A NOTE ON PRIME NUMBER RACES AND ZERO FREE REGIONS FOR L FUNCTIONS

MARCO AYMONE

Abstract. Let \(\chi \) be a real and non-principal Dirichlet character, \(L(s, \chi) \) its Dirichlet \(L \)-function and let \(p \) be a generic prime number. We prove the following result: If for some \(0 \leq \sigma < 1 \) the partial sums \(\sum_{p \leq x} \chi(p)p^{-\sigma} \) change sign only for a finite number of \(x \), then there exists \(\epsilon > 0 \) such that \(L(s, \chi) \) has no zeros in the half plane \(\text{Re}(s) > 1 - \epsilon \). Moreover, if \(f : \mathbb{N} \to [-1, 1] \) is a completely multiplicative function that is small on average, i.e., \(\sum_{n \leq x} f(n) = o(x^{1-\delta}) \) for some \(\delta > 0 \), and if the Dirichlet series of \(f \), say \(F(s) \), is such that \(F(1) \neq 0 \), then there exists \(\epsilon > 0 \) such that \(F(s) \neq 0 \) for all \(\text{Re}(s) > 1 - \epsilon \) if and only if there exists \(0 \leq \sigma < 1 \) such that the partial sums \(\sum_{p \leq x} f(p)p^{-\sigma} \) change sign only for a finite number of \(x \).

1. Introduction.

Let \(\chi \) be a non-principal Dirichlet character and \(L(s, \chi) \) its Dirichlet \(L \)-function. Many central problems in analytic number theory such as questions about the distribution of primes in arithmetic progressions can be phrased in terms of zero-free regions for \(L(s, \chi) \). The typical zero free-region for \(L(s, \chi) \) known up to date is: If \(q \) is the modulus of \(\chi \), then there exists a constant \(c > 0 \) such \(L(\sigma + it) \neq 0 \) for

\[
\sigma > 1 - \frac{c}{\log q(2 + |t|)},
\]

with at most one possible exception – A real zero \(\beta < 1 \) – in the case that \(\chi \) is real (see [6] pg. 360).

Let \(p \) be a generic prime number and \(\mathcal{P} \) be the set of primes. Let \(\chi_4 \) be the real and non-principal Dirichlet character \(\mod 4 \), i.e., \(\chi_4(n) = 1 \) if \(n \equiv 1 \mod 4 \), \(\chi_4(n) = -1 \) if \(n \equiv 3 \mod 4 \) and \(\chi_4(n) = 0 \) if \(n \) is even. Then the sum \(\sum_{p \leq x} \chi_4(p) \) is the prime number race \(\mod 4 \): the number of primes up to \(x \) of the form \(4n + 1 \) minus the number of primes up to \(x \) of the form \(4n + 3 \).

In 1853, in a letter to Fuss, it has been observed by Tchébyhev that seems to be more primes of the form \(4n + 3 \) than primes of the form \(4n + 1 \). In other words, it seems that \(\sum_{p \leq x} \chi_4(p) \leq 0 \) for most values of \(x \). This observation led to many investigations on prime number races for a generic modulus \(q \). For an historical background on prime number races we refer reader to the expository paper...
of Granville and Martin [3], and for recent results in this topic we refer to the paper of Harper and Lamzouri [4] and the references therein.

In the prime number race mod 4, the partial sums \(\sum_{p \leq x} \chi_4(p) \) change sign for an infinite number of \(x \). However, for \(0 < \sigma < 1 \), it is possible that the weighted prime number race \(\sum_{p \leq x} \frac{\chi_4(p)}{p^\sigma} \) change sign only for a finite number of \(x \). If this is the case, then we have:

Theorem 1.1. Let \(\chi \) be a real and non-principal Dirichlet character. If for some \(0 \leq \sigma < 1 \) the partial sums \(\sum_{p \leq x} \frac{\chi(p)}{p^\sigma} \) change sign only for a finite number of \(x \), then there exists \(\epsilon > 0 \) such that \(L(s, \chi) \neq 0 \) for all \(s \) in the half plane \(\text{Re}(s) > 1 - \epsilon \).

Let \(\mathcal{P} \) be the set of prime numbers.

Corollary 1.1. Under the hypothesis of Theorem 1.1, we have that for some \(\epsilon > 0 \), \(\sum_{p \in \mathcal{P}} \frac{\chi(p)p^{-(1-\epsilon)}}{p^\sigma} \) converges, and hence, the Euler product formula

\[
L(s, \chi) = \prod_{p \in \mathcal{P}} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}
\]

holds for all \(\text{Re}(s) > 1 - \epsilon \).

It is worth mentioning that a converse result holds for Theorem 1.1:

Theorem 1.2. Let \(\chi \) be a real and non-principal Dirichlet character. If for some \(\epsilon > 0 \) we have that \(L(s, \chi) \neq 0 \) for all \(\text{Re}(s) > 1 - \epsilon \), then there exists \(1 - \epsilon < \sigma < 1 \) such that \(\sum_{p \leq x} \chi(p)p^{-\sigma} \) change sign only for a finite number of \(x \).

The proof of Theorem 1.1 is an application of an integral version of Landau’s oscillation Theorem: If \(A : [0, \infty) \to \mathbb{R} \) is a bounded Riemann-integrable function in any finite interval \([1, x]\), and such that \(A(x) \geq 0 \) for all \(x \geq x_0 > 1 \), then the function

\[
F(s) = \int_1^\infty \frac{A(x)}{x^s} \, dx
\]

has a singularity in its abcissa of convergence.

In fact, the proof of Theorem 1.1 is done by the following steps: For \(\text{Re}(s) > 1 \) we can write

\[
\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s} = (s - \sigma) \int_1^\infty \frac{\sum_{p \leq x} \chi(p)}{x^{s+1-\sigma}} \, dx.
\]

For \(\chi \) non-principal, \(L(1, \chi) \neq 0 \) and since \(L(s, \chi) \) is analytic in \(\text{Re}(s) > 0 \), there exists an open ball \(B \) of center 1 and radius \(\delta > 0 \) in which \(L(s, \chi) \neq 0 \). The union
of the half plane $Re(s) > 1$ with this open ball is a simply connected domain, and since $L(s, \chi) \neq 0$ in this domain, there exists a branch of the Logarithm for $L(s, \chi)$. The existence of this branch implies that $\int_1^\infty \sum_{n \leq x} \frac{\chi(n)}{n^s} dx$ is analytic at $s = 1$, and hence, by the Landau’s oscillation Theorem, this integral converges for $s = 1 - \epsilon$, for some $\epsilon > 0$.

If $f : \mathbb{N} \to [-1, 1]$ is a completely multiplicative function that is small on average, i.e., $\sum_{n \leq x} f(n) = o(x^{1-\delta})$ for some $\delta > 0$, then the Dirichlet series $F(s) := \sum_{n=1}^\infty f(n)n^{-s}$ is analytic in $Re(s) > 1 - \delta$. In [2], Koukoulopoulos proved that if f is small on average and if $F(1) \neq 0$, then $\sum_{p \leq x} f(p) \log p \ll x \exp(-c\sqrt{\log x})$, for some constant $c > 0$. Let \mathcal{P} be the set of primes. In [11] it has been proved that under biased assumptions, i.e., if at primes $(f(p))_{p \in \mathcal{P}}$ is a sequence of independent random variables such that $\mathbb{E}f(p) < 0$ for all primes p, then the assumptions that f is small on average almost surely (a.s.) and $F(1) \neq 0$ a.s. imply that $\sum_{p \in \mathcal{P}} f(p)p^{-(1-\epsilon)}$ converges for some $\epsilon > 0$ a.s., and hence that $F(s) \neq 0$ for all $Re(s) > 1 - \epsilon$, a.s.

The same lines of the proof of Theorems 1.1 and 1.2 allow us to show that:

Theorem 1.3. If $f : \mathbb{N} \to [-1, 1]$ is a completely multiplicative function that is small on average, and if the Dirichlet series of f, say $F(s)$, is such that $F(1) \neq 0$, then there exists $\epsilon > 0$ such that $F(s) \neq 0$ for all $Re(s) > 1 - \epsilon$ if and only if there exists $0 \leq \sigma < 1$ such that the partial sums $\sum_{p \leq x} f(p)p^{-\sigma}$ change sign only for a finite number of x.

2. Proof of the main results

Notation. Here χ is a Dirichlet character and $L(s, \chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}$. We use both $f(x) \ll g(x)$ and $f(x) = O(g(x))$ whenever there exists a constant $C > 0$ such that for all large $x > 0$ we have that $|f(x)| \leq C|g(x)|$. Further, \ll_{δ} means that the implicit constant may depend on δ. We let \mathcal{P} for the set of primes and p for a generic element of \mathcal{P}. For a real number a, we denote the half plane $\{s \in \mathbb{C} : Re(s) > a\}$ by H_a.

Lemma 2.1. Let χ be a real and non-principal Dirichlet character. Then there exists an analytic function $B : H_{1/2} \to \mathbb{C}$ such that for $a > 1/2$, $B(s) \ll_a 1$ in the half plane H_a, and for $s \in H_1$:

$$\log L(s, \chi) = \sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s} + B(s).$$
Proof. This follows from the Euler product formula valid for \(s \in H_1 \):

\[
L(s, \chi) = \prod_{p \in \mathbb{P}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}.
\]

Thus

\[
\log L(s, \chi) = \sum_{p \in \mathbb{P}} \log \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} = \sum_{p \in \mathbb{P}} \sum_{m=1}^{\infty} \frac{\chi(p)^m}{mp^{ms}}
\]

where in the last equality above we used the Taylor expansion for each term \(\log \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} \). Now, we split this double infinite sum into two infinite sums:

\[
\log L(s, \chi) = \sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^s} + \sum_{p \in \mathbb{P}} \sum_{m=2}^{\infty} \frac{\chi(p)^m}{mp^{ms}}.
\]

Let \(B(s) := \sum_{p \in \mathbb{P}} \sum_{m=2}^{\infty} \frac{\chi(p)^m}{mp^{ms}} \). Then the inner sum \(\sum_m \) is \(\ll \frac{1}{p^s \Re(s)} \). Thus \(B(s) \) converges absolutely for each \(s \in H_{1/2} \), and hence, it defines an analytic function in this half plane. Moreover, for each fixed \(a > 1/2 \), \(B(s) \ll \sum_{p \in \mathbb{P}} \frac{1}{p^{2a}} \). \(\Box \)

Lemma 2.2 (Lemma 15.1 of [8], Landau’s oscillation Theorem). Let \(A : [0, \infty) \to \mathbb{R} \) be a bounded Riemann-integrable function in any finite interval \([1, x]\), and assume that for some large \(x_0 > 0 \) we have that \(A(x) \geq 0 \) for all \(x \geq x_0 > 0 \). Let \(\sigma_c \) be the infimum of those \(\sigma \) for which \(\int_1^x \frac{|A(x)|}{x^\sigma} dx < \infty \). Then the function

\[
F(s) = \int_1^x \frac{A(x)}{x^s} dx
\]

is analytic in \(H_{\sigma_c} \) and has a singularity at \(\sigma_c \).

Lemma 2.3 (Corollary 6.17 of [2]). Let \(G \) be a simply connected domain and \(f : G \to \mathbb{C} \) an analytic function such that \(f(s) \neq 0 \) for all \(s \in G \). Then there exists an analytic function \(g : G \to \mathbb{C} \) such that \(f(z) = \exp(g(z)) \). If \(w : G \to \mathbb{C} \) is another analytic function such that \(f(s) = \exp(w(s)) \) for all \(s \in G \), then there exists \(c \in \mathbb{C} \) such that \(g(s) - w(s) = c \), for all \(s \in G \).

Proof of Theorem 1.1. Let \(A(x) = \sum_{p \leq x} \frac{\chi(p)}{p^s} \), \(0 \leq \sigma < 1 \). Assume that for some \(x_0 > 0 \), \(A(x) \) is either \(A(x) \geq 0 \) for all \(x \geq x_0 \) or \(A(x) \leq 0 \) for all \(x \geq x_0 \). Clearly \(A(x) \) is a bounded Riemann-integrable function in any finite interval \([1, x]\). Let \(s \in H_1 \). Then

\[
\sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^s} = \sum_{p \in \mathbb{P}} \frac{\chi(p)}{p^s} \frac{1}{p^{s-\sigma}} = \int_1^\infty \frac{1}{u^{s-\sigma}} dA(u) = (s-\sigma) \int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du.
\]

Since the partial sums \(\sum_{n \leq x} \chi(n) \ll 1 \), we have that \(L(s, \chi) \) converges for all \(s \in H_0 \), and hence, it is analytic in this half plane. Further, by Lemma 2.1, we have that \(L(s, \chi) \neq 0 \) for \(s \in H_1 \). Moreover, if \(\chi \) is non-principal, \(L(1, \chi) \neq 0 \). Thus
there exists an open ball B with positive radius and centered at $s = 1$ such that $L(s, \chi) \neq 0$ for all $s \in B$. It follows that $L(s, \chi) \neq 0$ for all $s \in H_1 \cup B$. The set $H_1 \cup B$ is simply connected. Thus, by Lemma 2.3, there exists an analytic function $\log^* L(\cdot, \chi) : H_1 \cup B \to \mathbb{C}$ such that $L(s, \chi) = \exp(\log^* L(s, \chi))$ for all $s \in H_1 \cup B$. By Lemma 2.1, we have for $s \in H_1$

$$L(s, \chi) = \exp \left(\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s} + B(s) \right).$$

Since H_1 also is simply connected, by Lemma 2.3 it follows that there exists a constant $c \in \mathbb{C}$ such that for all $s \in H_1$

$$\log^* L(s, \chi) = (s - \sigma) \int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du + B(s) + c.$$

Thus:

$$\int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du = \frac{\log^* L(s, \chi) - B(s) - c}{s - \sigma}.$$

It follows that $\int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du$ has an analytic continuation to $H_1 \cup B'$, where B' is an open ball of positive radius and centered at 1. In particular, this integral is analytic at $s = 1$. Hence, by Landau’s oscillation Theorem (Lemma 2.2), we have that $\int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du$ converges for $s = 1 - \epsilon$, for some $\epsilon > 0$. Since $A(x)$ changes sign only for a finite number of x, this convergence is absolute, and hence $\int_1^\infty \frac{A(u)}{u^{s+1-\sigma}} du$ is an analytic function in $H_{1-\epsilon}$. It follows that $\log L(s, \chi)$ has an analytic continuation to $H_{1-\epsilon}$, and hence, $L(s, \chi) \neq 0$ for $s \in H_{1-\epsilon}$. \hfill \Box

Proof of Corollary 1.1. In view of Lemma 2.1, we only need to show that the series $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}$ converges for all $s \in H_{1-\epsilon}$.

A classical result for Dirichlet series (see Theorem 15, pg. 119, [1]) states that:

Let $F(s) = \sum_{n=1}^\infty \frac{a_n}{n^s}$ be a Dirichlet series with finite abscissa of convergence σ_c. Let $\sigma_0 > \sigma_c$. Then uniformly for $\sigma_0 \leq \sigma \leq \sigma_c + 1$ we have that $F(\sigma + it) \ll |t|^{1-(\sigma-\sigma_c)+\delta}$. Since $L(s, \chi)$ is convergent for $s \in H_0$, we have for some constant $A > 0$, $L(\sigma + it) \ll |t|^A$.

On the hypothesis of Theorem 1.1, we have that $L(s, \chi) \neq 0$ for $s \in H_{1-\epsilon}$. Hence, for $\sigma > 1 - \epsilon$, $\log |L(\sigma + it, \chi)| \ll A \log(|t| + 2)$. By applying the Borel-Caratheodory theorem, we can conclude, in the same line of reasoning of Theorem 14.2 of [8] that $\log L(\sigma + it, \chi) \ll \log(|t| + 2)$. Thus, by Lemma 2.1 and Lemma 2.3 we have that $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}$ has an analytic continuation to $H_{1-\epsilon}$ given by $F(s) = \log L(s, \chi) - B(s) + c$, for some constant c. This analytic continuation is, for $\sigma > 1 - \epsilon$, $F(\sigma + it) \ll \log(|t| + 2) \ll t^\delta$, for all $\delta > 0$.

Another classical result for Dirichlet series states (Theorem 4, pg. 134, [7]): If $F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ has a finite abscissa of convergence and if σ_0 is some real number for which $F(s)$ has an analytic continuation to \mathbb{H}_{σ_0} satisfying, for each $\sigma > \sigma_0$, $F(\sigma + it) \ll t^\delta$, for all $\delta > 0$, then $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ converges for all $s \in \mathbb{H}_{\sigma_0}$. Thus, $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}$ converges for all $s \in \mathbb{H}_{1-\epsilon}$.

Proof of Theorem 1.2. In the proof of Corollary 1.1, we showed that the hypothesis $L(s, \chi) \neq 0$ for all $s \in \mathbb{H}_{1-\epsilon}$ implies that the series $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}$ converges for all $s \in \mathbb{H}_{1-\epsilon}$. We claim that there exists $\sigma \in (1-\epsilon, 1)$ for which $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^\sigma} \neq 0$. By contradiction, if no such σ exists, then $\sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s} = 0$ for all $s \in (1-\epsilon, 1)$, and since this Dirichlet series is an analytic function, it follows that this analytic function is equal to zero everywhere. Hence, by Theorem 1.6 of [6], we have that $\chi(p) = 0$ for all $p \in \mathcal{P}$, which is a contradiction. Hence, there exists $\sigma \in (1-\epsilon, 1)$ such that the partial sums $\sum_{p \leq x} \frac{\chi(p)}{p^\sigma}$ converges, as $x \to \infty$, to a non-zero value. Hence, this partial sums can change sign only for a finite number of x. □

References
[1] M. Aymone and V. Sidoravicius, Partial sums of biased random multiplicative functions, J. Number Theory, 172 (2017), pp. 343–382.
[2] J. B. Conway, Functions of one complex variable, vol. 11 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1978.
[3] A. Granville and G. Martin, Prime number races, Amer. Math. Monthly, 113 (2006), pp. 1–33.
[4] A. J. Harper and Y. Lamzouri, Orderings of weakly correlated random variables, and prime number races with many contestants, Probab. Theory Related Fields, 170 (2018), pp. 961–1010.
[5] D. Koukoulopoulos, On multiplicative functions which are small on average, Geom. Funct. Anal., 23 (2013), pp. 1569–1630.
[6] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, vol. 97 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
[7] G. Tenenbaum, Introduction to analytic and probabilistic number theory, vol. 46 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995. Translated from the second French edition (1995) by C. B. Thomas.
[8] E. C. Titchmarsh, The theory of the Riemann zeta-function, The Clarendon Press Oxford University Press, New York, second ed., 1986. Edited and with a preface by D. R. Heath-Brown.

Marco Aymone
Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
Email address: marco@mat.ufmg.br