NORM ESTIMATES OF THE PARTIAL DERIVATIVES FOR HARMONIC AND HARMONIC ELLIPTIC MAPPINGS

SHAOLIN CHEN, SAMINATHAN PONNUSAMY, AND XIANTAO WANG

ABSTRACT. Let \(f = P[F] \) denote the Poisson integral of \(F \) in the unit disk \(\mathbb{D} \) with \(F \) being absolutely continuous in the unit circle \(\mathbb{T} \) and \(\hat{F} \in L_p(0,2\pi) \), where \(\hat{F}(e^{it}) = \frac{1}{2\pi} \int_0^{2\pi} F(e^{it}) \). Recently, the author in [12] proved that (1) if \(f \) is a harmonic mapping and \(1 \leq p < 2 \), then \(f_z \) and \(\overline{\mathcal{F}} \in B^p(\mathbb{D}) \), the classical Bergman spaces of \(\mathbb{D} \) [12, Theorem 1.2]; (2) if \(f \) is a harmonic quasiregular mapping and \(1 \leq p < \infty \), then \(f_z, \overline{\mathcal{F}} \in H^p(\mathbb{D}) \), the classical Hardy spaces of \(\mathbb{D} \) [12, Theorem 1.3]. These are the main results in [12]. The purpose of this paper is to generalize these two results. First, we prove that, under the same assumptions, [12, Theorem 1.2] is true when \(1 \leq p < \infty \). Also, we show that [12, Theorem 1.2] is not true when \(p = \infty \). Second, we demonstrate that [12, Theorem 1.3] still holds true when the assumption \(f \) being a harmonic quasiregular mapping is replaced by the weaker one \(f \) being a harmonic elliptic mapping.

1. Preliminaries and the statement of main results

For \(a \in \mathbb{C} \) and \(r > 0 \), let \(\mathbb{D}(a,r) = \{ z \colon |z - a| < r \} \). In particular, we use \(\mathbb{D}_r \) to denote the disk \(\mathbb{D}(0,r) \) and \(\mathbb{D} \) to denote the unit disk \(\mathbb{D}_1 \). Moreover, let \(\mathbb{T} := \partial \mathbb{D} \) be the unit circle. For \(z = x + iy \in \mathbb{C} \), the two complex differential operators are defined by

\[
\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{and} \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)
\]

For \(\alpha \in [0,2\pi] \), the directional derivative of a harmonic mapping (i.e., a complex-valued harmonic function) \(f \) at \(z \in \mathbb{D} \) is defined by

\[
\partial_\alpha f(z) = \lim_{\rho \to 0^+} \frac{f(z + \rho e^{i\alpha}) - f(z)}{\rho} = f_z(z) e^{i\alpha} + f_{\bar{z}}(z) e^{-i\alpha},
\]

where \(z + \rho e^{i\alpha} \in \mathbb{D} \), \(f_z := \partial f/\partial z \) and \(f_{\bar{z}} := \partial f/\partial \bar{z} \). Then

\[
\|D_f(z)\| := \max \{ |\partial_\alpha f(z)| : \alpha \in [0,2\pi] \} = |f_z(z)| + |f_{\bar{z}}(z)|
\]

and

\[
l(D_f(z)) := \min \{ |\partial_\alpha f(z)| : \alpha \in [0,2\pi] \} = ||f_z(z)|| - |f_{\bar{z}}(z)|
\]

For a sense-preserving harmonic mapping \(f \) defined in \(\mathbb{D} \), the Jacobian of \(f \) is given by

\[
J_f = \|D_f\| l(D_f) = |f_z|^2 - |f_{\bar{z}}|^2,
\]

and the second complex dilatation of \(f \) is given by \(\omega = \frac{f_{\bar{z}}}{f_z} \). It is well-known that every harmonic mapping \(f \) defined in a simply connected domain \(\Omega \) admits a decomposition
where \(f = h + \overline{g} \), where \(h \) and \(g \) are analytic. Recall that \(f \) is sense-preserving in \(\Omega \) if \(J_f > 0 \) in \(\Omega \). Thus \(f \) is locally univalent and sense-preserving in \(\Omega \) if and only if \(J_f > 0 \) in \(\Omega \), which means that \(h' \neq 0 \) in \(\Omega \) and the analytic function \(\omega = g'/h' \) has the property that \(|\omega(z)| < 1 \) on \(\Omega \) (cf. [4, 10]).

Hardy type spaces. For \(p \in (0, \infty] \), the generalized Hardy space \(\mathcal{H}_0^p(\mathbb{D}) \) consists of all measurable functions from \(\mathbb{D} \) to \(\mathbb{C} \) such that \(M_p(r, f) \) exists for all \(r \in (0, 1) \), and \(\|f\|_p < \infty \), where

\[
M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{\frac{1}{p}}
\]

and

\[
\|f\|_p = \begin{cases}
\sup\{M_p(r, f) : 0 < r < 1\} & \text{if } p \in (0, \infty), \\
\sup\{|f(z)| : z \in \mathbb{D}\} & \text{if } p = \infty.
\end{cases}
\]

The classical Hardy space \(\mathcal{H}^p(\mathbb{D}) \), that is, all the elements are analytic, is a subspace of \(\mathcal{H}_0^p(\mathbb{D}) \) (cf. [3, 5]).

Bergman type spaces. For \(p \in (0, \infty] \), the generalized Bergman space \(\mathcal{B}_0^p(\mathbb{D}) \) consists of all measurable functions \(f : \mathbb{D} \to \mathbb{C} \) such that

\[
\|f\|_{\mathcal{B}_0^p} = \begin{cases}
\left(\int_{\mathbb{D}} |f(z)|^p \, d\sigma(z) \right)^{\frac{1}{p}} & \text{if } p \in (0, \infty), \\
\text{ess sup}\{|f(z)| : z \in \mathbb{D}\} & \text{if } p = \infty,
\end{cases}
\]

where \(d\sigma(z) = \frac{1}{\pi} dx dy \) denotes the normalized Lebesgue area measure on \(\mathbb{D} \). The classical Bergman space \(\mathcal{B}^p(\mathbb{D}) \), that is, all the elements are analytic, is a subspace of \(\mathcal{B}_0^p(\mathbb{D}) \) (cf. [7]). Obviously, \(\mathcal{H}^p(\mathbb{D}) \subset \mathcal{B}^p(\mathbb{D}) \) for each \(p \in (0, \infty] \).

Poisson integrals. Denote by \(L^p(\mathbb{T}) \) \((p \in [1, \infty])\) the space of all measurable functions \(F \) of \(\mathbb{T} \) into \(\mathbb{C} \) with

\[
\|F\|_{L^p} = \begin{cases}
\left(\frac{1}{2\pi} \int_0^{2\pi} |F(e^{i\theta})|^p \, d\theta \right)^{\frac{1}{p}} & \text{if } p \in [1, \infty), \\
\text{ess sup}\{|F(e^{i\theta})| : \theta \in [0, 2\pi]\} & \text{if } p = \infty.
\end{cases}
\]

For \(\theta \in [0, 2\pi] \) and \(z \in \mathbb{D} \), let

\[
P(z, e^{i\theta}) = \frac{1}{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2}
\]

be the Poisson kernel. For a mapping \(F \in L^1(\mathbb{T}) \), the Poisson integral of \(F \) is defined by

\[
f(z) = P[F](z) = \int_0^{2\pi} P(z, e^{i\theta}) F(e^{i\theta}) \, d\theta.
\]

It is well-known that if \(F \) is absolutely continuous, then it is of bounded variation. This implies that for almost all \(e^{i\theta} \in \mathbb{T} \), the derivative \(\dot{F}(e^{i\theta}) \) exists, where

\[
\dot{F}(e^{i\theta}) := \frac{dF(e^{i\theta})}{d\theta}.
\]

In [12], the author posed the following problem.
Problem 1.1. What conditions on the boundary function F ensure that the partial derivatives of its harmonic extension $f = P[F]$, i.e., f_z and \overline{f}_z, are in the space $B^p(\mathbb{D})$ (or $H^p(\mathbb{D})$), where $p \geq 1$?

In [12], the author discussed Problem 1.1 under the condition that F is absolutely continuous. First, he proved the following, which is one of the two main results in [12]. On the related discussion, we refer to the recent paper [9].

Theorem A. ([12, Theorem 1.2]) Suppose that $p \in [1, 2)$ and $f = P[F]$ is a harmonic mapping in \mathbb{D} with $\dot{F} \in L^p(\mathbb{T})$, where F is an absolutely continuous function. Then both f_z and \overline{f}_z are in $B^p(\mathbb{D})$.

Furthermore, by requiring the mappings $P[F]$ to be harmonic quasiregular, the interval of p is widened from $[1, 2)$ into $[1, \infty)$, as shown in the following result, which is the other main result in [12].

Theorem B. ([12, Theorem 1.3]) Suppose that $p \in [1, \infty]$ and $f = P[F]$ is a harmonic K-quasiregular mapping in \mathbb{D} with $\dot{F} \in L^p(\mathbb{T})$, where F is an absolutely continuous function and $K \geq 1$. Then both f_z and \overline{f}_z are in $H^p(\mathbb{D})$.

The purpose of this paper is to discuss these two results further. Regarding Theorem A, our result is as follows, which shows that Theorem A is true for $p \in [1, \infty)$, and also indicates that Theorem A is not true when $p = \infty$.

Theorem 1.1. Suppose that $f = P[F]$ is a harmonic mapping in \mathbb{D} and $\dot{F} \in L^p(\mathbb{T})$, where F is an absolutely continuous function.

1. If $p \in [1, \infty)$, then both f_z and \overline{f}_z are in $B^p(\mathbb{D})$.

2. If $p = \infty$, then there exists a harmonic mapping $f = P[F]$, where F is an absolutely continuous function with $\dot{F} \in L^\infty(\mathbb{T})$, such that neither f_z nor \overline{f}_z is in $B^\infty(\mathbb{D})$.

About Theorem B, we show that this result also holds true for harmonic elliptic mappings, which are more general than harmonic quasiregular mappings. In order to state our result, we need to introduce the definition of elliptic mappings.

A sense-preserving continuously differentiable mapping $f: \mathbb{D} \to \mathbb{C}$ is said to be a (K, K')-elliptic mapping if f is absolutely continuous on lines in \mathbb{D}, and there are constants $K \geq 1$ and $K' \geq 0$ such that

$$\|D_f(z)\|^2 \leq K J_f(z) + K'$$

in \mathbb{D}. In particular, if $K' \equiv 0$, then a (K, K')-elliptic mapping is said to be K-quasiregular. It is well known that every quasiregular mapping is an elliptic mapping. But the inverse of this statement is not true. This can be seen from the example: Let $f(z) = z + z^2/2$ in \mathbb{D} which is indeed a univalent harmonic mapping of \mathbb{D}. Then elementary computations show that (a) $\sup_{z \in \mathbb{D}} |\omega(z)| = 1$, which implies that f is not K-quasiregular for any $K \geq 1$, and (b) f is a $(1, 4)$-elliptic mapping. We refer to [1, 2, 6, 8, 11] for more details of elliptic mappings.

Now, we are ready to state our next result.

Theorem 1.2. Suppose that $p \in [1, \infty]$ and $f = P[F]$ is a (K, K')-elliptic mapping in \mathbb{D} with $\dot{F} \in L^p(\mathbb{T})$, where F is an absolutely continuous function, $K \geq 1$ and $K' \geq 0$. Then both f_z and \overline{f}_z are in $H^p(\mathbb{D})$.
The proofs of Theorems 1.1 and 1.2 will be presented in Section 2.

2. PROOFS OF THE MAIN RESULTS

We start this section by recalling the following two lemmas from [12].

Lemma C. ([12, Theorem 1.1]) Suppose \(p \in [1, \infty) \) and \(f = P[F] \) is a harmonic mapping in \(\mathbb{D} \) with \(\hat{F} \in L^p(\mathbb{T}) \), where \(F \) is an absolutely continuous function. Then for \(z = re^{it} \in \mathbb{D}, \)
\[
\|f_r\|_{L^p} \leq (2C(p))^\frac{1}{p} \|\hat{F}\|_{L^p},
\]
and thus, \(f_r \in \mathcal{B}^p_0(\mathbb{D}) \), where
\[
C(p) = \int_0^1 \left(\frac{4 \tanh^{-1} r}{\pi r} \right)^p r dr \leq \frac{4^{p-1}}{\pi^p} (2^p + (2 - 2^p)\Gamma(1 + p))
\]
and \(\Gamma \) denotes the usual Gamma function.

Lemma D. ([12, Lemma 2.3]) Assume the hypotheses of Lemma C. Then for \(z = re^{it} \in \mathbb{D}, \)
\[
\|f_t\|_p \leq \|\hat{F}\|_{L^p},
\]
and thus, \(f_t \in \mathcal{H}^p_0(\mathbb{D}). \)

2.1. Proof of Theorem 1.1. For the proof of the first statement of the theorem, let \(z = re^{it} \in \mathbb{D} \). Then we have
\[
(2.1) \quad f_t(z) := \frac{\partial f(z)}{\partial t} = i(zf_z(z) - zf_r(z)) \text{ and } f_r(z) := \frac{\partial f(z)}{\partial r} = f_z(z)e^{it} + f_r(z)e^{-it},
\]
which implies that
\[
f_z(z) = \frac{e^{-it}}{2} \left(f_r(z) - \frac{i}{r} f_t(z) \right) \text{ and } f_\overline{z}(z) = \frac{e^{-it}}{2} \left(f_r(z) - \frac{i}{r} f_t(z) \right).
\]
It follows that for \(p \in [1, \infty), \)
\[
|f_z(z)|^p \leq \frac{1}{2^p} \left(|f_r(z)| + \left| \frac{f_t(z)}{r} \right| \right)^p \leq \frac{1}{2} \left(|f_r(z)|^p + \left| \frac{f_t(z)}{r} \right|^p \right)
\]
and similarly,
\[
|f_\overline{z}(z)|^p \leq \frac{1}{2} \left(|f_r(z)|^p + \left| \frac{f_t(z)}{r} \right|^p \right).
\]

Obviously, to prove that \(f_z \) and \(f_\overline{z} \) are in \(\mathcal{B}^p(\mathbb{D}) \), it suffices to show the following:
\[
\int_{\mathbb{D}} |f_r(z)|^p d\sigma(z) < \infty \quad \text{and} \quad \int_{\mathbb{D}} \left| \frac{f_t(z)}{r} \right|^p d\sigma(z) < \infty.
\]

We only need to check the boundedness of the integral \(\int_{\mathbb{D}} \left| \frac{f_t(z)}{r} \right|^p d\sigma(z) \) because the boundedness of the integral \(\int_{\mathbb{D}} |f_r(z)|^p d\sigma(z) \) easily follows from Lemma C.

By Lemma D, we have
\[
\frac{1}{2\pi} \int_0^{2\pi} |f_t(re^{it})|^p dt \leq \|\hat{F}\|_{L^p}^p,
\]
which yields that
\[
(2.2) \quad \int_{D \backslash D_1} \left| \frac{f_t(z)}{r} \right|^p \, d\sigma(z) \leq \frac{2^{p-1}}{\pi} \int_{1/2}^1 \left(\int_0^{2\pi} \left| f_t(re^{it})\right|^p \, dt \right) \, dr \leq 2^{p-1}\|\hat{F}\|_{L^p}^p.
\]

To demonstrate the boundedness of the integral \(\int_{D_1} \left| \frac{f_t(z)}{r} \right|^p \, d\sigma(z) \), assume that \(f = h + g \) where both \(h \) and \(g \) being analytic in \(\mathbb{D} \). Then \(\|D_f\| = |h'| + |g'| \). This implies that \(\|D_f\| \) is continuous in \(\overline{D_1} \), and thus, \(\|D_f\| \) is bounded in \(\overline{D_1} \). Hence, by (2.1), we have
\[
(2.3) \quad \int_{D_1} \left| \frac{f_t(z)}{r} \right|^p \, d\sigma(z) = \int_0^{\pi/2} \int_0^{2\pi} r|e^{it}f_t(re^{it}) - e^{-it}f_t(re^{it})|^p \, dt \, dr \\
\leq \int_0^{\pi/2} \int_0^{2\pi} r\|D_f(re^{it})\|^p \, dt \, dr \\
= \int_{\overline{D}_1} \|D_f(z)\|^p \, d\sigma(z) < \infty.
\]

Combining (2.2) and (2.3) gives the final estimate
\[
\int_D \left| \frac{f_t(z)}{r} \right|^p \, dA(z) = \int_{D_1} \left| \frac{f_t(z)}{r} \right|^p \, d\sigma(z) + \int_{D \backslash D_1} \left| \frac{f_t(z)}{r} \right|^p \, d\sigma(z) < \infty,
\]
which is what we need, and so, the statement (1) of the theorem is true.

To prove the second statement of the theorem, let \(F(e^{i\theta}) = |\sin \theta| \), where \(\theta \in [0, 2\pi] \). Then \(F \) is absolutely continuous and \(\hat{F} \in L^\infty(\mathbb{T}) \). Also, elementary computations guarantee that for \(z = re^{it} \in \mathbb{D} \),
\[
f(z) = P[F](z) = \int_0^{2\pi} P(z, e^{i\theta}) |\sin \theta| \, d\theta \\
= \frac{1}{2\pi r(r^2-1)} \left[(1 - r^2) \cos t \log \frac{1 + r^2 - 2r \cos t}{1 + r^2 + 2r \cos t} \\
+ 2(1 + r^2) \sin t \left(\arctan \left(\frac{1 + r}{r - 1} \cot \frac{t}{2} \right) + \arctan \left(\frac{1 + r}{r - 1} \tan \frac{t}{2} \right) \right) \right].
\]

Then
\[
|f_z(z)| = \frac{1}{2} \left| f_r(z) - i \frac{f_t(z)}{r} \right| = \frac{1}{2} \sqrt{|f_r(z)|^2 + \frac{|f_t(z)|^2}{r^2}},
\]
which implies that
\[
|f_z(r)| = \frac{1}{2} \sqrt{|f_r(r)|^2 + \frac{|f_t(r)|^2}{r^2}}.
\]
Since
\[
f_r(r) = \frac{1}{\pi r^2} \log \left(\frac{1 - r}{1 + r} \right) + \frac{2}{\pi} \frac{1}{r(1 - r^2)},
\]
we see that
\[
(2.5) \quad \lim_{r \to 1^-} f_r(r) = \infty.
\]
Combining (2.4) and (2.5) gives
\[\lim_{r \to 1^-} |f_z(r)| = \infty, \]
which implies that \(f_z \) is not in \(\mathcal{B}^\infty(\mathbb{D}) \).

By the similar reasoning, we know that \(\overline{f_z} \) is not in \(\mathcal{B}^\infty(\mathbb{D}) \) either, and hence, the theorem is proved. \(\square \)

2.2. Proof of Theorem 1.2. Assume that \(f = P[F] \) is a \((K, K') \)-elliptic mapping in \(\mathbb{D} \), which means that for \(z \in \mathbb{D} \),

\[\|D_f(z)\|^2 \leq K\|D_f(z)\|l(D_f(z)) + K'. \] \hfill (2.6)

We divide the proof of this theorem into two cases.

Case 2.1. Suppose that \(p \in [1, \infty) \).

It follows from (2.6) that
\[
\|D_f(z)\|^p \leq \left(\frac{Kl(D_f(z)) + \sqrt{(Kl(D_f(z)))^2 + 4K'}}{2} \right)^p \\
\leq \left(Kl(D_f(z)) + \sqrt{K'} \right)^p \leq 2^{p-1} \left(K^p l_p(D_f(z)) + K'^p \right),
\]
and thus, we have
\[l_p^p(D_f(z)) \geq \frac{1}{2^{p-1} K^p} \|D_f(z)\|^p - \frac{K'^p}{K^p}. \] \hfill (2.7)

By (2.1), (2.7) and Lemma D, we know that for \(z = re^{it} \in \mathbb{D} \),
\[
2\pi \|\hat{F}\|^p_{L^p} \geq \int_0^{2\pi} |f_t(re^{it})|^p dt \geq r^p \int_0^{2\pi} l_p^p(D_f(re^{it})) dt \\
\geq \frac{r^p}{2^{p-1} K^p} \int_0^{2\pi} \|D_f(re^{it})\|^p dt - \frac{2\pi K'^p}{K^p},
\]
which implies that
\[
\sup_{r \in (0, 1)} \left(\frac{1}{2\pi} \int_0^{2\pi} \|D_f(re^{it})\|^p dt \right)^{\frac{1}{p}} \leq 2^{\frac{p-1}{p}} \left(K^p \|\hat{F}\|_{L^p}^p + K'^p \right)^{\frac{1}{p}}.
\]
Hence \(f_z, \overline{f_z} \in \mathcal{H}^p(\mathbb{D}) \).

Case 2.2. Suppose that \(p = \infty \).

By (2.6), we have
\[
\|D_f(z)\| \leq \frac{Kl(D_f(z)) + \sqrt{(Kl(D_f(z)))^2 + 4K'}}{2} \leq Kl(D_f(z)) + \sqrt{K'},
\]
which, together with (2.1) and Lemma D, gives
\[
\|\hat{F}\|_{\infty} \geq \|f_t\|_{\infty} \geq |f_t(re^{it})| \geq r l(D_f(re^{it})) \geq \frac{r}{K} \left(\|D_f(re^{it})\| - \sqrt{K'} \right).
\]
Consequently,

\[\sup_{z \in \mathbb{D}} \left(|z| \| Df(z) \| \right) \leq \sqrt{K'} + K \| \hat{F} \|_{\infty}, \]

from which we conclude that \(f, \overline{f} \in H^\infty(\mathbb{D}) \), and hence the theorem is proved. \(\square \)

References

1. Sh. Chen and D. Kalaj, On asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations, *J. Geom. Anal.*, (2020). https://link.springer.com/article/10.1007/s12220-020-00460-9.
2. Sh. Chen and S. Ponnusamy, On certain quasiconformal and elliptic mappings, *J. Math. Anal. Appl.*, 486 (2020), 123920.
3. Sh. Chen, S. Ponnusamy and A. Rasila, On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, *Math. Z.*, 279 (2015), 163–183.
4. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, *Ann. Acad. Sci. Fenn. Ser. A I Math.*, 9 (1984), 3–25.
5. P. Duren, *Theory of \(H^p \) spaces*, 2nd ed., Dover, Mineola, N. Y., 2000.
6. R. Finn and J. Serrin, On the Hölder continuity of quasiconformal and elliptic mappings, *Trans. Amer. Math. Soc.*, 89 (1958), 1–15.
7. H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman spaces*, Springer, New York, 2000.
8. D. Kalaj and M. Mateljević, \((K, K')\)-quasiconformal harmonic mappings, *Potential Anal.*, 36 (2012), 117–135.
9. D. Kalaj, On Riesz type inequalities for harmonic mappings on the unit disk, *Trans. Am. Math. Soc.*, 372 (2019), 4031–4051.
10. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.*, 42 (1936), 689–692.
11. L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, *Commun. Pure. Appl. Math.*, 6 (1953), 103–156.
12. J. F. Zhu, Norm estimates of the partial derivatives for harmonic mappings and harmonic quasiregular mappings, *J. Geom. Anal.*, (2020). https://doi.org/10.1007/s12220-020-00488-x.

Sh. Chen, College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421008, People’s Republic of China.

E-mail address: mathechen@126.com

S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India.

E-mail address: samy@iitm.ac.in

X. Wang, Key Laboratory of High Performance Computing and Stochastic Information Processing, College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China.

E-mail address: xtwang@hunnu.edu.cn