Supporting Information

An amino acid based system for CO₂ capture and catalytic utilization to produce formates

Duo Wei, Henrik Junge,* and Matthias Beller*
Leibniz-Institut für Katalyse
Albert-Einstein-Straße 29a, 18059 Rostock (Germany)
E-Mail: henrik.junge@catalysis.de; matthias.beller@catalysis.de

Contents

Materials and methods ...1
CO₂ capture with amino acids ..1
Standard procedure for the hydrogenation of gaseous CO₂ ..9
Standard procedure for CO₂ capture from ambient air and in situ conversion to formate.14
Reference ...16
Materials and methods

Unless otherwise stated, all reactions were conducted under an argon atmosphere. Ru-MACHO-BH (Ru-1, Strem, 98%), Ru-MACHO (Ru-2, Strem, 98%), Ru-MACHOPr (Ru-3, Strem, 97%), L-lysine (TCI, 98%), L-tyrosine (TCI, >98.5%), L-threonine (TCI, >99%), L-methionine (Alfa Aesar, >98%), L-glutamic acid (TCI, >99%), L-serine (TCI, >99%), L-proline (Acros Organics, >99%), L-cysteine (TCI, >98%), L-histidine (Sigma-Aldrich, >99%), L-tryptophan (TCI, >98.5%), glycine (Merck, >99.7%), L-glutamine (TCI, >99%), 1,5-diaminopentane (TCI, >98%), 6-aminohexanoic acid (Alfa Aesar, 99%), 2,3-diaminopropanoic acid (fluorochem, 95%), tetramethylguanidine (Alfa Aesar, 99%), pentaethyleneguanamine (Sigma-Aldrich, >98%), deuterium oxide (Deutero, 99.9%) were purchased from commercial suppliers and used without further purification. Milstein’s Ru-PNP complex (Ru-4)1 and Fe-MACHOPr-BH (Fe-1)2 were synthesized according to literature. 1H and 13C were recorded using Bruker AV 300 MHz and Bruker AV 400 MHz spectrometers. 1H and 13C NMR chemical shifts were determined relative to the internal standard THF (3.74 ppm and 68.68 ppm respectively) or DMF (7.92 ppm and 165.53 ppm respectively) in D\textsubscript{2}O. 13C NMR-quant were performed with relaxation delay = 20s (rd>20s did not change the integration), number of scans = 512, acquisition time = 1.1141s.3 Deionized (DI) water was used for CO\textsubscript{2} capture and hydrogenation reactions.

CO\textsubscript{2} capture with amino acids

Capture with CO\textsubscript{2} (2 bar): Amino acid (5.0 mmol) was added in a 25 mL Schlenk tube, followed with 1.0 mL of DI water, then 2 bar of CO\textsubscript{2} was charged into the Schlenk. Afterwards, the Schlenk tube was closed and stirred at r.t. for 2-18 h. The captured CO\textsubscript{2} amounts were calculated by gravimetric analysis.
Table S1. CO₂ capture with amino acids under 2 bar of CO₂.

Entry	AA [5 M]	Time [h]	Captured CO₂ [mmol][a]	CO₂/AA[b]	
1	H₂N–O	glycine	2	0.47	0.09
			18	0.47	0.09
2		L-proline	2	0.39	0.08
			18	0.40	0.08
3		L-methionine	2	0.27	0.05
			18	0.28	0.06
4		L-tyrosine	3	0.45	0.09
			18	0.47	0.09
5		L-tryptophan	3	0.26	0.05
			18	0.30	0.06
6		L-cysteine	3	0.54	0.11
			18	0.61	0.12
7		L-glutamic acid[c]	2	0.44	0.09
			18	0.45	0.09
8		L-glutamine[c]	2	0.24	0.05
			18	0.26	0.05
9		L-histidine[c]	3	0.41	0.08
			18	0.72	0.14
10		L-serine[c]	3	0.38	0.08
			18	0.54	0.11
11		L-threonine[c]	2	0.46	0.09
			18	0.49	0.10
12		L-lysine[c]	3	3.05	0.61
			18	3.63	0.73
13	None		2	n.d.	-
			18	n.d.	-

Conditions: AA (5.0 mmol), H₂O (1.0 mL), CO₂ (2 bar), stirred at r.t. [a] Calculated by gravimetric analysis [b] mols of CO₂ captured per mol of AA. [c] AAs involved as RuBisCO active site. n.d.= not detectable. Experiments were performed at least twice; average values are used (St. Dev.<10%).
Capture with CO\textsubscript{2} (20 bar): L-lysine (5.0 mmol) was added in a 50 mL autoclave equipped with a magnetic stir bar, followed with 1.0 mL of DI water, then 20 bar of CO\textsubscript{2} was charged into the 50 mL autoclave. Afterwards, the autoclave was closed and stirred at r.t. for 0.5-3 h. The captured CO\textsubscript{2} amounts were calculated by 13C NMR-quant with THF (406.2 μL, 5.0 mmol) as internal standard.3

Capture from ambient air: L-lysine (5.0 mmol) was added in a 25 mL vial followed with 15.0 mL of DI water, then the indoor air (containing ca. 400 ppm CO\textsubscript{2}) was bubbled through the vial using a long needle (1 L/min.). After 4 days, the amount of the solvent reduced to ca. 1 mL due to the water evaporation. THF (406.2 μL, 5.0 mmol) was added as an internal standard to the solution, and the mixture was analyzed by 13C NMR-quant.3

L-lysine (5.0 mmol scale)	Before air bubbling (1 mL solution)	Before air bubbling (15 mL solution)	After air bubbling 4 days (1 mL solution)
L-lysine (20.0 mmol scale)	Before air bubbling (5 mL solution)	Before air bubbling (15 mL solution)	After air bubbling 4 days (5 mL solution)

Figure S1. Typical reaction mixture of CO\textsubscript{2} capture from ambient air with L-lysine.
Figure S2. 13C NMR-quant (185 - 150 ppm) in D$_2$O of a) L-lysine and corresponding solution after CO$_2$ capture with b) 20 bars of CO$_2$ (3 h), c) 2 bars of CO$_2$ (18 h) and d) air bubbling (1 L/min.) 4 d.

Figure S3. 13C NMR-quant (190 - 0 ppm) in D$_2$O of a) L-lysine and corresponding solution after CO$_2$ capture with b) 20 bars of CO$_2$ (3 h), c) 2 bars of CO$_2$ (18 h) and d) air bubbling (1 L/min.) 4 d.
Figure S4. 13C NMR-quant of L-lysine in D$_2$O.

Figure S5. 13C NMR-quant in D$_2$O of CO$_2$ capture under 20 bars of CO$_2$ (3 h) with 5.0 mmol L-lysine.
Figure S6. 13C NMR-quant in D$_2$O of CO$_2$ capture under 2 bars of CO$_2$ (18 h) with 5.0 mmol L-lysine.

Figure S7. 13C NMR-quant in D$_2$O of CO$_2$ capture with air bubbling (1 L/min. 1 day) with 5.0 mmol L-lysine.
Figure S8. 13C NMR-quant in D$_2$O of CO$_2$ capture with air bubbling (1 L/min. 2 days) with 5.0 mmol L-lysine.

Figure S9. 13C NMR-quant in D$_2$O of CO$_2$ capture with air bubbling (1 L/min. 4 days) with 5.0 mmol L-lysine.
Figure S10. 13C NMR-quant in D$_2$O of CO$_2$ capture with air bubbling (1 L/min. 8 days) with 5.0 mmol L-lysin.

Figure S11. 13C NMR-quant in D$_2$O of CO$_2$ capture with air bubbling (1 L/min. 4 days) with 20.0 mmol L-lysin.
Standard procedure for the hydrogenation of gaseous CO$_2$

Given amount of catalyst dosed from a stock solution (1 mg catalyst dissolved in 10 mL THF), amino acid (5.0 mmol) and solvent (10 mL) were added to a 50 mL autoclave equipped with a magnetic stir bar. After pressurizing the reactor with CO$_2$ gas, the reaction mixture was stirred at r.t. for 30 min. The reactor was pressurized with H$_2$ gas then heated and stirred on a pre-heated oil bath for indicated time. The reactor was cooled to r.t. and a biphasic reaction mixture containing a transparent upper layer and a yellow lower layer was obtained. DI water (ca. 3 mL) was added to the above mixture resulting in a homogeneous solution. DMF (250 μL, 3.24 mmol) was added as an internal standard to the reaction mixture. The reaction mixture was then analyzed by 1H NMR with a few drops of D$_2$O (ca. 2 mL) to lock the signals.4

5.0 mmol L-lysine	Before reaction (two-phase)	After reaction (two-phase)	After reaction (3 mL DI water added)
20.0 mmol L-lysine	Before reaction (two-phase)	After reaction (two-phase)	After reaction (10 mL DI water added)

Figure S12. Typical reaction mixture of the hydrogenation of CO$_2$ to formate in the presence of L-lysine.
Figure S13. Typical 1H NMR in D$_2$O after hydrogenation of gaseous CO$_2$ to formate in the presence of L-lysine.
Table S2. Hydrogenation of CO₂ in the presence of various amino acids.

Entry	AAs	Formate [mmol][a]	Yield [%][b]	Formate [TON][c]
1	L-lysine[d]	0.71	71	355
2	glycine	n.d.	-	-
3	L-proline	n.d.	-	-
4	L-methionine	n.d.	-	-
5	L-tyrosine	n.d.	-	-
6	L-tryptophan	n.d.	-	-
7	L-cysteine	0.04	4	20
8	L-glutamic acid[d]	n.d.	-	-
9	L-glutamine[d]	n.d.	-	-
10	L-histidine[d]	0.125	13	63
11	L-serine[d]	0.1	10	50
12	L-threonine[d]	0.045	5	23

Conditions: AA (1.0 mmol), Ru-MACHO-BH (2.0 μmol, 0.2 mol%), H₂O (1.0 mL), THF (1.0 mL), CO₂ (20 bar), H₂ (60 bar), 145 °C, 40 h. [a] Determined by ¹H NMR with DMF (38.5 μL, 0.5 mmol) as internal standard. [b] Calculated by formate [mmol]/AA [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. [d] AAs involved as RuBisCO active site. n.d. = not detectable. Experiments were performed at least twice; average values are used (St. Dev.<10%).
Table S3. Hydrogenation of CO$_2$ with L-lysine (blank reactions).

![Chemical structure](Ru-1_Ru-MACHO-BH)

\[
\text{CO}_2 + \text{H}_2 + \text{Lys} \rightarrow \text{[LysH]}^+[\text{HCOO}]^-
\]

Entry	L-lysine [mmol]	Cat. [μmol, ppm]	Formate [mmol][a]	Yield [%][b]
1	5	2.0, 400 ppm	4.37	87
2	None	2.0, 400 ppm	n.d.	-
3	5	None	n.d.	-
4	5	2.0, 400 ppm	n.d.	-

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH (2.0 μmol, 400 ppm), H$_2$O (5.0 mL), THF (5.0 mL), CO$_2$ (20 bar), H$_2$ (60 bar), 145 °C, 12 h. [a] Determined by 1H NMR with DMF (250 μL, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] In the absence of CO$_2$. n.d. = not detectable.

Table S4. Hydrogenation of CO$_2$ with L-lysine (screening of solvents).

![Chemical structure](Ru-1_Ru-MACHO-BH)

\[
\text{CO}_2 + \text{H}_2 + \text{Lys} \rightarrow \text{[LysH]}^+[\text{HCOO}]^-
\]

Entry	Solvent [mL]	Formate [mmol][a]	Yield [%][b]	Formate [TON][c]
1	THF [5] + H$_2$O [5]	4.37	87	2,187
2	2-MTHF [5] + H$_2$O [5]	4.30	86	2,148
3	Triglyme [5] + H$_2$O [5]	3.27	65	1,636
4	MeOH [5] + H$_2$O [5]	3.18	64	1,588
5	Ethylene glycol [5] + H$_2$O [5]	1.23	25	617
6	THF [10]	0.62	12	308
7	2-MTHF [10]	0.35	7	177
8	Triglyme [10]	0.55	11	275
9	MeOH [10]	0.52	10	259
10	Ethylene glycol [10]	1.13	23	567
11	H$_2$O [10]	0.49	9	243

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH (2.0 μmol, 400 ppm), solvent (10.0 mL in total), CO$_2$ (20 bar), H$_2$ (60 bar), 145 °C, 12 h. [a] Determined by 1H NMR with DMF (250 μL, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. Experiments were performed at least twice; average values are used (St. Dev.<10%)
Table S5. Hydrogenation of CO₂ with L-lysine (screening of temperature and time).

\[
\text{CO}_2 + \text{H}_2 + \text{Lys} \xrightarrow{\text{Ru-1 (0.02 \mu mol, 4 ppm)}} \frac{\text{H}_2\text{O} (5.0 \text{ mL}), \text{THF} (5.0 \text{ mL})}{[\text{LysH}][\text{HCOO}^-]}
\]

Entry	T [°C]	Time [h]	Formate [mmol][a]	Yield [%][b]	Formate [TON][c]
1	145	12	3.95	79	197,559
2	145	3	2.77	55	138,510
3	105	12	3.22	64	161,028

Conditions: L-lysine (5.0 mmol), Ru-MACHO-BH dosed from stock solution (0.02 \mu mol, 4 ppm), H₂O (5.0 mL), THF (5.0 mL), CO₂ (20 bar), H₂ (60 bar). [a] Determined by 1H NMR with DMF (250 \mu L, 3.24 mmol) as internal standard. [b] Calculated by formate [mmol]/L-lysine [mmol]. [c] Calculated by formate [mmol]/catalyst [mmol]. Experiments were performed at least twice; average values are used (St. Dev.<10%).

Table S6. Conditions for the generation of formamides from formates.

\[
\text{RNH}_2 + \text{HOOH} \xrightarrow{\text{r.t., 0.5 h}} \frac{\text{HOO}}{\text{R-NH}_3} \xrightarrow{\text{145 °C, 12 h}} \frac{\text{HNHR}}{\text{H}_2\text{O}}
\]

Entry	Amine [5 mmol]	Formates [%yield][a]	Formamides [%yield][a]	pH of free amine
1	L-lysine	>99	n.d.	10.2
2	PEHA	71	28	13.4

Conditions: Formic acid (5 mmol), L-lysine (5 mmol) or PEHA (5 mmol), H₂O (5 mL) as solvent, stirred at 145 °C, 12 h. pH of free amine was measured with 5 M concentration in H₂O at 25 °C. [a] Determined by ¹H NMR with DMF (250 \mu L, 3.24 mmol) as internal standard. n.d. = not detectable.
Standard procedure for CO$_2$ capture from ambient air and *in situ* conversion to formate.

The total volume of the solution of CO$_2$ capture from indoor air reduced to ca. 1 mL due to water evaporation. This mixture was firstly bubbled with argon for 30 min. then transferred using 4 mL of degassed DI water to a 50 mL autoclave equipped with a magnetic stir bar. The given amounts of catalyst (dosed from stock solution in THF) and THF (5 mL) were added to the above mixture. After pressurizing the reactor with H$_2$, the reaction mixture was stirred and heated on a pre-heated oil bath for indicated time. The reactor was cooled to r.t. and a biphasic reaction mixture containing a transparent upper layer and a pale yellow lower layer was obtained. DI water (ca. 3 mL) was added to the above mixture resulting in a homogeneous solution. DMF (250 μL, 3.24 mmol) was added as an internal standard to the reaction mixture. The reaction mixture was then analyzed by 1H NMR with a few drops of D$_2$O (ca. 2 mL) to lock the signals.

5.0 mmol L-lysine	After reaction (two-phase)	After reaction (3 mL DI water added)
Before reaction (two-phase)	After reaction (two-phase)	After reaction (3 mL DI water added)

20.0 mmol L-lysine	After reaction (two-phase)	After reaction (10 mL DI water added)
Before reaction (two-phase)	After reaction (two-phase)	After reaction (10 mL DI water added)
Figure S14. Typical reaction mixture for the hydrogenation of captured CO$_2$ to formate.

Figure S15 Typical 1H NMR in D$_2$O after hydrogenation of captured CO$_2$ to formate.

Figure S16. Typical 13C NMR in D$_2$O after hydrogenation of captured CO$_2$ to formate.
Reference

(1) Gnanaprakasam, B.; Zhang, J.; Milstein, D., Direct Synthesis of Imines from Alcohols and Amines with Liberation of H₂. *Angew. Chem. Int. Ed.* **2010**, *49*, 1468-1471.

(2) (a) Alberico, E.; Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.; Baumann, W.; Junge, H.; Beller, M., Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions. *Angew. Chem. Int. Ed.* **2013**, *52*, 14162-14166. (b) Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M., Hydrogenation of Esters to Alcohols with a Well-Defined Iron Complex. *Angew. Chem. Int. Ed.* **2014**, *53*, 8722-8726.

(3) (a) Barzagli, F.; Mani, F.; Peruzzini, M., A 13C NMR Study of the Carbon Dioxide Absorption and Desorption Equilibria by Aqueous 2-Aminoethanol and N-Methyl-Substituted 2-Aminoethanol. *Energy Environ. Sci.* **2009**, *2*, 322-330. (b) Barbarossa, V.; Barzagli, F.; Mani, F.; Lai, S.; Stoppioni, P.; Vanga, G., Efficient CO₂ Capture by Non-Aqueous 2-Amino-2-Methyl-1-Propanol (AMP) and Low Temperature Solvent Regeneration. *RSC Adv.* **2013**, *3*, 12349-12355. (c) Perinu, C.; Arstad, B.; Jens, K.-J., 13C NMR Experiments and Methods Used to Investigate Amine-CO₂-H₂O Systems. *Energy Procedia* **2013**, *37*, 7310-7317. (d) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S., Conversion of CO₂ from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. *J. Am. Chem. Soc.* **2016**, *138*, 778-781.

(4) Dubey, A.; Nencini, L.; Fayzullin, R. R.; Nervi, C.; Khusnutdinova, J. R., Bio-Inspired Mn(I) Complexes for the Hydrogenation of CO₂ to Formate and Formamide. *ACS Catal.* **2017**, *7*, 3864-3868.