Helicteres L. SPECIES (Malvaceae SENSA LATO) AS SOURCE OF NEW DRUGS: A REVIEW

Diégina A. Fernandes*, Edileuza B. de Assis*, Maria Sallett Souza*, Pedro Isaac Vanderlei de Souza† and Maria de Fátima Vanderlei de Souza‡,§,*

*Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-900 João Pessoa – PB, Brasil
†Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, 79070-900 Campo Grande – MS, Brasil
‡Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, 79070-900 Campo Grande – MS, Brasil

Recebido em 11/11/2019; aceito em 12/02/2020; publicado na web em 20/04/2020

INTRODUCTION

The use of natural products by mankind with the purpose of supplying physical and biological needs is an ancient practice, being the knowledge acquired transmitted throughout the generations. Previous studies have allowed the association of chemical constituents present in the medicinal species and their respective pharmacological activities, based on experimental researches including knowledges of botany, chemistry, biochemistry and pharmacology, greatly contributing to the discovery of bioactive natural products.

In this context, species of Sterculiaceae clade, Malvaceae sensu lato, have aroused great interest in the scientific environment and stand out for their importance in industrial, economic, medicinal, food and ornamental production, as well their chemical and biological properties.

Among the genus belonging to this group, we highlight Helicteres L., whose biological and pharmacological effects of some species used in folk medicine were scientifically confirmed through the isolation, structural characterization and pharmacological activities developed by its secondary metabolites.

Helicteres genus has pantropical distribution, comprising approximately 60 species in America and Asia, with no species common to both continents. In Asia, the most studied species chemically and pharmacologically are H. isora, H. angustifolia and H. hirsuta. China has about ten species, of which only one is endemic.

In America, there are 38 species distributed from Mexico to Argentina, with no reports of occurrence for Ecuador and Chile. Among the most scientifically studied species in the continent, we can highlight H. sacarolhha, H. eichleri and H. velutina, the last two endemic in Brazil, which is considered the center of diversity of this genus in Americas, having a registered occurrence of 31 species, 23 of which are exclusive from cerrado, caatinga and dry forests.

Based on the presented data, the objective of this review is to make a survey about the traditional use of Helicteres genus species, as well as evaluating their chemical and pharmacological potential to show the importance of this genus and provide a basis for future research.

METHODOLOGY

Available information on traditional uses, phytochemical study, botanical characteristics and biological activities of Helicteres genus were collected from scientific databases: ‘Web of Science’, ‘Scifinder’, ‘Pubmed’, ‘ScienceDirect’, and ‘Google Scholar’, using the keyword ‘Helicteres’. The species H. isora and H. angustifolia, found in Asia, are the most explored scientifically, whereas studies of species of this genus found in Americas are still rare, being possible to highlight studies carried out in Brazil with H. velutina and H. eichleri. About 149 compounds were isolated and characterized in the genus, being emphasized terpenoids, flavonoids and lignoids. These species have demonstrated various pharmacological properties in vitro and in vivo, including insecticide, antidiabetic, antitumor and hepatoprotective activities. The presented data show the importance of studies carried out isolating bioactive compounds from this genus that may be used in several diseases’ treatment or/as prototypes to development of new drugs.

Keywords: Helicteres L.; secondary metabolite; ethnomedical relevance; scientific studies.

*E-mail: mfvanderlei@ltf.ufpb.br
*Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos
†Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos
open daily, being visited by birds and insects that assist in pollination during the day.21

Ethnopharmacological relevance

Almost all parts of Helicteres L. plants, including roots, bark and aerial parts, are reported to be traditionally used in several countries and tribes for therapeutic purposes (Table 1). The juice of H. isora root is used in Tradicional Chinese Medicine for diabetes treatment, while fruit extract is used in various intestinal disorders to relieve colic and as an anthelmintic medicine against tapeworm.22–24

The root tea of H. angustifolia is used to treat influenza symptoms and to inhibit tumor growth.25 H. sacarolha preparations with roots and leaves, in form of decoction, infusion or maceration, are used for liver complications, ovarian inflammation, amenorrhea and blood purification,4 while the aerial parts of H. velutina are used by indigenous tribe Pankararé/Brazil as insect repellent.26

Ethnopharmacological research with species of this genus acts as a subsidy to the pharmaceutical interest and registration of the empirical uses of medicinal plants in traditional communities associated with chemical-pharmacological tests generates useful knowledges to lead to the development of new drugs.

Phytochemistry profile

In literature, 46 references on the phytochemistry field with species of Helicteres genus were found, 39 of which referring to the studies with H. isora and H. angustifolia. Furthermore, papers reporting research in this area with the species H. hirsuta,34,46 H. vegae,45 H. velutina27 and H. eichleri48 were found, 149 compounds were isolated and identified from Helicteres (Table 2) among the most reported classes. All substances are compiled in the Table 2 (compounds) and Figure 2 (structures).

Terpenoids and steroids

Terpenoids and its oxygenated, acetylated and dehydrogenated derivatives are hydrocarbons of plant origin.84 Many of these molecules have biological activities that are used for the treatment of human diseases. These molecules have led to six major classes of drugs in the last century: steroids, tocopherols, texanes, artemisinins, ingenans and cannabinoids.85,86

Fifty terpenoids were isolated and identified from H. isora, H. angustifolia, H. hirsuta, H. eichleri and H. velutina, evidencing this class as the predominant compounds in Helicteres genus (Table 2). In a preliminary bioassay, cucurbitacins D (4) and J (8) exhibited significant inhibitory activities against hepatocellular carcinoma and malignant melanoma cells in vitro.51

Compounds 3β-O (trans-coumaroyl) betulinic acid (15), pyracenric acid (16), 3β-acetoxy-27-[(4-hydroxybenzoyloxy)lup-20(29)-en-28-oic acid (32) and 3β-acetoxy-27-[(4-hydroxybenzoyloxy)lean-12-en-28-oic acid methyl (39), showed significant cytotoxic activities against human colorectal cancer and human gastric cancer cells in vitro.84 The compound 10-methyl, 4-isopropenyl, dodecahydro-ethanophenanthrene (48) exhibited considerable antimicrobial and antispasmodic activities.84

Steroids are one of the less widespread classes in isolated from species of Helicteres genus, with only seven representatives (50–56).

Phytochemistry profile

In literature, 46 references on the phytochemistry field with species of Helicteres genus were found, 39 of which referring to the studies with H. isora and H. angustifolia. Furthermore, papers reporting research in this area with the species H. hirsuta,34,46 H. vegae,45 H. velutina27 and H. eichleri48 were found, 149 compounds were isolated and identified from Helicteres (Table 2) among the most reported classes. All substances are compiled in the Table 2 (compounds) and Figure 2 (structures).

Terpenoids and steroids

Terpenoids and its oxygenated, acetylated and dehydrogenated derivatives are hydrocarbons of plant origin.84 Many of these molecules have biological activities that are used for the treatment of human diseases. These molecules have led to six major classes of drugs in the last century: steroids, tocopherols, texanes, artemisinins, ingenans and cannabinoids.85,86

Fifty terpenoids were isolated and identified from H. isora, H. angustifolia, H. hirsuta, H. eichleri and H. velutina, evidencing this class as the predominant compounds in Helicteres genus (Table 2). In a preliminary bioassay, cucurbitacins D (4) and J (8) exhibited significant inhibitory activities against hepatocellular carcinoma and malignant melanoma cells in vitro.51

Compounds 3β-O (trans-coumaroyl) betulinic acid (15), pyracenric acid (16), 3β-acetoxy-27-[(4-hydroxybenzoyloxy)lup-20(29)-en-28-oic acid (32) and 3β-acetoxy-27-[(4-hydroxybenzoyloxy)lean-12-en-28-oic acid methyl (39), showed significant cytotoxic activities against human colorectal cancer and human gastric cancer cells in vitro.84 The compound 10-methyl, 4-isopropenyl, dodecahydro-ethanophenanthrene (48) exhibited considerable antimicrobial and antispasmodic activities.84

Steroids are one of the less widespread classes in isolated from species of Helicteres genus, with only seven representatives (50–56).

Flavonoids and phenolic compounds

Flavonoids represent one of the most important and diverse groups of phenolic compounds among natural products.90,91 Among the phytotherapies currently studied, flavonoids have been highlighted due to their wide range of biological and/or pharmacological actions demonstrated under both experimental and human conditions.92

Twenty-nine flavonoids were isolated from Helicteres genus, with emphasis on heterosides (69).90,91 sulphated (78–80) and heterosides glycosulfated (65–67,12,90 Among those compounds, tiliroside (70) and 7,4′-di-O-methyl-8-O-sulphate flavone (78) have larvicidal activity against Aedes aegypti,90 while 7,4′-O-methylisosculetarein (60) have shown anti-inflammatory activity by inhibiting neutrophil recruitment and decreasing IL-1β and TNF-α production in vitro.93

Besides the flavonoids, it was possible to identify 18 phenolic compounds (85–102) with different nuclei, among them rosmarinic acid (85) isolated from H. isora fruits, H. angustifolia and H. vegae roots and H. eichleri aerial parts. Scientific studies of this substance have proven its antioxidant, anti-inflammatory, antifibrosis, hepatoprotective and antineoplastic activities.94

Some studies also report the compounds quantification in species of Helicteres genus, among which are total phenolic content, flavonoids and condensed tannins of H. vegae.47 It was also accomplished the phenolics, flavonoids and saponins quantification of H. hirsuta45,95,96 and H. isora, to evaluate their antioxidant potential.97–99

Lignoids

Twenty-one lignoids were isolated and identified from H. isora, H. angustifolia, H. hirsuta and H. velutina species, most of them found in the roots and fruits. Yin et al. (2016)95 isolated two benzofuran lignans of H. angustifolia that were evaluated for anti-complementary activity in vitro and showed potent activity when compared to heparin
Helicteres L. species (Malvaceae sensu lato) as source of new drugs: a review

Tezuka et al. (2000) isolated and identified six dimeric neolignans from fruits of *H. isora*: Helictersins B (120), C (115), D (117), E (116) and F (118), which showed mild inhibitory activity against avian myeloblastosis virus reverse transcriptase (AMV-RT), having an emphasis on the inhibitory activity of Helictersin A (119), which was identical to the antineoplastic drug doxorubicin, with an IC₅₀ of 66 μM. This can be of interest for the development of new therapeutic alternatives.

Quinones

Quinones are structurally characterized as cyclic α, β-dienics, and have considerable toxicological and pharmacological interests due to their biooxidation-reduction properties and ability to catalyze biological electrical transfer. However, biological studies involving isolated quinones of *Helicteres* species are scarce, as it is necessary to investigate possible biological actions not yet explored. So far, ten quinones have been isolated and identified in the studied genus (123-132), and the compounds that best represent this class were sesquiterpene quinones and O-benzoquinones, isolated from *H. angustifolia* roots. (positive control). Tezuka *et al*. (2000) isolated and identified six dimeric neolignans from fruits of *H. isora*: Helictersins B (120), C (115), D (117), E (116) and F (118), which showed mild inhibitory activity against avian myeloblastosis virus reverse transcriptase (AMV-RT), having an emphasis on the inhibitory activity of Helictersin A (119), which was identical to the antineoplastic drug doxorubicin, with an IC₅₀ of 66 μM. This can be of interest for the development of new therapeutic alternatives.

Pharmacology study

Pharmacological potential of *Helicteres* species has gained prominence, especially with *H. isora* and *H. angustifolia*, that have a long history of use in traditional Chinese medicine. Researches have been developed about antidiabetic; antiulcerogenic and antitumor activities within *Helicteres* species in order to confirm the activities reported by folk medicine (Table 3).

Table 1. Species of *Helicteres* genus and their uses in folk medicine

Scientific name/ Popular name	Medicinal parts	Traditional use	Therapeutic indications	References
H. isora / “Ulet-Ulet”	RT and BK	Decoction, Juice, Paste, Extract	Anthelmintic, Antihypertensive, Antihistaminic, Antiparasitic	22-24,27-34
			Intestinal infections, Antidiabetic, Anticancer, Antirheumatic, Antipyretic	22,24,27,29-32, 34-38
H. angustifolia / “Shan-Zhi-Ma”	RT and ST	Tea, Medicinal liquor	Analgesic, Anti-inflammatory, Antimicrobial, Antiulcerogenic, Antiviral, Antitumoral	25,40-42
			Antispasmodic, Anti-inflammatory, Antiallergic, Antipyretic	8,25,43
H. sacarolha / “Sacarolha”	RT and LV	Decoction, Infusion, Maceration	Antipyretic, Antihypertensive, Antiallergic, Antimicrobial, Antitumoral	21,25
			Antipyretic, Antihypertensive, Antiallergic, Antimicrobial, Antitumoral	44,45
H. ovata	*	*	Antipyretic, Antihypertensive, Antiallergic, Antimicrobial, Antitumoral	26
H. hirsuta	RT	Decoction	Treatment of uterus pain, Antimicrobial, Antipyretic	133-149
H. velutina / “Pitó”	AP	*	Insect repellent, Antipyretic, Antihypertensive, Antiallergic, Antimicrobial, Antitumoral	142

*not reported in the literature. RT: Roots; BK: Barks; FR: Fruits; LV: Leaves; ST: Stems; AP: Aerial Parts.

Other compounds

Beyond to previously detailed compounds, other classes of metabolites, such as amines, saponins, lactones, coumarins, alcohols, fatty acids, alkaloids, pheophytins and tannins (133-149) (Table 2, Figure 1), were less frequently detected in this genus.

Aleykutty & Akhila (2012), by means of a computational approach, predicted the antidiabetic potential of the chemical constituents identified in *H. isora*, especially the indolalkylamine, Yohimbine (142), which presented the best binding energy with the enzyme aldose reductase and the insulin receptor protein, pharmacological targets for glycemic control.

References

1. Tezuka et al. (2000).
2. Aleykutty & Akhila (2012).
| N° | Name | Source | Literature |
|----|--|----------------|-------------|
| | **Terpenoids** | | |
| 1 | Cucurbitacin B | RT of *H.i.* | 24,49 |
| 2 | Cucurbitacin B 2-sulfate | RT of *H.a.* | 50 |
| 3 | Iso-cucurbitacin B | RT of *H.i.* | 24,49 |
| 4 | Cucurbitacin D | | |
| 5 | Cucurbitacin E | | |
| 6 | Cucurbitacin G 2-0-β-D-glucopyranoside | | |
| 7 | Cucurbitacin I | RT of *H.a.* | 50-53 |
| 8 | Cucurbitacin J | | |
| 9 | Iso-cucurbitacin D | | |
| 10 | Hexanor-cucurbitacin I | | |
| 11 | Lup-20(29)-en-3β-ol | RT of *H.h.* | 48,54 |
| 12 | Betulinic acid | RT of *H.i.*, *H.a.* and *H.h.* | 51,54,55 |
| 13 | 3β-benzyloxybetulinic acid | | |
| 14 | Betulinic acid methyl ester | RT of *H.h.* | 54 |
| 15 | 3β-O (trans-coumaroyl) betulinic acid | RT of *H.a.* | 44 |
| 16 | Pyracrenic acid | RT of *H.a.* and *H.h.* | 53 |
| 17 | 3β-O-(trans-feruloyl) betulinic acid | | |
| 18 | 3β-O-(trans-coumaroyl) botulin | | |
| 19 | 3β-O-(cis-coumaroyl) botulin | RT of *H.a.* | 44 |
| 20 | 3β-O-(trans-coffeoyl) betulin | | |
| 21 | 3β-O-(trans-feruloyl) betulin | | |
| 22 | 3β-acetoxybetulinic acid | RT of *H.a.* | 52,56 |
| 23 | 3-acetoxybetulin | | |
| 24 | 3β-27-diaceotoxy-lup-20(29)-en-28-oic methyl ester | | |
| 25 | 3β-acetoxy-27-benzoyloxy-lup-20(29)-en-28-oic acid | | |
| 26 | 3β-acetoxy-lup-20(29)-en-28-ol | | |
| 27 | 3β-hydroxy-lup-20(29)-en-28-oic acid 3caffeate | | |
| 28 | 3β-hydroxy-27-benzoyloxy-lup-20(29)-en-28-oic acid | RT of *H.a.* | 35,44,51,53,55 |
| 29 | 3β-hydroxy-27-benzoyloxy-lup-20(29)-en-28-oic acid methyl ester | RT of *H.a.* | |
| 30 | Methyl helicterate | | |
| 31 | 3β-acetoxy-27-((E)-cinnamoyl)oxy-lup-20(29)-en-28-oic acid methyl ester | | |
| 32 | 3β-acetoxy-27-((4-hydroxybenzoyl)oxy-lup-20(29)-en-28-oic acid | | |
| 33 | Cyclicolic acid | | |
| 34 | Simiarenol | AP of *H.h.* | 56 |
| 35 | Isorin | RT and FR of *H.i.* | 55,57 |
| 36 | 3β-hydroxyolean-12-en-27-benzoyloxy-28-oate | | |
| 37 | 3β-O-(p-hydroxy-(E)-cinnamoyl)-12 oleanan-28-oic acid | | |
| 38 | Helicterilic acid | RT of *H.a.* | 44,58-60 |
| 39 | 3β-acetoxy-27-((4-hydroxybenzoyl)oxy)olean-12-en-28-oic acid methyl ester | | |
| 40 | 3β-acetoxy-27-(benzoyloxy)olean-12-en-28-oic acid methyl ester | | |
| 41 | Ursolic acid | RT of *H.a.* | 48,61 |
| 42 | 3α-hydroxy-urs-12-en-28-oic acid | AP of *H.e.* | 48 |
| 43 | 3α-hydroxy-olean-12-en-28-oic acid | | |
| 44 | Micromeric acid | | |
| 45 | Oleanolic acid | RT of *H.i.*, *H.a.* and *H.vel.* | 12,62,63 |
| 46 | 3β-acetoxy-olean-12-en-28-oic acid | AP of *H.vel.* | 12 |
| 47 | 3β-sterearyloxy-olean-12-ene | | |
| 48 | 10-methyl, 4-isopropenyl, dodecahydro-ethanophenanthrene | RT of *H.i.* | 64 |
| 49 | Methyl helicterilate | RT of *H.a.* | 65 |
Table 2. Isolated compounds from Helicteres genus (cont.)

No.	Name	Source	Literature
50	β-sitosterol glucoside	RT of H.i., H.a.	12,24,66
51	β-sitosterol	RT of H.i., H.a.	24,48,67,68
52	Stigmasterol	RT of H.h.	48,54
53	Heligenin A		
54	Heligenin B		
55	2β,7β,20α-trihydroxy-3β,21-dimethoxy-5-pregn-16-one	RT of H.a.	51,52,66
56	3β-ergost-5-en-3-ol		

Flavonoids

No.	Name	Source	Literature
57	Kaempferol-3-O-galactoside		69
58	Herbacetin-8-O-glucuronide		
59	7-O-methylisoscutellarein		
60	7,4'-di-O-methylisoscutellarein	AP of H.h.	54,56,70
61	Isoscutellarein 4'-methyl ether 8-O-β-D-glucopyranoside		
62	Isoscutellarein 4'-methyl ether 8-O-β-D-glucuronide 6''-O-butyl ester		
63	Isoscutellarein 4'-methyl ether 8-O-β-D-glucuronide		
64	Isoscutellarein 4'-methyl ether 8-O-β-D-glucuronide 2''-sulfate	FR of H.i.	36
65	Isoscutellarein 4'-methyl ether 8-O-β-D-glucuronide 2',4''-disulfate		
66	Isoscutellarein 8-O-β-D-glucuronide 2',4''-disulfate		
67	Kaempferol-3-O-β-o-glucopyranoside	FR of H.i.	51,55,57
68	Kaempferol	FR of H.i.	12,57
69	Tiliroside	FR of H.i.	12,52,55,57
70	5,7,8-trihydroxy-4'-methoxyflavone	FR of H.i.	55,57
71	3',5,7,8-tetrahydroxy-4'-methoxyflavone	FR of H.i.	71
72	Takakin 8-O-β-D-glucuronide	RT of H.a.	72
73	Takakin 8-O-β-D-glucuronide 2-sodium sulfate		
74	Takakin 8-O-β-D-glucuronide	RT of H.a.	72
75	8-O-β-D-glucuronol-hypolaetin 4'-methyl ether		
76	5,8-dihydroxy-7,4'-dimethoxyflavone	LV of H.i.	12,51,54,69
77	Tricin	RT of H.a.	66
78	7,4'-di-O-metil-8-O-sulphate flavone	AP of H.vel.	12
79	5,4'-di-hydroxy-7-methoxy-8-O-sulphate flavone		
80	5,6-di-hydroxy-7,4'-methoxy-8-O-sulphate flavone		
81	Hesperidin	FR of H.i.	36,55,57
82	Viscumside A		
83	3',5,7,8-tetrahydroxy-4'-methoxyflavone 8-O-β-d-glucopyranosiduronic acid methyl ester	FR of H.i.	36,55,57
84	4',5,7,8-tetrahydroxyflavone 8-O-β-D-glucopyranosiduronic acid methyl ester	LV of H.vel.	47

Compounds Phenolics

No.	Name	Source	Literature
85	Rosmarinic acid	FR of H.i.	36,55
86	4'-O-β-D-glucopyranosyl rosmarinic acid	RT of H.a., H.veg.	
87	4,4'-di-O-β-D-glucopyranosyl rosmarinic acid	FR of H.i.	38
88	4'-O-β-D-glucopyranosyl isorinic acid		
89	3'-O-(8'-Z-caffeoyl) rosmarinic acid	LV of H.veg.	47
90	3-(3,4-dimethoxyphenyl)-2-propenal	RT of H.a.	51,52
91	Catechol	RT of H.i.	24
92	4-hydroxybenzoic acid	RT of H.h.	54
Table 2. Isolated compounds from *Helicteres* genus (cont.)

No.	Name	Source	Literature
93	3,4-dihydroxybenzoic acid methyl ester	RT of *H.h.*	54
94	4-hydroxy-3,5-dimethoxybenzoic acid	RT of *H.a.*	52
95	Syringic acid-4-O-α-L-rhamnopyanoside	RT of *H.h.*	52
96	Protocatechuic aldehyde	RT of *H.a.*	52
97	Gallic acid	RT of *H.i.*	24
98	Vanillin	LV of *H.l.*	24
99	Coniferyl alcohol	RT of *H.a.*	52
100	Caffeic acid	RT of *H.l.*	24
101	3-Benzylcatechol	LV of *H.l.*	24
102	Methyl caffeate	AP of *H.h.*	54

Lignoids

No.	Name	Source	Literature
103	Lariciresinol	RT of *H.a.*	51,57
104	Hedyotol C 7″-O-β-D-glucopyranoside	RT of *H.h.*	12,46
105	Hedyotol D 7″-O-β-D-glucopyranoside	RT of *H.a.*	46,51
106	(+)-pinoresinol	RT of *H.a.*	46,51
107	(+/-)-mediioresinol	RT of *H.i.*	46,51
108	(+/-)-syringaresinol	RT of *H.a.*	46,51
109	(+)-boehmenan	RT of *H.a.*	46,51
110	(-)-boehmenan	RT of *H.a.*	46,51
111	(+/-)-trans-dihydropiniceryl alcohol	RT of *H.a.*	46,51
112	(75,8R)-Urolignoside	RT of *H.a.*	52
113	(75,8R)-Dihydrodehydrocinnamoyl alcohol	RT of *H.a.*	12,57
114	Helisorin	RT of *H.l.*	73,74
115	Helicterins C	RT of *H.a.*	40,42,57,66,75
116	Helicterins E	RT of *H.l.*	73,74
117	Helicterins D	RT of *H.a.*	40,42,57,66,75
118	Helicterins F	RT of *H.l.*	73,74
119	Helicterins A	RT of *H.l.*	73,74
120	Helicterins B	RT of *H.l.*	73,74
121	Helisterculins A	RT of *H.a.*	40,42,57,66,75
122	Helisterculins B	RT of *H.a.*	40,42,57,66,75

Quinones

No.	Name	Source	Literature
123	Perezone	RT of *H.a.*	51,64
124	2,6-Dimethoxy-p-benzoquinone	RT of *H.a.*	51,64
125	8-acetyl-9-hydroxy-3-methoxy-7-methyl-1-phenalenon	RT of *H.a.*	51,64
126	Heliquinone	RT of *H.a.*	51,64
127	Heliquinone methyl ether	RT of *H.a.*	51,64
128	Mansonone F	RT of *H.a.*	40,42,57,66,75
129	Mansonone E	RT of *H.a.*	40,42,57,66,75
130	Mansonone H	RT of *H.a.*	40,42,57,66,75
131	Mansonone M	RT of *H.a.*	40,42,57,66,75
132	6-[2-(5-acetyl-2,7-dimethyl-8-oxo-bicyclo[4.2.0]octa-1,3,5-trien-7-yl]-2-oxo-ethyl]-3,9-dimethylnapthath[1,8-bc]pyran-7,8-dione	RT of *H.a.*	40,42,57,66,75

Other compounds

No.	Name	Source	Literature
133	Malatyamine ethyl ester (Amine)	RT of *H.l.*	53,76-79
134	Diosgenin (Saponin)	RT of *H.l.*	53,76-79
135	6,7-dihydroxy-3,8,11-trimethylcyclohexo-[d,e]-coumarin	RT of *H.a.*	51,64
136	6,7,9α-trihydroxy-3,8,11α-trimethylcyclohexo-[d,e]-coumarin (Coumarin)	RT of *H.a.*	51,64
137	Tetratriacontanol (Alcohol)	LV of *H.l.*	67
138	Tetratriacontanoic acid (Fatty acid)	LV of *H.l.*	67
139	Palmitic acid (Fatty acid)	AP of *H.l.*	12,24
140	Aliphatic alcohol decanol (Alcohol)	AP of *H.l.*	12,24
141	Helicterone A (Alkaloid)	RT of *H.a.*	52
142	Yohimbine (Alkaloid)	RT of *H.a.*	52
143	Pheophytin A	RT of *H.l.*	12,81
144	Pheophytin B	AP of *H.l.*	12,81
Table 2. Isolated compounds from Helicteres genus (cont.)

No.	Name	Source	Literature
145	13\(^2\)-hydroxy-(13\(^2\)-R)-pheophytin a	AP of H.vel.	12
146	13\(^2\)-hydroxy-(13\(^2\)-S)-pheophytin a		82,83
147	Ellagic acid (Tannin)	RT of H.I.	75
148	3,6,9-trimethyl-pyran[2,3,4-de]chromen-2-one (Lactone)	RT of H.a.	
149	4-4′-sulfinylbis(2-tert-butyl)-5-methylphenol	AP of H.h.	56,70

H.i.: H. isora; H.a.: H. angustifolia; H.vel.: H. velutina; H.h.: H. hirsuta; H.veg.: H. vegae; H.e.: H. eichleri. RT: Roots; AP: Aerial Parts; FR: Fruits; LV: Leaves.

Figure 2. Compounds isolated from Helicteres species
Figure 2. Compounds isolated from *Helicteres* species (cont.)
Figure 2. Compounds isolated from Helicteres species (cont.)
Anti-inflammatory and analgesic activity

Natural products are widely used in folk medicine to treat inflammatory conditions, including fever, pain, migraine and arthritis, being targets for the development of new anti-inflammatory drugs. Studies with plant extracts have shown promissory activity.

H. isora root extract showed antinociceptive activity in mice. _H. angustifolia_ n-butanol fraction has anti-inflammatory and analgesic activity. Non-clinical mice studies have showed through photoacoustic spectroscopy that _H. gardneriana_ extract induces a significant reduction in the inflamed area. Studies with extracts from the aerial parts of _H. hirsute_ has been conducted in order to discover their mechanisms of action against inhibition of COX1 and COX2 in vitro (Table 3).

Antitumor and cytotoxic activity

Cancer is one of the leading causes of mortality in the world. About 60% of current anticancer drugs are from natural origin, with emphasis on plant species that are rich in anticancer agents and can be used as an alternative to chemotherapeutic drugs as they are less toxic. The effects of plant-derived natural products have been investigated to a large extent on cancer cell proliferation, survival, invasion and metastasis due to bioactivity and the diversity of their chemical constituents.

Helicteres are used to decrease tumor progression by folk medicine. In order to evaluate this activity, extracts, fractions and isolated substances have been studied through the evaluation of cytotoxic activity mainly in liver, lung, colon and breast cancers (Table 3).
Helicteres L. species (Malvaceae sensu lato) as source of new drugs: a review

Fruits ethanolic extract

H.a.

H.i.

H.i.

H.i.

H.i.

Roots extract

H.i.

Fruits aqueous extract

H.i.

H.i.

Isolated constituents

Bark aqueous extract

H.i.

Stem extract

H.i.

Fruits aqueous extract

H.i.

Fruits ethanolic extract

H.i.

Fraction rich in saponin

Bark aqueous extract

H.i.

Stem extract

H.i.

Fruits aqueous extract

H.i.

H.i.

H.a.

H.a.

H.a.

H.a.

H.a.

Fruits ethanolic extract

H.i.

Fruits aqueous extract

H.i.

H.i.

H.i.

Leaf extract

H.s.

H.s.

Antitumor and Cytotoxic Activity

Species

Material used

Experimental model

Literature

Species	Material used	Experimental model	Literature
H.i.	Roots extracts	in vivo – antinociceptive	101
H.i.	Curcubitacin B and Isocurcubitacin B	not reported	109
H.i.	Stem hydroethanolic extract	in vivo – hepatocellular carcinoma	110
H.a.	Roots aqueous extract	in vitro – fibroblasts and osteosarcoma	111
H.a.	Triterpenes	in vitro – colorectal cancer	60
H.a.	Roots aqueous extract	in vivo – human fibrosarcoma	25
H.a.	Polysaccharides	in vivo – breast cancer	112
H.a.	2, 3, 3 β-O-[(E)-coumaroyl] betulenic acid and pyracrenic acid	in vitro – colorectal cancer	44
H.a.	Roots ethanolic and aqueous extract	in vitro – cell lines of lung cancer, colon and hepatocellular carcinoma	25,111
H.a.	Roots aqueous extract	in vitro – osteosarcoma and in vivo – pulmonary metastasis and subcutaneous xenograft	113
H.a.	Curcubitacin B and J	in vitro – hepatocellular carcinoma and malignant carcinoma	51
H.h.	(+/-)-pinoresinol	in vitro – lung and breast cancer	46
H.h.	Roots extract	in vitro – human KB cell lines	114
H.veg.	Leaves extract	in vitro – Salmonella typhimurium	47
H.s.	Leaves hydroethanolic extract	in vivo – ovarian cancer cell lineages	8

Hepatoprotective Activity

Species	Material used	Experimental model	Literature
H.i.	Bark aqueous extract	in vivo – changes in liver enzymes	115
H.i.	Bark ethanolic extract	in vivo – changes in liver enzymes	116-118
H.a.	Aqueous extract	in vivo – inhibits hepatic fibrosis	119
H.a.	Methyl heliciterate	in vivo – inhibits hepatic fibrosis	120,121

Antidiabetic and Hypolipidemic Activity

Species	Material used	Experimental model	Literature
H.i.	Roots ethanolic extract	in vivo – sensitizing and hypolipidemic insulin	122
H.i.	n-butanolic fraction	in vivo – maintain normal glycemic levels	123
H.i.	Bark aqueous extract	in vivo – reduced blood glucose levels	30
H.i.	Bark aqueous extract	in vivo – reduction of peroxidation products	32
H.i.	Roots n-butanolic extract	in vivo – reduced glucose and total cholesterol	124
H.i.	Bark aqueous extract	in vivo – reduction of cholesterol, free fatty acids and triglycerides	31
H.i.	n-butanolic extract	in vivo – hypoglycemia	125
H.i.	Fraction rich in saponin	in vivo – decreased serum levels of lipids and glucose	126
H.i.	Stem extract	in vivo – glycojen and carbohydrate metabolism	127
H.i.	Bark aqueous extract	in vivo – decreased glucose levels	128
H.i.	Bark aqueous extract	in vivo – total blood glucose and lipids	127
H.i.	Fruits aqueous extract	in vitro – glucose uptake	129
H.i.	Fraction rich in saponin	in vitro – increases glycojen synthesis	130
H.i.	Fruits ethanolic extract	in vivo – stabilizes lipids levels	122
H.i.	Roots hydroethanolic extract and roots n-butanolic extract	in vivo – reduced glycemia, total cholesterol, triglycerides and urea	34
H.i.	Fruits aqueous extract	in vivo – increases glucose uptake and transport	131
H.i.	Stem extract	in vivo – normalizes glucose, urea and creatinine levels	88,116
H.i.	Bark aqueous extract	in vivo – antiperoxidative activity	88
H.i.	Isolated constituents	in silico – insulin receptors	79
H.i.	Roots extract	in vivo – reduction of plasma glycoproteins	132,133
H.i.	Roots extract	in vivo and in vitro – inhibition of α-amylase and reduction of glutathione	134,135
H.i.	Fruits aqueous extract	in vivo – hypoglycemia in patients with type II diabetes	22
H.i.	n-butanolic extract	in vivo – regulates blood glucose levels	136
H.i.	Fruits ethanolic extract	in vivo – regulates blood glucose levels	137
Fernandes et al.

Table 3. In vitro, in vivo, ex vivo and in silico biological studies reported from *Helicteres* genus (cont.)

Species	Material used	Experimental model	Literature
H.a.	Roots aqueous extract	*in vivo* – increases glucose uptake	138
H.a.	Roots ethanolic extract	*in vivo* – increases the uptake of glucose and adipocytes	139
H.a.	-	*in vivo* – inhibition of α-glicosidase	138,139

Antioxidant Activity

Species	Material used	Experimental model	Literature
H.i.	Bark aqueous extract	*in vitro* – inhibition of peroxidation radicals	81
H.i.	Fruit hot aqueous extract	*in vitro* – inhibition of radicals H$_2$O$_2$ and NO	27
H.i.	Fruits phenolic extracts	*in vitro* – inhibition of radicals ABTS, Hydroxyl and DPPH	140
H.i.	Fruits aqueous extract	*in vitro* – inhibition of radicals DPPH and TBARS	129
H.i.	Fruits aqueous extract	*in vitro* – inhibition of radicals Hydroxyl, H$_2$O$_2$ and DPPH	141
H.i.	Fruits extract	*in vitro* – inhibition of radicals DPPH	107
H.i.	Fruits extract	*in vitro* – inhibition of radicals DPPH and H$_2$O$_2$	107
H.i.	Fruits and barks extracts	*in vitro* – inhibition of lipid peroxidation	142
H.i.	Roots aqueous extract	*in vitro* – inhibition of radicals ABTS and DPPH	144
H.i.	Leaves, barks, roots and fruits extracts	*in vitro* – inhibition of radicals FRAP and DPPH	145
H.i.	Leaves and fruits extracts	*in vitro* – inhibition of radical DPPH	146
H.a.	Polysaccharides	*in vitro* – inhibition of radicals ABTS, Hydroxyl and DPPH	147-149
H.a.	Roots ethanolic and aqueous fractions	*in vitro* – inhibition of ABTS and DPPH	150
H.h.	Leaves extracts	*in vitro* – inhibition of radicals ABTS, DPPH and FRAP	148
H.h.	Fraction rich in saponin	*in vitro* – inhibition of radicals ABTS, DPPH, FRAP and CUPRAC	24,45,95,111,151
H.h.	Stem and Leaves extracts	*in vitro* – inhibition of radicals, ABTS, DPPH and FRAP	45,95,96
H.veg.	Stem extracts	*in vitro* – inhibition of radicals, ABTS and DPPH	47

Antimicrobial and Antiviral Activity

Species	Material used	Experimental model	Literature
H.i.	Fruits extracts	*in vitro* – *E. coli*, Staphylococcus epidermidis, Salmonella typhimurium and Proteus vulgaris	152
H.i.	Fruits acetone extracts	*in vitro* – Enterococcus faecalis, Escherichia coli and Bacillus cereus	153
H.i.	Leaves ethanolic extract	*in vitro* – Escherichia coli, Steptococcus and Salmonella	154
H.i.	Leaves and fruits extracts	*in vitro* – Staphylococcus aureus, Bacillus subtilis and B. coagulans; Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi; Bipolaris sorokiniana, Fusarium oxysporum f.sp. zingiberi, Colletotrichum capsici and Curvularia sp.	150
H.i.	Stem and leaves extracts	*in vitro* – *E. coli*, Pseudomonas, S. aureus, Bacillus subtilis, Aspergillus fumigatus, Aspergillus awamori, Bjizopus oryzae, Tricoderma viridii and Culmularia oryzae	155
H.i.	Fruits aqueous extract	*in vitro* – Pseudomonas aeruginosa	156
H.i.	Oleicolic acid	*in vitro* – S. aureus, E. coli, P. aeruginosa, B. cereus and A. flavus	88
H.i.	β-sitosterol	*in vitro* – E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus	88
H.i.	Barks and stems extracts	*in vitro* – Cryptococcus neoformans, Candida tropicalis, Trychophyton rubrum, Microsporum furfur and Epidermophyton floccosum	157
H.i.	Roots hydroethanolic extract	*in vitro* – Bacillus subtilis; Micrococcus luteus; S. aureus; E. coli; P. vulgaris; P. aeruginosa; S. typhimurium; A. niger; C. albicans and S. cerevisiae	101
H.i.	Fruits, barks and leaves extracts	*in vitro* – Escherichia coli, Salmonella typhi, Staphylococcus aureus, Corynebacteria diphtheriae and Nocardia sp.	158
H.i.	Leaves ethanolic extract	*in vitro* – Pseudomonas aeruginosa, Staphylococcus aureus and Aspergillus niger	159
H.i.	Fruits methanolic extract	*in vitro* – Candida albicans	148
H.i.	10-methyl, 4-isopropenyl, dodecadihydro- ethanophenantrene	not reported	65
H.a.	not reported	*in vitro* – *E. coli*	160
H.a.	Triterpenes	*in vivo and in vitro* – Hepatitis B	161
H.a.	Methyl helicerate	*in vivo and in vitro* – anti HBV	162,163
H.h.	Roots extract	*in vitro* – Staphylococcus aureus and Lactobacillus fermentum	114
H.h.	Saponin-enriched fractions	*in vitro* – *E. coli* and S. lugdunensis	164
H.gr	Aerial parts extract	*in vitro* – Bacillus subtilis; Micrococcus luteus; Enterobacter cloacae; Acinetobacter calcoaceticus; Aspergillus oryzae; Curvularia lunata; Mucor sp.	165
The acetone extract of *H. isora* fruits exhibited better cytotoxic activity *in vitro* against lung cancer cells. Studies with the terpenes Helicteric acid (38), oleanolic acid (45) and betulinic acid (12) isolated from *H. angustifolia* have shown anticancer activity and showed that compounds could decrease proliferation and induce apoptosis in HT-29 colorectal cancer cells *in vitro*. A similar activity was developed by the compounds 2, 3, 3′-O-[E]-coumaroyl betulinic acid (15) and pyraconic acid (16).

In vivo studies revealed that hydroethanolic extract flavonoid-rich of *H. sacramolha* and phenolic compounds have good activity in ovarian cancer cell lineages, being non-toxic when ingested orally, while hydroethanolic stem bark extract of *H. isora* shows activity against hepatocellular carcinoma in mice.

Hepatoprotective activity

Extracts of several plant species have shown hepatoprotective activity and approximately 100 of these species have been used in the preparation of over 700 herbal formulations that are available for use in prevention and treatment of liver disease.

The hepatic protection exerted by the *H. isora* and *H. angustifolia* species was also investigated *in vivo*, where the main parameters of alterations in liver enzymes production and serum markers are evaluated. *H. isora* bark ethanolic extract and *H. angustifolia* water extract demonstrated hepatoprotective activity against carbon tetrachloride induced liver damage in rats and mice, respectively. The methyl helicterate (30) isolated from *H. angustifolia* acts on carbon tetrachloride in induced hepatic fibrosis of rats, which may be associated with its free radical scavenging action and antioxidant activity. Another proposed mechanism of action of this substance would be the inhibits activation of hepatic stellate cells, modulating apoptosis and autophagy.

Antidiabetic and hypolipidemic activity

Available literature shows that various chemical compounds with antidiabetic properties have been identified in some plant species, among which we can highlight some belonging to the *Helicteres* genus.

The ethanolic extract of *H. isora* roots causes significant reduction in glucose, triglyceride and insulin levels in mouse plasma, suggesting that it has insulin sensitizing and hypolipidemic activity with potential use in the treatment of type 2 diabetes. Researches over this species have also proven the antidiabetic activity of the aqueous extracts of its peels, stem and fruits.

The extract and n-butanol fractions of *H. isora* have shown good *in vivo* activity with antihyperglycemic activity, reducing glucose and total cholesterol levels. Saponin-rich fractions also exhibit this activity *in vitro* and *in vivo*. Molecular docking with insulin receptors was analyzed with compounds isolated from *H. isora* fruits, and the results suggested that they may be useful for treating diabetes.

H. angustifolia roots aqueous and ethanolic extracts have also shown significant antidiabetic activity *in vivo*, significant alpha-glucosidase inhibitory and moderate enhanced glucose consumption activity, while having low cytotoxicity and acute toxicity.

Antioxidant activity

Antioxidants are important for preventing human diseases. Naturally occurring antioxidants such as ascorbic acid, vitamin E and phenolic compounds can reduce the oxidative damage associated with various diseases including cancer, cardiovascular disease, cataract, atherosclerosis, diabetes, arthritis, immune deficiency diseases and aging.

Evaluation of antioxidant activity of the species *H. isora*, *H. angustifolia*, *H. hirsuta* and *H. vegae* mainly with respect to fruit extract, rich fractions of saponins and polissacarids showed that they are capable of inhibiting *in vitro* peroxidation radicals such as DPPH (1,1-diphenyl-2-picryl-hydrazyl), H₂O₂ (Hydrogen peroxide), NO (Nitric Oxide), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)), TBARS (thiobarbituric acid-reactive substances), FRAP (ferric reducing antioxidant power) and CUPRAC (cupric reducing antioxidant capacity).

Antimicrobial and antiviral activity

In the current scenario, due to the various pathogenic microorganisms, infectious diseases are still one of the leading reasons behind the worldwide death rates. The emergence of

Table 3. *In vitro, in vivo, ex vivo* and *in silico* biological studies reported from *Helicteres* genus (cont.)

Species	Material used	Experimental model	Literature
H. i.	Fruits extract	*in vitro and in vivo* – antispasmodic	37
H. i.	Fruits extract	*in vitro* – cardiotonics	166
H. i.	Fruits aqueous extract	*in vivo* – anthelmintic	167
H. i.	Bark methanolic extract	*in vitro* – cytoprotectors	144
H. i.	Bark aqueous extract	*in vivo* – acute oral toxicity	168
H. i.	10-methyl, 4-isopropenyl, dodcarylthio-ethanophenanthrene	*in vivo* – antispasmodic	39
H. i.	Leaves	*in vitro* – acute and subchronic toxicity	8
H. a.	Terpenoids	*in vitro* – Larvicidal activity against *Aedes aegypti*	12
H. vel.	Aerial parts extract	*in vitro* – Larvicidal activity against *Aedes aegypti*	12
H. vel.	Tiliroside and 7,4′-di-O-methyl-8-O-sulphate flavone	*in silico* – Larvicidal activity against *Aedes aegypti*	89
H. s.	Hydroethanolic extract	*in vitro* – gastroprotective	8
H. s.	Hydroethanolic extract	*in vivo* – acute and subchronic oral toxicity	8
H. e.	Aerial parts extract	*in vitro* – Larvicidal activity against *Aedes aegypti*	48
H. veg.	Leaves and stem extracts	*in vitro* – Artemia salina eggs	47

H.i.: *H. isora;* **H.a.:** *H. angustifolia;* **H.vel.:** *H. velutina;* **H.h.:** *H. hirsuta;* **H.veg.:** *H. vegae;* **H.s.:** *H. sacramolha;* **H.ga.:** *H. gardiniera;* **H.e.:** *H. eichleri;* **H.gr:** *H. grazumifolia.*
multiple commonly used antibiotic drug resistant bacteria is a severe health problem and major challenge for global drug discovery programs, and the use of plant extracts and isolated compounds with known antimicrobial properties becomes an important alternative in therapeutic treatments.

Helicteres species have been extensively studied for their potential to act as antimicrobial agents. Among the isolated compounds, oleic acid (45) and β-sitosterol (51) showed good antibacterial activity, while methyl helicterate compound (49) showed potential antiviral activity (Table 3).

Other activities

Other activities have been reported from *Helicteres* species. *H. isora* stems aqueous extract showed no toxicity when administered orally at concentrations of 100 and 200 mg/kg in rats. Researchers also evaluate antispasmodic, gastrotrophic, anthelmintic activities, and larvicide against *Aedes aegypti* larvae, among others. In addition, studies were also carried out to evaluate the nutritional value of *H. isora* fruits and stems.

CONCLUSIONS

Helicteres L. is one of the genera belonging to Sterculiaceae clade in Malvaceae family with several notable activities. Previous studies have revealed that terpenoids, flavonoids and lignoids are the dominant constituents of *Helicteres* species. However, information about this genus is scarce and not systematic. The *in vitro* and *in vivo* studies carried out to date prove traditional medicine reports regarding the activities of those species. However, pharmacological tests with isolated substances are still rare from this genus and its compounds, especially those unpublished in the literature, resulting in unexplored potentials.

Given the presented data, it is extremely important to continue exploring the chemical and biological potentials of these and other species present in the American and Asian flora, considering the need to find substances with biological activities that may be used for mankind benefit.

ACKNOWLEDGMENTS

The authors thank the Coordenação de Aperfeiçoamento do Ensino Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

1. Eloy, C. C.; Vieira, D. M.; Lucena, C. M.; Andrade, M. O.; *Gaia Scientia 2014, Volume Especial Populações Tradicionais*, 189.
2. Machado, V. R.; Lang, K. L.; Durán, F. J.; Cabrera, G. M.; Paterno, J. A.; Schenkell, E. P.; Bernardes, L. S. C.; *Quim. Nova 2015*, 38, 37.
3. Barreiro, E. J.; Bolzani, V. S.; *Quim. Nova 2009*, 32, 679.
4. Oliveira, L. F. G.; Gilbert, B.; Villas-Bôas, G. K.; *Rev. Fitoter. 2013*, 8, 33.
5. Bonomi, T. J.; Góes, J. A.; Machado, M. S.; Silva, R. M. L.; Malheiros, A.; *Quim. Nova 2018*, 41, 36.
6. Deshpande, H. A.; Bhalsing, S. R.; *Res. Biotechnol. 2015*, 6, 31.
7. Teles, Y. C. F.; Gomes, R. A.; Oliveira, M. S.; Lucena, K. L.; Nascimento, J. S.; Agra, M. F.; Igoli, J. O.; Gray, A. I.; Souza, M. F. V.; *Quim. Nova 2014*, 37, 1491.
8. Balogun, S. O.; Damazo, A. S.; Martins, D. T. O.; *J. Ethnopharmacol. 2015*, 166, 176.
9. Yu, T.; Gilbert, M. G.; Dorr, L. J.; *Flora of China 2007*, 12, 240.
10. Cruz, F. R.; *Master’s thesis, Universidade de Sao Paulo*, Brasil, 2007.
11. Goldberg, L.; *Rev. Biol. Trop. 2009*, 57, 161.
12. Fernandes, D. A.; Souza, M. S. R.; Teles, Y. C. F.; Oliveira, L. H. G.; Lima, J. B.; Conceição, A. S.; Nunes, F. C.; Silva, T. M. S.; Souza, M. F. V.; *Molecules 2018*, 23, 2784.
13. Cristóbal, C. L.; *Bonplandia 2001*, 11, 1.
14. Silva, C. A.; Ferreira, D. S.; Koch, A. K.; Araújo-Silva, L. E.; *Acta. Bot. Bras. 2010*, 24, 462.
15. https://www.flickr.com/photos/tags/helicteres, accessed in September 2019.
16. Sazima, M.; *Plant Biol. 1988*, 101, 269.
17. Franceschinelli, E. V.; Kesseli, R.; *Heredity 1999*, 82, 355.
18. Franceschinelli, E. V.; Bawa, K. S.; *Heredity 2000*, 84, 116.
19. Franceschinelli, E. V.; Bawa, K. S.; *Braz. J. Bot. 2005*, 28, 163.
20. González, A. M.; Cristóbal, C. L.; *Bonplandia 1997*, 287.
21. Atluri, J. B.; Rao, S. P.; Reddi, C. S.; *Curr. Sci. 2000*, 78, 713.
22. Venkatesh, S.; Reddy, G. D.; Reddy, Y. S. R.; Sathyavathy, D.; Reddy, B. M.; *Fitoterapia 2004*, 75, 364.
23. Purnomo, L.; Darsono, L.; Santos, S.; *Journal Colokokeran Maranatha 2010*, 3, 39.
24. Dayal, R.; Singh, A.; Ojha, R. P.; Mishra, K. P.; *Journal of Medicinal Plants Studies 2015*, 3, 95.
25. Li, K.; Lei, Z.; Hu, X.; Sun, S.; Li, S.; Zhang, Z.; *J. Ethnopharmacol. 2015*, 172, 61.
26. Santos, E. A.; Carvalho, C. M.; Costa, A. L. S.; Conceição, A. S.; Moura, F. B. P.; Santana, A. E. G.; *Evidence-Based Complementary Altern. Med. 2012*, ID 846583.
27. Basiwi, P. K.; Suthar, M.; Rathore, G. S.; Gupta, R.; Kumar, V.; Pareek, A.; Jain, D.; *Indian J. Nat. Prod. Resour. 2009*, 8, 483.
28. Chakrabarti, R.; Vikramadithyam, R. K.; Mullahni, R.; Sharma, V. M.; Jagadhesan, H.; Rao, Y. N.; Sairam, P.; Rajagopalan, R.; *J. Ethnopharmacol. 2002*, 81, 343.
29. Cunningham, A. B.; Ingram, W.; Brinckmann, J. A.; Nesbitt, M.; *J. Ethnopharmacol. 2018*, 255, 128.
30. Kumar, G.; Banu, G. S.; Murugesan, A. G.; Pandian, M. R.; *J. Ethnopharmacol. 2006*, 107, 304.
31. Kumar, G.; Murugesan, A. G.; *J. Ethnopharmacol. 2008*, 116, 161.
32. Kumar, G.; Banu, G. S.; Murugesan, A. G.; *J. Appl. Biomed. 2008*, 6, 89.
33. Suthar, M.; Rathore, G. S.; Pareek, A.; *Indian J. Pharm. Sci. 2009*, 71, 695.
34. Venkatesh, S.; Reddy, B. M.; Reddy, G. D.; Mullahni, R.; Lakshman, M.; *J. Nat. Med. 2010*, 64, 295.
35. Chang, Y. S.; Ku, Y. R.; Lin, J. H.; Lu, K. L.; Ho, L. K.; *J. Pharm. Biomed. Anal. 2001*, 26, 849.
36. Kamilya, K.; Saiki, Y.; Hama, T.; Fujimoto, Y.; Endang, H.; Umar, M.; Satake, T.; *Phytochemistry 2001*, 57, 297.
37. Pohocha, N.; Grampurohit, N. D.; *Phytother. Res. 2001*, 15, 49.
38. Satake, T.; Kamilya, K.; Saiki, Y.; Hama, T.; Fujimoto, Y.; Kitakanke, S.; Kimura, Y.; Uzawa, J.; Endang, H.; Umar, M.; *Chem. Pharm. Bull. 1999*, 47, 1444.
39. Kumar, G.; Banu, G. S.; Murugesan, A. G.; Pandian, M. R.; *Iran. J. Pharm. Res. 2007*, 6, 203.
40. Chen, C. M.; Chen, Z. T.; Hong, Y. L.; *Phytochemistry 1990*, 29, 980.
41. Chiu, N. Y.; Chang, K. S.; *The Illustrated Medicinal Plants of Taiwan (I)*; Southern Materials Center, Inc.: Taipei, 1995, p. 104.
42. Wang, M.; Liu, W.; *Phytochemistry 1987*, 26, 578.
43. Joy, J.; Varanasi, S. B.; Mathew, P. L.; Thomas, S.; Pilla, S.; *J. Renewable Mater. 2016*, 4, 351.
44. Pan, M. H.; Chen, C. M.; Lee, S. W.; Chen, Z. T.; *Chem. Biodiversity 2008*, 5, 565.
45. Pham, H. N. T.; Nguyen, V. T.; Vuong, Q. V.; Bowyer, M. C.; Scarlett, C. J.; *J. Food Process. Preserv. 2017*, 41, 1745.
46. Chin, Y. W.; Jones, W. P.; Rachman, I.; Riswan, S.; Kardono, L. B.; Chai, H. B.; Farnsworth, N. R.; Cordell, G. A.; Swanson, S. M.; Cassady, J. M.; Kinghorn, A. D.; *Phytother. Res. 2006*, 20, 62.
Helicteres L. species (Malvaceae sensu lato) as source of new drugs: a review

54. Quang, D. N.; Pham, C. T.; Le, L. T. K.; Ta, Q. N.; Dang, N. K.; Hoang, N. T.; Pham, D. H.; Nat. Prod. Res. 2018, 14, 178.
55. Nguyen, T. T.; Kretschmer, N.; Pherschy-Wenzig, E. M.; Kunert, O.; Bauer, R.; Nat. Prod. Commun. 2019, 14, 7.
56. Yin, X.; Lu, Y.; Cheng, Z. H.; Chen, D. F.; Acta Chim. Sin. 1988, 46, 768.
57. Guo, X.-D.; An, L.-K.; Xu, D.; Ma, L.; Gu, L.-Q.; J. Pharm. Sci. 2003, 52.
58. Singh, S. B.; Singh, A. K.; Thakur, R. S.; Nat. Sci. Ed. 2004, 5, 112.
59. Harde, P. A.; Shah, D. R.; Suhagia, B. N.; Shah, M. B.; J. Planar Chromatogr.—Mod. TLC 2011, 24, 503.
60. Su, D.; Gao, Y.-Q.; Dai, W.-B.; Hu, Y.; Wu, Y.-F.; Mei, Q.-X.; Acta Pharm. Sin. 2017, 52.
61. Liu, W. G.; Wang, M. S.; Acta Pharm. Sin. B 1985, 11, 007.
62. Pagni, R. B.; Lahiri, S. K.; Yadav, G. K.; Shah, M. B.; Int. J. ChemTech Res. 2010, 2, 851.
63. Harde, P. A.; Shah, M. B.; Phamacogn. J. 2017, 9, 523.
64. Sandhya, P.; Grampurohit, N. D.; Pharmacogn. Mag. 2008, 4, 107.
65. Wang, M. S.; Liu, W. G.; Li, J. R.; Shen, F. L.; Lin, X. Y.; Zheng, Q. T.; Acta Chim. Sin. 1988, 46, 768.
66. Guo, X. D.; An, L. K.; Xi, D.; Ma, L.; Gu, L. Q.; Nat. Sci. Ed. 2003, 42, 52.
67. Singh, S. B.; Singh, A. K.; Thakur, R. S.; Indian J. Pharm. Sci. 1984, 46, 148.
68. Jain, P. S.; Badgurar, V. B.; Patil, R. R.; Haswani, N. G.; Chaudhari, S. G.; J. Pharm. Res. 2009, 2, 1397.
69. Ramesh, P.; Yuvarajan, C. R.; J. Nat. Prod. 1995, 58, 1242.
70. Nguyen, T. T.; Gao, X.; Nikles, S.; Pferschy-Wenzig, E. M.; Kunert, O.; Bauer, R.; Reviews of Clinical Pharmacology and Drug Therapy 2017, 15, 48.
71. Buckingham, J.; Munasinghe, V. R. N.; Dictionary of Flavonoids with CD-ROM; CRC Press: Boca Raton, FL, USA, 2015, T-334, 857.
72. Chen, Z. T.; Lee, S. W.; Chen, C. M.; J. Pharmacogn. Phytochem. 2017, 6, 1213.
73. Yadav, N.; Yadav, R.; Goyal, A.; Int. J. Pharm. Sci. Res. Rev. 2014, 27, 272.
74. Wang, G.; Tang, W.; Bidigare, R. R. In Natural products: Drug discovery and therapeutic medicine; Zhang, L.; Demain, A., eds.; Humana Press: Totowa, NJ, USA, 2005, p. 197.
75. Jansen, D. J.; Shenvi, R. A.; Future Med. Chem. 2014, 6, 1127.
76. Santos, R. A. F.; Master’s thesis, Universidade Federal da Bahia, Brazil, 2010.
77. Kumar, D.; Singh, R. K.; Farooq, S.; World J. Pharm. Res. 2017, 6, 1102.
78. Fernandes, D. A.; Barros, R. P. C.; Teles, Y. C. F.; Oliveira, L. H.; Lima, J. B.; Scotti, M. T.; Nunes, F. C.; Conceição, A. S.; Souza, M. F. V.; Molecules 2019, 24, 2315.
79. Santos, D. S.; Rodrigues, M. F. M.; Estação Científica 2017, 7, 29.
80. Sobrinho, T. J. S. P.; Gomes, T. L. B.; Cardoso, K. C. M.; Amorim, E. L. C.; Quim. Nova 2010, 33, 288.
81. Flambó, D. F. A. L. P.; Master’s thesis, Universidade Federal de Vagostoa, Portugal, 2013.
82. Teles, Y. C.; Ribeiro-Filho, J.; Agra, M. F.; Siheri, W.; Igoli, J. O.; Gray, A. I.; Souza, M. F.; Nat. Prod. Res. 2015, 30, 1880.
83. Cao, W.; Hu, C.; Wu, L.; Xu, L.; Jiang, W.; J. Pharm. Sci. 2016, 132, 311.
84. Herm, H. N. T.; Vuong, Q. V.; Bowyer, M. C.; Scarlett, C. J.; Chem. Pap. 2017, 71, 2233.
85. Pham, H. N. T.; Vuong, Q. V.; Bowyer, M. C.; Scarlett, C. J.; Asia-Pac. J. Chem. Eng. 2017, 12, 332.
86. Jain, A.; Sinha, P.; Desai, N. S.; Int. J. Pharm. Sci. Res. 2014, 5, 1320.
87. Sharma, S.; Bhargava, S.; Mehta, A.; World J. Pharm. Sci. 2017, 6, 1471.
88. Bhut, B. A.; Int. J. Biossais 2012, 1, 177.
89. Sousa, E. T. S.; Lopes, W. A.; Andrade, J. B.; Quim. Nova 2016, 39, 486.
90. Venkatesh, S.; Laxmi, K. S.; Reddy, B. M.; Ramesh, M.; Fitoterapia 2007, 78, 146.
91. He, Y.; Li, Y. P.; Yang, W.; Zeng, X. T.; Xiao, B. Q.; Nie, J. Y.; Strait Pharm. J. 2009, 28.
92. Shukla, N.; Goswami, R. B.; World J. Pharm. Res. 2016, 5, 1420.
93. Jiang, C.; Wu, M.; Qin, Q.; Meng, X.; Liu, B.; China J. Tradit. Chin. Med. Pharm. Res. 2010, 5, 1672.
94. de Melo, J. O.; de Arruda, L. L. M.; Baroni, S.; Truiti, M. C. T.; Caparroz-Assaf, S. M.; Cuman, R. K. N.; Bersani-Amado, C. A.; Evidence-Based Complementary Altern. Med. 2012, 14947.
95. Meiro, J. O.; Pedrchi, P.; Baesso, M. L.; Hernandez, L.; Truiti, M. C. T.; Baroni, S.; Bersani-Amado, C. A.; Pharm. Res. 2011, 28, 331.
96. Raaman, N.; Babasubramanian, K.; J. Acad. Ind. Res. 2012, 1, 148.
97. Dayal, R.; Singh, A.; Mishra, K. P.; J. Pharmacogn. Phytochem. 2017, 6, 417.
98. Bean, M. F.; Antoun, M.; Abramson, D.; Chang, C. J.; McLaughlin, J. L.; Cassady, J. M.; J. Nat. Prod. 1985, 48, 500.
99. Sharma, V.; Shor, A.; Paliwal, S. K.; Sharma, S.; Asian J. Pharm. Clin. Res. 2015, 8, 344.
100. Bean, M. F.; Antoun, M.; Abramson, D.; Chang, C. J.; McLaughlin, J. L.; Cassady, J. M.; J. Nat. Prod. 1985, 48, 500.
101. Sun, S.; Li, K.; Lei, Z.; Xiao, L.; Gao, R.; Wadwda, R.; Zhang, Z.; PLoS One 2016, 11, e0152017.
102. Li, K.; Yu, Y.; Sun, S.; Liu, Y.; Garg, S.; Kaul, S. C.; Lei, Z.; Gao, R.; Wadwda, R.; Zhang, Z.; Biomed. Pharmacother. 2018, 101, 881.
103. Kun, K.; Sug, X.; Hu, S. X.; Han, C.; Lei, Z.; Zhang, Z.; J. Taiwan Inst. Chem. Eng. 2016, 61, 75.
104. Dzung, D. T. T.; Trang, T. H.; Linh, L. T. K.; Tan, D. V.; Hoa, L. T. P.; Tạp Chí Sinh Hoa 2018, 40, 45.
105. Kumar, G.; Munegueen, A. G.; Pandian, M. R.; Pharm. Unserer Zeit 2006, 353.
106. Kumar, N.; Singh, A. K.; Asian-Pac. J. Trop. Biomed. 2014, 4, S22.
179. Das, K. L. S.; *Pharmacogn. Res.* **2011**, *3*, 13.
180. Bhaargavi, V.; Jyotsna, G. S. L.; Tripurana, R.; *Int. J. Pharm. Sci. Res.* **2014**, *5*, 690.
181. Emordi, J. E.; Agbaje, E. O.; Oreagba, I. A.; Iribhogbe, O. I.; *BMC Complementary Altern. Med.* **2016**, *15*, 468.
182. Severino, V. G. P.; Monteiro, A. F.; Silva, M. F. G. F.; Lucarini, R.; Martins, C. H. G.; *Quim. Nova* **2015**, *38*, 42.
183. Vennila, S.; Bupesh, G.; Saravanamurali, K.; SenthilKumar, V.; SenthilRaja, R.; Saran, N.; Magesh, S.; *Bioinformation* **2014**, *10*, 263.
184. Sharma, V.; Chaudhary, U.; *Asian J. Pharm. Clin. Res.* **2016**, *9*, 96.
185. Nascimento, G. G. F.; Locatelli, J.; Freitas, P. C.; Silva, G. L.; *Braz. J. Microbiol.* **2000**, *31*, 247.
186. Gayathri, P.; Gayathri, D. S.; Srinivasan, S.; Saroja, S.; *Hygeia: J. Drugs Med.* **2010**, *2*, 57.