The quantum adversary method
and classical formula size lower bounds

Sophie Laplante
LRI, Université Paris-Sud
laplante@lri.fr

Troy Lee
CWI and University of Amsterdam
Troy.Lee@cwi.nl

Mario Szegedy
Rutgers University
szegedy@cs.rutgers.edu

Abstract

We introduce two new complexity measures for Boolean functions, which we name sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [ˇSS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory.

As a surprising application we show that $\text{sumPI}^2(f)$ is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Hast98], are in fact special cases of our method. The second quantity we introduce, $\text{maxPI}(f)$, is always at least as large as $\text{sumPI}(f)$, and is derived from sumPI in such a way that $\text{maxPI}^2(f)$ remains a lower bound on formula size.

Our main result is proven via a combinatorial lemma which relates the square of the spectral norm of a matrix to the squares of the spectral norms of its submatrices. The generality of this lemma gives that our methods can also be used to lower bound the communication complexity of relations, and a related combinatorial quantity, the rectangle partition number.

To exhibit the strengths and weaknesses of our methods, we look at the sumPI and maxPI complexity of a few examples, including the recursive majority of three function, a function defined by Ambainis [Amb02], and the collision problem.

1 Introduction

A central and longstanding open problem in complexity theory is to prove superlinear lower bounds for the circuit size of an explicit Boolean function. While this seems quite difficult, a modest amount of success has been achieved in the slightly weaker model of formula size, a formula being simply a circuit where every gate has fan-out at most one. The current best formula size lower bound for an explicit function is $n^{3-o(1)}$ by Håstad [Hast98].

In this paper we show that part of the rich theory developed around proving lower bounds on quantum query complexity, namely the so-called quantum adversary argument, can be brought to bear on formula size lower bounds. This adds to the growing list of examples of how studying quantum computing has led to new results in classical complexity, including [SV01, KW03, Aar04, LM04], to cite just a few.

The roots of the quantum adversary argument can be traced to the hybrid argument of [BBBV97], who use it to show a $\Omega(\sqrt{n})$ lower bound on quantum search. Ambainis developed a more sophisticated adversary argument [Amb02] and later improved this method to the full-strength quantum adversary argument [Amb03]. Further generalizations include Barnum, Saks, and Szegedy [BSS03] with their spectral method and Zhang [Zha04] with his strong adversary method. Laplante and Magniez [LM04] use Kolmogorov complexity to capture the adversary argument in terms of a minimization problem. This line of research culminates in recent work of Špalek and Szegedy [ˇSS04] who show that in fact all the methods of [Amb03, BSS03, Zha04, LM04] are equivalent.

The fact that the quantum adversary argument has so many equivalent definitions indicates that it is a natural combinatorial property of Boolean functions which is worthwhile to investigate on its own. We give this quan-
tity its own name, sumPI, and adopt the following primal formulation of the method, from [SS04, LM04]. Letting $S \subseteq \{0, 1\}^n$ and $f : S \to \{0, 1\}$ be a Boolean function we say

$$\text{sumPI}(f) = \min_p \max_{x,y} \frac{1}{\sum_{x \neq y \in S} \sqrt{p_x(t)p_y(t)}} \tag{1}$$

where $p = \{p_x : x \in S\}$ is a family of probability distributions on the indices $[n]$. If $Q_e(f)$ is the two sided error quantum query complexity of f then $Q_e(f) = \Omega(\text{sumPI}(f))$. We show further that $\text{sumPI}^2(f)$ is a lower bound on the formula size of f. Moreover, $\text{sumPI}^2(f)$ generalizes several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], and a key lemma of [Has98] used on the way to proving the current best formula size lower bounds for an explicit function.

We also introduce

$$\text{Kl}(f) = \min_{\alpha \in \Sigma^*} \max_{r \neq f(y)} \min_{i : x_i \neq y_i} K(i|x, \alpha) + K(i|y, \alpha),$$

where K is prefix-free Kolmogorov complexity. This formulation arises from the quantum and randomized lower bounds of [LM04]. This formulation is especially interesting because of the intuition that it provides. For example, it allows for a very simple proof that circuit depth $d(f) \geq \text{Kl}(f)$, using the Karchmer-Wigderson characterization of circuit depth [KW88].

We define a quantity closely related to 2^{Kl}, which we call maxPI. Letting $\text{maxPI}(f) = \min_p \max_{x,y} \frac{1}{\max_{x : y \neq y} \sqrt{p_x(t)p_y(t)}} \tag{2}$

Notice that this is like sumPI but where the sum is replaced by a maximum. By definition, maxPI is larger than sumPI, but its square is still a lower bound on formula size. However, maxPI is no longer a lower bound on quantum query complexity in general, and we give an example of a partial function f for which $\text{sumPI}(f) = 2$ and $\text{maxPI}(f) = \sqrt{n/2}$. For this function, the collision problem, $\text{maxPI}(f) \gg Q_e(f) = \Theta(n^{1/3})$ [AS04, BHT97].

We look at several concrete problems to illustrate the strengths and weaknesses of our methods. We study the height h recursive majority of three problem, $R_{-\text{MAJ}}^3$, and show that $Q_e(R_{-\text{MAJ}}^3) = \Omega(2^h)$ and a lower bound of 4^h for the formula size. We also look at a function defined by Ambainis [Amb03] to separate the quantum query complexity of a function from the bound given by the polynomial method [BBC01]. This function gives an example where sumPI^2 can give something much better than Khrapchenko’s bound. We also give bounds for the collision problem.

1.1 Organization

In Section 2 we give the definitions, results, and notation that we use throughout the paper, and introduce the quantities sumPI, maxPI, and Kl. In Section 3 we prove some properties of sumPI and maxPI. In Section 4 we show how sumPI and maxPI give rise to formula size lower bounds, for deterministic and probabilistic formula size. In Section 5 we compare our new methods with previous methods in formula size complexity. In Section 6 we investigate the limits of our and other formula lower bound methods. Finally, in Section 7 we apply our techniques to some concrete problems.

2 Preliminaries

We use standard notation such as $[n] = \{1, \ldots, n\}$, $|S|$ for the cardinality of a set S, and all logarithms are base 2. Hamming distance is written d_H.

2.1 Complexity measures of Boolean functions

We use standard measures of Boolean functions, such as sensitivity and certificate complexity. We briefly recall these here, see [BW02] for more details. For a set $S \subseteq \{0, 1\}^n$ and Boolean function $f : S \to \{0, 1\}$, the sensitivity of f on input x is the number of positions $i \in [n]$ such that changing the value of x in position i changes the function value. The zero-sensitivity, written $s_0(f)$ is the maximum over $x \in f^{-1}(0)$ of the sensitivity of f on x. The one-sensitivity, $s_1(f)$ is defined analogously. The maximum of $s_0(f), s_1(f)$ is the sensitivity of f, written $s(f)$.

A certificate for f on input $x \in S$ is a subset $I \subseteq [n]$ such that for any y satisfying $y_i = x_i$ for all $i \in I$ it must be the case that $f(y) = f(x)$. The zero-certificate complexity of f, written $C_0(f)$ is the maximum over all $x \in f^{-1}(0)$ of the minimum size certificate of x. Similarly, the one-certificate complexity of f, written $C_1(f)$ is the maximum over all $x \in f^{-1}(1)$ of the minimum size certificate of x.

2.2 Linear algebra

For a matrix A (respectively, vector v) we write A^T (resp. v^T) for the transpose of A, and A^* (resp. v^*) for the conjugate transpose of A. For two matrices A, B we let $A \circ B$ be the Hadamard product of A and B, that is $(A \circ B)[x, y] = A[x, y] B[x, y]$. We write $A \geq B$ if A is entrywise greater than B, and $A \geq B$ when $A - B$ is positive semidefinite, that is $\forall v : v^T (A - B)v \geq 0$. We let $\text{rk}(A)$ denote the rank of the matrix A.

We will make extensive use of the spectral norm, denoted $\|A\|_2$. For a matrix A,

$$\|A\|_2 = \{\sqrt{\lambda} : \lambda \text{ is the largest eigenvalue of } A^* A\}.$$
For a vector \(v \), we let \(|v| \) be the \(\ell_2 \) norm of \(v \).

We will also make use of the maximum absolute column sum norm, written \(\|A\|_1 \) and defined as \(\|A\|_1 = \max_j \sum_i |A[i,j]| \), and the maximum absolute row sum norm, written \(\|A\|_\infty \) and defined \(\|A\|_\infty = \max_i \sum_j |A[i,j]| \).

We collect a few facts about the spectral norm. These can be found in [HJ99].

Proposition 1 Let \(A \) be an arbitrary \(m \times n \) matrix. Then

1. \(\|A\|_2 = \max_{u,v} \frac{|u^* A v|}{|u||v|} \)
2. \(\|A\|_2^2 \leq \|A\|_1 \|A\|_\infty \)
3. For nonnegative matrices \(A, B \), if \(A \leq B \) then \(\|A\|_2 \leq \|B\|_2 \)

2.3 Deterministic and probabilistical formulae

A Boolean formula over the standard basis \(\{\vee, \wedge, \neg\} \) is a binary tree where each internal node is labeled with \(\vee \) or \(\wedge \), and each leaf is labeled with a literal, that is, a Boolean variable or its negation. The size of a formula is its number of leaves. We naturally identify a formula with the function it computes.

Definition 2 Let \(f : \{0,1\}^n \to \{0,1\} \) be a Boolean function. The formula size of \(f \), denoted \(L(f) \), is the size of the smallest formula which computes \(f \). The formula depth of \(f \), denoted \(d(f) \), is the minimum depth of a formula computing \(f \).

It is clear that \(L(f) \leq 2^{d(f)} \); that in fact the opposite inequality \(d(f) \leq O(\log L(f)) \) also holds is a nontrivial result due to Sipser [Spi71].

We will also consider probabilistic formulae, that is, a probability distribution over deterministic formulae. We take a worst-case notion of the size of a probabilistic formula. Probabilistic formula size has been studied before, for example in [Val84, Bop89, DZ97, Kla04].

Definition 3 Let \(\{f_j\}_{j \in J} \) be a set of functions with \(f_j : S \to \{0,1\} \) for each \(j \in J \). For a function \(f : S \to \{0,1\} \), we say that \(f \) is \(\epsilon \)-approximated by \(\{f_j\}_{j \in J} \) if there is a probability distribution \(\alpha = \{\alpha_j\}_{j \in J} \) over \(J \) such that for every \(x \in S \),

\[
\Pr[f(x) = f_j(x)] \geq 1 - \epsilon.
\]

In particular, if \(\max_j L(f_j) \leq s \), then we say that \(f \) is \(\epsilon \)-approximated by formulas of size \(s \), denoted \(L^\epsilon(f) \leq s \).

Note that even if a function depends on all its variables, it is possible that the probabilistic formula size is less than the number of variables.

2.4 Communication complexity of relations

Karchmer and Wigderson [KW83] give an elegant characterization of formula size in terms of a communication game. We will use this framework to present our lower bounds. This presentation has the advantage of showing that our methods work more generally for the communication complexity of relations beyond the "special case" of formula size. The framework of communication complexity also allows us to work with the rectangle partition number, \(C^D(R) \), which is known to lower bound communication complexity and arises very naturally when using our techniques.

Let \(X, Y, Z \) be finite sets, and \(R \subseteq X \times Y \times Z \). In the communication game for \(R \), Alice is given some \(x \in X \), Bob is given some \(y \in Y \) and their goal is to find some \(z \in Z \) such that \((x, y, z) \in R \), if such a \(z \) exists. A communication protocol is a binary tree where each internal node \(v \) is labelled by a either a function \(a_v : X \to \{0,1\} \) or \(b_v : Y \to \{0,1\} \) describing either Alice's or Bob's message at that node, and where each leaf is labelled with an element \(z \in Z \). A communication protocol computes \(R \) if for all \((x, y) \in X \times Y \) walking down the tree according to \(a_v, b_v \) leads to a leaf labelled with \(z \) such that \((x, y, z) \in R \), provided such a \(z \) exists. The communication cost \(D(R) \) of \(R \) is the height of the smallest communication protocol computing \(R \). The communication matrix of \(R \) is the matrix \(M_{R|x,y} = \{z : R(x, y, z)\} \). A rectangle \(X' \times Y' \) with \(X' \subseteq X \) and \(Y' \subseteq Y \) is monochromatic if \(\bigcap_{x \in X', y \in Y'} M_{R|x,y} \neq \emptyset \). The protocol partition number \(C^P(R) \) is the number of leaves in the smallest communication protocol computing \(R \), and the rectangle partition number \(C^D(R) \) is the smallest number of disjoint monochromatic rectangles required to cover \(X \times Y \). (Note that \(C^D(R) \leq C^P(R) \).)

Definition 4 For any Boolean function \(f \) we associate a relation \(R_f = \{(x, y, i) : f(x) = 0, f(y) = 1, x_i \neq y_i\} \).

Theorem 5 (Karchmer-Wigderson) For any Boolean function \(f \), \(L(f) = C^P(R_f) \) and \(d(f) = D(R_f) \).

2.5 sumPI and the quantum adversary method

Knowledge of quantum computing is not needed for reading this paper; for completeness, however, we briefly sketch the quantum query model. More background on quantum query complexity and quantum computing in general can be found in [BW02, NC00].

As with the classical counterpart, in the quantum query model we wish to compute some function \(f : S \to \{0,1\} \), where \(S \subseteq \Sigma^n \), and we access the input through queries. The complexity of \(f \) is the number of queries needed to compute \(f \). Unlike the classical case, however, we can now
make queries in superposition. Formally, a query \(O \) corresponds to the unitary transformation
\[
O : |i, b, z\rangle \to |i, b \oplus x_i, z\rangle
\]
where \(i \in [n], b \in \{0, 1\}, \) and \(z \) represents the workspace. A \(t \)-query quantum algorithm \(A \) has the form \(A = U_t O U_{t-1} O \cdots U_1 O U_0 \), where the \(U_k \) are fixed unitary transformations independent of the input \(x \). The computation begins in the state \(|0\rangle \), and the result of the computation \(A \) is the observation of the rightmost bit of \(A|0\rangle \).

We say that \(A \) \(\epsilon \)-approximates \(f \) if the observation of the rightmost bit of \(A|0\rangle \) is equal to \(f(x) \) with probability at least \(1 - \epsilon \), for every \(x \). We denote by \(Q_{\epsilon}(f) \) the minimum query complexity of a quantum query algorithm which \(\epsilon \)-approximates \(f \).

Along with the polynomial method \([BBC+01]\), one of the main techniques for showing lower bounds in quantum query complexity is the quantum adversary method \([Amb02, Amb03, BSS03, Zha04, LM04]\). Recently, Špalek and Szegedy \([SS04]\) have shown that all the strong versions of the quantum adversary method are equivalent, and further that these methods can be nicely characterized as primal and dual.

We give the primal characterization as our principal definition of \(\text{sumPl} \).

Definition 6 (sumPl) Let \(S \subseteq \{0, 1\}^n \) and \(f : S \to \{0, 1\} \) be a Boolean function. For every \(x \in S \) let \(p_x : [n] \to \mathbb{R} \) be a probability distribution, that is, \(p_x(i) \geq 0 \) and \(\sum_i p_x(i) = 1 \). Let \(p = \{ p_x : x \in S \} \). We define the sum probability of indices to be
\[
\text{sumPl}(f) = \min_P \max_{f(x) \neq f(y)} \frac{1}{\sqrt{\sum_{x, y} p'_x(i)p'_y(i)}}
\]

We will also use two versions of the dual method, both a weight scheme and the spectral formulation. The most convenient weight scheme for us is the “probability scheme”, given in Lemma 4 of \([LM04]\).

Definition 7 (Probability Scheme) Let \(S \subseteq \{0, 1\}^n \) and \(f : S \to \{0, 1\} \) be a Boolean function, and \(X = f^{-1}(0), Y = f^{-1}(1) \). Let \(q \) be a probability distribution on \(X \times Y \), and \(p_A, p_B \) be probability distributions on \(X, Y \) respectively. Finally let \(\{ p'_{x,i} : x \in X, i \in [n] \} \) and \(\{ p'_{y,i} : y \in Y, i \in [n] \} \) be families of probability distributions on \(X, Y \) respectively. Assume that \(q(x, y) = 0 \) when \(f(x) = f(y) \). Let \(P \) range over all possible tuples \(\{(q, p_A, p_B, \{ p'_{x,i} \}, i)\} \) of distributions as above. Then
\[
\text{PA}(f) = \max_P \min_{f(x) \neq f(y), x_i \neq y_i} \frac{\sqrt{p_A(x)p_B(y)p'_{x,i}(y)p'_{y,i}(x)}}{q(x, y)}
\]

We will also use the spectral adversary method.

Definition 8 (Spectral Adversary) Let \(S \subseteq \{0, 1\}^n \) and \(f : S \to \{0, 1\} \) be a Boolean function. Let \(X = f^{-1}(0), Y = f^{-1}(1) \). Let \(\Gamma \neq 0 \) be an arbitrary \(|X| \times |Y|\) non-negative symmetric matrix that satisfies \(\Gamma_{x,y} = 0 \) whenever \(f(x) = f(y) \). For \(i \in [n] \), let \(\Gamma_i \) be the matrix:
\[
\Gamma_i[x,y] = \begin{cases} 0 & \text{if } x_i = y_i \\ \Gamma[x,y] & \text{if } x_i \neq y_i \end{cases}
\]

Then
\[
\text{SA}(f) = \max_{\Gamma} \frac{\|\Gamma\|_2}{\max_i \|\Gamma_i\|_2}
\]

Note that the spectral adversary method was initially defined \([BSS03]\) for symmetric matrices over \(X \cup Y \). The above definition is equivalent: if \(A \) is a \(X \cup Y \) matrix satisfying the constraint that \(A_{x,y} = 0 \) when \(f(x) = f(y) \) then \(A \) is of the form \(A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \), for some matrix \(B \) over \(X \times Y \). Then the spectral norm of \(A \) is equal to that of \(B \). Similarly, for any \(X \times Y \) matrix \(A \) we can form a symmetrized version of \(A \) as above preserving the spectral norm.

We will often use the following theorem implicitly in taking the method most convenient for the particular bound we wish to demonstrate.

Theorem 9 (Špalek-Szegedy) Let \(n \geq 1 \) be an integer, \(S \subseteq \{0, 1\}^n \) and \(f : S \to \{0, 1\} \). Then
\[
\text{sumPl}(f) = \text{SA}(f) = \text{PA}(f)
\]

2.6 The KI and maxPl complexity measures

The definition of \(\text{KI} \) arises from the Kolmogorov complexity adversary method \([LM04]\). The Kolmogorov complexity \(K_U(x) \) of a string \(x \), with respect to a universal Turing machine \(U \) is the length of the shortest program \(p \) such that \(U(p) = x \). The complexity of \(x \) given \(y \), denoted \(C(x|y) \) is the length of the shortest program \(p \) such that \(U(p, y) = x \). When \(U \) is such that the set of outputs is prefix-free (no string in the set is prefix of another in the set), we write \(K_{U}(x|y) \). From this point onwards, we fix \(U \) and simply write \(K(x|y) \). For more background on Kolmogorov complexity consult \([LV97]\).

Definition 10 Let \(S \subseteq \Sigma^n \) for an alphabet \(\Sigma \). For any function \(f : S \to \{0, 1\} \), let
\[
\text{KI}(f) = \min_{\alpha \in \Sigma} \max_{f(x) \neq f(y)} \min_{i : x_i \neq y_i} K(i|x, \alpha) + K(i|y, \alpha).
\]

The advantage of using concepts based on Kolmogorov complexity is that they often naturally capture the information theoretic content of lower bounds. As an example of this, we give a simple proof that \(\text{KI} \) is a lower bound on circuit depth.
Theorem 11 For any Boolean function f, $Kl(f) \leq d(f)$.

Proof: Let P be a protocol for R_f. Fix x, y with different values under f, and let T_A be a transcript of the messages sent from A to B, on input x, y. Similarly, let T_B be a transcript of the messages sent from B to A. Let i be the output of the protocol, with $x_i \neq y_i$. To print i given x, simulate P using x and T_A. To print i given y, simulate P using y and T_B. This shows that $\forall x, y : f(x) \neq f(y), \exists i : x_i \neq y_i, K(i|x, \alpha) + K(i|y, \alpha) \leq |T_A| + |T_B| \leq D(R_f)$, where α is a description of A’s and B’s algorithms. □

Remark A similar proof in fact shows that $Kl(f) \leq 2N(R_f)$, where N is the nondeterministic communication complexity. Since the bound does not take advantage of interaction between the two players, in many cases we cannot hope to get optimal lower bounds using these techniques.

An argument similar to that in $[SS04]$ shows that

$$2^{Kl(f)} = \Theta \left(\min_p \max_{f(x) \neq f(y)} \frac{1}{\max_i \sqrt{p_x(i)p_y(i)}} \right)$$

Notice that the right hand side of the equation is identical to the definition of sumPl, except that the sum in the denominator is replaced by a maximum. This lets us define the complexity measure maxPl, in order to get stronger formula size lower bounds.

Definition 12 (maxPl) Let $f : S \rightarrow \{0, 1\}$ be a function with $S \subseteq \Sigma^n$. For every $x \in S$ let $p_x : [n] \rightarrow \mathbb{R}$ be a probability distribution. Let $p = \{p_x : x \in S\}$. We define the maximum probability of indices to be

$$\text{maxPl}(f) = \min_p \max_{f(x) \neq f(y)} \frac{1}{\max_i \sqrt{p_x(i)p_y(i)}}$$

It can be easily seen from the definitions that sumPl$(f) \leq$ maxPl(f) for any f. The following lemma is also straightforward from the definitions:

Lemma 13 If $S' \subseteq S$ and $f' : S' \rightarrow \{0, 1\}$ is a domain restriction of $f : S \rightarrow \{0, 1\}$ to S', then sumPl$(f') \leq$ sumPl(f) and maxPl$(f') \leq$ maxPl(f).

3 Properties of sumPl and maxPl

3.1 Properties of sumPl

Although in general, as we shall see, sumPl gives weaker formula size lower bounds than maxPl, the measure sumPl has several nice properties which make it more convenient to use in practice.

The next lemma shows that sumPl behaves like most other complexity measures with respect to composition of functions:

Lemma 14 Let g_1, \ldots, g_n be Boolean functions, and h be a function, $h : \{0, 1\}^n \rightarrow \{0, 1\}$. If sumPl$(g_j) \leq a$ for $1 \leq j \leq n$ and sumPl$(h) \leq b$, then for $f = h(g_1, \ldots, g_n)$, sumPl$(f) \leq ab$.

Proof: Let p be an optimal family of distribution functions associated with h and p_j be optimal families of distribution functions associated with g_j. Define the distribution function

$$q_x(i) = \sum_{j \in [n]} p_g(x)(j)p_j.x(i).$$

Assume that for $x, y \in S$ we have $f(x) \neq f(y)$. It is enough to show that

$$\sum_{i : x_i \neq y_i} \sqrt{\sum_{j \in [n]} p_g(x)(j)p_j.x(i)} \sqrt{\sum_{j \in [n]} p_g(y)(j)p_j.y(i)} \geq \frac{1}{ab}. \quad (3)$$

By Cauchy–Schwarz, the left hand side of Eq. (3) is greater than or equal to

$$\sum_{i : x_i \neq y_i} \sum_{j \in [n]} \sqrt{p_g(x)(j)p_j.x(i)} \sqrt{p_g(y)(j)p_j.y(i)} = \sum_{j \in [n]} \left(\sqrt{p_g(x)(j)p_g(y)(j)} \sum_{i : x_i \neq y_i} \sqrt{p_j.x(i)p_j.y(i)} \right). \quad (4)$$

As long as $g_j(x) \neq g_j(y)$, by the definition of p_j, we have $\sum_{i : x_i \neq y_i} \sqrt{p_j.x(i)} \sqrt{p_j.y(i)} \geq 1/a$. Thus we can estimate the expression in Eq. (4) from below by

$$\frac{1}{a} \sum_{j : g_j(x) \neq g_j(y)} \sqrt{p_g(x)(j)p_g(y)(j)}.$$

By the definition of p we can estimate the sum (without the $1/a$ coefficient) in the above expression from below by $1/b$, which finishes the proof. □

Another advantage of working with sumPl complexity is the following very powerful lemma of Ambainis $[Amb03]$ which makes it easy to lower bound the sumPl complexity of iterated functions.

Definition 15 Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be any Boolean function. We define the dth iteration of f, written $f^d : \{0, 1\}^{nd} \rightarrow \{0, 1\}$, inductively as $f^1(x) = f(x)$ and

$$f^{d+1}(x) = f(f^d(x_1, \ldots, x_{nd}), f^d(x_{nd+1}, \ldots, x_{2nd}), \ldots, f^d(x_{(n-1)nd+1}, \ldots, x_{nd+1})).$$
Lemma 16 (Ambainis) Let \(f \) be any Boolean function and \(f^d \) the \(d \)th iteration of \(f \). Then \(\sum \Pi f^d \geq (\sum \Pi f)^d \).

Combining this with Lemma 14 we get:

Corollary 17 Let \(f \) be any Boolean function and \(f^d \) the \(d \)th iteration of \(f \). Then \(\sum \Pi f^d = (\sum \Pi f)^d \).

Lemmas 14 and 15 together with the adversary argument lower bound for the Grover search [Gro96, Amb02] imply that for total Boolean functions, the square root of the block sensitivity is a lower bound on the \(\sum \Pi \) complexity [Amb02]. Hence, by [NS94, BBC+01].

Lemma 18 (Ambainis) For total Boolean functions the \(\sum \Pi \) complexity is in polynomial relation with the various (deterministic, randomized, quantum) decision tree complexities and the Fourier degree of the function.

3.2 Properties of \(\max \Pi \)

One thing that makes \(\sum \Pi \) so convenient to use is that it dualizes [SS04]. In this section we partially dualize the expression \(\max \Pi \). The final expression remains a minimization problem, but we minimize over discrete index selection functions, instead of families of probability distributions, which makes it much more tractable. Still, we remark that \(\max \Pi \) can take exponential time (in the size of the truth table of \(f \)) whereas, \(\sum \Pi \) takes polynomial time in the size of the truth table of \(f \) to compute by reduction to semidefinite programming.

Definition 19 (Index selection functions) Let \(f : \{0,1\}^n \to \{0,1\} \) be a Boolean function, \(X = f^{-1}(0) \), and \(Y = f^{-1}(1) \). For \(i \in [n] \) let \(D_i \) be \(\{X \times Y\} \) be defined by \(D_i \) is the set of \(n \) Boolean matrices \(\{P_i\} \in \sum \Pi \) index selection functions if:

1. \(\sum_i P_i = E \), where \(E \) is the identity matrix.
2. \(P_i \leq D_i \) (informally: for every \(x \in X \), \(y \in Y \) we select a unique index).

Notice that index selection functions correspond to partitioning \(X \times Y \) in such a way that if \(x, y \) are in the \(i \)th part, then \(x_i \neq y_i \).

Theorem 20 (Spectral adversary version of \(\max \Pi \)) Let \(f, X, Y \) be as in the previous definition. Let \(A \) be an arbitrary \(|X| \times |Y| \) nonnegative matrix satisfying \(A \) is zero whenever \(f(x) = f(y) \). Then

\[
\max \Pi(f) = \min_{\{P_i\}} \max_{A} \frac{\|A\|_2}{\max_i \|A \circ P_i\|_2},
\]

where \(\{P_i\} \), runs through all index selection functions.

Proof: For a fixed family of probability distributions \(p = \{p_x\} \), and for the expression

\[
\max_{f(x) \neq f(y)} \frac{1}{\max_{i:x \neq y} \sqrt{p_x(i)p_y(i)}},
\]

let us define the index selection function \(P_i[x,y] = 1 \) if \(i = \arg\max_{x \neq y} \sqrt{p_x(i)p_y(i)} \) and 0 otherwise. (Argmax is the smallest argument for which the expression attains its maximal value.) Then the denominator in Eq. 5 becomes equal to \(\sum_{i:x \neq y} \sqrt{p_x(i)p_y(i)} P_i[x,y] \). If we replace the above system of \(P_i \)'s with any other choice of index selection function the value of \(\sum_{i:x \neq y} \sqrt{p_x(i)p_y(i)} P_i[x,y] \) will not increase. Thus we can rewrite Eq. 5 as

\[
\max_{f(x) \neq f(y)} \frac{1}{\max_{i:x \neq y} \sqrt{p_x(i)p_y(i)} P_i[x,y]},
\]

where here \(P_i[x,y] \) runs through all index selection functions. Thus:

\[
\max \Pi(f) =
\]

\[
1 \left/ \max_{\{P_i\}} \min_{f(x) \neq f(y)} \max_{i:x \neq y} \sum \sqrt{p_x(i)p_y(i)} P_i[x,y].
\]

Notice that in Eq. 6 the minimum is interchangeable with the second maximum. The reason for this is that for a fixed \(p \) there is a fixed \(\{P_i\}_1 \) system that maximizes \(\sum_{i:x \neq y} \sqrt{p_x(i)p_y(i)} P_i[x,y] \) for all \(x, y : f(x) \neq f(y) \). Thus:

\[
\max \Pi(f) =
\]

Following the proof of the main theorem of Špalek and Szegedy we can create the semidefinite version of the above expression. The difference here, however, is that we have to treat \(\{P_i\}_1 \) (the index selection functions) as a “parameter” of the semidefinite system over which we have to maximize. Unfortunately it also appears in the final expression.

Semidefinite version of \(\max \Pi \): For fixed \(\{P_i\}_1 \), let \(\mu_{\max} \) be the solution of the following semidefinite program:

\begin{align*}
\text{maximize} & \quad \mu' \\
\text{subject to} & \quad (\forall i) \quad R_i \geq 0, \\
& \quad \sum_i R_i \circ I = I, \\
& \quad \sum_i R_i \circ P_i \geq \mu' F.
\end{align*}

Define \(\mu_{\max} \) as the maximum of \(\mu_{\max} \), where \(P_i \) (1 ≤ i ≤ n) run through all index selection functions. Then \(\max \Pi = 1/\mu_{\max} \).

We can dualize the above program and simplify it in same way as was done in Špalek and Szegedy for the case.
of sumPl with the only change that \(D_i \) needs to be replaced with \(P_i \), and that we have to minimize over all choices of \(\{ P_i \} \).

\[\| A \|_2 = \sum_{R \in \mathcal{R}} u_R^* A_{R} v_R \leq \sum_{R \in \mathcal{R}} |u_R^* A_{R} v_R| \]

by Proposition 1. Applying the Cauchy–Schwarz inequality, we obtain

\[\| A \|_2 \leq \left(\sum_{R \in \mathcal{R}} \| A_R \|_2^2 \right)^{1/2} \left(\sum_{R \in \mathcal{R}} |u_R|^2 |v_R|^2 \right)^{1/2}. \]

Now it simply remains to observe that

\[\sum_{R \in \mathcal{R}} |u_R|^2 |v_R|^2 = \sum_{R \in \mathcal{R}} \sum_{(x,y) \in R} u[x]^2 v[y]^2 = |u|^2 |v|^2 = 1, \]

as \(\mathcal{R} \) is a partition of \(X \times Y \).

\[\Box \]

\section{Formula size lower bounds}

Karchmer and Wigderson \cite{KW88} give an elegant characterization of formula size in terms of a communication game. We will use this framework to present our lower bounds. This presentation has the advantage of showing that our methods work more generally for the communication complexity of relations beyond the “special case” of formula size. The framework of communication complexity also allows us to work with a combinatorial quantity, the rectangle partition number, \(C^D(R) \), which is known to lower bound communication complexity and arises very naturally when using sumPl.

\subsection{Key combinatorial lemma}

We first prove a combinatorial lemma which is the key to our main result. This lemma relates the spectral norm squared of a matrix to the spectral norm squared of its submatrices. This lemma may also be of independent interest.

Let \(X \) and \(Y \) be finite sets. A set system \(\mathcal{S} \) (over \(X \times Y \)) will be called a covering if \(\bigcup_{S \in \mathcal{S}} S = X \times Y \). Further, \(\mathcal{S} \) will be called a partition if \(\mathcal{S} \) is a covering and the intersection of any two distinct sets from \(\mathcal{S} \) is empty. A rectangle (over \(X \times Y \)) is an arbitrary subset of \(X \times Y \) of the form \(X_0 \times Y_0 \) for some \(X_0 \subseteq X \) and \(Y_0 \subseteq Y \). A set system \(\mathcal{R} \) will be called a rectangle partition if \(\mathcal{R} \) is a partition and each \(R \in \mathcal{R} \) is a rectangle. Let \(A \) be a matrix with rows indexed from \(X \) and columns indexed from \(Y \) and let \(\hat{A} \) be a rectangle partition of \(X \times Y \). For a rectangle \(R = X_0 \times Y_0 \in \mathcal{R} \) Let \(A_R \) be the \(|X_0| \times |Y_0| \) submatrix of \(A \) corresponding to the rectangle \(R \). For subsets \(S \subseteq X \times Y \) we define:

\[\hat{A}_S[x, y] = A[x, y], \text{ if } (x, y) \in S \text{ and 0 otherwise.} \quad (7) \]

Notice that for a rectangle \(R \), matrices \(A_R \) and \(\hat{A}_R \) differ only by a set of all-zero rows and columns. We are now ready to state the lemma:

\textbf{Lemma 21} Let \(A \) be an arbitrary \(|X| \times |Y| \) matrix (possibly with complex entries), and \(\mathcal{R} \) a partition of \(X \times Y \). Then

\[\| A \|_2^2 \leq \sum_{R \in \mathcal{R}} \| A_R \|_2^2. \]

\textbf{Proof:} By Proposition 1 \(\| A \|_2 = \max_{u, v} |u^* A v| \), where the maximum is taken over all unit vectors \(u, v \). Let \(u, v \) be the unit vectors realizing this maximum. Then we have

\[\| A \|_2 = |u^* A v| = u^* \left(\sum_{R \in \mathcal{R}} \hat{A}_R \right) v = \sum_{R \in \mathcal{R}} u^* \hat{A}_R v. \]

Let \(u^*_R \) be the portion of \(u^* \) corresponding to the rows of \(R \), and \(v^*_R \) be the portion of \(v \) corresponding to the columns of \(R \). Notice that \(\{ u^*_R \}_{R \in \mathcal{R}} \) do not in general form a partition of \(u \). We now have

\[\| A \|_2 = \sum_{R \in \mathcal{R}} \| u^*_R A_{R} v^*_R \| \leq \sum_{R \in \mathcal{R}} |u^*_R A_{R} v^*_R | \]

\[\leq \sum_{R \in \mathcal{R}} \| A_R \|_2 |u^*_R| |v^*_R| \]

Lemma 21 gives an elegant characterization of formula size in terms of a communication game. We will use this framework to present our lower bounds. This presentation has the advantage of showing that our methods work more generally for the communication complexity of relations beyond the “special case” of formula size. The framework of communication complexity also allows us to work with a combinatorial quantity, the rectangle partition number, \(C^D(R) \), which is known to lower bound communication complexity and arises very naturally when using sumPl.

\subsection{Deterministic formulae}

In this section, we prove our main result that maxPl is a lower bound on formula size. We first identify two natural properties which are sufficient for a function to be a formula size lower bound.

\textbf{Definition 22} A function \(\mu : 2^X \times Y \to \mathbb{R}^+ \) is called a rectangle measure if the following properties hold.

1. (Subadditivity) For any rectangle partition \(\mathcal{R} \) of \(X \times Y \), \(\mu(X \times Y) \leq \sum_{R \in \mathcal{R}} \mu(R) \).
2. (Monotonicity) For any rectangle \(R \subseteq X \times Y \), and subset \(S \subseteq X \times Y \), if \(R \subseteq S \) then \(\mu(R) \leq \mu(S) \).

\textbf{Theorem 23} implies that for any \(|X| \times |Y| \) matrix \(A \) with non-negative entries \(S \to \| \hat{A}_S \|_2 \) of expression 4 is a rectangle measure. Other examples include the rank of \(\hat{A}_S \) for any matrix \(A \) over any field (see Section 5.4), and the \(\mu \)-rectangle size bounds of \cite{KKN95}.

Let \(\mathcal{S}_1, \mathcal{S}_2 \) be two families of sets over the same universe. We say that \(\mathcal{S}_1 \) is embedded in \(\mathcal{S}_2 \) (\(\mathcal{S}_1 < \mathcal{S}_2 \)) if for every \(S \in \mathcal{S}_1 \) there is a \(S' \in \mathcal{S}_2 \) such that \(S \subseteq S' \).

\textbf{Theorem 23} Let \(\mu \) be a rectangle measure over \(2^X \times Y \), \(\mathcal{S} \) be a covering of \(X \times Y \) and \(\mathcal{R} \) a rectangle partition of \(X \times Y \) such that \(\mathcal{R} \prec \mathcal{S} \). Then \(|\mathcal{R}| \geq \frac{\mu(X \times Y)}{\max_{S \in \mathcal{S}} \mu(S)} \).

The proof follows by subadditivity and monotonicity of \(\mu \).
Theorem 24 (Main Theorem)
\[\text{sumPI}^2(f) \leq \text{maxPI}^2(f) \leq C^D(R_f) \leq L(f) \]

Proof: We have seen that \(\text{sumPI}^2(f) \leq \text{maxPI}^2(f) \), and
\(C^D(R_f) \leq L(f) \) follows from the Karchmer–Wigderson
communication game characterization of formula size, thus we focus on
the inequality \(\text{maxPI}^2(f) \leq C^D(R_f) \).

Let \(R \) be a monochromatic rectangle partition of \(R_f \)
such that \(|R| = C^D(R_f) \), and let \(A \) be an arbitrary
\(|X| \times |Y| \) matrix with nonnegative real entries. For \(R \in \mathcal{R} \)
let \(\text{color}(R) \) be the least index \(c \) such that \(x_c \neq y_c \) holds for
all \((x,y) \in R \). By assumption each \(R \) is monochromatic,
such that a color exists. Define
\[S_c = \bigcup_{\text{color}(R) = c} R. \]

Then \(R \) is naturally embedded in the covering \(\{S_c\}_{c \in [n]} \).
For any \(S \subseteq X \times Y \), let \(\mu_A(S) = \|A_S\|_2^2 \). By Lemma 21
and item 3 of Proposition 1, \(\mu_A \) is a rectangle measure. Hence by Theorem 23
\[\max_A \frac{\|A\|_2^2}{\max_c \|A_{J_c}\|_2^2} \leq C^D(R_f). \]

We have exhibited a particular index selection function, the
\(\{S_c\}_{c}, \) for which this inequality holds, thus it also holds for
\(\text{maxPI}^2(f) \) which is the minimum over all index selection
functions. \(\square \)

4.3 Probabilistic Formulae

The properties of sumPI allow us to show that it can be
used to lower bound the probabilistic formula size.

Lemma 25 Let \(\epsilon < 1/2 \). If \(f : S \to \{0,1\} \) is \(\epsilon \)-approximated by functions \(\{f_j\}_{j \in J} \) with \(\text{sumPI}(f_j) \leq s \)
for every \(j \in J \), then \(\text{sumPI}(f) \leq s/(1-2\epsilon) \).

Proof: By assumption there is a probability distribution
\(\alpha = \{\alpha_j\}_{j \in J} \) such that \(\text{Pr}[f(x) = f_j(x)] \geq 1 - \epsilon \). Thus
for a fixed \(x \in S \), letting \(J_x = \{j \in J : f(x) = f_j(x)\}, \) we have
\(\sum_{j \in J_x} \alpha_j \geq 1 - \epsilon. \) Hence for any \(x,y \in S \) we have
\(\sum_{j \in J_x \cap J_y} \alpha_j \geq 1 - 2\epsilon. \) For convenience, we write \(J_{x,y} \) for
\(J_x \cap J_y \). As \(\text{sumPI}(f_j) \leq s \) there is a family of probability
distributions \(p_j \) such that whenever \(f_j(x) \neq f_j(y) \)
\[\sum_{x \neq y} \sqrt{p_{j,x}(i)p_{j,y}(i)} \geq 1/s, \]
Define \(p_x(i) = \sum_{j \in J} \alpha_j p_{j,x}(i) \). Let \(x,y \) be such that
\(f(x) \neq f(y) \).
\[\sum_{x \neq y} \sqrt{p_x(i)p_y(i)} \]
\[= \sum_{x \neq y} \sqrt{\sum_{j \in J} \alpha_j p_{j,x}(i) \sum_{j \in J} \alpha_j p_{j,y}(i)} \]
\[\geq \sum_{x \neq y} \sqrt{\sum_{j \in J_{x,y}} \alpha_j p_{j,x}(i) \sum_{j \in J_{x,y}} \alpha_j p_{j,y}(i)} \]
\[= \sum_{j \in J_{x,y}} \left(\alpha_j \sum_{x \neq y} \sqrt{p_{j,x}(i)p_{j,y}(i)} \right) \]
\[\geq \frac{1 - 2\epsilon}{s}, \]
where for the third step we have used the Cauchy–Schwarz
Inequality. \(\square \)

This lemma immediately shows that the sumPI method
can give lower bounds on probabilistic formula size.

Theorem 26 Let \(S \subseteq \{0,1\}^n \) and \(f : S \to \{0,1\} \). Then
\(L^c(f) \geq (1 - \epsilon)\text{sumPI}(f)^2 \) for any \(\epsilon < 1/2. \)

Proof: Suppose that \(\{f_j\}_{j \in J} \) gives an \(\epsilon \)-approximation to
\(f \). Using Lemma 25 in the contrapositive implies that there
exists some \(j \in J \) with \(\text{sumPI}(f_j) \geq (1 - 2\epsilon)\text{sumPI}(f) \).
Theorem 24 then implies \(L(f_j) \geq (1 - 2\epsilon)\text{sumPI}(f)^2 \)
which gives the statement of the theorem. \(\square \)

5 Comparison among methods

In this section we look at several formula size lower
bound techniques and see how they compare with our
methods. A bottleneck in formula size lower bounds seems to
have been to go beyond methods which only consider pairs
\((x,y) \) with \(f(x) \neq f(y) \) which have Hamming distance
1. In fact, the methods of Khrapchenko, Koutras and
Koutsoupias, and a lemma of Hästad can all be seen as special cases of the
sumPI method where only pairs of Hamming distance 1 are
considered.

5.1 Khrapchenko’s method

One of the oldest and most general techniques available
for showing formula size lower bounds is Khrapchenko’s
method [Kh71], originally used to give a tight $\Omega(n^2)$ lower bound for the parity function. This method considers a bipartite graph whose left vertices are the 0-inputs to f and whose right vertices are the 1-inputs. The bound given is the product of the average degree of the right and left hand sides.

Theorem 27 (Khrapchenko) Let $S \subseteq \{0, 1\}^n$ and $f : S \to \{0, 1\}$. Let $A \subseteq f^{-1}(0)$ and $B \subseteq f^{-1}(1)$. Let C be the set of pairs $(x, y) \in A \times B$ with Hamming distance 1, that is $C = \{(x, y) \in A \times B : d_H(x, y) = 1\}$. Then $L(f) \geq \sum_{A}(f(p))^2 \geq \frac{|C|^2}{|A||B|}$.

Khrapchenko’s method can easily be seen as a special case of the probability scheme. Letting A, B, C be as in the statement of the theorem, we set up our probability distributions as follows:

- $p_A(x) = 1/|A|$ for all $x \in A$, $p_A(x) = 0$ otherwise.
- $p_B(x) = 1/|B|$ for all $x \in B$, $p_B(x) = 0$ otherwise.
- $q(x, y) = 1/|C|$ for all $(x, y) \in C$, $q(x, y) = 0$ otherwise.
- $p_{x, i}(y) = 1$ if $(x, y) \in C$ and $x_i \neq y_i$, 0 otherwise. Note that this is a probability distribution as for every x there is only one y such that $(x, y) \in C$ and $x_i \neq y_i$.

By Theorem 9 and Theorem 24,

$$L(f) \geq \min_{p^2, q^1 : x, y \neq y_i} \frac{p_A(x)p_B(y)p_{x, i}(y)p_{q, i}(x)}{q(x, y)} = \frac{|C|^2}{|A||B|},$$

where the expression in the middle is a lower bound on $\sum_{A}(f(p))^2$.

5.2 The Koutsoupias bound

Koutsoupias [Kou93] extends Khrapchenko’s method with a spectral version. The weights are always 1 for pairs of inputs with different function values that have Hamming distance 1, and 0 everywhere else.

Theorem 28 (Koutsoupias) Let $f : \{0, 1\}^n \to \{0, 1\}$, and let $A \subseteq f^{-1}(0)$, and $B \subseteq f^{-1}(1)$. Let $C = \{(x, y) \in A \times B : d_H(x, y) = 1\}$. Let Q be a $|B| \times |A|$ matrix $Q[x, y] = C(x, y)$ where C is identified with its characteristic function. Then $L(f) \geq \sum_{A}(f(p))^2 \geq \|Q\|^2$.

Proof: The bound follows easily from the spectral version of sumPl. Let Q be as in the statement of the theorem. Notice that since we only consider pairs with Hamming distance 1, for every row and column of Q, there is at most one nonzero entry, which is at most 1. Thus by Proposition 11 we have $\|Q\|_2 \leq \|Q\|_1 \leq \|Q\|_\infty \leq 1$. The theorem now follows from Theorem 24. □

5.3 Håstad’s method

The shrinkage exponent of Boolean formulae is the least upper bound γ such that subject to a random restriction where each variable is left free with probability ρ, Boolean formulae shrink from size L to expected size $p^\gamma L$. Determining the shrinkage exponent is important as Andreev [And87] defined a function f whose formula size is $L(f) = n^{1+\gamma}$. Håstad [Has98] shows the shrinkage exponent of Boolean formulae is 2 and thereby obtains an n^3 formula size lower bound (up to logarithmic factors), the largest bound known for an explicit function. On the way to this result, Håstad proves an intermediate lemma which gives a lower bound on formula size that depends on the probability that restrictions of a certain form occur. He proves that this lemma is a generalization of Khrapchenko’s method; we prove that Håstad’s lemma is in turn a special case of sumPl. Since Håstad’s method uses random restrictions, which at first glance seems completely different from adversary methods, it comes as a surprise that it is in fact a special case of our techniques.

Definition 29 For any function $f : \{0, 1\}^n \to \{0, 1\}$,

1. A restriction is a string in $\{0, 1, \ast\}^n$ where \ast means the variable is left free, and 0 or 1 mean the variable is set to the constant 0 or 1, respectively.
2. The restricted function f_ρ is the function that remains after the non-\ast variables in ρ are fixed.
3. R_ρ is the distribution on random restrictions to the variables of f obtained by setting each variable, independently, to \ast with probability p, and to 0 or 1 each with probability $1-p$.
4. A filter Δ is a set of restrictions which has the property that if $\rho \in \Delta$, then every ρ' obtained by fixing one of the \ast’s to a constant is also in Δ.
5. When p is known from the context, and for any event E, and any filter Δ, we write $Pr[E|\Delta]$ to mean $Pr_{\rho \in \Delta}E$. Let $f : \{0, 1\}^n \to \{0, 1\}$, and let $A \subseteq f^{-1}(0)$, and $B \subseteq f^{-1}(1)$. Let $C = \{(x, y) \in A \times B : d_H(x, y) = 1\}$. Let Q be a $|B| \times |A|$ matrix $Q[x, y] = C(x, y)$ where C is identified with its characteristic function. Then $L(f) \geq \sum_{A}(f(p))^2 \geq \|Q\|^2$.

Theorem 30 (Håstad, Lemma 4.1) Let $f : \{0, 1\}^n \to \{0, 1\}$. Let A be the event that a random restriction in R_ρ reduces f to the constant 0, B be the event that a random restriction in R_ρ reduces f to the constant 1, and let C be the event that a random restriction $\rho \in R_\rho$ is such that f_ρ is a single literal. Then

$$L(f) \geq \frac{Pr[C|\Delta]^2}{Pr[A|\Delta]Pr[B|\Delta]} \left(1 - \frac{1 - p^2}{2p}
ight)^2.$$
also abuse notation and use A and B to mean the sets of restrictions in Δ which contribute with non-zero probability to the events A and B respectively.

Implicit in Håstad’s proof is the following relation between restrictions in A and B. For every $\rho \in C$, $f|_\rho$ reduces to a single literal, that is, for every $\rho \in C$, there is an i such that $f|_\rho = x_i$ (or $\lnot x_i$ if the variable is negated). Define ρ^b to be ρ where x_i is set to b, for $b \in \{0, 1\}$ (set x_i to $1-b$ if the variable is negated). To fit into the framework of the probability scheme, let ρ^b be ρ^α where all remaining ss are set to 1. This doesn’t change the value of the function, because it is already constant on ρ^b. Then we say that ρ^α, ρ^b are in the relation.

We set $p_A(\sigma) = \frac{Pr[\sigma]}{Pr[A|\Delta]}$ for any $\sigma \in A$, and $p_B(\tau) = \frac{Pr[\tau]}{Pr[B|\Delta]}$ for any $\tau \in B$, and for every pair ρ^b, ρ^i in the relation, where $\rho \in C$, $f|_\rho = x_i$ or $\lnot x_i$, let

$$ p_{\rho^b,\rho^i}(\rho^b) = 1 $$
$$ p_{\rho^b,\rho^i}(\rho^i) = 1 $$
$$ q(\rho^b, \rho^i) = \frac{Pr[\rho]}{Pr[C|\Delta]} $$

The probabilities are 0 on all other inputs. We can easily verify that the probabilities sum to 1. For p^i, notice that the Hamming distance between ρ^b and ρ^i is 1, so when ρ^b and i are fixed, there is only a single ρ^{b-i} with probability 1.

By Theorem 31 and Theorem 24

$$ L(f) \geq \frac{p_A(x)p_B(y)p_{\rho^b,i}(x)p_{\rho^i,i}(y)}{q(x,y)^2} = \frac{Pr[\rho^b]}{Pr[A|\Delta]} \frac{Pr[\rho^i]}{Pr[B|\Delta]} \left(\frac{Pr[C|\Delta]}{Pr[\rho]} \right)^2 $$

Finally, notice that $Pr[\rho] = \frac{2^n}{2^n} Pr[\rho^b] \tag*{\square} \tag{32}$

Remark Håstad actually defines $f|_\rho$ to be the result of reducing the formula for f (not the function) by applying a sequence of reduction rules, for each restricted variable. So there is a subtlety here about whether $f|_\rho$ denotes the reduced formula, or the reduced function, and the probabilities might be different if we are in one setting or the other. However both in his proof and ours, the only thing that is used about the reduction is that if the formula or function reduces to a single literal, then fixing this literal to 0 or to 1 reduces the function to a constant. Therefore, both proofs go through for both settings.

5.4 Razborov’s method

Razborov [Raz90] proposes a formula size lower bound technique using matrix rank:

Theorem 31 (Razborov) Let S be a covering over $X \times Y$, let A be an arbitrary nonzero $|X| \times |Y|$ matrix, and R be a rectangle partition of $X \times Y$ such that $R \prec S$. Then

$$ \max_{A} \frac{\text{rk}(A)}{\max_{S \in S} \text{rk}(A_S)} \leq \alpha(S) $$

It can be easily verified that the function $S \rightarrow \text{rk}(A_S)$ is a rectangle measure, thus this theorem follows from Theorem 23. Razborov uses Theorem 31 to show superpolynomial monotone formula size lower bounds, but also shows that the method becomes trivial (limited to $O(n)$ bounds) for regular formula size [Raz92]. An interesting difference between matrix rank and and spectral norm is that $\text{rk}(A + B) \leq \text{rk}(A) + \text{rk}(B)$ holds for any two matrices A, B, while a necessary condition for subadditivity of the spectral norm squared is that A, B be disjoint rectangles.

6 Limitations

6.1 Hamming distance 1 techniques

We show that the bounds for a function f given by Khrapchenko’s and Koutsoupias’ method, and by Håstad’s lemma are upper bounded by the product of the zero sensitivity and the one sensitivity of f. We will later use this bound to show a function on n bits for which the best lower bound given by these methods is n and for which an $n^{1.32}$ bound is provable by sum P^2.

Lemma 32 The bound given by the Khrapchenko method (Theorem 27), Koutsoupias’ method (Theorem 28), and Håstad’s Lemma (Theorem 30) for a function f are at most $s_0(f) s_1(f) \leq s^2(f)$.

Proof: Let A be a nonnegative matrix, with nonzero entries only in positions (x, y) where $f(x) = 0$, $f(y) = 1$ and the Hamming distance between x, y is one. We first show that

$$ \max_{A} \frac{\|A\|_2^2}{\max_i \|A_i\|_2} \leq s_0(f) s_1(f) \tag{8} \tag*{Equation 8} $$

Let a_{max} be the largest entry in A. A can have at most $s_0(f)$ many nonzero entries in any row, and at most $s_1(f)$ many nonzero entries in any column, thus by item 2 of Proposition 1

$$ \|A\|_2^2 \leq \|A\|_1 \|A\|_\infty \leq a_{\text{max}}^2 s_0(f) s_1(f) $$

On the other hand, for some i, the entry a_{max} appears in A_i, and so by item 1 of Proposition 1 $\|A_i\|_2^2 \geq a_{\text{max}}^2$. Equation 8 follows.

Now we see that the left hand side of Equation 8 is larger than the three methods in the statement of the theorem. That it is more general than Koutsoupias method
is clear. To see that it is more general than the probability schemes method where \(q(x, y) \) is only positive if the Hamming distance between \(x, y \) is one: given the probability distributions \(q, p_X, p_Y \), define the matrix \(A[x, y] = q(x, y)/\sqrt{p_X(x)p_Y(y)} \). By item 1 of Proposition 1, \(\|A\|_2 \geq 1 \), witnessed by the unit vectors \(u[x] = \sqrt{p_X(x)} \) and \(v[y] = \sqrt{p_Y(y)} \). As each reduced matrix \(A_i \) has at most one nonzero entry in each row and column, by item 2 of Proposition 1 we have

\[
\max_i \|A_i\|_2^2 \leq \max_{x, y} \frac{q^2(x, y)}{p_X(x)p_Y(y)}.
\]

Thus we have shown

\[
\max_A \frac{\|A\|_2^2}{\max_i \|A_i\|_2^2} \geq \max_{x, y} \min_{p_X, p_Y, q} \frac{p_X(x)p_Y(y)}{q^2(x, y)}.
\]

\[\square\]

The only reference to the limitations of these methods we are aware of is Schürfeld [Sch83], who shows that Khrapchenko’s method cannot prove bounds greater than \(C_0(f)C_1(f) \).

6.2 Limitations of \text{sumPl} and \text{maxPl}

The limitations of the adversary method are well known [Amb02, LM02, Sze03, Zha04, SS04]. Spalek and Szegedy, in unifying the adversary methods, also give the most elegant proof of their collective limitation. The same proof also shows the same limitations hold for the \text{maxPl} measure.

Lemma 33 Let \(f : \{0, 1\}^n \to \{0, 1\} \) be any partial or total Boolean function. If \(f \) is total (respectively, partial) then \(\text{maxPl}(f) \leq \sqrt{C_0(f)C_1(f)} \) (respectively, \(\min\{nC_0(f), \sqrt{nC_1(f)}\} \)).

Proof: Assume that \(f \) is total. Take \(x, y \) such that \(f(x) = 0 \) and \(f(y) = 1 \). We choose any 0-certificate \(B_0 \) for \(x \) and any 1-certificate \(B_1 \) for \(y \) and let \(p_x(i) = 1/C_0(f) \) for all \(i \in B_0 \) and \(p_y(i) = 1/C_1(f) \) for all \(i \in B_1 \). For this \(f \) we have \(p_x(j)p_y(j) \geq 1/(C_0(f)C_1(f)) \), thus \(\min_i 1/p_x(i)p_y(i) \geq C_0(f)/C_1(f) \).

The case where \(f \) is partial follows similarly. As we no longer know that \(B_0 \cap B_1 \neq \emptyset \), we put a uniform distribution over a 0-certificate of \(x \) and the uniform distribution over \([n] \) on \(y \) or vice versa. \[\square\]

This lemma implies that \text{sumPl} and \text{maxPl} are polynomially related for total \(f \).

Corollary 34 Let \(f \) be a total Boolean function. Then \(\text{maxPl}(f) \leq \text{sumPl}(f) \).

Proof: By [Amb02 Thm. 5.2] we know that \(\sqrt{bs(f)} \leq \text{sumPl}(f) \). As \(f \) is total, by the above lemma we know that \(\text{maxPl}(f) \leq \sqrt{C_0(f)C_1(f)} \). This in turn is smaller than \(bs(f)^2 \) as \(C(f) \leq s(f)bs(f) \) [Nis91]. The statement follows. \[\square\]

Besides the certificate complexity barrier, another serious limitation of the \text{sumPl} method occurs for partial functions where every positive input is far in Hamming distance from every negative input. Thus for example, if for any pair \(x, y \) where \(f(x) = 1 \) and \(f(y) = 0 \) we have \(d_H(x, y) \geq \epsilon n \), then by putting the uniform distribution over all input bits it follows that \(\text{sumPl}(f) \leq 1/\epsilon \). The measure \text{maxPl} does not face this limitation as there we still only have one term in the denominator.

Following this line of thinking, we can give an example of a partial function \(f \) where \(\text{maxPl}(f) \gg \text{sumPl}(f) \). Such an example is the Collision problem (see Section 7.3), as here any positive and negative input must differ on at least \(n/2 \) positions. Another family of examples comes from property testing, where the promise is that the input either has some property, or that it is \(\epsilon \)-far from having the property.
7 Concrete lower bounds

The quantum adversary argument has been used to prove lower bounds for a variety of problems. Naturally, all of these lower bounds carry over to formula size lower bounds. In this section we present some new lower bounds, in order to highlight the strengths and weaknesses of maxPI and sumPI.

7.1 Recursive majorities

As an example of applying sumPI, we look at the recursive majority of three function. We let R–MAJ_3 : \{0, 1\}^3 \to \{0, 1\} be the function computed by a complete ternary tree of depth h where every internal node is labeled by a majority gate and the input is given at the leaves.

Recursive majority of three has been studied before in various contexts. It is a monotone function which is very sensitive to noise \cite{MO03}, making it useful for hardness amplification in NP \cite{O'D02}. Jayram, Kumar, and Sivakumar \cite{JKS03} give nontrivial lower and upper bounds on the randomized decision tree complexity of recursive majority of three. They show a lower bound of \((7/3)^h\) on the randomized decision tree complexity. As far as we know, the quantum query complexity of recursive majority of three has not yet been investigated. We show a lower bound of \(2^h\),

Theorem 36 Let R–MAJ_3^h be the recursive majority of three function of height h. Then \(Q_s(R–MAJ_3^h) \geq (1 - 2\sqrt{\epsilon(1 - \epsilon)})2^h\) and \(L^c(R–MAJ_3^h) \geq (1 - 2\epsilon)4^h\).

The best upper bound on the formula size of R–MAJ_3^h is \(5^h\). For this bound, we will use the following simple proposition about the formula size of iterated functions.

Proposition 37 Let \(S \subseteq \{0, 1\}^n\) and \(f : S \to \{0, 1\}\). If \(L(f) \leq s\), then \(L(f^d) \leq s^d\), where \(f^d\) is the \(d\)th iteration of \(f\).

Proposition 38 \(L(R–MAJ_3^h) \leq 5^h\).

Proof: The formula \((x_1 \land x_2) \lor (x_1 \lor x_2 \land x_3)\) computes R–MAJ_3^1 and has 5 leaves. Using Proposition 37 gives \(L(R–MAJ_3^h) \leq 5^h\).\]

7.2 Ambainis’ function

We define a function \(f_A : \{0, 1\}^4 \to \{0, 1\}\) after Ambainis \cite{Amb03}. This function evaluates to 1 on the following values: 0000, 0001, 0111, 1111, 1110, 1100, 1000. That is, \(f(x) = 1\) when \(x_1 \leq x_2 \leq x_3 \leq x_4\) or \(x_1 \geq x_2 \geq x_3 \geq x_4\). To obtain this formulation from Ambainis’ original definition, exchange \(x_1\) and \(x_3\), and take the negation of the resulting function. There are a few things to notice about this function. The sensitivity of \(f_A\) is 2 on every input. Also on an input \(x = x_1x_2x_3x_4\) the value of \(f_A(x)\) changes if both bits sensitive to \(x\) are flipped simultaneously, and if both bits insensitive for \(x\) are flipped simultaneously.

We will be looking at iterations of the base function \(f_A\) as in Definition 15. Notice that the sensitivity of \(f_A^d\) is \(2^d\) on every input \(x \in \{0, 1\}^4\).

Lemma 39 sumPI\((f_A^d) = 2.5^d\).

Proof: Ambainis has already shown that sumPI\((f_A^d) \geq 2.5^d\) \cite{Amb03}.

We now show the upper bound. We will show an upper bound for the base function \(f_A\) and then use the composition Lemma 74. Every input \(x_1x_2x_3x_4\) has two sensitive variables and two insensitive variables. For any \(x \in \{0, 1\}^4\) we set \(p_x(i) = 2/5\) if \(i\) is sensitive for \(x\) and \(p_x(i) = 1/10\) if \(i\) is insensitive for \(x\). The claim follows from the following observation: for any \(x, y \in \{0, 1\}^4\) such that \(f(x) \neq f(y)\) at least one of the following holds:

- \(x\) and \(y\) differ on a position \(i\) which is sensitive for both \(x\) and \(y\). Thus \(\sum \sqrt{p_x(i)p_y(i)} \geq 2/5\)
- \(x\) and \(y\) differ on at least 2 positions, each of these positions being sensitive for at least one of \(x, y\). Thus \(\sum \sqrt{p_x(i)p_y(i)} \geq 2\sqrt{1/25} = 2/5\) \(\square\)
This lemma gives us a bound of $6.25d \approx N^{1.32}$ on the formula size of f_{A^d}. Since the sensitivity of f_{A^d} is 2^d, by Lemma \[32\] the best bound provable by Khrapchenko’s method, Koutsoupias’ method, and Håstad’s lemma is $4^d = N$.

It is natural to ask how tight this formula size bound is. The best upper bound we can show on the formula size of f_{A^d} is 10^d.

Proposition 40 $L(f_{A^d}) \leq 10^d$

Proof: It can be easily verified that the following formula of size 10 computes the base function f_{A}:

\[
(\neg x_1 \lor x_3 \lor \neg x_4) \land \\
((\neg x_1 \land x_3 \land x_4) \lor ((x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3))).
\]

This formula was found by computer search. The claim now follows from Proposition \[37\]. □

7.3 Collision problem

In this section we look at the collision problem. This is a promise problem, where for an alphabet Σ the inputs $x = x_1 x_2 \ldots x_n \in \Sigma^m$ satisfy one of the following conditions:

- All x_i are different
- For each i there exists exactly one $j \neq i$ such that $x_i = x_j$.

Those inputs satisfying the first condition are positive inputs and those satisfying the second condition are negative. An optimal lower bound for the quantum query complexity of $\Omega(n^{1/3})$ has been given by Aaronson and Shi \[AS06\]. We now show that the quantum adversary method cannot give better than a constant bound for this problem.

Lemma 41 $\sum \text{Pl}(f_{C}) \leq 2$

Proof: We demonstrate a set of probability distributions p_x, p_y such that for any positive instance x and negative instance y we have

\[
\sum_{x_i \neq y_i} \sqrt{p_x(i)} \sqrt{p_y(i)} \geq 1/2.
\]

The upper bound then follows.

Our probability distribution is simple: for every x, let $p_x(i)$ be the uniform distribution over $[n]$. Any positive and negative instance must disagree in at least $n/2$ positions, so

\[
\sum_{x_i \neq y_i} \sqrt{p_x(i)} \sqrt{p_y(i)} \geq \frac{n}{2} \sqrt{\frac{1}{n} \frac{1}{n}} = \frac{1}{2}.
\]

On the other hand, $\max \text{Pl}(f_{C}) \geq \sqrt{n}/2$. As there is an upper bound for the collision problem of $O(n^{1/3})$ by Brassard, Hoyer, Tapp \[BH197\], this also shows that in general $\max \text{Pl}(f)$ is not a lower bound on the quantum query complexity of f.

Lemma 42 $\max \text{Pl}(f_{C}) = \Theta(\sqrt{n})$

Proof: For the upper bound: On every positive instance x, where all x_i are different, we put the uniform distribution over $i \in [n]$; for a negative instance y we put probability 1/2 on the first position, and probability 1/2 on the position j such that $y_j = y_j$. As $y_1 = y_j$, any positive instance x must differ from y on position 1 or position j (or both). Thus $\max_{x,y \neq y_1} (p_x(i) p_y(i) \geq 1/2n$ and $\max \text{Pl}(f_{C}) \leq \sqrt{n}/2$.

Now for the lower bound. Fix a set of probability distributions p_x. Let x be any positive instance. There must be at least $n/2$ positions i satisfying $p_x(i) \leq 2/n$. Call this set of positions I. Now consider a negative instance y of where $y_j = x_j$ for all $j \notin I$, and y is assigned values in I in an arbitrary way so as to make it a negative instance. For this pair x,y we have $\max_{x,y \neq y_1} (p_x(i) p_y(i) \leq \sqrt{2}/n$, thus $\max \text{Pl}(f_{C}) \geq \sqrt{n}/2$. □

The following table summarizes the bounds from this section.

Function	Input size	$\sum \text{Pl}$	Q_e	max Pl	L	$s_{0.81}$
$R-MAX^h$	N^h	$2^h \approx N^{0.63}$	$\Omega(N^{1/3})$	$N^{0.63}$	$\Omega(1.26)$	$N^{1.26}$
A_{A^h}	N^h	$2.5^h \approx N^{0.66}$	$\Omega(N^{0.66})$	$\leq 3^h \approx N^{0.70}$	$\Omega(N^{1.32})$	N
C_{A^h}	N	2	$\Theta(1.8)$	$\Theta(\sqrt{n})$	N	\perp

8 Conclusions and open problems

Our new formula size lower bound techniques subsume many previous techniques, and for some functions they are provably better. A significant part of our intuition comes from quantum query complexity and Kolmogorov complexity. Measures $\sum \text{Pl}$ and max Pl have many interesting properties and they connect different complexities such as quantum query complexity, classical formula size, classical probabilistic formula size and circuit depth.

An outstanding open problem is whether the square of the quantum query complexity lower bounds the formula size. Another is that we do not know a nice dual expression for max Pl, and it does not seem to be a natural property in the sense of Razborov and Rudich. Thus the study of
maxPI may lead us to a better understanding of complexity measures that themselves are hard to compute. We could reprove a key lemma of H˚astad that leads to the best current formula size lower bound and we are hopeful that our techniques eventually will lead to improvements of the bounds in [H˚as98].

Acknowledgments

We would like to thank Frédéric Magniez, Robert Špalek, and Ronald de Wolf for helpful discussions. We also wish to thank Ryan O’Donnell for suggesting to look at the recursive majority of three function, and Xiaomin Chen for help in programming. Finally, we thank the anonymous referees for many exposition improving comments.

References

[Aar04] S. Aaronson. Lower bounds for local search by quantum arguments. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 465–474, 2004.

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences, 64:750–767, 2002.

[Amb03] A. Ambainis. Polynomial degree vs. quantum query complexity. In Proceedings of 44th IEEE Symposium on Foundations of Computer Science, pages 230–239, 2003.

[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds for the complexity of II-schemes. Moscow Univ. Math. Bull., 42(1):63–66, 1987.

[AS04] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. Journal of the ACM, 51(4):595 – 605, 2004.

[BBBV97] C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26:1510–1523, 1997.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.

[BHT97] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT News (Cryptology column), 28:14–19, 1997.

[Bop89] R. Boppana. Amplification of probabilistic boolean formulas. Advances in Computing Research, 5(4):27–45, 1989.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum decision trees and semidefinite programming. In Proceedings of the 18th IEEE Conference on Computational Complexity, pages 179–193, 2003.

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey. Theoretical Computer Science, 288:21–43, 2002.

[DZ97] M. Dubiner and U. Zwick. Amplification by read-once formulas. SIAM J. Comput., 26(1):15–38, 1997.

[Gro96] L. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM Symposium on Theory of Computing, pages 212–219, 1996.

[H˚as98] J. H˚astad. The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on Computing, 2719(1):48–64, 1998.

[HJ99] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1999.

[JKS03] T. Jayram, R. Kumar, and D. Sivakumar. Two applications of information complexity. In Proceedings of the 35th ACM Symposium on the Theory of Computing, pages 673–682, 2003.

[Khr71] V.M. Khrapchenko. Complexity of the realization of a linear function in the case of II-circuits. Math. Notes Acad. Sciences, 9:21–23, 1971.

[Kla04] H. Klauck. One-way communication complexity and the Nečiporuk lower bound on formula size. Technical Report 0111062, cs.CC arXiv, 2004.

[Kou93] E. Koutsoupias. Improvements on Khrapchenko’s theorem. Theoretical Computer Science, 116(2):399–403, 1993.

[KW88] M. Karchmer and A. Wigderson. Monotone connectivity circuits require super-logarithmic depth. In Proceedings of the 20th STOC, pages 539–550, 1988.

[KW03] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via
a quantum argument. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 106—115, 2003.

[KKN95] M. Karchmer, E. Kushilevitz and N. Nisan. Fractional Covers and Communication Complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, 1995.

[LM04] S. Laplante and F. Magniez. Lower bounds for randomized and quantum query complexity using Kolmogorov arguments. In Proceedings of the Nineteenth Annual IEEE Conference on Computational Complexity, pages 294–304, 2004.

[LV97] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications. In Graduate Texts in Computer Science. Springer, 1997. Second edition.

[MO03] E. Mossell and R. O’Donnell. On the noise sensitivity of monotone functions. Random Structures and Algorithms, 23(3):333–350, 2003.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[Nis91] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007, 1991.

[NS94] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. Computational Complexity, 4:301–313, 1994.

[O’D02] R. O’Donnell. Hardness amplification within NP. In Proceedings of the 34th ACM Symposium on the Theory of Computing, pages 751–760. ACM, 2002.

[Raz90] A. Razborov. Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica, 10(1):81–93, 1990.

[Raz92] A. Razborov. On submodular complexity measures. In Boolean Function Complexity. London Math. Soc. Lecture Notes Series, 169, pages 76–83, 1992.

[Sch83] U. Schürfeld. New lower bounds on the formula size of Boolean functions. Acta Informatica, 19(2):183–194, 1983.

[Sha49] C.E. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal, 28(1):59–98, 1949.

[Spi71] P. Spira. On time-hardware complexity trade-offs for Boolean functions. In Proceedings of the 4th Hawaii Symposium on System Sciences, pages 525–527. Western Periodicals Company, North Hollywood, 1971.

[ŠS04] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Technical Report 0409116, quant-ph, 2004.

[SV01] P. Sen and S. Venkatesh. Lower bounds in the quantum cell probe model. In Proceedings of International Colloquium on Automata, Languages and Programming (ICALP), pages 358–369, 2001.

[Sze03] M. Szegedy. An $O(n^{1.3})$ quantum algorithm for the triangle finding problem. Technical Report 0310134, quant-ph, 2003.

[Val84] L.G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5:363–366, 1984.

[Zha04] S. Zhang. On the power of Ambainis’s lower bounds. In Proceedings of 31st International Colloquium on Automata, Languages and Programming, 2004. To appear. Also in quant-ph/0311060.