What Works in Youth Suicide Prevention? A Systematic Review and Meta-Analysis

Jo Robinson, Eleanor Bailey, Katrina Witt, Nina Stefanac, Allison Milner, Dianne Currier, Jane Pirkis, Patrick Condon, Sarah Hetrick

1. Introduction

Suicide is the second-leading cause of death among young people and rates appear to be increasing [1]. Suicidal thoughts and behaviors (defined as suicide attempt or self-harm with clear or unclear suicidal intent) are more common than suicide [2] and predict future suicide and suicide attempts [3], with the period following a first suicide attempt associated with highest risk [4]. Presenting to hospital with self-harm significantly predicts subsequent suicide in youth [5]; with the period immediately following discharge from psychiatric inpatient treatment associated with highest risk for suicide [6]. The period following hospital discharge therefore provides a crucial opportunity for intervention. Suicidal ideation is a necessary precursor to suicide attempt and as such also requires intervention. Although suicidal ideation is arguably a distinct concept from suicidal behavior, for ease of reading it is included under the term “suicide-related behavior” throughout this review unless otherwise specified.

The majority of OECD countries have a national suicide prevention strategy and many identify young people as requiring specific attention [7–9]. In accordance with international best practice, most strategies recommend a comprehensive approach to suicide prevention spanning universal approaches (i.e., delivered to the whole population), selective approaches (i.e., delivered to groups or communities believed to be at higher risk of suicide) and indicated approaches (i.e., delivered to individuals displaying suicide-related behaviors). Strategies also recommend interventions operate across a range of settings, including clinical, educational, workplace and community settings [1]. More recently, strategies have called for interventions to be delivered in digital, as well as face-to-face, settings [10,11].

Strategies must encompass evidence-based interventions if they are to reduce suicide [1]. Generating such evidence in suicide prevention, however, is complex [12]. Statistically, suicide is a relatively rare event, therefore it is often unfeasible to obtain sample sizes necessary to demonstrate the impact of interventions on this outcome. Moreover,
Research in Context

Evidence Before This Study

Prior to this study, systematic reviews in suicide prevention have been limited by either only including RCTs, or by concentrating on particular settings (e.g., schools) or intervention type (e.g., gatekeeper training), and as such do not cover the full spectrum of approaches. The more comprehensive systematic reviews do not focus specifically on youth.

Added Value of This Study

This is the first systematic review and meta-analysis to synthesize the full spectrum of suicide prevention approaches in young people. It identified a large number of studies conducted across clinical, educational/workplace, and community settings. Studies also tested the full spectrum of interventions including universal means restriction and educational interventions, selective interventions such as training programs, indicated interventions such as cognitive or dialectical behavior therapy, and multimodal interventions that combined education with either screening or gatekeeper training. The meta-analysis found that interventions delivered in both clinical and educational settings appear to have an impact on suicide-related outcomes at post-intervention and follow-up. In community settings, multifaceted, place-based approaches seem to have an impact on rates of suicide and self-harm. Overall, study quality was limited.

Implications of All the Available Evidence

The review identified that specific youth suicide-prevention interventions can reduce both self-harm and suicidal ideation in clinical, school, and community settings, challenging the nihilism that often pervades in suicide prevention. Indeed, the number and range of studies identified by this review is encouraging and reflects increasing investment and best practice internationally when it comes to youth suicide prevention. However, there was an absence of studies conducted in low-middle income countries where large numbers of suicides occur, or with specific populations known to be at elevated risk of suicide, such as indigenous or same-sex attracted young people. Similarly, few studies were conducted in primary care, workplace or university settings, and very few utilized digital platforms. Additionally, many studies simply tested interventions that had previously been designed for adults as opposed to young people specifically. Together these findings suggest that important opportunities for youth suicide prevention are currently being missed. These gaps now need to be addressed by researchers, research funders, and by policy makers if we are to successfully address the rising rates of suicide among young people worldwide.

many interventions do not lend themselves to being tested using randomized controlled trials (RCTs), typically considered the gold-standard [13]. As such, researchers assess changes in other more prevalent outcomes, including self-harm and suicidal ideation, using alternative study designs. Therefore, when synthesizing the evidence regarding what works in youth suicide prevention, alternative study designs warrant consideration.

Whilst previous reviews have synthesized this evidence, many only include RCTs [14]. Additionally, many concentrate on particular settings (e.g., schools) [15], or of intervention (e.g., gatekeeper training programs) [16], and as such do not cover the full spectrum of approaches. Finally, systematic reviews that include a range of study designs and intervention types do not focus specifically on youth [17,18]. Hence, a comprehensive review of the literature on youth suicide prevention interventions spanning the range of settings, study designs and intervention types, is required to better understand what works in youth suicide prevention. This will help policy makers, clinicians, service providers and commissioners determine the focus of future suicide prevention efforts.

We conducted a systematic review and, where possible, meta-analysis, of all studies examining the impact of interventions that were specifically designed to reduce suicide-related behavior in young people. Overcoming the limitations of previous reviews, we placed no restriction on study setting, intervention approach, or study design.

2. Methods

The methodology was informed by the Cochrane Collaboration [19] and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [20].

2.1. Study Selection and Classification

2.1.1. Inclusion Criteria

Studies of any design were eligible for inclusion in this review, provided they: [1] evaluated the impact of an intervention specifically designed to reduce suicide-related behavior; [2] assessed a suicide-related outcome, including suicide, suicide attempt, self-harm (defined as intentional self-injury and/or self-poisoning where suicidal intent was either not specified or was unclear), suicidal ideation, suicide risk, and/or reasons for living; [3] targeted young people aged 12–25 and/or if data on young people (mean age between 12-0 and 25-0) was specifically reported; [4] were published in a peer-reviewed journal or identified via the reference lists of included articles; and [5] were written in English.

2.1.2. Exclusion Criteria

Studies were excluded from the review if: [1] they were not implemented with the expressed and primary purpose of preventing or reducing suicide-related behavior. Under this criterion, studies of indicated interventions were excluded if they did not recruit participants based on present or recent suicidal ideation or behavior. Additionally, studies of means restriction approaches were included only if the intervention was implemented, wholly or partially, to prevent suicide. As such, studies of firearm regulations implemented with the expressed and primary purpose of preventing homicide were excluded under this criterion. Studies were also excluded if they: [2] did not measure and report on a suicide-related outcome (as defined above); this included studies that exclusively measured non-suicidal self-injury, as this is generally considered to be a separate phenomenon; [3] did not target young people, or if data relating to outcomes for young people could not be disaggregated from that adults; [4] employed a non-experimental design; [5] were not published in a peer-reviewed journal; [6] were not available in English; or [7] did not contain any unique relevant data over and above the first included study.

2.2. Search Strategy

We searched Medline, PsycINFO, and EMBASE from January 1 1990 to September 21, 2017. Keywords relevant to suicide-related behavior, intervention type and youth were combined using standard Boolean operators (see Appendix). Key words were developed by consensus among the author group and in consultation with a librarian. In addition, we hand-searched the reference lists of all previous reviews retrieved via the search.

In the first instance study titles and abstracts were screened by five of the review authors (EB, JR, SH, NS, KW). Due to the large number of
studies retrieved two review authors independently screened 10% of the total number of records retrieved. Cohen’s Kappa [21] was 0.748 and Prevalence-Adjusted and Bias-Adjusted Kappa (PABAK) [22] was 0.978, indicating excellent agreement regarding inclusion and exclusion of studies. Discrepancies were resolved by discussion. In the second stage of screening, full texts of potentially relevant studies were screened for inclusion by four authors (EB, JR, SH, NS). Full text double-screening was not undertaken, but review authors met regularly to resolve any queries.

2.3. Data Extraction and Classification

Data were extracted independently by seven authors (JR, EB, SH, NS, KW, DC, AM) using a pilot tested pro forma. The following information was extracted: (i) author(s) and publication date; (ii) country; (iii) study design; (iv) setting from which participants were recruited; (v) study sample or population characteristics; (vi) intervention description; (vii) details of control or comparison group (classified as treatment as usual (TAU), enhanced TAU and placebo), and; (viii) outcome data on suicide deaths, suicide attempt, suicidal ideation, suicide-related behavior, and/or self-harm at the point of post-intervention and (where appropriate) longest follow-up (note that follow-up periods varied). Where studies used more than one measure for an outcome, data from the measure that was most commonly used across all included studies were used, as has been done previously [23]. Two authors (SH and KW) undertook double data entry of all outcome data.

Studies were classified according to the following taxonomy. In the first instance studies were classified according to the setting from which the participants were recruited (i.e. clinical, education or workplace, and community). If participants were recruited from multiple settings, the study was classified according to the setting from which participants were primarily recruited. Studies were then classified by study design (i.e. RCTs and non-RCTs) and then by intervention approach (i.e. universal, selective, indicated). Some studies combined a number of different intervention approaches. In these cases studies were classified as ‘multi-modal’ when the intervention comprised a number of different components implemented together (e.g. psycho-education AND screening), and ‘multiple’ when studies tested the impact of different interventions that were implemented separately (e.g. psycho-education program in location A and gatekeeper training in location B). They were then classified according to intervention type (e.g. means restriction, educational, therapeutic). For the therapeutic interventions, the therapeutic modality itself was also specified. For example, within this category there were a number of studies that tested cognitive behavioral therapy (CBT), dialectical behavioral therapy (DBT) and so on.

2.4. Study Quality

An assessment of study quality was conducted. For all RCTs, this was based on the Cochrane Collaboration Risk of Bias Tool [19]. In the majority of trials, as is often the case [24], blinding of participants and therapists was not possible. Each trial was therefore assessed with regard to random sequence generation, allocation concealment, ascertainment of self-harm, outcome assessor blinding, whether analyses were conducted according to the intention-to-treat (ITT) principle, and rates of attrition. For the latter criterion, an attrition rate of 15% or less on the primary outcome at the longest follow-up point indicated low risk of bias.

Non-RCTs were assessed in two ways. For those conducted in clinical, educational, or workplace settings (where a range of study designs were employed) we used a set of criteria based on resources from the Cochrane Effective Practice and Organization of Care (EPOC) group [25]. We assessed whether or not: [1] the study was adequately powered; [2] outcome assessors were blinded to treatment allocation (for studies where outcomes were measured via interview); [3] the attrition rate was below 15%; and [4] the authors used statistical testing to measure change.

Studies in community settings employed either an ecological or interrupted time series design. Here two criteria were used to assess quality: whether or not data were collected at multiple time points before and after the intervention [26], and whether or not the intervention itself was likely to affect data collection. “Multiple time points” was defined as at least twice before or after implementation of the intervention. The intervention was considered not to affect data collection if sources and methods of data collection were the same before and after the intervention, or if data were collected from official sources (e.g. coronial records).

2.5. Data Synthesis

Meta-analysis was only conducted for RCTs. We analyzed data separately according to study setting. Because self-harm can encompass suicide attempts, it is a key predictor of future suicide [27], and is more prevalent and more commonly assessed than suicide, self-harm (measured dichotomously) was our primary outcome and all dichotomous self-harm and suicide attempt data were combined. Additional outcomes were self-harm measured continuously, suicide and suicidal ideation (measured dichotomously and continuously). Where studies had more than one intervention arm, we included those arms that provided relevant data and split the control group to avoid double counting [28]. For dichotomous data, we pooled data between studies using the relative risk with 95% confidence interval. For continuous outcomes, given the range of different tools used, means and standard deviations were pooled using the standardized mean difference (SMD) using the Hedges’ adjusted g with a 95% confidence interval. SMD effect sizes of 0–2 were considered small, 0.5 were considered medium, and ≥0.8 were considered large [29]. Measurement scales were standardized so that higher scores were indicative of greater levels of suicidal ideation. For both continuously- and dichotomously-measured outcomes, pooled effect size estimates were calculated using the DerSimonian-Laird random effects model [30] implemented using Comprehensive Meta-Analysis 2·2·064 software [31].

Between-study heterogeneity was measured using the I² statistic. I² values of 25%, 50% and 75% or larger are indicative of small, moderate and high heterogeneity, respectively [32].
2.5.1. Subgroup Analysis

For the primary outcome we undertook three subgroup analyses to investigate whether the intervention approach, intervention type and, for those interventions coded as psychotherapy, the therapeutic modality modified the pooled effect sizes.

First, intervention approach was coded as universal, selective or indicated. Second, type of intervention was categorized as psychotherapy, brief contact, or educational. Psychotherapy interventions were established psychotherapeutic approaches belonging to a particularly theoretical or philosophical school. Brief contact interventions were defined as those interventions that either: (1) focused on maintaining contact or facilitating re-engagement with services via a minimal amount of supportive contact, including provision of an emergency or crisis card as defined by Milner et al. [33]; or (2) interventions delivered within a very brief period, such as screening and referral or provision of one-off assessment and supportive therapy. Educational interventions delivered psycho-education about suicide-related behaviors; mental illness associated with these behaviors, signs and symptoms to look out for and advice on how to respond. Finally, trials coded as psychotherapy were further categorized by modality as either: CBT; DBT; mentalisation therapy; problem solving; motivational interviewing; support therapy; family therapy; interpersonal psychotherapy; combined (where several modes of psychotherapy were combined); or other (where the intervention did not clearly fit any category of named therapeutic approach).

2.5.2. Sensitivity Analysis

The robustness of results of the meta-analysis was checked for the primary outcome by conducting sensitivity analyses. RCTs judged as high or unclear risk of bias for allocation concealment, and RCTs where more than 15% of participants were lost to follow-up or where no data were reported, were excluded from this analysis.

For studies in which no data amenable to meta-analysis were reported, a narrative synthesis of results was conducted.

3. Results

3.1. Search Results

In total, 34,463 articles were retrieved via database searching and an additional four via the reference lists of included articles. Following initial screening, 572 full-text articles were retrieved, of which 105 met our inclusion criteria. Six were secondary publications that were included as they reported novel data [34–39]. The review therefore includes findings from 105 articles corresponding to 99 unique studies (see Fig. 1).

3.2. Overall Description of Included Studies

Half (52·5%) of included studies were conducted in clinical settings (Tables 1 and 2), 31 (31·3%) in educational or workplace settings (Tables 3 and 4), and 16 (16·2%) in community settings (Tables 5 and 6). Most studies tested indicated interventions (k = 66; 66·7%), followed by universal (k = 17; 17·2%), multimodal (k = 11; 11·1%), and selective (k = 2; 2·0%) interventions. Three studies (3·0%) evaluated multiple interventions. Forty-eight studies (48·5%) were RCTs. This included 33 (63·5%) of the studies conducted in clinical settings and 15 (48·4%) of those conducted in educational or workplace settings. None of the community-based studies were RCTs.

The majority of studies were conducted in the United States of America (k = 49; 49·5%), followed by the United Kingdom (k = 12; 12·1%) and Australia (k = 11; 11·1%). Some were conducted across multiple countries and only two (2·0%) were conducted in low-middle income countries. The number of studies more than doubled in the period of 2005–2017 compared to 1990–2004.

3.3. Studies Conducted in Clinical Settings

Fifty-two of the included studies were conducted in clinical settings and all tested indicated interventions delivered to young people with a history of self-harm or attempted suicide resulting in presentation to hospital-based or mental health services. Outcomes therefore refer to repeated self-harm in these studies. Thirty-three were RCTs. Forty (76·9%) had a mean participant age of 18 years or younger, eight studies (15·4%) had a mean age over 18, and in four studies (7·7%) the mean age could not be determined.

3.3.1. Randomized Controlled Trials

3.3.1.1. Study Description. Participants were recruited from emergency departments, inpatient units and community mental health services/outpatient clinics. One study was set in a military hospital [40]. Studies examined the impact of a range of interventions, including individual and group cognitive behavioral therapy (CBT), dialectical behavioral therapy (DBT), family therapy, and brief contact interventions. Control conditions included TAU, e.g. routine care, enhanced TAU, e.g. safety monitoring and facilitated referrals, and active placebo e.g. problem oriented support but without a specific skills-based training component. Twenty-four (72·7%) of the studies in this category included participants with a mean age of 18 or younger. Please see Table 1.

3.3.1.2. Study Efficacy. Thirty-two of the 33 clinical RCTs reported data amenable to meta-analysis. Twenty-five were psychological interventions [40–64] and seven were brief contact interventions [65–71]. The results of the meta-analysis, classified according to outcome assessed, are reported below. The primary outcome (self-harm) is reported first, followed by suicidal ideation; suicide is reported last as it was least frequently assessed.

3.3.1.2.1. Self-harm Measured Dichotomously. Compared to controls, there was no evidence of any intervention effect on self-harm at post-intervention (k = 12, RR = 0·889, 95% CI 0·71 to 1·11, I² = 37·1%) (Fig. 2). At follow-up there was some evidence of a reduction in the proportion of people who had received an intervention who went on to have a repeat self-harm episode (k = 16, RR = 0·83, 95% CI 0·70 to 0·99, I² = 40·9%) (Fig. 3).

3.3.1.2.2. Sensitivity Analysis. There was no material change to the outcome at post-intervention when studies at high risk of bias for allocation concealment were removed. At follow-up, when studies at high risk of bias were removed, the effect was no longer significant.

3.3.1.2.3. Subgroup Analysis. There was no evidence that the type of intervention modified the size of the treatment effect post-intervention (p = 0·67) or at follow-up (p = 0·09); nor was there any evidence that therapy modality modified the size of the treatment effect post-intervention (p = 0·13), or at follow-up (p = 0·08).

3.3.1.2.4. Self-harm Measured Continuously. Compared to controls, there was little evidence, with high heterogeneity (I² = 94·4%), that the intervention resulted in a reduction in the mean number of self-harm episodes at post-intervention (k = 5, SMD = 0·48, 95% CI 1·45 to 0·13), and there was limited evidence of this at follow-up (k = 4, SMD = 0·23, 95% CI −0·49 to 0·03, I² = 38·9%).

3.3.1.2.5. Suicidal Ideation Measured Dichotomously. Compared to controls, there was no evidence of any effect of intervention on the proportion of people who experienced suicidal ideation post-intervention (k = 7, RR = 0·89, 95% CI 0·68 to 1·16, I² = 83·0%) or at follow-up (k = 5; RR = 0·84, 95% CI 0·64 to 1·09, I² = 74·8%), Heterogeneity was high.

3.3.1.2.6. Suicidal Ideation Measured Continuously. Compared to controls, there was strong evidence of a small effect of the intervention on suicidal ideation post-intervention (k = 15, SMD = −0·28, 95% CI −0·48 to −0·08, I² = 76·3%). The effect was smaller at follow-up (k = 11, SMD = −0·18, 95% CI −0·34 to −0·02, I² = 41·1%).
Study; country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up			
Alavi et al. (2013) [41] Iran	Inclusion: Young people admitted to hospital for a SA	Whole sample N = 30 Mean age: 16.1 (SD: 1.4; Range: 12–18) Gender: 10% male	Individual cognitive behavioral therapy plus TAU	TAU: routine psychiatric intervention and follow up; pharmacotherapy if needed.	Random sequence generation method: Alternate allocation	SI (continuous): Beck Scale for Suicidal Ideation (BSI)			
Asarnow et al. (2011) [65] USA	Inclusion: Young people who presented to ED with SA or SI	Whole sample N = 181 Mean age: 14.7 (SD: 2.0; Range: 10–18) Gender: 30.9% male	Brief contact intervention	Enhanced TAU: usual ED care, with staff education on linking to treatment, reducing access to means, risks of substance use.	Random sequence generation method: Computer generated algorithm	SI (dichotomous): DISC-IV, an clinician administered diagnostic interview			
Asarnow et al. (2017) [42] USA	Inclusion: i) Young people who had presented after engaging in SH (SA or NSSI included) within the last three months; ii). history of repetitive SH (≥3 lifetime episodes) Exclusion: symptoms interfering with participation in assessments or intervention (psychosis, substance use) and inability to speak English	Whole sample N = 42 Mean age: 14.62 (SD: 1.83) Gender: 11.9% male	SAFETY program	Enhanced TAU: in-clinic parent education on risk of repetition, accessing treatment; 3 + phone-calls monitoring safety, encouraging treatment attendance.	Random sequence generation method: Computerized randomization program	SA (dichotomous): used a slight modification of the clinician administered Columbia Suicide Severity Rating Scale (CSSRS)			
Bertolote et al. (2010) [66]; Fleischmann et al. (2008) [34] Multi-national	Inclusion: Young people who presented to ED following SH/self-poisoning Exclusion: ‘any clinical condition (s) that would disallow interview’	Whole sample N = 1867 Mean age: NR (Median = 23.0) Gender: 41.8% male	Brief contact intervention	TAU: varied between sites, primarily acute injury management with or without mental health referral.	Random sequence generation method: Random numbers table	SA (dichotomous): European Parasuicide Study Interview Schedule (EPSIS) of the WHO/EURO Multicenter Study on Suicidal Behavior			
Study	Inclusion	Exclusion	Sample Characteristics	Intervention	Randomization	Follow-up	Data Collection	Attrition	ITT Analysis
-------	-----------	-----------	------------------------	--------------	---------------	-----------	----------------	----------	--------------
Byford et al. (1999) [43] UK	Females referred for treatment following self-poisoning, meeting criteria for borderline personality disorder, with at least three self-reported episodes of self-harm over the preceding year	Males, those engaging in self-injury without self-poisoning	Whole sample N = 162 Age/gender: NR Treatment group N = 85	Individual family therapy plus TAU	Shuffled cards	1½ hour assessment plus 1h of therapy	Interview	Yes (0.0%)	NR
Carter et al. (2010) Australia	Diagnosis of SH (self-poisoning)	Overdose was accidental; psychiatric condition which would preclude engagement with therapy; social situation precluded engagement with family therapy	Whole sample N = 70 Mean age: 24.5 (SD: 6.1; Range: 18–65) Gender: 6% male	Dialectical behavior therapy	Shuffled cards	Number of sessions not specified, delivered over six months	Interview	Yes (8.0%)	NR
Cooney et al. (2010) New Zealand	History of at least one SA or one episode of SH in past three months	Intellectual disability; Psychosis	Whole sample N = 29 Mean age: 15.9 (SD: 1.0; Range: 14–18) Gender: 24.1% male	Dialectical behavior therapy	Computer generated algorithm	Weekly sessions for approximately 26 weeks	Interview	Yes (0.0%)	Mixed methods
Cotgrove et al. (1995) UK	Admitted to hospital following SA/SH	Records of the original SA were missing, or were there insufficient follow-up data (p. 572)	Whole sample N = 105 Mean age: 14.9 (SD: NR; Range: 12.2–16.7) Gender: 15.2% male	Brief contact intervention	Open random numbers table	Emergency card allowing readmission to hospital on request	Hospital and clinical notes	Yes	Mixed methods
Diamond et al. (2010) [46]	Scored > 31 on the SIQ-JR (Reynolds, 1987); score remained elevated 2 days later		Whole sample N = 66 Mean age: 15.2 (SD: 1.62; Range 12–17)	Individual family therapy plus TAU	Adaptive randomization	Up to 15 sessions	Interview	Yes	Mixed methods

(continued on next page)
Table 1 (continued)

Study; country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up
USA	Inclusion: Presented to general pediatric child psychiatric hospital after SA. Exclusion: Current psychosis.	Whole sample N = 39	Individual skills-based therapy by trained therapists. Length: 12 sessions delivered over 6 months. Developed by: Study authors. Delivered by: Trained therapists.	Enhanced TAU: Supportive Relationship Treatment (SRT).	Random sequence generation method: Random numbers. Table Allocation concealment method: Unclear.	Longest follow-up: 6 months post-baseline.
Donaldson et al. (2005) [47] USA	Inclusion: Presented to hospital/ED	Whole sample N = 39	Mean age: 15.0 (SD: 1.7; Range: 12–17) Gender: 18% male Treatment group: N = NR Age/gender: NR Control group: N = NR Age/gender: NR	Individual cognitive behavioral therapy. Length: 24 sessions delivered over 12 months. Developed by: Donaldson et al. (2005) and Smythers et al. (2006). Adapted by study authors. Delivered by: Trained therapists.	Random sequence generation method: Computer generated adaptive randomization. Allocation concealment method: Unclear.	Ascertainment of SH repetition: Interview. Outcome assessor blinding: No. Less than 15% drop-out rate: No (20.5%). Was ITT analysis undertaken: No.
Esposito-Smythers et al. (2011) [48] USA	Inclusion: SA in past 3 months or scored >41 on the SIQ (Reynolds, 1987) Exclusion: Verbal IQ score < 70; ii) Psychosis; iv) Bipolar disorder; iv) Dependent on substances other than alcohol or cannabis. Recruited from: MH outpatient	Whole sample N = 40	Mean age: 15.7 (SD: 1.19; Range: 13–17) Gender: 33.3% male Treatment group: N = 20 Age/gender: NR Control group: N = 20 Age/gender: NR	Enhanced TAU: treatment schedule and approach determined by community providers. Diagnostic evaluation report provided. Study psychiatrist assisted with medication management. Access to information and resources.	Random sequence generation method: Computer generated adaptive randomization. Allocation concealment method: Unclear.	Ascertainment of SH repetition: Interview. Outcome assessor blinding: No. Assessors could guess allocation due to offhand comments made by participants during interviews. Less than 15% drop-out rate: No (25%). Was ITT analysis undertaken: Yes.
Green et al. (2011) [49] UK	Inclusion: Presented to child and adolescent services with at least two episodes of SH in the past 12 months. Exclusion: i) Severe low weight anorexia nervosa; ii) psychosis; iii) learning disability. Recruited from: MH outpatient	Whole sample N = 366	Mean age: NR (Range: 12–16) Gender: 11.5% male Treatment group: N = 183 Age/gender: NR Control group: N = 183 Age/gender: NR	Group cognitive behavioral therapy. Length: 6 sessions during the acute phase & as many sessions needed during the maintenance phase. Developed by: Wood et al. (2001). Delivered by: Trained therapists.	Random sequence generation method: Computer generated minimization algorithm. Allocation concealment method: Independent, off-site researcher.	Ascertainment of SH repetition: Interview. Outcome assessor blinding: Yes. Less than 15% drop-out rate: Yes (4.0%). Was ITT analysis undertaken: No.
Harrington et al. (1998) [50] UK	Inclusion: Presented to hospital with self-poisoning. Exclusion: i) Other SH (e.g. suicide: NR	Whole sample N = 162	Mean age: 14.5 (SD: 1.15; Range: 10–16)	Five sessions of family therapy plus TAU. Length: NR	Random sequence generation method: Shuffled envelopes. Allocation concealment method: Independent researcher.	Allocation concealment method: Independent researcher.
cutting); ii) Severe suicidality; iii) clinician determined risk of contraindication for family treatment, e.g. psychosis, currently receiving psychiatric treatment, parent/child had a learning difficulty

Recruited from: MH outpatient

Gender: 10.5% male
Treatment group
N = 85
Mean age: 14.4 (SD: 1.2)
Gender: 10.6% male
Control group
N = 77
Mean age: 14.6 (SD: 1.1)
Gender: 10.6% male

Developed by: study authors
Delivered by: 2 experienced masters’-level child psychiatric social workers

home-based family interventions.

method: Sealed, opaque envelopes
Ascertainment of SH repetition: Interview
Outcome assessor blinding: Attempted but not always possible
Less than 15% drop-out rate: Yes (8.0%)
Was ITT analysis undertaken: No

Longest follow-up: 12 months post-baseline

Hassanian--Moghaddam et al. (2011) [68]
Iran

Inclusion: Presented to hospital with self-poisoning
Exclusion: Psychosis
Recruited from: Hospital/ED

Whole sample
N = 2133
Mean age: 24.1 (SD: 8.11; Range: NR)
Gender: 33.7% male
Treatment group
N = 1043
Mean age: 24.7 (SD: 7.97)
Gender: 33.3% male
Control group
N = 1070
Mean age: 24.1 (SD: 8.25)
Gender: 34% male

Brief contact intervention
(Postcards from Persia) plus TAU.
Length: 8 postcards mailed over 12 months
Developed by: based on Carter et al. (2005)\(^5\)
Delivered by: NA

TAU: follow-up care for self-poisoning in Tehran is "poor", contact is mainly hospital- or office-based.

Random sequence generation method: Block randomization using a random numbers table
Allocation concealment method: Allocation was concealed, but information on the method used was not provided
Ascertainment of SH repetition: Interview
Outcome assessor blinding: No
Less than 15% drop-out rate: Yes (8.1%)
Was ITT analysis undertaken: No

SI (continuous): follow-up interview
SI (dichotomous): follow-up interview
SH (continuous): follow-up interview
SH (dichotomous): follow-up interview
SA (continuous): follow-up interview
SA (dichotomous): follow-up interview
Suicide: mortality records

Longest follow-up: 12 months post-baseline

Hazell et al. (2009) [51]
Australia

Inclusion: Presented to hospital with >2 episodes of SH
Exclusion: i) Acute psychosis; ii) intellectual disability
Recruited from: MH outpatient

Whole sample
N = 72
Mean age: 14.5 (SD: 1.1; Range 12–16)
Gender: 9.7% male
Treatment group
N = 35
Mean age: 14.6 (SD: 1.1)
Gender: 8.8% male
Control group
N = 37
Mean age: 14.4 (SD: 1.2)
Gender: 10.8% male

Group based cognitive behavioral therapy
(Moving on from self-harm) plus TAU.
Length: 6 sessions over 12 months
Developed by: study authors
Delivered by: MH professionals

TAU: routine care varied but generally included individual/family counseling, medication assessment, and care-coordination.

Random sequence generation method: Block randomization using a computer generated random numbers table
Allocation concealment method: Independent, offsite researcher
Ascertainment of SH repetition: Interview
Outcome assessor blinding: No
Less than 15% drop-out rate: Yes (8.1%)
Was ITT analysis undertaken: No

SI (continuous): SIQ
SH (continuous): Linehan’s Parasuicide History Interview

Longest follow-up: 12 months post-baseline

Huey et al. (2004) [52]
USA

Inclusion: Presented to hospital with SA/SI
Exclusion: Autism spectrum disorder
Recruited from: Hospital/ED

Whole sample
N = Unclear
Mean age: 12.9 (SD: 2.1; Range 10–17)
Gender: 35% male
Treatment group
N = Unclear
Mean age: 14.5 (SD: 1.1)
Control group
N = Unclear
Mean age: 14.4 (SD: 1.2)

Multi-systematic family therapy
Length: Unclear
Developed by: Henggeler et al. (2002)\(^2\)
Delivered by: MH professionals

Active placebo: hospitalization at youth inpatient psychiatric unit.

Random sequence generation method: NR
Allocation concealment method: NR
Ascertainment of SH repetition: Interview
Outcome assessor blinding: NA
Less than 15% drop-out rate: Unclear
Was ITT analysis undertaken: NR

SI (continuous): Youth Risk Behavior Survey (YRBS)
SA (dichotomous): Child Behavior Checklist (CBCL)

Longest follow-up: 12 months post-intervention

Husain et al. (2014) [53]
Pakistan

Inclusion: Admitted to hospital following SH
Exclusion: i) dementia; ii) substance misuse; iii) organic mental disorder; iv) delirium; v)

Whole sample
N = 221
Mean age: 23.1 (SD: 5.5; Range: 16–64)
Gender: 31.2% male
Treatment group
N = Unclear
Mean age: 23.1 (SD: 5.5)
Control group
N = Unclear
Mean age: 23.1 (SD: 5.5)

Individual cognitive behavioral therapy
(Life After Self-harm) plus TAU.
Length: 6 sessions over 3 months
Developed by: based on Schmidt

TAU: standard routine care provided by local services.

Random sequence generation method: Computer generated random numbers table
Allocation concealment method: Independent, offsite researcher
Ascertainment of SH repetition: Interview
Outcome assessor blinding: NA
Less than 15% drop-out rate: Unclear
Was ITT analysis undertaken: NR

SI (continuous): BSSI
Suicide: Not stated

Longest follow-up: 6 months post-baseline

(continued on next page)
Study; country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up								
	alcohol and/or drug dependence; vi) schizophrenia; vii) bipolar disorder; viii) intellectual disability	N = 108 Mean age: 23.2 (SD: 5.8) Gender: 29.6% male Control group N = 113 Mean age: 23.1 (SD: 5.3) Gender: 32.7%	& Davidson (2004) and adapted by study authors Delivered by: masters-level psychologists	researcher Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate: Yes (3.6% by the 6-month follow-up period; could not calculate for final follow-up)	Was ITT analysis undertaken: Yes	SI (continuous): SIQ-JR SA (dichotomous): Not stated	Longest follow-up: 6 months post-baseline							
King et al. (2006) [54] USA	Inclusion: i) SA or severe SI in past 3 months ii) Score of 20 or 30 on the Self-Harm subscale of the Child and Adolescent Functional Assessment Scale (Hodges, 1989) Exclusion: i) Severe intellectual disability; ii) Psychosis	Whole sample N = 289 Mean age: 15.3 (SD: 1.5; Range: 12–17) Gender: 31.8% male	Supportive intervention Youth nominated support team Version 1 plus TAU One-off brief psycho-education intervention for support team plus up to 9 contacts per week between adolescent and support team Length: 1.5 to 2 h Developed by: study authors Delivered by: MH professional	TAU: varied, included psychotherapy, medication, alcohol/drug treatment, partial hospitalization, and community services.	Random sequence generation method: Random numbers table Allocation concealment method: Independent researchers Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate for: No (18.3%)	Suicide: Not stated SA (dichotomous): Clinician administered diagnostic interview DISC-IV Mood Disorders module	Longest follow-up: 12 months post-baseline							
King et al. (2009) [55] USA	Inclusion: SA or severe SI in past 4 weeks Exclusion: NR	Whole sample N = 448 Mean age: 15.6 (SD: 1.31; Range: 13–17) Gender: 28.8% male	Supportive intervention Youth nominated support team Version 2 plus TAU One-off, individual or group-based (as preferred) psycho-education session plus weekly telephone contacts. For adolescents: weekly sessions by telephone or face-to-face as preferred with support team. Length: 1 h Developed by: study authors Delivered by: MH professional	TAU: as above.	Random sequence generation method: Block randomization using a computer generated sequence Allocation concealment method: Independent researchers Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate for: No (23.0%)	Was ITT analysis undertaken: Yes	Suicide: Not stated SA (dichotomous): Not stated	Longest follow-up: 12 months post-baseline						
King et al. (2015) [56] USA	Inclusion: Presented to ED with SI, a recent SA or positive screens for both depression plus alcohol/drug abuse Exclusion: Required referral for inpatient psychiatric hospitalization	Whole sample N = 49 Mean age: 17.7 (SD: 1.7; Range: 14–19) Gender: 40% male	Individual motivational interview plus TAU Length: 35–45 min Developed by: study authors (based on standard motivational interviewing protocols) Delivered by: trained therapists	Enhanced TAU: adolescents given a crisis card and written information about depression, suicide, firearm safety, and services.	Random sequence generation method: Shuffled envelopes Allocation concealment method: NR Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate for: No (23.0%)	Was ITT analysis undertaken: Mixed methods	Suicide: Not stated SA (dichotomous): Not stated	Longest follow-up: 2 months post-baseline						
McLeavey et al. (1994) [57] Republic of Ireland	Inclusion: Presented to ED with self-poisoning Exclusion: Required psychiatric inpatient/day-hospital admission;	Whole sample N = 39 Mean age: 24.4 (SD: 7.0; Range 15–45) Gender: 25.6% male	Individual Interpersonal Problem-Solving Skills Training Length: Five weekly one-hour sessions for 5 weeks (with 1 Active placebo: brief problem-oriented approach, did not involve skills training.	SH (dichotomous): ED readmission Suicide: Hospital records	Random sequence generation method: NR Allocation concealment method: NR	SI (continuous): SIQ-JR	Longest follow-up: 6 months post-baseline							
Study	Country	Inclusion	Exclusion	Recruitment	Whole Sample	Treatment Group	Control Group	Intervention	Follow-up	Outcome	Data	Recruitment	Outcomes	Longest follow-up
-------	---------	-----------	-----------	-------------	--------------	----------------	---------------	--------------	-----------	---------	------	-------------	-----------	------------------
Mehlum et al. (2016) [58]	Norway	Referred to child & adolescent psychiatric outpatient clinic with a history of >2 episodes of self-harm; 1 within the past 16 weeks	i) Bipolar disorder (except bipolar II); ii) Schizophrenia; iii) Affective disorder; iv) Psychosis NOS; v) Intellectual disability; vi) Asperger’s syndrome	Hospital/ED	N = 77	Mean age: 15.6 (SD: 1.6; Range: 12–18)	Mean age: 15.9 (SD: 1.4)	Individual and group Dialectical Behavior Therapy	12 months	SH (dichotomous): ED readmission	Yes	NA	12 months post-intervention	
Ougrin et al. (2011) [69]; (2013) [39]	UK	Referred to ED following SH	i) Psychosis; ii) Intoxication; iii) Learning disability; iv) Required inpatient admission	Hospital/ED	N = 70	Mean age: 15.5 (SD: 1.3; Range: 12–18)	Mean age: 15.6 (SD: 1.5)	Brief contact intervention	12 months	SH (dichotomous): ED readmission	Yes	NA	24 months post-baseline	
Pineda & Dadds, (2013) [59]	Australia	Presentated to ED with either SI, SA or SH within the 2 months prior to presentation	i) Overdose of recreational drugs; ii) Intellectual disability	ED	N = 48	Mean age: 15.1 (SD: 1.2; Range: 12–17)	Mean age: 15.0 (SD: 1.31)	Strengths-based family education program plus TAU: Resourceful Adolescent Parent Program (RAP-P)	6 months	SI (continuous): ASQ-R	Yes	NA	6 months post-baseline	

(continued on next page)
Table 1 (continued)

Study; country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up				
Power et al. (2003) [60] Australia	Inclusion: Referred to a specialist first episode psychosis clinic with SI or SA Exclusion: NR Recruited from: MH outpatient	Whole sample N = 56 Age/gender: NR Treatment group N = 31 Age/gender: NR Control group N = 25 Age/gender: NR	Individual cognitive oriented therapy (Lifespan) plus TAU Length: Eight to ten sessions over 10 weeks. Developed by: study authors Delivered by: MH professionals	TAU: standard clinical care.	Random sequence generation method: NR Allocation concealment method: NR Ascertainment of SH repetition: Clinical records Outcome assessor blinding: NA Less than 15% drop-out rate: No (37.5%) Was ITT analysis undertaken: NR	Suicide: Not stated Longest follow-up: Post-intervention only				
Robinson et al. (2012) [70] Australia	Inclusion: Referred but not accepted to a specialist outpatient adolescent MH service with a history of SI, SA or SH Exclusion: i) Intellectual disability; ii) Known organic cause for presentation Recruited from: MH outpatient	Whole sample N = 164 Mean age: 18.6 (SD: NR; Range: 15–24) Gender: 35.4% male Treatment group N = 81 Mean age: NR Gender: 39.5% male Control group N = 83 Mean age: NR Gender: 31.3% male	Brief contact intervention plus TAU – monthly postcards Length: Twelve postcards over 12 months Developed by: study authors (based on existing BIC methods) Delivered by: NA	TAU: treatment or support already being received; e.g., from school counselor, GP, psychologist.	Random sequence generation method: Block randomization using a computer generated sequence Allocation concealment method: Independent researcher Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate: No (52.7%) Was ITT analysis undertaken: No. However, sensitivity analyses were undertaken which suggested that ITT results with data imputed for all missing observations not materially different to per protocol analysis	Suicide: Not stated SH (continuous): Risk-Taking and Self-Harm Inventory (RTSHI) SH (dichotomous): Suicide Behavior Questionnaire-14 item version (SBQ-14) Longest follow-up: 6 months post-intervention				
Rossouw & Fonagy, (2012) [61] UK	Inclusion: Presented to ED or referred to community MH services with SH Exclusion: i) Presentation the result of excessive use of recreational drugs; ii) Psychosis; iii) Severe learning disability; iv) Developmental disorder; v) Alcohol/drugs; vi) Dependence on alcohol/drugs Recruited from: Hospital/ED and MH outpatient	Whole sample N = 80 Mean age: 14.7 (SD: 1.25; Range: 12–17) Gender: 15% male Treatment group N = 40 Mean age: 15.4 (SD: 1.3) Gender: 17.5% male Control group N = 40 Mean age: 14.8 (SD: 1.2) Gender: 12.5% male	Mentalization therapy: comprised weekly individual sessions plus monthly family therapy. Length: 1 year Developed by: study authors Delivered by: MH professionals.	TAU: routine care provided by community-based adolescent mental health services. Mainly individual therapeutic intervention, combined individual and family therapy, or psychiatric review.	Random sequence generation method: Minimization algorithm Allocation concealment method: Independent, offsite researcher Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes Less than 15% drop-out rate: No (11.2%) Was ITT analysis undertaken: Yes	Suicide: Not stated SH (continuous): BSSI SI (dichotomous): BSSI SH (dichotomous): Suicide Behavior Questionnaire-14 item version (SBQ-14) Longest follow-up: Post-intervention only				
Rudd et al. (1996) [40] USA	Inclusion: Referred to outpatient mental health clinics, an inpatient service or an ED with SA, SI Exclusion: i) Substance abuse/dependence ii) Psychosis/thought disorder; iii) Personality disorder Recruited from: Hospital/ED and MH outpatient	Whole sample N = 264 Mean age: 22.2 (SD: 2.3; Range: NR) Gender: 82.2% male Treatment group N = 143 Mean age: NR Gender: 77.6% male	Group-based problem-solving and social competence training Length: 9 h a day for two weeks Developed by: study authors Delivered by: MH professionals	TAU: combination of inpatient and outpatient care.	Random sequence generation method: Sequential randomization Allocation concealment method: NR Ascertainment of SH repetition: Interview Outcome assessor blinding: NR	Suicide: Not stated SI (continuous): Modified Scale for Suicidal Ideation (MSSI) Longest follow-up: Post-intervention only				
Study	Design	Inclusion	Exclusion	Sample	Age	Gender	Treatment	Outcome	Follow-up	Notes
-------	--------	-----------	-----------	--------	-----	--------	-----------	---------	-----------	-------
SSI-A	Randomized Controlled Trial	Presented to an outpatient MH service with recent SH	Psychiatric disorder requiring inpatient treatment	Whole sample	15.0 (14; Range: 12–18)	9.5% male	Individual cognitive behavioral therapy sessions plus TAU	TAU: standard disposition planning	9 months post-intervention	Unclear
Wood et al. (2001)	Randomized Controlled Trial	Referred to child & adolescent MH service following	Not fluent in English; Not medically stable, including intoxication; Cognitive 'limitations' preventing completion of research instruments; Active psychosis; Required physical or medical restraint in ED	Whole sample	15.6 (15.5; 15.4)	28% male	Family Based Crisis Intervention (based on cognitive behavioral therapy) plus TAU; an emergency crisis intervention	TAU: standard psychiatric Evaluation and clinical/discharge recommendations	1 month post-intervention	Unclear
Wharff et al. (2017)	Randomized Controlled Trial	Presentation to ED with “suicidality” or suicide attempt; Presence of consenting parent or legal guardian	Not medically stable, including intoxication; Cognitive ‘limitations’ preventing completion of research instruments; Active psychosis; Required physical or medical restraint in ED	Whole sample	15.6 (15.4; 15.3)	28% male	Family Based Crisis Intervention (based on cognitive behavioral therapy) plus TAU; an emergency crisis intervention	TAU: standard psychiatric Evaluation and clinical/discharge recommendations	1 month post-intervention	Unclear
Slee et al. (2008) [62]	Randomized Controlled Trial	Presented to an outpatient MH service with recent SH		Whole sample	15.0 (14; Range: 12–18)	9.5% male	Individual cognitive behavioral therapy sessions plus TAU	TAU: standard disposition planning	3 months post-intervention	Unclear
Spirito et al. (2015) [72]	Randomized Controlled Trial	Resided in a specific catchment plus current or past ‘suicidality’		Whole sample	14.3 (13.7; Range: 11–17)	16.7% male	Parent-Adolescent-cognitive behavioral therapy	Active placebo: adolescent-only CBT	9 months post-intervention	Unclear
		USA								
Study; country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up				
---------------	-------------------	--------------	-------------------------	----------------------	-------------	--				
UK SH; ii) Engaged in SH on at least one other occasion during the past year Exclusion: i) ‘Too suicidal’ for ambulatory care; ii) psychosis; iii) learning ‘problems’ Recruited from: MH outpatient	Mean age: 14.3 (SD: 1.6; Range: 12–16) Gender: 22.2% male Treatment group N = 32 Mean age: 14.2 (SD: 1.1) Gender: 21.9% male Control group N = 31 Mean age: 14.3 (SD: 2.1) Gender: 25.8% male	Comprised aspects of cognitive behavioral therapy, dialectical behavioral therapy and psychodynamic psychotherapy. Length: “until the young person feels ready to leave” (p. 1247). Developed by: study authors Delivered by: MH professionals	psychiatric nurses & psychologists. Included family sessions, nonspecific counseling, Psychotropic medication (where indicated).	table Allocation concealment method: Independent, offsite researcher Ascertainment of SH repetition: Interview Outcome assessor blinding: Yes	Less than 15% drop-out rate: Yes (3.1%) Was ITT analysis undertaken: Yes interview) SH (dichotomous); ED readmission Suicide: Not stated Longest follow-up: 7 months post-randomization					

Notes: ED = Emergency Department; ITT = intention-to-treat; IQR = Interquartile Range; MA = meta-analysis; MH = mental health; NR = not reported; TAU = treatment as usual; SA = suicide attempt; SD = standard deviation; SH = self-harm; SI = suicidal ideation; SRB = suicide-related behavior.

* Stanley B, et al. Cognitive behavioral therapy for suicide prevention (CBTSP): treatment model, feasibility and acceptability. J Am Acad Child Adolesc Psychiatry 2009; 48 [10]:1005–13.
* Rotheram-Borus MJ, et al. Enhancing treatment adherence with a specialized emergency room program for adolescent suicide attempters. J Am Acad Child Adolesc Psychiatry 1996; 35:654–663.
* Linehan MM, et al. Cognitive-behavioral treatment of chronically parasuicidal borderline patients. Arch Gen Psychiatry 1991; 48:1060–1064.
* Linehan MM. Skills training manual for treating borderline personality disorder. New York: Guilford Press, 1993.
* Miller, AL, et al. Dialectical behavior therapy with suicidal adolescents. New York: Guilford Press, 2007.
* Morgan HG et al. Secondary prevention of non-fatal deliberate self-harm. The green card study. BJP 1993; 163: 111–112.
* Excluded secondary publications: Diamond G, et al. Sexual trauma history does not moderate treatment outcome in Attachment-Based Family Therapy (ABFT) for adolescents with suicide ideation. J Fam Psychol 2012; 26(4): 595-605; Shpigel MS, et al. Changes in parenting behaviors, attachment, depressive symptoms, and suicidal ideation in attachment-based family therapy for depressive and suicidal adolescents. J Marital Fam Ther 2012; 38(Suppl 1): 271-83.
* Reynolds WM. Suicidal Ideation Questionnaire: Professional Manual. Psychological Assessment Resources Inc., 1987.
* Classified as CBT in the meta-analysis.
* Excluded secondary publication: Harrington R, et al. Deliberate self-poisoning in adolescence: why does a brief family intervention work in some cases and not others? J Adolesc 2000; 23(1): 13–20.
* Carter GR, et al. Postcards from the EDge project: randomised controlled trial of an intervention using postcards to reduce repetition of hospital treated deliberate self poisoning. BMJ 2005; 331: 805–7.
* Schmidt U, Davidson KM. Life After Self-Harm: A Guide to the Future. Routledge, 2004.
* Hodges K. Child and Adolescent Functional Assessment Scale. Ypsilanti: Eastern Michigan University, 1989.
* Excluded secondary publication: Mehlem I, et al. Dialectical behavior therapy for adolescents with repeated suicidal and self-harming behavior: a randomized trial. J Am Acad Child Adolesc Psychiatry 2014; 53(10): 1082–91.
* Excluded secondary publication: Wingate UR, et al. (Comparison of compensation and capitalization models when treating suicidality in young adults. J Consult Clin Psychol, 2005. 73(4): 756–62. | Excluded secondary publications: Slee N, et al. Emotion regulation as mediator of treatment outcome in therapy for deliberate self-harm. Clin Psychol Psychother 2008; 15(4): 205–16; Spinhoven P, et al. Childhood sexual abuse differentially predicts outcome of cognitive-behavioral therapy for deliberate self-harm. J Nerv Ment Dis 2005; 197(6): 455–7.
* Osman A, et al. The Reasons for Living Inventory for Adolescents (RFL-A): development and psychometric properties. J Clin Psychol 1998; 54: 1063–1078.
| Study design: | Study design: Pre-test/post-test case series | Study design: Non-randomized, experimental trial | Study design: Pre-test/post-test case series | Study design: Pre-test/post-test case series | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| Study: Authors | Brent et al. (2009) [91] | Flament, (2015) | Courtney & Flament, (2015) [74] | Cwik et al. (2016) [82] |
| Study design: | Pre-test/post-test case series | Non-randomized, experimental trial | Pre-test/post-test case series | Pre-test/post-test case series |
| Level of evidence: | IV | III-2 | IV | IV |
| Inclusion: SA in past 3 months; stable living situation | Inclusion: Had major unipolar mood disorder & SA in past 90 days; living with a parent or guardian who could participate in treatment | Inclusion: BPD with SI or SI in past 4 months | Inclusion: Apaches with SA in past 90 days | Inclusion: Apaches with SA in past 90 days |
| Exclusion: No contact information available for follow-up; psychosis; substance abuse; dependence; not English-speaking; no family to participate | Exclusion: Substance dependence, bipolar disorder, psychosis, or developmental disorder | Exclusion: psychosis; developmental disorder | Exclusion: none Recruited from: Community suicide surveillance system | Exclusion: none Recruited from: Community suicide surveillance system |
| Participants | Whole sample N = 124 Mean age: 15.8 (SD: 1.5; Range: 12–18) Gender: 22.6% male Treatment group N = 18 Age/gender: NR Treatment group N = 93 Age/gender: NR Control group N = NR Age/gender: NR | Whole sample N = 61 Mean age: 16.5 (SD: 0.8; Range: 15–18) Gender: 7% male | Whole sample N = 35 Mean age: 14.89 (SD: 1.6; Range: 11–18) Gender: 14% male | Whole sample N = 13 Mean age: 14.3 (SD: 2.2) Gender: 8% male |
| Intervention description | Suicide-specific individual cognitive behavioral therapy with some elements of dialectical behavior therapy. Length: between 12 and 16 weekly sessions. Developed by: Study authors Delivered by: Unclear | Medication management or combined medication & CBT | Dialectical behavior therapy adapted for adolescents in tertiary care. A-DIB-4 Length: 1 x weekly group-based and 1 x weekly individual sessions over 14-weeks (session duration not stated). Developed by: Based on Miller et al. (2006) but adapted by the study authors Delivered by: A MH professional | New Hope, a brief psycho-education intervention for American Indian adolescents Length: 1–2 visits (2–4 h total). Developed by: Study authors Delivered by: Community Mental Health Workers |
| Comparison condition | NA | Adequately powered: No Outcome assessor blinding: Yes Less than 15% drop-out rate: No Use of statistical testing to measure change from pre-test to post-test: Yes | NA | NA |
| Risk of bias | Adequately powered: Yes Outcome assessor blinding: Yes Less than 15% drop-out rate: No Use of statistical testing to measure change from pre-test to post-test: Yes | Adequately powered: No Outcome assessor blinding: NA Less than 15% drop-out rate: No Use of statistical testing to measure change from pre-test to post-test: Yes | Adequately powered: No Outcome assessor blinding: NA Less than 15% drop-out rate: No Use of statistical testing to measure change from pre-test to post-test: Yes | Adequately powered: No Outcome assessor blinding: NA Less than 15% drop-out rate: No Use of statistical testing to measure change from pre-test to post-test: Yes |
| Suicide related outcome(s) assessed | NA Adequately powered: NR Outcome assessor blinding: NA Less than 15% drop-out rate: Yes (11.4%) Use of statistical testing to measure change from pre-test to post-test: Yes | SI: Harkavy-Assnis Suicide Survey, passive suicidal ideation subscale. SA: Harkavy-Assnis Suicide Survey, suicide attempt subscale. SRB: Harkavy-Assnis Suicide Survey, active suicidal behavior and ideation subscale. Longest follow-up: 6 months post-intervention | SI: Suicidal Ideation Questionnaire (SIQ). SRB: Medical/clinical records. Suicide: NR Longest follow-up: Post-intervention only | SI: SIQ Longest follow-up: 3 months Post-intervention |
| Results | SI: test Mean (SD): 12.69 (9.79) Post-test Mean (SD): 9.19 (10.14) SA: Pre-test Mean (SD): 0.89 (1.86) Post-test Mean (SD): 0.13 (0.34) SRB: Pre-test Mean (SD): 3.71 (4.42) Post-test Mean (SD): 1.81 (2.69) | SI: Pre-test Mean (SD): 12.69 (9.79) Post-test Mean (SD): 9.19 (10.14) SA: Pre-test Mean (SD): 0.89 (1.86) Post-test Mean (SD): 0.13 (0.34) SRB: Pre-test Mean (SD): 3.71 (4.42) Post-test Mean (SD): 1.81 (2.69) | SI: Pre-test Median (IQR): 131.0 (92.0 to 144.0) Post-test Median (IQR): 77.0 (48.5 to 121.0) SRB: NR Suicide: NR | SI: Pre-test Median (IQR): 131.0 (92.0 to 144.0) Post-test Median (IQR): 77.0 (48.5 to 121.0) SRB: NR Suicide: NR |
| Interpretation | There was evidence of a significant reduction in SI (t-test = 2.56, p = 0.016, Cohen's d = 0.39). SA (t-test = 2.42, p = 0.019), and SRB (t-test = 2.63, p = 0.013) between baseline and three-month follow-up. Four young people either re-attempted suicide and/or re-engaged in NSSI during the treatment period (significance test not reported). | There was evidence of an increase in SRB between baseline and six-month follow-up in the combination (i.e., psycho- and pharmacotherapy group) compared to either condition alone (22.93 vs. 23.1; Fisher’s exact test p = 0.04). There was one completed suicide after the six-month follow-up, however, it is unclear to which treatment group this young person had been allocated. | There was evidence of a significant reduction in SI (t-test = 4.96, p < 0.001, Cohen's d = 0.89) between baseline and the 15-week post-intervention assessment. There was also evidence of a significant reduction in the proportion of young people engaging in SRB over this period (36.42 vs. 16.42, McNemar test p < 0.001). There were no reports of completed suicides. | There was evidence of a significant reduction in SI (t-test = 4.96, p < 0.001, Cohen's d = 0.89) between baseline and the 15-week post-intervention assessment. There was also evidence of a significant reduction in the proportion of young people engaging in SRB over this period (36.42 vs. 16.42, McNemar test p < 0.001). There were no reports of completed suicides. |
| Study; country | Study design; level of evidence | Target population | Participants | Intervention description | Comparison condition | Risk of bias | Suicide related outcome(s) assessed; Longest follow-up | Results | Interpretation |
|---------------|---------------------------------|------------------|--------------|------------------------|---------------------|-------------|--|---------|---------------|
| Duarte-Velez et al. (2016) [75] Puerto Rico | Pre-test/post-test case series | Inclusion: Admitted to ED with SI or SA, hospitalized, stabilized and referred to outpatient; legal guardian. Exclusion: Psychosis; developmental disorder; ID; already receiving psychotherapy; involvement in a legal procedure that would require psychological care mandated by the judicial system. Recruited from: Hospital/ED | N = 11 Mean age: 15.36 (SD-NR; Range: 13–17) Gender: 45% male | Cognitive behavioral therapy adapted for Puerto Rican adolescents with suicidal behavior. Length: Weekly individual sessions lasting for 1 h & delivered over 6 months. Plus 60–120 min family sessions & follow-up bi-weekly as necessary. Phone calls & case management as needed. Developed by: Study authors Delivered by: A MH professional | NA | Adequately powered: No Outcome assessor blind: NA Less than 15% drop-out rate: Yes (0.0%) Use of statistical testing to measure change from pre-test to post-test: Yes | SI: SIQ-JR | Longest follow-up: Post-intervention | SI: Pre-test Mean (SD): 27.20 (NR) Post-test Mean (SD): 16.00 (NR) | There was evidence of a reduction in SI between baseline and the six month post-intervention assessment (significance test not reported). |
| Diamond et al. (2013) [83]* USA | Pre-test/post-test case series | Inclusion: LGB discharged from hospital with SI (admitted for SI or SA); Exclusion: Psychosis or ID Recruited from: Hospital/ED | N = 10 Mean age: 15.1 (SD: 1.37; Range: 14–18) Gender: 20% male | Attachment-based family therapy adapted for use with suicidal LGB youth. ABFT-LGB Length: 12 x weekly sessions (range = 8–16). Sessions lasted for 60-min & sessions 3–5 were for parents only. Developed by: Study authors Delivered by: A MH professional | NA | Adequately powered: No Outcome assessor blind: NA Less than 15% drop-out rate: Yes (0.0%) Use of statistical testing to measure change from pre-test to post-test: Yes | SI: SIQ-Junior (SIQ-JR) | Longest follow-up: Post-intervention only | SI: Pre-test Mean (SD): 51.00 (13.00) Post-test Mean (SD): 6.88 (7.34) | There was evidence of a significant reduction in SI between baseline and the 3-month post-intervention assessment (F-test = 18.78, p = 0.001, Cohen’s d = 0.21). |
| Esposito-Smythers et al. (2006) [76] USA | Pre-test/post-test case series | Inclusion: Admitted to inpatient unit for SI/SA with co-occurring alcohol abuse/dependence; Exclusion: ID, DSM-IV dependence on substances other than alcohol or cannabis. Recruited from: Hospital/ED | N = 6 Mean age: 15 (SD: 1; Range: 14–16) Gender: 17% male | Integrated cognitive behavioral therapy for adolescents with co-occurring alcohol use disorder and suicidality. Length: Acute phase: Weekly sessions lasting 1 h & delivered over 6 months (plus maintenance & booster phases). Developed by: Study authors, incorporating modifications of Monti’s (2002)3 coping skills training package for youth with co-occurring alcohol use disorder Delivered by: A MH professional | NA | Adequately powered: No Outcome assessor blind: NA Less than 15% drop-out rate: No (27.3%) Use of statistical testing to measure change from pre-test to post-test: Yes | SI: SIQ | Longest follow-up: 12 months post-intervention | SI: Pre-test Mean (SD): 80.80 (NR) Post-test Mean (SD): 32.80 (NR) | There was evidence of a reduction in SI between baseline and the 12 month post-intervention assessment (significance test not reported). Two young people re-engaged in SRB during this period (significance test not reported). |
| Geddes et al. (2013) [77] Australia | Pre-test/post-test case series | Inclusion: At least 3 BPD features & SI/SH in past 12 months Exclusion: Primary diagnosis of psychosis or substance abuse; ID Recruited from: MH Outpatient | N = 6 Mean age: 15.1 (SD-NR; Range: 14–15) Gender: 0% male | Integrated cognitive behavioral therapy for adolescents with co-occurring alcohol use disorder and suicidality. Length: Acute phase: Weekly sessions lasting 1 h & delivered over 6 months (plus maintenance & booster phases). Developed by: Study authors, incorporating modifications of Monti’s (2002)3 coping skills training package for youth with co-occurring alcohol use disorder Delivered by: A MH professional | NA | Adequately powered: No Outcome assessor blind: NA Less than 15% drop-out rate: No (16.7%) Use of statistical testing to measure change from pre-test to post-test: No | SI: SIQ | Longest follow-up: 12 months post-baseline | SI: Pre-test Mean (SD): 51.00 (13.00) Post-test Mean (SD): 6.88 (7.34) | There was evidence of a reduction in the proportion of young people reporting SI between baseline and the 18-week post-intervention assessment (significance test not reported). By the 18-week post-intervention assessment, 5 of the 6 young people had had no further episodes of SRB, whilst the sixth reported a 50% reduction in SRB frequency (significance tests not provided). By the 12 month follow-up... |
| Study design | Level of evidence | Study design | Level of evidence | Study design | Level of evidence |
|--------------|-----------------|--------------|-----------------|--------------|-----------------|
| Pre-test/post-test case series | IV | Pre-test/post-test case series | IV | Pre-test/post-test case series | IV |
| Inclusion: Parental report | Adequately powered: No | Inclusion: Parental report | Adequately powered: No | Inclusion: Parental report | Adequately powered: No |
| Exclusion: NA | Outcome assessor | Exclusion: NA | Outcome assessor | Exclusion: NA | Outcome assessor |
| N = 47 | Post-intervention only | N = 25 | Post-intervention only | N = 154 | Post-intervention only |
| Mean age: 14.4 (SD: NR; Range: 7–19) | | Mean age: 14.9 (SD: 1.3; Range: 12–18) | | Mean age: 14.9 (SD: 1.5; Range: 13–17) | |
| Gender: 47% male | | Gender: 12% male | | Gender: 14.8% male | |
| A suicide-specific intensive group crisis intervention: Systemic Crisis Intervention Program | | Dialectical behavior therapy comprising a skills training group, individual therapy, telephone support, support for schools/carers & outreach. | | Dialectical behavior therapy for adolescents Length: Three-hour group sessions delivered twice weekly, plus weekly individual or family sessions, 30–60 min in duration. Delivered over 16 weeks. | |
| Length: Two × 4-hour group meetings over a 2–6 week period. Developed by: Study authors Delivered by: NR | | Length: 1-hour individual sessions plus 2-hour group sessions delivered weekly over 12 months. Developed by: Based on Linehan (1993) and Rathus and Miller (2002) but adapted by the study authors. Delivered by: A MH professional | | Delivered by: a MH professional | |
| | | | | | |
| Katz et al. (2004) | III-2 | Katz et al. (2004) | III-2 | Katz et al. (2004) | III-2 |
| Study design: Non-randomized, experimental trial | Level of evidence: | Study design: Non-randomized, experimental trial | Level of evidence: | Study design: Non-randomized, experimental trial | Level of evidence: |
| Inclusion: Admitted to Inpatient unit for SA or SI | TAU: daily psychodynamic psychotherapy group, weekly individual therapy, and psychodynamically-oriented milieu. | Inclusion: Admitted to Inpatient unit for SA or SI | TAU: daily psychodynamic psychotherapy group, weekly individual therapy, and psychodynamically-oriented milieu. | Inclusion: Admitted to Inpatient unit for SA or SI | TAU: daily psychodynamic psychotherapy group, weekly individual therapy, and psychodynamically-oriented milieu. |
| Exclusion: ID, severe learning disability, psychosis, bipolar disorder | | Exclusion: ID, severe learning disability, psychosis, bipolar disorder | | Exclusion: ID, severe learning disability, psychosis, bipolar disorder | |
| N = 62 | | N = 54 | | N = 62 | |
| Mean age: 15.4 (Range: 14–17) | | Mean age: 14.4 (Range: 13–17) | | Mean age: 15.4 (Range: 14–17) | |
| Gender: 16.1% male Treatment group N = 31 Age/gender: NR Control group N = 31 Age/gender: NR | | Gender: 16.1% male Treatment group N = 31 Age/gender: NR Control group N = 31 Age/gender: NR | | Gender: 16.1% male Treatment group N = 31 Age/gender: NR Control group N = 31 Age/gender: NR | |
| Individual & group dialectical behavior therapy Length: 10 daily group sessions plus 4 individual sessions delivered over 2 weeks Developed by: Based on Miller (1997) but adapted by the study authors Delivered by: MH professional | | Individual & group dialectical behavior therapy Length: 10 daily group sessions plus 4 individual sessions delivered over 2 weeks Developed by: Based on Miller (1997) but adapted by the study authors Delivered by: MH professional | | Individual & group dialectical behavior therapy Length: 10 daily group sessions plus 4 individual sessions delivered over 2 weeks Developed by: Based on Miller (1997) but adapted by the study authors Delivered by: MH professional | |
| | | | | | |
| King et al. (2003) | IV | King et al. (2003) | IV | King et al. (2003) | IV |
| Study design: Pre-test/post-test case series | Level of evidence: | Study design: Pre-test/post-test case series | Level of evidence: | Study design: Pre-test/post-test case series | Level of evidence: |
| Inclusion: Called helpline and reported SI Exclusion: None | kids helpline | Inclusion: Called helpline and reported SI Exclusion: None | Kids helpline | Inclusion: Called helpline and reported SI Exclusion: None | Kids helpline |
| N = 101 Age: NR Gender: Unclear | Single crisis phone call Length: Mean duration 40 min; range 10–120 min Developed by: Charitable organization Delivered by: trained volunteers | N = 101 Age: NR Gender: Unclear | Single crisis phone call Length: Mean duration 40 min; range 10–120 min Developed by: Charitable organization Delivered by: trained volunteers | N = 101 Age: NR Gender: Unclear | Single crisis phone call Length: Mean duration 40 min; range 10–120 min Developed by: Charitable organization Delivered by: trained volunteers |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| Study; country | Study design; level of evidence | Target population | Participants | Intervention description | Comparison condition | Risk of bias | Suicide related outcome(s) assessed | Longest follow-up | Interpretation |
|----------------|---------------------------------|-------------------|--------------|--------------------------|----------------------|-------------|-----------------------------------|-----------------|----------------|
| Law et al. (2016) | Study design: Non-randomized, experimental trial; Level of evidence: III-2 | Inclusion: Admitted to the ED with SH; Exclusion: any DSM IV-TR Axis II disorder; psychosis; bipolar disorder; recruited from: Hospital/ED | Whole sample N = 78 | Brief contact intervention: Volunteer mentorship Length: 2 contacts per month over 9 months. Developed by: Study authors Delivered by: trained volunteers supervised by psychiatrists, psychologists, and social workers | TAU (not described) | Adequately powered: Study authors provide power calculations, however, study unlikely to be adequately powered for SRB Outcome assessor bias: NA Less than 15% drop-out rate: No (67.6%) Use of statistical testing to measure change from pre-test to post-test: Yes | Longest follow-up: Post-intervention only | SI: TQ | There was no evidence of a significant reduction in SI between the intervention and control groups at post-intervention (20.70 ± 3.00 vs. 15.60 ± 6.50, t = 2.31, SE = 2.52, p = 0.05). There was also no evidence of a reduction in SRB between the intervention and control groups by this time point (4.38 vs. 4.36) (significance test not provided). |
| Oldershaw et al. (2012) | Study design: Retrospective cohort study; Level of evidence: III-2 | Inclusion: Reported history of SH; Exclusion: ID; serious head injury; used medication with sedative side effects; primary diagnosis not depression or SH; recruited from: MH outpatient, schools & personal contacts | Whole sample N = 33 | Standalone, formulation based, and modularized cognitive behavioral therapy with core and optional modules, depending on clinical need. Length: 12 sessions Developed by: Study authors Delivered by: MH professional | No treatment: Participants either declined or did not pursue treatment | Adequately powered: No Outcome assessor bias: NA Less than 15% drop-out rate: Yes (0.6%) Use of statistical testing to measure change from pre-test to post-test: Yes | Longest follow-up: 5 months post-baseline | SRB: Idiosyncratic, binary-coded instrument | There was evidence of a significant reduction in the proportion of participants engaging in SRB between the intervention and control groups at post-intervention (14/24 vs. 3/9). There was also evidence of a significant reduction in the frequency of SRB by this time point (Z = -3.20, p < 0.001). |
| Perera Raman & Kathiriachchi, (2011) | Study design: Non-randomized, experimental trial; Level of evidence: III-2 | Inclusion: Admitted to hospital for SA; categorized as medium- and low-intent; Exclusion: Diagnosed with major psychiatric disorder; recruited from: Hospital/ED | Whole sample N = 124 | Individual problem solving therapy Length: 4 sessions delivered over 1 month Developed by: Based on Palmer (1995) Delivered by: MH professional | TAU: routine care (referral to a medical officer, psychiatric referral, referrals to other agencies). | Adequately powered: No Outcome assessor bias: NA Less than 15% drop-out rate: No (18.3%) Use of statistical testing to measure change from pre-test to post-test: No | Longest follow-up: 6 months post-baseline | SA: NR | There was a reduction in the proportion of participants engaging in SA between the intervention and control groups at post-intervention (0.55 vs. 2/46) (significance test not reported). |
| Rathus & Miller, (2002) | Study design: Non-randomized, experimental trial; Level of evidence: III-2 | Inclusion: SA or SI in past 4 months AND Personality Disorder features Exclusion: NR Recruited from: MH outpatient | Whole sample N = 111 | Dialectical behavior therapy adapted for adolescents. Length: Two sessions per week for 12 weeks Developed by: Based on Linehan (1993) but adapted for adolescents by study authors Delivered by: MH professional | Active placebo: Short term psychodynamic or supportive approach aimed at resolving acute problems. | Adequately powered: No Outcome assessor bias: NA Less than 15% drop-out rate: Unclear Use of statistical testing to measure change from pre-test to post-test: Yes | Longest follow-up: 3 months post-intervention | SI: Beck Scale for Suicidal ideation (BSI) SA: Self-report | There was a significant reduction in SI between baseline and the 12-week post-intervention assessment (t-test = 2.65, p = 0.26). There was also evidence of a reduction in SA between the intervention and control groups by the 12-week post-intervention assessment (1.29 vs. 7.82). |
| Study design: Historical controlled study | Level of evidence: III-3 |
|--|------------------------|
| Inclusion: Presented to ED with SA & hospitalized for <1 week | Exclusion: Low IQ, no parent or family |
| Recruited from: Hospital/ED | |
| Whole sample: N = 140 Mean age: 15.0 (SD: NR; Range: 12–18) | Gender: 6% male |
| Treatment group: N = 65 Mean age: 15.0 (SD: 1.4) | Developed by: Study authors |
| Control group: N = 75 Mean age: 15.3 (SD: 1.6) | Delivered by: MH professional |
| Inclusion: Presented to ED with SA in conjunction with hospital records | Exclusion: Low IQ, no parent or family |
| Recruited from: Hospital/ED | |
| Whole sample: N = 250 Mean age: 15.6 (SD: 1.5) | Gender: 24% male |
| Treatment group: N = 100 Mean age: 15.6 (SD: 1.5) | Gender: 24% male |
| Control group: N = 150 Age: NR Gender: 26% male | |
| One session of family based crisis intervention | Delivered by: Study authors |
| Developed by: MH professional | |
| Treatment group: N = 65 Mean age: 15.0 (SD: 1.4) | Gender: 6% male |
| Control group: N = 75 Mean age: 15.3 (SD: 1.6) | |
| Inclusion: Presented to ED with SA in conjunction with hospital records | Exclusion: Low IQ, no parent or family |
| Recruited from: Hospital/ED | |
| Whole sample: N = 250 Mean age: 15.6 (SD: 1.5) | Gender: 24% male |
| Treatment group: N = 100 Mean age: 15.6 (SD: 1.5) | Gender: 24% male |
| Control group: N = 150 Age: NR Gender: 26% male | |

Notes: ED = Emergency Department; ID = Intellectual Disability; ITT = intention-to-treat; IQR = Interquartile Range; MH = mental health; NR = not reported; TAU = treatment as usual; SA = suicide attempt; SD = standard deviation; SH = self-harm; SI = suicidal ideation; SRB = suicide-related behavior.

a Corrected version of the same paper published in 2012.
b Monti PM, et al. Treating Alcohol Dependence: A Coping Skills Training Guide. 2nd ed. New York, NY: Guilford Press; 2002.
c Swales M, et al. Linehan’s Dialectical Behaviour Therapy (DBT) for borderline personality disorder: overview and adaptation. J Ment Health 2000; 9(1): 7–23.
d Rathus J, Miller A. Dialectic behavior therapy adapted for suicidal adolescents. Suicide Life Threat Behav 2002; 32: 146–157.
e Miller AL, et al. Dialectical behavior therapy adapted for suicidal adolescents. J Pract Psychiatry Behav Health 1997; 3:78–86.
f Palmer S, Dryden W. Counseling for Stress Problems. New Delhi: Sage Publications, 1995.

There were no episodes of SA or completed suicide in either the intervention or control group by the three month follow-up period. Two participants (unclear if allocated to intervention or control groups) were hospitalized for SRB by the three month follow-up assessment.
Table 3

Study characteristics: Randomized controlled trials conducted in educational or workplace settings (N = 15).

Study, country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up
Universal interventions						
Guille et al. (2015)						
[113] USA						
Inclusion: Medical students beginning their internship in July 2009 or July 2011 at one of two participating university hospitals						
Exclusion: NR						
Recruited from: Universities (N = 2)	Whole sample					
N = 199						
Mean age: 25.2 (SD: 8.1; Range: NR)						
Gender: 50.7% male						
Treatment group						
N = 100						
Mean age: 24.9 (SD: 8.7)						
Gender: 49% male						
Control group						
N = 99						
Mean age: 25.4 (SD: 7.4)						
Gender: 51.6% male	Individual access to MoodGym: online Cognitive Behavioral Therapy.					
Module 1: Understanding the interplay between thoughts, emotions & behavior.						
Modules 2–3: Cognitive restructuring, Module 4: Problem-solving.						
Length: Four 30-min modules						
Developed by: National Institute for Mental Health Research at The Australian National University						
Delivered by: Self-directed						
Weekly group psycho-education workshops: 1) Depression & happiness 2) The individual & their family 3) Helplessness 4) Coping with failure 5) Coping & problem solving 6) Coping with suicidal urges 7) Summary						
Length: Seven 2-hour workshops						
Developed by: based on Ross (1997) and adapted by study authors.						
Delivered by: NR						
Psychoeducation plus support						
Three German-language websites on suicide-related education and prevention.						
Two of the three websites also offered email counseling by peers.						
Length: NA						
Unclear						
Delivered by: mental health organizations						
Delivered by: Self-directed	Active placebo: Email once a week for 4 weeks with information about depression, suicide & where to seek treatment.					
Random sequence generation method: NR						
Allocation concealment method: Independent research						
Ascertainment of SH repetition: Self-report						
Outcome assessor blinding: NA						
Less than 15% drop-out rate: Yes (0.0%)						
Was ITT analysis undertaken: Yes	SI (dichotomous): Item 9 of the Patient Health Questionnaire-9 (PHQ-9)					
Longest follow-up: 12 months post-intervention						
Orbach & Bar-Joseph, (1993) [92] Israel						
Inclusion: High school juniors from six schools						
Exclusion: None						
Recruited from: Secondary schools (N = 6)	Whole sample					
N = 393						
Mean age: NR						
Gender: 45% male						
Treatment group						
N = 215						
Age: gender: NR						
Control group						
N = 178						
Age: gender: NR	TAU: social issues discussion class					
Random sequence generation method: NR						
Allocation concealment method: NR						
Ascertainment of SH repetition: Self-report						
Outcome assessor blinding: NA						
Less than 15% drop-out rate: Yes (0.0%)						
Was ITT analysis undertaken: Mixed methods	SI (continuous): Israeli Index of Potential Suicide (IIPS)					
Longest follow-up: Post-intervention only						
Till et al. (2017) [119] Austria						
Inclusion: medical, psychology and communication studies undergraduate students						
Exclusion: None						
Recruited from: University (N = 1)	Whole sample					
N = 161						
Mean age: 24.5 (SD 5.8)						
Gender: 32.9% male						
Treatment group						
N = 121						
Mean age: 24.3 (SD NR)						
Gender: 33.9% male						
Control group						
N = 40						
Mean age: 25.0 (SD 6.8)						
Gender: 30% male	A website unrelated to suicide or mental health					
Random sequence generation method: NR						
Allocation concealment method: NR						
Ascertainment of DSH repetition: NA						
Outcome assessor blinding: NA						
Less than 15% drop-out rate: Yes (0.0%)						
Unclear						
Was ITT analysis undertaken: Yes	SI (continuous): Reasons for Living Inventory (RFLI)					
Longest follow-up: Post-intervention only						
Indicated interventions						
Eggert et al. (2002) [95] USA
Inclusion: Students who screened positive for SRB
Exclusion: None
Recruited from: Secondary schools (N = 7) | Whole sample
N = 341
Mean age (SD): NR
(Range: 14–19)
Gender: 48% male
Treatment group 1 (C-CAST)
N = 103
Mean age: 16.02 (SD: 1.14)
Gender: 40.77% male
Treatment group 2 (C-Care)
N = 117
Mean age: 15.71 (SD: 1.21) | Supportive intervention comprising:
1) C-CARE: One individual assessment interview followed by one counseling session & social connections intervention with parents and school staff
TAU: a brief assessment interview and social connections intervention with parents and school personnel.
Random sequence generation method: Block randomization using a predetermined sequence
Allocation concealment method: NR
Ascertainment of SH repetition: Self-report
Outcome assessor blinding: NA
Less than 15% drop-out: No (20.5%) | SRB: High School Questionnaire: Profile of Experiences (HSQ)
Longest follow-up: 9 months post-baseline
Not included in MA |
Gender: 52.14% male
Control group
N = 121
Mean age: 15.62 (SD: 1.26)
Gender: 50.83 male

2) C-CARE plus a small group prevention program.

 - Length:
 1) 2-hour assessment plus one 1.5–2 h counseling;
 2) Additional 12 × 1 hour sessions over 6 weeks

 Developed by: study authors
 Delivered by: 1) Trained research staff e.g. practice nurses & social workers; 2) Teachers, counselors or nurses

Was ITT analysis undertaken: No

Fitzpatrick et al. (2005) [115] USA

Inclusion:	Students who screened positive for SI
Exclusion:	students who were judged to represent an immediate threat of danger to themselves or others
Recruited from:	University (N = 1)

Whole sample
N = 110
Mean age: 19.02 (SD: 1.21; Range: 18–24)
Gender: 45% male
Treatment group: NR
Control group: NR

Active placebo: Video about health issues e.g. diet, exercise, and sleep.

Random sequence generation method: NR
Allocation concealment method: NR
Ascertainment of SH repetition: Self-report
Outcome assessor blinding: NA
Less than 15% drop-out rate: No (31.8%)

Was ITT analysis undertaken: Yes

SI (continuous): Beck Scale for Suicidal Ideation (BSSI)
Longest follow-up: 1 month post-baseline

Hetrick et al. (2017) [123] Australia

Inclusion:	Presented to school counselor with SI
Exclusion:	Intellectual disability; psychotic symptoms; inability to speak English
Recruited from:	Secondary schools (N = 18)

Whole sample
N = 50
Mean age: 14.7 (SD: 1.4)
Gender: 18% male
Treatment group
N = 26
Mean age: 14.8 (SD: 1.6)
Gender: 19.3% male
Control group
N = 24
Mean age: 14.5 (SD: 1.3)
Gender: 16.7% male

Online cognitive behavioral therapy (Reframe IT)
Length: Eight self-directed modules over 10 weeks
Developed by: study authors
Delivered by: self-directed, in the presence of school wellbeing staff

TAU: contact with school wellbeing staff plus any outside mental health service provision normally available.

Random sequence generation method: Online randomization program, stratified by school
Allocation concealment method: The online program did not allow knowledge of treatment next to be allocated before the participant details were entered into the computer
Ascertainment of SH repetition: Interview
Outcome assessor blinding: NA
Less than 15% drop-out rate: No (28.6%)
Was ITT analysis undertaken: Yes

SI (continuous): SQ
SA: a specifically designed questionnaire that asked participant whether they had attempted suicide since their last assessment, and if so, how many times
Longest follow-up: 3 months post-intervention

Hill & Pettit, (2016) [122] USA

Inclusion:	Endorsed a perceived burdensomeness score of 17 or greater on the Interpersonal Needs Questionnaire Perceived Burdensomeness subscale (Van Orden et al., 2012)
Exclusion:	Current psychosocial treatment or use of psychoactive

Whole sample
N = 80
Mean age: 16.9 (SD: 1.7; Range: 13–19)
Gender: 31.2% male
Treatment group
N = 40
Age/gender: NR
Control group
N = 40

Online cognitive behavioral therapy (LEAP: Learn, Explore, Assess you options, Plan)
Length: Two modules delivered over two weeks
Developed by: study authors
Delivered by: self-directed

Placebo: e-mail containing psychoeducational information about mental health & suicide, and resources for mental health treatment and suicide/crisis counseling.

Random sequence generation method: Sequentially numbered envelopes
Allocation concealment method: Sealed, opaque envelopes
Ascertainment of SH repetition: Self-report questionnaire.

Was ITT analysis undertaken: Yes

SI (continuous): BSSI
Longest follow-up: 2 months post-baseline

(continued on next page)
Study: country	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up														
Hooven et al. (2012) [96] USA	Inclusion: Students who met criteria for suicide risk status Exclusion: None Recruited from: Secondary schools (N = 20)	Whole sample N = 615 Mean age: 16.0 (SD: NR; Range: 14–19) Gender: 40% male Treatment group C-CARE N = 153 Age/gender: NR P-CARE N = 155 Age/gender: NR Combined N = 164 Age/gender: NR Control group N = 143 Age/gender: NR	Combined intervention comprising: 1) Counselors Care, Assess, Respond and Empower (C-CARE) 2) Parents Care, Assess, Respond and Empower (P-CARE) 3) Combined C-CARE and P-CARE Length: two 2-hour sessions over a 1-month period Developed by: study authors Delivered by: unclear	Placebo: brief screening interview.	Outcome assessor blinding: NA Less than 15% drop-out: Yes (13.8%) Was ITT analysis undertaken: Yes Random sequence generation method: NR Allocation concealment method: NR Ascertainment of SH repetition: Self-report Outcome assessor blinding: NA Less than 15% drop-out rate at post-intervention: Unclear Was ITT analysis undertaken: Unclear	SRB: High School Questionnaire: Profile of Experiences (HSQ) Longest follow-up: 15 months post-baseline Not included in MA														
Kovac & Range, (2002) [114] USA	Inclusion: Students who screened positive for SRB Exclusion: None Recruited from: University (N = 1)	Whole sample N = 121 Mean age: 23.12 (SD: 5.44; Range: 18–42) Gender: 27.3% male Treatment group N = NR Age/gender: NR Control group N = NR Age/gender: NR	A writing intervention to examine whether writing with ‘cognitive change’ reduced suicide risk when compared to writing just about suicidal experience and compared to controls. Group 1: Wrote about being suicidal & were instructed to think about their thoughts and feelings at the time. Group 2: Wrote about being suicidal but were asked to provide details about the event. Group 3: Control. Length: four 20-min sessions delivered once a day for 4 days Developed by: study authors Delivered by: unclear	Placebo: Wrote in detail about their bedroom	Random sequence generation method: NR Allocation concealment method: NR Ascertainment of SH repetition: Self-report Outcome assessor blinding: NA Less than 15% drop-out rate: No (19.1%) Was ITT analysis undertaken: No	SI (continuous): SQ Longest follow-up: 6 weeks post-intervention														
PISTORELLO ET AL. (2012) [116] USA	Inclusion: Students seeking treatment from a University mental health service for SI, SA, or NSSI Exclusion: psychosis, need for inpatient care, or prior DBT treatment Recruited from: University (N = 1)	Whole sample N = 63 Mean age: 20.9 (SD: 1.92) Gender: 19% male Treatment group N = 31 Mean age: 20.4 (SD: 1.6) Gender: 22.6% male Control group N = 32 Mean age: 21.3 (SD: 2.1) Gender: 15.6% male	A combination of individual and group dialectical behavioral therapy. Delivered by: Length: Comprised one 50-min individual psychotherapy session plus a 90-min group skills training session per week, over a 12-month period Developed by: based on Linehan, (1993) Delivered by: MH professionals	Enhanced TAU: included weekly individual & group therapy, weekly group supervision for therapists, & between-session consultation and family. Interventions as needed.	Random sequence generation method: Computer generated adaptive randomization Allocation concealment method: NR Ascertainment of SH repetition: Interview Outcome assessor blinding: NA Less than 15% drop-out rate at post-intervention: No (22.2%) Was ITT analysis undertaken: Yes. All participants with SI (continuous): Suicidal Behaviors Questionnaire (SBQ-23) SA: SBQ-32	Longest follow-up: 18 months post-baseline														
Study Authors	Year	Country	Inclusion	Exclusion	Recruited from	Sample Size	Mean Age	Gender	Treatment Group	Control Group	Group Coping with Stress Course	TAU	Random Sequence Generation Method	Allocation Concealment Method	Ascertainment of SH Repetition	Outcome Assessor Blinding	Less than 15% Drop-out Rate	Was ITT Analysis Undertaken	SI (Categorical)	Longest Follow-up
---------------	------	---------	-----------	-----------	----------------	-------------	----------	--------	-----------------	--------------	--------------------------------	-----	-----------------------------	-----------------------------	-----------------------------	--------------------------	----------------------	-----------------------------	-------------------	
Robinson W et al. (2016) [97] USA			Students who screened positive for SRB	None	Secondary schools (N = 4)	330	NR	40% male	NR	NR	1) Identifying feelings of stress	one-to-one sessions on stress management.	NR	NR	Self-report	NA	Yes (0.6%)	NR	No	
Tang et al. (2009) [98] Taiwan			Students with moderate–severe depression, SI, SA, moderate–severe anxiety, or significant hopelessness in previous 2 weeks.	Exclusion: acute psychotic symptoms, act out lethal suicidal behaviors, lack proper care for suicide risk by their family, drug abuse, or serious medication condition	Secondary schools (N = 1)	73	NR (Range: 14–18)	34% male	35	2) Reducing negative cognitions & increasing positive thoughts										
Schilling et al. (2014) [100] USA			Middle school students	None	Middle schools (N = 8)	470	NR	47.4% male	NR	35	3) Identifying risk factors for stress									
Schilling et al. (2016) [99] USA			Ninth-grade students	None	Secondary schools (N = 16)	1272	NR (Range: 14–15)	58.3% male	719	4) Enhancing competencies for managing stress										
						5) Planning for stress.														
						Length: Fifteen 45-min sessions														
						Developed by: based on Robinson & Case (2003)³ and adapted by study authors														
						Delivered by: MH professional interprofessional psychotherapy														
						Length: Two sessions per week for 6 weeks														
						Developed by: based on Mufson et al. (2004)⁴ and adapted by study authors														
						Delivered by: School counselor & intern counseling psychotherapists														
						TAU: psycho-education and individual supportive counseling once or twice a week.														
						Random sequence generation method: NR														
						Allocation concealment method: NR														
						Ascertainment of SH repetition: Self-report														
						Outcome assessor blinding: NA														
						Less than 15% drop-out rate: Yes (0.0%)														
						Was ITT analysis undertaken: No														
						SI (categorical): Four suicidality screening items (not included in MA)														
						Longest follow-up: Post-intervention only														
						Not included in MA														
						SI (continuous): BSSI														
						Less than 15% drop-out rate: Yes (0.0%)														
						Was ITT analysis undertaken: No														
						SI (dichotomous): CDC YRBS														
						Longest follow-up: 3-months post-intervention														
						Not included in MA														

(continued on next page)
Study; country	Target population	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; longest follow-up	
Wasserman et al. (2015) [101] Multi-site: 10 European countries	Inclusion: all students in participating classrooms Exclusion: None (although students who reported suicide attempts ever, or severe suicidal ideation in the past 2 weeks before the baseline assessment, and those with missing data regarding these two variables were excluded from the final analysis) Recruited from: Secondary schools (N = 168)	Whole sample N = 11,110 Mean age: 14.8 (SD: 0.82) Range: 14–16) Gender: NR Treatment group 1 N = 2692 Mean age: 14.8 (SD: 0.82) Gender: 37% male Treatment group 2 N = 2721 Mean age: 14.8 (SD: 0.85) Gender: 40% male Treatment group 3 N = 2764 Mean age: 14.8 (SD: 0.8) Gender: 42% male Control group N = 2933 Mean age: 14.78 (SD: 0.89) Gender: 44% male	Psycho-educational (universal) component Youth Aware of Mental Health Programme (YAM), a universal intervention that aims to raise awareness of risk & protective factors associated with suicide, including knowledge of depression/anxiety and to enhance skills to manage stress, adverse life events & suicidal behaviors Length: 3 h role play session plus 2 × 1 h lectures Developed by: study authors Gatekeeper training (selective) component Question, Persuade, and Refer (QPR), a gatekeeper training module targeting teachers and other school personnel. Length: NR Developed by: Tompkins et al. (2010) Screening (selective) component Screening by health professionals (ProfScreen) with referral of at-risk pupils. Length: NA Developed by: study authors Delivered by: Trained instructors	Unclear Was ITT analysis undertaken: No	Random sequence generation method: Cluster stratified randomization using a random numbers table Allocation concealment method: NR Ascertainment of SH repetition: Self-report Outcome assessor blinding: NA Less than 15% drop-out rate: No (26.3%) Was ITT analysis undertaken: No	SI (dichotomous); single item from five item Paykel Hierarchical Suicidal Ladder SA (dichotomous); single item from five item Paykel Hierarchical Suicidal Ladder Longest follow-up: 12 months (not specified if post-test or post-intervention)
Notes:						
ED = Emergency Department; ITT = intention-to-treat; IQR = Interquartile Range; MA = meta-analysis; MH = mental health; NA = not applicable; NR = not reported; TAU = treatment as usual; SA = suicide attempt; SD = standard deviation; SH = self-harm; SI = suicidal ideation; SRB = suicide-related behavior.						
a Ross CP. School and suicide: Education for life and death. In RFW Diekstra & K Hawton (Eds.), Suicide in adolescence. Dordrecht: Martinus Nijhoff, 1987.						
b Excluded secondary publication: Randell BP et al. Immediate post-intervention effects of two brief youth suicide prevention interventions. Suicide Life Threat Behav 2001; 31(1): 41–61.						
c D’Zurilla TJ, Nezu AM. Development and preliminary evaluation of the Social Problem-Solving Inventory. Psychol Assess 1990; 2: 156–163.						
d Note: This study recruited participants from both schools and the community.						
e Van Orden KA, et al. Thwarted belongingness and perceived burdensomeness: construct validity and psychometric properties of the Interpersonal Needs Questionnaire. Psychol Assess 2012; 24:197–215.						
f Classified as BCI in the meta-analysis						
g Linehan MM. Skills training manual for treating borderline personality disorder. New York: Guilford Press, 1993.						
h Robinson WL, Case MH. Leader manual for the Down with Drama course. Unpublished Manual. DePaul University; Chicago: Illinois: 1995.						
i Mufson L, et al. Effectiveness research: Transporting interpersonal psychotherapy for depressed adolescents (IPT-A) from the lab to school-based health clinics. J Consult Clin Psychol 2004; 7: 251–261.						
j Tompkins TL, et al. Does a gatekeeper suicide prevention program work in a school setting? Evaluating training outcome and moderators of effectiveness. Suicide Life Threat Behav 2010; 40: 506–15.						
Study: country	Study design: level of evidence	Target population	Participants	Intervention description	Comparison condition	Risk of bias
---	---	---	---	---	---	---
Universal interventions						
Bailey et al. (2017) [110] Australia	Pre-test/post-test case series Level of evidence: IV	Inclusion: year 11 and 12 students at participating schools Exclusion: None Recruited from: Secondary schools (N = 3)	Whole sample: N = 129 Mean age: 16.7 (range 16–18) Gender: 53.5% male	Educational safeTALK	NA	Adequately powered: No
King et al. (2011) [102] USA	Pre-test/post-test case series Level of evidence: IV	Inclusion: Students at participating schools Exclusion: None Recruited from: Secondary schools (N participating = NR, but the program was implemented in 24 schools)	Whole sample: N = 1030 Mean age: 14.1 (SD: 0.79; range 14–18) Gender: 43.9% male	Educational Surviving the Teens® Suicide Prevention and Depression Awareness Program. Length: Four 50-min sessions Developed by: Study authors Delivered by: MH professionals	NA	Adequately powered: No
LaFromboise & Howard-Pitney, (1994) [93] USA	Non-randomized experimental trial Level of evidence: III-2	Inclusion: Students attending a Zuni secondary school Exclusion: None Recruited from: Secondary schools (N = 1)	Whole sample: N = 83 Mean age: 15.6 (SD: NR) Gender: 41% male Treatment group: NR Control group: NR	Educational The Zuni Life Skills Development Curriculum. Units included: information about suicide; suicide intervention skills; communication skills; coping with oppression; anger & stress management and goal setting. Length: Six units delivered across 28 lessons Developed by: Study authors Delivered by: Teachers	NR	Intervention developed: Study authors Adequately powered: Unclear Outcome assessor blinding: NA Less than 15% drop-out rate: No (35.3%)
LaFromboise & Howard-Pitney, (1995) [94] USA	Non-randomized experimental trial Level of evidence: III-2	Inclusion: Freshman and junior students taking language arts classes at a Zuni secondary school Exclusion: None Recruited from:	Whole sample: N = 128 Mean age: 15.9 (Range: 14–19) Gender: 36% male	Educational The Zuni Life Skills Development Curriculum. Units: building self-esteem; identifying emotions & stress; communication & problem-solving skills; recognizing & eliminating self-destructive behavior; suicide information; suicide intervention training; goal setting	No intervention	Intervention developed: No Outcome assessor blinding: NA Less than 15% drop-out rate: No (23.4%)

(continued on next page)
There was no evidence that the program had an effect on suicide attempt rates.

Study; country	Study design; level of evidence	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed	Longest follow-up	Results	Interpretation		
McGraw et al. (1991) [103]	USA	Selective interventions	Hazell & Lewin (1993) [104]	Australia	Inclusion: Ninth grade students from participating schools	Control: Whole sample: N = 381 Mean age: 15.8	Educational	In-class presentation. Emphasized support networks in alleviating stress, confronting one’s peers, and community resources. Length: 1.5 h Developed by: Unclear Delivered by: Teachers	No intervention		There was no evidence that the program had an effect on suicide attempt rates.	
McDaniel et al. (1990) [121]	USA	Study design: Interrupted time series with a control group	Inclusion: US Navy instructors	Exclusion: None Recruited from: Navy training command (N = 1)	Training sessions for instructors in US Navy training command. Focused on how instructors can identify signs of distress and risk in their students, how to intervene and how to get help. Length: 3 × 1 h Developed by: Unclear Delivered by: MH professionals “Operational command” - less than 10 miles away from training command and about the same size but no training.	Adequately powered: No Outcome assessor: NA	SA: Hospitalization for SA assessed using Youth Self Report (YSR) version of the Child Behavior Checklist (CBCL) SH: Incidence of current suicidal behavior - YSR CBCL SI: % of group currently experiencing suicidal ideation – YSR CBCL	Longest follow-up: Post-intervention only	SA: Intervention: Yes = 2.5% Control: Yes = 2.7%	There was no differences between groups on SA, SH or SI as assessed by Pearson X2		
Vieland et al. (1991) [109]	USA	Study design: Non-randomized experimental trial	Inclusion: Ninth grade students from participating schools	Exclusion: Schools excluded if they had ever received a suicide prevention program Recruited from: Secondary schools (N = 4)	Whole sample: N = 126 Mean age: 15.8 (SD: 0.64) Gender: 45% male Control group: N = 207 Mean age: 15.8 (SD: 0.59) Gender: 51% male	Therapeutic	One session of group counseling provided at school within 7 days of a student suicide. Following the session, school staff were debriefed & arrangements made to follow-up high risk students. Length: 90 min Developed by: Study authors Delivered by: MH professionals	Unclear	SA: Single item asking participants to indicate whether or not they had made a first suicide attempt	Longest follow-up: 18 months post-baseline		

There were no differences between groups on SA, SH or SI as assessed by Pearson X2.
The difference in suicide rates was not statistically significant.

Indicated interventions	Study design: Post-test case series	Level of evidence: IV
Biddle et al. (2014) [105]	Study design: Post-test case series	Level of evidence: IV
USA	Study design: Post-test case series	Level of evidence: IV
Inclusion: Students demonstrating SRB	Exclusion: NA Recruited from: Secondary schools (N = 619)	
N = 18.445 Mean age: NR (Range: 13–21) Gender: NR		
Therapeutic Student Assistance Program (SAP): Identify individual student problems & recommend interventions. Participants are students referred to the SAP who accessed the recommended services.		
Length: NA Developed by: Commonwealth Student Assistance Program Interagency Committee, Pennsylvania. Delivered by: Trained school staff		
Suicide: Number of suicides and suicide rate per 100,000 students		
Suicide: Post-test Intervention N (rate): 9 (65.2)	Control N (rate): 6 (129.25)	
The treatment group had a 74.7% reduction in the suicide rate, compared to an increasing suicide rate in the comparison group, z score = 5.90, p < 0.005		

Eggert et al. (1995) [106]; 1999* [36]	Study design: Post-test case series	Level of evidence: IV
USA	Study design: Post-test case series	Level of evidence: IV
Inclusion: Students reporting: SA; SI; moderate-serious depression; specific levels of alcohol or other drug use, polyuse, or drug use control problems	Exclusion: None Recruited from: Secondary schools (N = 5)	
Whole sample: N = 105 Mean age/gender: NR PGC I group: N = 36 Mean age: 16.19 (SD: 0.92) Gender: 41.7% male PGC II group: N = 34 Mean age: 15.82 (SD: 1.11) Gender: 37.1% male		
Psycho-education Personal growth classes (PGCs): Incorporated [1] group work; [2] weekly monitoring of activities targeting changes in mood management, school performance and attendance, and drug involvement; and [3] life skills training in self-esteem enhancement, decision making, personal control (skills training in anger, depression, and stress management), and interpersonal communication.		
Length: (PGC I): One semester - 5 months or 90 class days; (PGC II): Two semesters – 10 months or 180 class days. Developed by: Study authors Delivered by: Trained school staff		
Outcome assessor	Assessed for suicide 'potential'.	
Suicide: Deaths by suicide per 100,000 students per year		
Suicide: Post-test Intervention N (rate): 0.27 (0.55)	Control N (rate): 0.66 (0.85)	
Suicide: Number of suicides and suicide rate per 100,000 students		
Longest follow-up: 10 months post-intervention		
Longest follow-up: NA		

Joffe (2008) [118]	Study design: Interrupted time series with a control group	Level of evidence: III-2
USA	Study design: Interrupted time series with a control group	Level of evidence: III-2
Inclusion: Students with a SA or suicide threat	Exclusion: NA Recruited from: University (N = 1)	
population Treatment location: 1986–1988: 139,384 1984–1990: 245,812 Control location: 1986–1983: 1,244,469 1984–1990: 1,807,968		
Policy Implementation of a policy requiring any student who made a suicide threat or attempt to receive 4 individual sessions of professional assessment, the first which occurred within a week of the incident. Length: NR Developed by: Counseling Center, University of Illinois Delivered by: MH professionals		
Data collected from 11 other universities		
Adequately powered: NR Outcome assessor blinding: NA Less than 15% drop-out rate: Not Reported Use of statistical testing to measure change at from pre-test to post-test: Yes		
Suicide: Deaths by suicide per 100,000 enrolled students per year		
Suicide: Post-test Intervention rate: 2.0 Control rate: 8.68		

Lerner & Quin [1990] [117]	Study design: Non-randomized, experimental trial	Level of evidence: III-2
USA	Study design: Non-randomized, experimental trial	Level of evidence: III-2
Inclusion: Students with SI	Exclusion: Psychosis, substance abuse	
Whole sample N = 18 Mean age: 10.17 (SD: 1.01) Gender: 45.7% male		
Therapeutic group problem solving therapy Length: 10 sessions over 5–7 weeks Developed by: Based on D’Zurilla and Goldfried (1971)		
Active placebo: empathetic listening, sharing experiences with the group.		
SI: Modified Scale for Suicidal Ideation (MSSI)		
Suicide: Post-test Intervention mean (SD): 5.8 Control mean (SD): 7.0		
Suicide: Number of suicides and suicide rate per 100,000 students		
Longest follow-up: 3 months post-intervention		
Longest follow-up: NA		

(continued on next page)
Study; country	Study design; level of evidence	Target population	Participants	Intervention description	Comparison condition	Risk of bias	Suicide related outcome(s) assessed; Longest follow-up	Results	Interpretation		
Robinson J et al. (2016) [112], Australia	Pre-test/post-test case series	Study design:	Case series	Level of evidence: IV	Recruited from: University (N = 1)	Delivered by: MH professional	3-month	Suicide related outcome(s)	(SD): 5.3 (9.2)	3-month follow-up	Interpretation
					1.38; Range: 18–24	Mean (SD): 4.7	1.38; Range: 3.4	Control mean (SD): 10.6 (8.8)	Post-intervention only	SI: Pre-test Mean (SD): 3.2	There was a statistically significant decrease in SI from pre to post-test, with a moderate effect size, t = 6.2; p < 0.0005
Multi-modal interventions	Aseltine et al. (2007) [107], USA	Study design: Pseudo-RCT	Level of evidence: III-1	Whole sample: N = 4133	Psycho-education & screening Signs of Suicide (SOS). Universal educational component: Video & discussion guide depicting signs of suicidality & depression and recommended ways to respond. Selective component: Screening to identify students at risk. Length: Video = 17 min Delivered by: Screening for Mental Health Inc.	Adequately powered: No Outcome assessor	SI: Suicidal Ideation Questionnaire (SIQ)	longest follow-up: Post-intervention only	SI: Pre-test Mean (SD): 1.5	(1.3)	
Shelef et al. (2016) [120], Israel	Interrupted time series with a	Cohort inducted into the IDF prior to the treatment group	Multiple cohorts:	1,171,359	Adequately powered: Yes Outcome assessor	Suicide: Total number of suicides & average number per year	Suicide: Pre-intervention (2006–2012): N	Trend analysis showed lower suicide rates in the cohort after intervention, Hazard ratio = 0.48 (95%CI:			
Research Evidence

Silverstone et al. (2015) [108]; (2017) [37] Canada

Study design: Pre-test/post-test case series

Level of evidence: IV

Inclusion: All secondary school students, plus targeted intervention for students with SI (with or without SA)

Exclusion: None

Recruited from: Secondary schools (N = 30)

Control group

- Mean age: 19.0 (Range: 17–24)
- Gender: 51.7% male

Experimental group

- Mean age: 19.0 (Range: 17–24)
- Gender: 53.4% male

Treatment group: N = 344; 24.6 per year (1992–2005)

Post-intervention

- Gender: 55.2% male

Measures

- Mean age: 19.0 (Range: 10–19)
- Gender: 51.7% male

Outcome assessor

- Use of statistical testing to measure change from pre-test to post-test: Yes

Analysis

- SI: N at “High risk” (thought you were better off dead) more than half the days in past 2 weeks) or “medium risk” (thought you were better off dead) several days in past 2 weeks) of suicide

Findings

- Actively suicidal N = 49
- Mean risk N = 19
- High risk N = 16
- Medium risk N = 21
- Actively suicidal N = 37
- SI: Pre-test (1989–1990)
 - N = 641 Post-test (1993–1994) N = 640 SA: Pre-test N = 243; 87/100,000 Post-test N = 95; 31/100,000

Notes:

- ED = Emergency Department; ID = Intellectual Disability; ITT = intention-to-treat; IQR = Interquartile Range; MH = mental health; NA = not applicable; NR = not reported; TAU = treatment as usual; SA = suicide attempt; SD = standard deviation; SH = self-harm; SI = suicidal ideation; SRR = suicide-related behavior.
- 1999 is a correction; excluded secondary publication: Thompson EA, et al. Mediating effects of an indicated prevention program for reducing youth depression and suicide risk behaviors. Suicide Life Threat Behav 2000; 30(3): 252–71.
- D’Zurilla T, Goldfried M. Problem solving and behavior modification. J Abnorm Psychol 1971; 78: 107–126.
- 4 Excluded secondary publications: Robinson J, et al. The safety and acceptability of delivering an online intervention to secondary students at risk of suicide: findings from a pilot study. Early Interv Psychiatry 2015; 9(6): 498–506.; Hetrick S, et al. Does cognitive behavioural therapy have a role in improving problem solving and coping in adolescents with suicidal ideation? Cognitive Behaviour Therapist 2014; 7.
- Excluded secondary publication: Aseltine RH, DeMartino R, An Outcome Evaluation of the SOS Suicide Prevention Program. American Journal of Public Health 2004; 94(3): 446–451.
- Knox KL, et al. Risk of suicide and related adverse outcomes after exposure to a suicide prevention programme in the US Air Force: cohort study. BMJ 2003; 327(7428):1376.

- The number of suicidal ideations among students fluctuated during the data collection period, initially showing a decrease in activity before returning to previous levels. The rate of suicide attempts decreased.
Table 5
Interrupted time series and ecological studies in community settings (N = 15).

Study: country	Study design; level of evidence	Target region/population; comparison	Intervention description	Time period	Risk of bias	Outcome/data source	Rates per 100,000	Interpretation
Universal: means restriction						Suicide: Mean annual age-specific suicide rates by all methods and by firearm for persons aged 15–24 years, obtained through New Zealand Health Information Service (NZHIS)	Suicide: All: Unclear Firearm: Unclear	
Beanstra et al. (2006) [125]	Study design: Interrupted time series without a control group	Target region/population: NA	Firearms legislation introduced in 1992 mandating license to own a firearm.	1985–1992: pre-legislation; 1993–1996: implementation; 1997–2002: post-implementation.	Were data collected at multiple time points?	Suicide: Age-specific suicide rates by all methods and by firearm for under 25 age group obtained through the Quebec Coroner’s office.	Suicide: All: NR Firearm: NR	
New Zealand	Level of evidence: III-3					There was a 66% decrease in the mean annual rate of firearm-related suicide (b = −1.09; SE = 0.24; p < 0.001). There was a decrease in the fraction of all suicides accounted for by firearm-related suicides (p < 0.001). There was no significant decrease in overall rates of suicide (b = 0.08; SE = 0.10; p = 0.39).	There was a 38% decrease in firearm suicides (significance = NR). There was a 69% increase in the overall suicide rate (X2 = 22.09, df = 1, p < 0.001).	
Caron (2004) [126] Canada	Study design: Interrupted time series without a control group	Target region/population: NA	Firearms legislation introduced in 1992 mandating firearm owners to safely store their firearms.	1986–1991: pre-legislation; 1992–1996: post-legislation	Were data collected at multiple time points?	There was no statistically significant change in the percentage of all suicides that were by firearm. Following policy change, suicide rates decreased significantly by 40% (t = 3.35, p = 0.04). Most of this decrease was due to decrease in suicide using firearms over the weekend (t = 17.44, p < 0.001). There was no significant change in rates of suicide on weekdays.	Suicide: All: Unclear Firearm: Unclear	
Cheung and Dewa (2005) [128] Canada	Study design: Interrupted time series without a control group	Target region/population: NA	Restrictive firearms regulations - Bill C-17 enacted in 1991.	1979: pre-implementation 1999: post-implementation	Were data collected at multiple time points?	Suicide: Age-specific suicide rates for youth between 15 and 19 years by firearm, overdose, hanging, and total, and percentage of suicides by each particular method, obtained from data collected by the Coroner’s office.	Suicide: All: NR Firearm: NR	
Leenaars & Lester (1997) [131] Canada	Study design: Interrupted time series without a control group	Target region/population: NA	Gun control legislation introduced in 1977 (Bill C-51).	1969–1976: pre-legislation; 1978–1989: post-legislation	Were data collected at multiple time points?	Suicide: Suicides rates by firearm and by all methods, and percentage of total suicide rate by firearm, in persons aged 15–24, obtained from Statistics Canada and supplemented by personal communications.	Suicide: All: Pre-legislation: 12.57 Post-legislation: 16.11 Firearm: Pre-legislation: 5.89 Post-legislation: 7.12	
Lubin et al. (2010) [132] Israel	Study design: Interrupted time series without a control group	Target region/population: NA	Rule prohibiting soldiers from taking home service weapons on the weekend.	T1: 2003–2005 T2: 2007–2008	Were data collected at multiple time points?	Suicide: Average number of suicides per year; firearm suicides on weekends; firearm suicides on weekdays in soldiers aged 18–21: data source not specified.	Suicide: All: NR Firearm suicides on weekends: NR Firearm suicides on weekdays: NR	
Niederkrotenthaler et al. (2009) [135] Austria	Study design: Interrupted time series without a control group	Target region/population: NA	1997 revision of firearm laws to harmonize with EU regulations	T period 1–1986-1987 T period 2 1987–2006	Were data collected at multiple time points?	Suicide: Suicide rates by firearm and all methods in 10–19 year-olds, obtained from Statistics Austria.	Suicide: All: NR Firearm: Unclear	
Wheeler et al. (2009) [137] Multi-national (23 Countries of 35 with available suicide data from the WHO’s Mortality and Stratum A)	Study design: Interrupted time series without a control group	Target region/population: NA	“Regulatory action” to restrict use of SSRIs	Pre-intervention: 1990–2003 Post-intervention: 2004–2006	Were data collected at multiple time points?	Suicide: Suicide rates in 10–14 and 15–19 year-olds, obtained from WHO mortality database.	Suicide: NR	
Wheeler et al.	Level of evidence: III-3					There was no evidence for an overall effect on the incidence of suicide of regulatory action regarding SSRIs for 15–19 year-olds (p = 0.95) or 10–14 year-olds (p = 0.97).	There was no statistical evidence of	
(2008) [136], UK

| Multi-modal Ahmadi & Vittersstad (2007) [124] Iran |
| Study design: Interrupted time series with a control group |
| Target region/population: Young women and low SES in 2 cities |
| Level of evidence: III-2 |
| Multi-modal: mix of passive and active strategies (not described). Key feature was psycho-education via videos |
| Period 1: Pre-intervention 1999–2000 |
| Period 2: Intervention 2000–2003 |
| SH: N (%) of total self-inflicted burn cases who was admitted in Gilangharb and Sarpolzahab hospitals during the baseline year to the study, during the study period, and the last year of the study period in persons aged 0–20 years. |
| SRR: Rates of suicide acts for persons aged 15–19 (included completions and attempts) obtained via a surveillance form. |
| SH: NR |
| No statistical analyses were performed on rates of self-immolation in youth. |
| CHanges in trends in suicide rates between 1993 and 2005. The rate of hospital admissions remained relatively stable in males and steadily increased in females. |

| Center for Disease Control (1998) [127] USA |
| Study design: Interrupted time series with a control group |
| Target region/population: Western Athabaskan tribe in rural New Mexico, USA |
| Level of evidence: III-3 |
| Multi-modal: gatekeeper training, outreach to families, immediate response and follow up for reported at-risk youth, community psychoeducation, and screening in services. |
| Period 1: 1993–2003 |
| Period 2: 2003–2005 |
| Suicide: Suicide rates for persons aged 10–24 years, obtained via The Celebrating Life surveillance system (established by tribal resolution in 2001). |
| Suicide: Pre-test: 10–14 years: 17.1 |
| Suicide: Post-test: 10–14 years: 23.6 |
| Suicide: 20–24 years: 151.9 |
| Suicide: 20–24 years: 23.6 |
| Suicide: 15–19 years: 101.9 |
| Suicide: 20–24 years: 96.0 |
| Suicide: 1994–1999: Somerville: 6.04 |
| Suicide: 2000–2005: Somerville: 9.77 |
| Suicide: Massachusetts: 4.27 |
| SA/SH: Data on suicide attempts for 10–24 year-olds obtained via self-inflicted injury data from Massachusetts Department of Public Health for (1994–2005), hospital discharge data (1996–2006), 911 dispatch call data (2004 onwards), teen health survey conducted in Somerville High School. |
| Overall the data indicates a decrease in the rate of suicide and suicide attempts (significance = NR). |

| Cwik et al. (2016) [129] USA |
| Study design: Interrupted time series with a control group |
| Target region/population: Apache Indians |
| Level of evidence: III-3 |
| Multi-modal: implemented in 2006, included psychoeducation for students, gatekeeper training, and indicated interventions for suicidal young people. |
| Period 1: 1988–1989 |
| Period 2: 1999–2000 |
| Suicide: Data on suicide attempts for 10–24 year-olds obtained via the National Mortality Data from Massachusett Center for Disease Control and Prevention (1994–1999). |
| Suicide: 15–19 years: 23.6 |
| Suicide: 20–24 years: 151.9 |
| Suicide: Post-test: 10–14 years: 23.6 |
| Suicide: 15–19 years: 101.9 |
| Suicide: 20–24 years: 96.0 |
| Suicide: 1994–1999: Somerville: 6.04 |
| Suicide: 2000–2005: Somerville: 9.77 |
| Suicide: Massachusetts: 4.27 |
| SA/SH: Suicide rates for persons aged 10–24 years, obtained via the National Mortality Data from Massachusett Center for Disease Control and Prevention (1994–1999). |
| The suicide rate increased by 38% in 10–14 year-olds, and decreased by 5.5% in 15–19 year-olds and 36.8% in 20–24 year-olds. |

| Hacker et al. (2008) [130] USA |
| Study design: Interrupted time series without a control group |
| Target region/population: Somerville, MA, USA |
| Level of evidence: III-3 |
| Multi-modal: implemented between 2003 and 2005, included local trauma response network, community wide vigil, school based counseling, hospital beds made available, outreach to suicide survivors to offer services, youth leadership programs, media reporting guidelines, community-wide education. |
| Period 1: Pre-intervention period. 2003–2005 |
| Period 2: Intervention period. 2005 onwards. |
| Suicide: Data on suicide rates for 10–24 year-olds obtained via death certificate data (examined from 2000 to 2007, and then from 1994 for comparison), mortality data from Massachusetts Department of Public Health for (1994–2005). |
| Suicide: Pre-test: 10–14 years: 17.1 |
| Suicide: Post-test: 10–14 years: 23.6 |
| Suicide: 15–19 years: 101.9 |
| Suicide: 20–24 years: 96.0 |
| Suicide: 1994–1999: Somerville: 6.04 |
| Suicide: 2000–2005: Somerville: 9.77 |
| Suicide: Massachusetts: 4.27 |
| SA/SH: Data on suicide attempts for 10–24 year-olds obtained via self-inflicted injury data from Massachusetts Department of Public Health for (1994–2005), hospital discharge data (1996–2006), 911 dispatch call data (2004 onwards), teen health survey conducted in Somerville High School. |

(continued on next page)
Table 5 (continued)

Study; country	Study design; level of evidence	Target region/population; comparison	Intervention description	Time period	Risk of bias	Outcome/data source	Rates per 100,000	Interpretation
May et al. (2005) [134] USA	Study design: Interrupted time series without a control group	Target region/population: Western Athabaskan Tribal Nation. New Mexico, USA Comparison: None	Multi-modal; Surveillance, screening/clinical interventions with extensive outreach in multiple settings, school-based prevention programs, community education for adults and youths, training of ‘natural helpers.’	Baseline - 1988–1989; then two yearly numbers and yearly averages until 2002	Were data collected at multiple time points? Yes	Suicide rates: Counties implementing GLS training had significantly lower suicide attempt rates among youths 16 to 23 years of age in the year following implementation of the GLS program than did similar counties that did not implement GLS program activities (4.9 fewer attempts per 1000 youths [95%CI: 1.8–8.0 fewer attempts per 1000 youths]; p = 0.003). There was no evidence of longer-term differences in suicide attempt rates.	Suicide: NR	Suicide attempts: Counties implementing GLS program activities had significantly lower suicide attempt rates among youths 16 to 23 years of age in the year following implementation of the GLS program than did similar counties that did not implement GLS program activities (4.9 fewer attempts per 1000 youths [95%CI: 1.8–8.0 fewer attempts per 1000 youths]; p = 0.003). There was no evidence of longer-term differences in suicide attempt rates.
Multiple interventions	Study design: Ecological Level of evidence: III-2	Target region/population: 466 counties, USA Comparison: 1101 counties not exposed to suicide prevention efforts	Multiple: Activities funded by the Garrett Lee Smith (GLS) Memorial Suicide Prevention Program, implemented between 2006 and 2009. Includes gatekeeper training, psychoeducation programs, screening, improved community linkages to service, postvention programs, and crisis hotlines.	At least 1 NSDUH respondent between 2008 and 2011, suicide mortality between 2007 and 2010	Were data collected at multiple time points? No	Suicide: Suicide rates for persons aged 10–24 years between 2007 and 2010, obtained from the National Vital Statistics System.	Suicide: NR	Suicide deaths: Counties implementing GLS training had significantly lower suicide rates among the population aged 10–24 years in the year after GLS training than similar counties that did not implement GLS training (1.33 fewer deaths per 100,000; p = 0.02). No evidence of an effect beyond one year after training implementation.
Matsubayashi & Ueda (2011) [133] Multi-national	Study design: interrupted time series with a control group	Target region/population: 21 OECD nations Comparison: 10 OECD countries without a national suicide prevention program	Multiple: National prevention programs - specific interventions not specified or analyzed.	1980–2004 One time period, statistical models include date of implementation of suicide prevention program - varies for each country	Were data collected at multiple time points? No	Suicide: Suicide rates in under 25 year-olds, obtained via the WHO mortality database	Suicide: 20.901 (mean total rate)	Suicide rates: Suicide prevention programs have a negative impact on the suicide rate (Males: -1.33, SE 0.5; p < 0.05; Females -0.276 SE.08, p < 0.05)

Notes: NSDUH = National Survey on Drug Use and Health; NA = not applicable; NR = not reported; OECD = Organization for Economic Co-operation and Development; WHO = World Health Organization; SA = suicide attempt; SE = standard error; SES = socio-economic status; SH = self-harm; SI = suicidal ideation; SRB = suicide-related behavior.

a Defined as at least twice before or at least twice after implementation of the intervention.

b Note: it is likely that this study is a subset of the date included in Wheeler et al (2009).
Study Description	Number of Studies	Interventions	Participants	Target Population	Outcome(s) Assessed	Longest Follow-up	Notes
Allen et al. (2017)	31	CBT	USA	Young adults	Suicide ideation	6 months	

One RCT in this category was not included in the meta-analysis. This investigated the impact of Parent-Adolescent CBT [72]; authors reported reduced suicidal ideation in both groups during active and maintenance treatment and at follow-up.

3.3.1.2. Study Quality. The majority of these studies used random sequence generation [40–51,53–56,58,59,61,62,64–71] (k = 28; 84-8%) and 21 (60-6%) used adequate allocation concealment strategies [42–46,49–51,53–55,58,59,61,62,64–67,69,70]. Of the 25 studies that assessed outcomes via interview, 13 (52-0%) reported assessor blinding [43–45,49,51,53,55,56,59,61,64,65,70]. Thirteen studies reported conducting intention-to-treat (ITT) analysis [42,46,48,53,54,56,58,59,61,64,65,69,72]. One study did not use ITT, but conducted a sensitivity analysis to assess the robustness of the findings [70]. Nineteen (57-6%) reported less than 15% drop out and were classed as low risk for the purpose of meta-analysis [41,43–46,49–51,53,54,56,58,61,63–69].

3.3.2. Other Study Designs

3.3.2.1. Study Description. All nineteen studies in this category tested indicated therapeutic interventions. The majority employed a pre-test/ post-case series study design (k = 11; 57-9%) [73–83]. Sixteen (84-2%) recruited participants from community mental health services or hospitals, including inpatient and emergency department settings [73–80,83–91]. Interventions included DBT, CBT, and brief contact interventions. Sixteen (84.2%) of the studies in this category had a mean age of 18 or younger. Please see Table 2.

3.3.2.2. Study Efficacy. Two of the five studies testing a CBT-based intervention reported reductions in suicide-related behaviour [73,86], and three reported reductions in suicidal ideation [73,75,76]. Five of the six studies testing DBT reported reductions in suicide-related behaviour [74,77,79,80,88], and four reported reductions in suicidal ideation [74,77,84,88]. Two of the three studies testing family-based interventions reported reductions in suicidal ideation [83,89], and one reported a reduction in suicide attempts [89]. One study reported a reduction in the proportion of young people reporting a suicide attempt following exposure to a crisis intervention program [78], and one reported reduced suicidal ideation following telephone counseling [81]. One study tested a brief contact intervention and reported no between-group differences [85]. A study of a problem solving intervention reported a reduction in the proportion of participants reporting suicide attempts in the treatment group compared to controls [87]. Finally, a study testing an intervention for American Indians reported reductions in suicidal ideation over time [82]. Significance testing was not always conducted or reported for studies in this category.

3.3.2.3. Study Quality. Only seven studies had dropout rates of less than 15% [73,78,81,83,84,86,89]. All but one [89] were either underpowered or the adequacy of the sample size could not be determined. Eight studies used a comparison group [84–91]. Three assessed outcomes using interview-rated measures [87,90,91], and only one reported that outcome assessors were blinded to treatment allocation [91]. Fifteen studies (78-9%) conducted statistical testing to measure change from baseline [73–75,77,79–86,88,89,91].

3.4. Studies Conducted in Educational and Workplace Settings

Thirty-one studies recruited participants from educational or workplace settings; of these 21 (67-7%) were conducted in schools [92–112], seven (22-6%) in universities [113–119], two (6-3%) in military-based workplace settings [120,121], and one (3-2%) from both schools and public places in the community [122]. Twenty-one (67-7%) had a mean participant age of 18 years or younger, eight studies (25.8%) had
a mean age over 18, and in two studies (6·5%) the mean age could not be determined. Fifteen (48·4%) were RCTs.

3.4.1. Randomized Controlled Trials

3.4.1.1. Study Description. Three of the RCTs tested universal interventions [92,113,119], nine tested indicated interventions [95–98,114–116,122,123], and three tested multi-modal or multiple interventions [99–101]. Studies were either educational or therapeutic in nature, and four tested an internet-based intervention [113,119,122,123]. On a large cluster-RCT tested three distinct interventions (workshops for students; gatekeeper training; and screening) [101]. Two multimodal studies combined a universal educational component with screening. Examples of control conditions in these studies included TAU e.g. an interview with a school counselor, enhanced TAU, e.g. weekly therapy, and placebo e.g. a video about unrelated health issues. Ten studies (66·7%) in this category included participants with a mean age of 18 or under. See Table 3.

3.4.1.2. Study Efficacy. Eleven RCTs reported data amenable to meta-analysis [92,98,99,101,113–116,119,122,123]. Together there were 13 individual intervention arms because one study tested three interventions (one brief contact intervention and two universal educational interventions) [101]. Two intervention arms were brief contact interventions, five were universal educational interventions, and six were psychological interventions. As above findings are presented according to the outcome assessed, with the primary outcome (self-harm) reported first, followed by suicidal ideation. No studies reported suicide as an outcome.

3.4.1.2.1. Self-harm Measured Dichotomously. Compared to control, there was evidence of an intervention effect on self-harm at post-intervention (k = 3, RR = 0·31, 95% CI 0·15 to 0·61, I² = 0%) (Fig. 4) and at follow-up (k = 3, RR = 0·63, 95% CI 0·42 to 0·96, I² = 0%) (Fig. 5).

3.4.1.2.2. Sensitivity and Subgroup Analysis. As there were only three studies in this category these analyses were not possible.

Table 3: Study Name and Risk Ratio/CIs for Self-harm

Study Name	Risk Ratio	Lower Limit	Upper Limit	Z-Value	p-Value
Asarnow, 2011	0.884	0.246	3.173	-0.189	0.850
Bertolote, 2010	1.020	0.729	1.427	0.114	0.909
Carter, 2010	1.174	0.838	1.646	0.931	0.352
Donaldson, 2005	1.714	0.554	8.292	0.670	0.903
Hassani-Moghaddam, 2011	0.634	0.477	0.918	-2.410	0.016
Huey, 2004	0.739	0.430	1.272	-1.092	0.275
King, 2006	1.485	0.833	2.648	1.340	0.180
Michel, 2016	0.418	0.117	1.497	-1.341	0.180
Robinson, 2012	1.158	0.396	3.387	0.268	0.789
Russoou, 2012	0.670	0.483	0.931	-2.383	0.017
Cooney, 2010	2.308	0.235	22.622	0.718	0.473
Asarnow, 2017	0.122	0.007	2.128	-1.443	0.149
	0.886	0.709	1.085	0.290	

Fig. 2. Random effects risk ratio and 95% confidence interval (CI) for clinical interventions at the post-intervention assessment.

Fig. 3. Random effects risk ratio and 95% confidence interval (CI) for clinical interventions at the longest follow-up assessment.
3.4.1.2.3. Self-harm Measured Continuously. Compared to control, there was one study that reported continuous data post-intervention [115] with little evidence of an effect (k = 1, SMD = −0.16, 95% CI −0.61 to 0.30). No studies reported follow-up data for this outcome.

3.4.1.2.4. Suicidal Ideation Measured Dichotomously. Compared to control, there was little evidence of an effect at post-intervention (k = 1, RR = 0.76, 95% CI 0·50 to 1·16) or follow-up (k = 2 (4 intervention arms), RR = 0·72, 95% CI 0·51 to 1·03, I² = 0%).

3.4.1.2.5. Suicidal Ideation Measured Continuously. Compared to control, there was strong evidence of an effect of the intervention on suicidal ideation at post-intervention (k = 7, SMD = −0·41, 95% CI −0·57 to −0·24, I² = 15·2%). By follow-up, the effect was no longer significant (k = 5, SMD = −0·21, 95% CI −0·52 to 0·1·, I² = 46·9%).

Four RCTs were not included in the meta-analysis. One tested a supportive intervention and found decreases in ‘suicide risk behaviors’ in treatment and control groups, but no between-group differences [95]. One examined a parent-specific intervention and found reductions over time in both groups, with greater reductions in the treatment group [96]. A group ‘coping with stress course’ tested with African-American adolescents was associated with a relative risk reduction in group [97]. Finally, a multimodal intervention combining psycho-education and screening was associated with reduced suicidal ideation and behavior in intervention participants compared to controls [100].

3.4.1.3. Study Quality. Seven studies (46·7%) reported using random sequence generation techniques [95,99–101,116,122,123] and only three (20·0%) reported adequate concealment of treatment allocation [113, 122, 123]. None of the studies in this category assessed primary outcomes using interviews, so outcome assessor blinding is not applicable. Six (40·0%) studies used ITT analysis [98,113,116,119,122,123]. One third (k = 5) had dropout rates of less than 15% [92,97,98,113,122].

3.4.2. Other Study Designs

3.4.2.1. Study Description. Of these 16 studies, four were non-randomized experimental trials [93,94,103,107,117], four were pre-test/post-test case series studies [102,108,110,112], three were post-test case series studies [104–106], and four employed an interrupted time series design [109,118,120,121]. The majority were conducted in school settings (k = 12; 75·0%), with two each (12·5%) conducted in university [117,118] and military settings [120,121]. Five studies tested universal educational programs [93,94,102,103,110], two evaluated selective interventions [104,121], five evaluated indicated interventions [105,106,112,117,118] and four evaluated multimodal interventions [93,94,102,103,107–110,120]. Two studies evaluated online interventions [108,112]. Eleven studies (68·8%) in this category had a mean participant age of 18 or under. See Table 4.

3.4.2.2. Study Efficacy. Of the five studies testing universal interventions, one reported a reduction in suicide-related behavior post-intervention [94], one reported a reduction in suicidal ideation post-intervention and at follow-up [110], and one reported a reduction at follow-up only [102]. Two studies tested selective interventions: one showed no effect of a counseling session delivered to school students bereaved by suicide [104] and the second reported a reduction in suicide attempts associated with a training intervention delivered to U.S. naval instructors [121].

Two of the five studies testing indicated interventions assessed suicide rates as the outcome of interest. The first found no impact of a therapeutic program among secondary school students [105]. The second examined the impact of a university suicide prevention policy and reported a reduction among the intervention group compared to increases among controls [118]. Of the remaining three studies of indicated interventions, only one therapeutic-based intervention was associated with a reduction in suicidal ideation from pre- to post-test [112].

Four studies tested a multimodal intervention. One was conducted in a workplace setting and reported lower suicide rates at post-intervention [120]. Two studies reported decreases in suicide attempts [107,109]. The final study examined the impact of a combined therapeutic and screening intervention and reported reductions in suicidal ideation at post-intervention and follow-up [108].

3.4.2.3. Study Quality. Only one study [117] reported an attrition rate of less than 15%. Three studies were adequately powered [105,108,120], and in another three, although no power calculations were provided, the sample size was sufficient to examine changes in suicidal ideation but not self-harm [102,107,109]. The majority of studies (k = 12; 75·0%) used statistical testing to measure change from pre- to post-test [93,94,102,104,106,108,110,112,117,118,120,121].

3.5. Studies Conducted in Community Settings

3.5.1. Study Description

Fourteen studies in this category (87·5%) were interrupted time series studies [124–137]; two (14·3%) utilized a control group [124,133]. One study was a non-randomized experimental trial [138] and one was an ecological study [139]. None of the community-based studies were RCTs. Eight (50·0%) evaluated means restriction approaches, five (31·3%) tested multimodal interventions [124,127,129,130,134] and two (12·5%) evaluated multiple interventions [133,139]. One non-randomized experimental trial [138] examined the impact of a cultural intervention among indigenous young people in Alaska.

3.5.2. Study Efficacy

Five of the six studies examining the impact of policies designed to restrict access to firearms reported decreases in the firearm suicide rate among young people [125,126,128,132,135], and one reported an

Study name	Statistics for each study	Risk ratio and 95% CI
Hetrick, 2017	0.165 0.009 3.003 -1.217 0.224	Favours Intervention
Piotrowski, 2012	0.147 0.008 2.740 -1.284 0.199	Favours Control
Shilling, 2016	0.335 0.162 0.692 -2.956 0.003	Favours Intervention
0.306 0.155 0.610 -3.375 0.001		

Fig. 4. Random effects risk ratio and 95% confidence interval (CI) for educational interventions at the post-intervention assessment.
increase [131]. Only one reported a decrease in the overall youth suicide rate [132].

Two studies examined the impact of regulatory action to restrict use of antidepressants and found no evidence of an effect on suicide rates [136,137]. One of these studies also examined the impact of such regulatory action on rates of hospital admissions for self-harm and reported decreases in females only [136].

Three of the five studies evaluating multimodal interventions reported generally positive impacts on rates of suicide and/or suicide-related behaviour [127,130,134]. One study found the suicide rate decreased by 5–3% in 15–19 year-olds but increased by 38% in 10–14 year-olds [129]. Finally, one study evaluated the impact of an intervention targeting self-immolation in women; the authors reported a reduction in the number and percentage of self-immolation cases but did not report statistical significance [124].

One study evaluated multiple interventions delivered across different counties in the U.S. The interventions were associated with lower rates of suicide attempt [139] and suicide [38] but there was no evidence of a longer-term effect. Finally, a study evaluating the impact of government-initiated national suicide prevention programs across multiple nations reported decreases in suicide rates [133].

3.5.3. Study Quality

In 11 studies (73–3%), data were collected at multiple time points [125–131,134–137] and in 11 studies the intervention was deemed unlikely to impact data collection for the primary outcome of interest [125, 126,128,130–133,135–137,139].

4. Discussion

This review examined 99 individual studies of interventions designed to reduce suicide-related behaviors among young people. Samples were diverse, although few studies were conducted in low-to-middle income countries. Studies were conducted across a range of settings and tested a variety of intervention approaches, reflecting the spread of suicide prevention activity as recommended by current policy [7,1]. Less than half the studies were RCTs, which is unsurprising as the lack of RCTs in suicide prevention has been highlighted previously [24, 140]. Although not all intervention approaches, or intervention types, lend themselves to being tested this way, there remains a clear need for high-quality intervention studies in this field. In the majority of studies the mean age of participants was 18 or under (68.7%). In the clinical studies this was more prominent than in those conducted in educational settings (76.9% compared to 67.7%), suggesting that the findings from the clinical trials may be most applicable to young people aged 18 and under.

The number of intervention studies in youth suicide prevention has doubled in recent years, which is encouraging. However, many studies tested interventions originally designed for adults with little, or no, adaption for young people [24]. This may partially account for the high rates of attrition in many of the studies reviewed. Adolescence and young adulthood are developmental periods requiring specific attention [141,142]. As such interventions that account for developmental stage and are both acceptable to, and ideally co-designed with, young people are necessary.

The meta-analysis showed little evidence that interventions reduced repetition of self-harm at post-intervention in clinical settings. Whilst there was some evidence for reduced repetition of self-harm at follow-up, this effect disappeared after removing low-quality studies; as such these findings should be interpreted with caution. There may be a small effect on frequency of self-harm measured continuously. It is possible that these effects are being driven by the large trial by Hassanian-Moghaddam and colleagues that tested a brief contact intervention in Iran [68]. This finding is in contrast to a review by Ouirgin and colleagues, which found evidence of benefit for clinical interventions in reducing the proportion of adolescents re-engaging in repeat self-harm [143], This variation in findings may be explained by the settings in which the studies were conducted, or may be attributable to methodological differences such as the more specific inclusion criteria employed by the current review and/or differences in reporting of results (i.e., use of relative vs absolute effect size). There was also strong evidence of a small effect on suicidal ideation at post-intervention, and to a lesser extent at follow-up, again possibly being driven by the large Hassanian-Moghaddam trial [68].

There is less evidence for interventions delivered in educational or workplace settings given that fewer methodologically-rigorous studies have been conducted. Of note are the large studies conducted by Wasserman and colleagues [101] and Schilling and colleagues [99]. The educational components of the interventions tested in these studies appeared to reduce self-harm at post-intervention and at follow-up [99–101], although there were too few studies to conduct meaningful sub-group analyses. There was also an effect on suicidal ideation at post-intervention, but not follow-up. Overall these results indicate that school-based psycho-educational interventions that are coupled with screening have the potential to be effective, however the robustness of findings is hampered by study quality.

To some extent the overall limited effects detected may reflect a lack of statistical power, either due to small sample sizes at baseline or high attrition rates. Many studies (in particular those of indicated interventions) were underpowered and did not find statistically significant improvements despite the direction of effect being positive. This was particularly true for studies examining self-harm given the large sample sizes required to detect an effect [144]. It may also be that suicidal ideation and self-harm are different constructs, and whilst it is largely accepted that they exist along a continuum [145], specific processes may facilitate the transition from suicidal ideation to suicide attempt [146]. It may therefore be the case that existing interventions more effectively target suicidal ideation than self-harm, and that interventions with
stronger theoretical underpinnings are required to reduce self-harm and suicide. Further work delineating the modifiable risk and protective factors associated with repeated self-harm is therefore required [147].

Evidence regarding the efficacy of interventions in community settings was mixed. The studies that examined the impact of multimodal interventions generally reported reductions in rates of suicide and/or self-harm, although study quality was variable. These findings are encouraging given the emphasis in many countries on place-based responses to suicide prevention [148,149]. The interventions tested typically comprised universal educational programs, gatekeeper training, screening, and treatment responses where appropriate, and appeared to positively impact young people. These intervention types should be included in future place-based approaches and subject to rigorous testing.

Means restriction, such as reducing access to known jumping sites, has long been considered an effective suicide prevention intervention [17,18]. Our review identified few studies examining the effects of means restriction on young people, and those that did focused on firearm restriction. These were generally associated with decreases in rates of firearm suicide, but no reduction in overall youth suicides. An explanation may be that firearm suicides are relatively uncommon among youth in the countries studied. For example, three studies were conducted in Canada where the most common method of youth suicide is hanging [150]. It stands to reason that restricting access to a particular method will only reduce overall suicide rates if it is a method commonly used by the population.

Despite the spread of studies across intervention types and settings, gaps existed. For example, General Practitioners (GPs) are often a first port of call for young people yet there were no studies in primary care settings. GPs and have identified the need for training in youth suicide prevention [151]; as such primary care settings may provide an opportunity for intervention early in the suicidal trajectory that is currently being missed. Additionally, few studies were conducted in universities or workplaces compared to schools. Given that suicide rates are highest post-school age [152], tertiary education facilities and workplaces are key settings for future suicide prevention efforts and greater evidence is required [142,153]. Moreover, only six studies tested online interventions; all were in educational settings. There is increasing evidence supporting the efficacy of online interventions in the treatment of depression and anxiety [154], as well as evidence supporting their acceptability with young people at risk of suicide and potential to reduce risk [155]. All the studies of online interventions were CBT-based and most appeared to show promise, raising the question of why online interventions are not being trialed in clinical settings. This is an important avenue for youth suicide prevention yet to be capitalized on.

Finally, there are some groups who are underrepresented in this research. Only three studies [93,94,138] tested interventions among indigenous young people, despite this group being at elevated risk in many countries [156]. Similarly, same-sex-attracted and gender diverse young people are at elevated risk of suicide [157], yet only one study specifically targeted same-sex attracted youth [83]. Whilst this may be partially due to methodological challenges [156,158], generating evidence regarding effective suicide prevention approaches for these populations must be a priority. Related to this, females were over-represented in the studies reviewed. This is unsurprising given the higher rates of both self-harm and help-seeking among females compared to males [159,160], however there is a lack of knowledge regarding effective interventions for young men, whose rates of suicide are three times those of females [1].

A strength of this review is the inclusion criteria used. These were both broad (e.g., no restrictions on intervention approach or study design) and specific (i.e., studies tested interventions that were specifically designed for suicide prevention and reported suicide-related outcome data). Whilst some potentially effective interventions may have been excluded (e.g., those designed to treat or prevent depression), this review is well-placed to provide guidance regarding what does and does not impact suicide-related outcomes in young people. Despite this, some limitations must be addressed.

Firstly, the broad scope of the review, together with time and resource constraints, required us to make a number of pragmatic methodological decisions. For example, we adopted a pragmatic approach to assessing study quality, as applying standard Risk of Bias criteria to the non-RCTs would result in a low quality rating for all studies. Although we acknowledge the high risk of bias associated with non-randomized study designs, ethical and methodological barriers often prevent suicide prevention researchers from conducting RCTs. To accommodate this, the quality of non-RCTs was assessed using a tool appropriate to that design. Overall, however, study quality was limited. Indeed, many RCTs were not reported according to the Consort statement [161] and many were underpowered. Whilst this is not uncommon in suicide prevention research [144], priority needs to be given to well-designed, sufficiently powered studies. Additionally, for pragmatic reasons we did not include analysis of publication bias in our analysis of study quality. Other minor methodological limitations relate to our decisions not to prospectively register the review and not to contact key authors in the field. Although these steps are encouraged, they are not a requirement of compliance with the PRISMA statement and were not anticipated to impact the results; therefore due to time and resource constraints they were not a part of the present review.

A third limitation relates to the quality of the studies included in the meta-analysis, the results of which should be treated with caution. Additionally, on several occasions different studies contributed data to the post-intervention and follow-up outcomes. We therefore cannot be certain that changes at follow-up are in fact the result of a true reduction in the treatment effect over time. There was also heterogeneity in the control conditions and in the outcome measures used between studies, limiting our ability to be confident that studies measured the same constructs. For example, methods to assess self-harm included self-report instruments, hospital data and clinician-rated interviews. It was also often unclear if measures had been validated among young people. Researchers have previously called for the use of well-validated and standardized measures in adult suicide research, and we argue the same is required in studies with youth [162].

Finally, we acknowledge that a number of relevant studies have been published since the search was conducted. For example, a 2018 RCT trial found no benefit of systemic family therapy compared to treatment as usual in reducing subsequent hospital presentations for young people who self-harm [163]. Another RCT found DBT was more effective in reducing repeat suicide attempts in adolescents, compared to individual and group supportive therapy [164]. Although these studies both meet criteria for inclusion in the current review they were published after our search was conducted.

5. Conclusion

This review identified a large number of studies testing a broad range of interventions across multiple settings. We found that some interventions for example, brief contact interventions in clinical settings, and psychoeducation combined with screening in school settings can reduce the frequency of self-harm and suicidal ideation, although it is likely the size of these studies that is driving the effects. Large-scale multimodal interventions also show promise. Despite these promising findings there remains a paucity of high-quality youth suicide prevention intervention studies. Whilst not all interventions lend themselves to testing via RCTs, other robust study designs can and should be employed. Additionally, many studies, particularly those in clinical and community settings, tend to test interventions originally designed for adults. By focusing suicide prevention efforts on generic, as opposed to youth-specific, interventions, we are likely missing crucial opportunities for intervention, such as delivery via online platforms. Future research should adapt known effective interventions for young people,
and for delivery online. A focus on university and workplace settings is also warranted.

Although young people have repeatedly been identified by suicide prevention policy as a group requiring specific attention, their suicide rates are rising. To reverse this trend, we need more large-scale methodologically-rigorous studies that develop and test new approaches. These approaches should be acceptable to all young people and capitalize on the ways in which young people interact with the health system, supports, and services.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eclinm.2018.10.004.

Acknowledgments

Funding from the Future Global Generations Fund and the William Buckland Foundation supported several of the research assistants (including EB and NS). JR is supported by a NHMRC Career Development Fellowship. SH is supported by an Auckland Medical Research Foundation Douglas Goodfellow Repatriation Fellowship. AM is supported by the Victorian Health and Medical Research Fellowship. KW is supported by a post-doctoral fellowship awarded by the American Foundation for Suicide Prevention.

The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Outstanding Questions

• Despite the encouraging findings, key questions remain as to exactly which components of interventions, in particular those delivered in clinical settings, are most effective when it comes to reducing suicide risk among young people.

• There is also a pressing need for large-scale high quality trials in clinical, educational and community settings. This includes in primary care, tertiary education and online settings, which are currently largely neglected.

• Questions also remain as to what interventions are most likely to be effective in sub-sections of the population, including among indigenous young people, those who live in low to middle income countries, and those who identify as same sex attracted and/or gender diverse.

Author Contributions

Jo Robinson obtained funds for the study. She oversaw the design and conduct of the review, including data extraction, analysis and interpretation. She wrote the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. Katrina Witt assisted with screening and data extraction, and was responsible for conducting and interpreting the meta-analysis together with Sarah Hetrick.

Nina Stefanac assisted with screening, data extraction and preparation of the manuscript.

Allison Milner assisted with screening and data extraction.

Dianne Currier assisted with screening and data extraction. Jane Pirkis provided methodological and conceptual advice. She also contributed to writing the manuscript.

Patrick Condon assisted with the development of the search strategy.

Sarah Hetrick assisted with the development of the search, assisted with screening and data extraction, was responsible for conducting and interpreting the meta-analysis together with Katrina Witt, and provided general oversight to the study.

References

[1] World Health Organization. Preventing suicide: a global imperative. Switzerland: World Health Organization; 2014.

[2] Hawton K, Zail D, Weatherall R. Suicide following deliberate self-harm: long-term follow-up of patients who presented to a general hospital. Br J Psychiatry 2003;182(6):537–42.

[3] Griffiths C, Kapur N, Turnbull P, et al. Epidemiology and trends in non-fatal self-harm in three centres in England, 2000–2012: findings from the Multicentre Study of Self-harm in England. BMJ Open 2016;6(4).

[4] Nock M, Green J, Hwang I, et al. Prevalence, correlates, and treatment of lifetime suicidal behavior among adolescents: results from the national comorbidity survey replication adolescent supplement. JAMA Psychi atr 2013;70(3):300–10.

[5] Hawton K, Harris L. Deliberate self-harm in young people: characteristics and subsequent mortality in a 20-year cohort of patients presenting to hospital. J Clin Psychology 2007;63:1574–83.

[6] Hunt IM, Kapur N, Webb R, et al. Suicide in recently discharged psychiatric patients: a case-control study. Psychol Med 2009;39(3):443–9.

[7] Commonwealth Government Department of Health and Aging. Living is for everyone (LIFE) framework. Canberra, Australia: Author; 2007.

[8] New Zealand Government. New Zealand suicide prevention action plan 2013–2016: New Zealand: Author; 2013.

[9] U.S. Department of Health and Human Services, National Strategy for Suicide Prevention: goals and objectives for action. Washington, D.C.: Office of the Surgeon General and National Action Alliance for Suicide Prevention; 2012.

[10] Patton GC, Sawyer SM, Santelli JS, et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 2016;387(10036):2423–78.

[11] National Mental Health Commission. The 2017 report on mental health and suicide prevention. Author: Sydney, Australia; 2017.

[12] Hawton K, Pirkis J. Suicide is a complex problem that requires a range of prevention initiatives and methods of evaluation. Br J Psychiatry 2017;210(6):381.

[13] Goldney R. Suicide prevention: a pragmatic review of recent studies. Crisis 2005;26:128–40.

[14] Calea A, Christensen H, Freeman A, et al. A systematic review of psychosocial suicide prevention interventions for youth. Eur Child Adolesc Psychiatry 2016;25:467–82.

[15] Robinson J, Cox G, Malone A, et al. A systematic review of school based interventions aimed at preventing, treating, and responding to, suicide-related behaviour in young people. Crisis 2012;28:1–19.

[16] Isaas M, Elias B, Katz L, et al. Gatekeeper training as a preventative intervention for suicide: a systematic review. Can J Psychiatr 2009;54(4):260–8.

[17] Mann J, Aptel A, Bertolote J, et al. Suicide prevention strategies: a systematic review. JAMA 2005;294:2064–74.

[18] Zalomon G, Hawton K, Wasserman D, et al. Suicide prevention strategies revisited: 10-year systematic review. Lancet Psychiatry 2017;3:646–59.

[19] Higgins J, Altman D, Sterne J. Assessing risk of bias in included studies. In: Higgins J, editor. Cochrane handbook for systematic reviews of interventions. The Cochrane Collaboration; 2011.

[20] Moher D, Liberati A, Tetzlaff J, Altman D. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med 2009;6(6).

[21] Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960;20:37–46.

[22] Mak H, Yau K, Chan B. Prevalence-adjusted bias-adjusted kappa values as additional indicators to measure observer agreement. Radiology 2004;232:302–3.

[23] Robinson J, Hetrick S, Martin C. Preventing suicide in young people: systematic review. Aust NZ J Psychiatr 2011;45(1):3–26.

[24] Hawton K, Witt KG, Taylor Salisbury TL, et al. Interventions for self-harm in children and adolescents. Cochrane Database Syst Rev 2015;12.

[25] Norwegian Knowledge Centre for the Health Services. Effective Practice and Organisation of Care (EPOC), EPOC Resources for review authors Oslo; 2015.

[26] Cochrane Effective Practice and Organisation of Care (EPOC). Suggested risk of bias criteria for EPOC reviews. http://epoc.cochrane.org/resources/epoc-resources-review-authors; 2017.

[27] Hawton K, Bergen H, Cooper J, et al. Suicide following self-harm: Findings from the Multicentre Study of self-harm in England, 2000–2012. J Affect Disord 2015;175:147–51.

[28] Rücker G, Cates CJ, Schwarzer G. Methods for including information from multi-arm trials in pairwise meta-analysis. Res Synth Methods 2017;8(4):392–403.

[29] Pace NL. Research methods for meta-analyses. Clinical Anaesthesiology 2011;25(4):523–33.

[30] Donders R, Laid N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(177–88).

[31] Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Comprehensive meta-analysis. 2.2.064 ed. Englewood, NJ: Biostat, Inc.; 2011.

[32] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J 2003;327:557–60.

[33] Miller A, Carter G, Pirkis J, Robinson J, Spittal M. Letters, green cards, telephone calls, and postcards: a systematic and meta-analytic review of brief contact interventions for reducing self-harm, suicide attempts, and suicide. Br J Psychiatry 2015;206:184–90.

[34] Feischmann A, Bertolote JM, Wasserman D, et al. Effectiveness of brief intervention and contact for suicide attempters: a randomized controlled trial in five countries. Bull World Health Organ 2008;86(9):763–9.
Huey Jr SJ, Henggeler SW, Rowland MD, et al. Multisystemic therapy effects on
Harrington R, Kerfoot M, Dyer E, et al. Randomized trial of a home-based family in-
Green JM, Wood AJ, Kerfoot MJ, et al. Group therapy for adolescents with repeated
Donaldson D, Spirito A, Esposito-Smythers C. Treatment for adolescents following a
Rossouw TI, Fonagy P. Mentalization-based treatment for self-harm in adolescents:
Slee N, Garnefski N, van der Leeden R, Arensman E, Spinhoven P. Cognitive-
King CA, Klaus N, Kramer A, Venkataraman S, Quinlan P, Gillespie B. The Youth-
Walrath C, Garraza LG, Reid H, Goldston DB, McKeon R. Impact of the Garrett Lee
Alavi A, Shari
d682.
rodoumedicines. Results of a randomised controlled trial. Br J Psychiatry 1999;
174:56–62.
Carter GL, Willocs CH, Lewis TJ, Conrad AM, Bendit N. Hunter DBT project: ran-
donaldson D,spirito a, esposito-smythers c. Treatment for adolescents following a
resulted in inpatient hospital treatment. J Am Acad Child Adolesc Psychiatry 2007;36(5):606–14.
Byford S, Harrington R, Torgerson D, et al. Cost-effectiveness analysis of a home-
based family work programme for children and adolescents who have deliberately
poisoned themselves. Results of a randomised controlled trial. Br J Psychiatry 1999;
195(2):113–20.
Esposito-Smythers C, Spirito A, Kahler CW, Hunt J, Monti P. Treatment of co-
occuring substance abuse and suicidality among adolescents: a randomized trial. J
Clin Consult Psychol 2011;79(6):678–39.
Green JM, Wood AJ, Kerfoot MJ, et al. Group therapy for adolescents with repeated
self-harm: randomised controlled trial with economic evaluation. BMJ 2011;342:
6628.
Harrington R, Kerfoot M, Dyer E, et al. Randomized trial of a home-based family in-
Hassanian-Moghadam H, Sarjami S, Kolahi AA, Carter GL. Postcards in Persia: ran-
domised controlled trial to reduce suicidal behaviours 12 months after hospital-treated self-poisoning. Br J Psychiatry 2011;188(4):309–16.
Ougrin D, Zundel T, Banarsee R, Bottle A, Taylor E. Trial of Therapeutic Assessment in
London: randomised controlled trial of Therapeutic Assessment versus standard psychosocial assessment in adolescents presenting with self-harm. Arch Dis Child 2011;96(2):148–53.
Robinson J, Yuen H, Gook S, et al. Can receipt of a regular postcard reduce suicide-
related behaviour in young help seekers? A randomized controlled trial. Early Interv Psychiatry 2012;6(2):145–52.
Spirito A, Boerger J, Donaldson B, Bishop D, Lewander W. An intervention trial to improve treatment adherence for adolescents who have attempted suicide after a suicide at-
tempt. J Am Acad Child Adolesc Psychiatry 2002;41(4):435–42.
Spirito A, Wolff JC, Seaboyer LM, et al. Concurrent treatment for adolescent and
parent depressed mood and suicidality: feasibility, acceptability, and preliminary findings. J Child Adolesc Psychopharmacol 2015;25(2):131–9.
Asarnow JR, Berk M, et al. An emergency department intervention for linking pediatric suicidal patients to follow-up mental health treatment. Psychiatr Serv 2011;62(11):1303–9.
Bertolote JM, Fleischmann A, De Leo D, et al. Repetition of suicide attempts: data from
emergency care settings in five culturally different low- and middle-income countries participating in the WHO SUPRE-MISS study. Crisis 2010;31(3):194–201.
Cotgrove A, Zirinsky L, Black D, Weston D. Secondary prevention of attempted sui-
cides in adolescents: a randomised controlled trial. J Child Adolesc Mental Health 2015;105(5):986–77.
Cortright P, Slutske WS, Caspi A, Mofenson L, et al. Suicide attempts among young adult women: a population-based birth cohort study. Am J Public Health 2008;98(11):2012–19.
Katz LY, Cox BJ, Gunasekara S, Miller AL. Feasibility of dialectical behavior therapy for
adolescents with previous suicidal attempts. J Child Adolesc Ment Health 2010;192(3):202–9.
Kempf A, Ghanizadeh A, Dehbozorgi G. Effectiveness of cognitive-
behavioral therapy in decreasing suicide ideation and helplessness of the adoles-
cents with previous suicidal attempts. Iran J Pediatr 2013;23(4):467–72.
Friedman DJ, Hwang IY, Madras BK, et al. Dialectical behavior therapy as an add-
onsential treatment for adolescent suicide attempters. J Am Acad Child Adolesc Psychiatry 2012;51(12)
31. Of these findings, the following are mentioned in the Suicidality and Mental Health Study: (1) the number of suicide attempts among males and females in the study, (2) the number of suicide attempts among adolescents and adults, and (3) the number of suicide attempts among people with previous suicide attempts. The study also assessed the impact of suicidal ideation and attempts on the participants' mental health. The study found that suicide attempts were more common among males than females, and more common among adolescents than adults. The study also found that suicide attempts were more common among people with previous suicide attempts.
Hetrick SE, Yuen HP, Bailey E, et al. Internet-based cognitive behavioural therapy.

Hill RM, Pettit JW. Pilot randomized controlled trial of LEAP: a selective preventive

Eggert LL, Thompson EA, Herting JR, Nicholas LJ. Reducing suicide potential among

Hazell P, Lewin T. An evaluation of postvention following adolescent suicide. Suic
d recreation and evaluation of a suicide prevention program. J Couns Psychol 1995;42

Egger L, Thompson EA, Herting JR, Nicholas LJ. Reducing suicide potential among

Hetrick S, Yuen HP, Cox G, et al. Does cognitive behavioural therapy have a role in

Hooven C, Walsh E, Pike KC, Herting JR. Promoting CARE: including parents in

Tang TC, Jou SH, Ko CH, Huang SY, Yen CF. Randomized study of school-based in-
tensive interpersonal psychotherapy for depressed adolescents with suicidal risk andparasuicide. Psychiatr Clin Neurosci 2009;63(4):463–70.

Schilling EA, Aseltine Jr RH, James A. The SOS Suicide Prevention Program: further evidence of efficacy and effectiveness. Prev Sci 2016;17(2):157–66.

Schilling EA, Lawless M, Buchanan L, Aseltine RH Jr. “Signs of Suicide” shows prom-

Wasserman D, Hooven CW, Wasserman C, et al. School-based suicide prevention programs: the SEYLE cluster-randomised, controlled trial. Lancet 2015;385(9977):1536–44.

King KA, Strunk CM, Sorter MT. Preliminary effectiveness of surviving the teens sui-
cide prevention and depression awareness programs on adolescents’ suicidality andsuicide ideation in a high school setting. Suicide Life Threat Behav 2011;41(9):981–86.

Veland Y, Whittle R, Garland A, Hicks R, Shaffer D. The impact of curriculum-based suicide prevention programs for teenagers: an 18-month follow-up. J Am Acad Child Adolesc Psychiatry 1991;30(5):811–8.

Hazel P, Lewin T. An evaluation of postvention following adolescent suicide. Suic
d Life Threat Behav 1993;23(2):101–9.

Biddle VS, Kern 3rd J, Brent DA, Thuerettle MA, Puskar KR, Sekula KL. Student assis-
tance program outcomes for students at risk for suicide. J Sch Nurs 2014;30(3):173–86.

Egger L, Thompson EA, Herting JR, Nicholas LJ. Reducing suicide potential among

Aseltine Jr RH, James A, Schilling EA, Glavney JS. Evaluating the SOS suicide preven-
tion program: a replication and extension. BMC Public Health 2007;7:161.

Silverstone PH, Bercov M, Suen VYM, et al. Initial findings from a novel school-

Bailey E, Spittal MJ, Pirks J, Gould M, Robinson J. Universal suicide prevention in

Zener 3rd FJ, Lazarus PJ. The decline of youth suicidal behavior in an urban, mul-
ticultural public school setting following the introduction of a suicide prevention and intervention program. Suicide Life Threat Behav 1995;25(2):276–96.

Aseltine Jr RH, James A, Schilling EA, Glavney JS. Evaluating the SOS suicide preven-
tion program: a replication and extension. BMC Public Health 2007;7:161.

Guille C, Zhao Z, Krystal J, Nichols B, Brady K, Sen S. Web-based cognitive behav-
ioral therapy intervention for the prevention of suicidal ideation in medical in-
terns: a randomized clinical trial. JAMA Psychiatry 2015;72(12):1192–8.

Kovac SH, Range LM. Does writing about suicidal thoughts and feelings reduce

Hacker K, Collins J, Gross-Young L, Almeida S, Burke N. Coping with youth suicide andoverdose: one community’s efforts to investigate, intervene, and prevent sui-
cide contagion. Crisis 2008;29(2):86–95.

Hill RM, Pettit JW. Pilot randomized controlled trial of LEAP: a selective preventive

Rohde P, Mowbray CT, Hinkin CH, Kupfer DJ. The prevention of suicide and drug use in homeless youth: Medically underserved populations. J Clin Child Adolesc Psychol 2010;39(4):663–72.

Visness CM, Pascoe C, Anthony T, et al. A randomized controlled trial of an internet-based prevention program for teenagers. Suicide Life Threat Behav 2005;35(2):225–35.

Robinson WL, Case MH, Whipple CR, et al. Culturally grounded stress reduction and
treatment and evaluation of a suicide prevention program. J Couns Psychol 1995;42

Lafromboise T, Howard-Pitney B. The Zuni Life Skills Development Curriculum: a
collaborative approach to curriculum development. Am Indian Alsk Native Ment Health Res Monogr 1994;9:98–121.

Lafortune T, Howard MA, Yuen HP, Bailey E, et al. The Zuni Life Skills Development Curriculum: de-
scription and evaluation of a suicide prevention program. J Couns Psychol 1995;42

Egger L, Thompson EA, Randell BP, Pike KC. Preliminary effects of brief school-
based prevention programs for reducing suicide-risk behaviors, depres-
sion, and drug involvement. J Child Adolesc Psychiatr Nurs 2002;15(2):48–64.

Hovden C, Walsh E, Pike KC, Herting JR. Promoting CARE: including parents in

Hetrick SE, Yuen HP, Bailey E, et al. The Zuni Life Skills Development Curriculum: de-
scription and evaluation of a suicide prevention program. J Couns Psychol 1995;42

Egger L, Thompson EA, Randell BP, Pike KC. Preliminary effects of brief school-
based prevention programs for reducing suicide-risk behaviors, depres-
sion, and drug involvement. J Child Adolesc Psychiatr Nurs 2002;15(2):48–64.
self-harm: a systematic review and meta-analysis. BMC Psychiatry 2017;17(1):297.

[156] Clifford AC, Doran CM, Tsey K. A systematic review of suicide prevention interventions targeting indigenous peoples in Australia, United States, Canada and New Zealand. BMC Public Health 2013;13(1):463.

[157] Turban JLED. Research review: gender identity in youth: treatment paradigms and controversies. J Child Psychol Psychiatry 2017. https://doi.org/10.1111/jcpp.12833 [Epub ahead of print].

[158] Silenzio VMB, Duberstein PR, Tang W, Lu N, Tu X, Homan CM. Connecting the invisible dots: reaching lesbian, gay, and bisexual adolescents and young adults at risk for suicide through online social networks. Soc Sci Med 2009;69(3):469–74.

[159] Wendt D, Shafer K. Gender and attitudes about mental health help seeking: results from National Data. Health Soc Work 2016;41(1) [e20–e8].

[160] Morgan C, Webb RT, Carr MJ, et al. Incidence, clinical management, and mortality risk following self-harm among children and adolescents: cohort study in primary care. BMJ 2017;359.

[161] Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010;340.

[162] Batterham P, Fitasou M, Pirkis J, et al. A systematic review and evaluation of measures for suicidal ideation and behaviors in population-based research. Psychol Assess 2015;27(2):501–12.

[163] Cottrell DJ, Wright-Hughes A, Collinson M, et al. Effectiveness of systemic family therapy versus treatment as usual for young people after self-harm: a pragmatic, phase 3, multicentre, randomised controlled trial. The Lancet Psychiatry 2018;5(3):203–16.

[164] McCauley E, Berk MS, Asarnow JR, et al. Efficacy of dialectical behavior therapy for adolescents at high risk for suicide: a randomized clinical trial. JAMA Psychiat 2018;75(8):777–85.