Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

Edna C. Holman¹, Leah J. Campbell¹, John Hines¹, Craig M. Crews¹-²-³*

¹ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America, ² Department of Chemistry, Yale University, New Haven, Connecticut, United States of America, ³ Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America

Abstract

Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum ("Amex") miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3’UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes.

Introduction

Although most metazoans are able to repair injured tissues at least to some extent; the capacity to regenerate whole body parts after injury or amputation is limited to a handful of organisms [1]. Uniquely among vertebrates, salamanders (news and axolotls) can regrow a wide variety of lost or damaged body parts including limbs [2], jaws [3], tail [4], parts of the eye [5–7], inner ear hair cells [8], intestines [9] and even large pieces of the heart [10]. In each case, they achieve this by initially dedifferentiating cells in the remaining tissue [11]. One of the most complex types of regeneration is seen in limb regeneration, in which the wound rapidly closes via migration of neighboring epithelial cells and underlying mesenchymal cells change their morphology and proliferate to form a cell mass known as the blastema [12,13]. Blastemal cells retain a memory of their pre-injury cell and positional identity, which ultimately determines their cell fate and localization in the regrown limb [14].

Over the last century, salamander limb regeneration has been well studied at a gross anatomical level. Although basic similarities to limb development suggest that many genes expressed in developing limbs will be re-expressed during regeneration, little is known about the molecular basis of the regenerative process [15]. Thus, genes whose actions have been demonstrated to be required (although not necessarily sufficient) for the success of the limb regenerative response following blastema induction comprise mostly classic players in limb/appendage development. These include several members of the FGF protein family (i.e., FGF-1, -2, -8, -10 and -20) [2,16], members of the Wnt signaling pathway [17,18], Shh [19,20], TGF-beta [21], and several transcription factors such as Hox genes including HoxA [22], HoxD [23], Msx-1 [24] and dlx3 [25], among others.

Recognized as important fine regulators of gene expression, microRNAs (miRNAs) are small endogenous nuclease RNA molecules (~19–25 nt) that bind complementary sequences in the 3’ untranslated region (UTR) of target mRNAs, thus downregulating them at the posttranscriptional or translational levels [26,27]. Among the diverse roles assigned to miRNAs are the regulation of cellular differentiation [28], proliferation [29] and apoptosis [30]. Not surprisingly, their deregulation has been documented in several diseases including cancer [31,32]. miRNAs are present across the eukaryotic phylogeny and their striking sequence conservation among taxa has promoted the use of interspecific high-throughput platforms such as miRNA-micro-
arrays. Consequently, it is now feasible to detect and study the involvement of miRNAs in a variety of biological processes and across model organisms, even those without a sequenced genome, such as the axolotl.

Attempts to clone salamander microRNAs have been limited [33,34] due, in part, to the challenge of assembling generated small sequence reads using the limited and fragmented publicly available newt and axolotl genomic sequences. Nevertheless, alignment comparisons between the set of cloned salamander miRNAs against vertebrate mature miRNAs indicates that in general they share between 90% to 100% sequence identities [33,34]. This high sequence conservation has allowed the use of interspecific miRNA-microarrays to identify miRNAs involved in some aspects of salamander regeneration such as inner ear hair cell regeneration [35] and lens regeneration in newts [35,36], as well as axolotl tail regeneration [34].

Herein, we have also taken advantage of the impressive miRNA sequence conservation among taxa and used two different interspecific miRNA-microarray platforms (LC Sciences and Exiqon Life Sciences) to identify differentially expressed miRNAs during limb regeneration in the axolotl (Ambystoma mexicanum). Microarray analyses revealed a set of miRNAs that consistently displayed high statistical support and large fold-changes of differential expression between mid-bud regenerating blastemas and mature non-regenerating stump tissue. From this list, miR-21 was validated by Northern blot and real-time RT-PCR and implicate this putative regulator of cell differentiation and its reversal, a crucial phase in salamander regeneration.

miR-21 is an attractive stage to identify miRNAs that could be playing important functional role at this stage of limb regeneration. miR-21 is on average 19 fold over-expressed in mid-bud blastemas as compared with 17 dpa blastemas. Conversely, miR-21 had an opposite behavior during this regeneration stage and was overexpressed in 17 dpa blastema as compared to stump tissue. That is, three miRNAs were found overexpressed in stump tissue as compared with 17 dpa blastemas. Conversely, miR-21 had an opposite behavior during this regeneration stage and was overexpressed in 17 dpa blastema as compared to stump tissue. It has been suggested that genes (or microRNAs) downregulated during regeneration are likely involved in preserving the terminally differentiated tissue state and will be normally tightly regulated to get a healthy balance between cell growth and abnormal cell proliferation [38]. Accordingly, the upregulation of let-7g in mature, non-regenerating axolotl stump tissue correlates with its reported high expression in somatic differentiated cell types [39]. Experimental evidence suggests that let-7 may, in fact, constitute an antisense factor [40]. In agreement with this, down-regulation of let-7 members have been previously reported in lens and inner ear hair cell regeneration in newts [35], which implicate them as putative regulators of cell differentiation and its reversal, a crucial phase in salamander regeneration.

The low inter-platform comparability between the microarray results obtained from LC Sciences and Exiqon is not surprising and similar results previously have been reported after systematically comparing microRNA-microarray results from five different companies/platforms [41]. Sources of known variation that could have contributed to the reduced inter-array comparability in our experiments are worth mentioning: the platform-specific probe design based on different releases of miRBase (version 12 for LC Sciences; version 9.2 for Exiqon), the unique labeling methods, different hybridization techniques, particular assumptions made to perform normalization procedures, and differential stringency of detection call.

We performed this microarray profiling of regenerating blastemas at 17 dpa because this is the period when all the animals in our study displayed a medium-bud blastema. At this stage, the blastema resembles a developing limb bud with a large amount of seemingly undifferentiated cells, the nerve dependency of the regenerate is easing and little (if any) patterning of new limb structures has begun [42]. Thus, medium bud limb blastema is an attractive stage to identify miRNAs that could be playing important roles in the progression of the regenerate towards proper patterning of the new limb. As noted in Figure 1 and 2, several probes complementary to mammal, bird and fish miR-21 were found by both microarray platforms to be the most consistently over-expressed microRNA in mid-bud blastema. According to LC Sciences, when compared to stump tissue, miR-21 is on average 19 fold over-expressed in mid-bud blastemas (p≤0.01); and on average miR-21 is 8 fold over-expressed (p≤0.0001) under the same conditions according to Exiqon’s data. Thus, miR-21 is a strong candidate to be playing an important functional role at this stage of limb regeneration.

Recently a few microRNAs and other small RNAs were isolated, cloned and sequenced from the eyes of adult newts, and miR-21 was among them [33]. The cloned mature miR-21 from newt has 100% sequence identity to the mature human miR-21 [33]. When compared with time-zero samples, the newt miR-21 was found to be upregulated 1.35-fold at one week of inner ear hair cell regeneration and downregulated 2-fold at 12 days after the initial insult [35]. Interestingly, both of these time-points still represent the time window when cell reprogramming towards transdifferentiation is taking place in this system [35]. However, the changing expression of miR-21 in opposite directions during this time period might indicate that unrecognized molecular
switches have been additionally activated during the reprogramming phase of newt inner ear hair cell regeneration.

To our knowledge, no axolotl miR-21 (Amex-miR-21) sequence is publicly available. However, the reported sequence identity between the newt and human mature miR-21 indicates that the axolotl mature miR-21 sequence also may be identical to the human miR-21 (H. sapiens, or hsa-miR-21). In fact, Amex-miR-21 has been found by deep sequencing to be identical to mammal miR-21 (Karen Echeverri, personal communication). Consequently, the reported upregulation of miR-21 during inner ear hair cell regeneration [35] and our observation of its over-expression during the mid-bud blastema stage of limb regeneration suggest

---

**Figure 1. miRNA-microarray profiling of salamander limb regeneration.** Clustering analysis performed on log2 (Cy3/Cy5) ratios, which passed the filtering criteria (p<0.01 on A and p<0.001 on B) using a two-tailed t-test between the two groups in the analysis (blastema vs. stump). Heat Map and supervised Hierarchical Clustering of results obtained using LC Sciences (A) and Exiqon’s (B) platforms. Each row represents a miRNA and each column represents a sample. Sample clustering shows that the samples (blastema vs. stump) separate into the two discrete groups. The color scale shown at the bottom illustrates the relative expression level of a miRNA across all samples: red color represents an expression level above mean, green and blue color represents expression lower than the mean. Three consecutive asterisks indicate miR-21 probes.

doi:10.1371/journal.pone.0041804.g001
that \textit{miR-21} is playing an unidentified, yet potentially pivotal, role in salamander regeneration processes characterized by high cell proliferation, low cell differentiation and cell reprogramming phases.

Given the high sequence conservation for microRNAs across species, the suspected sequence identity between the human and axolotl mature \textit{miR-21} and the particularly good hybridization signal obtained when the axolotl RNA hybridized to the complementary human \textit{miR-21} microarray probes, we attempted to use the \textit{hsa-miR-21} digoxigenin (DIG) -labeled miRCURY Locked Nucleic Acid (LNA) detection probe (Exiqon; Woburn, MA) to perform non-isotopic Northern blot analysis of \textit{miR-21} expression in axolotl blastema, stump and blood. When immobilized axolotl total RNA was hybridized with probes against \textit{hsa-miR-21} and \textit{hsa-U6} (control), discrete bands of approximately 20 nt and 116 nt (respectively) were detected in stump, blastema and blood axolotl tissues (inset on Figure 3). Although perfectly equal loading of samples could not be achieved, our result suggests that the axolotl \textit{miR-21} (\textit{Amex-miR-21}) is overexpressed in 17 dpa blastema tissues when compared to non-regenerating stump and blood tissues.

To further validate quantitatively the axolotl microarray and Northern blot data for \textit{miR-21} expression, we used the miRCURY LNA real-time PCR microRNA System (Exiqon). Five putative microRNA endogenous controls were selected from the previous microarray microRNA data. After analyzing their stability using the SLqPCR R-package [43], two of them (\textit{miR-20a} and \textit{miR-200b}) were chosen as endogenous controls for normalization of the efficiency corrected expression data for \textit{miR-21}. Quantitative PCR assays (Figure 3) with three biological replicates and four technical replicates validated the previous microarray data and once again demonstrated that \textit{miR-21} is significantly upregulated in 17 dpa blastema tissues when compared with stump tissues.

Among the many predicted targets for \textit{miR-21} reported in the Targetscan 5.1 database [44,45], \textit{Jagged 1} (\textit{JAG1}) is attractive because of its previously assigned roles in embryonic [46] and limb development [47]. Also, the single recognition site for \textit{miR-21} present in the 3'-UTR of \textit{Jagged1} was previously shown to be targeted by \textit{miR-21} during monocyte-derived dendritic cell
mesenchyme of limb buds, and mutations in the human embryos, induced by Fgf5 (e.g., Jagged1) in early limb pre-patterning events, it is believed to be involved in... 

...cause the autosomal dominant disorder Alagille syndrome, which is expressed in embryonic stem cells, neural tissues, and higher Jag1 expression in the stump region. As shown in Figure 5, Jag1 is expressed especially in epidermal cells both in mature and regenerating epidermis. However, Jag1-expressing cells are significantly more abundant proximal to the animal body. Although Figure 5 might suggest that Jag-1 is expressed significantly more on the right side compared to the left side in regenerating limbs, in fact, we have seen regenerating limbs with slightly higher Jag-1 expression on the right side, on the left side, and evenly distributed between both sides. Independent of which side of the stump shows higher Jag-1 expression, this Jag-1 immunoreactivity is always significantly higher in stumps when compared to blastema tissue as shown in Figure 5. Weaker immunoreactivity was also observed scattered in the stump mesenchyme. Jag1 immunoreactivity is completely absent in control sections.

Our analyses provided valuable, albeit limited, information about how the differential expression of miRNAs might be regulating gene expression during mid-bud blastema limb regeneration. However, profiling more time-points during limb regeneration is necessary in order to visualize the dynamics of the miRNA expression through the regeneration stages of wound closure, blastema formation and growth, early and late palate stages, as well as initiation of digit formation to completion of paw and limb regrowth. It is expected that as in other systems we will see stage-specific miRNA expression patterns.
We present a snapshot of the miRNA expression during a specific stage in the process of salamander limb regeneration. We demonstrated that Amex-miR-21 is over-expressed in mid-bud blastemas and directly targets Amex-Jag1 via the single miR-21 target site present in its 3′-UTR, which is highly conserved. The functional significance of the pairing between miR-21 and Jag1 during limb regeneration has yet to be addressed. In vivo assays in which the expression and activity of either (or each) member of this couple is perturbed should provide answers. In the meantime, it is tempting to speculate that in the same way that Hsa-Jag1 has been shown to be targeted by Hsa-miR21 during monocyte-derived dendritic cell differentiation [48]; Amex-Jag1 is being targeted by Amex-miR-21 during mid-bud blastema limb regeneration. A unifying aspect of these two processes is the transition from a proliferative undifferentiated cell state to a differentiated stage when important cell fate commitments are being determined. We anticipate that inhibition of Amex-miR-21 by exogenous antiMirs, or the addition of JAG1, could block blastemal cell differentiation in a functional manner. Thus, we hypothesize that JAG1, which in pathological contexts is found overexpressed in highly proliferative cells, is downregulated during limb regeneration by the highly expressed miR-21 that targets its 3′-UTR recognition site. Therefore, proliferating blastemal cells previously under the influence of JAG1 can become free to commit to their cell fate, as part of their transition to advanced regeneration stages (i.e., palette and digit stages).

**Materials and Methods**

**Animals**

All axolotls (Ambystoma mexicanum) were either bred at Yale University or obtained from the Ambystoma Genetic Stock Center at the University of Kentucky. Amputations and tissue collections were performed on animals measuring 10–15 cm from snout to tip of tail. Animals were anesthetized in 0.1% MS222 solution (Ethyl 3-aminobenzoate methanesulfonate salt, Sigma-Aldrich, St. Louis,
Figure 5. Amex-Jag1 expression in regenerating axolotl limb.

Expression analysis by Northern blot hybridization

Microarray analysis of microRNAs

MO, USA). Animal care and surgical procedures followed standard practices approved by the Yale University Institutional Animal Care and Use Committee (IACUC protocol number: 2011-10557).

Cell culture

AL-1 cells were obtained from Stéphane Roy at the Université de Montréal and were cultured in Leibovitz L-15 medium which had been adjusted to 70% of its original osmolality using autoclaved, filtered water. This amphibian osmolarity-adjusted basal medium was further supplemented with 10% fetal bovine serum, 10 μg/ml insulin and 1% penicillin-streptomycin (Invitrogen, Carlsbad, CA). Cells were maintained on gelatin-coated tissue culture plastic at a temperature of 25°C under normal atmospheric conditions.

The hindlimbs of three white axolots (medium to large animals) were amputated, and 0.5–1 cm long stump samples (including full thickness skin, bone, muscle, nerve fibers, etc) were collected under RNase-free conditions and stored in RNA Later (Ambion, Foster City, CA) prior to RNA isolation. Seventeen days later (17 dpa, days-post-amputation), blastemas from the same animals were collected and stored in similar conditions than the stump tissues. Total RNA (including microRNAs) was collected from the samples using the mirVana miRNA Isolation Kit (Ambion). After running the RNA samples on a gel and confirming their integrity, 1.2 μg were sent to LC Sciences (Houston, TX) to be processed using their MicroRNA detection Microarray Service, and to be hybridized to a custom vertebrates chip (MRA-2001). This chip contained 3,918 selected vertebrate microRNAs (from human, opossum, Zebrafish, chicken, and frog) based on the Sanger miRBase Release 12. Each probe was printed at least twice in the chip. An aliquot (5 μg) from the same total RNA isolation was sent to Exiqon Life Sciences (Woburn, MA) to be processed and hybridized to their All Species Array. This chip contained more than 2,000 captured probes complementary to microRNAs from vertebrates, invertebrates, plants and viruses reported in the miRBase v.9.2 database. It is important to note that each of these companies uses a different platform, and protocols to perform microarray analysis of microRNAs. Thus, while LC Sciences used in situ synthesized probes and μParallo microfluidic chips to hybridize the RNA samples, Exiqon designed LNA probes that were later captured or attached to glass slides to be hybridized to the same axolotl RNA samples. Analysis of microarray datasets (QC assessments, background subtraction, Lowess normalization, and statistical tests) was also performed by LC Sciences and Exiqon according to their own standardized procedures. Upon receiving both datasets, differentially detected signal sets with \( p \leq 0.01 \) (LC Sciences), and \( p \leq 0.001 \) (Exiqon) were considered statistically significant to compensate for known differences in stringency criteria of detection call for each microarray platform [41].

Expression analysis by Northern blot hybridization

For size determination of the axolotl miR-21, total RNA (including microRNAs) was collected from blastema and stump samples using the mirVana miRNA Isolation Kit (Ambion). Also, blood samples were collected from axolots right after limb amputation using 10% ethylenediaminetetraacetic acid (EDTA) as anticoagulant. We followed the recommended alternate protocol to extract total RNA (including small RNAs) from nucleated red blood cells from aquatic animals using the Ribopure-Blood Kit (Ambion). All total RNA isolated from limb tissues and blood was treated with TurboDNAse (Ambion) following manufacture’s recommendations, precipitated overnight at ~80°C, washed and resuspended in 1× RNaseCure Resuspension solution (Ambion). For Northern Blots we followed published protocols [54,55] with modifications as follows: ten micrograms of total RNA per sample were dissolved in Gel Loading Buffer II (Ambion), heated at 95°C for 5 min, loaded onto denaturing 15% TBE-Urea denaturing, SequaGel Sequencing gel (National Diagnostics, Atlanta, GA) along with a 10 bp DNA ladder (Invitrogen, Carlsbad, CA), and transferred to a Zeta Probe plus membrane (Bio-Rad, Hercules, CA). Membranes were equilibrated with 2× SSC and prehybridized at 42°C for 1 h in ULTRAhyb-Oligo buffer (Ambion). Prior to hybridization, miRCURY™ LNA detection probes were labeled using DIG Oligonucleotide Tailing Kit 2nd Generation (Roche Applied Science, Indianapolis, IN). DIG-labeled LNA probes complementary to either hsa-miR-21 or hsa-U6 (loading control) were hybridized to the membranes overnight at 37°C in ULTRAhyb-Oligo buffer (Ambion). Following hybridization, the membranes were washed twice for 30 min in NorthernMax Low Stringency wash solution no. 1 (Ambion) at 42°C, rinsed for 5 min in 1× Wash Buffer from the DIG wash and Block Buffer Set (Roche), blocked for 1 h in 1× Blocking Solution (Roche), incubated for 1 h in antibody solution (Anti-DIG-AP 1:10,000 in 1× Blocking solution, Roche), washed twice for 15 min in 1× Wash Buffer, equilibrated by rinsing twice for 5 min with 1× Detection Buffer (Roche). Then, following instructions from the DIG Luminescent Detection Kit (Roche), blots were incubated with the chemiluminescent substrate for alkaline phosphatase CSPD (Roche) and exposed to Amersham Hyperfilm ECL (GE Healthcare Life Sciences, Piscataway, NJ).
Expression analysis by real-time RT-PCR

Total RNA (including microRNAs) was collected from a new set of 17 dpa blastema and stump samples (three biological replicates) using the mirVana miRNA Isolation Kit (Ambion). RNA quality and amount was assessed using the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA) and the NanoDrop ND-1000 (NanoDrop Technologies, Wilmington, DE) respectively. MicroRNAs were converted into cDNA by reverse transcription using microRNA-specific primers and the miRCURY LNA First-strand cDNA Kit (Exiqon). The cDNA was amplified by real-time PCR using the human miCURY-TM LNA microRNA PCR system and miRCURY LNA SYBR Green Master Mix (Exiqon). The experiment was performed with miR-21 and five putative microRNA endogenous controls chosen from the previous microarray microRNA profiling data. The stability of the endogenous controls was evaluated and the best two endogenous controls were selected using the SLqPCR R-package. For every endogenous control gene, the pair-wise variation with all other endogenous controls was determined as a gene stability measurement, M. An M value below 1.5 is recommended and genes with expression stability above 1.5 were considered unstable across the samples and unsuitable for endogenous controls in this experiment [49]. Two of the endogenous control candidates (miR-200a and miR-200b) were considered acceptable and used for normalizing the quantified signal (Cp) of the microRNAs. We considered the Cp value for each sample as the median of at least three out of four technical replicates with a standard deviation (SD) less than 0.5. The PCR efficiency was estimated from a serial dilution of cDNA generated from pooled RNA of the samples for each assay. The Cp values were scaled to the average of all Cp values of the unknown samples (endogenous controls and miR-21) and corrected for assay-specific PCR efficiency. A normalization factor was calculated based on the geNorm algorithm for the endogenous controls. The relative expressions (fold changes) were calculated based on the efficiency corrected ΔCt method [56]. This method is based on the comparison of the distinct cycle differences between the test microRNA and the endogenous controls in a sample, and the average Cp values of all the unknown samples. All qPCR analyses were performed on three biological replicates, each technical replicate with a standard deviation (SD) less than 0.5.

Transfections and luciferase assays

AL-1 axolotl dermal fibroblasts were a gift from Stéphane Roy (Université de Montréal). The cells were electroporated with the luciferase vectors and Pre-miRs as noted in Figure 4.B using an Amaxa nucleofector device (Lonza - Basel, Switzerland). AL-1 cells (200,000 per test condition) were pulse-electroporated in a 100 μL reaction volume with 2 μg psiCHECK-2 plasmids containing different biosensors of miRNA activity and then plated out into 5 ml of culture medium; where noted, 2 nmol of Pre-miR (mimics of miRNAs) were also added to the electroporation reactions. Additionally, a small amount (~20 ng) of an unrelated vector expressing a red fluorescent protein was co-electroporated on each well to serve as visual assessment of transfection success (typically 60 to 80%). The cells were assayed for luciferase activity 48 h post transfection using the Dual-Glo Luciferase Assay System following manufacturer’s protocol (Promega, Madison, WI). Luminescence levels were measured using a Wallac Victor2 1420 Multilabel Counter (Perkin Elmer, Waltham, MA). The Renilla reporter data was normalized to the Firefly co-reporter data and the ratios analyzed as percentage of activity in relation with their respective control (e.g., Amex-miR-21 vs. Amex-miR-21+Pre-miR-21).

Immunohistochemistry

Regenerating limbs at 17 dpa were collected and fixed in 4% paraformaldehyde containing 5% sucrose overnight at 4°C. Tissues were rinsed three times for 15 min each in 0.8× PBS and left for 2–3 days rocking at 4°C in decalciying solution (18% EDTA in 0.8× PBS, 0.07% glycerol, 5% sucrose). Decalciﬁed limbs were transferred to a 30% sucrose/0.8× PBS solution and left rocking overnight at 4°C. Next day, tissues were transferred to fresh sucrose solution and left at 4°C without rocking for 6 h or until the samples sunk to the bottom of the tubes. Samples were left overnight at 4°C without rocking in a 50:50 degassed solution of 30% sucrose/0.8× PBS. Tissues were embedded in Optimal
Cutting Temperature compound (OCT; Tissue Tek; Sakura Finetek, Torrance, CA), and cryostat sections (9 μm) were mounted in Superfrost Plus microscope slides (Éric Scientific, Portsmouth, NH). The indirect immunofluorescence method was followed [60]. Slides were air dried and blocked for 1 h in 1:50 donkey normal serum (Santa Cruz Biotechnology, Santa Cruz, CA). After permeabilization in 0.5% Triton X-100 in PBS, and PBS washes, goat polyclonal primary antibody against human Jagged1 (sc-6011, Santa Cruz Biotechnology) was used at 1:100 dilution and left in a humid chamber for 24 h at room temperature. Next day, slides were washed 3×15 min in PBS, and the secondary antibody, Alexa fluor 594 donkey anti-goat IgG (H+L) (Invitrogen) was administered in a 1:50 dilution and left for 1 h in a humid chamber. After 3×15 min washes in PBS, slides were mounted in VECTASHIELD HardSet mounting medium with DAPI (Vector Laboratories, Burlingame, CA). Negative controls included the use of normal serum as primary antibody in some slides, preincubation of the primary antibody with its corresponding blocking peptide (sc-6011P, Santa Cruz Biotechnology) for 2 h in order to neutralize the antibody before its addition to the sections. No Jagged1 immunoreactivity was detected in negative control slides. Dilution of serum and antibodies was done in RIA Buffer (0.05 M potassium phosphate (pH 7.4) containing 0.5% BSA and 0.01% Na azide).

Sections were examined in a Zeiss AxioImager M1 fluorescence microscope (Carl Zeiss MicroImaging, Thornwood, NY) equipped with a CCD camera (AxioCam MR3; Carl Zeiss). To obtain an image of the whole regenerating limb, photos of 21 overlapping fields of view were taken at 10× magnification, and the final image was manually reconstituted from its component overlapping images using Adobe Photoshop CS (Adobe Systems Inc, USA).

**Supporting Information**

**File S1** MiRNA-microarray results obtained using the LC Sciences and Exiqon platforms. Multiarray normalized data, fold changes and statistical tests are included. Probes targeting miR-21 from different species being upregulated in salamander limb regenerating blastemas are highlighted. (XLS)

**Acknowledgments**

The authors would like to thank Dr. Mohamed Bouzaffour (Yale University) for his expertise and assistance in the implementation of the reporter assays. We thank the NIH (GM094944) and the Ellison Medical Foundation for their support and Exiqon Life Sciences for their assistance in microRNA microarray profiling/qPCR validation for miR-21 expression. We acknowledge the services of the NSF-funded Ambystoma Genetic Stock Center and the resources available at the Sal-Site.

**Author Contributions**

Conceived and designed the experiments: CMC JH. Performed the experiments: ECH JH. Analyzed the data: ECH. Contributed reagents/materials/analysis tools: LJC. Wrote the paper: ECH JH.

**References**

1. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170.

2. Nye HL, Cameron JA, Chernoff EA, Stock DM (2003) Regeneration of the urodele limb: a review. Dev Dyn 226(2): 210–94.

3. Ghosh S, Thorogood P, Ferretti P (1998) Regenerative capability of upper and lower jaws in the newt. Int J Dev Biol 38: 379–490.

4. Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13: 497–501.

5. Reyer RW (1954) Regeneration of the limb in the amphibian eye. Quart Rev Biol 29: 1–46.

6. Mitashov VI (1996) Mechanisms of retina regeneration in urodèles. Int J Dev Biol 40: 833–844.

7. Tsonis PA, Del Rio-Tsonis K (2004) Lens and retina regeneration: transcriptional, stem cell and clinical applications. Exp Eye Res 78(2): 161–172.

8. Taylor RR, Forge A (2005) Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian. J Comp Neurol 481(1): 105–120.

9. O’Shea WK (1958) Regeneration of the intestine in adult urodèles. J Morph 103: 455–477.

10. Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 191: 247–253.

11. Pearson H (2001) The regeneration gap. Nature 414: 388–390.

12. Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during regenerative processes. Proc Natl Acad Sci USA 90: 7230–7234.

13. Brockes JP, Kumar A (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 3: 106–119.

14. Gardiner DM, Carlson MR, Roy S (1999) Towards a functional analysis of limb development in amphioxus. Dev Biol 212: 175–205.

15. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, et al. (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310(5756): 1957–1960.

16. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, et al. (2009) Cells keep a memory of past injuries. Nat Cell Biol 11: 846–852.

17. Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, et al. (2005) fgf20 is essential for initiating zebrafish fin regeneration. Science 310(5756): 1957–1960.

18. Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Foley C, et al. (1995) Expression and activity of the newt Mesp1 gene in relation to limb regeneration. Proc Roy Soc Lond B Biol Sci 259: 161–174.

19. Imokawa Y, Yoshizato K (1997) Expression of Sonic hedgehog gene in developing and regenerating axolotl limbs. J Exp Zool 279: 197–206.

20. Lévesque M, Gatien S, Finnson K, Desmeules S, Villedard E, et al. (2007) Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One 2(1):e1227.

21. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121: 1731–1741.

22. Torok MA, Gardner DM, Shabin NH, Bryant SV (1998) Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol 200: 225–233.

23. Crews L, Gates PB, Brown R, John A, Foley C, et al. (1995) Expression and activity of the newt Mesp1 gene in relation to limb regeneration. Proc Roy Soc Lond B Biol Sci 259: 161–174.

24. Gardiner DM, Torok MA, Mullen LM, Bryant SV (1998) Evolution of vertebrate limbs: Robust morphology and flexible development. Amer Zool 38: 659–671.

25. Davel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116: 201–297.

26. Buahati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23: 175–205.

27. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

28. Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res 69(14):4093–6.

29. Vecchione A, Croce CM (2010) Apoptomirs: small molecules have gained the license to kill. Endocr Relat Cancer 17(1):F37–50.

30. Esquela-Kerscher A, Slack FJ (1995) Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

31. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043): 834–838.

32. Makarev E, Spence JR, Del Rio-Tsonis K, Tsounis PA (2006) Identification of microRNAs and other small RNAs from the adult newt eye. Mol Vis 12: 1306–1311.

33. Schon T, Sachse C, Frenzel C, Echeverri K (2009) miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 334(2):468–480.

34. Tsonis PA, Call MK, Grogg MW, Sartor MA, Taylor RR, et al. (2007) MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem Biophys Res Commun 362(6): 940–945.

35. Nakamura K, Maki N, Toshin A, Trask HW, Gu J, et al. (2010) miRNAs in newt lens regeneration: specific control of proliferation and evidence for miRNA networking. PLoS One 5(8):e12058.

36. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210.
38. Thatcher EJ, Patton JG (2010) Small RNAs have a big impact on regeneration. RNA Biol 7(3): 333–338.
39. Thomson JM, Parker JS, Hammond SM (2007) Microarray Analysis of miRNA Gene Expression. Methods Enzymol 427: 107–122.
40. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626.
41. Sato F, Tsuchiya S, Terasawa K, Tsujimoto G (2009) Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One 4(5):e5540.
42. Tank PW, Carlson BM, Connelly TG (1976) A staging system for forelimb regeneration in the axolotl, Ambystoma mexicanum. J Morphol 150(1):117–28.
43. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: 7.
44. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.
45. Xue Y, Gao X, Lindell CE, Norton CR, Chang B, et al. (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8: 723–730.
46. McGlinn E, van Bueren KL, Fiorenza S, Mo R, Polk AM, et al. (2005) Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mech Dev 122: 1218–1233.
47. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, et al. (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114(2): 404–414.
48. Katoh M, Kato M (2006) Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 17: 601–605.
49. Crosonier C, Amii-Blitch T, Encha-Razavi F, Audollent S, Sosdy F, et al. (2000) JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome. Hepatology 32(3):574–81.
50. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, et al. (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3): 258–267.
51. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, et al. (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7(1): 1–9.
52. Brown D, Jarvis R, Byrom M, Cheng A, Pallotta V, et al. (2005) Precursor miRNAs for Successful miRNA Functional Studies. Ambion website. Available: http://www.ambion.com/techlib/mir/mir_121/1.html. Accessed 2011 Jun 10.
53. Elmen J, Lindos M, Schutz S, Lawrence M, Petri A, et al. (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899.
54. Smuth J, Putta S, Walker J, Kump D, Samuels A, et al. (2005) Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics 6: 101.
55. Garcia-Arraras JE (1993) Localization of peptides: double labeling immunohistochemistry. In: F. De Pablo, C. Scanes, and B. Weintraub, editors. Handbook of Endocrine Research Treatment, Academic Press, San Diego, CA. Pp. 207–225.