Beyond the Planar Limit in ABJM

Robert de Mello Koch1,2, Badr Awad Elseid Mohammed1, Jeff Murugan3,4 and Andrea Prinsloo3,4

1National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics, University of the Witwatersrand, Wits, 2050, South Africa

2Stellenbosch Institute for Advanced Studies, Stellenbosch, South Africa

3Astrophysics, Cosmology \& Gravity Center and Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa

4National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602, South Africa.

E-mail: robert@neo.phys.wits.ac.za, bmohamme@ictp.it, jeff@nassp.uct.ac.za, andy.prinsloo@uct.ac.za

ABSTRACT: In this article we consider gauge theories with a $U(N) \times U(N)$ gauge group. We provide, for the first time, a complete set of operators built from scalar fields that are in the bi fundamental of the two groups. Our operators diagonalize the two point function of the free field theory at all orders in $1/N$. We then use this basis to investigate non-planar anomalous dimensions in the ABJM theory. We show that the dilatation operator reduces to a set of decoupled harmonic oscillators, signaling integrability in a large N but non-planar limit of the theory.

KEYWORDS: D-branes, AdS/CFT correspondence, Giant gravitons, Integrability.
1. Discussion and Conclusions

The AdS/CFT correspondence[1] provides a definition of quantum gravity on negatively curved spaces. In this article we are interested in exploring $\mathcal{N} = 6 U(N) \times U(N)$ Chern-Simons theory (the ABJM model[2, 3]) which is dual to the type IIA superstring on $\text{AdS}_4 \times \mathbb{C}P^3$. The dictionary between the two corresponding theories is organized by identifying the conformal dimensions of the operator in the field theory with the energy of the corresponding state in the dual quantum gravity. This idea leads to the identification of operators with dimension ~ 1 with gravitons, of certain operators with dimension $\sim \sqrt{N}$ with string states, of certain operators with dimension $\sim N$ with D-brane states and of certain operators with dimension $\sim N^2$ with new geometries. Clearly, operators with dimension $\sim N$ or $\sim N^2$ have the potential to provide deep and important lessons. The study of these operators is however highly non-trivial because the large N limit of their correlation functions is not captured by summing the planar diagrams[4]. One is concerned here with a large N but non-planar limit.
In the last few years it has become possible to study large N but non-planar limits of gauge theories with gauge group $U(N)$. The new idea allowing progress is to exploit group representation theory to construct a basis of operators that diagonalize the free field two point function exactly. By now there are a number of interesting results. The first paper[5] to employ these ideas used Schur polynomials to provide a basis for the half-BPS sector of $\mathcal{N} = 4$ Super Yang-Mills Theory. These Schur polynomials were generalized to provide a basis for multi matrix operators in [6, 7]. The basis constructed in [8, 9] is built using elements of the Brauer algebra. A basis that has sharp quantum numbers for the global symmetries of the theory was given in [10, 11]. Finally, for a rather general approach which correctly counts and constructs the weak coupling BPS operators see[12]. The results obtained in [12] can be translated into any of the bases we have considered.

In this article we will argue that, for theories with a $U(N) \times U(N)$ gauge group, a basis of local operators that again diagonalizes the free field theory to all orders in $1/N$, can again be constructed. By restricting to what is a single matrix sector of the theory, [13] were able to compute the correlation function of some operators in a large N but non-planar limit. This work showed that by recycling some ideas that worked for $U(N)$ gauge group, there are questions that can be answered for the theory with a $U(N) \times U(N)$ gauge group. Here we are after a genuine extension of the existing methods. For a $U(N)$ gauge group, two point functions of operators built from n Higgs fields reduce to evaluating a certain trace over $V^\otimes n$, where V is the carrier space of the fundamental representation of $U(N)$. In contrast to this, when one considers a theory with $U(N) \times U(N)$ gauge group, two point functions of operators built from n Higgs fields reduce to evaluating a product of traces over $V^\otimes n$, one for each gauge group. Our main idea (see section 4.3) is to construct our operators in such a way that one of these traces simply produces a delta function which identifies the way Wick contractions are performed on the two types of fields. This idea can easily be generalized to study the general problem of a gauge theory whose gauge group has an arbitrary number of factors, as explained in the Appendix.

Given a complete basis, many interesting questions can be asked. One question which has proved rather fruitful, is to compute anomalous dimensions in this large N but non-planar limit[14, 15, 16, 17, 18, 19]. It is now beyond question that integrability has proven to be a powerful tool in analyzing $\mathcal{N} = 4$ super Yang-Mills theory in the planar limit[20, 21]. The corresponding results achieved for the large N but non-planar limit[14, 15, 16, 17, 18, 19] are encouraging and, with some optimism, one hopes that

1Our Higgs fields are of two types: the first type are in the (N, \overline{N}) of the gauge group; the second are in the (\overline{N}, N) of the gauge group. Hence any sensible gauge invariant operator is built from traces of an alternating product of the two types.
integrability will play an equally important role in this case too. Indeed, preliminary results suggest that the dilatation operator reduces to a set of decoupled oscillators. Motivated by this, we have studied anomalous dimensions for a class of operators in our basis. The operators we study belong to the $SU(2) \times SU(2)$ subsector that is not mixed with other subsectors by the dilatation operator. For this sector the dilatation operator reduces to two decoupled $SU(2)$ chains on the even and odd sites[20]. We will only excite one of these chains so that we are ultimately left with a single $SU(2)$ chain, which is exactly what one has from the $SU(2)$ sector of $\mathcal{N} = 4$ super Yang-Mills theory. We thus expect that the spectral problem considered here will be very similar to that obtained from $\mathcal{N} = 4$ super Yang-Mills theory, a fact that we explicitly demonstrate. The methods of [18] are powerful enough to handle this situation. In this case we again find that the dilatation operator reduces to a set of decoupled oscillators!

There are a number of interesting directions in which this work can be extended. We will describe at least a few of these possibilities. The operators whose anomalous dimensions we have studied are AdS/CFT dual to giant gravitons[22]. Giant gravitons have been constructed in the AdS$_4 \times \mathbb{CP}^3$ geometry in [23]. For related relevant studies see [24]. It would be interesting to explore this connection further and to see how much of the physics of the giant graviton can be recovered from our operators. See [25] for very recent progress on developing the map between quantum states and brane geometries. The current setting may be an interesting laboratory for these questions. Indeed, in the AdS$_5 \times S^5$ setting a restricted Schur polynomial with long rows corresponds to a collection of D3-dipole branes that each wrap an $S^3 \subset$ AdS$_5$; a restricted Schur polynomial with long columns corresponds to D3-dipole branes that each wrap an $S^3 \subset S^5$. For the problem we study here a restricted Schur polynomial with long rows corresponds to D2-dipole branes that each wrap an $S^3 \subset$ AdS$_4$ [26]; a restricted Schur polynomial with long columns corresponds to D4-dipole branes that each wrap a four dimensional manifold in \mathbb{CP}^3.

Secondly, when explicitly constructing the action of the dilatation operator, we have restricted ourselves to a class of operators dual to systems of two giant gravitons. The extension to systems of $p > 2$ giant gravitons proved very fruitful[18] in the AdS$_5 \times S^5$ set up. It would be interesting to consider this generalization in the present setting.

Finally, the action of the dilatation operator in the scaling limit that we consider in section 6 reduces it to the action of the dilatation operator discovered in the $SU(2)$ sector of $\mathcal{N} = 4$ super Yang-Mills theory. Can one find other scaling for which the spectrum of anomalous dimensions can still be determined? Can one directly solve the resulting recursion relations without taking a scaling limit?
2. Some Notation

We will denote the fields of the theory that we use as A_1, A_2, B_1^\dagger and B_2^\dagger. The number of A_is is n_i; the number of B_i^\daggers is m_i. Set $n = n_1 + n_2 = m_1 + m_2$. R is an irrep of S_n, i.e. $R \vdash n$. Introduce the notation

$$
\phi_{11b}^a = A_{1\alpha}^a B_{1b}^{\dagger \alpha}, \quad \phi_{12b}^a = A_{1\alpha}^a B_{2b}^{\dagger \alpha},
\phi_{21b}^a = A_{2\alpha}^a B_{1b}^{\dagger \alpha}, \quad \phi_{22b}^a = A_{2\alpha}^a B_{2b}^{\dagger \alpha}.
$$

The number of ϕ_{ijb}s is n_{ij}. $r_{ij} \vdash n_{ij}$ is an irrep of $S_{n_{ij}}$. The collection, $(r_{11}, r_{12}, r_{21}, r_{22}) \equiv \{r\}$ is an irrep of $S_{n_{11}} \times S_{n_{12}} \times S_{n_{21}} \times S_{n_{22}} \subset S_n$. We will be exploiting the fact that general multi trace operators can be realized as a single trace over the larger space $V^\otimes n$. In $V^\otimes n$ permutations have matrix elements

$$
\langle i_1, i_2, \cdots, i_n \mid r \mid j_1, j_2, \cdots, j_n \rangle = \delta_{i_{r(1)} j_1} \delta_{i_{r(2)} j_2} \cdots \delta_{i_{r(n)} j_n}.
$$

3. A Complete Set of Operators

Consider the most general gauge invariant operator built using an arbitrary number of A_1s, A_2s, B_1^\daggers and B_2^\daggers. Due to the index structure of the fields, any single trace gauge invariant operator is given by an alternating sequence of pairs of A_is and B_i^\daggers. The possible pairs are the $(\phi_{ij})_{ij}^a$ defined above. Any single trace gauge invariant operator is given by a unique (up to cyclic permutations) product of the $(\phi_{ij})^a_{ij}$. The most general gauge invariant operator is given by a product of an arbitrary number of these single trace operators. In this section we will provide a new basis for these operators.

The basis we have constructed is given by a restricted Schur polynomial in the ϕ_{ij}

$$
O_{R,\{r\}} = \frac{1}{n_{11}! n_{22}! n_{12}! n_{21}!} \sum_{\sigma \in S_n} \text{Tr}_{\{r\}}(\Gamma_R(\sigma)) \text{Tr}(\sigma \phi_{11}^{\otimes n_{11}} \phi_{12}^{\otimes n_{12}} \phi_{21}^{\otimes n_{21}} \phi_{22}^{\otimes n_{22}}).
$$

The irrep R will in general be a reducible representation of the $S_{n_{11}} \times S_{n_{12}} \times S_{n_{21}} \times S_{n_{22}}$ subgroup of S_n. One of the $S_{n_{11}} \times S_{n_{12}} \times S_{n_{21}} \times S_{n_{22}}$ irreps that R subduces is $\{r\}$. In the above formula, $\text{Tr}_{\{r\}}$ is an instruction to trace only over the $\{r\}$ subspace of the carrier space of R. A very convenient way to implement this trace is as

$$
\text{Tr}_{\{r\}}(\Gamma_R(\sigma)) = \text{Tr}(P_{R,\{r\}} \Gamma_R(\sigma)) \equiv \chi_{R,\{r\}}(\sigma)
$$

where $P_{R,\{r\}}$ is a projector which projects from the carrier space of R to the $\{r\}$ subspace. To prove that these operators form a basis, we simply need to show that
they are complete. We will demonstrate completeness by showing that the most general
gauge invariant operator built using an arbitrary number of A_1s, A_2s, B_1^\daggers and B_2^\daggers can
be written as a linear combination of the operators (3.1). Further, we can argue that
all the operators in this set are linearly independent. This follows immediately from
the fact that the number of restricted Schur polynomials is equal to the number of
gauge invariant operators (which are linearly independent). This counting agreement
was proved in [27] at both finite and infinite N.

Now for the demonstration: The most general gauge invariant operator that we
are considering can be written as

$$o(\tau) = \text{Tr}(\tau \phi_{11}^{\otimes n_{11}} \phi_{12}^{\otimes n_{12}} \phi_{21}^{\otimes n_{21}} \phi_{22}^{\otimes n_{22}})$$

for a suitable choice of the permutation $\tau \in S_n$. The completeness of this basis now
follows from the identity (which is derived in [28])

$$o(\tau) = \sum_{R,\{r\}} \frac{d_{R_{11}}! d_{R_{12}}! d_{R_{21}}! d_{R_{22}}!}{d_{r_{11}}! d_{r_{12}}! d_{r_{21}}! d_{r_{22}}!} n! \chi_{R,\{r\}}(\tau) O_{R,\{r\}}$$

where the sum over R runs over all irreps of S_n and $\{r\}$ ranges over all irreps of
$S_{n_{11}} \times S_{n_{12}} \times S_{n_{21}} \times S_{n_{22}}$. This completes the demonstration.

The operators given in (3.1) do not have simple two point functions and they are
not orthogonal. For this reason we will need to generalize (3.1) (see formula (4.1)
below). The main insight gained from this section is the fact that the number of gauge
invariant operators is equal to the number of distinct restricted Schur labels $R, \{r\}$.
In what follows, we are able to construct a set of operators that have orthogonal two
point functions and are labeled by $R, \{r\}$. Given the lesson of this section, we know
they are complete.

4. Two Point Functions

In this section we will study the two point correlation functions of the operators (3.1). These correlators provide an interesting generalization of the correlators considered
for operators built from complex Higgs fields transforming in the adjoint of a $U(N)$
gauge theory. For correlators built from n Higgs fields transforming in the adjoint of a $U(N)$ gauge group one is able to reduce the computation of the correlator to
the computation of a trace over the space $V^{\otimes n}$ where V is the carrier space of the
fundamental representation of $U(N)$. In the present case, because we consider a theory
with $U(N) \times U(N)$ gauge group, the computation of the correlator reduces to a product
of two traces (one for each $U(N)$ factor in the gauge group) each of which run over $V^{\otimes n}$.
We will explain how to explicitly compute this trace. The first result we obtain in this section is a general formula for the two point correlation function. We then consider the explicit evaluation of this general result in two special cases: when \(n_{12} = n_{21} = 0 \) and when \(n_2 = 0 \). These special cases are simpler than the general result, and the case \(n_2 = 0 \) represents a class of operators that are closed under the action of the two loop dilatation operator. We will study the anomalous dimensions of these operators in a later section. The final result of this section is a general formula for two point functions. In an Appendix we explain how this result generalizes to gauge groups with more factors.

As has become standard in computations of this type, we ignore spacetime dependence; it is uniquely determined in the final result by conformal invariance. Consequently, the two point functions of the Higgs fields that we use are

\[
\langle A_i^a A_j^a \rangle = \delta_{ij} \delta_2^a \delta_2^a = \langle B_i^a B_j^a \rangle
\]

In terms of these Higgs fields we can write our operator as

\[
O_{R,\{r\}} = \frac{1}{n_{11}! n_{22}! n_{12}! n_{21}!} \sum_{\sigma \in S_n} \text{Tr}_{\{r\}} (\Gamma_R(\sigma)) \prod_{i=1}^{n_1} (A_i)^a_{\sigma(i)} \times
\]

\[
\times \prod_{j=1+n_1}^n (A_j^a)_{\tau(j)} \prod_{i=1}^{n_1} (B_i^a)_{\alpha(i)} \prod_{j=1+m_1}^n (B_j^a)_{\alpha(j)}
\]

\[= \text{Tr}(P_{R,\{r\}} A_1^{n_{11}+n_{12}} A_2^{n_{21}+n_{22}} \tau (B_1^a)^{n_{11}+n_{21}} (B_2^a)^{n_{12}+n_{22}})
\]

where

\[
P_{R,\{r\}} = \frac{1}{n_{11}! n_{22}! n_{12}! n_{21}!} \sum_{\sigma \in S_n} \text{Tr}_{\{r\}} (\Gamma_R(\sigma)) \sigma
\]

In the last line of (4.1) we have switched to a trace within \(V^{\otimes n} \). The above explicit formula spells out how we are filling the “slots” from 1 to \(n \) with the \(A_i \)'s and \(B_j^\dagger \)'s. The specific way in which the slots are populated determines how the subgroups \(S_{n_1} \times S_{n_2} \) and \(S_{m_1} \times S_{m_2} \) are embedded into \(S_n \). The operator \(\tau \) dictates how the \(A_i \)'s and \(B_j^\dagger \)'s are to be combined to produce \(\phi_{ij} \)'s. The specific \(\tau \) we must choose to achieve a specific joining will not in general be unique. It would also be possible to replace \(\tau \) by some more general element of the group algebra\(^2\). We will pursue this possibility below. The name “restricted Schur polynomial,” regardless of the specific \(\tau \) used in the construction,

\(^2\)The \(n_{ij} \) continue to count the number of boxes in the Young diagrams \(r_{ij} \), but no longer give the number of composite scalars \((\phi_{ij})^a_b \) from which the operator is built.
reflects that fact that for all of these operators the index structure associated with the
\(U(N) \) group on which the projector \(P_{R,\{r\}} \) acts is organized using the symmetric group
and its subgroups. It is now a simple exercise to show that

\[
\langle O_{R,\{r\}} O_{S,\{s\}}^\dagger \rangle = \sum_{\psi \circ \lambda \in S_{n_1} \times S_{n_2}} \sum_{\mu \circ \nu \in S_{m_1} \times S_{m_2}} \text{Tr}(P_{R,\{r\}} \psi \circ \lambda P_{S,\{s\}} \mu \circ \nu) \text{Tr}(\tau^\dagger \psi^{-1} \circ \lambda^{-1} \tau^{-1} \mu^{-1} \circ \nu^{-1})
\]

The sum over \(\psi \circ \lambda \) sums all possible Wick contractions between the \(A_i \)s and the
sum over \(\mu \circ \nu \) sums all possible Wick contractions between the \(B_i \)s. After making a
convenient choice for \(\tau \) we will show how to evaluate (4.2) in general.

4.1 Number of \(A_i \)s equal number of \(B_i \)s; \(n_{12} = n_{21} = 0 \)

In this subsection we consider the case that \(n_1 = m_1, n_2 = m_2 \) and further that \(n_{12} = 0 = n_{21} \). With this choice \(\{r\} = \{r_{11}, r_{22}\} \). There are a number of nice simplifications
that arise in this case. First, we may take \(\tau \) to be the identity permutation. Secondly,
both \(P_{R,\{r\}} \) and \(P_{S,\{s\}} \) commute with all elements of \(S_{n_11} \times S_{n_22} \). Thus, the two point
correlator becomes

\[
\langle O_{R,\{r\}} O_{S,\{s\}}^\dagger \rangle = \sum_{\psi \circ \lambda \in S_{n_11} \times S_{n_22}} \sum_{\mu \circ \nu \in S_{n_11} \times S_{n_22}} \text{Tr}(P_{R,\{r\}} \psi \circ \lambda P_{S,\{s\}} \mu \circ \nu) \text{Tr}(\psi^{-1} \circ \lambda^{-1} \mu^{-1} \circ \nu^{-1})
\]

\[
= n_{11}! n_{22}! \sum_{\psi \circ \lambda \in S_{n_11} \times S_{n_22}} \text{Tr}(P_{R,\{r\}} P_{S,\{s\}} \psi \circ \lambda) \text{Tr}(\psi^{-1} \circ \lambda^{-1})
\]

Next we use the identity

\[
P_{R,\{r\}} P_{S,\{s\}} = \delta_{R S} \delta_{\{r\},\{s\}} \frac{n!}{n_{11}! n_{22}!} P_{R,\{r\}}
\]

proved in [29], and the identity (in this next formula \(\text{Tr}_n \) denotes a trace over \(V^\otimes n \), \(f_s \)
is a product of the factors of Young diagram \(s \) and \(\text{hooks}_s \) is a product of the hook
lengths of Young diagram \(s \))

\[
\text{Tr}_n(\psi \circ \lambda) = \text{Tr}_{n_{11}}(\psi) \text{Tr}_{n_{22}}(\lambda) = \sum_{s \vdash n_{11}} \chi_s(\psi) \frac{f_s}{\text{hooks}_s} \frac{n_1}{n_{11}} \sum_{t \vdash n_{22}} \chi_t(\lambda) \frac{f_t}{\text{hooks}_t}
\]

- 7 -
which follows as a consequence of Schur-Weyl duality, to obtain

\[
\langle O_R, \{r\} O^\dagger_S, \{s\} \rangle = \frac{n!}{d_R} \delta_{RS} \delta_{\{r\},\{s\}} \sum_{\psi, \lambda \in S_{n_{11}} \times S_{n_{22}}} \times \\
\times \sum_{u \vdash n-1_{11}} \chi_u(\psi) \frac{f_u}{\text{hooks}_u} \sum_{t \vdash n_{22}} \chi_t(\lambda) \frac{f_t}{\text{hooks}_t} \text{Tr}(P_{R,\{r\}} \psi \circ \lambda).
\]

To do this sum, note that

\[
\sum_{\psi \in S_{n_{11}}} \chi_s(\psi) \psi = \frac{n_{11}!}{d_s} P_s \quad \sum_{\lambda \in S_{n_{22}}} \chi_t(\lambda) \lambda = \frac{n_{22}!}{d_t} P_t
\]

where \(P_s\) and \(P_t\) are correctly normalized projectors, projecting to the irrep \(s\) of \(S_{n_{11}}\) and \(t\) of \(S_{n_{22}}\) respectively. Thus,

\[
\langle O_R,\{r\} O^\dagger_S, \{s\} \rangle = \sum_u \sum_t \frac{n! n_{11}! n_{22}! f_u f_t}{d_R d_{r_{11}} d_{r_{22}} \text{hooks}_{r_{11}} \text{hooks}_{r_{22}}} \delta_{RS} \delta_{\{r\},\{s\}} \text{Tr}(P_{R,\{r\}} P_u P_t)
\]

\[
= \frac{n! n_{11}! n_{22}! f_{r_{11}} f_{r_{22}}}{d_R d_{r_{11}} d_{r_{22}} \text{hooks}_{r_{11}} \text{hooks}_{r_{22}}} \delta_{RS} \delta_{\{r\},\{s\}} \text{Tr}(P_{R,\{r\}})
\]

\[
= \delta_{RS} \delta_{\{r\},\{s\}} \frac{\text{hooks}_R f_{r_{11}} f_{r_{22}} f_R}{\text{hooks}_{r_{11}} \text{hooks}_{r_{22}}}
\]

To obtain the final result we used the value of \(\text{Tr}(P_{R,\{r\}})\) which has been computed in [7].

The basic result of the subsection is

\[
\langle O_R,\{r\} O^\dagger_S, \{s\} \rangle = \delta_{RS} \delta_{\{r\},\{s\}}
\]

\[
\frac{\text{hooks}_R f_{r_{11}} f_{r_{22}} f_R}{\text{hooks}_{r_{11}} \text{hooks}_{r_{22}}}
\]

(4.3)

4.2 \(n_2 = 0, \ n_1 = m_1 + m_2\)

With this choice \(\{r\} = \{r_{11}, r_{12}\}\). There are again a number of nice simplifications that arise in this case. First, we may again take \(\tau\) to be the identity permutation. Secondly, both \(P_{R,\{r\}}\) and \(P_{S,\{s\}}\) commute with all elements of \(S_{n_{11}} \times S_{n_{12}}\). Thus, the two point correlator becomes

\[
\langle O_R,\{r\} O^\dagger_S, \{s\} \rangle = \sum_{\sigma \in S_n} \sum_{\rho \in S_{m_1} \times S_{m_2}} \text{Tr}(P_{R,\{r\}} \sigma P_{S,\{s\}} \rho) \text{Tr}(\sigma^{-1} \rho^{-1})
\]

\[- 8 -}\]
\[= m_1! m_2! \sum_{\sigma \in S_n} \text{Tr}(P_{R,\{r\}} P_{S,\{s\}} \sigma) \text{Tr}(\sigma^{-1}) \]

\[= \frac{n!}{d_R} \delta_{RS} \delta_{\{r\},\{s\}} \sum_{\sigma \in S_n} \text{Tr}(P_{R,\{r\}} \sigma) \text{Tr}(\sigma^{-1}) \]

\[= \frac{n!}{d_R} \delta_{RS} \delta_{\{r\},\{s\}} \sum_{T \vdash n} \frac{f_T}{\text{hooks}_T} \sum_{\sigma \in S_n} \text{Tr}(P_{R,\{r\}} \sigma) \chi_T(\sigma^{-1}) \]

\[= \frac{n!}{d_R} \delta_{RS} \delta_{\{r\},\{s\}} \sum_{T \vdash n} \frac{f_T}{\text{hooks}_T} \frac{n!}{d_T} \text{Tr}(P_{R,\{r\}} P_T) \]

\[= \frac{f_R n!}{d_R} \delta_{RS} \delta_{\{r\},\{s\}} \text{Tr}(P_{R,\{r\}}) \]

\[= \frac{(f_R)^2 n!}{d_R \text{hooks}_{r_{11}} \text{hooks}_{r_{12}}} \delta_{RS} \delta_{\{r\},\{s\}} \]

The basic result of the subsection is

\[
\langle O_{R,\{r\}} O_{S,\{s\}}^\dagger \rangle = \delta_{RS} \delta_{\{r\},\{s\}} \frac{\text{hooks}_R (f_R)^2}{\text{hooks}_{r_{11}} \text{hooks}_{r_{12}}} \tag{4.4}
\]

4.3 General Case

In this section we will consider general \(n_{ij} \). We will find it useful to allow \(\tau \) to be a general element of the group algebra. We will find it convenient to distribute the Higgs fields in the slots as follows

\[
O_{R,\{r\}} = \frac{1}{n_{11}! n_{22}! n_{12}! n_{21}!} \sum_{\sigma \in S_n} \text{Tr}_{\{r\}} (\Gamma_R(\sigma)) \prod_{i=1}^{n_1} (A_1)_{a_i}^{a_i} \prod_{j=1+n_1}^{n} (A_2)_{a_j}^{a_j} (\tau)_{\beta_1 \ldots \beta_n} \times
\]

\[
\times \prod_{i=1}^{n_{11}} (B_1)_{a_{\sigma(i)}}^{\beta_i} \prod_{i=1+n_{11}}^{n_{1}} (B_1)_{a_{\sigma(i)}}^{\beta_i} \prod_{i=1+n_1}^{n_{21}} (B_1)_{a_{\sigma(i)}}^{\beta_i} \prod_{i=1+n_{11}+n_{21}}^{n} (B_1)_{a_{\sigma(i)}}^{\beta_i} \tag{4.5}
\]

Compare to (4.1) and notice that this is not the same distribution of the Higgs fields. We will summarize this as

\[
O_{R,\{r\}} = \text{Tr}(P_{R,\{r\}} A^{\otimes n} \tau B^{\otimes n})
\]
where for simplicity, our notation does not spell out which fields inhabit which slots. Standard manipulations give (this assumes a Hermitian τ which is the case we consider below)

$$\langle \mathcal{O}_{R,\{r\}} \mathcal{O}^\dagger_{S,\{s\}} \rangle = \sum_{\rho \in S_{n_1} \times S_{n_2}} \sum_{\sigma \in S_{m_1} \times S_{m_2}} \text{Tr}(P_{R,\{r\}} \sigma P_{S,\{s\}} \rho) \text{Tr}(\tau \rho^{-1} \sigma^{-1}).$$

To see how the subgroups are embedded in S_n, note that $S_{n_1} \times S_{n_2}$ acts on slots occupied by the As and $S_{m_1} \times S_{m_2}$ acts on slots occupied by B^\daggers. The formula (4.5) clearly states how the slots are populated. Note that on the right hand side there are two traces and the sums to be performed have one element of the symmetric group in one trace and the inverse of this in the second trace. The corresponding computation for gauge group $U(N)$ has one trace and both an element of the symmetric group and its inverse, in the same trace. This is a key observation that motivates what follows.

We could reduce the above result to the corresponding result obtained for a $U(N)$ gauge group if we choose τ so that

$$\text{Tr}(\tau \rho^{-1} \sigma^{-1}) = \delta(\rho^{-1} \sigma^{-1}). \quad (4.6)$$

Define ($R \vdash n$)

$$\Phi_R = \frac{d_R}{n! f_R} \sum_{\sigma \in S_n} \chi_R(\sigma^{\dagger}) \sigma.$$

A rather straightforward computation now gives

$$\text{Tr}(\Phi_R \psi) = \frac{d_R}{n!} \chi_R(\psi)$$

where the trace is over $V^{\otimes n}$. Recalling that the delta function on the symmetric group is

$$\delta(\sigma) = \frac{1}{n!} \sum_{R \vdash n} d_R \chi_R(\sigma)$$

we have

$$\text{Tr}(\sum_{R \vdash n} \Phi_R \psi) = \delta(\psi).$$

This motivates the choice

$$\tau = \sum_{R \vdash n} \frac{d_R}{n! \sqrt{f_R}} \sum_{\sigma \in S_n} \chi_R(\sigma^{\dagger}) \sigma. \quad (4.7)$$

With this choice (4.6) holds so that

$$\langle \mathcal{O}_{R,\{r\}} \mathcal{O}^\dagger_{S,\{s\}} \rangle = \sum_{\sigma \in S_{n_1} \times S_{n_2} \cap S_{m_1} \times S_{m_2}} \text{Tr}(P_{R,\{r\}} \sigma P_{S,\{s\}} \sigma^{-1}).$$
Notice that $S_{n_1} \times S_{n_2} \cap S_{m_1} \times S_{m_2} = S_{n_{11}} \times S_{n_{12}} \times S_{n_{21}} \times S_{n_{22}}$. Thus, σ commutes with the projectors in the last equation. After summing over σ we have

$$\langle O_{R,\{r\}}^\dagger O_{S,\{s\}}^\dagger \rangle = n_{11}! n_{12}! n_{21}! n_{22}! \Tr(P_{R,\{r\}} P_{S,\{s\}}) .$$

A straight forward application of the results of [29, 7] now gives

$$\langle O_{R,\{r\}}^\dagger O_{S,\{s\}}^\dagger \rangle = \delta_{RS} \delta_{\{r\}\{s\}} \frac{\text{hooks}_R f_R}{\text{hooks}_{r_{11}} \text{hooks}_{r_{12}} \text{hooks}_{r_{21}} \text{hooks}_{r_{22}}} . \quad (4.8)$$

This clearly shows that our operators diagonalize the two point function in the subspace of operators with fixed n_{ij}. However, even after fixing n_i, m_i, we can still change the n_{ij}, by changing the way we populate the slots with the B^\daggers which corresponds to changing the way that we embed $S_{m_1} \times S_{m_2}$ in S_n. Projectors corresponding to different n_{ij} will not in general be orthogonal. However, in this case (4.6) is never satisfied so that the operators continue to be orthogonal.

5. Action of the Dilatation Operator

The two loop dilatation generator in the sector with $n_2 = 0$ is [30]

$$D = - \left(\frac{4\pi}{k} \right)^2 : \Tr \left[\left(B_2^\dagger A_1 B_1^\dagger - B_1^\dagger A_1 B_2^\dagger \right) \left(\frac{\partial}{\partial B_2} \frac{\partial}{\partial A_1} \frac{\partial}{\partial B_1} - \frac{\partial}{\partial B_1} \frac{\partial}{\partial A_1} \frac{\partial}{\partial B_2} \right) \right] : .$$

We will compute the action of the dilatation operator on operators normalized so that

$$\langle \hat{O}_{R,\{r\}} \hat{O}_{S,\{s\}} \rangle = f_R \delta_{RS} \delta_{\{r\}\{s\}} .$$

This choice of normalization makes the present problem look as similar as possible to that of [15]. The relation of these normalized operators (indicated with a hat) to the operators of section 4.2 is

$$O_{R,\{r\}} = \sqrt{\frac{\text{hooks}_R f_R}{\text{hooks}_{r_{11}} \text{hooks}_{r_{12}}}} \hat{O}_{R,\{r\}} .$$

Using the methods of [14, 15], it is straight forward to obtain

$$D \hat{O}_{R,\{r\}} = \sum_{S,\{s\}} M_{R,\{r\},S,\{s\}} \hat{O}_{S,\{s\}}$$
where

\[
M_{R,\{r\},S,\{s\}} = \sqrt{\frac{\text{hooks}_S f_S \text{hooks}_{r_{11}} \text{hooks}_{r_{12}}}{\text{hooks}_R f_R \text{hooks}_{s_{11}} \text{hooks}_{s_{12}}}} \sum_{R'} \frac{m_1 m_2 d_S c_{RR'}}{d_{s_{11}} d_{s_{12}} n d_{R'}^2} \times
\]

\[
\times \left[N \text{Tr} \left(I_{S'[R']} [\Gamma_R ((1, m_2 + 1), P_{R,\{r\}}) I_{R'S'C} + \right.
ight.
\]

\[
+ \text{Tr} \left(I_{S'[R']} [\Gamma_R ((1, m_2 + 1), P_{R,\{r\}}) \Gamma_R ((1, m_2 + 1) - \Gamma_S ((m_2 + 2, 1, m_2 + 1)) P_{R,\{r\}} I_{R'S'C} + \right.
ight.
\]

\[
+ (m_1 - 1) \text{Tr} \left(I_{S'[R']} [\Gamma_R ((1, m_2 + 1), P_{R,\{r\}}) \Gamma_R ((1, 2)) - \Gamma_S ((2, 1, m_2 + 1)) I_{R'S'C} + \right.
ight.
\]

\[
\left. \left. + (m_2 - 1) \text{Tr} \left(I_{S'[R']} [\Gamma_R ((1, m_2 + 1), P_{R,\{r\}}) \Gamma_R ((1, 2)) - \Gamma_S ((2, 1, m_2 + 1)) I_{R'S'C} \right] \right) \right]
\]

and

\[C = \left[P_{S,\{s\}}, \Gamma_S ((1, m_2 + 1)) \right]. \]

To obtain this result we have used the first \(m_2 \) slots for the \(\phi_{12s} \) and the next \(m_1 \) slots for the \(\phi_{11s} \).

We will study the spectrum of anomalous dimensions for operators whose labels \(R, \{r\} \) are all Young diagrams with two long rows. In this case we can use \(U(2) \) group theory to construct the projectors as explained in [16, 18]. The extension to operators whose labels \(R, \{r\} \) are all Young diagrams with \(p \) long rows is also possible; in this case \(U(p) \) group theory is used [18]. To set up the two long rows problem, we will employ a more convenient labeling for our operators. Notice that \(m_1 \) and \(m_2 \) are fixed. We study the limit in which both \(m_1 \) and \(m_2 \) are \(O(N) \), but \(m_2 \ll m_1 \). Denote the number of boxes in row 1 of \(r_{12} \) minus the number of boxes in row 2 by \(2j \). The number of boxes in row 2 is thus \(\frac{m_2 - 2j}{2} \). For \(m_2 = 24 \) and \(j = 4 \) we have

\[
\begin{align*}
 r_{12} &= \begin{array}{cccccccc}
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□} \\
 \text{□} & \text{□}
\end{array}
\end{align*}
\]

In this way, we trade \(r_{12} \) for an integer \(j \). Next, imagine that to obtain \(r_{11} \) from \(R \) we need to pull \(\nu_1 \) boxes from the first row of \(R \) and \(\nu_2 \) boxes from the second row of \(R \). Since we know that \(\nu_1 + \nu_2 = m_2 \) it is enough to specify \(\nu_1 - \nu_2 \equiv 2j^3 \). Finally, we will trade \(r_{11} \) for the two integers \(b_0 \) and \(b_1 \). \(b_1 \) is the number of columns with a single box while \(b_0 \) is the number of columns containing two boxes. Note that this notation is redundant because \(2b_0 + b_1 = m_1 \). Thus, we trade the three Young diagrams \(R, r_{11}, r_{12} \) for the integers \(b_0, b_1, j, j^3 \). See Figure 1 for a summary. Using the ideas developed in [16, 18] we find after a straightforward but tedious computation

\[
D\hat{O}_{j,j^3}(b_0, b_1) = \left(\frac{4\pi}{k} \right)^2 \left[\left(-\frac{N}{2} \left(m_2 - \frac{(m_2 + 2)(j^3)^2}{j(j + 1)} \right) \right. \right.
\]

\[
- \frac{m_2^2}{4} + m_2 + j^2 \left(\frac{j^2(4 - m_2^2)}{4j(j + 1)} \right) \Delta\hat{O}_{j,j^3}(b_0, b_1)
\]

(5.1)
\[+N \sqrt{\frac{(m_2 + 2j + 4)(m_2 - 2j)}{(2j + 1)(2j + 3)}} \frac{(j + j^3 + 1)(j - j^3 + 1)}{2(j + 1)} \left(1 + \frac{m_2 - 2j - 4}{2N} \right) \Delta \hat{O}_{j+1,j^3}(b_0, b_1) \]
\[+ \sqrt{\frac{(m_2 + 2j + 2)(m_2 - 2j + 2)}{(2j + 1)(2j - 1)}} \frac{(j + j^3)(j - j^3)}{2j} \left(1 + \frac{m_2 - 2j - 2}{2N} \right) \Delta \hat{O}_{j-1,j^3}(b_0, b_1) \]

where
\[\Delta \hat{O}_{j,j^3}(b_0, b_1) = \sqrt{(N + b_0)(N + b_0 + b_1)} \left(\hat{O}_{j,j^3}(b_0 + 1, b_1 - 2) + \hat{O}_{j,j^3}(b_0 - 1, b_1 + 2) \right) \]
\[- (2N + 2b_0 + b_1) \hat{O}_{j,j^3}(b_0, b_1). \]

This is remarkably similar to the result obtained for two row restricted Schurs in the $SU(2)$ sector of $\mathcal{N} = 4$ super Yang Mills theory[16]. In particular, the fact that only the combination $\Delta O_{j,j^3}(b_0, b_1)$ appears implies that after we have diagonalized on the j label, the problem of diagonalizing on the b_0, b_1 labels again reduces to diagonalizing a set of decoupled harmonic oscillators.

\[R \]
\[2j^3 = \nu_1 - \nu_2 \]
\[r_{11} \]
\[b_0 \]
\[r_{12} \]
\[\frac{m_2 - 2j}{2} \]

Figure 1: A summary of the $U(2)$ labeling

6. Spectrum of Anomalous Dimensions

For the $SU(2)$ sector of $\mathcal{N} = 4$ super Yang-Mills theory [19] have proved that studying the dilatation operator in a continuum limit reproduces the spectrum obtained by
solving the original discrete anomalous dimension eigenvalue problem. In this section we will consider a continuum limit of the dilatation operator that reduces to the problem studied in [16].

Consider first the problem of diagonalizing on the b_0, b_1 labels. We introduce $x = \frac{b_1}{\sqrt{N} + b_0}$. For any finite arbitrarily large x we have $b_1 \sim \sqrt{N}$. In this limit [16] show that the operator Δ defined in (5.2) reduces to the harmonic oscillator Hamiltonian which is easily diagonalized. Consider next the problem of diagonalizing on the j, j_3 labels. To solve this problem we will consider the double scaling limit defined by taking $m_2 \to \infty, b_1 \to \infty$ holding $\frac{m}{b_1} \sim \gamma \ll 1$ fixed. In this case $\sqrt{\frac{2}{m} j}$ becomes a continuous variable. It is straightforward to see that in this continuum limit, the action found for the dilatation operator in the previous section reduces to the continuum limit of the action of the dilatation operator studied in [16]. From the results of that work we know that if $m_2 = 2n$ we obtain a set of oscillators with frequency ω_i and degeneracy d_i given by

$$\omega_i = 8iN \left(\frac{4\pi}{k}\right)^2, \quad d_i = 2(n - i) + 1, \quad i = 0, 1, \ldots, n.$$

and if $m_2 = 2n + 1$ we obtain a set of oscillators with frequency ω_i and degeneracy d_i given by

$$\omega_i = 8iN \left(\frac{4\pi}{k}\right)^2, \quad d_i = 2(n - i + 1), \quad i = 0, 1, \ldots, n.$$

Acknowledgements: We would like to thank Pawel Caputa for enjoyable, helpful discussions. RdMK and BAEM are supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. JM is supported by the National Research Foundation under the Thuthuka and Incentive Funding for Rated Researchers Program. AP is supported by an NRF Innovation Postdoctoral Fellowship. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF and DST do not accept any liability with regard thereto.

A. More General Gauge Groups

The operators we have constructed above also give a complete basis for gauge groups with an arbitrary number of factors $U(N) \times U(N) \times \cdots \times U(N)$. We will illustrate the example of three factors $U(N) \times U(N) \times U(N)$. Denote the indices associated with
the gauge groups by a, α, A. The theory is assumed to have three sets of fields, all transforming in different bi fundamental representations of the factors
\[(A_i)_a^\alpha, \quad (B_i)_A^\alpha, \quad (C_i)_A^a.\]
The most general operator in the theory can be written as a product of traces of the operators
\[(\phi_{ijk})_b^a \equiv (A_i B_j C_k)_b^a.\]
We will assume that i runs from 1 to n_A, j from 1 to n_B and k from 1 to n_C. The number of ϕ_{ijk} fields will be denoted by n_{ijk}. Repeating the arguments of section 3, it is clear that the restricted Schur polynomials are constructed by subducing $S_{n_111} \times S_{n_2112} \times \cdots \times S_{n_A n_B n_C}$ irreps from S_n irreps where $n = \sum_{ijk} n_{ijk}$. Thus, $\{r\}$ is a set of $n_A n_B n_C$ Young diagrams. Our operators (τ is chosen as in (4.7))
\[O_{R,\{r\}} = \text{Tr}(P_{R,\{r\}} A^\otimes n_A \tau B^\otimes n_B \tau C^\otimes n_C)\]
have two point function
\[\langle O_{R,\{r\}} O_{S,\{s\}}^\dagger \rangle = \delta_{RS} \delta_{\{r\},\{s\}} \frac{\text{hooks}_{Rf_R}}{\text{hooks}_{\{r\}}}. \quad (A.1)\]
where hooks$_{\{r\}}$ is a product of hook factors, one for each of the $n_A n_B n_C$ Young diagrams appearing in $\{r\}$.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200];
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109];
E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].

[2] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].

[3] J. Bagger and N. Lambert, “Modeling Multiple M2’s,” Phys. Rev. D 75, 045020 (2007) [hep-th/0611108],
A. Gustavsson, “Algebraic structures on parallel M2-branes,” Nucl. Phys. B 811, 66 (2009) [arXiv:0709.1260 [hep-th]],
J. Bagger and N. Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,” Phys. Rev. D 77, 065008 (2008) [arXiv:0711.0955 [hep-th]].
J. Bagger and N. Lambert, “Comments on multiple M2-branes,” JHEP 0802, 105 (2008) [arXiv:0712.3738 [hep-th]].
A. Gustavsson, “One-loop corrections to Bagger-Lambert theory,” Nucl. Phys. B 807, 315 (2009) [arXiv:0805.4443 [hep-th]].

[4] V. Balasubramanian, M. Berkooz, A. Naqvi and M. J. Strassler, “Giant gravitons in conformal field theory,” JHEP 0204, 034 (2002) [arXiv:hep-th/0107119].

[5] S. Corley, A. Jevicki and S. Ramgoolam, “Exact correlators of giant gravitons from dual N = 4 SYM theory,” Adv. Theor. Math. Phys. 5, 809 (2002) [arXiv:hep-th/0111222].

[6] V. Balasubramanian, D. Berenstein, B. Feng and M. x. Huang, “D-branes in Yang-Mills theory and emergent gauge symmetry,” JHEP 0503, 006 (2005) [arXiv:hep-th/0411205].

[7] R. de Mello Koch, J. Smolic and M. Smolic, “Giant Gravitons - with Strings Attached (I),” JHEP 0706, 074 (2007) [hep-th/0701066].

[8] Y. Kimura and S. Ramgoolam, “Branes, Anti-Branes and Brauer Algebras in Gauge-Gravity duality,” arXiv:0709.2158 [hep-th].

[9] Y. Kimura, “Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra,” arXiv:0910.2170 [hep-th].

[10] T. W. Brown, P. J. Heslop and S. Ramgoolam, “Diagonal multi-matrix correlators and BPS operators in N=4 SYM,” arXiv:0711.0176 [hep-th].

[11] T. W. Brown, P. J. Heslop and S. Ramgoolam, “Diagonal free field matrix correlators, global symmetries and giant gravitons,” arXiv:0806.1911 [hep-th].

[12] J. Pasukonis and S. Ramgoolam, “From counting to construction of BPS states in N=4 SYM,” arXiv:1010.1683 [hep-th].

[13] T. K. Dey, “Exact Large R-charge Correlators in ABJM Theory,” JHEP 1108, 066 (2011) [arXiv:1105.0218 [hep-th]], S. Chakrabortty and T. K. Dey, “Correlators of Giant Gravitons from dual ABJ(M) Theory,” arXiv:1112.6299 [hep-th].

[14] R. d. M. Koch, G. Mashile and N. Park, “Emergent Threebrane Lattices,” Phys. Rev. D 81, 106009 (2010) [arXiv:1004.1108 [hep-th]].

[15] V. De Comarmond, R. d Mello Koch and K. Jefferies, “Surprisingly Simple Spectra,” [arXiv:1012.3884v1 [hep-th]].

[16] W. Carlson, R. d. M. Koch and H. Lin, “Nonplanar Integrability,” arXiv:1101.5404 [hep-th].

[17] R. d. M. Koch, B. A. E. Mohammed, S. Smith, “Nonplanar Integrability: Beyond the SU(2) Sector,” [arXiv:1106.2483 [hep-th]].
[18] R. d. M. Koch, M. Dessein, D. Giataganas, C. Mathwin, “Giant Graviton Oscillators,” arXiv:1108.2761 [hep-th].

[19] R. de Mello Koch, G. Kemp and S. Smith, “From Large N Nonplanar Anomalous Dimensions to Open String Theory,” arXiv:1111.1058 [hep-th].

[20] J. A. Minahan and K. Zarembo, “The Bethe-ansatz for N = 4 super Yang-Mills,” JHEP 0303, 013 (2003) [arXiv:hep-th/0212208].

[21] N. Beisert et al., “Review of AdS/CFT Integrability: An Overview,” arXiv:1012.3982 [hep-th]. For material which is very relevant, see in particular: C. Kristjansen, “Review of AdS/CFT Integrability, Chapter IV.1: Aspects of Non-Planarity,” arXiv:1012.3997 [hep-th], K. Zoubos, “Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries,” arXiv:1012.3998 [hep-th].

[22] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons from anti-de Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-th/0003075]; M. T. Grisaru, R. C. Myers and O. Tafjord, “SUSY and Goliath,” JHEP 0008, 040 (2000) [arXiv:hep-th/0008015]; A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].

[23] D. Giovannoni, J. Murugan and A. Prinsloo, “The giant graviton on AdS$_4 \times \mathbb{CP}^3$ - another step towards the emergence of geometry,” JHEP 1112, 003 (2011) [arXiv:1108.3084 [hep-th]].

[24] J. Pasukonis and S. Ramgoolam, “Quantum States to Brane Geometries via Fuzzy Moduli Spaces of Giant Gravitons,” arXiv:1201.5588 [hep-th].

[26] T. Nishioka and T. Takayanagi, “Fuzzy Ring from M2-brane Giant Torus”, JHEP. 0810, 082 (2008), [arXiv:0808.2691 [hep-th]], A. Hamilton, J. Murugan, A. Prinsloo and M. Strydom, “A note on dual giant gravitons in AdS$_4 \times \mathbb{CP}^3$”, JHEP. 0409, 132 (2009), [arXiv:0901.0009 [hep-th]]
[30] C. Kristjansen, M. Orselli and K. Zoubos, “Non-planar ABJM Theory and Integrability,” JHEP 0903, 037 (2009) [arXiv:0811.2150 [hep-th]]. For ABJ theory see: P. Caputa, C. Kristjansen and K. Zoubos, “Non-planar ABJ Theory and Parity,” Phys. Lett. B 677, 197 (2009) [arXiv:0903.3354 [hep-th]].