2013

Nutritional status of children admitted for diarrhoeal diseases in a referral hospital in western Kenya

I. Marete
Moi University

J. Simba
Moi University

Peter Gisore
Aga Khan University, peter.gisore@aku.edu

C. Tenge
Moi University

D. Bosire
Kenyatta University

See next page for additional authors

Follow this and additional works at: https://ecommons.aku.edu/eastafrica_fhs_mc_paediatr_child_health

Part of the *Pediatrics Commons*

Recommended Citation

Marete, I., Simba, J., Gisore, P., Tenge, C., Bosire, D., Mwangi, A., Esamai, F. (2013). Nutritional status of children admitted for diarrhoeal diseases in a referral hospital in western Kenya. *East African Medical Journal, 90*(7), 222-225.

Available at: https://ecommons.aku.edu/eastafrica_fhs_mc_paediatr_child_health/99
Authors
I. Marete, J. Simba, Peter Gisore, C. Tenge, D. Bosire, A. Mwangi, and F. Esamai

This article is available at eCommons@AKU: https://ecommons.aku.edu/eastafrica_fhs_mc_paediatr_child_health/99
NUTRITIONAL STATUS OF CHILDREN ADMITTED FOR DIARRHOEAL DISEASES IN A REFERRAL HOSPITAL IN WESTERN KENYA

I. Marete, MBChB, MMed, Lecturer, J. Simba, MBChB, Assistant Lecturer, P. Gisore, MBChB, MMed, Lecturer, C. Tenge, MBChB, MMed, Senior Lecturer, Department of Child Health and Paediatrics, Moi University, P. O. Box 4606, Eldoret, D. Bosire, BSc, MSc, Lecturer, Department of Health Management, Kenyatta University, A. Mwangi, BSc, MSc, PhD, Department of Behavioural Sciences, Moi University and F. Esamai, MBChB, MMed, MPH, PhD, Senior Lecturer, Professor, Department of Child Health & Paediatrics, Moi University

ABSTRACT

Objectives: To determine the prevalence of malnutrition among children admitted with acute diarrhoea disease at Moi Teaching and Referral Hospital and to establish the effect of malnutrition on duration of hospital stay.

Design: Prospective observational study.

Setting: Paediatric wards of Moi Teaching and Referral Hospital, Eldoret, Kenya

Subjects: A total of 191 children aged 6 and 59 months admitted with acute diarrhoea disease, without chronic co-morbidities or visible severe malnutrition, were systematically enrolled into the study between November 2011 and March 2012.

Outcome Measures: Nutritional status based on WHO WHZ scores taken at admission and duration of hospital stay.

Results: The mean age was 13.2 months with a male to female sex ratio of 1.16:1. Of all the children seen with acute diarrhoeal diseases, 43.9% had acute malnutrition (<-2 WHZ score), with 12% being severely malnourished (<-3 Z score). Average duration of hospital stay was 3.36 (SD=1.54) days. Among those with malnutrition the average duration of stay was 3.39 (SD=1.48) days while for those without malnutrition it was 3.21 (SD=1.20) days, which was not statistically different. No death was reported. WHO weight for Height Z scores picked 12% of severe form of malnutrition missed out by Welcome Trust classification (weight for age).

Conclusion: Routine anthropometry including weight for height identifies more children with malnutrition in acute diarrhoeal diseases. Presence of malnutrition did not affect duration of hospital stay.

INTRODUCTION

Diarrhoea is an important cause of morbidity and mortality in the world causing 2,200 deaths per day in children under five years (1). In Kenya 17% of children experienced diarrhoea 2 weeks preceding a national survey while overall 7% of children are wasted, with 16% and 35% being underweight and stunted respectively (2). Malnutrition and diarrhoea usually coexist in children (3). The exact order of the relationship between the two may vary. Acute diarrhoea affects nutritional status through reduction in dietary intake and intestinal absorption. It also increases catabolism and sequestration of nutrients that a child requires to grow (3,4).

The presence of malnutrition in a child has been shown to increase the incidence of diarrhoea as well as prolong the duration of diarrhoea (4). This does not only occur in severe malnutrition but also in non-severe forms (5). Malnutrition if not actively looked for through anthropometric measurements can be missed. This is because edema and visible wasting are not sensitive signs for all children with severe acute malnutrition. Malnutrition if not addressed at early stage may present in severe form later with increased mortality or co-morbidities.

We set out to determine the prevalence of malnutrition among children admitted with acute diarrhoeal diseases to the Moi Teaching and Referral Hospital, in western Kenya.

MATERIALS AND METHODS

A prospective observational study was conducted in the general paediatric wards at the Moi Teaching and Referral Hospital, Eldoret, Kenya between November 2011 and March 2012. Moi Teaching and Referral Hospital is a teaching tertiary institution located in the Western part of Kenya. Patients meeting enrolment criteria, presenting to the hospital with
acute diarrhoeal diseases and meeting general criteria
for admission to wards as per clinician at the sick child
clinic based on guidelines for management of acute
diarrhoea adopted from World Health Organisation
(WHO) by Ministry of Health in Kenya (6), were
followed up until discharge from the hospital to
determine the length of hospital stay. These are
children with at least two signs of dehydration
(including sunken eyes, slow skin pinch, restlessness/
irritability, and inability to drink or drinking eagerly)
or one sign of dehydration but not retaining anything
given orally or have accompanying profuse diarrhoea.
However those in shock were excluded. We defined
diarrhoea as passage of more than three loose stools
per 24 hours. To qualify as acute the diarrhoea had
to have been present for less than 14 days.

A total of 191 patients aged between six and 59
months were systematically sampled into the study.
We excluded children with chronic co-morbidities
and those with obvious severe malnutrition as per
the Welcome Trust classification that is marasmus,
kwashiorkor or with marasmus-kwashiorkor.
The participants were part of a large study which
involved use of oral medications. The selection was
done by Medical Officers who had been trained
on the expectations of the study. The investigators
were involved in the whole study process including
recruitment of the participants as well as other aspects
of data interpretation. The principal investigator
together with the biostatistician took responsibility
for the study design including data analysis.

Patients recruited had their demographic (age
and sex) and anthropometric measurements (height/
length and weight [pre-rehydration]) recorded at
admission. They were subsequently put on standard
treatment for diarrhoeal diseases adopted from
WHO by Ministry of Health in Kenya (6) using low
osmolarity Oral Rehydration Salt (ORS). Monitoring
was done by checking for any new symptoms or signs
while in the ward noting their duration of hospital stay
and their outcome (death or discharge).

We analysed the demographic and anthropometric
measurements described above, to check for acute
malnutrition using Weight-for-Height Z (WHZ)
scores as recommended by WHO. We checked for
any statistical differences in duration of hospital
stay between malnourished and non-malnourished
children presenting with acute diarrhoeal disease.
Linear regression analysis was done to determine any
associations between age versus duration of hospital
stay and nutritional stay versus duration of hospital
stay. Ordinal logistic regression was used to assess
whether there is an association between the WHZ score
and the age in categories. Data was analysed at 95\%
level of confidence. Ethical considerations including
approval to carry out research were obtained from the
Ethics committee and the hospital Director. Written
consent from parents was also obtained. Children who
were found to be malnourished were also accorded
the necessary interventions.

RESULTS

A total of 191 eligible children were recruited. The
mean age at presentation was 13.2 months with a male
to female sex ratio of 1.16:1. No death was reported
in our population. It was noted that 43.9\% of the
children were malnourished (Z scores of <-2 Weight
for Height) with 12% being severely malnourished
(WHO WHZ score of less than -3) (Table 1).

Age in months	WHO WHZ score Less than -3 N (%)	-3 to -2 N (%)	-2 to 2 N (%)	Total
6 to 12*	15 (12.2)	37 (30.1)	71 (57.7)	123
13 to 24	5 (9.8)	19 (37.3)	27 (52.9)	51
≥25	3 (17.6)	5 (29.4)	9 (52.9)	17
Total	23 (12)	61 (31.9)	107 (56)	191

*Reference group

The average duration of hospital stay was 3.36 (SD=1.54) days. Among those with malnutrition the average
duration of stay was 3.39 (SD=1.48) days while for those without malnutrition it was 3.21(SD=1.20) days
(Table 2).
Table 2
Linear regression results relating duration of hospital stay to age of child and their nutritional status

Variable	Mean Duration of hospital stay in days (SD)	p-value
Age in months		
6 to 12*	3.41 (1.30)	
13 to 24	3.23 (1.63)	0.436
≥25	3.32 (1.67)	0.780
WHO WHZ score		
Less than -3 *	3.26 (1.18)	
-3 to -2	3.49 (1.67)	0.509
>-2 to 2	3.29 (1.31)	0.93

*Reference group

DISCUSSION

Acute diarrhoeal diseases have been shown to be commonest in children aged between six and 24 months. The mean age was 13.2 months with majority of patients enrolled being less than one year. There were slightly more males than females enrolled. These demographic characteristics of the children presenting with acute diarrhoea to our facility were similar to studies done elsewhere (2,7,8).

Overall 7% of children in Kenya have wasting using weight-for-height index in the general population (2). Non-severe malnutrition among the children presenting to our hospital with acute diarrhoeal diseases was high at 31.9%. This is not necessarily high as the study focussed on children likely to have malnutrition as relationship between diarrhoea and malnutrition is bidirectional (3). In a South African study evaluating presence of malnutrition among hospitalised children, 35% of them were found to have moderate malnutrition (9). Again, it has been documented that the hydration status may have an impact on nutritional status at admission of a child and thus this may have contributed to the high percentage as we only used admission weights (10).

The WHO weight for height Z scores have been shown to be more sensitive in identifying malnourished children compared to visible wasting and presence of edema (11). Despite excluding children with visible wasting and edema from our study, 12% were still identified to have severe malnutrition by WHZ scores. Our data shows that, a considerable number of children present with non-obvious malnutrition for other reasons to health facilities. This group is likely to be missed and hence may present later with severe malnutrition or other co-morbidities. On the other hand, this group may have similar complications and mortality as those with severe acute malnutrition (5).

Pre-existing malnutrition has been associated with prolonged illness and severity resulting in doubling of diarrhoea burden which is attributed to decreased turnover of epithelial cells resulting in delayed recovery (12,13). Although duration of diarrhoea in the two groups was not directly assessed, the presence of malnutrition was not associated with prolonged duration of hospital stay. Those with malnutrition had an average duration of 3.26 days versus 3.36 days for those without. Age does not appear to influence duration of hospital stay in our study. This parameter does not seem to have been reported in previous studies.

While we were not able to demonstrate whether moderate malnutrition affects duration of hospital stay in our set up, we acknowledge the limitation that we did not have exit/discharge weights which would have confirmed the malnutrition. Hydration status has previously been shown to affect admission weight (10). Our study however, brings to the fore the message that over-emphasis on Welcome Trust Classification as a means of identifying malnourished children is likely to miss out some children with malnutrition as the WHO classification has been shown to have better sensitivity (11). These children will end up being given focussed nutritional care as opposed to generalized nutritional care as it normally happens in our set up. We advocate that this therefore should be a basic evaluation in our set up.

CONCLUSION

Routine anthropometry, including weight for height, identifies more children with malnutrition in acute diarrhoeal diseases. Presence of malnutrition did not affect duration of hospital stay in our set up.

RECOMMENDATION

Hospitals should adopt the WHO recommended
weight for height measurements in all children admitted as this will decrease chances of missing malnourished children

ACKNOWLEDGEMENT

The authors wish to acknowledge the Director, Moi Teaching and Referral Hospital for giving us permission to conduct research and publish our results.

REFERENCES

1. UNICEF, Pneumonia and Diarrhoea: Tackling the Deadliest diseases for the World’s Poorest Children. New York: UNICEF; 2012.
2. Kenya National Bureau of Statistics (KNBS) and ICF Macro. 2010. Kenya Demographic and Health Survey 2008-09. Calverton, Maryland: KNBS and ICF Macro.
3. Nel, E.D. Diarrhoea and malnutrition. S Afr J Clin Nutr 2010; 23: S15-S18.
4. Brown, K. H. Diarrhea and Malnutrition. J. Nutr. 2003; 133: 3285–332S.
5. Pelletier, D.L. The relationship between child anthropometry and mortality in developing countries: implications for policy, programs and future research. J Nutr. 1994; 124: 2047S-2081S.
6. Ministry of Public Health and Sanitation. Policy Guidelines on Control and Management of diarrhoeal Diseases in Children below Five Years in Kenya. Division of Child and Adolescent Health, Nairobi, Kenya, 2010.
7. Mandomando, I.M., Macete, V.E., Ruiz, J. et.al Etiology Of Diarrhea In Children Younger Than 5 Years Of Age Admitted In A Rural Hospital Of Southern Mozambique Am. J. Trop. Med. Hyg. 2007; 76:522–527.
8. Kosek, M., Bern, C. and Guerrant, R.L. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003; 81: 197–204.
9. Marino, L.V., Goddard, E. and Workman, L. Determining the prevalence of malnutrition in hospitalized paediatric patients S Afr Med J 2006; 96: 993-995.
10. Mwangome, K.M., Fegan, G., Prentice, A.M. and Berkley, A.J. Are diagnostic criteria for acute malnutrition affected by hydration status in hospitalized children? A repeated measures study. Nutrition Journal 2011; 10:92.
11. Mogeni, P., Twahir, H., Bandika, V., et.al. Diagnostic performance of visible severe wasting for identifying severe acute malnutrition in children admitted to hospital in Kenya. Bulletin of the World Health Organization 2011; 89:900-906.
12. Patwari, A.K. Diarrhoea and malnutrition interaction. Indian J Pediatr. 1999; 66: S124-S34.
13. Rodriguez, L., Cervantes, E. and Ortiz, R. Malnutrition and Gastrointestinal and Respiratory Infections in Children: A Public Health Problem Int. J. Environ. Res. Public Health 2011;8: 1174-1205;