Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems

Pok Man Leung,a,b Sean K. Bay,a,b Dimitri V. Meier,c Eleonora Chiri,a,b Don A. Cowan,d Osnat Gillor,e Dagmar Woebken,c Chris Greening,a,b

© 2020 Leung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

ABSTRACT Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extremely high UV irradiation, dryland salinity, and temperature extremes. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.

KEYWORDS desert, dormancy, energetics, energy reserve, photosynthesis, trace gas

Drylands cover ~40% of the terrestrial land surface area, with arid and hyper-arid regions constituting 11.5% and 6.4%, respectively (1). Projections based on current global warming trends suggest that drylands will constitute more than half of land surfaces by the end of the century (2). Organisms living in these ecosystems face prolonged and severe water deprivation, which curtail cellular and metabolic activities. Without extracellular water, nutrients and substrates cannot be mobilized in a dissolved form for cellular uptake (3) and microbes themselves are unable to move to find resources, leading to starvation (4). Cellular metabolism is further restricted by environmental stressors, such as low organic carbon and nitrogen availability, high UV irradiation, dryland salinity, and temperature extremes (5–7). In particular, the distribution of key primary producers, such as oxygenic phototrophs, is limited by these cumulative pressures (Fig. 1). Processes such as cyanobacterial photosynthesis in soil biocrusts (8) or water uptake by plant roots (9) generally cease below matrix water potentials of −3 MPa; however, the matrix water potential in desiccated soils is typically between −40 and −95 MPa (10). As a result, in hyper-arid desert soils, photosynthetic organisms are generally restricted to specific lithic refugia, such as the pore spaces of coarse-grained rocks (endoliths) and the ventral surfaces of translucent minerals, such as quartz (hypoliths). Here, they are protected from UV radiation and buffered against

Conflict of Interest Disclosures for the Authors: Pok Man Leung has nothing to disclose. Sean K. Bay has nothing to disclose. Dimitri V. Meier has nothing to disclose. Eleonora Chiri has nothing to disclose. Don A. Cowan has nothing to disclose. Osnat Gillor has nothing to disclose. Dagmar Woebken has nothing to disclose. Chris Greening has nothing to disclose.

Conflict of Interest Disclosures for the Editor: James C. Stegen has nothing to disclose.
Despite photoautotrophs typically being low in abundance, diverse and viable microbial communities are present in the topsoils of most deserts, including the hyper-arid soils of the Atacama Desert (13) and Antarctic Dry Valleys (14). As summarized in Fig. 1, deserts globally are usually dominated by heterotrophic bacteria from phyla such as Actinobacteria, Proteobacteria, and Chloroflexi. In these environments, given that there can be years without precipitation, heterotrophs face extreme starvation for their preferred organic energy and carbon sources. Currently, researchers lack a holistic understanding of the energetic basis of their growth and persistence in desert environments. However, through a combination of culture-based and culture-independent studies, several metabolic mechanisms that may allow these microbes to survive desiccation and associated stresses have been uncovered.

DORMANCY AS A GENERAL STRATEGY TO REDUCE ENERGY EXPENDITURE

Desert soil microorganisms routinely experience extended periods of desiccation, during which they are subjected to extreme energy limitation and other environmental stresses. In response to these harsh conditions, some microbes reversibly enter a
metabolically less active state termed dormancy (15). Different groups of microorganisms may adopt different dormancy strategies. Some species form morphologically distinct resting structures that are commonly characterized by thickened cell walls or accumulations of extracellular polymeric substances (15). For instance, members of Actinobacteria and Firmicutes, Gram-positive bacterial phyla widely found in drylands (7, 13, 14, 16), are well known for their ability to form highly stress-resistant spores (17, 18). Consistently, these sporulating taxa are among the most common groups identified in desert soils (19–22) based on both conventional cultivation studies and modern molecular phylogenetic analyses. Common Cyanobacteria isolated from desert biocrusts, such as Anabaena, Nostoc, and Cylindrospermum (23, 24), can differentiate into specific spore-like structures termed akinetes, which tend to be much larger in size than their vegetative structures (25). Gram-negative Proteobacteria isolated from arid soils, such as Azotobacter (26) and Ramlibacter (27), are likewise able to transition into multilayered cysts. Under favorable conditions, these resting stages can germinate to produce vegetative cells. A substantial proportion of microorganisms, such as the common arid soil actinobacterium Arthrobacter (28), do not undergo extensive morphological differentiation during the transition to the dormant state. However, they still share core strategies with sporulators, including reduction or cessation of growth; reduction of cell size; repression of energetically expensive activities, such as motility and the synthesis of macromolecules; alteration of the composition of membrane lipids and cell wall components; and upregulation of macromolecular repair machinery (15, 29, 30). The highly radiation- and desiccation-resistant genus Deinococcus provides an extreme example of how microorganisms can minimize energy expenditure during desiccation persistence. This bacterium tolerates substantial DNA damage, including numerous double-strand breaks (31), without apparently initiating repair in its desiccated state (32). The chromosome is reassembled from the fragments only upon rehydration (33). Accumulation of antioxidants, such as carotenoids, small peptides, and manganese complexes, offers a protective environment for proteins involved in recovery, thereby reducing the energy costs of repair (34, 35). It has been suggested that members of the Rubrobacteria (36), a highly abundant desert actinobacterial class (37, 38), adopt similar survival strategies. Regardless of the form that it takes, dormancy increases cellular resistance to external stresses while reducing energy expenditure. However, dormancy does not completely eliminate the requirement for energy, given that a basal energy supply is required to maintain cellular integrity. Although the exact maintenance energy for microbial communities in soils with low water content has not been reported, modeling studies suggest that microorganisms in moist nutrient-deficient soils may metabolize between 10 and 100 μg of carbon per gram of biomass carbon per hour for maintenance (39), and one experiment demonstrated that desiccated Arthrobacter in laboratory conditions consumed 0.0005% of cellular carbon per hour (40). This indicates that dormancy cannot be sustained indefinitely without external energy input. Exacerbating energy demands, hot desert microorganisms are subjected to high levels of oxidative stress due to the high gas permeability of sandy desert soils, desiccation-induced reactive oxygen species formation, Maillard reactions, and extreme temperature-accelerated damage (30, 41–43). The accumulation of excessive damage to nucleic acids, proteins, and cell membranes, if not repaired, will eventually lead to mortality. Therefore, even dormant cells may require basal levels of energy to repair damaged cellular components either during and/or following quiescence. Energy is also required to maintain a minimum membrane potential for ATP synthesis and metabolite transport (44).

ENERGY RESERVE HYPOTHESIS

In desert ecosystems, a transient water supply can be provided in various ways: occasional precipitation events, condensation of dew or fog, and ice or snow melts in polar deserts. Desert microorganisms may depend on such brief “metabolic windows”
to generate biomass and accumulate reserve compounds in preparation for long periods of water scarcity and the consequent requirement of maintenance energy. This constitutes the energy reserve hypothesis, adapted from the “pulse-reserve” paradigm proposed by Noy-Meir in 1973 (45) for plant adaptation in desert ecosystems.

In plant-free desert soils, oxygenic photosynthetic organisms are key primary producers. Such organisms are the keystone taxa of biocrust communities (46, 47) and photosynthetic lithic communities (11, 12, 47). Biocrusts cover up to 70% of semiarid and arid zones on all seven continents (46) and comprise a global area of over 1.3 billion hectares (48). In these environments, water is often provided in the form of early-morning dew, quickly followed by desiccation as the day breaks with rising temperatures and declining relative humidity (49, 50). Microbial communities within the biocrusts must therefore rapidly respond to wetting by resuming respiration and photosynthesis for biomass synthesis and then just as rapidly shut off these systems. For example, simulation of dew hydration in *Leptolyngbya ohadii*, a dominant cyanobacterium in desert sand biocrusts, causes a rapid resumption of photosynthesis (51). Upon the onset of desiccation, *Microcoleus vaginatus*, a keystone cyanobacterial species in biocrusts, channels energy into the synthesis of energy and carbon storage compounds, such as polyhydroxyalkanoates, polyphosphates, and cyano-phycins (10). Many other cyanobacteria, such as *Scytonema* and *Aphanizomenon*, are also known to accumulate energy reserves in response to water stress or during the transition to dormancy (25, 52, 53).

For heterotrophs, metabolic substrates become available at the instance when soil is wetted. Increases in soil water potential cause the mobilization of extracellular soil organic carbon (54). In addition, due to osmotic changes, hydration is thought to stimulate the release of organic carbon from microorganisms through either inducing cellular lysis (55, 56) or stimulating the secretion of intracellular osmoprotectants, such as trehalose and glycine betaine (57, 58); note, however, that *in situ* evidence for osmolyte release remains lacking (59–61). The sudden availability of metabolizable substrates supports the idea that heterotrophs consume them rapidly, with respiration rates peaking within minutes of soil hydration and then gradually declining (62, 63). This phenomenon is termed the “Birch effect” (64). Upon depletion of these carbon sources, heterotrophs rely on cross-feeding by exometabolite exchange with phototrophs and other heterotrophs (Fig. 2). Cyanobacteria in biocrusts release a large range of photosynthates and exudates, such as hexose sugars, while heterotrophs excrete a smaller subset of metabolites (65, 66). Additionally, biocrust microorganisms, most prominently *M. vaginatus*, produce large amounts of complex extracellular polymeric substances, such as polysaccharides (67–69), which can potentially be digested by associated specialized heterotrophs like *Bacteroidetes* (70), as observed, for example, in marine consortia (70, 71). The sharing and differential partitioning of this exometabolite pool allows the rapid buildup and accumulation of biomass. In response to xeric stress, heterotrophs upregulate the synthesis of reserve molecules, such as glycogen (72), wax esters (73), and lipids (74).

Chemolithoautotrophs also benefit from trophic interactions with phototrophs and heterotrophs. Diazotrophic *Cyanobacteria* fix nitrogen to ammonia, a portion of which is excreted or leaked from cells (6, 75, 76). This supply of fixed nitrogen supports nitrifying microorganisms, such as *Thaumarchaeota*, which are typically the dominant archaea in desert soils (77–79). In addition, the anaerobic conditions resulting from rapid respiration by heterotrophs after a wetting event can create microenvironments for chemolithoautotrophic anaerobes to flourish (80, 81). This is exemplified by the detection of methanogens in arid soils containing biocrusts, albeit in low abundance (82). Methanogenesis can also be activated by wetting of arid soils, whereby aceto-clastic/hydrogenotrophic *Methanosarcina* and hydrogenotrophic *Methanocell* organisms consume fermentative end products produced by heterotrophs as substrates for methane production (78, 83, 84). Chemolithoautotrophs are also known to accumulate energy reserves when under stressed conditions (85–89).

While the energy reserve hypothesis provides a feasible mechanism for maintaining
microbial cell energy requirements in desert soils, it is not without limitations. Some deserts may receive insufficient water input over long periods to support this mechanism. Hyper-arid regions in the central Atacama Desert can receive less than 5 mm of rainfall per year (90) and may experience decades without precipitation (6, 13). Likewise, annual precipitation of less than 10 mm in certain areas of the Antarctic McMurdo Dry Valleys is common (91), and a significant fraction of this moisture sublimates (5). The combined effects of other environmental factors may reduce the capacity to generate sufficient energy during one short “water pulse.” For instance, salt accumulated in hyper-arid soils reduces water bioavailability (92–94), the low mean temperatures in Antarctic soils reduce cellular metabolism (95), and the highly limited organic carbon and bioavailable nitrogen in hyper-arid soils may restrict heterotrophic processes (5). Overall, the ability of xerotolerant microorganisms inhabiting desert soils to accumulate and utilize long-term energy storage compounds requires more extensive study, especially in situ.

CONTINUAL-ENERGY-HARVESTING HYPOTHESIS

It is increasingly realized that heterotrophic microorganisms in desert environments possess hidden metabolic flexibility. As elaborated below, they may meet energy demands during starvation by continually harvesting atmospheric trace gases (litho-heterotrophy) or sunlight (photoheterotrophy) as alternative energy sources. These mechanisms are likely to be particularly important in the bare soils of deserts, which are typically dominated by heterotrophic bacterial taxa (Fig. 1), with relatively low numbers of photoautotrophs, such as Cyanobacteria (13, 47, 96).

Light-dependent energy harvesting (photoheterotrophy). Oxygenic photosynthesis is limited by the availability of its electron donor: water. Water limitation, together with damage of photosystems due to desiccation-induced reactive oxygen species (42) and salt stress (97), is thought to primarily limit the abundance of Cyanobacteria in hyper-arid soils. However, it is possible for heterotrophs to derive energy from light by using photons to generate a membrane potential independently
of the photosynthetic dark reactions. Two variants of such a light-harvesting mechanism that are dependent on bacteriochlorophyll or rhodopsin (Rho) have been identified (98) (Fig. 2). These processes have sometimes been referred to as “aerobic anoxygenic phototrophy.”

Bacteriochlorophyll (BChl)-dependent light harvesting has been observed in four bacterial phyla: Proteobacteria (99), Chloroflexi (100), Acidobacteria (101), and Gemmatimonadetes (102). Unlike Cyanobacteria, these bacteria contain only one photosystem, with bacteriochlorophyll α being the major photosynthetic pigment (103). The electron transport chain in BChl-dependent light harvesting can operate in a cyclic fashion without exogenous electron donors (103), and therefore, energy can be generated continually with solar input. While BChl-dependent light harvesting is a widespread mechanism for harvesting supplemental energy, particularly in bacteria inhabiting oligotrophic aquatic environments (104, 105), its ecological role in arid soils has not been explored. A culture-dependent study confirmed the presence of soil crust bacterial strains capable of BChl-dependent light harvesting (106). BChl-dependent light harvesting may also be important in hyper-arid Antarctic desert soils. Amplicon sequence screening for genetic determinants of BChl-dependent light harvesting in oligotrophic soils from the Sør Rondane Mountains identified diverse bacteria with this capacity, which were affiliated primarily with the class Alphaproteobacteria (107, 108). A subsequent isolation campaign recovered nearly 1,000 isolates, many affiliated with known Alphaproteobacteria, harboring BChl-dependent light-harvesting capacity (22). Likewise, a Hymenobacter strain (phylum Bacteriodetes) was found to have BChl-dependent light-harvesting potential, a trait not previously observed in members from this phylum (22).

Rhodopsin-based light harvesting (Rho-light harvesting) is a minimalist light energy-harvesting mechanism consisting of a single ion-pumping protein (type I opsin) with a retinal chromophore cofactor (109). This process generates an ion-motive force for ATP synthesis (but not reducing power), potentially providing a survival advantage for microorganisms during nutrient deprivation (110–112). The minimal genetic determinants of this process, namely, a single opsin gene and another gene for retinal synthesis from carotenoid (109), facilitate horizontal gene transfer (113, 114); this has likely enabled the dissemination and diversification of microbial rhodopsins across archaea and bacteria. A global metagenomic survey focused on marine environments estimated that rhodopsin genes are carried by half of prokaryotic taxa and are 3-fold more abundant than genes for photochemical reaction centers (115). Despite the possible importance of this physiology as a survival strategy in dry oligotrophic habitats, the ecological relevance of Rho-light harvesting in arid soils has received little attention. Analyses of soil crust metagenomes by Finkel et al. indicated that up to half of microbial genomes encode rhodopsins (115). Several more recent studies have focused on Antarctic deserts: while PCR amplification failed to detect rhodopsin genes in soils from the Sør Rondane Mountains (107, 108), a metagenomic study of hypolithic communities from the Miers Valley (McMurdo Dry Valley region) indicated that 20% of bacterial taxa harbored rhodopsin genes (116).

Atmospheric trace gas oxidation (lithoheterotrophy). While light-dependent energy harvesting strategies are clearly important physiological processes in desert soil habitats (5, 6, 11, 46), such processes are always constrained by light penetration. Atmospheric trace gases may provide a viable alternative energy source for desert soil microorganisms residing within and below the photic zone. Trace gases, such as hydrogen (H₂), carbon monoxide (CO), and methane (CH₄), are ubiquitous, diffusive, and high-energy electron donors. The porosity of dry desert soils, due to their coarse texture and low water retention, may also facilitate trace gas permeation (117). The possibility that these substrates support respiration in desert soil microbial communities should therefore be considered (Fig. 2).

Dihydrogen, as the most fundamental molecule, can serve as an energy source for microorganisms from a wide range of taxa and ecosystems (118, 119). Soil microor-
organisms scavenge H$_2$, which is present at atmospheric mixing ratios of 530 ppbv (120), as an electron donor for aerobic respiration (121). While this process was inferred some four decades ago, the organisms and enzymes responsible for this process have only recently been characterized (122, 123). Genetic and biochemical studies have shown that this process is catalyzed by the group 1h [NiFe]-hydrogenases linked to the respiratory chain; synthesis of this enzyme is induced during nutrient starvation and is critical for long-term survival (124–128). It is now established that atmospheric H$_2$ oxidation is a broadly distributed trait among major soil microbial phyla, having been experimentally verified in Actinobacteria (126, 128–130), Acidobacteria (125, 131), and Chloroflexi (124). The genetic determinants of this activity were found to be carried by at least five additional cultured microbial phyla (123) and two candidate phyla (132).

Carbon monoxide, present at ~90 ppbv in the atmosphere (133), is also aerobically respired by soil microbial communities. Physiological studies have shown that the enzyme responsible for this process, carbon monoxide dehydrogenase (134), is also induced during carbon limitation and enhances survival during starvation (124, 135–138). At least four microbial phyla can scavenge atmospheric CO (135), namely, *Actinobacteria* (135, 139), *Proteobacteria* (140, 141), *Chloroflexi* (124, 142), and *Euryarchaeota* (143, 144). Moreover, a recent genomic survey identified putative CO dehydrogenase genes in 16 microbial phyla, encompassing most of the dominant taxa detected in soils (135).

Increasing evidence suggests that oxidation of atmospheric H$_2$ and CO is a feasible continuous-energy-harvesting strategy for microorganisms living in desert ecosystems. Indeed, the genetic determinants for these reactions are consistently detected in desert surveys. Analysis of metagenomic and metatranscriptomic sequence data from the Colorado Desert and Tarim Basin revealed that the genes encoding these enzymes are both abundant and expressed by the soil microbial communities (135). Metagenome-assembled genomes of bacteria with trace gas oxidation potentials, including *Pseudonocardia* from the high-elevation Atacama Desert (145) and “*Candidatus Dormibacteraeota,*” “*Candidatus Eremiobacteraeota,*” *Actinobacteria,* *Chloroflexi,* and *Verrucomicrobia* from Robinson Ridge, Antarctica (132), have been recovered from hyper-arid mineral soils. Experimentally, the rapid consumption of H$_2$ and CO to subatmospheric concentrations was demonstrated in microcosm experiments using Antarctic soils (132). In addition, calculations of theoretical energy yield from trace gas oxidation suggest that this process is sufficient to support the maintenance energy requirement of soil microbial communities (132, 146). Trace gas oxidation may explain why *Actinobacteria* is the dominant bacterial phylum in desert soils. The relative abundance of this phylum increases with aridity (147, 148), and it typically accounts for 30 to 80% of the microbial community in hyper-arid sites (7, 13, 132, 145, 147, 149) (Fig. 1). Concomitantly, genome-mining data suggest that group 1h [NiFe] hydrogenase genes (123) and carbon monoxide dehydrogenase genes (135) are universally distributed within this phylum. Importantly, CO and H$_2$ oxidation can remain active at low water potentials, with the slow uptake of atmospheric CO detectable at water potentials between −41 MPa and −117 MPa (143, 150), comparable to values in hyper-arid desert soils.

Methane, present at 1.9 ppmv, is the most abundant reduced gas in the troposphere (151). Unlike atmospheric H$_2$ and CO oxidation, it is likely that atmospheric CH$_4$ oxidation has a limited role in supporting microbial persistence in desert environments. This compound is oxidized to methanol by particulate and soluble methane monoxygenases, which is further oxidized for energy production or carbon assimilation (152). To date, taxa with the ability to oxidize CH$_4$ at atmospheric concentrations are exclusively found in specific lineages of the *Alphaproteobacteria* and *Gammaproteobacteria* (153). In desert soil ecosystems, atmospheric CH$_4$ oxidation has been reported (154–157). However, the observation of detectable methane oxidation and methane monoxygenase genes in different samples is highly sporadic, especially in more arid soils (145, 155, 156, 158). Moreover, the activity of CH$_4$ oxidation and the abundance of methanotrophs appear to decline dramatically at low water content (117, 150, 159).
However, it is known that some methylotrophs are in high relative abundance in some desert soils; an example is *Methylobacterium radiotolerans*, which dominates the microbial communities at depths below 5 meters in the Playa of the Atacama Desert soils (94).

CONCLUSIONS

Recent advances in "omics" techniques, in combination with pure culture studies and sensitive biogeochemical measurements, have enabled a rapid expansion of knowledge of the diversity and function of organisms living in water-scarce environments. It is now acknowledged that surprisingly diverse microbial communities survive in even the most arid and oligotrophic soils, such as the Antarctic cold deserts and the Atacama Desert. In the absence of macrophytic phototrophs, these microorganisms are the predominant contributors to primary productivity and biogeochemical activities. However, our understanding of how these organisms survive during long periods of water deficiency and how biodiversity in arid soil environments is maintained and shaped remains incomplete. Here, we have presented two strategies for microbial survival in arid ecosystems that can sustain dormancy: the energy reserve hypothesis and the continual-energy-harvesting hypothesis. The strategies are certainly not mutually exclusive, but their degree of relative importance is likely to vary according to the severity of different environmental parameters, such as light availability, oligotrophy, and water availability (Fig. 2). A deeper understanding of these mechanisms is likely to contribute substantially to our capacity to predict how ecosystems, as well as the services that they provide, are affected by the projected global desertification.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TABLE S1, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS

This work was supported by an ARC DECRA fellowship (DE170100310; awarded to C.G.), a Swiss National Science Foundation Early Postdoc Mobility fellowship (P2EZP3_178421; awarded to E.C.), an Australian Government Research training stipend (awarded to P.M.L.), Monash University Ph.D. scholarships (awarded to P.M.L. and S.K.B.), and a European Research Council (ERC) starting grant funded by the ERC under the European Union’s Horizon 2020 research and innovation program (636928; awarded to D.W.).

REFERENCES

1. Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Maltitz G (ed). 2018. World atlas of desertification, 3rd ed. Publication Office of the European Union, Luxembourg.
2. Huang JP, Yu HP, Guan XD, Wang GY, Guo RX. 2016. Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837.
3. Wang G, Or D. 2013. Hydration dynamics promote bacterial coexistence on rough surfaces. ISME J 7:395–404. https://doi.org/10.1038/ismej.2012.115.
4. Schimel JP. 2018. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49:409–432. https://doi.org/10.1146/annurev-ecolsys-110617-062614.
5. Cary SC, McDonald IR, Barrett JE, Cowan DA. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138. https://doi.org/10.1038/nrmicro2281.
6. Pointing SB, Belnap J. 2012. Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. https://doi.org/10.1038/nrmicro2831.
7. Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA. 2015. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. https://doi.org/10.1093/femsre/ffu011.
8. Brock TD. 1975. Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320. https://doi.org/10.1111/j.1529-8817.1975.tb02786.x.
9. Tardieu F, Draye X, Javaux M. 2017. Root water uptake and ideotypes of the root system: whole-plant controls matter. Vadose Zone J 16. https://doi.org/10.2136/vzj2017.05.0107.
10. Rajeev L, da Rocha UN, Klitgord N, Luning EG, Fortney J, Axen SD, Shih PM, Bouskill NJ, Bowen BP, Kerfeld CA, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A. 2013. Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. https://doi.org/10.1038/ismej.2013.83.
11. Walker JJ, Pace NR. 2007. Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347. https://doi.org/10.1146/annurev.micro.61.080706.093302.
12. Wierzchos J, de los Ríos A, Ascaso C. 2012. Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15:173–183. https://doi.org/10.2436/20.1501.01.170.
13. Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera J-P, Schmitt-Kopplin P, Grossart H-P, Parro V, Kaupenjohann M, Galy A, Schneider B, Airo A, Frösler J, Davila AF, Arens FL, Cáceres L, Condejo FS, Carrizo D, Dittmer J, Frossard A, Flury M, Ganzert L, Gessner MO, Grathwohl P, Guan L, Heinz J, Hess M, Kepper F, Mauz D, McKay CP, Meckenstock RU, Montgomery W, Oberlin EA, Probst AJ, Säenz JS, Sattler T, Schirmack J, Sephton MA, Schloter M, Uhlf J, Valen-
zuela B, Vestergaard G, Wärnér L, Zamorano P. 2018. Transitory micro-
biual habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci U S A 115:2670–2675. https://doi.org/10.1073/pnas.1713431115.
14. Lambrechts S, Willems A, Tahon G. 2019. Uncovering the uncultivated
majority in Antarctic soils: toward a synergistic approach. Front Micro-
biol 10:242. https://doi.org/10.3389/fmicb.2019.00242.
15. Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and
evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130.
https://doi.org/10.1038/nrmicro2504.
16. Angel R, Conrad R. 2013. Elucidating the microbial resuscitation ca-
cascade in biological soil crusts following a simulated rain event. Env
Microbiol 15:2799–2815. https://doi.org/10.1111/1462-2920.12140.
17. Galperin MY. 2013. Genome diversity of spore-forming firmicutes. Mi-
crobiol Spectr 1. https://doi.org/10.1128/microbiolspectrumsystems.TBS-0015
-2012.
18. Eshragh JC. 1978. Formation, properties, and germination of actinomy-
cete spores. Annu Rev Microbiol 32:185–219. https://doi.org/10.1146/ anurev.mi.32.100184.000245.
19. Nunes da Rocha U, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N,
20. Maza F, Maldonado J, Vásquez-Dean J, Mandakovic D, Gaete A, Cam-
bio V, González M. 2019. Soil bacterial communities from the Chilean An-
deandean highlands: taxonomic composition and culturability. Front Bio-
eng Biotechnol 7:10. https://doi.org/10.3389/fbioe.2019.00010.
21. Fatima A, Aftab U, Shaaban KA, Thorson JS, Sajid I. 2019. Spore forming
actinobacterial diversity of Cholistan Desert Pakistan: polyphasic tax-
onomy, antimicrobial potential and chemical profiling. BMC Microbiol
19:49. https://doi.org/10.1186/s12866-019-1414-x.
22. Tahon G, Willems A. 2017. Isolation and characterization of aerobic
anoxygenic phototrophs from exposed soils from the Sor Rondane
Mountains, East Antarctica. Syst Appl Microbiol 40:357–369. https://doi.
org/10.1016/j.syapm.2017.05.007.
23. Temraleeva AD. 2018. Cyanobacterial diversity in the soils of Russian
dry steppes and semideserts. Microbiology 87:249–260. https://doi.org/
10.1134/s0026205418030169.
24. Rehakova K, Johansen JR, Casamatta DA, Xueson L, Vincent J. 2007.
Morphological and molecular characterization of selected desert soil
cyanobacteria: three species new to science including Mojavula pul-
chra gen. et sp. nov. Phycologia 46:481–502. https://doi.org/10.
2216/06-921.
25. Kaczmor-Levy RN, Hasad O, Summers ML, Rücker J, Sukenik A. 2010.
Akinetes: dormant cells of Cyanobacteria, p 5–27. In Lubzens E, Cerda
J, Clark M (ed), Dormancy and resistance in harsh environments. Sprin-
ger, Berlin, Germany.
26. Fuller WH, Hanks K. 1982. Distribution of Azotobacter in arid soils. Plant
Soil 64:355–361.
27. De Luca G, Barakat M, Ortet S, Jourlin-Castelli C, Ansaldi M,
28. Cacciari I, Lippi D. 1987. Arthrobacters: successful arid soil bacteria:
a desert environment. PLoS One 6:e23784.
29. Henrissat B, Quentin Y, Noirot P, Filloux A, Méjean V, DuBow MS, Barras
Akinetes: dormant cells of Cyanobacteria, p 5–27. In Lubzens E, Cerda
J, Clark M (ed), Dormancy and resistance in harsh environments. Sprin-
ger, Berlin, Germany.
26. Fuller WH, Hanks K. 1982. Distribution of Azotobacter in arid soils. Plant
Soil 64:355–361.
27. De Luca G, Barakat M, Ortet S, Jourlin-Castelli C, Ansaldi M,
28. Cacciari I, Lippi D. 1987. Arthrobacters: successful arid soil bacteria:
a desert environment. PLoS One 6:e23784.
rendered CaCl₂-extractable upon soil drying. Soil Biol Biochem 30: 1445–1456. https://doi.org/10.1016/S0038-0717(97)00220-7.

55. Vangelstad M, Merckx R, Vlassak K. 1993. Microbial biomass responses to soil drying and rewetting—the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25:109–123. https://doi.org/10.1016/0038-0717(93)90249-8.

56. Blazewicz SJ, Schwartz E, Firestone MK. 2014. Growth and death of bacteria and fungi under rain-induced carbon dioxide pulses from seasonally dried soil. Ecology 95:1162–1172. https://doi.org/10.1890/13-10311.

57. Halverson LJ, Jones TM, Firestone MK. 2000. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637. https://doi.org/10.2136/sssaj2000.6451630x.

58. Warren CR. 2014. Response of osmolytes in soil to drying and rewetting. Soil Biol Biochem 70:22–32. https://doi.org/10.1016/j.soilbio.2013.12.008.

59. Williams MA, Xia K. 2009. Characterization of the water soluble soil organic pool following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biol Biochem 41:21–28. https://doi.org/10.1016/j.soilbio.2008.08.013.

60. Kakumanu ML, Cantrell CL, Williams MA. 2013. Microbial community response to varying magnitudes of desiccation in soil: a test of the osmolyte accumulation hypothesis. Soil Biol Biochem 57:644–653. https://doi.org/10.1016/j.soilbio.2012.08.014.

61. Boot CM, Schaeffer SM, Schimel JP. 2013. Static osmolyte concentrations in microbial biomass during seasonal drought in a California grassland. Soil Biol Biochem 57:356–361. https://doi.org/10.1016/j.soilbio.2012.09.005.

62. Kieft TL, Soroker E, Firestone MK. 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126. https://doi.org/10.1016/0038-0717(87)90070-8.

63. Sponseller RA. 2007. Precipitation pulses and soil CO₂ flux in a Sonoran Desert ecosystem. Global Change Biol 13:426–436. https://doi.org/10.1111/j.1365-2486.2006.01307.x.

64. Birch HF, Friend MT. 1956. Humus decomposition in East African soils. Nature 178:500–501. https://doi.org/10.1038/178500a0.

65. Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Kassabgy M, Huang SX, Mann AJ, Waldmann J, Weber M, Klindworth A, Kassabgy M, Huang SX, Mann AJ, Waldmann J, Weber M, Klindworth A, Faith NL, Chatelut E, Kean KL, Steinbüchel A. 2017. Lipid accumulation in prokaryotic microorganisms from the most terrestrial environments? Geology 38:247–250. https://doi.org/10.1130/G30398.1.

66. Hauschild P, Röttig A, Madkour MH, Al-Ansari NH, Almakishah NH, Steinbüchel A. 2017. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 101:2203–2216. https://doi.org/10.1007/s00253-017-8149-0.

67. Mayland HF, McIntosh TH. 1966. Availability of biologically fixed atmospheric nitrogen-to higher plants. Nature 209:421–422. https://doi.org/10.1038/209421a0.

68. Belnap J, Harper KT. 1995. Influence of cryptobiotic soil crusts on elemental content of tissue of 2 desert seed plants. Arid Soil Res Rehab 9:107–115. https://doi.org/10.1016/0149-0453(95)80047-2.

69. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395. https://doi.org/10.1073/pnas.1215210110.

70. Aschenbach K, Conrad R, Revkavkina K, Dolezel J, Janatková K, Angel R. 2013. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:339. https://doi.org/10.3389/fmicb.2013.00359.

71. Margolies CM, Machado A, Frank-Fahie B, Lee CK, Cary SC. 2014. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol 5:515. https://doi.org/10.3389/fmicb.2014.00515.

72. García-Pichel F, Belnap J. 1996. Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782. https://doi.org/10.1111/j.0022-3646.1996.00774.x.

73. Stöckli A, Kim M, Or D, Giller O. 2015. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep 7:45735. https://doi.org/10.1038/srep45735.

74. Peters V, Conrad R. 1995. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673–1676. https://doi.org/10.1128/AEM.61.7.1673-1676.1995.

75. Angel R, Matthies D, Conrad R. 2011. Activation of methanogenesis in arid soil-biological soil crusts despite the presence of oxygen. PLoS One 6:e20453. https://doi.org/10.1371/journal.pone.0020453.

76. Angel R, Claus P, Conrad R. 2012. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. https://doi.org/10.1038/ismej.2011.141.

77. Murray PA, Zinder SH. 1987. Polysaccharide reserve material in the acetotrophic methanogen, Methanosarcina-Thermophila strain Tm-1—an accumulation strategy for the archaeon Methanosarcina barkeri. Arch Microbiol 147:109–116. https://doi.org/10.1007/BF00415270.

78. Anderson KL, Apolinar EE, Sowers KR. 2012. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl Environ Microbiol 78:1473–1479. https://doi.org/10.1128/AEM.06946-11.

79. Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA. 2012. Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583. https://doi.org/10.1007/s00792-012-0457-9.

80. Jasso-Chavez R, Santiago-Martinez MG, Lira-Silva E, Pineda E, Zepeda-Rodriguez A, Belmont-Diaz J, Encalada R, Saavedra E, Moreno-Sanchez R. 2015. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress. PLoS One 10:0117331. https://doi.org/10.1371/journal.pone.0117331.

81. Wang L, Liu QH, Wu X, Huang Y, Wise MJ, Liu ZZ, Wang W, Hu JF, Wang CY. 2019. Bioinformatics analysis of metabolism pathways of archaean energy reserves. Sci Rep 9:10343. https://doi.org/10.1038/s41598-018-37768-0.

82. McKay CP, Friedman El, Gomez-Silva B, Caceres-Villanueva L, Andersen DT, Landheime R. 2003. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four of observations including the El Ninõ of 1997–1998. Astrobiology 3:393–406. https://doi.org/10.1515/13717310376901460.

83. Fountain AG, Nylen TH, Monahan A, Basagic HJ, Bromwich D. 2010. Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30: 633–642.

84. Claridge GCC, Campbell BI. 1977. The salts in Antarctic soils, their elemental content of tissue of 2 desert seed plants. Arid Soil Res Rehab 9:107–115. https://doi.org/10.1016/0149-0453(95)80047-2.

85. Ewing SA, Sutter B, Owen J, Nishizumi K, Sharp W, Cliff SS, Perry K, Dietrich W, McKay CP, Amundson R. 2006. A threshold in soil formation
Pok Man Leung graduated from the International Research Enrichment Program at the Hong Kong University of Science and Technology, where he received intensive research training on environmental microbiology. He then worked as a research intern at the Scripps Institution of Oceanography, investigating extremophiles from the sub-seafloor environment. Fascinated by the largely untapped potentials and capabilities of microorganisms, he started his Ph.D. candidacy in this area under the supervision of Associate Professor Chris Greening at Monash University in 2018. His current research focuses on the energetic mechanisms that support microbial growth and persistence in different ecosystems using both culture-dependent and culture-independent approaches.

Sean K. Bay completed his Honours in Evolutionary Biology degree at the University of Exeter before spending time working as an environmental field officer down under. He thereafter completed a Masters in Environmental Monitoring, Modelling, and Management at King’s College London, learning computer- and field-based techniques to query environments undergoing change. He is currently a final-year Ph.D. student at Monash University investigating the structure and basis of soil microbial biodiversity under the primary supervision of Associate Professor Chris Greening. Over the past 3 years Sean has used molecular, biogeochemical, and in situ approaches to understand how microbial communities are structured and how they remain energized in aerated surface soils.

Dimitri V. Meier completed Bachelors and Masters degrees at Georg-August University of Göttingen, Göttingen, Germany. He subsequently completed a Ph.D. on microbial communities of hydrothermal vents at the Max Planck Institute for Marine Microbiology, Bremen, Germany, in 2016. In 2017, he moved to the University of Vienna, Vienna, Austria, to work on microbial ecology and survival in desert soil crusts and hypersaline microbial mats. He is fascinated by microbial survival in seemingly extreme conditions and aims to gain a holistic understanding of these ecosystems. In his current work, he uses largely culture-independent methods, such as metagenomics, metatranscriptomics, and microscopy, to obtain a comprehensive picture of microbial lifestyles and strategies that enable survival at very low water availability while maintaining ecosystem functions.

Eleonora Chiri attained her Ph.D. in Science at the Swiss Federal Institute of Technology ETH Zurich in 2016, investigating the ecological role of methane-oxidizing bacteria in natural and anthropogenic soil chronosequences. Since then, she has extended her field-based studies of microbial methane and hydrogen oxidation to Australian tropical mound and savanna soil ecosystems during her postdoctoral experience at Charles Darwin University, the University of Melbourne, and, most recently, Monash University. As a Swiss National Science Foundation Fellow, her current research focuses primarily on understanding the ecological role of microbial atmospheric trace gas oxidation by investigating the establishment and development of these biogeochemical processes in oligotrophic and extreme soil ecosystems. Uncovering the identity, activity, and ecosystem function of soil microorganisms that “live from air” represent the core goals of her scientific career.

Don A. Cowan was educated (B.Sc., M.Sc., Ph.D.) at the University of Waikato (Hamilton, New Zealand) and completed a 4-year period of postdoctoral research under the supervision of Professor Roy Daniel before moving to a Lectureship at University College London (UK) in 1985. After 16 years in London, he was appointed to the Chair of Microbiology and Head of the Department of Biotechnology at the University of the Western Cape (Cape Town, Republic of South Africa), where he established the Institute for Microbial Ecology and Metagenomics. In 2012, he moved to the University of Pretoria, where he is a professor in the Department of Biochemistry, Genetics, and Microbiology, and is currently the director of both the Genomics Research Institute and the Centre for Microbial Ecology and Genomics. Much of Don’s research focuses on the diversity and function of microbial communities in extreme environments, particularly hot (Namib) and cold (Antarctic) desert soils.

Continued next page
Osnat Gillor attained her Ph.D. in 2002 from the Department of Environmental Sciences at the Hebrew University of Jerusalem. She investigated the causes of harmful cyanobacterial blooms in freshwater and seawater systems. During her postdoc, she explored toxin-mediated bacterial interactions in the lab and murine gastrointestinal tract at Yale University and the University of Massachusetts, Amherst, MA. In 2006, she joined the faculty of the Zuckerberg Institute for Water Research at Ben Gurion University of the Negev, where she studies microbial interactions in water and soil systems. She has a broad set of research interests, ranging from the role of antimicrobials in biofilm formation to the diversity, composition, and function of microbial communities in arid soils, dust, and rocks. What unites these disparate topics is the study of processes and patterns that control microbial interactions from the most complex habitat, the soil, to a simplified laboratory model system.

Dagmar Woebken studied biology at the Leibniz University, Hannover, Germany, and conducted her Ph.D. research at the Max Planck Institute for Marine Microbiology in Bremen, Germany (2007). After her postdoctoral work at Stanford University in collaboration with the NASA Ames Research Center and the Lawrence Livermore National Laboratory in California, she relocated to Austria in 2012 for a group leader position at the University of Vienna. She currently holds an assistant professorship and is a member of the Young Academy of the Austrian Academy of Sciences. Dagmar’s group explores the function of microorganisms in soils, which are among the most diverse microbial communities on Earth. In her ERC-funded project, she has focused on the survival strategies of soil microorganisms. Dagmar is particularly fascinated by the physiologies that allow the survival of microorganisms under unfavorable conditions, as it is a key factor in maintaining the high diversity in soil.

Chris Greening studied molecular and cellular biochemistry at the Bachelor and Master levels (University of Oxford, 2010). For his doctoral degree in molecular microbiology (University of Otago, 2014), he investigated the physiological role of mycobacterial hydrogenases under the mentorship of Professor Gregory Cook. He subsequently gained postdoctoral experience at the University of Otago, CSIRO, and the Australian National University before setting up his group at Monash University in 2016. Chris’ team is dedicated to understanding the metabolic mechanisms that allow environmental and pathogenic bacteria to adapt to resource limitation. This has led to a range of key findings, for example, that atmospheric trace gases serve as alternative energy sources for bacteria in nutrient-starved environments, including desert ecosystems. He uses his diverse experiences to connect findings at the molecular, cellular, and ecosystem scales.