Distributed Asynchronous Online Learning for Natural Language Processing

Kevin Gimpel Dipanjan Das Noah A. Smith
Introduction

- Two recent lines of research in speeding up large learning problems:
 - Parallel/distributed computing
 - Online (and mini-batch) learning algorithms: stochastic gradient descent, perceptron, MIRA, stepwise EM

- How can we bring together the benefits of parallel computing and online learning?
Introduction

- We use **asynchronous** algorithms
 (Nedic, Bertsekas, and Borkar, 2001; Langford, Smola, and Zinkevich, 2009)

- We apply them to structured prediction tasks:
 - Supervised learning
 - Unsupervised learning with both convex and non-convex objectives

- Asynchronous learning speeds convergence and works best with small mini-batches
Problem Setting

- Iterative learning
 - Moderate to large numbers of training examples
 - Expensive inference procedures for each example
 - For concreteness, we start with gradient-based optimization

- Single machine with multiple processors
 - Exploit shared memory for parameters, lexicons, feature caches, etc.
 - Maintain one master copy of model parameters
Single-Processor Batch Learning

Parameters: θ_t

Processors: P_i

Dataset: D
Single-Processor Batch Learning

\[\theta \]

\[\mathcal{P}_1 \]

Parameters: θ_t

Processors: \mathcal{P}_i

Dataset: \mathcal{D}
Single-Processor Batch Learning

θ	θ_0
P_1	$g = \text{calc}(D, \theta_0)$

$g = \text{calc}(D, \theta)$:
Calculate gradient g on data D using parameters θ

Parameters: θ_t
Processors: P_i
Dataset: D
Single-Processor Batch Learning

\[
\begin{array}{|c|c|c|}
\hline
\theta & \theta_0 & \theta_1 \\
\hline
\mathcal{P}_1 & g = \text{calc}(\mathcal{D}, \theta_0) & \theta_1 = \text{up}(\theta_0, g) \\
\hline
\end{array}
\]

- \(g = \text{calc}(\mathcal{D}, \theta) \): Calculate gradient \(g \) on data \(\mathcal{D} \) using parameters \(\theta \)
- \(\theta_1 = \text{up}(\theta_0, g) \): Update \(\theta_0 \) using gradient \(g \) to obtain \(\theta_1 \)

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Dataset: \(\mathcal{D} \)
Single-Processor Batch Learning

θ	θ_0	θ_1
\mathcal{P}_1	$g = \text{calc}(\mathcal{D}, \theta_0)$	$\theta_1 = \text{up}(\theta_0, g)$, $g = \text{calc}(\mathcal{D}, \theta_1)$

g = calc(\mathcal{D}, \theta):
- Calculate gradient g on data \mathcal{D} using parameters θ

$\theta_1 = \text{up}(\theta_0, g)$:
- Update θ_0 using gradient g to obtain θ_1

Parameters: θ_t

Processors: \mathcal{P}_i

Dataset: \mathcal{D}
Parallel Batch Learning

θ	θ_0
\mathcal{P}_1	$\mathbf{g}_1 = \text{calc}(\mathcal{D}_1, \theta_0)$
\mathcal{P}_2	$\mathbf{g}_2 = \text{calc}(\mathcal{D}_2, \theta_0)$
\mathcal{P}_3	$\mathbf{g}_3 = \text{calc}(\mathcal{D}_3, \theta_0)$

- Divide data into parts, compute gradient on parts in parallel

Parameters: θ_t

Processors: \mathcal{P}_i

Dataset: $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$

Gradient: $\mathbf{g} = \mathbf{g}_1 + \mathbf{g}_2 + \mathbf{g}_3$
Parallel Batch Learning

θ	θ₀	θ₁
\mathcal{P}_1	$g_1 = \text{calc}(\mathcal{D}_1, \theta_0)$	$\theta_1 = \text{up}(\theta_0, g)$
\mathcal{P}_2	$g_2 = \text{calc}(\mathcal{D}_2, \theta_0)$	
\mathcal{P}_3	$g_3 = \text{calc}(\mathcal{D}_3, \theta_0)$	

- Divide data into parts, compute gradient on parts in parallel
- One processor updates parameters

Parameters: θ_t
Processors: \mathcal{P}_i
Dataset: $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \cup \mathcal{D}_3$
Gradient: $g = g_1 + g_2 + g_3$
Parallel Batch Learning

\(\theta \)	\(\theta_0 \)	\(\theta_1 \)
\(P_1 \)	\(g_1 = \text{calc}(D_1, \theta_0) \)	\(\theta_1 = \text{up}(\theta_0, g) \) \(g_1 = \text{calc}(D_1, \theta_1) \) \(\theta_2 = \text{up}(\theta_1, g) \)
\(P_2 \)	\(g_2 = \text{calc}(D_2, \theta_0) \)	\(g_2 = \text{calc}(D_2, \theta_1) \)
\(P_3 \)	\(g_3 = \text{calc}(D_3, \theta_0) \)	\(g_3 = \text{calc}(D_3, \theta_1) \)

- Divide data into parts, compute gradient on parts in parallel
- One processor updates parameters

Parameters: \(\theta_t \)
Processors: \(P_i \)
Dataset: \(D = D_1 \cup D_2 \cup D_3 \)
Gradient: \(g = g_1 + g_2 + g_3 \)
Parallel Synchronous Mini-Batch Learning

Finkel, Kleeman, and Manning (2008)

θ	θ_0	θ_1	θ_2	
\mathcal{P}_1	$g_1 = c(\mathcal{B}_1^1, \theta_0)$	$\theta_1 = u(\theta_0, g)$	$g_1 = c(\mathcal{B}_2^1, \theta_1)$	$\theta_2 = u(\theta_1, g)$
\mathcal{P}_2	$g_2 = c(\mathcal{B}_1^2, \theta_0)$	$g_2 = c(\mathcal{B}_2^2, \theta_1)$	$g_2 = c(\mathcal{B}_3^2, \theta_1)$	
\mathcal{P}_3	$g_3 = c(\mathcal{B}_1^3, \theta_0)$	$g_3 = c(\mathcal{B}_2^3, \theta_1)$	$g_3 = c(\mathcal{B}_3^3, \theta_1)$	

- Same architecture, just more frequent updates

Parameters: θ_t

Processors: \mathcal{P}_i

Mini-batches: $\mathcal{B}_t = \mathcal{B}_1^1 \cup \mathcal{B}_2^2 \cup \mathcal{B}_3^3$

Gradient: $g = g_1 + g_2 + g_3$
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

θ	θ₀
\(\mathcal{P}_1 \)	
\(\mathcal{P}_2 \)	
\(\mathcal{P}_3 \)	

0 \hspace{5cm} \text{Time}

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Mini-batches: \(\mathcal{B}_j \)
Gradient: \(\mathbf{g}_k \)
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

\(\theta \)	\(\theta_0 \)
\(\mathcal{P}_1 \)	\(g_1 = c(\mathcal{B}_1, \theta_0) \)
\(\mathcal{P}_2 \)	\(g_2 = c(\mathcal{B}_2, \theta_0) \)
\(\mathcal{P}_3 \)	\(g_3 = c(\mathcal{B}_3, \theta_0) \)

- **Parameters:** \(\theta_t \)
- **Processors:** \(\mathcal{P}_i \)
- **Mini-batches:** \(\mathcal{B}_j \)
- **Gradient:** \(g_k \)
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

θ	θ_0	θ_1
P_1	$g_1 = c(B_1, \theta_0)$	$\theta_1 = u(\theta_0, g_1)$
P_2	$g_2 = c(B_2, \theta_0)$	
P_3	$g_3 = c(B_3, \theta_0)$	

Parameters: θ_t
Processors: P_i
Mini-batches: B_j
Gradient: g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

θ	θ_0	θ_1
P_1	$g_1 = c(\mathcal{B}_1, \theta_0)$	$\theta_1^* = u(\theta_0, g_1)$ $g_1 = c(\mathcal{B}_4, \theta_1)$
P_2	$g_2 = c(\mathcal{B}_2, \theta_0)$	
P_3	$g_3 = c(\mathcal{B}_3, \theta_0)$	

Parameters: θ_t

Processors: P_i

Mini-batches: \mathcal{B}_j

Gradient: g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

Table

θ	θ_0	θ_1	θ_2
P_1	$g_1 = c(\mathcal{B}_1, \theta_0)$	$\theta_1 = u(\theta_0, g_1)$	$g_1 = c(\mathcal{B}_4, \theta_1)$
P_2	$g_2 = c(\mathcal{B}_2, \theta_0)$		$\theta_2 = u(\theta_1, g_2)$
P_3	$g_3 = c(\mathcal{B}_3, \theta_0)$		

Diagram

- Parameters: θ_t
- Processors: P_i
- Mini-batches: \mathcal{B}_j
- Gradient: g_k
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

	\(\theta_0 \)	\(\theta_1 \)	\(\theta_2 \)
\(\mathcal{P}_1 \)	\(g_1 = c(B_1, \theta_0) \)	\(\theta_1 = u(\theta_0, g_1) \)	\(g_1 = c(B_4, \theta_1) \)
\(\mathcal{P}_2 \)	\(g_2 = c(B_2, \theta_0) \)	\(\theta_2 = u(\theta_1, g_2) \)	\(g_2 = c(B_5, \theta_2) \)
\(\mathcal{P}_3 \)	\(g_3 = c(B_3, \theta_0) \)		

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Mini-batches: \(B_j \)
Gradient: \(g_k \)

Time

ARK
i
Carnegie Mellon
Parallel Asynchronous Mini-Batch Learning
Nedic, Bertsekas, and Borkar (2001)

\(\theta \)	\(\theta_0 \)	\(\theta_1 \)	\(\theta_2 \)	\(\theta_3 \)
\(\mathcal{P}_1 \)	\(g_1 = c(B_1, \theta_0) \)	\(\theta_1 = u(\theta_0, g_1) \)	\(g_1 = c(B_4, \theta_1) \)	
\(\mathcal{P}_2 \)	\(g_2 = c(B_2, \theta_0) \)	\(\theta_2 = u(\theta_1, g_2) \)	\(g_2 = c(B_5, \theta_2) \)	
\(\mathcal{P}_3 \)	\(g_3 = c(B_3, \theta_0) \)	\(\theta_3 = u(\theta_2, g_3) \)		

Parameters: \(\theta_t \)
Processors: \(\mathcal{P}_i \)
Mini-batches: \(B_j \)
Gradient: \(g_k \)
Parallel Asynchronous Mini-Batch Learning

Nedic, Bertsekas, and Borkar (2001)

\(\theta \)	\(\theta_0 \)	\(\theta_1 \)	\(\theta_2 \)	\(\theta_3 \)	\(\theta_4 \)	
\(\mathcal{P}_1 \)	\(g_1 = c(\mathcal{B}_1, \theta_0) \)	\(\theta_1 = u(\theta_0, g_1) \)	\(g_1 = c(\mathcal{B}_4, \theta_1) \)			\(g_1 = c(\mathcal{B}_1, \theta_0) \)
\(\mathcal{P}_2 \)	\(g_2 = c(\mathcal{B}_2, \theta_0) \)		\(g_2 = c(\mathcal{B}_5, \theta_2) \)		\(\theta_5 = u(\theta_4) \)	
\(\mathcal{P}_3 \)	\(g_3 = c(\mathcal{B}_3, \theta_0) \)			\(\theta_3 = u(\theta_2, g_3) \)	\(g_3 = c(\mathcal{B}_6, \theta_3) \)	

Key Points:

- Gradients computed using stale parameters
- Increased processor utilization
- Only idle time caused by lock for updating parameters

Parameters: \(\theta_t \)

Processors: \(\mathcal{P}_i \)

Mini-batches: \(\mathcal{B}_j \)

Gradient: \(g_k \)
Theoretical Results

- How does the use of stale parameters affect convergence?

- Convergence results exist for convex optimization using stochastic gradient descent
 - Convergence guaranteed when max delay is bounded (Nedic, Bertsekas, and Borkar, 2001)
 - Convergence rates linear in max delay (Langford, Smola, and Zinkevich, 2009)
Experiments

| Task | Model | Method | Convex? | $|D|$ | $|\theta|$ | m |
|--|-----------|--------------------|---------|-------|------------|------|
| Named-Entity Recognition | CRF | Stochastic Gradient Descent | Y | 15k | 1.3M | 4 |
| Word Alignment | IBM Model 1 | Stepwise EM | Y | 300k | 14.2M | 10k |
| Unsupervised Part-of-Speech Tagging | HMM | Stepwise EM | N | 42k | 2M | 4 |

- To compare algorithms, we use wall clock time (with a dedicated 4-processor machine)
- m = mini-batch size
Experiments

| Task | Model | Method | Convex? | $|\mathcal{D}|$ | $|\theta|$ | m |
|--------------------------|-------|-------------------------|---------|-----------|-----------|------|
| Named-Entity Recognition | CRF | Stochastic Gradient Descent | Y | 15k | 1.3M | 4 |

- **CoNLL 2003 English data**

- Label each token with entity type (person, location, organization, or miscellaneous) or non-entity

- We show convergence in F1 on development data
Asynchronous Updating Speeds Convergence

All use a mini-batch size of 4
Comparison with Ideal Speed-up

Wall clock time (hours)

F1

Asynchronous (4 processors)
Ideal

Ark
lti
Carnegie Mellon
Why Does Asynchronous Converge Faster?

- Processors are kept in near-constant use
- Synchronous SGD leads to idle processors \(\rightarrow\) need for load-balancing
Clearer improvement for asynchronous algorithms when increasing number of processors.
Artificial Delays

After completing a mini-batch, 25% chance of delaying

Delay (in seconds) sampled from \(\max(\mathcal{N}(\mu, (\mu/5)^2), 0) \)

Avg. time per mini-batch = 0.62 s
Experiments

| Task | Model | Method | Convex? | $|\mathcal{D}|$ | $|\theta|$ | m |
|--------------------|-------------|----------|---------|--------|----------|-----|
| Word Alignment | IBM Model 1 | Stepwise EM | Y | 300k | 14.2M | 10k |

- **Given parallel sentences, draw links between words:**

 konnten sie es übersetzen?

 could you translate it?

- **We show convergence in log-likelihood**
 (convergence in AER is similar)
Stepwise EM
(Sato and Ishii, 2000; Cappe and Moulines, 2009)

- Similar to stochastic gradient descent in the space of sufficient statistics, with a particular scaling of the update
- More efficient than incremental EM
 (Neal and Hinton, 1998)
- Found to converge much faster than batch EM
 (Liang and Klein, 2009)
Word Alignment Results

For stepwise EM, mini-batch size = 10,000
Word Alignment Results

Asynchronous is no faster than synchronous!

For stepwise EM, mini-batch size = 10,000
Word Alignment Results

Asynchronous is no faster than synchronous!

For stepwise EM, mini-batch size = 10,000
Comparing Mini-Batch Sizes

Wall clock time (minutes)

Log-Likelihood

Asynch. (m = 10,000)
Synch. (m = 10,000)
Asynch. (m = 1,000)
Synch. (m = 1,000)
Asynch. (m = 100)
Synch. (m = 100)
Asynchronous is faster when using small mini-batches
Comparing Mini-Batch Sizes

Wall clock time (minutes)

Log-Likelihood

Asynch. (m = 10,000)
Synch. (m = 10,000)
Asynch. (m = 1,000)
Synch. (m = 1,000)
Asynch. (m = 100)
Synch. (m = 100)

Error from asynchronous updating
Word Alignment Results

For stepwise EM, mini-batch size = 10,000
Comparison with Ideal Speed-up

For stepwise EM, mini-batch size = 10,000
MapReduce?

- We also ran these algorithms on a large MapReduce cluster (M45 from Yahoo!)

- Batch EM
 - Each iteration is one MapReduce job, using 24 mappers and 1 reducer

- Asynchronous Stepwise EM
 - 4 mini-batches processed simultaneously, each run as a MapReduce job
 - Each uses 6 mappers and 1 reducer
MapReduce?

![Graph showing the comparison of different EM algorithms under MapReduce and batch processing.](image-url)
Experiments

| Task | Model | Method | Convex? | $|D|$ | $|\theta|$ | m |
|-------------------------------------|----------|------------|---------|-----|-----------|-----|
| Unsupervised Part-of-Speech Tagging | HMM | Stepwise EM| N | 42k | 2M | 4 |

- Bigram HMM with 45 states
- We plot convergence in likelihood and many-to-1 accuracy
Part-of-Speech Tagging Results

mini-batch size = 4 for stepwise EM

Asynch. Stepwise EM (4 processors)
Synch. Stepwise EM (4 processors)
Synch. Stepwise EM (1 processor)
Batch EM (1 processor)
Comparison with Ideal

Log-Likelihood

Wall clock time (hours)

Accuracy (%)

Asynch. Stepwise EM (4 processors)
Ideal
Comparison with Ideal

Asynchronous better than ideal?
Conclusions and Future Work

- Asynchronous algorithms speed convergence and do not introduce additional error.
- Effective for unsupervised learning and non-convex objectives.
- If your problem works well with small mini-batches, try this!

Future work

- Theoretical results for non-convex case
- Explore effects of increasing number of processors
- New architectures (maintain multiple copies of θ)
Thanks!