String Theory
of
The Regge Intercept

Simeon Hellerman
Kavli Institute for the Physics and Mathematics of the Universe
Tokyo University Institutes for Advanced Study

S.H. and Ian Swanson, arXiv:1312.0999
S.H., J. Maltz, S. Maeda, I. Swanson, In Progress
S.H., and I. Swanson, In Progress

KEK Theory Workshop
KEK, Tsukuba, Japan
February 21, 2014
Classical string model of the Regge spectrum

The string theory of QCD was originally formulated to explain remarkable, robust patterns in hadronic spectral data.

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/%20Physics20557_lec11_files/image064.jpg
Classical string model of the Regge spectrum

All hadronic states appear to lie in a tower of resonances that can be plotted on a graph of mass-squared versus angular momentum, as straight lines with a common, universal slope.

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/Physics20557_lec11_files/image064.jpg
Classical string model of the Regge spectrum

\[m^2 = \frac{J}{\alpha'} , \]

\[\alpha' = \frac{1}{2\pi T_{\text{string}}} \]

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/ %Physics20557_lec11_files/image064.jpg
Classical string model of the Regge spectrum

or, more precisely

\[m^2 = \frac{J}{\alpha'} \cdot \left[1 + O\left(J^{-\kappa} \right) \right], \quad \kappa > 0. \]
The leading large-J behavior represents a venerable story that motivated the development of string theory in the first place, during the 1970s. Since that time, no theory of the subleading large-J corrections has ever been developed.

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/%20Physics20557_lec11_files/image064.jpg
Classical string model of the Regge spectrum

This talk will describe the development of such a theory.

Image credit http://phys.columbia.edu/~kabat/why_strings/Regge.jpg

Image credit http://courses.washington.edu/phys55x/Physics20557_lec11_files/image064.jpg
The Nambu-Goto action describes the spectrum with arbitrarily good precision when the string is large, with typical size scale "R". Less relevant terms in the action should contribute with powers (perhaps including logarithms) of $R/\sqrt{\alpha'}$. An operator scaling as Length^{-p} contributes to any observable at relative order $R^{-(p+2)}$ ("Relative" to the leading Nambu-goto contribution, that is). The coarse analysis of large-R corrections is easy – to learn the power laws that appear rather than their coefficients, just classify possible invariant operators up to some order in inverse length.
The Nambu-Goto action describes the spectrum with arbitrarily good precision when the string is large, with typical size scale "R".

Less relevant terms in the action should contribute with powers (perhaps including logarithms) of $R/\sqrt{\alpha'}$.

An operator scaling as Length^{-p} contributes to any observable at relative order $R^{-(p+2)}$ ("Relative" to the leading Nambu-goto contribution, that is).

The coarse analysis of large-R corrections is easy – to learn the power laws that appear rather than their coefficients, just classify possible invariant operators up to some order in inverse length.
Classical string model of the Regge spectrum
You might ask: *Why does this work at all, in any approximation?*

When the string is *large*, the short-distance structure should become *irrelevant*, in the technical sense of the renormalization group.

The dynamics should be described by the *most relevant terms* one can write in a *local action* for a string, invariant under all the appropriate *symmetries*.

The *most relevant term* invariant under the Poincaré symmetry of D-dimensional spacetime is the Nambu-Goto action:

\[S_{NG} = T_{\text{string}} \cdot \text{Area}_{\text{worldsheet}} , \]

\[T_{\text{string}} \equiv \frac{1}{2\pi \alpha'} . \]
The Nambu-Goto action describes the spectrum with arbitrarily good precision when the string is large, with typical size scale "R".

Less relevant terms in the action should contribute with powers (perhaps including logarithms) of $R/\sqrt{\alpha'}$.

An operator scaling as Length^{-p} contributes to any observable at relative order $R^{-(p+2)}$ ("Relative" to the leading Nambu-goto contribution, that is).

The coarse analysis of large-R corrections is easy – to learn the power laws that appear rather than their coefficients, just classify possible invariant operators up to some order in inverse length.
For this talk we are exclusively interested in the first subleading correction to the action.

The first question should be "Is the Nambu-Goto action enough"?

For closed strings with biplanar rotation, the answer is yes.

The leading correction to the NG action is the curvature-squared term, which scales as $|X|^{-2}$.

Therefore it contributes to M_{meson}^2 at order J^{-1} at most.

Therefore the asymptotic Regge intercept – the order J^0 term in the large-J expansion of M_{meson}^2 – is calculable and universal, in the sense that it does not depend on the details of the Lagrangian.
To carry out the analysis, we must pick a gauge.

The two most commonly used gauges (for D not equal to the critical dimension) are orthogonal gauge and static gauge.

The analysis in these two gauges has mostly been done disjointly, with little comparison between the two approaches. Recently, the two gauges, properly renormalized at the quantum level, have been found to be equivalent up to relative order R^{-6}. (Dubovsky, Flauger, Gobrenko)

The evidence for the agreement of gauges is overwhelming.
In practice, orthogonal gauge is much simpler because it is free at leading order.

Furthermore, we’ll be interested in non-static situations, such as rotating strings, which makes static gauge complicated!

For a review of the old-fashioned approach to orthogonal gauge, click here: [PS]

I’ll begin by reviewing effective string theory in conformal gauge and placing it in a simplified framework by embedding it in the Polyakov formalism.
Let’s begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number D of embedding coordinates. The Polyakov string is defined by the path integral

$$Z = \int \mathcal{D}M_{\text{Polyakov}}[g] \exp\left(-S_{\text{Polyakov}}\right),$$

$$\mathcal{D}M_{\text{Polyakov}}[g] \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}$$

$$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}},$$

$$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu.$$

The action S_{Polyakov} is Weyl-invariant but the measure $\mathcal{D}M_{\text{Polyakov}}[g]$ is not.
Covariant effective string theory simplified

Let's begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number D of embedding coordinates. The Polyakov string is defined by the path integral:

$$Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp\left(-S^{\text{Polyakov}}\right),$$

where

$$\mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}$$

and

$$S^{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} \mathcal{L}^{\text{Polyakov}},$$

with

$$\mathcal{L}^{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu.$$

The action S^{Polyakov} is Weyl-invariant but the measure $\mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]}$ is not.
Let's begin by considering the usual Polyakov action for the bosonic string, but with an arbitrary number D of embedding coordinates. The Polyakov string is defined by the path integral

$$Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}} \right),$$

where

$$\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega},$$

$$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}},$$

$$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,$$
Covariant effective string theory simplified

$Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}})$,

$\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X D[g]g}{\mathcal{D}[g]\Omega}$

$S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}$

$\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu$
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}. \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_{[g]}X \mathcal{D}_{[g]}g}{\mathcal{D}_{[g]}\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\cdot \cdot}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[\mathcal{g}]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[\mathcal{g}]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[\mathcal{g}]X \mathcal{D}[\mathcal{g}]g}{\mathcal{D}[\mathcal{g}]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] \chi \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X}{\mathcal{D}[g] \Omega} \mathcal{D}[g]g \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g\bullet\bullet|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|||} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^\text{Polyakov} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^\text{Polyakov} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Z = \int \mathcal{D}M_{[g]}^{Polyakov} \exp \left(-S_{Polyakov} \right),
\mathcal{D}M_{[g]}^{Polyakov} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}
S_{Polyakov} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{Polyakov},
\mathcal{L}_{Polyakov} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}_\text{Polyakov}^g \exp (-S_\text{Polyakov}) , \]

\[\mathcal{D} \mathcal{M}_\text{Polyakov}^g \equiv \frac{\mathcal{D}[g] \chi \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_\text{Polyakov} = \int d^2 \sigma \sqrt{g_{\bullet \bullet}} |\mathcal{L}_\text{Polyakov}| , \]

\[\mathcal{L}_\text{Polyakov} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4 \pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[
Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right),
\]

\[
\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}
\]

\[
S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}},
\]

\[
\mathcal{L}_{\text{Polyakov}} = \frac{1}{4 \pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
\]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[D\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{D[g] X D[g] g}{D[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S^{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega}, \]

\[S^{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} \mathcal{L}^{\text{Polyakov}}, \]

\[\mathcal{L}^{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D} \mathcal{M}^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\cdot \cdot}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} L_{\text{Polyakov}} , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^{\mu} \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |\mathcal{L}_{\text{Polyakov}}| \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(- S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}_X \mathcal{D}_g g}{\mathcal{D}_g \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{g_{\bullet \bullet}} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int D{\cal M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[D{\cal M}_{[g]}^{\text{Polyakov}} \equiv \frac{D[g]X D[g]g}{D[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} \sqrt{\cdot\cdot} |{\cal L}_{\text{Polyakov}}| , \]

\[{\cal L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{g_{\bullet\bullet}} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g^{\circ\circ}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] X \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} |L_{\text{Polyakov}}|, \]

\[L_{\text{Polyakov}} = \frac{1}{4 \pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}} \quad \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{Polyakov}^g \exp (-S_{Polyakov}), \]

\[\mathcal{D}M_{Polyakov}^g \equiv \frac{\mathcal{D}[g] \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{Polyakov} = \int d^2 \sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{Polyakov}, \]

\[\mathcal{L}_{Polyakov} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Z = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}}),

\mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}

S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}},

\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp\left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}, \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g||L_{\text{Polyakov}}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]
\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}} , \]
\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[
Z = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}),
\]

\[
\mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X\mathcal{D}[g]g}{\mathcal{D}[g]\Omega}
\]

\[
S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}},
\]

\[
\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu,
\]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\cdot\cdot}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \, , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_X \mathcal{D}_g}{\mathcal{D}_g \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g|} |L_{\text{Polyakov}}| \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu \, , \]
Covariant effective string theory simplified

\[Z = \int DM^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}}), \]

\[D M^{\text{Polyakov}}_{[g]} \equiv \frac{D[g]X D[g]g}{D[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} L_{\text{Polyakov}}, \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \mathcal{X} \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

$$Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right),$$

$$\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega}$$

$$S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|\bar{g} \cdot \cdot |} L_{\text{Polyakov}},$$

$$L_{\text{Polyakov}} = \frac{1}{4\pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu.$$
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\mathbf{\cdot\cdot}}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|}L_{\text{Polyakov}} , \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) , \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \chi \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}} , \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\parallel\parallel}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(- S_{\text{Polyakov}} \right), \]

\[\mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] \Omega}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet \bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4 \pi \alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g|} |L_{\text{Polyakov}}| \]

\[L_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_a X^\mu \partial_b X_\mu, \]
\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp\left(-S_{\text{Polyakov}}\right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g]X \mathcal{D}[g]g}{\mathcal{D}[g]\Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]

\[\mathcal{L}_{\text{Polyakov}} = \frac{1}{4\pi\alpha'} g^{ab} \partial_aX^\mu \partial_bX_\mu, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{\text{Polyakov}}^g \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{\text{Polyakov}}^g \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int \, d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Z = \int \mathcal{D}M^\text{Polyakov} \exp \left(-S^\text{Polyakov} \right) ,

\mathcal{D}M^\text{Polyakov} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega}

S^\text{Polyakov} = \int d^2 \sigma \sqrt{g} \mathcal{L}^\text{Polyakov} ,
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M^{\text{Polyakov}}_{[g]} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2\sigma \sqrt{|g_{\bullet\bullet}|} \mathcal{L}_{\text{Polyakov}}, \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^{\text{Polyakov}}_g \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]

\[S_{\text{Polyakov}} = \int d^2 \sigma \sqrt{|g\cdot\cdot|} \mathcal{L}_{\text{Polyakov}} , \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D} M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_{[g]} X \mathcal{D}_{[g]} g}{\mathcal{D}_{[g]} \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g]g}{\mathcal{D}[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^\text{Polyakov}_[g] \exp (-S_{\text{Polyakov}}), \]

\[\mathcal{D}M^\text{Polyakov}_[g] \equiv \frac{\mathcal{D}[g] \times \mathcal{D}[g] g}{\mathcal{D}[g] \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D} M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]

\[\mathcal{D} M_{[g]}^{\text{Polyakov}} \equiv \frac{\mathcal{D}_{[g]} X \mathcal{D}_{[g]} g}{\mathcal{D}_{[g]} \Omega} \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right), \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}} [g] \exp \left(- S_{\text{Polyakov}} \right), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^\text{Polyakov} \exp (-S_{\text{Polyakov}}), \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp (-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{\text{Polyakov}}^g \exp(-S_{\text{Polyakov}}) . \]
Covariant effective string theory simplified

\[Z = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp(-S_{\text{Polyakov}}). \]
\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S^{\text{Polyakov}} \right) . \]
Covariant effective string theory simplified

\[Z = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

Under a Weyl transformation \(g_{\bullet\bullet} \rightarrow \exp (+2\omega) g_{\bullet\bullet} \),

the individual factors of the integrand transform as:

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp (F_{\text{anom}}[g, \omega]) \mathcal{D}M_{[g]}^{\text{Polyakov}} \]
Z[g] = \int \mathcal{D}M[g]^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) .

Under a Weyl transformation $g_{\bullet\bullet} \rightarrow \exp(+2\omega) g_{\bullet\bullet}$, the individual factors of the integrand transform as:

$$S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}}$$

$$\mathcal{D}M[g]^{\text{Polyakov}} \rightarrow \exp\left[(D - 26)F_{\text{anom}}[g, \omega]\right] \mathcal{D}M[g]^{\text{Polyakov}}$$

The form of the anomaly functional $F[g, \omega]$ is determined uniquely to be

$$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\}$$

by the Wess-Zumino consistency condition.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \bullet \omega \partial \bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\star \star} \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)[g]} \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M^{\text{Polyakov}}_g \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M^{\text{Polyakov}}_g \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^\bullet\bullet \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}[g] \exp \left(-S_{\text{Polyakov}} \right) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M^{\text{Polyakov}}[g] \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M^{\text{Polyakov}}[g] \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\cdot\omega \partial\cdot\omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp\left(-S^\text{Polyakov} \right). \]

\[S^\text{Polyakov} \rightarrow S^\text{Polyakov} \]

\[\mathcal{D}M^\text{Polyakov}_{[g]} \rightarrow \exp\left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M^\text{Polyakov}_{[g]} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \cdot \\
S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \\
\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp\left[(D - 26)F_{\text{anom}}[g, \omega]\right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\}
\]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[D\mathcal{M}_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] D\mathcal{M}_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^\bullet\bullet \, \partial^\bullet \omega \partial \bullet \omega + \omega \mathcal{R}^{(2)}[g] \right\} \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]
Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}) .

S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}}

\mathcal{D}\mathcal{M}^{\text{Polyakov}}_g \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}\mathcal{M}^{\text{Polyakov}}_g

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet \bullet} \partial_\omega \partial_\omega + \omega \mathcal{R}(2)[g] \right\}
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{Polyakov}^g \exp \left(-S_{Polyakov} \right). \]

\[S_{Polyakov} \rightarrow S_{Polyakov} \]

\[\mathcal{D}\mathcal{M}_{Polyakov}^g \rightarrow \exp \left[(D - 26) F_{anom}[g, \omega] \right] \mathcal{D}\mathcal{M}_{Polyakov}^g \]

\[F_{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\omega \partial^\omega + \omega R_{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26)F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R^{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\omega \partial^\omega + \omega R_{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{g} d^2 \sigma \left\{ g \bullet \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

So the path integral is not invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

So the path integral is **not** invariant unless \(D = 26 \):

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[\mathcal{D}M_{[g]}^{\text{Polyakov}} \rightarrow \exp \left[(D - 26) F_{\text{anom}}[g, \omega] \right] \mathcal{D}M_{[g]}^{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}} \right). \]

\[S_{\text{Polyakov}} \rightarrow S_{\text{Polyakov}} \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\Box \Box} \partial_{\Box} \omega \partial_{\Box} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp\left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\mu\nu} \partial_\mu \omega \partial_\nu \omega + \omega R_{(2)[g]} \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\Box \Box} \partial \dot{\omega} \partial \dot{\omega} + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\circ\circ} \partial_{\circ} \omega \partial_{\circ} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\cdot}\omega \partial_{\cdot}\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega]\right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp\left[(D - 26) F[g, \omega]\right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g\dddot{\omega} \partial \omega \partial \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a \underline{Weyl-invariant partition function},
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_2[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term \(S_{\text{anom}} \) that transforms under a Weyl transformation as

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Z[g] = \int \mathcal{D}M[g]^{\text{Polyakov}} \exp(-S_{\text{Polyakov}}).

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\}

Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega] \right] Z[g]

In order to obtain a Weyl-invariant partition function, we can augment the action by a term S_{anom} that transforms under a Weyl transformation as

$S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]$.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g \overset{\bullet}{\bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R^{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\cdot\cdot} \partial \cdot \omega \partial \cdot \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \cdot \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\mu\nu} \partial_\mu \omega \partial_\nu \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} M^\text{Polyakov}_{[g]} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_g \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \mathbf{\cdot} \mathbf{\partial} \omega \mathbf{\cdot} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\begin{align*}
Z[g] &= \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right).
\end{align*}

\begin{align*}
F_{\text{anom}}[g, \omega] &\equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g_{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\}
\end{align*}

\begin{align*}
Z[g] &\to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \\
S_{\text{anom}} &\to S_{\text{anom}} + (D - 26) F[g, \omega].
\end{align*}
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{\text{Polyakov}}^g \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \cdot \partial \omega \partial \omega + \omega \mathcal{R}_{}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\cdot} \omega \partial^{\cdot} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}}\right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp\left[(D - 26) F[g, \omega]\right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(- S_{\text{Polyakov}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \cdot \partial \omega \partial \omega + \omega R_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \cdot \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^\text{Polyakov}_{[g]} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^\text{Polyakov} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \nabla \nabla \omega \nabla \omega + \omega \mathcal{R}^{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\Box\Box} \partial_\Box \omega \partial_\Box \omega + \omega R_\Box[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\dot{\bullet}} \omega_{\bullet} \omega_{\bullet} + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[(D - 26) F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_\text{[g]}^{\text{Polyakov}} \exp \left(-S_\text{Polyakov} - S_\text{anom} \right). \]

\[F_\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_\text{(2)[g]} \right\} \]

\[Z[g] \to \exp \left[(D-26) F[g, \omega] \right] Z[g] \]

\[S_\text{anom} \to S_\text{anom} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to \exp \left[F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

$$Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}}\right).$$

$$F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\}$$

$$Z[g] \rightarrow \exp \left[F[g, \omega] \right] Z[g]$$

$$S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].$$
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) \, F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\mathbf{\bullet\bullet}} \partial_{\mathbf{\bullet}} \omega \partial_{\mathbf{\bullet}} \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(- S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\dot{\sigma}\dot{\nu}} \partial_{\dot{\sigma}} \omega \partial_{\dot{\nu}} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \, \partial\omega \right\} \partial\omega + \omega R_2[g] \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial\bullet\omega \partial\bullet\omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g,\omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g,\omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\mathbf{\bullet\bullet}} \partial_{\mathbf{\bullet}} \omega \partial_{\mathbf{\bullet}} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D \mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g_{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \\
Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}).

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_2[g] \right\}

Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g]

S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot \cdot} \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \cdot F[g, \omega] \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \begin{bmatrix} 0 \\ \end{bmatrix} Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M[g] \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}_{(2)}[g] \right\}
\]

\[
Z[g] \to \exp \left[0 \right] Z[g]
\]

\[
S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g_{\bullet\bullet} \partial\omega \partial\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \dot{\partial} \omega \dot{\partial} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_\bullet \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\Box} \partial_{\Box} \omega \partial_{\Box} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \circ \omega \partial \circ \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g \overset{\circ}{\bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g_{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\!.\omega \partial\!.\omega + \omega R_{(2)}[g] \right\}
\]

\[
Z[g] \rightarrow \exp \left[-0 \right] Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^\mathbf{\cdot\cdot} \partial\mathbf{\cdot} \omega \partial\mathbf{\cdot} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow \exp \left[0 \right] Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R^{(2)}[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) .

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega R(2)[g] \right\}

Z[g] \rightarrow 1. \quad Z[g]

S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\dot{\bullet}\bullet} \partial_{\dot{\bullet}} \omega \partial_{\dot{\bullet}} \omega + \omega \mathcal{R}(2)[g] \right\} \\
Z[g] \rightarrow 1. \quad Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g \cdot \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to 1. \quad Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow 1. \quad Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_2[g] \right\} \]

\[Z[g] \to 1 \cdot Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\cdot \cdot} \partial \cdot \omega \partial \cdot \omega + \omega R\left(2\right)[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow 1 \cdot Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]
Covariant effective string theory simplified

\[
Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet\bullet} \partial^{\dot{\bullet}} \omega \partial_{\dot{\bullet}} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \\
Z[g] \rightarrow \ Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\bullet\omega \partial\bullet\omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\bullet\omega \partial\bullet\omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\mu\nu} \partial_{\mu}\omega \partial_{\nu}\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\}
\]

\[
Z[g] \to Z[g]
\]

\[
S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega].
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu \):
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\cdot\cdot} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu: \)

\[X^{D-1} \to X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}(2) V \cdot X. \)
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu \):

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_2 V \cdot X. \)
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}}\right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot\cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

In the "linear dilaton theory", one cancels this anomaly by assigning a nontrivial Weyl transformation to one of the scalars \(X^{D-1} \equiv \frac{1}{|V|} \, V_\mu X^\mu:\]

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \]

Weyl-invariance requires \(\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_{(2)} \, V \cdot X.\)
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \\
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial \bullet \omega \partial \bullet \omega + \omega \mathcal{R}_2[g] \right\} \\
\]

\[
Z[g] \rightarrow Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \\
\]

\[
X^{D-1} \equiv \frac{1}{|V|} V^\mu X^\mu \\
\]

\[
X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega. \\
\]

\[
\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_2 V \cdot X. \\n\]
\[
Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]
\[
F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\}
\]
\[
Z[g] \rightarrow Z[g]
\]
\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g,\omega].
\]

\[
X^{D-1} \equiv \frac{1}{|V|} V_\mu X^\mu
\]

\[
X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega.
\]

\[
\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_{(2)} V \cdot X.
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \ \Big\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \Big\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} \equiv \frac{1}{|V|} V_{\mu} X^{\mu} \]

\[X^{D-1} \rightarrow X^{D-1} - \sqrt{\frac{26 - D}{6\alpha'}} \omega . \]

\[\Delta \mathcal{L} = \frac{1}{4\pi} \mathcal{R}_{(2)} V \cdot X. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\cdot \omega \partial\cdot \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_g \exp(-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g_{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi , \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1} , \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{\left| g \right|} d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi , \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1} , \]

In terms of which the transformation of \(\phi \) is

\[\phi \rightarrow \phi + \omega , \]

and the anomaly action is

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26 - D}{24\pi} \int d^2\sigma \sqrt{g} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g \, \partial \omega \partial \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi, \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1}, \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_[g] \exp (-S^\text{Polyakov}_[g] - S^\text{anom}_[g]) \cdot \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{ab} \partial_c \omega \partial_c \omega + \omega R_2[g]\right\} \]

\[Z[g] \to Z[g] \]

\[S^\text{anom} \to S^\text{anom} + (D - 26) F[g, \omega]. \]

From \(X \) we define a Liouville field \(\phi \),

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26-D}} \phi, \]

\[\phi = -\sqrt{\frac{26-D}{6\alpha'}} X^{D-1}, \]

In terms of which the transformation of \(\phi \) is

\[\phi \to \phi + \omega, \]

and the anomaly action is

\[S^\text{anom} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_2 \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[X^{D-1} = -\sqrt{\frac{6\alpha'}{26 - D}} \phi, \quad \phi = -\sqrt{\frac{26 - D}{6\alpha'}} X^{D-1}, \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right) \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \; d^2 \sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26 - D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right) \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \\
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2 \sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \\
Z[g] \rightarrow Z[g] \\
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega, \\
S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right).
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_2 \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\cdot\cdot} \partial_{\cdot} \omega \partial_{\cdot} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}}\right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\}
\]

\[
Z[g] \rightarrow Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega,
\]

\[
S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right).
\]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\cdot\cdot} \partial_\cdot \omega \partial_\cdot \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]
\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\cdot \cdot} \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\omega \partial\omega + \omega \mathcal{R}(2)[g] \right\}
\]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g_{\cdot\cdot} \partial_{\cdot}\omega \partial_{\cdot}\omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^\bullet \bullet \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

This is a consistent string theory in \(D \) dimensions, but with only a \(D - 1 \)-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) \cdot \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D} \mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2 \sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right) . \]
Covariant effective string theory simplified

\[
Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S^{\text{Polyakov}}_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g] \right\}
\]

\[
Z[g] \rightarrow Z[g]
\]

\[
S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].
\]

\[
\phi \rightarrow \phi + \omega,
\]

\[
S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right).
\]

However there are other choices for the anomaly action preserving a full \textit{D}-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}}\right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial^{\bullet} \omega \partial^{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

However there are other choices for the anomaly action preserving a full \textit{D}-dimensional Poincaré symmetry.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) . \]

However there are other choices for the anomaly action preserving a full \(D \)-dimensional Poincaré symmetry.

Instead of modifying the Weyl transformation of one of the coordinates, we can construct a composite operator \(\phi \) that transforms as a Liouville field.
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp\left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega \mathcal{R}_2[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

However there are other choices for the anomaly action preserving a full \(D \)-dimensional Poincaré symmetry. Instead of modifying the Weyl transformation of one of the coordinates, we can construct a composite operator \(\phi \) that transforms as a Liouville field.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{\text{Polyakov}}^{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]
Covariant effective string theory simplified

\[
Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).
\]

\[
F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\}
\]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[
\phi \rightarrow \phi + \omega ,
\]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right).
\]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R (2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R (2) \right). \]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.

We would also like to preserve \(D \)-dimensional Poincaré symmetry, so we want to make a Poincaré-invariant choice for \(\phi \).
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{ab} \partial_a \omega \partial_b \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_2 \right). \]

Any choice of \(\phi \) transforming as a scalar under diffeomorphisms and a Liouville field under Weyl transformations will lead to an anomaly-free effective string theory by this prescription.

We would also like to preserve \(D \)-dimensional Poincaré symmetry, so we want to make a Poincaré-invariant choice for \(\phi \).
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24 \pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \bullet \omega \partial \bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24 \pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]

The very simplest such choice of \(\phi \) is \[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet \bullet} \partial \bullet X^\mu \partial \bullet X_\mu \right). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial \omega \partial \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) . \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial \cdot X^\mu \partial \cdot X_\mu) \).

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) . \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu) . \)

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial\, \omega \partial\, \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet\bullet} \partial\, X^\mu \partial\, X_\mu \right) . \)

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial \cdot \omega \partial \cdot \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

The very simplest such choice of \(\phi \) is \(\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial \cdot X^\mu \partial \cdot X_\mu). \)

This choice of \(\phi \) has all the correct properties.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S^{\text{Polyakov}} - S^{\text{anom}} \right) . \]

\[F^{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2 \sigma \left\{ g^{\bullet \bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S^{\text{anom}} \rightarrow S^{\text{anom}} + (D - 26) F[g, \omega] . \]

\[\phi \rightarrow \phi + \omega , \]

\[S^{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right) . \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial^\omega \partial^\omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial^X \partial^X). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_{[g]} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}_{(2)}[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right) . \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet\bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu \right) . \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet \bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu \right). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet\bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega R_2[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26 - D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_2 \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]
Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) .

F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\}

Z[g] \rightarrow Z[g]

S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega].

\phi \rightarrow \phi + \omega ,

S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right).

\phi \equiv -\frac{1}{2} \ln\left(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu \right).
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega , \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet\bullet} \partial_\bullet X_\mu \partial_\bullet X_\mu \right). \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g,\omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet\bullet} \partial_\bullet \omega \partial_\bullet \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g,\omega]. \]

\[\phi \to \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu \right). \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right) . \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \, d^2\sigma \left\{ g^{\bullet \bullet} \partial_{\bullet} \omega \partial_{\bullet} \omega + \omega \mathcal{R}(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S_{\text{anom}} \rightarrow S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]

This choice of \(\phi \) is convenient and natural but not unique.
Covariant effective string theory simplified

\[Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[F_{\text{anom}}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} \ d^2\sigma \left\{ g^{\bullet \bullet} \partial \omega \partial \omega + \omega R_{(2)}[g] \right\} \]

\[Z[g] \to Z[g] \]

\[S_{\text{anom}} \to S_{\text{anom}} + (D - 26) F[g, \omega]. \]

\[\phi \to \phi + \omega , \]

\[S_{\text{anom}} \equiv S_{\phi} = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R_{(2)} \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial \bullet X^\mu \partial \bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^\text{Polyakov}_{[g]} \exp \left(-S^\text{Polyakov} - S^\text{anom} \right). \]

\[F^\text{anom}[g, \omega] \equiv \frac{1}{24\pi} \int \sqrt{|g|} d^2\sigma \left\{ g^{\bullet \bullet} \partial^\bullet \omega \partial^\bullet \omega + \omega R(2)[g] \right\} \]

\[Z[g] \rightarrow Z[g] \]

\[S^\text{anom} \rightarrow S^\text{anom} + (D - 26) F[g, \omega]. \]

\[\phi \rightarrow \phi + \omega, \]

\[S^\text{anom} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln \left(g^{\bullet \bullet} \partial^\bullet X^\mu \partial^\bullet X_\mu \right). \]
Z[g] = \int DM^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).

S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{}(2) \right).

\phi \equiv -\frac{1}{2} \ln(g^{\cdot\cdot} \partial_\cdot X^\mu \partial_\cdot X_\mu).
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_{(2)} \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

$$Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right).$$

$$S_{\text{anom}} \equiv S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right).$$

$$\phi \equiv -\frac{1}{2} \ln\left(g^{\cdot\cdot} \partial_\cdot X^\mu \partial_\cdot X_\mu \right).$$
Z[g] = \int D M_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\text{anom}}).

S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right).

\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu).
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_\bullet X^\mu \partial_\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2 \sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet \bullet} \partial_{\bullet} X^\mu \partial_{\bullet} X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M^{\text{Polyakov}}_g \exp \left(-S_{\text{Polyakov}} - S_{\text{anom}} \right). \]

\[S_{\text{anom}} \equiv S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}_2 \right). \]

\[\phi \equiv -\frac{1}{2} \ln(g^\bullet \partial^\bullet X^\mu \partial^\bullet X_\mu). \]
Covariant effective string theory simplified

\[Z[g] = \int D\mathcal{M}_{[g]}^{\text{Polyakov}} \exp (-S_{\text{Polyakov}} - S_{\phi}) . \]

\[S_{\phi} = +\frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi R(2) \right) . \]

\[\phi \equiv -\frac{1}{2} \ln(g^{\bullet\bullet} \partial_{\bullet} X^{\mu} \partial_{\bullet} X_{\mu}) . \]
Covariant effective string theory simplified

\[Z[g] = \int \mathcal{D}M_{[g]}^{\text{Polyakov}} \exp \left(-S_{\text{Polyakov}} - S_\phi \right) . \]

\[S_\phi = + \frac{26-D}{24\pi} \int d^2\sigma \sqrt{|g|} \left(g^{ab} \partial_a \phi \partial_b \phi - \phi \mathcal{R}(2) \right). \]

\[\phi \equiv -\frac{1}{2} \ln(\gamma^{\cdot\cdot} \partial_\cdot \dot{X}^\mu \partial_\cdot \dot{X}_\mu) . \]
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}, \delta^{w\bar{w}} = 2$ with all other components vanishing.
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}$, $\delta^{w\bar{w}} = 2$ with all other components vanishing.

In this gauge we have

$$L_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial}X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial}X)} , \quad \beta \equiv \frac{26 - D}{12}$$

$$(\text{terms proportional to } \partial \bar{\partial}X) .$$
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i \sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}$, $\delta^{w\bar{w}} = 2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial}X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial}X)} , \quad \beta \equiv \frac{26 - D}{12}$$

+ (terms proportional to $\partial \bar{\partial}X$).

Here we have abbreviated $\partial \equiv \partial_w$, $\bar{\partial} \equiv \bar{\partial}_w$.
Now we can fix conformal gauge $g_{ab} = \delta_{ab}$. In the usual holomorphic coordinate $w \equiv \sigma^1 + i\sigma^2$ we have $\delta_{w\bar{w}} = \frac{1}{2}, \delta^{w\bar{w}} = 2$ with all other components vanishing.

In this gauge we have

$$L_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2 X \cdot \bar{\partial}X)(\partial X \cdot \bar{\partial}^2 X)}{(\partial X \cdot \bar{\partial}X)} , \quad \beta \equiv \frac{26 - D}{12}$$

$+$ (terms proportional to $\partial \bar{\partial}X$).

Here we have abbreviated $\partial \equiv \partial_w, \bar{\partial} \equiv \bar{\partial}_w$.

Covariant effective string theory simplified
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^{\pm} \equiv \sigma^0 \pm \sigma^1$ in terms of which $g_{+-} = g_{-+} = -\frac{1}{2}$ and $g_{+} = g_{-} = -2$ with all other components vanishing.
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^\pm \equiv \sigma^0 \pm \sigma^1$ in terms of which $g_{+-} = g_{-+} = -\frac{1}{2}$ and $g_{++} = g_{--} = -2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2_X \cdot \bar{\partial}_X)(\partial_X \cdot \partial^2_X)}{(\partial_X \cdot \bar{\partial}_X)}$$

$$\beta \equiv \frac{26 - D}{12}.$$

+ (terms proportional to $\partial_+ \partial_- X$)
In a Lorentzian-signature we fix conformal gauge by taking \(g_{ab} = \eta_{ab} \). In the usual light-cone coordinates \(\sigma^\pm \equiv \sigma^0 \pm \sigma^1 \) in terms of which \(g_{+-} = g_{-+} = -\frac{1}{2} \) and \(g^{+-} = g^{-+} = -2 \) with all other components vanishing.

In this gauge we have

\[
\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial_+^2 X \cdot \bar{\partial}_- X)(\partial_+ X \cdot \partial^2 X)}{(\partial_+ X \cdot \partial_- X)} \quad \beta \equiv \frac{26 - D}{12}.
\]

\[+(\text{terms proportional to } \partial_+ \partial_- X)\]

Here we have abbreviated \(\partial_\pm \equiv \partial_{\sigma^\pm} \).
In a Lorentzian-signature we fix conformal gauge by taking $g_{ab} = \eta_{ab}$. In the usual light-cone coordinates $\sigma^\pm \equiv \sigma^0 \pm \sigma^1$ in terms of which $g_{+-} = g_{-+} = -\frac{1}{2}$ and $g_{++} = g_{--} = -2$ with all other components vanishing.

In this gauge we have

$$\mathcal{L}_{\text{anom}} = \frac{\beta}{2\pi} \frac{(\partial^2_+ X \cdot \bar{\partial}_- X)(\partial_+ X \cdot \partial^2_- X)}{(\partial_+ X \cdot \partial_- X)} \beta \equiv \frac{26 - D}{12} .$$

+ (terms proportional to $\partial_+ \partial_- X$)

Here we have abbreviated $\partial_\pm \equiv \partial_{\sigma^\pm}$.
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term...
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term.···

··· modulo terms proportional to the free equations of motion, which can be removed by field redefinitions.

This embedding is actually an exercise suggested but not executed by those authors in their paper on the subject.
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term. ⋯

⋯ *modulo* terms proportional to the *free* equations of motion, which can be removed by *field redefinitions*.

Here, we have derived the *same term* from a starting point with *more gauge invariance* by embedding it in the Polyakov path integral and *canceling* the Weyl anomaly. I will refer to this as the *simplified covariant* formalism.
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term.···

··· modulo terms proportional to the free equations of motion, which can be removed by field redefinitions.

Here, we have derived the same term from a starting point with more gauge invariance by embedding it in the Polyakov path integral and canceling the Weyl anomaly. I will refer to this as the simplified covariant formalism. The definition of the theory may or may not look simpler to you, but calculations in the theory are definitely simpler in the simplified formalism.

This embedding is actually an exercise suggested but not executed by those authors in their paper on the subject.
People familiar with the old covariant effective string formalism of Polchinski and Strominger (1989) in orthogonal gauge will recognize this Lagrangian as the *ad hoc* anomaly term⋯

⋯ modulo terms proportional to the free equations of motion, which can be removed by field redefinitions.

Here, we have derived the same term from a starting point with more gauge invariance by embedding it in the Polyakov path integral and canceling the Weyl anomaly. I will refer to this as the simplified covariant formalism. The definition of the theory may or may not look simpler to you, but calculations in the theory are definitely simpler in the simplified formalism.

This embedding is actually an exercise suggested but not executed by those authors in their paper on the subject.
For rotating strings we know the length R should scale as $\sqrt{\alpha'} J$ when J is large.

So calculating the relative-order R^{-2} corrections for rotating strings corresponds to calculating the relative-order J^{-1} corrections.

The leading-order value of the mass-squared for an open string in four dimensions is

$$m^2_{\text{leading Regge}} = \frac{J}{\alpha'}.$$

In fact, this relationship defines the (asymptotic) Regge slope α'.

Computing a relative order J^{-1} term would correspond to computing the asymptotic Regge intercept on the "leading trajectory" – that is, the set of states of lowest mass for a given angular momentum.
Formally, the relative order J^{-1} correction to the dispersion relation on the leading trajectory is particularly simple, because the lowest state with given Noether charges is automatically Virasoro-primary, so the physical state conditions are automatically satisfied.

The correction to the mass-squared of the string state is given by

\[\Delta M^2 \bigg|_{\text{closed \ first-order}} = \frac{2}{\alpha'} \Delta E_{\text{ws}} \bigg|_{\text{first-order}}, \]

\[\Delta M^2 \bigg|_{\text{open \ first-order}} = \frac{1}{\alpha'} \Delta E_{\text{ws}} \bigg|_{\text{first-order}}, \]

\[\Delta E_{\text{ws}} \bigg|_{\text{first-order}} = \langle (P, J) \big|_{\text{free}} \hat{H}_{\text{first-order}} \big| (P, J) \rangle_{\text{free}}, \]
This in turn is given by the Casimir energy $-\frac{D-2}{12}$, plus the classical value of the interaction Hamiltonian in the classical rotating solution with the appropriate angular momenta.

The classical value of the perturbing Hamiltonian is equal to the negative of the classical value of the perturbing Lagrangian. This follows from elementary manipulations in classical mechanics and applies only to the lowest state of a system with fixed Noether charges.

No higher loops or even one-loop diagrams involving interaction vertices contribute at NLO in J. Each additional interaction vertex, and each additional quantum loop, is suppressed by at least one additional power of J.
Let’s see how this works, concretely, for open strings in conformal gauge.

The solution for the lowest-lying state with angular momentum \(J \) in a single plane is of the form

\[
X^0 = 2 \alpha' P^0 \sigma^0 ,
\]

\[
Z = -i \sqrt{\alpha'} J \left(e^{i \sigma^+} + e^{i \sigma^-} \right) ,
\]

with \(\sigma^1 \) running from 0 to \(\pi \). The classical solution satisfies the Neumann boundary condition at \(\sigma^1 = 0, \pi \).
For this case, our analysis breaks down in its own terms.
The Lagrangian is singular near $\sigma^1 = 0, \pi$ in the classical solution.
This is a non-integrable singularity.
For this case, our analysis breaks down in its own terms.

The Lagrangian is singular near $\sigma^1 = 0, \pi$ in the classical solution.

This is a non-integrable singularity. The integral diverges:

$$\mathcal{L}_{\text{rotating solution}}^{\text{PS}} = -\frac{\beta}{2\pi^2} \frac{\sin^2(2\sigma_1)}{(1 - \cos(2\sigma_1))^2}.$$
Effective string theory for rotating strings

For the open string, this singularity is present because the boundary is moving at the speed of light and there is a curvature singularity.

For the closed string, there is a singularity representing a fold in the string.

In both cases, the integrated anomaly term diverges.

We will first consider a model calculation that avoids this singularity.

This breakdown of the theory is a short-distance singularity, to be removed by renormalization.

But first, let us consider a simpler case, where there is no such singularity.
Let us now perform a calculation in a simple case to illustrate the general idea of large-J universality at subleading order.

The properties of rotations are different in higher dimensions. So we consider closed strings rotating in $D \geq 5$, which need not have folds: The Polchinski-Strominger denominator is nonvanishing everywhere.

We consider closed strings in $D \geq 5$, with nonzero classical angular momenta $J_{1,2}$ in two planes simultaneously.

In terms of the $SO(4) = SU(2)_+ \times SU(2)_-$ subgroup of the $SO(D-1)$ little group, the total angular momenta are $J_\pm \equiv \frac{1}{2}(J_1 \pm J_2)$ where we assume WLOG that $J_1 > J_2 > 0$.
Closed strings with rotation in two planes

The classical solution is

\[X^0 = \alpha' P^0 \sigma^0 , \]

\[Z_i = -i \sqrt{\frac{\alpha'}{2}} \left(\alpha Z_i e^{i\sigma^+} + \tilde{\alpha} Z_i e^{i\sigma^-} \right) , \]

\[\tilde{Z}_i = i \sqrt{\frac{\alpha'}{2}} \left(\alpha_1 \tilde{Z}_i e^{-i\sigma^+} + \tilde{\alpha}_1 \tilde{Z}_i e^{-i\sigma^-} \right) , \]

Here, the mode amplitudes are

\[\alpha_{-1} Z_1 = \alpha_1 \tilde{Z}_1 = \tilde{\alpha}_{-1} Z_1 = \tilde{\alpha}_1 \tilde{Z}_1 = \sqrt{J_1} , \]

\[\alpha_{-1} Z_2 = \alpha_1 \tilde{Z}_2 = -\tilde{\alpha}_{-1} Z_2 = -\tilde{\alpha}_1 \tilde{Z}_2 = \sqrt{J_2} . \]
Closed strings with rotation in two planes

Evaluated in this rotating solution, the contribution of the PS anomaly term, evaluated in the rotating ground state, takes the form

\[\mathcal{L}_{\text{rotating solution}} \left[\text{PS} \right] = -\beta J_2^2 \left(\frac{\sin^2(2\sigma_1)}{(J_+ - J_- \cos(2\sigma_1))^2} \right). \]

This Lagrangian density becomes singular at the endpoints \(\sigma_1 = 0 \) and \(\pi \), in the limit \(J_+ = J_- \). This limit is imposed automatically in \(D = 4 \), as the little group \(SO(D - 1) \) has rank one, and \(J_2 \) must vanish.

But for generic biplanar angular momenta, this density is smooth.
The resulting mass shift is

\[M_{\text{closed}}^2 = \frac{1}{\alpha'} \left[2(J_1 + J_2) - \frac{D - 2}{6} \right. \]

\[+ \frac{26 - D}{12} \left(\left(\frac{J_1}{J_2} \right)^{\frac{1}{4}} - \left(\frac{J_2}{J_1} \right)^{\frac{1}{4}} \right)^2 \left. \right] + O(J^{-1}) . \]

The contribution from the PS term is nonzero unless \(J_1 = J_2 \), or \(D = 26 \).

When \(J_2 \) is taken to zero, this diverges as a fold develops.

At present, we do not understand how to renormalize the singular Hamiltonian at the fold.
Renormalization of boundary singularities

- Since we don’t understand that, let us return to our original focus on strings with boundaries.
- Our approach is to regulate and renormalize the boundary singularities in the standard way.
- This works, because all UV-divergences are local terms.
The classical solution is

\[X^0 = 2\alpha' P^0 \sigma^0 \]

\[\bar{Z}_1 = i \sqrt{\frac{\alpha'}{2}} \alpha \bar{Z}_1 \left(e^{-i\sigma^+} + e^{-i\sigma^-} \right) \]

\[\bar{Z}_2 = i \sqrt{\frac{\alpha'}{2}} \frac{\alpha_2}{2} \left(e^{-2i\sigma^+} + e^{-2i\sigma^-} \right) \]

\[Z_1 = -i \sqrt{\frac{\alpha'}{2}} \alpha Z_1 \left(e^{i\sigma^+} + e^{i\sigma^-} \right) \]

\[Z_2 = -i \sqrt{\frac{\alpha'}{2}} \frac{\alpha_2}{2} \left(e^{2i\sigma^+} + e^{2i\sigma^-} \right), \]
Here,

\[\alpha_{\frac{1}{2}} Z_{\frac{1}{2}} = \sqrt{2J_{\frac{1}{2}}} \]
\[\alpha_{\frac{2}{2}} Z_{\frac{2}{2}} = 2\sqrt{J_{\frac{2}{2}}} \]

\[\alpha_{-\frac{1}{2}} Z_{-\frac{1}{2}} = \sqrt{2J_{-\frac{1}{2}}} \]
\[\alpha_{-\frac{2}{2}} Z_{-\frac{2}{2}} = 2\sqrt{J_{-\frac{2}{2}}} . \]
Renormalization of boundary singularities

- Remember that we can modify our choice for the composite Liouville field ϕ.
- We would like to do so so that our choice is smooth near the boundary.
- Such a choice is
 \[\phi \equiv -\frac{1}{4} \ln(X_{11}^2 - \epsilon^4 \alpha' \hat{X}_{22}) , \]

\[\hat{X}_{22} \equiv X_{22} - \frac{X_{12}X_{21}}{X_{11}} , \]

\[X_{pq} \equiv \partial_+ X \cdot \partial_- X \]

- Near the boundary, this behaves as $\hat{X}_{22} \simeq -X_{22}$, which is nonzero and smooth.
Renormalization of boundary singularities

- Now, modulo terms that do not contribute, the density of the PS term is

\[\mathcal{L}_{\text{PS, reg}} \equiv \frac{\beta}{2\pi} \frac{X_{12} X_{21}}{X_{11}^2 + \epsilon^4 \alpha' X_{22}}. \]

- Note that wherever and whenever \(X_{11} \neq 0 \), we have \(\mathcal{L}_{\text{PS, reg}} \to \mathcal{L}_{\text{PS}} \). The short-distance modification is irrelevant, whenever the leading-order action is nonzero. The short-distance modification kicks in only at boundaries and folds.

- The integral is

\[\Delta M_{\text{open}}^2 = \frac{1}{\epsilon} \frac{26 - D}{24 \alpha'} (J_1 + 8J_2)^{1/4} + \text{(finite)}. \]
The short-distance singularity can be cancelled by a local term at the boundary, of the form

\[\mathcal{O}_{\text{quark}} \equiv (X_{22})^{+\frac{1}{4}} \]

This may seem like a peculiar operator, but in fact all boundary operators for open strings with Neumann boundaries are nonsingular operators \(X_{pq} \) dressed with powers of \(X_{22} \).

This is true in any model where one obtains the four-dimensional effective string theory starting out with a microscopically well-defined microscopic string theory and integrating out degrees of freedom.
Renormalization of boundary singularities

After renormalization, we find

\[M_{\text{open}}^2 = \frac{1}{\alpha'} \left[J_1 + 2J_2 - \frac{D - 2}{24} \right. \]

\[+ \frac{26 - D}{24} \left(-4 + \frac{3J_1 + 4J_2}{J_1^{\frac{1}{2}} \sqrt{J_1 + 8J_2}} \right) \] + \mathcal{O}(J^{-1}). \]

For angular momenta lying in a single plane (i.e., when \(J_2 = 0 \)), the mass-squared equals \(M_{\text{open}}^2 = (J_1 - 1)/\alpha' \), independent of \(D \). Of course, when \(D = 26 \), we obtain \(M_{\text{open}}^2 = (J_1 + 2J_2 - 1)/\alpha' \).

This is the case in which the bosonic string theory is well-defined microscopically, and the singular PS anomaly term is absent.
It is worth emphasizing that we have fine-tuned the coefficient of the quark mass operator $\mathcal{O}_{\text{quark}}$ so that there is no term of order $J^{1/4}$ in the mass-squared formula.

Generically we should expect a $J^{1/4}$ term in the open-string mass-squared, unless the mass of the quark at the endpoint is light compared to the scale of the string tension.
Renormalization of boundary singularities

▷ In real QCD there will be additional degrees of freedom at the endpoints, carrying spin and flavor degrees of freedom.

▷ These degrees of freedom carry symmetries that constrain the allowed operators. In particular, chiral symmetry forbids quark masses, which are associated with the $J^{+\frac{1}{4}}$ term in the boundary action. We therefore conjecture that in the correct effective boundary CFT of the real QCD string, the $J^{+\frac{1}{4}}$ term in the action may be absent for exact chiral symmetry.
Several questions now arise. One might ask, why is the answer universal at all? And why do the boundary operators appear containing these strange quarter-integer powers X_{22}?
Structure of boundary operators

- This is one of the more surprising features of the effective string theory with Neumann boundary conditions.

- Let us consider any short-distance modification of the theory such that the bulk of the worldsheet is an ordinary effective string theory with an organization of operators such as we have described, with operators dressed with powers of X_{11} – generically negative integer ones.

- For such a theory, the boundary operators always appear dressed with powers of X_{22} – generically negative integer ones.

- This is so for artificial short-distance cutoffs preserving the symmetries – such as the one we have considered – but also for real short-distance effective theories.
The result is that all boundary operators are of the form
\((\Pi_{pq} X_{pq})/X_{22}^k\).

We can quickly see that there are no marginal boundary operators of vanishing X-scaling.

First, use the EOM to reduce all derivatives of \(X\) to the form
\(\partial_0^p X\) or \(\partial_0 \partial_1 X\).

Then use Neumann boundary conditions to eliminate the latter.
Now, all bilinear invariants of X at the boundary are of the form $B_{(pq)} \equiv \partial_0^p X \cdot \partial_0^q X$.

All boundary operators are of the form $(\Pi_{pq} B_{(pq)})/B_{(22)}^k$.

Now consider only marginal boundary operators.

If the "undressed" operator (the numerator) has dimension $\Delta \equiv \sum_{pq} p + q$, then the dressing is $B_{(22)}^{-(\Delta-1)/4}$.
Then in order to have positive or zero X-scaling, the undressed operator must have $\Delta \leq 5$.

After modding out by Virasoro descendants, the only such operator is the quark mass term.

The $\Delta = 2, 3$ terms are proportional to stress tensors, the $\Delta = 4$ term is the quark mass and the $\Delta = 5$ term is a total derivative.
Conclusions

- We have found that the effective string theory framework is predictive for large-J corrections to the spectrum of rotating strings.
- For closed strings in $D = 4$ and open strings in any dimension, the leading power corrections are $\Delta M \propto J^{-\frac{1}{4}}$ with a theory-dependent coefficient. These terms are associated with localized terms at boundaries and folds.
- The Regge intercept is is universal and calculable (modulo the quark mass term).
- So is every other observable at NLO.
- Thank you.