Little enhancement of meal-induced glucagon-like peptide 1 secretion in Japanese: Comparison of type 2 diabetes patients and healthy controls

Daisuke Yabe1*, Akira Kuroe1, Soushou Lee2, Koin Watanabe1, Takanori Hyo1, Masahiro Hishizawa1, Takeshi Kurose1, Carolyn F Deacon3, Jens J Holst3, Tsutomu Hirano2, Nobuya Inagaki4, Yutaka Seino1

ABSTRACT

Although glucose-dependent insulinotropic polypeptide (GIP) levels have been characterized previously, GLP-1 levels in Asians remain unclear. Here, we investigate total and intact levels of GLP-1, as well as GIP during oral glucose and meal tolerance tests (OGTT and MTT) in Japanese patients with or without type 2 diabetes (T2DM). Seventeen Japanese healthy controls and 18 age-matched and untreated patients with T2DM of short duration participated in the present study. Fasting levels of total GPL-1 were similar between the two groups (approximately 15 pM), and intact GLP-1 levels were considerably low in both groups (less than 1 pM). In both groups, total GLP-1 reached a peak 30 min after glucose ingestion (30–40 pM), whereas intact GLP-1 levels remained low with no significant peak. In MTT, total and intact GLP-1 showed no obvious peak. The current data indicate that intact GLP-1 levels are considerably low in the Japanese and that meal-induced enhancement of GLP-1 secretion is negligible in the Japanese. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00010.x, 2010)

KEY WORDS: DPP-4, GIP, GLP-1

INTRODUCTION

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are incretin hormones that are secreted from the gut in response to ingestion of nutrients and stimulate insulin secretion from pancreatic β cells1–3. On secretion, GLP-1 and GIP undergo rapid processing catalyzed by dipeptidyl peptidase-4 (DPP-4) and lose their ability to stimulate insulin secretion1–3. It is, therefore, of great importance to measure not only intact but also total (i.e. intact plus DPP-4-processed) forms of incretin hormones to study their secretion and processing in vivo, although assays for intact GLP-1 and GIP require specific antibodies and have not been widely available4,5.

In healthy Caucasian subjects, incretin hormones contribute to more than half of the overall post-prandial insulin secretion6–8, whereas a marked reduction in the incretin effect is characteristic of Caucasian patients with type 2 diabetes (T2DM)8,9. Although the precise mechanisms underlying the reduced incretin effect are not fully understood, approximately 20–30% reduction in post-prandial GLP-1 response5,8, in addition to the diminished insulinotropic effect of GIP but not GLP-110, has been reported in Caucasian T2DM patients. Despite negligible GLP-1 deficiency in some studies11–13, the present findings have led to the creation of GLP-1-based therapies, namely GLP-1 receptor agonists and DPP-4 inhibitors both of which correct the deficiency of endogenous intact GLP-1, thereby improving glycemic control in T2DM patients14.

The GLP-1-based therapies have been more effective in Japanese T2DM patients than in other ethnicities15–18, suggesting more profound GLP-1 deficiencies in Japanese T2DM patients. To address this possibility, we measured intact and total levels of GLP-1 as well as GIP in Japanese T2DM patients and healthy controls in response to glucose or meal ingestions.

MATERIALS AND METHODS

The protocol was approved by the ethics committee of each participating institute and written informed consent was obtained from all participants. A total of 35 subjects participated in the present study, of which 18 patients had T2DM (World Health Organization criteria) of relatively short duration (3.8 ± 0.7 years) and 17 controls did not have T2DM. None of the T2DM patients received any anti-diabetic drugs before the study. Characteristics of controls and T2DM are summarized in Table 1.

Participants were subjected to oral glucose and meal tolerance tests (OGTT and MTT) in the morning after an overnight fast on two separate days. For the tests, 75 g of glucose and a Japanese standard meal (480 kcal; carbohydrate:protein:fat = 2.8:1:1) were ingested within 5 and 10 min, respectively. As processing of intact GLP-1 and GIP by DPP-4 extinguishes their insulinotropic activities2,3, the present study was designed to measure both intact and
Table 1 | Characteristics of healthy controls and patients with type 2 diabetes

	Control	T2DM
n	17	18
Female (%)	18	22
Age (years)	51 ± 3	55 ± 3
BMI (kg/m²)	22.4 ± 0.6	23.9 ± 0.9
HbA1c (%)	5.2 ± 0.1	7.2 ± 0.5**
Duration (year)	–	3.8 ± 0.7
Systolic blood pressure (mmHg)	120 ± 3	124 ± 3
Diastolic blood pressure (mmHg)	77 ± 2	76 ± 2
Total cholesterol (mg/dL)	187 ± 8	205 ± 5
HDL cholesterol (mg/dL)	58 ± 5	58 ± 4
Triglycerides (mg/dL)	83 ± 8	137 ± 5*

Each value represents the mean ± SEM. BMI, body mass index; HDL, high-density lipoprotein; T2DM, patients with type 2 diabetes.

*P < 0.01; **P < 0.05.

RESULTS

Fasting levels of total GLP-1 were 15.7 ± 1.0 and 15.5 ± 1.7 pmol/L, and those of intact GLP-1 were 0.7 ± 0.2 and 0.2 ± 0.1 pmol/L in the control and T2DM groups, respectively. In OGTT, total GLP-1 reached the peak (40.3 ± 10.4 and 35.3 ± 8.7 pmol/L in the control and T2DM groups) 30 min after glucose was given, whereas intact GLP-1 levels remained low and showed no significant peak (Figure 1). AUC for total and intact GLP-1 were similar in the two groups. In MTT, total and intact GLP-1 showed no obvious peak. AUC for total and intact GLP-1 were also similar in the two groups. Fasting levels of total GLP-1 were 21.2 ± 2.7 and 29.7 ± 8.0 pmol/L, whereas those of intact GLP-1 were 13.9 ± 2.8 and 13.8 ± 2.8 pmol/L in the control and T2DM groups, respectively. In OGTT, total GLP-1 reached the peak (141.7 ± 41.7 and 135.3 ± 36.3 pmol/L in the control and T2DM groups) 30 min after glucose was given, and intact GLP-1 reached the peak (51.2 ± 7.6 and 49.6 ± 8.2 pmol/L in the control and T2DM groups) as early as 10 min after glucose was given. AUC for total and intact GLP-1 in the two groups were similar. In MTT, total and intact GLP-1 reached the peak (total: 183.6 ± 38.7 and 150.0 ± 18.4 pmol/L and intact: 70.3 ± 10.2 and 72.9 ± 6.5 pmol/L in the control and T2DM groups) 30 min after meal ingestion in both the control and T2DM groups. AUC for total and intact GLP-1 were similar in the two groups.

DISCUSSION

In the present study, we determined total and intact levels of GLP-1 and GIP in healthy Japanese volunteers and untreated Japanese patients with T2DM of short duration in response to glucose or meal ingestion. Intact GLP-1 levels were considerably low in not only the T2DM group but also the healthy volunteers. The very low levels of intact GLP-1 in the Japanese might be explained by impaired secretion from the gut, accelerated processing by DPP-4, or both. Intact GLP-1 levels remained very low despite the significant peak of total GLP-1 in response to glucose ingestion, suggesting enhanced GLP-1 processing by DPP-4. However, the intact

© 2010 Asian Association for the Study of Diabetes and Blackwell Publishing Asia Pty Ltd

Journal of Diabetes Investigation Volume 1 Issue 1/2 February/April 2010

57
versus total ratio of GIP, another DPP-4 substrate, was much higher than that of GLP-1, implying that enhanced DPP-4 processing could be rather selective to GLP-1. Although GLP-1 has been shown to be more liable to DPP-4 processing than GIP4, little is known about the kinetics of GLP-1 and GIP processing in the Japanese, and needs to be investigated in future to better understand the basis of the selective reduction of intact GLP-1.

Another important finding is that in the Japanese, the GLP-1 response after meal ingestion was negligible, despite the robust GIP response. The reduced GLP-1 response could be explained by meal size as well as meal composition, which was shown to be critical to GLP-1 response21–23. Regulatory mechanisms of nutrient-induced GLP-1 secretion are beginning to be shown24 and further studies might shed light on the reduced meal-induced GLP-1 response in the Japanese.

Intact GLP-1 levels in the Japanese subjects in the current study were significantly lower than those of Caucasians reported

Figure 1 | Response of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinoctopic polypeptide (GIP) after ingestion of oral glucose or a meal in Japanese patients with type 2 diabetes (T2DM) and healthy controls (Control). Japanese patients with T2DM and healthy controls were subjected to 75-g oral glucose and meal tolerance tests (OGTT and MTT). Left, levels of indicated measurements in each time-point (black squares, T2DM; white circles, control). Right, area under the curve (AUC) for indicated measurements were shown by arbitrary units (black bars, T2DM; white bars, control). Each value represents the mean ± SEM. *P < 0.05 and **P < 0.01 show that levels of T2DM are significantly different (unpaired t-test) from those of the control group at individual time-points. Numbers of subjects analyzed for glucose intact GLP-1 and intact GIP were as follows: T2DM/OGTT, n = 17; T2DM/MTT, n = 12; Control/OGTT, n = 15; Control/MTT, n = 16. Those analyzed for total GLP-1 and total GIP were as follows: T2DM/OGTT, n = 10; T2DM/MTT, n = 5; Control/OGTT, n = 9; Control/MTT, n = 10.
previously[5,25]. Although the same antibodies were used, intact GLP-1 levels in the Japanese and Caucasian subjects should not be compared because an ethanol extraction step was incorporated in the present study to reduce non-specific interference in plasma[26]. Characterizing a potential difference in the intact GLP-1 levels of Asians and Caucasians should be revisited by utilizing the exact same assay method.

Because there was no significant difference in the GLP-1 and GIP levels between the T2DM and control groups, incretin deficiency does not account for the reduced insulin response in Japanese T2DM patients in comparison with Japanese healthy volunteers. Nevertheless, the present study clearly showed that intact GLP-1 levels are considerably low in the Japanese and that GLP-1 response after ingestion of the Japanese standard meal is negligible in the Japanese, which might have implications for reduced insulin secretory capacity in the Japanese.

ACKNOWLEDGEMENT

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3: 153–165.
2. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.
3. Yamada Y, Miyawaki K, Tsukiyama K, et al. Pancreatic and extrapancreatic effects of gastric inhibitory polypeptide. Diabetes 2006; 55: S86–S91.
4. Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000; 85: 3575–3581.
5. Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 2003; 88: 2706–2713.
6. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986; 63: 492–498.
7. Shuster LT, Go VL, Rizza RA, et al. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans. Diabetes 1988; 37: 200–203.
8. Muscelli E, Man A, Casaloro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 2008; 57: 1340–1348.
9. Nauck M, Stockmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29: 46–52.
10. Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301–307.
11. Orskov C, Jeppesen J, Madsbad S, et al. Proglucagon products in plasma of noninsulin-dependent diabetics and non-diabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 1991; 87: 415–423.
12. Ryskjaer J, Deacon CF, Carr RD, et al. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur J Endocrinol 2006; 155: 485–493.
13. Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008; 57: 678–687.
14. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009; 5: 262–269.
15. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007; 298: 194–206.
16. Kikuchi M, Abe N, Kato M, et al. Vildagliptin dose-dependently improves glycemic control in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2009; 83: 233–240.
17. Nonaka K, Kakikawa T, Sato A, et al. Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2008; 79: 291–298.
18. Seino Y, Rasmussen MF, Zdravkovic M, et al. Dose-dependent improvement in glycaemia with once-daily iiglulitide without hypoglycaemia or weight gain: a double-blind, randomised, controlled trial in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 2008; 81: 161–168.
19. Orskov C, Rabenhoj L, Wettergren A, et al. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 1994; 43: 535–539.
20. Krarup T, Holst JJ. The heterogeneity of gastric inhibitory polypeptide in porcine and human gastrointestinal mucosa evaluated with five different antisera. Regul Pept 1984; 9: 35–46.
21. Carr RD, Larsen MO, Winzell MS, et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J Physiol Endocrinol Metab 2008; 295: E779–E784.
22. Juntunen KS, Niikanen LK, Liukkonen KH, et al. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am J Clin Nutr 2002; 75: 254–262.
23. Thomsen C, Rasmussen O, Lousen T, et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 1999; 69: 1135–1143.
24. Tohurist G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 2009; 587: 27–32.
25. Meier JJ, Nauck MA, Kranz D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 2004; 53: 654–662.
26. Deacon CF, Holst JJ. Immunoassays for the incretin hormones GIP and GLP-1. Best Pract Res Clin Endocrinol Metab 2009; 23: 425–432.