Chapter

Goat Meat: No Less Source of Protein in Comparison to Other Meat for Human Consumption

Melody Lalhriatpuii and Amit Kumar Singh

Abstract

For normal body metabolism and maintenance of life, nutrients at appropriate quantities have to be ingested by animals as well as human beings. Proteins are one of the vital nutrients required by the individual body. Vegetable proteins are as good as animal proteins; however, a single plant does not serve every essential nutrient needed by the living body. Therefore, a variety of plants and vegetables has to be ingested to meet the requirements. Goat meat is a good source of animal protein, and it is widely consumed by people in developing countries ever since it has no religious taboo. However, goat meat consumption is a lot less in the western sides and most of the developed countries. The nutrients content in goat meat is undervalued, which needs to be emphasized to encourage its consumption. Spreading awareness in different parts of the world, that are less accustomed to goat meat, for health benefits along with improved trade policies for rationalized goat meat cost would substantially enhance the availability and preference of consumers for goat meat. Furthermore, goat meat has the ability to capture growing organic meat industry. In current chapter, valuable properties of goat meat along with different factors affecting the demand of goat meat have been discussed.

Keywords: animal protein, goat meat, developed countries, consumers, quality nutrition

1. Introduction

This chapter describes the desirable quality of goat meat (also known as chevon) over the other products, i.e., chicken, beef, and pork. Meat is considered as complete food having a different variety of nutrients required by the individual. Protein is one of the macronutrients necessary in a large amount that serves as a building block of the body, components of blood biochemical and enzymes taking part in the metabolic reactions. A single animal protein found in meat can be more satisfactory than a single protein present in plants; therefore, a person may require to ingest a variety of plants to meet the body requirements. Most people in the West are not exposed to the goat meat industry and are not aware of the same health benefits. Meanwhile, the reasons for less consumption of goat meat could be the availability of other meat types like poultry, fish, beef, and pork [1, 2]. A study conducted by [3] showed that the rising prices of sheep and goat meat lead to a decline in its demand. Another reason for less consumption of goat meat could be unfamiliarity and the intense flavor [4]. Despite that, people from developing countries have more likeness towards goat meat.
Investigations of [5] suggested that migrants from such developing nations towards West, prefer goat meat which may be one of the reasons of increased goat meat demand in concerned areas. It is a noticeable point that Boer, Kiko and Black Bengal goat breeds are known for their high quality meat production among other breeds [6].

Unanimously buyers have become more well-being cognizant and are currently mindful and more prepared with relevant data regarding the food’s impact, including meat they burn-through. The expanded purchaser mindfulness has brought about the rise of a consumer class that requests restorative nourishments. Chevon has more or less the same concentration of protein; however, contrasted with other red meats like beef and sheep, it has lower fat (especially the saturated fat) and cholesterol content [7, 8] yet, a higher polyunsaturated unsaturated fat (PUFA) [9, 10]. The composition, regarding the fat substance and unsaturated fat profile, makes chevon more restorative meat than other red meats. Subsequently, chevon can fill in a unique market specialty. As an immediate outcome of its leanness and a desirable unsaturated fat profile, chevon's recognition of the worldwide meat market is expanding as well-being cognizant buyers favor less fatty and more interested in the lean meat product [6, 7]. Humans' global population is likely to develop to nine billion by 2050 [11, 12]. The need for expanded population necessity is a requirement for supportable and efficient meat and its related products. This prediction of populace intervened increment in animal inferred protein’s interest for human utilization makes a massive opening for goat meat to enter a supply chain of meat and other protein items [13]. The producer has to look for the consumer’s demand and awareness of the health risk of consuming different kinds of meat. Numerous customers need information and introduction to goat meat items and their health benefits. This unawareness of the goat meat has led to lower consumption, which is further an obstacle faced by the business [14]. Studies propose that customer interest in purchasing the products builds up when they know the product’s nutritional supply and health benefits [15, 16]. Research done by [3] in the United States reported that the family spends a 1.6 CHF (Confoederatio Helvetica Franc) more on sheep and goat meat when the head of the family has a university degree, which indicated that education has a positive impact on goat meat consumptions. Educational achievement is a principle determinant in food utilization decisions and is connected emphatically with substantial nutritional intake [17].

Sheep and goat raised under general conditions on regular fields produced healthy meat over other red meat [18, 19]. Since goats are mostly reared on a natural niche, they can cope with the harsh conditions; therefore, they receive less medication and are not usually fed with feed additives and other chemicals as promoters. The meat we get could be considered organic in comparison to other meat items. Furthermore, farmers are seen to make use of mixed lots of sheep and goats for better utilization of available environmental resources [5]. Goats may well proliferate under low concentrate supply which lessens competition for food grains to other farm animals [20]. As instruction emphatically corresponds with the consciousness of these perspectives related to food utilization [21, 22], family units with a well-educated family head will, in general, have more appeal and demand for sheep and goat meat.

2. Materials and methods: research methodology

Most of the literature findings for this chapter was done by referring reputed and reliable sources. A thorough search was made to find suitable articles from various search engines. Furthermore, it is essential to know the general and a specific protocol followed by scientific work. Due to the differences in the protocol and the concentration of chemicals involved in the analysis, the reading obtained from one method could be different from the reading attained with another technique. Knowing the
procedure monitored would help the readers understand the work better and help make a scientific comparison. A protocol developed by the Association of Official Analytical Chemists [23] is generally followed to estimate the major nutrients present in the sample. However, it is vital to know the appropriate procedure depending on the nature of the sample. When meat samples are concerned, the animal body’s water content may range from 50 to 95%. Therefore, it is crucial to know the moisture level in the meat sample ever since the moisture concentration is inversely proportional to the sample’s dry matter concentration. The crude protein level in the sample is assessed indirectly by determining the nitrogen content, which is then multiplied by the factor 6.25, considering that protein contains about 16% nitrogen.

The fat content of the animal body is variable, and fat increases with age. The fat concentration in the sample can be estimated by solvent extraction method [24]. The extracted total fats can be further esterified and saponified following the technique of AOCS [25]. The chloroform-methanol method can also extract the total lipid concentration in the sample [26]. The meat sample's fatty acid concentrations can be measured using gas chromatography directly by synthesizing fatty acid methyl ester. Nevertheless, there are few more techniques available for the estimation of fatty acid in the sample. The total ash is estimated following the AOAC method, where a sample is ignited at 600°C in a muffle furnace for about 4 hours. Major minerals like calcium and phosphorous concentration in the sample are estimated following the titrimetric method by AOAC and Talapatra et al. [27]. The minor and trace minerals are analyzed using Atomic absorption spectrophotometer [23]. Proteins are made of amino acids. The individual amino acid content in the meat samples is determined using ion-exchange chromatography of the acid-hydrolyzed protein [23] and Chromatographic determination of amino acids by using automatic recording equipment [28]. When it comes to statistical analysis of the data, Analysis of Variance of compare means and General linear model is the most common practice. For data comparison, a probability of p < 0.05 was considered statistically significant in most of the cases, and p < 0.01 could be labelled as a trend.

3. Nutritional value of goat meat

The moisture content of goat meat ranges from 62.13 to 78.3%; protein, 15.31–24.83%; fat, 0.80–21.24% (Table 1). The protein content could vary from the portion of sampling from the carcass and the age of animals at slaughter. The ash content is in the range of 0.43 and 3.51%. Overall, the compositions of chevon (goat meat) and mutton (sheep meat) are comparable concerning moisture, protein, and ash contents [45].

Breed	Meat slice	Moisture (%)	Protein (%)	Fat (%)	Ash (%)	References
Desert goat	Semimembranosus	75.04	20.8	2.8	1.23	[29]
	muscle					
Saanen × Angora	Loin	71.43 M	20.71 M	6.79 M	0.98 M	[30]
		70.32 F	20.68F	8.0F	0.96F	
	Leg	74.24 M	20.77 M	4.02 M	1.03 M	[30]
Saanen × Angora		73.93F	20.76F	4.33F	1.02F	
	Remainder	72.67 M	20.32 M	6.07 M	0.95 M	[30]
Saanen × Angora		71.90F	20.16F	6.97F	0.95F	
Nubian × Florida native	Loin	75.4	21.5	2.1		[31]
Spanish × Florida native	Loin	75.2	21.8	2.2		[31]
Table 1.
Proximate composition of goat meat.

Breed	Meat slice	Moisture (%)	Protein (%)	Fat (%)	Ash (%)	References
Florida native.	Loin	74.1	21.8	3.1		[31]
Castrated Boer	Semimembranosus muscle	76.21	19.74	1.51	0.93	[32]
Boer bucks	Semimembranosus muscle	77.54	19.31	0.80	0.94	[32]
Castrated feral bucks	Semimembranosus muscle	74.90	20.13	1.36	0.99	[32]
Feral bucks	Semimembranosus muscle	75.98	19.07	1.33	1.07	[32]
Non-descriptive	neck, forequarter, hind quarter, back, and flank	74.37	21.52	3.29	1.23	[33]
White Improved breed	m. adductor	76.47	20.21	2.28	1.13	[34]
Pure Boer	Longissimus dorsi	72.35	24.53	3.06	0.98	[35]
¾ Boer + ¼ SPRD	Longissimus dorsi	72.01	25.22	2.76	0.98	[35]
½ Boer + ½ SPRD	Longissimus dorsi	72.48	24.40	2.73	0.97	[35]
½ Anglo + ½ SPRD	Longissimus dorsi	72.79	24.18	2.44	0.99	[35]
Black Bengal	Mixed muscle	72.79	21.90	3.72	1.15	[36]
Crossbred	Mixed muscle	73.46	20.85	4.51	1.08	[37]
Non-descriptive (≤7 m, age)	Mixed muscle	78.3	15.31	1.77	1.2	[37]
Non-descriptive (8–10 m, age)	Mixed muscle	73.8	20.3	3.07	1.63	[37]
Egyptian Baladi goat kids.	Mixed muscle	75.32	19.97	3.28	1.13	[38]
Black Bengal	Longissimus dorsi	75.1	20.9	2.54	1.09	[39]
Black Bengal	Longissimus dorsi	74.5	21.2	2.95	1.07	[40]
Non-descriptive	Mixed muscle	75.55	20.32	1.66	0.43	[41]
Black Bengal	Meat and fat minced	76.66	24.54	4.14	0.95	[42]
Crossbred	Longissimus dorsi	75.2	19.7	1.57	3.51	[43]
Black Bengal	Biceps femoris	73.70	19.25	2.82	1.04	[44]
Black Bengal	Deltoid	71.22	21.82	3.08	1.10	[44]
Black Bengal	Longissimus dorsi	70.76	23.20	3.54	1.08	[44]
Black Bengal	Trapezius	73.25	18.95	2.32	1.05	[44]
Table 2. Minerals concentration in chevon.

Minerals	Boer goat with low energy diet (LE, 9.9 MJ/kg DM) for 56d	Boer goat with high energy diet (HE, 12.1 MJ/kg DM) for 56d	(mg/100 g) of LD muscle of Egypt Baladi goat kids	Biceps femoris Black Bengal goats	Deltoid Black Bengal goats	Longissimusdorsi Black Bengal goats	Trapezius Black Bengal goats
Ca	880.84	946.55	12.35				
I	41.68	43.38					
K	141.57	130.88	240.22				
Mg	32.51	35.36	21.41	0.51 ± .025a	0.62 ± .009	0.73 ± .010	0.42 ± .010
Na	56.73	49.83	69.17				
P	631.97	653.69					
Cu	0.20	0.14	8.37 ± .064a	7.57 ± .022	6.95 ± .017	5.15 ± .028	
Fe	1.19	1.78	2.97				
Pb	0.013	0.016					
Zn			90.9 ± .881a	83.1 ± .369	80.8 ± .860	67.6 ± .294	
Mn			8.6 ± .147a	73 ± .129	72 ± .108	5.5 ± .108	

References [46] [46] [38] [44] [44] [44] [44]
The major minerals Ca and P, and other minor minerals concentration in chevon are given in Table 2 and are inconstant. Chevon is a good source of calcium (Ca), phosphorous (P), potassium (K) and has a fair amount of iron (Fe), iodine (I), sodium (Na), zinc (Zn), magnesium. Chevon has a low calorie, low fat and low cholesterol item than chicken, pork, beef, and mutton (Table 3).

The fatty acids and their fraction in meat can vary, and it can be altered by the inclusion of good quality fats as a supplement in the animal ration. High animal fat consumption, especially from red meat, could raise overall blood cholesterol, especially LDL cholesterol levels. Nutritional profession and therapists often encouraged lower consumption of red meat than lean meats to control blood cholesterol levels and, consequently, diminished the danger of illness. Considering its high dietary benefit and its more prominent unsaturated to saturated fat proportion, chevon can conceivably improve the well-being of human populaces against unhealthiness with a much-decreased danger of causing stoutness and its related metabolic illnesses, for example, insulin resistance, type II diabetes mellitus, cardiovascular diseases and metabolic disorder [46, 47]. Therefore, the chevon business can exploit the developing interest in accepted food [48]. This interest in natural nutrition is mostly roused by the purchasers’ well-being concerns [49]. Natural food can be characterized as ordinary food things liberated from engineered synthetic compounds, such as anti-microbials, fertilizers, herbicides, pesticides, and genetically adjusted living organisms [50]. Moreover, goat meat and meat products can give food security to the expanding total populace while limiting adverse effects on the climate and well-being since the advancement of natural food creation is generally determined by the possibility of supportability and ecological concerns [30].

4. Goat meat: a good supplier of nutrients, especially protein

Plant-based proteins are frequently low in SFA, and therefore, they are endorsed as an option for animal-origin proteins. Be that as it may, the caloric expenditure of around one day’s protein consumption from a plant-origin is multiple times higher than if derived from lean meat. Studies intended to advance and keep up weight reduction in overweight grown-ups demonstrate that proteins from lean red meat, poultry, or fish all help substantial bodyweight. Momentum research further proposes that protein-based diets are all the more satisfying contrasted with carbohydrate-based food sources. This demonstrates that taking macronutrient blend to support a higher level of calories from protein is related to higher satiation and lean mass. Higher protein intake for overweight people has likewise been appeared to support weight reduction more successfully than carbohydrate-rich eating regimens [29].

Cooked meat (85 g each)	Calories	Fat (g)	Saturated fat (g)	Cholesterol (mg)	Protein (g)	Iron (mg)
Chevon	122	2.8	0.79	63.8	23	3.2
Chicken	162	6.3	1.7	76.0	25	1.5
Beef	179	7.9	3.0	73.1	25	2.9
Pork	180	8.2	2.9	73.2	25	2.7
Lamb	175	8.1	2.9	78.2	24	1.4

Table 3. Nutritional value of meat from different species [29].
The protein composition, i.e., amino acids make up of chevon, is given in Table 4. Goat meat is a good source of arginine, leucine, isoleucine, methionine, lysine, and threonine. It also has a fair amount of aspartic acids and glutamic acids among others amino acids.

5. Way forward for boosting Goat meat

Despite of remarkable role of goats in livelihood of developing country’s households, channels of marketing for goat are mostly informal unlike in other livestock species [51]. Other meat animals production and marketing channels have been improved with progress of time much more than goat production and marketing [52]. Most of the goat meat produced and consumed locally in developing nations and major production never meets global trade [6]. Thus, lack of organized production, marketing and consumption pattern may be considered as the major reasons for poor goat meat familiarity in Western world. Nevertheless, high nutritional value of chevon makes it stand out from the list of other red meats. Goat meat has the value to capture the increasing organic food market [48]. An improved marketing strategy of highlighting the value of goat meat, its role to build the households

Amino acids fractions	Boer goat with high energy diet for 56d	g/100 g of M. longissimuslumborum muscle of South African indigenous kids	g/100 g of M. longissimuslumborum muscle of South African indigenous castrates	(g/16gN) of LD muscle of Egyptian Baladi goat kids
Aspartic acid	2.03	7.65	8.01	5.58
Threonine	0.9	4.64	4.67	4.65
Serine	0.58	3.76	3.89	4.15
Glutamic acid	3.16	13.43	13.80	16.89
Proline	0.74	3.15	3.32	4.11
Glycine	1.68	3.76	3.93	5.28
Alanine	1.28	4.83	5.03	6.53
Valine	1.19	3.97	4.06	4.58
Methionine	0.49	2.22	2.29	3.04
Isoleucine	0.49	3.93	3.86	4.36
Leucine	1.75	7.03	7.10	8.52
Tyrosine	0.63	3.07	3.24	2.42
Phenylalanine	0.91	3.63	3.43	4.29
Histidine	0.63	2.26	2.48	2.68
Lysine	1.76	8.36	7.52	8.94
Arginine	1.44	5.53	5.67	5.80
Cystine	0.30	0.92	0.92	1.07
Tryptophan	0.22	0.99	0.79	Not determined

Table 4. Amino acids composition of chevon.

References
[46] [47] [47] [38]
of developing nations along with better utilization of “green resources” might help in upgrading trade of goat meat in Western world. In addition to that, standardizing the farming procedures, quality assurance, and quality products supply in channelized markets are expected to boost goat meat industry (Figure 1) in folds in upcoming era of more health concerned consumers.

6. Conclusions

Animal protein demand has risen due to the increased human population. Adequate protein is useful in developing a lean body as it is more satisfying than carbohydrate origin food. Animal protein also controls food craving as it is bulky and satiating for the body. Goat meat can be one of the critical sources of animal protein. It has protein as good as other animal meat and meat products. Additionally, it has good amount of health promoting PUFA and other vital nutrients for humans.

Spreading awareness about constructive and beneficial effects of goat meat in direct or indirect ways may be considered as the first stepping stone towards enhancing quality meat supply to the Western world. Nevertheless, consumer preference has gradually shifted towards quality products than merely opting quantity as they became aware of ill effects of consuming more calories per gram of protein as in the case of vegetable origin proteins.

Better husbandry practices, trade policies, rationalized cost of chevon through enhanced distribution channels, graded goat meats, and friendly marketing policies will bring substantial changes in goat meat availability and preference in different parts of the world, especially in Western world.
Goat Meat: No Less Source of Protein in Comparison to Other Meat for Human Consumption

DOI: http://dx.doi.org/10.5772/intechopen.97735

Author details

Melody Lalhriatpuii and Amit Kumar Singh*
ICAR - National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, India

*Address all correspondence to: amitkumarsingh5496@gmail.com

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[1] Jaquet P, Abdulai A, Rieder P. Empirische Analyse des Nahrungsmittelverbrauchs in der Schweiz: Eindreistufiges LA/AIDS Modell. ETH Zurich, Zurich. 2000.

[2] Dýrmundsson OR. Sustainability of sheep and goat production in North European countries. From the Arctic to the Alps. Small Ruminant Research. 2006;62:151-157

[3] Aepli M, Finger R. Determinants of sheep and goat meat consumption in Switzerland. Agricultural and Food Economics. 2013;1:11.

[4] Karakus F. Consumer preferences on sheep and goat meat in the world. Paper presented at the 57th Annual Meeting of the European Association for Animal Production, Antalya, Turkey, 2006.

[5] Monteiro A, Costa JM, Lima MJ. Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer. Goat Science. 2018. DOI:10.5772/intechopen.70002

[6] Mazhangara IR, Chivandi E, Mupangwa JF, Muchenje V. The Potential of Goat Meat in the Red Meat Industry. Sustainability. 2019;11:3671.

[7] Madruga MS, Bressan MC. Goat meats: Description, rational use, certification, processing and technological developments. Small Ruminants Research. 2011;98:39-45.

[8] Ivanović S, Pavlović I, Pisinov B. The quality of goat meat and its impact on human health. Biotechnology in Animal Husbandry. 2016;32:111-122.

[9] Anaeto M, Adeyeye JA, Chioma GO, Olarinmoye AO, Tayo GO. Goat products: Meeting the challenges of human health and nutrition. Agriculture and Biology Journal of North America. 2010;6:1231-1236.

[10] Aghwan ZA, Alimon AR, Goh YM, Nakyinsige K, Sazili, AQ. Fatty Acid Profiles of Supraspinatus, Longissimuslumborum and Semitendinosus Muscles and Serum in Kacang Goats Supplemented with Inorganic Selenium and Iodine. Asian-Australasian Journal of Animal Science. 2014;27:543-550.

[11] United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 8 May 2019).

[12] Council NR. Critical Role of Animal Science Research in Food Security and Sustainability; National Academic Press: Washington, DC, USA, 2015.

[13] Aziz MA. Present status of the world goat populations and their productivity. Lohmann Information. 2010;45:42-52.

[14] Zachery N, Nelson MC. "Consumers Knowledge and Use of Goat Products: An Atlanta Case Study." Paper presented at the Professional Ag Workers Conference (PAWC), Tuskegee University, December 1992.

[15] Miller P. "Marketing Strategies for Goat Meat." In Florida's Meat Goat Industry, edited by James A. Simpson, 22-26: Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, 1995.

[16] Rhee KS, Oltman M, Han J. "A Consumer Survey of Goat Meat: Perception, Knowledge, and Use." Sheep and Goat Research Journal. 2000;16:111-116.

[17] Moreira PA, Padrão PD. Educational and economic determinants of food...
intake in Portuguese adults: a cross sectional survey. BMC Public Health. 2004;4:58.

[18] zur Hausen H. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. International Journal of Cancer. 2012;130:2475-2483.

[19] Polidori P, Ortenzi A, Vincenzetti S, Beghelli D. Dietary properties of lamb meat and human health. Mediterranean Journal of Nutrients and Metabolism. 2011;4:53-56.

[20] Singh AK. Feeding management of goat. Indian Farmer. 2018;5:995-1000.

[21] Daniel CR, Cross AJ, Koebnick C, Rashmi S. Trends in meat consumption in the United States. Public Health Nutrition. 2011;14:575-583.

[22] Monaco BM, Contento IR. Adolescents' perspectives and food choice behaviors in terms of the environmental impacts of food production practices: application of a psychosocial Model. Journal of Nutrition Education and Behavior. 2001;33:72-82.

[23] AOAC. Official methods of analysis (18th ed.). Association of Official Analytical Chemists. Arlington, VA, USA. 2007.

[24] Lee CM, Trevino B, Chaiyawat M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. Journal of the Association of Official Analytical Chemists International. 1996;79:487-492.

[25] American Oil Chemists Society. Fatty acid composition by GLC. AOCS official method (revised 1991)Ce 1b-89, 1991;1-5.

[26] Folch J, Lees M, Stanley HS. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry. 1957;226:497-509.

[27] Talapatra SK, Ray SC, Sen KC. Estimation of phosphorus, chlorine, calcium, magnesium, sodium and potassium in foodstuffs. Indian Journal of Veterinary Science and Animal Husbandry. 1940;10:243-246.

[28] Moore SM, Spackman DH, Stein WH. Chromatographic determination of amino acids by the use of automatic recording equipment. Analytical Chemistry. 1958;30:1185-1190.

[29] Babiker SA, El Khider IA, Shafie SA. Chemical composition and quality attributes of goat meat and lamb. Meat science. 1990;28:273-277.

[30] Hogg BW, Mercer GJK, Mortimer BJ, Kirton AH, Duganzich DM. Carcass and meat quality attributes of commercial goats in New Zealand. Small Ruminant Research. 1992;8:243-256.

[31] Johnson DD, McGowan CH, Nurse G, Anous MR. Breed type and sex effects on carcass traits, composition and tenderness of young goats. Small Ruminant Research. 1995;17:57-63.

[32] Pratiwi NMW, Murray PJ, Sumarmono J, Taylor DG. Chemical composition of goat meat: the effect of breed and Castration. Animal Production Science. 2002;24:342.

[33] Abedin SMA, Alam MR, Faruque MO. Comparative carcass characteristics of ruminant species in Bangladesh. Journal of the Bangladesh Agricultural University. 2005;3:243-248.

[34] Niedziolka RP, Lendzion K. Chemical composition of meat (m. adductor) and fatty acids in intramuscular fat of goat kid and ram lambs. Slovak Journal of Animal Science. 2006;39:197-200.
[35] Madruga MS, Medeiros EJLD, Sousa WHD, Cunha MDGG, Pereira Filho JM, Queiroga RDCRDE. Chemical composition and fat profile of meat from crossbred goats reared under feedlot systems. Revista Brasileira de Zootecnia. 2009;38:547-552.

[36] Asaduzzaman M, Alam MR, Amin MR, Faruque MO. Comparative study on carcass characteristics between Black Bengal and crossbred goats. Journal of the Bangladesh Agricultural University. 2009;7:87-90.

[37] Arain MA, Khaskheli M, Rajput IR, Faraz S, Rao S, Umer M, Devrajani K. Effect of slaughtering age on chemical composition of goat meat. Pakistan Journal of Nutrition. 2010;9:404-408.

[38] Moawad RK, Mohamed GF, Ashour MMS, El-Hamzy EM. Chemical composition, quality characteristics and nutritive value of goat kids meat from Egyptian Baladi breed. Journal of Applied Sciences Research. 2013;9:5048-5059.

[39] Roy A, Mandal GP, Patra AK. Evaluating the performance, carcass traits and conjugated linoleic acid content in muscle and adipose tissues of Black Bengal goats fed soybean oil and sunflower oil. Animal Feed Science and Technology. 2013;185:43-52.

[40] Mandal GP, Roy A, Patra AK. Effects of feeding plant additives rich in saponins and essential oils on the performance, carcass traits and conjugated linoleic acid concentrations in muscle and adipose tissues of Black Bengal goats. Animal Feed Science and Technology. 2014;197:76-84.

[41] Alamin SA, Ahmed DA, Ahmed HE. 2014. A Comparative study on the chemical composition and cholesterol content of fresh camel, beef and goat meat. Sudan Journal of Science and Technology. 2015;15:73-80.

[42] Mursheda HM, Sarkerb MAH, Rahmana SME, Hashema MA. Comparison of carcass and meat quality of Black Bengal goat and Indigenous sheep of Bangladesh. Journal of Meat Science and Technology. 2014;2:63-67.

[43] Dey S, Patra G, Roy A, Sarkar H, Kumar S. A study on evaluation of functional and nutritional properties of different muscles of black Bengal goat. Journal of Pharmacognosy and Phytochemistry. 2019;SP5:6-10.

[44] Gama KVMF, Pereira Filho JM, Soares RF, Cordão MA, Cézar MF, Batista ASM, de Azevedo Silva AM, Madruga MS, Oliveira RL, Bezerra LR. Fatty acid, chemical, and tissue composition of meat comparing Santa Inês breed sheep and Boer crossbreed goats submitted to different supplementation strategies. Tropical Animal Health and Production. 2020;52:601-610.

[45] Thulasi G, Ayyaluswami P. Nutritional qualities of fresh mutton and chevon sold in Madras City. Cheiron. 1983;12:228-230.

[46] Shija DS, Mtenga LA, Kimambo AE, Laswai GH, Mushi DE, Mgheni DM, Mwilawa AJ, Shirima EJM, Safari JG. Chemical composition and meat quality attributes of indigenous sheep and goats from traditional production system in Tanzania. Asian-Australasian Journal of Animal Science. 2013;26:295-302.

[47] Malekian F, Khachatryan M, Gebrelul S, Henson JF. Composition and Fatty Acid Profile of Goat Meat Sausages with Added Rice Bran. International Journal of Food Science. 2014;1:1-8.

[48] Ditlevsen K, Sandøe P, Lassen J. Healthy food is nutritious, but organic food is healthy because it is pure: The negotiation of healthy food choices by Danish consumers of organic food. Food Quality and Preference. 2019;71:46-53.
[49] Rana J, Paul J. Consumer behavior and purchase intention for organic food: A review and research agenda. Journal of Retailing and Consumer Serves. 2017;38:157-165.

[50] Marwa GM, Scott D. An extension of the benefit segmentation base for the consumption of organic foods: A time perspective. Journal of Marketing Management. 2013;29:1701-1728.

[51] Gandhi S. A Study of Goat Meat (Chevon) Market Value Chains in Kumaon Region, Uttarakhand State; International Livestock Research Institute: New Delhi, India, 2015.

[52] Dubeuf JP, Morand-Fehr P, Rubino R. Situation, changes and future of goat industry around the world. Small Ruminant Research. 2004;51:165-173.