Деформируемость горной массы в теле каменно-набросных плотин

М.П. Саинов
Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); г. Москва, Россия

АННОТАЦИЯ
Введение. Основным фактором, определяющим напряженно-деформированное состояние (НДС) каменно-набросных плотин с железобетонным экраном является деформируемость материала тела плотины, в качестве которого чаще всего выступает горная massa. Однако в силу технических сложностей деформативные свойства каменной наброски в настоящий момент изучены недостаточно.

Материалы и методы. Для определения параметров деформируемости горной массы были проведены сбор и анализ научно-технической информации о результатах лабораторных испытаний горной массы в стабилометрах, а также о натурных деформациях реальных каменно-набросных плотин. Далее выполнено сопоставление лабораторных и натурных измерений по значениям модуля линейной деформации каменной наброски. Для определения параметров нелинейной модели деформируемости каменной наброски проведены обработка и анализ результатов лабораторных испытаний.

Результаты. Анализ данных натурных наблюдений показал, что деформируемость горной массы в реальных плотинах изменяется в широких пределах — ее модуль линейной деформации может измениться от 30 до 500 МПа. Установлено, что результаты большинства испытаний горной массы, выполненных в лабораторных условиях, как правило, примерно соответствуют нижней границе интервала изменения модуля деформации каменной наброски в теле реальных плотин. Это объясняется несоответствием плотности, а также крупности частиц модельных и реальных грунтов. Лишь в последнее время появились результаты экспериментальных испытаний каменной наброски, которые коррелируют с результатами натурных измерений. Они свидетельствуют о том, что в зависимости от напряженного состояния модуль линейной деформации каменной наброски может достигать 700 МПа. Обработка результатов этих экспериментов позволила установить параметры нелинейной модели, описывающей деформируемость каменной наброски в теле плотины.

Выводы. Полученные данные позволят повысить достоверность исследований НДС каменно-набросных плотин, а также исследовать влияние нелинейного характера деформирования каменной наброски на НДС железобетонного экрана каменно-набросных плотин.

КЛЮЧЕВЫЕ СЛОВА: каменная наброска, модуль деформации, стабилометрические испытания, каменно-набросные плотины с железобетонным экраном, нелинейная модель, дилатансия

ДЛЯ ЦИТИРОВАНИЯ: Саинов М.П. Деформируемость горной массы в теле каменно-набросных плотин // Строительство: наука и образование. 2019. Т. 9. Вып. 3. Ст. 5. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2019.3.5

Деформация of rockfill in bodies of rockfill dams

Mikhail P. Sainov
Moscow State University of Civil Engineering (National Research University) (MGSU); Moscow, Russian Federation

ABSTRACT
Introduction. The main factor determining the stress-strain state (SSS) of rockfill dam with reinforced concrete faces is deformability of the dam body material, mostly rockfill. However, the deformation properties of rockfill have not been sufficiently studied yet for the time being due to technical complexity of the matter.

Materials and methods. To determine the deformation parameters of rockfill, scientific and technical information on the results of rockfill laboratory tests in stabilometers were collected and analyzed, as well as field data on deformations in the existing rockfill dams. After that, the values of rockfill linear deformation modulus obtained in the laboratory and in the field were compared. The laboratory test results were processed and analyzed to determine the parameters of the non-linear rockfill deformation model.

Results. Analyses of the field observation data demonstrate that the deformation of the rockfill in the existing dams varies in a wide range: its linear deformation modulus may vary from 30 to 500 MPa. It was found out that the results of the most rockfill tests conducted in the laboratory, as a rule, approximately correspond to the lower limit of the rockfill deformation modulus variation range in the bodies of the existing dams. This can be explained by the discrepancy in density and particle...
ВВЕДЕНИЕ

В настоящее время в различных странах мира, особенно в Китае, активно строятся каменно-набросные плотины с железобетонным экраном [1–2]. У плотин этого типа множество преимуществ, которые делают перспективными их применение и в России, особенно при строительстве крупных гидроузлов. Однако для возможности строительства в России каменно-набросных плотин с железобетонным экраном необходимо решить научную проблему, связанную с недостаточным уровнем надежности противофильтрационного элемента. Имеется ряд случаев, когда целостность железобетонного экрана была нарушена [1, 3–8]. Например, в железобетонном экране плотины Campos Novos (Бразилия) образовалась целая система крупных трещин [1, 5].

В настоящее время нет целостного и однозначного представления о причинах образования трещин в железобетонных экранах. Но совершенно очевидно, что одной из основных причин трещинообразования служит неблагоприятный характер деформаций тела каменно-набросной плотины 1. В этой связи актуальным вопросом является изучение деформативных свойств каменной наброски горной массы.

Цель данной статьи — формулирование рекомендаций по назначению параметров моделей деформирования каменной наброски при выполнении расчетов напряженно-деформированного состояния (НДС) каменно-набросных плотин с железобетонным экраном. При этом рассматривается каменная наброска только из горной массы, полученной искусственно из скальной породы.

МАТЕРИАЛЫ И МЕТОДЫ

Для решения поставленной задачи был проведен сбор и анализ информации, содержащейся в научно-технических источниках. Анализ показал, что деформативные свойства каменной наброски тела современных каменно-набросных плотин изучены недостаточно.

Существует два основных способа изучения деформативных свойств каменной наброски, которые условно можно назвать экспериментальным и расчетным.

Первый (экспериментальный) способ — это испытания образцов каменной наброски в лабораторных условиях с помощью специализированного оборудования. Однако этот путь — технически сложный. Это связано с тем, что каменная наброска представляет собой не просто крупнообломочный грунт, а грунт с наличием очень крупных фракций. Например, в теле плотин Aguamilpa (Мексика), Cathana (Австралия), Alto Anchicaya (Колумбия) в верховую часть плотины уложен грунт с максимальным размером зерен 500 мм [9]. Максимальная крупность частиц каменной наброски в плотине La Yesca (Мексика) составляет 900 мм [9]. Для испытания таких грунтов требуются крупномасштабные приборы. Еще одна сложность состоит в том, что испытания грунта должны проводиться при высоких давлениях, присущих высоким каменно-набросным плотинам. Например, в каменно-набросной плотине высотой около 200 м давление от собственного веса каменной наброски может достигать 3,5 МПа. По вышеуказанным причинам лабораторные испытания горной массы проводились довольно редко, соответственно информации о результатах немногочисленна. В данной статье для анализа были использованы источники [10–13].

Гипотетически также возможно проведение экспериментальных испытаний каменной наброски непосредственно в теле плотины, однако такие исследования еще более затруднительны, чем лабораторные, и информации о них нет.

Второй (расчетный) способ определения деформативных свойств каменной наброски основан на анализе данных натурных наблюдений за деформациями реальных плотин. Зная перемещения плотины под действием известных нагрузок, мож-
но вычислить деформативные характеристики ее материала. Информация о результатах натурных наблюдений приведена в работах [14–17], в них же приведен их анализ. Недостаток расчетного способа заключается в сложности интерпретации данных натурных наблюдений (которые как правило неполные), а также в сложности исключения учета влияния на деформации плотины иных факторов (например, неоднородности строения плотины).

Нами было решено использовать оба способа в совокупности, так как это позволяет проверить достоверность получаемых данных и соответственно дать более обоснованные рекомендации.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Описание лабораторных испытаний каменной наброски

Впервые лабораторные исследования деформативных свойств каменной наброски проведены в 1960–1970-х гг. Это исследования Marsal и Marachi. Для этих исследований были построены специальные крупномасштабные приборы — стабилометры (приборы трехосного сжатия) и одометры (приборы одноосного сжатия).

Преимуществом стабилометра по сравнению с одометром является то, что он позволяет исследовать прочность и деформируемость грунта при различных видах напряженного состояния. Стандартная схема испытаний цилиндрических образцов грунта в стабилометре предусматривает проведение испытания в две стадии. На первой стадии производится предварительное обжатие образца всесторонним давлением, а на второй — осуществляется увеличение вертикального давления при неизменном боковом давлении. Вторая стадия носит название диверторного нагружения, так как при нем происходит изменение формы образца. Как правило, опыты проводятся для различных вариантов величины бокового обжатия. При испытаниях фиксируется вертикальное давление δ1, боковое давление δ3, вертикальная осевая деформация е1, и объемная деформация еv. По величинам е1 и еv возможен подсчет радиальной осевой деформации.

Стабилометрическая установка, использованная Marsal (Мексика), позволяла испытывать цилиндрические образцы грунта высотой 250 см и диаметром 113 см. Marsal осуществлял испытания при вертикальном давлении свыше 10 МПа и горизонтальном давлении до 2,5 МПа. Испытывались грунты с диаметром частиц до 180 мм. Результаты испытаний горной массы диорита, проведенных Marsal, показаны на рис. 1.

Marachi проводил испытания каменной наброски в одометре и стабилометре для плотин Orovill и Pyramid (США). Диаметр образца грунта составлял до 910 мм. Испытания проводились при вертикальном давлении до 18 МПа, при горизонтальном — до 4 МПа. Испытывались грунты с диаметром частиц до 150 мм. Исследованные Marachi щебенистые грунты имели плотность почти 1,9 т/м3. Результаты испытаний образцов дробленного базальта, проведенных Marachi, показаны на рис. 2.

Во ВНИИГ им. Б.Е. Веденеева (СССР) для испытаний грунтов применялся стабилометр ПТС-300, в котором образец грунта имеет диаметр 300 мм и высоту 650 мм. На этом приборе проводились испытания модельных грунтов каменной наброски плотин Тери, Зарамагских ГЭС [18].

Однако, необходимо отметить, что несмотря на внушительные размеры использованных стабилометров, полученные результаты не всегда точно отражают реальные условия работы плотин.

Рис. 1. Результаты испытаний (Marsal) горной массы диорита при девиаторном нагружении: а — зависимость между σ1 – σ3 и осевой вертикальной деформацией е1; б — зависимость между осевой вертикальной деформацией е1 и радиальной деформацией еr. Цифрами обозначено давление бокового обжатия в МПа.
трических установок, как правило, в них испытывались не реальные грунты тела плотины, а их мелкозернистые аналоги. Максимальный размер частиц назначался не более 1/5 от диаметра образца. Кроме того, проведенные экспериментальные исследования имели ещё один существенный недостаток. Как правило, грунт, испытанный в лаборатории, сильно отличался по плотности от реального. Например, Marsal проводил испытания горной массы диорита при плотности 1,7 т/м³, в то время как в реальных плотинах того времени каменная наброска уплотнялась катками до плотности около 2 т/м³.

Тем не менее проведённые лабораторные испытания позволили получить ценную информацию о поведении каменной наброски под действием нагрузок. Было выявлено, что деформируемость каменной наброски имеет ярко выраженный нелинейный характер — её деформируемость сильно изменяется в процессе испытания и зависит не только от величины внешних нагрузок, но и от вида напряженного состояния (рис. 1, 2). Установлено, что большое значение для деформируемости и прочности каменной наброски имеет боковое обжатие. Чем оно больше, тем ниже деформируемость грунта и выше его прочность. По мере приближения к предельному состоянию деформируемость каменной наброски возрастает (снижается величина модуля линейной деформации). Разрушение образца грунта фиксируется по резкому увеличению осевой деформации.

Эксперименты выявили, что в процессе нагрузения изменяется не только модуль деформации грунта, но и его коэффициент Пуассона ν. При высоких давлениях бокового обжатия на начальной стадии девиаторного нагружения величина ν может быть отрицательной (рис. 1, b). Для каменной наброски ярко выражены явления дилатации и контракции, когда объемная деформация грунта зависит не только от напряжений всестороннего обжатия, но и от напряжений сдвига. На начальном этапе девиаторного нагружения наличие в грунте касательных напряжений приводит к дополнительному уменьшению объема образца, т.е. к контракции. При высоких (по сравнению с напряжениями бокового обжатия) напряжениях сдвига грунта рост ведет к разуплотнению грунта, т.е. к дилатации (рис. 2, b). Разрушение образца грунта связано с нарушением структурных связей между частицами при увеличении объема по сравнению с исходным.

На основе данных экспериментальных исследований Marsal и Marachi были созданы нелинейные модели для описания нелинейного характера деформирования каменной наброски, а полученные параметры деформируемости каменной наброски использованы для прогноза НДС строившихся плотин.

Позже экспериментальное изучение деформируемости каменной наброски было выполнено Gupta [10], Linero [11], Chavez [12] и другими исследователями.

A.K. Gupta испытывал модельные крупнообломочные грунты с размером частиц 25…80 мм в стабилометре со следующими размерами образца грунта: диаметр 381 мм и высота 813 мм [10]. Результаты испытаний щебенистых грунтов, выполненные Gupta, показаны на рис. 3.

В исследованиях Linero и др. (Чилийский университет в Сантьяго) использовалась крупно-масштабная стабилометрическая установка, позволяющая испытывать образцы грунта диаметром 1000 мм и высотой 2000 мм [11]. Опыты проводились с горной массой гранодиоритов. Удельный вес испытанной горной массы составлял 18,5 кН/м³. Испытания выполнялись для разных способов выбора
Деформируемость горной массы в теле каменно-набросных плотин С. 1–22

Сравнение результатов лабораторных испытаний и натурных наблюдений.

Параллельно с экспериментальным использовался и расчетный способ исследований деформируемости каменной наброски. Накопление данных натурных наблюдений за деформациями построенных каменно-набросных плотин позволило Pinto и Marques [14], Hunter [15], Fitzpatrick\(^5\) провести анализ поведения каменной наброски в реальных условиях. К настоящему времени больше накоплено данных натурных наблюдений [16–20]. В работах [21–23] в помощь численного моделирования был проведен так называемый обратный расчетный анализ (back-analys) параметров деформирования каменной наброски на основе сопоставления расчетных данных с данными натурных наблюдений.

Все эти исследования выявили, что модуль деформации каменной наброски при восприятии сил собственного веса и гидростатического давления различается. В работе [20] расчетным путем нами было установлено, что секущий модуль деформации каменной наброски при восприятии сил собственного веса составляет около 30…250 МПа.

Рис. 3. Результаты испытания Gupta щебенистого грунта при девиаторном нагружении: \( a \) — зависимость между \( \sigma_1 - \sigma_3 \) и осевой вертикальной деформацией \( e'_v \); \( b \) — зависимость между осевой вертикальной деформацией \( e'_v \) и объемной деформацией \( e'_o \). Цифрами обозначено давление бокового обжатия в МПа

Рис. 4. Результаты испытания Linero горной массы базальта при девиаторном нагружении: \( a \) — зависимость между \( \sigma_1 - \sigma_3 \) и осевой вертикальной деформацией \( e'_v \); \( b \) — зависимость между осевой вертикальной деформацией \( e'_v \) и объемной деформацией \( e'_o \). Цифрами обозначено давление бокового обжатия в МПа

\(^5\) Fitzpatrick M.D., Cole B.A., Kinstler F.L., Knoop B.P. Design of concrete-faced rockfill dams. In concrete face rock fill dams: design, construction and performance. Eds J.B. Cooke, J.L. Sherard. New York, NY, USA : American Society of Civil Engineers, 1985. Pp. 410–434.
а при восприятии гидростатического давления — 60…500 МПа.

В работе [24] путем обратного расчетного анализа установили, что в плотине Aguamilpa секущий модуль линейной деформации каменной наброски находится в пределах от 30 МПа (низовая часть упорной призмы) до 500 МПа (верховая часть).

Наличие данных о модулях деформации в реальных условиях позволило выполнить оценку ее достоверности лабораторных экспериментальных испытаний. Для опытов Marsal, Marachi, Linero и учеными Далянского университета (Jia, Xu, Chi, Xiang, Zhou) были вычислены значения секущего модуля линейной деформации для различных условий нагружения. Они представлены на одном графике (рис. 5), что позволяет провести их сравнение.

Рис. 5. Значения модуля линейной деформации каменной наброски (щебенистых грунтов) по результатам экспериментальных испытаний, выполненных различными авторами

Из графика на рис. 5 хорошо видно, что в начальный момент девиаторного нагружения (когда соотношение главных напряжений $\sigma_1/\sigma_3$ близко к 1) модули линейной деформации достигают больших значений. В опытах Marsal они составляют (в среднем) около 100 МПа, а в опытах Marachi и Linero — около 200 МПа. По мере увеличения напряжений сдвижа значения модуля линейной деформации резко падают. Уже при $\sigma_1/\sigma_3 = 3$ у Marsal и Linero значения модуля деформации снижаются до 30…70 МПа. Эти значения гораздо меньше, чем те, которые наблюдаются в натурных условиях. Лишь у Marachi значения модуля при $\sigma_1/\sigma_3 < 3$ держатся на уровне около 100 МПа. Это показывает, что каменная наброска в опытах Marsal и Linero имеет высокую деформируемость. Она объясняется тем, что испытанные крупнообломочные грунты имели низкую плотность, не соответствующую реальным условиям. Напомним, в опытах Marsal плотность горной массы составляла 1,7 т/м³, а в опытах Linero — в среднем 1,85 т/м³. Вместе с тем в настоящее время горная масса в теле каменно-набросочных плотин может уплотняться до плотности 2,2 т/м³ и даже выше.

Таким образом, представленные данные лабораторных испытаний не пригодны для использования в исследованиях НДС каменно-набросных плотин, для построения нелинейных моделей ее деформируемости и прочности. По этим данным нельзя установить значения параметров нелинейной модели, соответственно применение в расчетах нелинейной модели не обеспечивает повышения достоверности прогнозного моделирования.

Однако в последнее время появились результаты более совершенных испытаний каменной наброски. Они были проведены в Далянском технологическом университете [13]. Испытания проводились в стабилометре диаметром 300 мм и высотой 600 мм. Использовался модельный грунт

Рис. 6. Результаты испытания в Далянском техническом университете горной массы при девиаторном нагружении: $a$ — зависимость между $\sigma_1 - \sigma_3$ и интенсивностью сдвиговых деформаций $\Gamma$; $b$ — зависимость между интенсивностью сдвиговых деформаций $\Gamma$ и объемной деформацией $e_r$. Цифрами обозначено давление бокового обжатия в МПа

*Радченко В.Г., Курнева Е.В., Ротченко Ю.Г. Современные технологии строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2007. № 10. С. 25–32.
с максимальным размером частиц 60 мм. Испытывалась горная масса базальта, имеющая плотность 2,21 т/м³, что соответствует грунту реальных плотин. Боковое давление достигало 2 МПа, вертикальное — до 10 МПа. Результаты испытаний показаны на рис. 6.

Подсчет модулей линейной деформации \( E \), полученных в экспериментах Дальнего технологического университета, показал, что они значительно выше, чем у других авторов. Они, как правило, больше 100 МПа (рис. 5). При \( \sigma_1/\sigma_3 \approx 1 \) значение \( E \) достигает 500…600 МПа. Это примерно в 5 раз выше, чем у Marsal и в 3 раза выше, чем у Marachi и Linero. В среднем значение \( E \) соответствует около 250 МПа, что близко к среднему значению модуля линейной деформации, полученного в натурных условиях. Можно считать, что результаты экспериментов, проведенных в Дальневосточном технологическом университете, корреспондируются с данными натурных наблюдений и могут быть использованы для построения моделей поведения реальных плотин. Решение указанной задачи было следующим этапом нашего исследования.

Построение модели деформирования каменной наброски на основе результатов экспериментальных исследований.

Задачей этого этапа нашего исследования явилось формирование математической модели, описывающей деформирование крупнообломочного грунта в условиях стабилометрического испытания, проведенного китайскими исследователями.

За основу была принята модель, предложенная проф. Л.Н. Рассказовым [25]. Одним из оснований модели является гипотеза, что направление векторов приращений напряжений и деформаций совпадает. Это позволяет записать модель в виде скалярной зависимости между приращениями напряжений и деформациями при полученных параметрах, удачно «вписывается» в стабилометре.

По этой причине нами был использован следующий косвенный способ. Принималось, что на начальном участке деформаторного нагружения явление контракции проявляется слабо, поэтому значение отношения приращения среднего напряжения при полученных параметрах, удачно «вписывается» в модель объемной деформации. В результате обработки результатов экспериментов были получены параметры степенной зависимости по определению \( E_0^2 \) (табл. 1).

Построение графиков изменения объемной деформации в зависимости от среднего напряжения (рис. 7, 8) показало, что степенная зависимость при полученных параметрах, удачно «вписывается» в результаты экспериментов. Сравнение рисунков хорошо показывает, что в опытах Marsal (рис. 7, a) горная масса примерно на порядок более сжимаема, чем в опытах Дальневосточного технологического университета (рис. 8). Повышение плотности сложения грунта происходит увеличение значения показателя степени \( n \) — характер деформирования грунта стремится к линейному.

При построении функциональной зависимости по определению модуля объемной деформации \( E_0^2 \) в модели Л.Н. Рассказова учитывается эффект снижения дефект контракции (дилатансии). Модель позволяет учитывать все основные проявления нелинейного характера деформирования грунта под нагрузкой. Для этого величины модуля объемной деформации \( E_0^2 \) и модуля сдвига \( G_0^2 \) не являются постоянными и изменяются в зависимости от НДС образца грунта.

При построении инерционной зависимости по определению модуля объемной деформации учитывается эффект снижения деформируемости грунта при росте напряжений всестороннего обжатия. Выражение для определения модуля объемной деформации записывается в виде степенной зависимости:

\[
E_0^2 = \sigma^{\alpha} \frac{E_0}{n},
\]

где \( \sigma \) — среднее напряжение; \( E_0 \) — параметр, связанный с начальным значением модуля объемной деформации при \( \sigma = 1 \) и времени \( t \to \infty \); \( n \) — эмпирический показатель степени.

Нами были определены параметры этой зависимости. Их поиск осложняется отсутствием в данных экспериментальных испытаний информации о деформируемости каменной наброски на участке всестороннего сжатия. Это объясняется несовершенством способа измерения деформаций грунтового образца в стабилометре.

Параметры зависимости по определению модуля объемной деформации

| Параметр | Marsal | Marachi | Gupta | Dalian |
|----------|--------|---------|-------|--------|
| \( E_0^2 \) МПа, при \( \sigma = 1 \) МПа | 10,0   | 51,8    | 21,0  | 138    |
| \( n \)      | 0,37   | 0,84    | 0,37  | 1,07   |
формируемости по мере увеличения бокового обжатия и эффект увеличения деформируемости по мере приближения прочностного состояния грунта к предельному. С учетом изменений, внесенных в модель нашей работой [18], выражение для определения модуля сдвига имеет вид:

\[ G^0 = \sigma_3^m \left( G_{0,upr} \exp(Bk - B) + G_{0,up} \exp(Bk - B) \right) \]

где \( m \) — эмпирический показатель степени; \( G_{0,upr} \) — начальный (при \( \sigma_3 = 1 \)) модуль сдвига для упругих деформаций; \( G_{0,up} \) — начальный (при \( \sigma_3 = 1 \)) модуль сдвига для пластических деформаций; \( k \) — коэффициент относительной прочности; \( B \) — эмпирический параметр, учитывающий количество разрушенных упругих связей.

Коэффициент относительной прочности \( k \) определяется в модели Л.Н. Рассказова через соотношение энергий деформирования [26].

Путем обработки экспериментальных данных нами были определены основные параметры этой зависимости — \( G_{0,upr} \) и \( m \). Они приведены в табл. 2. Эту степенную зависимость иллюстрирует также рис. 9.

Анализ показал, что в опытах Marsal и Gupta больше подвержены сдвиговым деформациям, чем в опытах Marachi (рис. 9). Тем не менее начальные модули сдвига даже при высоких напряжениях не превышают 100 МПа. В экспериментах Далайского технологического университета модули сдвига существенно, в 4…6 раз выше, чем у других исследователей. Сравнивая показатели степени \( m \) эмпирической зависимости для модуля сдвига можно сделать вывод, что при повышении плотности сложения грунта показатель степени уменьшается, стремясь к 0, т.е. грунт стремится к линейно деформируемому.

Отдельной, более сложной задачей, явилось построение математической модели для описания...
явлений дилатанции (контракции) крупнообломочного грунта. На рис. 7, 8 хорошо видно, что при девиаторном нагружении может происходить существенное доуплотнение (контракция) или разуплотнение (дилатанция) грунта по сравнению с деформациями на участке всестороннего сжатия. Только в опытах Gupta явление контракции проявилось довольно слабо.

В исходной модели проф. Л.Н. Рассказова для этого используется эмпирическая формула, в которой приращение объемной деформации, вызванное дилатансией (контракцией), считается пропорциональным приращению интенсивности сдвиговых деформаций ΔГ. Величина ΔГ определяется через второй инвариант девиатора приращений деформаций. Часть приращения объемной деформации, вызванная контракцией (дилатансией), обозначается как Δеd.

Выражение зависимости Δеd от ΔГ является довольно распространенным подходом. В частности, подобная зависимость используется в модели Hardening Soil [27].

Выражение для определения величины Δеd в модели Л.Н. Рассказова имеет вид:

\[ \Delta e_d = \text{sign}(\Gamma - \Gamma_0) M_d \frac{\Delta \Gamma}{\sigma}, \]

где \( M_d \) — модуль дилатанции, являющийся одной из констант модели.

Согласно приведенной выше формуле, объемная деформация от дилатанции снижается по мере увеличения сжимающих средних напряжений \( \sigma \). Формула описывает как явление дилатанции, так и контракции. Разграничение между этими двумя явлениями происходит при значении \( \Gamma_0 \), являющемся одной из констант модели.

Однако выполненная нами обработка результатов экспериментальных исследований деформируемости каменной наброски показала, что данная формула не всегда верно отражает происходящие при контракции (дилатации) процессы. Это видно из рис. 10, на котором показано изменение величины \( e_d \) в процессе девиаторного нагружения. Для построения данных рисунков величина \( e_d \) была определена как разница объемной деформации, измеренной в эксперименте, и объемной деформации, соответствующей нагрузкению при всестороннем сжатии. По оси абсцисс на графиках отложено соотношение \( T/\sigma \) (\( T \) — интенсивность сдвиговых напряжений; \( \sigma \) — среднее напряжение).

Из рис. 10 видно, что объемная деформация \( e_d \) от контракции увеличивается с напряжением обжатия, а не уменьшается. При малых напряжениях обжатия явления контракции вовсе не наблюдается. Кроме того, анализ результатов экспериментов позволил установить, что величина объемной деформации от контракции \( e_d \) не пропорциональна интенсивности сдвиговых деформаций \( \Gamma \).
Благодаря построению графиков (рис. 10) были сделаны следующие выводы:
- на начальном этапе девиаторного нагружения явление контракции практически не наблюдается;
- для каждого из экспериментов переход от контракции к дилатанции происходит при разных значениях $T$, соответственно величина $T_0$ не является константой;
- переход от контракции к дилатанции осуществляется при определенном соотношении $T/\sigma$, которое для горной массы близко к 1.

Нами было предложено считать величину $e_d$ пропорциональной не интенсивности сдвиговых деформаций $\Gamma$, а интенсивности сдвиговых напряжений $T$. Подобный подход использован другими авторами, например в работах [28, 29].

В связи с этим было предложено описывать явление контракции (дилатанции) следующей формулой:

$$\Delta e_d = \text{sign} \left( \frac{T}{\sigma} - t \right) M_d \frac{\Delta T}{\sigma}$$

В этой формуле $\Delta T$ — приращение интенсивности напряжений сдвига; $t$ — граничное значение соотношения $T/\sigma$, при котором контракция сменяется дилатансией. Необходимо отметить, что в соответствии с рис. 11 в этой формуле величина модуля дилатанции $M_d$ не является константой, а должна

Рис. 10. Изменение части объемной деформации $e_d$ вызванной контракцией (дилатансией) в процессе девиаторного нагружения по результаты обработки данных экспериментальных исследований: $a$ — эксперименты Marsal; $b$ — эксперименты Дальянского технологического университета. Цифрами на графиках обозначено давление бокового обжатия в МПа

Рис. 11. Сравнение результатов экспериментального исследования горной массы (проведенного в Дальянском технологическом университете) с результатами его математического моделирования: $a$ — зависимость между напряжениями и деформациями сдвига; $b$ — зависимость между объемной деформацией и интенсивностью деформаций сдвига
Деформируемость горной массы в теле каменно-набросных плотин

На рис. 11 показано сравнение результатов расчетов по математической модели с результатами экспериментов. Оно показало, что математическая модель удовлетворительно описывает результаты экспериментов при определенном состоянии грунта. Следовательно, предложенная математическая модель может быть использована для расчетов НДС каменно-набросных плотин.

ВЫВОДЫ

1. Полноценные лабораторные испытания каменной наброски довольно редки, так как требуют сложного специализированного оборудования. Крупнообломочные грунты, исследованные в большинстве лабораторных испытаний, не соответствуют по деформируемости грунту тела каменно-набросных плотин. Из-за недостаточной плотности испытуемого грунта его деформируемость завышена по сравнению с реальной. Лишь результаты экспериментов, проведенных в Далянском техническом университете, могут быть использованы для изучения деформируемости грунта современных каменно-набросных плотин.

2. Обработка результатов лабораторных испытаний позволила нам подобрать математическую модель, которая с необходимой точностью описывает деформирование каменной наброски в условиях стабилометрического испытания. За основу взята модель, предложенная Л.Н. Рассказовым, но в нее внесены совершенствующие изменения, особенно в части описания процессов сдвига и контракции (дилатации).

ЛИТЕРАТУРА

1. Ma H.Q., Cao K.M. Key technical problems of extra-high concrete faced rock-fill dam // Science in China Series E: Technological Sciences. 2007. Vol. 50 (S1). Pp. 20–33. DOI: 10.1007/s11431-007-6007-5
2. Радченко В.Г., Глаговский В.Б., Кассирова Н.А., Курнева Е.В., Дружинин М.А. Современное научное обоснование строительства каменнонабросных плотин с железобетонными экранами // Гидротехническое строительство. 2004. № 3. С. 2–8.
3. Marques Filho P., De Pinto N.L.S. CFRD dam characteristics learned from experience // The International Journal on Hydropower & Dams. 2005. No. 12 (1). Pp. 72–76.
4. Freitas M.S.Jr. Concepts on CFRDs leakage control — cases and current experiences // ISSMGE Bulletin. 2009. Vol. 3. Issue 4. Pp. 11–18.
5. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding // The International Journal on Hydropower & Dams. 2008. No. 15. Pp. 53–58.
6. Johannesson P., Tohlang S.L. Lessons learned from Mohale // The International Water Power & Dam Construction. 2007. Vol. 59. Issue 8. Pp. 16–18, 20–22, 24–25.
7. Song W.J., Sun Y., Li L., Wang Y. Cause analysis and treatment of 1st phase slab cracking of Shuibuya CFRD // Journal of Hydroelectric Engineering. 2008. Vol. 27. No. 3. Pp. 33–37.
8. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage // Advances in Civil Engineering. 2018. Vol. 2018. Pp. 1–10. DOI: 10.1155/2018/2951962
9. Alemán Velásquez J.D., Pantoja Sánchez A., Villegas Lesso S. Geotechnical studies and design of La
М.П. Саинов

Yesca Dam // 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering. 2011.
10. Gupta A.K. Triaxial behaviour of rockfill materials // Electronic Journal of Geotechnical Engineering — Ejege.com. 2009. Vol. 14. Bund J. Pp. 1–18. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.555.7873&rep=rep1&type=pdf
11. Linero S., Palma C., Apablaza R. Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing // Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, 2007. Pp. 59–75.
12. Chavez C., Alonso E.E. A constitutive model for crushed granular aggregates which includes suction effects // Soils and Foundations. 2003. Vol. 43. Issue 4. Pp. 215–227. DOI: 10.3208/sandf43.4.215
13. Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests // International Journal of Geomechanics. 2017. Vol. 17. Issue 10. P. 04017085. DOI: 10.1061/(ASCE)GM.1943-5622.0000977
14. Pinto N.L.S., Filho P.L.M. Estimating the maximum face slab deflection in CFRDs // The International Journal on Hydropower & Dams. 1998. Vol. 5. Issue 6. Pp. 28–30.
15. Hunter G., Fell R. Rockfill modulus and settlement of concrete face rockfill dams // Journal of Geotechnical and Geoenvironmental Engineering. 2003. Vol. 129. Issue 10. Pp. 909–917. DOI: 10.1061/(asce)1090-0241(2003)129:10(909)
16. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. case of Daegok dam // Journal of the Korean Geotechnical Society. 2005. Vol. 2013. Pp. 1–12. DOI: 10.1155/2013/709430
17. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Pp. 749–771. DOI: 10.1680/jgenv.17.P.095
18. Саинов М.П. Параметры деформируемости крупнообломочных грунтов в теле грунтовых плотин // Строительство: наука и образование. 2014. № 2. C. 2. URL: http://www.nso-journal.ru/public/journals/1/issues/2014/02/2_Sainov.pdf
19. Саинов М.П. Полузмпирическая формула для оценки осадок однородных грунтовых плотин // Приволжский научный журнал. 2014. № 3 (31). С. 108–115.
20. Сорока В.Б., Саинов М.П., Королев Д.В. Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния // Вестник МГСУ. 2019. Т. 14. Вып. 2 (125). С. 207–224. DOI: 10.22227/1997-0935.2019.2.207-224
21. Zhou M.-Z., Zhang B., Jie Y. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam // Soils and Foundations. 2016. Vol. 56. Issue 3. Pp. 379–390. DOI: 10.1016/j.sandf.2016.04.005
22. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer // Computers and Geotechnics. 2004. Vol. 31. Issue 7. Pp. 559–573. DOI: 10.1016/j.compgeo.2004.07.004
23. Zhao K., Li G., Shen Z. Back analysis of field monitoring data of Tianshengqiao CFRD // Journal Nanjing Hydro Res Institute. 2002. No. 4. Pp. 15–19.
24. Саинов М.П. Влияние зонирования камня в теле плотины на напряженно-деформированное состояние железобетонного экрана // Приволжский научный журнал. 2018. № 1 (45). С. 72–78.
25. Саинов М.П. Приближенная расчетная схема работы железобетонного экрана каменно-набросной плотины // Научное обозрение. 2016. № 18. С. 18–22.
26. Рассказов Л.Н., Джха Дж. Деформируемость и прочность грунта при расчете высоких грунтовых плотин // Гидroteхническое строительство. 1987. № 7. С. 31–36.
27. Sukkarak R., Pramthawee P., Jongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects // Geomechanics and Engineering. 2017. Vol. 14. No. 3. Pp. 211–224. DOI: 10.12989/gae.2018.14.3.211
28. Dong W., Hu L., Yu Y.Zh., Lv H. Comparison between Duncan and Chang’s EB model and the generalized plasticity model in the analysis of a high earth-rockfill dam // Journal of Applied Mathematics. 2013. Vol. 2013. Pp. 1–12. DOI: 10.1155/2013/709430
29. Pramthawee P., Jongpradist P., Kongkitkul W. Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams // Songklanakarin Journal of Science and Technology. 2011. No. 33 (3). Pp. 325–334.
INTRODUCTION

For the time being, in many countries of the world, especially in China, rockfill dams with reinforced concrete faces are built [1–2]. Dams of this type feature numerous advantages making them promising also in Russia, especially where large waterworks facilities are built. However, in the framework of feasibility studies whether it is possible to build rockfill dams with reinforced concrete face in Russia, it is necessary to solve a scientific problem associated with the insufficient reliability level of the infiltration stop element. In a number of cases, the integrity of the reinforced concrete face was damaged [1, 3–8]. For example, the reinforced concrete face of Campos Novos dam (Brazil), a system of big cracks appeared [1, 5].

At the moment, there is no integral and unambiguous idea of how cracks in reinforced concrete faces appear. But it is absolutely obvious that one of the main causes of such cracking is the unfavorable deformation behavior of rockfill dam bodies. In this connection, studies of the deformation properties of the rockfill becomes a vital problem.

It is the purpose of this paper to elaborate recommendations on assignment of parameters of deformation models of the rockfill in calculations of the stress-strain state of reinforced concrete face rockfill dams. Thereby, the rockfill is considered only of crushed rock formation.

MATERIALS AND METHODS

To solve the drafted problem, information contained in scientific and technical publications was collected and analyzed. The analysis demonstrates that the knowledge level of deformation properties of rockfill of the bodies of modern rockfill dam bodies is insufficient.

There are two principal methods to study the deformation properties of the rockfill which can be conventionally called experimental and analytical.

The first (experimental) method includes testing of rockfill samples in a laboratory by means of special equipment. But technically, this method is a complicated one. It is stipulated by the fact that the rockfill is not just macrofragmental soil, but a soil with very big rock fractions. For example, the upstream parts of the bodies of Aguamilpa (Mexico), Cethana (Australia), Alto Anlichaya (Columbia) dams are formed by soil with 500 mm maximum grain size [9]. The maximum particle size of the rockfill of La Yesca (Mexico) dam is 900 mm [9]. For testing of such soils, large-scale fixtures are required. Another complication is imposed by the requirement to test the soils under high pressures modeling the intrinsically high rock pressure values of high rockfill dams. E.g., in a rockfill dam of about 200 height, the rock pressure inside the rockfill may reach 3.5 MPa. For the above-stated reasons, laboratory tests of the rockfill were rather seldom, the information on the results is accordingly not abundant. The following sources were analyzed in this paper [10–13].

Hypothetically, it could be also possible to experiment with the rockfill immediately in a dam body, but such studies are even more complicated than laboratory tests, and there is no information on such studies.

The second (analytical) method of determining the deformation properties of the rockfill is based on the analysis of the field monitoring data of the deformation of existing dams. If displacements of a dam under known load impacts are known, it is possible to compute the deformation properties of its material. The information on the results of in-situ monitoring is set forth in papers [14–17], also followed by analyses thereof. The disadvantage of the analytical method is the complexity of the interpretation of the field monitoring data (which are, as a rule, incomplete), as well as huge allowances for miscellaneous factors of the dam deformation (e.g., non-uniformity of the dam structure).

We decided to combine both methods since it allows for obtained data validity checking consequently improving the substantiation of the elaborated recommendations.

RESULTS

Rockfill laboratory tests description

The first laboratory studies of rockfill deformation properties were carried out in 1960–1970ies. Those were studies by Marsal 8 and Marachi 9. Especially for those studies, large-scale instruments were built stabilometers (triaxial compression) and odometers (monaxial compression).

The advantage of the stabilometer, unlike the odometer, is that the instrument enables the operator to study the strength and the deformability of the soil in different types of stress state. A standard stabilometer test schedule of cylindrical soil samples assume tests being carried out in two stages. In the first stage, the sample under test is preliminarily compressed in cir-

8 Marsal R.J. Large scale testing of Rockfill Materials. Journal of Soil Mechanics and Foundations Division. ASCE. 1967; 93(2):27–43.
9 Marachi N.D., Chan C.K., Seed H.B. Evaluation of properties of rockfill materials. Journal of Soil Mechanics and Foundation Engineering. ASCE. 1972; 98(1):95-114.
cumference, whereas in the second stage, the vertical pressure is increased at constant circumferential pressure. The second stage is called deviation loading, since it causes the sample to change its shape. As a rule, experiments are conducted for different circumferential pressure values. The following test values are recorded: vertical pressure $\sigma_1$, circumferential pressure $\sigma_3$, vertical axial deformation $e_v$, and volume deformation $e_v$. Based on $e_v$ and $e_v$ values, it is possible to calculate the radial axis deformation.

The stabilometer fixture used by Marsal (Mexico), allowed for testing of cylindrical soil samples up to 250 cm height and 113 cm diameter. Marsal conducted tests at vertical pressures over 10 MPa and circumferential pressures of up to 2.5 MPa. Soils were tested with up to 180 mm particle size. Diorite rockfill test results by Marsal, see fig. 1.

Marachi was conducting odometer and stabilometer rockfill tests for Oroville and Pyramid (USA) dams. The sample diameter could be up to 910 mm. Samples were tested at up to 18 MPa vertical pressure and up to MPa circumferential pressure. Soils were tested with up to 150 mm particle size. Ballast soils studied by Marachi had the density of up to 1.9 t/m$^3$. Crushed basalt rockfill test results by Marsal, see fig. 2.

In WNIIG named after B.E. Vedeneyev (USSR) PTS-300 stabilometer was used for soil testing, with sample dia. 300 mm and sample height 650 mm. In this instrument, model soils of the rockfill of Teri, Zaramag-sky HPP dams were tested [18].

However, it should be noted, that in spite of the big sizes of the used stabilometer fixtures, the real rockfill soils of the dam bodies were never tested therein, but rather their small-grain fractions. The maximum particle size never exceeded 1/5 of the sample diameter. Besides, the conducted experimental works had another

---

Fig. 1. Test results (Marsal) of diorite rockfill at deviation loading: $a$ — dependence between $\sigma_1 - \sigma_3$ and the vertical axial deformation $e_v$; $b$ — dependence between the vertical axial deformation $e_v$ and the radial deformation $e_r$. The figures display the circumferential pressure in MPa

Fig. 2. Test results (Marachi) of basalt rockfill at deviation loading: $a$ — dependence between $\sigma_1 - \sigma_3$ and the vertical axial deformation $e_v$; $b$ — dependence between the vertical axial deformation $e_v$ and the radial deformation $e_r$. The figures display the circumferential pressure in MPa
essential drawback. As a rule, the soil under test significantly differed from the real soil in terms of density. For example, Marsal tested diorite rockfill with a density of 1.7 t/m³, whereas in real dams of that time, the rockfill was compacted with rollers up to 2 t/m³ density.

Nevertheless, the laboratory tests delivered valuable information as to the behavior of the rockfill under loads. It was found out that the deformability of the rockfill has strongly marked non-linear character, its deformability significantly changes during the test, and it depends not only on the external load values, but also on the type of the stress state (fig. 1, 2). It was found out that the circumferential pressure is of great significance for the deformability and the strength of the rockfill. The greater this value is, the lower is the deformability of the soil and the higher is its strength. The closer to the limit state, the bigger is the deformability of the rockfill (decrease of the linear deformation modulus). The destruction of the soil sample is detected by a drastic increase of the axial deformation.

Experiments have demonstrated that during loading, not only the deformation module of the soil is changed, but also its Poisson’s ratio $\nu$. At high circumferential pressures in the beginning of the deviation loading, $\nu$ value can be negative, as well (fig. 1, b). For rockfills, clearly marked are dilatancy and contraction phenomena, when the volume deformation of the soil depends not only on the strain of the circumferential pressure but on the shear stress, as well. In the beginning of the deviation loading, the presence of tangential stress in the soil leads to additional volume reduction of the sample, that is, to its contraction. At high (relative to the circumferential pressure stress) shear stress values of the soil, their growth leads to soil loosening, that is, to dilatancy (fig. 2, b). The destruction of the soil sample is associated with the breach of structural links between the particles at volume growth, as compared with the initial one.

Based on the data of the experimental studies, Marsal and Marachi created non-linear models describing the non-linear deformation behavior of the rockfill, the derived rockfill deformability parameters were used for SSS forecasts of the dams under construction.

Later on, experimental studies of rockfill deformability were carried out by Gupta [10], Linero [11], Chavez [12] and other investigators.

A.K. Gupta tested model macrofragmental soils with particle sizes 25…80 mm in a stabilometer with the following sample dimensions: 381 mm dia. and 813 mm height [10]. For test results of ballast soils obtained by Gupta, see fig. 3.

In studies by Linero et al. (Chilean University of Santiago), a large-scale stabilometer fixture was used allowing for testing of soil samples up to 1000 mm dia. and 2000 mm height [11]. Experiments were conducted with granodiorite rockfill material. The density of the rock material under test was 18.5 kN/m³. Tests were conducted for different selection methods of the grain size distribution of the model soil (parallel shift or max. dia. restriction). The maximum size of the model soil particles was restricted with 200 mm. For Linero’s test results of the model rock soil where only the maximum particle size was limited, see fig. 4.

**Comparison of the results of laboratory tests and field monitoring.**

Simultaneously to the experimental method, analytical method was also used for studies of rockfill deformability. The accumulation of the field monitoring data of the deformation of built rockfill dams enabled Pinto and Marques [14], Hunter [15], Fitzpatrick 11 to perform behavior analyses of the rockfill in real conditions. By the moment, much more monitoring data have been accumulated [16–20]. In papers [21–23], by means of numerical modeling a so-called back-analysis

![Fig. 3. Test results of ballast soils under deviation loading by Gupta: $a$ — dependence between $\sigma_1 - \sigma_3$ and the vertical axial deformation $e_\sigma$; $b$ — dependence between the vertical axial deformation $e_\sigma$ and the radial deformation $e_\nu$. The figures display the circumferential pressure in MPa](image-url)
of the deformation parameters of rockfill was carried out based on comparative arrangement of the calculations data with the field monitoring data.

All those studies found out that the deformation modulus of the rockfill is different at accommodation of the own weight load and the hydrostatic pressure. In paper [20], it was determined by analysis that the secant modulus of the rockfill deformation at the accommodation of the own weight load is about 30...250 MPa, and at the accommodation of the hydrostatic pressure it is 60...500 MPa.

In paper [24], it was determined by back-analysis that in Aguamilpa dam, the secant linear deformation modulus of the rockfill lies within a range from 30 MPa (downstream part of the rock toe) up to 500 MPa (upstream part).

The presence of data on the deformation moduli in-situ allowed for an assessment of the validity of the laboratory tests. For experiments by Marsal, Marachi, Linero and scientists of Dalian University (Jia, Xu, Chi, Xiang, Zhou) values of the secant linear deformation modulus for different load conditions were computed. They are shown in one diagram (fig. 5) for comfort of comparison.

The diagram in fig. 5 clearly shows that in the beginning of the deviation loading (when the principal stresses ration of $\sigma_1/\sigma_3$ is close to 1), the linear deformation moduli reach their maximum values. In the experiments by Marsal, they make up (averagely) about 100 MPa, in the experiments by Marachi and Linero they are about 200 MPa. Along with the growth of the shear stress, the values of the linear deformation modulus go back drastically. Already at $\sigma_1/\sigma_3 \approx 3$, the values of the deformation modulus obtained by Marsal and Linero go back down to 30...70 MPa. These values are far less than those observed in situ. Only Marachi’s modulus values at $\sigma_1/\sigma_3 < 3$ are stably about 100 MPa. That shows, that the rockfill in the experiments by Marsal and Linero has great deformability. It can be explained that the macrofragmental soils under test had low density, in contradiction to the actual conditions. Remember that Marsal experimented with rocks of 1.7 t/m³ density, whereas the material used by Linero had 1.85 t/m³ average density. In the meantime, nowadays, the rock in the body of rockfill dams can be compacted up to 2.2 t/m³ and even higher densities12.

Thus, the provided laboratory tests data are not suitable for use in SSS studies of rockfill dams, for plotting of non-linear models of their deformability and strength. Based on these data, it is impossible to correctly determine the parameters values of the non-linear mode, accordingly, using them in non-linear model calculations will not increase the trustworthiness of forecast modeling.

However meanwhile, results of improved tests of the rockfill appeared. The tests were conducted in Dalian Technological University [13]. They were con-

\*12 Radchenko V.G., Kurneva Ye.V., Rotchenko Yu.G. Modern technologies of construction of rockfill dams with reinforced concrete faces. Hydrotechnical construction. 2007; 10:25-32.
ducted in a stabilometer of 300 mm sample dia. and 600 mm sample height. Model soil was used with 60 mm max. particle size. The soil under test was basalt rock with a density of 2.21 t/m³, corresponding to the rockfill density of existing dams. The circumferential pressure reached 2 MPa, the vertical pressure was up to 10 MPa. For test results, see fig. 6.

The calculation of the linear deformation moduli $E$ obtained during the experiments of Dalian Technological University demonstrated that they are far higher than those obtained by other authors. As a rule, they are greater than 100 MPa (fig. 5). At $\sigma_1/\sigma_3 \approx 1$ the value of $E$ reaches 500…600 MPa. It is approximately 5 times the values obtained by Marsal 3 times the values obtained by Marachi and Linero. Averagely, $E$ value corresponds to appr. 250 MPa, being close to the average value of the linear deformation modulus obtained in situ. One may assume, that the results of the experiments conducted in Dalian Technological University, correspond to the data of the field monitoring and can be used for plotting of behavior models of real dams. Solving of the specified problem is the following stage of our study.

**Plotting of a deformation model of the rockfill based on the results of experimental studies.**

It is the goal of the present stage of our study, to develop a mathematical model describing the deformation of macrofragmental soil in the conditions of the stabilometric test conducted by the Chinese investigators.

As a basis, a model was taken, suggested by Prof. L.N. Rasskazov [25]. One of the model’s fundamentals is the hypothesis that the directions of the increment vectors of stress and strain are the same. It allows to formulate the model as a scalar dependence between the stress increments and the increments by analogy with Hooke’s law:

$$\Delta \sigma_{mn} = E_0 (\Delta \varepsilon + \Delta \varepsilon_d) \delta_{mn} + 2G \Delta \varepsilon_{mn},$$

whereby $\Delta \sigma_{mn}$ is the increment of the stress tensor component; $E_0$ is the volume deformation module for deformation increments; $\Delta \varepsilon$ is the increment of the volume deformation; $\Delta \varepsilon_d$ is the increment of the volume deformation by dilatancy; $\delta_{mn}$ is Kronecker’s symbol; $G$ is the shear module for deformation increments; $\Delta \varepsilon_{mn}$ is the increment of the component of the deformations deviator.

In the formula above, the effect of contraction is accounted for (dilatancy). The model allows to account for all basic manifestations of the non-linear character of the soil deformation under loads. For this purpose, the values of the volume deformation modulus $E_0$ and of the shear modulus $G$ are variables, changing dependent on the SSS of the soil sample.

When plotting the functional dependence by determining the volume deformation modulus, the effect of the lowering of the deformability of the soil at growing stress of the circumferential pressure is accounted for. The expression to determine the modulus $E_0$ gets to a power law relationship:

$$E_0 = \frac{\sigma^1}{n},$$

whereby $\sigma$ is the average stress; $E_0$ is the parameter connected with the initial value of the volume deformation modulus at $\sigma = 1$ and the time $t \to \infty$; $n$ is the empirical exponent.

We determined the parameters of this relationship. The search for them is complicated by the absence in the experimental tests data of the information on the deformability of the rockfill in the circumferential pressure area. It can be explained by the imperfection of the deformation measurement of the soil sample in the stabilometer.

For this reason, we used the following indirect method. It was assumed, that in the beginning of the deviation loading, the contraction phenomenon is manifested weakly, that is why the value of the ratio of the

![Fig. 6. Test results of rock at deviation loading obtained in Dalian Technological University: a — dependence between $\sigma_1 - \sigma_3$ and the shear deformation intensity $\Gamma$; b — dependence between the shear deformation intensity $\Gamma$ and the volume deformation $\varepsilon_v$. The figures indicate the circumferential pressure in MPa](image-url)
increment of the average stress to the increment of the volume deformation correspond to the volume deformation modulus. As a result of the processing of the experimental data, parameters of the power law relationship were obtained to determine $E_0^\delta$ (Table 1).

Plotting of diagrams of the volume deformation change dependent upon the average stress (fig. 7, 8) has demonstrated that the power law relationship, at the obtained parameters, successfully fits into the results of the experiments. A comparison of the figures makes it well obvious that in Marsal’s experiment (fig. 7, a) the rock is by an order far more deformable than in the experiments of Dalian Technical University (fig. 8). At increased soil compaction, the exponent $n$ is growing, and the deformability character of the soil approaches the linear one.

While plotting the functional dependence of the determining of the shear modulus $G$ in the model by L.N. Rasetskazov the effect of the deformability lowering along with the growth of the circumferential pressure and the effect of the deformability increase along with the approaching of the strength state of the soil to the limit are accounted for. Under recognition of the changes the model was subject to in the course of our studies [18], the expression to determine the shear modulus has the following appearance:

| Table 1. Dependence parameters to determine the volume deformation modulus |
|-------------------------------------------------|
| Parameter | Marsal | Marachi | Gupta | Dalian |
| $E_0$, MPa, at $\sigma = 1$ MPa | 10.0 | 51.8 | 21.0 | 138 |
| $n$ | 0.37 | 0.84 | 0.37 | 1.07 |

Fig. 7. Data processing results of experimental studies of rock deformability in the projection of the dependence between the average stress $\sigma$ and the volume deformation $e_v$: a — experiments by Marsal; b — experiments by Marachi. The figures indicate the circumferential pressure in MPa.

Fig. 8. Data processing results of the experimental studies (Dalian Technological University) of rock deformability in the projection of the dependence with the average stress $\sigma$ and the volume deformation $e_v$. The figures indicate the circumferential pressure in MPa.
Деформируемость горной массы в теле каменно-набросных плотин

\[ G^d = \sigma^m \left\{ G_{0,\text{elast}} \exp \left( B \bar{k} - B \right) + \right. \\
\left. +G_{0,\text{plast}} \bar{k} \left[ 1 - \exp \left( B \bar{k} - B \right) \right] \right\}, \]

где \( m \) — экспериментальный показатель; \( G_{0,\text{elast}} \) — начальный (при \( \sigma_3 = 1 \)) модуль упругости для эластичных деформаций; \( G_{0,\text{plast}} \) — начальный (при \( \sigma_3 = 1 \)) модуль упругости для пластических деформаций; \( \bar{k} \) — относительный коэффициент прочности; \( B \) — эмпирический параметр, учитывающий количество разрушенных эластичных связей.

The relative strength factor \( \bar{k} \) is determined in the model by L.N. Rasskazov via the deformation energies ratio [26].

By processing the experimental data, we determined the basic parameters of this dependence — \( G_{0,\text{elast}} \) and \( m \). They are shown in Table 2. This power law relationship is illustrated also in fig. 9.

The analysis has demonstrated that in the experiments by Marsal and Gupta the rock is more susceptible to shear deformations than in the experiments by Marachi (fig. 9). Nevertheless, the initial shear moduli, even in high stress conditions, do not exceed 100 MPa. In the experiments by Dalian Technological University, the shear moduli are significantly (by 4...6 times) higher than in the experiments by other investigators. Comparing the \( m \) exponent of the empirical relationship for the shear modulus it is possible to conclude that at an increased compaction density of the soil, the exponent is decreased, approaching 0, that is, the deformability of the soil is approaching the linear mode.

A separate and a more complicated mission was the plotting of the mathematical model for the description of dilatancy (contraction) phenomenon of macrofragmental soil. Figures 7, 8 make it clear visible that, at deviation loading, a considerable post-compaction (contraction) or loosening (dilatancy) of the soil can be observed, as compared to the deformations in the circumferential compression area. Only in Gupta’s experiments the contraction was rather poorly manifested.

In the original model by Prof. L.N. Rasskazov [26], an empirical formula is used for that, where the increment of the volume deformation caused by dilatancy (contraction) is assumed proportional to the intensity increment of the shear deformations \( \Delta \Gamma \). The value \( \Delta \Gamma \) is determined via the second invariant of the deformation increment deviator. The part of the increment of the volume deformation caused by contraction (dilatancy) is designated as \( \Delta \varepsilon_d \).

The expression of the dependence of \( \Delta \varepsilon_d \) from \( \Delta \Gamma \) is rather popular approach. In particular, such dependence is used in Hardening Soil model [27].

The expression to determine the value \( \Delta \varepsilon_d \) in the model by L.N. Rasskazov has the following appearance:

\[ \Delta \varepsilon_d = \text{sign} (\Gamma - \Gamma_0) M_d \frac{\Delta \Gamma}{\sigma}, \]

where \( M_d \) is the dilatancy modulus being one of the constants of the model.

In accordance with the formula above, the volume deformation by dilatancy decreases along with the

Table 2. Dependence parameters to determine the shear modulus

| Parameter | Marsal | Marachi | Gupta | Dalian  |
|-----------|--------|---------|------|--------|
| \( G_{0,\text{elast}}, \text{MPa, at } \sigma_3 = 1 \text{ MPa} \) | 43.9   | 76.2    | 41.9 | 266.9  |
| \( m \) | 0.65   | 0.26    | 0.63 | 0.32   |

Fig. 9. Change of the initial shear modulus value dependent on the circumferential pressure
growth of the average compression strengths $\sigma$. The formula describes both dilatancy and contraction. The delimitation between these two phenomena corresponds to $\Gamma_0$, being one of the constants of the model.

However, the processing of the experimental studies’ results of the rockfill deformability conducted by us has demonstrated that this formula does not always correctly reflect the processes which take place during the contraction (dilatancy). It is visible in fig. 10 showing the dynamics of $e_d$ during the deviation loading. For plotting of these figures, $e_d$ was defined as the difference of the volume deformation measured during the experiment and of the volume deformation corresponding to the loading by the circumferential compression. On the X-axis in the diagrams, the ratio $T/\sigma$ is plotted (whereby $T$ is the shear stress intensity; $\sigma$ is the average stress).

In fig. 10 it is visible that the volume deformation $e_d$ due to the contraction grows with the circumferential compression stress, but does not get decreased. At low circumferential compression stress, the contraction phenomenon is not observed at all. Besides, the analysis of the experimental results made it possible to find out that the volume deformation value due to contraction $e_d$ is not proportional to the intensity of the shear deformation $\Gamma$.

The plotting of the diagrams (fig. 10) brought us to the following conclusions:

• in the initial stage of the deviation loading, no contraction phenomenon is observed;
• for each of the experiments, the transition from contraction to dilatancy occurs at different values of $\Gamma$, accordingly, the value of $\Gamma_0$ is not a constant either;
• The transition from contraction to dilatancy occurs at a certain ratio of $T/\sigma$, which is close to 1 for the rock.

We proposed to assume $e_d$ proportional not to the shear deformation intensity $\Gamma$, but to the intensity of the shear stress $T$. Such approach is used by other authors, e.g., in papers [28, 29].

In this connection, it was proposed to describe the contraction (dilatancy) phenomenon with the following formula:

$$\Delta e_d = \text{sign} \left( \frac{T}{\sigma} - t_i \right) M_f \frac{\Delta T}{\sigma}.$$

In this formula, $\Delta T$ is the shear stress intensity increment; $t_i$ is the limit value of the ratio $T/\sigma$, when contraction is changes to dilatancy. It is worth noting that in accordance with fig. 11, in this formula, the dilatancy modulus value $M_f$ is not a constant, but a variable depending on the circumferential compression stress (or on the average stress).

However, the formula above has an essential drawback of being not applicable to the model by L.N. Rasskazov, since in this case the model is getting recurrent. In order to correct this drawback, we proposed to express the value $\Delta T$ via $\Delta \Gamma$ and the shear modulus $G$. Besides, it is important to consider the fact that $M_f$ grows with the growth of the average stress. Thereby, the formula gains the following appearance:

$$\Delta e_d = \text{sign} \left( \frac{T}{\sigma} - t_i \right) m_f G^2 \Delta \Gamma.$$

In this formula, $m_f$ is the dilatancy modulus being a constant of the model.

The obtained formula looks like that proposed by L.N. Rasskazov [26] and other authors [27–29], that is why it is not applicable to speak of the creation of a new formula, since it is merely an improvement of the existing ones. The conducted calculations demonstrate that the use of the proposed dependence allows for a description of the contraction phenomenon in the rock with the required accuracy (fig. 11) being an argument for its practical use.

The processing of the experimental results of Dalian Technological University allows to determine the parameters of a mathematical model describing the

Fig. 10. Dynamics of the part $e_d$ of the volume deformation caused by contraction (dilatancy) during the deviation loading by the results of the processing of the data of the experimental studies: $a$ — experiments by Marsal; $b$ — experiments of Dalian Technological University. The figures in the diagrams indicate the circumferential pressure in MPa.
process of the rockfill deformation in the stabilometer. These parameters are given below:

\[ E_0 = 25,800 \text{ tf/m}^2, \quad G_{0,\text{elast}} = 4500 \text{ tf/m}^2, \quad G_{0,\text{plast}} = 500 \text{ tf/m}^2, \quad n = 1.06, \quad m = 0.32, \quad B = 50, \quad m_d = 0.00017 \text{ m}^2/\text{tf}. \]

Fig. 11 shows a comparison of the calculation results by the mathematical model with the experimental results. It has demonstrated that the mathematical model delivers satisfactory descriptions of the experimental results in soil states below the limit condition. Consequently, the proposed mathematical model can be used in SSS calculations of rockfill dams.

CONCLUSIONS

1. Full-fledged comprehensive laboratory tests of the rockfill are rare, since they require complicated specialized equipment. Macrofragmental soils studied in the most laboratory tests do not match to the soil of the bodies of rockfill dams in terms of deformability. Due to insufficient density of the soil under test, its deformability is overestimated compared to the real one. Only the experiments conducted in Dalian Technological University can be used for studies of the soil deformability of contemporary rockfill dams.

2. The processing of the results of laboratory tests enabled us to select a mathematical model describing the deformation behavior of the rockfill during stabilometric tests with required accuracy. As a basis, the model by L.N. Rasskazov was taken, however it had to be modified for improvement reasons, especially in terms of the description of shearing and contraction (dilatancy) processes.

REFERENCES

1. Ma H.Q., Cao K.M. Key technical problems of extra-high concrete faced rock-fill dam. Science in China Series E: Technological Sciences. 2007; 50(S1):20-33. DOI: 10.1007/s11431-007-6007-5
2. Radchenko V.G., Glagovskij V.B., Kassirova N.A., Kurneva E.V., Druzhinin M.A. Modern scientific study of the construction of concrete face rockfill dams. Hydraulic Engineering. 2004; 3:2-8. (rus.).
3. Marques Filho P., De Pinto N.L.S. CFRD dam characteristics learned from experience. The International Journal on Hydropower & Dams. 2005; 12(1):72-76.
4. Freitas M.S.Jr. Concepts on CFRDs leakage control — cases and current experiences. I SS MGE Bulletin. 2009; 3(4):11-18.
5. Xavier L.V., Albertoni S.C., Pereira R.F., Antunes J. Campos Novos dam during second impounding. The International Journal on Hydropower & Dams. 2008; 15:53-58.
6. Johannesson P., Tohlang S.L. Lessons learned from Mohale. The International Water Power & Dam Construction. 2007; 59(8):16-18, 20-22, 24-25.
7. Song W.J., Sun Y., Li L., Wang Y. Cause analysis and treatment of 1st phase slab cracking of Shuibuya...
CFRD. Journal of Hydrotelectric Engineering. 2008; 27(3):33-37.
8. Hu K., Chen J., Wang D. Shear stress analysis and crack prevention measures for a concrete-face rockfill dam, advanced construction of a first-stage face slab, and a first-stage face slab in advanced reservoir water storage. Advances in Civil Engineering. 2018; 2018:1-10. DOI: 10.1155/2018/2951962
9. Alemán Velázquez J.D., Pantoja Sánchez A., Villegas Lesso S. Geotechnical studies and design of La Yesca Dam. 14th PanAmerican Conference on Soil Mechanics and Geotechnical Engineering. 2011.
10. Gupta A.K. Triaxial behaviour of rockfill materials. Electronic Journal of Geotechnical Engineering — Egge.com. 2009; 14(1):1-18. URL: http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.555.787
11. Linero S., Palma C., Apablaza R. Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing. Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineer, Australian Centre for Geomechanics. Perth. 2007; 59-75.
12. Chavez C., Alonso E.E. A constitutive model for crush granular aggregates which includes suction effects. Soils and Foundations. 2003; 43(4):215-227. DOI: 10.3208/sandf.43.4.215
13. Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests. International Journal of Geomechanics. 2017; 17(10):04017085. DOI: 10.1061/(ASCE)GM.1943-5622.0000977
14. Pinto N.L.S., Filho P.L.M. Estimating the maximum face slab deflection in CFRDs. The International Journal on Hydropower & Dams. 1998; 5(6):28-30.
15. Hunter G., Fell R. Rockfill modulus and settlement of concrete face rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering. 2003; 129(10):909-917. DOI: 10.1061/(asce)1090-0241(2003)129:10(909)
16. Park H.G., Kim Y.-S., Seo M.-W., Lim H.-D. Settlement behavior characteristics of CFRD in construction period. Case of Daegok dam. Journal of the Korean Geotechnical Society. 2005; 21(7):91-105.
17. Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories. Géotechnique. 2018; 68(9):749-771. DOI: 10.1680/jgeot.17.p.095
18. Sainov M.P. Deformation parameters of macrofragment soils in soil dams. Construction: Science and Education. 2014; 2:2. URL: http://www.nso-journal.ru/public/journals/1/issues/2014/02/2_Sainov.pdf (rus.).
19. Sainov M.P. Semiempirical formula for assessment of homogeneous earthfill dams. Volga Region Scientific Journal. 2014; 4(32):108-115, (rus.).
20. Soroka V.B., Sainov M.P., Korolev D.V. Concrete-faced rockfill dams: experience in study of stress-strain state. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2019; 14(2):207-224. DOI: 10.22227/1997-0935.2019.2.207-224 (rus.).
21. Zhou M.-Z., Zhang B., Jie Y. Numerical simulation of soft longitudinal joints in concrete-faced rockfill dam. Soils and Foundations. 2016; 56(3):379-390. DOI: 10.1016/j.sandf.2016.04.005
22. Zhang B., Wang J.G., Shi R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer. Computers and Geotechnics. 2004; 31(7):559-573. DOI: 10.1016/j.compgeo.2004.07.004
23. Zhao K., Li G., Shen Z. Back analysis of field monitoring data of Tianshengqiao CFRD. Journal Nanning Hydro Res Institute. 2002; 4:15-19.
24. Sainov M.P. Effect of stone zoning in the dam body on the stress-strain state of reinforced concrete face. Volga Region Scientific Journal. 2018; 1(45):72-78. (rus.).
25. Sainov M.P. Approximated calculation scheme of the work of reinforced concrete face of a rockfill dam. Science Review. 2016; 18:18-22. (rus.).
26. Rasskazov L.N., Dzhkha Dzh. Deformability and strength of soils in high soil dam calculation. Hydraulic Engineering. 1987; 7:31-36. (rus.).
27. Sukkarak R., Pramthawee P., Pongpradist P., Kongkitkul W., Jamsawang P. Deformation analysis of high CFRD considering the scaling effects. Geomechanics and Engineering. 2018; 14(3):211-224. DOI: 10.12989/gae.2018.14.3.211
28. Dong W., Hu L., Yu Y.Zh., Lv H. Comparison between Duncan and Chang’s EB model and the generalized plasticity model in the analysis of a high earth-rockfill dam. Journal of Applied Mathematics. 2013; 2013:1-12. DOI: 10.1155/2013/709430
29. Pramthawee P., Jongpradist P., Kongkitkul W. Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams. Songklanakarin Journal of Science and Technology. 2011; 33(3):325-334.