Review

Bench-to-bedside review: Association of genetic variation with sepsis

Ainsley M Sutherland1 and Keith R Walley2

1Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
2Critical Care Research Laboratories, Heart + Lung Institute, University of British Columbia, Burrard Street, Vancouver, British Columbia, Canada
V6Z 1Y6

Corresponding author: Keith R Walley, kwalley@mrl.ubc.ca

Published: 29 April 2009
This article is online at http://ccforum.com/content/13/2/210
© 2009 BioMed Central Ltd

Abstract

Susceptibility and response to infectious disease is, in part, heritable. Initial attempts to identify the causal genetic polymorphisms have not been entirely successful because of the complexity of the genetic, epigenetic, and environmental factors that influence susceptibility and response to infectious disease and because of flaws in study design. Potential associations between clinical outcome from sepsis and many inflammatory cytokine gene polymorphisms, innate immunity pathway gene polymorphisms, and coagulation cascade polymorphisms have been observed. Confirmation in large, well conducted, multicenter studies is required to confirm current findings and to make them clinically applicable. Unbiased investigation of all genes in the human genome is an emerging approach. New, economical, high-throughput technologies may make this possible. It is now feasible to genotype thousands of tag single nucleotide polymorphisms across the genome in thousands of patients, thus addressing the issues of small sample size and bias in selecting candidate polymorphisms and genes for genetic association studies. By performing genome-wide association studies, genome-wide scans of nonsynonymous single nucleotide polymorphisms, and testing for differential allelic expression and copy number polymorphisms, we may yet be able to tease out the complex influence of genetic variation on susceptibility and response to infectious disease.

Introduction

Infectious diseases impose a huge burden on modern healthcare systems - a problem that is even more significant in developing countries. In older adults infectious diseases accounted for 13% of all hospital charges in the USA in one study [1]. Another study conducted in a pediatric population estimated that in 2003 a total of 286,739 infectious disease hospitalizations occurred among infants in the USA, accounting for 42.8% of all hospitalizations of infants [2]. Additionally, we face the problem of increased hospital mortality rates and costs due to increasingly resistant organisms such as methicillin-resistant Staphylococcus aureus [3-6] and vancomycin-resistant enterococci [7,8]. An understanding of what determines susceptibility and response to infectious disease is central to reducing its associated burden and improving health care.

Susceptibility and response to infectious disease is heritable. Sorensen and colleagues [9] found that the genetic contribution to death from infection is five times greater than the genetic contribution to cancer. Since that report was published, multiple groups have confirmed that susceptibility to and outcome from infectious disease is heritable [10-12]. As a result, investigators have sought to identify genetic variants associated with altered susceptibility and response to infectious disease. Identification of the genetic variants associated with infectious disease would permit early identification of patients at greater risk for adverse outcome from, for example, pneumonia, sepsis, and acute respiratory distress syndrome. It would also promote development of novel, perhaps individually tailored, treatments for these patients. In addition, detrimental side effects and expense of adjuvant therapy could be avoided in other patients who, by genotype, are predicted not to benefit.

Initial investigations have highlighted the complexity of the immune response and thus the large number of host genes that probably play a role in determining an individual’s susceptibility and response to infection. Additionally, environmental factors may greatly modify genetic effects. Important environmental factors include type of organism, antibiotic susceptibility, site of infection, how soon the infection is detected, and whether it is treated appropriately with antibiotics, resuscitation, supportive medical management and/or surgery. Searching for genetic contributors to susceptibility and response to infection is challenging in view of these important confounders. Inadequate sample size and mismatching of patients with control individuals may contribute...
to the lack of reproducibility seen in case-control studies. Gene-gene interactions, epigenetic effects, and patterns of linkage disequilibrium contained within haplotypes are all issues that must be addressed. Despite this extremely high degree of complexity, high-throughput genotyping technologies and large patient cohorts may now allow us to tease out the key genetic variants that influence susceptibility and response to infection.

Candidate gene-based approach to genetic association studies

From a genetics perspective, infection is a complex disease that arises from the interaction of an individual’s genotype with the environment (infectious micro-organisms). Classic Mendelian, single-gene diseases are studied using techniques such as linkage analysis. In linkage analysis an identifiable genetic marker is used as a tool to track the inheritance pattern of a nearby disease gene that has not yet been identified but whose approximate location is known [13]. This approach has not worked well for complex diseases that may involve many genes. In contrast, by using the known pathophysiology of specific diseases to direct good guesses - called the candidate gene approach [14] - investigators have discovered many associations between genetic variants in these relevant candidate genes and clinical outcome in diseases such as diabetes, hypertension, and infection. Candidate gene association studies determine whether the frequency of a ‘risk’ allele is higher in affected than in unaffected individuals. Linkage studies are not as powerful as candidate gene association studies in identifying risk genetic variants for common, complex diseases [13] because of the modest effect of risk alleles in complex disease and poor resolution. However, whole-genome genotyping in very large populations of patients with specific complex diseases is starting to yield discoveries.

Genetic association studies in infectious diseases have largely focused on candidate genes in the inflammatory and immune systems, because these are assumed to be important in the immune response to an infection. Polymorphisms in inflammatory and immune system genes may lead to inappropriate activation of the inflammatory system in response to invading micro-organisms. Critical care investigators have also looked at candidate genes in the coagulation system, because an inappropriate coagulation response is important in the pathology of sepsis and is intricately tied to the immune response [15-18].

Once a candidate gene had been selected for study, variants within the gene must be tested for association with phenotype. Single nucleotide polymorphisms (SNPs) are the most commonly occurring type of variant in the genome, and they are the most frequently studied in genetic association studies. SNPs are a single-base change in the DNA sequence. HapMap [19] and related projects have now identified most common SNPs in the human genome (about 2.2 million SNPs with a minor allele frequency >5%) in a variety of ancestral groups, greatly simplifying SNP selection for genetic association studies. Polymorphisms that change the amino acid sequence of a gene, that are in a potential regulatory sequence, or that alter a splice site of a gene have a higher probability of having functional consequences. Therefore, these polymorphisms have traditionally been the most popular candidates for genetic association studies [13].

Candidate gene single nucleotide polymorphism associations in sepsis

Early genetic association studies using a candidate gene strategy focused on potential functional SNPs have produced somewhat unclear and conflicting results. We review some well known examples in genes familiar to many intensive care physicians.

Tumour necrosis factor-α promoter polymorphisms

The A allele of a G-to-A polymorphism at position -308 in the promoter region of the tumour necrosis factor-α gene was initially found to be associated with adverse outcome in patients with septic shock [20]. A number of subsequent studies yielded similar results [21,22] but several studies [23], including a recent large study [24], were unable to reproduce these findings. Interestingly, the tumour necrosis factor-α gene is located close to the lymphotoxin-α gene, the heat shock protein 70 gene, and other inflammatory pathway genes. A number of investigators have suggested that SNPs in these genes may be the real cause of any observed differences in patient outcomes.

Interleukin-6 polymorphisms

A key inflammatory cytokine that has been well examined in genetic association studies in infectious disease is IL-6. These studies have also produced conflicting results and highlight the problems with reproducibility in genetic association studies. The C allele of a G-to-C polymorphism at position -174 of the IL-6 gene was associated with decreased levels of IL-6 [25] in one study, and another study found an association between -174 GG and increased serum IL-6 concentrations [26]. However, a third study found no association between either allele and serum concentrations [27]. In critically ill patients, one study found no association between the -174 G/C polymorphism and incidence of sepsis, although -174 GG was associated with improved survival rates in patients with sepsis [28], whereas our group found that the -174 G/C polymorphism was not associated with a difference in survival [29].

CD14 polymorphisms

CD14 is an innate immunity receptor for lipopolysaccharide, peptidoglycan, and lipoteichoic acid, which - in association with Toll-like receptor (TLR)4 and MD2 - forms the lipopolysaccharide receptor complex [30-33]. A C-to-T polymorphism at position -159 in the promoter of the CD14 gene has been examined for association with intermediate phenotypes and
clinical outcomes related to infection by numerous groups (Table 1). There have been a number of contradictory reports regarding the risk for developing, and outcome from, severe sepsis and septic shock [34-40]. The CD14 -159 C/T polymorphism does not appear to be associated with risk for septic shock or mortality in Asian populations [39,40], and there have been conflicting reports in mixed ethnicity and Caucasian patient samples [34-37,41].

Table 1
Genetic association studies of the CD14 C-159T polymorphism and infectious disease

Reference	Patients/cells	n	Association
[41]	1st time MI male patients; mean age 55.9 ± 6.3 years	178 cases, 135 controls, 18 volunteers	T ↑ cases (OR 1.78)
[108]	Children	481	T ↑ sCD14 (P = 0.01)
[109]	Patients with severe sepsis	204 cases, 247 controls	No difference in allele f between cases and controls; no association with mortality
[110]	Monocytes/hepatocytes	T ↓ binding of Sp1,2,3, TFs	
[111]	Healthy blood donors	95 unstimulated blood samples	No difference in sCD14, mCD14, or TNF concentration by genotype
[34]	White septic shock patients	95 cases, 122 controls	TT ↑ in septic shock patients and associated with ↑ risk of mortality
[35]	Severely injured blunt trauma patients	58 cases, 95 controls	No difference between cases and controls
[36]	ICU patients with SIRS	77 cases, 39 controls	No association with incidence of infection or outcome
[112]	PBMCs from healthy persons stimulated with bacterial ligands	22	TT ↑ TNF-α mRNA levels after Escherichia coli or LPS stimulation
[113]	Healthy subjects	315	TT ↑ risk for Chlamydia pneumoniae infection
[114]	Very low birth weight infants	356	No association with development of blood-culture proven sepsis
[115]	Tuberculosis patients	267 cases, 112 controls	No association with tuberculosis or sCD14 levels
[116]	PBMCs and plasma from healthy individuals	165	TT ↑ mCD14, TT and CT ↑ sCD14, TT ↑ TNF-α after Chlamydia stimulation
[117]	CAD patients (78 Chlamydia positive)	610	T allele associated with ↑ likelihood of chronic Chlamydia infection
[118]	Acute pancreatitis	117 cases, 263 controls	No association with sCD14 or mCD14; No association with disease severity
[119]	Acute pancreatitis	77 cases, 214 controls	No association with sCD14 or mCD14; No association with disease severity
[48]	ICU patients with SIRS	252 patients	TT ↑ Gram negative cultures
[39]	Critically ill Japanese patients	197 cases, 214 controls	No association with sepsis or sepsis mortality
[120]	Blood from healthy individuals	160	No association with cytokine release after stimulation
[38]	ICU patients in Brazil	85	TT ↑ survival
[121]	Term neonates cord blood cultures	135	CD14 -159T ↑ sCD14 in response to LPS
[122]	Children with invasive pneumococcal disease, healthy controls	85 and 409, respectively	↑ prevalence of CC genotype in patients with S. pneumoniae

CAD, coronary artery disease; f, frequency; ICU, intensive care unit; LPS, lipopolysaccharide; mCD14, membrane bound CD14; MI, myocardial infarction; OR, odds ratio; PBMC, peripheral blood mononuclear cell; sCD14, soluble CD14; TF, tissue factor; TNF, tumor necrosis factor.

Toll-like receptor-2 polymorphisms
TLR2 is an innate immune receptor for Gram-positive bacteria that activates the nuclear factor-xB signaling cascade and transcription of inflammatory cytokines [42-44]. Polymorphisms in the TLR2 gene have been associated with increased risk for Gram-positive infections and decreased responsiveness to bacterial peptides [45-48] but, in contrast, not with mortality from severe S. aureus infection [49].
Haplotype associations in sepsis
With the development of public resources such as dbSNP, HapMap [50], the Human Genome Diversity Project [51], and gene-based re-sequencing projects (SeattleSNPs [52] and the National Institute of Environmental Health Sciences SNPs Program [53]), we are beginning to develop a better understanding of the patterns of diversity across the human genome. Data from the HapMap project have been used to describe patterns of linkage disequilibrium in the human genome, while detailed descriptions of variation in individual genes allow researchers to describe haplotypes - patterns of SNPs that are inherited as a single unit - of individual genes (Figure 1). These tools have allowed researchers to move away from a candidate (functional) SNP-based approach to a broader survey of ‘tag’ SNPs that represent all known and unknown polymorphisms in a haplotype of a candidate gene. This eliminates the potential bias of examining only candidate functional SNPs. The SeattleSNPs Program [54] has been especially useful in picking tag-SNPs to examine in infectious disease, because they focus on re-sequencing genes of the inflammatory and immune systems [52].

We may not have a complete understanding of how polymorphisms in genes alter their expression or function, and so it may be more useful to select SNPs that allow us to describe all of the variation in a gene, and not just the variation that we presume may have functional significance. Our limited knowledge of transcriptional regulation and the structure of linkage disequilibrium may in part be responsible for the lack of reproducibility of many genetic association studies in sepsis. A haplotype-based approach to candidate gene association studies enables us to avoid making presumptions about the functional significance of SNPs in candidate genes. A number of haplotype-based studies have found associations between candidate genes and infectious disease.

Protein C haplotypes
Two polymorphisms 13 base pairs apart in the promoter region of the protein C gene (-1,654 C/T and -1,641 G/A) have been suggested to alter outcome in sepsis [55] and to alter protein C levels in blood [56] (Figure 1). Chen and coworkers [57] found that the CA haplotype of protein C -1,654 C/T and -1,641 G/A was associated with increased risk for death and organ dysfunction in Chinese Han patients with severe sepsis. The C allele of protein C 673 T/C (linkage disequilibrium with the CA haplotype, D’ = 100%) was also found to be associated with increased mortality and organ dysfunction in a cohort of 100 North American East Asians with severe sepsis [58].

IL-6 haplotypes
IL-6 haplotype clades were associated with mortality and organ dysfunction in critically ill adults [29]. A different, common IL-6 haplotype running from nucleotides -1,363 to +4,835 relative to the transcription start site of IL-6, and spanning the gene, conferred risk for susceptibility and response to acute lung injury [59]. However, haplotype analysis revealed that the IL-6 gene was not associated with susceptibility and response to invasive pulmonary aspergillosis in a Spanish population [60].

Mannose-binding lectin haplotypes
Mannose-binding lectin (MBL) binds sugar groups on microbial surfaces and activates the ‘alternative’, or lectin, complement pathway [61]. Three structural mutations have been found in exon 1 of the MBL gene [62-64] that occur as six different haplotypes [65-67]. These haplotypes have consistently been associated with different serum levels of MBL [65-67], but there have been conflicting reports of the association between MBL haplotypes and outcome from sepsis [48,68,69], as well as from other infectious and inflammatory processes [70-76].

C-reactive protein haplotypes
The C-reactive protein haplotype 1,184C; 2,042C; 2,911C was found to be more frequent in individuals who were not colonized with *S. aureus* in the vestibulum nasi, and host genotype was associated with the carriage of specific *S. aureus* genotypes [77]. This is interesting in that it highlights the importance of looking not just at host genetic variation but also at variation in micro-organisms and how this affects the interaction between host and micro-organism.

Other inflammation/coagulation gene haplotypes
A fibrinogen-β gene haplotype was associated with mortality in sepsis [78]. An IL-10 haplotype has been associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis [79].

Remaining problems
Although haplotype analysis has produced some interesting results, there remains the problem of nonreproducible results seen in genetic association studies based on functional SNPs. Additionally, groups appear to be inconsistent in their definition of haplotypes within candidate genes, and haplotypes defined in one patient population may not be applicable to another. With the growing collection of documented SNPs in the genome, our improved understanding of the patterns of genetic variation, and high-throughput genotyping technologies, we now have the ability to move away from candidate gene based association studies. The risk of looking for candidate genes among pathways we already know is that we may miss key genes because of ignorance of the other biologic systems involved [14]. Approximately 10% of the 30,000 human genes are immune response genes, and thus the likelihood of any single gene being associated with infectious disease is low [80]. We now have the tools to use a broader, less biased approach to genetic association studies, and this may allow us finally to tease out the contributions made by genetic variants to susceptibility and response to infectious disease.
Moving forward with genetic association studies in sepsis

Several technologies (Affymetrix and Illumina) have been developed during the past few years that allow thousands of SNPs to be genotyped rapidly and accurately using small amounts of DNA. As the speed and throughput of genotyping polymorphisms has increased, costs have decreased significantly. It is now feasible for researchers to genotype thousands of SNPs in thousands of patients at moderate cost. Concurrently, groups such as the International HapMap Project [50] and Perlegen Sciences [81] have provided high-resolution maps that allow researchers to select SNPs that are correlated with adjacent polymorphisms and can act as markers, or tag SNPs, for other unmeasured SNPs. Sets of thousands of common SNPs can now be selected so that they tag the most common variants in a population. These SNPs can then be genotyped at low cost in thousands of patient samples using new high-throughput genotyping platforms. These technologies and resources make new strategies for genetic association studies, such as genome-wide association, practical, and they allow researchers to take an unbiased approach to association studies independent from selection of candidate genes.

Genome-wide association

Genome-wide association studies (GWAS), like linkage analyses, do not require a prior hypothesis of candidate genes to test for association with disease. In GWAS, as in genetic association studies, allele frequencies are compared between cases and controls. In GWAS, however, it is not allele frequencies in individual candidate genes that are compared, but rather allele frequencies in an unbiased selection of SNPs across the whole genome. Thus, assumptions about important genes and pathways in disease are avoided and novel insights into biology are possible. That is, whereas candidate gene studies test only for variants within genes of known relevance, GWAS make it possible to gain further insight into the pathophysiology of sepsis. Novel genes that have significant impact on outcome from sepsis would implicate the gene pathways involved in sepsis.

Now that it is economically feasible to genotype hundreds of thousands of SNPs in thousands of patients, and HapMap has made available intermediate allele frequency polymorphisms that are informative for association studies [50], whole-genome association studies for complex disease are possible and have been conducted in a number of diseases. The first published example of a GWAS in complex disease found that functional SNPs in the lymphotoxin-α gene are associated with susceptibility and response to myocardial infarction (MI) [82]. A total of 92,788 tag SNPs were genotyped in 94 individuals with MI and 653 control individuals to identify a locus on chromosome 6p21 that was associated with susceptibility and response to MI. Further linkage disequilibrium mapping and haplotype analysis allowed the researchers to narrow down the association to two SNPs in the lymphotoxin-α gene in 1,133 affected individuals versus 1,006 control individuals. Importantly, the researchers validated their GWAS findings with in vitro functional analysis to establish the biologic plausibility of their finding. GWAS has now been used to find disease-associated alleles in Crohn’s disease [83], type 1 diabetes [84], type 2 diabetes [85] and age-related macular degeneration [86], and will be an important tool in identifying disease-associated alleles in infectious disease.
Genome-wide array of nonsynonymous single nucleotide polymorphisms

An alternative to genotyping tag SNPs across the genome, as in GWAS, is to directly test association of large numbers of nonsynonymous SNPs (nsSNPs), or amino acid changing SNPs, to disease. There are now almost 60,000 documented SNPs that cause nonsynonymous amino acid substitutions [87]. High-throughput genotyping technologies allow all of these nsSNPs to be genotyped simultaneously in thousands of patients. nsSNPs may cause functional changes in a protein that lead to increased susceptibility and response to disease. By screening all known nsSNPs in the human genome, and not just in candidate genes, researchers do not have to make assumptions about which genes or pathways may play a role in disease. However, this method, unlike genome-wide association, does require some knowledge of the structure of genes. Genome-wide scans of nsSNPs have identified polymorphisms associated with type 1 diabetes [88] and Crohn’s disease [89].

Testing for differences in allelic expression

Recent studies have shown that polymorphic alleles may be differentially expressed within an individual and that this may contribute to phenotypic variation [90-94]. Classically, allele-specific differences in expression were attributed to phenomena such as genomic imprinting (methylation causing inactivation of one parental haplotype) [95] and X-chromosome inactivation [96]. More recently it has been recognized that allele-specific expression is relatively common among non-imprinted autosomal genes [91,93,97-99] and that this difference in allelic expression is heritable [93]. Common polymorphisms in autosomal genes may cause subtle quantitative changes in the expression of one allele of a gene that may make a minor contribution to a quantitative trait, or to the susceptibility and response to a disease. Genome-wide analysis of gene expression patterns has been used to examine differences in global patterns of gene expression between healthy and diseased individuals [90,100,101]. Allele-specific differences in expression appear to be cell-type and stimulus dependent [90,100,101]. Differential allelic expression has been associated with susceptibility and response to colorectal cancer [92], schizophrenia [102], and obesity [94].

Nonsynonymous coding SNPs can be used to test heterozygote cell lines for differences in allelic expression [93,103]. Within one cell, if there are no cis-acting regulatory elements affecting the expression of each allele, both alleles should be equally expressed [93]. However, if an individual is heterozygous for a functional cis-acting regulatory polymorphism, then the two alleles will be differentially expressed [93]. A nonsynonymous coding SNP within the transcript can be can be used as a tag to distinguish between transcripts derived from each allele [103]. Allelic discrimination can then be used to measure relative allelic expression levels, with each allele serving as an internal control for the other. Allele-specific gene expression can be performed on a genome-wide scale using oligonucleotide arrays in order to find regulatory elements [91]. Regulatory polymorphisms can then be mapped and tested for association with disease. Identifying regulatory SNPs or the haplotypes in which they lie may help us to understand how genetic variation influences susceptibility and response to disease.

Copy number polymorphisms

In addition to regulatory polymorphisms that cause allele-specific differences in expression, protein expression may be altered among individuals as a result of copy number polymorphisms (CNPs) [104,105]. CNPs are alterations in genomic DNA that cause deletions or duplications of a gene in adjacent segments of DNA [104,105]. Analogous to the definition of SNPs, the minor form of a CNP must occur in more than 1% of the population for this variation to be termed a CNP. The deletions or duplications result in varying copy numbers of genes among individuals and can cause measurable differences in protein expression. The differences in protein expression are not due to altered regulation of gene transcription, as in allele-specific differences in expression, but are a result of a decrease or increase in the number of copies of the gene in the genome [104]. CNPs are likely to contribute to complex disease and quantitative traits. An example of a CNP that leads to human disease is the genomic duplication of the PMP22 gene, which causes the most common form of Charcot-Marie Tooth disease [106]. CNPs are likely to have variable affects on phenotypes, depending on the sensitivity of the gene to dose, interactions with other loci, and the environment.

The availability of increasingly complex microarrays at decreasing cost has made it possible to perform genome-wide analysis of CNPs to quantify copy number differences. Affymetrix and Illumina offer combined SNP genotyping and copy number analysis, allowing researchers to perform genome-wide studies to detect associations of disease with either CNPs or SNPs. Genotyping of multibase, often multi-allelic CNPs is more challenging than genotyping di-allelic SNPs, however, and current data indicate that there is a low correlation between quantitative measures of CNPs and the true allelic state of each CNP in each individual [107]. More accurate assays are needed for association studies using CNPs.

Use of genetic tests in patient care

Although a number of important genetic associations with outcome from sepsis have been discovered, further steps are required to apply these discoveries to patient care. First, risk for adverse outcome predicted by genotype is somewhat helpful, but prediction of response to therapy is clearly more useful for clinicians deciding on therapeutic approaches. Therefore, genetic association studies must expand measured end-points to include response to specific therapies. Second, predictive genetic associations must also consider specificity and sensitivity analyses to confirm that genotypic information
contributes to predictions of response to therapy or outcome beyond what is possible using classical measures (age, severity of illness, and so on). Third, prospective testing of predictive genetic tests in large multicenter studies will be important to validate the treatment-modifying discoveries and to define the effectiveness (a step beyond efficacy) of decisions based on the predictive genetic test. These are substantial hurdles but they can be addressed, particularly by global collaborations, which we should all now embrace.

Conclusions
The age of genomic personalized medicine is within our reach. Previous genetic association studies in sepsis have had problems with reproducibility as a result of a number of issues, including small sample sizes, bias resulting from selection of candidate genes, the influence of multiple genes and environment on phenotype, epigenetics, and a lack of understanding of the patterns of variation in the human genome. We are beginning to develop the ability to deal with these issues as new, more economically feasible technologies allow us to genotype thousands of patients at hundreds of thousands of loci, and as we develop a better understanding of the complexity of patterns of variation in the human genome and the environment. Discoveries of novel genotype-phenotype associations in infectious disease may provide us with a clearer understanding of the pathways that are involved in susceptibility and response to infection, and they may one day allow us to treat patients with more specific treatments with fewer side effects.

Competing interests
The authors declare that they hold shares in Sirius Genomics Inc.

Acknowledgments
KRW is a Distinguished Scholar of the Michael Smith Foundation for Health Research. Supported by the Heart and Stroke Foundation of BC and Yukon.

References
1. Cums AT, Steiner CA, Seijar JJ, Schonberger LB: Hospital charges attributable to a primary diagnosis of infectious diseases in older adults in the United States, 1998 to 2004. J Am Geriatr Soc 2008, 56:969-975.
2. Yorita KL, Holman RC, Seijar JJ, Steiner CA, Schonberger LB: Infectious disease hospitalizations among infants in the United States. Pediatrics 2008, 121:244-252.
3. Blot SI, Vandevouwde KH, Hoste EA, Colardyn FA: Outcome and attributable mortality in critically ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch Intern Med 2002, 162:2229-2235.
4. Cosgrove SE, Carmeli Y: The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 2003, 36:1433-1437.
5. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y: Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 2003, 36:53-59.
6. Shorr AF, Tabak YP, Gupta V, Johannes RS, Liu LZ, Kollef MH: Morbidity and cost burden of methicillin-resistant Staphylococcus aureus in early onset ventilator-associated pneumonia. Crit Care 2006, 10:R97.
7. Sakka V, Tsiodras S, Galani L, Antoniadou A, Souli M, Galani I, Pantelaki M, Siafakas N, Zerva L, Giannarellou H: Risk-factors and predictors of mortality in patients colonised with vancomycin-resistant enterococci. Clin Microbial Infect 2008, 14:1421.
8. von Baum H, Ober JF, Wenzel RP, Edmond MB: Antibiotic-resistant bloodstream infections in hospitalized patients: specific risk factors in a high-risk population? Infec tion 2006, 33:320-326.
9. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW: Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988, 318:727-732.
10. Burgeon D, Levin M: Genetic susceptibility to infectious diseases. Pediatr Infect Dis J 2003, 22:1-6.
11. Bellamy R, Hill AV: Genetic susceptibility to mycobacteria and other infectious pathogens in humans. Curr Opin Immunol 1998, 10:483-487.
12. Choi EH, Zimmerman PA, Foster CB, Zhu S, Kumaraswami V, Nathan TG, Chanock SJ: Gene polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India. Genes Immun 2001, 2:248-253.
13. Riach N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516-1517.
14. Vink JM, Boomsma DI: Gene finding strategies. Biol Psychol 2002, 61:53-71.
15. Cirino G, Vergnolle N: Proteinase-activated receptors (PARs): crosstalk between innate immunity and coagulation. Curr Opin Pharmacol 2006, 6:428-434.
16. Kambas K, Markiewski MM, Pneumatikos IA, Raed SS, Theodorou V, Konstantonis D, Kourtzelis I, Doumas MN, Magotti P, Deangelis RA, Lambris JD, Ritis KD: C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 2008, 180:7388-7395.
17. Luyendyk JP, Schabbauser GA, Tencati M, Holscher T, Pawlinski R, Mackman N: Genetic analysis of the role of the PI3K-AKT pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J Immunol 2008, 180:4218-4226.
18. Shimaoka M, Park EJ: Advances in understanding sepsis. Eur J Anaesthesiol Suppl 2008, 42:146-153.
19. International HapMap Project [http://www.hapmap.org/] (page number not for citation purposes)
20. Mira JP, Cariou A, Grall F, Delclaux C, Delpech M, Dhainaut JF: The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 1999, 28:308-315.
21. McGuire W, Hill AV, Allopp CE, Greenwood BM, Kwatkiowski D: Variations in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 1994, 371:508-510.
22. Nowell S, Newport MJ, Booy R, Levin M: Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J Infect Dis 1996, 174:879-880.
23. Stubber F, Udalova IA, Book M, Dutskevich LN, Kuprash DV, Turetsky RL, Schade FU, Nedospasov SA: -308 Tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Infect Dis 1996, 174:82-88.
24. Gordon AC, Lagan AL, Agana E, Cheung L, Peters CJ, McDermit MF, Mylo JL, Welsh KL, Holloway P, Hitman GA, Piper RD, Garrard CS, Hinds CJ: TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 2004, 5:631-640.
25. Fishman D, Fauchard G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S, Woo P: The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1999, 102:1369-1376.
26. Gaudio M, Andreotti F, Zamparelli R, Di Castelnuovo A, Nasso G, Burzotta F, Iacovelli L, Donati MB, Schiavelli R, Maseri A, Possati G: The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 2003, 108(suppl 1):I195-199.
26. Roth-Isaiglet A, Hasselbach L, Ocklitz E, Bruckner S, Ros A, Gehring H, Schmucker P, Rink L, Seyfarth M: Individual differences in cytokine release in patients undergoing cardiac surgery with cardiopulmonary bypass. Clin Exp Immunol 2001, 123:80-88.

27. Schulte B, Raufhake C, Erren M, Schott H, Kipp F, Rust S, Van AH, Assmann G, Berendes E: Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and severity of sepsis. Crit Care Med 2002, 30:573-579.

28. Sutherland AM, Walley KR, Manocha S, Russell JA: The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med 2005, 165:75-82.

29. Labelo MO, Durieux JJ, Fernandez N, Herrmann R, Ferrara R: Critically ill patients. Infect Immun 2002, 70:4124-4128.

30. Labeta MO, Durieux JJ, Fernandez N, Herrmann R, Ferrara P: CD14, a monocyte cell line of two different soluble forms of the lipopolysaccharide receptor, CD14, Eur J Immunol 1993, 23:2144-2151.

31. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999, 274:10869-10692.

32. Brightbill HD, Librati DH, Krutzik SR, Yang RB, Belisle JT, Bleihuijzen R, Maitland M, Norgaard MW, Nowsky S, Smailo ST, Berman PJ, Bloom BR, Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285:732-736.

33. Gibot S, Caroné A, Drouet L, Rossignol M, Ripoll L: Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 2002, 30:969-973.

34. Heesen M, Bloemke B, Schade U, Obertacke U, Majetschak M: The -260 C/T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 2002, 28:1161-1163.

35. Agnese DM, Calvano SE, Lowry SF: Human toll-like receptor 4 mutations but not Toll-like CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002, 186:1522-1525.

36. Barber RC, Chang LY, Arnoldo BD, Purdue GF, Hunt JL, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999, 274:10869-10692.

37. Van AH, Assmann G, Berendes E: Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and severity of sepsis. Crit Care Med 2002, 30:573-579.

38. Labelo MO, Durieux JJ, Fernandez N, Herrmann R, Ferrara R: Critically ill patients. Infect Immun 2002, 70:4124-4128.

39. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999, 274:10869-10692.

40. Brightbill HD, Librati DH, Krutzik SR, Yang RB, Belisle JT, Bleihuijzen R, Maitland M, Norgaard MW, Nowsky S, Smailo ST, Berman PJ, Bloom BR, Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285:732-736.

41. Gibot S, Caroné A, Drouet L, Rossignol M, Ripoll L: Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 2002, 30:969-973.

42. Heesen M, Bloemke B, Schade U, Obertacke U, Majetschak M: The -260 C/T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 2002, 28:1161-1163.

43. Agnese DM, Calvano SE, Lowry SF: Human toll-like receptor 4 mutations but not Toll-like CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002, 186:1522-1525.

44. Barber RC, Chang LY, Arnoldo BD, Purdue GF, Hunt JL, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999, 274:10869-10692.

45. Brightbill HD, Librati DH, Krutzik SR, Yang RB, Belisle JT, Bleihuijzen R, Maitland M, Norgaard MW, Nowsky S, Smailo ST, Berman PJ, Bloom BR, Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 1999, 285:732-736.
soids. *Eur J Immunogenet* 2000, 27:111-117.

68. Garred P, JJS, Quit L, Taanne E, Madsen HO: Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. *J Infect Dis* 2003, 188:1394-1403.

69. Gordon AC, Waheed U, Hansen TK, Hitman GA, Garrard CS, Turner MW, Klein NJ, Brett SJ, Hinds CJ: Mannose-binding lectin polymorphisms in severe sepsis: relationship to levels, duration, and outcome. *Shock* 2005, 23:88-93.

70. Wallis R, Cheng YJ: Molecular defects in variant forms of mannose-binding protein associated with immunodeficiency. *J Immunol* 1999, 163:4953-4959.

71. Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW: Lmp4: mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. *J Infect Dis* 2001, 184:653-656.

72. Garred P, Madsen HO, Halberg P, Petersen J, Kronborg G, Svejgaard A, Andersen CA, Jorgensen P, Garred P, Voss A, Madsen HO, Junker P: Allelic variation in mannose-binding lectin polymorphisms with sepsis and multiple other replicating loci contribute to Crohn's disease susceptibility. *Nat Genet* 2007, 39:830-832.

73. Todd JA, Walker NM, Cooper JD, Smyth DJ, Drummond H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Mar-chini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS; Wellcome Trust Case Control Consortium (WTCCC): replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. *Science* 2007, 316:1336-1341.

74. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Haffner S, SanGiovanni JP, Marye SM, Mayne ST, Bracken MB, Feinleib M, Ott J, Bammens C, Hoh J: Complement factor H polymorphism in age-related macular degeneration. *Science* 2005, 308:385-389.

75. Beaudet AL, Belmont JW: Array-based DNA diagnostics: let the revolution begin. *Annu Rev Med* 2008, 59:113-129.

76. Yan H, DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, Guja C, Jonescu-Tirgoviste C, Widmer B, Dungar DB, Savage DA, Walker NM, Clayton DG, Todd JA: A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. *Nat Genet* 2007, 39:207-211.

77. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gümther S, Prescott NJ, Onnie CM, Häuser R, Sipos B, Fölls LR, Lengauer T, Platerz M, Mathew CG, Krawczak M, Schreiner S: A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. *Nat Genet* 2007, 39:207-211.

78. DeRei S, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su Y, Trent JM: Use of a CDNA microarray to analyse gene expression patterns in human cancer. *Nat Genet* 1998, 14:457-460.

79. Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP: Allelic variation in gene expression is common in the human genome. *Genome Res* 2001, 11:244-253.

80. Manocha S, Russell JA, Sutherland AM, Wattanatham A, Walley KR: Fibrinogen-beta gene haplotype is associated with mortality in sepsis. *J Infect Dis* 2007, 54:572-577.

81. Manocha S, Manocha S, Groshaus H, Russell JA, Walley KR: Allelic variation in fibrinogen-beta haplotype is associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. *Chest* 2005, 128:1690-1698.

82. Tremain M, Parkes M: Genome-wide association scans identify multiple confirmed susceptibility loci for Crohn's disease: lessons for study design. *Inflamm Bowel Dis* 2007, 13:1554-1560.

83. Hinds DA, Steve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR: Whole-genome patterns of common DNA variation in three human populations. *Science* 2005, 307:1072-1079.

84. Ozaki K, Ohashi I, Iida A, Sekine A, Yamada R, Tato H, Sato H, Hori M, Nakamura Y, Tanaka T: Functional SNPs in the lymphocyte-alpha gene that are associated with susceptibility to myocardial infarction. *Nat Genet* 2002, 32:60-65.

85. Parkes M, Barrett JC, Prescott NJ, Tremain M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Tofield FL, Ott J, Bamshad S, Hoh J: Complement factor H polymorphism in age-related macular degeneration. *Science* 1995, 270:484-487.

86. Bray NJ, Buckland PR, Williams NM, Williams HJ, Stanton AV: Detection of regulatory variation in mouse genes. *Nat Genet* 2002, 32:432-437.

87. Hamilton BA: Variations in abundance: genome-wide responses to genetic variation and vice versa. *Genome Biol* 2002, 3(reviews1029).

88. Knight JC: Functional implications of genetic variation in non-coding DNA for disease susceptibility and gene regulation. *Clin Sci (Lond)* 2003, 104:493-501.

89. Kerr MK, Martin M, Churchill GA: Analysis of variance for gene expression microarray data. *J Comput Biol* 2000, 7:819-837.

90. Veluculescu VE, Zhang L, Vogelstein B, Kinzler KW: Allelic imbalance: novel analysis of genetic variation in human tumors. *Nat Genet* 2001, 29:428-434.

91. Sakatani T, Wei M, Okita C, Wada D, Mitsuya K, Meguro I, Ikeguchi M, Ito H, Tycko B, Oshimura M: Epigenetic heterogeneity at imprinted loci in normal populations. *Biochem Biophys Res Commun* 2001, 283:1124-1130.

92. Carrel L, Willard HF: X-inactivation profile reveals extensive variability in X-linked gene expression in females. *Nature* 2005, 434:400-404.

93. Cowles CR, Hirschhorn JN, Altschuler D, Lander ES: Detection of regulatory variation in mouse genes. *Nat Genet* 2002, 32:432-437.
104. Inoue K, Lupski JR: Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet 2002, 3:199-242.

105. Lee JA, Lupski JR: Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006, 52:103-121.

106. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, Sauccedo-Cardenas O, Barker DF, Killian JM, Garcia CA, Chakravarti A, Patel PI: DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 1991, 66:219-232.

107. Pe’er I, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ: Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 2006, 38:663-667.

108. Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD: A Polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999, 20:976-983.

109. Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Rothe G, Schmitz G: The common functional C(-159)T polymorphism within the promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immun 2000, 1:405-407.

110. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD, Vercelli D: A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001, 167:5838-5844.

111. Heesen M, Blomeke B, Schluter B, Heussen N, Rossaint R, Kunz D: Lack of association between the -260 C—>T promoter polymorphism of the endotoxin receptor CD14 gene and the CD14 density of unstimulated human monocytes and soluble CD14 plasma levels. Br J Haematol 2001, 113:58-63.

112. Heesen M, Blomeke B, Schluter B, Heussen N, Rossaint R, Kunz D: Lack of association between the -260 C—>T promoter polymorphism of the endotoxin receptor CD14 gene and the CD14 density of unstimulated human monocytes and soluble CD14 plasma levels. Intensive Care Med 2001, 27:1770-1775.

113. Temple SE, Cheong KY, Almeida CM, Price P, Waterer GW: Polymorphisms in lymphotoxin alpha and CD14 genes influence TNFalpha production induced by Gram-positive and Gram-negative bacteria. Genes Immun 2003, 4:283-288.

114. Rupp J, Goepel W, Kramm E, Jahn J, Solbach W, Maass M: CD14 promoter polymorphism and Chlamydia pneumoniae infection. J Infect Dis 2003, 188:90-97.

115. Rahman SH, Salter G, Holmfield JH, Larvin M, McMahon MJ: Soluble CD14 receptor expression and monocyte heterogeneity but not the C-260T CD14 genotype are associated with severe acute pancreatitis. Crit Care Med 2004, 32:2457-2463.

116. Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, Sullivan JS: Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2008, 86:269-270.