EVALUATION OF IN VITRO ANTIANGIOGENESIS ACTIVITY ON METHANOLIC EXTRACT OF CLEMATIS BUCHANIANA PLANT

MANOJ B1, MAHAK A1, VARSHA T1, MANOJ B1, ABHISHEK T2*
1Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur - 263 148, Uttarakhhand, India. 2Devsthali Vidyapeeth Institute of Pharmacy, Lalpur; Rudrapur - 263 148, Uttarakhhand, India. Email: abhishek1983@gmail.com

Received: 24 September 2016, Revised and Accepted: 25 October 2016

ABSTRACT

Objective: Angiogenesis plays an important role in embryonic development and various physiological processes. However, excessive angiogenesis is associated with several pathological conditions including cancer. Clematis is a genus of about 300 species within the buttercup family Ranunculaceae. It is native to the India, where has been used as folk medicine for the treatment of various ailments. This work is aimed to evaluate the antiangiogenesis activity in the crude methanolic extract of Clematis buchaniana plant.

Methods: The entire aerial parts of C. buchaniana were extracted by soxhlation in methanol. Then, the extract was subjected to preliminary phytochemical screening to determine the active constituents for effective pharmacological activity. The in-vitro antiangiogenesis effects were later evaluated using chorioallantoic membrane model carried out by incubation in fresh chicken's eggs.

Results: The crude methanolic extract of C. buchaniana was found to have slight ability to inhibit angiogenesis that was evaluated by visualization.

Conclusion: C. buchaniana plant extract inhibits angiogenesis by blocking normal vascularization in chick embryo. The ability of inhibiting angiogenic process in eggs by this extract can provide us an herbal anticancer agent in future for further scrutiny.

Keywords: Antiangiogenesis, Chorioallantoic membrane, Incubation, Angiogenesis, Clematis buchaniana, Methanolic extract.

INTRODUCTION

Angiogenesis, the formation of new blood vessels is a biological process that plays a fundamental role in embryonic development [1]. It plays a key role in a various physiological and pathological process such as embryonic development, wound healing, chronic inflammation, tumor growth, and metastasis [2,3]. Angiogenesis blockade has been shown to be an effective strategy in inhibiting tumor growth and metastasis [4]. Endothelial cells in tumor bed tend to be more susceptible to cytotoxic agents due to their high proliferation rate. In addition, endothelial cells, on the contrary to cancerous cells, are genetically stable as they do not undergo mutations, and hence more sensitive to apoptotic effects of the cytotoxic agents. Thus, these features of endothelial cells make them a compelling target for antiangiogenesis treatment [5]. Consequently, cytotoxic agents pose as candidates as antiangiogenic agents on top of their potent activity in causing the death of cancerous cells. Extensive studies have been conducted to assess the role of oxidative stress, and hence the use of antioxidants in the prevention of many diseases such as cancer, inflammation, and atherosclerosis [6]. The use of traditional herbs for medicine has been a common practice from stone age. From years ago man has always scrutinized his biotic world for medicines which mainly contains plants as the most precious store for medicines. Keeping it in view familiarity with the various species of Clematis (Ranunculaceae) which made it an essential garden plant in today’s period. Clematis is a genus of about 300 species within the buttercup family Ranunculaceae. Their garden hybrids have always been popular among gardeners, beginning with Clematis jackmani, a garden since 1862; more hybrid cultivars are being produced constantly. They are mainly obtained from Chinese and Japanese origin. Some other species of Clematis has been evaluated for its anti-inflammatory, cytotoxic, and antimicrobial effects but Clematis buchaniana has not been studied much. The whole plant of C. buchaniana was traditionally used in Nepalese medicinal plants for stronger immunity, cooling effect, and asthma [7]. Due to its traditional uses and other established pharmacological activities on the different species of Clematis and minimal pharmacological data on C. buchaniana made it an intense area for studying antiangiogenic activity. The main purpose of this antiangiogenic activity on C. buchaniana was actually to determine the ability in the extract to inhibit angiogenesis in a growing and well incubated fresh chicken's egg at 37°C [8].

METHODS

Collection and authentication of plant material

The entire plant of C. buchaniana was collected from the village of Kotma Kalimath (Kedarnath region) hilly areas of Garhwal and then further identified and authenticated by the Botanical Survey of India, Dehradun. The voucher specimen no. 115904 was deposited in herbarium. Further, the identified plant was washed to remove any dust and other earthy matter, further was shade, dried, and powdered with laboratory mill. The crushed plant was subjected for extraction.

Chemicals used

Various chemicals used in this activity are crude dried extract, ethanol (for sterilization), water for injection as the solvent used in dosing of eggs, β1,4-galactan sulfate (standard) pellets.

Instruments used

The various instruments used in performing this activity are given in Table 1.

Preparation of crude plant extract

About 200 g of the dried plant was kept in the Soxhlet apparatus (Borosil), and then, it was subjected to Soxhlation using methanol as
The obtained methanolic extract was filtered, and the methanolic extract on Scientech Scientech 10 µg/0.5 ml Concentration 0.6±1 1.4±1 Scientech Scientech Antiangiogenic extent of degeneration of CAM vasculature was noted on the 7th day of their incubation. Again kept for 24 hrs. The pictures were clicked at every stage of growing embryos on the 5th day of incubation. Treatment of all three groups (control, test, and standard). After 3-5 days of treatment, untreated control eggs gave branching pattern of tube-like capillaries. In contrast, capillary tube formation was slightly suppressed in eggs, which was treated with C. buchaniana (10 µg/0.5 ml) [16].

RESULTS AND DISCUSSION

Antiangiogenic activity

Angiogenesis, tightly modulated through a balance of positive and negative regulatory factors, is to operate by proangiogenic growth factors such as vascular endothelial growth factor, which in turn induce activation of their respective receptors on the surface of endothelial cells, resulting in angiogenesis, therefore, identification of new agents that inhibit the growth in endothelial cell could have potential to inhibit tumor angiogenesis and subsequently repress tumor growth. After 3-5 days of treatment, untreated control eggs gave branching pattern of tube-like capillaries. In contrast, capillary tube formation was slightly suppressed in eggs, which was treated with C. buchaniana (10 µg/0.5 ml) [16].

Fig 1 shows the effect of Clematis buchaniana methanolic extract on angiogenesis inhibition of blood vessels in control and test group.

The result of antiangiogenic activity is shown in Table 2.

CONCLUSION

This study has been subjected to following aspects of an important herbal medicinal plant C. buchaniana (family Ranunculaceae), the study included antiangiogenic activity via CAM assay method. Angiogenesis is an important initiative process in case of many diseases such as tumor, cataract, and psoriasis. The methanolic extract of C. buchaniana shows slight inhibitory activity against this process. These herbs may have promising antitumor activity if given as an adjuvant in chemotherapy or in targeting other angiogenesis-related diseases.

The anti-inflammatory and antiangiogenic activity of C. buchaniana need further more detailed study in the path of isolation and authentication of screened phytochemicals responsible for above activities of this medicinal drug [17-21].

REFERENCES

1. Auerbach R, Lewis R, Shimmers B, Kubai L, Akhtar N. Angiogenesis assays: A critical overview. Clin Chem 2003;49(1):32-40.
2. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1(1):27-31.
3. Risau W. Mechanisms of angiogenesis. Nature 1997;386(6626):671-4.
4. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280(6):C1358-66.
5. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003;13(2):159-67.
6. Parekh JT, Jigna T. Potency of some Medicinal Flora: Phytochemical and Pharmacological Evaluation. Thesis Ph.D. Saurashtra University; 2007.
7. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 2004;85(5):233-48.
8. Clifford MJ. Angiogenesis Protocols. New Jersey: Humana Press Inc.; 2001. p. 185-205.
9. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63.
10. Tiwari A, Singh A. Synthesis and evaluation of possible mechanism of anti-nociceptive potential of novel 2-quinolone fused 3,5-pyrazolidinedione derivatives in experimental animal models. Ovidius Univ Ann Chem 2013;24:5-12.
11. Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 2009;90(3):195-221.
12. Brown KJ, Maynes SF, Bezos A, Maguire DJ, Ford MD, Parish CR. A novel in vitro assay for human angiogenesis. Lab Invest 1996;75(4):539-55.
13. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3(7):643-51.
14. Nieves BJ, D’Amore PA, Bryan BA. The function of vascular endothelial growth factor. Biofactors 2009;35(4):332-7.
15. van Hinsbergh VW, Koolwijk P, Hanaemaajer R. Role of fibrin and plasminogen activators in repair-associated angiogenesis: In vitro studies with human endothelial cells. EXS 1997;79:391-411.
16. Tiwari A, Tiwari V, Vankataramana CH, Madhvan V. Synthesis of novel pyrazolidine-3,5-dione substituted benzimidazole derivatives and their biological activity. Asian J Chem 2011;23:1179-82.
17. Tiwari V, Tiwari A, Madhvan V. Preliminary photochemical analysis, HPTLC studies and antipyretic activity of alcohol and aqueous extract of Helicteres isora L. root. Int J Pharm Pharm Sci 2010;2(2):74-8.
18. Tiwari V, Singh A. Anti-nociceptive and anti-oxidant potential of Bauhinia tomentosa extracts in experimental animal models. Natl Prod J 2013;3(4):309-16.
19. Tiwari V, Singh A, Tiwari A. Pharmacognostical, phyto-chemical and antimicrobial activity of Bauhinia tomentosa L. JPR 2011;4(4):1173-5.
20. Tiwari A, Singh A. Synthesis and antinoceptive activity of novel mannich base derivatives of some new fused 3,5-pyrazolidinedione. J Adv Pharm Technol Res 2014;5(1):41-7.
21. Arora M, Tiwari A, Kumar A, Saini R, Bisht M. Evaluation of in vitro anti-inflammatory potential of the methanolic extract Clematis Buchaniana plant. Pharm Chem J 2016;3(2):359-363.