An extended formalism for preferential attachment in heterogeneous complex networks

A. Santiago(a) and R. M. Benito(b)

GrupodeSistemasComplejos, Departamento de Física y Mecánica, EscuelaTécnicaSuperior de Ingenieros Agrónomos, UniversidadPolitécnica de Madrid - 28040 Madrid, Spain, EU

received 26 December 2007; accepted in final form 15 April 2008
published online 28 May 2008

PACS 89.75.Fb – Structures and organization in complex systems
PACS 89.75.Hc – Networks and genealogical trees
PACS 89.75.Da – Systems obeying scaling laws

Abstract – In this paper we present a framework for the extension of the Barabási-Albert model to heterogeneous complex networks. We define a class of heterogeneous preferential attachment models where node properties are described by fixed states in an arbitrary space, and introduce an affinity function that biases the attachment probabilities of links. We perform an analytical study of the degree distributions in heterogeneous preferential attachment networks. We show that their degree densities exhibit a richer scaling behavior than their homogeneous counterparts, and that the power law scaling in the degree distribution is robust in the presence of heterogeneity.

Introduction. – A complex network is a set of nodes and links with a non-trivial topology [1]. In the current effort to achieve a single coherent framework for complex systems, network theory has focused on the underlying principles that govern their topology [2,3]. Dynamical network models [4] are stochastic discrete-time dynamical systems that evolve networks by the iterated addition/subtraction of nodes/links. These models regard network topology as an emergent property of the network evolution, focusing on the mechanisms that drive such process. Among these mechanisms, preferential attachment (PA) [5] enjoys a foremost position in the network literature.

The preferential attachment model by Barabási and Albert (BA) [6] provides a minimal account of mechanisms for the emergence of scale-free networks [7]. Such networks are characterized by a degree distribution according to a power law, \(P(k) \propto k^{-\gamma} \), which leads to a non-negligible presence of hubs (highly connected nodes). In the BA model the process starts with an arbitrary seed and a new node is added to the network at each step. Each new node has a number \(m \) of links attached, which are preferentially connected to the existing nodes following the so-called attachment rule: the linking probability of a network node \(v_i \) is proportional to its degree \(k_i \), \(\Pi(v_i) = k_i / \sum_j k_j \). This step is iterated until a number \(N \) of nodes have been added.

The BA model is strictly topological as the node degrees \(\{k_i\} \) are the only metrics that drive network evolution. Nevertheless, the assumptions implicit in the BA model are not valid for a wide class of complex systems. Often, interactions between individual elements are mediated by their intrinsic properties. Although network theory has led to a significant improvement in our understanding of complex systems, it has been argued that its framework should be augmented in order to improve our modelling of complexity [1,8]. We will refer to heterogeneous networks as networks where node intrinsic properties induce affinities in their interactions. We consider such networks as a logical first step in addressing the complication introduced by the influence of individual elements on the network structure.

In recent years several network models have incorporated the influence of element properties. These include weighted networks [9–11], inhomogeneous random graphs [12], fitness models [13–15], a geografic model [16], hidden-variable models [17–19], social models [20,21], a local knowledge model [22], a metric model [23], a gas-like model [24], coevolution models [25–27] and network automata [28]. In this letter we propose a general class of heterogeneous PA models where a function measures the affinity between node intrinsic properties (states) and biases the attachment probabilities of links in a

(a)E-mail: antonio.santiago@upm.es
(b)E-mail: rosamaria.benito@upm.es
generalized PA rule. The introduction of affinities aims to provide a more realistic modelling of the structure of numerous real systems that exhibit biased interactions.

Possible applications of the proposed class include the world wide web and academic networks, where web pages or papers tend to preferentially link to other members according to their position in a semantic space; protein networks, where reactions tend to happen preferentially between molecules within low distance in a configuration space; or social and economic networks, where agents tend to preferentially interact with other agents according to personal or business reasons. The class also contains previous dynamic network models as particular cases, and provides a framework for the systematic analysis of the influence of heterogeneity in PA networks.

Formulation. – The BA model can be easily generalized to heterogeneous networks by imposing a space on the node properties, while preserving the basic mechanisms of growth and preferential attachment. A heterogeneous PA model is defined by three elements:

1) R is an arbitrary space. The elements $x \in R$ are referred as node states.
2) ρ is a nonnegative real function with unit measure over R referred as node state distribution.
3) σ is a nonnegative real function over R^2 referred as affinity of the interactions. The class of heterogeneous PA models is thus defined as the set of models that satisfy the conditions stated.

This formalism prescribes the evolution of a network according to the following rules:

i) The nodes v_i are characterized by their state $x_i \in R$. The node states describe intrinsic properties deemed constant in the timescale of evolution of the network.

ii) The growth process starts with a seed composed by N_0 nodes (with arbitrary states $x_i \in R$) and L_0 links.

iii) A new node v_i (with m links attached) is added to the network at each iteration. The number m is common for all the added nodes and remains constant during the evolution of the network. The newly added node is randomly assigned a state x_a following the distribution $\rho(x)$.

iv) The m links attached to v_a are randomly connected to the network nodes following a distribution $\Pi(v_i)$ given by an extended attachment rule,

$$\Pi(v_i) = \frac{\pi(v_i)}{\sum_j \pi(v_j)}$$

The attachment kernel or visibility π of a node v_i in the rule is given by the product of its degree k_i and its affinity σ with the newly added node v_a, which is itself a function of the states x_i and x_a. It thus can be seen that for each interaction σ biases the degree k_i of the candidate node. Steps iii) and iv) are iterated until a desired number of nodes has been added to the network. To sum up, the choice of the triple (R, ρ, σ) determines the form of heterogeneity in the attachment mechanism.

Analysis. – Next we derive an analytical solution for the stationary degree distribution $P(k)$ of the class of heterogeneous PA models. The solution is obtained by rate equations [29,30] which establish a balance in the flows of degree densities over a partition of a growing network.

Let us first define a sequence of functions $\{f(k,x,N)\}_{N>0}$ which measure the probability density of a randomly chosen node having degree k and state x in a network at the iteration $t = N$. The degree densities are local metrics, thus they uniformly converge when $N \to \infty$ to a stationary density function $f(k,x)$. Finally, the stationary degree distribution $P(k)$ measures the probability of a randomly chosen node having degree k in the thermodynamic limit. The exposition assumes a continuous space R, however the analysis is extendable to the case of a discrete space in a straightforward manner.

The rationale for the choice of f in modelling the evolution of the degrees is simple: in a heterogeneous model, nodes with equal degree may contribute differently to changes in $P(k,N)$ according to their state, despite being homogeneously accounted by ρ. Thus, for each (k,N) we need to know the influence of x on the degree distribution. We will denote by $V(x) = \{v_i, x_i = x\}$ the subset of nodes in the network with state x. Assuming that the assignment of states x_i is uncorrelated with the topology of the growing network, and that there are no linking events between existing nodes, the sequence $\{f\}$ can be modelled on each $V(x)$. For each x, the form of the equation will be $L_1 - L_2 = R_1 - R_2$, where L_1 is the density of nodes with degree k at $t = N + 1$; L_2 is the density of nodes with degree k at $t = N$; R_1 is increase in density due to nodes with degree $k - 1$ that have gained a link at $t = N$; R_2 is decrease in density due to nodes with degree k that have gained a link at $t = N$.

The total density of nodes with state x and degree k at $t = N + 1$ is $L_1 = (N + 1)f(k,x,N + 1)$. Here we assume that N is large and no incoming node is rejected due to lack of affinity, therefore we approximate the network size by t. Likewise, the total density of nodes with state x and degree k at $t = N$ is $L_2 = Nf(k,x,N)$. In order to estimate the changes in f due to the acquisition of new links, we first calculate the conditional probability density for a link of a newly added node with state y being attached to a network node with degree k and state x, $\Pi(k,x|y)$. The conditional probability for a network node v_i in this case being chosen for attachment is proportional to its attachment kernel $\pi(v_i) = k\sigma(x,y)$, therefore the conditional probability density is

$$\Pi(k,x|y) = \frac{k\sigma(x,y)f(k,x,N)}{\psi(y,N)},$$

where $\psi(y,N)$ is defined as the partition factor

$$\psi(y,N) = \sum_{k'} k' \int_R \sigma(x,y)f(k',x,N)$$

58004-p2
The probability density for a link being attached to a network node with degree \(k \) and state \(x \) is then
\[
\Pi(k, x) = (\Pi(k, x|y))_y = kf(k, x, N)\left(\frac{\sigma(x, y)}{\psi(y, N)}\right)_y, \tag{4}
\]
where the brackets mean averaging over the random variable \(y \),
\[
\langle y \rangle_y = \int_R g(\rho(y))dy. \tag{5}
\]

As in each iteration there are \(m \) links attached to a newly added node, the increase in the total density of nodes with state \(x \) and degree \(k \) due to nodes with state \(x \) and degree \(k-1 \) gaining a link and being promoted to degree \(k \) is
\[
R_1 = m(k-1)f(k-1, x, N)\langle \sigma(x, y)/\psi(y, N) \rangle_y.
\]
Here we assume that for large \(N \) the probability that a single node receives more than one link attached to the same new node becomes negligible. Likewise, the decrease in the total density of nodes with state \(x \) and degree \(k \) due to nodes with state \(x \) and degree \(k \) gaining a link and being promoted to degree \(k+1 \) is
\[
R_2 = m kf(k, x, N)\langle \sigma(x, y)/\psi(y, N) \rangle_y \text{ at each step.}
\]
The resulting density rate equation for \(k > m \) is
\[
(N+1)f(k, x, N+1) - Nf(k, x, N) = m\left(\frac{\sigma(x, y)}{\psi(y, N)}\right)_y [(k-1)f(k-1, x, N) - kf(k, x, N)]. \tag{6}
\]

When \(k = m \), there is no increase in \(f(m, x, N) \) due to the promotion of nodes with \(k = m-1 \). However, each newly added node has degree \(m \) and this contribution to \(f(m, x, N) \) is distributed according to \(\rho(x) \), thus
\[
(N+1)f(m, x, N+1) - Nf(m, x, N) = \rho(x) - m\left(\frac{\sigma(x, y)}{\psi(y, N)}\right)_y f(m, x, N). \tag{7}
\]

There are no nodes with degree \(k < m \), since when \(N \to \infty \) all the links attached to newly added nodes find receptive nodes in the network, therefore the previous equations define all the possible cases in each iteration.

In the thermodynamic limit \(N \to \infty \), \(f(k, x, N+1) = f(k, x, N) = f(k, x) \) and the rate equations become
\[
f(k, x) = \begin{cases}
\left(m\left(\frac{\sigma(x, y)}{\psi(y)}\right)_y [(k-1)f(k-1, x, N) - kf(k, x)] \right)_{y} & \text{for } k > m, \\
\rho(x) - m\left(\frac{\sigma(x, y)}{\psi(y)}\right)_y f(k, x) & \text{for } k = m,
\end{cases} \tag{8}
\]
where \(\psi(y) \) is the stationary partition factor, defined as
\[
\psi(y) = \lim_{N \to \infty} \psi(y, N) = \sum_{k'} k' \int_R \sigma(x, y)f(k', x)dx. \tag{9}
\]

Notice that the stationary rate equations are coupled via \(\psi(y) \). In the homogeneous PA case (BA model), \(\sigma(x, y) = 1 \), \(\forall x, y \in R \) and thus \(\psi(y) = \psi = \sum_k kP(k) \), which is equal to the average network degree \(z = (2Nm + 2N_0)/(N + N_0) \). In the stationary limit \(N \gg N_0 \) and \(Nm \gg L_0 \), thus \(\psi(y) \approx 2m \). On the contrary, in the heterogeneous models \(\sigma(x, y) \) continuously weighs the density \(f(k, x) \) in the integral associated to each degree \(k \) in the stationary partition factor \(\psi(y) \). In order to decouple eq. (8), notice that if \(\psi(y) \) is constant over the subset \(R_\rho = \{y \in R : \rho(y) > 0\} \), then the average of the quotient \(\sigma(x, y)/\psi(y) \) over the variable \(y \) is equal to the quotient of the averages, enabling us to express the coupling term in terms of two mean-field measures,
\[
\left(\frac{\sigma(x, y)}{\psi(y)}\right)_y \approx \frac{\langle \sigma(x, y) \rangle_y}{\langle \psi(y) \rangle_y} = \frac{w(x)}{\psi}, \tag{10}
\]
where \(w(x) = \langle \sigma(x, y) \rangle_y \) can be interpreted as the mean-field fitness of network nodes with state \(x \) (that is, their average ability to gain new node links due exclusively to their state, as defined by the attachment kernel), and \(\psi = \langle \psi(y) \rangle_y \) can be interpreted as the mean-field partition factor of the network, both defined for a given distribution \(\rho(y) \) of the incoming node states. The previous equality (eq. (10)) will turn into a good approximation when the variation of \(\psi(y) \) over the subset \(R_\rho \) is small enough, which leads to the following criterion for the mean-field approach:
\[
\langle (\psi(y) - \psi)^2 \rangle_y < \epsilon_1, \tag{11}
\]
where \(\epsilon_1 \) is an accuracy bound. Furthermore, notice that if \(w(x) \) is constant over \(R \) the mean-field stationary partition factor \(\psi \) can be easily calculated,
\[
\psi = \sum_k F(k, x)wdx = \sum_k kP(k)w \approx 2mw. \tag{12}
\]
Again, this equality (eq. (12)) will turn into a good approximation by replacing \(w(x) \) with its average \(\bar{w} = \langle w(x) \rangle \) when the variation of \(w(x) \) over \(R \) is small enough, leading to a second criterion
\[
\langle (w(x) - \bar{w})^2 \rangle_x < \epsilon_2, \tag{13}
\]
where \(\epsilon_2 \) is a second accuracy bound. Under the assumption that the previous approximation criteria (eqs. (11) and (13)) hold, the coupling factor may then be estimated as
\[
\left(\frac{\sigma(x, y)}{\psi(y)}\right)_y \approx \frac{w(x) - \bar{w}(x)}{2mw} \approx \frac{\bar{w}(x)}{2m} \tag{14}
\]
where \(\bar{w}(x) = w(x)/\bar{w} \) is a mean-field normalized fitness, which measures the fitness of network nodes with state \(x \) relative to the average fitness of all the network nodes, for a given distribution \(\rho(x) \).
Applying eq. (14) to eq. (8) the resulting decoupled system becomes
\[
f(k, x) = \begin{cases}
\hat{w}(x)[(k-1)f(k-1, x) - kf(k, x)]/2 & \text{for } k > m, \\
\rho(x) - \hat{w}(x)m f(k, x)/2 & \text{for } k = m,
\end{cases}
\]
and solving eq. (15), we obtain
\[
f(m, x) = \frac{2\rho}{\hat{w}m + 2},
\]
\[
f(k, x) = \frac{\hat{w}(k-1)}{\hat{w}k + 2} f(k-1, x) & \text{for } k > m.
\]
Thus the solution for the stationary density for $k > m$ is
\[
f(k, x) = \left(\prod_{j=m+1}^{k} \frac{\hat{w}(j-1)}{\hat{w}j + 2} \right) \frac{2\rho}{\hat{w}m + 2}
\]
and integrating the density in eq. (17) over the state space R the stationary degree distribution is
\[
P(k) = \int_{R} \left(\prod_{j=m+1}^{k} \frac{\hat{w}(j-1)}{\hat{w}j + 2} \right) \frac{2\rho}{\hat{w}m + 2} dx.
\]

It is important to remark that the solutions in eqs. (17) and (18) are valid for any model in our class, since they do not make any assumption regarding the geometry of space R, the form of affinity σ or the distribution ρ. The validity of the solutions is limited only by the extent to which the approximation criteria in eqs. (11) and (13) hold.

The first criterion (eq. (11)) is a bound on the variability of $\psi(y)$ on R_ρ. Equation (9) shows that such variability is directly related to the variability of the affinity $\sigma(x, y)$ on the domain R^2. Notice that the stationary partition factor (eq. (9)) may be expressed as
\[
\psi(y) = \int_{R} \sigma(x, y)z(x)dx,
\]
where $z(x) = \sum_{k'} k' f(k', x)$ is the average degree density of nodes with state x. Therefore the first criterion imposes a bound on the variability of the $z(x)$-weighted average of $\sigma(x, y)$ over its first argument. The second criterion (eq. (13)) is a bound on the variability of $w(x)$ on R. Equation (10) shows that such variability is again related to the variability of the affinity $\sigma(x, y)$ on the domain R^2. In this case the criterion imposes a bound on the variability of the $\rho(y)$-weighted average of $\sigma(x, y)$ over its second argument.

In conclusion, the mean-field approximation can be considered accurate in the measure that the respective averages of $\sigma(x, y)$ along its two arguments do not exhibit large variations over R. Notice that the former approximation criteria do not exclude the possibility of large fluctuations in the value of $\sigma(x, y)$ over R^2, provided that the variability of the averages is kept within the desired bounds. Nevertheless, as the inhomogeneity of the distribution $\rho(x)$ increases, the averaging effects will become less forgiving of changes in the value of σ. This will be particularly so when the deviations occur over regions of R^2 where either argument is associated with high densities ρ or where the first argument is associated with high mean-field fitness values w, since the affinity on these regions will be weighted more heavily in the averaging.

Returning to the solution derived in eq. (17), we may furthermore assume that $w(x) > 0$, $\forall x \in R$ without loss of generality, otherwise $\sigma(x_0, y) = 0$, $\forall y \in R$ since $\sigma \geq 0$, which would mean that x_0 is "inert" and may be excluded from R. Then $\hat{w}(x) > 0$, $\forall x \in R$ and we may write the density for $k > m$ as
\[
f(k, x) = \frac{2\rho/\hat{w}}{m + 2/\hat{w}} B(k, 1 + 2/\hat{w}),
\]
where Legendre’s Beta function $B(y, z) = \int_0^1 t^{y-1}(1-t)^{z-1}dt$ for $y, z > 0$ satisfies the functional relation $\Gamma(a)/\Gamma(a+b) = B(a, b)/\Gamma(b)$ for Euler’s Gamma function $\Gamma(x)$. Likewise, integrating the density in eq. (20) we obtain for $k > m$ the stationary degree distribution
\[
P(k) = \int_{R} \frac{2\rho/\hat{w}}{m + 2/\hat{w}} B(m, 1 + 2/\hat{w}) dx.
\]

Notice that eq. (20) reduces to $f(m, x)$ in eq. (16) when $k = m$, thus eqs. (20) and (21) are valid for $k \geq m$. Also, notice that the stationary densities $f(k, x)$ in the heterogeneous formalism, as given by eq. (20), follow the form of a Beta function with arguments $(k, 1 + 2/\hat{w})$.

In particular cases it is possible to obtain simpler expressions for $f(k, x)$. First, in the homogeneous case, $w(x) = 1$, thus $\hat{w} = w = 1$ and eq. (17) yields
\[
f(k, x) = \frac{2\rho m (m+1)}{k(k+1)(k+2)},
\]
and the density functions $f(k, x)$ asymptotically follow power laws $f(k, x) \sim k^{-\gamma}$ with exponent $\gamma = 3$, irrespective of the node states. This is reasonable, as the dynamics of the homogeneous BA network is not affected by them, thus the asymptotic behavior of all density components is the same. If furthermore we assume that $\rho(x)$ is uniform over R, then any subset $V(x)$ of nodes will exhibit the same distribution as the whole network. Likewise, the degree distribution $P(k)$ asymptotically follows a power law with exponent $\gamma = 3$ like the BA model [29], irrespective of the distribution ρ.

In the presence of heterogeneity the fitness $w(x)$ is generally not constant over R. It is still possible to obtain simple forms of $f(k, x)$ from eq. (17) for discrete values of \hat{w} that render the denominator a product of integers. For instance, let x be such that $\hat{w} = 2 > 1$, then
\[
f(k, x) = \frac{\rho m}{k(k+1)},
\]
which asymptotically behaves as a power law with exponent $\gamma = 2$. Conversely, letting x be such that $\tilde{w} = 2/3 < 1$, then eq. (17) yields

$$f(k, x) = \frac{\rho x (m + 1)(m + 2)}{k(k + 1)(k + 2)(k + 3)},$$

which asymptotically behaves as a power law with exponent $\gamma = 4$. By extension, normalized fitness values $\tilde{w} = 2/n$ with integer n yield density functions $f(k, x)$ with an asymptotic power law behavior with $\gamma = 1 + 2/\tilde{w}$.

Moreover, it can be proved that the Beta-function behaves as $B(y, z) \sim y^{-z}$ when $y \to \infty$. Therefore, eq. (20) implies that $f(k, x)$ behaves asymptotically as $B(k, 1 + 2/\tilde{w}) \sim k^{-1/2-2/\tilde{w}}$. The density components $f(k, x)$ in heterogeneous PA networks exhibit a multiscaling according to power laws $k^{-\gamma(\tilde{w})}$ along the continuous spectrum of normalized fitness \tilde{w}. The scaling exponents are inversely related to \tilde{w} according to $\gamma(\tilde{w}) = 1 + 2/\tilde{w}$ so that they span themselves a continuum. Also notice that in the particular case where the node states stand themselves for absolute fitness values, $\sigma(x_i, x_a) = x_i$, then $\tilde{w} \propto x$ and the scaling exponents $\gamma(\tilde{w})$ agree with the solution derived by Bianconi and Barabási for the fitness model [13] with the continuum method.

Thus, as \tilde{w} increases (respectively, decreases), the exponent γ of f decreases (respectively, increases). Nodes with states more fit than the average ($\tilde{w} > 1$) adopt densities with $\gamma < 3$, which exhibit a slower asymptotical decay, and tend to produce more hubs. Nodes with states less fit than the average ($\tilde{w} < 1$) adopt densities with $\gamma > 3$, which exhibit a faster asymptotical decay. These results are verified in fig. 1, which shows the plot of the density f. Although the shape of f depends on the particular heterogeneity of the network, its asymptotic behavior can be characterized in a general way by plotting the dependence of f on $\tilde{w}(x)$ instead of x.

The behavior described points out to a signature of heterogeneity in the topology of PA networks: the fitness $w(x)$ will tend to fluctuate on R and the density components $f(k, x)$ will exhibit different scaling exponents. This prompts us to suggest a procedure for empirically detecting such signature in real networks. In order to check the role of a certain degree of freedom in the network evolution, one could select different states $\{x\}$ varying only in such dimension, select subsets of nodes $V_\delta(x) = \{v_i, d(x, v_i) < \delta\}$ with states in a small neighborhood of the states x. If the partial distributions $\{P(k|x)\}$ exhibit power laws with different exponents, it would be feasible to assume this dimension (or another one correlated with it) is biasing the attachment mechanism. To check the existence of heterogeneity it would be enough to find one such subset of nodes whose partial distribution $\{P(k|x)\}$ exhibits a power law with an exponent different to the one in $P(k)$.

As for the degree distribution $P(k)$ of the heterogeneous models, eq. (18), it is obtained by the integration of the density components which form a set of power laws with varying exponents. The level of relative variability present in the fitness $w(x)$ over the state space R will determine the ultimate composition of $P(k)$. Choices of (R, ρ, σ) that yield little fluctuations in $w(x)$ on R will translate into density functions $f(k, x)$ deviating slightly from the homogeneous power law, and degree distributions similar to the BA case. On the other hand, choices of (R, ρ, σ) that yield larger fluctuations in $w(x)$ will translate into a wider spectrum of exponents γ in the density components, and thus a larger deviation of the degree distribution from the homogeneous case.

While we need to know the triple (R, ρ, σ) to obtain the distribution $P(k)$, it is still possible to make rough predictions about its behavior in heterogeneous PA networks. We may regard the degree distribution in such networks as a superposition of power laws whose exponents are distributed around the homogeneous $\gamma = 3$. For low degrees it can be expected that averaging low and high γ components will tend to produce a behavior of $P(k)$ similar to the one observed in homogeneous networks. When $k \to \infty$, the tail of $P(k)$ will be dominated by the slowest decaying components, associated to states with highest \tilde{w}. Furthermore, given that \tilde{w} will be distributed by definition around 1, the $P(k)$ of all the models in the class will exhibit scaling exponents satisfying $1 < \gamma < 3$. This is remarkable since the empirical observations in real scale-free networks show that most exponents fit within this interval.

Conclusions. – In summary, we have proposed a generalization of the BA model to heterogeneous networks. We have defined a general class of heterogeneous PA models where node properties are described by fixed states in an arbitrary space, and where an affinity function biases the attachment probabilities of links. We have obtained analytical solutions for the degree densities and degree distribution of heterogeneous networks in the stationary
limit. We have shown that these networks exhibit a richer scaling behavior than their homogeneous counterparts, a multiscaling of their degree densities according to power laws with exponents spanning a continuum. Such phenomenon leaves a signature of heterogeneity in the topology of PA networks that can be empirically checked in real networks. We have also shown the relationship between the variability in the exponents and the fluctuations in the fitness over the states space, and the consequences of this on the asymptotic behavior of the degree distribution. Finally we have shown that the degree distributions of all heterogeneous models in our class exhibit power laws with exponents within the limits empirically observed in real networks. These results suggest that the ubiquity of real scale-free networks with otherwise different structural properties may be partially explained by PA mechanisms with varying levels of heterogeneity.

We wish to thank M. Boguñá as well as the anonymous referees for their insightful comments. This work has been supported by the Spanish MEC under Project “i-MATH” No. CSD2006-00032 and Project No. MTM2006-15533, GESAN and Comunidad de Madrid under Project TAGRALIA-CM-P-AGR-000187-0505.

REFERENCES

[1] Strogatz S. H., Nature, 410 (2001) 268.
[2] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74 (2002) 47.
[3] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[4] Dorogovtsev S. N. and Mendes J. F. F., Adv. Phys., 51 (2002) 1079.
[5] Price D. J. S., Science, 149 (1965) 510.
[6] Barabási A.-L. and Albert R., Science, 286 (1999) 509.
[7] Barabási A.-L., Albert R. and Jeong H., Physica A, 272 (1999) 173.
[8] Amaral L. A. N. and Ottino J. M., Eur. Phys. J. B, 38 (2004) 147.
[9] Yook S.-H., Jeong H., Barabási A.-L. and Tu Y., Phys. Rev. Lett., 86 (2001) 5835.
[10] Barrat A., Barthelemy M. and Vespignani A., Phys. Rev. Lett., 92 (2004) 228701.
[11] Barthelemy M., Barrat A., Pastor-Satorras R. and Vespignani A., Physica A, 346 (2005) 34.
[12] Söderberg B., Phys. Rev. E, 66 (2002) 066121.
[13] Bianconi B. and Barabási A.-L., Europhys. Lett., 54 (2001) 436.
[14] Ergün G. and Rodgers G., Phys. A, 363 (2002) 261.
[15] Caldarelli G., Capocci A., de los Ríos P. and Muñoz M. A., Phys. Rev. Lett., 89 (2002) 258702.
[16] Yook S.-H., Jeong H. and Barabási A.-L., Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 13382.
[17] Boguñá M. and Pastor-Satorras R., Phys. Rev. E, 68 (2003) 036112.
[18] Frölich A., Frölich P. and Holyst J. A., Phys. Rev. E, 70 (2004) 056110.
[19] Masuda N., Miwa H. and Konno N., Phys. Rev. E, 70 (2004) 036124.
[20] Boguñá M., Pastor-Satorras R., Diaz-Guilera A. and Arenas A., Phys. Rev. E, 70 (2004) 056122.
[21] Grabowski A. and Kosinski R. A., Phys. Rev. E, 73 (2006) 016135.
[22] Gómez-Cardeñes J. and Moreno Y., Phys. Rev. E, 69 (2004) 037103.
[23] Sóares D. J. B., Tsallis C., Mariz A. M. and da Silva L. R., Europhys. Lett., 70 (2005) 70.
[24] Thurner S. and Tsallis C., Europhys. Lett., 72 (2005) 197.
[25] Holme P. and Newman M. E. J., Phys. Rev. E, 74 (2006) 056108.
[26] Gil S. and Zanette D. H., Phys. Lett. A, 356 (2006) 89.
[27] Pacheco J. M., Traulsen A. and Nowak M. A., Phys. Rev. Lett., 97 (2006) 258103.
[28] Alonso-Sanz R., Chaos, Solitons Fractals, 32 (2006) 1285.
[29] Dorogovtsev S. N., Mendes J. F. F. and Samukhin A. N., Phys. Rev. Lett., 85 (2000) 4633.
[30] Krapivsky P.-L., Redner S. and Leyvraz F., Phys. Rev. Lett., 85 (2000) 4629.