Larvicidal activity, molluscicide and toxicity of the essential oil of *Citrus limon* peels against, respectively, *Aedes aegypti*, *Biomphalaria glabrata* and *Artemia salina*

Paulo Roberto Barros Gomes¹+, Marlucy Bezerra Oliveira², Dionney Andrade de Sousa²+, Jeremia's Caetano da Silva¹, Romer Pessoã Fernandes³, Hilton Costa Louzeiro⁴, Rayone Wesly Santos de Oliveira⁴, Maria do Livramento de Paula⁵, Victor Elias Mouchrek Filho⁴, Maria Alves Fontenele⁵

1 Federal Institute of Pará – Câmpus Abaetetuba, Teaching, Research and Extension Coordination, 3322 Rio de Janeiro Ave., Abaetetuba, Pará, Brazil.
2 Federal University of Maranhão, Department of Chemical Technology, 1966 dos Portugueses Ave., 1966, São Luís, Maranhão, Brazil
3 Federal University of Maranhão, Natural Sciences Degree Coordination, Pinheiro, Maranhão, Brazil
4 Federal University of Maranhão, Department of Pharmacy, 1966 dos Portugueses Ave., São Luís, Maranhão, Brazil
5 Federal University of Maranhão, Food Engineering Coordination, Imperatriz, Maranhão, Brazil

Corresponding author: Paulo Roberto Barros Gomes, Phone: +55 98 98101 6397 email address: prbgomes@yahoo.com.br

ARTICLE INFO

Article history:
Received: February 24, 2018
Accepted: July 24, 2019
Published: October 1, 2019

Keywords:
1. limonene
2. *Aedes aegypti*
3. volatile compounds
4. hydrodistillation
5. *Biomphalaria glabrata*

ABSTRACT: In this present work, we tested the larvicidal activity, molluscicide and toxicity of the oil extracted from *Citrus limon* peels, respectively against third stage larvae of *Aedes aegypti*, snail *Biomphalaria glabrata*, and *Artemia salina*. For this, we extract the essential oil by hydrodistillation. Then, we identified and quantified the components by gas chromatography coupled to mass spectrometry (GC-MS). We tested the larvicidal and molluscidal activity, respectively, using the method adopted by the Brazilian Ministry of Health and the World Health Organization. We calculated the lethal concentration (LC₅₀) from the Probit method for the three biological activities with 95 %. The results of the chromatographic analysis showed that the oil has 58.81% of Limonene (major constituent) and 0.11% α-Mulene (minority component). The essential oil presented lethal concentration (LC₅₀) for larvicidal activity, molluscicide and toxicity, respectively at 15.48, 13.05 and 743.35 mg·L⁻¹. Therefore, the essential oil is active against larvae of *A. aegypti* and snail *B. glabrata* and non-toxic against larvae of *A. salina*.

1. Introduction

The essential oils extracted from citrus plants arouse in man the interest in identifying his constituents and the possible applications to society. Among the identified compounds, the main ones are limonene, β-myrene, α-pinene, p-cymene, β-pinene, terpinolene [3], and its applications are in medicine, food, cosmetics, detergents, aromatherapy, inhibition of pathogens and control of insects.

Among the major chemical constituents found in citrus, we highlight limonene. In the nomenclature adopted by IUPAC (International Union of Pure and Applied Chemistry), it has the name of 4-isoprenyl-1-methyl-cyclohexene and constitutes more than 300 plant species. In addition, it has two enantiomers which are S - (-) - limonene R - (+) - limonene, in which R - (+) -
limonene is the major component of oils from lemon peel (Citrus limon) and orange peel and of the essential oil of Carum carvi, being responsible for the prevention of dehydration and inhibition of microbial growth.

In the literature, it was observed that the limonene was found to have larvicidal and molluscicidal activity against Dysmicoccus brevipes and Lymnaea achatina. Based on this information, we asked: did the essential oil extracted from the bark of C. limon have larvicidal activity against the third stage larvae of Aedes aegypti and molluscicide against the snail Biomphalaria glabrata, both disease vectors, respectively, dengue and schistosomiasis? Therefore, the fight against the vectors of dengue and schistosomiasis occur through, respectively, larvicides and synthetic molluscicides. Among the larvicides and molluscicides recommended by the World Health Organization (WHO), are, respectively, the temephos and nielosamide. However, the use of these larvicides and molluscicides provokes resistance of larvae and snails, low selectivity, environmental contamination and high cost. Thus, it is recommended studies of extracts of plants and larvicides.

There are two essential points in the manual of the World Health Organization (WHO) on the efficacy of a plant’s molluscicidal activity, although the same does not exist for larvicidal activity. One is about the activity of the extracts. These are considered to be active when the 24 h shellfish mortality is equal to or greater than 90% at the concentration of 20 ppm for extracts and 100 ppm for the raw vegetable. Another is on toxicity and field studies. Even if the natural molluscicides are biodegradable, within the values required by the WHO, they may present risks.

In this context, in our toxicity study, we chose to carry it out with Artemia salina for two reasons. One, low cost, easy manipulation and a good indication of non-target organisms. Another study, due to the good results of plants with the molluscicidal activity that used A. salina in the toxicities test. Hence, in view of the above, we chemically characterized the essential oil extracted from the bark of C. limon and tested the larvicidal activity against larvae in the third stage of A. aegypti, molluscicidal activity against the snail B. glabrata and toxic activity against larvae A. salina.

2. Materials and methods

2.1 Obtaining essential oil

We collected the fruits, branches, and leaves of C. limon in the district of Sá Viana (January and June 2010), in the peripheral region of São Luís/MA, directly from the lemon tree, which is free of agricultural pesticides. In the Seabra Attic Herbarium (SLS) of the Federal University of Maranhão (UFMA), we identified this species from the observation and comparison with the part already identified in the herbarium under registration number 100379 (family Rutaceae, genus Citrus). After this step, we removed the fruit peels with a stylet.

To extract the essential oil, we used a glass Clevenger extractor coupled to a 1000 mL round bottom flask and to an electric blanket as a heat source. To each essential oil extraction routine, we weigh and grind in an electric sample mill 30 g. After this step, we mixed the sample with distilled water in the proportion 1:10 and placed in a round bottom flask, coupled to the extractor system. Then we switched on the electric blanket and set the temperature to 100 °C. After 5 h the distillation was stopped, and the essential oil was collected. The oil is dried by means of percolation in anhydrous sodium sulfate. We performed these operations in triplicates and stored the samples in ampoules of amber glass under refrigeration (temperature of 15 °C) to avoid possible losses of volatile constituents. So, we determined the density of the essential oil extracted from the use of a 1.0 mL pycnometer, previously dried, tared and calibrated.

2.2 Chemical analysis

For the chemical analysis, we used the gas chromatographic technique coupled to the electron impact mass spectrometer and ion trap analyzer (GC/MS). The equipment used was of the Varian 2100 brand, using helium as drag gas with flow in the column of 1mL min⁻¹; injector temperature 270 °C, split 1:50; (15 m × 0.25 mm) with stationary phase VF-1ms (100% methylsiloxane 0.25 μm) and oven temperature programming of 60 to 200 °C with a heating rate of 8 °C min⁻¹ and 200-290 °C with heating rate of 15 °C min⁻¹. In the mass spectrometer the manifold, ion trap, and transfer line temperatures were 50, 190 and 200 °C, respectively. 1.0 μL (automatic injector CP-8410) aliquots of the samples diluted in the proportion of
20 μL in 1.5 mL of hexane were injected. We have identified the components of the oil from the comparison of these with the data obtained from authentic substances in reference libraries.

2.3 Collection and cultivation of Aedes aegypti larvae

In this way, we collected eggs at the Federal University of Maranhão, Bacanga Campus in São Luís Maranhão, through traps called ovitraps. These consist of black polyethylene pails with a capacity of 500 mL each, where we put water and insert two eucatex vanes into the mosquito. We inspect the traps weekly for replacement of the reeds and egg collection. After this step, we placed A. aegypti eggs to hatch at a temperature of 31 °C in a 200 mL polyethylene vessel with mineral water. We fed the larvae with cat food until they reached the third stage, when the experiments were done.

2.4 Test of larvicidal activity

We prepared a 1,000 mg L⁻¹ stock solution from the 50 mg weighing of the oil into a solution of 49.75 mL of distilled water and 0.25 mL of Tween-80. From this, we prepared five solutions at the concentrations 5, 10, 30, 50 and 70 mg L⁻¹. For each concentration, we used ten larvae and 30 mL of each solution in the cited concentrations. We performed all the tests in triplicate and as negative control we used a solution formed by 49.75 mL of distilled water and 0.25 mg weighing of the oil into a solution of 500 mL of a solution obtained from the dilution of 1,000 mg L⁻¹ stock solution from the breeder and taken to the laboratory for future individual analysis in order to verify which was contaminated and those that did not show signs of infection by the trematode in the period of 30 days were selected for the molluscicidal activity test. The period of analysis of the snails was every 7 days, for one month (30 days) to confirm the absence of larval stages.

So, after the positivity test, we placed the snails in polystyrene containers with dechlorinated water and fed with hydroponic lettuce for future test of molluscicidal activity.

2.5 Malacological investigation

From this, we collected the samples of snails in the natural breeding sites of the neighborhood Sá Viana, the periphery of São Luís, Maranhão. The catch was carried out during rainy periods, with the use of PPEs (personal protective equipment), such as glove, boot seven leagues, and metal tongs. The collection technique consists of scraping the submerged areas with the shell and the collected snails were placed in a glass container with a lid, with water from the breeding site itself. The search of the same ones was realized in several points of each breeding place, in order to obtain a good sampling. After collection, these were labeled by the breeder and taken to the laboratory for identification and analysis. From the technique of dissection of the genital apparatus, we identified the snails as belonging to the family Planorbidae, genus Biomphalaria, species B. glabrata.

2.6 Snails positivity test

For instance, we placed five snails in clear glass vials (30 mL capacity) with 25 mL of dechlorinated water, that is 5 mL per snails, brought to light exposure (100 W lamps), at a distance of 30 cm, during 1 h, to stimulate the release of cercariae. After exposure, the glasses were taken for analysis by means of a stereoscopic magnifying glass 8x. Those that were parasitized (positive) were labeled and separated for future individual analysis in order to confirm the absence of larval stages.

2.7 Molluscicidal activity test

The molluscicidal activity was performed according to a manual described by the World Health Organization. To do this, we placed 10 adult snails, negative for Schistosoma mansoni in each beaker containing 500 mL of a solution obtained from the dilution of each oil with distilled water and 0.15 mL of Tween 80 (surfactant) at the concentrations of 100, 75, 50, 25, and 10 mg L⁻¹, obtaining at the end a proportion of 50 mL of solution for each snail and feeding them with hydroponic lettuce ad libitum. They were exposed to the solution for 24 h at room temperature. After this period, the snails were
removed from the solution and the snails were washed twice with dechlorinated water, placed in each beaker containing 500 mL of dechlorinated water, fed with hydroponic lettuce and observed every 12 h (method recommended 24 h) for four days to assess mortality. To confirm the activity, we observe the mollusks. If the cephalopods mass is retracted into the shell, release the hemolymph, or swell and extend the cephalopod out of the shell, it is considered dead.21

2.8 Toxicity test with Artemia salina

So that, the Artemia salina Leach cysts were transferred to an aquarium containing the synthetic saline solution (60 g of sea salt per liter of distilled water) and oxygen saturation, obtained with the aid of an air pump. The aquarium was divided into two interconnected compartments, the cysts remaining in one of the compartments, leaving the second compartment under artificial illumination of a 100 W lamp. After 24 h, the cysts hatched, the larvae migrated to the lighted compartment because they had phototropism positive. These were transferred to an aquarium containing synthetic saline and kept in incubation for another 24 h under the same lighting and oxygenation conditions. The methodology used was described by Meyer at al.22 but with modifications.

For the evaluation of the lethality of A. salina Leach, 20 mg of the oil was added to 0.02 mg of Tween 80, the volume was filled to 2 mL with artificial saline. This dilution was done to obtain a 10 mg mL⁻¹ stock solution and a concentration of 0.1% Tween 80. Samples of 5, 50, 250 and 500 μL of this stock solution were transferred to vials with 5 mL of final solution, obtaining concentrations of 10, 100, 500 and 1000 mg·L⁻¹, respectively. Ten larvae in the nauplii phase were transferred to each flask. White (saline) was made with 20 μL and the negative control (saline and 0.1% Tween 80) was made with 20 μL. After 24 h of incubation, the live larvae were counted, considering those microcrustaceans that did not move during observation and with slight agitation of the flask. Thus, we adopted the criterion established by Amarante et al.23, which consider LC₅₀ samples less than 100 mg L⁻¹, highly toxic; with LC₅₀ between 100 and 500 mg·L⁻¹, moderately toxic; and LC₅₀ greater than 500 mg·L⁻¹ nontoxic.

2.9 Statistical analysis

The statistical test used was Anova of single factor and Tukey’s posterior test to identify significant differences. For the calculation of the lethal concentration (LC₅₀), we used the Probit method.24 For mortality results, we expressed these results with mean ± standard deviation. For all statistical tests, we considered the significance of p ≤ 0.05.

3. Results

3.1 Evaluation of the chemical characteristics of the essential oils obtained by gas chromatography coupled to mass spectroscopy (GC/MS)

Before identifying and quantifying the components present in the oil, we performed the kinetic test for extraction in the time interval of 0.5 to 5 h to verify the best performance. From this test, we verified that from 3 to 5 h, the oil yield remained constant, obtaining a volume of 0.35 mL. We calculated the extraction yield from the mass we used, which was 30 g of the material, volume obtained after extraction, of the density measurement, which was 0.823 g·mL⁻¹ and the formula expressed by the Brazilian Pharmacopoeia.52 From this, the result obtained was, respectively in the ratio mass / volume and mass / mass, of 1.17% and 0.96%.

From this study, we identify and quantify the components present in the oil. The result of the GC-MS analysis showed 23 peaks, which indicated the presence of 23 compounds (Fig. 1). In comparing the mass spectra of the constituents with the NIST 8 library, we identified the 15 compounds (Table 1). Based on the results, we observed that the major component is Limonene (58.81%) and the minority is the α-Mulene (0.11%) (Table 1).
Table 1. Compounds identified in the essential oil sample from *Citrus lemon* peel.

Peak¹	R.T(min)²	Components	Percentage (%)	Quality³
1	5.858	α-Pinene	0.72	95
2	6.775	Sabinene	5.08	92
3	6.875	β-Pinene	4.91	93
4	7.033	β-Myrcene	0.45	91
5	7.845	Limonene	58.81	90
6	8.408	γ-Terpinene	9.01	93
7	10.575	Terpine-4-ol	0.13	89
8	10.892	α-Terpinenol	0.31	96
9	11.308	Trans-geraniol	0.25	92
10	11.525	β-Citral (geranial)	1.11	93
11	12.000	α-Citral (geranial)	1.61	92
12	13.000	Geraniol acetate	0.32	93
13	13.400	α-Mulene	0.11	85
14	13.950	Bergamolene	0.29	92
15	15.017	β-Bisabolene (geranial)	0.50	92

Note: ¹ Number of the peak in the column elution order; ² RT: Retention time of the compounds. Quality³: search index in the database that reflects the similarity of the mass spectrum obtained with the records in the libraries used.

3.2 Larvicidal activity, molluscicide and toxicity

We tested the larvicidal activity for concentrations of 5, 10, 30, 50 and 70 mg L⁻¹, molluscicide for 10, 25, 50, 75 and 100 mg L⁻¹, and toxicity for 10, 100, 500 and 1000 mg L⁻¹. In all tests, we observed an increase in the percentage of mortality with the increase in concentration and absence of interference of the biological activity in the control test. Thus, they were higher in...
concentrations of larvicidal activities, molluscicides and toxicity, respectively 70, 50 and 1000 mg L\(^{-1}\). In addition, we observed that there were no significant differences between treatments (Table 2). The LC\(_{50}\) values for larvicidal activities, molluscicides and toxicity are, respectively, 15.48, 13.05 and 743.35 mg L\(^{-1}\) (Table 3).

Table 2. Results of the larvicidal, molluscicidal and toxicity activities of the essential oil of *Citrus limon* peels.

Larvicidal activity	Concentration (mg L\(^{-1}\))	Mortality of larvae (%)
	70	100.0 ± 0.0\(^a\)
	50	86.7 ± 0.4\(^a\)
	30	66.7 ± 0.4\(^a\)
	10	36.7 ± 0.4\(^a\)
	5	13.3 ± 0.4\(^a\)

Molluscidical activity	Concentration (mg L\(^{-1}\))	Mortality of snails (%)
	100	100.0 ± 0.0\(^a\)
	75	100.0 ± 0.0\(^a\)
	50	100.0 ± 0.0\(^a\)
	25	86.7 ± 0.4\(^a\)
	10	26.7 ± 0.4\(^a\)

Toxicity activity	Concentration (mg L\(^{-1}\))	Mortality of larvae (%)
	1000	100.0 ± 0.0\(^a\)
	500	46.7 ± 0.4\(^a\)
	100	13.3 ± 0.4\(^a\)
	10	0.0 ± 0.0\(^a\)

The mean values and the standard deviation of the measurements in triplicate. Different letters indicate significant differences (p < 0.05).

Table 3. LC\(_{50}\) result of larvicidal activity, molluscicide and essential oil toxicity extracted from *Citrus limon* peel.

Biological Activity	Lethal Concentration (LC\(_{50}\)) (mg L\(^{-1}\))	Lower Limit (mg L\(^{-1}\))	Upper Limit (mg L\(^{-1}\))	Standard deviation (SD)	R\(^2\) (Correlation)
Larvicidal	15.5	10.3	23.3	0.4	0.97
Molluscidal	13.1	9.5	18.0	0.2	1
Toxicity	743.4	346.9	1593.0	0.7	1
4. Discussion

From this study, we showed that the essential oil extracted from the bark of *C. limon* has larvicidal activity, molluscicide and toxicity. This may be a viable alternative to synthetic larvicides and molluscicides, since they would act against target organisms due to their toxicity against other organisms. We found that the percentage (m/v) of the oil yield was 1.17% and that the main components are limonene (major component) and α-Mullen (minor component).

The yield that we obtained in a time of extraction of 5 h was 1.17%, in which this value remained constant in the interval of 3 to 5 h. The study of the yield allows to evaluate the time necessary to conserve the best characteristics of the oil. According to Mouchrek Filho et al., quoted by Gomes et al., a time of rapid extraction leads to a product with the predominance of more volatile constituents, but without the best characteristics. Otherwise, slow distillation overloads the product with undesirable flavors. Generally, the best yields are obtained from the time of 3 h.

From the chromatographic method coupled to the mass spectrometer, we identified and quantified limonene as the major component of the essential oil extracted from *C. limon* peels. Thus, we confirm what has already been described in the literature regarding this component for citrus substances. However, we observe that the quantity of this differs from other works, where they are generally above and others below 50%. The redirection of plant metabolic pathways to lead to the biosynthesis of different compounds and abiotic factors are responsible for causing changes in the composition of *C. limon* essential oil.

In the study of larvicidal activity, the essential oil was active against the third stage larvae of *A. aegypti* in the concentration of 70 mg L\(^{-1}\) with 100% mortality of the larvae tested. Although this result gives us a dimension of biological activity, a statistical calculation of the lethal concentration (LC\(_{50}\)) from the method of Finney gave us an estimate of inferring this result for a population, considering a statistical distribution of the normal type. The result of LC\(_{50}\) was 15.48 mg L\(^{-1}\). From this result, we compare the criteria adopted by Cheng et al. (2003), since up to the moment of this research there is no criterion established the World Health Organization to consider active larvicidal activity or inactive. According to the Cheng et al., the larvicidal activity of the essential oil is active when the LC\(_{50}\) < 100 mg L\(^{-1}\); inactive when LC\(_{50}\) > 100 mg L\(^{-1}\) is highly active when LC\(_{50}\) < 50 mg L\(^{-1}\). Thus, from this classification the essential oil we extract from the bark of *C. limon* is considered highly active.

The larvicidal activity of the essential oils are influenced by several factors. A study by Fernandez et al. (2014) showed that larvicidal activity is higher in spring, summer and autumn, and lower in winter, confirming the influence of seasonality; for Leyva et al., synergistic action among metabolites (even in small proportions), the collection period and the extraction method are responsible for this; while other studies attribute this action to terpenes, alcohols, and aldehydes.

For these reasons, the results of our study confirm the larvicidal and insecticidal activity of limonene of *C. limon* essential oil against the genus *Aedes*. The study carried out by Campolo et al. showed the activity of this oil against *Aedes albopictus* larvae with a lethal concentration (LC\(_{50}\)) of 145.27 mg L\(^{-1}\) after 24 h exposure. However, the study of larvae, pulps and adults of *Aedes albopictus* confirmed the activity of the oil with a lethal concentration (LC\(_{50}\)) of 35.99 and 34.89 mg L\(^{-1}\) for the enantiomeric forms of limonene, respectively. The study Amer and Mehlihorn confirmed that activity against third-stage larvae of *A. aegypti* was higher at 24 h exposure time when compared to shorter times. Thus, the difference that these studies have with the results of our study is in the low value of the LC\(_{50}\) that we obtain. To explain this difference, we attribute seasonality, collection and extraction factors and synergism.

In relation to molluscicidal activity, the essential oil was active with LC\(_{50}\) 13.48 mg L\(^{-1}\). In this case, to affirm this, we compare the result obtained from the LC\(_{50}\) with the criteria used by the WHO. According to this criterion, the extract obtained from the plant is active when it causes mortality of 90% of the aquatic mollusks at the 24 h exposure time, under constant temperature and concentration up to 100 mg L\(^{-1}\). Thus, we proved that the result we obtain from the LC\(_{50}\) of our study is within the limits established by the WHO.

Besides the molluscicidal activity which we show in this work, we observed in the literature that the limonene obtained from the *Carum cravi* seed powder showed activity against the snail *Lymnaea acuminata*. Although this component caused mortality of *Lymnaea acuminata*, the inference of
the lethal concentration, LC_{50}, for a population of these snails did not meet the criteria established by WHO11, whose value was 130.61 mg L-1 in the time of 24 h. In addition, this study left craving for the percentage absence of limonene contained in the extracts, in which it left doubts about its effectiveness.

In the literature there are other plants that have molluscidal activity against \textit{B. glabrata}, however, the effectiveness is in the lowest value of the lethal concentration (LC_{50}). The study of thirteen \textit{Solanum} species revealed that the extracts of the species \textit{S. asperum}, \textit{S. diamantinense}, \textit{S. paludosum}, \textit{S. sisymbriifolium} and \textit{S. stipulaceum} present activity with lethal concentration (LC_{50}) varying from 20 to 50 mg L-1 43; \textit{Moringa oleifera} Lam seed extracts were active in the lethal concentration, LC_{50}, 419 mg L-1 49; extracts from the stems of \textit{Mellon quadriavalvis} and \textit{Tabebuia aurea} and whole plants of \textit{Adenocalymma comosum}, \textit{Arrabidaea parviflora}, \textit{Cuspidaria argentea}, and \textit{Clystroma binatum} have activity with LC_{50} concentration varying from 5.2 to 37.5 mg L-1, being the most active \textit{Cuspidaria argentea}, LC_{50} 5.2 mg L-1 50; the essential oil of \textit{Pimenta dioica} is active with LC_{50} 18.62 mg L-1, however the toxicity study showed that it is highly toxic to other organisms51. Though, the \textit{Occrea bracteosa} essential oil has activity with concentration, LC_{50} 4.6 mg L-1 51. Although \textit{O. bracteosa} essential oil has good results in lethal concentration values, the absence of a study of toxic activity in this study raises doubts about its effectiveness in a real system.

Hence, faced with this impasse, when performing the study of toxicity, we evaluated the possibility of the action of oil against non-target organisms. In our study, we used \textit{A. salina} because of the following characteristics: formation of dormant cysts, low cost, easy manipulation in the laboratory and indication of interference with nontarget organisms12,13. Based on the toxicity parameters of Amarante \textit{et al.}23, the essential oil, with LC_{50} = 743.35 mg L-1, is non-toxic (LC_{50}> 500 mg L-1). In addition to our study, we found in the literature extracts from six plants of the family Bignoniaceae that have moderate to low toxicity with LC_{50} values varying from 485.5 to 815.4 mg L-1 50.

5. Conclusions

In this manner, according to the results obtained in this study, we can conclude that the essential oil extracted from the shells of \textit{C. limon} has larvicidal activity and molluscidic activity, respectively, third stage larvae of \textit{A. aegypti} and snails \textit{B. glabrata}, and non-toxic front \textit{A. salina}. In addition, we identified and quantified the majority and minority components, which were, respectively, limonene and α-Mulene.

References

[1] Buettner, A., Mestres, M., Fischer, A., Guasch, J., Schieberle, P., Evaluation of the most odour-active compounds in the peel oil of clementines (\textit{Citrus reticulata} Blanco cv. Clementine), Eur Food Res. Technol. 216 (1) (2003) 11-14. https://doi.org/10.1007/s00217-002-0586-y.

[2] Caccioni, D. R., Guizzardi, M., Biondi, D. M., Agatino, R., Ruberto, G., Relationship between volatile components of citrus fruit essential oils and antimicrobial action on \textit{Penicillium digitatum} and \textit{Penicillium italicum}, Int J Food Microbiol 43 (1-2) (1998) 73-79. https://doi.org/10.1016/S0168-1605(98)00099-3.

[3] Sharma, N., Tripathi, A., Fungitoxicity of the essential oil of \textit{Citrus sinensis} on post-harvest pathogens, World J. Microbiol. Biotechnol. 22 (6) (2006) 587-593. https://doi.org/10.1007/s11274-005-9075-3.

[4] Demyttenaere, J., De Kimpe, N., Biotransformation of terpenes by fungi: Study of the pathways involved, J. Mol. Catal. B Enzym. 11 (4) (2001) 265-270. https://doi.org/10.1016/S1381-1177(00)00040-0.

[5] Martins, G. D. S. O., Zago, H. B., Costa, A. V., Araujo Junior, L. M. D., Carvalho, J. R. D., Chemical composition and toxicity of citrus essential oils on \textit{Dysmicoccus brevipes} (Homoptera: Pseudococcidae), Rev. Caatinga 30 (3) (2017) 811-817. https://doi.org/10.1590/1983-21252017v30n3303c.

[6] Kumar, P., Singh, D. K., Molluscidial activity of \textit{Ferula asafoetida}, \textit{Syzygium aromaticum} and \textit{Carum carvi} and their active components against the snail \textit{Lymnaea acuminata}, Chemosphere 63 (9) (2006) 1568-1574. https://doi.org/10.1016/j.chemosphere.2005.08.071.

[7] Cantanhede, S. P. D., Marques, A. M., Silva-Souza, N., Valverde, A. L., Atividade moluscidica de plantas:
uma alternativa profilática, Rev. Bras. Farmacogn. 20 (2) (2010) 282-288. https://doi.org/10.1590/S0102-695X2010000200024.

[8] Colley, D.G., Bustinduy, A. L., Secor, W. E., King, C. H., Human schistosomiasis, The Lancet 383 (9936) (2014) 2253-2264. https://doi.org/10.1016/S0140-6736(13)61949-2.

[9] Gasparotto Junior, A., Brenzan, M. A., Piloto, I. C., Cortez, D. A. G., Nakamura, C. V., Dias Filho, B. P., Rodrigues Filho, E., Ferreira, A. G., Estudo fitoquímico e avaliação da atividade moluscicida do Calophyllum brasiliense Camb (Clusiaceae), Quím Nova 28 (4) (2005) 575-578. https://doi.org/10.1590/S0100-40422005000400003.

[10] Diniz, M. M. C. S., Henrques, A. D. S., Leandro, R. S., Aguiar, D. L., Beserra, E. B., Resistance of Aedes aegypti to temephos and adaptive disadvantages, Rev Saúde Pública 48 (2014) 775-782. https://doi.org/10.1590/S0034-8910.201440004649.

[11] World Health Organization, Report of the Scientific working Group on Plant Molluscicide & Guidelines for evaluation of plant molluscicides, Bull World Health Organ Geneva TDRSC (1983). https://apps.who.int/iris/handle/10665/60086.

[12] Utyama, I. K. A., Andrade, D., Watanabe, E., Pimenta, F. C., Ito, I. Y., Determinação da atividade antibacteriana e toxicidade do ácido acético e vinagres branco e tinto, Revista Eletrônica de Farmácia 4 (2) (2007) 202-207. https://doi.org/10.5216/ref.v4i2.3054.

[13] Calow, P., Marine and estuarine invertebrate toxicity tests, Hoffman Al Handb Cytotoxicology, Oxford, Blackwell, Sci Publication 1993.

[14] Singh, A., Singh, S. K., Molluscicidal evaluation of three common plants from India, Fitoterapia 76 (7-8) (2005) 747-751. https://doi.org/10.1016/j.fitote.2005.08.002.

[15] Luna, J. S., Santos, A., Lima, M. R. F., Omena, M. C., Mendonça, F. A. C., Bieber, L. W., Sant’Ana, A. E. G., A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil, J. Ethnopharmacol., 97 (2) (2005) 199-206. https://doi.org/10.1016/j.jep.2004.10.004.

[16] Adams, R. P., Sparkman, O., Review of identification of essential oil components by gas chromatography/mass spectrometry, J. Am. Soc. Mass Spectrom 18 (4) (2007) 803-806. https://doi.org/10.1016/j.jasms.2007.01.001.

[17] Brasil, Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Vigilância e controle de moluscos de importância epidemiológica: diretrizes técnicas: programa de vigilância e controle da esquistossomose (PCE), Brasília: Ministério da Saúde, 2008. http://portalarquivos.saude.gov.br/images/pdf/2015/ago/14/vigilancia-controle-moluscos-import-epidemio-2ed.pdf.

[18] Deslandes, N., Técnica de dissecação e exame de planorbídeos, Rev Serv Espec Saúde Pública 4 (1951) 371-382.

[19] Smithers, S. R., Terry, R., The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms, Parasitology, 55 (4) (1965) 695-700. https://doi.org/10.1017/s0031182000086248.

[20] Malek, E. A., Snail Hosts of Schistosomiasis and Other Snail-Transmitted Diseases in Tropical America: a manual, American Society of Tropical Medicine and Hygiene, Arlington, 1985. https://doi.org/10.4269/ajtmh.1987.36.199.

[21] McCullough, F. S., Gayral, P., Duncan, J., Christie, J. D., Molluscicides in schistosomiasis control, Bull. World Health Organ. 58 (5) (1980) 681-689. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395986/.

[22] Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., McLaughlin, J. L., Brine shrimp: a convenient general bioassay for active plant constituents, Planta Med. 45 (1) (1982) 31-34, https://doi.org/10.1055/s-2007-971236.

[23] Amarante, C. B. D., Müller, A. H., Póvoa, M. M., Dobabela, M. F., Phytochemical study bioassay-guided by tests of toxicity on Artemia salina and antiplasmodial activity from stem of aninga (Montrichardia linifera), Acta Amazonica, 41 (3) (2011) 431-434. https://doi.org/10.1590/S0044-59672011000300015.

[24] Finney, D.J., Tattersfield, F., Probit Analysis, Cambridge University: Cambridge, 1952.

[25] Mouchrek Filho, V. E., Estudos Análíticos e modificações químicas por metilação e acetilação do eugenol contido no óleo essencial extraído das folhas da espécie Pimenta dioica Lindl, Tese de Doutorado, Universidade de São Paulo, São Paulo, Brasil, 2000.

[26] Gomes, P. R. B., Silva, A. L. S., Pinheiro, H. A., Carvalho, L. L., Lima, H. S., Silva, E. F., Silva, R. P., Louzeiro, H.C., Oliveira, M. B., Mouchrek Filho, V. E., Avaliação da atividade larvicida do óleo essencial do
Zingiber officinale Roscoe (gengibre) frente ao mosquito Aedes aegypti, Rev. Bras. Plantas Med. 18 (2) (2016) 597-604. https://doi.org/10.1590/1983-084x/15.214.

[27] Gomes, P. R. B., Oliveira, R. W. S., Mouchrek Filho, V. E., Nascimento, A. A., Everest, A. P., Louzeiro, H. C., Fontenele, M. A., Activity larvicide of the essential oil Syzygium aromaticum (carnival-of-India) in front of the mosquito Aedes aegypti (Linnaeus, 1762). Periodico Tche Quimica 15 (29) (2018) 184-195. http://www.deboni.he.com.br/Periodico29.pdf.

[28] Gomes, P. R. B., Santos, D. P., Mouchrek Filho, V. E., Mendes, L. S. S., Fontenele, M. A., Activity larvicide of the essential oil of Cinnumomum zeylanicum Blume, Period Tche Quimica 16 (31) (2019) 18-26. http://www.deboni.he.com.br/Periodico31.pdf.

[29] Gomes, P. R. B., Silva, A. L. S., Mouchrek Filho, V. E., Mouchrek, A. N., Everest, P. C., Avaliação físico-química do óleo essencial Zingiber officinale Roscoe (Gengibre), Rev. Cuba Farm. 50 (3) (2016). http://www.revfarmacia.sld.cu/index.php/far/article/view/30/34.

[30] Gomes, P. R. B., Mouchrek Filho, V. E., Ferreira Rabelo, W., Nascimento, A. A., Costa Louzeiro, H., Lyra, W. S., Fontenele, M. A., Chemical characterization and cytotoxicity of clove essential oil (Syzygium aromaticum), Rev. Colomb. Cienc. Quím. – Farm. 47 (1) (2018) 37-52. https://doi.org/10.15446/reciiquifa.v47n1.70657.

[31] Campelo, L. M. L., Sá, C. G., Feitosa, C. M., Sousa, G. F., Freitas, R. M., Constituiutes químicos e estudos toxicológicos do óleo essencial extraído das folhas de Citrus limon Burn (Rutaceae), Rev. Bras. Plantas Med. 15 (4 suppl 1) (2013) 708-716. https://doi.org/10.1590/S1516-05722013000500011.

[32] González-Molina, E., Dominguez-Perles, R., Moreno, D. A., García-Viguer, C., Natural bioactive compounds of Citrus limon for food and health, J. Pharm. Biomed. Anal. 51 (2) (2010) 327-345. https://doi.org/10.1016/j.jpba.2009.07.027.

[33] Mahalwal, V. S., Ali, M., Volatile constituents of the fruits peels of Citrus lemon (Linn) Burm. f. J. Essent. Oil Bear Plants 6 (1) (2003) 31-35. https://doi.org/10.1080/0972-060X.2003.10643325.

[34] Blank, A. F., Costa, A. G., Arrigoni-Blank, M. F., Cavalcanti, S. C. D. H., Alves, P. B., Innecco, R., Ehlert, P. A. D., Sousa, I. F., Influence of season, harvest time and drying on Java citronella (Cymbopogon winterianus Jowitt) volatile oil, Rev. Bras. Farmacogn. 17 (4) (2007) 557-564. https://doi.org/10.1590/S0102-695X2007000400014.

[35] Figueiredo, A. C., Barroso, J. G., Pedro, L. G., Scheffer, J. J. C., Factors affecting secondary metabolite production in plants: volatile components and essential oils, Flavour Fragr. J. 23 (4) (2008) 213-226. https://doi.org/10.1002/ffj.1875.

[36] Cerqueira, M. D., Marques, E. J., Martins, D., Roque, N. F., Cruz, F. G., Guedes, M. L. S., Seasonal variation of the composition of essential oil from Myrcia salzmannii Berg. (Myrtaceae), Quim Nova 32 (6) (2009) 1544-1548. https://doi.org/10.1590/S0100-40422009000600035.

[37] Dias, C. N., Moraes, D. F. C., Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review, Parasitol Res. 113 (2) (2014) 565-592. https://doi.org/10.1007/s00436-013-3687-6.

[38] Cheng, S., Chang, H. T., Chang, S.T., Tsai, K. H., Chen, W. J., Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae, Bioresour Technol. 89 (1) (2003) 99-102. https://doi.org/10.1016/S0960-8524(03)00008-7.

[39] Fernandez, C. M. M., Barba, E. L., Fernandez, A. C. M., Cardoso, B. K., Borges, I. B., Takemura, O. S., Martins, L. A., Cortez, L. E. R., Cortez, D. A. G., Gazim, Z. C., Larvicidal activity of essential oil from Tetradenia riparia to control of Aedes aegypti larvae in function of season variation, J. Essent. Oil Bear Plants 17 (5) (2014) 813-823. https://doi.org/10.1080/0972060X.2014.892841.

[40] Leyva, M., Marquetti, M. C., Tacoronte, J. E., Scull, R., Tiomno, O., Mesa, A., Montada, D., Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.) (Diptera: Culicidae), Rev. Biomed. 20 (1) (2009) 5-13. http://revistabiomedica.mx/index.php/revbiomed/article/view/529.

[41] Lee, H. S., Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens, J. Am. Mosq. Control Assoc. 22 (2) (2006) 292-296. https://doi.org/10.2987/8756-971X(2006)22[292:MLAOAM].2.0.CO;2.

[42] Leite, A. M., Lima, E. O., Souza, E. L., Diniz, M. D. F., Leite, S. P., Xavier, A. L., Medeiros, I. A. D., Preliminary study of the molluscicidal and larvicidal properties of some essential oils and phytochemicals from medicinal plants, Rev. Bras. Farmacogn. 19 (4) (2009) 842-846. https://doi.org/10.1590/S0102-695X2009000600008.
[43] Lucia, A., Audino, P. G., Seccacini, E., Licastro, S., Zerba, E., Masuh, H., Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae, J. Am. Mosq. Control Assoc. 23 (3) (2007) 299-304. https://doi.org/10.2987/8756-971X(2007)23[299:LEOEGE]2.0.CO;2.

[44] Campolo, O., Romeo, F. V., Algeri, G. M., Laudani, F., Malacrinò, A., Timpanaro, N., Palmeri, V. Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae), J. Econ. Entomol. 109 (1) (2015) 360-365. https://doi.org/10.1093/jee/tov270.

[45] Giatropoulos, A., Papachristos, D. P., Kimbaris, A., Koliopoulos, A., Polissiou, M. G., Emmanouel, N., Michaelakis, A., Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae), Parasitol. Res. 111 (6) (2012) 2253-2263. https://doi.org/10.1007/s00436-012-3074-8.

[46] Amer, A., Mehlhorn, H., Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae), Parasitol. Res. 99 (4) (2006) 466-472. https://doi.org/10.1007/s00436-006-0182-3.

[47] Petersen, P. E., World Health Organization. Organisation Mondiale de la Sante, Community Dent. Oral Epidemiol. 31 (6) (2003) 471-471. https://doi.org/10.1046/j.1600-0528.2003.00124.x.

[48] Silva, T., Batista, M., Camara, C., Agra, M., Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata, Ann. Trop. Med. Parasitol. 99 (4) (2005) 419-425. https://doi.org/10.1179/136485905X36208.

[49] Silva, C. L. P. A. C., Vargas, T. S., Baptista, D. F., Molluscicidal activity of Moringa oleifera on Biomphalaria glabrata: integrated dynamics to the control of the snail host of Schistosoma mansoni, Rev. Bras. FArm. 23 (2013) 848-850. https://doi.org/10.1590/S0102-695X2013000500019.

[50] Silva, T., Silva, T., Martins, R., Maia, G. L. A., Cabral, A. G. S., Camara, C. A., Agra, M. F., Barbosa-Filho, J. M., Molluscicidal activities of six species of Bignoniacaeae from north–eastern Brazil, as measured against Biomphalaria glabrata under laboratory conditions, Ann. Trop. Med. Parasitol. 101 (4) (2007) 359-365. https://doi.org/10.1179/136485907X176427.

[51] Coutinho, D. F., Dias, C. S., Barbosa-Filho, J. M., Agra, M. F., Martins, R. M., Silva, T. M., Cunha, E. V., L., Silva, M. S., Craveiro, A. A., Composition and molluscicidal activity of the essential oil from the stem bark of Ocotea bracteosa (Meisn.) Mez, J. Essent. Oil Res. 19 (5) (2007) 482-484. https://doi.org/10.1080/10412905.2007.969958.

[52] Farmacopeia Brasileira, Editora Atheneu, parte I-II, quinto fascículo, São Paulo, 4ª ed., 2004.

[53] Gomes, P. R. B., Reis, J. B., Fernandes, R. P., Mouchrek Filho, V. E., Souza, A. G., Fontenele, M. A., Silva, J. C., Toxicidad y Actividad Molusccidal del Aceite Estructural Pimenta dioica Contra El Caracol Biomphalaria glabrata. Revista Peruana de Biología 26 (1) (2019) 101-8. https://doi.org/10.15381/rpb.v26i1.15913.

[54] Chaar, J. S., Estudios analíticos e modificación química por acetilación del linalol contenido no el óleo esencial da espécie Aniba duckei Kostermans, Tese de Doutorado, Universidade de São Paulo, São Paulo, Brasil, 2000. https://doi.org/10.11606/T.75.2000.tde-28112001-085626.