Proton pump inhibitor use increases hepatic encephalopathy risk: A systematic review and meta-analysis

Yun-Jie Ma, Zong-Xun Cao, Yong Li, Shun-Yi Feng

ORCID number: Yun-Jie Ma (0000-0002-8572-7537); Zong-Xun Cao (0000-0002-9086-5723); Yong Li (0000-0002-2266-6280); Shun-Yi Feng (0000-0002-6114-7837).

Author contributions: Ma YJ and Cao ZX contributed to conception and design of the study; Ma YJ, Cao ZX, and Feng SY contributed to acquisition of data; Cao ZX, Li Y, and Feng SY analyzed and interpreted the data; Ma YJ drafted the article; Li Y critically revised the manuscript; all authors approved the final version to be published.

Conflict-of-interest statement: The authors deny any conflict of interest.

PRISMA 2009 Checklist statement: This systematic review was performed in accordance with the standards set forth by the statement from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

BACKGROUND
Several studies have been conducted to explore the association between the use of proton pump inhibitors (PPIs) and hepatic encephalopathy (HE) risk in patients with liver cirrhosis. However, their results are controversial.

AIM
To perform a systematic review and meta-analysis to evaluate the HE risk among PPI users.

METHODS
A systematic search on PubMed, Web of Science, EMBase, and ScienceDirect databases was conducted up to December 31, 2018 for eligible studies involving PPI use and HE risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using the fixed or random effects model. Publication bias was evaluated using Begg’s test, Egger’s test, and trim-and-fill method.

RESULTS
Seven studies with 4574 patients were included in the present meta-analysis. The meta-analysis results indicated a significant association between the PPI use and HE risk (OR = 1.50; 95%CI: 1.25-1.75) with low heterogeneity ($I^2 = 14.2\%$, $P = 0.321$). Although publication bias existed when Egger’s tests were used ($P = 0.005$), the trim-and-fill method verified the stability of the pooled result. Sensitivity analyses suggested that the results of this meta-analysis were robust.

CONCLUSION
The current evidence indicates that PPI use increases HE risk in patients with liver cirrhosis. Further studies with a large data set and well-designed models are needed to validate our findings.

Key words: Proton pump inhibitors; Hepatic encephalopathy; Meta-analysis
INTRODUCTION

Proton pump inhibitors (PPIs) are the first choice of treatment for esophagitis and peptic ulcer disease, as well as the prevention of nonsteroidal anti-inflammatory drug associated ulcers, Zollinger-Ellison syndrome, and functional dyspepsia[1]. In acid-related diseases, the benefits of PPI use outweigh their potential harm. Unfortunately, the negative effects of PPI use are generally underestimated due to marketing strategy and neglected reporting bias in published trials. Thus, not all PPIs are used following evidence-based guidelines in the clinical setting, and PPIs are overprescribed in both inpatient and outpatient settings[2-4].

Accumulating data illustrate the potential risks associated with long-term PPI therapy, including pneumonia, spontaneous bacterial peritonitis, gastric cancer, vitamin B12 deficiency, *Clostridium difficile*-associated diarrhea, myocardial infarction, hypomagnesemia, chronic kidney disease, and hip fracture[5-10]. Regarding concerns over liver adverse effects, a previous meta-analysis showed that PPIs increase the risk of hepatic encephalopathy (HE) in patients with hepatic failure[11]. However, the results are restricted because of the inclusion of a relatively small number of studies. New primary studies[12-15] have also been recently published, and their results are controversial.

Therefore, in this meta-analysis, we aimed to update, compile, and critically review the existing evidence on the HE risk in patients with liver cirrhosis and PPI use and provide a quantitative estimate of the relationship between PPI use and HE risk.

MATERIALS AND METHODS

This systematic review was performed in accordance with the standards of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses[16]. Ethical approval was not sought for this study because all the data came from published studies, and no individual-level data were used. The systematic review registration number is CRD42019120845.

Literature search

A systematic search on PubMed, Web of Science, Embase, and ScienceDirect databases was conducted up to December 31, 2018 for eligible studies involving PPI use and HE risk. The following keywords were used to search for the related literature: “proton pump inhibitors” and “hepatic encephalopathy.” The reference lists of the identified articles were also manually searched to identify additional relevant studies.

Study selection

Two reviewers independently screened the titles and abstracts of the retrieved studies. Studies were considered eligible if they met the inclusion criteria, as follows: Studies assessed the association between PPI and HE risk, those with full text access, and those which included sufficient data to calculate odds ratios (ORs) and 95% confidential intervals (CI) for extraction. Among duplicate studies, the most recent study was included in this meta-analysis. The exclusion criteria were as follows: Insufficient data for extraction, articles that are available only in abstracts, case
reports, conference papers, editor comments, reviews, meta-analysis, and inclusion of duplicate data in other studies.

Data extraction
Data were extracted independently by two reviewers using the data extraction tables. The results were compared, and disagreements were discussed. The following data were extracted: First author’s name, publication year, region, number of patients, age, sex, PPI use duration, HE level, and outcomes.

Bias risk
To evaluate the methodological quality of the included studies, we used the Newcastle-Ottawa scale (NOS)\(^{17}\). The range of NOS scores was from 0 to 9, and a score ≥ 6 was defined as “high quality”\(^{18,19}\).

Statistical analysis
Statistical analyses were performed using STATA version 12.0 (Stata Corporation, College Station, TX, United States), and two-sided \(P<0.05\) was considered statistically significant. Pooled ORs with 95% CIs were utilized to evaluate the relationship between PPI use and HE risk. Statistical heterogeneity was assessed based on \(P\)- and \(I^2\)-values by using the standard Chi-squared test. Low, moderate, or high heterogeneity among studies was defined as \(I^2<25\%\), 50%-75%, and > 75%, respectively. When \(I^2>50\%\) and \(P<0.1\) was considered significantly heterogeneous, and the random effects model was used for meta-analysis; otherwise, the fixed effects model was used. We performed a sensitivity analysis by excluding one study at a time to assess the effect of individual studies on the summary estimates. Publication bias was evaluated using Begg’s test, Egger’s test, and trim-and-fill method.

RESULTS

Study selection
The details of study identification, screening, and selection are presented in Figure 1. The initial database search yielded 888 records, of which 107 duplicates were excluded. Then, 771 records, including 768 irrelevant studies and 3 reviews, were removed through the primary screening of titles and abstracts. After assessing ten full-text studies, two conference abstracts and one editor comment were excluded. Finally, seven articles\(^{12-15,20-22}\) involving 4574 patients were included in this meta-analysis.

Study characteristics
The characteristics of the included studies are summarized in Table 1. The seven included studies\(^{12-15,20-22}\) were published within the last 5 years, altogether involving 4574 patients. Among the seven articles\(^{12-15,20-22}\), three were based on Asian populations\(^{15,21,22}\), and four involved Europeans\(^{12-14,20}\). Out of the seven included studies\(^{12-15,20-22}\), six were retrospective\(^{12-15,20-22}\), and one was prospective\(^{17}\). The NOS scores of the eligible studies\(^{12-15,20-22}\) ranged from 7 to 9, with a mean of 7.9, thereby indicating that the included studies were of high quality (Table 2).

PPI and HE risk association
Figure 2 shows the pooled results from the fix-effects model combining ORs for HE risk. Our meta-analysis result indicated a significant association between PPI use and HE risk (OR = 1.50; 95% CI: 1.25-1.75; Figure 2) with low heterogeneity (\(I^2=14.2\%\), \(P=0.321\)).

Sensitivity analysis and publication bias
Sensitivity analyses showed that pooled OR for PPI use and HE risk association and the corresponding 95% CIs were unaltered substantially by removing one study, thereby suggesting that the results of this meta-analysis were robust (Figure 3). Although publication bias existed as indicated by the results of the Egger’s tests (Egger’s tests, \(P=0.005\); Begg’s tests, \(P=0.133\)), the trim-and-fill method verified the stability of the pooled result, and the pooled OR was unaffected (1.58, 95% CI: 1.36-1.85; Figure 4).

DISCUSSION

In this study, we performed a meta-analysis to observe HE alterations in patients with
liver cirrhosis and explore the relationship between PPI use and HE risk. The findings from this study indicated an increase of 50% risk of HE among PPI users, which was consistent with the results obtained in a previous study\[11\]. Our meta-analysis expanded the results of previous studies and increased the statistical power to evaluate the effects.

The mechanisms of PPIs on the occurrence of HE in cirrhosis are unclear. However, as proposed, PPI use can contribute to the gut dysbiosis that generally exists in patients with cirrhosis, whereas altered gut microbiota can induce or exacerbate HE occurrence\[23,24\]. Intestinal bacteria in the colon produce ammonia from glutamine and nitrogenous source catabolism. An increased ammonia level in the brain results in HE occurrence by primarily influencing the brain energy metabolism and central nervous system\[25,26\]. PPI use also inhibits neutrophil-endothelial cell interactions and reduces natural killer cell activities and neutrophils\[27\], thereby possibly promoting HE occurrence due to the failure of local and systemic immune defense\[28\].

Low heterogeneity was detected among the included studies and meta-regression analysis was not required. However, we were also concerned about the effect of publication bias because positive results are likely to be published. Although publication bias existed when Egger’s tests were used, the trim-and-fill method verified the stability of the pooled result.

Considering that PPI use is associated with an increased risk of HE occurrence in patients with liver cirrhosis, physicians should ban PPI use in these patients and those with portal hypertension when PPIs are used without specific indications\[29\]. Adhering to evidence-based guidelines is the only way to ensure effective and safe PPI use\[30\]. Regulatory authorities should also assume supervision and management responsibilities to avoid inappropriate PPI use\[31\].

This study has several potential limitations. First, given the heterogeneity of the studies included, some of the results should be regarded with caution. Second, we included only trials published in English. Third, the number of included studies was relatively small. Although we conducted a comprehensive literature search, only seven studies were included.

In conclusion, the results of our meta-analysis suggest that PPI use is independently associated with HE risk. Therefore, randomized multicentric studies with a large sample size should be conducted to provide further insight into the potential impact of PPIs on HE.
Ref.	Region	Design	n	Male (%)	Mean minimal PPI use duration	Number of episodes	HE level	Age (yr)	Risk estimate (95% CI)
Dam et al[20], 2016	Denmark	Retrospective case-control study	865	86.7	At least 1 wk prior to HE episode	Follow-up ended at the onset of the first HE episode	2-4	57.4	Current PPI use vs current nonuse, HR: 1.36 (95% CI: 1.01-1.84)
Lin et al[21], 2014	China	Retrospective case-control study	165	78.2	More than 5 d prior to HE episode	Follow-up ended at the onset of the first HE episode	2-4	44.0	PPI use vs nonuse, OR: 4.392 (95% CI: 1.604-12.031)
Nardelli et al[12], 2018	Rome	Prospective observational study	310	71.3	PPI use at least 4 wk prior to the admission	Follow-up ended at the onset of the first HE episode	2-4	62.0	PPI use at least 4 wk prior to admission vs. PPI nonuse at least 4 wk prior to admission OR: 3.96 (95% CI: 2.27-6.92)
Sturm et al[13], 2018	Germany	Retrospective observational study	397	68.1	NR	Follow-up ended at the onset of the first HE episode	1-4	59.3	PPI use vs nonuse, OR: 2.29 (95% CI: 1.86-6.46)
Tergast et al[14], 2018	Germany	Retrospective longitudinal cohort study	249	67.9	PPI intake within 7 d prior to enrollment	NR	3-4	56.8	PPI dosage > 40 mg/d vs PPI dosage > 10-40 mg/d, HR: 1.85 (95% CI: 0.87-3.66)
Tsai et al[22], 2016	Taiwan	Retrospective case-control study	2332	74.2	PPI intake at least 30 d prior to enrollment	Follow-up ended at the onset of the first HE episode	NR	53.1	(cDDD > 365 vs cDDD ≤ 30) OR: 3.01 (95% CI: 1.78-5.10); 120 < cDDD < 365 vs cDDD ≤ 30, OR: 1.51 (95% CI: 1.11-2.06) 30 < cDDD < 120 vs cDDD ≤ 30, OR: 1.41 (95% CI: 1.09-1.84)
Zhu et al[15], 2018	China	Retrospective case-control study	256	63.3	PPI use during hospitalization	HE episode during hospitalization	2-4	58.3	PPI use during hospitalization vs nonuse during hospitalization OR: 3.481 (95% CI: 1.651-7.340)

1HE was graded according to the West Haven criteria. cDDD: Cumulative defined daily dose; NR: Not reported; PPI: Proton pump inhibitor; HE: Hepatic encephalopathy; HR: Hazard ratio; OR: Odds ratio; CI: Confidential interval.
Table 2 Quality assessment of included studies using the Newcastle-Ottawa scale

Author (year)	Subject selection	Group comparability	Exposure measurement	Total score
Dam et al[20], 2016	2	2	3	7
Lin et al[20], 2014	3	2	3	8
Nardelli et al[20], 2018	3	2	3	8
Sturm et al[19], 2018	4	2	3	9
Tsai et al[19], 2016	2	2	3	7
Zhu et al[19], 2018	3	2	3	8

Figure 2 Forest plot of proton pump inhibitor use and hepatic encephalopathy risk. CI: Confidence interval.

Figure 3 Funnel plot of sensitivity analysis.

Figure 4 Publication bias funnel plot. A: Begg’s test; B: Egger’s test; C: Trim-and-fill method.
ARTICLE HIGHLIGHTS

Research background
Proton pump inhibitors (PPIs) are the first choice of treatment for esophagitis and peptic ulcer disease, as well as the prevention of nonsteroidal anti-inflammatory drug associated ulcers, Zollinger-Ellison syndrome, and functional dyspepsia. In acid-related diseases, the benefits of PPI use outweigh their potential harm. Unfortunately, the negative effects of PPI use are generally underestimated due to marketing strategy and neglected reporting bias in published trials. Thus, not all PPIs are used following evidence-based guidelines in the clinical setting, and PPIs are overprescribed in both inpatient and outpatient settings.

Research motivation
Regarding concerns over liver adverse effects, a previous meta-analysis showed that PPIs increase the risk of hepatic encephalopathy (HE) in patients with hepatic failure. However, the results are restricted because of the inclusion of a relatively small number of studies. New primary studies have also been recently published, and their results are controversial.

Research objectives
In this meta-analysis, we aimed to update, compile, and critically review the existing evidence on the risk of HE in patients with liver cirrhosis and PPI use and provide a quantitative estimate of the relationship between PPI use and HE risk.

Research methods
A systematic search on PubMed, Web of Science, EMBase, and ScienceDirect databases was conducted up to December 31, 2018 for eligible studies involving PPI use and HE risk. The odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using the fixed- or random-effects model. Publication bias was evaluated using the Begg’s, Egger’s tests, and trim-and-fill method.

Research results
The findings from this study indicated an increase of 50% risk of HE among PPI users, which is consistent with the results obtained in a previous study.

Research conclusions
Our meta-analysis expanded the results of previous studies and increased the statistical power to evaluate the effects.

Research perspectives
Randomized multicentric studies with a large sample size should be conducted to provide further insight into the potential impact of PPIs on HE.

REFERENCES

1. Shi S, Klotz U. Proton pump inhibitors: an update of their clinical use and pharmacokinetics. Eur J Clin Pharmacol 2008; 64: 935-951 [PMID: 18679668 DOI: 10.1007/s00228-008-0538-y]
2. Ahrens D, Chenot JF, Belsens G, Grimmsmann T, Kochen MM. Appropriateness of treatment recommendations for PPI in hospital discharge letters. Eur J Clin Pharmacol 2010; 66: 1265-1271 [PMID: 20694459 DOI: 10.1007/s00228-010-0871-9]
3. Heidelbaugh JJ, Kim AH, Chang R, Walker PC. Overutilization of proton-pump inhibitors: what the clinician needs to know. Therap Adv Gastroenterol 2012; 5: 219-232 [PMID: 22778788 DOI: 10.1177/1756283X12437358]
4. Patterson Burdside D, Flores HC, Krueger J, Garretson S, Gorbien MJ, Iacch A, Dobbs V, Homa T. Use of proton pump inhibitors with lack of diagnostic indications in 22 Midwestern US skilled nursing facilities. J Am Med Dir Assoc 2013; 14: 429-432 [PMID: 23583000 DOI: 10.1016/j.jamda.2013.01.021]
5. Maes ML, Fixen DR, Linnebur SA. Adverse effects of proton-pump inhibitor use in older adults: a review of the evidence. Ther Adv Drug Saf 2017; 8: 273-297 [PMID: 28661211 DOI: 10.1177/2042098617715381]
6. Heidelbaugh JJ, Goldberg KL, Inadomi JM. Overutilization of proton pump inhibitors: a review of cost-effectiveness and risk [corrected]. Am J Gastroenterol 2009; 104 Suppl 2: S27-S32 [PMID: 19262544 DOI: 10.1038/ajg.2009.49]
7. Lazarus B, Chen Y, Wilson FP, Sang Y, Chang AR, Coresh J, Greens ME. Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease. JAMA Intern Med 2016; 176: 238-246 [PMID: 26752337 DOI: 10.1001/jamainternmed.2015.7193]
8. Kockerling D, Nathwani R, Forlano R, Manousson P, Mullish BH, Dhar A. Current and future pharmacological therapies for managing cirrhosis and its complications. World J Gastroenterol 2019; 25: 888-908 [PMID: 30833797 DOI: 10.3748/wjg.v25.i3.888]
9. Trifan A, Stanicu C, Girlea N, Stoica OC, Singaep AM, Maxim R, Chiriac SA, Ciobica A, Boiculese L. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J Gastroenterol 2017; 23: 6500-6515 [PMID: 29085200 DOI: 10.3748/wjg.v23.i35.6500]
10. Lv X, Zhang J, Jiang M, Liu Y, Ren W, Fang Z. Clostridium difficile-associated diarrhea following the therapy with antibiotic and proton pump inhibitors in a 77-year-old man with several comorbidities. A case report. Medicine (Baltimore) 2019; 98: e15004 [PMID: 30921218 DOI: 10.1097/MD.0000000000015004]
11. Bian J, Wang A, Lin J, Wu L, Huang H, Wang S, Yang X, Lu X, Xu Y, Zhao H. Association between proton pump inhibitors and hepatic encephalopathy: A meta-analysis. Medicine (Baltimore) 2017; 96: e6723 [PMID: 28445288 DOI: 10.1097/MD.0000000000006723]
Nardelli S, Gioia S, Ridola L, Farcomeni A, Merli M, Riggio O. Proton Pump Inhibitors Are Associated With Minimal and Overt Hepatic Encephalopathy and Increased Mortality in Patients With Cirrhosis. *Hepatology* 2018; [PMID: 30289992 DOI: 10.1002/hep.30304]

Steurer J, Blettner M, Giesler M, Boettler T, Schmidt A, Bauriedel N, Thimme R, Schuhleiss M. Treatment with proton pump inhibitors increases the risk for development of hepatic encephalopathy after implantation of transjugular intrahepatic portosystemic shunt (TIPS). *United European Gastroenterol J* 2018; 6: 1380-1390 [PMID: 30386610 DOI: 10.1177/205064618795928]

Tergast TL, Wranke A, Laser H, Gerbel S, Mamms MP, Comberg M, Maassouny B. Dose-dependent impact of proton pump inhibitors on the clinical course of spontaneous bacterial peritonitis. *Liver Int* 2018; 38: 1602-1613 [PMID: 29675988 DOI: 10.1111/liv.13862]

Zhu J, Qi X, Yu H, Yoshida EM, Mendez-Sanchez N, Zhang X, Wang R, Deng H, Li J, Han D, Guo X. Association of proton pump inhibitors with the risk of hepatic encephalopathy during hospitalization for liver cirrhosis. *United European Gastroenterol J* 2018; 6: 1179-1187 [PMID: 30268280 DOI: 10.1177/2050646118775564]

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e100097 [PMID: 19621072 DOI: 10.1371/journal.pmed.100097]

Oremus M, Oremus C, Hall GB, McKinnon MC. ECT & Cognition Systematic Review Team. Interrater and test-retest reliability of quality assessments by novice student raters using the Jadad and Newcastle-Ottawa Scales. *BMJ Open* 2012; 2 [PMID: 22855629 DOI: 10.1136/bmjopen-2012-001368]

Tan D, Fu Y, Su Q, Wang H. Prognostic role of platelet-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. *Medicine (Baltimore)* 2016; 95: e3837 [PMID: 27319960 DOI: 10.1097/MD.0000000000003837]

Huang LT, Wu SL, Liao X, Ma SJ, Tan HZ. Adiponectin gene polymorphisms and risk of gestational diabetes mellitus: A meta-analysis. *World J Clin Cases* 2019; 7: 572-584 [PMID: 30867575 DOI: 10.1299/wjcc.v7.i5.572]

Dann G, Vlstrup H, Watson H, Jepsen P. Proton pump inhibitors as a risk factor for hepatic encephalopathy and spontaneous bacterial peritonitis in patients with cirrhosis with ascites. *Hepatology* 2016; 64: 1265-1272 [PMID: 2744889 DO: 10.1002/hep.28737]

Lin ZN, Zuo YQ, Hu P. Association of Proton Pump Inhibitor Therapy with Hepatic Encephalopathy in Hepatitis B Virus-related Acute-on-Chronic Liver Failure. *Hepat Mon* 2014; 14: e16258 [PMID: 24748905 DOI: 10.5812/hepatmon.16258]

Tsai CF, Chen MH, Wang YP, Chu CJ, Huang YH, Lin IC, Hou MC, Lee FY, Su TP, Lu CL. Proton Pump Inhibitors Increase Risk for Hepatic Encephalopathy in Patients with Cirrhosis in A Population Study. *Gastroenterology* 2017; 152: 134-141 [PMID: 27639806 DOI: 10.1016/j.gastro.2016.09.007]

Bajaj JS, Cox U, Betrapally NS, Heuman DM, Schubert ML, Rattnawaran M, Hylemon PB, White MB, Datia K, Noble NA, Sikaroodi M, Williams R, Crosse MM, Taylor-Robinson SD, Gillevet PM. Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function. *Am J Physiol Gastrointest Liver Physiol* 2014; 307: G951-G957 [PMID: 25258407 DOI: 10.1152/ajpgi.00268.2014]

Richardson AJ, McKain N, Wallace RJ. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. *BMC Microbiol* 2013; 13: 6 [PMID: 23312016 DOI: 10.1186/1471-2180-13-6]

Parekh PJ, Balarti LA. Ammonia and Its Role in the Pathogenesis of Hepatic Encephalopathy. *Clin Liver Dis* 2015; 19: 529-537 [PMID: 26195206 DOI: 10.1016/j.cld.2015.05.002]

Yoshida N, Yoshikawa T, Tanaka Y, Fujita N, Kassai K, Naito Y, Kondo M. A new mechanism for anti-inflammatory actions of proton pump inhibitors--inhibitory effects on neutrophil-endothelial cell interactions. *Aliment Pharmacol Ther* 2000; 14 Suppl 1: 74-81 [PMID: 10807407 DOI: 10.1046/j.1365-2036.2000.01474.x]

Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD. Ammonia and the neuropath in the pathogenesis of hepatic encephalopathy in cirrhosis. *Hepatology* 2010; 51: 1062-1069 [PMID: 19890967 DOI: 10.1002/hep.23567]

Savarino V, Tosetti C, Benedetto E, Compare D, Nardone G. Appropriateness in prescribing PPIs: A position paper of the Italian Society of Gastroenterology (SIGE) - Study section "Digestive Diseases in Primary Care". *Dig Liver Dis* 2018; 50: 894-902 [PMID: 30093304 DOI: 10.1016/j.dld.2018.07.004]

Savarino V, Marabotto E, Zentilin P, Furnari M, Bodini G, De Maria C, Pellegratta G, Coppo C, Savarino E. Proton pump inhibitors: use and misuse in the clinical setting. *Expert Rev Clin Pharmacol* 2018; 11: 1123-1134 [PMID: 30295105 DOI: 10.1080/17512333.2018.1531703]

Vasci MF, Yang YX, Howden CW. Complications of Proton Pump Inhibitor Therapy. *Gastroenterology* 2017; 153: 35-48 [PMID: 28528705 DOI: 10.1053/j.gastro.2017.04.047]
