Scientific and Technological News Recommendation Based on Knowledge Graph with User Perception

Yuyao Zeng, Junping Du*, Zhe Xue, Ang Li

School of Computer Science, Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract: Existing research usually utilizes side information such as social network or item attributes to improve the performance of collaborative filtering-based recommender systems. In this paper, the knowledge graph with user perception is used to acquire the source of side information. We proposed KGUPN to address the limitations of existing embedding-based and path-based knowledge graph-aware recommendation methods, an end-to-end framework that integrates knowledge graph and user awareness into scientific and technological news recommendation systems. KGUPN contains three main layers, which are the propagation representation layer, the contextual information layer and collaborative relation layer. The propagation representation layer improves the representation of an entity by recursively propagating embeddings from its neighbors (which can be users, news, or relationships) in the knowledge graph. The contextual information layer improves the representation of entities by encoding the behavioral information of entities appearing in the news. The collaborative relation layer complements the relationship between entities in the news knowledge graph. Experimental results on real-world datasets show that KGUPN significantly outperforms state-of-the-art baselines in scientific and technological news recommendation.

Keywords: Recommendation; Knowledge graph; User perception

1 Introduction

With the development of the World Wide Web, online news platforms such as Bing News, microblogs [1] and Microsoft News emerge one after another. Due to the convenience and speed of online news, the Internet has gradually replaced traditional media like newspapers and TV as the preferred source for news consumption. Tech News follows the latest developments in technology. The latest scientific and technological information [2] is reported in real time, which makes technology news a popular and indispensable type of news. News websites collect news from various sources, which makes the number of news articles grow exponentially. At the same time, because of its rich semantics, short timeliness, and many types of technology news, it leads to problems such as user information overload. In order to assist users quickly read the scientific news they like and enhance the browsing inspect; personalized news recommendation technology came into being.

Traditional news recommendation methods include methods based on collaborative filtering [3-7], content-based methods [8][9], and hybrid methods [10][11], which generate user and item features from interaction matrices. For example, in scoring-related recommender systems, the interaction between users and items usually adopts collaborative filtering [12][13]. However, the special challenges faced by technology news recommendation make traditional recommendation algorithms less effective.

To solve the existing challenges of technology news recommendation mentioned above, in this paper, we propose a new framework for technology news recommendation using knowledge graphs and user portraits, namely the knowledge graph user perception network (KGUPN).

To summarize, the following are the primary contributions of our work::

- We propose KGUPN, an end-to-end framework that utilizes knowledge graphs with user perception to assist scientific and technological news recommend systems. KGUPN utilizes collaborative relations and iteratively propagates user interests in the KG to find consumers' potential preferences.
- We suggest three crucial layers in KGUPN to fully exploit knowledge information., including a collaborative relations layer, a propagation representation layer, and a contextual information layer. By doing ablation investigations, we confirm that each element does, in fact, contribute to the model.
- We test our algorithms on two actual news recommend scenarios, and a benchmark dataset widely used for general recommendation, and the outcomes show that KGUPN is effective on a number of cutting-edge baselines.

2 Related Work

2.1 News Recommendation System

Traditional news recommendation methods include methods based on collaborative filtering [3][4][5], content-based methods [8][9] and hybrid methods [10][11]. As a result of the frequent replacement of news items, however, collaborative filtering-based approaches frequently experience cold-start issues. Content-based

*Corresponding author: Junping Du (jumingdu@126.com).
methods can solve the cold-start issue through analyzing the content of the news users browse to recommend similar news to users.

However, these methods ignore the sequential information in the user's browsing history, making it difficult to learn users' changing interests.

Previous news recommendation works extract features from news items manually[12] or extract latent representations through neural models[14]. DKN is the study that is most pertinent to the topic of integrating knowledge graphs for news recommendation.[15][16]. But DKN only accepts input in the form of news headlines. It is conceivable to grow to include news organizations, this would lead to inefficiencies.

2.2 Graph Based Recommendation System

Path-based approach combined with knowledge graph in the field of recommendation is mainly to select and construct paths of different patterns between entities by defining meta-paths on the knowledge graph [17][18] or a path selection algorithm [19][20], to mine various associations in the knowledge graph, between users and items, and then realize recommendation prediction. Embedding-based schemes [21][22] and tracking algorithms [23] are mostly based on knowledge graph embedding algorithm. With the development of graph convolutional network [24][25], researchers try to use it to the topological structure information realizes modeling [26][27][28], takes the knowledge graph topology and recommendation prediction as multiple learning objectives, and utilizes the attention mechanism [29][30] to acquire the neighborhood weights to obtain the embedded representation of users and items.

Existing works usually directly use general knowledge graphs [31-34]. In this work, the knowledge graph we build is more specialized and incorporates user news interaction information.

3 Knowledge Graph User Perception Network

We propose a Knowledge Graph User Perception Network model for news (KGUPN), which can be used for science and technology news recommendation. Figure 1 shows the overall KGUPN framework, which consists of three key layers: a collaborative relations layer, a propagation representation layer and a contextual information layer.

3.1 Collaborative Relations Layer.

In this paper, we mine the correlation of entities contained in news content and user clicks as supplementary knowledge of the KG. Based on the KG we built with Microsoft Satori; we supplement the correlation between entities in the knowledge graph. The correlation of newly added entities in KG includes two types.

From the same scientific news. When two entities continually appear in the same news, it often represents that there is deep mutual correlation between the two. Invariably appearing in the same scientific news can be used for the mining and representation of deep relations in KG. Therefore, we add this relation to the KG as a complementary relation.

Same user browsed the news. Entities that have been watched by the same user can represent the interest correlation between entities. If multiple users have clicked on two entities at the same time, there may be some potential connection between the two entities. Therefore, we also add this relation to the KG as a supplementary relation.

3.2 Propagation Representation Layer

Entities from science and technology news and user-news interactions can be linked to a knowledge graph. A knowledge graph consists of a series of triples, which can be expressed as $G = \{ (u, r, n) \mid u \in U, r \in R, n \in N \}$.

Figure 1 An overview of the proposed KGUPN mode
In addition, the entities and related users in the news article are represented as embedding vectors. A news entity n is represented as an embedding vector $e_n \in \mathbb{R}^d$, and a user u is represented as $e_u \in \mathbb{R}^d$, where d represents the embedding size.

We use $e_u^{(k)}$ to represent the K-hop propagation of embedding of user u. Users (and news) can receive messages transmitted from their k-hop neighbors.

$$ e_u^{(k)} = \text{LeakyReLU}(t_u^{(k)} + \sum_{n \in A_u} l_{u-n}^{(k)}) $$

After K-hops of propagation, a set of representations for user u can be obtained, namely $\{e_u^{(1)}, ..., e_u^{(K)}, e_u^{(K)}\}$. We integrate them into the final embedding representation of the user $e_u^{(p)}$. The final embedding of the news $e_n^{(p)}$ is also obtained in the same way:

$$ e_u^{(p)} = e_u^{(0)} \odot ... \odot e_u^{(K-1)} \odot e_u^{(K)} $$

$$ e_n^{(p)} = e_n^{(0)} \odot ... \odot e_n^{(K-1)} \odot e_n^{(K)} $$

Where \odot is the concatenation operation. In addition to enhancing the embeddings, we provide K-adjustable propagation range control by doing this.

3.3 Contextual Information Layer

Eventually, we conduct inner product of news and user embeddings, so the matching score is predicted as:

$$ \hat{y}_{(u,n)} = (e_u^{(p)})^T e_n^{(p)} $$

We use the pairwise BPR [35] loss to improve the recommendation model.

4 Experiment

4.1 Datasets

We employ the processed Microsoft news recommendation dataset MIND, as well as a benchmark dataset frequently used in recommender systems: MovieLens, which is publicly accessible and differs in domain, size, and sparsity, to thoroughly assess the efficacy of the suggested algorithm above.

MIND[36]: This data set was gathered from the Microsoft news website's anonymized usage records. It includes click statistics and behavioral diaries from users who clicked on at least five news stories during the six-week period. We took the 61,013 technical news and the associated user activity data from the dataset.

MovieLens[37]: This benchmark dataset for recommendations is frequently utilized. On a scale of 1 to 5, it contains roughly 1 million explicit ratings for movies from the MovieLens website. We translate ratings into implicit feedback, where each item is marked either with 1 or 0.

4.2 Baselines

To verify the effectiveness of our proposed method KGUPN, we use the following methods as baselines:

• FM[38] is a benchmark decomposition model in which second-order feature interactions between inputs are considered.

• DKN[39] takes entity and word embeddings as channels and combines them in CNN for prediction.

• CKE[40] is a representative regularization-based method.

• CFKG[41] transforms recommendation tasks into reasonable predictions of triplets.

• LibFM[42] is a popular feature-based decomposition model in CTR scenarios.

• RippleNet[43] combines regularization based and pathbased methods.

4.3 Performance Comparison

Table I reports the experimental results on KGUPN and other baselines.

• On all datasets, KGUPN consistently produces the best results. Over the best baselines, KGUPN improves as recall@20 by 4.6%, 4.69% in Mind and MovieLens, respectively.

• KGUPN effectively increases the recommendation accuracy by adding supplementary knowledge, user interaction information, and higher-order reasoning connectivity.

• The fact that FM and DKN outperform CFKG and CKE shows that the decomposition model can more effectively use item knowledge than regularization-based approaches.

• CFKG and CKE only use the embeddings of their aligned entities, while FM and DKN use the embeddings of connected entities to enrich the representation of items. In addition, CFKG and CKE keep high-order connections unchanged, while FM and DKN take their cross features as second-order connections between users and entities.

Figure 2 present the Recall and Hit Ratio with K on KGUPN and other baselines, such as FM, CFKG, RippleNet. As K increases, we can see that the KGUPN curve constantly exceeds the baselines, which amply supports KGUPN’s performance is competitiveness.

![Figure 2 Recall with top K on MIND dataset](image)

5 Conclusions

In this paper, we proposed KGUPN, an end-to-end framework that incorporates knowledge graph and user awareness into scientific and technological news systems,
solves the shortcomings of previous embedding-based and path-based knowledge graph-aware recommendation approaches. The propagation representation layer, the contextual information layer, and the collaborative relation layer are the three key layers that make up KGUPN. On two recommendation datasets, we run in-depth tests. The findings demonstrate that KGUPN performs much better than the other baselines.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.62129278, No.62172056).

References

[1] Feifei Kou, Junping Du, Congxian Yang, Yansong Shi, Wanshu Cui, Meiyu Liang, and Yue Geng. Hashtag recommendation based on multi-features of microblogs. Journal of Computer Science and Technology, 2018, 33(4): 711-726.

[2] Ang Li, Junping Du, Feifei Kou, Zhe Xue, Xin Xu, Mingying Xu, Yang Jiang. Scientific and Technological Information Oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval. arXiv preprint arXiv:2203.08615, 2022.

[3] Das, Abhinandan S., Mayur Datar, and Ashutosh Garg. “Google News Personalization.” Proceedings of the 16th international conference on World Wide Web - WWW '07, 2007, 56(1):271-280.

[4] Wang, Chong, and David M. Blei. “Collaborative Topic Modeling for Recommending Scientific Articles.” Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11, 2011, 488–56.

[5] Wenling Li, Yingmin Jia, and Junping Du. Distributed extended Kalman filter with nonlinear consensus estimate. Journal of the Franklin Institute, 2017, 354(17): 7983-7995.

[6] Yawen Li, Isabella Yunfei Zeng, Ziheng Niu, Jianhao Shi, Ziyang Wang and Zeli Guan, Predicting vehicle fuel consumption based on multi-view deep neural network, Neurocomputing, 502:140-147, 2022.

[7] Zeli Guan, Yawen Li, Zhe Xue, Yuxin Liu, Hongrui Gao, Yingxia Shao. Federated Graph Neural Network for Cross-graph Node Classification. In 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems, 418-422, 2021.

[8] Joseph, Kevin, and Hui Jiang. “Content Based News Recommendation via Shortest Entity Distance over Knowledge Graphs.” Companion Proceedings of The 2019 World Wide Web Conference, 2019, 61 – 72.

[9] Huang, Po-Sen, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. “Learning Deep Structured Semantic Models for Web Search Using Clickthrough Data.” Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 2013: 2333 – 2338.

[10] Shitao Xiao, Yingxia Shao, Yawen Li, Hongzhi Yin, Yanyan Shen, Bin Cui. LECF: recommendation via learnable edge collaborative filtering. Science China Information Sciences, 65(1):1-15, 2022.

[11] Meguebli, Youssef, Mouna Kacimi, Bich-lien Doan, and Fabrice Popineau. “Stories around You - a Two-Stage Personalized News Recommendation.” Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, 2014. 125 – 134.

[12] Yawen Li, Di Jiang, Rongzhong Lian, Xueyang Wu, Conghui Tan, Yi Xu, Zhiyang Su. Heterogeneous Latent Topic Discovery for Semantic Text Mining. IEEE Transactions on Knowledge and Data Engineering, 2021.

[13] Lian, Jianxun, Fuzheng Zhang, Xing Xie, and Guangzhong Sun. ‘Towards Better Representation Learning for Personalized News Recommendation: A Multi-Channel Deep Fusion Approach.” Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018, 3805–3811

[14] Yawen Li, Ye Yuan, Yishu Wang, Xiang Lian, Yuliang Ma, Guoren Wang. Distributed Multimodal Path Queries. IEEE Transactions on Knowledge and Data Engineering, 34(7):3196-321, 2022.

[15] Okura, Shumpei, Yukihiro Tagami, Shingo Ono, and Akira Tajima. “Embedding-Based News Recommendation for Millions of Users.” Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017. https://doi.org/10.1145/3097983.3098108

[16] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep Knowledge-Aware Network for News Recommendation. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G.

[17] Qingping Li, Junping Du, Fuzhao Song, Chao Wang, Honggang Liu, Cheng Lu. Region-based multi-focus image fusion using the local spatial frequency. 2013 25th Chinese control and decision conference (CCDC), 2013: 3792-3796.

[18] Kim, Yoon. “Convolutional Neural Networks for Sentence Classification.” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014. https://doi.org/10.3115/v1/d14-1181.

[19] Deyuan Meng, Yingmin Jia, and Junping Du. Robust iterative learning protocols for finite-time consensus of multi-agent systems with interval uncertain
Proceedings of CCIS2022

topologies. International Journal of Systems Science, 2015, 46(5): 857-871.

[20] Hu, Binbin, Chuan Shi, Wayne Xin Zhao, et al. “Leveraging Meta-Path Based Context for Top- n Recommendation with a Neural Co-Attention Model.” Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018. https://doi.org/10.1145/3219819.3219965.

[21] Mingxing Li, Yimmin Jia, and Junping Du. LPV control with decoupling performance of 4WS vehicles under velocity-varying motion. IEEE Transactions on Control Systems Technology 2014, 22(5): 1708-1724.

[22] Wang, Xiang, Dingxian Wang, Canran Xu et al. Explainable Reasoning over Knowledge Graphs for Recommendation. Proceedings of The AAAI Conference on Artificial Intelligence. 2019, 33(1): 5329-5336.

[23] Deyuan Meng, Yiming Jia, and Junping Du. Consensus seeking via iterative learning for multi-agent systems with switching topologies and communication time-delays. International Journal of Robust and Nonlinear Control, 2016, 26(7): 3772-3790.

[24] Lin, Yankai, Zhiyuan Liu, Maosong Sun. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]/ Proceedings of The AAAI Conference on Artificial Intelligence. 2019: 673-681.

[25] Deyuan Meng, Yiming Jia, and Junping Du. Consensus seeking via iterative learning for multi-agent systems with switching topologies and communication time-delays. International Journal of Robust and Nonlinear Control, 2016, 26(7): 3772-3790.

[26] Peng Lin, Yiming Jia, Junping Du, Fashan Yu. Average consensus for networks of continuous-time agents with delayed information and jointly-connected topologies. 2009 American Control Conference, 2009: 3884-3889.

[27] Wang, Hongwei, Miao Zhao, Xing Xie et al. “Knowledge Graph Convolutional Networks for Recommender Systems.” The World Wide Web Conference on - WWW ’19, 2019. https://doi.org/10.1145/3308558.3313417.

[28] Zeyu Liang, Junping Du, and Chaoyang Li. Abstractive social media text summarization using selective reinforced Seq2Seq attention model. Neurocomputing, 410 (2020): 432-440.

[29] Qing Ye, Chang-Yu Hsieh, Ziyi Yang, Yu Kang, Jiming Chen, Dongsheng Cao. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun 12, 6775 (2021). https://doi.org/10.1038/s41467-021-27317-3.

[30] Xinlei Wei, Junping Du, Metyu Liang, and Lingfei Ye. Boosting deep attribute learning via support vector regression for fast moving crowd counting. Pattern Recognition Letters, 2019, 119: 12-23.

[31] Xiang Wang, Xiangnan He, Yixin Cao, et al. KGAT: Knowledge Graph Attention Network for Recommendation. 2019: 950-958.

[32] Jianghai Lv, Yawen Li, Junping Du, Lei Shi. E-Product Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering. Chinese Intelligent Systems Conference, 38-47, 2020.

[33] Yingxia Shao, Shiyou Huang, Yawen Li, Xupeng Miao, Bin Cui, Lei Chen. Memory-aware framework for fast and scalable second-order random walk over billion-edge natural graphs. The VLDB Journal, 30(5), 769-797, 2021.

[34] Jizhou Huang, Haifeng Wang, Yibo Sun, Miao Fan, Zhenjie Huang, Chunyuan Yuan, Yawen Li. HGAMN: Heterogeneous Graph Attention Matching Network for Multilingual POI Retrieval at Baidu Maps. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3032-3040, 2021.

[35] Rendle, Steffen, Walid Krichene, Li Zhang, and John Anderson. “Neural Collaborative Filtering vs. Matrix Factorization Revisited.” Fourteenth ACM Conference on Recommender Systems, 2020. https://doi.org/10.1145/3383313.3412488.

[36] Wu, Fangzhao, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, et al. “Mind: A Large-Scale Dataset for News Recommendation.” Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020. https://doi.org/10.18653/v1/2020.acl-main.331.

[37] Harper, F. Maxwell, and Joseph A. Konstan. “The MovieLens Datasets.” ACM Transactions on Interactive Intelligent Systems 5, no. 4 (2016): 1–19. https://doi.org/10.1145/2827872.

[38] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. Fast context-aware recommendations with factorization machines. Proceedings of the 34th international ACM SIGIR conference on Research and development in Information - SIGIR ‘11, 2011, 635–644.

[39] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep Knowledge-Aware Network for News Recommendation. In Proceedings of the World Wide Web Conference on World Wide Web. 2018, 1835–1844.

[40] Fuzheng Zhang, Nicholas Yuan, Defu Lian et al. Collaborative knowledge base embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 353–362.

[41] Qingyao Ai, Vahid Azizi, Xu Chen et al. Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation. Algorithms. 2018:11 (9), 137.

[42] Steffen Rendle. Factorization Machines with LibFM. ACM Transactions on Intelligent Systems and Technology (TIST) 2012:3(3), 57.

[43] Hongwei Wang, Fuzheng Zhang, Jialin Wang et al. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. 2018, 417–426.