Ethnomedicinal and Conservation Status of plant species in Tehsil Takht Bhai, District Mardan, Pakistan
Musharaf Khan*1, Shahana Musharaf2

1Department of Biological Sciences, Federal Government College Mardan, Pakistan
2Department of Chemistry, G.G. D. College S. Maltoon, Mardan, Pakistan

*E-mail address: k.musharaf@gmail.com

Keywords: Medicinal; Conservation; Tree; shrub; Takht Bhai; Pakistan

ABSTRACT

The study was design to draw attention to correlation of locals with plants and their conservation status. The research work was carried out in tehsil Takht Bhai, district Mardan during 2008-2010. Fieldwork was conducted using an arrangement of interviews, questioners and personal observation. The IUCN 2001, Red Data List Categories and Criteria was used to determine the conservation status of plants. The present study documents the ethno medicinal and conservation status of 34 plant species belonging to 20 families. Among these 12 species were found to be rare, vulnerable (11 species), endangered (9 species) and Infrequent (2 species). From this study we have concluded that most plant species are going to become endangered and no one plant specie was found dominant because the natural vegetation area was change into urbanization and agricultural reason.

1. INTRODUCTION

To determine the conservation status of plant species in an area is necessary because it will show the position of plant species in feature. Due to urbanization and agriculture the plant species become threaten. On the basis of IUCN 40% plant species are endangered [1]. According to the authors [2,4] various factors i.e. removal and loss of habitat, preface of alien plants, environmental pollution, different disease of plants, in excess of plant utilization and climatic change, which influence plant community and changed our ecosystem. It is estimated that some 270,000-425,000 vascular plant species are already known [3]. Pakistan’s situation is not different from the rest of the world. The author [5] expressed that a limited literature is initiated in our home land. 19 flowering plants has been recorded from Pakistan [1]. The author [6] classified Astragalus gilgitensis as a Critically Endangered. According to the author [7] four flowering plant species are threatened. Author [8] reported one specie as threatened plant from Tehsil Takht-e-Nasrati, District Karak, Pakistan. The author [15] reported 7 shrubs and tree as threatened species form Takht-e-Nasratti Pakistan. Ethnobotany deals with the study of plant uses in human society. Ethnobotanical studies in various areas of Pakistan have also been carried out [7; 9; 10; 11; 12; 13; 14; 24]. The present research was aimed to collect, document and compile diverse and disperse traditional local information of century’s experienced therapeutic uses of medicinal plants and conservation status of plant species in Takht Bhai, District Mardan. The present work is first step for the feature researchers who work in such field.

2. MATERIALS AND METHODS

2.1. STUDY AREA

The tehsil lies at 34.28° latitude and 71.93° longitude. The elevation of the valley is 1148 ft to 1456 ft above sea level. It is bounded on the North by District Buner and Malakand, on the East by district Swabi and Buner, on the South by district Nowshera and on the West by district Charsadda and Malakand (Figure 1). In 1908/9 the ancient Buddhist history was discovered in the mountains. Large numbers of buildings look beautiful on top of the mountains. The research area may broadly...
be divided into two parts, North-Eastern hilly area and south western plain. Takht Bhai is a Parthian archaeological site in Mardan, Pakistan. It was first a Zoroastrian complex which, after the later coming of Buddhism, was then changed into a Buddhist monastic complex. The complex is regarded by archaeologists as being particularly representative of the architecture of Buddhist monastic centers from its era (UNESCO world Heritage Site, 1980) [16] (Figure 2). The research area provides habitat for the growth of a large number of plants. It has rich diversity of plant resources. In summer, from May to June the temperature is high which reaches to 42°C. However a rapid fall of temperature is seen from October onwards. The coldest months are December and January. The relative humidity is quite high throughout the year while maximum humidity has been recorded in December. i.e. 73.33%. Most of the rainfall occurs in the month of July, August, December and January. Maximum rainfall (125.85mm) is recorded in the month of August. Toward the end of the cold weather, these are occasional thunderstorms and hail storms.

![Figure 1. Map of research area.](image)

2.2. RESEARCH PROTOCOL

During research work the whole tehsil was investigate throughout the year during 2008-2010. During research survey different factors i.e. Habit and habitat of plant species were also observed for the accuracy. Each plant species were collected and label with specific number from different habitat. Population of seedling and mature plant species were counted separately on different characteristic. Semi-structured questionnaires were used to accomplish the ethno medicinal and conservation position of plant species [5]. Information was also search out by personal observation and interviewing of 1000 respondents from different gender and sex. Analysis of data was made with the help of group discussions and questioners among different age classes of Takht Bhai people that include both genders of society. The data was classified, tabulated, analyzed and concluded for final report. The following formula was used for data collecting:

\[
CSP = A + C + G + P
\]

Where

\[
CPS = \text{Conservation status of Plants}
\]
3. RESULTS

In the present study the ethnomedicinal and conservation status of plant species were determined in Takht Bhai, District Mardan. A total of 34 species belonging to 20 families were found in which 20 were trees and 14 were shrub. The Moraceae with 5 species, Mimosaceae with 4 species, Solanaceae with 3 species, Cactaceae, Myrtaeeae, Papilionaceae, Poaceae and Rosaceae with 2 species, Asclepidaceae, Bombacaceae, Caesalpiniaceae, Euphorbiaceae, Lamiaceae, Meliaceae, Punicaceae, Rhamnaceae, Rutaceae, Sapindaceae, Simaroubaceae and Tamaricaceae with single specie. The plants were divided on the basis of conservation into five classes i.e. endangered, vulnerable, rare, infrequent and dominant. In the present investigation the 12 species (Alhagi maurorum Medic., Calotropis procera (Wight.) Ali., Citrus aurantifolia Christmann., Dalberghia sissoo Roxb., Datura metel L., Eucalyptus camaldulensis Dehnh., Melia azedarach L., Morus alba L., Opuntia littoralis (Engelm.), Otostegia limbata Boiss., Prunus persica (L.) Batsch. and Ricinus communis L.) were found to be rare, vulnerable (11 Species i.e. Alianthus althesema (Mill.) Swingle., Cassia fistula L., Eucalyptus lanceolatushoney., Ficus carica Hausskn. Ex. Boiss., Ficus palmata Forssk., Morus nigra L., Opuntia monacantha haw., Punica granatum L., Rosa indica L., Tamarix indica Willld. and Withiana somnifera L.) endangered (9 Species i.e. Acacia modesta Wall, Acacia nilotica L., Albezzia lebbak L., Bombax ceba L., Dodonea viscosa L., Ficus religiosa L., Saccharum munja Roxb., Saccharum spontaneum L. and Ziziphus jujuba Mill.) and 2 species (Broussonitita papyrifera(L.) Vent and Datura alba Nees) were Infrequent (Table.1).

4. DISCUSSION

The present study was conducted according to the IUCN standard [17] questioner and personal interviews. The environmental changes, erosion and construction work i.e. road formation, mining etc disturbed the plant habitat. Our observations agree with the workers [7; 15] they reported the species from almost similar habitats from other parts of the region. The research area is semi arid therefore in summer, the area is very warm. In hilly area, due to grazing of plant species i.e. Acacia modesta and Dodonea viscosa, cannot reach to maturity stage, which results constantly falling of rare plant species at an alarming rate, without having natural conscription.
Species	Common Name	Uses	Availability	Collection	Growth	Plant Used	Total score	Status
Acacia modesta	Palosa	Blood purifier, backache, belly pain, abdomen swelling	- 1 - - 0 - - - - 3 - 0 - - - - 4					Endangered
Acacia nilotica L.	Kikar	diabetes, Diarrhea, toothache Diabetes, cough	- 1 - - 0 - - - - 3 - 0 - - - - 4					Endangered
Albezzia lebbak L.	Sreen	male sexual power, nocturnal emission,	- 1 - - 0 - - - - 3 - 0 - - - - 4					Endangered
Alhagi maurorum Medic.	Panana	Refrigerant agent, skin irritation, belly pain	- - 2 - 0 - - - - 3 - - - - 4 9					Rare
Allointhus althaeiema (Mill.)	Swingle	constipation, Piles, stomach pain, toothache, skin irritation	- 1 - - 1 - - - - 3 - 0 - - - - 5					Vulnerable
Bombax ceiba L.	Sumbal	bone fracture, cracks	- 1 - - 0 - - - - 3 - 0 - - - - 4					Endangered
Broussonita papyrifera (L.)	Lewani Beta	Poisonous, oligomenorrhea in animals, diarrhea	- - - 3 - - - - 4 - - - 3 - 13					Infrequent
Species	Common Name	Characteristics						
-------------------------	------------------	---						
Calotropis procera	Spalmai	Piles, backache, toothache, utilized as astringents, snake bite, ear pain, cough, asthma, ring worm, lung diseases						
Cassia fistula	Lamdais	Hepatitis, abdominal pain, Diarrhea						
Citrus aurantifolia	Norang	Laxative emollient, Purgative, Hepatitis						
Dalbergia sissoo	Shawa	Refrigerant agent, skin irritation						
Datura alba	Spalmay	Carminative, pain killer						
Datura metel	Spalmay	Oligomenorrhea in animals, diarrhea, Poisonous, Carminative, pain killer						
Dodonea viscosa	Ghuraske	Astringents, Hepatitis						
Datura metel	Spalmay	Carminative, pain killer						
Dalbergia sissoo	Shawa	Refrigerant agent, skin irritation						
Citrus aurantifolia	Norang	Laxative emollient, Purgative, Hepatitis						
Datura alba	Spalmay	Carminative, pain killer						
Datura metel	Shawa	Refrigerant agent, skin irritation						
Cassia fistula	Lamdais	Hepatitis, abdominal pain, Diarrhea						

Rare, Endangered, Infrequent, Infrequent
Scientific Name	Common Name	Uses	rarity
Eucalyptus camaldulensis Dehnh	Lachi	Asthma, antipyretic agent	Rare
Eucalyptus lANCEOLEAFSHOWER	Sofida	Antitussive, diarrhea, kidney pain	Vulnerable
Ficus carica	Inzar	Constipation, Piles, stomach pain, toothache	Vulnerable
Ficus palmata Forsk.	Inzar	Bronchitis, diabetes, refrigerant	Vulnerable
Ficus religiosa L.	Peepal	Asthma, Vermicide, cough	Endangered
Melia azedarach L.	Shundai	Fever, Blood purifier, antipyretic, diabetic, abdomen swelling, dandruff	Rare
Morus alba L.	Spin tooth	laxative emollient, Purgative, hepatitis	Rare
Scientific Name	Common Names	Functions	Status
----------------------------------	------------------	---	---------
Morus nigra L. FGCM-144	Toor toth	Laxative, emollient, Antitussive agent	Vulnerable
Opuntia littoralis (Engelm.) FGCM-145	Zargum	Hepatitis, abdominal pain, Diarrhea	Rare
Opuntia monacantha law. Boiss. FGCM-146	Zargum	Antitussive, anti diabetic, kidney pain, Diarrhea	Vulnerable
Opuntia littoralis (Engelm.) FGCM-145	Zargum	Antitussive, anti diabetic, kidney pain, Diarrhea	Rare
Primus persica L. FGCM-148	Shaltalo	Strep throat, Ear wound, acne	Rare
Punica granatum L. FGCM-150	Anar	Laxative, Antitussive agent	Vulnerable
Ricinus communis L. FGCM-150	Aranda	Poissonous, asthma, duration, diarrheea, arthritis	Rare
Rosa indica L. FGCM-151	Gulab	Asthma, Vermicide, cough	Vulnerable
Saccharum munja Roxb. FGCM-152	Kana	Vormifuge	Endangered
Plant Name	Common Name	Uses	Status
-----------------------------	-----------------	---------------------------------------	------------
Saccharum spontaneum L.	kahi	Constipation, Piles, stomach pain, toothache	Endangered
Tamarix indica Willd.	Ghaz	Burnt regions, Toothache	Vulnerable
Withania somnifera L.	Koti lal	Antipyretic, nausea, animal mistatus, pregnant women in dysmenorrhoea	Vulnerable
Ziziphus jujuba Mill.	Bera	Bronchitis, diabetes, tonsils, refrigerant	Endangered
It was noticed that erosion rate was increased with increasing the grazing rate. Our research agree with the author [13] who stated that the population size is often affected by grazing and dry periods because the plant cannot reach to maturation. The author [13] also stated that force of grazing choice from almost invisible elimination of plant material to harsh reduction of vegetation wealth and extensive erosion. In research area a huge number of native plant cutting was seen for different purposes i.e. fuel, fodder etc which reduce the population size and provide the space for invader plant species. Our results also agree with that of authors [8; 18; 19]. The author [17; 20] stated that no accurate study was taken on impacts of invalid use of plant species. Due to unavailability of natural gas and electricity, the locals and poultry farms used a lot of plant species specially trees as a result badly affecting its population and in next 10-20 years the rare species will become vulnerable. The conservation status of trees and shrub species were determined on the basis of geographic range and number of localities. On the basis of number of localities, the endangered species were reported from a few localities in research area. Based on the small geographic range and single locality, 9 species i.e. Alhezzia lebbak, Acacia modesta, Acacia nilotica, Bombax ceba, Dodonea viscose, Ficus religiosa, Saccharum spontaneum, Saccharrum munja and Ziziphus jujube were placed under Endangered Category. Commercial scale stone excavation activities is found high in the area which decrease the population of native plant species and give space for invasive species. Such threat was also noticed by authors [7, 15]. Consequently, urgent conservation methods should be taken to avoid its extirpation from research area because conservation of plant species are the international issue. According to the author [21], ethno botany is the branch of biological sciences which deals with the documenting of traditional knowledge and methods from different communities. These trees and shrubs which are growing naturally in research area are used for different purposes. The benefits of all thes plant species were studied and explained by local people and inhabitants. The locals used all these plant species for different medicinal purposes in different ways (Table. 1). During study it was noticed that most plant species were misplaced on the basis of unskilled manpower and shortage of resources. From research area most plant species were transported to other part of the country in a crude form. On the basis of questioner the men have more knowledge than women; the percentage was 80 and 55 respectively. The younger had less knowledge than older which prove that the traditional knowledge will be lost easily in feature. The authors [4; 7; 10; 11; 12] reported the same position in other part of the country. In some remote area, the people used old traditional methods for different diseases due to lack of modern health facilities or high prices of medicine. In Asia more than 80 percent people cannot afford health facilities [1]. Similar finding were also reported from other areas of Pakistan [11; 12; 13; 14; 22; 23]. Therefore, there is an urgent need of conserving these plants and their uses, which in future the coming generations could benefit from these precious plants that are a real gift of nature for the mankind.
5. CONCLUSION

The present study we have concluded that the people of the area possess good knowledge of herbal drugs but as people are going to modernization; their knowledge of traditional uses of plants may be lost in due course. From this study we have noted that most plant species are going to become endangered and no one plant specie was found dominant because the natural vegetation area was change into urbanization and agricultural reason. In the present study some ornamentals and introduced species have assigned endangered category, which may not be applicable as well as some species which are very commonly distributed throughout the country but the study was entirely carried out on questioners, personal interviews and assessment.

COMPETING INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

Authors are grateful to principal and student of Federal Government College Mardan Cantt for their help and support, the local people of area who have revealed the precious information about ethnomedicinal and conservation status of plant species.
References

[1] Anonymous. IUCN Red List of threatened species, www.iucnredlist.org cited on December 27th 2009. 2008.

[2] Khan M, Hussain F, Musharaf S. Biodiversity of plant species in Tehsil Takht-e-Nasrati, Pakistan. International Journal of Biodiversity and Conservation, 2013a. 5(1): 39-46. DOI: 10.5897/IJBC12.130.

[3] Govaerts R. How many species of seed plants are there? Taxon. 2001. 50(4): 1085-1090.

[4] Khan M, Hussain F, Musharaf S. Floristic Composition and Biological Characteristics of the Vegetation of Sheikh Maltoon Town, District Mardan, Pakistan. Annual Review & Research in Biology. 2013b. 3(1): 31-41.

[5] Khan M. Dimension and composition of plant life in Tehsil Takht-e-Nasrati, District Karak, Khyber Pakhtunkhawa, Pakistan. PhD. Thesis (Plant Ecology), Department of Botany, University of Peshawar, Peshawar, Pakistan. 2013.

[6] Alam J, Ali SL. Conservation status of Astragalus gilgitensis Ali (Fabaceae): a critically endangered species in Gilgit district, Pakistan. Phyton (Horn, Austria). 2009. 48(2): 211-223.

[7] Khan M, Shinwari ZK, Musharaf S. Conservation and ecological characteristic of Trees in Tehsil Karak Pakistan. Journal of Biodiversity and Environmental Sciences. 2011a. 1(6): 155-164.

[8] Khan M, Hussain F, Musharaf S. Maturity dynamism of plant life in Tehsil Takht-e-Nasrati, District Karak, Pakistan. International Journal of Biosciences. 2012b. 3(1): 20-26. DOI: 10.5897/IJBC12.003

[9] Shinwari MI, Khan MA. Folk use of medicinal herbs of Margalla Hills National Park, Islamabad. J. Ethnopharmacol. 2000. 69: 45-56.

[10] Hussain F, Badshah L, Dastigar G. Folk medicinal uses of some plants of South Waziristan, Pakistan. Pak. J. Pl. Sci. 2006. 12: 27-40.

[11] Shinwari ZK. Medicinal plants research in Pakistan. J. Med. Pl Res. 2010. 4: 161-176.

[12] Khan M, Musharaf S, Shinwari ZK. Ethnobotanical importance of halophytes of Noshpho salt mine, District Karak, Pakistan. Research In Pharmaceutical Biotechnology. 2011b. 3(4): 46-52.

[13] Khan M, Hussain F. Palatability and animal preferences of plants in Tehsil Takht-e-Nasrati, District Karak, Pakistan. African Journal of Agricultural Research. 2012. 7(44): 5858-5872. DOI: 10.5897/AJAR12.2095

[14] Khan M, Hussain F, Musharaf S. Ethnobotanical profile of Tehsil Takht-e-Nasrati, District Karak, Pakistan. Journal of Medicinal Plant Research. 2013c. 7(22): 1636-1651, DOI: 10.5897/JMPR12.1168.

[15] Khan M, F. Hussain. Conservation status of plant species in Tehsil Takht-e-Nasrati, District Karak, Khyber Pakhtunkhawa, Pakistan. International Journal of Biodiversity and Conservation. 2013. 5(1): 20-26. DOI: 10.5897/IJBC12.003

[16] Anonymous. Takht-i-Bahi, UNESCO Office, Islamabad, Pakistan. 2002.

[17] Anonymous. IUCN Red List Categories: Version 3.1. Species Survival Commission. IUCN, Gland, Switzerland & Cambridge, UK. 2001.

[18] Engler M. The Value of International Trade. Traffic Bulletin. 2008. 22(1): 4-5.

[19] Rabinowitz D. Seven forms of rarity. In: The Biological Aspects of Rare Plant Conservation. (Ed.): H. Synge. Wiley & Sons Ltd. 1981. 205-217.
[20] Davis SD, Heywood VH, Hamilton AC. Centres of Plant Diversity: a guide and strategy for their conservation, Vol. 2 (Asia, Australasia and the Pacific). Cambridge: IUCN. 1995.

[21] Shenji P. Himalayan Biodiversity Conservation Strategies. Himavikes Pub. 1994. No.3.

[22] Shah A, Marwat SK, Gohar F, Khan A, Bhatti KH, Amin M, Din NU, Ahmad M, Zafar M. Ethnobotanical study of medicinal plants of semi-tribal area of Makerwal and GullaKhel (Lying between Khyber Pakhtunkhwa and Punjab Provinces), Pakistan. Am J plant Sci. 2013. 4: 98–116.

[23] Khan M, Hussain F, Musharaf S. Conservation Status of Tree species in Tehsil Takht-e-Nasrati, Karak Pakistan. Journal of Biodiversity and Environmental Sciences. 2012a. 2(3): 48-56.

[24] Shinwari ZK, Gilani SS. Sustainable harvest of medicinal plants at Bulashbar Nullah, Astore (Northern Pakistan). J. Ethnopharmacol. 2003. 84: 289-298.

(Received 03 March 2015; accepted 19 March 2015)