UNIVERSAL DENOMINATORS OF HILBERT SERIES

HARM DERKSEN

Abstract. The denominator of the Hilbert series of a finitely generated R-module M does not always divide the denominator of the Hilbert series of R. For this reason, we define the universal denominator. The universal denominator of a module M is the least common multiple of the denominators of the Hilbert series of all submodules of M. The universal denominator behaves nicely with respect to short exact sequences and tensor products. It also has interesting geometric interpretations. Formulas are given for the universal denominator for rings of invariants. Dixmier gave a conjectural formula for the denominator of the Hilbert series of invariants of binary forms. We show that the universal denominator is actually equal to Dixmier's formula in that case.

1. Definitions and basic properties

Let $\mathbb{N} = \{0, 1, 2, \ldots \}$ be the set of natural numbers and let K be the base field. With a multi-graded ring of finite type we mean a multi-graded ring $R = \bigoplus_{d \in \mathbb{N}^r} R_d$ such that R_0 is a finite dimensional K-vector space and R is finitely generated over K.

Definition 1.1. If $M = \bigoplus_{d \in \mathbb{Z}^r} M_d$ is a finitely generated multi-graded R-module then M_d is finite dimensional for all d. We define the Hilbert series of M by

$$H(M, t) = \sum_{d \in \mathbb{Z}^r} \dim(M_d) t^d$$

where $t = (t_1, \ldots, t_r)$, $d = (d_1, \ldots, d_r)$ and $t^d = t_1^{d_1} t_2^{d_2} \cdots t_r^{d_r}$.

The Hilbert series $H(M, t)$ is a Laurent series in t_1, t_2, \ldots, t_r. The Hilbert series $H(R, t)$ of R itself is a power series in t_1, \ldots, t_r.

Definition 1.2. We can uniquely write $H(M, t) = A(t)/B(t)$ where $A(t)$ is a Laurent polynomial in t_1, \ldots, t_r, $B(t)$ is a polynomial in t_1, \ldots, t_r with $B(0) = 1$ and $A(t)$ and $B(t)$ do not have a common non-constant polynomial factor. We call $B(t)$ the denominator of $H(M, t)$, and we will denote it by $\text{denom}(M, t)$.

Example 1.3. Let $R = K[x_1, \ldots, x_n]$ be the multi-graded polynomial ring where the variable x_i has multidegree $d_i = (d_{i,1}, \ldots, d_{i,r}) \in \mathbb{N}^r$ for $i = 1, 2, \ldots, n$. The Hilbert series $H(R, t)$ is equal to

$$\frac{1}{(1 - t^{d_1}) \cdots (1 - t^{d_n})}.$$
Hilbert proved that every finitely generated (multi-graded) \(R \)-module \(M \) has a finite resolution of finitely generated free \(R \)-modules (see [4]). His arguments also showed that \(H(M, t) \) of \(M \) can be written as

\[
\frac{A(t)}{(1 - t^{d_1}) \cdots (1 - t^{d_s})},
\]

where \(A(t) \) is a Laurent polynomial in \(t_1, \ldots, t_r \). The denominator of \(H(M, t) \) must divide

\[
(1 - t^{d_1}) \cdots (1 - t^{d_s}).
\]

The argument in the previous example heavily uses the fact that finitely generated modules over graded polynomial rings have finite free resolutions. The graded polynomial rings are the only graded rings over \(K \) for which the module \(K \) has a finite free resolution (see [5]). For an arbitrary multi-graded ring \(R \) of finite type there is no reason why the denominator of the Hilbert series of a finitely generated graded module should divide the denominator of the Hilbert series of \(R \). This is indeed not always the case as the following example shows.

Example 1.4. Hilbert series of submodules and quotient modules may have a larger denominator. For example, take the graded ring \(R = K[x, y]/(y^2) \) where \(x \) has degree 2 and \(y \) has degree 1. We have

\[
H(R, t) = \frac{1 + t}{1 - t^2} = \frac{1}{1 - t}, \quad \text{denom}(R, t) = 1 - t
\]

Now \((y)\) is an ideal of \(R \) and \(R/(y) \cong K[x] \). We get

\[
H((y), t) = \frac{t}{1 - t^2}, \quad \text{denom}((y), t) = 1 - t^2
\]

and

\[
H(K[x], t) = \frac{1}{1 - t^2}, \quad \text{denom}(K[x], t) = 1 - t^2.
\]

So the submodule \((y)\) and the quotient module \(K[x] \) both have Hilbert series with larger denominator. Also note that the modules \((y)\) and \(K[x] \) cannot have finite free resolutions.

Definition 1.5. Let \(B(t) \) be the unique smallest polynomial in \(t_1, \ldots, t_r \), such that \(B(0) = 1 \), and \(B(t)H(N, t) \) is a Laurent polynomial for every multi-graded submodule \(N \subseteq M \). We call \(B(t) \) the **universal denominator** of \(H(M, t) \), and we denote it by \(\text{udenom}(M, t) \) (or \(\text{udenom}_R(M, t) \) since it may depend on \(R \) if \(M \) is a finitely generated module for several choices of \(R \)).

Remark 1.6. From Example 1.3 follows that the universal denominator is well defined, i.e., there exists a polynomial \(B(t) \) such that \(B(t)H(N, t) \) is a Laurent polynomial for all submodules \(N \) of \(M \). Indeed, if \(R \) is generated by homogeneous \(f_1, \ldots, f_s \) of degrees
universal denominators of Hilbert series

$d_1, \ldots, d_s \in \mathbb{N}^r$ respectively, then any finitely generated module of R can be viewed as a finitely generated module of $K[x_1, \ldots, x_s]$ by the surjective ring homomorphism

$$K[x_1, \ldots, x_s] \to R = K[f_1, \ldots, f_s],$$

where $x_i \mapsto f_i$ for all i. Every submodule N of M is a finitely generated $K[x_1, \ldots, x_s]$-module, and therefore

$$(1 - t^{d_1}) \cdots (1 - t^{d_s}) H(N, t).$$

is a Laurent polynomial.

Lemma 1.7. If

$$0 \to M' \to M \xrightarrow{p} M'' \to 0$$

is an exact sequence of finitely generated graded R-modules then

$$\text{udenom}(M, t) = \text{lcm}(\text{udenom}(M', t), \text{udenom}(M'', t))$$

where lcm is the least common multiple.

Proof. It follows easily from the definition that udenom(M', t) and udenom(M'', t) divide udenom(M, t). If Z is a multi-graded submodule of M then we have an exact sequence

$$0 \to M' \cap Z \to Z \xrightarrow{p} p(Z) \to 0.$$

Since $H(Z, t) = H(M' \cap Z, t) + H(p(Z), t)$ it follows that $\text{denom}(Z, t)$ divides

$$\text{lcm} \left(\text{denom}(M' \cap Z, t), \text{denom}(p(Z), t) \right).$$

Since $M' \cap Z \subseteq M'$ and $p(Z) \subseteq M''$ for all submodules $Z \subseteq M$, we have that udenom(M, t) divides $\text{lcm}(\text{udenom}(M', t), \text{udenom}(M'', t))$. \qedsymbol

Definition 1.8. For $d \in \mathbb{N}$, let $\phi_d(t) \in \mathbb{Z}[t]$ be the unique (irreducible) polynomial with $\phi_d(0) = 1$ and whose zeroes are exactly the primitive d-th roots of unity (up to a scalar ± 1 this is the usual d-th cyclotomic polynomial). If $d = (d_1, \ldots, d_r) \in \mathbb{N}^r$ and $t = (t_1, \ldots, t_r)$, then we define $\phi_d(t) = \phi_k(t^{d/k})$ where $k = \gcd(d_1, d_2, \ldots, d_r) \in \mathbb{N}$ is the greatest common divisor.

If $d, e \in \mathbb{N}^r$ then we say that d divides e if there exists a $k \in \mathbb{N}$ such that $e = kd$. The least common multiple $\text{lcm}(d, e)$ is the smallest nonzero vector f divisible by d and e if such a vector f exists. Otherwise $\text{lcm}(d, e)$ is defined to be the zero vector. For example, we have $\text{lcm}((4, 2), (6, 3)) = (12, 6)$ and $\text{lcm}((4, 2), (2, 2)) = (0, 0)$.

Definition 1.9. Suppose now that R is a multi-graded ring of finite type over a field K. Let $I^{[d]}$ be the ideal of R generated by all R_e for which d does not divide e.

Theorem 1.10. Suppose that M is a finitely generated graded R-module.

(a) We have

$$\text{udenom}(M, t) = \prod_{d \in \mathbb{N}^r} \phi_d(t)^{m_d}$$

where m_d is the dimension of the support of $M/I^{[d]}M$.

(b) The universal denominator \(\text{udenom}(M, t) \) is the greatest common divisor of all
\[
(1 - t^{d_1})(1 - t^{d_2}) \cdots (1 - t^{d_s})
\]
for which there exist homogeneous \(f_1, f_2, \ldots, f_s \in R \) of degrees \(d_1, d_2, \ldots, d_s \) respectively such that \(M \) is a finitely generated \(K[f_1, \ldots, f_s] \)-module.

Proof. Define
\[
A(t) = \prod_{d \in \mathbb{N}^r} \phi_d(t)^{m_d}
\]
and let \(B(t) \) be the greatest common divisor of all
\[
(1 - t^{d_1})(1 - t^{d_2}) \cdots (1 - t^{d_s})
\]
for which there exist homogeneous \(f_1, \ldots, f_s \in R \) of degrees \(d_1, d_2, \ldots, d_s \) respectively such that \(M \) is a finitely generated \(K[f_1, \ldots, f_s] \)-module. (We normalize such that \(B(0) = 1 \).)

The ring \(R[d] = R/I[d] \) is graded, \(R[d] = \bigoplus_{k \geq 0} R_{kd} \). Let us define
\[
M_e^{[d]} := \bigoplus_{a-e \in \mathbb{Z}d} M_a^{[d]}
\]
Now \(M_e^{[d]} \) is a \(R \)-submodule of \(M^{[d]} \). There is a finite decomposition
\[
M^{[d]} = \bigoplus_{e \in \mathbb{Z}r/\mathbb{Z}d} M_e^{[d]}
\]
Because \(M^{[d]} \) has \(m_d \)-dimensional support, \(M_e^{[d]} \) has \(m_d \)-dimensional support for some \(e \in \mathbb{Z}r \). The Hilbert series \(H(M_e^{[d]}, t) \) has the form \(t^e P(t^d) \) for some rational function \(P(t) \). Therefore \((1 - t^d)^{m_d} \) divides \(\text{denom}(M_e^{[d]}, t) \), \(\text{udenom}(M^{[d]}, t) \) and \(\text{udenom}(M, t) \). In particular, \(\phi_d(t)^{m_d} \) divides \(\text{udenom}(M, t) \). We conclude that \(A(t) \) divides \(\text{udenom}(M, t) \).

From Remark 1.6 follows that \(\text{udenom}(M, t) \) divides
\[
(1 - t^{d_1})(1 - t^{d_2}) \cdots (1 - t^{d_s})
\]
whenever there exist \(f_1, f_2, \ldots, f_s \in R \) as in the theorem. This shows that \(\text{udenom}(M, t) \) divides \(B(t) \).

Let us write
\[
B(t) = \prod_{d \in \mathbb{N}^r} \phi_d(t)^{a_d}
\]
Choose \(g_1, \ldots, g_s \in I[d] \) homogeneous generators. Let \(d_i \) be the degree of \(g_i \). We may assume that \(d \) does not divide \(d_i \) for all \(i \). Since \(M^{[d]} \) has \(m_d \)-dimensional support, we may choose \(f_1, \ldots, f_{m_d} \) homogeneous of degrees \(e_1, \ldots, e_{m_d} \) (all nonzero multiples of \(d \)) such that
\[
M^{[d]}/(f_1, \ldots, f_{m_d})M^{[d]} = M/(g_1, \ldots, g_s, f_1 \ldots, f_{m_d})M
\]
is finite dimensional. It follows that M is a finite $K[g_1, \ldots, g_s, f_1, \ldots, f_{m_d}]$-module by the homogeneous Nakayama Lemma. Now $B(t)$ divides

$$(1 - t^{d_1}) \cdots (1 - t^{d_s})(1 - t^{e_1}) \cdots (1 - t^{e_m}).$$

It follows that $a_d \leq m_d$. Since this holds for all d, we get that $B(t)$ divides $A(t)$.

We have proven that $A(t)$ divides $udenom(M,t)$, $udenom(M,t)$ divides $B(t)$ and $B(t)$ divides $A(t)$. Moreover, we have $A(0) = udenom(M,0) = B(0) = 1$. It follows that

$$udenom(M,t) = A(t) = B(t).$$

□

Definition 1.11. Suppose that $R = \bigoplus_{d \in \mathbb{N}^r} R_d$ and $S = \bigoplus_{d \in \mathbb{N}^r} S_d$ are both finitely generated multi-graded rings. Then we can define the graded tensor product

$$R \otimes S = \bigoplus_{d \in \mathbb{N}^r} (R \otimes S)_d$$

where

$$(R \otimes S)_d = \bigoplus_e R_e \otimes S_{d-e}.$$

In a similar fashion we can define the tensor product of a graded R-module with a graded S-module.

Lemma 1.12. If R and S are as in the previous definition and M and N are finitely generated modules for R and S respectively, then

$$udenom_{R \otimes S}(M \otimes N, t) = udenom_R(M,t) udenom_S(N,t).$$

Proof. Note that

$$(M \otimes N)^{[d]} = M^{[d]} \otimes N^{[d]}.$$

Now it follows from Theorem 1.10(a). □

2. Geometry of the universal denominator

Let us now give a geometric description of the universal denominator. For convenience, we will assume that the base field K is algebraically closed from now on. Let X be the affine variety corresponding to R. The multigrading on R corresponds to the action of an r-dimensional torus T on X.

Definition 2.1. To each $d \in \mathbb{N}^r$ we can associate the character of T defined by $t \mapsto t^{d}$. Let $T^{[d]}$ be the kernel of this character and let $X^{[d]}$ be the zero set of the ideal $I^{[d]}$.

Lemma 2.2. Suppose that $d = (d_1, \ldots, d_r)$ and the characteristic of K does not divide d_i for some i. Then the set $X^{[d]}$ is equal to $X^{T^{[d]}}$, the fixed point set of $T^{[d]}$.

Proof. Suppose that \(x \in X^{[d]} \). Let \(f \in R \) be homogeneous of degree \(e \). If \(e \) is not divisible by \(d \) then \(f(x) = f(t \cdot x) = 0 \). If \(e \) is divisible by \(d \), then
\[
f(x) = t^e f(x) = (t \cdot f)(x) = f(t^{-1} \cdot x)
\]
for all \(t \in T^{[d]} \). It follows that \(f(x) = f(t \cdot x) \) for all \(f \in R \), hence \(x = t \cdot x \) for all \(t \in T^{[d]} \). This shows that \(x \in X_T^{[d]} \).

Conversely, if \(x \in X_T^{[d]} \), \(f \in I^{[d]} \) is homogeneous of degree \(e \), and \(e \) is not divisible by \(d \), then
\[
f(x) = f(t^{-1} \cdot x) = (t \cdot f)(x) = t^e f(x)
\]
for all \(t \in T^{[d]} \). We can choose \(t \in T^{[d]} \) such that \(t^e \neq 1 \) (because \(d \) does not divide \(e \) and \(d \) is not divisible by the characteristic of \(K \)\). It follows that \(f(x) = 0 \). We have that \(x \in X^{[d]} \), because \(I^{[d]} \) is generated by such \(f \). \(\square \)

3. THE UNIVERSAL DENOMINATOR IN INVARIANT THEORY

The notion of the universal denominator is very useful for Hilbert series of invariant rings. In fact, many of the results in this paper where inspired by some arguments in the paper [2] where the Hilbert series of invariant rings of quiver representations were studied.

Suppose that \(S = \bigoplus_{d \in \mathbb{N}^r} S_d \) is a multi-graded ring of finite type over \(S_0 = K \) and suppose that a reductive linear algebraic group \(G \) acts regularly on \(S \) such that the action respects the multi-grading. We know that the invariant ring \(R := S^G \) is finitely generated over \(K \) as well. As before we define \(I^{[d]} \subseteq R \) to be the ideal generated by all \(R_e \) such that \(d \) does not divide \(e \). Also define \(J^{[d]} = SI^{[d]} \) be the ideal of \(S \) generated by \(I^{[d]} \). Geometrically, let \(X \) be the affine variety corresponding to \(R \) and let \(Y \) be the affine variety corresponding to \(S \). Let \(\pi : Y \to X \) be the categorical quotient map corresponding to the inclusion \(R = S^G \subseteq S \). The multigrading on \(R \) and \(S \) correspond to the action of a torus \(T \) on \(X \) and on \(Y \). The quotient map \(\pi : Y \to X \) is \(T \)-equivariant. The zero set of \(I^{[d]} \) is equal to \(X^{[d]} \) which is the set of \(T^{[d]} \) fixed points on \(X \). The zero set of \(J^{[d]} = SI^{[d]} \) is \(\pi^{-1}(X^{[d]}) \subseteq Y \).

Definition 3.1. Let \(\zeta \in T \) and let \(g \in G \). Then we define
\[
Y^g_\zeta = \{ y \in Y \mid g \cdot y = \zeta \cdot y \}.
\]

Remark 3.2. For some of the arguments that we are going to present it is useful to have an element \(\zeta \in T \) such that \(\zeta \) generates a dense subgroup of the torus \(T \). It is not always possible to choose such an element. For example if the base field is the algebraic closure of a finite field then every element of \(T \) will have finite order. On the other hand, if \(K \) contains \(\mathbb{Q} \) or \(K \) contains an element that is transcendent over the prime field, then there will exists such an element \(\zeta \in T \) constructed as follows. Choose distinct normalized valuations \(v_1, v_2, \ldots, v_r \). Choose \(\zeta_i \in K^* \) such that \(v_i(\zeta) = 1 \) and \(v_j(\zeta_i) = 0 \) for \(j \neq i \). Then the group generated by \(\zeta = (\zeta_1, \ldots, \zeta_r) \in T \) will lie dense in \(T \). By extending the base field with transcendental elements we may always assume
that there exists an element $\zeta \in T$ which generates a dense subgroup. If $d \in \mathbb{N}^*$ is not divisible by the characteristic of K, then similar arguments show that $\zeta \in T^{[d]}$ can be chosen such that ζ generates a dense orbit of $T^{[d]}$.

Proposition 3.3. Suppose that d is not divisible by the characteristic of K and suppose that $\zeta \in T^{[d]}$ generates a dense subgroup of $T^{[d]}$. If the orbit $G \cdot y$ is closed, then $\pi(y) \in X^{[d]}$ if and only if $y \in Y^\zeta$ for some $g \in G$.

Proof. Suppose that $G \cdot y$ is closed. Then $\pi(y) \in X^{[d]}$ if and only if

$$\pi(\zeta \cdot y) = \zeta \cdot \pi(y) = \pi(y)$$

Every fiber of π has only one closed orbit and y and $\zeta \cdot y$ have closed orbits. In particular, $\pi(\zeta \cdot y) = \pi(y)$ if and only if $\zeta \cdot y = g \cdot y$ for some $g \in G$. \square

Theorem 3.4. Suppose that G is a connected linearly reductive algebraic group and H is linearly reductive subgroup of G containing a maximal torus of G. Then $\text{udenom}(S^G, t)$ divides $\text{udenom}(S^H, t)$.

Proof. Let Y be the variety corresponding to S and let $\pi_G : Y \to Y/\!\!/G$ be the categorical quotient with respect to G (so $Y/\!\!/G$ is the variety corresponding to S^G) and let $\pi_H : Y \to Y/\!\!/H$ be the categorical quotient with respect to H. The inclusion $S^G \subseteq S^H$ defines a morphism $\pi_{G/H} : Y/\!\!/H \to Y/\!\!/G$. Obviously $\pi_{G/H}((Y/\!\!/H)\!^{[d]}) \subseteq (Y/\!\!/G)\!^{[d]}$ because $\pi_{G/H}$ is T-equivariant (the inclusion $R^G \subseteq R^H$ respects the multi-grading). We will prove that we have equality. Suppose that $x \in (Y/\!\!/G)\!^{[d]}$. There exists $y \in \pi_G^{-1}(x)$ with a closed orbit, and therefore there must exist a $g \in G$ such that $g \cdot y = \zeta \cdot y$ where ζ generates a dense subgroup of $T^{[d]}$. We have a multiplicative Jordan decomposition $g = g_s g_u$ where g_s is semi-simple and g_u is unipotent. Let U be the Zariski closure of the group generated by g_u. Because U also is contained in the Zariski closure of the group generated by g, we have $U \cdot y \subseteq T^{[d]} \cdot y \subseteq T \cdot y$. All elements in the U-orbit $U \cdot y$ have the same stabilizers in T, and this shows that actually $U \cdot y \subseteq T \cdot y$. Now U is either the trivial group or the additive group. Since there is no way to embed the affine line into a torus, the orbit $U \cdot y$ must be a point and $g_u \cdot y = y$. It follows that $g_s \cdot y = \zeta \cdot y$. Now g_s is conjugate to an element in the maximal torus of G. Therefore, there exists $a \in G$ such that $h := ag_s a^{-1} \in H$. We get that $h \cdot (a \cdot y) = \zeta \cdot (a \cdot y)$ and we get $z := \pi_H(a \cdot y) \in (Y/\!\!/H)\!^{[d]}$. We also have $\pi_{G/H}(z) = \pi_G(a \cdot y) = \pi_G(y) = x$. In particular we now have that

$$\dim(Y/\!\!/H)\!^{[d]} \geq \dim(Y/\!\!/G)\!^{[d]}.$$

The theorem follows from Theorem 3.10(a). \square

Remark 3.5. We sketch an alternative proof of Theorem 3.4 in the case where H is the maximal torus. Suppose that I is an ideal of S^G. Then $I = J^G$ where $J = IS$. Now from Weyl’s character formula follows

$$H(I, t) = \sum_{w \in W} (-1)^{l(w)} H((J \otimes \chi_{w(\rho) - \rho})^H, t)$$
where W is the Weyl group, $\ell(w)$ is the length of an element $w \in W$, ρ is the sum of the fundamental weights and χ_λ is the character of H corresponding to the weight λ. Since J is a finitely generated S-module, $(J \otimes \chi_{w(\rho)-\rho})^H$ is a finitely generated S^H-module. In particular, the denominator of $H((J \otimes \chi_{w(\rho)-\rho})^H, t)$ divides the universal denominator of S^H. It follows that the denominator of $H(I, t)$ divides the universal denominator of S^H. Since I can be an arbitrary ideal, the universal denominator of S^G divides the universal denominator of S^H.

Suppose that G is a linearly reductive group acting regularly on a ring S and V is an irreducible representation of G. Then $(S \otimes V)^G$ is a finitely generated S^G-module and it is called a module of covariants. The universal denominator of an invariant ring has the following interesting interpretation in terms of modules of covariants.

Theorem 3.6. Suppose that G is a linearly reductive algebraic group acting homogeneously and rationally on a multi-graded polynomial ring S. The universal denominator of $R = S^G$ is

$$\text{lcm}_V \{\text{denom}((S \otimes V)^G, t)\},$$

where V runs over all irreducible representations of G.

Proof. Clearly $\text{denom}(S \otimes V)^G, t)$ divides $\text{udenom}(R, t)$ because the module $(S \otimes V)^G$ of covariants is a finitely generated R-module. For any multi-graded R-module M, there exists a finite free G-equivariant graded minimal resolution of S-modules

$$0 \rightarrow S \otimes V_k \rightarrow S \otimes V_{k-1} \rightarrow \cdots \rightarrow S \otimes V_0 \rightarrow S \otimes_R M \rightarrow 0,$$

where $V_i = \text{Tor}^i(K, S \otimes_R M)$ is a multi-graded representation of G for all i. Taking G-invariants (which is an exact functor, since G is linearly reductive) we get a free resolution

$$0 \rightarrow (S \otimes V_k)^G \rightarrow (S \otimes V_{k-1})^G \rightarrow \cdots \rightarrow (S \otimes V_0)^G \rightarrow (S \otimes_R M)^G = M \rightarrow 0.$$

It follows that

$$H(M, t) = \sum_{i=0}^{k} (-1)^i H((S \otimes V_i)^G, t).$$

This shows that $\text{udenom}(R, t)$ divides

$$\text{lcm}_i \{\text{denom}(S \otimes V_i)^G, t)\},$$

and the theorem follows. \qed

4. **Universal Denominators for Finite Groups Invariants**

Suppose now that G is a finite group. We use the same notation as in the previous section.
Corollary 4.1. Suppose that d is not divisible by the characteristic of K, and $\zeta \in T[d]$ generates a Zariski dense subgroup. Then we have

$$\pi^{-1}(X[d]) = \bigcup_{g \in G} Y^g_{\zeta}$$

Proof. This follows from Proposition 3.3 because every G-orbit is closed. □

Theorem 4.2. Suppose that the universal denominator of $H(R, t)$ is

$$\prod_{d \in \mathbb{N}} \phi_d(t)^{m_d}.$$

If the characteristic of K does not divide d, then

$$m_d = \max\{\dim Y^g_{\zeta} \mid g \in G\}.$$

Proof. By Corollary 4.1 we have that

$$\pi^{-1}(X[d]) = \bigcup_{g \in G} Y^g_{\zeta}.$$

Since π is finite,

$$m_d = \dim X[d] = \dim \pi^{-1}(X[d]) = \max\{\dim Y^g_{\zeta} \mid g \in G\}. \quad \Box$$

Corollary 4.3. Assume that the characteristic of the base field K is 0. Suppose that Y is a vector space on which the finite group G acts linearly. Now $S = K[Y]$ is graded $S = \bigoplus_{d=0}^{\infty} S_d$. For $g \in G$, let $\det(\text{id} - tg)$ be the determinant of the endomorphism $\text{id} - tg$ where t is an indeterminate. Then the universal denominator of $H(S^G, t)$ is

$$\text{lcm}\{\det(\text{id} - tg) \mid g \in G\}$$

where lcm is the least common multiple.

Proof. Let ζ be a d-th root of unity. The multiplicity of $(1 - \zeta t)$ in $\det(\text{id} - tg)$ is exactly $\dim V^g_{\zeta}$. It follows that the multiplicity of $(1 - \zeta t)$ in

$$\text{lcm}\{\det(\text{id} - tg) \mid g \in G\}$$

is exactly

$$m_d = \max\{\dim V^g_{\zeta} \mid g \in G\}. \quad \Box$$

Remark 4.4. Corollary 4.3 extends to the case that the characteristic of the field K does not divide the group order. In this more general case $\det(\text{id} - tg)$ has coefficients in K, not in \mathbb{Z}, and \mathbb{Z} is not necessarily a subring of K. Since $\det(\text{id} - tg)$ is a product of cyclotomic polynomials, we can lift each cyclotomic polynomial with coefficients in K to a cyclotomic polynomial with coefficients in \mathbb{Z}. In this way we can lift $\det(\text{id} - tg)$ to a polynomial with coefficients in \mathbb{Z}, and Corollary 4.3 will make sense.
Remark 4.5. Let us recall Molien’s formula (see for example [1, §3.2])

\[H(S^G, t) = \sum_{g \in G} \frac{1}{\det(id - tg)}. \]

Molien’s formula also holds when the characteristic of \(K \) is positive, but does not divide the order of \(G \). As in the previous remark, \(\det(id - tg) \) should be lifted to a polynomial with integer coefficients in that case. It follows from Molien’s formula that the denominator of \(H(S^G, t) \) divides \(\text{lcm}\{\det(id - tg) \mid g \in G\} \).

Our result here is stronger: the universal denominator is always equal to this expression. However, it may happen that the denominator of \(H(S^G, t) \) is smaller than the universal denominator of \(H(S^G, t) \) (see Example 4.7).

Example 4.6. Consider the action of the symmetric group \(\Sigma_n \) on \(Y := K^n \) where \(K \) is an algebraically closed field of characteristic 0. The coordinate ring \(S := K[Y] \) is graded: \(S = \bigoplus_{d=0}^\infty S_d \). Suppose \(g \in \Sigma_n \) has cycle structure \((k_1, k_2, \ldots, k_r) \) with \(k_1 \geq k_2 \geq \cdots \geq k_r \geq 1 \) and \(k_1 + k_2 + \cdots + k_r = n \), i.e., \(k_1, k_2, \ldots, k_r \) are the lengths of the cycles of the permutation \(g \). If \(\zeta \) is a \(d \)-th root of unity, then

\[\dim V^g_\zeta = \#\{i \mid d \text{ divides } k_i\}. \]

We have

\[\max_{g \in G}\{\dim V^g_\zeta\} = \left\lfloor \frac{n}{d} \right\rfloor. \]

The maximum is reached if \(g \) has \(\lfloor n/d \rfloor \) \(d \)-cycles. So the universal denominator of \(S^{\Sigma_n} \) is

\[\prod_{d=0}^\infty \phi_d(t)^{\lfloor n/d \rfloor} = (1 - t)(1 - t^2) \cdots (1 - t^n). \]

We can directly verify this. It is well known that \(S^{\Sigma_n} = K[e_1, e_2, \ldots, e_n] \) where \(e_i \) is the \(i \)-th elementary symmetric function of degree \(i \). The Hilbert series of \(S^{\Sigma_n} \) is

\[H(S^{\Sigma_n}, t) = \frac{1}{(1 - t)(1 - t^2) \cdots (1 - t^n)}. \]

Since \(S^{\Sigma_n} \) is a polynomial ring, we also have that the denominator of any finitely generated \(S^G \)-module has a denominator dividing \((1 - t)(1 - t^2) \cdots (1 - t^n) \). So indeed, \((1 - t)(1 - t^2) \cdots (1 - t^n) \) is the universal denominator of \(S^{\Sigma_n} \).

Example 4.7. Let \(A_n \subset \Sigma_n \) be the alternating group acting on \(K^n \) as in the previous example. We have

\[\text{udenum}(S^{A_n}, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{m_d} \]

where

\[m_d := \max\{\dim V^g_\zeta \mid g \in A_n\} \]
for any primitive d-th root of unity ζ. We now have that
\[
m_d = \begin{cases}
\lfloor n/d \rfloor & \text{if } d \text{ is odd, } \lfloor n/d \rfloor \text{ is even or } d|n/d| \leq n - 2, \\
\lfloor n/d \rfloor - 1 & \text{otherwise.}
\end{cases}
\]

If d is odd or $\lfloor n/d \rfloor$ is even, then this maximum is reached by taking for g a product of $\lfloor n/d \rfloor$ disjoint d-cycles (this indeed gives an even permutation). Suppose now that d is even and $\lfloor n/d \rfloor$ is odd. If $d|n/d| \leq n - 2$, then the maximum is reached by taking for g a product of $\lfloor n/d \rfloor$ d-cycles and a 2-cycle. In any other case, the maximum is achieved by taking $\lfloor n/d \rfloor - 1$ d-cycles.

Let us compute the denominator of $H(S^{A_n}, t)$. We have
\[
S^{A_n} = S^{\Sigma_n} \oplus S^{\Sigma_n} \Delta
\]
where
\[
\Delta = \prod_{1 \leq i < j \leq n} (x_i - x_j)
\]
is an A_n-invariant of degree $n(n-1)/2$. In particular,
\[
H(S^{A_n}, t) = \frac{1 + t^{n(n-1)/2}}{(1-t)(1-t^2) \cdots (1-t^n)}.
\]
Note that
\[
1 + t^{n(n-1)/2} = \frac{1 - t^{n(n-1)}}{1 - t^{n(n-1)/2}} = \prod_d \phi_d(t)
\]
where the product is over all d with $d \mid n(n-1)$ and $d \nmid n(n-1)/2$. These are exactly all d such that $n(n-1)/d$ is an odd positive integer. So we have
\[
\text{denom}(S^{A_n}, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{a_d}
\]
where
\[
a_d = \begin{cases}
\max\{0, \lfloor n/d \rfloor - 1\} & \text{if } n(n-1)/d \text{ is an odd positive integer,} \\
\lfloor n/d \rfloor & \text{otherwise.}
\end{cases}
\]
The reader may check that $a_d \leq m_d$ for all d. Note that in this example, the denominator is not always equal to the universal denominator. For example, if we take $n = 10$, we have
\[
\text{denom}(R, t) = \phi_1(t)^{10} \phi_2(t)^4 \phi_3(t)^3 \phi_4(t)^2 \phi_5(t)^2 \phi_7(t) \phi_8(t) \phi_9(t).
\]
and
\[
\text{udenom}(R, t) = \phi_1(t)^{10} \phi_2(t)^4 \phi_3(t)^3 \phi_4(t)^2 \phi_5(t)^2 \phi_6(t) \phi_7(t) \phi_8(t) \phi_9(t).
\]
Note that the universal denominator has an additional factor $\phi_6(t) = 1 - t + t^2$. This means that although $\phi_6(t)$ does not appear in the denominator of $H(R, t)$, it does appear in the denominator $H(M, t)$ for some finitely generated R-module. We will describe such a module. Define the ideals
\[
q = (e_1, e_2, e_3, e_4, e_5, e_7, e_8, e_9, e_{10})
\]
and
\[p = q + (\Delta) \]
of \(R \). We claim that \(R/p \) is the polynomial ring generated by (the image of) \(e_6 \).

Note that \(e_6 \) does not lie in the radical ideal \(\sqrt{Sq} \) of \(S_q \), since
\[e_1 = e_2 = \cdots = e_5 = e_7 = \cdots = e_{10} = 0 \]
does not imply that \(e_6 = 0 \). Also note that \(\Delta \) does lie in \(\sqrt{Sp} = \sqrt{S_q} \) (since the polynomial \(X^{10} + e_6 X^4 \) has a multiple zero, namely 0). Obviously, \(R/p \) is generated by \(e_6 \). Also, no power of \(e_6 \) lies in \(p \) because \(e_6 \notin \sqrt{Sp} = \sqrt{S_q} \). It follows that \(R/p \) is the polynomial ring generated by the invariant \(e_6 \) of degree 6. In particular, we have
\[H(R/p, t) = \frac{1}{1 - t^6}. \]
so \(\phi_6(t) \) divides the denominator of the Hilbert series of the \(R \)-module \(R/p \).

5. Universal Denominators for Invariants of Tori

Let \(K \) be an algebraically closed base field of characteristic 0. Let \(G := (K^*)^l \) be an \(l \)-dimensional torus acting on \(Y := K^n \) diagonally. The coordinate ring of \(Y \) is \(S := K[Y] = K[y_1, \ldots, y_n] \). If \(g = (g_1, \ldots, g_l) \in G \) and \(\omega = (\omega_1, \ldots, \omega_l) \in \mathbb{Z}^l \) then we write \(g^\omega = g_1^{\omega_1} \cdots g_l^{\omega_l} \). Since \(G \) acts diagonally, there exist \(\omega_1, \omega_2, \ldots, \omega_n \in \mathbb{Z}^l \) such that \(g \cdot y_i = g^{\omega_i} \cdot y_i \). We assume that \(K[Y] \) is multi-graded such that \(y_i \) is homogeneous of degree \(d_i \) for all \(i \) with \(d_1, \ldots, d_n \in \mathbb{N}^r \). Let \(\bar{R} = S^G \) be the invariant ring. In this section, we would like to describe the universal denominator of the Hilbert series of \(R \).

Suppose that \(I \subseteq \{1, 2, \ldots, n\} \) is a subset. We define \(\Omega_I \) to be the \(\mathbb{Z} \)-module generated by \(\omega_i, i \in I \). We let \(C_I \) to be the polytope spanned by \(\omega_i, i \in I \) inside \(\Omega_I \otimes_{\mathbb{Z}} \mathbb{R} \). We let \(M_I \subseteq \mathbb{Z}^l \times \mathbb{Z}^r \) be the module generated by all \((\omega_i, d_i), i \in I \).

Theorem 5.1. Write
\[\text{udenom}(R, t) = \prod_{d \in \mathbb{N}^r} \phi_d(t)^{m_d}. \]
We have
\[m_d = \max_I \{ \#I - \text{rank } \Omega_I \} \]
where \(I \) runs over all subsets of \(\{1, 2, \ldots, n\} \) such that 0 lies in the interior of \(C_I \) and \(M_I \cap \{0\} \times \mathbb{Z}^r \subseteq \{0\} \times \mathbb{Z}d \).

Proof. Let us define
\[Y_I = \{(y_1, y_2, \ldots, y_n) \in Y \mid y_i = 0 \text{ for all } i \notin I\}. \]
Let \(Z^{[d]} \subseteq Y \) be the closure of the (constructible) set of all closed orbits in \(\pi^{-1}(X^{[d]}) \). We claim that \(Z^{[d]} \) is a union of sets of the form \(Y_I \) with \(I \subseteq \{1, 2, \ldots, n\} \).
Take ζ a generator of a dense Zariski dense subgroup of $T^{[d]}$. Note that $Z^{[d]}$ is contained in the set of closed orbits in $\bigcup_{g \in S} Y^g_\zeta$ where S ranges over a subset of G by Proposition 3.3. Each Y^g_ζ is of the form Y_I for some $I \subseteq \{1, 2, \ldots, n\}$ and the closure of the union of closed orbits in Y_I is equal to Y_I for some subset $J \subseteq I$ (namely, take the largest face F of \mathcal{C}_I such that 0 lies in the interior of F, then let J be the set of all i with $\omega_i \in F$). This shows that $Z^{[d]}$ is a finite union of sets of the form Y_I with $I \subseteq \{1, 2, \ldots, n\}$ such that the general orbit of Y_I is closed.

Now it follows that $m_d = \dim X^{[d]} = \dim \pi(Z^{[d]})$
is the maximum of all $\dim \pi(Y_I)$ with $Y_I \subseteq Z^{[d]}$ and such that the general orbit of Y_I is closed. If we restrict π to such a set Y_I, then for $y \in Y_I$ in general position $\pi^{-1}(\pi(y))$ is the (closed) orbit of y which has dimension $\text{rank } \Omega_I$. Since $\dim Y_I = \#I$ this shows that$$\dim \pi(Y_I) = \#I - \text{rank } I.$$

Note that the general orbit of Y_I is closed if and only if 0 lies in the interior of \mathcal{C}_I. Let us assume that the general orbit in Y_I is closed. We claim that $Y_I \subseteq Z^{[d]}$ if and only if $M_I \cap \{0\} \times \mathbb{Z}^r \subseteq \{0\} \times \mathbb{Z}^d$.

First note that $Y_I \subseteq Z^{[d]}$ if and only if $Y_I \subseteq Y^g_\zeta$ for some $g \in G$. Now $Y_I \subseteq Y^g_\zeta$ if and only if the system of equations

\begin{equation}
(g^\omega_i = \zeta^d_i, \ i \in I)
\end{equation}

has a solution $g \in G$. Let $A \subseteq (K^*)^I$ be the subgroup of all $(g^\omega_i, i \in I)$, with $g \in G$. Let $B \subseteq (K^*)^I$ be the subgroup of all $(t^d_i, i \in I)$, with $t \in T^{[d]}$. Now the system of equations (1) has a solution if and only if $A \supseteq B$. The coordinate ring of the algebraic group $(K^*)^I$ is

$$R = K[z_i, z_i^{-1}, i \in I]$$

The vanishing ideals $I(A), I(B) \subseteq R$ are generated by elements of the form $m - 1$ where m is a Laurent monomial in $z_i, i \in I$. Now $A \supseteq B$ if and only if $I(A) \subseteq I(B)$. Suppose that

$$m = \prod_{i \in I} z_i^{a_i}$$

then $m - 1 \in I(A)$ if and only if

$$\prod_{i \in I} g_i^{a_i \omega_i} = 1$$

for all $g \in G$ which is equivalent to $\sum_{i \in I} a_i \omega_i = 0$. On the other hand $m - 1 \in I(B)$ if and only if

$$\prod_{i \in I} t_i^{a_i d_i}$$
lies in the ideal generated by \(t^d - 1 \). So \(m - 1 \in I(B) \) if and only if \(\sum_{i \in I} a_i d_i \) is a multiple of \(d \). This shows that \(I(A) \subseteq I(B) \) if and only if

\[
M_I \cap \{0\} \times \mathbb{Z}^r \subseteq \{0\} \times \mathbb{Z}d.
\]

□

Let us now consider the case that \(r = 1 \), and that all variables \(y_1, y_2, \ldots, y_n \) have degree 1. Suppose that \(\Theta \subseteq \mathbb{Z}^r \) is a \(\mathbb{Z} \)-submodule and \(a \in \mathbb{Z}^r \). Then we define

\[
I_{a+\Theta} = \{ i \in \{1, 2, \ldots, n\} \mid \omega_i \in a + \Theta \}.
\]

Corollary 5.2. Let us write

\[
\text{udenom}(R, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{m_d},
\]

then we have

\[
m_d = \max_{\lambda, \Theta}\{ \#I_{\lambda+\Theta} - \text{rank} \Theta \}
\]

where \(\Theta \) runs over all \(\mathbb{Z} \)-submodules of \(\mathbb{Z}^r \) and \(\lambda \) runs over all torsion elements of \(\mathbb{Z}^r / \Theta \) for which

\[
(\mathbb{Z}\lambda + \Theta) / \Theta \cong \mathbb{Z} / d\mathbb{Z}
\]

and 0 lies in the interior of \(C_{I_{\lambda+\Theta}} \).

Proof. If we apply the previous theorem, we will see that we only need to consider subset \(I \) of the form \(I_{\lambda+\Theta} \). Suppose that \(I = I_{\lambda+\Theta} \) and

\[
(\mathbb{Z}\lambda + \Theta) / \Theta \cong \mathbb{Z} / d\mathbb{Z}.
\]

If \(\sum_{i \in I} a_i \omega_i = 0 \), then \((\sum_{i \in I} a_i)\lambda \in \Theta \) and by the above isomorphism \(d \) must divide \(\sum_{i \in I} a_i \). We have proven that

\[
M_I \cap \{0\} \times \mathbb{Z} \subseteq \mathbb{Z}d.
\]

Conversely, suppose that for some subset \(I \subseteq \{1, 2, \ldots, n\} \), 0 lies in the interior of \(C_I \) and

\[
M_I \cap \{0\} \times \mathbb{Z} \subseteq \mathbb{Z}d.
\]

Put \(\lambda = \omega_i \) for some \(i \in I \). Let \(\Theta \) be the \(\mathbb{Z} \)-module generated by all \(\omega_i - \omega_j \), \(i, j \in I \) and \(d\lambda \). Clearly we have

\[
(\mathbb{Z}\lambda + \Theta) / \Theta \cong \mathbb{Z} / d\mathbb{Z}.
\]

Now \(I \subseteq I_{\lambda+\Theta} \), 0 lies in the relative interior of \(I_{\lambda+\Theta} \) and

\[
M_{\lambda+\Theta} \cap \{0\} \times \mathbb{Z} \subseteq \mathbb{Z}d.
\]

Also, obviously

\[
\#I - \text{rank} \Omega_I = \#I - \text{rank} \Theta \leq \#I_{\lambda+\Theta} - \text{rank} \Theta.
\]

□
Let us now again specialize. Let us assume that \(l = 1 \), i.e., \(G = K^* \) is the one-dimensional torus.

Corollary 5.3. Write

\[
\text{udenom}(R, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{m_d}.
\]

If \(\omega_i \geq 0 \) for all \(i \in \{1, 2, \ldots, n\} \) or \(\omega_i \leq 0 \) for all \(i \in \{1, 2, \ldots, n\} \) then \(m_1 = \{i \mid \omega_i = 0\} \). Otherwise \(m_1 = n - 1 \).

For \(d \geq 2 \) we have

\[
m_d = \max_{a,b} \{\#\{i \mid \omega_i \in ab + ad\mathbb{Z}\}\} - 1
\]

where \(a \) and \(b \) run over all integers such that \(b \) is relatively prime to \(d \) and \((ab + ad\mathbb{Z}) \cap \{\omega_1, \ldots, \omega_n\}\) contains at least one positive and one negative integer. (If we assume that \(\omega_1 \leq \omega_2 \leq \cdots \leq \omega_n \) then one only needs those \(a, b \) such that \(ad \leq \omega_n - \omega_1 \) and \(1 \leq b \leq d - 1 \) such that \(b \) and \(d \) are relatively prime).

Proof. We apply the previous corollary. For \(d = 1 \), the rank of \(\Theta \) may be 0 or 1. If the rank of \(\Theta \) is 0 then \(\lambda \) must be 0. Then \#\(I_{\lambda+\Theta} - \text{rank} \Theta\) is the number of zero weights. If \(\Theta \) has rank 1, then the maximum is achieved if \(\Theta = \mathbb{Z} \). The condition that 0 is in the interior of \(C_I \) means that there are positive and negative weights. In this case we get \#\(I_{\lambda+\Theta} - \text{rank} \Theta = n - 1\).

Suppose that \(d > 1 \). Now \(\Theta \) can only have rank 1. Again the condition that 0 is in the interior of \(I_{\lambda+\Theta} \) means that \(\lambda + \Theta \) contains both positive and negative weights. Write \(\mathbb{Z}\lambda + \Theta = a\mathbb{Z} \) for some nonnegative \(a \in \mathbb{Z} \). Then we have \(\Theta = ad\mathbb{Z} \) and \(\lambda = ab \) with \(b \) relatively prime to \(d \).

Example 5.4. Let \(G = K^* \) act on \(K^5 \) with weights \(-3, -2, 2, 5, 6\). Since there are positive and negative weights, we get \(m_1 = 5 - 1 = 4 \). We compute

\[
\{\#\{i \mid \omega_i \in ab + ad\mathbb{Z}\}\}
\]

for all \(a, b, d \) with \(1 \leq ad \leq 9 \) and \(1 \leq b \leq d - 1 \) with \(b, d \) relative prime and such that \((ab + ad\mathbb{Z}) \cap \{-3, -2, 2, 5, 6\}\) contains negative and positive integers.

\[
\begin{array}{cccc}
(d = 2) & 1 + 2\mathbb{Z} : 2 & 2 + 4\mathbb{Z} : 3 & 3 + 6\mathbb{Z} : 2 & \Rightarrow m_2 = 2 \\
(d = 3) & 6 + 9\mathbb{Z} : 2 & \Rightarrow m_3 = 1 \\
(d = 4) & 1 + 4\mathbb{Z} : 2 & 2 + 8\mathbb{Z} : 2 & \Rightarrow m_4 = 1 \\
(d = 5) & 2 + 5\mathbb{Z} : 2 & \Rightarrow m_5 = 1 \\
(d = 6) & - & \Rightarrow m_6 = 0 \\
(d = 7) & 5 + 7\mathbb{Z} : 2 & \Rightarrow m_7 = 1 \\
(d = 8) & 5 + 8\mathbb{Z} : 2 & \Rightarrow m_8 = 1 \\
\end{array}
\]
The universal denominator of $H(K[Y]^G, t)$ is therefore equal to
$$\phi_1(t)^4\phi_2(t)^2\phi_3(t)\phi_4(t)\phi_5(t)\phi_7(t)\phi_8(t).$$

Example 5.5. Consider the action of the multiplicative group K^* on $Y_n := K^{n+1}$ with weights
$$-n, -n + 2, \ldots, n - 2, n.$$

We will describe the universal denominator.

Let us first assume that n is odd. Put $S_n = \{-n, -n + 2, \ldots, n\}$. Note that $m_1 = (n + 1) - 1 = n$.

Choose $d \geq 2$. If the cardinality of $(ab + ad)\mathbb{Z} \cap S_n$ is at most 1, then it cannot contain both a positive and a negative element. If the cardinality of $(ab + ad)\mathbb{Z} \cap S_n$ is ≥ 2, then this intersection will contain automatically a positive and a negative element.

If $a \geq 2$, then $(ab + ad)\mathbb{Z} \cap S_n \subseteq a((b + d)\mathbb{Z} \cap S_n)$ because S_n is closed under taking divisors. It is therefore clear that we only need to consider the case $a = 1$. We now have to maximize
$$\#(b + d)\mathbb{Z} \cap S_n$$
over all b relatively prime to d.

Let us assume that d is odd. If d divides n, then b cannot be divisible by d. It follows that
$$\max_b \#(b + d)\mathbb{Z} \cap S_n = n/d.$$
If d does not divide n, then
$$\#(b + d)\mathbb{Z} \cap S_n \leq \lfloor n/d \rfloor.$$
Write $n = kd + e$ with $0 < e < d$, then $k + 1 = \lfloor n/d \rfloor$. We have equality if $b = n - e + 2$ if e is even, and $b = n - e + 1$ if e is odd. We have proven that
$$m_d = \lfloor n/d \rfloor - 1, \quad d \text{ odd, } d \geq 3.$$

Let us assume that d is even. If $d = 2$ then
$$\#(1 + 2)\mathbb{Z} \cap S_n = n + 1$$
and $m_2 = n$. Assume $d \geq 4$. If $d/2$ divides n then $d/2$ cannot divide b. It follows that in this situation we have
$$\#(b + d)\mathbb{Z} \cap S_n = 2n/d,$$
Otherwise, we have that
$$\#(b + d)\mathbb{Z} \cap S_n \leq \lfloor 2n/d \rfloor.$$
If we write $n = k(d/2) + e$ with $0 < e < (d/2)$ then we have equality for $b = n - e + 1$ if e is odd and for $b = n - e + 2$ if e is even. It follows that
$$m_d = \lfloor 2n/d \rfloor - 1, \quad d \text{ even, } d \geq 4.$$

Let us now assume that n is even. Again we have $m_1 = n$.

Choose \(d \geq 2 \). Write \(a = pq \) where \(q = 1 \) if \(a \) is odd and \(q = 2 \) if \(a \) is even. Then it is easy to check that

\[
(ab + adZ) \cap S_n \subseteq p((qb + qdZ) \cap S_n).
\]

Therefore we only need to consider the cases \(a = 1 \) and \(a = 2 \).

Assume that \(d \) is even. In that case \(b \) must be odd and therefore we must have \(a = 2 \) (otherwise the intersection is empty). One can easily check that we get \(m_2 = n/2 \) if \(n \equiv 2 \mod 4 \) and \(m_2 = n/2 - 1 \) if \(n \equiv 0 \mod 4 \), because \(b \) is odd. Suppose that \(d \geq 4 \). If \(d \) divides \(n \) then \(m_d = n/d - 1 \) (by similar reasoning as before). Otherwise, write \(n/2 = k(d/2) + e \) with \(0 < e < d/2 \). We have

\[
\#2(b + dZ) \cap S_n \leq \lceil n/d \rceil.
\]

If \(n \) is not divisible by 4, then we have equality for \(b = n/2 - e + 1 \) if \(e \) is odd, or \(b = n/2 - e + 2 \) if \(e \) is even. If \(e \neq 1 \), i.e., \(n - 2 \) is not divisible by \(d \), then we have equality for \(b = n/2 - e + 2 \).

In the remaining case, \(n \) divisible by 4 and \(d \) divides \(n - 2 \), one can easily see that we cannot have equality. So if \(n \) and \(d \) are both even then,

\[
m_d = \begin{cases}
\lceil n/d \rceil - 2 & \text{if } 4 \mid n, d \text{ even and } d \mid n - 2; \\
\lceil n/d \rceil - 1 & \text{otherwise.}
\end{cases}
\]

Assume now that \(d \) is odd. Since

\[
(b + dZ) \cap S_n \subset (2(b/2) + 2dZ) \cap S_n
\]

if \(b \) is even and

\[
(b + dZ) \cap S_n \subset (2((b + d)/2) + 2dZ) \cap S_n
\]

if \(b \) is odd, we may only consider the case that \(a = 2 \). Similar reasoning as before gives us

\[
m_d = \lfloor n/d \rfloor - 1.
\]

The universal denominator of \(K[Y_n]^{K^*} \) is equal to

\[
\begin{cases}
(1 - t^2)^2(1 - t^4) \cdots (1 - t^{2n-2}) & n \text{ odd}; \\
(1 - t)(1 - t^2)^2(1 - t^3)(1 - t^4) \cdots (1 - t^{n-1}) & n \equiv 2 \mod 4; \\
(1 - t)(1 - t^2)^2(1 - t^3)(1 - t^4) \cdots (1 - t^{n-3})(1 - t^{n-2})(1 - t^{n-1}) & n \equiv 0 \mod 4.
\end{cases}
\]

6. **Universal Denominators for Binary Forms**

Let \(G := \text{SL}_2 \) act on \(Y \) where

\[
Y = \{ a_0x^n + a_1x^{n-1}y + \cdots + a_ny^n \}
\]

is the set of binary forms of degree \(n \) \((n \geq 3)\). Let \(S = K[a_0, a_1, \ldots, a_n] \) and let \(R = S^\text{SL}_2 \). Let \(H \) be the maximal 1-dimensional torus of \(\text{SL}_2 \) consisting of all diagonal matrices:

\[
H = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} : \lambda \in K^* \right\}.
\]
We already computed the universal denominator
\[
\text{udenom}(S^H, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{m_d}
\]
Let us write
\[
\text{udenom}(S^{\text{SL}_2}, t) = \prod_{d \in \mathbb{N}} \phi_d(t)^{u_d}.
\]
We have \(u_1 = n - 1\) if \(n\) is odd and \(u_1 = u_2 = n - 1\) if \(n\) is even. Suppose that \(d \geq 3\) and \(n\) is even or \(d \geq 2\) and \(n\) is odd. We will prove that \(u_d = m_d\). We already know that \(u_d \leq m_d\) by Theorem 3.3. Let us prove that \(u_d \geq m_d\). If \(m_d = 0\) then there is nothing to prove. We will assume that \(m_d \geq 1\).
Let \(\zeta\) be a \(d\)-th primitive root of unity. There exists an \(h = \left(\begin{array}{c} \lambda \\ 0 \\ \lambda^{-1} \end{array}\right) \in H\) such that
\[
\dim Y^h_\zeta \geq m_d + 1 \geq 2.
\]
The space \(Y^h_\zeta\) is the set of all polynomials
\[
f = a_0x^n + a_1x^{n-1}y + \cdots + a_ny^n
\]
for which \(a_i = 0\) whenever \(\lambda^{n-2i} \neq \zeta\). We see that \(\lambda\) is an \((pd)\)-th root of unity for some positive integer \(p\). A general polynomial \(f \in Y^h_\zeta\) has at least 3 distinct roots and no root with multiplicity \(\geq n/2\). It follows that the \(G\)-orbit of such a general polynomial \(f\) is closed and 3-dimensional. The dimension of a general fiber \(\pi^{-1}_G G(Y^h_\zeta)\) is 3 and
\[
\dim \pi_G(G \cdot Y^h_\zeta) = \dim G \cdot Y^h_\zeta - 3.
\]
Consider the morphism
\[
\phi : G \times Y^h_\zeta \to Y
\]
defined by
\[
(g, f) \mapsto g \cdot f.
\]
Again, let \(f \in Y^h_\zeta\) be a polynomial in general position. One can easily verify that the rank of the differential \(d\phi\) at \((e, f)\) has rank \(\dim Y^h_\zeta + 2 \geq m_d + 3\). We have \(\dim G \cdot Y^h_\zeta \geq m_d + 3\). Since \(\pi_G(G \cdot Y^h_\zeta) \subseteq (Y/G)^{[d]}\) we obtain
\[
u_d = \dim(Y/G)^{[d]} \geq \dim \pi_G(G \cdot Y^h_\zeta) = \dim G \cdot Y^h_\zeta - 3 \geq m_d
\]
and therefore \(u_d = m_d\). Finally we obtain that the universal denominator of \(K[Y_n]^{\text{SL}_2}\) is equal to
\[
\begin{cases}
(1 - t^4)(1 - t^6) \cdots (1 - t^{2n-2}) & \text{if } n \text{ is odd}; \\
(1 + t)(1 - t^2)(1 - t^3) \cdots (1 - t^{n-1}) & \text{if } n \equiv 2 \text{ mod } 4; \\
(1 + t)(1 - t^2)(1 - t^3) \cdots (1 - t^{n-3})(1 - t^{n/2-1})(1 - t^{n-1}) & \text{if } n \equiv 0 \text{ mod } 4,
\end{cases}
\]
These formulas for the universal denominators are the same as the formulas for the denominators of the Hilbert series of binary forms as conjectured by Dixmier (see [3]). It could happen, of course, that the universal denominator is not equal to the denominator due to some unfortunate accidental cancelling in the Hilbert series. The universal denominator is more interesting than the denominator of the Hilbert series, since it has a geometric interpretation and nice properties. Therefore, although Dixmier’s conjecture is still unsettled, the formula for the universal denominator here may is just as satisfying as a positive answer to Dixmier’s conjecture for the denominator of the Hilbert series of binary forms.

REFERENCES

[1] H. Derksen and G. Kemper, *Computational Invariant Theory*, Invariant Theory and Algebraic Transformation Groups I, R.V. Gamkrelidze, V.L. Popov, eds., Encyclopaedia of Mathematical Sciences 130, Springer, 2002.

[2] H. Derksen and J. Weyman, *On the Littlewood-Richardson polynomials*, J. of Algebra 255, no. 2 (2002), 247–257.

[3] J. Dixmier, *Quelques résultats et conjectures concernant les séries de Poincaré des invariants des formes binaires*, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984), 127–160, Lecture Notes in Math. 1146, Springer, Berlin, 1985.

[4] D. Hilbert, *Über die Theory der algebraischen Formen*, Math. Ann. 36 (1890), 473–534.

[5] J.-P. Serre, *Sur la dimension homologique des anneaux et des modules noethériens*, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, 175–189. Science Council of Japan, Tokyo, 1956.