Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review

Sajad Yaghoubi 1 · Angelina Olegovna Zekiy2 · Marcela Krutova3 · Mehrdad Gholami4 · Ebrahim Kouhsari5,6 · Mohammad Sholeh7 · Zahra Ghafouri8 · Farajolah Maleki9

Received: 8 October 2020 / Accepted: 2 December 2020 / Published online: 5 January 2021
© Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.

Keywords Tigecycline resistance · Tigecycline antibacterial activity · Tigecycline clinical Effectiveness

Introduction
The increasing incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacterial pathogens is a major public health concern that poses an economic burden to healthcare system due to prolonged hospital stays and higher morbidity and mortality [1]. Tigecycline is a tetracycline-class antibacterial agent developed for the treatment of polymicrobial MDR infections [2] including both Gram-negative and Gram-positive bacteria. Tigecycline, known as
GAR-936, or Tygacil, is the first, unique glycylcycline class of semisynthetic agents which is administered in a parenteral form [3] and was approved by the Food and Drugs Administration (FDA) in 2005 [4]. Later, in 2010, the FDA issued an alert that use of tigecycline in the treatment of severe infections and sepsis was significantly associated with an increased risk for all-cause mortality [5]. Currently, tigecycline has been approved as a monotherapy in adults for three indications including complicated skin and skin structures infections (cSSTI) with the exclusion of diabetes foot infection, complicated intra-abdominal infections (cIAI), and community-acquired bacterial pneumonia (CAP) [6, 7], and recent evidence suggests that tigecycline may be effective in the treatment of severe Clostridioides difficile infection [8]. The resistance to tigecycline includes chromosomally or accessory gene-encoded mechanisms. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.

Structural characterization

Tigecycline is chemically (4S, 4aS,5 aR,12aS)- 9- [2-(tert-butylamino) acetami do]- 4,7-bis(dimethylamino)- l,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-tetrahydroxy-l, ll-dioxo-2-naphthacene-carboxamide [6, 9]. Its chemical formula is C29H39N508 with molecular weight of 585.65 Da [10]. Tigecycline is a chemically modified minocycline (9-t-butylglycylamido derivative of minocycline) [6, 9]. Compared with other tetracyclines, tigecycline’s extended, wide-range antibiotic activity is due to a main backbone of minocycline with an N-alkyl-glycylamido side chain addition to the C9 carbon of the “D” tetracycline ring [6, 9].

Pharmacokinetics and pharmacodynamics

Due to insufficient absorption from the gut, tigecycline administration is intravenous; ~30–60 min every 12 h [6]. The in vitro plasma protein binding of tigecycline at 0.1, 1, and 15 ug/mL was reported as 71, 89, and 96, respectively, and showed nonlinear plasma-protein-binding behavior since the unbound fraction of tigecycline decreased with an increase in the total concentration of tigecycline [11]. Tigecycline has a systemic clearance (from 0.2 to 0.3 L/h/kg), a large volume of distribution (7–10 L/kg), and extensive distribution into various tissues [10]. The recommended standard dosage regimen for tigecycline is an initial dose of 100 mg followed by 50 mg every 12 hrs [12]. The recommended duration of treatment with tigecycline for cSSTI or cIAI and CAP is 5–14 and 7–14 days, respectively [13].

Tigecycline is excreted mainly unchanged in the bile [12] and has a very long half-life (t1/2) in humans (~27–42 h) [12]. Tigecycline achieves therapeutic concentrations by effectively and extensively penetrating body fluids and tissues, such as the lungs, skin, liver, heart, bone, and kidneys [14–16]. Tigecycline has relatively low mean steady-state serum concentrations of 0.403 mg/L and 0.633 mg/L in patients with cSSTI in the standard dosing [17]. The data on tigecycline pharmacokinetics showed that the ratio of tissue to serum tigecycline concentrations was 38-fold, 8.6-fold, 2.1-fold, 0.35-fold, and 0.58-fold higher in the gall bladder, lungs, colon, bone, and synovial fluid, measured at 4 h after administration of a single 100 mg dose [18]; a higher ratio of tissue to serum of tigecycline in skin and soft tissue was also found after 1–6 days of standard treatment [15]. The penetration of tigecycline into bones was reported by Bhattacharya et al. (bone: serum ratio; 4.77-fold) [19]. Data from several pharmacokinetic-pharmacodynamic (PK/PD) analyses and clinical trials showed that the ratio for the area under the concentration time curve and minimal inhibitory concentration (AUC/MIC) for serum tigecycline concentrations is a predictor of therapeutic response [20, 21]. Tigecycline does not readily cross the blood-brain barrier.

The experimental data suggested that tigecycline exhibits a time-dependent bactericidal activity and has a prolonged postantibiotic effect (PAE) against Gram-positive and Gram-negative pathogens following a 3 mg/kg dose [22–24]. In comparison to minocycline, tigecycline has a uniformly longer PAE for tested pathogens (3.4–4 h for Staphylococcus aureus and 1.8–2.9 h for Escherichia coli) [22, 23].

Tigecycline is eliminated from the body through biliary excretion in the feces (59%) and urine (22%). Age, sex, and renal function do not appear to interfere with the pharmacokinetics of tigecycline, and no dose adjustment is required for patients with renal impairment (including hemodialysis) [25–27]. However, clinical caution in the use of tigecycline is needed in patients who have severe hepatic dysfunction (Child Pugh C); an initial dose of 100 mg of tigecycline should be followed by reduced maintenance doses of 25 mg every 12 h [27–29].

Mechanism of Action

Tigecycline is a bacteriostatic, parenteral glycylcycline antibiotic with a stronger (5-fold) binding affinity and structural similarities to the tetracyclines [4, 14, 27]. The main mechanism of action of tigecycline is similar to other tetracyclines in that it acts an inhibitor of bacterial protein translation (i.e., elongation of the peptide chain) via reversible binding to a helical region (H34) on the 30S subunit of bacterial ribosomes. The binding of tigecycline prevents the incorporation of amino acid residues into the elongation of peptide chains and results in the loss of peptide formation and bacterial
growth [4, 14, 27] (Fig. 1). Tigecycline was developed to overcome the main molecular mechanisms of tetracycline resistance, such as tetracycline-specific efflux pump acquisition [e.g., \textit{tet}(A)] and ribosomal protection [e.g., \textit{tet}(M)], through the addition of a glycyclamide moiety to the 9-position of minocycline.

Antimicrobial susceptibility testing to tigecycline

Currently, several laboratory methods, including broth microdilution and disk diffusion, have been used for the determination of in vitro susceptibility to tigecycline [30, 31]. Broth microdilution is the reference method for the testing of in vitro susceptibility to tigecycline, though, according to the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines [30, 31], the medium must be prepared fresh on the day of use and must be not more than 12 h old at the time the panels are made.

For other Enterobacterales, except for \textit{E. coli}, the activity of tigecycline varies from insufficient in \textit{Proteus} spp., \textit{Morganella morganii}, and \textit{Providencia} spp. to variable in other species [31]. The interpretative minimal inhibitory concentration breakpoints to tigecycline recommended by EUCAST [31], the Food and Drug Administration (FDA) [32], and the British Society for Antimicrobial Chemotherapy (BSAC) [33] to various bacteria are indicated in Table 1. The CLSI interpretative minimal inhibitory concentration breakpoints to tigecycline are not available.

Antibacterial activity

Alterations to the tetracycline structure resulted in an expansion of tigecycline’s spectrum of an antibacterial activity against a wide spectrum of Gram-positive and Gram-negative pathogens [34]. Currently, due to its effectiveness, tigecycline is the last-line treatment option against MDR bacterial pathogens, especially carbapenem-resistant \textit{Enterobacteriaceae} [35–40]. Tigecycline showed good activity against methicillin-resistant \textit{Staphylococcus aureus} (MRSA), vancomycin-resistant \textit{enterococci} (VRE), extended-spectrum \(\beta\)-lactamase (ESBL)-producing \textit{Enterobacteriaceae}, and penicillin-resistant \textit{Streptococcus pneumoniae} [41].

In addition, tigecycline was highly active against \textit{Stenotrophomonas maltophilia}, \textit{Moraxella catarrhalis}, \textit{Haemophilus influenzae}, and \textit{Neisseria gonorrhoeae} [42–44]. Blanton et al. [45] have indicated that tigecycline is effective against \textit{Rickettsia rickettsii} [45].

Antibacterial activity was also observed against \textit{Coxiella burnetii} derived from patients with acute Q fever [46]. The flow cytometry assay data suggest that tigecycline has antibacterial activity \(\{\text{IC50}\} 0.71 \times 10^{-3} \text{ μg/mL}\) against \textit{Orientia tsutsugamushi} and that it may be a therapeutic option for the

Fig. 1 Tigecycline mechanisms of action and resistance
The susceptibility of Clostridioides difficile isolates was proved during pan-European, longitudinal surveillance [48]. In addition, clinical data on the use of tigecycline administered alone, or as a part of combination therapy of oral vancomycin and intravenous metronidazole, showed its efficiency in patients with a severe course of Clostridium difficile infection (CDI) [49]; however, randomized controlled trials are necessary before tigecycline can be recommended for routine use in the treatment of CDI [50].

Some pathogens, such as P. aeruginosa, Proteus spp., Providencia spp., and Morganella spp., are intrinsically resistant to tigecycline [51–53] and the development of acquired resistance to tigecycline has been described in several bacterial species such as Acinetobacter baumannii, Klebsiella pneumonia, Enterobacter spp., and Bacteroides fragilis [49].

Mechanisms of tigecycline resistance

In the last decades, the emergence of tigecycline resistance has been reported worldwide [49, 54, 55] though there are relatively few data available regarding the molecular basis for resistance to tigecycline. As shown in vitro, the Tet proteins [e.g., Tet(X), Tet(A), Tet(K) and Tet(M)] have the potential to acquire mutations leading to a reduced susceptibility (i.e., increased MICs) to tigecycline [56] possibly through the horizontal transfer of mobile genetic elements carrying several resistance genes. In addition, the mobile tigecycline-resistance tet(X) gene variants are newly emerging tigecycline resistance mechanisms in humans and animals [57]. The Tet(X) is a flavin-dependent monooxygenase that originated from Bacteroides spp. and was detected in Enterobacteriaceae and some Acinetobacter spp. isolates [58–60].

In Gram-negative bacteria, the chromosomally encoded, overexpression of resistance-nodulation division (RND) efflux pumps such as AdeABC, AdeFGH, AdeJK, MexXY, and AcrAB are important molecular mechanisms in the resistance of bacteria to tigecycline [61–63].

Acinetobacter baumannii

The occurrence of increased MICs and resistance to tigecycline among Acinetobacter spp. was associated with the

Table 1 Tigecycline international in vitro susceptibility breakpoints.

Bacterial family/species	International breakpoints standard	Broth microdilution (mg/L)	Disk diffusion (mm)
Enterobacteriaceae			
EUCAST	S ≤ 0.5, R > 0.5	S ≥ 18, R < 18	
FDA	S ≤ 2, R ≥ 8	S ≥ 19, R ≤ 14	
BSAC	S ≤ 1, R > 2	S ≥ 24, R ≤ 19	
Staphylococcus spp.			
EUCAST	S ≤ 0.5, R > 0.5	S ≥ 18, R < 18	
FDA	S ≤ 0.5	S ≥ 19	
BSAC	S ≤ 0.5, R > 0.5	S ≥ 21, R < 20	
Enterococcus spp.			
EUCAST	S ≤ 0.25, R > 0.25	S ≥ 18, R < 18	
FDA	S ≤ 0.25	S ≥ 19	
BSAC	S ≤ 0.25, R > 0.25	S ≥ 25, R < 20	
Streptococcus			
groups A, B, C and G			
EUCAST	S ≤ 0.125, R > 125	S ≥ 19, R < 19	
FDA	S ≤ 0.25	S ≥ 19	
BSAC	S ≤ 0.25, R > 0.5	S ≥ 25, R < 19	
Streptococcus pneumonia			
EUCAST	-	-	
FDA	S ≤ 0.06	S ≥ 19	
BSAC	-	-	
Clostridioides difficile			
EUCAST	S ≤ 0.25, R > 0.25	-	
FDA	S ≤ 4, R > 16	-	
BSAC	S ≤ 0.25	-	
Acinetobacter spp.			
EUCAST	-	-	
FDA	S ≤ 2, R ≥ 8	-	
BSAC	S ≤ 1, R > 2	S ≥ 20, R < 20	
Pseudomonas spp.			
EUCAST	-	-	
FDA	S ≤ 2, R ≥ 8	-	
BSAC	-	-	

EUCAST European Committee on Antimicrobial Susceptibility Testing, **FDA** Food and Drug Administration, **BSAC** British Society for Antimicrobial Chemotherapy, **S** sensitive, **R** Resistance.
upregulation of AdeABC, AdeFGH, AdeJK, AbeM, and AdeDE pumps and also the presence of the tetX gene [64, 65] although some studies noted that additional efflux pumps or different molecular mechanisms might contribute to tigecycline resistance [58, 66, 67]. The nucleotide and amino acid alterations in the AdeRS two-component system may lead to adeABC overexpression and tigecycline resistance [68]. Besides it was found that the BaeSR system positively regulates the expression of adeA and adeB and stimulated tigecycline-resistant strains [69].

Additional mechanisms of decreased susceptibility to tigecycline, such as a novel RND pump, the presence of tet(X1) or tetA genes, a mutation in the trm gene encoding S-adenosyl-L-methionine (SAM)-dependent methyltransferase, and a frameshift mutation in the plsC gene that encodes for 1-acyl-sn-glycerol-3-phosphate acyltransferase, have been detected in the clinical A. baumannii isolates[69–71].

Enterobacteriaceae

The intrinsic resistance to tigecycline in *Enterobacteriaceae* has been described in *Morganella morgani* and *Proteus mirabilis* and was attributed to the constitutive upregulation of the multidrug AcrAB efflux pump [50]. The AcrAB efflux pumps and their regulatory genes also play a role in the decreased susceptibility to tigecycline in *E. coli* and *Klebsiella* spp. [55, 62, 72–74].

Currently, SoxS, MarA, RamA, and Rob have been characterized as global regulators of the AcrAB pump in *Enterobacteriaceae* [75] although the exact mechanism of AcrAB pump overexpression has not been clarified [76, 77].

Escherichia coli

Tigecycline is a possible substrate for the AcrAB and AcrEF pumps in *E. coli* [78]. The physiological role of the AcrAB pump in *E. coli* is critical, and it excretes a diversity of lipophilic and amphiphilic antibiotics as substrates [79]. MarA, SoxS, and Rob have been suggested as regulators involved in the MDR phenotype in *E. coli* [80]. One of the major mechanisms involved in the *E. coli* MDR phenotype is mediated by the mar regulon that stimulates the downregulation of the Ompr outer membrane porin and also stimulates the upregulation of the AcrAB efflux pump [81, 82]. In *E. coli*, MarA (controlled by the local repressor MarR) acts as a positive regulator of the AcrAB–TolC efflux pump [83]. Additionally, in some *E. coli* strains that have high tigecycline MICs, a frameshift mutation (insertion of a cytosine at position 355) has been described in marR (one of the targets for reduced susceptibility to tigecycline) that led to the overexpression of MarA and AcrAB pumps [83]. Linkevicius et al. [84] selected tigecycline-resistant *E. coli* mutants in vitro and evaluated their biological fitness and cross-resistance.

A relatively low-level resistance and a high fitness cost were identified in isolates with mutations of efflux regulatory network genes (*lon*, *acrR*, and *marR*) and related lipopolysaccharide core biosynthesis pathway genes (*lpcA, rfaE, rfaD, rfaC, and rfaF*). Remarkably, the fitness cost of mutations in *E. coli* under tigecycline exposure may decrease the ability of mutants to trigger a successful infection [84]. The reduced fitness and virulence in clinical isolates when acrA and tolC were inactivated have already been described, implying that the AcrAB pump may also play a role in adaptation and host virulence [85]. However, more in vivo research is needed to determine how these different mutation types are involved in bacterial virulence.

Klebsiella pneumoniae

In *K. pneumoniae*, tigecycline resistance is related extensively to the overexpression of RamA [86, 87]. There is a positive association between the upregulation of ramA with an overexpression of AcrAB [75, 87–89]. Nevertheless, no association between the upregulation of ramA and AcrA expression has been described [90]. RarA is a new AraC-type global regulator that acts via the control of AcrAB and OqxAB efflux pump expression and is mediated by the MDR phenotype in *K. pneumoniae* [62, 88, 91]. However, He et al. have reported no marked correlation between OqxAB and tigecycline resistance [73]. Sheng et al. [92] have also proposed that RamA may be a positive regulator of the OqxAB pump since variants in ramR have been suggested as a mechanism of aacrAB down-regulation and tigecycline resistance [77, 92, 93]. IS3 element integration in the new efflux pump operon kpgABC is correlated with a novel mechanism for the rapid in vivo development of tigecycline non-susceptibility [94]. Villa et al. [77] highlighted the role of the ribosomal S10 protein mutation (a mutation in the rpsJ gene that has already been reported to reduce tigecycline susceptibility in both Gram-negative and positive bacteria) in conferring tigecycline resistance. In addition, an alternative pathway involved in *K. pneumoniae* resistance to tigecycline is the overexpression of marA that is associated with AcrAB upregulation overexpression [62, 88]. The failure of tigecycline treatment in patients with carbapenem-resistant *K. pneumoniae* (CRKP) strains that harbor the tetA gene has been reported [95]. Additional tigecycline resistance mechanisms conferred by Tet proteins (mainly Tet(X)) have been published. [96]. In a recent study conducted in China [97], mutations in the ramR and tet(A) efflux genes were found to be the major tigecycline resistance mechanisms among the studied tigecycline- and carbapenem-resistant *K. pneumoniae* isolates.
Serratia marcescens

The upregulation of the SdeXY–HasF efflux pump (a part of the RND efflux pump family) has been associated with tigecycline resistance in *S. marcescens* [98]. The upregulation of the SdeXY–HasF efflux system that confers resistance to tigecycline is also active against ciprofloxacin and cefpirome. On the other hand, in an experimental mutant strain, the insertion-independent inactivation of the *sdeY* and *hasF* genes also led to a reduced sensitivity to ciprofloxacin, cefpirome, and tetracycline [98].

Enterobacter spp.

In *Enterobacter* spp., the *ramA*-mediated mechanisms involving AcrAB efflux pump regulation are the primary mechanisms of tigecycline resistance [62, 99]. In *E. aerogenes* and *E. cloacae*, the nucleotide mutations include frameshifts, deletions, and amino acid variations in *ramR* (mainly in the ligand-binding domain) that lead to the overexpression of *ramA* and tigecycline resistance [62]. However, the other probable alternative mechanisms of tigecycline resistance that have been reported in *E. cloacae* include *ramA* overexpression without any *ramR* alterations; *rarA* overexpression and upregulation of the OqxAB pump; and upregulation of the AcrAB through SoxS, RobA, and RamA [62, 85]. Further in vivo and in vitro investigations are needed to characterize fully the probable other efflux pumps and/or regulators involved in tigecycline resistance mechanisms in *Enterobacteriaceae* [73, 75, 90, 100].

Salmonella spp.

In *S. enterica*, a positive correlation between the upregulation of *ramA* (via an inactivating mutation in *ramR*) and the consecutive overexpression of AcrAB with tigecycline resistance have been reported [101–103], although how *ramA* is controlled in bacteria other than *Salmonella* spp. is currently unknown. Similar to tigecycline resistance in carbapenem-resistant *K. pneumoniae* isolates, the combination of mutations in *ramR* and *tet(A)* genes was also reported in tigecycline-resistant *S. enterica* [61, 97, 104].

Pseudomonas aeruginosa

Currently, several Resistance-Nodulation-Division (RND) efflux pumps including MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM have been suggested as mechanisms for drug resistance in *P. aeruginosa* [105–110]. Dean et al. suggested the overexpression of MexXY-OprM as a drug efflux-mediated tigecycline resistance mechanism [110, 111]. In addition, the overexpression of the SdeXY pump frequently underlies tigecycline intrinsic resistance in *P. aeruginosa* [110]. In addition, the expression of other efflux pumps in MDR *P. aeruginosa* isolates has also been reported [112, 113].

Gram-positive bacteria

Relatively few data on tigecycline resistance in gram-positive bacteria are available. Overexpression of the multi-antimicrobial extrusion protein (MATE) family efflux pump MepA has been suggested as mechanism of decreased susceptibility to tigecycline in *Staphylococcus aureus* but does not confer resistance [52, 114, 115]. More recently, Fiedler et al. confirmed that overexpression of two tetracycline-resistance determinants, a *tet(L)*-encoded Major facilitator superfamily (MFS) pump and a *tet(M)*-encoded ribosomal protection protein, confer tigecycline resistance in *Enterococcus* spp. [116]. The mechanisms of resistance to tigecycline are shown in Fig. 1.

Effectiveness of tigecycline in clinical settings

In September 2010, the FDA Adverse Event Reporting System (FAERS) reported [117] an increased risk of mortality with tigecycline (4%; 150/3788) compared with other antibiotics (3%; 110/3646) used to treat similar infections. However, data from a prospective, multicenter, non-interventional study demonstrated the efficacy and safety of tigecycline in a population of severely ill patients with complicated infections [118]. In a retrospective observational study, Kwon et al. [119] evaluated the efficacy and safety profile of tigecycline in comparison with colistin in XDR *A. baumannii*-positive patients. No difference was observed between both antibiotic groups in terms of treatment success and mortality rates. Serum creatinine elevation and nephrotoxic prevalence cases were observed more commonly in the colistin group (*p* = 0.028). On the other hand, the excess mortality of 16.7% (60.7 vs. 44%, 95% confidence interval 0.9–32.4%, *p* = 0.04) was reported in 294 of subjects treated with tigecycline versus colistin for the treatment of pneumonia caused by the multidrug-resistant *A. baumannii* [120].

In September 2013, FAERS analyzed the data from 10 clinical trials conducted only for FDA-approved uses (cSSSI, cIAI, CABP) [121]. This analysis showed a higher risk of mortality among subjects treated with tigecycline compared with comparators: 2.5 (66/2640) vs. 1.8% (48/2628), respectively. In general, the deaths resulted from worsening infections, complications of infection, or other underlying medical conditions.

In a meta-analysis [122] of 5 trials, comparing tigecycline monotherapy versus combination therapy for the treatment of
patients with hospital-acquired pneumonia, no significant difference was observed in the development of the mortality rate from two prospective cohort studies (OR = 2.22, 95% CI 0.79–6.20, p = 0.13).

In a systematic review and meta-analysis [123], including 24 controlled studies, tigecycline-induced secondary bacteremia was found in 4.6% (91/1961) of patients with bloodstream infections. All-cause mortality and clinical cure rates for tigecycline were relatively similar to control antibiotic agents. Tigecycline, in combination with other antimicrobial agents, was suggested as a suitable choice for at-risk patients with BSI. However, tigecycline is not superior to comparator agents for the treatment of serious infections [2].

Due to the rise of multidrug-resistant infections, tigecycline has been used for non-approved indications. In a Spanish university hospital, one-third of tigecycline prescriptions were non-approved mainly as a rescue therapy and concomitantly with other antibiotics in patients with nosocomial pneumonia [124]; and in an Argentinean hospital, it was 79%, especially in ventilator-associated pneumonia due to MDR Acinetobacter spp. [125]. In a Taipei Veterans’ General Hospital, tigecycline was used for non-Food and Drug Administration-approved indications, to treat healthcare-associated pneumonia (38, 57.6%), bacteremia (3, 4.5%), catheter-related infections (3, 4.5%), urinary tract infection (4, 6.1%), osteomyelitis (4, 6.1%), and others (2, 3%) [126]. In a Turkish university hospital, tigecycline was used in the intensive care unit for patients infected with carbapenem-resistant Acinetobacter baumannii [127]. A study carried out in a Lebanese tertiary-care hospital reported 81% of tigecycline non-approved indications in critically ill patients with non-inferior outcome to that of FDA-approved indications [128].

In a pediatric population, tigecycline is not recommended in children and adolescents below 18 years of age. However, clinical studies reported the efficacy of a tigecycline therapy combined with other antimicrobial agents in the treatment of multidrug-resistant infection, i.e., nosocomial infections in newborn infants [129–131] and carbapenem-resistant gram-negative bacteria infections in liver transplant recipients [132]. Recently, tigecycline was used as a treatment in a case of ventriculoperitoneal shunt-related meningitis in a 5-month-old infant [133].

Adverse effects

Available evidence from 15 randomized controlled trials (RCTs), including a recent meta-analysis [134], assessed the available data with regard to the effectiveness and safety of tigecycline in comparison to other antimicrobials in the treatment of 7689 adult patients with infectious diseases. Adverse events and all-cause mortality were frequent in the tigecycline group. Twelve of the 15 RCTs (6292/7689) described various adverse events with tigecycline use. The adverse events rate was considerably higher in the tigecycline group compared with the comparator drug group (OR = 1.49, 95% CI = 1.23 to 1.80, p < 0.0001).

Based on the results from the preclinical animal safety studies, tigecycline was not thought to be teratogenic [27]; however, in rats and dogs a decrease of white and red blood cells, bone marrow hypocellularity, reductions in fetal weights, and an increased incidence of fetal loss and minor skeletal abnormalities were reported [27, 135]. Now, tigecycline is categorized as teratogenic effect class D and should be used with caution in specific populations, including nursing mothers, pregnant women, pediatrics, and patients with severe hepatic impairment [4, 13, 27, 135, 136]. In addition, the use of tigecycline may affect tooth development particularly if used during the last half of pregnancy and in children under the age of 8 as it can cause permanent tooth discoloration [137].

The human clinical trial studies and the FAERS [138] reported that the most common side effects following tigecycline administration, especially in adults aged between 18 and 50 years, and which were more likely in women, are gastrointestinal (GI) symptoms, i.e., nausea, vomiting, and diarrhea. Further reported side effects relevant to tigecycline administration were pancreatitis, acute generalized exanthematous pustulosis, local reaction at the i.v. site, increased hepatic function, thrombophlebitis, pruritus, fever, mitochondrial dysfunction-associated acute metabolic acidosis abdominal pain, headache, cholestatic, jaundice, and Steven-Johnson syndrome [2, 139–144].

Clinical studies showed a significant higher (~ > 4-fold) incidence of nausea and vomiting induced by tigecycline in patients treated for cSSSI compared with patients treated with vancomycin/aztreonam. However, in patients with cIAI, the incidence of nausea and vomiting occurred equally often in patients treated with imipenem/cilastatin as it did in patients treated with tigecycline (25%/20% for tigecycline and 21%/15% for imipenem/cilastatin group, respectively). In community-acquired bacterial pneumonia, the occurrence of GI symptoms was higher in the group of patients treated with tigecycline than the group treated with levofloxacin [138].

The mechanism of action of tigecycline-associated nausea and vomiting remains uncertain and their incidence is dose-related [145]. Whether it is preventable by the pre-emptive use of antiemetics as concomitant drugs (metoclopramide, ondansetron, prochlorperazine, sucralfate, and trimethobenamate) is unclear [146, 147]. From 2514 patients, the total discontinuation rate was 7% during tigecycline treatment and discontinuation was most frequently associated with nausea (1%) and vomiting (1%) [138].

The phase III clinical trials evaluated tigecycline tolerability and efficacy in patients receiving tigecycline (i.e., 100-mg IV loading dose followed by 50 mg IV q12h) [2, 148–151]. The difference in the incidence of nausea and vomiting between tigecycline and the comparators (vancomycin+aztreonam or imipenem/cilastatin) was statistically significant (p < 0.05) in ≥ 2 of the 4 Phase III trials.
Table 2 The prevalence of tigecycline resistance by continents and pathogens.

Asian Countries	Pathogen	Area	No. (%) of Resistant rate	Type of study	First author, year
	Klebsiella pneumoniae	Saudi Arabia	1 (14.2)	Case report	Al-Qadheeb et al., 2010 [160]
	Acinetobacter spp.	India	224/32 (14.2)	Original research	Taneja et al., 2011 [161]
	Acinetobacter spp.	Kuwait	250/34 (13.6)	Original research	Al-Sweih et al., 2011 [162]
	E. coli	India	166/0 (0)	Original research	Manoharan et al., 2010 [163]
	Acinetobacter spp.		102/0 (0)		
	Pseudomonas aeruginosa		50/47 (94)		
	S. aureus		125/0 (0)		
	S. pneumoniae		102/0 (0)		
	Enterococcus spp.		100/0 (0)		
	Enterobacteriaceae	Taiwan	412/10 (2.4)	Original research	Hsu et al., 2011 [164]
	Stenotrophomonas maltophilia	Taiwan	377/66 (17.5)	Original research	Wu et al., 2012 [165]
	Enterobacteriaceae (MBL-producing)	China	442/71 (16.1)	Original research	Zhang et al., 2012 [166]
	Enterobacteriaceae (NDM-1-producing)	Pakistan	64/7 (11)	Original research	Perry et al., 2011 [168]
	E. coli	Lebanon	150/0 (0)	Original research	Araj and Ibrahim, 2008 [169]
	K. pneumoniae		100/3 (3)		
	Acinetobacter baumannii	Taiwan	393/27 (6.9)	Original research	Liu et al., 2008 [170]
	Acinetobacter baumannii (MDR)	India	26/15 (57.7)	Original research	Behera et al., 2009 [171]
	Acinetobacter baumannii	Taiwan	114/21 (18)	Original research	Lee et al., 2009 [172]
	Acinetobacter baumannii		148/4 (2.7)	Original research	Tiengrim et al., 2006 [173]
	Acinetobacter baumannii	Israel	82/54 (66)	Original research	Navon-Venezia et al., 2007 [174]
	Acinetobacter baumannii (MDR)	Taiwan	134/61 (45.5)	Original research	Chang et al., 2012 [175]
	Colistin-resistant Acinetobacter spp.	Korea	145/14 (9.7)	Original research	Park et al., 2009 [176]
	OXA carbapenemase-producing Acinetobacter baumannii	Korea	47/11 (23.4)	Original research	Kim et al., 2010 [177]
	Acinetobacter baumannii (MDR)	Turkey	82/21 (25.8)	Original research	Dizbay et al., 2008 [178]
	S. aureus	India	127/68 (53.5)	Original research	Swati Sharma.,2017 [179]
	Acinetobacter baumannii	Taiwan	393/27 (6.9)	Original research	Liao CH.,2008[180]
	Stenotrophomonas maltophilia	China	450/61 (13.56)	Original research	Jin Zhao.,2018[181]
	Carbapenemase-producing Klebsiella pneumoniae	Saudi Arabia	1 case	Case report	Nada S. Al-Qadheeb.,2010 [160]
	Carbapenem-resistant Klebsiella pneumoniae	Taiwan	16/16 (100)	Original research	Sheng-Kang Chiu., 2017[182]
	Enterobacter spp.	Asia	516/4 (0.8)	Original research	Harald Seifert., 2018[183]
	Serratia marcescens	Asia	204/1 (0.5)	Original research	
	E. coli	Asia	314/1 (0.3)	Original research	
	K. pneumoniae	Asia	541/7 (1.3)	Original research	
	Bacteroides fragilis	Europe	824/14 (1.7)	Original research	Nagy et al., 2011 [184]
Table 2 (continued)

European Countries	Acinetobacter baumannii	Spain	142/17 (12)	Original research	Insa et al., 2007 [185]
	S. maltophilia	Spain	120/2 (2)		
E. coli	Spain	220/0 (0)		Original research	Tubau et al., 2010 [186]
K. pneumoniae	Spain	28/0 (0)			
K. oxytoca	Spain	14/0 (0)			
Enterococcus faecalis	Spain	53/1 (1.9)			
Enterococcus faecium	Spain	39/0 (0)			
Enterobacter cloaceae	Spain	23/1 (4.3)			
M. morganii	Spain	14/0 (0)			
P. mirabilis	Spain	12/4 (33.3)			
P. vulgaris	Spain	7/1 (14.3)			
Citrobacter spp.	Spain	9/0 (0)			
S. aureus	Spain	18/0 (0)			
viridans group streptococcus	Spain	23/1 (4.3)			
E. coli (ESBL-producing)	Italy	430/7 (1.6)		Original research	Grandesso et al., 2010 [187]
Klebsiella spp.	Poland	108/7 (7.5)		Original research	Sekowska and Gospodarek, 2010 [188]
KPC-producing Klebsiella pneumoniae	Spain	215/24 (11.2)		Original research	Vázquez et al., 2008 [73]
ESBL producing E. coli	Belgium	Nonsusceptibility rates	26/9 (35)	Original research	Naeens et al., 2009 [189]
ESBL-producing Klebsiella spp.	Belgium	10/10 (100)			
Enterobacteriaceae	France	1070/52 (4.9)		Original research	Froment Gomis P et al., [190]
Acinetobacter baumannii	France	47/25 (53)			
Bacteroides fragilis	France	645/102 (15.8)			
MDR-producing Enterobacteriaceae	Greece	152/12 (7.9) (Intermediate)		Original research	Falagas ME et al., [191]
Enterobacteriaceae spp. (carabapenem-resistant)	Europe	280/32 (11.4)		Original research	Sader HS et al., [192]
Enterobacteriaceae (imipenem resistant)	Greece	110/1 (1)		Original research	Papparaskevas J et al., [193]
Enterococcus spp. (vancomycin resistant)	Greece	151/0 (0)			
Methicillin-resistant S. aureus	Eastern Europe	338/3 (<1)		Original research	Balode A et al., [194]
ESBL-positive E. coli	Europe	337/5 (1.5)		Original research	Cattoir V et al., [195]
Vancomycin-resistant Enterococci	France	18/0 (0)		Original research	
Methicillin-resistant S. aureus	France	631/0 (0)			
ESBL-positive E. coli	France	275/3 (1.1)			
ESBL-positive K. pneumoniae	France	274/60 (21.9)			
Enterobacter hormaechei	France	1 case		Case report	Daurel et al., 2009 [196]
Enterococcus faecalis	Germany	1 case		Case report	Werner et al., 2008 [197]
carbapenem resistant A. baumannii complex	South Africa	232/17 (7.6)		Original research	Nahid H Ahmed et al., 2012 [198]
Acinetobacter baumannii	South Africa	(Non-susceptible)	705/53 (7.5)	Original research	Olga Perovic et al., 2015 to 2016 [199, 200]
E. coli	South Africa	199/0 (0)		Original research	Harald Seifert et al., 2018 [183]
Klebsiella pneumoniae	Africa	185/0 (0)			
Enterobacter spp.	Africa	188/2 (1.1)			
Serratia marcescens	Africa	79/1 (1.3)			
carbapenem resistant A. baumannii complex	South Africa	232/17 (7.6)		Original research	Ahmed et al., 2010 [198]
Clinical and pharmacokinetic literature outcomes stated that co-administration of tigecycline with food led to an improvement in the gastrointestinal adverse events; however, it did not change the drug’s pharmacokinetics [152].

In pancreatitis, the data from all phase 3 and 4 clinical trials found no significant difference in the incidence of pancreatitis between patients treated with tigecycline and patients treated with comparators [153]. On the other hand, a significantly higher rate of pancreatitis of 20% (cases = 10) was observed in a French study [154]. The exact mechanism of tigecycline-induced pancreatitis is unclear; however, some suggested mechanisms are hypertriglyceridemia and toxic metabolite formation that might be involved in the development of tigecycline-induced pancreatitis [153–155].

Several studies also reported tigecycline-induced coagulopathy [156, 157]. The impact of a recommended dose of tigecycline, 50 mg q12h and/or a higher dose of 100 mg q12h, on coagulation parameters in 50 patients with severe infection was evaluated in a Chinese retrospective analysis [158]. A considerable decrease in the levels of plasma fibrinogen (p < 0.001) and a significant increase in the mean values of prothrombin time (PT) and activated partial thromboplastin time (aPTT) (p < 0.002) were observed. In another study, non-anion gap acute metabolic acidosis (NAGAMA), developed through mitochondrial toxicity, was observed after an unusually high dose

Table 2 (continued)

American Countries	Acinetobacter baumannii	USA	1	Case series	Anthony et al., 2008 [148]
Bacteroides fragilis		USA	1	Case report	Sherwood et al., 2011 [201]
E. coli		USA	131/0 (0)	Original research	DiPersio and Dowzicky, 2007 [202]
Klebsiella pneumonia		USA	174/16 (9.2)	Original research	DiPersio and Dowzicky, 2007 [202]
E. aerogenes		USA	24/5 (20.8)	Original research	DiPersio and Dowzicky, 2007 [202]
E. cloacae		USA	126/32 (25.4)	Original research	DiPersio and Dowzicky, 2007 [202]
S. marcescens		USA	20/4 20	Original research	DiPersio and Dowzicky, 2007 [202]
Bacteroides fragilis		USA	1	Case report	Sherwood et al., 2011 [201]
E. faecium		Latin Americas	106/0 (0)	Original research	Denys GA et al., [204]
Enterobacter spp.		Latin Americas	766/2 (0.3)	Original research	Fernández-Canigia L et al., [205]
K. pneumoniae		USA	932/0 (0)	Original research	Denys GA et al., [204]
Enterobacter spp.		USA	328/2 (0.6)	Original research	Fernández-Canigia L et al., [205]
E. coli		USA	6643/0 (0)	Original research	Fernández-Canigia L et al., [205]
K. pneumoniae		USA	4951/208 (4.2)	Original research	Fernández-Canigia L et al., [205]
Klebsiella oxytoca		USA	1170/13 (1.1)	Original research	Fernández-Canigia L et al., [205]
Serratia marcescens		USA	2421/99 (4.1)	Original research	Fernández-Canigia L et al., [205]
Enterobacter spp.		USA	6065/285 (4.7)	Original research	Fernández-Canigia L et al., [205]
ESBL-E. coli		USA	6065/285 (4.7)	Original research	Fernández-Canigia L et al., [205]
ESBL-K. pneumonia		USA	870/0 (0)	Original research	Fernández-Canigia L et al., [205]
K. oxytoca		USA	1045/15 (1.4)	Original research	Fernández-Canigia L et al., [205]
Enterobacter spp.		USA	311/0 (0)	Original research	Fernández-Canigia L et al., [205]
S. marcescens		USA	1126/9 (0.8)	Original research	Fernández-Canigia L et al., [205]
ESBL-producing K. pneumoniae		USA	337/7 (2)	Original research	Fernández-Canigia L et al., [205]
K. oxytoca		USA	801/2 (0.2)	Original research	Fernández-Canigia L et al., [205]
E. coli		USA	4861/0 (0)	Original research	Fernández-Canigia L et al., [205]
E. aerogenes		USA	1095/11 (0.01)	Original research	Fernández-Canigia L et al., [205]
E. cloacae		USA	2866/56 (0.02)	Original research	Fernández-Canigia L et al., [205]
S. marcescens		USA	1698/11 (<0.01)	Original research	Fernández-Canigia L et al., [205]
S. aureus		Mexico	250/23 (9)	Original research	Garza-González et al., 2010 [207]
Klebsiella pneumonia		USA	150/5 (3)	Original research	Garza-González et al., 2010 [207]
E. coli		USA	150/6 (4)	Original research	Garza-González et al., 2010 [207]
A. baumannii		USA	550/6 (1)	Original research	Garza-González et al., 2010 [207]
Enterobacter cloacae		USA	100/7 (7)	Original research	Garza-González et al., 2010 [207]
Serratia		USA	100/0 (0)	Original research	Garza-González et al., 2010 [207]
E. coli		Canada	3789/4 (0.1)	Original research	Lagacé-Wiens et al., 2011 [208]
CTX-M-producing Enterobacteriaceae	USA	67/0 (0)	Original research	Castanheira et al., 2010 [209]	

ESBL, extended-spectrum b-lactamase; MDR, multidrug-resistant. MBL, Metallo-β-lactamase. NDM; New Delhi Metallo-beta lactamase.
of 100 mg, twice daily following a single 200 mg loading dose of tigecycline administration; however, the mechanism of NAGAMA is unclear [34]. The routine monitoring of pancreatitis, NAGAMA, and coagulation parameters may be a necessity when administering tigecycline to critically ill patients.

Interaction

The coadministration of tigecycline and warfarin (25 mg single dose) to healthy volunteers resulted in a 40 and 23% decrease in the clearance of R-warfarin and S-warfarin and their AUC, from time zero extrapolated to infinity, was increased by 68 and 29%, respectively [159]. The prothrombin time, or any other suitable anticoagulation test, should be used if tigecycline is administered with warfarin.

The prevalence of tigecycline resistance by continent

A summary of tigecycline resistance studies according to the individual countries worldwide are shown in Table 2 and Table 3.
Asia

In Asia, the occurrence of tigecycline resistance was reported in different bacterial species ranging from 0% to 66% with a different distribution within the individual Asian countries (Table 2). The most frequently reported species, regarding tigecycline resistance, was A. baumannii [174] with a high resistance rate of 66% revealed in Israel [150].

In Enterobacteriaceae, a tigecycline resistance of 11% was reported for NDM-1-positive isolates from Pakistan and, a resistance of 37.9% was reported for tigecycline non-susceptible Metallobeta-lactamases producing isolates from Taiwan [167]; the prevalence of tigecycline-resistant K. pneumoniae was found to be 1.3% [183]. The reports of tigecycline-resistant K. pneumoniae came from Saudi Arabia [160, 169, 173], Taiwan [144], and Lebanon [169]; further tigecycline resistance was reported for Escherichia coli, Enterobacter cloacae, and S. marcescens [194, 217].

In other gram-negatives, tigecycline resistance was reported in S. maltophilia from Taiwan and China [165, 166, 181] and in 90% of Pseudomonas aeruginosa isolates from India [163].

For gram-positive pathogens, a tigecycline resistance rate of 3% in MRSA isolates [49, 218] was reported from India by Veeraraghavan et al. and in the study of Sharma et al.; 53.5% (n = 68) of S. aureus isolates showed non-susceptibility to tigecycline [179]. In recent years, the trend of increasing minimal inhibitory concentrations to tigecycline and linezolid was observed in Taiwan; however, strains with resistance to these agents were rare [219]. Interestingly, a 2% tigecycline resistance rate was reported in S. pneumoniae isolates gathered between 2004 and 2010 from the Asia-Pacific region, while in 2015, all S. pneumoniae isolates investigated were susceptible to tigecycline [220].

Europe

Tigecycline resistance is frequently studied in Enterobacteriaceae in Europe (Table 2). In ESBL producing Enterobacteriaceae, tigecycline resistance was reported in Italy, Belgium, Turkey, and France [187, 194, 195, 207]. Sader et al. reported that 11.4% of European carbapenem-resistant Enterobacteriaceae are not susceptible to tigecycline [192]. In France, cephalosporin-resistant Enterobacteriaceae were shown to be not susceptible to tigecycline in 23.8% of isolates [190].

For other gram-negative pathogens, resistance to tigecycline was reported in Acinetobacter baumannii [185, 221–224], as well as S. marcescens [211] and H. influenzae [211]. In gram-positive pathogens, tigecycline resistance was reported in two and three MRSA isolates from the Netherlands [225]. In Spain, tigecycline resistance was identified in E. faecium, E. faecalis and viridans streptococci [186] and in Germany, in E. faecalis [197]. In anaerobes, tigecycline resistance was investigated in the B. fragilis group in a Europe-wide study involving 13 countries, and a resistance rate of 1.7% was detected [226].

Africa

The tigecycline resistance rates in isolates collected between 2004–2016 in Africa were 5.8% (37/642) lower than in Europe (37.4%; 240/642) and North America (36.8%; 236/642) [49]. In the study of Seifert et al., 1.1% of Enterobacter spp. and 1.3% of S. marcescens isolates were tigecycline-resistant [183]. In the South of the continent, resistance to tigecycline was reported in A. baumannii, K. pneumoniae, Enterobacter spp., C. freundii, P. aeruginosa, and S. marcescens [198, 230–234].

Conclusion

Tigecycline is a unique glycylcycline class of semisynthetic agents designed to overcome the main tetracycline resistance mechanisms. Although tigecycline was approved for cSSTI, cIAI, and CAP in adults, its therapeutic potential is undoubtedly wider. Its antimicrobial activity against anaerobes and its greater penetration into tissues is advantageous for the treatment of inflammatory lesions and granulomas. Recently available clinical data support the use of tigecycline in severe C. difficile infections. In vitro antimicrobial susceptibility testing showed the susceptibility of a number of pathogens to tigecycline including those MDR pathogens associated with healthcare infections. However, the bacteriostatic activity of tigecycline is probably associated with a higher mortality risk in patients with sepsis or severe infection.

Acknowledgments We thank the Dr. Abazar Pourmajaf for scientific reviewing and kind support.

Availability of data and material All the data in this review are included in the manuscript.

Authors’ contribution Sajad Yaghoubi, Angelina Olegovna Zekiy, Marcela Krutova, Mehrdad Gholami, Mohammad Sholeh, and Zahra Ghafouri contributed to the conception, design, and drafting of the work. Angelina Olegovna Zekiy, Farajolah Maleki, and Ebrahim Kouhsari...
contributed in revising and final approval of the version to be published. All authors agreed and confirmed the manuscript for publication.

Compliance with ethical standards

Conflict of interest Authors declare that they have no competing interests.

Ethical approval Not applicable in this section.

Informed consent Not applicable in this section.

Abbreviations MDR, Multidrug-Resistant; XDR, Extensively Drug-Resistant; FDA, Food and Drugs Administration; cSSTI, Complicated Skin and Skin Structures Infections; cIAI, Complicated Intra-Abdominal Infections; CAP, Community-Acquired Bacterial Pneumonia; PK/PD, Pharmacokinetic-Pharmacodynamic; AUC: MIC, Concentration-Time Curve and Minimal Inhibitory Concentration; PAE, Post-Antibiotic Effect; CLSI, Clinical and Laboratory Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility Testing; BSAC, British Society for Antimicrobial Chemotherapy; MRSB, Methicillin-Resistant Staphylococcus aureus; VRE, Vancomycin-Resistant enterococci; ESBL, Extended-Spectrum β-lactamase; CDI, Clostridium difficile infection; RND, Resistance-Nodulation Division; SAM, S-adenosyl-L-methionine; CRKP, Carbapenem-Resistant K. pneumoniae; MATE, Multi-Antimicrobial Extrusion Protein; MFS, Major Facilitator Superfamily; FAERS, FDA Adverse Event Reporting System; RCTs, Randomized Controlled Trials; GI, Gastrointestinal; aPTT, Activated Partial Thromboplastin Time; NAGAMA, Non-Anion Gap Acute Metabolic Acidosis

References

1. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics 40(4):277
2. Tasina E, Haidich A-B, Kokkali S, Arvanitidou M (2011) Efficacy
3. Guay DR (2004) Oritavancin and tigecycline: investigational antimicrobials for multidrug-resistant bacteria. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 24(1): 58–68
4. Stein GE, Babinchak T (2013) Tigecycline: an update. Diagn Microbiol Infect Dis 75(4):331–336
5. FDA U FDA drug safety communication: increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infections (1 September 2010).
6. Food Administration D (2017) FDA drug safety communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning. US Food and Drug Administration, Silver Spring, MD
7. Laut L, Ozsvár Z, Mitha I, Reguly-Mérei J, Embil JM, Cooper A, Sabol MB, Castaing N, Dartois N, Yan JJDM, disease (2014) Phase 3 study comparing tigecycline and etaneprostone in patients with diabetic foot wounds. 78(4):469–480
8. Kechagias KS, Chorepsima S, Triarides NA, Falagas ME (2020) Tigecycline for the treatment of patients with Clostridium difficile infection: an update of the clinical evidence. Eur J Clin Microbiol Infect Dis:1–6
9. Marot J-C, Jonckheere S, Munyentwaly H, Belkhir L, Vandercam B, Yombi JC (2012) Tigecycline-induced acute pancreatitis: about two cases and review of the literature. Acta Clin Belg 67(3):229–232
10. Finch RG, Greenwood D, Whitley RJ, Norruby SR (2010) Antibiotic and chemotherapy e-book. Elsevier Health Sciences
11. Mukker JK, Singh RP, Derendorf HH (2014) Determination of atypical nonlinear plasma–protein-binding behavior of tigecycline using an in vitro microdialysis technique. 103 (3):1013-1019
12. Bennett JE, Dolin R, Blaser MJ (2014) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set. Elsevier Health Sciences
13. DE ROSA FG, Coricone S, Di Perri G, Scaglione F (2015) Redefining tigecycline therapy.
14. Cai Y, Bai N, Liu X, Liang B, Wang J, Wang R (2016) Tigecycline: Alone or in combination? Infectious Diseases 48(7):491–502
15. Stein GE, Smith CL, Missavage A, Saunders JP, Nicolau DP, Bartjes SM, Kepros JP (2011) Tigecycline penetration into skin and soft tissue. Surg Infect 12(6):465–467
16. Tombs N (1999) Tissue distribution of GAR-936, a broad spectrum antibiotic in male rats. Program and abstracts of the Thirty-ninth Interscience Conference on Antimicrobial Agents and Chemotherapy, pp 26-29
17. Postier RG, Green SL, Klein SR, Ellis-Grosse EJ, Ambrose P (2007) Exposure–response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51(6):1939–1945
18. Passarell J, Meagher A, Liolios K, Cirincione B, Van Wart S, Yombi JC (2012) Tigecycline-induced acute pancreatitis: about two cases and review of the literature. Acta Clin Belg 67(3):229–232
19. Bhattacharya I, Gottfried MH, Aj BI, Saunders JP, Gourley I, Diehl A, Korth-Bradley JM (2014) Reassessment of tigecycline bone concentrations in volunteers undergoing elective orthopedic procedures. J Clin Pharmacol 54(1):70–74
20. Meagher A, Passarell J, Cirincione B, Van Wart S, Liolios K, Babinchak T, Elliss-Grosse E, Ambrose P (2007) Exposure–response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51(6):1939–1945
21. Townsend MD, Pound MW, Drew RH (2007) Tigecycline in the treatment of complicated intra-abdominal and complicated skin and skin structure infections. Ther Clin Risk Manag 3(6):1059
22. Petersen PJ, Bradford PA, Weiss WJ, Murphy TM, Sum P, Projan SJ (2002) In vitro and in vivo activities of tigecycline (GAR-936), daptomycin, and comparative antimicrobial agents against glycopeptide-intermediate Staphylococcus aureus and other resistant gram-positive pathogens. Antimicrob Agents Chemother 46(8):2595–2601
23. Van Gntrop M, Andes D, Stasmn T, Conklin B, Weiss W, Craig W, Vesga OJAA, chemotherapy (2000) In vivo pharmacodynamic activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria 44 (4): 943–949
24. Rello J (2005) Pharmacokinetics, pharmacodynamics, safety and tolerability of tigecycline. Journal of chemotherapy 17 (sup1):12-22
25. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S (2005) Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother 49(1):220–229
27. Kaempfowat Q, Ostrosky-Zeichner L (2015) Tigecycline: a critical safety review. Expert Opin Drug Saf 14(2):335–342
28. Korth-Bradley JM, Baird-Bellaire SJ, Patat AA, Troy SM, Böhmer GM, Gleiter CH, Buecheler R, Morgan MY (2011) Pharmacokinetics and safety of a single intravenous dose of the antibiotic tigecycline in patients with cirrhosis. J Clin Pharmacol 51(1):93–101
29. Greer ND (2006) Tigecycline (Tygacil): the first in the glycycline class of antibiotics. Baylor University Medical Center Proceedings. Taylor & Francis, pp 155-161
30. CLSI C (2019) Performance standards for antimicrobial susceptibility testing. Clinical Lab Standards Institute
31. Testing ECOAS (2019) European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. Växjö, Sweden
32. Wyeth P (2010) Tygacil (tigecycline) for injection. Wyeth Pharmaceutica Inc, Philadelphia, PA
33. Nathwani D (2018) British Society for Antimicrobial Chemotherapy. Antimicrobial stewardship: from principles to practice
34. Hawkey P, Finch R (2007) Tigecycline: in-vitro performance as a treatment of clinical efficacy. Clin Microbiol Infect 13(4):354–362
35. Seiffert SN, Marschall J, Ferreten V, Carattoli A, Furrer H, Endimiani A (2014) Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents 44(3):260–262
36. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irlan S (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602
37. Hidalgo L, Hopkins KL, Gutierrez B, Ovejero CM, Shukla S, Souttwaite S, Prasad KN, Woodford N, Gonzalez-Zorn B (2013) Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother 68(7):1543–1550
38. Du X, He F, Shi Q, Zhao F, Xu J, Fu Y, Yu Y (2018) The Rapid Emergence of Tigecycline Resistance in blaKPC-2 Harboring Klebsiella pneumoniae bacteria with RmtF, and NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother 68(7):1543–1550
39. Alshams F, Tiren-Verbeet NL, Alp E, Doganay M (2017) Treatment of sepsis: What is the antibiotic choice in bacteremia due to carbapenem resistant Enterobacteriaceae? World J Clin Cases 5(8):324
40. Iovleva A, Doi Y (2017) Carbapenem-resistant enterobacteriaceae. Clin Lab Med 37(2):303–315
41. Horiyama T, Nikaido E, Yamaguchi A, Nishino K (2010) Roles of Salmonella multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother 66(1):105–110
42. Gales AC, Jones RN, Andrade SS, Pereira AS, Sader HS (2005) In vitro activity of tigecycline, a new glycycline, tested against 1,326 clinical bacterial strains isolated from Latin America. Braz J Infect Dis 9(5):348–356
43. Y-u Z, Zhou L, Zhu D-m, Wu P-c, Hu F-p, Wu W-h, Wang F (2004) In vitro activities of tigecycline against clinical isolates from Shanghai, China. Diagn Microbiol Infect Dis 50(4):267–281
44. Lee H, Kim H, Soo YH, Yong D, Jeong SH, Lee K, Chang Y (2017) In vitro activity of tigecycline alone and antimicrobial combinations against clinical Neisseria gonorrhoeae isolates. Diagn Microbiol Infect Dis 87(2):160–162
45. Blanton LS, Wilson NM, Quade BR, Walker DH (2019) Susceptibility of Rickettsia rickettsii to Tigecycline in a Cell Culture Assay and Animal Model for Rocky Mountain Spotted Fever. The American Journal of Tropical Medicine and Hygiene 101(5):1091–1095
46. Spyradaki I, Psaroulaki A, Vranakis I, Tselenitis Y, Gikas A (2009) Bacteriostatic and bactericidal activities of tigecycline against Coxiiella burnetii and comparison with those of six other antibiotics. Antimicrob Agents Chemother 53(6):2690–2692
47. Lee S-M, Kwon H-Y, Im J-H, Baek J-H, Hwang S-S, Kang J-S, Chung M-H, Lee J-S (2016) In vitro activity of tigecycline against Orientia tsutsugamushi. Yonsei Med J 57(4):1034–1037
48. Freeman J, Vernon J, Pilling S, Morris K, Nicholson S, Shearman S, Clark E, Palacios-Fabrega JA, Wilcox MJ, Eisma, Diseases I (2020) Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: the extended ClosER study 39(1):169–177
49. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830
50. Kechagias KS, Chorepsima S, Triaridis NA, Falagas ME, JESoCM, Diseases I (2020) Tigecycline for the treatment of patients with Clostridium difficile infection: an update of the clinical evidence.1-6
51. Bauer G, Berens C, Projan SJ, Hillen W (2004) Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 53(4):592–599
52. Jenner L, Starosta AL, Terry DS, Mikolajka A, Filonava L, Yusupov M, Blanchard SC, Wilson DN, Yusupova G (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc Natl Acad Sci 110(10):3812–3816
53. Olson MW, Ruzin A, Feyfant E, Rush TS, O’Connell J, Bradford PA (2006) Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother 50(6):2156–2166
54. Poumaras S, Koumaki V, Gennimata V, Kouskouni E, Tsakris A (2015) In vitro activity of tigecycline against Acinetobacter baumannii: global epidemiology and resistance mechanisms. Advances in Microbiology, Infectious Diseases and Public Health. Springer, pp 1-14
55. Poumaras S, Koumaki V, Spanakis N, Gennimata V, Tsakris A (2016) Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 48(1):11–18
56. Gordon N, Wardham D (2009) A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J Antimicrob Chemother 63(4):775–780
57. Linkevicius M, Sandegren L, Andersson DI (2016) Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother 60(2):789–796
58. Deng M, Zhu M-H, Li J-J, Sheng X-Z, Hu F-S, Zhang J-J, Chen W, Xue X-W, Sheng J-F (2014) Molecular epidemiology of resistance: the extended ClosER study 39 (1):169-177
enterica serovar Hadar resistant to tigecycline. Antimicrob Agents Chemother 54(3):1319–1322

62. Veleba M, De Majumdar S, Hornsey M, Woodford N, Schnieders T (2013) Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Antimicrob Chemother 68(5):1011–1018

63. Keeney D, Rузin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloaca. Microb Drug Resist 13(1):1–6

64. Ni W, Cai X, Liang B, Cai Y, Cui J, Wang R (2014) Effect of proton pump inhibitors on in vitro activity of tigecycline against several common clinical pathogens. PLoS one 9(1):e86715

65. Montana S, Vilacoba E, Traglia GM, Almuzara M, Pennini M, Fernandez A, Sucari A, Centron D, Ramirez MS (2015) Genetic variability of AdeRS two-component system associated with tigecycline resistance in XDR-Acinetobacter baumannii isolates. Curr Microbiol 71(1):76–82

66. Sun J-R, Peng C-L, Lin J-C, Yang Y-S, Chan M-C, Chang T-Y, Lin F-M, Chiueh T-S (2014) AdeRS combination codes differenti-ate the response to efflux pump inhibitors in tigecycline-resistant isolates of extensively drug-resistant Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 33(12):2141–2147

67. Yoon E-J, Courvalin P, Grillot-Courvalin C (2013) RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother 57(7): 2999–2995

68. Sun J-R, Peng C-L, Chan M-C, Morita Y, Lin J-C, Su C-M, Wang W-Y, Chang T-Y, Chiueh T-S (2012) A truncated AdeS kinase protein generated by ISAba1 insertion correlates with tigecycline resistance in Acinetobacter baumannii. PLoS One 7(11):e49534

69. Lin M-F, Lin Y-Y, Yeh H-W, Lan C-Y (2014) Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 14(1):119

70. Chen Q, Li X, Zhou H, Jiang Y, Chen Y, Hua X, Yu Y (2013) Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J Antimicrob Chemother 69(1):72–76

71. Rumbo C, Gato E, López M, de Alegría CR, Fernández-Cuenca F, Martínez-Martínez L, Vila J, Pachón J, Cisneros JM, Rodríguez-Baño J (2013) Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 57(11):5247–5257

72. Ruzin A, Keeney D, Bradford PA (2005) AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother 49(2):791–793

73. He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y (2015) Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One 10(3):e0119064

74. Pérez A, Poza M, Aranda J, Latasa C, Medrano FJ, Tomás M, Romero A, Lasa I, Bou G (2012) Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-ToC in Enterobacter cloacae. Antimicrob Agents Chemother 56(12):6256–6266

75. Wang X, Chen H, Zhang Y, Wang Q, Zhao C, Li H, He W, Zhang F, Wang Z, Li S (2015) Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: Role of the global regulator RamA and its local repressor RamR. Int J Antimicrob Agents 45(6):635–640

76. Falagas ME, Tansarlı GS, Karageorgopoulos DE, Vardakas KZ (2014) Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 20(7):1170

77. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A (2014) Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 58(3):1707–1712

78. Hirata T, Sato A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48(6):2179–2184

79. Elkins CA, Nikaido H (2002) Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 184(23):6490–6498

80. Chollet R, Chevalier J, Bollet C, Pages J-M, Davin-Regli A (2004) RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48(7): 2518–2523

81. Alekshtun MN, Levy SB (1997) Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41(10):2067

82. Barbosa TM, Levy SB (2000) Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182(12):3467–3474

83. Keeney D, Ruzin A, McAleese F, Murphy E, Bradford PA (2007) MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 61(1):46–53

84. Linkevicius M, Sandegren L, Andersson DI (2013) Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 68(12):2809–2819

85. Pérez A, Poza M, Fernández A, del Carmen FM, Mallo S, Merino M, Rumbo-Feal S, Cabral MP, Bou G (2012) Involvement of the AcrAB-ToC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 56(4):2084–2090

86. Ruzin A, Immermann FW, Bradford PA (2008) Real-time PCR and statistical analyses of acrAB and ramA expression in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 52(9):3430–3432

87. Ruzin A, Visalli MA, Keeney D, Bradford PA (2005) Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49(3):1017–1022

88. Zhong X, Xu H, Chen D, Hu X, Cheng G (2014) First emergence of acrAB and oprAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS One 9(12):e115185

89. Roy S, Datta S, Viswanathan R, Singh AK, Basu S (2013) Tigecycline susceptibility in Klebsiella pneumoniae and Escherichia coli causing neonatal septicaemia (2007–10) and role of an efflux pump in tigecycline non-susceptibility. J Antimicrob Chemother 68(5):1036–1042

90. Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneider T (2011) Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents 38(1):39–45

91. De Majumdar S, Veleba M, Finn S, Fanning S, Schneider T (2013) Elucidating the regulon of multidrug resistance regulator RamA in Klebsiella pneumoniae. Antimicrob Agents Chemother 57(4):1603–1609

92. Sheng Z-K, Hu F, Wang W, Guo Q, Chen Z, Xu X, Zhu D, Wang M (2014) Mechanisms of tigecycline resistance among Klebsiella
pneumoniae clinical isolates. Antimicrob Agents Chemother 58(11):6982–6985

93. Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M (2010) ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 54(6):2720–2723

94. Nielsen LE, Snersud EC, Ommus-Leone F, Kwak YI, Avilés R, Steele ED, Sutter DE, Waterman PE, Lesho EP (2014) IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 58(10):6151–6156

95. Lat A, Clock SA, Wu F, Whittier S, Della-Latta P, Fauntleroy K, Jenkins SG, Saiman L, Kubin CJ (2011) Comparison of polymyxin, B, tigecycline, ceftazidime, and meropenem MICs for KPC-producing Klebsiella pneumoniae by broth microdilution, Vitek 2, and Etest. J Clin Microbiol 49(5):1795–1798

96. Pharmacuetics W (2009) Tygacil® (package insert). Wyeth Pharmaceutics, Philadelphia, PA

97. Chiu S-K, Huang L-Y, Chen H, Tsai Y-K, Lin C-H, Lin J-C, Siu LK, Chang F-Y, Yeh K-M (2017) Roles of ramR and tet(A) mutations in conferring tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother 61(8):e00391–e00317

98. Horsey M, Ellington MJ, Doumith M, Hudson S, Livermore DM, Woodford N (2010) Tigecycline resistance in Serratia marcescens associated with up-regulation of the SdeXY-Hasf efflux system also active against ciprofloxacin and cefpirome. J Antimicrob Chemother 65(3):479–482

99. Horsey M, Ellington MJ, Doumith M, Scott G, Livermore DM, Woodford N (2010) Emergence of AcrAB-mediated tigecycline resistance in a clinical isolate of Enterobacter cloacae during ciprofloxacin treatment. Int J Antimicrob Agents 35(5):478–481

100. Zheng B, Li A, Jiang X, Hu X, Yao J, Zhao L, Ji J, Ye M, Xiao Y, Li L (2014) Genome sequencing and genomic characterization of the tet(A) gene. Antimicrob Agents Chemother 58(11):6982–6985

101. Abozeed YM, Baucheron S, Cloeckaert A (2008) ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52(7):2428–2434

102. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S (2009) Decreased fluoroquinolone susceptibility in mutants of Salmonella enterica serovar Typhimurium: detection of novel mutations involved in modulated expression of ramA and soxS. J Antimicrob Chemother 64(6):1175–1180

103. Ricci V, Piddock LJ (2009) Ciprofloxacin selects for multidrug resistance in Salmonella enterica serovar Typhimurium mediated by at least two different pathways. J Antimicrob Chemother 63(5):909–916

104. Akikiya T, Presso J, Khan AA (2013) The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. Int J Antimicrob Agents 42(2):133–140

105. Aires JR, Köhler T, Nikaido H, Plesiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43(11):2624–2628

106. Ko” hler T, Michéa-Hamzehpour M, Henze U, Gotoh N, Kocjančič Curty L, Pechère JC (1997) Characterization of MexA–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 21 (2):345–354

107. Li X-Z, Nikaido H, Poole K (1995) Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39(9):1948–1953

108. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T (1999) Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43(2):415–417

109. Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Ji Y, Li XZ, Nishino T (1996) Overexpression of the mexC–mexD–oprF efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21(4):713–725

110. Dean CR, Visalli MA, Projan SJ, Sum P-E, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PA01. Antimicrob Agents Chemother 47(3):972–978

111. Noskin GA (2005) Tigecycline: a new glycyclcline for treatment of serious infections. Clinical infectious diseases 41 (Supplement 5):S303–S314

112. Pumbwe L, Piddock LJ (2000) Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(10):2861–2864

113. Beinlich KL, Chuanchuen R, Schweizer HP (2001) Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett 198(2):129–134

114. McAlleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49(5):1865–1871

115. Dünnhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN (2012) Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci 109(42):16900–16905

116. Fiedler S, Bender J, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G (2015) Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet (L) and tet (M). J Antimicrob Chemother 71(4):871–881

117. Food U, Administration D (2011) FDA drug safety communication: increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infections. Drugs

118. Eckmann C, Heizmann WR, Leitner E, Von Eifff C, Bodmann K-F (2011) Prospective, non-interventional, multi-centre trial of tigecycline in the treatment of severely ill patients with complicated infections—new insights into clinical results and treatment practice. Chemotherapy 57(4):275–284

119. Kwon SH, Ahn HL, Han OY, La HO (2014) Efficacy and safety profile of colistin and tigecycline on the extensively drug resistant Acinetobacter baumannii. Biol Pharm Bull 37(3):340–346

120. Chuang Y-C, Cheng C-Y, Sheng W-H, Sun H-Y, Wang J-T, Chen Y-C, Chang S-C (2014) Effectiveness of tigecycline-based versus colistin-based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii: a critical setting: a matched cohort analysis. BMC Infect Dis 14(1):102

121. Food Administration D (2015) Investigational New Drug Applications (INDs)—Determining Whether Human Research Studies Can Be Conducted Without an IND.

122. Bai X-R, Liu J-M, Jiang D-C, Yan S-Y (2018) Efficacy and safety of aztreonam and tigecycline for treatment of hospital-acquired pneumonia (HAP): a meta-analysis of 218 patients. J Antimicrob Chemother 73(3):572–578

123. Wang J, Pan Y, Shen J, Xu Y (2017) The efficacy and safety of tigecycline for the treatment of bloodstream infections: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 16(1):24

124. Conde-Estévez D, Grau S, Horcajada JP, Luque SJJOOAA (2010) Off-label prescription of tigecycline: clinical and microbiological characteristics and outcomes. 36 (5):471–472
159. Zimmerman JJ, Raible DG, Harper DM, Matschke K, Speth J (2008) Evaluation of a potential tigecycline-warfarin drug interaction. 27(8):895-905

160. Al-Qadheeb NS, Althawadi S, Alkhafal A, Hosaini S, Alrajhi AA (2010) Evolution of tigecycline resistance in Klebsiella pneumoniae in a single patient. Ann Saudi Med 30(5):404-407

161. Taneja N, Singh G, Singh M, Sharma M (2011) Emergence of tigecycline & colistin resistant Acinetobacter baumannii in patients with complicated urinary tract infections in north India. J Indian Med Assoc 133(6):681

162. Al-Sweih N, Al-Hubail M, Rotimi V (2011) Emergence of tigecycline resistance in Enterobacteriaceae, Staphylococcus aureus from patients in Kuwait hospitals. J Chemother 23(1):13-16

163. Manoharan A, Chatterjee S, Madhan S, Mathai D (2010) Evaluation of tigecycline activity in clinical isolates among Indian medical centers. Indian J Pathol Microbiol 53(4):734

164. Hsu M-S, Liao C-H, Liu C-Y, Yang C-J, Huang Y-T, Hsueh P-R (2011) In vitro susceptibilities of clinical isolates of carbapenem-resistant Enterobacteriaceae to aminoglycosides, tigecycline, fosfomycin and other antimicrobial agents. Int J Antimicrob Agents 37(3):276-278

165. Wu H, Wang J-T, Shiau Y-R, Wang H-Y, Lauderdale T-LY, Chang S-C (2012) A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect 45(2):120-126

166. Zhang R, Sun Q, Hu Y-J, Yu H, Li Y, Shen Q, Li G-X, Cao J-M, Yang W, Wang Q (2012) Detection of the Smqnr quinolone protection gene and its prevalence in clinical isolates of Stenotrophomonas maltophilia in China. J Microbiol Immunol Infect 45(4):353-359

167. Liao IC, Chen HM, Wu JJ, Tsai PF, Wang LR, Yan JJ (2011) Metallo-β-lactamase-producing Enterobacteriaceae isolates at a Taiwanese hospital: lack of distinctive phenotypes for screening. Apmis 119(8):543-550

168. Perry JD, Naqvi SH, Alhafash A, Dhan A, Mathai D, Naesens R, Ursi J, Van Schaeren J, Jeurissen A (2009) In vitro activity of tigecycline against clinical isolates of carbapenem-resistant Acinetobacter baumannii isolated from ventilator-associated pneumonia. J Antimicrob Agents 32(1):29-32

169. Sharma S, Bhowmik D, Bhattacharjee A (2017) Tigecycline Resistance among Clinical Isolates of Staphylococcus aureus from North-East India. J Microbiol Infect Dis 7(04):173-177

170. Liao C-H, Hsu G-J, Hu P-L, Liu Y-C, Chen C-M, Lee C-M, Sun W, Jang T-N, Chiang P-C (2008) In-vitro activity of tigecycline against clinical isolates of Acinetobacter baumannii in Taiwan determined by the broth microdilution and disk diffusion methods. Int J Antimicrob Agents 32:592-596

171. Zhao J, Liu Y, Liu Y, Wang D, Ni W, Wang R, Liu Y, Zhang B (2018) Frequency and genetic determinants of tigecycline resistance in clinical isolates of Enterobacteriaceae isolated from patients in Kuwait hospitals. J Chemother 23(1):13-16

172. Grandesso S, Bhowmik D, Mazzucato S, Alessandrini R, Michon A, Godreuil S (2013) Tigecycline: CMI 50/90 towards multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Immunol Infect 45(1):37-42

173. Park Y, Choi J, Song J, Ko K (2009) In vitro activity of tigecycline against colistin-resistant Acinetobacter spp. isolates from Korea. Int J Antimicrob Agents 33(3):289-290

174. Kim C-K, Lee Y, Lee H, Woo G-J, Song W, Kim M-N, Lee W-G, Jeong SH, Lee K, Chong Y (2010) Prevalence and diversity of carbapenemases among imipenem-nonsusceptible Acinetobacter baumannii in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis 68(4):432-438

175. Dizbay M, Altunekic A, Sezer BE, Ozdemir K, Arman D (2008) Colistin and tigecycline susceptibility among multidrug-resistant Acinetobacter baumannii isolated from a tertiary care hospital. Indian J Med Microbiol 53(4):734-739

176. Chiu S-K, Chen M-C, Huang L-Y, Lin Y-T, Lin J-C, Lu P-L, Liu LK, Chang F-Y, Yeh K-M (2017) Tigecycline resistance among carbapenem-resistant Klebsiella pneumoniae clinical characteristics and expression levels of efflux pump genes. PloS one 12(4): e0175140

177. Seifert H, Blondeau J, Dowzicky MJ (2018) In vitro activity of tigecycline and comparators (2014-2016) among key WHO ‘priority pathogens’ and longitudinal assessment (2004-2016) of antimicrobial resistance: a report from the TEST study. Int J Antimicrob Agents 52(4):474-484

178. Nagy E (2011) ESMCID Study Group on Antimicrobial Resistance in Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17:371-379

179. Insa R, Cercenado E, Goyanes M, Morente A, Bouza E (2007) In vitro activity of tigecycline against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia. J Antimicrob Chemother 59(3):583-585

180. Tubau F, Liñares J, Rodríguez M-D, Cercenado E, Aldea M-J, Grandesso S, Bhowmik D, Alessandrini R, Michon A, Godreuil S (2013) Tigecycline: CMI 50/90 towards multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Immunol Infect 45(1):37-42

181. Park Y, Choi J, Song J, Ko K (2009) In vitro activity of tigecycline against colistin-resistant Acinetobacter spp. isolates from Korea. Int J Antimicrob Agents 33(3):289-290

182. Kim C-K, Lee Y, Lee H, Woo G-J, Song W, Kim M-N, Lee W-G, Jeong SH, Lee K, Chong Y (2010) Prevalence and diversity of carbapenemases among imipenem-nonsusceptible Acinetobacter baumannii in Korea: emergence of a novel OXA-182. Diagn Microbiol Infect Dis 68(4):432-438

183. Dizbay M, Altunekic A, Sezer BE, Ozdemir K, Arman D (2008) Colistin and tigecycline susceptibility among multidrug-resistant Acinetobacter baumannii isolated from a tertiary care hospital. Indian J Med Microbiol 53(4):734-739
Bacteroides fragilis group, University Hospital-Montpellier, 2008-2011. Pathol Biol (Paris) 61:282–285

191. Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E, Samonis G (2010) Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 35(3):240–243

192. Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN (2015) Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: results from the SENTRY program (2010–2013). Diagn Microbiol Infect Dis 83(2):183–186

193. Papaparaskevas J, Tsouvelekis LS, Tsakris A, Pittaras TE, Legakis NJ, Group HTS (2010) In vitro activity of tigecycline against 2423 clinical isolates and comparison of the available interpretation breakpoints. Diagn Microbiol Infect Dis 66(2):187–194

194. Balode A, Punda-Polić V, Dowzicky MJ (2013) Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from countries in Eastern Europe: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2004–2010. Int J Antimicrob Agents 41(6):527–535

195. Cattoir V, Dowzicky MJ (2014) A longitudinal assessment of antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (TEST) in France between 2004 and 2012. Antimicrob Resist Infect Control 3:1:36

196. Daurel C, Fiant A-L, Brémond S, Courvalin P, Leclercq R (2009) Emergence of an Enterobacter hormaechei strain with reduced susceptibility to tigecycline under tigecycline therapy. Antimicrob Agents Chemother 53(11):4953–4954

197. Werner G, Gfrörer S, Fleige C, Witte W, Klare I (2008) Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient. J Antimicrob Chemother 61(5):1182–1183

198. Ahmed NH, Baba K, Clay C, Lekalakala R, Hoosen AA (2012) In vitro activity of tigecycline against clinical isolates of carbapenem resistant Acinetobacter baumannii complex in Pretoria, South Africa. BMC Res Notes 5(1):215

199. Perovic O, Ismail H, Shalkwyk EV (2018) Antimicrobial resistance surveillance in the South African public sector. South Afr J Infect Dis 33(4):118–129

200. Perovic O, Ismail H, Van Shalkwyk E, Lowman W, Prentice E, Senekal M, Govind CN (2018) Antimicrobial resistance surveillance in the South African private sector report for 2016. South Afr J Infect Dis 33(4):114–117

201. Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, Patrick S (2011) Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 17(4):152–155

202. DiPersio JR, Dowzicky MJ (2007) Regional variations in multidrug resistance among Enterobacteriaceae in the USA and comparative activity of tigecycline, a new glycylcycline antimicrobial. Int J Antimicrob Agents 29(5):518–527

203. Rossi F, Garcia P, Ronzon B, Curcio D, Dowzicky MJ (2008) Rates of antimicrobial resistance in Latin America (2004-2007) and in vitro activity of the glycylcycline tigecycline and of other antibiotics. Braz J Infect Dis 12(5):405–415

204. Denys GA, Callister SM, Dowzicky MJ (2013) Antimicrobial susceptibility among gram-negative isolates collected in the USA between 2005 and 2011 as part of the Tigecycline Evaluation and Surveillance Trial (TEST). Ann Clin Microbiol Antimicrob 12(1):24

205. Fernández-Canigia L, Dowzicky MJ (2012) Susceptibility of important Gram-negative pathogens to tigecycline and other antibiotics in Latin America between 2004 and 2010. Ann Clin Microbiol Antimicrob 11(1):29

206. Dowzicky MJ, Park CH (2008) Update on antimicrobial susceptibility rates among gram-negative and gram-positive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther 30(11):2040–2050

207. Garza-González E, Llaca-Díaz JM, Bosques-Padilla FJ, González GM (2010) Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in Mexico: special focus on Acinetobacter baumannii. Chemotherapy 56(4):275–279

208. Lagacé-Wiens PR, Sinner PJ, Forward KR, Tailor F, Adam HJ, DeCorby M, Karlowsky J, Hovan DJ, Zhanel GG, Alliance CAR (2011) Analysis of 3789 in-and outpatient Escherichia coli isolates from across Canada—results of the CANWARD 2007–2009 study. Diagn Microbiol Infect Dis 69(3):314–319

209. Castanheira M, Sader HS, Jones RN (2010) Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae. Microb Drug Resist 16(1):61–65

210. Giammanco A, Calà C, Fasciana T, Dowzicky MJ (2017) Global assessment of the activity of tigecycline against multidrug-resistant Gram-negative pathogens between 2004 and 2014 as part of the Tigecycline Evaluation and Surveillance Trial. Msphere 2(1):e00310–e00316

211. Kehl SC, Dowzicky MJ (2015) Global assessment of antimicrobial susceptibility among Gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline Evaluation and Surveillance Trial. J Clin Microbiol 53(4):1286–1293

212. Mendes RE, Farrell DJ, Sader HS, Jones RN (2010) Comprehensive assessment of tigecycline activity tested against a worldwide collection of Acinetobacter spp. (2005–2009). Diagn Microbiol Infect Dis 68(3):307–311

213. Garrison MW, Mutters R, Dowzicky MJ (2009) In vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive organisms: tigecycline Evaluation and Surveillance Trial 2004 to 2007. Diagn Microbiol Infect Dis 65(3):288–299

214. Hoban DJ, Reinert RR, Bouchillon SK, Dowzicky MJ (2015) Global in vitro activity of tigecycline and comparator agents: Tigecycline Evaluation and Surveillance Trial 2004–2013. Ann Clin Microbiol Antimicrob 14(1):27

215. Sader HS, Flamm RK, Jones RN (2013) Tigecycline activity tested against antimicrobial resistant surveillance subsets of clinical bacteria collected worldwide (2011). Diagn Microbiol Infect Dis 76(2):217–221

216. Bertrand X, Dowzicky MJCIT (2012) Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial 34 (1):124-137

217. Hsu M-S, Liao C-H, Liu C-Y, Yang C-J, Huang Y-T (2011) Analysis of 3789 in-and outpatient Escherichia coli isolates from across Canada—results of the CANWARD 2007–2009 study. Diagn Microbiol Infect Dis 69(3):314–319

218. Veeraraghavan B, Poojary A, Shankar C, Bari AK, Kukreja S, Thukkaram B, Neethimohan RG, Bakhtavachalam YD, Kamat S (2019) In vitro susceptibilities of clinical isolates of ertapenem-non-susceptible Enterobacteriaceae to nemonoxacin, tigecycline, fosfomycin and other antimicrobial agents. Int J Antimicrob Agents (Print) 37(3):276–278

219. Veeraraghavan B, Poojary A, Shankar C, Bari AK, Kukreja S, Thukkaram B, Neethimohan RG, Bakhtavachalam YD, Kamat S (2019) In vitro activity of tigecycline and comparator agents against common pathogens: Indian experience. The Journal of Infection in Developing Countries 13(03):245–250

220. Chen Y-H, Liu C-Y, Ko W-C, Liao C-H, Lu P-L, Huang C-H, Lu C-T, Chuang Y-C, Tsao S-M, Chen Y-S (2014) Trends in the susceptibility of methicillin-resistant Staphylococcus aureus to nine antimicrobial agents, including cefotibiprole, nemonoxacin, and tyrothricin: results from the Tigecycline In Vitro
Surveillance in Taiwan (TIST) study, 2006–2010. Eur J Clin Microbiol Infect Dis 33(2):233–239

220. Yang Q, Xu Y-C, Kiratisin P, Dowzicky MJ (2017) Antimicrobial activity among gram-positive and gram-negative organisms collected from the Asia-Pacific region as part of the Tigecycline Evaluation and Surveillance Trial: Comparison of 2015 results with previous years. Diagn Microbiol Infect Dis 89(4):314–323

221. Ricciardi R, Ricciardi A, Danzi G (2009) In vitro activity of tigecycline against multidrug-resistant Acinetobacter baumannii clinical isolates. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive 17(4):236–239

222. Capone A, D’Arezzo S, Visca P, Petrosillo N (2008) In vitro activity of tigecycline against multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 62(2):422–423

223. Kopterides P, Papageorgiou C, Antoniadou A, Papadomichelakis E, Tsangaris I, Dimopoulou I, Armaganidis A (2010) Failure of tigecycline to treat severe Clostridium difficile infection. Anaesth Intensive Care 38(3):755–758

224. Caneiras C, Calisto F, Jorge da Silva G, Lito L, Melo-Cristino J, Duarte A (2018) First description of colistin and tigecycline-resistant Acinetobacter baumannii producing KPC-3 carbapenemase in Portugal. Antibiotics 7(4):96

225. Verkade E, Verhulst C, Huijsdens X, Kluytmans J (2010) In vitro activity of tigecycline against methicillin-resistant Staphylococcus aureus, including livestock-associated strains. Eur J Clin Microbiol Infect Dis 29(5):503–507

226. Nagy E, Urban E, Nord CE, Bacteria ESGoARiA (2011) Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17(3):371-379

227. Gallagher JC, Rouse HM (2008) Tigecycline for the treatment of Acinetobacter infections: a case series. Ann Pharmacother 42(9):1188–1194

228. Peleg AY, Potoski BA, Rea R, Adams J, Sethi J, Capitano B, Husain S, Kwak EJ, Bhat SV, Paterson DL (2006) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59(1):128–131

229. Hoban DJ, Bouchillon SK, Dowzicky MJ (2007) Antimicrobial susceptibility of extended-spectrum β-lactamase producers and multidrug-resistant Acinetobacter baumannii throughout the United States and comparative in vitro activity of tigecycline, a new glycyclcline antimicrobial. Diagn Microbiol Infect Dis 57(4):423–428

230. Sekyere JO, Govinden U, Essack S (2016) The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb Drug Resist 22(1):59–68

231. Osei Sekyere J (2016) Current state of resistance to antibiotics of last-resort in South Africa: a review from a public health perspective. Front Public Health 4:209

232. Govind C, Moodley K, Peer A, Pillay N, Maske C, Wallis C, Viana R, Chetty A, Perovic O (2013) NDM-1 imported from India–first reported case in South Africa. S Afr Med J 103(7):476–478

233. Osei Sekyere J, Govinden U, Bester L, Essack S (2016) Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J Appl Microbiol 121(3):601–617

234. Sekyerea JO, Pedersen T, Sivertsen A, Govindena U, Essacka SY, Moodleye K, Samuelsenb O, Sundsfjordb A (2016) Molecular epidemiology of carbapenem, colistin and tigecycline resistant Enterobacteriaceae in Durban, Africa, South

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.