Violation of Heisenberg’s Error–Disturbance Relation by Stern–Gerlach Measurements

Yuki Inoue1,⋆ and Masanao Ozawa1,2, †

1Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
2College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi, 487-8501, Japan

Although “Heisenberg’s uncertainty principle” is represented by a rigorously proven relation about intrinsic indeterminacy in quantum states, Heisenberg’s error-disturbance relation (EDR) has been commonly believed as another aspect of the principle. However, recent developments of quantum measurement theory derived a universal EDR testable to observe its violation. Here, we study the EDR for Stern–Gerlach measurements and we conclude that their EDR is close to the theoretical optimal and surprisingly that even the original Stern–Gerlach experiment in 1922 violates Heisenberg’s EDR.

Heisenberg’s uncertainty principle is usually represented by a rigorously proven relation

$$\sigma(A)\sigma(B) \geq \frac{1}{2}|\langle [A, B] \rangle|$$

for the standard deviations $\sigma(A)$, $\sigma(B)$ of arbitrary observables A, B, respectively, in any state [1–3]. This expresses intrinsic indeterminacy in quantum states. However, Heisenberg’s error-disturbance relation (EDR)

$$\varepsilon(A)\eta(B) \geq \frac{1}{2}|\langle [A, B] \rangle| \quad (2)$$

for the mean error $\varepsilon(A)$ of an A-measurement in any state and the mean disturbance $\eta(B)$ thereby caused on another observable B, originally introduced his γ-ray microscope thought experiment [1], has been commonly believed and taught as another aspect of the principle. Although “Heisenberg’s uncertainty principle” is represented by a rigorously proven relation about intrinsic indeterminacy in quantum states, Heisenberg’s error-disturbance relation (EDR) has been commonly believed as another aspect of the principle. However, recent developments of quantum measurement theory made Heisenberg’s EDR testable to observe its violations [9, 10]. However, recent developments of quantum measurement theory derived a universally valid EDR

$$\varepsilon(A)\eta(B) + \varepsilon(A)\sigma(B) + \sigma(A)\eta(B) \geq \frac{1}{2}|\langle [A, B] \rangle| \quad (3)$$

where $\sigma(A)$ and $\sigma(B)$ are the standard deviations of A and B just before the measurement [9, 10], and made Heisenberg’s EDR testable to observe its experimental violation [11, 12]. Subsequently, stronger EDRs have appeared [13, 14] and further experimental violations of Heisenberg’s EDR have been reported, though witnessed only in ideally controlled precision measurements of photons [15–20] and neutrons [21].

Here, we study the EDR for a more common measurement setup, known as Stern–Gerlach measurements [22–26], and we conclude that their error-disturbance region is close to the theoretical optimal and actually violates the Heisenberg’s EDR in a broad range of experimental parameters. In particular, we conclude that the original Stern–Gerlach experiment performed in 1922 [27–29] violates Heisenberg’s EDR. The results suggest that Heisenberg’s EDR is more ubiquitously violated than it has been supposed for a long time.

Spin measurements.— We consider a measurement of a spin-1/2 particle, S, or an equivalent q-bit system described by Pauli matrices. We investigate the error and disturbance of the measurements of the z-component, $A = \sigma_z$, and the disturbance of the x-component, $B = \sigma_x$, of the (dimensionless) spin, where A and B generally denote observables to be measured and to be disturbed, respectively. We suppose that the measurement is carried out by the interaction between the system S prepared in an arbitrary state ρ and the probe P prepared in a fixed vector state $|\xi\rangle$ from time 0 to time t_0 and ends up with the subsequent reading of the meter observable M of the probe P. We assume the meter M has the same spectral with the measured observable σ_z. The measuring process, M, determines the time evolution operator, U, of the composite system of $S + P$. For any observables X in S and Y in P, the Heisenberg operators at the corresponding times are given by $X(t_0) = X \otimes 1, Y(t_0) = 1 \otimes Y, X(t_0) = U^\dagger(X \otimes 1)U$, and $Y(t_0) = U^\dagger(1 \otimes Y)U$.

The quantum root-mean-square (q-rms) error, $\varepsilon(\sigma_z) = \varepsilon(\sigma_z, M, \rho)$, is defined by

$$\varepsilon(\sigma_z) = \text{Tr}[(M(t_0) - \sigma_z(t_0))^2 \rho \otimes |\xi\rangle \langle \xi|]^{1/2} \quad (4)$$

The q-rms error $\varepsilon(\sigma_z)$ has the following properties [30].

(i) (Operational definability) $\varepsilon(\sigma_z)$ is definable by the operational description of the measuring process M.

(ii) (Correspondence principle) If $\sigma_z(0)$ and $M(t_0)$ commute in the state $\rho \otimes |\xi\rangle \langle \xi|$, the q-rms error $\varepsilon(\sigma_z)$ coincides with the classical rms error determined by the joint probability distribution μ of $\sigma_z(0)$ and $M(t_0)$ in $\rho \otimes |\xi\rangle \langle \xi|$.

(iii) (Soundness) If M accurately measures σ_z in ρ then $\varepsilon(\sigma_z)$ vanishes.

(iv) (Completeness) If $\varepsilon(\sigma_z)$ vanishes then M accurately measures σ_z in ρ.

The quantum root-mean-square (q-rms) disturbance, $\eta(\sigma_z) = \varepsilon(\sigma_z, M, \rho)$, is defined by

$$\eta(\sigma_z) = \text{Tr}[(\sigma_z(t_0) - \sigma_z(0))^2 \rho \otimes |\xi\rangle \langle \xi|]^{1/2} \quad (5)$$

The q-rms disturbance $\eta(\sigma_z)$ has properties analogous to the q-rms error.

For the above properties of $\varepsilon(\sigma_z)$ and $\eta(\sigma_z)$, we refer the reader to Ref. [30] and Appendix A of Ref. [31].
According to Braciard [13] and Ref. [14], we obtain the EDR
\[
\varepsilon(\sigma_z)^2 + \tilde{\eta}(\sigma_z)^2 + 2\varepsilon(\sigma_z)\tilde{\eta}(\sigma_z)\sqrt{1-D^2_{\sigma_z,\sigma_z}} \geq D^2_{\sigma_z,\sigma_z},
\]
where \(D_{AB} = \frac{1}{2}\text{Tr}(\sqrt{\rho}_A, B\sqrt{\rho}_B)\),
\[
\varepsilon(A) = \varepsilon(A)\sqrt{1 - \frac{\varepsilon(A)^2}{4}}, \quad \text{and} \quad \tilde{\eta}(B) = \eta(B)\sqrt{1 - \frac{\eta(B)^2}{4}}.
\]
In the case where
\[
\langle \sigma_z \rangle_\rho = \langle \sigma_z \rangle_\rho = 0, \tag{7}
\]
relation (6) is reduced to the tight relation
\[
(\varepsilon(\sigma_z)^2 - 2)^2 + (\tilde{\eta}(\sigma_z)^2 - 2)^2 \leq 4. \tag{8}
\]
See Appendix A in Ref. [31].

Lund and Wiseman [15] proposed a measurement model \(M(\theta)\) measuring \(\sigma_z\) of the system \(S\) with another q-bit system as the probe \(P\) prepared in the state \(|\xi(\theta)\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle\) with the meter observable \(M = \sigma_z\) of the probe \(P\). The measuring interaction is described by the controlled-NOT (CNOT) operation \(U_{\text{CNOT}} = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes \sigma_z\). For any state \(\rho\) the error \(\varepsilon(\sigma_z)\) and the disturbance \(\eta(\sigma_z)\) of \(M(\theta)\) satisfy \(\varepsilon(\sigma_z) = 2|\sin \theta|\) and \(\eta(\sigma_z) = \sqrt{2}|\cos \theta - \sin \theta|\). Thus, they attain the bound
\[
(\varepsilon(\sigma_z)^2 - 2)^2 + (\eta(\sigma_z)^2 - 2)^2 = 4 \tag{9}
\]
for the tight EDR (8). Experimental realizations of this model were reported by Rozema et al. [16] and Refs. [17–21].

In this study, we consider another type of measurement model measuring \(\sigma_z\), known as Stern–Gerlach measurements, and investigate the admissible region of the error \(\varepsilon(\sigma_z)\) for \(\sigma_z\) measurement and the disturbance \(\varepsilon(\sigma_z)\) on \(\sigma_z\), obtained from Gaussian orbital states.

Stern–Gerlach Measurements.—Let us consider the setting of a Stern–Gerlach measurement as depicted in Figure 1. A particle with spin-1/2 goes through the inhomogeneous magnetic field and then evolves freely. The inhomogeneous magnetic field is approximated to be \(B \simeq (0, 0, B_0 + B_1 z)\).

The state of the spin degree of freedom \(S\) is supposed to be an arbitrary mixed state satisfying \(\langle \sigma_z \rangle_\rho = \langle \sigma_z \rangle_\rho = 0\), e.g., \(\rho = |\sigma_\uparrow = \pm 1\rangle \langle \sigma_\uparrow = \pm 1|\).

The measuring process of this Stern–Gerlach measurement is given as follows. The probe system \(P\) is the \(z\)-component of the orbital degree of freedom of the particle. We assume that the initial state of the probe system \(P\) is a general Gaussian state given by \(\xi_\lambda(z) = A \exp(-\lambda^2 z^2)\), where \(\lambda \in \mathbb{C}\) and \(\text{Re} \lambda > 0\). The Hamiltonian of the composite system \(S + P\) is given by
\[
H(t) = \begin{cases}
\frac{\mu z}{2m} \otimes (B_0 + B_1 Z) + \frac{1}{2m} \otimes P^2 & (0 \leq t \leq \Delta t), \\
\frac{1}{2m} \otimes P^2 & (\Delta t \leq t \leq \Delta t + \tau).
\end{cases}
\]

\textbf{FIG. 1.} Illustration of the experimental setup for a Stern–Gerlach measurement [31]. The relations between the length and the time interval are \(L_2 = v_y \Delta t, L_3 = v_y \tau\).

The meter observable is \(M = f(Z)\), where
\[
f(z) = \begin{cases}
-1 & (\text{if } z \geq 0), \\
+1 & (\text{if } z < 0).
\end{cases}
\]

Error and Disturbance in Stern–Gerlach Measurements.—Under the condition above, we obtain the following formulae for the error and disturbance in Stern–Gerlach measurements:
\[
\varepsilon(\sigma_z)^2 = 2 \text{erfc} \left(\frac{g_0}{\sqrt{2} \sigma(\Delta t + \tau)} \right), \tag{11}
\]
\[
\eta(\sigma_z)^2 = 2 - 2 \exp \left[-2 \frac{12^2 B_1^2 (\Delta t)^2}{\hbar^2} \sigma \left(\frac{\Delta t}{2} \right)^2 \right] \frac{2\mu B_1 B_0}{\hbar}, \tag{12}
\]

where the complementary error function, \(\text{erfc}(x)\), and the parameters \(g_0\) and \(\sigma(t)\) are given by
\[
\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-w^2) dw, \tag{13}
\]
\[
g_0 = \frac{\mu B_1 \Delta t}{m} \left(\frac{\Delta t}{2} + \tau \right), \tag{14}
\]
\[
\sigma(t) = \left(\frac{Z + t}{m} \right)^2 \xi_\lambda^{1/2}. \tag{15}
\]

See Eqs. (62) and (69) in Ref. [31] for the detailed derivations.

The parameter \(\sigma(\Delta t/2)\) represents the spread of the wave packet of the particle in the Stern–Gerlach magnet. The particle in the Stern–Gerlach magnet is exposed to the inhomogeneous magnetic field and its spin is precessed in an uncontrollable way. The parameter \(\sigma(\Delta t/2)\) appears in the formula of the disturbance, because the disturbance of the spin along the \(x\)-axis is caused by this uncontrollable precession around \(z\)-axis. On the other hand, the error in the Stern–Gerlach setup comes from the non-zero dispersion \(\sigma(\Delta t + \tau)\) of the particle position on the screen. By the uncertainty relation
\[
\sigma \left(\frac{\Delta t}{2} \right) \sigma(\Delta t + \tau) \geq \frac{\hbar}{2m} \left(\frac{\Delta t}{2} + \tau \right), \tag{16}
\]
the smaller the dispersion $\sigma (\Delta t + \tau)$ of the particle position on the screen, the greater the dispersion $\sigma (\Delta t/2)$ of the particle position in the Stern–Gerlach magnet. This is why $\sigma (\Delta t + \tau)$ appears in the formula of the error, and this yields a tradeoff between $\varepsilon (\sigma_z)$ and $\eta (\sigma_z)$.

Minimizing Error of Stern–Gerlach Measurements.— We minimize the error $\varepsilon (\sigma_z)$ with respect to the time interval τ of free evolution after leaving the magnetic field. If the condition

$$m \langle \{Z, P\} \rangle_{\xi\lambda} + \langle P^2 \rangle_{\xi\lambda} \Delta t < 0$$

holds, then the error is minimized at

$$\tau = \tau_0 = \frac{-4m^2 \langle Z^2 \rangle_{\xi\lambda} + 3m \langle \{Z, P\} \rangle_{\xi\lambda} \Delta t + 2 \langle P^2 \rangle_{\xi\lambda} \Delta t^2}{2 \{m \langle \{Z, P\} \rangle_{\xi\lambda} + \langle P^2 \rangle_{\xi\lambda} \Delta t\}}.$$ \hspace{1cm} (18)

Otherwise, the error is minimized as τ goes to infinity. See Eq. (65) in Ref. [31] for the detailed derivation.

Range of the Error and Disturbance in Stern–Gerlach Measurements.— We regard $(\varepsilon (\sigma_z), \eta (\sigma_z))$ as a function of variables $\lambda, B_0, \tau > 0$. As depicted in Figure 2, the range of the function $(\varepsilon (\sigma_z), \eta (\sigma_z))$ is obtained as

$$\frac{2 - \eta (\sigma_z^2)}{2} \leq \exp \left\{ - \left[\text{erf}^{-1} \left(\frac{2 - \varepsilon (\sigma_z^2)}{2} \right) \right]^2 \right\}, \hspace{1cm} (19)$$

where erf$^{-1}$ represents the inverse function of the error function $\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-s^2) ds$. See Eq. (76) in Ref. [31] for the detailed derivation.

Original Stern–Gerlach measurement.— Here, we estimate the error and disturbance of the original Stern-Gerlach experiment conducted by Stern and Gerlach [27–29] by our theoretical model. We summarize the set up of their experiment (cf. Figure 1). A beam of silver atoms emerging from a small hole of a lid of an oven heated to 1500 [K] was collimated by two plates made of platinum. The atoms passed a pinhole with an area of $3 \times 10^{-5} [\text{mm}]$ (or $d_1 = 6.2 \times 10^{-2} [\text{mm}]$ in diameter) in the first plate P_1 and then passed the slit $d_2 = 3.0 \text{ to } 4.0 \times 10^{-2} [\text{mm}]$ in width in the second plate P_2. The slit was parallel to the x-axis. These plates were arranged perpendicular to the orbit of the atoms and the distance between them was $L_1 = 3.3 [\text{cm}]$. An $L_2 = 3.5 [\text{cm}]$ long knife edged magnetic pole was arranged parallel to the orbit of atoms just after the plate P_2. The z-component of the gradient of the magnetic field around the orbit of atoms was $B_1 = -1.35 \times 10^3 [\text{T} \cdot \text{m}^{-1}]$. A glass plate was arranged immediately after the magnetic pole, in which the atoms are deposited. These conditions of the experiment is summarized in Table I.

After the 8 hours of the operation of the system and developing, they obtained a lip-shaped pattern. The maximum width of the opening of the lip shaped pattern was $1.1 \times 10^{-1} [\text{mm}]$. The distance between the centers of the two arc-shaped pattern was $2.0 \times 10^{-1} [\text{mm}]$. The velocity distribution of atoms in the oven is assumed to be the Maxwell distribution. Thus, the atoms emerging from the small hole of the lid of the oven are estimated to have the well-known distribution of flux [32]:

$$f_{\text{flux}}(v) = \text{Const.} \times v^3 \exp \left(- \frac{m v^2}{2k_B T} \right). \hspace{1cm} (20)$$

The the root-mean-square v_y of the y-component of the velocity of atoms is given by [32]

$$v_y = \sqrt{\frac{4k_B T}{m}}. \hspace{1cm} (21)$$

![FIG. 2. The range of the error and disturbance for Stern–Gerlach measurements. Beige region: the region (19) that Stern–Gerlach experiment can achieve. Black thine line: the boundary of the tight EDR (8). Green dashed line: the boundary of Heisenberg’s EDR (2).](image-url)
Let us estimate the z-component $|\xi_\lambda\rangle$ of the orbital state of an atom in the beam just before entering the magnetic field. We assume the orbital state arriving at plate 1 to be $\xi_a(\xi) = (2a/\pi)^{1/4} \exp(-a^2)$ with $a > 0$. We model the operations of the collimator and the slit as approximate momentum-position successive measurements by the canonical D_p-approximate momentum measurement and the canonical D_z-approximate position measurement introduced in [33, Eq. (75)], so that for the outcomes $(P, Z) = (0, 0)$ the posteriori (output) state $|\xi_\lambda\rangle$ for the prior (input) state $|\xi_a\rangle$ is given by

$$|\xi_\lambda\rangle \propto \exp\left(-\frac{Z^2}{4D_z^2}\right) \exp\left(-\frac{P^2}{4D_p^2}\right)|\xi_a\rangle,$$

where \propto stands for the equality up to a constant factor. The parameters D_p and D_z will later be determined relative to the structure of the collimator and the slit. Then, we have

$$\xi_\lambda(z) \propto \exp\left\{-\left(\frac{1}{a} + \frac{\hbar^2}{D_p^2}\right)^{-1} + \frac{1}{4D_z^2}\right\}.$$

We naturally assume $\sigma(P)\xi_a \gg D_p$, so that we have

$$\frac{1}{a} = 4\sigma(Z)^2 \xi_a = \frac{\hbar^2}{\sigma(P)^2} \ll \frac{\hbar^2}{D_p^2}$$

and we have

$$\xi_\lambda(z) \propto \exp\left[-\left(\frac{D_p^2}{\hbar^2} + \frac{1}{4D_z^2}\right) z^2\right]$$

up to arbitrary order.

The parameters D_p and D_z are estimated by taking into account the half width δP of the possible classical momentum after passing through the collimator (with plates 1 and 2) and the half width δZ of the possible classical position after passing through the slit (on plate 2) as (See Figure S1 in the Supplemental Material)

$$D_p \sim \delta P = \frac{d_1 + d_2}{2L_1} m v_y,$$

$$D_z \sim \delta Z = \frac{d_2}{2}.$$

To make unambiguous estimates, we suppose that

$$0.75 \delta P \leq D_p \leq 1.25 \delta P,$$

$$0.75 \delta Z \leq D_z \leq 1.25 \delta Z.$$

From Eq. (11) the error $\varepsilon(\sigma_z)$ of the original Stern-Gerlach measurement is given by

$$\varepsilon(\sigma_z)^2 = 2 \operatorname{erfc}\left(\frac{g_0}{\sqrt{2\sigma(\Delta t)}}\right).$$

Then, according to the parameter values given in Table I, we have

$$0.972 \leq \frac{g_0}{\sqrt{2\sigma(\Delta t)}} \leq 1.62,$$

and, therefore, we conclude

$$4.38 \times 10^{-2} \leq \varepsilon(\sigma_z)^2 \leq 3.38 \times 10^{-1}.$$

For the disturbance $\eta(\sigma_x)$ of the original Stern-Gerlach measurement, from Eq. (12) we have

$$\eta(\sigma_x)^2 = 2.$$

For the detailed calculations, see the Supplemental Material.

From the above we conclude that the error probability $\varepsilon(\sigma_z)^2/4$ of the experiment is at most 8.5%. This appears to be consistent with Stern-Gerlach’s original estimate of the error to be 10% based on the agreement between the observed deflection and the theoretical prediction [29].

As depicted in FIG. 3, the estimated error-disturbance region clearly violates Heisenberg’s EDR.

![FIG. 3. The estimated error-disturbance region for the original experiment performed by Gerlach and Stern [27–29] in 1922. Beige region: the region (19) that Stern–Gerlach measurements can achieve. Deep red line: the estimated error-disturbance region (32), (33) for the original Stern–Gerlach experiment in 1922. Black thine line: the boundary of the tight EDR (8). Green dashed line: the boundary of Heisenberg’s EDR (2).](image)

Conclusion.—We have determined the range of the error and disturbance taken by Stern–Gerlach measurements and compared it with the tight EDR for general spin measurements. It is interesting to see that Stern–Gerlach measurements occupy the near optimal subregion of the theoretically achievable region. Base on the above theoretical results, we have estimated the error and disturbance of the original Stern–Gerlach experiment performed in 1922, and concluded that the original Stern–Gerlach experiment violates Heisenberg’s EDR. This suggests that Heisenberg’s EDR is more ubiquitously violated than we have believed for a long time.

This work was partially supported by JSPS KAKENHI, Nos. 26247016 and 17K19970, and the IRI-NU collaboration.
inoue.y.at@gmail.com
ozawa@is.nagoya-u.ac.jp

[1] W. Heisenberg, Z. Phys. 43, 172 (1927).
[2] E. H. Kennard, Z. Phys. 44, 326 (1927).
[3] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[4] E. Arthurs and J. L. Kelly, Jr., Bell. Syst. Tech. J. 44, 725 (1965).
[5] Y. Yamamoto and H. A. Haus, Rev. Mod. Phys. 58, 1001 (1986).
[6] E. Arthurs and M. S. Goodman, Phys. Rev. Lett. 60, 2447 (1988).
[7] S. Ishikawa, Rep. Math. Phys. 29, 257 (1991).
[8] M. Ozawa, in Quantum Aspects of Optical Communications: Paris, France, 1990, Lecture Notes in Physics 378, edited by C. Bendjaballah, O. Hirota, and S. Reynaud (Springer, Berlin, 1991) pp. 3–17, arXiv:1505.05083 [quant-ph].
[9] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
[10] M. Ozawa, Ann. Physics 311, 350 (2004).
[11] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y. Hasegawa, Nat. Phys. 8, 185 (2012).
[12] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, and Y. Hasegawa, Phys. Rev. A 88, 022110 (2013).
[13] C. Branciard, Proc. Natl. Acad. Sci. USA 110, 6742 (2013).
[14] M. Ozawa, “Error-disturbance relations in mixed states,” (2014), arXiv:1404.3388 [quant-ph].
[15] A. P. Lund and H. M. Wiseman, New J. Phys. 12, 093011 (2010).
[16] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012).
[17] S.-Y. Baek, F. Kaneda, M. Ozawa, and K. Edamatsu, Sci. Rep. 3, 2221 (2013).
[18] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman, and G. J. Pryde, Phys. Rev. Lett. 110, 220402 (2013).
[19] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, C. Branciard, and A. G. White, Phys. Rev. Lett. 112, 020401 (2014).
[20] F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Phys. Rev. Lett. 112, 020402 (2014).
[21] B. Demirel, S. Sponar, G. Sulyok, M. Ozawa, and Y. Hasegawa, Phys. Rev. Lett. 117, 140402 (2016).
[22] M. O. Scully, W. E. Lamb, and A. Barut, Found. Phys. 17, 575 (1987).
[23] S. Cruz-Barrios and J. Gómez-Camacho, Phys. Rev. A 63, 012101 (2000).
[24] G. Potel, F. Barranco, S. Cruz-Barrios, and J. Gómez-Camacho, Phys. Rev. A 71, 052106 (2005).
[25] D. Home, A. K. Pan, M. M. Ali, and A. S. Majumdar, J. Phys. A: Math. Theor. 40, 13975 (2007).
[26] M. Devereux, Can. J. Phys. 93, 1382 (2015).
[27] W. Gerlach and O. Stern, Z. Phys. 8, 110 (1922).
[28] W. Gerlach and O. Stern, Z. Phys. 9, 349 (1922).
[29] W. Gerlach and O. Stern, Z. Phys. 9, 353 (1922).
[30] M. Ozawa, npj Quantum Inf. 5, 1 (2019).
[31] Y. Inoue and M. Ozawa, “Error–Disturbance Relation in Stern–Gerlach Measurements,” (unpublished), arXiv:1910.07929 [quant-ph].
[32] O. Stern, Z. Phys. 3, 417 (1920).
[33] M. Ozawa, J. Math. Phys. 34, 5596 (1993).
Supplemental Material

From 2018 CODATA, the Boltzmann constant, the Avogadro constant N_A, the electron magnetic moment μ, and the reduced Planck constant \hbar are given by

$$k_B = 1.380649 \times 10^{-23} \text{[J/K]},$$

$$N_A = 6.02214076 \times 10^{23} \text{[mol$^{-1}$]},$$

$$\mu = -9.2847647043 \times 10^{-24} \text{[J/T]},$$

$$\hbar = 1.054571817 \times 10^{-34} \text{[J\cdots]}.$$

The mass m of the silver atom with the standard atomic weight 107.86822 [g/mol] is given by

$$m = \frac{1.0786822 \times 10^{-1} \text{[kg/mol]}}{6.02214076 \times 10^{23} \text{[mol$^{-1}$]}} = 1.7911939 \times 10^{-25} \text{[kg]}.$$

From Eq. (21) and Table 1 we obtain

$$v_y = \sqrt{\frac{4k_B T}{m}} = \sqrt{\frac{4 \times 1.380 \times 10^{-23} \times 1500}{1.791 \times 10^{-25}}} = 6.80 \times 10^{2} \text{[m/s]}.$$

From Table 1 we obtain

$$\Delta t = \frac{L_2}{v_y} = 3.5 \times 10^{-2} \div 6.80 \times 10^{2} = 5.14 \times 10^{-5} \text{[s]}.$$

As depicted in Figure S1, the parameters δP and δZ are introduced as

$$\delta P = \frac{d_1 + d_2}{2L_1} m v_y,$$

$$\delta Z = \frac{d_2}{2}.$$

We obtain

$$1.25 \delta Z = \frac{5d_2}{8} = 2.50 \times 10^{-6} \text{[m]},$$

$$1.25 \delta P = \frac{5(d_1 + d_2)}{8L_1} m v_y = \frac{3.1 \times 10^{-4} + 2.0 \times 10^{-4}}{8 \times 3.3 \times 10^{-2}} \times 1.791 \times 10^{-25} \times 6.80 \times 10^{2} = 2.35 \times 10^{-25} \text{[kg\cdotm/s]}.$$

FIG. S1. Geometry of the collimator and the slit.
The parameters D_p and D_z are assumed to satisfy

\begin{align}
D_p &= 1.25 K \delta P, \\
D_z &= 1.25 K \delta Z.
\end{align}

for $0.6 \leq K \leq 1$. We obtain

\begin{align}
\frac{\Delta t^2}{m^2} \text{Var}(P, \xi) &= \frac{\Delta t^2}{m^2} \frac{\text{Var}(Z, \xi)}{4 \text{Var}(Z, \xi)} = \frac{(5.14 \times 10^{-9})^2}{4 \times K^{-2} \times 5.03 \times 10^{-20}}, \\
\sigma(\Delta t)^2 &= \text{Var}(Z, \xi) + \frac{\Delta t^2}{m^2} \text{Var}(P, \xi) = K^2 \times 4.54 \times 10^{-9} [m^2], \\
g_0 &= \frac{\mu B_1 \Delta t}{2m} = \left(-9.28 \times 10^{-24}[J/T]\right) \times \left(-1.35 \times 10^3[T/m]\right) \times \left(5.14 \times 10^{-5}[s]\right) \\
&= 9.26 \times 10^{-5} [m], \\
\frac{g_0}{\sqrt{2\sigma(\Delta t)}} &= \frac{9.26 \times 10^{-5}}{K \sqrt{2 \times 4.54 \times 10^{-9}}} = K^{-1} \times 0.972.
\end{align}

From Eq. (30) we have

\begin{align}
\varepsilon(\sigma_z)^2 &= 2 \text{erfc} \left(\frac{g_0}{\sqrt{2\sigma(\Delta t)}}\right) = 2 \text{erfc} \left(K^{-1} \times 0.972\right).
\end{align}

For $K = 1$, we obtain

\begin{align}
2 \text{erfc}(0.972) &= 2 \times 0.1692 = 3.38 \times 10^{-1}.
\end{align}

For $K = 0.6$, we obtain

\begin{align}
2 \text{erfc}(0.972/0.6) &= 2 \text{erfc}(1.620) = 2 \times 0.0219 = 4.38 \times 10^{-2}.
\end{align}

Thus, we conclude

\begin{align}
0.972 \leq \frac{g_0}{\sqrt{2\sigma(\Delta t)}} \leq 1.620, \\
4.38 \times 10^{-2} \leq \varepsilon(\sigma_z)^2 \leq 3.38 \times 10^{-1}.
\end{align}

To calculate the disturbance $\eta(\sigma_x)$, we have

\begin{align}
\sigma \left(\frac{\Delta t}{2}\right)^2 &= \frac{1}{4} \sigma(\Delta t)^2 = K^2 \times 1.135 \times 10^{-9} [m^2], \\
\frac{\mu B_1 \Delta t}{h} &= \left(-9.28 \times 10^{-24}[J/T]\right) \times \left(-1.35 \times 10^3[T/m]\right) \times \left(5.14 \times 10^{-5}[s]\right) \\
&= 6.10 \times 10^9 [m^{-1}], \\
\frac{2\mu^2 B_1^2 \Delta t^2}{h^2} \sigma \left(\frac{\Delta t}{2}\right)^2 &= 2 \times (6.10 \times 10^9 [m^{-1}])^2 \times K^2 \times 1.135 \times 10^{-9} [m^2] = K^2 \times 8.44 \times 10^{10}, \\
2 \exp \left[-\frac{2\mu^2 B_1^2 \Delta t^2}{h^2} \sigma \left(\frac{\Delta t}{2}\right)^2\right] &= 2 \exp(-K^2 \times 8.44 \times 10^{10}) = 0.
\end{align}

Thus, from Eq. (12) we conclude

\begin{align}
\eta(\sigma_x)^2 &= 2 - 2 \exp \left[-\frac{2\mu^2 B_1^2 \Delta t^2}{h^2} \sigma \left(\frac{\Delta t}{2}\right)^2\right] \cos \frac{2\mu \Delta t \sigma}{h} = 2.
\end{align}