Efficient Estimation of Optimal Regimes Under a No Direct Effect Assumption

Lin Liua, Zach Shahnb, James M. Robinsc, and Andrea Rotnitzkyd

aInstitute of Natural Sciences, School of Mathematical Sciences, MOE-LSC and SJTU-Yale Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China; bIBM Research, Yorktown Heights, NY; cDepartment of Biostatistics and Epidemiology, Harvard University, Boston, MA; dDepartment of Economics, Universidad Torcuato Di Tella and CONICET, Buenos Aires, Argentina

ABSTRACT

We derive new estimators of an optimal joint testing and treatment regime under the no direct effect (NDE) assumption that a given laboratory, diagnostic, or screening test has no effect on a patient's clinical outcome except through the effect of the test results on the choice of treatment. The proposed estimators attain high efficiency because they leverage this "NDE of testing" assumption. What is surprising and, indeed, unprecedented in the experience of the authors, is that, in actual substantive studies, estimators that leverage the NDE assumption can provide a 50-fold increase in efficiency (and, thus, a 50-fold reduction in sample size) compared to estimators that fail to leverage the NDE assumption (Caniglia et al. 2019).

1. Introduction

This article provides new, highly efficient estimators of an optimal joint testing and treatment regime under the no direct effect (NDE) assumption that a given laboratory, diagnostic, or screening test has no effect on a patient’s clinical outcome except through the effect of the test results on the choice of treatment. The proposed estimators attain high efficiency because they leverage this "NDE of testing" assumption. What is surprising and, indeed, unprecedented in the experience of the authors, is that, in actual substantive studies, estimators that leverage the NDE assumption can provide a 50-fold increase in efficiency (and, thus, a 50-fold reduction in sample size) compared to estimators that fail to leverage the NDE assumption (Caniglia et al. 2019).

The following case study of a randomized trial in HIV infected subjects in Africa motivates the issues with which we are concerned. First some background. HIV infected subjects who start on first line antiretroviral therapy (ART) and who later develop evidence of disease progression, quantified by an increase in viral load, a decrease in CD4 immune cell count in blood, or new clinical symptoms must consider switching to second line therapy. Therefore, at each clinic visit, a decision based on the previous laboratory and clinical data must be made as to (1) whether to order viral load and/or CD4 count tests at some cost and burden to the patient and (2) whether to switch treatment. Waiting too long to switch may result in further clinical deterioration and eventually AIDS and/or death. On the other hand, switching too early is unwise as there are only a limited number of alternative regimes and these are associated with increased side effects and expense. Thus, there is a need to determine the optimal testing and treatment regime based on empirical analysis of observational or randomized trial data. Tests of viral load and CD4 count in themselves have no direct biological effect on a patient. Rather the test results are used to help gauge the likely benefit of switching treatment. Hence appropriately timed tests may result in an increase in the expected utility, even if the financial and other costs of the test are considered.

The issue of how to determine when to switch to second line therapy is most pressing in Africa, where there has been a longstanding concern that first line ART is prescribed with limited, often no, laboratory monitoring of disease progression. Therefore, in 2003, HIV infected individuals were recruited into the Development of AntiRetroviral Therapy in Africa (DART) randomized trial in which individuals on first line ART in Uganda and Zimbabwe were randomized to laboratory and clinical monitoring (LCM) versus clinically driven monitoring (CDM). In the LCM arm, CD4 cell counts were measured every 12 weeks and made available to the caregivers. In the CDM arm, CD4 counts were not available to the caregivers. LCM subjects were switched to second line therapy when either the CD4 count fell below 100 or a world health organization (WHO) stage 4 clinical event occurred; CDM arm subjects were switched at the occurrence of a WHO stage 4 event. The trial results were published by the DART Team in 2010 (DART Trial Team 2010). An intention to treat analysis showed an adverse effect of CDM compared to LCM both for overall mortality (hazard ratio 1.35, 95% CI [1.10, 1.65]) and for the primary outcome, time to (the minimum of) a WHO stage 4 event and death (hazard ratio 1.31, 95% CI [1.14, 1.51]).
In 2012, the DART Team published a cost-effectiveness analysis (Lara et al. 2012). Owing to both the cost of CD4 count testing every 12th week and the higher price of second line therapy, their analysis estimated an incremental cost of at least 3000 US dollars for each additional quality-adjusted life year (QALY) gained from following the LCM strategy compared to the CDM strategy. By its definition, a cost effectiveness analysis compares the ratio of incremental dollar costs to the health benefit in QALYs for a number of different health interventions. The philosophy underlying this definition is that those interventions, ranked from the lowest to highest ratio, would be implemented in that order until available funds are exhausted. (This is a simplification, overlooking, for instance, that factors (individual and social) other than QALYs may be used to quantify the benefits of an intervention.) An alternative approach is to combine the costs and benefits into a single utility function whose expected value we wish to maximize. An analysis whose goal is to maximize a single utility function is generally referred to as a cost-effectiveness, rather than a cost-effectiveness, analysis. A cost-effectiveness analysis requires that we place a monetary value on an additional year of quality-adjusted life, as discussed next.

The DART Team noted that a WHO publication (World Health Organization 2001) suggested that, to be cost-effective, the incremental cost of a proposed intervention per QALY added should be less than three times the per capita GDP. If one takes the WHO literally (which may not be what WHO meant for one to do), it allows one to place an upper bound on the monetary value of a year of quality-adjusted human life. For example, the per capita GDP of Zimbabwe and Uganda were both less than 480 US dollars in 2008 (presumably the last year available to the authors). The DART Team thus concluded that the LCM strategy was not cost effective compared to the CDM strategy as \(3 \times 480 = 1440 \) is less than incremental cost of 3000 dollars. That is, they found that the monetized health value of the information (VoI) concerning disease progression obtained from CD4 testing every 12th week was less than the cost of obtaining the information. Thus, in terms of the definitions above, the DART Team had performed a cost-effectiveness analysis rather than simply a cost-effectiveness analysis. In contrast, the 2008 GDP/per capita of the United States was 48,000 dollars. Hence, the WHO criteria, taken literally, would suggest that the monetary value of a QALY for a US citizen was 144,000 dollars, 100 times that of a citizen of Uganda or Zimbabwe. We leave further discussion of the obvious ethical and economic issues raised by monetizing a human life to others. In this article, we will assume the cost of testing and the health benefit are combined into a single utility function. A natural question that arises is whether the above WHO cost-effectiveness criterion would be met if, instead of testing every 12 weeks as in the trial, testing occurred every 24 weeks or 36 weeks or 48 weeks with switching to second line therapy when the CD4 count first fell below 50, 100, 150, or 200. None of these \(3 \times 4 = 12 \) testing and treatment regimes were studied in the RCT so any attempt to answer such questions requires one analyze the trial data as if it were an observational study using methods related to those proposed herein (Ford et al. 2015).

Finding an optimal joint testing and treatment regime for HIV infected subjects is but one of many contexts in which our methodology should be applicable. Many laboratory, diagnostic and screening tests have no effect on the clinical outcome of interest, except through the effect of the test results on the choice of treatment. An area in which our new, more efficient estimators should be particularly important is that of cost-benefit analyses wherein the costs of expensive tests (such as MRIs to screen for lung cancer, mammograms to screen for breast cancer, and urinary cytology to screen for bladder cancer) are weighed against the clinical VoI supplied by the test results (e.g., Mushlin and Fintor 1992; Krahne et al. 1994).

There is a large literature in economics and decision science on the VoI. For the purposes of this article, we define the VoI to be the increase in the expected utility resulting from incorporating costly information without a direct causal effect on the outcomes of interest (such as a screening test) into an optimal regime (e.g., LaValle 1968a, 1968b; Gould 1974; Hilton 1981). That is, the VoI is the difference in expected utilities of two regimes: the optimal testing and treatment regime versus the optimal treatment regime under the constraint that no testing is allowed. Our methodology also allows for more efficient estimation of the VoI.

In fact, the VoI can be directly calculated from the parameters of an optimal regime structural nested mean models (opt-SNMM). Robins (2004), building on Murphy (2003), introduced the opt-SNMM, a semiparametric model for estimating the optimal testing and treatment regime from data. Under the model, the optimal testing and treatment regime is a deterministic function of the model parameters \(\Psi \).

Robins (2004) proposed g-estimation, a semiparametric version of dynamic programming (DP), to estimate the parameters \(\Psi^* \) of an opt-SNMM. Under standard assumptions required for the identification of causal effects in longitudinal settings (consistency, positivity, and sequential exchangeability), g-estimation of a correctly specified opt-SNMM yields a regular, asymptotically linear (RAL) estimator \(\hat{\Psi} \) of \(\Psi^* \) and thus of the optimal joint testing and treatment regime and its value (i.e., expected utility), provided the true law generating the data is not an exceptional law as defined in Robins (2004, p. 219) and the bias of \(\hat{\Psi} \) is of order \(o_p(n^{-1/2}) \) with \(n \) the sample size. In this article, we exclude such exceptional laws for reasons given later in this section. We discuss conditions required for the bias to be \(o_p(n^{-1/2}) \) in Appendix A.5. An estimator \(\hat{\Psi} \) is RAL if (i) \(\hat{\Psi} - \Psi^* \) is the sum of iid mean zero random variables (referred to as the influence function of \(\hat{\Psi} \)) plus a term of order \(o_p(n^{-1/2}) \) and (ii) is locally asymptotically unbiased.

In this article, we show that under the NDE assumption it is possible to construct RAL estimators that are more efficient than the g-estimators of Robins (2004) that do not use the NDE assumption. Our construction is not straightforward because imposing the NDE assumption does not restrict the values of any of the parameters of our opt-SNMM, including those parameters that determine the optimal testing regime. For a more comprehensive review of SNMMs, we refer interested readers to the articles by Robins (2000, 2004) or a more recent piece by Vansteelandt and Joffe (2014).

We now briefly describe our estimator construction. Full details are given in Sections 3–6. Robins (2004) showed that, without imposing the NDE assumption, the g-estimator \(\hat{\Psi} \) was equal to the solution of estimating equations \(0 = \tilde{U}(\Psi) \) where,
at the true Ψ^*, $\tilde{\Psi}$, and $\tilde{U}(\Psi^*)$ were RAL estimators of Ψ^* and 0, respectively, and, in addition, were doubly robust in the sense of Bang and Robins (2005); see Section 3 for further discussion. The new estimators $\tilde{\Psi}(b)$ in this article solve $0 = \tilde{U}(\Psi, b)$ where $\tilde{U}(\Psi, b)$ is the residual from the orthogonal projection of the (influence function of) $\tilde{U}(\Psi)$ into a given linear space of random variables T_b indexed by a vector function b. In the absence of confounding by unmeasured factors, all components of T_b have mean zero under the NDE assumption. To construct T_b, we first show that the NDE assumption implies the following restriction on the distribution of the observed data. Given past history, the screening variable at any time t is independent of the health outcome of interest after reweighting by the inverse of the conditional probability of a subject’s treatment history from $t + 1$ onward. We then use the independence of screening and the health outcome in this reweighted distribution to construct the vector T_b. The Pythagorean theorem then guarantees that the asymptotic relative efficiency (ARE) $\lim_{n \to \infty} \var(\tilde{\Psi})/\var(\Psi(b))$ of the old relative to the new estimator is always greater than or equal to 1. Furthermore the new estimator, like the old, is doubly robust.

In the article, we assume a semiparametric model on the joint distribution of the factual and counterfactual variables defined by the restrictions that (i) the NDE assumption is true, (ii) confounding by unmeasured variables is absent, and (iii) the opt-SNMM holds. The regular estimator $\tilde{\Psi}(b_{\text{opt}})$ with minimum asymptotic variance (and hence the notation b_{opt}) among all RAL estimators under the model solves $0 = \tilde{U}(\Psi, b_{\text{opt}})$ where $\tilde{U}(\Psi, b_{\text{opt}})$ is the residual from the projection $T_{b_{\text{opt}}}$ (indexed by b_{opt}) of (the influence function of) $\tilde{U}(\Psi)$ onto the space of all random variables with mean zero under and only under the NDE assumption. We show in Section 5.2 that, when the utility is a continuous random variable, this projection and thus $\tilde{\Psi}(b_{\text{opt}})$ depend on the observed data distribution through the solutions to a set of complicated integral equations that do not exist in closed form. In contrast, when the utility is discrete, we obtain a closed form expression for the projection. Furthermore, in the case of a continuous utility (see Remark 4), we propose a computationally tractable estimator $\tilde{\Psi}(b_{\text{sub}})$ solving $0 = \tilde{U}(\Psi, b_{\text{sub}})$ with relative efficiency that can be made arbitrarily close to that of the “optimal” yet computationally intractable estimator $\tilde{\Psi}(b_{\text{opt}})$. Specifically $\tilde{U}(\Psi, b_{\text{sub}})$ is the residual from the closed-form projection $T_{b_{\text{sub}}}$ (indexed by b_{sub}) of (the influence function of) $\tilde{U}(\Psi)$ onto a large, but strict, subspace of the space of random variables with mean zero under the NDE assumption. As the dimension of the chosen subspace increases, the relative efficiency of $\tilde{\Psi}(b_{\text{sub}})$ approaches that of $\tilde{\Psi}(b_{\text{opt}})$; hence if we allow the dimension to converge to infinity with the sample size at a sufficiently slow rate, $\tilde{\Psi}(b_{\text{sub}})$ and $\tilde{\Psi}(b_{\text{opt}})$ will be asymptotically equivalent. Because the projection needed to compute $\tilde{\Psi}(b_{\text{sub}})$ exists in closed-form, it is much easier to compute than $\tilde{\Psi}(b_{\text{opt}})$ and is therefore the estimator we recommend.

We shall study the relative efficiency of the estimators $\tilde{\Psi}(b_{\text{sub}})$ and $\tilde{\Psi}$ that, respectively, do and do not use the NDE assumption, as estimators of the parameters Ψ^* of an opt-SNMM. However, our approach is quite generic in the following sense. Consider a semiparametric model for the joint distribution of the factual and counterfactual variables defined by the restrictions that (i) the NDE assumption is true, (ii) confounding by unmeasured variables is absent, and (iii) a given semiparametric model holds with Ψ^* the true value of the Euclidean parameter. As one important example other than an opt-SNMM, the given model could be a dynamic marginal structural model (dyn-MSM) for a prespecified class of testing and treatment regimes (Hernán 2005; van der Laan and Petersen 2007; Robins, Orellana, and Rotnitzky 2008; Orellana, Rotnitzky, and Robins 2010a, 2010b). Given a doubly robust RAL estimator $\tilde{\Psi}$ of Ψ^* that solves $0 = \tilde{U}(\Psi)$ (with $\tilde{U}(\Psi)$ an unbiased estimating equation in the semiparametric model in the absence of the NDE assumption), the methods in this article can be used to construct a RAL doubly robust estimator $\tilde{\Psi}(b_{\text{sub}})$ with improved efficiency compared to $\tilde{\Psi}$ by solving $0 = \tilde{U}(\Psi, b_{\text{sub}})$ where again $\tilde{U}(\Psi, b_{\text{sub}})$ is the residual from the closed-form projection (indexed by b_{sub}) of (the influence function of) $\tilde{U}(\Psi)$ onto the exact same subspace as earlier. The only difference is that $\tilde{U}(\Psi)$ and its influence function differ depending on the chosen semiparametric model (e.g., opt-SNMM vs. dyn-MSM) for Ψ^*. Since our procedure is a generic procedure applied to an initial RAL estimator $\tilde{\Psi}$ and we are simply using an opt-SNMM as a particular example, we decided, as mentioned above, to exclude exceptional laws because the opt-SNMM g-estimator $\tilde{\Psi}$ is not a RAL estimator under an exceptional law.

The methodology discussed above constructs highly efficient estimators under the NDE assumption of NDE of testing on the clinical outcome Y^d of interest. However even more efficient estimators can be constructed if we can impose the stronger NDE assumption of NDE of testing not only on Y^d but also on measured time dependent covariates, as the stronger NDE assumption implies additional mean zero random variables on which to project. See Section 7 for more discussion.

The above development offers the reader little guidance or intuition as to when to expect small versus enormous gains in efficiency compared to estimators that do not rely on the NDE assumption. To provide intuition, in Section 8, we discuss an inverse probability weighting (IPW) estimator $\Psi_{\text{nde-ipw}}$ introduced in Robins, Orellana, and Rotnitzky (2008) and used by Caniglia et al. (2019) in a substantive article that uses a dyn-MSM to determine the optimal testing and treatment strategy within a class of (CD4 cell and HIV RNA) testing and (antiretroviral) treatment strategies to prolong the survival of HIV infected individuals included in the Harvard HIV-CAUSAL Collaboration and the Centers for AIDS Research Network of Integrated Clinical Systems. The estimator $\Psi_{\text{nde-ipw}}$ has also been studied by Neugebauer et al. (2017) and Kreif et al. (2020). $\Psi_{\text{nde-ipw}}$ is an asymptotically linear, though generally inefficient, estimator under the stronger NDE assumption; however, it is inconsistent when this assumption is false. In the analysis of Caniglia et al. (2019), $\Psi_{\text{nde-ipw}}$ is unprecedentedly 50 times as efficient as the usual IPW estimator Ψ_{ipw} that does not exploit an NDE assumption. In fact, $\Psi_{\text{nde-ipw}}$ would be nearly 50 times as efficient as any estimator that remains RAL when the NDE assumption does not hold.
Even so, we show in Section 8.1 that \(\tilde{\Psi}_{\text{nde-ipw}} \) will still be less efficient than \(\Psi_{\text{ipw}}(b_{\text{opt, ipw}}) \). Here \(\Psi_{\text{ipw}}(b_{\text{opt, ipw}}) \) solves \(0 = \tilde{\Upsilon}_{\text{IPW}}(\Psi, b_{\text{opt, ipw}}) \) where \(\tilde{\Upsilon}_{\text{IPW}}(\Psi, b_{\text{opt, ipw}}) \) is the residual from the projection (indexed by \(b_{\text{opt, ipw}} \)) of the estimated influence function of \(\Psi_{\text{ipw}} \) onto the space of all random variables with mean zero only under the stronger NDE assumption! Indeed, we show that \(\Psi_{\text{ipw}}(b_{\text{opt, ipw}}) \) is semiparametric efficient in the model characterized solely by the stronger NDE assumption if the dyn-MSM is a saturated model.

In Section 9, we design a simple data generating process (DGP) that makes it transparent why \(\tilde{\Psi}_{\text{nde-ipw}} \) and \(\Psi_{\text{ipw}}(b_{\text{opt, ipw}}) \) are so much more efficient than \(\Psi_{\text{ipw}} \) in the context of Caniglia et al. (2019). The above may lead one to suspect that \(\tilde{\Psi}_{\text{nde-ipw}} \) is always more efficient than the usual IPW estimator \(\Psi_{\text{ipw}} \), whenever the NDE assumption is imposed. However this is far from the case. In fact, we design a second DGP (see Appendix A.12) under which, as a particular parameter of the DGP converges to 0, the ratio of the asymptotic variance of \(\Psi_{\text{ipw}} \) compared to \(\tilde{\Psi}_{\text{nde-ipw}} \) tends to 0 and simultaneously the asymptotic variance of \(\Psi_{\text{ipw}} \) converges to that of the efficient estimator \(\Psi_{\text{ipw}}(b_{\text{opt, ipw}}) \).

The organization of the article is as follows. In Section 2, we establish some notation and review the counterfactual framework. In Section 3, we review opt-SNMMs and g-estimation without imposing the NDE assumption. In Section 4, we characterize the ortho-complement of the tangent spaces under the NDE assumption as a key step toward constructing more efficient estimators. In Section 5, we describe several strategies for obtaining more efficient estimators by leveraging the NDE assumption. In particular, we describe the aforementioned computationally tractable procedure used in construction of \(\Psi(b_{\text{sub}}) \) in Section 5.2. In Section 6, we study the statistical properties of the proposed estimators when the nuisance parameters/functions are estimated from data possibly using machine learning methodology. In Section 7, we introduce increasingly strong versions of the NDE assumption and compare their substantive plausibility. In Section 8, we provide the intuition behind our large efficiency gains through a study of the properties of \(\tilde{\Psi}_{\text{nde-ipw}} \). We also formally compare the statistical properties of all the various estimators treated in the article. In Section 9 and Appendix A.9, we illustrate the method on simulated examples. In Section 10, we conclude with some open problems and future directions.

2. Notation, Framework, and Background

We begin by providing the notation that will be used throughout the article. Let:

- \(t \in \{0, \ldots, K\} \) index time or visits, assumed discrete, with \(K \) being the last occasion;
- \(A_t \in \{0, 1\} \) denote whether a screening test is performed at time \(t \);
- \(R_t \) denote the results of the test (e.g., MRI screening result) if performed at \(t - 1 \) and \(R_0 = 7 \) otherwise;
- \(S_t \) be a binary \(\{0, 1\} \) variable denoting the treatment (e.g., switching therapy) at time \(t \);
- \(L_t \) denote covariates at time \(t \) that may influence testing and treatment decisions;
- \(Y^d \) denote the observed value of the health outcome utility;
- \(Y \equiv Y^d - \sum_{t=0}^{K} c_t A_t \) denote the total utility of interest with \(c_t \) being the known (utility) cost of the test at time \(t \); and
- \(\bar{X}_t \) denote \((X_0, \ldots, X_t) \) and \(X_t \) denote \((X_t, \ldots, X_K) \) for an arbitrary vector \(X \equiv (X_0, \ldots, X_K) \).

We assume that we observe \(N \) iid realizations of the random vector:

\[O \equiv (L_0, R_0, S_0, A_0, \ldots, L_K, R_K, S_K, A_K, Y^d). \]

We use capital letters to denote random variables and corresponding lower case letters to denote specific values that random variables might take. We consider the scenario where at each time \(t \) the chronological ordering of the variables is \(L_t \) before \(R_t \) before \(S_t \) before \(A_t \). Our definition of \(R_t \) implies that the results of tests at time \(t \) are not available until time \(t + 1 \). By convention, we take \(A_K \) to always be 0 as results of testing at \(K \) would not be available until after \(Y \) is measured at \(K + 1 \). As with \(A_K \), we also take \(A_{K,k} \) defined below to be 0. Furthermore we take \(R_0 \) to always be 0 since it is not the result of any test.) If the results of tests at time \(t \) were available immediately and hence could influence \(S_t \), we would simply redefine \(R_t \) to be the results of testing at \(t \) rather than at \(t + 1 \) and reorder as \((L_t, A_t, R_t, S_t) \). Furthermore we let \(\bar{H}_m \equiv (\tilde{L}_m, \tilde{R}_m, \tilde{S}_{m-1}, \tilde{A}_{m-1}) \) be the past history through time \(m \), excluding \(S_m, A_m \). We let \(H_m \) be the sample space of the random vector \(\bar{H}_m \).

In Remark 5 of Section 8.1 we provide conditions under which the cost of testing \(c_t \) at time \(t \) can be made a function \(c_t(\bar{H}_t, S_t) \) of the past information rather than a fixed constant.

A deterministic testing and treatment regime \(g \equiv (g_0, g_1, \ldots, g_K) \) is a vector of rules or functions \(g_t : (L_t, R_t, S_{t-1}, A_{t-1}) \mapsto (s_t, a_t) \) that determines the values \((s_t, a_t) \) to which \(S_t \) and \(A_t \) will be set given the past \((L_t, R_t, S_{t-1}, A_{t-1}) \). We denote arbitrary regimes by \(g \) and we adopt the counterfactual framework of Robins (1986, 1987) in which \(Y^d, Y^d_t, L_t, R_t, S_t, g_t \), and \(A_{t,g} \) are random variables representing the counterfactual data had regime \(g \) been followed. Implicit in the notation is the assumption that the treatment regime followed by one patient does not influence the outcome of any other patient. A testing and treatment regime is said to be static if \(g_t \) is a constant function for all \(t \). A regime is said to be dynamic if it stipulates that testing and/or treatment at time \(t \) depends on past covariate and/or treatment values. A random testing and treatment regime replaces the functions \(g_t \) by conditional densities taking values in the support of \((S_t, A_t) \). Since the optimal testing and treatment strategy can always be taken to be a deterministic strategy, we do not further consider random regimes in this article. We make three additional standard assumptions that serve to identify the optimal testing and treatment regime, even when the NDE assumption fails to hold (Robins 2004). Throughout, let

\[\Pi_m \equiv \pi_m(\bar{H}_m, S_m) \equiv \Pr[A_m = 1|\bar{H}_m, S_m] \]

and

\[p(\cdot|\bar{H}_m) \equiv \Pr[S_m = \cdot|\bar{H}_m]. \]
1. Positivity: for all \(m = 0, \ldots, K, \Pi_m \) and \(p(s_m | \bar{H}_m) \) for all \(s_m \) in the sample space of \(S_m \), are bounded away from 0 and 1 on a set of probability 1, except \(\Pi_K = 0; \)
2. Consistency: \(Y^d = \mathbf{Y}^d \) and \(Y = \mathbf{Y} \) if \((\hat{A}_{K,g}, \bar{S}_{K,g}) = (A_K, \bar{S}_K), (\bar{L}_{t+1}, \bar{R}_{t+1}, \bar{A}_{t+1}, \bar{S}_{t+1}) = (\bar{L}_{t+1}, \bar{R}_{t+1}, \bar{A}_{t+1}, \bar{S}_{t+1}) \); and \((\bar{A}_{t+1,g}, \bar{S}_{t+1}) = (\hat{A}_t, \bar{S}_t) \);
3. Sequential exchangeability:
\[
(Y^d, \mathbf{Y}, L_{t+1,g}, R_{t+1,g}, A_{t+1,g}, S_{t+1,g}) = \mathbf{g}_{t-1}(\bar{H}_{t-1}) \forall t, g,
\]
where \(\mathbf{g}_{t-1}(\bar{H}_{t-1}) \) stands for statistical independence and \(\{\bar{A}_{t+1}, \bar{S}_{t+1} = \mathbf{g}_{t-1}(\bar{H}_{t-1})\} \equiv \{(A_m, S_m) = g_m(\hat{H}_m), m = 0, \ldots, t-1\}.

Remark 1. The sample space of \(R_{t+1} \) includes \("p" \) and \(R_{t+1} \) is always observed. When \(A_t = 0 \) (no screening at \(t \)), \(R_{t+1} \) is not missing; rather \(R_{t+1} = \varnothing \). Note that \(R_{t+1} \) is needed only if \(A_t = 0 \) or both treatment and screening decisions at time \(t+1 \) will depend only on always observed available information such as \(R_{t+1} \).

Note that we could replace the vector \((Y^d, \mathbf{Y}, L_{t+1,g}, R_{t+1,g}, A_{t+1,g}, S_{t+1,g})\) in **Assumption 3** by \((Y^d, L_{t+1,g}, R_{t+1,g}, A_{t+1,g}, S_{t+1,g})\) because conditional on \((\hat{A}_{t-1}, \bar{S}_{t-1}) = \mathbf{g}_{t-1}(\bar{H}_{t-1})\), \((Y, A_t, S_t) \) is a deterministic function of \((Y^d, L_{t+1,g}, R_{t+1,g}, A_{t+1,g}, S_{t+1,g})\) and \(\bar{H}_t \). For future reference, we highlight that **Assumption 3** implies
\[
E\left[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1}} | \bar{H}_t \right] = E\left[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1}} | \bar{H}_t, A_t, S_t \right],
\]
where for any \(g \), \(Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1}} \) denotes the counterfactual total utility \(Y \) when a subject takes her observed treatment history \((S_{t-1}, \hat{A}_{t-1})\) through \(t-1 \), and possibly contrary to fact, takes \((s_t, a_t)\) at \(t \), and, for \(t < K \) the subject follows the dynamic testing and treatment regime \(g \) from \(t+1 \) onward.

Throughout we call the set of three **Assumptions 1–3** the identifying (ID) assumptions. Robins (1999) noted that **Assumptions 2** and **3** do not impose restrictions on the observed data distribution. Robins (1999) showed that under the ID assumptions, for any \((s_t, a_t)\), the conditional counterfactual mean \(E[Y_{S_{t-1}, \hat{A}_{t-1} | \bar{H}_t = \bar{h}_t}] \) is identified and it is equal to the following, so-called g-formula (Robins 1986)
\[
E\left[Y_{S_{t-1}, \hat{A}_{t-1} | \bar{H}_t = \bar{h}_t} \right] = \int y f(y | \bar{h}_K, \bar{a}_K, \bar{s}_K) \prod_{m=0}^{K} I_{\Pi_m(\bar{h}_m)}(a_m, s_m) \prod_{m=t}^{K} f(l_m, r_m | \bar{h}_{m-1}, \bar{a}_{m-1}, \bar{s}_{m-1}) d\bar{a}_m d\bar{s}_m dl_{m+1} dr_{m+1} dy.
\]
Note that \(E[Y_{S_{t-1}, \hat{A}_{t-1} | \bar{H}_t = \bar{h}_t}] \) depends on the law of the observed data only through the conditional distributions \(f(y | \bar{h}_K, \bar{a}_K, \bar{s}_K) \) and \(f(l_m, r_m | \bar{h}_{m-1}, \bar{a}_{m-1}, \bar{s}_{m-1}) \) for \(m = t + 1, \ldots, K \). Let \(\mathcal{G} \) be the set of all regimes \(g \) satisfying the ID assumptions. Thus, for every \(g \in \mathcal{G} \), \(E[Y_{S_{t-1}, \hat{A}_{t-1} | \bar{H}_t = \bar{h}_t}] \) and \(E[Y_g] \) are identified. Our goal is to estimate an optimal dynamic testing and treatment regime \(g_{opt} = \arg\max_{g \in \mathcal{G}} E[Y_g] \) and its corresponding value (i.e., expected utility) \(E[Y_{g_{opt}}] \). Since we have excluded exceptional laws, \(g_{opt} \) is unique (Robins 2004).

Under the ID assumptions, \(g_{opt} \) can be computed by DP (Bellman 1952) as follows. Define \(g_{opt} = (g_0^{opt}, \ldots, g_K^{opt}) \) by the following backward recursion. First, we define \(g_K^{opt} (\bar{H}_K) = \arg\max_{s_K, a_K} E[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1} = s_K, A_{t-1} = a_K | \bar{H}_K}] \) and recursively for \(t = K-1, \ldots, 0 \), we define \(g_t^{opt} (\bar{H}_t) = \arg\max_{s_t, a_t} E[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1} = s_t, A_{t-1} = a_t | \bar{H}_t}] \). Robins (2004) proved that under the ID assumptions, \(E[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1} = s_t, A_{t-1} = a_t | \bar{H}_t}] = \max_{s_t} E[Y_{S_{t-1}, \hat{A}_{t-1}, \bar{S}_{t-1} = s_t, A_{t-1} = a_t | \bar{H}_t}] \), thus proving that the DP solution \(g_{opt} \) agrees with the optimal treatment regime \(g_{opt} \) under the ID assumptions.

3. Estimator of opt-SNMM Without the NDE Assumption

In this section, we review the definition and the estimation of opt-SNMMs (Robins 2004) for estimating optimal dynamic regimes. For any regime \(g \), define the testing and treatment effect contrast
\[
\gamma_{t, t+1}^{g_{opt}}(\bar{H}_t, s_t, a_t) := E\left[Y_{S_{t-1}, \hat{A}_{t-1}, s_t, a_t, g_{t}^{opt} | \bar{H}_t} - Y_{S_{t-1}, \hat{A}_{t-1}, s_t, a_t, g_{t+1}^{opt} | \bar{H}_t} \right].
\]
This contrast is the average causal effect, among subjects with the history \(\bar{H}_t, (S_t, A_t) = (s_t, a_t) \), of setting possibly contrary to fact \(S_t \) and \(A_t \) both to 0 rather than to their observed values when, again possibly contrary to fact, the regime \(g \) is followed from time \(t+1 \) onward. Because \(Y_{S_{t-1}, \hat{A}_{t-1}, s_t, a_t, g_{t+1}^{opt}} \) does not depend on the free indices \((s_t, a_t)\),
\[
\arg\max \gamma_{t, t+1}^{g_{opt}}(\bar{H}_t, s_t, a_t) = \arg\max_{(s_t, a_t)} E\left[Y_{S_{t-1}, \hat{A}_{t-1}, s_t, a_t, g_{t+1}^{opt} | \bar{H}_t} \right] = (s_t, a_t)
\]
under the ID assumptions. It then follows, that by arguments given in the preceding section, under the ID assumptions, the optimal testing and treatment regime \(g_{opt} \) is given by the following backward recursion: for \(t = K, K-1, \ldots, 0 \),
\[
g_t^{opt}(\bar{H}_t, s_t, a_t) := \arg\max_{s_t, a_t} Y_{t+1, t}^{g_{opt}}(\bar{H}_t, s_t, a_t). \text{ For } t = 0, \ldots, K, \text{ define }
\gamma_t(s_t, a_t) := \gamma_t^{g_{opt}}(\bar{H}_t, s_t, a_t) \text{ and } (S_t^{opt}(\gamma_t), A_t^{opt}(\gamma_t)) := g_t^{opt}(\bar{H}_t). \text{ Finally, define}
\]
\[
\Delta_t(s_t, \gamma_t; Y_{t+1}^{opt}) = Y - \gamma_t(\bar{H}_t, s_t, a_t)
\]
(2)
where by convention $\sum_{m=k+1}^K (\cdot) \equiv 0$. By straightforward algebra it can be shown that for any t,
\[
E[\Delta_t(\gamma_t; \gamma_{t+1}^{(I)})\hat{H}_t, A_t, S_t] = E[Y_{A_t,1}, A_{t-1}, \gamma_t = 0, s_t = 0, \gamma_{t+1}^{(I)} | \hat{H}_t, A_t, S_t]
\]
regardless of whether or not the sequential exchangeability holds. Heuristically $\Delta_t(\gamma_t; \gamma_{t+1}^{(I)})$ mimics $Y_{A_t,1}, A_{t-1}, \gamma_t = 0, s_t = 0, \gamma_{t+1}^{(I)}$ in the sense that they have the same mean given (\hat{H}_t, A_t, S_t).

Under the ID assumptions and Equation (3)
\[
E \left[\Delta_t(\gamma_t; \gamma_{t+1}^{(I)}) | \hat{H}_t, A_t, S_t \right] = E \left[\Delta_t(\gamma_t; \gamma_{t+1}^{(I)}) | \hat{H}_t \right],
\]
which implies that, for arbitrary functions $Q_t(s_t, a_t) \equiv q_t(\hat{H}_t, S_t, a_t)$ selected by the analyst, the random variable
\[
U_t(q_t, \gamma_{t}^{(I)}) \equiv \left\{ \Delta_t(\gamma_t; \gamma_{t+1}^{(I)}) - E[\Delta_t(\gamma_t; \gamma_{t+1}^{(I)}) | \hat{H}_t] \right\} \times \{Q_t(S_t, A_t) - R(\gamma_t, A_t, \gamma_{t+1} | \hat{H}_t) \}
\]
has mean zero by Equation (4). In fact, Robins (2004) showed that $\gamma_t(\hat{H}_t, S_t, a_t) = \gamma_t(\tilde{H}_t, S_t, a_t)$ satisfies the condition $E[U_t(q_t, \gamma_{t}^{(I)})] = 0$ for all q_t such that $U_t(q_t, \gamma_t^{(I)})^2$ has finite mean. Therefore, γ_t is identified through the system of equations (5) for all q_t. One could choose $Q_t(S_t, a_t)$ either to simplify the form or minimize the variance of the opt-SNMM estimator defined below.

An opt-SNMM assumes a parametric model for the treatment effect contrasts $\gamma_t(\hat{H}_t, s_t, a_t)$, that is, it assumes that
\[
\gamma_t(\hat{H}_t, s_t, a_t) = \gamma_t(\tilde{H}_t, s_t, a_t; \Psi_t^*),
\]
where Ψ_t^* is an unknown parameter vector and $\gamma_t(\tilde{H}_t, s_t, a_t; \Psi_t^*)$ is a known function equal to 0 whenever $s_t = a_t = 0$ or $s_t = 0$.

Under the model the optimal testing and treatment choice at t is $(\gamma_{t}^{(opt)}(\Psi_t), A_{t}^{(opt)}(\Psi_t)) = \arg \max_{\gamma_t, A_t} \gamma_t(\hat{H}_t, s_t, a_t; \Psi_t)$ for $\Psi = \Psi^*$. In an abuse of notation, we define $\Delta_t(\Psi_t; \gamma_{t+1}^{(I)})$ just like $\Delta_t(\gamma_t; \gamma_{t+1}^{(I)})$ but with the functions $\gamma_m(\hat{H}_t, S_t, A_t; \Psi_t)$ replacing the true functions $\gamma_m(\hat{H}_t, S_t, A_t; \Psi_t)$.

The ID assumptions and the opt-SNMM model (6) determine a semiparametric model M_3 for the observed data distribution defined by the restriction that there exists a unique $\Psi^* \equiv (\Psi_0^*, \ldots, \Psi_K^*)$ such that for all $t = 0, 1, \ldots, K$, $E[\Delta_t(\Psi_t; \gamma_{t+1}^{(I)}) | \hat{H}_t, A_t, S_t] = E[\Delta_t(\gamma_t; \gamma_{t+1}^{(I)}) | \hat{H}_t]$. Before proceeding further we need to review some well-known results from semiparametric theory.

3.1. Review of Semiparametric Theory

For a law P in a semiparametric model M, the tangent space $\Lambda(\Lambda(P))$ at P is defined as the closed linear span of the scores $\phi(P)$ at P for all one-dimensional parametric submodels $\gamma_x \rightarrow P_x$ such that $P_{x \gamma_x} = P$. For a given functional of interest $\beta \equiv \beta(P)$, a random variable $\hat{I}F = \hat{I}F(P)$ is referred to as an influence function for β at P if $E_{P} [\hat{I}F(P)] = 0$ and for each submodel $P_{x \gamma_x}$, $d \beta(P_{x \gamma_x})/d \gamma_x = 0$ for γ_x. The efficient influence function $\hat{E}F = \hat{E}F(P)$ for a functional β is the unique influence function lying in Λ. A random variable $\hat{I}F$ is an influence function if and only if $\hat{I}F = \hat{E}F \in \Lambda^\perp$ where Λ^\perp is the ortho-complement to Λ in $L_{2,0}(P)$ where $L_{2,0}(P)$ is the subspace of $L_{2}(P)$ comprised of mean zero elements of $L_{2}(P)$. Hence the set \mathcal{I} of all influence functions (at P) is $\{\hat{E}F + \hat{H}_t \gamma \in \Lambda^\perp\}$. It follows that for any influence function $\hat{E}F$, $\hat{E}F - \hat{I}F = \hat{I}[F\hat{I}]$ with $\hat{I}[F\hat{I}]$ the projection operator in $L_{2,0}(P)$. The nuisance tangent space $\Lambda_{nuis} \equiv \Lambda_{nuis}(P)$ for β at P is the subspace of $\Lambda(P)$ generated by the scores of one-dimensional parametric submodels in M for which $\Psi(P_{x \gamma_x})$ is constant. The set \mathcal{I} of influence functions is contained in Λ_{nuis}.

Estimators $\hat{\beta}$ of $\beta = \beta(P)$ with the property that there exists a random variable $D_t \equiv d(Q_t)$ with mean zero and finite variance under P such that $n^{1/2} \{\hat{\beta} - \beta\} = n^{-1/2} \sum_{t=1}^{n} D_t + o_p(1)$ are called asymptotically linear at P. By the central limit theorem and Slutsky’s theorem, any asymptotically linear estimator is consistent and asymptotically normal with asymptotic variance equal to $\text{var}(D)$. Furthermore, any two asymptotically linear estimators, say $\hat{\beta}_1$ and $\hat{\beta}_2$ with the same D are asymptotically equivalent in the sense that $n^{1/2} \{\hat{\beta}_1 - \hat{\beta}_2\} = o_p(1)$. An estimator $\hat{\beta}$ is regular at P in a semiparametric model M if its convergence to β is locally uniform (van der Vaart 1998). Any regular, asymptotically linear (RAL) estimator D equal to some influence function IF. It follows that the minimal possible variance of any RAL estimator is $\text{var}(\hat{E}F^2)$, which is referred to as the semiparametric variance bound at β at P in model M. If $\Lambda = \Lambda(P)$ is all of $L_{2,0}(P)$, then all RAL estimators have the same influence function at P.

3.2. Semiparametric Inference in Model M_1

The set $\Lambda_{ancillary}$ of conditional scores for $p[A_t, S_t | \hat{H}_t]$, for $t = 0, 1, \ldots, K$ consists of all functions of (A_t, S_t, \hat{H}_t) in $L_{2,0}(P)$ that have mean zero given \hat{H}_t. Let Λ_{nuis} denote the nuisance tangent space of model M_1. Because $\Psi \equiv \Psi^* \in M_1$ does not depend on P through $p[A_t, S_t | \hat{H}_t]$ for $t = 0, 1, \ldots, K$, we conclude that $\Lambda_{ancillary} \subset \Lambda_{nuis}$.

Robins (2004, Theorem 3.3, eq. (3.10)) proved that under model M_1,
\[
\Lambda_{nuis} = \left\{ U(q_t, \Psi^*) = \sum_{t=0}^{K} U_t(q_t, \Psi^*)_{\gamma_t} \right\},
\]
where the q_t are vector functions of dim(Ψ^*) that are unrestricted except for the requirement $E[U_t(q_t, \Psi^*)] < \infty$ where $q_t(s_t, a_t) \equiv q_t(\hat{H}_t, s_t, a_t)$ and
\[
U_t(q_t, \Psi^*) \equiv \left\{ \Delta_t(\Psi_t; \gamma_{t+1}^{(I)}) - E[\Delta_t(\Psi_t; \gamma_{t+1}^{(I)}) | \hat{H}_t] \right\} \times \{Q_t(S_t, A_t) - E[Q_t(S_t, A_t) | \hat{H}_t] \}
\]
Furthermore, $U_t(q_t, \Psi^*)$ is a doubly robust estimating function in the sense that it still has mean zero at Ψ^*_t if either (but not both) $E[\Delta_t(\Psi_t; \gamma_{t+1}^{(I)}) | \hat{H}_t]$ or $E[Q_t(S_t, A_t) | \hat{H}_t]$ is replaced by an arbitrary function of \hat{H}_t.

The identity $E[U(q_t, \Psi^*)] = 0$ suggests that one solve $P\{U(q_t, \Psi^*)\} = 0$ to estimate Ψ^*. Assuming that $E[U(q_t, \Psi^*)]$ has a unique solution and that $\frac{\partial}{\partial \Psi^*} E[U(q_t, \Psi^*)]$ is invertible, $\Psi(q)$ will be a RAL estimator of Ψ^* under standard regularity conditions. For a specific choice $q_{opt} = q_{opt}(P)$, the estimator $\hat{\Psi}(q_{opt})$ attains semiparametric efficiency bound for regular estimators of Ψ^* under model M_1. Because of its
dependence on P, q_{opt} would have to be estimated from the data. In this article, we decided not to consider the issue of finding q_{opt} and instead focus only on adjusting for the NDE assumption. Finding q_{opt} often leads to solving complicated integral equations. In practice, a heuristic choice of q that generally does not depend on the data can be used (Vansteelandt and Joffe 2014).

Notice that $\hat{\Psi}(q)$ is infeasible because $U(q, \Psi^*)$ depends on the unknowns $E[\Delta_t(\Psi_t; \Psi_{t+1})]\hat{H}_t$ and $E[Q_t(S_t, A_t)|\hat{H}_t]$. A feasible estimator $\hat{\Psi}(q)$ solves $\bar{P}_n[\hat{U}(q, \Psi)] = 0$ where $\bar{U}(q, \Psi)$ is defined like Y_d for the health outcome S_K. The intuition behind these restrictions is that, under the NDE assumption, \hat{H}_t is independent of (S_{t+1}, Y_d) and thus of any function $b_t(\hat{H}_t, S_t, Y_d)$ conditional on (\hat{H}_t, S_t), by S_{t+1} being completely randomized and the NDE assumption.

In what follows, for any $b_t, t = 0, \ldots, K$, we let $B_t \equiv \{b_t(\hat{H}_t, S_t, Y_d) : E[T_{b_t}^2] < +\infty]\}$ and $T_t \equiv \{T_{b_t} : b_t \in B_t\}$ where

$$T_{b_t} \equiv D_{b_t} - \{E[D_{b_t}|\hat{H}_t, S_t, A_t] - E[D_{b_t}|\hat{H}_t, S_t]\} - \sum_{m=t+1}^K \{E[D_{b_t}|\hat{H}_m, S_m] - E[D_{b_t}|\hat{H}_m]\},$$

with

$$D_{b_t} = \frac{b_t(\hat{H}_t, S_t, Y_d)}{W_{t+1}} (A_t - E[A_t|\hat{H}_t, S_t]).$$

Here, T_{b_t} is the residual from the projection of D_{b_t} on the space $A_{\text{ancillary}} = \{V = \sum_{t=0}^K \{V_t - E[V_t|\hat{H}_t]\}; V_t = v_t(\hat{H}_t, S_t, A_t) : E[\var(V_t|\hat{H}_t)] < +\infty\}$.

4. The NDE of Testing Assumption

The restriction

$$Y_{\overline{d}}|\overline{A}_K, \overline{\hat{A}}_K, \overline{\tilde{S}}_K$$

encodes the assumption that testing history $\overline{\hat{A}}_K$ has no direct effect on observed health outcome Y_d not through treatment $\overline{\tilde{S}}_K$. We refer to Equation (8) as the NDE on Y_d [NDE(Y_d)] assumption. The assumption means that if we intervene and set the treatment history $\overline{\tilde{S}}_K$ to any $\overline{\tilde{s}}_K$, then further intervening on testing A at any time has no effect on the health outcome Y_d. (Note however that A_t has a direct effect on the total utility $Y = Y_d - e^t \sum_t A_t$ for $e^t \neq 0$ even under the NDE assumption for the health outcome Y_d.) We will write NDE as shorthand for NDE(Y_d).

Consider the model defined by the ID Assumptions 1–3 and the assumption (8). Robins (1999) showed that such a model determines a model \mathbb{M}_{NDE} for the observed data characterized, possibly up to inequality constraints, by the following set of restrictions, with $W_t \equiv \prod_{m=t}^K p(S_m|H_m)$

$$E \left[\frac{b_t(\hat{H}_t, S_t, Y_d)}{W_{t+1}} | \hat{H}_t, S_t, A_t \right] = E \left[\frac{b_t(\hat{H}_t, S_t, Y_d)}{W_{t+1}} | \hat{H}_t, S_t \right]$$

for any function $b_t(\hat{H}_t, S_t, Y_d)$ of all the history \hat{H}_t up to time t, all the treatments S_t at t and onward, and the disease outcome Y_d.

The intuition behind these restrictions is that, under the three ID assumptions, weighting by W_{t+1}^{-1}, which is heuristically, the inverse of the probability of S_{t+1}, mimics a randomized trial in which each of the treatments in S_{t+1} are assigned independently with probability 1/2 and the testing indicator A_t is randomly assigned given the past (\hat{H}_t, S_t). Therefore, in this weighted distribution, A_t is independent of (S_{t+1}, Y_d) [and thus of any function $b_t(\hat{H}_t, S_t, Y_d)$] conditional on (\hat{H}_t, S_t), by S_{t+1} being completely randomized and the NDE assumption.

In what follows, for any b_t, $t = 0, \ldots, K$, we let $B_t \equiv \{b_t(\hat{H}_t, S_t, Y_d) : E[T_{b_t}^2] < +\infty\}$ and $T_t \equiv \{T_{b_t} : b_t \in B_t\}$ where

$$T_{b_t} \equiv D_{b_t} - \{E[D_{b_t}|\hat{H}_t, S_t, A_t] - E[D_{b_t}|\hat{H}_t, S_t]\} - \sum_{m=t+1}^K \{E[D_{b_t}|\hat{H}_m, S_m] - E[D_{b_t}|\hat{H}_m]\},$$

with

$$D_{b_t} = \frac{b_t(\hat{H}_t, S_t, Y_d)}{W_{t+1}} (A_t - E[A_t|\hat{H}_t, S_t]).$$

Here, T_{b_t} is the residual from the projection of D_{b_t} on the space $A_{\text{ancillary}} = \{V = \sum_{t=0}^K \{V_t - E[V_t|\hat{H}_t]\}; V_t = v_t(\hat{H}_t, S_t, A_t) : E[\var(V_t|\hat{H}_t)] < +\infty\}$ of the conditional scores for the testing and treatment processes.

Remark 2. Under the ID assumptions, the NDE assumption is empirically falsifiable; since the NDE(Y_d) assumption implies $E[D_{b_t}] = 0$ for all $b_t \in B_t$. Owing to limited space, we do not consider falsification tests further.

Remark 3. The projection of any random variable $C = c(O)$ on conditional scores for testing and treatment is $\Pi[C|A_{\text{ancillary}}] = \sum_{t=0}^K E[\Pi[C|\hat{H}_t, S_t, A_t]] - E[C|\hat{H}_t]$. In Appendix A.1, however, we show that the NDE assumption implies that if $C = D_{b_{b_t}}$, this projection does not depend on conditional scores for $Pr(A_m = 1|\hat{H}_m, S_m)$ for $m > t$ and $E[D_{b_{b_t}}|\hat{H}_t, S_t] = 0$ proving Equation (10) (for $m < t$, both $E[C|\hat{H}_m, S_m, A_m]$ and $E[C|\hat{H}_m]$ are zero by the NDE assumption).

We then have the following theorems, the proofs of which are deferred to Appendices A.1 and A.2.

Theorem 1. The space $\Lambda_{\text{NDE}}^\dagger$ of mean zero random variables orthogonal to the tangent space Λ_{NDE} of model \mathbb{M}_{NDE} is given by

$$\Lambda_{\text{NDE}}^\dagger = T_0 + \cdots + T_K$$

$$= \{b_t \equiv \sum_{t=0}^K T_{b_t}; b \equiv (b_0, \ldots, b_K) \} \text{ with } b_t \in B_t, t = 0, \ldots, K.$$
We prove Theorem 2 by actually proving a stronger version of double robustness in Appendix A.2, based on an alternative representation of any T_b.

5. Oracle Estimators of Ψ^* With Improved Efficiency

5.1. Suboptimal Estimators of Ψ^* With Improved Efficiency

Let the semiparametric model $M_{\text{int}} = M_1 \cap M_{\text{NDE}}$ consist of the set of observed data laws that satisfy the restrictions on M_1 and M_{NDE}. Since under model M_{NDE}, $E[T_b] = 0$ for $b = (b_0, \ldots, b_K)^T$ where $T_b \equiv \sum_{t=0}^K T_{b,t}$ and $T_{b,t}$ is defined as in Equation (10), it follows that under model M_{int} we can consider the class of estimating functions $\{U(q, b, \Psi) = U(q, \Psi) - \text{cOLS}(q, b, \Psi)T_b; b\}$ where $\text{cOLS}(q, b, \Psi) = E[U(q, \Psi)T_T]T_T^{-1}$. Note that $\hat{\Psi}(q)$ defined in Section 3 is the same as $\hat{\Psi}(q, b)$ for b identically zero. Define $J = \frac{1}{\|\Psi^*\|^2} E[U(q, b)] / \Psi^* = \frac{1}{\|\Psi^*\|^2} E[U(q)] / \Psi^*$. Since J does not depend on b, we have the following result:

Theorem 3. Suppose $\hat{\Psi}(q, b)$ is a RAL estimator of Ψ^*. Then it has influence function $f^{-1}(U(q, \Psi^*) - \text{cOLS}(q, b, \Psi)T_b)$. Consequently, $\sqrt{\pi}(\hat{\Psi}(q, b) - \Psi^*)$ is asymptotically normal with mean zero and variance equal to

$$V_{\text{oracle}}(q, b) \equiv f^{-1}(\var[U(q, \Psi) - \text{cOLS}(q, b, \Psi)E[T_bT_b^T]^{-1}]^{-T}.$$

Furthermore, $\hat{\Psi}(q)$ has influence function $f^{-1}(U(q, \Psi^*))$ and asymptotic variance $V_{\text{oracle}}(q, b = 0)$ greater than $V_{\text{oracle}}(q, b)$ (in the positive definite sense) whenever $E[U(q, \Psi^*)T_b] \neq 0$.

5.2. Near Optimal Oracle Estimators With Improved Efficiency

Our goal is to improve efficiency by finding the function $b_{\text{opt}}(q)$ that minimizes $V_{\text{oracle}}(q, b)$ for a given q. To do so, we first define the orthogonal projection of a mean zero random variable U onto a closed linear space F of mean zero random variables to be the unique element $F^* \in F$ defined as $F^* = \arg \min_{F \subseteq F} \var[U - F]$. Define $F = \arg \min_{F} \var[U - F]$ in the positive definite sense. Now for any two nested subspaces $F_1 \subseteq F_2 \subseteq \Lambda_{\text{NDE}}$, let T_{b_1} and T_{b_2} be equal to $\Pi[U(q, \Psi^*)F_1]$ and $\Pi[U(q, \Psi^*)F_2]$. From the definition of a projection, $\var[T_{b_2}] \leq \var[T_{b_1}]$. It follows that $V_{\text{oracle}}(q, b_1) \geq V_{\text{oracle}}(q, b_2)$, demonstrating that the larger the subspace Φ of Λ_{NDE} one projects on, the more efficient the estimator $\hat{\Psi}(q, b_{\text{sub}})$. It also follows that $b_{\text{opt}}(q)$ is the unique function $b = (b_0, \ldots, b_K)^T$ that satisfies $T_b = \Pi[U(q, \Psi^*)\Lambda_{\text{NDE}}]$. Here each $b_t \in \mathbb{B}_t$ is a column vector function of the same dimension as Ψ_t^*, $t = 0, \ldots, K$.

Our next task is to characterize $\Pi[U|\Lambda_{\text{NDE}}]$ for any random variable U. In Appendix A.3, we show that when U is a continuous random variable, $\Pi[U|\Lambda_{\text{NDE}}]$ is a solution to a set of complicated integral equations that do not exist in closed form. However, for a discrete random variable with finite sample space we will give below a closed form expression for $\Pi[U|\Lambda_{\text{NDE}}]$. Furthermore, in the case of a continuous U, we will derive a closed form expression for $\Pi[U|\Omega]$ for a particular subspace $\Omega \subset \Lambda_{\text{NDE}}$. We will argue that the associated estimator $\hat{\Psi}(q, b_{\text{sub}}) = \Pi[U(q, \Psi^*)|\Omega]$ should have efficiency nearly equal to that of the computationally intractable optimal estimator $\hat{\Psi}(q, b_{\text{opt}}(q))$ with $T_{b_{\text{opt}}(q)} = \Pi[U(q, \Psi^*)|\Lambda_{\text{NDE}}]$. Our results are corollaries of the next theorem, proved in Appendix A.4.

In what follows for $t = 0, \ldots, K$, let T_t be a fixed $\delta_t \times 1$ random vector and let $\Gamma_t \equiv \{d_t(H_t)T_t : d_t(H)\text{ any } 1 \times \delta_t \text{ vector with } E[d_t(H)^2] < +\infty\}$. For $j = 0, \ldots, K$, define $T_j^{(K)} = T_j$ and define also recursively for $t = K - 1, \ldots, 0$,

$$T_j^{(t)} = T_j^{(t+1)} - E \left[T_j^{(t+1)}(T_j^{(t+1)})^T | \hat{H}_{t+1} \right]$$

$$E \left[T_j^{(t+1)}(T_j^{(t+1)})^T | \hat{H}_{t+1} \right]^{-1} T_j^{(t+1)} .$$

Theorem 4. For any random variable U, $\Pi[U|\Gamma_0 + \ldots + \Gamma_K] = \sum_{t=0}^K d_t^*(\hat{H}_t)T_t$ where

$$d_t^*(\hat{H}_t) \equiv E \left[U^{\top}T_0^{(t)} | \hat{H}_t \right] E \left[T_0^{(t)}T_0^{(t)^\top} | \hat{H}_t \right]^{-1}$$

and for $t = 1, \ldots, K$,

$$d_t^*(\hat{H}_t) \equiv E \left[\left(U - \sum_{j=0}^{t-1} d_t^*(\hat{H}_j)T_j^{(t)} \right)^{\top} | \hat{H}_t \right] E \left[T_t^{(t)}T_t^{(t)^\top} | \hat{H}_t \right]^{-1} .$$

The preceding theorem has the following important consequences. Let S_t denote the sample space of the treatment variable S_t and let I_t be the card($S_t \times \ldots \times S_K$) k vector whose elements are the indicators that S_t take a specific value $\xi \in S_t \times \ldots \times S_K$, that is, $I_t \equiv (I_t(\xi))_{\xi \in S_t \times \ldots \times S_K}$. Next, for any given ξ vector $\vphi(Y^d) \equiv (\vphi_1(Y^d), \ldots, \vphi_K(Y^d))$ of linearly independent functions of Y^d, define for each $t = 0, \ldots, K$, the $\delta_t \times 1$ vector function

$$b_t^*(\hat{H}_t, S_t, Y^d) := (\vphi_1(Y^d)H_t, \vphi_2(Y^d)H_t^2, \ldots, \vphi_K(Y^d)H_t^K)^T,$$

where $\delta_t \equiv \text{card}(S_t) \times \ldots \times S_K)$ and the dependence on ξ has been suppressed in the notation. Note $b_t^*(\hat{H}_t, S_t, Y^d)$ does not actually depend on H_t. Define the set Ω^1, to be the set Γ_t with $T_{b^*}^d$ (see Equation (10) for its form) substituted for T_t. Clearly Ω^1 is a subspace of Γ_t, defined in Theorem 1. In particular, we have the following important corollary.

Corollary 1. Consider the space $\Omega = \sum_{t=0}^K \Omega_t$. Then

$$\Pi[U(q, \Psi^*)|\Omega] = \sum_{t=0}^K d_t^*(\hat{H}_t)T_{b^*,t} =: \sum_{t=0}^K T_{b_{\text{opt}},t}$$

where $d_t^*(\hat{H}_t)$ is defined as in Equations (12) and (13) but with T_t replaced by $T_{b^*,t}$ and $b_{\text{opt}} = (b_{\text{sub}}, \ldots, b_{\text{sub}}, k)^T$, where the dependence of b_{sub} on q has been suppressed in the notation. In particular, when Y is discrete and ξ is the cardinality of the sample space of Y then $\Lambda_{\text{NDE}} = \Omega$ and consequently $\Pi[U(q, \Psi^*)|\Lambda_{\text{NDE}}] = \Pi[U(q, \Psi^*)|\Omega] = \sum_{t=0}^K T_{b_{\text{opt}},t}$.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 231
Remark 4. Consider the case where \(Y \) is continuous and \(\varphi(Y) \) is the vector of the first \(\xi \) elements of a complete basis for \(L_2(\mu) \) with \(\mu \) the Lebesgue measure. Then as \(\xi \to \infty \),
\[
\Pi[\mathbb{U}(q, \Psi^*)| \Omega] = \sum_{i=0}^{K} d^i(\tilde{H}_i) T_{b^i,t}
\]
should converge to
\[
\Pi[\mathbb{U}(q, \Psi^*)| \Lambda_{\text{NDE}}].
\]
As a consequence, by choosing \(\xi \to \infty \) slowly with the sample size \(n \), the asymptotic variance \(V_{\text{oracle}}(q, b_{sub}) \) of \(\tilde{\Psi}(q, b_{sub}) \) should converge to the asymptotic variance \(V_{\text{oracle}}(q, b_{opt}) \) of \(\tilde{\Psi}(q, b_{opt}) \) and thus the oracle estimators \(\tilde{\Psi}(q, b_{sub}) \) and \(\tilde{\Psi}(q, b_{opt}) \) will be asymptotically equivalent.

6. Doubly Robust Nearly Efficient Estimation

In this section, we consider the construction of feasible estimators of \(\Psi^* \). To do so, we shall need to estimate the unknown conditional means and densities (hereafter nuisance functions) that are present in \(\tilde{\Psi}(q, b_{sub}) \), \(\tilde{\Psi}(q, b_{opt}) \) where the latter two estimators contain additional nuisance functions due to the dependence of \(b_{opt} \) and \(b_{sub} \) on the distribution \(P \). In the following to cover all cases we write the generic oracle estimator as \(\tilde{\Psi}(q, b(P)) \). We will consider the state-of-the-art cross-fit doubly robust machine learning (DR-ML) estimators (Chernozhukov et al. 2018, Smucler et al. 2019) \(\tilde{\Psi}_{cf}(q, b) \) in which the nuisance functions are estimated by arbitrary machine learning algorithms chosen by the analyst. [If \(b(P) = b \) does not depend on \(P \), then \(\tilde{b} = b \).]

We need to use sample splitting because the functions estimated by modern machine learning algorithms (e.g., deep neural nets) have unknown statistical properties and, in particular, may not lie in a so-called Donsker class (see, e.g., van der Vaart and Wellner 1996, chap. 2)—a condition generally needed for asymptotic linearity when we do not split the sample. Crossfitting can recover the information lost due to sample splitting, provided that \(\tilde{\Psi}_{cf}(q, \tilde{b}) \) is asymptotically linear.

The following algorithm computes \(\tilde{\Psi}_{cf}(q, \tilde{b}) \):

(i) The \(n \) study subjects are randomly split into two parts: an estimation sample of size \(n_1 \) and a nuisance sample of size \(n_2 = n - n_1 \) with \(n_1/n \approx 1/2 \).

(ii) Estimate all the unknown conditional expectation and density functions occurring in \(U(q, b(P), \Psi) \equiv U(q, \Psi) - c_{\text{ols}}(q, b(P), \Psi)^T T_{b(P)} \) from the nuisance sample data by machine learning. However, unconditional expectations can be estimated from the estimation sample.

(iii) Define \(\tilde{U}(q, \tilde{b}, \Psi) \) to be \(U(q, b(P), \Psi) \) except with the estimates under (ii) substituted for their estimators. Find the (assumed unique) solution \(\tilde{\Psi}^{(1)}(q, \tilde{b}) \) to \(\Pi_n[\tilde{U}(q, \tilde{b}, \Psi)] = 0 \) where \(\Pi_n \) is the sample average operator in the estimation sample.

(iv) Let
\[
\tilde{\Psi}^{(2)}(q, \tilde{b}) = \left\{ \tilde{\Psi}^{(1)}(q, \tilde{b}) + \tilde{\Psi}^{(2)}(q, \tilde{b}) \right\} / 2
\]
where \(\tilde{\Psi}^{(2)}(q, \tilde{b}) \) is \(\tilde{\Psi}^{(1)}(q, \tilde{b}) \) but with the training and estimation samples reversed.

In Appendix A.5, we provide regularity conditions under which \(\tilde{\Psi}^{(2)}(q, \tilde{b}) \) is RAL with the same influence function as \(\tilde{\Psi}(q, b(P)) \). Further we describe modified versions of \(\tilde{\Psi}^{(2)}(q, \tilde{b}) \) that should exhibit better finite sample behavior. Finally, we show that under the linear model \(\gamma_t(\tilde{H}_t, S_t, A_t; \Psi_t) = \Psi_t^T V_{t} \), for a given vector \(V_t = v_t(H_t, S_t, A_t) \), each \(\tilde{\Psi}^{(2)}(q, b) \) exists in closed form and thus is simple to compute. A more detailed discussion of this strategy is given in Remark 10 in the Appendix and also see Kallus et al. (2019) for an extended discussion and theoretical details.

We let \(\tilde{\Psi}_{ss}(q, \tilde{b}) \) denote the single sample estimator solving \(\mathbb{P}_n[\tilde{U}(q, b(P), \Psi)] = 0 \) where \(\mathbb{P}_n \) is the sample average operator in the entire sample and the unknown nuisance functions in \(U(q, b(P), \Psi) \) are estimated from all \(n \) subjects. In the sequel, we will use \(\tilde{\Psi} \) to represent both estimators, as both are in common use, although the regularity conditions under which \(\tilde{\Psi}_{ss}(q, \tilde{b}) \) is RAL are more restrictive, generally requiring nuisance functions to lie in a Donsker class. For convenience, we will assume the necessary regularity conditions hold for any given \(\tilde{\Psi} \) to be RAL, as regularity conditions are not the focus of the article.

7. Varieties of NDE Assumptions—Substantive Plausibility

In this section, we first define additional NDE assumptions that are stronger than the NDE\(^d \) assumption and discuss their differing statistical implications and substantive meaning. Let \(C_t \subseteq L_t, t = 0, \ldots, K \), be a (possibly improper or null) subset of the covariates \(L_t \). A stronger assumption than (8) is that \(\bar{A} \) has NDE on observed responses \(\bar{X}_K \) and \(Y^d \) not through treatment \(S_K \). Formally, this is the assumption that
\[
C_t, \bar{a}_{t-1}, \bar{a}_{t-1}, \gamma^d = C_t, \bar{a}_{t-1}, \gamma^d = C_t, \bar{a}_{t-1}, \gamma^d = 0 \quad \forall \bar{a}_{K}, \bar{X}_K, \bar{S}_K, t_t, \tag{16}
\]
which we refer to as the NDE\(^c \) assumption. Note, for any \(C_t \subseteq C_t \), the NDE\(^c \) assumption implies the NDE\(^c \) and NDE\(^d \) assumptions, where the NDE\(^c \) assumption is given by Equation (16) without reference to \(Y^d \). It follows from Robins (1999) that all the above results obtained under NDE\(^d \) hold under NDE\(^c \) where we replace \(D_{b_{opt}} T_{b_{opt}} B_{opt} \), and \(\Lambda_{\text{NDE}} \) with \(D_{b_{opt}} T_{b_{opt}} B_{opt} \), and \(\Lambda_{\text{NDE}} \) where the latter are defined like the former except with the set of functions \{\(b_{opt}(H_t, S_t, Y^d) \) replacing the set \{\(b_{opt}(H_t, S_t, Y^d) \). Since the latter set is contained in the former, it follows that the asymptotic variance \(V_{\text{oracle}}(q, b_{opt}) \) of \(\tilde{\Psi}(q, b_{opt}) \) is never greater and usually less than \(V_{\text{oracle}}(q, b_{opt}) \) of \(\Psi(q, b_{opt}) \), where \(b_{opt} \) is the minimizer of \(V_{\text{oracle}}(q, b_{opt}) \) over functions in \(B_{opt} \).

We next briefly discuss, via examples, how one might assess whether a particular NDE assumption is substantively plausible. Without thinking carefully, most tend to assume that a test will not have a direct effect on an outcome not through the treatment \(S_t \). Therefore, it will be pedagogically most useful to give examples where this is not the case. In the HIV setting, a test may have an adverse effect on mortality \(Y^d \) not through ART \(S_t \), hence falsifying the NDE\(^d \) assumption, if poor test results (high HIV RNA and low CD4 count) motivate physicians to provide life-extending ancillary care such as prophylactic therapy against opportunistic infections or a list of avoidable behaviors likely to increase viral replication. This is true whether the ancillary care is generally (prophylactic therapy) or rarely (a list of avoidable behaviors) recorded in the medical record.
Consider next an example in which a test has no effect on Y^d except through S_t but does have an effect on a covariate C_t. A cystoscopic exam A_{t-1} to evaluate recurrence of a bladder cancer can cause intense pain Y^d, except by (possibly delaying) chemotherapy S_t; hence NDE(Y^d) is true but NDE(C_t, Y^d) is false. In this setting, an analyst who uses the estimator $\hat{\Psi}(q, b_{opt})$ will succeed in gaining efficiency without incurring bias while an analyst who uses $\hat{\Psi}(q, b_{opt})$ may introduce bias as \bar{T}_Q may not have mean zero.

Finally, we consider an example wherein the assumption that “test at time t has NDE on the results of later tests” is false. To formalize, we follow Robins, Orellana, and Rotnitzky (2008) and assume the existence of an additional variable R^*_t that in conjunction with A_{t-1} determines R_t by $R_t = A_{t-1}R^*_t + (1 - A_{t-1})?$. That is, if a test is performed at $t - 1$, the underlying variable R^*_t is revealed; otherwise R^*_t is hidden and recorded as $?$. Let $R^*_{t, a_{t-1} = 1, l_{t-1}}$ and $R^*_{t, a_{t-1} = 0, l_{t-1}}$ be the corresponding counterfactuals. We assume R^*_t just precedes R_t in our temporal ordering, as would be the case if a test (e.g. a cardiac stress test) ordered at visit $t - 1$ was both conducted and results reported at visit t. With minor notational changes, we could have defined $R_t = A_{t-1}R^*_t + (1 - A_{t-1})b^*$, with R^*_t just preceding S_{t-1}, if the results of a test ordered and conducted at $t - 1$ are not available till t.

We say that the NDE(R^*_t, Y^d) assumption of no effect of testing on R^*_t, Y^d holds if

$$R^*_{t, a_{t-1} = 0, l_{t-1}} = R^*_{t, a_{t-1} = 1, l_{t-1}},$$

$$Y^d_{a_{t-1}, \bar{x}_{t-1}, l_{t-1}} = Y^d_{a_{t-1}, \bar{x}_{t-1}}, \forall \bar{x}_{t-1}, a_{t-1} = 0, 1, t.$$

Consider a study of an effect of a drug S_t on brain amyloid content Y^d in early Alzheimer’s disease in which a test A_t of mental ability R^*_{t+1} is repeatedly administered to some but not other participants. Then, even when the NDE(Y^d) holds, the NDE(R^*_t, Y^d) assumption will not hold if repetition has a direct effect on later test scores R^*_t due to “practice effects.” That is, $R^*_{t, a_{t-1} = 0, l_{t-1}} = R^*_{t, a_{t-1} = 1, l_{t-1}}$ will generally be less than $R^*_{t, a_{t-1} = 1, l_{t-1}} = R^*_{t, a_{t-1} = 0, l_{t-1}}$.

Furthermore as in Robins (1999) we modify the identifying assumptions to incorporate R^*_t, by (a) modifying the sequential exchangeability assumption both by adding the counterfactual R^*_{t+1} and conditioning on R^*_t (see equation (27) in Appendix A.7), (b) having $R^*_t \equiv S_t(A_t)\bar{H}_t$ satisfy consistency, and (c) assuming $\bar{H}_t \perp (S_t, A_t)\bar{H}_t$ to ensure that the modified ID assumptions both imply the unmodified ID assumptions and leave $\Pi_m \equiv \Pr[A_m = 1|\bar{H}_m, S_m] = \Pr(S_m|\bar{H}_m)$ unchanged, with no dependence on R^*_m except through R_m.

Suppose the NDE(R^*_t, Y^d) and modified ID assumptions hold. Then we would like to estimate $\hat{\Psi}(q, b_{opt})$, where

$$T^*_{b_{opt}} = \Pi[\{U(q, \Psi^*)|\Lambda_r^{opt}\}] \tag{\ref{eq:optimal}} .$$

(However it is not possible to project onto Λ_r^{opt}, because though R^*_{t+1} is observed, R^*_{t+1} is unobserved except for subjects with $A_{t+1} = 1_{r_{t+1}}$. Instead, we project onto the ortho-complement of the tangent space of the observed data model. Specifically and, more generally, let $M_{NDE obs}(C_t, R^*_t, Y^d)$ be the model defined by the NDE(R^*_t, C_t, Y^d) and modified ID assumptions. Let $M_{NDE obs}(C_t, R^*_t, Y^d)$ be the induced model for the observed data O. Let $\Lambda_r^{opt, \text{NDE obs}}$ be the observed data ortho-complement to the tangent space of $M_{NDE obs}(C_t, R^*_t, Y^d)$. In Appendix A.7 we show that $\Lambda_r^{opt, \text{NDE obs}}$ is a strict subset of $\Lambda_r^{opt, \text{NDE}}$, but a superset of $\Lambda_r^{opt, \text{NDE}}$. In Theorem 6 and Corollary 4 of Appendix A.7, we provide closed-form expressions both for $\Lambda_r^{opt, \text{NDE}}$ and for the projection of any random variable onto a large subspace Ω_r^{opt} of $\Lambda_r^{opt, \text{NDE}}$ using Theorem 4 and Corollary 1. Hence to gain maximum efficiency we use the algorithm of Section 6 to construct feasible versions of the oracle estimators $\hat{\Psi}(q, b_{opt})$ or $\hat{\Psi}(q, b_{opt})$ where $T^*_{b_{opt}} = \Pi[U(q, \Psi^*)|\Lambda_r^{opt, \text{NDE obs}}]$ and $T^*_{b_{opt}} = \Pi[U(q, \Psi^*)|\Omega_r^{opt, \text{NDE obs}}]$.

8. Efficiency and Intuition

Above we described how to construct novel highly efficient estimators under various NDE assumptions. In this section, we provide guidance and intuition as to when novel estimators will achieve small versus large gains in efficiency compared to estimators that do not incorporate any NDE assumption.

To do so, we begin by discussing the article of Caniglia et al. (2019). The authors of that article analyzed data from an observational study that followed 41,724 HIV infected individuals on first line anti-retroviral therapy (ART) whose HIV RNA had been suppressed to less than 200 copies/ml at baseline. They estimated the optimal testing and treatment strategy among four candidate regimes. Testing costs were ignored. The utility $Y = Y^d$ was the indicator of survival at 60 months of follow-up; hence the expected counterfactual utility $\theta_g \equiv \E[Y^d_g]$ is the probability of surviving to 60 months under regime g. See Robins, Orellana, and Rotnitzky (2008) and later Remark 5 for the case of costly tests. Data were recorded at monthly intervals and the ID assumptions of Section 2 were assumed to hold. Their analysis compared the standard IPW estimator θ_{ipw} with a novel IPW estimator $\theta_{ipw, g}$ introduced in Robins, Orellana, and Rotnitzky (2008). Below we show that the latter is a consistent estimator of θ_g under the NDE(R^*_t, Y^d) assumption, but not under the weaker NDE(Y^d) assumption; the former is consistent regardless of whether any NDE assumption holds. They found $\theta_{nade-\text{ipw}, g}$ to be 50 times as efficient as the usual IPW estimator $\theta_{ipw, g}$. In this subsection we describe results in Caniglia et al. (2019) and provide an intuitive understanding of the reason for such a remarkable efficiency gain.

Caniglia et al. (2019) compared θ_g for four candidate regimes g formed by crossing two testing with two treatment regimes. For reasons of both pedagogy and space, in the main text, we describe a somewhat simplified version of these regimes. Appendix A.6 compares these approximate regimes with the actual regimes used for data analysis. The two testing regimes g_x require simultaneous tests for both HIV RNA and CD4 count at baseline and then every 11 months while RNA < 200 copies/ml and CD4 > x counts/ml for $x \in \{350, 500\}$: otherwise the tests are performed every 5 months. The two treatment regimes g_z require one to switch to second line ART therapy 2 months after the first time the measured RNA level exceeds z copies for $z \in \{200, 1000\}$. Let $g_{xz} = (g_x, g_z), x \in \{350, 500\}, z \in \{200, 1000\}$ denote the four regimes.
At baseline all 41,724 subjects can follow each of the 4 regimes. To avoid unnecessary clutter, we henceforth restrict attention to a comparison of the regimes $g_{x=350,z=200}$ and $g_{x=500,z=200}$. Consider first an analysis that does not impose the NDE assumption. A subject is censored under (i.e., stops following) regime $g_{x,z}$ at the first month t that either the subject’s observed treatment indicator S_t or testing indicator A_t is incompatible with $g_{x,z}$, meaning that either $S_t = S_1$ or $A_t = A_1$. For regime $g_{x=500,z=200}$ of the 41,724 initially following the regime, the number still following the regime (i.e., still uncensored) at month 12, 24, 36, 48, 60 were 8926, 2634, 949, 348, 152. The corresponding numbers 4806, 1006, 204, 94, 45 for $g_{x=350,z=200}$ were even smaller. The explanation for the rapid decrease in the number of uncensored subjects is that most individuals were tested more frequently in the observed data than is allowed by either of the two testing regimes under consideration. In fact, even under regime $g_{x=500,z=200}$, well over 95% of the censoring events were due to early retest (i.e., $A_t = 0, A_1 = 1$).

Caniglia et al. (2019) constructed a so-called NDE dataset in which subjects are no longer censored from regime $g_{x,z}$ for reasons of overly frequent testing, thereby increasing the number of uncensored subjects by roughly one to two orders of magnitude. The estimator $\hat{\theta}_{\text{ipw-nde},g_{x,z}}$ is computed from the uncensored subjects in the NDE dataset and thus would be expected to have a much smaller variance than $\hat{\theta}_{\text{ipw},g_{x,z}}$. In fact, Caniglia et al. (2019) reported the nonparametric bootstrap variance estimators of the two different IPW estimators of the difference $\hat{\theta}_{\text{ipw-nde},g_{x=350,z=200}} - \hat{\theta}_{\text{ipw},g_{x=350,z=200}}$ and $\hat{\theta}_{\text{ipw-nde},g_{x=500,z=200}} - \hat{\theta}_{\text{ipw},g_{x=500,z=200}}$ was 1.69×10^{-4} compared to 3.22×10^{-6} for the variance of $\hat{\theta}_{\text{ipw-nde},g_{x=350,z=200}} - \hat{\theta}_{\text{ipw},g_{x=350,z=200}}$, indicating a relative efficiency in favor of the latter of 53-fold. However, as noted above, if the relevant NDE assumptions fail to hold, $\hat{\theta}_{\text{ipw-nde},g_{x,z}}$ is inconsistent for $\theta_{g_{x,z}}$.

8.1. Definitions and Statistical Properties of $\tilde{\theta}_{\text{ipw},g}$ and $\tilde{\theta}_{\text{nde-IPW},g}$

Prior to the current article the estimator $\tilde{\theta}_{\text{nde-IPW},g}$ was the only estimator in the literature that leveraged the NDE assumptions to increase efficiency. Thus, it is of interest to understand how $\tilde{\theta}_{\text{nde-IPW},g}$ is related to the estimators proposed in the current article that leverage NDE assumptions by subtracting from an inefficient estimator the projection of its influence function onto the ortho-complement to the tangent space of an NDE model. In this section, we study this relationship after we formally define $\tilde{\theta}_{\text{nde-IPW},g}$. Recall $W_t \equiv \prod_{m=1}^{K} p(S_m|\hat{H}_m)$ and $\Pi_m \equiv \Pr(A_m = 1|\hat{H}_m, S_m)$ and let \hat{W}_t and $\hat{\Pi}_m$ be corresponding estimates. We ignore testing costs so $Y = Y_d$. Under the ID assumptions and regardless of whether the NDE assumption holds, $\theta_g = E[Y_g]$ is identified by the IPW representation $E[V_{\text{ipw},g}]$ of the g-formula where

$$V_{\text{ipw},g} \equiv \frac{K}{\sum_{t=0}^{K} \Pr(A_t = A_{t,g}, S_t = S_{t,g}) Y} \sum_{t=0}^{K} \prod_{t=0}^{K} \frac{\prod_{t=0}^{K} \Pr(A_t = A_{t,g} | \hat{H}_t, S_t) W_0}{\sum_{t=0}^{K} \prod_{t=0}^{K} \Pr(A_t = A_{t,g} | \hat{H}_t, S_t) W_0}.$$

Note the $K - 1$ in the last expression is licensed by our earlier assumption that $A_K = A_{K,g} = \Pi_K = 0$. The quantities $\hat{\theta}_{\text{ipw},g} = \mathbb{P}_n[V_{\text{ipw},g}]$ and $\hat{\theta}_{\text{nde-IPW},g} = \mathbb{P}_n[V_{\text{nde-IPW},g}]$ are, respectively, the oracle IPW estimator and the IPW estimator of θ_g, where, for any “oracle” random vector Q depending on unknown conditional expectations and densities, Q replaces these unknown functions by estimates. By consistency and $g = (g_{a,g}, g_{t,g})$ having both the testing and treatment regimes g_a and g_t deterministic, one can easily show that $V_{\text{ipw},g}$ is a function of the observed data assuming the oracle knowledge that all the nuisance functions are known. (Hence $V_{\text{ipw},g}$ is a statistic without such oracle knowledge.) Furthermore, a necessary condition for $V_{\text{ipw},g}$ to be nonzero is that $H_{t,g} = H_t$ for $t = 0, \ldots, K$, and $S_{g} = g_a, g_t (H_{\bar{K}})$. A subject is said to have beenensored under regime g if and only if for some $t \leq K$ at least one of the following 4 events happens: $[S_t = 0, S_{t,g} = 1, |S_t = 1, S_{t,g} = 0], [A_t = 0, A_{t,g} = 1]$, and $[A_t = 1, A_{t,g} = 0]$. Hence all censored subjects have $V_{\text{ipw},g} = 0$.

Robins, Orellana, and Rotnitzky (2008) introduced the NDE-IPW estimator $\tilde{\theta}_{\text{nde-IPW},g} = \mathbb{P}_n[V_{\text{nde-IPW},g}]$ with oracle version $\tilde{\theta}_{\text{nde-IPW},g} = \mathbb{P}_n[V_{\text{nde-IPW},g}]$, where

$$V_{\text{nde-IPW},g} = \prod_{t=0}^{K} \frac{\prod_{t=0}^{K} \Pr(A_t = A_{t,g} | \hat{H}_t, S_t) W_0 \hat{W}_t}{\sum_{t=0}^{K} \prod_{t=0}^{K} \Pr(A_t = A_{t,g} | \hat{H}_t, S_t) W_0}.$$

Note $V_{\text{nde-IPW},g}$ differs from $V_{\text{ipw},g}$ only in that we have removed the first factor in set braces. A subject who experiences the event $[A_t = 1, A_{t,g} = 0]$ need not have $V_{\text{nde-IPW},g} = 0$. Therefore, we will say a subject is NDE-censored under g (and thus not included in the NDE dataset under regime g) if and only if, for some $t \leq K$, at least one of the three NDE censoring events $[S_t = 0, S_{t,g} = 1], [S_t = 1, S_{t,g} = 0], [A_t = 0, A_{t,g} = 1]$ happens.

Remark 5. If we wish to incorporate testing costs so Y need not equal Y_d, it is necessary to replace Y in the definition of $V_{\text{nde-IPW},g}$ by $Y_g = Y + \sum_{t=0}^{K-1} c^t [A_t = 1, A_{t,g} = 0]$ where Y_g adds to Y the number of times t that a subject experiences the event $[A_t = 1, A_{t,g} = 0]$ multiplied by the cost c^t of the test. To see why, note that, for non-NDE-censored subjects under regime g, the observed total utility Y_g is less than the utility Y_g under regime g by c^t times the difference in the number of tests

$$\sum_{t=0}^{K-1} [A_t = 1, A_{t,g} = 0].$$

All the results given below continue to hold when testing costs are included if we substitute Y_g for Y in the definitions of $V_{\text{nde-IPW},g}$ and $V_{\text{ipw},g}$.

There is a subtle, but critical point we have glossed over: assuming that the nuisance functions are known, it is not immediately clear that $V_{\text{nde-IPW},g}$ itself is a statistic (i.e., a function
of the observed data \(O \) with probability 1) because, unlike for \(V_{ipw,g} \), an appeal to consistency does not suffice (since if the event \([A_{t-1} = 1, A_{t-1,g} = 0] \) occurs, then \(\tilde{H}_{t,g} \neq \tilde{H}_t \) for \(t' \geq t \) and \(\tilde{H}_{t,g} \) may then not be a function of the observed data. Given a testing and treatment regime \(g \) of interest, the following lemma, proved in Appendix A.8, provides sufficient conditions for \(V_{nde-ipw,g} \) to be a statistic. As in Section 7, we assume there exists an underlying variable \(R_{t-1}^g \) that is revealed only if a test is performed, that is, \(R_{t-1} = A_1 R_{t-1}^g + (1 - A_1) ? \).

Lemma 1. Suppose for regime \(g \) (i) \(g_t(\tilde{h}_t) \) depends on \(\tilde{h}_t \) through and only through the testing results \(\tilde{r}_t \), covariates \(\tilde{c}_t \), and treatments \(\tilde{s}_{t-1} \); equivalently \(g_t(\tilde{h}_t) = g_t^f(\tilde{h}_t) \) for known \(g_t^f \) where \(\tilde{h}_t^f \equiv (\tilde{g}_{t-1}, \tilde{c}_t, \tilde{r}_t) \). Then, if (ii) the NDE(\(C_K^*, R_K^* \)) assumption holds, \(V_{nde-ipw,g} \) is a statistic.

Remark 6.

1. We could have included \(\tilde{a}_{t-1} \) in \(\tilde{h}_{t-1} \) but it would have been redundant since \(\tilde{a}_{t-1} \) is deterministic function of \(\tilde{r}_t \), as \(r_m = ? \) implies \(a_{m-1} = 0 \) and \(r_m \neq ? \) implies \(a_{m-1} = 1 \) for \(1 \leq m \leq K \). Had we included \(\tilde{a}_{t-1} \) in \(\tilde{h}_{t-1} \), then \(h_t \equiv (\tilde{h}_t^f, \tilde{s}_t^\circ \tilde{c}_t) \) would differ from \(h_t^f \) only through the components \(\tilde{l}_t \circ \tilde{c}_t \) of \(\tilde{h}_t \) not included in \(h_t \). Further the Lemma implies that, if the NDE(\(C_K^*, R_K^* \)) assumption holds, then, for non-NDE-censored subjects, \(Y_t = Y + \sum_{t=0}^{K-1} [A_t - 1, A_{t,g} = 0] \) is a statistic and hence generalizes Remark 5 by allowing \(c^f(t, \tilde{c}_t, \tilde{r}_t, \tilde{s}_t) \) to replace \(c^f \). See Remark 14 in Appendix A.8 for additional discussion.

2. To understand the need for the NDE(\(R_K^* \)) assumption in Lemma 1, suppose the assumption fails to hold and consider the following counterexample. Consider a regime \(g \) defined by \(S_0 = 0, A_0 = 0, S_1 = 1, A_1 = 1, R_2 \equiv R_2^{a_{t}=1,a_{t+1}=1, a_{t}=0, a_{t+1}=1} = 1, S_2 = 1 \), we cannot compute \(R_2 = R_2^{a_{t}=0,a_{t+1}=0, a_{t}=0, a_{t+1}=1} \) and thus \(S_2 \) from the observed data because \(A_0 \neq A_{t,g} \). Hence \(V_{nde-ipw,g} \) is not a statistic. However if the NDE(\(R_K^* \)) assumption holds, \(R_2 = R_2^{a_{t}=0,a_{t+1}=1} \) and thus \(V_{nde-ipw,g} \) is a statistic. An analogous counterexample can be constructed when the NDE(\(C_K^* \)) assumption fails to hold.

The next lemma gives conditions under which \(V_{nde-ipw,g} \) is unbiased for \(\theta_g = E[Y_t] \).

Lemma 2. Suppose the modified ID assumptions of Section 7 hold and \(g_t^f \) depends only on \(\tilde{r}_t, \tilde{c}_t \), and \(\tilde{s}_{t-1} \). Then the NDE(\(C_K^*, R_K^*, Y^d \)) assumption implies that \(E[V_{nde-ipw,g}] = \theta_g \) and, thus, also that \(\hat{\theta}_{nde-ipw,g} = P_n[V_{nde-ipw,g}] \) is a RAL estimator of \(\theta_g \) under regularity conditions.

Remark 7. It is of interest that the NDE(\(C_K^*, R_K^* \)) assumption was already required for \(V_{nde-ipw,g} \) to even be a statistic. Robins, Orellana, and Rotnitzky (2008) proved Lemma 2 under the stronger NDE(\(L_K, R_K^*, Y^d \)) assumption; inspection of their proof shows they actually proved Lemma 2; in fact, they showed that Lemma 2 remains true without requiring \(\Pi_m \equiv (A_m = 1|H_m, S_m, \pi) \) be bounded away from 1.

Here we offer an alternate proof of this lemma that reveals the relationship of \(V_{nde-ipw,g} \) to our earlier discussions of semiparametric models and their tangent spaces. Corollary 2 below shows that Lemma 2 follows directly from Lemma 3. In our proof of Lemma 3 in Appendix A.8, we show that the estimator \(\hat{\theta}_{nde-ipw,g} \) (and its feasible version \(\hat{\theta}_{nde-ipw,g} \)) is a member of a much larger class of estimators to which the results we obtain for \(\theta_{nde-ipw,g} \) (and its feasible version \(\theta_{nde-ipw,g} \)) also apply.

The model \(M_{np, obs} \) for the observed data defined by the modified ID assumptions has tangent space \(\Lambda = L_2(0, P) \), as the model places no restrictions on the distribution of \(O \). It follows that the functional \(\theta_g = E[V_{ipw,g}] \) has a unique influence function \(IF_{ipw,g} \equiv V_{ipw,g} - \Pi[V_{ipw,g}|-\Lambda_{ancillary}] - \theta_g \) in model \(M_{np,obs} \), which is thus also an influence function in the smaller model \(M_{nde-ipw}(C_K^*, R_K^*, Y^d) \).

Lemma 3. Under the assumptions of Lemma 2, \(IF_{ipw,g} - \theta_g - \{V_{nde-ipw,g} - \Pi[V_{nde-ipw,g}|-\Lambda_{ancillary}]\} \in \Lambda^{\ast}_{nde-ipw,obs} \).

The corollary below then follows from the fact that in any semiparametric model the sum of any element of the orthocomplement to the tangent space and an influence function is itself an influence function.

Corollary 2. Under the assumptions of Lemma 2, \(IF_{nde-ipw,g} \equiv V_{nde-ipw,g} - \Pi[V_{nde-ipw,g}|-\Lambda_{ancillary}] - \theta_g \) is an influence function in model \(M_{nde-ipw}(C_K^*, R_K^*, Y^d) \) and thus \(V_{nde-ipw,g} \) has mean \(\theta_g \).

This following remark summarizes the implications of the above results.

Remark 8.

1. Lemma 3 fails to hold if we replace \(\Lambda^{\ast}_{nde-ipw,obs} \) with the orthocomplement of any model for which the NDE assumption only holds for a strict subset of \((C_K, R_K^*, Y^d) \), since \(V_{nde-ipw,g} - \Pi[V_{nde-ipw,g}|-\Lambda_{ancillary}] \) explicitly depends on each of \(Y^d, C_K \), and \(R_K^* \). Indeed, unless the NDE(\(C_K^*, R_K^* \)) assumption holds, \(V_{nde-ipw,g} - \Pi[V_{nde-ipw,g}|-\Lambda_{ancillary}] \) is not a function of the observed data. (So neither is \(\hat{\theta}_{nde-ipw,g} - \Pi[V_{nde-ipw,g}|-\Lambda_{ancillary}] \), where \(\Pi \) denotes the projection onto the space \(\Lambda_{ancillary} \) with all nuisance functions replaced by their estimates.)

2. Next suppose, we are only willing to assume model \(M_{nde}(Y^d) \) that just imposes the NDE \(Y^d \) and modified ID assumptions. Our goal is again to estimate \(\hat{\theta}_g \) for a regime \(g \) that depends on \(\tilde{r}_t, \tilde{c}_t \), and \(\tilde{s}_{t-1} \) so \(\hat{\theta}_{nde-ipw,g} \) (and hence \(\hat{\theta}_{nde-ipw,g} \)) is not a statistic. Nevertheless we can still improve upon the efficiency of \(\hat{\theta}_{nde-ipw,g} \).

We first give the oracle version of the procedure. Let \(U_{ipw,g}(\theta) = V_{ipw,g} - \Pi[V_{ipw,g}|-\Lambda_{ancillary}] - \theta \) so \(U_{ipw,g}(\theta) = IF_{ipw,g} \) is an influence function for \(\theta_g \) in \(M_{nde}(Y^d) \). It follows that \(\hat{\theta}_{ipw,g}(b_{opt,ipw,g}) \) solving \(\mathbb{E}[U_{ipw,g}(\theta, b_{opt,ipw,g})] \)
This simulation study explores in greater depth DGPs under which \(\hat{\theta}_{\text{nde-ipv}} \) is much more efficient than \(\hat{\theta}_{\text{ipv}} \). The study also relates these estimators to estimators of the optimal value function \(\mathbb{E}[Y_{\text{opt}}] \) based on opt-SNMMs considered in Section 3.

We consider a much simplified version of the HIV study of Caniglia et al. (2019) in which \(K = 1 \) with time-ordered random variables: \(A_0, R_1, S_1, Y, Y' \). Here \(A_0 \) is the indicator of having an HIV RNA test; \(R_1 \) is the test result: \(R_1 = 1 \) if \(A_0 = 0 \) and is \(R_1 = 0 \) if \(A_0 = 1 \); \(R_1 \) is the CD4 count dichotomized as \(R_1 = 0 \) if low and \(R_1 = 1 \) otherwise; \(S_1 \) is the indicator of treatment (i.e., of switching to second line ART); \(Y' \) is a health utility that is a decreasing function of HIV RNA levels at time \(K + 1 \); \(Y := Y - c'A_0 \) with \(c' = 3 \) is the overall observed utility incorporating the cost of testing. Since we are including the cost of testing we replace \(Y \) by \(Y_g = Y + 1[A_0 = 1, A_{0,g} = 0] \) in defining \(\hat{\theta}_{\text{ipv}} \) and \(\hat{\theta}_{\text{nde-ipv}} \) as discussed in Remark 5. \(Y_g \) is just the health utility \(Y' \) for any regime with \(A_{0,g} \equiv 0 \).

Our DGP was designed such that (i) the NDE \((R_1, Y') \) and modified ID assumptions hold and (ii) \(g^\text{opt} := (\alpha^\text{opt}_0 = 0, \alpha^\text{opt}_1 = 1) \) and hence \(\theta_{\text{opt}}^\text{opt} := \mathbb{E}[Y_{A_0=0,S_1=1}] \equiv \mathbb{E}[Y_{A_0=0,S_1=1}] \). Simulations with more complex DGPs with \(g^\text{opt} \) depending on \(R \) can be found in Appendix A.9.

The DGP is

- \(A_0 \sim \text{Bernoulli}(\rho), \) with \(\rho \in \{0.1, 0.2, \ldots, 0.8, 0.9, 0.95, 0.99\}; \)
- \(R_1 \sim \text{Bernoulli}(0.5); \)
- \(R_1 = R_1^* \) if \(A_0 = 1 \) and \(\text{else} \);
- \(S_1 \sim \text{Bernoulli}(0.15) \{ A_0 = 1, R_1 = 1 \} + \text{Bernoulli}(0.85) \{ A_0 = 1, R_1 = 1 \} + \text{Bernoulli}(0.15) \{ A_0 = 1, R_1 = 1 \}; \)
- \(Y^d := N(-5R_1^2 + 2S_1R_1^* - 0.1S_1(1 - R_1^*), 1); \)

Since \(A_0 \) is neither a direct cause of \(Y \) nor of \(R_1^* \), the NDE \((R_1^*, Y^d) \) assumption holds. The sample size was \(n = 2.5 \times 10^4 \) or \(5 \times 10^4 \). We computed the “truth” based on a single simulated dataset with sample size \(10^7 \). Monte Carlo summary statistics are based on 100 replications. The R codes for the simulation studies are provided in the online supplementary materials.

We note several other properties of our DGP. Whenever \(K = 1 \), it follows from the explicit representation of \(\Lambda_{\text{nde-obs}} \), given in Appendix A.7 that the ortho-complements to the observed data tangent spaces in models \(\mathbb{M}_{\text{nde}}(Y^d) \) and \(\mathbb{M}_{\text{nde}}(R_1^*, Y^d) \) are equal; that is, \(\Lambda_{\text{nde}} \equiv \Lambda^\perp_{\text{nde-obs}} \) because the latter cannot be a function of \(R_1 \) or \(R_1^* \). We further note that, as \(\rho \to 1 \), the probability of the event \(\{ A_0 = 1, A_{0,g} = 0 \} \) that testing occurred too early in the observed data increases to 1, mimicking what happened in Caniglia et al. (2019) discussed in Section 8. We are thus interested in precisely how \(\rho \) affects the efficiency to be gained by imposing the NDE assumption.

We did not need or use sample splitting in our analyses because \(A_0, R_1, S_1 \) are discrete with few levels; we estimated their joint distribution by their empirical distribution. We approximate \(\Lambda_{\text{nde}} \) by \(\Omega \) using natural spline transformations \(\varphi \) with \(\xi = 6 \). More precisely, in our simulation, \(\Omega := \{d_0 \varphi \}_{d_0 \in \mathbb{R}^2}\), with \(b_0(\tilde{H}_0, \tilde{S}_0, Y) \equiv b_0(S_1, Y) \equiv (S_1 \varphi(Y)^T, (1 - S_1) \varphi(Y)^T)^T \).

Again, for any \(U, \Pi(U|\Omega) = d_0 \varphi \Pi_{\text{var}}(\tilde{S}_0, Y) \) (following the notation in Corollary 1), with \(\bar{d}_0 = \Pi(U|\Omega) \Pi(\tilde{U}_{\text{var}}|\tilde{S}_0, Y) \) and \(\bar{d}_0 \) as in Equation (10), with \(b_0 \) replaced by \(b_0(S_1, Y) \). The feasible version of \(\Pi(U|\Omega) \) in our simulation is \(\tilde{U}_{\text{var}} := \Pi(U|\Omega) \hat{\varphi}_{\text{nde}}(\tilde{S}_0, Y) \), with \(\tilde{d}_0 = \tilde{P}_n(\Pi_U|\Omega)[\tilde{P}(\tilde{U}_{\text{var}}|\tilde{S}_0, Y)^T]^{-1} \) and \(\tilde{V}_{\text{var}} \) is \(\tilde{V}_{\text{var}} \) with all unknown nuisance functions replaced by their empirical version as described above.

We then used the entire sample to estimate \(\theta_{\text{opt}} \) with each of the following estimators in our simulation:
where the oracle version of \(\tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}; \tilde{\Psi}) \equiv \Delta_0(\tilde{\Psi}_0; \tilde{\Psi}_1) + \gamma_0(\theta^\text{opt}(\tilde{\Psi}_0); \tilde{\Psi}_0) - \tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}) \) is defined in Equation (7). For the last two estimators, we fit a saturated opt-SNMM. In a saturated opt-SNMM, \(\Psi^* \) is 7 dimensional with \(6 = 2 \times 3 \) parameters for the effect of \(\hat{H}_1 \) on \(Y_g \) within levels of \(\hat{H}_1 = (A_0, R_1) \) and 1 parameter for the effect of \(A_0 \).

9.2. Simulation Results

In the simulation, at both sample sizes \(n = 2.5 \times 10^4 \) or \(5 \times 10^4 \), the optimal regime estimate from our saturated opt-SNMM model was equal to the true optimal regime \(g^\text{opt} = (a_0 = 0, s_1 = 1) \) in each of the 100 replications. Because \(\tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}) \) and \(\tilde{\theta}_{\text{IPW},g,\text{opt}} \) are both Fisher consistent nonparametric MLEs of \(\theta^\text{opt} \) in the absence of the NDE assumption, we expected and empirically verified that they are algebraically identical in each of the 100 replications. Furthermore since \(\tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}; \tilde{\Psi}) \) and \(\tilde{\theta}_{\text{IPW},g,\text{opt}}(\tilde{\Psi}_{\text{sub},g,\text{opt}}) \) are then computed by subtracting the empirical projections on the same space \(\Omega \), we expected and empirically verified that they too are algebraically identical. As a result we do not separately report results for \(\tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}) \) or \(\tilde{\theta}_{\text{SNMM},g,\text{opt}}(\tilde{\Psi}; \tilde{\Psi}_{\text{sub},g,\text{opt}}) \).

The results of the simulation study are in Figure 1. The results are consistent with the intuition we gained in Section 8. In Figure 1, we plot the following as a function of \(\rho \): (1) in the left panel, the Monte Carlo variances of \(\tilde{\theta}_{\text{IPW},g,\text{opt}}^{\text{opt}} \) (black), \(\tilde{\theta}_n\text{de-IPW,}g,\text{opt} \) (blue), \(\tilde{\theta}_{\text{IPW},g,\text{opt}}(\tilde{\theta}_{\text{sub},g,\text{opt}}) \) (red) and \(\tilde{\theta}_{n\text{de-IPW,}g,\text{opt}}(\tilde{\theta}_{\text{sub},g,\text{opt}}) \) (green); and (2) in the right panel, the inverse relative efficiencies (REs) of \(\tilde{\theta}_n\text{de-IPW,}g,\text{opt} \) (black), \(\tilde{\theta}_{\text{IPW},g,\text{opt}}(\tilde{\theta}_{\text{sub},g,\text{opt}}) \) (red) and \(\tilde{\theta}_{n\text{de-IPW,}g,\text{opt}}(\tilde{\theta}_{\text{sub},g,\text{opt}}) \) (green) against \(\tilde{\theta}_{\text{IPW},g,\text{opt}}^{\text{opt}} \).

We now summarize the results of Figure 1:

- In the left panel of Figure 1, the Monte Carlo variance of \(\tilde{\theta}_{\text{IPW},g,\text{opt}} \) increases dramatically as \(\rho \) (and thus the probability of the event \(A_0 = 1, A_0 = 0 \)) approaches 1. The variance increases because all subjects with \(\rho = 1 \) are censored so \(\tilde{\theta}_{\text{IPW},g,\text{opt}}^{\text{opt}} = 0 \). In contrast, the Monte Carlo variance of the three estimators that leverage the NDE assumption are stable as \(\rho \) varies and cannot be easily distinguished from one another at this scale.
- In the right panel of Figure 1, we compare the inverse RE of the three estimators leveraging the NDE assumption relative to the estimator \(\tilde{\theta}_{\text{IPW},g,\text{opt}} \). As \(\rho \) approaches 1, the inverse relative efficiency of the three estimators decreases to 0.
When ρ is far from 1, the estimators $\tilde{\theta}_{\text{ipw},\text{opt}}(\hat{b}_{\text{sub,ipw},\text{opt}})$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$ (red and green curves, which are nearly on top of each other) are more efficient than $\hat{\theta}_{\text{nde-ipw},\text{opt}}$ because the former two are nearly semiparametric efficient in the model $M_{\text{NDE}}(Y^d)$, as they are residuals from the projection of an influence function onto a large subspace Ω of the ortho-complement Λ_{NDE} to the tangent space of $M_{\text{NDE}}(Y^d)$. However, as ρ approaches 1, the variance of $\hat{\theta}_{\text{nde-ipw},\text{opt}}$ converges from above to that of $\tilde{\theta}_{\text{ipw},\text{opt}}(\hat{b}_{\text{sub,ipw},\text{opt}})$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$, as the ortho-complement to the tangent space of model $M_{\text{NDE}}(Y^d)$ becomes degenerate at $\rho = 1$. In fact, when $\rho = 1$ (not shown in the plot), we can show the following: $\tilde{\theta}_{\text{ipw},\text{opt}}$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$ are undefined and thus inconsistent due to a positivity violation: $A_0 = 0$ with probability 0. In contrast, $\tilde{\theta}_{\text{nde-ipw},\text{opt}}$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$ are equal with probability 1 and are RAL. In fact, they are semiparametric efficient for θ_{opt} in model $M_{\text{NDE}}(Y^d)$ at $\rho = 1$ since θ_{opt} is just identified and so has a unique influence function. Further details of this simulation are presented in Appendix A.9.

In Appendix A.10, we provide a second simulation which shows that adjusting for the NDE assumption in an opt-SNMM can greatly improve the efficiency of estimating the VoI in the context of a cost benefit analysis. As mentioned in Section 1, the ratio of $\theta_{\text{nde-ipw},\text{opt}}$ converges from above to that of $\tilde{\theta}_{\text{ipw},\text{opt}}(\hat{b}_{\text{sub,ipw},\text{opt}})$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$, as the ortho-complement to the tangent space of model $M_{\text{NDE}}(Y^d)$ becomes degenerate at $\rho = 1$. In fact, when $\rho = 1$ (not shown in the plot), we can show the following: $\tilde{\theta}_{\text{ipw},\text{opt}}$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$ are undefined and thus inconsistent due to a positivity violation: $A_0 = 0$ with probability 0. In contrast, $\tilde{\theta}_{\text{nde-ipw},\text{opt}}$ and $\tilde{\theta}_{\text{nde-ipw},\text{opt}}(\hat{b}_{\text{sub,nde-ipw},\text{opt}})$ are equal with probability 1 and are RAL. In fact, they are semiparametric efficient for θ_{opt} in model $M_{\text{NDE}}(Y^d)$ at $\rho = 1$ since θ_{opt} is just identified and so has a unique influence function. Further details of this simulation are presented in Appendix A.9.

10. Discussion

To conclude, we discuss five open problems. The optimal choice of q^{opt} for the user-supplied function q is the unique vector function q^{opt} satisfying for all $q = \{q(H_t, s_t, a_t) ; t = 0, \ldots , K\}$,

$$
E \left[\frac{\partial E[U(q, \Psi^*)]}{\partial \Psi} \right] = E[U(q, \Psi^*)U(q^{\text{opt}}, b_{\text{opt}}(q^{\text{opt}}), \Psi^*)^\top] .
$$

Furthermore, $$(E[U(q^{\text{opt}}, b_{\text{opt}}(q^{\text{opt}}), \Psi^*)U(q^{\text{opt}}, b_{\text{opt}}(q^{\text{opt}}), \Psi^*)^\top])^{-1}$$ is the semiparametric variance bound for Ψ^* in model M. We did not explore estimation of q^{opt} because, as discussed earlier, in practice, users of opt-SNMM have chosen to employ heuristic choices of q in their analyses. Nonetheless, it would be interesting to study the estimation with q^{opt} in future research. A second open problem is to develop multiply robust estimators of the parameters of an opt-SNMM under the NDE assumption to provide even more robustness than that obtained by the doubly robust estimators proposed in the current article (Luedtke et al. 2017; Rotnitzky, Robins, and Babino 2017).

A third open problem is to extend our methodology to the case where either (i) the dimension of the parameter Ψ^* of the opt-SNMM is allowed to grow with the sample size or (ii) the optimal blip functions $\gamma_t^{\text{opt}}(H_t, s_t, a_t)$ are modeled nonparametrically under (e.g., smoothness) restrictions on their complexity. This problem is important because our estimator of the optimal regime is not robust to misspecification of the opt-SNMM model. A fourth important open problem is the extension of our methods to data generated under exceptional laws as defined in Robins (2004).

We conclude by discussing a fifth open problem. Consider the setting discussed earlier under which positivity fails because $Pr(A_t = 1) = 1$ for all t but other aspects of positivity, consistency and sequential exchangeability continue to hold. In this setting, the parameter vector Ψ^* of a saturated opt-SNMM is not identified if the NDE assumption fails to hold. In fact, under the NDE (L_K, R, Y^d) assumption, all g for which θ_g was identified under positivity remain identified; similarly, since Ψ^* is identified, g^{opt} and θ_{opt} remain identified under this NDE assumption. However, by lack of identification in the absence of the NDE assumption, the methodology of this article cannot be used to estimate Ψ^*. It remains open how to efficiently estimate Ψ^* and thus g^{opt} and θ_{opt} in this setting under the NDE assumption. Preliminary investigations indicate that estimation of g^{opt} by dynamic programming is not possible. If true, then any algorithms that compute or estimate g^{opt} may well be computationally intractable.

Supplementary materials

Appendix and R codes are included in the online supplementary materials.

Acknowledgments

We thank Michael R. Kosorok and two anonymous referees for helpful comments. This work was motivated by a talk given by James M. Robins at ENAR 2015 entitled “How to increase efficiency of estimation when a test used to decide treatment has no direct effect on the outcome” in a session organized by Michael R. Kosorok.

Funding

Lin Liu and James M. Robins were supported by the U.S. Office of Naval Research grant N000141912446, and National Institutes of Health (NIH) awards R01 AG057869 and R01 AI127271. Lin Liu was also partially sponsored by Shanghai Pujiang Program Research grant 20PJ1408900 and Shanghai Jiao Tong University Start-up Grant WFG220441912. The computations were run on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University.

References

Bang, H., and Robins, J. M. (2005), “Doubly Robust Estimation in Missing Data and Causal Inference Models,” *Biometrics*, 61, 962–973. [226]

Bellman, R. (1952), “On the Theory of Dynamic Programming,” *Proceedings of the National Academy of Sciences of the United States of America*, 38, 716. [228]

Caniglia, E. C., Robins, J. M., Cain, L. E., Sabin, C. B., Logan, R., Abgrall, S., Mugavero, M. J., Hernández-Díaz, S., Meyer, L., Seng, R., and Drozd, D. R. (2019), “Emulating a Trial of Joint Dynamic Strategies: An Application to Monitoring and Treatment of HIV-Positive Individuals,” *Statistics in Medicine*, 38, 2428–2446. [224,226,227,233,234,236]

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018), “Double/Debiased Machine Learning for Treatment and Structural Parameters,” *The Econometrics Journal*, 21, C1–C68. [232]

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018), “Double/Debiased Machine Learning for Treatment and Structural Parameters,” *The Econometrics Journal*, 21, C1–C68. [232]
DART Trial Team (2010), "RoutineVersusClinicallyDrivenLaboratory MonitoringofHIVAntiretroviralTherapyinAfrica(DART):ARandomised Non-InferiorityTrial," *TheLancet*, 375, 123–131. [224]

Ford, D., Robins, J. M., Petersen, M. L., Gibb, D. M., Gilks, C. F., Muggenburg, P., Grosskurth, H., Kajim, J., Katabira, E., Babiker, A. G., and Walker, A. S. (2015), "TheImpactofDifferentCD4Cell-CountMonitoring andSwitchingStrategiesonMortalityinHIV-InfectedAfricanAdultson AntiretroviralTherapy:AnApplicationofDynamicMarginalStructural Models," *AmericanJournalofEpidemiology*, 182, 633–643. [225]

Gould, J. P. (1974), "Risk, Stochastic Preference, and the Value of Information," *JournalofEconomicTheory*, 8, 64–84. [225]

Hernán, M. A., Robins, J. M., and García Rodríguez, L. A. (2005), "DiscreteTimeSurvivalAnalysiswithUnobservedHeterogeneity:Models andApplications," *Biostatistics*, 6, 703–723. [226]

Hilton, R. W. (1981), "The Determinants of Information Value: Synthesizing Some General Results," *ManagementScience*, 27, 57–64. [225]

Kallus, N., Mao, X., and Uehara, M. (2019), "LocalizedDebiasedMachine Learning:EfficientEstimationofQuantileTreatmentEffects,Conditional ValueatRisk, andBeyond," arXiv no. 1912.12945. [232]

Krah, M. D., Mahoney, J. E., Eckman, M. H., Trachtenberg, J., Pauker, S. G., and Detsky, A. S. (1994), "Screening for Prostate Cancer: A Decision Analytic View," *JAMA*, 272, 773–780. [225]

Kreif, N., Sofrygin, O., Schmittid, J. A., Adams, A. S., Grant, R. W., Zhu, Z., van der Laan, M. J., and Neugebauer, R. (2020), "ExploitingNon-systematicCovariateMonitoringtoBroadentheScopeofEvidence About the Causal Effects of Adaptive Treatment Strategies," *Biometrics*. [226]

Lara, A. M., Kigozi, J., Amurwon, J., Muchabaiwa, L., Wakholi, B. N., Mota, R. E. M., Walker, A. S., Kasirye, R., Ssali, F., Reid, A., and Grosskurth, H. (2012), "CostEffectivenessAnalysisofClinicallyDrivenVersusRoutine LaboratoryMonitoringofAntiretroviralTherapyinUgandaandZimbabwe," *PloSONE*, 7, e33672. [225]

LaValle, I. H. (1968a), "On Cash Equivalents and Information Evaluation in Decisions Under Uncertainty Part I: Basic Theory," *Journal oftheAmericanStatisticalAssociation*, 63, 252–276. [225]

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010a), "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," *TheInternationalJournalofBiostatistics*, 6, 1–48. [226]

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010b), "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results," *TheInternationalJournalofBiostatistics*, 6, 1–17. [226]

Robins, J. M. (1986), "A New Approach to Causal Inference in Mortality Studies With a Sustained Exposure Period—Application to Control of the Healthy Worker Survivor Effect," *MathematicalModelling*, 7, 1393–1512. [227,228]

Robins, J. M. (1987), "Addendum to ‘A New Approach to Causal Inference in Mortality Studies With a Sustained Exposure Period—Application to Control of the Healthy Worker Survivor Effect’," *ComputersMathe-MaticsWithApplications*, 14, 923–945. [227]

Robins, J. M., Orellana, L., and Rotnitzky, A. (2008), "Estimation and Extrapolation of Optimal Treatment and Testing Strategies," in *StatisticsinMedicine*, 27, 4678–4721. [226,233,234,235]

Robins, J. M., and Rotnitzky, A. (1995), "Semiparametric Efficiency in Multivariate Regression Models With Missing Data," *JournaloftheAmericanStatisticalAssociation*, 90, 122–129.

Rotnitzky, A., Robins, J. M., and Babino, L. (2017), "On the Multiply Robust Estimation of the Mean of the g-Functional," arXiv no. 1705.08582. [238]

Smucler, E., Rotnitzky, A., and Robins, J. M. (2019), "A Unifying Approach for Doubly-Robust Estimators, Regularized Estimation of Causal Contrasts," arXiv no. 1904.03737. [232]

van der Laan, M. J., and Petersen, M. L. (2007), "Causal Effect Models for Realistic Individualized Treatment and Intention to Treat Rules," *TheInternationalJournalofBiostatistics*, 3, 1–55. [226]

van der Vaart, A. W., and Wellner, J. (1996), *WeakConvergenceandEmpiricalProcesses:WithApplications toStatistics*, New York: Springer. [232]

Vansteelandt, S., and Joffe, M. (2014), "Structural Nested Models and G-Estimation: The Partially Realized Promise," *StatisticalScience*, 29, 707–731. [225,230]

World Health Organization (2001), "Report of the Commission on Macroeconomics and Health." [225]