The Influence of Ultrasonic Wave Treatment on the Mechanical Properties of Nanoclay-reinforced Starch Biocomposite

H Suryanto1,* S Jenuardy1, D Kustono1, RA Dharmabintara1, J Maulana1, U Yanuhar2

1 Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Malang, Indonesia
2 Faculty of Fisheries and Marine Science, Brawijaya University, Malang, Indonesia

*Corresponding author’s email: heru.suryanto.ft@um.ac.id

Abstract. The cassava as a starch source has a great potential as biocomposite matrix in a packaging material technology. The addition of nanoclay as biocomposite reinforcement into matrix will increase the biocomposite properties but it is difficult to homogenize a nanoclay particle into the biocomposite matrix. Accordingly, the research aimed at showing the effect of ultrasonic wave treatment on the strength of starch-based biocomposite with nanoclay as reinforcement. The research was conducted by applying a casting technique to synthesize the biocomposite. The ultrasonic wave treatment was conducted during biocomposite synthetic process with 5% (wt/wt) nanoclay with various homogenizing time and subsequently pour it into the mold. Biocomposite strength was determined by a tensile tester. The fracture morphology was observed using SEM and the functional group was analyzed using FTIR methods. The results show that the ultrasonic wave treatment affects the mechanical properties of nanoclay reinforced starch biocomposite. This result shows that the duration time of the ultrasonic wave treatment 15, 30, 45, and 60 min. increase strength and elongation of 11.79 MPa, 14.77 MPa, 20.52 MPa, 28.01 MPa, and 12.08%, 16.08%, 26.12%, 27.90%, respectively. It shows that the duration time of the ultrasonic wave treatment ≥ 45 minutes resulted in better mechanical properties of biocomposite.

Keywords: Nanoclay, biocomposite, cassava, ultrasonic wave, mechanical properties

1. Introduction

A global problem occurring in the worldwide is a plastic waste. Annually, over 300 million tons of plastics were consumed in the worldwide and about 50% of this volume was for disposable applications [1,2]. Especially in Indonesia, the disposal of plastics was 14% of total waste, about 5.4 million tons, in 2015 [3]. This waste was a potentially serious problem for the ecology and environment because of difficulty degraded and non-renewable [4].

In general, every industrial sector uses plastic because it has several advantages namely lightweight, practical, flexible, and the price is relatively cheap. The negative impact of the use of plastics is the waste caused by plastics is generally not easily destroyed by soil microbes. As a result, there is an accumulation of waste and become the cause of environmental damage [5]. Bioplastics are the solution
to decrease the plastic waste because it is able to be degraded into the environment for two months by microorganisms [6].

The starches are potential natural polymers for replacing the synthetic plastics. Due to the third largest producer of cassava in the worldwide with about 26 million tons by 2014 [7], Indonesia utilizes cassava as a potential source of starch for bioplastic raw material. Bioplastics have advantages such as wide availability, low cost, flexible, transparent, no taste, no smell, resistant to O2, semipermeable against CO2, and can be degraded without bringing out the toxic compound [8][9]. Usually, bioplastic has poor mechanical properties (tensile strength and elastic modulus t) [10]. Many ways were conducted to improve the mechanical properties by using reinforcement/filler such as carbon nanotubes, carbon nanofibres, metal oxides, and nanoclay and dispersed it into bioplastic [11].

In the synthesis process of starch, biocomposite was performed by the addition of reinforcement such as nanoclay with no appropriate process tends to agglomerate. They tend to increase the biocomposite porosity [12] which decreasing mechanical properties [13]. The problem is how to make reinforcement such as nanoclay to be a uniform distribution and avoiding agglomeration in the biocomposite. We describe the study of the effect of ultrasonic wave treatment during the biocomposite synthesis on the strength of nanoclay reinforced starch biocomposite.

2. Methods

2.1. Materials
The raw material was the commercial cassava starch obtained from the district of Malang, East Java, Indonesia. Nanoclay was provided by the Sigma Aldrich.

2.2. Biocomposite synthesis
The synthesis methods of biocomposites were conducted in accordance with methods from [14][15]. Glycerols, 1.5% (v/v), were added in 98.5 mL distilled water and stirred for 5 min at 900 rpm then 5% (wt/wt) nanoclays were added into the solution. The solution was heated up to 80°C for 45 min while stirred under 900 rpm. The ultrasonic wave was applied to the solution with various duration treatment of 15, 30, 45, and 60 min at 300W and 20 kHz. After the homogenization process, 5.0% (wt/v) cassava starch was dissolved into the solution and heated at 80 °C for 30 min. on a hot plate. The solutions were poured in the mold then dried at 70°C for 4 h in an oven then kept in the dry box.

2.3. Strength measurement
The biocomposite strength measurement was conducted using the Fiber Tensile Tester (Techno Lab. Indonesia) with a maximum load capacity of 50 N. The sample dimension follows the ASTM D882 standard. Biocomposite film sample (60 x 5 mm2) were clamped in the grips in a range of 50 mm and pulled by a velocity of 0.025 mm s⁻¹ until the break.

2.4. Surface morphological observation
The morphology of the biocomposite surface was observed using the Scanning Electron Microscope (SEM) (FEI, Inspect-S50 type) at 10.00 kV. Prior to the SEM process, the specimens were coated with a gold layer with the thickness of 10 nm (SC7-620 Emitech sputter coater) [15].

2.5. FTIR analysis
FTIR of nanoclay reinforced biocomposite was performed using the KBr pellet technique. Samples weigh of 0.1 mg were mixed with an infrared-grade of KBr powder of 1 mg then were ground into powder and pressed into a pellet. The FTIR spectra were scanned and recorded in the Shimadzu IR Prestige-21 within the range 400 to 4000 cm⁻¹ with the scan step of 2 cm⁻¹.
3. Results and Discussion

3.1. Morphology of biocomposite
The biocomposite surface morphology observed with an optical camera and SEM are shown in Figure 1. The bioplastic made of starch show a clear transparent (Figure 1A) and after additional nanoclay, biocomposite was reduced its transparency (Figure 1B). The untreated of the ultrasonic wave, biocomposite morphology showed the agglomeration of nanoclay (Figure. 1C) after treatment process for 60 min, the biocomposite surface became rough. The nanoclays were uniformly spreading in biocomposite (Figure 1D). The biocomposite structure was changed with the presence of nanoclay through the intercalated or exfoliated mechanism in starch-layered silicate [16].

![Figure 1](image-url)

Figure 1. The surface morphology of biocomposite: (A) bioplastic starch; (B) Nanoclay-reinforced starch biocomposite; (C) Biocomposite without ultrasonic wave treatment; (D) Biocomposite with ultrasonic wave for 60 min.

3.2. Functional groups analysis
The observation using infrared spectra (IR) was performed using a Shimadzu Fourier Transmitter Infra-Red (FTIR). The nanoclay reinforced biocomposite spectra are shown in Figure 2. The result of the identification of functional group shows that there is no significant change among treatment of biocomposite with nanoclay. The shifting of several wave numbers and changes in the intensity of the absorption bands indicates the interaction between the polymer and nanoclay. The formation of C = C in the region of 1400-1600 cm\(^{-1}\) [17] was more smooth at increasing the ultrasonic wave treatment. There was a change of curvature which was the valley at the region of 2000-2500 cm\(^{-1}\) indicating a vibration of the triple bond and the fingerprint region at 1500–600 cm\(^{-1}\) [18]. After the ultrasonic wave treatment of 60 min, this valley was disappeared. It indicates the interaction between bioplastic and nanoclay. The molecular interaction between polymers and nanoclay was able to produce two kinds of biocomposites namely intercalated and exfoliated biocomposites. The intercalated biocomposites are formed by the penetration of the polymer chains into the regions among the clay layers, forming alternating layers of polymer and clay or an ordered multilayer structure. The exfoliated biocomposites result from the extensive polymer penetration [19].
Figure 2. FTIR analysis of biocomposite

3.3. Strength of biocomposite

The mechanical properties of biocomposites are the main characteristics that have an important role in the application. The mechanical properties consisting of tensile strength and percent displayed at break and elasticity [20] are shown in Figure 3.

Figure 3. Force-elongation curve of biocomposite starch-nanoclay
Table 1. Results of the tensile test of biocomposite

Ultrasonic treatment (min.)	Average sample thickness (mm)	Maximum force (N)	Elongation at break (%)	Tensile strength (MPa)	Elastic modulus (MPa)
0	0.200	0.8584	21.04	8.95	42.5
15	0.198	1.1676	12.08	11.79	97.6
30	0.170	1.2553	16.08	14.77	91.8
45	0.181	1.8571	26.12	20.52	78.6
60	0.153	2.1434	27.90	28.01	100.4

Figure 4. Biocomposite surface fracture after the tensile test: Biocomposite without treatment (A); Treatment by UltrasoniFc wave for 15 min (B); 30 min. (C); 45 min. (D); 60 min (E)
Tensile strength represents the composite material capability to receive a tension or load without any damage or broken which is expressed with a maximum tension before breaking that is the ultimate tensile strength. The tensile strength of the composite material can be influenced by several factors such as the compatibility of reinforcement into the matrix material, uniform distribution of reinforcement in the matrix, the relative ratio between the reinforcement, and the matrix materials in the composite materials. The elongation at sample break refers to the maximum change of film length while obtaining tensile strength until the film breaks, compared to the initial length.

Ultrasonic energy spreads nanoclay into biocomposite to make biocomposite has a uniform structure. Variations in a treatment time of 0 min., 15 min., 30 min., 45 min., and 60 min. results the elastic biocomposite with strain of 21.04%, 12.08%, 16.08%, 26.12%, 27.90%, respectively. Uniform distribution of the filler in the composite matrix is important for the production of bioplastics to increase its workability and flexibility. The addition of treatment duration during ultrasonic wave treatment affects the strength of nanoclay reinforced starch biocomposite. The variations of treatment duration of the ultrasonic wave of 15 min., 30 min., 45 min., and 60 min. produce biocomposites with a strength of 11.79 MPa; 14.77 MPa; 20.52 MPa; 28.01 MPa, and elastic modulus of 42.5 MPa, 97.6 MPa, 91.8 MPa, 78.6 MPa, and 100.4 MPa, respectively (Table 1). The exfoliated and partially exfoliated structure of biocomposite leads to a substantial increase the biocomposite elasticity [21]. The longest time of the ultrasonic wave treatment makes the molecule becomes homogeneous and well dispersed in the solvent or matrix [5]. The improvement of both bioplastic elongation and strength can be related to effectively interfacial adhesion between nanoclay fillers and starch matrix, through the intercalation and exfoliation mechanism of bioplastic in nanoclay, as describe in FTIR results.

The change of the mechanical properties of biocomposite was proved through the morphology of the tensile test fracture, as shown in Figure 4. Biocomposite without treatment shows several nanoclay agglomerations. It means nanoclay could not distribute uniformly at the biocomposite matrix (Figure 4A). After treated with ultrasonic wave for 15 min, the nanoclay agglomerate decreased and show the smooth surface (Figure 4B). The increasing duration of ultrasonic wave treatment, the rougher the surface of biocomposite (Figure 4C-E). It means there is a good interaction bond in the biocomposite so that the biocomposite has a crack retardation mechanism causing the increase of the tensile strength.

4. Conclusion
The duration time of the ultrasonic wave treatment during biocomposite synthesis enhanced the strength of the biocomposite. The ultrasonic wave treatment for 60 minutes resulted in high mechanical properties with an elongation percentage of 28% and tensile strength of 28.01 MPa.

References
[1] North E J and Halden R U 2013 Plastics and environmental health: the road ahead. Reviews on environmental health 28 1–8
[2] Lytle C 2017 Plastic Pollution http://plastic-pollution.org/
[3] Ciptakarya 2015 Production of plastic waste in Indonesia 5.4 millions ton per years (in Indonesian)
[4] Diez-Pascual A M and Diez-Vicente A L 2014 Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties International Journal of Molecular Sciences 15 10950–73
[5] Ningwulan M P S 2012 Synthesis of biocomposite edible film from gelatin/bacterial cellulose microcrystal (bcmc): variation of matrix concentration, filler, and sonication time (in Indonesian) Bachelor thesis of Univ.of Indonesia
[6] Wahyuningtyias N E and Suryanto H 2017 Analysis of Biodegradation of Bioplastics Made of Cassava Starch JMEST 1 40–53
[7] Julianto 2014 National Cassava Production (in Indonesian) Tabloid Sinar Tani
[8] Sulaiman S, Manut A and Nur Firdaus A R 2009 Starch Plastic Packaging and Agriculture Applications ICIMT ’09. International Conference, IEEE pp 513–6
[9] Chowdhury T and Das M 2013 Effect of antimicrobials on mechanical, barrier and optical properties of corn starch based self-supporting edible film *International Journal of Food Studies* 2 212–23

[10] López O V., Castillo L A, García M A, Villar M A and Barbosa S E 2015 Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles *Food Hydrocolloids* 43 18–24

[11] Sandler J, Werner P, Shaffer M S ., Demchuk V, Altstädt V and Windle A H 2002 Carbon-nanofibre-reinforced poly(ether ether ketone) composites *Composites Part A: Applied Science and Manufacturing* 33 1033–9

[12] Assaedi H, Shaikh F U A and Low I M 2016 Effect of nano-clay on mechanical and thermal properties of geopolymer *Journal of Asian Ceramic Societies* 4 19–28

[13] Gabr M H, Phong N T, Abdelkareem M A, Okubo K, Uzawa K, Kimpara I and Fujii T 2013 Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nanocellulose biocomposites *Cellulose* 20 819–26

[14] Suryanto H, Wahyuningtyias N E, Wanjaya Reza, Puspitasari P and Sukarni 2016 Struktur dan Kekerasan Bioplastik dari Pati Singkong *Prosiding SeN TerTek Politeknik Negeri Malang*

[15] Sari N. H, Wardana, I N G, Irawan Y S, Siswanto E 2016 Physical and Acoustical Properties of Corn Husk Fiber Panels *Advances in Acoustics and Vibration* 10 1155

[16] Suryanto H, Hutomo P T, Wanjaya R and Puspitasari P 2016 The Structure of Bioplastic from Cassava Starch with Nanoclay Reinforcement *AIP International Proceeding International Mechanical Engineering and Engineering Education (IMEEC)* pp 030027-(1-4)

[17] Krishnaswamy V and Muralidharan M 2016 Austin Journal of Environmental Toxicology *Austin J Environ Toxicol. Austin J Environ Toxicol* 2 1011

[18] Sacithraa R, MadhanMohan M and Vijayachitra S 2013 Quantitative Analysis of Tapioca Starch using FT-IR Spectroscopy and Partial Least Squares *International Journal of Computer Applications* (0975 – 88) 29–33

[19] Talegaonkar S, Sharma H, Pandey S, Mishra P K and Wimmer R 2017 Bionanocomposites: smart biodegradable packaging material for food preservation *Food Packaging* ed A . Grumezescu (Academic Press) pp 79–110

[20] Bertolini A C 2010 *Starches : characterization, properties, and applications* (Taylor & Francis)

[21] Suter J L, Groen D and Coveney P V. 2015 Mechanism of Exfoliation and Prediction of Materials Properties of Clay–Polymer Nanocomposites from Multiscale Modeling *Nano Letters* 15 8108–13

Acknowledgments

A great appreciation was delivered to the Ministry of Research and Technology and Higher Education, the Republic of Indonesia with a research grant of PDUPT through a contract of 1.3.32/UN32.14/LT/2018.