Solid organ transplantation is a life-saving procedure for various end-stage diseases, but the inherent requirement for life-long immunosuppression for preventing graft rejection comes with many side effects, such as increased risk of infection, neoplasms as well as nephrotoxicity and diabetogenicity [1–4].

Long-term immunosuppressive therapy represents a huge burden on transplant recipients, but currently cannot be omitted. Research in tolerance has elucidated mechanistic pathways of rejection, T cell regulation and T cell activation previously unknown [4]. Diagnostic assays to identify tolerance and distinguish it from “non-tolerance” are needed, and progress continues in this area. The work by some groups suggest that both blood and liver tissue gene expression can predict the outcome of immunosuppression withdrawal [5]. It is important to notice that, the genetic signature of tolerance in liver transplantation may differ significantly from that of kidney transplantation for some reasons that are unknown at this time [6]. Of course the tolerogenic environment of the liver plays a very important role in this field.

So minimization or withdrawal of immunosuppressive drugs remains a major goal in transplantation, and may be achieved in patients who have developed tolerance towards their grafts.

In clinical practice, operational tolerance is defined as “a well-functioning graft lacking histological signs of rejection, in the absence of any immunosuppressive drugs in an immunocompetent host” [7, 8].

An animal is formally proven to be tolerant when in the absence of immunosuppression, a second graft from the same donor is accepted, while a graft from a third-party donor is rejected.

In general, operationally tolerant transplant recipient cannot be identified prospectively. Due to the lack of biomarkers to guide weaning or cessation of immunosuppressive drugs, the majority of recipients will rely on life-long immunosuppressive therapy. This situation is especially problematic in kidney transplantation where tolerance is a very rare event [9].

In general there are two kinds of tolerance; central (intrathymic) and peripheral (non-thymic).

Positive selection, also called thymic education, ensures that only clones with TCRs and moderate affinity for self-MHC are allowed to develop.

Negative selection by means of apoptosis occurs when T cells have extremely high affinity for the MHC-self-peptide complex.

Many potentially reactive T cells escape thymic selection; this reflects that many antigens are absent intrathymi-
cally or present at insufficient levels to induce tolerance in the thymus; so several non-thymic mechanisms prevent autoimmunity and are also capable of rendering peripheral T cell repertoires tolerant. These mechanisms are:

- sequestration of antigens into privileged sites;
- apoptosis of T cells caused by persistent activation or neglect;
- clonal anergy (lack of costimulation) (CD28-CD80/86, CD40-CD40L);
- regulatory T cells (Tregs, CD4+CD25+FoxP3+ T cells).

Clinical research to induce full or partial tolerance in transplant patients has been induced in allograft transplantation in many centers. A state of indefinite survival of a well-functioning allograft without the need for maintenance immunosuppression was the main target of the researchers. Rare cases of operational tolerance after transplantation with complete cessation of immunosuppressive therapy have been reported [10, 11].

Full tolerance was achieved with myeloablative therapy before organ transplantation in combination with induced donor chimerism in hematologic malignancies treated with bone marrow transplantation [12].

At present partial tolerance or minimal immunosuppression is possible. This partial or incomplete, donor-specific tolerance has been termed pro/pre toleration or minimal immunosuppression tolerance [13, 14].

Stable graft function for 1 year or more referred as functional or operational tolerance [15, 16].

The reasons for graft loss can be broadly classified into three categories:

1) inflammation induced reactions against graft tissues, specifically ischemia-reperfusion (I-R) injury;
2) immun-initiated reactions against graft tissues;
3) direct organ toxicity by immunosuppressive drugs.

When an alloantigen is recognized, the innate and adaptive immune systems respond synergistically to reject the allograft through non-exclusive pathways, including contact-dependent T cell cytotoxicity, granulocyte activation by either Th1- or Th2-derived cytokines, NK cell activation, alloantibody production and complement activation [17].

Improvements in the short term success of renal and extra-renal transplantation have had a minimal impact on long term success and the rate of late graft loss is essentially unchanged [18, 19]. The advantages associated with the avoidance of chronic immunosuppression continue to drive the enthusiasm for implementing approaches to induce tolerance to transplanted organ allografts as the term chronic rejection is mainly characterized by antibody-mediated rejection and a score to reflect interstitial fibrosis and tubular atrophy [20].

Strategies for inducing transplantation tolerance

There are two obligatory components to achieving transplantation tolerance: depletion of alloreactive Tconv and upregulation of alloreactive Treg cells. The balance between graft destruction and regulation can be shifted using strategies to inhibit the activity of Tconv cells and/or increase the relative frequency or functional activity of alloantigen-reactive Treg cells.

Mixed chimeric and cellular tolerogenic therapies are being trialed where drug-based therapies have failed [21, 22].

Manipulating innate immune system

TLRs drive innate immune responses as part of I-R (ischemia-reperfusion) injury and this leads to the subsequent initiation of adaptive alloimmune responses; so deficiency in the TLR adaptor protein MyD88 leads to donor antigen-specific tolerance. MyD88 deficiency is associated with an altered balance of Tregs over Tconv cells promoting tolerance instead of rejection.

Lymphodepletion strategies

Lymphodepletion in the form of “induction therapy” is an effective strategy for addressing the precursor frequency of alloreactive Tconv cells at the time of organ transplantation and preventing acute allograft rejection. However, ongoing maintenance therapy during post-deletional cell repopulation is necessary to prevent T memory cells from driving rejection and alloantibody formation (mAb, radiation and cytotoxic drugs are necessary) [23].

Cellular therapy

A. In addition to CD4+ CD25+ FoxP3+ nTregs and iTregs; Tr1 cells produce large amounts of IL-10 [24]; Th3 cells produce TGFβ [25]; Tr35 cells produce IL-35; CD8+ CD28-cells [26] and CD3+CD4-CD8-cells [27] and NKT cells [28] have all been reported to exert regulatory effect on alloimmune responses. Suppression of alloreactive T cells permits long-term graft survival and, at times, operational tolerance [29–31].

Using rabbit ATG and Rituximab (plus FK and Sirolimus) for tolerance induction in living-donor renal recipient [32].

Alemtuzumab (Campath-1H), mAb to CD 52, found densely distributed on T and B cells and NK cells [33]. Alemtuzumab in combination therapy with costimulation blockade, regulatory T cell infusion and donor stem cell transfusion are some of the novel approaches to tolerance induction currently in study [34–38].

B. B cells have also been shown to serve a regulatory role; unlike Tregs there are no validated molecular or phenotypic markers to define Bregs, so they are currently defined on the functional basis of their IL-10 production [39].

Particularly the role of transitional B cells is important; they represent a regulatory B cell population based on their increased IL-10 production; meanwhile it is noticed that no difference in B cell subsets (total, naive, transitional) or inhibitory cytokines (IL-10 and TGFβ) was detected when compared to healthy controls [40]. On the other hand B cells play a major role in chronic rejection, as donor-specific alloantibodies have been linked to chronic rejection and long-term graft failure [41–44]. Long-term allograft acceptance has been achieved by augmenting traditional immunotherapy with B cell depleting antibodies [45]. BAFF (B cell activating factor) is involved in B cell survival, pro-
liferation, and maturation. It has been correlated with increased PRAs, DSA (donor specific alloantibodies), B cell repopulation and C4d+ renal allograft rejection [46–48]. Its blockade using human recombinant mAb Belimumab promoted tolerance in murine models by:
— depleting follicular and alloreactive B cells;
— promoting an immature/transitional B cell phenotype;
— abrogating the alloantibody response;
— sustaining a regulatory cytokine environment [49, 50].
C. Costimulation Blockade: alloreactive T cell activation requires signal 1 and signal 2 [51]. Blockade of costimulation effectively prevents T cell activation and allograft rejection. T cells become anergic and they express ICOS (inducible costimulator) and play a regulatory role. Costimulatory signals of the CD28 : B7 and CD40 : CD40L are the most studied and most important. CTLA-4 binding with 10–20 folds higher affinity than CD28 to B7 on APCs and inhibits the T cell. Also this ligation induces IDO promoting the suppressive functions in CTLA-4 regulatory CD4+ cells [52].

Abatacept and Belatacept, fusion proteins composed of CTLA-4 and IgG1, confer potent inhibition of alloreactive T cell responses. Belatacept is more effective compared to Abatacept [53]. However lymphoproliferative disorder in the belatacept-treated patients are more important than calcineurin blockers [54–56].

D. Tolerogenic DCs, macrophages, and MSCs (mesenchymal stromal cells).

The tolerogenic properties of DCs include the ability to acquire and present antigen, expand and respond to antigen-specific Tregs, constitutively express low levels of MHC and costimulatory molecules, produce high IL-10 and TGFβ and low IL-12, resist activation by danger signals and CD40 ligation, resist killing by NK or T cells and promote apoptosis of effector T cells [57].

I. Tregs stimulated by Rapamycin-conditionned DCs suppress more effectively antigen-specific T cell proliferation [58].

II. IL-10-generated human tolerogenic DCs were optimal in producing highly suppressive Tregs [59].

— TAIC (transplant acceptance-inducing cell) is an immunoregulatory macrophage. They are IFNγ-stimulated monocyte-derived cells (IFNg-MdC) described as a non-DC and more mature form of resting macrophage expressing F4/80, CD11, CD86, PDL-1. Their suppressive effect is through the enrichment of CD4+CD25+Foxp3 cells and cell contact-and caspase-dependent depletion of activated T cells [60].

— Mesenchymal stromal cells (MSCs) have immunomodulatory properties, they inhibit T cell activation and proliferation possibly due to the production of nitric oxide and IDO (indoleamine-2,3-dioxygenase) [61]. MSCs harvested from term fetal membranes have been shown to significantly suppress allogeneic lymphocyte proliferation in mixed lymphocyte reactions (MLR) by suppressing IFNγ and IL-17 production and increasing IL-10 production [62, 63].

E. Chimerism-based approaches.

Chimerism is the concept that cells of different donor origins can coexist in the same organism. It might be derived into “mixed” or “microchimerism” and “full” or “macrochimerism”.

Mixed is defined as the presence of both donor and recipient cell lineages coexisting in the recipient bone marrow. Full chimerism implies complete elimination of recipient hematopoietic lineages and population of the recipient bone marrow by 100 % donor cells [64].

The main aim should be that donor cells that could attack the host and cause GVHD need to be eliminated while at the same time preserving the recipient’s ability to produce immune populations that can defend against infections [65]. This might be realised by partial irradiation of the recipient bone marrow with peripheral deletion of recipient T cells allowed for the development of both donor and recipient hematopoietic cells and induction of tolerance to donor tissue without the need for full myoablation [66–68]. Lastly in kidney transplantation, as the tolerance has two components, central and peripheral, the induction strategy consists of thymic irradiation to allow for development of a donor T cell reservoir in these organ recipients [69–71].

Kidney Transplant Tolerance

1. CD20 gene expression was significantly increased in urinary sediments of operationally tolerant KTRs (kidney trx recipients) [72].

2. An increase in the percentage or absolute number of B cells in the peripheral blood of operationally tolerant KTRs [73–76].

3. Enrichment of naive and transitional B cells at the expense of memory B cells [76].

4. Human CD24hiCD38hi B cells have recently been described as containing regulatory B cells (Bregs) [77].

5. Relative increase in the inhibitory Fc receptor FcgIIb and an increase in the negative regulator BANK1 (B-cell scaffold protein with ankyrin repeats 1) [76].

6. An increase proportion of central memory cells and a decreased proportion of effector cells [78].

7. Upregulation of many TGFβ regulated genes, as well as downregulation of costimulatory and T cell activation genes [79].

8. A high ratio of expression of FoxP3 to MAN1A2 (alpha-1,2-mannosidase) [73].

Conclusions

Limited data exist on the capacity of the currently defined biomarkers of tolerance to identify patients in which immunosuppressive drugs can be withdrawn.

Induction of chimerism in combination with kidney transplantation might provide development of central tolerance by deletion [80].

Alemtuzumab (Campath-1H) treatment is promising with minimal immunosuppression to create “Prope Tolerance” [81, 82].

Theroteosome inhibitor Bortezomib in combination with donor specific transfusion (DST) might be suitable since Bortezomib induces apoptosis of highly activated lymphocyte including plasma cells, B cells and T cells [83, 84].
References

1. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007 Dec 20;357(25):2601-14. doi: 10.1056/NEJMra064928.

2. Kasitske BL, Snyder JJ, Gilbertson DT, Wang C. Cancer after kidney transplantation in the United States. Am J Transplant. 2004 Jun;4(6):905-13. doi: 10.1111/j.1600-6143.2004.00450.x.

3. Ojo AO, Held PJ, Port FK, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003 Sep 4;349(10):931-40. doi: 10.1056/NEJMoa021744.

4. Li L, Woźniak JJ, Rodder S, et al. A common peripheral blood gene set for diagnosis of operational tolerance in pediatric and adult liver transplantation. Am J Transplant. 2012 May;12(5):1218-28. doi: 10.1111/j.1600-6143.2011.03928.x.

5. Bohne F, Martinez-Lloradilla M, Lozano JF, et al. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J Clin Invest. 2012 Jan;122(1):368-82. doi: 10.1172/JCIJ95411.

6. Sago P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker signature to detect tolerant renal allografts in humans. J Clin Invest. 2010 Jun;120(6):1848-61. doi: 10.1172/JCI39922.

7. Ashton-Chess J, Giral M, Brouard S, Soullou JP. Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation. 2007 Nov 27;84(10):1215-9. doi: 10.1097/TP.0b013e3181fed001.

8. Orlando G, Hempari P, Strautta RJ, et al. Clinical operational tolerance after renal transplantation: current status and future challenges. Ann Surg. 2010 Dec;252(6):915-28. doi: 10.1097/SLA.0b013e3181f36b6.

9. Goldman M, Wood K. Transplantation research: will we ever reach the holy grail? Transplantation. 2009 May 15;87(9 Suppl):S99-100. doi: 10.1097/TP.0b013e3181a2e377.

10. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945 Oct 19;102(2651):737-42. doi: 10.1126/science.102.2651.400.

11. Brent L. The discovery of immunologic tolerance. Hum Immunol. 1997 Feb;52(2):75-81. doi: 10.1016/S0198-8859(96)00289-3.

12. Ge W, Jiang J, Arp J, Liu W, García B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010 Dec 27;90(12):1312-20. doi: 10.1097/TP.0b013e3181f5d001.

13. Collins E, Gu F, Qi M, et al. Differential efficacy of human mesenchymal stem cells based on source of origin. J Immunol. 2014 Nov 1;193(9):4381-90. doi: 10.4049/jimmunol.1401636.

14. Qi H, Chen G, Huang Y, Si Z, Li J. Foxp3-modified bone marrow mesenchymal stem cells promote liver allograft tolerance through the generation of regulatory T cells in rats. J Transl Med. 2015 Aug 21;13:274. doi: 10.1186/s12976-015-0638-2.

15. Feng S, Ekong UD, Lobritto SJ, et al. Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA. 2012 Jan 18;307(3):283-93. doi: 10.1001/jama.2011.2014.

16. Levitsky J. Operational tolerance: past lessons and future prospects. Liver Transpl. 2011 Mar;17(3):222-32. doi: 10.1002/lt.22265.

17. Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: clinical implications. Tissue Antigens. 2007 Jun;69(6):545-56. doi: 10.1111/j.1399-0039.2007.00834.x.

18. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011 Mar;11(3):450-62. doi: 10.1111/j.1600-6143.2010.03283.x.

19. Lodhi SA, Lamb KE, Meier-Kriesche HU. Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant. 2011 Jun;11(6):1226-35. doi: 10.1111/j.1600-6143.2011.03539.x.

20. Newell KA, Phippard D, Turka LA. Regulatory cells and cell signatures in clinical transplantation tolerance. Curr Opin Immunol. 2011 Oct;23(5):655-9. doi: 10.1016/j.coi.2011.07.008.

21. Francis RS, Feng G, Th-A In T, Lyons IS, Wood KJ, Bushell A. Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur J Immunol. 2011 Mar;41(3):726-38. doi: 10.1002/eji.201040509.

22. Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation. 2008 Aug 27;86(4):578-89. doi: 10.1097/TP.0b013e3181806a60.

23. Page E, Kwon J, Oh B, Knechtle S. Lymphodepletion strategies in transplantation. Cold Spring Harb Perspect Med. 2013 Jul 1;3(7):a015511. doi: 10.1101/cshperspect.a015511.

24. Groux H, O’Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997 Oct 16;389(6652):737-42. doi: 10.1038/39614.

25. Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005 Aug;206:232-59. doi: 10.1111/j.0105-2896.2005.00280.x.

26. Vlad G, Cortesini R, Saciu-Foca N. CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol. 2008 Nov;69(11):681-6. doi: 10.1016/j.humimm.2008.08.286.

27. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med. 2000 Jul;6(7):782-9. doi: 10.1038/77513.

28. Seino KI, Fukao K, Muramoto K, et al. Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2577-81. doi: 10.1073/pnas.041608298.

29. Starzle TE, Marchorzo TI, Waddell WR. The rejection of reaction in human renal homografts with subsequent development of homograft tolerance. Surg Gynecol Obstet. 1963 Oct;117:385-95.

30. Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant. 2004 Aug;4(8):1289-95. doi: 10.1111/j.1600-6143.2004.00515.x.

31. Womer KL, Kaplan B. Recent developments in kidney transplantation--a critical assessment. Am J Transplant. 2009 Jun;9(6):1265-71. doi: 10.1111/j.1600-6143.2009.02639.x.

32. Markmann J. Immunosuppression With Antithymocyte Globulin, Rituximab, Tacrolimus, Mycophenolate Mofetil and Sirolimus, Followed by Withdrawal of Immunosuppression, in Living-donor Renal Transplant Recipients. National Institute of Allergy and Infectious Diseases (NIAID). 2011. ClinicalTrials.gov identifier: NCT01318915.
33. Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int. 2006 Sep;19(9):705-14. doi: 10.1011/j.1432-2277.2006.00343.x.

34. Knechtle SJ, Pirsch JD, Fechner J Jr, et al. Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant. 2003 Jun;3(6):722-30. doi: 10.1034/j.1600-6143.2003.00120.x.

35. Pearl JP, Parris J, Hale DA, et al. Immune-competent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005 Mar;5(3):465-74. doi: 10.1111/j.1600-6143.2005.00759.x.

36. Trzonkowski P, Zilvetti M, Chapman S, et al. Homeostatic repopulation by CD28−CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant. 2008 Feb;8(2):338-47. doi: 10.1111/j.1600-6143.2007.02078.x.

37. Bloom D, Chang Z, Pauly K, et al. BAFF is increased in renal transplant patients following treatment with alemtuzumab. Am J Transplant. 2009 Aug;9(8):1835-45. doi: 10.1111/j.1600-6143.2009.02710.x.

38. Thompson SA, Jones JL, Cox AL, Compton DA, Coles AJ. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010 Jan;30(1):99-105. doi: 10.1007/s10875-009-9327-3.

39. Redfield RR 3rd, Rodriguez E, Parsons R, et al. Essential role for B cells in transplantation tolerance. Curr Opin Immunol. 2011 Oct;23(5):685-91. doi: 10.1016/j.coi.2011.07.011.

40. Newell KA, Asare A, Kirk AD, et al; Immune Tolerance Network. STS07 Study Group. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010 Jun;120(6):1836-47. doi: 10.1172/JCI39933.

41. Eng HS, Bennett G, Tsiopeas E, et al. Anti-HLA donor-specific antibodies detected in positive B-cell crossmatches by Luuminex predict late graft loss. Am J Transplant. 2008 Nov;8(11):2335-42. doi: 10.1111/j.1600-6143.2008.02387.x.

42. Lefaucheur C, Suberbielle-Boiselle C, Hill GS, et al. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am J Transplant. 2008 Feb;8(2):324-31. doi: 10.1111/j.1600-6143.2007.02072.x.

43. Terasaki PI, Cai J. Human leukocyte antigen antibodies and chronic rejection: from association to causation. Transplantation. 2008 Aug 15;86(3):377-83. doi: 10.1097/TP.0b013e31817e4c88.

44. Lee PC, Zha L, Terasaki PI, Eversy MJ. HLA-specific antibodies developed in the first year posttransplant are predictive of chronic rejection and graft loss. Transplantation. 2009 Aug 27;88(4):568-74. doi: 10.1097/TP.0b013e3181b11b72.

45. Liu C, Nooroochsh H, Sutter JA, et al. B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat Med. 2007 Nov;13(11):1295-8. doi: 10.1038/nm.1673.

46. Schneider P, Mackay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999 Jan 7;189(11):1747-56. doi: 10.1084/jem.189.11.1747.

47. Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231-64. doi: 10.1146/annurev.immunol.21.120601.141152.

48. Xu H, He X, Liu Q, et al. Abnormal high expression of B-cell activating factor belonging to the TNF superfamily (BAFF) associated with long-term outcome in kidney transplant recipients. Transplant Proc. 2009 Jun;41(5):1552-6. doi: 10.1016/j.transproceed.2008.10.024.

49. Zarikhin V, Li L, Sarwal MM. BAFF may modulate the rate of B-cell repopulation after rituximab therapy for acute renal transplant rejection. Transplantation. 2009 Nov 27;88(10):1229-30. doi: 10.1097/TP.0b013e3181bba1a.

50. Vivek K, Parsons R Rostami SY, et al. BLyS-directed immunotherapy purges alloreactive specificities from the primary B-cell repertoire and promotes humoral transplantation tolerance. Am J Transplant. 2011;11:171.

51. Jenkins MK, Schwartz RH. Antibody presentation by chemically modified splenocytes induces antigen-specific T-cell unresponsiveness in vitro and in vivo. J Exp Med. 1987 Feb 1;165(2):302-19. doi: 10.1084/jem.165.2.302.

52. Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004 Apr 1;172(7):4100-10. doi: 10.4049/jimmunol.172.7.4100.

53. Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005 Mar;5(3):443-53. doi: 10.1111/j.1600-6143.2005.00749.x.

54. Larsen CP, Griny J, Medina-Pestana J, Vanrenterghem Y, et al. Belatacept-based regimens versus a cyclosporine A-based regimen in kidney transplant recipients: 2-year results from the BENEFIT and BENEFIT-EXT studies. Transplantation. 2010 Dec 27;90(12):1528-35. doi: 10.1097/TP.0b013e31820c10eb.

55. Pestana JO, Grinyo JM, Vanrenterghem Y, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012 Mar;12(3):630-9. doi: 10.1111/j.1600-6143.2011.03914.x.

56. Thomson AW, Turnquist HR, Zahorack CH, Raimondi G. Tolerogenic dendritic cell-regulatory T-cell interaction and the promotion of transplant tolerance. Transplantation. 2005 May 15;80(5):783-9. doi: 10.1097/TP.0b013e3184d853a.

57. Fujita S, Sato Y, Sato K, et al. Regulatory dendritic cells protect against cutaneous chronic graft-versus-host disease mediated through CD4+CD25+Foxp3+ regulatory T cells. Blood. 2007 Nov 15;110(10):3793-803. doi: 10.1182/blood-2007-04-086470.

58. Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM, ten Brinke A. IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clin Immunol. 2012 Mar;142(3):332-42. doi: 10.1016/j.clim.2011.11.011.

59. Brem-Exner BG, Sattler C, Hutchinson JA, et al. Macrophages driven to a novel state of activation have anti-inflammatory properties in mice. J Immunol. 2008 Jan 1;180(1):335-49. doi: 10.4049/jimmunol.180.1.335.
1. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of immunostimulation. Annu Rev Pathol. 2011;6:457-78. doi: 10.1146/annurev-pathol-010111-130230.

2. Karlsson H, Erkers T, Nava S, Rahman M, Westgren M, Ringdén O. Stromal cells from term fetal membrane are highly suppressive in allogeneic settings in vitro. Clin Exp Immunol. 2012 Mar;167(3):543-55. doi: 10.1111/j.1365-2249.2011.04540.x.

3. Dajjovestin M, Molendijk I, Roelofs H, et al. Mesenchymal stromal cell function is not affected by drugs used in the treatment of inflammatory bowel disease. Cytotherapy. 2011 Oct;13(9):1066-73. doi: 10.3109/14653249.2011.597379.

4. Jankowski RA, Ilstad ST. Chimerism and tolerance: from freemartin cattle and neonatal mice to humans. Hum Immunol. 1997 Feb;52(2):155-61. doi: 10.1016/S0198-8859(96)00290-X.

5. Sachs DH, Sykes M, Kawai T, Cosimi AB. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol. 2011 Jun;23(3):165-73. doi: 10.1016/j.smim.2011.07.001.

6. Ilstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984 Jan 12-18;307(5947):168-70. doi: 10.1038/307168a0.

7. Shababi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med. 1989 Feb 1;169(2):493-302. doi: 10.1084/ jem.169.2.493.

8. Kaufman CL, Ilstad ST. Induction of donor-specific tolerance by transplantation of bone marrow. Thr Immunol. 1994 Apr;1(2):101-11.

9. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008 Jan 24;358(4):353-61. doi: 10.1056/NEJMoa071074.

10. Sachs DH, Sykes M, Kawai T, Cosimi AB. Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol. 2011 Jun;23(3):165-73. doi: 10.1016/j.smim.2011.07.001.

11. Spitzer TR, Sykes M, Toikof-JRubin N, et al. Long-term follow-up of recipients of combined human leukocyte antigen-matched bone marrow and kidney transplantation for multiple myeloma with end-stage renal disease. Transplantation. 2011 Mar 27;91(6):672-6. doi: 10.1097/TP.0b013e31820a3068.

12. Newell KA, Asare A, Kirk AD, et al; Immune Tolerance Network STS07 Study Group. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010 Jun;120(6):1836-47. doi: 10.1172/JCI39933.

13. Sago P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest. 2010 Jun;120(6):1848-61. doi: 10.1172/JCI39922.

14. Newell KA, Asare A, Kirk AD, et al; Immune Tolerance Network STS07 Study Group. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010 Jun;120(6):1836-47. doi: 10.1172/JCI39933.

15. Louis S, Braudeau C, Giral M, et al. Contrast- ing CD28/C4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation. 2006 Feb 15;81(3):398-407. doi: 10.1097/01.tp.0000203166.44968.86.

16. Pallier A, Hillion S, Danger R, et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 2010 Sep;78(5):503-13. doi: 10.1038/ki.2010.162.

17. Zarhkin V, Lovelace PA, Li L, Hsieh SC, Sarwal MM. Phenotypic evaluation of B-cell subsets after rituximab for treatment of acute renal allograft rejection in pediatric recipients. Transplantation. 2011 May 15;91(9):1010-8. doi: 10.1097/ TP.0b013e318213d4f9.

18. Baeten D, Louis S, Braud C, et al. Phenotypically and functionally distinct CD8+ lymphocyte populations in long-term drug-free tolerance and chronic rejection in human kidney graft recipients. J Am Soc Nephrol. 2006 Jan;17(1):294-304. doi: 10.1681/ ASN.2005020178.

19. Brouard S, Mansfield E, Braud C, et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15448-53. doi: 10.1073/pnas.070534104.

20. Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008 Jan 24;358(4):353-61. doi: 10.1056/NEJMoa071074.

21. Calne R, Friend P, Moffatt S, et al. Prope tolerance, peri-operative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet. 1998 Jun 6;351(9117):1701-2. doi: 10.1016/S0140-6736(05)77279-4.

22. Calne R, Watson CJ. Some observations on prope tolerance. Curr Opin Organ Transplant. 2011 Aug;16(4):353-8. doi: 10.1097/MOT.0b013e328348444c.

23. Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant. 2009 Jan;9(1):201-9. doi: 10.1111/j.1600-6143.2008.02461.x.

24. Heidt S, Roelen DL, Vergunst M, Doxidis II, Claas FH, Mulder A. Bortezomib affects the function of human B cells: possible implications for desensitization protocols. Clin Transpl. 2009;387-92.

Received 12.07.2021
Revised 23.07.2021
Accepted 02.08.2021

Information about author
Yusuf Ercin Sonmez, Istanbul, Turkey; e-mail: yusufersonmez57@gmail.com; https://orcid.org/0000-0002-8724-423X

Conflicts of interests. Author declares the absence of any conflicts of interests and their own financial interest that might be construed to influence the results or interpretation of their manuscript.
Майбутнє трансплантації органів: органоспецифічна толерантність

Резюме. Трансплантація між двома особами, які не є генетично ідентичними, називається аллотрансплантацією. Донорські органи та тканини можуть бути отримані від живих людей або від людей, які померли через серйозну травму мозку або порушення кровообігу. Аллотрансплантація може призвести до процесу відторгнення, коли імунна система реципієнта атакує чужорідний донорський орган або тканину та руйнує їх. Реципієнту може знадобитись приймати імуносупресивні ліки протягом усього життя, щоб зменшити ризик відторгнення донорського органа. Як правило, медикаментозно індукована імуносупресія проводиться для запобігання відторгненню трансплантата. Побічні ефекти, пов’язані з цими препаратами, та ризики довготривалої імуносупресії представляють для клініциста серйозну проблему. Імунна толерантність, або імунологічна толерантність, або імунотolerантність, — це стан несприйнятливості імунної системи до впливу речовин або тканин, що здатні викликати імунну відповідь у даному організмі. Її присвячена дана стаття.

Ключові слова: трансплантація органів; імуносупресивна терапія; відторгнення; імунна толерантність; регуляторні клітини; химеризм; огляд

Будущее трансплантации органов: органная толерантность

Резюме. Трансплантация между двумя лицами, которые не являются генетически идентичными, называется аллотрансплантацией. Донорские органы и ткани могут быть от живых людей или людей, умерших из-за серьезной черепно-мозговой травмы или нарушения кровообращения. Аллотрансплантация может вызвать процесс отторжения, когда иммунная система реципиента атакует чужеродный донорский орган или ткань и разрушает их. Реципиенту может потребоваться принимать иммуносупрессивные средства на протяжении всей жизни, чтобы снизить риск отторжения донорского органа. Как правило, индуцированная иммуносупрессия назначается, чтобы не дать организму отторгнуть трансплантат. Неблагоприятные эффекты, связанные с этим назначением иммунодепрессантов, и риски долгосрочной иммуносупрессии представляют для клиницистов серьезную проблему. Иммунная толерантность, или иммунологическая толерантность, или иммунотолерантность, — это состояние невосприимчивости иммунной системы к веществам или тканям, которые способны вызывать иммунный ответ в данном организме. Ей посвящена данная статья.

Ключевые слова: трансплантация органов; иммуносупрессивная терапия; отторжение; иммунная толерантность; регуляторные клетки; химеризм; обзор