Modelling iodine in the ocean

Martin R. Wadley¹, David P. Stevens¹, Tim D. Jickells², Claire Hughes³, Rosie Chance⁴, Helmke Hepach⁵ and Lucy J. Carpenter⁴

¹School of Mathematics, University of East Anglia, Norwich, UK
²School of Environmental Sciences, University of East Anglia, Norwich, UK
³Department of Environment and Geography, University of York, York, UK
⁴Department of Chemistry, University of York, York, UK
⁵GEOMAR Helmholtz Centre for Ocean Research Kiel, RD2, Biological Oceanography, Kiel, Germany

Corresponding author: Martin Wadley (m.wadley@uea.ac.uk)

Key Points:

- We develop a model for cycling iodine in the ocean
- The predicted surface iodide distribution has a zonal structure not readily discernible by the limited observations to date
- Ocean circulation is found to have an important role in determining the spatial distribution of iodide
Abstract

An ocean iodine cycling model is presented, which predicts upper ocean iodine speciation. The model comprises a three-layer advective and diffusive ocean circulation model of the upper ocean, and an iodine cycling model embedded within this circulation. The two primary reservoirs of iodine are represented, iodide and iodate. Iodate is reduced to iodide in the mixed layer in association with primary production, linked by an iodine to carbon (I:C) ratio. A satisfactory model fit with observations cannot be obtained with a globally constant I:C ratio, and the best fit is obtained when the I:C ratio is dependent on sea surface temperature, increasing at low temperatures. Comparisons with observed iodide distributions show that the best model fit is obtained when oxidation of iodide back to iodate is associated with mixed layer nitrification. Sensitivity tests, where model parameters and processes are perturbed, reveal that primary productivity, mixed layer depth, oxidation, advection, surface fresh water flux and the I:C ratio all have a role in determining surface iodide concentrations, and the timescale of iodide in the mixed layer is sufficiently long for non-local processes to be important. Comparisons of the modelled iodide surface field with parameterisations by other authors shows good agreement in regions where observations exist, but significant differences in regions without observations. This raises the question of whether the existing parameterisations are capturing the full range of processes involved in determining surface iodide, and shows the urgent need for observations in regions where there are currently none.

Plain Language Summary

Iodine in the ocean is important because small emissions of iodine species to the atmosphere have a significant impact on ozone and air quality. Iodine is converted between two chemical forms by phytoplankton and bacteria, but only one chemical form (iodide) results in atmospheric emissions. We have developed a model that predicts the amount of each type of iodine in the global oceans. We find that this distribution has a more complex structure than that suggested by the limited number of observations, with the ocean circulation playing an important role. The model improves our understanding of both ocean iodine cycling and the resultant impacts on ozone distribution and air quality, and also shows that oceanographic changes due to increased atmospheric greenhouse
gas concentrations are likely to result in significant changes in ocean iodine, with implications for atmospheric air quality.

1 Introduction

The biogeochemical cycling and speciation of iodine in the oceans has been studied for many years, and it is recognised as a “bio-intermediate” element cycled between oxidised and reduced forms and removed from surface waters by biological activity (e.g. Truesdale et al., 2000). Recently there has been increasing interest in understanding this speciation because of its potential utility as an indicator of productivity, (e.g. Ducklow et al., 2018, Campos et al., 1996, Wong, 2001, Tian et al., 1996), its application as a paleo-redox indicator (e.g. Lu et al., 2016; Zhou et al., 2016) and because reactions between iodide at the sea surface and ozone have been identified as a globally significant sink for tropospheric ozone, with implications for atmospheric chemistry and climate (Carpenter et al., 2013; Saiz-Lopez et al., 2014). The reaction of iodide and ozone is not only a sink for ozone (Ganzeveld et al., 2009) but also a source of molecular iodine (I₂) and hypoiodous acid (HOI) to the atmosphere. These reactive iodine species photolyse to the highly reactive IO radical, influencing ozone cycling and other atmospheric chemistry reactions (e.g. Mahajan et al., 2010; Carpenter et al., 2013; Sherwen et al., 2016a). The iodine-driven sea surface ozone sink has been identified as the most uncertain part of the tropospheric sink of ozone (Hardacre et al., 2015), and has been estimated to account for around 12% of the total (Sherwen et al., 2016b), and thus an understanding of ocean iodine cycling is a key pre-requisite for adequate models of ozone and atmospheric oxidation processes.

Iodine is primarily present in the oceans as the dissolved inorganic ions iodide (I⁻) and iodate (IO₃⁻). In coastal surface water an additional organic iodine form has been identified as a significant component of the iodine pool, although this is not seen in the open ocean (Luther et al, 1991). Iodine is known to be cycled biologically within the oceans leading to slight surface depletion of total iodine concentrations (I⁻ + IO₃⁻) and a marked interconversion of iodine oxidation species with a euphotic zone maxima in iodide relative to iodate. In deep oxygenated waters iodate is the overwhelmingly dominant species as predicted from its thermodynamic stability (Wong, 1991; Elderfield and Truesdale, 1980; Chance et al., 2014). The uptake of iodate and iodide and the
release of iodide have been demonstrated in microalgal (e.g. Chance et al., 2007; de la Cuesta and Manley, 2009) and bacterial laboratory cultures (Hughes et al., 2019) In coastal surface water an additional organic iodine form has been identified as a significant component of the iodine pool, although this is not seen in the open ocean (Luther et al., 1991). Surface water iodine speciation varies seasonally, with iodate decreases and iodide increases approximately in phase with cycles of primary production, although possibly with a time lag associated with delays between the uptake of iodate and its subsequent re-release as iodide (e.g. Chance et al., 2010). Oxidation of this iodide back to iodate is estimated to have a timescale of the order of months to years, although it has not been measured directly because it is so slow (Tsunogai, 1971; Campos et al., 1996; Edwards and Truesdale, 1997; Waite et al., 2006; de la Cuesta and Manley, 2009; Chance et al., 2010). Several authors have noted a relationship between iodide and nitrate concentrations in surface water and speculated that this may reflect a real biogeochemical coupling of these species, which could reflect the geochemical similarities of iodate and nitrate. The evidence for such coupling has until recently been equivocal at best (Hung et al., 2005; Waite and Truesdale, 2003; Campos et al., 1999; Truesdale et al., 2000). However, in a companion paper, Hughes et al. (2019) have demonstrated a link between the oxidation of ammonium to nitrite, and iodide to iodate, which has significant implications for our understanding of the ocean iodine cycle.

Although the global database for iodine speciation in ocean surface waters is rather limited, there are still clear large scale patterns evident with iodide concentrations (and iodide/iodate ratios) much higher in the oligotrophic surface ocean gyre waters (> 100 nM generally) than in high latitude waters (< 50 nM) (Chance et al., 2014), and this range of concentrations is sufficient to significantly affect the uptake of ozone and its global atmospheric cycling (Sherwen et al., 2016b). The realisation of the importance of the role of iodine in surface ocean waters as a sink for ozone has led to efforts to incorporate this reaction into atmospheric models, which requires a global field of surface ocean iodide concentrations (Ganzeveld et al., 2009; Luhar et al., 2018). There have been some efforts to characterise the ocean surface iodide field in terms of other parameters that can be inferred indirectly or directly from satellite or other large scale ocean databases, such as temperature and nitrate, and use the derived statistical relationships to predict the ocean surface iodide field, which can provide a boundary condition for atmospheric chemistry models (Sherwen et al., 2016b). The iodide distributions predicted by these statistical relationships basically reflect
the large-scale ocean distribution of iodide with higher concentrations in low latitude, high temperature, low nitrate waters, and low iodide concentrations at high latitudes in seasonally overturning cooler waters (Chance et al., 2014; MacDonald et al., 2014; Sherwen et al., 2019a). However, while the statistical relationships developed provide a generally good fit to the data, they are not based on the biogeochemical cycling of iodine in the oceans and hence their extrapolation beyond the data range for which the relationships are derived cannot be done with confidence, and hence predictions of change in the ocean iodide field with climate change, for example, are unreliable. It is also evident that iodide exhibits interannual variations (Chance et al., 2010), which may compromise these statistical methods.

We therefore present here the first ocean iodine biogeochemical cycling model which includes realistic phytoplankton uptake and release parameterisations of iodine cycling based on ocean primary production fields and iodide oxidation derived from laboratory demonstrated mechanisms coupled to nitrogen cycling. This is all embedded within a realistic ocean physical mixing and transport field, allowing seasonal mixing between surface water where iodide is produced and sub-euphotic zone waters, and redistribution by the local and global scale circulation. We demonstrate that all of these biological and physical iodine cycling processes interact together to yield the observed global iodine distribution.

2. The iodine cycling model

The iodine cycling model aims to capture the dominant biogeochemical processes involved in the cycling of iodine in the oxygenated ocean, and embed these in a simplified three-dimensional circulation model of the upper ocean, driven by fields derived from climatologies and an ocean general circulation model. Further technical details and model equations can be found in the Appendix, and here we summarise the key features of the model and its development.
2.1 The physical ocean model

The model is global in coverage, with a horizontal resolution of 1° in latitude and longitude, and three layers in the vertical (Figure 1). The upper layer is the seasonal mixed layer, its thickness varying throughout the year (Monterey and Levitus, 1997). The middle layer extends from the base of the seasonal mixed layer to the maximum seasonal mixed layer depth (MLD), multiplied by 1.05, to prevent zero-layer thickness when the top layer is at maximum depth. The bottom layer has a thickness of 500 m, or extends to the ocean bottom (GEBCO - Becker et al., 2009) if this is less, or has a minimum depth of 0.05 times the maximum MLD if the mixed layer extends to the sea floor, to maintain a finite layer thickness. This simplification of the deep ocean structure reflects the constancy of iodine concentration and speciation at depth. Each layer is assumed to be completely mixed in the vertical. Changes in MLD result in the exchange of water and tracers between the upper two layers, and the exchanged tracers are mixed into the thickening layer. There is constant vertical mixing of $1 \times 10^{-4} \text{ m}^2\text{s}^{-1}$ between the middle and bottom layers. Each vertical column is subject to a horizontal mixing of 2000 m$^2\text{s}^{-1}$, and advection by the depth-dependent horizontal ocean currents derived from the OCCAM ocean GCM (see Aksenov et al., 2010 for details). Vertical advection is derived from the horizontal divergence of this flow, and the precipitation minus evaporation and runoff flux is accounted for at the surface.
Figure 1: Schematic representation of the three-layer ocean model, in which the iodine cycling model is implemented. The upper layer is the mixed layer. The middle layer extends below this to the depth of the seasonal maximum mixed layer depth (multiplied by 1.05 to avoid zero depth in the model). The bottom layer extends either to the ocean floor, or to a thickness of 500m, whichever is less (but also has a minimum thickness of 0.05 times the maximum mixed layer depth to avoid zero thickness). Below the bottom box iodide and iodate are assumed to have concentrations of 0 nM and 500 nM respectively. Each box is subject to mixing and advection, and there is a fresh water flux due to precipitation, evaporation and runoff through the surface of the upper box. See text for more details.
2.2 The biogeochemical iodine cycling model

The iodine cycling model is embedded within this physical circulation model. Below the bottom model layer it is assumed that the concentrations of iodide and iodate are 0 nM and 500 nM respectively, broadly consistent with the observed global distributions in oxygenated waters (Chance et al., 2014).

Production of iodide only occurs in the mixed layer in the model, and is assumed to be biologically mediated consistent with all the available evidence (Campos et al., 1996; Tian et al., 1996; Wong, 2001; Chance et al., 2007; Chance et al., 2010; Ducklow et al., 2018; Hepach et al., 2019). It is linked to the uptake of carbon by primary production via an iodine to carbon ratio, thought to be in the range 10^{-5} to 10^{-3} (Elderfield and Truesdale, 1980, Jickells et al., 1988; Chance et al., 2010; Hepach et al., 2019). Primary productivity is taken from the climatology of Behrenfeld and Falkowski (1997), which uses satellite observations to determine chlorophyll concentrations, and hence has no data where and when solar irradiance is low or zero. We could simply assume productivity is zero under these conditions, and this is supported at most longitudes where productivity is essentially zero at the poleward extent of the data, but in the North Atlantic in spring the bloom extends to the northern limit of the data. We therefore extrapolate the productivity polewards from the last available data point to zero over 10^8 of latitude. We also assume no productivity under sea ice through multiplying the productivity by $(1 - \text{sea ice concentration})$ (Stroeve and Meier, 2018). It should be noted that for most longitudes and seasons this results in the extrapolated productivity being zero in these regions beyond the data, so the correction is small.

We assume iodate is taken up by plankton cells, converted to iodide and release of iodide from cells is assumed to occur during the senescence phase, which is lagged 60 days from the iodide production (Chance et al., 2007; Chance et al., 2010; Bluhm et al., 2010; Hepach et al., 2019). It is found that the long-term equilibrium iodide concentrations are not sensitive to this lag timescale changing in the range 0 – 120 days (see Section 4.3).

The processes governing the oxidation of iodide to iodate have not been well understood, but it is clear that the oxidation is slow with estimates varying from months to decades (Tsunogai, 1971;
Jickells et al., 1988; Luther et al., 1995; Campos et al., 1996; Edwards and Truesdale, 1997; Campos et al., 1999; Truesdale et al., 2000; Waite and Truesdale, 2003), allowing time for physical water transport processes to play an important role in the iodide distribution. This uncertainty in oxidation rate estimates is at least, in part, due to a lack of knowledge as to whether or not the oxidation is biologically mediated. Truesdale et al.’s (2001) study in the Black Sea pointed to a possible role for nitrifying bacteria, and Long et al. (2015) found that iodide oxidation varied proportionally with nitrification in the South China Sea. In a companion paper, recent work by Hughes et al. (2019) reports on results from bacterial culture experiments, which supported a link between nitrification and the oxidation of iodide to iodate. Mixed layer nitrification results in the oxidation of ammonium, produced by the senescence of cells, to nitrite, and then nitrate (Figure 2), with the former transformation being linked to the oxidation of iodide. However, this is not the only route for ammonium loss in the euphotic zone, since it is also taken up by primary production, and is subject to physical mixing and advection by the ocean circulation. The uptake of nitrite is thought to be negligible, and nitrate from mixed layer nitrification is available, together with ‘new’ nitrate derived from upwelling, for driving primary production. A biogeochemical model including the process of mixed layer nitrification has been developed by Yool et al. (2007), resolved globally at a resolution of 1° latitude and longitude, and we have used this approach to allow us to separate the nitrogen cycle into the deep ocean nitrification route, and the mixed layer nitrification route, resolved globally at a resolution of 1° latitude and longitude. The proportion of nitrate available for production that comes from regeneration in the mixed layer (Figure 2, flux ‘D’), is shown in Figure 3 (from Yool et al., 2007).
Figure 2: Schematic of nitrogen cycling in the ocean. Production is driven by nitrate (NO$_3^-$) originating from below the mixed layer, nitrate from nitrification within the mixed layer, and also ammonium (NH$_4^+$). Uptake of nitrite (NO$_2^-$) is much less and assumed to be zero. The proportion of nitrate supplied from below and within the mixed layer has been determined by Yool et al. (2007), allowing D/(D+E) to be calculated, and hence the proportion of ammonium which undergoes oxidation to nitrite. It is this flux which is also associated with oxidation of iodide to iodate (Hughes et al., 2019).

Production of iodide is linked to carbon fixation by an iodine to carbon (I:C) ratio, and hence via the Redfield ratio, is also linked to nitrogen uptake. Linking oxidation of iodide to nitrification in turn requires a stoichiometric link to nitrogen and carbon. We achieve this by using the well-established Redfield ratio of C:N = 106:16, and I:C = 3×10^{-4} reflecting the range reported in the literature, giving I:N = 0.002 for the oxidation of iodide with respect to nitrogen during mixed layer nitrification, provided we assume that the I:C and C:N associated with primary production is the same for bacterial nitrification. The experiments reported by Hughes et al. (2019) show that iodide oxidation only occurs when ammonium oxidising bacteria are present in culture media, and
suggest a much higher ratio for I:N of 4.5, but this is in the experimental context of a much higher nitrate concentration environment than is found in the ocean. Indeed, it cannot be the case that the ratio is this high in the ocean, as the much lower surface ocean concentrations of iodine compared with nitrogen would result in the complete oxidation of iodide back to iodate, and near zero iodide concentrations, given the short timescale of order 2 days for mixed layer nitrification to occur (Yool et al., 2007).

We will see below that iodide oxidation by this mechanism has a profound effect on the iodide concentrations, as it results in a spatially variable, rapid, partial oxidation of the iodide inventory, with the remainder being subject to removal by ocean mixing and advection, and much slower chemical oxidation to iodate, which occurs implicitly below the layers represented in the model. This may also provide an explanation for the huge range of oxidation timescales reported in the literature (Chance et al., 2010; Campos et al., 1996; Waite et al., 2006; de la Cuesta and Manley, 2009; Edwards and Truesdale, 1997), with long timescales associated with environments where nitrification is weak/absent, and much shorter timescales where nitrification is active.

The deep ocean iodine cycle is represented in the model by the downwelling of iodide to the deep ocean, and the return of iodate to the bottom model level by upwelling, with a concentration of 500 nM. This assumes that iodide oxidation rates in the deep ocean are fast relative to deep ocean water residence times of decades to millenia, and takes no account of low oxygen environments where iodate reduction could occur, although these are of very limited extent in the present day ocean.

2.3 Observed iodide concentrations

In any modelling study, observations are crucial to validate the model. Here we have used a compilation of most of the iodide observations in the literature prior to 2014. A compilation of these observations is described in Chance et al. (2014). To this we have added recent observations from the Indian Ocean (Chance et al., 2019a), and some unpublished data from the coast off Peru (Croot, unpublished, included in the database described in Chance et al. (2019b)). The individual observations of iodide were then binned into a one-degree latitude and longitude grid, for each of
the three model levels, for each month of the year, and averaged where multiple observations occurred. Comparisons with the model were then made for the same month, in each location where observed iodide concentration data was present.

2.4 Modelling strategy

In order to refine the iodine cycling model, we need to determine the I:C ratio, and oxidation rate/mechanism which allows us to achieve the best spatial fit to the observed iodide distribution. Ideally, we would like to find universal parameters that allow us to fit the data globally, both in coastal and open ocean locations, and are within the range reported in the literature. Iodide concentrations will be determined by a balance between production and loss, with production and weaker oxidation acting to increase the biogeochemical residence time (and vice versa), in conjunction with the residence time for water in the mixed layer, which is dependent on advection and mixing.

We will therefore run two suites of model experiments, one with the oxidation of iodide over a defined timescale, and the other with oxidation linked to nitrification. In both of these the I:C ratio will be varied over a range consistent with the values reported in the literature.

3. Results from a simple iodine cycling model

Before considering the results from the full iodine cycling model, we will consider a much simpler, conceptual box model, which will aid interpretation of the full model results.

The production and loss of iodide over an annual cycle can be captured by considering the dominant processes involved, and assuming a physical mixing timescale for iodide in the mixed layer of around one year. In the subtropical gyres this timescale is likely to be considerably longer (e.g. Jickells et al., 1988), but elsewhere it is plausible, and provides a simple approach to investigate the dominant processes involved in determining iodide concentrations.
In this simple model, the annual production of iodide is assumed to be equal to the production of organic carbon, multiplied by an I:C ratio. Following an annual cycle of mixed layer deepening and shoaling, the proportion of iodide remaining in the mixed layer is assumed to equal \(\text{MLD}_{\text{min}} / \text{MLD}_{\text{max}} \), with the remainder removed from the mixed layer during shoaling. The oxidation pathway driven by mixed layer nitrification converts a proportion of the iodide produced back to iodate. The residual iodide inventory is then distributed throughout the annual mean mixed layer to give a mean mixed layer concentration.

Figure 3 shows the components of this simple model. Productivity is high in regions where nutrients are supplied to the mixed layer by deep mixing, and in coastal regions, particularly where there is upwelling. This favours high iodide in these regions. Oxidation of iodide by nitrification is greatest in the subtropical gyres, lower in equatorial regions, and lowest at high latitudes, resulting from the link to the nitrification model of Yool et al. (2007). This results in the greatest oxidation of iodide in the subtropical gyres and lower latitudes outside of equatorial regions. MLD variations are generally greatest at high latitudes, resulting in the greatest loss of iodide through mixing, so long as the lifetime of iodide with respect to oxidation is comparable to the seasonal timescale of mixed layer cycling. The MLD itself is also greatest at high latitudes, although this has strong seasonal variability. These competing factors result in generally higher iodide concentrations at low latitudes, with the highest concentrations occurring where productivity is high, MLDs are shallow, seasonal MLD variations are small, and oxidation by nitrification is weak. In both the Atlantic and Pacific this is on the eastern side of the basin, where predicted iodide concentrations are greatest. High iodide is also predicted in the Arctic, where productivity is lower, but MLDs are shallow, and have little seasonal variation. The subtropical gyres have low iodide, due to low productivity and strong oxidation of iodide linked to mixed layer nitrification. The full model (Section 4) will show that the iodide residence time is considerably longer than a year in these gyres, resulting in an underestimate by this simple model.
Figure 3: Parameters driving a simple model of oceanic iodide cycling and resultant iodide fields: (a) ratio of minimum to maximum mixed layer depth, (b) annual mean mixed layer depth, (c) proportion of ammonium subject to nitrification in the mixed layer (Yool et al., 2007), (d) ocean productivity (Behrenfeld and Falkowski, 1997), (e) predicted mixed layer iodide inventory, and (f) predicted mixed layer iodide concentration.

4. The full iodine cycling model

The model was run for a range of I:C ratios, from 4.7×10^{-6} to 1.2×10^{-3}, increasing in multiples of two. This range of values covers that reported in the literature (Elderfield and Truesdale, 1980, Jickells et al., 1988; Chance et al., 2010; Hepach et al., 2019). Two methods of iodide oxidation were used, firstly a simple parameterisation representing the actual processes by a timescale for
conversion of iodide to iodate, and secondly via a coupling to the nitrogen cycle through nitrification.

4.1 Oxidation parameterised by a timescale conversion of iodide to iodate

The model was run with oxidation timescales of 1, 2, 4, 8 and 16 years, reflecting the large range of rates estimated in the literature (e.g. Campos et al., 1996; Edwards and Truesdale, 1997). Equation 4a in the Appendix describes the process.

For each model grid point where observations were available, the difference between the model and observed mixed layer iodine concentration was plotted as a function of SST (Figure 4), and hence broadly latitude. Increasing the I:C ratio increases production of iodide, and decreasing the oxidation timescale increases the rate of conversion back to iodate. Hence with a low I:C ratio and long oxidation timescale, the predicted concentrations are generally higher than observed, whereas with a small I:C ratio, and short oxidation timescale, the model underestimates iodide concentrations relative to observed values.

At low SSTs (< 5° C) agreement between model and observations is only achieved with higher I:C ratios, with the oxidation timescale having little influence. This is because there is a strong seasonal cycle in MLD, which acts to remove iodide from the mixed layer within an annual timescale, and is the dominating iodide loss process.
Figure 4: Normalised difference between modelled and observed iodide concentrations, as a function of SST, for a range of I:C production ratios, and iodide oxidation timescales. The RMS errors for coastal (< 200 m) and open ocean (> 200 m) locations are shown in red and blue respectively.

For SSTs from 5°C to 15°C model/observation differences can be minimised with appropriate I:C ratios and oxidation rates. At higher I:C ratios the predicted iodide concentrations in coastal locations tend to be overestimated in comparison with open ocean locations, whereas with lower I:C ratios and longer oxidation timescales both coastal and deep ocean locations are well represented by the model. The best fits lie in the parameter space between I:C = 7.5 x 10^{-5} with an oxidation timescale of 16 years, and an I:C = 6 x 10^{-4} with an oxidation timescale of 1 year.

Above 15°C the model/observation fit is more problematic. There is a consistent tendency across the I:C and oxidation timescale parameter space for a relative overestimation of modelled iodide
compared to the available data between 15° C and 25° C (in the subtropical gyres), compared with an underestimation above these temperatures (in equatorial regions). This is the case in both coastal and open ocean locations. This could indicate that the I:C ratio is higher in equatorial regions than in the gyres, or that oxidation is more rapid in the subtropical gyres. A variation in I:C ratio could be due to different types of plankton dominating primary production. An analysis of plankton type distributions (Alvain et al., 2008) does indeed show a separation of types between these regions, with Synechococcus dominating in equatorial regions, whereas Prochlorococcus dominates in the subtropical gyres. The difference between model and observed iodide is consistent with work by Wong et al. (2002), who found that Synechococcus have some of the highest rates of iodide production.

A sensitivity experiment was performed, in which the rate of production of iodide from iodate was temperature dependent, increasing by 2, 4, 8 and 16-fold for a doubling of SST. It was found that an eight-fold increase in production of iodide for a doubling in SST was required to remove the equatorial low-iodide bias, which is a far greater temperature dependency than permitted by physical chemistry alone (Luther et al., 1995). We therefore conclude that this is unlikely to be the reason for the model bias.

The dependence of iodide production on productivity is well established, but it is also noted that the model iodide biases are consistent with this dependency, with over prediction in mid-latitude coastal regions, and an under prediction in the low latitudes. A sensitivity experiment was performed in which the observed productivity was replaced with its globally averaged seasonal cycle. Interestingly, this considerably reduced the model biases, and we will see in Section 4.2 that this is consistent with a link between production and oxidation, via the process of nitrification.

Another possible explanation for the poor fit of the model in some regions lies with the oxidation rate, which may vary spatially in the ocean. The representation of oxidation by a timescale is a simple approach designed to avoid use of a mechanism-dependent parameterisation, be it physical chemistry (and therefore temperature dependent) or biologically mediated, which may also be temperature dependent. It should be noted that removal by mixing occurs in parallel to these processes, and is represented by the model. With the exception of processes in the sea surface
microlayer, the purely chemical oxidation of iodide in the seawater is thought to be so slow it can be considered insignificant (Luther et al., 1995). This rate would increase with temperature, and therefore result in a greater oxidation of iodide in equatorial regions, where the model is underestimating concentrations. Inclusion of a temperature-dependent oxidation rate would therefore increase the tendency for the model to underestimate concentrations in equatorial regions.

4.2 Oxidation driven by mixed layer nitrification

Biologically mediated iodide oxidation by bacteria has been shown to occur (Gozlan, 1968; Fuse et al., 2003; Amachi et al., 2004; Amachi et al., 2005) and recent laboratory microcosm experiments have demonstrated that it may be brought about by nitrifying bacteria (Hughes et al., 2019). This recent discovery prompted the inclusion of nitrification-linked oxidation in the model.

This mechanism is discussed in Section 2.2, and is described by Equation 4b in the Appendix. The linking of the oxidation of iodide to nitrification, at a ratio stochiometrically consistent with that of iodide production, results in a proportion of the iodide produced being oxidised to iodate over a timescale of days, assuming iodide is released during senescence and ammonium oxidation has a timescale of days (Yool et al., 2007) while the remainder is subject to oxidation by an unspecified, possibly purely chemical process (which we will assume has a much longer timescale), and physical mixing. Figure 3 (top-right) shows the proportion of mixed layer nitrate supplied by nitrification, corresponding to the proportion of iodide subject to oxidation, as calculated by Yool et al. (2007). It is immediately apparent that the largest proportion of iodide subject to oxidation is in the subtropical gyres, where the model overestimates iodide concentrations.

The model was run with the same range of I:C ratios, but with this alternative oxidation mechanism. The general response to changing I:C ratio is the same as with oxidation over a prescribed timescale (Figure 5), but the overestimation of iodide for SSTs in the range 15 °C – 25 °C is considerably reduced, both for coastal and open ocean locations, with the best fit obtained using an I:C ratio of 3.75 x 10^{-5} similar but about two times lower than in previous model runs.
This value is within the range reported in the literature, and corresponds well to the ratio found for some types of phytoplankton (Hepach et al., 2019) and in oceanic studies (Campos et al., 1996; Chance et al., 2010).

Figure 5: Normalised difference between modelled and observed iodide concentrations, as a function of SST, for a range of I:C production ratios, with iodide oxidation driven by nitrification. The RMS errors for coastal (< 200 m) and open ocean (> 200 m) locations are shown in red and blue respectively.

Linking oxidation to nitrification fundamentally changes the way iodine is cycled between iodate and iodide. Previous assertions that oxidation occurred at a given rate, which is possibly temperature dependent, and/or biologically mediated, and hence spatially variable, fail to capture a key aspect of the process which results from the link to nitrification. The oxidation of iodide back to iodate in tandem with the oxidation of ammonium results in a proportion of the iodide being oxidised rapidly in the surface layer (time scale order days, Yool et al., 2007), whilst the remainder is removed from the mixed layer by a slower physical mixing pathway to the ocean interior where much slower oxidation occurs. In regions where vertical mixing is strong (e.g. high latitudes), mixing is the dominant removal mechanism, and iodide has a residence time in the surface waters of around one year. However, where vertical mixing is much less intense (e.g. the sub-tropical gyres), the proportion of iodide remains unoxidized and therefore accumulates year-
on-year, and is slowly mixed out, resulting in a much longer residence time of the iodide in the surface waters. This coupling of iodide oxidation to the euphotic zone biogeochemistry of nitrogen may help explain why there is such a large range of oxidation timescales reported in the literature (Tsunogai, 1971; Campos et al., 1996; Edwards and Truesdale, 1997; Truesdale, 2001; Zic and Branica, 2006; Zic et al., 2013), as the actual removal process comprises rapid oxidation of part of the iodide inventory in conjunction with nitrification, and the relatively slow physical removal of the remainder by mixing to the ocean interior, followed by slow chemical oxidation.

4.3 Comparison with observed ocean sections

We will now make comparisons between the modelled and observed iodide for five ocean sections: a trans-Atlantic meridional section (Truesdale et al., 2000), a South Atlantic meridional section (Campos et al., 1999), a South Atlantic zonal/meridional section (Bluhm et al., 2011), an East Atlantic meridional section (Baker (unpublished)), and an Indian Ocean section (Chance et al., 2019a). Data used for this comparison is available in Chance et al. (2019b). Data from the first four were taken from the database in Chance et al. (2014), and the Indian Ocean data is from Chance et al. (2019a). Data used for this comparison is available in Chance et al. (2019b). Model comparisons with ocean sections allows spatial and inter-basin comparisons to be made.

We have seen in Section 4.2 that whilst a best fit between model and observations can be made by selecting an appropriate I:C ratio, there is still considerable variation between the model and observations at each particular SST. Figure 6 shows comparisons between model and observed iodide concentrations for each section, and for a range of I:C ratios. Taking each section in turn, it can be seen that the model can be made to fit each section with considerable skill, but that a different I:C ratio is required for each section. The two meridional Atlantic sections (extending from 45° S to 45° N) require a relatively low ratio of 1.9 x 10^{-5}. The two south Atlantic sections require a higher I:C ratio, and it is apparent that within the latitudinal range of these sections the best fit requires an increasing I:C ratio with increasing latitude. The Campos et al. (1999) section is in best agreement with the model with an I:C of 3 x 10^{-4} south of 50° S, increasing to 3.8 x 10^{-5} at 30° S. The Bluhm et al. (2011) section fits best with an I:C of 3 x 10^{-4} – 6 x 10^{-4} between 70° S and 60° S. The Indian Ocean section fits best with an I:C of 3 x 10^{-4} south of 20° S, but with a much
lower value of around 1×10^{-5} near the equator. It is clear that the I:С ratio required to fit the model to the observations is around ten times greater at high latitudes than low latitudes. However, it is also interesting to note that a relatively high ratio is required in the Indian Ocean south of only 20° S.

Figure 6: Comparison between modelled and observed iodide for a range of I:С production ratios, for five ocean transects – from top to bottom Truesdale et al. (2000), Campos et al. (1999), Bluhm et al. (2011), Baker (unpublished), all taken from the database in Chance et al. (2014), and Chance et al. (2019a).
5. Discussion

Having established that the model is capable of reproducing the observed iodide distributions with an appropriate I:C ratio consistent with the relatively wide range of values reported in the literature, and an oxidation mechanism that has been shown to occur in microcosm experiments, we will now use the model to broaden our understanding of the role of processes in the ocean iodine cycle.

5.1 Spatial variation of the I:C ratio

The finding that the I:C ratio varies spatially raises the question of whether a global field of I:C can be derived from the model. There is no reason to expect the I:C ratio to be globally constant; even the Redfield ratio of C:N:P has in reality some variability, and the variability for other elements may be greater (Moore et al., 2013). The RMS error between the model and iodide observations was calculated for each model I:C ratio, in bins of 5°C increments in SST. An empirical function describing the optimum I:C ratio required to minimise the model RMS error is shown in Figure 7. The optimum I:C ratio decreases with increasing SST from 3×10^{-4} at 0°C to 3.8×10^{-5} at SSTs of > 15°C. The spatial distribution of I:C derived from this function is shown in Figure 8a.
Figure 7: I:C production ratio which gives the best model – observation fit (lowest RMS error), as a function of SST.

An alternative approach is to derive a zonally constant I:C, taking the zonal mean of the best fit I:C ratio for each iodide observation point. We have already seen that the best fit I:C ratios in the Indian Ocean south of 20°S are greater than in the Atlantic, so we derive a separate zonal mean for the Indian Ocean from the Atlantic and poorly observed Pacific oceans, with a smooth transition between the ocean basins. It should be noted that in the absence of any observations in the Arctic, the I:C ratio was set to that at the latitude of the northern most observation in the Atlantic. This I:C field is shown in Figure 8b. The SST-derived field has a much higher I:C ratio in the Arctic, which is a result of the observational evidence from the Southern Ocean with similar SSTs. The zonal mean approach results in more latitudinal structure in the I:C ratio, including a marked asymmetry in the subtropical Atlantic, and a much greater I:C in the subtropical Indian Ocean.
Figure 8: I:C production ratio derived from (a) a best fit to SST, using the relationship in Figure 7, and (b) using the zonal mean of the best fit I:C for the Atlantic and Pacific, and Indian oceans.

Figure 9 shows the comparison between the model and observations for each of the five ocean sections, for constant, SST-dependent and zonal basin mean I:C fields. The use of a globally constant I:C ratio results in a generally poor fit, with the model underestimating iodide at high latitudes and in the Indian Ocean south of 20°S. The high latitude fit can be improved by using a greater I:C ratio, but low latitude iodide is then overestimated. The SST dependent I:C ratio performs more consistently across the sections, with only the mid-latitude Indian Ocean showing significant discrepancies. The use of a zonal basin average I:C results in a much better fit in the Indian Ocean, where I:C is increased, but the model overestimates iodide in the low and mid latitude Atlantic. The location of the iodide observations in the Atlantic tends to coincide with anomalously low SST for the latitude, so longitudinal extrapolation of the I:C ratio favours a higher I:C ratio than the SST-derived ratio, due to the inverse relationship between I:C and SST / latitude.
Figure 9: Comparison between modelled (blue) and observed (red) iodide for five ocean transects – from top to bottom Truesdale et al. (2000), Campos et al. (1999), Bluhm et al. (2011), Baker (unpublished), Chance et al. (2019a). The first column shows results for the best fit globally constant I:C production ratio, the second for an SST dependent I:C production ratio (see Figure 8a), and the last a zonal mean I:C production ratio for the Atlantic and Pacific, and Indian oceans.
Overall, the modelled iodide is in best agreement with observations when the I:C ratio is parameterised as a function of SST, as shown by the RMS errors (Figure 10). The model still tends to underestimate iodide where SST > 20 °C, and overestimate for 5 °C < SST < 15 °C. It might be expected that the dependency of the I:C ratio on SST would eliminate this bias completely, but the residual differences between the model and observations is consistent with the ocean circulation playing an important role in redistributing iodide across SST contours. Selection of the best fit I:C ratio assumed the iodide depended only on the local I:C ratio, whereas advection could potentially bring iodide from lower latitude regions where the best fit I:C is lower, and higher latitude regions where the best fit I:C is greater. Since the I:C ratio was globally constant in the suite of model runs from which the local best fits were determined, the I:C ratio and iodide concentrations at lower latitudes would be too great, and at higher latitudes too small with respect to the SST-dependent I:C ratio case. Thus, in the runs used to determine the best fit I:C ratio, advection of iodide from regions with higher SST and I:C ratio is too great, and from lower SST and I:C ratio, too small. This is consistent with the tendency of the model to underestimate iodide at low latitudes, and overestimate at mid latitudes. This suggests that the surface water iodide residence time is sufficiently long that horizontal as well as vertical mixing processes may be important. We also suggest that the I:C ratio may vary systematically with SST which probably implies a variation with phytoplankton species and communities.
Figure 10: Normalised difference between modelled and observed iodide concentrations, as a function of SST, for a range of I:C production ratios, and iodide oxidation timescales. Left: for the best fit globally constant I:C production ratio, middle: for an SST dependent I:C production ratio (see Figure 8a), right: a zonal mean I:C production ratio for the Atlantic and Pacific, and Indian oceans (see Figure 8b). The RMS errors for open ocean (> 200 m), coastal (< 200 m) and all locations are shown in blue, red and black respectively.

5.2 Comparisons with statistically-derived surface iodide fields

Modelling the ocean iodine cycle has produced a new estimate of surface iodide concentrations, which can be compared with other estimates from existing statistical and non-parametric machine learning methods. These statistical methods attempt to fit the observed iodide data using a suite of correlations to other more widely observed ocean variables including temperature, salinity, mixed layer depth and nitrate. Here we will use the model configuration that uses an SST-dependent I:C
ratio, as this has a lower RMS error with observations than the latitude/basin I:C dependent approach. Comparing the model iodide field with observations, where they exist, shows a generally good agreement between the model and observed values (Figure 11a - c), with the model tending to slightly over-estimate iodide in the Atlantic, and under-estimate iodide in the Indian Oceans, as we have seen in previous sections. Elevated concentrations are generally confined to the eastern and coastal regions of the low and mid latitude ocean basins, and it is interesting to note that the majority of the observations are in these regions. High iodide is also predicted in the Arctic, but no direct observations are available to support this. However, periods of low tropospheric ozone in the atmospheric boundary layer during spring, driven from the ocean surface, have been observed in the Arctic (Wessel et al., 1998). This depletion of tropospheric ozone could be driven by iodine emissions from the Arctic Ocean.
Figure 11: Comparison of model predicted annual average mixed layer iodide concentration with observations and other predictions. From top to bottom: (a) from the model, using an SST dependent I:C production ratio, (b, c) from observations (Chance et al., 2019b), (d, e) from the parameterisation of Chance et al. (2014)) (f, g) from the parameterisation of MacDonald et al. (2014), (h, i) and from the machine learning parameterisation of Sherwen et al. (2019a; 2019b). Differences with the model are shown in the right-hand column.
Chance et al. (2014) proposed a parameterisation of iodide in terms of a number of oceanic variables (Figure 11d). This has a strong dependency on latitude, but does not predict much variation with longitude. Where observations exist, agreement with iodide concentrations predicted by the model and those predicted by the Chance et al. (2014) equation is good, but elsewhere large differences exist (Figure 11e).

MacDonald et al. (2014) also parameterised iodide concentrations, but used a simpler approach, relating ln(I) with SST⁻¹ using a subset of the observational database in Chance et al. (2014) (Figure 11f). This parameterisation is currently the most widely used in atmospheric models (e.g. Sherwen, 2016; Sarwar, 2016). Iodide fields predicted using this relationship are again broadly consistent with observations where they exist, but are lower than the Chance et al. parameterisation over much of the low and mid latitudes, away from the regions with observations. The MacDonald parameterisation generally predicts lower iodide concentrations than the model at high latitudes, and higher concentrations at low latitudes (Figure 11g). This pattern is consistent with using just SST as a predictor of iodide, compared to the model approach which incorporates a range of processes.

Sherwen et al. (2019a) adopted a machine-learning approach to predict iodide from an expanded compilation of iodide observations (Chance et al. 2019b). This approach assigns an iodide concentration to each oceanic location based on observed iodide values at locations with related combinations of biogeochemical and oceanographic properties. This machine learning based parameterisation yields a similar iodide distribution to that predicted by the multivariate equation in Chance et al., but with generally greater iodide at higher latitudes (Figure 11h). This is consistent with both methods using similar oceanic properties (e.g. SST, salinity, nitrate) to predict iodide. Comparison of model and machine learning predictions shows the latter technique predicts higher iodide throughout most of the ocean (Figure 11i).

In each comparison, the modelled iodide has more longitudinal variation than the statistical methods suggest. Observations are currently insufficient to assess whether such a longitudinal
variation does in fact exist. Observations of iodide have mostly been concentrated around the periphery of ocean basins, leaving most of the subtropical gyres poorly sampled. It is in these regions that the Chance et al. (2014) and Sherwen et al. (2019a) parameterisations predict relatively high iodide concentrations, consistent with the observations at similar latitudes, whereas the model predicts lower iodide, predominantly as a result of taking into account lower productivity and increased nitrification-dependent oxidation in these regions. Meanwhile, the model predicts higher iodide concentrations in the Arctic than the other approaches. This is because, within the model, advection redistributes iodide within the ocean gyres, and also supplies iodide to the Arctic. The interaction of these, and other processes, means that iodide cannot simply be described by local oceanic conditions, but requires an ocean circulation model to support the biogeochemical transformations involved in the oceanic iodine cycle. Given this, we suggest that the modelled distribution of iodide is likely to give a more accurate estimate of the ocean surface iodide distribution than methods based on local relationships alone. Future observations of iodide in currently unsampled regions such as the Arctic and sub-tropical gyres will prove crucial in determining whether the modelled field is accurate.

5.3 The role of individual processes in determining surface iodide

Modelling of the ocean iodine cycle allows us to investigate which oceanic and/or biogeochemical processes are important in determining iodide concentrations. A suite of sensitivity experiments was performed to investigate this, using the I:C ratio dependent on SST (Figure 12). The production of iodide is dependent on productivity. The seasonal cycle of carbon, and hence iodide production could impact iodide concentrations via the seasonal MLD cycle. A model run with the local seasonal cycle of production replaced by the annual mean resulted in small decreases in iodide in some coastal and subtropical regions, where seasonal maxima in production coincide with shallow MLDs, and an increase around Antarctica, where production precedes the MLD minima (Figure 12a). Halving the productivity reduces iodide, with the greatest reductions in subtropical regions where iodide concentrations are greatest (Figure 12b).
Figure 12: Sensitivity of the modelled mixed layer iodide concentration to forcings and processes in the model. Annual mean mixed layer iodide concentration difference between perturbed and control run for: (a) production with seasonal cycle removed, (b) productivity halved, (c) seasonal mixed layer depth variations replaced by annual mean mixed layer depth, (d) mixed later depth doubled, (e) no oxidation of iodide, (f) no horizontal or vertical advection, (g) iodide release from cells at same time as carbon production, (h) iodide release from cells 120 days after carbon production (standard model lag is 60 days), (i) zero surface fresh water flux due to precipitation, evaporation and runoff, (j) I:C production ratio halved.

Removal of the seasonal cycle of MLD increases iodide over most of the ocean, consistent with the reduced loss from vertical mixing (Figure 12c). However, in the subtropical south Pacific, concentrations decrease. Examination of the iodate field shows increased mixed layer depletion of iodate widely across the sub-tropics, and in the Arctic, when MLD variations are removed, together with the supply of iodate from below the mixed layer. In the South Pacific subtropical gyre this depletion is sufficient to limit iodide production. Doubling the MLD effectively doubles the volume of water in which the iodide is stored, and therefore reduces iodide concentrations accordingly (Figure 12d). Iodide increases in some high latitude locations, but this is because the MLD increase is limited by the ocean depth, so where the maximum MLD extends near to the
ocean floor, the seasonal MLD variation is effectively reduced, reducing the seasonal loss each year.

Oxidation of iodide to iodate acts to reduce iodide concentrations, hence removing the oxidation process increases iodide, especially in the subtropical gyres. It is here that oxidation is the dominant removal process, as vertical mixing is weak. At high latitudes, where removal is dominated by the seasonal cycle of MLD, oxidation has a much smaller impact (Figure 12e).

Advection redistributes heat and salt, and also all other tracers, around the ocean. The impact of this advection depends on the life time of the tracers, and their spatial gradients. Removal of advection from the model results in increased iodide everywhere except the Arctic (Figure 12f). This shows that the vertical component of the circulation acts either to reduce iodide through the upwelling of iodide-depleted water, or remove iodide through the downwelling of iodide-rich water, the net effect of both of which is to remove iodide to depth, where it undergoes long-term oxidation to iodate. In the Arctic, however, iodide decreases without advection, showing that at least part of the iodide results from advection from the North Atlantic, probably associated with the spring bloom. Truesdale et al. (2003) also found iodide concentrations to be dependent on advection in the Skagerrak.

Iodide is thought to be released from most types of phytoplankton cells during the senescence phase (Bluhm et al., 2010), with a lag estimated at around 60 days. The sensitivity of iodide concentrations to this lag was tested by using lags of zero and 120 days in the model. Earlier release results in an increase in iodide in some coastal locations, and the Arabian Sea. Delayed release results in a small decrease in iodide in some mid latitude locations (Figure 12g, h). These changes are due to the interaction of the release of iodide with seasonal MLD variations.

The net surface fresh water flux, resulting from precipitation, evaporation and runoff, acts to dilute/concentrate the mixed layer. Removal of the freshwater flux has a corresponding impact on iodide concentrations. Net freshwater input dilutes iodide at high latitudes, whereas net freshwater loss concentrates iodide. This has a significant impact where MLDs are shallow, and the flux is large (Figure 12i), for example the Arctic.
Lastly, the I:C ratio for the production of iodide acts as a multiplier to the production of C, and the impact of changes in the I:C ratio correspond to changes in productivity (Figure 12j, b).

These model sensitivity tests give an important insight into the processes driving ocean iodide concentrations, and show that surface iodide concentrations result from the interaction of several processes, which are dominated by primary productivity, the I:C ratio, MLD, oxidation, advection, and the oceanic fresh water flux. All of these are likely to change during the coming decades and centuries as atmospheric greenhouse gas concentrations increase, and impact climate and ocean chemistry. For instance, heating of the upper layers of the ocean may reduce MLDs, and nitrification rates may decrease due to ocean acidification (Beman et al., 2011), resulting in less oxidation. Both of these changes would act to increase iodide concentrations. Further studies would be needed to quantify potential future changes in the ocean iodide cycle.

6. Conclusions

We present the first physical and biogeochemical model for the cycling of iodine in the ocean. In the model production of iodide from iodate is driven by primary production, and it is found that the I:C ratio for production of iodide increases by an order of magnitude between low and high latitudes, yet this range lies within those reported in the literature. Evidence from oceanic and laboratory-based studies show a link between the oxidation of iodide and ammonium by nitrification. In the model it is found that the spatial distribution of observed iodide can best be reproduced if oxidation is also linked to nitrification, which has a distinctive spatial pattern. Using the model to explore the sensitivity of surface iodide reveals that the distribution results from several interacting processes, both physical and biogeochemical, and that changes in any of these is likely to result in changes to surface iodide concentrations. Significant differences are found between global surface iodide distributions derived from parameterisations, and those predicted by the model. The model predicts much greater longitudinal variations of iodide within ocean basins, which cannot be captured statistically from the predominantly meridional observational transects. The model also predicts high iodide concentrations in the Arctic, where there are currently no observations. These aspects of the iodide distribution are consistent with advection of
iodide within the ocean gyres and major currents linking ocean basins, reflecting the relatively long lifetime of iodide in surface waters, which cannot be captured by statistical relationships between iodide and local oceanic variables. The model predicted surface iodide distribution differs sufficiently from that derived by statistical and machine learning techniques to impact atmospheric model predictions of ozone and air quality. We now await new observations of iodide in regions currently without observations (in particular the Arctic and centres of the subtropical gyres) to further validate our process-based prediction of surface iodide concentrations.

Acknowledgements

The authors have no financial conflicts of interest with the research in this paper. This research was funded under NERC grant no. NE/N01054X/1 The authors would like to thank Andrew Yool for supplying the data for quantifying mixed layer nitrification from Yool et al. (2007). The iodine data used in this paper is available in gridded form from the British Oceanographic Data Centre (BODC).

Appendix

Model description

The ocean iodine cycling model represents the interconversion of iodine between the two species iodate (IO$_3^-$) and iodide (I$^-$). The model is initialised with all the iodine in the form of iodate, with a concentration of 500 nM, corresponding to the global mean of the sum of iodide and iodate species (Chance et al., 2014). Conversion of iodate to iodide is driven by a global monthly climatology of primary production (Behrenfeld and Falkowski, 1997), at a rate linked to the rate of carbon assimilation multiplied by an iodine to carbon ratio, and lagged by 60 days from the associated primary production (Bluhm et al., 2010; Chance et al., 2010; Hughes et al., 2019). A saturation term is used to limit iodate to iodide conversion as iodate becomes depleted below 50 nM, although this low iodate concentration is rarely seen in the existing observations or model.
runs. Iodide production occurs only in the mixed layer (Eq. 1), and results in a corresponding loss of iodate, and vice versa (Eq. 2).

Two mechanisms for the oxidation of iodide to iodate are explored in this paper. In the first, oxidation occurs over a specified timescale, which parameterises the actual processes involved (Eq. 4a). Experiments with the model show that linking oxidation to nitrification in the mixed layer (Hughes et al., 2019) significantly improves the model fit to observations. The production of iodide, driven by the assimilation of carbon, also has an implied link to the nitrogen flux, which can be determined by a Redfield ratio. With oxidation driven by nitrification, the proportion of iodide oxidised to iodate is given by the proportion of nitrogen (in the form of ammonium) that is oxidised to nitrite in the surface ocean layer (Eq. 4b).

The tracers iodide and iodate are subject to advection by the monthly mean velocities from the OCCAM ocean general circulation model (Aksenov et al., 2010) (Eq. 5, 6 and 7), and horizontal and vertical mixing at rates of $K_h = 2000 \, \text{m}^2\text{s}^{-1}$ and $K_z = 1 \times 10^{-4} \, \text{m}^2\text{s}^{-1}$ respectively. In addition, seasonal mixed layer depth changes result in the exchange of tracers between the upper two model layers, and complete mixing of existing and additional tracers in the thickening layer.

Model equations

In the mixed layer

$$
\frac{\partial [I^-]}{\partial t} = PROD_{t-LAG} \times IC \times F_a \times \frac{1}{MLD} - OXIDATION + TRANSPORT,
$$

(1)

$$
\frac{\partial [IO_3^-]}{\partial t} = -PROD_{t-LAG} \times IC \times F_a \times \frac{1}{MLD} + OXIDATION + TRANSPORT,
$$

(2)

where $PROD$ is the monthly mean production of carbon, LAG is the time lag for iodide production from carbon assimilation (60 days), IC is the ratio of iodide to carbon production, MLD is the seasonally varying mixed layer depth, and
\[F_a = 1 - \exp\left(\frac{-[IO_3^-]}{[IO_3^-_{\text{limit}}]}\right), \tag{3} \]

is the iodide saturation term, where \(IO_3^-_{\text{limit}} = 50 \text{ nM} \).

Oxidation is represented by either a timescale, such that

\[OXIDATION = \frac{1}{T_{\text{oxidation}}} \times [I^-], \tag{4a} \]

or is linked to mixed layer nitrification, such that

\[OXIDATION = -REGEN \times PROD_{t-LAG} \times IC \times F_a \times \frac{1}{M\text{LD}}, \tag{4b} \]

where \(REGEN \) is the proportion of nitrogen subject to nitrification in the mixed layer (Yool et al., 2007).

The transport of iodide and iodate (represented by tracer \(T \)) is given by

\[TRANSPORT = u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} + K_R \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right] + K_z \frac{\partial^2 T}{\partial z^2}, \tag{5} \]

where \(u, v \) and \(w \) are the layer-dependent zonal, meridional and vertical velocities.

Below the mixed layer there is no production or oxidation of iodide, with changes in iodide and iodate being driven by advection and mixing (Eq. 6 and 7).

\[\frac{\partial [I^-]}{\partial t} = TRANSPORT, \tag{6} \]

\[\frac{\partial [IO_3^-]}{\partial t} = TRANSPORT \tag{7} \]
In the deep ocean iodide and iodate are assumed to have concentrations of 0 nM and 500 nM respectively (Chance et al., 2014), and upward advection transports iodide and iodate with these concentrations into the bottom model layer (Figure 1).

Each model simulation was run for 100 years, which allowed iodide and iodate concentrations to reach an equilibrium.

References

Aksenov, Y., Bacon, S., Coward, A. C., & Nurser, A. J. G. (2010). The North Atlantic inflow to the Arctic Ocean: High-resolution model study, *Journal of Marine Systems*, 79, 1–22, https://doi.org/10.1016/j.jmarsys.2009.05.003

Alvain, S., Moulin, C., Dandonneau, Y., & Loisel, H. (2008). Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view, *Global Biogeochemical Cycles*, 22, GB3001, https://doi.org/10.1029/2007GB003154

Amachi, S., Muramatsu, Y., Akiyama, Y., Miyazaki, K., Yoshiki, S., Hanada, S. et al. (2005). Isolation of Iodide-Oxidising Bacteria from Iodide-Rich Natural Gas Brines and Seawaters, *Microbial Ecology*, 49, 547-557, https://doi.org/10.1007/s00248-004-0056-0

Amachi, S., Kasahara, M., Fujii, T., Shinoyama, H., Hanada, S., Kamagata, Y., et al. (2004). Radioactive Experiments on Biological Volatilization of Organic Iodine from Coastal Seawaters, *Geomicrobiology Journal*, 21, 481-488, https://doi.org/10.1080/014904504905506201

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., et al. (2009). Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30 PLUS, *Marine Geodesy*, 32:4, 355-371, https://doi.org/10.1080/01490410903297766
Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration, *Limnology and Oceanography*, 42(1), 1-20.

Beman, J. M., Chow, C.-E., King, A. L., Feng, Y., Fuhrman, J. A., Andersson, A., et al. (2011). Global declines in oceanic nitrification rates as a consequence of ocean acidification, *Proceedings of the National Academy of Sciences*, 208-213, https://doi.org/10.1073/pnas.1011053108

Bluhm, K., Croot, P. L., Huhn, O., Rohardt, G., & Lochte, K. (2011). Distribution of iodide and iodate in the Atlantic sector of the Southern Ocean during austral summer, *Deep-Sea Research Part II: Topical Studies in Oceanography*, 58, 2733-2748, https://doi.org/101016/j.dsr2.2011.02.002

Bluhm, K., Croot, P., Wuttig, K., & Lochte, K. (2010). Transformation of iodate to iodide in marine phytoplankton driven by cell senescence, *Aquatic Biology*, 11(1), 1-15, https://doi.org/10.3354/ab00284

Campos, M. L. A. M., Sanders, R. J., & Jickells, T. D. (1999). The dissolved iodate and iodide distribution in the South Atlantic from the Weddell Sea to Brazil, *Marine Chemistry*, 65, 167-175, https://doi.org/10.1016/S0304-4203(98)00094-02

Campos, M. L. A. M., Farrenkopf, A. M., Jickells, T. D., & Luther, G. W. (1996). A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series station and Hawaii Ocean Time-series station, *Deep-Sea Research Part II: Topical studies in Oceanography*, 43, 455-466, https://doi.org/10.1016/0967-0645(95)00100-X

Carpenter, L. J., Shaw, M. D., Parthipan, R., Wilson, J., MacDonald, S. M., Kumar, R. et al. (2013). Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine, *Nature Geoscience*, 6 (2). 108 – 111, ISSN 1752-0894.
Chance, R., Tinel, L., Sarkar, A., Sinha, A. K., Mahajan, A. S., Chacko, R. et al. (2019a). Surface inorganic iodine speciation in the Indian Ocean and Indian Ocean sector of the Southern Ocean, In preparation.

Chance R., Tinel, L., Sherwen, T., Baker, A. R., Bell, T., Brindle, J. et al. (2019b). Global sea-surface iodide observations, 1967-2018. Scientific Data, accepted manuscript, Manuscript reference SDATA-19-00045A

Chance, R., Baker, A. R., Carpenter, L., & Jickells, T. D. (2014). The distribution of iodide at the sea surface, Environmental Science: Processes & Impacts, 16, 1841-1859, https://doi.org/10.1039/C4EM00139G

Chance, R., Weston, K., Baker, A. R., Hughes, C., Malin, G., Carpenter, L. et al. (2010). Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site, Marine Chemistry, 118, 171-181, https://doi.org/10.1016/j.marchem.2009.11.009

Chance, R., Malin, G., Jickells, T. D., & Baker, A. R. (2007). Reduction of iodate to iodide by cold water diatom cultures, Marine Chemistry, 105, 169-180, https://doi.org/10.1016/j.marchem.2006.06.008

de la Cuesta, J. L. & Manley, S. L. (2009). Iodine assimilation by marine diatoms and other phytoplankton in nitrate-replete conditions, Limnology and Oceanography, 54, 1653-1664, https://doi.org/10.4319/lo.2009.54.5.1653

Ducklow, H. W., Stukel, M. R., Eveleth, R., Doney, S. C., Jickells, T. D., Scofield, O. et al. (2018). Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012-2014, Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 376(2122):20170177, https://doi.org/10.1098/rsta.2017.0177
Edwards, A. & Truesdale V. W. (1997). Regeneration of inorganic iodine species in Loch Etive, a natural leaky incubator, *Estuarine Coastal and Shelf Science*, 45, 357-366, https://doi.org/10.1006/ecss.1996.0185

Elderfield, H. & Truesdale, V. W. (1980). On the biophilic nature of iodine in seawater. *Earth and Planetary Science Letters*, 50, 105-114, https://doi.org/10.1016/0012-821X(80)90122-3

Fuse, H., Inoue, H., Murakami, K., Takimura, O. & Yamaoka, Y. (2003). Production of free and organic iodine by *Roseovarius* spp., *FEMS Microbiological Letters*, 229, 189-194, https://doi.org/10.1016/S0378-1097(03)00839-5

Ganzeveld, L., Helmig, D., Fairall, C. W., Hare J., & Pozzer, A. (2009). Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies, *Global Biogeochemical Cycles*, 23, GB4021, https://doi.org/10.1029/2008GB003301

Gozlan, R. S. (1968). Isolation of iodine-producing bacteria from aquaria, Antonie van Leeuwenhoek, 34, 226-226, https://doi.org/10.1007/BF02046433

Hardacre, C., Wild O., & Emberson, L. (2015). An evaluation of ozone dry deposition in global scale chemistry climate models, *Atmospheric Chemistry and Physics*, 15, 6419-6436, https://doi.org/10.5194/acp-15-6419-2015

Hepach, H., Hughes, C., Hogg, K., Collings, S., & Chance, R. (2019). Common features of iodate to iodide reduction amongst a diverse range of marine phytoplankton. *In preparation.*

Hughes, C., Barton, E., Hepach, H., Chance, R., Pickering, M., & Hogg, K. et al. (2019). Iodate production in cultures of marine ammonium-oxidising bacteria: *implications for future inorganic iodine distributions in the oceans*, *Global Biogeochemical Cycles*, submitted to *Global Biogeochemical Cycles.*
Hung, C-C., Wong, G. T. F. & Dunstan, W. M. (2005). Iodate Reduction Activity in Nitrate Reductase Extracts from Marine Phytoplankton, *Bulletin of Marine Science*, 76, 61-72.

Jickells, T. D., Boyd, S. S., & Knap, A. H. (1988). Iodine cycling in the Sargasso Sea and the Bermuda inshore waters, *Marine Chemistry*, 24, 61-82, doi:10.1016/0304-4203(88)90006-0.

Long, A., Dang, A., Xiao, H., & Yu, X. (2015). The Summer Distribution of Dissolved Inorganic Iodine along 18°N in the South China Sea, *Journal of Marine Science: Research & Development*, 5, 169, doi:10.4172/2155-9910.1000169.

Lu, Z., Hoogakker, B. A. A., Hillenbrand, C.-D., Zhou, X., Thomas, E., Gutchess, K. M., et al. (2016). Oxygen depletion recorded in upper waters of the glacial Southern Ocean, *Nature Communications*, 7, 11146.

Luhar, A. K., Woodhouse, M. T., & Galbally, I. E. (2018). A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis, *Atmospheric Chemistry and Physics*, 18, 4329-4348, https://doi.org/10.5194/acp-18-4329-2018

Luther, G. W., Ferdelman, T., Culberson, C. H., Kostka, J., & Wu, J. F. (1991). Iodine chemistry in the water column of the Chesapeake Bay - evidence for organic iodine forms, *Estuarine Coastal and Shelf Science*, 32, 267-279, https://doi.org/10.1016/0272-7714(91)90020-C

Luther, G. W., Wu, J. F., & Cullen, J. B. (1995). Redox chemistry of iodine in seawater — frontier molecular orbital theory considerations, *Aquatic Chemistry, Advances in Chemistry*, 244, pp. 135–155, https://doi.org/10.1021/ba-1995-0244.ch006

MacDonald, S. M., Martin, J. C. G., Chance, R., Warriner, S., Saiz-Lopez, A., Carpenter, L., & Plane, J. M. C. (2014). A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling, *Atmospheric Chemistry and Physics*, 14, 5841-5852, https://doi.org/10.5194/acp-14-5841-2014
Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W., Saiz-Lopez, A. et al. (2010). Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean, Atmospheric Chemistry and Physics, 10, 4611-4624, https://doi.org/10.5194/acp-10-4611-2010

Monterey, G. & Levitus, S. (1997). Seasonal Variability of Mixed Layer Depth for the World Ocean, NOAA Atlas NESDIS 14 U.S. Gov. Printing Office, Wash., D. D., 96 pp. 87.

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W. et al. (2013). Processes and patterns of ocean nutrient limitation, Nature Geosciences, DOI:10.1038/Ngeo1765.

Saiz-Lopez, A., Fernandez, R. P., Ordóñez, C., Kinnison, D. E., Gómez Martín, J. C., Lamarque, J.-F., & Tilmes, S. (2014). Iodine chemistry in the troposphere and its effect on ozone, Atmospheric Chemistry and Physics, 14, 13119-13143, https://doi.org/10.5194/acp-14-13119-2014.

Sarwar, G., Foley, K., Mathur, R., Simon, H., Xing, J. & Fahey, K. (2016). Halogen Chemistry in the CMAQ Model, 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26.

Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., & Carpenter, L. J. (2019a). A machine learning based global sea-surface iodide distribution, Earth Systems Science Data, 11, 1239-1262, https://doi.org/10.5194/essd-11-1239-2019.

Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., & Carpenter, L. J. (2019b). Global predicted sea-surface iodide concentrations v0.0.1. Centre for Environmental Data Analysis, 30 April 2019. doi:10.5285/6448e7e92d4e48188533432f6b26fe22

Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D. et al. (2016a). Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in
GEOS-Chem, *Atmospheric Chemistry and Physics*, 16, 12239-12271, https://doi.org/10.5194/acp-16-12239-2016

Sherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B. et al. (2016b). Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem, *Atmospheric Chemistry and Physics*, 16, 1161-1186, https://doi.org/10.5194/acp-16-1161-2016

Stroeve, J. & Meier, W. N. (2018). Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS, Version 3. [Sea ice concentration]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/IJ0T7HFHB9Y6

Tian, R. C., Marty, J. C., Nicolas, E., Chiaverini, J., Ruiz-Pino, D., & Pizay, M. D. (1996). Iodine speciation: a potential indicator to evaluate new production versus regenerated production, *Deep-Sea Research Part I*, 43, 723-738, https://doi.org/10.1016/0967-0637(96)00023-4

Truesdale, V. W., Danielssen, D. S., & Waite, T. J. (2003). Summer and winter distributions of dissolved iodine in the Skagerrak, *Estuarine Coastal and Shelf Science*, 57(4), 701-713, https://doi.org/10.1016/S0272-7714(02)00412-2

Truesdale, V. W., Watts, S. F., & Rendell, A. R. (2001). On the possibility of iodide oxidation in the near-surface of the Black Sea and its implications to iodine in the general ocean, *Deep-Sea Research*, 48, 2397-2412, https://doi.org/10.1016/S0967-0637(01)00021-8

Truesdale, V. W., Bale, A. J., & Woodward, E. M. S. (2000). The meridional distribution of dissolved iodine in near-surface waters of the Atlantic Ocean, *Progress in Oceanography*, 45, 387-400, https://doi.org/10.1016/S0079-6611(00)00009-4

Tsunogai, S. (1971). Iodine in the deep water of the ocean. *Deep Sea Research and Oceanographic Abstracts*, 18, 913-919, https://doi.org/10.1016/0011-7471(71)90065-9
Waite, T. J. & Truesdale, V. W. (2003). Iodate reduction by Isochrysis galbana is relatively insensitive to de-activation of nitrate reductase activity - are phytoplankton really responsible for iodate reduction in seawater? *Marine Chemistry*, 81, 137-148, https://doi.org/10.1016/S0304-4203(03)00013-6

Waite, T. J., Truesdale, V. W., & Olafsson, J. (2006). The distribution of dissolved inorganic iodine in the seas around Iceland. *Marine Chemistry*, 101, 54-67, https://doi.org/10.1016/j.marchem.2006.01.003

Wessel, S., Aoki, S., Winkler, S., Weller, R., Herber, A., & Gernandt, H. (1998). Tropospheric ozone depletion in polar regions A comparison of observations in the Arctic and Antarctic. *Tellus*, 50B, 34-50, https://doi.org/10.3402/tellusb.v50i1.16020

Wong, G. T. F., Plumsomboon, A. U. & Dunstan, W. M. (2002). The Transformation of Iodate to Iodide in Marine Phytoplankton Cultures, *Marine Ecology Progress Series*, 237, 27-39, https://doi.org/10.3354/meps237027

Wong, G. T. F. (2001). Coupling iodine speciation to primary, regenerated or "new" production: a re-evaluation, *Deep-Sea Research Part I*, 48, 1459-1476.

Wong, G. T. F. (1991). The marine geochemistry of iodine, *Reviews in Aquatic Science*, 4, 45-73.

Yool, A., Martin, A. P., Fernandez, C., & Clark, D. R. (2007). The significance of nitrification for oceanic new production, *Nature*, 447, 999-1002, doi:10.1038/nature05885

Zhou, X., Thomas, E., Winguth, A. M. E., Ridgwell, A., Scher, H., Hoogakker, B. A. A. et al. (2016). Expanded oxygen minimum zones during the late Paleocene-early Eocene: Hints from multiproxy comparison and ocean modelling, *Paleoceanography*, 31(12), 1532-1546, https://doi.org/10.1002/2016PA003020
Zic, V., Caric, M & Ciglenecki, I. (2013). The impact of natural water column mixing on iodine and nutrient speciation in a eutrophic anchialine pond (Rogoznica Lake, Croatia), *Estuarine, Coastal and Shelf Science*, 133, 260-272, https://doi.org/10.1016/j.ecss.2013.09.008