Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease

Catherine J Reynolds 1, Malcolm J W Sim 1, Kathryn J Quigley 1, Daniel M Altmann 2 and Rosemary J Boyton 1*

Abstract

Background: Multiple sclerosis is generally considered an autoimmune disease resulting from interaction between predisposing genes and environmental factors, together allowing immunological self-tolerance to be compromised. The precise nature of the environmental inputs has been elusive, infectious agents having received considerable attention. A recent study generated an algorithm predicting naturally occurring T cell receptor (TCR) ligands from the proteome database. Taking the example of a multiple sclerosis patient-derived anti-myelin TCR, the study identified a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens. Having previously generated a spontaneous multiple sclerosis (MS) model through expression of this TCR, we asked whether any of these could indeed function in vivo to trigger CNS disease by cross-reactive activation.

Findings: A number of myelin epitope cross-reactive epitopes could stimulate T cell immunity in this MS anti-myelin TCR transgenic model. Two of the most stimulatory of these ‘environmental’ epitopes, from Dictyostyelium slime mold and from Emiliania huxleyi, were tested for the ability to induce MS-like disease in the transgenics. We found that immunization with cross-reactive peptide from Dictyostyelium slime mold (but not from E. huxleyi) induces severe disease.

Conclusions: These specific environmental epitopes are unlikely to be common triggers of MS, but this study suggests that our search for the cross-reactivity triggers of autoimmune activation leading to MS should encompass epitopes not just from the ‘infectome’ but also from the full environmental ‘exposome.’

Keywords: Multiple sclerosis, CD4 T cell, T cell receptor transgenic, Epitope, Cross-reactivity, Autoimmunity, TCR, Exposome

Findings

For multiple sclerosis (MS), as with other autoimmune diseases, susceptibility depends to some extent on a number of predisposing genes, disease being conferred to a greater degree by uncharted environmental risk factors [1]. The impact of environmental risk factors is inferred, for example, from many studies showing that migration as a child from a country of low prevalence to a country of high prevalence imposes the risk of the new country of domicile [2]. Epidemiological studies aimed at characterizing the environmental determinants have been challenging. Those that have received the most attention are UV-exposure and infectious history [3]. Of the many infectious agents that have been considered, Epstein-Barr virus (EBV) is arguably the pathogen for which there is most supporting evidence, including evidence from the relationship between severe infectious mononucleosis and MS [4]. The case for a microbial pathogen in etiology has been argued in relation either to cross-reactive stimulation of autoreactive T cell receptors by related pathogen sequences (molecular mimicry) or to pathogen-driven CNS inflammation and bystander activation [5,6].

A recent study used deep-sequencing data and proteomic databases to generate an algorithm for naturally occurring T cell receptor (TCR) ligands [7]. This encompassed a search for naturally occurring, cross-reactive, environmental ligands for a prototypic, multiple sclerosis patient-derived T cell receptor specific for myelin basic protein epitope. An implication was that in autoimmune etiology, we may now need to consider not just pathogen exposure but all of the structurally related potentially cross-reactive protein-derived ligands

* Correspondence: r.boyton@imperial.ac.uk
1 Lung Immunology Group, Section of Infectious Diseases and Immunity, Division of Infectious Diseases, Department of Medicine, Hammersmith Hospital, Imperial College London, Room 8N22, Commonwealth Building, Du Cane Road, London W12 0NN, UK
Full list of author information is available at the end of the article
to which we may be exposed in our environment - the expo-
some in its broadest sense [8].

Hypothesis
Having previously reported modeling of MS immunology
and pathology in an HLA-DR15 and TCR transgenic
model utilizing the same myelin basic protein (MBP) spe-
cific TCR as used by Birnbaum et al. [9], we, here, took
the opportunity to investigate whether ‘environmental’
peptides implicated by the structural algorithm could in-
deed act by cross-reactivity to induce disease.

In the model that we have previously reported, expression
of the Ob1.A12 TCR on a high proportion of murine CD4
and CD8 cells results in spontaneous, chronic demyelinat-
ing disease, highly reminiscent of human MS [9,10]. This
strain, termed Line 7, shows disease that is initially medi-
ated by migration to the CNS of IFNγ-secreting and then
IL-17-secreting cells and encompasses intermolecular epi-
tope spread from the initial MBP 85-99 epitope. While
spontaneous disease can develop at any stage from around
16 weeks to 1 year or older, synchronous disease can be in-
duced in young-adult mice by the injection of MBP peptide in
adjuvant.

Methods
Line 7 mice have been previously described by us and
carry HLA-DR15 with an anti-MBP (85-99)-specific TCR
(clone Ob1.A12) on an HLA-DR1501/β2m background [9,10]. Mice were
maintained in individually ventilated cages and were used
in experiments as age- and sex-matched young adults.
Mouse experiments were performed within UK Home Of-
cice legislation under the terms of the Project License PPL
70/8110 granted for this work under the Animals (Scien-
tific Procedures) Act 1986. Local ethical review and
formal approval had also been obtained through the Im-
perial College Ethical Review Process Committee.

Unprimed splenocytes from previously described Line 7
HLA-DR15 and TCR transgens carrying an anti-MBP
(85-99)-specific TCR (clone Ob1.A12) on an HLA-
DR1501/β2m background (n = 6) were cultured in triplicate
on pre-coated IFNγ ELISpot plates with 0.25, 2.5, or 25 μg/
ml of each of the 12 test peptides, MBP 85-99, and a nega-
tive control peptide (Burkholderia pseudomallei AhpC,
BPSL2096 51-70 KDFTFVCPTEIVEFAKLAKQ which
stimulates potent CD4 T cell responses in HLA-DR1501/
β2m transgenic mice [11]). Cells were cultured for 72 h.
Data are expressed as SFC/10^6 splenocytes and shown as
mean values ± SEM.

Line 7 mice were used to test the encephalitogenic cap-
acity of test peptides. Young male mice received 300 μg
peptide subcutaneously in the flank using CFA supple-
mented with Mycobacterium butyricum at day 0 and 50
μg peptide subcutaneously in CFA at day 6. Pertussis toxin
da a dose of 200 ng intraperitoneally was administered on
days 0, 2, 6, and 8. Mice were scored daily for signs of
neurological disease using an established disease score
scale according to the following criteria: 0, normal; 1, limp
tail; 2, impaired righting reflex or waddling gait; 3, partial
hind limb paralysis; 4, total hind limb paralysis; 5, total
limb paralysis.

Results
We started by reappraising in functional T cell assays
the relative functional avidity of the environmental
ligands described by Birnbaum et al. [7]. These encom-
passed peptide sequences from Encephalitozoon romaleae,
Chlorobium chlorochromatii, Rhodococcus sp. AW25MO9,
T cell assays show the relative functional avidity of environmental ligands. (A-L) Unprimed splenocytes from previously described HLA-DR15 and TCR transgenics carrying an anti-MBP (85-99) specific TCR (clone Ob1.A12) on an HLA-DR1501/Aβo background (n = 6) were cultured in triplicate on precoated IFNγ ELISpot plates with 0.25, 2.5, or 25 μg/ml of each of the 12 test peptides, MPB 85-99, and a negative control peptide (HLA-DR1501 binding peptide from Burkholderia pseudomallei, AhpC, BPSL2096 (51-70) KDFTVFQTEVEFAKLAQ which stimulates potent CD4 T cell responses in HLA-DR1501/Aβo transgenic mice [11]). Cells were cultured for 72 h before plate development. Data are expressed as SFC/10^6 splenocytes and shown as mean values ± SEM. In each case, MBP 85-99 positive control peptide is indicated as closed squares, test peptide as closed circles, and negative control peptide as closed triangles. Test peptide identities were as follows: (A) Encephalitozoon romaleae, FGKIHFFKQRNSL; (B) Chlorobium chlorochromatii CaD3, VFGNVHFFKNTGSA; (C) Rhodococcus sp. AW25M09, AAOQIHFFKINSL; (D) Clostridium papyrosolvens, LNKNIHFFKNLPLP; (E) Anoxybacillus flavithermus, RLSVHFFRLANVS; (F) Macrophomina phaseolina MS6, AAOQNHFWKLALQ; (G) Emiliana huxleyi CCMP1516, STARVHFWRSRSSE; (H) Rhizobium leguminosarum, DVSKVHFFKGNGQT; (I) Runella slithyformis DSM 19594, HRAKLHFFKDENLK; (J) Dictyostelium fasciculatum, YKHIFKYGLAVY; (K) Ogataea parapolymorpha DL-1, EAAIHFYKGLAVY; (L) Myxococcus stipitatus DSM14675, SSARLHFFRALPHP.
Clostridium papyrosolvens, *Anoxybacillus flavithermus*, *Macrophomina phaseolina*, *Emiliania huxleyi*, *Rhizobium leguminosarum*, *Runella slithyformis*, and *Dictyostelium fasciculatum*, *Ogataea parapolymorpha*, and *Myxococcus stipitatus* (Table 1). Screening Line 7 splenocytes, IFNγ responses from unprimed mice, we observed a spectrum of response to the epitopes that had been previously identified as cross-reactive for this receptor (Figure 1). Two epitopes, from *E. romaleae* and from *C. papyrosolvens* elicited virtually no T cell response. Most peptides yielded a response that was significant but with reduced potency of at least 100-fold relative to the wild-type MBP 85-99 peptide. Two of the peptides, from hypothetical proteins of *D. fasciculatum* and *E. huxleyi*, induced responses within 1-log of the MBP epitope. *D. fasciculatum* is a cellular slime mold while *E. huxleyi* is a photosynthetic ocean plankton. It is uncertain why some of those epitopes predicted to be stimulatory did not elicit a response in our line 7 transgenics. However, even among lines expressing the same human TCR pair, there will be differences in response profile, determined for example by founder-specific differences in TCR transgene expression.

Of the peptides that had induced cross-reactive T cell responses in the line 7 mice, we tested the two most stimulatory, from *D. fasciculatum* and from *E. huxleyi*, for the ability to induce disease. These were compared to MBP 85-99 peptide as a positive control and to an HLA-DR15-binding CD4 T cell epitope from *Burkholderia* as a negative control [11]. The *Dictyostelium* slime mold epitope could indeed induce severe disease (Figure 2). Paralysis was of a time-course and severity similar to that induced by MBP 85-99. Postmortem neuropathology was not undertaken in this study, but our previous published work has correlated the neurological disease score used here with neuropathology (9,10). The ability to induce disease using environmental antigen-derived sequences was not a simple correlate of functional avidity, since the similarly stimulatory sequence from *E. huxleyi* did not induce disease. Further work will be required to dissect the underlying mechanism for this difference, which may relate to divergence in the cytokine profiles elicited.

Interpretation
To be clear, we interpret this as proof of principle rather than specific evidence that exposure to slime mold sequences are pathogenic in clinical MS; the Ob1.A12 TCR stimulated by this peptide is not a public receptor across MS patients in general, and therefore, one would not generalize a case based on its specific cross-reactivities. Sequencing of the TCR repertoire from MS patients has demonstrated substantial diversity in myelin epitope-specific disease-implicated receptors [12,13]. Clearly, a further caveat in considering the implications of environmental cross-reactivities is that of predicted epitopes; not all could actually stimulate T cells in our model, and not all peptides that could stimulate could induce disease. Notwithstanding these caveats and following on from the cross-reactivities modeled by Birnbaum and colleagues and our subsequent demonstration that at least one example from an antigen in the wider environment can trigger MS-like disease, we can consider a new chapter of autoimmunity research, analyzing such triggers and their contribution to disease. This newly places the experimental analysis of the relationship between an individual’s exposome, their immune repertoire, and their susceptibility to autoimmunity within the domain of structural and functional immunology [14].

It has long been a given in MS research that there are environmental risk factors relating to geography and, in particular, latitude [http://www.msif.org/wp-content/uploads/...].

![Figure 2](image-url). Induction of autoimmune paralysis in TCR transgenic multiple sclerosis model by a cross-reactive Dictyostelium slime mold peptide. Figures 2, 3, and 4 show data from 3-5 replicate experiments. Data are compiled as mean ± SEM for each group. Analysis was performed with the Student’s t-test (unpaired, pooled) and is shown as statistically significant (P < 0.05) with the indicated symbol. A, B, C, D, E, and F represent statistically significant differences among the MBP 85-99 peptide tested and the MBP 85-99 peptide used as a positive control.
2014/09/Atlas-of-MS.pdf. The implication of the model described here is that it will now be important to consider in this context not just old favorite candidate environmental influences such as vitamin D exposure but also local flora and fauna in its widest sense.

Abbreviations
CFA: Complete Freund’s Adjuvant; CNS: central nervous system; EBV: Epstein-Barr virus; HLA: human leukocyte antigen; IFNγ: interferon γ; MBP: myelin basic protein; MS: multiple sclerosis; SD: standard deviation; TCR: T cell receptor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The experimental work was conducted by CJR, KJQ, and MJWS. The study was designed by RJB and DMA. All the authors contributed to drafting the manuscript. All authors read and approved the final manuscript.

Acknowledgements
CJR is supported by the Welton Foundation (P14475). MJWS is supported by a Wellcome Trust-NIH PhD studentship (WT095472MA). KJQ is supported by a MRC PhD studentship. The previously described HLA-DR15 and T cell receptor transgenics were used in these studies was originally generated with support from the Multiple Sclerosis Society UK. This work was also supported through the NIH-NIAID Epitope Discovery Program under contract number HHSN272200900046C (RB & DA). The authors wish to acknowledge the support of the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) Imaging and FACS Facility at the Hammersmith Campus. Imperial College Healthcare NHS Trust in partnership with Imperial College London.

Author details
1 Lung Immunology Group, Section of Infectious Diseases and Immunity, Division of Infectious Diseases, Department of Medicine, Hammersmith Hospital, Imperial College London, Room 8N22, Commonwealth Building, Du Cane Road, London W12 ONN, UK. 2 Section of Molecular Immunology, Division of Immunology and Inflammation, Department of Medicine, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 ONN, UK.

Received: 13 March 2015 Accepted: 28 April 2015
Published online: 13 May 2015

References
1. Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev. 2012;248:87–103.
2. Atter M, Kahana E, Loewenson R. Migration and risk of multiple sclerosis. Neurology. 1978;28:1089–93.
3. Marrie RA. Environmental risk factors in multiple sclerosis aetiology. Immunol Rev. 2012;248:87–103.
4. Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 2003;16:79–84.
5. Lünenmann JD, Jelicic I, Roberts S, Lutterotti A,ackenberg B, Martin R, et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008;205:1763–73.
6. Moseman EA, McGavern DB. The great balancing act: regulation and fate of antiviral T-cell interactions. Immunol Rev. 2013;255:110–24.
7. Birmbaum ME, Mendoza JL, Sethi DK, Dobbins J, Dobbins J, et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 2014;157:1073–87.
8. Stadinski BD, Huseby ES. Identifying environmental antigens that activate myelin-specific T cells. Trends Immunol. 2014;35:231–2.
9. Ellmerich S, Mycko M, Takacs K, Waldner H, Wahid FN, Boyton RJ, et al. High incidence of spontaneous disease in an HLA-DR15 and T cell receptor transgenic multiple sclerosis model. J Immunol. 2005;174:4938–46.
10. Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ, Boyton RJ, et al. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol. 2013;126:501–15.
11. Reynolds C, Goudet A, Jenjaroen K, Surnooniwa M, Rinchai D, Musson J, et al. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: a correlate of disease outcome in acute melioidosis. J Immunol. 2015;194(10):4814–24. doi: 10.4049/jimmunol.1402862. Epub 2015 Apr 10. PubMed PMID: 25862821; PubMed Central PMCID: PMC4416739.
12. Junker A, Ivanidze J, Malotka J, Eigelmeier I, Laslmann H, Wekerle H, et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain. 2007;130:2789–99.
13. Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124:1168–72.
14. Altmann DM, Boyton RJ. Replace pathogens with perceptogens. Nature. 2015;518:35.