The structure of graphs with forbidden C_4, $\overline{C_4}$, C_5, chair and co-chair

Salman GHAZAL

1

Abstract
We find the structure of graphs that have no C_4, $\overline{C_4}$, C_5, chair and co-chair as induced subgraphs.

1 Introduction
In this paper, graphs are finite and simple. The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. Two edges of a graph G are said to be adjacent if they have a common endpoint and two vertices x and y are said to be adjacent if xy is an edge of G. The neighborhood of a vertex v in a graph G, denoted by $N_G(v)$, is the set of all vertices adjacent to v and its degree is $d_G(v) = |N_G(v)|$. We omit the subscript if the graph is clear from the context. For two set of vertices U and W of a graph G, let $E[U,W]$ denote the set of all edges in the graph G that joins a vertex in U to a vertex in W. A graph is empty if it has no edges. For $A \subseteq V(G)$, $G[A]$ denotes the sub-graph of G induced by A. If $G[A]$ is an empty graph, then A is called a stable. While, if $G[A]$ is a complete graph, then A is called a clique set, that is any two distinct vertices in A are adjacent. The complement graph of G is denoted by \overline{G} and defined as follows: $V(G) = V(\overline{G})$ and $xy \in E(\overline{G})$ if and only if $xy \notin E(G)$.

A graph H is called forbidden subgraph of G if H is not (isomorphic to) an induced subgraph of G.

A cycle on n vertices is denoted by $C_n = v_1v_2...v_nv_1$ while a path on n vertices is denoted by $P_n = v_1v_2...v_n$. A chair is any graph on 5 distinct vertices x,y,z,t,v with exactly 5 edges xy,yz,zt and zv. The co-chair or $\overline{\text{chair}}$ is the complement of a chair (see the below figure).

1Department of Mathematics, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon.
E-mail: salmanghazal@hotmail.com
Many graphs encountered in the study of graph theory are characterized by configurations or subgraphs they contain. However, there are occasions where it is easier to characterize graphs by sub-graphs or induced sub-graphs they do not contain. For example, trees are the connected graph without (induced) cycles. Bipartite graphs are those without (induced) odd cycles ([5]). Split graphs are those without induced C_4, \overline{C}_4 and C_5. Line graphs are characterized by the absence of only nine particular graphs as induced sub-graph (see [4]). Perfect graphs are characterized by C_{2n+1} and \overline{C}_{2n+1} being forbidden, for all $n \geq 2$ (see [3]). The purpose of this paper is to find the structure of graphs such that C_4, \overline{C}_4, C_5, chair and co-chair are forbidden subgraphs.

2 Preliminary Definitions and Theorems

Definition 1. A graph G is called a split graph if its vertex set is the disjoint union of a stable set S and a clique set K. In this case, G is called an $\{S, K\}$-split graph.

If G is an $\{S, K\}$-split graph and $\forall s \in S$, $\forall x \in K$ we have $sx \in E(G)$, then G is called a complete split graph.

If G is an $\{S, K\}$-split graph and $E[S, K]$ forms a perfect matching of G, then G is called a perfect split graph.

Theorem 1. (Földes and Hammer [1]) G is a split graph if and only if C_4, \overline{C}_4 and C_5 are forbidden subgraphs of G.

Definition 2. ([2]) A threshold graph G can be defined as follows:

1) $V(G) = \bigcup_{i=1}^{n+1} (X_i \cup A_{i-1})$, where the A_i’s and X_i’s are pair-wisely disjoint sets.

2) $K := \bigcup_{i=1}^{n+1} X_i$ is a clique and the X_i’s are nonempty, except possibly X_{n+1}.
3) $S := \bigcup_{i=0}^{n} A_i$ is a stable set and the A_i's are nonempty, except possibly A_0.

4) $\forall 1 \leq j \leq i \leq n, G[A_i \cup X_j]$ is a complete split graph.

5) The only edges of G are the edges of the subgraphs mentioned above.

In this case, G is called an $\{S, K\}$-threshold graph.

Theorem 2. (Hammer and Chvátal [2]) G is a threshold graph if and only if C_4, $\overline{C_4}$ and P_4 are forbidden subgraphs of G.

3 Main Results

Lemma 1. Suppose that C_4, $\overline{C_4}$, C_5, chair and co-chair are forbidden subgraphs of G. If the path $mbb'm'$ is an induced subgraph of G, then:

\[
N(m) - \{b\} = N(m') - \{b'\}
\]

and

\[
N(b) - \{m\} = N(b') - \{m'\}.
\]

Proof. Since C_4, $\overline{C_4}$ and C_5 are forbidden, then G is an $\{S, K\}$-split graph for some stable set S and a clique set K. Since $mbb'm'$ is an induced subgraph of G, then $m, m' \in S$ and $b, b' \in K$.

Assume that there is $x \in N(m) - \{b\}$ but $x \notin N(m') - \{b'\}$. Since xm is an edge of G and S is stable, then we must have $x \in K$. But K is a clique, then x is adjacent to b and b'. Thus $G[\{x, m, b, b', m'\}]$ is a co-chair. Contradiction. So $N(m) - \{b\} \subseteq N(m') - \{b'\}$. By symmetry, $N(m') - \{b'\} \subseteq N(m) - \{b\}$. Thus $N(m) - \{b\} = N(m') - \{b'\}$.

Assume that there is $x \in N(b) - \{m\}$ but $x \notin N(b') - \{m'\}$. Suppose that $x \in S$. Then $G[\{x, m, b, b', m'\}]$ is a chair. Contradiction. Thus $x \in K$. But K is a clique. Whence $x \in N(b')\{m'\}$. Thus $N(b) - \{m\} \subseteq N(b') - \{m'\}$. By symmetry, $N(b') - \{m'\} \subseteq N(b) - \{m\}$. Therefore $N(b) - \{m\} = N(b') - \{m'\}$.

\[\square\]

Proposition 1. If P_4 is a forbidden subgraph of an $\{S, K\}$-split graph G, then G is an $\{S, K\}$-threshold graph.

Proof. We prove this by induction on the number of vertices of G. This is clearly true for small graphs. Suppose that P_4 is a forbidden subgraph of an $\{S, K\}$-split graph G. It is clear that G is a threshold graph. We have to prove that G is a $\{S, K\}$-threshold graph. Let $x \in K$ be a vertex with minimum degree in G, that is $d_G(x) = \min\{d_G(y); y \in K\}$ and $G' := G - x$ be the graph induced by the vertices of G except x (If $K = \phi$, then the statement is true).

Then P_4 is a forbidden subgraph of the $\{S, K - \{x\}\}$-split graph G'. By the induction hypothesis, G' is an $\{S, K - \{x\}\}$-threshold graph. We follow the notations in Definition 2. Assume that $\exists a \in S - A_n$ such that $ax \in E(G)$. Let $x_n \in X_n$. Since $d(x_n) \geq d(x)$, then there is $a_n \in A_n$ such that $a_nx_n \in E(G)$ but $a_nx \notin E(G)$. Then $ax_nx_n a_n$ is an induced P_4 in G. Contradiction. Thus we
may suppose that $N(x) \cap S \subseteq A_1$. If $N(x) \cap A_n = \emptyset$, then we add x to X_{n+1}. If $N(x) \cap A_n = A_n$, then we add x_n to X_n. Otherwise $\emptyset \subseteq N(x) \cap A_n \subseteq A_n$. In this case we do the following: remove from A_n the element of $N(x) \cap A_n$, remove the elements of X_{n+1} to the new set X_{n+2} and add x to X_{n+1} (so that the new $X_{n+1} = \{x\}$). Then G is $\{S, K\}$-threshold graph.

Definition 3. A graph G is called a comb if:

1) $V(G)$ is disjoint union of sets $A_0, ..., A_n, M_1, ..., M_l, X_1, ..., X_{n+1}, Y_2, ..., Y_{l+2}$. Let $Y_1 = X_1$ (These sets are called the sets of the comb G).

2) $S := A \cup M$ is a stable set, where $M = \bigcup_{i=1}^{l} M_i$ and $A = \bigcup_{i=0}^{n} A_i$.

3) $K := X \cup Y$ is a clique, where $X = \bigcup_{i=1}^{n+1} X_i$ and $Y = \bigcup_{i=1}^{l+2} Y_i$.

4) $\forall 1 \leq j \leq i \leq n$, $G[A_i \cup X_j]$ is a complete split graph.

5) $G[A \cup Y]$ is a complete split graph.

6) $\forall 1 \leq i \leq l$, $G[Y_i \cup M_i]$ is a perfect split graph.

7) $\forall 1 \leq i < j \leq l$, $G[Y_i \cup M_i]$ is a complete split graph.

8) $\exists 1 \leq k_0 \leq l$, $\forall i \leq k_0$, $G[Y_i + M_i]$ is a complete split graph.

9) $X_{n+1}, Y_{l+2}, Y_{l+1}, M_l$ and A_0 are the only possibly empty sets.

10) The only edges of G are the edges of the subgraphs mentioned above.

In this case, we say that G is an $\{S, K\}$-comb.

Lemma 2. Every $\{S, K\}$-threshold graph is an $\{S, K\}$-comb.

Proof. Let G be an $\{S, K\}$-threshold graph defined as in Definition 2. Following the notations in Definition 3, we take $l = 1$ and $M_1 = Y_{l+1} = Y_{l+2} = \emptyset$. This shows that G is an $\{S, K\}$-comb.

Theorem 3. If chair and co-chair are forbidden subgraphs of an $\{S, K\}$-split graph G, then G is an $\{S, K\}$-comb.

Proof. We prove the statement by induction on the number of vertices. The statement is true for small graphs. Suppose that chair and co-chair are forbidden subgraphs of an $\{S, K\}$-split graph G. If P_4 is also a forbidden subgraph of G, then G is an $\{S, K\}$-threshold graph, and hence, G is an $\{S, K\}$-comb. So we may suppose that G contains an induced path $abba'$. Then $N(a) - \{b\} = N(a') - \{b'\}$ and $N(b) - \{a\} = N(b') - \{a'\}$. Let $S' = S - a', K' = K - b'$ and $G' = G[S' \cup K']$. Then chair and co-chair are forbidden subgraphs of the $\{S', K'\}$-split graph G'. Then G' is an $\{S', K'\}$-comb with $S' = A \cup M$ and $K' = X \cup Y$ (we follow the notations as in Definition 3).
If \(a \in S' \) and \(b \in K' \), then we add \(a' \) to the set of the comb \(G' \) that contains \(a \) and \(b' \) to the set of the comb \(G' \) that contains \(b \). Thus \(G \) is \(\{ S, K \} \)-comb.

Otherwise, \(a \in K \) while \(b \in S \). First we suppose that \(n \geq 1 \). Then there is \(x \in A_1 \) because \(A_1 \neq \phi \). We have the following cases:

- case 1: assume that \(a \in Y \) and \(b \in M \). Then \(xabb'a'x \) is an induced \(C_5 \) in \(G \). Contradiction.

- case 2: assume that \(a \in X_i \) and \(b \in A_j \). Then by definition of comb, we have \(i \leq j \). Then \(xabb'a'x \) is an induced \(C_5 \) in \(G \). Contradiction. So \(i = j \). Assume that there is \(y \in \bigcup_{t=1}^n A_t - \{ b \} \). Then \(yaba'b'y \) is an induced \(C_5 \) in \(G \). Contradiction. Thus we must have \(i = n \) and \(A_i = A_n = \{ b \} \). Assume that there is \(y \in X_{n+1} \). Then \(yaba'b'y \) is an induced \(C_5 \) in \(G \). Contradiction. Thus we must have \(X_{n+1} = \phi \). In this case, we do the following: remove \(a \) from \(X_n \) and add it to \(A_n \), remove \(b \) from \(A_n \) and add it to \(X_n \), add \(b' \) to \(X_{n+1} \), create \(A_{n+1} = \{ a' \} \) and \(X_{n+2} = \phi \). Thus \(G \) is an \(\{ S, K \} \)-comb.

- case 3: assume that \(a \in X_i \) and \(b \in M_j \). Then by the definition of a comb, we must have \(i = 1 = j \). But this is already discussed in case 1, because \(X_1 = Y_1 \).

- case 4: Assume that \(a \in Y_i \) and \(b \in A_j \). The case when \(i = 1 \) is already discussed in case 2. So we may assume that \(i > 1 \). Let \(y \in M_1 \). Then \(yaba'b'y \) is an induced \(C_5 \) in \(G \). Contradiction.

Second, suppose that \(n = 0 \). That is \(A = A_0 \) and so there is no \(A_1 \) and no \(X_2 \). We have the following cases:

- case 1: Assume that \(a \in Y_1 \) and \(b \in M_1 \). If \(i > 1 \) or \(Y_i \neq \{ b \} \), then there is \(c \in \bigcup_{t=1}^i A_t - \{ a \} \). Then \(cabb'a'c \) is an induced \(C_5 \) in \(G \). Contradiction. Thus \(i = 1 \) and \(Y_1 = \{ a \} \). Hence \(M_1 = \{ b \} \). We can do the following: remove \(a \) from \(Y_1 \) and add it to \(M_1 \), remove \(b \) from \(M_1 \) and add it \(Y_1 \), add \(b' \) to \(Y_1 \) and add \(a' \) to \(M_1 \). Thus \(G \) is an \(\{ S, K \} \)-comb.

- case 2: Assume that \(a \in Y_i \) and \(b \in M_j \) with \(i > j \). There exist \(c \in Y_j \) such that \(cb \) is an edge of \(G \). If there is \(y \in N_{G'}(a) - N_{G'}(b) \), then \(yabb'a'y \) is an induced \(C_5 \) in \(G \). Contradiction. Thus, we must have \(j = 1 \), \(Y_1 = \{ c \} \), \(M_1 = \{ b \} \), \(i = 2 \) and \(X_2 = \phi \). We can do the following: remove \(a \) from \(Y_2 \) and add it \(M_1 \), remove \(b \) from \(M_1 \) and add it \(Y_1 \) and remove \(c \) from \(Y_1 \) and add it \(Y_2 \). Thus \(G \) is an \(\{ S, K \} \)-comb.

- case 3: \(a \in Y_i \) and \(b \in M_j \) with \(i < j \). This case is impossible by the definition of the comb.

\[\square \]

Corollary 1. \(G \) is a comb if and only if \(C_4, \overline{C_4}, C_5 \), chair and co-chair are forbidden subgraphs of \(G \).
Proof. The necessary condition is obvious by the definition of a comb. For the sufficient condition it is enough to note that the statement \(C_4, \overline{C}_4, C_5 \), chair and co-chair are forbidden subgraphs of \(G \) is equivalent to the statement that \(G \) is a split graph and chair and co-chair are forbidden subgraphs of \(G \).

\[\square \]

Corollary 2. \(G \) is a comb if and only if \(\overline{G} \) is a comb.

Proof. Enough to note that the complement of \(C_4, \overline{C}_4, C_5 \), chair and co-chair are \(\overline{C}_4, C_4, C_5 \), co-chair and chair.

\[\square \]

Corollary 3. \(G \) is a comb if and only if every induced subgraph of \(G \) is a comb.

References

[1] S. Földes, P.L. Hammer, *Split graphs*, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), Congressus Numerantium XIX, Winnipeg: Utilitas Math., pp. 311315

[2] P.L. Hammer, V. Chvátal, *Aggregation of inequalities in integer programming*, Annals of Discrete Mathematics 1 (1977), 145162.

[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, *The strong perfect graph theorem*, Annals of Mathematics 164 (1) (2006), 51229.

[4] L.W. Beineke, *Characterizations of derived graphs*, Journal of Combinatorial Theory 9 (2) (1970), 129135.

[5] D. Kő, *Theorie der endlichen und unendlichen Graphen*, Akademische Verlagsgesellschaft (1936) (reprinted Chelsea 1950).