Interleukin 2 Abrogates the Nonresponsive State of T Cells Expressing a Forbidden T Cell Receptor Repertoire and Induces Autoimmune Disease in Neonatally Thymectomized Mice

By José L. Andreu-Sánchez,*† Ignacio Moreno de Alborán,* Miguel A. R. Marcos,*‡ Arsenio Sánchez-Movilla,*§ Carlos Martínez-A,* and Guido Kroemer*

From the *Centro de Biología Molecular (CSIC), Universidad Autónoma, 28049 Madrid, Spain; †Servicio de Reumatología and ¶Cirugía General, Clínica Puerta de Hierro, INSALUD, 28035 Madrid, Spain; and ‡Unité d'Immunobiologie, Institut Pasteur, 75724 Paris, France

Summary

Under physiological conditions, the vast majority of T cells differentiate in the thymus, an organ that provides an optimal microenvironment for T cell maturation and shapes the T cell repertoire via positive and negative selection processes. In the present report, we demonstrate that neonatal thymectomy of CBA/H mice results in a diminution of T cells in peripheral lymphoid organs (spleen, lymph nodes), but is followed by a marked transient (12 wk) increase in Thy-1+ CD3+ cells in the peritoneal cavity. These cells exhibit predominantly a double-negative (CD4-CD8-) phenotype among which products of the T cell receptor (TCR) Vβ11 gene family (i.e., an I-E-reactive TCR normally deleted in I-E-bearing CBA/H mice) are selectively overexpressed. This observation suggests that, under athymic conditions, T cell differentiation and/or accumulation may occur in the peritoneal cavity. Intrapertioneal inoculation of an interleukin 2 (IL-2) vaccinia virus construct that releases high titers of human IL-2 in vivo induces conversion of these double-negative T cells to either CD4+CD8- or CD4-CD8+ single positives, and allows in vitro stimulation of TCR Vβ11-bearing cells with a clonotypic anti-Vβ antibody. Since IL-2 induces autoimmune manifestations (DNA autoantibodies, rheumatoid factors, and interstitial nephritis) in thymectomized CBA/H mice, but not in sham-treated littersmates, this lymphokine is likely to enhance the autoimmune function of T cells that bear forbidden, potentially autoreactive TCR gene products and that are normally deleted in the thymus.

The mature T cell repertoire is known to be shaped by both negative and positive selection events in the thymus (1, 2). Albeit the designation “T cell” is due to the apparent thymus dependence of T lymphocyte differentiation, an increasing body of evidence indicates the possibility that T cell precursors mature under extrathymic conditions. Thus, congenitally athymic (nude or nu/nu) mice, i.e., mutant strains whose thymic anlage is rudimentary and lacks colonization by pro T cells, are not completely devoid of lymphocytes bearing T cell markers (3). nu/nu mice exhibit a numeric T cell defect and an oligoclonal T cell repertoire (4) that is rich in cells expressing products of “forbidden” TCR Vβ gene families, e.g., Vβ genes normally deleted intrathymically due to their autoreactivity with self minor lymphocyte stimulating (Mls) antigens (Vβ3 in BALB/c and C3H/HeN mice) or with self MHC-encoded EβEβ products (Vβ11 in BALB/c, C3H/HeN, and B10.D2 mice) (5–7). Similarly, neonatal thymectomy results in an adult repertoire enriched in T cells deleted in normal adult thymus (8, 9). Thus, cells expressing Vγ6 that are normally deleted in the Mls-1-expressing DBA/2 strain and the potentially I-E-reactive Vγ11 (in [C57BL/6 × A/J]F1 and BALB/c mice) and Vβ5 (in DBA/2 mice) that are normally deleted in I-E-expressing mice augment after surgical removal of the thymus at day 3 (8, 9). In neonatally thymectomized (neoTk) BALB/c and DBA/2 mice T cells that escape clonal deletion are not functional, i.e., they fail to proliferate in response to clonotypic Vγ-specific antibodies (9). However, functional inactivation of cells bearing a forbidden TCR repertoire is not absolute, since both thymectomized (C57BL/6 × A/J)F1 mice (8) and aged BALB/c nu/nu mice exhibit signs of autoimmunity (10). TCR-α/β+ lymphocytes from athymic mice display functional and phenotypical abnormalities ranging from decreased TCR and CD3 density (11) to low Thy-1 expression, defec-

1 Abbreviations used in this paper: h, human; IL-2AV, interleukin 2 vaccinia virus; mls, minor lymphocyte stimulating; neoTk, neonatally thymectomized; WTVV, wild-type vaccinia virus.
tive lymphokine production (3), and abnormally high amounts of double-negative (CD4+CD8-) cells (7).

Although it seems clear that selective expansion of forbidden clones occurs in athymic condition, either after surgical thymectomy or in nude mouse models, it is unknown whether extrathymic T cell maturation is triggered under these conditions. Here, we report that neonatal thymectomy leads to a surge of Vβ11+ T cells (normally deleted due to their I-E reactivity) in the periphery of CBA/H mice and entails a numeric defect in cells bearing pan T cell markers (CD4+ or CD8+) in peripheral lymphoid organs. Surprisingly, however, it results in a selective expansion of T cells bearing the immature CD3+CD4+CD8- phenotype and expressing products of the forbidden Vβ11 gene family in the peritoneal cavity. Using a human (h)IL-2 vaccinia virus construct as an autonomously replicating IL-2 releasing device, we were able to induce conversion of these peritoneal T cells to mature CD4+ or CD8+ cells and to induce autoimmune manifestations in vivo. Moreover, cells from mice treated with IL-2 vaccinia virus acquired the capacity to proliferate in response to anti-Vβ11. These results suggest: (a) peritoneum is a site for extrathymic T cell maturation or accumulation; (b) the function of nonresponsive T cells may be triggered by IL-2 and (c) IL-2 may precipitate autoimmune disease in athymic conditions.

Materials and Methods

Animals and Cell Suspensions. 3-d-old CBA/H mice (The Jackson Laboratory, Bar Harbor, ME) were anesthetized by hypothermia and were thymectomized by the suction technique previously described (12). Mice were killed by CO₂ inhalation at 6, 12, and 24 wk of life. Cell suspensions from bone marrow, spleen, and inguinal lymph nodes were prepared using standard techniques, and peritoneal cells were obtained by washing the cavity with 10 ml of chilled BSS-3% FCS, followed by two washings. In some experiments, mice were injected intraperitoneally with 10⁷ plaque forming units of IL-2 vaccinia virus (IL-2VV (13) or wild-type vaccinia virus (WTVV) starting from 6 wk of age. Treatment was repeated three times in 2-wk intervals. At necropsy, at 12 wk of age, various organs were removed and subjected to hematoxylin eosin histology.

ELISAs. Sera were tested for the presence of anti-DNA antibodies and rheumatoid factors following standard ELISA protocols (14). Briefly, polyvinylchloride microtiter plates (Dynatech, Alexandria, VA) were coated by overnight incubation (4°C) with sheared salmon sperm DNA (5 μg/ml) or pools of IgG2a or IgG1 mAbs (10 μg/ml) in 50 mM PBS (pH 7.4), followed by blocking with PBS containing 1% gelatin. Plates were incubated at room temperature for 2 h with serial dilutions of mouse sera (in PBS + 1% gelatin), washed with peroxidase-labeled goat anti-mouse Ig, and developed using o-phenylenediamine as substrate. Optical density was measured at 450 nm.

Fluorocytometric Analysis. mAbs directed against CD3 (clone 145.2C11), CD4 (GK1.5; Becton Dickinson & Co., Mountain View, CA), CD5 (537.3), CD8 (H02.2), Thy-1.2 (30-H12), Vβ3 (F23.1, specific for Vβ3.1, Vβ8.2, and Vβ8.3; reference 15), Vβ11 (RR3; reference 16), and Vα6 (44.22.1; reference 17) were either FITC labeled or used as biotin-conjugated reagents and developed by means of streptavidin-PE (Becton Dickinson & Co.). Cells were stained following standard protocols and fluorescence was measured using the Epics Profile flow cytometer (Coulter Electronics, Hialeah, FL). Background values were defined by using isotype-matched irrelevant antibodies as negative controls.

T Cell Proliferation Assays. Flat-bottomed microtiter wells (Nunc, Kamstrup, Denmark) were incubated for 3 h at 37°C with 100 μl of PBS containing 0.2, 2, or 20 μg/ml 145.C11 (aCD3), Vβ6 (F23.1), RR3 (αVβ11), or KJ23a (αVα17a, reference 18) and then washed three times before use. 10⁶ peritoneal exudate cells or splenocytes were incubated for 3 d in 200 μl in RPMI 1640 supplemented with 10% FCS, 50 μM 2-ME, 10 mM Hepes, 200 mM l-glutamine, 10 U/ml penicillin, and 100 μg/ml streptomycin, and 10 U/ml rhIL-2 (Hoffmann-La Roche, Basel, Switzerland). Cells were harvested after an 18-h pulse label with 1 μCi of [3H]thymidine (Amersham, London, UK).

Results and Discussion

As evident from Table 1, relative and absolute T cell numbers were reduced after thymectomy both in spleen and in lymph node, a phenomenon associated with a diminution of the CD4/CD8 ratio, since depletion was more pronounced among the CD4+ subset. The decrease in splenic T cells was manifest at the relative level, whereas lymph nodes displayed only a mild relative T lymphopenia, but were greatly reduced in size. In contrast to the T cell depletion observed in peripheral lymphoid organs, among cells recovered from the peritoneal cavity of neoTx animals, the relative and absolute number of lymphocytes bearing the Thy-1 or CD3 pan-T cell markers was significantly increased at 6 and 12 wk of age, but returned to control values at 4 mo (Table 1). This transient elevation of peritoneal T cell numbers was accompanied by the presence of a high portion of cells exhibiting the CD3+CD4-CD8- phenotype, i.e., a cell type that is practically absent in the peritoneum of control mice and that is found at very low percentages (<1%) in spleens or lymph nodes of neonX or control CBA/H mice (Table 1). This double-negative phenotype has been associated with autoimmune phenomena in mice affected by the lpr, gld (19), and nu mutations (7), as well as in individuals afflicted with systemic autoaggressive diseases (20), and may either represent an immature stage of T cell maturation preceding acquisition of the accessory molecules CD4 and/or CD8 (1) or, alternatively, may derive from a "loss pathway" where accessory molecules are down-regulated on autoreactive T cells that have escaped negative selection (19, 21, 22), thus exhibiting an antigen-unresponsive, anergic behavior. In this context, it may be noteworthy that the pleuropertoneal cavity has already been reported to represent the primordial differentiation site of coelomic CD5+B lymphocytes (23) and, therefore, is likely to possess a lymphotrophic nature.

In accordance with previous reports (5-10), thymectomy results in the expression of forbidden TCR gene products in peripheral lymphoid organs, specifically Vβ11, i.e., a Vβ gene product that is clonally deleted in euthymic CBA/H mice due to its high reactivity with yet unidentified non-MHC antigens presented by class II I-E molecules (15, 24). Neonatal thymectomy has been equally reported to result in the abolition of clonal deletion of Vβ11 in (C57BL/6 × A/J)F₁ and BALB/c mice (8, 9). In contrast, the percentage
Table 1. Effect of Neonatal Thymectomy on the Frequency of T Cells in Peripheral Lymphoid Organs

Organ	Cell yield (× 10^-3)	Percentage of cells after:	Thymectomy	Sham treatment				
			6 wk	12 wk	24 wk	6 wk	12 wk	24 wk
Peritoneum			Thymectomy	Sham treatment				
	Thy-1^+		33^*	29^*	24	15	18	20
	CD3^+		18^*	20^*	16	4	14	15
	CD4^+		17^*	18^*	14	4	12	14
	CD8^+		4	6	7	3	6	8
	CD3^-CD4^-CD8^-		<0.5	3	7	<0.5	4	4
	Thy-1^+		71^*	39^*	2	<0.5	<0.5	<0.5
Spleen			40	60	87	42	83	125
	Thy-1^+		15^*	10^*	26^*	47	50	50
	CD3^+		7^*	8^*	22	45	43	45
	CD4^+		3^*	4^*	20	30	30	32
	CD8^+		4^*	4^*	10	16	16	12
	CD3^-CD4^-CD8^-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Lymph node			1^*	2^*	4^*	11	25	23
	Thy-1^+		51^*	47^*	55^*	87	85	90
	CD3^+		46^*	45^*	60	82	81	86
	CD4^+		22^*	21^*	29^*	60	57	43
	CD8^+		28	25	33	30	26	30
	CD3^-CD4^-CD8^-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Cells derived from peritoneum, spleen, or lymph nodes from neoTx or sham-treated CBA/H mice were analyzed by immunocytofluorometry as described in Materials and Methods, and results were expressed as percentage of stained cells. In each case, at least six animals were analyzed. Variances were <10% for cytofluorometric data and <15% for determinations of viable cell numbers.

* Arrows indicate significant differences between thymectomized and respective control animals (p < 0.01, unpaired student's t test).

† The percentage of double negatives among CD3^+ cells was determined by double staining.

of cells expressing V_{311} gene products does not augment in neoTx DBA/2 mice (9), although V_{811} T cells should be as potentially self-reactive as in the other I-E-expressing strains studied, a fact that is not at present understood. In neoTx CBA/H mice, V_{811} attained a level of 25.1 ± 4.7% (mean ± SEM; n = 6) among CD3^+ cells in the spleen and 42.2 ± 7.8% in the peritoneum, i.e., 8-10-fold higher than in sham-treated controls, and remained constant throughout the period examined (6-24 wk of age), whereas control V_{8} products (V_{86}, V_{88}) are expressed at near to normal levels (Table 2). We have no explanation for the twofold increase in V_{86}^+ cells among splenic CD3^+ cells, which was not observed in peritoneum. In spite of the high expression of a potentially autoreactive (V_{311}^+) TCR, neoTx CBA/H mice did not display any clinical (arthritis, proteinuria, cutaneous ulcers), serological (rheumatoid factor, anti-DNA antibodies), or histopathological signs of autoimmune disease (vide infra). This absence of autoaggression in spite of failure of clonal deletion is thought to be due to the preservation of autotolerance by clonal anergy, since nondeleted V_{311}^+ cells from neoTx I-E-bearing mice fail to proliferate in response to I-E^+ stimulator cells or immobilized anti-V_{311} (9).

Intraperitoneal inoculation of a rhIL-2 vaccinia virus construct, which induces production of high levels (up to 20 U/ml in serum) of rhIL-2 around day 10 after infection (13), resulted in appearance of accessory molecules (CD4 or CD8) on the peritoneal T cell population (Fig. 1) without inducing significant changes in the TCR repertoire expressed by these cells. The decrease in CD3^+CD4^-CD8^- cells is not due to an outgrowth of pre-existing single-positive T cells proliferating with IL-2, since no significant increase of single-positive cells were found in sham-operated CBA/H mice treated with hiIL-2-2VV (data not shown). It remains elusive whether IL-2 stimulates de novo expression of CD4 and/or CD8 on an immature double-negative population or induces restitution ad integrum of cells that have lost their accessory molecules during an anergization process. A daily follow-up of the phenotype of peritoneal cells changing their antigenic make-up after the application of hiIL-2-2VV failed to detect double-positive cells (CD4^+CD8^-; Fig. 1 and data not shown), thus
Table 2. Effect of Neonatal Thymectomy on the TCR Repertoire Expressed by Peripheral T Cells

Vβ gene family	Percentage (n = 6) among CD3+ cells after:	Thymectomy	Sham treatment			
	6 wk	12 wk	24 wk	6 wk	12 wk	24 wk
Peritoneum						
Vβ6	9.8 ± 1.7	9.3 ± 1.6	8.7 ± 1.5	14.9 ± 1.6	13.5 ± 1.5	14.7 ± 1.3
Vβ8	35.2 ± 6.2	33.1 ± 6.3	34.7 ± 6.7	29.7 ± 3.5	28.4 ± 3.2	29.3 ± 3.5
Vβ11	42.2 ± 7.8	40.5 ± 7.2	37.2 ± 6.7	5.1 ± 0.5	4.7 ± 0.5	4.3 ± 0.4
Spleen						
Vβ6	15.2 ± 3.0	14.7 ± 3.1	15.1 ± 2.9	6.5 ± 0.6	7.2 ± 0.5	6.8 ± 0.6
Vβ8	37.6 ± 7.3	35.3 ± 6.8	35.7 ± 7.1	38.1 ± 3.2	37.5 ± 3.1	38.3 ± 3.5
Vβ11	24.7 ± 4.5	25.1 ± 4.7	24.3 ± 4.3	2.6 ± 0.3	3.1 ± 0.8	2.3 ± 0.2

Cells derived from peritoneum or spleen from neoTtx or sham-treated CBA/H mice were subjected to two-color cytofluorometric analysis, and results were expressed as percentage of cells expressing products of a particular TCR Vβ gene family (biotin-labeled mAbs F23.1, RR3, and 44.22.1 specific for products of the Vβ6, Vβ8, and Vβ11 gene families, respectively) among CD3+ cells (FITC-labeled) (Table 1).

* Arrows indicate significant differences between thymectomized and respective control animals (p < 0.01, unpaired student's t test). In no instance were significant differences in the median fluorescence intensity detected for Vβ gene expression.

Figure 1. Effect of rhIL2 vaccinia virus on peripheral T cells of neoTtx CBA/H mice. NeoTtx CBA/H mice were treated by intraperitoneal injection of rhIL2-VV or WT-VV, as described in Materials and Methods, followed by assessment of the frequency of CD3+CD4+CD8- (double negatives) and CD3+CD4+/CD8+ cells in the peritoneum (A). The ratio between CD4+CD8- and CD4+CD8+ cells did not change significantly upon IL2-VV treatment. Moreover, the proliferation of peritoneal and splenic T cells in response to αCD3, αVβ8, αVβ11, and αVβ17a was assessed (B). Values are as mean values ± SEM, and background values (<2 × 10^5 cpm) were subtracted. Asterisks mark significant differences (p < 0.01; unpaired student's t test) between the two groups of animals. αVβ17a may be considered as negative control since CBA/H mice express the Vβ17b allele (18). Results are shown for an antibody concentration of 20 μg/ml used for coating microtiter plates, and analogous results were obtained with lower antibody concentrations (data not shown). The percentage of Vβ8+ and Vβ11+ cells among CD3+ T cells did not vary significantly between WTVV (28 ± 6% Vβ8+ and 35 ± 7% Vβ11+ in peritoneum; 34 ± 6% Vβ8+ and 22 ± 5% Vβ11+ in spleen) and IL2-VV-treated animals (27 ± 4% Vβ8+ and 39 ± 5% Vβ11+ in peritoneum; 32 ± 5 Vβ8+; 26 ± 4 Vβ11+ T cells in spleen).
providing indirect evidence in favor of the second possibility. Intermediate affinity IL-2 receptors (p75, heavy chain) have been detected both on immature thymocytes (25) as well as on abnormal T cells of MRL/Mp-1pr/1pr mice (26), suggesting that IL-2 may exert direct effects on double-negative T cells. IL-2 has been shown to trigger the maturation of pre- and intrathymic T cell precursors in vitro where it drives double-negative cells into the double-positive stage (25). On the other hand, IL-2 restores the capacity of anergic T lymphocytes, i.e., cells that have not been clonally deleted but functionally paralysed, to proliferate in response to antigenic stimuli (24, 27-29). Accordingly, nondeleted Vα11 + cells of IL-2-VV-treated animals acquire the capacity of proliferating with anti-Vα11 antibody, whereas cells from control animals fail to mount a significant response (Fig. 1). This is in contrast with the finding by Jones et al. (9) that nondeleted Vα11 + cells from neoF I-E-bearing mice fail to proliferate in response to anti-Vα11 or appropriate stimulator cells, even when exposed during a short term (3 d) culture to IL-2. Nonetheless, the very different experimental design (in vitro vs. in vivo) and the different duration of IL-2 treatment (6 wk vs. 3 d) may explain this discrepancy.

Both CD4 + and CD8 + T cells expressing Vα11 receptors are known to respond to I-E antigens in vivo (30), and induction of CD4 on double-negative splenic T cells by in vitro culture with Con A has been known to induce autoreactive behavior of T cells that provide help to autoimmune B cells (31). It therefore is tempting to speculate that the induction of phenotypically mature (CD4 +/CD8 +) and functionally competent T cells bearing products of this potentially self-reactive TCR Vα gene family may be functionally linked to the development of autoimmune phenomena. IL-2-VV, not WT-VV, provokes the production of DNA autoantibodies and rheumatoid factors, as well as an interstitial nephritis, in neoF CBA/H mice, but fails to do so in euthymic controls (Fig. 2). This observation supports the notion that IL-2 may precipitate autoimmune diseases (32). Accordingly, application of IL-2 receptor antibodies prevents the development of virtually any autoimmune disease investigated in this respect, and rIL-2 frequently induces autoimmune lesions in patients (33). Inoculation of the hIL-2-VV construct used in this report induces overt autoimmunity in neoF CBA/H animals, as well as in young BALB/c nu/nu and C57Bl/6 nu/nu mice (Gutierrez-Ramos, Moreno de Albornoz, and Martinez-A, manuscript in preparation). No effect is observed in CBA/H mice thymectomized at 3 mo of age. In contrast, the same treatment ameliorates systemic lupus erythematosus developing in MRL/Mp-Ipr/lpr mice (13). This discrepancy either reflects a pleiotropic involvement of the IL-2/II-2 receptor system in the cascade of events leading to autoimmune disease or, alternatively, may be ascribed to the very different etiology of autoagression in distinct animal models. Thus, athymia with the consequent perturbations in T lymphocyte repertoire, imbalance in distinct T cell populations, suppressor/
helper ratios, and deficient "lymphokine sink" (34) could predispose to IL-2-induced autoimmunity, whereas presence of a thymus may preclude such an IL-2 effect. In this context, it is worthwhile to mention that IL-2 actually induces thymic hyperplasia in MRL/Mp lpr/lpr mice, which normally are characterized by thymic atrophy (13). Future studies will address the cellular mechanism of IL-2-induced autoimmune disease and will evaluate the position occupied by the IL-2/IL-2 receptor system in the sequence of pathogenetic events leading to manifest autoimmunity.

We thank E. Leonardo and J. A. Gonzalo for skilled technical assistance, and K. M. Sweeting for editorial help. Moreover, we gratefully acknowledge the comments of the unknown referee that contributed to improve the data presentation in Table 2.

J. L. Andreu-Sánchez and A. Sánchez-Movilla were supported by INSALUD-Madrid. This work was supported in part by grants from Fondo de Investigación Sanitaria, European Community, and Comisión Interministerial de Ciencia y Tecnología.

Address correspondence to Guido Kroemer, Centro de Biología Molecular, CSIC, Universidad Autónoma, Campus de Cantoblanco, 28049 Madrid, Spain.

Received for publication 30 November 1990 and in revised form 27 February 1991.

References
1. Blackman, M., J. Kappler, and P. Marrack. 1990. The role of the T cell receptor in positive and negative selection of developing T cells. Science (Wash. DC). 248:1335.
2. von Böhmer, H. 1990. Developmental biology of T cells in T cell-receptor transgenic mice. Annu. Rev. Immunol. 8:531.
3. Hünig, T. 1983. T-cell function and specificity in athymic mice. Immunol. Today. 4:84.
4. MacDonald, H.R., R.K. Lees, C. Bron, B. Sordat, and G. Miescher. 1987. T cell antigen receptor expression in athymic (nu/nu) mice: evidence for an oligoclonal β chain repertoire. J. Exp. Med. 166:195.
5. Hodes, R.J., S.O. Sharrow, and A. Salomon. 1989. Failure of T cell receptor Vβ negative selection in an athymic environment. Science (Wash. DC). 246:1041.
6. Fry, A.M., L.A. Jones, A.M. Kruisbeek, and L.A. Matis. 1990. Thymic requirement for clonal deletion during T cell development. Science (Wash. DC). 246:1044.
7. Rocha, B. 1990. Characterization of Vβ bearing cells in athymic (nu/nu) mice suggests an extrathymic pathway for T cell differentiation. Eur. J. Immunol. 20:919.
8. Smith, H., I.-M. Chen, R. Kobo, and K.S.K. Tung. 1989. Neonatal thymectomy results in a repertoire enriched in T cells deleted in adult thymus. Science (Wash. DC). 245:749.
9. Jones, L.A., L.T. Chin, G.R. Merriam, L.M. Nelson, and A.M. Kruisbeck. 1990. Failure of clonal deletion in neonatally thymectomized mice: tolerance is preserved through clonal anergy. J. Exp. Med. 172:1277.
10. Yuuki, H., Y. Yoskijii, K. Kishihara, A. Iwasaka, G. Matsuzaki, T. Takimoto, and K. Nomoto. 1990. Clonal anergy in self-reactive α/β T cells is abrogated by heat-shock protein-reactive γ/δ T cells in aged athymic nude mice. Eur. J. Immunol. 20:1475.
11. Lawtzky, A., and T. Hünig. 1990. Analysis of CD3 and antigen receptor expression on T cell subpopulation of aged athymic mice. Eur. J. Immunol. 20:409.
12. Tung, K.S.K., S. Smith, C. Teuscher, C. Cook, and R.E. Anderson. 1987. Murine autoimmune oophoritis, epididymoorchitis, and gastritis induced by day 3 thymectomy. Am. J. Pathol. 126:293.
13. Gutierrez-Ramos, J.C., J.L. Andreu, Y. Revilla, E. Viñuela, and C. Martinez-A. 1990. Recovery from autoimmunity of MRL/lpr/lpr mice after infection with an interleukin-2/vaccinia recombinant virus. Nature (Lond.). 346:271.
14. Katagiri, T., P.L. Cohen, and R.A. Eisenberg. 1988. The lpr gene causes an intrinsic T cell abnormality that its required for hyperproliferation. J. Exp. Med. 167:741-750.
15. Staerz, U., H.G. Rammensee, J.D. Benedeto, and M.J. Bevan. 1987. Characterization of a murine monoclonal antibody specific for an allotypic determinant on T cell antigen receptor. J. Immunol. 134:3994.
16. Bill, J., O. Kanagawa, D.L. Woodland, and E. Palmer. 1989. The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ10-bearing cells. J. Exp. Med. 169:1405.
17. Payne, J., B.T. Huber, N.A. Cannon, R. Schneider, M.W. Schillham, H. Acha-Orbea, H.R. MacDonald, and H. Hengartner. 1988. Two monoclonal rat antibodies with specificity for the β-chain variable region Vβo of the murine T-cell receptor. Proc. Natl. Acad. Sci. USA. 85:7695.
18. Kappler, J.W., N. Roehm, and K. Marrack. 1987. T cell tolerance by clonal elimination in the thymus. Cell. 49:273.
19. Singer, P.A., R.S. Balderas, R.J. McEvilly, M. Bobardt, and A.N. Theofilopoulos. 1989. Tolerance-related Vβ clonal deletions in normal CD4 -8+, TCR-α/β and abnormal lpr and gld populations. J. Exp. Med. 170:1869.
20. Wirth, D.P., E.G. Brooks, S. Vaidya, G.R. Kimpell, T.A. Waldmann, and R.M. Goldblum. 1990. Novel T lymphocyte population in combined immunodeficiency with features of graft-versus-host disease. N. Engl. J. Med. 321:370.
21. Teh, H.-S., H. Kishi, B. Scott, and H. von Boehmer. 1989. Deletion of autospecific T cells in T cell receptor (TCR) transgene mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169:795.
22. Egerton, M., and R. Scollay. 1990. Intrathymic selection of murine TCRαβ 3'CD4'-CD8' thymocytes. Int. Immunol. 2:157.
23. Marcos, M.A.R., F. Huetz, P. Pereira, J.-L. Andreu, C. Martinez-A., and A. Coutinho. 1989. Further evidence for coelomic-associated β lymphocytes. Eur. J. Immunol. 19:2031.
24. Tomonari, K. 1990. Tolerance in vivo and in vitro. *Immunol. Rev.* 116:139.

25. Toribio, M.L., J.C. Gutierrez-Ramos, L. Pezzi, M.A.R. Marcos, and C. Martínez-A. 1989. Interleukin-2-dependent autocrine proliferation in T cell development. *Nature (Lond.)* 342:82.

26. Gutierrez-Ramos, J.C., L. Pezzi, R. Palacios, and C. Martínez-A. 1989. Expression of the p75 interleukin-2-binding protein on CD3^-4^-8^- Tac- cells from autoimmune MRL/Mp-lpr/lpr mice. *Eur. J. Immunol.* 19:201.

27. Morahan, G., J. Allison, and J.F.A.P. Miller. 1989. Tolerance of class I histocompatibility antigens expressed extrathyrmically. *Nature (Lond.)* 339:622.

28. Ramsdell, F., T. Lantz, and B.J. Fowlkes. 1989. A nondeletional mechanism of thymic self tolerance. *Science (Wash. DC)*. 246:1038.

29. Schwartz, R.H. 1990. A cell culture model for T lymphocyte clonal anergy. *Science (Wash. DC)*. 248:1349.

30. Gao, E.-K., O. Kanagawa, and J. Sprent. 1989. Capacity of unprimed CD4^- and CD8^- T cells expressing V811 receptors to respond to I-E antigens in vivo. *J. Exp. Med.* 179:1947.

31. Reimann, J., A. Bellan, and P. Conradt. 1988. Development of autoreactive L3T4^- T cells from double-negative (L3T4^-/Ly-2^-) Thy-1^+ spleen cells of normal mice. *Eur. J. Immunol.* 18:989.

32. Kroemer, G., and G. Wick. 1989. The role of interleukin 2 in autoimmunity. *Immunol. Today* 10:246.

33. Atkins, M.B., J.W. Mier, D.R. Parkinson, J.A. Gould, E.M. Berkman, and M.M. Kaplan. 1988. Hypothyroidism after treatment with interleukin 2 and lymphokine-activated killer cells. *N. Engl. J. Med.* 318:1557.

34. Lo, D., L.C. Burkly, R.A. Flavell, R.D. Palmiter, and R.L. Brinster. 1989. Tolerance in transgenic mice expressing class II major histocompatibility complex on pancreatic acinar cells. *J. Exp. Med.* 170:87-104.