A Diarrheal Pathogen, Enteropathogenic Escherichia coli (EPEC), Triggers a Flux of Inositol Phosphates in Infected Epithelial Cells

By Vida Foubister, Ilan Rosenshine, and B. Brett Finlay

From the Biotechnology Laboratory and the Departments of Biochemistry and Microbiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Summary

Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that causes diarrhea in infants by adhering to intestinal epithelial cells. EPEC induces host cell protein phosphorylation and increases intracellular calcium levels that may function to initiate cytoskeletal rearrangement. We found that EPEC triggers the release of inositol phosphates (IPs) after adherence of bacteria to cultured epithelial cells. We also demonstrated that the EPEC-induced flux of IPs precedes actin rearrangement and bacterial invasion. EPEC mutants and tyrosine protein kinase inhibitors were used to establish that formation of IPs is dependent on tyrosine phosphorylation of a 90-kD HeLa protein. Collectively these results suggest that EPEC-induced tyrosine phosphorylation of a host cell substrate(s) leads to release of IPs, which may then trigger cytoskeletal rearrangement.

Materials and Methods

Bacterial Strains. EPEC strains E2348/69, JPN15, CVD206, 10-5-1(1), 14-2-1(1), and 27-3-2(1) are described elsewhere (7–9) and were grown in Luria-Bertani (LB) agar or LB broth at 37°C without shaking.

Tissue Culture. Epithelioid HeLa (CCL 2) cells, Caco-2 (HTB 37) cells, and Henle-407 (CCL 6) cells were obtained from American Type Culture Collection (Rockville, MD). All cells were maintained in MEM (GIBCO BRL, Gaithersburg, MD), 10% FCS (GIBCO BRL), nonessential amino acids, penicillin (100 μg/ml), and streptomycin (100 μg/ml).

Inhibitors. Inhibitors were dissolved in dimethyl sulfoxide. Stock solutions of cytochalasin D (1 mg/ml; Sigma Chemical Co., St. Louis, MO) and genistein (100 μM; Upstate Biotechnology Inc., Lake Placid, NY) were diluted in tissue culture fluid before use.

Measurement of IP Release. IP release was determined as described by Ruschkowski et al. (16). Cells were seeded onto 60-mm petri dishes and labeled with [3H]inositol (18.4 Ci/mmol; American Life Science, Arlington Heights, IL). Cells were washed and either infected with 40 μl of a fresh overnight bacterial culture (~1.5×10^9 bacteria), treated with inhibitors (250 μM genistein, 1 μM staurosporine, or 2.5 μg/ml cytochalasin D), infected with bacteria in the presence of inhibitors, or left untreated. After specified times, cells were washed with cold PBS and harvested. IPs were collected off a Dowex anion exchange column (AG 1-X8 resin, 100–200 mesh formate form; Bio-Rad Laboratories, Richmond, CA) either collectively with 1 M ammonium formate in 20 μl of 1 M ammonium formate, or separately as follows: inositol monophosphate (IP1), 20 μl of 1 M ammonium formate/0.2 M ammonium formate; inositol bisphosphate (IP2), 20 μl of 0.1 M formic acid, or separately as follows: inositol monophosphate (IP1), 20 μl of 0.1 M formic acid/0.4 M ammonium formate; inositol triphosphate (IP3), 30 μl of 0.1 M ammonium formate.
formic acid/0.8 M ammonium formate; and inositol tetrakisphosphate (IP4), 20 ml of 0.1 M formic acid/1.0 M ammonium formate. The counts per minute represent the release of IPs.

Invasion and Cell Association Assays. Invasion and cell association levels were determined as described by Finlay and Falkow (17). To determine the number of cell-associated (adherent and intracellular) bacteria, the eukaryotic cells were lysed without gentamicin treatment. These assays were carried out in quadruplicate.

Results

EPEC Induces a Flux of IPs in Infected Human Epithelial Cells. To determine if EPEC triggers a flux of IPs, HeLa cells were labeled with [3H]myoinositol and infected with bacteria for increasing times. The level of total [3H]IPs began increasing ~2 h after EPEC addition, reaching a maximum of 2.6-fold over uninfected at 3 h (Fig. 1). Addition of 200 ng/ml of epidermal growth factor (EGF) (as a positive control) for 10 min before IP extraction caused a 1.9-fold increase in [3H]IP release. Similar to the flux of IPs, the rate of association (adherence and invasion) of EPEC to HeLa cells peaked at 3–3.5 h (Fig. 2 A), and bacterial entry into HeLa cells reached a maximum rate at 3.5 h (Fig. 2 B).

Individual IPs were also measured and the levels of IP, IP3, and IP4 all peaked ~0.3 h after EPEC infection (Table 1). The inability to detect an increase in IP2, and the small increases in IP3 and IP4 are probably a result of the rapid conversion of most forms of these different species of IP (18), although the conversion of IP to inositol is prevented by Li+ in the assay buffer. The levels of IP, IP2, IP3, and IP4 are known to increase after stimulation with EGF (19).

It has previously been reported that preinducing EPEC can shorten the time required to establish LA (3, 20). We tested whether preinducing the bacteria in tissue culture medium, or spinning them onto the cell monolayers and allowing them to adhere on ice before warming and measurement of IPs, would decrease the time required by EPEC to induce a flux of IPs. These conditions decreased the time needed for EPEC-induced release of IPs by ~2 h. However, even under these conditions, EPEC-induced formation of IPs still required a minimum of 60 min before increasing, a much longer time than an EGF-induced flux (10 min).

The ability of EPEC to induce a flux of IPs in two other human epithelial cell lines was examined. Formation of IPs was found to increase 1.3-fold in Caco-2 and 1.9-fold in Henle-407 cells (Fig. 3). The kinetics of these fluxes of IPs were similar to that observed for EPEC-infected HeLa cells, with maximal levels of IPs induced 3 h after infection. HeLa cells were used for the remainder of the experiments.

Formation of IPs Is Not a Consequence of Actin Rearrangement or Bacterial Invasion. To determine if EPEC-induced release of IPs triggers, or is a result of, bacterial internalization, we analyzed the effect of blocking EPEC invasion on levels of IPs after infection. Cytochalasin D inhibits actin polymerization and blocks entry of EPEC into human cells, without affecting adherence (21, 22). We found that 2.5 µg/ml cytochalasin D decreased invasion by 99.5%. 2.5 µg/ml cytochalasin D was added to [3H]myoinositol-labeled HeLa cells either independently or simultaneously with EPEC and

![Figure 1.](image1.png) **Figure 1.** Formation of IPs in HeLa cells infected with EPEC or a cym::TnphoA mutant [14-2-1]]. Formation time points were an average of two samples ± error and are representative of one of six different experiments.

![Figure 2.](image2.png) **Figure 2.** EPEC association with (A) and entry into (B) HeLa cells. Values are the average of four samples ± SD and represent the results of two independent experiments.
incubated for 3 h. Formation of \(^{3}H\)IPs was induced by EPEC in the presence of cytochalasin D, demonstrating that cytoskeletal rearrangement and bacterial invasion are not prerequisites for formation of IPs (Fig. 4).

EPEC Mutants That Fail to Induce Host Cell Protein Tyrosine Phosphorylation Do Not Trigger a Flux of IPs. We next examined whether noninvasive mutants of EPEC, which differ in their ability to stimulate tyrosine phosphorylation of a 90-kD host protein, Hp90, induce a flux of IPs. Several classes of these mutants were examined: (a) two strains of eaeA mutants: a TnphoA insertion [10-5-1(1)] and an internal deletion (CVD206); (b) two different TnphoA class 4 insertion mutations (cfm) [14-2-1(1) and 27-3-2(1)]; and (c) JPN15, a nonadherent EPEC strain that is cured of its large plasmid.

The eaeA::TnphaA and ΔeaeA mutants, which still induce tyrosine phosphorylation of Hp90, also induced the flux of IPs at 3 h (Table 2). Although the amount of released IPs was lower than wild type EPEC, the increase in individual IPs was proportionately similar (Table 1). JPN15, the plasmidless strain, which is reduced in adherence and induction of Hp90 phosphorylation (11, 23), did not induce release of IPs (Table 2). Both cfm::TnphaA mutants, which adhere normally but do not induce tyrosine phosphorylation, did not trigger a flux of IPs (Fig. 1 and Table 2).

Host Cell Tyrosine Phosphorylation Precedes EPEC-Induced Formation of IPs. EPEC-induced tyrosine phosphorylation of Hp90 and bacterial invasion are both attenuated after treatment with the protein kinase inhibitors genistein and staurosporine. Staurosporine, however, inhibits Hp90 tyrosine phosphorylation less efficiently than genistein. We examined whether these drugs also inhibited the EPEC-induced flux of IPs. 1 μM staurosporine or 250 μM genistein was added either independently or simultaneously with bacteria to \(^{3}H\)myoinositol-labeled HeLa cells. After a 3-h infection, formation of \(^{3}H\)IPs was measured. Genistein completely inhibited the formation of EPEC-induced IPs, whereas treatment with staurosporine had only a small effect (Fig. 5). Formation of IPs was also measured at increasing times in the presence of 250 μM genistein with or without EPEC. Unexpectedly, genistein alone induced a flux of IPs that peaked 2 h after drug addition and then gradually declined (Fig. 6). The level of IPs in cells infected with EPEC in the presence of genistein increased in a manner similar to that induced by the drug alone, but after 2 h the level of IPs declined sharply.

Table 1. Release of Separate IPs* in HeLa Cells After Different Treatments

Treatment	Time	IP	IP₂	IP₃	IP₄	
Untreated		3,610.7 ± 1,596.5		2,320.0 ± 276.1	740.4 ± 84.0	154.1 ± 10.0
EPEC	3 h	11,841.1 ± 446.8	2,329.9 ± 273.7	865.4 ± 179.9	170.9 ± 1.3	
eaeA::TnphoA	3 h	9,607.86 ± 206.56	2,229.4 ± 233.3	796.7 ± 144.7	156.9 ± 16.8	

* Representative of three separate experiments.

Figure 3. EPEC-induced formation of IPs in Henle-407 and Caco-2 human epithelial cells. Values are the average of four samples (Henle-407) or two samples (Caco-2) ± error and represent the results of two different experiments.

Figure 4. Effect of cytochalasin D on EPEC-induced flux of IPs. \(^{3}H\)myoinositol-labeled HeLa cells were infected for 3 h with or without 2.5 μg/ml cytochalasin D. Values are the average of two samples ± error and represent the results of two independent experiments.
Table 2. Release of IPs in HeLa Cells Infected for 3 h with Different Noninvasive EPEC Mutants

Genotype	Phenotype	Localized adherence	A/E lesions	Hp90 tyrosine phosphorylation	Release of IPs at 3 h after infection
Uninfected	Wild type	+	+	+	3,156.2 ± 532.7
E2348/69	ΔeaeA	+	-	+	8,440.0 ± 649.8
CVD206	eaeA::TnphoA	+	±	-	6,703.7 ± 764.1
10-5-1(1)	cfm::TnlohoA	+	±	-	4,467.3 ± 271.7
14-2-1(1)	cfm::TnphoA	+	±	-	4,206.2 ± 395.7
27-3-2(1)	cfm::TnphoA	+	±	-	3,117.0 ± 145.5
JPN15	plasmid cured	-	±	±	

* Average of a minimum of three assays.

(Fig. 6). In contrast, EPEC infection without genistein caused the level of IPs to increase after 2 h, reaching a even higher level at 3 h (Fig. 6). These results suggest that genistein does not inhibit the EPEC-induced peak of IPs at 3 h by a direct mechanism such as phospholipase C (PLC) inhibition, as this drug alone induces the level of IPs to increase at 2 h. Instead, it suggests that genistein inhibits a protein tyrosine phosphorylation event(s) that is required for downstream activation by EPEC.

Discussion

We found that EPEC infection triggers an increase in the level of IPs within cultured epithelial cells. In contrast to the rapid formation of IPs that occurs within seconds or minutes in response to many growth factors and hormones, EPEC induced the release of IPs only after several hours of infection. The different kinetics are not solely a result of the time needed for EPEC to establish adherence, as release of IPs takes a minimum of 60 min to commence after bacterial attachment. It is interesting to note that other host signals triggered by EPEC, including Hp90 tyrosine phosphorylation and increased [Ca], are also induced a similar times (11, 12). These signals do not appear to be transient, but instead are relatively stable and continuous. Therefore EPEC may use a novel mechanism(s) to manipulate defined host signals to establish infection.

The cfm::TnphoA mutants do not induce tyrosine phosphorylation of Hp90 or formation of IPs, suggesting that Hp90 tyrosine phosphorylation may be involved in the release of IPs. In addition, the effectiveness of two different kinase inhibitors to block Hp90 tyrosine phosphorylation also corresponds with their ability to inhibit a flux of IPs (11). Genistein efficiently inhibits both Hp90 tyrosine phosphory-

Figure 5. Effect of staurosporine and genistein on formation of IPs by EPEC in HeLa cells. 250 μM genistein or 1 μM staurosporine were added or with bacteria to [14C]myo-inositol labeled HeLa cells and incubated for 3 h. Samples are the average of three values ± SD and represent the results of four independent experiments.

Figure 6. Rate of release of IPs in genistein-treated, uninfected, or EPEC-infected HeLa cells. All samples were the average of two values.
The IPs released after EPEC infection contain many species of phosphorylated inositol including IP₁, IP₃, and IP₄. The different IPs are proposed to have roles as second messengers, although the role of IP₃ is the best characterized since binding of IP₃ to its receptor calcium from intracellular stores (24). Therefore, our results suggest that the EPEC-induced increase in IPs occurs upstream of the reported intracellular calcium flux (13). It is likely that the intracellular changes induced by increased calcium levels initiate cytoskeletal rearrangement, disrupt the function of the brush border microvilli, affect epithelial permeability (25), and ultimately may contribute to diarreha.

Based on our findings, we propose a model in which intimate contact between EPEC and the host cell is needed to induce host tyrosine kinase activity (Fig. 7). The activated tyrosine kinase phosphorylates Hp90, and possibly PLC. Activated PLC would generate IP₃, thereby leading to the release of calcium from intracellular stores. The increased calcium levels could then induce cytoskeletal rearrangements and activate calcium-dependent kinase(s) resulting in morphological changes in the host cell.

Salmonella typhimurium and Helicobacter pylori also induce the formation of IPs in infected cells (16, 26). S. typhimurium rapidly stimulates release of IPs in epithelial cells, with maximal formation occurring 30 min after infection, simultaneous to its invasion rate (16). However tyrosine kinase inhibitors do not decrease entry of S. typhimurium into host cells (27). Therefore, although both EPEC and S. typhimurium trigger an IP flux, different host cell mechanisms appear to be activated both downstream and upstream of this common signal messenger.

We thank Michael S. Donnenberg, and James B. Kaper for providing us with the EPEC mutants and S. Ruschkowski for her excellent technical assistance.

Vida Foubister was supported by a Natural Sciences and Engineering Research Council of Canada studentship and Ilan Rosenshine was supported by a Canadian Gastroenterology Fellowship. This work was supported by an operating grant to B. Brett Finlay from the Howard Hughes International Research Scholar Program.

Address correspondence to Dr. B. Brett Finlay, Biotechnology Laboratory, Room 237-Wesbrook Building, 6174 University Boulevard, Vancouver, B.C., Canada V6T 1Z3.

Received for publication 30 June 1993 and in revised form 15 October 1993.

References
1. Levine, M.M., and R. Edelman. 1984. Enteropathogenic Escherichia coli of classic serotypes associated with infant diarrhea: epidemiology and pathogenesis. Epidemiol. Rev. 6:31.
2. Scaletsky, I.C., M.L. Silva, M.R. Toledo, B.R. Davis, P.A. Blake, and L.R. Trabulsi. 1985. Correlation between adherence to HeLa cells and serogroups, serotypes, and bioserotypes of Escherichia coli. Infect. Immun. 49:528.
3. Giron, J.A., A.S. Ho, and G.K. Schoolnik. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science (Wash. DC). 254:710.
4. Donnenberg, M.S., J.A. Giron, J.P. Nataro, and J.B. Kaper. 1992. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol. Microbiol. 6:3427.
5. Moon, M.W., S.C. Whipp, R.A. Argenzio, M.M. Levine, and R.A. Giannella. 1983. Attaching and effacing activities of rabbit
and human enteropathogenic *Escherichia coli* in pig and rabbit intestines. *Infect. Immun.* 41:1340.

6. Jerse, A.E., J. Yu, B.D. Tall, and J.B. Kaper. 1990. A genetic locus of enteropathogenic *Escherichia coli* necessary for the production of attaching and effacing lesions on tissue culture cells. *Proc. Natl. Acad. Sci. USA.* 87:7839.

7. Donnenberg, M.S., S.B. Calderwood, R.A. Donohue, G.T. Keusch, and J.B. Kaper. 1990. Construction and analysis of TnphoA mutants of enteropathogenic *Escherichia coli* unable to invade HEP-2 cells. *Infect. Immun.* 58:1565.

8. Donnenberg, M.S., and J.B. Kaper. 1991. Construction of an *eae* deletion mutant of enteropathogenic *Escherichia coli* by using a positive-selection suicide vector. *Infect. Immun.* 59:4310.

9. Knutton, S., T. Baldwin, P.H. Williams, and A.S. McNeish. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic *Escherichia coli*. *Infect. Immun.* 57:1290.

10. Donnenberg, M.S., R.A. Donohue, and G.T. Keusch. 1989. Epithelial cell invasion: an overlooked property of enteropathogenic *Escherichia coli* (EPEC) associated with the EPEC adherence factor. *J. Infect. Dis.* 160:452.

11. Rosenshine, I., M.S. Donnenberg, J.B. Kaper, and B.B. Finlay. 1992. Signal transduction between enteropathogenic *Escherichia coli* (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. *EMBO (Eur. Mol. Biol. Organ.) J.* 11:3551.

12. Baldwin, T.J., W. Ward, A. Aitken, S. Knutton, and P.H. Williams. 1991. Elevation of intracellular free calcium levels in HEP-2 cells infected with enteropathogenic *Escherichia coli*. *Infect. Immun.* 59:1599.

13. Baldwin, T.J., D.M.B. Lee, S. Knutton, and P.H. Williams. 1993. Calcium-calmodulin dependence of actin accretion and lethality in cultured HEP-2 cells infected with enteropathogenic *Escherichia coli*. *Infect. Immun.* 61:760.

14. Baldwin, T.J., F.P. Brooks, S. Knutton, H.H.A. Manjarrez, A. Aitken, and P.H. Williams. 1990. Protein phosphorylation by protein kinase C in HEP-2 cells infected with enteropathogenic *Escherichia coli* (published erratum appears in 1990; 58:2024). *Infect. Immun.* 58:761.

15. Manjarrez, H.H.A., T.J. Baldwin, A. Aitken, S. Knutton, and P.H. Williams. 1992. Intestinal epithelial cell protein phosphorylation in enteropathogenic *Escherichia coli* diarrhea. *Lancet.* 339:521.

16. Ruschkowski, S., I. Rosenshine, and B.B. Finlay. 1992. *Salmonella typhimurium* induces an inositol phosphate flux in infected epithelial cells. *FEMS (Fed. Eur. Microbiol. Soc.) Lett.* 74:121.

17. Finlay, B.B., and S. Falkow. 1988. Comparison of the invasion strategies used by *Salmonella cholera-suis*, *Shigella flexneri* and *Verminia enterocolitica* to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. *Biochimie (Paris).* 70:1089.

18. Majerus, P.W. 1992. Inositol phosphate biochemistry. *Annu. Rev. Biochem.* 61:225.

19. Wahl, M.I., J.D. Sweatt, and G. Carpenter. 1987. Epidermal growth factor (EGF) stimulates inositol triphosphate formation in cells which overexpress the EGF receptor. *Biochem. Biophys. Res. Commun.* 142:688.

20. Vuopio-Varkila, J., and G.K. Schoolnik. 1991. Localized adherence by enteropathogenic *Escherichia coli* is an inducible phenotype associated with the expression of new outer membrane proteins. *J. Exp. Med.* 174:1167.

21. Donnenberg, M.S., R.A. Donohue, and G.T. Keusch. 1990. A comparison of HEP-2 cell invasion by enteropathogenic and enteroinvasive *Escherichia coli*. *FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett.* 57:83.

22. Francis, C.L., A.E. Jerse, J.B. Kaper, and S. Falkow. 1991. Characterization of interactions of enteropathogenic *Escherichia coli* O127:H6 with mammalian cells in vitro. *J. Infect. Dis.* 164:693.

23. Baldini, M.M., J.B. Kaper, M.M. Levine, D.C. Candy, and H.W. Moon. 1983. Plasmid-mediated adhesion in enteropathogenic *Escherichia coli*. *J. Pediatr. Gastroenterol. Nutr.* 2:534.

24. Berridge, M.J. 1993. Inositol trisphosphate and calcium signalling. *Nature (Lond.).* 361:315.

25. Canil, C., I. Rosenshine, S. Ruschkowski, M.S. Donnenberg, J.B. Kaper, and B.B. Finlay. 1993. Enteropathogenic *Escherichia coli* decreases the transepithelial electrical resistance of polarized epithelial monolayers. *Infect. Immun.* 61:2755.

26. Dytoc, M., B. Gold, M. Louie, M. Huesca, L. Fedorko, S. Crowe, C. Lingwood, J. Brunton, and P. Sherman. 1993. Comparison of *Helicobacter pylori* and attaching-effacing *Escherichia coli* adhesion to eukaryotic cells. *Infect. Immun.* 61:448.

27. Rosenshine, I., V. Duronio, and B.B. Finlay. 1992. Tyrosine protein kinase inhibitors block invasin-promoted bacterial uptake by epithelial cells. *Infect. Immun.* 60:2211.