Electrical Supplementary Information (ESI)

Factorial Design Analysis of Parameters for Sorption Enhanced Steam Reforming of Ethanol in a Circulating Fluidized Bed Riser using CFD

![Main Effects](Image)

- **Main Effects (a)**
 - H_2 flux [kg/m².s]
 - Variables: A-fiser id., B-Inlet temp., C-Cat./Sorb., D-Gs, E-U

![Interactions](Image)

- **Interactions (b)**
 - H_2 flux [kg/m².s]
 - Variables: D

- **Interactions (c)**
 - H_2 flux [kg/m².s]
 - Variables: A

Fig. S1. The main effects (a) and the interactions (b and c) on the H_2 flux.
Fig. S2. The main effects (a) and the interactions (b and c) on the H₂ purity.
Table S1 Conservation equations used in the simulations.

a) Mass conservation for each phase q:
\[
\frac{\partial}{\partial t} (\varepsilon_q \rho_q) + \nabla \cdot (\varepsilon_q \rho_q \mathbf{v}_q) = \sum_{p=1}^{n} (\dot{m}_{pq} - \dot{m}_{qp}) + S_{m,q} \tag{S1}
\]

b) Momentum conservation
- for gas phase:
\[
\frac{\partial}{\partial t} (\varepsilon_g \rho_g \mathbf{v}_g) + \nabla \cdot (\varepsilon_g \rho_g \mathbf{v}_g \mathbf{v}_g) = -\varepsilon_g \nabla \mathbf{p}_g + \varepsilon_g \mathbf{v}_g \cdot \mathbf{\tau}_g + \varepsilon_g \rho_g g + \sum_{s=1}^{n} (\mathbf{K}_{sg} (\mathbf{v}_s - \mathbf{v}_g) + \dot{m}_{sg} \mathbf{v}_sg - \mathbf{\hat{m}}_g) \tag{S2}
\]
- for solid phase:
\[
\frac{\partial}{\partial t} (\varepsilon_s \rho_s \mathbf{v}_s) + \nabla \cdot (\varepsilon_s \rho_s \mathbf{v}_s \mathbf{v}_s) = -\varepsilon_s \nabla \mathbf{p}_s + \varepsilon_s \mathbf{v}_s \cdot \mathbf{\tau}_s + \varepsilon_s \rho_s g + \sum_{l=1}^{n} (\mathbf{K}_{ls} (\mathbf{v}_l - \mathbf{v}_s) + \dot{m}_{ls} \mathbf{v}_ls - \mathbf{\hat{m}}_s) \tag{S3}
\]

c) Energy conservation
- for gas phase:
\[
\frac{\partial}{\partial t} (\varepsilon_g \rho_g H_g) + \nabla \cdot (\varepsilon_g \rho_g H_g \mathbf{v}_g) = \varepsilon_g \frac{\partial \mathbf{p}_g}{\partial t} + \mathbf{\tau}_g \cdot \mathbf{\hat{v}}_g + \nabla \cdot (\mathbf{\hat{q}}_g) + S_{h,g} + \sum_{s=1}^{n} (Q_{sg} + \dot{m}_{sg} h_{sg} - \dot{m}_g) \tag{S4}
\]
- kinetic fluctuation energy conservation for solid phase:
\[
\frac{3}{2} \frac{\partial}{\partial t} (\varepsilon_s \rho_s \mathbf{\Theta}_s) + \nabla \cdot (\varepsilon_s \rho_s \mathbf{\Theta}_s \mathbf{v}_s) = -\gamma_{\Theta_s} \mathbf{\Theta}_s + \phi_{ls} \tag{S5}
\]
where \(\gamma_{\Theta_s}\) is collisional dissipation of energy (Lun et al. [S1]):
\[
\gamma_{\Theta_s} = \frac{12(1 - e_{ss}^2) e_{0,ss} e_{s}^{2/3}}{d \sqrt{\pi} \rho_{s} e_{s}^{2/3}} \tag{S6}
\]
and \(\phi_{ls}\) is kinetic energy exchange between phase l and solid phase:
\[
\phi_{ls} = -3 K_{ls} \mathbf{\Theta}_s \tag{S7}
\]
d) Chemical species conservation of the species k in phase q:
\[
\frac{\partial}{\partial t} (\varepsilon_q \rho_q Y_q^k) + \nabla \cdot (\varepsilon_q \rho_q Y_q^k \mathbf{v}_q) = -\nabla \cdot (\varepsilon_q Y_q^k) + \varepsilon_q R_q^k + \varepsilon_q S_q^k + \sum_{p=1}^{n} (\dot{m}_{pq}^k - \dot{m}_{qp}^k) \tag{S8}
\]
Table S2 Constitutive equations used in the simulations.

a) Stress tensor for each phase q:
\[\tau_q = \varepsilon_q \mu_q \left(\nabla \cdot \mathbf{v}_q + \nabla \mathbf{v}_q \right) + \varepsilon_q \left(\lambda_q - \frac{2}{3} \mu_q \right) \nabla \cdot \mathbf{v}_q \] \hspace{1cm} (S9)

b) Solid shear viscosity:
\[\mu_s = \mu_{s,\text{col}} + \mu_{s,\text{kin}} + \mu_{s,\text{fr}} \] \hspace{1cm} (S10)

where $\mu_{s,\text{col}}$ is the collisional viscosity:
\[\mu_{s,\text{col}} = \frac{4}{5} \varepsilon_s \rho_s d_s g_{0,ss} \left(1 + e_{ss} \right) \frac{(\Theta_s)}{\pi}^{1/2} \varepsilon_s \] \hspace{1cm} (S11)

and $\mu_{s,\text{kin}}$ is the kinetic viscosity (Gidaspow et al. [S1]):
\[\mu_{s,\text{kin}} = \frac{10 \varepsilon_s \rho_s d_s \sqrt{\Theta_s \pi}}{96 \varepsilon_s \left(1 + e_{ss} \right) g_{0,ss}} \left[1 + \frac{4}{5} \varepsilon_s g_{0,ss} \left(1 + e_{ss} \right) \right]^{2/5} \varepsilon_s \] \hspace{1cm} (S12)

c) Solid bulk viscosity (Lun et al. [S1]):
\[\lambda_s = \frac{4}{3} \varepsilon_s^2 \rho_s d_s g_{0,ss} \left(1 + e_{ss} \right) \left(\frac{\Theta_s}{\pi} \right)^{1/2} \varepsilon_s \] \hspace{1cm} (S13)

d) Solid Pressure (Lun et al. [S1]):
\[p_s = \varepsilon_s \rho_s \Theta_s + 2 \varepsilon_s^2 \rho_s \Theta_s g_{0,ss} \left(1 + e_{ss} \right) \] \hspace{1cm} (S14)

e) Radial distribution coefficient
- for one solid phase (Lun et al. [S1]):
\[g_{0,ss} = \left[1 - \left(\frac{e_s}{e_{s,\text{max}}} \right)^{1/3} \right] \cdot 1 \] \hspace{1cm} (S15)

- the mutual radial distribution coefficient between two solid phases:
\[g_{0,ls} = \frac{d_s g_{0,li} + d_l g_{0,ss}}{d_s + d_l} \] \hspace{1cm} (S16)
f) Granular temperature from KTGF:

\[
\frac{3 \partial}{\partial t} (\varepsilon_s \rho_s \Theta_s) = (-p_s I_s + \tau_s) \nabla v_s - \gamma \Theta_s + \phi_{ls}
\]

(S17)

g) Gas-solid momentum exchange coefficient using Gidaspow's drag model [S1]

- for \(\varepsilon_g > 0.8 \):

\[
K_{sg} = \frac{3}{4} C_D \frac{\epsilon_g \rho_g |v_s - \nabla g|}{d_s} \varepsilon_g - 2.65
\]

(S18)

where \(C_D \) is drag coefficient:

\[
C_D = \frac{24}{\epsilon_g \Re_s} \left[1 + 0.15(\epsilon_g \Re_s)^{0.687} \right]
\]

(S19)

- for \(\varepsilon_g \leq 0.8 \):

\[
K_{sg} = 150 \frac{\epsilon_g (1 - \varepsilon_g) \mu_g}{\epsilon_g d_s^2} + 1.75 \frac{\rho_g \epsilon_g |v_s - \nabla g|}{d_s}
\]

(S20)

h) Solid-solid momentum exchange coefficient:

\[
K_{ls} = K_{sl} = \frac{3(1 + \epsilon_l) \left(\frac{\pi}{2} + C_{fr,ls} \frac{\pi^2}{8} \right) \epsilon_l \rho_l \rho_l (d_l + d_s) \epsilon_l |v_l - \nabla l|}{2 \pi (\rho_l d_l^3 + \rho_s d_s^3)}
\]

(S21)

i) Gas-solid heat exchange coefficient:

\[
h_{sg} = h_{gs} = \frac{k_A \text{Nu}_s}{d_s}
\]

(S22)

where \(\text{Nu}_s \) is Nusselt number of solid phase (Gunn’s model [S1]):

\[
\text{Nu}_s = \left(7 - 10 \epsilon_g + 5 \epsilon_g^2 \right) \left(1 + 0.7 \Re_s^{0.2} \Pr^{1/3} \right) + \left(1.33 - 2.4 \epsilon_g + 1.2 \epsilon_g^2 \right) \Re_s^{0.7} \Pr^{1/3}
\]

(S23)

Table S3 The setting of phase and system properties in the simulations.

Phase properties	
Catalyst density [kg/m³]	2,200
Calcined dolomite density [kg/m³]	1,540
Mean catalyst particle size [μm] 200
Mean dolomite particle size [μm] 250
MgO content in dolomite [wt %] 40
Inlet granular temperature of solid phases [m²/s²] 1x10⁵
Packing limit of solid phases 0.60
Restitution coefficient of all phase interactions 0.90

System properties
- Outlet pressure [atm] 1
- Wall type Adiabatic
- Shear condition No slip

Table S4 The fixed parameters and the studied parameters of the 2⁵ full factorial design.

Parameters	Low level	High level
Design parameters		
Gas inlet velocity: U [m/s]	3	4
Solid flux: Gₛ [kg/m²s]	100	200
Diameter of the riser: id [m]	0.1	0.2
Height of the riser: H [m]	7 (fixed)	
Reaction parameters		
Catalyst to sorbent ratio: Cat/Sb [kg/kg]	0.58	2.54
Steam/Ethanol molar ratio: S/E [mol/mol]	6 (fixed)	
Temperature of inlets: Tᵢₙ [°C]	600	700
CaO conversion of inlet sorbent: Xₑₜₙ [%]	0 (fixed)	
Table S5 The area-averaged H₂ flux, H₂ purity and CaO conversion (X_{CaO}) near the outlet of the riser from parametric study with the 2⁵ factorial design.

Run id	T_{in} [°C]	Cat/Sb [kg/kg]	G_s [kg/m²s]	U [m/s]	H₂ flux [kg/m²s]	H₂ purity [% dry]	X_{CaO} [%]	
1	0.1	600	2.54	100	3	0.132795	85.96	2.54
2	0.1	600	2.54	100	4	0.134116	78.85	2.36
3	0.1	600	2.54	200	3	0.142458	89.01	1.47
4	0.1	600	2.54	200	4	0.163118	85.17	1.53
5	0.1	600	0.58	100	3	0.107676	80.88	0.84
6	0.1	600	0.58	100	4	0.095864	72.13	0.71
7	0.1	600	0.58	200	3	0.118917	84.78	0.51
8	0.1	600	0.58	200	4	0.124579	80.10	0.50
9	0.1	700	2.54	100	3	0.122248	89.53	2.84
10	0.1	700	2.54	100	4	0.088973	59.58	0.08
11	0.1	700	2.54	200	3	0.129442	91.93	1.70
12	0.1	700	2.54	200	4	0.150081	87.67	1.88
13	0.1	700	0.58	100	3	0.069700	59.82	0.02
14	0.1	700	0.58	100	4	0.069147	56.47	0.02
15	0.1	700	0.58	200	3	0.110062	87.66	0.62
16	0.1	700	0.58	200	4	0.116549	82.74	0.55
17	0.2	600	2.54	100	3	0.138739	88.94	1.54
18	0.2	600	2.54	100	4	0.162809	85.04	1.64
19	0.2	600	2.54	200	3	0.146765	91.30	0.84
20	0.2	600	2.54	200	4	0.173570	87.57	0.96
21	0.2	600	0.58	100	3	0.119885	84.64	0.52
22	0.2	600	0.58	100	4	0.128142	79.93	0.53
23	0.2	600	0.58	200	3	0.128984	87.32	0.30
24	0.2	600	0.58	200	4	0.142326	82.94	0.32
25	0.2	700	2.54	100	3	0.126764	91.89	1.68
26	0.2	700	2.54	100	4	0.143514	86.29	1.82
Table S6 The results of the ANOVA of the H₂ flux.

Source	Sum of squares	Degree of freedom (DF)	Mean square	F-value	P-value
C (Cat/Sb)	0.005737	1	0.005737	79.93976	<0.0001
D (Gₐ)	0.003190	1	0.003190	44.4568	<0.0001
A (id)	0.002868	1	0.002868	39.96242	<0.0001
B (Tₐ)	0.002229	1	0.002229	31.06468	<0.0001
AD	0.000702	1	0.000702	9.77882	0.004733
E (U)	0.000538	1	0.000538	7.493613	0.011736
DE	0.000419	1	0.000419	5.836395	0.024042
AE	0.000399	1	0.000399	5.552999	0.027341
Residual	0.001651	23	7.18E-05		
Cor Total	0.017732	31			

Table S7 The results of the ANOVA of the H₂ purity.
Source	Sum of squares	Degree of freedom (DF)	Mean square	F-value	P-value
D (G_s)	519.2369	1	519.2369	26.61521	<0.0001
A (id)	481.9729	1	481.9729	24.70513	<0.0001
E (U)	354.6858	1	354.6858	18.1806	0.000292
C (Cat/Sb)	281.9324	1	281.9324	14.45138	0.000092
AD	213.7666	1	213.7666	10.95732	0.003054
BD	133.1668	1	133.1668	6.825905	0.015563
AB	122.3844	1	122.3844	6.273218	0.01979
ABD	117.8375	1	117.8375	6.040152	0.021944
Residual	448.7076	23	19.50902		
Cor Total	2673.691	31			

References

[S1] ANSYS Inc., ANSYS Fluent Theory Guide 15.0, SAS IP Inc., USA, 2013.