District-level strategies to control the HIV epidemic in Zimbabwe: a practical example of precision public health.

CURRENT STATUS: UNDER REVIEW

BMC Research Notes ▪ BMC Series

Richard Makurumidze
Institute of Tropical Medicine Antwerp
rmakurumidze@ext.itg.be
ORCID: https://orcid.org/0000-0001-6490-1818

Tom Decroo
Instituut voor Tropische Geneeskunde

Lutgarde Lynen
Instituut voor Tropische Geneeskunde

Zororo Kudzaishe Chinwadzimba
Ministry of Health and Child Care

Wim Van Damme
Instituut voor Tropische Geneeskunde

James Hakim
University of Zimbabwe College of Health Sciences

Simbarashe Rusakaniko
University of Zimbabwe College of Health Sciences

DOI:
10.21203/rs.2.22644/v2

SUBJECT AREAS
Infectious Diseases

KEYWORDS
HIV testing, linkage to care, ART coverage, 90-90-90 targets, implementation, precision public health Zimbabwe
Abstract

Objective

We conducted a descriptive cross-sectional study using survey and programme data to assess district-level performance along the HIV care cascade (HIV testing target achievement, linkage to ART, ART coverage) in order to formulate district-specific recommendations, taking into consideration prevalence and yield of testing.

Results

Data from 60 districts were analysed. Most 48 (80.0%) of districts surpassed 90% of their 2018 HIV testing targets. Linkage to ART was less than 90% in 40 (83.3%) of districts. Half (30) of districts had an ART coverage above 90%. Of 30 districts with suboptimal (<90%) ART coverage, 18 had achieved high HIV testing target achievement but suboptimal linkage to ART, 6 had achieved high HIV testing targets and high linkage to ART, 4 had both suboptimal HIV testing target achievement and linkage to ART and 2 had suboptimal HIV testing target achievement and high linkage to ART. Priority should be given to districts with suboptimal ART coverage. Remediation strategies should be tailored to address the poorly performing stage of the cascade in each district.

Introduction

Currently Zimbabwe has about 1.2 million [95% CI; 1.1-1.4 million] people living with HIV (PLHIV) [1]. The number of new HIV infections has decreased by 35.3% from 62 000 [45 000-83 000] to 38 000 [28 000-51 000] between 2010 and 2018. HIV related deaths have decreased by 42.6%, from 54 000 [43 000-68 000] to 22 000 [17 000-27 000] during the same period [1]. From the population impact survey conducted in 2015-16 to assess progress towards the 90-90-90 targets, 74.2% of all PLHIV reported knowing their HIV status, of whom 86.8% were on antiretroviral therapy (ART), of whom 86.5% were virally suppressed [2].

Most countries show national data, without evidence on whether this mirrors the sub-national level. Hence, most national programs, including Zimbabwe, do not provide recommendations adapted to district-level indicators. With dwindling funding, donors call for targeted and cost-effective strategies [3,4]. Advances in information technology provide an opportunity for data-driven health interventions. In our study, we combined mapping data on HIV prevalence [5] with data from the Zimbabwe National...
ART Program 2018. We studied district-level performance along the HIV care cascade (HIV testing target achievement, linkage to ART, ART coverage) and formulated district-level recommendations considering HIV prevalence and HIV testing yield.

Methods
We conducted a descriptive cross-sectional study. District-level HIV prevalence was retrieved from the mapping study [5].

Per district, the number of people tested, the number tested positive and initiated on ART in 2018, and the total number of clients on ART at the end of 2018 were obtained from the Ministry of Health and Child Care (MoHCC) and the District Health Information System 2 (DHIS 2) [6]. Permission was obtained from relevant authorities.

To estimate the 2018 district-level HIV testing achievement, firstly, district-level targets were calculated. These were estimated by apportioning the national target to every district using the estimated number of PLHIV per district [7,8]. Secondly, the testing coverage was calculated by dividing the number of tests done by the district target [9]. The HIV testing yield was calculated by dividing the number of positive tests by the number of tests done per district.

Linkage to ART was estimated by dividing the number of patients started on ART in 2018 by the number of positive tests in the same year (under HIV “Treat All” all those tested positive should be put on ART [10]). ART coverage was estimated by dividing the number of patients reported as active on ART at the end of 2018, divided by the total number of PLHIV in a district.

HIV testing target achievement, linkage to ART, and ART coverage were categorised into low (<70%), medium (70-90%) and high (>90%) and were shown on maps using the geographic information system (GIS).

We also describe district-level performance along the HIV cascade for those districts with suboptimal (<90%) ART coverage. These were grouped as follows: 1) suboptimal HIV testing target achievement / suboptimal linkage to ART, 2) suboptimal HIV testing target achievement / high linkage to ART, 3) high HIV testing target achievement/ suboptimal linkage to ART, and 4) high HIV testing target achievement/ high linkage to ART.
Results

All districts were included in the analysis. HIV prevalence, HIV testing target achievement, linkage to ART and ART coverage are shown in Figure 1.

The highest prevalence was in Bubi District (21.5%) followed by Bulilima (20.8%) and Tsholotsho (20.7%). Most districts 48 (80.0%) surpassed 90% of their 2018 HIV testing target. Only three reported a low (<70%) testing coverage (Insiza 69.2%, Chikomba 62.7%, and Umzingwane 62.5%). The majority of districts 29 (48.3%) had an HIV testing yield between 5-7.5% (Additional file 1).

Linkage to ART was less than 90% in 40 (83.3%) districts.

Half (n=30) of districts had high ART coverage (>90%). ART coverage was suboptimal (<90%) in half (n=30) of districts. ART coverage was low in 6 districts: Gokwe North (39.4%), Gokwe South (44.4%), Umguza (49.7%), Centenary 61.0%, Uzumba-Maramba-Pfungwe (63.0%) and Binga (68.0%).

Figure 1. Maps showing; a) HIV prevalence, b) HIV testing target achievement, c) linkage to ART, d) ART coverage

Table 1 shows district-level performance along the HIV cascade among 30 districts with suboptimal ART coverage (<90%; yellow and red) 1), 4 had both suboptimal HIV testing target achievement and linkage to ART, 18 had high HIV testing target achievement and suboptimal linkage to ART, and 6 had high HIV testing target achievement and high linkage to ART and 2 had suboptimal HIV testing coverage and high linkage to ART.

Table 1: HIV cascade for 30 districts with suboptimal (<90%) ART coverage in 2018, Zimbabwe.

District	HIV target testing achievement (%)	Linkage to ART (%)	ART Coverage (%)	Yield (%)	Prevalence (%)
Chikomba	63	54	77	7	13
Mberengwa	89	71	77	6	17
Chiredzi	89	81	80	6	13
Bulawayo	73	77	83	8	16

Suboptimal HIV testing target achievement and suboptimal linkage to ART

District	HIV target testing achievement (%)	Linkage to ART (%)	ART Coverage (%)	Yield (%)	Prevalence (%)
Gokwe North	125	63	39	4	10
Centenary	119	55	61	6	12
Gokwe South	129	71	44	4	12

High HIV testing target achievement and suboptimal linkage to ART
Location	ART 2017	ART 2016	ART 2015	ART 2014	ART 2013
Bindura	140	29	75	15	14
Nyanga	123	35	75	7	11
Zvishavane	117	59	75	8	18
Kwekwe	115	67	79	8	14
Mudzi	96	43	81	6	12
Makonde	189	69	82	6	13
Bubi	131	83	70	4	22
Harare	110	75	78	7	13
Nkayi	179	86	78	3	17
Kadoma	358	72	78	7	13
Mutare	206	80	82	4	11
Chipinge	123	81	85	5	11
Mwenezi	122	76	86	7	15
Masvingo	142	74	88	7	14
Chimanimani	155	74	88	4	11

High HIV testing target achievement and high linkage to ART

Location	ART 2017	ART 2016	ART 2015	ART 2014	ART 2013
Umguza	94	96	50	5	18
Binga	122	121	68	2	12
Rushinga	137	101	75	2	11
Gutu	132	100	77	3	13
Makoni	151	90	87	4	12
Kariba	184	100	89	5	12

Suboptimal HIV testing target achievement and high linkage to ART

Location	ART 2017	ART 2016	ART 2015	ART 2014	ART 2013
UMP	63	110	63	7	12
Matobo	80	105	76	5	19

High > 90%, Suboptimal <90%, UMP-Uzumba-Maramba-Pfungwe

Discussion

In Zimbabwe, half of the districts had high (>90%) ART coverage, thus achieved the 2nd UNAIDS target[11]. However, there is substantial within-country variation in terms of HIV prevalence, HIV testing coverage, HIV testing yield, linkage to ART, and ART coverage. We proposed four typologies of
districts with gaps along the HIV cascade, for which district-specific recommendations can be formulated.

Suboptimal HIV testing target achievement and suboptimal linkage to ART

In 4 districts with suboptimal ART coverage and both suboptimal HIV testing achievement and linkage to ART, both the HIV prevalence and the HIV testing yield was above average. Hence, there is an important unmet need. Therefore, HIV testing services should become more widely available. Widespread door-to-door HIV testing has been shown to increase uptake of HIV testing substantially and should be considered as a priority [12]. In addition, strategies linking those who tested positive to ART should be strengthened (debated in the next paragraph).

High testing target achievement and suboptimal linkage to ART

Eighteen districts with insufficient ART coverage that meet their HIV testing target but with suboptimal linkage should assess if strategies known to improve linkage to care and ART initiation are in place. These strategies include same-day ART initiation, community (home-based) ART initiation, decentralization of ART services to the primary health care level, and integration of HIV care in other health care services [13–17]. Linkage to ART should be regularly assessed at the health facility level. Those diagnosed with HIV but not started on ART should be tracked. Consent for tracking should be incorporated into the testing strategy [18]. Patients diagnosed at higher level referral health facilities should be initiated on ART before down referral to lower-level health facilities for follow up, with tracking of arrival after referral [19]. Some districts may have specific challenges. Poor linkage to ART around Kwekwe and the surrounding districts might be explained by the presence of illegal artisanal miners in the region. Illegal artisanal miners are highly mobile, and strategies to link and retain these highly mobile populations should be identified [20,21]. Also, in districts bordering Zambia and Mozambique (Centenary, Mudzi and Nyanga), the poor linkage may be due to patients crossing the border due to the economic challenges in Zimbabwe. The Southern African Development Community (SADC) HIV and AIDS Cross Border Initiative should be fully implemented to enable the provision of care and tracking of such patients [22–24].

High testing target achievement and high linkage to ART
Some districts with low ART coverage are meeting their HIV testing targets and have high linkage to ART. Other indicators may assist the identification of a district-specific strategy. If the prevalence and HIV testing yield are lower than average, HIV testing may need to be delivered in a more targeted manner. Health facility-based strategies in combination with community testing in high-risk groups, maybe most efficient. Health facility-based strategies that have worked elsewhere include index case testing, targeting sexual partners and HIV-exposed infants, and intensified provider-initiated testing (iPITC) [25–31]. Community testing should prioritize subgroups with a higher prevalence. Key populations and hot spots identified from a mapping exercise conducted in Zimbabwe may guide programming [32]. Social network testing, using peer educators, can be a useful tool to reach some of the key populations [30].

Suboptimal HIV testing target achievement and high linkage to ART

There are two districts with suboptimal ART coverage that have suboptimal HIV testing target achievement but high linkage to ART. In both, the HIV prevalence and testing yield are higher than average. Henceforth, HIV testing strategies recommended for high prevalence settings, discussed above, should be considered.

In conclusion, there is substantial within-country variation in terms of HIV prevalence, HIV testing target achievement, HIV testing yield, linkage to ART, and ART coverage. Hence, “one size fit all” approach will unlikely result in achieving the next UNAIDS 95-95-95 targets by the end of 2030. District-level mapping of uncovered needs and gaps along the HIV cascade of care is needed, particularly for districts with low ART coverage.

Limitations

Our study is among the first to unpack performance across the HIV cascade of care at the subnational level. To validate our findings, we compare data from a variety of sources. However, there are limitations due to the cross-sectional design of our study. Crossover of patients between prior or later years with 2018 may have occurred, for instance, when patients diagnosed in 2017 started ART in 2018, and those diagnosed in 2018 started ART in 2019. The district targets were calculated by apportioning the total national target to every district using the estimated number of PLHIV without
considering the performance of each district cascade of care. The MoHCC have since started estimating district yearly HIV testing targets by taking into consideration district-specific parameters.

Moreover, district-level data on the 3rd 90, i.e. viral load suppression, was unavailable. Previous studies showed that the retention on ART was high, but that access to viral load monitoring and viral load suppression remained suboptimal [33-35].

Abbreviations
HIV – Human immunodeficiency virus, ART – antiretroviral therapy, PLHIV – people living with HIV, iPITC – intensified provider-initiated testing and counselling

Declarations

Authors’ contributions
RM led the conceptualization of the paper, data analysis and writing of the original draft paper. ZKC developed the maps. TD, LL, ZKC, VWD, JH and SR reviewed all sections of the manuscript. All authors contributed to interpreting the data and editing of the paper, and all approved the final version.

Acknowledgements
The authors of the articles would like express gratitude and appreciation to Lindgren et al. (2019) from the Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA for the permission to use Zimbabwe data on HIV prevalence and number of PLHIV and the Ministry of Health and Child care for providing data on the number on ART per district by the end of 2018.

Availability of data and materials
Zimbabwe data on HIV prevalence and the number of PLHIV is publicly available at (http://ghdx.healthdata.org/ihme-data/africa-hiv-prevalence-geospatialestimates-2000-2017). The data from the Ministry of Health and Child Care on the number on ART per district by the end of 2018 is not available on the public domain. Anyone interested in using the data for scientific purpose is free to request permission from the Director of the AIDS and TB Program, AIDS and TB Unit, Ministry of Health and Child Care, Government of Zimbabwe, 2nd Floor, Mukwati Building, Harare, Zimbabwe. E-mail: atp.director@ymail.com

Funding
Richard Makurumidze receives a PhD scholarship grant from the Institute of Tropical Medicine, funded by the Belgian Development Cooperation.

Competing interests

The authors have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Author Details

1. College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
2. Institute of Tropical Medicine, Antwerp, Belgium
3. Research Foundation of Flanders, Brussels, Belgium
4. Gerontology, Faculty of Medicine & Pharmacy, Free University of Brussels (VUB), Brussels, Belgium
5. Ministry of Health and Child Care, Geographic Information System Department, Zimbabwe

References

1. The Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS Data. 2019.
2. ICAP at Columbia University. Zimbabwe Population Based HIV Impact Assessment Preliminary Report. 2016.
3. United States of America President’s Emergency Plan for AIDS Relief (PEPFAR). 2019 Annual Report to Congress. 2019;
4. Médecins Sans Frontières/Doctors Without Borders (MSF). Burden Sharing or Burden Shifting? - How the HIV/TB Response is being derailed [Internet]. 2019. Available from: https://www.msf.org/urgent-boost-and-reality-check-needed-hiv-and-tb-funding
5. Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, et al.
Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature [Internet]. 2019 May 15; Available from: http://www.nature.com/articles/s41586-019-1200-9

6. Ministry of Health and Child Care (MoHCC). National Programme ART Summary. 2018.

7. Ministry of Health and Child Care Zimbabwe (MoHCC). Extended Zimbabwe National AIDS Strategic Plan III (ZNASP III).

8. Ministry of Health and Child Care (MoHCC). Zimbabwe National HIV Estimates 2015. Harare, Zimbabwe; 2015.

9. European Centre for Disease Prevention and Control (ECDC). HIV testing: Monitoring implementation of the Dublin Declaration on Partnership to Fight HIV/AIDS in Europe and Central Asia: 2017 progress report. 2017;

10. World Health Organization. Guidelines Guideline on When To Start Antiretroviral Therapy and on Pre-Exposure Prophylaxis for HIV. World Heal Organ [Internet]. 2015; (September):78. Available from: http://www.who.int/hiv/pub/guidelines/earlyrelease-arv/en/

11. UNAIDS. 90 -90 -90 An ambitious treatment target to help end the AIDS epidemic. 2014;

12. World Health Organization (WHO). Guidelines on HIV Self-testing and Partner Notification - Supplement to Consolidated Guidelines on HIV Testing Services. 2016.

13. Labhardt ND, Ringera I, Lejone TI, Klimkait T, Muhairwe J, Amstutz A, et al. Effect of offering same-day ART vs usual health facility referral during home-based HIV testing on linkage to care and viral suppression among adults with HIV in Lesotho: The CASCADE randomized clinical trial. JAMA - J Am Med Assoc. 2018;319(11):1103–12.

14. Govindasamy D, Ford N, Kranzer K. Risk factors, barriers and facilitators for linkage to antiretroviral therapy care: A systematic review. Aids. 2012;26(16):2059–67.
15. Decroo T, Rasschaert F, Telfer B, Remartinez D, Laga M, Ford N. Community-based antiretroviral therapy programs can overcome barriers to retention of patients and decongest health services in sub-saharan africa: A systematic review. Int Health. 2013;5(3):169–79.

16. MacPherson P, Laloo DG, Webb EL, Maheswaran H, Choko AT, Makombe SD, et al. Effect of Optional Home Initiation of HIV Care Following HIV Self-testing on Antiretroviral Therapy Initiation Among Adults in Malawi. JAMA [Internet]. 2014 Jul 23;312(4):372. Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2014.6493

17. Giordano TP. Strategies for Linkage to and Engagement With Care: Focus on Intervention. Top Antivir Med. 2018;26(2):62–5.

18. Tweya H, Oboho IK, Gugsa ST, Phiri S, Rambiki E, Banda R, et al. Loss to follow-up before and after initiation of antiretroviral therapy in HIV facilities in Lilongwe, Malawi. Beck EJ, editor. PLoS One [Internet]. 2018 Jan 26;13(1):e0188488. Available from: https://dx.plos.org/10.1371/journal.pone.0188488

19. Decroo T, Panunzi I, das Dores C, Maldonado F, Biot M, Ford N, et al. Lessons learned during down referral of antiretroviral treatment in Tete, Mozambique. J Int AIDS Soc [Internet]. 2009;12(1):6. Available from: http://doi.wiley.com/10.1186/1758-2652-12-6

20. The Joint United Nations Programme on HIV/AIDS (UNAIDS) and International Organization for Migration IOM). Mobile Populations and HIV/AIDS in the Southern African Region. 2003;

21. Taylor BS, Garduño LS, Reyes E V, Valiño R, Rojas R, Donastorg Y, et al. HIV Care for Geographically Mobile Populations. Mt Sinai J Med A J Transl Pers Med [Internet]. 2011 May;78(3):342–51. Available from: http://doi.wiley.com/10.1002/msj.20255
22. Vearey J. Moving forward: why responding to migration, mobility and HIV in South(ern) Africa is a public health priority. J Int AIDS Soc [Internet]. 2018 Jul;21:e25137. Available from: http://doi.wiley.com/10.1002/jia2.25137

23. Southern African Development Cooperation (SADC). Statement of SADC Ministers of Health and Ministers Responsible for HIV and AIDS Meet in Namibia 8th November 2018. 2018; Available from: https://www.sadc.int/files/3315/4169/8409/Media_Statement_-_Joint_Meeting_of_SADC_Ministers_of_Health_and_those_responsible_for_HIV_and_AIDS_.pdf

24. Southern African Development Cooperation (SADC). SADC HIV and AIDS Cross Border Initiative [Internet]. 2013 [cited 2020 Mar 20]. Available from: https://www.comminit.com/africa/content/sadc-hiv-and-aids-cross-border-initiative

25. Lasry A, Medley A, Behel S, Mujawar MI, Cain M, Diekman ST, et al. Scaling Up Testing for Human Immunodeficiency Virus Infection Among Contacts of Index Patients — 20 Countries, 2016-2018. MMWR Morb Mortal Wkly Rep [Internet]. 2019 May 31;68(21):474–7. Available from: http://www.cdc.gov/mmwr/volumes/68/wr/mm6821a2.htm?s_cid=mm6821a2_w

26. Jubilee M, Park FJ, Chipango K, Pule K, Machinda A, Taruberekera N. HIV index testing to improve HIV positivity rate and linkage to care and treatment of sexual partners, adolescents and children of PLHIV in Lesotho. Kowalska JD, editor. PLoS One [Internet]. 2019 Mar 27;14(3):e0212762. Available from: http://dx.doi.org/10.1371/journal.pone.0212762

27. Ahmed S, Sabelli RA, Simon K, Rosenberg NE, Kavuta E, Harawa M, et al. Index case finding facilitates identification and linkage to care of children and young persons living with HIV/AIDS in Malawi. Trop Med Int Heal [Internet]. 2017 Aug;22(8):1021-9. Available from: http://doi.wiley.com/10.1111/tmi.12900
28. Mahachi N, Muchedzi A, Tafuma TA, Mawora P, Kariuki L, Semo B, et al. Sustained high case-finding through index testing and partner notification services: experiences from three provinces in Zimbabwe. J Int AIDS Soc [Internet]. 2019 Jul 19;22(S3):23–30. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jia2.25321

29. Sharma M, Smith JA, Farquhar C, Ying R, Cherutich P, Golden M, et al. Assisted partner notification services are cost-effective for decreasing HIV burden in western Kenya. AIDS [Internet]. 2017 Nov;32(2):1. Available from: http://insights.ovid.com/crossref?an=00002030-900000000-97353

30. ICAP at Columbia University. Approach to Strategic HIV Testing. Columbia University’s Mailman School of Public Health.; 2019.

31. Kayigamba FR, Van Santen D, Bakker MI, Lammers J, Mugisha V, Bagiruwigize E, et al. Does provider-initiated HIV testing and counselling lead to higher HIV testing rate and HIV case finding in Rwandan clinics? BMC Infect Dis [Internet]. 2015 Dec 25;16(1):26. Available from: http://dx.doi.org/10.1186/s12879-016-1355-z

32. National AIDS Council (NAC). Smart Investment to End HIV AIDS in ZIMBABWE based on Hotspot Analysis. National AIDS Council of Zimbabwe; 2010.

33. Makurumidze R, Mutasa-Apollo T, Decroo T, Choto RC, Takarinda KC, Dzangare J, et al. Retention and predictors of attrition among patients who started antiretroviral therapy in Zimbabwe’s national antiretroviral therapy programme between 2012 and 2015. PLoS One. 2020;15(1).

34. United States of America President’s Emergency Plan for AIDS Relief (PEPFAR). Zimbabwe Country Operational Plan (COP/ROP) 2018 Revised Strategic Direction Summary. 2018; Available from: https://www.pepfar.gov/documents/organization/285847.pdf
Additional File

Additional file 1: Yield per district among HIV tests performed in 2018 in Zimbabwe (PNG)

Figures

Figure 1

Maps showing: a) HIV prevalence, b) HIV testing target achievement, c) linkage to ART, d) ART coverage

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additional file 1.png