Magnetization Process near the Curie Temperature of an Itinerant Ferromagnet CoS$_2$

H Nishihara1, T. Harada2, T Kanomata2, T Wada1

1Faculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan
2Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537, Japan

E-mail: nishihara@rins.ryukoku.ac.jp

Abstract. The field dependence of the magnetization of a typical itinerant ferromagnet CoS$_2$ has been reinvestigated close to the Curie temperature of 119.5 (0.5) K up to an applied field of 50 kOe. The critical index δ has been determined to be 5.2 (0.20). The result is in agreement with the theory by Takahashi for weak itinerant electron ferromagnets rather than the conventional molecular field theory. Reliable method for determining critical indices is also discussed.

1. Introduction

Self-consistent renormalized (SCR) spin fluctuation theory by Moriya et al. has successfully explained various magnetic properties at finite temperatures of weakly itinerant ferromagnets such as ZrZn$_2$, Sc$_3$In, MnSi, or Ni$_3$Al [1]. In spite of small saturation moments (p_s) of these materials, magnetic susceptibility shows Curie-Weiss behavior with effective moment p_{eff} much larger than p_s (i.e. $p_{\text{eff}} / p_s \approx 1$). Later, Takahashi has developed a theory from the different point of view that assumes the conservation of the total spin amplitude on each magnetic ion that consists of zero-point and thermal components [2]. One of the prominent features of the theory is the prediction of the critical magnetic isotherm at the Curie temperature T_C. The theory, well-adapted for the case with small magnetic moment, shows that the fourth order expansion coefficient of the magnetic free energy in the magnetization M vanishes at the Curie temperature and M^4 becomes proportional to H / M [2] instead of the linear relation between H / M and M^2 in the so-called Arrott plot. Such a critical magnetization process were actually observed in MnSi [2,3] and Fe$_x$Co$_{1-x}$Si [4], while the linear relation in the Arrott plot was observed to be better in the case of a Heusler alloy Co$_2$TiGa [5].

The static critical behavior near T_C of pure nickel has been investigated by many workers for more than four decades; however, the results had been discussed based on localized models, such as short-range
Heisenberg and Ising models [6-9]. The critical index δ defined by

$$H = D \cdot M(T, H)^\delta \quad (T = T_C)$$ \hspace{1cm} (1)$$

was reported to be 4.22 - 4.58 for nickel [6-9], 4.0 for gadolinium [10], 2.78 for YFeO$_3$, and 5.8 for CrO$_2$ [11]. The values of δ in early reports seem to be less reliable because they depend strongly on the value of T_C, which was determined by assuming the linear isotherm in the Arrott plot passing through the origin [7, 10]. The method is not self-consistent except for the case where M^2 versus H/M plot becomes linear at T_C i.e., $\delta = 3$. If the theory by Takahashi can be applied ($\delta = 5$), the M^4 versus H/M plot becomes a straight line and passes through the origin at T_C. In later works, log (M) was plotted against log (H) and T_C was determined as the temperature at which the plot became linear [9]. Theoretically, the molecular field theory and the SCR theory predict $\delta = 3$. They are also estimated in more sophisticated treatment for various models; 4.80 for the three-dimensional Heisenberg model [9], 4.82 for the three-dimensional Ising model [9], and 5.0 for itinerant electron ferromagnet [2].

Subsequent study has been reported on somewhat stronger ferromagnets, Ni$_2$MnGa and pure nickel, with higher Curie temperatures T_C of about 363 and 623 K, respectively, and larger magnetic moments p_s of 4.5 and 0.6 μ_B/f.u., respectively [12]. The values of δ for the Ni$_2$MnGa and nickel samples were estimated to be 4.77 and 4.73, respectively, and they were interpreted to be close to the value of 5.0 due to the theory by Takahashi.

In view of the scattered values of δ in literatures, further studies were directed to other members of cobalt-based Heusler alloys; Co$_2$CrGa and Co$_2$VGa. The former alloy, Co$_2$CrGa is somewhat stronger ferromagnet with a saturation moment of 3.01 μ_B/f.u. [13], where the values of T_C and δ were determined to be 488.0 K and 4.93, respectively from the data of magnetization process near T_C, and the values of δ has been again interpreted to be close to the theoretical value, 5.0 predicted by Takahashi [14]. The latter, Co$_2$VGa is somewhat weaker ferromagnet with a saturation moment of 2.1 μ_B/f.u. and T_C of about 350K [15], where the critical index δ has been determined to be 4.15 which is an intermediate value between 5 and 3 [16]. It seems therefore that the larger δ around 5 tends to be observed for stronger ferromagnets, while the smaller δ deviated from 5 for weakly ferromagnetic Co-based Heusler alloys where Takahashi's theory is better to be applied.

The present experiment is therefore planned for a typical itinerant ferromagnet, CoS$_2$ with a moment of 0.84 μ_B/Co and the Curie temperature of about 120 K, which are similar to those of Co$_2$TiGa. Static critical properties of CoS$_2$ was already investigated, and critical indices were obtained by fitting experimental isothermal magnetization curves to the expression proposed by Arrot and Noakes [7],

$$c_1 \left(\frac{H}{M} \right)^\gamma = \frac{T - T_C}{T_C} + c_2 M^\beta \delta = \frac{\gamma}{\beta} + 1$$ \hspace{1cm} (2)$$

where β, γ are critical indices for the magnetization below T_C and the paramagnetic susceptibility above T_C, respectively, and c_1, c_2 are numerical constants. Using this fitting, anomalously large value of 6.4 for δ was reported [17-19].
2. Experimental Results and Discussion

A SQUID magnetometer (Quantum Design MPMS-5S) was used for the measurements of the isothermal magnetization curves of CoS\(_2\) powder samples. The powdered sample was prepared in a conventional manner. Temperature derivative of the magnetization of CoS\(_2\) is shown as a function of temperature in Fig.1. From the figure, Curie temperature \(T_C\) is estimated to be about 119K, which is slightly lower than those reported in literatures [17-19].

![Fig.1. Temperature derivative of the magnetization of CoS\(_2\) as a function of temperature.](image1)

![Fig.2. \(M^2\) is plotted against \(H_{int}/M\) for CoS\(_2\).](image2)

![Fig.3. \(M^{5.4}\) versus \(H_{int}/M\) for CoS\(_2\) corresponding to \(\delta\) of 6.4.](image3)

![Fig.4. \(M^{4.2}\) versus \(H_{int}/M\) for CoS\(_2\) corresponding to \(\delta\) of 5.2.](image4)

Observed isothermal magnetization curves are shown in Fig.2, where \(M^2\) is plotted against \(H_{int}/M\). The externally applied field up to 50 kOe was transformed to the effective internal field \(H_{int}\) using the demagnetizing factor which was determined from the magnetization data in fields less than 100 Oe. If the molecular field theory with \(\delta\) of 3.0 is valid, the curve becomes a straight line at around 119K, but
apparently, this is not the case. In Fig.3, $M^{5/4}$ versus H_{int}/M is plotted for CoS$_2$ corresponding to δ of 6.4 reported in the literatures [17-19]. It is clear that the curves around 119K are not straight lines but is slightly concave. On the other hand, the fairly good linearity of the curve for $\delta=5.2$ is observed as shown in Fig. 4. From the present analysis, the Curie temperature of 119.5 (0.5) K and critical index δ of 5.2 (0.20) are estimated. It also suggests that the analysis by fitting experimental data to the equation (2) with 5 adjustable parameters does not seem to be reliable. We therefore conclude that the observed isothermal magnetization curve of CoS$_2$ at the Curie temperature is well described by the smaller index $\delta=5.2$ than the previous ones, close to the value 5.0 by Takahashi for weak itinerant ferromagnets.

Acknowledgments
We thank Professor Y. Takahashi for helpful discussions. This work was supported in part by a grant based on the High-Tech Research Center Program for private universities from the Japan Ministry of Education, Culture, Sports, Science and Technology.

References
[1] See for a review, Moriya T, Spin Fluctuations in Itinerant-Electron Magnetism, Springer-Verlag 1985 1
[2] Takahashi Y 1986, J. Phys. Soc. Jpn. 55 3553-3573, Takahashi Y 2001 J. Phys. :Condense. Matter 13 6323-6358
[3] Block D, Voirot J, Jaccarino V, Wernick J H 1975 Phys. Lett. A 51 259-261
[4] Shimizu K, Maruyama H, Yamazaki H and Watanabe H 1990 J. Phys. Soc. Jpn. 59 305
[5] Y. Adachi, private communications.
[6] Kouvel J S and Fisher M E 1964 Phys. Rev. 136 A1626
[7] Arrott and Noakes J E 1967 Phys. Rev. Lett. 19 786
[8] Kouvel J S and Comly J B 1968 Phys. Rev. Lett. 20 1237
[9] Seeger M, Kaul S N, Kronmuller H, and Reisser R 1995 Phys. Rev. B51 12585 and references cited therein
[10] Graham C D Jr. 1965 J. Appl. Phys. 36 1135
[11] Kouvel J S and Rodbell D S 1967 Phys. Rev. Lett. 18 215
[12] Nishihara H, Komiyama K, Oguro I, Kanomata T and Chernenko V 2007 Journal of Alloys and Compounds 442 191
[13] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A, Fukamichi K, Ishida K and Sakuma A 2004 Appl. Phys. Lett. 85 2011
[14] Nishihara H, Furutani Y, Wada T, Kanomata T, Kobayashi K, Kainuma R, Ishida K, Yamauchi T 2010 J. Phys. : Conference Series 200 032053
[15] Webster P J, Ziebeck K R A 1973 J. Phys. Chem. Solids 34 1647
[16] Nishihara H, Furutani Y, Wada T, Kanomata T, Kobayashi K, Kainuma R, Ishida K, Yamauchi T 2010 J. Superconductivity and Novel Magnetism 24 679
[17] Jibu M, Ishikawa Y, Tajima K 1973 Phys. Lett. A45 235
[18] Adachi K and Ohkohchi K 1980 J. Phys. Soc. Jpn. 49 154
[19] Hiraka H and Endoh Y 1994 J. Phys. Soc. Jpn. 63 4573