Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions

The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5L and Novozyme 188 decreased by as much as 45% at 50°C after 4 days. The individual cocktails as well as a mixture of both were stable at 20°C. At 50°C, the protein concentration of Celluclast 1.5L was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50°C which leads to protein aggregation and precipitation. Lyophilized β-glucosidase at 50°C exhibited an aggregation rate which was successfully modeled using first order kinetics ($R^2=0.97$). By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled ($R^2=0.96$). To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail ($R^2=0.98$). By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases concentrations can be used to build mass balances of enzyme recycling processes and to techno-economically evaluate the viability of enzyme recycling.
Stability of commercial glucanase and β-glucosidase preparations under hydrolysis conditions

Rosales-Calderón, Oscar; Trajano, Heather L.; Duff, Sheldon J.B.

Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada, V6T1Z3.

*Corresponding author

Email addresses:

ORC: ocalderon@chbe.ubc.ca
HLT: heather.trajano@ubc.ca
DP: posarac@chbe.ubc.ca
SJBD: sduff@chbe.ubc.ca
Abstract
The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions. In the absence of solid substrate, the total protein concentration of a mixture of Celluclast 1.5L and Novozyme 188 decreased by as much as 45% at 50°C after 4 days. The individual cocktails as well as a mixture of both were stable at 20°C. At 50°C, the protein concentration of Celluclast 1.5 was relatively constant but Novozyme 188 decreased by as much as 77%. It was hypothesized that Novozyme 188 proteins suffer a structural change at 50°C which leads to protein aggregation and precipitation. Lyophilized β-glucosidase (P-β-glucosidase) at 50°C exhibited an aggregation rate which was successfully modeled using first order kinetics ($R^2 = 0.97$). By incorporating the possible presence of chaperone proteins in Novozyme 188, the protein aggregation observed for this cocktail was successfully modeled ($R^2 = 0.96$). To accurately model the increasing protein stability observed at high cocktail loadings, the model was modified to include the presence of additives in the cocktail ($R^2 = 0.98$). By combining the measurement of total protein concentration with the proposed Novozyme 188 protein aggregation model, the endo- and exoglucanases concentration in the solid and liquid phases during hydrolysis can be more accurately determined. This methodology can be applied to various systems leading to optimization of enzyme loading by minimizing the excess of endo- and exoglucanases. In addition, the monitoring of endo- and exoglucanases concentrations can be used to build mass balances.
of enzyme recycling processes and to techno-economically evaluate the viability of enzyme
recycling.
Introduction

Low cost and readily available lignocellulosic materials, such as wheat straw, switchgrass, or poplar are composed of cellulose and other polysaccharides that can be converted to ethanol. Biological processing of lignocellulose is attractive due to its mild operating conditions, and consists of four processing steps: (1) pretreatment of the raw material to expose the cellulose to enzymes, (2) enzymatic hydrolysis to convert polysaccharides to simple sugars, (3) fermentation of sugars to ethanol and (4) separation of ethanol from the fermentation broth (Bommarius et al., 2008).

Enzymatic hydrolysis is a complex reaction where exo- and endoglucanases or cellulases, most commonly from the fungus *Trichoderma reesei*, adsorb on cellulose to release glucooligomers, celllobiose, and glucose. As celllobiose inhibits cellulases activity, β-glucosidase is added to the hydrolysis to cleave celllobiose to glucose (Lu et al., 2002). However, as lignocellulose also contains non-hydrolysable lignin to which cellulases adsorb irreversibly, some cellulases are lost during hydrolysis (Farinas et al., 2010; Jørgensen et al., 2007; Zhou et al., 2009). These factors necessitate a high enzyme load, which increases hydrolysis costs; indeed one of the key economic factors and thus impediments to lignocellulosic ethanol production and commercialization is the amount and cost of enzyme needed for enzymatic hydrolysis (Lynd et al., 2008; Qi et al., 2011). Consequently, enzymatic hydrolysis has been the target of numerous studies (Jørgensen et al., 2007; Taherzadeh and Karimi, 2007). The hydrolysis is affected by multiple factors such as enzyme loading, reaction time, temperature, substrate composition, and inhibitor concentration. Several studies have attempted to increase the efficiency of the enzyme system or to minimize the amount of enzyme needed for hydrolysis (Arantes and Saddler, 2011; Shen and Agblevor, 2008). The recycling of cellulases bound to the residual substrate as well as enzymes in the reaction
suspension is relatively new technology that has been gaining popularity because of its potential
to decrease enzyme requirements during ethanol production (Qi et al., 2011).

In order to quantify the amount of enzymes that can be recycled, it is necessary to understand the
concentration changes of endo- and exoglucanases, and β-glucosidase as well as proteins and
compounds contained in the enzyme preparations used in the hydrolysis. Commercial enzyme
cocktails from Novozyme: Celluclast 1.5L and Novozyme 188 have been widely used as sources
of endo- and exoglucanases, and β-glucosidase, respectively, for enzymatic hydrolysis (Arantes
and Saddler, 2011; Hu et al., 2013; Kristensen et al., 2007; Qi et al., 2011; Rodrigues et al., 2012;
Shi et al., 2011; Zheng et al., 2009) and enzyme recycling by adsorption research (Lu et al., 2002;
Qi et al., 2011; Steele et al., 2005; Tu and Saddler, 2010; Tu et al., 2007a, 2007b). Endo- and
exoglucanases present in solution after hydrolysis can be recycled by adsorption onto fresh
substrate to start a new round of hydrolysis (Qi et al., 2011). Unfortunately, β-glucosidase cannot
be simultaneously recycled by adsorption as it either does not adsorb to the substrate (Tu and
Saddler, 2010; Tu et al., 2007a) or adsorbs to a far lesser degree than endo- and exoglucanases
(Kumar and Wyman, 2009). Therefore fresh β-glucosidase must be added at the beginning of
each round of hydrolysis to avoid build-up of cellobiose and subsequent end-product inhibition of
cellulase (Qi et al., 2011). The newest commercial cellulase cocktails, such as Cellic CTec3 from
Novozyme (Bagsværd, Denmark) and Accellerase TRIO from DuPont Genencor (CA, USA),
contains a blend of endo- and exoglucanases and β-glucosidase. Therefore, the use of Celluclast
1.5L and Novozyme 188 as enzymes sources are ideal for the enzyme recycling research, since β-
glucosidase from Novozyme 188 can be use to complement recycled cellulases.

Many of the enzyme recycling and hydrolysis studies rely upon the assumption of constant
protein concentration at hydrolysis conditions; however, this assumption has not been evaluated.
Enzyme and protein structures determine solubility and activity and can change with pH,
temperature, and/or concentration (Morris et al., 2009). Therefore, the protein concentration in
solution depends on system conditions, and must be considered in enzyme adsorption and recycling studies. The objectives of this paper are to evaluate the stability of Celluclast 1.5L and Novozyme 188 protein in solution and to model changes in protein concentration at enzymatic hydrolysis conditions in order to support the subsequent development of a mass balances and economic analysis for enzyme recycling.

Materials & Methods

Enzyme preparations

Lyophilized powder cellulases from *Trichoderma reesei* (P-cellulase, Cat. No. C8546, Sigma Aldrich) and β-glucosidase from *Aspergillus niger* (P-β-glucosidase, Cat. No. 9033-06-1, Sigma Aldrich) were used as reference enzymes. Commercial enzyme cocktails from Novozyme were also used: cellulase from *T. reesei*, Celluclast 1.5L (129.3 mg protein/mL, 30.7 CBU/mL, 63.8 FPU/mL) and β-glucosidase derived from *A. niger*, Novozyme 188 (102.2 mg protein/mL, 626.4 CBU/mL). All enzymes were stored at 2°C until use.

Analysis of enzyme activity and protein concentration

Cellulases activity was measured following the NREL filter paper assay (Adney and Baker, 2008) and reported in filter-paper units (FPU) per milliliter of solution. β-glucosidase activity was measured using the method described by Wood and Bhat (1988) and reported in cellobiase units (CBU).

Protein concentration was measured by the Bio-Rad protein assay, based on the colorimetric method of Bradford (Bio-Rad Laboratories, 2010). This is a dye-binding assay in which the absorbance shift of the dye Coomassie Brilliant Blue G-250 is proportional to the protein concentration. As the Coomassie blue dye binds to primarily basic and aromatic amino acid residues, especially arginine, it is important to select the correct reference protein to accurately...
quantify protein (Zhu et al., 2009). Therefore, the potential of P-cellulase, P-β-glucosidase, and
the widely used Bovine Serum Albumin (BSA) as calibration standards was studied.

Calibration standards with a final volume of 10 mL were prepared with Type II* water (Purelab)
for each protein concentration at room temperature. Samples of 0.5 mL were taken and
centrifuged (RCF 3.44 g, 10 min). The absorbance spectrum was measured for each sample from
200 to 700 nm (UV-1800, Shimadzu). The spectrum curves of the two enzymes were identical
with three peaks at 264, 312 and 595 nm. Protein content was measured at 595 nm in the present
study as it presented a higher and more defined response than those at 264 and 312 nm, and
consequently increased measurement sensitivity.

The response of BSA was different from P-cellulase and P-β-glucosidase as shown in Figure .

Protein calibration curves. Protein calibration curves (solid lines) for P-cellulase and P-β-
glucosidase (); and Bovine Serum Albumin (BSA) (), due to differences in their amino acid
compositions (Zhu et al., 2009). As the use of lyophilized enzymes as a calibration standard
increases the accuracy in the protein quantification (Zhu et al., 2009), P-cellulase and P-β-
glucosidase were used for this study instead of the widely used BSA.

Pretreatment

Oxygen delignification pretreatment of wheat straw was conducted in a 1 L bench top reactor
(PARR 4520). The reactor configuration allowed control of temperature, reaction time, NaOH
concentration, and oxygen partial pressure. The reactor was charged at a concentration of 4%
(w/w) dry wheat straw and 6-10% NaOH (w/w dry biomass), with a total mass of 500 g. The
reactor was sealed and purged with nitrogen in order to remove oxygen. The vessel was heated to
the desired temperature and then oxygen was bubbled through the reactor at 1 L/min. A mixing
speed of 180 rpm was maintained during the entire process. The reaction was stopped by placing
the reactor in ice and bringing it to atmospheric pressure. The pretreated biomass was then
filtered and washed using a Buchner funnel and Whatman No. 4 filter paper. The substrates’ compositions are shown in Error: Reference source not found.

Protein stability

Protein stability was tested by quantifying protein concentration in solution over the course of 80 hours. Acetate buffer (50 mM, pH 4.8) supplemented with 0.02% w/v tetracycline and 0.015% w/v cyclohexamide was placed in shakers (150 rpm) in 250 mL Erlenmeyer flasks at 20 or 50°C for one hour in order to achieve thermal equilibrium before the desired amount of lyophilized enzymes or commercial enzyme preparation was added to a 50 mL final volume. Samples of 0.5 mL were withdrawn periodically and then centrifuged (RCF 16,904 g, 10 min). The protein concentration of the supernatant was measured.

Novozyme 188 protein stability in the presence of pretreated biomass was tested by quantifying the cocktail’s protein concentration in solution over the course of 120 hours. Pretreated wheat straw (substrate S or M) was placed in the same buffer used in the initial tests at 5% wt solids concentration. The mixture was placed in a shaker (150 rpm) in 250 mL Erlenmeyer flasks at 50°C before the desired amount of Novozyme 188 was added to a 50 mL final volume. Samples of 0.5 mL were withdrawn periodically and then centrifuged (RCF 16,904 g, 10 min) prior to determining protein content.

Results and Discussion

Stability of commercial enzyme preparations

The enzyme system commonly used for enzymatic hydrolysis is a mixture of cellulases (endo- and exoglucanases) and β-glucosidases. Endo- and exoglucanases adsorb onto the substrate, primarily cellulose and lignin, while β-glucosidase has been reported to either not adsorb to the substrate (Tu and Saddler, 2010; Tu et al., 2007a), or to have a much lower adsorption on lignin.
than endo- and exoglucanases (Kumar and Wyman, 2009). Even though Celluclast 1.5L and Novozyme 188 contain multiple proteins, enzymes and other compounds, numerous studies have assumed that any change in the total protein concentration during hydrolysis is due to the adsorption of endo- and exoglucanases on substrate (Arantes and Saddler, 2011; Lu et al., 2002; Qi et al., 2011; Tu et al., 2009, 2007b). By this reasoning, the protein concentration of Celluclast 1.5L and Novozyme 188 in the liquid phase should remain constant when substrate is absent. The validity of this assumption was tested by monitoring the protein concentration of Celluclast 1.5L and Novozyme 188, for 78 hours without substrate at 50°C, a common hydrolysis temperature. As shown in Figure 1, Celluclast 1.5L and Novozyme 188 protein concentration as a function of time at 50 °C. Celluclast 1.5L and Novozyme 188 protein concentration in the same solution at different initial concentrations [6 g/L (2.2 FPU/mL) , 3 g/L (1.1 FPU/mL) and 1.4 g/L (0.5 FPU/mL)] over time at 50°C. Lines are added to assist in visualizing trends. The ratio of 5 CBU per FPU was consistent in all trials., the protein concentration decreased by 30 to 45% dependent on the initial enzyme loading. Farinas et al. (2010) reported the activity of endoglucanases and β-glucosidases from a wild-type strain of A. niger. All the enzymes showed a high stability at 37°C, however, the activity of β-glucosidases decreased by approximately 28, 20, and 45% after 48, 72 and 96 h incubation at 50 °C, respectively. In the same study, a 40 and 60% loss in activity after 24 and 96 h incubation at 50 °C was also reported for endoglucanases, which points to temperature as the responsible variable. In our work, precipitate was observed in the centrifuged samples prior to protein quantification and it appeared that the amount of precipitate increased with hydrolysis time. Given our observations and Farinas's previous work, we hypothesized that high temperatures promote protein aggregation causing the concentration of protein in the liquid phase to decrease. To confirm that aggregation is a consequence of temperature, and not other variables, such as shaking (Wang, 2005), Celluclast 1.5L, Novozyme 188, and a mixture of the two were incubated...
statically at 20°C and 50°C. The protein concentration was monitored for four days as shown in Figure. Cocktail protein concentration at 20°C (A) and 50°C (B). Celluclast 1.5L and Novozyme 188, Celluclast 1.5L and Novozyme 188, and the mixture of the two cocktails (Figure. Cocktail protein concentration at 20°C (A) and 50°C (B). Celluclast 1.5L and Novozyme 188, Celluclast 1.5L and Novozyme 188) protein concentration as a function of time at 20 and 50°C. Lines are added to assist in visualizing trends. At 20°C the protein concentration remained practically constant for Celluclast 1.5L, Novozyme 188 and the mixture of the two cocktails. However, at 50°C a 34% drop in the total protein concentration was observed. Celluclast 1.5L suffered an 18% decrease in its concentration at 50°C after 4 days, demonstrating remarkable stability at high temperatures. The loss in Celluclast 1.5L protein concentration is similar to the 14% precipitation reported by Chylenski et al. (2012) for a cellulase preparation from *T. reesei* after 124 h at 50°C. In contrast, the protein concentration of Novozyme 188 decreased by 77% in 4 days at 50°C. This decrease in concentration was accompanied by an increase in the quantity of solid matter on the bottom of the flasks, indicating protein precipitation. It is important to note that the arithmetic sum of the individual Celluclast 1.5L and Novozyme 188 protein concentrations at 50°C (initial concentrations of 1.61 g Celluclast 1.5L/L and 1.06 g Novozyme 188/L) is approximately equal to the total protein concentration in the solution of Celluclast 1.5L and Novozyme 188 at 50°C (initial concentration of 2.703 g proteins/L) for the period of time monitored. Thus the widely held assumption of constant protein concentration during hydrolysis at 50°C is invalid due to the apparent precipitation of proteins from Novozyme 188, possibly due to aggregation. Dekker et al. (1986) reported that Novozyme 188 lost 17 and 72% of its β-glucosidase activity after 48 and 120 h incubation at 50°C. Chundawat et al. (2011) reported a β-glucosidase protein composition of 7.7% in Novozyme 188, with large amounts of amylases (43.6%) and other proteins (42.1%). Therefore, to evaluate if the loss of β-glucosidase activity reported by Dekker...
et al. (1986) is caused by β-glucosidase aggregation and precipitation, the stability of P-β-glucosidase from *A. niger* in solution at 50°C was examined.

Stability of β-glucosidases from *A. niger*

A representation of the overall pathway generally proposed for the protein aggregation (fibrillation) is presented in Figure. Schematic aggregation of proteins. Idealized representation of a general overall pathway to the formation of aggregates (Morris et al., 2009). (Morris et al., 2009). Protein unfolding can be caused by pH changes, organic solvents, heat, protein concentration, shaking, or the presence of other proteins or chemical compounds (Lehninger et al., 2005). It is hypothesized that native enzyme or protein monomer undergoes a conformational change commonly called denaturation. The protein denaturation can, in some cases, lead to the exposure of “sticky” hydrophobic areas. These areas increase the propensity of the monomer to aggregate or “stick” to each other, causing it to become “active” (Morris et al., 2009). The active monomers or unfolded proteins begin to aggregate forming oligomers that ultimately lead to insoluble fibrils or amorphous aggregates.

In his study of the thermal denaturation of almond β-glucosidase using differential scanning calorimetry (DSC), Tanaka (1991) found evidence indicating that β-glucosidase undergoes an irreversible structural transformation from its native conformation to a denatured form between pH 4-8 and 50-90°C. Therefore, given the changes in Novozyme 188 protein concentration in this study at similar temperatures, the β-glucosidases in Novozyme 188 may suffer a similar conformational change leading to aggregation and, subsequently, precipitation. In order to develop a kinetic model of β-glucosidase aggregation, we utilized advances made in the field of heat induced β–lactoglobulin aggregation and precipitation, a phenomenon well-studied by the food industry (Verheul et al., 1998).
The proposed protein aggregation reaction consists of two steps: the denaturation and the aggregation steps (Verheul et al., 1998). The denaturation step accounts for β-glucosidase thermal denaturation, which was assumed to be an irreversible reaction (Tanaka, 1991):

\[B \xrightarrow{k_1} D^* \]

(1)

The native β-glucosidase (B) changes its structure as a result of high temperature, producing a denatured form of the enzyme (D*) that then aggregates in a series of irreversible aggregation reactions. It was assumed that only denatured enzymes participate in the aggregation step. These aggregation reactions can be represented as:

\[D^\square + D^\square \xrightarrow{k_1} D_n^\square \]
\[D^\square + D_n^\square \xrightarrow{k_n} D_{n+1}^\square \]
\[D_n^\square + D_{n+1}^\square \xrightarrow{k_m} D_m^\square \]

(2)

\(D_n^\square, D_{n+1}^\square, \text{ and } D_m^\square \) are denatured β-glucosidase polymers consisting of \(n, n+1, \text{ and } m \) monomeric units (\(n, m \geq 2 \)) and are treated as equivalent species. The aggregation step is comprised of hundreds of autocatalytic reactions (Morris et al., 2009) where denatured polymers adsorb on the aggregate increasing its size and surface area. In consequence, the number of active spots to which denatured polymers can “stick”, increases with the growing aggregate. Therefore, the aggregation of each polymer catalyzes the next aggregation reaction and, consequently, the entire aggregation process. In consequence, the aggregates \(D_n^\square, D_{n+1}^\square \) rapidly grow to form the insoluble species \(D_m^\square \). According to the Bodenstein principle (Helfferich, 2003), a steady-state situation will be reached quickly once the aggregation reaction starts; the rate at which \(D^* \) is formed in the denaturation step will equal the rate at which it disappears in the aggregation step (Roefs and De Kruijf, 1994). Therefore, the thermal denaturation step (equation 1) is slower than the aggregation step and is thus the rate limiting step. Under this consideration, our analysis
assumes only native enzymes to be soluble. From this reaction, assuming first order kinetics, the
β-glucosidase rate of disappearance is given by:

\[-\frac{d[B]}{dt} = k_1[B] \]

(3)

Integrating this equation and taking \([B]=B_0 \text{ (g/L)}\) at \(t=0\) gives:

\[\frac{B}{B_0} = e^{-k_1t} \]

(4)

To check the validity of the model, solutions of different P-β-glucosidase concentrations were
prepared using powdered P-β-glucosidase and incubated at 50°C. Soluble protein concentration
was monitored and, as shown in Figure . Lyophilized β-glucosidase protein concentration
changes. Lyophilized β-glucosidase concentration (A) and normalized concentration (B) at 50°C,
experimental data ([B0]=0.317 g/L (), 0.612 g/L () and 1.388 g/L ()) and 1st order kinetic model,
Equation 4 (), protein concentration decreased by as much as 84% over 98 h. The protein
concentrations shown in Figure . Lyophilized β-glucosidase protein concentration changes.
Lyophilized β-glucosidase concentration (A) and normalized concentration (B) at 50°C,
experimental data ([B0]=0.317 g/L (), 0.612 g/L () and 1.388 g/L ()) and 1st order kinetic model,
Equation 4 (), were used to fit equation 4. The measured initial protein concentrations were used
in the model fitting process. The rate constant was determined by least squares regression,
obtaining a \(k_1\) of 0.024 h\(^{-1}\). The proposed model had a good fit to the aggregation of P-β-
glucosidase experimental data with a \(R^2= 0.97\) as shown in Figure . Lyophilized β-glucosidase
protein concentration changes. Lyophilized β-glucosidase concentration (A) and normalized
concentration (B) at 50°C, experimental data ([B0]=0.317 g/L (), 0.612 g/L () and 1.388 g/L ())
and 1st order kinetic model, Equation 4 (). A. The analysis of the residuals showed that 78% of
the predicted P-β-glucosidase concentrations are within one standard deviation of the
experimental data. In agreement with the model, the aggregation of P-β-glucosidase does not
depend on the initial enzyme concentration as shown in Figure. Lyophilized β-glucosidase protein concentration changes. Lyophilized β-glucosidase concentration (A) and normalized concentration (B) at 50°C, experimental data ([B]=0.317 g/L, 0.612 g/L and 1.388 g/L) and 1st order kinetic model, Equation 4 (B).

Based on the presented model, 68% of the initial concentration of P-β-glucosidase is lost after 48 h incubation at 50°C. However, Dekker et al. (1986) reported an activity loss of 17% for Novozyme 188 and that enzyme activity is linearly related to enzyme concentration. The reported loss in activity is incongruous with the large loss of P-β-glucosidase observed after 48 h incubation; therefore, β-glucosidases in Novozyme 188 seems to be more stable than P-β-glucosidase. As both β-glucosidases come from A. niger, the higher apparent stability of β-glucosidases in Novozyme 188 may be caused by the stabilizing effect of the other proteins and compounds in Novozyme 188.

Novozyme 188 stability

Understanding Novozyme 188 protein concentration changes under hydrolysis conditions can provide valuable information about the adsorption-desorption process of endo- and exoglucanases. The interaction of Novozyme 188 with pretreated biomass has to be determine, for this reason, Novozyme 188 protein concentration was monitored in the absence and presence of pretreated wheat straw with 4.7% (substrate S) and 9.0% (substrate M) lignin. Figure. Effect of pretreated biomass on Novozyme 188 protein aggregation. Novozyme 188 protein concentration at 50°C as a function of time in the absence () and presence of pretreated biomass: substrate M () and S (). shows that during the incubation of Novozyme 188 at 50°C the protein concentration profiles in the absence or presence of pretreated biomass were similar and independent of pretreated biomass lignin composition. These results confirm that, independent of lignin concentration, the proteins and enzymes contained in Novozyme 188 do not adsorb to
The results also confirm that the presence of substrate has no impact on the aggregation and precipitation of Novozyme 188 protein.

The changes in total protein concentration in solution during enzymatic hydrolysis are most probably caused by Novozyme 188 protein aggregation and adsorption-desorption of exo- and endoglucanases in the substrate. The protein mass balance in solution during hydrolysis is:

\[
\frac{T}{E} + \frac{[N]}{E} = 0 \tag{5}
\]

where the total protein concentration \([T_E]\) (g/L) is defined by the protein concentration of Celluclast 1.5L in solution \([E_L]\) (g/L) and Novozyme 188 protein concentration \([N]\) (g/L) as shown in Figure. Cocktail protein concentration at 20°C (A) and 50°C (B). Celluclast 1.5L and Novozyme 188 (), Celluclast 1.5L () and Novozyme 188 () protein concentration as a function of time at 20 and 50°C. Lines are added to assist in visualizing trends. Hu et al. (2013) reported that the major cellulase monocomponents within Celluclast 1.5L, on a protein weight basis, were \(T. reesei\) Cel7A, Cel6A, Cel7B, and Cel5A comprising approximately 56%, 12%, 5%, and 6% of the total protein, respectively. However, more cellulases may be present in the cocktail as the \(T. reesei\) genome also includes Cel12, Cel61 and Cel45, as reported by Martinez et al. (2008). From these papers, it can be assumed that Celluclast 1.5L is primarily composed of endo- and exoglucanases. Therefore, the concentration of endo- and exoglucanases in solution \([E_L]\) (g/L), and consequently those adsorbed on substrate, can be indirectly determined by subtracting the Novozyme 188 protein concentration \([N]\) (g/L) from the total protein concentration \([T_E]\) (g/L) measured during hydrolysis. This approximation is possible only if the Novozyme 188 protein concentration can be predicted over the course of the enzymatic hydrolysis. In order to model the aggregation of Novozyme 188, it was assumed that the majority of proteins and enzymes in Novozyme 188 have the same thermal stability. This assumption is supported by
the results presented in Figure. Cocktail protein concentration at 20°C (A) and 50°C (B).

Celluclast 1.5L and Novozyme 188 (), Celluclast 1.5L () and Novozyme 188 () protein
collection as a function of time at 20 and 50°C. Lines are added to assist in visualizing trends,
where 80% of the initial Novozyme 188 protein concentration is lost after 4 days incubation at
50°C showing a consistent response to temperature. As mentioned, some compounds present in
Novozyme 188 may stabilize the proteins and enzymes at high temperatures. Due to the reported
A. niger capacity to produce chaperones (Guillemette et al., 2007; Lu et al., 2010), it was
assumed that the proteins and enzymes in Novozyme 188 are stabilized by chaperones.

Chaperones are proteins that bind to non-native conformations of proteins and assist them in
achieving their native structure. Most chaperones bind to exposed hydrophobic surfaces of non-
native species and thereby stabilize the protein or enzyme against aggregation. After being
released from the chaperone, the protein may proceed to fold correctly, or rebinding to a chaperone
until a native conformation is reached (Liberek et al., 2008; Schlieker et al., 2002).

The thermal denaturation of protein in Novozyme 188 can be described following the same
assumptions and considerations used for the aggregation of P-β-glucosidase. However, a reverse
reaction was added to the model to account for the stabilizing effect of chaperones:

\[
\frac{k_1}{k_2} \frac{N}{D}
\]

where \(N\) refers to the native proteins in Novozyme 188 and \(D\) refers to the denatured
proteins which interact with chaperones that regenerate their native protein structure. Therefore,
the rate of disappearance and formation of native proteins is:

\[
\frac{-d[N]}{dt} = k_1[N] - k_2[D]
\]
The amount of protein precipitated is given by

\[
\frac{D}{[\dot{[N]}]_0} = [N] - [N_0] \text{ (g/L)}, \text{ where } [N_0] \text{ is the initial Novozyme 188 protein concentration (g/L).}
\]

Solving this equation taking \([N]=[N_0]\) (g/L), at \(t=0\) yields:

\[
N = \frac{\frac{[N_0]}{k_2 + k_1' e^{-t(k_2+k_1')}}}{k_2 + k_1'}
\]

The rate constants in equation 8 were determined by least squares regression to be \(k_1' = 0.017 \text{ h}^{-1}\) and \(k_2 = 0.011 \text{ h}^{-1}\). The measured initial concentrations were used for the model fitting. Equation 8 successfully predicts the Novozyme 188 protein concentration in solution at the tested hydrolysis conditions with a correlation coefficient of 0.96, as shown in Figure. Proposed Novozyme188 kinetic model incorporating the presence of chaperones. Novozyme 188 concentration (A) and normalized concentration (B) at 50°C: experimental data ([N0]=0.36 g/L, 0.71 g/L and 1.44 g/L) and the chaperone model, Equation 8 (.A. Most of the predicted protein concentrations (75%) are within one standard. Therefore, the proposed model (equation 8) has a good fit to the experimental data in the range of concentrations tested.

However, it is clear from Figure. Proposed Novozyme188 kinetic model incorporating the presence of chaperones. Novozyme 188 concentration (A) and normalized concentration (B) at 50°C: experimental data ([N0]=0.36 g/L, 0.71 g/L and 1.44 g/L) and the chaperone model, Equation 8 (.B that the protein aggregation from Novozyme 188 exhibits a peculiar behavior which is not captured by equation 8: the rate of aggregation was slower at higher initial concentrations. These results contradict the aggregation behavior reported for other systems of proteins (Roefs and De Kruif, 1994; Verheul et al., 1998), where the rate of aggregation and precipitation increases with initial concentration (Wang, 2005). Under severe stress conditions,
protein aggregation occurs even in the presence of chaperones because the substantial increase in misfolded proteins cannot be buffered by the limited chaperone capacity (Schlieker et al., 2002). Therefore, it is unlikely that the increasing protein stability at increasing Novozyme 188 concentrations is caused by the chaperones.

Other compounds have been explored for their ability to achieve similar stabilizing effects during denaturation. A common method to stabilize proteins is the use of additives such as sugars, polyols, salts, and surfactants, which have chaperone-like effects. These additives stabilize proteins and suppress aggregation by changing the environmental properties of the proteins (Wang, 2005). Novozyme 188 is a mixture of compounds selected to improve enzyme performance and stability. As Novozyme 188 is a commercial product, its preparation and composition are not public knowledge making it difficult to fully understand its behavior. However, the presence of additives in Novozyme 188 may explain the increasing Novozyme 188 stability at high protein concentrations. If additives are present in the cocktail, their concentration increases in proportion to that of Novozyme 188 protein. Therefore, the additives effect in the system becomes stronger as concentration increases.

The hypothetical presence of additives was included in the reverse reaction of the proposed model:

\[
N \xrightarrow{k_1 \cdot A_0} D \quad (9)
\]

The denatured proteins (\(D \)) are influenced by the additives (\(A_0 \)) to regenerate their native structure (\(N \)). Therefore the rate of disappearance and formation of native protein is now:

\[
- \frac{d[N]}{dt} = k_1 \cdot [N] - k_2 \cdot A \quad (10)
\]
The concentration of additives \([A_0]\) (g/L) was assumed constant and proportional to the initial Novozyme 188 protein concentration \([N_0]\) (g/L), as both come from the same solution. The initial additive concentration was assumed to be given by \(\frac{A}{N} = \frac{\dot{c}}{m_c} \), where \(m_c\) is a dimensionless constant. Using these relations, Equation 10 becomes:

\[
\frac{-d[N]}{dt} = k_1''[N] - k_2 m_c ([N_0] - [N]) \dot{c}
\]

(11)

Solving this equation using \(k_s = k_2 m_c\) and taking \([N] = [N_0] \) (g/L) at \(t=0\) yields:

\[
N \frac{[A]}{N} = \frac{[\dot{c}]}{[\dot{c}]} + k_1'' + k_s \dot{c}
\]

(12)

The rate constants in Equation 12 were determined by least squares regression to be \(k_1'' = 0.016 \) h\(^{-1}\) and \(k_s = 0.008 \) Lg\(^{-1}\)h\(^{-1}\). The experimental initial concentrations were used for the model fitting. The value of constant \(k_1''\) is similar to the value obtained for \(k_1'\) in equation 8, therefore only the reverse reaction is dependent on the presence of additives and thus cocktail loading. Equation 12 successfully predicts the concentration of Novozyme 188 in solution with a correlation coefficient of 0.98, as shown in . The residual analysis showed that all the predicted protein
concentrations are now within one standard deviation. Based on the residual analysis for
equations 8 and 12, it was concluded that the model with the additives consideration (equation
12) more accurately represents the protein aggregation observed. This conclusion agrees with the
second order Akaike’s information criterion (AICc) (Hurvich and Tsai, 2007) calculated for
equation 8 (AICc=-5.4) and equation 12 (AICc=-6.1), where the minimum value reflects a better
fit to experimental data.

The predicted aggregation of Novozyme 188 with the additives model presented in
is in better agreement with the experimental results that Novozyme 188 stability increases at
high loadings. The model has a good fit to the data at \([N_0]=0.71\) and \(1.44\) g/L, however, the
model poorly predicted the protein aggregation at \([N_0]=0.36\) g/L, as can be seen in . At low
cocktail loadings \((N_0)=0.36\) g/L, the effect of additives is likely minimal. However, the
additives concentration, as well as their effect on the system, will increase at higher cocktail
loadings \((N_0)=1.44\) g/L thus the additives’ stabilizing effect can be seen only at high protein
loadings. This behavior is similar to the reduction in aggregation of lysozyme when the
concentration of additives such as glycine ethylester, 2-methoxyethanol, KCl, and spermine is
increased (Kudou et al., 2003; Shiraki et al., 2005). The similarity of our results with previous
additive studies supports our hypothesis that the increasing stability of Novozyme 188 protein
concentration at high concentrations is due to the effect of additives.

Conclusions

The successful commercialization of lignocellulosic ethanol rests upon optimization of enzyme
cocktails and hydrolysis conditions thus enzyme adsorption to biomass, minimum enzyme
loadings and enzyme recycling have been examined in numerous studies. These studies have
assumed that the protein concentration at hydrolysis conditions remains constant and that the
The most significant change in protein concentration during enzymatic hydrolysis is due to adsorption of cellulases on biomass.

In this study, this fundamental assumption was tested by employing two widely used commercial enzyme preparations: Celluclast 1.5L and Novozyme 188. The constant protein concentration assumption was found to be invalid when a 46% protein loss from a solution of Celluclast 1.5L and Novozyme 188 was observed after four days incubation at 50°C. Loss of Novozyme 188 proteins was determined to be the main cause of this decrease as Celluclast 1.5L protein concentration only slightly decreased (18% after 4 days) at 50°C. The protein loss in Novozyme 188 is likely due to heat-induced denaturation which promotes protein aggregation and, ultimately, precipitation.

The aggregation of lyophilized β-glucosidase in solution was monitored and successfully modeled by assuming the thermal denaturation reaction was the rate limiting step. However, the high precipitation of lyophilized β-glucosidase observed does not agree with the reported loss of β-glucosidase activity in Novozyme 188. The apparently higher stability of β-glucosidase in the cocktail is believed to be caused by the presence of chaperones in the cocktail. The changes in proteins concentration fromNovozyme 188 were modeled considering the presence of chaperones in the cocktail. However, the experimental data exhibited increasing protein stability at high protein loadings, which was not predicted by the model. This behavior was proposed to be caused by additives. The presence of additives was included in the Novozyme 188 aggregation model; this produced a model which successfully describes the decrease in aggregation rate with increasing cocktail loading. The observed Novozyme 188 protein concentration changes are in agreement with previous studies of the aggregation of lysozyme in presence of additives.

The thermal instability of Novozyme 188 has not been previously reported and has significant implications for the study of enzymatic hydrolysis. The total protein concentration has been monitored during hydrolysis in past studies to examine the endo- and exoglucanases adsorption-
desorption process. However, given the Novozyme 188 protein aggregation observed in this work, the adsorption-desorption information obtained may not accurate. Therefore, despite the enzyme preparation, protein aggregation must be taken in account when measuring protein concentrations during enzymatic hydrolysis. By combining the measurement of total protein concentration with the model in this paper, endo- and exoglucanases concentration changes can be more accurately determined. Endo- and exoglucanases concentration profiles will lead to greater understanding of the complex adsorption-desorption process during hydrolysis and to optimize the endo- and exoglucanases loading, consequently, decreasing the ethanol production cost. Endo- and exoglucanases concentrations profiles during hydrolysis can also help to select the best time to maximize the amount of recyclable enzymes. The proposed model also enables mass balances to determine the amount of endo- and exoglucanases that can be recycled and built a simulation of the ethanol production process with enzyme recycling to evaluate the economics of such technology for ethanol production.

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) of Mexico, Agriculture and Agrifood Canada, and NSERC through its Discovery Grant Program. HLT also thanks the Chemical and Biological Engineering department of the University of British Columbia for their generous start-up funding.

References

Adney, B., Baker, J., 2008. Measurement of cellulase activities laboratory analytical procedure (LAP), Renewable Energy. Colorado.
Arantes, V., Saddler, J.N., 2011. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. *Biotechnology for Biofuels* 3, 1–16.

Bio-Rad Laboratories, 2010. Bio-Rad protein assay, Bio-rad. California.

Bommarius, A.S., Katona, A., Cheben, S.E., Patel, A.S., Ragauskas, A.J., Knudson, K., Pu, Y., 2008. Cellulase kinetics as a function of cellulose pretreatment. *Metabolic engineering*. 10, 370–81.

Chundawat, S.P.S., Lipton, M.S., Purvine, S.O., Uppugundla, N., Gao, D., Balan, V., Dale, B.E., 2011. Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures. *Journal of Proteome Research* 10, 4365–72.

Chylenski, P., Felby, C., Østergaard Haven, M., Gama, M., Selig, M.J., 2012. Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. *Biotechnology Letters* 34, 1475–82.

Dekker, R.F.H., Assays, E., 1986. Kinetic, inhibition, and stability properties of a commercial p-0-gluwsidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of lignocellulose. *Biotechnology and Bioengineering* 28, 1438–1442.

Farinas, C.S., Loyo, M.M., Baraldo, A., Tardioli, P.W., Neto, V.B., Couri, S., 2010. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature. *New Biotechnology* 27, 810–815.

Guillemette, T., van Peij, N.N.M.E., Goosen, T., Lanthaler, K., Robson, G.D., van den Hondel, C. a M.J.J., Stam, H., Archer, D.B., 2007. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. *BMC Genomics* 8, 158–75.

Helfferich, F.G., 2003. Kinetics of homogeneous multistep reactions, 2nd ed. Elseiver *Science*, Amsterdam.
Hu, J., Arantes, V., Pribowo, A., Saddler, J.N., 2013. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. *Biotechnology for Biofuels* 6, 112–24.

Hurvich, C.M., Tsai, C., 2007. Regression and time series model selection in small samples. *Biometrika* 76, 297–307.

Jørgensen, H., Kristensen, J.B., Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. *Biofuels Bioprododucts and Biorefining* 1, 119–134.

Kristensen, J.B., Börjesson, J., Bruun, M.H., Tjerneld, F., Jørgensen, H., 2007. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. *Enzyme and Microbial Technology* 40, 888–895.

Kudou, M., Shiraki, K., Fujiwara, S., Imanaka, T., Takagi, M., 2003. Prevention of thermal inactivation and aggregation of lysozyme by polyamines. *European Journal of Biochemistry* 270, 4547–4554.

Kumar, R., Wyman, C.E., 2009. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. *Biotechnology Progress* 25, 807–819.

Lehninger, A., Nelson, D.L., Cox, M., 2005. *Lehninger principles of biochemistry*, 4th ed. W.H. Freeman & Company.

Liberek, K., Lewandowska, A., Zietkiewicz, S., 2008. Chaperones in control of protein disaggregation. *EMBO Journal* 27, 328–35.

Lu, X., Sun, J., Nimtz, M., Wissing, J., Zeng, A.-P., Rinas, U., 2010. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. *Microbial Cell Factories* 9, 23–36.
Lu, Y., Yang, B., Gregg, D., Saddler, J.N., Mansfield, S.D., 2002. Cellulase adsorption and an

evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues.

Applied Biochemistry and Biotechnology 98-100, 641–54.

Lynd, L.R., Laser, M.S., Bransby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller,

M., McMillan, J.D., Sheehan, J., Wyman, C.E., 2008. How biotech can transform biofuels.

Nature Biotechnology 26, 169–72.

Martinez, D., Berka, R.M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S.E., Chapman, J.,

Chertkov, O., Coutinho, P.M., Cullen, D., Danchin, E.G.J., Grigoriev, I. V, Harris, P.,

Jackson, M., Kubicek, C.P., Han, C.S., Ho, I., Larrondo, L.F., de Leon, A.L., Magnuson,

J.K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. a, Schmoll,

M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C.L., Yao, J., Barabote, R.,

Barbote, R., Nelson, M.A., Detter, C., Bruce, D., Kuske, C.R., Xie, G., Richardson, P.,

Rokhsar, D.S., Lucas, S.M., Rubin, E.M., Dunn-Coleman, N., Ward, M., Brettin, T.S., 2008.

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn.

Hypocrea jecorina). *Nature Biotechnology* 26, 553–60.

Morris, A.M., Watzky, M.A., Finke, R.G., 2009. Protein aggregation kinetics, mechanism, and

curve-fitting. *Biochimica et Biophysica Acta* 1794, 375–397.

Qi, B., Chen, X., Su, Y., Wan, Y., 2011. Enzyme adsorption and recycling during hydrolysis of

wheat straw lignocellulose. *Bioresource Technology* 102, 2881–9.

Rodrigues, A.C., Leitão, A.F., Moreira, S., Felby, C., Gama, M., 2012. Recycling of cellulases in

lignocellulosic hydrolysates using alkaline elution. *Bioresource Technology* 110, 526–33.

Roefs, S.P., De Kruif, K.G., 1994. A model for the denaturation and aggregation of beta-
lactoglobulin. *European Journal of Biochemistry* 226, 883–9.
Schlieker, C., Bukau, B., Mogk, A., 2002. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. *Journal of Biotechnology* 96, 13–21.

Shen, J., Agblevor, F.A., 2008. Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. *Biochemical Engineering Journal* 41, 241–250.

Shi, J., Ebrik, M. a, Yang, B., Garlock, R.J., Balan, V., Dale, B.E., Pallapolu, V.R., Lee, Y.Y., Kim, Y., Mosier, N.S., Ladisch, M.R., Holtzapple, M.T., Falls, M., Sierra-Ramirez, R., Donohoe, B.S., Vinzant, T.B., Elander, R.T., Hames, B., Thomas, S., Warner, R.E., Wyman, C.E., 2011. Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. *Bioresource Technology* 102, 11080–8.

Shiraki, K., Kudou, M., Sakamoto, R., Yanagihara, I., Takagi, M., 2005. Amino acid esters prevent thermal inactivation and aggregation of lysozyme. *Biotechnology progress* 21, 640–3.

Steele, B., Raj, S., Nghiem, J., Stowers, M., 2005. Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion – treated corn stover. *Applied Biochemistry and Biotechnology* 121, 901–910.

Taherzadeh, M.J., Karimi, K., 2007. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. *Bioresources* 2, 707–738.

Tanaka, A., 1991. Differential scanning calorimetric study of the thermal denaturation of almond beta-glucosidase. *Agricultural and Biological Chemistry* 55, 2773–2776.

Tu, M., Chandra, R.P., Saddler, J.N., 2007a. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. *Biotechnology Progress* 23, 398–406.
Tu, M., Chandra, R.P., Saddler, J.N., 2007b. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine. *Biotechnology Progress* 23, 1130–7.

Tu, M., Pan, X., Saddler, J.N., 2009. Adsorption of cellulase on cellulyolytic enzyme lignin from lodgepole pine. *Journal of agricultural and food chemistry* 57, 7771–8.

Tu, M., Saddler, J.N., 2010. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. *Applied biochemistry and biotechnology* 161, 274–87.

Verheul, M., Roefs, S.P.F.M., Kruif, K.G. De, 1998. Kinetics of heat-induced aggregation of beta-lactoglobulin. *Agricultural and Biological Chemistry* 8561, 896–903.

Wang, W., 2005. Protein aggregation and its inhibition in biopharmaceutics. *International journal of pharmaceutics* 289, 1–30.

Wood, T.M., Bhat, K.M., 1988. Methods for measuring cellulase activities. *Methods in Enzymology* 160, 87–112.

Zheng, Y., Pan, Z., Zhang, R., Jenkins, B.M., 2009. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass. *Biotechnology and Bioengineering* 102, 1558–69.

Zhou, Y., Su, S., Song, M., Nie, H.-L., Zhu, L.-M., 2009. Improving the stability of cellulase by immobilization on chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. *Bioinformatics and Biomedical Engineering* 1–4.

Zhu, Z., Sathitsuksanoh, N., Zhang, P., 2009. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. *Analyst* 134, 2267–72.
Figures

Figure. Protein calibration curves. Protein calibration curves (solid lines) for P-cellulase and P-β-glucosidase (); and Bovine Serum Albumin (BSA ()).

Figure. Celluclast 1.5L and Novozyme 188 protein concentration as a function of time at 50°C. Celluclast 1.5L and Novozyme 188 protein concentration in the same solution at different initial concentrations [6 g/L (2.2 FPU/mL), 3 g/L (1.1 FPU/mL) and 1.4 g/L (0.5 FPU/mL)] over time at 50°C. Lines are added to assist in visualizing trends. The ratio of 5 CBU per FPU was consistent in all trials.

Figure. Cocktail protein concentration at 20°C (A) and 50°C (B). Celluclast 1.5L and Novozyme 188 (), Celluclast 1.5L () and Novozyme 188 () protein concentration as a function of time at 20 and 50°C. Lines are added to assist in visualizing trends.

Figure. Schematic aggregation of proteins. Idealized representation of a general overall pathway to the formation of aggregates (Morris et al., 2009).

Figure. Lyophilized β-glucosidase protein concentration changes. Lyophilized β-glucosidase concentration (A) and normalized concentration (B) at 50°C, experimental data ([B₀]=0.317 g/L, 0.612 g/L () and 1.388 g/L ()) and 1st order kinetic model, Equation 4 ()

Figure. Effect of pretreated biomass on Novozyme 188 protein aggregation. Novozyme 188 protein concentration at 50°C as a function of time in the absence () and presence of pretreated biomass: substrate M () and S (). Line is added to assist in visualizing trend.

Figure. Proposed Novozyme188 kinetic model incorporating the presence of chaperones. Novozyme 188 concentration (A) and normalized concentration (B) at 50°C: experimental data ([N₀]=0.36 g/L (), 0.71 g/L () and 1.44 g/L ()) and the chaperone model, Equation 8 ().
Figure. Proposed Novozyme188 kinetic model incorporating the presence of additives.

Normalized Novozyme 188 concentration at 50°C: experimental data ([N₀]=0.36 g/L, 0.71 g/L and 1.44 g/L) and the additives model, Equation 12.