Synthesis, Characterization, and Evaluation of Cancer Prevention Activity of Novel Modified Heterocyclic Compounds

Vijayakumar K1*, Sountharrajan S2, Suganya E2

Abstract

Anticancer approaches may employ change of molecular structure to enhance preventive influence of chemical agents. The present examination concerned the potential anticancer impact of modified heterocyclic compounds. A strategy was developed to combine tetrazole moieties from different diamines with 2-aminobenzoic and substituted benzoyl chloride compounds with attention to synthesis, characterization and assessment of cancer preventive activity, applying IR, 1HNMR, 13CNMR and Mass spectra.

Keywords: Cytotoxicity- heterocycles- multicomponent reactions and sodium azide

Introduction

A significant number of heterocyclic compounds demonstrate the organic or pharmacological activities. Henceforth every one of the subordinates of heterocyclic compounds is utilized for the pharmaceutical applications. From these compounds, benzimidazole subsidiaries are generally utilized as a part of the pharmaceutical territories. The heterocyclic compounds have been entrancing in the gathering of concentrates expanded (Barker et al., 1995; Sushil et al., 2008; Gravatt et al., 1994). The union of a couple of new benzimidazole subsidiaries and examine for their substance and antimicrobial deeds have picked up and given more significance to present day traverse for natural and therapeutic reasons. Benzimidazole focus has been ahead of time of prestigious because of the way that its subordinates have been started to get a wide scope of pharmacological properties. Benzimidazole derivatives are useful heterocycles, having convincing pharmacological exercises, for example, anthelmintic (Karen et al., 2006), anti-inflammatory (Vinodkumar et al., 2008), anticancer (Popp et al., 1911; Kruse et al., 1989; Islam et al., 1991; Ramla et al., 2007; Denny et al., 1990), antimicrobial (Divavera et al., 2006; Davoodnia et al., 2007; Kus et al., 2004; Abdel-Rahman et al., 1983; Solomon et al., 1984), cell reinforcement (Fukuda et al., 1984; Nakano et al., 1999; Can-Eke et al., 1998), anticoagulant (Mertens et al., 1987). Benzimidazole is having different heterocycles which have a wide scope of pharmacological properties. Benzimidazole derivatives are basic classes of heterocyclic mixes and are presented to have central nerves systems (CNS) exercises, for example, anticonvulsant and CNS depressant, antihistaminic action (Khairnar et al., 1981), and other biological significance, so it is mysterious to generation various benzimidazole subsidiaries and tried their successful anticancer activities.

Materials and Methods

Chemistry

This present work has been done to prepare benzimidazole subsidiaries all through a many advance process. For this reason, the required 4-(1-Methyl-1H-benzo[d]imidazol-2-yl) aniline (1) was prepared according to the literature procedure (Bhushan et al., 2009; Rahul et al., 2006; Ramanatham et al., 2008; Zhan-Hui et al., 2007; Jadhav et al., 2009; CananKus et al., 2003; Mahajan et al., 2006), the buildup response between the compound (1) and p-phenylenediamine within the sight of pyridine as a base. The p-phenylenediamine and benzimidazole compound were responded to create another compound (2). The new IR recurrence district at 3074.93 cm⁻¹. 1HNMR singlet at δ 4.0 (CH₃) for methylene protons and a singlet at 10.2 (s, 1H, NH), 8.0-8.1 (1H, Ar-He/Hc) proton was in the presence of the benzimidazole ring structure. It’s stretched

1Department of Chemistry, M. Kumarasamy College of Engineering, Karur- 639 113, 2Department of Computer Science, Bannari Amman Institute of Technology, Sathy, Erode, Tamilnadu, India. *For Correspondence: knvijaykumar72@gmail.com
out to consolidate with substituted aromatic acid chloride derivatives (3-6). An intermediate product has formed when the compound (2) responded with phosphorous pentachloride and took after treated with sodium azide, a last compound tetrazole moiety (Rastgar Mirzaei et al., 2008; Bhaskar et al., 2010; Todd Eary et al., 2007) was framed (7-11). The tetrazole development of IR recurrence is 1602cm⁻¹ and 1244 cm⁻¹. 1HNMR at δ protons, 4.0 (CH3) for methylene, 7.2 – 7.8 (m, 2H, Ar-Hb/Ha/Hc/Hd/Hg/Ho) and 8.2 (d, 1H, Ar-Hm) separately guaranteed the yield of conclusive mixes (7-11).

Results

Experimental
Reagents and Solutions
Melting points focuses were recorded on a REMI Series Instrument. Thin Layer Chromatography was identified on silica gel covered plates and plates were examined under iodine jostle. Infra-Red spectra were recorded on KBr pellets on Schimadzu FT-IR Spectrophotometer. 1H and 13C-NMR spectra were measured on Bruker (AC 400MHz). Elements investigation information was finished by Perkin-Elmer arrangement – II Analyzer 2400. All the compound reagents and solvents were utilized as under vacuum to yield the relating N-substituted different derivative vice. The yield was recrystallized from hot aq. ethanol to get unadulterated yield. m.p. 122 °C. The yield was recrystallized from hot super cold water, decolorize and wiped proceed and dried out. The yield was crystallized from ethanol. 5-FU Treated Swiss mice

Table 1. In Vitro Cytotoxic Activity [Median (Range) values] and Selectivity Index (SI) of the Crude Compared with 5-FU

Cell line	Ethanol with compounds	5-FU
CL-6:	Calcein-AM: IC₅₀ (μg/ml) SI	
	Hoechst33342: IC₅₀ (μg/ml) SI	
	Calcein-AM: IC₅₀ (μg/ml) SI	18.09
	Hoechst33342: IC₅₀ (μg/ml) SI	3.19
	Calcein-AM: IC₅₀ (μg/ml) SI	71.89
	Hoechst33342: IC₅₀ (μg/ml) SI	3.83
	Calcein-AM: IC₅₀ (μg/ml) SI	198.15
	Hoechst33342: IC₅₀ (μg/ml) SI	268.74
	Calcein-AM: IC₅₀ (μg/ml) SI	245.91
	Hoechst33342: IC₅₀ (μg/ml) SI	297.39

and dried over anhydrous magnesium sulfate and thought under vacuum to yield the relating N-substituted different derivative vice. The yield was recrystallized from hot aq. ethanol to get unadulterated yield. m.p. 122 °C. The Yield was 73%.

Infrared Spectral Data (KBr), value in cm⁻¹ 3395.22 (s, N-H, 2oamine), 3,286.28 (s, N-H, 2oamine), 3,039.41 (Ar- CH), 1,639.53 (s, C=N), 1,451.53 (CH3), 1,333.76 (s, C-N); 2

4-(1-Methyl-1H-benzo[d]imidazol-2-yl)aniline (PB1)
 p-Phenylenediamine (0.1 moles) and anthranilic acid (0.1 moles) were warmed in a water bath for 1hr 20 min, It’s taken after to cool and included 10% NaOH blending (0.1 moles) were warmed in a water bath for 1hr 20 min, when the compound (2) responded with phosphorous pentachloride and took after treated with sodium azide, a last compound tetrazole moiety (Rastgar Mirzaei et al., 2008; Bhaskar et al., 2010; Todd Eary et al., 2007) was framed (7-11). The tetrazole development of IR recurrence is 1602cm⁻¹ and 1244 cm⁻¹. 1HNMR at δ protons, 4.0 (CH3) for methylene, 7.2 – 7.8 (m, 2H, Ar-Hb/Ha/Hc/Hd/Hg/Ho) and 8.2 (d, 1H, Ar-Hm) separately guaranteed the yield of conclusive mixes (7-11).

Figure 1. Pictorial Representation of Anticancer Activity

Table 2. Survival Time [Median (Range) Values] of 5-FU Treated

5-FU Treated	Untreated control	High Dose	Medium Dose	Low Dose	Every alternate regimen
PB7 (22-28)	PB7 (16-20)	50.1	48.5	43.3	52
PB8 (22-28)	PB8 (16-20)	53.4	49.5	45.6	54.8
PB9 (22-28)	PB9 (16-20)	51	50.1	42.9	52.7
PB10 (22-28)	PB10 (16-20)	49.9	49.1	46.2	55.6
PB11 (22-28)	PB11 (16-20)	56.3	52.5	46.7	55.2

Control Swiss mice

Treated Swiss mice

Every alternate regimen

5-FU Treated	Untreated control	High Dose	Medium Dose	Low Dose	Every alternate regimen
PB7 (22-28)	PB7 (16-20)	50.1	48.5	43.3	52
PB8 (22-28)	PB8 (16-20)	53.4	49.5	45.6	54.8
PB9 (22-28)	PB9 (16-20)	51	50.1	42.9	52.7
PB10 (22-28)	PB10 (16-20)	49.9	49.1	46.2	55.6
PB11 (22-28)	PB11 (16-20)	56.3	52.5	46.7	55.2
Spectral Data (DMSO/TMS), δ values in ppm 165.0, 153.0, 143.0, 138, 134, 123, 120 (C-4a), 110, 119.8, 110, 32 (CH3).

4-Fluoro-N-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)benzamide (PB4)

The title compound 4 was framed with the response between PB2 (1; 0.01 mole) and 4-fluoro aromatic acid (0.1 moles) of the former course. The yield was filtrated and cleaned with cool ice water. The yield was recrystallized from ethanol and cleaned by column chromatography, m.p. 173°C. The Yield was 60%.

Infrared Spectral Data (KBr), value in cm⁻¹ 3,467.33 (s), 3,289.52 (s), 3,089.52, 1,680.10, 1,600.92, 1,522.81, 1,299.85, 1,181.03, 1,102.48 (C-F); 1H NMR Spectral Data (DMSO/TMS), δ values in ppm 10.2 (s, NH), 8.1 (m, Ar-H), 7.4 (m, Ar-H), 7.8 (d, 1H, Ar-H), 8.1 (m), 7.6 (m), 7.2 (m, 2H), 4.0 (s, CH3);

4-Cyano-N-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)benzamide (PB5)

The title compound 5 was framed with the response between PB2 (1; 0.01 moles) and 4-cyano aromatic acid (0.1 moles) of the former course. The yield was filtrated and cleaned with icy ice water. The yield was recrystallized from ethanol and cleaned by column chromatography, m.p. 203°C. The yield was 68%.

Infrared Spectral Data (KBr), value in cm⁻¹ 3,506.66 (s, N-H 1°amine), 3,315.07 (s, N-H), 3,080.41 (s, Ar-C-H), 2,281.48 (C≡N), 1,683.34 (s, C=O), 1,599.48 (s, C=N), 1,566.88 (C=C aromatic amine), 1,293.16 (s, C-N), 1,178.44 (s, C-N); 1H NMR Spectral Data (DMSO/TMS), δ values in ppm δ 10.2 (s), 8.2 (d), 8.1 (m), 7.8 (d), 8.1 (m), 7.6 (m), 7.2 (m), 4.0 (s); 13C NMR Spectral Data (DMSO/TMS), δ values in ppm 164.8, 153.0, 143, 138-136, 130.2, 129, 127, 123, 119.8, 110.1, 32.

N-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (PB6)

The title compound 6 was formed with the response between PB2 (1; 0.01 mole) and 4-nitro aromatic acid (0.1 moles) of the first course. The yield was filtrated and cleaned with super cold water. The yield was recrystallized from ethanol. It was cleaned by column chromatography. m.p. 211°C. 71% of yields were acquired.

Infrared Spectral Data (KBr), value in cm⁻¹ 3490.830, 3,321.21, 3,092.40, 1,692.78, 1,608.00, 1,520.70, 1,360.35, 1,307.60, 1,189.24; 1H NMR Spectral Data (DMSO/TMS), δ values in ppm δ 10.2 (s), 8.1 (m), 8.4 (d), 7.8 (d), 8.1 (m), 7.6 (m), 7.2 (m), 4.0 (s); 13C NMR Spectral Data (DMSO/TMS), δ values in ppm δ 165, 153-151, 143, 138, 136, 130, 128.1, 127.0, 124-123, 118.2, 110.1, 32.

1-Methyl-2-(4-(5-phenyl-1H-tetrazol-1-yl)phenyl)benzo[d]imidazole (PB7)

The title compound 7 was treated alongside the measure of PCl₅ (0.01 mole) at 100°C until the point that the assessment of HCl exhaust wrapped up. That mixture

Figure 2. Reaction Scheme

7.5 (m), 7.2 (m), 7.9 (d), 6.5, 5.3 (s), 4.0 (s); 13C NMR Spectral Data (DMSO/TMS), δ values in ppm 153, 146, 143, 136, 128, 123, 12.7, 119, 115, 110, 32.

N-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)benzamide (PB2)

It was set up by utilizing PB2 (1; 0.01 mole) of and benzoyl chloride (0.1 moles) was refluxed with pyridine (40 mL) for 15hrs. That yield was undisturbed and included with icy ice, neutralized with the assistance of conc. HCl which created yield. The yield was separated by filtration and cleaned with frosty ice water. The yield was recrystallized from ethanol and separated by column chromatography, m.p. 162°C. The Yield was 70%.

Infrared Spectral Data (KBr), value in cm⁻¹ 3432.37, 3345.20, 3074.93, 1687.42, 1653.31, 1569.83, 1268.21, 1158.37; 1H NMR Spectral Data (DMSO/TMS), δ values in ppm 10.2 (s, 1H), 8.0 (d), 7.6 (m), 7.7 (m), 7.8 (d), 8.1, 7.5, 7.2 (m), 4.0 (s). 13C NMR Spectral Data (DMSO/TMS), δ values in ppm 153.0, 143, 138,136,134,132, 129, 127, 126, 123, 119, 110, 32.

4-Chloro-N-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)benzamide (PB3)

The title compound 3 was formed with the reaction between PB2 (1; 0.01 mole) and 4-chloro aromatic acid (0.1 moles) of the former course. The yield was filtered and cleaned with chilly ice water. The yield was recrystallized from ethanol and cleaned by column chromatography, m.p.184 °C. The Yield was 65%.

Infrared Spectral Data (KBr), value in cm⁻¹ 3,481.10, 3,289.02, 3,095.89, 1,664.50, 1,576.79, 1,512.67, 1,293.15, 1,162.02 (s, C-N), 760.93; 1H NMR Spectral Data (DMSO/TMS), δ values in ppm 10.2 (s), 8.0 (d), 7.8 (d), 8.1 (m), 7.6 (m), 7.2 (m), 4.0 (s); 13C NMR Spectral Data (DMSO/TMS), δ values in ppm 165.0, 153.0, 143.0, 138, 134, 123, 120 (C-4a), 110, 32.
Vijayakumar K and Sountharrajan S

Asian Pacific Journal of Cancer Prevention, Vol 19

has some free POCI. By refining of that none responded POCI were expelled with low weight. At that point it was permitted to respond with a super cold arrangement of NaN(CO2H)2 and added sodium acetic acid derivation to continue permitting to reflux overnight. The untreated arrangement was partitioned and dissipates to acquire the yield. The yield separated and cleaned with super cold water. The yield was recrystallized from the mixture of benzene and pet-ether, m.p. 209°C. The Yield was half.

Elemental analysis for \(C_{21}H_{15}F_{2}N_{6} \): C, 69.90; H, 3.90; N, 22.04; Found: C, 69.90; H, 3.92; N, 22.10.

Infrared Spectral Data (KBr), spectral values in cm\(^{-1}\) 3,303.66 (s, C-H stretching), 3,306.45, 3,084.66 (aromatic C-H stretching), 1,675.80 (C=N, tetrazole), 1,610.08 (C=N, tetrazole), 1,605.65 (C=N, aromatic amine), 1,586.00; 1HNMR Spectral Data (DMSO/TMS), \(\delta \) values in ppm 13, 12-11, 10-9, 8-7, 6-5, 4-3, 2-1, 0.

The title compound was prepared by the regular procedure. The yield was recrystallized from the blend of benzene – petroleum ether. It was cleaned by column chromatography and m.p. 241°C. The Yield was 52%.

Elemental analysis for \(C_{21}H_{15}F_{2}N_{6} \); C, 69.89; H, 3.90; Found: C, 69.97; H, 3.92; N, 22.10.

Infrared Spectral Data (KBr), spectral values in cm\(^{-1}\) 3,302.05 (s, N-H), 3,077.38 (s, Ar-C-H), 1,704.33 (s, C=O), 1,614.42 (C=N, tetrazole), 1,528.64 (C=C aromatic amine), 1,306.00; 1HNMR Spectral Data (DMSO/TMS), \(\delta \) values in ppm 13, 12-11, 10-9, 8-7, 6-5, 4-3, 2-1, 0.

The title compound was prepared by the regular procedure, the yield was recrystallized from the mixture of benzene – petroleum ether and cleaned by column chromatography and m.p. 252°C. The Yield was 50%.

Elemental analysis for \(C_{21}H_{15}F_{2}N_{6} \); C, 64.98; H, 4.02; N, 22.04; Found: C, 64.89; H, 4.10; N, 22.09.

Infrared Spectral Data (KBr), spectral values in cm\(^{-1}\) 3,294.23 (s, N-H), 3,299.45, 3,079.90 (s, C-H), 1,704.33 (s, C=O), 1,614.42 (C=N, tetrazole), 1,528.64 (C=C aromatic amine), 1,306.00; 1HNMR Spectral Data (DMSO/TMS), \(\delta \) values in ppm 13, 12-11, 10-9, 8-7, 6-5, 4-3, 2-1, 0.

The title compound was prepared by the regular procedure, the yield was recrystallized from the mixture of benzene – petroleum ether and cleaned by column chromatography and m.p. 328.08 (N-H stretching), 3,076.24, 1,675.08, 1,604.46, 1,230.00, 786.00; 1HNMR Spectral Data (DMSO/TMS), \(\delta \) values in ppm 8.1 (m), 7.9 (m), 7.6 (m), 7.1 (m), 6.9 (m), 4.0 (s); 13CNMR Spectral Data (DMSO/TMS), \(\delta \) values in ppm 153, 143-137, 132, 128.3, 125, 121, 110, 32; Mass Spectra Data Values, m/z (%) 389.1375 (0.40), 378.01 (0.17), 373.1059 (0.20), 371(0.02), 387 (0.01), 373.1059 (0.20), 371(0.02), 355.1524 (0.24), 351 (0.01), 313.0823 (0.50), 311 (0.01), 277.1216 (0.18), 275 (0.02), 257.0532 (0.08), 255 (0.02), 251.0917 (0.20), 249 (0.02), 209.1145 (0.18), 207 (0.01), 181.0251 (0.35), 179 (0.02), 139.0021 (0.40), 137 (0.01), 131.0725 (1.00), 113.3541 (0.37), 111 (0.02), 77.0456 (0.63).

Discussion

The anticancer activity

Anticancer activity of in vivo Animals

The age of 6-8 week and weight 105-120 g of Swiss mice were utilized and nourished with a store eating...
regimen and water. The endorsement technique was acquired from the Ethics Committee for Research in Animals.

The toxicity study of acute and subacute

Intense and subacute lethality tests were performed by the OECD rule for chemicals. Swiss mice (5 males and 5 females for each gathering) were nourished (by means of gastric gavage) with three measurements levels of ethanol with compound (resuspended in a blend of refined water and Tween-80, 4:1, v:v), i.e., 1,000, 3,000, and 5,000 mg/kg body weight. The control Swiss mice were sustained with the blend of refined water and Tween-80.

Autopsy and histopathology

For both toxicity and anticancer action assessment, all organs were expelled at autopsy and watched perceptibly. Tests were settled in 10% formalin solution. Specimens were washed in phosphate buffer three times, at that point got dried out in a rising arrangement of ethanol for 15 min each and installed in paraffin, trailed by segmenting and staining with hematoxylin and eosin.

Statistical analysis

Data are expressed as median (range) values. A significant difference between quantitative data of more than two data sets was performed by Kruskal-Wallis test. A significant difference between two quantitative data sets was performed by Mann-Whitney test. The statistical significance level was set at α=0.05 for all tests.

Results for anticancer activity

In vivo model for evaluation of toxicity and anticancer activity

Toxicity test

For the acute and subacute toxicity studies, single oral doses of rough ethanol with compounds at all of the three levels (1,000, 3,000, and 5,000 mg/kg body weight) did not cause mortality in any animal (0% mortality) amid the examination time frame. Just stomach disturbance was seen in all animals quickly subsequent to encouraging them with the concentrate. The animals, however, recouped from the side effect inside one hour of dosing. The normal everyday admission of water and sustenance, including the normal body weight of animals, were practically identical in all gatherings. No anomalous histopathology was seen in any imperative organ at examination.

Acknowledgements

The authors are thankful to the Principal and Management Committee members of Jamal Mohamed College (Autonomous), Tiruchirappalli-20 and M. Kumarasamy College of Engineering (Autonomous), Karur-113, for providing necessary facilities for this work.

References

Abdel-Rahman AE, Mahmoud AM, El-Naggar GM (1983). Synthesis and biological activity of some new benzimidazolyl-azetidin-2-ones and-thiazolidin-4-ones. Pharmacie, 38, 589.

Barker AJ (1995). Heterocyclic derivatives and their use as anti-cancer agents. Chem Abstr, 122, 214009.

Bhusan B, Bhagyesh B, Suvarna Ch, et al (2009). Synthesis of novel benzimidazole derivatives as Potent antimicrobial agent. Rasyan J Chem, 2, 186.

Bhaskar VH, Mohite PB, Digest (2010). Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. J Nano Biost, 5, 177.

Can-Eke B, Puskullu MO, Buyukbingol E, Iscan M (1998). A study on the antioxidant capacities of some benzimidazoles in rat tissues. Chem Bio Inter, 113, 65.

Cana N, Turunen A (2003). Synthesis of some new benzimidazole carbamate. Derivatives for evaluation of antifungal activity. Turk J Chem, 27, 35.

Davodnia A, Roshani M, Saleh Nadim E, et al (2007). Microwave-assisted synthesis of new pyrimidol[4,5,5-4,5] thiazolo[3,2-a] benzimidazol-4(3H)-one derivatives in solvent-free condition. Chin Chem Lett, 18, 1327.

Denny WA, Rawcastle GW, Bagley BC (1990). Potential antitu-. mor agents. Structure-activity relationships for 2-phenylbenz-. imidazole-4-carboxamides, a new class of minimal DNA-. intercalating agents which may not act via topoisomerase II. J Med Chem, 33, 814.

Diveeva LN, Kuzmenko TA, Morkovnik AS, Komissarov VN (2006). Synthesis and some conversions of N-substituted benzimidazole-2-sulfonic acids. Chem Heterocyclic Compds Chem Heter Compds, 42, 463.

Fukuda T, Saito T, Tajima S, Shimohara K, Ita K (1984). Synthesis and antimicrobial evaluation of some new. 2-(2-p-chlorophenyl) benzimidazol-1-yl. Arzneim.-Forsch. Drug Res, 34, 805.

Gravatt GL, Baguley C, Wilson WR (1994). Synthesis and antitumor activity of dna minor groove-targeted aniline mustard analogs of pibenzimol. J Med Chem, 37, 4338.

Islam I, Skibo EB, Dorr RT, Alberts DS (1991). Structure-activity studies of antitumor agents based on pyrrolo[1,2-a] benzimidazoles: new reductive alkylating DNA cleaving agents. J Med Chem, 34, 2954.

Jadhav SB, Shastri RA, Bagul KR, Gaikwad KV (2009). Synthesis and antimicrobial activity of n-substituted benzimidazoles. Ind J Heter Chem, 18, 319.

Karen K (2006). Antiviral drugs for cytomegalovirus diseases. Antiviral Res, 71, 154.

Khairnar VL, Lockhande SR, Patel MR, Khadse BG (1981). Synthesis and screening for antitubercular. Activity of Substituted-S-(pyrimidyl or quinolyl)-2- (thio or sulfonyl)- benzimidazoles. Chem Abstr, 95, 203833h.

Kruse LL, Ladd DL, Harrsch PB, McCabe FL, Johnson R (1989). Synthesis-anti bacterial-anti-asthmatic-and-anti-diabetics of benzimidazole. J Med Chem, 32, 409.

Kus C, Aylan-Kicigil G, Iscan M (2004). Synthesis and antioxidant. Properties of some novel benzimidazole derivatives on lipid. Arch Pharmac Res, 27, 156.

Mahajan SS, Nandre RG (2006). The synthesis of 2-mercaptopo-5-methoxybenzimidazole. Ind J Chem, 45, 1756.

Mertens A, Muller-Beckmann B, Kampe W, Holck JP, Vonder Saal W (1987). Synthesis of 1,3-dihydro-3,3-dimethyl-2H indol-2-one derivatives as possible nonsteroidal cardiactonics. J Med Chem, 30, 1279.

Nakano H, Inoue T, Kawasaki N, et al (1999). Synthesis of benzimidazole derivatives as antiallergic agents with 5-lipoxygenase inhibiting action. Chem Pharm Bull, 47,
Popp FD (1911). Synthesis of potential anticancer agents, Schiff bases and related compounds. *J Med Chem*, 7, 210.

Ramla MM, Omar MA, Tokuda H, El-Diwani HI (2007). Synthesis and inhibitory activity of new benzimidazole derivatives against Burkitt’s lymphoma promotion. *Bioorg Med Chem*, 15, 6489.

Rahul RN, Devanand BS (2006). Synthesis, characterization and biological evaluation of new series of 3-fluoro-4-[(4-substituted piperidin)-1-yl Phenyl]-quinazolin-4-yl-amine as potential antibacterial agents. *Chin Chem Lett*, 17, 453.

Ramanatham V, Sanjay DV, Umesh NB, Shekar BB (2008). Synthesis, anti-bacterial, anti-asthmatic and anti-diabetic activities of novel N-substituted 2-(4-styrylphenyl)-1H-benzimidazole. *Arkivoc*, 14, 37.

Sushil KK, Varsha K, Pradeep M, Jain NK (2008). Design, synthesis and potential CNS activity of some novel 1-(4-substituted-phenyl)-3-(4-oxo-2-propyl-4H-quinazolin-3-yl)-urea. *Arkivoc*, 14, 17.

Soliman FSG, Rida SM, Kappe T (1984). Synthesis and biological activity of new 3- chloro-4-(3-substituted phenyl)-1-(5-(2- methyl-1H-benzo[d]imidazol-1-yl) methyl)-1,3,4-thiadiazol-2-yl) azetidin-2-one. *Arch Pharm*, 317, 951.

Todd EC, Zachary S, Jones RD, et al (2007). Tetrazole and ester substituted tetrahydroquinolines as potent cholesteryl ester transfer protein inhibitors. *Bioorg Med Chem Lett*, 17, 2608.

Varma RR, Athlekar SV, Bobade AS, Patil LS, Chowdhary AS (2010). Synthesis and antimicrobial activity of phenyl thioureido sulfonamido benzothiazoles. *Ind J Heter Chem*, 19, 245.

Vinodkumar R, Vaidya SD, SivaKumar BV, et al (2008). Synthesis, anti-bacterial, anti-asthmatic and anti-diabetic activities of novel N-substituted 2-(4-styrylphenyl)-1H-benzimidazole and N- substituted-3-[4-(1H-benzimidazole-2-yl)-phenyl]-acrylic acid. *J Med Chem*, 43, 986.

Yousef RM, Samad BT, Laden E (2008). Synthesis of novel 2-Alkyl-5-4-[3-alkylsuxazol. -5-yl)methoxy]phenyl]-2H-tetrazoles. *Acta Chim Slov*, 55, 554.

Zhan HZ, Tong SL, Jian JLM (2007). A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. *Fur Chem*, 138, 89.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.