Candida albicans SRR1, a Putative Two-Component Response Regulator Gene, Is Required for Stress Adaptation, Morphogenesis, and Virulence

Chirayu Desai,1 John Mavrianos,2 and Neeraj Chauhan1,2∗

Public Health Research Institute1 and Department of Microbiology and Molecular Genetics;2 New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, New Jersey 07103

Received 28 July 2011/Accepted 8 August 2011

We report here the identification and characterization of a previously uncharacterized, two-component response regulator gene (orf19.5843) from Candida albicans. Because of its apparent functions in stress adaptation, we have named this gene SRR1 (stress response regulator 1). Disruption of SRR1 causes defects in hyphal development, reduced resistance to stress, and severe virulence attenuation in the mouse model of disseminated candidiasis.

Two-component signaling systems are widely used for signal transduction by bacteria, eukaryotic microorganisms, and plants. A two-component phosphorelay system in fungi includes a membrane-bound sensor histidine kinase (HK) protein, which is autophosphorylated on a histidine residue in the histidine kinase domain and then transfers the phosphoryl group to an internal receiver domain. The phosphorelay group is then shuttled through a histidine phosphotransfer (HPT) protein to a terminal response regulator (RR). When stress signals (oxidants, high salt, etc.) are detected by yeast cells, the RR protein is dephosphorylated and is able to activate the downstream mitogen-activated protein kinase (MAPK) pathway to adapt cells to stress (18, 19). The most extensively studied of the two-component MAPK systems in fungi is the hyperosmotic glycerol (HOG) MAPK pathway in Saccharomyces cerevisiae, (19, 25). In Candida albicans, Hog1 MAPK regulates glycerol accumulation and adaptation to high osmolarity, as well oxidative stress, morphogenesis, and cell wall biosynthesis (2, 3, 38). Homologues of the Hog1 pathway, as well as other HKs and the response regulator protein (Ssk1p) of S. cerevisiae, have been extensively studied (21, 27–30, 39, 41).

In C. albicans, there are three HK proteins, Chk1p, Snl1p, and Nik1/Cos1p (1, 12, 17, 32, 43). Snl1p is the homologue of S. cerevisiae Snl1p. While Chk1p is not found in S. cerevisiae, two homologues have been identified in Schizosaccharomyces pombe (9), but a functional pathway has not been assigned. Nik1/Cos1p is a homologue of the Nik1 protein of Neurospora crassa and is also not found in S. cerevisiae. The genes that encode RR proteins include SSK1 and SKN7. Ssk1p of S. cerevisiae activates the Hog1 MAP kinase pathway during osmotic stress, while Skn7p in S. cerevisiae acts as a transcription factor when phosphorylated. While homologues of these proteins are found in C. albicans, it is important to realize that C. albicans homologues have functions that are different from those of their counterparts in S. cerevisiae. We have shown previously that Ssk1p of C. albicans is required for adaptation to oxidative stress and regulates some aspects of cell wall biosynthesis (21), functions not reported for S. cerevisiae SSK1.

We report here that C. albicans possesses an additional response regulator gene, SRR1 (orf19.5843), besides the previously reported response regulators SSK1 and SKN7 (18). The newly identified response regulator SRR1 appears to be unique to the Candida clade (10). Homology searches did not reveal any orthologues of this protein in S. cerevisiae, Candida glabrata, or Candida krusei. However, orthologues of SRR1 are present in pathogenic fungi belonging to the CUG clade of Saccharomycoctina (10). In C. albicans, previous studies by us and other groups have shown that both Ssk1 and Skn7 response regulators have important functions in morphogenesis and oxidative stress adaptation (14, 21, 40). In the present study, we demonstrate that a Δsrr1 mutant is defective in hyphal development and sensitive to both osmotic- and oxidative-stress growth conditions. Disruption of SRR1 causes severe virulence attenuation in the mouse model of disseminated candidiasis. These data imply that C. albicans utilizes SRR1 to regulate a number of critical processes to adapt to the host environment, including stress adaptation, hyphal development, and pathogenicity.

The SRR1 gene was identified by searching the Candida genome database (CGD) for proteins containing a receiver domain by performing BLASTP analysis. Because of its apparent functions in stress (oxidative and osmotic) adaptation, this response regulator gene was named SRR1 (stress response regulator 1). The SRR1 gene has an open reading frame of 849 bp, which encodes a 282-amino-acid (aa) protein with an estimated molecular mass of 32 kDa. Srr1p contains a receiver domain at the C terminus (154 to 270 aa) of this protein. The analysis of the promoter region of SRR1 by MatInspector (16) revealed that it contains a consensus sequence (underlined in 5′-TGCAACAGGGGGAGG-3′) of the fungal stress response elements (STRE); it remains to be seen if it is involved in the modulation of expression of SRR1. A putative peroxisomal

* Corresponding author. Mailing address: Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07078. Phone: (973) 854-3470. Fax: (973) 854-3101. E-mail: chauhan1@umdnj.edu.
† Supplemental material for this article may be found at http://ec.asm.org/.
‡ Published ahead of print on 12 August 2011.
targeting signal 1 (PTS1) sequence, NKI, is located at the C terminus of this protein. PTS1 motif prediction was performed by using the PTS1 predictor software (http://psort.hgc.jp/form2.html). A similar motif has been reported in Skk1p of C. albicans (13), but its functional characterization has not yet been reported.

To determine the function(s) of SRR1 in C. albicans, we constructed a Δsrr1 mutant by following the method of Noble and Johnson (36) with the SN148 strain background (see Fig. S1 in the supplemental material). To generate strains with matched auxotrophic requirements, the URA3, HIS1, and LEU2 auxotrophic markers were restored by integration of an empty Cip10 (31) and a modified Cip20 (23) plasmid containing the LEU2 marker Cip20-Leu2 (see Tables S1 and S2 in the supplemental material) at the RPS10 locus. When these plasmids are integrated at the RPS10 locus, restoration of wild-type virulence and in vitro phenotypes to ura deletions occurs (7). The C. albicans strains (see Table S3 in the supplemental material) generated in this way were auxotrophically (Ura + His + Leu + Arg +) identical. The strains thus created were all Arg −. Arginine auxotrophy has been shown to be neutral for C. albicans virulence (36). All the experiments reported in the current study were performed by using strains NC1 (SRR1/SRR1), NC2 (srr1/srr1), and NC3 (srr1/srr1/SRR1).

To determine the effect of SRR1 disruption on growth rates, we compared the generation time of SRR1 deletion strain NC2 (srr1/srr1) with those of wild-type strain NC1 (SRR1/SRR1) and gene-reconstituted strain NC3 (srr1/srr1/SRR1). When incubated in yeast extract-peptone-dextrose (YPD) at 30°C, the NC2 strain grew significantly more slowly than the wild-type strain NC1, whereas the growth rate of the gene-reconstituted strain NC3 was similar to that of the wild-type strain. The calculated generation time for the null strain NC2 (2.13 h) was significantly higher than the 1.55-h and 1.59-h generation times of the wild type (NC1) and gene-reconstituted strain (NC3), respectively.

The two previously reported response regulators have functions related to the stress resistance, morphogenesis, and virulence of C. albicans (14, 21, 40). Thus, our initial experiments with SRR1 were focused to determine its role in stress response. The NC2 (srr1/srr1) mutant was sensitive to osmotic stress (1.5 M NaCl), a phenotype not observed with a C. albicans Δskk1 or Δskn7 mutant (21, 40), implying that Srr1p is critical to the response of cells to osmotic stress (Fig. 1). The NC2 (srr1/srr1) null mutant strain was also sensitive to hydrogen peroxide at a concentration of 8 mM (Fig. 1), suggesting that Srr1p is required for resistance to oxidative stress in vitro and, in this regard, is somewhat similar to other response regulators in C. albicans, Skn7p and Ssk1p (21, 40). We did not observe any difference between wild-type and null mutant strains in their sensitivities to menadione, potassium superoxide, sodium dodecyl sulfate (SDS), caffeine, Congo red, or calcofluor white (data not shown). Data from MIC assays verify (Table 1) that the null mutant strain NC2 (srr1/srr1) is more sensitive to oxidative and osmotic stress than the wild type (NC1) and reintegrant strain (NC3). In vitro killing assays also confirmed the hypersusceptibility of the NC2 mutant strain to H₂O₂ (data not shown). Thus, SRR1 is required for protection from oxidants, a result similar to that reported for the C. albicans Δskk1 null mutant (21). However, unlike the Δskk1 or Δskn7 response regulator mutant, the Δsrr1 mutant is sensitive

C. albicans strain	MIC value for:	
	H₂O₂ (mM)	NaCl (M)
NC1 (SRR1/SRR1)	10.0	1.8
NC2 (srr1/srr1)	8.0	1.0
NC3 (srr1/srr1/SRR1)	10.0	1.8
to osmotic stress, suggesting that SRR1 is required for mediating resistance to osmotic stress.

Because the two previously reported response regulators Ssk1 and Skn7 have functions in hyphal formation, it was of interest to determine the effect of SRR1 disruption on morphogenesis by growing C. albicans strains on Spider, 10% serum, and RPMI (pH 7.5) growth media. The NC2 (srr1/srr1) null mutant strains displayed suppressed filament formation in hyphae, inducing growth comparable to that of the wild-type and reconstituted strains, indicating that SRR1 is critical for hyphal development in C. albicans under the growth conditions used in our experiments (Fig. 2).

To investigate the role of Srr1p in virulence, wild-type NC1, null mutant NC2, and gene-reconstituted strain NC3 were inoculated intravenously into immunocompetent BALB/c mice.

The survival of mice over a 21-day period of time was determined for each strain (Fig. 3). We found that mice infected with the wild-type strain rapidly succumbed to the infection within 3 days, whereas mice infected with the null mutant strain NC2 (srr1/srr1) survived for at least 3 weeks (the duration of experiment). Mice infected with the gene-reconstituted strain NC3 (srr1/srr1/SRR1) survived longer than mice infected with the wild type. The colonization (CFU/g) of kidneys was determined for each strain at 24 to 72 h postinfection (Table 2), except for animals infected with the wild-type strain NC1, since all were moribund by 72 h. Fungal burdens, expressed as numbers of CFU/g of kidney (Table 2), were relatively constant for both the wild-type and gene-reconstituted strains over the course of 72 h. However, for the NC2 (srr1/srr1) null mutant strain, the highest number of CFU/g kidney was significantly lower ($P < 0.0001; \text{NC2 versus all strains}$) than for the wild-type strain, suggesting that the NC2 (srr1/srr1) null mutant strain was rapidly cleared from the kidneys. Histopathology of kidney sections supports this observation (Fig. 4). Taken together, the data clearly demonstrate that Srr1p is required for virulence in a murine model of systemic candidiasis.

![FIG. 3. Survival of mice infected with C. albicans strains in a murine model of hematogenously disseminated candidiasis. Mice were infected with 1×10^6 CFU of each strain, namely, NC1 (SRR1/SRR1), NC2 (srr1/srr1), and NC3 (srr1/srr1/SRR1). The percent survival of mice infected with each strain was determined 21 days postinfection.](image)

TABLE 2. Log$_{10}$ CFU/g counts in mice infected with *C. albicans* strains

C. albicans strain	Log$_{10}$ no. of CFU/g of tissue (mean ± SD) in kidneya	24 h	48 h	72 h
NC1 (SRR1/SRR1)b	6.14 ± 0.35	7.06 ± 0.38	ND	
NC2 (srr1/srr1)	3.53 ± 0.42	3.58 ± 0.4	2.3 ± 0.28	
NC3 (srr1/srr1/SRR1)	5.99 ± 0.37	6.79 ± 0.2	6.94 ± 0.3	

a At 24, 48, and 72 h postinfection, moribund mice were sacrificed, and the number of CFU of each strain was determined by plating homogenates of kidneys on YPD agar. Cultures were incubated at 30°C, and colonies were counted after 48 h of incubation. ND, not detected.

b All mice infected with NC1 succumbed to infection by 48 h.
There are functional differences between the three response regulator proteins of *C. albicans*, Srr1p, Ssk1p, and Skn7p, that may have an impact on the contribution of each protein to disease. The characterization of the NC2 (srr1/srr1) mutant strain clearly demonstrates a role for SRR1 in resistance to osmotic and oxidative stress. The avirulence of the Δsrr1 null mutant is similar to that of the Δssk1 mutant, while the virulence of the Δsrr1 mutant was only slightly attenuated (40).

Previous reports have suggested that *C. albicans* mutants with growth defects tend to have reduced virulence in a mouse model of systemic candidiasis (37). Because the NC2 (srr1/srr1) null mutant has a longer generation time than the wild type, there is a concern that its avirulence might be attributed to its longer generation time. In this context, it has been reported that mutants with long generation times still cause disease and death in mice at slightly higher inoculum densities than those used here (20), indicating that the generation time is less critical than the inoculum density to the development of candidiasis. A recent study has also revealed that growth rate is not essential for *C. albicans* pathogenicity, as previously thought (35). In that study, it was reported that mutants with low growth rates showed normal infectivity in a mouse model of disseminated candidiasis (35). There are other examples in the literature about *C. albicans* mutants exhibiting normal virulence despite an *in vitro* growth defect phenotype. For example, the *C. albicans* protein kinase cka2 null mutant strain has a growth defect but still exhibits normal virulence, like the wild-type strain, in the mouse model of hematogenously disseminated candidiasis (22). Taken together, data from these studies suggest that *C. albicans* virulence is a complex interplay of multiple (host as well as pathogen) factors. *In vitro* assays cannot replicate complex *in vivo* systems, and growth rate assays performed *in vitro* cannot be the exclusive determinants of *C. albicans* virulence.

The virulence of *C. albicans* is multifactorial, including the requirement for adhesins, yeast- to hyphal-phase transition (morphogenesis), and expression of extracellular invasive enzymes, such as secreted aspartyl proteases and phospholipases (11). The ability to overcome stress has also been reported to be important for *C. albicans* virulence. Several studies have also shown that stress adaptation is essential for *C. albicans* virulence (8). *C. albicans* strains with mutations in genes that encode the transcription factor Cap1p (5), superoxide dismutase (26), catalase (33, 42), the stress-activated MAPK Hog1p (3), the upstream two-component histidine kinase Chk1p (15), and the response regulator Ssk1p (14) are reported to be avirulent in a murine model of disseminated candidiasis. Our findings, with SRR1, also reveal a positive relationship between stress adaptation and virulence. Data presented in this paper strongly support a role for SRR1 in morphogenesis, stress adaptation, and virulence of *C. albicans*. Two-component proteins have also been reported to be essential for stress adaptation and virulence in other pathogenic fungi, including *Aspergillus fumigatus* (24), *Cryptococcus neoformans* (4, 6), and *Blastomyces dermatitidis* (34), suggesting that their exploitation could lead to the development of drugs that may have broad spectra.

This work is supported in part by an American Heart Association National Scientist Development Grant (0635108N) to N.C.

We thank Suzanne Noble, UCSF, for the generous gift of pSN40 and pSN52 plasmid vectors and the wild-type *C. albicans* SN148 strain for this work. We also thank Al Brown, University of Aberdeen, and Michael Lorenz, University of Texas Health Science Center at Houston, for plasmid CIP20. We gratefully acknowledge Guillaume Delmas, PHRI Center at UMDNJ, for performing animal experiments.

REFERENCES

1. Alex, L. A., C. Korch, C. P. Selitrennikof, and M. I. Simon. 1998. COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen, Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 95:7069–7073.
2. Alonso-Monge, R., et al. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot. Cell 2:551–361.
3. Alonso-Monge, R., et al. 1999. Role of mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J. Bacteriol. 181:3058–3068.
4. Bahn, Y. S. 2008. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot. Cell 7:2017–2036.
5. Bahn, Y. S., and P. Sundstrom. 2001. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol. 183:3211–3223.
6. Bahn, Y. S., K. Kojima, G. M. Cox, and J. Heitman. 2006. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual
development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell 17:3122–3135.
7. Brand, A., D. M. MacCallum, A. J. Brown, N. A. Gow, and F. C. Odds. 2004. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot. Cell 3:990–999.
8. Brown, A. J., F. C. Odds, and N. A. Gow. 2007. Infection-related gene expression in Candida albicans. Curr. Opin. Microbiol. 10:307–315.
9. Buck, Y., et al. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12:407–419.
10. Butler, G., et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662.
11. Calderone, R. A., and W. A. Foni. 2003. Virulence factors of Candida albicans. Trends Microbiol. 9:327–335.
12. Calera, J. A., and R. A. Calderone. 1999. Flocculation of hyphae is associated with a deletion in the putative CaHk1 two-component histidine kinase gene from Candida albicans. Microbiology 145:1431–1442.
13. Calera, J. A., and R. Calderone. 1999. Identification of a putative response regulator, two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 15:1243–1254.
14. Calera, J. A., X. J. Zhao, and R. Calderone. 2000. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect. Immun. 68:518–525.
15. Calera, J. A., X. J. Zhao, F. De Bernardis, M. Sheridan, and R. Calderone. 1999. Avirulence of Candida albicans CaHk1 mutants in a murine model of hematogenously disseminated candidiasis. Infect. Immun. 67:4280–4284.
16. Cartharius, K., et al. 2005. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942.
17. Catlett, N. L., O. C. Yoder, and B. G. Turgeon. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2:1151–1161.
18. Chauhan, N., and R. Calderone. 2008. Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect. Immum. 76:477–485.
19. Chauhan, N., J. P. Latge, and R. Calderone. 2006. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat. Rev. Microbiol. 4:435–444.
20. Chauhan, N., et al. 2005. Virulence and katyore analyses of rad52 mutants of Candida albicans: regeneration of a truncated chromosome of a reintegrate strain (rad52/RAD52) in the host. Infect. Immun. 73:8069–8078.
21. Chauhan, N., et al. 2003. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot. Cell 2:1018–1024.
22. Chiang, L. Y., et al. 2007. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell. Microbiol. 9:233–245.
23. Dennison, P. M., M. Ramsdale, C. L. Manson, and A. J. Brown. 2005. Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet. Biol. 42:737–748.
24. Du, C., J. Sarlati, J. P. Latge, and R. Calderone. 2006. The role of the ssk1 (Hog1) and csk8 (drr1) genes in the oxidant adaptation of Aspergillus fumigatus. Med. Mycol. 44:211–218.
25. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300–372.
26. Hwang, C. S., et al. 2002. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148(11):3705–3713.
27. Krupp, M., et al. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:1062–1065.
28. Krupp, M., et al. 2003. The Chk1p of C. albicans and its role in the regulation of cell wall synthesis. FEMS Yeast Res. 3:289–299.
29. Menon, V., F. De Bernardis, R. Calderone, and N. Chauhan. 2008. Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Res. 8:756–763.
30. Menon, V., et al. 2006. Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Mol. Microbiol. 62:997–1013.
31. Murad, A. M., P. R. Lee, I. D. Broadbent, C. J. Barelle, and A. J. Brown. 2003. Clp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327.
32. Nagahashi, S., et al. 1998. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144(2):425–432.
33. Nakagawa, Y., T. Kanbe, and I. Mizuguchi. 2003. Disruption of the human pathogenic yeast Candida albicans catalese gene decreases survival in mouse model infection and elevates susceptibility to higher temperature and to detergents. Microbiol. Immunol. 47:395–403.
34. Nemecek, J. C., M. Wuthrich, and R. S. Klein. 2006. Global control of dimorphism and virulence in fungi. Science 312:583–588.
35. Noble, S. M., S. French, L. A. Kohn, V. Chen, and A. D. Johnson. 2010. Systematic screens of a Candida albicans homoyzogous deletion library decipher morphogeneic switching and pathogenicity. Nat. Genet. 42:590–598.
36. Noble, S. M. and A. D. Johnson. 2005. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 4:298–309.
37. Ringe, G., et al. 1998. Unanticipated heterogeneity in growth rate and virulence among Candida albicans AAF1 null mutants. Infect. Immun. 67:3193–3198.
38. San José, C., R. A. Monge, R. Pérez-Díaz, J. Pla, and C. Nombela. 1996. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J. Bacteriol. 178:5850–5852.
39. Santos, J. L., and K. Shiozaki. 2001. Fungal histidine kinases. Sci. STKE 2001(98):re1.
40. Singh, P., N. Chauhan, A. Ghosh, F. Dixon, and R. Calderone. 2004. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect. Immun. 72:2390–2394.
41. Srikantha, T., et al. 1998. The two-component hybrid kinase regulator CaNikI of Candida albicans. Microbiology 144:2715–2729.
42. Wysong, D. R., L. Christin, A. M. Sugar, P. W. Robbins, and R. D. Diamond. 1998. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun. 66:1953–1961.
43. Yamada-Okabe, T., et al. 1999. Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J. Bacteriol. 181:7243–7247.