DIRAC SURFACES AND THREEFOLDS

GEOFFREY SCOTT

Abstract. We describe Dirac structures on surfaces and 3-manifolds. Every Dirac structure on a surface M is described either by a regular 1-foliation or by a section of a circle bundle obtained as a fiberwise compactification of the line bundle $\wedge^2 TM$. Every Dirac structure on a 3-manifold M is either the union of a presymplectic manifold and a foliated Poisson manifold, or the union of a Poisson manifold and a foliated presymplectic manifold.

1. Introduction

A 2-form ω on a manifold M induces a skew-symmetric map $TM \rightarrow T^*M$ whose graph is an n-dimensional subbundle of $TM := TM \oplus T^*M$, isotropic with respect to the natural inner product on TM. Likewise, a bivector Π on M induces a skew-symmetric map $T^*M \rightarrow T$ whose graph is also an n-dimensional isotropic subbundle of TM. The language of Dirac geometry allows us to simultaneously generalize presymplectic geometry and Poisson geometry by taking our main geometric structure to be an isotropic n-dimensional subspace of TM, involutive with respect to the Courant bracket on TM. The involutivity criterion generalizes the condition of a 2-form being closed, and of a bivector being Poisson. We review the language of Dirac geometry in Section 2. In Section 3, we classify Dirac structures on surfaces. In Section 4, we classify Dirac structures on 3-manifolds.

2. Dirac Geometry

Proofs of the assertions made in this section can be found in [1], [2], or any introduction to Dirac geometry.

2.1. Linear Algebra. For a real vector space V of dimension n, $V \oplus V^*$ has a natural split-signature inner product $\langle v + \xi, w + \eta \rangle = \frac{1}{2} \xi(w) + \eta(v)$ and natural projections $\rho : V \oplus V^* \rightarrow V$ and $\hat{\rho} : V \oplus V^* \rightarrow V^*$. A subspace L of $V \oplus V^*$ is Lagrangian if it is n-dimensional and isotropic with respect to this inner product, and $\operatorname{Lag}(V \oplus V^*)$ is defined to be the space of all Lagrangians in $V \oplus V^*$. For $L \in \operatorname{Lag}(V \oplus V^*)$, let $\Delta := \rho(L)$ and $\hat{\Delta} := \hat{\rho}(L)$. The flags of subspaces in V and V^*

$$0 \subset L \cap V \subset \Delta \subset V \quad \text{and} \quad 0 \subset L \cap V^* \subset \hat{\Delta} \subset V^*$$

are related by the fact that $\text{Ann}(L \cap V) = \hat{\Delta}$ and $\text{Ann}(\Delta) = L \cap V^*$. The type of $L \in \operatorname{Lag}(V \oplus V^*)$ is the pair of integers $(\dim(L \cap V), \dim(L \cap V^*))$. For example, the type of V is $(n, 0)$, and the type of a Lagrangian defined as the graph of a 2-form $\omega \in \wedge^2 V^*$ is $(\dim(\ker \omega), 0)$. In most references, the type of L is instead defined as the codimension of Δ in V, which equals the second coordinate of our definition of type. Our definition distinguishes between $L = V \subset V \oplus V^*$ and the graph of a symplectic structure, but our definition is not well-defined on general Courant algebroids that do not contain TM as a subbundle. We call a Lagrangian of type (a, b) even if b is even, and odd otherwise. Topologically, $\operatorname{Lag}(V \oplus V^*) \cong O(n)$ ([1], Section 1.3); its two components are the even Lagrangians $\operatorname{Lag}_{\text{even}}(V \oplus V^*) \subset \operatorname{Lag}(V \oplus V^*)$ and the odd Lagrangians $\operatorname{Lag}_{\text{odd}}(V \oplus V^*) \subset \operatorname{Lag}(V \oplus V^*)$.

A Lagrangian \(L \) defines a skew form \(\epsilon \in \wedge^2 \Delta^* \) and a bivector \(\Pi \in \wedge^2 \hat{\Delta}^* \cong \wedge^2 (V/(L \cap V)) \) by the formulas
\[
\epsilon(\rho(x)) = \tilde{\rho}(x) \bigg| \Delta \quad \text{and} \quad \Pi(\tilde{\rho}(x)) = \rho(x) \bigg| \hat{\Delta} \quad \text{for all} \ x \in V \oplus V^*
\]
Conversely, any Lagrangian is uniquely specified by the pair \((\Delta, \epsilon)\), and also by the pair \((\hat{\Delta}, \Pi)\).

Proposition 2.1. ([1], Proposition 1.11.5) The maps \(L \mapsto (\Delta, \epsilon) \) and \(L \mapsto (\Delta^*, \Pi) \) define bijections
\[
\begin{align*}
\{ \text{Pairs } (\Delta, \epsilon) \mid \Delta \text{ a subspace of } V, \epsilon \in \wedge^2 \Delta^* \} & \leftrightarrow \text{Lag}(V \oplus V^*) \\
\{ \hat{\Delta} \text{ a subspace of } V^*, \Pi \in \wedge^2 \hat{\Delta}^* \} & \leftrightarrow \text{Lag}(\hat{\Delta} \oplus \Pi)
\end{align*}
\]

2.2. Differential Geometry. The **generalized tangent bundle** of a manifold \(M \) is the bundle \(\mathcal{T}M := TM \oplus T^*M \) endowed with the split-signature inner product \((X + \xi, Y + \eta) = \frac{1}{2} (\eta(X) + \xi(Y))\) and the **Courant bracket**
\[
[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} \mathcal{L}_{[X, Y]} \xi.
\]
on its space of sections. We denote by \(\text{Lag}(\mathcal{T}M) \) the \(O(n) \) bundle over \(M \) whose fiber over \(x \in M \) is \(\text{Lag}(T_x M \oplus T^*_x M) \). An **almost Dirac structure** is a Lagrangian subbundle \(E \) of \(\mathcal{T}M \) – equivalently, a section of \(\text{Lag}(\mathcal{T}M) \). Given an almost Dirac structure \(E \) on \(M \), we denote
\[
M_{(a, b)} := \{ x \in M \mid E_x \text{ has type } (a, b) \}.
\]
An almost Dirac structure \(E \) is a **Dirac structure** if it is involutive – that is, if the Courant bracket of two sections of \(E \) is again a section of \(E \). This involutivity criterion can be expressed using the language of foliated forms (or foliated poisson structures) on regions of \(M \) where the dimension of \(\Delta \) (or \(\hat{\Delta} \)) is locally constant.

Definition 2.2. Let \(D \) be a distribution on a manifold \(M \) given by a regular foliation. The **foliated exterior derivative**
\[
d_D : \Gamma(\wedge^k D^*) \to \Gamma(\wedge^{k+1} D^*)
\]
is given by the usual Cartan formula
\[
d_D \omega(V_0, \ldots, V_k) := \sum_i (-1)^i a(V_i) \left(\omega(V_0, \ldots, \hat{V}_i, \ldots, V_k) \right)
\]
\[
+ \sum_{i < j} (-1)^{i+j} \omega([V_i, V_j], V_0, \ldots, \hat{V}_i, \ldots, \hat{V}_j, \ldots, V_k).
\]
where \(\{V_0, \ldots, V_k\} \) are sections of \(D \). A **foliated presymplectic** form is a \(d_D \)-closed \(\omega \in \Gamma(\wedge^2 D^*) \). If \(D = \mathcal{T}M \), we recover the usual definition of a presymplectic form.

Definition 2.3. Let \(D \) be a distribution on a manifold \(M \) given by a regular foliation. The sheaf of **admissible** functions on \(M \) is the sheaf \(C^\infty_D \) of functions which are constant on the leaves of \(D \). A **foliated Poisson** structure is a Poisson bracket on \(C^\infty_D \).

Proposition 2.4. ([3] Prop. 2.7, [1] Prop 2.5.3 and Cor. 2.6.3) Let \(E \) be an almost Dirac structure
\begin{enumerate}
\item If \(\Delta \) is a subbundle of \(TM \) (so \(E \) can be described as the graph of \(\epsilon \in \wedge^2 (\Delta)^* \)), then \(E \) is a Dirac structure if and only if \(\Delta \) integrates to a foliation and \(d_\Delta \epsilon = 0 \).
\item If \(E \cap TM \) is a subbundle of \(TM \) (so \(E \) can be described as the graph of \(\Pi \in \wedge^2 (\hat{\Delta})^* \)), then \(E \) is a Dirac structure if and only if \(E \cap TM \) integrates to a foliation and \(\Pi \) defines a foliated Poisson structure with \(M \) with respect to this foliation.
\end{enumerate}

For example, wherever an almost Dirac structure \(E \) is transverse to \(T^*M \subseteq TM \), \(E \) is the graph of a 2-form \(\omega \) and Proposition 2.3 states that \(E \) is Dirac structure precisely if \(\omega \) is closed. Wherever \(E \) is transverse to \(TM \), \(E \) is the graph of a bivector \(\Pi \), and \(E \) is Dirac precisely if \(\Pi \) is Poisson.
3. Dirac Structures on Surfaces

3.1. Linear Algebra. For a 2-dimensional vector space V, $\text{Lag}(V \oplus V^*) \cong O(2)$ consists of two circles, $\text{Lag}_e(V \oplus V^*)$ and $\text{Lag}_o(V \oplus V^*)$. The circle of even Lagrangians is covered by the maps

\[
\wedge^2 V^* \to \text{Lag}_e(V \oplus V^*) \\
\wedge^2 V \to \text{Lag}_e(V \oplus V^*)
\]

Each even Lagrangian has type $(0,0)$ except for V and V^*, which are the images of $0 \in \wedge^2 V^*$ and $0 \in \wedge^2 V$ in the maps above, and have type $(2,0)$ and $(0,2)$, respectively. The circle of odd Lagrangians is isomorphic to $P(V)$, the projective space of lines in V, by

\[
P(V) \to \text{Lag}_o(V \oplus V^*) \\
L \mapsto L + \text{Ann}(L)
\]

![Diagram](image)

Figure 1. The topology of $\text{Lag}(V \oplus V^*)$ for $\dim(V) = 2$

3.2. Differential Geometry. Let M be a surface. Then both $\text{Lag}_e(TM)$ and $\text{Lag}_o(TM)$ are circle bundles over M. The Maps (1) globalize to inclusions

\[
\wedge^2 TM \to \text{Lag}_e(TM) \\
\wedge^2 T^* M \to \text{Lag}_e(TM)
\]

so the circle bundle $\text{Lag}_e(TM)$ may be viewed as the fiberwise compactification of the canonical (or anticanonical) line bundle.

Let E be an even almost Dirac structure. On $M_{(0,0)} \cup M_{(2,0)}$, E is the graph of a 2-form and Proposition 2.4 states that E is Dirac if and only if this 2-form is closed. Every 2-form on a surface is closed, so E is Dirac on $M_{(0,0)} \cup M_{(2,0)}$. Similarly, E is Dirac on $M_{(0,0)} \cup M_{(0,2)}$ because every bivector on a surface is Poisson. Therefore, every even almost Dirac structure on a surface is Dirac. The data of an odd Dirac structure is equivalent to the data of a regular 1-dimensional foliation on M. This proves

Theorem 3.1. Let M be a surface. Even Dirac structures on M are sections of the circle bundle $\text{Lag}_e(TM)$. Odd Dirac structures on M correspond to regular 1-foliations on M.

If M is orientable, $\text{Lag}_e(TM)$ is trivial, so $\Gamma(M, \text{Lag}_e(TM)) \cong \text{Map}(M, S^1)$.

Corollary 3.2. Let M be an orientable surface. The path components of the space of even Dirac structures are classified by $H^1(M; \mathbb{Z})$.

A necessary and sufficient condition for the existence of a regular 1-foliation on a surface is that the Euler characteristic of the surface vanishes.

Corollary 3.3. The only closed surfaces that admit an odd Dirac structure are the torus and the Klein bottle.
4. Dirac Structures on 3-manifolds

4.1. Linear Algebra. Let V be a 3-dimensional real vector space, and let $Gr(k, V)$ denote the Grassmannian of k-dimensional planes in V. Then $\text{Lag}(V \oplus V^*) \cong O(3)$ is diffeomorphic to two copies of $\mathbb{R}P^3$. $\text{Lag}_e(V \oplus V^*)$ consists of Lagrangians of type $(1, 0), (3, 0),$ and $(1, 2)$. The Lagrangians of type $(1, 0)$ and $(1, 2)$ are precisely the ones for which $\dim(\Delta) = 2$. By Proposition 2.1, these Lagrangians are classified by pairs $(\hat{\Delta}, \Pi)$, where $\hat{\Delta} \in \text{Gr}(2, V^*)$ and $\Pi \in \wedge^2 \hat{\Delta}^*$. The space of all such pairs is the total space of a real line bundle over $\text{Gr}(2, V^*) \cong \mathbb{R}P^2$ with projection $(\hat{\Delta}, \Pi) \mapsto \hat{\Delta}$. The zero section of this bundle corresponds to Lagrangians of type $(1, 2)$. Similarly, the Lagrangians of type $(1, 0)$ and $(3, 0)$ are precisely the Lagrangians for which $\Delta = V$, and are classified by elements $\epsilon \in \wedge^2 V$. This set is a 3-ball whose zero corresponds to the Lagrangian V.

The space $\text{Lag}_0(V \oplus V^*)$ consists of Lagrangians of type $(0, 1), (0, 3),$ and $(2, 1)$. The Lagrangians of type $(0, 1)$ and $(2, 1)$ are classified by pairs (Δ, ϵ), where $\Delta \in \text{Gr}(2, V)$ and $\epsilon \in \wedge^2 \Delta^*$. This set is the total space of a real line bundle over $\text{Gr}(2, V) \cong \mathbb{R}P^2$ whose zero section corresponds to Lagrangians of type $(2, 1)$. The Lagrangians of type $(0, 1)$ and $(0, 3)$ are classified by elements $\epsilon \in \wedge^2 V^*$, a 3-ball whose zero corresponds to V^*.

![Figure 2. The topology of $\text{Lag}(V \oplus V^*)$ for $\dim(V) = 3$.](image)

4.2. Differential Geometry. Let E be a Dirac structure on a 3-manifold. We can use Proposition 2.1 and the discussion above to describe the Dirac geometry of different regions of M using the language of foliated presymplectic and foliated Poisson structures

$M_{(1,0)} \cup M_{(1,2)}$: Foliated Poisson

$M_{(0,1)} \cup M_{(2,1)}$: Foliated Presymplectic

$M_{(1,0)} \cup M_{(3,0)}$: Presymplectic

$M_{(0,1)} \cup M_{(0,3)}$: Poisson

This is summarized in the following theorem.

Theorem 4.1. Let M be a three dimensional manifold.

1. Every even Dirac structure on M is the union of a presymplectic manifold and a foliated Poisson manifold. These manifolds are glued along the region $M_{(1,0)}$.

2. Every odd Dirac structure on M is the union of a Poisson manifold and a foliated presymplectic manifold. These manifolds are glued along the region $M_{(0,1)}$.

References

[1] Courant, T. *Dirac manifolds*. Trans. Amer. Math. Soc. 319, no. 2, pp. 631-661, 1990.

[2] Courant, T. and Weinstein, A. *Beyond Poisson Structures* Action hamiltoniennes de groupes. Troisieme theo- reme de Lie (Lyon, 1986), pp.30-49, Travaux en Cours, 27, Hermann, Paris, 1988.

[3] Gualtieri, M. *Generalized Complex Geometry* Ann. of Math. 174 (2011), pp. 75-123

E-mail address: gscott@math.utoronto.edu