Illsley-Kemp, F. and Keir, D. and Bull, J.M. and Gernon, T.M. and Ebinger, C. and Ayele, A. and Hammond, James O.S. and Kendall, J-M. and Goitom, B. and Belachew, M. (2018) Seismicity during continental breakup in the Red Sea rift of Northern Afar. Journal of Geophysical Research: Solid Earth 123 (3), pp. 2345-2362. ISSN 2169-9313.

Downloaded from:

Usage Guidelines:
Please refer to usage guidelines at lib-eprints@bbk.ac.uk.
Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar

Finn Illsley-Kemp1, Derek Keir1,2, Jonathan M. Bull1, Thomas M. Gernon1, Cynthia Ebinger3, Atalay Ayele4, James O. S. Hammond5, J.-Michael Kendall6, Berhe Goitom6, and Manahloh Belachew7

1National Oceanography Centre Southampton, University of Southampton, Southampton, UK, 2Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy, 3Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA, 4Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia, 5Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK, 6School of Earth Sciences, University of Bristol, Bristol, UK, 7Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, USA

Abstract Continental rifting is a fundamental component of plate tectonics. Recent studies have highlighted the importance of magmatic activity in accommodating extension during late-stage rifting, yet the mechanisms by which crustal thinning occurs are less clear. The Red Sea rift in Northern Afar presents an opportunity to study the final stages of continental rifting as these active processes are exposed subaerially. Between February 2011 and February 2013 two seismic networks were installed in Ethiopia and Eritrea. We locate 4,951 earthquakes, classify them by frequency content, and calculate 31 focal mechanisms. Results show that seismicity is focused at the rift axis and the western marginal graben. Rift axis seismicity accounts for ~64% of the seismic moment release and exhibits a swarm-like behavior. In contrast, seismicity at the marginal graben is characterized by high-frequency earthquakes that occur at a constant rate. Results suggest that the rift axis remains the primary locus of seismicity. Low-frequency earthquakes, indicative of magmatic activity, highlight the presence of a magma complex ~12 km beneath Alu-Dalafilla at the rift axis. Seismicity at the marginal graben predominantly occurs on westward dipping, antithetic faults. Focal mechanisms show that this seismicity is accommodating E-W extension. We suggest that the seismic activity at the marginal graben is either caused by upper crustal faulting accommodating enhanced crustal thinning beneath Northern Afar or as a result of flexural faulting between the rift and plateau. This seismicity is occurring in conjunction with magmatic extension at the rift axis, which accommodates the majority of long-term extension.

1. Introduction

The breakup of continents to form ocean basins is a fundamental process in plate tectonic Wilson cycles; however, the processes governing the transition from continental rifting to seafloor spreading have largely remained enigmatic. In particular, it is unclear how crustal extension is accommodated and whether it predominantly occurs through mechanical faulting of the crust or magmatic activity. Studies of developed continental rifts have shown that as continental rifting progresses to breakup, extension is increasingly accommodated by magmatism (Wolfenden et al., 2005). Localized magmatism serves to focus extension at the rift axis through dyking and lower crustal sill intrusions (Buck, 1991; Ebinger et al., 2013; Mackenzie et al., 2005; Thybo & Nielsen, 2009). Further, numerical models demonstrate that magmatic activity plays an important role in strain localization from rift onset to plate rupture (e.g., Allken et al., 2012; Bialas et al., 2010; Buck, 2004). However, the role that mechanical faulting and seismicity play in the final stages of continental rifting remains poorly understood, in large part because the process is occurring in only a few remote areas worldwide (e.g., Bastow & Keir, 2011; Bosworth et al., 2005; Persaud et al., 2016).

Most studies of continental breakup rely on data from passive margins that have undergone full continental breakup. Although 2-D, and in some cases, 3-D details of crustal structures can be gained from such studies (e.g., Pindell et al., 2014; Quirk et al., 2014; White & McKenzie, 1989), the thermal and mechanical response of the lithosphere to stretching is obscured by thick sedimentary and volcanic sequences, and the thermal processes have long since decayed. To counter this problem, studies of currently active continental rifts and young ocean basins can provide solutions to questions regarding the distribution and accommodation of extension during rifting.
The Southern Red Sea rift in the Danakil Depression of Northern Afar, Ethiopia/Eritrea, provides a unique opportunity to document processes occurring during continental breakup (Figure 1). The Danakil Depression is currently undergoing the final stages of continental breakup in an area affected by magmatism since rift onset (Medynski et al., 2013; Stab et al., 2016; Wolfenden et al., 2005). For two years, from 2011 to 2013, we deployed a seismic network of 15 stations in the Danakil region, which was combined with a network of six stations deployed in Eritrea during the same time period (Figure 2). We use the continuous seismic data to identify the spatial distribution of brittle deformation within the crust, its depth extent, and its frequency content to shed new light on the rifting cycle.

2. Tectonic Background

2.1. The Afar Depression

The Afar Depression marks a triple junction between the Arabian, Somali, and Nubian plates and contains the narrow Danakil microplate (DeMets & Merkouriev, 2016; McKenzie & Davies, 1970; Mohr, 1970; Tesfaye et al., 2003) (Figure 1). Geochronological results suggest that rifting between Arabia and Africa began ∼29–31 Ma with extension focused on large-scale (>50 km) border faults (Ayalew et al., 2006; Wolfenden et al., 2005), which now separate the substantial 2–3 km high Ethiopian and Southeastern plateaus from the Afar Depression.
Figure 2. The Danakil Depression, in Northern Afar. (a) The purple inverted triangles are seismometers deployed between 2011 and 2013. Global Positioning System velocities relative to a stationary Nubian plate, taken from McClusky et al. (2010). The blue focal mechanisms are from a 2002 earthquake sequence (Ayele et al., 2007). The red earthquake focal mechanisms are from waveform modeling of earthquakes from 2007 to 2008 (supporting information). (b) Volcanic and tectonic features of the Danakil Depression. The orange triangles are volcanoes known to have been active during the Holocene (Global Volcanism Program, 2013). The red ellipses outline magmatic segments. The thin black lines denote major surface, Pliocene-Recent faults taken from Manighetti et al. (2001) and Illsley-Kemp, Savage, et al. (2017).
Depression, which reaches ~100 m below sea level. Further to the south lies the younger Main Ethiopian Rift (MER), where E-W extension is oblique to the NE-SW directed extension in the southern Red Sea and Gulf of Aden (e.g., Bendick et al., 2006). The MER initiated at ~18 Ma, with initial strain localized along long, large offset border faults (Ebinger et al., 1993).

Extension in the MER has, since the Quaternary, migrated away from the basin bounding border faults and has localized to rift-aligned magmatic segments at the rift axis (Wolfenden et al., 2004). Here extension is accommodated through dyking and magmatic underplating processes, which mask the total crustal thinning (Mackenzie et al., 2005). A similar such migration of extension occurred in the southern Red Sea rift between 25 and 20 Ma (Hayward & Ebinger, 1996; Stab et al., 2016; Wolfenden et al., 2005). This migration of extension is characterized by a focusing of magmatism and faulting at the rift axis and has been postulated to be the final stage of continental rifting, prior to the transition to seafloor spreading.

Global Positioning System measurements from northern Afar show that extension is currently oriented NE-SW (McClusky et al., 2010) (Figure 2). In the southern Danakil Depression, extension rates are ~20 mm/year, decreasing to the north until extension is transferred entirely to the Red Sea rift in the northeast (McClusky et al., 2010). Active deformation studies also indicate that strain is localized to ~50 km long, <20 km wide zones of Quaternary-Recent magma intrusion and faulting, referred to as magmatic segments (Casey et al., 2006). Northern Afar features large changes in topography and crustal thickness. The crust beneath the Ethiopian Plateau is ~40 km thick, but thins dramatically eastward to ~20–26 km beneath the ~300 m wide Afar Depression (Hammond et al., 2011). The crust beneath the Danakil Depression is ~15 km thick, suggesting ongoing, crustal thinning, and magma intrusion (Bastow & Keir, 2011; Hammond et al., 2011; Makris & Ginzburg, 1987; Tiberi et al., 2005). Geophysical surveys have shown that the crust beneath the Danakil Depression has seismic velocities that are consistent with stretched and heavily intruded continental crust, with V_p/V_S ratios of >1.9 strongly suggesting the presence of partial melt in the crust (Dugda et al., 2005; Hammond et al., 2011; Makris & Ginzburg, 1987; Tiberi et al., 2005).

Global and regional studies of seismic tomography show a broad low-velocity anomaly rising from 400 to 50 km beneath East Africa and the southern Red Sea (Chang & Van der Lee, 2011; Hansen et al., 2012; Ritsema et al., 2011). These observations are taken to represent a broad thermal upwelling known as the African Superplume. More detailed tomographic imaging of the MER and Afar rift and their uplifted flanks using local seismic networks show that there are markedly lower velocities beneath the rift valleys, consistent with the presence of partial melt (Bastow et al., 2008; Civiero et al., 2015, 2016; Hammond et al., 2013; Stork et al., 2013). In addition, Gallacher et al. (2016) suggest that melt generation in the asthenospheric mantle beneath the Afar Depression is segmented and buoyancy-driven, resembling characteristics of the mantle beneath regions of seafloor spreading (e.g., Ligi et al., 2012; Wang et al., 2009). The observations from broadband seismology corroborate geochemical models, which suggest an elevated mantle potential temperature of 1450°C (Armitage et al., 2015; Ferguson et al., 2013).

2.2. The Danakil Depression

The Danakil Depression is situated in the northernmost Afar Depression and is an ~200 km long, 50–150 km wide basin (Figure 2). It is bounded to the west by ~3 km of relief, controlled by an Oligo-Miocene border fault system; to the east it is bounded by the Danakil block, a narrow horst of crystalline basement and Miocene sediments which forms 500 to 1,000 m of elevation.

The western rift-margin is characterized by narrow (10–20 km wide) marginal grabens, which lie at the foot of the Oligo-Miocene border faults (Stab et al., 2016; Tesfaye et al., 2003; Wolfenden et al., 2005). These marginal grabens extend from the intersection of the MER and Red Sea rift at ~10°N to the northern Danakil Depression, yet they are not found within the MER (Tesfaye et al., 2003). Wolfenden et al. (2005) and Tesfaye et al. (2003) observed that between 10°N and 11°N the marginal grabens are composed of both ENE and WSW dipping normal faults. However, further north at ~11.5°N, Stab et al. (2016) do not observe any ENE dipping faults and instead find that faults consistently dip WSW, antithetic to the Oligo-Miocene border faults. Through dating of sedimentary and volcanic sequences, Wolfenden et al. (2005) found that displacement on the marginal graben faults postdates 14 Ma and thus are an exception to the general pattern of rift migration of extension. Wolfenden et al. (2005) suggests that the marginal grabens are formed through crustal flexure due to the discrepancy between crustal thickness and density between the thick, felsic plateau and the thin, highly intruded crust in the Afar Depression. Alternatively,
Stab et al. (2016) propose that the WSW dipping faults of the marginal grabens are the surface manifestation of antithetic midcrustal shear zones.

The Danakil Depression lies predominantly below sea level but is currently subaerial, with the surface geology dominated by thick layers of evaporites, formed during repeated marine incursions. In addition, there are abundant basaltic lavas from the Erta-Ale magmatic segment, which is the focus for the majority of Quaternary to Recent volcanism in Afar (Barberi & Varet, 1970; Bastow & Keir, 2011; Keir et al., 2013). At the southern end of the Danakil Depression lies the seismically active Tat-Ale volcanic range (Barberi & Varet, 1970; Belachew et al., 2011). The Erta-Ale and Tat-Ale ranges act as the locus of plate boundary deformation (Pagli et al., 2014). Further to the south the rift axis steps en-echelon to the southwest to the Dabbahu-Manda Hararo magmatic segment (Belachew et al., 2011). Within this step-over region lies the NE-SW trending Alayta range and Afdera volcano and many NE trending faults, which are inferred to open obliquely and promote volcanism (Barberi & Varet, 1970; Belachew et al., 2011). To the east of the Danakil Depression, on the Danakil block, is the Bidu volcanic complex (Wiart & Oppenheimer, 2005), which consists of two calderas, Nabro and Mallahi.

The majority of recorded large-magnitude seismicity in the Danakil region occurs at the western rift margin (Figure 2), including a 2002 earthquake swarm near the town of Mekele featuring a M_{w} 5.6 event (Ayele et al., 2007). To the south of the Danakil Depression, earthquake monitoring revealed an intense period of seismicity associated with the 2005–2010 Dabbahu-Manda Hararo dyke sequence (Barnie et al., 2015; Belachew et al., 2011). The dyke intrusions at Dabbahu were associated with low-frequency earthquakes during dyke propagation (Tepp et al., 2016).

The Danakil region has hosted much recent volcanic activity with all magmatic segments, excluding the Tat-Ale volcanic range, featuring earthquakes and caldera and fissure eruptions since historical records began (Gouin, 1979; Pagli et al., 2012; Wiart & Oppenheimer, 2005). At Gada-Ale, radar interferometry was used to show that an actively deforming magma chamber exists beneath the volcano (Amelung et al., 2000). Seismicity and satellite observations were used to show that a $6 \times 10^6 \text{ m}^3$ dyke intrusion, sourced from a previously unrecognized magma chamber, occurred at Dallol in 2004 (Nobile et al., 2012). Similarly, in 2008, a $5.1 \times 10^6 \text{ m}^3$ dyke intruded at Alu-Dalafilla and resulted in a fissure eruption that covered an area of $\sim 16 \times 10^6 \text{ m}^2$ (Pagli et al., 2012). In November 2010, the lava lake of Erta-Ale erupted $\sim 6 \times 10^6 \text{ m}^3$ of basaltic lava onto the crater floor (Field et al., 2012) and this same volcano underwent another major eruption in January 2017 (Xu et al., 2017). In 2011, in Eritrea, Nabro volcano underwent a major caldera-style eruption that generated ash clouds reaching 17 km height (Clarisse et al., 2014), an estimated 4.3 Tg of SO$_2$ (Theys et al., 2013), and a lava flow that stretched for 17.5 km (Goitom et al., 2015; Hamlyn et al., 2014).

3. Data and Methods
3.1. Seismic Data
The seismic network comprised 15 stations in Ethiopia, active for two years between February 2011 and February 2013. This was supplemented by a network of six stations in Eritrea active between June 2011 and October 2012. The resulting combined network consisted of 17 Guralp CMG-3ESPCD instruments and four Guralp CMG6TD instruments that all recorded continuous seismic data at 50 Hz. Earthquakes were picked manually for both P and S waves, and events were located with NonLinLoc (Lomax et al., 2000). We used a two-dimensional velocity model based on controlled source experiments and receiver
functions (Hammond et al., 2011; Makris & Ginzburg, 1987). This resulted in a total of 4,951 earthquakes in a catalogue complete above magnitude 2.0, where magnitudes are calculated using a region-specific local magnitude scale (Illsley-Kemp, Keir, et al., 2017). In Figure 3 we plot earthquakes with horizontal errors less than ±5 km, amounting to 1,429 events.

Figure 4. Comparison between hand-picked, representative (top) high-frequency and (bottom) low-frequency (bottom) earthquakes. The waveform and frequency spectrums show clear differences between the two. The two earthquakes analyzed at (top) HALE are located at the western marginal graben; the two earthquakes at (bottom) GALE are located beneath Alu-Dalaffila volcanic complex. The low-frequency band is defined as 0.5–2 Hz (blue) and the high-frequency band as 7–11 Hz (red).
3.2. Frequency Analysis

We use frequency index, FI, to classify earthquakes based on their spectral content. This allows us to probe the source of seismic activity and whether seismicity is influenced by magmatic processes. We use the procedure outlined by Buurman and West (2006), who define FI as

$$FI = \log \left(\frac{A_{\text{upper}}}{A_{\text{lower}}} \right).$$

where A_{upper} and A_{lower} are the spectral amplitudes measured across a band of high and low frequencies, respectively. Through inspection of the frequency spectrum of characteristic events (Figure 4), we define the low-frequency band as 0.5–2 Hz and the high-frequency band as 7–11 Hz, following the strategy of Tepp et al. (2016). We then calculate FI for further calibration events at each station, in order to test whether the FI method can distinguish between different types of events or a continuous spectrum.

Owing to the heterogeneity of surface materials in basins and volcanic ranges and the shallow active faulting in the area, path effects may influence the spectral content (Coté et al., 2010; McNutt, 2005; Tepp et al., 2016). However, the spectral content of P waves are more sensitive to source effects (Tepp et al., 2016). We therefore performed the calculation over both the full waveform and short time windows that isolate the P wave. Figure 5 shows that we see a clear distinction between high frequency, hybrid, and low frequency for all stations when using only the P wave. The distinction becomes less clear when the full waveform is used. We use these results to define the FI windows for each station and calculate FI values for all earthquakes with a signal-to-noise (SNR) ratio of over 2.5 (Figure 6).

3.3. Earthquake Relocation and Focal Mechanisms

In order to better constrain hypocentral locations we compute relative relocations using the double-difference software HypoDD and a 1-D velocity model taken from the model used for absolute locations (Waldhauser, 2001). We use a combination of P and S wave phase picks and cross correlation-derived P wave differential traveltimes. The relocation procedure tightens earthquake hypocenters and images active fault planes with much greater accuracy, allowing us to interpret structural features with increased confidence. We relocate the earthquakes occurring at the western marginal graben and successfully relocate 745 events with an average horizontal error of ±0.58 km and average depth error of ±0.58 km (Figure 7). We then compute focal mechanisms based on first-motion P wave polarities using the HASH software (Hardebeck & Shearer, 2002, 2003). This results in a total of 31 focal mechanisms with solution probabilities >70%. The type of faulting that each focal mechanism represents is determined by the plunge of the T, B, and P axes (Álvarez-Gómez, 2014; Kaverina et al., 1996). This results in 26 of 31 focal mechanisms having normal fault solutions (Figure 8). This is further corroborated by full moment tensors from 2007 to 2008 (Figure 2). A more detailed discussion of the associated full moment tensor methodology can be found in the supporting information (Belachew et al., 2013, 2011; Dreger et al., 2008, 2000; Minson & Dreger, 2008; Saikia, 1994).
4. Results

To aid discussion of results, we divide the earthquake catalogue into three groups: the full catalogue of 4,951 earthquakes, earthquakes that had sufficient SNR to be classified using the FI method (1,191 earthquakes) (Figure 6), and earthquakes relocated with HypoDD (745 earthquakes) (Figure 7). We use the full catalogue to draw interpretations where high-accuracy locations are not necessary, for example, when comparing large regions (Figures 9, 11, and 12). FI classified earthquakes are used to probe potential source mechanisms for seismicity (Figures 6 and 10), and relocated earthquakes are used to interpret tectonic structures, where highly accurate locations are required (Figures 7 and 13).

The earthquake locations can be broadly categorized into two groups: seismicity at the rift axis and at the western marginal graben system (Figure 3). The catalogue earthquakes that are focused at the rift axis show a clear along-axis segmentation coinciding with the axial magmatic segments that have been sites of historic and modern eruptions and intrusions. There is a cluster of 54 earthquakes focused at the Dabbahu magmatic segment with magnitudes ranging from 1.0 to 2.8 and a mean depth of 9.1 km. The Dabbahu segment has undergone 14 separate dyke intrusions since an ~60 km long dyke was intruded in 2005 (Belachew et al., 2011; Ebinger et al., 2008; Hamling et al., 2009; Wright et al., 2006), causing similar clusters of rift-aligned seismicity. The SNR at nearby stations was not of high enough quality to perform a frequency analysis to evaluate the spectral content.
The locus of catalogue seismicity then steps en-echelon to the northeast where there is a region of clustered seismicity (562 earthquakes), between the Tat-Ale and Erta-Ale magmatic segments (the Giulietti Plain, Figure 2b). The seismicity here includes some of the largest magnitude events in the region ($M_L 4.2$) and is characterized by high-frequency events (Figure 6). Continuing northward, seismic activity is focused along the Erta-Ale magmatic segment; 885 earthquakes form a rift-aligned pattern with individual clusters at Erta-Ale, Alu-Dalufla, and Dallol. Magnitudes range from 1.1 to 3.9, with the majority of events occurring at shallow depths (< 2 km; Figure 11).

There is a particular focus of seismicity at the Alu-Dalufilla volcanic complex; 554 earthquakes occurred beneath the volcano during the study period. Seismicity here exhibits a pulsing swarm-like behavior with an increase in activity in mid-2012: 368 earthquakes occurred between April 2012 and November 2012 (Figure 9). The majority of the FI classified seismicity at Alu-Dalufilla is classified as low frequency and occurs in a cluster of 29 events at ~ 12 km depth (Figures 6, 9, and 10). The deeper low-frequency events form a roughly circular structure ~ 10 km in diameter (Figures 10 and 13). The Erta-Ale magmatic segment is responsible for a seismic moment release of $\sim 7 \times 10^{15}$ Nm during the study period, amounting to $\sim 65\%$ of the total seismic moment release in the region. The seismic moment release at Alu-Dalufilla is dominated by the deep (~ 12 km) earthquakes (Figure 11).

Figure 8. Calculated focal mechanisms at the western marginal graben. Twenty six out of 31 focal mechanisms show normal faulting with a NEE-SWW direction of extension. Stereonet displays the P and T axes for calculated focal mechanisms; density contours represent the 90%–95% Kamb density contours. Focal mechanisms are classified by the plunge of the T, B, and P axes (Álvarez-Gómez, 2014; Kaverina et al., 1996).
A large proportion of the catalogue seismicity (1429 events) is focused at the western marginal graben, at the foot of the Oligo-Miocene border fault system (Figure 7). This area has been active historically (Gouin, 1979), with the most recent documented earthquake sequence during August 2002 (Ayele et al., 2007; Belachew et al., 2011). The rate of seismicity at the western marginal graben does not vary significantly through time (Figure 9), and the FI classified earthquakes are almost exclusively high-frequency events (Figure 6).

Earthquakes are generally focused in the upper 5 km but extend to over 20 km depth in both the full catalogue and relocated earthquakes (Figures 11 and 13). Magnitudes here range from 0.36 to 3.77 M_L. The seismic moment release at the western marginal graben amounts to $\sim 4 \times 10^{15}$ Nm. Over 80% of the calculated focal mechanisms at the margin represent normal faulting, the majority of which is consistent with extension oriented ENE-WSW. Using the 745 relocated events, seismicity on the margin shows a clear, westward dipping structure, that is antithetic to the dominate dip-direction of the Oligo-Miocene border faults, which dip toward the rift axis. This seismically active structure is oriented roughly N-S and is ~ 50 km in length (Figure 7).

5. Discussion

Seismic activity at the Erta-Ale magmatic segment accounts for $\sim 64\%$ of the seismic moment release in the Danakil Depression over the period of our study (Figure 12). Although a large proportion of the seismicity...
occurs at shallow depths (<2 km), a significant amount of activity occurs at ∼10–12 km depth (Figure 11). In addition, the seismicity rate through time indicates swarm activity with a period of increased seismicity from April 2012 to September 2012 (Figure 9). The seismicity at the Erta-Ale volcanic range is dominated by activity at the Alu-Dalaafia volcanic complex (Figure 3). Through frequency analysis we show that seismicity beneath Alu-Dalaafia features a high proportion of low-frequency earthquakes (Figures 6 and 10). Low-frequency seismicity typically has a frequency range of 0.5–5 Hz and generally consists of a sudden, broadband onset followed by decaying harmonic signals (Chouet, 1996). Low-frequency earthquakes at volcanic systems can be produced by acoustic waves, propagating within a fluid filled crack (Aki et al., 1977; Chouet, 1986; Chouet & Matoza, 2013). We therefore interpret that the low-frequency earthquakes beneath Alu-Dalaafia are caused by magma movement in a previously unidentified reservoir at ∼12 km depth (Figures 10 and 13).

Through modeling of ground deformation, Pagli et al. (2012) have shown that there is a magma chamber at ∼4 km depth beneath Alu-Dalaafia with an associated sill at 1 km depth, which was the source of the 2008 fissure eruption. We propose that the shallow dyke and sill complex at Alu-Dalaafia are fed by the lower crustal magma reservoir identified in our study. This is likely fed aseismically from the mantle and would suggest a stacked sill reservoir system such as that proposed at Eyjafjallajökull and Bárðarbunga, Iceland (Hudson et al., 2017;
Sigmundsson et al., 2010; Tarasewicz et al., 2012), and beneath the Dabbahu-Manda-Hararo magmatic segment (Desissa et al., 2013; Hammond, 2014). The inferred magma plumbing system is similar to those proposed at slow spreading ocean ridges (Carbotte et al., 2013; Jian et al., 2017; Schmid et al., 2017). This suggests that such structures may form during continental rifting and persist through to seafloor spreading.

This supports the model proposed by Gallacher et al. (2016) that segmented mantle-upwelling, typical of mid-ocean ridges, initiates during continental rifting.

It is interesting to note that we observe very little seismic activity and we detect no low-frequency seismicity beneath Erta-Ale volcano, consistent with previous short-term seismic experiments (Harris et al., 2005; Jones et al., 2012). Erta-Ale is an extremely active volcano, maintaining a persistent lava lake and hosting frequent eruptions (Field et al., 2012; Vergniolle & Bouche, 2016). Analysis of SO2 flux, in March 2003, suggests a magma supply rate of 350–650 kg/s (Oppenheimer et al., 2004); however, this may not be indicative of the current magma flux. Further, the low form of the basaltic shield complex indicates that it is actively broadening through dyke intrusion. We see no evidence in the seismicity for a magma conduit beneath Erta-Ale (Figure 10). It may be that magma replenishment did not occur during the two-year period of this study; however, this seems unlikely given the sustained high supply rate (Oppenheimer et al., 2004). Another possibility could be that the seismic activity associated with magma replenishment lies below the detection threshold of our catalogue, which is complete to magnitude 2.0 \(M_L \) (Illsley-Kemp, Keir, et al., 2017). Erta-Ale is an open magmatic system, where changes in magma chamber pressure can be relieved by changes in lava lake level (Vergniolle & Bouche, 2016) and it is also likely that the crust beneath Erta-Ale is hot and/or contains a high melt percentage. Both characteristics would inhibit the buildup of stress required for brittle failure, as observed at Askja volcano, Iceland (Greenfield et al., 2016).

While strain continues to be focused at the Erta-Ale magmatic segment, the intense seismicity at the western marginal graben marks a distinct change in how strain is distributed in comparison to the rest of Afar and the MER. This pattern of increased seismicity at the western margin of the Danakil Depression is also observed in the 2007–2009 study of Belachew et al. (2011) and the National Earthquake Information Center earthquake catalogue (Keir et al., 2013) (Figure 2). Seismicity at the western marginal graben accounts for \(\sim 36\% \) of the seismic moment release in the Danakil Depression (Figure 12). The majority of this seismicity is focused in the upper crust and occurs at a consistent rate through time (Figures 9 and 11). This suggests that the seismicity at the western marginal graben is tectonic (i.e., non-volcanic) in origin and that it accounts for a significant proportion of the deformation in the Danakil Depression. This constitutes a change from the MER, southern Afar, and the Eastern Branch where the border fault system and rift margins have become inactive and the majority of extension and seismicity is focused at the rift axis (Ebinger & Casey, 2001; Keir et al., 2006; Weinstein et al., 2017; Wolfenden et al., 2005).
The seismicity at the western marginal graben appears to occur in a region of overlapping margin bounding faults (Figure 7). Where these faults overlap, seismicity appears to occur on both faults (Figure 7b). Further to the north (Figure 7c), the seismicity occurs along a west dipping structure and correlates at the surface with the west dipping eastern fault scarp of the marginal graben (Sembroni et al., 2017; Stab et al., 2016). What remains unclear, however, is how and at what depth the eastward and westward dipping structures intersect. Stab et al. (2016) use balanced cross sections to suggest that antithetic, west dipping faults dominate the western rift margin and extend to ~15 km depth. We propose that the seismicity at the western rift margin is predominantly occurring on the west dipping fault, which bounds the eastern side of the marginal graben. The westward dipping seismicity that we observe may not be characteristic of continental rifting as presumably the eastward dipping, western fault scarp of the marginal graben will be seismically active at different points in time. Similar “landward” dipping structures have been identified in active continental rifts (Hatzfeld et al., 2000; Lambotte et al., 2014) and rifted margins worldwide (Becker et al., 2016; Geoffroy et al., 2001; Pindell et al., 2014; Quirk et al., 2014; Stica et al., 2014).

In Northern Afar, there is a marked increase in the amount of Quaternary-Recent basaltic volcanism at the surface (Bastow & Keir, 2011). This increase in basaltic volcanism and 30 Myr of magma intrusion has increased the density of the Afar crust relative to the less extended Ethiopian plateau, as indicated by seismic and gravity data (Makris & Ginzburg, 1987; Tiberi et al., 2005). Tiberi et al. (2005) show a steep Bouguer gravity anomaly gradient across the western rift margin, which reflects the combined effects of a decrease in crustal thickness and increase in crustal density into the Afar Depression. This strong density contrast at the rift margin may cause flexural faulting (Buck, 2017; Tesfaye et al., 2003; Wolfenden et al., 2005), which would explain the increase in seismic activity at the western rift margin.

An alternative explanation of the seismicity at the western marginal graben is that it is caused by faulting associated with enhanced crustal thinning beneath the Danakil Depression. The crust rapidly thins from ~27 km beneath Dabbahu and southern Afar to <15 km beneath the Danakil Depression (Hammond et al., 2011; Makris & Ginzburg, 1987). The stratigraphy in the Danakil Depression is characterized by ~3 km of Pliocene-Recent evaporites and basaltic flows (Hutchinson & Engels, 1972). Bastow and Keir (2011) used these observations of crustal thinning and young sediments to suggest that this region is undergoing a stage of enhanced crustal thinning. This increase in mechanical extension of the crust, at the expense of magmatically accommodated extension, is expected to lead to an increase in extensional faulting. In this sense, extension in the Danakil region would now be distributed between the magmatically accommodated extension at the rift axis (Nobile et al., 2012; Pagli et al., 2012), and brittle extension at the western margin. The orientation of calculated focal mechanisms at the western marginal graben suggests that the extension here is oriented E-W (Figure 8).

The rifting mechanics of the Danakil Depression differ to other regions of rifting worldwide. Seismicity and Global Positioning System measurements from the actively extending Gulf of Corinth show that extension is currently accommodated by a seismically active, immature detachment fault, which underlies the entire rift at 5–10 km depth, and by nonelastic, aseismic deformation at greater depths beneath the rift axis (Lambotte et al., 2014). We see similarities with the Woodlark Basin, Papua New Guinea, which is a region of highly extended crust, transitioning to seafloor spreading. Seismicity in the Woodlark Basin remains concentrated on basin bounding faults extending to 20–40 km depth. This seismicity then focuses at the rift axis once seafloor spreading initiates (Abers et al., 2016). Observations from the Woodlark Basin therefore complement the findings of our study and suggest that rift-bounding faults remain seismically active in the final stages of continental breakup.

It may be that the seismic moment release rate between 2011 and 2013 is not representative of the long-term seismicity of Northern Afar. We can compare our data to the long-term seismic catalogue from the National Earthquake Information Center, which covers the past 40 years. Using the available ~40 year catalogue, we find that the seismic moment release rates at the marginal graben and Erta-Ale segment are 1×10^{16} and 4.7×10^{15} Nm/year, respectively. The seismic moment release rate calculated for the Erta-Ale segment in this study (2011-2013) therefore appears to agree with the ~40 year seismic catalogue. The seismic moment release rate at the western marginal graben presented in this study is ~5 times less than the long-term release rate. This difference in seismic moment release is equivalent to a magnitude 4.5 earthquake. In the study period, we did not record any earthquakes $M_w > 3.8$ at the marginal graben; however, earthquakes of this
We thank SEIS-UK for use of the instruments and their computing facilities. The facilities of SEIS-UK are supported by the Natural Environment Research Council (NERC) under agreement RB/H10/64. F. I. K. is funded through NERC studentship NE/L002531/1 and a grant to GSNOCS from Roy Franklin OBE. D. K. is supported by NERC grant NE/L013932 and grant OSR-2015-CRG4-2643 from King Abdullah University of Science and Technology. Funding for fieldwork is from BHP Billiton. B. G. is funded through a PhD scholarship by the University of Bristol and Engineering and Physical Sciences Research Council (EPSRC): grant number DTG EP/L504919/1. C.E. and M. B. were supported by a grant from StatOil. We also acknowledge assistance from Addis Ababa University and the Afar National Regional State Government. The catalogue of earthquakes located and used in this study is provided in the supporting information. We wish to thank two anonymous reviewers, and the Associate Editor Martha Savage, whose comments helped to improve the paper.

We use a new catalogue of over 4,951 local earthquakes in the Danakil region of Northern Afar to show that seismicity is focused at both the rift axis, and the western marginal graben (Figure 3). Through analyzing the frequency content of 1,191 earthquakes, we have shown that seismicity at the Alu-Dalafilla volcanic complex, at the rift axis, is dominated by low-frequency seismicity indicative of magmatic processes (Figures 6 and 10). In contrast, seismicity at the western marginal graben is exclusively of high-frequency spectral content, suggesting that tectonic deformation is dominant here. Calculated focal mechanisms reveal that the seismicity at the western margin is characterized by normal faulting, generally consistent with E-W extension (Figure 8). We then relocated the western margin earthquakes and greatly reduce the hypocentral errors on 745 events, suggesting that tectonic deformation is dominant here. Calculated focal mechanisms reveal that the seismicity at the rift axis, is dominated by low-frequency seismicity indicative of magmatic processes (Figures 6 and 10).

We then relocated the western margin earthquakes and greatly reduce the hypocentral errors on 745 events, suggesting that tectonic deformation is dominant here. Calculated focal mechanisms reveal that the seismicity at the rift axis, is dominated by low-frequency seismicity indicative of magmatic processes (Figures 6 and 10).

References

Abers, G., Eilon, Z., Gaherty, J., Jin, G., Kim, Y., Obreski, M., & Dieck, C. (2016). South-east Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. *Journal of Geophysical Research: Solid Earth*, 121, 951–971. https://doi.org/10.1002/2015JB012621

Aki, K., Fehler, M., & Das, S. (1977). Source mechanism of volcanic tremor: Fluid-driven crack models and their application to the 1963 Kilauea eruption. *Journal of Geology and Geothermal Research*, 2(3), 259–287. https://doi.org/10.1016/0377-0273(77)90003-8

Allken, V., Huismans, R. S., & Thieulot, C. (2012). Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study. *Geochemistry, Geophysics, Geosystems*, 13, Q05010.
Álvarez-Gómez, J. A. (2014). May. FMC: A one-liner python program to manage, classify and plot focal mechanisms. In EGU General Assembly Conference Abstracts (Vol. 16).

Amelung, F., Oppenheimer, C., Segall, P., & Zebker, H. (2000). Ground deformation near Gada'Ale Volcano, Afar, observed by radar interferometry. Geophysical Research Letters, 27, 3093–3096. https://doi.org/10.1029/2000GL008497

Armitage, J. J., Ferguson, D. J., Goes, S., Hammond, J. D. S., Calais, E., Rychert, C. A., & Harmon, N. (2015). Upper mantle temperature and the onset of extension and break-up in Afar. Earth and Planetary Science Letters, 418, 78–90.

ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., et al. (2010). Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29, TC3011. https://doi.org/10.1029/2009TC002482

Ayalew, D., Ebinger, C., Bourdou, E., Wolfenden, E., Yirgu, G., & Grassineau, N. (2006). Temporal compositional variation of syn-rift rhyolites along the western margin of the southern Red Sea and northern Main Ethiopian Rift. Geological Society, London, Special Publications, 259(1), 121–130. https://doi.org/10.1144/GSL.SP.2006.259.01.10

Ayele, A., Stuart, G., Bastow, I., & Keir, D. (2007). The August 2002 earthquake sequence in north Afar: Insights into the neotectonics of the Danakil microplate. Journal of African Earth Sciences, 40, 70–79.

Barberi, F., & Varet, J. (1970). The Erta Ale volcanic range (Danakil depression, northern Afar, Ethiopia). Bulletin Volcanologique, 34(4), 848–917. https://doi.org/10.2409/BV.34.4.848

Barnie, T. D., Keir, D., Hamlin, I., Hofmann, B., Belachew, M., Carn, S., et al. (2015). A multidisciplinary study of the final episode of the Manda Hararo dyke sequence, Ethiopia, and implications for trends in volcanism during the rifting cycle. Geological Society, London, Special Publications, 420, SP420–SP426.

Bastow, I., & Keir, D. (2011). The protracted development of the continent-ocean transition in Afar. Nature Geoscience, 4(4), 248–250. https://doi.org/10.1038/Ngeo01095

Bastow, I., Nyblade, A., Stuart, G., Rooney, T., & Benoit, M. (2008). Upper mantle seismic structure beneath the Ethiopian hotspot: Rifting at the edge of the African low velocity anomaly. Geochimica. Geophysics, Geosystems, 9, Q12022.

Becker, K., Tanner, D. C., Franke, D., & Krawczyk, C. M. (2016). Fault-controlled lithospheric detachment of the volcanic southern South Atlantic rift. Geochemistry, Geophysics, Geosystems, 17, 887–894.

Belachew, M., Ebinger, C., & Coté, D. (2013). Source mechanisms of dyke-induced earthquakes in the Dabbahu-Manda Hararo rift segment in Afar, Ethiopia: Implications for faulting above dykes. Geophysical Journal International, 192(3), 907–917. https://doi.org/10.1093/gji/ggt076

Belachew, M., Ebinger, C., Coté, D., Keir, D., Rowland, J., Hammond, J., & Ayele, A. (2011). Comparison of dyke intrusions in an incipient seafloor-spreading segment in Afar, Ethiopia: Seismicity perspectives. Journal of Geophysical Research, 116, B06402. https://doi.org/10.1029/2010JB007908

Bendick, R., McClusky, S., Bilham, R., Asfaw, L., & Klemperer, S. (2006). Distributed Nubia-Somalia relative motion and dyke intrusion in the Main Ethiopian Rift. Geophysical Journal International, 165(1), 303–310. https://doi.org/10.1111/j.1365-246X.2006.02904.x

Blias, R. W., Buck, W. R., & Qin, R. (2010). How much magma is required to rift a continent? Earth and Planetary Science Letters, 292(1-2), 68–78. https://doi.org/10.1016/j.epsl.2010.01.021

Bosworth, W., Huchon, P., & McClay, K. (2005). The Red Sea and gulf of Aden basins. Journal of African Earth Sciences, 43(1-3), 334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020

Buck, W. (1991). Modes of continental lithospheric extension: Pure and simple. Journal of Geophysical Research, 96, 20,161–20,178. https://doi.org/10.1029/91JB01485

Buck, W. (2004). Consequences of asthenospheric variability on continental rifting. In G. Karner, B. Taylor, N. W. Driscoll, & D. L. Kohlstedt (Eds.), Rheology and Deformation of the Lithosphere at Continental Margins (pp. 1–30). New York: Columbia University Press.

Buck, W. R. (2017). The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth and Planetary Science Letters, 466, 62–69.

Buurman, H., & West, M. E. (2006). Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano. In J. A. Power, M. Bastow, I., & Keir, D. (Eds.), The 2006 Eruption of Augustine Volcano, Alaska, U.S. Geological Survey Professional Paper (Vol. 1769, pp. 41–57). Washington, DC: U.S. Geological Survey.

Carbotte, S. M., Marjanović, M., Carton, H., Mutter, J. C., Canales, J. P., Nedimović, M. R., et al. (2013). Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience, 6(10), 784-788.

Casey, M., Ebinger, C., Keir, D., Gloaguen, R., & Mohamed, F. (2006). Strain accommodation in transitional rifts: Extension by magma intrusion and faulting in rift magmatic segments. Geological Society, London, Special Publications, 259(1), 143–163. https://doi.org/10.1144/GSL.SP.2006.259.01.13

Chang, S.-J., & Van der Lee, S. (2011). Mantle plumes and associated flow beneath Arabia and East Africa. Earth and Planetary Science Letters, 302(3-4), 448–454. https://doi.org/10.1016/j.epsl.2010.12.050

Chouet, B. (1986). Dynamics of a fluid-driven crack in three dimensions by the finite difference method. Journal of Geophysical Research, 91, 13,967–13,992. https://doi.org/10.1029/JB091I014p13967

Chouet, B. A. (1996). Long-period volcano seismicity: Its source and use in eruption forecasting. Nature, 380(6572), 309–316. https://doi.org/10.1038/380309a0

Chouet, B. A., & Matoza, R. S. (2013). A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252, 108–175. https://doi.org/10.1016/j.jvolgeores.2012.11.013

Civiero, C., Goes, S., Hammond, J. O., Fishwick, S., Ahmed, A., Ayele, A., et al. (2016). Small-scale thermal upwellings under the northern East African Rift from S travel time tomography. Journal of Geophysical Research: Solid Earth, 121, 7395–7408. https://doi.org/10.1002/2016JB013070

Civiero, C., Hammond, J. O. S., Goes, S., Fishwick, S., Ahmed, A., Ayele, A., et al. (2015). Multiple mantle upwellings in the transition zone beneath the Northern East African Rift System from relative P wave travel time tomography. Geochemistry, Geophysics, Geosystems, 16, 2949–2968.

Clarisse, L., Coheur, P.-F., Thays, N., Hurtmans, D., & Clerbaux, C. (2014). The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements. Atmospheric Chemistry and Physics, 14(6), 3095–3111. https://doi.org/10.5194/acp-14-3095-2014

Côté, D. M., Belachew, M., Quillen, A. C., Ebinger, C. J., Keir, D., Ayele, A., & Wright, T. (2010). Low-frequency hybrid earthquakes near a magma chamber in Afar: Quantifying path effects. Bulletin of the Seismological Society of America, 100(5A), 1892–1903. https://doi.org/10.1785/0120090111

DeMets, C., & Merkouriev, S. (2016). High-resolution estimates of Nubia–Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden. Geophysical Journal International, 207(1), 317–332. https://doi.org/10.1093/gji/ggw276

Déprez, A., Doubre, C., Masson, F., & Ulrich, P. (2013). Seismic and aseismic deformation along the East African Rift System from a reanalysis of the GPS velocity field of Africa. Geophysical Journal International, 191(3), 1353–1369. https://doi.org/10.1093/gji/ggt085
Vergniolle, S., & Bouche, E. (2016). Gas-driven lava lake fluctuations at Erta Ale volcano (Ethiopia) revealed by MODIS measurements. *Bulletin of Volcanology, 78*(9), 60. https://doi.org/10.1007/s00445-016-1047-y

Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations, Tech. Rep.

Wang, Y., Forsyth, D., & Savage, B. (2009). Convective upwelling in the mantle beneath the Gulf of California. *Nature, 462*, 7272.

Weinstein, A., Oliva, S. J., Ebinger, C. J., Roecker, S., Tiberi, C., Aman, M., et al. (2017). Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara Basins, Africa. *Geochemistry, Geophysics, Geosystems, 18*, 3662–3686.

White, R., & McKenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. *Journal of Geophysical Research, 94*, 7685–7729. https://doi.org/10.1029/JB094iB06p07685

Wiart, P., & Oppenheimer, C. (2005). Large magnitude silicic volcanism in north Afar: The Nabro Volcanic Range and Maalalta volcano. *Bulletin of Volcanology, 67*(2), 99–115. https://doi.org/10.1007/s00445-004-0362-x

Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A., & Ayalew, D. (2004). Evolution of the northern main Ethiopian rift: birth of a triple junction. *Earth and Planetary Science Letters, 224*, 213–228.

Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P., & Kelley, S. (2005). Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. *Bulletin Geological Society of America, 117*(7), 846–864. https://doi.org/10.1130/B25516.1

Wright, T., Ebinger, C., Biggs, J., Ayale, A., Yirgu, G., Kei, D., & Stork, A. (2006). Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. *Nature, 442*(7100), 291–294. https://doi.org/10.1038/nature04978

Xu, W., Rivalta, E., & Li, X. (2017). Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia. *Earth and Planetary Science Letters, 476*, 79–86. https://doi.org/10.1016/j.epsl.2017.07.051