SYMMETRIES OF FILTERED STRUCTURES
VIA THE FILTERED LIE EQUATIONS

BORIS KRUGLIKOV

Abstract. We bound the symmetry algebra of a vector distribution, possibly equipped with an additional structure, by the corresponding Tanaka algebra. The main tool is the theory of weighted jets.

1. Introduction and the main result

Consider a manifold M and a non-holonomic (bracket generating) vector distribution $\Delta \subset \mathcal{T}M$, possibly equipped with an additional structure, like sub-Riemannian metric or conformal or CR-structure. A specification of these filtered structures is provided below.

Given such a structure, a sheaf of graded Lie algebras $\mathfrak{g} = \bigoplus \mathfrak{g}_i$ is naturally associated with it. If we consider only the distribution Δ, then $\mathfrak{m}(x) = \mathfrak{g}_{-}(x)$ is the well-known graded nilpotent Lie algebra (GNLA: nilpotent approximation or Carnot structure) at $x \in M$, and $\mathfrak{g}(x)$ is its Tanaka prolongation (Tanaka algebra). If an additional structure on Δ is given, then \mathfrak{g}_0 or some higher \mathfrak{g}_i ($i > 0$) is reduced and the algebra is further prolonged. In any case for a filtered structure \mathcal{F} on M we associate its sheaf of Tanaka algebras $\mathfrak{g}(x)$, $x \in M$.

Theorem 1. The symmetry algebra \mathcal{S} (possibly infinite-dimensional) of a filtered structure \mathcal{F} has the natural filtration with the associated grading \mathfrak{s} naturally injected into $\mathfrak{g}(x)$ for any regular point $x \in M$. In particular,

$$\dim \mathcal{S} \leq \sup_M \dim \mathfrak{g}(x).$$

Provided that the filtered structure is of finite type ($\mathfrak{g}_\kappa(x) = 0$ for some $\kappa > 0$ and all $x \in M$), the right-hand-side can be changed to $\inf_M \dim \mathfrak{g}(x)$.

If Δ is considered without an extra structure, then this statement was proved in [K1] by studying the Lie equation considered as a submanifold in the usual jet-space. In addition to the above mentioned type structures we can impose curvature of the structure as a reduction of \mathfrak{g} (see Remark 3 in Section 3 on the issue of regularity), thus essentially restricting the

2010 Mathematics Subject Classification. 58A30, 34C14, 35A30; 58J70, 34H05.

Key words and phrases. Vector distribution, symmetry, Tanaka algebra, Lie equation, filtered structure, weighted symbol.
symmetry algebra, yielding a bound on the gap between the maximal and
the next (submaximal) dimensions of the possible symmetry algebras of the
given type structures \([K2]\). In the context of parabolic geometries this gap
was fully computed using the above idea in \([KT]\).

Regularity for the points \(x\) in Theorem 1 is defined via the Lie equations
in Section 4. When \(\sup \dim \mathfrak{g}(x)\) is finite (that is \(\mathcal{F}\) is of finite type) or the
filtered structure \(\mathcal{F}\) is analytic, then the set of regular points is open and
dense; in general a generic point is regular.

In this paper we consider weighted jets and relate them to Tanaka alge-
bras. On this way we obtain another proof of Theorem 1 of \([K1]\) and get a
more general result.

2. TANAKA ALGEBRA OF A DISTRIBUTION WITH A STRUCTURE

Given a distribution \(\Delta\) its \textit{weak derived flag} \(\{\Delta_i\}_{i>0}\), with \(\Delta_1 = \Delta\),
is given via the module of its sections by \(\Gamma(\Delta_{i+1}) = [\Gamma(\Delta),\Gamma(\Delta_i)]\). The
distribution \(\Delta\) will be assumes \textit{completely non-holonomic}, meaning there
exists a natural number \(\nu\) such that \(\Delta_\nu = T M\).

The quotient \(\mathfrak{g}_i = \Delta_{-i}/\Delta_{-i-1}\) (we let \(\Delta_0 = 0\)) evaluated at the points
\(x \in M\) is not a vector bundle in general (rank needs no be constant); however its local sections form a sheaf and the module of its global sections
will be denoted by \(\Gamma(\mathfrak{g}_i)\) (similarly for other sheafs).

At every point \(x \in M\) the vector space \(\mathfrak{m} = \bigoplus_{i<0} \mathfrak{g}_i\) has a natural struc-
ture of graded nilpotent Lie algebra. The bracket on \(\mathfrak{m}\) is induced by the
commutator of vector fields on \(M\). \(\Delta\) is called \textit{strongly regular} if the GNLA
\(\mathfrak{m} = \mathfrak{m}_x\) does not depend on the point \(x \in M\).

The Tanaka prolongation \(\mathfrak{g} = \mathfrak{m}\) is the graded Lie algebra with negative
graded part \(\mathfrak{m}\) and non-negative part defined successively by

\[
\mathfrak{g}_k = \{ u \in \bigoplus_{i<0} \mathfrak{g}_{k+i} \otimes \mathfrak{g}_i^* : u([X,Y]) = [u(X),Y] + [X,u(Y)], \ X,Y \in \mathfrak{m}\}.
\]

Since \(\Delta\) is bracket-generating, the algebra \(\mathfrak{m}\) is fundamental, i.e. \(\mathfrak{g}_{-1}\) gen-
erates the whole GNLA \(\mathfrak{m}\), and therefore the grade \(k\) homomorphism \(u\) is
uniquely determined by the restriction \(u : \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{k-1}\).

At every point \(\mathfrak{g} = \bigoplus \mathfrak{g}_i\) is naturally a graded Lie algebra, called the
Tanaka \textit{algebra} of \(\Delta\) (the bracket is induced by the commutator of vector
fields). To indicate dependence on the point \(x \in M\), we will write \(\mathfrak{g} = \mathfrak{g}(x)\)
or \(\mathfrak{g}_x\) (also the value of a vector field \(Y\) at \(x\) will be denoted by \(Y_x\)).

In addition to introducing the Lie algebra \(\mathfrak{g}\), which majorizes the symme-
try algebra of \(\Delta\), the paper \([Ta]\) contains the construction of an important
ingredient to the equivalence problem – an absolute parallelism on the pro-
longation manifold of the structure, provided it is strongly regular.
Distribution is locally flat if the structure functions of the absolute parallelism vanish. Then the distribution \(\Delta \) is locally diffeomorphic to the standard model on the Lie group corresponding to \(m \), see \([1a]\).

The prolongation manifolds form the bundles \(G_i \rightarrow M \) (in the strongly regular case). For instance, the fiber of \(G_0 \) over \(x \) consists of grading preserving isomorphisms of Lie algebras \(u_0 : m \rightarrow m_x \), where \(m \) is an abstract GNLA of the same type as \(m_x \). Denoting by \(\text{Aut}_0(m) \) the group of grading preserving automorphisms of \(m \), we conclude that \(G_0 \) is a principal \(\text{Aut}_0(m) \)-bundle over \(M \); the tangent to the fiber is the Lie algebra \(\mathcal{d}e\text{r}_0(m) \) of grading preserving derivations of \(m \). The fiber of \(G_1 \) over \(u_0 \in G_0 \) consists of the adapted frames \(u_1 : g_{-1} \rightarrow g_0 \) that uniquely extend to the grading \(-1\) maps \(u_1 : m \rightarrow m \oplus g_0 \) etc, see \([Z]\) for details.

The idea of constructing the frame bundle can be pushed to the general non-strongly regular case. Here an abstract reference algebra \(m \) is lacking\(^1\) and the 0-frames are grading preserving isomorphisms \(u_0 : m_x \rightarrow m_x \). Thus \(G_0 \) is a fiber bundle (having a distinguished ‘identity’ section), with the fiber over \(x \) being the graded group \(\text{Aut}_0(m_x) \). Again the fiber of \(G_1 \) over \(u_0(x) \in G_0 \) is parametrized by the adapted frames \(u_1 : g_{-1}(x) \rightarrow g_0(x) \) etc. The fibers of \(G_i \rightarrow G_{i-1} \) for \(i > 0 \) are isomorphic to \(g_i \).

Thus if the structure is of finite type, i.e. \(g_\kappa(x) = 0 \) for some \(\kappa > 0 \) and all \(x \in M \), then the structure is regular on an open dense set. Otherwise it is regular only on a set of the second category, but in fact assuming analyticity one can show regularity on an open dense set.

3. Filtered Structures as Reductions of the Derived Flag

The best known reduction of the filtered structure related to a strongly regular distribution \(\Delta \) is defined as follows. Let \(\tilde{G}_0 \subset \text{Aut}_0(m) \) be a subgroup with the Lie algebra \(\tilde{g}_0 \subset g_0 = \mathcal{d}e\text{r}_0(m) \). A structure of the type

\[^1\]This manifests lacking of a canonical absolute parallelism, though it is possible to construct a parallelism respected by any automorphism.
\((m, \tilde{g}_0)\) (more appropriate would be to write \((m, \tilde{G}_0)\)) is a principal sub-bundle of \(G_0 \to M\) with the structure group \(\tilde{G}_0\).

We can relax the strong regularity assumption by requiring that \(g_i(x) \subset m\) for \(i < 0\) and \(g_0(x)\) have \(x\)-independent ranks and then that the bundle \(G_0 \to M\) and its reduction are smooth (the choice of \(\tilde{G}_0\) should also depend smoothly on \(x\)). This is a milder regularity assumption in this case.

Example 1. Sub-Riemannian structure is a field of Riemannian structures \(g\) on the distribution \(\Delta = g_{-1}\). It is equivalent to a reduction of the structure group to a (subgroup of) the orthogonal group of \(g_{-1}\), implying the reduction to \(\tilde{g}_0 \subset \mathfrak{der}_0(m) \cap \mathfrak{so}(g_{-1}, g)\). A sub-conformal structure is a reduction of the structure group to a (subgroup of) the linear conformal group \(\mathfrak{co}(g_{-1}, [g])\).

Example 2. Cauchy-Riemann (CR-) structure is a field of complex structures \(J\) on the distribution \(\Delta = g_{-1}\). It is equivalent to a reduction of the structure group to a (subgroup of) the complex linear group of \(g_{-1}\) (which shall be thus of even rank), implying the reduction \(\tilde{g}_0 \subset \mathfrak{der}_0(m) \cap \mathfrak{gl}(g_{-1}, J)\).

Remark 1. As follows already from these examples, the regularity assumption is also restrictive. The derived flag of a general sub-Riemannian structure can have varying length at different points. For a CR structure, for instance of the hypersurface type, the Levi-flat and generic points can coexist. However as our main concern is the symmetry algebra, and it is determined at any regular point, we disregard the most general structures.

Similarly, if the bundle \(G_i\) is smooth for some \(i > 0\) we can define the reduction via a \(g_0\)-submodule \(\tilde{g}_i \subset g_i\) (everything smoothly depends on the point \(x\)), and prolong the algebra \(g = g_x\) afterwards, i.e. compute the Tanaka prolongations \(\tilde{g}_{i+s} = \text{pr}_{s}(m, g_0, \ldots, \tilde{g}_i) = \{v \in g_{i+s} : \text{ad}_{g_{i+s}}(v) \in \tilde{g}_i\}\) and define the new Tanaka algebra as \(g = g_{-\nu} \oplus \cdots \oplus g_{i-1} \oplus \tilde{g}_i \oplus \cdots\).

Definition. The filtered structure \(\mathcal{F}\) on a manifold \(M\) is given by a non-holonomic vector distribution \(\Delta\) and a finite\(^2\) number of successive reductions of the above bundles \(G_{i_k}\) (the new reduction concerns the bundles computed from the previous reductions) of increasing orders \(0 \leq i_1 < \cdots < i_s\). Such structure is regular if the corresponding bundles \(G_i\) are smooth (rank \(g_i = \text{const}_i\)).

Parabolic structures \([CS]\) give examples of filtered structures obtained by reduction of \(g_0\). For instance, a conformal structure on a manifold \(M\) is a reduction of the bundle \(\text{End}(TM)\) in the case \(m = g_{-1}\) and the prolongation \(g = g_{-1} \oplus g_0 \oplus g_1\) is isomorphic to \(\mathfrak{so}(p+1, q+1)\) for \(n = p + q = \dim m\).

\(^2\)Under the assumption of regularity or algebraicity, the finiteness follows from (a graded version of) Hilbert’s basis theorem.
In fact, by the Yamaguchi prolongation theorem \[Y \] all but two parabolic geometries of type \(G/P \) for a (complex) simple Lie group \(G \) with Lie algebra \(\mathfrak{g} = \text{Lie}(G) \) are obtained via a reduction of \(\mathcal{G}_0 \). The two exceptional structures can be obtained by a higher reduction and prolongation, as in the definition above.

Example 3. To obtain the projective geometry, which is a parabolic geometry of the type \(\mathbb{A}_n/P_1 \), consider the algebra \(\mathcal{D}_\infty(\mathbb{R}^n) \) of formal vector fields on \(V = \mathbb{R}^n \). It has gradation \(\mathfrak{g}_{-1} = V, \mathfrak{g}_0 = V^* \otimes V = \mathbb{R} \oplus \mathfrak{sl}(V), \mathfrak{g}_1 = S^2V^* \otimes V, \ldots \)

As a \(\mathfrak{g}_0 \)-module \(\mathfrak{g}_1 \) decomposes into irreducible components \(\mathfrak{g}_1 = \mathfrak{g}'_1 \oplus \mathfrak{g}''_1 \), where \(\mathfrak{g}'_1 = (S^2V^* \otimes V)_0 = \text{Ker}(q : S^2V^* \otimes V \to V^*) \) with \(q \) being the contraction, and \(\mathfrak{g}''_1 = V^* \rightarrow S^2V^* \otimes V \) with \(i(p)(v, w) = p(v)w + p(w)v \).

The prolongation of the first reduction is \(\mathfrak{g}' = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}'_1 \oplus \mathfrak{g}''_1 \oplus \ldots \), where \(\mathfrak{g}'_k = \text{Ker}(q : S^kV^* \otimes V \to S^kV^*) \). This is the gradation of the algebra \(\mathcal{D}_\infty(\mathbb{R}^n) = \{ \xi \in \mathcal{D}_\infty(\mathbb{R}^n) : \text{div}(\xi) = \text{const} \} \). Indeed, one readily verifies \([\mathfrak{g}_{-1}, \mathfrak{g}'_1] = \mathfrak{sl}(V) \subset \mathfrak{g}_0 \) and \([\mathfrak{g}_{-1}, \mathfrak{g}'_{k+1}] = \mathfrak{g}'_k \).

This gives one possible reduction of the bundle \(\mathcal{G}_1 \). For the other reduction, the prolongation is trivial and we get \(\mathfrak{g}'' = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}''_1 = \mathfrak{sl}(n+1) \), which is the grading associated to \(\mathbb{A}_n/P_1 \).

Example 4. The contact projective structure is a parabolic geometry of type \(\mathbb{A}_n/P_{1,n} \) and it is not exceptional: here \(\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \) is the Heisenberg algebra, \(\mathfrak{g}_0 \) is the linear conformal symplectic algebra of \(\mathfrak{g}_{-1} \) and the Tanaka prolongation \(\text{pr}(\mathfrak{m}, \mathfrak{g}_0) \) coincides with the Lie algebra \(\mathfrak{sl}(n+1) \) of \(\mathbb{A}_n \). However we explain how this structure arises as a reduction of a simple infinite Lie algebra from Cartan’s list.

Consider the algebra of formal contact vector fields in the standard contact space \(\mathbb{R}^{2n-1} = J^1(\mathbb{R}^{n-1}) \). Every such a field is given by a Hamiltonian, so \(\text{cont}_\infty(\mathbb{R}^{2n-1}) \simeq J^\infty_0(\mathbb{R}^{2n-1}) \) – the formal power series at 0. Denoting by \(W \) the model symplectic space of \(\dim W = 2(n-1) \) (contact plane), the gradation of this algebra is: \(\mathfrak{g}_{-2} = \mathbb{R}, \mathfrak{g}_{-1} = W, \mathfrak{g}_0 = \text{csp}(W) = \mathbb{R} \oplus S^2W, \mathfrak{g}_1 = W \oplus S^3W, \mathfrak{g}_2 = S^2W \oplus S^4W, \ldots \)

Now let \(V \subset W \) be a Lagrangian plane, then \(W = V \oplus V^* \) and \(S^2W = S^2V \oplus (V \otimes V^*) \oplus S^2V^* \). Notice that \(S^2V, S^2V^* \subset \mathfrak{g}_0 \) are Abelian subalgebras.

Consider the following subalgebra \(\mathfrak{g}'_0 = \mathbb{R} \oplus (V \otimes V^*) \subset \mathfrak{g}_0 \). Its prolongation is \(\mathfrak{g}' = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}'_0 \oplus \mathfrak{g}'_1 \oplus \mathfrak{g}_2 \), where \(\mathfrak{g}'_1 = W^* \simeq W, \mathfrak{g}_2 = \mathbb{R} \). Thus \(\mathfrak{g}' = \mathfrak{sl}(n+1) \) and the above grading corresponds to \(\mathbb{A}_n/P_{1,n} \), the filtered structure being given by a reduction of \(\mathcal{G}_0 \).

Remark 2. Consider the canonical (Darboux) coordinates \(x_i, p_k, u \) on \(\mathbb{R}^{2n-1} \), corresponding to the decomposition \(V \oplus V^* \oplus \mathbb{R} \). The polynomial algebra on \(\mathbb{R}^{2n-1} \) is weighted by the rule \(w(x^aw^bp^c) = |a| + 2(b - 1) + |c| \), where \(x^a = x_1^{a_1} \cdots x_{n-1}^{a_{n-1}}, |a| = a_1 + \cdots + a_{n-1} \) for a multi-index \(a = (a_1, \ldots, a_{n-1}) \).
and similar for \(p^c \) and \(|c| \). This weight is respected by the Jacobi bracket
\[
\{f, g\} = f \cdot g_u + (fx^i + p_i f_u) \cdot g_{p_i} - g \cdot f_u - (gx^i + p_i g_u) \cdot f_{p_i},
\]
and it gives gradation of the algebra \(g = \text{cont}_\infty(\mathbb{R}^{2n-1}) \cong \oplus_{k=0}^\infty S^k(\mathbb{R}^{2n-1})^* \):
\[
\mathfrak{g}_{-2} = \langle 1 \rangle, \quad \mathfrak{g}_{-1} = \langle x_i, p_i \rangle, \quad \mathfrak{g}_0 = \langle u \rangle \oplus \langle x_i, x_j, x_i p_j, p_i p_j \rangle \quad (\text{entries in the last component correspond respectively to } S^2 V, V \otimes V^*, S^2 V^*),
\]
\(\mathfrak{g}_1 = \langle u x_i, u p_i \rangle \oplus \langle x_i x_j x_k, x_i x_j p_k, x_i p_j p_k, p_i p_j p_k \rangle \), and so forth.

Example 5. The conformal contact structure is another exceptional parabolic geometry, it has type \(C_n/P_1 \). It is obtained by a reduction of \(\mathcal{G}_1 \) from the tower of bundles corresponding to the formal symmetry algebra \(g \) of the standard contact structure, graded as above. As a \(g_0 \)-module \(g_1 \) decomposes into irreducible components \(g_1 = W \oplus S^3 W \).

For the reduction, corresponding to \(\mathfrak{g}'_1 = S^3 W \), we get the prolongations \(\mathfrak{g}'_2 = S^4 W, \mathfrak{g}'_3 = S^5 W \) etc, so \(g' = g_{-2} \oplus g_{-1} \oplus g_0 \oplus g'_1 \oplus g'_2 \oplus \cdots \) is the gradation of the algebra \(\text{Sympl}_\infty(\mathbb{R}^{2n-1}) \) of formal conformally symplectic vector fields for \(n > 2 \) (in this case any conformal symplectic transformation is a conformal homothety), for \(n = 2 \) it is a 1D extension of the algebra \(\mathfrak{G} \mathcal{D}_\infty(\mathbb{R}^2) \) from Example 3.

For the other choice \(g''_1 = W \cong W^* \) we compute the Tanaka prolongation \(g''_2 = \mathbb{R}, \ g''_3 = 0 \), whence \(g'' = g_{-2} \oplus g_{-1} \oplus g_0 \oplus g'_1 \oplus g''_2 = \text{sp}(2n) \) and this gradation corresponds to \(C_n/P_1 \).

Remark 3. If the filtered geometry is strongly regular and \(\mathcal{G}_i \) form the tower of canonical bundles, then in the limit (on \(\mathcal{G}_\infty \) in the finite type case or on \(\mathcal{G}_\infty \)) we get the canonical frame, the structure functions of which produce the invariant - curvature \(K \) of the structure. The constraint that \(K \) is preserved is another reduction of the filtered structure, mentioned in the Introduction.

Notice that \(K \) needs not to have the same type at different points, so this (generalized) filtered structure is neither an infinitesimal homogeneous geometry in the sense of [1], nor a reduction type considered in the above Definition. It is rather similar to the geometric structures obtained by imposing a higher degree tensor on \(\Delta \) or \(a \) to the Finsler structures. The theory of Lie equations developed below is applicable to such structures.

4. Filtered Jets and Filtered Lie Equations

Let us start with the structure \(\mathcal{F} \) defined by the filtration \(\Delta \), of the tangent bundle \(TM \) given by the derived flag of the distribution \(\Delta \).

The spaces \(F_{-i} = \Gamma(\Delta_i) \) form the decreasing filtration of the Lie algebra of vector fields \(\mathcal{D}(M) = F_{-\nu} \supset \cdots \supset F_{-1} \supset 0 \) and induce the decreasing filtration of the associative algebra \(D = \text{Diff}(M) \) of scalar differential
operators on M (D is a left-right bi-module over $C^\infty(M)$):

$$D_0 = C^\infty(M) \subset D_1 = \{v + f : v \in F_1, f \in C^\infty(M)\} \subset \cdots \subset D_{-2} \subset \cdots \subset D_j = \sum_{i_1+\cdots+i_s \geq j} \prod_{t=1}^s F_{i_t} \subset D_{j-1} \subset \cdots$$

This filtration differs from the standard filtration by order. The algebra D of differential operators with the standard filtration has the associated graded algebra of symbols evaluated to the bundle $STM = \bigoplus S^i TM$ (the algebra of polynomials on T^*M). On the contrary the weighted filtration D_i produces the bundle of symbols $\bigoplus_{i \leq 0} D_i / D_{i+1} = U(m)$ with evaluation at $x \in M$ being the universal enveloping algebra of m_x (naturally graded).

Let Δ^\perp_i be the annihilators of the distribution Δ_i forming the decreasing filtration $\Omega^1_i = \Gamma(\Delta^\perp_i - 1)$ of the space of 1-forms:

$$0 \subset \Omega^1_i \subset \Omega^1_{i-1} \subset \cdots \subset \Omega^1_2 \subset \Omega^1_1 = \Omega^1(M).$$

We have $\Omega^1_i / \Omega^1_{i+1} = \Gamma(g^* - i)$. From these two filtrations we get the induced decreasing filtration of the module

$$\mathfrak{D} = \text{Diff}(M; T^*M) = \text{Diff}(M) \otimes_{C^\infty(M)} \Omega^1(M)$$

of 1-form valued differential operators on M (here $C^\infty(M)$ acts on D from the right, $(\Delta, f) \mapsto \Delta \circ f$, $f \in C^\infty(M)$, $\Delta \in D$):

$$0 \subset \mathfrak{D}_\nu \subset \mathfrak{D}_{\nu-1} \subset \cdots \subset \mathfrak{D}_s = \sum_{i+j=s} D_i \otimes_{C^\infty(M)} \Omega_j^1 \subset \mathfrak{D}_{s-1} \subset \cdots$$

This filtration has the associated graded space, where every graded piece $\mathfrak{D}_k / \mathfrak{D}_{k+1}$ is the space of sections of the vector bundle

$$\mathfrak{d}_k = \sum_{r+j=k} U(m)_r \otimes g^* - j, \quad -\infty < k \leq \nu.$$

In other words we can embed

$$\mathfrak{d}_k \subset \sum_{r+j=k} \sum_{i_1+\cdots+i_s = j} \prod_{t=1}^s g^* - r \otimes g_{i_1} \otimes \cdots \otimes g_{i_s};$$

the equality is obtained by imposing on the right hand side the identifications from the universal enveloping algebra $U(m)$. Therefore $\bigoplus \mathfrak{d}_k$ is a module over $U(m)$.

The natural action $F_{-1} \otimes \mathfrak{d}_k \to \mathfrak{D}_{k-1}$ (composition) induces the bundle map $\delta^* : g_{-1} \otimes \mathfrak{d}_{k+1} \to \mathfrak{d}_k$.

Consider the symmetry algebra of the distribution Δ (it can be sheafified and considered locally):

$$\mathcal{S} = \{X \in \mathcal{D}(M) : L_X(\Delta) \subset \Delta\} = \{\alpha(L_X v) = 0 : \forall v \in \Gamma(\Delta), \alpha \in \Gamma(\Delta^\perp)\}.$$
Let e_i^j be a basis of TM such that $\Delta_s = \langle e_i^j : 1 \leq j \leq s \rangle$, $1 \leq s \leq \nu$. The dual co-basis α_q^p given by $\alpha_q^p(e_i^j) = \delta_i^q \delta_j^p$ yields $\Delta_s^+ = \langle \alpha_j^i : j > s \rangle$. We can write $1 = e_i^j \otimes \alpha_j^i$.

Let $\alpha_q^p([e_i^j, e_k^l]) = c_{ijkq}^{lp}$ denote the structure functions. Since $L_\nu(X) = L_\nu(\alpha_j^i(X) e_i^j) = L_\nu(e_i^j) \alpha_j^i(X) + L_\nu(\alpha_j^i(X)) e_i^j$ we obtain the defining relation of S for $\alpha = \alpha_q^p$ ($q > 1$) and $\nu = e_i^j$ in such form: $\alpha_q^p(L_{e_i^j}(1(X))) = 0 \Leftrightarrow \Box_{qr}^p(X) = 0$, where

$$\Box_{qr}^p = c_{ijkq}^{lp} \cdot \alpha_j^i + L_{e_i^j} \circ \alpha_q^p.$$

Thus the Lie equation $\mathfrak{Lie}(\Delta)$ defining S is given by the linear differential operators $\Box_{qr}^p \in \mathfrak{D}$ ($q > 1$):

$$\mathfrak{Lie}(\Delta) = \{ [X]^1_x \in J^1(TM) : \Box_{qr}^p(X)_x = 0 \}.$$

Notice that the Lie equation, as formulated, is not formally integrable (not in involution). For instance, the compatibility conditions add the relations $L_X(\Delta_s) \subset \Delta_s$ for $s \leq \nu$ and also $L_X K = 0$, where K is the curvature of the geometry. Higher order equations can also appear as compatibilities.

Similarly, if F is a filtered structure, it is given by the Lie equation $\mathfrak{Lie}(F) \subset J^k(TM)$ for some number k. This latter depends on the reductions used to define F (the equations of $\mathfrak{Lie}(\Delta)$, together with the compatibility conditions, guarantee that X naturally lifts as a vector field to \mathcal{G}_i, then we impose the equation that the flow of X preserves the reductions).

We keep denoting the defining differential operators by \Box.

Let E be the completion of the equation $\mathfrak{Lie}(F)$ to involution obtained by the prolongation-projection method [KLV] [KL]. This equation is given by the differential relations from the D-module (= module over differential operators Diff(M)) $D[\Box] \subset \mathfrak{D}$ generated by the operators \Box.

We unite the obtained data into the following diagram, where all horizontal arrows are monomorphisms and all vertical sequences are exact (this defines the modules $Q[\Box]$):

$$\cdots \rightarrow \cdots \rightarrow \cdots$$

$$\downarrow \downarrow \downarrow$$

$$0 \rightarrow D[\Box]_1 \rightarrow \mathfrak{D}_1 \rightarrow Q[\Box]_1 \rightarrow 0$$

$$\downarrow \downarrow \downarrow$$

$$0 \rightarrow D[\Box] \rightarrow \mathfrak{D} \rightarrow Q[\Box] \rightarrow 0$$

$$\downarrow \downarrow \downarrow$$

$$\cdots \rightarrow \cdots \rightarrow \cdots$$
Recall that given a module M over the algebra $C^\infty(M)$, which is geometric (this means $\cap_{x \in M} x M = 0$) and finitely generated, its property being projective is equivalent to isomorphism of M to the module of sections of a bundle. This is a smooth version of the Serre-Swan theorem, see [Sw, JN]. Localization (restriction) to an open set $U \subset M$ is $M_U = M \otimes_{C^\infty(M)} C^\infty(U)$. If all evaluations $M_\mu = M \otimes_{C^\infty(M)} C^\infty(M)/\mu$, $\mu \in M$, have the same rank, then by Nakayama’s lemma M_U is projective. Since geometricity and finite-generation for our modules are given by construction, we obtain the associated vector bundles.

Namely, the modules of the above commutative diagram give rise to the vector bundles $bD[\square]$ (left column) and E^* (right column) over the set of regular points in M (the middle column, consisting of projective modules, obviously corresponds to sections of vector bundles over the whole M). Here we call a point $x \in M$ regular up to order k if in a neighborhood $U \ni x$ the modules $Q(\mu)[i]|_U$ are projective for all $i \leq k$; a point $x \in M$ is regular if it is regular up to order k for any k.

Proposition 2. If the filtered structure is of finite type or is analytic, then the set of regular points for E is open dense in M. In general, the set of regular points up to order k is open dense in M for every k; consequently the set of regular points has second category.

Proof. For the structure F of finite type the number of added equations during the prolongation-projection is finite, cf. Proposition 1, whence the claim. By the same reason, in the general case the number of added equations during prolongation-projection is finite up to any pre-fixed order k.

For the structure F of infinite analytic type the claim follows from Malgrange’s proof of Cartan-Kuranishi theorem [Ma] that can be adapted to the filtered context. □

We are going to realize the dual bundles to those arising from the above commutative diagram. To this end let $J(TM)_i$ be the space of i-weighted jets w.r.t. the weights introduced above ($i \geq -\nu^\square$), which is defined as the bundle over M with the fiber at x being quotient of the algebra of $D(M)$ by the subspace of those vector fields X that satisfy $\nabla(X)_x = 0$ for all $\nabla \in D_{-i}$. In terms of decomposition $X = \sum f_{ji} Z_{ji}$ by a basis $Z_{ji} \in \Delta_j \setminus \Delta_{j-1} \subset TM$ from [K1] this means that the coefficients satisfy $f_{ji} \in \mu_+^{i+j}$. Let $E_i \subset J(TM)_i$ be the set of points annihilated by the operators $D[\square]_{-i} \subset D[\square]$ of order $\geq -i$ (as above E is the completion of $\text{Lie}(F)$).

Footnote: In the case $\Delta = TM$ we have $\nu = 1$ and the whole jet co-filtration should be shifted by $+1$ to match the Spencer machinery [Sp]; for gradation of differential operators also the sign should reverse.
Over the connected components of the (open and dense) set of regular points (where restrictions of the considered modules are projective) these are linear subbundles and by duality we get the following commutative diagram, where the vertical lines are exact and the horizontal arrows are epimorphisms (projections):

\[
\begin{array}{ccccccccc}
\cdots & & \cdots & & \cdots & & \cdots & & \\
& & & & & & & & \\
0 & \longrightarrow & E_i & \longrightarrow & J(TM)_i & \overset{\rho_i}{\longrightarrow} & bD[\square]^*_i & \longrightarrow & 0 \\
& & & & & & & & \\
& & & & & & & & \\
0 & \longrightarrow & E_{i-1} & \longrightarrow & J(TM)_{i-1} & \overset{\pi_{i,i-1}}{\longrightarrow} & bD[\square]_{i-1}^* & \longrightarrow & 0 \\
& & & & & & & & \\
& & & & & & & & \\
\cdots & & \cdots & & \cdots & & \cdots & & \\
\end{array}
\]

This geometrizes of the D-modules corresponding to the Lie equation.

5. Proof of Theorem 1 and other applications

Proposition 3. If the filtered structure \(F \) is analytic or of finite type, then the space of solutions of \(\text{Lie}(F) \) is \(S = E_\kappa \) (for the infinite type \(\kappa = +\infty \) and \(E_\kappa = \lim_{i \to +\infty} E_i \)).

Proof. In the finite type case the claim follows by finite jet-determination of a solution according to [K1, Theorem 8]. For the analytic structure \(F \) the claim follows by (infinite) jet-determination of a solution according to the filtered Cartan-Kähler theorem [M2].

This is enough to prove the main claim for structures of the prescribed type. For general smooth filtered structures a symmetry (solution of the Lie equation) may not be defined by its jet at a point, but in this case we only need the fact that the set of regular points of \(M \) is the intersection of the sets of points \(x \) regular up to order \(k \) by all \(k \).

Proof of Theorem 1. Let \(x \in M \) be a regular point (for the Lie equation). The map \(S \to E_\kappa \) associates to a symmetry \(X \) its jet \([X]_x^\kappa \) at \(x \). It is an isomorphism for finite type or analytic structures.

Thus we obtain the decreasing filtration on \(S \) depending on the point \(x \): \(S^j = \ker(S \to E_{j-1}) \). The corresponding graded algebra coincides with the symbol of \(E \):

\[
s_i = S^i/S^{i+1} = \ker(E_i \to E_{i-1}).
\]

In particular \(s_i \subset g_i(x) \) and the claim \(\dim S \leq \dim g(x) \) follows.

In the case of general type the right hand side of this inequality is \(+\infty \), so the second claim is void.
Finally, for finite type systems the first claim of the theorem implies the inequality \(\dim S \leq \text{ess. \, inf} \dim \mathfrak{g}(x) \), where the essential infimum is the supremum of \(\text{inf}_U \dim \mathfrak{g}(x) \) by all open dense sets \(U \subset M \) (because the set of regular points is open and dense). This latter equals to \(\text{inf}_M \dim \mathfrak{g}(x) \) due to upper semi-continuity of \(\mathfrak{g}(x) \) (for the latter claim see [K1] Lemma 6). The last claim of the theorem follows. \(\square \)

Remark 4. The filtration on \(S \) coincides with the one from [CN] in the case of parabolic geometries and from [K1] for non-holonomic distributions.

We can also prove the following claim that coincides with Proposition 4.1 of [M1] in the case of the standardly filtered Lie algebras and with Proposition 4.2.2 of [K1] in the case of filtration associated with parabolic geometries (our present proof is different from both references).

Theorem 2. The above embedding \(\mathfrak{s}_i \subset \mathfrak{g}_i \) satisfies: \([\mathfrak{s}_i, \mathfrak{g}_{-1}] \subset \mathfrak{s}_{i-1} \).

Proof. Let \(\mathfrak{b} \) denote the symbol bundle of the \(Q[\square] \)-modules over the regular set \(U: \Gamma(\mathfrak{b}_{-1}) = Q[\square]_{-1}/Q[\square]_{1-1} \). At a regular point \(x: \mathfrak{s}_i \simeq \mathfrak{b}^*_{-1}(x) \). Indeed, from the commutative diagram above: \(\mathfrak{s}_i = \text{Ker}(\pi_{i-1}) \cap \text{Ker}(\rho_i) \) and so \(\mathfrak{s}_i^1 = \text{Im}(\pi_{i-1}^*) + \text{Im}(\rho_i^*) \). Therefore \(\mathfrak{s}_i^* = \mathfrak{D}_{-i}/[\text{Im}(\pi_{i-1}^*) + \text{Im}(\rho_i^*)] \).

By D-module property \(F_{-1} \otimes \mathfrak{D}_{1-i} \to \mathfrak{D}_{-i} \) and \(F_{-1} \otimes \mathfrak{D}(\square)_{1-i} \to \mathfrak{D}(\square)_{-i} \), whence we conclude the action \(\delta^*: \mathfrak{g}_{-1} \otimes \mathfrak{b}_{1-i} \to \mathfrak{b}_{-i} \) (at regular points). By dualization \(\delta: \mathfrak{s}_i \to \mathfrak{g}^*_{-1} \otimes \mathfrak{s}_{i-1} \) or \(\delta: \mathfrak{g}_{-1} \otimes \mathfrak{s}_i \to \mathfrak{s}_{i-1} \). This latter corresponds to the bracket in \(\mathfrak{g} \) and hence our claim is proved. \(\square \)

Notice that the claim is stronger than the natural pairing \([\mathfrak{s}_i, \mathfrak{s}_{-1}] \subset \mathfrak{s}_{i-1} \) since we only have \(\mathfrak{s}_{-1} \subset \mathfrak{g}_{-1} \) and this distinction is crucial for [K1].

Finally let us apply the above results to jet-determinacy. A symmetry \(X \in S \) is called \(s \)-jet determined at \(x \in M \) if \([X]_s^k \neq 0 \), but \([X]_{x}^{-1} = 0 \) (here \([X]_s^k \) is the \(k \)-jet of \(X \) in the standard, not filtered, jet-filtration).

Theorem 3. If the Lie equation \(\mathfrak{Lie}(F) \) has finite type, i.e. \(\mathcal{E}_\kappa = 0 \) for some \(\kappa < +\infty \), then any symmetry is determined by a finite jet.

The same statement also holds for automorphisms of a filtered geometry.

Proof. By [K1] (see formulae (9), (10) and those in between) if the field \(X \) is \(s \)-jet determined and belongs to the \(i \)-th filtration space \(S^i \) (\(\mathcal{L}^\nu \) in loc.cit.), and so is mapped to a non-zero element in the graded subspace \(\mathfrak{g}_i \) (\(i \geq 0 \)) of the Tanaka algebra \(\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus \cdots \oplus \mathfrak{g}_i \oplus \cdots \), then \(i/\nu + 1 \leq s \leq i + 1 \). \(\square \)

Acknowledgment. I am grateful to D. The for stimulating discussions.
References

[AK] I. M. Anderson, B. Kruglikov, Rank 2 distributions of Monge equations: symmetries, equivalences, extensions, Adv. Math. 228, issue 3, 1435–1465 (2011).

[CS] A. Čap and J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs 154, American Math. Society (2009).

[CN] A. Čap and K. Neusser, On automorphism groups of some types of generic distributions, Differential Geometry and its Applications, 27, no. 6, 769–779 (2009).

[GS] V. Guillemin, S. Sternberg, An algebraic model of transitive differential geometry, Bull. A.M.S. 70, 16–47 (1964).

[JS] Jet Nestruev, Smooth Manifolds and Observables, GTM 220, Springer (2003).

[KLV] I. S. Krasilschik, V. V. Lychagin, A. M. Vinogradov, Geometry of jet spaces and differential equations, Gordon and Breach (1986).

[K1] B. Kruglikov, Finite-dimensionality in Tanaka theory, Annales de l’Institut Henri Poincaré (C) Non Linear Analysis 28, issue 1, 75–90 (2011).

[K2] B. Kruglikov, The gap phenomenon in the dimension study of finite type systems, Cent. Eur. J. Math. 10, no. 5, 1605–1618 (2012).

[KT] B. Kruglikov, D. The, The gap phenomenon in parabolic geometries, arXiv:1303.1307 (2013).

[KL] B. Kruglikov, V. Lychagin, Geometry of Differential equations, Handbook of Global Analysis, Ed. D.Krupka, D.Saunders, Elsevier, 725-772 (2008).

[Ma] B. Malgrange, Systèmes différentiels involutifs, Panoramas et Synthèses 19, Soc. Math. de France (2005).

[M1] T. Morimoto, On the intransitive Lie algebras whose transitive parts are infinite and primitive, J. Math. Soc. Japan, 29, no. 1, 35–65 (1977).

[M2] T. Morimoto, Théorème de Cartan-Kähler dans une classe de fonctions formelles Gevrey, C. R. Acad. Sci. Paris Sér. I Math. 311, no. 7, 433-436 (1990).

[Sp] D.C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75, 179–239 (1969).

[St] S. Sternberg, Lectures on Differential geometry, Prentice-Hall, New Jersey (1964).

[Sw] R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105, 264-277 (1962).

[Ta] N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kioto Univ. 10, no.1, 1–82 (1970).

[Y] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Advanced Studies in Pure Mathematics 22, Progress in Differential Geometry, 413–494, (1993).

[Z] I. Zelenko, On Tanaka’s prolongation procedure for filtered structures of constant type, SIGMA 094, vol. 5, 21 pp. (2009).

Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway.
E-mail: boris.kruglikov@uit.no