Association of the variants in the PPARG gene and serum lipid levels: a meta-analysis of 74 studies

Qing Li #, Rong Chen #, Lizhan Bie, Dandan Zhao, Chunkai Huang, Jiang Hong *

Department of Internal Medicine, Affiliated Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China

Received: May 27, 2014; Accepted: August 9, 2014

Abstract

Considerable studies have been carried out to investigate the relationship between the polymorphisms of PPARG (Pro12Ala, C161T and C1431T) and serum lipid levels, but the results were inconclusive. Hence, we conducted a meta-analysis to clarify the association. MEDLINE, EMBASE and the Cochrane Library databases were searched systematically. The subgroup analysis was performed based on ethnicity. Seventy-four studies with 54,953 subjects were included in this meta-analysis. In Pro12Ala, the group with the ‘PP’ (C/C genotype) genotype group had lower levels of total cholesterol (TC) (mean difference, MD: −0.02, P < 0.00001; I² = 28%) and low-density lipoprotein cholesterol (LDL-C) (MD: −0.02, P < 0.00001; I² = 30%) and higher levels of triglyceride (TG) (MD: 0.06, P < 0.00001; I² = 30%) than the combined ‘PA-AA’ (PA = C/G genotype, AA = G/G genotype) genotype group in Asian population, and the group with the ‘PP’ genotype had higher levels of TG (MD: 0.07, P < 0.02; I² = 67%) than the combined ‘PA-AA’ genotype group in non-Asian population. No statistically significant differences in the levels of TC, TG, high-density lipoprotein cholesterol, LDL-C were detected between different genotypes in C161T(Asian or non-Asian) and C1431T (Asian) polymorphisms. This meta-analysis was a renewed and confirmed study to assess the association between PPARG polymorphisms and serum lipid levels in Asian and non-Asian populations. There is a prominent association between Pro12Ala polymorphism and the levels of TC, LDL-C and TG in Asian population. No statistically significant differences in serum lipid levels were detected between different genotypes in C161T and C1431T polymorphisms.

Keywords: peroxisome proliferator-activated receptorγ gene • single-nucleotide polymorphisms • serum lipid level • meta-analysis

Introduction

Cardiovascular disease (CVD), a global health-threatening problem, is a complex disease resulting from many risk factors, such as genetic factor [1, 2] and dyslipidaemia. Associations of different genes with predisposition to CVD have been widely examined. Disorders of lipid profile are important risk factors in CVD aetiology, and many studies have proved that serum lipid concentrations are strongly correlated with the risk of CVD, such as high levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), a low concentration of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and apolipoprotein (Apo) B [3–6].

A large number of literatures have unravelled the correlation between genetic factors and dyslipidaemia [7–10]. Among these reported genes, the genes that have been most widely studied are the peroxisome proliferator–activated receptor (PPAR) genes, which have three isotypes, namely α, γ and δ. PPARG (as known as PPARγ) is located at chromosome 3p25, and it encodes a member of the PPAR subfamily of nuclear receptors. Four PPARG isoforms have been identified: PPARγ1, PPARγ2, PPARγ3 and PPARγ4, which result from either alternative transcription start sites or alternative splicing [11–13]. PPARγ is potential transcriptional factors that are dietary lipid sensors [14, 15]. The most common gene mutation in human PPARG is cytosine–guanine exchange in exon B (codon12), which results in proline to alanine substitution in the protein. Several single-nucleotide polymorphisms (SNPs) in the PPARG have been reported to be associated with dyslipidaemia and CVD. These SNPs include Pro12Ala (rs1801282) [13, 16–29], C161T and C1431T (rs3858806) [15, 17, 30–35].

Various studies have investigated the association between these genetic variants and serum lipid levels in different races. However,
the results were inconclusive [17, 18, 36–39], possibly because of the relatively small sample sizes of the individual studies or different populations have different genetic backgrounds. Therefore, we performed a meta-analysis separated from the subgroups of Asian and non-Asian populations by combining comparable published studies, leading to increased sample size and improved statistical power, to derive a more precise estimation of these associations [40].

Materials and methods

Search strategy

All studies reporting associations between the polymorphisms of PPARG (Pro12Ala, C161T and C1431T) and serum lipid levels published in English before May 2014 were identified by comprehensive computer-based searches of MEDLINE via PubMed, EMBASE, the Cochrane Library database and Web of Science. The following key words were used: ‘peroxisome proliferator-activated receptor γ’, ‘PPARγ’ or PPARG gene’, ‘Pro12Ala’, ‘C161T’, ‘C1431T’, ‘polymorphism’, ‘dyslipidemia’ and ‘serum lipid level’. The search strategy described was used to obtain titles and abstracts of studies of potential relevance for this meta-analysis. The titles and abstracts were screened independently by two authors (Q Li and R Chen), who discarded studies that were not applicable (Studies were discarded when (i) it was not possible to extract data from either the published results or by contacting the authors or (ii) appropriate outcomes were not reported). For multiple reports involving the same patients, only the study with the most complete data set was included in the meta-analysis. However, for patients included in two articles, where these had different types of data of outcomes, both were included. Any disagreements about article inclusion were arbitrated by discussion with a separate reviewer (J Hong).

Included and excluded studies

The five investigators (Q Li, R Chen, L-Z Bie, D-D Zhao and C-K Huang) independently reviewed all studies identified by the search strategy, to determine whether an individual study was eligible for inclusion. The selection criteria for studies to be considered for this meta-analysis were as follows: (i) case-control studies published in peer-reviewed journals with full text available in English; (ii) studies on the relationship between PPARG Pro12Ala, C161T and C1431T polymorphisms and serum lipid levels; (iii) reporting at least one relevant outcomes of association between genotype and serum lipid levels (including TC, HDL-C, LDL-C and TG). Studies were excluded when (i) it was not possible to extract data from either the published results or by contacting the authors or (ii) appropriate outcomes were not reported.

Types of outcome measures

(i) Relationship between serum lipid parameters and genotypes; (ii) Genotype frequency; and (iii) Serum lipid parameters: TC, TG, HDL-C and LDL-C.

Data extraction

The data were abstracted using a standard method. The five investigators independently extracted data according to the author details and the following information was extracted from each study: first author’s name, publication year, region, sample size, genotype information (number of genotypes, genotyping method), relationship between genotypes and serum lipid parameters. Discrepancies were resolved by discussion. When repeated publications of the same trial were identified, data were extracted from the repeated publications and reported as a single trial.

Statistical analysis

Allele frequencies were determined by the allele counting method for each study. Relationships between continuous variables (lipid parameters) and genotypes were expressed as mean difference (MD) with 95% confidence intervals (CI). Pooled effects were calculated using a fixed effects model when there was no significant heterogeneity among the data from the contributing studies; however, a random effects model was used to ensure the robustness of the chosen model and susceptibility to outlier effects, or when there was significant heterogeneity among contributing study data, in which case a fixed effects model was used to ensure the robustness of the chosen model and examine susceptibility to outlier effects. Point estimates of MD were considered statistically significant when two-tailed P-values were <0.05. Heterogeneity was analysed using a chi-squared test and N – 1 degrees of freedom [41]. F values of 25%, 50% and 75% correspond to low, medium and high levels of heterogeneity respectively. Sensitivity analyses were performed by omitting a single study at a time or by analysis using another model. We carried out statistical analysis by the Review Manager software 5.2.0. Stratified analysis was performed according to the ethnicity of participants.

Results

Characteristics of included studies

Seventy-four studies with 48,210 subjects [11–38, 42–87] (Table S1), all published in English, met the inclusion criteria for this meta-analysis (Fig. S1). When the studies reported lipid parameter data for two different groups, we treated the groups as independent.

Thus, the meta-analysis of Pro12Ala (PPARG) included 67 eligible studies, containing 45,531 participants. According to ethnic origin, two Subgroups (Asian and non-Asian) were divided from each comparison. For Asian subgroup, Pro12Ala (PPARG) included 24 eligible studies and 40 separate comparisons of the levels of TC [17, 18, 20, 21, 23, 24, 26, 28, 29, 31, 38, 46, 47, 55, 57, 59, 61, 63, 64, 67, 70, 71, 79, 81], 25 eligible studies and 41 separate comparisons of the levels of TG [17, 18, 20, 21, 23, 24, 26, 28, 29, 31, 38, 44, 46, 47, 55, 57, 59, 61, 63, 64, 67, 70, 71, 79, 81], 22 eligible studies and 37 separate comparisons of the levels of HDL-C [17, 18, 21, 23, 24, 26, 28, 29, 31, 44, 46, 47, 55, 57, 59, 61, 63, 64, 67, 70, 71, 79, 81], and 17 eligible studies and 29 separate comparisons of the levels of LDL-C.
Fig. 1 Forest plot of the association between PPARG Pro12Ala polymorphism and TC levels in Asian population (genetic model: PP versus PA + AA).

Fig. 2 Forest plot of the association between PPARG Pro12Ala polymorphism and TG levels in Asian population (genetic model: PP versus PA + AA).
Fig. 3 Forest plot of the association between PPARG Pro12Ala polymorphism and LDL-C levels in Asian population (genetic model: PP versus PA + AA).

Fig. 4 Forest plot of the association between PPARG Pro12Ala polymorphism and TC levels in non-Asian population (genetic model: PP versus PA + AA).
Fig. 5 Forest plot of the association between PPARG Pro12Ala polymorphism and TG levels in non-Asian population (genetic model: PP versus PA + AA).

Fig. 6 Forest plot of the association between PPARG Pro12Ala polymorphism and LDL-C levels in non-Asian population (genetic model: PP versus PA + AA).
For non-Asian subgroup, Pro12Ala (PPARG) included 36 eligible studies and 45 separate comparisons of the levels of TC [11–15, 19, 22, 25, 27, 36, 37, 48, 50–54, 56, 62, 65, 66, 68, 69, 72, 74–78, 80, 82–87], 39 eligible studies and 50 separate comparisons of the levels of TG [11, 13–16, 19, 22, 25, 27, 36, 37, 39, 48–54, 56, 58, 60, 62, 65, 66, 68, 69, 72, 74–78, 80, 82–85, 87], 40 eligible studies and 50 separate comparisons of the levels of HDL-C [11–13, 15, 16, 19, 22, 25, 27, 36, 37, 39, 48–54, 56, 58, 60, 62, 66, 68, 69, 72–78, 80, 82–87], and 28 eligible studies and 37 separate comparisons of the levels of LDL-C [11–13, 15, 19, 22, 25, 26, 37, 39, 48, 51–54, 56, 62, 66, 69, 72–76, 78, 80, 85, 87].

The meta-analysis of C161T (PPARG) included 11 eligible studies, containing 3518 participants. Subgroup analysis was performed based on ethnicity (Asian and non-Asian). In Asian group, C161T (PPARG) included 6 eligible studies and 11 separate comparisons of the levels of LDL-C [11–13, 15, 16, 19, 22, 25, 27, 36, 37, 39, 48–54, 56, 58, 60, 62, 66, 68, 69, 72–78, 80, 82–87], and 28 eligible studies and 37 separate comparisons of the levels of LDL-C [11–13, 15, 19, 22, 25, 26, 37, 39, 48, 51–54, 56, 62, 66, 69, 72–76, 78, 80, 85, 87].

The outcomes of Pro12Ala (PPARG) in non-Asian population: Pooling of data from eligible compared groups indicated that the group with the ‘PP’ (C/C genotype) genotype had higher levels of TG (MD: 0.06, 95% CI: 0.01–0.11, P = 0.02; I² = 67%) than the combined ‘PA+AA’ genotype group. No statistically significant differences in the levels of TC (MD: 0.02, 95% CI: −0.03 to 0.06, P = 0.46; I² = 29%), LDL-C (MD: 0.02, 95% CI: −0.02 to 0.06, P = 0.39; I² = 22%) and HDL-C (MD: −0.01, 95% CI: −0.02 to 0.00, P = 0.06; I² = 43%) were detected between the ‘PP’ and ‘PA+AA’ groups (Figs 4–6, Fig S3).

The outcomes of C161T (PPARG) in non-Asian population: In the subgroup analysis by ethnicity of study population, no statistically significant differences were detected in the levels of TC (MD: 0.02, 95% CI: −0.03 to 0.06, P = 0.46; I² = 29%), LDL-C (MD: 0.02, 95% CI: −0.02 to 0.06, P = 0.39; I² = 22%) and HDL-C (MD: −0.01, 95% CI: −0.02 to 0.00, P = 0.06; I² = 43%) were detected between the ‘PP’ and ‘PA+AA’ groups (Figs 4–6, Fig S3).
The outcomes of C161T (PPARG) in non-Asian population: No statistically significant differences were detected in the levels of TC (MD: 0.09, 95% CI: -0.03 to 0.22, P = 0.14; I² = 32%), TG (MD: 0.01, 95% CI: -0.09 to 0.12, P = 0.60; I² = 30%), HDL-C (MD: -0.02, 95% CI: -0.05 to 0.01, P = 0.19; I² = 0%) and LDL-C (MD: 0.10, 95% CI: -0.02 to 0.21, P = 0.09; I² = 37%) in non-Asian populations between 'CC' and 'CT + TT' groups (Figs 7–9, Fig. S4).

The outcomes of C1431T (PPARG): all the study population were Asian. As shown in Figure 10, no significant differences in the levels of TC (MD: 0.14, 95% CI: -0.08 to 0.30, P = 0.02; I² = 25%), TG (MD: 0.10, 95% CI: -0.02 to 0.23, P = 0.12; I² = 42%), HDL-C (MD: -0.02, 95% CI: -0.08 to 0.03, P = 0.45; I² = 56%), and LDL-C (MD: 0.14, 95% CI: -0.02 to 0.30, P = 0.08; I² = 0.08%) were detected between the CC and CT + TT groups.

Sensitivity analysis

Sensitivity analyses were performed to assess the contribution of each study to the pooled estimate and by excluding individual studies one at a time and recalculating the pooled MD estimates for the remaining studies, and we found that this did not lead to a substantial alteration in the corresponding pooled MD. Eliminating the studies with average years more than 75 or less than 18 did not substantially change the pooled point estimate. What is more, performing transition of model also did not substantially change the pooled point estimates for any of the observed associations.

Heterogeneity Analysis

For most of the outcomes of serum lipid levels, the I² values of heterogeneity were lower than 50%. Only the levels of heterogeneity at Pro12Ala (Asian: HDL-C and non-Asian: TG), C161T (Asian: TG) and C1431T (Asian: LDL-C) were medium. To explore the sources of heterogeneity, we performed subgroup analyses with stratification by case and control status; heterogeneity still existed, but the corresponding pooled MD was not substantially altered.

Discussion

Cardiovascular disease, a kind of chronic disease with high prevalence and morbidity, has attracted more and more researchers to study its related fields throughout the world [88]. Previous researches have revealed that dyslipidemia is closely related to the occurrence and progress of CVD. Various candidate genes have been reported as predisposing factors of dyslipidemia, including those involved in lipid transport and metabolism. PPARG as a member of the nuclear receptor superfamily regulates adipocyte differentiation, adipocyte-specific gene expression and insulin action. Recently, an increasing number of...
studies have been carried out to determine the association between the difference PPARG loci polymorphisms and serum lipid levels, but the results are inconclusive. Li et al. [38] concluded that ‘PA+AA’ subjects had lower levels of HDL-C and a trend towards higher levels of TG, LDL-C compared with ‘PP’ subjects, whereas, Gonzalez Sanchez et al. [36] reported that the Ala12 allele was associated with lower TG.

Fig. 9 Forest plot of the association between PPARG C161T polymorphism and LDL-C levels in Asian and non-Asian populations (genetic model: CC versus CT + TT).

Fig. 10 Forest plot of the association between PPARG C1431T polymorphism and lipid levels in Asian and non-Asian populations (genetic model: CC versus CT + TT).
levels. What is more, no relation between the polymorphism and the levels of TC, HDL-C and LDL-C or TG could be detected by some investigators [37, 62, 79]. Several studies did not find the associations between C161T polymorphism and serum lipid levels in different populations [44, 45]. However, Bhatt et al. [28] tended to believe that ‘TT’ genotype group had higher levels of TG, TC than ‘CT + TT’ genotype group in C161T polymorphism. For C1431T, T-allele carriers had found increasing HDL-C levels [30, 31]. These inconsistent results may be because of a small sample size.

As the results in our meta-analysis showed, at Pro12Ala (PPARG), the group with the ‘PP’ genotype had lower levels of TC, LDL-C and higher levels of TG than the combined ‘PA+AA’ genotype group in Asian population, and the group with the ‘PP’ genotype had higher levels of TG than the combined ‘PA+AA’ genotype group in non-Asian population. No statistically significant differences in the levels of TC, TG, HDL-C, LDL-C were detected between different genotypes in C161T (Asian or non-Asian) and C1431T (Asian) polymorphisms.

It is the first time that meta-analysis was conducted to explore the association between PPARG polymorphisms and serum lipid levels. In this study, we performed a meta-analysis of 74 studies investigating such associations. In addition, for the majority of pooled effects, calculated heterogeneity was low. Part of MD values for associations with the total of lipid parameters \((P < 0.00001)\) indicated very significant effects, including TC, TG and LDL-C levels with Pro12Ala (PPARG) in Asian population, which demonstrate that the conclusions in our meta-analysis are robust.

High heterogeneity is a potential problem that may affect the interpretation of the results. But heterogeneity analysis showed that the \(I^2\) values of heterogeneity in most of our outcomes were lower than 50%. Only the levels of heterogeneity in the outcomes of Pro12Ala (Asian: HDL-C and non-Asian: TG), C161T (Asian: TG) and C1431T (Asian: LDL-C) were medium. These indicate the reliability of the results in our meta-analysis. The medium heterogeneity may be because different groups of the included studies had different genetic backgrounds and environmental factors. It is well known that both serum lipid levels and CVD are affected by genetic and environmental factors, such as dietary patterns, lifestyle, obesity, physical inactivity.

For better interpreting the results, some limitations of this meta-analysis should be acknowledged. Firstly, this meta-analysis focused only on papers published in English and the ones that reported in other languages might bias the present results. Secondly, we did not perform subgroup analysis by the factors such as smoking habits, diet pattern, alcohol use, case/control because insufficient data could be extracted. In addition, gene–gene and gene–environment interactions should also be considered in the analysis. However, heterogeneity in most of our outcomes was low, so that these limitations do not affect the reliability of the results in our meta-analysis.

Thus, it is necessary to conduct a study using standardized unbiased methods. Moreover, gene–gene and gene–environment interactions should also be considered in the analysis. Such studies taking these factors into account may eventually lead to better, more comprehensive understanding of the association between the common polymorphisms of the PPARG and serum lipid levels.

Conclusion

This meta-analysis was a renewed and confirmed study to assess the association between common polymorphisms in PPARG and serum lipid levels. As the results in our meta-analysis showed, there is a prominent association between Pro12Ala polymorphism and the levels of TC, LDL-C and TG in the Asian population. No statistically significant differences in the levels of TC, TG, HDL-C, LDL-C were detected between different genotypes in C161T (Asian or non-Asian population) and C1431T (Asian population) polymorphisms.

Acknowledgements

This study was supported by National 973 Project of China (Grant no. 2007CB512008), the Scientific Research Foundation of Shanghai Jiao Tong University School of Medicine (Grant no. 12XJ3008), Scientific Research Foundation of Shanghai First People’s Hospital (Grant no. 11B24).

Disclosure

The authors declare that they have no competing interests.

Author contribution

QL and RC conceived the study, participated in the design and drafted the manuscript. QL, RC, LZB, DDZ and CKH collected the data, performed statistical analyses. JH conceived the study, participated in the design, and helped to draft the manuscript. All authors read and approved the final manuscript.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Figure S1 Flow chart showing study selection process.

Figure S2 Forest plot of the association between PPARG Pro12Ala polymorphism and HDL-C levels in Asian population (genetic model: PP versus PA + AA).

Figure S3 Forest plot of the association between PPARG Pro12Ala polymorphism and HDL-C levels in non-Asian population (genetic model: PP versus PA + AA).

Figure S4 Forest plot of the association between PPARG C161T polymorphism and TG levels in Asian and non-Asian populations (genetic model: CC versus CT + TT).

Table S1 Baseline characteristics of included studies.
33. Tavares V, Hirata RD, Rodrigues AC, et al. Effect of the peroxisome proliferator-activated receptor-gamma C161T polymorphism on lipid profile in Brazilian patients with Type 2 diabetes mellitus. J Endocrinol Invest. 2005; 28: 129–36.

34. Hui Y, Yu-Tuan L, Yu-Qiang N, et al. Effect of peroxisome proliferator-activated receptors-gamma and co-activator-1alpha genetic polymorphisms on plasma adiponectin levels and susceptibility of non-alcoholic fatty liver disease in Chinese people. Liver Int. 2008; 28: 385–92.

35. Chao TH, Li YH, Chen JH, et al. The 161TT genotype in the exon 6 of the peroxisome proliferator-activated receptor gamma gene is associated with premature acute myocardial infarction and increased lipid peroxidation in habitual heavy smokers. Clin Sci. 2004; 107: 461–6.

36. Gonzalez Sanchez JL, Serrano Rios M, Fernandez Perez C, et al. Effect of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the Spanish population. Eur J Endocrinol. 2002; 147: 495–501.

37. Pinterova D, Cerna M, Kolostova K, et al. The frequency of alleles of the Pro12Ala polymorphism in PPARgamma2 is different between healthy controls and patients with type 2 diabetes. Folia Biol. 2004; 50: 153–6.

38. Li L, Cheng LX, Nsenga R, et al. Association between Pro12Ala polymorphism of peroxisome proliferator-activated receptor-gamma 2 and myocardial infarction in the Chinese Han population. Clin Cardiol. 2006; 29: 300–4.

39. Franck N, Lanne T, Astrand O, et al. Cardiovascular risk factors related to the PPARgamma Pro12Ala polymorphism in patients with type 2 diabetes are gender dependent. Blood Press. 2012; 21: 122–7.

40. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003; 33: 177–82.

41. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557–60.

42. Wan J, Xiong S, Chao S, et al. PPARgamma gene C161T substitution alters lipid profile in Chinese patients with coronary artery disease and type 2 diabetes mellitus. Cardiovasc Diabetol. 2010; 9: 13.

43. Moon MK, Cho YM, Jung HS, et al. Genetic polymorphisms in peroxisome proliferator-activated receptor gamma are associated with Type 2 diabetes mellitus and obesity in the Korean population. Diabet Med. 2005; 22: 1161–6.

44. Chen CH, Lu ML, Kuo PH, et al. Gender differences in the effects of peroxisome proliferator-activated receptor gamma2 gene polymorphisms on metabolic adversity in patients with schizophrenia or schizoaffective disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 239–45.

45. Arashiro R, Katsuren K, Fukuyama S, et al. Effect of Trp64Arg mutation of the beta3-adrenergic receptor gene and C161T substitution of the peroxisome proliferator-activated receptor gamma gene on obesity in Japanese children. Pediatr Int. 2003; 45: 135–41.

46. Ji-Rong Y, Bi-Rong D, Chang-Quan H, et al. Pro12Ala polymorphism in PPARgamma2 associated with depression in Chinese non-leanerians/centenarians. Arch Med Res. 2009; 40: 411–5.

47. Yang J, Gong H, Liu W, et al. The association of Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma2 gene with the metabolic characteristics in Chinese women with polycystic ovary syndrome. Int J Clin Exp Pathol. 2013; 6: 894–902.

48. XiTa N, Lazaros L, Georgiou I, et al. The Pro12Ala polymorphism of Pro12Ala gene is not associated with the polycystic ovary syndrome. Hormones. 2009; 8: 267–72.

49. Vaccaro O, Mancini FP, Ruffa G, et al. Fasting plasma free fatty acid concentrations and Pro12Ala polymorphism of the peroxisome proliferator-activated receptor (PPAR) gamma2 gene in healthy individuals. Clin Endocrinol. 2002; 57: 481–6.

50. Tan GD, Neville MJ, Liverani E, et al. The in vivo effects of the Pro12Ala PPAR-gamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. Diabetologia. 2006; 49: 158–68.

51. Swarbrick MM, Chapman CM, McQuillan BM, et al. A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-gamma2 is associated with combined hyperlipidaemia in obesity. Eur J Endocrinol. 2001; 144: 277–82.

52. Stefanski A, Majkowska L, Ciechanowicz A, et al. Association between the Pro12Ala variant of the peroxisome proliferator-activated receptor-gamma2 gene and increased 24-h diastolic blood pressure in obese patients with type 2 diabetes. J Hum Hypertens. 2006; 20: 684–92.

53. Schneider J, Kreuzer J, Hamann A, et al. The proline 12 alanine substitution in the peroxisome proliferator-activated receptor-gamma2 gene is associated with lower lipoprotein lipase activity in vivo. Diabetes. 2002; 51: 867–70.

54. Scaglioni S, Verduci E, Salvioni M, et al. PPAR-gamma2 Pro12Ala variant, insulin resistance and plasma long-chain polyunsaturated fatty acids in childhood obesity. Pediatr Res. 2006; 60: 485–9.

55. Rhee EJ, Kwon CH, Lee WY, et al. No association of Pro12Ala polymorphism of PPAR-gamma gene with coronary artery disease in Korean subjects. Circ J. 2007; 71: 338–42.

56. Pischon T, Pari JK, Manson JE, et al. Peroxisome proliferator-activated receptor-gamma2 P12A polymorphism and risk of coronary heart disease in US men and women. Arterioscler Thromb Vasc Biol. 2005; 25: 1654–8.

57. Pei Q, Huang Q, Yang GP, et al. PPAR-gamma2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol Sin. 2013; 34: 255–61.

58. Morini E, Tassi V, Capponi D, et al. Interaction between PPARgamma2 variants and gender on the modulation of body weight. Obesity. 2008; 16: 1467–70.

59. Mori H, Ikegami H, Kawaguchi Y, et al. The Pro12–>Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. Diabetes. 2001; 50: 891–4.

60. Montagnana M, Fava C, Nilsson PM, et al. The Pro12Ala polymorphism of the PPAR gamma gene is not associated with the metabolic syndrome in an urban population of middle-aged Swedish individuals. Diabet Med. 2008; 25: 902–8.

61. Mirzaei H, Akrami SM, Golimohammadi T, et al. Polymorphism of Pro12Ala in the peroxisome proliferator-activated receptor gamma2 gene in Iranian diabetic and obese subjects. Metab Syndr Relat Disord. 2009; 7: 453–8.

62. Mattevi VS, Zembrozski VM, Hutz MH. Effects of a PPAR gamma variant on obesity characteristics in Brazil. Braz J Med Biol Res. 2007; 40: 927–32.

63. Lu Z, Dong B, Mo X, et al. Pro12Ala polymorphism in PPAR gamma 2 associated with essential hypertension in Chinese non-leanerians/centenarians. Exp Gerontol. 2008; 43: 1108–13.

64. Li LL, Ma XL, Ran JX, et al. Genetic polymorphism of peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in Uygur, Kazak
and Han subjects. Clin Exp Pharmacol Physiol. 2008; 35: 187–91.
65. Laakso S, Utrainen P, Laakso M, et al. Polymorphism Pro12Ala of PPARγ in prepubertal children with premature adrenarche and its association with growth in healthy children. Horm Res Paediatr. 2010; 74: 365–71.
66. Koika V, Marioli DJ, Saltamavros AD, et al. Association of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor gamma2 with decreased basic metabolic rate in women with polycystic ovary syndrome. Eur J Endocrinol. 2009; 161: 317–22.
67. Kim K, Lee S, Valentine RJ. Analysis of PPARgamma2 Thr92Ala and PPARgamma2 Pro12Ala polymorphisms and progres- sive liver damage in patients with non-alcoholic fatty liver disease: a case control study. BMC Gastroenterol. 2010; 10: 102.
68. Domenici FA, Brochado MJ, Martimelli Ade L, et al. Peroxisome proliferator-activated receptor alpha and gamma2 polymorphisms in non-alcoholic fatty liver disease: a study in Brazilian patients. Gene. 2013; 529: 326–31.
69. de Kort SW, Hokken-Koelega AC. The PPAR-gamma2 Pro12Ala polymorphism associates with weight gain during GH-treatment in short children born small for gestational age. Eur J Endocrinol. 2010; 162: 49–52.
70. Chistiakov DA, Potapov VA, Khodirev DS, et al. Peroxisome proliferator-activated receptor Thre92Ala polymorphism in type 2 diabetes and diabetic nephropathy. Mol Biol Rep. 2009; 36: 499–505.
71. Chang-Quan H, Hui W, Qing-Xiu L, et al. Association of serum lipids/lipoprotein with the Pro12Ala polymorphism in the PPARgamma2 gene in Chinese nonagenarians/centenarians. J. Cell. Mol. Med. Vol 19, No 1, 2015