Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes

Zheng Wang, Student Member, IEEE, Jie Luo, Member, IEEE

Abstract—Guruswami and Indyk showed in [1] that Forney’s error exponent can be achieved with linear coding complexity over binary symmetric channels. This paper extends this conclusion to general discrete-time memoryless channels and shows that Forney’s and Blokh-Zyablov error exponents can be arbitrarily approached by one-level and multi-level concatenated codes with linear encoding/decoding complexity. The key result is a revision to Forney’s general minimum distance decoding algorithm, which enables a low complexity integration of Guruswami-Indyk’s outer codes into the concatenated coding schemes.

Index Terms—coding complexity, concatenated code, error exponent

I. INTRODUCTION

Consider communication over a discrete-time memoryless channel modeled by a conditional point mass function (PMF) or probability density function (PDF) $p_{Y|X}(y|x)$, where $x \in X$ and $y \in Y$ are the input and output symbols, X and Y are the input and output alphabets, respectively. Let C be the Shannon capacity. Fano showed in [2] that the minimum error probability P_e for block channel codes of rate R and length N is bounded by

$$\lim_{N \to \infty} -\frac{\log P_e}{N} \geq E(R),$$

where $E(R)$ is a positive function of channel transition probabilities, known as the error exponent. For finite input and output alphabets, without coding complexity constraint, the maximum achievable $E(R)$ is given by Gallager in [3],

$$E(R) = \max_{p_X} E_L(R, p_X),$$

where p_X is the input distribution, and $E_L(R, p_X)$ is given for different values of R as follows,

$$\max_{\rho \geq 1} \{-\rho R + E_L(\rho, p_X)\} \quad 0 \leq R \leq R_x$$

$$-R + E_0(1, p_X) \quad R_x \leq R \leq R_{\text{crit}}$$

$$\max_{0 \leq \rho \leq 1} \{-\rho R + E_0(\rho, p_X)\} \quad R_{\text{crit}} \leq R \leq C.$$

The definitions of other variables in [3] can be found in [4]. If we replace the PMF by PDF, the summations by integrals and the max operators by sup in [2], [3], the maximum achievable error exponent for continuous channels, i.e., channels whose input and/or output alphabets are the set of real numbers [3], is still given by [3].

In [4], Forney proposed a one-level concatenated coding scheme, which can achieve the following error exponent, known as Forney’s exponent, for any rate $R < C$ with a complexity of $O(N^4)$.

$$E_c(R) = \max_{r_o \in [2,1]} \left(1 - r_o\right) E \left(\frac{R}{r_o}\right),$$

where r_o and R are the outer and the overall rates, respectively. Forney’s coding scheme concatenates a maximum distance separable (MDS) outer error-correction code with well performed inner channel codes. To achieve $E_c(R)$, the decoder is required to exploit reliability information from the inner codes using a general minimum distance (GMD) decoding algorithm [4]. Forney’s concatenated codes were generalized to multi-level concatenated codes, also known as the generalized concatenated codes, by Blokh and Zyablov in [5]. As the order of concatenation goes to infinity, the error exponent approaches the following Blokh-Zyablov bound (or Blokh-Zyablov error exponent) [5][6].

$$E^{(\infty)}(R) = \max_{p_X, r_o \in [2,1]} \left(\frac{R}{r_o} - R\right) \left[\int_0^{\frac{R}{r_o}} \frac{dx}{E_L(x, p_X)}\right]^{-1}.$$

In [1], Guruswami and Indyk proposed a family of linear-time encodable/decodable nearly MDS error-correction codes. By concatenating these codes (as outer codes) with fixed-lengthed binary inner codes, together with Justesen’s GMD algorithm [7], Forney’s error exponent was shown to be achievable over binary symmetric channels (BSCs) with a complexity of $O(N)$ [1], i.e., linear in the codeword length. The number of outer code decodings required by Justesen’s GMD algorithm is only a constant as opposed to $O(N)$ in Forney’s case [4]. Since each outer code decoding has a complexity of $O(N)$, upper-bounding the number of outer code decodings by a constant is required for achieving the overall linear complexity. Because Justesen’s GMD algorithm assumes binary channel outputs [7][8], achievability of Forney’s exponent was only proven for BSCs in [1, Theorem 8].

1 Strictly speaking, the required number of outer code decodings is linear in the inner codeword length, which is fixed at a reasonably large constant.

The authors are with the Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80523. E-mail: {zhwang, rockey}@engr.colostate.edu.
In this paper, we show that Forney’s GMD algorithm can be revised to carry out outer code decoding for only a constant number of times. With the help of the revised GMD algorithm, by using Guruswami-Indyk’s outer codes with fixed-length inner codes, one-level and multi-level concatenated codes can arbitrarily approach Forney’s and Blokh-Zyablov exponents with linear complexity, over general discrete-time memoryless channels.

II. REVISED GMD ALGORITHM AND ITS IMPACT ON CONCATENATED CODES

Consider one-level concatenated coding schemes. Assume, for an arbitrarily small $\varepsilon_1 > 0$, we can construct a linear encodable/decodable outer error-correction code, with rate r_o and length N_o, which can correct t symbol errors and d symbol erasures so long as $2t + d < N_o(1 - r_o - \varepsilon_1)$. Note that this is possible for large N_o as shown by Guruswami and Indyk in [1]. To simplify the notations, we assume $N_o(1 - r_o - \varepsilon_1)$ is an integer. The outer code is concatenated with suitable inner codes with rate R_i and fixed length N_i. The rate and length of the concatenated code are $R = r_o R_i$ and $N = N_o N_i$, respectively. In Forney’s GMD decoding, inner codes forward not only the estimates $\hat{x}_m = [\hat{x}_1, \ldots, \hat{x}_i, \ldots, \hat{x}_N]$ but also a reliability vector $\alpha = [\alpha_1, \ldots, \alpha_i, \ldots, \alpha_{N_o}]$ to the outer code, where $\hat{x}_i \in GF(q)$, $0 \leq \alpha_i \leq 1$ and $1 \leq i \leq N_o$. Let

$$s(\hat{x}, x) = \begin{cases} +1 & x = \hat{x} \\ -1 & x \neq \hat{x} \end{cases}$$

For any outer codeword $x_m = [x_{m1}, x_{m2}, \ldots, x_{mN_o}]$, define a dot product $\alpha \cdot x_m$ as follows

$$\alpha \cdot x_m = \sum_{i=1}^{N_o} \alpha_i s(\hat{x}_i, x_{mi}) = \sum_{i=1}^{N_o} \alpha_is_i.$$

Theorem 1: There is at most one codeword x_m that satisfies

$$\alpha \cdot x_m > N_o(r_o + \varepsilon_1).$$

Theorem 1 is implied by Theorem 3.1 in [4].

Rearrange the weights in ascending order of their values and let $i_1, i_2, \ldots, i_{N_o}$ be the indices such that

$$\alpha_{i_1} \leq \ldots \leq \alpha_{i_{N_o}}.$$

Define $q_k = [q_k(\alpha_1), \ldots, q_k(\alpha_j), \ldots, q_k(\alpha_{N_o})]$, for $0 \leq k < 1/\varepsilon_2$, where $\varepsilon_2 > 0$ is a positive constant with $1/\varepsilon_2$ being an integer, and $q_k(\alpha_{i_j})$ is given by

$$q_k(\alpha_{i_j}) = \begin{cases} 0 & \text{if } \alpha_{i_j} \leq k \varepsilon_2 \\ 1 & \text{otherwise} \end{cases}$$

Define dot product $q_k \cdot x_m$ as

$$q_k \cdot x_m = \sum_{i=1}^{N_o} q_k(\alpha_i)s(\hat{x}_i, x_{mi}) = \sum_{i=1}^{N_o} q_k(\alpha_is_i).$$

Then following theorem gives the key result that enables the revision of Forney’s GMD decoder.

Theorem 2: If $\alpha \cdot x_m > N_o \left(\frac{\varepsilon_2}{2} + (r_o + \varepsilon_1)(1 - \frac{\varepsilon_2}{2})\right)$, then for some $0 \leq k < 1/\varepsilon_2$, $q_k \cdot x_m > N_o(r_o + \varepsilon_1)$.

Proof: Define a set of values $c_j = (j - 1/2)\varepsilon_2$ for $1 \leq j \leq 1/\varepsilon_2$ and an integer $p = \lceil\alpha_iN_o(1-r_o-\varepsilon_1)/\varepsilon_2\rceil$, where $1 \leq p \leq 1/\varepsilon_2$.

Let

$$\begin{align*}
\lambda_0 &= c_1 \\
\lambda_k &= c_{k+1} - c_k, 1 \leq k \leq p - 1 \\
\lambda_p &= \alpha_iN_o(1-r_o-\varepsilon_1) + c_p \\
\lambda_h &= \alpha_{i_{k+p}}N_o(1-r_o-\varepsilon_1) + 1 - \alpha_{i_{k-p}}N_o(1-r_o-\varepsilon_1) \\
\text{if } p < h < p + N_o(r_o + \varepsilon_1) \\
\lambda_{p+N_o(r_o+\varepsilon_1)} &= 1 - \alpha_{i_{N_o}}.
\end{align*}$$

We have

$$\sum_{k=0}^{j-1} \lambda_k = \begin{cases} c_j & 1 \leq j \leq p \\ \alpha_{i_{j-p+N_o(1-r_o-\varepsilon_1)}} & p < j \leq p + N_o(r_o + \varepsilon_1) \end{cases},$$

and

$$\sum_{k=0}^{p+N_o(r_o+\varepsilon_1)} \lambda_k = 1.$$

Define a new weight vector $\tilde{\alpha} = [\tilde{\alpha}_1, \ldots, \tilde{\alpha}_i, \ldots, \tilde{\alpha}_{N_o}]$ with

$$\tilde{\alpha}_i = \begin{cases} \arg\min_{c_j, 1 \leq j \leq p} |c_j - \alpha_i| & \alpha_i \leq \alpha_{i_{N_o}(1-r_o-\varepsilon_1)} \\ \alpha_{i_{N_o}(1-r_o-\varepsilon_1)} - \alpha_i & \alpha_i > \alpha_{i_{N_o}(1-r_o-\varepsilon_1)} \end{cases}.$$

Define $p_k = [p_k(\alpha_1), \ldots, p_k(\alpha_j), \ldots, p_k(\alpha_{N_o})]$ with $1 \leq k \leq p + N_o(r_o + \varepsilon_1)$ such that for $0 \leq k < p$

$$p_k = q_k,$$

and for $p \leq k \leq p + N_o(r_o + \varepsilon_1)$

$$p_k(\alpha_i) = \begin{cases} 0 & \alpha_i \leq \alpha_{i_{k-p+N_o(1-r_o-\varepsilon_1)}} \\ 1 & \alpha_i > \alpha_{i_{k-p+N_o(1-r_o-\varepsilon_1)}} \end{cases}.$$

We have

$$\tilde{\alpha} = \sum_{k=0}^{p+N_o(r_o+\varepsilon_1)} \lambda_k p_k.$$

Define a set of indices

$$U = \{i_1, i_2, \ldots, i_{N_o(1-r_o-\varepsilon_1)}\}.$$

According to the definition of $\tilde{\alpha}_i$, for $i \notin U$, $\tilde{\alpha}_i = \alpha_i$. Hence

$$\tilde{\alpha} \cdot x_m = \alpha \cdot x_m + \sum_{i \in U} (\tilde{\alpha}_i - \alpha_i) s_i.$$

Since $|\tilde{\alpha}_i - \alpha_i| \leq \varepsilon_2/2$, and $s_i = \pm 1$, we have

$$\sum_{i \in U} (\tilde{\alpha}_i - \alpha_i) s_i \geq -N_o(1-r_o-\varepsilon_1)|\varepsilon_2/2|.$$

\[3\] Note that the value of p cannot be 0. Because if $p = 0$, i.e., $\alpha_{i_{N_o}(1-r_o-\varepsilon_1)} = 0$, then there are at least $N_o(1-r_o-\varepsilon_1)$ zeros in vector α. Consequently, $\alpha \cdot x_m \leq N_o(r_o + \varepsilon_1) < N_o \left(\frac{\varepsilon_2}{2} + (r_o + \varepsilon_1)(1 - \frac{\varepsilon_2}{2})\right)$, which contradicts the assumption that $\alpha \cdot x_m > N_o \left(\frac{\varepsilon_2}{2} + (r_o + \varepsilon_1)(1 - \frac{\varepsilon_2}{2})\right)$. \]
Consequently, $\alpha \cdot x_m > N_o \left(\frac{e_2}{2} + (r_o + \epsilon_1) \left(1 - \frac{e_2}{2} \right) \right)$ implies

$$\alpha \cdot x_m > N_o (r_o + \epsilon_1). \quad (22)$$

If $p_k \cdot x_m \leq N_o (r_o + \epsilon_1)$ for all p_k’s, then

$$\alpha \cdot x_m = \sum_{k=0}^{p+N_o (r_o + \epsilon_1)} \lambda_k p_k \cdot x_m \leq N_o (r_o + \epsilon_1) \sum_{k=0}^{p+N_o (r_o + \epsilon_1)} \lambda_k = N_o (r_o + \epsilon_1), \quad (23)$$

which contradicts (22). Therefore, there must be some p_k that satisfies

$$p_k \cdot x_m > N_o (r_o + \epsilon_1). \quad (24)$$

Since for $k \geq p$, p_k has no more than $N_o (r_o + \epsilon_1)$ number of 1’s, which implies $p_k \cdot x_m \leq N_o (r_o + \epsilon_1)$, the vectors that satisfy (24) must exist among p_k with $1 \leq k < p$. In words, for some k, $q_k \cdot x_m > N_o (r_o + \epsilon_1)$.

Theorems 1 and 2 indicate that, if x_m is transmitted and $\alpha \cdot x_m > N_o \left(\frac{e_2}{2} + (r_o + \epsilon_1) \left(1 - \frac{e_2}{2} \right) \right)$, for some $0 \leq k < 1/\epsilon_2$, errors-and-erasures decoding specified by q_k (where symbols with $q_k (a_i) = 0$ are erased) will output x_m. Since the total number of q_k vectors is upper bounded by a constant $1/\epsilon_2$, the outer code carries out errors-and-erasures decoding only for a constant number of times. Consequently, a GMD decoding that carries out errors-and-erasures decoding for all q_k’s and compares their decoding outputs can recover x_m with a complexity of $O(N_o)$. Since the inner code length N_i is fixed, the overall complexity is $O(N)$.

The following theorem gives an error probability bound for one-level concatenated codes with the revised GMD decoder.

Theorem 3: Assume inner codes achieve Gallager’s error exponent given in [2]. Let the reliability vector α be generated according to Forney’s algorithm presented in [4, Section 4.2]. Let x_m be the transmitted outer codeword. For large enough N, error probability of the one-level concatenated codes is upper bounded by

$$P_e \leq \exp \left\{ -N \left(E_o (R) - \epsilon \right) \right\}, \quad (25)$$

where $E_o (R)$ is Forney’s error exponent given by [11] and ϵ is a function of ϵ_1 and ϵ_2 with $\epsilon \rightarrow 0$ if $\epsilon_1, \epsilon_2 \rightarrow 0$.

The proof of Theorem 3 can be obtained by first replacing Theorem 3.2 in [4] with Theorem 2 and then following Forney’s analysis presented in [4, Section 4.2].

The difference between Forney’s and the revised GMD decoding schemes lies in the definition of errors-and-erasures decodable vectors q_k, the number of which determines the decoding complexity. Forney’s GMD decoding needs to carry out errors-and-erasures decoding for a number of times linear in N_o, whereas ours for a constant number of times. Although the idea behind the revised GMD decoding is similar to Justesen’s GMD algorithm [7], Justesen’s work has focused on error-correction codes where inner codes forward Hamming distance information (in the form of an α vector) to the outer code.

Applying the revised GMD algorithm to multi-level concatenated codes [5][6] is quite straightforward. Achievable error exponent of an m-level concatenated codes is given in the following theorem.

Theorem 4: For a discrete-time memoryless channel with capacity C, for any $\epsilon > 0$ and any integer $m > 0$, one can construct a sequence of m-level concatenated codes whose encoding/decoding complexity is linear in N, and whose error probability is bounded by

$$\lim_{N \rightarrow \infty} \frac{-\log P_e}{N} \geq E^m (R) - \epsilon,$$

$$E^m (R) = \max_{r \in \mathbb{R}, \gamma = \gamma \in [0,1/2]} \left(\frac{R}{r} - R \sum_{m=1}^{R} \sum_{c \in \mathbb{R}} \left(\epsilon \left(\frac{1}{m} \right) \epsilon \right)^{-1} \right) \quad (26)$$

The proof of Theorem 4 can be obtained by combining Theorem 3 and the derivation of $E^m (R)$ in [5][6].

Note that $n_{m \rightarrow \infty} E^m (R) = E^\infty (R)$, where $E^\infty (R)$ is the Blokh-Zyablov error exponent given in [5]. Theorem 4 implies that, for discrete-time memoryless channels, Blokh-Zyablov error exponent can be arbitrarily approached with linear encoding/decoding complexity.

III. Conclusions

We proposed a revised GMD decoding algorithm for concatenated codes over general discrete-time memoryless channels. By combining the GMD algorithm with Guruswami and Indyk’s error correction codes, we showed that Forney’s and Blokh-Zyablov error exponents can be arbitrarily approached by one-level and multi-level concatenated coding schemes, respectively, with linear encoding/decoding complexity.

Acknowledgment

The authors would like to thank Professor Alexander Barg for his help on multi-level concatenated codes.

References

[1] V. Guruswami and P. Indyk, “Linear-Time Encodable/Decodable Codes With Near-Optimal Rate,” IEEE Trans. Inform. Theory, Vol. 51, No. 10, pp. 3393-3400, Oct. 2005.

[2] R. Fano, “Transmission of Information,” The M.I.T Press, and John Wiley & Sons, Inc., New York, N.Y., 1961.

[3] R. Gallager, “A Simple Derivation of The Coding Theorem and Some Applications,” IEEE Trans. on Inform. Theory, Vol.11, pp.3-18, Jan. 1965.

[4] G. Forney, “Concatenated Codes,” The MIT Press, 1966.

[5] E. Blokh and V. Zyablov, “Linear Concatenated Codes,” Nauka, Moscow, 1982 (In Russian).

[6] A. Barg and G. Zémor, “ Concatenated Codes: Serial and Parallel,” IEEE Trans. Inform. Theory, Vol. 51, pp. 1625-1634, May 2005.

[7] J. Justesen, “A Class of Constructive Asymptotically Good Algebraic Codes,” IEEE Trans. Inform. Theory, Vol. IT-18, pp. 652-656, Sep. 1972.

[8] V. Guruswami, “List Decoding of Error-correcting Codes,” Ph.D. dissertation, MIT, Cambridge, MA, 2001.