Age-stratified comparison of clinical outcomes between medical and surgical treatments in patients with unilateral primary aldosteronism

Ryo Nakamaru1, Koichi Yamamoto1*, Hiroshi Akasaka2, Hiromi Rakugi3, Isao Kurihara4, Takashi Yoneda5, Takamasa Ichijo6, Takuyuki Katahimi7, Mika Tsuchi8, Norio Wada9, Tetsuya Yamada9, Hiroki Kobayashi9, Kouichi Tamura10, Yoshihiro Ogawa11, Junji Kawashima12, Nobuya Inagaki13, Megumi Fujita14, Minemori Watanabe15, Kohei Kamemura16, Shintaro Okamura17, Akiyo Tanabe18, Mitsuhide Naruse6,19 & JPAS/JRAS Study Group*

Although adrenalectomy (ADX) is an established treatment for unilateral primary aldosteronism (uPA), the influence of age on the surgical outcomes is poorly understood. Therefore, we aimed to elucidate how age affects the clinical outcomes after treatments. We analyzed 153 older (≥ 65 years) and 702 younger patients (< 65 years) with uPA, treated either with ADX or mineralocorticoid receptor antagonist (MRA) in the Japan PA Study, and compared the estimated glomerular filtration rate (eGFR) or blood pressure over a 36-month period after treatments. ADX-treated patients showed severer biochemical indicators than MRA-treated patients. During 6 and 36 months, the eGFR decreased more prominently in older but not in younger patients with ADX than in those with MRA, which remained significant after adjustment with the inverse probability of treatment weighting (IPTW). There was a significant interaction between the age-groups and the treatment choices in

1Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita 5650871, Japan. 2Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Tokyo, Japan. 3Department of Health Promotion and Medicine of the Future, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. 4Department of Diabetes and Endocrinology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan. 5Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine Yokohama City Seibu Hospital, Yokohama, Japan. 6Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan. 7Department of Diabetes and Endocrinology, Sapporo City General Hospital, Sapporo, Japan. 8Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. 9Division of Nephrology, Hypertension and Endocrinology, Nihon University School of Medicine, Tokyo, Japan. 10Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. 11Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. 12Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. 13Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan. 14Division of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan. 15Department of Endocrinology and Diabetes, Okazaki City Hospital, Okazaki, Japan. 16Department of Cardiology, Shinko Hospital, Kobe, Japan. 17Department of Endocrinology, Tenri Hospital, Tenri, Japan. 18Department of Diabetes, Endocrinology and Nutrition, National Center for Global Health and Medicine, Tokyo, Japan. 19Endocrine Center, Jinkai Takeda General Hospital, Kyoto, Japan. * A list of authors and their affiliations appears at the end of the paper. **email: kyamamoto@geriat.med.osaka-u.ac.jp
The change of the eGFR with IPTW-adjusted analysis. The post-treatment dose of antihypertensive medication was lower in younger and higher in older patients with ADX than those with MRA. The clinical benefit of ADX differed between younger and older patients with uPA. These findings indicate the need for further validation on whether ADX can benefit older patients with uPA.

Primary aldosteronism (PA), a major cause of secondary hypertension\(^1\)-\(^3\), increases the risk of cardiovascular disease (CVD) as well as renal disease, via activation of the mineralocorticoid receptor (MR) \(^4\)-\(^10\). Indeed, inappropriate aldosterone secretion is known to play a role in renal injury development\(^11\). The current guidelines recommend adrenalectomy (ADX) for unilateral PA (uPA), or MR antagonists (MRAs) for bilateral PA, as PA-specific treatments\(^1\). However, the effect of ADX on clinical outcome varies primarily depending on the baseline characteristics of patients including sex, obesity, and age\(^12\)-\(^14\).

The Japan PA Study (JPAS) investigation group reported that remission of hypertension or reduction of antihypertensives shortly after ADX (6 or 12 months) was limited in older patients (≥ 65 years old) compared with that in younger patients\(^14\). We found that the appearance of renal impairment (chronic kidney disease (CKD) ≥ stage 3b) shortly after ADX was more frequent in older patients. Nevertheless, it remains unknown whether poorer clinical outcomes after ADX in older patients are attributed to different treatment benefits or are a simple reflection of different background characteristics between older and younger patients. To answer this question, it is necessary to compare the patients with ADX to those with the different treatment choice, namely medical treatment with MRA. In this study, we analyzed patients with uPA, treated with either ADX or MRA, to clarify whether the benefit of ADX to renal function and blood pressure (BP) compared to MRA differs between older and younger patients with uPA.

Methods

Study population and follow-up after specific treatments. This was a retrospective observational study that was part of the JPAS. The data of patients aged 20–90 years old with PA who underwent adrenal venous sampling (AVS) at 41 referral centers in Japan between January 2006 and December 2018 were collected as described previously\(^14\)-\(^19\). Diagnosis of PA was based on the Japanese guidelines\(^20\),\(^21\). Of 1039 patients with uPA and the fully available data at baseline, 184 patients without follow up data on BP or eGFR were excluded. We then analyzed 153 older (≥ 65 years) and 702 younger patients (< 65 years) (Fig. 1). Both collected BP and estimated glomerular filtration rate (eGFR) were analyzed at baseline, 6, 12, or 36 months after performing an ADX or initiating MRA treatments. Additionally, we extracted 66 older and 309 younger patients with available eGFRs at 36 months for propensity score-matched analysis using the inverse probability of treatment weighting (IPTW) (Fig. 1). The decision on whether to perform an ADX or initiate MRA treatment was dependent on the judgement of patients and their attending physicians following classification of the PA subtype. Further, the dose or class of antihypertensives were decided by the attending physician at each center\(^4\).

Analysis of patient characteristics and clinical outcomes. Each patient’s data were obtained from the medical records of each referral center. The BP levels in the seated position at outpatient clinics were obtained from medical records. The serum creatinine was measured by the enzyme method. eGFR was calculated using the following equation established for the Japanese population: eGFR (ml/min/1.73 m\(^2\)) = 194 × serum creatinine\(^{-1.094} \times \text{age}^{-0.287} (\times 0.793 \text{ for female patients})\(^22\). Plasma aldosterone concentration (PAC) and plasma renin activity were measured in the supine position, using commercially available kits, as detailed in previous JPAS reports\(^14\)-\(^18\). Hypokalemia or hyperkalemia was defined as a serum potassium concentration < 3.5 mEq/L or use of a potassium supplement, or as a serum potassium concentration > 5.0 mEq/L, respectively. The pres-
ence of proteinuria was defined as a positive reaction in the urine dipstick test. Clinical or biochemical success after ADX was assessed using the Primary Aldosterone Surgical Outcome criteria. Briefly, complete biochemical success was defined as a normalization of the aldosterone-to-renin ratio (< 200) in the absence of hypokalemia. In addition, complete clinical success was defined as a normal BP as before adrenalectomy with less antihypertensive medication or a reduction in BP with either the same or less antihypertensive medication. Antihypertensive medication was expressed as defined daily dose (DDD)

The temporal changes in renal function after PA-specific treatment.

Results

Correlations between age at baseline and decline in eGFR after the treatments of uPA. We first analyzed the correlation between age at baseline and decline in eGFR during 36 months after medical or surgical treatment of uPA. As shown in Fig. 2, the significant correlation was observed in 247 patients with ADX ($r = -0.27, p < 0.01$) but not in 128 patients with MRA ($r = -0.07, p = 0.43$). Thereafter, we performed age-stratified analysis by dividing the patients into the younger (< 65 years) and the older (≥ 65 years) groups.

Comparison of patient characteristics between patients with ADX and MRA in older and younger patients. The patient characteristics are shown in Table 1. In both age groups, patients with ADX had more severe biochemical features of uPA than those treated with MRA, including a higher level of LI and PAC, and prevalence of hypokalemia at the baseline. The eGFR level at the baseline was significantly higher in patients with ADX than in those treated with MRA in the younger group, whereas there was no significant difference in the older group.

Clinical outcomes after the treatments with ADX or MRA in older and younger patients. The prevalence of complete clinical success after ADX that indicates the cure of hypertension was significantly higher in younger patients than older patients (Table 2). In contrast, the prevalence of complete biochemical success after ADX that indicates the cure of PA was similarly high both in younger and older patients (Table 2). There was no significant difference in the post-treatment occurrence of the composite cardiovascular events for 36 months between patients with MRA and with ADX in both age groups (Table 2).

Temporal changes in renal function after PA-specific treatment. The temporal changes in eGFR following PA-specific treatment are shown in Fig. 3. Analysis using a mixed effects model revealed that ADX reduced eGFR more prominently than that with MRA in both age groups during 36 months ($p < 0.001$). In con-
trast, the eGFR decreased to a greater extent in older patients with ADX than MRA-treated patients between 6 to 36 months after treatment (p = 0.039); however, this difference was not observed in younger patients during this time period (p = 0.26) (Fig. 3). There was no significant difference in the post-treatment prevalence of proteinuria between ADX and MRA in both younger and older patients who had data at 6 or 12 months (Table 2).

Figure 2. Correlations between age at baseline and decline in estimated glomerular filtration rate during 36 months following primary aldosteronism-specific treatment. (A) Adrenalectomy, (B) Mineralocorticoid receptor antagonist. The significant correlation was observed in 247 patients with ADX (r = −0.27, p < 0.01) but not in 128 patients with MRA (r = −0.07, p = 0.43). ADX, adrenalectomy; eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonist.

Table 1. Comparison of patient characteristics between patients with ADX and MRA. Values are mean ± standard deviation, median (interquartile range), or n (%). ADX, adrenalectomy; ARR, aldosterone-renin ratio; BMI, body mass index; DBP, diastolic blood pressure; DDD, defined daily dose; eGFR, estimated glomerular filtration rate; HT, hypertension; MRA, mineralocorticoid receptor antagonist; PAC, plasma aldosterone concentration; PRA, plasma renin activity; SBP, systolic blood pressure.

	Older (Age ≥ 65 y)	Younger (Age < 65 y)	p-value
Baseline characteristics			
Age, years	67 (65–70)	68 (66–72)	0.18
Female, n (%)	37 (39)	31 (54)	0.07
BMI, kg/m²	23.7 ± 3.69	23.6 ± 3.27	0.99
SBP, mmHg	143.3 ± 18.3	142.1 ± 15.8	0.69
DBP, mmHg	81.1 ± 12.5	81.0 ± 11.9	0.95
eGFR, mL/min/1.73m²	67.4 ± 17.4	66.6 ± 17.4	0.80
Duration of HT, years	19 (10–26)	15 (6–23)	0.052
Hypokalemia, n (%)	77 (80)	28 (49)	< 0.01
Proteinuria, n (%)	22 (24) (n = 91)	17 (31) (n = 55)	0.37
PA characteristics			
Lateralization index	12.7 (7.5–27.3)	6.9 (4.2–12.8)	< 0.01
PRA, ng/mL/h	0.2 (0.1–0.4)	0.2 (0.1–0.4)	0.53
6 or 12 months	0.7 (0.4–1.4) (n = 70)	0.4 (0.3–1.3) (n = 25)	< 0.01
PAC, pg/mL	281 (181–396)	186 (139–286)	< 0.01
6 or 12 months	299 (170–465) (n = 74)	289 (170–465) (n = 28)	< 0.01

Comparison of BP reduction after PA-specific treatments. The temporal change in BP after treatment was not significantly different between ADX and MRA in both older (p = 0.19) and younger (p = 0.08)
patients using the mixed effects model (Fig. 4). DDD in antihypertensives except for MRAs was lower after the treatment with ADX than with MRA in younger patients (Table 3). In contrast, older patients with ADX received higher DDD of antihypertensives except for MRAs than those with MRA after treatment (Table 3).

Table 2. Comparison of clinical outcomes. Values are n (%). The p-values of clinical success or complete biochemical success represent the comparison between older and younger patients treated with ADX. ADX, adrenalectomy; MRA, mineralocorticoid receptor antagonist.

	Older (Age ≥ 65 y)	Younger (Age < 65 y)				
	ADX N = 96	MRA N = 57	p-value	ADX N = 526	MRA N = 176	p-value
Complete clinical success, n (%)	16 (37) (n = 43)	–	–	185 (55) (n = 335)	–	0.02
Partial clinical success, n (%)	13 (30) (n = 43)	93 (28) (n = 335)	–	93 (28) (n = 335)	–	0.23
Absent clinical success, n (%)	14 (33) (n = 43)	–	–	57 (17) (n = 335)	–	0.02
Complete biochemical success, n (%)	53 (77) (n = 69)	–	–	316 (77) (n = 410)	–	0.96
Hyperkalemia, n (%) (6 or 12 months)	15 (16) (n = 94)	1 (1.8) (n = 56)	<0.01	28 (5.5) (n = 514)	3 (1.7) (n = 175)	0.05
Proteinuria, n (%) (6 or 12 months)	7 (11) (n = 62)	6 (17) (n = 35)	0.54	29 (8.8) (n = 331)	15 (13) (n = 117)	0.20
Cardiovascular event, n (%) (during 36 months)	6 (6.7) (n = 90)	6 (11) (n = 54)	0.37	6 (1.2) (n = 499)	5 (3.0) (n = 169)	0.16

Table 2. Comparison of clinical outcomes. Values are n (%). The p-values of clinical success or complete biochemical success represent the comparison between older and younger patients treated with ADX. ADX, adrenalectomy; MRA, mineralocorticoid receptor antagonist.

Figure 3. Mean estimated glomerular filtration rate from baseline to 36-months following primary aldosteronism-specific treatment. (A) ≥ 65 years (Older patients), (B) < 65 years (Younger patients). A mixed effects model for repeated measures revealed that eGFR reduced more prominently with ADX than with MRA in both age groups during 3 years (p < 0.001) (A,B). However, the decline in eGFR from 6 to 36 months was more prominent in patients with ADX than in those with MRA in older (p = 0.039) (A), but not in younger patients (p = 0.26) (B). Error bars indicate the standard error. ADX, adrenalectomy; eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonist; PA, primary aldosteronism.

Propensity scores-adjusted comparison of the eGFR over 36-month period between treatments. Finally, to reduce the selection bias for a PA-specific treatment, we adjusted with IPTW using the PS to analyze the available eGFR at 36 months among patients (Fig. 1). Gender, age, body mass index, systolic BP, log-transformed PAC, eGFR, the DDD of antihypertensives, and the presence of hypokalemia at baseline were used as covariates to calculate the PS. All of the standardized differences of IPTW-adjusted covariates between the treatments were less than 0.1, indicating that the IPTW sufficiently balanced the patient’s backgrounds between treatments (Table 4). A generalized linear model with the IPTW-adjusted analysis indicated that the percent change in the eGFR from the baseline to 36-month in ADX was 17.0% or 4.7% greater than the MRA treatment in older or younger patients, respectively (Table 4). There was a significant interaction between the age-groups and the PA treatments in the percent change of the eGFR, indicating that the influence of the treatment of choice on the percent change of the eGFR differed between younger and older patients. When the 36-month period used to calculate the eGFR was divided into the initial (0–6 months) and late (6–36 months) phases, we found that ADX enhanced the initial phase change in eGFR compared to MRA in both age groups; however, the interaction between the age groups and the treatment choices was not significant. In contrast, the
late phase eGFR in ADX was 9.4% greater than that in MRA in older patients with IPTW-adjusted analysis; however, there was no treatment-associated difference in the younger patients. There was a significant interaction between the age-groups and the treatment choices in the late phase change in eGFR.

Discussion
To the best of our knowledge, this is the first study to investigate the impact of age on the clinical outcome of ADX in comparison to MRA in patients with uPA. The primary findings of the present study are as follows: the significant correlation between the change in eGFR (0–36 months) and age was observed in patients with ADX.

![Figure 4. Mean systolic blood pressure from baseline to 36-months following primary aldosteronism-specific treatment. (A) ≥65 years (Older patients), (B) <65 years (Younger patients). A temporal change in systolic BP during 36 months was not significantly different between ADX and MRA in both older (p = 0.19) (A) and younger patients (p = 0.08) (B) using a mixed effects model for repeated measures. Error bars indicate the standard error. ADX, adrenalectomy; MRA, mineralocorticoid receptor antagonist; PA, primary aldosteronism; SBP, systolic blood pressure.](image)

![Table 3. Comparison of antihypertensive therapies between patients with ADX and MRA. Values are median (interquartile range) or n (%). The p-values of DDD and kinds of MRA represent the comparison between older and younger patients treated with MRA. ACE-I, angiotensin converting enzyme inhibitor; ADX, adrenalectomy; ARB, angiotensin II receptor blocker; CCB, calcium channel blocker; DDD, defined daily dose.](image)
damage due to renal sclerosis. Previous studies have indicated that the initial decline in eGFR following PA on a patient's renal function differs depending on the patient's age. In the change of the eGFR with IPTW-adjusted analysis, which suggests that the impact of the treatment of choice clinical backgrounds. We also found a significant interaction between the age-groups and PA-specific treatments prominently decrease renal function compared to MRA-treated patients, even with patients that had equivalent treatment in uPA. Nevertheless, the IPTW-adjusted analysis raised the possibility that the ADX treatment couldences probably reflect the real-world clinical practice in that disease severity can be a determinant for surgical phase decreased to a greater extent in older patients that received the ADX treatment than the MRA-treated patients; however, this difference was not observed in younger patients. It should be noted that in both age groups, biochemical parameters of PA were higher in patients with ADX than patients with MRA; the late phase decline in eGFR with the ADX treatment was greater than that with the MRA treatment in older patients but not in younger patients with the IPTW-adjusted analysis; there was a significant interaction between the age-groups and the treatment choices in the change of eGFR during the total 36-month period or the late phase with the IPTW-adjusted analysis.

The blockade of renal impairment has been considered as a crucial treatment benefit expected by ADX in patients with uPA. This notion was supported by the work by Hundemer et al. who reported that ADX in patients with PA might mitigate the risk for developing CKD, whereas treatment with MRA was associated with a higher risk for developing CKD when compared to essential hypertension. We found that the eGFR during the late phase decreased to a greater extent in older patients that received the ADX treatment than the MRA-treated patients; however, this difference was not observed in younger patients. It should be noted that in both age groups, biochemical parameters of PA were higher in patients with ADX than patients with MRA. These differences probably reflect the real-world clinical practice in that disease severity can be a determinant for surgical treatment in uPA. Nevertheless, the IPTW-adjusted analysis raised the possibility that the ADX treatment could prominently decrease renal function compared to MRA-treated patients, even with patients that had equivalent clinical backgrounds. We also found a significant interaction between the age-groups and PA-specific treatments in the change of the eGFR with IPTW-adjusted analysis, which suggest that the impact of the treatment of choice in uPA on a patient's renal function differs depending on the patient's age.

It is widely known that glomerular hyperfiltration is followed by the development of proteinuria and renal damage due to renal sclerosis. Previous studies have indicated that the initial decline in eGFR following PA-specific treatments is primarily caused by cancellation of hyperfiltration due to excessive aldosterone release. The current findings also suggest that the efficacy of ADX on BP regulation beyond MRA was obvious in patients with uPA. This notion was supported by the work by Hundemer et al. who reported that ADX in patients with PA might mitigate the risk for developing CKD, whereas treatment with MRA was associated with a higher risk for developing CKD when compared to essential hypertension. We found that the eGFR during the late phase decreased to a greater extent in older patients that received the ADX treatment than the MRA-treated patients; however, this difference was not observed in younger patients. It should be noted that in both age groups, biochemical parameters of PA were higher in patients with ADX than patients with MRA. These differences probably reflect the real-world clinical practice in that disease severity can be a determinant for surgical treatment in uPA. Nevertheless, the IPTW-adjusted analysis raised the possibility that the ADX treatment could prominently decrease renal function compared to MRA-treated patients, even with patients that had equivalent clinical backgrounds. We also found a significant interaction between the age-groups and PA-specific treatments in the change of the eGFR with IPTW-adjusted analysis, which suggest that the impact of the treatment of choice in uPA on a patient's renal function differs depending on the patient's age.

It is widely known that glomerular hyperfiltration is followed by the development of proteinuria and renal damage due to renal sclerosis. Previous studies have indicated that the initial decline in eGFR following PA-specific treatments is primarily caused by cancellation of hyperfiltration due to excessive aldosterone release. The current findings also suggest that the efficacy of ADX on BP regulation beyond MRA was obvious in patients with uPA. This notion was supported by the work by Hundemer et al. who reported that ADX in patients with PA might mitigate the risk for developing CKD, whereas treatment with MRA was associated with a higher risk for developing CKD when compared to essential hypertension. We found that the eGFR during the late phase decreased to a greater extent in older patients that received the ADX treatment than the MRA-treated patients; however, this difference was not observed in younger patients. It should be noted that in both age groups, biochemical parameters of PA were higher in patients with ADX than patients with MRA. These differences probably reflect the real-world clinical practice in that disease severity can be a determinant for surgical treatment in uPA. Nevertheless, the IPTW-adjusted analysis raised the possibility that the ADX treatment could prominently decrease renal function compared to MRA-treated patients, even with patients that had equivalent clinical backgrounds. We also found a significant interaction between the age-groups and PA-specific treatments in the change of the eGFR with IPTW-adjusted analysis, which suggest that the impact of the treatment of choice in uPA on a patient's renal function differs depending on the patient's age.

	Older Mean	Older 95% CI	p-value	Younger Mean	Younger 95% CI	p-value	p-value for interaction
From baseline to 36 months, %							
Non-adjusted	−19.4	−26.2 to −12.6	<0.001	−5.95	−9.55 to −2.34	0.001	<0.001
IPTW-adjusted	−17.0	−24.3 to −9.6	<0.001	−4.70	−8.48 to −0.92	0.015	0.003
From baseline to 6 months, %							
Non-adjusted	−11.4	−19.8 to −3.0	0.008	−8.01	−11.7 to −4.36	<0.001	0.440
IPTW-adjusted	−7.20	−15.9 to −1.5	0.167	−6.12	−10.4 to −1.83	0.005	0.132
From 6 to 36 months, %							
Non-adjusted	−7.90	−14.4 to −1.40	0.017	2.87	−0.95 to 6.70	0.141	0.013
IPTW-adjusted	−9.44	−16.1 to −2.75	0.006	2.10	−2.67 to 6.87	0.389	0.011

Table 4. Differences in the percentage change of eGFR with ADX compared to that with MRA in generalized linear models with or without the use of IPTW. Gender, age, body mass index, SBP, log-transformed PAC, eGFR, DDD of antihypertensives, and the presence of hypokalemia at baseline were used as covariates. Standardized differences of each covariate between the treatments before (unadjusted) and after the adjustment with IPTW (IPTW-adjusted) are as follows: Gender, 0.10 and 0.01; age, 0.35 and 0.02; body mass index, 0.17 and 0.03; SBP, 0.24 and 0.01; log-transformed PAC, 0.54 and 0.03; eGFR, 0.15 and 0.05; the DDD of antihypertensives, 0.06 and 0.04; the presence of hypokalemia, 0.50 and 0.00, respectively. p-value for the interaction between the age-groups and the treatment choices (ADX or MRA): ADX, adrenalectomy; CI, confidence interval; DDD, daily defined dose, eGFR, estimated glomerular filtration rate; IPTW, inverse probability of treatment weighting; MRA, mineralocorticoid receptor antagonist; PAC, plasma aldosterone concentration; SBP, systolic blood pressure.
different between ADX and MRA in both age groups (Fig. 3), the DDD except for MRAs after the specific treatments was lower with ADX than with MRA treatment in younger patients (Table 1). Notably, the treatment-associated difference was opposite in older patients (Table 1). Again, it should be noted that the biochemical severity is different between patients with ADX and with MRA, potentially interfering the pure comparison between the treatments. Nevertheless, the current findings provide an obvious contrast in the treatment-effects of ADX between older and younger patients in BP regulation. Finally, it should be noted that the age-specific difference in the impact of the treatment on renal outcome is independent of that on the BP regulation, as BP control itself is not different between the treatments both in younger and older patients (Fig. 3).

There are several limitations in the present study. First, there are the treatment-associated differences in biochemical severity of PA that may interfere with the direct comparison between treatments. While our findings were strengthened by the consistency after the IPTW-adjusted analysis, future studies are required to validate that the ADX treatment is not beneficial in preserving renal function in older patients with uPA. Second, this was a multi-center retrospective observational study. As a strategy for specific treatments for PA was not pre-designed, the choice of treatments depended on the physicians. Particularly, Ohno Y et al. reported that the choice of ADX for uPA classified based on AVS was less frequent in Japanese than in European centers (78.2% vs 91.4%) from the international multicenter retrospective study on the Adrenal Venous Sampling Stats in Primary Aldosteronism (AVSTAT study)34. The cause of non-surgical treatment for the patients with uPA was more likely to be physician-derived, including good BP control, normokalemia, and the absence of adrenal lesions on imaging before AVS, in Japan34. Although the exact reason for this discrepancy remains unknown, it is conceivable that relatively mild uPA is more often diagnosed in Japan, compared with Europe. This country-specific difference may potentially influence on the generalizability of the present findings. Third, the medication adherence of MRA might be the potential confounding effect compared with ADX. Forth, we did not investigate the onset of CVDs, which are important complications for the vital outcomes of PA patients. Fifth, the 36-month follow-up period in this study is a relatively short period for assessing the long-term clinical outcomes. Together, prospective studies with long-term observation of outcomes including CVDs, will be required to determine the adequate specific treatments for PA in older patients. Finally, similar to most previous reports, we used only office BP measurement. Thus, the white coat effect might have influenced the BP data.

In conclusion, in younger patients with uPA, ADX could provide benefit by protecting chronic decline of renal function and resolving hypertension. In contrast, older patients with uPA experienced prominent post-treatment reduction of eGFR as well as poor improvement of hypertension. These findings suggest that older patients need careful monitoring after ADX. The limitations of this retrospective study hinder a direct comparison of the net treatment benefits; thus, future studies are needed to clarify if ADX can benefit older patients with uPA.

Received: 19 November 2020; Accepted: 10 March 2021

Published online: 25 March 2021

References
1. Funder, J. W. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016).
2. Monticone, S. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017).
3. Piaditis, G., Markou, A., Papanastasiou, L., Androulakis, I. I. & Kaltsas, G. Progress in aldosteronism: a review of the prevalence of primary aldosteronism in pre-hypertension and hypertension. Eur. J. Endocrinol. 172, R191-203 (2015).
4. Schlienger, J. G. et al. Long-term renal outcomes in patients with primary aldosteronism. J. Am. Coll. Cardiol. 69, 1811–1820 (2017).
5. Rossi, G. P. et al. Renal damage in primary aldosteronism: results of the PAPY Study. Hypertension 48, 232–238 (2006).
6. Reimcke, M. et al. Risk factors associated with a low glomerular filtration rate in primary aldosteronism. J. Clin. Endocrinol. Metab. 94, 869–875 (2009).
7. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Renal outcomes in medically and surgically treated primary aldosteronism. Hypertension 72, 658–666 (2018).
8. Savard, S., Amar, L., Plouin, P. F. & Steichen, O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension 62, 331–336 (2013).
9. Monticone, S. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018).
10. Hollenberg, N. K. Aldosterone in the development and progression of renal injury. Kidney Int. 66, 1–9 (2004).
11. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).
12. Williams, T. A. et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol. 6, 51–59 (2018).
13. Takeda, M. et al. Clinical characteristics and postoperative outcomes of primary aldosteronism in the elderly. J. Clin. Endocrinol. Metab. 103, 3620–3629 (2018).
14. Morisaki, M. et al. Predictors of clinical success after surgery for primary aldosteronism in the Japanese nationwide cohort. J. Endocr. Soc. 3, 2012–2022 (2019).
15. Ohno, Y. et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: a multicenter study in Japan. Hypertension 71, 530–537 (2018).
16. Katabami, T. et al. Clinical and biochemical outcomes after adrenalectomy and medical treatment in patients with unilateral primary aldosteronism. J. Hypertens. 37, 1513–1520 (2019).
17. Kobayashi, H. et al. Association between acute fall in estimated glomerular filtration rate after treatment for primary aldosteronism and long-term decline in renal function. Hypertension 74, 630–6 (2019).
18. Nakamuro, R. et al. Obesity predicts persistence of resistant hypertension after surgery in patients with primary aldosteronism. Clin. Endocrinol. (Oxf). 93, 229–237 (2020).
19. Nishikawa, T. et al. Guidelines for the diagnosis and treatment of primary aldosteronism—the Japan Endocrine Society, 2009. Endocr. J. 56, 711–721 (2011).
21. Shimamoto, K. et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens. Res. 37, 253–390 (2014).
22. Matsuo, S. et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 53, 982–992 (2009).
23. Umakoshi, H. et al. Optimum position of left adrenal vein sampling for subtype diagnosis in primary aldosteronism. Clin. Endocrinol. (Oxf). 83, 768–773 (2015).
24. Umakoshi, H. et al. Importance of contralateral aldosterone suppression during adrenal vein sampling in the subtype evaluation of primary aldosteronism. Clin. Endocrinol. (Oxf). 83, 462–467 (2015).
25. Rossi, G. P. et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 63, 151–160 (2014).
26. Ficociello, L. H. et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care 32, 889–893 (2009).
27. Melsen, T. et al. Association of increasing GFR with change in albuminuria in the general population. Clin. J. Am. Soc. Nephrol. 11, 2186–2194 (2016).
28. Wang, X. et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 85, 677–685 (2014).
29. Kremers, W. K. et al. Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: the aging kidney anatomy study. Nephrol. Dial. Transpl. 30, 2034–2039 (2015).
30. Rule, A. D. et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 152, 561–567 (2010).
31. Hommos, M. S., Glassock, R. J. & Rule, A. D. Structural and functional changes in human kidneys with healthy aging. J. Am. Soc. Nephrol. 28, 2838–2844 (2017).
32. Imai, E. & Abe, K. Blood pressure drop in summer may cause acute kidney injury with irreversible reduction of glomerular filtration rate. Clin. Exp. Nephrol. 17, 1–2 (2013).
33. Elgendy, I. Y., Hsu, T., Chik, V., Pepine, C. J. & Bavry, A. A. Efficacy and safety of angiotensin receptor blockers in older patients: a meta-analysis of randomized trials. Am. J. Hypertens. 28, 576–585 (2015).
34. Ohno, T. et al. Adrenal venous sampling guided adrenalectomy rates in primary aldosteronism: results of an international cohort (AVSTAT). J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa706 (2020).

Acknowledgements
We wish to thank the JPAS/JRAS study group for collecting the clinical data.

Author contributions
Study Concept: N.R., Y.K. Writing manuscript: N.R., Y.K. Statistical analysis: N.R., Y.K., A.H. Acquisition of data: N.R., Y.K., A.H., R.H., K.I., Y.T., I.T., T.M., W.N., Y.T., K.H., T.K., O.Y., K.J., I.N., F.M., W.M., K.K., O.S., T.A., N.M., and contributors from the JPAS/JRAS study group. Critical revision of the manuscript for important intellectual content: All authors.

Funding
This study was supported in part by grants-in-aid for the Japan Primary Aldosteronism Study and the Japan Rare Adrenal Diseases Study from the Practical Research Project for Rare/Intractable Diseases from the Japan Agency for Medical Research and Development (AMED) (JP17ek0109122, JP18ek0109352, and JP19ek0109352) and grants from the National Center for Global Health and Medicine, Japan (27-1402, 30-1008).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

JPAS/JRAS Study Group

Hiroshi Itoh, Hisashi Fukuda, Hironobu Umakoshi, Yui Shibayama, Masanori Murakami, Takehito Yoshimoto, Tatsuya Haze, Masakatsu Sone, Katsutoshi Takahashi, Yuichi Matsuda, Hirotaka Shibata, Michio Otsuki, Yuichi Fujii, Atsushi Ogo, Shozo Miyauchi, Toshihiko Yanase, Tomoko Suzuki, Takashi Kawamura, Mai Asano,
Tomikazu Fukuoka31, Tatsuya Kai32, Shoichiro Izawa33, Yuichiro Yoshikawa34, Shigeatsu Hashimoto35, Masanobu Yamada36, Ryuichi Sakamoto37, Yoshiro Chiba38, Ryuji Okamoto39, Kenji Oki40 & Daisuke Yabe41

20Division of Metabolism, Showa General Hospital, Tokyo, Japan. 21Department of Cardiology, Sanda City Hospital, Sanda, Japan. 22Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan. 23Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan. 24Department of Cardiology, JR Hiroshima Hospital, Hiroshima, Japan. 25Clinical Research Institute, National Hospital Organization Kyusyu Medical Center, Fukuoka, Japan. 26Department of Internal Medicine, Uwajima City Hospital, Uwajima, Japan. 27Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan. 28Department of Public Health, School of Medicine, International University of Health and Welfare, Narita, Japan. 29Department of Preventive Services, Kyoto University School of Public Health, Kyoto, Japan. 30Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Kyoto, Japan. 31Department of Internal Medicine, Matsuyama Red Cross Hospital, Matsuyama, Japan. 32Department of Cardiology, Saiseikai Tondabayashi Hospital, Tondabayashi, Japan. 33Department of Endocrinology and Metabolism, Tottori University Hospital, Yonago, Japan. 34Department of Endocrinology and Diabetes Mellitus, Misato Kenwa Hospital, Misato, Japan. 35Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University Hospital, Fukushima, Japan. 36Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan. 37Department of Diabetes and Endocrinology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan. 38Endovascular Treatment Group, Mito Saiseikai General Hospital, Mito, Japan. 39Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan. 40Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. 41Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.