Abstract. Let K be a compact convex body in \mathbb{R}^n. For any affine line L, denote $\hat{\chi}_K(L) = \int_L \chi_K(x) \, dl(x)$, where dl is the arc length measure, the X-ray transform of the characteristic function χ_K, i.e., the length of the chord $K \cap L$. We prove that if K is bounded by a C^∞ real algebraic hypersurface ∂K and the X-ray transform $\hat{\chi}_K(L)$ behaves, under small parallel translations of the line L to the distance t, as the m-th root of a polynomial of t, for some fixed $m \in \mathbb{N}$, then ∂K is an ellipsoid.

1. Introduction

This article is devoted to characterization bodies in \mathbb{R}^n in integral-geometric terms and is motivated by study of so called polynomially integrable bodies. Let us explain this relation.

Given a bounded domain $K \subset \mathbb{R}^n$, denote $A_K(\xi,t), \xi \in \mathbb{R}^n, |\xi| = 1, t \in \mathbb{R}$, the sectional volume function, which equals to the $n-1$-dimensional volume of the cross-section of K by the affine hyperplane $\{\langle \xi, x \rangle = t\}$. Here \langle , \rangle is the inner product in \mathbb{R}^n.

In other words, $A_K(\xi,t)$ is the Radon transform of the characteristic function χ_K:

$$A_K(\xi,t) = \int_{\langle \xi, x \rangle = t} \chi_K(x) \, dv_{n-1}(x) = \text{vol}_{n-1}(K \cap \{\langle \xi, x \rangle = t\}).$$

The body K is called polynomially integrable [1], if $A_K(\xi,t)$ is a polynomial with respect to t so long as the above cross-section is non-empty.

It was proved in [9] (see also [1, 2]) that the only polynomially integrable domains with C^∞ boundary are solid ellipsoids in odd-dimensional spaces. In particular, the sectional volume function $A_K(\xi,t)$ is never a polynomial in t when n is even. Nevertheless, for any ellipsoidal domain $E \subset \mathbb{R}^{2k}$, the squared sectional volume function $A_E^2(\xi,t)$ does polynomially depend on t. Thus, in any dimension, the sectional volume functions of ellipsoids are either polynomials or radicals of polynomials with respect to t. We conjecture that this property fully characterizes ellipsoids, disregarding the parity of the dimension of the space:

Conjecture 1.1. Let $K \subset \mathbb{R}^n$ be a compact body with C^∞ boundary ∂K. Suppose that for some $m \in \mathbb{N}$ the m-th power $A_K^m(\xi,t)$ of the sectional volume function is a polynomial in t, whenever $A_K(\xi,t) \neq 0$. Then ∂K is an ellipsoid.
If ∂K is an ellipsoid, then, in the case \(n \) is odd, the function \(A_K(\xi, t) \) is a polynomial with respect to \(t \) of degree \(\frac{n-1}{2} \), i.e., the condition is satisfied with \(m = 1 \), while if \(n \) is even, then \(A_K(\xi, t) \) is the square root of a polynomial of degree \(n-1 \) and therefore the condition is fulfilled with \(m = 2 \).

Remark 1.2. If Conjecture is true then the similar version using \(k \)-dimensional affine cross-sections, \(1 \leq k \leq n-1 \) is fixed, is true. It immediately follows by applying Conjecture to intersections of \(K \) with \(k+1 \)-dimensional affine hyperplanes.

In Theorem 2.1 of this article, we confirm Conjecture for \(n = 2 \) and under a priori assumption of algebraicity of the boundary \(\partial K \). Applying this result to two-dimensional sections yields a characterization of \(n \)-dimensional ellipsoids in terms of the chord length function \(\hat{\chi}_K(L + t\xi) \), i.e., to the situation corresponding in Remark 1.2 to arbitrary \(n \) and \(k = 1 \).

Let us start with discussion of the basic, two-dimensional, case. When \(n = 2 \) then the hyperplanes are affine straight lines \(L_{\xi,t} = R \cdot \xi + t\xi = \{ x \in \mathbb{R}^2 : \langle x, \xi \rangle = t \} \) and the sectional volume function \(A_K(\xi, t) \) boils down to the chord length function

\[
A_K(\xi, t) = \hat{\chi}_K(L_{\xi,t}) = \text{length of the chord } K \cap L_{\xi,t}.
\]

We want to characterize those domains \(K \) for which \(\hat{\chi}_K(\xi, t) \) is an algebraic function of a simple form, namely, is a radical of a polynomial in \(t \).

There is a relation of the question under discussion with a well known Newton’s Lemma about ovals (see [4]). It says that the area cut off a planar domain \(K \) with smooth boundary by a straight line is never algebraic function of the parameters of the secant line. The area \(V_{\pm}^K(\xi, t) = \text{area } (K \cap \{ x, \xi \geq t \}) \) of a portion of \(K \) on one side of the line (the solid volume function) is just the primitive function of the chord length function. Therefore, if \(A_K(\xi, t) = \sqrt[n]{P_\xi(t)} \) where \(P_\xi(t) \) is a polynomial in \(t \) then

\[
V_{\pm}^K(\xi, t) = \int \sqrt[n]{P_\xi(t)} dt
\]

is an Abelian integral.

Thus, Newton’s lemma says that the solid area function \(V_K \) of a domain \(K \) in the plane is always transcendental, Theorem 2.1 specifies that among those transcendental functions, Abelian integrals (1.2) characterize ellipses.

Multi-dimensional generalization of Newton’s Lemma are related to Arnold conjecture about algebraically integrable domains in \(\mathbb{R}^n \) (see [3], [4], [10]).

2. Main result

Let \(K \) be a compact (connected) domain in \(\mathbb{R}^n \). Given an affine line \(L \subset \mathbb{R}^n \) and a unit vector \(\xi \in \mathbb{R}^n \), we will call the function

\[
\mu_{L, \xi}(t) = \hat{\chi}_K(L + t\xi) = \text{length of } K \cap (L + t\xi), \quad t \in \mathbb{R},
\]

the chord length function.

We will be considering domains \(K \) which boundary \(\Gamma = \partial K \) is a semi-algebraic curve. This means that \(\Gamma \) is a connected component of the zero locus of a polynomial \(Q \) with real coefficients. The polynomial \(Q \) is assumed irreducible over the field \(\mathbb{C} \).

Theorem 2.1. Let \(K \subset \mathbb{R}^n, \ n \geq 2, \) be a compact convex domains with \(C^\infty \) semi-algebraic boundary \(\partial K \). Suppose for any fixed affine line \(L \), \(L \cap \text{int}K \neq \emptyset \), and unit
vector ξ, the chord length function has for small t the form

$$\mu_{L,\xi}(t) = \sqrt[n]{P_{L,\xi}(t)},$$

where $m \in \mathbb{N}$ and $P_{L,\xi}(t)$ a polynomial with respect to t:

$$P_{L,\xi}(t) = \sum_{j=1}^{N} a_j(L,\xi)t^j.$$

Then ∂K is an ellipsoid (and therefore a posteriori m can be taken 2).

Remark 2.2. The convexity of the domains in Theorem 2.1 can be derived from the main condition for the chord length function (see [1]) and hence Theorem 2.1 is valid without assumption of convexity. However, for the sake of simplicity of the exposition, we a priori assume the domain K to be convex.

Theorem 2.1 is, in a certain sense, similar to Theorem 2 from [8] which states that if there exists a function f with the X-ray transform identically one then the domain is a ball.

3. Outline of the proof of Theorem 2.1

The idea of the proof is as follows.

First of all, it suffices to prove Theorem 2.1 with $n = 2$, then the statement for arbitrary n follows by considering two-dimensional affine cross-sections. In the case $n = 2$, the chord function $\mu_{L,\xi}(t)$ turns to $\mu_{L,\xi}(t) = A_K(\xi,t)$ if we take $L = \xi^\perp = \{x \in \mathbb{R}^2 : \langle \xi, x \rangle = 0 \}$. Also, we will use notation $P(\xi, t)$ instead of $P_{L}(\xi, t)$.

The key point is to determine the degree of the polynomial $t \to P(\xi, t)$. First of all, we want to obtain an upper bound for the degree. For this purpose it suffices to understand the order of growth of $P(\xi, t)$ as $t \to \infty$. Since the information about values of the polynomial $P(\xi, t)$ for large real t, when the line $\{\langle \xi, x \rangle = t \}$ becomes disjoint from K, is unavailable, we extend $P(\xi, t)$ for complex t.

At this point, we use algebraicity of the boundary curve ∂K. This curve has a natural complexification, which is a complex algebraic curve in \mathbb{C}^2. This allows us to construct, in Section 4, analytic extension of the chord length function $A_K(\xi, t)$ to complex values $t \in \mathbb{C}$. Determining the growth of the analytic extension along regular paths going to ∞ delivers the upper bound $\deg t P \leq m$ (Section 5).

The lower bound for $\deg t P(\xi, t)$ (Section 6) follows much easier, from vanishing the chord length function $A_K(\xi, t)$ on tangent lines to ∂K. We show that at Morse points the order of vanishing is $\frac{1}{2}$ and hence $P(\xi, t) = A_K(\xi, t)$ vanishes at tangent lines to the order $\frac{m}{2}$. Since there are two tangent lines with the same normal vector ξ, we conclude that $\deg t P \geq m$.

In Section 7, we finish the proof of Theorem 2.1. Together with the upper bound, this implies $\deg t P = m$ and hence all zeros of $P(\xi, t)$ are delivered by tangent lines. Knowing zeros allows us to reconstruct the polynomial $P(\xi, t)$ up to a factor depending on ξ, and express the chord length function $A_K(\xi, t)$ via the supporting function of K. Then the range conditions (the first three power moments) for X-ray transform applied to the function A_K imply that the supporting function of K coincides with the supporting function of an ellipse.
4. Analytic continuation of the chord length function

Let \(n = 2 \). Let \(K \) be a domain satisfying the conditions of Theorem 2.1. We assume that the boundary \(\Gamma = \partial K \) is a non-singular real semi-algebraic curve, which means that there is a real irreducible polynomial \(Q(x_1, x_2) \) such that

\[
Q(x) = 0, \quad x = (x_1, x_2) \in \Gamma
\]

and \(\nabla Q(x) \neq 0, x \in \Gamma \).

Extend polynomial \(Q \) to the complex space \(\mathbb{C}^2 \) and denote \(\Gamma^\mathbb{C} \) the complex algebraic curve

\[
\{z = (z_1, z_2) \in \mathbb{C}^2 : Q(z) = 0\}.
\]

The domain \(K \) is regarded as a set in the real subspace \(\mathbb{R}^2 = \{z \in \mathbb{C}^2 : \text{Im}z_1 = \text{Im}z_2 = 0\} \), so that \(\partial K \subset \Gamma^\mathbb{C} \cap \mathbb{R}^2 \).

Given a real unit vector \(\xi \in \mathbb{R}^2 \) and \(t \in \mathbb{C} \) denote the complex affine line in \(\mathbb{C}^2 \):

\[
X(\xi, t) = \{z \in \mathbb{C}^2 : \langle \xi, z \rangle = \xi_1 z_1 + \xi_2 z_2 = t\}.
\]

Lemma 4.1. Fix a unit vector \(\xi_0 \in S^1 \). There is a finite set \(Z_0 \subset \mathbb{R} \) such that is \(t_0 \in \mathbb{R} \setminus Z_0 \) and the real affine line \(\{\langle \xi_0, x \rangle = t_0\} \) intersects transversally the curve \(\Gamma = \partial K \) at two points \(a \) and \(b \) the following is true. There is a path \(T \subset \mathbb{C} \), joining \(t_0 \) and \(\infty \), an open connected neighborhood \(U \subset \mathbb{C} \) of \(T \) and two holomorphic mappings \(F^a, F^b : U \to \mathbb{C}^2 \) such that

(i) \(F^a(t), F^b(t) \in X(\xi_0, t) \cap \Gamma^\mathbb{C} \) for all \(t \in U \).
(ii) If \(t \in U \cap \mathbb{R} \) then \(F^a(t), F^b(t) \in \Gamma \).
(iii) \(F^a(t_0) = a, F^b(t_0) = b \).

Proof Applying a suitable rotation in \(\mathbb{R}^2 \), we can assume for simplicity that

\[
\xi_0 = (0, 1).
\]
In this case, $X(\xi, t)$ is the complex line \{\(z_2 = t\)\} in \mathbb{C}^2 and \(a = (a_1, t), \ b = (b_1, t)\). The condition \(z \in X(\xi_0, t) \cap \Gamma^C\) translates in this case as $Q(z_1, t) = 0$.

Then Lemma 4.1 asserts, in fact, that if we consider the projection $$\pi : \Gamma^C \to \mathbb{C}, \ \pi(z_1, t) = t$$ then there is a path $\mathcal{T} \subset \mathbb{C}$, joining $0, \infty$ and a neighborhood U of \mathcal{T} such that the holomorphic mapping π possesses two holomorphic sections $F^a, F^b : U \to \Gamma^C$ of π over the set U with the initial conditions (i), (ii). The existence of such sections follows from the path lifting property (see, e.g., [5], Proposition 11.6) of covering maps and from the fact that the projection π is a covering outside of the finite set of poles and ramification points.

Let us give more extended analytic arguments, for the sake of self-sufficiency. Represent the polynomial Q, defining the complex algebraic curve Γ^C, in the form

$$Q(z_1, z_2) = q_0(z_2) + q_1(z_2)z_1 + \cdots + q_M(z_2)z_1^M,$$

where q_j are polynomials of one complex variable and $q_M \neq 0$.

Consider the discriminant $D(t) = \text{Disc}_{z_2} Q_t$ of the polynomial $Q_t(z_1) := Q(z_1, t)$:

$$D(t) = q_M^2(t) \prod_{i<j}(r_i - r_j)^2,$$

where r_i are the roots of the polynomial Q_t.

The discriminant $D(t)$ is a polynomial in coefficients $q_0(t), \ldots, q_M(t)$ and therefore is itself a polynomial in t. It cannot vanish identically. Indeed, if $D(t) \equiv 0$ then for any $t \in \mathbb{C}$ either $q_M(t) = 0$ or the polynomial Q_t has at least one multiple zero, which is a common zero of Q_t and $\frac{\partial Q}{\partial z_2}$. Since the number of zeros of q_M is finite, the set of common zeros of Q and $\frac{\partial Q}{\partial z_2}$ must be then an infinite set in \mathbb{C}^2. By Bezout theorem this means that the two polynomials have a common polynomial factor, which is impossible as Q is irreducible and $\frac{\partial Q}{\partial z_2}$ is of less degree than G. Therefore $D(t)$ is a nontrivial polynomial and hence the discriminant set

$$Z := \{t \in \mathbb{C} : D(t) = 0\}$$

is finite. We set $Z_0 = Z \cap \mathbb{R}$.

Let t_0 be real, $t_0 \notin Z_0$. Let the line \{\(\langle \xi_0, x \rangle = t_0\)\} intersects Γ at the points a and b.

Now choose a smooth simply-connected path $\mathcal{T} \subset \mathbb{C} \setminus Z$, joining t_0 and ∞ and avoiding the discriminant set Z. Consider the equation

$$Q_t(z_1) = Q(z_1, t) = 0, \ t \in \mathcal{T}.$$

Since $q_M(t) \neq 0$ for $t \in \mathcal{T}$, we can divide by $q_M(t)$ and reduce the polynomial in the equation to the form:

$$(4.1) \quad Q_t(z_1) = p_0(t) + p_1(t)z_1 + \cdots + p_{M-1}(t)z_{M-1} + z_1^M = 0,$$

where the coefficients

$$(4.2) \quad p_j(t) = \frac{q_j(t)}{q_M(t)}, \ j = 0, \cdots, M, \ p_M(t) = 1,$$

are continuous functions on \mathcal{T}.

Thus, we deal with an algebraic monic equation for z_1 with the coefficients, continuously depending on the parameter $t \in \mathcal{T}$. For any $t \in \mathcal{T}$ we have $t \notin Z$, hence $D(t) \neq 0$, i.e., all the roots of Q_t are simple.
The monodromy theorem [7, Thm. 16.2] implies that the algebraic equation (4.1) so completely solvable. This means that there is no monodromy on \(t \in T \) and there exist \(M + 1 \) continuous functions \(f_0(t), \ldots, f_M(t) \) on \(T \), satisfying equation (4.1):

\[
Q_t(f_j(t)) = 0, \ j = 0, \ldots, M.
\]

Since all the roots are simple, we have \(f_i(t) \neq f_j(t) \) for all \(t \in T \) and \(i \neq j \).

Let us explain this point in more details. Consider the spaces

\[B = \{(p_0, \ldots, p_{M-1}) \in \mathbb{C}^M : p_0 + p_1 z_1 + \ldots + p_{M-1} z_1^{M-1} + z_1^M \ has \ no \ multiple \ roots \}. \]

Define the mapping

\[\pi : E \to B \]

as follows: \(\pi(\lambda), \lambda \in E \) is the vector \(p = (p_0, \ldots, p_{M-1}) \) of the coefficients of the monic polynomial with the roots \(\lambda_j \), i.e.,

\[
\sum_{j=0}^{M} p_j \lambda^j = \prod_{j=0}^{M} (\lambda - \lambda_j), \ p_M = 1.
\]

The roots \(\lambda_j \) of the polynomial in the right hand side are symmetric functions of the coefficients \(p_j \) and by Implicit Function Theorem, \(\pi \) is a \((M+1)\)!-covering map.

Let \(\lambda^{(0)} = (\lambda_0^{(0)}, \ldots, \lambda_M^{(0)}) \in E \) be the roots of the polynomial \(Q_{\theta_0}(z_1) = Q(z_1, t_0) \), i.e., \(\pi(\lambda^{(0)}) = (p_0(t_0), \ldots, p_{M-1}(t_0)) \).

The mapping

\[g(t) := (p_0(t), \ldots, p_{M-1}(t)) \in B, \ t \in T, \]

where \(p_j(t) \) are coefficients (4.2) of the polynomial \(Q_t \) defines a path

\[g : T \to B \]

in the base space \(B \). The path lifting property of covering mappings (see, e.g., [5], Proposition 11.6; [7], Theorem 16.2) says that there is a lifting path

\[f = (f_0, \ldots, f_M) : T \to E \]

such that \(\pi \circ f = g \) and \(f(t_0) = \lambda^{(0)} \).

Then the functions

\[f_j(t), j = 0, \ldots, M \]

define the above claimed continuous family of roots of the polynomials \(Q_t \).

The point \(a = (a_1, t_0) \), \(b = (b_1, t_0) \) satisfy \(Q(a_1, t) = Q(b_1, t) = 0 \). Therefore, there are two branches, say, \(f_j(t) \). \(f_j(t) \) which take at \(t_0 \) the values \(a_1 \), \(b_1 \), correspondingly. Denote \(f_i = f^a \), \(f_j = f^b \).

Then we have

1. \(Q(f^a(t), t) = Q_t(f^a(t)) = 0, \ t \in T, \)
2. \(Q(f^b(t), t) = Q_t(f^b(t)) = 0, \ t \in T, \)
3. \(f^a(t_0) = a_1, \ f^b(t_0) = b_1. \)

For any fixed \(t \in \mathbb{C} \) we have

\[
Q(f^a(t), t) = 0, \ \frac{\partial Q}{\partial z_1}(f^a(t), t) \neq 0,
\]
because $f^a(t)$ is a simple root. The same is true for $f^b(t)$. By Implicit Function Theorem, there is a complex neighborhood U^a_t of t and a complex neighborhood V^a_t of $f_a(t)$ such that for any $s \in U^a_t$ there exists a unique $w := f^a(s) \in V^a_t$ such that $Q(w, s) = 0$, and the function $w = f^a(s)$ is holomorphic in U^a_t.

Thus, given $t \in T$ the function $f^a(t)$ extends to the neighborhood U^a_t as a holomorphic function. The union $U^a = \cup_{t \in T} U^a_t$ constitutes an open connected set containing the path T. The function $f^a(t), t \in T$ extends to U^a as a holomorphic function. The extensions satisfies the same polynomial equation $Q(f^a(t), t) = 0, t \in U^a$. Similarly, we construct an open set U^b and the holomorphic function f^b in U^b with analogous properties.

Now set

$$U = U^a \cap U^b,$$

$$f^a(t) = (f^a(t), t), \quad f^b(t) = (f^b(t), t).$$

Check properties (i)-(iii). The mapping $F^a : U \to \mathbb{C}^2$ is holomorphic in U, and by construction $Q(F^a(t)) = Q(f_a(t), t) = 0$ for all $t \in U$. Also, since $\xi = (0, 1)$, we have $\langle \xi, F^a(t) \rangle = t$, hence $F^a(t) \in \Gamma^\xi \cap X(\xi, t)$.

Furthermore, $F^a(t_0) = (f^a(t_0), t_0) = (a_1, t_0) = a$. For $t \in U \cap \mathbb{R}$ near t_0, the straight line $x_2 = t$ intersects ∂K at a point $a_t = (a_{1,t}, t)$ close to a. Then $Q(a_{1, t}, t) = 0$ for t in a neighborhood of t_0, i.e. the polynomial Q vanishes on an open subarc of the real-analytic curve ∂K. By the uniqueness theorem for holomorphic functions, the identity holds for all real $t \in U$. Since the root is unique, we conclude that $a_t = F^a(t)$ and thus $F^a(t) \in \partial K \cap U$. Hence the set U and the mapping F^a satisfy all properties (i)-(iii). Similarly, we proceed with the mapping F^b.

Lemma is proved.

Lemma 4.2. Assume, as in Theorem 2.1, $A^m_K(\xi, t) = P(\xi, t)$, where $P(\xi, t)$ is a polynomial in t. Fix a unit vector $\xi_0 \in S^1$. Let the straight line $\langle \xi_0, x \rangle = t_0$ intersects ∂K at the points a and b and $t_0 \notin Z_0$, where Z_0 is the finite exceptional set from Lemma 4.1. Construct the open set $U \subset \mathbb{C}$ and the holomorphic mappings $F^a, F^b : U \to \mathbb{C}^2$ as in Lemma 4.1. Then

$$P(\xi_0, t) = (\langle \xi_0, F^a(t) \rangle - \langle \xi_0, F^b(t) \rangle)^m, \quad t \in U,$$

where $\xi_0 = \frac{a - b}{|a - b|}$ is the vector orthogonal to ξ_0.

Proof By Lemma 4.1 (i), (ii), when $t \in U \cap \mathbb{R}$ then the segment $[F^a(t), F^b(t)]$ is just the chord $X(\xi_0, t) \cap K$. The length of the chord is

$$A_K(\xi, t) = |F^a(t) - F^b(t)| = \langle F^a(t) - F^b(t), \frac{F^a(t) - F^b(t)}{|F^a(t) - F^b(t)|} \rangle.$$

Also, $\langle F^a(t) - F^b(t), \xi_0 \rangle = t - t = 0$ and hence the second factor in the inner product is a unit vector orthogonal to ξ_0 and does not depend on t. By taking $t = t_0$, we find, due to $F^a(t_0) = a$, $F^b(t_0) = b$, that this vector is $\xi_0 = \frac{a - b}{|a - b|}$.

Then $P(\xi_0, t) = A^m_K(\xi_0, t) = (\langle F^a(t) - F^b(t), \xi_0 \rangle)^m$ for $t \in U \cap \mathbb{R}$. Since $P(\xi, t)$ and the function in the right hand side of the equality are holomorphic in $t \in U$, and the set U is open and connected, the equality is satisfied for all $t \in U$ by the uniqueness theorem. Lemma is proved.
5. Upper bound of the degree of the polynomial $P(\xi, t)$

As before, $n = 2$. We fix $\xi_0 \in S^1$ and $t_0 \in \mathbb{R}$ such that the line $\{\xi_0, x\}$ meets $\Gamma = \partial K$ at the points a, b and t does not belong to the finite exceptional set Z_0 in Lemma 4.1. Let the path $T \subset \mathbb{C}$ and the open set $U \subset \mathbb{C}$, $T \subset U$, be as in Lemma 4.1.

In order to obtain the upper bound for the degree of the polynomial $P(\xi_0, t)$, it suffices to estimate the order of its growth as $t \to \infty$. According to the representation (4.4), the problem is reduced to understanding the behaviour of the mappings $F^a(t), F^b(t)$ as $t \to \infty$.

Let

$$Q = Q_0 + \cdots + Q_N$$

be the decomposition of the polynomial Q, defining the complexified boundary Γ^C, into homogeneous polynomials $Q_j, \deg Q_j = j, j = 1, \ldots, N = \deg Q$.

The leading homogeneous polynomial $Q_N(z_1, z_2)$ of two complex variables is completely reducible over \mathbb{C}:

$$Q(z_1, z_2) = \text{const} \prod_{j=1}^J (A_j z_1 + B_j z_2)^{m_j}, \quad \sum_{j=1}^J m_j = N = \deg Q.$$

Lemma 5.1. Suppose that $a_0 B_j - \beta_0 A_j \neq 0$ for any $j = 1, \ldots, J$, where $\xi_0 = (\alpha_0, \beta_0)$. Then $\frac{F^a(t)}{t}, \frac{F^b(t)}{t}$ are bounded for $t \in U$.

Proof The zero set $Q_N^{-1}(0)$ of the homogeneous polynomial Q_N in \mathbb{C}^2 consists of J complex lines $A_j z_1 + B_j z_2 = 0, j = 1, \ldots, J$, counting multiplicities. The condition for ξ_0 means that the affine complex line $X(\xi_0, 0)$ is none of those. Again, it would be convenient to apply rotation in the real plane \mathbb{R}^2 and make $\xi_0 = (0, 1)$. Then we have $a_0 = 0, \beta_0 = 1$ and $A_j \neq 0$ for all $j = 1, \ldots, J$.

Let $z \in Q_N^{-1}(0) \cap X(\xi_0, t)$. It means that $z_2 = t$ and $Q(z) = Q(z_1, t) = 0$, or, the same,

$$Q_0 + tQ_1(\frac{z_1}{t}, 1) + \cdots + t^{N-1}Q_{N-1}(\frac{z_1}{t}, 1) + t^NQ_N(\frac{z_1}{t}, 1) = 0.$$

Dividing both sides by t^N yields

$$\Psi(w, s) := s^N Q_0 + s^{N-1} Q_1(w, 1) + \cdots + s Q_{N-1}(w, 1) + Q_N(w, 1) = 0,$$

where w, s and z_1, t are related by

$$w = \frac{z_1}{t}, \quad s = \frac{1}{t}.$$

Denote

$$w_j = -\frac{B_j}{A_j}$$

the root of the polynomial $Q_N(w, 1)$, of multiplicity m_j.

Consider the logarithmic residue

$$r_j(s) = \frac{1}{2\pi i} \int_{|w-w_j| = \varepsilon} \frac{\Psi'(w, s)}{\Psi(w, s)} dw,$$

where ε is so small that w_j is the only root of $\Psi(w, 0) = Q_N(w, 1)$ in the disc $|w - w_j| \leq \varepsilon$. Then

$$r_j(0) = m_j.$$
Thus, the total sum is

\[r_1(0) + \cdots + r_J(0) = m_1 + \cdots + m_J = N. \]

By continuity, for every \(j = 1, \ldots, J \) and sufficiently small \(\varepsilon > 0 \) there exists \(\delta_j > 0 \) such that for \(|s| < \delta_j, \Psi(w, s) \neq 0 \) when \(|w - w_j| = \varepsilon \). Then the function \(r_j(s) \) is continuous in \(|s| < \delta_j \) and integer-valued, therefore \(r_1(s) + \cdots + r_J(s) = N \) for \(|s| < \delta = \min\{\delta_1, \ldots, \delta_J\} \). This means that for \(|s| < \delta \), all \(N \) roots, counting multiplicities, of the polynomial \(w \to \Psi(w, s) \) are located in \(\varepsilon \)-neighborhood of the set of zeros of the polynomial \(\Psi(w, 0) = Q_N(w, 1) \).

Going back to the variable \(z_1 = tw \) and the function \(Q(z_1, t) \) we conclude that if \(|t| > \frac{1}{|a|} \), then \(|\frac{1}{t} - w_j| < \varepsilon \) for some root \(w_j \) of \(Q_N(w, 1) \).

Since we consider the situation \(\xi_0 = (0, 1) \), the condition (i) in Lemma 5.1 means that \(F^a(t), F^b(t) \) have the form

\[F^a(t) = (f^a(t), t), \quad F^b(t) = (f^b(t), t), \quad t \in U. \]

Now, by the construction in Lemma 4.1 if \(t \in U \) then \(Q_t(z_1) = Q(z_1, t) \) has only simple roots \(\Lambda(t) = \{ \lambda_0(t), \ldots, \lambda_M(t) \} \). Therefore, when \(|t| > \frac{1}{3} \) then \(\frac{\lambda_i(t)}{t} \) are in an \(\varepsilon \)-neighborhood of a root of \(Q_N(w, 1) \). Among the collection \(\Lambda(t) \) of the roots of \(Q_t \), there are two branches, say, \(\lambda_i(t), \lambda_j(t) \), determined by the initial conditions \(\lambda_i(t_0) = a, \lambda_j(t_0) = b \). They must coincide, correspondingly, with \(f^a(t) \) and \(f^b(t) \) and hence

\[\left| \frac{f^a(t)}{t} - w_i \right| < \varepsilon, \quad \left| \frac{f^b(t)}{t} - w_j \right| < \varepsilon, \quad t \in U, |t| > \frac{1}{\delta}. \]

Since the set of roots \(w_i \) is finite, we conclude that \(\frac{f^a(t)}{t}, \frac{f^b(t)}{t}, t \in U \), are bounded. Lemma is proved.

Lemma 5.2. For all \(\xi \in S^1 \) but finite set of those, \(\deg_t P(\xi, t) \) is at most \(m \).

Proof The set of vectors \(\xi_0 \) which do not satisfy the condition of Lemma 5.1 is finite. Let \(\xi \neq \xi_0 \) be not such a vector and let \(t_0, a, b \), be as in Lemma 4.1. By Lemma 4.2, \(A^m_K(\xi, t) = P(\xi, t) = \left((\xi_+, F^a(t) - F^b(t)) \right)^m \). Then by Lemma 5.1, \(\frac{P(\xi, t)}{t_m} \) is bounded, as \(t \to \infty \), \(t \in U \). Therefore, \(\deg_t P(\xi, t) \leq m \).

6. The zeros and exact degree of \(P(\xi, t) \)

In this section \(n = 2 \). Given \(\xi \in S^1 \), denote

\[\rho_+(\xi) = \max_{x \in K} (\xi, x), \quad \rho_-(\xi) = \min_{x \in K} (\xi, x). \]

Denote \(M_\pm(\xi) \in \partial K \) the points where the maximum and minimum are attained:

\[\rho_+(\xi) = (\xi, M_+(\xi)), \quad \rho_-(\xi) = (\xi, M_-(\xi)). \]

The lines \((\xi, x) = \rho_\pm(\xi) \) are supporting lines to \(\partial K \) at the points \(M_\pm(\xi) \) and the vectors \(\pm \xi \) are the unit outward normal vectors \(\pm \xi = \nu_{M_\pm(\xi)} \) to the curve \(\partial K \) at the points \(M_\pm(\xi) \), correspondingly.

Lemma 6.1. The polynomial \(P \) has the form

\[P(\xi, t) = c(\xi) (\rho_+(\xi) - t) \frac{\phi}{\bar{\phi}} (t - \rho_-(\xi)) \frac{\overline{\phi}}{\phi}, \quad c(\xi) > 0. \]
Proof By continuity, it suffices to establish the representation for almost all \(\xi \). Since \(\partial K \) is a non-singular algebraic curve, it is real-analytic. Then all points, except finite number of those, are Morse points. Therefore, only for a finite vectors \(\xi \), the points \(M_k(\xi) \) are non-Morse. Choose \(\xi \) such that this is the case.

Using rotation and translation, we can assume that \(\xi = (0,1) \) and \(M(\xi) = (0,0) \). The outward normal vector at \(M_-(\xi) \) is \(-\xi = (0,-1) \) and \(\rho_-(\xi) = 0 \). In a neighborhood of the point \(M_-(\xi) = (0,0) \) the curve \(\Gamma \) can be represented as a graph \(x_2 = \varphi(x_1) \) of a real-analytic function, with \(\varphi'(0,0) = 0, \varphi''(0,0) \neq 0 \):

\[
x_2 = \frac{1}{2} \varphi''(0,0)x_1^2 + o(x_1), \quad x_1 \to 0.
\]

Then the length of the chord \(x_2 = t \) is \(A_K(\xi, t) = 2\sqrt{\frac{m}{\varphi''(0,0)}} + o(\sqrt{t}), t \to 0 \).

It shows that the length of the chord, obtained by the parallel translation of a tangent line to the distance \(t \), behaves at \(\sqrt{t} \). This yields that if \(M_\pm(\xi) \in \Gamma \) are Morse points then

\[
A_K(\xi, t) = \text{const}(t - \rho_-(\xi))^\frac{1}{2} + o((t - \rho_-(\xi))^\frac{1}{2}), \quad t \to \rho_-(\xi).
\]

Similarly,

\[
A_K(\xi, t) = \text{const}((\rho_+\xi) - t)^\frac{1}{2} + o((\rho_+\xi) - t)^\frac{1}{2}, \quad t \to \rho_+(\xi).
\]

Thus, the polynomial \(P(\xi, t) = A_K^m(\xi, t) \) vanishes, to the order \(\frac{m}{2} \), at \(t = \rho_+(\xi) \) and \(t = \rho_-(\xi) \). This means, firstly, that \(m \) is even and, secondarily, that \(\text{deg}_t P(\xi, t) \geq m \).

According to the remark at the beginning of the proof, it holds for all \(\xi \in S^1 \) except for a finite set. Together with Lemma 5.2 it proves that \(\text{deg}_t P(\xi, t) = m \) for all \(\xi \) except for a finite set, and for those \(\xi \) we have \(P(\xi, t) = c(\xi)(\rho_+(\xi) - t)^\frac{m}{2} (t - \rho_-(\xi))^\frac{m}{2} \). By continuity, \(P(\xi, t) \) has the claimed representation for all \(\xi \in S^1 \).

7. Proof of Theorem 2.1

First of all, as it has been mentioned before, it suffices to prove Theorem 2.1 for \(n = 2 \). Indeed, each transversal intersection of \(K \) with two-dimensional affine plane produces a domain in this plane satisfying all the conditions of Theorem 2.1. If we could conclude that all such two-dimensional cross-sections are bounded by ellipses then the entire body \(K \) is bounded by an ellipsoid.

Thus, we assume that \(n = 2 \). Then we follow the arguments from [1]. The representation of the polynomial \(P(\xi, t) \) given by Lemma 6.1 yields

\[
(7.1) \quad A_K(\xi, t) = \sqrt{P(\xi, t)} = d(\xi)(\rho_+(\xi) - t)^\frac{1}{2} (t - \rho_-(\xi))^\frac{1}{2},
\]

where \(d(\xi) = \sqrt{c(\xi)} \). Representation (7.1) holds whenever \(t \in [\rho_-(\xi), \rho_+(\xi)] \), otherwise \(A_K(\xi, t) = 0 \).

The next step is applying the range conditions for Radon transform [6]. Function \(A_K(\xi, t) \) is the Radon transform of the characteristic function \(\chi_K \) and hence satisfy the moment conditions. Namely, the moments

\[
(7.2) \quad M_k(\xi) = \int_{\rho_-(\xi)}^{\rho_+(\xi)} A_K(\xi, t)t^k dt
\]

must be restriction to the unit circle \(S^1 \) of a homogeneous polynomial of degree \(k \).

Notice, that \(M_0(\xi) = \text{area} K = \text{const} > 0 \).
Then substituting (7.2) into (7.1) yields:

$$M_k(\xi) = d(\xi) \int_{\rho_-}^{\rho_+} (\rho_+(\xi) - t)^{\frac{k}{2}} (t - \rho_-(\xi))^{\frac{k}{2}} \, dt.$$

Denote

$$B(\xi) = \frac{1}{2} (\rho_+(\xi) + \rho_-(\xi)),$$

$$C(\xi) = \frac{1}{2} (\rho_+(\xi) - \rho_-(\xi)),$$

and perform the change of variables in the integral

$$s = t - B(\xi).$$

Since

$$(\rho_+(\xi) - t)(t - \rho_-(\xi)) = (C(\xi)^2 - s^2),$$

substitution in the integral yields:

$$M_k(\xi) = d(\xi) \int_{-C(\xi)}^{C(\xi)} (C(\xi)^2 - s^2)^{\frac{k}{2}} (s + B(\xi))^{k} \, ds.$$

Finally, the change of variable

$$s = C(\xi)v$$

leads to

$$M_k(\xi) = G(\xi) \int_{-1}^{1} (1 - v^2)^{\frac{k}{2}} (C(\xi)v + B(\xi))^{k} \, dv$$

where

$$G(\xi) = d(\xi)C(\xi).$$

Let us write the first three moments:

$$M_0(\xi) = G(\xi)\alpha_0,$$

$$M_1(\xi) = G(\xi)(C(\xi)\alpha_1 + B(\xi)\alpha_0),$$

$$M_2(\xi) = G(\xi)(C^2(\xi)\alpha_2 + 2C(\xi)B(\xi)\alpha_1 + B^2(\xi)\alpha_0),$$

where $\alpha_k = \int_{-1}^{1} (1 - v^2)^{\frac{k}{2}} v^k \, dv$.

Since $\alpha_1 = 0$ we have

$$B(\xi) = \frac{M_1(\xi)}{M_0(\xi)}.$$

By the range conditions, $M_0(\xi) = const, G(\xi) = const$ on S^1 and $M_1(\xi)$ extends from S^1 as a homogeneous linear polynomial. Therefore, $B(\xi)$ is the restriction to the unit circle of a linear form:

$$B(\xi) = \langle \xi, b \rangle,$$

where b is a fixed vector.

Since $M_2(\xi)$ extends from S^1 as a homogeneous quadratic polynomial, $G(\xi)$ is constant and $B(\xi)$ is a linear form, the third equality in (7.4) implies that $C^2(\xi)$ is
the restriction of a (strictly positive) quadratic form. Applying a suitable rotation we can reduce \(C^2(\xi) \) to the form

\[
C^2(\xi) = c_1\xi_1^2 + c_2\xi_2^2, \quad c_1, c_2 > 0.
\]

Now, by translating \(K \) by the vector \(b \), we can make \(B(\xi) = 0 \) for all \(\xi \). Indeed, the supporting functions \(\rho_{\pm} \) transform, under the translation by the vector \(b \), as follows:

\[
\rho_+(\xi) \rightarrow \rho_+(\xi) - \langle \xi, b \rangle, \quad \rho_-(\xi) \rightarrow \rho_-(\xi) - \langle \xi, b \rangle.
\]

Then (7.3) shows that \(B(\xi) \) transforms to \(B(\xi) - \langle \xi, b \rangle = 0 \).

Thus, we can apply the translation \(K \) by the vector \(b \) and assume that \(B(\xi) = 0 \). Then from (7.3) we have \(\rho_+(\xi) = -\rho_-(\xi) \) and \(C(\xi) = \rho_+(\xi) \). From (7.5), we obtain

\[
\rho_+(\xi) = \sqrt{c_1\xi_1^2 + c_2\xi_2^2}.
\]

Thus, the supporting function \(\rho_+(\xi) \) of the body \(K \) coincides with the supporting function of the ellipse

\[
E = \{ \frac{x_1^2}{c_1} + \frac{x_2^2}{c_2} = 1 \}.
\]

Thus, we conclude that \(\partial K = E \). Theorem 2.1 is proved.

REFERENCES

[1] M. Agranovsky, On polynomially integrable domains in Euclidean spaces, in Complex Analysis and Dynamical Systems, Trends in Mathematics, Birkhauser, Springer, 2018; arXiv.1701.05551v1.

[2] M. Agranovsky, On algebraically integrable domains, Contemp. Math., vol.733, 33-44; arXiv.1705.06063v2.

[3] V. I. Arnold, Arnold’s Problem, 2nd edition, Springer-Verlag, Belin, 2004.

[4] V.I. Arnold, V.A. Vassiliev, Newton’s Principia read 300 years later, Notices AMS, 36:9 (1989), 1148-1154.

[5] W. Fulton, Algebraic Topology: A First Course, Springer Sci, 1995.

[6] S. Helgason, Groups and Geometric Analysis, Acad.Press, 1984.

[7] Sze-Tsen Hu, Homotopy Theory, Academic Press, 1959.

[8] J. Ilmavirta, G. P. Paternain, Functions of constant geodesic X-ray transform, Inverse Problems, vol. 35, 6, 2019; arXiv.1702.00429

[9] A. Koklobsky, A. Merkurjev, V. Yaskin, On polynomially integrable convex bodies, Advances in Math., vol. 320, 2017, 876-886; arXiv.1702.00429

[10] V. A. Vassiliev, Newton’s lemma XXVIII on integrable ovals in higher dimensions and reflection groups, Bull. Lond. Math. Soc., 47:2 (2015), 290-300.

Bar-Ilan University and Holon Institute of Technology; Israel.

E-mail address: agranovs@math.biu.ac.il

BAR-ILAN UNIVERSITY AND HOLOM INSTITUTE OF TECHNOLOGY

Email address: agranovs@math.biu.ac.il