A PERTURBATION RESULT OF M-ACCRETIVE LINEAR OPERATORS IN HILBERT SPACES

MOHAMMED BENHARRAT

Abstract. A new sufficient condition is given for the sum of linear m-accretive operator and accretive operator one in a Hilbert space to be m-accretive. As an application, an extended result to the operator-norm error bound estimate for the exponential Trotter-Kato product formula is given.

1. Introduction

A linear operator T with domain $\mathcal{D}(T)$ in a complex Hilbert space \mathcal{H} is said to be accretive if

$$\text{Re} < Tx, x > \geq 0 \quad \text{for all } x \in \mathcal{D}(T)$$

or, equivalently if

$$\| (\lambda + T)x \| \geq \lambda \| x \| \quad \text{for all } x \in \mathcal{D}(T) \text{ and } \lambda > 0.$$ Further, if $\mathcal{R}(\lambda + T) = \mathcal{H}$ for some (and hence for every) $\lambda > 0$, we say that T is m-accretive. In particular, every m-accretive operator is accretive and closed densely defined, its adjoint is also m-accretive (cf. [7], p. 279). Furthermore,

$$(\lambda + T)^{-1} \in \mathcal{B}(\mathcal{H}) \quad \text{and} \quad \| (\lambda + T)^{-1} \| \leq \frac{1}{\lambda} \quad \text{for } \lambda > 0,$$

where, $\mathcal{B}(\mathcal{H})$ denote the Banach space of all bounded linear operators on \mathcal{H}. In particular, a bounded accretive operator is m-accretive.

Consider two linear operators T and A in the Hilbert space \mathcal{H}, such that $\mathcal{D}(T) \subset \mathcal{D}(A)$. Assume furthermore that T is m-accretive and A is an accretive operator. Then the question is:

Under which conditions the sum $T + A$ is m-accretive?

Many papers have been devoted to this problem and most results treat pairs T, A of relatively bounded or resolvent commuting operators. We refer the reader to [2, 3, 5, 6, 15, 17, 18, 20, 21, 22]. Since T is closed it follows that there are two nonnegative constants a, b such that

$$\| Ax \|^2 \leq a \| x \|^2 + b \| Tx \|^2, \quad \text{for all } x \in \mathcal{D}(T) \subset \mathcal{D}(A). \quad (1.1)$$

In this case, A is called relatively bounded with respect to T or simply T-bounded, and refer to b as a relative bound. Gustafson [4], generalizing basic work of Rellich, Kato, and others (cf. [7]), showed that that $T + A$ is also m-accretive if A is T-bounded, with...
b < 1 (see [4, Theorem 2.]). Okazawa showed in [14] that the closure of the sum \(T + A \) is m-accretive, if the bounded operator \(A(t+T)^{-1} \) on \(\mathcal{H} \) is a contraction for some \(t > 0 \), [14, Theorem 1]. In particular, he also showed that the validity of \(\text{(1.1)} \) with \(b = 1 \) implies that the closure of \(T + A \) is m-accretive, [14, Corollary 1]. Later, the same author in [13] gave a variant of perturbation by assumed the existence of two nonnegative constants \(a \) and \(\beta \leq 1 \) such that

\[
\text{Re} <Tx, Ax> + a \|x\|^2 + \beta \|Tx\|^2 \geq 0, \quad \text{for all } x \in \mathcal{D}(T).
\]

(1.2)

If \(\beta < 1 \), then \(T + A \) is m-accretive and also the closure of \(T + A \) is m-accretive for \(\beta = 1 \), [13, Theorem 4.1]. Note that this result cover the case of relatively bounded perturbation, see [13, Remark 4.4]. There are many papers on the question of such perturbation, see [15, 16, 17, 19, 21] for more results.

The aim of this paper is to establish a new perturbation results on the m-accretivity of the operator \(T + A \). This may be viewed as a slight improvement and generalization of the perturbation results, particularly, those of Okazawa, [15, 13]. The following lemma is our partial answer to the question above.

Lemma 1.1. Let \(T \) and \(A \) two operators such that \(\mathcal{D}(T) \subset \mathcal{D}(A) \). Assume that \(T \) is m-accretive, \(A \) is accretive and there exists \(c \geq 0 \), such that

\[
\text{Re} <Tx, Ax> \geq c \|Ax\|^2, \quad \text{for all } x \in \mathcal{D}(T).
\]

(1.3)

If we take \(b = \min \{c \geq 0 : \text{(1.3) holds}\} \), we have,

1. if \(0 \leq b \leq 1 \), then \(T + A \) is also m-accretive,
2. if \(b > 1 \) then \(T + A \) is m-\(\omega \)-accretive, with \(\omega = \pi/2 - \arcsin(b^{-1}) \).

Here, \(T \) is m-\(\omega \)-accretive if \(e^{\pm i\theta}T \) is m-accretive for \(\theta = \frac{\pi}{2} - \omega, \ 0 < \omega \leq \pi/2 \). In this case, \(-T \) generates an holomorphic contraction semigroup on the sector \(|\arg(\lambda)| < \omega \). In this connection, we note that for any \(\varepsilon > 0 \)

\[
\| (\lambda + T)^{-1} \| \leq \frac{M_\varepsilon}{|\lambda|}, \quad \text{for } |\arg(\lambda)| \leq \frac{\pi}{2} + \omega - \varepsilon
\]

with \(M_\varepsilon \) is independent of \(\lambda \) (see [4, pp. 490]).

The novelty of the lemma is the optimality of \(b \) such that \(\text{(1.3) holds} \). Clearly, \(\text{(1.3)} \) implies \(\text{Re} <Tx, Ax> \geq 0 \) for all \(x \in \mathcal{D}(T) \), this exactly the assumption of [14, Theorem 2.]. Hence, we conclude that \(T + A \) is also m-accretive. Our result is a refinement of this result by given a more precise sector containing the numerical range in function of the constant \(b \). Also, from \(\text{(1.3)} \), we have for \(b > 0 \),

\[
\|Ax\| \leq \frac{1}{b} \|Tx\|, \quad \text{for all } x \in \mathcal{D}(T).
\]

(1.4)

Thus the assumption \(\text{(1.3)} \) is stronger than the relative boundedness with respect to \(T \). In particular, if \(b > 1 \) the lower bound \(\frac{1}{b} < 1 \), so according to [4, Theorem 2.], \(T + A \) is m-accretive. Here, we say more, \(T + A \) is m-\(\omega \)-accretive with \(\omega \) depends of the lower bound \(\frac{1}{b} < 1 \).
2. Proof of the Lemma

Proof of Lemma 1.1. Let \(b = \min \{ c \geq 0 : (1.3) \text{ holds} \} \). If \(b = 0 \), this exactly the Theorem 2. Assume that \(0 \leq b \leq 1 \). We obtain from (1.3)

\[
0 \leq \Re \langle Tx, Ax \rangle - b \|Ax\|^2 \\
\leq \Re \langle Tx, Ax \rangle + (\alpha - b) \|Ax\|^2
\]

for some \(\alpha > 1 \). Using (1.2), we get

\[
0 \leq \Re \langle Tx, Ax \rangle + \frac{\alpha - b}{b^2} \|Tx\|^2.
\]

Choosing \(\alpha \) such that \(\beta = \frac{\alpha - b}{b^2} < 1 \), by (1.2) we conclude that \(T + A \) is m-accretive (cf. [13, Theorem 4.1]).

Now, suppose that \(b > 1 \). Let \(x \in D(T) \), then for every \(t > 0 \), we have

\[
\Re \langle tx + Tx, Ax \rangle = t \Re \langle x, Ax \rangle + \Re \langle Tx, Ax \rangle \\
\geq b \|Ax\|^2.
\]

Thus we have

\[
\|Ax\| \leq \frac{1}{b} \|tx + Tx\|. \tag{2.1}
\]

Since \(T \) is m-accretive, then

\[
\|A(t + T)^{-1}x\| \leq \frac{1}{b} \|x\|, \quad \text{for all } x \in \mathcal{H}.
\]

Hence it follows that

\[
\|A(t + T)^{-1}\| \leq \frac{1}{b} < 1. \tag{2.2}
\]

Then the operator \(I + A(t + T)^{-1} \) is invertible and

\[
\|(I + A(t + T)^{-1})^{-1}\| \leq \frac{b}{b - 1}.
\]

The fact that

\[
t + T + A = [I + A(t + T)^{-1}](t + T),
\]

it follows that \(-t \in \rho(T + A) \) and

\[
\|t(t + T + A)^{-1}\| \leq \frac{b}{b - 1} = M, \quad \text{for all } t > 0,
\]

with \(M > 1 \). Since \(T + A \) is accretive, \(\rho(T + A) \) contains also the half plane \(\{ z \in \mathbb{C} : Re(z) < 0 \} \). Put \(S = \{ z \in \mathbb{C} : z \neq 0; |\arg(z)| < \pi/2 - \arcsin(\frac{1}{M'}) = \theta \} \) and \(M' := 1/\sin(\pi/2 - \theta') \) with \(0 < \theta < \theta' < \pi/2 \), clearly \(M' > M \). Let \(\mu \in \mathbb{C} \) such that \(|\arg(\mu)| \leq \theta' \) and fix \(\lambda \) with \(Re\lambda = -t < 0 \). Let \(|\mu - \lambda| \leq \frac{\lambda}{M'} \), we have that

\[
\|(\mu - \lambda)(t + T + A)^{-1}\| \leq \frac{M}{M'} < 1.
\]

Hence it follows that \(\mu \in \rho(T + A) \) and

\[
(\mu + T + A)^{-1} = (\lambda + T + A)^{-1}[I + (\mu - \lambda)(\lambda + T + A)^{-1}]^{-1}.
\]
Thus
\[
\|\mu(\mu + T + A)^{-1}\| \leq \frac{\|\mu\|}{|\lambda|} \frac{1}{1 - \frac{M}{M'}} M
\]
\[
\leq (1 + \frac{1}{M'}) \frac{1}{1 - \frac{M}{M'}} M.
\]

On the other hand,
\[
(1 + \frac{1}{M'}) \frac{1}{1 - \frac{M}{M'}} M = \frac{1 + \sin(\pi/2 - \theta')}{\sin(\pi/2 - \omega) - \sin(\pi/2 - \theta')}
\]
\[
\leq \frac{1}{\sin((\theta' - \theta)/2) \sin((\theta' + \theta)/2)}
\]
\[
\leq \frac{1}{\sin(\theta' - \theta) \sin(\theta)}
\]
\[
\leq \frac{1}{\sin(\theta' - \theta) \sin(\pi/2 - \arcsin(\frac{1}{M}))}
\]
\[
\leq \frac{1}{\sin(\theta' - \theta) \cos(\arcsin(\frac{1}{M}))}
\]
\[
\leq \frac{1}{\sin(\theta' - \theta) \sqrt{1 - \frac{1}{M^2}}}
\]
\[
\leq \frac{M}{\sin(\theta' - \theta) \sqrt{M^2 - 1}}.
\]

This implies that
\[
\|\mu + T + A\|^{-1} \leq \frac{M}{|\mu| \sin(\theta' - \theta) \sqrt{M^2 - 1}}.
\]

This shows that the sector \(S\) belongs to \(\rho(T + A)\) and for any \(\varepsilon > 0\),
\[
\|\mu + T + A\|^{-1} \leq \frac{M_{\varepsilon}}{|\mu|} \text{ for } |\arg(\mu)| \leq \pi/2 - \arcsin(\frac{1}{M}) + \varepsilon,
\]
with \(M_{\varepsilon} = \frac{M}{\sin(\varepsilon) \sqrt{M^2 - 1}}\) and \(\theta' - \theta = \varepsilon\). Clearly, \(M_{\varepsilon}\) is independent of \(\mu\). Hence, \(T + A\) is \(m\)-\(\omega\)-accretive, with \(\omega = \pi/2 - \arcsin(\frac{b - 1}{b})\). \(\square\)

Remark 2.1. (1) As seen in the last paragraph of the proof, the condition \(1.2\) implies \(1.3\) at least for \(0 \leq b \leq 1\). Thus \(1.3\) is covered by Lemma 1.1.
(2) If the assumptions of Lemma 1.1 are satisfied, we can see that \(Re < tx + Tx, Ax >\geq 0\) for all \(x \in D(T)\). Therefore \(A(t + T)^{-1}\) is bounded accretive operator for any \(t > 0\).
Corollary 2.2. Let T and A as in Lemma 1.1 obeying (1.3). Then
(1) $-(T + A)$ generates contractive one-parameter semigroup for $0 \leq b \leq 1$.
(2) $-(T + A)$ generates contractive holomorphic one-parameter semigroup with angle
$\omega = \arcsin(\frac{b-1}{b})$ for $b > 1$.

3. An application

One of interest is the operator-norm error bound estimate for the exponential Trotter-Kato product formula in the case of accretive perturbations, see [10, 11] and [12] for a short survey. Let A be a semibounded from below densely defined self-adjoint operator and B an m-accretive operator in a Hilbert space \mathcal{H}.

In [1, Theorem 3.4] it has been shown that if B is A-bounded with lower bound < 1 and

$$\mathcal{D}((A + B)^\alpha) \subset \mathcal{D}(A^\alpha) \cap \mathcal{D}((B^*)^\alpha) \neq \{0\} \quad \text{for some } \alpha \in (0, 1],$$

then there is a constant $L_\alpha > 0$ such that the estimates

$$\left\| (e^{-tB/n}e^{-tA/n})^n - e^{-t(A+B)} \right\| \leq L_\alpha \frac{\ln n}{n^\alpha}$$

and

$$\left\| (e^{-tA^*/n}e^{-tB^*/n})^n - e^{-t(A+B)^*} \right\| \leq L_\alpha \frac{\ln n}{n^\alpha}$$

hold for some $\alpha \in (0, 1]$ and $n = 1, 2, \ldots$ uniformly in $t \geq 0$. Here T^α denotes the fractional powers of an m-accretive operator, see [8, 9].

The aim of the present result is to extend [1, Theorem 3.4]. This extension is accomplished by replacing the relative boundedness by the assumption (1.3). More precisely, we have

Theorem 3.1. Let A be a semibounded from below densely defined self-adjoint operator and B an m-accretive operator with (1.3) for some $b > 1$. Assume that (3.1) holds. Then there is a constant $L_\alpha > 0$ such that the estimates

$$\left\| (e^{-tB/n}e^{-tA/n})^n - e^{-t(A+B)} \right\| \leq L_\alpha \frac{\ln n}{n^\alpha}$$

and

$$\left\| (e^{-tA^*/n}e^{-tB^*/n})^n - e^{-t(A+B)^*} \right\| \leq L_\alpha \frac{\ln n}{n^\alpha}$$

hold for some $\alpha \in (0, 1]$ and $n = 1, 2, \ldots$ uniformly in $t \geq 0$.

Proof. From (1.3), we have for $b > 1$,

$$\|Bx\| \leq a \|Ax\|, \quad \text{for all } x \in \mathcal{D}(A),$$

with $a = \frac{1}{b} < 1$. Hence B is A-bounded with lower bound $a < 1$. Also, by lemma 2.4, $A + B$ is m-\(\omega\)-accretive, with $\omega = \pi/2 - \arcsin(\frac{b-1}{b})$. Now, all assumptions of [1, Theorem 3.4] are fulfilled. Hence we obtain the desired result. □

Remark 3.2. It well known that, for an m-accretive operator T, the fractional powers T^α are $m-(\alpha \pi)/2$-accretive and, if $\alpha \in (0, 1/2)$, then $\mathcal{D}(T^\alpha) = \mathcal{D}(T^{\alpha*})$, see [8, Theorem 1.1]. Since A, B and $A + B$ are m-accretive operators, we deduce that

$$\mathcal{D}((A + B)^\alpha) = \mathcal{D}((A + B)^\alpha) \subset \mathcal{D}(A^\alpha) \cap \mathcal{D}(B^\alpha) = \mathcal{D}(A^\alpha) \cap \mathcal{D}((B^*)^\alpha),$$

for some $\alpha \in (0, 1/2]$. Thus, the condition (3.1) may be omitted in Theorem 5.1 if we take $\alpha \in (0, 1/2]$ (cf. [1, Theorem 4.1]).
References

[1] V. Cachia, H. Neidhardt and V. A. Zagrebnov, Comments on the Trotter product formula error-bound estimates for nonself-adjoint semigroups. Integr. equ. oper. theory 42, 425–448 (2002).

[2] P. R. Chernoff, Perturbations of dissipative operators with relative bound one, Proc. Amer. Math. Soc. 33 (1972), 72–74.

[3] K.-J. Engel, On perturbations of linear m-accretive operators on reflexive Banach spaces, Mh. Math. 119 (1995), 259–265.

[4] K. Gustafson, A perturbation lemma, Bull. Am. Math. Soc., 72 (1966), 334–338.

[5] P. Hess, T. Kato, Perturbation of closed operators and their adjoints, Comment. Math. Helv. 45 (1970) 524–529.

[6] S. Krol, Perturbation theorems for holomorphic semigroups, J. Evol. Equ. 9 (2009), 449–468.

[7] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York (1995).

[8] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad. 36 (1960), no. 3, 94–96.

[9] T. Kato, Fractional powers of dissipative operators, Proc. Japan Acad. 13 (3) (1961), 246–274.

[10] T. Kato, On the Trotter-Lie product formula. Proc. Japan Acad. 50 (1974), 694–698.

[11] T. Kato, Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. Topics in Funct. Anal., Ad. Math. Suppl. Studies Vol. 3, 185–195 (I.Gohberg and M.Kac eds.). Acad. Press, New York 1978.

[12] H. Neidhardt, A. Stephan, V. A. Zagrebnov, Operator-Norm Convergence of the Trotter Product Formula on Hilbert and Banach Spaces: A Short Survey. In: Russias T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham (2018).

[13] N. Okazawa, Perturbations of Linear m-Accretive Operators, Proc. Amer. Math. Soc. Vol. 37, No. 1 (Jan., 1973), pp. 169-174.

[14] N. Okazawa, Two perturbation theorems for contraction semigroups in a Hilbert space, Proc. Japan Acad. 45 (1969), 850-853.

[15] N. Okazawa, Approximation of linear m-accretive operators in a Hilbert space, Osaka J. Math., 14 (1977), 85–94.

[16] N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan 34 (1982) 677–701.

[17] N. Okazawa, Perturbation theory for m-accretive operators and generalized complex Ginzburg-Landau equations, J. Math. Soc. Japan Vol. 54 No. 1 (2002), 1–19.

[18] M. Sobajima, A class of relatively bounded perturbations for generators of bounded analytic semigroups in Banach spaces, J. Math. Anal. Appl. 416 (2014) 855–861

[19] H. Sohr, Ein neues Surjektivitatskriterium im Hilbertraum. Mh. Math. 91, 313–337 (1981).

[20] R. Wust, Generalisations of Rellich’s theorem on perturbation of (essentially) selfadjoint operators, Math. Z. 119 (1971), 276–280.

[21] A. Yoshikawa, On Perturbation of closed operators in a Banach space, J. Fac. Sci. Hokkaido Univ., 22 (1972), 50–61.

[22] K. Yosida, A perturbation theorem for semigroups of linear operators, Proc. Japan Acad. 65 (1965), 645–646.

1 Département de Génie des Systèmes, Ecole Nationale Polytechnique d’Oran-Maurice Audin (Ex. ENSET d’Oran), BP 1523 Oran-El M’naouar, 31000 Oran, Algérie.

E-mail address: mohammed.benharrat@enp-oran.dz, mohammed.benharrat@gmail.com