Research progress on Helicobacter pylori outer membrane protein

Shi-He Shao, Hua Wang, Shun-Gen Chai, Li-Mei Liu

Abstract
Helicobacter pylori (H. pylori), one of the most common bacterial pathogens on human beings, colonizes the gastric mucosa. In its 95 paralogous gene families, there is a large outer membrane protein (OMP) family. It includes 32 members. These OMP are important for the diagnosis, protective immunity, pathogenicity of H. pylori and so on. They are significantly associated with high H. pylori density, the damage of gastric mucosa, high mucosal IL-8 levels and severe neutrophil infiltration. We introduce their research progress on pathogenicity.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: H. pylori; Outer membrane protein; oipA; Gastric carcinoma

Shao SH, Wang H, Chai SG, Liu LM. Research progress on Helicobacter pylori outer membrane protein. World J Gastroenterol 2005; 11(20): 3011-3013
http://www.wjgnet.com/1007-9327/11/3011.asp

INTRODUCTION
Helicobacter pylori (H. pylori) is a noninvasive bacterium. Since Warran and Marshall isolated H. pylori successfully in 1983, it has been identified as the major causative factor of chronic gastric and peptic ulcer disease and closely related to the occurrence and development of gastric carcinoma, mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the international cancer institute had determined it being type I carcinoma[9]. Studies regarding the H. pylori virulence have primarily focused on urease, vacuolating cytotoxin, and cytotoxin-associated antigen. However, in its 95 paralogous gene families there is a large H. pylori outer membrane protein (Hop) family. It includes 32 members[2,5], such as adhesin protein, proinflammatory protein, and micropore protein. Although some functions of these OMP have still been indefinite, the scholars at home and abroad have paid attention to them on diagnosis, protective immunity, pathogenicity and so on. The documents show that Hop is significantly associated with high H. pylori colonization, the damage of gastric mucosa, high mucosal IL-8 levels, and neutrophil infiltration. We will review these aspects of OMP.

OMP AND CHRONIC GASTRITIS AND PEPTIC ULCERS
Adhesin protein
We have known that adherence to the epithelium is an important premise that bacteria settle down in the body. Adherence is believed to help protect the bacteria from gastric acidity, as well as from displacement due to peristalsis. HopZ, babA, and babB (blood-group antigen-binding gene), alpAB (adherence-associated lipoprotein) in the OMP are mainly related to adherence.

HopZ (HPI234) is a vital adhesin protein. HopZ is primarily located in the bacterial surface, the number of its amino acids largely vary, ranging from 126 to 281. This is primarily because that HopZ gene suffers length-short regulation of different CT dinucleotide repetitive motif of different strains in the translational level. Birgit Peck[8] discovered that the wild-type strain ATCC43504 (HopZ negative) adhered to human gastric epithelial cells whereas a knockout mutant strain showed significantly reduced binding to the cells. Yamaoka[9] concluded: HopZ was significantly related to H. pylori density and colonization ability in the mouse model.

babA (HPI234) and babB (HP0896) are OMP of having vital relation with adherence. Because their production binds LewisB antigen of human gastric cells, so are called blood-group-antigen-binding gene. Moreover the activity that the product of babA (allele of babA) binds LewisB antigen is higher[9]. But because people discovered H. pylori expresses LewisB antigen too. Therefore, some scholars doubt whether gastric epithelial cell-LewisB is the receptor of H. pylori[7]. Ai-Fu Tang in China[10] persistently researched and testified that LewisB antigen expressed by H. pylori did not affect H. pylori adherence to LewisB and summit to secretion of host (secretory people have LewisB antigen in humoral fluid). But the author thought that the babA2 (allele of babA) binds LewisB antigen is higher[9].
AlpAB is also concerned with adhesion of *H. pylori*. At present, it is being ascertained that AlpAB are two kinds of channel-forming membrane pore: hopB and hopC, which are organized in an operon[10]. Through designing the mutant strain AlpA or AlpB, Odenbreit testified AlpAB-specific adherence and concluded that the adherence was independent of the composition of the lipopolysaccharide (LPS)[9].

Proinflammatory

OipA (outer inflammatory protein, oipA), encoding OMP gene of relative molecular mass (M) of 34 ku, is called HopH (HP0638). The product is called proinflammatory. As early as 1998, Yamaoka[12] discovered that M. ranging 33 ku to 35 ku OMP were positively correlated with the level of IL-8. However, there was no relationship between other antigens including CagA and production of IL-8. The 33-35 ku antigen was present in 97.5% patients with gastric or duodenal ulcer compared to 70% those with chronic gastritis. In order to ascertain the genic position of the protein, in 2000, Yamoka[13] designed the knockout mutant strain HP0638 (M34 ku), HP0796 (M33 ku), HP1501 (M32 ku), compared with wild-type about inducing to secrete the level of IL-8. The result showed HP0796 and HP1501 had no significant effect on IL-8 product. However, knockout of the HP0638 gene reduced IL-8 product approximately 50%. Cag-negative strains that contained a functional HP0638 gene produced more than three-fold greater IL-8 than Cag-negative nonfunctional HP0638 strains. So the author denoted HP0638 gene as outer inflammatory protein (oipA). The recent data[14] showed that HP0638 frame status was correlated strongly with CagA, vacA s1cA genotypes. All of the strains in which HP0638 was in frame were CagA positive and vacA s1, whereas most of the strains in which HP0638 was out of frame were CagA negative (80%) and vacA s2 (70%). So the author thought it suggested that CagA positivity could affect transcription of HP0638. But Yamaoka[13] discovered in his further research that oipA status remained in the final model to discriminate duodenal ulcer from gastritis. Functional oipA was significantly associated with high *H. pylori* density, severe neutrophil infiltration and high mucosal IL-8 levels and further research that polyclonal antisera to either a synthetic oipA peptide or a recombinant oipA protein detected oipA and correlated with functional oipA status determined by PCR sequence[14]. Moreover, the recent research showed that the detecting of oipA+HP was 46.6%. But oipA was detected in patients with gastric ulcer and the rate was 100%, which was obviously higher than in patients with gastritis. Thus, it indicated that oipA was significantly more frequent in patients with gastric ulcer[17].

OMP AND IMMUNITY

Cytokine

When infected by *H. pylori*, inflammatory cytokine induced by OMP plays an important role in *H. pylori* pathogenesis. It has been definite that oipA is positively correlated with product of IL-8 as former statement[12]. Petra[13] discovered that HpaA and OMP18 (M18 000) induced IL-12 and IL-10 to secrete when researching their antigenicity. IL-8 is an main inflammatory promoter and regulatory factor. IL-12 was obviously positively correlated with the degree of T lymphoid infiltration in the mucous membrane and worsen gastric mucous inflammation[14].

Vaccinal research

Most OMP locates the surface of bacterial body, surface exposing, conserving relatively, inducing humoral immunity and so on. Thus, since early, people have begun researching its protective immunogenicity, but can get partial effect on protecting immunity[23,24]. Nowadays, many scholars have researched polyvalent vaccine. Zheng Jiang succeeded in constructing divalent vaccine of HpaA,OMP18 (M18 000) and HpaA, OMP26 (26 000), which laid the foundation of constructing *H. pylori* protein vaccine[27,28].

CONCLUSIONS AND PERSPECTIVES

There are other OMP which deserve to be further studied. For example, Ping Cao[29] through researching two HopQ alleles discovered that type I HopQ alleles were found significantly more commonly in cag+/s1-vacA strains from patients with peptic ulcer disease than in cag+/s2-vacA strains from patients without ulcer disease. But Akhiro[30] through researching OMP29 (M29 000) from being isolated ATCC43504 strains discovered that OMP29 could alter its antigenity through gene modifications mediated by nucleotide transfer. These discovers are looking forward to further probing and studying. At present, genome sequence of *H. pylori* OMP have finished, but the function of many OMP has been indefinite: how on earth they induce to disease, the relation with other virulence factor: Cag pathogenicity island and VacA, which antigenicity is more. These are still not clear. However, there are many questions in former research, for example, Yamaoka thought oipA frame status was an unique index that discriminated duodenal from gastritis. But the author didn't examine gene modifications mediated by nucleotide transfer. These discovers are looking forward to further probing and studying.
In a word, researching virulence and pathogenicity of *H. pylori* is a vital significance. This can discover new strains and further illuminate pathogenic mechanism, on the other hand, can provide basis for vaccinal screening, designing and immunity strategy. This can avail the development of a new particularity diagnosis reagent kit.

REFERENCES

1. NIH Consensus Conference. *Helicobacter pylori* in peptic ulcer disease. NIH Consensus Development Panel on *Helicobacter pylori* in Peptic Ulcer Disease. *JAMA* 1994; 272: 65-69

2. Tomb JF, White O, Kerlavare AG, Clayton RA, Sutton G, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzgerald JD, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Wallis KJ, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Weidman JM, Fujii C, Bowman C, Wallis KJ, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Weidman JM, Fujii C, Bowman C, Wallis KJ, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Weidman JM, Fujii C, Bowman C, Wallis KJ, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the *H. pylori* J99 strain and comparative analysis of *H. pylori* genomes. *Science* 1997; 280: 236-243

3. Alm RA, Bina J, Andrews BM, Doig P, Hancock R, Trust TJ. Comparative genomics of *Helicobacter pylori*: analysis of the outer membrane protein families. *Infect Immun* 2000; 68: 4155-4169

4. Peck B, Oerttamp M, Diehl KD, Hundt E, Knapp B. Conservation, localization and expression of HopZ, a protein involved in adhesion of *Helicobacter pylori*. *Nucleic Acids Res* 1999; 27: 3225-3233

5. Yamaoka Y, Kita M, Kodama T, Imamura S, Ohno T, Sawai N, Ishimaru A, Imanishi J, Graham DY. *Helicobacter pylori* infection in mice: Role of outer membrane proteins in colonization and inflammation. *Gastroenterology* 2002; 123: 1992-2004

6. Pride DT, Meinersmann RJ, Blaser MJ. Allelic Variation within *Helicobacter pylori* babA and babB. *Infect Immun* 2001; 69: 1160-1171

7. Clyne M, Drum B. Absence of effect of LewisA and LewisB expression on adherence of *Helicobacter pylori* to human gastric cells. *Gastroenterology* 1997; 113: 72-80

8. Tang EA, Zheng PY, Li ZF, Feng CW, Hua JS, Duan CL. Influence of Lewis B expression in *Helicobacter pylori* on bacterial adhesion property. *Zhonghua Xiaohua Zazhi* 2001; 21: 162-164

9. Zambon CF, Navaglia F, Basso D, Rugge M, Plebani M. *Helicobacter pylori* babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. *J Clin Pathol* 2003; 56: 287-291

10. Odenbreit S, Till M, Hofreuter D, Faller G, Haas R. Genetic and functional characterization of the apbA gene locus essential for the adhesion of *Helicobacter pylori* to human gastric tissue. *Med Microbiol* 1999; 31: 1537-1548

11. Odenbreit S, Faller G, Haas R. Role of the apbA proteins and lipopolysaccharide in adhesion of *Helicobacter pylori* to human gastric tissue. *Int J Med Microbiol* 2002; 292: 247-256

12. Yamaoka Y, Kodama T, Graham DY, Kashima K. Search for putative virulence factors of *Helicobacter pylori*: the low-molecular-weight (33-35K) antigen. *Dig Dis Sci* 1996; 41: 1482-1487

13. Yamaoka Y, Kwon DH, Graham DY. A M(+) 34,000 proinflammatory outer membrane protein (oipA) of *Helicobacter pylori*. *Proc Natl Acad Sci USA* 2000; 97: 7533-7538

14. Ando T, Peak RM, Pride D, Levine SM, Takata T, Lee YC, Kusugami K, van der Ende A, Kuipers EJ, Kusters JG, Blaser MJ. Polymorphisms of *Helicobacter pylori* HP0638 reflect geographic origin and correlate with cagA status. *J Clin Microbiol* 2002; 40: 239-246

15. Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY. Importance of *Helicobacter pylori* oipA in clinical presentation, gastric inflammation, and mucosal interleukin-8 production. *Gastroenterology* 2002; 123: 414-424

16. Kudo T, Nurgalieva ZZ, Conner ME, Crawford S, Odenbreit S, Haas R, Graham DY, Yamaoka Y. Correlation between *Helicobacter pylori* OipA protein expression and oipA gene switch status. *J Clin Microbiol* 2004; 42: 2279-2281

17. Zhang J, Yu FF, Chen YX, Chen H. Detection of cagA, oipA and iceA1 genes of *Helicobacter pylori* and its significance. *Zhongguo Weisheng Jianyan Zazhi* 2004; 14: 133-134

18. Guchuan Y, Shang Y, Yu Y, Wang H, Sun Y, Wang C, Du X, Cui X. Helicobacter pylori infection and gastric carcinomas. *Mod Introduc* 2003; 24: 217-218

19. Shies SC, Sheu BS, Yang HB, Tsao JJ, Lin XZ. Serologic response to lower-molecular-weight proteins of *H pylori* is related to clinical outcome of *H pylori* infection in Taiwan. *Dig Dis Sci* 2000; 45: 781-788

20. Yang WH, Lin SR, Wang LX, Ding SG, Jin Z. The relationship between the pathogenic factors of *Helicobacter pylori* and gastric diseases. *J Beijing Med University* 2000; 32: 34-38

21. Jiang Z, Huang AL, Wang ZQ, Tao XH, Wang PL, Pu D. Cloning and expression of 18 000u outer membrane proteic gene of *Helicobacter pylori*. *Shijie Xiaohua Xiaohua Zazhi* 2003; 10: 266-270

22. Jiang Z, Huang AL, Wang PL, Tao XH, Pu D. The cloning and recombinant vector constructing of lower-weight outer membrane protein encoding gene of *Helicobacter pylori*. *Shijie Xiaohua Xiaohua Zazhi* 2003; 2: 1316-1318

23. Voland P, Hafsi N, Zeitner M, Laforsch S, Wagner H, Prinz C. Antigenic properties of HpAa and Ompl8, two outer membrane proteins of *Helicobacter pylori*. *Infect Immun* 2003; 71: 3837-3843

24. Bauditz J, Ortner M, Bierbaum M, Niedobitek G, Locs H, Schreiber S. Production of *Helicobacter pylori* gallium-67 radio-colonization and expression and antigenic study of bivalent vaccine candidate expressing *Helicobacter pylori*. *Clin Exp Immuin* 1999; 117: 316-323

25. Chen J, Chen WH, Zhu SL, Chen W. Immunization against *Helicobacter pylori* infection with *Helicobacter pylori* outer membrane protein vaccine. *Weichangxingxue* 2001; 6: 75-76

26. Lin HJ, Wang JD, Bai Y, Zhang YL, Zhou DY. The *in vitro* and *in vitro* evaluation of the immune protective activity of the recombinant surface proteins of *Helicobacter pylori*. *Zhongguo Weisheng Jianyan Zazhi* 2013; 15: 4-6

27. Jiang Z, Huang AL, Tao XH, Wang PL. Construction and characterization of bivalent vaccine candidate expressing HspA and M(+) 18,000 OMP from *Helicobacter pylori*. *World J Gastroenterol* 2003; 9: 1756-1761

28. Jiang Z, Pu D, Huang AL, Tao XH, Wang PL. Construction, expression and antigenic study of bivalent vaccine candidate with 26,000 OMP and heat short protein A of human *Helicobacter pylori*. *Zhongguo Weisheng Jianyan Zazhi* 2003; 83: 862-867

29. Cao P, Cover TL. Two different families of hopQ alleles in *Helicobacter pylori*. *J Clin Microbiol* 2002; 40: 4504-4511

30. Sumie A, Yamashiro T, Nakashima K, Nasu M, Watanabe M, Nishizono A. Comparison of genomic structures and antigenic reactivities of orthologous 29-kilodalton outer membrane proteins of *Helicobacter pylori*. *Infect Immun* 2001; 69: 6846-6852

Science Editor: Guo SY Language Editor: Elsevier HK