INTRODUCTION

Musculoskeletal disorders are a group of conditions that affect the motor system, including bones, muscles, tendons, ligaments and joints. People with multiple disorders are particularly vulnerable, especially in the context of an ageing population. Musculoskeletal disorders include a variety of conditions such as osteoarthritis (OA), rheumatoid arthritis (RA), osteopenia, osteoporosis, fractures, sarcopenia, etc. Non-protein-coding RNA makes up 98% of the whole human genome. These functional RNAs can be divided into two groups according to the threshold of 200 nucleotides (NTS): small and long non-coding RNAs (lncRNAs). LncRNAs regulate the activities of both nearby and distant genes by multiple mechanisms. It could act as a scaffold for transcription factors and other molecules involved in transcription initiation. Moreover, it could serve as protein and microRNA decoys to interfere with cell division by regulating a series of key genes. For those mainly located in the cytoplasm, it could directly target mRNA and induce translation. Currently, an increased number of lncRNAs are found to be involved in the regulation of development and homeostasis of skeletal muscle system. It is notable that lncRNAs take key roles in musculoskeletal disorders.
In this review, we summarized the functions and mechanisms of lncRNAs involved in the occurrence and progression of musculoskeletal disorders. Meanwhile, the potential of lncRNAs as promising targets for musculoskeletal disorders was also highlighted. An in-depth study of the pathological process, molecular regulatory mechanisms, cytokines and therapeutic targets of musculoskeletal disorders would greatly benefit patients before they progress to the end stage of the disease. We hope that this review will provide insight into the potential of lncRNAs as biomarkers and therapeutic targets for musculoskeletal disorders.

2 | LncRNAs and Osteoarthritis

2.1 | Introduction of OA

OA, one of the most common musculoskeletal disorders, has been rising since the mid-20th century. It usually begins with age-related degeneration of the articular cartilage surface, and its main pathological feature is cartilage destruction. At the joint level, pathogenic factors include joint injury, joint dislocation, abnormal joint loading and other factors. It is well known that extracellular matrix (ECM) destruction, inflammatory response and synovitis, cell proliferation, cell death (including apoptosis and autophagy) and angiogenesis are closely related to the pathological process of OA.

As early as in 2014, Xing et al reported the differentially expressed lncRNAs (73 up and 48 down) in OA cartilage compared with normal cartilage through microarray analysis. Mounting studies have shifted from merely concentrating on the fate of articular cartilage to evaluating how the intra-articular microenvironment influences the occurrence and progression of OA. Detailed pathological process of OA is described in Figure 1. LncRNAs related to OA that have appeared in other literatures will not be introduced in detail in this review. Together with the lncRNAs presented in this review, they are summarized in Table 1. This review mainly focuses on recent studies of lncRNAs.

2.2 | Role of lncRNAs in ECM degradation in OA

Articular cartilage is a type of connective tissue made up of chondrocytes. But, interestingly, chondrocytes make up only 1% of normal cartilage volume. The auto-synthetic ECM blocks the chondrocytes. Nonetheless, they provide mechanical support for the cartilage and lubrication of the joint. It is also responsible for the composition and integrity of the matrix. In OA chondrocytes, matrix metalloproteinases (MMPs) (including MMP-1 and MMP-13), metalloproteinase with a thrombospondin type 1 motif (ADAMTS) (including ADAMTS 1, 4, 5) and various types of disintegrin have been found to significantly increase the expression of matrix degrading proteins.

In addition, fibroblast-like synoviocytes (FLSs) has been reported to overexpress several enzymes (such as MMP-13) that degrade ECM. Due to the unique composition of cartilage, ECM degradation is the most popular mechanism of OA associated with lncRNA. Recent studies have shown that lncRNA XIST (long non-coding RNA X-inactive-specific transcript) can be regarded as a star lncRNA. XIST was revealed to be upregulated in OA specimens and articular chondrocytes derived from OA tissue and IL-1β-treated articular chondrocytes (ACs). Downregulation of XIST suppresses the degradation of the ECM by binding a competing endogenous RNA (ceRNA) of miR-1277-5p. LncRNA XIST is mainly localized in the nucleus and could bind to the promoter of tissue inhibitor of metalloproteinase-3 (TIMP-3). Silencing of XIST reduced the methylation level of TIMP-3 promoter and increased TIMP-3 expression, thereby inhibited collagen degradation in OA chondrocytes. It can rapidly recruit and maintain DNA methyltransferase DNMT1, induce the number of new methyltransferases DNMT3A and DNMT3B and down-regulate the expression of TIMP-3. XIST could block the further collection and binding of the promoter region of TIMP-3 and improve the methylation rate of its CpG island.

LINC00671 induces ubiquitination of GSK-3β, an important regulator of MMP-mediated joint destruction, and enhances β-catenin expression through Smurf2. Mechanically, its inhibition may enhance endochondral ossification and mitochondrial oxidative stress, increase cell death and β-catenin expression and ultimately lead to...
LncRNAs	Expression	Targets	Study models	Cellular process	Reference
XIST	Up	miR-1277-5p, MMP-13/ADAMTS-5	Human primary chondrocytes and rat cartilage	ECM degradation (+)	27
XIST	Up	TIMP-3	Human primary chondrocytes	Collagen degradation (+)	28
LINC00671	Up	ONECUT2/Smurf2	Human primary chondrocytes and mice cartilage tissue	Cell proliferation (-), cell apoptosis and ECM degradation (+)	29
FGDS-AS1	Down	miR-302d-3p/TGFBR2	Human cartilage tissue and human chondrocytes cell line(C20/A4)	Cell viability (+), apoptosis, and ECM degradation (-)	30
MALAT1	Up	PGE2/OPG	Human primary OA osteoblasts and serum	Inflammation (+)	37
OIP-AS1	Down	miR-29b-3p/PGRN	Human cartilage tissue, CHON-001(human chondrocyte cell line) and ATDC5(mouse chondrocyte cell line) and HEK293(human embryonic kidney cell line)	Proliferation and migration (+); apoptosis and inflammation (-)	38
SNHG7	Down	miR-214-5p; PPARγ1	Human and mice primary chondrocytes	NLRP3 inflammasome and apoptosis (-)	39
IGHCG1	Up	miR-6891-3p/TGFBR2	Human primary OA osteoblasts and serum	Inflammatory response (+)	40
LOC101928134	Up	IFNA1; JAK/STAT signaling	Human primary chondrocytes	Proliferation and inflammation (+)	41
LOXL1-AS1	Up	miR-423-5p/KDM5C; JUND1	Human primary chondrocytes	Proliferation and inflammation (+) and chondrocytes apoptosis (+)	42
ciRS-1	Down	miR-7	Human peripheral blood and monocytes, C28/12 chondrocytes cell line	Apoptosis and inflammation (-)	53
MEG3	Down	miR-16/SMAD7	Rat primary chondrocytes, cartilage tissue and HEK 293T cell line	Proliferation (-) and apoptosis (+)	54
XIST	Up	miR-376c-5p/OPN	Human primary chondrocytes and THP-1 cell line	Inflammatory microenvironment and apoptosis (+)	55
XIST	Up	miR-149-5p/DNMT3A	Human and rat cartilage tissue, human chondrocyte cell line (CHON-001)	Cell viability (-), apoptosis and ECM degradation (+)	57
XIST	Up	miR-142-5p/SGTB	Human chondrocytes cell line (SW1353) and HEK 293T cell line	Proliferation (-) and apoptosis (+)	58
KLF-AS1	Up	-	Human MSC (exosomes) and rat primary chondrocytes and cartilage tissue	Proliferation (+) and apoptosis (-)	59
KLF-AS1	Up	miR-206/GIT1	Human MSC (exosomes) and rat primary chondrocytes	Proliferation (+) and apoptosis (-)	60
H19	Down	miR-106b-5p/TIMP2	Human cartilage tissue; rat primary chondrocytes and FLS	Chondrocyte proliferation and migration (+); matrix degradation (-)	61
GACAT3	Up	IL-6/STAT3	Human synoviocytes	Proliferation (+) and apoptosis (-)	62
ANRIL	Up	miR-122-5p/DUSP4	Human cartilage tissue and human synoviocytes	Proliferation (+) and apoptosis (-)	63
LINCO0511	Up	miR-150-5p/SP1	The mouse chondrocytic cell line (ATDC5)	Proliferation (-), apoptosis (+) and ECM synthesis of chondrocyte (+)	64

(Continues)
Defects of the TGF-β signalling pathway may make cartilage more susceptible to damage. The typical TGF-β signalling pathway is activated by three TGF-β subtypes, including type II serine/threonine kinase receptors (TGFBR2). FGD5-AS1 protected chondrocytes from damage caused by inflammation and reduced ECM degradation through miR-302D-3p/TGFβR2 axis.

2.3 Role of lncRNAs in Inflammation and synovitis in OA

Inflammatory manifestations of OA are usually confined to adjacent areas of pathologically damaged cartilage and bone. Chondrocytes treated with IL-1β are commonly used to simulate OA chondrocytes, demonstrated suppressed proliferation, increased apoptotic rates and differential expression of type II collagen alpha 1 (COL2A1) and MMP-13. Synovial inflammation is caused by a large number of soluble inflammatory mediators, including IL-1β and tumour necrosis factor-α (TNF-α), two major cytokines involved in the pathogenesis of OA. Supporting these conclusions, multiple pro-inflammatory cytokines have been detected at higher levels in serum and synovial fluid in OA patients than in those of healthy individuals. Importantly, the effects of related cytokines on cartilage and bone tissue demonstrated in vitro were similar to the structural changes observed in OA joints in vivo.

In OA subchondral bone, MALAT1 has been proved to be highly expressed. Human OA osteoblasts induced expression of MALAT1 and regulate PGE2 production under inflammatory stimulation. PGE2 secretion is significant in OA osteoblasts that are MALAT1-depleted and IL-1β-induced inflammation. PGE2 sensitises nociceptors through class E prostaglandin receptors (EP2 and EP4). This may cooperate with IL-1β to induce the expression of IL-6 and iNOS. In addition, MALAT1 may be closely related to inflammatory pain in OA. Zhi et al suggested that that the expression of miR-29b-3p was decreased and the expression of PGRN was significantly increased in OA model, because miR-29b-3p might bind to the 3′-UTR of PGRN. In addition, after the elimination of lncRNA OIP5-AS1, the expression of PGRN in OA model was decreased. MIr-214-5p is overexpressed in patients with OA, and it enhances IL-1β-induced chondrocyte inflammation. However, SNHG7 attenuated the release of NLRP3 inflammasomes and apoptosis of chondrocytes. The possible mechanism is that SNHG7 sponges miR-214-5p, which targets the 3′ untranslated region (UTR) of PPAR gamma-coactivator-1 beta (PGC-1β). In OA, LncRNA IGHCγ1 was upregulated and was mainly localized in macrophage cytoplasm. LncRNA IGHCγ1 promotes the expression of TLR4 (Toll-like receptor 4) by acting as a ceRNA of miR-6891-3p through NF-κB signalling in macrophages. Meanwhile, by targeting TLR4, mir-6891-3p inhibited the inflammatory response of macrophages, and the proliferation and migration of macrophages. According to the database, LOC101928134 is located in the region of chromosome 15q13.3. One of the interferons (IFN) was also identified at 15q13.3. IFN are a class of glycoproteins commonly known as cytokines produced by immune cells. Downregulation of...
LOC101928134 can reduce knee synovitis, inflammation and knee cartilage injury in OA rats by regulating the expression of IFNA1 and restraining the JAK/STAT (Janus kinase/signal transducers and activators of transcription) signalling pathway.41

2.4 | Role of lncRNAs in cell death and proliferation in OA

Unregulated apoptosis, autophagy and cell necrosis constitute the injuries of chondrocyte.42,43 The ratio, HIF-1α/HIF-2α, is the main regulator of chondrocyte survival and death, and it alters the balance of apoptosis or autophagy. Moreover, death of chondrocytes showed a periodic pattern under the influence of Fas, SNPs, pro-inflammatory cytokines and mechanical constraints, involving mitochondrial dysfunction, ROS production, p38 activation and Bcl-2/Bax ratio.44 Several autophagy and mitophagy-related proteins (such as LC3B, SQSTM1 and PINK1) have been found to be highly expressed in human OA cartilage and monosodium iodoacetate (MIA)-induced rodent models of OA.45 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself. Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.

Although chondrocytes proliferation is associated with natural regeneration, it may also lead to pathological processes.46 Chondrocytes proliferate actively, causing some of them to grow and others to undergo hypertrophic changes to become hypertrophic chondrocytes.47 On the molecular level, chondrocyte hypertrophy differentiation may also be characterized via high expression of collagen type X, MMP13 and Runx-associated transcription factor 2 (Runx2).48 Hyaline cartilage markers are decreased in the hypertrophic chondrocytes.49 Among the mechanisms of chondrocyte injury, apoptosis and autophagy are the main research focuses to study the pathogenesis of OA and identify potential therapeutic targets, because these processes are mainly regulated by the cell itself.
LncRNAs	Expression	Targets	Study models	Cellular process	References
H19	Up	TAK1; NF-κB and JNK/p38	Human synovial cell line (MH7A)	Release of inflammatory cytokines (+)	76
HOTTIP	Up	Dnmt3b/SFRP1	Human primary RASFs and OASFs; Rat synovial tissue	Proliferation, invasion, and migration (+); apoptosis (-); inflammation (+)	77
MEG3	Down	miR-141; AKT/mTOR	Rat primary chondrocytes and cartilage tissue	Proliferation (+) and inflammation (-)	78
MALAT1	Down	CTNB1	Human primary FLS	Proliferation and inflammation (-)	79
NEAT1	Up	miR-23a/MDM2/SIRT6	Human PBMCs (exosomes), mice primary FLSs and synovial tissue	Proliferation and inflammation (-)	80
NEAT1	Up	miR-410-3p/YY1	Human synovial tissue, hFLS and hFLS-RA cell lines	Migration, invasion, and inflammatory cytokines secretion (+)	81
NEAT1	Up	miR-129/miR-204; MAPK/ERK	Human and rat synovial tissue, human peripheral blood and rat primary FLSs	Proliferation of FLSs, and synovitis (+)	82
NEAT1	Up	miR-204-5p/NF-κB	Human FLS cell line and human synovial tissue	Proliferation and inflammatory cytokine production (+)	83
SNHG1	Up	PTBP1	Human primary FLSs	Proliferation, migration and invasion (+)	84
ZFAS1	Up	miR-296-5p; MMP-15	Human synoviocyte MH7A cell line; Mice synovial tissue and blood	Proliferation (-) and apoptosis (+)	85
PINT	Down	miR-155-5p/SOCS1; ERK	Human primary FLSs	Proliferation and invasion (-)	86

Abbreviations: TAK1, transforming growth factor beta-activated kinase 1; Dnmt3b, DNA methyltransferase 3b; SFRP1, secreted frizzled-related protein 1; RA/OASF, RA/OA synovial fibroblasts; mTOR, mechanistic target of rapamycin; CTNB1, β-catenin; MDM2, mouse double minute 2; SIRT6, Sirtuin 6; YY1, the transcription factor Yin Yang 1; PTBP1, polypyrimidine tract binding protein 1; MMP15, matrix metalloproteinase 15; PINT, premature Infants in Need of Transfusion; SOCS1, suppressor of cytokine signalling 1; ERK, extracellular regulated protein kinases.
and OPN competed for the binding of miR-181c. Subsequently, the inhibitory effect of miR-181c on synovial cell proliferation and related factors inhibited by NEAT1 knockdown could be partially reversed.

In a novel study, researchers characterized the IncRNA expression profiles in human hyaline chondrocyte dedifferentiation, thereby identifying new potential mechanisms of chondrocyte dedifferentiation. It was found that AP001505.9 overexpression inhibited the dedifferentiation of chondrocytes. This discovery paves the way for further investigation into the mechanisms of dedifferentiation and OA treatment.

2.5 | Role of IncRNAs in angiogenesis in OA

The first step in ossification is vascular invasion, usually in non-vascular cartilage. The vascular system provides channels for different types of cells to participate in the recruitment of cartilage absorption and bone deposition. VEGF is involved in vascular invasion of growth plate cartilage, hypertrophic cartilage remodelling and ossification of growth plate cartilage. In the process of the development of OA, the level of MEG3 is negatively correlated with the level of VEGF, suggesting that MEG3 may regulate angiogenesis. Currently, the importance of angiogenesis in the aetiology of OA has been demonstrated. It has been revealed that inhibition of angiogenesis may be a potential therapeutic target for OA by reducing OA-related pain and inflammation.

3 | LncRNAs and Osteoporosis (RA)

RA is a chronic systemic autoimmune disease of unknown aetiology. The typical clinical features of RA are symmetric peripheral arthritis and progressive erosion of the affected joints. If left untreated, the disease presents as persistent synovitis and erosion of articular cartilage and surrounding bone. It is worth noting that RA-FLSs are critical to synovial aggression and joint destruction. And it may play a vital role in the occurrence and development of the disease. Through studies of human specimens, IncRNAs might be involved in the molecular pathophysiology of RA. In another RA study, analysis of exosomal IncRNAs identified several differentially expressed IncRNAs, including MALAT1, HOTAIR, MEG9, SNHG1, SNHG4, HOTAIR, TUG1 and NEAT1. Some IncRNAs have been identified by recognizing inflammatory pathways in RA, such as p38 MAPK, TLR and NF-κB signalling pathways.

H19 activates JNK/p38 MAPK and NF-κB pathways by promoting TAK1 phosphorylation. And H19 knockdown obviously lowered the levels of IL-8, IL-1β and IL-6, which was consistent with the above outcomes. The anti-inflammatory ability of HOTTIP silencing is via the demethylation of the SFRP1 promoter in RA synovial fibroblasts (RASFs). By changing HOTTIP/Dnmt3b/SFRP1 expression in RASFs, the regulatory mechanism was explored. It was noted that HOTTIP SFRP1 can be induced by promoter methylation, Dnmt3b recruitment and activation of the Wnt-signalling pathway. The role of MEG3 in RA may be related to the regulation of miR-141 and Akt/mTOR signalling pathways by increasing the proliferation rate.

Li et al uncovered that MALAT1 binds to the CTNNB1 promoter and modulates DNA methylation to inhibit β-catenin and Wnt-signalling pathway. MALAT1 from exosomes has also been shown to regulate RASF proliferation and inflammatory response by increasing the secretion of TNFα, IL-6 and IL-10. Researchers have studied the mechanism of NEAT1 in RA development and found it acted by modulating the miR-23a/MDM2 (murine double minute 2)/SIRT6 axis through PBMC-exos (peripheral blood mononuclear cell-derived exosomes). During the pathogenesis of RA, SIRT6 is degraded by ubiquitination of MDM2. LncRNA NEAT1 promotes FLS proliferation and inflammatory response by regulating the MDM2/SIRT6 axis through PBMC-derived exos. Furthermore, in vivo experiments have shown that downregulation of IncRNA NEAT1 or upregulation of miR-23a via PBMC-derived outer membrane transportation can alleviate the deterioration of RA in mice.

In addition to the pro-proliferative and anti-apoptotic roles of exosomal NEAT1, the upregulation of NEAT1 promotes migration, invasion and inflammatory cytokine secretion in RA-FLSs. By reducing FLS synovitis in RA, silencing of NEAT1 can promote miR-129 and miR-204 to repress the ERK/MAPK signalling pathway. At the same time, it can also target miR-204-5p through the NF-κB pathway to attenuate TNFα-induced FLS proliferation and production of inflammatory cytokines, while promoting apoptosis. In RA-FLS, SNHG1 helps maintain cell proliferation, migration and invasion functions. Furthermore, the modulation mechanism depends on the interaction between the SNHG1 and polypyridine binding protein 1 (PTBP1). ZFAS1 is involved in the progression of RA by competitively binding miR-296-5p and regulating the expression of MMP-15. Lnc-PINT inhibits TNF-α-induced cell proliferation and invasion. This may be caused by downregulation of miR-155-5p, modifying the expression of SOCS1, IL-1β and MMPs, as well as the inactivation of ERK signalling pathway.

Based on existing literatures, several non-coding RNAs have been shown to be dysregulated in different samples from RA patients, but the dysregulated RNAs in serum are the most suitable biomarkers for use. The IncRNAs discussed in this section are summarized in Table 2, and the IncRNAs that appear in these reviews are excluded, such as PISCAR, LERFS and NTT.

4 | LncRNAs and Osteoporosis

Osteoporosis results from the disruption of the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Osteoporosis is a chronic systemic bone disorder characterized by loss of bone mass, microstructural destruction and increased fragility. One investigation found that more than one third of women over 50 years of age have osteoporosis, while only one fifth of men have osteoporosis, indicating that women are at higher risk...
of osteoporosis than men. Before the age of 30, the process of bone loss begins. And it continues until death as a by-product of ageing. Release of inflammatory factors such as TNF and IL-6 by senescence cells, as well as changes in the composition of bone marrow cells (osteoclast precursors, monocytes and granulocytosis), contributes to osteoporosis in the elderly.\(^9\)

4.1 | The role of LncRNAs in osteogenesis

Through competing endogenous RNA networks, we have identified functional lncRNAs in osteoblastic differentiation.\(^9\) Non-coding RNAs may serve as regulators of bone marrow stem cells (BMSCs) in osteoporosis.\(^9\) The differentiation from MSCs to osteoblasts is a precise process regulated by multiple signalling pathways.\(^96\) Many studies have shown that the expression profile of lncRNA changes dynamically during osteogenic differentiation.

BMSCs are the main source of osteoblasts, which are widely used in bone remodelling and bone regeneration. Osteogenic differentiation of BMSCs is synergistically promoted by H19 and FoxC2 through the Wnt-β-catenin pathway.\(^99\) Researchers confirmed that supplementing aged BMSCs with Inc-PMIF knockdown mediated by small interfering RNA (siRNA) can promote bone formation in aged mice. Mechanistically, LNC-PMIF can bind human antigen R (HuR) to block the interaction of HuR-β-actin mRNA, thereby inhibiting the expression of β-actin and inhibiting the migration of OPGs (osteoprogenitor cells) in the elderly.\(^100\) LncRNA NKILA plays an important positive regulatory role in the process of osteogenesis of MSCs, and its knockdown significantly inhibited the osteogenesis of menstrual blood-derived mesenchymal stem cells (MENSsCs) and umbilical cord mesenchymal stem cells (UCMSCs).\(^101\) HOTAIR is an essential regulator of BMP9-induced osteogenesis of MSCs in the murine family, acting by targeting cell cycle and proliferation.\(^102\) Through FBXO25/H2BK120ub H3K4me3/OSX axis, ODIR1 plays a negative regulatory role in the osteogenic differentiation of hUC-MSCs.\(^103\) Intravenous administration of shHOXC-AS3 has been shown to be effective in preventing bone loss through its anabolic activity and bone formation in a mouse model. This result suggests that IncHOXC-AS3 promotes bone formation by BMSCs by enhancing HOXC10 expression.\(^104\) Another study presented a new mutual effect between STAT3 and LINCO2349. Furthermore, LINCO2349 acts as a spongy RNA for mir-33b-5p and miR-25-3p, regulating Smad5 and Wnt10b. Thus, the osteogenic differentiation of hUC-MSCs can be regulated.\(^105\) LncRNA ENST00000563492 promotes the osteogenic differentiation of BMSCs by upregulating the expression of CDH11. During this process, the expression of VEGF improves the coupling process of osteogenesis and angiogenesis.\(^106\) Studies have revealed that MIR22HG expression is significantly reduced in BMSCs of osteoporotic mice and upregulated in hBMSCs during osteogenic differentiation.\(^107\) In addition, a considerable quantity of literatures have described MSCs have the abilities not only in osteogenic differentiation, but also in adipogenic, myogenic and chondrogenic differentiation.

The basic pathogenesis of postmenopausal osteoporosis (PMOP) is excessive bone resorption and insufficient bone formation due to osteoestrogen deficiency.\(^108\) Here, we summarized the following related studies on PMOP and lncRNAs. In the model of PMOP, BMSCs show a loss of viability and pluripotency. Downregulation of LNC_000052 promoted proliferation, migration and osteogenesis of BMSCs and inhibited apoptosis via miR-96-5p/PIK3R1 axis.\(^109\) Studies have shown that iron accumulation (IA) is closely related to PMOP. Consistent with the performance of inhibiting XIST, in the IA model, miR-758-3p mimic reduced caspase 3 activation, osteoblast apoptosis and oestrogen deficiency.\(^110\) LncRNA ENST00000563492 promotes the osteogenic differentiation of human adipose-derived stem cells (hASCs) through crosstalk of Hedgehog and Wnt pathways. It was found that 323 IncRNAs were expressed differentially during osteogenesis and during NELL-1-induced osteogenesis.\(^111\)

4.2 | The role of LncRNAs in osteoclastogenesis

Osteoclasts are multinucleated cells that originate from monocyte/macrophage precursor cells and are responsible for bone resorption.\(^112\) The regulatory roles of lncRNAs in osteoclasts have been less studied than those in osteoblasts. The first study that systematically analysed the expression profile of lncRNAs at different stages of osteoclastogenesis was conducted by Dou et al in 2016.\(^113\) Data from previous studies confirmed a new signalling cascade in disuse osteoporosis (DOP): mechanical unloading causes the upregulation of DNMT1 and methylation of the H19 promoter, and ultimately leads to downregulation of H19 and inhibition of ERK signalling.\(^114\) Overexpression of PGC1β-OT1 (peroxisome proliferator-activated receptor γ coactivator-1β-OT1) in progenitor cells stimulates osteogenic differentiation. However, silencing of PGC1β-OT1 inhibits mice osteogenic differentiation.\(^115\) PGC1β-OT1 enhances the effect of KDM6B by antagonizing miR-148a-3p and reversely regulates osteogenic differentiation.\(^116\) Researchers have exploited the exosomal location of IncRNA-MALAT1 in endothelial progenitor cells (EPCs) to promote the osteoclastic differentiation
TABLE 3 Summary of the roles of lncRNAs in Osteoporosis

LncRNAs	Expression	Targets	Study models	Cellular process	Reference
H19	Down	Foxc2; Wnt-β-catenin	Human serum and mice BMSCs	BMSCs osteogenic differentiation (+)	99
PMIF	Up	HuR; β-actin	Mice bone, BMSCs and OPCs, MC3T3-E1 clone 14 cell line, hFOB1.19 cell line	Aged OPCs migrating to bone formation surface (+), bone formation (-)	100
NIKILA	Up	RXFP1/PI3K-AKT and NF-κB/RUNX2	Human MenSCs and UCMSCs	Osteogenesis of MSCs (+)	101
mHOTAIR	–	–	Nude mouse bone, iMAD-SCs, HEK-293 and 293Pf cell lines	MSC osteogenesis (+)	102
ODIR1	Down	FBXO25/H2B-K120ub/H3K4me3/OSX	hUC-MSCs line (QC1205); HEK293 and 293T cell lines; nude mouse skin	Osteogenic differentiation (-)	103
HOXC-AS3	Up	HOXC10	Human myeloma cell line (U266); Human MM-MSCs; NSG mice	Osteogenesis of MM-MSCs (-)	104
Linc02349	Up	miR-25-3p/miR-33b-5p/SMAD5/Wnt10b; Dkk5/OSX; STAT3	hUC-MSCs line (QC1205); HEK293 and 293T cell lines	Osteogenic differentiation (+)	105
ENST0000563492	Down	miR-205-5p/CDH11/VEGF	Human bone tissue, hBMSCs and HUVEC	Osteogenic differentiation of BMSCs (+)	106
MIR22HG	Down	PTEN/AKT	hBMSCs and HASCs, RAW264.7 cell line and OVX mice bone	Osteogenic differentiation of human BMSCs (+) and osteoclastogenesis of RAW264.7 cells (+)	107
LNC_000052	Down	miR-96-5p/PIK3R1	Rat BMSCs and OVX rat bone	BMSC proliferation, migration, osteogenesis (+) and apoptosis (-)	109
XIST	Down	miR-758-3p/caspase 3	IA mice plasma and bone; human osteoblasts (hFOB1.19 cell line)	Osteoblast apoptosis (+)	110
H19	Down	miR-532-3p/SIRT1	PMOP human bone and serum; OVX rat femur; hBMSCs	Estrogen-regulated osteogenic differentiation in BMSCs (-)	111
HOTAIR	Down	miR-138/TIMP1	PMOP human bone tissue; HFOB and MG63 cell lines	Estrogen-regulated apoptosis of osteoblasts (-)	113
H19	Down	DNMT1; MAPK/ERK	Rat bone tissue; rat osteoblast cell line (UMR-106); HEK293T cell line	The development of DOP in HLU rats (-)	117
PGC1α-OT1	–	miR-148a-3p/KDM6B	ST2, C3H10T1/2, and MC3T3-E1 cells; mice MSCs and bone	Adipogenic (+) and osteogenic (+) differentiation	118
MALAT1	Up	miR-124/ITGB1	Mice EPCs (exosomes), primary BMMS and mouse bone tissue	Bone repair by enhancing recruitment and differentiation of osteoclast precursors (+)	119
MALAT1	Up	miR-34c/SATB2	hBMSCs (exosomes); human osteoblasts (hFOB1.19) and OVX mice bone tissue	Osteoblast activity (+)	120
NEAT1	–	miR-7/PTK2	293T cell lines, BMMS and mice bone and serum	Osteoclastogenesis (+) and bone mass (-)	121
CCAT1	Up	miR-34a-5p; SMURF2	OVX rats bone tissue and serum and rat primary osteoblasts	Osteoblasts proliferation and differentiation (-)	122

Abbreviations: BMSCs, bone marrow derived macrophages; BMSC, marrow mesenchymal stem cell; CCAT1, colon cancer-associated transcript 1; CDH11, cadherin-11; DLX5, Distal-Hess homeobox 5; DNMT1, DNA methyltransferase 1; DOP, disuse osteoporosis; EPCs, epithelial cells; ERK, extracellular signal-regulated kinase; FBXO25, F-box protein 25; Fox2, Forkhead box protein C2; h and mMSCs, human and mouse MSCs; H2BK120Ub, mono-ubiquitination of histone H2B on lysine 120; H3K4me, Methylation of histone H3 lysine 4; hASCs, human adipose-derived stem cells; HLU, hindlimb unloading; hUC-MSCs, human umbilical cord-derived mesenchymal stem cells; HUVECs, Human umbilical vein endothelial cells; IMADs, immortalized mouse adipose-derived cells; ITGB1, integrin beta1; KDM6B, Lysine-specific demethylase 6B; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; MenSCs, menstrual blood-derived mesenchymal stem cells; mHOTAIR, murine HOX transcript antisense RNA; MM-MSCs, Bone marrow mesenchymal stem cells of multiple myeloma patients; NEAT1, nuclear-enriched abundant transcript 1; NSG mice, NOD-Prkdcscid Il2rgtm1/Bcgen mice; OSX, osterix; OVX, ovariectomized; PGC1α-OT1, peroxisome proliferator-activated receptor γ coactivator-1α-OT1; PI3K, phosphatidylinositol 3-kinase; PI3KR1, phosphoinositide-3-kinase regulatory subunit alpha; PTEN, phosphatase and tensin homolog deleted on chromosome 10; PTK2, protein tyrosine kinase 2; RUNX2, Runt-associated transcription factor 2; RXFP1, relaxin family peptide receptor 1; SATB2, Special AT-rich sequence binding protein 2; SMURF2, smad ubiquitination regulatory factor 2; UCMSCs, umbilical cord mesenchymal stem cells; VEGF, vascular endothelial-derived growth factor.
of bone marrow-derived macrophages (BMMs). Mice treated with BMMs plus EPC-derived exosomes showed increased neovascularization at the fracture site and enhanced fracture healing compared to mice treated with BMMs alone. Similar to osteoblast, osteoclast activity was enhanced by BMSCs-derived exosome. MALAT1 from BMSCs-derived exosomes may be used as a miR-34c sponge to upregulate the expression of SATB2, contributing to the enhancement of osteogenic activity and the alleviation of osteoporosis symptoms in mouse models. Studies in vivo and in vitro have shown that the expression of NEAT1 is closely related to the formation of osteoclasts. Mechanically, NEAT1 competitively binds to miR-34a-5p. Inhibitory CCAT1 improved the pathological state of osteoporotic rats in vivo and restricted the osteocyte apoptosis of bone tissue in vivo. Table 3 summarizes the lncRNAs introduced in this section. And it is excluded repeated parts of previous reports, such as DANCR, ORLNC1 and XIST. Researchers have systematically summarized these lncRNAs.

5 | LncRNAs and Gout Arthritis (GA)

GA, the most common form of inflammatory arthritis, is caused by deposits of monosodium urate monohydrate (MSU) crystals in and around the joints. Elevated serum uric acid levels are considered to be an important risk factor for GA. It is well established that MSU causes inflammation in the pathological process of gout, and we are accustomed to refer to it as the key regulator of bone erosion in gout. Previous studies have identified several risk genes (SLC2A9, ABCG2 and URAT1) that are associated with elevated serum uric acid concentrations, thereby increasing the risk of developing GA. Significant changes in lncRNA H19 and ANRIL levels have been reported in patients with hyperuricemia and chronic kidney disease at high concentrations of uric acid. Liu et al found that H19 played a promoting role in renal tubular epithelial cell damage induced by CaOX nephrocalcinosis and kidney CaOX crystal deposition induced by glyoxylic acid. As a ceRNA, H19 acts through sponge-mediated targeting of miR-216b and through the HMGBl/TLR4/NF-κB pathway. It was found that ANRIL promoted NLRP3 inflammasome activation via the miR-122-5p/BRCC3 axis in uric acid nephropathy (UAN). In gouty arthritis monocytes, knockdown of HOTAIR significantly increased the expression of miR-20b in the THP-1 cell line stimulated by MSU and decreased the secretion of IL-1β, NLRP3 and TNF-α. LncRNA-Jak3-knockdown eliminated the formation of mature osteoclasts induced by MSU. Level of Jak3 in the monocytes of patients with gout is elevated. The activation of Nfatc1 mediated by LncRNA-Jak3 upregulates the expression of cathepsin K (Ctsk). LncRNA-Jak3 knockdown ablated the formation of mature osteoclasts induced by MSU.

6 | LncRNAs and Kashin-Beck Disease (KBD)

KBD is an endemic, teratogenic osteochondropathy. Pathological features include degeneration and necrosis of articular cartilage and growth plates. The aetiology of KBD is linked to environmental factors, and hereditary factors are also thought to be involved. Recent transcriptional analysis of mRNAs, miRNAs and lncRNAs, combined with proteomic data from patients with KBD and Keshan disease, has revealed novel cellular pathways that may be related to selenium-related regulation of transcription.

A rat model of KBD was established by using T-2 toxin. The selenium level of serum, IL-1β and TNF-α levels, and MIAT and phosphorylated p65 (p-p65) expression levels were all increased in each intervention group. After isolating primary epiphyseal chondrocytes, the researchers found that selenium treatment reversed T-2 toxin-induced chondrocyte damage. In general, overexpression of MIAT or T-2 toxin treatment can lead to inflammatory response, apoptosis and death. The activation of NF-κB/p65 pathway and the increased expression of MIAT could be maintained by transfection of MIAT siRNA and selenium treatment.

Wu et al identified up/down-regulated lncRNAs and mRNAs in KBD chondrocytes through microarray analysis. Correlation analysis of 343 lncRNAs and 292 mRNAs revealed the formation of 509 co-expression network (CNC network) of coding and non-coding genes. It was predicted that there were 11 target genes with cis-regulated lncRNAs. Differentially expressed mRNAs in KBD played an essential role in ECM related biological events. At the same time, 34 mRNAs and 55 co-expressed lncRNAs constituted a network affecting ECM. In the network, LAMA 4 and FBLN1 were the core genes with the highest significance. These findings indicate that lncRNAs may be involved in ECM destruction in KBD.

7 | LncRNAs and Spinal Diseases

7.1 | LncRNAs and Ankylosing spondylitis (AS)

AS is a systemic chronic disease with progressive development, characterized by chronic inflammatory responses in the sacroiliac joints and spine, and it belongs to RA. Several studies have shown that lncRNAs could be used as an independent diagnostic biomarker for AS, such as LncRNA AK001085, LINC00311, TUG1 and NKILA. LncRNA MEG3 is a potential regulator in AS. It has anti-inflammatory effects, partly by targeting miR-146a. Overexpression of miR-146a reversed the inhibitory effect of abnormally expressed MEG3 on inflammatory factors. Another study revealed that MEG3 promotes SOST expression to restrain the progression of AS by sponging let-7i. H19 is overexpressed in AS patients and mediates the inflammatory process by acting as a ceRNA on the miR22-5P-VDLR-IL-17A/IL-23 axis. By down-regulating the expression of LOC645166 in T cells of AS patients, and by inhibiting the recruitment of IKK complex to the K63-linked polyubiquitin chain and upregulating the
activation of NF-κB, AS patients showed higher sensitivity to the stimulation of pro-inflammatory cytokines or TLR ligand.156

7.2 | LncRNAs and cervical spondylotic myelopathy (CSM)

CSM is a neurodegenerative disease. The main aetiology is progressive compression and degeneration of the spinal cord. The expression profiles of lncRNAs and mRNAs in rat CSM model were analysed by microarray. 17 lncRNAs (13 up and 4 down) and 18 mRNAs (13 up and 5 down) were found to be differentially expressed. According to the analysis of these results, the biological processes involved in the upregulation of RNA in CSM included cellular response to interferon, inflammatory response and innate immune response. By associating the differentially expressed mRNAs with lncRNAs, the researchers revealed that the disease may be involved in apoptosis, TNF and nod-like receptor signalling pathways.158

7.3 | LncRNAs and Intervertebral disc degeneration (IDD)

Unlike articular cartilage, the intervertebral disc (IVD) is a well-wrapped and vascularless tissue that has three components: the nucleus pulposus (NP), annulus fibrosus (AF) and cartilaginous end plate (CEP). Nucleus pulposus is located in the centre of each disc and is highly hydrated and gelatinous, surrounded by the lateral annulus fibrosus. IVD is the largest avascular structure in the body and the nerve endings only reach the inner ring. Due to these structural characteristics, IVD is prone to degeneration. At present, the aetiology of IDD is determined by genetic and environmental factors. Heredity is a major risk factor for IDD, as it is estimated that over 70% of cases are caused by genetics. IDD is known to be driven by programmed cell death, deficiency in anabolic factors, release of inflammatory cytokines and degradation of intervertebral disc matrix.

Recently, Wan et al and Chen et al examined the expression of lncRNAs in human degenerative and normal NP samples using lncRNA-mRNA microarray. They found 116 lncRNAs (67 up and 49 down) are differentially expressed, with absolute fold changes greater than ten. LncRNA TRPC7-AS1 directly targeted miR-4769-5p while miR-4769-5p directly targeted Hepsin (HPN) 3’UTR. Overexpression of miR-4769-5p inhibited HPN expression, suppressed NPC senescence, promoted NPC viability and ECM synthesis. SNHG6 can upregulate the expression of Bax, Caspase-3 and p21 and reduce the expression of Bcl-2 by targeting miR-101-3p, finally inhibiting cell proliferation and inducing cell apoptosis. Through the miR-93/MMP2 pathway, PART1 may regulate ECM degeneration, cell proliferation and apoptosis of NP cells. Studies have shown that MP1DT can activate the mitochondrial apoptosis pathway of NPCs by down-regulating Bcl-2 and upregulating caspase-3. The combined use of Inc-MT1DP and miR-365 can damage mitochondrial membrane, reduce mitochondrial function and ROS clearance ability, increase cell apoptosis and lead to lumbar disc herniation (LDH). ANPODRT partially protects human NPC from oxidative stress and apoptosis by inducing KEAP1-Nrf2 dissociation, leading to the accumulation of Nrf2 protein and nuclear translocation, as well as the expression of Nrf2 target proteins (including HO1 and NQO1) in human NPCs.

Here, we focus on the roles and functions of the newly discovered lncRNAs in IDD (Figure 2). LncRNAs that appear in these published reviews are not included in this section.

8 | LncRNAs AND MUSCLE DISEASES

Alterations in myogenesis and regeneration can lead to many muscle disorders (including muscle hypertrophy, muscular dystrophy and sarcopenia). Abnormal expression of lncRNAs is related to a variety of muscle diseases. Rescuing its normal expression in skeletal muscle can reduce the phenotype of the disease.

8.1 | LncRNAs in human muscle disease

Among all types of muscular dystrophy, one of the most common and severe disorders is Duchenne muscular dystrophy (DMD), DMD,
which involves multiple lncRNAs, is caused by a dysfunctional dystrophin protein. Some lncRNAs inhibit the expression of dystrophin mRNA subtypes by interacting with the dystrophin promoter.177,178 In a recent study, LncRNA H19 was shown to bind with dystrophin. And H19 inhibited E3-ligase-dependent polyubiquitination and subsequent protein degradation at Lys 3584 (referred to as Ub-DMD). DMD and BMD (Becker MD) are considered to be X-linked recessive. Intra-frame deletion of BMD and non-silent mutation of DMD (C3340Y) lead to deficiency in the ability of the protein to interact with H19, resulting in elevated Ub-DMD levels and degradation of dystrophic proteins. The discovery of H19 IncRNA as a dystrophin stabilizer may prove to be the missing link in the successful development of salvage therapies for DMD.179,180 LncRNA44s2 could be involved in muscle differentiation process. Study in human primary myoblasts from BMD Δ45-55 patients revealed a possible involvement of lncRNA sequences localized in intron 44 and 55 in myogenesis. Finally, it could be a potential biomarker for monitoring the development of DMD/BMD disease.181

8.2 | lncRNAs in muscle hypertrophy and atrophy

LncRNAs in muscle atrophy and hypertrophy are also the focus of our attention. Studies have shown that the main causes of muscle hypertrophy are increased intracellular RNA and protein synthesis and decreased protein degradation. The equilibrium between protein synthesis and degradation is regulated by a number of regulators and pathways, including the mTOR, IGF and AMPK pathways, myostatin and myogenic regulators.11 Skeletal muscle hypertrophy is positively regulated by the BMP7 signalling pathway through activation of Smad1/5.183 Moreover, muscle hypertrophy requires activation of satellite cells.184,185 In myogenic differentiation, c-Myc plays an important regulatory role. In addition to regulating protein-coding genes, it also regulates the expression of non-coding RNA to modulate myoblast differentiation via directly regulating the transcription of many MyomiRs. Luo et al suggested that linc-2949 and linc-1369 act as MyomiR sponges and regulate myoblast differentiation and proliferation.186 The evolutionarily conserved lincRNA linc-MYH modulates the composition of the INO80 chromatin remodelling complex in muscle stem cells (MuSCs) and prevents interaction with WDR5 and transcription factor YY1. Linc-MYH is expressed in proliferating myoblasts but not in resting MuSCs. So researchers infer that the degree of myoblastic proliferation has a decisive effect on the size of the quiescent MuSC.187

Muscular atrophy is the most common muscle disorder in humans and is accompanied by myophagism and muscle weakness.188 Li et al found that in various types of muscle atrophy models, lncRNA muscle atrophy-related transcripts (lncMAAT) play different roles and regulate different genes through trans and cis regulation modules (trans:miR-29b/SOX6 axis; cis:neighbouring gene Mbnl1).189
Lnc-ORA inhibited skeletal muscle myogenesis via regulating acti-
ing miR-532-3p/PTEN/P13K/AKT axis. In addition, LNC-ORA in-
teracted with IGF2BP2 (insulin-like growth factor 2 mRNA-binding
protein 2) to influence the stability of myogenetic genes. SMUL
regulates myogenesis and muscle atrophy via TGF-β/Smad pathway.
The mechanism is SMUL's inhibition of Smurf2 production through
NMD (nonsense-mediated mRNA decay). Finally, miR22HG in-
duces the maturation of miR-22-3p, which inhibits its target HDAC4
(histone deacetylase 4), thereby increasing downstream MEF2C
(myocyte enhancing factor 2C), and ultimately promoting myoblast
differentiation.

In conclusion, the current research focuses on muscle develop-
ment after birth and growth, muscle hypertrophy and atrophy.
LncRNAs related to muscle hypertrophy and atrophy are summa-
rized in Table 4. We excluded the lncRNAs that appeared in these
published reviews in the near future, studies on muscle
and LncRNAs will be oriented towards embryonic muscle
-generation and development, muscle fibre transformation, muscle func-
tion and movement, muscle ageing and metabolism, and muscle
tumours.

9 | CONCLUSIONS AND FUTURE PERSPECTIVES

In this review, we summarized the functions and regulatory mech-
-anisms of LncRNAs involved in the occurrence and progression of
musculoskeletal disorders. LncRNAs have been found to participate
in the regulation of chronic musculoskeletal disorders under various
pathological conditions. Current studies mainly point to the interac-
tion axis between LncRNA and miRNA and downstream molecules.
More studies are urgently needed to investigate the underlying
mechanism, such as the binding sites and ways of targeting down-
stream molecules, and whether there are multiple binding sites.

Furthermore, as described in this paper, some regenerative ther-
-apy involving stem cells are also associated with LncRNAs, such as
mesenchymal stem cells (MSCs), which have been used in OA and
IDD to therapy to assist tissue regeneration and exosome secretion.
This is also one of the research hotspots. And the role of LncRNAs
in the regulation of intracellular or endochondral ossification and
muscular dystrophy remains to be further studied. Finally, the inter-
actions between circRNAs, LncRNAs, miRNAs and target genes also
have considerable research potential.

Another area of active study is the post-transcriptional mod-
ifications of LncRNAs. Post-transcriptional modifications of RNA
have been described in many sequencing-based transcriptome
studies. Three major modifications include pseudouridine (Ψ), N6-
-methyladenosine (m6A) and 5-methylcytosine (m5C). Although
the chemical modification of LncRNAs in other fields (eg, oncology)
has suggested that its presence is important for the function of In-
cRNAs. But to date, no transcriptome changes have been reported
to be associated with musculoskeletal disease. Obviously, chemical
modifications of RNAs are new areas of studying LncRNA functions.

Translational research on lncRNAs and musculoskeletal diseases
will continue to flourish, in part due to our improving understanding
of the functions of lncRNAs and the increasingly available practical
methods to identify the functional domains of lncRNAs. Our under-
standing of the roles of lncRNAs in musculoskeletal disorders will
lead to the development of new strategies to improve their clinical
management.

ACKNOWLEDGEMENTS
This work was supported by grants from National Natural Science
Foundation of China (81973606) and National Key Research and
Development Program of China (2020YFC2004904).

CONFLICT OF INTEREST
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
HH, DX and JL conceptualized the review; HH and DX searched the
literature; HH wrote the draft of the manuscript; HH, QZ and HL
prepared the figures and tables; all the authors critically reviewed
and edited the manuscript. All authors read and approved the final
manuscript.

DATA AVAILABILITY STATEMENT
Research data are not shared.

ORCID
Jianhao Lin https://orcid.org/0000-0003-1830-9244

REFERENCES
1. Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years
(DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a
systematic analysis for the Global Burden of Disease Study 2010.
Lancet. 2012;380(9859):2197-2223.
2. Alcaraz MJ, Compañ A, Guillén MI. Extracellular vesicles from
mesenchymal stem cells as novel treatments for musculoskeletal
diseases. Cells. 2020;9(1):98.
3. Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate
adipogenesis. Proc Natl Acad Sci USA. 2013;110(9):3387-3392.
4. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet.
2006;15(suppl_1):R17-R29.
5. Song J, Ahn C, Chun CH, Jin EJ. A long non-coding RNA, GAS5,
plays a critical role in the regulation of miR-21 during osteoarthri-
tis. J Orthop Res. 2014;32(12):1628-1635.
6. Zhang J, Zhang P, Wang L, Piao HL, Ma L. Long non-coding RNA
HOTAIR in carcinogenesis and metastasis. Acta Biochim Biophys Sin
(Shanghai). 2014;46(1):1-5.
7. Achour C, Aguillo F. Long non-coding RNA and Polyclon: an intri-
cate partnership in cancerbiology. Front Biosci. 2018;23:2106-2132.
8. Li J, Tian H, Yang J, Gong Z. Long noncoding RNAs regulate
cell growth, proliferation, and apoptosis. DNA Cell Biol.
2016;35(9):459-470.
9. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncode-
rning RNA function in development and disease. Cell Mol Life Sci.
2016;73(13):2491-2509.
10. Huyhn NP, Anderson BA, Guilak F, McAlinden A. Emerging roles
for long noncoding RNAs in skeletal biology and disease. Connect
Tissue Res. 2017;58(1):116-141.
11. Wang S, Jin J, Xu Z, Zuo B. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production. Cells. 2019;8(9):1107.

12. Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):5-15.

13. Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440-447.

14. Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 ‘Sponge’ in human cartilage degradation. Sci Rep. 2016;6:22572.

15. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471-478.

16. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-635.

17. Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 2020;21(7):2358.

18. Musumeci G, Castrogiovanni P, Trovato F, et al. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int J Mol Sci. 2015;16(9):20560-20575.

19. Zamil Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis. 2011;14(2):159-166.

20. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623-628.

21. Xing D, Liang J-Q, Li Y, et al. Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop Surg. 2014;6(4):288-293.

22. Tu J, Huang W, Zhang W, Mei J, Zhu C. The emerging role of lncRNAs in chondrocytes from osteoarthritis patients. Biomed Pharmacother. 2020;131:110642.

23. Ratneswaran A, Kapoor M. Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis Cartilage. 2021;29(2):151-160.

24. Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. 2003;35(4):401-404.

25. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res Int. 2013;2013:1-10.

26. Wolfe JT, Lessin SR, Singh AH, Rook AH. Review of immunomodulation by photopheresis: treatment of cutaneous T-cell lymphoma, autoimmune disease, and allograft rejection. Artif Organs. 1994;18(12):888-897.

27. Wang T, Liu Y, Wang Y, Huang X, Zhao W, Zhao Z. Long non-coding RNA XIST promotes extracellular matrix degradation by functioning as a competing endogenous RNA of miR-1277-5p in osteoarthritis. Int J Mol Med. 2019;44(2):630-642.

28. Chen H, Yang S, Shao R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21(1):271.

29. Chen C, Xu Y. Long noncoding RNA LINC00671 exacerbates osteoarthritis by promoting ONECUT2-mediated Smurf2 expression and extracellular matrix degradation. Int Immunopharmacol. 2021;90:106846.

30. Yang Y, Sun Z, Liu F, Bai Y, Wu F. FGDS5-AS1 inhibits osteoarthritis development by modulating miR-302d-3p/TGFBR2 axis. Cartilage. 2021. https://doi.org/10.1177/19476035211003324. Epub ahead of print.

31. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage. 2005;13(5):361-367.

32. Zhen Q, Wen C, Jia X, et al. Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704-712.

33. Corciulo C, Lendhey M, Wilder T, et al. Endogenous adenosine maintains cartilage homeostasis and exogenous adenosine inhibits osteoarthritis progression. Nat Commun. 2017;8:15019.

34. Zhou Z-B, Huang G-X, Fu Q, et al. circRNA-33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 2019;27(3):531-541.

35. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249-257.

36. Jones SW, Brockbank S, Clements KM, et al. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) modulates key biological pathways associated with OA disease pathology. Osteoarthritis Cartilage. 2009;17(1):124-131.

37. Alnajjar FA, Sharma-Oates A, Wijesinghe SN, et al. The expression and function of metastases associated lung adenocarcinoma transcript-1 long non-coding RNA in subchondral bone and osteoblasts from patients with osteoarthritis. Cells. 2021;10(4):786.

38. Zhi L, Zhao J, Zhao H, Qing Z, Liu H, Ma J. Downregulation of LncRNA OIP5-AS1 induced by IL-1β aggravates osteoarthritis via regulating miR-29b-3p/PGRN. Cartilage. 2020. https://doi.org/10.1177/1947603519008001. Epub ahead of print.

39. Xu J, Pei Y, Lu J, et al. LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214-5p-mediated PPARGC1B signaling pathways. Int Immunopharmacol. 2021;90:107150.

40. Zhang P, Sun J, Liang C, et al. LncRNA IGHCY1 Acts as a ceRNA to Regulate Macrophage Inflammation via the miR-6891-3p/TLR4 Axis in Osteoarthritis. Mediators Inflamm. 2020;2020:9743037.

41. Yang DW, Zhang X, Qian GB, Jiang MJ, Wang P, Wang KZ. Downregulation of long noncoding RNA LOC101928134 inhibits the synovial hyperplasia and cartilage destruction of osteoarthritis rats through the activation of the Janus kinase/signal transducers and activators of transcription signaling pathway by upregulating IFNA1. J Cell Physiol. 2019;234(7):10523-10534.

42. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19(1):107-120.

43. Ouyang L, Shi Z, Zhao S, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-498.

44. Charlier E, Relic B, Deroyer C, et al. Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Cell Death Differ. 2012;19(1):107-120.

45. Shin HJ, Park H, Shin N, et al. Pink1-mediated chondrocyte mitophagy contributes to cartilage degeneration in osteoarthritis. J Clin Med. 2019;8(11):1849.

46. Varela-Eirin M, Loureiro J, Fonseca E, et al. Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis. Ageing Res Rev. 2018;42:56-71.

47. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46-62.

48. van Donkelaar CC, Wilson W. Mechanics of chondrocyte hyper trophy. Biomech Model Mechanobiol. 2012;11(5):655-664.

49. Steenvoorde MM, Bank RA, Ronday HK, Toes RE, Huijinga TW, DeGroot J. Fibroblast-like synoviocyte-chondrocyte interaction in cartilage degradation. Clin Exp Rheumatol. 2007;25(2):239-245.

50. Huh YH, Lee G, Song WH, Koh JT, Ryu JH. Crosstalk between FLS and chondrocytes is regulated by HIF-2α-mediated cytokines in arthritis. Exp Mol Med. 2015;47(12):e197.
51. Del Rey MJ, Valin Á, Usategui A, et al. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. *Immun Ageing*. 2019;16:29.

52. Chen K, Fang H, Xu N. LncRNA LOXL1-AS1 is transcriptionally activated by JUND and contributes to osteoarthritis progression via targeting the miR-423-5p/KDM5C axis. *Life Sci*. 2020;258:118095.

53. Zhou X, Jiang L, Fan G, et al. Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL1beta. *Int Immunopharmacol*. 2019;71:233-240.

54. Xu J, Xu Y. The IncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. *Cell Biosci*. 2017;7:69.

55. Li L, Lv G, Wang B, Kuang L. XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. *J Cell Physiol*. 2020;235(1):281-293.

56. Wang Q, Wang W, Zhang F, Deng Y, Long Z. NEAT1/miR-181c regulates Osteopontin (OPN)-mediated synoviocyte proliferation in osteoarthritis. *J Cell Biochem*. 2017;118(11):3775-3784.

57. Liu Y, Liu K, Tang C, Shi Z, Jing K, Zheng J. Long non-coding RNA XIST contributes to osteoarthritis progression via miR-149-5p/DNMT3A axis. *Biomed Pharmacother*. 2020;128:107182.

58. Sun P, Wu Y, Li X, Jia Y. MiR-142-5p protects against osteoarthritis through competing IncRNA XIST. *J Gene Med*. 2020;22(4):e3158.

59. Liu Y, Zou R, Wang Z, Wen C, Zhang F, Lin F. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. *Biochem J*. 2018;475(22):3629-3638.

60. Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via IncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. *Cell Cycle*. 2018;17(21-22):2411-2422.

61. Tan F, Wang D, Yuan Z. The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 axis. *Inflammation*. 2020;43(4):1498-1509.

62. Li X, Ren W, Xiao ZY, Wu LF, Wang H, Guo PY. GACAT3 promotes proliferation of osteoarthritis synoviocytes by IL-6/STAT3 signaling pathway. *Eur Rev Med Pharmacol Sci*. 2018;22(16):5114-5120.

63. Li X, Huang TL, Zhang GD, Jiang JT, Guo PY. LncRNA ANRIL impacts the progress of osteoarthritis via regulating proliferation and apoptosis of osteoarthritis synoviocytes. *Eur Rev Med Pharmacol Sci*. 2019;23(22):9729-9737.

64. Zhang Y, Dong Q, Sun X. Positive feedback loop LINCO0051/miR-150-5p/SP1 regulates chondrocyte apoptosis and proliferation in osteoarthritis. *DNA Cell Biol*. 2020;39(9):1506-1512.

65. Xiao P, Zhu XU, Sun J, et al. LncRNA NEAT1 regulates chondrocyte proliferation and apoptosis via targeting miR-543/PLA2G4A axis. *Hum Cell*. 2021;34(1):60-75.

66. Chen L, Xu J, Lv S, et al. Overexpression of long non-coding RNA AP001505.9 inhibits human hyaline chondrocyte dedifferentiation. *Aging*. 2021;13(8):11433-11454.

67. Harper J, Klagsbrun M. Cartilage to bone–angiogenesis leads the way. *Nat Med*. 1999;5(6):617-618.

68. Su W, Xie W, Shang Q, Su B. The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. *Biomed Res Int*. 2015;2015:1-5.

69. Andia I, Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. *Nat Rev Rheumatol*. 2013;9(12):721-730.

70. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. *Nat Rev Rheumatol*. 2012;8(7):390-398.

71. Xu F, Jin L, Jin Y, Nie Z, Zheng H. Long noncoding RNAs in autoimmune diseases. *J Biomed Mater Res A*. 2019;107(2):468-475.
sponging miRNA-4701-5p in rheumatoid arthritis. *EBioMedicine*. 2019;50:408-420.

91. Yang C-A, Li J-P, Yen J-C, et al. IncRNA NTT/PBOV1 axis promotes monocyte differentiation and is elevated in rheumatoid arthritis. *Int J Mol Sci*. 2018;19(9):2806.

92. Brown C. Osteoporosis: Staying strong. *Nature*. 2017;550(7674):S15-S17.

93. Tung S, Iqbal J. Evolution, aging, and osteoporosis. *Ann N Y Acad Sci*. 2007;1116:499-506.

94. Hong S, Hu S, Kang Z, et al. Identification of functional IncRNAs based on competing endogenous RNA network in osteoblast differentiation. *J Cell Physiol*. 2020;235(3):2222-2244.

95. Del Real A, López-Delgado L, Sañudo C, et al. Long noncoding RNAs as bone marrow stem cell regulators in osteoporosis. *DNA Cell Biol*. 2020;39(9):1691-1699.

96. Ouyang Z, Tan T, Zhang X, et al. LncRNA ENST00000563492 promotes osteogenic differentiation of human umbilical cord-derived stem cells by acting as a ceRNA for miR-148a-3p. *Cell Death Differ*. 2019;26(10):2029-2045.

97. Hu L, Yin C, Zhao F, et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. *Int J Mol Sci*. 2018;19(2):360.

98. Veldhuis-Vlug AG, Rosen CJ. Mechanisms of marrow adiposity and its implications for skeletal health. *Metabolism*. 2017;67:106-114.

99. Zhou P, Li Y, Di R, et al. H19 and Foxc2 synergistically promotes osteogenic differentiation of BMSCs via Wnt/β-catenin pathway. *J Cell Physiol*. 2019;234(8):13799-13806.

100. Li D, Liu J, Yang C, et al. Targeting long noncoding RNA PMIF facilitates osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging. *Theranostics*. 2021;11(11):5585-5604.

101. Zhang Y, Cao X, Li P, et al. LncRNA NKILA integrates RIFK1/AKT and NF-xB signalling to regulate osteogenesis of mesenchymal stem cells. *J Cell Mol Med*. 2020;24(1):521-529.

102. Li R, Zhang W, Yan Z, et al. Long non-coding RNA (LncRNA) HOATIR regulates BMP9-induced osteogenic differentiation by targeting the proliferation of mesenchymal stem cells (MSCs). *Aging*. 2021;13(3):4199-4214.

103. He S, Yang S, Zhang Y, et al. LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. *Cell Death Dis*. 2019;10(12):947.

104. Li B, Han H, Song S, et al. HOXC10 regulates osteogenesis of mesenchymal stromal cells through interaction with its natural anti-sense transcript IncHOXCS-AS3. *Stem Cells*. 2019;37(2):247-256.

105. Cao L, Liu W, Zhong Y, et al. Linc02349 promotes osteogenesis of human umbilical cord-derived stem cells by acting as a competing endogenous RNA for miR-25-3p and miR-33b-5p. *Cell Prolif*. 2020;53(5):e12814.

106. Ouyang Z, Tan T, Zhang X, et al. LncRNA ENST00000563492 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by functions as a ceRNA for miR-205-5p. *Cell Death Dis*. 2020;11(6):486.

107. Jin C, Jia L, Tang Z, Zheng Y. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway. *Cell Death Dis*. 2020;11(7):601.

108. Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. *J Steroid Biochem Mol Biol*. 2014;142:155-170.

109. Li M, Cong R, Yang L, Yang L, Zhang Y, Fu Q, A novel IncRNA LNC_000052 leads to the dysfunction of osteoporetic BMSCs via the miR-96-5p-PIK3R1 axis. *Cell Death Dis*. 2020;11(9):795.

110. Liu H, Wang YW, Chen WD, Dong HH, Xu YJ. Iron accumulation regulates osteoblast apoptosis through IncRNA XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. *IUBMB Life*. 2021;73(2):432-443.

111. Li T, Jiang H, Li Y, Zhao X, Ding H. Estrogen promotes lncRNA H19 expression to regulate osteogenic differentiation of BMSCs and reduce osteoporosis via miR-532-3p/SIRT1 axis. *Mol Cell Endocrinol*. 2021;527:111171.

112. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 4555 dissolution. *J Biomed Mater Res*. 2001;55(2):151-157.

113. Xu SY, Shi P, Zhou RM. Post-menopausal oestrogen deficiency induces osteoblast apoptosis via regulating HOTAIR/miRNA-138 signalling and suppressing TIMP1 expression. *J Cell Mol Med*. 2021;25(10):4572-4582.

114. Xia K, Cen X, Yu L, et al. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation. *J Cell Physiol*. 2020;235(9):6010-6022.

115. Ono T, Nakashima T. Recent advances in osteoblast biology. *Histochem Cell Biol*. 2018;149(4):325-341.

116. Dou CE, Cao Z, Yang BO, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. *Sci Rep*. 2016;6:21499.

117. Li B, Zhao J, Ma J-X, et al. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. *Bone*. 2018;111:82-91.

118. Yuan H, Xu X, Feng X, et al. A novel long noncoding RNA PGC1-β/OT1 regulates adipocyte and osteoblast differentiation through antagonizing miR-148a-3p. *Cell Death Differ*. 2019;26(10):2029-2045.

119. Cui Y, Fu S, Sun D, Xing J, Hou T, Wu X. EPC-derived exosomes promote osteostestogenesisis through LncRNA-MALAT1. *J Cell Mol Med*. 2019;23(6):3843-3854.

120. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. *Aging (Albany NY)*. 2019;11(20):8777-8791.

121. Zhang Y, Chen X, Li J, He F, Li X, Guo Y. IncRNA Neat1 stimulates osteostestogenesisis via sponging miR-7. *J Bone Miner Res*. 2020;35(9):1772-1781.

122. Hu F, Jiang C, Bu G, Fu Y, Yu Y. Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis. *Cancer Gene Ther*. 2021.

123. Ko NY, Chen LR, Chen KH. The role of micro RNA and long-non-coding RNA in osteoporosis. *Int J Mol Sci*. 2020;21(14):4886.

124. Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in bone metabolism and osteoporosis. *Front Genet*. 2020;11:584118.

125. Yang Y, Yujiao W, Fang W, et al. The roles of miRNA, LncRNA and circRNA in the development of osteoporosis. *Biol Res*. 2020;53(1):40.

126. Wang CG, Hu YH, Su SL, Zhong D. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. *Exp Mol Med*. 2020;52(8):1310-1325.

127. Yang L, Li Y, Gong R, et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. *Mol Ther*. 2019;27(2):394-410.

128. Chen S, Li Y, Zhi S, et al. IncRNA Xist regulates osteoblast differentiation by sponging miR-19a-3p in aging-induced osteoporosis. *Aging Dis*. 2020;11(5):1058-1068.

129. Richette P, Bardin T. Gout. *Lancet*. 2010;375(9711):318-328.

130. Dalbith N, Smith T, Nicolson B, et al. Enhanced osteostestogenesisis in patients with tophaceous gout: urate crystals promote osteostestogenesisis development through interactions with stromal cells. *Arthritis Rheum*. 2008;58(6):1854-1865.

131. Zhang Xu, Yang X, Wang M, et al. Association between SLC2A9 (GLUT9) gene polymorphisms and gout susceptibility: an updated meta-analysis. *Rheumatol Int*. 2016;36(8):1157-1165.
132. Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. *Sci Transl Med.* 2009;1(5):5ra11.

133. Tan PK, Farrar JE, Gaucher EA, Miner JN. Coevolution of URAT1 and uricase during primate evolution: Implications for serum urate homeostasis and gout. *Mol Biol Evol.* 2016;33(9):2193-2200.

134. Liu YF, Xing GL, Chen Z, Tu SH. Long non-coding RNA HOTAIR promotes calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. *EBioMedicine.* 2019;50:366-378.

135. Hu J, Wang D, Wu H, Yang Z, Yang N, Dong L. Long non-coding RNA ANRIL-mediated inflammation response is involved in protective effect of rhein in uric acid nephropathy rats. *Cell Biosci.* 2019;9:11.

136. Liu YF, Xing GL, Chen Z, Tu SH. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation. *Cell Cycle.* 2021;20(3):332-344.

137. Lee CP, Huang YN, Nithivathananth S, Huang CM, Ko YC. LncRNA-Jak3:Jak3 coexpressed pattern regulates monosodium crystal-induced osteoclast differentiation through Nfatc1/Ctsk expression. *Environ Toxicol.* 2019;34(2):179-187.

138. Guo X, Ma WJ, Zhang F, Ren FL, Qu CJ, Lammi MJ. Recent advances in the research of an endemic osteochondropathy in China: Kashin-Beck disease. *Osteoarthritis Cartilage.* 2014;22(11):1774-1783.

139. Fu Q, Cao J, Renner JB, et al. Radiographic features of hand osteoarthritis and NLRP3 downregulation. *Cell Cycle.* 2019;18(6):817-824.

140. Pastoels JL, Liu FD, Hinsenkamp M, Rooze M, Mathieu F, Perlmutter N. Histology of Kashin-Beck lesions. *Int Orthop.* 2001;25(3):151-153.

141. Li D, Han J, Guo X, Qu C, Yu F, Wu X. The effects of T-2 toxin on the prevalence and development of Kashin-Beck disease in China: a meta-analysis and systematic review. *Toxicol Res.* 2016;5(3):731-751.

142. Ren FL, Guo X, Zhang RJ, et al. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. *Osteoarthritis Cartilage.* 2007;15(10):1171-1177.

143. Wang S, Guo X, Wang W, Wang S. Genome-wide study identifies the regulatory gene networks and signaling pathways from chondrocyte and peripheral blood monocyte of Kashin-Beck disease. *Genes Cells.* 2012;17(8):619-632.

144. Yu FF, Zhang YX, Zhang LH, Li WR, Guo X. Lammi MJ. Identified molecular mechanism of interaction between environmental risk factors and differential expression genes in cartilage of Kashin-Beck disease. *Medicine.* 2016;95(52):e5669.

145. Xiong YM, Mo XY, Zou XZ, et al. Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. *Osteoarthritis Cartilage.* 2010;18(6):817-824.

146. Lammi MJ, Qu C. Selenium-related transcriptional regulation of gene expression. *Int J Mol Sci.* 2018;19(9):2665.

147. Shi M, He Y, Zhang Y, et al. LncRNA MIAT regulated by selenium deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. *Osteoarthritis Cartilage.* 2007;15(10):1171-1177.

148. Wang S, Guo X, Wang W, Wang S. Genome-wide study identifies the regulatory gene networks and signaling pathways from chondrocyte and peripheral blood monocyte of Kashin-Beck disease. *Genes Cells.* 2012;17(8):619-632.

149. Lu X, Zhang Y, et al. Down-regulation of LncRNA-ANK01085 and its influences on the diagnosis of ankylosing spondylitis. *Med Sci Monit.* 2017;23:11-16.

150. Zhong H, Zhong M. LINC00311 is overexpressed in ankylosing spondylitis and predict treatment outcomes and recurrence. *BMC Musculoskelet Disord.* 2019;20(1):278.

151. Lan X, Ma H, Zhang Z, et al. Downregulation of IncRNA TUG1 is involved in ankylosing spondylitis and is related to disease activity and course of treatment. *Biosci Trends.* 2018;12(4):389-394.

152. Gai X, Li L. Overexpression of long noncoding RNAs (lncRNA) NFκB-interacting long noncoding RNA (NKILA) in ankylosing spondylitis is correlated with transforming growth factor β1 (TGF-β1), active disease and predicts length of treatment. *Med Sci Monit.* 2019;25:4244-4249.

153. Li Y, Zhang S, Zhang C, Wang M. LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-466a. *Mol Cell Biochem.* 2020;466(1-2):17-24.

154. Ma J, Zhang X, Zhang H, Chen H. IncRNA MEG3 suppresses the progression of ankylosing spondylitis by regulating the Let-7i/SOST Axis. *Front Mol Biosci.* 2020;7:173.

155. Zhang XU, Ji S, Cai G, et al. H19 increases L17A/L1-23 releases via regulating VDR by interacting with miR6755-5p/miR22-5p in ankylosing spondylitis. *Mol Ther Nucleic Acids.* 2020;19:393-404.

156. Yu H-C, Huang K-Y, Lu M-C, et al. Down-regulation of LOC645166 in T cells of ankylosing spondylitis patients promotes the NF-κB signaling via decreasingly blocking recruitment of the lkk complex to k63-linked polyubiquitin chains. *Front Immunol.* 2021;12:591706.

157. Tetreault L, Goldstein CL, Arnold P, et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. *Neurosurgery.* 2015;77(Suppl 4):S51-67.

158. Zhang L, Yang Li, Li W, et al. Expression profile of long non-coding RNAs in cervical spondylotic myelopathy of rats by microarray and bioinformatics analysis. *Genomics.* 2019;111(6):1192-1200.

159. Han I, Ropper AE, Konya D, et al. Biological approaches to treating intervertebral disk degeneration: devising stem cell therapies. *Cell Transplant.* 2015;24(11):2197-2208.

160. Chen W-K, Yu X-H, Yang W, et al. LncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. *Cell Prolif.* 2017;50(1):e12313.

161. Boubriak OA, Watson N, Sivan SS, Stubbens N, Urban JP. Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. *J Anat.* 2013;222(3):341-348.

162. Wang C, Wang W-J, Yan Y-G, et al. MicroRNAs: New players in intervertebral disc degeneration. *Clin Chim Acta.* 2015;450:333-341.

163. Battie MC, Videnam T, Parent E. Lumbar disc degeneration. *Spine.* 2004;29(23):2679-3269.

164. Battie MC, Videnam T. Lumbar disc degeneration: epidemiology and genetics. *J Bone Joint Surg Am.* 2006;88(Suppl 2):3-9.

165. Zhao CQ, Jiang LS, Dai LY. Programmed cell death in intervertebral disc degeneration. *Apoptosis.* 2006;11(12):2079-2088.

166. Okuda S, Myoui A, Ariga K, Nakase T, Yonenobu K, Yoshikawa H. Mechanisms of age-related decline in insulin-like growth factor i-dependent proteoglycan synthesis in rat intervertebral disc cells. *Spine.* 2001;26(22):2421-2426.

167. Matsunaga S, Nagano S, Onishi T, Morimoto N, Suzuki S, Komiya S. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs. *J Neurosurg.* 2003;98(1 Suppl):63-67.

168. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. *Nat Rev Rheumatol.* 2014;10(1):44-56.

169. Wan ZY, Song F, Sun Z, et al. Aberrantly expressed long noncoding RNAs in human intervertebral disc degeneration: a microarray related study. *Arthritis Res Ther.* 2014;16(5):465.

170. Chen YU, Ni H, Zhao Y, et al. Potential role of IncRNAs in contributing to pathogenesis of intervertebral disc degeneration based on microarray data. *Med Sci Monit.* 2015;21:3449-3458.

171. Wang X, Li D, Wu H, et al. LncRNA TRPC7-AS1 regulates nuclear pulposus cellular senescence and ECM synthesis via competing with HPN for miR-4769-5p binding. *Mech Ageing Dev.* 2020;190:111293.

172. Gao ZX, Lin YC, Wu ZP, et al. LncRNA SNHG6 can regulate the proliferation and apoptosis of rat degenerate nucleus pulposus.
cells via regulating the expression of miR-101-3p. Eur Rev Med Pharmacol Sci. 2020;24(16):8251-8262.

173. Gao D, Hao L, Zhao Z. Long non-coding RNA PART1 promotes intervertebral disc degeneration through regulating the miR-93/MMP2 pathway in nucleus pulposus cells. Int J Mol Med. 2020;46(1):289-299.

174. Liao Z-W, Fan Z-W, Huang Y, et al. Long non-coding RNA MT1DP interacts with miR-365 and induces apoptosis of nucleus pulposus cells by repressing NRF-2-induced anti-oxidation in lumbar disc herniation. Ann Transl Med. 2021;9(2):151.

175. Kang L, Tian Y, Guo X, Chu X, Xue Y. Long noncoding RNA LULIC2 promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lncRNAs. Cell Death Differ. 2019;26(3):426-442.

176. Guo HY, Guo MK, Wan ZY, Song F, Wang HQ. Emerging evidence of long non-coding RNAs as potential therapeutic targets for muscular dystrophy. Pharmacol Sci. 2020;24(16):8251-8262.

177. Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919-928.

178. Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. Annu Rev Pathol. 2013;8:441-475.

179. Ritso M, Rudnicki MA. H19 lncRNA to dystrophin’s rescue. Nat Cell Biol. 2020;22(11):1289-1290.

180. Cai R, Zhang Q, Wang Y, Yong W, Zhao R, Pang W. Lnc-ORA interacts with microRNA-532-3p and IGF2BP2 to inhibit skeletal muscle myogenesis. J Biol Chem. 2021:100376.

181. Chen R, Lei S, Jiang T, Zeng J, Zhou S, She Y. Roles of lncRNAs and circRNAs in regulating skeletal muscle development. Acta Physiol (Oxf). 2020;228(2):e13356.

182. Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of skeletal muscle atrophy in cachexia by MicroRNAs and long non-coding RNAs. Front Cell Dev Biol. 2020;8:577010.

183. Clarke LE, Richardson SM, Hoyaland JA. Harnessing the potential of mesenchymal stem cells for IVD regeneration. Curr Stem Cell Res Ther. 2015;10(4):296-306.

184. Jacob R, Zander S, Gutschner T. The dark side of the epitranscrip- tome: chemical modifications in long non-coding RNAs. EMBO Rep. 2017:18(11).

185. Warda AS, Kretschmer J, Hackert P, et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004-2014.

How to cite this article: Huang H, Xing D, Zhang Q, et al. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif. 2021;54:e13113. https://doi.org/10.1111/cpr.13113