S-duality in N = 2 supersymmetric gauge theories

Philip C. Argyres¹ and Nathan Seiberg²

¹ Physics Department, University of Cincinnati, Cincinnati OH 45221-0011
argyres@physics.uc.edu

² School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540
seiberg@ias.edu

Abstract: A solution to the infinite coupling problem for N = 2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gaugedavor groups. Consistency checks of this proposal are found by examining some low-rank examples. As part of these checks, we show how to compute new exact quantities in these SCFTs: the central charges of theiravor current algebras. Also, the isolated rank 1 E6 and E7 SCFTs are found as limits of Lagrangian field theories.
1. In finite coupling and S-duality

In many $N = 2$ supersymmetric gauge theories in four dimensions, an exactly marginal gauge coupling, g, can be taken in finite. In this paper we propose a new kind of quantum equivalence of gauge theories which relates such in finitely-strongly coupled theories to ones with both weakly-coupled ($g < 1$) and strongly-coupled ($g > 1$) sectors, but no in finitely-strongly coupled sectors. This proposal thus allows one to eliminate in finitely-coupled gauge theories in favor of merely strongly-coupled ones. In particular, it suggests that even as $g \rightarrow 1$ all the correlation functions of the theory remain finite! Our proposal generalizes the well-known S-duality of $N = 4$ supersymmetric gauge theories to the larger class of $N = 2$ supersymmetric ones.

S-duality, or Olver-Montonen duality [1], in $N = 4$ supersymmetric gauge theories in four dimensions answers the question of what happens as the gauge coupling constant becomes in finite: the theory actually becomes a weakly coupled gauge theory again, though not necessarily with the same gauge group. In theories with simply-laced gauge group, where the theory is self-dual, this is expressed as the equivalence between the theory at different couplings,

$$e' = 1 = e + 4 i g^2$$

where $e = -2 + 4 i g^2$ is the complex coupling. Combined with the angularity of the theta angle, $e' + 1$, this generates an $sl(2;\mathbb{Z})$ group of identifications whose fundamental domain in the space of couplings is bounded away from in finite coupling ($\text{Im} = 0$); see figure 1.

But this is not always the answer to the in finite coupling problem in scale-invariant gauge theories with less supersymmetry. Though in the case of $N = 2$ $su(2)$ super QCD with four massless fundamental hypermultiplets there is an $sl(2;\mathbb{Z})$ S-duality [2], there are higher-rank gauge theories which are not self-dual. For example, for $N = 2$ $su(3)$ with six massless fundamentals, the S-duality group is $0(2) \quad sl(2;\mathbb{Z})$ generated by $[3] e' = e + 2$ and $e' = 1 = e$ where $e = 2$. The fundamental domain of this group in the coupling space is not bounded away from in finite coupling, but instead contains the point $e = 1$, as shown in figure 1.

This raises the question of how to characterize the physics at the in finite coupling point. The simplest possibility is that this limit is actually a different weakly-coupled $N = 2$ gauge theory, but the exact low energy effective action shows that this cannot be the case. One way to see this is to compare the behavior of the curve [2] encoding the Coulomb branch
effective action in the weak and in finite coupling limits. As \(\text{Im } e \neq 1 \) in the su(3) theory, three non-intersecting cycles pinch in the genus 2 curve at any point on the moduli space; see Figure 2a. (More precisely, we are picking out the particular vanishing cycles for which there exist BPS states in the spectrum.) Each pinching cycle is the signature of a pair of charged \(W \) gauge bosons becoming massless, corresponding to the expected 6 gauge bosons given a mass by the su(3)!u(1)u(1)Higgs. In contrast, as \(e \neq 1 \), the in finite coupling point, only one cycle vanishes at generic points on the moduli space. This does not give enough \(W \) bosons to account for a weakly-coupled Higgs mechanism. So, some new phase is indicated for this \(N = 2 \) su(3) gauge theory at \(e = 1 \). This type of behavior of the Coulomb branch effective action is typical of the infinite-coupling points of any \(N = 2 \) series of such theories [4].

To avoid confusion, we should note that the numerical value of \(\text{Im } e \) is not really indicative of whether a point in coupling space is such an infinite-coupling point or not. For, lacking any other non-perturbative definition of the coupling, one could always make a holomorphic, non-perturbative rede nition of the coupling to change its value at the putative infinite-coupling point to any desired value. Indeed, in the rest of the paper we will nd it convenient to describe couplings in terms of a function \(f(e) \) which approaches \(f \sim e^{-\lambda} \) at weak coupling, but \(f \sim 1 \) at infinite coupling".

We nevertheless use "infinite coupling" as a convenient phrase to describe those points in coupling space where the effective action has the singular (but not weak-coupling) behavior at generic points on the Coulom b branch described above. These infinite coupling points can be invariantly characterized as follows. Abstractly, the space of couplings is a complex manifold with singularities, and the S-duality group is the fundamental group in the orbifold sense [11] of this space with the singular points removed. The infinite coupling points we are interested in are the cusps, i.e., the points where the S-duality identi cation is of infinite order (like the \(\theta \) + 1 theta angle identi cation at weak coupling). The coupling is just a complex coordinate on this space. If the coupling transforms by fractional linear transforma tions under the S-duality group, then \(g^2 (\text{Im } e) \) is either 0 or infinite at cusps.

In this paper we argue that the physics at the infinite coupling limit of a scale-invariant \(N = 2 \) gauge theory with gauge group \(H \), rank(\(H \)) = \(r \), is a weakly coupled scale-invariant gauge theory with gauge group \(G \) with smaller rank, rank(\(G \)) = \(s < r \), which is coupled to an isolated rank (\(r - s \)) \(N = 2 \) superconformal \(\mathcal{E}H \) theory. Here "isolated" means that this

\footnote{The rank of an isolated \(N = 2 \) SCFT, where an explicit gauge group and Lagrangian description are}
SCFT has no exactly marginal coupling of its own. Thus, the SCFT can be thought of as providing "matter fields" charged under G. More precisely, in the infinite coupling limit, G weakly gauges a subgroup of the flavor symmetry of the SCFT. (We will always use "flavor symmetry" to refer to the global symmetry which commutes with the $N = 2$ superconformal symmetry.)

In other words, we are proposing a generalization of S-duality from $N = 4$ to $N = 2$ scale-invariant field theories. Our proposal of including strongly-coupled $N = 2$ SCFTs as factors in the duals of non-Abelian gauge theories is a natural generalization of the $N = 4$ case, given the existence of isolated $N = 2$ conformal gauge theories.

Let us describe the finite-coupling duality more precisely. Denote a gauge theory with gauge group G and matter half-hypermultiplets in the $L_i^r_i$ representation by

$$G \, w = \, L_i^r_i;$$

where $w = i$ is read as "with". Now consider a theory described by a SCFT with flavor symmetry group S, a subgroup $G \subset S$ of which is gauged. We will denote such a theory in a similar manner as

$$G \, w = \text{SCFT}_S;$$

emphasizing that the SCFT acts as "with" for the gauge theory (even though $N = 2$ SCFTs also have gauge degrees of freedom). Note that S is not the flavor symmetry of this theory, except in the limit of zero coupling; at finite coupling only the subgroup of S commuting with G is a global symmetry. In general there may be more than one way of embedding G in S. A given embedding can often be specified by the maximal subgroup $G \subset F \subset S$. Gauging G leaves F as the flavor group.

In the rest of this paper we will give evidence for specific examples of the duality between finite-coupled Lagrangian $N = 2$ SCFTs and gaugings of isolated SCFTs, as described above. For example, in the next section we argue that

$$\text{su}(3) \, w = 6 \quad (3 \, 3) = \text{su}(2) \, w = (2 \quad 2 \quad \text{SCFT}_E);$$

In words and more detail: the scale-invariant theory with gauge group $G = \text{su}(3)$ coupled to 6 massless fundamental hypermultiplets with coupling f (reviewed in appendix A) is equivalent to an $\text{su}(2)$ gauge theory with one massless fundamental hypermultiplet and coupled to the isolated rank 1 SCFT with flavor symmetry E_6 (reviewed in appendix B) by gauging the $\text{su}(2)$ in the maximal subgroup $\text{su}(2) \subset \text{su}(6) \subset E_6$, with coupling \vec{f}. The map between the direct and dual couplings, $\vec{f}(f)$, is given in (2.7), and maps in finite coupling in f to zero coupling in \vec{f}.

Two immediate checks of this proposal are that the ranks and flavor groups of the two sides of (1.3) match. The rank (or dimension of the Coulomb branch) of the $\text{su}(3)$ theory lacking, is defined as the complex dimension of its Coulomb branch, which is the number of $u(1)$ gauge factors generically unbroken in the IR.

{ 3 }
is 2, while the $\text{su}(2)$ and E_6 SCFT factors on the right are each rank 1. Theavor groups match since that on the left is $\text{su}(6)$, while the 2^2 factor on the right contributes a $\text{u}(1)$ and the E_6 SCFT contributes a $\text{su}(6)$ because of the way the gauged $\text{su}(2)$ factor is embedded in E_6. This embedding must also be consistent with the low energy effective action, giving independent evidence for this proposal described in section 2.

It is less trivial to see that the number of marginal couplings is the same on each side of (1.3). Clearly there is only one marginal coupling on the left side, but the $\text{su}(2)$ coupling on the right will be marginal only if the contribution of the rank 1 SCFT matter to the $\text{su}(2)$ gauge coupling beta function has the correct value. This contribution is governed by the central charge of theavor current algebra of the rank 1 SCFT. By weakly gauging the globalavor symmetries on both sides of the duality and comparing its gauge coupling beta functions we can independently compute this central charge, and verify that the $\text{su}(2)$ gauge coupling is indeed marginal. This is described in detail in section 3, where the same argument is used to give evidence that the $\text{su}(2)$ W-bosons are magnetic charged under the $\text{su}(3)$ gauge group, indicating that the $\text{su}(2)$ gauge group on the right side of (1.3) is not a subgroup of the $\text{su}(3)$ gauge group on the left side.

An important result of this paper is the above computation of theavor current algebra central charge of the SCFT. This is a new exactly computed observable of isolated, strongly-coupled $N = 2$ SCFTs.

A somewhat simpler example is outlined in section 4, where it is shown that

$$\text{sp}(2) \times 12 = 4 = \text{su}(2) \times \text{SCFT},$$

with the $\text{su}(2)$ gauging the $\text{su}(2)$ factor in the maximal embedding $E_7 \times \text{su}(2) \times \text{so}(12)$, to realize the $\text{so}(12)$avor symmetry.

It is worth noting that the conjectures (1.3) and (1.4) identify the E_6 and E_7 rank 1 SCFTs as subsectors of Lagrangian field theories which decouple from the rest of the theory in the infinite coupling limit. The rank 1 $N = 2$ SCFTs with exceptional global symmetry groups [5] have not been previously constructed in a purely four-dimensional field theory framework; instead they have been shown to exist only by dimensional reduction from a 5 or 6 dimensional SCFT, which in turn were constructed as low energy limits of certain string configurations [6].

Other scale invariant rank 2 theories (listed in appendix A.1) have infinite coupling limits whose dual descriptions can be analyzed similarly. We leave this for later, though, since these examples require substantially more work because less complete information is available either about the Coulomb branch effective actions of these theories or about their proposed dual SCFTs. In particular, verification of the same consistency checks as performed for the two examples (1.3) and (1.4) in this paper requires the computation of non-maximal mass deformations of the E_n rank 1 SCFTs and of the mass-deformed curve of the $G_2 \times 8 \times 7$ rank 2 Lagrangian SCFT. The non-maximal mass deformations are mass deformations of SCFTs which have the same conformal curves as the E_n SCFTs, but have smaller global
symmetries than the maximal deformations with E_n symmetry. Some other examples of identical conformal curves which have inequivalent mass deformations are pointed out in appendix A.

More generally, infinite coupling points are ubiquitous in higher-rank $N = 2$ Lagrangian theories. For example, all the $n > 2$ $su(n)$ theories with $2n$ fundamental hypermultiplets have infinite coupling limits, and similarly for many other series of scale-invariant theories with rank greater than 2. In fact, the only series of higher-rank theories which are known to have Lagrangian weak coupling descriptions at all the singularities in the space of marginal couplings, besides the $N = 4$ theories, are the $sp(n)$ theories with $4n$ fundamentals and 1 antisymmetric $[7, 8]$, of which $su(2)$ with four fundamentals $[2]$ is a special case, and the $su(2)$ $su(2)$ theory with $4n$ fundamentals and 1 bifundamental $[9, 10]$. However, it is probable that all the $su(2)^n$ cylindrical and elliptic models $[11]$ are also examples of this type.

Finally, we have included several appendices in an attempt to make the paper more self-contained. They mostly either collect scattered results from the $N = 2$ field theory literature, or review results which are probably known to experts but have not been published.

2. Infinite coupling in $su(3)$ $w/6$ ($3\ 3$)

Our aim is to check the proposed equivalence

$$su(3)\ =\ 6\ (3\ 3)\ =\ su(2)\ =\ (2\ 2\ SCFT_{\mu}) \ ;$$ (2.1)

In this section we extract evidence supporting it from the known low energy effective action on the Coulomb branch for the $su(3)$ theory.

2.1 Limits in the effective theory

As reviewed in appendix A.2, the curve encoding the low energy effective action on the Coulomb branch of the $su(3)$ theory with six massless fundamental hypermultiplets is (A.4). u and v are the Coulomb branch vevs of dimension 2 and 3, respectively, and their associated basis of holomorphic one-forms are given in (A.3). These one-forms determine the central charges and thus the masses of BPS states. The infinite coupling point is at coupling $f = 1$.

The curve can be conveniently factorized as

$$y^2 = \frac{h}{(1 + p f)^3}\ ux\ v\ (1 + p f)^3\ ux\ v$$ (2.2)

As $f \to 1$, this factorization makes it clear that the curve degenerates to a genus one curve, and it is easy to check that the $!_u = xdx = y$ one-form develops a pair of poles at $x = 1$, whereas $!_v = dx = y$ remains holomorphic. Figure 2b is a representation of this degenerate curve.

This degeneration corresponds to what one expects the curve to be in the weak coupling limit of the right side of (2.1), as we now explain. Recall that mass parameters in $N = 2$
theories transform in the adjoint representation of the associated global flavor symmetry which they break. A rank one theory with a Coulomb branch vev u and a single mass parameter m has an associated rank 1 global flavor symmetry (quotek number”). Its central charge has the form \(Z = ea(u) + ga(u) + nm \), where e and g are the electric and magnetic charges of the low energy \(u(1) \) gauge group, and \(n \) is the quark number. Now in this case we carefully gauging the quark number symmetry so that \(n \) becomes the new electric charge of this gauge group and the mass \(m \) becomes the vev of the associated vector multiplet. Thus the central charge obeys \(\partial Z = 0 \) u and \(\partial Z = 0 \) m for holomorphic one forms \(u_m \) and cycles on the associated genus two curve. This weaker this gauging, the heavier the magnetic monopoles of the quark number \(u(1) \) become, corresponding to a cycle intersecting a vanishing cycle of the degenerating genus two curve, as in the cycle of figure 2b. When the quark number\(\partial Z = 0 \) u and \(\partial Z = 0 \) m for\(n = 1 \) m for\(] = e[] + g[] + n[] \), and therefore that the second one-form, \(!_m \), develops a pair of poles.

Thus, the degeneration of the \(su(3) \) curve when \(f = 1 \) m may be interpreted as follows: v becomes the Coulomb branch vev of a rank 1 SCFT in which u appears as a mass deformation. For \(f \) close to but not equal to 1, u is the vev of a vector multiplet weakly gauging some global symmetry of this rank 1 SCFT.

Further more, the curve of the rank 1 SCFT can be explicitly identified by setting \(u = 0 \) and \(f = 1 \). Then the curve (2.2) and holomorphic one-form become

\[
y^2 = v(2x^3 v); \quad !_v = dx=y \]

Making the change of variables \(x = i\; x, y = 2\; y, v = 2i\; v \), this becomes

\[
y^2 = x^3 u^3; \quad e_{xy} = dx=y \]

which is the curve of the rank 1 \(E_6 \) SCFT, reviewed in appendix B.

Also, the curve of the \(su(2) \) factor which weakly gauges part of the flavor symmetry of the \(E_6 \) SCFT can be extracted by setting \(v = 0 \) (the conformal point of the \(E_6 \) theory) in (2.2),

\[
y^2 = x^2 (x^2 u^3) f x^3; \quad !_u = xdx=y \]

The factor of \(x^2 \) is due to a pinched cycle at \(x = 0 \). Scaling to the remaining genus one curve by defining \(\beta = y = x \) gives the curve

\[
\beta^2 = (x^2 u^3) f x^3; \quad !_u = dx=\beta \]
which is precisely the curve [3] of the scale invariant su(2) N = 2 superQCD. It is weakly coupled at f = 0 and f = 1, these limits being related by the sl(2; Z) S-duality of this theory [2]. In particular, this S duality maps the the curve (2.6) to itself with f = 0 and f = 1, the limits being related by the sl(2; Z) S-duality of this theory [2]. Thus (2.7) implies that near the in finite coupling point, the dual coupling of the su(2) factor goes as q = (1/2) 1/f.

Note that the elements of this duality that the in finite coupling dual involves the su(2) and E6 SCFTs could have been guessed just from the anomalous dimensions of the chiral operators on the Coulomb branch: u and v have dimensions 2 and 3, while the E6 SCFT is the only rank 1 SCFT with vev of dimension 3, and the su(2) SCFT is likewise the unique rank 1 SCFT with vev of dimension 2 [5].

2.2 Global symmetries

The su(3) theory with six massless fundamental hypermultiplets has global symmetry group su(6) \(\times \) u(1) u(2). The u(2)_R R-symmetry is part of the N = 2 superconformal algebra, so it is automatically present in the proposed su(2) product E6 SCFT at the infinite coupling point. We now examine how the su(6) u(1) avors symmetries are realized in the dual theory.

The su(6) symmetry. To be consistent with our proposal that su(3) with 6 fundamental en
ts near infinite coupling is the E6 rank 1 SCFT with the su(2) factor of the maximal su(2) su(6) E6 subgroup weakly gauged, it follows that as the u vev of the su(2) factor is turned on, this maximal subgroup of E6 must break as

\[\text{su(2)} \xrightarrow{\text{su}(6)} \text{u}(1)^3 \text{su}(6): \]

In terms of the eigenvalues \(m_i \) (i = 1; : : : ; 6) and \(m \) of the Cartan subalgebra of the su(6) su(2) maximal subgroup of E6 introduced in Appendix B.1, the breaking (2.8) corresponds to

\[m \xrightarrow{u} m; m_{1,1,5,6} = 0: \]

This can be checked from the low energy effective action as follows. At f = 1, turn on u to get the curve

\[y^2 = (ux + v)(2x^3 - ux - v); \quad \text{d}l = \text{d}x = \text{d}y: \]

Change variables according to the combined su(2; C) transform at ion and rescalings

\[x = \frac{2u^2}{u^3 + 12u^2 + 4u}; \quad y = \frac{115u^2v}{(u^3 + 12u^2 + 4u)^2}; \quad v = 2u; \]

\[\boxed{\text{7}}}
to bring this into the form

\[
\psi^2 = \bar{\psi}^2 - u^4 + \frac{1}{48} u^4 \bar{\psi} + u^4 + \frac{1}{12} u^2 \bar{\psi} u^3 + \frac{1}{864} u^6 \quad ; \quad \bar{\psi} = \frac{d\psi}{\psi} ;
\]

(2.12)

This is a deformed version of the E_6 SCFT curve (2.4). The general mass deformation of the E_6 SCFT is given by (B.2). Comparing to (2.12) gives the E_6 adjoint Casimirs

\[
M_2 = u; \quad M_5 = 0; \quad M_6 = \frac{u^3}{12}; \quad M_8 = \frac{u^4}{48}; \quad M_9 = 0; \quad M_{12} = \frac{u^6}{864} ;
\]

(2.13)

Note that these coefficients are ambiguous only up to the choice of normalization of u. Minahan and Nemeschansky [5] determined the M_n in terms of an explicit basis of E_6 Casimirs. In appendix B.1 we have rewritten these E_6 Casimirs in terms of the Casimirs of the $su(2)$ maximal subgroup. Comparing (2.13) to (B.3), (B.4), and (B.5) to identify how turning on u breaks the E_6 global symmetry. One easily checks that the assignments $m = u = 2$ and $m_1 = 0$, consistent with (2.9), reproduce (2.13).²

A further test of this embedding of the $su(6)$ invariant symmetry in E_6 can be realized by not only turning on the u vev at $f = 1$, but also the fundamental masses m_1 in the $su(3)$ theory. From (A.5) the curve at $f = 1$ is

\[
y^2 = (2u + S_3)x^4 + (2v - \bar{S}_3)x^3 + (u^2 - S_4)x^2 + (2uv + S_5)x + (v^2 + \bar{S}_6) \quad (2.14)
\]

where the S_n are the $su(6)$ Casimirs introduced in the appendix. The finite coupling equivalence implies there should exist a change of variables as in (2.11) to bring this to the form of the mass deformed E_6 SCFT curve (B.2). It is difficult to find this change of variables explicitly, but we can nd evidence that it exists by taking the discriminants of the right sides of (2.14) and (B.2) with respect to x, and comparing. One nds that the two discriminants indeed agree with the identifications

\[
v = 2i\bar{u} + 2iS_3; \quad u = 2\bar{u} + 4\bar{S}_2; \quad S_n = (2i)^n \bar{S}_n ;
\]

(2.15)

²There are a few subtleties in performing this matching. Some algebra shows that (2.13) is actually consistent with three different mass assignments (up to permutations),

(a): $\quad m_1 = \sqrt{u^2}; \quad m_2 = 0; \quad m_3 = 0; \quad m_4 = \sqrt{u^2}; \quad m_5 = 0; \quad m_6 = \sqrt{u^2}; \quad m_7 = 0; \quad m_8 = \sqrt{u^2}; \quad m_9 = 0; \quad m_{10} = \sqrt{u^2}; \quad m_{11} = 0; \quad m_{12} = \sqrt{u^2} \quad (u(1) \quad su(6))$;

(b): $\quad m_1 = \sqrt{u^2}; \quad m_2 = 0; \quad m_3 = \sqrt{u^2}; \quad m_4 = 0; \quad m_5 = 0; \quad m_6 = \sqrt{u^2}; \quad m_7 = 0; \quad m_8 = 0; \quad m_9 = 0; \quad m_{10} = 0; \quad m_{11} = 0; \quad m_{12} = \sqrt{u^2} \quad (u(1) \quad su(6))$;

(c): $\quad m_1 = \sqrt{u^2}; \quad m_2 = 0; \quad m_3 = \sqrt{u^2}; \quad m_4 = 0; \quad m_5 = 0; \quad m_6 = \sqrt{u^2}; \quad m_7 = 0; \quad m_8 = 0; \quad m_9 = 0; \quad m_{10} = 0; \quad m_{11} = 0; \quad m_{12} = \sqrt{u^2} \quad (u(1) \quad su(6))$

where the corresponding adjoint breaking patterns of the $su(2)$ $su(6)$ maximal subgroup of E_6 are shown on the right. The (a) breaking, which manifestly leaves an unbroken $su(6)$ factor, is the one described above. The (b) breaking pattern actually gives the same picture, since it also leaves an $u(1) \quad su(6)$ E_6 unbroken. This is not manifest because the unbroken $su(6)$ does not coincide with the $su(6)$ used for the basis of Casimirs. (There are three inequivalent ways of embedding $su(2)$ $su(6)$ in E_6, related by triality of the E_6 root system. Two of these are related by complex conjugation in E_6, and so give the same adjoint breaking, the (b) pattern; the third is the (a) pattern.) In particular, in the (b) breaking, the unbroken $su(6)$ factor is realized as $su(2) \quad su(4) \quad u(1)$. The (c) breaking pattern is different, and corresponds to adjoint breaking of one $su(3)$ factor in the $su(3) \quad E_6$ maximal subgroup. This does not give the expected global symmetry group of the original $su(3)$ SCFT, but is ruled out by the next check.
which x, in addition to the necessary shifts and rescalings of the $su(3)$ vevs $(u;v)$ relative to the masses and vev of the E_6 curve, a rescaling of the $su(6)$ mass eigenvalues between the two curves by a factor of $2i$. The $2i$ rescaling of the masses agrees with the one-form rescaling $t_0 = (\theta w=\theta u)^i = 2i! \nu$, since the one-form normalization determines that of the masses through (4.2), and since the $su(6)$ is an index one subgroup of E_6.

The $u(1)$ symmetry. The $u(1)$ factor of the flavor group of the $su(3)$ theory on the left side of (2.1) is realized on the right side as the $so(2)$ flavor symmetry rotating the two pseudoreal half-hypers multiplets in the 2 of $su(2)$. So this part of flavor symmetry is realized in terms of weakly coupled degrees of freedom at the infinite coupling point. This is also indicated in the effective action, since the curve (A.5) for the $su(3)$ theory with 6 fundamental hypers multiplets (with the $su(6)$ masses set to zero) is

$$
y^2 = \frac{h}{(x + p)^I M \bar{\beta}_I u(x + p)^I M \bar{\beta}_I \nu f x^6}; \quad (2.16)
$$

from which it is apparent that the $u(1)$ mass deformation vanishes at $f = 1$. This behavior is like that at weak coupling where all the mass deformations vanish, and is in accord with the $u(1)$ flavor symmetry being associated to matter charged only under the $su(2)$ gauge group which is weakly coupled at $f = 1$.

3. Beta functions and central charges

The proposed duality requires the $su(2)$ gauge factor on the right side of (2.1) to be scale invariant. This means that the 2×2 $SCFT_{E_6}$ "matter" must contribute just enough to the beta function for the $su(2)$ gauge coupling f to cancel the contribution from the adjoint $su(2)$ vector multiplet. The contribution from the 2×2 half-hypers multiplets follows from the standard perturbative computation (one-loop exact by a non-renormalization theorem), but the contribution from the rank 1 E_6 SCFT does not, since the E_6 theory is a strongly coupled theory. Thus demanding the vanishing of the beta function allows us to compute the E_6 SCFT contribution.

We do this in section 3.1, where we also relate this beta function contribution to the central charge, k, of the E_6 current algebra. They are related because the beta function is proportional to the 2-point function of the gauge currents, and the gauge currents are linear combinations of the E_6 currents since the $su(2)$ gauge group is a subgroup of the E_6 flavor group of the SCFT. The central charge k is analogous to the current algebra central charge familiar from 2-d CFTs, and is a new exactly computable observable of these 4-d SCFTs.

In section 3.2 we give a different way of using the proposed duality to compute k. In a spirit similar to that of 't Hooft's anomaly matching argument [12], one can weakly gauge the flavor symmetry and compute the contribution to its beta function on both sides of the duality. Since at infinite coupling the $su(6)$ flavor symmetry is also a subgroup of the E_6 SCFT flavor group, the contribution to its beta function also depends on k. The agreement of this calculation with the previous one is a non-trivial check of the duality.
We also apply this weak-gauging argument to the \(u(1) \) flavor symmetry to find evidence that the gauge bosons of the \(su(2) \) dual gauge group are magnetically charged with respect to the original \(su(3) \) gauge group. Finally, we comment on the application of this argument to the \(R \)-symmetries as well.

3.1 Gauge coupling beta function at infinity coupling

The effective gauge coupling is the coefficient of a term quadratic in the gauge fields, so can be computed in a background field formalism by a two point function for the background gauge bosons. The contribution to this correlator from the matter charged under the gauge group is then proportional to the two point function of the conserved current to which the gauge bosons couple. Lorentz and scale invariance and current conservation imply the OPE of currents \(J^a \) for a (simple) symmetry group \(G \) must have the form

\[
J^a(x)J^b(0) = \frac{3k}{4} \frac{ab^c g_{abc}}{x^3} \left[\frac{2x}{x^3} + \frac{2f^{abc}}{x} \right] \zeta(0) + \cdots \quad (3.1)
\]

Here \(k \), the central charge, is defined relative to the normalization of the structure constants \(f^{abc} \) which are in turn defined in this paper by choosing the long roots of the Lie algebra to have length \(\sqrt{\frac{1}{2}} \). The coefficient of the \(f^{abc} \) term has been chosen so that \([Q^a;Q^b] = if^{abc}Q^c \), where \(Q^a = \frac{1}{3!}xJ^a_0 \) is the conserved vector charge, as can be checked by appropriately integrating (3.1). Also the factor of \(3 = 4^4 \) in the central charge term has been chosen to agree with the central charge normalization convention used in [13].

As discussed in appendix D, the central charge for the \(u(n) \) flavor current algebra of free half-hypermultiplets is \(k = 1 \), and the central charge for the half-hypermultiplet currents of a weakly gauged subgroup \(G \) such that \(n = \frac{1}{2} \) under \(G \) is

\[
k_{G_{\text{hyper}}} = T(r_i) \quad (3.2)
\]

where \(T(r_i) \) is the quadratic index normalized as in appendix C. This is just the contribution to the beta function of the gauge coupling of the half-hypermultiplets. Thus, the contribution to the central charge of the gauge current algebra by vector multiplets in a gauge group \(G \) will be

\[
k_{G_{\text{vector}}} = 2T(ad) \quad (3.3)
\]

in this normalization, in order to produce the known beta function, \(2T(ad) + \sum_i T(r_i) \), of the Lagrangian field theory \(G \).

Say an isolated SCFT has flavor symmetry \(H \), and denote the central charge of its flavor current algebra by \(k_H \). Upon weakly gauging a subgroup of this flavor symmetry, \(G \) \(H \), the arguments of appendix D show that the contribution of the \(H \) matter to the gauge current algebra is

\[
k_{G_{\text{matter}}} = I_{G_{\text{matter}}} k_H \quad (3.4)
\]

where \(I_{G_{\text{matter}}} \) is the index of embedding of \(G \) in \(H \), defined in appendix C.
Putting (3.2)(3.4) together, the central charge for the \(G \) gauge current algebra is proportional to the coefficient of the beta function for the gauge coupling in the theory \(G = (\ t_1) \):

\[
\text{SCFT}_H \text{ is } k_G \text{ vector } + k_G \text{ hyper } + k_G \text{ H } = \ \frac{2T(\text{ad}) + \frac{P}{\Pi} T(\tau_1) + I_G \ t_H}{I_G \ t_H}.\]

For a scale-invariant theory the beta function must vanish, giving the central charge of the isolated SCFTavor algebra as

\[
k_H = \frac{2T(\text{ad}) + \frac{P}{\Pi} T(\tau_1)}{I_G \ t_H}; \quad (3.5)
\]

Now apply this to our present example: \(\text{su}(2) = (2 \ 2 \ \text{SCFT}_H^\text{E}_6) \). For \(\text{su}(2) \) in the normalization of appendix \(C \), \(T(3) = 4 \) and \(T(2) = 1 \). Also, for \(\text{su}(2) \) embedded in \(\text{E}_6 \) as the \(\text{su}(2) \) factor of the \(\text{su}(6) \) maximal subalgebra, \(I_{\text{su}(2) \ | \ E_6} = 1 \). Thus we get

\[
k_{E_6} = \frac{2T(3) \ 2T(2)}{I_{\text{su}(2) \ | \ E_6}} = 6; \quad (3.6)
\]

This is a new, exactly computed observable in the strongly-coupled rank 1 \(\text{E}_6 \) SCFT.

3.2 Global symmetry central charges

We can perform a check on this result by comparing the central charges of theavor current algebras at weak and infinite coupling. They should be the same, since the value of the central charge cannot depend on the coupling. One way to see that is as follows. Above we viewed the mass parameters as vevs of the scalar components of background vector multiplets which gauge theavor symmetry of the theory. We can further explore these gauge superfields and consider their one-loop beta function. The beta function for thisavor coupling is, by a non-renormalization theorem, given exactly by its one-loop contribution, which is independent of the value of the (original) gauge coupling. Thus theavor beta function, and therefore the central charge, should be the same at both weak and strong coupling. This is similar to 't Hooft's anomalous matching argument [12], though the comparison here is being made between different values of a marginal coupling instead of between UV and IR scales.

The coupling independence of the central charge can also be seen directly from the structure of representations of the \(N = 2 \) superconformal algebra. (Superconformal algebras and their unitary representations are reviewed, for example, in [14].) Conservedavor currents fall into \(N = 2 \) superconformal multiplets whose primary has scaling dimension \(D = 2, \text{su}(2) \), spin \(I = 1, \text{su}(2) \) \(\text{su}(2) \) Lorentz spins \(j = + = 0 \), and \(u(1) \) charge \(R = 0 \). We denote this primary by \(\text{J}_{ij}^\delta \) where \(a \) labels the generators of theavor symmetry, while the symmetry indices \(ij \) are the su(2) indices. Thus theavor current central charge appears in the \(\text{h}_{ij}^\delta (y) \text{N}^\delta _i (z)i \) correlator.

On the other hand, the marginal gauge coupling \(f \) multiplets a chiral superfield \(f^R \) in the Lagrangian, \(f^R \mathcal{d}^4 \). We see this at weak coupling, where \(= \text{tr}(W^2) \) and \(W \) is the scalar chiral \(N = 2 \) vector multiplet. It strength super field. Since terms in the Lagrangian are superconformally invariant, \(f \) must have \(D = 2, R = 4, \text{and} \ I = j = + = 0 \). Thus, the \(f \)-derivative of theavor current algebra central charge is measured by the three-point

\[
\{ 11 \}
\]
function:
\[
\frac{\Theta_k}{\Theta_f} Z d^4h(x; \, J_{ij}^a(y)J_{k^i}^\beta(z)i:
\]

But in a superconformal theory, the vacuum expectation of a product of superconformal primaries can only be non-zero if the total R-charge of the primaries vanishes. Since $R = 4$ for J^a_{ij}, we conclude that $\Theta_k = \Theta_f = 0$, and therefore that the current central charge is independent of the marginal gauge coupling.

The $\text{su}(6)$ symmetry. We start with the $\text{su}(6)$ avor symmetry of the $\text{su}(3) w = 6$ theory. At weak coupling, the vector multiplets are neutral under the avor symmetry, and the half-hypermultiplets transform as a $(3; 6)$ $(6; 6)$ under the $\text{su}(3) \text{su}(6)$ combined gauge and avor symmetries. Thus the central charge of the avor current is by (D.6)

\[
k_{\text{su}(6)} \text{weak} = 3 \quad T(6) + 3 \quad T(6) = 3 \quad 1 + 3 \quad 1 = 6:
\]

At infinite coupling the $\text{su}(6)$ avor symmetry is realized as the $\text{su}(6)$ factor of the E_6 $\text{su}(2) \text{su}(6)$ maximal subgroup for which $I_{\text{su}(6)} I_{E_6} = 1$, from which it follows by (D.5) that

\[
k_{\text{su}(6)} \text{strong} = I_{\text{su}(6)} I_{E_6} = 6:
\]

The agreement of (3.7) and (3.8) is a non-trivial check on our proposal.

The $\text{su}(1)$ symmetry. At weak coupling, the half-hypermultiplets in the $(3; 6)$ of the $\text{su}(3) \text{su}(6)$ combined gauge and avor symmetries have charge $+1$ under the $\text{su}(1)$ avor group, while those in the $(3; 6)$ have charge 1. (These charge assignments just am account to a choice of the normalization of the avor $\text{su}(1)$ generator.) Thus, if this $\text{su}(1)$ were weakly gauged, the matter multiplets would contribute to the coefficient of its beta function an amount proportional to the $\text{su}(1)$ current algebra central charge

\[
k_{\text{su}(1)} \text{weak} = 3 \quad 6 \quad (\hat{7} \hat{1}) 3 \quad 6 \quad (\hat{7} \hat{1}) 36:
\]

At infinite coupling the $\text{su}(1)$ avor symmetry is realized as the $\text{so}(2)$ rotation symmetry of the two half-hypermultiplets in the 2 of the $\text{su}(2)$ gauge group. Then one 2 has $\text{su}(1)$ charge $+q$ and the other has charge $-q$, but we can’t determine q a priori since we don’t have a direct way of comparing the normalization of the $\text{su}(1)$ generator at infinite coupling and at weak coupling. The E_6 SCFT $\text{\text{matter}}$ is not charged under the $\text{su}(1)$. Upon weakly gauging the $\text{su}(1)$, the contribution to its beta function from the matter multiplets will therefore be

\[
k_{\text{su}(1)} \text{strong} = 2 \quad (+q)^+ 2 \quad (\hat{q}) 4q^2:
\]

Equating (3.9) and (3.10) then implies $q = 3$.

Although this value of the $\text{su}(1)$ avor charge at infinite coupling cannot be used as a consistency check of the duality, it does provide interesting evidence for the identification of the $\text{su}(2)$-doublet half-hypermultiplets at infinite coupling as magnetic monopoles of the weak
coup l i ng su(3) gauge gr oup. For , su(3) m onopol e s whi ch ar e si ngl e t s unde r t he su(6)
avor symmetry also have charge 3 unde r the u(1) avor group. To see this, dress a m onopole
state \(\Psi \) i with the fermionic zero-modes of the 6 hypermultiplets in the 3 \(\rightarrow \) 3 of the su(3)
gauge group. This can be done by going to a point on the Coulomb branch with \(v = 0 \) but \(u \neq 0 \) breaking su(3)! u(1)\(^2\) and leaving one color-component of each hypermultiplet massless. These then contribute 6 massless Dirac fermions, giving 12 real zero-modes, charged under the u(1) coming from the su(2)! u(1) breaking in the dual description. Split these zero modes into 6 creation operators \(c^y_i \) and 6 annihilation operators \(c_i \), and take \(\Psi \) to be the state annihilated by the \(c_i \), so that \(\Psi \) is an su(6) singlet. Note that the \(c^y_i \) carry charge +1 under the u(1) avor symmetry, corresponding to the norm alization we chose above (3.9). The spectrum of monopole states is then given by \(c^y_i \) \(\Psi \) \(M \) \(i \) with \(n = 0; \ldots ; 6 \). If the u(1) charge of \(\Psi \) is \(q \), then these states will have u(1) charges \(n \) \(q \). The two su(6) singlet states, \(\Psi \) and \(c^y_i \) \(\frac{1}{2} \) \(M \) \(\frac{1}{2} \), therefore have charges \(q \) and \(6 \) \(q \). CPT invariance implies these must be opposite, giving \(q = 3 \).

R-symmetry central charges. The central charges for the u(1)\(_h\) and su(2)\(_h\) factors are proportional because their generators are both descendants of a single primary, \(T \). It follows from normalizing them on, say, a free multiplet, as done in appendix D, that \(k_u(1)_h = 8 k_{su(2)_h} \).

\(T \) is the primary of a supermultiplet with \(R = I = j = \frac{1}{4} = 0 \) and \(D = 2 \). The R-symmetry central charges are proportional to the HI T\(\rightarrow \) 2-point function, and their derivation with respect to the marginal gauge coupling is proportional to \(h TT \) where \(h \) is a chiral supermultiplet with \(R = 4 \), and so vanish by the same argument as in the last subsection. The R-symmetry central charges are also independent of the gauge coupling, so are the same at weak and in infinite coupling.

From the u(1)\(_h\) free field central charge normalization given in appendix D, a short calculation gives \(k_u(1)_h \) \(su(3) \) = 136=3 for the weakly coupled su(3) theory.\(^3\) Likewise, the weakly coupled su(2) vectormultiplet and two 2 half-hypermultiplets contribute \(k_u(1)_h \) \(su(2) \) = 32=3. Taking their difference, we deduce that the E\(_6\) SCFT contributes

\[k_u(1)_h \ E_6 = \frac{104}{3} . \]

4. Infinite coupling in sp(2) w/ 12 4

We now quickly run through the same reasoning described in detail in the last two sections to support the equivalence

\[sp(2) \ w = 12 \ 4 = su(2) \ w = SCFT^_E_6 ; \]

(4.1)
of the (rank two) Lagrangian SCFT on the left with the strongly coupled SCFT on the right.

\(^3\)Note that this does not agree with the \(N = 1 \) u(1)\(_h\) central charge, \(\frac{1}{8} \), computed in [13], because the \(N = 1 \) and \(N = 2 \) u(1)\(_h\) charges are not the same, but are related by \(R_{N = 1} = \frac{1}{3} R_{N = 2} = \frac{1}{2} I_3 \).
As reviewed in appendix A.2, the curve for the $\mathfrak{sp}(2)$ theory is

$$y^2 = x \left(1 - \frac{p}{2} \right) x^2 + \frac{i}{\hbar} (1 + \frac{p}{2}) x^2 u x + \frac{i}{\hbar} v x,$$

(4.2)

where u and v are the Coulomb branch vevs of dimension 2 and 4, respectively, and their associated basis of holomorphic one-forms are given in (A.3). The in finite coupling point is at $f = 1$, where the curve degenerates to a genus one curve, and it is easy to check that the !_u = x dx = \text{one-form develops a pair of poles at } x = 1$, whereas !_v = dx = y remains holomorphic. Thus, as in the $su(3)$ example, when $f = 1$, v is the Coulomb branch vev of a rank 1 SCFT in which u appears as a mass deformation, while for $f = 1$, u is the vev of an $su(2)$ vector multiplet weakly gauging some global symmetry of this rank 1 SCFT.

Isolating the curve of the $su(2)$ factor which weakly gauges part of the flavor symmetry of the E_7 SCFT by setting $v = 0$ in (4.2), and scaling to the non-singular genus one curve by defining \(y = x \), gives $y^2 = x \left(\left(\frac{u}{2} \right) x^2 + \left(\frac{v}{2} \right) x^2 \right)$ and $!_u = dx = y$, which are precisely the curve and one-form [15] of the scale invariant $sp(1)$ $N = 2$ super QCD. It is weakly coupled at both $f = 0$ and $f = 1$ by virtue of the $sl(2; \mathbb{Z})$ S-duality of this theory.

Likewise, isolating the curve of the rank 1 SCFT by setting $f = 1$, and making the change of variables

$$x = \frac{(\psi - \frac{1}{2} u^2)^2}{2 \psi (\mathfrak{e} + \frac{1}{2} u^2)}; \quad y = \frac{(\psi - \frac{1}{2} u^2)^2}{2 \psi (\mathfrak{e} + \frac{1}{2} u^2)}; \quad u = 3 \mathfrak{e}; \quad v = \psi = \frac{1}{2} u^2; \quad (4.3)$$

we get

$$y^2 = \frac{r^3}{2 \mathfrak{e}} (2 \mathfrak{e}^3 - \frac{3}{2} \mathfrak{e} u + \frac{1}{2} \mathfrak{e}^2) x^2 + 2 \mathfrak{e}^2 u + 2 \mathfrak{e}^2 v + \frac{1}{2} \mathfrak{e} u^2 - \frac{1}{8} \mathfrak{e}^2; \quad \mathfrak{e} = \frac{dx}{y}; \quad (4.4)$$

When $\mathfrak{e} = 0$, this is the curve of the rank 1 E_7 SCFT, reviewed in appendix B.

With $u \neq 0$, this gives a mass deformation of the E_7 SCFT curve. Comparing to the general mass deformation of the E_7 SCFT (B.7), gives the E_7 adjoint casimirs

$$M_2 = 2u; M_6 = 2u^3; M_8 = 3u^4; M_{10} = 0; M_{12} = \frac{3}{2} u^6; M_{14} = \frac{1}{2} u^7; M_{18} = \frac{1}{8} u^9. \quad (4.5)$$

The M_n are given [5] in terms of the eigenvalues m_i (i = 1, ..., 6) and m of the Cartan subalgebra of the $so(12)$. The $su(2)$ maximal subgroup of E_7 in appendix B 2. A solution of (4.5) is given by $m = \frac{1}{6} u$ and $m_i = 0, showing that the vev breaks $su(2)$ $so(12)$! $\mathfrak{u}(1)$ $so(12)$, thus identifying the $so(12)$ flavor symmetry expected from an $sp(2)$ theory with six massless fundamental multiplets.5

The vanishing of the beta function for the $su(2)$ gauge coupling implies, as argued in section 3, that the central charge of the SCFT flavor current algebra be given by (3.5).

4 The change of variables showing its equivalence to the $su(2)$ form of the curve (2.6) is discussed in [15].

5 As in the footnote in section 2.2, some algebra shows that (4.5) is actually consistent with three different
Applying this to the present example using group theory data from appendix C, we compute the central charge of the E_7 SCFT current algebra to be

$$k_{E_7} = 2 \quad T(3) \cong (21); \quad E_7 = 8 :$$

(4.6)

This can be independently checked by comparing the $so(12)$ avor algebra central charge in the weak coupling and in finite coupling descriptions. At weak coupling the half-hypemultiplets transform as a $(4;12)$ under the $sp(2)$ $so(12)$ combined gauge and avor symmetries. Thus the central charge of the $so(12)$ avor current is by (D.5)

$$k_{so(12)} \text{ weak} = 4 \quad T(12) = 8 :$$

(4.7)

At finite coupling it follows by (D.5) that

$$k_{so(12)} \text{ strong} = I_{so(12)} \cong (2); \quad E_7, k_{E_7} = 8 :$$

(4.8)

The agreement of (4.7) and (4.8) is a non-trivial check of the duality.

Finally, by comparing $u(1)_h$ central charges in the two dual theories, we deduce that the E_7 SCFT contributes

$$k_{u(1)_h} \cong (2); \quad E_7 = k_{u(1)_h} \quad sp(2) \quad k_{u(1)_h} \quad su(2) = \frac{176}{3} = 58 :$$

A cknow ledgments

It is a pleasure to thank A. Buchel, K. Intriligator, R. Plesser, A. Shapere, M. Strassler, E. Witten, and J. Wittig for interesting and helpful discussions on finite coupling singularities, some over many years. pca is supported in part by doe grant doe-fg 02-84-er 40153. Ns is supported in part by doe grant doe-fg 02-90-er 40542.

A. Rank 2 Lagrangian SCFTs

Here we briefly review the systematics of Lagrangians for $N = 2$ superQCD, and then collect from the literature the known curves for the rank 2 scale-invariant superQCDs.

mass assignments (up to permutations),

(a): $m = \frac{p}{6} u; m_{1,2,3,4,5} = 0 ; \quad () \quad su(2) \quad so(12) \quad u(1) \quad so(12);$
(b): $m = m_{1,2,3,4,5} = 0 ; \quad m = m_{6} = \sqrt{36 - 2}; \quad () \quad su(2) \quad so(12) \quad su(2) \quad so(8) \quad su(2) \quad u(1);$
(c): $m = \sqrt{36 - 2} m_{1,2,3,4,5} = \quad m_{6} = \sqrt{36 - 8}; \quad () \quad su(2) \quad so(12) \quad u(1) \quad su(6) \quad su(2);$

where the corresponding adjoint breaking patterns of the $su(2) \quad so(12)$ maximal subgroup of E_7 are shown on the right. The (a) breaking, which manifestly leaves an unbroken $so(12)$ factor, is the one described above. The (b) breaking pattern actually also leaves an $so(12)$ unbroken. This is not manifest because the unbroken $so(12)$ does not coincide with the $so(12)$ used for the basis of Casimirs. The (c) breaking pattern is different, corresponding to adjoint breaking of the $su(3)$ factor in the $su(3) \quad su(6) \quad E_7$ maximal subgroup, and does not give the expected global symmetry group of the original $sp(2)$ SCFT.
Table 1: Rank 2 scale-invariant \(N = 2 \) gauge theories which are not products of two rank 1 theories.

#	Gauge group	Half-hyper multiplets	Flavor symmetry	In finite coupling?
1	\(su(2) \)	2 (2;2)	\(sp(2) \)	no?
2	\(su(2) \)	2 ((2;2) (2;2)) (1;2)	\(sp(1) \) \(so(2) \)	no
3	\(su(3) \)	2 8	\(sp(1) \)	no
4	\(su(3) \)	3 (3,3)	\(u(6) \)	yes
5	\(su(3) \)	3 3 6 6	\(u(1)^2 \)	yes
6	\(sp(2) \)	2 10	\(sp(1) \)	no
7	\(sp(2) \)	12 4	\(so(12) \)	yes
8	\(sp(2) \)	8 4 2 5	\(so(8) \) \(sp(1) \)	no
9	\(sp(2) \)	4 4 4 5	\(so(4) \) \(sp(2) \)	?
10	\(sp(2) \)	6 5	\(sp(3) \)	yes
11	\(G_2 \)	2 14	\(sp(1) \)	no
12	\(G_2 \)	8 7	\(sp(4) \)	yes

A.1 Scale-invariant rank 2 superQCDs.

It is a straightforward group theory exercise to determine all the rank two \(N = 2 \) theories with vanishing beta function. They are listed in table 1, along with their flavor symmetries, and whether or not they have infinite coupling points in their spaces of couplings.

The table does not include the three theories which are products of two decoupled rank 1 scale-invariant gauge theories. These rank 1 theories are the \(su(2) \) theories with either two adjoint or eight fundamental half-hyper multiplets. The first is the \(N = 4 \) \(su(2) \) theory, and both were examined in [2]. Both have an \(sl(2;\mathbb{Z}) \) S-duality group, and so only have weakly coupled limits.

Theories # 1 and # 2 in table 1 have two marginal couplings. Their low energy effective actions were found in [11]. The S-duality group of theory # 2 was determined in [9, 10], and the self-duality of the \(su(2) \) factors were found to eliminate any infinite coupling limits. A similar analysis has not been performed for theory # 1, but it seems probable that it has no infinite coupling limits, for the same reason. Indeed, taking the coupling of one of the \(su(2) \) factors small, the \(sl(2;\mathbb{Z}) \) duality of the other factor eliminates any infinite-coupling limit in its coupling. Continuing this to strong coupling in the first factor then disallows any one-(complex-)dimensional submanifolds of infinite coupling. However, the possibility remains of an isolated infinite coupling point at strong coupling in both factors.

Theories # 3, # 6, and # 11 are \(N = 4 \) theories, all of which are self-dual [1]. (Note that \(sp(2) \) ’ \(so(5) \), so that the \(sp(2) \) theory is actually self-dual.)

The low energy effective action of theory # 8 was determined in [7, 8] and indicates an \(sl(2;\mathbb{Z}) \) duality group with only weakly coupled limits. The low energy effective action of # 9, and whether it has an infinite coupling limit, is not known.
The effective actions of the remaining theories imply that they have in finite coupling limits, as shown for # 4 in [3], # 5 in [16], # 7 and # 10 in [15], and # 12 in [17]. We now describe their effective actions in more detail.

A .2 Rank 2 eective actions

The effective actions on the Coulomb branches of the above-mentioned theories are most conveniently encoded in the associated genus 2 curve. Recall [2] (see, e.g., [17] for a brief review) that the low energy effective action on the Coulomb branch of a theory with rank r gauge group G is an \(N = 2 u(1)^r \) theory, parametrized by the \(r \) vevs of the complex scalars in each \(u(1) \) vector multiplet. Taking \(f(u^k) \) as \(r \) good complex coordinates on the Coulomb branch, the matrix \(I_{ij}(u^k) \) of complex \(u(1)^r \) couplings and the central charge \(Z(u^k) \) of the \(N = 2 \) algebra can be encoded (at least for \(r < 4 \)) by a holomorphic family of genus \(r \) Riemann surfaces \((u^k) \) together with a specified basis \(f! \) of the \(r \) holomorphic one-forms on:

\[
j_{ij} = A_{ik}(B^j_{1k})^k; \quad \frac{\partial Z(\cdot)}{\partial u^k} = !_k;
\]

(A.1)

where \(A_{ik} = \frac{H_i}{!_k}, B^j_{1k} = \frac{H^j}{!_k} \) are a basis of homology one form \(s \) with canonical intersection matrix, and the homology class of the contour is determined by the electric and magnetic charges of the state. Note in particular, that under holomorphic changes of variables on the Coulomb branch \(u^k \), the holomorphic one forms transform as \(!_k \).

Turning on masses \(m_a \) in these theories corresponds to deformations of the Riemann surfaces \((u^k;m_a) \) such that there exists a central charge \(Z \) which depends linearly on the masses with integer coefficients [2]. This means that the second equation in (A.1) can be integrated to \(Z(\cdot) = \int \), where is a meromorphic one-form whose residues are integral linear combinations of the \(m_a \), and which satisfies

\[
\frac{\partial}{\partial u^k} = !_k + df_k;
\]

(A.2)

where \(\text{d} \) are total derivatives on the curve.

Specializing to rank 2, call the two coordinates on the Coulomb branch \(u \) and \(v \). Since all genus 2 Riemann surfaces are hyperelliptic, they can all be described as complex curves in a 2-dimensional projective space of the form \(y^2 = P(x) \) where \(P \) is a fifth- or sixth-order polynomial in \(x \). This realizes the Riemann surface as a 2-sheeted cover of the complex \(x \)-plane (plus the point at infinity) branched at six points (the zeros of \(P \)). \(P \) can vary holomorphically with \(u \) and \(v \), and degenerations of the curve correspond to collisions of the branch points. It is possible, by suitable coordinate changes, to choose the basis of holomorphic one forms to be

\[
!_u = \frac{x \text{d}x}{y}; \quad !_v = \frac{\text{d}x}{y};
\]

(A.3)

We will use such coordinates in what follows.
su(3) w / 6 (3 3) and su(3) w / 3 3 6 6. The curve for the scale-invariant theory with 6 fundamental hypermultiplets is [3, 15]

\[y^2 = (x^3 \ u \ v) \ f x^5 \] \hspace{1cm} (A.4)

where \(f \) is a holomorphic function of the microscopic gauge coupling \(\epsilon \). At weak coupling \(\epsilon \approx 1 \). The curve degenerates whenever the discriminant in \(x \) of its right side vanishes.

For (A.4) the discriminant is \(f^3(1) \) times factors that depend on \(u \) and \(v \) moduli. The vanishing of the moduli-dependent factors determines submanifolds on the Coulomb branch where various dyons become massless. The coupling-dependent prefactor, on the other hand, indicates values of the couplings where there are singularities in the effective action everywhere on the Coulomb branch: the curve becomes singular at \(f = 0 \) and \(f = 1 \), irrespective of the values of the Coulomb branch vevs \(u, v \). The \(f = 0 \) singularity has the interpretation as the weak coupling limit of the su(3) gauge theory, while the \(f = 1 \) singularity is the infinite coupling singularity which is the subject of this paper.

The curve for the scale-invariant theory with one symmetric and one antisymmetric hypermultiplet is also given by (A.4). This can be deduced from [16]. These are nevertheless different theories. In particular they have different global symmetry groups and different mass deformations. This gives an example of distinct scale-invariant theories with the same scale-invariant form, but different mass deformations.

The 6-avor theory has a \(u(1) \) su(6) global avor symmetry group, and therefore a deformation by 6 mass parameters: the \(u(1) \) mass \(M \) of dimension 1, and the five \(S_n \) Casimirs of \(su(6) \), with dimension \(n \), for \(n = 2, \ldots, 6 \). The explicit mass deformations of (A.4) for the 6-avor theory is given in [3, 15]:

\[y^2 = (x + \frac{p}{1} iM)^i \ u(x + \frac{p}{1} iM)^j v \ f x^5 \ S_2x^4 \ S_3x^3 \ S_4x^2 \ S_5x \ S_6 : \] \hspace{1cm} (A.5)

If the \(m_i \) are the eigenvalues of the \(su(6) \) adjoint mass matrix satisfying \(\sum_{i=1}^{p} m_i = 0 \), then the \(S_n \) Casimirs are given by \(S_n = \sum_{i=1}^{p} u_{\dot{n}} m_i \). With this mass dependence of the curve, one can then integrate (A.2) to find and thus a central charge \(Z(u; \nu; M; m_i) \) which depends linearly on the mass eigenvalues with integer coefficients. It is worth emphasizing that the normalization of the masses and the specific basis of the avor symmetry adjoint Casimirs, \(S_n \), that enter into (A.5) are determined by linear integral dependence of the central charge on the masses.

The symmetric plus antisymmetric theory has global avor symmetry \(u(1) \) \(u(1) \) and two mass deformation parameters both of dimension 1. Then mass deformation of (A.4) for the symmetric plus antisymmetric theory is not known, though the deformation of the double-cover curve is given in [16].

\[sp(2) w / 12 4 \] and \(sp(2) w / 6 5 \). The scale-invariant curve is, in either case, [15]

\[y^2 = x(x^2 \ u \ v) \ f x^5 \] \hspace{1cm} (A.6)
and degenerates for all \(u \) and \(v \) whenever the coupling \(f = 0 \) or \(f = 1 \). The \(f = 0 \) singularity is the weak coupling limit of the \(sp(2) \) gauge theory, while the \(f = 1 \) singularity is the new finite coupling limit. \(u \) and \(v \) are Coulomb branch vevs of dimension 2 and 4, respectively. This is another example of the same scale-invariant curve having two inequivalent mass deformations.

The theory with 12 half-hypermultiplets in the 4-dimensional representation has global flavor symmetry group \(so(12) \), and therefore 6 mass parameters with dimensions 2, 4, 6, 8, and 10. This mass deformation of (A.6) is [15]

\[
y^2 = x(x - u)^2 \frac{p}{2} f(x - u) g f(x^5 S_2 x^4 + S_4 x^3 + S_6 x^2 + S_8 x). \tag{A.7}
\]

If \(m_i, i = 1; \ldots ; 6 \) are the eigenvalues of the \(so(12) \) adjoint mass matrix, then the mass parameters appearing in the curve are the Casimirs \(S_{2n} = \sum_{i < j} m_i^2 \), and \(s_6 = \sum_{i} m_i^3 \).

The theory with 6 half-hypermultiplets in the 5-dimensional representation has global flavor symmetry group \(sp(3) \) and 3 mass parameters of dimensions 2, 4, and 6. This mass deformation of (A.6) is also given in [15].

G2 w/8. The curve for the scale-invariant theory is [17]

\[
yv^2 = (x^3 \ uvx \ 2\tilde{\phi}^2 \ f \tilde{\phi}^5; \tag{A.8}
\]

and again has a weak coupling singularity at \(f = 0 \) and an infinite coupling singularity at \(f = 1 \). \(u \) and \(v \) are Coulomb branch vevs of dimension 2 and 6. The global flavor symmetry of this theory is \(sp(4) \), and so the curve should have a 4-parameter mass deformation with masses of dimension 2, 4, 6, and 8; however the explicit form of this deformation is not known.

B. The E6 and E7 rank 1 SCFTs

The curves and one-forms encoding the effective action on the Coulomb branch for the rank 1 \(N = 2 \) SCFTs with \(E_n \) global flavor symmetry groups was first worked out in [5]. Since these are all rank one theories, the curves are elliptic (genus 1 Riemann surfaces) of the form \(y^2 = x^3 + \ldots ; \), and we choose the basis of holomorphic one forms to be \(= dx = \psi \).

B.1 E6

The curve for the scale-invariant \(E_6 \) SCFT (i.e., without mass deformations) is

\[
y^2 = x^3 \psi; \tag{B.1}
\]

The Coulomb branch vev, \(\psi \), has mass dimension 3.

The maximal mass deformation of this curve is

\[
y^2 = x^3 (M_2 \psi^2 + M_5 \psi + M_8) \quad (\psi^2 + M_6 \psi^2 + M_9 \psi + M_{12}); \tag{B.2}
\]
Here we have added all possible terms which deform the complex structure of the curve. Terms proportional to \mathbf{m}^2 do not appear since they can be reabsorbed in a shift in the \mathbf{m} variable. Likewise, an $M_J \mathbf{w}^3$ term does not appear since its deformation is simply a shift in the Coulomb branch $v \mathbf{w}$. The subscripts of the remaining six mass parameters record their mass dimensions. They are the dimensions of the adjoint Casimirs of E_6, hinting that they break an E_6 global symmetry group.

To construct this, one must construct a central charge Z which depends linearly on the E_6 mass eigenvalues with integer coefficients [2]. Calling the six mass eigenvalues of the E_6 mass matrix m_a, $a = 1, \ldots, 6$, then the integers $n^a = \Theta Z () = \Theta m_a$ are the \textit{quark number} charges of the generically unbroken $U(1)^6$ flavor symmetry. Thus one must nd a specific E_6-Weyl-invariant polynomial form for the Casimirs in terms of the eigenvalues, $M_n (m_a)$, such that the second equation in (A.1) can be integrated to $Z() = \ldots$, where \ldots is a commutative operator whose residues are integral linear combinations of the m_a, and satisfying $\Theta = \Theta m_a = ! + \partial \Theta$ where $\partial \Theta$ is a total derivative on the curve. Following a method described in section 17 of [2], this was done for the E_6 curves in [5, 18].

The result of [5] for the E_6 mass deformation is

\[
\begin{align*}
M_2 &= -\frac{1}{3}P_2; & M_5 &= \frac{2}{3}P_5; & M_6 &= \frac{2}{5}P_6; & M_8 &= \frac{7}{10}P_2^2; \quad \text{(B.3)}
\end{align*}
\]

where the P_n are the basis of E_6 Casimirs given by [19]. These Casimirs can be written in terms of the Casimir invariants S_n and T of the su(6) \textit{su}(2) maximal subgroup of E_6 as

\[
\begin{align*}
P_2 &= 6T + 6S_2; & P_5 &= 12T S_3 + 12S_5; \\
P_6 &= 20T^3 + 64T^2 S_2 + 64T S_2^2 + 20S_2^3 + 20T S_4 + 4S_2 S_4 + 24S_6; \\
P_8 &= 15T^4 + 76T^3 S_2 + 112T^2 S_2^2 + 76T S_2^3 + 20S_2^4 + 20T^2 S_4 + 4S_2^2 S_4 + 50S_4^2 S_2 \\
&\quad + 54T S_2 S_4 + 16S_2^2 S_4 + 10S_4^2 + 15S_2 S_5 + 186T S_6 + 66S_2 S_6; \\
P_9 &= 56T^3 S_3 + 140T^2 S_2 S_3 + 56T S_2^2 S_3 + 56T S_3 S_4 + 140T^2 S_5 + 56T S_2 S_5 \\
&\quad + 56S_2^2 S_3 + 28S_2 S_5 + 84S_3 S_6; \\
P_{12} &= T^6 + 22T^5 S_2 + 67T^4 S_2^2 + 72T^3 S_2^3 + 67T^2 S_2^4 + 22T S_2^5 + S_6^6 + 33T^3 S_3^3 \\
&\quad + 72T^2 S_2 S_3^2 + 18T S_2^2 S_3^2 + 12S_2^3 S_3^2 + 3S_4^3 + 28T^4 S_4 + 66T^3 S_2 S_4 \\
&\quad + 118T^2 S_2^2 S_4 + 4S_2^2 S_4^2 + 16S_2 S_4^3 + 50T S_2 S_4^3 + 8S_2 S_2 S_4^3 + 64T^2 S_4^2 \\
&\quad + 58T S_2 S_2 S_4 + 12S_2^2 S_4^2 + 20S_4^3 + 147T S_3 S_5 + 194T S_2 S_3 S_5 + 26S_2^2 S_3 S_5 \\
&\quad + 45S_2 S_4 S_5 + 251T S_5^2 + 19S_2^2 S_5 + 522T^3 S_6 + 342T^2 S_2 S_6 + 58S_2 S_2 S_6 \\
&\quad + 44S_2 S_6 + 87S_2^2 S_6 + 590T S_3 S_6 + 26S_2 S_3 S_6 + 78S_6^2.
\end{align*}
\]

1In [19, 5] the E_6 Casimirs were expressed in terms of a basis of Casimirs of the so(10) $U(1)^6$ maximal subgroup of E_6. For our purposes it is much more convenient to express them in terms of a basis of $su(6)$ $su(2)$ Casimirs. To do that, we followed the method of [19] by computing the character of the 27 of E_6 using the fact that under $su(6)$ $su(2)$ E_6, the 27 decomposes as $27 = (6; 2) \oplus (15; 1)$.

{ 20 }
We have defined the S_n and P Casimir s by

$$S_n = \sum_{i < m} i \cdot m \quad (n = 2; \ldots; 6); \quad P = m^2; \quad (B.5)$$

where m are the mass eigenvalues in the $su(2)$ factor, and m_i for $i = 1; \ldots; 6$ with $P \cdot m_i = 0$ are the mass eigenvalues for the Cartan subalgebra of the $su(6)$ factor. The associated maximal one-form is given in [5], but will not be needed here.

B.2 E_7

The curve for the scale-invariant E_7 SCFT is

$$y^2 = x^3 - 2u^3x; \quad (B.6)$$

The Coulomb branch vev has mass dimension 4. The factor of 2 in x is a normalization (of u) chosen to match to that of [5]. The maximal mass deformation of this curve is

$$y^2 = x^3 - (2u^3 + M_{8u} + M_{12})x \quad (M_{2u}^4 + M_{6u}^3 + M_{10u}^2 + M_{14u} + M_{18}); \quad (B.7)$$

The deformation parameters M_n are adjoint Casimirs of E_7 determined in [5] to be the following expressions in terms of the Casimirs $T_n, T_s, \text{and } U$ of the $so(12) \times su(2)$ maximal subgroup of E_7:

$$
\begin{align*}
M_2 &= P_2; \\
M_6 &= P_6 - \frac{2}{2}P_2P_4; \\
M_8 &= P_8 - \frac{1}{2}P_2^2; \\
M_{10} &= P_{10} + \frac{1}{2}P_4P_6 + \frac{1}{2}P_2P_4^2; \\
M_{12} &= P_{12} + \frac{1}{2}P_4P_8 + \frac{1}{2}P_3P_4^2; \\
M_{14} &= P_{14} + \frac{1}{2}P_4P_{10} + \frac{1}{2}P_2P_6; \\
M_{18} &= P_{18} + \frac{1}{2}P_4P_{14} + \frac{1}{2}P_2P_{10}; \\
\end{align*}
$$

\[(B.8) \]

where

$$
\begin{align*}
P_2 &= U + \frac{4}{3}P_2; \\
P_6 &= \frac{2}{105}P_2^3 + \frac{4}{3}P_2T_4 + \frac{2}{9}T_6; \\
P_8 &= 8U T_2 + \frac{4}{3}P_2T_6 + \frac{2}{3}P_2T_6; \\
P_{10} &= 4UT_2 + \frac{4}{3}P_2T_6 + \frac{2}{9}P_2T_4 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6; \\
P_{12} &= 4UT_2 + \frac{4}{3}P_2T_6 + \frac{2}{3}P_2T_4 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6; \\
P_{14} &= \frac{4}{3}UT_2 + \frac{4}{3}P_2T_6 + \frac{2}{3}P_2T_4 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6; \\
P_{18} &= \frac{4}{3}UT_2 + \frac{4}{3}P_2T_6 + \frac{2}{3}P_2T_4 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6 + \frac{4}{3}T_6; \\
\end{align*}
$$

\[(B.9) \]

\[^7 \text{W} \text{e have shifted our Coulomb branch vev relative to that of [5] to eliminate a } u^3 x \text{ term, and consequently also shifted their } P_n \text{ Casimir s to the } M_n \text{ values shown in } (B.8). \]
Here $\mathfrak{p}_2 = T_2$, U and the T_n, t_6, and U Casimirs are defined by

$$T_{2n} = \prod_{i < j} m_{ij}^{2n} \quad m(n = 1; \ldots; 5); \\
t_6 = \prod_{i} m_i; \\
U = \prod_{i} m_i^2; \quad (B.10)$$

where m are the mass eigenvalues in the $\mathfrak{su}(2)$ factor, and m_i for $i = 1; \ldots; 6$ are the mass eigenvalues for the Cartan subalgebra of the $\mathfrak{so}(12)$ factor.

C. Lie algebra indices

We normalize the inner product on the root space of simple Lie algebras by choosing the long roots to have length $\sqrt{2}$. This is the normalization in which the quadratic index of the n of $\mathfrak{su}(n)$ is $T(n) = 1$.

If under an embedding $\mathfrak{h} \subset \mathfrak{g}$ of Lie algebras, the generators f, g of \mathfrak{g} are related to the generators f^a, g^a of \mathfrak{h} by $f^a = \sum a_{ijk} g^i g^j$, and a representation r of \mathfrak{h} decomposes as m_r under \mathfrak{g}, then the Dynkin index of an embedding of a Lie algebra \mathfrak{g} in \mathfrak{h} is

$$I_{\mathfrak{g}; \mathfrak{h}} = \frac{\dim(\mathfrak{h})}{\dim(\mathfrak{g})} = \frac{T(m_r)}{T(r)}; \quad (C.1)$$

independent of the choice of r.

The examples in the body of the paper all turn out to give Dynkin index 1: From tables, e.g. [20], the 27 of E_6 decomposes as $27 = (2; 6) \times (1; 15)$ under the maximal subalgebra $\mathfrak{su}(2) \subset \mathfrak{su}(6)$. Thus for these embeddings

$$I_{\mathfrak{su}(2); \mathfrak{e}_6} = \frac{6}{T(27)} = \frac{T(2) + 15}{T(27)} = 1; \\
I_{\mathfrak{so}(6); \mathfrak{e}_6} = \frac{2}{T(27)} = \frac{T(6) + 1}{T(27)} = 1; \quad (C.2)$$

Similarly, $56 = (2; 12) \times (1; 32)$ under $E_7 \subset \mathfrak{su}(2) \subset \mathfrak{so}(12)$, giving

$$I_{\mathfrak{su}(2); \mathfrak{e}_7} = \frac{12}{T(56)} = \frac{T(2) + 32}{T(56)} = 1; \\
I_{\mathfrak{so}(12); \mathfrak{e}_7} = \frac{2}{T(56)} = \frac{T(12) + 1}{T(56)} = 1; \quad (C.3)$$

D. Normalization of central charges

From [13], the $u(1)_b(u(1)_f$ current 2-point function for free fields is given by

$$h^{ij}(x)j^{ij}(0)i = \delta_{bf} q^i_b q^j_f + 2 \sum_{x,y} \frac{1}{4} \frac{x^2 g}{x^2} \frac{2x}{x} \quad (D.1)$$

where b runs over complex scalars and f over Weyl fermions, and q^i_b are their charges under the $u(1)_b$ group, namely, $[Q^i; b] = q^i_b b$ and $[Q^i; f] = q^i_f f$. The $u(1)_f$ charges are related to the currents in the usual way by $Q^i = 3/4 q^i_f J^i_f$.

For \(n \) half-hypermultiplets of charges \(q_i^1 = \frac{1}{h}, h = 1; \ldots; n \), so that \(Q^1 \) counts the number of \(i \)th half-hypermultiplets, this then gives

\[
h J^i(0) = \frac{3}{4} x^2 g \frac{1}{4 x^8}; \quad (D.2)
\]

These \(n u(1) \)'s form the Cartan subalgebra of the \(u(n) \) avor symmetry rotating the \(n \) half-hypermultiplets. A basis of the \(n^2 \) Hermitian \(u(n) \) generators in the fundamental are \(Q^{ij} \) and \(Q^{ik} \) with matrix elements \(Q^{ij} = \frac{1}{2} (i \delta^j_3 + \frac{1}{3} j \delta^i_k) \) and \(Q^{ik} = \frac{1}{2} (- \frac{1}{3} k \delta^j_i + \frac{1}{3} j \delta^i_k) \). Thus the \(u(1) \), generator \(Q^1 = Q^{ii} \) (including normalization). Furthermore, it is easy to check that this is an orthogonal basis:

\[
\text{tr}(Q^{ij} Q^{k'}) = (ij)(k') \quad \text{tr}(Q^{ij} Q^{k'}) = 0; \quad \text{tr}(Q^{ij} Q^{k'}) = (ij)k'; \quad (D.3)
\]

where the symmetrized delta symbols are defined as \((ij)(k') = \frac{1}{2} (i \delta^j_3 + \frac{1}{3} j \delta^i_k) \) and \((ij)k' = \frac{1}{2} (- \frac{1}{3} k \delta^j_i + \frac{1}{3} j \delta^i_k) \). The traces (D.3) also show that these generators are normalized as in appendix C. Thus, comparing (3.1) and (D.2) gives the central charge

\[
k_{free} = 1 \quad (D.4)
\]

of the \(u(n) \) avor symmetry of \(n \) free half-hypermultiplets.

Say we have a global symmetry \(H \) with conserved currents \(J^A \) and the current-current OPERA (3.1) has central charge \(k_H \). Consider a simple subalgebra \(G \subset H \). Similar considerations show that the central charge of the \(G \) currents, \(J^A \), are calculated by

\[
k_G = k_H I_G \cdot H; \quad (D.5)
\]

We now compute the contribution of \(n \) half-hypermultiplets to the central charge of a weakly gauged subgroup \(G \subset u(n) \) of the \(u(n) \) (free) avor symmetry. Suppose \(G \) is such that the \(n \) half-hypermultiplets, which form the \(n \) of \(u(n) \), transform as \(n = r_1 \) under \(G \). (D.5), (D.4), and (C.1) then imply

\[
k_G = k_{free} I_G \cdot u(n) = \frac{1}{X} T(r_1) = X T(r_1); \quad (D.6)
\]

This is the expected result: the contribution of half-hypers to the beta function is proportional to the sum of the indices of the representations of the half-hypers.

Finally, we compute the central charges of the \(u(1)_R \subset \mathfrak{su}(2)_R \) symmetry for free half-hypermultiplets and vector multiplets. A free half-hypermultiplet in a scale-invariant \(N = 2 \) gauge theory has a complex scalar with \(R = 0 \) and \((i; j) = (1; 2) \) and a Weyl fermion with \(R = 1 \) and \(I = 0 \), which, together with \((D.1) \) and (3.1), gives \(k_{u(1)_{half \ hyper}} = 2 = 3 \).

A free vector multiplet has an \(R = 2 \), \(I = 0 \) complex scalar, a doublet of \(R = 1 \), \(I = 1 \) Weyl fermions, and an \(R = 0 \), \(I = 0 \) vector, giving \(k_{u(1)_{vector}} = 8 = 3 \). Similarly, \(k_{\mathfrak{su}(2)_{half \ hyper}} = 1 = 12 \), and \(k_{\mathfrak{su}(2)_{vector}} = 1 = 3 \).
References

[1] C. Montonen and D. Olive, Phys. Lett. B 72 (1977) 117.
 P. Goddard, J. Nuyts and D. Olive, Nucl. Phys. B 125 (1977) 1.
 E. Witten and D. Olive, Phys. Lett. B 78 (1978) 97.
 H. Osborn, Phys. Lett. B 83 (1979) 321.

[2] N. Seiberg and E. Witten, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[3] P.C. Argyres, M. R. Plesser and A. D. Shapere, Phys. Rev. Lett. 75 (1995) 1699
 [hep-th/9505100].

[4] P.C. Argyres and A. Buchel, unpublished.

[5] J. Minahan and D. Nemeshansky, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047];
 Nucl. Phys. B 489 (1997) 24 [hep-th/9610076].

[6] N. Seiberg, Phys. Lett. B 388 (1996) 753 [hep-th/9608111].
 O. Ganor, Nucl. Phys. B 488 (1997) 223 [hep-th/9608109].
 O. Ganor and A. Hanany, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120].
 N. Seiberg and E. Witten, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003].
 N. Seiberg, Phys. Lett. B 390 (1997) 169 [hep-th/9609161].

[7] O. Aharony, J. Sonnenschein, S. Yankielowicz and S. Theisen, Nucl. Phys. B 493 (1997) 177
 [hep-th/9611222].

[8] M.R. Douglas, D. Lowe and J. Schwarz, Phys. Lett. B 394 (1997) 297 [hep-th/9612062].

[9] P.C. Argyres, Adv. Theor. Math. Phys. 2 (1998) 293 [hep-th/9706095].

[10] P.C. Argyres and A. Buchel, J. High Energy Phys. 9911 (1999) 014 [hep-th/9910125].

[11] E. Witten, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166].

[12] G. ’t Hooft, ‘Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,”
 in Recent Developments in Gauge Theories, Cargese 1979, eds. G. ’t Hooft et. al. (Plenum, 1990).

[13] E. Barnes, E. Gorbatov, K. Intriligator, M. Sudano and J. W right, Nucl. Phys. B 730 (2005)
 210 [hep-th/0507137].

[14] S.M. Kwalla, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074].

[15] P.C. Argyres and A. D. Shapere, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175].

[16] K. Landsteiner, E. Lopez, and D. Lowe, J. High Energy Phys. 9807 (1998) 011
 [hep-th/9805158].

[17] P.C. Argyres, M. Creem anno, A. D. Shapere and J. Wittig, ‘Class ciation of N = 2
 superconformal field theories with two-dimensional Coulomb branches,” [hep-th/0504070].

[18] M. Noguchi, S. Terashima and S. Yang, Nucl. Phys. B 556 (1999) 115 [hep-th/9903215].

[19] W. Lerche and N. Warner, Nucl. Phys. B 358 (1991) 571.

[20] W. M. Ckay and J. Patara, Tables of Dimensions, Indices, and Branching Rules for
 Representations of Simple Lie Algebras (Marcel Dekker, 1981).

{ 24 {