Review

Botulinum Toxin in Movement Disorders: An Update

Charenya Anandan and Joseph Jankovic *

Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; canandan@bcm.edu
* Correspondence: josephj@bcm.edu

Abstract: Since its initial approval in 1989 by the US Food and Drug Administration for the treatment of blepharospasm and other facial spasms, botulinum toxin (BoNT) has evolved into a therapeutic modality for a variety of neurological and non-neurological disorders. With respect to neurologic movement disorders, BoNT has been reported to be effective for the treatment of dystonia, bruxism, tremors, tics, myoclonus, restless legs syndrome, tardive dyskinesia, and a variety of symptoms associated with Parkinson’s disease. More recently, research with BoNT has expanded beyond its use as a powerful muscle relaxant and a peripherally active drug to its potential central nervous system applications in the treatment of neurodegenerative disorders. Although BoNT is the most potent biologic toxin, when it is administered by knowledgeable and experienced clinicians, it is one of the safest therapeutic agents in clinical use. The primary aim of this article is to provide an update on recent advances in BoNT research with a focus on novel applications in the treatment of movement disorders. This comprehensive review of the literature provides a critical review of evidence-based clinical trials and highlights recent innovative pilot studies.

Keywords: botulinum toxin; movement disorders; tremors; dystonia; tics; bruxism; restless legs syndrome; Parkinson’s disease; myoclonus; dyskinesia

Key Contribution: The current article reviews the recent evidence-based studies of botulinum toxin in movement disorders.

1. Introduction

Clostridium botulinum, an anaerobic, rod-shaped bacterium, produces a neurotoxin called botulinum toxin (BoNT) during sporulation [1–3]. BoNT is the most potent biological toxin, as it causes botulism manifested by paralysis of muscles and eventual fatal respiratory failure [4,5]. When an action potential arrives at the cholinergic presynaptic nerve terminal, there is an influx of calcium into the presynaptic terminal, which then facilitates acetylcholine vesicle fusion with the presynaptic membrane; this fusion is facilitated by a group of proteins referred to as SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) proteins, which include SNAP 25 (25 kD synaptosomal-associated protein) and Syntaxin [6,7]. BoNT acts at the cholinergic presynaptic nerve terminal by cleaving and inactivating SNARE proteins, thus inhibiting release of acetylcholine, which in turn prevents muscle contraction and results in local weakness and paralysis [7,8]. BoNT acts at both the extrafusal and intrafusal muscle fibers, thereby preventing contraction of both agonist and antagonist muscles [8,9]. This biologic effect of BoNT has been turned into an advantage in patients troubled by involuntary muscle contractions, excessive secretions, pain, and other conditions [7]. The paralytic effects of BoNT were initially described in 1817 by Justinus Kerner, a German physician, who suggested that the toxin may be potentially useful in the treatment of St. Vitus’ dance, hypersalivation, and hyperhidrosis [10]. The mechanism of action of BoNT injections to account for the typical 3–4 months of duration has not been fully elucidated, and the original proposal that axonal sprouting occurs at the presynaptic nerve terminal after the injection, after which time the neuromus-
cular junction integrity is restored when the original nerve terminals regain their exocytic function, hence necessitating repeat injections [11], has been challenged [12].

In 1981, Dr. Jankovic initially injected BoNT into a patient for treatment of blepharospasm (BSP) [10] and subsequently published the results of the first double-blind, placebo-controlled trial of BoNT in cranial–cervical dystonia [13]. The results of this trial, along with additional data, were used by the United States Food and Drug Administration (FDA) to approve BoNT in 1989 for the treatment of BSP and facial nerve disorders such as hemifacial spasm (HFS) [14]. Although only BoNT types A and B have been approved for clinical use by the FDA, there are a total of eight different subtypes: BoNT A to H [6].

There are currently four FDA approved BoNT formulations: the three types of botulinum toxin type A (BoNTA) available are onabotulinumtoxinA (Botox; Allergan, CA, USA), abobotulinumtoxinA (Dysport; Ipsen-Pharma, UK), and incobotulinumtoxinA (Xeomin; Merz Pharma, Germany); rimabotulinumtoxinB (Myobloc in the USA; Supernus Pharmaceuticals, Inc, Rockville, MD; Neurobloc in Europe, Sloan Pharma, Switzerland) is a BoNTB preparation [6,10].

There are several BoNT preparations that are currently in development but have not yet been approved by the FDA. DaxibotulinumtoxinA is a novel BoNTA preparation that was recently evaluated in a phase 3 trial (ASPEN-1) in cervical dystonia (https://www.businesswire.com/news/home/20201014005360/en/). This study enrolled 301 patients from 60 sites in the U.S., Canada, and Europe and confirmed the findings of an earlier phase 2 study [15] in that it found that daxibotulinumtoxinA is safe and effective. Interestingly, at doses of 125 U, it has a median duration of effect (based on the median time to loss of 80% of the peak treatment effect) of 24 weeks. This relatively long duration of action offers potential advantage over other formulations in that it may allow increasing the intervisit interval beyond the conventional 3–4 months. LanbotulinumtoxinA (Prosigne; Shanghai, China) is a new preparation of BoNTA marketed chiefly in Asia [16,17].

The doses of different formulations are not interchangeable, but based on prior studies, the following ratios are often used in clinical practice when switching from one to another BoNT product to achieve similar results: onabotulinumtoxinA:incobotulinumtoxinA = 1:1; onabotulinumtoxinA:abobotulinumtoxinA = 1:2.5, and onabotulinumtoxinA:rimabotulinumtoxinB = 1:50 [10].

With long term use of BoNT, there is a risk of developing neutralizing antibodies (NAbs) [18], and patients may stop responding to BoNT. Factors that increase the risk of developing resistance to BoNT include a high protein load in some formulations, large individual and cumulative doses of BoNT, and short intervisit intervals, especially booster injections [18–23]. Immunogenicity varies among the different products and has been reported as low as 0% for incobotulinumtoxinA and as high as 42.4% for rimabotulinumtoxinB [20]. Brin et al. [23] noted a 1.2% frequency of NAbs based on mouse protection assay (MPA) in patients treated for cervical dystonia with onabotulinumtoxinA. In contrast, Albrecht et al. [18] reported a prevalence of 14% of NAbs in 596 treated with BoNTA, mostly abobotulinumtoxinA, for a mean of 5.3 years based on mouse hemidiaphragm assay (MHDA). Since biological assays such as MPA and MHDA are difficult to perform and they involve sacrificing animals, there is a huge unmet need to develop a simple, inexpensive, sensitive, and specific test for BoNT-blocking antibodies. If a patient reports lack of improvement (less than 25%) after at least two or three consecutive treatment visits, this raises a high level of suspicion of immunoresistance [20]. In this case, unilateral brow injection may be performed as a clinically useful test [20]. This involves injection of BoNT in the right medial eyebrow and reassessing in 1–2 weeks for paralysis of the right procerus/corrugator as manifested by asymmetric frowning, which would disprove immunoresistance [20]. We have not included spasticity in this article, as we believe it is beyond the scope of this review. The reader is referred to some recent reviews on this topic [24–26].

Our manuscript provides a comprehensive review of botulinum toxin in movement disorders. Figure 1 depicts the variety of movement disorders where botulinum toxin is used for therapeutic purposes.
2. Discussion of BoNT Use in Different Indications

2.1. Dystonia

Dystonia is defined as a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, patterned movements, postures, or both [27,28]. It is frequently associated with activity but may also be present at rest and worsens with stress, anxiety, and fatigue [29]. The prevalence has been reported to range between 15 and 225 per 100,000 individuals [30].

We conducted a PubMed search on 28 May 2020; using the title words botulinum and dystonia, a total of 438 articles were identified. 340 of these were in English and were human studies. Of the 340 articles, 71 were review articles, 154 were either prospective or retrospective trials, 32 were randomized controlled trials (RCTs), 58 were case reports, 6 were commentaries, 8 were unavailable for review, and 11 articles were irrelevant. The clinical composition of 340 articles were different types of dystonia: 2 axial, 1 blepharospasm (BSP), 49 multiple types, 186 cervical dystonia (CD), 1 cranial, 15 unspecified, 17 laryngeal, 28 limb, 5 lingual, 30 oromandibular dystonia (OMD), 1 torsion, and 5 tardive.

2.1.1. Blepharospasm

Blepharospasm (BSP) is a form of focal dystonia [31,32] that is characterized by involuntary and prolonged bilateral contraction of periorbital muscles, including orbicularis oculi (OOc), procerus, and corrugator [33]. Its estimated prevalence is 5 per 100,000 people [16,30,34,35]. Though it may start with increased blinking, it can progress to disabling closure of the eye due to involuntary contractions of OOc [36]. The resulting blindness makes activities of daily living such as reading, walking, and writing hard to perform [33].

We conducted a PubMed search on 21 April 2020 using the botulinum and BSP as title words; a total of 213 articles were identified. 155 of these were in English and were human studies. Of the 155 articles, 17 were review articles, 68 were either prospective or
retrospective trials, 14 were RCTs, 11 were case reports, 6 were commentaries, 10 were unavailable for review, and 29 articles were irrelevant.

Early studies including Frueh et al. [37] and Tsuy et al. [33] described 16 and 43 patients with BSP, respectively, who were injected with BoNTA and noted marked relief of eyelid spasms. There are several other open-label studies [38–40] that documented BoNTA to be an effective treatment option, with an average duration of effect of 2.5–2.8 months. The side effects included transient tearing (5–10%), ptosis (5.4–9%), dry eyes (3–7.5%), blurred vision and/or diplopia (1–2%), ectropion (1%), and photophobia (2%) [36,41–43]. In our early series of 42 BSP and 115 CD patients who received BoNTA and were followed prospectively for a minimum of five follow-up visits, the CD patients were slightly younger, needed higher dose of BoNT (218 vs. 44 units), had longer latency (6.9 vs. 3.9 days), but similar total duration of effect (15.5 vs. 15.8 weeks) and frequency of complications (26.6% vs. 32.8%) [44]. Another study involving 178 BSP patients treated with BoNTA, initial dose 2.5 in each of four sites per eye, with long-term follow-up showed 93% symptom relief, 3.6 months mean duration of effect, 1.7% remission of symptoms, and no systemic side effects [45]. Pretarsal injections are generally recommended because of more robust benefit and less frequent ptosis compared to preseptal injections [46,47].

The American Academy of Neurology (AAN) published updated practice guidelines in 2016 regarding the use of BoNT in multiple movement and neurologic disorders [48] and found that: (i) onabotulinumtoxinA and incobotulinumtoxinA were probably effective for BSP treatment (Level B), and (ii) abobotulinumtoxinA was possibly effective (Level C). The Cochrane database review in 2005 stated that though randomized controlled data were unavailable, based on case control and cohort studies, BoNT was determined to be beneficial in 90% of patients with BSP [49]. A more recent Cochrane database review included three RCTs and concluded with moderate certainty that a single injection of BoNTA reduced blepharospasm severity [50].

The following are the randomized trials of BoNT in the treatment of BSP and BoNT (Table 1). Lolekha et al. [34], Wickwar et al. [51], Wu et al. [52], Quagliato et al. [53], Price et al. [54], and Li et al. [55] will be discussed under hemifacial spasm (HFS). Although the vast majority of patients are satisfied with the effects of BoNT, many patients note that their symptoms recur before their next injection. The need for BoNT preparations with longer lasting effects will be further highlighted in the section on CD.

Table 1. Lists randomized controlled trials (RCTs) associated with blepharospasm.

Study	Study Design and Goal	Sample Size and Method	Results
Lungu et al., 2013 [60]	Double-blind placebo controlled randomized trial	Formulation: onabotulinumtoxinA or incobotulinumtoxinA 20–40 U/eye	Time for symptom return to baseline was 3.7 and 3.5 months in active and placebo groups, respectively. AH8 is safe and may be used in increasing duration of effect
Wabbels et al., 2011 [57]	Double-blind, randomized trial	Assesses effectiveness of type A versus type F versus combination of A+F	No significant differences in side effects
Boyle et al., 2009 [58]	Prospective, randomized trial	Study looks at differences between low (10 U/mL) and high (100 U/mL) concentrations of BoNTA	62% had equal relief of both sides
Truong et al., 2009 [59]	Randomized trial, double-blind, placebo-controlled	Topical application of AH8 or placebo started on Day 1 of BotN	No difference in efficacy
Roggenkampfer et al., 2009 [60]	Double-blind, randomized trial	Mean change in BDSI score was 0.21 in incobotulinumtoxinA and 0.42 in onabotulinumtoxinA.	No difference in efficacy
Mezaki et al., 1999 [61]	Double-blind trial	Assesses effectiveness of type A versus type F versus combination of A+F	There was no difference between the groups when comparing the AF side

Mean dose was 29 U/eye and 27 U/eye for onabotulinumtoxinA and incobotulinumtoxinA, respectively. No significant differences in side effects.
2.1.2. Oromandibular Dystonia

Oromandibular dystonia (OMD) is a focal dystonia that affects face, mouth, and jaws [29]. This can be jaw opening, closing (also discussed with bruxism), or lingual (discussed separately) dystonia [66–68]. Prevalence is 30–70 per 100,000 patients and has a female predominance [29,66,68]. Age at onset is in the 5th or 6th decade. Jaw opening OMD is likely due to contraction of lateral pterygoid, mylohyoid, thyrohyoid, infrahyoid, and geniohyoid with posterior digastric [14,69].

Tan and Jankovic [70] studied 162 OMD patients who had been followed for about 10 years (mean age 57.9 ± 15.2 years). The patients were injected with onabotulinumtoxinA in the submental muscle complex (mean dose 28.6 ± 16.7 units per side) in patients with jaw opening OMD and in masseters (54.2 ± 15.2 U per side) in patients with jaw clenching with or without bruxism. The duration of benefit was 16.4 ± 7.1 weeks and 31.5% experienced adverse effects (dysphagia 10.2%, dysarthria 0.9%) [70]. A retrospective chart review from 1995–2011 included 59 OMD patients, showed inter-BoNT injection interval of 3.8 months; 47.5% had jaw closing, 35.6% opening dystonia, and 16.9% were jaw lateral deviation OMD [71]. A survey involving 14 patients who had received BoNT for OMD for 8–10 years revealed that 9 of 14 patients had continued with BoNT treatment with and without other oral agents [29]. An intraoral approach for BoNT injection in six of the eight patients with OMD showed significant improvement; only one had adverse effect of nasal speech [72].

In a systematic review [73] involving 387 OMD patients treated with BoNT, 27.1% had side effects, most frequently dysphagia. Comella et al. has performed systematic review of BoNT in OMD [66] and concluded that “that BoNT may be the most effective treatment available, with improvement in movement and quality of life in OMD”.

Novel injection techniques with use of ultrasound and CT images fused with plaster cast and software assisting accurate needle insertion in lateral pterygoid improved outcomes in jaw opening dystonia (66.3% and 54.4% with and without computer aided design guidance, respectively) [74].

2.1.3. Bruxism

Bruxism is a condition characterized by clenching of the jaw and biting/grinding of the teeth that occurs mainly during sleep [14]. Some of its symptoms are similar to oromandibular dystonia [75]. This can lead to damage to teeth, headaches, and temporomandibular joint problems [14]. It can be seen in some diseases such as sleep apnea, PD, Huntington’s disease (HD), and some autism spectrum disorders (ASD), and muscles most involved in this seem to be masseter, temporalis, and medial pterygoid [14,76]. “Bruxism” and “botulinum” were used as title words for the PubMed search. 27 articles were present; of these, 27 were in English and human studies. Of the 27 articles, 6 were review, 7 were either prospective or retrospective trials, 4 were RCTs, 9 were case reports, and 2 were commentaries.
Earliest case reports of BoNT for bruxism management was in 1990 and 1997 [77,78]. In a study of 18 patients who had bruxism for about 14.8 ± 10 years, the patients were injected with BoNTA in the masseters with a mean dose of 61.7 ± 11.1 MU to each side [79]; this resulted in near abolishment mean score of 3.4 ± 0.9 (total abolishment = 4) with only one patient reporting dysphagia. A recent systematic review that selected studies that assessed efficacy of BoNTA in the treatment of bruxism based on bite force or EMG of masseter concluded there was not enough evidence to treat bruxism with BoNTA [80]. However, another systematic review of BoNTA in bruxism reviewed six RCTs and four case series concluded that BoNTA was effective for the treatment of bruxism [81]. In our experience, we start at about 25 U of onabotulinumtoxinA in each masseter, but may increase the dosage up to 300 U to include the masseters and temporalis muscles for optimal benefit and to control or prevent further bruxism [14]. Table 2 lists RCTs associated with BoNT and bruxism.

Study	Study Design and Goal	Method	Results
Ondo et al., 2018 [82]	Randomized double-blind placebo-controlled trial Assessed onabotulinum toxinA for bruxism	n = 31 They were given either 200 U of BoNTA (60 and 40 in each masseter and temporalis) or given placebo	Total sleep time and bruxism episodes seemed to favor BoNTA Other than two patients noticing a change in how they smile, no significant side effects were noted
Jadhao et al., 2017 [83]	Randomized placebo-controlled trial Assessed BoNTA for treatment of pain in bruxism	n = 24 Patients were given either bilateral BoNTA or saline or no injections. Each group had eight patients	Pain improved in BoNTA, however, did not change in the other two groups
Shim et al., 2014 [84]	Randomized prospective trial Assessed BoNTA for motor contractions in sleep bruxism	n = 20 One group got 25 U in each masseter (n = 10) while the other group got injection in masseter and temporalis (n = 10)	The masticatory muscle activity frequency was unchanged, but the amplitude was lower. Four weeks after injection, nine patients felt reduced teeth grinding and 18 felt reduced morning jaw stiffness
Lee et al., 2010 [85]	Double-blind randomized placebo-controlled trial	n = 12 Six patients received BoNT into each masseter while the other six received saline	Bruxism was lower in patients who received BoNT (p = 0.027)

Abbreviations: BoNT—Botulinum toxin; BoNTA—Botulinum toxin A.

2.1.4. Lingual Dystonia

Lingual dystonia is a rare type of focal dystonia with estimated prevalence of about 4% of dystonic population [86]. It is usually a debilitating type of focal dystonia frequently brought on by talking and eating noted in patients with neurodegenerative disorders such as neuroacanthocytosis or neurodegeneration with brain iron accumulation [87]. It may also be a manifestation of tardive dyskinesia [86,88,89]. We conducted a PubMed search on 28 May 2020; using the title words botulinum and dystonia, a total of 438 articles were identified. 340 of these were in English and were human studies. Of the 340 articles, five were lingual dystonia. Of these, one was unavailable for review, two were retrospective studies, one was prospective, and one was a review article.

A retrospective study of 172 patients divided lingual dystonia into four types: protrusion (68.6%), curling (7.6%), retraction (16.9%), and laterotrusion (7%) [87]. BoNT was administered to 136 patients, most of whom noted some improvement in mastication, pain, and phonation [87]. Mean dose was 43.1 ± 5.3 units. Transient trouble with swallowing occurred in 12.5% of patients. In another study, 50 units of abobotulinumtoxinA injected into each genioglossus was effective in treating lingual-dystonia-related tardive dyskinesia [89]. In a series of 30 patients with lingual dystonia who participated in a QoL survey, OMD questionnaire-25 (OMDQ-25) score dropped from 46.8 ± 17.8 pre-BoNT to 38.2 ± 17.6 post-BoNT (p = 0.004) [86]. Dysphagia occurred in 16.7% of patients. A retrospective chart review revealed 4% of lingual dystonia (17 patients; 5 cranial dystonia, 2 primary generalized dystonia, 7 tardive dystonia, 1 each of heterodegenerative, multiple causes, postinfectious) in 421 dystonia patients, and 9 of 17 had BoNT injections; 55.6% had improvement and 1 patient developed dysphagia requiring gastrostomy tube placement [88].
2.1.5. Laryngeal Dystonia

Spasmodic dysphonia is a type of laryngeal dystonia manifested by action-induced sustained contraction of the vocalis muscles leading to approximation or separation of the vocal folds resulting in abnormal phonation [90,91]. Spasmodic dysphonia can be due to adductor spasm (this is more common and manifests as strained voice) or, less commonly, abductor spasm (from posterior cricoarytenoid muscle spasm leading to breathy or whispering voice) [90,92]. Studies showed that 16–32% of patients had primary laryngeal dystonia that can spread to other body parts [91,93] and 12.1% [94] had family history of dystonia.

We conducted a PubMed search on 28 May 2020; using the title words botulinum and dystonia, a total of 438 articles were identified. Of those, 340 of these were in English and were human studies. Of the 340 articles, 17 were laryngeal dystonia. Of these, 1 was a review article, 6 were case reports, and 10 were either prospective or retrospective studies.

A chart review of 155 patients with adductor spasmodic dysphonia who received thyroarytenoid injections found that the mean duration of beneficial effect from local BoNT injection was 13–14 weeks, and this was not influenced by age or gender of the patient [95]. A retrospective review of 900 laryngeal dystonia patients who had undergone EMG-guided BoNTA injections for the treatment of adductor or abductor spasmodic dysphonia showed that 90% and 66.7% benefited for an average of 15.5 weeks [91]. A Cochrane review concluded that the randomized controlled trials were not adequate enough to arrive at an unbiased conclusion about the effects of BoNT [96].

2.1.6. Cervical Dystonia

Cervical dystonia (CD) is the commonest form of focal dystonia in a movement disorder clinic [6]. It is manifested by involuntary contractions of multiple cervical muscles, leading to abnormal postures and movement in the neck, often associated with tremor and pain. Its prevalence is estimated to range around 5.7–400 per 100,000 persons [97,98] and usual age at onset is 40 [99]. A recent systematic review quoted that 15.4% of patients with CD, particularly the younger ones, report remission, typically occurring 4.5 years after onset of dystonic symptoms, but the majority (63.8%) eventually relapse [100].

Patients with CD often exhibit dystonic head tremor and a variety of different postures [101]. Anterocollis is the most difficult CD posture to treat with BoNT; as a result of this, patients with this form of CD are often excluded from clinical trials. We, however, found that some such patients benefit from injections of the sternocleidomastoid (SCM), anterior scalenus, submental complex, longus coli, and longus capitis, although the latter requires ultrasound or other imaging techniques in addition to EMG guidance [69,102]. Initial doses of around 10–25 U of onabotulinumtoxinA and injection in the lower portion of SCM helps avoid side effects such as dysphagia [14]. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) scale is used most frequently as an outcome measure in most clinical trials of CD [103].

In one of the largest studies, 616 patients with CD underwent BoNTA (abobotulinumtoxinA) injections with mean dose of 246–255 U in SCM, 423–445 U into splenius capitis, 227–242 U into trapezius, and 152–156 U into levator scapula; latency to benefit was about 7.5 days, maximum effect was between 7–35 days postinjection, and total effect lasted 11 ± 2.4 weeks [104]. In another study, 207 patients with CD received BoNTA for 6.7 ± 3.5 years; the mean dose of abobotulinumtoxinA was 389 ± 144 U and the mean dose of onabotulinumtoxinA was 145 ± 44 U [105]. Mean doses of abobotulinumtoxinA/onabotulinumtoxinA in splenius capitis, levator scapulae, trapezius, and SCM was 160/50, 70/25, 100/40, and 60/25 U, respectively. Latency to effect was around 7.6 ± 3.5 days (abobotulinumtoxinA), and side effects such as neck weakness, dysphagia, and pain occurred at 5%, 8%, and 9%, respectively. Latency to effect was 7.7 ± 3.3 (onabotulinumtoxinA) and adverse effects such as neck weakness, dysphagia, and pain occurred at 7%, 9%, and 6%, respectively. Systemic side effects were not noted in either formulation. Less than 2% developed NAbs [105]. In 326 patients with CD who prospectively received
BoNTA (onabotulinumtoxinA) with a median of nine sessions, 1.2% (four patients) tested positive for NAbs using mouse protection assay (three of four did not respond to BoNT and one still experienced benefit) [23].

A retrospective analysis of 89 patients (51 CD, 34 BSP, and 26 OMD) showed that BoNT remained effective and safe for the treatment of these conditions over 20 years [106]. Castelao et al. conducted a systematic review, which included eight RCTs and concluded that BoNTA was safe and effective in the treatment of CD. Doses ranged from 150 U to 236 U of onabotulinumtoxinA, 120 U–240 U of incobotulinumtoxinA, and 250–1000 U of abobotulinumtoxinA. BoNTA led to a mean 8.1 point reduction in TWSTRS total score at four weeks post-BoNTA [107]. Cochrane reviews showed that: BoNTA and BoNTB were effective for treatment of CD [108,109], and that BoNTA was more effective than trihexyphenidyl [110].

Dysphagia, which may be present in up to 25% of patients with CD even before initial BoNT treatment [111], is one of the most frequent side effects, occurring in 9% of treated patients, followed by neck weakness, which occurred in 10% [107]. In a prospective study of 18 patients with CD, in additional rotation, tilt, forward shift, backward shift, shoulder elevation, shoulder depression, and tremor, 9 (50%) complained of coughing and/or choking and this increased to 11 (61%) along with voice changes in 9 (50%), and sensation of food stuck in the throat in 8 (44%) [111].

Though BoNT in CD is efficacious, it sometimes is not effective and has adverse effects of weakness, this can be mitigated to some extent using ultrasound guidance [112]. Of 98 EMG guided injections for CD, 34.7% were associated with dysphagia; however, when injected with ultrasound and EMG guidance, the risk of dysphagia was apparently reduced to 0% after 27 injections [97]. Polymyographic EMG can help increase effectiveness of BoNT in CD; however, more studies are necessary to determine whether EMG-guided injections clearly provide incremental benefit to justify increased pain, time, and cost compared to palpation and surface anatomy [98]. Certainly, ultrasound and EMG-guided injections are necessary when approaching deep neck muscles.

A Cochrane review in 2016 included four RCTs in CD and found a 14.7% improvement with BoNTB [113]. A Cochrane review that included four RCTs concluded that there was low-level evidence that first injection with BoNTA (onabotulinumtoxinA) as compared to BoNTB (rimabotulinumtoxinB) was similar in treatment of CD [114]. A study with 40 CD patients showed that onabotulinumtoxinA and incobotulinumtoxinA had similar efficacy at 1:1 conversion [115]. A multicenter study with 100 CD patients showed that about 1/3 of patients who were BoNTB NAbs negative pre-BoNTB became positive, suggesting increased antigenicity with BoNTB [20,116].

Several studies have evaluated the changes in the neuronal network in CD patients post-BoNT [117,118]. A study involving 17 patients with CD used fMRI pre- and 6 months post-BoNT [118]. CD patients showed higher activity in the basal ganglia and thalamus at baseline but after three sessions of BoNT in 6 months, and the connectivity between thalamus and basal ganglia was lower [118]. Another study evaluated 12 CD patients pre- and 4 weeks post-BoNT and found that BoNT injection alters sensorimotor activation [119]. Mahajan et al. [120] found changes in multiple brain areas, including the left putamen and right superior parietal gyrus on magnetoencephalography post-BoNT in CD. Pre- and post-BoNT studies showed an increase in activity in certain cortical areas involved in motor and cognitive planning, indicating that alterations in peripheral input can lead to changes in central nervous system processes [121]. In seven patients with CD who had functional MRI, pre-BoNT in CD when the median nerve was stimulated showed activation of contralateral primary but not the secondary somatosensory cortex; four weeks after, BoNT normalized and was similar to the nine controls showing activation of the primary and secondary cortices [122]. This study concluded that there is widespread somatosensory physiology disruption.

Common causes of BoNT discontinuation in CD is lack of response, short duration of benefit, side effects, inconvenience, and cost [123,124]. In one survey, of 209 respondents, the mean reported onset of BoNT-A therapeutic effect was 11.7 days and the time to
peak effect was 4.5 weeks; the time from injection to symptom re-emergence was 73.6 days (±10.5 weeks); 88% experienced symptom re-emergence between injections [125]. Therefore, developing new BoNT preparations with longer duration of action is one of the highest priorities in experimental therapeutics of dystonia. In this regard, refer to the above discussion about daxibotulinumtoxinA.

Of 216 patients with CD who were determined to be secondary nonresponders (SNR), based on retrospective chart review compared to three patients with CD who had responded to BoNT, it was determined that prior surgery, prior side effects of BoNT, physical therapy, prior antipsychotic use, and high mean dose of BoNTA were linked to SNR [126]. Based on chart review of CD patients, it was observed that those who had their first BoNT injection between 1989 to 2000 had a gradual increase in required dose and 19 became nonresponders [127]. In a retrospective review of 118 patients, in long-term follow-up, the median Tsui score was higher in responders and they also had a higher rate of taking oral medications [128]. The rates of employment improved after BoNT for CD [129]. Based on retrospective chart review of 568 patients treated with abobotulinumtoxinA for about 13 years, partial secondary treatment failure occurred in 1.6% per year, or about 14.5% in 9 years [130]. AAN published updated practice guideline in 2016 regarding the use of BoNT in multiple movement and neurologic disorders [48]: (i) abobotulinumtoxinA and rimabotulinumtoxinB were effective for CD treatment (Level A), and (ii) onabotulinumtoxinA and incobotulinumtoxinA were probably effective (Level B). Table 3 discusses the various randomized trials involving BoNT and CD.

Table 3. RCTs associated with cervical dystonia (CD) and botulinum.

Study	Study Design and Goal	Method	Results
Hu et al., 2019 [131]	Randomized trial Assesses effects of physical therapy (PT) on CD	10 CD and 10 healthy	Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) score severity and pain improved by 31% and 28% in BoNT-PT arm. PT can be used as adjunct for CD
Yi et al., 2018 [132]	Randomized, double-blind, placebo-controlled trial Assesses efficacy and safety of BoNTA in CD with dystonic cervical pain	16 patients with dystonic cervical pain were injected with either BoNTA or saline	At 4 weeks, TWSTRS-total score improved in BoNTA as compared to saline (p < 0.02). Dysphagia occurred in two patients in BoNTA arm and one in saline arm. BoNTA for CD in dystonic CP is safe and helps with pain and disability
Samet et al., 2018 [135]	Randomized prospective trial Assesses if kinematic-based (KB) muscle selection for BoNT has better outcomes than visual-based selection (VB) for BoNT in treatment of CD	29 CD patients were divided in either VB or KB group	TWSTRS score in VB group significantly reduced by 28% only after second injection, but the score in KB group reduced by 26% at week 4 and led to quicker muscle selection
Huang et al., 2018 [134]	Randomized prospective trial Studies efficacy of ultrasound-guided injection of BoNTA for CP. BoNTA by Lanzhou Institute of Biological Products was used.	105 patients were divided in three groups: They either neural oral medications (trihexyphenidyl), dopamine, haloperidol, haloxon, carbamazepine, or BoNTA under US-guidance or BoNTA under US-guidance with orthopedic brace	No differences were noted in Trus and Spitzer score in medication groups. The Trus and Spitzer scores in the BoNTA and BoNTA with orthopedic brace groups were improved. Trus score in BoNTA with brace was 5.8 ± 3.7 at 3 months as compared to 4.6 ± 2.4 for BoNTA. Using orthopedic brace with BoNTA can lower muscle spasms and QoL
Comella et al., 2018 [136]	Prospective, double-blind, randomized placebo-controlled trial Compares incobotulinumtoxinA to placebo in CD	255 patients with CD were randomly assigned 1:1:1 to placebo or incobotulinumtoxinA 120 U or incobotulinumtoxinA 240 U	TWSTRS total score decreased from baseline was – 2.2, – 9.8, and – 30.9 for placebo, incobotulinumtoxinA 120 U, and incobotulinumtoxinA 240 U, respectively. Dysphagia, neck pain, and muscle weakness occurred at 27%, 41.1%, and 4.1% of control, 11.5%, 5.1%, and 6.4% of incobotulinumtoxinA 120 U, and 18.5%, 14.8%, and 11.1% of incobotulinumtoxinA 240 U. IncobotulinumtoxinA is safe and useful
Truong et al., 2018 [137]	Randomized, double-blind, placebo-controlled trial Compares abobotulinumtoxinA and placebo groups for managing CD	55 CD patients received abobotulinumtoxinA and 56 received placebo	TWSTRS total score decreased to – 15.6 ± 2 and – 6.7 ± 2 in abobotulinumtoxinA and placebo groups, respectively. AbobotulinumtoxinA has good safety and efficacy
Quagliato et al., 2020 [138]	Prospective, randomized, double-blind trial Compares Prosigne and onabotulinumtoxinA for managing CD	24 patients were randomly assigned to get either NO U of onabotulinumtoxinA or Prosigne. Depending on cervical dystonia, muscles were selected	OnabotulinumtoxinA and Prosigne have 1-1 safety and adverse effect profiles
Pappert EJ et al., 2018 [139]	Randomized, double-blind trial Compares BoNTa versus onabotulinumtoxinA for managing CD	n = 111	Total TWSTRS score decreased by 11 and 8.8 for BoNT-and BoNTa, respectively. Injection site pain and troublesome镇site was similar in two groups. Dry mouth was more in BoNTa (39.3%) while it was 7.5% in BoNTa. Both formulations are effective for CD patients
Tassone et al., 2006 [140]	Randomized crossover trial Assesses BoNTA versus BoNTB with physical therapy for CD	n = 40	Duration of improvement was 138.6 days in BoNT-P and 99.1 days in BoNT-B. Disability with activities of daily living and pain were improved by BoNT-P/PT with BoNT would be helpful for CD
Comella et al., 2005 [141]	Randomized double-blind trial Assesses BoNTA versus BoNTB for CD	n = 139	TWSTRS score improvement was similar between groups 9.3 with BoNTA and 10.2 with BoNTB. Dysphagia and dry mouth significantly lower was in BoNTA, duration of effect was longer in BoNTA (44 weeks)
Truong et al., 2005 [142]	Double-blind, randomized trial Assesses abobotulinumtoxinA safety and efficacy in CD in U.S.A.	n = 80	39% of abobotulinumtoxinA and 39% of placebo had benefit. Mean duration of effect of abobotulinumtoxinA in 4.5 weeks. Blurred vision (14%) and weakness (11%) was more in abobotulinumtoxinA

Toxins 2021, 13, 42
Table 3. Cont.

Study	Study Design and Goal	Method	Results
Benecke et al., 2005 [142]	Randomized double-blind trial	Compared NT201 to OnabotulinumtoxinA in treatment of CD	Both had median TWSTRS-severity score of 18 and improved to 4–6 in NT201 and 6–8 in onabotulinumtoxinA group; 26% in NT201 and 24% in onabotulinumtoxinA group had adverse effects. Safety and tolerability were alike in both groups.
Lauth-Herrman et al., 2002 [143]	Randomized double-blind trial	Efficiency of low-dose BoNT was studied in CD	At 4 weeks, both groups showed similar decrease in TWSTRS score. Duration of effect was 65% and 57% in high and low-dose groups.
Naumann et al., 2002 [144]	Randomized double-blind trial, crossover design	Assessed EMG features in CD after BoNTA	Safety and efficacy of BoNTA for treatment of CD was reported by 18 (90%) patients in the BoNT-A group despite EMG recording in selected positions in the affected hand and careful evaluation of this phenomenon can be helpful in selecting the appropriate muscles to target with BoNT.
Whitaker J et al., 2001 [146]	Prospective, double-blind placebo-controlled trial	Assesses EMG features in CD after BoNTA	49% of abobotulinumtoxinA and 33% of placebo patients had improvement in pain. Adverse effects were greater in 1000 U compared to placebo and 500 U.
Poewe et al., 1998 [150]	Randomized prospective trial	OnabotulinumtoxinA was used	Good efficacy with low side effects were observed in 72%, 44%, and 32% of abobotulinumtoxinA and placebo patients respectively.
Wessel et al., 2001 [145]	Randomized double-blind placebo-controlled parallel trial	500 units in CD patients with Tsui score ≥ 9	TWSTRS total score improved at Weeks 4, 8, and 12. Dry mouth was more common in the BoNTA arm.
Lansberg et al., 2001 [147]	Randomized double-blind placebo-controlled parallel trial	Assessed abobotulinumtoxinA versus current onabotulinumtoxinA	BoNT was effective at 89%; quantitative EMG is helpful for selecting the appropriate muscles to target with BoNT.
Bence et al., 2004 [148]	Randomized double-blind placebo-controlled parallel trial	Assessed BoNTB in CD patients who were resistant to BoNTA	42.9% and 27.3% of abobotulinumtoxinA and placebo had adverse effects. Neck weakness occurred only in abobotulinumtoxinA group.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	86% of abobotulinumtoxinA and placebo patients were categorized as responders.	
Levin et al., 1995 [152]	Randomized double-blind placebo-controlled parallel trial	42% of abobotulinumtoxinA and placebo had adverse effects. Neck weakness occurred only in abobotulinumtoxinA group.	
Poewe et al., 2002 [153]	Randomized double-blind placebo-controlled parallel trial	42% of abobotulinumtoxinA and placebo had adverse effects. Neck weakness occurred only in abobotulinumtoxinA group.	
Wessel et al., 2001 [145]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	TWSTRS total score was more in all three dosages of BoNTB and response increased with higher doses. Dry mouth and dysphagia were the most common adverse effects.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	Good efficacy with low side effects were observed in 72%, 44%, and 35% of abobotulinumtoxinA and placebo patients respectively.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and useful for CD management.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.
Poewe et al., 2002 [151]	Randomized double-blind placebo-controlled parallel trial	EMG performed in 42 CD patients pre- and 4 weeks post- either formulation for another 16 weeks	BoNTB is safe and effective.

Abbreviations: BoNT—Botulinum toxin; BoNTA—Botulinum toxin A; BoNTB—Botulinum toxin B; CD—Cervical dystonia; EMG—Electromyography; PT—Physical therapy; TWSTRS—Toronto Western Spasmodic Torticollis Rating Scale.

2.1.7. Limb Dystonia

Upper limb dystonia typically presents as dystonic writer’s cramp, task-specific musician’s dystonia, or other occupational or sports dystonia [155–158]. Lower limb dystonia can present as foot dystonia (as seen in PD) or performance dystonia (e.g., runner’s dystonia) [159]. Sometimes one can observe overflow into adjacent muscles or mirror movements on the opposite side (using the unaffected hand to write can produce dystonic positions in the affected hand) and careful evaluation of this phenomenon can be helpful in selecting the appropriate muscles to target with BoNT [160]. Writer’s cramp is probably the most common form of dystonia, affecting about 21 people per 100,000 [161]. In a double-blind RCT of BoNTA involving 40 patients with writer’s cramp, 70% and 31.6% in the BoNT and placebo groups reported improvement, respectively (p = 0.03); hand weakness was reported by 18 (90%) patients in the BoNT-A group despite EMG recording in selected muscles [162]. Another study showed that 12 of 20 patients had improved pen control after BoNT [163]. In a series of 84 patients with musicians with dystonia, 69% noted improvement after BoNT, but 98% noted some weakness [164]. BoNT is found to be effective in dystonia associated with corticobasal syndrome (CBS) [165].
We conducted a PubMed search on 28 May 2020; using the title words botulinum and dystonia, a total of 438 articles were identified. Of those, 340 of these were in English and were human studies. Of the 340 articles, 28 limb dystonia. Of these, 16 were prospective/retrospective studies, 7 were case reports, 2 were review articles, and 3 were RCTs.

In a retrospective series with 20 patients with focal hand dystonia treated for 10 years with BoNT, it was concluded that that BoNT was a safe and fruitful treatment [166]. Nine patients had writer’s dystonia, five had musician’s dystonia, one had typing dystonia, and five had mixed dystonia. EMG-guided injections were performed; mean dose required was higher later in the years (49.9 units) as compared to 24.9 units early on [166], and antibody resistance was not noted. One study showed that haptic (touch) manipulation technique can significantly enhance the effectiveness of BoNT-A therapy and improve dystonic writer’s cramp [167]. Cole et al. [168] also performed a double-blind RCT of BoNTA in 10 patients with focal hand dystonia and noted subjective improvement in 8 of the 10 patients treated with BoNT. In another study involving 12 patients with writer’s cramp randomized to receive only EMG-guided BoNT therapy or BoNT and occupational therapy, the patient-rated subjective scale scores at 20 weeks were not significantly different between the two groups [158]. There was a significant decrease (28%) in writer’s cramp impairment scale, but the primary endpoint, patient-rated subjective scale, was not achieved.

In a survey involving self-administered questionnaires in 42 patients, 10 patients with BSP, 19 with CD, and 13 with focal hand dystonia the mean benefit for the entire population was 66.0% and weakness occurred in 20.5%; patients with hand dystonia had the longest maximum benefit (mean duration 87.5 days) [169].

In a series of 14 patients with foot dystonia, pre- and post-BoNT, gait assessment showed improvement in stride and step length, balance, and gait velocity [159]. In six patients with foot dystonia associated with PD, about 250–400 units were injected in the affected muscles resulting in meaningful relief of pain, dystonia, and gait [170]. There are several case reports and series [171] of foot dystonia in PD that improved after BoNT. In one study, onabotulinumtoxinA was injected into tibialis posterior or anterior, gastrocnemius, flexor digitorum longus, and extensor hallucis longus in 27 patients with marked improvement in spasms and pain [171]. Table 4 discusses the various randomized trials involving BoNT in limb dystonia.

Table 4. RCTs associated with limb dystonia and botulinum.

Study	Study Design and Goal	Sample Size and Method	Results
Umar M et al., 2018 [172]	Randomized trial Assessed the effect of BoNTA and task-specific training in post-stroke focal dystonia	23 patients in experimental group got BoNTA and task-specific training and 23 in control group got only task-specific training Different muscles in upper limb were injected based on type of dystonia	Motor assessment scale improved in both; however, no significance variations were noted between the two groups Task-specific training is helpful for post-stroke dystonia
Geenen et al., 1996 [173]	Randomized prospective trial Assessed efficacy of BoNT for focal dystonia identified through either EMG with or without stimulation for focal hand dystonia	n = 12 Eight and four patients received BoNT in target muscle based on EMG guidance without and with stimulation	4 and 3 in the without and with stimulation group had weakness in target muscle EMG with stimulation is at least as effective as EMG without stimulation

Abbreviations: BoNT—Botulinum toxin; BoNTA—Botulinum toxin A; EMG—Electromyography.

2.2. Hemifacial Spasm

Hemifacial spasm (HFS) is a peripherally induced unilateral facial movement disorder characterized by irregular, clonic, or tonic contractions of muscles innervated by the ipsilateral facial nerve. Its estimated prevalence is around 10 in 100,000 [174,175]. The condition usually begins as spasms of lower eyelid on one side of the face, which eventually spreads to upper eyelid and other muscles in ipsilateral face, often associated with elevation of ipsilateral eyebrow referred to as the “other Babinski sign” [34,176]. The estimated prevalence is 14.5 and 7.4 per 100,000 in women and men, respectively [174]. Primary HFS is thought to be related to compression of the facial nerve at the exit zone by an aberrant blood vessel loop. Secondary HFS is related to prior facial nerve injury or Bell’s palsy or brain stem
damage [177]; 76% and 21% of HFS are primary and secondary respectively [178]. There is some evidence that facial motor nucleus excitability is reduced after BoNT injections [179].

We conducted a PubMed search on 21 April 2020. Using botulinum and hemifacial as title words, we identified 157 articles; of these, 118 were in English and were human studies. Of the 118 articles, 9 were review articles, 74 were either prospective or retrospective trials, 13 were RCTs, 5 were case reports, 6 were commentaries, and 11 articles were irrelevant.

In 1985, Savino et al. published one of the earliest case series in 15 patients who experienced relief of HFS after BoNT injections [180]. In a series of patients with BSP \((n = 70) \), HFS \((n = 13), \) CD \((n = 195), \) hand dystonia \((n = 22), \) and oromandibular dystonia \((n = 45) \) who underwent BoNT injections, 94%, 92%, 90%, 77%, and 73% experienced relief of their symptoms, respectively [181]. In another series, 98% of 130 patients with HFS patients experienced relief of symptoms after BoNT injection [182]. In a retrospective review of 100 HFS patients who were treated with a mean dose of 28 U of onabotulinumtoxinA and were followed for 4 years, showed a mean duration of effect of around 3.1 months and latency to onset of effect of 7.1 days [183]. There are numerous prospective and retrospective trial which evaluated the use of BoNTA injections that showed safety in patients with HFS [184–189]. Cakmur et al. evaluated pretarsal versus preseptal injections in 28 and 25 patients with HFS and BSP, respectively, and found that pretarsal BoNTA had better relief of symptoms, longer duration of effect, and lower incidence of ptosis [190]. Results from another study of 72 HFS and 38 BSP patients with a crossover design concluded that pretarsal and preseptal injections provided similar beneficial effects; however, the pretarsal group had longer duration of benefit [191]. A systematic review that was published recently stated that they did not identify RCTs of BoNTA in HFS [192]. In our practice, we inject mainly in the pretarsal portion of the orbicularis oculi in patients with BSP and HFS. Cochrane review (based on a single study with study size = 11) concluded that the benefit rate of BoNT in HFS was between 76–100% and that due to this effect size, it would be extremely hard and unethical to conduct new placebo-controlled trials with a large sample size [193].

Side effects of BoNT for HFS include ptosis (7.8–36%), double vision (1.6%), blurred vision (2.5%), dry eyes/exposure keratitis (2.5%), dysphagia (5.5%), facial droop (3.5–5.5%), eye lid swelling/ecchymosis (3.8%), nausea (2.5%), and conjunctival redness [190,194,195]. Tunc et al. [196] assessed BoNT injections efficacy in 69 patients with idiopathic HFS \((n = 46) \) and those with HFS due to definite neurovascular compression \((n = 23) \) and found that those with idiopathic HFS had more robust improvement with BoNT. Although some favor surgical vascular decompression as a treatment of HFS, most neurologists prefer BoNT, as there is a lower risk of permanent adverse effects such as facial paralysis and deafness [197]. Table 5 discusses the various randomized trials involving BoNT and HFS.

Table 5. Lists the RCTs identified in hemifacial spasm (HFS).

Study	Study Design and Goal	Method	Results
Xiao et al., 2018 [198]	Randomized, double-blind trial	Formulation used: Chinese BoNTA (BXTA—Lanzhou Biological Products Institute, Lanzhou, China) or onabotulinumtoxinA	Efficacy differences between split and nonsplit site injection of BoNT for HFS
		Evaluates if facial asymmetry improved with bilateral BoNT	31 HFS (16 patients in split site and 15 in nonsplit site) and 38 BSP (20 in split site and 18 in nonsplit site). Results showed that BoNTA injection in the split site group led to a significant improvement in facial asymmetry compared to the nonsplit site group.
Lolehka et al., 2017 [192]	Double-blind, cross RCT	Formulation used: onabotulinumtoxinA	Bilateral BoNT injections led to a significant decrease in facial asymmetry in patients with HFS compared to placebo.
			BoNT duration of effect and adverse effect were similar between both groups
Cakmur et al. [189]	Randomized, double-blind, crossover trial	Formulation: BoNTA	Time to onset of efficacy was not significantly different between the high concentration group and placebo group.
		Assesses differences in low (25 U/mL) versus high (50 U/mL) BoNT for treatment of HFS	2.5 to 5 U were injected in each location
Prasithpong et al., 2015 [190]	Randomized, double-blind trial	Formulation: abobotulinumtoxinA	Median side effect was 4 and 6 days for nonsplit and split, respectively.
		Efficacy differences between split and nonsplit site injection of BoNT for HFS	Duration of effect was 4 and 5 days for nonsplit and split, respectively.
Table 5. Cont.

Study Design and Goal	Method	Results
Randomized controlled trial		
Formulation used: obtained from Lundon Institute of Biological Products		
Efficacy of BoNTA versus Botulinum toxin A; Carbachol-ether (CBE) was assessed		
30 patients got BoNTA with CBE 100 mg 3 times a day and		
28 patients were followed only BoNTA		
4–5 injections per eye at 5 or 3 U per site, and addition 3 sites		
in face for HFS		
Up to 55% for BSR and 75% for HPS		Complete remission was noted in 90% and 67.9% of treatment and control groups
The duration of effect was similar between the 2 groups		
Prospective, double-blind, randomized, crossover trial		
Evaluates quality of life (QoL) of Neurotoxin and abobotulinumtoxin A		
26 HFS patients were randomly divided into Neurotox or abobotulinumtoxin A group and treated at 12 weeks		
Four injections around OOC and one each in upper and lower OOC with either 15 units of abobotulinumtoxin A or 3.125 units of Neurotoxin		
The mean QoL scales (HFS-30, SF-36, AMS) was not significantly different between 2 groups		
The total intensity score of HFS was significantly lower in the abobotulinumtoxin A group		
QoL scores were similar between abobotulinumtoxin A and Neurotoxin		
Prospective, open-label and randomized		
Compares efficacy of CBTXA and onabotulinumtoxin A in HFS and BSR		
27 patients with HFS and 103 patients with BSR		
BOBTXA at 300 U with CBZ 100 mg 3 times a day and		
addition, 3 sites of injection in OOC and 3–11 units in		
lower facial (four points in ZM, Zmi, LLS, and ZM)		
BOBTX is the most effective in HFS and BSR groups		
BOBTX in BSR was more effective		
Randomized, single-blind, cross over trial		
Formulation: onabotulinumtoxin A		
Assessed efficacy of upper and lower facial versus pure upper facial BOBTX injection for HFS		
21 patients with HFS were randomized to receive BOBTX in both OOCs and perioral muscles versus BOBTX in OOCs and		
physical serum into perioral muscles		
11–30 units of onabotulinumtoxin A in OOCs and 3–11 units in		
lower facial (four points in ZM, Zmi, LLS, and ZAR)		
BOBTX was more effective than placebo		
Prospective, randomized double-blind trial		
Compares efficacy of Prosigne (Chinese origin BNTX) and onabotulinumtoxin A		
36 HFS and 21 BSR were randomized to receive either		
of the formulations		
BNTX—10 U in each OOC, 10 U spread among ZM, Zmi, LLS, and ZAR		
and 2.5 U were injected in four sites around eye		
92 (50 BNTX and 42 BBTX)		
Four different protocols of injections were studied with four spots of injections in OOC in each (standard, brow, and inner		
orbital or outer orbital)		
BBTX had additional cheek injection on affected side		
Duration of effects was 11.3 weeks with both forms in BSB		
and 12.8/12.9 weeks onabotulinumtoxin A/Prosigne for HFS		
Onabotulinumtoxin A and Prosigne have similar efficacy and adverse effects		
Prospective, randomized placebo-controlled trial		
Formulation: Oculinum (Alan Scott, MD, Smith Kettlewell Eye research institute)		
Assessed efficacy of Oculinum for HFS		
11 HFS patients		
Those different doses (2.5–10 units) of Oculinum or normal saline (placebo) was injected in a random manner		
84% of BNTX provided relief and 44% was substantial		
Side effects were facial weakness (9%), bruising (23%), double vision (13%), and dropping eye lid (7%)		
BoNT was safe and effective for treatment of HFS		

Abbreviations: BPS—Blepharospasm; BoNT—Botulinum toxin; BoNTA—Botulinum toxin A; BoNTB—Botulinum toxin B; CBZ—Carbazepine; CD—Cerebral dystonia; CBTXA—Chinese Botulinum toxin A; EMG—Electromyography; HFS—Hemifacial spasm; LLS—Levator labii superioris; RCT—Randomized controlled trial; Ris—Risorius; UBT—Unilateral botulinum toxin; Zmi—Zygomaticus minor; ZM—Zygomaticus major.

2.3. Tremors

Tremor, an involuntary, rhythmic, oscillatory movement of a body part, is the most common movement disorder in a movement disorder clinic [204,205]. When oral medications do not adequately control the tremors, as is the case in 30% of patients with essential tremor (ET), BoNT should be considered as a therapeutic option [206]. We conducted a PubMed search on 9 July 2020; using botulinum and tremor as title words, a total of 49 articles were identified. Of those, 43 of these were in English and were human studies. Of the 43 articles, 4 were review articles, 18 were either prospective or retrospective trials, 8 were RCTs, 12 were case reports, and 1 was commentary. The clinical subsets of the 43 articles were 8 ET, 2 ET PD, 3 jaw tremor, 6 palatal, 5 multiple tremor types, 9 vocal, 1 each for PD, tremor/tic, orthostatic, head tremor with CD, neuropathy-associated, head tremor, and multiple sclerosis associated with Holmes tremor.

In 1981, Jankovic and colleagues reported the earliest series of 51 patients with different tremor types who benefited from BoNT [207]. Trosh and Pullman published a prospective study with 26 patients (12 and 14 of PD and ET, respectively) who also benefited from BoNT [208]. Fixed doses, limited muscles being injected, and complicating weakness postinjections initially made BoNT use for tremors unsatisfactory [205]. In 2015, a series of 28 PD patients with tremors underwent muscle selection of incobotulinumtoxin A and patients improved at 16 weeks [209]. In an open-label prospective trial, 31 ET patients received 3 cycles of BoNTA based on kinematic analysis guided muscle selection and dose administered [206]; it showed that BoNTA reduced tremor by 47.7% at 6 weeks and the improvement lasted 18–30 weeks. In a series of 10 patients with ET who received BoNTA using cinematics every 16 weeks, a 33.8% functional improvement was noted when selected muscles were injected [210]. The series was later expanded to include 28 PD and 24 ET patients who were injected with BoNTA using computer-based kinematics [210].

Mittal and Jankovic (2019) had provided a systematic review of BoNT in tremors [204] and concluded that most studies were open-label and that there was a need for well-designed
controlled trials of BoNT in the treatment of ET and PD tremors. In a retrospective analysis by Niemann and Jankovic [211] of 91 patients (53 ET, 31 dystonic, 9 PD, 1 cerebellar), 81.3% of whom received injections into flexor carpi radialis or ulnaris (mean dose per limb 71.8 units of onabotulinumtoxinA), only 12.2% had transient weakness. This is in contrast to earlier double-blind, placebo-controlled studies by Jankovic et al. [212] and Brin et al. [213], during which the wrist extensors were also injected and, as a result, many patients experienced finger extensor weakness. Therefore, we no longer inject the extensor hand muscles [211]. In a series of 19 patients with proximal tremors, injections in muscles such as supra/infraspinatus, teres major/minor, biceps, triceps, deltoid, and pectoralis major resulted in at least moderate benefit in 63%, but 15% had no benefit [214]. In 20 patients with severe ET, BoNT (mean total dose 95.5 ± 40.58 per patient) improvement was noted in daily living and in severity tremor scale [215]. The investigators also concluded that excluding extensor carpi muscle did not affect efficacy of BoNT. Table 6 lists RCTs associated with tremors and BoNT.

Table 6. RCTs in tremors and BoNT.

Study	Study Design and Goal	Method	Results
Mittal et al., 2018	Randomized, double-blind placebo-controlled, prospective crossover trial	n = 33	Fab-Tolosa Martin score median comparison between incobotulinumtoxinA/placebo was 2 and placebo/incobotulinumtoxinA was 3 at week 8. Two patients in incobotulinumtoxinA group at hand weakness. IncobotulinumtoxinA was found useful in improving tremor scores in patients with ET.
Mittal et al., 2017	Randomized, double-blind placebo-controlled, prospective crossover trial	n = 30	UPDRS rest tremor (p < 0.001) and NIH-SCC improved (p < 0.001) significantly at weeks 4 and 8. IncobotulinumtoxinA was found useful in improving PD tremor scores and patient symptoms.
Wilt et al., 2012	Randomized double-blind crossover study	n = 25	Bin scores improved after BoNT at 6 (p = 0.0005) and 12 weeks (p = 0.0001). Hand weakness was more common in BoNT group (42.2%) compared to placebo (8.1%). BoNTA can improve arm tremor in MS.
Adler et al., 2004	Randomized prospective study	n = 13	Mean time of onset of efficacy was 2.3 days; mean tremor severity score improved by 1.4 points at week 2. Dysphagia was a noted adverse event.
Ben et al., 2001	Randomized double-blind trial	n = 133	BoNTA treated patients had finger weakness.
Jankovic et al., 1998	Randomized double-blind placebo-controlled trial	n = 25	Tremor improved at 4 weeks (p < 0.05) compared to placebo. All BoNT treated patients had finger weakness.
Palermo et al., 1995	Randomized double-blind placebo-controlled trial	n = 10	Examiners 50% and 10% improvement in BoNT and placebo group. They inferred that BoNT may be helpful if patients did not respond to oral medications.
Rajan et al., 2020	Randomized placebo-controlled trial	n = 30	Fab-Tolosa-Martinez tremor rating scale total score was lower in BoNT group at weeks 6 (p < 0.001) and 12 (p < 0.001).

Abbreviations: BSP—Blepharospasm; BoNT—Botulinum toxin; BoNTA—Botulinum toxin A; BoNTB—Botulinum toxin B; CD—Cerebellar dystonia; EMG—Electromyography; ET—Essential tremor; ECR—Extenor carpi radialis; ECU—Extenor carpi ulnaris; FCR—Flexor carpi radialis; FCU—Flexor carpi ulnaris; PD—Parkinson’s disease; POF—Postural orthostatic tremor; SCM—Sternocleidomastoid; UPDRS—Unified Parkinson’s disease rating scale; NIH-SCC—National Institutes of Health Collaborative Genetic Criteria.

2.4. **Parkinson’s Disease**

PD is a neurodegenerative disease with incidence around 118 per 100,000 person years [223]. There are a variety of symptoms in PD that have been amenable to the treatment with BoNT including hand tremors, jaw tremors, axial dystonia, rectal dystonia, freezing of gait, sialorrhea, and levodopa-induced dyskinesias [14,204,224]. We conducted a PubMed search on 11 July 2020; using botulinum and Parkinson as title words, a total of 58 articles were identified. Of these, 49 of these were in English and were human studies. Of the 49 articles, 7 were review articles, 19 were either prospective or retrospective trials, 14 were RCTs, 7 were case reports, 1 was unavailable for review, and 1 was a commentary. Table 7 lists PD-related conditions amenable to BoNT treatment. Table 8 lists RCTs associated with PD and BoNT.
Table 7. Parkinson’s disease (PD)-related conditions amenable to treatment with BoNT.

Condition	Details
Dystonia	- BSP/lid apraxia
- Bruxism	- Limb dystonia
- Cervical dystonia	- Camptocormia
- Levodopa-induced dyskinesia	Numerous studies have tried treating various dystonic symptoms in patients with Parkinson’s disease [224,226,227].
Jaw tremors	In three patients with PD jaw tremor who underwent Dysport injection, mean dose of 53 units into each masseter and improvement was noted in jaw tremor in all three patients without side effects [228].
Freezing of gait	Freezing of gait (FOG) is thought to be due to activation of both agonist and antagonist muscle in the legs, which is similar to pathophysiology of dystonia, hence studies have looked into botulinum for freezing of gait [229,230].
Sialorrhea	Increased drooling is seen in about 10% of PD [231] and multiple studies have looked at used of botulinum injection for sialorrhea [231,232].
Overactive bladder	In four PD and two MSA patients with overactive bladder (OAB) complaints, 200 U BoNTA was injected into detrusor, and all patients experienced relief of symptoms without systemic adverse effects [233]. Similar results were seen in eight PD patients with OAB post-BoNTA [234].
Constipation	In a study with PD patients with constipation (after excluding those related to slow movement in colon), in an open-label study, Botox was injected into puborectalis muscles and noted improvement in symptoms in 10 patients at 2 months [235].

BoNT—Botulinum toxin; BoNTA—Botulinum toxin A; MSA—Multiple system atrophy; PD—Parkinson’s disease; OAB—Overactive bladder.

2.4.1. Camptocormia

Flexion of the trunk (camptocormia) may be caused by a variety of etiologies, including axial dystonia, abnormal posture related to PD or other Parkinsonian disorders, and extensor myopathy [236]. Dystonic camptocormia may improve with BoNT injections. Using title words botulinum and camptocormia in a PubMed search, five articles that were human trials were identified in English. Of these, one was review, one was prospective/retrospective, one was case series, and two were commentaries.

In our experience and in the experience of others [237,238], injections of BoNT into rectus abdominus or the external abdominal oblique muscles seems most helpful [14]. A case series of four patients with PD and camptocormia who received ultrasound-guided botulinum injections of 500–1500 MU in iliopsoas failed to show improvement in camptocormia [237]. In another series involving 10 patients with Parkinsonian camptocormia who received incobotulinumtoxinA 100–300 U in either rectus abdominis or iliopsoas, both groups failed to show substantial improvement [239]. In a review of BoNT in camptocormia related to PD and other movement disorders, Bertram et al. [240] concluded that the evidence for the use of BoNT in paravertebral and truncal muscles is not sufficient to make any definitive recommendations. In five patients with extensor truncal dystonia (opisthotonus, which is opposite of camptocormia), BoNT using doses of 25–50U injected into each of the 4 to 6 lumbar paravertebral muscles provided meaningful improvement in three patients [241].

2.4.2. Sialorrhea

Botox (20–50 MU) was injected into each parotid in 18 patients with PD and drooling, and all patients had improvement of symptoms in 4–6 days [231]. Possible complications...
include dry mouth, dysphagia, infection, and hematomata. In another open series with 16 PD patients with drooling, the patients experienced relief of symptoms post-BoNT [242]. Use of ultrasound for salivary gland injections is thought to be quick, safe, and effective in guiding injections [243]; however, it may not be necessary for parotid injections and may add value for submandibular injections [223]. In our practice, we commonly use BoNT for management of drooling in PD and have good results.

Study	Study Design and Goal	Method	Results	
Base et al., 2018 [246]	Double-blind randomized trial	Assessed BoNT for treatment of levodopa-induced dyskinesia	45 PD patients were injected with either 100 U incobotulinumtoxinA or placebo in four digitomanus longus and brevis	Mean clinical global impression was better in the treatment group compared to the placebo group.
Bruno et al., 2019 [249]	Randomized placebo-controlled double-blind crossover trial	Assessed BoNT for foot dystonia related to Parkinson’s disease	n = 12 Patients received both BoNT and placebo and then switched back and forth after 3 months.	Temporary muscle weakness was seen in two patients (one in each group).
Narayan et al., 2014 [252]	Randomized placebo-controlled double-blind crossover trial	Assessed BoNT for treatment of drooling in PD	Subjects were randomized to receive either 100 U of incobotulinumtoxinA or saline was injected into each submandibular (30 U) and parotid (20 U) glands.	Saliva weight was similar between both groups pre- and postinjections.
Bonanni et al., 2007 [246]	Randomized placebo-controlled double-blind crossover trial	Assessed BoNT for foot dystonia related to Parkinson’s disease	Four patients received BoNT and five got placebo, and five got placebo and then switched over after 3 months.	Six patients found BoNT to be effective, two had no change, and one had subjective improvement without change in lateral bending.
Tassorelli et al., 2014 [247]	Randomized placebo-controlled double-blind crossover trial	Assessed if BoNTA helped increase rehabilitation effects in PD patients with Pisa syndrome	They were randomized to receive rehabilitation therapy with or without BoNT (total dose 90–200 U)	Patients who received rehabilitation therapy had better posture, but those who also received BoNTA had more pain reduction and long-term improvement in clinical variables.
Cherpougos et al., 2012 [248]	Randomized placebo-controlled double-blind with sequential dose escalation	Assessed BoNTa for idiopathic drooling	n = 34 They were randomized and given either placebo or 1500 U/2500 U/3500 U of BoNT into submandibular (20 U for each side) and parotid glands.	Patients who received BoNTA noted 44.4% and 33.3% incidence and (54%) reduction in saliva.
Espar et al., 2011 [255]	Double-blind crossover trial	Assessed clinical BNTa for treatment of levodopa-induced dyskinesia	n = 12 EMG-guided BoNT or placebo was injected in neck muscles. SCM 25U, Splenius capitis 50U divided into each side, trapezius 25U bilaterally.	Four patients finished the 6-month trial, there was a lack of positive effect. There was neck weakness.
Guidubaldi et al., 2011 [249]	Randomized placebo-controlled double-blind trial	Assessed BNTa versus BoNT for drooling in PD or ALS	n = 27 (15 ALS and 12 PD) They received 250 U of BNTa or placebo injections into parotid and submandibular glands.	Latency to benefit was shorter for BNTa (6.8 ± 4 days) and BoNT (3.2 ± 3 days). Duration of effect was similar between both groups.
Lagalla et al., 2009 [250]	Randomized double-blind placebo-controlled trial	Assessed BoNT for drooling in PD	n = 36 Patients either got 4000 U of BoNTa or placebo.	Patients who received BoNTa noted 44.4% and 53.3% incidence and (54%) reduction in saliva. Useful effects lasted 19 ± 6.3 weeks in BoNT-treated patients (p < 0.0001).
Kall et al., 2007 [251]	Randomized placebo-controlled trial	Assessed if BoNT helped increase rehabilitation effects in PD patients with Pisa syndrome	n = 17 These patients either received 250 U abobotulinumtoxinA divided between each gland, other submandibular or parotid.	Two patients developed transient dysphagia (one in each group). Dry mouth was noted in three and one time after submandibular and parotid groups, respectively. Within the submandibular group, D5S and social consequences were improved. This was not seen in the parotid group. 50% and 22% of patients in the submandibular and parotid groups were noted as responders.
Lagalla et al., 2006 [252]	Double-blind randomized placebo-controlled study	Assessed BoNT for drooling in PD	n = 32 They received 50 U of incobotulinumtoxinA in each parotid or placebo.	Patients that received BoNTa had improved frequency of drooling and reduced social disability. No adverse effects were reported.
Walzer et al., 2005 [253]	Double-blind randomized placebo-controlled crossover study	Assessed BoNT for freezing of gait (FOG)	n = 12 Patients got either BoNTA or placebo and had crossover for five visits. 200–200 U was given in the gastrocnemius and soleus under EMG guidance (up to 150 U per limb).	FOG did not improve after BoNT.
Fernandez et al., 2004 [259]	Double-blind randomized placebo-controlled study	Assessed BoNT for FOG	n = 14 Injections were randomly given either 500 U of BoNT (n = 9) or placebo (n = 5)	No difference noted in FOG between two groups.
Dogu et al., 2004 [246]	Randomized placebo-controlled double-blind crossover trial	Assessed if BoNT helped increase rehabilitation effects in PD patients with Pisa syndrome	n = 15 Patients were randomly given either 250 U of BoNT (n = 9) or placebo (n = 6)	Two patients in US-guided group had dry mouth. Mean time to have lower saliva production was 4.1 days and duration of effect was about 4.4 months.
Onoda et al., 2004 [249]	Double-blind randomized placebo-controlled study	Assessed if BoNT helped increase rehabilitation effects in PD patients with Pisa syndrome	n = 16 They received 1000 U of either BoNTB or placebo (250 U in each submandibular gland).	Patients who got BoNTa did not improve on visual analog scale (p < 0.05) and drooling scale (p < 0.05). BoNTB is effective for drooling in PD.

Abbreviations: ALS—Amyotrophic lateral sclerosis; oNT—Botulinum toxin; BoNTa—Botulinum toxin A; BoNTB—Botulinum toxin B; D5S—Drooling severity and frequency score; EMG—Electromyography; FOG—Freezing of gait; MSA—Multiple system atrophy; PD—Parkinson’s disease; Ultrasound—US.
2.5. Tics

Tics are recurrent, jerk-like, or transiently sustained involuntary movements (motor tics) or noises (phonic tics) that occur abruptly out of background of normal activity [256]. BoNT was first used for the treatment of tics in a series of 10 patients with Tourette’s syndrome with focal tics and was found to be effective not only in controlling the tics but also in markedly reducing or eliminating the premonitory urge [257]. On 7 September 2020, when “botulinum” and “tics” was searched as title words, 15 studies that were in English and were human studies were found. Of the 15 articles, 2 were review articles, 3 were either prospective or retrospective trials, 1 were RCTs, 5 were case reports, 2 were unavailable for review, and 2 were commentary. Table 9 lists the RCT associated with tics and BoNT.

In one of our series, 35 patients with motor tics associated with Tourette’s syndrome received BoNT, and 82% experienced relief of tics and of premonitory urge with an average duration of benefit lasting 14.4 weeks [258]. In a series of 15 patients with motor tics, BoNTA was useful in 89% of patients and was found to be particularly helpful in the treatment of eye blinking and head jerking due to contractions of cervical muscles [259].

Table 9. Lists the RCT associated with tics and BoNT.

Study	Study Design and Goal	Sample Size and Method	Results
Marras et al., 2001 [260]	Randomized double-blind placebo-controlled cross-over trial	n = 18 Tics involving face, neck, or shoulder were selected for BoNT. Patients were either injected with onabotulinumtoxinA or placebo	Blinking and head turning were the most common tics treated. Median proportional change in placebo was +5.8% and BoNT was −39%. BoNT helped decrease the premonitory urge and the frequency of tics.

Abbreviation: BoNT—Botulinum toxin.

In 30 patients with phonic tics related to Tourette’s syndrome who received BoNTA, 93% noted meaningful improvement of symptoms [261] lasting mean of 102 days. Before BoNT injection, 53% of patients had premonitory urges as compared to 20% after BoNT treatment; 80% had hypophonia [261]. We and others reported that BoNT improves not only simple phonic tics but also complex phonic tics manifested by coprolalia [262,263]. A comprehensive review of BoNT in tics in Tourette’s syndrome, identified in 1 RCT with 18 patients with motor tics, concluded that they were not sure about the effects of BoNT on tics [260].

2.6. Myoclonus

Myoclonus is an involuntary, jerk-like contraction of muscle. If there is active muscle contraction, it is referred to as “positive myoclonus”, but an abrupt brief lapse of muscle contraction, as occurs in asterixis, is a characteristic feature of “negative myoclonus” [264]. Based on anatomical distribution and various physiologic characteristic, myoclonus is categorized as focal, segmental, or generalized or cortical, reticular reflex, and spinal myoclonus, but there are other classifications based on electrophysiological studies [265]. Though there are no randomized controlled trials, there are some case reports and series discussing use of BoNT for as a treatment of myoclonus [264,266,267]. On 7/12/2020, “myoclonus” and “botulinum” were searched for as title words. The results showed 21 articles; of these, 17 were in English and human studies. Of the 17 articles, 2 were either prospective or retrospective trials, 0 were RCTs, 13 were case reports, and 2 were commentaries.

A case series of nine patients with focal, segmental, and generalized myoclonus (due to variety of primary pathologies including trauma, astrocytoma, Lafora’s disease, and mitochondrial dysfunction) were reported to be responsive to BoNT injections, with only one patient reporting subjective arm weakness [264]. Case reports have suggested success in treating myoclonus associated with Rasmussen encephalitis [266], stimulus-sensitive myoclonus [268], and, in 3 patients, limb myoclonus after peripheral nerve injury [269].

Palatal myoclonus, also called palatal tremor, consists of involuntary contractions of the soft palate, producing rhythmic movement at a frequency of 1–10Hz, often accompanied by a clicking sound [270,271]. It may be accompanied by rhythmic movements of branchial and other muscles resulting in slow tremor, referred to as myorhythmia [272].
Palatal myoclonus has been usually attributed to a dysfunction or lesion in the Guillain-Mollaret triangle, but there are many other causes, including functional (psychogenic) causes, of this form of segmental myoclonus.

There are many case reports and series of BoNT being effective in the treatment of palatal myoclonus [267]. A retrospective series between 1985 to 2011 included 15 patients with essential palatal myoclonus in which 2.5 or 5 units of onabotulinumtoxinA produced amelioration of symptoms in 85.7% of cases [271].

2.7. Restless Legs Syndrome

Restless legs syndrome is a chronic or intermittent neurologic condition characterized by the urge to move lower limbs due to an uncomfortable sensation in the legs; the estimated prevalence in the general population is 5–15% [273]. RLS is more common in women and is often associated with positive family history, although no causative gene or genes have been identified. The pathophysiology of RLS is not yet fully understood, but disinhibition of motor pathways and dysfunctional sensory input to the cortex has been proposed [274]. Although dopaminergic agonists, α-2-δ calcium channel agents, such as gabapentin, and opioids are helpful, about 45% of patients continue to have bothersome symptoms after treatment [275]. BoNT injections have been reported to be helpful in some patients with RLS, particularly those who have disabling symptoms despite optimal medical treatment [6,14].

There have been several open-label trials [276,277] and case series [278] that have studied response of RLS to BoNT. A case series with three patients [277] and another case series with 27 patients [276] failed to show improvement of RLS symptoms with BoNT. An observational case series with three patients had concluded that intramuscular BoNTA injection improved RLS symptoms [278]. Mittal et al. [275] found a positive effect of BoNT on RLS symptoms, but Nahab et al. [279] found a lack of benefit in their series. Though there is conflicting evidence for efficacy of BoNT in RLS, we used it in a selected group of patients with “malignant” RLS. While not necessarily completely effective in all patients, most have benefited for about 3–4 months after injection, with BoNT targeting muscles that the patient identifies as particularly troublesome because of intense feeling of restlessness. The treatment must be individualized, but we typically inject about 100–300 U of onabotulinumtoxinA in the quadriceps or hamstrings and/or 50–100 units into gastrocnemius or posterior tibialis.

We conducted a PubMed search on 21 April 2020; using botulinum and restless as title words, a total of six articles were identified. All six of these were in English and were human studies. Of the six articles, three were either prospective or retrospective trials, two were RCTs, and one was a review article. Table 10 lists RCTs associated with RLS and BoNT.

Table 10. Lists the two RCTs identified with RLS and BoNT.

Study	Study Design	Method	Results
Mittal, 2018 [275]	Double-blinded, placebo-controlled crossover randomized controlled trial (RCT)	Sample size (N): 24, 40 units each for tibialis anterior (TA), gastrocnemius (GCS) and 20 units in biceps femoris bilaterally Controls were injected with saline	International restless legs syndrome score improved at Week 4 ($p = 0.0036$) and Week 6 ($p = 0.0328$). No significant improvement at Week 8 ($p = 0.067$). They concluded that incobotulinumtoxinA injected improved RLS severity without adverse events
Nahab, 2008 [279]	Double-blinded, placebo-controlled crossover RCT	40 mU Quadriceps femoris (QF), 20 mU TA, 20 mU GCS, and 10 mU soleus (SOL) under EMG guidance Max dose: 90 mU/leg Controls were injected with saline	$n = 6$
A statistically significant benefit was not noted, and adverse effects were similar with both groups |

Abbreviations: EMG—Electromyography; GCS—Gastrocnemius; QF—Quadriceps femoris; RLS—Restless leg syndrome; RCT—Randomized controlled trial; SO—Soleus; TA—Tibialis anterior.
2.8. Central Effects of BoNT

In addition to Ach, BoNT also blocks the release of other neurotransmitters, including adenosine triphosphate, substance P, and calcitonin-gene-related peptide. BoNT also down-regulates sensory receptors, such as transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor and the vanilloid receptor 1, and purinergic (P2X3) receptors [280]. BoNT’s effects on these transmitters and receptors is being explored in the management of autonomic and pain disorders such as those associated with cancer [281].

A variety of animal and human physiological and imaging studies have provided evidence that BoNT not only acts peripherally but also centrally; it is beyond the scope of this article to review all the evidence, but the reader is referred to some recent reviews on this topic [282–284]. Finally, there is emerging evidence that BoNT blocks the transsynaptic transmission of alpha-synuclein [285], the rogue protein involved in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders [286,287].

3. Conclusions

BoNT is a safe and powerful treatment strategy for a variety of hyperkinetic movement disorders. The indications have gradually expanded over the last four decades, making BoNT one the most versatile drugs in the world. With advancing research into mechanisms of action, improved methods of administration, and novel formulations, the field of therapeutic BoNT will continue to grow [14,288].

4. Methods

A comprehensive review was conducted for select topics in movement disorders and use of BoNT injections in those conditions. Specific terms were used to search the PubMed database for articles in English, available in full, limited to human studies that were randomized controlled trials (identified based on PubMed filter). If the RCT was still ongoing or was not directly related to the use of BoNT in movement disorders, it was excluded. The title words used of the PubMed and the split-up of the articles identified is presented in a table form in each condition under the Results section. Relevant prospective and retrospective studies and RCTs in a table form were presented in the discussion.

Author Contributions: J.J. was invited to write this review article. C.A. did the comprehensive review and formulation of draft manuscript. J.J. provided critical feedback and revised manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This is a review article written based on literature review, thus Institutional Review Board approval was not obtained.

Informed Consent Statement: This is a review article written based on literature review, hence informed consent was not obtained.

Data Availability Statement: The data cited in this article is based on previously published articles and relevant references have been quoted in the text.

Conflicts of Interest: Jankovic has received research or training grants from AbbVie Inc.; Allergan, Inc.; Dystonia Coalition; Merz Pharmaceuticals; and Revance Therapeutics, Inc. Jankovic has served as a consultant for Aeon Biopharma, and Revance Therapeutics. Jankovic is a member of the editorial board of The Botulinum Journal and Toxins.

Abbreviations

AH8 Acetyl hexapeptide-8
AAN American Academy of Neurology
ASD Autism spectrum disorder
BSP Blepharospasm
BSDI Blepharospasm disability index
Abbreviation	Description
BoNT	Botulinum toxin
BoNTA	Botulinum toxin A
BoNTB	Botulinum toxin B
CBZ	Carbamazepine
CD	Cervical dystonia
CBTXA	Chinese botulinum toxin A
CGI	Clinical global improvement
CT	Computerized tomography
CBS	Corticobasal syndrome
DSFS	Drooling severity and frequency score
ET	Essential tremor
EMG	Electromyography
ECR	Extensor carpi radialis
ECU	Extensor carpi ulnaris
FF	Finger flexor
FCR	Flexor carpi radialis
FCU	Flexor carpi ulnaris
FOG	Freezing of gait
fMRI	Functional magnetic resonance imaging
GCS	Gastrocnemius
HFS	Hemifacial spasm
HD	Huntington’s disease
JRS	Jankovic Rating Scale
KB	Kinematic-based
LID	Levodopa-induced dyskinesia
LLS	Levator labii superioris
MHDA	Mouse hemidiaphragm assay
MPA	Mouse protection assay
MSA	Multiple system atrophy
NIHCGC	National Institutes of Health Collaborative Genetic Criteria
NAbs	Neutralizing antibodies
OOc	Orbicularis oculi
OOr	Orbicularis oris
OMD	Oromandibular dystonia
OMDQ-25	Oromandibular dystonia questionnaire
OAB	Overactive bladder
PD	Parkinson’s disease
POT	Postural orthostatic tremor
PT	Physical therapy
QoL	Quality of life
QF	Quadriceps femoris
RCT	Randomized controlled trial
RLS	Restless legs syndrome
Ris	Risorius
SNR	Secondary nonresponders
SOL	Soleus
SNARE	Soluble N-ethylmaleimide-sensitive factor attachment receptor
SNAP 25	25 kD synaptosomal-associated protein
SCM	Sternocleidomastoid
TA	Tibialis anterior
TWSTRS	Toronto Western Spasmodic Torticollis Rating Scale
US	Ultrasound
UDPRS	Unified Parkinson’s Disease Rating Scale
UBT	Unilateral botulinum toxin
FDA	United States Food and Drug Administration
VB	Visual-based
Zmi	Zygomaticus minor
ZM	Zygomaticus major
31. Tang, M.; Li, W.; Ji, F.; Li, X.; Zhang, Y.; Liu, P. Impact of botulinum toxin injections on quality of life and self-esteem in patients with blepharospasm. *Psychol. Health Med.* 2019, 24, 513–518. [CrossRef]

32. Truong, D.D.; Gollomp, S.M.; Jankovic, J.; Lewitt, P.A.; Marx, M.; Hanschmann, A.; Fernandez, H.H. Sustained efficacy and safety of repeated incobotulinumtoxinA (Xeomin®) injections in blepharospasm. *J. Neural Transm.* 2013, 120, 1345–1353. [CrossRef]

33. Tsoy, E.A.; Buckley, E.G.; Dutton, J.J. Treatment of blepharospasm with botulinum toxin. *Am. J. Ophthalmol.* 1985, 99, 176–179. [CrossRef]

34. Lolekha, P.; Choolam, A.; Kulkantrakorn, K. A comparative crossover study on the treatment of hemifacial spasm and blepharospasm: Preseptal and pretarsal botulinum toxin injection techniques. *Neural. Sci.* 2017, 38, 2031–2036. [CrossRef]

35. Valls-Sole, J.; Defazio, G. Blepharospasm: Update on epidemiology, clinical aspects, and pathophysiology. *Front. Neurol.* 2016, 7, 45. [CrossRef] [PubMed]

36. Cohen, D.A.; Savino, P.J.; Stern, M.B.; Hurtig, H.I. Botulinum injection therapy for blepharospasm: A review and report of 75 patients. *Clin. Neuropharmacol.* 1986, 9, 415–429. [CrossRef] [PubMed]

37. Frueh, B.R.; Felt, D.P.; Wojno, T.H.; Musch, D.C. Treatment of Blepharospasm with Botulinum Toxin: A Preliminary Report. *Arch. Ophthalmol.* 1984, 102, 1464–1468. [CrossRef] [PubMed]

38. Engstrom, P.F.; Arnoult, J.B.; Mazow, M.L.; Prager, T.C.; Wilkins, R.B.; Byrd, W.A.; Hofmann, R.J. Effectiveness of Botulinum Toxin Therapy for Essential Blepharospasm. *Ophthalmology* 1987, 94, 971–975. [CrossRef]

39. Elston, J.S. Long-term results of treatment of idiopathic blepharospasm with botulinum toxin injections. *Br. J. Ophthalmol.* 1987, 71, 664–668. [CrossRef]

40. Carruthers, J.; Stubs, H.A. Botulinum Toxin for Benign Essential Blepharospasm, Hemifacial Spasm and Age-Related Lower Eyelid Entropion. *Can. J. Neurol. Sci.* 1987, 14, 42–45. [CrossRef]

41. Elston, J.S.; Russell, R.W.R. Effect of treatment with botulinum toxin on neurogenic blepharospasm. *Br. Med. J.* 1985, 290, 1857. [CrossRef]

42. Mauriello, J.A. Blepharospasm, meige syndrome, and hemifacial spasm: Treatment with botulinum toxin. *Neurology* 1985, 35, 1499–1500. [CrossRef]

43. Dutton, J.J.; Buckley, E.G. Long-term Results and Complications of Botulinum Toxin A in the Treatment of Blepharospasm. *Ophthalmology* 1988, 95, 1529–1534. [CrossRef]

44. Jankovic, J.; Schwartz, K.S. Longitudinal experience with botulinum toxin injections and cervical dystonia. *Neurology* 1993, 43, 834–836. [CrossRef] [PubMed]

45. Calace, P.; Cortese, G.; Piscopo, R.; Della Volpe, G.; Magli, A.; De Berardinis, T. Treatment of blepharospasm and hemifacial spasm: Preseptal and pretarsal botulinum toxin type A: Long-term results. *Eur. J. Ophthalmol.* 2003, 13, 331–336. [CrossRef] [PubMed]

46. Aramideh, M.; De Visser, B.W.O.; Brans, J.W.; Koelman, J.H.; Speelman, J.D. Pretarsal application of botulinum toxin for treatment of blepharospasm. *J. Neurol. Neurosurg. Psychiatry* 1995, 59, 309–311. [CrossRef]

47. Albanese, A.; Bentivoglio, A.R.; Colosimo, C.; Galardi, G.; Madera, L.; Tonali, P. Pretarsal injections of botulinum toxin improve blepharospasm in previously unresponsive patients. *J. Neurol. Neurosurg. Psychiatry* 1996, 60, 693–694. [CrossRef]

48. Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Poteric, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache Report of the Guideline Development Subcommittee of the American Academy of Neurology. *Neurology* 2016, 86, 1818–1826. [CrossRef]

49. Costa, J.; Ferreira, J.J.; Coelho, M.M.; Borges, A.A.; Espirito-Santo, C.C.; Moore, P.; Sampiao, C.; Borges, A.A.; Ferreira, J.J.; Coelho, M.M.; et al. Botulinum toxin type A therapy for blepharospasm. *Cochrane Database Syst. Rev.* 2004. [CrossRef]

50. Duarte, G.S.; Rodrigues, F.B.; Marques, R.E.; Castelão, M.; Ferreira, J.; Sampiao, C.; Moore, A.P.; Costa, J. Botulinum toxin type A therapy for blepharospasm. *Cochrane Database Syst. Rev.* 2020, 11, CD004900. [CrossRef]

51. Wickwar, S.; McBain, H.; Newman, S.P.; Hirani, S.P.; Hurt, C.; Dunlop, N.; Flood, C.; Ezra, D.G. Effectiveness and cost-effectiveness of a patient-initiated botulinum toxin treatment model for blepharospasm and hemifacial spasm compared to standard care: Study protocol for a randomised controlled trial. *Trials* 2016, 17, 1–9. [CrossRef]

52. Wu, C.J.; Shen, J.H.; Chen, Y.; Lian, Y.J. Comparison of two different formulations of botulinum toxin a for the treatment of blepharospasm and hemifacial spasm. *Turk. Neurosurg.* 2011, 21, 625–629. [CrossRef]

53. Quagliato, E.M.A.B.; Carelli, E.F.; Viana, M.A. Prospective, randomized, double-blind study, comparing botulinum toxins type a botox and prosine for blepharospasm and hemifacial spasm treatment. *Clin. Neuropharmacol.* 2010, 33, 27–31. [CrossRef]

54. Price, J.; Farish, S.; Taylor, H.; O’Day, J. Blepharospasm and hemifacial spasm: Randomized trial to determine the most appropriate location for botulinum toxin injections. *Ophthalmology* 1997, 104, 865–868. [CrossRef]

55. Li, X.H.; Lin, S.C.; Hu, Y.F.; Liu, L.Y.; Liu, J.B.; Hong, Y.C. Efficacy of carbamazepine combined with botulinum toxin a in the treatment of blepharospasm and hemifacial spasm. *EYE* 2012, 27, 178–181. [CrossRef]

56. Fabbri, S.; Considine, E.; Zuhair, S.; Ponsati, B.; Assia, B.; Kallet, H.; Minto, P. Pilot study of topical acetyl hexapeptide-8 in the treatment for blepharospasm in patients receiving botulinum toxin therapy. *Eur. J. NeuroL* 2013, 20, 515–518. [CrossRef]

57. Wabbels, B.; Reichel, G.; Fulford-Smith, A.; Wright, N.; Roggenkämper, P. Double-blind, randomised, parallel group pilot study comparing two botulinum toxin type A products for the treatment of blepharospasm. *J. Neural Transm.* 2011, 118, 233–239. [CrossRef]

58. Boyle, M.H.; McGwin, G.; Flanagan, C.E.; Vicinanzo, M.G.; Long, J.A. High versus low concentration botulinum toxin A for benign essential blepharospasm: Does dilution make a difference? *Ophthal. Plast. Reconstr. Surg.* 2009, 25, 81–84. [CrossRef]
59. Truong, D.; Comella, C.; Fernandez, H.H.; Ondo, W.G. Efficacy and safety of purified botulinum toxin type A (Dysport®) for the treatment of benign essential blepharospasm: A randomized, placebo-controlled, phase II trial. *Park. Relat. Disord.* **2008**, *14*, 407–414. [CrossRef]

60. Roggenkämper, P.; Jost, W.H.; Bihari, K.; Comes, G.; Grafe, S. Efficacy and safety of a new Botulinum Toxin Type A free of complexing proteins in the treatment of blepharospasm. *J. Neural Transm.* **2006**, *113*, 303–312. [CrossRef]

61. Mezaki, T.; Kaji, R.; Brin, M.F.; Hirota-Katayama, M.; Kubori, T.; Shimizu, T.; Kimura, J. Combined use of type A and F botulinum toxins for blepharospasm: A double-blind controlled trial. *Mov. Disord.* **1999**, *14*, 1017–1020. [CrossRef]

62. Nüügzens, Z.; Roggenkämper, P. Comparison of two botulinum-toxin preparations in the treatment of essential blepharospasm. *Graefe's Arch. Clin. Exp. Ophthalmol.* **1997**, *235*, 197–199. [CrossRef]

63. Jankovic, J. Blepharospasm and oromandibular-laryngeal-cervical dystonia: A controlled trial of botulinum a toxin therapy. *Adv. Neurol.* **1988**, *50*, 583–591.

64. Mitsikostas, D.D.; Dekundy, A.; Sternberg, K.; Althaus, M.; Pagan, F. IncobotulinumtoxinA for the treatment of Blepharospasm in Toxin-Naïve Subjects: A Multi-Center, Double-Blind, Randomized, Placebo-Controlled Trial. *Adv. Ther.* **2020**, *37*, 4249–4265. [CrossRef]

65. Sane, S.; Ali, M.J.; Naik, M.N. Comparison of Safety and Efficacy of Botox and Neuronox in the Management of Benign Essential Blepharospasm: A Split-face Study. *Korean J. Ophthalmol.* **2019**, *33*, 430. [CrossRef]

66. Comella, C.L. Systematic review of botulinum toxin treatment for oromandibular dystonia. *Toxicon* **2018**, *147*, 96–99. [CrossRef]

67. Page, A.D.; Siegel, L.; Jog, M. Self-rated communication-related quality of life in individuals with oromandibular dystonia receiving botulinum toxin injections. *Am. J. Speech-Lang. Pathol.* **2017**, *26*, 674–681. [CrossRef]

68. Slaim, L.; Cohen, M.; Klap, P.; Vidalhiet, M.; Perrin, A.; Brasnu, D.; Ayache, D.; Mailly, M. Oromandibular Dystonia: Demographics and Clinical Data from 240 Patients. *J. Mov. Disord.* **2018**, *11*, 78–81. [CrossRef]

69. Norby, E.; Orbelo, D.; Strand, E.; Duffy, J.; Ekbon, D.; Bower, J.; Matsumoto, J. Hyoid muscle dystonia: A distinct focal dystonia syndrome. *Park. Relat. Disord.* **2015**, *21*, 1210–1213. [CrossRef]

70. Tan, E.K.; Jankovic, J. Botulinum toxin A in patients with oromandibular dystonia: Long-term follow-up. *Neurology* **1999**, *53*, 2102–2107. [CrossRef]

71. Sinclair, C.F.; Gurey, L.E.; Blitzer, A. Oromandibular dystonia: Long-term management with botulinum toxin. *Laryngoscope* **2013**, *123*, 3078–3083. [CrossRef]

72. Mosovich, M.; Chen, Z.P.; Rodriguez, R. Successful treatment of open jaw and jaw deviation dystonia with botulinum toxin using a simple intraoral approach. *J. Clin. Neurosci.* **2015**, *22*, 594–596. [CrossRef]

73. Dadgardioust, P.D.; Rosales, R.L.; Asuncion, R.M.; Dressler, D. Botulinum neurotoxin therapy for oromandibular dystonia: A meta-analysis. *J. Neural Transm.* **2019**, *126*, 141–148. [CrossRef]

74. Yoshida, K. Computer-Aided Design/Computer-Assisted Manufacture-Derived Needle Guide for Injection of Botulinum Toxin into the Lateral Pterygoid Muscle in Patients with Oromandibular Dystonia. *J. Oral Facial Pain Headache* **2018**, *32*, e13–e21. [CrossRef] [PubMed]

75. Borie, L.; Langbour, N.; Guehl, D.; Burbaud, P.; Ella, B. Bruxism in cranio-cervical dystonia: A prospective study. *Cranio-J. Cranio-mandib. Pract.* **2016**, *34*, 291–295. [CrossRef] [PubMed]

76. Ella, B.; Ghoraeyeb, I.; Burbaud, P.; Guehl, D. Bruxism in Movement Disorders: A Comprehensive Review. *J. Prosthodont.* **2017**, *26*, 599–605. [CrossRef] [PubMed]

77. Van Zandijcke, M.; Marchau, M.M.B. Treatment of bruxism with botulinum toxin injections. *J. Neurol. Neurosurg. Psychiatry* **1999**, *63*, 530. [CrossRef] [PubMed]

78. Ivanhoe, C.B.; Lai, J.M.; Francisco, G.E. Bruxism after brain injury: Successful treatment with botulinum toxin-A. *Arch. Phys. Med. Rehabil.* **1997**, *78*, 1272–1273. [CrossRef]

79. Tan, E.K.; Jankovic, J. Treating severe bruxism with botulinum toxin. *J. Am. Dent. Assoc.* **2000**, *131*, 211–216. [CrossRef]

80. Ågren, M.; Sahin, R.; Pettersson, M. The effect of botulinum toxin injections on bruxism: A systematic review. *J. Oral Rehabil.* **2020**, *47*, 395–402. [CrossRef]

81. Sendra, L.A.; Montez, C.; Vianna, K.C.; Barboza, E.P. Clinical outcomes of botulinum toxin type A injections in the management of primary bruxism in adults: A systematic review. *J. Prostheth. Dent.* **2020**. [CrossRef]

82. Ondo, W.G.; Simmons, J.H.; Shahid, M.H.; Hashem, V.; Hunter, C.; Jankovic, J. Onabotulinum toxin-A injections for sleep bruxism. *Neurology* **2018**, *90*, e559–e564. [CrossRef]

83. Jadhao, V.A.; Lokhande, N.; Habbu, S.G.; Sewane, S.; Dongare, S.; Goyal, N. Efficacy of botulinum toxin in treating myofascial pain and occlusal force characteristics of masticatory muscles in bruxism. *Indian J. Dent. Res.* **2017**, *28*, 493–497. [CrossRef]

84. Shim, Y.J.; Lee, M.K.; Kato, T.; Park, H.U.; Heo, K.; Kim, S.T. Effects of botulinum toxin on jaw motor events during sleep in sleep bruxism patients: A polysomnographic evaluation. *J. Clin. Sleep Med.* **2014**, *10*, 291–298. [CrossRef]

85. Lee, S.J.; McCall, W.D.; Kim, Y.K.; Chung, S.C.; Chung, J.W. Effect of botulinum toxin injection on nocturnal bruxism: A randomized controlled trial. *Am. J. Phys. Med. Rehabil.* **2010**, *89*, 16–23. [CrossRef]

86. Nastasi, L.; Mostile, G.; Nicoletti, A.; Zappia, M.; Reggio, E.; Catania, S. Effect of botulinum toxin treatment on quality of life in patients with isolated lingual dystonia and oromandibular dystonia affecting the tongue. *J. Neurol.* **2016**, *263*, 1702–1708. [CrossRef] [PubMed]

87. Yoshida, K. Botulinum neurotoxin therapy for lingual dystonia using an individualized injection method based on clinical features. *Toxins* **2019**, *11*, 51. [CrossRef] [PubMed]
Toxins 2021, 13, 42

25 of 31

115. Dressler, D.; Tack, P.; Saberi, F.A. Botulinum toxin therapy of cervical dystonia: Comparing onabotulinumtoxinA (Botox®) and incobotulinumtoxinA (Xeomin®). J. Neural Transm. 2014, 121, 29–31. [CrossRef] [PubMed]

116. Jankovic, J.; Hunter, C.; Dolimbek, B.Z.; Dolimbek, G.S.; Adler, C.H.; Brashear, A.; Comella, C.L.; Gordon, M.; Riley, D.E.; Sethi, K.; et al. Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 2006, 67, 2233–2235. [CrossRef] [PubMed]

117. Delnooz, C.C.S.; Pasman, J.W.; Beckmann, C.F.; van de Warrenburg, B.P.C. Task-Free Functional MRI in Cervical Dystonia Reveals Multi-Network Changes That Partially Normalize with Botulinum Toxin. PLoS ONE 2013, 8, e62877. [CrossRef]

118. Brodoehl, S.; Wagner, F.; Prell, T.; Klingner, C.; Witte, O.W.; Günther, A. Cause or effect: Altered brain and network activity in cervical dystonia is partially normalized by botulinum toxin treatment. Neuroimage Clin. 2019, 22, 101792. [CrossRef]

119. Nevrý, M.; Hlušťek, P.; Hok, P.; Otruba, P.; Tůdós, Z.; Kaňovský, P. Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: A functional MRI study. Exp. Brain Res. 2018, 236, 2627–2637. [CrossRef]

120. Mahajan, A.; Alshammaraa, A.; Zillgitt, A.; Bowyer, S.M.; Kaminski, P.; Sidirooulos, C. The Effect of Botulinum Toxin on Network Connectivity in Cervical Dystonia: Lessons from Magnetoencephalography. Tremor Other Hyperkinet. Mov. 2017, 7, 502. [CrossRef]

121. Delnooz, C.C.S.; Pasman, J.W.; van de Warrenburg, B.P.C. Dynamic cortical gray matter volume changes after botulinum toxin in cervical dystonia. Neurobiol. Dis. 2015, 73, 327–333. [CrossRef]

122. Opavský, R.; Hlušťek, P.; Otruba, P.; Kaňovský, P. Somatosensory cortical activation in cervical dystonia and its modulation with botulinum toxin: An fMRI Study. Int. J. Neurosci. 2012, 122, 45–52. [CrossRef]

123. Jinnah, H.A.; Goodman, E.; Rosen, A.R.; Evatt, M.; Freeman, A.; Factor, S. Botulinum toxin treatment failures in cervical dystonia: Causes, management, and outcomes. J. Neurol. 2016, 263, 1188–1194. [CrossRef]

124. Jinnah, H.A.; Comella, C.L.; Perlmutter, J.; Lungu, C.; Hallett, M.; Dystonia Coalition Investigators. Longitudinal studies of botulinum toxin in cervical dystonia: Why do patients discontinue therapy? Toxicon 2018, 147, 89–95. [CrossRef] [PubMed]

125. Comella, C.; Ferreira, J.J.; Pain, E.; Azoulay, M.; Om, S. Patient perspectives on the therapeutic profile of botulinum neurotoxin type A in cervical dystonia. J. Neurol. 2020, 1–10. [CrossRef]

126. Ferreira, J.J.; Colosimo, C.; Bhidayasiri, R.; Marti, M.J.; Maisonneuve, P.; Om, S. Factors influencing secondary non-response to botulinum toxin type A injections in cervical dystonia. Parkinsons Dis. 2015, 21, 111–115. [CrossRef] [PubMed]

127. García Ruiz, P.J.; Martínez Castrillo, J.C.; Burguera, J.A.; Campos, V.; Castro, A.; Cancho, E.; Chacon, J.; Hernandez-Vara, J.; Del Val, J.L.; Garcia, E.L.; et al. Evolution of dose and response to botulinum toxin A in cervical dystonia: A multicenter study. J. Neurol. 2011, 258, 1055–1057. [CrossRef] [PubMed]

128. Felício, A.C.; Godêiro-Junior, C.; Carvalho Aguiar, P.; Borges, V.; Silva, S.M.A.; Ferraz, H.B. Predictable variables for short- and long-term botulinum toxin treatment response in patients with cervical dystonia. Neurol. Sci. 2009, 30, 291–294. [CrossRef]

129. Skogseid, I.M.; Reislein, J.; Clausen, B.; Kerty, E. Long-term botulinum toxin treatment increases employment rate in patients with cervical dystonia. Mov. Disord. 2005, 20, 1604–1609. [CrossRef]

130. Heftler, H.; Spiess, C.; Rosenthal, D. Very early reduction in efficacy of botulinum toxin therapy for cervical dystonia in patients with subsequent secondary treatment failure: A retrospective analysis. J. Neural Transm. 2014, 121, 513–519. [CrossRef]

131. Hu, W.; Rundle-Gonzalez, V.; Kulkarni, S.J.; Martinez-Ramirez, D.; Almeida, L.; Okun, M.S.; Wagle Shukla, A. A randomized study of botulinum toxin versus botulinum toxin plus physical therapy for treatment of cervical dystonia. Park. Relat. Disord. 2019, 63, 195–198. [CrossRef]

132. Yi, Y.G.; Kim, K.; Yi, Y.; Choi, Y.A.; Lee, J.H.; Bang, M.S. Botulinum toxin type A injection for cervical dystonia in adults with dyskinetic cerebral palsy. Toxins 2018, 10, 203. [CrossRef]

133. Samotus, O.; Lee, J.; Jog, M. Personalized botulinum toxin A therapy for cervical dystonia based on kinematic guidance. J. Neurol. 2018, 265, 1269–1278. [CrossRef]

134. Huang, L.; Chen, H.X.; Ding, X.D.; Xiao, H.Q.; Wang, W.; Wang, H. Efficacy analysis of ultrasound-guided local injection of botulinum toxin type A treatment with orthopedic joint brace in patients with cervical dystonia. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1989–1993. [PubMed]

135. Comella, C.L.; Jankovic, J.; Truong, D.D.; Hanschmann, A.; Grafe, S. Efficacy and safety of incobotulinumtoxinA (NT 201, XEOMIN®, botulinum neurotoxin type A, without accessory proteins) in patients with cervical dystonia. J. Neurol. Sci. 2011, 308, 103–109. [CrossRef] [PubMed]

136. Truong, D.; Brodsky, M.; Lew, M.; Brashear, A.; Jankovic, J.; Molho, E.; Orlova, O.; Timerbaeva, S. Long-term efficacy and safety of botulinum toxin type A (Dysport) in cervical dystonia. Park. Relat. Disord. 2010, 16, 316–323. [CrossRef] [PubMed]

137. Quagliato, E.M.A.B.; Carelli, E.F.; Viana, M.A. A prospective, randomized, double-blind study comparing the efficacy and safety of type a botulinum toxins botox and prosing in the treatment of cervical dystonia. Clin. Neuropharmacol. 2010, 33, 22–26. [CrossRef] [PubMed]

138. Pappert, E.J.; Germanson, T. Botulinum toxin type B vs. type A in toxin-naïve patients with cervical dystonia: Randomized, double-blind, noninferiority trial. Mov. Disord. 2008, 23, 510–517. [CrossRef] [PubMed]

139. Tassorelli, C.; Mancini, F.; Balloni, L.; Pacchetti, C.; Sandiri, G.; Nappi, G.; Martignoni, E. Botulinum toxin and neuromotor rehabilitation: An integrated approach to idiopathic cervical dystonia. Mov. Disord. 2006, 21, 2240–2243. [CrossRef]

140. Comella, C.L.; Jankovic, J.; Shannon, K.M.; Tsui, J.; Swenson, M.; Leurgans, S.; Fan, W. Comparison of botulinum toxin serotypes A and B for the treatment of cervical dystonia. Neurology 2005, 65, 1423–1429. [CrossRef]
141. Truong, D.; Duane, D.D.; Jankovic, J.; Singer, C.; Seeberger, L.C.; Comella, C.L.; Lew, M.F.; Rodnitzky, R.L.; Danise, F.O.; Sutton, J.P.; et al. Efficacy and safety of botulinum toxin type A (Dysport) in cervical dystonia: Results of the first US randomized, double-blind, placebo-controlled study. Mov. Disord. 2005, 20, 783–791. [CrossRef]

142. Benecke, R.; Jost, W.H.; Kanovsky, P.; Ruzicka, E.; Cornes, G.; Graf, S. A new botulinum toxin type A free of complexing proteins for the treatment of cervical dystonia. Neurology 2005, 64, 1949–1951. [CrossRef]

143. Laubis-Herrmann, U.; Fries, K.; Topka, H. Low-dose botulinum toxin-A treatment of cervical dystonia—A double-blind, randomized pilot study. Eur. Neurol. 2002, 47, 214–221. [CrossRef]

144. Naumann, M.; Yakovleff, A.; Durif, F. A randomized, double-masked, crossover comparison of the efficacy and safety of botulinum toxin type A produced from the original bulk toxin source and current bulk toxin source for the treatment of cervical dystonia. J. Neurol. 2002, 249, 57–63. [CrossRef] [PubMed]

145. Whitaker, J.; Butler, A.; Semlyen, J.K.; Barnes, M.P. Botulinum toxin for people with dystonia treated by an outreach nurse practitioner: A comparative study between a home and a clinic treatment service. Arch. Phys. Med. Rehabil. 2001, 82, 480–484. [CrossRef] [PubMed]

146. Brans, J.W.M.; Aramideh, M.; Koelman, J.H.T.M.; Lindeboom, R.; Speelman, J.D.; De Ongerboer Visser, B.W. Electromyography in cervical dystonia: Changes after botulinum and trihexyphenidyl. Neurology 1998, 51, 815–819. [CrossRef] [PubMed]

147. Poewe, W.; Deuschl, G.; Nebe, A.; Feibel, E.; Wissel, J.; Benecke, R.; Kessler, K.R.; Ceballos-Baumann, A.O.; Ohly, A.; Oertel, W.; et al. What is the optimal dose of botulinum toxin A in the treatment of cervical dystonia? Results of a double blind, placebo controlled, dose ranging study using Dysport®. J. Neurol. Neurosurg. Psychiatry 1998, 64, 13–17. [CrossRef]

148. Lew, M.F.; Adornato, B.T.; Duane, D.D.; Dykstra, D.D.; Factor, S.A.; Massey, J.M.; Brin, M.F.; Jankovic, J.; Rodnitzky, R.L.; Singer, C.; et al. Botulinum toxin type b: A double-blind, placebo controlled, safety and efficacy study in cervical dystonia. Neurology 1997, 49, 701–707. [CrossRef] [PubMed]

149. Marsden, C.D.; Sheehy, M.P. Writer’s cramp. Trends Neurosci. 1999, 20, 148–153. [CrossRef]

150. Rivest, J.; Lees, A.J.; Marsden, C.D. Writer’s cramp: Treatment with botulinum toxin injections. Mov. Disord. 1991, 6, 55–59. [CrossRef] [PubMed]

151. Park, J.E.; Shamim, E.A.; Panyakaew, P.; Mathew, P.; Toro, C.; Sackett, J.; Karp, B.; Lungu, C.; Alter, K.; Wu, T.; et al. Botulinum toxin and occupational therapy for Writer’s cramp. Toxins 2019, 11, 69, 12–17. [CrossRef]

152. Gupta, A.D.; Tucker, G.; Koblar, S.; Visvanathan, R.; Cameron, I.D. Spatiotemporal gait analysis and lower limb functioning in foot dystonia treated with botulinum toxin. Toxins 2018, 10, 532. [CrossRef]

153. Siburtana, O.; Jankovic, J. Focal hand dystonia, mirror dystonia and motor overflow. J. Neurol. Sci. 2008, 266, 31–33. [CrossRef]

154. Das, S.K.; Banerjee, T.K.; Biswas, A.; Roy, T.; Raut, D.K.; Chaudhuri, A.; Hazra, A. Community survey of primary dystonia in the city of Kolkata, India. Mov. Disord. 2007, 22, 2031–2036. [CrossRef]

155. Kruisdiijk, J.J.M.; Koelman, J.H.T.M.; De Visser, B.W.O.; De Haan, R.J.; Speelman, J.D. Botulinum toxin for writer’s cramp: A randomised, placebo-controlled trial and 1-year follow-up. J. Neurol. Neurosurg. Psychiatry 2007, 78, 264–270. [CrossRef]

156. Tsui, J.K.C.; Bhatt, M.; Calne, S.; Calne, D.B. Botulinum toxin in the treatment of writer’s cramp: A double-blind study. Neurology 1993, 43, 183–185. [CrossRef] [PubMed]

157. Schuele, S.; Jabsch, H.C.; Lederman, H.R.; Altenmüller, E. Botulinum toxin injections in the treatment of musician’s dystonia. Neurology 2005, 64, 341–343. [CrossRef] [PubMed]

158. Uniti, E.; Mazzucchi, S.; Calabrese, R.; Palermo, G.; Del Prete, E.; Bonuccelli, U.; Ceravolo, R. Botulinum toxin for the treatment of dystonia and pain in corticobasal syndrome. Brain Behav. 2019, 9, 5–9. [CrossRef] [PubMed]

159. Lungu, C.; Karp, B.I.; Alter, K.; Zolbrod, R.; Hallett, M. Long-term follow-up of botulinum toxin therapy for focal hand dystonia: Outcome at 10 years or more. Mov. Disord. 2011, 26, 750–753. [CrossRef] [PubMed]
167. Atashzar, S.F.; Shahbazi, M.; Ward, C.; Samotus, O.; Delrobaei, M.; Rahimi, F.; Lee, J.; Jackman, M.; Jog, M.S.; Patel, R.V. Haptic Feedback Manipulation during Botulinum Toxin Injection Therapy for Focal Hand Dystonia Patients: A Possible New Assistive Strategy. *IEEE Trans. Haptics* 2016, 9, 523–535. [CrossRef] [PubMed]

168. Cole, R.; Hallett, M.; Cohen, L.G. Double-Blind trial of botulinum toxin for treatment of focal hand dystonia. *Mov. Disord.* 1995, 10, 466–471. [CrossRef] [PubMed]

169. Kassaveti, P.; Lungu, C.; Ehrlich, D.; Alter, K.; Karp, B.I. Self-reported benefit and weakness after botulinum toxin in dystonia. *Park. Relat. Disord.* 2020, 80, 10–11. [CrossRef]

170. Gupta, A.D.; Visvanathan, R. Botulinum toxin for foot dystonia in patients with Parkinson’s disease having deep brain stimulation: A Case series and a pilot study. *J. Rehabil. Med.* 2016, 48, 559–562. [CrossRef]

171. Pacchetti, C.; Albani, G.; Martignoni, E.; Godi, L.; Alfonsi, E.; Nappi, G. “Off” painful dystonia in Parkinson’s disease treated with botulinum toxin. *Mov. Disord.* 1995, 10, 333–336. [CrossRef]

172. Umar, M.; Masood, T.; Badshah, M. Effect of botulinum toxin A & task-specific training on upper limb function in post-stroke focal dystonia. *J. Pak. Med. Assoc.* 2018, 68, 526–531.

173. Geenen, C.; Coskay, E.; Ashby, P. Localizing muscles for botulinum toxin treatment of focal hand dystonia. *Can. J. Neurol. Sci.* 1996, 23, 194–197. [CrossRef]

174. Rudzińska, M.; Wójcik, M.; Szczudlik, A. Hemifacial spasm non-motor and motor-related symptoms and their response to botulinum toxin therapy. *J. Neurol. Transm.* 2010, 117, 765–772. [CrossRef] [PubMed]

175. Ozzello, D.J.; Giacometti, J.N. Botulinum toxins for treating essential blepharospasm and hemifacial spasm. *Int. Ophthalmol. Clin.* 2018, 58, 49–61. [CrossRef] [PubMed]

176. Stamey, W.; Jankovic, J. The other Babinski sign in hemifacial spasm. *Neurology* 2007, 69, 402–404. [CrossRef] [PubMed]

177. Butera, C.; Guarriero, R.; Amadio, S.; Ungaro, D.; Teslagaebriel, H.; Bianchi, F.; Comi, G.; Del Carro, U. Functional end-plate recovery in long-term botulinum toxin therapy of hemifacial spasm: A nerve conduction study. *Neurol. Sci.* 2013, 34, 209–215. [CrossRef]

178. Karp, B.I.; Alter, K. Botulinum Toxin Treatment of Blepharospasm, Orofacial/Oromandibular Dystonia, and Hemifacial Spasm. *Semin. Neurol.* 2016, 36, 84–91. [CrossRef]

179. Ishikawa, M.; Takashima, K.; Kamochi, H.; Kusaka, G.; Shinoda, S.; Watanabe, E. Treatment with botulinum toxin improves the hypereexcitability of the facial motoneuron in patients with hemifacial spasm. *Neurol. Res.* 2017, 39, 87–91. [CrossRef] [PubMed]

180. Savino, P.J.; Scurr, R.C.; Bosley, T.M.; Schatz, N.J. Hemifacial Spasm Treated With Botulinum A Toxin Injection. *Arch. Ophthalmol.* 1985, 103, 1305–1306. [CrossRef]

181. Jankovic, J.; Schwartz, K.; Donovan, D.T. Botulinum toxin treatment of cranial-cervical dystonia, spasmodic dysphonia, other focal dystonias and hemifacial spasm. *J. Neurol. Neurosurg. Psychiatry* 1990, 53, 633–639. [CrossRef]

182. Taylor, J.D.N.; Kraft, S.P.; Kazdan, M.S.; Flanders, M.; Cadera, W.; Orton, R.B. Treatment of blepharospasm and hemifacial spasm with botulinum A toxin: A Canadian multicentre study. *Can. J. Ophthalmol.* 1991, 26, 133–138.

183. Battisti, J.P.M.; Kleinfielder, A.D.E.; Galli, N.B.; Moro, A.; Munhoz, R.P.; Teive, H.A.G. Treatment of hemifacial spasm with botulinum toxin type a: Effective, long lasting and well tolerated. *Arg. Neuro-Psiqiuatr.* 2017, 75, 87–91. [CrossRef]

184. Price, J.; O’Day, J. Efficacy and side effects of botulinum toxin treatment for blepharospasm and hemifacial spasm. *Aust. N. Z. J. Ophthalmol.* 1994, 22, 255–260. [CrossRef]

185. Snir, M.; Weinberger, D.; Bourda, D.; Kristal-Shalit, O.; Dotan, G.; Axer-Siegel, R. Quantitative changes in botulinum toxin a treatment over time in patients with essential blepharospasm and idiopathic hemifacial spasm. *Am. J. Ophthalmol.* 2003, 136, 99–105. [CrossRef]

186. Cillino, S.; Raimondi, G.; Guepratte, N.; Damiani, S.; Cillino, M.; Di Pace, F.; Casuccio, A. Long-term efficacy of botulinum toxin A for treatment of blepharospasm, hemifacial spasm, and spastic entropion: A multicentre study using two drug-dose escalation indexes. *Eye* 2010, 24, 600–607. [CrossRef] [PubMed]

187. Cannon, P.S.; MacKenzie, K.R.; Cook, A.E.; Leatherbarrow, B. Difference in response to botulinum toxin type A treatment between patients with benign essential blepharospasm and hemifacial spasm. *Clin. Exp. Ophthalmol.* 2010, 38, 688–691. [CrossRef] [PubMed]

188. Bastola, P.; Chaudhary, M.; Agrawal, J.P.; Shah, D.N. The role of the injection botulinum toxin A in cases of essential blepharospasm syndrome, hemifacial spasm and meige’s syndrome. *Kathmandu Univ. Med. J.* 2010, 8, 305–310. [CrossRef] [PubMed]

189. Colosimo, C.; Chianese, M.; Giovannelli, M.; Contarino, M.F.; Bentivoglio, A.R. Botulinum toxin type B in blepharospasm and hemifacial spasm. *J. Neurol. Neurosurg. Psychiatry* 2003, 74, 687. [CrossRef] [PubMed]

190. Çakmur, R.; Ozturk, V.; Uzunel, F.; Donmez, B.; Idiman, F. Comparison of preseptal and pretarsal injections of botulinum toxin in the treatment of blepharospasm and hemifacial spasm. *J. Neurol.* 2002, 249, 64–68. [CrossRef]

191. Sacramento, D.R.C.; Lima, A.; Maia, D.P.; Cunningham, M.; Maciel, R.H.; Camargos, S.T.; Cardoso, F. Comparison of techniques of botulinum toxin injections for blepharospasm and hemifacial spasm. *Mov. Disord.* 2019, 34, 1401–1403. [CrossRef]

192. Duarte, G.S.; Rodrigues, F.B.; Castelão, M.; Marques, R.E.; Ferreira, J.; Sampaio, C.; Moore, A.P.; Costa, J. Botulinum toxin type A therapy for hemifacial spasm. *Cochrane Database Syst. Rev.* 2020, 11. [CrossRef]

193. Costa, J.; Espírito-Santo, C.C.; Borges, A.A.; Ferreira, J.; Coelho, M.M.; Moore, P.; Sampaio, C. Botulinum toxin type A therapy for hemifacial spasm. *Cochrane Database Syst. Rev.* 2005. [CrossRef]

194. Kalra, H.K.; Magoon, E.H. Side effects of the use of botulinum toxin for treatment of benign essential blepharospasm and hemifacial spasm. *Ophthalmic Surg.* 1990, 21, 335–338. [CrossRef]
253. Wieler, M.; Camicioli, R.; Jones, C.A.; Martin, W.R.W. Botulinum toxin injections do not improve freezing of gait in Parkinson disease. *Neurology* 2005, 65, 626–628. [CrossRef]

254. Dogu, O.; Apaydin, D.; Sevim, S.; Talas, D.U.; Aral, M. Ultrasound-guided versus “blind” intraparotid injections of botulinum toxin-A for the treatment of sialorrhea in patients with Parkinson’s disease. *Clin. Neurol. Neurosurg.* 2004, 106, 93–96. [CrossRef]

255. Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum toxin in restless legs syndrome—A randomized double-blind placebo-controlled crossover study. *Toxins* 2018, 10, 401. [CrossRef] [PubMed]

256. Chen, Y.P.; Thalayasingam, P. Botulinum toxin to control an incapacitating tic in a child with a clavicular fracture. *Anaesth. Intensive Care* 2010, 38, 1106–1108. [CrossRef] [PubMed]

257. Jankovic, J. Botulinum toxin in the treatment of dystonic tics. *Mov. Disord.* 1994, 9, 347–349. [CrossRef] [PubMed]

258. Kwak, C.H.; Hanna, F.A.; Jankovic, J. Botulinum toxin in the treatment of tics. *Arch. Neurol.* 2000, 57, 1190–1193. [CrossRef] [PubMed]

259. Rath, J.J.G.; Tavy, D.L.J.; Wertenbroek, A.A.C.M.; van Woerkom, T.C.A.M.; de Bruijn, S.F.T.M. Botulinum toxin type A in simple motor tics: Short-term and long-term treatment-effects. *Park. Relat. Disord.* 2010, 16, 478–481. [CrossRef]

260. Marras, C.; Andrews, D.; Sime, E.; Lang, A.E. Botulinum toxin for simple motor tics: A randomized, double-blind, controlled clinical trial. *Neurology* 2001, 56, 605–610. [CrossRef] [PubMed]

261. Porta, M.; Maggioni, G.; Ottaviani, F.; Schindler, A. Treatment of phonic tics in patients with Tourette’s syndrome using botulinum toxin type A. *Neuro. Sci.* 2004, 24, 420–423. [CrossRef]

262. Cheung, M.Y.C.; Shahed, J.; Jankovic, J. Malignant Tourette syndrome. *Mov. Disord.* 2007, 22, 1743–1750. [CrossRef]

263. Scott, B.L.; Jankovic, J.; Donovan, D.T. Botulinum toxin injection into vocal cord in the treatment of malignant coprolalia associated with Tourette’s syndrome. *Mov. Disord.* 1996, 11, 431–433. [CrossRef]

264. Awaad, Y.; Tayem, H.; Elgamal, A.; Coyne, M.F. Treatment of childhood myoclonus with botulinum toxin type A. *J. Child Neurol.* 1999, 14, 781–786. [CrossRef]

265. Merchant, S.H.I.; Vial-Undurraga, F.; Leodori, G.; van Gerpen, J.A.; Hallett, M. Myoclonus: An Electrophysiological Diagnosis. *Mov. Disord. Clin. Pract.* 2020, 7, 489–499. [CrossRef] [PubMed]

266. Browner, N.; Azher, S.N.; Jankovic, J. Botulinum toxin treatment of facial myoclonus in suspected Rasmussen encephalitis. *Mov. Disord.* 2006, 21, 1500–1502. [CrossRef] [PubMed]

267. Krause, E.; Leunig, A.; Klopstock, T.; Gürkov, R. Treatment of essential palatal myoclonus in a 10-year-old girl with botulinum neurotoxin. *Otol. Neurotol.* 2006, 27, 627–629. [CrossRef] [PubMed]

268. Lagueny, A.; Tison, F.; Burbaud, P.; Le Masson, G.; Kien, P. Stimulus-sensitive spinal segmental myoclonus improved with injections of botulinum toxin type A. *Mov. Disord.* 1999, 14, 182–185. [CrossRef]

269. Bono, F.; Salvino, D.; Sturniolo, M.; Curcio, M.; Trimble, M.; Paletta, R.; Quattrone, A. Botulinum toxin is effective in myoclonus secondary to peripheral nerve injury. *Eur. J. Neurol.* 2012, 19, 92–93. [CrossRef] [PubMed]

270. Ross, S.; Jankovic, J. Palatal myoclonus: An unusual presentation. *Mov. Disord.* 2005, 20, 1200–1203. [CrossRef]

271. Sinclair, C.F.; Gurey, L.E.; Blitzer, A. Palatal myoclonus: Algorithm for management with botulinum toxin based on clinical disease characteristics. *Laryngoscope* 2014, 124, 1164–1169. [CrossRef]

272. Baizabal-Carvallo, J.F.; Cardoso, F.; Jankovic, J. Myorhythmia: Phenomenology, etiology, and treatment. *Mov. Disord.* 2015, 30, 171–179. [CrossRef]

273. Wijemanne, S.; Ondo, W. Restless Legs Syndrome: Clinical features, diagnosis and a practical approach to management. *Pract. Neurol.* 2017, 17, 444–452. [CrossRef]

274. Tergau, F.; Wischer, S.; Paulus, W. Motor system excitability in patients with restless legs syndrome. *Neurology* 1999, 52, 1060–1063. [CrossRef]

275. Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum toxin in restless legs syndrome—A randomized double-blind placebo-controlled crossover study. *Toxins* 2018, 10, 401. [CrossRef] [PubMed]

276. Ghorayeb, I.; Bénard, A.; Vivot, A.; Tison, F.; Burbaud, P. A phase II, open-label, non-comparative study of Botulinum toxin in Restless Legs Syndrome. *Sleep Med.* 2012, 13, 1313–1316. [CrossRef] [PubMed]

277. Ghorayeb, I.; Burbaud, P. Failure of botulinum toxin A to relieve restless legs syndrome. *Sleep Med.* 2009, 10, 394–395. [CrossRef] [PubMed]

278. Rotenberg, J.S.; Canard, K.; DiFazio, M. Successful treatment of recalcitrant restless legs syndrome with botulinum toxin type-A. *J. Clin. Sleep Med.* 2006, 2, 275–278. [CrossRef]

279. Nahab, F.B.; Peckham, E.L.; Hallett, M. Double-blind, placebo-controlled, pilot trial of botulinum toxin a in restless legs syndrome. *Neurology* 2008, 71, 950–951. [CrossRef]

280. Mataki, I.; Bölcskei, K.; Bach-Rojekyll, L.; Helyes, Z. Mechanisms of botulinum toxin type A action on pain. *Toxins* 2019, 11, 459. [CrossRef]

281. Mittal, S.O.M.; Jabbari, B. Botulinum neurotoxins and cancer—A review of the literature. *Toxins* 2020, 12, 32. [CrossRef]

282. Weise, D.; Weise, C.M.; Naumann, M. Central effects of botulinum neurotoxin—evidence from human studies. *Toxins* 2019, 11, 21. [CrossRef]

283. Caleo, M.; Spinelli, M.; Colosimo, F.; Mataki, I.; Rossetto, O.; Lackovic, Z.; Restani, L. Transynaptic action of botulinum neurotoxin type a at central cholinergic boutons. *J. Neurosci.* 2018, 38, 10329–10337. [CrossRef]

284. Caleo, M.; Restani, L. Exploiting botulinum neurotoxins for the study of brain pathology and physiology. *Toxins* 2018, 10, 175. [CrossRef]
285. Okuzumi, A.; Kurosawa, M.; Hatano, T.; Takanashi, M.; Nojiri, S.; Fukuhara, T.; Yamanaka, T.; Miyazaki, H.; Yoshinaga, S.; Furukawa, Y.; et al. Rapid dissemination of alpha-synuclein seeds through neural circuits in an in-vivo prion-like seeding experiment. *Acta Neuropathol. Commun.* 2018, 6, 96. [CrossRef] [PubMed]

286. Savitt, D.; Jankovic, J. Targeting α-Synuclein in Parkinson’s Disease: Progress Towards the Development of Disease-Modifying Therapeutics. *Drugs* 2019, 79, 797–810. [CrossRef] [PubMed]

287. Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. *J. Neurol. Neurosurg. Psychiatry* 2020, 91, 795–808. [CrossRef] [PubMed]

288. Rasetti-escargueil, C.; Popoff, M.R. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. *Toxins* 2021, 13, 1. [CrossRef]