COMPARISON OF IMPROVEMENT IN CLINICAL, SPIROMETRIC AND OXYGENATION PARAMETERS AFTER NEBULISATION WITH LEVOSALBUTAMOL AND FORMOTEROL-BUDESONIDE IN MODERATE TO SEVERE ASThma

Revathi Mogilappa1, Atmakuru Siva Mourya Gupta2, Meruva Penchala Narasimha3

1Senior Resident, Department of Pulmonary Medicine, SVRR Government General Hospital, Tirupati, Andhra Pradesh.
2Postgraduate, Department of Pulmonary Medicine, SVRR Government General Hospital, Tirupati, Andhra Pradesh.
3Postgraduate, Department of Pulmonary Medicine, SVRR Government General Hospital, Tirupati, Andhra Pradesh.

ABSTRACT

BACKGROUND

Asthma is characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person,1 because asthma is a clinical syndrome, there is no gold standard for its diagnosis. As such, physicians employ non-standardized algorithms for making the diagnosis, such as a history of wheezing or a parental history of asthma in conjunction with a favourable response to a bronchodilator at spirometry to identify the asthmatic patient. Effective inhaled bronchodilator and steroid therapy is the cornerstone of asthma management.

The aim of this study is to compare the improvement in clinical, spirometric and oxygenation parameters after nebulisation with levosalbutamol and formoterol-budesonide in moderate to severe persistent asthma patients.

MATERIALS AND METHODS

This is a prospective, analytical study conducted among clinically diagnosed moderate and severe persistent asthma patients in the Department of Pulmonary Medicine, SVRR Govt. General Hospital, Tirupati between June 2018 and July 2018, i.e., over a period of 1 month. 60 asthmatics (27 males and 33 females) who satisfied the clinical and spirometric essential criteria of moderate and severe persistent asthma were included. Spirometry was done prior to nebulisation. Consecutively, the patients were nebulised with Levosalbutamol or Formoterol-Budesonide. Clinical improvement, Spirometry and clinical parameters (pulse rate, respiratory rate, SpO2) were noted at 15 min after nebulisation and again after 1 hr. The results were tabulated.

RESULTS

Breathlessness and wheeze improved in 100% of the patients after 15 min. Oxygen saturation (SpO2) also improved in 100% of the patients with in 15 min. However, FEV1 with Levosalbutamol showed a moderate improvement (about 60% of predicted value) after 15 min but reached a plateau and continued to be the same at 1 hr. On the other hand, after nebulisation with Formoterol-Budesonide there was moderate to good improvement after 15 min of nebulisation and this continued to improve and after 1 hr, in most patients it had reached normalcy (80%). No side-effects were reported in any of the patients.

CONCLUSION

Symptomatic improvement and improvement in Oxygenation were 100% within 15 min after nebulisation with both Levosalbutamol and Formoterol-Budesonide. However, FEV1 showed early improvement with Levosalbutamol but had reached a plateau and continued to be the same after 1hr of nebulisation. On the other hand, after nebulisation with Formoterol-Budesonide there was very good improvement after 15 min and this continued to increase & by 1 hr had reached normal value (>80%) in almost all the patients.

KEYWORDS

Bronchial Asthma, Formoterol – Budesonide, Levosalbutamol, Spirometry, Oxygenation, Symptoms.

HOW TO CITE THIS ARTICLE: Mogilappa R, Gupta ASM, Narasimha MP. Comparison of improvement in clinical, spirometric and oxygenation parameters after nebulisation with levosalbutamol and formoterol – budesonide in moderate to severe asthma. J. Evid. Based Med. Healthc. 2018; 5(39), 2801-2805. DOI: 10.18410/jebmh/2018/573

Financial or Other, Competing Interest: None.
Submission 02-09-2018, Peer Review 06-09-2018,
Acceptance 20-09-2018, Published 24-09-2018.
Corresponding Author:
Dr. Atmakuru Siva Mourya Gupta,
Postgraduate,
Department of Pulmonary Medicine,
SVRR Government General Hospital,
Tirupati, Andhra Pradesh.
E-mail: awesome.gupta2k8@gmail.com
DOI: 10.18410/jebmh/2018/573

BACKGROUND

Asthma is one of the major non communicable diseases of the world and in India the prevalence is about 2.38%. Recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person are the main features of this disease. Asthma is defined as a heterogenous disease, usually characterised by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow.
The WHO estimates that globally about 235 million people currently suffer from asthma and this figure is projected to rise to 400 million by year 2025. 1.5 million disability adjusted life years (DALY) are lost annually due to asthma. 7

The clinical course of this illness is influenced greatly by exposures, including respiratory viruses, indoor allergens, maternal tobacco smoke, and other physical and social aspects of the environment. While the prevalence of atopy is higher among asthmatics than nonasthmatics, the association may not be causal. Systematic reviews have shown that at a population level, there is no correlation between the prevalence of atopy and the prevalence of asthma. 8 It is likely that there are common factors that raise the risk of both conditions. Atopy and airway responsiveness may also occur together. Studies have shown that individuals who are sensitized to an allergen have bronchospasm when exposed to that allergen, but individuals may have airway hyperresponsiveness without atopic manifestations. Asthma is a chronic inflammatory disorder of the airways characterized by marked variability in airflow obstruction that is often reversible, either spontaneously or with treatment. 9 Twice-daily PEF measurements, morning and evening, may also demonstrate diurnal variation, which is a typical feature of asthmatic patients. Simple spirometry is important for objectively demonstrating airflow obstruction, confirming the diagnosis of asthma, establishing the severity of the disease, and monitoring the response to therapy. Patients with asthma typically show a reduced forced expiratory flow in 1 second (FEV1), reduced PEF, preserved forced vital capacity (FVC), and an FEV1/FVC ratio of 0.7 or greater, but with worsening disease, FEV1 less than 60% predicted the FEV1/FVC ratio is more usually <0.7. 10 The successful management of asthma requires an appreciation of the heterogeneity of the disease with respect to aetiology, clinical presentation, severity, natural history, and response to therapy. It is unlikely that a single management approach will work for all patients and hence, treatment should be tailored to the individual patient.

Inhaled glucocorticoids are considered the first line treatment for patients with moderate to severe persistent asthma. Corticosteroids (CSs) are potent anti-inflammatory agents and when administered by the inhaled route are the most effective therapy available for treating and controlling asthma, and have greatly contributed to a reduction in asthma mortality in the Western world. 11

Aim

To compare the improvement in clinical, spirometric and oxygenation parameters after nebulisation with levosalbutamol and formoterol-budesonide in moderate to severe persistent asthma patients.

MATERIALS AND METHODS

Study Design

A prospective, analytical study conducted among clinically diagnosed moderate and severe persistent asthma patients in the Department of Pulmonary Medicine, SVRR Govt. General Hospital, Tirupati.

Period of Study

June 2018 and July 2018, i.e., over a period of 1 month.

Sample Size

60 asthmatics (27 males and 33 females) who satisfied the clinical and spirometric essential criteria of moderate and severe persistent asthma were included. Spirometry was done prior to nebulisation. Consecutively, the patients were nebulised with Levosalbutamol or Formoterol-Budesonide. Clinical improvement, Spirometry and clinical parameters (pulse rate, respiratory rate, SpO2) were noted at 15 min after nebulisation and again after 1 hr.

Inclusion Criteria

- Patient age of >18 years.
- Spirometric criteria satisfaction.
- No history of smoking.

Exclusion Criteria

- Patients <18 years.
- Smokers
- Co morbidities like pulmonary kochs (new and old), COPD, cardiac diseases.
- patient unable to perform PFT and
- Chest x-ray showing abnormalities.

Patient Selection

All patients who presented with respiratory symptoms of shortness of breath, wheezing, chest tightness, cough who presented either to emergency department or chest OPD were informed about the study. Spirometry was done to all patients and patients with FEV1> 70% and above and bronchodilator reversibility of >200ml were diagnosed as bronchial asthma. Alternatively, the patients were given either levosalbutamol/formoterol-budesonide nebulisation. Oxygen saturation (spO2), pulse rate, respiratory rate of the patients were noted.

After 15 min of nebulisation with either of the above drugs, same parameters were assessed. FEV1 before nebulisation and after 15 min of nebulisation was noted.

At 1 hr after nebulisation spirometry was performed again and pulse rate, respiratory rate and SpO2 were noted. Results were tabulated.

Software used EPI info 2.4 version.

RESULTS

Sex Distribution

Total no. of patients n = 60
- Males = 27
- Females = 33
Figure 1. Sex Distribution among Study Population

Age Distribution

Total no. of patients n = 60
Age group of 20-40 yrs. = 22
Age group of 40-60 yrs. = 24
Age group of >60 yrs. = 14

Figure 2. Age Distribution among Study Population

Symptomatology

- Cough, shortness of breath (sob), chest tightness, wheeze came down in all 60 patients irrespective of the drug which they had nebulised.
- Oxygen saturation (SpO2) of all the 60 patients as measured with pulse oximetry has improved from 88-92% before nebulisation to more than 95% after nebulisation with both drugs.

Spirometric Analysis

Total no. of study population n = 60
No. of formoterol-budesonide patients = 30
No. of levosalbutamol patients = 30

Figure 3. Symptomatology of Study Population

FEV1 is assessed with Levosalbutamol in 30 patients, of which 45% showed moderate improvement (about 60% of predicted value) after 15 min but reached a plateau and continued to be the same at 1 hr. On the other hand, after nebulisation with Formoterol-Budesonide there was moderate to good improvement after 15 min of nebulisation and this continued to improve and after 1 hr, and 93% of patients it reached normalcy (80%).

Nebulisation	Pre FEV1	At 15 min.	At 1 hr.						
	<60%	60-80%	>80%	<60%	60-80%	>80%	<60%	60-80%	>80%
Formoterol-budesonide	14	16	0	0	12	18	0	2	28
Levosalbutamol	13	17	0	0	13	17	0	12	18

Table 1. Spirometry Results Pre, at 15 min. and at 1 hr. of Nebulisation
DISCUSSION
In 2007, the National Asthma Education and Prevention Program Expert Panel Report 3 (NAEPPR3) defined asthma as a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role: in particular, mast cells, eosinophils, neutrophils (especially in sudden onset, fatal exacerbations, occupational asthma, and patients who smoke), T lymphocytes, macrophages, and epithelial cells. In susceptible individuals, this inflammation causes recurrent episodes of coughing (particularly at night or early in the morning), wheezing, breathlessness, and chest tightness. These episodes are usually associated with widespread but variable airflow obstruction that is often reversible either spontaneously or with treatment.

Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation.

It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation.

In the present study out of 60 patients 22 (36.6%) were between 20-40 years, 24(40%) were between 41-60 years and 14(23.4%) were between 61-80 years age group.

Out of 60 patients females were predominantly found to be asthmatic 33(55%) and males were 27(45%).

In the present study out of Patients, SOB was present in all 60 patients (100%), Wheeze was present in 44 patients (73.3%), Chest tightness- present in 34 (56.6%), Cough was present in 38 (63.3%), Sputum - present in 26 (43.4%). Fever was present in 19 (31.7%) and history of atopy present in 12 patients (20%).

FEV1 was assessed with Levosalbutamol in 30 patients, of which 45% showed moderate improvement (about 60-80% of predicted value) after 15 min of nebulisation but reached a plateau and continued to be the same at 1 hr. FEV1 assessment in 30 patients was done after nebulisation with Formoterol-Budesonide and there was moderate to good improvement after 15 min of nebulisation and this continued to improve and after 1hr, and 93% of patients it reached normalcy (80%).

Breathlessness and wheeze improved in 100% of the patients after 15 min. Oxygen saturation (SpO2) also improved in 100% of the patients with in 15 min.

CONCLUSION
- Clinically levosalbutamol and formoterol-budesonide nebulisation show the same results. Cough, breathlessness and wheeze came down. Accessory muscle usage, pulse rate and respiratory rate grossly decreased and were towards normacy.
- Oxygen levels of blood as assessed by pulse oximeter also improved with both drugs. In most patients, the SpO2 before nebulisation was between 88-92%. After nebulisation with both levosalbutamol and formoterol-budesonide, the SpO2 levels showed a minimum of 95%.
- The difference between the two drugs however was obvious at spirometry. Levosalbutamol showed a moderate improvement (about 60%) in FEV1 after 15 minutes but reached a plateau and continued to be the same at one hour whereas with formoterol-budesonide there was moderate to good (about 60-75%) improvement after 15 minutes of nebulisation and this continued to improve, and after one hour it had reached normalcy (>80%) in almost all the patients.
- None of the patients showed tremors or giddiness after nebulisation with either drug.

REFERENCES
[1] World Health Organization. Office of health communications and public relations. Asthma. Geneva: World Health Organization 2006.
[2] Global Initiative for Asthma (GINA), global strategy for asthma management and prevention. Updated 2018.
[3] World Health Organisation. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organisation 2007.
[4] Pearce N, Pekkanen J, Beasley R. How much asthma is really attributable to atopy? Thorax 1999;54(3):268-272.
[5] Ronchetti R, Rennerova Z, Barreto M, et al. The prevalence of atopy in asthmatic children correlates strictly with the prevalence of atopy among nonasthmatic children. Int Arch Allergy Immunol 2007;142(1):79-85.
[6] Ronchetti R, Jesenak M, Rennerova Z, et al. Relationship between atopic asthma and the population prevalence rates for asthma or atopy in children: atopic and nonatopic asthma in epidemiology. Allergy Asthma Proc 2009;30(1):55-63.
[7] Fernandez C, Cardenas R, Martin D, et al. Analysis of skin testing and serum-specific immunoglobulin E to predict airway reactivity to cat allergens. Clin Exp Allergy 2007;37(3):391-399.
[8] Langley SJ, Goldthorpe S, Craven M, et al. Exposure and sensitization to indoor allergens: association with lung function, bronchial reactivity, and exhaled nitric oxide measures in asthma. J Allergy Clin Immunol 2003;112(2):362-368.
[9] Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2012. Available at: http://www.ginasthma.org/.
[10] Sorkness RL, Bleecker ER, Busse WW, et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol 2008;104(2):394-403.
[11] Louis R, Schleich F, Barnes PJ. Corticosteroids: still at the frontline in asthma treatment? Clin Chest Med 2012;33(3):531-541.
[12] National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007;120(5 Suppl):S94-S138.

[13] Masoli M, Fabian D, Holt S, et al. The global burden of asthma: executive summary of the GINA Disseminated Committee report. Allergy 2004;59(5):469-478.