Negative thermal expansion (NTE), caused by anharmonicity in solids, is crucial for technological applications to obtain materials with no volume variation over given temperature ranges [1]. Being able to find new materials exhibiting this behavior from ab-initio calculations is thus an important issue. Recently, attention has been drawn to fluorides and to empty perovskites, following the discovery of ScF$_3$, which exhibits NTE up to 1100 K [2]. Few attempts to understand and reproduce this behavior from realistic calculations have been performed so far. Within the quasi-harmonic approximation, contradictory results have been obtained by different groups: while Li and collaborators found a persistent NTE at high temperature [3], Liu and collaborators found the suppression of NTE around 400 K [4]. In both cases, the calculated lattice parameter was different from the experimental measurement by about 1% [5], whereas the maximum experimental variation of the lattice parameter due to the thermal expansion is about 0.5% [2]. Moreover, the value of the coefficient of thermal expansion (CTE) at low temperature was also too small by at least a factor of two. Li and collaborators pointed out that the structural quarticity of the transverse vibrations of the fluorine atoms improves the behavior of the calculated NTE coefficient with respect to experiment, with the NTE being stronger at low temperature and weaker at high temperature as compared to the quasi-harmonic approximation. Still, they could not perform a quantitative calculation over the whole Brillouin zone and their approximation to the effect of quartic anharmonicity failed to show the suppression of NTE at high temperature [3]. In contrast, calculations using density-functional molecular dynamics, which take into account anharmonicity, reproduce the suppression of NTE [6]. Besides these difficulties, other clues highlight the importance of anharmonicity in this material, and in the class of perovskites in general. In particular, several measurements of the thermal conductivity in various perovskites describe an anomalous temperature dependence and point out the role of the soft modes in those compounds [7–14]. So far, there is no calculation or measurement of the thermal conductivity of ScF$_3$ available in the literature.

In this Letter, we use ab-initio calculations of temperature-dependent effective phonon spectra allow to quantitatively describe the behavior of this compound and the suppression of negative thermal expansion. Based on this result, we predict an anomalous temperature dependence of the thermal conductivity and interpret it as a general feature of the perovskite class. Finally, we comment on the fact that the suppression of negative thermal expansion at such a high temperature is beyond the reach of the quasi-harmonic approximation and we discuss this suppression based on the temperature-dependence of the mode Grüneisen parameters.

The empty perovskite ScF$_3$ exhibits negative thermal expansion up to 1100 K. We demonstrate that ab-initio calculations of temperature-dependent effective phonon spectra allow to quantitatively describe the behavior of this compound and the suppression of negative thermal expansion. Based on this result, we predict an anomalous temperature dependence of the thermal conductivity and interpret it as a general feature of the perovskite class. Finally, we comment on the fact that the suppression of negative thermal expansion at such a high temperature is beyond the reach of the quasi-harmonic approximation and we discuss this suppression based on the temperature-dependence of the mode Grüneisen parameters.

Several methods have been recently developed to deal with anharmonic effects at finite temperature in solids. The Self-Consistent Ab-Initio Lattice Dynamical method (SCAILD) [15] establishes a self-consistency loop on the phonon frequencies in the high-temperature limit by computing forces created by displacements with an amplitude fixed by the classical mean-square displacement. The Temperature-Dependent Effective Potential approach (TDEP) [16, 17] is based on ab-initio molecular dynamics (AIMD) and relies on fitting the computed forces from the AIMD trajectory to a model Hamiltonian, which can include 2nd or higher order terms. In the Stochastic Self-Consistent Harmonic Approximation (SSCHA) [18], the free energy of an ensemble of harmonic oscillators in the real potential is minimized with respect to the 2nd order force constants and to the structure of the compound. Finally, an approach [19] based on Self-Consistent Phonon theory (SCPH) [20] estimates the anharmonic self-energy using third and fourth order force constants extracted by compressive sensing techniques on DFT calculations [21]. In our case, we use an approach inspired by the SCAILD method but using the full quantum mean square thermal displacement matrix.
as in the SSCHA and allowing the possibility to update the eigenvectors and to obtain higher order force constants by fitting the forces in real space, as in TDEP. In the harmonic approximation, the probability to find the system in a configuration in which each ion \(i\) is displaced in direction \(\alpha\) by \(u_{n\alpha}\) is

\[
\rho_h (\{u_{n\alpha}\}) \propto \exp \left(-\frac{1}{2} u^T \Sigma^{-1} u \right),
\]

with \(\Sigma (i\alpha,j\beta)\) the quantum covariance for atoms \(i, j\) and directions \(\alpha, \beta\):

\[
\Sigma (i\alpha, j\beta) = \frac{\hbar}{2\sqrt{M_i M_j}} \sum_m \omega_m^{-1} (1 + 2n_B (\omega_m)) \epsilon_{m\alpha\beta} \epsilon_{m\beta\alpha} \delta_{ij}
\]

where \(M\) is the atomic mass, \(\omega_m\) the phonon frequency of mode \(m\) (comprising both wavevector and branch degree of freedom), \(\epsilon_m\) the corresponding wavefunction and \(n_B\) the Bose-Einstein distribution. From the phonon frequencies and eigenvectors of the starting phonon spectrum, we compute the matrix \(\Sigma\) using the \(\Gamma\) point of a \(4\times4\) supercell and use it as the covariance matrix of a multidimensional Gaussian distribution to generate \(N\) random sets of atomic displacements \(\{u_{n\alpha}\}\), with \(i\) indexing each atom and direction in the supercell and \(n\) a given random configuration. The forces \(F_i^n\) acting on each atom of the supercell generated by this set of displacements \(\{u_{n\alpha}\}\) are calculated by density functional theory. Finally, we use those forces and displacements to fit the second and third order forces constants [22] of a model potential, using least-squares minimization. These force constants allow us to calculate a new phonon spectrum. In practice, we start from the spectrum calculated using small displacements and we iterate the procedure described above until convergence. In addition, for each cycle we calculate the external pressure

\[
P = \left(\frac{\partial E_p}{\partial V} \right)_S + \left(\frac{\partial E_p}{\partial V} \right)_S.
\]

The derivative of the potential energy \(E_p\) is computed using the mean of the external pressure \(P_{\text{DFT}}\) obtained by density functional theory:

\[
\left(\frac{\partial E_p}{\partial V} \right)_S = \frac{1}{N} \sum_{n<N} P_{\text{DFT}} \left(\{u_{n\alpha}\} \right),
\]

thus taking into account the anharmonicity of the potential. For the derivative of the kinetic energy \(E_k\), we use the quasi-harmonic expression:

\[
\left(\frac{\partial E_k}{\partial V} \right)_S = -\frac{1}{2V} \sum_m \hbar \omega_m \gamma_m \left(\frac{1}{2} + n_B (\omega_m) \right)
\]

[23], with \(\gamma_m\) the Grüneisen parameter of mode \(\omega_m\). We then update the lattice parameter until the mean external pressure becomes negligible. This allows us to calculate the thermal expansion of the material, including even order anharmonic effects within the effective 2nd order force constants, as shown for instance in Refs. [24, 25].

Fig. 1 shows the phonon spectra and density of states obtained at 8K, 300K, 900K and 1500K compared to the IXS measurements of the phonon frequencies at 8K and 300K from Ref. [26]. We observe that the effects of temperature are antagonistic depending on the frequency range: lower frequency modes harden with increasing temperature, while higher frequency modes soften, with a boundary between those two regimes at around 10 THz. This is in qualitative agreement with the neutron-weighted data of Ref. [3], except for the peaks around 3 THz and 12 THz, which were seen to have the opposite behavior. Since both the phonon dispersions and the IXS data indeed point towards a hardening of the lower frequencies, the disagreement with the neutron weighted density of states likely comes from the phonon-neutron matrix elements.

Fig. 2 shows the calculated lattice parameter compared to the experimental measurements of Greve and collaborators [2]. We use the PBEsol functional, which has been conceived to give more reliable results for the crystal structure of solids as compared to LDA or GGA [27], and we average the value of the lattice parameter over 30 cycles. We also take into account electronic excitations in the thermal expansion by using Fermi-Dirac statistics to determine the partial occupancies. Indeed, electronic excitations have been shown to have a non-negligible impact on the free energy, phonon dispersion and CTE in aluminium and rhodium, in particular near the melting temperature. We obtain quantitative agreement up to 1500K, with a deviation of the lattice parameter of less than 1%. We now compute the thermal conductivity of ScF$_3$, which has neither been measured nor previously calculated, up to our knowledge. We use the full solution of the Boltzmann transport equation as implemented in the ShengBTE code [30], and compute values from
300 K to 1500 K using the temperature-dependent effective 2nd and 3rd order force constants. Fig. 3 displays the lifetimes calculated at 900 K while artificially using force constants obtained for different temperatures, and the thermal conductivity. When temperature increases, two important phenomena occur simultaneously: the lifetimes of the soft modes become longer due to the modification of their frequencies, but also all lifetimes are enhanced globally. Indeed, close to a displacive instability the three-phonon scattering rate of the soft mode becomes particularly high because it is proportional to ω^{-1}, as seen for instance in SrTiO$_3$ [31]. The global enhancement of lifetimes is mainly due to the reduction of the available phase space for three-phonon processes [32][33], which in turn is due to the shrinking in energy of the phonon density of states by the simultaneous softening of high energy modes and hardening of low energy modes. As a result, the thermal conductivity acquires an anomalous temperature-dependence, that we can roughly describe by a power-law close to $\kappa \propto T^{-0.6}$ (see Fig. 3). This behavior is reminiscent of what has been found in other perovskites, such as the prototype compound SrTiO$_3$ [11,12], in which the thermal conductivity has been shown to follow a power law $\kappa \propto T^{-\alpha}$ with $\alpha \approx 0.6 - 0.7$. We speculate that the presence of soft modes in many perovskites – which are very sensitive to temperature – makes such anomalous dependence a common behavior in this class.

To better understand the suppression of NTE in ScF$_3$, let us begin by summarizing the problem in simple arguments. Within the quasi-harmonic approximation, the sign of the CTE α_V follows the weighted Grüneisen parameter γ via $\alpha_V = \frac{\gamma C_v}{K_T}$, with K_T the isothermal bulk modulus, C_v the isochoric heat capacity and ρ the density [34, 35]. In this material, all phonon modes have energies lower than 1000 K, which means that the heat capacity and weighted Grüneisen parameter have negligible thermal variation above this temperature. Moreover, the volume of the unit cell at 1300 K and 900 K is approximately the same, excluding the possibility that the potential volume variation of the Grüneisen parameter could explain by itself the change of expansion regime. It is thus very unlikely that the suppression of NTE around 1100 K can be explained within the quasi-harmonic approximation. This is in contrast to the other famous compound exhibiting NTE over a large temperature range, ZrW$_2$O$_8$, in which NTE persists until its decomposition [36]; and to many compounds which exhibit NTE over a small temperature range before its suppression due to the thermal population of higher-energy phonon modes, such as the prototype material of the empty perovskite family ReO$_3$ [37, 38] or, more prosaically, silicon [39]. Thus, ScF$_3$ presents an explicit case where high-order anharmonicity plays a crucial role. In passing, we note that even in those compounds with apparently simpler behavior there remain important related questions, such as the possible role of quartic anharmonicity in the temperature-dependence of the phonon spectrum of ZrW$_2$O$_8$ [40]; or the reappearance of NTE in ReO$_3$ around 650 K [41] which could not be explained within the Grüneisen formalism [37, 42] and was tentatively attributed to the strong anharmonic behavior of a soft mode [41, 43].

We now discuss the CTE in terms of the Grüneisen parameters [44]. We calculate the mode-dependent Grüneisen parameters $\gamma_m = -\frac{V}{w_m} \left(\frac{\partial \ln w_m}{\partial T}\right)_p$ and the weighted Grüneisen parameter $\gamma = \frac{\sum_m \gamma_m c_{vm}}{\sum_m c_{vm}}$, using the 2nd and 3rd order force constants of a given temperature as
Since the sign of the CTE \(\alpha_V = \frac{\partial C_V}{\partial V}T\) is the same as \(\gamma\), the evolution of \(\gamma\) with temperature allows us to interpret the change of regime in terms of the evolution of the contribution of different phonon modes. In the high-temperature limit and if we do not take into account the modification of the 2nd and 3rd order force constants, the weighted Grüneisen parameter becomes constant and equal to the arithmetical mean of all mode-dependent Grüneisen parameters.

In Fig. 4, we decouple the effect of temperature due to the modification of the weight of the mode heat capacity from the effect due to the modification of the force constants by tracing several temperature-dependent weighted Grüneisen parameter curves using fixed force constants obtained at different temperatures. A large contribution to the NTE comes from the soft mode line between the R and M points, due to its small frequency and large variation – which shows that this type of compounds close to a mechanical instability are good candidates for NTE. When the temperature is increased, these mode Grüneisen parameters are mostly impacted by the modification of their frequency, which lowers their contribution to NTE. Still, the mode Grüneisen parameters at a given frequency are globally pushed up by temperature in the low-energy region. This is similar to what happens for the lifetimes, as discussed above. Both effects are necessary to quantitatively understand the suppression of NTE that appears around 1100 K (see right panel of Fig. 4), in agreement with the experiment.

It is also remarkable that the full temperature dependence of the weighted Grüneisen parameter differs importantly from the one obtained within the quasi-harmonic approximation in the whole temperature range, showing that higher-order anharmonic effects are crucial in the behavior of the CTE even at lower temperatures. This last statement is all the more true if one takes into account the variation of the volume to recalculate the phonon dispersions. Indeed, the soft mode frequencies are softened while the volume decreases in spite of a positive Grüneisen parameter, showing that anharmonicity plays an important role over the whole phonon spectrum.

In conclusion, we have used temperature-dependent anharmonic calculations to compute the evolution of the phonon frequencies and scattering rates in ScF₃. We have predicted an anomalous temperature dependence of the thermal conductivity, notably due to the hardening of the soft modes frequencies with increasing temperature, and interpreted it as a general feature of this class of compounds. Finally, we have shown that the weighted Grüneisen parameter acquires a dependence in temperature that is qualitatively different from the quasi-harmonic behavior and explains the suppression of negative thermal expansion. This demonstrates that taking into account high-order anharmonicity is crucial for the qualitative and quantitative computation of physical properties at intermediate and high temperatures. Furthermore, this work paves the way towards the search for new materials displaying negative thermal expansion or low thermal conductivity from ab-initio calculations over a large temperature range.

We acknowledge useful discussions with Ion Errea, Ole Hellman, Wu Li and Stefano Curtarolo. This work is partially supported by the French “Carnot” project SIEVE.

[1] M. T. Dove and H. Fang, “Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation,” Rep. Prog. Phys. 79, 066503 (2016).
[2] B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Hellman, Wu Li and Stefano Curtarolo. This work is partially supported by the French “Carnot” project SIEVE.

[17, 45, 46]:

\[
\gamma_m = -\frac{1}{6\omega_m^2} \sum_{ijk\alpha\beta\gamma} \frac{\epsilon_{m i\alpha} \epsilon_{m j\beta}}{\sqrt{M_i M_j}} r_k^\alpha \Psi_{ijk} \epsilon_{k\gamma} r_j^\gamma
\]

* ambroise.van-roerghe@gmail.com
Chapman, and A. P. Wilkinson, “ Pronounced negative thermal expansion from a simple structure: Cubic ScF3,” J. Am. Chem. Soc. 132, 15496–15498 (2010).

[3] C. W. Li, X. Tang, J. A. Muñoz, J. B. Keith, S. J. Tracy, D. L. Abernathy, and B. Fultz, “Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3,” Phys. Rev. Lett. 107, 195504 (2011).

[4] Y. Liu, Z. Wang, M. Wu, Q. Sun, M. Chao, and Y. Jia, “Negative thermal expansion in isostructural cubic ReO3 and ScF3: A comparative study,” Comp. Mater. Sci. 107, 157 – 162 (2015).

[5] C. W. Li, Phonon anharmonicity of ionic compounds and metals, Ph.D. thesis, California Institute of Technology (2012).

[6] P. Lazar, T. Bučko, and J. Hafner, “Negative thermal expansion of ScF3: Insights from density-functional molecular dynamics in the isostructural-isobaric ensemble,” Phys. Rev. B 92, 224302 (2015).

[7] M. Tachibana, T. Kolodiazhnyi, and E. Takayama-Muromachi, “Thermal conductivity of perovskite ferroelectrics,” Appl. Phys. Lett. 93, 092902 (2008), 10.1063/1.2978072.

[8] Y. Sunemune and H. Ikawa, “Thermal conductivity of K MnF3, KCoF3, KNiF3, and KZnF3 single crystals,” J. Phys. Soc. Jpn. 19, 1686–1690 (1964).

[9] J. Martin, “Thermal conductivity of RbCaF3,” in Phonon Scattering in Solids, edited by L. Challis, V. Rampton, and A. Wyatt (Springer US, 1976) pp. 258–260.

[10] A. J. H. Mante and J. Volger, “The thermal conductivity of BaTiO3 in the neighbourhood of its ferroelectric transition temperatures,” Phys. Lett. A 24, 139 – 140 (1967).

[11] H. Muta, K. Kurosaki, and S. Yamanaka, “Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3,” J. Alloy. Compd. 392, 306 – 309 (2005).

[12] S. R. Popuri, A. J. M. Scott, R. A. Downie, M. A. Hall, E. Suard, R. Decourt, M. Pollet, and J.-W. G. Bos, “Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies,” RSC Advances 4, 33720–33723 (2014).

[13] T. Maekawa, K. Kurosaki, and S. Yamanaka, “Thermal and mechanical properties of perovskite-type barium hafnate,” J. Alloy. Compd. 407, 44 – 48 (2006).

[14] S. Yamanaka, T. Hamaguchi, T. Oyama, T. Matsuda, S.-i. Kobayashi, and K. Kurosaki, “Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3,” J. Alloy. Compd. 359, 1 – 4 (2003).

[15] P. Souvatzis, O. Eriksson, M. I. Katsnelson, and S. P. Rudin, “Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory,” Phys. Rev. Lett. 100, 095901 (2008).

[16] O. Hellman, I. A. Abrikosov, and S. I. Simak, “Lattice dynamics of anharmonic solids from first principles,” Phys. Rev. B 84, 180301 (2011).

[17] O. Hellman and I. A. Abrikosov, “Temperature-dependent effective third-order interatomic force constants from first principles,” Phys. Rev. B 88, 144301 (2013).

[18] I. Errea, M. Calandra, and F. Mauri, “First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds,” Phys. Rev. Lett. 111, 177002 (2013).

[19] T. Tadano and S. Tsumeyuki, “Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants,” Phys. Rev. B 92, 054301 (2015).

[20] N. R. Werthamer, “Self-consistent phonon formulation of anharmonic lattice dynamics,” Phys. Rev. B 1, 572–581 (1970).

[21] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, “Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations,” Phys. Rev. Lett. 113, 185501 (2014).

[22] In this study, we use a cutoff of 5 Å for the third order force constants.

[23] This expression comes from the equipartition of energy in harmonic oscillators: \(\frac{\partial E}{\partial V} = \frac{1}{2} \left(\frac{\partial^2 E}{\partial V^2} \right) S = \frac{1}{2} \left(\frac{\partial^2 E}{\partial V^2} \right) T \) and the usual quasi-harmonic derivation.

[24] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, “Temperature dependent effective potential method for accurate free energy calculations of solids,” Phys. Rev. B 87, 104111 (2013).

[25] T. Lan, C. W. Li, O. Hellman, D. S. Kim, J. A. Muñoz, H. Smith, D. L. Abernathy, and B. Fultz, “Phonon quanticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutil TiO2,” Phys. Rev. B 92, 054304 (2015).

[26] S. U. Handunkanda, E. B. Curry, V. Voronov, A. H. Said, G. G. Guzmán-Verri, R. T. Brierley, P. B. Littlewood, and J. N. Hancock, “Large isotropic negative thermal expansion above a structural quantum phase transition,” Phys. Rev. B 92, 134101 (2015).

[27] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).

[28] B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, “Ab initio up to the melting point: Anharmonicity and vacancies in aluminum,” Phys. Rev. B 79, 134106 (2009).

[29] B. Grabowski, “Towards ab initio assisted materials design: DFT based thermodynamics up to the melting point,” Ph.D. thesis, Universität Paderborn (2009).

[30] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, “ShengBTE: a solver of the Boltzmann transport equation for phonons,” Comp. Phys. Commun. 185, 1747–1758 (2014).

[31] K. Tani, “Life time of soft modes in displacive-type ferroelectrics,” Phys. Lett. A 25, 400 – 401 (1967).

[32] L. Lindsay and D. A. Broido, “Three-phonon phase space and lattice thermal conductivity in semiconductors,” J. Phys. Condens. Matt. 20, 165209 (2008).

[33] In passing, we note that the modification of the lattice parameter in itself has nearly no incidence on the thermal conductivity.

[34] E. Grüneisen, “Theorie des festen Zustandes einatomiger Elemente,” Ann. Physik 344, 257–306 (1912).

[35] N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

[36] T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, “Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8,” Science 272, 90–92 (1996).

[37] T. Chatterji, P. F. Henry, R. Mittal, and S. L. Chaplot, “Negative thermal expansion of ReO3: Neutron diffraction experiments and dynamical lattice calculations,” Phys. Rev. B 78, 134105 (2008).
[38] M. Dapiaggi and A. N. Fitch, “Negative (and very low) thermal expansion in ReO$_3$ from 5 to 300 K,” J. Appl. Crystallogr. 42, 253–258 (2009).

[39] D. F. Gibbons, “Thermal expansion of some crystals with the diamond structure,” Phys. Rev. 112, 136–140 (1958).

[40] G. Ernst, C. Broholm, G. Kowach, and A. Ramirez, “Phonon density of states and negative thermal expansion in ZrW$_2$O$_8$,” Nature 396, 147–149 (1998).

[41] T. Chatterji, T. C. Hansen, M. Brunelli, and P. F. Henry, “Negative thermal expansion of ReO$_3$ in the extended temperature range,” Appl. Phys. Lett. 94 (2009), 10.1063/1.3155191.

[42] U. D. Wdowik, K. Parlinski, T. Chatterji, S. Rols, and H. Schober, “Lattice dynamics of rhenium trioxide from the quasiharmonic approximation,” Phys. Rev. B 82, 104301 (2010).

[43] T. Chatterji, P. G. Freeman, M. Jimenez-Ruiz, R. Mittal, and S. L. Chaplot, “Pressure- and temperature-induced M_3 phonon softening in ReO$_3$,” Phys. Rev. B 79, 184302 (2009).

[44] Such a discussion stays meaningful in the present case, since the definition $\alpha_V = \frac{\Delta S}{\Delta V} = \frac{1}{\rho_0 c_v} \left(\frac{\partial S}{\partial V} \right)_p$, the thermal density matrix ρ_h is calculated within the harmonic approximation and $S = -k_B \text{Tr} (\rho_h \ln \rho_h)$.

[45] J. Fabian and P. B. Allen, “Thermal expansion and Grüneisen parameters of amorphous silicon: A realistic model calculation,” Phys. Rev. Lett. 79, 1885–1888 (1997).

[46] D. A. Broido, A. Ward, and N. Mingo, “Lattice thermal conductivity of silicon from empirical interatomic potentials,” Phys. Rev. B 72, 014308 (2005).

[47] K. Aleksandrov, V. Voronov, A. Vtyurin, S. Goryainov, N. Zamkova, V. Zinenko, and A. Krylov, “Lattice dynamics and hydrostatic-pressure-induced phase transitions in ScF$_3$,” J. Exp. Theor. Phys. 94, 977–984 (2002).