ผลการพัฒนาระบบการส่งเสริมการใช้ยาด้านจุลชีพอย่างสมเหตุผลต่อความเหมาะสมในการสั่งใช้ยาด้านจุลชีพ

ศุภนา สดากร ภ.ม. (เภสัชกรรมคลินิก)
กลุ่มงานเภสัชกรรม โรงพยาบาลตราด
E-mail: sunida89@hotmail.com

บทคัดย่อ

Antimicrobial Stewardship Program (ASP) คือระบบการส่งเสริมการใช้ยาด้านจุลชีพอย่างเหมาะสม เพื่อป้องกันการเกิดขึ้นของยาต้านจุลชีพที่ไม่ เพราะ คัดลอกมาจากเวชระเบียนและใบประกอบการใช้ยา piperacillin/tazobactam และ meropenem การวิเคราะห์ระบบ ASP พบว่าการใช้ยาในการรักษาndata ของกลุ่มที่มีการใช้ยาอย่างเหมาะสม ที่ทำให้การใช้ยาอย่างเหมาะสม เพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ จากร้อยละ 60.4 เป็นร้อยละ 86.9 (p < .001) การไม่ปรับเปลี่ยนยาตามผลทางสถิติและผลการควบคุมความได้ผล การรักษาดังกล่าวมีผลลดทุกข์ทุ�ำสุขดีต่ำขึ้นจากร้อยละ 19.7 เป็นร้อยละ 4.4 (p = .024) แพทย์มีการปรับเปลี่ยนคำสั่งใช้ยาอย่างมีประสิทธิภาพจากร้อยละ 36.2 เป็นร้อยละ 67.7 (p < .001) ปริมาณการใช้ยาในช่วงก่อนและหลังพัฒนาระบบ ASP ไม่แตกต่างกันทางสถิติ

การพัฒนาระบบ ASP โดยเน้นบทบาทของเภสัชกรในการติดตามการใช้ยาและสะท้อนกลับข้อมูลที่ให้การใช้ยาด้านจุลชีพเพิ่มมากขึ้น โดยเฉพาะการไม่ปรับเปลี่ยนยาด้านจุลชีพตามข้อมูลทางจุลชีววิทยา ดังนั้นควรมีการนำกระบวนการ ASP ตั้งเป้าไปยังการใช้ยาอย่างเหมาะสมในการควบคุม การล่าและการใช้ยาด้านจุลชีพในโรงพยาบาลให้มีความเหมาะสมเพิ่มมากขึ้นต่อไป

คำสำคัญ: ระบบการส่งเสริมการใช้ยาด้านจุลชีพอย่างเหมาะสม ความเหมาะสมในการใช้ยา กลุ่ม

Trat Hospital Publication วันที่เผยแพร่ 12 ธันวาคม 2567
ความเป็นมาและความสำคัญของปัญหา

ปัญหาด้านเชื้อติดเยื่อต้านเจลซิปเป็นปัญหาสาธารณสุขที่สำคัญทั้งระดับโลกและประเทศ จากสถิติปี คท. 2019 พบว่าเชื้อติดเยื่อในศูนย์โรคติดเชื้อของกลุ่มอาการติดเชื้อเป็น 4.95 ล้านคนทั่วโลก (World Health Organization [WHO], 2023) ในแต่ละปีมีค่าเสียชีวิต จากการติดเชื้อต้านเจลซิปพบเพิ่มขึ้นประมาณปีละ 700,000 คน หากปล่อยไว้ไม่ได้รับการแก้ไข คาดการณ์ว่าจะมีผู้เสียชีวิตจากเชื้อติดเยื่อสูงถึง 10 ล้านคนภายในปี คท. 2050 และมีผู้ป่วยสำหรับติดเชื้อต้านเจลซิปมากกว่า 3,500 ล้านคน (Ventola, 2015) สำหรับประเทศไทยจากการศึกษาในปี พท. 2553 โดยใช้ข้อมูลของโรงพยาบาล 1,023 แห่ง พบการติดเชื้อต้านเจลซิปในโรงพยาบาล 87,751 ราย ทำให้ผู้ป่วยติดเชื้อต้านเจลซิปสูงถึง 3.24 ล้านราย และมีผู้ป่วยเสียชีวิตเนื่องจากการติดเชื้อต้านเจลซิปสูงถึง 38,481 ราย ส่งผลกระทบต่อการสูญเสียทางเศรษฐกิจของการใช้ยาต้านจุลชีพเพื่อรักษาการติดเชื้ออย่างในปี 2,539-6,084 ล้านบาท และสูญเสียค่าการผลิตก่อโรคโดยรวมไม่ต่ำกว่า 40,000 ล้านบาท (Phumart et al., 2012) จากข้อมูลของศูนย์เฝ้าระวังเชื้อติดเยื่อต้านเจลซิปแห่งชาติ (National Antimicrobial Resistance Surveillance Center, Thailand [NARST], 2022) พบว่าเชื้อติดเจลซิปที่สำคัญในประเทศไทยเช่น Acinetobacter spp., Pseudomonas aeruginosa (P. aeruginosa) และ Enterobacteriaes ที่ติดต่อ carbapenem เป็นเชื้อที่พบบ่อยในผู้ป่วยในของโรงพยาบาล โดยเฉพาะแต่ชนิดมีการติดเชื้อเพิ่มมากขึ้นทุกปี โดยเฉพาะ Klebsiella pneumoniae (K. pneumoniae) ที่ติดต่ออย่าง imipenem ซึ่งมีแนวโน้มของการติดเชื้อประมาณราวละ 0.7 ในปี คท. 2008 เพิ่มขึ้นเป็นร้อยละ 15.9 ในปี คท. 2022 และ Acinetobacter spp. พบว่าติดต่อ imipenem ร้อยละ 44.5 ในปี คท. 2015 เพิ่มเป็นร้อยละ 75 ในปี คท. 2022 (NARST, 2022)

สาเหตุของเชื้อติดเยื่อเกิดขึ้นได้จากหลายปัจจัย แต่ปัจจัยสำคัญคือการใช้ยาต้านจุลชีพอย่างไม่เหมาะสมและไม่มีการควบคุมความจำเป็น (Ventola, 2015) ที่ปัจจุบันการใช้ยาต้านจุลชีพในทางการรักษา ขาดการใช้ และระยะเวลาการใช้ยา ถ้ามีการใช้ยาต้านจุลชีพมากเกินข้อถกอย่างเพื่อมีขึ้นตามไปด้วย (ประกาศพิทักษ์ยาและทรัพยากร doğalจักรวาล, 2023) การส่งเสริมการใช้ยาต้านจุลชีพอย่างเหมาะสมหรือ Antimicrobial Stewardship Program (ASP) เป็นกระบวนการหนึ่งที่นำมาปฏิบัติเพื่อป้องกันปัญหาเชื้อติดเบื้องต้นจุลชีพ ครอบคลุมทั้งในด้านข้อบังคับใช้ ข้อมูล วิธีการบริหารยา และระยะเวลาการใช้ยา ช่วยส่งเสริมผลการรักษาที่ดี ลดการใช้ยาผิดตามคำสั่งทางการแพทย์ ลดค่าใช้จ่ายและเวลาการเกิดเชื้อติดยา (นักเภสัช ประกาศยา, นุสทร์ สุทธิสัทธิ์, และพันธกานที่ รมว.ศ. ม. 2564; Mahmood, Gillani, Saeed, Vippadapu, & Abdulla Alzabi, 2021) ประกอบด้วยการดำเนินการหลายอย่าง เช่น การจัดการการใช้ยาและการอนุมิต ก่อนการใช้ยา การควบคุมการใช้ยาและการควบคุมยาแลกเปลี่ยน การให้ความรู้แก่บุคลากร การสร้างเกณฑ์มาตรฐานการใช้ยาต้านจุลชีพ การปรับขนาดยาในยาที่มีอยู่ในกองทุนป้าย เป็นต้น (Dellit et al., 2007)

โรงพยาบาลตลาด เป็นโรงพยาบาลชำนิจักรจักรวัฒนา 312 เตียง ไม่มีแพทย์เฉพาะทางประชากรโรคติดเชื้อ กลุ่มงานเภสัชกรรมมีบทบาทหน้าที่ในการนำระบบการ ASP ไปปฏิบัติโดยตรงเพื่อควบคุม และลดการใช้ยาต้านจุลชีฟไม่เหมาะสม ปัญหาการติดเชื้อต้านเจลซิปในโรงพยาบาล 8 รายการ ตามตัวชี้วัดกระทรวงสาธารณสุข เพิ่มขึ้นจากปี 2553 33.33 ในปี พ.ศ. 2562 เป็นร้อยละ 34.30 และ 34.22 ในปี 2563 และ 2564 ตามลำดับ ปริมาณการใช้ยาในรูป Defined Daily Doses (DDD) ต่อ 100 วันนอน ของยาต้านจุลชีฟกลุ่มที่ควบคุมการใช้ยาที่เพิ่มสูงขึ้น เช่น meropenem มีปริมาณการใช้เพิ่มขึ้นจาก 4.56 (DDD/100 วันนอน) ไปที่ พ.ศ. 2562 เป็น 4.82 และ 7.03 ในปี พ.ศ. 2563 และ 2564 piperacillin/tazobactam เพิ่มขึ้นจาก 3.69 ในปี พ.ศ. 2562 เป็น 5.55 และ 6.36 ในปี พ.ศ. 2563 และ 2564 ตามลำดับ กลุ่มงานเภสัชกรรมจึงได้มีการ
พัฒนาระบบ ASP ในปี พ.ศ.2566 เพื่อให้สอดคล้องตามวัตถุประสงค์ของนโยบายการจัดการเชื้อดื้อยาโดยยึดถึงเป้าหมายการ (Antimicrobial resistance, AMR) โดยเน้นกิจกรรมด้านการควบคุมกำกับดูแลการใช้ยาด้านจุลชีพด้วยการพัฒนาระบบการสังเกตการณ์ในการเป็นผู้ติดตามและประเมินการใช้ยาด้านจุลชีพเพื่อให้เกิดการใช้ยาอย่างสมเหตุสมผลมากขึ้น แต่ปรับตามการใช้ยาที่ไม่ถูกต้องและผลของการเกิดการสั่งใช้ยา และจากการสำรวจเบื้องต้นของผู้วิจัยที่ทำการประเมินความเหมาะสมในการสั่งใช้ยาด้านจุลชีพเพื่อลดความดื้อยาของโรงพยาบาลในปี 2563 พยาบาลเผยให้มีการสั่งใช้ยาอีก 6 ชนิด ร้อยละ 73.70 โดยพบว่ามีการใช้ colistin, ertapenem, cefoperazone/sulbactam และ levofloxacin เหมาะสมร้อยละ 90.9, 90.0, 100 และ 92.86 ในขณะที่ meropenem และ piperacillin/tazobactam มีความเหมาะสมเพียงร้อยละ 68.0 และ 51.49 สาเหตุหนึ่งที่พบมีการสั่งใช้ยา meropenem และ piperacillin/tazobactam ไม่มีเหมาะสมเนื่องจากมีการสั่งใช้ยาไม่เป็นไปตามข้อกำหนดแล้วขาดการดำเนินการเพื่อแยกทำไม้ การปรับเปลี่ยนยาด้านจุลชีพตามสภาพแวดล้อมและผลการทดสอบความไวของเชื้อดื้อยา ประกอบกับ meropenem และ piperacillin/tazobactam เป็นยาด้านจุลชีพในกลุ่มควบคุมที่มีการควบคุมและข้อมูลการสั่งใช้ยาสูงเป็นลำดับต้นๆในโรงพยาบาล จึงมีแนวโน้มที่จะพบการใช้ยาในโรงพยาบาลมากกว่าที่ต้องการที่จะคัดเลือกผลการพัฒนาระบบ ASP ให้ใช้ยา meropenem และ piperacillin/tazobactam เพื่อหวังผลในการเพิ่มความเหมาะสมในการสั่งใช้ยาและควบคุมการใช้ยาที่ไม่ถูกต้อง โดยงานวิจัยนี้จะมีผลให้เกิดการทบทวนวิเคราะห์ปัญหาและอาจต่อยอดเพื่อหาแนวทางปฏิบัติในการแก้ปัญหาการเกิดดื้อยาต่อไป

วัตถุประสงค์การวิจัย

1. เพื่อเปรียบเทียบความเหมาะสมในการสั่งใช้ยา piperacillin/tazobactam และ meropenem ในโรงพยาบาลตราด ก่อนและหลังพัฒนาระบบ ASP
2. เพื่อเปรียบเทียบปริมาณการใช้ยา piperacillin/tazobactam และ meropenem ในโรงพยาบาลตราดก่อนและหลังพัฒนาระบบ ASP

สมมติฐานการวิจัย

ภายหลังพัฒนาระบบ ASP การสั่งใช้ยา piperacillin/tazobactam และ meropenem มีความเหมาะสมมากขึ้น และบริหารการใช้ยา piperacillin/tazobactam และ meropenem ในโรงพยาบาลตราดต่อไป

วิธีดำเนินการวิจัย

1. รูปแบบการวิจัย: การวิจัยแบบย้อนหลัง (retrospective cohort study)
2. ประชากรและกลุ่มตัวอย่าง: จากใบประกอบการสั่งใช้ยาของผู้ป่วยที่เข้ารับการรักษาในหอผู้ป่วยอายุรกรรมชาย1 อายุรกรรมชาย3 อายุรกรรมหญิง1 และอายุรกรรมหญิง2 โรงพยาบาลตราด

2.1 เกณฑ์คัดเข้าร่วมการวิจัย

ใบประกอบการสั่งใช้ยาที่มีการสั่งใช้ยา meropenem และ piperacillin/tazobactam ที่ผ่านการประเมินความเหมาะสมของการใช้ยาโดยเภสัชกร

2.2 เกณฑ์คัดออกจากการวิจัย

- การสั่งใช้ยา meropenem และ piperacillin/tazobactam ที่ไม่ได้ผ่านการประเมินความเหมาะสมของการใช้ยาโดยเภสัชกร
- มีระยะเวลาการใช้ยาอย่างน้อย 3 วัน
- ใบประกอบการสั่งใช้ยาที่มาจากหอผู้ป่วยอื่น
- ข้อมูลที่ได้จากการทบทวนข้อมูลไม่เพียงพอในการพิจารณาความเหมาะสม
2.3 การแบ่งกลุ่มตัวอย่าง: แบ่งตามช่วงเวลาที่แตกต่างกันดังนี้
- ช่วงที่ 1: ช่วงก่อนพัฒนาระบบ ASP คือระหว่างวันที่ 1 มกราคม ถึง 31 ตุลาคม 2565
- ช่วงที่ 2: ช่วงหลังพัฒนาระบบ ASP คือระหว่างวันที่ 1 มกราคม ถึง 31 ตุลาคม 2566

2.4 ขนาดกลุ่มตัวอย่าง: จากการศึกษาเบื้องต้นของผู้วิจัยโดยการทบทวนเวชระเบียนผู้ป่วยที่พักยาด้านหน้าที่บ่ายทุกรายในการใช้ยา meropenem และ piperacillin/tazobactam ช่วง 6 เดือนแรกของปี 2563 พบว่า มีการสั่งยาที่เหมาะสมร้อยละ 59.7 ดังนั้นขนาดกลุ่มตัวอย่างที่ใช้ในการประมาณสัดส่วนของใบสั่งยาต้านจุลชีพที่มีความเหมาะสม โดยกำหนดความคลาดเคลื่อนไม่เกินร้อยละ 10 ที่ระดับความเชื่องั่นร้อยละ 95 สามารถคำนวณได้ดังนี้

\[
\frac{n}{\text{group}} = \left(\frac{Z_{0.025}}{\text{pq}} \right)^2 \frac{e^2}{2pq}
\]

เมื่อ \(Z_{0.025} = 1.96\), \(p = 0.597\), \(q = 1-p = 0.403\), \(e = 0.1\)

จากสูตร คำนวนขนาดตัวอย่างได้เท่ากับ 93 ตัวอย่างต่อกลุ่ม ผู้วิจัยกำหนดอัตราสูญหายร้อยละ 30 ดังนั้นจะต้องใช้ใบประกอบการสั่งใช้ยาทั้งหมดอย่างน้อย 121 ใบต่อช่วงเวลา ในการประเมินสัดส่วนใบสั่งยาต้านจุลชีพที่มีความเหมาะสม

การพัฒนาระบบการส่งเสริมการใช้ยาด้านจุลชีพอย่างสมเหตุผล (ตารางที่ 1) ประกอบด้วย 1) การสร้างบทบาทของเภสัชกรในการติดตามดูแลการใช้ยาด้านจุลชีพอย่างใกล้ชิด โดยเภสัชกรจะประเมินการสั่งใช้ยาอย่างครอบคลุมตั้งแต่แรกที่มีการสั่งใช้ และติดตามระยะเวลาการใช้ยา 2) ระบบการประเมินการใช้ยา 3) การรักษาความรู้และความเข้าใจในการใช้ยา และ 4) การสะท้อนข้อมูลกลับ โดยรายงานสถานการณ์ต่อฝ่ายยาและการปัญหาจากการใช้ยาด้านจุลชีพในคณะกรรมการเภสัชกรรมและการบ้าน

ตารางที่ 1 การพัฒนาระบบการส่งเสริมการใช้ยาด้านจุลชีพอย่างสมเหตุผลเปรียบเทียบกับระบบที่มีอยู่เดิม

ระบบที่มีอยู่เดิม	ระบบที่พัฒนาขึ้น
1. เภสัชกรประจำหอผู้ป่วยร่วมตรวจเยี่ยมผู้ป่วยกับแพทย์ดูแลเรื่องการใช้ยาในผู้ป่วยทั่วไปอย่างใกล้ชิด	1.1 เพิ่มบทบาทของเภสัชกรในการติดตามการใช้ยาด้านจุลชีพอย่างสมเหตุผล เภสัชกรประเมินความเหมาะสมของการสั่งใช้ยาด้านจุลชีพตั้งแต่เริ่มใช้ยาจนสิ้นสุดการใช้ยา หากพบความไม่เหมาะสมจะปรึกษาแพทย์ผู้สั่งยา
	1.2 ติดตามและประเมินความเหมาะสมของการใช้ยาหลังทราบผลเพาะเชื้อและผลทดสอบความไวต่อยาด้านจุลชีพ เภสัชกรจะพยายามปรับเปลี่ยนยาตามผลเพาะเชื้อ มีการปรับยาตามผลเพาะเชื้อเพื่อประกอบการใช้ยาต้านจุลชีพที่มีความเหมาะสมอย่างมีระบบ
2. การประเมินการใช้ยาด้านจุลชีพเป็นแบบการทบทวนย้อนหลัง (retrospective) คือเป็นการประเมินจากการสั่งยาในระบบคอมพิวเตอร์เมื่อสิ้นสุดการใช้ยา แล้ว	2.1 การประเมินการสั่งยาด้านจุลชีพเป็นแบบ concurrent คือ การประเมินการใช้ยาสำหรับการรักษา ทำให้เกิดการใช้ยาที่เหมาะสมมากขึ้น
	2.2 เภสัชกรเตรียมความพร้อมของยาให้สำหรับการใช้ยา แล้วเสนอแพทย์เฉพาะทางเพื่อการใช้ยา ทำให้การใช้ยาด้านจุลชีพมีความเหมาะสมมากขึ้น
	2.3 ปรับเกณฑ์ถึงการใช้ยาในผู้ป่วยที่มีการใช้ยาด้านจุลชีพไม่เหมาะสมอย่างมีระบบ
ตารางที่ 1 การพัฒนาระบบการส่งเสริมการใช้ยาต้านจุลชีพอย่างสมเหตุผลเปรียบเทียบกับระบบที่มีอยู่เดิม (ต่อ)

ระบบที่มีอยู่เดิม	ระบบที่พัฒนาขึ้น
3. มีการสร้างความรู้ความเข้าใจในการใช้ยาต้านจุลชีพอย่างสมเหตุผลโดยไม่มีระบบที่ชัดเจน	3.1 การสนับสนุนเทคโนโลยีที่จะช่วยให้มีวิธีการเรื่อง การใช้ยาต้านจุลชีพอย่างสมเหตุผลเพื่อป้องกันการเกิดเชื้อดื้อยา ปีละ 1 ครั้ง รวมถึงนำเสนอปัญหาที่พบจากการใช้ยาต้านจุลชีพที่ไม่เหมาะสม
3.2 จัดให้มีการแลกเปลี่ยนเรียนรู้เรื่องการใช้ยาต้านจุลชีพระหว่างทีม	3.2 จัดให้มีการแลกเปลี่ยนเรียนรู้เรื่องการใช้ยาต้านจุลชีพระหว่างทีม
3.3 มีการสร้างการใช้ยาต้านจุลชีพอย่างสมเหตุผลไปในระดับผู้ป่วย เพื่อคุณภาพที่สูงกว่าเรื่องการใช้ยาต้านจุลชีพ และผลกระทบของการประเมินความเหมาะสมของการใช้ยา	
4. ผลการจัดการรักษา	4. รายงานข้อมูลสถานการณ์เชื้อดื้อยา และเสนอปัญหาการใช้ยาต้านจุลชีพในคณะกรรมการเภสัชกรรมและการป้องกันติดเชื้อ 3 เดือน

3. เครื่องมือที่ใช้ในการวิจัย ได้แก่ 1) ฐานข้อมูลทะเบียนผู้ป่วยจากระบบคอมพิวเตอร์ของโรงพยาบาล 2) แบบเก็บข้อมูลซึ่งประกอบด้วยข้อมูลที่เกี่ยวข้องกับการใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ อายุ เพศ ข้อมูลทางคลินิก ได้แก่ ด้านเทคนิคเชื้อโรค โรคประจำตัว จำนวนวันนอน แพทย์ผู้ดูแล ผลตรวจทางห้องปฏิบัติการ (BUN, creatinine, creatinine clearance, gram stain, microbiology) ยาต้านจุลชีพที่ใช้ ขนานและการรักษา จำนวนวันที่ใช้ยาต้านจุลชีพ การปรับเปลี่ยนการรักษาหลังจากแพทย์ฯ ผลการรักษาเมื่อปัจจุบันการใช้ยา สาเหตุของการใช้ยาไม่เหมาะสม ซึ่งเห็นในสมมติฐานการวิจัยในบัญชีของจังหวัดตราด ตามเอกสารการบริหาร จดทะเบียนในงานวิจัยหมายเลข 012/2567 ลงวันที่ 27 มีนาคม พ.ศ. 2567 3) ในประสบการณ์การใช้ยาต้านจุลชีพ (Drug Use Evaluation; DUE) เป็นเครื่องมือที่ใช้ในการประเมินข้อผิดพลาดและเหตุผลในการใช้ยา ในการศึกษาไม่ใช้เปรียบเทียบกับข้อมูลที่มีอยู่เดิม ได้แก่ piperacillin/tazobactam และ meropenem |

การประเมินความเหมาะสมในการใช้ยา ผู้วิจัยประเมินจากความ соответствииของการใช้ยาต้านจุลชีพ เพื่อกำหนดที่ 1) จำนวนข้อผิดพลาดในปัจจุบัน 2) จำนวนข้อผิดพลาดที่คาดว่าจะเกิดขึ้นในอนาคต ซึ่งพัฒนาจากแนวทางการรักษาของ The Infectious Diseases Society of America 2016 2) จำนวนข้อผิดพลาดที่คาดว่าจะเกิดขึ้นในการใช้ยาในงานวิจัยในปัจจุบัน 3) จำนวนข้อผิดพลาดที่คาดว่าจะเกิดขึ้นในอนาคต ซึ่งพัฒนาจากแนวทางการรักษาของ The Infectious Diseases Society of America 2016 โดยพิจารณาจากมาตรฐานการแพทย์ที่ผู้บังคับบัญชาต้องการว่าเหมาะสม คือ สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลากำหนดการใช้ยาตามแนวทางของ The Infectious Diseases Society of America 2016 3) สามารถใช้ยาต้านจุลชีพต่าง ๆ ได้แก่ การใช้ยาตามความจำเป็นที่มีอยู่ในปัจจุบัน การใช้ยาต้านจุลชีพที่มีอยู่ในระบบโดยการปรับใช้ยาตามข้อบ่งใช้ในงานวิจัย และระยะเวลaga
ไม่สามารถประเมินได้ คือ การสั่งใช้ยาด้านจุลชีพที่เป็นไปตามลักษณะของการสั่งใช้ยาเหมาะสมarcy และแพทย์ไม่ได้มีค่าสั่งหุคการ
ใช้ยาภายใน 2 วันหลังแจ้งผลการเพาะเชื้อ แยกในขั้นตอนการประเมินความแตกต่างของสัดส่วนความ
เหมาะสมในการสั่งใช้ยาไม่พบในประกอบการใช้ยาที่อยู่ในลักษณะไม่สามารถประเมินได้มีการตรวจ เชื่อม
วิเคราะห์ข้อมูลปริมาณการใช้ยาด้านจุลชีพ โดยการคำนวณปริมาณให้อยู่ในหน่วย Define Daily
Dose (DDD) หมายถึง ผลรวมของปริมาณยา piperacillin/tazobactam และ meropenem ที่จำต้องให้แก่
ผู้ป่วยล่าสุดที่ศึกษาในช่วงเวลาที่ศึกษา หรือด้วยปริมาณยาด้านจุลชีพที่แน่นอนใช้ต่อหนึ่งวัน โดยคิดเป็น
จำนวน DDD ของยาด้านจุลชีพที่สั่งใช้ผู้ป่วยต่อ 100 วันนอน มีสูตรคำนวณดังนี้ (WHO, 2024)

$$\text{DDD}/100 \text{วันนอน} = \frac{\text{ปริมาณยาที่ใช้ทั้งหมดในหน่วยวันยืน} \times 100}{\text{DDD} \times จำนวนวันนอน}$$

DDD* คือผลรวมของยาและ dose ในหน่วยเกินกว่าหนึ่ง ในหน่วยเกินดังต่อไป ที่กำหนดโดย WHO ซึ่ง DDD ของยา
piperacillin/tazobactam = 14 g, meropenem = 3 g

คำว่า DDD เป็นปริมาณการใช้ยาผลิตตัวแน่นอนในข้อบังคับสำหรับผู้ป่วยที่เป็นผู้ใหญ่ ไม่ได้บังคับความ
สูงต่ำของเหมาะสมของนักสำหรับการรักษา แต่ไม่ใช่ประโยชน์ในการเปรียบเทียบปริมาณการใช้ยา ข้อตัดสินของการ
คำนวณปริมาณการใช้ในรูป DDD คือ เป็นหน่วยที่บันทึกการใช้ยาในเชิงสถิติ และการเปรียบเทียบ สามารถ
คำนวณได้ง่าย สำหรับข้อจักตอ คือ เนื่องจากเป็นการคำนวณคร่าวๆ ค่าน้ำมันจากข้อมูลประชากร ค่าที่คำนวณ
ได้จึงไม่ใช่ปริมาณการใช้ที่แท้จริง แต่เป็นเพียงคำประมาณ

4. การวิเคราะห์ข้อมูล การวิเคราะห์ข้อมูลเชิงลักษณะ (categorical data) ได้แก่ ที่อยู่ และโรคประจำตัว ตำแหน่งติด
เชื้อ ยาด้านจุลชีพที่ใช้ ผลตรวจทางห้องปฏิบัติการ ความเหมาะสมในการใช้ยา ลักษณะและความ
ไม่เหมาะสมในการสั่งใช้ ผลการรักษา การตอบสนองของแพทย์ ผลการรักษาในรูปจำนวนนับ ร้อยละ
ที่ติดตามความแตกต่างด้วยสถิติ chi square หรือ Fisher’s exact test. ส่วนข้อมูลเชิงคณิตศาสตร์ ได้แก่ อายุ
จำนวนวันนอน ปริมาณการใช้ยาในรูปแบบ DDD/100 รับน้ำ จำนวนวันที่ใช้ยาด้านจุลชีพ แสดงในรูป
ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐาน ทดสอบความแตกต่างด้วยสถิติ independent t-test หรือ Mann
Whitney U test การทดสอบผลการใช้ยาในโปรแกรม SPSS เวอร์ชั่น 18 กำหนดการทดสอบแบบสองทาง
และจะพิจารณาข้อมูลมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ เมื่อค่า p < .05

ผลการวิจัย

จานวนใบสั่งยาจากหอผู้ป่วยอายุการที่ผ่านเกณฑ์คัดเข้ามีจำนวนทั้งหมด 1,177 ใบ จากหูป่วย
จำนวน 1,083 ราย เนื่องจากผู้ป่วย 1 ราย อาจมีการสั่งใช้ยาถูกกว่า 1 ครั้ง กำหนดให้ผู้ป่วยที่ได้รับยาด้าน
จุลชีพต่อเดือน ข้อความถูกต้องค่า 2565 เป็นกลุ่มกลุ่มมีการพัฒนาระบบ ASP จำนวน 513 ราย และผู้ป่วย
ที่ได้รับยาด้านจุลชีพต่อเดือนต่อเดือน ข้อความถูกต้อง 2566 เป็นกลุ่มกลุ่มมีการพัฒนาระบบ ASP จำนวน 570 ราย
จากข้อมูลที่ใช้ของผู้ป่วยตัวแสดงในตารางที่ 2 พบว่าข้อมูลพื้นฐานของผู้ป่วยที่ใช้ส่งผลต่อแต่ละกลุ่มไม่แตกต่างกันใน
จำนวนผู้ป่วย จำนวนวันนอน สัดสวนการเรียกเจ้าหน้าที่ส่งผู้ป่วยที่ส่งกลุ่มในแต่ละกลุ่มที่แตกต่างกันอย่างมีนัยสำคัญ

https://www.trathospital.go.th

Trat Hospital Publication
วันที่เผยแพร่ 12 ธันวาคม 2567
ตารางที่ 2 ข้อมูลทั่วไปของผู้ป่วย

ข้อมูลทั่วไป	จำนวน (ร้อยละ)/M ± SD	จำนวน (ร้อยละ)/M ± SD	P-value
เพศ	ก่อนพัฒนา ASP n = 513	หลังพัฒนา ASP n = 570	
เพศหญิง	222 (43.28)	263 (46.14)	.344*
เพศชาย	291 (56.73)	307 (53.86)	
อายุเฉลี่ย	65.41 ± 17.36	65.35 ± 16.73	.955***
หญิง	191 (37.24)	169 (29.65)	.007*
ชาย	119 (23.20)	146 (25.62)	
อายุเฉลี่ย	10 (1.9)	11 (1.93)	.981*
ผู้ป่วยที่มีภาวะไตวายเฉียบพลัน	65.41 ± 17.36	65.35 ± 16.73	.955***
ผู้ป่วยที่ล้างไตด้วยวิธีฟอกเลือด	107 (20.86)	112 (19.65)	.621*
โรคประจำตัว	7 (1.37)	15 (2.64)	.140*
โรคระบบหัวใจและหลอดเลือด	10 (1.9)	11 (1.93)	.981*
โรคเบาหวาน	16 (3.12)	11 (1.93)	.210*
โรคไตเรื้อรัง	19 (3.71)	26 (4.57)	.480*
โรค,[],	34 (6.63)	28 (4.92)	.225*
อื่นๆ	21 (4.10)	18 (3.16)	.371**
โรคประจำตัว 2 โรค	130 (25.35)	168 (29.48)	.128*
โรคประจำตัว 3 โรค	61 (11.89)	52 (9.13)	.137*
ผู้ป่วยที่มีภาวะไตวายเฉียบพลัน	205 (39.97)	201 (35.27)	.111*
ผู้ป่วยที่มีภาวะไตวายเฉียบพลัน	39 (7.61)	40 (7.02)	.387*

1Pearson Chi-Square test, 2Fisher’s exact test, 3Independent samples t-test
1โรคอื่นๆ ได้แก่ โรคต่อมลูกหมากโต โรคเก๊าท์ โรคมะเร็ง โรคอักเสบ หลอดเลือดสมองตีบ

วิเคราะห์ข้อมูลด้วยวิธีวิเคราะห์ของโรคทั้งหมดที่เกี่ยวข้องกับโรคระบบหัวใจและหลอดเลือดรวมกับโรคเครื่อง โรคระบบหัวใจและหลอดเลือดรวมกับโรคต่อมลูกหมากโต โรคต่อมลูกหมากโตและหลอดเลือดรวมกับโรคเครื่อง โรคต่อมลูกหมากโตและหลอดเลือดรวมกับโรคเครื่อง โรคต่อมลูกหมากโตและหลอดเลือดรวมกับโรคเครื่อง โรคต่อมลูกหมา...
จากข้อมูลทางคลินิกในตารางที่ 3 พบร่วมค่าเฉลี่ยที่พบการติดเชื้อมากที่สุด 3 อันดับแรกของทั้ง 2กลุ่ม คือ ระบบทางเดินหายใจส่วนล่าง ระบบทางเดินปัสสาวะ และติดเชื้อในกระแสเลือด ตามลำดับ เพื่อผลการสั่งใช้ยาส่วนใหญ่เป็นการรักษาการติดเชื้อของผู้ป่วยโดยยังไม่ทราบชนิดและผลความไวของเชื้อต่อยาที่ใช้รักษา (empirical therapy) เป็นสัดส่วนที่ใกล้เคียงในทั้งสองกลุ่ม คือร้อยละ 76.21 และ 74.60 ในกลุ่มก่อนพัฒนาระบบ ASP และสัดส่วนพัฒนาระบบ ASP ตามลำดับ อุปทานทางคลินิกของผู้ป่วยทั้งสองกลุ่มไม่แตกต่างกันในด้านจำนวนใบสั่งยาต้านจุลชีพ ตำแหน่งติดเชื้อ ประเภทการสั่งยา และจำนวนวันที่ใช้ยาเฉลี่ย เมื่อสิ้นสุดการรักษาพบว่าผลการทำรักษาของทั้งสองปีไม่มีความแตกต่างกันอย่างมีนัยสำคัญ แต่แนวโน้มผู้ป่วยที่อาการดีขึ้นมีเพิ่มมากขึ้นภายหลังมีการพัฒนาระบบ ASP

ตารางที่ 3 ชนิดยาต้านจุลชีพที่ใช้ ค่าตัวแปร และผลการรักษา

ตัวแปร	จำนวนใบสั่งยา (ร้อยละ)	P-value
จากผลเพาะเชื้อและผลทดสอบความไวต่อยาต้านจุลชีพ ในตารางที่ 4 พบร่วมค่าเฉลี่ยที่พบการติดเชื้อ E.coli โดยพบเปรียบเทียบ E.coli เพิ่มมากขึ้นในกลุ่มหลังมีการพัฒนาระบบ ASP และมีแนวโน้มไม่สัมพันธ์กับกลุ่ม 3rd generation cephalosporins สูงขึ้นร้อยละ 0.90ในขณะที่สัดส่วนของเชื้อ E.coli ที่ต้องยาดื้อยาในกลุ่ม carbapenems ลดลงร้อยละ 3.58 แต่สัดส่วนตังกล่าไม่แตกต่างกันอย่างมีนัยสำคัญ เชื้อ K.pneumoniae มีแนวโน้มไม่สัมพันธ์กับกลุ่ม 3rd generation cephalosporins และกลุ่ม carbapenems เพิ่มขึ้นร้อยละ 4.43 และร้อยละ 0.37 ตามลำดับ ส่วนเชื้อ P.aeruginosa มีสัดส่วนการติดต่อจากกลุ่ม BLBIs เพิ่มขึ้นร้อยละ 1.04 แต่ไม่สัมพันธ์กับกลุ่ม carbapenems ลดลงร้อยละ 9.63 แต่สัดส่วนตังกล่าไม่แตกต่างกันอย่างมีนัยสำคัญ ในขณะที่เชื้อ A. baumannii พบร่วมสัดส่วนการติดต่อจากกลุ่ม carbapenems ของทั้ง 2กลุ่มไม่แตกต่างกัน		
ตารางที่ 4 ผลเพาะเชื้อและความไวต่อยาด้านจุลชีพ

ผลเพาะเชื้อและความไว	จำนวนใบสั่งยา (ร้อยละ)		
	ก่อนพัฒนา ASP	หลังพัฒนา ASP	P-value

Escherichia coli	94	123		
ตั้งต่อกลายกลุ่ม 3rd Generation cephalosporins	58 (61.71)	77 (62.61)	.892*	
ตั้งต่อกลายกลุ่ม carbapenems	11 (11.71)	10 (8.13)	.378*	
Klebsiella pneumoniae	98	82		
ตั้งต่อกลายกลุ่ม 3rd Generation cephalosporins	59 (60.21)	53 (64.64)	.542*	
ตั้งต่อกลายกลุ่ม carbapenems	8 (8.17)	7 (8.54)	.928*	
Pseudomonas aeruginosa	46	42		
ตั้งต่อกลายกลุ่ม BLBIs	5 (10.87)	5 (11.91)	1.000**	
ตั้งต่อกลายกลุ่ม carbapenems	11 (23.92)	6 (14.29)	.253*	
Acinetobacter baumannii	63	45		
ตั้งต่อกลายกลุ่ม carbapenems	52 (82.54)	37 (82.23)	.779*	
อื่นๆ	40	39		

*Pearson Chi-Square test, **Fisher’s exact test, BLBIs: Betalactam-betalactamase inhibitors

จากใบสั่งยาทั้งหมด 1,177 ใบ พบสัดส่วนใบสั่งยาที่สั่งใช้ยาอย่างเหมาะสมมีเพิ่มขึ้นจากเดิมร้อยละ 43.47 เป็น ร้อยละ 55.99 หลังพัฒนาระบบ ASP (p < .001) และเมื่อวิเคราะห์เฉพาะใบสั่งยาที่สามารถประเมินได้ พบว่าอย่างเป็นไปในทิศทางเดียวกันคือ สัดส่วนใบสั่งยาที่สั่งใช้ยาอย่างเหมาะสมมีมากขึ้นในกลุ่มหลังมีการพัฒนาระบบ ASP จากร้อยละ 60.45 เป็นร้อยละ 86.94 (p < .001) เมื่อพิจารณาสาเหตุของการสั่งใช้ยาไม่เหมาะสมเมื่อสิ้นสุดงานวิจัยพบว่าหลังมีการพัฒนาระบบ ASP มีการสั่งยาที่ไม่เหมาะสมในภาพรวมลดลงจากก่อนมีการพัฒนาระบบ ASP 159 ครั้ง เป็น 52 ครั้ง สาเหตุที่พบว่ามีสัดส่วนมากที่สุดของตั้ง 2 กลุ่ม 3 อันดับแรก คือ การไม่ปรับเปลี่ยนการสั่งใช้ยาตามผลเพาะเชื้อและผลทดสอบความไวต่อยาด้านจุลชีพ การสั่งใช้ยาในข้อบ่งใช้ไม่เหมาะสม และระยะเวลาการใช้ยาไม่เหมาะสม พบว่าการไม่ปรับเปลี่ยนตามผลเพาะเชื้อและผลทดสอบความไวต่อยาด้านจุลชีพและการสั่งใช้ยาด้วยข้อบ่งใช้ที่ไม่เหมาะสม มีสัดส่วนลดลงอยู่ในนัยสำคัญหลังพัฒนาระบบ ASP คือจากร้อยละ 19.68 เป็นร้อยละ 4.37 (p = .024) และร้อยละ 3.94 เป็นร้อยละ 2.43 (p = .013)ตามลำดับ (ตารางที่ 5)

ตารางที่ 5 ความเหมาะสมในการสั่งใช้ยา

ความเหมาะสม	จำนวนใบสั่งยา (ร้อยละ)		
	ก่อนพัฒนา ASP n = 559	หลังพัฒนา ASP n = 618	P-value

ความเหมาะสมในการสั่งใช้ยาทั้ง 3 ด้าน		<.001*	
เหมาะสม	243 (43.47)	346 (55.99)	
ไม่เหมาะสม	159 (28.45)	52 (8.42)	
ไม่สามารถประเมินได้	157 (28.09)	220 (35.60)	
ตารางที่ 6 ปริมาณการใช้ยาในรูป DDD/100 วันนอนเฉลี่ย

ยาต้านจุลชีพน์	ก่อนพัฒนา ASP	หลังพัฒนา ASP	P-value *
Piperacillin/Tazobactam	2.56 ± 0.76	2.82 ± 0.90	.491
Meropenem	1.57 ± 1.21	1.96 ± 0.57	.376

* Independent samples t-test

ในช่วงเวลาที่ศึกษาพบความไม่เหมาะสมในการสั่งใช้ยา 278 ครั้ง ภายนอกพัฒนาระบบ ASP แพทย์มีการปรึกษาแพทย์เพื่อหาความไม่เหมาะสมในการสั่งใช้ยามากขึ้นจาก ร้อยละ 31.87 เป็นร้อยละ 67.71 (p < .001) และแพทย์มีการปรับเปลี่ยนคำสั่งใช้ยาให้เหมาะสมตามคำแนะนำจากเภสัชกรเพิ่มขึ้น จากร้อยละ 36.21 เป็นร้อยละ 67.70 (p < .001) การตอบสนองของแพทย์เพิ่มขึ้นอย่างมีนัยสำคัญ เมื่อเภสัชกรให้คำแนะนำเกี่ยวกับการปรับขนาดยาตามการทำงานของไต และการปรับเปลี่ยนยาตามผลทดสอบเชื้อและผลทดสอบความไม่ด้านลูกชิ้น ได้จากตารางที่ 6 เมื่อพิจารณาปริมาณการใช้ยาในรูปแบบ DDD/100 วันนอน พบว่ายา Piperacillin/tazobactam มีปริมาณการใช้มากกว่า meropenem ทั้งสองปี และเมื่อเปรียบเทียบกับปริมาณการใช้ระหว่างช่วงก่อนและหลังพัฒนาระบบ ASP พบว่าปริมาณการใช้ยา Piperacillin/tazobactam และ meropenem มีแนวโน้มเพิ่มขึ้นภายหลังพัฒนาระบบ ASP แต่ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ในการตอบสนองของแพทย์เพิ่มขึ้นตามการปรึกษาแพทย์และเภสัชกรเพิ่มขึ้น ทำให้แพทย์มีการปรับเปลี่ยนคำสั่งใช้ยาให้เหมาะสมตามคำแนะนำจากเภสัชกร.
ตารางที่ 7 การตอบสนองของแพทย์ต่อคำแนะนำของเภสัชกร

สาเหตุของการใช้ยาไม่เหมาะสม	จำนวนครั้ง (ร้อยละ)	จำนวน	P-value	
	หมู่ ASP	หลัง ASP	n = 182	n = 96
การปรึกษาแพทย์				
มี	58 (31.87)	65 (67.71)		<.001*
ไม่มี	124 (68.14)	31 (32.30)		
การตอบสนองของแพทย์ต่อคำแนะนำของเภสัชกร บ				
เปลี่ยนชนิดยา	21 (36.21)	44 (67.70)		<.001*
เปลี่ยนขนาดยาตามผลพยา_cubeชีเพื่อลดความใช้ยา	0	2 (3.08)		.118**
ปรับระยะเวลาการใช้ยา	6 (10.35)	15 (23.08)		<.001*
ค่าด้านจุลชีพ				
เปลี่ยนชนิดยา	8 (13.80)	9 (13.85)		.099*
ปรับขนาดยาตามการทำงานของโค้ד	7 (12.07)	16 (24.62)		<.001*
ปรับระยะเวลาการใช้ยา	0	2 (3.08)		.118**

*Pearson Chi-Square test, **Fisher’s Exact test

สรุปผลการวิจัย

งานวิจัยนี้ศึกษาผลของการพัฒนาระบบ Antimicrobial Stewardship Program (ASP) ต่อความเหมาะสมในการใช้ยา piperacillin/tazobactam และ meropenem และปริมาณการใช้ยา โดยประเมินความเหมาะสมของการใช้ยาทั้งในด้านช่องทางใช้ยา ขนาดยาที่ใช้และระยะเวลาที่ใช้ยา เปรียบเทียบกันระหว่างช่วงก่อนและหลังมีการพัฒนาระบบ ASP ผลการวิจัยพบความเหมาะสมของการใช้ยาข้างหลังพัฒนาระบบ ASP ร้อยละ 86.94 เพิ่มขึ้นจากช่วงก่อนพัฒนาระบบ ASP ที่พบความสามารถในการใช้ยาอย่างมีความเหมาะสมของยาเพียงร้อยละ 60.45 อย่างมีนัยสำคัญทางสถิติ (p < .001) ส่วนปริมาณการใช้ยาพบว่า ทั้ง piperacillin/tazobactam และ meropenem มีแนวโน้มเพิ่มขึ้น แต่ไม่แตกต่างกันในทางสถิติ

อภิปรายผล

Antimicrobial Stewardship Program (ASP) เป็นกระบวนการหนึ่งที่นำมาใช้เพื่อแก้ไขปัญหาเชื้อต้านยา เนื่องจากเป็นมาตรการสำคัญในการจัดการปัญหาการใช้ยาด้านจุลชีพที่ไม่เหมาะสม (Nathwani et al., 2019) การพัฒนาระบบ ASP ที่นำมาใช้ในการศึกษานี้ประกอบด้วย post prescription review and feedback คือการทบทวนการใช้ยาโดยเน้นการเปรียบเทียบเภสัชกรในการตัดตาม ดูผลการใช้ยาด้านจุลชีพ ชนิดยา พบว่ามีการตรวจเยี่ยมผู้ป่วยที่ hospital ทั้งหมดทุกกรณี การทบทวนการใช้ยาด้านจุลชีพด้วยใบประกอบการใช้ยา การแจ้งเตือนเภสัชกรเมื่อพบผลพยา_cubeชีเพื่อลดเมื่อจะด้วยยา การตรวจสอบความเหมาะสมในการใช้ยาด้านจุลชีพด้วยอุปกรณ์ที่ไม่ระบุการพยา_cubeชีเพื่อป้องกันการใช้ยา มีการควบคุมภัยพิษเพื่อส่งเสริมการใช้ยา หากพบความไม่เหมาะสมในการใช้ยา เพื่อแนวคิดการทำงานรักษาที่เหมาะสมร่วมกัน และ education approaches คือ การจัดอบรมให้ความรู้แก่แพทย์ผู้ใช้ยา การทบทวนความรู้และพูดคุยแลกเปลี่ยนเกี่ยวกับแนวทางการประเมินความเหมาะสมของการใช้ยาด้านจุลชีพระหว่างทีมเภสัชกรที่ประจำห้องผู้ป่วย ซึ่งการศึกษาส่วนใหญ่มีกระบวนการ ASP ในลักษณะเดียวกันนี้ (Fukuda et al., 2021; Nakamura et al., 2021)
ความเหมาะสมในการใช้ยา
จากการศึกษาพบว่าภายหลังพัฒนาระบบ ASP ความเหมาะสมของการสั่งใช้ยาด้านจุลชีพเพิ่มขึ้น.
แสดงว่าการพัฒนาระบบ ASP โดยมีเภสัชกรติดตามการใช้ยาด้านจุลชีพอย่างใกล้ชิด ช่วยให้การสั่งใช้ยาด้านจุลชีพมีความเหมาะสมมากขึ้น ซึ่งเป็นผลจากการดำเนินงานหลายอย่าง แต่กลวิธีที่สำคัญคือ การทบทวนค่าสั่งใช้ยาและให้อภิปรายแบบกลุ่ม (Dellit et al., 2007) การที่เภสัชกรได้ประเมินความเหมาะสมของโป
ประสบการสั่งใช้ยาเก็บรวบรวมข้อมูลเวลานำเสนอไปทางพบการใช้ยาอีกครั้ง เมื่อพบความไม่เหมาะสมจะปรึกษาแพทย์ทันทีเพื่อร่วมกันแนะนำการสั่งใช้ยาที่เหมาะสม ตลอดจนกับเจ้าหน้าที่ มากกว่า อันนับว่าตัวบวก และคณะ (2558) ที่ศึกษาผลของการมีเภสัชกรร่วมในโปรแกรมการเปลี่ยนแปลงและสมาธิการใช้ยาด้านจุลชีพ
ต่อความเหมาะสมในการสั่งใช้ยาด้านจุลชีพและปริมาณการใช้ยา โดยเภสัชกรท้ายสุดที่ประเมินการใช้ยาและ
สะท้อนกลับข้อมูลแก่ทีมแพทย์ ผลการศึกษาพบว่า ช่วงเพิ่มความเหมาะสมในการสั่งใช้ยาเพิ่มมากขึ้นอย่างมี
นัยสำคัญทางสถิติ จากร้อยละ 78.2 เป็นร้อยละ 89.2 (p = .008) และงานวิจัยของนันทยา ประคองสาย และคณะ (2564) ที่พบว่าการดำเนินงาน ASP โดยมีเภสัชกรประเมินความเหมาะสมของการใช้ยาและแจ้ง
ข้อมูลแก่แพทย์ทันทีเพื่อให้การสั่งใช้ยาด้านจุลชีพมีความเหมาะสมมากขึ้น นั่นเองจาก
เภสัชกรที่ร่วมค่าสั่งใช้ยาไม่เหมาะสมช่วยให้การสั่งใช้ยาด้านจุลชีพเพิ่มขึ้นจาก 73 ครั้ง เป็น 198 ครั้ง (p < .001) และแพทย์ปรับเปลี่ยน
ค่าสั่งใช้ยาให้เหมาะสมตามคำแนะนำของเภสัชกรเพิ่มขึ้นจาก 47 ครั้ง เป็น 108 ครั้ง.

ปริมาณการใช้ยา
เมื่อพิจารณาผลของการพัฒนาระบบ ASP ต่อปริมาณการใช้ยา พบว่าไม่ได้ช่วยให้ปริมาณการใช้ยา
ด้านจุลชีพในภาพรวมลดลง ในขณะที่ผลการศึกษาพบว่าการดำเนินงานASP ช่วยลดปริมาณการใช้ยา
ด้านจุลชีพได้ (Mahmood et al., 2021; Nakamura et.al., 2021) ในการศึกษาพบว่าปริมาณการใช้ยา
Piperacillin/tazobactam และ Meropenem มีแนวโน้มเพิ่มขึ้น แต่ไม่มีนัยสำคัญทางสถิติ การที่ปริมาณการใช้ piperacillin/tazobactam มีแนวโน้มเพิ่มขึ้นอาจเนื่องจากในปี 2566 มีจำนวนผู้ป่วยที่ได้รับการ
วินิจฉัยติดเชื้อในโรงพยาบาลเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ จากร้อยละ 66.5 เป็นร้อยละ 86.2 (p<.05) เมื่อมีการชี้แจงแพทย์เกี่ยวกับแนวทางการสั่งใช้ยา piperacillin/tazobactam จำนวนการใช้ยาที่มีแนวโน้มเพิ่มขึ้น แต่ไม่มีนัยสำคัญทางสถิติ อาจเป็นผลมาจากการที่ปริมาณการใช้ยา piperacillin/tazobactam และ K. pneumoniae สูงเมื่อเทียบกับการใช้ยาในกลุ่ม carbapenems ที่มีการใช้ยาแบบ empiric และ specific therapy สำหรับผู้ป่วยที่เสี่ยงต่อการติดเชื้อในโรงพยาบาล ตลอดจนการศึกษาของ นันทยา ประคองสาย และคณะ (2556) ที่พบว่าการสั่งใช้ยา piperacillin/tazobactam แบบคาดการณ์ล่วงหน้า ใน
ผู้ป่วยที่มีการติดเชื้อในระบบบีบ (severe sepsis) เพิ่มขึ้นอย่างมีนัยสำคัญจากร้อยละ 66.5 เป็นร้อยละ 86.2 (p<.05) เมื่อมีการชี้แจงแพทย์เกี่ยวกับแนวทางการสั่งใช้ยา piperacillin/tazobactam จำนวนการใช้
meropenem มีแนวโน้มเพิ่มขึ้น แต่ไม่มีนัยสำคัญทางสถิติ อาจเป็นผลมาจากการที่ฉีดยา E. coli และ K. pneumoniae สายพันธุ์ต่อต้านแก่ P. aeruginosa แต่ยังไวต่อยากลุ่ม carbapenem มีแนวโน้มเพิ่มขึ้น 0.9 และร้อยละ 4.4 ตามลำดับ.
รวมทั้งสัดส่วนการติดเชื้อของกลุ่ม P. aeruginosa ต่อยากลุ่ม BL-B1 เพิ่มขึ้นร้อยละ 1.0 ซึ่งการรักษาผู้ป่วย
ติดเชื้อต่อต้าน P. aeruginosa ทำได้ดีกว่า Piperacillin/tazobactam อาจให้ผลการรักษาที่คล้ายกัน จึงจำเป็นต้องเลือกใช้ยา
meropenem ในการรักษา จึงเป็นสาเหตุให้ปริมาณการใช้ยา meropenem มีแนวโน้มเพิ่มขึ้น.
สาเหตุของการสั่งใช้ยาไม่เหมาะสม

การศึกษาแบ่งสาเหตุของการสั่งใช้ยาไม่เหมาะสมออกเป็น 5 ประเด็น ได้แก่ การสั่งใช้ยาในข้อบังคับใช้ที่ไม่เหมาะสม การไม่ปรับเปลี่ยนคำสั่งใช้ยาตามผลทางการชีวภาพและผลทดสอบความไวต่อต้านจุลชีพ การสั่งยาในขนาดที่ไม่เหมาะสม การไม่ปรับขนาดยาในผู้ป่วยที่การทำงานของไตบกพร่อง และระยะเวลาการใช้ยาไม่เหมาะสม พบว่าเมื่อเทียบกับผลการศึกษา ASP มีผลตัวเลขการสั่งใช้ยาในข้อบังคับใช้ที่ไม่เหมาะสม และการไม่ปรับเปลี่ยนคำสั่งใช้ยาตามผลทางการชีวภาพและผลทดสอบความไวต่อต้านจุลชีพ พบว่าเมื่อเทียบกับผลการศึกษา ASP ที่เป็นร้อยละ 31.87 ในช่วงก่อนพัฒนาระบบ ASP เป็นร้อยละ 67.71 หลังพัฒนาระบบ ASP ที่เป็นซ fullname ข้อบังคับใช้ยาในข้อบังคับใช้ที่ไม่เหมาะสม การไม่ปรับเปลี่ยนคำสั่งใช้ยาตามผลทางการชีวภาพและผลทดสอบความไวต่อต้านจุลชีพ พบว่าเมื่อเทียบกับผลการศึกษา ASP ที่เป็นร้อยละ 31.87 ในช่วงก่อนพัฒนาระบบ ASP เป็นร้อยละ 67.71 หลังพัฒนาระบบ ASP ที่เป็นซ
meropenem ต้องทำการปรับขนาดการใช้ในผู้ป่วยที่มีค่าการทำงานของไตผิดปกติ และผู้ป่วยที่ด้ำงด้วยวิทยาการเลือก หากเกิดอาการว่าขาดการใช้ไม่เหมาะสมก็จะขอเสนอบันทึกเกี่ยวกับแพทย์ผู้สั่งใช้เพื่อร่วมกันหาขนาดยาที่เหมาะสม ในขณะที่การปรับเปลี่ยนตามผลที่พบ เภสัชกรจะคอยติดตามการรายงานเฉพาะเชื้อจากห้องปฏิบัติการ หากพบว่าแพทย์สั่งการปรับเปลี่ยนยาให้เหมาะสมตามผลที่พบเชื้อและผลทดสอบความไวของเชื้อด้วย เภสัชกรจะติดต่แพทย์ในการศึกษากรณีพบผลการเปลี่ยนชิ้นเข็มฉีดยามผิดความไม่เหมาะสมในด้านข้างบังใช้เพียง 2 ครั้ง แต่เมื่อสิ้นสุดการศึกษาพบความไม่เหมาะสมด้านข้างบังใช้ของกลุ่มหลักมีการพัฒนาระบบ ASP น้อยกว่าก่อนการพัฒนาระบบ ASP อย่างมีนัยสำคัญ ที่เป็นเช่นนี้อาจเป็นเพราะแพทย์มีการรับรู้ว่ามีการประเมินความเหมาะสมในการใช้ยาทั้งจากการติดตามของเภสัชกรประจำหอผู้ป่วยและจากการรายงานสถานการณ์ของผู้ป่วยและผลการประเมินการใช้ยาด้านจุลชีพในคณะกรรมการเภสัชกรรมและการประชุมเพื่อความระมัดระวังในการสั่งยาแก่ผู้ป่วย และเห็นใจหากพบการใช้ยาในผู้ที่ไม่มีความเสี่ยงต่อกิจกรรมเชื้อด้วย หรืออาการแสดงทางคลินิกของผู้ป่วยร่วมกับผลตรวจทางห้องปฏิบัติการไม่เป็นไปอย่างถูกต้อง。

ผลความไวของเชื้อด้วยด้านจุลชีพเป็นอีกผลลัพธ์หนึ่งของการดำเนินงาน ASP เพื่อดูอัตราการติดเชื้อด้วยซึ่งการศึกษาพบว่า กระบวนการ ASP ช่วยลดอัตราการติดเชื้อด้วยซึ่งได้ (Jantarathaneewat et al., 2022; Mahmoudi et al., 2020; Yong et al., 2010) แต่ในการศึกษาที่นี้ พบว่าอัตราการติดเชื้อด้วยซึ่งของสองกลุ่มไม่แตกต่างกัน ผลต่อไปในปี 2020 ที่ศึกษาของกรมการพัฒนาระบบ ASP ต่อการป้องกันการติดเชื้อด้วยซึ่ง โดยมีระยะเวลาดำเนินการ ASP 10 เดือน ผลการศึกษาพบว่าปริมาณและมูลค่าการใช้ ceferoperazine/sublactam และ meropenem ลดลง แต่ไม่พบการเปลี่ยนแปลงของอัตราการติดเชื้อด้วยซึ่ง เนื่องด้วยการศึกษานี้ค้นพบว่ามีระยะเวลาในการดำเนินงาน เพียง 10 เดือน จึงอาจยังไม่เพียงพอที่จะเห็นความเปลี่ยนแปลงของอัตราการติดเชื้อด้วยซึ่งในขณะที่การศึกษาอื่น ๆ มีการระยะเวลาการศึกษาไม่น้อยกว่า 1 ปี จึงจะเห็นความเปลี่ยนแปลงของการติดเชื้อด้วยซึ่ง (Mahmoudi et al., 2020; Yong et al., 2010) อีกทั้งการติดเชื้อของเชื้อแบคทีเรียอย่างมีปัจจัยอื่นๆที่เกี่ยวข้อง เช่น นโยบายทางการควบคุมการติดเชื้อของโรงพยาบาล รวมถึงการสนับสนุนด้านจุลชีพเครื่องมือที่จำเป็นและงบประมาณ จึงจะส่งเสริมและสนับสนุนความสำเร็จของงาน ASP ในการป้องกันและลดปัญหาเชื้อด้วยซึ่งได้อย่างมีประสิทธิภาพ ข้อเสนอแนะ

1. การพัฒนาระบบ ASP โดยการติดตามดูแลผู้ป่วยเรื่องการใช้ยาด้านจุลชีพอย่างใกล้ชิด ทำให้การสั่งใช้ยามีความเหมาะสมมากขึ้น ดังนั้นควรนำระบบการ ASP นี้มาประยุกต์ใช้ให้ครอบคลุมทุกห้องผู้ป่วย รวมทั้งการพัฒนาระบบการที่หลากหลายและติดตามประเมินผลอย่างต่อเนื่อง เพื่อเพิ่มประสิทธิภาพในการส่งเสริมการใช้ยาอย่างเหมาะสมและส่งผลในการลดปริมาณการใช้ยาด้านจุลชีพต่อไป

2. การติดตามและประเมินการใช้ยาด้านจุลชีพต้านหลักผู้ป่วย ทำให้เภสัชกรพบผลความไม่เหมาะสมในการใช้ยาและสามารถให้คำแนะนำเพื่อแก้ไขปัญหาได้ทันที ซึ่งจากการศึกษาที่ผ่านมา เภสัชกรได้ค้นพบปัญหาเกี่ยวกับการใช้ยาด้านจุลชีพที่ไม่เหมาะสมมากขึ้น ดังนั้นเภสัชกรที่ดำเนินงาน ASP ควรสำรวจการเกี่ยวกับการใช้ยาด้านจุลชีพที่มีปัจจัยอื่นๆที่เกี่ยวข้อง เช่น นโยบายทางการควบคุมการติดเชื้อของโรงพยาบาล รวมถึงการสนับสนุนด้านจุลชีพเครื่องมือที่จำเป็นและงบประมาณ จึงจะส่งเสริมและสนับสนุนความสำเร็จของงาน ASP ในการป้องกันและลดปัญหาเชื้อด้วยซึ่งได้อย่างมีประสิทธิภาพ ข้อเสนอแนะ

3. ในการศึกษาต่อไปเพื่อผลลัพธ์ด้านอื่น ๆ รวมทั้งด้านการติดเชื้อด้วยซึ่งด้านจุลชีพระบาดการใช้ยา และคำแนะนำในการรักษา เพื่อให้สามารถเห็นผลของการดำเนินงาน ASP ที่หลากหลาย และสามารถนำไปพัฒนาระบบใหม่ที่มีประสิทธิภาพมากขึ้น
เอกสารอ้างอิง
nันทยา ประคองสาย, จันทิมา ศิริคัณทวานนท์, เกศกนก เรืองเดช, และวิทยุต นามศิริพงศ์พันธุ์. (2556). ประสิทธิผลของการประเมินการใช้ยา piperacillin-tazobactam โรงพยาบาลพระปกเกล้า. วารสารศูนย์การศึกษาแพทยศาสตร์คลินิก โรงพยาบาลพระปกเกล้า, 30(1), 6-23.

นันทยา ประคองสาย, นฤพร สุทธิสวัสดิ์, และพันธกานต์ ริมคีรี. (2564). ผลของการเปรียบเทียบความคุ้มภาระการใช้ยาต้านจุลชีพต่อความเหมาะสมของการใช้ยาต้านจุลชีพ. พฤทธชินราชเวชสาร, 38(2), 181-195.

เกษม เวช, และ เวชวิทยา ไชยเจริญ. (2023). ความสัมพันธ์ของปริมาณการใช้ยาปฏิชีวนะที่มีการควบคุมการส่งไปกับความไวของเชื้อดื้อยาต้านจุลชีพในแผนกผู้ป่วยใน โรงพยาบาลกันทรลักษ์. วารสารการพัฒนาการคุ้มครองผู้บริโภคด้านสุขภาพ (online), 3(2), 171-181. สืบค้นจาก https://www.he02.tci-thaijo.org/index.php/JOHCP/article/view/264328

อภิชาติ อนันต์วัฒนกิจ, แสง อุษยาพร, ธีระพงษ์ ตัณฑวิเชียร, ชาญกิจ พุฒิเลอพงศ์, และธิติมา เพ็งสุภาพ. (2558). ผลของการมีเภสัชกรร่วมในโปรแกรมการเปลี่ยนแปลงและขับเคลื่อนการใช้ยาต้านจุลชีพต่อความเหมาะสมในการใช้ยาต้านจุลชีพ. ไทยเภสัชศาสตร์และวิทยาการสุขภาพ, 10, 1-9.

ยุทธชัย จันทภา. (2020). การพัฒนาระบบการส่งเสริมการใช้ยาปฏิชีวนะอย่างสมเหตุผลในการป้องกันการเกิดเชื้อดื้อยาในโรงพยาบาลภูแล. วารสารการแพทย์, 45(2), 154-164.

Dellit, T.H., Owens, R.C., McGowan, J.E. Jr., Gerding, D.N., Weinstein, R.A., Burke, J.P., Huskins, W. C., Paterson, D.L., Fishman, N.O., Carpenter, C.F., Brennan, P.J., Billetter, M., & Hooton, T.M. (2007). Infectious diseases society of America and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clinical Infectious Diseases, 44(2), 159-177.

Fukuda, T., Tanuma, K., Iio, S., Saito, J., Komura, M., Yamatani, A. (2021). Impact of a pharmacist-led antimicrobial stewardship program on the number of days of antimicrobial therapy for uncomplicated gram-negative bacteremia in a community hospital. Cureus, 13(4), e14635. https://doi: 10.7759/cureus.14635.

Jantarathaneewat, K., Montakantikul, P., Weber, D.J., Nanthapisal, S., Rutjanawech, S., & Apisarnthanarak, A. (2022). Impact of an infectious diseases pharmacist-led intervention on antimicrobial stewardship program guideline adherence at a Thai medical center. American Journal of Health System Pharmacy, 15(79), 1266–1272.

Mahmood, R.K., Gillani, S.W., Saeed, M.W., Vippadapu, P., & Abdulla Alzaabi, M.M. (2021). Impact of pharmacist-led services on antimicrobial stewardship programs: a meta-analysis on clinical outcomes. Journal of Pharmaceutical Health Services Research, 12(4), 615-625.

Mahmoudi, L., Sepasian A., Firouzabadi, D., & Akbari, A. (2020). The Impact of an Antibiotic Stewardship Program on the Consumption of Specific Antimicrobials and Their Cost Burden: A Hospital-wide Intervention. Risk Management and Healthcare Policy, 13, 1701-1709.
Nakamura, S., Arima, T., Tashiro, R., Yasumizu, S., Aikou, H., Watanabe, E., Nakashima, T., Nagatomo, Y., Kakimoto, I., & Motoya, T. (2021). Impact of an antimicrobial stewardship in a 126-bed community hospital with close communication between pharmacists working on post-prescription audit, ward pharmacists, and the antimicrobial stewardship team. *Journal of Pharmaceutical Health Care and Sciences, 7*(25), 2-9.

Nathwani, D., Varghese, D., Stephens, J., Ansari, W., Martin, S., & Charbonneau, C. (2019). Value of hospital antimicrobial stewardship program [ASPs]: a systematic review. *Antimicrobial Resistance and Infection Control, 35*(8), 1-13.

National Antimicrobial Resistance Surveillance Center Thailand: NARST [Internet]. 2022 [cited 2024 Mar 23]. Available from http://narst.dmsc.moph.go.th

Phumart, P., Phodha, T., Thamlikitkul, U., Riewpaiboon, A., Prakongsai, P., & Limwattanananon, S. (2012). Health and Economic Impacts of Antimicrobial Resistant Infections in Thailand: A Preliminary Study. *Journal of Health Systems Research, 6*(3), 352-360.

Sadyrbaeva-Dolgova, S., Aznarte-Padial, P., Jimenez-Morales, A., Exposito-Ruiz, M., Calleja-Hernandez, M.A., & Hidalgo-Tenorio, C. (2020). Pharmacist recommendations for carbapenem de-escalation in urinary tract infection within an antimicrobial stewardship program. *Journal of Infection Public Health, 13*(4), 558-563.

Usayaporn, S., Tantawichien, T., & Montakantikul, P. (2023). The impact of antimicrobial stewardship on appropriate use of antimicrobial agents for nosocomial infections caused by gram-negative bacilli in a university hospital in Thailand. *Pharmaceutical Sciences Asia, 50*(4), 289-295. https://doi:10.29090/psa.2023.04.23.664

Ventola, C.L. (2015). The Antibiotic Resistance Crisis. Part 1: Causes and Threats. *Pharmacy and Therapeutics, 40*(4), 277-283.

World Health Organization. (2023). Antimicrobial resistance. https://www.who.int/newsroom/fact-sheets/detail/antimicrobial-resistance

World Health Organization. (2024). Defined daily dose (DDD). https://www.who.int/tools/atc-ddd-toolkit/about-ddd

Yong, M.K., Buisng, K.L., Cheng, A.C., & Thursky, K.A. (2010). Improved susceptibility of Gram-negative bacteria in an intensive care unit following implementation of a computerized antibiotic decision support system. *Journal of Antimicrobial Chemotherapy, 65*(5), 1062-1069.