Dr. Hatim Ghazi Zaini, Taif University, Computer and Information Technology College, KSA

Abstract: Digital data and the most widespread due to their use in many vital and important applications for humans, especially in classification and image recognition systems. Due to the large size of the color image, it is preferable to represent the color image by a unique pattern consisting of a small number of elements. In this paper research we will introduce a wavelet packet tree decomposition as a good method of extracting images patterns. We will study and analyze various approaches of using wavelet packet tree decomposition, some recommendation will be done in order to fix the pattern length and make it capable to be used correctly in a classification tool.

Keywords: Color image, histogram, WPT, approximation, details, level, pattern.
Introduction
Color digital images [1, 2], are one of the most important types of digital data and the most widespread due to their use in many vital and important applications for humans, especially in classification and image recognition systems [6, 7]. The digital image is represented by a three-dimensional matrix, where the first dimension is allocated to represent the red color, the second dimension is to represent the green color, and the third dimension is to represent the blue color [8, 9].

Most digital color images currently have high resolution, which makes their size very large, which makes it difficult to use in classification and discrimination processes [10, 11]. The digital color image can be represented by a histogram, which is an array of 256 elements, where each element indicates the number of times a particular color is repeated (from zero to 255). The total histogram of the color image (see figure 1) can be obtained by adding the histograms of the three colors [12, 13].

The color image total histogram can be used as a pattern to classify the image, but its size still not small, so we need to seek a method, which can generate a color image pattern (features), with small number of values [14, 15].

Many method were introduced to create a color image pattern [16, 17, and 18]. These methods [19, 20, 21, 22], used defferent approaches to calculate digital image features.

One of the most popular method to be used to create color image pattern is wavelet packet tree (WPT) decomposition [23, 24], this method is flexible and can be used to generate small number of values [25], to be used to classify the image using a classification tool such as artificial neural network [26, 27].
Image decomposition using WPT

The Haar transform decomposes a discrete signal into two sub-signals of half its length. One sub-signal is a running average or trend, which is called approximation; the other sub-signal is a running difference or fluctuation, which is called detail, figure 2 shows the process of digital signal decomposition using WPT, while figures 3 shows an example of digital signal decomposition.

To get the signal pattern we can use either the approximation or detail at any level to be an input data set for decomposition, figure 4 shows how to get a pattern of length 2 values by decomposing a signal of 16 values using 3 levels of decomposition.
Figure 2: WPT decomposition

Figure 3: WPT composition example using Haar equation
Color image decomposition
To decompose any digital color image using WPT and get the image pattern we have to follow the following steps:

- Get the color image.
- Retrieve the image size.
- Reshape the 3D image matrix to one column matrix.
- Select the pattern length.
- Apply WPT decomposition.
- If the approximation length equal the pattern length exit.
- Use the obtained approximation as an input data set and repeat decomposition.

Analysis of color image decomposition based on experimental results
Here we will conduct some experiments on this method and we will analyze the results of each experiment to come up with some recommendations. The following are the experiments that were carried out:
a) **Experiment 1: decomposition of the whole image:**

In this experiment, 15 colored images of different sizes were selected and 15 levels of WPT decomposition were adopted, table 1 shows the obtained experimental results:

From table 1 we can see the following facts:

- When determining the number of levels of decomposition, the number of values in the image pattern is variable, which makes it difficult to use in the classification process.
- To obtain a fixed-length image pattern, we have to decompose images using variable levels.
- Fixing the number of decomposition level will increase the pattern length for big images.
- Decryption time increases when the image size increases.

Taking the previous facts as disadvantages, we can conclude that using the whole image in the decomposition process will make the process of getting a fixed length pattern very difficult.

Image number	Size(byte)	Number of feature values	Decomposition time(second)	Remarks
1	150849	5	0.154000	
2	77976	3	0.114000	
3	518400	16	0.196000	
4	5140080	157	1.041000	
5	4326210	133	0.885000	
6	122265	4	0.121000	
7	518400	16	0.196000	
8	150975	5	0.137000	
9	150975	5	0.137000	
10	1890000	58	0.485000	
11	6119256	187	1.275000	
12	150876	5	0.156000	
13	3686400	113	0.783000	
14	565404	18	0.207000	
15	2764800	85	0.632000	

Deferent image pattern length; Decomposition time increases when image size increases. Nuber of levels=15
b) **Experiment 2: Decomposition a fixed size segment of the image**

In this experiment, a segment was taken from each digital image, so that the size of the segment was fixed and multiple of 2. The selected segment size was 16384, and using this size to get a pattern of 4 elements we need 12 levels of decomposition. Table 2 shows the obtained experimental results:

Image number	Image pattern	Decomposition time (second)	Remarks
1	Value 1: 6042.2	Value 2: 6636.9	0.112000
2	Value 3: 8386.7	Value 4: 9080.6	
3	Value 3: 5018.7	Value 4: 5864.9	0.112000
4	Value 3: 6934.2	Value 4: 6994.7	0.112000
5	Value 3: 8141.7	Value 4: 8047.1	0.112000
6	Value 3: 5027.1	Value 4: 5129.4	0.112000
7	Value 3: 4945.1	Value 4: 8496.8	0.112000
8	Value 3: 5780	Value 4: 11217	0.112000
9	Value 3: 6899.3	Value 4: 7591.9	0.112000
10	Value 3: 68365	Value 4: 72987	0.112000

From obtained results shown in Table 2 we can see the following:

- Fixing the image segment size will fix the image pattern length.
- One segment from each image can be decomposed using the same level of decomposition to get a fix length pattern, this length can increased by decreasing the decomposition levels.
- Each image pattern is a unique, thus we can easily use it to classify the image.
- The decomposition time is significantly small and it is around 0.11 seconds.
- The pattern values are too big, using these big numbers as an input to a classification tool such as artificial neural network may cause an error, when using sigmoid activation function the calculated output of the neuron will be 1, so the pattern value requires normalization. The normalization can be done applying formula 1:

\[
 z = \frac{x - \min(x)}{\max(x) - \min(x)}
\] (1)
The range of the pattern values after normalization will be within zero and one as shown in figure 5:

![Normalization results](image)

Figure 5: Normalization results

c) **Experiment 3: Using image histogram for decomposition**

Histogram for each color image is a one column matrix with fixed length equal 256. Using a fixed number of decomposition we can generate a fixed length of image pattern. The total histogram of the color image can be obtained by summation the histograms of the colors (three histograms). To obtain a pattern of length 4 we can use 6 levels of decomposition as show in table 3:

Image number	Image pattern	Decomposition time(second) including hitgram calculation time	Remarks			
1	Value 1	Value 2	Value 3	Value 4	Decomposition time	Remarks
1	5811	4107.8	2653.1	6284.3	0.137000	Fixed image pattern length; Decomposition time is around 0.13 seconds Number of levels=6.
2	179.6	323.3	725.6	8518.5	0.135000	
3	27047	17375	14509	5869	0.136000	
4	19730	240190	273650	109030	0.145000	
5	89200	195160	119570	136840	0.135000	
6	5575.5	6597.8	2828.6	281.3	0.159000	
7	25373	12095	21382	5949	0.142000	

Image pattern	Value 1	Value 2	Value 3	Value 4
Value 1	0.0260	0.0346	0.0601	0.0702
Value 2	0.1496	0.1285	0.1407	0.1476
Value 3	0.0111	0.0033	0.0234	0.0234
Value 4	0.0390	0.0384	0.0394	0.0398
	0.0566	0.0566	0.0536	0.0552
	0.0112	0.0156	0.0114	0.0127
	0.0100	0.0182	0.0241	0.0617
	0.0222	0.0645	0.1049	0.1013
	0.0385	0.0364	0.0357	0.0485
	0.9328	0.9362	0.9420	1.0000
From obtained results shown in table 3 we can see the following:

- Using image histogram will fix the image pattern length.
- We can get patterns with various lengths by changing the number of decomposition levels.
- The histogram of each image can be decomposed using the same level of decomposition to get a fixed length pattern, this length can increased by decreasing the decomposition levels.
- Each image pattern is unique, thus we can easily use it to classify the image.
- The decomposition time is significantly small and it is around 0.13 seconds.

The pattern values are too big, using these big numbers as an input to a classification tool such as artificial neural network may cause an error, when using sigmoid activation function the calculated output of the neuron will be 1, so the pattern value requires normalization. Figure 6 shows the normalized values of the image patterns:

Value 1	Value 2	Value 3	Value 4
0.0206	0.0144	0.0090	0.0223
0	0.0005	0.0020	0.0005
0.0982	0.0629	0.0524	0.0208
0.0715	0.8776	1.0000	0.3980
0.3255	0.7130	0.4366	0.4997
0.0197	0.0235	0.0097	0.0004
0.0921	0.0436	0.0775	0.0211
0.0157	0.0196	0.0149	0.0162
0.0085	0.0300	0.0229	0.0039
0.2179	0.2020	0.1261	0.3145

Figure 6: Normalized patterns
Conclusions
WPT decomposition can be easily used to create a pattern of small number of elements for each color image, the obtained patterns can be used in color image classification system. The process of image decomposition was studied, and the experimental results were analyzed. It was shown that using the whole image as an input data set for decomposition will cause some problems and difficulties of selecting the required level of image decomposition to get a pattern with fixed length. To avoid these problems it was shown that using image histogram will fix the number of pattern values spending a significant small time. The obtained pattern value were too big and we recommend pattern values normalization.

References
[1]. Majed O Al-Dwairi, Ziad A Alqadi, Amjad A Abujazar, Rushdi Abu Zneit, Optimized true-color image processing, World Applied Sciences Journal, vol. 8, issue 10, pp. 1175-1182, 2010.
[2]. Jamil Al Azzeh, Hussein Alhatamleh, Ziad A Alqadi, Mohammad Khalil Abu zalata, Creating a Color Map to be used to Convert a Gray Image to Color Image, International Journal of Computer Applications, vol. 153, issue 2, pp. 31-34, 2016.
[3]. AlQaisi Aws, AlTarawneh Mokhled, A Alqadi Ziad, A Sharadqah Ahmad, Analysis of Color Image Features Extraction using Texture Methods, TELKOMNIKA, vol. 17, issue 3, 2018.
[4]. Mohammed Ashraf Al Zudool, Saleh Khawatreh, Ziad A. Alqadi, Efficient Methods used to Extract Color Image Features, IJCSMC, vol. 6, issue 12, pp. 7-14, 2017.
[5]. Akram A. Moustafa and Ziad A. Alqadi, Reconstructed Color Image Segmentation, Proceedings of the World Congress on Engineering and Computer Science, WCCECS 2009, vol. II, 2009.
[6]. JAMIL AL-AZZEH, BILAL ZAHRAN, ZIAD ALQADI, BELAL AYYOUB AND MAZEN ABU-ZAHER, A NOVEL ZERO-ERROR METHOD TO CREATE A SECRET TAG FOR AN IMAGE, Journal of Theoretical and Applied Information Technology, vol. 96, issue 13, pp. 4081-4091, 2018.
[7]. BILAL ZAHRAN, JAMIL AL-AZZEH, ZIAD ALQADI, MOHD-ASHRAF ALZOGHOUL, SALEH KHAWATREH, A MODIFIED LBP METHOD TO EXTRACT FEATURES FROM COLOR IMAGES, Journal of Theoretical and Applied Information Technology, vol. 96, issue 10, pp. 3014-3024, 2018.
[8]. Waheeb Abu Ulbeh, Akram Moustafa, Ziad A Alqadi, Gray image reconstruction, European Journal of Scientific Research, vol. 27, issue 2, pp. 167-173, 2009.
[9]. Dr Rushdi S Abu Zneit, Dr Ziad AlQadi, Dr Mohammad Abu Zalata, A Methodology to Create a Fingerprint for RGB Color Image, IJCSMC, vol. 6, issue 1, pp. 205-212, 2017.
[10]. RA Zneit, Ziad Alqadi, Dr Mohammad Abu Zalata, Procedural analysis of RGB color image objects, IJCSMC, vol. 6, issue 1, pp. 197-204, 2017.
[11].Amjad Y Hindi, Majed O Dwairi, Ziad A AlQadi, A Novel Technique for Data Steganography, Engineering, Technology & Applied Science Research, vol. 9, issue 6, pp. 4942-4945, 2019.
[12].Dr. Amjad Hindi, Dr. Ghazi M, Qaryouti, Prof. Yousif Eltous, Prof. Mohammad Abu zalata, Prof. Ziad Alqadi, Color Image Compression using Linear Prediction Coding, International Journal of Computer Science and Mobile Computing, vol. 9, issue 2, pp. 13 – 20, 2020.
[13].Ziad Alqadi, Mohammad Abu zalata, Yousf Eltous, Ghazi M Qaryouti, Analysis of fingerprint minutiae to form fingerprint identifier, International Journal on Informatics Visualization, vol. 4, issue 1, pp. 10-15, 2020.
[14]. Prof. Ziad Alqadi, Dr. Mohammad S. Khrisat, Dr. Amjad Hindi, Dr. Majed Omar Dwairi, USING SPEECH SIGNAL HISTOGRAM TO CREATE SIGNAL FEATURES, International Journal of Engineering Technology Research & Management, vol. 4, issue 3, pp. 144-153, 2020.

[15]. Prof. Ziad Alqadi, Dr. Amjad Hindi, Dr. Majed Omar Dwairi, Dr. Mohammad S. Khrisat, Features Analysis of RGB Color Image based on Wavelet Packet Information, IJCSMC, vol. 9, issue 3, pp. 149 – 156, 2020.

[16]. AlQaisi Aws, AlTarawneh Mokhled, A Alqadi Ziad, A Sharadqah Ahmad, Analysis of Color Image Features Extraction using Texture Methods, TELKOMNIKA, vol. 17, issue 3, 2018.

[17]. Mohammed Ashraf Al Zudool, Saleh Khawatreh, Ziad A. Alqadi, Efficient Methods used to Extract Color Image Features, IJCSMC, vol. 6, issue 12, pp. 7-14, 2017.

[18]. Ziad AlQadi, M Elsayyed Hussein, Window Averaging Method to Create a Feature Victor for RGB Color Image, International Journal of Computer Science and Mobile Computing, vol. 6, issue 2, pp. 60-66, 2017.

[19]. ZIAQADI, A MODIFIED LBP METHOD TO EXTRACT FEATURES FROM COLOR IMAGES, Journal of Theoretical and Applied Information Technology, vol. 96, issue 10, pp. 3014-3024, 2018.

[20]. Aws Al-Qaisi, Saleh A Khawatreh, Ahmad A Sharadqah, Ziad A Alqadi, Wave file features extraction using reduced LBP, International Journal of Electrical and Computer Engineering, vol. 8, issue 5, pp. 2780 – 2787, 2018.

[21]. Ahmad Sharadqah Jamil Al-Azzeh, Rashad Rasras, Ziad Alqadi, Belal Ayyoub, Adaptation of matlab K-means clustering function to create Color Image Features, International Journal of Research in Advanced Engineering and Technology, vol. 5, issue 2, pp. 10-18, 2019.

[22]. Yousf Eltous Ziad A. AlQadi, Ghazi M. Qaryouti, Mohammad Abuzalata, ANALYSIS OF DIGITAL SIGNAL FEATURES EXTRACTION BASED ON KMEANS CLUSTERING, International Journal of Engineering Technology Research & Management, vol. 4, issue 1, pp. 66-75, 2020.

[23]. Ziad Alqadi Dr. Mohammad S. Khrisat, Dr. Amjad Hindi, Dr. Majed Omar Dwairi, VALUABLE WAVELET PACKET INFORMATION TO ANALYZE COLOR IMAGES FEATURES, International Journal of Current Advanced Research, vol. 9, issue 2, pp. 2319-6505, 2020.

[24]. Amjad Hindi, Majed Omar Dwairi, Ziad Alqadi, Analysis of Digital Signals using Wavelet Packet Tree, IJCSMC, vol. 9, issue 2, pp. 96-103, 2020.

[25]. Amjad Y. Hindi, Majed O. Dwairi, Ziad A. Alqadi, Creating Human Speech Identifier using WPT, International Journal of Computer Science and Mobile Computing, vol. 9, issue 2, pp. 117 – 123, 2020.

[26]. Khaled M Matrouk, Haitham A Alasha'ary, Abdullah I Al-Hasanat, Ziad A Al-Qadi, Hasan M Al-Shalabi, Investigation and Analysis of ANN Parameters, European Journal of Scientific Research, vol. 121, issue 2, pp. 217-225, 2014.

[27]. Jamil Al-Azzeheh, Ziad Alqadi, Mohammed Abuzalatata, performance Analysis of Artificial Neural Networks used for Color Image Recognition and Retrieving, International Journal of Computer Science and Mobile computing, vol. 8, issue 2, pp. 20-33, 2019.