Thermodynamic calculation of calcium metal prepared by vacuum aluminothermic reduction method

Linli Wu¹,* and Hongjie Luo¹
¹School of Metallurgy, Northeastern University, Shenyang 110819, China.
Engineering research center of advanced material preparation technology, ministry of education, Shenyang 110819, China

*Corresponding author e-mail: wull@smm.neu.edu.cn

Abstract. In references for aluminothermic reduction of metal calcium thermodynamic calculation are choose metal temperature range for the liquid or gaseous state thermodynamics calculation, the results show that the temperature at which the reaction can occur is very high. In this article, by comparing the two calculation methods under normal pressure, the theoretical initial reaction temperature of the four reactions is very high under normal pressure. The lowest temperature is the reaction to generate 3CaO·Al₂O₃, but the reaction still needs to exceed 2421K. The results of the two calculation methods is very different. These are 222K, 78K, 151K, and 85K. At 10Pa, Theoretical initial reaction temperature of the four reactions are 859K, 877K, 928K, and 878K. If the calculation result of the high-temperature region is substituted for the calculation result of the whole temperature interval, the theoretical initial reaction temperature of the four reactions are respectively 1329K, 1344K, 1374K and 1374K at 10Pa. The difference value of each reaction is 470K, 472K, 446K, and 459K.

1. Introduction
At present, the main production methods of calcium metal include electrolysis[1-3] and thermal reduction[4-12]. Electrolysis is the main method of industrial production of metals in China. The principle of electrolysis is based on electrode potential different from impurity elements of calcium metal, selective discharge of the anode and selective deposition of the cathode. In the preparation of calcium metal by a thermal process, aluminothermic method, silicon thermal method, and carbon thermal method are the hot topics.

2. Thermodynamic calculation under normal pressure
The standard Gibbs free energy equation in the high-temperature section was used in most thermodynamic calculations in the references to replace the equation in the full temperature section with the standard Gibbs free energy equation. The theoretical initial reaction temperature calculated was relatively high. In this paper, the Gibbs free energy was calculated in different temperature ranges. The standard reaction thermal effect was calculated and compared with the first approximate thermodynamic calculation. Refer to reference 13 for the specific calculation formula. Since the approximate calculation is not accurate at high temperature and there is a certain deviation from the conclusion. It is necessary to accurately calculate the reactions in the preparation of calcium metal by vacuum aluminothermic reduction method.
The reactions in the preparation of calcium metal by vacuum aluminothermic reduction method are all multi-step reactions. At high temperature, calcium is constantly dissolved in excess aluminum during the reduction process. The dissolution of calcium in aluminum greatly reduces the activity of calcium. When the concentration of calcium in aluminum rises and reaches saturation, the calcium ceases to dissolve, releasing the metallic calcium. Aluminothermic reduction of calcium mainly occurs in the following five reactions:

\[
\begin{align*}
6\text{CaO}+2\text{Al} &= 3\text{Ca}+3\text{CaO} \cdot \text{Al}_2\text{O}_3 \quad (1) \\
4\text{CaO}+2\text{Al} &= 3\text{Ca}+\text{CaO} \cdot \text{Al}_2\text{O}_3 \quad (2) \\
7\text{CaO}+4\text{Al} &= 6\text{Ca}+\text{CaO} \cdot 2\text{Al}_2\text{O}_3 \quad (3) \\
33\text{CaO}+14\text{Al} &= 21\text{Ca}+12\text{CaO} \cdot 7\text{Al}_2\text{O}_3 \quad (4) \\
19\text{CaO}+12\text{Al} &= 18\text{Ca}+\text{CaO} \cdot 6\text{Al}_2\text{O}_3 \quad (5)
\end{align*}
\]

2.1. Standard Gibbs free energy of conclusion calculation

Refer to reference 13 for the thermodynamic data of each substance in the conclusion calculation method, which is listed in table 1. Due to the lack of CaO·6Al2O3 thermodynamic data in reference 13, the reaction equation (5) is not calculated in this paper. According to the thermodynamic data in table 1, the Gibbs free energy of the reaction equations (1) to (4) at different temperature intervals are calculated, and the results are shown in table 2-5.

Table 1. Thermodynamic data of substances in the conclusion calculation method.
Pure Substance

Al(s)
Al(l)
Al(g)
Ca(s)\(\alpha\)
Ca(s)\(\beta\)
Ca(l)
Ca(g)
CaO(s)
CaO(l)
3CaO·Al2O3(s)
CaO·Al2O3(s)
CaO·2Al2O3(s)
12CaO·7Al2O3(s)

Table 2. The numerical values of the reaction equation (1) in the conclusion calculation method.
\(\Delta A1\)

-37.236
-110.742
-111.486
-22.491
-47.859
Table 3. The numerical values of the reaction equation (2) in the conclusion calculation method.

ΔA_1	ΔA_2	ΔA_3	ΔA_4	A_6	A_6'	Temperature/K
-35.772	26.943	0.507	19.736	223678.772	-253.595	298-720
-109.278	160.848	-0.486	-41.506	252118.869	-734.040	720-933
4CaO+2Al=3Ca+CaO·Al$_2$O$_3$						
-110.022	128.062	-7.700	0.000	233812.850	-728.957	933-1112
-21.027	4.225	-7.700	0.000	236879.059	-176.476	1112-1757
-46.395	4.225	-7.700	0.000	742360.917	-653.703	1757-1878

Table 4. The numerical values of the reaction equation (3) in the conclusion calculation method.

ΔA_1	ΔA_2	ΔA_3	ΔA_4	A_6	A_6'	Temperature/K
-69.872	53.886	1.014	39.472	464433.288	-485.532	298-720
-216.884	321.696	-0.972	-83.012	521314.098	-1446.420	720-933
7CaO+4Al=6Ca+CaO·2Al$_2$O$_3$						
-218.372	256.124	-15.400	0.000	484700.504	-1436.253	933-1112
-40.382	8.450	-15.400	0.000	490833.894	-331.293	1112-1757
-91.118	8.450	-15.400	0.000	1501797.890	-1285.747	1757-2023

Table 5. The numerical values of the reaction equation (4) in the conclusion calculation method.

ΔA_1	ΔA_2	ΔA_3	ΔA_4	A_6	A_6'	Temperature/K
-306.764	283.951	55.259	138.152	1653822.302	-2201.217	298-720
-821.306	1221.286	48.308	-290.542	1852961.507	-5564.373	720-933
33CaO+14Al=21Ca+12CaO·7Al$_2$O$_3$						
-826.514	991.784	-2.190	0.000	1724852.284	-5528.799	933-1112
-203.549	124.925	-2.190	0.000	1746270.436	-1661.402	1112-1757
-381.125	124.925	-2.190	0.000	5284713.083	-5001.993	1757-2073

2.2. Standard Gibbs free energy of the first approximate thermodynamic calculation

Refer to reference 13 for the thermodynamic data of each substance in the first approximate thermodynamic calculation, which is listed in table 6. According to the thermodynamic data in table 6, the Gibbs free energy of the reaction equations (1) to (4) at different temperature intervals are calculated, and the results are shown in table 7-10.

Table 6. Thermodynamic data of substances in the first approximate thermodynamic calculation.

Pure substance	$\Delta H_{f, 298}^\theta$	S_{298}^θ	T^ν	ΔH^ν	T^M	ΔH^M	T^B	ΔH^B	Temperature Range
Al	0	28.321	933	10711	2767	290775	298-3200		
Ca	0	41.422	720	920	1112	8535	1757	153636	
CaO	-634294	39.748						298-2800	
3CaO·Al$_2$O$_3$	-3584851	205.434						298-1808	
CaO·Al$_2$O$_3$	-2322957	114.014						298-1878	
CaO·2Al$_2$O$_3$	-3994046	177.820						298-2023	
12CaO·7Al$_2$O$_3$	-19374012	1044.745						298-1800	
Table 7. The first approximate thermodynamic calculation result of the reaction equation (1).

Reaction equation	Temperature Range/K	ΔG°/J·mol⁻¹
6CaO(s)+2Al(s)=3Ca(s)(α)+3CaO·Al₂O₃(s)	298–720	220913-34.57T
6CaO(s)+2Al(s)=3Ca(s)(β)+3CaO·Al₂O₃(s)	720–933	223673-38.404T
6CaO(s)+2Al(l)=3Ca(s)+3CaO·Al₂O₃(s)	933–1112	202251-15.444T
6CaO(s)+2Al(l)=3Ca(g)+3CaO·Al₂O₃(s)	1112–1757	227856-38.469T
6CaO(s)+2Al(l)=3Ca(s)+3CaO·Al₂O₃(s)	1757–1808	688764-300.795T

Table 8. The first approximate thermodynamic calculation result of the reaction equation (2).

Reaction equation	Temperature Range/K	ΔG°/J·mol⁻¹
4CaO(s)+2Al(s)=3Ca(s)(α)+CaO·Al₂O₃(s)	298–720	214219-22.646T
4CaO(s)+2Al(s)=3Ca(s)(β)+CaO·Al₂O₃(s)	720–933	216979-26.480T
4CaO(s)+2Al(l)=3Ca(s)+CaO·Al₂O₃(s)	933–1112	195557-3.520T
4CaO(s)+2Al(l)=3Ca(g)+CaO·Al₂O₃(s)	1112–1757	221162-26.545T
4CaO(s)+2Al(l)=3Ca(l)+CaO·Al₂O₃(s)	1757–1878	682070-288.871T

Table 9. The first approximate thermodynamic calculation result of the reaction equation (3).

Reaction equation	Temperature Range/K	ΔG°/J·mol⁻¹
7CaO(s)+4Al(s)=6Ca(s)(α)+CaO·2Al₂O₃(s)	298–720	446012-34.832T
7CaO(s)+4Al(s)=6Ca(s)(β)+CaO·2Al₂O₃(s)	720–933	451532-42.500T
7CaO(s)+4Al(l)=6Ca(s)+CaO·2Al₂O₃(s)	933–1112	408688-3.420T
7CaO(s)+4Al(l)=6Ca(l)+CaO·2Al₂O₃(s)	1112–1757	459898-42.630T
7CaO(s)+4Al(l)=6Ca(g)+CaO·2Al₂O₃(s)	1757–2023	1381714-567.282T

Table 10. The first approximate thermodynamic calculation result of the reaction equation (4).

Reaction equation	Temperature Range/K	ΔG°/J·mol⁻¹
33CaO(s)+14Al(s)=21Ca(s)(α)+12CaO·7Al₂O₃(s)	298–720	1560840-206.429T
33CaO(s)+14Al(s)=21Ca(s)(β)+12CaO·7Al₂O₃(s)	720–933	1580160-233.267T
33CaO(s)+14Al(l)=21Ca(s)+12CaO·7Al₂O₃(s)	933–1112	1430206-72.547T
33CaO(s)+14Al(l)=21Ca(l)+12CaO·7Al₂O₃(s)	1112–1757	1609441-233.722T
33CaO(s)+14Al(l)=21Ca(g)+12CaO·7Al₂O₃(s)	1757–2073	4835797-2070.004T

2.3. Comparison of the two calculation methods

By comparing the two calculation methods under normal pressure, drawing with as ordinate and T as abscissa, as shown in Fig. 1. It can be seen from the figure that the Gibbs free energy difference between the two calculation methods is relatively small in the low-temperature interval, while there is a great difference in the high-temperature interval, especially in the metal melting or gasification stage.

The theoretical initial reaction temperature of the two calculation methods was obtained by extending the Gibbs free energy curve in the high-temperature section to intersect the X-axis, as shown in table 1. As can be seen from the table, 11, the reaction temperature required for the above four reactions is very high under normal pressure. The lowest temperature is the reaction to generate 3CaO·Al₂O₃, but the reaction still needs to exceed 2421K. The difference between the results of the two calculation methods is quite large. For the sake of accuracy, the subsequent calculation is carried out by the conclusion calculation method.
Table. 11 The theoretical initial reaction temperature of the two calculation methods under normal pressure.

Reaction equation	Theoretical initial temperature/K	The conclusion formula calculation	First approximate thermodynamic calculation	Difference value
6CaO+2Al=3Ca+3CaO·Al₂O₃	2512	2290	222	
4CaO+2Al=3Ca+CaO·Al₂O₃	2439	2361	78	
7CaO+4Al=6Ca+CaO·2Al₂O₃	2587	2436	151	
33CaO+14Al=21Ca+12CaO·7Al₂O₃	2421	2336	85	

3. Thermodynamics calculation in vacuum

Under normal pressure, the temperature required for aluminum thermal reaction is very high, which is difficult to achieve. Therefore, the reaction needs to be carried out under vacuum conditions. The thermodynamics of the four reactions under vacuum conditions is calculated as follows. The Gibbs free energy of the four reactions can be obtained by the following formula under vacuum condition.

\[\Delta G = \Delta G^\theta + RT \ln \left(\frac{p_{Ca}}{p^\theta} \right) \]

(1)

Where, \(p_{Ca} \) is the vapor pressure producing Ca, \(p^\theta \) is the standard pressure (101325Pa), and \(R \) is 8.314.

At 10Pa, Gibbs free energy of the four reactions was plotted according to formula (6), as shown in Fig. 2. Can be seen from the figure in the reaction equation (1) to (4), Theoretical initial reaction temperature of the four reactions are respectively 859K, 877K, 928K and 878K. Calculated results are much lower than in the past. If the calculation result of the high-temperature region is substituted for the calculation result of the whole temperature interval, the theoretical initial reaction temperature of the four reactions are respectively 1329K, 1344K, 1374K, and 1374K. The difference value of the four reactions is 470K, 467K, 446K, and 459K.
4. Conclusion

Thermodynamic calculation of calcium metal prepared by vacuum aluminothermic reduction method can be concluded as follows:

1. The theoretical initial reaction temperature of the four reactions is very high under normal pressure. The lowest temperature is the reaction to generate 3CaO·Al₂O₃, but the reaction still needs to exceed 2421K.

2. The results of the two calculation methods is very different. These are 222K, 78K, 151K, and 85K.

3. At 10Pa, Theoretical initial reaction temperature of the four reactions are 859K, 872K, 928K, and 878K.

4. If the calculation result of the high-temperature region is substituted for the calculation result of the whole temperature interval, the theoretical initial reaction temperature of the four reactions are respectively 1329K, 1344K, 1374K and 1374K at 10Pa. The difference value of each reaction is 470K, 472K, 446K, and 459K.

References

[1] Y. Chen, Electrolytic calcium metal manufacturing, Zhejiang chemical industry, (1959) (7): 19.
[2] J.J. Lukasko, J. E. Murphy, Electrolytic production of calcium metal, Washington: US Bureau of Mines Report Investigation, 1990, 1-8.
[3] G. Bienvenu, D. Dubruque, U.S. Patent 4,738,759. (1988).
[4] S. Jaffe, J.M. Parks, S. Jaffe, U.S. Patent 2,839,380A. (1958).
[5] X.F. Zhang, W.X. Zhao, W.L. Luo, S.S. Jiang and Z.S Xu, C.N. Patent 03,117,996. (2003).
[6] T. S. Xie, C.N. Patent 200,910,187,892. (2010).
[7] Z.H. Zhang, L.C. Liu, Thermodynamics of Smelting Metallic Calcium by Silicon-thermal Method and Its Smelting Technology, Mining and Metallurgical Engineering, 22 (2002) 455-57.
[8] D.Y. Cao, Production of calcium metal by magnesium production device of ferrosilicon, Applicable technology market, (1998) 2 9-10.
[9] B.Q. Xu, B. Yang, W.H. Ma, D.C Liu, Y.N. Dai, B. Qin, X. K. Zhou, Y.C. Liu, Y. Deng, T. Qu, H. Xiong, H.H. Yi, Q.C. Yu, Y.C. Yao, K.Q. Xie, J.J. Wu, F. Wang and J.F. Wang, C.N. Patent 200,810,058,466. (2008).
[10] J.D. Hanawalt. Manufacture of calcium metal: U.S. Patent 2,122,419. (1938).
[11] J.C. Wang, J.J. Liu, X.M. Zhang, B. Sun, C.L. Shao and W.B. Liu, C.N. Patent 201,410,379,232. (2016).
[12] D.M. Dudek. U.S. Patent 4,450,136. (1984).
[13] D.L. Ye, J.H. Hu, Handbook of thermodynamic data of practical inorganic substances, second ed., Metallurgical industry press, Beijing, 2002.