e0170476.

41. Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology 2018;125:4:578-587.