ALMOST COMPLETE INTERSECTIONS AND STANLEY’S CONJECTURE

SOMAYEH BANDARI, KAMRAN DIVAANI-AAZAR AND ALI SOLEYMAN JAHAN

Abstract. Let K be a field and I a monomial ideal of the polynomial ring $S = K[x_1, \ldots, x_n]$. We show that if either: 1) I is almost complete intersection, 2) I can be generated by less than four monomials; or 3) I is the Stanley-Reisner ideal of a locally complete intersection simplicial complex on $[n]$, then Stanley’s conjecture holds for S/I.

1. Introduction

Throughout this paper, let K be a field and I a monomial ideal of the polynomial ring $S = K[x_1, \ldots, x_n]$.

A decomposition of S/I as direct sum of K-vector spaces of the form $D : S/I = \bigoplus_{i=1}^{r} u_i K[Z_i]$, where u_i is a monomial in S and $Z_i \subseteq \{x_1, \ldots, x_n\}$, is called a Stanley decomposition of S/I. The number $sdepth D := \min\{|Z_i| : i = 1, \ldots, r\}$ is called Stanley depth of D. The Stanley depth of S/I is defined to be $sdepth S/I := \max\{sdepth D : D$ is a Stanley decomposition of $S/I\}$.

Stanley conjectured [St] that $\text{depth} S/I \leq sdepth S/I$. This conjecture is known as Stanley’s conjecture. Recently, this conjecture was extensively examined by several authors; see e.g. [A1], [A2], [HP], [HSY], [P], [R], [S2] and [S3]. On the other hand, the present third author [S2] conjectured that there always exists a Stanley decomposition D of S/I such that the degree of each u_i is at most $\text{reg} S/I$. We refer to this conjecture as h-regularity conjecture. It is known that for square-free monomial ideals, these two conjectures are equivalent. Our main aim in this paper is to determine some classes of monomial ideals such that these conjectures are true for them.

A basic fact in commutative algebra says that there exists a finite chain $F : I = I_0 \subset I_1 \subset \cdots \subset I_r = S$ of monomial ideals such that $I_i/I_{i-1} \cong S/p_i$ for monomial prime ideals p_i of S. Dress [D] called the ring S/I clean if there exists a chain F such that all the p_i are minimal prime ideals of I. By [HSY] Proposition 2.2 if I is complete intersection, then the ring S/I is clean. Lemmas 2.4 and 2.8 provide two other classes of clean rings.

Herzog and Popescu [HP] called the ring S/I pretty clean if there exists a chain F such that for all $i < j$ for which $p_i \subseteq p_j$, it follows that $p_i = p_j$. Obviously, cleanness implies pretty cleanness and when I is square-free, it is known that these two concepts coincide; see [HP] Corollary 3.5.

2010 Mathematics Subject Classification. 13F20; 05E40; 13F55.

Key words and phrases. Almost complete intersection monomial ideals; clean; locally complete intersection monomial ideals; pretty clean.

The research of the second and third authors are supported by grants from IPM (no. 90130212 and no. 90130062, respectively).
If S/I is pretty clean, then S/I is sequentially Cohen-Macaulay and depth of S/I is equal to the minimum of the dimension of S/p, where $p \in \text{Ass}_S S/I$; see [S1] for an easy proof. If S/I is pretty clean, then [HP Theorem 6.5] asserts that Stanley’s conjecture holds for S/I. In fact, if S/I is pretty clean, then [HVZ Proposition 1.3] yields that depth $S/I = \text{depth} S/I$. Also if S/I is pretty clean, then by [S2 Theorem 4.7] h-regularity conjecture holds for S/I.

We prove that if the monomial ideal I is either almost complete intersection or it can be generated by less than four monomials, then S/I is pretty clean. Thus, for such monomial ideals both Stanley’s and h-regularity conjectures hold. Also, we show that if I is the Stanley-Reisner ideal of a locally complete intersection simplicial complex on $[n]$, then S/I satisfies Stanley’s conjecture.

2. Main Results

A simplicial complex Δ on $[n] := \{1, \ldots, n\}$ is a collection of subsets of $[n]$ with the property that if $F \in \Delta$, then all subsets of F are also in Δ. Any singleton element of Δ is called a vertex. An element of Δ is called a face of Δ and the maximal faces of Δ, under inclusion, are called facets. We denote by $F(\Delta)$ the set of all facets of Δ. The dimension of a face F is defined as $\text{dim } F = |F| - 1$, where $|F|$ is the number of elements of F. The dimension of the simplicial complex Δ is the maximal dimension of its facets. A simplicial complex Δ is called pure if all facets of Δ have the same dimension. We denote the simplicial complex Δ with facets F_1, \ldots, F_t by $\Delta = \langle F_1, \ldots, F_t \rangle$. According to Björner and Wachs [BW], a simplicial complex Δ is said to be (non-pure) shellable if there exists an order F_1, \ldots, F_t of the facets of Δ such that for each $2 \leq i \leq t$, $\langle F_1, \ldots, F_{i-1} \rangle \cap \langle F_i \rangle$ is a pure $(\text{dim } F_i - 1)$-dimensional simplicial complex. If Δ is a simplicial complex on $[n]$, then the Stanley-Reisner ideal of Δ, I_{Δ}, is the square-free monomial ideal generated by all monomials $x_i x_{i_2} \cdots x_{i_t}$ such that $\{i_1, i_2, \ldots, i_t\} \notin \Delta$. The Stanley-Reisner ring of Δ over the field K is the K-algebra $K[\Delta] := S/I_{\Delta}$. Any square-free monomial ideal I is the Stanley-Reisner ideal of some simplicial complex Δ on $[n]$. If $F(\Delta) = \{F_1, \ldots, F_t\}$, then $I_{\Delta} = \bigcap_{i=1}^t p_{F_i}$, where $p_{F_i} := (x_j : j \notin F_i)$; see [BH Theorem 5.1.4].

Recall that the Alexander dual Δ^\vee of a simplicial complex Δ is the simplicial complex whose faces are $([n]\setminus F)[F \notin \Delta]$. Let I be a square-free monomial ideal of S. We denote by I^\vee, the square-free monomial ideal which is generated by all monomials $x_{i_1} \cdots x_{i_k}$, where $(x_{i_1}, \ldots, x_{i_k})$ is a minimal prime ideal of I. It is easy to see that for any simplicial complex Δ, one has $I_{\Delta^\vee} = (I_{\Delta})^\vee$. A monomial ideal I of S is said to have linear quotients if there exists an order u_1, \ldots, u_m of $G(I)$ such that for any $2 \leq i \leq m$, the ideal $(u_1, \ldots, u_{i-1}) : S u_i$ is generated by a subset of the variables.

Lemma 2.1. Let I be a square-free monomial ideal of S. Then S/I is clean if and only if I^\vee has linear quotients.

Proof. Dress [L1] Theorem on page 53] proved that a simplicial complex Δ is (non-pure) shellable if and only if $K[\Delta]$ is a clean ring. On the other hand, by [HHZ Theorem 1.4], a simplicial complex Δ is (non-pure) shellable if and only if I_{Δ^\vee} has linear quotients. Combining these facts, yields our claim. □

Lemma 2.2. Let I and J be two monomial ideals of S. Assume that $I = uJ$ for some monomial u in S and $\text{ht } J \geq 2$. If S/J is pretty clean, then S/I is pretty clean too.

Proof. With the proof of [S3 Lemma 1.9], the claim is immediate. □
In what follows for a monomial ideal \(I \) of \(S \), we denote the number of elements of \(G(I) \) by \(\mu(I) \).

Definition 2.3. A monomial ideal \(I \) of \(S \) is said to be **almost complete intersection** if \(\mu(I) = \text{ht } I + 1 \).

Lemma 2.4. Let \(I \) be an almost complete intersection square-free monomial ideal of \(S \). Then \(S/I \) is clean.

Proof. The claim is obvious when \(\text{ht } I = 0 \). Let \(\text{ht } I = 1 \). Then \(I = (u_1, u_2) \) for some monomials \(u_1 \) and \(u_2 \). We can write \(I \) as \(I = u(u_1', u_2') \), where \(u = \text{gcd}(u_1, u_2) \) and \(u_1', u_2' \) are monomials forming a regular sequence on \(S \). So in this case, the claim is immediate by Lemma 2.2 and [HSY Proposition 2.2]. Now, assume that \(h := \text{ht } I \geq 2 \). By [KTY Theorem 4.4] \(I \) can be written in one of the following forms, where \(A_1, A_2, \ldots, B_1, B_2, \ldots \) are non-trivial square-free monomials which are pairwise relatively prime, and \(p, p' \) are integers with \(2 \leq p \leq h \) and \(1 \leq p' \leq h \).

1. \(I_1 = (A_1B_1, A_2B_2, \ldots, A_pB_p, A_{p+1}, \ldots, A_h, B_1B_2 \cdots B_p) \).
2. \(I_2 = (A_1B_1, A_2B_2, \ldots, A_pB'_p, A_{p+1}, \ldots, A_h, B_1B_2 \cdots B_p) \).
3. \(I_3 = (B_1B_2, B_2B_3, B_3B_4, \ldots, A_h) \).
4. \(I_4 = (A_1B_1, A_2B_3, B_2B_4, \ldots, A_h) \).
5. \(I_5 = (A_1B_1, A_2B_2, B_2B_3, A_4, \ldots, A_h) \).
6. \(I_6 = (A_1B_1, A_2B_2, A_2B_3, B_3B_4, A_4, \ldots, A_h) \).

Let \(I = I_1 \). Since \(A_1, A_2, \ldots, A_p, A_{p+1}, \ldots, A_h, B_1, B_2, \ldots, B_p \) are pairwise relatively prime, it turns out that \(A_{p+1}, \ldots, A_h \) is a regular sequence on \(S/(A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p) \). So, in view of [R Theorem 2.1], we may and do assume that \(I = (A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p) \). Next, we are going to show that \(I \) is of forest type. Let \(G \) be a subset of \(\{A_1B_1, A_2B_2, \ldots, A_pB_p, B_1B_2 \cdots B_p\} \) with at least two elements. If \(B_1B_2 \cdots B_p \not\in G \), then any \(a \in G \) can be taken as a leaf and any \(b \in G \) different from \(a \) can be taken as a branch for this leaf. If \(B_1B_2 \cdots B_p \in G \), then any \(a \in G \) different from \(B_1B_2 \cdots B_p \) can be taken as a leaf and then \(B_1B_2 \cdots B_p \) is a branch for this leaf. So, \(I \) is of forest type. Thus, since \(I \) is square-free, by [SZ Theorem 1.5], we obtain that \(S/I \) is clean. By the similar argument, one can see that if \(I = I_2 \), then \(S/I \) is clean. Set

\[
J := (C_1B_1B_2, C_2B_1B_3, C_3B_2B_3, A_4, \ldots, A_{h+1}),
\]

where \(C_i \) is either \(A_i \) or 1 for each \(i = 1, 2, 3 \). Since each of \(I_3, I_4, I_5 \) and \(I_6 \) are the particular cases of the ideal \(J \), we can finish the proof by showing that \(S/J \) is clean. Since, by the assumption \(A_4, \ldots, A_{h+1}, B_1, B_2, B_3, C_1, C_2, C_3 \) are pairwise relatively prime, it follows that \(A_4, \ldots, A_{h+1} \) is a regular sequence on \(S/(C_1B_1B_2, C_2B_1B_3, C_3B_2B_3) \). So by [R Theorem 2.1], we can assume that \(J = (C_1B_1B_2, C_2B_1B_3, C_3B_2B_3) \). Set \(T := k[u, v, w, x, y, z] \) and \(L := (uxy, vxz, wyz) \). Since \(B_1, B_2, B_3, C_1, C_2, C_3 \) is a regular sequence on \(S \), by [HSY Proposition 3.3], the cleanness of \(T/L \) implies the cleanness of \(S/J \). So, by Lemma 2.4, it is enough to prove that \(L' \) has linear quotients. As

\[
L' = (x, y) \cap (x, z) \cap (x, u) \cap (y, z) \cap (y, v) \cap (z, u) \cap (u, v, w),
\]

one has \(L' = (xy, xz, xw, yz, yv, zu, uvw) \), which clearly has linear quotients by the given order.

Let \(u = \prod_{i=1}^ax_i^{a_i} \) be a monomial in \(S = K[x_1, \ldots, x_n] \). Then

\[
w^p := \prod_{i=1}^n \prod_{j=1}^{a_i} x_{i,j} \in K[x_{1,1}, \ldots, x_{1,a_1}, \ldots, x_{n,1}, \ldots, x_{n,a_n}].
\]
Clearly, any page 53 it turns out that S/I is known that Δ is shellable; see e.g. [TY, Proposition 1.11 and Theorem 1.5]. Hence, by [D, Theorem 2.8.]

Theorem 3.10 implies that S/I is pretty clean if and only if T/IP is clean. Recently, Cimpoeaş [C1] proved that if S/J is an almost complete intersection monomial ideal of S, then Stanley’s conjecture holds for S/J. The next result shows that in this case S/J is even pretty clean.

Theorem 2.5. Let I be an almost complete intersection monomial ideal of S. Then S/I is pretty clean.

Proof. From [E Proposition 2.3], one has $\text{ht} I = \text{ht} IP$. On the other hand $\mu(I) = \mu(IP)$, and so IP is an almost complete intersection square-free monomial ideal of T. Hence, by Lemma 2.4 the ring T/IP is clean. Now, [S3 Theorem 3.10] implies that S/I is pretty clean, as desired. □

In the situation of Theorem 2.5 there is no need that S/I is clean. For instance, although (x^2, xy) is an almost complete intersection monomial ideal, the ring $k[x, y]/(x^2, xy)$ is not clean.

In [C2 Theorem 2.3], it is shown that if I is a monomial ideal of S with $\mu(I) \leq 3$, then Stanley’s conjecture holds for S/I. The next result extends this fact.

Corollary 2.6. Let I be a monomial ideal of S. If $\mu(I) \leq 3$, then S/I is pretty clean.

Proof. Clearly, we may assume that I is non zero. Assume that $\mu(I) = 3$ and $\text{ht} I = 1$. Then $I = uJ$, where u is a monomial in S and J is a monomial ideal of S with $\mu(J) = 3$ and $\text{ht} J \geq 2$. By Lemma 2.2 it is enough to prove that S/J is pretty clean. If $\text{ht} J = 2$, then $\mu(J) = \text{ht} J + 1$, and so by Theorem 2.5 S/J is pretty clean. If $\text{ht} J = 3$, then J is complete intersection, and hence by [HSY] Proposition 2.2, S/J is pretty clean.

Since $0 < \text{ht} I \leq \mu(I)$, in all other cases, it follows that I is either complete intersection or almost complete intersection. Thus, the proof is completed by [HSY Proposition 2.2] and Theorem 2.5 □

Definition 2.7. ([TY Definition 1.1 and Lemma 1.2]) A simplicial complex Δ on $[n]$ is said to be *locally complete intersection* if $\{\{1\}, \{2\}, \ldots, \{n\}\} \subseteq \Delta$ and $(I_\Delta)_p$ is a complete intersection ideal of S_p for all $p \in \text{Proj} S/I$.

A simplicial complex Δ is said to be *connected* if for any two facets F and G of Δ, there exists a sequence of facets $F = F_0, F_1, \ldots, F_{q-1}, F_q = G$ such that $F_i \cap F_{i+1} \neq \emptyset$ for all $0 \leq i < q$. Also, a simplicial complex Δ on $[n]$ is said to be *n-pointed path* (resp. *n-gon*) if $n \geq 2$ (resp. $n \geq 3$) and, after a suitable change of variables,

$$\mathcal{F}(\Delta) = \{\{i, i+1\}| 1 \leq i < n\}$$

(resp.

$$\mathcal{F}(\Delta) = \{\{i, i+1\}| 1 \leq i < n\} \cup \{\{n, 1\}\}.$$

Clearly, any n-pointed path (resp. n-gon) is one-dimensional and pure.

Let Δ be a connected simplicial complex on $[n]$ which is locally complete intersection. Then, it is known that Δ is shellable; see e.g. [TY Proposition 1.11 and Theorem 1.5]. Hence, by [D] Theorem on page 53 it turns out that S/I_Δ is clean. So, we record the following:

Lemma 2.8. Let Δ be a connected simplicial complex on $[n]$ which is locally complete intersection. Then S/I_Δ is clean.
Let Δ be as in Lemma 2.8. Then S/I_Δ is clean, and so \cite{HP} Theorem 6.5 implies that S/I_Δ satisfies Stanley’s conjecture. In Theorem 2.11 we prove that the later assertion holds without assuming that Δ is connected.

Proposition 2.9. Let $I \subset S_1 = K[x_1, \ldots, x_m]$, $J \subset S_2 = K[x_{m+1}, \ldots, x_n]$ be two monomial ideals and $S = K[x_1, \ldots, x_m, x_{m+1}, \ldots, x_n]$. Assume that $\text{depth}(S) > 0$ and $\text{depth}(S_1/J) > 0$. Then Stanley’s conjecture holds for $S/(I, J, \{x_i x_j\}_{1 \leq i \leq m, m+1 \leq j \leq n})$.

Proof. For convenience, we set $Q_1 := (x_1, \ldots, x_m)$, $Q_2 := (x_{m+1}, \ldots, x_n)$ and $Q := (x_i x_j)_{1 \leq i \leq m, m+1 \leq j \leq n}$. So, $Q = Q_1 \cap Q_2$.

By the assumption, we have $Q_1 \notin \text{Ass}_{S_1} S/I$ and $Q_2 \notin \text{Ass}_{S_2} S/J$. Hence

$$(x_1, \ldots, x_m, x_{m+1}, \ldots, x_n) \notin \text{Ass}_{S} S/(I, Q_2)$$

and

$$(x_1, \ldots, x_m, x_{m+1}, \ldots, x_n) \notin \text{Ass}_{S} S/(J, Q_1),$$

and so

$$\text{depth}(\frac{S}{(J, Q_1) \cap (I, Q_2)} = \text{depth}(\frac{S}{Q_1 + Q_2}) > 0 \text{ depth}(\frac{S}{Q_1 + Q_2}).$$

Now, in view of the exact sequence

$$0 \rightarrow \frac{S}{(J, Q_1) \cap (I, Q_2)} \rightarrow \frac{S}{(J, Q_1)} \oplus \frac{S}{(I, Q_2)} \rightarrow \frac{S}{Q_1 + Q_2} \rightarrow 0,$$

\cite{V} Lemma 1.3.9] implies that

$$\text{depth}(\frac{S}{(J, Q_1)}) = \text{depth}(\frac{S}{(J, Q_1) \cap (I, Q_2)}) = 1.$$

Now the proof is complete, because \cite{C2} Theorem 2.1 yields that for any monomial ideals L of S if $\text{depth}(S/L) \leq 1$, then Stanley’s conjecture holds for S/L.

Corollary 2.10. Let Δ_1 and Δ_2 be two non-empty disjoint simplicial complexes and $\Delta := \Delta_1 \cup \Delta_2$. Then Stanley’s conjecture holds for S/I_Δ.

Proof. For two natural integers $m < n$, we may assume that Δ_1 and Δ_2 are simplicial complexes on $[m]$ and $\{m+1, \ldots, n\}$, respectively. Then $K[\Delta_1] = K[x_1, \ldots, x_m]/I_{\Delta_1}$ and $K[\Delta_2] = K[x_{m+1}, \ldots, x_n]/I_{\Delta_2}$, and so

$$K[\Delta] = K[x_1, \ldots, x_m, x_{m+1}, \ldots, x_n]/(I_{\Delta_1}, I_{\Delta_2}, \{x_i x_j\}_{1 \leq i \leq m, m+1 \leq j \leq n}).$$

We claim that $\text{depth}(K[x_1, \ldots, x_m]/I_{\Delta_1}) > 0$ and $\text{depth}(K[x_{m+1}, \ldots, x_n]/I_{\Delta_2}) > 0$. Because if for example $\text{depth}(K[x_1, \ldots, x_m]/I_{\Delta_1}) = 0$, then $I_{\Delta_1} = (x_1, \ldots, x_m)$. But, this implies that $\Delta_1 = \emptyset$ which contradicts our assumption on Δ_1. Now, the claim is immediate by Proposition 2.8.

Theorem 2.11. Let Δ be a locally complete intersection simplicial complex on $[n]$. Then Stanley’s conjecture holds for S/I_Δ.

Proof. If Δ is connected, then Lemma 2.8 yields the claim. Otherwise, by [TY, Theorem 1.15], Δ is the disjoint union of finitely many non-empty simplicial complexes. So, in this case the assertion follows by Corollary 2.10. □

In [HP, Corollary 4.3] it is shown that if S/I is pretty clean, then it is sequentially Cohen-Macaulay. In [S1] this fact is reproved by a different argument and, in addition, it is shown that depth of S/I is equal to the minimum of the dimension of S/p, where $p \in \text{Ass} S/I$. Also if S/I is pretty clean, then by [S2, Theorem 4.7] h-regularity conjecture holds for S/I. This implies part a) of the following remark.

Remark 2.12. Let I be a monomial ideal of S.

a) Assume that either:
 i) I is almost complete intersection,
 ii) $\mu(I) \leq 3$; or
 iii) I is the Stanley-Reisner ideal of a connected simplicial complex on $[n]$ which is locally complete intersection.

Then both Stanley’s and h-regularity conjectures hold for S/I. Also, in each of these cases S/I is sequentially Cohen-Macaulay and $\text{depth } S/I = \min \{ \dim S/p | p \in \text{Ass } S/I \}$.

b) We know that if S/I is pretty clean, then Stanley’s conjecture holds for S/I. By using Corollary 2.10, we can provide an example of a monomial ideal I of S such that Stanley’s conjecture holds for S/I, while it is not pretty clean. To this end, let Δ_1, Δ_2 and Δ be as in Corollary 2.10 and $\dim \Delta_i > 0$, $i = 1, 2$. Evidently, Δ is not shellable, and so [D, Theorem on page 53] implies that S/I_Δ is not pretty clean. On the other hand, Stanley’s conjecture holds for S/I_Δ by Corollary 2.10.

References

[A1] J. Apel, On a conjecture of R. P. Stanley. II. Quotients modulo monomial ideals, J. Algebraic Combin., 17(1), (2003), 57-74.

[A2] J. Apel, On a conjecture of R. P. Stanley. I. Monomial ideals, J. Algebraic Combin., 17(1), (2003), 39-56.

[BW] A. Björner and M. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc., 348(4), (1996), 1299-1327.

[BH] W. Bruns and J. Herzog, Cohen Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.

[C1] M. Cimpoeaş, The Stanley conjecture on monomial almost complete intersection ideals, Bull. Math. Soc. Sci. Math. Roumaine (N.S.), 55(103)(1), (2012), 35-39.

[C2] M. Cimpoeaş, Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math., 7(3), (2009), 629-634.

[D] A. Dress, A new algebraic criterion for shellability, Beiträge Algebra Geom., 34(1), (1993), 45-55.

[F] S. Faridi, Monomial ideals via square-free monomial ideals, Commutative algebra, 85-114, Lect. Notes Pure Appl. Math., 244, Chapman & Hall/CRC, Boca Raton, FL, (2006).

[HHZ] J. Herzog, T. Hibi and X. Zheng, Dirac’s theorem on chordal graphs and Alexander duality, European J. Combin., 25(7), (2004), 949-960.

[HP] J. Herzog and D. Popescu, Finite filtrations of modules and shellable multicomplexes, Manuscripta Math., 121(3), (2006), 385-410.

[HSY] J. Herzog, A. Soleyman Jahan and S. Yassemi, Stanley decompositions and partitionable simplicial complexes, J. Algebraic Combin., 27(1), (2008), 113-125.
[HVZ] J. Herzog, M. Vladoiu and X. Zheng, *How to compute the Stanley depth of a monomial ideal*, J. Algebra, **322**(9), (2009), 3151-3169.

[KTY] K. Kimura, N. Terai and K. Yoshida, *Arithmetical rank of square-free monomial ideals of small arithmetic degree*, J. Algebraic Combin., **29**(3), (2009), 389-404.

[P] D. Popescu, *Stanley depth of multigraded modules*, J. Algebra, **321**(10), (2009), 2782-2797.

[R] A. Rauf, *Stanley decompositions, pretty clean filtrations and reductions modulo regular elements*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), **50**(98)(4), (2007), 347-354.

[S1] A. Soleyman Jahan, *Easy proofs of some well known facts via cleanness*, Bull. Math. Soc. Sci. Math. Roumanie, (N.S.), **54**(102)(3), (2011), 237-243.

[S2] A. Soleyman Jahan, *Prime filtrations and Stanley decompositions of squarefree modules and Alexander duality*, Manuscripta Math., **130**(4), (2009), 533-550.

[S3] A. Soleyman Jahan, *Prime filtrations of monomial ideals and polarizations*, J. Algebra, **312**(2), (2007), 1011-1032.

[SZ] A. Soleyman Jahan and X. Zheng, *Monomial ideals of forest type*, Comm. Algebra, **40**(8), (2012), 2786-2797.

[St] R.P. Stanley, *Linear Diophantine equations and local cohomology*, Invent. Math., **68**(2), (1982), 175-193.

[TY] N. Terai and K-I. Yoshida, *Locally complete intersection Stanley-Reisner ideals*, Illinois J. Math., **53**(2), (2009), 413-429.

[V] R.H. Villarreal, *Monomial Algebras*, Monographs and Textbooks in Pure and Applied Mathematics, **238**, Marcel Dekker, Inc., New York, 2001.

S. Bandari, DEPARTMENT OF MATHEMATICS, ALZAHRA UNIVERSITY, VANAK, POST CODE 19834, TEHRAN, IRAN.

E-mail address: somayeh.bandari@yahoo.com

K. Divaani-Aazar, DEPARTMENT OF MATHEMATICS, ALZAHRA UNIVERSITY, VANAK, POST CODE 19834, TEHRAN, IRAN-AND-SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX 19395-5746, TEHRAN, IRAN.

E-mail address: kdivaani@ipm.ir

A. Soleyman Jahan, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KURDISTAN, POST CODE 66177-15175, SANANDAJ, IRAN.

E-mail address: solymanjahan@gmail.com