Malaria has long been a major cause of mortality within the Armed Forces (AF), historically inflicting heavier casualties than combat injuries. Advances have been made in preventing malaria transmission; nonetheless, military personnel deploying to areas with malaria continue to be vulnerable to the disease.

Antimalarial drug resistance is a leading challenge in the control of malaria. Chloroquine-resistant strains of malaria, such as *Plasmodium falciparum*, are responsible for most human malaria cases and can be found across several regions of Southeast Asia, South America and Africa. There are currently three licensed antimalarial drugs against chloroquine-resistant *P. falciparum* malaria: mefloquine (trade name: Lariam©), doxycycline and a combination of atovaquone and proguanil (trade name: Malarone©). These agents differ in their active ingredients, side effects, dosages, cost and contraindications, and as with any drug, need to be prescribed appropriately, given an individual’s medical history. For example, to be prescribed appropriately, given an indication, and as with any drug, need to be prescribed appropriately, given an individual’s medical history. For example, to be prescribed appropriately, given an individual’s medical history. For example, to be prescribed appropriately, given an individual’s medical history. For example, to be prescribed appropriately, given an individual’s medical history. For example, to be prescribed appropriately, given an individual’s medical history.

Mefloquine has received considerable media attention following incidents involving US soldiers committing acts of violence while taking the drug. Formal inquests have since ruled that mefloquine was the cause, with there being no evidence to support a causal link between taking the drug and the violent responses. Nonetheless, as a result of the media interest, the use of mefloquine within military settings is now somewhat controversial.

USE OF MEfloQUINE IN THE AF

Many international AF currently include mefloquine in their chemoprophylactic treatments, not specified as agents of last resort, including the Irish and Canadian AF. Presently, the UK Ministry of Defence supports the prescription of mefloquine to AF personnel where it is deemed to be the appropriate medication. Counter to this stance, the US military and Australian Defence Forces (ADF) restrict mefloquine’s use to a third-line drug, only prescribed when there are contraindications to other antimalarials. The drug is banned altogether by certain US military units (eg, special forces, aviators and divers).

RESPONSES TO MEfloQUINE IN MILITARY PERSONNEL

Some evidence of potential adverse mefloquine effects stems from a study which examined Swedish soldiers prescribed mefloquine or another antimalarial. Adverse effects, including neuropsychological effects, were more commonly reported in the mefloquine group (see Table 1). Similarly, in a study of 4123 Italian AF regulars, 21.2% (n=875) of those prescribed mefloquine reported adverse events. However, no serious adverse events were reported, and authors concluded ‘good tolerability of mefloquine in the military’. In US troops, deployed personnel prescribed mefloquine were significantly more likely to experience anxiety, while non-deployed personnel prescribed mefloquine were significantly more likely to experience symptoms of post-traumatic stress disorder. This difference in non-deployed personnel may potentially reflect a healthy warrior effect.

Nevertheless, several studies have reported few or no adverse responses to mefloquine in other military samples. In the British AF, research found that of 486 personnel prescribed mefloquine only 11 individuals reported adverse side effects. Furthermore, a study of UK personnel in East Africa found mefloquine was no more problematic with respect to side effects than the chloroquine/proguanil regime. However, the small numbers of participants in these studies may limit

Table 1 Included studies’ sample characteristics, antimalarials administered and outcomes

Study	Military	Deployment location	n	Antimalarial administered	Outcome
Andersson et al18	Sweden	Liberia	1170	Mefloquine and atovaquone/proguanil	Adverse events reported in 57% of the mefloquine group vs 34% in the atovaquone/proguanil group
Eck-Cost et al/t	USA	Afghanistan, Iraq, Africa or other	367840	Mefloquine, doxycycline and atovaquone/proguanil	Deployed mefloquine group more likely to experience anxiety compared with doxycycline recipients (IRR=1.03, 95% CI 1.01 to 1.05); non-deployed mefloquine group more likely to experience PTSD compared with atovaquone/proguanil recipients (IRR=1.30, 95% CI 1.01 to 1.64)
Peragallo et al11	Italy	Afghanistan	4123	Mefloquine	Adverse events reported by 21.2% of personnel, no serious adverse events reported
Ministry of Defence16	UK	Afghanistan	486	Mefloquine	2.46% of personnel experienced adverse reactions. 1.8% of personnel required mefloquine to be withdrawn.
Croft et al14	UK	East Africa	624	Mefloquine and chloroquine–proguanil	Incidence of adverse events was significantly higher for mefloquine compared to other antimalarials (OR 0.96, 95% CI 0.63 to 1.47); no serious adverse events were reported.
Kitchener et al11	Australia	East Timor	1157	Mefloquine and doxycycline	57% of personnel prescribed mefloquine reported one or more adverse events vs 56% of doxycycline group.

n indicates the total number of participants. MoD = Ministry of Defence IRR, incidence rate ratio; PTSD, post-traumatic stress disorder.
the generalisability of the findings. In the ADF, of 1,157 participants, only 6.5% (n=75) of personnel taking mefloquine withdrew from the trial because of adverse responses to the drug, and the rate of adverse side effect reporting was similar across antimalarials. Finally, the Ministry of Defence Defence Statistics report that between 2009 and 2010, UK AF personnel prescribed mefloquine or a different antimalarial were equally likely to be assessed as having a mental health disorder. However, Defence Statistics did not have data available to allow them to determine whether the reason for assessment was due to the prescription of an antimalarial drug or other potentially confounding factors. For example, this time period corresponds with the highest number of casualties the UK AF sustained in Afghanistan.

FACTORS WHICH MAY INFLUENCE THE EXPERIENCE OF MEfloQUINE SIDE EFFECTS

First, the military environment can expose individuals to challenging conditions that may cause some symptoms similar to the side effects of mefloquine. For instance, the stress of deployment, sleep deprivation and high-intensity operations could lead to increased anxiety and sleep disturbances, which are known side effects of the drug. Second, it is possible that mental health-related stigma or fears of falling short of the medical criteria that deems personnel fit to deploy may contribute to under-reporting of mefloquine side effects. This reluctance to present prevents individuals being switched to an alternative medication and inhibits the military community’s understanding of the true impact of the drug within this population. Lastly, there is evidence in civilian populations of increased risk of psychiatric illness in female mefloquine users and little research has been done to identify if this might place female service personnel at increased risk.

DIRECTIONS FOR FUTURE RESEARCH

There is no clear evidence that mefloquine use by military personnel presents a disproportionate risk to their mental health. Nonetheless, several shortfalls in the current literature exist, including a lack of detail on exactly which side effects are being described, highlighting a need for future studies with a more transparent methodology. There are many distinct differences between military and civilian personnel (eg, underlying fitness, greater exposure to hostile environments, sleep deprivation and stress), and further investigation of how these factors may contribute towards tolerance of antimalarials seems warranted.

Currently, mefloquine remains one of the WHO’s essential drugs, and no national licensing authority has withdrawn mefloquine based on toxicity. However, it is clear that the prescription of mefloquine to patients with a significant psychiatric history is contraindicated. Negative media attention and anecdotal evidence may also have contributed towards concerns regarding the harmful effects of mefloquine on mental health, especially in military personnel. Such misinformation may in itself heighten awareness of subjective symptoms, leading to increased reporting of side effects. There is evidence from military studies of vaccine administration that military personnel who perceived that they might experience side effects were more likely to do so. We suggest that while more research is warranted, sensible and evidence-based reporting of the risks of mefloquine and risks of malaria should be readily available to ensure that troops who are prescribed the medication are not unduly worried, while the medical staff who prescribe it remain alert to its potential to cause side effects.

Contributors VW, HB, JS, AD and NG drafted the article and revised it critically for important intellectual content, gave the final approval of the version to be published and agreed to be accountable for all aspects of the article in ensuring that questions related to the accuracy or integrity of any part of the article are appropriately investigated and resolved.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Williamson V, Blamey H, Sharpley J, et al. BMJ Mil Health 2020;166:e1–e2.

Accepted 14 August 2019
Published Online First 20 February 2020
BMJ Mil Health 2020;166:e1–e2.
doi:10.1136/jrmc-2019-001295

ORCID iD
Victoria Williamson http://orcid.org/0000-0002-3110-9856

REFERENCES

1 Bruce-Chwatt LJ. Malaria and its prevention in military campaigns. Z Tropenmed Parasitol 1971;22:370–90. https://www.cabdirect.org/cabdirect/abstract/ 1972/2901382

2 Wellens PE, Plowe CV. Chloroquine-Resistant malaria. J Infect Dis 2001;184:770–80.

3 National Institute for Health and Care Excellence. Mefloquine. NICE, 2018. Available: https://tinyurl.com/ntyya89 [Accessed 1 Jul 2019].

4 Jacqueriaux FA, Croft AM. Drugs for preventing malaria in travellers. In: Jacqueriaux FA, ed. Cochrane database of systematic reviews. Chichester, UK: John Wiley & Sons, Ltd, 2009. CD006491.

5 James SD. Antimalarial Drug Linked to Sgt. Robert Bales massacre - ABC News, 2013. Available: https:// abcnews.go.com/Health/antimalarial-drug-linked-sgt- robert-bales-massacre/story?id=19713961 [Accessed 1 Jul 2019].

6 Ministry of Defence. Response to written letter from defence select Committee. London, 2015. Available: https://www.parliament.uk/documents/commons-committees/defence/150921_Letter_to_SoS_Lariam.pdf [Accessed 1 Jul 2019].

7 Kotecha S. Call for army to stop using malaria drug mefloquine. BBC News, 2015.

8 Defence AGD of. Statement on the use of mefloquine in the ADF, 2015.

9 Nevin RL. Mefloquine prescriptions in the presence of contraindications: prevalence among US military personnel deployed to Afghanistan, 2007. Pharmacoepidemiol Drug Saf 2010;19:206–10.

10 Andersson H, Askling HH, Falck B, et al. Well-Tolerated chemoprophylaxis uniformly prevented Swedish soldiers from Plasmodium falciparum malaria in Liberia, 2004–2006. Mil Med 2008;173:1194–8.

11 Peragallo MS, Samnicola G, Boccolini D, et al. Risk assessment and prevention of malaria among Italian troops in Afghanistan, 2002 to 2011. J Travel Med 2014;21:24–32.

12 Eick-Cost AA, Hu Z, Rohrbek P, et al. Neuropsychiatric outcomes after mefloquine exposure among US military service members. Am J Trop Med Hyg 2017;96:559–66.

13 Larson GE, Highfill-McRoy RM, Booth-Kewley S. Psychiatric diagnoses in historic and contemporary military cohorts: combat deployment and the healthy warrior effect. Am J Epidemiol 2008;167:1269–76.

14 Croft AM, World MJ. Neuropsychiatric reactions with mefloquine chemoprophylaxis. Lancet 1996;347:326.

15 Kitchener SJ, Naude RL, Gregory RM, et al. Mefloquine and doxycycline malaria prophylaxis in Australian soldiers in East Timor. Med J Aust 2005;182:168–71.

16 Ministry of Defence. UK armed forces prescribed mefloquine hydrochloride and subsequent presentation to mod specialist mental health services, 1 April 2007 – 30 September 2015, 2016. Available: https://www.gov.uk/government/statistics/mod-national-and-official-statistics-by-topic [Accessed 1 Jul 2019].

17 Fertout M, Jones N, Keeling M, et al. Neuropsychiatric implications of increased risk of psychiatric illness in female mefloquine users and little research has been done to identify if this might place female service personnel at increased risk.

18 Murphy D, Mateau TM, Wessely S. A longitudinal study of UK military personnel offered anthrax vaccination: informed choice, symptom reporting, uptake and pre-vaccination health. Vaccine 2012;30:1094–100.

Williamson V, et al. BMJ Mil Health November 2020 Vol 166 No E