Reconstruction of the Core and Extended Regulons of Global Transcription Factors

Yann S. Dufour¹,², Patricia J. Kiley³, Timothy J. Donohue¹*

¹ Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America, ²BACTER Institute, University of Wisconsin – Madison, Madison, Wisconsin, United States of America, ³ Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America

Abstract

The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks.

Citation: Dufour YS, Kiley PJ, Donohue TJ (2010) Reconstruction of the Core and Extended Regulons of Global Transcription Factors. PLoS Genet 6(7): e1001027. doi:10.1371/journal.pgen.1001027

Editor: William F. Burkholder, Stanford University, United States of America

Received March 31, 2010; Accepted June 16, 2010; Published July 22, 2010

Copyright: © 2010 Dufour et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIGMS grants GM075273 to TJD and GM45844 to PJK. YSD is a fellow on the DOE GTL BACTER grant ER63232-1018220-0007203 and DE-FG02-05ER15653 and a recipient of a Wisconsin Distinguished Graduate Fellowship from the UW-Madison College of Agricultural and Life Sciences and of the William H. Peterson Predoctoral Fellowship from the UW-Madison Department of Bacteriology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tdonohue@bact.wisc.edu

Introduction

Organisms rely on regulatory networks to integrate and process signals from various sources and to orchestrate the transcription of genes controlling a range of cellular processes. Importantly, changes in the architecture of these regulatory networks play a significant role in survival or adaptation of organisms to changing environments [1]. However, the processes underlying regulatory network evolution across related organisms are unclear. To address this problem we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict the architecture and infer the evolutionary history of regulatory pathways controlling the biological response to O₂.

Fundamental to the function of transcriptional regulatory networks are DNA-binding proteins that recognize specific DNA target sequences to modulate gene expression. Accordingly, identifying the set of target genes for each transcription factor is a crucial step toward understanding the functions of their target genes, elucidating the architecture of regulatory networks, and inferring how these networks have evolved. Yet, the set of target genes recognized by a given transcription factor is rarely available for a regulator within or across species. Because related organisms often rely on orthologous regulators for similar functions, comparative genomics approaches offer the possibility to characterize regulons that are widely conserved across organisms, as well as to identify important exceptions. In this study, we used computational and high-throughput experimental methods to predict the members of transcriptional regulatory networks that are conserved across a large number of diverse bacteria.

Our analysis focused on transcriptional regulatory networks that are known or predicted to function under low O₂ or anaerobic conditions. These transcriptional regulatory networks are often conserved across species because the availability of O₂ has major consequences for many critical metabolic activities. For example, in bacteria, O₂ availability controls the type of energetic pathway used for growth (fermentation, respiration, photosynthesis in anaerobic phototrophic bacteria, etc.) and acquisition of nutrients (nitrogen or carbon dioxide fixation, or metal uptake, etc.), which are critical to the survival of cells, communities, and entire ecosystems [2]. While the physiological effects of O₂ on these processes are fairly well established, the transcription factors,
target genes, or regulatory networks controlling these functions are not as well understood. Consequently, information on the properties of these regulatory networks is necessary in order to identify conserved functions that are controlled by O2 availability across related organisms.

FNR, FixK, and DNR are related, and relatively well-studied members of the CRP/FNR super-family of transcription factors that control anaerobic processes in many proteobacteria [3]. FNR is a global regulator of anaerobic gene expression in Escherichia coli and its activity is directly inhibited by O2 via destruction of a labile iron-sulfur cluster [2,4]. FNR orthologs are widely distributed across bacteria [3], but to date, their function has been mostly studied in E. coli and other γ-proteobacteria [5–7]. FixK is another member of the CRP/FNR super-family that controls gene expression in an O2-dependent manner [8]. For example, in the α-proteobacterium Bradyrhizobium japonicum FixK2 plays a role in establishing the legume root-nodule symbiosis that occurs at low O2 levels because this signal has major consequences on many biological systems. Our analysis predicts that related regulatory networks share a core set of target genes across diverse species while other target genes vary according to the organism's specific lifestyle. Our approach of defining transcriptional regulatory networks across a wide range of organisms should be of general utility to studying similar questions in other systems.

difficult to predict the regulatory network or biological functions controlled by FNR, FixK, or DNR orthologs within or across different organisms using current approaches. These challenging properties illustrate why an approach integrating additional information is necessary to predict the regulatory networks of related proteins across organisms.

In this report, we describe a computational method that takes advantage of the large number of available bacterial genome sequences to predict the conserved portions of the respective regulons of related transcription factors. After clustering members of the CRP/FNR super-family into sets of orthologs, we predicted genes that are controlled by FNR, FixK, or DNR proteins by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. We chose to focus on α-proteobacteria since these species are metabolically diverse, have several unique anaerobic lifestyles (photosynthesis, symbiosis, nitrogen fixation, denitrification) when compared to organisms analyzed previously, and often contain multiple protein members of one or more of the CRP/FNR sub-families. To provide experimental support for the computational predictions, we defined genes in the Rhodobacter sphaeroides FnrL (a FNR-type regulator) regulon using a combination of chromatin immunoprecipitation on a chip (ChIP-chip) assays [12] and publically available transcription profiling data [13–16]. The results reported here refined predictions for the DNA target sequences of members of the CRP/FNR super-family and predicted conserved members of the FNR, FixK, and DNR regulons across α-proteobacteria. The patterns of regulon conservation observed across the α-proteobacteria phylogeny led us to propose that the regulon of each conserved regulator is composed of a core set of genes conserved across species. We also propose that this core regulon is expanded in each species by incorporating genes whose functions are selected by the conditions found in their ecological niches.

Results

The CRP/FNR super-family of α-proteobacteria is represented by 8 major conserved sub-families

Our approach to determining the members of the FNR, FixK, and DNR regulons across the α-proteobacteria was to first identify all the sub-families of the CRP/FNR super-family in α-proteobacteria and then predict their DNA target sequences. Phylogenetic analysis of the CRP/FNR super-family from bacteria in 2002 [3], revealed 21 distinct protein sub-families, which included FNR, FixK, and DNR. Because a larger number of α-proteobacterial genomes were available in 2009, we performed a similar analysis to determine the representation and distribution of these sub-families within the α-proteobacteria. In addition, a second goal was to determine whether any new sub-families share a similar predicted DNA target sequence to FNR, FixK, and DNR that would confound our analysis.

After searching all sequenced α-proteobacterial genomes in the Integrated Microbial Genomes database (img.jgi.doe.gov) in January 2009 (~150 genome sequences) for proteins of the CRP/FNR super-family, we first found that α-proteobacteria from the genera Rickettsia, Ehrlichia, Wolbachia, and Bartonella do not possess proteins in the CRP/FNR super-family. Accordingly, these genera were not studied further. Among the remaining genera, we selected 87 representative α-proteobacterial species that altogether contained 697 proteins in the CRP/FNR super-family (Table S1). To assemble these 697 proteins into functionally related sets, we took a clustering approach derived from the ORTHOMCL algorithm [17], which identifies connected sets of proteins in networks constructed from protein sequence similarities. When we
applied this clustering approach multiple times with increasing stringency, we uncovered a hierarchical relationship between proteins of the different families (Figure 1). Ultimately, 607 of the 697 proteins were clustered into 7 major sub-families that could not be further sub-divided solely by more stringent clustering, suggesting that the proteins within each of these 7 major sub-families are very closely related. The 7 α-proteobacterial protein families and their relationships are also consistent with the phylogenetic tree obtained by neighbor joining of the 2002 dataset [3], supporting the conclusion that both approaches are capturing the same functional groups.

However, this approach failed to differentiate between FNR- and FixK-type proteins because it only considered global amino acid sequence similarities. Therefore, we subsequently divided the mixed FNR-FixK group into FNR or FixK groups based on the known properties of E. coli FNR. Specifically, E. coli FNR and presumably its orthologs have 4 conserved cysteine residues that are essential to coordinate an O2-labile [4Fe-4S] cluster [18,19]. Proteins within the mixed FNR-FixK group that lack any of the cysteine ligands for the [4Fe-4S] cluster are not expected to sense O2 directly and thus, were assigned to the FixK group. After sub-dividing the FNR-FixK group into a FNR group, members of which possess all 4 of the conserved cysteine residues, and a FixK group, which includes proteins that lack one or more of these 4 cysteines, 8 major protein sub-families of the CRP/FNR super-family were defined.

The resulting 8 major protein sub-families include members of the FNR, FixK, DNR, NnrR, A, B, C, and G groups of the CRP/FNR super-family using the nomenclature described by Korner et al. [3] (Figure 1; locus IDs for each sub-family are provided in Table S1). Our analysis indicates that only the 8 sub-families of the 21 sub-families of the CRP/FNR super-family identified across all species available in 2002 [3] are significantly conserved across the α-proteobacteria considered in our study, and no new conserved sub-families in addition to the 21 were identified. Proteins in the 11 remaining sub-families of the CRP/FNR super-family, such as CRP or CooA, were found in some of the 87 α-proteobacteria, but these other sub-families had a very limited distribution across species and clustered into minor groups (Figure 1).

The 8 major sub-families of CRP/FNR super-family are unevenly distributed across the α-proteobacteria.

The FNR sub-family is composed of 75 members distributed in 66 species and is the most widely distributed of the 8 sub-families of CRP/FNR super-family. The FixK sub-family comprises 76 proteins distributed in the genomes of 44 species. While members of the FixK sub-family are not predicted to sense O2 directly, the activity of some family members is indirectly regulated by O2 through the FixLJ two-component system [20]. However, we were unable to predict whether all the FixK orthologs were regulated by FixLJ since it is difficult to predict which species have FixLJ

Figure 1. Major sub-families of the CRP/FNR-type transcription factors in 87 representative α-proteobacteria. The hierarchical tree representation of the amino acid sequence similarities was constructed by partitioning protein groups using increasing clustering stringency (inflation value, see Materials and Methods). The bold numbers within each box represent the number of individual proteins within each cluster and the number below represents the number of species possessing at least one of these proteins. The bottom of the tree shows names for the major 8 sub-families using nomenclature described previously [3]. Minor sub-families could not be classified definitively, so these sub-families are designated by roman numerals.

doi:10.1371/journal.pgen.1001027.g001
orthologs because functionally distinct two-component regulators have very similar amino acid sequences [21]. Nevertheless, FNR orthologs and some FixK orthologs are expected to regulate genes that have functions relevant to adapting to changes in O₂ levels.

The nitric oxide-responsive DNR and NnrR groups of regulators contain 56 proteins in 37 genomes and 52 proteins in 40 genomes, respectively. In contrast, the largest sub-family of proteins in α-proteobacteria is group A, which is composed of 152 uncharacterized proteins that are distributed in the genomes of 59 of the 87 species examined. The next largest sub-family, group C, contains 116 uncharacterized proteins that are distributed within the genomes of 33 species. Most of the species of α-proteobacteria, which possess a protein in group C, belong to the Rhizobiales order, suggesting that the proteins in this group are associated with a biological function that is conserved in these α-proteobacteria. The other two major groups, B (34 proteins in 26 genomes) and G (44 proteins in 35 genomes), are also composed of uncharacterized proteins. In summary, we predict that α-proteobacterial species possess different combinations of CRP/FNR-type regulators, including the FNR, FixK, and DNR families.

Of the 8 major sub-families, only FNR, FixK, and DNR are predicted to recognize similar DNA sequences

Previous reports indicated that representative members of the FNR, FixK, and DNR families recognize similar DNA target sites [3,8,22,23]. To determine, (i) if all proteins within and across each of the FNR, FixK, or DNR families share a conserved DNA target sequence and (ii) if any of the other 5 major sub-families of the CRP/FNR super-families also recognize similar sites, we analyzed amino acid sequences in the helix-turn-helix (HTH) DNA-binding domain within each sub-family. This information was then used to predict the corresponding DNA target sequences (Figure 2).

For this analysis, we first aligned the amino acid sequences of the C-terminal domains that contain the predicted HTH motif of the above set of 697 proteins. The multiple sequence alignment was then divided into the 8 respective sub-families. We also mapped onto the alignments the three corresponding residues of the E. coli CRP protein that make direct contact with DNA in the X-ray structure of the binary complex [24]. These CRP residues were used as a reference to assess conservation of the residues that would be predicted to determine DNA target sequence specificity between and within sub-families. This mapping revealed that two of the three corresponding residues in the FNR, FixK, and DNR sub-families are conserved across all members of these groups (glutamate and arginine at positions 17 and 21, respectively in Figure 2A). In addition, neighboring residues, which may directly or indirectly affect DNA target specificity, are also well conserved across these three protein families (positions 12, 13, 20 and 26 in Figure 2A).

Furthermore, Gln 209 (position 17), Ser 212 (position 20), and Arg 213 (position 21) have all been implicated in specific DNA binding by E. coli FNR [25,26]. The HTH domains of the remaining protein groups in the CRP/FNR super-family differ significantly from the ones of FNR, FixK, and DNR and from each other suggesting specialization of DNA binding (Figure 2A). In summary, even though the specific contribution of each residue to DNA target specificity is not totally understood for members of the FNR, FixK, and DNR families, the extensive conservation of amino acid residues in their HTH domains supports the hypothesis that proteins from these three sub-families, but not from the other 5 sub-families, recognize similar DNA target sequences.

To predict the corresponding DNA target sequences for proteins in the 8 CRP/FNR sub-families and to assess the predictions made from the HTH domain sequence analysis, we took advantage of the fact that transcription of genes encoding the proteins in the CRP/FNR super-family is often auto-regulated. Thus, we searched for conserved DNA sequences in the regions upstream of the structural genes in each group. The one exception to this approach was the FixK sub-family because transcription of \textit{fixk} in \textit{Bradyrhizobium japonicum}, and presumably orthologs in other species, are regulated by the response regulator FixJ. Indeed, a promoter sequence analysis revealed that only 20 of the 76 FixK orthologs may be auto-regulated. Thus, we derived the FixK binding motif from the promoter sequences of previously predicted target genes in \textit{B. japonicum} [8] and their orthologs in α-proteobacterial genomes containing orthologs of FixK. The results of this analysis showed that the predicted DNA target sequences for members of the FNR, DNR, and FixK groups are virtually identical (Figure 2B). In contrast, analysis of upstream DNA sequences for the other 5 major groups of α-proteobacterial members of the CRP/FNR super-family indicated that these proteins bind related but non-identical target sites. For example, genes encoding proteins in the NnrR group are preceded by a DNA sequence that contains only 6 of the 10 conserved positions of the FNR, FixK, or DNR motifs (Figure 2B). This was not surprising since proteins in the NnrR group share less conserved residues with the FNR and FixK HTH domain (notably, residues at position 17 are different in Figure 2A). In conclusion, these findings reinforce the proposition that proteins in the FNR, FixK, and DNR groups recognize very similar, if not identical, DNA target sequences in the 87 selected α-proteobacteria.

Predicting the regulon composition of FNR, FixK, and DNR across α-proteobacteria

Knowing the DNA target sequence for a transcription factor often provides sufficient information to predict computationally its target genes within and across genomes. However, using the deduced DNA binding sites to predict the respective FNR, FixK, and DNR regulons presented a particular challenge because the three regulators recognize very similar DNA target sequences (Figure 2B) and because the selected 87 α-proteobacterial species often possess different numbers or combinations of the FNR, FixK, and DNR proteins (Table S1). For example, \textit{Rhodopseudomonas palustris} TIE-1 possesses three proteins representing each of the FNR, FixK, and DNR groups, while \textit{Hoflea phototrophica} DFL-43 has three proteins in the FNR group and none in the FixK, or DNR groups. Therefore, without additional information it was not possible to determine the respective regulons of FNR, FixK, and DNR by testing solely for the presence of a DNA target sequence that is common to these three regulators.

However, if we assumed that the composition of regulons co-evolved with the function of their respective regulators, then we would expect that phylogenetic occurrence profiles across related species should contain information about the functional relationships between target genes and regulators. This information can then be used to assign target genes to their historical regulator even in situations where multiple regulators might have overlapping regulons. To characterize the evolutionary relationship between FNR, FixK, or DNR, and putative target genes, we improved upon a computational method that was used previously to predict regulon members of alternative sigma factors [12] by integrating it with an approach first introduced by Pellegrini et al., who compared phylogenetic profiles of sets of orthologous genes across multiple species to infer functional links between genes [27] (Figure 3). Because the DNA target sequence of a particular regulator represents the functional link between the regulator and its target genes, we expected that the presence of the binding sequences in the promoter regions of the target genes to co-evolve also with the regulator function. Therefore, taking into account the
correlation between the phylogenetic profiles of target genes and regulators should allow us to assign target genes to their historical regulators and define their respective core regulons even if the transcription factors have indistinguishable DNA-binding sequences. Note, we used the term “core regulon” to refer to a historical consensus that emerged from the comparison of the 87 bacteria considered in this study.

To assign predicted target genes to FNR, FixK, or DNR and thus, reconstruct their core regulons, we identified all occurrences of the shared DNA target sequence in the promoter regions of genes in each of the 87 genomes (with an estimated false-discovery rate of ~15% and p-value≤0.001) (Figure 3, Step A). Because bacterial genes are often organized in transcription units, where multiple genes share a common promoter, each identified DNA
target sequence from step A was then linked to all the genes within the nearest predicted transcription unit (see Materials and Methods for how we predicted transcription units). Next, we assembled sets of orthologous genes by clustering all genes across the 87 genomes using the same approach that we used to identify the CRP/FNR super-family functional groups. This approach predicted ~23,000 distinct sets of orthologous genes distributed in the genomes of the 87 α-proteobacterial species we analyzed. Then, we constructed phylogenetic profiles of target genes based on the occurrence of the common DNA-binding sites within each set of orthologous genes (Figure 3, Step B). Finally, to predict the respective regulons of FNR, FixK, and DNR, for every set of orthologs, we calculated the similarity between the phylogenetic profiles of (i) target DNA-binding sites and (ii) FNR, FixK, or DNR (Figure 3, Step C). This approach allowed us to assign sets of target genes to the regulator with which they shared the most similar phylogenetic profile (Figure 3, Step D, Figure 4, and Table 1). To restrict our predictions to the most conserved members of the respective regulons, we set a cut-off to include target genes that had a phylogenetic profile that was at least 20% similar to one of the three regulators. Considering one example of regulon predictions, the predicted target genes (in yellow in Figure 4) of *Lukamella vestfoldensis* were assigned mostly to the FNR regulon (Figure 4), consistent with the fact that *L. vestfoldensis* possesses a FNR-type regulator but no FixK- or DNR-type regulators. In addition, orthologs of *L. vestfoldensis* target genes were also predicted to be FNR target genes in many other α-proteobacterial species. On the other hand, our predictions probably did not reveal the entire FNR regulon of *L. vestfoldensis* since this method only captured target genes that are conserved in at least 20% of the species that possess FNR. From this comparative analysis, we were able to predict, using genomic sequence information only, conserved members of the FNR, FixK, and DNR regulons, even though each of these proteins recognizes a very similar DNA target sequence.

The predicted FNR regulon is the most conserved across α-proteobacteria

Several patterns emerged from the distribution of the predicted regulons (Figure 4). First, the predicted FNR regulon appeared to be more conserved than those for FixK, or DNR across the 87 α-proteobacterial species. The most conserved part of the predicted FNR regulon contained 6 sets of orthologous genes (including genes encoding FNR itself) in about 60% of the genomes. In addition, a predicted FNR regulon of 20 sets of orthologs was present in 27 species of the *Rhodobacterales* order (Figure S1). Conversely, the composition of the predicted FNR regulon split the *Rhizobiales* order into two groups. The first group of *Rhizobiales* (18 species containing *Rhizobium, Mesorhizobium, Sinorhizobium, Agrobacterium* and others) had a fairly well conserved FNR regulon of ~13 sets of orthologs. In contrast, in the second group of *Rhizobiales* (19 species, containing *Bradyrhizobium, Nitrobacter, Rhodopseudomonas, Methylobacterium* and others), the predicted FNR regulon was significantly reduced or missing. On the other hand, this second group of *Rhizobiales* is predicted to possess a well-conserved FixK regulon (18 sets of orthologs), possibly indicating a greater role of FixK in the anaerobic or low-oxygen lifestyle of these bacteria. Finally, the 11 sets of orthologs in the predicted DNR regulon were not well conserved or consistent within the species phylogeny, suggesting that DNR plays a more limited or a specialized role in gene expression among α-proteobacteria than either FNR or FixK. In summary, for each of the three global transcription factors, our analysis predicted regulon members that are conserved across α-proteobacteria as well as target genes that were found only in a subset of organisms.

Experimental tests of the predicted FNR regulon using *Rhodobacter sphaeroides* FnrL

To evaluate our predictions, we directly identified members of the *R. sphaeroides* FnrL regulon using chromatin immunoprecipitation on a chip (ChIP-chip) assays, DNA target sequence analysis, and expression profile clustering. FnrL is a member of the FNR sub-family and contains an *O₂*-labile [4Fe-4S] cluster (T. Patschkowski and PJ. Kiley, unpublished data), like its homolog FNR in *E. coli* [4]. To probe genome-wide interactions of FnrL with DNA in vivo, we used antibodies to FnrL for ChIP-chip assays [12]. FnrL activity is high in the absence of O₂ [28], so we analyzed these interactions in wild-type *R. sphaeroides* growing under anaerobic conditions in the presence of light (photosynthetic growth conditions). By identifying regions of the genome that were significantly enriched by immunoprecipitation with antibodies against FnrL (p-value ≤0.01) in three biological replicates, we found 27 sites bound by FnrL (Table 2, Figure 5). Of these 27 sites, 6 were in the promoter regions of genes previously shown to require FnrL for increased activity in the absence of O₂ [28–32], illustrating that this assay identifies bona fide FnrL binding sites.

To test which FnrL ChIP-chip sites affect gene transcription, we also used ChIP-chip assays to score binding by the major sigma factor, σ70, and the β′ subunit of RNA polymerase in the same cultures. This analysis showed that of the 27 regions bound by FnrL, 22 were also bound by σ70 (p-value ≤0.01) (Table 2) and the β′ subunit of RNA polymerase, which also extended as expected across the entire length of transcription units, indicating that these genes were actively transcribed under these conditions. The lack of σ70 binding in the other 5 of the 27 genomic regions may indicate that FnrL has a negative effect on transcription, possibly by occluding occupancy by σ70-containing RNA polymerase. However, it is also possible that a different σ subunit recognizes these promoters, or that no active promoters are located near these regions under our growth conditions. Overall, our analysis shows that FnrL binds DNA under anaerobic conditions in vivo and suggests that by this criterion, the FnrL regulon contains at least 27 operons.

To test if the genomic regions bound by FnrL in vivo contained the canonical DNA target sequence predicted to be recognized by this protein, TTGAT-N3-ATCAA [28–31], we used the MAST software to search the corresponding genomic regions [33] for sequences matching the α-proteobacterial FNR DNA target position-weighted matrix we derived (Figure 2B). Of the 27 regions bound by FnrL, 25 contain a close match to the canonical FNR target sequence (log-likelihood score ≥1613.5) (Table 2). The other two sites contain sequences with less similarity to the canonical sequence and may represent lower-affinity FnrL binding sites or ones where FnrL binding is possibly facilitated by another factor. This analysis supports the prediction that *R. sphaeroides* FnrL recognizes a canonical sequence that is very similar to both the one we predicted for the FNR sub-family in α-proteobacteria (Figure 2B) and the motif recognized by *E. coli* FNR [34]. To identify additional potential binding sites that may have been missed in the ChIP-chip experiment, we also searched the entire genome for matches to the FNR DNA target sequence. Using a log-likelihood score ≥1613.5 in order to keep the false-discovery rate ≤10%, we found only 10 additional matches to the target sequence (Table 2). Of these 10 matches, 7 are located within protein coding sequences and three others fall within intergenic regions.
Predicted conserved regulons

Sets of orthologous genes

FnL targets in R. sphaeroides
Transcription profiling identifies additional candidate \textit{\textit{R. sphaeroides}} FnrL target genes

To identify FnrL regulated transcription units, genes within 500 bp on either side of the 37 potential FnrL target sites (27 sites identified by ChIP-chip and the 10 putative FnrL binding sites identified by sequence analysis) were collected and analyzed for O$_2$-dependent changes in transcript abundance using publicly available global gene expression data from \textit{R. sphaeroides} [14–16,35]. When the transcript abundance profiles were clustered by similarity (Pearson correlation coefficient), the RNA transcript levels of 68 putative FnrL target genes showed O$_2$-dependent expression patterns (Figure 6).

One large cluster of co-expressed genes (cluster A in Figure 6) contained 51 protein-coding sequences organized in 20 predicted transcription units. The transcript levels from these 51 genes negatively correlate with culture O$_2$ levels, consistent with the hypothesis that FnrL activated their expression. This conclusion is also supported by the co-occupancy of FnrL,

Figure 4. Predicted members of the DNR, FixK, and FNR regulons. The heatmap indicates whether the promoter region of the corresponding gene contains a significant match to the DNA target sequence shared by FNR, FixK, and DNR for each species (row) and each set of orthologous genes (column). Orange and yellow indicate respectively moderate and strong match to the DNA target sequence position-weighted matrix. Black indicates that the corresponding species possesses a gene belonging to the corresponding set of orthologs, while grey indicates that the species does not possess an orthologous gene. Arbitrary numbers were given to identify the different sets of orthologous genes (Table 2). The presence of DNR (blue), FixK (green) or FNR (red) in each genome is indicated by a bar on the right side of the heatmap. Genes that were experimentally determined to be \textit{R. sphaeroides} FnrL target genes are indicated by a black box below their labels. Species are organized according to the phylogenetic tree presented in Figure 51.

doi:10.1371/journal.pgen.1001027.g004
Table 1. Gene product annotations of the predicted members of the DNR, FixK, and FNR regulons determined from the comparative genomics analysis of α-proteobacteria.

ID	Gene product annotation	RspH locus
	DNR	
616	50S ribosomal protein L4	RSP1717
689	50S ribosomal protein L23	RSP1718
1300	putative universal stress family protein, UspA	RSP3802
1696	heme- and copper-containing membrane protein, NnrS	RSP0328
1847	transcription factor, DNR	
2800	peptidase U32 family	RSP0465
2903	respiratory nitrate reductase alpha-subunit	
2966	putative lipid carrier protein	RSP0466
3120	respiratory nitrate reductase beta-subunit	
4023	respiratory nitrate reductase delta-subunit	
4488	putative nitrite transporter	
	FixK	
114	response regulator receiver protein, FixJ	RSP0907
321	putative ABC transporter ATP binding protein	RSP1628
329	putative ABC transporter permease protein	RSP2459
332	PAS/PAC sensor signal transduction histidine kinase, FixL	RSP0909
1387	putative ABC transporter periplasmic substrate binding protein	RSP2811
1551	heat shock protein Hsp20	
1862	putative HlyD family secretion protein	RSP3160
2072	putative ABC transporter permease protein	RSP3157
2238	putative phosphoketolase	
2518	putative ABC transporter subunit	RSP3159
2551	cytochrome c class I	
2589	putative kinase	RSP0470
2810	hypothetical protein	
2855	putative xanthine and cobalt dehydrogenase maturation factor	RSP1934
3100	putative Zinc binding alcohol dehydrogenase	
3532	hypothetical protein	
5478	hypothetical protein	
	FNR	
28	putative heavy metal translocating P-type ATPase	RSP0690
74	glutamyl-tRNA reductase	RSP2984
125	cytochrome c oxidase subunit I	RSP1877
129	putative universal stress protein, UspA	RSP0697
219	cytochrome c oxidase subunit II	RSP1826
301	transcriptional regulator, FNR/FixK	RSP0698
555	putative dimethyladenosine transferase	RSP2905
1083	putative peptidase U62 modulator of DNA gyrase	RSP1825
1230	oxygen-independent coproporphyrinogen III oxidase	RSP0699
1264	iron-sulfur binding protein RdxA/RdxB/FixG family	RSP0692
1289	cytochrome c oxidase cbb₃-type subunit III	RSP0693
1331	cytochrome c oxidase cbb₃-type subunit I	RSP0696
1348	cytochrome c oxidase cbb₃-type subunit III	RSP0695
1758	trans-membrane cation transporter, FixH family	RSP0691
1774	putative outer membrane protein, OmpW	RSP2507
1915	cytochrome oxidase maturation protein cbb₃-type	RSP0689
1987	putative protoporphyrin monomethyl-ester oxidative cyclase	RSP0281
Nevertheless, the size of the experimentally determined \textit{R. sphaeroides} FnrL regulon (68 genes) is larger than the one proposed to be conserved across \(\alpha\)-proteobacteria (20 sets of orthology); leaving us without information about the regulation of \(\sim 50\) predicted FnrL target genes in other \(\alpha\)-proteobacteria. Our comparative genomics analysis selected only target genes that were conserved in at least in 20\% of the species possessing FNR orthology. Therefore, to examine to what extent the additional \(\sim 50\) genes of the \textit{R. sphaeroides} FnrL regulon were conserved within the 87 \(\alpha\)-proteobacteria, we identified the sets of orthologous genes among these bacteria that corresponded to the FnrL target genes and determined which of their promoters contained a predicted FNR DNA target sequence. The results of this analysis indicated that very few of the other \(\alpha\)-proteobacteria have FNR target genes in common with \textit{R. sphaeroides} beyond the 20 conserved sets of orthology (Figure 7, Table S2). As expected, the predicted FNR regulon of another \textit{R. sphaeroides} strain (ATCC 17025) overlaps significantly with the FnrL regulon of \textit{R. sphaeroides} 2.4.1. In addition, only the FNR regulons of the \textit{R. palustris} strains TIE-1 and HaA2, which are photosynthetic bacteria, were predicted to have a significant number of orthologous genes with the extended \textit{R. sphaeroides} FnrL regulon. Interestingly, the predicted overlap of the FnrL regulons between \textit{R. sphaeroides} strain 2.4.1 and \textit{R. palustris} strains TIE-1 and HaA2 is larger than the overlap between \textit{R. sphaeroides} and more closely related species of the \textit{Rhodobacterales} order.

In summary, 17 of the 68 experimentally determined members of the \textit{R. sphaeroides} FnrL regulon were also predicted to be members of a conserved or core FNR regulon across \(\alpha\)-proteobacteria. Our data also indicated that \textit{R. sphaeroides} FnrL controls expression of additional genes in a so-called extended regulon that is not always shared with either other purple non-sulfur \(\alpha\)-proteobacteria or other closely related species. Overall, our analysis of FNR target genes across the \(\alpha\)-proteobacteria indicated that the regulon of orthologous regulators can vary dramatically over a relatively short evolutionary time.

Discussion

In this work, we combined computational and experimental approaches to infer the evolutionary history of several transcriptional regulatory networks that are conserved across \(\alpha\)-proteobacteria. We focused on three transcription regulators, FNR, FixK, and DNR, from the relatively well-characterized CRP/FNR family [3], which control distinct aspects of the anaerobic life-styles of \(\alpha\)-proteobacteria. We chose to analyze these proteins since they are conserved across a wide range of organisms, they are known or predicted to control critical processes in response to O\(_2\) deprivation, and they have features that provide challenges to many computational or experimental approaches. Our characterization of the \textit{R. sphaeroides} FnrL regulon and published work (see below) supports that our method correctly predicted many conserved target genes for all three of these transcription factors. This illustrates the utility of this approach even when the proteins have significant amino acid sequence similarity and recognize similar DNA binding sites. In addition, our findings allowed us to propose a hypothesis on the evolution of transcriptional regulatory networks across organisms.

Experimental support for target gene predictions of individual transcriptional regulatory networks

By determining the similarity between the phylogenetic profiles of each regulator and potential target genes across genomes, we were able to assign target genes to one of the three regulators. In many cases, these assignments were supported by either prior knowledge or experimental data provided in this study. For example, 17 of the 19 predicted members of the core FNR regulon were shown to be direct FnrL targets under the conditions tested. For the \textit{B. japonicum} FixK regulon, expression of blr6070, blr6071, blr1637, blr0497 and blr6074 (ID 3100, 2589, 1531, 5478 and 2256) was shown to depend on FixK\(_2\) (a FixK-type regulator) [8,42], as we predicted. We also correctly predicted that expression of RPA4249, RSP4237, RPA4238, RPA4236, RPA1673, RPA4235, RPA1672 and RPA4239 (ID 114, 321, 329, 1387, 2238, 2551, 2810 and 3532) would be dependent on FixK in \textit{R. palustris} [43]. The roles of FixK or FNR in controlling expression of other members of the predicted regulons remain to be tested, but based on our data we expect that many of these candidates will be direct target genes of these transcription factors in \(\alpha\)-proteobacteria. Unfortunately, no experimental analysis of the DNR regulon is available in any \(\alpha\)-proteobacterium. However, the annotation of the putative target genes of DNR, which is a known nitric oxide sensor, indicates that the predicted role of several members of this regulon is in denitrification, which produces nitric oxide as an intermediate (ID 1696, 2903, 3120, 4023 and 4488).

Evidence for atypical regulon structures

Because our approach assigned target genes to regulators based on correlations rather than absolute concordance of their respective phylogenetic occurrence profiles, it captured the general patterns emerging from the evolutionary histories of the regulons instead of the exact composition of each regulon in every species. Consequently, regulons were occasionally predicted to exist in species that did not possess the corresponding regulator. For example, we predicted a \textit{Caulobacter} FNR regulon even though these bacteria lack a gene encoding a FNR-type regulator. To explain this observation, we propose that \textit{Caulobacter} species once contained a FNR-type regulator that was displaced by a FixK-type regulon.

*Genes for which promoter regions have been shown to be bound by FnrL in \textit{R. sphaeroides} in this study.

Table 1. Cont.

ID \(^{1}\)	Gene product annotation \(^{2}\)	Rsph locus \(^{3}\)
2282	cytochrome c oxidase cbb, type subunit IV	RSP0694
2905	hypothetical protein	
3788	putative DnaK suppressor protein	RSP0166

\(^{1}\)Arbitrary ID numbers given to the sets of orthologous genes determined across the 87 \(\alpha\)-proteobacteria.

\(^{2}\)Functional annotation resulting from the consensus of all the annotations of the genes constituting each set of orthologs.

\(^{3}\)Locus ID of \textit{R. sphaeroides} genes if one is present in the sets of orthologs.

\(\text{doi:10.1371/journal.pgen.1001027.t001}\)
Table 2. Putative Fnrl binding sites detected by ChIP–chip analysis or by bioinformatic analysis of the R. sphaeroides genome sequence.

Chr1	Fnrl ChIP-chip peak coordinates2	σ70 peak3	Putative Fnrl binding sequence4	Fnrl target genes5	Loci IDs	Regulation	Annotation		
	Begin	End	Begin	Scores	Sequences	Loci IDs			
Chr1	408824	409553	+	409223	2156.75	TTGACggcggATCAA	RSP1819-7	+	feoABC
Chr1	417320	418709	+	417975	2501.25	TTGATcagATCAA	RSP1826-9	−	cooX-X-X-III
Chr1	476545	477386	−	477119	2554.25	TTGATcctgATCAA	RSP1877-6	−	cooX
Chr1	792149	793028	+	792528	2249.50	TTGATtcagATCAA	RSP2247	+	fusA
Chr1	963978	964891	+	964492	1693.00	ATGACgcagATCAA	RSP2337	+	ccpA1
Chr1	1022044	1022949	+	1022541	2368.75	TTGACttagATCAA	RSP2395	+	ccpA2
Chr1	1152077	1152912	+	1152640	2249.50	TTGACgcagATCAA	RSP2507	+	ompW
Chr1	1217112	1218401	+	1217769	1693.00	ATGACgcagATCAA	RSP2573	+	
Chr1	1675600	1676545	+	1676046	2143.50	TTGATcctgATCAA	RSP2984	+	hemA
Chr1	1679670	1680230	+	1680004	996.75	GTGACttagGGCAG	RSP3041-4	+	
Chr1	1811885	1812675	+	1812207	1971.25	CTGATgcagATCAA	RSP0100-12	+	nuoABCDEFGHJKLMN
Chr1	1881897	1882994	+	1882413	2249.50	TTGACgcagATCAA	RSP0166	+	dksA
Chr1	2007383	2008346	+	2007816	2117.00	TTGACctgcATCAA	RSP0281-76	+	bchEJGP
Chr1	2046834	2047877	+	2047244	262.00	TTGCGcaggATCAA	RSP0317	+	
Chr1	2193245	2193765	+	2193494	2382.00	TTGACgcagATCAA	RSP0466-4	+	
Chr1	2201048	2202021	+	2201632	2342.25	TTGATcctgATCAA	RSP0466-4	+	
Chr1	2206264	2207340	+	2206759	1613.50	TTGACgcagATCAA	RSP0696-3	+	
Chr2	77569	78562	+	78069	1812.25	TTGACgcagATCAA	RSP3044	+	
Chr2	403983	1891.75	TTGACgcaggATCAA	RSP0775	+				
Chr2	65955	1653.25	TTGACgcagATCAA	RSP0820	+				
Chr3	1185086	16930	TTGACgcagATCAA	RSP1257-4	+				
Chr2	97756	1812.25	TTGACgcagATCAA	RSP1257-4	+				
Chr2	2076042	2077047	+	2077546	262.00	TTGACgcagATCAA	RSP2395	+	
Chr2	2436687	2437692	+	2438197	2342.25	TTGATcctgATCAA	RSP2401-4	+	
Chr2	403983	1891.75	TTGACgcagATCAA	RSP0775	+				
Chr2	635560	1679.75	TTGACgcagATCAA	RSP0820	+				
Chr2	65955	1653.25	TTGACgcagATCAA	RSP1257-4	+				
Chr2	1185086	16930	TTGACgcagATCAA	RSP1257-4	+				
Chr2	1842368	1732.75	TTGACgcagATCAA	RSP1257-4	+				
Chr2	2104074	1640.00	TTGACgcagATCAA	RSP1257-4	+				
Chr2	2436687	2437692	+	2438197	2342.25	TTGATcctgATCAA	RSP2401-4	+	
Chr2	2760402	2761407	+	2761908	2342.25	TTGATcctgATCAA	RSP2401-4	+	
Chr2	403983	1891.75	TTGACgcagATCAA	RSP0775	+				
Chr2	635560	1679.75	TTGACgcagATCAA	RSP0820	+				
Chr2	65955	1653.25	TTGACgcagATCAA	RSP1257-4	+				
Chr2	1185086	16930	TTGACgcagATCAA	RSP1257-4	+				
Chr2	1842368	1732.75	TTGACgcagATCAA	RSP1257-4	+				
Chr2	2104074	1640.00	TTGACgcagATCAA	RSP1257-4	+				
Chr2	2436687	2437692	+	2438197	2342.25	TTGATcctgATCAA	RSP2401-4	+	
Chr2	2760402	2761407	+	2761908	2342.25	TTGATcctgATCAA	RSP2401-4	+	

1Chromosomes or plasmids.
2Genomic coordinates of regions of the genome that were significantly enriched by chromatin immuno-precipitation using antibodies against Fnrl.
3Genomic coordinates of genomic regions that were significantly enriched by chromatin immuno-precipitation using antibodies against σ70.
4Genomic coordinates, scores (log-likelihood ratio), and sequences of putative Fnrl binding sites identified using the position-weighted matrix constructed from the conserved DNA target sequence of the FNR-type proteins across α-proteobacteria.
5Locus number and annotations of the Fnrl target genes. The signs indicates whether the transcription of the target operons is increased (+) or decreased (−) by Fnrl binding.

doi:10.1371/journal.pgen.1001027.t002
regulator, which now controls expression of these target genes in an O₂-regulated manner. Indeed, some of these Caulobacter crescentus genes are known to require FixK and the O₂-sensing two-component histidine kinase and regulator, FixLJ for their expression [44].

On the other hand, we also predict that some species possess regulators but lack members of the corresponding core regulon. To explain this observation, we propose that the functions of these orphan regulators have diverged sufficiently to regulate completely different sets of target genes and may actually respond to signals different from those that control activity of FNR, FixK, or DNR. Therefore, these orphan regulators may not actually be orthologs of FNR, FixK, or DNR. Additional experiments are needed to test these hypotheses.

Potential for regulation of genes by multiple regulators

Because FNR, FixK, and DNR recognize very similar target DNA sequences, cells containing multiple regulators may have target genes that belong to more than one regulon. For example, FNR and FixK are likely to have overlapping regulons because both FNR and FixK activity is regulated by O₂ [2]. Indeed, 5 members of the known B. japonicum FixK regulon (ID 1331, 1264, 1230, 1774 and 129 in Table 1) and 9 genes from the characterized R. palustris FixK regulon (ID 74, 129, 301, 1230, 1264, 1289, 1331, 1348 and 1987 in Table 1) [8,43] are part of our core FNR regulon. These results indicate that, at least in these two species, significant overlap between the FNR and FixK regulons is tolerated. They also illustrate that our computational approach was able to capture the potential overlap between regulators and target genes.

In contrast, there might be less overlap between members of the DNR and either the FNR or FixK, regulons. Indeed, in Paracoccus denitrificans, which possesses both a FNR- and a DNR-type regulator (named FnrP and NNR respectively) [45], each protein regulates discrete sets of target genes even though the respective DNA target sequences for these two proteins are very similar. To explain the absence of regulon overlap between FnrP and NNR, Van Spanning et al. proposed that other proteins or subtle differences in the DNA binding site play a role in target gene discrimination [45]. Even though the underlying mechanisms for discrimination are unknown, we did not predict significant overlap between the core DNR regulon and those for FNR or FixK. Thus,

Figure 5. Identification of FnrL binding sites in the R. sphaeroides genome by ChIP–chip assays. A representative region of the R. sphaeroides genome showing profiles resulting from the enrichment of DNA fragments by immuno-precipitation of the β' subunit (blue) or σ70 (red) subunit of RNA polymerase or FnrL (green) is plotted along the indicated genomic coordinates. The data plot the log2 of the ratio of the immunoprecipitated sample to the control sample as a function of probe location along the genome (coordinates are indicated in base pairs). DNA regions significantly enriched (p-value ≤0.01) by FnrL immuno-precipitation (green boxes), positions of sequences matching the FnrL consensus binding site (green tick mark) and the coordinates of annotated genes (black boxes). The data were plotted using SignalMap 1.9 (NimbleGen Systems).

doi:10.1371/journal.pgen.1001027.g005
the phylogenetic relationship between regulators and target genes was able to compensate for missing information about differences between the target sequences of related transcription factors.

Together, these results demonstrate that phylogenetic profiles of regulators and potential target genes can be used successfully to predict the members, function and potential overlap of transcriptional regulatory networks. One benefit of our approach is its ability to decipher relationships between regulators and target genes despite possible overlap in regulon structure which may occur because of similarities in DNA binding sites. Consequently, our assignments provide testable hypotheses about the architecture and role of FNR, FixK, and DNR across α-proteobacteria.

Distribution and composition of individual transcriptional regulatory networks across species

Our analysis predicts that FNR is the most widely distributed of these three transcription factors we analyzed, since it is found in the genome of 87 α-proteobacteria (Figure 1). For the most part, the genes found in a predicted core α-proteobacterial FNR regulon encode enzymes for micro-aerobic or anaerobic respiratory growth, including synthesis of heme (ID 1230 and 74) and the high-affinity cytochrome cbb3-type oxidase (ID 1289, 1313, 1448, 1915 and 2282) (Table 2). Other genes in the core α-proteobacterial FNR regulon were predicted to encode metal cation transporters (ID 28 and 1758) that are required for activity of cytochrome cbb3-type oxidase in B. japonicum and R. sphaeroides [46, 47]. Since the cytochrome cbb3-type oxidase contains a copper cluster, it was proposed that these putative transporters maintain cellular copper homeostasis [48]. The ompW gene was also predicted to be part of the core α-proteobacterial FNR regulon and its expression was decreased under aerobic conditions in R. sphaeroides. In Salmonella enterica, OmpW mediates transport of methyl viologen (paraquat) [49], a compound which can generate reactive oxygen species under aerobic conditions [50]. Thus, it is possible that reducing OmpW protein levels in α-proteobacteria in response to increases in O2 tension also helps reduce damage from reactive oxygen species, possibly by preventing the uptake of redox mediators. Another member of the predicted core α-proteobacterial FNR regulon is nosD, a universal stress family protein, which is involved in stress resistance [51] and required for survival during energy starvation under anaerobic conditions in Pseudomonas aeruginosa [32].

In contrast to the wide distribution of FNR homologs, another CRP/FNR family member, FixK, is generally restricted to α-proteobacteria in the Rhizobiales order. The predicted core FixK regulon was best defined in the Bradyrhizobiaceae family (Nitrobose, Bradyrhizobium, and Rhodopsseudomonas), where it includes genes encoding sensing components of the O2-responsive signal transduction cascade, FixLJ (ID 332 and 114) [8, 42]. Moreover, species in the Bradyrhizobiaceae family that have a well-defined FixK regulon, also have only 7 genes predicted to be part of the core conserved FNR regulon. Another characteristic of the FixK family correlating with this observation is provided by the recent finding that B. japonicum FixK activity can be regulated by modification of a cysteine residue in response to oxidative stress [53]. Indeed, a protein sequence alignment of all the FixK orthologs analyzed in this study revealed that this particular cysteine residue is conserved only in Nitrobose, Bradyrhizobium, and Rhodopseudomonas species, indicating that FixK may have a specialized role in these species when compared to the FixK family members in the rest of the α-proteobacteria. Taken together, we propose that an extended FixK regulon, a reduced FNR regulon, and the presence of a conserved reactive cysteine residue in some FixK proteins is part of an evolutionary transition in which FixK acquired some FNR target genes and other functions to integrate them into the lifestyle of Bradyrhizobiaceae species. Indeed, it appears that FixK-type regulators diverged from the FNR-type group only very recently [9], probably as an adaptation to a specific ecological niche or signal encountered in their environments. On the other hand, this model suggests that the FixK orthologs present in α-proteobacterial species other than Nitrobose, Bradyrhizobium, or Rhodopsseudomonas, do not share a common set of target genes and consequently have unknown roles in the transcriptional regulatory networks of these bacteria.

The results of our analysis also predicted that members of the DNR regulon include genes known to be involved in nitrate respiration, the first step in denitrification (ID 1096, 2903, 3120, 4023 and 4488). Previous work indicated that NnrR, another member of the CRP/FNR super-family that is involved in NO-dependent regulation [54], is responsible for controlling denitrification in α-proteobacteria [55]. Thus, the small size of the predicted DNR regulon members may indicate a more limited role of this regulatory network in α-proteobacteria in favor of NnrR. This is an interesting hypothesis because members of the NnrR family have a predicted DNA target sequence less similar than DNR does to FNR and FixK (Figure 2). Therefore, NnrR orthologs provide an alternative to DNR to regulate functions in response to nitric oxide and resolve potential cross talk among the different regulatory networks.

Evolution of individual regulatory networks across α-proteobacteria

Our results provide support the hypothesis that bacterial transcriptional networks are often composed of a core set of genes that is widely conserved across related species, and a larger variable gene set that is specific to a smaller number of species [12, 55–59]. For example, we predicted that the core FNR regulon (about 20 genes, Table 2) contains genes involved in the response to O2 deprivation, which is a conserved function for this protein across many bacteria [3]. In contrast, the predicted extended R. sphaeroides FnrL regulon (another 48 genes, Table 1) mostly encodes functions involved in photosynthetic metabolism, a specialized anaerobic lifestyle for this organism. Moreover, we predicted that species closely related to R. sphaeroides and that are proposed to have a photosynthetic lifestyle, such as Jannaschina CCS1 or Dinoroseobacter ribes, do not share more than one third of
Figure 7. The predicted conservation of the FnrL regulon determined in R. sphaeroides across a-proteobacteria. Orange and yellow indicate respectively moderate and strong match to the DNA target sequence position-weighted matrix. Black indicates that the corresponding proteins directly relevant to the primary signal sensed. Moreover, the conserved core regulon often contains the sensor/regulator itself and regulatory networks may occur more frequently than independent cell a competitive advantage. Such rewiring or expansion of the high-rate of bacterial gene transfer and recombination. The evolution of a sensor, regulator and promoter elements, because of variation of these two factors when the bacterium travels from the open environment to the gastrointestinal tract [61]. Furthermore, this regulatory connection was rapidly lost when E. coli was exposed to an environment where temperature and O2 varied independently [61]. Such associative learning may be a widespread mechanism that provides a selective advantage during adaptation to new environmental niches. Presented with a new set of conditions, cell survival depends on the appropriate response to environmental changes. Therefore, if any new environmental signals correlate with other signals that can already be sensed by the cell, genetic changes that link appropriate target genes to an existing regulator would give the cell a competitive advantage. Such rewiring or expansion of regulatory networks may occur more frequently than independent evolution of a sensor, regulator and promoter elements, because of the high-rate of bacterial gene transfer and recombination. The promoter elements necessary for the expansion of transcriptional networks (i.e. binding sequences) can be found in the conserved core regulon, which defines a compact functional unit. Indeed, the conserved core regulon often contains the sensor/regulator itself and proteins directly relevant to the primary signal sensed. Moreover, genes of the core regulon are often physically co-located on the genomes. For example, in many species of a-proteobacteria, the structural gene for FNR is found in the immediate genomic neighborhood of its target genes that encodes for the cytochrome c oxidase cbh2-type and accessory proteins.

This model for the evolution of bacterial transcription regulatory networks is consistent with previous analyses [62,63]. Babu et al. concluded that the structure of transcriptional regulatory networks evolves faster than target genes and metabolic networks and that inhabitants of similar ecological niches are more likely to share conserved regulatory networks even if they span wide phylogenetic distances. [64]. These observations support the view that large portions of a so-called extended regulon can be determined by environmental conditions. It remains to be determined if the composition of the core and extended regulons evolve on different time scales.

In summary, this work demonstrates the utility of combining computational and high-throughput experimental approaches to define the composition, function and evolution of regulatory networks. Our approach predictions the target gene composition of these networks even in cells that possess multiple DNA-binding proteins that recognize very similar DNA target sequences. Thus, we expect our approach will be useful to similar analyses of other transcriptional regulatory networks if the DNA binding sites of regulators are known or can be predicted. By studying transcriptional regulators that are critical to a low O2 or anaerobic lifestyle, we were also able to identify new physiological functions associated with these regulators. Finally, our results support a model for the evolution of transcriptional regulatory networks. In this hypothesis, the core conserved elements, comprising the transcription factor, target genes and promoter elements represent a ‘start-up kit’ containing elements available to expand the regulon according to factors encountered that are correlated in nature.

Materials and Methods

Strains, media, and growth conditions

R. sphaeroides 2.4.1 strain was grown in Sistrom’s succinate-based minimal medium A [65] at 30°C in 500 ml cultures. To maintain anaerobic photosynthetic conditions the cultures were bubbled with a gas mixture containing 95% N2 and 5% CO2 and illuminated at a light intensity of 10W/m².

Chromatin immuno-precipitation on a chip

R. sphaeroides cells were harvested at mid-exponential growth phase (~2×10^8 colony-forming units/ml) to prepare samples for a ChIP-chip assay [12]. FnrL, the β and σ^70 subunits of RNA polymerase were separately immunoprecipitated with anti-R. sphaeroides FnrL rabbit serum, anti-E. coli β rabbit serum, or 2G10 anti-σ^70 monoclonal antibodies, respectively. Labeled DNA was hybridized on a custom-made tiling microarray, synthesized by NimbleGen (Roche NimbleGen Inc, Madison, WI), covering R. sphaeroides 2.4.1 [12]. Before data analysis, dye intensity bias and array-to-array absolute intensity variations were corrected using quantile normalization across replicates (limma package in the R environment) [66]. The log2 of the ratio of experimental (Cy3) to control signals (Cy5) was calculated. The data from the biological replicates were averaged for visualization in SignalMap 1.9 software (Roche NimbleGen Inc, Madison WI). Regions of the genome enriched for occupancy by FnrL were identified using TAMALPAIS at p≤0.01 for a threshold set at the 95th percentile of the log2 ratio for each chip [67]. Only regions that were significantly enriched in all three replicates were considered. The ChIP-chip data have been deposited in NCBI’s Gene Expression Omnibus [68] and are accessible through GEO Series accession number GSE22027 [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22027].

Microarray gene expression data

To identify genes that show expression patterns correlated with environmental O2 levels. R. sphaeroides transcription profiling experiment datasets were collected from the Gene Expression Omnibus database [http://www.ncbi.nlm.nih.gov/geo/], platform number: GPL162]. The datasets contain gene expression levels from
44 Genechip Custom Express microarrays (Affymetrix, Santa Clara, CA) obtained from the wild-type 2.4.1 strain grown in a succinate-based minimal medium (GSM1620, GSM1671, GSM1080, GSM2410, GSM2421, GSM2422, GSM2423, GSM3090, GSM3091, GSM3092, GSM30777, GSM30778, GSM30779, GSM26242, GSM26243, GSM26244, GSM2585, GSM2586, GSM25297, GSM1672, GSM1673, GSM2425, GSM2426, GSM38780, GSM38781, GSM27348, GSM27349, GSM27350, GSM2418, GSM2419, GSM8109, GSM2429, GSM2430, 2416, GSM2417, GSM8107, GSM3258, GSM3260, GSM3262, GSM38774, GSM38775, GSM38776, GSM3272, GSM3273, GSM3274) [14–16].

Expression microarray data were normalized using the RMAexpress v1.0 software (http://rmaexpress.bmbolstad.com/) with background adjustment and quantile normalization [66]. The clustering analysis was done in the R statistical software environment (http://www.r-project.org/) using the Pearson correlation coefficient as a distance between expression patterns and ‘complete’ linkage to construct the cluster hierarchy.

Determination of sets of orthologous genes

The method adopted to determine sets of putative orthologous proteins was adapted from Li et al. [17] with some modifications. First, similarities between all translated protein coding sequences across all tested genomes were discovered using BLASTP algorithm with a cutoff at E-value ≤ 1e-5 [69]. Each similarity score was normalized by dividing the bit score between two sequences by the maximum of the bit score of each sequence when scored against itself (norm_score(x,y) = bit_score(x,y)/max(bit_score(x,x), bit_score(y,y))). Then, to correct for the fact that the normalized score distributions are dependent on the phylogenetic distance between organisms, all normalized similarity scores between protein sequences of two organisms were divided by the value at the 90th percentile of the distribution of these scores. Sets of related and putatively orthologous proteins were obtained using the MCL 06-053-2 algorithm with settings other than ‘inflation’ set to default [70] (http://www.micans.org/mcl/). Several values for the ‘inflation’ parameter were used to explore the hierarchy of the relationship between sets of proteins. Ultimately, the ‘inflation’ parameter was set to 3.0 to obtain protein sets used in the remaining analysis.

Species phylogeny reconstruction

The species maximum likelihood phylogeny was constructed using the aLRT-PhyML algorithm [71,72] (http://atgc.lirmm.fr/phyml/) with default parameters and E. coli genome sequences as an out-group. The protein sequence alignment used to reconstruct the phylogeny was derived from 42 sets of orthologs that have only one member in each species. Each protein set was aligned with MUSCLE 3.7 [73] (http://www.drive5.com/muscle/) independently and then all the alignments were concatenated. The global alignment was filtered using GBLOCKS 0.91b [74] (http://molevol.cimm.cnrs.eu/castresana/Gblocks.html) to remove divergent and poorly aligned positions. The resulting alignment consisted of 5921 positions.

Phylogenetic transcription factor binding-site analysis

The common binding site model used to carry out the phylogenetic transcription factor binding-site analysis was constructed by aligning the conserved palindromic sequence found in the promoter regions of the genes coding for the FNR, FxK, and DNR orthologs across all genomes considered in this study using MEME [75]. A hidden-Markov model of the binding site motif was constructed with HMMER 2.3.2 [76] (http://hmmer.janelia.org/). The promoter regions, represented by the 300 base pair sequence upstream of the transcriptional start site, of all protein-coding sequences were scored against the model. The distribution of scores for each organism was normalized to a standard distribution to eliminate the influence of varying base composition of the background sequences across organisms. Each protein coding sequence is associated with a motif score, which is represented by its standard deviation from the mean of the score distribution. Scores ≥ 3.0 were labeled as significant.

Because bacterial genes can be organized in polycistronic operons, the promoter scores of the first genes of putative operons were propagated to the rest of the genes in the operons. The score of a predicted downstream gene in the operon was calculated by taking the maximum between its own score and the score of the previous gene multiplied by the probability of the two genes being co-transcribed. The operon predictions were obtained from the VIMSS database [http://www.microbesonline.org/operons/] [77]. After grouping gene products in their respective orthologous sets, the presence of significant DNA target sequences associated with each gene forms a Boolean vector across species. The similarity between the occurrence of a particular transcription factor (A) and the occurrence of a binding motif (B) was calculated using the Jaccard coefficient (J_{A,B} = |A\cap B|/|A\cup B|). Target genes were assigned to the transcription factor to which they shared the most similar phylogenetic profile. Target genes which profiles were not at least 20% similar to one of the three regulators were ignored.

Supporting Information

Figure S1 Maximum likelihood phylogenetic tree of selected \(_2\)-proteobacteria. Confidence scores at the branching points are represented by the aLRT statistics from the PhyML algorithm. The position of the root of the tree was determined using E. coli K12 as an out-group.

Table S1 Classification of FNR/CRP type regulators.

Table S2 Sets of orthologous genes and annotations corresponding to the FurL regulon in \(R.\) \(sphaeroides\).

Acknowledgments

We thank Michael Frazier for his contribution in performing the ChIP-chip assay, Madeline Fisher for her help editing the manuscript, and Gary Roberts for constructive feedback.

Author Contributions

Conceived and designed the experiments: YSD PJK TJD. Performed the experiments: YSD. Analyzed the data: YSD. Wrote the paper: YSD PJK TJD.

References

1. Perez JC, Grosman EA (2009) Evolution of transcriptional regulatory circuits in bacteria. Cell 138: 233–244.
2. Donohue TJ, Kiley PJ (2010) Bacterial responses to dioxygen limitation. In: Storz G, Henegge R, eds. Bacterial Stress Responses. Washington, D.C.: American Society for Microbiology Press.

3. Kornet H, Sofia HJ, Zumfi WG (2003) Phylogeny of the bacterial superfamily of CRP/FNR transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592.
4. Green J, Crack JC, Thomson AJ, LeBrun NE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12: 145–151.
5. Constantinidou C, Hohnbaum JL, Griffiths L, Patel MD, Penn CW, et al. (2006) A reassessment of the Fnr regulon and transcriptional analysis of the effects of nitrate, nitrogen, NarX, and NarQ on Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281: 4002–4015.

6. Grainger DC, Aba H, Durud D, Brousson DF, Bushj SJ (2007) Transcription factor distribution in Escherichia coli: studies with Fnr protein. Nucleic Acids Res 35: 269–278.

7. Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that Fnr of E. coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187: 1135–1140.

8. Mape S, Hauser F, Friberg M, Malaguti E, Fischer HM, et al. (2008) Comprehensive assessment of the Regulons controlled by the FixJ(FixK2)-FixL cascade in Rhodobacter sphaeroides. J Bacteriol 190: 6566–6575.

9. Batut J, Boisard P (1994) Oxygen control in Rhizobium. Anton Van Leeuwenhoek 66: 129–150.

10. Rinaldo S, Guardina G, Brumori M, Cutruzzola F (2006) O2-sensing and deiodination: the Dnr RNA transcribing factor. Biochem Soc Trans 34: 185–187.

11. Crosson S, McGrath PT, Stephens C, McAdams HH, Shapiro L (2005) Conserved modular design of an oxygen-sensing/signaling network with species-specific output. Proc Natl Acad Sci USA 102: 8018–8023.

12. Moskvin OV, Gomelsky L, Gomelsky M (2005) Transcriptome analysis of the universal stress protein PA4352 of Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. Microbiology 151: 2089–2094.

13. Dufour YS, Landick R, Donohue TJ (2008) Organization and evolution of the biological response to single oxygen stress. J Mol Biol 383: 713–730.

14. Moskvin O, Gomelsky L, Gomelsky M (2005) Transcriptional analysis of the Rhodobacter sphaeroides PpaR regulon: PpaR as a master regulator of photosystem II organization in an aerobic organism. J Bacteriol 187: 2149–2156.

15. Rigolino BA, Nemanic S, Kiley PJ (2006) Regulation of FNR dimerization by FixK2, a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels. J Bacteriol 188: 33268–33275.

16. Tavano CL, Podleve AM, Donohue TJ (2005) Identification of genes required for recycling reducing power during photysynthetic growth. J Bacteriol 187: 5249–5253.

17. Lin I, Steock CJ, Jr., Roux DS (2003) OrthoMCL: identification of orthologous groups for eukaryotic genomes. Genome Res 13: 2178–2189.

18. Lazarraga BA, Beinten K, Hnorwicheva N, Kennedy MC, Kiley PJ (1996) DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271: 2762–2768.

19. Moore LJ, Mettert EL, Kiley PJ (2006) Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem 281: 33268–33273.

20. Nellen-Anthamatten D, Rossi P, Preisig O, Kullik I, Babst M, et al. (1998) FixK(2), a crucial distributor in the FixLJ-dependent regulatory cascade for control of genes inducible by low oxygen levels. J Biol Chem 273: 1025–1028.

21. Wuchet K, Canwell BJ, Zhulin IB (2010) Evolution and phylogenetic distribution of two-component signal transduction systems. Curr Opin Microbiol 13: 219–225.

22. Hartig E, Zumft WG (1999) Kinetics of the cytochrome cbb3 oxidase in Rhodobacter sphaeroides. J Bacteriol 181: 161–166.

23. Zeilstra-Ryalls JH, Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides: studies with FNR protein. Nucleic Acids Res 23: 869–876.

24. Bacon NE, Ankeny MN, Miura J, Saito S, Sato M, et al. (2009) Comparative genome analysis: protein phylogeny reveals a small core. PLoS Genet 5: 1000029. doi:10.1371/journal.pgen.1000029.

25. Tavano CL, Podevels AM, Donohue TJ (2005) Identification of genes required for recycling reducing power during photosynthetic growth. J Bacteriol 187: 5249–5253.

26. Spiro S, Guest JR (1987) Activation of the lac operon of Escherichia coli by a mutant FNR protein. Mol Microbiol 1: 53–58.

27. Pellegrini M, Marrotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96: 4283–4288.

28. Zeilstra-Ryalls JH, Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides: studies with FNR protein. J Bacteriol 177: 6422–6431.

29. Rial-Chamorro AC, Nemanic S, Bruschi P, Rodriguez R, Ross W, et al. (1998) Structure of the CAP-DNA complex at 2.5 anstroms resolution: a complete picture of the protein-DNA interface. J Mol Biol 280: 395–408.

30. Lazarraga BA, Bates DM, Kiley PJ (1995) The activity of the Escherichia coli transcription factor FNR is regulated by a change in oligomeric state. Genes Dev 9: 1993–2005.

31. Perez J, Shin D, Zwr G, Latifi T, Hadley TJ, et al. (2009) Evolution of a bacterial regulatory control system in the lab. Proc Natl Acad Sci USA 106: 2483–2488.

32. Mose SA, Moller CK, Lied HB, Lie AL, Lundem, et al. (2007) Genome-wide transcript analysis of Bradyrhizobium japonicum fixK2, a key regulator for the Bradyrhizobium japonicum-angle symbiosis. J Bacteriol 189: 893–907.

33. Mape S, Roux DS, Nemanic S, Kiley PJ (1996) FNR identifies two oxidizing agents as inducers in the Rhodobacter sphaeroides. J Bacteriol 188: 4802–4810.

34. Eigler W, Pottmeier CC, Davis C, Liebisch J, Wilcox JD, et al. (2009) Structure and evolution of the transcriptional regulatory network. Curt Opin Struct Biol 19: 283–291.
63. McAdams HH, Srinivasan B, Arkin AP (2004) The evolution of genetic regulatory systems in bacteria. Nat Rev Genet 5: 169–178.
64. Madan Babu M, Teichmann SA, Aravind L (2006) Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 358: 614–633.
65. Sistrom WR (1960) A requirement for sodium in the growth of *Rhodopseudomonas sphaeroides*. Journal of General Microbiology 22: 778–785.
66. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 18: 155–165.
67. Bieda M, Xu X, Singer MA, Green R, Farnham PJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16: 695–705.
68. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.
69. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
70. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.
71. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. BMC Systems Biology 55: 339–352.
72. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. BMC Systems Biology 52: 696–704.
73. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
74. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. BMC Systems Biology 56: 564–577.