K6-linked SUMOylation of BAF regulates nuclear integrity and DNA replication in mammalian cells

Qiyou Lin*, Bin Yu*, Xiangyang Wang*, Shicong Zhu*, Gan Zhao*, Mingkang Jia*, Fan Huang*, Nan Xu*, He Ren*, Qing Jiang*, and Chuanmao Zhang1,7,8

The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China

Edited by Marco Foiani, FIRC Institute of Oncology and DSBB-University of Milan, Italy, and accepted by Editorial Board Member Philip C. Hanawalt March 24, 2020 (received for review July 29, 2019)

Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.

| cell cycle | barrier-to-autointegration factor (BAF) | SUMOylation | nuclear integrity | lamin A/C |

Mutations in genes encoding nuclear periphery proteins are often associated with severe genetic disorders, diseases, and syndromes. One collective group of these disorders is laminopathy, which often carries mutations in lamin and LEM (Lap2, emerin, and MAN1) family members (1, 2). Interestingly, many of these diverse disorders affect only one or a few tissues, such as skeletal muscles, bones, adipocytes, and neuronal tissues. Hutchinson–Gilford progeria syndrome (HGPS) is a systemic laminopathy caused by point mutations of LMNA, which encodes lamin A/C. HGPS patients show severe accelerated aging and often die from atherosclerosis during adolescence (3–6). The alanine 12-to-threonine mutation (A12T) of barrier-to-autointegration factor (BAF) is associated with Néstor–Guillermo progeria syndrome (NGPS), another rare accelerated aging syndrome with clinical features similar to those of HGPS. However, in NGPS, patients lack the cardiovascular pathology characteristic of HGPS and have a longer lifespan (7). The underlying mechanism of NGPS is poorly understood.

BAF is a small multifunctional protein with roles in mitosis, nuclear dynamics, chromosome organization, gene regulation, DNA damage response, and viral infection (8). BAF is highly conserved among metazoans, and BAF depletion is lethal during embryogenesis in Caenorhabditis elegans and Drosophila melanogaster (9, 10). BAF forms homodimers and binds double-stranded DNA (dsDNA) in a sequence-independent manner (11–13). BAF functions in the maintenance of nuclear architecture during interphase (14). In mitosis, BAF is phosphorylated by vaccinia-related kinase 1 (VRK-1), which abrogates BAF interactions with other proteins to facilitate nuclear envelope (NE) disassembly (15). At the end of mitosis, BAF associates with chromatin and LEMs to reform the NE (16) and prevent nuclear fragmentation (17). Thus, BAF facilitates single nucleus formation.

SUMOylation of proteins by a small ubiquitin-related modifier (SUMO) regulates many cellular activities, including gene expression, signal transduction, macromolecular assembly, protein stability, nucleocytoplasmic transport, and DNA damage repair (18–20). Of the four SUMO proteins in humans—SUMO1, SUMO2, SUMO3, and SUMO4—SUMO4 remains enigmatic (19, 21, 22). Many SUMOylation proteins contain an acceptor lysine within a ψKXE consensus sequence (where ψ is a large hydrophobic residue and x represents any amino acid) that can be recognized by ubiquitin-conjugating enzyme 9 (Ubc9) directly. Alternatively, the SUMOylation targets without a consensus sequence recruit Ubc9 via their SUMO interaction motif (SIM), which contains a hydrophobic core with a consensus sequence VI-X-VI-V/I or VI-VI-X-V/I, or via E3 ligases (18, 19). SUMOylation can mask the interaction surface of target proteins and thus prevent their interaction with other proteins. Alternatively, SUMOylation can provide a binding site for new partners. Furthermore, if a target protein simultaneously contains an acceptor lysine for a SUMO molecule and a SIM, the intramolecular interaction between SUMO and SIM may induce a conformational change of the target (19).

Accumulating evidence shows that SUMOylation plays a pivotal role in regulation of the cell cycle (23, 24). For instance, SUMOylation promotes autophosphorylation and activation of Aurora B, which is important for localization (25, 26). Redistribution of the SUMO machinery during mitosis is essential to enable cell cycle progression (27). In this study, we demonstrate that BAF is SUMOylated, and that this modification regulates the function of BAF in nuclear integrity maintenance, DNA replication, and S phase progression.

Significance

Barrier-to-autointegration factor (BAF), a highly conserved small protein in metazoans, plays multiple functions during the cell cycle; however, the regulation of BAF function is largely unclear. Here we find that the SUMOylation and de-SUMOylation cycle of BAF regulates these functions. We reveal that BAF is SUMOylated at K6, and that de-SUMOylation at this site is catalyzed by SENP1 and SENP2. SUMOylation of BAF regulates binding to lamin A/C, which is essential for nuclear retention of BAF. SUMOylation of BAF also regulates the interaction of BAF with nuclear DNA. De-SUMOylation facilitates cytoplasmic retention of BAF and loss of nuclear function. Non-SUMOylatable BAF is not efficiently retained in the nucleus, leading to structurally abnormal nuclear formation and DNA replication failure.

Author contributions: Q.L., B.Y., N.X., Q.J., and C.Z. designed research; Q.L., B.Y., X.W., S.Z., G.Z., M.J., and F.H. performed research; Q.J. and C.Z. contributed new reagents/analytic tools; Q.L., B.Y., X.W., S.Z., G.Z., M.J., F.H., N.X., H.R., Q.J., and C.Z. analyzed data; and Q.L., Q.J., and C.Z. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. M.F. is a guest editor invited by the Editorial Board.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: zhangcm@pku.edu.cn.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912984117/-/DCSupplemental.
Results

BAF Is SUMOylated at K6. We identified proteins that interact with BAF during the cell cycle by expressing GFP-BAF in cells, followed by co-immunoprecipitation (co-IP) and Western blot analysis of the co-immunoprecipitated proteins. To our surprise, we found that Ubc9, the sole SUMO-conjugating enzyme for SUMOylation (19, 27), was co-immunoprecipitated with GFP-BAF (Fig. 1A). Using an anti-Ubc9 antibody to perform the co-IP assay, we confirmed the binding of both endogenous and exogenous BAF to endogenous Ubc9 in HEK293 cells (Fig. 1B and C). We also expressed and purified GST-Ubc9 in bacteria and performed a GST pull-down assay in the cell lysate, expressing Myc-BAF, which revealed that GST-Ubc9 pulled down the Myc-BAF (Fig. 1D). Through coexpression of GFP-Ubc9 and mCherry-BAF in HeLa and HEK293 cells, we observed that both Ubc9 and BAF colocalized in the nucleus, with enrichment at the NE (Fig. 1E). Collectively, these results demonstrate that BAF interacts and colocalizes with Ubc9 in the nucleus.

We tested whether BAF is SUMOylated using a co-IP assay in cell lysates expressing GFP-BAF. The GFP antibody recognized a slow-migrating band at ~57 kDa and a fast-migrating band at ~40 kDa in cell lysates expressing GFP-BAF (Fig. 1F). By serially stripping the film and reblotting with anti-SUMO1 and anti-SUMO2/3 antibodies, we found that both antibodies recognized the same slow-migrating band (Fig. 1F). The slow-migrating BAF band was precipitated with either His-SUMO1 or His-SUMO2 in reciprocal co-IP assays or Ni-NTA pull-down assays when GFP-BAF was coexpressed with His-SUMO1 or His-SUMO2 (Fig. 1G and SI Appendix, Fig. S1A). Taken together, these results demonstrate that BAF is SUMOylated by SUMO1 and SUMO2/3.

We next investigated the conjugation site(s) of BAF for SUMO. Nine conservative lysine (K) sites in the primary sequence of BAF that could be SUMOylated were revealed by multiple sequence alignments (SI Appendix, Fig. S1B). By changing each of the lysine residues to arginine (R) in the possible SUMOylation sites, we generated nine GFP-tagged non-SUMOylatable KR mutants: BAF-K6R, -K18R, -K232R, -K333R, -K41R, -K53R, -K54R, -K64R, and -K72R. These nine mutants were individually coexpressed with His-SUMO2 in cells. Co-IP revealed that only GFP-BAF-K6R lost almost all of the SUMOylation bands. The wild-type (WT) BAF and other mutants had more or fewer SUMOylation bands (Fig. 1H). WT BAF and KR mutants were coexpressed with His-SUMO1, and the His-SUMO1-conjugated proteins were isolated. The K6R mutation of BAF strongly impeded SUMOylation in cells (SI Appendix, Fig. S1C).

We then performed co-IP assays using GFP-BAF-K6R- or GFP-BAF-WT–expressing cell lysates for endogenous SUMO or coexpression of GFP-BAF-K6R or GFP-BAF-WT with either His-SUMO1 or His-SUMO3, followed by isolation of the exogenous proteins. These experiments showed that while the WT BAF was strongly SUMOylated by endogenous and exogenous SUMO1 or SUMO2/3, almost no SUMOylation on the K6R mutant was detected (Fig. 1I and SI Appendix, Fig. S1D–G). Taken together, these findings demonstrate that BAF is SUMOylated at K6 in cells, and that the modifier can be SUMO1, SUMO2/3, or both.

Nuclear Retention and Binding of BAF to Nuclear Lamin A/C Is Regulated by SUMOylation. Previous studies have shown that GFP-fused BAF localizes to the nucleolus and the nucleoplasm similar to endogenous BAF (28, 29). We performed immunofluorescence experiments in Myc-BAF–, GFP-BAF–, and mCherry-BAF–overexpressing HeLa cells and found all the tagged constructs used in this study (GFP, mCherry and Myc tags) showed consistent localization with previous reports (SI Appendix, Fig. S1H). To determine the function of BAF SUMOylation, we first investigated the subcellular localization of both GFP-BAF and K6R mutants in cells. The results showed that GFP-BAF was localized predominantly at the NE and nucleoplasm, whereas GFP-BAF-K6R exhibited a dramatic reduction in nuclear localization in most cells (Fig. 2A). Cytoplasmic and nuclear fractionation assays in cells overexpressing GFP-BAF and GFP-BAF-K6R showed that GFP-BAF was significantly higher in the nuclear fraction compared with GFP-BAF-K6R, and that GFP-BAF-K6R exhibited more cytoplasmic retention (Fig. 2B). Importantly, when a SUMO2 molecule was fused to GFP-BAF-K6R (GFP-SUMO2-K6R) to mimic SUMO conjugation (30–32), the expressed fusion protein, GFP-SUMO2-K6R, was localized predominantly to the nucleus (Fig. 2A). In other words, the addition of a SUMO molecule rescued the nuclear localization failure of K6R.

We next investigated the molecular basis for nuclear localization of BAF after SUMOylation. BAF interacts with many important binding partners inside the nucleus, including lamin A/C and LEM domain proteins. We first knocked down lamin A/C in cells, and found that this almost totally abolished the nuclear localization of BAF (Fig. 2C). Treating these cells with leptomycin B, a protein nuclear export inhibitor, or MG132, a proteasome inhibitor, did not rescue the nuclear localization failure (SI Appendix, Fig. S2 A and B), suggesting that nuclear disappearance of BAF in lamin A/C knockdown cells was not due to nuclear export or protein degradation. On the other hand, we found that BAF knockdown did not affect the nuclear pool of lamin A/C (Fig. 2C). Specifically, for endogenous BAF observation, 4% paraformaldehyde was used for fixation at room temperature, followed by Triton X-100 permeation, different from cold methanol fixation for tagged-BAF observation, since endogenous BAF was difficult to observe under methanol fixation. Next, we generated two GFP-tagged lamin A mutants—C661S, a nonfarnesylated form of prelamin A, and L530P, a permanently farnesylated prelamin A (33)—and coexpressed them individually with mCherry-tagged BAF in cells. We observed that both lamin A mutants localized to the nucleus with distinct patterns, and that, interestingly, BAF colonized with both, as reported previously (Fig. 2D) (34). Furthermore, we found that both of the lamin A mutants interacted with BAF (Fig. 2E). Importantly, through reciprocal immunoprecipitation assays using cell lysates expressing BAF-WT and BAF-K6R, we found that the binding of BAF-K6R to lamin A/C was severely reduced (Fig. 2F and G and SI Appendix, Fig. S2 C and D). These data suggest that the interaction between lamin A/C and BAF is dependent on BAF K6 SUMOylation. To confirm this, we generated a panel of GFP-tagged SIM-defective lamin A mutants, SIM1(EE) to SIM4(EE) (35), and individually coexpressed them with Myc-BAF in cells. Interactions between BAF and the SIM-deficient lamin A mutants were decreased compared with WT lamin A (Fig. 2H). These data indicate that the interaction between lamin A/C and BAF is SUMOylation-dependent. In contrast, we found that BAF SUMOylation did not affect its interaction with the LEM proteins, emerin, LAP2α, and LAP2β (Fig. 2I and SI Appendix, Fig. S2 E and F) or its dimerization status (SI Appendix, Fig. S2G). Thus, we conclude that the interaction between BAF and lamin A/C occurs through the SUMO molecule on BAF and the SIM domain on lamin A/C; and that this interaction results in the retention of BAF in the nucleus.

SUMOylation of BAF Also Regulates Its Binding to Nuclear DNA and Proliferating Cell Nuclear Antigen in S Phase. Given the importance of BAF for cell cycle regulation, we investigated its SUMOylation kinetics during the cell cycle. We found that SUMOylation of BAF by SUMO proteins occurred mainly in S phase (Fig. 3A and B), as demonstrated by coexpressing GFP-BAF with His-SUMO1 or His-SUMO2. Since SUMOylation of BAF is
Fig. 1. BAF is SUMOylated at K6. (A–C) GFP-BAF interacts with Ubc9 in cells. (A) Whole lysates from HEK293 cells expressing either GFP or GFP-BAF were used for co-IP with GFP-trap beads and Western blot analysis with GFP and Ubc9 antibodies. (B) Endogenous BAF interacts with Ubc9. Whole lysates of HEK293 cells were used for co-IP with the Ubc9 antibody and Western blot analysis with BAF and lamin A/C antibodies. (C) Whole lysates of HEK293 cells expressing either GFP or GFP-BAF were used for co-IP with the Ubc9 antibody and Western blot analysis with GFP and Ubc9 antibodies. (D) BAF interacts with purified Ubc9 protein in vitro. Myc-BAF–overexpressing HEK293 cell lysates were incubated with GST or GST-Ubc9, followed by a pull-down assay using glutathione Sepharose 4B beads and Western blot analysis with Myc antibody. The loading of GST and GST-tagged Ubc9 proteins is shown by Coomassie blue staining (bottom). (E) Ubc9 colocalizes with BAF mainly in the cell nucleus. HeLa and HEK293 cells were transfected with GFP-Ubc9 and mCherry-BAF and observed after fixation. (Scale bars: 10 μm.) (F) GFP can be SUMOylated by SUMO1 and SUMO2/3. Whole-cell lysates of HEK293 cells expressing GFP or GFP-BAF were co-immunoprecipitated with GFP-trap beads and probed with GFP, SUMO1, and SUMO2/3 antibodies. Note that K6R almost lost the positive upper bands recognized by the anti-His antibody. (G) GFP-BAF-WT, but not GFP-BAF-K6R, can be modified by endogenous SUMO1 or SUMO2/3. GFP-BAF- WT or K6R coexpressed with SUMO1 or SUMO2 in HEK293 cells were co-immunoprecipitated with GFP-trap beads, followed by Western blot analysis using the indicated antibodies. Note that only GFP-BAF-WT could be recognized by anti-SUMO1 and -SUMO2 antibodies at a Kd value of 57.
required for its nuclear accumulation, we examined the relationship between SUMOylation and nuclear accumulation of BAF in S phase. When GFP-BAF or GFP-BAF-K6R was stably expressed in cells, GFP-BAF was significantly enriched in S phase nuclear fraction, as expected, but GFP-BAF-K6R did not efficiently accumulate in S phase nucleus (Fig. 3C).

We next investigated the effects of SUMOylation on BAF binding to nuclear DNA. First, we performed an in vitro protein-DNA binding assay to determine the DNA-binding properties of BAF-WT and BAF-K6R. The results showed that BAF-WT bound to DNA more efficiently than BAF-K6R, indicating that SUMOylation of BAF affects its DNA-binding activity.

Next, we investigated the effects of SUMOylation on BAF association with lamin A/C. We used co-immunoprecipitation assays to examine the interaction between BAF and lamin A/C. The results showed that SUMOylation of BAF enhanced its interaction with lamin A/C, indicating that SUMOylation plays a crucial role in regulating BAF-lamin A/C interactions.

Finally, we investigated the effects of SUMOylation on BAF association with emerin and LAP2α, which are LEM domain proteins. The results showed that SUMOylation of BAF did not affect its binding to LEM domain proteins, indicating that SUMOylation of BAF primarily affects its association with nuclear lamina proteins.

In summary, SUMOylation of BAF enhances its binding to nuclear lamina A/C and nuclear retention, which is crucial for its nuclear accumulation and DNA-binding activity. These findings suggest that SUMOylation of BAF plays a critical role in regulating its nuclear localization and DNA-binding properties, which are essential for its function in the cell nucleus.
binding assay using purified BAF proteins from HEK293 cells and dsDNA, followed by an electrophoretic mobility shift assay (EMSA). We found that BAF-K6R bound significantly less dsDNA compared with WT BAF (Fig. 3D). Using the same proteins and DNA, we confirmed the foregoing results by isothermal titration calorimetry (ITC) (Fig. 3E). Nuclear localization of BAF has been reported to correlate with S phase progression (56); thus, we investigated the nuclear localization of BAF during the cell cycle via GFP-BAF expression in cells, followed by immunofluorescence labeling. The results not only confirmed the nuclear localization of BAF, but also demonstrated that BAF-WT was oriented at the nuclear foci, bound and colocalized with proliferating cell nuclear antigen (PCNA) in S phase (Fig. 3F and G).

PCNA is a cofactor of DNA polymerases that encircles DNA, which recruits crucial players to the replication fork and marks sites of DNA synthesis during S phase (37–39). A previous study showed that localization of PCNA has cell cycle-dependent properties (37). In G1 and G2 phases, it equally distributes throughout the nucleus. In early S phase, it agglomerates to small and equally distributed foci, which are located at the nuclear periphery in mid S phase. In late S phase, PCNA forms large foci near the center of the nuclei. When GFP-BAF or GFP-BAF-K6R were expressed followed by co-IP, we found that endogenous PCNA co-immunoprecipitated with GFP-BAF, but not with GFP-BAF-K6R (Fig. 3H). These data indicate that BAF interacts with PCNA under the regulation of SUMOylation. Taken together, these results show that SUMOylation-regulated nuclear accumulation of BAF in S phase enhances its binding to dsDNA and PCNA.

Fig. 3. SUMOylation of BAF also regulates its binding to nuclear DNA and PCNA in S phase. (A) SUMOylation of BAF by SUMO1 peaks in S phase. HEK293 cells coexpressing GFP-BAF and His-SUMO1 were synchronized at G1, G1/S transition, S, G2, and G2/M phases. Cells were collected for immunoprecipitation using GFP-trap beads and analyzed by Western blot analysis using the indicated antibodies. (B) SUMOylation of BAF by SUMO2 also peaks in S phase. HEK293 cells coexpressing GFP-BAF and His-SUMO2 were synchronized at different phases, collected for immunoprecipitation using GFP-trap beads, and analyzed by Western blot analysis using the indicated antibodies. (C) BAF SUMOylation promotes its nuclear accumulation in S phase. Asynchronous and S-phase–arrested HEK293 cells stably expressing GFP-BAF or GFP-BAF-K6R were subjected to subcellular fractionation. Protein levels of GFP-BAF in the nuclear and cytoplasmic fractions were determined by immunoblotting with an anti-GFP antibody. The relative purity of the nuclear and cytoplasmic fractions was confirmed by sequential probing for the nuclear marker PARP1 and the cytoplasmic marker α-tubulin, respectively. (D) SUMOylation is required for BAF binding to dsDNA. EMSA results of BAF-WT or BAF-K6R protein binding to a 5′-biotin–labeled dsDNA probe are shown. B represents the BAF-bound DNA, and F represents the free DNA. (E) The binding of BAF-WT and BAF-K6R proteins to dsDNA was measured by ITC, with association equilibrium constants (K_a) as indicated. The association equilibrium constant of BAF-WT protein with dsDNA (K_a) is 1.89 ± 0.19 μM, whereas the association equilibrium constant of BAF-K6R protein with dsDNA (K_a) is 3.30 ± 0.189 μM. (F) BAF colocalizes with PCNA during S phase. HeLa cells expressing GFP-BAF were synchronized at the early S phase by releasing the G1/S-arrested cells for 2 h and then stained with PCNA antibody and DAPI. (Scale bars: 10 μm) (G) BAF interacts with PCNA during S phase. HEK293 cells expressing GFP-BAF were synchronized at different phases were subjected to immunoprecipitation using GFP-trap beads and Western blot analysis using the indicated antibodies. (H) The K6R mutation reduces the binding of BAF to PCNA. HEK293 cells expressing GFP-BAF or GFP-BAF-K6R were co-immunoprecipitated with GFP-trap beads and analyzed by Western blot analysis using PCNA and GFP antibodies.
SENP1 and SENP2 Are Responsible for de-SUMOylation of BAF at K6.
SUMOylation of proteins is a reversible process, and the SUMOylation/de-SUMOylation cycle is highly dynamic. The regulated deconjugation of SUMO from its substrates ensures the plasticity of protein interaction networks (18). Deconjugation of SUMO is catalyzed by cysteine proteases, termed SUMO isopeptidases, and the sentrin-specific protease (SENP) family of isopeptidases is responsible for most deconjugations of SUMO.

Fig. 4. SENP1 and SENP2 are responsible for BAF de-SUMOylation. (A) The deconjugation efficiencies of SUMO2 conjugated-BAF by different SENP family members are different. HEK293 cells expressing GFP-BAF and His-SUMO2 were cotransfected with various Myc-tagged SENP members. Whole-cell extracts were co-immunoprecipitated with a GFP antibody and probed with His and GFP antibodies. Note that while SENP1 and SENP2 completely reversed the SUMO2 modification of BAF, SENP3, SENP5, SENP6, and SENP7 reduced this SUMO2 modification only slightly. (B) Both SENP1 and SENP2 efficiently deconjugate the SUMO1 modification of BAF. HEK293 cells expressing GFP-BAF and His-SUMO1 were cotransfected with Myc-SENP1 or Myc-SENP2. Whole-cell extracts were co-immunoprecipitated with the GFP antibody and probed with His and GFP antibodies. (C) The catalytically inactive SENP1-C603A and SENP2-C548A mutants are unable to deconjugate the SUMO1 modification of BAF. HEK293 cells expressing GFP-BAF and His-SUMO1 were transfected with Myc-SENP1, Myc-SENP1-C603A, Myc-SENP2, or Myc-SENP2-C548A. Whole-cell extracts were immunoprecipitated with GFP antibody and probed with His and GFP antibodies. (D) Catalytically inactive SENP1-C603A and SENP2-C548A are unable to deconjugate the SUMO2 modification of BAF. HEK293 cells coexpressing GFP-BAF and His-SUMO2 were cotransfected with Myc-SENP1, Myc-SENP1-C603A, Myc-SENP2, or Myc-SENP2-C548A. Whole-cell extracts were immunoprecipitated with GFP antibody and probed with His and GFP antibodies. (E) SENP1 and SENP2 colocalize with BAF. HeLa cells coexpressing GFP-SENP1 or GFP-SENP2 and mCherry-BAF were fixed and stained with a PCNA antibody and DAPI. (Scale bars: 10 μm.)
molecules from their target proteins (22). To uncover the iso-
péptidases responsible for the de-SUMOylation of BAF, we
generated Myc-tagged constructs for all six human SUMPs: Myc- SENP1, Myc-SENP2, Myc-SENP3, Myc-SENP5, Myc-SENP6, and Myc-SENP7. These six SENPs were individually coexpressed with both His-SUMO2 and GFP-BAF in cells, followed by de-
tection of de-SUMOylation. We found that while the SUMO-
lated band of GFP-BAF was significantly increased in cells
expressing both GFP-BAF and His-SUMO2 (Fig. 44), it was
reduced or absent in the cells coexpressing SENP1 or SENP2
(Fig. 44). In contrast, coexpression GFF-BAF and His-SUMO2
with SENP3, SENP5, SENP6, or SENP7 did not significantly
reverse the SUMO2 modification, although a reduced decono-
gjugation effect was identified (Fig. 44). Strikingly, when GFP-BAF
and His-SUMO1 were coexpressed with SENP1 and SENP2,
both SENPs together efficiently deconjugated SUMO1 from
GFP-BAF (Fig. 4B). We also generated two catalytically inactive
mutants, SENP1 C603A and SENP2 C548A (40, 41). The mutant
and WT SENPs were individually coexpressed with GFF-
BAF and His-SUMO1 in cells. We found that both mutants
failed to deconjugate SUMO from BAF (Fig. 4 C and D).

SENP1 and SENP2 localize to the nucleoplasm and concen-
trate at the NE through their interaction with components of the
nuclear pore complex (42–45). Here we not only confirmed their nuclear localization pattern, but also found that both SENP1
and SENP2 colocalized with BAF in interphase (Fig. 4E and SI
Appendix, Fig. S34). We also observed that SENP3 and SENP5
were localized mainly in the nucleolus, as reported previously
(46–48), and did not colocalize with BAF (SI Appendix, Fig.
S3–E). SENP6 and SENP7 have been reported to localize to the
nucleoplasm (22, 45, 49, 50). Here we confirmed this local-
ization and found small fractions of SENP6 and SENP7 con-
centrated at the NE (SI Appendix, Fig. S3–F). Taken together,
these results demonstrate that SENP1 and SENP2 colocalize
with BAF at the nucleoplasm and NE and catalyze de-
SUMOylation of SUMOylated BAF.

The K6 SUMOylation and de-SUMOylation Cycle of BAF Is Essential for Nuclear Integrity and DNA Replication. Finally, we investigated the function of the SUMOylation/de-SUMOylation cycle of BAF at K6 in cells. We first observed a significant S phase retention (≈16.9%) in BAF knockdown cells (Fig. 5 A–C). We then per-
dormed a DNA fiber assay to investigate the replication fork
dynamics in control and BAF-depleted cells. Cells were trans-
fected with control or BAF shRNA vectors, followed by pulse-
labeling with chlorodeoxyuridine (CldU) for 40 min and then
incubation with iododeoxyuridine (IdU) for 40 min. We exam-
inated the replication rate under normal conditions by measuring IdU tract lengths. We found that BAF-depleted cells exhibited
significantly decreased average tract lengths (on average) com-
pared with control cells (7.24 μm vs. 9.44 μm) (Fig. 5 D and E),
indicating that BAF is required for DNA replication. When the IdU tract length was converted to kilobases using a common
conversion factor, the DNA fibers were 2.59 kb/μm using the
spreading methods (Materials and Methods) (51, 52). The repli-
cation rate was ~0.61 kb/min in control cells and 0.46 kb/min in
BAF-depleted cells, an ~26% slowdown. Importantly, this DNA replication delay could be efficiently rescued by expression of
BAF-WT, but not by expression of BAF-K6R (Fig. 5 D and E).
Collectively, these results indicate that SUMOylation of BAF is
directly involved in DNA replication.

We investigated the effects of the SUMOylation/de-SUMOy-
lation cycle of BAF at K6 on nuclear integrity. As shown in SI
Appendix, Fig. S4A, GFP-K6R-overexpressing cells exhibited two
distinct patterns. When the expression level of BAF-K6R was low,
BAF-K6R showed similar localization as BAF-WT, without nu-
clear abnormalities; however, when the expression level of BAF-
K6R was high, BAF-K6R mutant showed a dramatic loss of
nuclear accumulation and localized mainly to the cytoplasm. In
contrast, BAF-WT–overexpressing cells exhibited only one pat-
tern (Fig. 2A). When the mutant (GFP-BAF-K6R) but not the
WT (GFP-BAF) was overexpressed, the cells showed high per-
centages of distorted nuclei and multinuclei (Fig. 5 F and G).
These results suggest that it was the loss of nuclear BAF in BAF-
K6R–highly overexpressing cells that led to the nuclear abnor-
mality. When GFP-SUMO2-K6R was expressed, the fusion
protein localized predominantly to the nucleus and efficiently
rescued the nuclear structure, similar to GFP-BAF-WT (Fig. 5 H
and I).

To examine the effects of BAF SUMOylation in other cell
types, we transfected human osteosarcoma U2OS cells and
monkey kidney COS7 cells with GFP-BAF-WT, GFP-BAF-K6R,
or GFP-SUMO2-K6R and performed immunofluorescence as-
says. We found that BAF-K6R expression induced a high per-
centage of distorted nuclei and multinuclei, similar to HeLa
cells. SUMO2-K6R significantly rescued the nuclear structure,
indicating that the effect of K6R on nuclear integrity is not
limited to HeLa cells, and that BAF SUMOylation at K6 has
a general function in other mammalian cell lines (SI Appendix,
Fig. S4 B–E). Thus, we conclude that SUMOylation is essential
for nuclear localization of BAF, and that this localization regulates
nuclear integrity.

Collectively, these results demonstrate that the SUMOylation/
de-SUMOylation cycle of BAF ensures its timely interaction with
lamin A/C and DNA, thus contributing to its nuclear distribution
and function. When this SUMOylation/de-SUMOylation cycle is
interrupted, BAF tends to lose its nuclear accumulation and function.

Discussion

The nuclear periphery forms a selective barrier between the
nucleus and cytoplasm and serves as a structural domain sup-
porting nuclear organization and function. Numerous nuclear
periphery proteins are involved in the regulation of nuclear in-
tegrity, NE dynamics, genome stability, and various cellular bi-
ological processes. BAF, a small inner nuclear membrane-
associated protein, has multiple roles during the cell cycle. In
this work, we found that SUMOylated BAF regulates nuclear
integrity and DNA replication.

Posttranslational modifications of proteins play vital roles in the
functional regulation of target proteins in multiple pathways
(27, 53). Here we found that reversible SUMOylation of BAF at
K6 plays a pivotal role in its functional regulation. Since lamin
A/C is indispensable for BAF nuclear localization regulated by
SUMOylation, the disruption of nuclear integrity caused by
disturbing BAF SUMOylation may be due to the nuclear struc-
tural function of lamin A/C, which needs the assistance of
SUMOylated BAF. SUMOylation studies have shown that
SUMO frequently modifies entire functional groups of proteins
(27). In the present case, SUMOylated BAF and lamin A/C
might act as a complex to maintain nuclear integrity.

The mechanism by which BAF contributes to DNA replication
is unclear, although we have demonstrated that BAF localizes to
DNA replication sites and interacts with PCNA during S phase.
Furthermore, the down-regulation of BAF impedes DNA rep-
ication. Since expression of the non-SUMOylatable mutant
BAF-K6R distorts the nuclear structure, BAF likely influences
histone remodeling, lack of SUMOylation disrupts the in-
teraction of BAF with PCNA and dsDNA during DNA repli-
cation. SUMOylation of BAF might contribute to DNA
replication at multiple levels, including structural support and
direct participation in the DNA replication process. In addi-
tion, SUMOylation of BAF may influence the regulation of gene
expression in the nucleus.

Overall, this study reveals previously unanticipated roles of
SUMOylation in modulating BAF functions in interphase. Based
on our present data, we propose a working model for the

Lin et al.

PNAS Latest Articles | 7 of 10
Fig. 5. A proper K6 SUMOylation and de-SUMOylation cycle of BAF is essential for nuclear integrity maintenance and DNA replication. (A) Down-regulation of BAF delays S phase progression. HEK293 cells were transfected with control shRNA vector (NC) or BAF shRNA vector (BAF-KD) and stained with anti-BrdU antibody and DAPI, and the cell cycle distribution was determined by flow cytometry analysis. (B) Expression levels of BAF in cells with control shRNA vector (NC) or BAF shRNA vector (BAF-KD) in A were analyzed by Western blot analysis. (C) Quantitation of BrdU-positive S phase cells in control (NC) or BAF knockdown (BAF-KD) HEK293 cells. Six independent experiments were conducted. (D) BAF SUMOylation is required for normal DNA replication. HEK293 cells were transfected with control shRNA vector (NC), BAF shRNA vector (BAF-KD), and BAF shRNA vector together with GFP-BAF-WT resistant to BAF shRNA (WT-R) or BAF shRNA together with GFP-BAF-K6R resistant to BAF shRNA (K6R-R). Cells were pulse-labeled as outlined at the top of the panel. DNA fibers were stained with antibodies recognizing IdU (red) and CldU (green). The lengths of the IdU tracts were measured and presented. Approximately 100 fibers were counted per sample. (E) Representative images of DNA fibers in control (NC), BAF knockdown (BAF-KD), BAF-WT rescue (WT-R), or BAF-K6R rescue (K6R-R) cells in D. (F) Overexpression of GFP-BAF-K6R increases abundance of the distorted nuclei and multinucleated cells. (G) Quantitation of multinucleated cells in GFP-BAF-WT and GFP-BAF-K6R-overexpressing HeLa cells is shown. Approximately 200 cells were counted per sample, and three independent experiments were conducted. (H) Conjugation of SUMO2 to the N terminus of BAF-K6R rescued the nuclear accumulation failure and the nuclear structure of BAF-K6R. (I) Quantitation of multinucleated HeLa cells overexpressing GFP-BAF-WT, GFP-BAF-K6R, or GFP-SUMO2-K6R. Approximately 200 cells were counted per sample and three independent experiments were conducted. The statistical data in G and I are presented as mean ± SD, ***P < 0.001; N.S., no significant difference (Student’s t test). DNA was stained with DAPI. (Scale bars: 10 μm.) (J) A working model. BAF is a small protein that shuttles between the cytoplasm and the nucleus through the nuclear pore complexes in interphase cells. BAF is SUMOylated mainly at K6, and this modification promotes its nuclear localization by enhancing its binding to the SIM motifs of lamin A/C to physically tether chromatin to the nuclear lamina and/or other nuclear structures to maintain nuclear integrity. Both the SUMOylation level and the nuclear accumulation of BAF peak in S phase to promote localization to the DNA replication sites and interaction with PCNA and dsDNA for the regulation of DNA replication and S phase progression. De-SUMOylation of BAF is catalyzed by SENP1 and SENP2, which facilitates its nuclear export through the nuclear pore complexes.
functions of SUMOylation and de-SUMOylation of BAF at K6 (Fig. 5). BAF is a small protein that shuttles between the cytoplasm and nucleus through nuclear pore complexes. SUMOylation can regulate BAF subcellular localization and function. In interphase, BAF is SUMOylated mainly at K6. This modification promotes the nuclear localization and function of BAF in the maintenance of nuclear integrity. SUMOylation of BAF also regulates its binding to DNA and DNA replication regulators, which is important for DNA replication. Disrupting SUMOylation of BAF not only disturbs nuclear integrity, but also induces DNA replication failure. SENP1 and SENP2 catalyze the de-SUMOylation of BAF and may induce its nuclear export.

In conclusion, our findings shed light on the crucial roles of BAF in the maintenance of nuclear integrity, nuclear dynamics, and the cell cycle. These findings may have important implications for understanding how SUMOylation and de-SUMOylation regulate functions of the nuclear periphery proteins.

Materials and Methods

Human BAF was cloned from a HeLa cell cDNA library, by RT-PCR and inserted into related vectors. To obtain recombinant Flag-tagged BAF-WT and BAF-K6 proteins, BAF-WT and BAF-K6 were cloned into the pCAG vector.

SUMO1 was cloned from a cDNA library by RT-PCR and inserted into PEF1-related vectors. To obtain recombinant Flag-tagged BAF-WT and BAF-K6 proteins, BAF-WT and BAF-K6 were cloned into the pCAG vector.

1. H. J. Worman, G. Bonne, “Laminopathies”: A wide spectrum of human diseases. Exp. Cell Res. 313, 2121–2133 (2007).
2. B. C. Capell, F. S. Collins, Human laminopathies: Nuclei gone genetically awry. Nat. Rev. Genet. 7, 940–952 (2006).
3. S. Biene et al., Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 8, 323–327 (1994).
4. G. Bonne et al., Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21, 285–288 (1999).
5. V. Butin-Israeli, S. A. Adam, A. E. Goldman, R. Goldman, Nuclear lamin functions and disease. Trends Genet. 28, 464–471 (2012).
6. K. H. Schreiber, B. K. Kennedy, When lamins go bad: Nuclear structure and disease. Cell 152, 1365–1375 (2013).
7. X. S. Puente et al., Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome. Am. J. Hum. Genet. 88, 650–666 (2011).
8. A. Jamin, M. S. Wiebe, Barrier to autointegration factor (BAFI): Intervened roles in nuclear structure, genome integrity, innate immunity, stress responses and progenia. Curr. Opin. Cell Biol. 34, 61–68 (2015).
9. K. Furukawa et al., Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J. Cell Sci. 116, 3811–3823 (2003).
10. M. Segura-Totten, A. K. Kowalski, R. Craigie, K. L. Wilson, Barrier-to-autointegration factor: Major roles in chromatin decondensation and nuclear assembly. J. Cell Biol. 158, 475–485 (2002).
11. M. Cai et al., Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Nat. Struct. Biol. 9, 903–909 (1998).
12. T. C. Umland, S. Q. Wei, R. Craigie, D. R. Davies, Structural basis of DNA bridging by barrier-to-autointegration factor. Biochemistry 39, 9130–9138 (2000).
13. C. M. Bradley, D. R. Ronning, R. Ghirlando, R. Craigie, F. Dyda, Structural basis for DNA bridging by barrier-to-autointegration factor. Nat. Struct. Mol. Biol. 12, 935–938 (2005).
14. A. Margalit, A. Brachner, J. Gotzmann, R. Foisner, Y. Gruenbaum, Barrier-to-autointegration factor—A BAFfing little protein. Trends Cell Biol. 17, 202–208 (2007).
15. T. P. Molitor, P. Traktman, Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol. Biol. Cell 25, 891–903 (2014).
16. T. Haraguchi et al., Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).
17. M. Samver et al., DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956–972.e13 (2017).
18. A. Flotho, F. Melchior, Sumoylation: A regulatory protein modification in health and disease. Annu. Rev. Biochem. 82, 357–385 (2013).
19. R. Geiss-Friedlander, F. Melchior, Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).
20. J. J. Seeler, A. Dejean, SUMO and the robustness of cancer. Nat. Rev. Cancer 17, 184–197 (2017).
21. L. A. Thompson, L. S. Serrano, SOLO is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep. 15, 878–885 (2014).
22. K. Kunz, T. Piller, S. Müller, SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci. 131, jcs21190 (2018).
23. J. Wan, D. Subramoniam, X. D. Zhang, SUMOylation in control of accurate chromosome segregation during mitosis. Curr. Protein Pept. Sci. 13, 467–481 (2012).
24. F. Z. Watts, The role of SUMO in chromosome segregation. Chromosoma 116, 15–20 (2007).
48. C. Yun et al., Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J. Cell Biol. 183, 589–595 (2008).

49. C. Maison et al., The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. Nat. Struct. Mol. Biol. 19, 458–460 (2012).

50. L. N. Shen, M. C. Geoffroy, E. G. Jaffray, R. T. Hay, Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem. J. 421, 223–230 (2009).

51. Y. Daigaku, A. A. Davies, H. D. Ulrich, Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465, 951–955 (2010).

52. D. A. Jackson, A. Pombo, Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 140, 1285–1295 (1998).

53. Z. Chen, W. Lu, Roles of ubiquitination and SUMOylation on prostate cancer: Mechanisms and clinical implications. Int. J. Mol. Sci. 16, 4560–4580 (2015).