Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in *Alternaria brassicicola*

Yangrae Cho,1,*, Akhil Srivastava,1 Robin A. Ohm,2 Christopher B. Lawrence,3 Koon-Hui Wang,1 Igor V. Grigoriev,2 and Sharadchandra P. Marahatta1

1Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
2US DOE Joint Genome Institute, Walnut Creek, California, United States of America
3Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America

October 2012

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in *Alternaria brassicicola*

Yangrae Cho¹, Akhil Srivastava¹, Robin A. Ohm², Christopher B. Lawrence³, Koon-Hui Wang¹, Igor V. Grigoriev², Sharadchandra P. Marahatta¹*

1 Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America, 2 US DOE Joint Genome Institute, Walnut Creek, California, United States of America, 3 Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America

Abstract

Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several *A. brassicicola* genes have been characterized as affecting pathogenesis of *Brassica* species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in *silico* encoding putative transcription factors in a machine-annotated, draft genome sequence of *A. brassicicola*. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (*AbPacC*) were nonpathogenic and another gene (*AbIV8*) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of the third gene, *Amr1*, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. *Amr1* is a homolog of *Cmr1*, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of *Amr1* and characterized their phenotypes. The *Δamr1* mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted *Amr1* gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the *Amr1* gene are important to the success of *A. brassicicola* as a competitive saprophyte and plant parasite.

Citation: Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang K-H, et al. (2012) Transcription Factor Amr1 Induces Melanin Biosynthesis and Suppresses Virulence in *Alternaria brassicicola*. PLoS Pathog 8(10): e1002974. doi:10.1371/journal.ppat.1002974

Editor: Jin-Rong Xu, Purdue University, United States of America

Received May 1, 2012; Accepted August 31, 2012; Published October 25, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported by USDA-TSTAR 2009-3135-20197 and HATCH funds to YC, administered by the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI. Analysis of RNA-seq data and downstream analyses were done by the U.S. Department of Energy Joint Genome Institute that is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yangrae@hawaii.edu

¹ Current address: Science and Math Division, Kauai Community College, Lihu'e, Hawaii, United States of America

Introduction

Alternaria brassicicola is the causal agent of black spot disease of cultivated brassicas (e.g. cabbage, canola, mustard). Pathogenesis in necrotrophic fungi is generally described as a two-step process: killing host cells directly (necrosis) or inducing programmed cell death with toxins, then decomposing host tissues with cell wall-degrading enzymes. The importance of toxins in disease development by other necrotrophs has been clearly demonstrated [1,2,3,4]. Several *A. alternata* pathotypes produce toxic, host-specific secondary metabolites that are essential for pathogenicity [5,6,7,8]. Our knowledge of toxins produced by *A. brassicicola* is currently limited. In recent studies, Brassicicolin A emerged as the most selective phytotoxic metabolite produced in liquid cultures of *A. brassicicola* [9]. The genes responsible for biosynthesis of this toxin, however, have yet to be determined. Diterpenoid toxins called brassicenes have also been described from this fungus and linked to gene clusters in the *A. brassicicola* genome [10]. In addition, a cluster of five genes responsible for synthesis of the secondary metabolite depudecin, a histone deacetylation inhibitor was recently reported [11]. Mutation of the five genes abolished depudecin synthesis and caused only a small (10%) reduction in virulence compared to wild-type *A. brassicicola*. A weak protein toxin was also reported [12,13] but the gene or genes responsible for its production have yet to be identified.

In addition to toxins, several *A. brassicicola* genes have been linked to pathogenesis [14,15,16,17,18,19,20]. These genes are involved in iron uptake, cell wall integrity, peroxisome-mediated redox homeostasis, hyphal fusion, hydrolytic enzymes, and signal transduction. All mutants of the pathogenesis-related genes showed either a reduction in virulence or loss of pathogenicity. For example, mutants of a mitogen-activated protein (MAP) kinase gene, *Amk1*, and its downstream transcription factor-coding gene, *AbSte12*, were nonpathogenic. The mutants of either gene also showed slow vegetative growth and impaired conidium matura-

Bioinformatics analysis of the genome sequence of *A. brassicicola* identified many candidate genes important for pathogenesis. They
Author Summary

Induction of cell wall-degrading enzymes, secretion of toxins, enforcement of fungal cell architecture, and detoxification of host defense molecules are important or essential for the fungal infection of plants. Genes important for each of these functions have been identified in various fungal species. Understanding how these genes are coordinately regulated and how many regulators are involved in the process is a challenge. We recently discovered a transcription factor gene, AbVf19, which positively regulates hydrolytic enzyme-coding genes. Here, we report on another transcription factor gene, Amr1, which negatively regulates a subset of these genes during late-stage pathogenesis and positively regulates melanin biosynthesis during conidiogenesis. This study adds another dimension to the complex regulation and overall importance of hydrolytic enzyme genes during plant pathogenesis by necrotrophic fungi. In addition, this study provides an example on the evolutionary implication of virulence in the necrotrophic fungus, Alternaea brassicicola. One transcription factor essential for long-term survival because of its role in melanin biosynthesis is used instead to suppress virulence. We speculate that the suppressive functions of Amr1 contribute to the specialized adaptation of A. brassicicola as an efficient and successful facultative parasite.

included several genes that are essential for melanin synthesis. Alternaria species produce 1,8-dihydroxyanthraquinone (1,8-DHAN) melanin, like various other filamentous fungi [21,22,23]. It is heavily concentrated in the primary cell walls of conidia and in their septa [24]. Melanin is a ubiquitous pigment that plays an important role in protecting fungi from the damaging effects of environmental stress and so may be considered an advantageous adaptation. It increases the tolerance of fungi to UV irradiation [25,26,27], enzymatic lysis [28], and extreme temperatures [26,29]. Melanin is also required for the mechanical penetration of host plants by other phytopathogenic fungi, such as Magnaporthe oryzae and Colletotrichum lagenarium [30].

Synthesis of 1,8-DHAN melanin requires polyketide synthase (PKS1 in Bipolaris oryzae and PKS18 in Cochliobolus heterostrophus), T4HN reductase (Bm2), scytalone dehydratase (Sld1), and T3HN reductase (Bm1 or Thr1) genes identified in B. oryzae [31], Col. lagenarium [32], and Coch.heterostrophus [21,33]. Expression of these genes is mainly regulated by the Cmr1 transcription factor gene in Col. lagenarium. Cmr1 homologs are regulators of the primary melanin biosynthesis pathway in several plant pathogenic fungi, but virulence is not affected by the gene mutation in M. grisea, Col. lagenarium, or Coch. heterostrophus [21,22].

For all pathogenesis-associated genes in A. brassicicola studied to date, their mutants have been either nonpathogenic, or less virulent than the wild type. In this study, we determined that mutants of the Cmr1 homolog in A. brassicicola (Amr1) were melanin-deficient but more virulent than wild-type A. brassicicola. We defined virulence as quantitative host plant damage as measured by lesion diameter. The increase in virulence of the Δamr1 mutants suggested that the loss of the gene was beneficial to pathogenesis. We tested three research questions: whether melanin is important for pathogenesis, if mutants efficiently neutralize host defense chemicals, or if the mutants more efficiently utilize plant cell wall-associated materials such as pectin. Our study provides an example of a transcription factor gene that is important for survival in nature negatively regulates virulence in a necrotrophic plant pathogen. We speculate that the negative regulation of virulence by the Amr1 gene contributed to A. brassicicola's efficiency as a facultative plant pathogen while retaining characteristics of a robust saprophyte.

Results

Identification of putative transcription factor genes

The genome sequence of A. brassicicola has been determined by Washington University School of Medicine, Genome Sequencing Center, and is publicly available from DDBJ/EMBL/GenBank under accession ACIW00000000. In addition, the annotated genome is available in the context of other sequenced Dothideomycetes genomes through the interactive JGI fungal portal MycoCosm [34] at http://jgi.doe.gov/Abrassicicola. The A. brassicicola genome size is approximately 31.9 Mb, smaller than the average genome size of other dothideomycete genomes [35]. There are 10,688 predicted genes in the assembled genome. We predicted 421 genes encoding putative transcription factors in the draft genome of A. brassicicola using Pgam searches [36]. These transcription factors excluded the core proteins necessary for the formation of transcription initiation complexes and RNA polymerases. We classified the transcription factors in 13 categories based on their functional domains (Table 1). Members of the largest group (221 of 421) contain at least one zinc-finger domain. The second largest group (72 of 421) contains fungal-specific transcription factor domains.

Discovery of pathogenesis-associated transcription factors

We previously created targeted deletion mutants for 22 transcription factor and signaling-related genes and reported the association of AbSte12, AbPro1, and AbVf19 transcription factors with pathogenesis [15,20]. In this present study, we generated targeted gene disruption mutants for an additional 117 transcription factor genes (Figure S1). All mutants corresponding to 109 of the 117 genes caused disease symptoms on host plants with lesion sizes similar to those caused by the wild type in multiple pathogenicity assays. Mutants of eight of 117 genes showed unusual changes in virulence. Among the eight mutants, five mutants also grew very slowly on nutrient rich medium. These mutants either failed to cause disease symptoms or their lesions did not expand beyond the initial infection site (Table S1). Gene disruption mutants of the AbPacC transcription factor (abpac) were nonpathogenic (Table 2), unlike the severely reduced virulence in the loss-of-function mutants of its homologs in Col. acutatum [37] and Sclerotinia sclerotiorum [38] or no changes in Ustilago maydis [39]. Mutants corresponding to two other genes (Amr1 and AbVf19) grew normally on nutrient rich media, were novel factors associated with pathogenesis, and are described further in this study.

The Amr1 gene

In contrast to the loss-of-function mutants of other virulence genes studied thus far in this pathosystem, Amr1 disruption mutants (Δamr1) caused larger lesions than wild-type A. brassicicola when green cabbage (Brassica oleracea) leaves were inoculated with the same number of conidia (data not shown, see below for detailed study). The predicted Amr1 gene encodes a protein of 997 amino acids with two C2H2-zinc finger motifs and one fungal-specific zinc(II) binuclear motif. Of the 997 predicted amino acids, S69 (87%) were identical (E-value = 0) to the transcription factor Cmr1 in the taxonomically closely related dothideomycete fungus, Coch. heterostrophus [21]. We named this Cmr1 homolog in A. brassicicola, Amr1 (Alternaria melanin regulation, GenBank accession number: JF487829). Only one copy of the gene was present in
the draft genome sequence of A. brassicicola (http://jgi.doe.gov/Abrassicicola).

Replacement mutants of the Amr1 gene

In order to confirm our results with gene disruption mutants and to perform additional studies, deletion mutants of Amr1 (Δamr1) were produced by replacing the coding region with either a Hygromycin B (HygB) resistance cassette, or a green fluorescent protein (GFP) coding sequence [40] plus a HygB resistance cassette. Southern hybridization confirmed that the Amr1 gene was absent from nine melanin-deficient transformants but still present in the eight transformants producing melanin (Figure 1). We replaced the Amr1 coding region with a single copy of the HygB resistance cassette in Δamr1-4 and three Δamr1:Amr1p-GFP mutants (d4, D1, D2, and D3 in Figure 1). The replacement construct containing the GFP and HygB resistance cassette was designed so the GFP gene would be regulated by native promoter elements of the Amr1 gene in the replacement mutants (Δamr1:Amr1p-GFP) (Figure 1B). We complemented Δamr1-5 mutant with either the wild-type allele or a chimeric construct with the TrpC promoter to constitutively express the wild-type Amr1 gene.

Increased virulence of the Δamr1 mutants

Because the increase in virulence in A. brassicicola was unusual and unprecedented, we performed additional pathogenicity assays with four strains of gene deletion mutants (Δamr1-1, Δamr1-4, Δamr1-5, and Δamr1:Amr1p-GFP). All lesions caused by the mutants were 30–80% larger in diameter than the wild type in assays with 5- to-7-week-old plants (Table 3). Generally, wild-type A. brassicicola caused larger lesions on 5-week old plants than on 7-week-old plants and on older leaves compared to younger leaves. Interestingly, all Δamr1-type mutants produced consistent lesion sizes regardless of plant age. Thus, the relative size of lesions caused by the mutants compared to the wild type was greater on 7-week-old plants than on 5-week-old plants and on younger leaves than on older leaves (Figure 2A and Table 3). The difference in lesion size was similar between assays on whole plants and assays on detached leaves, so for convenience we performed a subsequent assay on the detached leaves of 8-week-old plants. In this assay, we compared lesion sizes caused by a gene deletion mutant (Δamr1), one strain from each of the two complemented mutants (Δamr1:Amr1 and Δamr1:TrpCp-Amr1), and the wild type. Lesions caused by the deletion mutant (Δamr1) were 2-fold greater on

Table 1. Summary of Alternaria brassicicola transcription factor domains based on Pfam scans.

Description	gene	KO 1a	KO 2b	Pathogenesis-associated genes
Zn-finger domain	221	4	117	AbVf8, AbVf19c, AbSte12c, AbPacC, AbPro1c, Amr1
Fungal-specific TF	72	1	0	
phd finger	1	-	-	
Helix-turn-helix	29	1	-	
Regulatory receiver	23	5	-	
Leucine zipper	21	2	-	
High mobility box group	15	3	-	
Helix-loop-helix	13	5	-	
DNA binding myb	10	-	-	
Jumonji	7	-	-	
Homeobox	4	-	-	
B-Regulatory protein	3	-	-	
T-Regulatory protein	2	-	-	
Total	421	21	117	

aGenes of previously screened targeted deletion mutants [15].
bGenes of mutants created and screened in this study.
cGenes whose functions were previously characterized [15,20].

Table 2. Loss of pathogenicity of the abpacc mutant and decreased virulence of Δabvf8 compared to wild-type Alternaria brassicicola.

Mutants	d.f.	Lesion diameter (mm)	Decrease in lesion diameter	p-value
abpacc-2	8	11.6±3.7	0.0±0.0	-
Abvf8-2	11	11.5±4.1	7.7±4.6	55.45%
Abvf8-3	11	15.1±4.4	10.6±5.5	55.09%
Abvf8-10*	11	15.8±4.2	15.8±3.9	0.00%

d.f. = degrees of freedom, wt = wild type, p-value = probability, AbVF8-10* is an ectopic mutant.

doi:10.1371/journal.ppat.1002974.002
average than those made by the wild type or both complemented mutants (Δamr1:Amr1 and Δamr1:TrpCp-Amr1) (Figure 2E and Table 4).

We performed additional pathogenicity assays using as few as 300 spores to test the effect of low inoculum concentration on pathogenesis (Figure 2B, C). Lesions caused by 440 wild-type conidia were small and some stopped expanding, while lesion diameters caused by 400 Δamr1:Amr1p-GFP mutant conidia were on average 3-fold larger (p < 0.0001, df = 29, two tailed t-test) and continued to expand throughout the infection process. Inoculation with approximately 330 wild-type conidia produced black spots, indicating successful penetration but a failure to colonize host tissue. Lesion diameters created by the same concentration of mutant conidia, however, were on average 5-fold larger (p < 0.0001, df = 29, two tailed t-test) and continued to expand during the five-day experiments. This result demonstrated that the Δamr1 mutants required fewer conidia than the wild type for successful infection.

Amr1 gene expression and its protein localization during plant infection

In order to support the notion that AMR1 is a transcription factor, we monitored the localization of Amr1 protein using a mutant strain expressing an AMR1-GFP fusion protein. The AMR1-GFP fusion protein was primarily located in the nuclei of highly melanized conidia and aerial hyphae (Figure 3A). AMR1 protein expression in conidia was consistent with its proposed regulatory role in melanin biosynthesis during conidiogenesis in B. oryzae, Coc. heterosporus, Col. lagenarium, and M. grisea [21,22,41]. We could not detect the fluorescent fusion protein in hyphae growing on PDA (data not shown) or at 24 hours post-inoculation (hpi) in planta during the early stages of pathogenesis (Figure 3B). In contrast, the fusion proteins were detected in the nuclei of hyphae actively invading host tissues during the late stage of infection (Figure 3C). As a negative control, expression and localization of GFP were also monitored in a promoter-tagged mutant (Δamr1:Amr1p-GFP) in which GFP expression was regulated by the native Amr1 promoter (Figure 3D–F). GFP in the promoter-tagged mutant was distributed throughout the cytoplasm of all fungal tissues, including conidia. The GFP continued to be expressed at moderate levels in the hyphae of the Δamr1:Amr1p-GFP mutant, even during the early stages of plant infection when AMR1-GFP protein was undetectable (Figure 3B, E).

Melanin deficiency and pink pigment secretion by mutants

All strains of verified gene disruption and deletion mutants (amr1, Δamr1, and Δamr1:Amr1p-GFP) produced melanin-deficient conidia. The color of the mutant colonies, however, was orange by 3 days post-inoculation (dpi) when grown on a PDA medium (inset in Figure 4A, B). The orange color became denser with increased conidia production, or when the culture was exposed to light. The pigment was not accumulated in fungal tissues but was secreted into the medium. Droplets of pink pigment were visible at the tips of the hyphae.
Table 3. Increased virulence of four strains of Δamr1 deletion mutants compared to wild-type Alternaria brassicicola.

Mutants	Plant age	d.f.	Lesion diameter (mm)	Increase of lesion diameter	p-value			
			Wild type	Mutant	Wild type	Mutant		
Δamr1-1	unknown	11	12.4±3.4	18.4±1.9	49%	1.78E-05		
Δamr1-4	7 weeks	11	9.7±8.0	17.7±6.6	82%	4.20E-04		
Δamr1-4*	7 weeks	11	9.4±7.4	17.0±5.6	82%	1.40E-04		
Δamr1-4	5 weeks	5	9.0±3.3	12.0±2.5	30%	3.80E-02		
Δamr1-5	unknown	8	6.9±6.6	10.9±7.4	58%	1.80E-02		
Δamr1:Amr1p-GFP	5 weeks	5	8.0±2.8	12.0±2.3	28%	2.60E-02		
Δamr1:Amr1p-GFP*	5 weeks	15	10.0±4.7	13.0±4.0	31%	3.00E-04		

d.f. = degrees of freedom, P = probability, lesion size indicates the average lesion diameter. Results marked with an asterisk (*) were from pathogenicity assays with whole plants, others were from assays with detached leaves.

doi:10.1371/journal.ppat.1002974.t003

Figure 2. Increased virulence of Δamr1 mutants on individual host plants (Brassica oleracea). A. Lesions on B. oleracea 5 days after inoculation with ~2,000 conidia of the wild type, a Δamr1 mutant, and three complemented mutants with two types of constructs. B. Lesions produced by ~440 and ~400 conidia respectively of the wild type (left) and a Δamr1 mutant (right). C. Lesions produced by ~330 and ~300 conidia respectively of the wild-type (left) and a Δamr1 mutant (right). The three images in panels A–C are replicate experiments with the same pattern of inoculation. Note that the size of lesions caused by the mutant is similar on all leaves, while lesions caused by the wild type are smaller on young leaves than on old leaves. Δamr1-1 and Δamr1-4 produced similar results. D. Pathogenicity assay results for three mutants (Δamr1-1, Δamr1-4, and Δamr1-5) compared to the wild type. E. Pathogenicity assay results with average lesion diameter (mm) and standard deviation. Abbreviations: wt = wild-type A. brassicicola; Δamr1 = Amr1 deletion mutant; compl = mutant complemented with a native allele of the Amr1 gene (Δamr1:Amr1); cons = mutant complemented with chimeric constructs of the TrpC promoter and a native allele of the Amr1 coding region (Δamr1:TrpCp-Amr1).

doi:10.1371/journal.ppat.1002974.g002
of many conidial chains on PDA and on plant surfaces by 7 dpi (Figure 4E). The pigment was also secreted during the culture in liquid medium (Figure S3A). The pigment did not have phytotoxic effects on host plants (Figure S3B). Furthermore, addition of pink pigment to inocula of wild-type conidia did not affect lesion size (Figure S3C). The wild-type allele of the \(\text{Amr1} \) gene, controlled by its own promoter or by the \(\text{TipC} \) promoter, restored the ability of the \(\Delta \text{amr1} \) mutants to accumulate melanin (Figure 4 C, D) and pink pigment was no longer visible. Conidia produced by the mutant complemented with \(\text{TipC-Amr1} \) constructs were slightly lighter than the tase-colored wild-type conidia. None of the complemented mutants secreted pink pigment to the medium.

Susceptibility of \(\Delta \text{amr1} \) mutants to abiotic stress

Because melanin plays an important role in protecting fungi against various types of stress, we examined the effect of UV irradiation, glucanase, heat, salt, and osmolites on \(\Delta \text{amr1} \) mutants. UV irradiation at 80 mJ had a marginal effect on conidial germination and hyphal growth of wild-type \(A. \text{brassicicola} \) (Figure 4F, upper panel). However, 40 mJ of UV irradiation severely affected conidial germination and hyphal growth of the mutants, and 60 mJ almost eliminated germination of the \(\Delta \text{amr1} \) mutant (Figure 4F, lower panel). It took more than three hours for \(\beta \)-glucanase to digest the melanized cell walls of wild-type \(A. \text{brassicicola} \) spores, but less than one hour for it to digest the cell walls of the melanin-deficient \(\Delta \text{amr1} \) mutant (data not shown).

Germination and vegetative growth were not significantly different between the wild type and \(\Delta \text{amr1} \) mutants under high-temperature conditions or in the presence of \(\text{NaCl} \), \(\text{H}_2\text{O}_2 \), or sorbitol. The colony size was comparable for both the \(\Delta \text{amr1} \) and \(\Delta \text{amr1}:\text{Amr1p-GFP} \) mutants, a complemented mutant, and the wild type on the same media (Figure 4G).

Melanin deficiency and virulence of \(\text{abpks7} \) mutants

We produced gene disruption mutants of the melanin-associated polyketide synthase (\(\text{Pks} \)) homolog in \(A. \text{brassicicola} \) (\(\text{AbPks7} \)). The \(\text{Pks} \) uses acetel coenzyme \(A \) or malonyl coenzyme \(A \) as a precursor and produces a melanin-intermediate product, 1,3,6,8-tetrahydropyran-4-one (\(\text{THP} \)). The \(\text{abpks7} \) disruption mutants produced melanin-deficient conidia (Figure S4 A–C). These melanin-deficient mutants caused lesions comparable to the wild type on their host plant, \(B. \text{oleracea} \) (Figure 4D), further demonstrating that melanin is not a virulence-associated factor in this fungus.

Enhanced growth of the \(\Delta \text{amr1} \) mutant in media containing pectin

Carbohydrate-active enzymes, such as glycoside hydrolases, polysaccharide lyases, and carbohydrate esterases are slightly expanded in \(A. \text{brassicicola} \), as has been found in other plant pathogenic Dothideomycetes [35]. The enzymes encoded by these genes are thought to be involved in the breakdown of complex carbohydrates in the cell walls of host plants. We indirectly evaluated the role of \(\text{Amr1} \) in regulating genes encoding putative cell wall-degrading enzymes by comparing the vegetative growth (dry weight of mycelium) of the \(\Delta \text{amr1-1} \) and \(\Delta \text{amr1-4} \) mutants to the wild type on various carbon sources. A minimal broth medium was supplemented with either 1% glucose, or the common cell wall polysaccharides \(\alpha \)-cellulose, xylan, or pectin. Vegetative growth of the \(\Delta \text{amr1-1} \) and \(\Delta \text{amr1-4} \) mutants was the same as the wild type in the presence of glucose, xylan, lignin, and \(\alpha \)-cellulose (data not shown). However, growth of these mutants was greater than the wild type in the presence of citrus pectin (Figure 5 A, C). To verify this observation, we tested the effects of pectin on the growth of the \(\Delta \text{amr1-1} \), \(\Delta \text{amr1-5} \), and \(\Delta \text{amr1}:\text{Amr1p-GFP} \) mutants. These mutants also showed a significant increase in vegetative growth over the wild type in the presence of pectin (Figure 5 B, D). Vegetative growth was up to 86% greater than the wild type when mutants were cultured longer than 46 hours (Figure 5 C, D). There was no significant difference in growth between the wild type and the mutants in the presence of glucose. Because all \(\Delta \text{amr1} \) mutants showed similar levels of melanin deficiency, pink pigment secretion, and pectin utilization, we used \(\Delta \text{amr1-4} \) in subsequent gene expression profiling studies.

Regulation of genes by \(\text{Amr1} \) during pathogenesis

We used RNA-seq approach to determine the subset of genes regulated by \(\text{Amr1} \). Using the RNA-seq approach, gene expression profiles were obtained and then compared between a \(\Delta \text{amr1} \) mutant and the wild type during the late stage of infection on green cabbage. At this time, the \(\text{AMR1} \) protein was localized in the nuclei of infecting hyphae. A total of 6.17×10⁷ reads were produced for the wild type and 6.94×10⁷ for the \(\Delta \text{amr1} \) mutant. Of these, 4.14×10⁷ (67.1%) tags for the wild type and 4.78×10⁷ (68.9%) tags for the mutant were mapped to the genome of \(A. \text{brassicicola} \). Of \(A. \text{brassicicola} \)'s 10,688 predicted genes, 101 and 163 genes were significantly \(p<0.05 \) up- or down-regulated more than 2-fold, respectively, in the \(\Delta \text{amr1} \) mutant compared to the
wild type (Table S2). This respectively represents 0.95% and 1.53% of the genes in the *A. brassicicola* genome. Functional categories that were overrepresented in the up-regulated genes included putative cell-wall depolymerization enzymes (Table S3). They included 21 glycoside hydrolases, two pectate lyases, and one pectin esterase (Table S2). In addition, two cutinases and one lipase enzyme were also up-regulated in the mutant. One of the two cutinases, *CutAb*, was up-regulated 32-fold. The necrosis-inducing protein gene (3.1-fold), two P450 genes (2.8- and 2.6-fold), and the homolog of the peptidase aegerolysin (3.3-fold) were also up-regulated in the mutant. 23 of 101 up-regulated genes in *Damr1* mutants were expressed at a lower level in the previously characterized ∆ahf19 mutants and eleven of the shared genes between the two mutants were glycoside hydrolases (Table 2 and Figure 6). Genes in the melanin synthesis pathway were among the down-regulated genes. As expected, the expression level of *Amr1* was close to zero (background noise level) in the *Damr1* mutant during the late stage of infection, compared to a high level of induction in the wild type (Table S2). Expression levels of other structural genes in the melanin synthesis pathway—*Bn2*, *Sd1*, and *Bnl* (Eliahu et al., 2007; Tsuji et al., 2000)—were 8- to 30-fold lower in the mutant than in the wild type. Differential expression between the wild type and *Damr1* mutant was verified by quantitative real time PCR (qRT-PCR) for seven differentially

Figure 3. Confocal microscopic images showing *Amr1* gene expression and its protein localization in fungal nuclei during conidiation and pathogenesis. A–C. Green fluorescence indirectly shows localization of *Amr1* protein in fungal nuclei: GFP is expressed as the *Amr1*-GFP fusion protein. D–F. Green fluorescence in fungal tissues indicates an abundance of GFP, whose gene is under the regulation of the *Amr1* promoter in the ∆*amr1:*Amr1p-GFP mutant. G. Fluorescence shows co-localization of *Amr1*-GFP proteins, and 4',6-diamidino-2-phenylindole (DAPI) stains that bind to nucleotides. Pink color represents auto-fluorescence of plant tissues. Arrowheads indicate conidia. Arrows point to fungal hyphae with localized green fluorescence in the nuclei during late plant infection. hpi = hours post-inoculation.
doi:10.1371/journal.ppat.1002974.g003
and three similarly expressed genes (Table S2). AbPks7 was annotated as three separate genes and their expression in the mutants was reduced about four-fold (Table S2).

Effect of Amr1 on gene expression during the early infection stage

We examined the expression of the nine genes at two additional time points when Amr1 was expressed at a low level. As expected, the Amr1 gene and its three downstream genes in the melanin synthesis pathway (Brn2, Sed1, and Bnl1) were not expressed in the Δamr1:Amr1p-GFP mutant under any of the tested conditions (Figure 7B). They were expressed at a low level in the wild type at 40 and 64 hpi, when Amr1 expression was low. When the Amr1 transcripts were slightly increased at 88 hpi, however, the three genes were highly induced in the wild type (Figure 7A). The expression level of Amr1 was extremely low in the wild type compared to the expression of GFP in the Δamr1:Amr1p-GFP mutant. This may explain why the gene expression level of GFP is high in the Δamr1:Amr1p-GFP mutant, but AMR1-GFP fusion protein was not detected during early infection (Figure 3B, E). Moreover, this could have been due to the absence of feedback inhibition from Amr1. It may also have been caused by the

Figure 4. Melanin deficiency and its effects on fungal morphology and responses to stressors. A–D. Conidial chains produced by each strain. Insets: fungal growth of each strain showing colony color and pink pigment secreted by Δamr1 mutants during saprophytic growth on PDA. E. Pink exudate from the tips of conidial chains of the Δamr1 mutant. F. Germination and hyphal growth after UV irradiation. G. Growth comparisons between mutants and wild type either under high temperature (33°C), or in the presence of the indicated chemical. Abbreviations: Δamr1 = Amr1 deletion mutant; Δamr1:Amr1 = Δamr1 mutant complemented with the Amr1 allele; Δamr1:TrpCp-Amr1 = mutant that constitutively expresses the Amr1 gene under control of the TrpC promoter.
doi:10.1371/journal.ppat.1002974.g004
increased stability of GFP mRNA, its protein, or both as compared to Amr1. The high stability of GFP protein has previously been reported (reviewed in [40]).

The lipase and cellobiohydrolase Cbh7 (AB06252.1) genes were weakly expressed in the wild type from early pathogenesis until 64 hpi; during this time the Amr1 expression level was low in the wild type. There was no expression of these two genes during saprophytic growth in an axenic medium by either the wild type or the mutant (Figure 7 A, B). At 88 hpi, the time when Amr1 was induced in the wild type, Cbh7 and lipase induction were 4.3- and 4.7-times greater respectively ($p<0.001$, t-test, $df=2$) in the $\Delta amr1$:Amr1p-GFP mutant than in the wild type (Figure 7D). The glycoside hydrolases and chymotrypsin genes were not expressed in either the wild type or the mutant during saprophytic growth in glucose yeast extract broth (GYEB) (Figure 7 GY24h). Expression of the chymotrypsin gene was twice as high in the mutant at 64 hpi as in the wild type, but there was little difference in chymotrypsin levels at 88 hpi (Figure 7C). In summary, transcript levels of putative hydrolytic enzyme genes, including lipase and Cbh7, were moderately higher with statistical significance in the mutant than in the wild type during the colonization of host plants (Figure 7). This coincided with the time when the Amr1 gene was induced in the wild type.

The AbVf8 gene is a pathogenesis-associated transcription factor

Another virulence factor identified in these studies was the putative transcription factor AbVf8. The AbVf8 gene showed no sequence similarities to known pathogenesis-associated genes in any fungus. AbVf8 in A. brassicicola and its homologs in other fungi (e.g., in Pyrenopeziza spp. or Phaeosphaeria nodorum) were annotated as
either a hypothetical protein or a predicted transcription factor. The diameters of lesions caused by disruption mutants of \(AbVf8\) \((\text{abvf8})\) were 50–80% smaller than those produced by the wild type. Vegetative growth rates and the formation of conidia were comparable to the wild type. Predicted domains in the protein sequence of the \(AbVf8\) genes were somewhat informative regarding their functions. The predicted protein encoded by \(AbVf8\) contained a putative SET domain. SET domains are thought to be an epigenetic regulator of gene expression during development and modulate chromatin structure.

Because it was a novel transcription factor associated with pathogenesis and had a possible association with epigenetic regulation, we decided to confirm the results of pathogenicity assays using additional mutants. We made gene deletion mutants \((\Delta\text{abvf8})\) by replacing the coding region with a HygB resistance cassette. Southern hybridization confirmed that the \(AbVf8\) gene was replaced by a single copy of the HygB resistance cassette in nine transformants (Figure S2). One transformant had an ectopic insertion of multiple copies of the HygB resistance cassette. Pathogenicity assays using \(\Delta\text{abvf8}-2\), \(\Delta\text{abvf8}-3\), and an ectopic insertion mutant produced results consistent to those we produced with the gene disruption mutants. Both deletion mutants caused lesions with diameters 55% smaller than lesions caused by the wild type or the ectopic insertion mutant (Table 2). We complemented the \(\Delta\text{abvf8}-2\) mutant with the wild-type allele of the \(AbVf8\) gene. Complemented mutants restored its ability to produce lesions.
comparable to the wild type (data not shown). We will further characterize the functions of the \textit{AbVf8} gene in the future.

Discussion

Transcription factors associated with pathogenesis

Of 138 \textit{A. brassicicola} transcription factor genes with zinc finger domains and other regulatory genes analyzed to date in this and previous studies, only six genes were strongly associated with pathogenesis. These six genes were \textit{AbSte12}, \textit{AbPacC}, \textit{AbVf19}, \textit{Amr1}, \textit{AbVf8}, and \textit{AbPro1} (Table 1). This result was comparable to the comprehensive knockout study of 693 putative transcription factors in \textit{Fusarium graminearum}, where 62 genes affected virulence [42]. \textit{AbSte12} is a homolog of the \textit{Ste12} gene with mutants that are either nonpathogenic or reduced in virulence in several fungi (reviewed in [43]). \textit{Ste12} is regulated by a MAP kinase, \textit{Pac3/Kss1}. Mutants of either homologous gene in \textit{A. brassicicola} showed defective conidial development and were nonpathogenic [14,15]. The \textit{AbPacC} gene has a single copy in the genome sequence of \textit{A. brassicicola} and shows a high sequence similarity ($E = 0.0$) with the \textit{PacC} gene in other fungi. \textit{PacC} is the transcription factor in the pH regulation pathway of \textit{Aspergillus nidulans} [44]. It also controls the expression of fumonisin toxins in \textit{F. verticillioides} [45] and endopolygalacturonase and oxalic acid in \textit{S. sclerotiorum} [38,46].

Mutation of its homogenous genes reduced virulence in \textit{S. sclerotiorum} and \textit{Col. acutatum} and increased virulence in \textit{F. oxysporum} [37,38,47]. \textit{AbVf19} regulates a suite of genes that are important for decomposing and utilizing plant materials during the late stage of plant infection [20]. We have yet to characterize the functions of \textit{AbVf8} and \textit{AbPro1}. Regardless of their functions, however, all mutants studied to dates except \textit{Amr1} were nonpathogenic or showed a reduction in virulence.

Melanin biosynthesis and virulence in \textit{A. brassicicola}

Melanin is a ubiquitous pigment that plays an important role in protecting fungi from the damaging effects of environmental stress. It accumulates in the cell walls of hyphae and conidia during the late stationary phase of mycelial growth. It also forms under stressful conditions, including ultraviolet irradiation, a hyperosmotic environment, nutrient deprivation, or an accumulation of toxic wastes during in vitro culture. Over-expression of a \textit{Cmr1} ortholog in \textit{Bipolaris oryzae} (\textit{Cmr1}) caused continuous induction of the three downstream genes in the melanin synthesis pathway and increased melanization of the colonies [41]. The loss of function of \textit{Cmr1}, its homologs, or their downstream genes in other fungi, resulted in melanin deficiency [21,22,25,48]. We identified a transcription factor in this study, \textit{Amr1}, which regulates the melanin synthesis pathway in \textit{A. brassicicola}. The melanin synthesis-associated structural genes \textit{Bn1} and \textit{Pks} are located together in a 30 Kb region and their organization and orientation is the same as in the closely related fungus \textit{Col. heterostrophus} [21]. Interestingly, as reported here melanin was not associated with virulence in \textit{A. brassicicola} as has been reported in other fungi [21]. However, based upon our data there appears to be a linkage between melanin biosynthesis and a reduction in virulence, perhaps due to a lifestyle switch from pathogenesis to reproduction.

Mutation of the \textit{Amr1} gene unexpectedly caused increased virulence

\textit{Amr1} gene knockout mutants, both gene disruption (\textit{amr1}) and gene deletion (\textit{Δamr1} and \textit{Δamr1Δamr1p-GFP}), were easily recognized by the lack of melanin in their conidia, orange-colored colonies, and the secretion of a pink pigment (Figure 4). These phenotypes were similar to those found in mutants of its homologs in other fungi [21,22,41]. The \textit{Δamr1} mutants were more susceptible to UV light and enzyme digestion (Figure 4). Unexpectedly, the \textit{Amr1} gene knockout mutants were more virulent than the wild type, producing larger lesions (Table 3), and required fewer conidia for successful infection (Figure 2). Mutation of \textit{Amr1} homologs in the phytopathogenic fungi \textit{M. grisea} and \textit{Col. lagenarium} produced melanin-deficient conidia. The suppressor of these mutants, however, remained melanized suggesting an alternate regulatory mechanism and pathogenicity was not affected [22]. Melanin deficiency caused by a mutation of other genes in the melanin biosynthesis pathway was associated with a loss of pathogenicity in \textit{M. grisea} and \textit{Col. lagenarium} [49,50,51] and a decrease in virulence in the opportunistic human fungal pathogens \textit{Aspergillus fumigatus} and \textit{W. dermatitidis} [52,53]. In most other plant-pathogenic fungi, melanin deficiency usually had little effect on pathogenesis under controlled laboratory conditions [25,31,48,54]. Melanin deficient mutants of \textit{Coc. heterostrophus}, however, were nonpathogenic under field conditions possibly due to increased sensitivity to UV light outdoors [54]. In summary, the increased virulence of the \textit{Δamr1} mutants was unexpected and unique among melanin-deficient mutants of pathogenic fungi.

The cause of increased virulence in \textit{Δamr1} mutants

The pink pigment secreted by \textit{Δamr1} mutants was neither toxic to host plants nor beneficial for the wild type \textit{A. brassicicola} to infect host plants (Figure S3). Furthermore, melanin-deficient mutants of another gene, \textit{abfks7}, showed no changes in virulence (Figure S4). These data suggested that neither the presence of pink pigments nor the lack of melanin is associated with the increased virulence of the \textit{Δamr1} mutants investigated in this study. Additionally, there was no difference in germination or vegetative growth between the \textit{Δamr1} mutants and the wild type in the presence of various chemicals (Figure 4G). However, the mutants were more susceptible than wild type to UV light (Figure 4F) and the cell wall-degrading enzyme, glucanase. These data suggested that the mutants’ ability to respond to stress was not associated with their increased virulence, since plant glucanases are known to be defense enzymes.

The ability of the mutants to outgrow the wild type when citrus pectin was the major carbon source (Figure 5) suggested that the mutants were more efficient in utilizing the pectin component of plant cell walls and middle lamellae. The expression profile comparisons identified 30 hydrolytic enzyme genes expressed moderately more in the mutant than in wild type \textit{A. brassicicola} during pathogenesis (Table S2). However, they included only two pectate lyase genes and one pectin esterase gene. Other genes upregulated in the mutant compared to the wild type included genes coding for two cutinases, a lipolytic enzyme and 20 other various glycoside hydrolases (GH). Interestingly, 6 of the 22 genes in the GH61-gene family were expressed at higher levels in the \textit{Δamr1} mutant. The GH61 family might have a role in degrading cellulose, lignocellulose, chitin, or other polysaccharides [55]. The GH61 family may be involved in digesting pectins whose side chains are structurally diverse in constituting sugars and glycosidic linkages. They may digest other cell-wall components, such as cellulose and hemicelluloses along with other glycoside hydrolases. It was not possible in this study to evaluate whether the \textit{Δamr1} mutants made better use of these cell wall materials because \textit{A. brassicicola} grew poorly in the presence of xylan, and lignin. Our uninformative growth data was likely due to the non-brassica source of cell wall materials. Nonetheless, the gene expression and growth assay data indirectly support the importance of cell wall-degrading enzymes and possibly those
involved in pectin digestion, since pectic polysaccharides constitute about one-third of the cell wall components and most of the middle lamella in dicotyledonous plants.

Induction of the \textit{Amr1} gene in \textit{A. brassicicola} did not occur until 6 hpi (Figure 7). Suppression of the \textit{Amr1} gene might be important during pathogenesis when energy is allocated to colonization of host tissues and overcoming host defense mechanisms, rather than producing reproductive dispersal structures like conidia. In the wild type, the transcripts of hydrolytic enzyme genes were slightly increased compared to the actin transcripts, as previously reported [14,56,57]. In addition, when conidiation was initiated the induction of \textit{amr1} was accompanied by a sharp increase in transcripts of its downstream genes in the melanin synthesis pathway. There was also a small increase in the transcripts of hydrolytic enzyme-coding genes in the wild type. However, many of these genes, mostly expressing glycoside hydrolases, a few cutinases, and pectate digestion enzymes, were expressed at higher levels in the \textit{Amr1} mutant and \textit{Amr1p-GFP} mutants, which did not express \textit{Amr1} (Figure 7D). This suggests that \textit{amr1} suppressed genes predicted to be involved in the digestion of lipids and carbohydrates. This occurred during late pathogenesis (88 hpi) when they were still needed to some extent for either killing [58] or digesting host tissue. Whether the \textit{amr1} gene is involved in the regulation of most hydrolytic enzymes sequentially induced in \textit{A. brassicicola} during pathogenesis has yet to be investigated [24,59]. Other genes encoding a necrosis-inducing protein, two P450s, the aegerolysin peptidase homolog, and other hypothetical proteins might have contributed to the increased virulence of the \textit{Amr1} mutant and warrant further investigation. Interestingly, 24 genes expressed at a higher level in \textit{Amr1} were expressed at lower levels in the \textit{Amr1p-GFP} deletion mutants that displayed a reduction in virulence (Figure 6C), suggesting opposite roles of the two transcription factor genes in the regulation of pathogenesis-associated genes. This finding may aid in the selection of specific targets for future analyses of their functions in pathogenesis.

\textbf{Evolution of virulence in \textit{A. brassicicola}}

The melanin-deficient mutant phenotype and expression pattern of the \textit{Amr1}, \textit{Brn1}, \textit{Bn2}, and \textit{Sol1} genes in \textit{A. brassicicola} suggested that the function of the \textit{Amr1} gene was to regulate melanin synthesis during conidiospore production. This function is highly conserved in other fungi [21,22,41]. In addition to regulating the melanin biosynthesis pathway, \textit{Amr1} negatively regulated virulence. \textit{Amr1} deletion has been a subject of extensive theoretical analysis. The “trade-off hypothesis” [60] produced a number of models showing a contested relationship between virulence and transmissibility. It challenges the hypothesis that strong virulence can seriously damage or kill host plants and threaten pathogen survival, so parasites will ultimately evolve to be less virulent. However, analyses of ecological and epidemiological factors related to virulence have produced inconsistent results [61]. Therefore, a modified trade-off theory predicted that strong parasites became moderately virulent to their hosts over time, but did not completely lose virulence [62]. Our current work identified a transcription factor suppressing virulence but enhancing the ability of a fungus to preserve itself in space and time via melanin synthesis, primarily in conidia. This study provides an example of a transcription factor gene important for survival in nature that plays a critical role in negatively regulating virulence in the necrotrophic plant pathogen, \textit{A. brassicicola}. The suppression of virulence we observed is unique and might have been acquired by this fungus, as this phenotype has not been observed in loss-of-function mutants of \textit{Amr1} homologs in other species of plant pathogenic fungi. An ancestral fungal strain of \textit{A. brassicicola} without the ability to suppress virulence by the activity of \textit{Amr1} could have been a more virulent pathogen. Negative regulation of virulence is rare but exists in other phytopathogenic fungi. For example, a phosphatase enzyme in the MAP kinase signaling pathway negatively regulates virulence in \textit{Ustilago maydis} [63]. Currently, \textit{A. brassicicola} is a prolific saprophyte and necrotoph, efficiently colonizing susceptible, weakened, or dead host plants. Its pathogenicity, however, is inhibited on more resistant host plants. We speculate that the suppressive functions of \textit{Amr1} contribute to the specialized adaptation of \textit{A. brassicicola} as an efficient and successful facultative parasite.

\textbf{Materials and Methods}

\textbf{Fungal strains, their transformation, maintenance, and primers}

We used the facultative plant pathogen \textit{Alternaria brassicicola} (Schweinitz, Wiltshire) (ATCC96836) in this study. Growth and maintenance of the fungus and its transformation, nucleic acid isolation, mutant purification, and mutant verification by Southern hybridization were performed as described previously [15]. The wild-type fungus and each of the mutant strains created during this study were purified by two rounds of single-spore isolation. The cultures were maintained as glycerol stock in separate tubes, with one tube used for each assay.

\textbf{Data availability}

The genome sequence and gene predictions for \textit{A. brassicicola} ATCC 96836 were obtained from http://genome.wustl.edu/ genomes/view/alternaria_brassicicola/ and are available from DDBJ/EMBL/GenBank under accession ACIW0000000. In addition, the annotated genome is available in the context of other Dothideomycetes through the interactive JGI fungal portal MycoCosm [34] at http://jgi.doe.gov/Abrassicicola.

\textbf{Identification of putative transcription factors}

The partially assembled genome sequence was annotated using an Ensembl annotation pipeline [64]. The HMM search results of FGENESH predicted peptides against PFAM and TIGRFAM databases were stored in a SQL database. A total of 251 PFAM accession numbers and 13 keywords descriptions were used to manually search for the putative transcription factors using SQL queries. Subsequently, the predicted amino acid, predicted cDNA, and genomic DNA sequences were manually retrieved from the database.

\textbf{Primer design and generation of targeted gene mutants}

Four primers for targeted gene disruption and six primers for targeted gene deletion were synthesized for each gene (Table S4). We followed methods described previously for all steps from producing transformation constructs to verifying purified mutants [15,65]. Briefly, constructs of up to 12 genes were independently transformed at a time. The transformed protoplasts were plated on a molten regeneration medium (1 M sucrose, 0.5% yeast extract, 0.5% casamino acids, and 1% agar) for 24 hours, followed by an overlay with the same volume of PDA containing 30 ug/ml HygB. On the seventh day after the transformation, four transformants of each gene were transferred to PDA plates containing 30 ug/ml HygB and cultured for five days. The transformants were purified by two rounds of single-spore isolation and verified by PCR using two sets of verification primers for each gene (Table S5).
Generation of the Amr1 deletion mutants, Δamr1 and Δamr1:Amr1p-GFP

All transformation constructs described in this work were produced by a double-jointed PCR method [66] with modifications described previously [15]. We made Amr1 deletion mutants by replacing the gene with a HygB resistance cassette. The replacement construct was produced with the following three sets of primers (Figure 8). The primer set P1 and P2, and the primer set P5 and P6 were used to respectively amplify the 5’ and 3’ flanking regions of the targeted locus. Another set of primers, P3 and P4, was used to amplify the HygB-selectable marker gene cassette (1,436 bp) from pCB1636. In order to create mutants expressing green fluorescence under the control of the Amr1 gene promoter, the Amr1 promoter region and 3’ flanking region were amplified with P7 and P8, and P3 and P6, respectively. Another set of primers, P9 and P4 was used to amplify the 2,423 bp that covered the coding regions of the GFP and the HygB resistance cassette. All primers used Amr1 gene are listed in Table S6.

Complementation of Δamr1 mutants

The Δamr1-5 mutant was complemented with either the wild-type Amr1 allele with its native promoter, or a chimeric construct of an Amr1 allele under the control of a constitutive promoter. This promoter was derived from a TriC gene (TriCp) [67]. We used two primers, P1 and P6, to make constructs and reintroduce wild-type Amr1 into the Δamr1 mutant. These primers amplified the 6,196 bp wild-type allele of the Amr1 gene using A. brassicicola genomic DNA as a template. The PCR product included a 1,570 bp 3’ flanking region, 3,282 bp complete coding region, and 9,224 bp 5’ flanking region. Separately, P18 and P19 were used to amplify a 2,382 bp-long nourseothricin-resistant cassette as a selectable marker gene, using a pNR vector as the template [68]. These two products (8 μg of Amr1 and 7 μg of NTC cassette) were mixed to transform the Δamr1 mutant.

To produce constitutive Amr1 expression mutants, three sets of primers were used to replace the 1,840 bp 5’ upstream to the predicted start codon with the TriCp promoter, TriCp. We used two primers, P10 and P11, to amplify the 943 bp constitutive promoter region that includes a 152 bp partial coding sequence of P5 and P6 were used to respectively amplify the 5’ and 3’ flanking regions of the targeted locus. Another set of primers, P3 and P4, was used to amplify the HygB-selectable marker gene cassette (1,436 bp) from pCB1636. In order to create mutants expressing green fluorescence under the control of the Amr1 gene promoter, the Amr1 promoter region and 3’ flanking region were amplified with P7 and P8, and P3 and P6, respectively. Another set of primers, P9 and P4 was used to amplify the 2,423 bp that covered the coding regions of the GFP and the HygB resistance cassette. All primers used Amr1 gene are listed in Table S6.

Pathogenicity assays

Pathogenicity assays were performed with modifications as described previously using detached leaves harvested from 5- to 8-week-old plants or on the leaves of whole plants [15]. Commercially available seeds (Jonny’s, Winslow, ME) of green cabbage (Brassica oleracea) or Arabidopsis thaliana were planted and grown under the same conditions for each pathogenicity assay. We grew green cabbage under 14 hours light 10 hours dark cycle and Arabidopsis under 10 hours light 14 hours dark cycle. Plants of similar heights and with similar-sized leaves were selected for each assay. Leaves were detached and placed in mini-moist chambers and randomly arranged on a laboratory bench for most assays. For the pathogenicity assays on whole plants, potted plants were placed in a semi-transparent plastic trough with adequate water. The troughs and plants were sealed with plastic wrap after inoculation to keep the relative humidity close to 100%. The increased virulence of each mutant was calculated using the formula \(\frac{\sum D_i - D_{wt}}{D_{wt}} \times 100 \), where \(D_i \) was the lesion diameter created by the wild-type for the \(i \)th sample and \(D_{wt} \) was the lesion diameter produced by the mutant for the \(i \)th sample (Table 2). We also analyzed lesion sizes among the wild type and various mutants (Tables 2). Lesion sizes were subjected to 5x4 (genotype x leaf position [leaf age]) two-way analysis of variance (ANOVA) using the general linear model (GLM) procedure in the Statistical Analysis System (SAS Institute, Cary, NC). Means were separated by the Waller-Duncan k-ratio (k = 100) t-test, or an f-test, whichever was appropriate. The Waller-Duncan test was chosen to minimize the Bayesian risk of the additive loss function.

Confocal microscopy

Infected plant tissues were trimmed with a razor blade, placed on microscope slides, and covered with Gold Seal cover glasses. Confocal images were acquired using a 63x C-Apochromat (numerical aperture 1.2) water-immersion objective lens and an Olympus Fluoview 1000 Laser Scanning Confocal System on a IX-81 inverted microscope. Spectra for fungal tissues expressing standard green fluorescence and for plant cells emitting autofluorescence were collected by simultaneous 488 nm and 543 nm excitation using 30 mW argon and 1 mW helium-neon lasers, respectively. The standard GFP spectrum was collected through 488 nm excitation using a 20 nm window from 505 to 525 nm. Plant tissue, including chloroplasts, was visualized using 543 nm excitation with a 560 nm long-pass filter. Images of fungal tissue grown in nutrient media were captured with 488 nm excitation and DIC-transmitted light. All fluorescent images were composed of multiple layers acquired with the Confocal System.

Measuring the response to stressors

Each fungal strain from glycerol stocks was inoculated on PDA with an appropriate selectable agent and grown in the dark for 5 days at 25°C. In order to test for sensitivity to osmotic stress and oxygen radicals, wild-type and mutant conidia were pipetted onto PDA containing 2% (w/v) or 4% (w/v) NaCl, 0.6 M or 1.2 M sorbitol, or 2.5 mM or 5 mM H2O2. Mutant and wild-type strains were also cultured at 28, 30, and 33°C to measure the effect of temperature on their growth. Colony diameters were measured 4
days post-inoculation (dpi). To study the effect of UV light on germination, 1,000 spores were pipetted onto PDA, irradiated at 20, 40, 60, and 80 millijoules in a UV crosslinker (Agilent Technologies, Inc., CA), and incubated at 25°C for 24 hours. All experiments were conducted three times.

Growth assays in the presence of sole carbon sources

Flasks (250 ml) containing a 50 ml broth of 0.5% (NH₄)₂SO₄, 0.05% yeast extract, 0.15% KH₂PO₄, 0.06% MgSO₄, 0.06% CaCl₂, 0.0005% FeSO₄, 7H₂O, 0.00016% MnSO₄·H₂O, 0.00014% ZnSO₄·7H₂O, and 0.00037% CoCl₂·6H₂O were supplemented with either 1% glucose or 1% α-cellulose (cat #, C8002-1KG), or xylan (cat #, X4252-100G), lignin (cat #, X4252-100G), or citrus pectin (cat #, P9135-500G) purchased from Sigma (St. Louis, MO). Each flask was inoculated with 4–6×10⁵ conidia of either Δamr1-1, Δamr1-3, Δamr1-4, Δamr1-5, Δamr1:Amr1p-GFP, or the wild type. The flasks were incubated in the dark at 25°C with continuous agitation at 100 rpm. The flasks

Figure 8. Schematic diagram of the PCR strategy used to make each construct. A. Construct for replacement of the Amr1 gene with a Hygromycin B resistance cassette. B. Construct for replacement of the Amr1 gene with a GFP coding region and Hygromycin B resistance cassette. C. Amplification of the wild-type allele of the Amr1 gene. D. Construct for the constitutive Amr1 expression cassette. E. Construct for the Amr1-GFP fusion protein expression.

doi:10.1371/journal.ppat.1002974.g008

Dual Functions of Amr1 in Survival and Virulence
were shaken vigorously by hand several times during the first eight hours to prevent the conidia from sticking to the flask. Mycelia were harvested at 4 dpi, washed with distilled water, and dried at 70°C overnight. The increased biomass of each mutant and the wild type was calculated using the formula \(\frac{\text{Wmi-Wwi}}{\text{Wwi}} \times 100 \), where Wwi was the dry weight of the wild type for the ith sample and Wmi was the weight of the mutant for the ith sample.

Gene expression analysis by RNA-seq

To study the regulatory roles of Amr1 in *A. brassicicola*, we compared gene expression profiles between the wild type and a Δamr1 mutant at 88 hours post-inoculation (hpi), late stage of infection. We inoculated nine detached leaves harvested from three plants with conidia from the Δamr1-4 mutant and the wild type. Tissue samples containing both host plant tissue and fungal mycelium were harvested. Three biological replicates were produced for both the mutant and the wild type. Total RNA was purified from the tissue using an RNaseasy kit (Qiagen, Palo Alto, CA). We used 4 μg of total RNA for each RNA sample to construct strand-specific sequencing libraries with a TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA). Each library was constructed with unique index primers and all were run in a single lane. They were later decoupled using index primer sequences.

Sequence tags were mapped to the genome sequence of *A. brassicicola* using the programs TopHat 1.3.1 [69] and Bowtie 0.12.7 [70]. Default settings were used, except the segment length was set at 25 nucleotides and the number of allowed segment mismatches was set at 1 nucleotide. Additionally, intron length was designated as a minimum of 10 nucleotides and a maximum of 400 nucleotides. The program Cuffdiff, version 1.0.3, which is part of Cufflinks [71], was used to identify reads overlapping with previously predicted genes. The expression levels of each predicted gene were determined and normalized by the mapped Fragments Per Kilobase of exon model per Million (FPKM). Differentially expressed genes between the wild type and the mutant were determined by comparing FPKMs from three biological replicates for both the wild type and the mutant. We also applied a cutoff of at least a two-fold change in expression value for differential expression. The bias correction method was used while running Cuffdiff [72]. Custom scripts were written in Python to analyze the data.

Representation analysis

Custom scripts were developed in Python and R to analyze over- and under-representation of functional annotation terms in sets of differentially regulated genes using the Fisher Exact test. The Benjamini-Hochberg correction was used to correct for multiple testing using a p-value of <0.05.

Quantitative real-time PCR

Full-length sequences of the three downstream genes in the melanin synthesis pathway regulated by Amr1 were identified in the *A. brassicicola* genome by Blast search. Primer sequences for each gene are listed in Table S6. The Δamr1 Δamr1Δp-GFP mutant and the wild type were used for qRT-PCR with three biological replicates of infected plant tissues. Each biological sample was collected from three or four leaves and total RNA was extracted using an RNaseasy kit with DNase digestion according to the manufacturer’s protocol (Qiagen, Valencia, CA). Two micrograms of total RNA were transcribed to cDNA in a final volume of 20 μl using 50 ng of random pentamers and 200 ng of poly(T)20N with Superscript III (Invitrogen, Carlsbad, CA). Each cDNA was diluted 1:20. Subsequent qRT-PCR reactions were performed in a 20 μl volume containing 120 nM of each primer, 1 μl of diluted cDNA, and 10 μl of FastStart SYBRGreen Master (Roche, Mannheim, Germany). Each reaction was run in a Biorad iCycler (Bio-Rad, Hercules, CA, USA) as described previously (Cho et al, 2006). Relative amounts of the transcript of each gene were calculated as \(2^-\Delta\Delta C_t \) using a threshold cycle (Ct), where \(\Delta\Delta C_t = \Delta C_{\text{gene}} - \Delta C_{\text{actin}} \). Fold changes of each gene between the wild type and Δamr1 strain were calculated as \(2^-\Delta\Delta C_t \), where \(\Delta\Delta C_t = \Delta C_{\text{gene}} - \Delta C_{\text{actin}}/\Delta C_{\text{amr1/wild type}} \).

Accession numbers

RNA-seq data: GEO Series Accession No. GSE36781 http://www.ncbi.nlm.nih.gov/geo/info/linking.html

Amr1 (Alternaria melanin regulation) GenBank accession number: JF487829

Supporting Information

Figure S1 Verification of targeted gene disruption by polymerase chain reaction (PCR). PCR amplification was performed with two pairs of target gene specific and HygB resistance gene primers. Relative primer binding locations are marked below the schematic diagram of the disrupted target gene on the left side of the gel images at the top row of page one. The diagrams were drawn based on a hypothesis that the target gene was disrupted by a single homologous recombination with a circularized linear minimal element construct as described previously (Cho Y, Davis JW, Kim KH, Wang J, Sun QH, et al. 2006) A high throughput targeted gene disruption method for *Alternaria brassicicola* functional genomics using linear minimal element (LME) constructs. Mol Plant Microbe Interact 19: 7–15.). Hatched box = a selectable marker gene, white box = a target genomic locus, and gray box = partial target gene. Amplification was performed with Taq polymerase for PCR reactions (Invitrogen, Carlsbad, CA, U.S.A.).

(DOC)

Figure S2 Creation of Δabvf8 deletion mutants and pathogenicity assays. A. Schematic diagram of the wild-type locus of the *Abvf8* gene, a replacement construct, and a mutant locus. The mutant locus depicts incorporation of the replacement construct into a wild-type locus by double homologous recombination resulting in gene replacement. B. Replacement of the *Abvf8* coding region with the selectable marker, Hygromycin B (HygB) resistance cassette. Absence of a wild-type band in nine lanes on the *Abvf8*-probe blot (above) indicates loss of the targeted gene. On the HygB-probed blot (below), the expected 4.6 Kbp band indicates a single-copy insertion of the Hyg B resistance cassette in 9 lanes. Asterisk (*) indicates lanes of mutants used in this study. Probe regions are marked by p-HygB and p-Abvf8. C. Lesions on *Brassica oleracea* 5 days after inoculation with ~2,000 conidia of the wild type (wt), two *Δabvf8* mutants, and an ectopic insertion mutant. Abbreviations: H = Hind III enzyme digestion site, wt = wild type *Alternaria brassicicola*, Ect = ectopic insertion mutant.

(DOC)

Figure S3 Pigment secreted by Δamr1 mutants and its effect on pathogenesis and host plants. A. Mycelia of the *Δamr1* mutant at the bottom of the flask (left) is melanin deficient compared to the dark-colored wild-type mycelia (right). Both were cultured in 1% glucose and 0.5% yeast extract broth (GYEB) for three days, in the dark, with continuous agitation at 100 rpm. B. No toxic effects from the pigment. The pigment in 10 ml of GYEB was extracted with 10 ml chloroform, twice. The chloroform was removed by evaporation and the pigment dissolved in 1 ml of...
Table S3 Statistically over-represented functional annotation terms among 101 up-regulated genes in the ΔAmr1 mutant compared to the wild type. The 101 genes were selected based on the statistical analysis included in Cufflink with at least a two-fold-difference.

(DOC)

Table S4 Disruption Primers (5’ to 3’ direction).

(DOC)

Table S5 PCR verification primers (5’ to 3’ direction).

(DOC)

Table S6 List of primers used for qRT-PCR and transformation constructs.

(DOC)

Acknowledgments

We thank Washington University School of Medicine, Genome Sequencing and Sandra Clifton for determining the Alternaria brassicicola genome sequence and Ann Alvarez, John Hu, Tina M. Carvalho, and Wayne Borth for generously sharing their research equipment. We especially thank Fred Brooks for critical reading of the manuscript. We also thank Steven R. Head and Lana Schaffer for generating RNA-seq data.

Author Contributions

Conceived and designed the experiments: YC AS. Performed the experiments: YC AS. Analyzed the data: YC AS RAO KHW. Contributed reagents/materials/analysis tools: YC AS RAO. Wrote the paper: YC RAO CBL IVG FB.

References

1. Churchill A, LU S, Turgeon B, Yoder O, Macko V (1995) Victin-deficient RMI mutants of Cochliobolus victoriae demonstrate a requirement for victin in pathogenesis. Fungal Genet Newsl 42A: 41.

2. Ciuffetti L, Turiro R, Gavena J (1997) A single gene encodes a selective toxin causal to the development of tan spot of wheat. Plant Cell 9: 135–144.

3. Del Sorbo G, Scala F, Parrella G, Lorito M, Comparini C, et al. (2000) Functional expression of the gene causal to the development of tan spot in wheat. Fungal Genet Newsl 42A: 41.

4. Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK (2008) Anastomosis is necessary for virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Eukaryot Cell 7: 673–683.

5. Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK (2008) Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot Cell 7: 673–683.

6. Cho Y, Cramer RA Jr., Kim KH, Davis J, MITCHELL TK, et al. (2007) The Fus3/Kss1 MAP kinase homolog Amr1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44: 543–553.

7. Cho Y, Kim K-H, La Rota M, Scott D, Santopietro G, et al. (2009) Identification of virulence factors by high throughput targeted gene deletion of regulatory genes in Alternaria brassicicola. Mol Microbiol 72: 1316–1333.

8. Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK (2008) Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot Cell 7: 673–683.

9. Kim KH, Williger SD, Park SW, Pumkamonkol S, Grahl N, et al. (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5: e1000656.

10. Otani H, Kohnobe A, Kodama M, Kohmoto K (1998) Production of a host-specific AB-toxin production by germinating spores of Alternaria brassicicola. Physiol Mol Plant Pathol 52: 53–66.

11. Johnson RD, Johnson L, Ishi Y, Kodama M, Otani H, et al. (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13: 742–733.

12. Spassieva SD, Markham JH, Hille J (2002) The plant disease resistance gene Ace1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32: 561–572.

13. Tanaka A, Shiotani H, Yamamoto M, Tsuge T (1999) Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 12: 691–702.

14. Cho Y, Cramer RA Jr., Kim KH, Davis J, MITCHELL TK, et al. (2007) The Fus3/Kss1 MAP kinase homolog Amr1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44: 543–553.

15. Cho Y, Kim K-H, La Rota M, Scott D, Santopietro G, et al. (2009) Identification of virulence factors by high throughput targeted gene deletion of regulatory genes in Alternaria brassicicola. Mol Microbiol 72: 1316–1333.

16. Oide S, Moeder W, Kranofis S, Gibson D, Haas H, et al. (2006) AMPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism. Mol Microbiol 52: 390–411.

17. Kim KH, Williger SD, Park SW, Pumkamonkol S, Grahl N, et al. (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5: e1000656.

18. Otani H, Kohnobe A, Kodama M, Kohmoto K (1998) Production of a host-specific AB-toxin production by germinating spores of Alternaria brassicicola. Physiol Mol Plant Pathol 52: 53–66.

19. Johnson RD, Johnson L, Ishi Y, Kodama M, Otani H, et al. (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13: 742–733.

20. Srivastava A, Ohma RA, Oude L, Brooks F, Lawrence CB, et al. (2012) A Zinc-Finger-Family Transcription Factor, AMR1, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola. Mol Plant Microbe Interact 25: 443–452.

21. Elshab N, Igbioa A, Rose MS, Howtitz BA, Lev S (2007) Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two mitogen-activated protein kinases, CK1 and MPJ1, and the transcription factor Cou1. Eukaryot Cell 6: 421–429.

22. Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, et al. (2000) Novel fungal transcriptional activators, Cmr1p of Magnaporthe grisea and Piglp of Magnaporthopsis grisea, contain Cys2HIs zinc finger and Zn(II)Cys6 nuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 30: 940–954.

23. Kiniura N, Tsuge T (1993) Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J Bacteriol 175: 4427–4435.

24. Thomas BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Pathol Plant 4: 225–236.

25. Kovanamurum T, Tsuji G T, Tsuge T (1999) Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 12: 59–63.

26. Rehman AL, Free SJ (1996) The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol Mol Plant Pathol 49: 321–330.
27. Wang Y, Casadevall A (1994) Decreased susceptibility of melanized
Cryptococcus neoformans to UV light. Appl Environ Microbiol 60: 3804–3806.
28. Hyakumachi M, Yokoyama K, Uti T (1987) Role of melanin in susceptibility and
resistance of Rhizoctonia solani to microbial lysis. Trans Br Mycol Soc 88: 27–33.
29. Rosas AL, Casadevall A (1997) Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 153: 265–272.
30. Howard RJ, Ferrari MA (1989) Role of melanin in appressorium function. Exp
Mycop 13: 405–418.
31. Moriwaki A, Kihara J, Kobayashi T, Tokunaga T, Arase S, et al. (2004)
Insertional mutagenesis and characterization of a polyketide synthase gene
(PKS1) for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett 230: 1–8.
32. Takano Y, Kubo Y, Kuroda I, Furusawa I (1997) Temporal transcriptional
pattern of three melanin biosynthesis genes, PKS1, SCD1, and THR1, in
appressorium-differentiating and nondifferentiating conidia of Colletotrichum lagenarium. Appl Environ Microbiol 63: 351–354.
33. Kubo, Y., Takano, Y., Tsugi, K., Kominami, Y., Kuroda, I., et al. (1998) Expression and regulation of melanin biosynthetic genes during appressorium formation of
Colletotrichum lagenarium. In: Kohmoto K, Yoder OC, editors. Molecular Genetics of Host Specific Toxins in Plant Disease. Dordrecht: Kluwer Academic Publishers, pp 253–260.
34. Grigoriev IV, Noordberg H, Shabalov I, Aerts A, Cantor M, et al. (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40: D25–32.
35. Ohm RA, Bradshaw RE, Condon BJ, Feau N, Henrissat B, et al. (2012) Diverse
insertional mutagenesis and characterization of a polyketide synthase gene
(PKS1) required for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett 230: 1–8.
36. Wang Y, Casadevall A (1994) Decreased susceptibility of melanized
Cryptococcus neoformans to UV light. Appl Environ Microbiol 60: 3804–3806.
37. Howard RJ, Ferrari MA (1989) Role of melanin in appressorium function. Exp
Mycop 13: 405–418.
38. Moriwaki A, Kihara J, Kobayashi T, Tokunaga T, Arase S, et al. (2004)
Insertional mutagenesis and characterization of a polyketide synthase gene
(PKS1) for melanin biosynthesis in Bipolaris oryzae. FEMS Microbiol Lett 230: 1–8.
39. Arechiga-Carvajal ET, Ruiz-Herrera J (2005) The RIM101/pacC homologue
encoded a putative pH-responsive transcription regulator is a key virulence
determinant during fungal pathogenesis on citrus. Mol Plant Microbe Interact 2: 1199–1160.
40. Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16: 785–795.
41. Arechiga-Carvajal ET, Ruiz-Herrera J (2005) The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot Cell 4: 999–1008.
42. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, et al. (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67: 1087–1094.
43. Kihara J, Moriwaki A, Tanaka N, Tanaka C, Ueno M, et al. (2000) Characterization of the AMRI1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 201: 221–227.
44. Son H, Seo YS, Min K, Park AR, Lee J, et al. (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7: e1002310.
45. Park Jou H, Dumas B, Rev Microbiol 58: 425–451.
46. Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, et al. (2004) The
Aspergillus nidulans trpC promoter. Mol Cell Biol 7: 2352–2359.
47. Karkehabadi S, Hansson H,Kim S, Piers K, Mitchinson C, et al. (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from the yeast
Candida albicans. J Mol Biol 378: 419–429.
48. Fan C-Y, Keller W (1998) Diversity of cutinases from plant pathogenic fungi:
differential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol Lett 158: 33–38.
49. Anderson R, May R (1982) Coevolution of hosts and parasites. Parasitology 85: 7–15.
50. Sacristán, Garcia-Arenal F (2008) The evolution of virulence and
pathogenicity in plant pathogen populations. Mol Path Plant Path 9: 369–384.
51. Lenski RE, May RM (1994) The evolution of virulence in parasites and
pathogens: reconciliation between two competing hypotheses. J Theor Biol 169: 253–265.
52. Di Stasio M, Brefort T, Mendoza-Mendoza A, Munch K, Kahmann R (2009) The dual specificity phosphatase Rok1 negatively regulates mating and
pathogenicity in Ustilago maydis. Mol Microbiol 73: 73–80.
53. Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, et al. (2004) The
melanin biosynthesis and virulence in Colletotrichum lagenarium. Mol Plant Microbe Interact 4: 440–445.
54. Langfelder J, Bahn B, Gehringier H, Schmidt A, Wanner G, et al. (1998) Molecular cloning and characterization of a polyketide synthase gene
(pacR) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187: 79–89.
55. Guillon A, Turgeon BG, Thorson PR, Bronson CR, Yoder OC (1994) Linkage among melanin biosynthetic mutations in Cochliobolus heterostrophus. Fungal Genet Biol 14: 40–49.
56. Roberts A, Trapnell C, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12: R22.