Polynomial Time Near-Time-Optimal Multi-Robot Path Planning in Three Dimensions with Applications to Large-Scale UAV Coordination

Teng Guo Si Wei Feng Jingjin Yu

Abstract—For enabling efficient, large-scale coordination of unmanned aerial vehicles (UAVs) under the labeled setting, in this work, we develop the first polynomial time algorithm for the reconfiguration of many moving bodies in three-dimensional spaces, with provable 1.r asymptotic makespan optimality guarantee under high robot density. More precisely, on an \(m_1 \times m_2 \times m_3 \) grid, \(m_1 \geq m_2 \geq m_3 \), our method computes solutions for routing up to \(m_1 m_2 m_3 \) uniquely labeled robots with uniformly randomly distributed start and goal configurations within a makespan of \(m_1 + 2m_2 + 2m_3 + o(m_1) \), with high probability. Because the makespan lower bound for such instances is \(m_1 + m_2 + m_3 = o(m_1) \), also with high probability, as \(m_1 \to \infty \), \(m_1 + 2m_2 + 2m_3 \) optimality guarantee is achieved, \(m_1 + 2m_2 + 2m_3 \in (1, 2] \), yielding 1.r optimality. In contrast, it is well-known that multi-robot path planning is NP-hard to optimally solve. In numerical evaluations, our method readily scales to support the motion planning of over 100,000 robots in 3D while simultaneously achieving 1.r optimality. We demonstrate the application of our method in coordinating many quadcopters in both simulation and hardware experiments.

I. INTRODUCTION

Multi-robot path (and motion) planning (MRPP), in its many variations, has been extensively studied for decades [1]–[13]. MRPP, with the goal to effectively coordinate the motion of many robots, finds applications in a diverse array of areas including assembly [14], evacuation [15], formation [16], [17], localization [18], microdroplet manipulation [19], search and rescue [20], and human robot interaction [21], to list a few. Recently, as robots become more affordable and reliable, MRPP starts seeing increased use in large-scale applications, e.g., warehouse automation [22], grocery fulfillment [23], and UAV swarms [24]. On the other hand, due to its hardness [25], [26], scalable, high-performance methods for coordinating dense, large-scale robot fleets are scarce, especially 3D settings.

In this work, we propose the first polynomial time algorithm for coordinating the motion of a large number of uniquely labeled (i.e., distinguishable) robots in 3D, with provable 1.r time-optimality guarantees. Since MRPP in continuous domain is highly intractable [27], we adopt a graph-theoretic version of MRPP and work with a \(m_1 \times m_2 \times m_3 \) 3D grid with \(m_1 \geq m_2 \geq m_3 \). For up to \(1 \) of the grid vertices occupied with robots, which is very high, we perform path planning for these robots in two stages. In the first phase, we iteratively apply an algorithm based on the Rubik Table abstraction.

Fig. 1: [left] A real-world drone light show where the UAVs form a 3D grid like pattern [28]. [right] Our simulated large UAV swarm in the Unity environment with many tall buildings as obstacles. A video of the simulations and experiments can be found at https://youtu.be/v8WMkXUqXg

G. Teng, A. S. Feng and J. Yu are with the Department of Computer Science, Rutgers, the State University of New Jersey, Piscataway, NJ, USA. Emails: { teng.guo, siwei.feng, jingjin.yu}@rutgers.edu. This work is supported in part by NSF award IIS-1845888 and an Amazon Research Award.

10074
been extensively studied. Unbounded solvers like push and swap [38], push and rotate [39], windowed hierarchical cooperative A* [40], all return feasible solutions very fast at the cost of solution quality. Balancing the running-time and optimality is one of the most attractive topics. Some algorithms emphasize the scalability without sacrificing too much optimality, e.g., ECBS [41], DDM [42], EECBS [43], PBS [44]. Whereas these solvers achieve fairly good scalability while maintaining 1.x-optimality in empirical evaluations, they lack provable joint efficiency-optimality guarantees. As a result, the scalability and supported robot density of these methods are on the low side as compared to our method. There are also $O(1)$—approximate or constant factor time-optimal algorithms proposed, aiming to tackle highly dense instances, e.g. [26], [45]. However, these algorithms only achieve low-polynomial time guarantee at the expense of huge constant factors, making them impractical.

This research builds on [46], which addresses the MRPP problem in 2D. In comparison to [46], the current work describes a significant extension to the 3D (as well as higher dimensional) domain with many unique applications, including, e.g., the reconfiguration of large UAV fleets, the optimal coordination of air traffic, and the adjustment of satellite constellations.

II. Preliminaries

A. Multi-Robot Path Planning on 3D Grids

We work with a graph-theoretic formulation of MRPP, which seeks collision-free paths that efficiently route many robots on graphs. Specifically, consider an undirected graph $G(V, E)$ and n robots with start configuration $S = \{s_1, \ldots, s_n\} \subseteq V$ and goal configuration $G = \{g_1, \ldots, g_n\} \subseteq V$. A robot i has start and goal vertices s_i and g_i, respectively. We define a path for robot i as a map $P_i : \mathbb{N} \rightarrow V$ where \mathbb{N} is the set of non-negative integers. A feasible P_i must be a sequence of vertices that connect s_i and g_i: 1) $P_i(0) = s_i$; 2) $\exists T_i \in \mathbb{N}, s.t. \forall t \geq T_i, P_i(t) = g_i$; 3) $\forall t > 0, P_i(t) = P_i(t-1)$ or $(P_i(t), P_i(t-1)) \in E$.

Given the 3D focus of this work, we choose the graph G to be a 6-connected $m_1 \times m_2 \times m_3$ grid with $m_1 \geq m_2 \geq m_3$, as a proper discretization of the target 3D domain. Our aim is to minimize the makespan of feasible routing plans, assuming that the transition on each edge of G takes unit time. In other words, we are to compute a feasible path set $\{P_i\}$ that minimizes $\max_i(|P_i|)$. For most settings in this work, it is assumed that the start and goal configurations are randomly generated. Unless stated otherwise, “randomness” in this paper always refers to uniform randomness.

B. High-Level Reconfiguration via Rubik Tables in 3D

Our method for solving the graph-based MRPP has two phases; the first high-level reconfiguration phase utilizes results on Rubik Table problems (RT3D) [29]. The Rubik Table abstraction, described below for the k-dimensional setting, $k \geq 2$, formalizes the task of carrying out globally coordinated token swapping operations on lattices.

Problem 1 (Rubik Table in 3D (RTKD)). Let M be an $m_1 \times \ldots \times m_k$ table, $m_i \geq \ldots \geq m_k$, containing $\prod_{i=1}^k m_i$ items, one in each table cell. In a shuffle operation, the items in a single column in the i-th dimension of M, $1 \leq i \leq k$, may be permuted in an arbitrary manner. Given two arbitrary configurations S and G of the items on M, find a sequence of shuffles that take M from S to G.

We formulate Problem 1 differently from [29] (Problem 8) to make it more natural for robot coordination tasks. For convenience, let the 2D and 3D version be RT2D and RT3D, respectively. A main result from [29] (Proposition 4), applying to the 2D setting, may be stated as follows.

Proposition II.1 (Rubik Table Theorem, 2D). An arbitrary Rubik Table problem on an $m_1 \times m_2$ table can be solved using $m_1 + 2m_2$ column shuffles.

Denoting the corresponding algorithm for RT2D as RTA2D, we may solve RT3D using RTA2D as a subroutine, by treating RT3D as an RT2D, which is straightforward if we view a 2D slice of RT2D as a “wide” column. For example, for the $m_1 \times m_2 \times m_3$ grid, we may treat the second and third dimensions as a single dimension. Then, each wide column, which is itself an $m_2 \times m_3$ 2D problem, can be reconfigured by applying RTA2D. With some proper counting, we obtain the following 3D version of Proposition II.1.

Theorem II.1 (Rubik Table Theorem, 3D). An arbitrary Rubik Table problem on an $m_1 \times m_2 \times m_3$ table can be solved using $m_1 + m_2 + m_3(2m_2 + m_1) + m_1m_2$ shuffles.

Fig. 2: Illustration of applying RTA3D. (a) The initial $3 \times 3 \times 3$ table with a random arrangement of 27 items that are colored and labeled. A color represents the (x, y) position of an item. (b) The constructed bipartite graph. The right partite set contains all the possible (x, y) positions. It contains 3 perfect matchings, determining the 3 columns in (c). (c) Applying z-shuffles to (a), according to the matching results, leads to an intermediate table where each x-y plane has one color appearing exactly once. (d) Applying wide shuffles to (c) correctly places the items according to their (x, y) values (or colors). (e) Additional z-shuffles fully sort the labeled items.

Denote the corresponding algorithm for Theorem II.1 as RTA3D, we illustrate how it works on a $3 \times 3 \times 3$ table (in Fig. 2). RTA3D operates in three phases. In the first phase, a bipartite graph $B(T, R)$ is constructed based on the initial table configuration where the partite set T are the colors of items representing the desired (x, y) positions, and the set R are the set of (x, y) positions of items (Fig. 2(b)). An edge is
added to B between $t \in T$ and $r \in R$ for every item of color t in row r. From $B(T, R)$, a set of $m_1 m_2$ perfect matchings can be computed, as guaranteed by [47]. Each matching, containing m_3 edges, connects all of T to all of R, dictates how a x-y plane should look like after the first phase. For example, the first set of matching in solid lines in Fig. 2(b) says that the first x-y plane should be ordered as the first table column shown in Fig. 2(c). After all matchings are processed, we get an intermediate table, Fig. 2(c). Notice that each row of Fig. 2(a) can be shuffled to yield the corresponding row of Fig. 2(c); this is the main novelty of the RTA3D. After the first phase of $m_1 m_2$ z-shuffles, the intermediate table (Fig. 2(c)) that can be reconfigured by applying RTA2D with m_1 x-shuffles and $2m_2$ y-shuffles. This sorts each item in the correct x-y positions (Fig. 2(d)). Another $m_1 m_2$ z-shuffles can then sort each item to its desired z position (Fig. 2(e)).

III. METHODS

In this section, we introduce the algorithm that integrates RTA3D algorithm to solve MRPP on 3D grids; the built-in global coordination capability of RTA3D naturally applies to solving makespan-optimal MRPP. We assume the grid size is $m_1 \times m_2 \times m_3$ and there are $m_1 m_2 m_3$ robots. For density less than $\frac{1}{3}$, we add virtual robots [45], [48] till reaching $\frac{1}{3}$.

A. RTH3D: Adapting RTA3D for MRPP in 3D

Algorithm 1 outlines the high-level process for multi-robot routing coordination in 3D. In each x-y plane, we partition the grid G into 3×3 cells (see, e.g., Fig. 4). Without loss of generality, we assume that m_1, m_2, m_3 are integer multiples of 3 and first consider the case without any obstacles for simplicity. In the first step, to make RTA3D applicable, we convert the arbitrary start and goal configurations (assuming less than 1/3 robot density) to intermediate configurations where in each 2D plane, each 3×3 cell contains no more than 3 robots (see Fig. 3). Such configurations are called balanced configurations [46]. In practice, configurations are likely not “far” from being balanced. The balanced configurations S_1, G_1 and corresponding paths can be computed by applying any unlabeled multi-robot path planning method.

![Fig. 3: Applying unlabeled MRPP to convert a random configuration to a balanced centering one on $6 \times 6 \times 3$ grids.](image)

After that, RTA3D can be applied to coordinate the robots moving toward their intermediate goal positions G_1. Function MatchingXY finds a feasible intermediate configuration S_2 and route the robots to S_2 by simulating shuffle operations along the z axis. Function XY-Fitting apply shuffle operations along the x and y axes to route each robot i to its desired x-y position (g_{1i}, x, g_{1i}, y). In the end, function Z-Fitting is called, routing each robot i to the desired g_{1i} by performing shuffle operations along the z axis and concatenate the paths computed by unlabeled MRPP planner UnlabeledMRPP.

Algorithm 1: RTH3D
Input: Start and goal vertices $S = \{s_i\}$ and $G = \{g_i\}$

1. **Function** RTH3D(S, G):
 1. $S_1, G_1 \leftarrow \text{UnlabeledMRPP}(S, G)$
 2. $\text{MatchingXY}()$
 3. $\text{XY-Fitting}()$
 4. $\text{Z-Fitting}()$

We now explain each part of RTH3D. MatchingXY uses an extended version of RTA3D to find perfect matching that allows feasible shuffle operations. Here, the “item color” of an item i (robot) is the tuple (g_{1i}, x, g_{1i}, y), which is the desired x-y position it needs to go. After finding the m_3 perfect matchings, the intermediate configuration S_2 is determined. Then, shuffle operations along the z direction can be applied to move the robots to S_2. The robots in each x-y plane will be reconfigured by applying x-shuffles and y-shuffles. We need to apply RTA2D for these robots in each plane, as demonstrated in Algorithm 3. In RTH2D, for each 2D plane, the “item color” for robot i is its desired x position g_{1i},x. For each plane, we compute the m_2 perfect matchings to determine the intermediate position g_2. Then each robot i moves to its g_{2i} by applying y-shuffle operations. In Line 18, each robot is routed to its desired x position by performing x-shuffle operations. In Line 19, each robot is routed to its desired y position by performing y-shuffle operations.

After all the robots reach the desired x-y positions, another round of z-shuffle operations in Z-Fitting can route the robots to the balanced goal configuration computed by an unlabeled MRPP planner. In the end, we concatenate all the paths as the result.

Algorithm 2: MatchingXY
Input: Balanced start and goal vertices $S_1 = \{s_{1i}\}$ and $G_1 = \{g_{1i}\}$

1. **Function** MatchingXY(S_1, G_1):
 1. $A \leftarrow [1, \ldots, n]$ |
 2. $T \leftarrow$ the set of (x, y) positions in S_1
 3. for $(r, t) \in T \times T$ do
 1. if $\exists i \in A$ where $(s_{1i}, x, s_{1i}, y) = r$ and $(g_{1i}, x, g_{1i}, y) = t$ then
 1. compute matchings M_1, \ldots, M_{m_3} of $B(T, R)$
 2. $A \leftarrow [1, \ldots, n]$ |
 3. foreach M_i and $(r, t) \in M_i$ do
 1. if $\exists i \in A$ where $(s_{1i}, x, s_{1i}, y) = r$ and $(g_{1i}, x, g_{1i}, y) = t$ then
 1. remove i from A
 2. $s_{2i} \leftarrow (s_{1i}, s_{1i}, y, c)$ and remove i from A
 3. mark robot i to go to s_{2i}
 4. perform simulated z-shuffles in parallel
Algorithm 3: XY-Fitting
Input: Current positions S_2 and balanced goal positions G_1

1. Function XY-Fitting():
 2. for $z \leftarrow [1, ..., m_3]$ do
 3. $A \leftarrow \{i | s_{2i},y = z\}$
 4. RTH2D (A, z)

5. Function RTH2D (A, z):
 6. $T \leftarrow \text{the set of } x \text{ positions of } S_2$
 7. for $(r, t) \in T \times T$ do
 8. if $\exists i \in A$ where $s_{2i},x = r \land g_{1i},x = t$ then
 9. if robot i is not assigned then
 10. add edge (r, t) to $B(T, R)$
 11. mark i assigned
 12. compute matchings $M_1, ..., M_{m_2}$ of $B(T, R)$
 13. $A' \leftarrow A$
 14. foreach M_c and $(r, t) \in M_c$ do
 15. if $\exists i \in A'$ where $s_{2i},x = c \land g_{1i},x = t$ then
 16. $g_{zi} \leftarrow (s_{2i},x, c, z)$ and remove i from A'
 17. mark robot i to go to g_{zi}
 18. route each robot $i \in A$ to g_{zi}
 19. route each robot $i \in A$ to $(g_{zi}, x, g_{1i}, y, z)$
 20. route each robot $i \in A$ to $(g_{zi}, x, g_{1i}, y, z)$

B. Efficient Shuffling Operation with High-Way Heuristics

In this section, we explain how to simulate the shuffle operation exactly. We use the shuffle operation in x-y plane as an example. We partition the grid G into 3×3 cells (see, e.g., Fig. 4). Without loss of generality, we assume that m is an integer multiple of 3 and first consider the case without any obstacles for simplicity.

We use Fig. 4, where Fig. 4(a) is the initial start configuration and Fig. 4(d) is the desired goal configuration in MatchingXY, as an example to illustrate how to simulate the shuffle operations. In MatchingXY, the initial configuration is a vertical “centered” configuration (Fig. 4(a)). RTA3D is applied with a highway heuristic to get us from Fig. 4(b) to Fig. 4(c), transforming between vertical centered configurations and horizontal centered configurations. To do so, RTA3D is applied (e.g., to Fig. 4) to obtain two intermediate configurations (e.g., Fig. 4(b)(c)). To go between these configurations, e.g., Fig. 4(b)\rightarrowFig. 4(c), we apply a heuristic by moving robots that need to be moved out of a 3×3 cell to the two sides of the middle columns of Fig. 4(b), depending on their target direction. If we do this consistently, after moving robots out of the middle columns, we can move all robots to their desired goal 3×3 cell without stopping nor collision. Once all robots are in the correct 3×3 cells, we can convert the balanced configuration to a centered configuration in at most 3 steps, which is necessary for carrying out the next simulated row/column shuffle. Adding things up, we can simulate a shuffle operation using no more than $m + 5$ steps.

C. Improving Solution Quality via Optimized Matching

The matching steps in RTA3D determine all the intermediate positions and therefore have great impact on solution optimality. Finding arbitrary perfect matchings is fast but can be further optimized. We replace the matching method from finding arbitrary perfect matchings to finding a min-cost matching in both of MatchingXY and RTH2D.

The matching heuristic we developed is based on linear bottleneck assignment (LBA), which runs in polynomial time. A 2D version of the heuristic is introduced in [46], to which readers are referred to for more details. Here, we illustrate how to apply LBA-matching in MatchingXY. For the matching assigned to height z, the edge weight of the bipartite graph is computed greedily. If a vertical column $c = (x, y)$ contains robots of “color” t, here $t = (g_{zi}, x, g_{1i}, y, z)$, we add an edge (c, t) and its edge cost is

$$C_{ct} = \min_{(g_{zi}, x, g_{1i}, y, z) = t} C_{z}(\lambda = 0).$$

We choose $\lambda = 0$ to optimize the first phase. Optimizing the third phase ($\lambda = 1$) would give similar results. After constructing the weighted bipartite graph, an $O(m^{2.5}/\log m)$ LBA algorithm [49] is applied to get a minimum bottleneck cost matching for height z. Then we remove the assigned robots and compute the next minimum bottleneck cost matching for next height. After getting all the matchings M_z, we can further use LBA to assign M_z to a different height z' to get a smaller makespan lower bound. The cost for assigning matching M_z to height z' is defined as

$$C_{M_z z'} = \max_{i \in M_z} C_{z'i}(\lambda = 0).$$

The same approach can also be applied to RTH2D. We denote RTH3D with LBA heuristics as RTH3D-LBA.

IV. Theoretical Analysis

First, we introduce two important lemmas about well-connected grids which have been proven in [45].

Lemma IV.1. On an $m_1 \times m_2 \times m_3$ grid, any unlabeled MRPP can be solved using $O(m_1 + m_2 + m_3)$ makespan.

Lemma IV.2. On an $m_1 \times m_2 \times m_3$ grid, if the underestimated makespan of an MRPP instance is d_y (usually computed by ignoring the inter-robot collisions), then this instance can be solved using $O(d_y)$ makespan.

We proceed to analyze the time complexity of RTH3D on $m_1 \times m_2 \times m_3$ grids. The dominant parts of RTH3D are computing the perfect matchings and solving unlabeled MRPP. First we analyze the running time for computing the matchings. Finding m_3 “wide column” matchings runs in $O(m_3 m_1^2 m_2^2)$ deterministic time or $O(m_3 m_1 m_2 \log(m_1 m_2))$
expected time. We apply RTH2D for simulating “wide column” shuffle, which requires \(O(m_3^2 m_2^2 \log m_1) \) expected time. Therefore, the total time complexity for Rubik Table part is \(O(m_3^2 m_2^2 + m_1^2 m_2 m_3) \). For unlabeled MRPP, we can use the max-flow based algorithm [50] to compute the makespan-optimal solutions. The max-flow portion can be solved in \(O(|E|) = O(m_1^3 + m_2 + m_3) \) where \(|E|\) is the number of edges and \(T = O(m_1 + m_2 + m_3) \) is the time horizon of the time expanded graph [51]. Note that any unlabeled MRPP can be applied, for example, the algorithm in [52] is distance-optimal but with convergence time guarantee.

Note that the choice of 2D plane can also be x-z plane or y-z plane. In addition, one can also perform two “wide column” shuffles plus one z shuffle, which yields \(2(2m_1 + m_2) + m_3 \) number of shuffles and \(O(m_1 m_2 m_3^2 + m_3 m_1 m_2^2) \). This requires more shuffles but shorter running time.

Next, we state the optimality guarantee, for which we need to obtain the upper bound on the makespan guaranteed by RTH3D, as well as the lower bound, and compute the ratio between the two. We have the following main results. The proofs and additional details, can be found in [53].

Proposition IV.1 (Asymptotic Makespan Upper Bound). RTH3D returns solutions with \(m_1 + 2m_2 + 2m_3 + o(m_1) \) asymptotic makespan for MRPP instances with \(\frac{m_1 m_2 m_3}{m_1 m_2 + m_3} \) random start and goal configurations on 3D grids, with high probability. Moreover, if \(m_1 = m_2 = m_3 \), RTH3D returns \(5m_3 + o(m_3) \) makespan-optimal solutions.

Proposition IV.2 (Asymptotic Makespan Lower Bound). For MRPP instances on \(n_1 \times n_2 \times n_3 \) grids with \(\Theta(m_1 m_2 m_3) \) random start and goal configurations on 3D grids, the makespan lower bound is asymptotically approaching \(m_1 + m_2 + m_3 \), with high probability.

Theorem IV.1 (Asymptotic Makespan Optimality Ratio). RTH3D yields asymptotic \(1 + \frac{m_2 + m_3}{m_1 + m_2 + m_3} \) makespan optimality ratio for MRPP instances with \(\Theta(m_1 m_2 m_3 \leq m_1 m_2 m_3) \) random start and goal configurations on 3D grids, with high probability.

We may further generalize the result to higher dimensions.

Theorem IV.2. Consider an \(k \)-dimensional cubic grid with grid size \(m \). If robot density is less than \(1/k \) and start and goal configurations are uniformly distributed, generalizations to RTA3D can solve the instance with asymptotic makespan optimality being \(2^{k-1} + 1 \).

V. Simulations and Experiments

In this section, we evaluate the performance of our polynomial time, asymptotic optimal algorithms and compare them with fast and near-optimal solvers, ECBS (\(u=1.5 \)) [41] and ILP with 16-split heuristic [34], [54]. For the unlabeled MRPP planner, we use the algorithm [52]. Though it minimizes total distance, we find it is much faster than max-flow method [50] and the makespan optimality is very close to the optimal one on well-connected grids. All the algorithms are implemented in C++. We mention that, though not presented here, we also evaluated push-and-swap [38], which yields good computation time but substantially worse optimality (with ratio > 25) on the large and dense settings we attempt. We also examined prioritized methods, e.g., [40], [44], which faced significant difficulties in resolving deadlocks. All experiments are performed on an Intel\textcopyright CoreTM i7-9700 CPU at 3.0GHz. Each data point is an average over 20 runs on randomly generated instances, unless otherwise stated. A running time limit of 300 seconds is imposed over all instances. The optimality ratio is estimated as compared to conservatively estimated lower bound.

In addition to numerical evaluations, we further demonstrate using RTA3D-LBA to coordinate many UAVs in the Unity [55] environment as well as to plan trajectories for 10 Crazyflie 2.0 nano quadcopter in 3D. We will make our source code available upon the publication of this work.

A. Evaluations on 3D Grids

In the first evaluation, we fix the aspect ratio \(m_1 : m_2 : m_3 = 4 : 2 : 1 \) and \(\frac{1}{3} \) robot density, and examine the performance RTA3D methods on obstacle-free grids with varying size. Start and goal configurations are randomly generated; the results are shown in Fig. 5. ILP with 16-split heuristic and ECBS computes solution with better optimality ratio but have poor scalability. In contrast, RTH3D and RTH3D-LBA readily scale to grids with over 370,000 vertices and 120,000 robots. Both of the optimality ratio of RTH3D and RTH3D-LBA decreases as the grid size increases, asymptotically approaching \(1.7 \) for RTH3D and \(1.5 \) for RTH3D-LBA.

![Fig. 5: Computation time and optimality ratio on grids with varying size](image)

In a second evaluation, we fix \(m_1 : m_2 = 1 : 1, m_3 = 6 \) and robot density at \(\frac{1}{3} \), and vary \(m_1 \). As shown in Fig. 6, RTH3D and RTH3D-LBA show exceptional scalability and the asymptotic 1.5 makespan optimality ratio, as predicted by Theorem IV.1 (\(m_3 \) is a constant and \(m_1 = m_2 \)).

![Fig. 6: Computation time and optimality ratio on grids with varying size](image)
RTH3D and RTH3D-LBA support scattered obstacles where obstacles are small and regularly distributed. As a demonstration of this capability, we simulate setting with an environment containing many tall buildings, a snapshot of which is shown in Fig. 1. These “tall building” obstacles are located at positions \((3i + 1, 3j + 1)\), which corresponds to an obstacle density of over 10%. UAV swarms have to avoid colliding with the tall buildings and are not allowed to fly higher than those buildings. We fix the aspect ratio at \(m_1 : m_2 : m_3 = 4 : 2 : 1\) and robot density at \(\frac{1}{3}\). The evaluation result is shown in Fig. 7.

B. Impact of Robot Density

Next, we vary robot density, fixing the environment as a 120 \(\times\) 60 \(\times\) 6 grid. For robot density lower than \(\frac{1}{3}\), we add virtual robots with random start and goal configurations for perfect matching computation. When applying the shuffle operations and evaluating optimality ratios, virtual robots are removed. Therefore, the optimality ratio is not overestimated. The result is plotted in Fig. 8, showing that robot density has little impact on the running time. On the other hand, as robot density increases, the lower bound and the makespan required by unlabeled MRPP are closer to theoretical limits. Thus, the makespan optimality ratio is actually better.

C. Special Patterns

In addition to random instances, we also tested instances with start and goal configurations forming special patterns, e.g., 3D “ring” and “block” structures (Fig. 9). For both settings, \(m_1 = m_2 = m_3\). In the first setting, “rings”, robots form concentric square rings in each \(x-y\) plane. Each robot and its goal are centroscopic. In the “block” setting, the grid is divided to 27 smaller cubic blocks. The robots in one block need to move to another random chosen block. Fig. 9(c) shows the optimality ratio results of both settings on grids with varying size. Notice that the optimality ratio for the ring approaches 1 for large environments.

D. Crazyswarm Experiment

Paths planned by RTA3D can also be readily transferred to real UAVs. To demonstrate this, 10 Crazyflie 2.0 nano quadcopters are choreographed to form the “A-R-C-R-U” pattern, letter by letter, on \(6 \times 6 \times 6\) grids (Fig. 11).

The discrete paths are computed by RTH3D. Due to relatively low robot density, shuffle operations are further optimized to be more efficient. Continuous trajectories are then computed based on RTH3D plans by applying the method described in [24].

![Fig. 9: Special patterns and the associated optimality ratios.](image)

VI. Conclusion

In this study, we apply Rubik Table [29] to solve MRPP. Combining RTA3D, efficient shuffling, and matching heuristics, we obtain a novel polynomial time algorithm, RTH3D-LBA, that is provably \(1.x\) makespan-optimal with up to \(\frac{1}{3}\) robot density. In practice, our methods can solve problems on graphs with over 300,000 vertices and 100,000 robots to 1.5 makespan-optimal. Paths planned by RTH3D-LBA readily translate to high quality trajectories for coordinating large number of UAVs, demonstrated on a real UAV fleet.

In future work, we plan to expand in several directions, enhancing both the theoretical guarantees and the methods’ practical applicability. In particular, we are interested in planning better paths that carefully balance between the nominal solution path optimality at the grid level and the actual path optimality during execution, which requires the consideration of the dynamics of the aerial vehicles that are involved. We will also address domain-specific issues for UAV coordination, e.g., down-wash, possibly employing learning-based methods [57].

![Fig. 10: Crazyflie 2.0 nano quadcopter.](image)

![Fig. 11: A Crazyswarm [56] with 10 Crazyflies following paths computed by RTA3D on \(6 \times 6 \times 6\) grids, transitioning between letters ARC-RU. The figure shows five snapshots during the process. We note that some letters are skewed in the pictures which is due to non-optimal camera angles when the videos were taken.](image)
REFERENCES
[1] M. A. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” in ICRA, 1986, pp. 1419–1424.
[2] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for multiple robots having independent goals,” TRA, vol. 14, no. 6, pp. 912–925, Dec. 1998.
[3] Y. Guo and L. E. Parker, “A distributed and optimal motion planning approach for multiple mobile robots,” in ICRA, 2002, pp. 2612–2619.
[4] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in ICRA, 2008, pp. 1928–1935.
[5] T. Standley and R. Korf, “Complete algorithms for cooperative pathfinding problems,” in IJCAI, 2011, pp. 668–673.
[6] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” in WAFR, 2012.
[7] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “CAPT: Concurrent assignment and planning of trajectories for multiple robots,” IJRR, vol. 33, no. 1, pp. 98–112, 2014.
[8] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for unlabeled discs with optimality guarantees,” in RSS, 2015.
[9] G. Wagner, “Subdimensional expansion: A framework for computationally tractable multirobot path planning,” 2015.
[10] L. Chen, T. Uras, T. Kumar, H. Xu, N. Ayanian, and S. Koenig, “Improved bounded-suboptimal multi-agent path finding solvers,” in IJCAI, 2016.
[11] B. Araki, J. Strang, S. Polhorecky, C. Qiu, T. Naegeli, and D. Rus, “Multi-robot path planning for a swarm of robots that can both fly and drive,” in ICRA, 2017.
[12] S. Tang and V. Kumar, “A complete algorithm for generating safe trajectories for multi-robot teams,” in Robotics Research. Springer, 2018, pp. 599–616.
[13] H. Wang and M. Rubenstein, “Walk, stop, count, and swap: decentralized multi-agent path finding with theoretical guarantees,” in RSS, 2015.
[14] J. Li, W. Ruml, and S. Koenig, “Ecbs: A bounded-suboptimal search for multi-agent path finding,” in AAAI, 2021.
[15] J. Yu, “Constant factor time optimal multi-robot routing on high-dimensional grids,” RSS, 2018.
[16] T. Guo and J. Yu, “Sub-1.5 time-optimal multi-robot path planning on grids in polynomial time,” arXiv preprint arXiv:2201.08976, 2022.
[17] J. Yu and M. LaValle, “Two robots can communicate via the environment,” in IJCAI, 2011.
[18] J. Yu and M. LaValle, “Multi-agent path planning and network flow,” in Algorithmic foundations of robotics X. Springer, 2013, pp. 157–173.
[19] J. Yu, M. LaValle, and S. M. LaValle, “Multi-agent path planning and network flow,” in Algorithmic foundations of robotics X. Springer, 2013, pp. 157–173.