Milankovitch theory and monsoon

Hai Cheng,1,2,* Hanying Li,1 Lijuan Sha,1 Ashish Sinha,1,3 Zhengguo Shi,1,2 Qiu zhen Yin,4 Zhengyao Lu,6 Debo Zhao,6 Yanjun Cai,1 Yongyun Hu,7 Qing zhen Hao,6 Jun Tian,9 Gayatri Kathayat,4 Xiyu Dong,1 Jingyao Zhao,1 and Haiwei Zhang1

*Correspondence: cheng021@xjtu.edu.cn
Received: August 3, 2022; Accepted: October 13, 2022; Published Online: October 19, 2022; https://doi.org/10.1016/j.xinn.2022.100338
© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GRAPHICAL ABSTRACT

Milankovitch Theory + Kutzbach Hypothesis

Ice Age ~100 Ka cycle

Monsoon ~20 Ka cycle

Dual Nature of Orbital Cycles

PUBLIC SUMMARY

- Orbital-scale climate variations of Earth are dictated by ice sheet and monsoon
- Views of “monsoon system science” reinforce the Kutzbach monsoon hypothesis
- A unified Milankovitch-Kutzbach hypothesis better explains the orbital dual nature
The widely accepted "Milankovitch theory" explains insolation-induced waxing and waning of the ice sheets and their effect on the global climate on orbital timescales. In the past half-century, however, the theory has often come under scrutiny, especially regarding its “100-ka problem.” Another drawback, but the one that has received less attention, is the “monsoon problem,” which pertains to the exclusion of monsoon dynamics in classic Milankovitch theory even though the monsoon prevails over the vast low-latitude (~30° S to ~30° N) region that covers half of the Earth’s surface and receives the bulk of solar radiation. In this review, we discuss the major issues with the current form of Milankovitch theory and the progress made at the research forefront. We suggest shifting the emphasis from the ultimate outcomes of the ice volume to the causal relationship between changes in northern high-latitude insolation and ice age termination events (or ice sheet melting rate) to help reconcile the classic “100-ka problem.” We discuss the discrepancies associated with the characterization of monsoon dynamics, particularly the so-called “sea-land precession-phase paradox” and the “Chinese 100-ka problem.” We suggest that many of these discrepancies are superficial and can be resolved by applying a holistic “monsoon system science” approach. Finally, we propose blending the conventional Kutzbach orbital monsoon hypothesis, which calls for summer insolation forcing of monsoons, with Milankovitch theory to formulate a combined “Milankovitch-Kutzbach hypothesis” that can potentially explain the dual nature of orbital hydrodynamics of the ice sheet and monsoon systems, as well as their interplays and respective relationships with the northern high-latitude insolation and inter-tropical insolation differential.

INTRODUCTION

One of the foremost advances in Earth science occurred in the 20th century with the revival of the theory of orbital forcing of the late quaternary glacial cycles, known as the Milankovitch theory.1 The theory postulates that changes in caloric seasonal half-year insolation (or Northern hemisphere summer insolation [NHSI]) at ∼65° N latitude, a region critical for initiation of glaciers, in response to cyclical changes in the Earth’s orbital geometry (eccentricity, obliquity, and precession) drive the rhythmic growth and retreat of the Northern hemisphere (NH) ice sheet (the sensu stricto theory). The waxing and waning of the ice sheet, in turn, are hypothesized to incite ancillary changes in other parts of the global climate system via various forcing and response/feedback mechanisms (the sensus lato hypothesis).

In its early years, Milankovitch theory was not widely accepted because of a lack of corroborating geological evidence. It was not until publication of seminal work2 that the Milankovitch theory acquired widespread acceptance and became the canonical theory of Earth’s orbital-scale climate change. The high-resolution oxygen isotope (818O) time series of planktonic foraminifera was the first record of its kind that revealed variations in the global ice volume over the past ∼450 kiloannums (ka).2 The record indicated that variations in the global ice volume occurred in a sawtooth pattern characterized by an ∼100-ka quasi-cycle superimposed by shorter quasi-cycles of ∼41, ∼23, and ∼19 ka, as predicted by the Milankovitch theory. These periodicities were also found independently in long-term variations of eccentricity, obliquity, and climatic precession using an analytical solution of the planetary system.2 In particular, the existence of double precession peaks (the so-called “Berger cycles” of ∼23 and ∼19 ka) in the 818O records and astronomical solutions become strong validation of the astronomical theory. Subsequent developments of the marine records presented evidence of the ∼100-ka cycle of glaciation, supporting in part the dominant role of high-latitude processes in global climate variations.4–7 However, to date, several unsolved problems associated with the theory remain, such as the “100-ka problem”; namely, that the orbital eccentricity (∼100-ka cycle) contributes much less to isolation change than precession (∼20-ka cycle) and obliquity (∼40-ka cycle), and yet, the most significant variation in the ice volume over the past ∼800 ka is the ∼100-ka glacial-interglacial cycle, similar to the orbital eccentricity cycle. Despite various problems, the Milankovitch theory has now become accepted wisdom, and it has led to development of an interpretative framework in which the high-latitude glaciation processes takes central stage, and the low-latitude large-scale tropical monsoon systems17–20 are essentially excluded. The exclusion of the latter in the “conventional” Milankovitch theory presents another problem, the “monsoon problem,” which is described by Imbrie et al.2 as follows: “Because our focus is on the process of glaciation, we exclude low-latitude sites where previous work has shown that climate history is dominated by changes in the monsoon circulation. In fact, this strategy may well exclude consideration of low-latitude processes that could be important in changing the concentrations of methane and water vapor in the atmosphere.”

About half of the Earth’s surface lies between ∼30° N and ∼30° S, where a monsoon climate prevails. The vast low-latitude monsoon and ice sheet-dominated high-latitude climate regimes constitute the two major planetary-scale climatic systems with complex interactions.11,12 Theoretical and proxy considerations indicate that two distinct orbital insolation forcings are prominent, with low-latitude insolation forcing dominating the monsoon variations with strong ∼20-ka precession cycles15,16 and NH high-latitude summer insolation forcing driving ice sheet variations with dominant ∼100-ka cycles.2,19 Therefore, a comprehensive orbital theory would ideally explain not only high-latitude ice sheets but also the embedded low-latitude monsoons as well as the interplay between high- and low-latitude hydroclimates in the context of the distinctive dual insolation forcings. The Kutzbach orbital monsoon hypothesis (namely, that tropical monsoons vary in response to summer insolation)19,20 remains in dispute.21,22 The central issues here involve the spatiotemporal nature of the low-latitude monsoon hydroclimate on an orbital scale, the underlying dynamics, the relation to insolation forcing, as well as key interplay between the monsoon and the ice sheet. A thorough understanding of these issues is prerequisite to formulate a more comprehensive form of the orbital theory of climate.

Breakthroughs in the U/Th dating technique23 in the past decade have propelled speleothems to the forefront of paleoclimatology. The speleothem records of past climate are now considered the strong fourth leg of the paleoclimatic "tet rarchate,"19,24,25 after the three main orbital-scale paleoclimate archives: the marine, ice core, and loess records. One of the key advantages of speleothem records is their absolute and precise chronology in contrast to the essentially orbitally tuned chronology of marine, ice core, and loess records. In this review, we do not attempt to resolve all outstanding issues surrounding the Milankovitch theory;22 instead, we highlight the millennial-scale variations over the last several glacial-interglacial cycles, inferred from absolutely dated speleothem records,
including ice age terminations, to analyze the relationship between insolation and Earth’s hydroclimatic responses, which may help to reconcile the “100-ka problem.” We then assess the dominant orbital rhythm of precession variability across the low-latitude monsoon regime, especially the phases and spatial variances over multiple ice age cycles as informed by the speleothem and marine records. We also examine the critical hypotheses of climate responses, such as the “early response” and “late response,” to summer insolation at the precession band and high- and low-latitude climate interplay via absolutely dated speleothem records from ice-sheet-proximal regions and remote low-latitude tropical monsoon regimes. We show that the crucial discrepancies surrounding the Kutzbach orbital monsoon hypothesis might be superficial and may be reconciled within the framework of “monsoon system science.” Last, we build on the key aspects of the Milankovitch theory and Kutzbach orbital monsoon hypothesis for high- and low-latitude hydroclimate variations on orbital scales; together with results from previous studies of speleothems, ice cores, and loess and marine sediments, we sketch a primary orbital climate hypothesis that also comprises key elements of monsoonal climate variability at orbital scale and the major climate dynamics. THE “100-KA PROBLEM” AND MILLENNIAL-SCALE EVENTS

The so-called “100-ka problem” is a classic issue that has been associated with the Milankovitch theory from the very beginning. Several competing hypotheses have been put forth to address this problem. The significant ~100-ka periodicity of glaciation has been linked to the Earth’s eccentricity cycle; however, 2–3 obliquity cycles, a combination of obliquity and precession, and an average of 4–5 discrete precession cycles. Other hypotheses call for interactions involving internal oscillations in the Earth system, particularly dynamics of global ice volume and atmosphere CO₂ changes, involving non-linearities to amplify the rather modest changes in insolation forcing. The observation that the 100-ka cycles in the geological records become strong at a time when the eccentricity is weak suggests that the 100-ka cycles cannot come from the eccentricity but rather from the non-linear response (especially from the ice sheet) to the variations of climatic precession of 23- and 19-kka periods.

Theoretically, the apparent mismatch between the benthic δ¹⁸O records (or global ice volume) and insolation (i.e., the 100-ka problem) suggests the presence of some type of internal feedback mechanism of the Earth. Based on simple physics, it has been proposed that the rate of change, rather than absolute global ice volume per se, should be dynamically more important to retain a direct anti-correlation with summertime insolation over northern high latitudes. The correlation of 65°N summer insolation with the rate of ice volume (or sea level) change is more significant than with ice volume itself (Figure 1A). However, a potential weakness of this correlation is that the chronologies of ice volume and sea level are ultimately “tuned” to insolation, leading to a “circular logic.” To avoid this drawback, an absolutely dated monsoon record over the past ~640 ka, together with its correlations with other hydroclimate records, was utilized to analyze the Milankovitch theory in terms of the relationship between insolation variation and ice age termination events. It was found that all seven conventional terminations over the past ~640 ka occurred during the rising limbs of NH-NSI separated by 4, 5, 5, 4, 5, and 5 precession or ~2, 3, 2, 2, 3, and 3 obliquity cycles with durations of 93, 105, 92, 92, 113, and 115 ka, respectively. Two “extra terminations”, termination Illa (T-Illa), which occurred about one precession cycle after T-III (between MIS 7.4 and 7.3), and T-VIIa, which occurred about two precession cycles after T-VII (between MIS 15.2 and 15.1) (Figure 1), exhibit a pattern similar to the seven conventional terminations with a comparable amplitude of marine benthic δ¹⁸O or sea level changes. Under this circumstance, each of the nine terminations is separated from adjacent terminations by an integral number of precession cycles, suggesting precession pacing terminations. All nine terminations took place when the obliquity was substantially higher than the average, suggesting its causal role as well.

The notation of the ~100-ka cycle encompasses an average of 4–5 discrete precession cycles or 2–3 discrete obliquity cycles invokes missed “beats” between major terminations. The underlying mechanism may involve Earth’s internal nonlinear responses/feedback (e.g., ice sheet dynamics, CO₂ changes, and ocean circulation reorganizations). One piece of evidence is that the middle Pleistocene transition (MPT) from the “40-ka world” to the “100-ka world” occurred at ~800–10000 ka BP (before present, where present = 1950 CE) without associated considerable shifts in astronomical parameters, implying that internal forcing, rather than external insolation, changed the tempo of the Earth system response to the external orbital forcing. On the other hand, several studies have focused on the cause of skipped precession and/or obliquity beats between major terminations. Subsequent studies found that small-scale millennial events with a nature similar to the major termination events occurred proximate to times when large termination beats were missed. Therefore, these millennial events have been named “low-amplitude version of terminations,” “failed terminations,” or “unfinished terminations.” Explanations for full- versus small-scale terminations have also focused on interplay and feedback among factors internal to the Earth’s climate system, such as ice sheet dynamics and atmospheric CO₂ in the context of certain orbital forcing states.

Conventional ice age termination events and other millennial-scale events have been shown to be essentially similar except for their amplitudes. To analyze the relationship between insolation and millennial events, time series of millennial-scale variations were obtained by removing the orbital insolation signal from the Asian Monsoon (AM) speleothem δ¹⁸O record and the long-term trend from the Antarctic ice core δD (temperature proxy) record (Figure 1B and 1C). These detrended records largely characterize millennial-scale climate variations involving both conventional ice age terminations and low-amplitude versions of termination events. The millennial-scale climate variations decoupled from detrended AM (δ¹⁸O) and Antarctic temperature (δD) records show prominent precession and obliquity cycles (Figures 1E and 1F), similar to the change rate of ice volume (Figure 1D). The phase analyses indicate that large change rates of ice volume (or ice sheet melting) and significant millennial events, including conventional terminations, tend to occur at the precession minima and the large-amplitude variations of terminations events. The underlying mechanism may involve Earth’s internal response/feedback in terms of the ice sheet/CO₂ changes. In this interpretative framework, a northern high-latitude summer insolation increase would accelerate ice sheet melting (Figure 1A) and trigger millennial events (Figure 1B) and associated atmospheric CO₂ variations, leading to the observed different amplitude of terminations in the proxy records. Therefore, the longstanding and most critical problem associated with the Milankovitch theory, the “100-ka problem,” seems to be not vital any longer, provided that the central concern lies in high-latitude NH-NSI driving the ice sheet change mostly at precession/obliquity pacing rather than the ultimate outcomes that are largely dependent on Earth’s internal nonlinear responses/feedback, which are not particularly explained by the theory.

LOW-LATITUDE MONSOON

The monsoon climate prevails over about half of the Earth’s surface between ~30° N and ~30° S (Figure 2). The amount of solar energy received in the region is an order of magnitude more than that received above 65°N. Until now, the Milankovitch theory essentially does not involve monsoon dynamics, called here the “monsoon problem.” This is a critical limitation of the current orbital theory of climate, which focuses mainly on the Earth’s climate system at high latitudes. A more encompassing version of the orbital theory should include, rather than exclude, the global monsoon system. To involve the monsoon in an orbital theory, a systematic understanding of monsoon dynamics on orbital scale is essential.

The monsoon is nowadays recognized as a global-scale, three-dimensional atmospheric circulation characterized by seasonal reversal in surface wind/rainfall and migration of the inter-tropical convergence zone (ITCZ). The latter is linked closely to the reversal in temperature gradients between continents and ocean and/or the NH and Southern hemisphere (SH) in response to the annual solar radiation cycle. Similarly, in paleoclimatic world, the global monsoon also defines the major hydroclimate mode across a vast portion of the Earth’s tropics-subtropics on a wide range of timescales (Figure 2). The major monsoon subsystems in the world include the AM, North African monsoon (NAM), and North American monsoon (NAM) in NH low to mid-latitudes and...
Indonesian-Australian monsoon (IAM), South African monsoon (SAFM), and South American monsoon (SAM) in SH low latitudes (Figure 2). Although each of these regional monsoon systems has specific characteristics, all are coordinated largely by the annual cycle of solar radiation, thus displaying a similar fashion (Figure 2). Comparably, on the orbital scale, the insolation variations dominated by precession also appear to coordinate variations of monsoon
changes as the major forcing, although the global ice volume and greenhouse gases also influence this as internal forcing/feedback to some extent, especially in the mean annual precipitation and temperature in the monsoon regime.45–56 In terms of hydrological cycles, vapor-water transition constitutes the essence of the low-latitude monsoon regime, with a dominant precession cycle on orbital scale, in contrast to the liquid-solid transition prevailing in the high-latitude regime, with dominant ~100-ka glacial-interglacial cycles in the Late Quaternary.40–41 In fact, the monsoon has long been theoretically demonstrated to be primarily driven by tropical solar insolation17 with dominated precession cycles. If so, then the orbital-scale expression of monsoons ought to be dominated by precession cycles accordingly. A significant body of observational data16,71 and model simulations14,71,75,76 supports this hypothesis. However, the precession phases of monsoon orbital variations are apparently more complex, constituting one of the fundamental paradoxes, as discussed below.

Monsoon variations at the precession band

From the astronomical point of view, precession variations overwhelmingly dominate insolation changes over the tropical-subtropical monsoon regime.40,62 The monsoon variability has been shown to be a magnitude more sensitive to changes in low-latitude insolation and, thus, most likely to lead the ice sheet change. However, the relationship of precession phases between the ice volume and monsoon variations lacks vigorous testing. This is probably because the ice volume change at the precession band was orbitally tuned with an assumed lag of ~5 ka to NH June insolation,2,4,6 which lacks independent verification from precisely dated geological archives. Of particular interest are the recent speleothem records reconstructed from Buckeye Creek Cave (BCC) in east-central North America at the southern fringe of the maximum North American ice sheet,77 which may potentially provide a test for the longstanding issue of precession phase lag, because the climate variability at the ice sheet-proximal regions is presumably sensitive to the ice sheet extent signals, which influence the proximal regions via atmospheric/oceanic processes.6,13 The phase analysis shows that the BCC δ18O record indeed lags the NH June 21 insolation (NH-SI) at the precession band by ~5 ka (in phase with September insolation) (Figure 4), consistent with the modeling results2,6 and supporting the conventional assumption of an ~5 ka lag of the ice sheet change relative to NH June insolation at the precession band. This lagged response of the ice sheet agrees well with the "late response" scenario. On the other hand, several absolutely dated speleothem δ18O records from the AM, Asian Westerly (AW), and SAM systems suggest prominent precession pacing of mid- to low-latitude hydroclimate.16,74,80–85 At the precession band, these records are essentially in phase with ~July 21 insolation (i.e., AM-AW records)16,74,90 and ~January 21 insolation (i.e., SAM records)74,90 (Figures 3 and 4), consistent with model simulations14,91 and the "early response" hypothesis.13

The apparent ~2- to 3-ka lag of the AM (SAM) to June 21 (December 21) insolation in the speleothem records may be a result of millennial-scale weak (strong) monsoon events with durations comparable with the lag that often occurred at the rising (falling) limbs of insolation in the NH (SH) (Figure 3).16,51,92,93 Another interpretation underlines the ice volume forcing, which lags the June 21 insolation by ~5 ka at the precession band and, thus, could theoretically produce the observed lag of ~2–3 ka in combination with the in-phase insolation forcing94–96. However, when we take monsoon variations in SH into consideration.
the ice volume hypothesis becomes rather complicated. Although ice volume forcing seems to be able to account for the AM lag, it would be difficult to explain the same temporal lag of the SAM, unless there exists a completely different mechanism in the SH regarding the ice sheet’s influence on monsoons (Figure 3). Provided that the above interpretation is sound, the ice volume effect on low-latitude monsoons would be somewhat small at the precession band.

Based on transient simulations, Kutzbach et al.14 also found an ~2- to 3-ka lag of the monsoon precipitation response to the orbital summer insolation forcing at the precession band so that, on average, the monsoon July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence. They suggested the precession band so that, on average, the monsoon July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence. They suggested the precession band so that, on average, the monsoon July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence. They suggested the precession band so that, on average, the monsoon July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence. They suggested the precession band so that, on average, the monsoon July (January) precipitation maxima and JJA (DJF) precipitation maxima have high coherence.

Notably, however, the role of the SH in driving the AM was apparently strong during glacial and weak during interglacials.87–110 In the aforementioned interpretative framework, the monsoon early response and the ice sheet late response suggest that the sensu lato Milankovitch theory (or the ice volume forcing drives Earth’s hydrological changes) may not be perfectly suitable in the monsoon world at the precession band,13 though the sensu strico Milankovitch theory retains validity.

Phases of monsoon variations at the precession band

The orbital forcing-induced hydroclimate changes in the monsoon regime show extensive precession variability. However, a closer look suggests that the precession phases of monsoonal hydroclimate variations are quite complex, depending on the regional dynamic in different parts of the monsoon system. In the current interpretative framework, when the modern AM becomes stronger with the annual increase of land-sea thermal contrast from spring to summer, the spatial scale of the summer monsoon circulation expands progressively, and more remote moisture is transported farther northwest into the Asian continent. The summer monsoon fringe extends northward, and overall summer monsoon precipitation increases over the continent, specifically over the northwestern fringe regions of the AM system, whereas the overall precipitation $\delta^{18}O$ becomes more negative in most continental regions (Figure 2). These modern observations25,104,105 provide an approximate analog (similar seasonality dynamics) to the AM intensification process from low to high NHSI conditions or from the precession maximum (P_{max}) to the P_{min} state and vice versa. These processes are now demonstrated consistently in many modeling results (Figure 5).14,71,75

Another hypothesis emphasizes that monsoon is largely driven by intertropical insolation differences (or sensible heat difference) or the resultant pressure gradient between approximately the Tropics of Cancer (~23° N) and Capricorn (~23° S), the summer inter-tropical insolation gradient (SITIG).57 This idea can account, to some extent, for the SH effect on the AM but differs mechanistically from another longstanding hypothesis, that the AM is driven largely by the latent heat originating from the Southern Indian Ocean, which reaches the monsoon on the orbital scale near the time of the minima of SH winter insolation (~11-ka lag to NH June 21 insolation).94,95 Similarly, several studies also considered the interhemispheric insolation differential (e.g., the insolation differential between 30° N and 30° S) as the forcing of the AM.83,96,99 In fact, the June 21 insolation differential between 30° N and 30° S (or between 23° N and 23° S and the insolation at the high latitude of 65° N are virtually identical in terms of their phase, net range, and pattern of variations. However, their influence on Earth’s hydroclimate systems is quite different. Mechanistically, June 21 insolation at NH high latitude is commonly considered the critical forcing driving changes in ice sheet extent (Milankovitch theory), whereas the June 21 (December 21) insolation differential between the interhemispheric tropics propels NH (SH) monsoon variations on the orbital scale. Although it is conventional wisdom that NH (SH) tropical summer insolation drives NH (SH) monsoon on the orbital scale, physically, the interhemispheric differential in tropical insolation (or SITIG) appears to be a more integrated forcing of monsoons. This is because the insolation difference involves
The planktonic foraminifera $\delta^{18}O_{\text{dw}}$ (ratios to sea-surface water based on the reconstructed SST and ice volume isotopic effects) is determined largely by the regional evaporation minus precipitation ($E - P$). Huang et al. noted that the $\delta^{18}O_{\text{dw}}$ from the tropical western Pacific shows a broad negative correlation with speleothem $\delta^{18}O$ records from the Asian continent, and they suggested that the strengthened AM at the P_{max} enhanced moisture flux from the western Pacific into the Asian continent and vice versa, contributing to the broad see-saw pattern on the precessional scale. It appears that orbital-scale variations in the $\delta^{18}O_{\text{dw}}$ over the tropical Pacific and Indian Oceans adjacent to the Asian continent show, to first order, a nearly positive correlation with NHSI (Figure 6), consistent well with model simulations (Figure 5).

As mentioned above, the ‘sea-land precession-phase paradox’ concerns the AM variations on orbital scales with apparent phase differences (~1–10 ka) at the precession band between a wide range of proxy records, including speleothem $\delta^{18}O$ and various marine sediment records in the AM regime (Figures 5 and 6). A data-model comparison was then used to help the interpretation of the observed phase differences at the precession band among some important continental and marine records, including marine records from the East China Sea (U1429) and the Andaman Sea (NGHP17) and continental speleothem records that show a significant phase difference at the precession band. More broadly, marine $\delta^{18}O_{\text{dw}}$ records show, to first order, a nearly positive correlation with NHSI (Figure 5). Therefore, the summer precipitation (evaporation) inferred from these records decreases (increases) over the marine regions when NHSI is high (low) or the overall monsoon is presumably strong (weak). In other words, the rainfall decreases at the precession band over the broad marine regions were compensated by coupled overall rainfall increases over the Asian continent and, thus, actually signify overall strengthening rather than weakening of the AM (Figure 5). This scenario is in line with the strong monsoon circulation under high NHSI inferred by the Asian speleothem $\delta^{18}O$ records. In essence, these seemingly fundamental differences rest in that the sea-land monsoon records characterized different aspects of the same AM system or dynamics.

Another important progress in monsoon research is a recent model simulation of precession-scale changes in the upwelling along the western Arabian Sea. This core site, as well as the adjacent catchment basins of the Mahanadi and Brahmani rivers that provide the majority of runoffs to the core site, are located at a unique place, according to the model results where the annual precipitation amount may have different precession phases from the NHSI or the overall precipitation and precipitation $\delta^{18}O$ (commonly correlated with precipitation E) over the Indian subcontinent (Figure 7). That is, the observed precession phases of the U1446 records are consistent with model simulations; although, overall, the Indian subcontinental precipitation amount was higher and precipitation $\delta^{18}O$ (or E) was lower at 9 ka BP (the high NHSI and strong IM scenario) relative to the preindustrial (PI) state (low NHSI and weak IM scenario). The behavior across the major Mahanadi-Brahmani catchments and the core site appears to be out of phase. In other words, such a differential among precession phases of the proxy records is plausible, and the model results provided an alternative interpretation in the context of new monsoon dynamics.

Another important progress in monsoon research is a recent model simulation of precession-scale changes in the upwelling along the western Arabian Sea. This involves a classic issue of whether the upwelling intensity (or the related ocean productivity) records from the Arabian Sea are a direct expression of IM variability, particularly regarding their precession phases, which considerably lag NHSI. Idealized experiments by fully coupled climate models under different precession configurations show that the area of upwelling is narrower (wide) during high (low) NHSI or strong (weak) IM times. The underlying mechanism is the effect of convective heating over northeastern Africa and the western equatorial Indian Ocean on the wind and meridional location of the low-level jet. Although these sensitivity simulations have difficulty to explore the precession phases precisely, new transient climate simulations on the Arabian Sea upwelling intensity appear to suggest a precession phase approximately opposite to NHSI and, thus, akin to the Arabian Sea records.

Figure 4. Phase comparison between North American (NA) and AM climate variations at the precession band (A) The normalized NA speleothem $\delta^{18}O$ record, using Gaussian filtering at the precession band (frequency, 0.0435; bandwidth, 0.01). (B) The composite AM speleothem $\delta^{18}O$ record and July 21 P_{max} N–S insolation (brown). (C) Filtered NA (purple) and AM (green) $\delta^{18}O$ records, using Gaussian filtering at the precession band (frequency, 0.0435; bandwidth, 0.01). (D) Spectral analysis results of NA (purple) and AM (green) $\delta^{18}O$ records and their coherence spectra (red). The AM and NA variations follow ~July 21 and ~September 21 insolation, respectively, with the AM leading NA hydroclimate variations by ~2.7 ± 0.8 ka at the precession band.
personal communication). Therefore, a series of upwelling proxy data obtained over the past ~30 years from the Arabian Sea ultimately has another alternative interpretation in the new interpretative framework in terms of precession phases.52,134 This new development to some extent explains an important part of the sea-land precession-phase paradox that obstructs acceptance of the Kutzbach orbital monsoon hypothesis.

The "Chinese 100-ka problem"

Another longstanding issue regarding the monsoon hypothesis stems from the Chinese loess magnetic susceptibility (MS) records (as an AM precipitation proxy) from the central Chinese Loess Plateau, which show dominant ~100-ka cycles (or glacial-interglacial cycles),72 implying a major ice volume forcing of monsoon. This is in contradiction with the conventional insolation hypothesis71 and Chinese speleothem records,16 namely the "Chinese 100-ka problem."93 Cheng et al.99 brought out the non-mainstream notion that MS "flux," rather than the MS, would be a more appropriate proxy of precipitation in principle35 because it accounts for durations of in situ pedogenesis and, thus, matches to the essence of the physical relationship between the magnetic proxy and precipitation. As expected, the MS flux data exhibit more precession power and less 100-ka power compared with the original MS records,134 which is consistent with a recent spliced loess sand content-MS record.136 However, the precession power of MS flux data remains less significant than that of the Chinese speleothem records. A closer look at most modeling results shows that the summer rainfall over the Chinese Loess Plateau may be insensitive to precession change,76,77,119,120,137 although this could be model dependent because different results have also been found in other models.52 On the other hand, some model simulations also show that the summer rainfall over the Chinese Loess Plateau is dominated by precession, whereas the annual temperature is more influenced by glacial conditions (CO2 and ice sheets).69,70 Therefore, it would be also possible that the loess MS was affected not only by summer precipitation but also by annual temperature and/or other factors/processes.93,138 A recent study shows that the Tengger desert had also experienced large dry-wet cycles, while the Tengger desert had also experienced large dry-wet cycles,117 which may facilitate the powers of other cyclicities. Additionally, the shelf exposure influence because of sea level change on the IPWP hydroclimate is presumably large, affecting regional ocean and atmosphere circulation and amplifying glacial-interglacial cyclicality.140 The broad anti-phase relationship between NH-SH monsoons on the precession scale implies that the ice volume forcing of monsoons would not be primary because the ice volume forcing is nearly synchronous globally to first order. However, various ice volume forcing effects seem to manifest in the monsoon regime in different ways, particularly in the EAM domain. For example, the ice sheet extent, amplified by the feedback of dust aerosol, can significantly weaken EAM circulation and precipitation.1,12 It has also been shown that the effect of ice sheets on the EAM is nonlinear depending on the size and location of the ice sheets and the background insolation.11,73 Recently, a model simulation69 has shown that the variation of the summer precipitation over the north of 25° N in the EAM domain is dominated by precession, leading to strong ~23-ka cycles, whereas over the southern part, the ice volume may play an important role in generating ~100-ka cycles by influencing the latitude of the ITCZ and the Hadley cell. These findings from model simulations call for further investigation, especially an in-depth data-model comparison. An thorough understanding of the effect of ice volume/CO2 forcing on monsoons remains challenging.138 Sun et al.138 proposed that "inolation plays a leading role in affecting changes in temperature, precipitation, and southerly wind during the summer season. Changes in annual mean temperature and precipitation are affected to varying degrees by CO2 and ice volume." Overall, even with addition of ice volume/CO2 forcing with ~100-ka cycles to the transient simulations, the resultant summer monsoon variations remain predominant with precession cycles in most cases, in line with low-latitude insolation. The main effect of global ice volume/CO2 forcing seems to lie mainly in the amplitude changes of monsoon variations1,12,71,75,93 and/or annual mean temperature and precipitation (or mean state).1,12 In principle, the influence of some of the 100-ka variances on the ASM4 appears to lie mainly in special changes in boundary conditions, such as certain temperature gradients, ITCZ mean position, and land-sea distribution, instead of direct sensitivity to ice volume changes.142 These explanations eliminate, in part, another critical obstacle, the generalized "Chinese 100-ka problem," to acceptance of the Kutzbach orbital monsoon hypothesis.

Monsoon system science

In the past four decades, researchers have commonly focused on just one specific type of proxy from monsoon regimes, such as the loess MS, marine productivity (upwelling), lake pollen, speleothem δ18O records, etc. To date, a conventional approach has been to use a specific proxy record or multi-proxy records from an individual location to characterize the entire monsoon system/subsystem exclusively, including monsoon periodicities and dynamics; therefore, such an approach has yielded a wide range of superficial discrepancies in our understanding of monsoon variations on orbital scales, particularly regarding the role of insolation forcing.20-22,93,127,129,133,134 A large body of valuable data has been amassed, which, together with modeling results, has ultimately led to the end of this era itself. Cheng et al.93 analogized the monsoon system to a giant "elephant" and suggested that various proxy records from monsoon regimes characterize different but indispensable parts of the same "elephant"—the whole monsoon system. In other words, most of the apparent differences stemmed from interpretations of diverse proxies that are, in essence, not mutually exclusive. In fact, there is an invaluable complementarity between these different proxy records in the interpretative framework of the whole monsoon system in that they
describe distinct dynamic aspects of the same monsoon system and, therefore, are linked closely to each other despite the superficial differences; for instance, in periodicities and precession phases as discussed above. Collectively, the discrete dynamic nature of monsoon calls for a new systematic approach in monsoon research or "monsoon system science" to better understand how the different pieces of the monsoon system work and interact in the context of data syntheses on the monsoon regime scale. Analogous to the legend of "blind men and giant elephant," a whole, not a partial, view of the monsoon system becomes critical. Therefore, although each climate record is always important, a simple generalization/exemplification from a single record to the whole monsoon system is evidently an outdated approach. This development propels a change in monsoon research to a systematic paradigm or monsoon system science, which underlines a systematic/integrative view of different dynamic natures/responses/feedback across an exceptionally broad range of temporospatial scales in a monsoon system and put them into the context of external insolation and internal (ice volume/CO2) forcings. This development, including explanations of the two paradoxes mentioned above, may be a decisive step toward acceptance of the Kutzbach orbital monsoon hypothesis as a theory addressing the key aspect of monsoon climates.

ICE SHEET AND MONSOON INTERPLAY

The Milankovitch theory postulates that changes in the high-latitude NHSI drive variances in Late Quaternary ice sheet extent, which, in turn, incite ancillary changes in other parts of the global climate system. In the Earth's tropics-subtropics, however, the monsoon variations are largely driven by tropical-subtropical insolation and manifest as inter-hemispherical anti-phased precession cycles. This dual nature in orbital forcings and their hydroclimate responses/feedback are distinctive, but their interplay is inevitable and complex as well. In the following discussions, we enumerate several relevant issues.

The pattern of glacial-interglacial temperature variations

The most prominent feature of global climate change is the broad similarity between global temperature and atmospheric CO2 variations in Late Quaternary ice sheet extent, which, in turn, appears to be a major driver of monsoon climate variability. The monsoon system science approach allows a comprehensive understanding of the interplay between monsoon and ice sheet dynamics. This interplay is critical for understanding the evolution of Earth's climate system and the potential impacts of future climate change.

Figure 6. Surface seawater $\delta^{18}O_{\text{sw}}-\text{sst}$ from the Indian Ocean and the western Pacific, and comparison with the June 21 insolation differential between 30°N and 30°S $\delta^{18}O_{\text{sw}}-\text{sst}$, calculated by removal of SST and global mean ice volume effects from $\delta^{18}O$ of planktonic foraminifera using the mean sea level reconstruction.

- From top to bottom are the records: ODP1145, MD06-3067, MD01-2386, U1429, MD97-2140, and MD06-3067. The dashed lines show data filtered using Gaussian filtering on the precession band (frequency, 0.0435; bandwidth, 0.01). The blue curves show the differential between 21 June insolation at 30°N and 30°S.

- $\delta^{18}O_{\text{sw}}-\text{sst}$ variations respond primarily to local E-P as well as river runoff in some cases. It appears that the $\delta^{18}O_{\text{sw}}-\text{sst}$ records show an overall positive correlation with the June insolation, suggesting a general E-P increase with the increase in summer insolation over the broad oceanic regions in the AM domain. The U1429 record shows almost no precessional variance, which is consistent with model results that suggest a weak precessional variance in rainfall and runoff originating from the Yangtze River Valley (Figure 5).
on the glacial-interglacial scale globally. For example, the long-term variations of Antarctic temperature are virtually as same as the global ice volume/CO₂ or northern high-latitude temperature changes. The SST records across the NH-SH also show patterns broadly similar to the ice volume and Antarctic temperature, consistent with the sensu lato Milankovitch theory: the ice sheet effect on global climate (particularly the changes in the temperature pattern). The observation that changes in the northern high-latitude ice sheet drive global temperature variations predominantly in a similar pattern on the glacial-interglacial scale is important for a better understanding of monsoon dynamics. This is because changes in the temperature gradient (and, in turn, atmosphere-ocean circulation) are likely more important to monsoon dynamics to first order than similar temperature changes associated with glacial-interglacial cycles.

The AM and Antarctic temperature variations are broadly similar on the millennial scale, with a broad anti-phased variability (Figure 1C). As suggested previously, the AM is influenced by a combination of NH "pull" and SH "push" mechanisms. The essence of these mechanisms rests on the influence of the interhemispheric temperature gradient on the monsoon variability on the millennial scale, which is comparable mechanistically with the similar driving forcing of monsoon on the orbital scale: the interhemispheric insolation differential (e.g., the SITIG or 30°C-30°C S98,99).

CH₄ and CO₂ feedback
It has long been recognized that atmospheric CO₂ change, although mechanistically complex, has a very close relationship with global sea level/ice volume changes, and at the precession band, it is approximately in phase with the NH September insolation (~ 5-ka lag to NH June 21 insolation) (Figure 4). On the other hand, the AM speleothem δ¹⁸O16 and ice core CH₄ records show prominent precession pacing of low-latitude hydroclimate changes with a nearly in-phase relation with the NH July insolation (~ 2- to 3-ka lag to NH June 21 insolation) at the precession band. This phase relation between AM and CH₄ supports the notion that greenhouse gas CH₄ responses to the NH monsoon change without observable lags, suggesting early CH₄ feedback at the precession band compared with the ice volume and CO₂ in the Earth’s climate system or a potential low- to high-latitude directionality of climate interaction.

On the other hand, the rapid CO₂ increase as a critical feedback during the last deglaciation could be also critical for the full glacial termination; for example, it might have propelled the deglaciation striding across the cooling periods of the Younger Dryas (YD) (with an ~25 ppm CO₂ increase) and Heinrich stadial 1 (HS1) (with an ~50 ppm CO₂ increase) (Figure 8E). This is because, mechanistically, an ~15 ppm CO₂ rise during a millennial-scale event (e.g., YD and HS1) is sufficient to alter atmospheric moisture transport across Central America and, subsequently, modulate the North Atlantic freshwater budget, ultimately resulting in transition from a weak to a strong AMOC mode and, in turn, intensified AM (Figure 8). Essentially, these processes indicate a high- to low-latitude directionality of climate interaction.
The phase relation between the AM and the ice sheet at the precession band

As mentioned previously, a close comparison of precession phases between absolutely dated AM15 and North American hydroclimate32 records revealed that the AM led the North American hydroclimate (or ice sheet) by \(\approx 2.7 \pm 0.8\) ka at the precession band (Figure 4). This observation suggests a more active role of low-latitude monsoons in driving global hydroclimate change than previously thought.13,15,67,73,97,99 That is, at the precession band, low-latitude monsoons appear to be an important driver of global hydroclimate changes, including their potential influence on the high-latitude hydroclimate via input of water vapor and \(\text{CH}_4\) to the atmosphere and transport of heat to high latitude through ocean circulation (such as the AMOC).7,25,62,72,73,99

The role of the AMOC

During the past two decades, the high- and low-latitude climate teleconnections at multiple timescales have been well established empirically and theoretically. One convincing piece of evidence comes from the precise correlation between the millennial-scale events recorded in Greenland ice core and AM speleothem records.14,50,149,150 The key process underlying this teleconnection lies in the AMOC dynamics (less in direct ice volume forcing), which links changes in high-latitude temperature to low-latitude monsoon intensity. For example, as inferred by \(^{231}\text{Pa}/^{230}\text{Th}\) records152,157,158 over the last deglaciation process, the high-latitude weak AMOC events associated with HST and YD affected the AM profoundly, resulting in pronounced weak monsoon intervals, whereas the influence of persistent decrease of the ice volume was tentative (Figure 8). In particular, while the ice volume around 18–19 ka BP was very close to its maximum, the AM reached an apparent peak, coherent with the strong AMOC peak, which is clearly not in tune with the ice volume variance (Figure 8). In other words, the ice volume effect appears to be less effective in terms of driving monsoon changes. Nevertheless, provided that the ice volume changes affect the AMOC (very likely) via changing the North Atlantic meltwater forcing for instance, therewith the monsoon will respond much more sensitively. In this respect, the ice volume change rate and the trajectory/distribution of the resultant meltwater in the North Atlantic, not the ice volume per se, would be more critical for low-latitude monsoons.159

In a pioneer modeling study, Kutzbach and Guetter14 showed that the response of monsoon circulation and tropical precipitation to the orbitally produced solar radiation changes was much larger than the response to changes of glacial-age boundary conditions.7 In their experiment, the glacial-age boundary conditions include the ice sheet and related land albedo, sea ice, and SST conditions but not AMOC, consistent with the observations. Another example is a recent model simulation that also suggests that the abrupt low-latitude monsoon weakening events that occurred during the ending processes of interglacials were associated with the astronomically triggered abrupt weakening of the AMOC159 rather than with a direct ice volume change.

SAM (Amazon River discharge)

Recent studies show that, during the termination processes of millennial-scale events such as HSs, a multi-centennial drying trend occurred as a precursor event in the vast SAM domain, which would have caused a decrease in Amazon River discharge into the tropical Atlantic Ocean (Figures 8 and 9).150,161 Reduced freshwater input may have induced a positive sea-surface salinity anomaly in the huge Amazon plume region,14,16 used to the deep-water formation areas in the North Atlantic via the great ocean conveyor164,165 and contributing to the strengthening of the AMOC166,167 and vice versa. A strengthened AMOC would induce positive feedback by transporting more saline water to the north, facilitating northward heat transport and a shift in the tropic rain belts, intensification of the AM,152,160,161 and Greenland warming.168 This dynamic process provides another example showing that low-latitude monsoon rainfall may affect high-latitude climate.

PROSPECT

The Milankovitch theory became an accepted version of the astronomical theory of climate change mainly because the major periodicities of the astronomical parameters were found to be consistent with the geological records of the northern high-latitude ice sheets, and, subsequently, the ice sheets forced nearly coincident global climate changes. However, orbital-scale climate changes of Earth are not dictated by high-latitude ice sheets alone. In fact, large AMOC weakening events such as HSs, a multi-centennial drying trend occurred as a precursor event in the vast SAM domain, which would have caused a decrease in Amazon River discharge into the tropical Atlantic Ocean (Figures 8 and 9).150,161 Reduced freshwater input may have induced a positive sea-surface salinity anomaly in the huge Amazon plume region,14,16 ultimately contributing to AMOC strengthening.164,165

White dots show locations of cave records. Purple and white arrows indicate the surface and deep ocean currents, respectively. The light blue arrow depicts the wind direction of the SAM. This figure is modified from Cheng et al.150 and Dong et al.161 The map shows surface salinity in 2011 as measured by the National Aeronautics and Space Administration (NASA) Aquarius satellite. Orange colors indicate higher salinity and blue colors lower salinity (https://news. uga.edu/wp-content/uploads/2017/12/Amazon-River-Plume.jpg).

Figure 9. Conceptual diagram depicting the climatic dynamics during termination of the millennial-scale climate events. Based on cave records,159,160 the weakened SAM resulted in reduced Amazon River runoff into the tropical Atlantic Ocean and, thus, a small Amazon plume region (APR; depicted by the red dashed line) about multi-centuries prior to the millennial event termination at Greenland. The long-term drying trend in the SAM domain may have induced a relatively positive SSS anomaly in the APR, which was subsequently advected to the North Atlantic152,157 ultimately contributing to AMOC strengthening.164,165
monsoon variability inferred, for example, from Asian 74,85 and South America 74,80 speleothem records. We therefore call for a combined Milankovitch-Kutzbach hypothesis—a unified framework for understanding orbital-scale global climate variability. This form of orbital hypothesis not only accentuates that high-latitude NH summer insolation drives changes in ice sheet extent at the Earth’s orbital periods and its nearly synchronous effect globally on glacial-interglacial variability but also emphasizes that inter-tropical insolation differential drives inter-hemispherically out-of-phase low-latitude hydroclimate variability at the precession band (Figure 10). Basically, we suggest blending the global monsoon with the existing framework of the orbital theory to formulate a more comprehensive interpretative framework of Earth’s orbital climate changes, including the dual nature of orbital hydrodynamics of the high-latitude ice sheet and low-latitude monsoon in the context of the dual insolation forcings and their broad interplays (Figure 10). To advance the Milankovitch-Kutzbach hypothesis into a new accepted version of the astronomical theory of climate, there is much more to be done, such as gaining a better understanding of the global-scale low- and high-latitude interactions and feedback and, in particular, research on the forefront of “monsoon system science”—a new monsoon research paradigm.

REFERENCES
1. Milankovitch, M.K. (1941). Canon of Insolation and the Ice Age Problem (Royal Serbian Academy Special Publication). (in German).
2. Hays, J.D., Imbrie, J., and Shackleton, N.J. (1976). Variations in the earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132.
3. Berger, A.L. (1977). Support for the astronomical theory of climatic change. Nature 269, 44–45.
4. Imbrie, J., Hayes, J.D., Martinson, D.G., et al. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In Milankovitch and Climate Part I (D. Reidel Publishing Company), pp. 269–305.
5. Imbrie, J., McIntyre, A., and Mix, A. (1989). Oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies. In Climate and Geo-Sciences (Springer), pp. 121–164.
6. Imbrie, J., Boyle, E.A., Clemens, S.C., et al. (1992). On the structure and origin of major glacial cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738.
7. Lisiecki, L.E., and Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071.
8. Kutzbach, J.E. (1981). Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. Science 214, 59–61.
9. Kutzbach, J.E., and Street-Perrott, F.A. (1985). Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, 130–134.
10. Prell, W.L., and Kutzbach, J.E. (1987). Monsoon variability over the past 150, 000 years. J. Geophys. Res. 92, 8411–8425.
11. Berger, A., Driesschaert, E., Grootse, H., et al. (2008). The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500, 000 years ago. Clim. Past 4, 79–90.
12. Shi, Z.G., Lei, O., and Zhou, P. (2020). Numerical simulation researches on orbital-scale Asian climate dynamics; history and perspective (in Chinese). Quat. Sci. 40, 8–17.
13. Ruddiman, W.F. (2006a). Orbital changes and climate. Quat. Sci. Rev. 25, 3092–3112.
14. Kutzbach, J.E., Liu, X., Liu, Z., and Chen, G. (2008). Simulation of the evolutionary response of global summer monsoon to orbital forcing over the past 280, 000 years. Clim. Dyn. 30, 567–579. https://doi.org/10.1007/s00382-007-0308-z.
15. Cheng, H., Sinha, A., Wang, X.F., et al. (2012a). The global paleomonsoon as seen through speleothem records from Asia and South America. Clim. Dyn. 39, 1045–1062.
16. Cheng, H., Edwards, R.L., Sinha, A., et al. (2016a). The Asian monsoon over the past 640, 000 years and ice age terminations. Nature 534, 640–646.
17. Wang, P.X., Wang, B., Cheng, H., et al. (2014). The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past 10, 2007–2052.
18. Wang, P.X., Wang, B., Cheng, H., et al. (2017). The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci. Rev. 174, 84–121.
19. Broecker, W.S., and VanDonk, J. (1970). Insolation changes, ice volumes and the D18O in deep sea cores. Rev. Geophys. 8, 169–198.
20. Ruddiman, W. F. (2006b). What is the timing of orbital-scale monsoon changes? Quat. Sci. Rev. 25, 657–658.
21. Clemens, S.C., Holbourn, A., Kubota, Y., et al. (2018). Precession-band variance missing from East Asian monsoon runoff. Nat. Commun. 9, 3956.
22. Clemens, S.C., Yamamoto, M., Thrumalai, K., et al. (2021). Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848.
23. Cheng, H., Lawrence Edwards, R., Shen, C.C., et al. (2013a). Improvements in 230Th dating, 230Th and 238U half-life values, and U-Th isotopic measurements by multi-collector induc- tively coupled plasma mass spectrometry. Earth Planet Sci. Lett. 371–372, 82–91.
24. Henderson, G.M. (2006). Climate-Caving in to new chronologies. Science 313, 620–622.
25. Cheng, H.W., Zhang, H., Zhao, J.Y., et al. (2019a). Chinese stalagmite paleoclimate re- searches: a review and perspective. Sci. China Earth Sci. 62, 1489–1513.
26. Elkibbi, M., and Rial, J.A. (2001). An outsider’s review of the astronomical theory of climate: is the eccentricity-driven insolation the main driver of the ice ages? Earth Sci. Rev. 55, 161–177.
27. Berger, A., and Loutre, M.F. (1991). Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317.
28. Lisiecki, L.E. (2010). Links between eccentricity forcing and the 100,000 year glacial cycle. Nat. Geosci. 3, 349–352.
29. Huybers, P., and Wunsch, C. (2005). Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494.
30. Henderson, G.M. (2006). Climate-Caving in to new chronologies. Science 313, 620–622.
31. Cheng, H.W., Zhang, H., Zhao, J.Y., et al. (2019a). Chinese stalagmite paleoclimate re- searches: a review and perspective. Sci. China Earth Sci. 62, 1489–1513.
32. Imbrie, J., and Imbrie, J.Z. (1980). Modeling the climatic response to orbital variations. Nature 280, 348–354.
33. Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391, 378–381.
34. Huybers, P. (2011). Combined obliquity and precession pacing of late Pleistocene de- glaciations. Nature 480, 229–232.
35. Raymo, M.E. (1998). Glacial puzzles. Science 281, 1467–1468.
36. Maslin, M.A., and Ruddiman, W.F. (2005). Mid-Pleistocene revolution and the ‘eccentricity myth’. In Early-Middle Pleistocene Transitions: The Land-Ocean Evidence, M.J. Head and P.L. Gibbard, eds. (Geological Society of London), pp. 19–34.
37. Saltzman, B., Hansen, A.R., and Maasch, K.A. (1984). The late Quaternary glaciations as the response of a three-component feedback system to Earth- orbital forcing. J. Atmos. Sci. 41, 3380–3389.
110. Oppo, D.W., and Sun, Y. (2005). Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon. Geol. 33, 785–788.

111. Boltret, T., Holbourn, A., Kuhnt, W., et al. (2011). Mindanao dome variability over the last 80 kyr. Oceanography 25, PA1208.

112. Jian, Z.M., Wang, Y., Dang, H.W., et al. (2019). Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics. Proc. Natl. Acad. Sci. USA 117, 7044–7051.

113. De Garidel-Thorun, T., Rosenthal, Y., Bassinot, F., and Beaufort, L. (2005). Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298.

114. Gebregiorgis, D., Hathorne, E.C., Giosan, L., et al. (2018). Southern Hemisphere forcing of the Atlantic meridional overturning circulation during the last glacial cycle. Geophys. Res. Lett. 45, 10901–10909.

115. Battisti, D.S., Ding, Q., and Roe, G.H. (2014). Coherent pan-Asian climatic and isotopic response to orbital forcing of the Asian summer monsoon. J. Clim. 30, 3343–3365.

116. Schmidt, G.A., LeGrande, A.N., and Hoffmann, G. (2007). Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J. Geophys. Res. 112, 1–18.

117. Braconnot, P., Marzin, C., Grégoire, L., et al. (2008). Monsoon response to changes in Earth’s orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Clim. Past 4, 281–294.

118. Battisti, D.S., Ding, Q., and Roe, G.H. (2014). Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J. Geophys. Res. Atmos. 119, 11997–12020.

119. Liu, Z.Y., Wen, X.Y., Brady, E.C., et al. (2014). Chinese cave records and the East Asia summer monsoon. Quat. Sci. Rev. 83, 115–128.

120. Chiang, J.C., Fung, I.Y., Wu, C.H., et al. (2015). Role of seasonal transitions and westerly jets in the Holocene East Asian summer monsoon. J. Clim. 28, 3087–3103.

121. Lee, J., Fox-Kemper, B., Horvat, C., and Ming, Y. (2019). The response of East Asian summer monsoon to its potential driving forces in the late Quaternary. Clim. Dyn. 53, 2183–2197.

122. Bereter, B., Eggelston, S., Schmitt, J., et al. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549.

123. Windler, G., Tierney, J.E., and Anchukaitis, K.J. (2021). Glacial-interglacial shifts dominate interannual to decadal variability of the Atlantic meridional overturning circulation during the last glacial. J. Geophys. Res. Oceans 126, e2021GL094760.

124. Caley, T., Malaizé, B., Zaragosi, S., et al. (2011). New Arabian Sea records help decipher the Quaternary orbital timing of Indo-Asian monsoon. Earth Planet. Sci. Lett. 308, 111–129.

125. Caley, T., Roche, D.M., and Renssen, H. (2014). Orbital Asian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column isotopes revealed using an isotope-enabled global climate model. Nat. Commun. 5, 4686.

126. Zhao, Y., and Harrison, S.P. (2012). Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim. Dyn. 39, 1457–1487.

127. An, Z.S., and Sun, D.H. (1995). Discussion on the monsoon variation over the Loess Plateau in the last glacial cycle. In China Contribution to Global Change, D.Z. Ye and H. Lin, eds (Beijing Science Press), pp. 154–157.

128. Guo, B.H., Ne, J.S., Stevens, et al. (2020). Dominant Precession-forced Forcing of the East Asian Summer Monsoon since 260 Ka. Geology 48, 1039–1042.

129. Zhang, H., Zhang, X., Cai, Y., et al. (2021). A data-model comparison pinpoints the forcing of the Asian summer monsoon. Geophys. Res. Lett. 48, e2021GL094760.

130. Liu, C.X., Ne, J., Li, Z., et al. (2021). Eccentricity forcing of East Asian monsoon systems over the past 3 million years. Proc. Natl. Acad. Sci. USA 118, e2017055118.

131. Krebs, U., and Timmermann, A. (2007). Tropical air masses and Indian summer monsoon. Earth Planet Sci. Lett. 252, 439–453.

132. Jalihal, C., Srinivasan, J., and Chakraborty, A. (2022). Response of the low-level jet to precession and its implications for proxies of the Indian monsoon. Geophys. Res. Lett. 49, e2021GL094760.

133. An, Z.S., and Sun, D.H. (1995). Discussion on the monsoon variation over the Loess Plateau in the last glacial cycle. In China Contribution to Global Change, D.Z. Ye and H. Lin, eds (Beijing Science Press), pp. 154–157.

134. Liang, Y.C., Lo, M.H., Lan, C.W., et al. (2020). Amplification of the 400 k.y. signal in paleoceanographic records at 4Ma. Geol. Soc. Am. Bull. 120, 1338–1344.

135. An, Z.S., and Sun, D.H. (1995). Discussion on the monsoon variation over the Loess Plateau in the last glacial cycle. In China Contribution to Global Change, D.Z. Ye and H. Lin, eds (Beijing Science Press), pp. 154–157.

136. Windler, G., Tierney, J.E., and Anchukaitis, K.J. (2021). Glacial-interglacial shifts dominate tropical Indo-Pacific hydroclimate during the late Pleistocene. Geophys. Res. Lett. 48, e2021GL093393.

137. Shi, Z.G., Xie, X., Ren, X., et al. (2019). Radiative effect of mineral dust on east Asian summer monsoon during the Last Glacial Maximum: role of snow-albedo feedback. Geophys. Res. Lett. 46, 10901–10909.

138. Caley, T., Roche, D.M., and Renssen, H. (2014). Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary. Clim. Dyn. 50, 2183–2197.

139. Zhang, H., Zhang, X., Cai, Y., et al. (2021). A data-model comparison pinpoints the forcing of the Asian summer monsoon. Geophys. Res. Lett. 48, e2021GL094760.

140. Windler, G., Tierney, J.E., and Anchukaitis, K.J. (2021). Glacial-interglacial shifts dominate tropical Indo-Pacific hydroclimate during the late Pleistocene. Geophys. Res. Lett. 48, e2021GL093393.

141. Windler, G., Tierney, J.E., and Anchukaitis, K.J. (2021). Glacial-interglacial shifts dominate tropical Indo-Pacific hydroclimate during the late Pleistocene. Geophys. Res. Lett. 48, e2021GL093393.
ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (41888101 and 42150710534).

AUTHOR CONTRIBUTIONS

H.C. wrote the draft manuscript. A.S., Q.Y., Z.S., Y.C., Y.H., Q.H., and J.T. revised the manuscript. H.L., L.S., X.D., J.Z., Z.L., and Z.S. performed data analyses and simulations. All authors reviewed and provided revisions for the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

LEAD CONTACT WEBSITE

https://gr.xjtu.edu.cn/web/cheng021/home.