Hall effect in CeAl$_2$ under high pressure

Hidenori Miyagawa1, Masashi Ohashi2, Tomohito Nakano1, Gendo Oomi1, Isamu Satoh3 and Takemi Komatsubara4

1Department of physics, Kyushu University, Ropponmatsu, Fukuoka, Japan
2Faculty of Environmental Design, Kanazawa University, Kanazawa, Ishikawa, Japan
3Institute for Materials Research, Tohoku University, Sendai, Japan
4Center for low temperature science, Tohoku University, Sendai, Japan

miyagawa@gemini.rc.kyushu-u.ac.jp

Abstract. We have measured the Hall effect of the single crystalline CeAl$_2$ under high pressure up to 3 GPa. An anomalous Hall effect was observed at high pressures. The Hall coefficient R_H at 0.1 GPa is positive ($R_H \sim 1.7 \times 10^{-9}$ m3/A·s). It decreases smoothly with increasing pressure below 2 GPa, but rapidly above 2 GPa. The sign of the Hall coefficient is found to change from positive to negative as pressure increases. These results suggest a pressure-induced crossover in the electronic state around 2.7 GPa.

1. Introduction

Some Ce-based intermetallic compounds are well known as the heavy fermions, and the anomalous properties are originated from the hybridization between f-electrons and conduction electrons [1, 2]. CeAl$_2$ with cubic C15 Laves-phase is one of the heavy fermion compounds, which has the electronic specific heat coefficient $\gamma = 135$ mJ/mol·K2 and Kondo temperature $T_K = 6$ K [3]. At ambient pressure, antiferromagnetic ordering is observed below $T_N = 3.8$ K, which decreases with increasing pressure [4]. The experimental results under high pressure suggested that a quantum critical point (QCP) exists near 2.7 GPa [5, 6]. A non Fermi liquid behavior was observed around the QCP [6]. The magnetoresistance (MR) is negative at 4.2 K. The magnitude of MR is decreased by applying pressure, and the sign of MR changes from negative to positive around 2.6 GPa, which indicates a crossover from incoherent state to coherent one [7]. In general, the Hall effect of Ce compounds shows an anomalous Hall effect due to the skew scattering of the conduction electrons by magnetic moment of f-orbital [8]. It has been reported that the Hall effect is a good tool to investigate the QCP [9]. In this work, we measured the Hall resistivity at 4.2 K under high pressure up to 3 GPa in order to clarify the influence of the anomalous Hall effect around the QCP.
2. Experimental method

A single crystal CeAl$_2$ was grown by Czochralski pulling method. The Hall resistivity at 4.2 K was measured in the conventional six probe configuration. Hydrostatic pressure was generated by a WC piston and Ni-Cr-Mo hard alloy (MP35) cylinder up to 3 GPa [10]. Daphne-oil 7373 was used as the pressure transmitting medium. The pressure inside the cell was kept constant in whole temperature ranges by automatic controlling of the load. The measurements were carried out using superconducting magnet with field up to 9 T. The current direction was parallel to [1 0 0].

3. Results and Discussion

Figure 1 shows the magnetic field dependence of the Hall resistivity ρ_H at 4.2 K under pressure up to 3 GPa. At 0.1 GPa, the ρ_H increases with increasing magnetic field, and shows a broad peak around 7 T. The anomalous Hall effect is observed in the heavy fermion compounds [8], which is ascribed to skew scattering due to the asymmetry of the interaction between conduction electrons and f-electrons. According to skew scattering model, the ρ_H is described as follows,

$$\rho_H(B) = R_0 B + \rho_H^a(M)$$

where B is magnetic field, R_0 the normal Hall coefficient and $\rho_H^a(M)$ the anomalous Hall resistivity term, depending on magnetization M. The $\rho_H(B)$ of CeAl$_2$ changes largely as pressure increases. The broad peak is observed below 1 GPa, but not observed above 2.2 GPa in the magnetic field range up to 9 T. The initial slope of the $\rho_H(B)$ changes from positive to negative as pressure increases. At 2.7 GPa and 3 GPa, a shallow minimum is observed around 1 T and 2 T, respectively.
Figure 2 : Pressure dependence of the Hall coefficient at 4.2 K.

Figure 2 shows the pressure dependence of the Hall coefficient R_H at 4.2 K. The R_H was evaluated by the first-derivative of $\rho_H (B)$, $R_H = \partial \rho_H / \partial B$, below 1 T. At 0.1 GPa, the value of R_H is 1.7×10^{-9} m3/A s, which is almost the same value at ambient pressure in the previous report [11]. The temperature dependence of the R_H shows a broad peak around 4K at ambient pressure [12], indicating that the anomalous Hall effect is the largest around 4 K. Thus, at 0.1 GPa, the anomalous Hall effect is dominant in the R_H of CeAl$_2$ at 4.2 K. The R_H is decreased gradually by applying pressure, and shows a rapid decrease above 2 GPa. Above 2.7 GPa, the R_H becomes a negative.

In this work, the pressure where the sign of the R_H in CeAl$_2$ changes is nearly the same as that where the sign of the MR changes. The change of the sign of the R_H indicates a crossover from 4f-localized state to itinerant one since that of the MR is due to a crossover from incoherent state to coherent one [3, 6]. On the other hand, since $\rho_H^a(M)$ is describe as R_M at paramagnetic region, the Hall coefficient is written as follows,

$$R_H = R_0 + R_s \chi$$

(2)

, where R_s is the anomalous Hall coefficient and χ is the susceptibility. The $R_s \chi$ decreases with increasing pressure since the anomalous Hall effect is dominant in the R_H, which might be due to the decrease of χ since the Curie paramagnetism changes to Pauli one by changing from 4f-localized state to itinerant one as pressure increases. Judging from these facts, it is suggested that the skew scattering due to the localized 4f-electrons decreases with increasing pressure, i.e., the anomalous R_H term decreases as pressure increases, reflecting a delocalization of 4f-electrons.

In several substances such as CeRh$_2$Si$_2$ and Cr$_x$V$_{1-x}$ alloys, it has been reported that the large change of the R_H is observed at critical pressure P_C where magnetic ordering disappears [9, 13]. In the case of CeRh$_2$Si$_2$, the R_H of CeRh$_2$Si$_2$ is continuously decreased by applying pressure, and changes the sign of the R_H around $P_C \sim 1$ GPa [13]. In this pressure, it is suggested that the enhancement of many-body dynamical effect occurs according to the electrical resistivity measurement under high pressure [14]. Furthermore, the abrupt change of Fermi surface are observed around P_C by a de Hass-Van Alphen experiment, which is due to a discontinuous change of the Fermi surface from 4f-localized
These results indicate the QCP exists around $P_c \sim 1$ GPa in CeRh$_2$Si$_2$, and the anomaly of the R_H is observed at QCP. Thus, in CeAl$_2$, the change of sign of R_H indicates that the QCP exists around 2.7 GPa, which is good agreement with the previous results of the electrical resistivity measurement under high pressure [5, 6]. It is implied that the abrupt change of the Fermi surface is observed around 2.7 GPa such as CeRh$_2$Si$_2$.

4. Summary

In this study, we have measured the Hall effect of CeAl$_2$ at 4.2 K under high pressure. At 0.1 GPa, the R_H is a positive, and the anomalous Hall effect is dominant in the R_H at 4.2 K. The anomalous Hall effect is found to decrease with increasing pressure, and the sign of R_H changes at 2.7 GPa. From comparison with the result of MR under high pressure, it is suggested that the crossover from 4f-localized state to itinerant one exists around 2.7 GPa, which indicates that the QCP in CeAl$_2$ exists around 2.7 GPa.

References

[1] Steglich F 1991 J. Magn. Magn. Mater. 100 186
[2] For the summary of recent progress in this research field, see the published paper in 2007 J. Phys. Soc. Jpn. 76 Suppl. ed. by Kagayama T, Ohashi M and Uwatoko Y.
[3] Steglich F, Bredl C D, Loewenhaupt M and Schotte K D 1979 J. de Phys. Coll. C5 301
[4] Barbara B, Rossignol M F, Boucherle J X and Vettier C 1980 Phys. Rev. Lett. 45 938
[5] Oomi G, Ohashi M, Uwatoko Y, Satoh I and Komatsubara T 2005 Physica B 359-361 65
[6] Miyagawa H, Oomi G, Ohashi M, Satoh I, Komatsubara T, Hedo M and Uwatoko Y 2008 Phys. Rev. B 78 (to be published)
[7] Miyagawa H, Ohashi M, Oomi G, Satoh I and Komatsubara T 2006 Physica B 378-380 771
[8] Fert A 1973 J. Phys. F: Metal Phys. 3 2126
[9] Yeh A, Soh Yeong-Ah, Brooke J, Aeppli G, Rosenbaum T F and Hayden S M 2002 Nature 419 459
[10] Honda F, Kaji S, Minamitake I, Ohashi M, Oomi G, Eto T and Kagayama T 2002 J. Phys. Condens. Matter 14 11501
[11] Lapierre F, Haen P, Briggs A and Sera M 1987 J. Magn. Magn. Mater. 63-64 76
[12] Bogach A V, Sluchanko N E, Glushkov V V, Demishev S V, Ohta H, Burkhanov G S and Chystyakov O D 2003 Physica B 329-333 541
[13] Boursier R, Haen P, Flouquet J, Haga Y and Ōnuki Y 2006 Physica B 378-380 76
[14] Ohashi M, Oomi G, Koïwai S, Hedo M and Uwatoko Y 2003 Phys. Rev. B 68 144428
[15] Settai R, Shishido H, Kubo T, Araki S, Kobayashi T C, Harima H and Ōnuki Y 2007 J. Magn. Magn. Mater. 310 541