Ballistic annihilation with superimposed diffusion in one dimension

Soham Biswas, Hernán Larralde, and Francois Leyvraz

1Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, México

We consider a one-dimensional system with particles having either positive or negative velocity, which annihilate on contact. To the ballistic motion of the particle, a diffusion is superimposed. The annihilation may represent a reaction in which the two particles yield an inert species. This model has been the object of previous work, in which it was shown that the particle concentration decays faster than either the purely ballistic or the purely diffusive case. We report on previously unnoticed behaviour for large times, when only one of the two species remains and also unravel the underlying fractal structure present in the system. We also consider in detail the case in which the initial concentration of right-going particles is $1/2 + \varepsilon$, with $\varepsilon \neq 0$. It is shown that a remarkably rich behaviour arises, in which two crossover times are observed as $\varepsilon \to 0$.

PACS numbers: 02.50.-r, 82.20.Db, 05.20.Dd, 89.75.Da

I. INTRODUCTION

The deviations from mean-field theory caused by fluctuations have been the object of considerable research [1]. Thus, when reactants diffuse and react on contact, they create spatial correlations which invalidate the usual concept of mean-field theory, and indeed, invalidate the applicability of rate equations, which are normally viewed as fundamental in chemical kinetics. A very simple example of this is one-species annihilation (or aggregation) in which one species reacts with itself via a bimolecular reaction

$$A + A \rightarrow B \quad (1)$$

where B represents an inert species, which we disregard in the following. The rate equation for such a process is given by

$$\dot{c}_A = -Kc_A^2, \quad (2)$$

and the decay for large times is therefore $1/t$. However, as is well-known, see for example [2], if we consider a model of point random walkers on the line, which annihilate whenever two walkers alight on the same site, then the decay is in fact given by $(Dt)^{-1/2}$. At a deeper level, the amplitude of the $1/t$ decay determined by (2) depends on the initial concentration, whereas the amplitude of the $1/\sqrt{t}$ decay does not.

These, and many similar results have been discussed extensively. For a review, see for example the book [3] by Redner and Krapivsky. In the following, we shall consider a variation on the model described by [1], in which the transport has both a ballistic component, in which the particles can have one of two velocities v and $-v$, and a diffusive component. The purely ballistic model was initially discussed by Elskens and Frisch in [4]. Similarly to the diffusive model discussed in [2], the decay of concentration goes as $t^{-1/2}$, but for quite different reasons. As was then pointed out in [5, 6], combining both diffusion and ballistic motion leads, in one dimension, to a decay that is more rapid than the one brought about by either mechanism.

The kinetics of particle annihilation, $A + A \rightarrow \emptyset$ has attracted considerable attention from the scientific community from another completely different point of view. The dynamics of particle annihilation with $A + A \rightarrow \emptyset$, have a direct one to one correspondence with the kinetic Ising model in one dimension. For example, the zero temperature Glauber dynamics in one dimensional Ising spin system with nearest neighbour interaction can be mapped to the $A + A \rightarrow \emptyset$ system where the A are pure random walkers [7]. On the other hand, the binary opinion dynamic models in one dimension (which can be directly mapped to one dimensional Ising spin system), have a much more complicated walker picture, where the A walkers are not purely random. There are also binary opinion dynamic models, where A walkers perform a complicated ballistic motion. For example, in the dynamics, introduced in [8], the boundaries of the domains (which could be construed as walkers) move ballistically unless they meet the boundary of some other domain. Once two boundaries meet, the annihilation of the boundaries is more involved than the simple $A + A \rightarrow \emptyset$. In another example of a binary opinion dynamics model introduced in [9], the walkers in the corresponding walker picture have ballistic motion, in this case, the A walkers always move ballistically in the direction of their nearest walker and annihilate upon meeting, following $A + A \rightarrow \emptyset$. This leads to complex changes in the direction of motion of the walkers, somewhat akin to a random walk [10]. Understanding the dynamics of simple ballistic annihilation process with superimposed diffusion can thus also be of help in understanding these complex dynamics.

The simple model of ballistic annihilation discussed in this paper has a quite rich structure. Introducing a corresponding binary opinion dynamics model could be a motivation and direction for the future work.
Here we study the model of ballistic annihilation with superimposed diffusion in greater detail than was previously done, showing in particular a remarkably rich structure when the number of left- and right-going particles is allowed to be different. In particular, we study the nature of the crossovers appearing as these numbers come close to each other.

II. THE MODEL

A. Description of the model

Let us first describe in some detail the model we study in this paper. The system we consider consists of point particles on a one dimensional lattice. Each particle moves, always, either to the left or to the right, that is, each particle has positive or negative velocity. Initially there is a fraction \((1/2 + \varepsilon)\) of particles with positive velocity and \((1/2 - \varepsilon)\) of particles with negative velocity (with \(-1/2 \leq \varepsilon \leq 1/2\)) randomly distributed on the lattice. Whenever a particle lands on a site in which another particle is found, both are removed from the system. This is therefore a model of the so-called one species annihilation type \((A + A \rightarrow \emptyset)\). It is of central importance that the particles are moved asynchronously, that is, at each time step, one particle is chosen at random and moved in the direction corresponding to the velocity of that particle.

Note that the asynchronous updating rule leads to the possibility that particles having the same velocity can react, since the random choice of the particle leads to an effective diffusive motion of the particles with respect to their neighbouring particles having the same speed, whereas in a perfectly synchronous update, these particles’ distances would remain fixed. It is largely the consequences of this effect we shall explore in this paper. This model is equivalent to a model in which a fraction \(1/2 + \varepsilon\) of particles perform a random walk with bias \(v\), whereas the others have a bias \(-v\). We shall generally work with a bias equal to \(v\) in order to keep dimensions explicit.

For \(\varepsilon = 0\), the number of positive and negative velocity particles are equal, on average, at the beginning. Taking \(\varepsilon \neq 0\) introduces inequality in the numbers of positive and negative velocity particles, and \(\varepsilon = \pm 1/2\) means there is only one kind of particles.

The synchronous update version of this system has been studied by Elskens and Frisch [4], who showed that for \(\varepsilon = 0\), the concentration of particles decays as \(t^{-1/2}\). Here we study the following variant: instead of letting the particles move ballistically in continuous time, we discretize time and choose, at each time step, a particle at random and move it to the right if it has positive velocity, and to the left otherwise. In other words, we use an asynchronous updating rather than a synchronous one. This introduces a diffusion, and thereby the possibility for two particles having the same velocity to annihilate with each other. This apparently minor change affects the system profoundly, as already noted by [5,6] in the case \(\varepsilon = 0\). Here we extend the study to the general case, and also display some non-trivial large time behaviour in the case \(\varepsilon = 0\) which had previously gone unreported.

Finally, we propose a mechanism, first studied by Alemany [10], for modifying the decay exponent of diffusive annihilation kinetics in one dimension, and show that it is indeed operative in this particular system.

Let us briefly summarize our results for the general case \(\varepsilon > 0\). We find three different regimes, of which the easiest is certainly the last: at very large times, all particles with negative velocities have disappeared. Additionally, all the spatial correlations their presence might have induced — we shall see that such correlations can in fact arise — have also disappeared. We thus have a system consisting solely of right-moving particles moving ballistically, with a superimposed diffusion. This is equivalent to pure diffusive dynamics, so that the asymptotic decay goes as \((Dt)^{-1/2}\). This is the third stage of the system’s evolution. If \(\varepsilon \ll 1\), there are two other stages: the first one is the one in which we may neglect the difference in concentration between left- and right-going particles. In this regime, the usual decay exponent reported and analysed by ben-Naim, Redner and Krapivsky [6] applies and the concentration decays as \(t^{-3/4}\). This stage ends when all left-going particles have disappeared. This happens, as we shall see, at a time \(t_1(\varepsilon)\) of order \(\varepsilon^{-2}\) [Fig 1]. At this point, a second stage sets in, characterised by a decay with \(t^{-1/4}\) leading term [Fig 1]. This is due to the fact that the surviving right going particles are far from being uniformly distributed, which leads to an anomalous decay, as pointed out by Alemany [10]. The third stage, when these correlations finally disappear, sets in at a time \(t_2(\varepsilon)\) that scales as \(\varepsilon^{-4}\) [Fig 4].

![FIG. 1: (Color Online) A schematic figure with two crossovers for the decay of \(c(t)\), the concentration of total number of particles at time \(t\).](image)
(in order to be able to observe the final exponent reliably), we would need to start out with $N \sim 10^7$, which is altogether unrealistic. We shall therefore rely on various simulations with different values of the parameters to bring out the various features of the system.

III. THEORY

For $\epsilon = \pm 1/2$ only one kind of ballistic particles (either $+v$ or $-v$ velocity particles) exist in the system. Due to the random update rule for the simulation, by which diffusion is incorporated, the relative motion of the particles is actually diffusive in this case. The relative diffusion constant $D_{eff} = 1$ is the same as if the particles performed symmetric random walks (see Appendix A for details). Naturally, in this situation, the concentration $c(t)$ will decay as $t^{-1/2}$.

If $\epsilon \neq \pm 1/2$, for any typical configuration, the number of $+v$ and $-v$ velocity particles will not be equal (this is clear for $\epsilon \neq 0$, but also when $\epsilon = 0$, due to statistical fluctuations). Due to this inequality in numbers, the system will go from a regime of ballistic annihilation with superimposed diffusion, to a long time regime of pure diffusion when only one kind of particle is present. In the following, we start by considering the regime in which no significant difference in the numbers of left- and right-going particles exists $\epsilon = 0$. In this case, as has been shown in [5, 6], the particle number decays as $t^{-3/4}$. In the following subsection, we shall re-derive this result for the sake of keeping the paper self-contained. Afterwards, we proceed to analyse the case of finite systems, in which the particles eventually all have one given velocity due to the effect of statistical fluctuations. Finally we analyse the case of $\epsilon \neq 0$.

A. The infinite system with $\epsilon = 0$: dimensional analysis

In the following, we analyze the system for $\epsilon = 0$ using dimensional considerations. The various parameters involved are $c(0)$, D, t and v. These can be combined in two dimensionless parameters:

$$x = \frac{v}{Dc(0)} \quad (3a)$$

$$\tau = \frac{v^2 t}{D} \quad (3b)$$

The former is the ratio of the time required for nearest neighbours to cross the average distance between them if they move ballistically, to the time required to cross the same distance with diffusive dynamics. It thus states whether diffusion or drift dominates the short-time dynamics. τ is a dimensionless time, which separates the regime in which diffusion dominates, $\tau \ll 1$, from that in which drift dominates, $\tau \gg 1$.

The concentration of particles at time t can thus be written in terms of the adimensional quantities x and τ as follows:

$$c(t) \simeq c(0)\Phi(x, \tau) \quad (4)$$

If $x \ll 1$, then $c(t)$ should not depend on v for initial times, since the process is (in a first approximation) purely diffusive, leading to a $(Dt)^{-1/2}$ behaviour. Therefore, for $x \ll 1$, using the expression of x and τ, given by equation (3a) and (3b) we get

$$\Phi(x, \tau) = \frac{x}{\sqrt{\tau}} \quad (5)$$

This is only valid up to $\tau \sim 1$, since, as we have seen above, this is the crossover time between drift and diffusion.

On the other hand, for $x \gg 1$, the behaviour of $c(t)$ is purely ballistic for moderate τ. It is thus independent of
\(D\) and given by \(\sqrt{c(0)/vt}\), as shown in [4]. Therefore, for \(x \gg 1\), again using the equations [5a] and [3i] we find

\[
\Phi(x, \tau) = \sqrt{\frac{x}{\tau}} \tag{6}
\]

Let us now determine the time \(\tau\) up to which this is valid. The qualitatively new feature introduced by diffusion is the possibility for particles of the same velocity to annihilate via diffusion. But this happens on a time scale 1/(\(Dc(0)^2\)), which, in terms of the adimensional quantities, is \(\tau \sim x^2\). We see, therefore, that the approximation \(\Phi\) should hold up to \(\tau \sim x^2\).

The previous equations [5] and [6] only hold for short times. For the former, this is because the influence of drift is eventually felt, whereas for the latter, it is due to the diffusive annihilation of particles with like velocity. If we now describe the large \(\tau\) behaviour for the full dynamics, by

\[
\Phi(x, \tau) \simeq x^\alpha \tau^\beta \tag{7}
\]

then we obtain two conditions on \(\alpha\) and \(\beta\) as follows: when \(\tau \sim 1\) and \(x \ll 1\), we may apply both [5] and [7]. This leads to

\[
x \sim x^\alpha \tag{8}
\]

implying \(\alpha = 1\). Similarly, if we consider the case in which \(x \gg 1\) and \(\tau \sim x^2\), we may apply [6] as well as [7], and are thereby led to

\[
\sqrt{\frac{1}{x}} \sim x^{\alpha+2\beta} = x^{1+2\beta}, \tag{9}
\]

from which follows

\[
\beta = -\frac{3}{4} \tag{10}
\]

We thus obtain

\[
\Phi(x, \tau) \simeq x\tau^{-3/4}. \tag{11}
\]

This finally yields, for the concentration \(c(t)\) at large times:

\[
c(t) \simeq v^{-1/2}D^{-1/4}t^{-3/4}. \tag{12}
\]

This dimensional analysis parallels that made in [5, 6] and is presented for the sake of keeping the paper self-contained.

Note that the above derivation contains a weak point: it is assumed in [7] that the \(x\) dependence of the prefactor of \(\tau^\beta\) is always the same power \(\alpha\), both in the \(x \ll 1\) and in the \(x \gg 1\) regime. This is, in itself, not obvious, and we shall see in later sections a derivation of the same result, free from this objectionable feature.

B. The case of finite systems

Let us first describe the behaviour of the set of surviving particles in ballistic annihilation with synchronous updating. Here we follow [4].

Let the initial condition of a system undergoing ballistic annihilation be given by the numbers \(\sigma_k\), where \(k\) runs from 0 to \(L\), where \(L\) is the length of the system, and \(\sigma_k\) can take three possible values: \(\sigma_k = \pm 1\) means that site \(k\) is initially occupied by a particle having velocity \(\sigma_k\), whereas \(\sigma_k = 0\) means that site \(k\) is initially unoccupied. Assume the \(\sigma_k = 1\) represent the \(+v\) velocity particles and the \(\sigma_k = -1\) represent the \(-v\) velocity particles. Under these circumstances, once the initial condition is set, something we shall assume to have been done at random, then the fate of each particle is uniquely determined. Indeed, each particle has a unique annihilation partner, or else survives indefinitely. If \(\sigma_k = 1\), the unique annihilation partner is initially at position \(\pi_+ (k)\), defined by the following condition: let \(\mathcal{A}_k\) be defined as the following set:

\[
\mathcal{A}_k := \left\{ m \in \mathbb{N} : \sum_{r=k}^{k+m} \sigma_r = 0 \right\} \tag{13}
\]

Then \(\pi_+ (k)\) is the smallest element of \(\mathcal{A}_k\). If \(\mathcal{A}_k = \emptyset\), then the particle initially at \(k\) survives indefinitely and \(\pi_+ (k) = \infty\) (a wholly similar definition works if \(\sigma_k = -1\), in which case we would say the partner is at initial position \(\pi_- (k)\)).

Given the initial condition, each particle survives until it encounters its reaction partner. The collision time is thus

\[
\tau(k) = \frac{\pi_+ (k)}{2}, \tag{14}
\]

where we have considered the positive velocity particles.

We now determine the structure of the set \(\Sigma_t\) defined as

\[
\Sigma_t = \{ k : \tau_+ (k) > t \} \tag{15}
\]

Let us consider a pair of particles with positive velocity separated by a distance \(k\). Without loss of generality we may assume that we have two particles, one at 0 and one at \(k > 0\). The particle at \(k\) we call the leader, the one at zero, the follower. For both to belong to \(\Sigma_t\), the following conditions are necessary:

1. \(\mathcal{A}_0\) should not have any element \(r \leq t\).
2. \(\mathcal{A}_k\) should not have any element \(s \leq t\)

If \(k > t\), then the two intervals \([0, t]\) and \([k, k + t]\) are disjoint. The probability of both sites belonging to \(\Sigma_t\) is thus simply the product of either site belonging to \(\Sigma_t\) and no dependence on \(k\) exists. Note that this is so whether or not \(\varepsilon = 0\) in the initial condition.
Let us now consider the opposite case. In this case, the leader “clears the way” for the follower: since \(A_k \) has no element \(s \leq t \), it follows that \(A_0 \) cannot contain any elements in the interval \([k, k + t] \). Thus, for the follower to belong to \(\Sigma_t \), it is sufficient that there be no elements in \(A_0 \) belonging to the interval \([0, k] \). The probabilities that the leader and the follower both belong to \(\Sigma_t \) are thus again a product, but this time of the probability that for all \(r < k \) we have

\[
\sum_{m=0}^{r} \sigma_m > 0 \tag{16}
\]

In other words, this is the probability \(p_0(k) \) that a random walk, which starts at the origin and takes a step to the right does not return to the origin before time \(k \). The probability for this, as is well known \(^{18}\), scales as \(k^{-1/2} \) for \(k \gg 1 \), if the walk is symmetric, which corresponds, in our case, to an initial condition with \(\varepsilon = 0 \).

Thus, if \(\varepsilon = 0 \), the probability of having two particles separated by a distance \(k < t \) both surviving a time \(t \) is of the order of \(k^{-1/2} \). In other words, this description is compatible with the set \(\Sigma_t \) forming a fractal set—below the cutoff value \(t \)—with fractal dimension 1/2. The correlation function for \(k \gg 1 \) and \(t \gg 1 \) but \(k < t \) is of order \((kt)^{-1/2} \).

The initial and very late time positions of the surviving particles as shown the schematic figure\(^2\) form a number of clusters (of two or more particles) and the clusters are well separated from each other. This indicates that the long surviving particles are on a fractal from the beginning.

In the case with no diffusion, we therefore see that \(\Sigma_t \) is a fractal with lower cutoff at length 1 (lattice spacing) and at upper cutoff \(t \) with fractal dimension 1/2. This was the case in which we have synchronous updating. If instead we have asynchronous dynamics, the annihilation of similar particles eliminates all particles with a distance less than \(\sqrt{t} \). The corresponding set of surviving particles then becomes a fractal of dimension 1/2 with lower cutoff \(\sqrt{t} \) and upper cutoff \(t \), leading to the fact that the set has \(t^{1/4} \) elements in each domain of size \(t \), thereby leading to a concentration \(c(t) \) of \(t^{-3/4} \).

We therefore see that the particles surviving at the time \(t_1 \), at which only one species survives, also lie on a fractal of dimension \(d_f = 1/2 \).

The fact that \(\Sigma_{t_1} \) is a fractal further implies, as shown by Alemany \(^{10}\), that the decay of a purely diffusive reaction starting from such an initial condition is not given by \(t^{-1/2} \), but by \(t^{-d_f/2} \), where \(d_f \) is the fractal dimension of the initial condition. In the particular case which concerns us here, since \(d_f = 1/2 \), we have a decay law of \(t^{-1/4} \). This is seen in qualitative terms as follows: the probability that a given particle survives for a time \(t \) is negligible, if this particle is both followed and preceded by a particle significantly closer than \(\sqrt{Dt} \). We therefore require, for the particle to survive, that one of either neighbours be further from the central particle than \(\sqrt{Dt} \), which has the probability \((Dt)^{-d_f/2} \). In our case, this means that the final decay, after the annihilation of all minority particles, goes as \(t^{-1/4} \).

Let us look at this decay law in greater detail. When the particles are distributed on a fractal of dimension \(d_f \) (0 < \(d_f < 1 \)), the probability distribution function for initial inter-particle distances for two nearest particles will be \(P(x) \),

\[
P(x) = \frac{1}{\xi(\lambda)} \sum_{l=1}^{\infty} l^{-\lambda} \delta(x - l) \tag{17}
\]

where \(\lambda = d_f + 1 \). The mean distance between nearest-neighbour particles, diverges for 0 < \(d_f < 1 \) or for 1 < \(\lambda < 2 \). We have obtained the decay law considering this discrete distribution given by equation \(\text{(17)} \), following the formalism developed by Alemany \(^{10}\). The number of particles \(n(t) \) at time \(t \) (normalised by initial number of particles \(n(0) \)) will be...
\[n(t) = -\frac{\Gamma(1 - \lambda)}{2\zeta(\lambda)\Gamma\left(\frac{3\lambda - 2}{2}\right)} \tau^{\frac{\lambda - 1}{2}} + \frac{\Gamma(1 - \lambda)}{4(1 - \lambda)\zeta(\lambda)^2} \tau^{-(\lambda-1)} + \frac{\zeta(\lambda - 1)}{2\zeta(\lambda)\sqrt{\pi}} \tau^{-1/2} + O(\tau^{-\lambda/2}) \]

(18)

where \(\tau = D_{\text{eff}} t \). See Appendix B for details. For the fractal dimension \(d_f = 1/2 \), that is \(\lambda = 1.5 \), the leading term will be \(t^{-1/4} \) and the coefficient of this leading term is positive, as \(\Gamma(1 - \lambda) \) is negative for all \(\lambda > 1 \). The first correction to scaling will involve both the second and the third term of (18), thereby leading to

\[n(t) = \frac{\sqrt{\pi}}{\zeta(3/2)\Gamma(3/4)} \tau^{-1/4} + \left(\frac{\sqrt{\pi}}{\zeta(3/2)^2} + \frac{\zeta(1/2)}{2\sqrt{\pi}\zeta(3/2)} \right) \tau^{-1/2} + O(\tau^{-3/4}) \]

\[\approx 0.5537 \tau^{-1/4} + 0.102 \tau^{-1/2} + O(\tau^{-3/4}) \]

(19)

In the following, we shall always take the leading correction to scaling into account, since it considerably modifies the behaviour.

C. The case \(\epsilon > 0 \)

Let us now analyse the case in which \(\epsilon > 0 \). We proceed exactly as in the previous subsection, and we wish to know the structure of the set \(\Sigma_t \). The probability that a particle at 0 and another particle at \(k \) both belong to \(\Sigma_t \), in the case \(k < t \), is still given by the probability, which we now call \(p_c(k) \), that a random walk, which starts at the origin and takes a step to the right, does not return to the origin before time \(k \). The important difference is now that the walk is biased, that is, that a step to the right now has probability \(1/2 + \epsilon \), whereas a step to the left has probability \(1/2 - \epsilon \).

The probability \(p_c(k) \) has the property that it saturates to a positive value \(p_c(\infty) \) as \(k \to \infty \). More specifically, this saturation happens when \(k \sim k_c(\epsilon) \), where \(k_c(\epsilon) \sim \epsilon^{-2} \) as \(\epsilon \to 0 \). When \(\epsilon \to 0 \) we have \(p_c(\infty) \approx \epsilon \).

The set \(\Sigma_t \) is therefore a fractal set with a cutoff which is either at \(t \) or at \(\epsilon^{-2} \), depending on which is smaller. The correlation function in this case is \((kt)^{-1/2} \) for \(k \ll \epsilon^{-2} \), whereas it goes as \(st^{-1/2} \) for \(k \sim \epsilon^{-2} \). Of course, \(k \approx \epsilon^{-2} \) and \(k < t \) are only compatible if \(t > \epsilon^{-2} \).

If, on the other hand, \(\epsilon < 0 \), that is, if we are looking at the number of surviving particles of the minority species, then the probability of surviving for \(k \) time steps decays exponentially in \(k \) as \(k \) becomes larger than a characteristic value \(k_0(\epsilon) \approx \epsilon^{-2} \). This means that there are essentially no minority particles when \(t > k_0(\epsilon) \), in other words, after a time of order \(\epsilon^{-2} \). We shall call this time \(t_1(\epsilon) \). We will again obtain this time scale from the scaling at the crossover point at the end of this section, with the implication that the relatively few particles that survive at such times are very close to each other.

When all minority particles have annihilated, and only the majority species remains, the surviving particles lie on a fractal of dimension \(1/2 \) with a lower cutoff \(t_1(\epsilon)^{1/2} \) and an upper cutoff \(t_1(\epsilon) \), where \(t_1(\epsilon) \) is the time at which the minority species disappears. At that time, one has \(N(0)^{1/4} \) particles, where \(N(0) \) is the initial number of majority particles. These particles will now undergo diffusive annihilation with diffusion constant \(D_{\text{eff}} \) (Appendix A), starting from a fractal distribution. Actually, not only these remaining majority particles, but all excess particles \(c_{\text{eff}}(t) \) will undergo diffusive annihilation on a fractal of fractal dimension \(1/2 \) from the beginning, except when \(\epsilon = \pm 1/2 \) in which case all particles are excess particles.

Let us determine the crossover time \(t_1(\epsilon) \). This is the time at which we cross from the \(t^{-3/4} \) initial behaviour, to the long-time \(t^{-1/4} \) behaviour. The latter, as follows from the above,

\[at_1(\epsilon)^{-3/4} = b(\epsilon)t_1(\epsilon)^{-1/4} \]

(20)

where the coefficient \(a \) does not depend on \(\epsilon \), as the decay at the beginning does not depend on the initial concentration. On the other hand, \(b(\epsilon) \approx \epsilon \), as \(p_\infty(\epsilon) \approx \epsilon \) for \(\epsilon \to 0 \). Simplifying equation (20), we get

\[t_1(\epsilon) \sim \epsilon^{-2} \]

(21)

which is compatible with the previous description. For \(\epsilon \to 0 \), this crossover time \(t_\epsilon \) will diverge and hence will scale with system size \(L \) for finite \(L \).

For \(\epsilon = 0 \), the \(t^{-1/4} \) decay is difficult to see, as there remain very few particles at this late stage. For \(\epsilon \neq 0 \), it is respectively easier to detect the \(t^{-1/4} \) (which is the leading term) decay of concentration on the fractal, because there remain more particles in this situation. As the dynamics is diffusive in this regime, the fractal structure will eventually fade out to the uniform distribution.
Hence there will be yet another crossover and the concentration will decay as $t^{-1/2}$ at very late time. If the crossover time for this second crossover is $t_c(\varepsilon)$ we can write

$$b(\varepsilon)t_c(\varepsilon)^{-1/4} = c t_c(\varepsilon)^{-1/2}$$

where the coefficient c does not depend on the initial concentration and hence on ε. This gives

$$t_c(\varepsilon) \sim \varepsilon^{-4}$$

To detect and measure this second crossover time $t_c(\varepsilon)$ is quite difficult, as the number of remaining particles is very low and the time very large. To be able to observe it, we need to use comparatively large values of ε, for which other effects, such as the $-3/4$ initial decay, are not so clearly visible.

IV. NUMERICAL RESULTS AND SCALING

A. Results for $\varepsilon = \pm 1/2$

For $\varepsilon = \pm 1/2$, there exists only one kind of particles (either $+v$ or $-v$ velocity particles) and hence the excess number of particles $c_{ex}(t) = c(0)$. As discussed above, the system is purely diffusive in this case and thus, the concentration $c(t)$ decays with time t as $t^{-1/2}$ (Fig. 3).

The initial concentration for the excess particles is $c_{ex}(0) = 1/\sqrt{N}$. If the excess particles, which decay due to diffusive annihilation, are assumed to lie on a fractal of dimension $1/2$ from the beginning, then they will decay according to equation (19). The plot of Eq. (19) with the numerical data for $c_{ex}(t)$ (Fig. 4) shows excellent agreement, supporting the assumption made above.

B. Results for $\varepsilon = 0$

When $\varepsilon = 0$ the number of particles of each kind is equal on average. As discussed above, the system will undergo a crossover from ballistic annihilation with superimposed diffusion to purely diffusive annihilation on a fractal. Figure 4 shows the decay of the concentration $c(t)$ for the total number of particles and the decay of $c_{ex}(t)$, the concentration of the excess number of particles. Both the concentrations are normalized by total number of initial particles, denoted by N. The concentration $c(t)$ decays as $t^{-3/4}$ (equation 12) before the crossover and following equation (19) after the crossover (Fig. 4).

The initial concentration for the excess particles is $c_{ex}(0) = 1/\sqrt{N}$. If the excess particles, which decay due to diffusive annihilation, are assumed to lie on a fractal of dimension $1/2$ from the beginning, then they will decay according to equation (19). The plot of Eq. (19) with the numerical data for $c_{ex}(t)$ (Fig. 4) shows excellent agreement, supporting the assumption made above.

After the crossover, the total number of particles is equal to the excess number of particles, as there exists only one kind of particles in this regime. However the number of particles left after the crossover is quite limited, $O(N^{1/4})$ and a very large number of configurations (more than 2×10^4) are needed to attain the proper statistics. Further, as previously mentioned, one has to consider $n(t)/\sqrt{N}$ to fit the decay of the fraction of excess particles from the beginning. Hence to check the expression of equation (19) directly, we have also studied the dynamics starting from an initial configuration, where all

![Diagram](image-url)
the particles have the same velocity and are distributed on a fractal [Fig. 5]. The numerics show a good agreement with the theoretical plot.

At late times, the distribution of interparticle distances between two neighbouring particles was also studied. This distribution for two same velocity neighbouring particles, which is denoted by $P_s(l)$, goes as $l^{-3/2}$ for large l [Inset at the bottom of fig. 6]. This is evidence that inside a domain of same velocity particles, the particles are distributed on a fractal of dimension $1/2$, while $P_s(l) \sim l$, for small l. That this is due to the diffusion-limited annihilation follows, for example, from the exact results of [16], where it is shown that the interparticle distribution function for diffusion-limited annihilation grows linearly as x for x much less than the average interparticle distance. On the other hand we have also computed $P_d(l)$, the distribution of inter-particle distances between two different velocity neighbouring particles. The distribution is almost flat and then has an exponential decay [Top right inset of figure 6]. At the part of the exponential decay the value of $P_d(l)$ suddenly increases indicating that the probability of having some large value of l is very high. This is due to the fact that the two domains or fractals of same velocity particles are moving apart from each other and the distance increases almost linearly with time. Indeed, this sudden increase of probability is not observed in the distribution function $P_s(l)$.

$P(l)$, the general distribution function for inter-particle distances between two neighbouring particles, where the neighbouring particles can have any velocity, is also computed [The main plot of Fig. 5]. As a combined effect of $P_s(l)$ and $P_d(l)$, $P(l) \sim l$, for small l and also goes as $l^{-3/2}$ for large l [Fig. 6], before the exponential decay. This indicates that the fractal structure is dominating at late times, right up to just before the crossover time,

when a small number of minority particles is still left in the lattice. As an effect of $P_d(l)$, the sudden increase of probability for a large value of l, is also present in this general distribution function $P(l)$.

The decay of $c(t)$, the concentration of total number of particles, has a dependence on the initial number of particles [Inset of Fig. 7]. After the crossover, when $c(t,L)$ is equal to $c_{\text{xf}}(L,t)$. Finite-size scaling analysis can be done using the scaling form

$$c(t,L) \sim L^{-\alpha} f(L/t)$$

where $f(x) \to x^\alpha$ with $\alpha = 3/4$, for $x \to \infty$ and $f(x) \to x^{-1/4}$ when $x \ll 1$. The raw data as well as the scaled data using $\alpha = 3/4$ are shown in Fig. 6.

The domain size for same velocity particles is defined as the number of consecutive same velocity particles (either $+v$ or $-v$). $S_d(t)$ is the average over all the domains of same velocity particles at the time t. On the other hand, lattice domain size is defined by the number of lattice sites occupied by these domain of same velocity particles and $S_d(t)$ is the average over all these lattice domains at the time t. Both the average domain sizes $S_d(t)$ and $S_d(t)$ are normalised by the size of the lattice. The average value of the lattice domain size can not go beyond 0.5 as the entire lattice can be occupied by either the positive or the negative velocity particles (with 50% probability) at very late time.

At some late time, but before the crossover, that is, in the region where $c(t) \sim t^{-3/4}$, the average interparticle distance increases as $t^{3/4}$. Now $S_d(t)$, the average lattice domain size increases linearly in time, due to the ballistic nature of the particles [Inset of Fig. 8]. Hence $S_d(t)$, the average domain size for same velocity particles

![FIG. 5: (Color Online) $n(t)$, normalized by initial number of particles $n(0)$ for each configurations, are plotted as a function of time t (red dots). The blue line is the theoretical plot, which is the plot of equation (18) with $\lambda = 1.5$ (that is the plot of equation 19). In this plot the system size $L = 150 000$ and the average initial number of particles are $\langle n(0) \rangle = O(800)$.](image)

![FIG. 6: (Color Online) The distribution $P(l)$ for the interparticle distances between two neighbouring particles, independent of their velocity is plotted in the main plot. Inset at the bottom shows the distribution $P_s(l)$, for the same velocity particles and the top right inset shows the distribution $P_d(l)$, for two different velocity particles. Pink line indicates $l^{-3/2}$ decay for both the main plot and at the bottom inset. Similarly black dashed line shows the linear increase.](image)
increases with time as $t/t^{3/4} = t^{1/4}$, in this region [Fig. 8]. After the crossover, there exists only one domain and hence $S_d(t)$ become constant. In this region after the crossover, $S_d(t) \sim t^{-1/4}$ as the concentration of particles decreases as $t^{-1/4}$ [Fig. 8]. We have also computed the average interparticle distance between two different velocity neighbouring particles (not shown), which should increase linearly with time. This quantity increases with time with an effective exponent 0.93 in our simulation, which is a little ambiguous but agrees with the observation made in [6].

The persistence probability does not show any finite size dependence before the crossover and fits quite well to the form [Fig. 9]

$$P(t) \approx a \frac{\log(t)}{t} + \frac{b}{t}$$

with $a = 0.45 \pm 0.01$ and $b = 1.27 \pm 0.05$, obtained by least square fitting of the numerical data. Although the fit certainly is quite good and the functional dependence remarkably simple, we would like to mention that we have no rationale at all for this behaviour. After the crossover, the persistence probability decays exponentially as the remaining same velocity ballistic particles wipe out the persistence of all the remaining sites.

C. Results for $0 < \varepsilon < 1/2$

In this section we will present the numerical results for the cases in which the number of positive velocity and negative velocity particles are not equal on average. For $\varepsilon \neq 0$, as previously mentioned, there exist three different dynamical regimes where the concentration decays with different exponent values. However, due to the finiteness of the system, the numerics is challenging because the regimes are not that well separated and thus, the crossover times are not very clean, as can be seen in Fig. 9, where we plot the change of $S(t)$ for different system sizes. The theoretical fitting curve is plotted following equation 24 where the fitting parameters are $a = 0.45$ and $b = 1.27$.

Thus, when $c(t) \sim t^{-3/4}$, $\phi(t) = -1/4$ and so on. In particular, when $c(t) \approx a t^{-3/4} + b t^{-1/4}$, $\phi(t)$ changes from $-1/4$ to $1/4$, whereas when $c(t) \approx b t^{-1/4} + c t^{-1/2}$,
FIG. 10: (Color Online) Decay of $c(t)$, the concentration for the total number of particles, with time t is plotted in the main plot. Inset shows the change of $\phi(t)$ with time t.

$\phi(t)$ changes from $1/4$ to 0. The inset of figure 10 shows the change of $\phi(t)$ with time t for $\varepsilon = 0.08$.

In this case $c_{ex}(t)$, the concentration for the excess number of particles, decays as $t^{-1/4}$ initially and then as $t^{-1/2}$ at late times.

The concentration of the total number of particles is a function of ε also, so we write it explicitly as $c(L, \varepsilon, t)$. We now turn to the scaling behavior of $c(L, \varepsilon, t)$. As the first crossover time is $t_1(\varepsilon) \sim \varepsilon^{-2}$ (Eq. 21), the dimensionless quantity controlling the crossover between the first two dynamical regimes will be $\varepsilon^2 t$. Similarly the dimensionless quantity for the crossover between the second and third regimes will be $\varepsilon^4 t$, as the second crossover time is $t_2(\varepsilon) \sim \varepsilon^{-4}$ (Eq. 22).

FIG. 11: (Color Online) Decay of $c(t)$, for different finite sizes, starting from $c(0) = 1$. Decay of $c(t)$ is size independent for any $\varepsilon \neq 0$. The plots are for $\varepsilon = 0.1$ here.

Unlike the case of $\varepsilon = 0$, in this case we are considering infinite systems, since finite size effects would only be significant when $\varepsilon \ll 1$. Hence the first scaling ansatz is that, except for very long times,

$$c(L, \varepsilon, t) = c(\varepsilon, t), \quad \text{for all } \varepsilon \neq 0. \quad (26)$$

That is, there will be no system size dependence of $c(t)$ for a constant $\varepsilon \neq 0$ (for all ε), which is indeed borne out by the simulations [Fig. 11], except for the long time exponential decay where this scaling ansatz does not hold.

Now we will discuss the scaling laws involving ε and t, which hold for $|\varepsilon| \ll 1$. The scaling function describing the first two dynamical regimes can be written as

$$c(\varepsilon, t) \sim \varepsilon^{2 \delta} f(\varepsilon^2 t), \quad \text{for } \varepsilon \ll 1 \quad (27)$$

where $f(x) \to x^{-\delta}$ with $\delta = 3/4$, for $x \ll 1$ and $f(x) \to x^{-1/4}$ when $x \gg 1$. The raw data as well as the scaled data using $\delta = 3/4$ are shown in Fig. 12. The collapse is good for first two regimes.

FIG. 12: (Color Online) The collapsed plot of scaled data of concentration of particles with $\delta = 0.75$ for different $\varepsilon \neq 0$. Inset shows the raw data. The scaled data gives a good collapse for first two dynamical region where the exponent values are $3/4$ and $1/4$ respectively.

The scaling analysis for the second and third dynamical regime (where $\varepsilon^4 t$ is the relevant dimensionless quantity) can be carried out using the scaling form

$$c(\varepsilon, t) \sim \varepsilon^{4 \eta} g(\varepsilon^4 t), \quad \text{for all } \varepsilon \ll 1 \quad (28)$$

where $g(x) \to x^{-\eta}$ with $\eta = 1/2$, for $x \to \infty$ and $g(x) \to x^{-1/4}$ when $x \ll 1$. The behaviour of $c(\varepsilon, t)$ for $\varepsilon^2 t \gg 1$ in equation (27), is the same as that of equation (28) for $\varepsilon^4 t \ll 1$ (in both cases one gets that $c(\varepsilon, t) \sim ct^{-1/4}$), so both scaling laws are consistent with each other.

The raw data as well as the scaled data using $\eta = 1/2$ are shown in Fig. 13. The collapse is good for second and third dynamical regimes.

$S_d(t)$, the average lattice domain size does not increase linearly in time but increases faster than that (though it does not appear to grow as a well defined power of time t) and then saturates. $S_d(t)$, the average domain size for same velocity particles again increases with time initially.
and then follows the concentration \(c(\varepsilon, t) \) at late times when minority particles do not exist anymore.

\(P(t) \), the persistence probability decays exponentially for all values of \(\varepsilon \neq 0 \). This is due to the presence of more particles of one velocity than of the other: the majority particles wipe out the persistence of all the sites very quickly.

\[P(t) \sim N^{-1/4} \]

To summarise, we have considered the model of annihilating particles moving ballistically with a superimposed diffusion. As shown in Fig. 13, the particle concentration was found to decay as \(t^{-3/4} \), that is, faster than either the purely ballistic or the purely diffusive case, both of which decay as \(t^{-1/2} \). This result, however, fails once all particles are of the same species, that is, either right- or left-going. If the initial condition has an equal concentration of the two kinds of particles, there will nevertheless remain a number \(N^{1/4} \) of particles of one velocity after all the particles of opposite velocity are annihilated. This follows from the fact, which we confirmed numerically, that the number of excess particles decays as \(t^{-1/4} \). Since this number starts out at \(\sqrt{N} \), it decays as \(\sqrt{N} t^{-1/4} \), which becomes equal to \(t^{-3/4} \) when \(t \sim N \). From this, the fact that the number of particles remaining at this time, scales as \(N^{1/4} \), follows immediately.

Thus the number of particles remaining after one kind of particle has been eliminated goes to infinity as \(N \) does. It therefore makes sense to ask: with what power of \(t \) do the remaining particles decay? We have shown that they decay with the exponent \(t^{-1/4} \) and have provided a rationale for this behaviour in terms of Alemany’s result, that annihilating particles which start out distributed on a fractal of dimension \(d_f \), decay as \(t^{-d_f/2} \). Since it can be argued that the excess particles are constrained to lie on a fractal of dimension \(d_f = 1/2 \), the result readily follows.

Finally, we have also looked at the case in which the initial concentrations of left- and right-going particles differ, their initial values being given by \(1/2 - \varepsilon \) and \(1/2 + \varepsilon \) respectively. If \(\varepsilon \ll 1 \), we have shown that two crossovers arise: one from the usual \(t^{-3/4} \) behaviour to the \(t^{-1/4} \) behaviour described in the preceding paragraph. This crossover arises at a time \(t_1(\varepsilon) \sim \varepsilon^{-2} \). A second crossover to an ordinary \(t^{-1/2} \) decay, characteristic of ordinary diffusion-limited annihilation in one-dimension, is observed at a crossover time \(t_2(\varepsilon) \sim \varepsilon^{-4} \). This second crossover is not observed for \(\varepsilon = 0 \), since the number of remaining particles for that regime turns out to tend to zero as \(N \to \infty \).

VI. ACKNOWLEDGEMENT

Financial support from CONACyT through Projects No. 154586 and Program UNAM - DGAPA PAPIIT IN114014 is acknowledged. S.B acknowledges the support from DGAPA/UNAM postdoctoral fellowship. The authors also acknowledge the Miztli supercomputer of DGTI, UNAM for the computational resources under the project number SC15-1-S-20.

Appendix A: Diffusion constant

When all the particles are of same velocity (say +v), the only source of diffusion is the random update rule. So whenever a particle is randomly chosen it will move forward a single lattice site and one Monte Carlo update will be over. After \(N \) such update one Monte Carlo time step will be over, if there are \(N \) particles in the lattice.

We calculate the relative diffusion constant \(D_{r, eff} \) between two neighbouring particles. Let \(P(l, n) \) be the probability that the relative distance between two chosen neighbouring particles be \(l \) after the \(n \)th Monte Carlo update, where \(0 < n < N \). At the \((n + 1)\)th update, any one of the two particles can be chosen with a probability \(1/N \), in which case the distance \(l \) will be increased or decreased by one lattice site; or neither of these particles will be chosen with a probability \((1 - 2/N)\), in which case the distance between the particles remains unchanged. Thus we can write the following equation

\[
P(l, n + 1) = \frac{1}{N} \left[P(l - 1, n) + P(l + 1, n) \right] + \left(1 - \frac{2}{N} \right) P(l, n)
\]

(A-1)
Taking the Fourier transform of A we get

$$\tilde{P}(\omega, n + 1) = \left(1 - \frac{2}{N} + \frac{2}{N} \cos \omega \right) \tilde{P}(\omega, n) \quad (A-2)$$

where $\tilde{P}(\omega, n)$ is the Fourier transform of $P(l, n)$.

We have to repeat this update N times to complete one Monte Carlo time step. Initially, for $n = 0$,

$$\tilde{P}(\omega, n) = \tilde{P}(\omega, 0) = \exp(i\omega\ell)$$

where ℓ is the initial distance between these two particles. After N update, equation $A-2$ becomes

$$\tilde{P}(\omega, N) = \left(1 - \frac{2}{N} + \frac{2}{N} \cos \omega \right)^N \tilde{P}(\omega, 0) \quad (A-3)$$

After t such time steps equation $A-3$ becomes

$$\tilde{P}(\omega, t) = \left(1 - \frac{1}{N} \omega^2 + \ldots \right)^t \left(1 + i\omega\ell - \frac{\omega^2\ell^2}{2} + \ldots \right)$$

$$= 1 + i\omega\ell - \frac{1}{2}(2t + \ell^2)\omega^2 + \ldots \quad (A-5)$$

From which we get

$$\langle \ell \rangle = \ell \quad \text{and} \quad \langle \ell^2 \rangle = 2t + \ell^2,$$

which implies that

$$\langle \ell^2 \rangle - \langle \ell \rangle^2 = 2D_{eff} t = 2t. \quad (A-6)$$

This in turn gives

$$D_{eff} = 1. \quad (A-7)$$

Appendix B: Decay of concentration starting from initial fractal distribution of particles

Let $F(x, t)$ be the probability at time t in which a random walker, starting at $x = 0$, reaches site x for the first time. For any lattice with translational invariance, the Laplace transform of $F(x, t)$ will be given by $\tilde{F}(x, u)$ [13, 14]. It can be written as

$$L_u\{F(x, t)\} = \tilde{F}(x, u) = \tilde{\xi}(u)^{-x}$$

with

$$\tilde{\xi}(u)^{-x} = 1 + (u/D) + \sqrt{2(u/D) + (u/D)^2} \quad (B-1)$$

where $D = D_{eff}$ is the relative diffusion constant. If $\tilde{P}(v)$ is the Laplace transform of the probability distribution function $P(x)$, for initial inter-particle distances for two nearest particles then the number of particles $n(t)$ at time t (normalized by initial number of particles $n(0)$) will be [10]

$$n(t) = L_u^{-1} \left\{ u^{-1} \left[1 - \tilde{P}(v = \ln \tilde{\xi}(u/2)) \right] / \left[1 + \tilde{P}(v = \ln \tilde{\xi}(u/2)) \right] \right\} \quad (B-2)$$

If initially the particles are distributed on a fractal with fractal dimension d_f ($0 < d_f < 1$), then we can write

$$P(x) = \frac{1}{\zeta(\lambda)} \sum_{i=1}^{\infty} l^{-\lambda} \delta(x - l) \quad (B-3)$$

where $\lambda = d_f + 1$ and hence $1 < \lambda < 2$. The Laplace transform of equation $B-3$ will be

$$\tilde{P}(v) = \int_0^\infty e^{-xv} P(x) \, dx$$

$$= \frac{1}{\zeta(\lambda)} \sum_{i=1}^{\infty} l^{-\lambda} e^{-iv}$$

$$= \frac{1}{\zeta(\lambda)} \Phi(e^{-v}, \lambda, 1) \quad (B-4)$$

where $\Phi(z, s, a)$ is defined in [17], Section 1.11. Thus we can write, following equation (8) of the same Section of [17]:

$$\tilde{P}(v) = \frac{1}{\zeta(\lambda)} \left[\Gamma(1 - \lambda) v^{\lambda-1} + \sum_{k=0}^{\infty} \frac{\zeta(\lambda-k)}{k!} (-v)^k \right]$$

$$\approx 1 + \frac{\Gamma(1 - \lambda)}{\zeta(\lambda)} v^{\lambda-1} - \frac{\zeta(\lambda-1)}{\zeta(\lambda)} v + \ldots \quad (B-5)$$

Note that this function has no special name in [17]. It is, however, related to functions denoted as polylogarithms, treated, for example, in [18]. Now we have the elements to evaluate $n(t)$ given in $B-2$. First we write

$$v = \ln \tilde{\xi}(u/2) \approx (u/D)^{1/2} - \frac{3}{8}(u/D)^{3/2} + \ldots \quad (B-6)$$

and hence, to leading order, we have

$$v^{\lambda-1} = (u/D)^{(\lambda-1)/2} \left[1 + O(u/D) \right] \quad (B-7)$$

Then inserting $\tilde{P}(v)$ given by equation $B-5$, along with equation $B-7$, in equation $B-2$, we get
\[n(t) = L_u^{-1} \left\{ u^{-1} \frac{-\Gamma(1-\lambda)(u/D)^{(\lambda-1)/2} + \zeta(\lambda-1)(u/D)^{1/2}}{2\zeta(\lambda) + \Gamma(1-\lambda)(u/D)^{(\lambda-1)/2} - \zeta(\lambda-1)(u/D)^{1/2}} \right\}, \] \hspace{1cm} (B-8)

This implies

\[n(t) \approx L_u^{-1} \left\{ \frac{-\Gamma(1-\lambda)}{2\zeta(\lambda)} \frac{u^{(\lambda-3)/2}}{D(\lambda-1)/2} + \frac{\Gamma(1-\lambda)^2}{4\zeta(\lambda)^2} \frac{u^{\lambda-2}}{D^{\lambda-1}} + \frac{\zeta(\lambda-1)}{2\zeta(\lambda)} \frac{u^{-1/2}}{D^{1/2}} + O\left(D^{-\lambda/2}u^{\lambda/2-1}\right) \right\}, \]

which in turn leads to:

\[n(t) = a_1 \tau^{-(\lambda-1)/2} + a_2 \tau^{-(\lambda-1)} + a_3 \tau^{-1/2} + O\left(\tau^{-\lambda/2}\right), \] \hspace{1cm} (B-9)

where \(\tau = Dt \) and

\[a_1 = \frac{-\Gamma(1-\lambda)}{2\zeta(\lambda)\Gamma(\frac{\lambda-1}{2})}, \] \hspace{1cm} (B-10a)

\[a_2 = \frac{\Gamma(1-\lambda)}{4(1-\lambda)\zeta(\lambda)^2}, \] \hspace{1cm} (B-10b)

\[a_3 = \frac{\zeta(\lambda-1)}{2\zeta(\lambda)\sqrt{\pi}}. \] \hspace{1cm} (B-10c)

[1] For a review of diffusion-controlled annihilation, see S Redner, *Nonequilibrium Statistical Mechanics in One Dimension* ed V Privman, Cambridge: Cambridge University Press (1996)

[2] J. L. Spouge, Phys. Rev. Lett. 60 871 (1988)

[3] P. L. Krapivsky, S. Redner and E. Ben-Naim, *A Kinetic View of Statistical Physics*; Cambridge: Cambridge University Press, (2010)

[4] Y. Elskens and H. L. Frisch, “Annihilation kinetics in the one-dimensional ideal gas”, Phys. Rev. A 31, 3812 (1985).

[5] E. Ben-Naim, S. Redner, and F. Leyvraz, “Decay kinetics of ballistic annihilation”, Phys. Rev. Lett. 70, 1890 (1993) and the references therein.

[6] E Ben-Naim, S Redner and P L Krapivsky, “Two scales in asynchronous ballistic annihilation”, J. Phys. A: Math. Gen. 29 L561 (1996)

[7] F. Leyvraz and N. Jan, J. Phys. A: Math. Gen. 19 603-605. (1986)

[8] I. Ispolatov, P.L. Krapivsky, S. Redner , “War: The dynamics of vicious civilizations”, Phys. Rev. E 54, 1274 (1996)

[9] S. Biswas and P. Sen, Phys. Rev. E 80, 027101 (2009)

S. Biswas, P. Sen, and P. Ray, J. Phys.: Conf. Series 297, 012003 (2011)

[10] P. A. Alemany, “Novel decay laws for the one-dimensional reaction-diffusion model as consequence of initial distributions”, J. Phys. A: Math. Gen. 30 (1997) 3299

[11] For a review, see S. N. Majumdar, Curr. Sci. 77, 370 (1999)

[12] B. Derrida, A. J. Bray, and C. Godreche, J. Phys. A 27, L357 (1994)

D. Stauffer, J. Phys. A 27, 5029 (1994)

[13] G. H. Weiss, *Aspects and applications of the random walk Random Materials and Processes*; ed H. E. Stanley and E. Guyon (1994)

[14] B. D. Hughes; *Random Walks and Random Environments*, vol 1; Oxford: Clarendon (1995)

[15] D. Balding, P. Clifford and N. J. B. Green, Phys. Lett. A 126 481

[16] C.R. Doering and D. Ben-Avraham, D. “Interparticle distribution functions and rate equations for diffusion–limited reactions”. Phys. Rev. A, 38 (6) 3035 (1988)

[17] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, *Higher Transcendental Functions* (The Bateman Project) vol. 1, Mc-Graw Hill (1953)

[18] Wood, D. “The computation of polylogarithms” University of Kent at Canterbury, Computing Laboratory (1992); John E. Robinson, “Note on the Bose–Einstein Integral Functions” , Phys. Rev. 83 678 (1951)
[19] A. A. Lushnikov, Phys. Lett. A 120 135 (1987)
[20] I. S. Gradshteyn and I. M. Ryzhik: *Table of Integrals, Series and Products*, ed A. Jeffrey, Academic Press, London (1965)