Abstract

The Bradley-Terry-Luce (BTL) model is a popular statistical approach for estimating the global ranking of a collection of items using pairwise comparisons. To ensure accurate ranking, it is essential to obtain precise estimates of the model parameters in the ℓ_∞-loss. The difficulty of this task depends crucially on the topology of the pairwise comparison graph over the given items. However, beyond very few well-studied cases, such as the complete and Erdös-Rényi comparison graphs, little is known about the performance of the maximum likelihood estimator (MLE) of the BTL model parameters in the ℓ_∞-loss under more general graph topologies. In this paper, we derive novel, general upper bounds on the ℓ_∞ estimation error of the BTL MLE that depend explicitly on the algebraic connectivity of the comparison graph, the maximal performance gap across items and the sample complexity. We demonstrate that the derived bounds perform well and in some cases are sharper compared to known results obtained using different loss functions and more restricted assumptions and graph topologies. We carefully compare our results to Yan et al. (2012), which is closest in spirit to our work. We further provide minimax lower bounds under ℓ_∞-error that nearly match the upper bounds over a class of sufficiently regular graph topologies. Finally, we study the implications of our ℓ_∞-bounds for efficient (offline) tournament design.

1 INTRODUCTION

Simultaneous or ‘global’ ranking of a set of items is a practical problem that arises naturally in a variety of domains. For example, one may wish to ascertain a ‘best player’ or ‘best team’ in a given sports league. Designing a principled statistical approach to global ranking of items is challenging due to data limitations and complex domain-specific relationships between the underlying items to be ranked.

A popular and practicable solution to estimating global ranking is to utilize pairwise comparison information across the items to be ranked, which is easily accessible across many application domains. The BTL model (Bradley and Terry, 1952; Luce, 1959) is a popular statistical model for pairwise comparison data. A similar model was also originally studied in Zermelo (1929). The continued practical and theoretical interest in the BTL model stems from its relatively simple parametric form which provides a good balance between interpretability and tractability for theoretical analysis. The BTL model is domain-agnostic, making it an ideal benchmarking tool across a variety of ranking applications e.g. sports analytics (Fahrmeir and Tutz, 1994; Masarotto and Varin, 2012), and bibliometrics (Stigler, 1994; Varin et al., 2016). Formally, we can describe the BTL model as follows. Suppose that we have n distinct items, each with a (fixed but unobserved) positive strength or preference score $w^*_i, i \in [n]$, quantifying item i’s propensity to beat other items in pairwise comparisons. The BTL model assumes that the comparisons between different pairs are independent and the outcomes of comparisons between any given pair, say item i and item j, are i.i.d. Bernoulli random variables, with winning probability p_{ij}, defined as

$$p_{ij} := \Pr(i \text{ beats } j) := \frac{w^*_i}{w^*_i + w^*_j}, \forall i,j \in [n]. \quad (1)$$

A common reparametrization is to set, for each i, $w^*_i = \exp(\theta^*_i)$, where $\theta^* := (\theta^*_1, \ldots, \theta^*_n)^\top \in \mathbb{R}^n$. By convention, we assume that $\sum_{i \in [n]} \theta^*_i = 0$ for parameter identifiability. From a theoretical perspective, much attention in the BTL literature has been paid to two popular estimators, namely the maximum likelihood estimator (MLE) and the spectral
Among all the metrics measuring uncertainty of estimation of BTL parameters, the\(\ell_\infty \)-loss directly connects with ranking metrics, e.g., binary and Hamming top-\(k \) (partial) ranking loss (see, e.g., Chen et al. [2019, 2020]). It is thus natural to study the MLE for the BTL parameters in the\(\ell_\infty \)-loss, to better understand the risk optimality of the constraint MLE across a wide range of graph topologies. Recently, Agarwal et al. (2018) give sharp upper bounds for a novel spectral method in the\(\ell_\infty \)-loss for relatively dense graphs. Hajek et al. (2014), Shah et al. (2016) give a high probability upper bound for the\(\ell_2 \) error of the regularized MLE in BTL model estimators particularly challenging is a combination of the type of estimation risk loss considered, and the assumptions on the topology of\(G(V, E) \).

Core questions of interest

Among all the metrics measuring uncertainty of estimators of BTL parameters, the\(\ell_\infty \)-loss directly connects with ranking metrics, e.g., binary and Hamming top-\(k \) (partial) ranking loss (see, e.g., Chen et al. [2019, 2020]). It is thus natural to study the MLE for the BTL parameters in the\(\ell_\infty \)-loss, to better understand the risk optimality of the MLE and further justify its use for practical global and partial ranking problems. In this spirit, Yan et al. (2012) focus specifically on proving\(\ell_\infty \)-error bounds for the BTL MLE for general comparison graphs. However, a notable limitation in their setting is that they impose a strictly dense comparison graph assumption, which may be impractical in many real world applications. This leaves a gap in the literature, summarized in the following questions:

Core questions: For the BTL model, how does the MLE perform with respect to the\(\ell_\infty \) loss, under much weaker assumptions on the pairwise comparison graph compared to Yan et al. (2012)? That is, assuming only that the comparison graph is connected. Moreover, what are the implications of such bounds in applications?

Providing a sharp analysis to these questions with a detailed comparison to recent theoretical results in the BTL literature motivates our work in this paper.

Relevant and related literature

We give a brief overview of the work that addresses the challenge of comparison graph topology in ranking. When the comparison graph is a complete graph, Simons and Yao (1999) give a high probability upper bound for the\(\ell_\infty \) loss, i.e., \(\| \theta - \theta^* \|_\infty \) and obtain the asymptotic distribution of the MLE. In the setting where the comparison graph follows the Erdős-Rényi graph model, Chen and Suh (2015), Chen et al. (2019), Chen et al. (2020) and Han et al. (2020) derive high probability upper bounds for the\(\ell_\infty \) loss. Moreover, Chen et al. (2019) show that both MLE and spectral method are minimax optimal in terms of the binary top-\(k \) ranking loss, i.e., whether the items with the highest\(k \) out of\(n \) preference scores are perfectly identified; Chen et al. (2020) consider a Hamming Loss for top-\(k \) items and show that the MLE is minimax optimal compared to the spectral method with differences arising in constant factors.

For a broader class of comparison graphs beyond complete and Erdős-Rényi graph, researchers have studied the explicit dependence of the estimation risk on graph topology. In particular, Yan et al. (2012) give a high-probability upper bound for the\(\ell_\infty \)-loss for relatively dense graphs. Hajek et al. (2014), Shah et al. (2016) give a high probability upper bound for the\(\ell_2 \) or Euclidean loss \(\| \theta - \theta^* \|_2 \), establish upper and lower bounds of\(\mathbb{E}\| \theta - \theta^* \|_2 \) and show the minimax optimality of the constraint MLE across a wide range of graph topologies. Recently, Agarwal et al. (2018) give sharp upper bounds for a novel spectral method in the\(\ell_1 \)-loss \(\| \pi - \pi^* \|_1 \) for\(\pi^* = w^*/\| w^* \|_1 \) instead of\(\theta^* \). Hendrickx et al. (2019, 2020) propose a weighted least square method to estimate\(w^* \) and prove a sharp upper bound for their estimator in\(\mathbb{E}\| \sin^2(w, w^*) \|_2 \) or equivalently in\(\mathbb{E}\| w - w^* \|_2 \| w^* \|^2_2 \) in the sense that this upper bound matches an instance-wise lower bound up to constant factors.

Contributions

Our contributions in this paper are fourfold and are summarized as follows:

- **Upper bounds:** We derive a novel upper bound for the\(\ell_\infty \)-error of the regularized MLE in BTL model allowing for general graph topology. Our upper bounds hold under minimal assumptions on graph topologies, i.e., assuming only that the comparison graph is connected. Given such generality, we show our\(\ell_\infty \) bound is tighter than existing results under a broad range of graph topologies, and works well in general. In particular, we carefully compare our work analytically and in simulation to Yan et al. (2012), which is closest in spirit to our work.

A minor corollary of our techniques results in the state...
of the art ℓ_2-loss bounds for the Erdős-Rényi graph.

- **Lower bounds**: We derive minimax lower bounds for BTL parameter estimation in ℓ_∞-loss. We analyze specific graph topologies satisfying certain regularity connectivity conditions under which the BTL MLE is nearly minimax optimal.

- **Implications for tournament design**: We show that the BTL MLE in ℓ_∞-loss satisfies a unique subadditivity property, and how our ℓ_∞ bounds can exploit this property for efficient (offline) tournament design.

- **Extension to the unregularized BTL model**: We also extend our upper bounds under ℓ_∞-loss to the unregularized (‘vanilla’) BTL MLE, which is also frequently used in practice.

Due to the more complicated form of the vanilla BTL MLE upper bounds and space limitations, we present these analogous results and their proofs separately in Appendix [A.2]. Henceforth, MLE refers to the regularized BTL MLE unless stated otherwise. In addition to our theoretical contributions a core aspect throughout our paper is to emphasize the interpretability of our results, the associated assumptions, and implications for practical ranking tasks.

Organization of the paper

The rest of the paper is organized as follows. In Section [2] we present our main results for the upper bound in Theorem [1] and an interpretation of the key components of the bound. In Section [3] we discuss minimax lower bounds using the ℓ_∞ risk loss in Theorem [5]. In Section [4] we show some practical implications of our results in efficient tournament design from a ranking perspective. In Section [5] we conduct extensive numerical simulations to validate the optimality of our bounds compared to related results in the literature.

Notation

We typically use lowercase for scalars, e.g., (x, y, z, \ldots), boldface lowercase for vectors, e.g., $(\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots)$, and boldface uppercase for matrices, e.g., $(\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \ldots)$. We denote the finite set $\{1, \ldots, n\}$ by $[n]$. For asymptotics, we denote $x_n \lesssim y_n$ or $x_n = O(y_n)$ and $u_n \gtrsim v_n$ or $u_n = \Omega(v_n)$ if $\forall n$, $x_n \leq c_1 y_n$ and $u_n \geq c_2 v_n$ for some constants $c_1, c_2 > 0$. We denote e_i, as a vector whose entries are all 1 except that the i-th entry is 1. $a_n = o(b_n)$ means $a_n/b_n \to 0$ as $n \to \infty$ and conversely, $a_n = \omega(b_n)$ means $b_n/a_n \to 0$ as $n \to \infty$. We denote $\mathbf{1}_n \in \mathbb{R}^n$ to be a vector of ones.

2 UPPER BOUNDS

Recall that given n items to be compared, the comparison scheme among them defines the comparison graph $G(V, E)$, where $V = [n]$ and $E = \{(i, j) : i$ and j are compared $\}$. We denote the corresponding adjacency matrix as $A \in \mathbb{R}^{n \times n}$, and its (i, j)th entry is $A_{ij} := 1\{(i, j) \in E\}$. The associated (unnormalized) graph Laplacian is the symmetric, positive-semidefinite matrix $L_A := D - A$, where $D = \text{diag}(n_1, \ldots, n_n)$, with $n_i := \sum_{j=1}^n A_{ij}$ the degree of node i. It is well known that the smallest eigenvalue of L_A is 0 with an eigenvector $\mathbf{1}_n$. Let $\lambda_2(L_A)$ be the second smallest eigenvalue of L_A, known as the algebraic connectivity of G ([Das 2004]), then G is connected if and only if $\lambda_2(L_A) > 0$. Following the standard in the BTL literature we assume a that for each edge (i, j) of the comparison graph, the corresponding items i and j are compared L times, each leading to an independent outcome $y^{(l)}_{ij} \in \{0, 1\}$, where $l \in [L]$. If pairs are compared different number of times, we take L to be the smallest number of pairwise comparisons over the edge set, as a worst-case scenario. The corresponding sample averages are denoted with $\bar{y}_{ij} = \frac{1}{L} \sum_{l=1}^L y^{(l)}_{ij}$ and are sufficient statistics for the model parameters. The ℓ_2-regularized MLE is defined as

$$
\hat{\theta}_\rho = \arg \min_{\theta} \ell(\theta; y), \quad \ell(\theta; y) = \ell(\theta; y) + \rho \|\theta\|_2^2, \quad (2)
$$

where $\ell(\theta; y)$ is the negative log-likelihood, given by

$$
\ell(\theta; y) := -\sum_{1 \leq i < j \leq n} A_{ij} \{\bar{y}_{ij} \log \psi(\theta_i - \theta_j) + (1 - \bar{y}_{ij}) \log[1 - \psi(\theta_i - \theta_j)]\}, \quad (3)
$$

and $t \in \mathbb{R} \mapsto \psi(t) = 1/[1 + e^{-t}]$ the sigmoid function.

Under this notational setup, we are ready to state the ℓ_∞ upper bound of the BTL MLE in Theorem [1].

Theorem 1. Assume the BTL model with parameter $\theta^* = (\theta^*_1, \ldots, \theta^*_n)^\top$ such that $\mathbf{1}_n' \theta^* = 0$ and a comparison graph $G = G([n], E)$ with adjacency matrix A, algebraic connectivity $\lambda_2(L_A)$ and maximum and minimum degrees ν_{max} and ν_{min}. Suppose that each pair of items $(i, j) \in E$ are compared L times. Let $\kappa = \max_{i,j} |\theta_i^* - \theta_j^*|$ and $\kappa_E = \max_{i,j} \in E |\theta_i^* - \theta_j^*|$, and set $\rho \geq c_\nu \kappa^{-2} e^{-2.5 \kappa_{\text{max}}} n^{-4/3}$. Assume that G is connected or $\lambda_2(L_A) > 0$. Then with probability at least $1 - O(n^{-4})$, the regularized MLE $\hat{\theta}_\rho$ from (2) satisfies

$$
\|\hat{\theta}_\rho - \theta^*\|_{\infty} \lesssim \frac{e^{2\kappa E}}{\kappa_{\text{max}}} \left(\frac{\nu_{\text{max}}}{L} + \rho \kappa \sqrt{\frac{n}{L}} \right), \quad (4)
$$

$$
\|\hat{\theta}_\rho - \theta^*\|_2 \lesssim \frac{e^{2\kappa E}}{\kappa_{\text{max}}} \left(\sqrt{\frac{\nu_{\text{max}} (n + r)}{L}} + \rho \kappa \sqrt{n} \right), \quad (5)
$$

where $\lambda_2 = \lambda_2(L_A)$, $r := \kappa_E + \log \kappa$ provided that $L \leq n^8 e^{5\kappa_{\text{max}}} \max\{1, \kappa\}$, and L is large enough so that the right hand side of Equation (4) is smaller than a sufficiently small constant $C > 0$. In particular, if we set
\begin{align}
\rho &= c_\rho / \kappa \sqrt{n_{\text{max}} / L} \quad \text{for some } c_\rho > 0, \text{ then} \\
\|\hat{\theta}_\rho - \theta^*\|_\infty &\lesssim \frac{\epsilon^{\kappa,E}}{\lambda_2} \frac{n_{\text{max}}}{n_{\text{min}}} \sqrt{\frac{n + r}{L}} + \epsilon^{\kappa,E} \frac{n_{\text{max}} \log(n + r)}{L} \\
\|\hat{\theta}_\rho - \theta^*\|_2 &\lesssim \frac{\epsilon^{\kappa,E}}{\lambda_2} \frac{n_{\text{max}}(n + r)}{L}. \tag{6}
\end{align}

As a brief sketch, the proof is based on a gradient descent procedure initialized at \(\theta^{(0)} = \theta^*\) and the idea is to control \(\|\theta^{(T)} - \rho\|_\infty\) using the linear convergence property and \(\|\theta^{(T)} - \theta^*\|_\infty\) using the leave-one-out technique in Chen et al.\,(2019) and Chen et al.\,(2020). In fact, our work confirms that such a line of argument extends to more general graph topologies beyond the Erdős-Rényi graph, which is non-trivial. The proof details can be found in Appendix \(A.2\).

Interpretation of key terms

The upper bound in Equation (4) contains several distinct terms, which interact with each other in non-trivial ways and express different aspects of the intrinsic difficulty of the estimation task.

- The factor \(\frac{\epsilon^{\kappa,E}}{\lambda_2(\mathcal{L}_\Lambda)}\) combines two sources of statistical hardness: the maximal gap in performance \(\kappa_E\) among the ranked items over the edge set \(E\), and the algebraic connectivity \(\lambda_2(\mathcal{L}_\Lambda)\) of the comparison graph. It intuitively clear that the larger the performance gap among the compared items, the more difficult it is to accurately estimate the model parameters. Furthermore, the smaller the algebraic connectivity, the less connected the comparison graph is, due to the presence of bottlenecks.\(^1\) This in turn will increase the chance of obtaining a highly erroneous ranking or of gathering data from which a global ranking cannot be elicited at all. The minimal and maximal degrees \(n_{\text{min}}\) and \(n_{\text{max}}\) further quantify the impact of the connectivity of the comparison graph.

- We note that the factor \(\frac{1}{\lambda_2(\mathcal{L}_\Lambda)}\) can be equivalently replaced with \(\frac{1}{\lambda_2(I)}\) (see Lemma 2 in Appendix \(A.2\)). Here, \(I := \nabla^2 \ell_0(\theta^*; y)\) is the Fisher information matrix at \(\theta^*\) and \(\lambda_2(I)\) its smallest non-zero eigenvalue. The fact that the bound depends on the Fisher information is not too surprising. This is so, since this quantity in exponential families quantifies the curvature of the likelihood and the intrinsic difficulty of estimating \(\theta^*\).

- Our bounds depend on both \(\kappa\) and \(\kappa_E\), which is non-standard in the literature. By definition, \(\kappa_E \leq \kappa\) and in many cases, \(\kappa_E\) can be much smaller than \(\kappa\). We discuss this further in Section \(5\).

- The term \(r := \kappa_E + \log(k)\) shows the impact of large \(\kappa\) and \(\kappa_E\). When \(\kappa \lesssim n\) and \(\kappa_E \lesssim \log(n, r)\) is negligible.

We will consider this parameter range throughout the paper unless stated otherwise.

- The term \(\sqrt{\frac{L}{E}}\) describes explicitly the impact of a high-dimensional parameter space on the estimation problem in relation to \(L\), the number of samples for each comparison, which can be thought of as a measure of the sample size required for each of the \(n\) parameters. The inverse root dependence on \(L\) is to be expected and, we conjecture, not improvable.

Remark 1. In the case of dense graphs, e.g., complete graphs, \(\lambda_2(\mathcal{L}_\Lambda)\) is large enough so that even \(L = 1\) will ensure a consistent estimator as \(n \to \infty\). But for sparse graphs, \(L\) needs to be larger to compensate for weaker connectivity. The assumption that \(L \leq n^{\delta/\kappa E} \max\{1, \kappa\}\) is a technical condition. There is nothing special in the exponent for \(n\). Any fixed number larger than 8 can be used which will only affect the constants in the bounds. The condition \(L \leq n^{\delta/\kappa E} \max\{1, \kappa\}\) may seem counter-intuitive, since it places an upper bound on the sample size. But a control over \(L\) is needed because as \(L\) gets larger, the optimal choice of the regularization parameter \(\rho = c_\rho \frac{1}{\sqrt{n_{\text{max}}}}\) gets smaller and, accordingly, the convergence rate of the gradient descent procedure upon which our proof is based degrades. The optimal choice \(\rho = c_\rho \frac{1}{\sqrt{n_{\text{max}}}}\) depends on \(\kappa\), which is unknown before an estimator is produced, however, one can set \(\rho = c_\rho \frac{1}{\sqrt{n_{\text{max}}}}\) and the upper bound will only change by a factor \(\max\{1, \kappa\}\) in the first term of Equation (6).

2.1 COMPARISON TO OTHER WORK

To the best of our knowledge, Yan et al.\,(2012); Hajek et al.\,(2014); Shah et al.\,(2016); Negahban et al.\,(2017); Agarwal et al.\,(2018); Hendrickx et al.\,(2019, 2020) are the only existing papers that study estimation error for the BTL model on a comparison graph with general topology. Since Negahban et al.\,(2017); Agarwal et al.\,(2018); Hendrickx et al.\,(2019, 2020) estimate the preference scores \(w^*\) rather than \(\theta^*\), we cannot directly compare our results with theirs because there is no tight two-sided relationship between their metrics of error and ours. Therefore, here we only compare our results to those in Yan et al.\,(2012); Hajek et al.\,(2014); Shah et al.\,(2016), as is summarized in Table 1. We include the comparison to the other four papers in Appendix \(A.1\).

\(\ell_\infty\) loss: Yan et al.\,(2012) establish an \(\ell_\infty\)-bound depending on \(n_{ij}\), the number of common neighbors of item \(i\) and item \(j\) in the comparison graph, under a strong assumption that \(n_{ij} \geq cn\) for some constant \(c \in (0, 1)\). This constraint on graph topology is stronger than ours since it requires the graph to be dense. In particular, when the comparison graph comes from an Erdős-Rényi model \(ER(n, p)\), \(\min_{i,j} n_{ij} \approx np^2\). Then the conditions in Yan et al.\,(2012) requires \(p\) to be bounded away from 0 and their bound becomes \(\frac{c\epsilon^{\kappa,E}}{p} \sqrt{\log n L / np^2}\), while our bound is \(\frac{c\epsilon^{\kappa,E}}{\sqrt{p}} \sqrt{\log n L / np^2}\). Our

\(^1\)Here, bottlenecks can be formally described as small connected subgraphs with very few edges separating dense portions of the graph.
bound is tighter for moderate or small κ_E, and importantly, allows p to vanish. Furthermore, in Section 3 we show by some specific examples that $\min_{ij} n_{ij}$ could be 0 even for many fairly dense graphs, to illustrate that the upper bound from Yan et al. (2012) cannot apply to many realistic settings.

Remark 2. For the path graph, star graph, and barbell graph, the necessary sample complexity induced by directly applying our ℓ_∞ bound is larger than the sample complexity induced by the ℓ_2 bound in Shah et al. (2016), though they require more stringent conditions than ours. Thus we provide special upper bounds for the case of path and star graph in Propositions 3 and 4. Additionally, in Section 4 we illustrate that by applying a unique sub-additivity property of the ℓ_∞-loss, we can achieve a much smaller sample complexity in graphs with bottlenecks like the barbell graph.

Erdős–Rényi graph: By applying a union bound on $\lambda_2(\mathcal{L}_A)$, n_{max}, and n_{min} to the sample-wise bounds in Theorem 1, we obtain a corollary in the setting where the comparison graph follows the Erdős–Rényi model $ER(n, p)$.

Corollary 2 (Erdős–Rényi graph). As a corollary to Theorem 1 suppose that the comparison graph comes from an Erdős–Rényi graph $ER(n, p)$, then under the same conditions, with probability at least $1 - O(n^{-4})$, it holds that

$$||\hat{\theta}_p - \theta^*||_\infty \leq e^{2\kappa_E} \sqrt{\frac{\log n}{npL}} \cdot ||\theta_p - \theta^*||_2 \leq e^{\kappa_E} \sqrt{\frac{1}{pL}}.$$

The full form of Corollary 2 with a proof can be found at the end of Appendix A.2. For the Erdős–Rényi comparison graph $ER(n, p)$, the tightest ℓ_∞-norm error bound $e^{2\kappa_E} \sqrt{\frac{\log n}{npL}}$ is proved in Chen et al. (2019) and Chen et al. (2020). Han et al. (2020) establish an ℓ_∞-norm upper bound of $e^{2\kappa_E} \sqrt{\frac{\log n \log(n/p)}{npL}}$. Negahban et al. (2017) obtain an ℓ_2-norm upper bound of $e^{4\kappa_E} \frac{\log n}{pL}$ and a lower bound of $e^{-\kappa_E} \frac{1}{pL}$. Thus the derived ℓ_2-bound in Corollary 2 in Erdős–Rényi case is minimax optimal.

In this case our derived ℓ_∞-bound cannot achieve the rate established in Chen et al. (2019), Chen et al. (2020), though our ℓ_2-bound exhibits the optimal rate proved in Negahban et al. (2017). The reason why our bound does not imply the optimal ℓ_∞-rate under a Erdős–Rényi comparison graph is that our bound is a sample-wise bound and thus cannot leverage some regular property of Erdős–Rényi graph beyond algebraic connectivity and degree homogeneity that is exhibited with high probability.

Tree graphs: For extremely sparse graphs like tree graphs, the general upper bound in Theorem 1 is loose compared to the lower bound in Theorem 5. Therefore, we separately prove some sharp upper bounds for path and star graphs as a complement to our general theory, in this frequently studied cases. For example, single-elimination sports tournaments are commonly designed as a binary tree graph. By the spectral property of path and star graphs (see Appendix A.6), one can verify that the upper bounds in both norms match the ℓ_∞ lower bound in Theorem 5 and the ℓ_2 lower bound in Shah et al. (2016), up to $\sqrt{\log n}$ and $e^{2\kappa_E}$ factors.

Table 1: Comparison of results in literature.

Norm	Reference	Upper bound
ℓ_∞	Yan et al. (2012)	$e^{\kappa_E} \sqrt{n_{\text{max}} \log n}$
	Our work	$$e^{\sqrt{\kappa_E} n_{\text{max}} \log n}$$
ℓ_2	Hajek et al. (2014)	$e^{\sqrt{\kappa_E} n_{\text{max}} \log n}$
	Shah et al. (2016)	$e^{\sqrt{\kappa_E} n_{\text{max}} \log n}$
	Our work	$$e^{\sqrt{\kappa_E} n_{\text{max}} \log n}$$

Graph	N_{comp} (Yan et al. 2012)	N_{comp} (Our work)
Complete	$\Omega(n^2)$	$\Omega(n^2)$
Bipartite	$\Omega(n)$	$\Omega(n)$
Path	$\omega(e^{2\kappa_E} n^2 \log n)$	$\omega(e^{2\kappa_E} n^2 \log n)$
Star	$\omega(e^{2\kappa_E} n^2 \log n)$	$\omega(e^{2\kappa_E} n^2 \log n)$
Barbell	$\omega(e^{2\kappa_E} n^2 \log n)$	$\omega(e^{2\kappa_E} n^2 \log n)$

| Table 2: Magnitude of N_{comp} to ensure $||\hat{\theta} - \theta^*||_\infty = o(1)$.

We re-emphasize that Hendrickx et al. (2020) also provide upper bounds for a general fixed comparison graph that matches an instance-wise lower bound, for their parameter B, κ and for a broad range of graphs with moderate B, κ and for a range of graphs with moderate $\lambda_2(\mathcal{L}_A)$, i.e., not too sparse or irregular.

2.2 SPECIAL CASES OF GRAPH TOPOLOGIES

We can check some common types of comparison graph topologies and see in what order the necessary sample complexity $N_{\text{comp}} = |E|L$ needs to be to achieve consistency, i.e., $||\hat{\theta} - \theta^*||_\infty = o(1)$. The results are summarized in Table 2. For path and star graphs, we used the specialized bounds in Propositions 3 and 4. As shown in Table 2, our upper bound now applies to a much broader class of graph topologies under the ℓ_∞-norm compared to Yan et al. (2012).
Proposition 3 (Path graph). Suppose the comparison graph is a path graph ([n], E) with E = {(i, i + 1)}i∈[n−1] and L > $ce^{2n^2}n \log n$ for some universal constant c, then with probability at least $1 - n^{-4}$, the vanilla MLE $\hat{\theta}_0$ satisfies

$$||\hat{\theta}_0 - \theta^*||_\infty \lesssim e^{\kappa E} \sqrt{\frac{n \log n}{L}},$$

$$||\hat{\theta}_0 - \theta^*||_2 \lesssim e^{\kappa E} \sqrt{\frac{\log n}{L}}.$$

Proposition 4 (General tree graph). Suppose the graph is a tree graph ([n], E) where each item i and j are compared L times such that $L > ce^{2n^2}n \log n$ for some universal constant c. Then with probability at least $1 - n^{-4}$, the vanilla MLE $\hat{\theta}_0$ satisfies

$$||\hat{\theta}_0 - \theta^*||_\infty \lesssim e^{\kappa E} \sqrt{\frac{D \log n}{L}},$$

$$||\hat{\theta}_0 - \theta^*||_2 \lesssim e^{\kappa E} \sqrt{\frac{Dn \log n}{L}},$$

where $D := \max_{i,j} |\text{path}(i, j)|$ is the diameter. In particular, for star graph, the upper bound is given by $D = 1$.

The full form of Proposition 3 and Proposition 4 with proofs are found in Appendix A.2. Briefly, the proofs leverage the closed-form solution of vanilla MLE under the tree graph.

3 LOWER BOUNDS

In this section, we derive a minimax lower bound for the L_∞ loss. Towards that end, we first introduce some new notation. Let N_{comp} be the total number of comparisons that have been observed, so in our setting, $N_{\text{comp}} = |E|L$ where |E| is number of edges in the comparison graph G. Denote the two items involved in the i-th comparison as (i_1, i_2) such that $i_1 < i_2$. Let $\hat{\mathcal{L}}_A = \frac{1}{N_{\text{comp}}} \sum_{i=1}^{N_{\text{comp}}} (\mathbf{e}_{i_1} - \mathbf{e}_{i_2})(\mathbf{e}_{i_1} - \mathbf{e}_{i_2})^\top$ be the normalized graph Laplacian with pseudo inverse $\hat{\mathcal{L}}_A^{-1}$ and eigenvalues $0 = \lambda_1(\hat{\mathcal{L}}_A) \leq \lambda_2(\hat{\mathcal{L}}_A) \leq \cdots \leq \lambda_n(\hat{\mathcal{L}}_A)$. With the main notation in place, our minimax lower bound is summarized in the following result.

Theorem 5. Assume that the comparison graph G is connected and the sample size $N_{\text{comp}} \geq \frac{c_2 \text{tr}(\hat{\mathcal{L}}_A)}{e^{2\kappa^2}n^2}$, any estimator $\hat{\theta}$ based on N_{comp} comparisons with outcomes from the BTL model satisfies

$$\sup_{\theta^* \in \Theta_\kappa} \mathbb{E} \left[||\hat{\theta} - \theta^*||_\infty \right] \geq \frac{e^{-2\kappa}}{nN_{\text{comp}}} \times \max \left\{ n^2, \max_{n^\prime \in \{2, \ldots, n\}} \sum_{i=\lceil 0.99n^\prime \rceil}^{n^\prime} [\lambda_i(\hat{\mathcal{L}}_A)]^{-1} \right\}$$

where $\Theta_\kappa = \{ \theta \in \mathbb{R}^n : \mathbf{1}_n^\top \theta = 0, ||\theta||_\infty \leq \kappa \}$.

The proof of Theorem 5 largely leverages the lower bound construction from Theorem 2 in [Shah et al. 2016]. The main modification in adapting it to our setting is to construct an ℓ_∞-packing set. This is done by utilizing the tight topological equivalence of ℓ_∞ and ℓ_2 norms in finite dimensions.

We can compare this lower bound with the upper bound in Theorem 1. In our setting, the comparisons distribute evenly over all pairs, so $N_{\text{comp}} = |E|L$, and $\lambda_1(\hat{\mathcal{L}}_A) = \frac{1}{|E|} \lambda_1(\mathcal{L}_A)$. Thus, given a comparison graph with $\lambda_2(\hat{\mathcal{L}}_A) \approx \frac{1}{n}$, the lower bound becomes

$$\sup_{\theta^* \in \Theta_\kappa} \mathbb{E} \left[||\hat{\theta} - \theta^*||_\infty \right] \gtrsim e^{-\kappa} \sqrt{\frac{n}{N_{\text{comp}}}}$$

(7)

In ER(n, p) case, this lower bound becomes $e^{-\kappa} \sqrt{\frac{1}{npL}}$ which matches the upper bound in Chen et al. (2019). For some “regular” graph topology with $\lambda_2(\hat{\mathcal{L}}_A) \approx \frac{1}{n}$ like complete graph, expander graph with $\phi = \Omega(n)$ and complete bipartite graph with two partition sets of size $\Omega(n)$, the upper bound becomes

$$||\hat{\theta}_\rho - \theta^*||_\infty \lesssim e^{2\kappa} \sqrt{\frac{n \log n}{N_{\text{comp}}}}.$$

Therefore, when the comparison graph topology is sufficiently regular, our upper bound matches the lower bound up to a $\log n$ factor and a factor of $e^{2\kappa}$. As a final remark, Negahban et al. (2017) show that the minimax lower bound for ℓ_2-loss and Erdős-Rényi comparison graph $\text{ER}(n, p)$ is $e^{-\kappa} \frac{1}{pL}$, which matches our ℓ_2 upper bound up to a factor of $e^{2\kappa}$.

4 IMPLICATIONS FOR TOURNAMENT DESIGN

In this section, we discuss how our results can be leveraged to construct more efficient tournament design from a ranking perspective in sports leagues.

As discussed in Section 2.2, for some comparison graphs with small $\lambda_2(\mathcal{L}_A)$, the requirement on L and N_{comp} for consistency is stringent. However, as we show next, we can significantly relax the requirement on the sample complexity N_{comp} by adaptively varying the number pairwise comparisons observed over different subsets of the items in a manner that leverages different degrees of connectivity of the comparison graphs.

The basic idea is that model parameters corresponding to a subset of items inducing a highly connected sub-graph require relatively few observations. On the other hand, the outcomes of comparisons with items corresponding to nodes of the comparison graph that are part of a “graph bottleneck” are especially important in yielding accurate global ranking and, therefore, should be more heavily sampled (in the
sense of having a larger number L of observations). The case of a Barbell graph consisting of two complete sub-graphs connected by few “bridge” edges (as is shown in Figure 2) is an extreme illustration of this situation and will be discussed below. In this case, it is clear that the parameters corresponding the items adjacent to the bridge edges ought to be estimated with higher accuracy and therefore, for those items L should be set larger. Furthermore, it is possible to estimate the model parameters separately over different sub-graphs and combine these estimators in a way that could lead to an improved rate, compared to a joint or omnibus estimator. Indeed, the next result shows that the ℓ_∞-error rate of the combined estimator is bounded by the sum of the error rates for estimating the parameters of the individual sub-graphs.

Formally, let I_1, I_2, I_3 be three subsets of $[n]$ such that $\cup_{j=1}^3 I_j = [n]$ and, for each $j \neq k$, $I_j \not\subseteq I_k$ and for $i = 1, 2$, $I_1 \cap I_3 \neq \emptyset$. Assume that the sub-graphs induced by I_j’s are connected and the number of comparisons for all pairs can be different across sub-graphs. Let θ' be the vector of preference scores in the BTL model over n items and $\hat{\theta}(j)$ be the MLE of $\theta'(j) \in \mathbb{R}^{|I_j|}$ for the BTL model involving only items in I_j, $j = 1, 2, 3$. Also define the augmented version $\hat{\theta}(j) \in \mathbb{R}^n$ such that $\hat{\theta}(j)(I_j) = \hat{\theta}(j)_j$. Now take two nodes $t_1 \in I_1 \cap I_3, t_2 \in I_2 \cap I_3$, and let $\delta_3 = \hat{\theta}(1)(t_1) - \hat{\theta}(3)(t_1), \delta_2 = \hat{\theta}(3)(t_2) - \hat{\theta}(2)(t_2)$. An ensemble estimator add-MLE $\hat{\theta} \in \mathbb{R}^n$ is a vector such that $\hat{\theta}(1) = \hat{\theta}(1), \hat{\theta}(S_2) = \hat{\theta}(2)(S_2) + \delta_3 + \delta_2$, and $\hat{\theta}(S_3) = \hat{\theta}(3)(S_3) + \delta_3$, where $S_2 = I_2 \setminus I_1$ and $S_3 = I_3 \setminus (I_1 \cup I_2)$. Notice that the value of $\hat{\theta}$ depends on the choice of t_1, t_2, but the estimation error of all ensemble estimators can be well-bounded, as is shown in Proposition 6.

Proposition 6 (Subadditivity of ℓ_∞-loss in BTL). Under the setting above, for any add-MLE $\hat{\theta} \in \mathbb{R}^n$ based on $\hat{\theta}(1), \hat{\theta}(2), \hat{\theta}(3)$, it holds that

$$d_\infty(\hat{\theta}, \theta^*) \leq \sum_{i=1}^3 d_\infty(\hat{\theta}(i), \theta^*_i),$$

where $d_\infty(v_1, v_2) := \|v_1 - \text{avg}(v_1) - (v_2 - \text{avg}(v_2))\|_\infty$ and $\text{avg}(x) := \frac{1}{n} \sum_{i=1}^n x_i$ for $x \in \mathbb{R}^n$.

The proof of Proposition 6 is found in Appendix A.4.1 for some types of graph topologies the above result can be used to devise a divide-and-conquer strategy for estimating the model parameters with better sample complexity than that of an omnibus estimator, i.e., the joint-MLE in our setting. Indeed, as discussed in Section 2.2 for a barbell graph containing two size-$n/2$ complete sub-graphs connected by a single edge, we need $N_{\text{comp}} = \Omega(n^5 \log n)$ for an $o(1)$ error bound of the joint-MLE. From a practical perspective, we note that such a divide and conquer strategy gives flexibility in the number of comparisons in each sub-graph. For example, if we set $L = 1$ for the two complete sub-graphs to get MLEs $\hat{\theta}_1, \hat{\theta}_2$, and set $L = n$ for the two items linking the two sub-graphs to get an MLE $\hat{\theta}_3$, and combine them by shifting $\hat{\theta}_3$ by the difference of two entries of $\hat{\theta}_3$, then a total sample complexity reduction to $N_{\text{comp}} = \Omega(n^2)$ will ensure ℓ_∞-norm error of order $O(e^{2n^2} \log n)^{1/2} = o(1)$, because for a complete graph of size m, the ℓ_∞-norm error is $O(e^{n^2} \log n)^{1/2}$. In Example 7 and Appendix A.4.1, we show some simulation results illustrating the advantage of using subadditivity in estimation, where we generalize the add-MLE to Island graph and Barbell graph with multiple bridge edges that can have more than 3 dense sub-graphs.

Note that such flexible tournament design is similar to the idea of active ranking [Heckel et al., 2019, Ren et al., 2019], but there is still a substantial difference between our setting and active ranking. Active ranking assumes that one can design the tournament in an online manner, so that the next pair of items to be compared is determined by the newest outcomes of comparisons. However, in practice many tournaments can only be designed offline, i.e., before any games are played. Under this common setting, our ℓ_∞-subadditivity property provides a useful offline approach to efficient tournament design.

5 EXAMPLES AND SIMULATIONS

In this section, we conduct numerical experiments on simulated data with two main goals. First, we illustrate the utility of the subadditivity property in Proposition 6 in the case of Island graphs (see Example 7). Second, we demonstrate the relative tightness of our ℓ_∞ upper bound compared to Yan et al. (2012), since their work is closest in spirit to ours. Specifically, we compare the two bounds in a setting where analytical comparison is not directly feasible (see Example 8). All of our reproducible code is openly accessible.

In the BTL model, the maximal winning probability is $p_{\text{max}}(\kappa) = 1/(1 + e^{-\kappa})$. To get a sense, $p_{\text{max}}(2.00) = 0.900$, $p_{\text{max}}(4.59) = 0.990$. A winning probability larger than 0.99 is fairly rare in practice, so it would not be too constraining to set $\kappa = 2.2$ in our simulation. But analytically our result allows κ to diverge with n.

In our experiments, we set $\theta^*_i = \theta^*_i + (i - 1)\delta$ for $i \geq 1$ with $\delta = \kappa/(n - 1)$. We additionally assign θ_1^* to ensure that $1^T_n \theta^* = 0$, for parameter identifiability. Under this setting, for some special graphs, e.g., the Island graph in Example 7, κ_E can be much smaller than κ, showing an advantage of our upper bound in representing the dependency on the maximal performance gap κ_E along the edge set, rather than κ the whole vertex set. However, there may be some cases where the majority of edges have small performance gaps and only a few edges have large gaps. Here, the control in the upper bound purely by κ_E can again be loose. An interesting future
direction is to make upper bounds tighter in such cases by including more structural parameters, like the proportion of small-gap edges. We include some illustrative examples in Appendix A.4

![Adjacency matrix of a 3-Island graph](image)

Figure 1: Left: Adjacency matrix of a 3-Island graph, with yellow indicating 1 and purple indicating 0; $\lambda_2(L_A) = 11.92$. Right: Adjacency matrix of a general Island graph, with $n_{\text{island}} = 30$, $n_{\text{overlap}} = 5$, $n = 120$; $\lambda_2(L_A) = 1.19$. Bottom: comparison of the error of the joint-MLE and the add-MLE. The curve is obtained as the average of 100 trials with one standard deviation shown by the colored area.

Example 7 (Graph with $\min_{i,j} n_{ij} = 0$). In this case, we intend to illustrate that $\min_{i,j} n_{ij}$ could be 0 or quite close to 0 for even fairly dense graphs, making the upper bound in Yan et al. (2012) less effective. Consider a 3-Island comparison graph \mathcal{G} with n nodes. The induced sub-graphs on node sets V_1, V_2, V_3 with $|V_i| = n_i$ are complete graphs, where $V_1 \cap V_3 = \emptyset$, $V_1 \cup V_2 \cup V_3 = [n]$, and $V_i \cap V_j \neq \emptyset$ for $i = 1, 3$. There is no edge except for those within V_1, V_2, V_3. This graph \mathcal{G} is connected, and can be fairly dense if we make n_2 large, but $\min_{i,j} n_{ij} = 0$ always holds since $V_1 \cap V_3 = \emptyset$ and the two induced sub-graphs are complete. See Figure 1 left panel for a visualization of the adjacency matrix of such a graph.

We can also consider more general Island graphs. A general Island graph is determined by n, the size of the graph, n_{island}, the size of island sub-graphs, and n_{overlap}, the number of overlapped nodes between islands. Each island sub-graph is a complete graph, and there is no edge outside islands. For Island graphs, it holds that $\min_{i,j} n_{ij} = 0$ and $\kappa_G \approx \kappa \cdot n_{\text{island}}/n$. Figure 1 top panel shows the adjacency matrix of two Island graphs. Figure 1 bottom panel shows the comparison of the ℓ_∞-error of the joint-MLE and the add-MLE (see the detailed definition in Appendix A.4) while varying the difference in the average of preference scores of each island sub-graph, where we set $n_{\text{island}} = 50$, $n_{\text{overlap}} = 5$, $L = 10$. Every point on the lines is the average of 100 trials. It can be seen that the add-MLE by the divide-and-conquer strategy largely dominates the joint-MLE in ℓ_∞-error.

In Example 7 we show a common family of graphs which is fairly dense while $\min_{i,j} n_{ij} = 0$, so that the upper bound in Yan et al. (2012) does not hold. Next in Example 8 we consider another family of graphs where their upper bound holds but still relatively looser than our bound.

Example 8 (Barbell graph with random bridge edges). Consider a generalized Barbell graph \mathcal{G} containing $n = n_1 + n_2$ nodes, where the induced sub-graph on nodes $\{1, \cdots, n_1\}$ and $\{n_1 + 1, \cdots, n\}$ are complete graphs, and the two sub-graphs are connected by some bridge edges (i, j) for some $1 \leq i \leq n_1$ and $n_1 + 1 \leq j \leq n$. Denote the set of bridge edges as E_I, then $|E_I|/(n_1 n_2)$ quantifies the connectivity of \mathcal{G}; the larger $|E_I|/(n_1 n_2)$ is, the denser or more regular \mathcal{G} is.

![Barbell graph with bridge edges](image)

Figure 2: Top: visualization of a Barbell graph with random bridge edges. Bottom: The ratio of our bound and the bound in Yan et al. (2012) under the Barbell graph with random bridge edges and sub-graph size $n_1 = n_2 = n$, varying. The curve is obtained as the average of 100 trials with one standard deviation shown by the colored area.

In Figure 2 we show a comparison of the real ℓ_∞-loss $||\theta - \theta^*||_\infty$, and the upper bounds of ℓ_∞-error in Yan et al. (2012) and our paper. We include this relative comparison to numerically demonstrate that our bound is in general tighter than Yan et al. (2012), since there is no known analyt-
6 DISCUSSION

In this work we provide a sharp risk analysis of the MLE for the BTL global ranking model, under a more general graph topology, in the ℓ_∞-loss. This addresses a major gap in the BTL literature, in extending the comparison graph to more general and thus more practical settings, compared to dense graph setting in Yan et al. (2012). Specifically we derive a novel upper bound for the ℓ_∞ and ℓ_2-loss of the BTL-MLE, showing explicit dependence on the algebraic connectivity of the graph, the sample complexity, and the maximal performance gap between compared items. We also derive lower bounds for the ℓ_∞-loss and analyze specific topologies under which the MLE is nearly minimax optimal. We also show that the ℓ_∞-loss satisfies a unique subadditivity property for the BTL MLE and utilize our derived bounds for efficient tournament design. We note that our upper bound is suboptimal in the cases where the graph topology is extremely sparse or irregular. Although we provide sharp upper bounds for path and star graphs as separate propositions, we still miss optimality other graph topologies. A good future direction would be to optimize the upper and lower bounds in such comparison graph regimes. Another promising direction is to extend this analysis to the multi-user ranking models as in Jin et al. (2020).

Acknowledgments

We would like to thank Heejong Bong from the Carnegie Mellon University (CMU) Department of Statistics & Data Science, for his valuable feedback and discussions during this work. We would also like to thank the anonymous reviewers for their feedback which greatly helped improve our exposition.

Bibliography

Arpit Agarwal, Prathamesh Patil, and Shivani Agarwal. Accelerated Spectral Ranking. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 70–79, 2018. URL http://proceedings.mlr.press/v80/agarwal18b.html

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs. I. The method of paired comparisons. Biometrika, 39:324–345, 1952. ISSN 0006-3444. doi: 10.2307/2334029. URL https://doi.org/10.2307/2334029

Manuela Cattelan, Cristiano Varin, and David Firth. Dynamic Bradley-Terry modelling of sports tournaments. J. R. Stat. Soc. Ser. C. Appl. Stat., 62(1):135–150, 2013. ISSN 0035-9254. doi: 10.1111/j.1467-9876.2012.01046.x. URL https://doi.org/10.1111/j.1467-9876.2012.01046.x

Pinhan Chen, Chao Gao, and Anderson Y. Zhang. Partial Recovery for Top-k Ranking: Optimality of MLE and Sub-Optimality of Spectral Method. arXiv:2006.16485, 2020. URL http://arxiv.org/abs/2006.16485v1

Yuxin Chen and Changho Suh. Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 371–380, 2015. URL http://proceedings.mlr.press/v37/chen15.html

Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized MLE are both optimal for top-K ranking. Ann. Statist., 47(4):2204–2235, 2019. ISSN 0090-5364. doi: 10.1214/18-AOS1745.

K.C. Das. The Laplacian spectrum of a graph. Computers & Mathematics with Applications, 48(5):715–724, 2004. ISSN 0898-1221. doi: https://doi.org/10.1016/j.camwa.2004.05.005. URL https://www.sciencedirect.com/science/article/pii/S0898122104003074

L. R. Ford. Solution of a Ranking Problem from Binary Comparisons. The American Mathematical Monthly, 64 (8):28–33, 1957. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/2308513

Ludwig Fahrmeir and Gerhard Tutz. Dynamic Stochastic Models for Time-Dependent Ordered Paired Comparison Systems. Journal of the American Statistical Association, 89(428):1438–1449, 1994. ISSN 01621459. URL http://www.jstor.org/stable/2291005

Bruce E. Hajek, Sewoong Oh, and Jiaming Xu. Minimax-optimal Inference from Partial Rankings. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 1475–1483, 2014. URL http://papers.nips.cc/paper/5361-minimax-optimal-inference-from-partial-rankings
