Misdiagnosed as pancreatic cancer seven years ago, a 29-year-old woman suffered from left-sided portal hypertension caused by peripancreatic lymph node tuberculosis: a case report and literature review

CURRENT STATUS: POSTED

Dajun Yu
Department of General Surgery, Wushan County People's Hospital of Chongqing, Wushan 404700, Chongqing, China.

Xiaolan Li
Department of General Surgery, Wushan County People's Hospital of Chongqing, Wushan 404700, Chongqing, China.

Jianping Gong
Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.

Jinzheng Li
Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.

Fei Xie
Department of Hepatobiliary Surgery, the First People's Hospital of Neijiang, Neijiang 64100, Sichuan, China.

Jiejun Hu
Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University

✉ 310872192@qq.comCorresponding Author
ORCiD: https://orcid.org/0000-0002-0876-6487

DOI: 10.21203/rs.3.rs-16647/v1

SUBJECT AREAS
Gastroenterology & Hepatology Infectious Diseases

KEYWORDS
left-sided portal hypertension, lymph nodes tuberculosis, pancreatic cancer, case
report
Abstract
Background: As the only curable portal hypertension, left-sided portal hypertension (LSPH) is a very rare clinical syndrome. With normal liver function, LSPH is mostly due to pancreatic disease and its complications that cause spleen vein compression, inflammatory wall thickening or lumen blockage, isolated splenic vein thrombosis, restricted splenic vein reflux, finally resulting in increased splenic vein pressure, opened collateral circulation, and bleeding from isolated gastric varices. With a quiet occurrence, LSPH often lacks specific symptoms, which finally leads to difficult diagnosis. Therefore, acuminous options of clinical examination are exceedingly crucial. Splenectomy is the prime treatment for cases complicated by variceal bleeding, but the effect of treatment depends mainly on the condition of the primary disease. Other than these, diseases resulting in LSPH often need to be distinguished from pancreatic cancer, so it is necessary for us to pay more attention to the diagnosis and treatment of LSPH.

Case presentation: Here, we report a case of 29-year-old women who was admitted to the hospital for repeated hematemesis and black stool, with a differential diagnosis of pancreatic cancer seven years ago. Abdominal computed tomography (CT), CT angiography (CTA), portal phase three-dimensional vascular reconstruction, and gastroscopy indicated varicose gastric fundus veins, pancreatic mass, and enlarged peripancreatic lymph nodes. Erythrocyte, platelet, and leukocyte counts in decline, positive gamma interferon release assay, and normal liver function were given by laboratory examination. Abdominal exploration, splenectomy, varicose veins dissection, and lesions resection were performed by laparotomy. After surgery, the diagnosis of lymph node tuberculosis was confirmed by the technology of biopsy. Based on mention above, a diagnosis of LSPH caused by peripancreatic lymph node tuberculosis was confirmed. Postoperative evolution was steady, and the patient was in ideal clinical status at 3 months follow-up.

Conclusions: We reported the first case of LSHP caused by peripancreatic lymph node tuberculosis. At the same time of resulting in left portal hypertension, the peripancreatic lymph node tuberculosis is often misdiagnosed as pancreatic cancer. Further studies were necessary to explore more favorable diagnosis method for pancreas mass and more advantageous therapy for LSPH, especially caused by
mechanical compression.

Background
Lymph nodes are areas most frequently affected by Mycobacterium tuberculosis outside the lung[1-4]. However, intra-abdominal lymph node tuberculosis is a very rare disease, and is associated in most cases with immunodepression[5]. Left-sided portal hypertension is a rare clinical syndrome which may lead to bleeding from isolated gastric varices with a normal liver function[6]. The most common causes of LSPH are chronic pancreatitis, pancreatic pseudocysts and various pancreatic tumors[7-12]. Most patients with left-sided portal hypertension are asymptomatic, and only a few cases present isolated gastric varices, ruptures, and fatal bleeding caused by splenic vein obstruction resulting from thrombosis, mechanical compression, tumor invasion and metastasis[7-14]. It is difficult to diagnose LSPH[15], and bleeding from LSPH are frequently fatal[8, 13, 16-19], other than these, diseases resulting in LSPH often need to be distinguished from pancreatic cancer, so it is necessary for us to pay more attention to the diagnosis and treatment of LSPH[20-22]. All in all, we reported a case with LSPH caused by peripancreatic lymph node tuberculosis and misdiagnosed as pancreatic cancer seven years before.

Case Presentation
The women underwent debridement and drainage for cervical lymph node tuberculosis nine years ago. Seven years ago, because of abdominal pain, the patient was examined by abdominal computed tomography (CT) in other hospital, which reported that there was a mass in pancreas body with enlarged lymph nodes in abdominal cavity. Naturally, the 29-year-old women was suspected as pancreatic cancer with lymphatic metastasis. However, except CT report, the specific clinical examination index of the patient in other hospital was unavailable. Two years after symptoms relief by treatment of Chinese traditional medicine, the patient showed repeated vomiting and melena for 5 years. In our hospital, the patient stated that her mental, appetite and sleep was normal, with ochrodermia, but without fever, jaundice, petechiae, and ecchymoses. Physical examination showed a good general condition without abdominal tenderness, abdominal muscle tension, rebound pain, abdominal mass, and hepatomegaly. Additionally, there were no swelling in patient’s cervical,
supraclavicular, axillary and inguinal lymph nodes.

To clarify the cause, the blood biochemical and blood routine examination were performed. The blood biochemical results reported adenosine deaminase (ADA) and liver function within a normal range, the detailed blood biochemical results were shown in Table 1. The blood routine examination indicated erythrocyte, platelet, and leukocyte counts in decline, other blood routine results were reported in Table 2. In addition, the alpha fetal protein (AFP), tumor associated antigen 125 (CA125), and tumor associated antigen 199 (CA199) were normal. Tests for infection with human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and mycobacterium tuberculosis were negative, but gamma interferon release assay was positive.

In order to further diagnose, imaging examinations were performed by us, which including abdominal non-contrast and contrast-enhanced CT, CT angiography (CTA), CT venography (CTV), and portal phase three-dimensional vascular reconstruction. Non-contrast and contrast-enhanced CT indicated that not obviously enhanced in both arterial and venous phases, a heterogeneous, no vascular, and low-density mass is located in pancreas body, with poorly defined edges and a 3.1 × 2.0 cm diameter (Figure 1A). An intumescent spleen and multiple nodular dense shadows around pancreas, hepatic hilar region, and mesenteric were also detected by CT (Figure 1A). On CTA, CTV, and portal phase three-dimensional vascular reconstruction graphy, enlarged splenic vein, narrowed start section of the splenic vein, and tortuous gastric veins were observed (Figure B and Figure D). Furthermore, gastroscopy detected that there are varicose veins under the gastric fundus mucosa (Figure C), but the esophageal mucosa is smooth. To investigate whether the patient has a history of tuberculosis, chest CT scan was operated, which showed cabled-like and flaky increased density shadows in the posterior segment of the upper lobe tip of the left lung. Based on the above results, the patient was diagnosed as left-sided portal hypertension. However, nature of the mass in pancreas was not clear, tuberculosis, tumor, or others?

Due to repeated hematemesis symptom, after blood transfusion and anemia symptoms improving, the patient received splenectomy and perigastric fundus vascular dissection. Meanwhile, we operated lesion excision for biopsy. In operating field an enlarged spleen with a 34 × 25 × 15 cm diameter was
observed. After dissociating peritoneal adipose tissue, we caught up with that the left gastric vein, right gastric vein, left gastroepiploic vein, and right gastroepiploic vein are extensively tortuous and dilated (Figure 2A). As the deepening dissection, we could see swelling lymph nodes at greater curvature, hepatoduodenal ligament, and lower margin of pancreas (Figure 2B). We considered the mass occupying the lower margin of the pancreas to be an abscess by intraoperative ultrasound. Expressing a caseous necrosis profile, the sample was submitted to biopsy, and a necrotizing granulomatous lymphadenitis compatible with tuberculosis was observed (Figure 2C and 2D). After these results, a microbiological study was also performed, obtaining a suspiciously positive Ziehl-Neelsen staining. Therefore, the diagnosis of left-sided portal hypertension caused by lymph node tuberculosis was confirmed. According to the current clinical evidences, we inferred that the diagnosis of patient seven years ago should be peripancreatic lymph node tuberculosis rather than pancreatic cancer.

Discussion And Conclusions
Tuberculosis is a common pathology in undeveloped countries. However, due to increasing immigration and cases of HIV immunosuppression, its presence is increasing in developed countries in recent years[23]. Pulmonary tuberculosis is the most frequent form of presentation, but celiac lymph node forms are uncommon[24–26]. In this article, we reported a female patient who suffered from left-sided portal hypertension resulting from peripancreatic lymph node tuberculosis, misdiagnosed as pancreatic cancer seven years ago in other hospital. Lacking specific symptoms, the patients with peripancreatic lymph node tuberculosis mainly express abdominal pain, constitutional syndrome, jaundice, emaciation, and pancreatitis or abdominal mass, which are similar to pancreatic cancer. Furthermore, there is a high similarity between peripancreatic lymph node tuberculosis and pancreatic cancer in radiological manifestations[20, 25, 27–30]. Due to all of these factors, peripancreatic lymph node tuberculosis is frequently misdiagnosed as pancreatic cancer. However, the therapeutic approaches of them are totally different, so it is significant to make a correct diagnosis for avoiding unnecessary surgeries and long-term complications. Due to this reason, endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNAB) was utilized to distinguish
peripancreatic lymph node tuberculosis from pancreatic cancer by Ziehl-Neelsen staining and mycobacterium tuberculosis culture[30–35]. However, the accuracy of these tests also depends on the quality of sample and the activity of mycobacterium tuberculosis. Hence, surgery could be a favorable way to obtain a certain diagnosis, as in our case, and laparoscopic surgery may be a better option if surgery is just for diagnosis. Moreover, tuberculosis history, ADA, gamma interferon release assay, and the polymerase chain reaction (PCR) of tuberculous bacillus can serve as an important reference for the diagnosis of lymph node tuberculosis[3, 36].

Possessing a normal liver function, patients with LSPH mainly result from splenic vein obstruction, and pancreatic inflammatory or neoplastic diseases are the main causes of LSPH[6]. In our case, swollen lymph node compression or fibrous scarring after caseous necrosis should be the main cause. The diagnosis of LSPH is based on clinical, biochemical, and radiological evaluation. Many patients with LSPH are asymptomatic or have primary disease symptoms[13, 14, 37]. However, there are few LSPH patients expressing isolated gastric venous bleeding and anemia, usually the bleeding is serious[6, 9, 12]. Routine blood tests can show a decrease in red blood cells, lymphocytes, and platelets. Biochemical evaluation is mainly used to exclude cirrhotic portal hypertension and look for primary disease. In addition to clinical symptoms, imaging test plays an important role in confirming the diagnosis in the majority of cases[38]. Angiography of splenic vein remains the gold standard in diagnosing LSPH, but that method is rarely used today because it is invasive and has potential morbidity[39]. Transabdominal ultrasonography (US) is often the initial imaging modality utilized, but the accuracy of trans-abdominal US is limited in detecting splenic or superior mesenteric veins thrombosis[40]. Recently, endoscopic ultrasound (EUS) has been utilized to evaluate the portal vasculature. This technology has a more accuracy than transabdominal US for evaluating patency of the splenic vein[13, 41]. Of course, with fast development of CT and endoscope, combination of multidetector CTA, gastroscope, and portal phase three-dimensional vascular reconstruction may be a better option, as our case report. More importantly, the results of CTA and portal phase three-dimensional vascular reconstruction are competent in guiding the operation, if necessary. Magnetic resonance angiography (MRA) is a promising method for the evaluation of the portal venous system
too[42]. In term of treatment, asymptomatic patients whether need treatment remains controversial, but it is necessary to interevent for patients with active bleeding. Besides improving bleeding, it is often necessary to treat the primary disease[16, 17, 19, 43, 44]. According to patient's clinical condition, there are several methods to relieve isolated gastric bleeding. Enjoying ability of reducing venous blood reflux, splenectomy remains the preferred treatment for patients with gastric bleeding due to left portal hypertension, and splenic artery embolization can be used as a supplement for patients who are not suitable for splenectomy[13, 16, 17, 19, 43–45]. Endoscopic therapy has great advantages in the treatment of acute massive gastric bleeding, but the rebleeding is unavoidable[46–49]. We are also considering whether left portal hypertension due to mechanical compression can be corrected by stent implantation, which will be our future research direction. In our therapeutic procedure, splenectomy and varicose veins dissection were performed to intervene hypersplenism and severe varices. In summary, the treatment of patients with left portal hypertension should be tailored to maximize the benefit of patients.

In conclusion, we state a very interesting case. Experiencing a misdiagnosis, a 29-year-old woman suffered from LSPH resulting from peripancreatic lymph node tuberculosis. LSPH is a very rare clinical syndrome, and we reported the first case of LSHP caused by peripancreatic lymph node tuberculosis. For us, it is of necessity to introduce this case to provide reference for clinical diagnosis and treatment of LSPH.

List Of Abbreviations

LSPH: left-sided portal hypertension

CT: computed tomography

CTA: CT angiography

CTV: CT venography

ADA: adenosine deaminase

AFP: alpha fetal protein

CA125: tumor associated antigen 125

CA199: tumor associated antigen 199
EUS-FNAB: endoscopic ultrasound-guided fine-needle aspiration biopsy

PCR: polymerase chain reaction

US: ultrasonography

EUS: endoscopic ultrasound

MRA: magnetic resonance angiography

Declarations

Ethics approval and consent to participate: Not needed as this case is a case admitted in the hospital for treatment and diagnosis.

Consent for publication: Written informed consent for publication of their clinical details and/or clinical images was obtained from patient herself.

Availability of data and materials: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Funding: Not applicable.

Authors’ contributions: DY and JH wrote the manuscript. JG and JL conceived the report. XL and FX accumulated the clinical materials. All authors contributed to the critical revision of the report for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements: We would like thank the First People’s Hospital of Neijiang for supply of clinical materials.

Footnotes: Corresponding author. #Dajun Yu and Xiaolan Li contribute to this work equally.

References

1Hamzaoui G, Amro L, Sajiai H, Serhane H, Moumen N, Ennezari A, et al. Lymph node tuberculosis: epidemiology, diagnostic and therapeutic aspects, about 357 cases. Pan Afr Med J 2014;19:157-.

2Ketata W, Rekik WK, Ayadi H, Kammoun S. Extrapulmonary tuberculosis. Rev Pneumol Clin 2015;71:83-92.

3Popescu MR, Călin G, Strâmbu I, Olaru M, Bălășoiu M, Huplea V, et al. Lymph node tuberculosis - an attempt of clinico-morphological study and review of the literature. Rom J Morphol Embryol 2014;55:553-67.
4Tritar-Cherif F, Daghfous H. Lymph node tuberculosis management. Tunis Med 2014;92:111–3.

5Fillion A, Ortega-Deballon P, Al-Samman S, Briault A, Brigand C, Deguelte S, et al. Abdominal tuberculosis in a low prevalence country. Med Mal Infect 2016;46:140–5.

6Köklü S, Coban S, Yüksel O, Arhan M. Left-sided portal hypertension. Dig Dis Sci 2007;52:1141–9.

7Aikot S, Manappallil RG, Pokkattil S, Kakkattil A. Solid pseudopapillary neoplasm of pancreas: an unusual aetiology for haematochezia. BMJ Case Rep 2018;2018:bcr2018225332.

8Csomor J, Bunganič B, Dvořáková D, Hříbek P, Kmochová K, Campr V, et al. Extramedullary Plasmacytoma of the Pancreas Complicated with Left-Sided Portal Hypertension-a Case Report and Literature Review. J Gastrointest Cancer 2019;50:962–6.

9Fernandes A, Almeida N, Ferreira AM, Casela A, Gomes D, Portela F, et al. Left-Sided Portal Hypertension: A Sinister Entity. GE Port J Gastroenterol 2015;22:234–9.

10Kushiya H, Noji T, Abo D, Soyama T, Tanaka K, Nakanishi Y, et al. Treatment of bleeding from a portion of pancreatojejunostomy after pancreaticoduodenectomy with division of the splenic vein: two case reports. Surg Case Rep 2019;5:128-.

11Mizuno S, Kato H, Yamaue H, Fujii T, Sato S, Saiura A, et al. Left-sided Portal Hypertension After Pancreaticoduodenectomy With Resection of the Portal Vein/Superior Mesenteric Vein Confluence in Patients With Pancreatic Cancer: A Project Study by the Japanese Society of Hepato-Biliary-Pancreatic Surgery. Ann Surg 2019:10.1097/SLA.0000000000003487.

12Pereira P, Peixoto A. Left-Sided Portal Hypertension: A Clinical Challenge. GE Port J Gastroenterol 2015;22:231–3.

13Köklü S, Yüksel O, Arhan M, Coban S, Başar O, Yolcu OF, et al. Report of 24 left-sided portal hypertension cases: a single-center prospective cohort study. Dig Dis Sci 2005;50:976–82.

14Sakorafas GH, Sarr MG, Farley DR, Farnell MB. The significance of sinistral portal hypertension complicating chronic pancreatitis. Am J Surg 2000;179:129–33.

15Sato T, Yamazaki K, Kimura M, Toyota J, Karino Y. Endoscopic Color Doppler Ultrasonographic Evaluation of Gastric Varices Secondary to Left-Sided Portal Hypertension. Diagnostics (Basel) 2014;4:94–103.
16 Lenhart A, Fernandez-Castillo J, Mullins K, Salgia R. A Rare Case of Gastric Variceal Hemorrhage Secondary to Infiltrative B-Cell Lymphoma. Case Rep Gastroenterol 2016;10:518–24.

17 Lupascu-Ursulescu C, Trofin A-M, Zabara M, Vornicu A, Cadar R, Apopei O, et al. Bleeding from isolated gastric varices as complication of a mucinous cystic neoplasm of the pancreas: A case report. Medicine (Baltimore) 2017;96:e8775-e.

18 Patel H, Bhandari P, Kumar K, Makker J, Chandrala C. Isolated Gastric Varices due to Essential Thrombocytosis Related to Splenic Vein Thrombosis: A Challenge to Uncover the Concealed Diagnosis. Cureus 2019;11:e6068-e.

19 Wang X-Q, Yang H-Q, Chen J-X, Mao Z-F, Han H, Chen G, et al. Clinical and pathological analysis of solitary fibrous tumors with portal vein widening: A case report. Medicine (Baltimore) 2019;98:e15757-e.

20 García Del Olmo N, Boscà Robledo A, Penalba Palmí R, Añón Iranzo E, Aguiló Lucía J. Primary peripancreatic lymph node tuberculosis as a differential diagnosis of pancreatic neoplasia. Rev Esp Enferm Dig 2017;109:528–30.

21 Hwang TL, Jan YY, Jeng LB, Chen MF, Hung CF, Chiu CT. The different manifestation and outcome between pancreatitis and pancreatic malignancy with left-sided portal hypertension. Int Surg 1999;84:209–12.

22 Thrainsdottir H, Petursdottir V, Blöndal S, Björnsson ES. Pancreatic mass leading to left-sided portal hypertension, causing bleeding from isolated gastric varices. Case Rep Gastrointest Med 2014;2014:956490-.

23 Sotgiu G, Dara M, Centis R, Matteelli A, Solovic I, Gratziou C, et al. Breaking the barriers: Migrants and tuberculosis. Presse Med 2017;46:e5-e11.

24 Huang C-T, Lo C-Y, Lee T-H. Isolated peripancreatic tuberculous lymphadenopathy: a rare manifestation of abdominal tuberculosis mimicking pancreatic cystic neoplasm. J Dig Dis 2013;14:105–8.

25 Lee YJ, Hwang J-Y, Park S-E, Kim Y-W, Lee JW. Abdominal tuberculosis with periportal lymph node involvement mimicking pancreatic malignancy in an immunocompetent adolescent. Pediatr Radiol
26 Liang X, Huang X, Yang Q, He J. Calcified peripancreatic lymph nodes in pancreatic and hepatic tuberculosis mimicking pancreatic malignancy: A case report and review of literature. Medicine (Baltimore) 2018;97:e12255-e.

27 Cherian JV, Somasundaram A, Ponnusamy RP, Venkataraman J. Peripancreatic tuberculous lymphadenopathy. An impostor posing diagnostic difficulty. JOP 2007;8:326–9.

28 Kim J-B, Lee SS, Kim S-H, Byun JH, Park DH, Lee TY, et al. Peripancreatic tuberculous lymphadenopathy masquerading as pancreatic malignancy: a single-center experience. J Gastroenterol Hepatol 2014;29:409–16.

29 Li Y, Yang Z-G, Guo Y-K, Min P-Q, Yu J-Q, Ma E-S, et al. Distribution and characteristics of hematogenous disseminated tuberculosis within the abdomen on contrast-enhanced CT. Abdom Imaging 2007;32:484–8.

30 Yamada R, Inoue H, Yoshizawa N, Kitade T, Tano S, Sakuno T, et al. Peripancreatic Tuberculous Lymphadenitis with Biliary Obstruction Diagnosed by Endoscopic Ultrasound-guided Fine-needle Aspiration Biopsy. Intern Med 2016;55:919–23.

31 Arai J, Kitamura K, Yamamiya A, Ishii Y, Nomoto T, Honma T, et al. Peripancreatic Tuberculous Lymphadenitis Diagnosed via Endoscopic Ultrasound-guided Fine-needle Aspiration and Polymerase Chain Reaction. Intern Med 2017;56:1049–52.

32 Boujaoude J-D, Honein K, Yaghi C, Ghora C, Abadjian G, Sayegh R. Diagnosis by endoscopic ultrasound guided fine needle aspiration of tuberculous lymphadenitis involving the peripancreatic lymph nodes: a case report. World J Gastroenterol 2007;13:474–7.

33 Dutta U, Shrestha D, Sharma A, Gupta P, Das A, Srinivasan R, et al. Implantation cutaneous tuberculosis after ultrasound-guided fine needle aspiration cytology. BJR Case Rep 2016;2:20150393-.

34 Furuhashi H, Abe H, Yoshizawa K, Hirose Y, Miura Y, Seki N, et al. A case of peripancreatic tuberculous lymphadenitis diagnosed by endoscopic ultrasound-guided fine-needle aspiration. Clin J Gastroenterol 2014;7:68–73.

35 Itaba S, Yoshinaga S, Nakamura K, Mizutani T, Honda K, Takayanagi R, et al. Endoscopic
ultrasound-guided fine-needle aspiration for the diagnosis of peripancreatic tuberculous lymphadenitis. J Gastroenterol 2007;42:83–6.

36 Jia H, Pan L, Du B, Sun Q, Wei R, Xing A, et al. Diagnostic performance of interferon-γ release assay for lymph node tuberculosis. Diagn Microbiol Infect Dis 2016;85:56–60.

37 Wang L, Liu G-J, Chen Y-X, Dong H-P, Wang L-X. Sinistral portal hypertension: clinical features and surgical treatment of chronic splenic vein occlusion. Med Princ Pract 2012;21:20–3.

38 Weber SM, Rikkers LF. Splenic vein thrombosis and gastrointestinal bleeding in chronic pancreatitis. World J Surg 2003;27:1271–4.

39 Leger L, Lenriot JP, Lemaigre G. Hypertension and segmental portal stasis in chronic pancreatitis. Apropos of 126 cases examined by splenoportography and splenomanometry. J Chir (Paris) 1968;95:599–608.

40 Lewis JD, Faigel DO, Morris JB, Siegelman ES, Kochman ML. Splenic vein thrombosis secondary to focal pancreatitis diagnosed by endoscopic ultrasonography. J Clin Gastroenterol 1998;26:54–6.

41 Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W, Practice Guidelines Committee of the American Association for the Study of Liver D, Practice Parameters Committee of the American College of G. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007;46:922–38.

42 Hughes LA, Hartnell GG, Finn JP, Longmaid HE, Volpe J, Wheeler HG, et al. Time-of-flight MR angiography of the portal venous system: value compared with other imaging procedures. AJR Am J Roentgenol 1996;166:375–8.

43 Di Martino M, de la Hoz Rodríguez A, Real Martínez Y, Martín-Pérez E. Left-sided portal hypertension due to retroperitoneal fibrosis treated with an oesophagus preserving, modified Sugiura procedure. Ann R Coll Surg Engl 2020;102:e48-e50.

44 Ozsay O, Gungor F, Karaisli S, Kokulu I, Dilek ON. Hydatid cyst of the pancreas causing both acute pancreatitis and splenic vein thrombosis. Ann R Coll Surg Engl 2018;100:e178-e80.

45 Chalyi AN, Zubarev PN, Kotiv BN. Left-sided portal hypertension: pathogenesis and treatment. Vestn Khir Im I I Grek 1997;156:65–9.
46 Colaneri RP, Coelho FF, de Cleva R, Herman P. Laparoscopic Treatment of Presinusoidal Schistosomal Portal Hypertension Associated With Postoperative Endoscopic Treatment: Results of a New Approach. Surg Laparosc Endosc Percutan Tech 2017;27:90-3.

47 Tian L, He Y, Li D, Zhang H. Surgical shunts compared with endoscopic sclerotherapy for the treatment of variceal bleeding in adults with portal hypertension: a systematic review and meta-analysis. Postgrad Med J 2018;94:7-14.

48 Tornikidis J, Hoch J, Pádr R, Keil R. Massive bleeding in portal hypertension endoscopic, surgical or endovascular management? Rozhl Chir 2017;96:390-3.

49 Xiaoqing Z, Na L, Lili M, Jie C, Tiancheng L, Jian W, et al. Endoscopic Cyanoacrylate Injection with Lauromacrogol for Gastric Varices: Long-Term Outcomes and Predictors in a Retrospective Cohort Study. J Laparoendosc Adv Surg Tech A 2019;29:1135-43.

Tables

Table 1. Blood biochemical results
Variable
Total bilirubin
Direct bilirubin
Indirect bilirubin
Serum total bile acid
Alanine aminotransferase
Aspartate aminotransferase
Alkaline phosphatase
Glutamyl transpeptidase
Lactate dehydrogenase
Cholinesterase
Adenosine deaminase
Alpha-L-fucosidase
Prealbumin
Total protein
Albumin
Globin
Albumin/Globin
Variable

White blood cells
Red blood cells
Hemoglobin
Platelets
Hematocrit
Mean corpuscular volume
Mean corpuscular hemoglobin
Mean corpuscular-hemoglobin concentration
Red cell volume distribution width-CV
Red cell volume distribution width-SD
Neutrophil ratio
Lymphocyte ratio
Monocyte ratio
Eosinophil ratio
Basophil ratio
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophil

Figures
Figure 1

Images from CT and gastroscope. (A) Non-contrast CT imaging on horizontal plane: There is a low-density and heterogeneous mass in pancreas body with an irregular edge (red arrow). Spleen is enlarged (blue arrow). Nodular dense shadows around pancreas (green arrow).

(B) An CTA image at portal venous phase is obtained in a coronal plane. Varicose gastric veins (red arrow). Swollen and calcified lymph nodes (blue arrow). The start section of splenic vein become narrow (green arrow). (C) Varicose vein in gastric fundus is showed by gastroscope. (D) Varicose gastric veins and normal esophageal veins portal are displayed in phase three-dimensional vascular reconstruction image.
Figure 2

Intraoperative circumstance and specimens. (A) Varicose gastric veins (blue arrow). (B) A enlarged peripancreatic lymph nodes (blue arrow). (C) Macroscopic aspect of the swelling peripancreatic lymph nodes. The profile of the swelling peripancreatic lymph nodes present caseous necrosis (blue arrow). (D) No structural necrosis in the background of lymphocytes is showed in hematoxylin-eosin staining.