On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

Liying Peng1,2, Lei Hua1, Weiguo Wang1, Qinghua Zhou1,2 & Haiyang Li1

1Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People’s Republic of China, 2University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China.

New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones.

In recent years, rapid and sensitive detection of improvised explosive devices (IEDs) has become the most pressing issues with the increase of the globalization of terrorist acts during the last 2 decades, such as those in Oklahoma, U.S.A. (1995), Bali, Indonesia (2002, 2005), Pune, India (2010), Oslo, Norway (2011), Boston, U.S.A. (2013) and Abuja, Nigeria (2014). On-site screening is an effective way to reduce the risk of explosion, which demands the analytical methods with high requirements in terms of speed, sensitivity, and robustness.

The instrumental methods such as X-rays, neutron analysis, nuclear quadrupole resonance, and colorimetric detection are always adopted for the bulk detection of organic and inorganic explosives, while the thermal desorption ion mobility spectrometry (TD-IMS) is proven to be a practical technique for trace detection (from ng to pg) of organic explosives such as 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) et al. IMS is a gas-phase ion separation and detection technique in a uniform electric field based on the mobility difference of gaseous ions. More than 20,000 stand-alone IMS have been deployed at airports and subway stations worldwide for security applications, due to the advantages of fast speed, low cost, analytical flexibility, portability and commercial availability. However, it still remains a great challenge for TD-IMS to detect trace inorganic explosives except for ammonium nitrate-fuel oil (ANFO) and sulphur (S) in black powder, owing to their ultra-low vapour pressure even at the typical maximum desorber temperature (≤280 °C).

Inorganic explosives generally consist of an inorganic oxidizer such as potassium nitrate (KNO3), potassium perchlorate (KClO4), or potassium chlorate (KClO3) and a fuel such as carbon source, sulphur (S), sugar or powdered metals. Inorganic explosives are extensively used in terrorist attacks owing to the readily available, low cost and legally purchased components. Ion chromatography (IC), capillary electrophoresis (CE), electrospray ionization mass spectrometry (ESI-MS) and electrospray ionization ion mobility spectrometry (ESI-IMS) have been performed to identify their characteristic ions, such as nitrate (NO3−), chloride (ClO3−), sulphate (SO42−) and perchlorate (ClO4−) etc. contained within inorganic explosives. However, the field-deployment of these techniques is hampered by the tedious and time-consuming procedures for handling the...
aqueous samples. Additionally, the relatively long analysis time (>5 minutes) of IC and CE, and the relatively large bulk, high expensive cost of mass spectrometer make them not suitable for on-site screening as well.

Obviously, an analytical method which could rapidly and sensitively detect both inorganic and organic explosives is highly demanded. Herein, we firstly reported a simple method to detect inorganic explosives involving KNO₃, KClO₃ and KClO₄ using TD-IMS via acid-enhanced evaporation for on-site detection. Samples on the swab were acidized by spraying H₃PO₄, and enhancements of signal for KNO₃, KClO₃ and KClO₄ by a factor of over 3000 were achieved, realizing the detection of inorganic explosives at ng even pg level. Moreover, the common nitro-explosives and its mixture with the inorganic oxidizers and the frequently-used inorganic explosives such as black powder, firecracker and match head were sensitively detected. The influence of acidification process on the detection of organic explosives was also investigated.

Results and Discussion

Design of TD-IMS for analysis. A swiped-based TD-IMS apparatus operated in negative mode is schematically shown in Fig. 1. The key structure of IMS is similar to those reported in detail previously and expect that an extra inlet named inlet 2 used for the sample inlet was punched in the reaction region at the vicinity of BN ion gate. Thus, only the purge gas flowed through the ⁶³Ni source, so the pollution and acid corrosion of ⁶³Ni source could be effectively avoided. In the test, samples were deposited on the swabs firstly (Fig. 1(a)) and then sprayed with minimal regime 3% H₃PO₄ (Fig. 1(b)). Afterwards, the swab was inserted into the thermal desorber with temperature of 180 °C for IMS analysis (Fig. 1 (c)).

Enhancement of acidification on the sensitivity. Ion mobility spectra for typical inorganic oxidizers of KNO₃, KClO₃ and KClO₄ obtained without and with 3% H₃PO₄ acidification were depicted in Fig. 2, respectively. Clearly, in lack of H₃PO₄ acidification on the swab, only two weak product ion peaks with K₀ of 2.18 and 2.05 cm²V⁻¹s⁻¹ were observed for 20 µg KNO₃ and the signal intensity of characteristic peak (2.05 cm²V⁻¹s⁻¹) was only about 83 mV. Whereas, its response for 0.02 µg KNO₃ instantly increased to 280 mV in the existence of H₃PO₄. It was over 3 times higher than that of 20 µg KNO₃ obtained without acidification and the sensitivity were at least enhanced by a factor of 3000. Similarly, no responses for KClO₃ and KClO₄ even with quantity of 50 µg and 600 µg, respectively were obtained in the absence of H₃PO₄, while two strong ion peaks of 0.05 µg KClO₃ were appeared at 2.16 and 1.88 cm²V⁻¹s⁻¹ and peaks with K₀ of 2.15 and 1.77 cm²V⁻¹s⁻¹ were observed for 0.60 µg KClO₄ in the assistance of H₃PO₄. And the signal intensities for ion peaks of KClO₃ (1.88 cm²V⁻¹s⁻¹), KClO₄ (1.77 cm²V⁻¹s⁻¹) were 184 and 179 mV, respectively. Furthermore, we also adopted other weak acids such as acetic acid (CH₃COOH) and boric acid (H₃BO₃) to perform the acidification process. The results demonstrated that H₃PO₄ was the most suitable for the analysis due to the perfect sensitivity and its simple background (see Supplementary Fig. S1–2). It is noteworthy that the time taken for sample-to-sample analysis is less than 5 s, and the analysis speed is fast enough for rapid on-site screening.

Mechanism for the acid-enhancement. The product ions of inorganic oxidizers in ⁶³Ni source were assigned by an atmospheric pressure negative ionization time-of-flight mass spectrometer (TOF-MS) (see Supplementary Fig. S3). The typical mass spectra were demonstrated in Fig. 3; the reduced ion mobilities (K₀), mass-to-charge ratios (m/z) and corresponding product ions were summarized in Table 1. Accordingly, two product ions of KNO₃ at m/z 62 and m/z 125 were assigned to NO₃⁻ and HNO₃,HNO₃-NO₃⁻, and
two ions of KClO₃ at m/z 83, 85 and m/z 167, 169, 171 were attributed to ClO₃⁻ and HClO₃·ClO₃⁻, while the ions assigned to ClO₄⁻ (m/z = 99, 101) and HClO₄·ClO₄⁻ (m/z = 199, 201, 203) were observed for KClO₄. The product ions observed for KNO₃ were same as those in previous experiments of ammonium nitrate (AN, the main component of ANFO) where NO₃⁻ and complex HNO₃·NO₃ were the dominant ions, likely formed by HNO₃ (the decomposition product of AN). According to the observed product ions, gaseous inorganic acids, such as HNO₃, HClO₃ and HClO₄ were believed to be released in the thermal desorber after acidification through the metathesis reaction between the solid oxidizers and H₃PO₄ at high temperature of 180°C, and then ionized by the reactant ions O₂ in the ion source. Hence, inorganic oxidizers could be indirectly detected by identifying their gaseous inorganic acids in the existence of H₃PO₄. The mechanism of acid-enhanced detection of inorganic salt oxidizers are summarized as equation (1) to (3) and X presents N or Cl atom.

\[
\begin{align*}
3\text{KXO}_n + \text{H}_3\text{PO}_4 & \rightarrow 3\text{HXO}_n + \text{K}_3\text{PO}_4 \quad (1) \\
\text{HXO}_n + \text{O}_2^- & \rightarrow \text{XO}_n^- + \text{HO}_2 \quad (2) \\
\text{XO}_n^- + \text{HXO}_n & \rightarrow \text{HXO}_n \cdot \text{XO}_n^- \quad (3)
\end{align*}
\]

Quantitative analysis. To further investigate the sensitivities of inorganic explosives, we used ion peaks at \(K_0\) of 2.05, 1.88 and 1.77 cm²V⁻¹s⁻¹ for quantitative analysis of KNO₃, KClO₃ and KClO₄. The results were summarized in Table 1; their detectable linear range were 2–60 ng, 10–120 ng and 50–600 ng, respectively and the RSD (n = 9) were 17.10%, 16.27%, and 9.99%, respectively. The limits of detection (LOD, S/N = 3) for KNO₃, KClO₃ and KClO₄ were 0.10 ng, 0.84 ng and 6.30 ng, respectively. These results exhibit the good quantitative capability of the current method for detection of inorganic explosive.

Detection performances of actual samples. The acidification process did not affect the detection of organic explosives and typical nitro-explosives such as TNT and RDX could be sensitively detected by current method, and their ion mobility spectra were displayed in Fig. S5 in the Supplementary Information. Clearly, product ion with \(K_0\) of 1.54 cm²V⁻¹s⁻¹ was observed for TNT, and the product ion peaks at \(K_0\) of 1.65, 1.53 and 1.44 cm²V⁻¹s⁻¹ were observed for RDX. Additionally, the mixtures of TNT and inorganic oxidizers could also be sensitively measured as well, and Fig. 4 shows the ion mobility spectra of 5 ng TNT mixed with 20 ng KNO₃ and 50 ng KClO₃, respectively. From the spectra, the characteristic ion peaks of TNT, KNO₃ and KClO₃ were distinctly observed simultaneously for the mixtures.

Moreover, the oxidizers in typical inorganic explosives were also detected. Figure 5 shows the ion mobility spectra of black powder, firecracker and match head obtained in the existence of H₃PO₄. From the spectra, the characteristic ion peaks of KNO₃, KClO₄ and KClO₃ were distinctly observed for black powder, firecracker and match head, respectively. It indicates that inorganic oxidizers in black powder, firecracker and match head are KNO₃, KClO₄ and KClO₃, respectively and other substances in the explosives such as powdered metals and charcoal had little impact on the identification. In particular, only S was detected in the firecracker and black powder without H₃PO₄ acidification (see Supplementary Fig. S6), so the detection of both S and inorganic oxidizers all could help identification the materials used in IEDs. Finally, as shown in Supplementary Fig. S7, KNO₃, KClO₃, KClO₄ in sugar (20 ng KNO₃/sugar (4:1),...
50 ng KClO₃/sugar (4:1) and 600 ng KClO₄/sugar (3:2) could also be sensitively measured, which means that the common fuel in inorganic explosives did not affect the detection.

Conclusions

We demonstrated a new rapid and sensitive method based on IMS via acid-enhanced detection of oxidizers including KNO₃, KClO₃ and KClO₄ to detect inorganic explosives. It owns the advantages of fast speed (about 5 s), low cost, analytical flexibility, portability, commercial availability, and suitable for detecting inorganic explosives and organic ones at the level of ng even pg. Moreover, it is envisioned to be easily deployed to the rapid and sensitive on-site screening of both inorganic explosives and organic ones at airports, subway stations, sports venues and even blast site, being an effective way to screen the substances in the detonation scene and reduce the risk of explosion.

Methods

Experiment. A 500 ng mL⁻¹ KNO₃, KClO₃ and 600 ng mL⁻¹ KClO₄ standard stock solutions and 3% H₃PO₄ solution were prepared by weighing sample and dissolving in distilled water. The standard solutions and test samples were obtained by gradually diluting the relevant stock solutions with distilled water or other volatile solvents. 20 ng KNO₃/sugar (4:1), 50 ng KClO₃/sugar (4:1), 600 ng KClO₄/sugar (3:2) were made up by mixing KNO₃, KClO₃, KClO₄ and sugar in corresponding proportion while match head, firecrackers, black powders, 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) were commercial grade.

A known quantity sample solutions were added on or solid samples were rubbed on the swabs firstly and the solvent was evaporated to dryness on a hot plate of 50 °C, and then the swabs with samples were sprayed minimal regime 3% H₃PO₄ (several microlitres). After that the swab was inserted into the thermal desorber for analysis by IMS operated in negative mode. It is noted that enough acid content is essential for the sensitivity.

Operating process and conditions. The sample on the swab (2 cm × 8 cm) made of Teflon was heated to 180 °C in the thermal desorber and vaporized into a gas flow that passed into the drift tube for analysis. In the ⁶³Ni ionization source, the sample molecules were ionized, and then the product ions were injected into the drift region through the BN gate with an injection pulse width of 300 ms. In the drift region, ions were separated according to their mobility with an electric field of 391 V/cm and then detected by the Faraday plate and the ion current was amplified with a gain of 10⁹ V/A. The drift tube temperature was kept at a constant of 90 °C. Air dried by silica gel, activated carbon and 13 X molecular sieve traps was divided into drift, carrier and purge gases via flow controllers which were optimized at 800, 400 and 400 mL/min, respectively. The operating parameters were summarized in Table 2.

Calculation. The reduced ion mobility, K_0 for unknown peaks were calculated with a standard via the following equation,

$$K_0 = K_0a \times \frac{t_{ds}}{t_{da}}$$

where K_0a is the reduced mobility of the analyte, t_{ds} and t_{da} is the drift time of the standard and the analyte, respectively. (TNT-H)² was used as the standard substance.
whose $K_0 = 1.54$ cm2/V2·s$^{-1}$ and its drift time was 11.28 ms under the same experimental conditions.

1. Stierstorfer, J. & Klapotke, T. M. High energy materials. propellants, explosives and pyrotechnics. Angew Chem Int Ed 49, 6253–6253 (2010).
2. Blanco, G. A. et al. Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection. Anal Chem 83, 9068–9075 (2011).
3. Cheng, S. et al. Fast switching of CO$_3$·(H$_2$O)$_n$ and O$_2$·(H$_2$O)$_n$ reactant ions in dopant-assisted negative photoionization ion mobility spectrometry for explosives detection. Anal Chem 86, 2687–2693 (2014).
4. Nagarkar, S. S., Joarder, B., Chaudhari, A. K., Mukherjee, S. & Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew Chem Int Ed 52, 2881–2885 (2013).
5. Bhattacharjee, Y. New efforts to detect explosives require advances on many fronts. Science 13, 1416–1417 (2008).
6. Hutchinson, J. P. et al. Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode. Anal Chem 79, 7005–7013 (2007).
7. Dicinoski, G. W., Shellie, R. A. & Haddad, P. R. Forensic identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode. Anal Chem 79, 7005–7013 (2007).
8. Marshall, M. & Oxley, J. C. Aspects of explosives detection. Elsevier (2009).
9. Caygill, J. S., Davis, F. & Higson, S. P. J. Current trends in explosive detection techniques. Talanta 88, 14–29 (2012).
10. Najarro, M., Davila Morris, M. E., Staymates, M. E., Fletcher, R. & Gillen, G. Optimized thermal desorption for improved sensitivity in trace explosive detection by ion mobility spectrometry. Analyst 137, 2614–2622 (2012).
11. Staymates, M. E., Smith, W. J. & Windsor, E. Thermal desorption and vapor transport characteristics in an explosive trace detector. Analyst 136, 3967–3972 (2011).
12. Vinyon, J. Field detection and monitoring of explosives. Trac-trend Anal Chem 21, 292–301 (2002).
13. Davis, E. J., Grows, K. F., Siens, W. F. & Hill, H. H. Improved ion mobility resolving power with increased buffer gas pressure. Anal Chem 84, 4858–4865 (2012).
14. Du, Y., Wang, W. & Li, H. Bradbury–nielsen–gate–grid structure for further enhancing the resolution of ion mobility spectrometry. Anal Chem 84, 5700–5707 (2012).
15. Dietiker, R., Lena, F. D. & Chen, P. Fourier transform ion mobility measurement of chain branching in mass-selected, chemically trapped oligomers from methyllumoxane-activated, metalloocene-catalyzed polymerization of ethylene. J Am Chem Soc 129 (10), 2796–2802 (2007).
16. Ewing, R. G. Ion mobility spectrometry, 2nd Edition. J Am Chem Soc 128 (16), 5585–5586 (2006).
17. Mäkinen, M., Nousiainen, M. & Sillanpää, M. Ion spectrometric detection technologies for ultra-traces of explosives: A review. Mass Spectrom Rev 30, 946–973 (2011).
18. Song, J., Grün, C. H., Heeren, R. M. A., Jansen, H. G. & van den Brink, O. F. High-resolution ion mobility spectrometry–mass spectrometry on poly (methyl methacrylate). Angew Chem Int Ed 49, 10168–10171 (2010).
19. Eiceman, G. A. & Stone, J. A. Ion mobility spectrometers in national defense. Anal Chem 76, 390A–397A (2004).
20. Buryakov, I. A. Detection of explosives by ion mobility spectrometry. Anal Chem 66, 674–694 (2011).
21. Song, J., Gru¨n, C. H., Heeren, R. M. A., Jansen, H. G. & van den Brink, O. F. High-resolution ion mobility spectrometry–mass spectrometry on poly (methyl methacylate). Angew Chem Int Ed 49, 10168–10171 (2010).
22. Eiceman, G. A. & Stone, J. A. Ion mobility spectrometers in national defense. Anal Chem 76, 390A–397A (2004).
23. Buryakov, I. A. Detection of explosives by ion mobility spectrometry. Anal Chem 66, 674–694 (2011).

Table 2 | The IMS operating parameters used in this work

Operating conditions	Setting
Desorber temperature	180°C
Drift tube temperature	90°C
Electric field	391 V cm$^{-1}$
BN gate opening time	300 μs
Carrier gas	Purified Air
Drift gas	Purified Air
Carrier gas flow rate	400 mL min$^{-1}$
Drift gas flow rate	800 mL min$^{-1}$
Purge gas flow rate	400 mL min$^{-1}$

Acknowledgments

This research is partially supported by NSF of China (21177124, 21077101) and the National Key Scientific Instrument and Equipment Development Project (2013YQ070302).

Author contributions

L.P. designed the study and wrote the manuscript. L.H. contributed significantly to the discussion of results and manuscript refinement. Q.Z. contributed to the construction of IMS. H.L. contributed significantly to the discussion of results and manuscript refinement. W.W. contributed significantly to the discussion of results and manuscript refinement. Q.Z. contributed to the construction of IMS. H.L. contributed to the discussion of results and manuscript refinement. All the authors contributed to the writing of the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Peng, L., Hua, L., Wang, W., Zhou, Q. & Li, H. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization. Sci. Rep. 4, 6631; DOI:10.1038/srep06631 (2014).