Given a model well-trained with a large-scale base dataset in the first session, Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning novel classes with a few labeled samples by avoiding the overfitting and catastrophic forgetting simultaneously. This task appears to narrow the gap between deep models and humans’ cognitive system inspired by humans’ acquisition mode of knowledge or skills through experience [1]. It mainly tackles the continual learning problem [2] in the limited data regime, which is practical in real applications. For these reasons, Tao et al. [3] first benchmark FSCIL, and this research topic attract many researchers’ attentions [4], [5], [6], [7], [8], [9] in recent years.

As a new emerging direction, there are mainly two challenges in FSCIL: the overfitting issue of novel classes with limited labeled samples and the catastrophic forgetting of previously seen classes. The current protocol of FSCIL [3] is built by mimicking the general class-incremental learning (CIL) setting [10], [11], which treats each class fairly in a unified classifier, while it is not totally appropriate due to the different data configurations. For General CIL, the data of novel classes arriving in each incremental learning session is of the similar quantity as the data of base classes in the first session. However, each incremental task in FSCIL is in the limited data regime, which exists the severe data imbalance between the base session and incremental sessions. Current FSCIL methods [3], [12], [13] all treat base and novel classes in a fair manner. Since the deep model is data-driven, the overall performance is dominated by the base classes with enough training samples and the performance disparity between base and novel classes is relatively large.

Toward the aforementioned issues and to deal with two different dataset configuration respectively, a straightforward view is that we reserve the possibility in the first session for these novel categories encountered in the following sessions, which is separate with base categories. The most similar work with ours is FACT [4], and it reserves the potential space for new classes at the embedding level, which involves complex operations. For the simplification purpose, we rethink the configuration of FSCIL and consider the base task as the open-set recognition problem [14], [15], [16] directly, which is illustrated in Fig. 1. Though this configuration is not consistent with the traditional CIL, it is more in line with real-world applications. To illustrate the practical attribute of our configuration, we use the disease diagnosis as an example. For a particular case, the diagnosis system tends to rule out the underlying diseases first, then the rare diseases.

Rethinking Few-Shot Class-Incremental Learning With Open-Set Hypothesis in Hyperbolic Geometry

Yawen Cui, Zitong Yu, Wei Peng, Qi Tian, Fellow, IEEE, and Li Liu, Senior Member, IEEE

Abstract—By training first with a large base dataset, Few-Shot Class-Incremental Learning (FSCIL) aims at continually learning a sequence of few-shot learning tasks with novel classes. There are mainly two challenges in FSCIL: the overfitting issue of novel classes with limited labeled samples and the catastrophic forgetting of previously seen classes. The current protocol of FSCIL is built by mimicking the general class-incremental learning setting by building a unified framework, while the existing frameworks for FSCIL on this protocol always bias to the classes in the base dataset because the dominant performance of the deep model is decided by the size of the training dataset. Moreover, it is difficult to handle the stability-plasticity constraint in a unified FSCIL framework. To solve these issues, we rethink the configuration of FSCIL with the open-set hypothesis by reserving the possibility in the first session for incoming categories. To find a better decision boundary of close space and open space, Hyperbolic Reciprocal Point Learning module (Hyper-RPL) is built on Reciprocal Point Learning with hyperbolic neural networks. Besides, when learning novel categories from limited labeled data, we incorporate a hyperbolic metric learning (Hyper-Metric) module into the distillation-based framework to alleviate the overfitting issue and better handle the trade-off issue between the preservation of old knowledge and the acquisition of new knowledge. Finally, the comprehensive assessments of the proposed configuration and modules on three benchmark datasets are executed to validate the effectiveness, and state-of-the-art results are achieved.

Index Terms—Few-shot learning, class-incremental learning, hyperbolic deep neural network, open-set recognition, knowledge distillation.
When setting up the diagnosis system, we also need to leave the possibility for newly-emerging diseases to promote the evolution of the system.

With the open-set assumption, in the base session (also termed the first session), the model needs to be trained not for the discriminative ability of base categories, but for the open-set recognition by considering the novel categories arriving in the following incremental sessions as the open-world unknown categories. In open-set recognition tasks, the trade-off between close-set and open-set recognition always depends on the chosen thresholds, which is troublesome to handle. However, for the FSCIL task, the model should be assigned better performances on both close-set and open-set recognition since we compute the overall classification accuracy on both base and novel categories. The Euclidean space does not provide the most powerful or meaningful non-Euclidean geometrical representations. On the contrary, Hyperbolic space, one of the smooth Riemannian manifolds, is equipped with the capability of learning hierarchical representations [17]. To find a better decision boundary of close-set and open-set in a more comprehensive searching space, we combine the hyperbolic space into the original Euclidean space and put forward the Hyperbolic Reciprocal Point Learning (Hyper-RPL) module by optimizing Reciprocal Point Learning (RPL) [16] with hyperbolic geometry [17]. According to the distance of training samples and reciprocal points, since RPL already provides an advanced optimization strategy with the classification loss on known categories and by reducing open-space risk, we provide a richer representation space to search for the optima by integrating Euclidean space and hyperbolic space with the well-designed strategy in Hyper-RPL. Due to the complementary representation in hyperbolic geometry [17], the open-set recognition capability is enhanced without undermining the performance of close-set recognition.

For the incremental learning sessions in our proposed configuration, we start with a new classification branch and exploit the distillation-based FSCIL framework. Compared with traditional FSCIL, there are mainly two merits: (1) With the previous FSCIL protocol and distillation-based CIL framework, Tao et al. [3] point that the trade-off between old and new classes is more prominent due to the larger learning rate and stronger gradients when learning novel classes from limited labeled data. In contrast, by considering the open-set assumption in FSCIL, a new branch is designed for novel categories and the performance of the base categories can be completely preserved without updating the model parameters. (2) Rehearsal-based distillation-based CIL frameworks [11], [18] require to store samples of previously-seen categories for the replay in the following sessions. Since we do not need to store the samples of base classes concerning the catastrophic forgetting issue, the size of this extra memory in our proposed FSCIL configuration is smaller than that of the traditional FSCIL setting. Besides, to learn novel categories from limited labeled data, we incorporate a Hyperbolic Metric learning (Hyper-Metric) module into the distillation-based CIL framework. As introduced in the work [19], any metric learning approach can be modified to incorporate hyperbolic embeddings. Hence, compared with metric learning in the Euclidean space, Hyper-Metric module can learn the discriminative latent representation with intra-class compactness and inter-class sparseness [17], which can alleviate the overfitting issue and better handle the trade-off issue between the preservation of old knowledge and the acquisition of new knowledge.

To sum up, the main contributions of this paper are listed:

- We provide a novel perspective in this paper by rethinking the FSCIL task with the open-set assumption, which is able to alleviate the stability-plasticity dilemma and the bias on the classes in the base dataset.
- We first introduce the hyperbolic geometry into the optimization of FSCIL problems by providing a more comprehensive searching space.
- We design a hyperbolic reciprocal point learning module to enhance the ability of open-set recognition without undermining the performance of close-set recognition.
- We propose a hyperbolic metric learning module via incorporating the hyperbolic metric learning into distillation-based CIL framework to alleviate the overfitting issue.
- We provide a comprehensive assessment of the proposed configuration and modules on three benchmark datasets to validate the effectiveness concerning three evaluation indicators.
II. RELATED WORK

In this section, we first introduce the recent progress in few-shot learning. Then, recent methods on class-incremental learning are investigated. Finally, related works about hyperbolic geometry are presented.

A. Few-Shot Learning

The aim of Few-Shot Learning (FSL) is to tackle the target task with limited labeled samples per class, and it is successfully applied on many visual tasks, such as image classification [20], [21], [22], semantic segmentation [23], [24], [25] and object detection [26]. Zero-shot learning [27], [28] is an extra case of FSL, which cannot access any labeled training samples. A hypothesis for FSL is that the target task can access a source/base dataset with large-scale labeled training instances, and there is no class-level or data-level intersection between the source dataset and the target dataset. Traditional FSL for image classification task can be categorized into data augmentation-based methods, meta-learning-based methods, and metric learning-based methods. Data augmentation-based methods [29] aim to synthesize more data from the novel classes to facilitate the regular learning. Schwartz et al. [29] use a variant of auto-encoder to capture the intra-class difference between two class samples in the latent space. The mechanism of metric learning-based methods is to learn a semantic embedding space using a distance loss function. Matching networks [30] maximizes the cross-entropy for the non-parametric softmax classifier. In prototypical networks [20], each category is represented by the prototype, and the objective is to maximize the cross-entropy with the prototypes-based probability expression. Meta-learning-based methods target to learn a learning strategy to adjust well to a new FSL task. MAML [21] aims at obtaining optimal initialization parameters of the model for a novel task through meta-training.

B. Class-Incremental Learning

Class-Incremental Learning (CIL) is the most challenging scenario of continual learning [31], which targets to learning a classifier incrementally to recognize all encountered categories. To solve the CIL tasks, the proposed methods mainly follow the two strategies. The first one is to identify and preserve significant parameters of the previous model [32], [33]. Kirkpatrick et al. [32] propose to remember old tasks by selectively learning the weights that are important for those tasks. Kaushik et al. [33] introduce Relevance Mapping Networks (RMNs), which reflects the relevance of the weights for the current task by assigning large weights to essential parameters. The second strategy is preserving the knowledge of the old model through some strategies like knowledge distillation [11], [18]. iCaRL [11] learns strong classifiers and a data representation simultaneously. Hou et al. [18] develop a new framework for incrementally learning a unified classifier which treats both old and new classes uniformly.

Tao et al. [3] first introduce few-shot learning into CIL, which is formulated as Few-Shot Class-Incremental Learning (FSCIL) [4], [5], [6], [7], [8], [9], [34]. It is a more practical configuration that aims at incrementally learning novel classes with limited labeled samples. Existing solutions can be categorized into two types: one refers to knowledge representation and refinement, and another one is knowledge distillation-based. As for the first type, Chen et al. [35] propose a nonparametric method where knowledge about the learned tasks is compressed into a small number of quantized reference vectors. CEC [12] is proposed by employing a graph model to propagate context information between classifiers for adaptation. Relying on knowledge distillation technique, Cheraghian et al. [36] employs the word embedding as the semantic information to facilitate the distillation process. Considering the trade-off between old-knowledge preserving and new-knowledge adaptation in FSCIL, Dong et al. [37] propose the exemplar relation distillation incremental learning framework. Since data imbalance issue exists between the base dataset and novel datasets in FSCIL, the whole task can be regarded as the imbalanced classification task. However, the difference is that all the data with the imbalance issue arrives at the same time in the imbalanced classification task, while data in FSCIL encounters sequentially.

C. Hyperbolic Geometry

As a counterpart in the Euclidean space, hyperbolic geometry is non-Euclidean geometry with a constant negative Gaussian curvature.KHRulkov [19] pointed out that hyperbolic geometry can be beneficial in analyzing image manifolds by capturing both semantic similarities and hierarchical relationships between images. The hyperbolic geometry has been utilized for representing tree-like structures and taxonomies [38], [39], [40], text [41], [42], and graphs [43], [44]. There are five isometric models of hyperbolic geometry [45]: the Hyperboloid model, the Klein model, the Hemispheric model, the Poincaré ball model, and the Poincaré half-space model. In this paper, we apply the Poincaré ball [39] to model the hyperbolic embedding space. Hyperbolic deep neural networks [38], [39] are the neural structures built in the space of hyperbolic geometry, which can provide the powerful geometrical representations. Nickel and Kiela [39] conducted the pioneering work on learning representation in hyperbolic spaces. Then, hyperbolic neural networks is first proposed by the work [38], which introduce hyperbolic geometry into deep learning. Recent works of hyperbolic image embeddings [19], [46] add one or two hyperbolic layers [38] after Euclidean deep convolutional neural networks. In this paper, we adopt the hyperbolic operation in the work [19] for the hyperbolic embedding.

D. Open-Set Recognition

The target of open-set recognition is to identify whether a given object instance belongs to a known class or not. It is also related with out-of-distribution (OOD) recognition [47], [48], [49]. Open-Set Recognition was first introduced by the work [14] where it was formalized as a constrained minimization problem based on Support Vector Machines (SVMs). The current works for open-set recognition mainly follow two lines: discriminative models and generative models. Discriminative models can be further categorized into traditional machine learning-based methods [14], [50], [51] and deep learning-based methods [52],
Based on SVM, the pioneering work [14] propose a novel 1-vs-set machine to model a decision space. In the subsequent works, other more traditional approaches, such as Extreme Value Theory [50], sparse representation [51], and Nearest Neighbors [54], were utilized for open-set recognition. Owing to the strong representation ability, deep learning-based methods emerge with more attention in recent years. The first deep learning-based work [52] proposes an Openmax function by calibrating the Softmax probability of each class with a Weibull distribution model. Yoshihashi et al. [55] adopt the Classification-Reconstruction training for Open-Set Recognition (CROS), which utilizes latent representations for reconstruction and enables robust unknown detection and the known-class classification. However, this line of work faces the challenge of threshold tuning since a threshold is required to separate known and unknown classes.

Other line of work [56], [57], [58], [59] employs generative models to synthesis the data of unseen classes or forecast the distribution of of novel classes. G-OpenMax [56] extends Openmax by introducing a generative adversarial network for producing synthetic samples of novel categories. Class conditional auto-encoder (C2AE) [57] considered the open-set recognition as a two-step problem, i.e., the encoder learns the closed-set classification and the decoder learns the open-set recognition task by reconstructing conditioned on class identity. Perera et al. [58] applied self-supervision and augmented the input features obtained from a generative model to force class activations of open-set samples to be low. Zhou et al. [59] proposed to prepare for the unknown classes by allocating placeholders for both data and classifier.

III. METHODOLOGY

In this section, we introduce the novel configuration of FSCIL with details first. Then, based on this, we propose an efficient solution for FSCIL. Our framework illustrated in Fig. 2 contains two key components: Hyperbolic Reciprocal Point Learning (Hyper-RPL) for open-set recognition in the base session, and Hyperbolic Metric Learning (Hyper-Metric) for alleviating the overfitting issue of novel classes. We first provide the problem formation with learning targets, then the overview of the framework, and finally the details of two components in the framework will be introduced.

A. Problem Formulation

We follow the dataset configuration in TOPIC [3], which benchmarks FSCIL task. Given a sequence of disjoint datasets by \(D = \{D_1, D_2, \ldots, D_n\} \), here \(D_1 \) is the large-scale base dataset used in the first base session and the followings are all novel few-shot datasets. Specifically, we term \(D_i = \{(x_{ij}, y_{ij})\}_{j=1}^{D_i} \) where \(y_{ij} \in C_i \), and \(C_i \) represents the base category set. In the \(i \)-th session where \(i > 1 \), the novel/new dataset is defined as \(D_i = \{(x_{ij}, y_{ij})\}_{j=1}^{N_i} \) consists of \(N \) classes \(C_i \) with \(K \) labeled examples per class, i.e., a \(K \)-way \(K \)-shot problem. It is worth noting that there is no overlap between the categories and samples of different sessions, i.e., \(C_i \cap C_{i'} = \emptyset \) and \(D_i \cap D_{i'} = \emptyset \), where \(i \neq i' \). In this paper, we arrange and verify our proposed configuration and solution on object classification task.

The objective of FSCIL with our novel configuration is to train a open-set recognition model in the first session, then a sequence of disjoint novel datasets will be operated incrementally in a new branch. In this way, the discriminative ability of first session can be totally preserved and the performance imbalance caused by data imbalance can be mitigated. When performing the prediction, the sample is sent to the base branch first to check if it belongs to the base category or not. If not, it will be introduced into the novel branch.

B. Overview of the Framework

Based on open-set hypothesis, we rebuild the FSCIL configuration by considering the possibility of novel classes in the base session, and this novel framework together with our proposed solution is demonstrated in Fig. 2.

For the first session, we conduct a open-set recognition task with a \(|C_1| + 1 \) classifier where the extra one category stands for the unseen categories currently. To achieve this, we propose a hyperbolic reciprocal point learning (Hyper-RPL) by combining the hyperbolic geometry into the existing RPL algorithm for a more efficacious open-set recognition ability. When it comes to the \(i \)-th session where \(i > 1 \), a new classification branch is created for the novel categories, which follows an incremental manner corresponding to the sequence of novel few-shot learning tasks. Due to the new proposed configuration, the trade-off issue between base categories and novel categories can be better alleviated. Because of this, advanced learning strategies can be incorporated into the newly-created branch. In this way, we
introduce the metric learning module with hyperbolic geometry into commonly-used cross-entropy loss. Moreover, in this branch, catastrophic forgetting issue is also encountered, and we utilize the knowledge distillation technique to tackle this issue.

C. Hyperbolic Reciprocal Point Learning

For the first session, we conduct the open-set recognition to classify the base categories and regard the novel categories of the following sessions as the unseen class. Existing methods of open-set recognition [50], [56] suffer from the trade-off issue on the performance of close-set classes and open-set classes since a threshold is rendered to decide when a test sample is identified as the unseen categories. With guaranteed classification performance of close-set classes, we propose the Hyperbolic Reciprocal Point Learning (Hyper-RPL) module base on Reciprocal Point Learning (RPL) [16] to enhance the discriminative ability of unseen classes.

1) Preliminaries: Here we give the description of RPL with the training process of first session in FSCIL. Commonly, we use prototypes or class means to represent each class in the latent space. Conversely, Reciprocal Point is a novel concept that denote the extra-class space corresponding to each known category, which means that it stands for the reciprocal space of prototypes or class means. Given the training dataset D_1 with the category dataset C_1, the model is expected to test on a larger amount of dataset with the category $C_1 \cup \{l_1, l_2, \ldots, l_U\}$, where $\{l_1, l_2, \ldots, l_U\}$ is the unseen categories (i.e., novel categories) and U is the number of unseen categories. A sample can be recognized as known or unknown based on the distance with reciprocal points. We denote the latent representation space of seen category k in C_1 as S_k and its corresponding open-space as $O_k = \mathbb{R}^d - S_k$, where \mathbb{R}^d is the d-dimensional full space. The open space O_k can be divided into positive open space O_k^{pos} which is from other known classes, and negative open space O_k^{neg} which stands for the remaining infinite unknown space, i.e., $O_k = O_k^{pos} \cup O_k^{neg}$. With $|C_1|$ categories in the first session, we construct the entire learning process based on the open-set recognition of a single class. Then, the positive training data $D_{1,k}$ contains samples from categories k, and samples from other known classes are regarded as negative data training $D_{1,\neq k}$. Except D_1, we assume that samples from \mathbb{R}^d are the potential unknown data D^U. The target of one-class open-set recognition task is to optimize a binary prediction function ψ_k by minimizing the error R_k defined as:

$$\argmin_{\psi_k} \{R_k((R_k'(\psi_k, S_k \cup O_k^{pos}) + \alpha \cdot R_k^o(\psi_k, O_k^{neg}))\}, (1)$$

where α is a positive regularization parameter. R_k' represents the empirical classification risk on known data, and R_k^o is the open space risk function. Based on the (1), the error $\sum_{k=1}^{K} R_k$ of the entire learning process is formulated as

$$\argmin_f \left\{ R'(f, D_1) + \alpha \cdot \sum_{C_1} R_k^o (f, D^U) \right\}, \quad (2)$$

where f is the multi-class classification function.

In order to represent the open space of category k, a set of reciprocal points for category k is proposed and denoted as $\mathcal{P}_k = \{p_i \mid i = 1, 2, \ldots, M\}$, where M is the size of reciprocal point set. According to the distance of training samples and reciprocal points, the open-set network is optimized with targets: minimizing the classification loss on known categories and reducing open-space risk on D^U. Since D^U is not provided currently, RPL aims to represent \mathbb{R}^d with D_1 by restricting the open space to a bounded range, and we will explain the details with the hyperbolic geometry in the following section.

2) Optimization With Hyperbolic Geometry: For detecting unknown classes in RPL, it is pointed out that unknown samples have a closer distance with all reciprocal points than training samples of known classes [16]. Further, for a specific test instance, the probability that it belongs to a known class is proportional to the distance between this instance and the farthest reciprocal point of this known class. In this way, a suitable operating threshold should be assigned to the model for identifying the known and unknown classes. However, RPL is very sensitive for this chosen threshold, i.e., deciding the decision boundary of known and unknown space is intractable in the single Euclidean space. To tackle this issue, we propose to optimize RPL by incorporating the hyperbolic geometry [17], which provides a richer search space for the optima that achieve a better separation of known and unknown space.

For the classification loss of known classes, the target is to maximize the distance between the reciprocal points of the category and its corresponding training known samples. We denote the Euclidean embedding function of the open-set network as f_θ with trainable parameters θ, and the transformation function to the hyperbolic geometry as h_φ with parameters φ. In this paper, we employ Poincaré ball model [39] to display the d-dimensional hyperbolic space. This model is one of the commonly used models for generalizing neural networks and is dominated in the hyperbolic deep neural networks [17]. The Poincaré ball model (\mathbb{D}^d, g^D) is defined by the manifold $\mathbb{D}^d = \{ x \in \mathbb{R}^d : c ||x||^2 < 1, c \geq 0 \}$ endowed with the Riemannian metric $g^D(x) = \lambda x^2 g^E$, where $|| \cdot ||$ denotes the Euclidean norm, and c is the curvature of Poincaré ball model. $\lambda = \frac{2}{1 - ||x||^2}$ is the conformal factor, and g^E is the Euclidean metric tensor. Formally, the geodesic distance between two points in the Poincaré ball is defined as

$$d^p(x, y) = \frac{2}{\sqrt{c}} \arctanh (\sqrt{c} ||x - c \oplus_y||), \quad (3)$$

where \oplus is the Möbius addition.

As shown in Fig. 3, given a training sample x of category k in \mathbb{D}^d, the integrated distance between it and reciprocal points \mathcal{P}_k is formulated as

$$d (f_\theta (x), h_\varphi, \mathcal{P}_k) = \beta \cdot d^e (f_\theta (x), \mathcal{P}_k) + \gamma \cdot d^h (h_\varphi, f_\theta (x), \mathcal{P}_k), \quad (4)$$

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
where \(d^e(f_\theta(x), h_\varphi, \mathcal{P}_k) \) is the distance function in Euclidean geometry, \(d^h(h_\varphi, f_\theta(x), \mathcal{P}_k) \) is the distance function in hyperbolic geometry, and \(\beta \) and \(\gamma \) are the integrated weights. In addition, \(\beta + \gamma = 1 \). \(d^e(f_\theta(x), h_\varphi, \mathcal{P}_k) \) is formulated as
\[
\log \frac{1}{\sum_i d^h(f_\theta(x), h_\varphi, \mathcal{P}_k)},
\] (5)

Here the \(h_\varphi \) is assigned by \(g^D \). For the distance in hyperbolic space, the first procedure is to transform \(f_\theta(x) \) and \(\mathcal{P}_k \) into hyperbolic space. Then, \(d^h(h_\varphi, f_\theta(x), \mathcal{P}_k) \) is defined as
\[
d^h(h_\varphi, f_\theta(x), \mathcal{P}_k) = \frac{1}{M} \sum_{i=1}^{M} ||d^h(f_\theta(x), h_\varphi, \mathcal{P}_k)||_2^2. \tag{6}
\]

With (4), the probability \(p(y = k|x, f_\theta, \mathcal{P}_k, h_\varphi) \) that \(x \) belongs to category \(k \) is computed based on the softmax function. After that, the classification loss of known classes is given by
\[
\mathcal{L}_k^c(x, \theta, \varphi) = -\log p(y = k|x, f_\theta, \mathcal{P}_k, h_\varphi). \tag{7}
\]

For the target of reducing open-space risk, we first define a global multiple class-wise open spaces \(\mathcal{O}^G \) as the intersection of open spaces of all known categories. RPL proposes to restrict the open space to a bounded range, namely, the distance between samples from \(S_k \) and \(\mathcal{P}_k \) is constrained to a certain extent. In this paper, we formulate the open space risk as
\[
\mathcal{L}_k^G(x, \theta, \varphi, \mathcal{R}_k) = \frac{1}{M} \sum_{i=1}^{M} ||d^h(f_\theta(x), h_\varphi, \mathcal{P}_k)||_2^2. \tag{8}
\]

where \(\mathcal{R}_k \) is the learnable margin. Finally, the total loss of the base session is defined as
\[
\mathcal{L}_B = \sum_{k=1}^{|\mathcal{C}_1|} (\mathcal{L}_k^G + \lambda \mathcal{L}_k^c), \tag{9}
\]

where \(\lambda \) is a hyper-parameter that determines the weight of reducing the open-space risk.

With (9) and the integrated distance function, we provide a more comprehensive space to search for the optima by reducing the classification loss of known classes and open-space risk. In this way, without deteriorating the performance of close-set classification performance, the detection performance of unseen classes can be enhanced.

D. Hyperbolic Metric Learning

For FSCIL, Tao et al. point out the class-imbalance issue and the performance trade-off issue between old and new classes. For the first issue, the output logits are biased towards base classes with large-scale training datasets. The trade-off issue mainly results from a larger learning rate for learning from very few training samples, which makes maintaining the output for old classes very difficult. Since a new branch is set for incremental learning sessions in the proposed framework, we do not need to consider preserving the performance of base categories and thus more advanced learning strategies can be combined into the distillation-based framework for learning novel classes. Nevertheless, novel classes are in the limited data regime and thus easily prone to the overfitting issue. If we incorporated more learning strategies, overfitting issue may become more severe. In this paper, we introduce Hyperbolic Metric learning (Hyper-Metric) module to provide a more comprehensive learning space for novel classes to mitigate the overfitting issue. Hyper-Metric is to conduct the metric learning in hyperbolic geometry, which targets at pushing the representations of the same class to be closer and others to be farther. Specifically, we apply the pair-wise cross-entropy loss to achieve this, and then incorporate this metric learning loss into the distillation-based class-incremental learning framework.

For each epoch, we sample \(M \) positive pairs, and each positive pair \((x_i, x_j)\) contains two samples from the same category. The total number of samples is \(T = 2M \). Here the loss function for a specific positive pair is defined as
\[
\mathcal{L}_{i,j}^m = -\log \frac{\exp(d^h(h_\varphi, f_\theta(x_i)), h_\varphi, f_\theta(x_j))}{\tau} \tag{10}
\]

where \(\tau \) is the temperature hyper-parameter. \(\tau \) affects the smoothness degree of obtained logits, and values are more smooth when \(\tau \) is larger. For a batch, we obtain the total metric loss \(\mathcal{L}^m \) on all positions pairs including \((x_i, x_j)\) and \((x_j, x_i)\). When combined the Hyper-Metric module into the distillation-based incremental learning framework, we define the total loss of incremental learning sessions as
\[
\mathcal{L}^t = \mathcal{L}^ce + \zeta \mathcal{L}^{dl} + \eta \mathcal{L}^m, \tag{11}
\]

where \(\mathcal{L}^ce \) is the cross-entropy loss, \(\mathcal{L}^{dl} \) is the general distillation loss, and \(\eta \) and \(\zeta \) are the loss weights. Moreover, \(\mathcal{L}^{dl} \) and \(\mathcal{L}^ce \) are implemented based on iCaRL [11].

By introducing the Hyper-Metric module into the distillation-based class-incremental learning framework, the classification performance can be improved to some extent. Compared with the performance obtained with metric learning in Euclidean space, the extra hyperbolic learning space can alleviate the overfitting issue.
IV. EXPERIMENTS

In this section, we first present the dataset and evaluation indicators and then experimental setup. Then, we show the state-of-the-art results of the proposed methods on three datasets with three evaluation indicators. Besides, we conduct comprehensive evaluation on the impacts of Hyper-RPL module, Hyper-Metric module and the related hyper-parameters. Finally, we show the comparison results with more open-set recognition methods.

A. Datasets and Protocols

We conducted exhaustive experiments on three benchmark datasets for FSCIL: CIFAR100 [62], miniImageNet [30] and CUB200 [63]. We follow the dataset configuration for FSCIL in [3], which is illustrated in Table I.

- CIFAR100 [62] is widely used in CIL tasks. This dataset involves 100 categories with 600 RGB images per class. For each category, 500 images are applied as the training data and 100 images are the testing data. The size of the image is 32×32. Specifically, 60 and 40 classes are assigned as the base and novel classes, respectively. We use all the training samples of 60 classes in the base session and sample a 5-way 5-shot training paradigm in each incremental session. As for the testing stage, we use all the testing samples contained in the original datasets.

- miniImageNet [30] is constructed by sampling a smaller number of classes from ImageNet. It constitutes 600 images per class and the image size is 84×84. We also employ 60 and 40 classes in the base session and incremental learning sessions, respectively. Notably, all the training samples of 60 classes are included in the base session, and the incremental sessions are executed with the sampled 5-way 5-shot training pattern. As for the testing stage, we use all the testing samples contained in the original datasets.

- CUB200 [63] is a fine-grained dataset that contains about 6,000 training images and 6,000 test images of over 200 bird categories. The images are resized to 256×256 and then cropped to 224×224 for training. We apply 100 classes with all the training samples in the base session and split the remaining 100 classes into 10 incremental sessions with the sampled 10-way 5-shot training paradigm. Thorough evaluation on the proposed framework is carried out with three indicators: (1) the final overall accuracy (%) in the last session; (2) the performance dropping rate (PD) (%) [12] that measures the absolute accuracy drops in the last session w.r.t. the accuracy in the first session; (3) the average accuracy (%) of all the sessions.

B. Implementation Details

Model Configurations: For the fair comparison, we employed ResNet-18 [64] as the backbone for the two branches. After the first session, we froze the parameters of the front four layers of the backbone. During training, the model was optimized by SGD [65] (with $lr=0.1$ and $wd=5e-4$). For the novel branch, we used the herding selection [11] when selecting exemplar set for maintain the discriminative competence of previous categories by knowledge distillation. For the classification head, we applied the nearest-mean-of-exemplars (NME) classification. Our framework was implemented using Pytorch and trained on GeForce RTX 3080 GPUs.

Training Details: For the first session, 160 epochs was executed for the three datasets, which is the same as the traditional FSCIL methods. For CIFAR100 and miniImageNet, we set the initial learning rate as 0.1, which was divided by 10 after 80 and 120 epochs. For CUB200, the starting learning rate was 0.001, and divided by 10 after 80 and 120 epochs. The model was trained with the training batch size of 128 for miniImageNet and CIFAR100, and 32 for CUB200. As for the integrated distance, β and γ were assigned as 0.7 and 0.3, respectively. Other parameter configurations followed the setting of RPL. For the incremental sessions, the initial backbone model was pretrained with 100 epochs on the base dataset. For CIFAR100, the model was trained with learning rate 0.01 and batch size 128 for 80 epochs. The Hyper-Metric module was conducted after the fourth session and started from 20 epochs. For miniImageNet, the learning rate was 0.01 and batch size was 128 for 60 epochs. The Hyper-Metric was executed after the fourth session and started from 40 epochs. For CUB200, the learning rate was 0.0005 for the total 60 epochs with training batch size 32. The Hyper-Metric module was performed after the fourth session and started from 20 epochs. The curvature ψ of the Poincaré ball model is assigned to 0.1. For the novel categories in the incremental sessions, we stored 2 exemplars per class. For the hyper-parameters in (11), ζ was implemented as the adaptive weight based on the work [18] and η was fixed as 1. Lastly, M was equal to the training batch size and τ is termed 1.

C. Comparison With State-of-the-Art Methods

We evaluate our proposed framework on three benchmark datasets, and compare it with state-of-the-art methods regarding three indicators. Our comparison is mainly divided into two parts: (1) The first part is to compare with current methods that have the similar classification accuracy with ours in the first session, and we analyse the results towards three evaluation indicators. (2) The other situation is when the classification
performance is superior to ours in the first session. Since we endow the model with not only the classification ability of known categories but also the competence of detecting unknown classes, the overall performance can not exceed the single task performance obtained with the traditional FSCIL protocol. Therefore, we demonstrate the dominant performance with respect to PD and final overall accuracy.

Results on CIFAR100: As shown in Fig. 4(a), we compare our method with the current methods that have similar classification accuracy of known categories in the first session. The curve representing our achievement experiences a gentle downtrend, thus the classification accuracy of the last session exceeds all other methods and the PD is the smallest. Meanwhile, this phenomenon also demonstrates that our framework can better tackle the catastrophic forgetting issue. Moreover, the curve representing our framework is above other curves, which means that the surpassing average accuracy is achieved by the proposed framework. Table II (Rows 3-8) presents more comparative results. As for the indicators of average accuracy and final accuracy, the superior performance mainly results from the predominant performance of the first session, which is why our method achieves inferior performance.

Results on mini ImageNet: Fig. 4(b) compares the performance of our method with state-of-the-art methods. For the first session, the open-set recognition task is endowed to the model for leaving the possibility of novel encountered classes, which exists the trade-off issue of the performance between known and unknown classes. Therefore, the classification accuracy on known classes can not exceed other methods that only conduct the classification task on known classes. Therefore, it can be
explained that why our framework obtains the inferior performance to other methods in the first two sessions. For the third session, our proposed framework outperforms other methods, and then goes through a slight decline. Table II (Rows 9-14) compares the performance of our method with CEC [12] and SPPR [13], and our framework achieves less PD than these two methods.

Results on CUB200: As illustrated in Table III (Rows 3-11), when the model possesses the similar classification performance in the first session, our framework reaches the superior performance in regard to the three evaluation indicators. Table III (Rows 12-13) shows the comparative results with CEC [12] and IDLVQ-C [35]. Specifically, our proposed framework suffers from less performance dropping rate (17.33%), which reflects the outstanding ability of memorizing the old knowledge. Though the model does not suffer from catastrophic forgetting with our method, the model still experiences performance dropping. It is because of the stability-plasticity dilemma [67], i.e., there is a trade-off between plasticity for the integration of new knowledge and stability to prevent the forgetting of previous knowledge. Too much plasticity will result in previous knowledge being constantly forgotten, and too much stability will impede the efficient perceiving of novel knowledge. Since the aim of FSCIL is to constantly perceive a sequence of tasks, we have to sacrifice part of the performance of previous tasks for perceiving novel tasks, which causes performance degradation.

D. Ablation Study

Efficacy of Hyper-RPL module: Here we evaluate the efficacy of Hyper-RPL module with the combination of hyperbolic geometry to provide a more comprehensive searching space, we present the comparative result with RPL in Table IV. When we assign the same threshold to RPL and Hyper-RPL for detecting the unknown categories, the classification accuracy of known categories for these two methods is similar, while Hyper-RPL performs better on detecting the unknown categories. Therefore, with Hyper-RPL, more novel samples can be classified as unknown categories and sent to the novel branch, which results in the surpassing performance of incremental sessions. Furthermore, it is worth noting that the incorporated searching space can assist the model to find a better decision boundary for known and unknown categories.

Impact of integrated distance weights: In these experiments, we evaluate the impacts of distance weights β and γ in (4) by assigning different values. In Hyper-Metric module, we introduce the hyperbolic geometry to the current Euclidean space, and the

Method	Session ID	PD	Average Acc.											
Ft-CNN [3]	1-2	68.68	44.81	32.26	25.83	25.62	25.22	20.84	16.77	18.82	18.25	17.18	51.50	28.57
Joint-CNN [3]	1-2	68.68	62.43	57.23	52.80	49.50	46.10	42.80	40.10	38.70	37.10	35.60	33.08	48.28
iCaRL [11]	1-2	68.68	52.65	48.61	44.16	36.62	29.52	27.83	26.26	24.01	23.89	21.16	47.52	36.67
EBL [60]	1-2	68.68	53.63	47.91	44.20	36.30	27.46	25.93	24.70	23.95	24.13	22.11	46.57	36.27
NCM [18]	1-2	68.68	57.12	44.21	23.78	28.71	25.66	24.62	21.52	20.12	20.06	19.87	48.81	32.49
TOPIC [3]	1-2	68.68	62.49	54.81	49.99	45.25	41.40	38.35	35.36	32.22	28.31	26.28	42.40	43.92
SAKD [36]	1-2	68.23	60.45	55.70	50.45	45.72	42.90	40.89	38.77	36.51	34.87	32.96	35.27	46.13
SPPR [13]	1-2	68.68	61.85	57.43	52.68	50.19	46.88	44.65	43.07	40.17	39.63	37.33	31.35	49.32
SFMS [61]	1-2	68.78	59.37	59.32	54.96	52.58	49.81	48.09	46.32	43.43	43.43	42.23	55.51	51.84

PD is the percentage dropping rate from the first session to the last session. Average acc. is the average performance of all the encountered sessions.

Dataset	Threshold	Method	1 (Known/Unknown)	2	3	4	5	6	7	8	9	10	11	PD	Average Acc.		
CIFAR100	0.75	RPL	Hyper-RPL (Ours)	63.33	67.85	62.51	60.60	57.67	55.20	54.05	52.37	49.85	48.91	-	-	14.42	56.05
miniImageNet	0.73	RPL	Hyper-RPL (Ours)	59.83	68.35	58.12	55.70	53.86	52.08	49.82	47.57	46.43	45.84	-	-	14.29	52.10
CUB200	0.73	RPL	Hyper-RPL (Ours)	63.09	69.83	62.26	59.38	56.29	54.50	52.45	50.90	49.36	48.64	46.26	45.10	17.99	53.31

The classification accuracy of known categories for these two methods is similar, while Hyper-RPL performs better on detecting the unknown categories.
novel integrated function (i.e., \(4\)) is proposed. The integrated distance is used for computing the logits which then generate the predictions of the model. Therefore, the distance weights \(\beta\) and \(\gamma\) determines the searching space for optimizing the model. The ablation study results are illustrated in Fig. 5(a), and Hyper-RPL module achieves the superior discriminative ability of detecting open-set categories when \(\beta\) and \(\gamma\) are assigned 0.7 and 0.3, respectively.

Comparison with more open-set recognition methods: To further validate the efficacy of Hyper-metric module, we compare it with two other open-set recognition methods: Openmax [52] and PROSER [59]. Openmax belongs to the discriminative model-based method, and the close-set and open set recognition accuracy are 45.30\% and 59.52\%, respectively. PROSER is based on the generative model, the classification accuracy of seen and unseen categories are 63.30\% and 69.52\%, respectively. RPL can be also regarded as discriminative model-based method, while the novelty of formulating close-set recognition loss and the open-space risk contribute to the final excellent performance. By integrating the hyperbolic geometry in Hyper-RPL, the clearer decision boundary between seen and unseen categories is founded with the extended optimization space.

Impact of the curvature \(c\) for the Poincaré ball model: We mainly evaluate the impact of the curvature \(c\) on the classification performance, so we fix the performance of the first session. As shown in Fig. 5(b), our proposed framework achieves the best overall performance when the curvature of the Poincaré ball model is assigned to 0.1. The curvature \(c\) is usually regarded as the balance parameter between hyperbolic and Euclidean geometries, which means that this hyper-parameter also affect the integrated optimization space that the model can access. The performance of our framework is undermined when the value of \(c\) increases or decreases.

Impact of the number of exemplars per novel category: The rehearsal- and distillation-based continual learning frameworks require to store samples (i.e., exemplars) in an extra memory for the following training process to preserve old knowledge. For the memory-efficient aim, we store as little old data as possible. Furthermore, since we conduct pair-wise cross-entropy loss during incremental session, at least 2 exemplars per class are reserved for the sampling procedure. Thus, 2 exemplars per class are preserved in our experiment. Commonly, more old exemplars can better maintain previous knowledge. Here we provide the results with 3 exemplars per class in Fig. 5(c). The performance curve only experiences a slight enhancement when we keep one more exemplar because of the performance trade-off between learning new categories and memorizing old categories, which is also called the stability-plasticity dilemma.

Efficacy of Hyper-Metric module: We present this ablation study results in Table V. \(E^c\), \(E^{dl}\) and \(E^{dl}\) are the three components of (11). ‘\(E\)’ and ‘\(H\)’ represent that the corresponding loss is operated in Euclidean space and hyperbolic space, respectively. ‘\(X\)’ means that the loss is not included into the optimization process. We use the third row as an example, and the case is that we do not combine the metric learning loss in (11), i.e., optimizing the model with cross entropy classification loss and distillation loss in Euclidean space. We conduct ablation experiments on all possible cases. Since novel categories are all in the limited data regime, the learning algorithm easily suffers from the overfitting issue. If the metric learning is carried out in Euclidean space which is the same as the other two losses, the performance is deteriorated, which is due to the much severe overfitting issue. However, when the metric learning is executed in hyperbolic space and the other losses are executed in Euclidean space, the performance enhancement is obtained since we provide a more abundant learning space to alleviate the overfitting issue.

Impact of the temperature \(\tau\) in Hyper-Metric module: The value of the temperature in (10) is usually less than 1, and we increase this number from 0.7 to 1 to evaluate the impact of this hyper-parameter. The ablation study results are shown in Table VI. It can be concluded that the performance improves as temperature increases owing to the more smooth logits, and achieves the best when the value is assigned to 1.

E. Further Analysis and Visualization
In our proposed framework, the classification performance of the first session can be totally preserved. Furthermore, we show the classification accuracy of novel categories in Table VII.
TABLE V

| Dataset | \(L_{ce}^e\) | \(L_{ce}^d\) | \(L_{ce}^m\) | Session ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | PD\(_{\downarrow}\) | Average Acc. |
|--------------|--------------|--------------|--------------|------------|---|---|---|---|---|---|---|---|---|---|---|---|--------------|-------------|
| CIFAR100 | X | E | E | E | 63.55 | 62.84 | 60.70 | 56.65 | 55.34 | 54.03 | 52.29 | 49.94 | 49.00 | - | - | 14.55 | 56.03 |
| | H | E | X | E | 63.55 | 62.69 | 60.33 | 56.75 | 53.90 | 52.07 | 50.34 | 47.84 | 46.93 | - | - | 16.62 | 54.93 |
| | E | H | X | E | 63.55 | 62.76 | 60.46 | 57.06 | 54.30 | 52.42 | 50.56 | 48.18 | 47.37 | - | - | 16.18 | 55.18 |
| | H | H | X | E | 63.55 | 62.71 | 60.32 | 56.72 | 53.82 | 52.00 | 50.33 | 47.85 | 46.90 | - | - | 16.65 | 54.91 |
| | X | H | E | E | 63.55 | 62.65 | 60.10 | 56.20 | 53.63 | 51.49 | 49.58 | 46.62 | 45.61 | - | - | 17.94 | 54.38 |
| | X | E | E | E | 63.55 | 62.60 | 60.11 | 56.42 | 53.43 | 51.72 | 50.03 | 47.17 | 46.50 | - | - | 17.05 | 54.61 |
| | H | H | E | E | 63.55 | 62.62 | 60.13 | 56.17 | 53.61 | 51.54 | 50.05 | 47.22 | 45.01 | - | - | 18.53 | 54.43 |
| | E | H | E | E | 63.55 | 62.56 | 60.10 | 56.62 | 53.36 | 51.59 | 49.77 | 47.14 | 46.29 | - | - | 17.26 | 54.55 |
| | E | E | H | E | 63.55 | 62.56 | 60.23 | 56.24 | 53.53 | 51.74 | 49.98 | 47.18 | 46.43 | - | - | 17.12 | 54.60 |
| | E | E | E | H | 63.55 | 62.71 | 60.19 | 57.15 | 53.47 | 52.78 | 51.45 | 48.81 | 48.06 | - | - | 15.49 | 55.35 |

TABLE VI

ABLATION STUDY ON TEMPERATURE \(\tau\) IN HYPER-METRIC MODULE
\(\tau\)
0.7
0.8
0.9
1.0

The bold values show that our method achieves the superior performance of recognizing novel classes.

It can be concluded that our proposed framework can better alleviate the overfitting issue than CEC [12] and SPPR [13] to a large extent. This achievement result from two aspects: (1) The trade-off issue is better mitigated by the proposed novel framework for FSCIL. (2) The Hyper-Metric module extends the optimization space for learning novel categories to alleviate the overfitting issue.

Fig. 6 illustrates the t-SNE results of CIFAR100 in the 7-th session. For Fig. 6(a) and (b), features of the same category are more concentrated with the cross-entropy loss in Euclidean space, which means that the intra-class difference is reduced. From for Fig. 6(b) and (c), the decision boundaries for the five classes become clearer when we remove the metric-learning operation in Euclidean space. When metric learning is executed in Euclidean geometry, the overfitting issue becomes severer due to the extra optimization process with limited labeled data. However, with the Hyper-Metric module, our proposed framework achieves the surpassing discriminative ability. Hyper-Metric module integrates the hyperbolic geometry into the existing Euclidean geometry, which provides a more comprehensive searching space for the optimization process. Furthermore, the visualization in Poincaré ball model corresponding to the situation shown in Fig. 6(d) is shown in Fig. 7. Like in Euclidean space, the representation in hyperbolic geometry is also discriminative. Besides, most of samples locate near the boundary of the circle, which means that the prediction uncertainty is low.
TABLE VII
PREDICTION ACCURACY NOVEL CLASSES ON THREE BENCHMARK DATASETS

Dataset	Method	Classes	Session ID											
CIFAR100	SPPR [13]	Novel	1	1.52	9.40	9.80	7.45	7.52	7.33	8.14	7.35			
		All	2	76.68	72.69	67.61	63.52	59.18	55.82	53.08	50.89	48.12		
	CEC [12]	Novel	3	36.00	27.30	22.67	21.90	22.52	22.10	21.60	20.98			
		All	4	73.03	70.86	65.20	61.27	58.03	55.53	53.17	51.19	49.06		
	Ours	Novel	5	54.79	46.03	36.43	32.05	33.07	31.70	27.84	28.38			
		All	6	63.55	62.88	61.05	58.13	55.68	54.59	52.93	50.39	49.48		
mSwinNet	SPPR [13]	Novel	7	2.20	0.50	1.33	1.90	1.76	1.47	2.60	1.55			
		All	8	80.27	74.22	68.89	64.43	60.54	56.82	53.81	51.22	48.54		
	CEC [12]	Novel	9	20.80	21.20	20.33	19.90	17.72	16.70	16.86	17.20			
		All	10	72.22	67.06	63.17	59.79	56.96	53.91	51.36	49.32	47.60		
	Ours	Novel	11	39.26	32.26	31.31	30.12	26.95	24.08	24.51	25.89			
		All	12	60.65	59.00	56.59	54.78	53.02	50.73	48.46	47.34	46.75		
CUB200	SPPR [13]	Novel	13	60.39	45.55	30.24	31.07	27.75	26.67	27.51	25.16	24.76	23.88	
		All	14	68.16	60.32	57.11	52.79	49.68	45.95	43.19	42.39	40.17	38.93	37.33
	CEC [12]	Novel	15	46.61	41.74	33.34	37.46	32.77	34.78	35.06	33.23	34.98	34.17	
		All	16	75.82	71.91	68.52	63.53	62.45	58.27	57.62	55.81	54.85	53.52	52.26
	Ours	Novel	17	56.81	43.17	35.16	34.99	33.03	32.41	31.51	28.13	28.86	28.73	
		All	18	63.20	62.61	59.83	56.82	55.07	53.06	51.56	50.05	47.50	46.82	45.87

The bold values show that our method achieves the superior performance of recognizing novel classes.

Fig. 7. Visualization in Poincaré ball model corresponding to the situation shown in Fig. 6(d).

V. CONCLUSION AND FUTURE WORK

Currently, the protocol of FSCIL is built by imitating the general CIL setting which is not totally appropriate due to the different data configurations. In this paper, we rethink the FSCIL with open-set hypothesis and propose a more practical configuration. To realize the better discriminative ability of both seen categories and unseen categories in the first session, Hyper-RPL is put forward by incorporating hyperbolic geometry to obtain a clearer decision boundary. Moreover, Hyper-Metric is introduced into the distillation-based CIL framework to handle the overfitting and trade-off issues, which results from a more comprehensive learning space. The exhaustive evaluations of the proposed configuration and modules on three benchmark datasets are conducted to certify the efficacy regarding three evaluation indicators.

In spite of the remarkable performance achieved by the proposed framework, two future improvement directions still include: (1) Since our framework benefits from introducing hyperbolic geometry to existing Euclidean geometry, the integrated strategy is critical for the final achievements. We will seek for the adaptive integrated strategy to replace the current well-designed one in the future. (2) The hyperbolic geometry is already a rich representation space, however, it can be seen from Table V that our method cannot achieve satisfying results when only hyperbolic geometry is applied. Thus, we will explore valid solutions to operate FSCIL task in this single space.

(3) The Poincaré ball model is one of the modeling paradigms in hyperbolic geometry. We only validate the efficacy of the Poincaré ball model in our proposed methods. In the future, we will incorporate other modeling paradigms, e.g., Lorentz model, Poincaré half plane model, and Klein model, into the proposed methods to enhance the robustness of the modeling paradigm in hyperbolic geometry.

REFERENCES

[1] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.
[2] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 3987–3995.
[3] X. Tao et al., “Few-shot class-incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 12183–12192.
[4] D.-W. Zhou et al., “Forward compatible few-shot class-incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 9046–9056.
[5] T. Ahmad et al., “Few-shot class incremental learning leveraging self-supervised features,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 3900–3910.
[6] M. Hersche et al., “Constrained few-shot class-incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 9057–9067.
[7] D.-W. Zhou et al., “Few-shot class-incremental learning by sampling multi-phase tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 11, pp. 12816–12831, Nov. 2023.
[8] Z. Chi et al., “MetaFSCIL: A meta-learning approach for few-shot class incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 14166–14175.
CUI et al.: RETHINKING FEW-SHOT CLASS-INCREMENTAL LEARNING WITH OPEN-SET HYPOTHESIS IN HYPERBOLIC GEOMETRY 5909

[35] K. Chen and C.-G. Lee, “Incremental few-shot learning via vector quantization in deep embedded space,” in Proc. Int. Conf. Learn. Representations, 2021.

[36] A. Cheraghian et al., “Semantic-aware knowledge distillation for few-shot class-incremental learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 2534–2543.

[37] S. Dong et al., “Few-shot class-incremental learning via relation knowledge distillation,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 1255–1263.

[38] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural networks,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[39] M. Nickel and D. Kiela, “Pointnet embeddings for learning hierarchical representations,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2017.

[40] M. Nickel and D. Kiela, “Learning continuous hierarchies in the lorentz model of hyperbolic geometry,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 3779–3788.

[41] R. Aly et al., “Every child should have parents: A taxonomy refinement algorithm based on hyperbolic term embeddings,” in Proc. 57th Ann. Meeting Assoc. Comput. Linguistics, 2019, pp. 4811–4817.

[42] A. Tifrea, G. Bécigneul, and O.-E. Ganea, “Poincaré glove: Hyperbolic word embeddings,” in Proc. Int. Conf. Learn. Representations, 2018.

[43] G. Bachmann, G. Bécigneul, and O. Ganea, “Constant curvature graph convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 4934–4946.

[44] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,” Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[45] J. W. Cannon et al., “Hyperbolic geometry,” Flavors Geometry, vol. 31, no. 9, pp. 51–107, 1997.

[46] S. Liu et al., “Hyperbolic visual embedding learning for zero-shot recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 9273–9282.

[47] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution detection,” in Proc. Ann. Conf. Neural Inf. Process. Syst., 2020, pp. 21464–21475.

[48] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” 2016, arXiv:1610.02136.

[49] J. Ren et al., “Likelihood ratios for out-of-distribution detection,” Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[50] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition using probability of inclusion,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 393–409.

[51] H. Zhang and V. M. Patel, “Sparse representation-based open set recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1690–1696, Aug. 2017.

[52] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1563–1572.

[53] S. Deng et al., “Learning relative feature displacement for few-shot open-set recognition,” IEEE Trans. Multimedia, vol. 25, pp. 5763–5774, 2023.

[54] P. R. M. Júnior et al., “Nearest neighbors distance ratio open-set classifier,” Adv. Neural Inf. Process. Syst., vol. 30, no. 3, pp. 3848–3861, Mar. 2023.

[55] Z. Ge, S. Demyanov, Z. Chen, and R. Garnavi, “Generative openmax for multi-class open set classification,” in Proc. Brit. Mach. Vis. Assoc. Conf., 2017.

[56] P. Oza and V. M. Patel, “C2AE: Class conditioned auto-encoder for open-set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2307–2316.

[57] P. Peerza et al., “Generative-discriminative feature representations for open-set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 11814–11823.

[58] D.-W. Zhou, H.-J. Ye, and D.-C. Zhan, “Learning placeholders for open-set recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 4401–4410.

[59] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end incremental learning,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 233–248.

[60] A. Cheraghian et al., “Synthesized feature based few-shot class-incremental learning on a mixture of subspaces,” in Proc. IEEE/CVF Conf. Comput. Vis., 2021, pp. 8661–8670.

[61] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” 2009.
A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with A-GEM,” in Proc. Int. Conf. Learn. Representations, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math. Statist., vol. 22, pp. 400–407, 1951.

H. Liu et al., “Few-shot class-incremental learning via entropy-regularized data-free replay,” in Proc. Eur. Conf. Comput. Vis., 2022, pp. 146–162.

M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects,” Front. Psychol., vol. 4, p. 504, 2013.

Yawen Cui received B.E. degree in computer science and technology from Jiangnan University, Wuxi, China and the M.S. degree in software engineering from the National University of Defense Technology, Changsha, China, in 2016 and 2019, respectively. She is currently working toward the Ph.D. degree in computer science from the University of Oulu, Oulu, Finland. Her research interests include few-shot learning and continual learning.

Zitong Yu received the Ph.D. degree from the University of Oulu, Oulu, Finland, in 2022. He was a Postdoctoral Researcher with ROSE Lab, Nanyang Technological University, Singapore. He is currently an Assistant Professor with Great Bay University, Greater Bay Area, China. His research interests include biometrics and computer vision. He was elected among World’s Top 2% Scientists 2023 by Stanford University, Stanford, CA, USA. He was the recipient of IEEE Finland Section Best Student Conference Paper Award 2020 and IAPR Best Student Paper Award on CCBR 2023.

Wei Peng received the Ph.D. degree from the University of Oulu, Oulu, Finland. He is currently a Postdoctoral Fellow with Stanford University, Stanford, CA, USA. He has authored more than 40 papers in journals and conferences, such as IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision (Proc. IEEE/CVF Int. Conf. Comput. Vis.), and AAAI Conference on Artificial Intelligence (AAAI). His research interests include medical image analysis, computational neuroscience, and affective computing. Dr. Peng’s studies about subtle movement analysis was the recipient of the IEEE Best Student Conference Paper (Finland Section) 2020 and he was honored with the Finnish AI Dissertation Award 2022.

Qi Tian (Fellow, IEEE) received the B.E. degree in electronic engineering from Tsinghua University, China, in 1992, the M.S. degree in electrical and computer engineering from Drexel University in 1996 and the Ph.D. degree in electrical and computer engineering from the University of Illinois, Urbana-Champaign in 2002. He is currently a Professor in the Department of Computer Science at the University of Texas at San Antonio (UTSA) and Xidian University, China. His research interests include multimedia information retrieval and computer vision. Dr. Tian is a Fellow of IEEE.

Li Liu (Senior Member, IEEE) received the Ph.D. degree from the National University of Defense Technology, Changsha, China, in 2012. She is currently a Full Professor with Changsha. She has held research visits with the University of Waterloo Waterloo, ON, Canada, the Chinese University of Hong Kong, Hong Kong, and the University of Oulu, Oulu, Finland. She was the leading Guest Editor of the special issues for IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE and International Journal of Computer Vision, she is an Associate Editor for IEEE TCSVT, IEEE TGRS, and Pattern Recognition. Her research interests include computer vision, remote sensing image analysis, pattern recognition, and machine learning. Her papers currently have more than 12,000 citations, according to Google Scholar.