CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions

Darci T. Butcher,1,2,3 Cheryl Cytrynbaum,1,2,3,23 Andrei L. Turinsky,1,4,23 Michelle T. Siu,1 Michal Inbar-Feigenberg,2,5 Roberto Mendoza-Londono,1,2,5 David Chitayat,2,3,5,6 Susan Walker,1,7 Jerry Machado,8 Oana Caluseriu,9 Lucie Dupuis,2 Daria Grafodatskaya,10 William Reardon,11 Brigitte Gilbert-Dussardier,12 Alain Verloes,13 Frederic Bilan,12 Jeff M. Milunsky,14 Raveen Basran,15,16 Blake Papsin,17,18,19 Tracy L. Stockley,16,20 Stephen W. Scherer,1,3,7,21 Sanaa Choufani,1 Michael Brudno,1,4,22 and Rosanna Weksberg1,2,3,5,19,*

Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7) and lysine (K) methyltransferase 2D (KMT2D), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7 or KMT2D identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.

Introduction

Genes that function in epigenetic regulation (epigenes), including those involved in chromatin remodeling and histone modifications, are increasingly being identified in the etiology of a variety of neurodevelopmental disorders. Two such disorders include CHARGE syndrome [MIM: 214800], caused by heterozygous mutations in chromodomain helicase DNA-binding protein 7 (CHD7 [MIM: 608892]), and Kabuki syndrome [MIM: 147920] caused by heterozygous mutations in lysine (K)-specific methyltransferase 2D (KMT2D [MIM: 602113]).1,2 CHARGE syndrome is characterized by Coloboma, Heart defects, Atresia of the choanae, Retardation of growth and development, Genital hypoplasia, and Ear abnormalities including deafness and vestibular disorders. Kabuki syndrome is characterized by a typical facial gestalt, postnatal growth deficiency, congenital heart defects, hearing loss and intellectual disability as well as skeletal, dermatoglyphic, genitourinary, and ophthalmologic anomalies (including coloboma). There is extensive clinical overlap between these two syndromes and clinical distinction can be particularly challenging in early life as the characteristic facial features of Kabuki syndrome often become apparent with age.3,4 A molecular link between CHD7 and KMT2D function has been proposed via their known interaction with members of the WAR complex (WDR5 [WD-repeat protein 5], ASH2L [absent, small, homoeotic

1Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario MSG 1X8, Canada; 2Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario MSG 1X8, Canada; 3Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; 4Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; 5Department of Pediatrics, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; 6Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8 Canada; 7The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario MSG 1X8 Canada; 8PreventionGenetics, Marshfield, WI, 54449, USA; 9Department of Medical Genetics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada; 10Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; 11National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; 12Service de Génétique, Centre de Référence Anomalies du Développement de l’Ouest, CHU Poitiers, 86021 Poitiers, France; 13Département de Génétique, APHP-Hôtel Robert DEBRE, 75019 Paris, France; 14Center for Human Genetics Inc., Cambridge, MA 02139, USA; 15Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario MSG 1X8 Canada; 16Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; 17Otolaryngology, The Hospital for Sick Children, Toronto, Ontario MSG 1X8, Canada; 18Department of Otolaryngology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; 19Institute of Medical Sciences, University of Toronto, Toronto, Ontario MSG 1X8, Canada; 20Genome Diagnostics, Department of Clinical Laboratory Genetics, University Health Network, Canada; 21McLaughlin Centre, University of Toronto, Toronto, Ontario, M5S 1A1, Canada

These authors contributed equally to this work

*Correspondence: rweksb@sickkids.ca

http://dx.doi.org/10.1016/j.ajhg.2017.04.004.

© 2017 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
discs-2-like), and also RBBP5 [retinoblastoma-binding protein-5]), which has been shown to be involved in histone methylation.5,6 It has been suggested that CHD7 and KMT2D might regulate a common subset of genes via their interaction with the WAR complex, which might explain the overlapping features in CHARGE and Kabuki syndromes.7

We and others have previously demonstrated that loss of function (LOF) mutations in epigenes can be associated with specific patterns of DNA methylation (DNAm) alterations that constitute unique signatures.8–10 Specifically, unique DNAm signatures are observed in individuals harboring mutations in lysine-specific demethylase 5C (KDM5C [MIM: 314690]), which encodes an H3K4 demethylase and causes non-syndromic intellectual disability [MIM: 300534], DNA methyltransferase 1 (DNMT1 [MIM: 126375]), which cause adult-onset autosomal dominant cerebellar ataxia with deafness and narcolepsy (ADCA-DN [MIM: 604121]), and nuclear receptor binding SET domain protein 1 (NSD1 [MIM: 606681]), which encodes a histone methyltransferase and cause Sotos syndrome [MIM:117550].8–10 Moreover, for NSD1 we have shown that genes encoding proteins in growth and neurodevelopmental pathways are highly represented in the DNAm signature reflecting the pathophysiology of the disorder.8 We hypothesized that comparison of genome-wide DNAm alterations in individuals with heterozygous LOF mutations in CHD7 and KMT2D, respectively, would identify two disease-specific DNAm signatures that would include common target genes and biological pathways, reflecting the clinical overlap of these two conditions, as well as distinct target genes reflecting divergent clinical features.

Here we analyze DNAm using whole blood from individuals with a clinical diagnosis of either CHARGE or Kabuki syndrome with LOF mutations in CHD7 (CHD7LOF) or KMT2D (KMT2DLOF), respectively. When compared to controls, CHD7LOF and KMT2DLOF demonstrate specific sets of differentially methylated CpGs, which we defined as two unique DNAm signatures. We and others have previously demonstrated that loss of function (LOF) mutations in epigenes can be associated with specific patterns of DNA methylation (DNAm) alterations that constitute unique signatures.8–10 Specifically, unique DNAm signatures are observed in individuals harboring mutations in lysine-specific demethylase 5C (KDM5C [MIM: 314690]), which encodes an H3K4 demethylase and causes non-syndromic intellectual disability [MIM: 300534], DNA methyltransferase 1 (DNMT1 [MIM: 126375]), which cause adult-onset autosomal dominant cerebellar ataxia with deafness and narcolepsy (ADCA-DN [MIM: 604121]), and nuclear receptor binding SET domain protein 1 (NSD1 [MIM: 606681]), which encodes a histone methyltransferase and cause Sotos syndrome [MIM:117550].8–10 Moreover, for NSD1 we have shown that genes encoding proteins in growth and neurodevelopmental pathways are highly represented in the DNAm signature reflecting the pathophysiology of the disorder.8 We hypothesized that comparison of genome-wide DNAm alterations in individuals with heterozygous LOF mutations in CHD7 and KMT2D, respectively, would identify two disease-specific DNAm signatures that would include common target genes and biological pathways, reflecting the clinical overlap of these two conditions, as well as distinct target genes reflecting divergent clinical features.

Here we analyze DNAm using whole blood from individuals with a clinical diagnosis of either CHARGE or Kabuki syndrome with LOF mutations in CHD7 (CHD7LOF) or KMT2D (KMT2DLOF), respectively. When compared to controls, CHD7LOF and KMT2DLOF demonstrate specific sets of differentially methylated CpGs, which we defined as two unique DNAm signatures. We show that the CHD7LOF and KMT2DLOF DNAm signatures both demonstrate high sensitivity and specificity, not only differentiating individuals with LOF mutations from controls but also differentiating individuals with CHD7LOF and KMT2DLOF from each other. As such, these DNAm signatures can offer a molecular means of distinguishing between CHARGE and Kabuki syndromes when clinical distinction is challenging. We also demonstrate that the specific DNAm signatures can be used to differentiate pathogenic mutations in CHD7 and KMT2D from benign sequence variants. Finally, analysis of the DNAm gene targets identified in the CHD7LOF and KMT2DLOF-specific DNAm signatures show gain of DNAm at homeobox A5 (HOXA5 [MIM: 142592]) in both signatures, which may account for some of the clinical overlap observed in CHARGE and Kabuki syndromes. There are also distinct DNAm alterations in each of the signatures that likely drive molecular pathways contributing to the distinct clinical features in these two syndromes.

Material and Methods

Research Participants

Discovery Cohort

Individuals with a clinical diagnosis of CHARGE syndrome and CHD7 LOF mutations (nonsense, frameshift mutations resulting in a premature stop, exonic deletions, and splice site mutations) were recruited through the Division of Clinical and Metabolic Genetics at the Hospital for Sick Children in Toronto, Ontario, Service de Génétique, Centre de Référence Anomalies du Développement de l’Ouest, CHU Poitiers, France and Our Lady’s Hospital for Sick Children in Dublin, Ireland (n = 19). Individuals with a clinical diagnosis of Kabuki syndrome and KMT2D LOF mutations (nonsense and frameshift mutations resulting in a premature stop) were recruited at the Hospital for Sick Children and the Center for Human Genetics, Inc. (n = 11). A detailed list of the specific CHD7 (GenBank: NM_017780.3) and KMT2D (GenBank: NM_003482.3) LOF mutations, designated CHD7LOF and KMT2DLOF can be found in Tables S1 and S2. Phenotypic information on individuals with CHD7LOF and KMT2DLOF is provided in Tables S3 and S4. The majority of the individuals in our Discovery and control cohorts are of European descent: CHD7LOF (16/19); CHD7LOF control cohorts (28/29); KMT2DLOF (10/11); KMT2DLOF control cohorts (9/11). These cohorts were used for the derivation of the DNAm signatures. Informed consent was obtained from all research participants according to the protocol approved by the Research Ethics Board of the Hospital for Sick Children (REB#0019980189).

Validation Cohort

Anonymized DNA samples from individuals with CHD7 or KMT2D sequence variants (n = 56) including pathogenic, likely pathogenic, and variants of uncertain significance (VUS) were obtained from PreventionGenetics, USA (Table S5). There was also one sample from an individual with a pathogenic mutation in lysine demethylase 6A (KDM6A c.2668_2669dup1A (p.Pro891Thrfs*8); GenBank: NM_021140.2; [MIM: 300128]; Kabuki syndrome 2 [MIM: 300867]) in the anonymized cohort. All variants which differed from the reference sequences were interpreted using American College of Medical Genetics and Genomics (ACMG) Guidelines11 with slight modifications, which include previously unpublished de novo LOF variants being reported as likely pathogenic, instead of pathogenic as is in the ACMG guidelines.

Cohort with CHD7 and KMT2D Sequence Variants, Excluding LOF

Individuals with CHD7 (n = 13) or KMT2D (n = 10) VUS including missense and splice site variants were recruited from the same institutions as the CHD7 and KMT2D Discovery Cohorts (see above). Independent in silico prediction algorithms, namely PolyPhen-2,12 SIFT,13 Mutation Taster,14 and ESE finder15,16 were used to evaluate the pathogenicity of the mutations in each case (Tables 1 and 2). Phenotypic information available for the individuals is provided in Tables S3 and S4. Individuals with CHD7 sequence variants underwent clinical classification utilizing the criteria established by Verloes17 and Hale18 (Table 1).

Control DNA Samples

Age- and sex-matched controls for our discovery and validation cohorts were obtained from three sources (Table S6). These included the Simons Simplex Collection (SSC; Simons Foundation Autism Research Initiative).19 The Hospital for Sick Children, and The University of Michigan (Dr. Gregory Hanna).20
The controls were screened using various neurodevelopmental assessments.19,20

DNaM Data from Public Databases
Publicly available Illumina HumanMethylation450 microarray data for an additional 162 control blood samples were not expected to contain pathogenic mutations in either CHD7 or KMT2D, were downloaded from the Gene Expression Omnibus (GEO) database repository, chosen from individuals older than 50 years of age in five GEO series (GEO: GSE32148, GEO: GSE40279, GEO: GSE41169, GEO: GSE46648, GEO: GSE53128; see Table S7).

DNaM Data Processing
DNA samples were converted using sodium bisulfite (EpiTect PLUS Bisulfite Kit, QIAGEN). The sodium bisulfite converted DNA was then hybridized to the Illumina Infinium HumanMethylation450 BeadChip Array to interrogate over 480,000 CpG sites in the human genome. For both the Discovery and Validation cohorts, cases and controls were randomized on the arrays (modified from21). Illumina Genome Studio software was used to perform control probe normalization and background subtraction and to extract DNaM values (β values) for each CpG, which represent the percentage of methylated cytosines. These β values ranged between 0 (no methylation) and 1 (full methylation). We excluded probes located on sex chromosomes, autosomal probes that cross-react with sex chromosome segments, autosomal probes that cross-react with sex chromosome probes, non-specific probes, and probes targeting CpG sites within 5bp of a SNP that has a minor allele frequency above 1%.22,23 Subsequent analyses were performed on the remaining 363,979 probes.

CHD7LOF and KMT2DLOF DNaM Signatures
Differential DNaM between individuals with LOF mutations and controls at individual CpGs was identified using three criteria. First, we applied regression modeling implemented in the limma Bioconductor package to detect statistically significant differences in DNaM (false discovery rate [FDR] corrected p value < 0.01) attributed to either CHD7LOF or KMT2DLOF versus controls, while accounting for sex and age (Figure S1) as confounding factors in the model design matrix.24 The limma models were applied to DNaM data logit-transformed into M-values.25 Second, to account for possible effects related to non-normal distribution of DNaM values at individual CpG sites, we used the non-parametric Mann-Whitney U test at each probe to detect statistically significant DNaM differences (FDR corrected p values < 0.01) between the respective Discovery Cohorts (CHD7LOF or KMT2DLOF) and the control groups. Third, to ensure robust results, statistically significant probes were additionally filtered for effect size. Delta beta (Δβ) was defined for each probe as the difference between average DNaM in each Discovery Cohort and its control group, respectively. We retained only those significant probes for which the DNaM difference (Δβ) between CHD7LOF or KMT2DLOF and their controls was greater than 0.10 (10% DNaM difference).

The choice of the significance level p < 0.01 and the 10% effect size threshold for both CHD7LOF and KMT2DLOF was guided by the volcano plots of the limma regression and the Mann-Whitney U test (Figure S2). The CpG sites that satisfied all three criteria defined the CHD7LOF and KMT2DLOF DNaM signatures, respectively (Tables S8 and S9).

Building Classification Models with the CHD7LOF and KMT2DLOF DNaM Signatures
Using the two DNaM signatures, we developed predictive models for scoring individuals with CHD7 or KMT2D sequence variants, based on their DNaM profiles. As the DNaM signatures for CHD7LOF and KMT2DLOF often appeared in groups corresponding to the same gene or region, the CpG sites were filtered for redundancy in order to be used as predictive data features for the respective models. We applied R caret software package to identify highly correlated CpGs and removed redundant data features (using the default threshold of 0.90 correlation in the findCorrelations function of caret). The remaining CpG sites were used to build the CHD7LOF and KMT2DLOF classification models.

We then built a support vector machine (SVM) model with linear kernel, using the non-redundant DNaM signatures as data features to predict the putative pathogenicity of each sequence variant. Model training was performed by the R kernlab software package via caret. The training set comprised the CHD7LOF or the KMT2DLOF and control samples from the Discovery Cohort. The model was set to return a quantitative predictive score between 0 and 1. The SVM scores were derived in kernlab using internally randomized cross-validation and thus exhibit slight variability. Therefore for each individual we determined the average score over 100 scoring trials. We then applied these models to samples from the Validation Cohort, another cohort with CHD7 or KMT2D sequence variants, and low scores suggest that the sequence variants are benign.

Assessment of Blood Cell Type Composition Effect
To ensure that the CHD7LOF and KMT2DLOF predictive models were not affected by variation in blood cell type composition, we examined 60 DNaM data samples from Reinius et al., 201226 (GEO: GSE35069). These data represent six healthy control whole-blood samples that were sorted into each of the following cell types: peripheral blood mononuclear cells (PBMC), granulocytes, neutrophils, eosinophils, as well as isolated cell populations (CD4+ T cells, CD8+ T cells, CD56+ NK cells, CD19+ B cells, CD14+ monocytes). The CHD7LOF and KMT2DLOF DNaM signature classification results were plotted for the cell-type samples from Reinius et al., 201226, together with the CHD7LOF or KMT2DLOF samples and the matching control samples from our Discovery Cohort (Figure S3). Our goal was to verify that none of the blood-cell subtypes were given high scores by either CHD7LOF or KMT2DLOF predictive models, confirming the lack of a confounding effect between blood-cell type composition and the DNaM signature-based predictions.

Differentially Methylated Regions in the CHD7 and KMT2D Discovery Cohorts
To find genomic regions with DNaM differences in CHD7LOF or KMT2DLOF, we used the bump hunting method,27 which strengthens the detection of regional differences by combining differential-methylation patterns across neighboring CpG sites.28 The bump hunting design matrix accounted for the potential confounding effects of the sex and age factors. The analysis initially considered Cpgs with Δβ > 5% by magnitude between cases and controls as candidates for the differentially methylation regions (DMRs), with gaps no more than 500 bp between neighboring CpG sites. Statistical significance was established using 1,000 randomized bootstrap iterations, as is recommended in the Bioconductor bump hunter package documentation when accounting for confounders. The resulting DMRs were post-filtered to retain only those with p value < 0.01 and average methylation difference...
$\Delta \beta > 10\%$ by magnitude across the DMtR. To further improve robustness, we also required these DMRs to comprise at least three neighboring CpGs, of which at least one has been already been included in the DNAm signature set for either $CHD7^{\text{LOF}}$ or $KMT2D^{\text{LOF}}$ as described above (Tables S10 and S11). DMRs are presented using visualization methods adapted from DMRcate software (Figure S4).²⁹

Functional Enrichment Analysis
To identify prominent functional enrichment patterns, we analyzed the list of differentially methylated CpGs in the context of wider genomic regions using GREAT.³⁰ We retained only the Gene Ontology (GO) Biological Processes functional categories for which at least three genes (including their genomic neighborhoods) were targeted by the $CHD7^{\text{LOF}}$ or $KMT2D^{\text{LOF}}$ specific DNAm signatures (Tables S12 and S13). The background set of probes to which the comparison was made was defined as the 363,979 autosomal CpGs used as the initial input to our analysis pipeline. All p values were FDR corrected.

DNAm Validation by Sodium Bisulfite Pyrosequencing
Differential DNAm between the $CHD7^{\text{LOF}}$ and $KMT2D^{\text{LOF}}$ individuals in the Discovery Cohorts and matching controls was validated for selected genomic loci using pyrosequencing assays. These assays were designed using QIAGEN Assay Design Software v1.0.6 to target specific CpGs identified by the microarray experiment, as well as adjacent sites (Table S14). DNAm was assessed for the following CpG sites: cg01370449, cg08468392 and cg19759481 HOXAS, cg16787483; cg24626752 and cg09823589 (SLTRKS; SLIT and NTRK family member 5 [MIM: 609680]); cg18546840 and cg18871253 (FOXp2; Forkhead box P2 [MIM: 605317]), and cg15254671 (MYO1F; myosin IF [MIM: 601480]). Pyrosequencing was done using the PyroMark Q24 system and Pyrosequencing Gold Reagents (Qiagen). Testing for a statistical difference between all groups was performed using a Kruskal-Wallis test ($p < 0.0001$).

Results
DNA Methylation Signatures for $CHD7^{\text{LOF}}$ and $KDM2D^{\text{LOF}}$
To determine whether LOF mutations in $CHD7$ ($CHD7^{\text{LOF}}$) generate a specific pattern of DNAm alterations, we compared genome-wide DNAm patterns in 19 $CHD7^{\text{LOF}}$ individuals ($CHD7^{\text{LOF}}$ Discovery Cohort) and 29 matched controls. Volcano plots of the results of statistical criteria, specifically limma regression modeling, and non-parametric Mann-Whitney U tests, were used to determine a significance level $p < 0.01$ and an effect size of a 10% $\Delta \beta$ threshold (Figures S2A and S2B). We identified a set of 163 significant differentially methylated CpG sites for the $CHD7^{\text{LOF}}$ Discovery Cohort, defined as the $CHD7^{\text{LOF}}$ DNAm signature (Table S8). Unsupervised hierarchical clustering of the DNAm of each of the samples for these 163 CpGs sites clearly distinguished the $CHD7^{\text{LOF}}$ individuals from controls (Figure 1A).

Similarly, analysis of genome-wide DNAm patterns for 11 $KMT2D^{\text{LOF}}$ individuals ($KMT2D^{\text{LOF}}$ Discovery Cohort) and 11 matched controls identified a set of 221 significant differentially methylated CpGs for $KMT2D^{\text{LOF}}$, defined as the $KMT2D^{\text{LOF}}$ DNAm signature (Table S9). Volcano plots of the limma regression and the Mann-Whitney U test for the $KMT2D^{\text{LOF}}$ Discovery Cohort were used to determine the significance level $p < 0.01$ and the 10% effect size (Figures S2C and S2D) to identify this set of CpGs. Unsupervised hierarchical clustering using the $KMT2D^{\text{LOF}}$ DNAm signature clearly distinguished the $KMT2D^{\text{LOF}}$ individuals from controls (Figure 1B).

Predictive Modeling Using DNAm Signatures for $CHD7^{\text{LOF}}$ and $KMT2D^{\text{LOF}}$
We used the DNAm signatures for the $CHD7$ and $KMT2D$ Discovery Cohorts to derive the classification signatures, by removing redundant data features. Removing redundancies from the initial collections of CpG sites (see Methods) resulted in a $CHD7^{\text{LOF}}$ DNAm classification signature comprising 75 CpGs and a $KMT2D^{\text{LOF}}$ DNAm classification signature comprised of 112 CpGs (Tables S8 and S9). Two SVM classification models were then built using the $CHD7$ and $KMT2D$ Discovery Cohort samples as training sets and the corresponding non-redundant DNAm signatures as data features.

$CHD7^{\text{LOF}}$ and $KMT2D^{\text{LOF}}$ DNAm Signatures Are Independent of Blood Cell Type Composition
Both CHARGE and Kabuki syndromes can be associated with immune dysfunction although the sub-populations of T cells that are potentially altered represent a small fraction of the total lymphocytes.³²,³³ To ensure that the predictive models were not affected by the variation in blood cell types, the two predictive models were applied to DNAm data from normal whole blood, peripheral blood mononuclear cells (PBMC), granulocytes, and isolated cell populations (CD4⁺ T cells, CD8⁺ T cells, CD56⁺ NK cells, CD19⁺ B cells, CD14⁺ monocytes).²⁶ Prediction results demonstrated that all individual cell types received low predictive scores, placing them near other controls in our data (Figure S3). This suggests that the prediction of either $CHD7^{\text{LOF}}$ or $KMT2D^{\text{LOF}}$ status using the respective DNAm signatures is not influenced by a particular blood cell type within a sample. Clinical blood counts and differentials were available for 7 individuals with $CHD7$ mutations (3 LOF; 4 sequence variants) and for 2 individuals with $KMT2D$ mutations (1 LOF and 1 sequence variant), and all were within the normal range.

Specificity of $CHD7^{\text{LOF}}$ and $KMT2D^{\text{LOF}}$ DNAm Classification Signatures
To quantify the specificity of the DNAm classification signatures and to confirm that the two models do not generate overlapping predictions, we applied the $CHD7^{\text{LOF}}$ predictive model to the $KMT2D^{\text{LOF}}$ cohort, and conversely the $KMT2D^{\text{LOF}}$ predictive model to the $CHD7^{\text{LOF}}$ cohort. None of the $KMT2D^{\text{LOF}}$ individuals or controls scored as putative $CHD7^{\text{LOF}}$ using the $CHD7^{\text{LOF}}$ classification signature, confirming that the $CHD7^{\text{LOF}}$ predictive model was specific to $CHD7^{\text{LOF}}$ (Figure 2). Similarly, none of the $CHD7^{\text{LOF}}$ individuals or controls scored as $KMT2D^{\text{LOF}}$, confirming the
specificity of the second model (Figure 2). Next we assessed

the specificity of the predictive analysis on the collection

of control blood DNAm data extracted from the GEO reposi-

tory. All 162 GEO samples had low prediction scores for

both CHD7\textsubscript{LOF} and KMT2D\textsubscript{LOF}, i.e., they were predicted

to have pathogenic mutations in CHD7 or KMT2D by

the corresponding models, demonstrating 100% specificity

of the DNAm signatures (Figure 2).

Validation of CHD7\textsubscript{LOF} and KMT2D\textsubscript{LOF} DNAm

Classification Signatures Using a Blinded Cohort

Next we applied the predictive models for CHD7\textsubscript{LOF} and

KMT2D\textsubscript{LOF} DNAm classification signatures in a blinded

fashion to a cohort of individuals with either CHD7 or

KMT2D mutations classified as pathogenic, likely patho-

genic or variants of unknown significance (VUS; Validation

Cohort). After the prediction scores were generated,

the mutation classification was unblinded for compari-

son to the reported variant classification (Figure 3).

The CHD7\textsubscript{LOF} DNAm signature predictive model generated

high scores for all of the CHD7 mutation samples (n = 20)

that were classified as pathogenic or likely pathogenic. The

same was true of the KMT2D\textsubscript{LOF} model (n = 8). Thus, both

predictive models demonstrated the ability to correctly

classify pathogenic mutations in their respective genes,

CHD7 or KMT2D (100% sensitivity), while giving low

scores to samples with mutations in the other gene and

to all controls in the Validation Cohort (100% specificity).

The Validation Cohort included one individual with a mu-

tation in KDM6A, a second gene in which mutations are asso-

ciated with Kabuki syndrome.34 Interestingly, the

KDM6A mutation received a high score from the KMT2D\textsubscript{LOF} DNAm

classification signature model, indicating that it is more

similar to KMT2D\textsubscript{LOF} than controls or CHD7\textsubscript{LOF}.

Analysis of Sequence Variants in CHD7 and KMT2D Using

Gene-Specific DNAm Classification Signatures

The predictive models were next applied to cohorts of

individuals with CHD7 and KMT2D sequence variants of

uncertain significance (VUS) that included missense and

splice site mutations (Figure 4; Tables S1 and S2). Phen-

totypic information for these individuals is summarized

in Tables S3 and S4. Of 13 individuals with VUS in

CHD7, 6 clustered with the CHD7\textsubscript{LOF} Discovery Cohort,
suggesting that these variants (CHD7-20, 21, 23, 24, 25, and 30) are pathogenic, and 7 clustered with the control samples suggesting that these variants (CHD7-22, 26, 27, 28, 29, 31, and 32) are benign (Figure 4). The 6 variants predicted to be pathogenic included 2 splice site mutations (one inherited and one de novo) and 4 missense mutations (3 de novo, one inheritance unknown). The inherited splice site mutation was identified in a parent with no overt clinical manifestations of CHARGE syndrome. The parent had a normal ophthalmology exam and did not have a history of hearing loss, but did not undergo imaging of the middle/inner ear. All of the 7 variants predicted to be benign are inherited missense mutations.

Diagnostic Classification by DNAm Signature versus Clinical Criteria

A comparison of the CHD7LOF DNAm classification signature prediction (pathogenic or benign) to the Verloes diagnostic criteria for CHARGE syndrome and that recently proposed by Hale revealed discordant results for four individuals within our CHD7 variant cohort (Table 1). Specifically, three individuals who did not meet criteria for a diagnosis of CHARGE using either the Verloes or Hale criteria (CHD7-20, CHD7-21, and CHD7-30) were determined to have pathogenic CHD7 mutations when classified utilizing the CHD7LOF DNAm classification signature. Of note, individual CHD7-21 did not have sufficient clinical information to be classified using the Hale criteria. All three of these mutations were de novo. The fourth individual (CHD7-22) was classified as “partial” CHARGE using the Verloes criteria.
when the 13 mutation variants in the CHD7 algorithms, specifically PolyPhen-2, SIFT, Mutation Taster, and ESE finder also revealed discordant predicted this to be a benign inherited synonymous mutation.

We derived the scores for each individual using the two models (established by O.C.; Table 2). Individual KMT2D-14 applied had a clinical diagnosis of Kabuki syndrome who had an intermediate score between the algorithms were in complete agreement with each other. However, none of these predictive results were discordant with SIFT and 1 result was discordant with Mutation Taster, 5 results were discordant with ESE finder, and met a clinical diagnosis for CHARGE using the Hale criteria but the CHD7LOF DNAm classification signature predicted this to be a benign CHD7 variant. This variant was an inherited synonymous mutation.

Comparison of the CHD7LOF DNAm classification signature predictions to independent in silico prediction algorithms, specifically PolyPhen-2, SIFT, Mutation Taster, and ESE finder also revealed discordant results for 5 individuals with missense mutations (CHD7-26, CHD7-27, CHD7-28, CHD7-29, and CHD7-32). Specifically, 5 results were discordant with Mutation Taster, 4 results were discordant with SIFT and 1 result was discordant with PolyPhen-2. However, none of these predictive algorithms were in complete agreement with each other.

Consensus clinical diagnostic criteria for Kabuki syndrome have not been established. Individuals with this condition have characteristic facial features, in addition to a variety of congenital anomalies (intellectual disability, short stature, persistent fingertip pads, and skeletal anomalies), which suggest the diagnosis. Individual KMT2D-12 who clustered with the KMT2DLOF Discovery Cohort when the KMT2DLOF DNAm classification signature was applied had a clinical diagnosis of Kabuki syndrome (established by O.C.; Table 2). Individual KMT2D-14 who had an intermediate score between the KMT2DLOF Discovery Cohort and the control samples also had a clinical diagnosis of Kabuki syndrome (established by R.M.-L.). Notably, both individuals had typical facial features in addition to other characteristic clinical features.

Genes with Differential DNA in the CHD7LOF and KMT2DLOF DNAm Signatures

The majority of CpG sites differentially methylated for CHD7LOF and KMT2DLOF were specific to each DNAm signature. The CHD7LOF CpG sites were located within the bodies or promoter regions (up to 1500 bp upstream of the transcription start site) of 86 known RefSeq genes (Table S8). Several genes demonstrated differential DNAm at multiple probes, including FOX2P2, HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1), homeobox A1 (HOXA1 [MIM: 142955]), homeobox A6 (HOXA6 [MIM: 142951]), HOXA5 and SLITRK5. Analysis of differentially methylated regions, using bump hunting, detected consistent patterns of DNAm gain or loss in the vicinity of these genes (Table S10). Enrichment analysis of the probes within the CHD7LOF DNAm signature confirmed a statistically significant over-representation in GO Biological Process categories related to growth and embryonic development of the brain, ear, digestive, endocrine, and neural systems, as well as additional functional categories that are highly relevant to the phenotypic features associated with CHARGE syndrome (Table S12).

The KMT2DLOF CpG sites were located within the bodies or promoter regions of 105 known genes (Table S9). Among these, multiple CpG sites mapped to HOTAIRM1, homeobox A4 (HOXA4 [MIM: 142953]), HOXA5, and SLITRK5. These genes were also identified as corresponding to KMT2DLOF associated differentially methylated regions detected by bump hunting (Table S11). Enrichment analysis of the probes within the KMT2DLOF DNAm signature confirmed a statistically significant over-representation in GO biological processes categories related to skeletal, lung and digestive system development; as well there were functional categories similar to those observed for the CHD7LOF signature including pattern specification and embryonic morphogenesis (Table S13).

Due to the presence of both overlapping and clinically distinct features seen in CHARGE and Kabuki syndromes, we examined the CHD7LOF and KMT2DLOF DNAm signatures for both shared and distinct CpG targets. There were 14 CpG sites shared by the CHD7LOF and KMT2DLOF DNAm signatures: 11 corresponding to HOXA5 and 3 to SLITRK5. The HOXA5 CpGs demonstrated a gain of DNAm in both the CHD7LOF and KMT2DLOF signatures. DNAm was validated using sodium bisulfite pyrosequencing for 3 CpG sites in the HOXA5 promoter (cg01370449, cg04863892, and cg19759481; Figures S5A–S5C). The average gain of DNAm for the three sites is CHD7LOF was 18%, 20%, and 20% respectively, compared to 18%, 18%, and 19% for KMT2DLOF. Furthermore, the analysis of DMRs for CHD7LOF and KMT2DLOF using bump hunting also confirmed gain of DNAm at overlapping DMRs in the vicinity of HOXA5 (Figure S4A). The shared CpG sites near SLITRK5 demonstrated DNAm changes in opposite directions in the two signatures, with a loss of DNAm.
in CHD7_{LOF} but gain of DNA methylation in KMT2D_{LOF}. For SLITRK5, 3 CpG sites (cg16787483, cg24626752, and cg09823859; Figures S5D–S5F) were validated using pyrosequencing. An average loss of DNA methylation of 20%, 14%, and 12% in the CHD7_{LOF} samples was confirmed, whereas an average gain of DNA methylation of 21%, 24%, and 24% was confirmed in KMT2D_{LOF} samples. This finding was confirmed by bumphunting in the overlapping DMRs (Figure S4B).

DNA methylation was also validated for CpG sites in genes specific to each DNA methylation signature. For the CHD7_{LOF} DNA methylation signature two CpG sites in FOXP2 (cg18546840 and cg18871253) were selected because of the critical role of FOXP2 in brain and craniofacial development.36,37 Both of these CpG sites exhibit an average loss of DNA methylation of 15% (Figures 5G and 5H). For the KMT2D_{LOF} DNA methylation signature a CpG site in MYO1F (cg15254671) with an average 33% loss of DNA methylation (Figure 5I) was validated. This CpG site, along with four others in the same CpG island (spanning exon 23 to 24), carry chromatin marks classified as a promoter or enhancer in different cell types.38,39

Discussion

We have identified two unique DNA methylation signatures associated with loss of function mutations in CHD7 (CHD7_{LOF}) and KMT2D (KMT2D_{LOF}), further enhancing our understanding of the critical role of epigenetic dysregulation in neurodevelopmental disorders. These two gene-specific signatures demonstrate 100% specificity and 100% sensitivity, enabling differentiation between pathogenic and benign mutations in CHD7 and KMT2D, respectively. That is, these DNA methylation signatures can function as tools to classify variants of unknown significance (VUS) in these genes. Interestingly, comparisons of the differentially methylated sites within the CHD7_{LOF} and KMT2D_{LOF} DNA methylation signatures provide evidence that CHD7 and KMT2D regulate common biological pathways likely reflecting the clinical overlap between CHARGE and Kabuki syndromes.

Functional Roles of CHD7 and KMT2D

Mutations in CHD7 were initially identified as the etiology of CHARGE syndrome in 2004.1 Since that time, much has
been learned regarding the biological function of this gene. CHD7, an ATP-dependent chromodomain helicase chromatin remodeling protein is involved in the formation of several large protein complexes that regulate the movement of nucleosomes along DNA, and as such affects the activity of numerous signaling pathways during embryonic development. These CHD7-containing protein complexes bind to DNA at specific sites, the majority of which overlap with regulatory elements such as gene promoters or enhancers. The epigenetic effects of CHD7 on chromatin and gene regulation appear to vary both temporally and spatially, depending largely upon the function of the protein complex with which it interacts (for review see). CHD7 is expressed in embryonic stem cells; its expression becomes restricted to specific tissues, including the brain, eye, heart, and ear, during differentiation. Gene-expression studies in mouse embryos carrying a homozygous deletion of Chd7 demonstrate significant expression differences in many genes important for brain development.

Mutations in KMT2D were initially identified as the major cause of Kabuki syndrome in 2010. KMT2D, a lysine methyltransferase, adds a tri-methyl mark to histone 3 lysine 4 (H3K4), which promotes gene expression by lysine methyltransferase, adds a tri-methyl mark to histone genes. KMT2D belongs to the family of mixed-lineage leukemia (MLL) genes, which are involved in controlling other genes essential for embryogenesis, including the HOX genes. In a mouse model of Kabuki syndrome, heterozygous disruption of Kmt2d is associated with a genome-wide reduction of H3K4 tri-methylation. Histone methylation patterns in cardiac tissue from embryos with homozygous deletions of Kmt2d show a global decrease in H3K4 mono- and dimethylation, when compared to controls, suggesting that KMT2D functions at both enhancers and gene promoters to regulate gene expression.

Utility of CHD7\(^{LOF}\) and KMT2D\(^{LOF}\) DNAm Signatures

Diagnosis of CHARGE and Kabuki syndromes in the clinical setting can be challenging. CHARGE syndrome in particular has been shown to have extensive intra- and interfamilial clinical variability. Since the first description of CHARGE syndrome in 1981, diagnostic criteria for this condition have undergone several iterations, reflecting a broadening of the phenotype. The challenges in establishing a clinical diagnosis of CHARGE syndrome using existing diagnostic criteria (Table 1) are highlighted by data for four individuals in the current study, that demonstrate incongruities between the criteria-based clinical classifications of CHARGE syndrome and our CHD7\(^{LOF}\) DNAm classification signature predictions. Specifically, three individuals who did not meet clinical criteria for a diagnosis of CHARGE syndrome were identified to have the DNAm signature (predicting pathogenicity) and one individual who did meet clinical criteria for a diagnosis of CHARGE syndrome did not have the DNAm signature (predicting a benign variant). Existing in silico prediction tools often provide different and contradictory results as seen for several of the individuals in our CHD7 variant cohort.

Sample ID	Mutation	Protein change	Inheritance	Signature (positive/negative)	SIFT (score)	Mutation Taster (p value)	PolyPhen-2 prediction (score)
KMT2D-12	c.15143G>A	p.Arg5048His	de novo	positive	Deleterious (0)	Disease Causing (1)	Probably Damaging (1)
KMT2D-13	c.12028T>C	p.Ser4010Pro	inherited	negative	Tolerated (0.28)	Polymorphism (1)	Benign (0.001)
KMT2D-14	c.16522-5_16522-4delTT	ND^a	de novo	positive	ND	ND	ND
KMT2D-15	c.15910A>G	p.Ile5304Val	inherited	negative	Tolerated (0.06)	Disease Causing (1)	Probably Damaging (0.997)
KMT2D-16	c.15659G>A	p.Arg5220His	inherited	negative	Deleterious (0.01)	Disease Causing (1)	Probably Damaging (1)
KMT2D-17	c.10256A>G	p.Asp3419Gly	inherited	negative	Tolerated (0.2)	Disease Causing (1)	Probably Damaging (1)
KMT2D-18	c.8974G>A	p.Glu2992Lys	inherited	negative	Tolerated (0.08)	Disease Causing (1)	Probably Damaging (0.996)
KMT2D-19	c.8831A>G	p.Asn2944Ser	inherited	negative	Tolerated (0.27)	Polymorphism (1)	Benign (0.013)
KMT2D-20	c.832G>A	p.Ala278Thr	inherited	negative	Tolerated (0.53)	Polymorphism (0.98)	Benign (0)
KMT2D-21	c.682C>G	p.Arg228Gly	inherited	negative	Deleterious (0.02)	Polymorphism (0.883)	Benign (0.36)

ND = not determined

See Taster Splicing Prediction for KMT2D-14 identifies loss of a SF2/ASF site.
for CHARGE syndrome, further demonstrating the phenotypic variability and the imperfect alignment between clinical classification and molecular test data. Further, although pathogenic mutations in CHD7 are identified in 90% of individuals fulfilling Blake’s criteria, only 65%–70% of individuals with typical or suspected CHARGE syndrome are identified to have a pathogenic CHD7 mutation. Similarly, only ~70% of individuals with a clinical diagnosis of Kabuki syndrome are identified to have pathogenic mutations in KMT2D or KDM6A. It is not clear whether the missing 30% of mutations occur in promoters or enhancers not identified by current sequencing techniques or if there might be locus heterogeneity. The CHD7LOF and KMT2DLOF DNAm signatures could provide a means of enhancing the molecular diagnostic rates for these syndromes, because they could detect loss of function mutations that might not be detected by current sequence-based testing. In future, further validation of
the clinical utility of these signatures could be derived from RNA sequence-based functional assays.

The utility of DNAm signatures for the epigenes CHD7 and KMT2D constitute a generalization of our previous work with epigenes, in which we demonstrated the utility of a DNAm signature in classifying VUS in NSD1 associated with Sotos syndrome. The NSD1-specific DNAm signature also enabled molecular distinction between Sotos syndrome and the clinically overlapping overgrowth condition Weaver syndrome [MIM: 277590] resulting from mutations in enhancer of zeste, Drosophila, homolog 2 (EZH2 [MIM: 601573]), another epigen gene encoding a histone methyltransferase.

Overlapping Molecular Mechanisms for CHARGE and Kabuki Syndromes

Clinical overlap between CHARGE and Kabuki syndromes was initially reported by Ming et al. (2003) over 10 years ago. Since then, several reports have demonstrated the difficulty in distinguishing between these two conditions, especially in infancy when the typical facial gestalt of Kabuki syndrome might not yet be apparent. The genes associated with CHARGE (CHD7) and Kabuki (KMT2D and KDM6A) syndromes all play a role in chromatin remodeling. Evidence supporting a functional connection between CHD7 and KMT2D comes from studies showing that both these protein interact with members of the WAR complex (WDR5, RBBP5, and ASH2L). On the basis of these findings, it was suggested that CHD7 and KMT2D regulate a common subset of genes. Our finding that the unique CHD7LOF and KMT2DLOF DNAm signatures have common CpG targets, specifically within HOXAS and SLITRK5, provides additional evidence for molecular mechanistic connections between CHARGE and Kabuki syndromes and also provides important functional data to explain the pathophysiologic basis of the overlapping features in these two conditions.

Our previous work on NSD1 demonstrated the relevance of the DNAm targets in blood to our understanding of the pathophysiolo of the disease. In the case of NSD1 loss of function mutations, DNAm gene targets were enriched for neural and cellular development pathways, reflecting the cardinal features of Sotos syndrome (overgrowth and developmental delay). Our finding that the CHD7 and KMT2D DNAm targets appear to relate to genes involved in the embryonic development of cell types and tissues demonstrating malformations in CHARGE and Kabuki syndromes further supports the functional significance of these DNAm signatures and provides valuable data relevant to the pathophysiolo of these conditions.

Both CHD7 and KMT2D have been previously linked to expression of various homebox-containing genes. The homebox (HOX) genes encode highly conserved transcription factors that are expressed in a spatially and temporally regulated manner during development. HOX expression during development is tightly regulated in part by chromatin structure and epigenetic modifications, including DNAm. In the mouse, the developing neural tube of Chd7−/− embryos also showed altered expression of other homebox genes, such as orthodentric homebox 2 (Otx2) and gastrulation brain homeobox 2 (Gbx2). Chromatin immunoprecipitation assays have shown that CHD7 binds to other chromatin-associated proteins at genomic sites within the HOX A1, HOX A5, and HOX A6. In fibroblast cells from individuals with loss of function KMT2D mutations, targeted expression analysis of homeobox C6 (HOXC6 [MIM: 142972]) showed a decreased transcript level compared to controls. KMT2D has also been shown to bind to DNA in the HoxA cluster in mouse embryonic-stem-cell-derived cardiomyocytes.

The finding that HOX A5 is regulated by both CHD7 and KMT2D provides us with further clues to the pathophysiology of CHARGE and Kabuki syndromes. In both the CHD7LOF and KMT2DLOF DNAm signatures, a gain in DNAm was observed at the HOX A5 promoter. Functional studies in a wide range of vertebrate species have established the conserved roles of HOX genes as transcription factors that regulate axial patterning of the developing embryo. A study of the mouse promoter HoxA5 showed that it is unmethylated in specific embryonic tissues, including liver, intestine, and spleen. In those same tissues postnatally, the HoxA5 promoter becomes completely (spleen), or partially (intestine) unmethylated, or remains unmethylated (liver). Therefore, DNAm appears to be a crucial element in the development regulation of Hox activity postnatally. Our findings of a 20% increase in DNAm is likely to be functionally relevant given data from a mouse model wherein a high-fat diet is associated with a 25% increase in DNA methylation of the HoxA5 promoter in adipose tissue resulting in a significant reduction in mRNA and protein expression of this gene.

Some of the clinical features shared by CHARGE and Kabuki syndromes could be mediated by reduced expression of HOX A5. Based on functional studies of HOX A5 in mice, we propose that these could include growth deficiency, skeletal and limb anomalies, renal dysgenesis, and neural development. In one mouse model with heterozygote Hox A5 truncating mutations, the mutant mice were phenotypically indistinguishable from their wild-type littermates but on further evaluation of skeletal morphology, an increased rate of rib anomalies/vertebral defect were identified. Of interest, individuals with CHARGE and Kabuki syndromes demonstrate vertebral anomalies and individuals with CHARGE syndrome can have missing ribs. Additional studies focused on the
brain and behavior of these mice could demonstrate important changes in brain function and/or behavior given a recent report characterizing the expression profile and the neuroanatomical localization of HOXA5 in the fetal, postnatal, and adult brain. They identified HOXa5 transcripts in the medulla oblongata and the pons from fetal to adult stages, and in the thalamus and the cortex from postnatal stages through adulthood. They also demonstrated that HOXa5 is transcribed in the adult cerebellum and that the HOXa5 protein is present in all the HOXa5-expressing hindbrain nuclei in adulthood. This suggests that HOXa5 in these nuclei might be required for processes beyond the early developmental patterning and neuronal migration phases, including axonal growth and synapse formation during circuit establishment, refinement of neural circuits during early postnatal life in response to environmental cues, or adult synaptic plasticity. Interestingly, in each of the DNAm signatures there are multiple HOXA genes that have differential DNAm, including HOTAIRM, HOXA1, and HOXA6 in CHD7LOF and HOXA4 in KMT2DLOF.

HOTAIRM is a long non-coding RNA (lncRNA), which has been found to interact with different chromatin-modifying complexes. Recent work by Wang and Dostie (2016) found that HOTAIRM1 contributes to three-dimensional changes in chromatin organization required for the temporal collinear activation of HOXA genes. Their findings also demonstrate that lncRNAs derived from the HOTAIRM1 gene can activate and/or repress HOXA gene expression in different cell types. Our finding that CHD7LOF is associated with differential DNAm at HOTAIRM suggests multiple layers of epigenetic dysregulation impacting cell-type-specific HOXA gene expression in CHARGE syndrome. HOTAIRM1 is also known to modulate β-integrin signaling, which has been shown to be critical for the expansion of neural stem cells in the development of the cerebral cortex of model organisms. These data suggest specific pathophysiologic mechanisms that could account for neurodevelopmental anomalies in CHARGE syndrome.

A second gene, SLITRK5, also had shared differentially methylated CpG sites in the gene body and surrounding shores in each of the DNAm signatures with a loss of DNAm in CHD7LOF and a gain of DNAm in KMT2DLOF. The SLITRK family encodes transmembrane proteins which function at synapses. SLITRK5 has been shown to function in synaptic adhesion and in tropomyosin receptor kinase B (TRKB) signaling upon brain-derived neurotrophic factor (BDNF) stimulation. In Chd7-/- mouse whole embryos, expression of SLITRK5 is decreased. Mice with homozygous deletion of Slitrk5 develop an over-grooming phenotype and deficiencies in corticostriatal transmission as well as a reduction in glutamate receptor subunits. We expect that dysregulation of SLITRK5, either gain or loss, could impact neuronal development due to its role in many tightly regulated processes at the synapse.

Epigenetic Targets Specific to CHARGE and Kabuki Syndromes

One of the genes specific to the CHD7LOF DNAm signature is FOXP2. In mice, FOXP2 has been shown to be expressed in the motor related circuitry in the brain, which controls craniofacial development including muscles of the face and striatal brain development. In mouse embryonic stem cells and neural progenitors, chromatin immunoprecipitation assays show that CHD7 binds to the Foxp2 promoter. As mutations in FOXP2 have been identified in individuals with speech and language deficits, it is possible that altered FOXP2 expression might contribute to the speech and language difficulties in individuals with CHARGE syndrome.

Specific to the KMT2DLOF DNAm signature are CpG sites within the gene body of MYO1F. These sites are located in a CpG island carrying chromatin marks which classify the region as regulatory, specifically as a promoter or enhancer in different cell types. This unconventional myosin is expressed in the inner ear and heterozygous missense mutations in this gene have been identified in individuals with hereditary hearing loss.

Overlapping Epigenetic Targets for KMT2D and KDM6A in Kabuki Syndrome

Our observation that the single sample from with a KDM6A pathogenic mutation in the Validation cohort clustered with the pathogenic KMT2D samples suggests that these two genes regulate overlapping sets of genes. This is in keeping with evidence from earlier studies that showed these two proteins share HOX targets. KDM6A, a histone demethylase, has been shown to interact with KMT2D as part of a multi-protein complex. More recently, the majority of KDM6A target genes have been shown to be co-regulated by KMT2D. Knockdown of the zebrafish orthologs of KMT2D and KDM6A confirmed the role of these proteins in craniofacial, heart, and brain development, providing direct evidence of the overlapping, functional roles of these genes in the development of tissues and organs affected in Kabuki syndrome.

DNAm analysis of additional samples with KDM6A pathogenic mutations will be required to assess for potentially overlapping yet distinct DNAm signatures. Such a study would also allow for a comparison of the target genes regulated by KMT2D and KDM6A furthering our understanding of the overlapping and distinct functions of these two genes in the etiology of Kabuki syndrome.

Potential for Therapeutic Interventions Based on Epigenetic Targets

As our knowledge of epigenetic regulation in neurodevelopmental disorders increases, so does the opportunity for therapeutic interventions. The potential positive impact of such interventions is heightened by compelling evidence for the potential to reverse postnatally neurological phenotypes in mouse models of Rett syndrome (RTT [MIM: 312750]) caused by mutations in
the epigene methyl-CpG binding protein 2 (MECP2 [MIM: 300005]).92 Recently, Bjornsson et al. (2014) showed that memory deficits in a mouse model of Kabuki syndrome (Kmt2d^{-/-} βGal) can be prevented or even reversed through systemic delivery of a histone deacetylase (HDAC) inhibitor, which promotes open chromatin states.49 Their findings provide support for the hypothesis that neurodevelopmental deficits in Kabuki syndrome are maintained by an impairment of adult neurogenesis because of an imbalance between open and closed chromatin states for critical target genes.93 A more general potential therapeutic role for HDAC inhibitors in neurodevelopmental syndromes caused by certain epigenes is supported by the fact that these inhibitors have also been shown to reverse the long term memory deficit in mouse models of Rubinstein-Taybi syndrome (RSTS1 [MIM: 180849]) caused by haploinsufficient mutations in another epigene, histone acetyltransferase CREBBP (cAMP-responsive element binding protein binding protein [MIM: 600140]).93

Conclusion

In this article, we present DNA methylation signatures for CHD7 and KMT2D in human blood cells which hold promise for translational clinical use. These signatures, which have a high degree of sensitivity and specificity, identify specific target genes in human blood cells regulated by CHD7 and KMT2D. Our findings provide evidence that CHARGE and Kabuki syndromes result from dysregulation of key genes involved embryonal development that are expressed in a tissue-specific manner. Future studies in developmental model systems such as human induced pluripotent stem cells will help to enhance our understanding of epigenetic regulation in diverse cell types, including neuronal cells. The field of epigenomics offers a host of opportunities to positively impact precision medicine including a robust means of classifying pathogenicity of VUS and understanding disease pathophysiology in the context of genome-wide targets of epigenes. The identification of a multitude of gene-specific targets across the genome provides tangible opportunities to explore novel therapeutics to reverse neurodevelopmental deficits caused by epigenetic dysregulation.

Accession Numbers

The accession number for the DNA methylation data reported in this paper is GEO: GSE97362.

Supplemental Data

Supplemental Information includes four figures and fourteen tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.04.004.

Acknowledgments

We would like to thank all of the patients and families for their participation in our research study, and the physicians, genetic counselors, and clinical staff for their assistance with recruitment. We would also like to thank Youliang Lou, Chunhua Zhao, and Khadine Wiltshire for their invaluable contributions to this work. Thank you as well to Dr. Greg Hanna (University of Michigan) for contributing blood DNA samples from neurotypical control individuals who had undergone cognitive/behavioral assessments. This research was funded by the Canadian Institutes of Health Research (R.W., D.T.B., M.T.S., and S.C.), the Ontario Brain Institute (R.W., D.T.B., and M.T.S.) and the Rare Diseases Foundation (R.W. and D.T.B.). This work was also supported by the Canadian Centre for Computational Genomics (C3G), part of the Genome Innovation Network (GIN), funded by Genome Canada through Genome Quebec and Ontario Genomics (M.B. and A.L.T.), and Genome Canada through Ontario Genomics (A.L.T., S.C., M.B., and R.W.).

Received: December 22, 2016
Accepted: April 6, 2017
Published: May 4, 2017

Web Resources

GEO, http://www.ncbi.nlm.nih.gov/geo/
OMIM, http://www.omim.org/

References

1. Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de Vries, B.B., Jansen, I.M., van der Vliet, W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., et al. (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36, 955–957.
2. Ng, S.B., Bigham, A.W., Buckingham, K.J., Hannibal, M.C., McMillin, M.J., Gildersleeve, H.I., Beck, A.E., Tabor, H.K., Cooper, G.M., Mefford, H.C., et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793.
3. Ming, J.E., Russell, K.L., Baron, L., McDonald-McGinn, D.M., and Zackai, E.H. (2003). Coloboma and other ophthalmologic anomalies in Kabuki syndrome: distinction from charge association. Am. J. Med. Genet. A. 123A, 249–252.
4. Patel, N., and Alkuraya, F.S. (2015). Overlap between CHARGE and Kabuki syndromes: more than an interesting clinical observation? Am. J. Med. Genet. A. 167A, 259–260.
5. Dou, Y., Milne, T.A., Ruthenburg, A.J., Lee, S., Lee, J.W., Verdine, G.L., Allis, C.D., and Roeder, R.G. (2006). Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719.
6. Zhang, P., Lee, H., Brunzelle, J.S., and Couture, J.F. (2012). The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res. 40, 4237–4246.
7. Schulz, Y., Freese, L., Mänz, J., Zoll, B., Völter, C., Brockmann, K., Bögershausen, N., Becker, J., Wollnik, B., and Pauli, S. (2014). CHARGE and Kabuki syndromes: a phenotypic and molecular link. Hum. Mol. Genet. 23, 4396–4405.
8. Choutani, S., Cytrynbaum, C., Chung, B.H., Turinsky, A.L., Grafodatskaya, D., Chen, Y.A., Cohen, A.S., Dupuis, L,
Butcher, D.T., Siu, M.T., et al. (2015). NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun. 6, 10207.

Grafodatskaya, D., Chung, B.H., Butcher, D.T., Turinsky, A.L., Goodman, S.J., Choufani, S., Chen, Y.A., Lou, Y., Zhao, C., Rajendram, R., et al. (2013). Multi locus loss of DNA methylation in individuals with mutations in the histone H3 lysine 4 demethylase KDM5C. BMC Med. Genomics 6, 1.

Kernohan, K.D., Cigan Schenkel, L., Huang, L., Smith, A., Pare, G., Ainsworth, P., Boycott, K.M., Warman-Chardon, J., Sadikovic, B., and Care4Rare Canada Consortium (2016). Identification of a methylation profile for DNMT1-associated autosomal dominant cerebellar ataxia, deafness, and nalorepsy. Clin. Epigenetics 8, 91.

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al.; ACMG Laboratory Quality Assurance Committee (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424.

Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249.

Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., and Ng, P.C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452–W457.

Schwarz, J.M., Rödelsperger, C., Schuelke, M., and Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576.

Smith, P.J., Zhang, C., Wang, J., Chew, S.L., Zhang, M.Q., and Krainer, A.R. (2006). An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 15, 2490–2508.

Cartegni, L., Wang, J., Zhu, Z., Zhang, M.Q., and Krainer, A.R. (2003). ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571.

Verloes, A. (2005). Updated diagnostic criteria for CHARGE syndrome: a proposal. Am. J. Med. Genet. A 133A, 306–308.

Hale, C.I., Niederriter, A.N., Green, G.E., and Martin, D.M. (2016). Atypical phenotypes associated with pathogenic CHD7 variants and a proposal for broadening CHARGE syndrome clinical diagnostic criteria. Am. J. Med. Genet. A 170A, 344–354.

Fischbach, G.D., and Lord, C. (2010). The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195.

Hanna, G.I., Liu, Y., Isaacs, Y.E., Ayoub, A.M., Torres, J.J., O’Hara, N.B., and Gehring, W.J. (2016). Withdrawn/Depressed Behaviors and Error-Related Brain Activity in Youth With Obsessive-Compulsive Disorder. J Am Acad Child Adolesc Psychiatry 55, 906–913 e902.

Buhule, O.D., Minster, R.L., Hawley, N.L., Medvedovic, M., Sun, G., Viali, S., Deka, R., McGarvey, S.T., and Weeks, D.E. (2014). Stratified randomization controls better for batch effects in 450K methylation analysis: acautionary tale. Front. Genet. 5, 354.

Chen, Y.A., Choufani, S., Grafodatskaya, D., Butcher, D.T., Ferreira, J.C., and Weksberg, R. (2012). Cross-reactive DNA microarray probes lead to false discovery of autosomal sex-associated DNA methylation. Am. J. Hum. Genet. 91, 762–764.

Chen, Y.A., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke, B.W., Gallinger, S., Hudson, T.J., and Weksberg, R. (2013). Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203–209.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.

Du, P., Zhang, X., Huang, C.C., Jafari, N., Kibbe, W.A., Hou, L., and Lin, S.M. (2010). Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11, 587.

Reinius, L.E., Acevedo, N., Joerink, M., Pershagen, G., Dahlén, S.E., Greco, D., Söderhäll, C., Scheunjes, A., and Kere, J. (2012). Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE 7, e41361.

Jaffe, A.E., Murakami, P., Lee, H., Leek, J.T., Fallin, M.D., Feinberg, A.P., and irizarry, R.A. (2012). Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 41, 200–209.

Li, D., Xie, Z., Pape, M.L., and Dye, T. (2015). An evaluation of statistical methods for DNA methylation microarray data analysis. BMC Bioinformatics 16, 217.

Peters, T.J., Buckley, M.J., Statham, A.L., Pidsley, R., Samaras, K., V Lord, R., Clark, S.J., and Molloy, P.L. (2015). De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8, 6.

McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501.

Consortium, T.G.O.; and Gene Ontology Consortium (2015). Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056.

Lin, J.L., Lee, W.I., Huang, J.L., Chen, P.K., Chan, K.C., Lo, L.J., You, Y.J., Shih, Y.F., Tseng, T.Y., and Wu, M.C. (2015). Immunologic assessment and KMT2D mutation detection in Kabuki syndrome. Clin. Genet. 88, 255–260.

Wong, M.T., Lambeck, A.J., van der Burg, M., lbastide-van Gemert, S., Hogendorf, L.A., van Ravenswaaij-Arts, C.M., and Schölvink, E.H. (2015). Immune Dysfunction in Children with CHARGE Syndrome: A Cross-Sectional Study. PLoS ONE 10, e0142350.

Banka, S., Lederer, D., Benoit, V., Jenkins, E., Howard, E., Bunstone, S., Kerr, B., McKee, S., Lloyd, I.C., Shears, D., et al. (2015). Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2). Clin. Genet. 87, 252–258.

Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ernolavaea, O., Farrell, C.M., Hart, J., Landrum, M.J., McGarvey, K.M., et al. (2014). RefSeq: an update on mammalian reference sequences. Nucleic Acids Res. 42, D756–D763.

Cesario, J.M., Almaidhan, A.A., and Jeong, J. (2016). Expression of forkhead box transcription factor genes Foxp1 and Foxp2 of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development. Gene Expr. Patterns 20, 111–119.

van Rhijn, J.R., and Vernes, S.C. (2015). Retinoic Acid Signaling: A New Piece in the Spoken Language Puzzle. Front. Psychol. 6, 1816.
38. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996–1006.

39. Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Herve-Mouissavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., et al.; Roadmap Epigenomics Consortium (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330.

40. Bouazoune, K., and Kingston, R.E. (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc. Natl. Acad. Sci. USA 109, 19238–19243.

41. Schnetz, M.P., Bartels, C.F., Shastri, K., Balasubramanian, D., Zentner, G.E., Balaji, R., Zhang, X., Song, L., Wang, Z., Lafframboise, T., et al. (2009). Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 19, 590–601.

42. Zentner, G.E., Tesar, P.J., and Scacheri, P.C. (2011). Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21, 1273–1283.

43. Martin, D.M. (2015). Epigenetic Developmental Disorders: CHARGE syndrome, a case study. Curr. Genet. Med. Rep. 3, 1–7.

44. Martin, D.M. (2010). Chromatin remodeling in development and disease: focus on CHD7. PLoS Genet. 6, e1000101.

45. Schulz, Y., Wehner, P., Opitz, L., Salinas-Riester, G., Bongers, E.M., van Ravenswaaij-Arts, C.M., Wincentz, J., Schoumans, J., Kohlhase, J., Borchers, A., and Pauli, S. (2014). CHD7, the gene mutated in CHARGE syndrome, regulates genes involved in neural crest cell guidance. Hum. Genet. 133, 997–1009.

46. Vallianatos, C.N., and Iwase, S. (2015). Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 7, 503–519.

47. Ang, S.Y., Uebersohn, A., Spencer, C.I., Huang, Y., Lee, J.E., Ge, K., and Bruneau, B.G. (2016). KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development 143, 810–821.

48. Eissenberg, J.C., and Shilatifard, A. (2010). Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339, 240–249.

49. Bjornsson, H.T., Benjamin, J.S., Zhang, L., Weissman, J., Gerber, E.E., Chen, Y.C., Vaurio, R.G., Potter, M.C., Hansen, K.D., and Dietz, H.C. (2014). Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci. Transl. Med. 6, 256ra135.

50. Delahaye, A., Sznarj, Y., Lyonnet, S., Elmaleh-Bergès, M., Delpierre, I., Audollent, S., Wiener-Vacher, S., Mansbach, A.L., Amiel, J., Baumann, C., et al. (2007). Familial CHARGE syndrome because of CHD7 mutation: clinical intra- and interfamilial variability. Clin. Genet. 72, 112–121.

51. Jongmans, M.C., Hoefsloot, L.H., van der Donk, K.P., Admiraal, R.J., Magee, A., van de Laar, I., Hendriks, Y., Verheij, J.B., Walpole, I., Brunner, H.G., and van Ravenswaaij, C.M. (2008). Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability. Am. J. Med. Genet. A. 146A, 43–50.

52. Blake, K.D., Davenport, S.L., Hall, B.D., Hefner, M.A., Pagon, R.A., Williams, M.S., Lin, A.E., and Graham, J.M., Jr. (1998). CHARGE association: an update and review for the primary pediatrician. Clin. Pediatr. (Phila.) 37, 159–173.

53. Blake, K.D., and Prasad, C. (2006). CHARGE syndrome. Orphanet J. Rare Dis. 1, 34.

54. Vilininen, M. (2014). Majority vote and other problems when using computational tools. Hum. Mutat. 35, 912–914.

55. Jongmans, M.C., Admiraal, R.J., van der Donk, K.P., Vissers, L.E., Baas, A.F., Kapusta, L., van Hagen, J.M., Donnai, D., de Ravel, T.J., Veltman, J.A., et al. (2006). CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J. Med. Genet. 43, 306–314.

56. Bergman, J.E., Janssen, N., Hoefsloot, L.H., Jongmans, M.C., Hofstra, R.M., and van Ravenswaaij-Arts, C.M. (2011). CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J. Med. Genet. 48, 334–342.

57. Bergman, J.E., Janssen, N., van der Sloot, A.M., de Walle, H.E., Schoots, J., Rendtorff, N.D., Tranebjaerg, L., Hoefsloot, L.H., van Ravenswaaij-Arts, C.M., and Hofstra, R.M. (2012). A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome. Hum. Mutat. 33, 1251–1260.

58. Bögershausen, N., and Wollnik, B. (2013). Unmasking Kabuki syndrome. Clin. Genet. 83, 201–211.

59. Gibson, W.T., Hood, R.L., Zhan, S.H., Bulman, D.E., Fejes, A.P., Moore, R., Mungall, A.J., Eydoux, P., Babul-Hirji, R., An, J., et al.; FORGE Canada Consortium (2012). Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90, 110–118.

60. Tatton-Brown, K., Hanks, S., Ruark, E., Zachariou, A., Duarte, Sdel.V., Ramsay, E., Snape, K., Murray, A., Perdeaux, E.R., Seal, S., et al.; Childhood Overgrowth Collaboration (2011). Germ-line mutations in the oncogene EZH2 cause Weaver syndrome and increased human height. Oncotarget 2, 1127–1133.

61. Genevieve, D., Amiel, J., Viot, G., Le Merrer, M., Sanlaville, D., Urbizeta, A., Gérard, M., Munnich, A., Cormier-Daire, V., and Lyonnet, S. (2004). Atypical findings in Kabuki syndrome: report of 8 patients in a series of 20 and review of the literature. Am. J. Med. Genet. A. 129A, 64–68.

62. Verhagen, J.M., Oostdijk, W., Terwisscha van Scheltinga, C.E., Schali-Delfos, N.E., and van Bever, Y. (2014). An unusual presentation of Kabuki syndrome: clinical overlap with CHARGE syndrome. Eur. J. Med. Genet. 57, 510–512.

63. Li, D.D., Wang, Z.H., Chen, W.L., Xie, Y.Y., You, Q.D., and Guo, X.K. (2016). Structure-based design of ester compounds to inhibit MLL complex catalytic activity by targeting mixed lineage leukemia 1 (MLL1)-WDR5 interaction. Bioorg. Med. Chem. 24, 6109–6118.

64. Montavon, T., and Soshnikova, N. (2014). Hox gene regulation and timing in embryogenesis. Semin. Cell Dev. Biol. 34, 76–84.

65. Barber, B.A., and Rastegar, M. (2010). Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann. Anat. 192, 261–274.

66. Basson, M.A. (2014). Epistatic interactions between Chd7 and Fgfl8 during cerebellar development: Implications for CHARGE syndrome. Rare Dis. 2, e26868.

67. Micale, L., Augello, B., Malfeo, C., Selicori, A., Zucchetti, F., Fusco, C., De Nittis, P., Pellico, M.T., Mandriani, B., Fischetto, M., et al. (2014). Molecular analysis, pathogenic mechanisms, and radiothrapy treatment on a large cohort of Kabuki syndrome patients. Hum. Mutat. 35, 841–850.

68. Mallo, M., Wellik, D.M., and Deschamps, J. (2010). Hox gene regulation and regional patterning of the vertebrate body plan. Dev. Biol. 344, 7–15.

69. Hershko, A.Y., Kafri, T., Fainsod, A., and Razin, A. (2003). Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 302, 65–72.
70. Parrillo, L., Costa, V., Raciti, G.A., Longo, M., Spinelli, R., Esposito, R., Nigro, C., Vastolo, V., Desiderio, A., Zatterale, F., et al. (2016). Hoxa5 undergoes dynamic DNA methylation and transcriptional repression in the adipose tissue of mice exposed to high-fat diet. Int. J. Obes. 40, 929–937.

71. Svingen, T., and Tonissen, K.F. (2006). Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb) 97, 88–96.

72. Joksimovic, M., Jeannotte, L., and Tuggle, C.K. (2005). Dynamic expression of murine HOXAS protein in the central nervous system. Gene Expr. Patterns 5, 792–800.

73. Larochelle, C., Tremblay, M., Bernier, D., Aubin, J., and Jeannotte, L. (1999). Multiple cis-acting regulatory regions are required for restricted spatio-temporal Hoxa5 gene expression. Dev. Dyn. 214, 127–140.

74. Hutlet, B., Theys, N., Coste, C., Ahn, M.T., Doshisthi-Agolli, K., Lizen, B., and Gofflot, F. (2016). Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct. Funct. 221, 1223–1243.

75. Lizen, B., Hutlet, B., Bissen, D., Sauvegarde, D., Hermant, M., Ahn, M.T., and Gofflot, F. (2017). HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J. Comp. Neurol. 525, 1159–1175.

76. Jeannotte, L., Lemieux, M., Charron, J., Poirier, F., and Robertson, E.J. (1993). Specification of axial identity in the mouse: role of the Hoxa(5) (Hox1.3) gene. Genes Dev. 7, 2085–2096.

77. Lalani, S.R., Hefner, M.A., Belmont, J.W., and Davenport, S.L.H. (1993). CHARGE Syndrome. In GeneReviews(R), R.A. Pagon, M.P. Adam, H.H. Ardinger, S.E. Wallace, A. Amemiya, L.J.H. Bean, T.D. Bird, N. Ledbetter, H.C. Mefford, R.J.H. Smith, et al., eds. (Seattle, WA).

78. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693.

79. Wang, X.Q., and Dostie, J. (2016). Reciprocal regulation of chromatin state and architecture by HOTAIRM1 contributes to temporal collinear HoxA gene activation. Nucleic Acids Res. Published online October 26, 2016. http://dx.doi.org/10.1093/nar/gkw966.

80. Long, K., Moss, L., Laursen, L., Boulter, L., and ffrench-Constant, C. (2016). Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat. Commun. 7, 10354.

81. Loulier, K., Lathia, J.D., Marthiens, V., Relucio, J., Mughal, M.R., Tang, S.C., Coksaygan, T., Hall, P.E., Chigurupati, S., Patton, B., et al. (2009). beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol. 7, e1000176.

82. Takahashi, H., Katayama, K., Sohya, K., Miyamoto, H., Prasad, T., Matsumoto, Y., Ota, M., Yasuda, H., Tsumoto, T., Aruga, J., et al. (2012). Selective control of inhibitory synapse development by Slitrk3-PTPdelta trans-synaptic interaction. Nat Neurosci 15, 389–398, S381–382.

83. Aruga, J., and Mikoshiba, K. (2003). Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol. Cell. Neurosci. 24, 117–129.

84. Song, M., Giza, J., Proenca, C.C., Jing, D., Elliott, M., Dincheva, L., Shmelkov, S.V., Kim, J., Schreiner, R., Huang, S.H., et al. (2015). Slitrk5 Mediates BDNF-Dependent TrkB Receptor Trafficking and Signaling. Dev. Cell 33, 690–702.

85. Shmelkov, S.V., Hormigo, A., Jing, D., Proenca, C.C., Bath, K.G., Milde, T., Shmelkov, E., Kushner, J.S., Baljevic, M., Dincheva, L., et al. (2010). Slitrk5 deficiency impairs corticostrial circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16, 598–602.

86. Varga-Khadem, F., Gadian, D.G., Copp, A., and Mishkin, M. (1993). FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 6, 131–138.

87. Zadro, C., Alemanno, M.S., Bellacchio, E., Picarello, R., Donaudy, F., Melchionda, S., Zelante, L., Rabionet, R., Hilgert, N., Estivill, X., et al. (2009). Are MYO1C and MYO1F associated with hearing loss? Biochim. Biophys. Acta 1792, 27–32.

88. Lee, M.G., Villa, R., Trojer, P., Norman, J., Yan, K.P., Reinberg, D., Di Croce, L., and Shiekhattar, R. (2007). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450.

89. Issaeva, I., Zonis, Y., Rozovskiaia, T., Orlovsky, K., Croce, C.M., Nakamura, T., Mazo, A., Eisenbach, L., and Canaani, E. (2007). Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27, 1889–1903.

90. Kim, J.H., Sharma, A., Dhar, S.S., Lee, S.H., Gu, B., Chan, C.H., Lin, H.K., and Lee, M.G. (2014). UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 74, 1705–1717.

91. Van Laarhoven, P.M., Neitzel, L.R., Quintana, A.M., Geiger, E.A., Zackai, E.H., Clouthier, D.E., Artinger, K.B., Ming, J.E., and Shalik, T.H. (2015). Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum. Mol. Genet. 24, 4443–4453.

92. Guy, J., Yan, J., Selfridge, J., Cobb, S., and Bird, A. (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147.

93. Alarcón, J.M., Malleret, G., Touzani, K., Vronskaia, S., Ishii, S., Kandel, E.R., and Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947–959.