Study on the Ω^0_c States Decaying to $\Xi^+_cK^-$ in pp collisions at $\sqrt{s}=7, 13$ TeV

Hong-ge Xu1,2, Gang Chen2*, Di-kai Li2, Zhi-Lei She2, Dai-Mei Zhou3 and Yu-Liang Yan4

1 Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
2 School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
3 Institute of Particle Physics, Huazhong Normal University, Wuhan 430082, China
4 China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413, China

The production of strange particles Ξ^+_c, K^- is simulated in mid-rapidity pp collisions at $\sqrt{s}=7$ TeV with $0.2 \leq pt \leq 6$ GeV/c using the PACIAE model. The results are consistent with LHCb experimental data on Ξ^+_c and K^- yield. Then, a dynamically constrained phase-space coalescence (DCPC) model plus PACIAE model was used to produce the $\Xi^+_cK^-$ bound states and study the narrow excited Ω^0_c states by through $\Omega^0_c \to \Xi^+_cK^-$ in pp collisions at $\sqrt{s}=7$ and 13 TeV. The yield, transverse momentum distribution, and the rapidity distribution of the four new excited Ω^0_c states of $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and $\Omega_c(3090)^0$ was predicted.

PACS numbers: 25.75.-q, 24.85.+p, 24.10.Lx

I. INTRODUCTION

In the early 1960s, many strongly interacting particles were observed in particle/nucleon experiments, which were named as "hadron" by L.B. Okun later [1]. According to these observations, M. Gell-Mann and G. Zweig independently proposed the quark model that is classification scheme for hadrons [2, 3]. Quark model achieves a great success, and it is a milestone in the development of particle physics. A well-known example was that, after the Ω had been predicted in 1961 independently by M. Gell-Mann [4] and Y. Ne’eman [5], this particle was discovered in 1964 [6]. In the traditional quark model, hadrons can be categorized into two families: baryons made of three quarks and mesons made of one quark and one antiquark. Both mesons and baryons are color singlets. During the last four decades, baryons containing heavy quarks have been a focus of much attention, especially since the development of the efficient theory of heavy quarks and its application to baryons containing a single heavy quark. In recent years, a variety of theories and experiments have been proposed for the study of heavy flavor baryon. Heavy quark provides a "flavor tag" that can be used as a window into the depths of the color confinement, or at least a window allowing us see further under the nonperturbative QCD epidermis than the light baryons do. In the process of establishing cognition of different energy scale QCD, a rich dynamical study on heavy flavor baryons and their properties is urgently needed.

In the past three decades, various phenomenological models have been used to study heavy baryons, including the relativized potential quark model [7], the Feynman-Hellmann theorem [8], the combined expansion in $1/m_Q$ and $1/N_c$ [9], the relativistic quark model [10], the chiral quark model [11], the hyperfine interaction [12, 13], the pion induced reactions [14], the variational approach [15], the Faddeev approach [16], the constituent quark model [17], the unitarized dynamical model [18], the extended local hidden gauge approach [19], the unitarized chiral perturbation theory [20], etc. There are also many Lattice QCD studies [21, 22], et al.

As well as, there are numerous experimental groups to investigate heavy baryons. Some mass spectra, width, lifetime, decays and form factors of heavy baryons have been reported but the spin and parity identification of some states are still missing. By now, all the ground state charmed baryons containing a single charm quark have been well established both experimentally and theoretically [23]. The lowest-lying orbitally excited charmed states $\Lambda_c(2959)^0(J^P=1/2^-$), $\Lambda_c(2625)^0(J^P=3/2^-$), $\Xi_c(2790)^0(J^P=1/2^-$) and $\Xi_c(2815)^0(J^P=3/2^-$) have been well observed by several collaborations, which made the two $SU(4)$ multiplets complete [24–28]. Besides that, several P-wave charm baryon candidates $\Sigma_c(2800)$, $\Xi_c(2980)$ and $\Xi_c(3080)$ were also well observed by the Belle and BABAR collaborations [28–31]. In 2017, the LHCb collaboration reported their observation of five new narrow excited Ω^0_c states decaying to $\Xi^+_cK^-$, based on samples of pp collision data corresponding to integrated luminosities of 1.0, 2.0, and 0.3 fb$^{-1}$ at center-of-mass energies of 7, 8, and 13 TeV, respectively [32]. In future, the experiments at JPARC, PANDA [33] and LHCb are expected to give further information on charmed baryons pretty soon.

These heavy baryons provide us an ideal platform to deepen our understanding of the non-perturbative QCD. Therefore, people hope to fully understand their nature. In this paper, we study the $\Xi^+_cK^-$ bound state to predict the properties of Ω^0_c states decaying to $\Xi^+_cK^-$ by simulating analysis. First, we generate pp collision events at $\sqrt{s}=7$ and 13 TeV to obtain the hadrons of Ξ^+_c and K^- using the parton and hadron cascade model (PACIAE) [34]. Then we use a dynamically constrained phase space coalescence model (DCPC) [35, 36] to produce $\Xi^+_cK^-$ bound states for the study of Ω^0_c. Here, we mainly simulate and study four different excited resonance Ω^0_c states of $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and

* Corresponding Author: chengang1@cug.edu.cn
II. PACIAE MODEL AND DCPC MODEL

The parton and hadron cascade model PACIAE [34] is based on PYTHIA 6.4 to simulate various collision, such as e^+e^-, pp, $p-A$ and $A-A$ collisions. In general, PACIAE has four main physics stages consisting of the parton initiation, parton rescattering, hadronization, and hadron rescattering. In the parton initiation, the string fragmentation is switched off temporarily in PACIAE and di(anti)quarks are broken into (anti)quarks. This partonic initial state can be regarded as quark-gluon matter (QGM) formed inside the parton initialization stage in the pp collisions. Then the parton rescattering in QGM is taken into account by the $2 \rightarrow 2$ LO-pQCD parton-parton cross sections [38]. Their total and differential cross sections in the parton evolution is computed by the Lund string fragmentation model [38]. The final stage is the hadron rescattering. In the parton initiation, the string has four main physics stages consisting of the parton initialization stage in QGM, parton hadronization by the Lund string fragmentation model PACIAE, the final stage is the hadron rescattering. In the hadronization process, the parton can be hadronized by the Lund string fragmentation regime and/or the phenomenological coalescence model [38]. The final stage is the hadron rescattering process happening between the created hadrons until the hadronic freeze-out.

In the theoretical papers, the yield of nuclei (bound states) usually is calculated in two steps: First, the nucleons are calculated by the transport model. Then, the nucleons are calculated by the phase-space coalescence model based on the Wigner function [39, 40] or by the statistical model [41]. We proposed a dynamically constrained phase-space coalescence (DCPC) model to calculate the yield of nuclei(bound states) after the transport model simulations.

According to the DCPC model, the yield of a single particle is estimated by

$$ Y_1 = \int_{H \leq E} \frac{d\Omega_1 dp_1}{3\hbar}, \quad (1) $$

where E and H denote energy and the Hamiltonian of the particle, respectively. Furthermore, the yield of a cluster consisting of N particles is defined as following:

$$ Y_N = \int \cdots \int_{H \leq E} \frac{d\Omega_1 dp_1 \cdots d\Omega_N dp_N}{(3\hbar)^N}. \quad (2) $$

Therefore, the yield of a $\Xi^+_c K^-$ cluster in the DCPC model can be calculated by

$$ Y_{\Xi^+_c K^-} = \int \cdots \int \int_{H \leq E} \frac{d\Omega_1 dp_1 \cdots d\Omega_2 dp_2}{(3\hbar)^2}, \quad (3) $$

$$ \delta_{12} = \begin{cases} 1 & \text{if } 1 \equiv \Xi^+_c, 2 \equiv K^-; \\ m_{\Xi^+_c} - \Delta m \leq m_{\text{inv}} \leq m_{\Xi^+_c} + \Delta m, q_{12} \leq D_0; \\ 0 & \text{otherwise}. \end{cases} \quad (4) $$

where,

$$ m_{\text{inv}} = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}. \quad (5) $$

The q_{12} is the distance between the two particles (Ξ^+_c and K^-), $m_{\Xi^+_c}$ denotes the mass of Ξ^+_c, and Δm refers to its mass uncertainty. E_1, E_2 and p_1, p_2 denote the energies and momenta of the two particles (Ξ^+_c and K^-). Here, we assume that the diameter of the bound state $\Xi^+_c K^-$ is $D_0 = 1.74 \text{ fm}$.

III. RESULTS

We first simulate the pp collision events using the PACIAE model at $\sqrt{s} = 7$ and 13 TeV. The capability of PACIAE to describe the generation of the final state particles in pp collisions has been detailed in Refs. [35-42, 44].

In order to obtain a suitable set of model parameters, the results on the yield of Ξ^+_c and K^- were roughly fitted to the LHCb data in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ [46-53].

The simulation results with PACIAE agree well with the experimental results, as shown in Table I. It should be said that the yield of Ξ^+_c for the experiment data in the Tab. I is calculated by the ratio of the cross sections of Ξ^+_c to the D_0 meson and the ratio of Ξ^+_c to Ξ^+_c according to the data in Ref. [47, 50].

particles	PACIAE	Experiment data
K^-	0.286	0.286 ± 0.016
Ξ^+_c	7.40×10^{-5}	$7.47 \pm 0.14 \times 10^{-5}$

In this work, we assume that the narrow excited Ω^0_c states ($\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and $\Omega_c(3090)^0$) are the $\Xi^+_c K^-$ bound state generated through $\Omega^0_c \rightarrow \Xi^+_c K^-$, which is produced during the hadron evolution period. We use PACIAE transport model to generate 300 million events of pp collision at $\sqrt{s} = 7$ and 13 TeV, and input the final state particles Ξ^+_c and K^- into DCPC model to construct the clusters of $\Xi^+_c K^-$, as the Eq.(3) and (4). Then the characteristics of the narrow excited Ω^0_c states of $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and $\Omega_c(3090)^0$ can be studied.

Fig.1 shows the yield distributions of excited resonance states Ω^0_c in full rapidity phase space with Δm varying from 0.4 MeV to 100 MeV in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ and 13 TeV, including resonance states $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and $\Omega_c(3090)^0$, respectively. The values are shown in Table II.

From the Fig.1, we can see that the yield Y of the four excited resonant Ω^0_c states computed using PACIAE+DCPC model increase linearly with parameter $\ln \Delta m$, while Δm changes from 0.4 MeV to 100 MeV. The values are on the order of 10^{-7} to 10^{-4}. The yield of Ω^0_c in pp collision of $\sqrt{s} = 13 \text{ TeV}$ is more than the yield of it at $\sqrt{s} = 7 \text{ TeV}$.

In the LHCb experiment, the five new, narrow excited Ω^0_c states of the $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, $\Omega_c(3090)^0$, which is observed by LHCb experiment.
TABLE II: The yields of four new resonant Ω_c^0 states varies with Δm from 0.4 MeV to 100 MeV in pp collision at $\sqrt{s} = 7$ and 13 TeV, the data are obtained by Ω_c^0 states decaying to $\Xi_c^+ K^-$ bound states which compute using PACIE+DCPC model.

Δm (MeV)	$\sqrt{s} = 7$ TeV	$\sqrt{s} = 13$ TeV						
	$\Omega_c(3000)^0$	$\Omega_c(3050)^0$	$\Omega_c(3066)^0$	$\Omega_c(3090)^0$	$\Omega_c(3000)^0$	$\Omega_c(3050)^0$	$\Omega_c(3066)^0$	$\Omega_c(3090)^0$
0.4	3.40×10^{-7}	4.87×10^{-7}	5.4×10^{-7}	5.3×10^{-7}	5.1×10^{-7}	4.5×10^{-7}	5.9×10^{-7}	7.2×10^{-7}
1	8.23×10^{-7}	1.17×10^{-6}	1.25×10^{-6}	1.33×10^{-6}	1.18×10^{-6}	1.11×10^{-6}	1.49×10^{-6}	1.77×10^{-6}
1.75	1.43×10^{-6}	2.00×10^{-6}	2.14×10^{-6}	2.25×10^{-6}	1.96×10^{-6}	1.95×10^{-6}	2.69×10^{-6}	3.10×10^{-6}
2.25	1.84×10^{-6}	2.58×10^{-6}	2.79×10^{-6}	2.88×10^{-6}	2.52×10^{-6}	2.50×10^{-6}	3.47×10^{-6}	3.93×10^{-6}
4.35	3.79×10^{-6}	4.91×10^{-6}	5.26×10^{-6}	5.53×10^{-6}	4.94×10^{-6}	4.77×10^{-6}	6.46×10^{-6}	7.40×10^{-6}
10	8.04×10^{-6}	1.13×10^{-5}	1.17×10^{-5}	1.24×10^{-5}	1.08×10^{-5}	1.10×10^{-5}	1.50×10^{-5}	1.68×10^{-5}
15	1.21×10^{-5}	1.67×10^{-5}	1.75×10^{-5}	1.83×10^{-5}	1.61×10^{-5}	1.62×10^{-5}	2.25×10^{-5}	2.47×10^{-5}
30	2.36×10^{-5}	3.27×10^{-5}	3.46×10^{-5}	3.64×10^{-5}	3.08×10^{-5}	3.12×10^{-5}	4.49×10^{-5}	4.80×10^{-5}
60	4.08×10^{-5}	6.19×10^{-5}	6.56×10^{-5}	6.99×10^{-5}	5.32×10^{-5}	5.37×10^{-5}	8.59×10^{-5}	9.15×10^{-5}
100	6.32×10^{-5}	9.19×10^{-5}	1.00×10^{-4}	1.10×10^{-4}	8.22×10^{-5}	8.26×10^{-5}	1.31×10^{-4}	1.42×10^{-4}

$\Omega_c(3090)^0$, and $\Omega_c(3119)^0$ are observed and measurements of their masses and decaying widths are given separately. If we take half of the decay width of their mass as Δm parameter, then we may predict their yields, as shown in Table III. Fig. 2 shows the transverse momentum p_T distributions of the four excited resonant Ω_c^0 states of $\Omega_c(3050)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, and $\Omega_c(3090)^0$ in pp collision at $\sqrt{s} = 7$ and 13 TeV. In each panel, the red dashed line refers to the distribution in pp collision at $\sqrt{s} = 7$ TeV, the blue solid line corresponding to the $\sqrt{s} = 13$ TeV. The peak of p_T distributions is about 1.7 GeV. It can be seen from this figure that all the transverse momentum distribution characteristics of the produced excited resonant Ω_c^0 states are same to the special piece of excited resonant Ω_c^0 states. In the same way, the transverse momentum distribution characteristics of the produced excited resonant Ω_c^0 states is not sensitive to the reaction energy of pp collision.

In Fig. 3, we also predicted the rapidity distribution of excited resonant Ω_c^0 states ($\Omega_c(3050)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$) in pp collision at $\sqrt{s} = 7$ and 13 TeV. From this figure, one sees that the global features of rapidity distributions are similar to the different excited resonant Ω_c^0 states particles and different collision energies. But the rapidity distribution of $\sqrt{s} = 13$ TeV is slightly wider than the distribution at $\sqrt{s} = 7$ TeV. The rapidity distribution is symmetry and the range is about from 6 to -6.

IV. CONCLUSIONS

In this paper we simulate the generation of final state particles in pp collisions at $\sqrt{s} = 7$ and 13 TeV with PACIAE Model, which study the production of strange particles Ξ_c^+ and K^-, which are consistent with the
data of LHCb. Then the Ξ_c^+ and K^- are input into the DCPC model to construct the clusters of $\Xi_c^+ K^-$, and the characteristics of the new narrow excited Ω_c^0 states of $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$ and $\Omega_c(3090)^0$ are studied, based on the assumption that the new narrow excited Ω_c^0 states is $\Xi_c^+ K^-$ bound state. The results show that the transverse momentum distribution characteristics of the four different excited resonant Ω_c^0 states of $\Omega_c(3050)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, and $\Omega_c(3090)^0$ are all the same, and so is the rapidity. If we take half of the width of the mass decay as a parameter Δm, we may predict that the yield of the new narrow excited resonant Ω_c^0 states ($\Omega_c(3050)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$) computed in pp collisions at $\sqrt{s} = 7$ is 1.84×10^{-6}, 0.487×10^{-6}, 2.15×10^{-6} and 38.86×10^{-6}, respectively. As well as, when the reaction energy is 13 TeV, their corresponding yield is 2.52×10^{-6}, 0.453×10^{-6}, 2.69×10^{-6} and 73.73×10^{-6}, respectively. Obviously, the yield of these particles increases as the reaction energy increases.

The study of the new narrow excited Ω_c^0 states productions in pp collisions is under way. One may expect more diverse results in pp or Nucleus-nucleus collisions.
V. ACKNOWLEDGMENT

The authors thank Prof. Larisa V. Bravina (University of Oslo) for valuable comments. This work is supported by the NSFC (11475149, 11705167).

[1] L. B. Okun, The theory of weak interaction, in: High-energy physics. Proceedings, 11th International Conference, ICHEP’62, Geneva, Switzerland, Jul 4-11, 845-866 (1962).
[2] M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8 214-215 (1964).
[3] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version I is CERN preprint 8182/TH.401 (1964).
[4] M. Gell-Mann, The Eightfold Way: A Theory of strong interaction symmetry, (1961).
[5] Y. Ne’eman, Derivation of strong interactions from a gauge invariance, Nucl. Phys. 26 222-229 (1961).
[6] V. E. Barnes, et al., Observation of a Hyperon with Strangeness -3, Phys. Rev. Lett. 12 204-206 (1964).
[7] S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34, 2809 (1986).
[8] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Predicting the masses of baryons containing one or two heavy quarks, Phys. Rev. D 52, 1722 (1995).
[9] E. E. Jenkins, Heavy baryon masses in the 1/mQ and 1/Nc expansions, Phys. Rev. D 54, 4515 (1996).
[10] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612 (2008).
[11] X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008).
[12] L. A. Copley, N. Isgur, and G. Karl, Charmed baryons in a quark model with hyperfine interactions, Phys. Rev. D 20, 768 (1979).
[13] M. Karliner, B. Keren-Zur, H. J. Lipkin, et al., The quark model and b baryons, Ann. Phys. (Amsterdam) 324, 2 (2009).
[14] S. H. Kim, A. Hosaka, H. C. Kim, et al., Pion induced reactions for charmed baryons, Prog. Theor. Exp. Phys., 103D01 (2014).
[15] W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008).
[16] H. Garcilazo, J. Vijande, and A. Varecarce, Faddeev study of heavy baryon spectroscopy, J. Phys. G 34, 961 (2007).
[17] P. G. Ortega, D. R. Entem, and F. Fernandez, Quark model description of the Λ(2940) + as a molecular DN state and the possible existence of the Λ0(6248)+, Phys. Lett. B 718, 1381 (2013).
[18] C. Garcia-Recio, J. Nieves, O. Romanets, et al., Odd parity bottom-flavored baryon resonances, Phys. Rev. D 87, 034032 (2013).
[19] W. H. Liang, C. W. Xiao, and E. Oset, Baryon states with open beauty in the extended local hidden gauge approach, Phys. Rev. D 89, 054023 (2014).
[20] J. X. Lu, Y. Zhou, H. X. Chen, et al., Dynamically generated J^P = 1/2− singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015).
[21] K. C. Bowler, R. D. Kenway, O. Oliveira, et al., (UKQCD Collaboration), Heavy baryon spectroscopy from the lattice, Phys. Rev. D 54, 3619 (1996).
[22] T. Burch, C. Hagen, C. B. Lang, M. Limmer, and A. Schafer, Excitations of single-beauty hadrons, Phys. Rev. D 79, 014504 (2009).
[23] K. A. Olive et al. (Particle Data Group Collaboration), Review of particle physics, Chin. Phys. C 38, 000001 (2014).
[24] H. Albrecht et al. (ARGUS Collaboration), Observation of a new charmed baryon, Phys. Lett. B 317, 227 (1993).
[25] P. L. Frabetti et al. (E687 Collaboration), An Observation of an Excited State of the Λ^+ Baryon, Phys. Rev. Lett. 72, 961 (1994).
[26] K. W. Edwards et al. (CLEO Collaboration), Observation of Excited Baryon States Decaying to Λ^+ + π^+π^−, Phys. Rev. Lett. 74, 3331 (1995).
[27] J. P. Alexander et al. (CLEO Collaboration), Evidence of New States Decaying into Σ^+ π^−, Phys. Rev. Lett. 83, 3390 (1999).
[28] R. Mizuk et al. (BELLE Collaboration), Observation of an Isotriplet of Excited Charmed Baryons Decaying to Λππ, Phys. Rev. Lett. 94, 122002 (2005).
[29] B. Aubert et al. (BABAR Collaboration), Measurements of B(→ Λ^+ K^− π^+) and B(B^− → Λ^+ π^−) and studies of Λ^+ π^− resonances, Phys. Rev. D 78, 112003 (2008).
[30] R. Chistov et al. (BELLE Collaboration), Observation of new states decaying into Λ^+ K^− and Λ^+ K^0 π^−, Phys. Rev. Lett. 97, 162001 (2006).
[31] B. Aubert et al. (BABAR Collaboration), A study of excited charm-strange baryons with evidence for new baryons Ξ(3055)^+ and Ξ(3123)^+, Phys. Rev. D 77, 012002 (2008).
[32] R. Aaij, et al., (LHCb collaboration), Observation of Five New Narrow Ω^+ States Decaying to Ξ^+ K^−, Phys. Rev. Lett. 118, 182001 (2017).
[33] B. Singh et al. (Panda Collaboration), Feasibility studies of time-like proton electromagnetic form factors at ΠANDA at FAIR, arXiv: 1606.01181v1, (2016).
[34] Sa B H , Zhou D M , Yan Y L, et al. PACIAE 2.0: An updated parton and hadron cascade model (program) for the relativistic nuclear collisions. Computer Physics Communications, 183(2), 333-346 2012.
[35] Y.-L. Yan, G. Chen, X.-M. Li, et al., Predictions for the production of light nuclei in pp collisions at √s = 7 and 14 TeV, Phys. Rev. C 85, 024907 (2012).
[36] G. Chen, Y.-L. Yan, D.-S. Li, et al., Antimatter production in central Au+Au collisions at √sNN =200 GeV, Phys. Rev. C 86, 054910 (2012).
[37] G. Chen, H. Chen, J.Wu, D. S. Li, and M. J. Wang, Centrality dependence of light (anti)nuclei and (anti)hypertriton production in Au+Au collisions at √sNN =200 GeV, Phys. Rev. C 88, 034908 (2013).
[38] Sjostrand, Törbjorn, et al., PYTHIA 6.4 physics and manual, JHEP, 05 026 (2006).
[39] R. Mattiello, et al., Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10 − 15)A GeV, Phys. Rev. C 55 1443 (1997).
[40] S. Zhang, J. H. Chen, et al., Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations, Phys. Lett. B, 684 224 (2010).
[41] A. Andronic, P. Braun-Munzinger, et al., Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions, Phys. Lett. B, 697 203 (2011).
[42] G. Chen, H. Chen, M.J. Wang, et al., Scaling Properties of light (anti)nucliei and (anti)hypertriton production in Au+Au collisions at \(\sqrt{s_{NN}} =200 \) GeV, J. Phys. G: Nucl. Part. Phys. 41, 115102 (2014).
[43] Z.J. Dong, Q.Y. Wang, G. Chen, et al., Energy dependence of light (anti)nucliei and (anti)hypertriton production in the Au-Au collision from \(\sqrt{s_{NN}} =11.5 \) to 5020 GeV, Eur. Phys. J. A 54, 144 (2018).
[44] Z.L. She, G. Chen, et al., Centrality dependence of light (anti)nucliei and (anti)hypertriton production in Pb-Pb collisions at \(\sqrt{s_{NN}} =2.76 \) TeV, Eur. Phys. J. A 52, 93 (2016).
[45] P. Sittiketkorn, K. Tomuang, et al., Production of \(K^-P \) and \(K^+\bar{P} \) bound states in \(pp \) collisions and interpretation of the \(\Lambda(1405) \) resonance, Phys. Rev. C 96, 064002 (2017).
[46] ALICE Collaboration Measurement of pion, kaon and proton production in proton-proton collisions at \(\sqrt{s} =7 \) TeV, Eur. Phys. J. C 75, 226 (2015).
[47] ALICE Collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \(\sqrt{s} =7 \) TeV, Eur. Phys. J. C 77, 550 (2017).
[48] ALICE Collaboration, First measurement of \(\Xi_c^0 \) production in pp collisions at \(\sqrt{s} =7 \) TeV, Phys. Lett. B 718, 8-19 (2018).
[49] LHCb Collaboration, Precision measurement of the \(\Lambda_c^+, \Xi_c^+, \Xi_c^0 \) baryon lifetimes, Phys. Rev. D 100, 032001 (2019).
[50] Particle Data Group Collaboration, REVIEW OF PARTICLE PHYSICS*, Phys. Rev. D 98, 030001 (2018).
TABLE III: The value of the four new excited resonant Ω_c^0 states in pp collision at $\sqrt{s} = 7$ and 13 TeV, computed using PACIAE+DCPC model, where $\Delta m = \Gamma/2$ \cite{32}.

Resonance	Δm (MeV)	Yield (7 TeV)	Yield (13 TeV)
$\Omega_c(3000)^0$	2.25 ± 0.30	1.84×10^{-6}	2.52×10^{-6}
$\Omega_c(3050)^0$	0.40 ± 0.10	4.87×10^{-7}	4.53×10^{-7}
$\Omega_c(3066)^0$	1.75 ± 0.20	2.14×10^{-6}	2.69×10^{-6}
$\Omega_c(3090)^0$	4.35 ± 0.52	5.53×10^{-6}	7.40×10^{-6}