Comparative mitogenome analysis of two ectomycorrhizal fungi (*Paxillus*) reveals gene rearrangement, intron dynamics, and phylogeny of basidiomycetes

Qiang Li¹, Yuanhang Ren¹, Dabing Xiang¹, Xiaodong Shi¹, Jianglin Zhao¹, Lianxin Peng¹,²* and Gang Zhao¹*

Abstract

In this study, the mitogenomes of two *Paxillus* species were assembled, annotated and compared. The two mitogenomes of *Paxillus involutus* and *P. rubicundulus* comprised circular DNA molecules, with the size of 39,109 bp and 41,061 bp, respectively. Evolutionary analysis revealed that the nad4L gene had undergone strong positive selection in the two *Paxillus* species. In addition, 10.64% and 36.50% of the repetitive sequences were detected in the mitogenomes of *P. involutus* and *P. rubicundulus*, respectively, which might transfer between mitochondrial and nuclear genomes. Large-scale gene rearrangements and frequent intron gain/loss events were detected in 61 basidiomycete species, which revealed large variations in mitochondrial organization and size in Basidiomycota. In addition, the insertion sites of the basidiomycete introns were found to have a base preference. Phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies, indicating that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships of Basidiomycota. This study is the first report on the mitogenomes of *Paxillus*, which will promote a better understanding of their contrasted ecological strategies, molecular evolution and phylogeny of these important ectomycorrhizal fungi and related basidiomycete species.

Keywords: Basidiomycota, Boletales, Ectomycorrhizas, Gene rearrangement, Mitochondrial genome, Repeat

INTRODUCTION

Most boreal and north temperate forest tree species form mutualistic symbiotic relationships with ectomycorrhizal fungi (ECMF), which are of great significance to the balance and stability of forest ecosystems, carbon and nitrogen cycles, and the growth and reproduction of the fungi and host tree.

The genus *Paxillus* is an important ectomycorrhizal fungal group, widely distributed in the northern hemisphere. *Paxillus* species form ectomycorrhizal associations with various host plant species, including coniferous and hardwood trees (Hedh et al. 2009). It was reported that *Paxillus* can enhance the abiotic stress tolerance and promote the growth of host plants (Franco et al. 2014; Li et al. 2012; Ma et al. 2014). *Paxillus involutus*, the most studied species in the genus, has become one of the model organisms for revealing the evolution, life-style and physiology of ECMF (Rineau et al. 2012; Shah et al. 2013).

Studies of *Paxillus* nuclear genomes have found that species of this genus have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs) and retain a unique array of PCWDEs to adapt to mutualistic symbiotic life-styles (Kohler et al. 2015). Some nuclear genes have also evolved to better adapt to such life-styles (Kohler et al. 2015; Rajashekar...
et al. 2007). However, up to now, their mitochondrial genetic information has not yet been elucidated, limiting our overall understanding of the genetics and evolution of *Paxillus* species.

The genus *Paxillus* was divided into two groups in Europe, the *P. involutus* complex and *P. rubicundulus*. *Paxillus rubicundulus* occurs mainly in wetland habitats and only forms a relationship with *Alnus* species (Jargeat et al. 2016), while the *P. involutus* complex occurs in more diverse habitats and forms mutualistic relationships with various tree species. Therefore, host specificity could be used as a useful feature to distinguish *P. rubicundulus* (Jargeat et al. 2016), but accurately identifying species in the *P. involutus* complex remains difficult (Jargeat et al. 2014). Phylogenetic studies have revealed four genetic lineages within the *P. involutus* complex (Jargeat et al. 2014), and in addition there are some species whose taxonomic status remains confusing. This presents difficulties for efficient utilization and research into those *Paxillus* species. Mitochondrial genes have been reported as a powerful tool for the study of phylogeny due to several advantages (Delsuc et al. 2003; Nie et al. 2019), but up to now no mitochondrial genome (mitogenome) from the genus *Paxillus*, or even the family *Paxillaceae*, has been available.

The mitogenome of eukaryotic organisms was reported to have been obtained from the common ancestral *Alphaproteobacteria* though endosymbiosis (Lang et al. 1999). In basidiomycete species, they generally contain 15 core protein coding genes (PCGs), including 14 genes for energy metabolism (atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4l, nad5, and nad6) and 1 rps3 gene for transcriptional regulation. In addition, 20–36 tRNA genes and 2 rRNA genes were also detected in basidiomycete mitogenomes (Li et al. 2018a; Li et al. 2018d). The mitogenome has become a powerful tool for the study of phylogeny due to several advantages (Delsuc et al. 2003; Nie et al. 2019), but up to now no mitochondrial genome (mitogenome) from the genus *Paxillus*, or even the family *Paxillaceae*, has been available.

In this study, the mitogenomes of two *Paxillus* species, *P. involutus* and *P. rubicundulus*, were assembled and annotated in order to: (1) reveal features of *Paxillus* mitogenomes and the variations or similarities between those of the two species in genome size, gene content, gene arrangement, and repeat sequence; (2) demonstrate any dynamic changes of introns and gene rearrangement in the two *Paxillus* mitogenomes compared with other basidiomycete mitogenomes to contribute to a more comprehensive understanding of their size and organization variation in basidiomycetes; and (3) analyze the phylogenetic relationships of *Basidiomycota* based on the combined mitochondrial gene set. The mitogenomes of the two *Paxillus* species could further our understanding of the taxonomy, evolution, and potential molecular mechanisms driving host specificity in an important ectomycorrhizal.

MATERIALS AND METHODS

Mitochondrial genome assembly and annotations

The raw sequencing data of *Paxillus involutus* and *P. rubicundulus* were downloaded from the Joint Genome Institute (JGI) database (Kohler et al. 2015). A series of quality control steps were conducted to obtain clean reads from the raw sequencing data. First, we removed adapter reads using AdapterRemoval v2 (Schubert et al. 2016), and then ngsShoRT (Chen et al. 2014) to filter low-quality sequences. The *Paxillus* mitogenomes were assembled with the resulting clean reads using SPAdes 3.9.0 (Bankevich et al. 2012), and gaps between contigs were filled using MITOhim V1.9 (Hahn et al. 2013). The complete mitogenomes obtained were first annotated according to our previously described methods (Li et al. 2018a; Li et al. 2018d). That is, the protein-coding genes (PCGs), rRNA genes and tRNA genes of the mitogenomes were initially annotated using MFannot (Valach et al. 2014) and MITOS (Bernt et al. 2013), based on the genetic code 4. PCGs were then predicted or modified with the NCBI Open Reading Frame Finder (Coordinators 2017), and further annotated by BLASTP searches against the NCBI non-redundant protein sequence database (Bleasby and Wootton 1990). tRNA genes were also predicted and identified with tRNAscan-SE v1.31 (Lowe and Chan 2016). Graphical maps of the two complete mitogenomes were drawn with OGDraw v1.2 (Lohse et al. 2013).

Sequence analysis of the *Paxillus* mitogenomes

Base compositions of the two *Paxillus* mitogenomes were calculated using DNASTAR Lasergene v7.1 (http://www.dnastar.com/). We then used the following formulas to assess strand asymmetries of the two mitogenomes: AT skew = (A - T) / (A + T), and GC skew = (G - C) / (G + C) (Wang et al. 2017). The synonymous (Ks) and nonsynonymous (Ka) substitution rates for core PCGs in the two mitogenomes were calculated with
DnaSP v6.10.01 (Rozas et al. 2017). MEGA v6.06 (Caspersen
mer 2016) was used to calculate the overall mean
genetic distances between each pair of the 15 core PCGs
(atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2,
 nad3, nad4, nad4L, nad5, nad6, and rps3), using the
Kimura-2-parameter (K2P) substitution model.

Repetitive element analysis
To identify if there were interspersed repeats or intra-
genomic duplications of large fragments throughout the
two mitogenomes, we conducted BLASTN searches
(Chen et al. 2015) of each mitogenome against itself
using an E-value of < 10^-10. Tandem repeats (> 10 bp in
length) in the two mitogenomes were detected using the
Tandem Repeats Finder (Benson 1999) with default pa-
rameters. Repeated sequences in the two mitogenomes
were also searched by REPutter (Kurtz et al. 2001) to
identify forward (direct), reverse, complemented, and
palindromic (reverse complemented) repeats. To identify
any gene fragments transferring between nuclear ge-
nomes and mitochondrial genomes of the two Paxillus
species, we performed BLASTN searches of the two
mitogenomes against their previously published nuclear
nucleomes (JOMD00000000.1 and JMDR00000000.1).

Comparative mitogenomic analysis and intron analysis
Up to now, only two mitogenomes from Boletales have
been published (Li et al. 2019a). We compared the gen-
ome sizes, base compositions, gene numbers, intron
numbers, and gene arrangements among different Bole-
tales species to assess variations and conservativeness
among the mitogenomes. Group I introns in cox1 genes
of the 61 published Basidiomycota mitogenomes were
classified into different position classes (Pcls) according
to the method of Ferandon et al. (Ferandon et al. 2010).
Each Pcl was constituted by introns inserted at the same
position in the coding region of the cox1 gene. The same
Pcl from different species usually has a high sequence
similarity, and contains orthologous intronic ORF. The
Pcls of cox1 gene were named by letters according to the
similarity with the described Pcls (Ferandon et al. 2010).
The conservativeness and variations of sequences around
intron insertion sites (~ 15 bp − 15 bp) were evaluated
using WebLogo (Crooks et al. 2004).

Phylogenetic analysis
In order to investigate the phylogenetic status of the two
Paxillus species within the Basidiomycota, we con-
structed a phylogenetic tree of 62 species based on the
combined mitochondrial gene set (15 core PCGs + 2
rRNA genes) (Li et al. 2018d). Anulohypoxylon stygium
(Ascomycota) was used as outgroup (Deng et al. 2018).
Individual mitochondrial genes were first aligned using
MAFFT v7.037 (Katoh et al. 2017), and these alignments
were then concatenated in SequenceMatrix v1.7.8 (Vai-
dya et al. 2011) to obtain a combined mitochondrial
genome set. Potential phylogenetic conflicts between differ-
ent genes were detected by a partition homogeneity test;
PartitionFinder 2.1.1 (Lanfear et al. 2017) was used to
determine best-fit models of evolution and partitioning
schemes. Both Bayesian Inference (BI) and Maximum
Likelihood (ML) methods were used to construct phylo-
genetic trees. MrBayes v3.2.6 (Ronquist et al. 2012) was
used to perform the BI analysis, and RAxML v 8.0.0
(Stamatakis 2014) the ML analysis.

Data availability
The complete mitogenomes of Paxillus involutus and P.
rubicundulus were deposited in GenBank under acces-
sion numbers MK993563 and MK993564, respectively.

RESULTS

Genome features and PCGs of Paxillus mitogenomes
The mitogenomes of both species were both composed
circular nucleotide molecules, of 39,109 bp and 41,
061 bp, respectively (Fig. 1). The average GC content of
the two mitogenomes was 21.39%. Both species contain-
negative AT skews and positive GC skews (Table S1).

There were 19 and 17 PCGs detected in the P. involu-
tus and P. rubicundulus mitogenomes, respectively
(Table S2), of which 78.95–82.35% were located in the
direct strand. Both the mitogenomes contained 15 core
PCGs, including 14 core PCGs for energy metabolism
and one rps3 gene for transcriptional regulation. In
addition, the P. involutus mitogenome contained a PCG
located in the second intron of the cox1 gene, which
encoded LAGLIDADG endonuclease. Paxillus rubicun-
dulus contained a PCG encoding DNA polymerase.
Three and one PCGs with unknown functions were de-
tected in the P. involutus and P. rubicundulus mitogenomes,
respectively. P. involutus and P. rubicundulus
contained a homologous PCG showing no significant
similarity with known protein sequences in the public
databases checked; this encoded 732 amino acids in the
P. involutus mitogenome and 792 amino acids in that of
P. rubicundulus.

rRNA genes and tRNA genes
Both the Paxillus mitogenomes contained two rRNA
genes, the large subunit ribosomal RNA (rnl) and small
subunit ribosomal RNA (rns) genes (Table S2). The
length of the rRNA genes varied between the two: there
were five nucleotide length variations between the two
rnl genes, and nine between the two rns genes.

The two mitogenomes both contained 25 tRNA genes,
which encode 20 standard amino acids (Table S2). Both
contained two tRNAs that code for arginine and serine
with different anticodons, two coding for leucine, and three coding for methionine with the same anticodons. All tRNAs in the two mitogenomes were folded into a classical cloverleaf structures (Fig. S1), with each 71–86 bp long. Three tRNA genes, including trnY, trnS and trnL contained large extra arms, which resulted in their tRNA gene length exceeding 85 bp. Of the 25 tRNA genes shared by the two Paxillus mitogenomes, 10 contained sites that varied between the two. Thirteen variable sites were detected in the 25 tRNAs between the two species, of which 53.85% occurred on the acceptor arm, suggesting that the acceptor arm was highly variable in the two Paxillus mitogenomes.

Intergenic sequence and mitogenome composition

Both the mitogenomes contained two overlapping regions (Table S2), one of which was located between the nad2 and nad3 genes (13 bp). Another overlapping region in P. involutus was located between cob3 and orf732 (46 bp), and a further one in P. rubicundulus was across the neighboring cob3 and orf792 genes (88 bp). The two Paxillus mitogenomes lacked the common overlapping region found in some other Basidiomycota mitogenomes located between the nad4L and nad5 genes. A total of 11,295 bp and 13,790 bp intergenic sequences were detected in the P. involutus and P. rubicundulus mitogenomes, respectively, with each intergenic sequence ranging from 9 bp to 3537 bp. The longest intergenic sequence detected was between cob and cob3 in the P. rubicundulus mitogenome.

Protein coding regions accounted for the largest proportion (40.92–43.60%) of the two Paxillus mitogenomes, followed by the intergenic region, which accounted for 20.88–33.58% of the whole mitogenomes (Fig. 2). RNA regions, including rRNA and tRNA, accounted for 19.41–20.38% of the two mitogenomes. The intronic region accounted for the smallest proportion of the two mitogenomes, with only 6.09–7.13%. Compared with the P. involutus mitogenome, the size of that of P. rubicundulus was expanded by 1952 bp, to which the intergenic region contributed 127.82% of the size expansion, while the other regions contracted in the P. rubicundulus mitogenome relative to that of P. involutus, indicating that the intergenic region was the most important factor contributing to the dynamic changes of mitogenomes in the two Paxillus species.

Repetitive elements in the two Paxillus mitogenomes

A total of 53 and 47 tandem repeats were detected in the P. involutus and P. rubicundulus mitogenomes, respectively (Table S3). The longest tandem repeat sequence was located in the P. rubicundulus mitogenome, with a length of 49 bp. Most of the tandem repeats contained 2–4 copies in the two mitogenomes. Using REPuter, we detected 1 complemented, 24 forward, 4 palindromic, and 21 reverse repeats in the P. involutus
mitogenome, accounting for 3.13% of the whole mito-
genome (Table S4). Repeated sequences identified by REPuter accounted for 3.25% of the P. rubicundulus mitogenome.

In order to detect whether there were gene fragments that naturally transferred between the mitochondrial and nuclear genomes of the two Paxillus species, we compared the two newly sequenced mitogenomes with their published nuclear genomes (Kohler et al. 2015) by BLASTN. Eleven repetitive fragments were identified between the mitochondrial and nuclear genomes of P. involutus, ranging from 33 bp to 3202 bp in length (Table S5). The pair-wise nucleotide similarities of these repetitive fragments ranged from 85.31–100%. The repetitive sequences detected in the P. involutus mitogenome accounted for 10.64% of the entire mitogenome. A total of 62 repetitive gene fragments were detected between the P. rubicundulus mitochondrial and nuclear genomes, with pair-wise nucleotide similarities ranging from 87.93–100%. The largest repeat fragment in the P. rubicundulus mitogenome reached 2367 bp, which contained a partial sequence of the rnl gene, the whole sequence of the cox2 gene, and the intergenic sequences around them. The repetitive gene fragments between P. rubicundulus mitochondrial and nuclear genomes accounted for 36.50% of the entire mitogenome.

Mitochondrial gene arrangement in Basidiomycota species
The mitochondrial gene arrangement in Basidiomycota varied greatly at the order level (Fig. 3). Of the 13 orders in Basidiomycota with data, no identical arrangement of mitochondrial genes was found between any two orders, suggesting that large-scale rearrangements of Basidiomycota mitochondrial genes had occurred in the course of evolution. At the level of family, only some species from Paxillaceae and Rhizopogonaceae were found to have the same gene order. Gene orders in other families were highly variable. At the generic level, we found large-scale gene rearrangement events in several genera, including Cantharellus, Ganoderma, Lophythllum, Pleurotus, and Russula. However, the gene arrangement of the two species of Paxillus studied was found to be conservative.

Variation, genetic distance, and evolutionary rates of core PCGs
Among the 15 core PCGs detected, three genes showed length variations between the two Paxillus species, including cox3, nad2 and rps3 (Fig. 4). Among them, cox3 and nad2 genes showed two amino acid length variations between the two, while rps3 had one amino acid length variation between them. The GC content of 13 of the 15 core PCGs differed between the two Paxillus
species, except for that of the \textit{atp6} and \textit{nad1} genes. Among the 15 core PCGs tested, \textit{atp9} had the highest GC content and \textit{atp8} the lowest. Most AT skews of core PCGs were negative, except for the \textit{rps3} gene. Eleven of the 15 core PCGs showed positive GC skews, while \textit{atp6}, \textit{atp8}, \textit{nad2} and \textit{nad6} had negative GC skews.

Among the 15 core PCGs detected, \textit{rps3} contained the largest K2P genetic distance between the two species (Fig. 5), followed by \textit{cox3} and \textit{nad2}, which suggested that these genes were largely differentiated in the \textit{Paxillus} species. The K2P genetic distance of \textit{atp8} was the lowest among the 15 core PCGs between the two mitogenomes, indicating that this gene was highly conserved in the two species. The \textit{cox3} gene exhibited the highest synonymous substitution (Ks) rate, while \textit{nad4L} had the lowest substitution rate among the 15 core PCGs detected. The highest non-synonymous substitution rate (Ka) was in \textit{cox3}, while \textit{atp9}, \textit{cob} and \textit{nad3} exhibited the lowest Ka values among the 15 core PCGs. The Ka/Ks values for most core PCGs were less than 1, indicating that these genes were subjected to purifying selection. However, the Ka/Ks value of \textit{nad4L} gene was far greater than 1, indicating that this gene has been subjected to strong positive selection in the two \textit{Paxillus} species. A non-synonymous mutation was detected in the \textit{nad4L} gene, of which the 46th nucleotide ‘G’ in \textit{P. involutus} mutated into nucleotide ‘A’ in \textit{P. rubicundulus}.

Intron dynamics of \textit{cox1} gene in \textit{Basidiomycota}

According to previous studies (Ferandon et al. 2013), introns can be divided into different Pcls according to their precise insertion sites in the protein coding region of PCGs. Introns belonging to the same Pcls were considered as homologous and often contained homologous intronic open reading frames (ORFs). Introns belonging to different Pcls were considered as non-homologous introns, and showed low sequence similarities. In the present study, 367 introns were detected in \textit{cox1} genes...
of 61 Basidiomycota species, including 359 group I introns and 8 group II introns. The number of introns in the cox1 gene of individual species ranged from 0 to 19. A total of 32 position classes (Pcls) of group I introns were detected in the 61 species (Fig. 6), including five novel Pcls that had not been identified in previous studies, and 27 known Pcls. Pcls K was the most common intron class, which occurred in 36 of the species. Pcls P, AD, AI, N, and S were present in more than 30% of the species tested, and considered as the common Pcls in Basidiomycota. Pcls E was detected only in the cox1 gene of Ganoderma leucocontextum (MH252534) (Li et al. 2019e). However, it was present in the cox1 gene of the distantly related aquatic species Blastocladia emersonii (Tambor et al. 2008) which belongs to the phylum Blastocladiomycota, a situation not readily explained as horizontal gene transfer between fungi which grow in such different environments seems improbable. In the two Paxillus species, we detected three group I introns, which belonged to different Pcls, indicating great variation of introns between them.

The conservativeness and variation of nucleic acid sequences (30 bp) around insertion sites of different Pcls was also assessed (Fig. 7). We found that the insertion site preferences of different Pcls were quite different, while the nucleic acid sequences around the same Pcls were relatively conservative. Over 13 of the 30 nucleic acid loci detected were highly consistent around the same Pcls. Of the 32 group I intron Pcls we detected, 28 were inserted downstream of base T, while 11 Pcls were inserted behind GGT. In addition, 14 Pcls of 32 group I introns were located before base A, indicating a preference of intron insertion sites. These results could be useful for accurately identifying intron classes and annotating mitochondrial genes with multiple introns.

Comparative mitogenome analysis and phylogenetic analysis

Compared with previously published Rhizopogon mitogenomes, the two Paxillus species contained smaller mitogenomes (Table S1). That of P. involutus was 97.16% smaller than the largest mitogenome, R. vinicolor. The two Paxillus species contained a higher proportion of protein coding regions, RNA regions, and intergenic regions, but a lower proportion of intronic regions relative to the Rhizopogon species. Amongst the four Boletales species we tested, they all contained negative AT skews and positive GC skews. The two Paxillus species contained less PCGs, intron and intronic ORFs than Rhizopogon species. However, the four species from
Boletales had the same number of rRNA genes and tRNA genes.

Phylogenetic analysis using Maximum likelihood (ML) and Bayesian Inference (BI) methods based on the combined mitochondrial gene set (14 core PCGs + rps3 + 2 rRNA genes) yielded identical and well-supported tree topologies (Fig. 8). All major clades within the trees were well supported (BS ≥ 97; BPP ≥ 0.98). According to the phylogenetic tree, the 61 Basidiomycota species included could be divided into 13 major clades, corresponding to the orders Agaricales, Boletales, Cantharellales, Microbotryales, Microstromatales, Polyporales, Pucciniaceae, Russulales, Sporidiobolales, Tilletiales, Tremellales, Trichosporonales, and Ustilaginales (Table S6). Boletales had a close phylogenetic relationship with Agaricales and Russulales, and the four Boletales species could be divided into two groups, with P. involutus as a sister species to P. rubicundulus.

DISCUSSION

Genome size variation in Boletales

The mitochondrial genome size of fungi is highly variable, the largest being in Rhizoctonia solani (235.85 kb; Losada et al. 2014) and the smallest in Spizellomyces punctatus (1.14 kb; Forget et al. 2002). Intronic and intergenic regions, the content of repeat sequence and horizontally transferred genes have been found to be the main factors contributing to size dynamic changes in fungal mitogenomes (Losada et al. 2014; Salavirta et al. 2014). So far, only four complete mitogenomes from Boletales have been published, and these also varied in size. The two Rhizopogon species contained larger mitogenomes than those from Paxillus, was mainly due to their larger intronic regions. In Paxillus, the intergenic region was the main factor contributing to the size variation of the mitogenomes. Intronic and intergenic regions together contribute most to variations in mitogenome size in Boletales, as well as in other Basidiomycota so far examined (Ferandon et al. 2010).

Gene content variation in Paxillus species

Since eukaryotic organisms first acquired a mitogenome from endosymbiotic bacteria, most mitochondrial genes have been transferred to the nuclear genome during evolution, which is considered to have many advantages (Adams and Palmer 2003). However, most fungal
mitochondria have so far been found to retain 14 core PCGs for energy metabolism and one rps3 gene for transcriptional regulation (Allen 2015; Bjorkholm et al. 2015). We found that the core PCGs in the two Paxillus species varied in base composition and length. In addition, the two core PCGs had different genetic distances between the species, indicating that different genes evolve at different rates. The nad4L gene is an important functional protein for ATP synthesis in mitochondria, which plays an important role in maintaining cell homeostasis and regulating cellular responses to the environment (Kazama et al. 2001). Interestingly, we found that the nad4L gene had experienced a strong positive selection between the two Paxillus species, which might be related to their host specificity. In addition, several PCGs coding homing endonucleases, DNA polymerase, and several unknown ORFs, were found in the species, indicating that some PCGs remain to be revealed. The tRNA and rRNA genes shared by the two Paxillus species also underwent base and length variations. Base variation in tRNA has been thought to affect the efficiency of amino acid transport and protein synthesis in animals (Ding et al. 2019; Lin et al. 2019). Further studies are needed to reveal the effect of tRNA variation on the growth and development of basidiomycete species.

Potential gene transfer between nuclear genome and mitogenome

The synergistic effects of nuclear and mitochondrial genes maintain the growth and development of eukaryotes (Baris et al. 2017; Latorre-Pellicer et al. 2016). During the evolution of eukaryotes, most mitochondrial genes have been transferred to the nucleus (Adams and Palmer 2003). However, some nuclear genes have also been found transferred to the mitogenome, and this has affected the evolution of eukaryotes (Li et al. 2019; Sritattana and St John 2018). In our study, 10.64 and 36.50% of gene fragments were found potentially transferred between nuclear and mitochondrial genomes of the two Paxillus, respectively, which is a higher proportion than reported from Ganoderma lucidum (Li et al. 2013) and Pleurotus eryngii (Li et al. 2018a). Our result indicates that frequent natural gene transfer has occurred in the
two *Paxillus* species. The impact of this transfer on the evolution and function of the *Paxillus* mitogenomes, however, remains unknown.

Gene rearrangement of basidiomycete species

The evolutionary rate of mitochondrial gene in fungi has been reported as intermediate between that of animals and plants (Aguileta et al. 2014; Barr et al. 2005). As more mitochondrial genomes have been sequenced, gene rearrangements found to be widespread in animals, plants, and fungi (Park et al. 2016; Sankoff et al. 1992). Various gene rearrangement models have been proposed to reveal gene rearrangement events in animals (Lavrov et al. 2002; Xia et al. 2016), but mitochondrial arrangements in fungi have been much less studied. We found that the mitochondrial gene arrangement in *Basidiomycota* was highly variable. At the order level, no two orders had the same gene order. In addition, we also observed large-scale gene rearrangements at the family or even generic level (Li et al. 2018a; Lie et al. 2018b; Lie et al. 2019b; Lie et al. 2019c). The *Basidiomycota* mitogenome contains more repetitive sequences than animals, which we consider to be one of the main factors resulting in the high variation seen in the mitochondrial genome; this result is consistent with the findings of previous studies (Aguileta et al. 2014).

Dynamic changes of introns in cox1 gene of Basidiomycota

As a mobile genetic element (Burke 1988; Repar and Warnecke 2017), introns have been considered one of the main factors contributing to the variations of mitogenome organization and size (Hamari et al. 2002; Kanzi et al. 2016; Repar and Warnecke 2017). In *Basidiomycota*, the *cox1* gene was found to harbour the most introns, with the largest proportion belonging to group I (Li et al. 2020). We detected 32 Pcls of the group I introns and 3 Pcls of the group II introns amongst the 61 species for which data were available. Among these intron Pcls, five were newly identified here, indicating that the phylum contains diverse intron types. Pcl K was the most widely distributed Pcl in *Basidiomycota*, and so was presumed to be derived from the phylum’s ancestors. Pcl E was only detected in *Ganoderma leucocontectum* (Li et al. 2019e), but this has also been reported in the distantly related *Blastocladiella emersonii* (Tambor et al. 2008), something suggestive of horizontal gene transfer, but difficult to imagine in view of the different ecologies of the two phyla. Different *Basidiomycota* species, even from within the same genera, could contain different numbers and Pcls of introns, indicating frequent intron loss or acquisition events during the evolution of...
the phylum. Introns contained homing endonucleases that can insert into specific sites in the mitogenome could potentially be used as gene editing tools (Chi et al. 2018; Zubaer et al. 2018). We assessed the conservativeness and variability of nucleic acid sequences around insertion sites of introns from basidiomycetes where information was available which showed that the insertion sites had certain base preferences. Our results provide a reference source for the accurate annotation of basidiomycete mitogenomes and also indicate a potential application of homing endonucleases in gene editing.

Phylogenetic relationships of Basidiomycota based on mitochondrial genes

Because of their independence from the nuclear genome, their rapid evolutionary rate, and the presence of many molecular markers, the mitogenome has become a powerful tool for studying phylogeny, population genetics, and taxonomy (Cameron 2014; Li et al. 2015; Li et al. 2019d). With the rapid development of next generation sequencing technology, more and more mitogenomes have been acquired, which has promoted the development of eukaryotic systems biology (Johri et al. 2019; Wang et al. 2018). However, the mitogenomes of fungi have been less studied than those of animals. Up to now, few mitochondrial molecular markers have been employed in studying their population genetics or phylogeny (Li et al. 2020). We obtained identical and well-supported tree topologies by BI and ML revealing phylogenetic relationships amongst 61 species of Basidiomycota, based on the combined mitochondrial gene set. This demonstrates that the mitochondrial gene is a reliable molecular marker for the analysis of phylogenetic relationships of basidiomycetes and perhaps other fungal groups. More mitogenomes are, however, needed to comprehensively assess the origin and evolution of the Basidiomycota.
CONCLUSION

In this study, the mitogenomes of two Paxillus species were assembled, annotated, and analyzed. Comparative mitogenome analysis indicated that the intronic and intergenic regions were the main factors contributing to mitogenome size variations in Boletales. The genome content, gene length, base composition, rRNAs, and tRNAs also varied greatly between the two Paxillus species studied. In addition, the nad4L gene was found to have been subjected to strong positive selection in the two species, which we suggest may be related to their contrasting ecological strategies. Potential gene fragment transference between mitochondrial and nuclear genomes was also detected in the two Paxillus species.

Large-scale gene rearrangements were also found to have occurred in basidiomycete species for which data were available, with introns experiencing frequent loss or gain events, resulting in large variations of mitogenome organization and size in Basidionymycota. In addition, the insertion sites of introns in basidiomycete mitogenomes were found to have a certain base preference. Phylogenetic analysis revealed that mitochondrial genes were reliable tools for analyzing phylogenetic relationships within Basidionymycota. As the first report on the mitogenome from the genus Paxillus or even the suborder Paxillinae of Boletales, this study contributes to our understanding of the evolution, genetics and phylogeny of both Paxillus species and the phylum Basidionymycota as a whole.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s43008-020-00038-8.

Additional file 1 Fig. S1. Putative secondary structures of the 25 tRNA genes identified in the mitogenomes of two Paxillus species. Residues conserved across the two mitogenomes are shown in green, while variable sites are shown in red. All genes are shown in order of occurrence in the mitogenome of P. involutus, starting from tRNA.

Additional file 2 Table S1. Comparison on mitogenomes between four Boletales species. Table S2. Gene features and organization of the Paxillus mitogenomes. Table S3. Tandem repeats detected in the mitogenomes of two Paxillus species using the Tandem Repeats Finder. Table S4. Distribution of repeat loci in the two Paxillus mitogenomes searched by REPuter. Table S5. Local BLAST searches between the mitochondrial and the nuclear genomes of two Paxillus species. Table S6. Species and GenBank accession number used for phylogenetic analysis in this study.

Abbreviations

mitogenome: Mitochondrial genome; BI: Bayesian inference; ML: Maximum likelihood; EC: Ectomycorrhizal fungus; PCG: Protein-coding gene; PCWDEs: Plant cell wall–degrading enzymes; PC: Position classes; KS: Synonymous substitution rates; Ka: Nonsynonymous substitution rates

Acknowledgements

Not applicable.

Adherence to national and international regulations

Not applicable.

Authors’ contributions

Conceived and designed experiments: QL, YR, and GZ. Analyzed the data: QL, XS, JZ, DX and LP. Wrote the Acknowledgements paper: QL. The authors read and approved the final manuscript.

Funding

This study was supported by the start up funds for talent introduction of Chengdu University.

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China. 2Present address: Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, 2025 # Chengliao Avenue, Chengdu 610106, Sichuan, China.

Received: 22 October 2019 Accepted: 23 June 2020

Published online: 02 July 2020

References

Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution 29(3): 380–395
Agúilera G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T (2014) High variability of mitochondrial gene order among fungi. Genome Biology and Evolution 6(2):451–465. https://doi.org/10.1093/gbe/evu028
Allen, JF (2015) Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proceedings of the National Academy of Sciences of the United States of America 112(33):10231–10238. https://doi.org/10.1073/pnas.1500012112
Andersen MM, Balding DJ (2018) How many individuals share a mitochondrial genome? PLoS Genetics 14(11):e1007774. https://doi.org/10.1371/journal.pgen.1007774
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, Saveliev VG, Skovoroda TV, Shvets EG, Soleng SH, Schuster SC (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5):455–477. https://doi.org/10.1089/jcb.2012.0021
Baris TZ, Wagnier DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL (2017) Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genetics 13(3):e1006517. https://doi.org/10.1371/journal.pgen.1006517
Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. The New Phytologist 166(1):39–50. https://doi.org/10.1111/j.1469-8137.2005.01492.x
Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27(2):573–580
Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023
Björkholm F, Harish A, Hagström E, Ernst AM, Andersson SG (2015) Mitochondrial genomes are retained by selective constraints on protein targeting. Proceedings of the National Academy of Sciences of the United States of America 112(33):10154–10161. https://doi.org/10.1073/pnas.1421372112
Bleasby AJ, Wootton JC (1990) Construction of validated, non-redundant composite protein sequence databases. Protein Engineering 3(3):153–159
Wang J, Zhang L, Zhang QL, Zhou MQ, Wang XT, Yang XZ, Yuan ML (2017) Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ 5:e3661. https://doi.org/10.7717/peerj.3661

Wang L, Zhang S, Li JH, Zhang YJ (2018) Mitochondrial genome, comparative analysis and evolutionary insights into the entomopathogenic fungus Hirsutella thompsonii. Environmental Microbiology 20(9):3393–3405. https://doi.org/10.1111/1462-2920.14379

Xia Y, Zheng Y, Murphy RW, Zeng X (2016) Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipoa boulengeri. BMC Genomics 17(1):965. https://doi.org/10.1186/s12864-016-3309-7

Zubaer A, Wai A, Hausner G (2018) The mitochondrial genome of Endoconidiophora resinifera is intron rich. Scientific Reports 8(1):17591. https://doi.org/10.1038/s41598-018-35926-y

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.