Arsenic induced hematological and biochemical responses in nutritionally important catfish *Clarias batrachus* (L.)

Randhir Kumar*, T.K. Banerjee

Eco-physiology Unit, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India

**Article history:**
Received 18 August 2015
Accepted 4 January 2016
Available online 8 January 2016

**Keywords:**
Clarias batrachus
Cholesterol
Hematological indices
Sodium arsenite
Toxicity

**Abstract**

The impact of sublethal toxicity of sodium arsenite on hematological and certain biochemical parameters of the fresh water catfish *Clarias batrachus* has been analyzed following exposure of sublethal concentration (1 mg/L; 5% of L<sub>50</sub> value) of sodium arsenite for 10, 30, 45, and 60 days. Arsenic bioaccumulation in the blood tissue of the fish increased progressively with increased period of exposure. The values of total erythrocyte count (TECs), total leucocytes count (TLCs), hemoglobin concentration, and packed cell volume (PCV) 1.40 ± 0.03 × 10<sup>6</sup>/mm<sup>3</sup>, 174.83 ± 2.74 × 10<sup>3</sup>/mm<sup>3</sup>, 5.01 ± 0.26 g/100 ml, 25.00 ± 1.06 were observed respectively at the end of 60 days of exposure. The results of hematological indices were found to be 179.23 ± 8.81/μl for mean corpuscular volume (MCV), 35.92 ± 1.89 pg/cell for mean corpuscular hemoglobin (MCH) and 20.17 ± 1.12 g/dl for mean corpuscular hemoglobin concentration (MCHC). The present findings are clearly indicating severe fish anemia due to the arsenic salt exposure. The continued arsenic toxicity results in decreased serum protein concentration that might be a cause for the loss of weight as well as weakness in the fish.

© 2016 Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

**1. Introduction**

Arsenic is a widespread chemical in the aquatic environment due to both geogenic processes as well as anthropogenic disturbances [9,34]. Increased concentrations of arsenic in groundwater have been reported from several countries, including India, Bangladesh, China, Japan, Nepal, Taiwan, Vietnam and some parts of the United States [18,4]. Recently the wetlands of neighboring districts of Varanasi (Ghazipur, Ballia, etc.) were found to be extensively contaminated with arsenic [56]. Elevated concentration of arsenic has raised great concern from both environmental and human health perspectives. Arsenic has been identified as one of the most alarming chemicals [7]. Its trivalent salt (sodium arsenite) is more toxic than other forms. Hence, sodium arsenite was preferred as the test toxic component. The aim of this work is to illustrate the arsenic induced impairments in fish, which is an important source of all essential amino acids.

In fish, blood shows the early impact of arsenic toxicity as it enters the blood predominantly through extensive gill surface area where the barrier between the blood and the metal salt is very thin [38] as well as through buccal cavity. Other metals (mercury, chromium, and nickel) and synthetic pyrethroids such as azodrin, cypermethrin, fenvalerate and manoceboz also exert acute toxicity on blood in different fish species [14,16,6]. For the last several decades, fishes have been used widely as a model organism to assess the impact of contaminated water. Very few workers like [56,51] have worked on arsenic toxicity in fish. Hardy nature of *Clarias batrachus* makes it an excellent bioindicator animal model for toxicological investigations. Blood parameters have been widely employed as pathophysiological indicators to diagnose the structural and functional status of fishes exposed to a variety of toxicants [1]. Hematological indices like hemoglobin (Hb), red blood corpuscles (RBCs), packed cell volume (PCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) have regularly been used to assess the oxygen carrying capacity of the blood as well as an indicator of metal pollution in aquatic environment [54]. Analysis of serum biochemical parameters especially useful to identify target organs of toxicity as well as the general health status of animals, and is advocated to provide early signs of critical modifications in stressed organisms [31,35]. Besides, biochemical investigations were used to illustrate the toxicity on different tissue systems. Hence, this investigation is aimed at studying the changes in hematological as well as biochemical status of the blood tissue of arsenic exposed *C. batrachus*.

* Corresponding author.

E-mail addresses: randhir18bhu@gmail.com (R. Kumar), tkbzoool@yahoo.co.in (T.K. Banerjee).

http://dx.doi.org/10.1016/j.toxrep.2016.01.001
2214-7500/© 2016 Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1

| Hematological parameters (mean ± SEM) of C. batrachus exposed to sublethal concentration of sodium arsenite (1 mg/L water) at different exposure duration (10–60 days); in parentheses are percent change of value compared to control group. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Hemoglobin (g/dl) | Total RBCs (×10^12/mm^3) | PCV (Ht) | MCV (fl/cell) | MCH (pg/cell) | MCHC (g/dl) | TLCs (×10^8/mm^3) |
| Unexposed (Control) | 10.80 ± 0.426 | 2.14 ± 0.03 | 47.33 ± 1.56 | 153.12 ± 9.62 | 46.20 ± 2.08 | 107.18 ± 2.90 |
| 10 days | 7.98 ± 0.48 | (20.11) | 38.33 ± 1.14 | 142.61 ± 8.07 | (21.08) | 129.00 ± 1.57 |
| | (–6.41) | (–3.90) | (–6.95) | (–8.65) | (–15.71) | (–20.05) |
| 30 days | 7.07 ± 0.24 | (–6.92) | 36.66 ± 1.56 | 145.77 ± 10.5 | (–3.98) | 150.41 ± 1.29 |
| | (–32.54) | (–8.62) | (–4.98) | (–27.62) | (–12.06) | (–40.33) |
| 45 days | 6.64 ± 0.12 | (–21.36) | 34.00 ± 1.46 | 167.80 ± 7.2 | (–28.16) | 159.83 ± 2.37 |
| | (–9.56) | (–34.52) | (–28.16) | (–13.57) | (–29.42) | (–49.12) |
| 60 days | 5.01 ± 0.26 | (–40.17) | 25.00 ± 1.06 | 179.23 ± 8.81 | (–47.18) | 174.83 ± 2.74 |
| | (–3.61) | (–53.61) | (–34.45) | (–55.32) | (–63.32) | |
(zinc, lead, copper, mercury) also induces decreased erythrocyte counts in several fishes [24,59,60,28,29,41,58]. The reduction in RBCs count was also dose dependant [41]. Packed cell volume (PCV) of control fish was 43.33 ± 1.56. It decreased progressively throughout the period of exposure. The progressive decrease in PCV values is due to the decreased number of RBCs (Table 1). Other metallic compounds (mercuric chloride and aluminum chloride) also caused significant decrease of PCV value in fish [41,3]. Atamanalp and Yanik [5] and Patnayak and Patra [36] also observed decrease PCV following exposure to various pesticides. PCV value also decreased in C. striata exposed to ammonia and lead [28,29]. Coles [20] suggested that hematological indices like MCV, MCH and MCHC are important indicators in diagnosis of anemia in most animals. The MCV is an indicator of status or size of the red blood cell and reflects the normal or abnormal cell division during erythropoiesis. MCV value of C. batrachus decreased 153.12 ± 9.62 in experimental was compare to 145.77 ± 10.5 control group) after 30 days of exposure due to decreased number of RBCs causing anemia (Table 1). However, MCV value found significantly increased after 45 and 60 days of exposure as compare to previous exposed group. Sinha et al. [57] also observed increase level of MCV and Erythrocyte sedimentation rate in Labeo rohita due to copper intoxication and suggested that the anaemia was of macrocytic type. Devi and Banerjee [30] also found increased level of MCV value in C. strata following exposure of ammonium sulfate. Following exposure the normal MCH value decreased substantially but fluctuated in narrow ranges at different stages of exposure (Table 1). Significant decrease in MCH value was also been reported in ammonia and toxic metal [6,28,29] exposed fishes indicating micro cystic anemia. Decrease in MCH and MCV level indicate hypochromic microcytic anemia [55]. MCHC measurement is a diagnostic tool to assess the amount of RBC swelling (decreased MCHC) or shrinkage (increased MCHC) [43]. The MCHC value of exposed C. batrachus decreased steadily and became 20.17 ± 1.12 g/dl after 60 days of exposure (from 30.76 ± 2.29 g/dl in control). This shows arsenic causes swelling of the RBCs. Devi and Banerjee [29] also reported decreased MCHC value in C. striata following exposure to ammonia. The same author Devi and Banerjee [28] observed decreased MCHC value in C. striata after 60 days of lead exposure. However the MCHC in this case showed periodic fluctuations at earlier stages of exposure. Alwan et al. [3] observed high MCHC as well as MCH value following exposure to aluminum indicating large size RBC containing less hemoglobin content. The total leucocytes count in arsenic treated fish increased steadily (from 107.18 ± 2.90 × 10³/mm³ in control to 174.83 ± 2.74 × 10³/mm³ after 60 days of exposure) (Table 1). The increase in total leucocytes count may be attributed to increased immune reaction perhaps to protect the fish already damaged by the arsenic stress. Leucocytes play a major role in the defense mechanism of the fish [49]. Decrease in RBC count and Hb concentration along with increased leucocytes count were also noticed when the same fish was exposed to different concentration of HgCl₂ [41]. Ayoola [8] also observed leucocyte counts in the fish fed with compounded feed and suggested that the increase was due to enhanced production of leucocytes in the hemopoietic tissue of the kidney and spleen. In the same fish C. batrachus Maheswaran et al. [41] also observed increased leucocytes count due to stimulation of immune system caused by tissue damaged following exposure to mercuric chloride. Several other toxic elements induced the leucocyte counts in fishes [2,39,54]. According to Wedemeyer and Wood [61] the primary consequence of changes in the leucocytes in stressed fish is suppression of the immune system and increased susceptibility to disease. Gill and Pant [33] found increased leucocytes count due to stimulation of the immune system rendered by tissue damaged. On the other hand Devi and Banerjee [28] and Devi and Banerjee [29] observed decreased leucocytes count in C. striata exposed to ammonium and lead salts.

The serum glucose content of unexposed control fish was 20.96 ± 0.76 g/dl. In the exposed fish the serum glucose level increased progressively throughout the period of exposure (Table 2). The serum glucose level of the exposed fish increased significantly after 10 days (Fig. 1a) of exposure. The increased level of glucose might be due to liberation of carbohydrates following breakdown of vital macromolecules like proteins and high density lipids from different organ systems, resulting in progressive decrease of lipid and protein concentrations. Arsenic also disturbs the glucose metabolism by uncoupling of oxidation and phosphorylation [44] causing excessive availability of unutilized glucose molecules in the tissue. These additional molecules of glucose might later have got converted into glycolen or fat causing increased glycogen/lipoidal concentration. Increased level of serum glucose has also been reported in fishes exposed to cadmium [15,48,19] and several other stressor including heavy metals [14]. The serum protein concentration of unexposed control fish was 3.80 ± 0.577 g/dl. In the experimental fish group with exception of 10 days of exposure the serum protein progressively decreased throughout the period of exposure (Table 2). On the other hand, serum protein level decreases significantly after 30 days of exposure (2.78 ± 0.53 in experimental compare to 3.80 ± 0.57 mg/dl in control group; Fig. 1b) indicating regular depletion of these macromolecules. The lowering of protein concentration was perhaps accompanied by the glucose increase, to meet the high energy demand necessary to struggle with the arsenic stress. Kumar and Banerjee [38] also noticed depletion of glycogen and proteins from the hepatic and muscular tissue of C. batrachus following arsenic exposure. They also correlated the decrease with release of additional amount of carbohydrate to meet the toxic stress of arsenic.

Similar decrease in the glycogen level in the muscles and liver of certain fishes exposed to heavy metals were also observed [19].

The serum cholesterol and high density lipoprotein contents of unexposed control fish were 235.94 ± 2.86 and 46.37 ± 3.05 mg/dl, respectively (Table 2). In the exposed fish serum HDL decreased progressively throughout the period of exposure (Fig. 1c). The serum cholesterol level decreased after 45 days onwards, at shorter exposure time the serum cholesterol level increased, what was highly significant after 60 days of exposure (Fig. 1d).

Various other metals also caused decrease in level of serum cholesterol in different fish species [14,62,58,47]. The cholesterol is known to be essential structural component of membranes and also precursors of all steroid hormones [44]. The cholesterol level induced by heavy metals might be due to liver failure which sub-

**Table 2**

| Arsenic concentration in blood (μg/g) | Proteins (mg/dl) | Glucose (mg/dl) | HDL (mg/dl) | Cholesterol (mg/dl) |
|--------------------------------------|------------------|----------------|-------------|---------------------|
| Unexposed (Control)                 | <DL              | 3.80 ± 0.57    | 20.96 ± 0.76| 46.37 ± 3.05       | 235.94 ± 2.86        |
| 10 days                             | 1.74 ± 0.03      | 4.36 ± 0.14    | 26.56 ± 1.07| 35.52 ± 4.36       | 246.96 ± 2.03        |
| 30 days                             | 4.65 ± 0.14      | 3.26 ± 0.51    | 34.63 ± 4.29| 34.05 ± 4.29       | 261.20 ± 2.79        |
| 45 days                             | 5.48 ± 0.26      | 2.78 ± 0.53    | 41.06 ± 0.86| 32.31 ± 2.19       | 224.98 ± 6.88        |
| 60 days                             | 6.07 ± 0.04      | 1.52 ± 0.39    | 48.5 ± 1.36 | 32.33 ± 1.88       | 209.52 ± 5.01        |

The statistical difference between the group means compared to control group is indicated as follows: ‘*’ (p < 0.05), ‘**’ (p < 0.01), ‘***’ (p < 0.001) and NS—non significant. Symbol: ‘†’ [11]. ‡DL—below detection limit.
sequently leads to elevate the concentration into the serum. Heavy metals damaged the membranes hence very often increased level of cholesterol is taken as indicators of environmental stress. Following Santra et al. [52] they concluded that this observation was due to disturbed lipid metabolism rendered by arsenic stress. Insecticide exposure also increases lipid concentration in the fish which perhaps due to increased range of acetyl coenzyme-A to acetoacetate units for lipogenesis [10]. These authors inferred that increased oxidative stress may be due to mitochondrial damage within the hepatocytes that in turn causes decreased mitochondrial oxidation of fatty acids. These fatty acids are shunted towards esterification pathways resulting in accumulation of triglycerides within the hepatocytes which seems be true in our study but also in the study of Kumar and Banerjee [38]. High density lipoprotein (HDL) level of the serum of control C. batrachus was 46.37 ± 3.05 mg/dl that is quite high compared to the minimum level of HDL (35 mg/dl) required for human health. C. batrachus which is a very important fish both nutritionally as well as medicinally and has immense food value shows diminution in nutritional value as arsenic exposure causes progressive decrease in HDL level (Fig. 1c). Metwally et al. [42] also reported decreased level of HDL following exposure to other toxic elements copper and zinc. The content of arsenic in blood of unexposed control fish was below the detection limit (Table 2). However, the level of arsenic concentration increased significantly throughout the period of exposure.

4. Conclusions

The present study thus confirmed that hematological parameters are very sensitive parameters for monitoring toxic responses of the fish following exposure to sodium arsenite. Arsenic intoxication reveals the anemic condition in fish species. We assume that alterations in hematological indices may be a defensive mechanism against arsenic toxicity through stimulation of leucopoiesis.

Acknowledgment

The senior author is thankful to the UGC Government of India New Delhi for providing Senior Research Fellowship.

References

[1] S. Adhikari, B. Sarkar, A. Chatterjee, C.T. Mahapatra, S. Ayyappan, Effects of cypermethrin and carbosulfan on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton), Ecotoxicol. Environ. Saf. 58 (2004) 220–226.

[2] P. Allen, Changes in the hematological profile of the cichlid, Oreochromis aureus (Steindachner) acute inorganic mercury toxicity, Comp. Biochem. Physiol. 108 (1994) 117.

[3] S.F. Atwan, A.A. Hadi, A.E. Shokr, Alterations in hematological parameters of fresh water fish, Tilapia zillii, exposed to aluminum, J. Sci. Appl. 3 (2009) 12–19.

[4] H.M. Anwar, J. Akai, K.M. Mustafa, S. Saiifullah, S.M. Tareq, Arsenic poisoning in ground water health risk and geochemical sources in Bangladesh, Environ. Int. 36 (2002) 962–968.

[5] M. Atamanalp, T. Yanik, Alterations in hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to mancozeb, Turk. J. Vet. Anim. Sci. 27 (2003) 1213–1217.

[6] M. Atamanalp, T. Yanik, I. Hallioulu, M.S. Aras, Alterations in the hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to cypermethrin, Israeli J. Aquacult.-Barnidgih 54 (2002) 99–103.

[7] ATSDR (2007) Toxicological profile for arsenic. Atlanta, GA : Agency for Toxic Substances and Disease Registry http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3 .

[8] S.O. Ayoola, Haematological characteristics of Clarias gariepinus (Buchell, 1822) juveniles fed with poultry hatchery waste, IJEE 2 (1) (2011) 18–23.

[9] H. Bears, J.G. Richards, P.M. Schulte, Arsenic exposure alters hepatic arsenic species composition and stress mediated-gene expression in the common Killifish (Fundulus heteroclitus), Aquat. Toxicol. 77 (2006) 257–266.

[10] G. Begum, S. Vijayaraghavan, Alterations in protein metabolism of muscle tissue in the fish Clarias batrachus (Linn) by commercial grade dimethoate, Bull. Environ. Contam. Toxicol. 57 (1996) 223–228.

[11] R. Kumar, T.K. Banerjee, Arsenic bioaccumulation in the nutritionally important catfish Clarias batrachus exposed to the trivalent arsenic salt, sodium arsenite, Bull. Environ. Contam. Toxicol. 89 (2012) 445–449.

[12] P.C. Blaxhall, K.W. Dailey, Routine haematological methods for use with fish blood, J. Fish Biol. 5 (1973) 771–781.

[13] J.A. Buckley, C.M. Whitmore, R.I. Matsuda, Changes in blood chemistry and blood cell morphology in coho salmon, Oncorhynchus kisutch following
exposure to subletal levels of total residual chlorine in municipal wastewater, J. Fish. Res. Board Canada 33 (1976) 776–782.

[14] M. Canli, Effect of mercury, chromium, and nickel on some blood parameters in the carp, Cyprinus carpio, Turk. J. Zool. 19 (1995) 305–311.

[15] M. Canli, Effects of mercury, chromium and nickel on glycogen reserves and protein levels in tissues of Cyprinus carpio, Turk. J. Zool. 20 (1996) 161–168.

[16] E. Cataldi, P. Di Marco, A. Mandich, S. Cataudella, Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces:Acipenseriformes): effects of temperature and stress, Comp. Biochem. Physiol. 121A (1998) 351–354.

[17] C.J. Chen, Y.M. Hisue, M.P. Tseng, Y.C. Lin, L.H. Hsu, W.L. Hsu, H.Y. Chou, I.H. Wang, Y.L. Chou, C.H. Tseng, S.H. Liu, Individual susceptibility to arseniasis, in: W.R. Chappell, C.O. Abernathy, R.L. Calderon (Eds.), Arsenic Exposure and Health Effects: IV, Elsevier, Oxford, UK, 2001, pp. 135–143.

[18] U.K. Chowdhury, B.K. Biswas, T.R. Chowdhury, G. Samanta, B.K. Mandal, G.C. Basu, Ground water arsenic contamination in Bangladesh West Bengal, India, Environ. Health Perspect. 108 (2000) 393–397.

[19] R.C. Engin, The effects of cadmium on levels of glucose in serum and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L., 1758), Turk. J. Vet. Anim. Sci. 29 (2005) 113–117.

[20] E.H. Coles, Veterinary Clinical Pathology, 4th ed., W.B. Saunders Company, London, UK, 1986.

[21] G.R. Cooper, N. McDaniel, The determination of glucose by the ortho-Toluidine method, in: R. MacDonald (Ed.), Standard Methods of Clinical Chemistry, vol. 6, Academic Press, New York and London, 1970, p. 159.

[22] J.V. Darie, S.M. Lewis, Practical Haematology, 5th ed., Churchill Livingstone, London, 2001, pp. 633.

[23] E.M. Darmady, S.G.T. Davenport, Haematological Techniques for Medical Laboratory Technician and Medical Students, J & A Churchill Ltd., London, 1954, pp. 27–46.

[24] B.K. Das, S.C. Mukherjee, Toxicity of cypermethrin in Labio rohita fingerlings: biochemical, enzymatic and haematological consequences, Comp. Biochem. Physiol. 134 (2003) 1101–1112.

[25] S.F. Sniezko, Microhematocrit as a tool in fishery research and management, U.S. Fish and Wildlife Serv., Spec. Sci. Rept.–Fisheries, 341, 1960, 1–15.

[26] P. Das, S. Aiyappan, J.K. Jena, B.K. Das, Nitrite toxicity in Circinus mriglia (Ham.): acute toxicity and sublethal effect on selected haematological parameters, Aquaculture 235 (2004) 633–644.

[27] P. Das, S. Aiyappan, J.K. Jena, B.K. Das, Effect of sub-lethal nitrite on selected haematological parameters in fingerling Catla catla (Ham.), Aquacult. Res. 35 (2004) 874–880.

[28] R. Devi, T.K. Banerjee, Haematological disturbance due to ammonia toxicity in the air-breathing fish Channa striato (Bloch.), Biochem. Cell. Arch. 7 (2007) 1235–1243.

[29] R. Devi, T.K. Banerjee, Estimation of the sublethal toxicity of lead nitrate in the air-breathing fish Channa striato employing certain haematological parameters, Biochem. Cell. Arch. 7 (2007) 185–191.

[30] R. Devi, T.K. Banerjee, Histopathological analyses of the toxic impact of the inorganic fertilizer, ammonium sulphate on the respiratory organs of the air breathing ‘mureel’ Channa striata (Bloch.), (Pisces), Proceedings of the XXI Symposium on Reproduction (2003).

[31] L.C. Folmar, Effects of chemical contaminants on blood chemistry of teleost fish: a bibliography and synopsis of selected effects, Environ. Toxicol. Chem. 12 (1993) 337–375.

[32] T.S. Gill, A. Eggle, Stress-related changes in hematological profile of the american eel (Anguilla rostrata), Ecotoxicol. Environ. Saf. 25 (1993) 227–235.

[33] T.S. Gill, J.C. Pant, Mercury-induced blood anomalies in the freshwater teleost, Barbus conchonius Ham. Water Air Soil Pollut. 24 (1985) 165–171.

[34] O. Horacio, Gonzalez, J.A. Roling, W.S. Baldwin, L.J. Bain, Physiological changes and differential gene expression in mummichogs (Fundulus heteroclitus) exposed to arsenic, Aquat. Toxicol. 77 (2006) 43–52.

[35] D. Jacobson-Kram, K.A. Keller, Toxicology Testing Handbook, Marcel Dekker, New York, 2001.

[36] L. Patnayak, A.K. Patra, Haemoaotopoietic alterations induced by carbaryl in Clarias batrachus (L.), J. Appl. Sci. Environ. Mgmt. 10 (3) (2006) 5–7.

[37] P.K. Joshi, M. Bose, D. Harish, Changes in certain haematological parameters in a silurid catfish Clarias batrachus (Linn) exposed to cadmium chloride, Pollut. Res. 21 (2) (2002) 119–131.

[38] R. Kumar, T.K. Banerjee, Impact of sodium arsenite on certain biomolecules of nutritional importance of the edible components of the economically important catfish C. batrachus (Linn.), Ecol. Food Nutr. 51 (2012) 114–127.