Geophysical Research Letters

Singing Comet Waves in a Solar Wind Convective Electric Field Frame

C. Goetz1, F. Plaschke2, and M. G. G. T. Taylor1

1ESTEC, European Space Agency, Noordwijk, The Netherlands, 2Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Abstract The cometary plasma environment at low gas production rates is dominated by highly compressional, large-amplitude magnetic field waves in the 10–100 mHz range. They are thought to be caused by an ion-Weibel instability due to a cross-field current, which is caused by the cometary ions that are accelerated along the solar wind convective electric field. We devise a new method to determine the location of the wave source, the wave power, frequency, and bandwidth. It is found that the wave occurs everywhere in the coma, regardless of electric field direction. There is no correlation between the wave frequency and the measured plasma density. This is not in agreement with previous studies. A dependence of the frequency on the position of the spacecraft in a comet-fixed frame is in agreement with the prediction from the ion-Weibel instability. We infer a wave generation region much larger than the cometocentric distances covered by Rosetta.

Plain Language Summary We study the properties and region of occurrence of so-called singing comet waves. This type of electromagnetic wave has only been observed at comet 67P/Churyumov-Gerasimenko at low gas production rates. Contrary to previous simulations our results indicate that this wave is not only found in one hemisphere of the comet’s plasma environment. Instead it is generated in a much bigger region around the nucleus than previously considered.

1. Introduction

Comets are small solar system bodies composed of ices and rock. As comets approach the Sun, the ices sublime and form a neutral gas coma around the nucleus that is not gravitationally bound. The gas is ionized mainly by photo-ionization and electron impact ionization. The resulting ion cloud presents an obstacle to the solar wind, as the newly formed ions are at rest in the cometary frame of reference. To incorporate the cometary ions into the solar wind they need to be accelerated, which may be accomplished by an \(E \times B \) drift that is associated with the convective electric field of the solar wind (Behar et al., 2016). As the cometary ions are mainly water and the solar wind magnetic field magnitude is low, the gyroradii of the cometary ions can exceed 10,000 km under low outgassing conditions at high heliocentric distances (Glassmeier, 2017).

The Jupiter family comet 67P/Churyumov-Gerasimenko was explored by the European Space Agency’s Rosetta mission for an entire perihelion passage from 2014 to 2016 (Glassmeier, Boehnhardt, et al., 2007). The spacecraft was equipped with a full suite of plasma instruments that explored the interaction of the solar wind with the cometary charged particle environment.

Since its arrival at the comet, Rosetta has measured various plasma waves, most notably a new type of low frequency wave in the vicinity of a weakly outgassing comet was found by Richter et al. (2015). They show that large amplitude, compressional waves are detected around frequencies of 40 mHz. The wave frequency does not depend on the background magnetic field. This type of wave is new compared to observations at other comets, where a wave in the frequency range of the ion-cyclotron frequency (which depends on the magnetic field magnitude) was detected. Richter et al. (2015) find that the “wave activity in general is controlled by the cometary ion production rate” and that the magnetic energy density in the 30–80 mHz band increases with decreasing cometocentric distance down to a distance of about 0 km. The proposed generation mechanism for this wave activity is a cross-field current. This mechanism is further investigated theoretically by Meier et al. (2016), who find a zero frequency wave that is subject to a Doppler shift to the spacecraft frame of reference.
Richter et al. (2016) and Heinisch et al. (2017) study the properties of these waves using both Rosetta and the lander Philae's observation of the magnetic field. They find that both spacecraft measure the same wave phenomena, indicating that the generation region is larger than the separation (∼10 km) of the two spacecraft. They infer a wavelength of tens to hundreds of kilometers and show that the wave signature is broadband and variable between ∼10 mHz and ∼100 mHz. They report an upper size limit for the generation region of 100 km.

Simulations of the plasma environment of a weakly outgassing comet reveal structures that can be interpreted as waves (Koenders et al., 2016). They are exclusively found in the +E hemisphere of the interaction region, where E is the solar wind convective electric field. A second simulation reveals that even at higher gas production rates, the waves are present and confined to one hemisphere.

Hajra et al. (2017) investigate the plasma's reaction to a cometary outburst (Grün et al., 2016). It is found that the singing comet waves vanish around the time of the highest plasma density. In a follow-up study by Breuillard et al. (2019) this is investigated further with one of the main results being that the waves do not vanish, instead the frequency is lowered (from ∼50 mHz to ∼20 mHz). They conclude that this decrease is due to the additional ion-neutral friction slowing down the cometary ions and thus changing the Doppler shift of the wave frequency.

It is also found that the singing comet power is diminished in one hemisphere of the coma in the near-tail (Volwerk et al., 2018). It is speculated that this is due to the orientation of the convective electric field, which should influence the location of the generation region of the waves.

In this publication we investigate for the first time where these low-frequency waves are detected in the plasma environment especially with regard to the convective electric field direction and how their frequency evolved with time during the preperihelion time period of the Rosetta mission.

2. Data and Methods

We use magnetic field measurements from the Rosetta Plasma Consortium (RPC) magnetometer (MAG) (Glassmeier, Richter, et al., 2007), resampled to 1 Hz in cometocentric solar equatorial (CSEQ) coordinates. When burst mode data are available, we use a filter with a cutoff frequency of 0.9 Hz to resample to 1 Hz (to ensure suppression of all high-frequency contributions), in normal mode the onboard filter is used. We use data from August 2014 to end of March 2015. This interval was chosen to cover as many gas production rates and cometocentric distances as possible, while retaining the best available data quality. The end of March cutoff was chosen because it is roughly where the solar wind ion cavity is larger than the spacecraft cometocentric distance and Rosetta is considered to be orbiting in the inner coma. This corresponds to a gas production rate of roughly 5×10^{26} s$^{-1}$. Only one interval has a suitable orbit to investigate the behavior of the waves at similar gas production rates and far from the nucleus: the tail excursion in March 2016 (Volwerk et al., 2018). This interval is not included in the statistical study because the magnetic field is not as reliable due to a lack of calibration opportunities. With a more cautious approach to the magnetic field measurements, it can still be used for a case study, as was done in Volwerk et al. (2018).

We develop a new method to detect wave activity and the wave properties. We compute the power spectral density in a 600 s sliding interval with an overlap of 300 s. For the power spectral density estimator we use Welch's method with an interval length of 0.25 of the original signal length and an overlap of 0.125. From this the 95% confidence interval is computed as well. Then a linear fit (in a double logarithmic plot) is made for all frequencies below 100 mHz. This cutoff frequency was chosen due to the filter cutoff that is used to resample the magnetometer data onboard (normal mode). This filter cutoff makes it very difficult to correctly interpret frequencies above ∼200 mHz. Then the spectrogram is detrended using the linear fit and the largest peak is determined. A positive wave detection is logged if the peak prominence is more than two times the confidence interval. Two examples may be found in the supporting information.

Richter et al. (2016) uses a different method to determine the properties of the singing comet waves. This method involves computing the power spectral density (PSD) estimate in a sliding interval and then integrating in a spectral band between 10 and 100 mHz. However, this method does not distinguish intervals that have a clear wave signature from intervals without one.

We use the reference frame CSE (cometocentric solar electric), in which the x axis points toward the Sun, the z axis points along the convective electric field, and y completes the right-handed system. Since Rosetta has
no instrument to determine the convective electric field, we estimate its direction by \(\vec{E} = -\vec{v} \times \vec{B} \), whereby \(\vec{B} \) is the measured field. The solar wind velocity \(\vec{v} \) is estimated to be 400 km/s pointing in antisunward direction. This is similar to the approach taken by Edberg et al. (2019). Since it is only the direction of the solar wind that is of importance for the electric field direction, variations in the speed are of minor importance. To ensure that a change in magnetic field in the 10 min interval is not interfering with the electric field estimate, we discard intervals where more than 20% of the magnetic field vectors deviate by more than 30° from the mean field vector. These numbers represent a trade-off between retaining clear intervals and larger statistics. Note that changing them does not alter the results qualitatively.

We also use the CSEQ (cometocentric solar equatorial) system, a comet-centered frame, where the \(x \) axis points toward the Sun, the \(z \) axis is the component of the Sun's north pole that is orthogonal to the Sun-comet line, and the \(y \) axis completes the right-handed system (ESA SPICE Service, 2019). The gas production rate is derived using the in situ data from ROSINA-COPS (Balsiger et al., 2007) and a spherical coma model (Haser, 1957).

3. Results and Discussion
3.1. Location of the Wave Detections
The locations in the CSE frame at which waves are detected are shown in Figure 1. The wave occurrence is normalized by the spacecraft dwell times to correct for spatial bias. Grid points with less than 100 min dwell time are discarded as the wave determination interval was 10 min with a 5 min overlap and we require at least 20 points for the normalization. Wave occurrence is rather homogenous in the vicinity of the comet, with no specific region dominating. The total occurrence rate of the waves is 0.21% in the \(-E \) hemisphere and 0.28% in the \(+E \) hemisphere. These rates are essentially the same; therefore, we conclude that there is no preferred hemisphere for wave detection. We have also performed the same analysis in the CSEQ system with similar results (not shown). This does not agree with the simulations by Koenders et al. (2016), where the waves were only seen in the \(+E \)-hemisphere.

We present two possible explanations for this discrepancy. First, our findings could indicate that the cross-field current is not part of the generation mechanism. Or second, the coherence length and the source region are much larger than the cometocentric distance that Rosetta covers (150–200 km). This means that Rosetta is not able to see any asymmetry with respect to the convective electric field. However, Richter et al. (2016) estimate a coherence length of \(\sim 50 \) km and a source region size of up to 100 km, which means that the source region size would be smaller than the covered distance and we therefore should see a difference between the two \(E \) hemispheres.
Figure 2. Peak wave power spectral density in a cometocentric distance—z_{CSE}—plot. The power spectral density is color coded and each point corresponds to one 10 min interval. The gray line follows the position of the spacecraft. The smaller figures to the top and left show the power spectral density over cometocentric distance and z_{CSE}.

Unfortunately Rosetta stayed very close to the nucleus for the interval that is used here. We therefore also turn to the tail excursion, which covered larger distances at similar gas production rates. Figure 2 shows the PSD of the wave and its occurrence location in the CSE system. We can see the PSD decreasing with increasing distance. There is also no indication that the waves only occur in one hemisphere when taking into account the spacecraft trajectory, which is biased toward $-z$ (gray line in the same figure). We can therefore extend our results to distances up to 800 km down the tail (which is approximately the furthest the wave was found), with the caveat that the tail excursion is essentially just a case study and a statistical treatment is not possible due to the small sample size.

3.2. Wave Power and Frequency Distribution

Figure 3 shows the time evolution of the frequency as well as the gas production rate and the spacecraft position. The spatial distribution of the wave power was investigated by Richter et al. (2015). We can affirm their finding that the peak PSD increases as the cometocentric distance decreases (Figure 4c) and that there is no correlation between the PSD and the magnetic field magnitude. This is true for both detection methods.

The frequency does not depend on the cometocentric distance or the magnetic field magnitude. The frequency is clearly changing (uppermost panel), from average values above 90 mHz up until early October to average values below 90 mHz afterward. There is also a distinct oscillating pattern in the higher-frequency regime during the first two and a half months.

We have performed a correlation analysis between the frequency and plasma density, neutral density, Alfvén velocity, and gas production rate derived from a simple, spherical model (Haser, 1957) and observations, gas production rate from an empirical model (Hansen et al., 2016), spacecraft position in CSEQ, CSE and a comet fixed frame. There are no clear correlations found, except that the position of the spacecraft in z direction in CSEQ shows a remarkable similarity to the variation in frequency for the first two and a half months of the interval, up until 10 October 2014. Figure 4a shows this more clearly. For values of z_{CSEQ} greater than 20 km the frequency increases by a factor of 3, compared to other values. We have ruled out that this is due to the radial distance, or due to the longitude and latitude of Rosetta in the comet-fixed system.
Meier et al. (2016) show that the phase structure caused by the ion-Weibel instability is highly asymmetric along \(z \) in the CSEQ system (referred to as cometary frame of reference in the publication). This is due to the Doppler shift when transforming from a current-aligned to a stationary coordinate system. This asymmetry could explain our findings here. However, it is unclear why this asymmetry is not visible in the CSE frame of reference, as in the theoretical model the \(z \) axis is aligned with the electric field. There are also other discrepancies between the model and the findings from the data: for example, the model predicts a very steep increase of the frequency with an increase in the magnetic field strength. For a magnetic field greater than 15 nT, the frequency is modeled to be higher than 2 Hz, which is in direct contradiction to the data, where the frequency overall decreases with higher magnetic fields. However, many parameters change at
the same time during the Rosetta observation period and thus the interplay of an increase in solar wind speed, magnetic field pileup, and increase in cometary ion density makes it very difficult to disentangle the contributions.

Figure 4b shows the peak frequency over the plasma density. The blue median clearly does not show any correlation between plasma density and frequency, contrary to what Breuillard et al. (2019) found. There is a slight increase in frequency for very low densities. This can be attributed to the fact that the higher frequencies mostly occur when Rosetta is still in the solar wind or far from the comet and the detection method is less reliable there (see also Figure 3). This is also the interval when the density is lowest (Odelstad et al., 2015). In fact a closer examination of the plasma density and frequency reveals intervals where they correlate, intervals where they anticorrelate, and intervals where they are 90° out of phase, shedding doubt on the correlation between frequency and density found by Breuillard et al. (2019). If they were correlated, a periodicity in the wave frequency of 6 or 12 hr according to the neutral gas density variation (Goetz et al., 2017) should also be visible, which it is not. However, it should be noted here that there is still a possibility that the wave frequency is correlated to the density in the wave generation region, which as noted above may be much larger than the distances covered by the in situ measurements.

For the interval used in this study, Mars was located conveniently close to the Sun-comet line. The distance between Mars and the comet was approximately 1.8 AU. At a solar wind velocity of 350 km/s to 400 km/s the delay time between Mars solar wind observations and solar wind at the comet is around 8 – 9 days. Unfortunately MAVEN observations at Mars only start in October 2014, and Mars Express has no magnetic field instrument. However, we can compare the Mars Express ASPERA-3 IMA proton moments with the observed frequency development. There is no obvious correlation, especially considering the uncertainty in the solar wind propagation. Earth was in a disadvantageous position compared to the comet, so propagation models are not optimal. No obvious correlation can be found with solar wind parameters propagated from Earth (Tao et al., 2005).

The width of the peak also does not correlate clearly with any of the investigated parameters.

4. Conclusions

We have performed a study of the properties of low-frequency waves in the plasma environment of comet 67P. A new method allows for the distinction of intervals where the waves are present and intervals where they are not observable. We find that

- waves occur everywhere in the cometary environment, regardless of electric field direction;
- the wave generation region can tentatively be constrained to >800 km;
- the wave frequency changes from >90 mHz at large heliocentric distances to <90 mHz at smaller heliocentric distances;
- the wave frequency is not a function of the plasma density; and
- the wave frequency during the earliest stages of cometary activity depends on the spacecraft position in CSEQ.

Thus we found that the wave generation region is larger than previously estimated and that the in situ plasma density is not the driver of the wave frequency. To constrain this further measurements with two spacecraft and/or more statistics are necessary.

The findings are partly in agreement with the predictions for a modified ion-Weibel instability; however, they disagree with the hybrid simulations which predicted an asymmetry in the wave occurrence along the convective electric field direction.

References

Balsiger, H., Altweeg, K., Bochsler, P., Eberhardt, P., Fischer, J., Graf, S., et al. (2007). Rosina Rosetta Orbiter Spectrometer for ion and neutral analysis. Space Science Reviews, 128, 745–801. https://doi.org/10.1007/s11214-006-6335-3

Barthelemy, M., Heathier, D., Grotheer, E., Besse, S., Andres, R., Vallejo, F., et al. (2018). ROSETTA: How to archive more than 10 years of mission. Planetary and Space Science, 150, 91–103. https://doi.org/10.1016/j.pss.2017.07.004

Behar, E., Nilsson, H., Wieser, G. S., Nemeth, Z., Broiles, T. W., & Richter, J. (2016). Mass loading at 67P/Churyumov-Gerasimenko: A case study. Geophysical Research Letters, 43, 1411–1418. https://doi.org/10.1002/2015GL067436

Besse, S., Vallat, C., Barthelemy, M., Coia, D., Costa, M., De Marchi, G., et al. (2018). ESA’s Planetary Science Archive: Preserve and present reliable scientific data sets. Planetary and Space Science, 150, 131–140. https://doi.org/10.1016/j.pss.2017.07.013
Breuillard, H., Henri, P., Bucciantini, L., Volwerk, M., Karlsson, T., Eriksson, A., et al. (2019). The properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission. *Astronomy & Astrophysics*, 630(A39), 9. https://doi.org/10.1051/0004-6361/201834876

ESA SPICE Service (2019). Rosetta Operational SPICE Kernel Dataset. https://doi.org/10.5270/esa-tyidsbu

Edberg, N. J. T., Eriksson, A., Vigren, E., Johansson, F. L., Goetz, C., Nilsson, H., et al. (2019). The convective electric field influence on the cold plasma and diamagnetic cavity of Comet 67P. *The Astronomical Journal*, 158(2), 71. https://doi.org/10.3847/1538-3881/abb228

Glassmeier, K.-H. (2017). Interaction of the solar wind with comets: A rosseta perspective. *Philosophical Transactions of the Royal Astronomical Society A*, 375, 20160256. https://doi.org/10.1098/rsta.2016.0256

Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kühn, E., & Richter, I. (2007). The Rosetta mission: Flying towards the origin of the solar system. *Space Science Reviews*, 128, 1–21. https://doi.org/10.1007/s11214-006-9140-8

Glassmeier, K.-H., Richter, I., Diedrich, A., Motschmann, U., Auster, U., & Musmann, G. (2007). RPC-MAG: The fluxgate magnetometer in the ROSETTA Plasma Consortium. *Space Science Reviews*, 128, 649–670. https://doi.org/10.1007/s11214-006-914-x

Goetz, C., Volwerk, M., Richter, I., & Glassmeier, K.-H. (2017). Evolution of the magnetic field at comet 67P/Churyumov-Gerasimenko. *Monthly Notices of the Royal Astronomical Society*, 469, S268–S275. https://doi.org/10.1093/mnras/stx1570

Grün, E., Agarwal, J., Altobelli, N., Altwek, K., Bentley, M. S., & Miller, N. (2016). The 2016 Feb 19 outburst of comet 67P/CG: An ESA Rosetta multi-instrument study. *Monthly Notices of the Royal Astronomical Society*, 462, S220–S234. https://doi.org/10.1093/mnras/stw2088

Hajra, R., Henri, P., Vallières, X., Galand, M., Hérétier, K., Eriksson, A. I., et al. (2017). Impact of a cometary outburst on its ionosphere. *Rosetta Plasma Consortium observations of the outburst exhibited by comet 67P/Churyumov-Gerasimenko on 19 February 2016. Astronomy & Astrophysics*, 607, A34. https://doi.org/10.1051/0004-6361/201730591

Hansen, K. C., Altwek, K., Berthelier, J.-J., Bieler, A., Blaver, N., Bockelée-Morvan, D., et al. (2016). Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. *Monthly Notices of the Royal Astronomical Society*, 462, S491–S506. https://doi.org/10.1093/mnras/stw2413

Häser, L. (1957). Distribution d’intensité dans la tête d’une comète. *Bulletin de la Societe Royale des Sciences de Liege*, 43, 740–750.

Heinisch, P., Auster, U.-U., Richter, I., Haerendel, G., Apathy, I., Fornacon, K.-H., et al. (2017). Joint two-point observations of LF-waves at 67P/Churyumov-Gerasimenko. *Monthly Notices of the Royal Astronomical Society*, 469, S588–S572. https://doi.org/10.1093/mnras/stx1175

Koenanders, C., Perschke, C., Goetz, C., Richter, I., Motschmann, U., & Glassmeier, K. H. (2016). Low-frequency waves at comet 67P/Churyumov-Gerasimenko. Observations compared to numerical simulations. *Astronomy & Astrophysics*, 594, A66. https://doi.org/10.1051/0004-6361/201628803

Meier, P., Glassmeier, K.-H., & Motschmann, U. (2016). Modified ion-Weibel instability as a possible source of wave activity at Comet 67P/Churyumov-Gerasimenko. *Annals of Geophysics*, 34(9), 691–707. https://doi.org/10.5194/angeo-34-691-2016

Odelstad, E., Eriksson, A. I., Edberg, N. J. T., Johansson, F., Vigren, E., André, M., et al. (2015). Evolution of the plasma environment of comet 67P from spacecraft potential measurements by the Rosetta Langmuir probe instrument. *Geophysical Research Letters*, 42, 10,126–10,134. https://doi.org/10.1002/2015GL066599

Richter, I., Auster, H.-U., Bergholler, G., Carr, C., Cupido, E., Fornaçon, K.-H., et al. (2016). Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: Comparison of RPCMAG and ROMAP. *Annales Geophysicae*, 34, 609–622. https://doi.org/10.5194/angeo-34-609-2016

Richter, I., Koenanders, C., Auster, H.-U., Frühaufl, D., Götz, C., Heinisch, P., et al. (2015). Observation of a new type of low-frequency waves at 67P/Churyumov-Gerasimenko. *Annales Geophysicae*, 33, 1031–1036. https://doi.org/10.5194/angeo-33-1031-2015

Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., & Yokoyama, T. (2005). Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. *Journal of Geophysical Research*, 110, A11208. https://doi.org/10.1029/2004JA010959

Volwerk, M., Goetz, C., Richter, I., Delva, M., Orlaszewski, K., Schwingschuh, K., & Glassmeier, K.-H. (2018). A tail like no other: RPC-MAG’s view of Rosetta’s tail excursion at comet 67P/Churyumov-Gerasimenko. *Astronomy & Astrophysics*, 614, A10. https://doi.org/10.1051/0004-6361/201732198