Intrinsic Reliability improvement in Biaxially Strained SiGe p-MOSFETs

S. Deora1,3, A. Paul2, R. Bijesh1, J. Huang3, G. Klimeck2, G. Bersuker1, P. D. Krisch3 and R. Jammy3.

1 Department of Electrical Engineering, Indian Institute of Bombay, Mumbai 400076, India
2 School of Electrical and Computer Engineering and Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907, USA.
3 Sematech, Austin, TX USA, email: shwetadeora@gmail.com

Abstract—In this letter we not only show improvement in the performance but also in the reliability of 30nm thick biaxially strained SiGe (20%Ge) channel on Si p-MOSFETs. Compared to Si channel, strained SiGe channel allows larger hole mobility (\(\mu_h\)) in the transport direction and alleviates charge flow towards the gate oxide. \(\mu_h\) enhancement by 40% in SiGe and 100% in Si-cap SiGe is observed compared to the Si hole universal mobility. A ~40% reduction in NBTI degradation, gate leakage and flicker noise (1/f) is observed which is attributed to a 4% increase in the hole-oxide barrier height (\(\phi\)) in SiGe. Similar field acceleration factor (\(\Gamma\)) for threshold voltage shift (\(\Delta V_T\)) and increase in noise (\(\Delta S_{VG}\)) in Si and SiGe suggests identical degradation mechanisms.

Index Terms—Gate leakage, p-MOSFET, negative bias temperature instability (NBTI), SiGe, Tight-Binding.

I. INTRODUCTION

As the conventional CMOS scaling approaches its limit, interest in alternate high performance material is intensifying. One of the approaches to overcome the limits of device scaling is to increase the performance by integrating new channel material on Si substrate, while maintaining the compatibility with CMOS technology. Silicon-Germanium (SiGe) possesses several attractive properties which make it the natural contender for extending the performance of Si [1]-[5]. Selective, epitaxially strained SiGe is an attractive channel material due to its high hole mobility and compatibility with conventional CMOS processes [1]. However, placement of high-k directly on top of SiGe will require low defect density in order to maintain low gate leakage (\(J_G\)) and better device reliability. Mechanisms leading to a low \(J_G\) have been identified [3]. However, it is equally important to understand the mechanisms of reliability degradation in these devices [4], [5].

In this letter, we studied the performance, NBTI and flicker noise (1/f) in SiGe channel p-MOSFETs and compared it with Si devices. Apart from the improvement in the performance, it is also demonstrated that \(\Delta V_T\), input referred noise magnitude (\(S_{VG}\)) and \(\Delta S_{VG}\) is lower in SiGe compared to Si. However, both SiGe and Si show identical oxide field (Eox) acceleration factor (\(\Gamma\)) for \(\Delta V_T\) and \(\Delta S_{VG}\), which demonstrates similar degradation mechanisms. Lower \(\Delta V_T\) in SiGe is attributed to the increase in the hole-oxide barrier height (\(\phi\)), which reduces the hole tunneling probability. Lower \(J_G\) supports lower NBTI degradation in SiGe compared to Si.

II. DEVICE AND MEASUREMENT DETAILS

Experiments were performed on epitaxial 30nm thick SiGe (~20%Ge) grown on (001) Si surface with <110> channel orientation, and with and without Si cap p-MOSFETs [3]. The substrate doping is \(\sim 10^{19}\text{cm}^{-3}\). The surface was cleaned with HF chemistry, which was immediately followed by a ~3nm thick HfSiO deposition. The gate dielectric was grown by atomic layer deposition. Subsequent processing includes a conventional gate-first metal gate (MG) process with 950°C source/drain annealing for 10s. Gate material used here is 700nm thick TaN with metal gate work-function (\(\Phi_m\)) of ~4.6eV. A Si cap of 3nm thickness was used.

NBTI stress was done for 1000s at 125°C at different Eox. \(\Delta V_T\) was measured using a conventional on-the-fly (OTF) \(I_{DLIN}\) technique [7]. Channel length and width are 1\(\mu\)m and 10\(\mu\)m respectively, for NBTI and 1/f measurements.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the measured \(\mu_h\) as a function of inversion layer hole density (\(N_s\)) for Si, SiGe and Si/SiGe p-MOSFETs along with the universal hole mobility. SiGe shows ~1.5X improvement in \(\mu_h\) over Si which gets better with Si-cap (~2X) due to the better oxide-semiconductor interface quality. A similar improvement in the drain current (\(I_D\)) and the transconductance (\(g_m\)) is also observed (Fig.1 (b)). It is important to note that in spite of poor interfacial quality between SiGe and gate dielectric [3], a good amount of improvement in the performance is observed in the SiGe devices. Tight-Binding (TB) [11], [12] simulations
demonstrate ~2.8X reduction in hole transport mass \((m_{h}^{SiGe})\) and a ~36meV strain field splitting of heavy hole (HH) and light hole (LH) in biaxially strained SiGe (Table 1). Using these \(m_{h}^{SiGe}\), the theoretical estimation of the phonon limited \(\mu_{h}\) enhancement \([6]\) \(\left(\frac{\mu_{SiGe}}{\mu_{Si}} = \frac{m_{h}^{SiGe}m_{DOS}^{Si}}{m_{h}^{Si}m_{DOS}^{SiGe}}\right)\) is ~3.4X (only HH contribution is taken due to the large HH and LH band splitting), where \(m_{DOS}\) and \(m_{C}\) are the DOS and conductivity hole mass respectively, for Si and SiGe. A further reduction in \(\mu_{h}\) is expected due to interface scattering (i.e due to \(N_{IT}\) or/and the surface roughness scattering (SRS) \([17]\)) which is not taken into account in \([6]\). Hence, interface scattering limits the improvement of SiGe over Si to only 1.5X as observed experimentally. Thus, in spite of poor interface at SiGe/high-k as reported in the literature, performance \((I_{OFF}, g_{m}\) and \(\mu_{h}\)) improves considerably in biaxial compressive strained SiGe p-MOSFETs compared to Si. Si-cap further enhances performance due to the suppression of interface scattering.

NBTI study was performed on Si, SiGe and Si/SiGe pMOSFETs. It is now well known that NBTI is oxide field driven \((E_{ox})\) and by stress bias \((V_{G})\) \([8], [9], [10]\). For comparison of NBTI degradation in these devices, effective gate oxide field was estimated from capacitance-voltage (C-V) measurements \((\text{Fig.1 (c)}). E_{ox}\) determination was done using a 1D self-consistent Schrodinger-Poisson based C-V simulation. The effective hole mass \((m_{h}^{*})\) and valence band splitting \((\Delta E_{V})\) for SiGe devices used for the C-V simulation are obtained from an atomistic 20 band sp\(^3\)d\(^{2}\)s Tight-Binding based Virtual Crystal Approximation \((\text{TB-VCA})\) model \([11], [12]\). The \(m_{h}^{*}\) and \(\Delta E_{V}\) used for the CV simulations are reported in Table 1. After matching the experimental C-V \((\text{Fig.1 (c)}), inversion \((Q_{inv})\) and depletion \((Q_{dep})\) charge were determined from the self-consistent calculation, which in turn estimates \(E_{ox} = (Q_{dep}+Q_{inv}/2)/\varepsilon_{ox}\). We clearly see that C-V of conventional Si device is shifted towards the left by a value ~36mV.

\[\text{Table 1: Effective hole masses and valence band splitting}\]

Material	Bands	\(m_{h}/m_{0}\)	\(m_{DOS}/m_{0}\)	\(\Delta E_{V}\) (eV)
Si	HH	0.276	0.653	0
SiGe	HH	0.248	0.211	0.168
SiGe	LH	0.227	0.215	0.132

\(^{\text{§}}\) These band offsets are w.r.t the unstrained bulk Si VB value of 0eV

Figure 2(a) shows \(\Delta V_{T}\) as a function of stress time for Si and SiGe devices for different \(V_{G}\) stress at constant temperature. Irrespective of the channel material, \(\Delta V_{T}\) follows power law time dependence with power law time exponent \((n)\) ~0.155 - 0.16 (matching that of the reaction-diffusion (R-D) model) for different \(V_{G}\) stress values \([9], [10], [13]\). It is to be noted that extracted \(n\) is independent of stress \(V_{G}\), which suggests absence of bulk trap generation \([16]\) in the range of stress bias used for this study. Figure 2(b) shows the \(E_{OX}\) dependence of \(\Delta V_{T}\) for all the devices. The \(E_{OX}\) dependent slope \((\Gamma)\) remains the same, irrespective of the channel material. However, a ~4X reduction in \(\Delta V_{T}\) is observed for SiGe compared to Si. NBTI involves defect creation by the dissociation of Si-H bonds and subsequent transport of H \([9], [13]\). The difference in interface defect \((\Delta N_{IT})\) between SiGe and Si is mainly expected to arise from the difference in Si-H bond dissociation rate \((k_{D})\) since the diffusion medium (oxide) is the same. The NBTI degradation rate can be approximated as \(k_{T} \sim (N_{D} \ast N_{S} \ast P_{T})\) \([13]\), where \(N_{D} = \text{Si-H bond number}, N_{S} = \)
inversion hole density and $P_T \sim \exp \left(-\frac{e^2 \varphi}{m_{ox}^*} \right)$ is the field independent prefactor for hole tunneling probability, $m_{ox}^* = \text{hole effective mass in oxide}$ and $\varphi = \text{hole barrier height}$. Since N_S (obtained from C-V) is found to be constant at a given E_{ox} for all channel materials, ΔV_T depends only on N_0 and P_T. The gate leakage current (J_G) is a direct indicator of P_T. J_G reduces by $\sim 4X$ in SiGe compared to Si (Fig.3) which is attributed to two factors (a) increase in φ ($0.156eV$ increase) and (b) reduction in hole tunneling mass m_{001}^* ($1.12X$ reduction). Factor (a) has a stronger effect (exponential dependence) which suggests that reduction in P_T due to the increase in φ is the dominant factor in the reduction of ΔV_T. However, due to the direct placement of high-k on SiGe, N_0 is expected to increase (higher N_{IT}) and hence increase ΔV_T. But reduction in P_T compensates for the increase in N_0 for the devices used in this study. The presence of Si-cap further improves ΔV_T by $\sim 1.1X$ compared to SiGe, indicating a better interface quality. Hence, SiGe intrinsically improves NBTI, which can be verified by the reduction in J_G by approximately the same amount.

Figure 2. (a) ΔV_T as function of stress time for Si and SiGe. (b) Eox dependence of ΔV_T for Si, SiGe and Si/SiGe at constant temperature and stress time=1000s.

Robustness of SiGe MOSFETs for analog applications is tested using 1/f noise and impact of NBT stress on S_{VG}. Fig. 4(a) shows frequency dependence of S_{VG} at fixed (V_G-V_T) for all the 3 devices. SiGe and Si/SiGe show a reduction of $\sim 4X$ and $\sim 10X$, respectively in 1/f noise w.r.t Si at a fixed N_0 ($-V_G-V_T$). From [14], $S_{VG} \propto \int_{-V_T}^{V_T/2} N_i^* E_{f2} \frac{1}{N} dV$, γ is the attenuation constant of the wave function of the carrier in the oxide, N_i^* is the apparent oxide trap density and E_{f2} is the quasi-Fermi level. First reason for S_{VG} reduction in SiGe is the increase in γ ($= \frac{4\pi}{\hbar} \sqrt{2m^* \varphi}$) [14] due to the increase in φ. Second reason is due to the reduction in N_i^*. Contribution to S_{VG} from N_i^* (which is dominant near the E_{f2}) gets reduced due to larger separation of the valence band edge from E_{f2} in SiGe devices. Additionally higher g_m for SiGe and Si/SiGe further reduces 1/f noise (since $S_{VG} \sim 1/g_m^2$). Si-cap in Si/SiGe suppresses the direct tunneling, which can further reduce the 1/f noise [15]. Fig. 4(b) shows ΔS_{VG} as a function of stress Eox after NBT stress of 1000s at 125°C. ΔS_{VG} shows a $\sim 4X$ reduction in SiGe w.r.t Si reflecting resilient 1/f noise behavior in SiGe. SiGe and Si devices show identical Eox acceleration factor for ΔS_{VG}, which demonstrate similar degradation mechanism, also corroborated from NBTI study (Fig. 3-b). Thus, 1/f noise can be reduced by optimizing SiGe layer such that the increase in N_{IT} is compensated.

Figure 3. Gate leakage current density (J_G) as a function of Eox for Si, SiGe and Si/SiGe.

3x10^2
3x10^2

-0.1
-0.6
-0.1
-0.6

3x10^2
3x10^2

10^2
10^2

4X
4X

-6
-1
-6
-1

J_G (mAcm^2)
Eox (MV/cm)
J_G (mAcm^2)
Eox (MV/cm)
Figure 4. (a) S_{VG} as a function of frequency under constant inversion hole density ($N_h = Cox[V_g-V_T]$). S_{VG} reduces by ~4X and ~10X in SiGe and Si/SiGe respectively compared to Si. (b) ΔS_{VG} as function of stress Eox measured at constant $|V_g-V_T|$. Similar slopes suggest similar kind of degradation mechanisms for SiGe and Si.

IV. CONCLUSION

We have shown that biaxially strained SiGe channel shows improvement in performance due to the reduction in the hole transport mass and valance band splitting. There is a significant reduction in ΔV_T (NBTI), J_G, S_{VG} (1/f) and ΔS_{VG} for SiGe compared to Si. Si-cap on SiGe further improves performance and reliability, but at an added process complexity. Therefore, in spite of high N_{IT} as reported in the literature, intrinsic properties of SiGe (obtained from TB simulations) not only improve the performance but also enhance the device reliability. By proper device and process optimization [2, 3], SiGe alone can qualify as a promising channel material for future CMOS technology.

ACKNOWLEDGMENT

The authors would like to acknowledge the reviewers for their useful comments. nanoHUB.org for computational resources. Financial support from GRC, MSD-FCRP, NSF and MIND/NRI are also acknowledged.

REFERENCES

[1] T. Ghani et al, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors” in IEDM Tech. Dig., p. 978-980, 2003.
[2] H. R. Harris, P. Kalra, P. Majhi, M. Hussain, D. Kelly, J. Oh, D. Heh, C. Smith, J. Barnett, P. D. Kirsch, G. Gebura, J. Jur, D. Lichtenwalner, A. Lubow, T. P. Ma, G. Sung, S. Thompson, B. H. Lee, H.-H. Tseng, and R. Jammy, “Band-engineered low PMOS VT with high-k/metal gates featured in a dual channel CMOS integration scheme,” in Proc. Symp. VLSI Technol., 2007, pp. 154–155
[3] J. Huang, et. al, “Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High-k/Metal Gate Stacks Directly on SiGe and a Method to Enable sub-1nm EOT,” in VLSI Tech. Sym., 2008, p. 82.
[4] P. Packan, S. Cea, H. Deshpande, T. Ghani, M. Giles, O. Golonzka, M. Hattendorf, R. Kotlyar, K. Kuhn, A. Murthy, P. Ranade, L. Shifren, C. Weber and K. Zawadzki, “High Performance Hi-K + Metal Gate Strain Enhanced Transistors on (110) Silicon” in IEDM Tech. Dig., 2008.
[5] C. H. Lee, S.L. Wu, S.H. Chen, C.W. Kuo, Y.M. Lin, J.F. Chen and S.J. Chang, “Negative bias temperature instability characteristics of strained SiGe pMOSFET” in Elec. Letters, vol. 43, no. 15, pp. 835 – 836, July 2007.
[6] Y. Sun, S. E. Thompson, and T. Nishida, "Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors," Journal of Applied Physics, vol. 101, p. 10453, May 2007.
[7] A. T. Krishnan, C. Chancellor, S. Chakravarthi, P. E. Nicollian, V. Reddy, A. Varghese, R. B. Khamankar, and S. Krishnan, “Material dependence of hydrogen diffusion: implications for NBTI degradation”, in proc., Int. Electron Device Meet., p.688, 2005.
[8] M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Babcock, R. Lindley, P. Clifton, M. Redford, and A. Shibkov, "Dynamic recovery of negative bias temperature instability in p-type metal-oxide-semiconductor field-effect transistors," Appl. Phys. Lett., vol. 83, no. 8, pp. 1647-1649, Aug. 2003.
[9] M. Alam and S. Mahapatra, "A comprehensive model of PMOS NBTI degradation," Microelectron. Reliab., vol. 45, no. 1, pp. 71-81, Jan. 2005
[10] A. E. Islam, J. H. Lee, W. H. Wu, A. Oates and M. A. Alam, "Universality of Interface Trap Generation and Its Impact on ID Degradation in Strained/Unstrained PMOS Devices During NBTI Stress," in IEDM Tech. Dig., 2008, pp. 107-110.
[11] G. Klimeck, et al., "Development of a Nanoelectronic 3-D (NEMO-3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloysed Quantum Dots," *Computer Modeling in Eng. and Science (CMES)*, vol. 3, no. 5, pp. 601-604, 2002.

[12] Abhijeet Paul, Saumitra Mehrotra, Mathieu Luisier, Gerhard Klimeck, "Performance Prediction of Ultra-scaled SiGe/Si Core/Shell Electron and Hole Nanowire MOSFETs," *IEEE Electron Device Lett.*, vol. 31, pp. 278-280, 2010.

[13] A. E. Islam, H. Kufuoglu, D. Varghese, S. Mahapatra and M. A. Alam, "Recent issues in negative bias temperature instability: Initial degradation, field dependence of interface trap generation, hole trapping effects and relaxation," *IEEE Trans. Electron Devices*, vol. 54, no. 9, pp. 2143-2154, Sep. 2007.

[14] K. K. Hung, P. K. Ko, C. Hu, Y. C. Cheng, "A Unified Model for the Flicker Noise in Metal-Oxide-Semiconductor Field-Effect Transistors," *IEEE Tran. Elec. Dev.*, vol. 37, no. 3, p. 654, March 1990.

[15] B. Mheen, Y-J. Song, J-Y. Kang and S. Hong, "Strained-SiGe complimentary MOSFETs adopting different thickness of silicon cap layers for low power and high performance applications," *ETRI Jour.*, vol. 27, no. 4, p. 349, August 2005.

[16] S. Mahapatra and M. A. Alam, "Defect generation in p-MOSFETs under negative-bias stress: An experimental perspective," *IEEE Trans. Device Mater. Rel.*, vol. 8, no. 1, pp. 35–46, Mar. 2008.

[17] S. Persson, D. Wu, P.-E. Hellstrom, S.-L. Zhang, M. Ostling “Quantifying hole mobility degradation in pMOSFETs with a strained-Si0:7Ge0:3 surface-channel under an ALD TiN/Al2O3/HfAlOx/Al2O3 gate stack”, in Solid-State Electronics 48 (2004) 721–729.