LOCALIZATION OF COFIBRATION CATEGORIES AND GROUPOID C^*-ALGEBRAS

MARKUS LAND, THOMAS NIKOLAUS, AND KAROL SZUMILO

Abstract. We prove that relative functors out of a cofibration category are essentially the same as relative functors which are only defined on the subcategory of cofibrations. As an application we give a new construction of the functor that assigns to a groupoid its groupoid C^*-algebra and thereby its topological K-theory spectrum.

Let $(\mathcal{C}, w\mathcal{C}, c\mathcal{C})$ be a cofibration category, i.e. a structure dual to a category of fibrant objects in the sense of Brown [Bro73]. Here, $w\mathcal{C}$ and $c\mathcal{C}$ are the subcategories of weak equivalences and cofibrations, i.e. they have the same objects as \mathcal{C} but morphisms are the weak equivalences or the cofibrations respectively. Similarly, $wc\mathcal{C}$ will denote the subcategory of acyclic cofibrations.

In addition to Brown’s axioms, we will assume that \mathcal{C} has good cylinders which is a mild technical condition explained in Definition 9. In this paper we will prove the following theorem.

Theorem 1. If a cofibration category \mathcal{C} has good cylinders, then the map induced by the inclusion

$$\text{N}C[w^{-1}] \longrightarrow \text{N}C[w^{-1}]$$

is an equivalence of ∞-categories. In particular, by passing to homotopy categories, we obtain an equivalence of ordinary categories $c\mathcal{C}[wc^{-1}] \longrightarrow c\mathcal{C}[w^{-1}]$.

By $\text{N}C[w^{-1}]$ we denote the universal ∞-category obtained from $\text{N}C$ by inverting the weak equivalences, see [Lur14, Def. 13.4.1 and Remark 1.3.4.2]. The same universal property in the world of ordinary categories describes $\mathcal{C}[w^{-1}]$. By passing to opposite categories, the dual statement of Theorem 1 for fibration categories also holds.

The proof of Theorem 1 will be given at the end of the paper, but let us first establish a consequence and the application to C^*-algebras associated to groupoids.

Let \mathcal{C} be a small cofibration category with good cylinders and \mathcal{M} a model category which is Quillen equivalent to a combinatorial model category and has functorial fibrant and cofibrant replacements, e.g. any of the model categories of spectra.

Proposition 2. For any functor $F : c\mathcal{C} \rightarrow \mathcal{M}$ that sends acyclic cofibrations in $c\mathcal{C}$ to weak equivalences in \mathcal{M} there exists a functor $\tilde{F} : \mathcal{C} \rightarrow \mathcal{M}$ with the following properties:

1. \tilde{F} sends weak equivalences in \mathcal{C} to weak equivalences in \mathcal{M}.
2. \tilde{F} extends F in the sense that there exists a zig-zag of natural weak equivalences between F and $\tilde{F} |_{c\mathcal{C}}$.

Moreover \tilde{F} is unique in the following sense: for any other functor $\tilde{F}' : \mathcal{C} \rightarrow \mathcal{M}$ that satisfies (1) and (2) there exists a zig-zag of natural weak equivalences between \tilde{F} and \tilde{F}'.

Proof. We denote the ∞-category $\text{NM}[w^{-1}]$ associated to the model category \mathcal{M} by \mathcal{M}_∞. We claim that for any ordinary category \mathcal{A} the canonical map

$$\text{NFun}(\mathcal{A}, \mathcal{M})[\ell^{-1}] \rightarrow \text{Fun}(\text{NA}, \mathcal{M}_\infty)$$

is an equivalence of ∞-categories, where ℓ is the class of levelwise weak equivalences. If \mathcal{M} is a simplicial, combinatorial model category this is a special case of [Lur09, Proposition 4.2.4.4] using that for a simplicial model category \mathcal{M}, the ∞-category \mathcal{M}_∞ is equivalent to the homotopy coherent nerve of the simplicial subcategory of \mathcal{M} on the fibrant and cofibrant objects, see
From the existence of functorial (co)fibrant replacements and it follows that a Quillen equivalence $\mathcal{M} \simeq \mathcal{M}'$ induces a Quillen equivalence $\text{Fun}(\mathcal{A}, \mathcal{M}) \simeq \text{Fun}(\mathcal{A}, \mathcal{M}')$. Thus the domain of the map in question is invariant under Quillen equivalences in \mathcal{M}. The same is true for the codomain, thus the statement that this map is an equivalence is invariant under Quillen equivalences in \mathcal{M}. Hence it is also true for all model categories \mathcal{M} with functorial (co)fibrant replacements that are Quillen equivalent to a combinatorial, simplicial model category. Since every combinatorial model category is equivalent to a combinatorial, simplicial model category by a result of Dugger [Dug01, Corollary 1.2], the claim holds in our generality. If \mathcal{A} is a relative category it also follows that the induced functor

$$\text{NFun}^w(\mathcal{A}, \mathcal{M})[\ell^{-1}] \to \text{Fun}^w(\text{N}\mathcal{A}, \mathcal{M}_\infty)$$

is an equivalence, where the superscript w refers to functors that send weak equivalences in \mathcal{A} to weak equivalences, respectively equivalences in the target. Thus in the canonical commuting square

$$\begin{array}{ccc}
\text{NFun}^w(\mathcal{C}, \mathcal{M})[\ell^{-1}] & \to & \text{NFun}^w(\text{N}\mathcal{C}, \mathcal{M}_\infty) \\
\downarrow & & \downarrow \\
\text{Fun}^w(\text{N}\mathcal{C}, \mathcal{M}_\infty) & \to & \text{Fun}^w(\text{N}\mathcal{C}, \mathcal{M}_\infty)
\end{array}$$

the vertical maps are equivalences of ∞-categories. By Theorem 1 the lower map is also an equivalence, therefore also the upper one is. Passing to homotopy categories we obtain the desired result, using that isomorphisms in homotopy categories of functor categories are represented by zig-zags of natural weak equivalences.

\section*{Applications}

\textbf{Groupoids.} We denote by Gpd the 1-category of small groupoids and by Gpd_2 the ∞-category associated to the $(2,1)$-category of groupoids in which the 2-morphisms are natural transformations. The category Gpd admits a simplicial model structure in which the equivalences are equivalences of categories and the cofibrations are functors that are injective on the set of objects. In this model structure all objects are cofibrant and fibrant, compare [CGT06]. Furthermore if we denote by Gpd^ω the full subcategory on groupoids with at most countable many morphisms then Gpd^ω inherits the structure of a cofibration category.

The following lemma is a well known fact, but we had difficulties finding a clear reference for this so we state it as an extra lemma.

\textbf{Lemma 3.} The canonical map $\text{NGpd}^w[\ell^{-1}] \to \text{Gpd}_2$ is an equivalence of ∞-categories.

\textbf{Proof.} This follows from the description of the ∞-category associated to a simplicial model category, see [Lur14, Theorem 1.3.4.20], as being the the homotopy coherent nerve of the simplicial category of cofibrant and fibrant objects.

\textbf{Corollary 4.} Let \mathcal{C} be an ∞-category. Then the canonical map $\text{NcGpd} \to \text{Grp}_2$ induces an equivalence

$$\begin{array}{c}
\text{Fun}(\text{Gpd}_2, \mathcal{C}) \xrightarrow{\simeq} \text{Fun}^w(\text{NcGpd}, \mathcal{C})
\end{array}$$

where the superscript w refers to functors that send equivalences of groupoids to equivalences in \mathcal{C}.

\textbf{Proof.} Since the canonical map $\text{NGpd}^w[\ell^{-1}] \to \text{Gpd}_2$ is an equivalence by Lemma 3, this is a direct application of Theorem 1.

The following corollary of Proposition 2 implies that in the approach to assembly maps discussed in [DL98, section 2] one can directly restrict to functors from groupoids to spectra that are only defined for maps of groupoids that are injective on objects. This resolves the issues illustrated in [DL98, Remark 2.3].
Corollary 5. Let $\mathcal{S}p$ be any of the categories of spectra. Then every functor $F : c\text{Gpd} \to \mathcal{S}p$ which sends equivalences of groupoids to weak equivalences in $\mathcal{S}p$ extends uniquely (in the sense of Proposition 2) to a functor $\hat{F} : \text{Gpd} \to \mathcal{S}p$ which also sends weak equivalences of groupoids to weak equivalences of spectra.

Remark. The statements of Corollary 4 and Corollary 5 remain true if we replace Gpd by Gpd^ω. Furthermore Corollary 5 does not depend on the exact choice of model category of spectra as long as it is Quillen equivalent to a combinatorial model category.

Next we want to demonstrate how to apply these results by functorially constructing C^*-algebras and topological K-theory spectra associated to groupoids. This discussion is similar to the one given in [Joa03, section 3] but we use our main theorem to obtain full functoriality instead of an explicit construction.

Definition 6. Let \mathcal{G} be a groupoid. We let $\mathbb{C}\mathcal{G}$ be the \mathbb{C}-linearization of the set of morphisms of \mathcal{G}. This is a \mathbb{C}-algebra by linearization of the multiplication on morphisms given by

$$ f \cdot g = \begin{cases} f \circ g & \text{if } f \text{ and } g \text{ are composable} \\ 0 & \text{else.} \end{cases} $$

We remark that $\mathbb{C}\mathcal{G}$ is unital if and only if the set of objects of \mathcal{G} is finite. Then we complete $\mathbb{C}\mathcal{G}$ in a universal way, like for the full group C^*-algebra, to obtain a C^*-algebra $C^*\mathcal{G}$. More precisely, the norm is given by the supremum over all norms of representations of $\mathbb{C}\mathcal{G}$ on a separable Hilbert space. This is isomorphic to the C^*-algebra associated to the maximal groupoid C^*-category of [Del12, Definition 3.16] using the construction $C \mapsto A_C$ of [Joa03, section 3].

The association $\mathcal{G} \mapsto C^*\mathcal{G}$ is functorial for cofibrations of groupoids but not for general morphisms since it can happen that morphisms are not composable in a groupoid, but become composable after applying a functor, compare the remark [DL98, page 214]. We observe that the C^*-algebra $C^*\mathcal{G}$ is separable provided $\mathcal{G} \in \text{Gpd}^\omega$.

Lemma 7. Let $F : \mathcal{G}_1 \to \mathcal{G}_2$ be an acyclic cofibration of groupoids. Then the induced morphism

$$ C^*F : C^*\mathcal{G}_1 \to C^*\mathcal{G}_2 $$

is a KK-equivalence.

Proof. The C^*-algebra associated to a groupoid is the product of the C^*-algebras associated to each connected component. Thus we may assume that \mathcal{G}_1 (and thus \mathcal{G}_2) is connected. Let $x \in \mathcal{G}$ be an object. We let $G_1 = \text{End}(x)$ and $G_2 = \text{End}(Fx)$ be the endomorphism groups and notice the fact that F is an equivalence implies that F induces an isomorphism $G_1 \cong G_2$. Then we consider the diagram

$$
\begin{array}{ccc}
C^*\mathcal{G}_1 & \xrightarrow{C^*F} & C^*\mathcal{G}_2 \\
\downarrow & & \downarrow \\
C^*G_1 & \cong & C^*G_2
\end{array}
$$

in which the lower horizontal arrow is an isomorphism. Thus to show the lemma it suffices to prove the lemma in the special case where F is the inclusion of the endomorphisms of an object x of a connected groupoid \mathcal{G}.

This can be done using in the abstract setting of corner algebras. For this suppose A is a C^*-algebra and $p \in A$ is a projection. It is called full if ApA is dense in A. The algebra pAp is called the corner algebra of p in A. It is called a full corner if p is a full projection. We write i_p for the inclusion $pAp \subset A$. Given a projection p the module pA is an imprimitivity $pAp - ApA$ bimodule, see e.g. [RW98, Example 3.6]. Thus if p is full, then pA gives rise to an invertible
element \([pA, i_p, 0] = \mathcal{F}(p) \in \text{KK}(pAp, A)\). In this KK-group we have an equality
\[
\mathcal{F}(p) = [pA, i_p, 0] + [(1 - p)A, 0, 0] = [pA \oplus (1 - p)A, i_p, 0] = [A, i_p, 0] = [i_p],
\]
in other words, the inclusion \(pAp \to A\) of a corner algebra associated to a full projection is a KK-equivalence.

To come back to our situation let us suppose \(G\) is a groupoid, \(x \in G\) is an object and let us denote its endomorphism group by \(G = \text{End}(x)\). We can consider the element \(p = \text{id}_x \in C^*G\) which is clearly a projection. Its corner algebra is given by
\[
p \cdot C^*G \cdot p \cong C^*G.
\]
If \(G\) is connected it follows that every morphism in \(G\) may be factored through \(\text{id}_x\) and thus \(p\) is full if \(G\) is connected. Hence it follows that the inclusion \(C^*G \to C^*G\) is an embedding of a full corner algebra. Thus by the general theory this inclusion is a KK-equivalence which proves the lemma.

Let us denote by \(\text{KK}_{\infty}\) the \(\infty\)-category given by the localization of the category \(C^*\text{Alg}\) of separable \(C^*\)-algebras at the KK-equivalences, see e.g. [LN16, Definition 3.2]. In formulas we have \(\text{KK}_{\infty} := \text{NC}^*\text{Alg}[w^{-1}]\) where \(w\) denotes the class of KK-equivalences. The homotopy category of \(\text{KK}_{\infty}\) is Kasparov's KK-category of \(C^*\)-algebras.

Corollary 8. There exists a functor
\[
\text{Gpd}_{\omega}^2 \to \text{KK}_{\infty}
\]
which on objects sends a groupoid \(G\) to the full groupoid \(C^*\)-algebra \(C^*G\).

Remark. We notice that the \((2, 1)\)-category \(\text{Orb}^\omega\) consisting of (countable) groups, group homomorphisms, and conjugations is the full subcategory of the \((2, 1)\)-category of (countable) groupoids on connected groupoids and hence along this inclusion we also obtain a functor
\[
\text{Orb}^\omega \to \text{KK}_{\infty}
\]
which on objects sends a group to its full group \(C^*\)-algebra. This will be used in [LN16] to compare the \(L\)-theoretic Farrell-Jones conjecture and the Baum-Connes conjecture.

Proof of Corollary 8. By Corollary 4 and the remark after Corollary 5, we have an equivalence
\[
\text{Fun}^\omega(\text{NC}\text{Gpd}^\omega, \text{KK}_{\infty}) \simeq \text{Fun}(\text{Gpd}^\omega_2, \text{KK}_{\infty})
\]
and thus it suffices to construct a functor
\[
c\text{Gpd}^\omega \to C^*\text{Alg}
\]
which has the property that it sends equivalences of groupoids to KK-equivalences. We have established in Lemma 7 that the functor of Definition 6 satisfies this property.

Remark. In [LN16, Proposition 3.7] it is shown that the topological \(K\)-theory functor
\[
K : \text{NC}^*\text{Alg} \to \text{Sp}
\]
factors over \(\text{KK}_{\infty}\), in fact becomes corepresentable there. It thus follows from Corollary 8 that there is a functor sending a groupoid to the topological \(K\)-theory spectrum of its \(C^*\)-algebra.
The proof of Theorem 1

In this section we will prove Theorem 1. Recall that we consider a cofibration category $(\mathcal{C}, w\mathcal{C}, c\mathcal{C})$ and aim to compare the ∞-categories associated to the relative categories $(\mathcal{C}, w\mathcal{C})$ and $(c\mathcal{C}, wc\mathcal{C})$. As our model of the homotopy theory of $(\infty,1)$-categories we will use complete Segal spaces of Rezk, see [Rez01]. This homotopy theory is modelled by the Rezk model structure on the category of bisimplicial sets in which fibrant objects are the complete Segal spaces. The model structure is constructed as a Bousfield localization of the Reedy model structure and hence every levelwise weak equivalence of bisimplicial sets is a Rezk equivalence, i.e. an equivalence of ∞-categories.

The ∞-category associated to a relative category $(\mathcal{D}, w\mathcal{D})$ is modelled by the classification diagram $N^R\mathcal{D}$ of Rezk which is given by

$$(N^R\mathcal{D})_k \mapsto Nw(\mathcal{D}^{[k]}),$$

where the weak equivalences in $\mathcal{D}^{[k]}$ are levelwise weak equivalences, compare [Rez01, section 3.3] and [MG15, Theorem 3.8]. See also the MathOverflow post [Cis12]. The classification diagram is not fibrant in the Rezk model structure, but it is levelwise equivalent to a fibrant object if \mathcal{D} is a cofibration category.

Recall that we stated Theorem 1 under the following assumption on the cofibration category \mathcal{C}.

Definition 9. A cofibration category \mathcal{C} has good cylinders if it has a cylinder functor I such that for every cofibration $X \rightarrow Y$ the induced morphism $IX \sqcup_{X \sqcup X} (Y \sqcup Y) \rightarrow IY$ is a cofibration.

For example any cofibration category arising from a monoidal model category (or a model category enriched over a monoidal model category) has good cylinders, since they are given by tensoring with a chosen interval object.

Theorem 10. If \mathcal{C} has good cylinders, then the inclusion $c\mathcal{C} \rightarrow \mathcal{C}$ induces a levelwise weak equivalence of the classification diagrams $N^Rc\mathcal{C} \rightarrow N^R\mathcal{C}$.

For the proof we will need a series of auxiliary definitions and lemmas. Let us first fix some notation. If J is a category, then \hat{J} denotes J considered as a relative category with all morphisms as weak equivalences. If J is any relative category, then C^J stands for the cofibration category of all relative diagrams $J \rightarrow C$ with levelwise weak equivalences and cofibrations. If J is any relative direct category, then C^J_R stands for the cofibration category of all relative Reedy cofibrant diagrams $J \rightarrow C$ with levelwise weak equivalences and Reedy cofibrations. See [RB09, Theorem 9.3.8] for the construction of these cofibration categories.

Definition 11. A subcategory $g\mathcal{C}$ of a cofibration category \mathcal{C} is said to be good if

- all cofibrations are in $g\mathcal{C}$;
- the morphisms of $g\mathcal{C}$ are stable under pushouts along cofibrations;
- \mathcal{C} has functorial factorizations that preserve $g\mathcal{C}$ in the sense that if

$$
\begin{array}{ccc}
A_0 & \longrightarrow & B_0 \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & B_1
\end{array}
$$

is a square in \mathcal{C} such that both vertical morphisms are in $g\mathcal{C}$ and

$$
\begin{array}{ccc}
A_0 & \longrightarrow & \tilde{B}_0 & \sim & B_0 \\
\downarrow & & \downarrow & & \downarrow \\
A_1 & \longrightarrow & B_1 & \sim & B_1
\end{array}
$$

is the resulting factorization, then the induced morphism $A_1 \sqcup_{A_0} \tilde{B}_0 \rightarrow \tilde{B}_1$ is also in $g\mathcal{C}$.

(In particular, so is $\tilde{B}_0 \rightarrow \tilde{B}_1$ by the second condition.)
Now suppose that \mathcal{C} is cofibration category with a good subcategory $g\mathcal{C}$. We let $W\mathcal{C}$ be the bisimplicial set whose (m, n)-bisimplices are all diagrams in \mathcal{C} of the form

\[
\begin{array}{ccccccc}
X_{0,0} & \sim & X_{0,1} & \sim & \ldots & \sim & X_{0,n} \\
\sim & \sim & \sim & \sim & \sim & \sim & \\
X_{1,0} & \sim & X_{1,1} & \sim & \ldots & \sim & X_{1,n} \\
\sim & \sim & \sim & \sim & \sim & \sim & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\sim & \sim & \sim & \sim & \sim & \sim & \\
X_{m,0} & \sim & X_{m,1} & \sim & \ldots & \sim & X_{m,n},
\end{array}
\]

i.e. diagrams $[m] \times [n] \to \mathcal{C}$ where all horizontal morphisms are cofibrations and all vertical morphisms are in $g\mathcal{C}$. In other words $W\mathcal{C}$ is the nerve of a double category with the same objects as \mathcal{C}, whose horizontal morphisms are acyclic cofibrations, vertical morphisms are weak equivalences in $g\mathcal{C}$, and double morphisms are just commutative squares.

Lemma 12. The bisimplicial set $W\mathcal{C}$ is vertically homotopically constant, i.e. every simplicial operator $[n] \to [n']$ induces a weak homotopy equivalence $(W\mathcal{C})_{*,n'} \to (W\mathcal{C})_{*,n}$.

Proof. Note that $(W\mathcal{C})_{*,n} = N\tilde{\mathcal{C}}_n$ where $\tilde{\mathcal{C}}_n$ is a category whose objects are diagrams $[n] \to \mathcal{C}$ and whose morphisms are weak equivalences with all components in $g\mathcal{C}$. It is enough to consider the case $n' = 0$, i.e. to show that the constant functor $\text{const}: \tilde{\mathcal{C}}_0 \to \tilde{\mathcal{C}}_n$ is a homotopy equivalence. The evaluation at n functor $\text{ev}_n: \tilde{\mathcal{C}}_n \to \tilde{\mathcal{C}}_0$ satisfies $\text{ev}_n \text{const} = \text{id}_{\tilde{\mathcal{C}}_0}$. Moreover, the structure maps of every diagram $X \in \tilde{\mathcal{C}}_n$ form a natural weak equivalence $X \to \text{const} \text{ev}_n X$ since every cofibration is in $g\mathcal{C}$. □

Lemma 13. The bisimplicial set $W\mathcal{C}$ is horizontally homotopically constant, i.e. every simplicial operator $[m] \to [m']$ induces a weak homotopy equivalence $(W\mathcal{C})_{m',*} \to (W\mathcal{C})_{m,*}$.

Proof. Note that $(W\mathcal{C})_{m,*} = N\tilde{\mathcal{C}}_m$ where $\tilde{\mathcal{C}}_m$ is a category whose objects are diagrams $[m] \to g\mathcal{C}$ and whose morphisms are acyclic levelwise cofibrations. Again, it is enough to consider the case $m' = 0$ and to show that the constant functor $\text{const}: \tilde{\mathcal{C}}_0 \to \tilde{\mathcal{C}}_m$ and the evaluation at m functor $\text{ev}_m: \tilde{\mathcal{C}}_n \to \tilde{\mathcal{C}}_0$ form a homotopy equivalence.

We have $\text{ev}_m \text{const} = \text{id}_{\tilde{\mathcal{C}}_0}$. Moreover, given any object $X \in \tilde{\mathcal{C}}_m$ and $i \in [m]$ we consider the composite weak equivalence $X_i \overset{\sim}{\to} X_m$. We combine it with the identity $X_m \to X_m$ and factor functorially the resulting morphism $X_i \sqcup X_m \to X_m$ as $X_i \sqcup X_m \to \tilde{X}_i \overset{\sim}{\to} X_m$. In the square

\[
\begin{array}{ccc}
X_m \cup X_i & \longrightarrow & X_m \\
\downarrow & & \downarrow \\
X_m \cup X_{i+1} & \longrightarrow & X_m
\end{array}
\]

both vertical morphisms are in $g\mathcal{C}$ (since $g\mathcal{C}$ is closed under pushouts). Thus the induced morphism $\tilde{X}_i \to \tilde{X}_{i+1}$ is in $g\mathcal{C}$. Moreover, we obtain acyclic cofibrations $X_i \overset{\sim}{\to} \tilde{X}_i$ and $X_m \overset{\sim}{\to} \tilde{X}_i$ that constitute a zig-zag of natural weak equivalences connecting $\text{const} \text{ev}_m$ and $\text{id}_{\tilde{\mathcal{C}}_m}$. □

Lemma 14. The inclusion $N\text{wc}\mathcal{C} \to N\text{wg}\mathcal{C}$ is a weak homotopy equivalence.

Proof. Observe that the 0th row and the 0th column of $W\mathcal{C}$ are $N\text{wg}\mathcal{C}$ and $N\text{wc}\mathcal{C}$ respectively. Since $W\mathcal{C}$ is homotopically constant in both directions, it follows from [GJ99, Proposition IV.1.7] that we have weak equivalences

\[
N\text{wg}\mathcal{C} \overset{\sim}{\longrightarrow} \text{diag}W\mathcal{C} \overset{\sim}{\longleftarrow} N\text{wc}\mathcal{C}.
\]
Moreover, the restrictions along the diagonal inclusions $[m] \to [m] \times [m]$ induce a simplicial map $\text{diag} \mathcal{C} \to \text{NwgC}$ whose composites with the two maps above are the identity on NwgC and the inclusion $\text{NwcC} \to \text{NwgC}$. Hence the latter is a weak equivalence by 2-out-of-3. □

Next we establish that under specific circumstances certain subcategories of \mathcal{C} are good.

Lemma 15. Let \mathcal{C} be a cofibration category.

1. If \mathcal{C} has functorial factorizations, then \mathcal{C} itself is a good subcategory.
2. If \mathcal{C} has good cylinders, then $c\mathcal{C}$ is a good subcategory of \mathcal{C}.
3. If $c\mathcal{C}$ is a good subcategory of \mathcal{C}, then the subcategory of levelwise cofibrations is a good subcategory of $\mathcal{C}^{[k]}_R$ for all k.

Proof.

1. This is vacuously true.
2. We will show that the standard mapping cylinder factorization makes $c\mathcal{C}$ into a good subcategory. Let

$$
\begin{array}{ccc}
A_0 & \longrightarrow & B_0 \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & B_1
\end{array}
$$

be a square were both vertical morphisms are cofibrations. The mapping cylinder of $A_i \to B_i$ is constructed as $IA_i \sqcup_{A_i \sqcup A_1} (A_i \sqcup B_i)$. We need to show that the morphism induced by the square

$$
\begin{array}{ccc}
A_0 & \longrightarrow & IA_0 \sqcup_{A_0 \sqcup A_1} (A_0 \sqcup B_0) \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & IA_1 \sqcup_{A_1 \sqcup A_1} (A_1 \sqcup B_1)
\end{array}
$$

is a cofibration. This morphism coincides with

$$
IA_0 \sqcup_{A_0 \sqcup A_0} (A_1 \sqcup B_0) \longrightarrow IA_1 \sqcup_{A_1 \sqcup A_1} (A_1 \sqcup B_1)
$$

which factors as

$$
IA_0 \sqcup_{A_0 \sqcup A_0} (A_1 \sqcup B_0) \longrightarrow IA_0 \sqcup_{A_0 \sqcup A_0} (A_1 \sqcup B_1) \longrightarrow IA_1 \sqcup_{A_1 \sqcup A_1} (A_1 \sqcup B_1).
$$

The first morphism is a pushout of $A_1 \sqcup B_0 \to A_1 \sqcup B_1$ which is a cofibration since $B_0 \to B_1$ is. The second morphism is a pushout of $IA_0 \sqcup_{A_0 \sqcup A_0} (A_1 \sqcup A_1) \to IA_1$ which is a cofibration since $A_0 \to A_1$ is and \mathcal{C} has good cylinders.

3. Clearly, every Reedy cofibration is a levelwise cofibration and levelwise cofibrations are stable under pullbacks. Consider a diagram

$$
\begin{array}{ccc}
A_0 & \longrightarrow & \tilde{B}_0 \sim \longrightarrow B_0 \\
\downarrow & & \downarrow \\
A_1 & \longrightarrow & \tilde{B}_1 \sim \longrightarrow B_1
\end{array}
$$

in \mathcal{C}'_R where \tilde{B}_0 and \tilde{B}_1 are obtained by the standard Reedy factorization induced by the given functorial factorization in \mathcal{C}. Assuming that $A_0 \to A_1$ and $B_0 \to B_1$ are levelwise cofibrations, we need to check that $A_{i,i} \sqcup_{A_0 \sqcup A_0} \tilde{B}_{0,i} \to \tilde{B}_{1,i}$ is a cofibration for every $i \in [m]$.

For $i = 0$, this follows directly from the assumption that $c\mathcal{C}$ is a good subcategory of \mathcal{C}. The Reedy factorization is constructed by induction over $[m]$, so assume that the
The conclusion is already known for \(i < m \). The factorization at level \(i + 1 \) arises as

\[
\begin{array}{ccc}
A_{0,i+1} \sqcup_{A_{0,i}} \tilde{B}_{0,i} & \longrightarrow & \tilde{B}_{0,i+1} \\
\downarrow & & \downarrow \\
A_{1,i+1} \sqcup_{A_{1,i}} \tilde{B}_{1,i} & \longrightarrow & \tilde{B}_{1,i+1}
\end{array}
\]

where the left square comes from the diagram

\[
\begin{array}{ccc}
A_{0,i} & \longrightarrow & \tilde{B}_{0,i} \\
\downarrow & & \downarrow \\
A_{0,i+1} & \longrightarrow & \tilde{B}_{0,i+1} \\
\downarrow & & \downarrow \\
A_{1,i} & \longrightarrow & \tilde{B}_{1,i} \\
\downarrow & & \downarrow \\
A_{1,i+1} & \longrightarrow & \tilde{B}_{1,i+1}
\end{array}
\]

where the bullets stand for the pushouts above. The conclusion we need to obtain amounts to the composite of the two squares in the front being a Reedy cofibration when seen as a morphism from left to right. The right square is a Reedy cofibration since \(c\mathcal{C} \) is a good subcategory of \(\mathcal{C} \) and so is the left one since it is a pushout of the back square which is a Reedy cofibration by the inductive hypothesis.

Lemma 16. The inclusion \(\text{Nw}(\mathcal{C}_R^{[k]}) \to \text{Nw}(\mathcal{C}^{[k]}) \) is a weak homotopy equivalence.

Proof. Functorial factorization induces a functor in the opposite direction as well as natural weak equivalences connecting both composites with identities. \(\square \)

Proof of Theorem 10. Recall that we want to show that \(\text{Nw}((c\mathcal{C})^{[k]}) \to \text{Nw}(\mathcal{C}^{[k]}) \) is a weak equivalence for all \(k \). In the diagram

\[
\begin{array}{ccc}
\text{Nwc}(\mathcal{C}_R^{[k]}) & \longrightarrow & \text{Nw}(\mathcal{C}_R^{[k]}) \\
\downarrow & \circlearrowleft & \downarrow \\
\text{Nw}((c\mathcal{C})^{[k]}) & \longrightarrow & \text{Nwc}(\mathcal{C}^{[k]}) \\
\downarrow & \circlearrowleft & \downarrow \\
& \text{Nw}(\mathcal{C}^{[k]})
\end{array}
\]

the indicated maps are weak equivalences. The map \(\circlearrowleft \) is a weak equivalence by Lemma 14 applied to \(\mathcal{C}_R^{[k]} \) with itself as a good subcategory and so is \(\circlearrowright \) by the same argument applied to \(\mathcal{C}^{[k]} \). The map \(\circlearrowleft \) is a weak equivalence by Lemma 14 applied to \(\mathcal{C}_R^{[k]} \) with the good subcategory of levelwise cofibrations, which is indeed good by Lemma 15. Finally, \(\circlearrowright \) is a weak equivalence by Lemma 16. Hence by 2-out-of-3, the bottom composite is also a weak equivalence as required. \(\square \)

Acknowledgements. The first author was supported by Wolfgang Lück’s ERC Advanced Grant “KL2MG-interactions” (no.662400) granted by the European Research Council.

References

[Bro73] Kenneth S. Brown, *Abstract homotopy theory and generalized sheaf cohomology*, Trans. Amer. Math. Soc. **186** (1973), 419–458. MR 0341469

[CGT06] Carles Casacuberta, Marek Golasiński, and Andrew Tonks, *Homotopy localization of groupoids*, Forum Math. **18** (2006), no. 6, 967–982. MR 2278610 (2007j:18003)

[Cis12] Denis-Charles Cisinski, *Does the classification diagram localize a category with weak equivalences*, http://mathoverflow.net/questions/92916/does-the-classification-diagram-localize-a-category-with-weak-equivalences, April 2012.

[Del12] Ivo Dell’Ambrogio, *The unitary symmetric monoidal model category of small C*-categories*, Homology Homotopy Appl. **14** (2012), no. 2, 101–127. MR 3007088
[DL98] Jim Davis and Wolfgang Lück, *Spaces over a Category, Assembly Maps, and Isomorphism Conjectures in K- and L-Theory*, K-Theory 15 (1998), 201–251.

[Dug01] Daniel Dugger, *Combinatorial model categories have presentations*, Adv. Math. 164 (2001), no. 1, 177–201. MR 1870516

[GJ99] Paul G. Goerss and John F. Jardine, *Simplicial homotopy theory*, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612

[Hov99] Mark Hovey, *Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134

[Joa03] Michael Joachim, *K-homology of C*-categories and symmetric spectra representing K-homology*, Math. Ann. 327 (2003), no. 4, 641–670. MR 2023312

[LN16] Markus Land and Thomas Nikolaus, *On the relation between K- and L-theory of C*-algebras*, Arxiv:1608.02903 (2016).

[Lur09] Jacob Lurie, *Higher Topos Theory*, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659 (2010j:18001)

[Lur14] _____, *Higher Algebra*, http://www.math.harvard.edu/~lurie/, 2014.

[MG15] Aaron Mazel-Gee, *The universality of the Rezk nerve*, Arxiv:1510.03150 (2015).

[RB01] Andrei Radulescu-Banu, *Cofibrations in homotopy theory*, no. arXiv:math/0610009v4.

[Rez01] Charles Rezk, *A model for the homotopy theory of homotopy theory*, Trans. Amer. Math. Soc. 353 (2001), no. 3, 973–1007 (electronic). MR 1804411

[RW98] Iain Raeburn and Dana P. Williams, *Morita equivalence and continuous-trace C*-algebras*, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 1634408

University of Bonn, Mathematical Institute, Endenicher Allee 60, 53115 Bonn

E-mail address: land@math.uni-bonn.de

Max Planck Institut für Mathematik Bonn, Vivatsgasse 7, 53111 Bonn

E-mail address: thoni@mpim-bonn.mpg.de

University of Western Ontario, Department of Mathematics, 1151 Richmond Street, N6A 3K7 London, ON

E-mail address: kszumilo@uwo.ca