Research Article

List Edge Colorings of Planar Graphs without Adjacent 7-Cycles

Wenwen Zhang

School of Date and Computer Science, Shandong Women’s University, Jinan 250300, China

Correspondence should be addressed to Wenwen Zhang; zhangwenwen678@163.com

Received 3 January 2021; Revised 29 March 2021; Accepted 3 April 2021; Published 15 April 2021

Academic Editor: Ghulam Shabbir

Copyright © 2021 Wenwen Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we get that \(G \) is edge-k-choosable (\(k = \max \{10, \Delta (G)\} \)) for planar graph \(G \) without adjacent 7-cycles.

1. Introduction

Edge coloring and list edge coloring of graphs are very old fashioned problems in graph theory, and the research on such problems has a long history. Denote \(\mathbb{Z}_+ \) as the set of the integers. Now, we only consider the list edge coloring problem of finite simple undirected graphs. Before describing the concept of list edge coloring in detail, we have to revisit fundamental conception of normal edge coloring. A graph \(G \) is \(k \)-edge-colorable if all edges of \(G \) can be colored by \(k \) colors such that no two adjacent edges get the same colors. Denoted \(\chi'(G) \) as the edge chromatic number of a graph \(G \), which is the smallest \(k \in \mathbb{Z}_+ \) satisfying \(G \) is \(k \)-edge-colorable. For each edge \(e \) of graph \(G \), if we can assign a list \(L(e) \) of colors to it, then \(L \) is an edge assignment. Graph \(G \) is edge-\(L \)-colorable if \(G \) has a proper edge-coloring \(\phi \) such that \(\phi(e) \in L(e) \) for each edge \(e \) of \(G \), and \(\phi \) is an edge-\(L \)-coloring. Graph \(G \) is edge-\(k \)-choosable if for every \(L \) satisfying \(|L(e)| \geq k (k \in \mathbb{Z}_+) \) for each edge \(e \). Denote \(\chi'_k(G) \) as the list-edge chromatic number of \(G \) which is the smallest \(k \) in \(\mathbb{Z}_+ \) such that \(G \) is edge-\(k \)-choosable.

We will study the list edge colorings of planar graphs. Planar graph is a kind of graph broadly studied in graph coloring theory. The so-called plane graph is actually a special drawing method of planar graph, which can be embedded in the plane satisfying no two edges intersect geometrically except at a vertex to which they are both incident. Let us introduce some definitions and symbols needed. Given a plane graph \(G \), we use \(V(G) \), \(E(G) \), \(F(G) \), \(\Delta(G) \), and \(\delta(G) \) to indicate its vertex set, edge set, face set, maximum degree, and minimum degree, respectively. For a vertex \(v \in V(G) \), let \(E_G(v) \) or \(E(v) \) be the set of edges which are incident with \(v \). We use \(d_G(v) \) or \(d(v) \) to indicate the degree of \(v \) in \(G \), which is the number of edges in \(E(v) \). We use \(N_G(v) \) or \(N(v) \) to indicate the set of the vertices which are adjacent to \(v \) in \(G \). Denoted \(k \)-vertex, \(k^- \)-vertex, or \(k^+ \)-vertex as a vertex of degree \(k \), at most \(k \) or at least \(k \), respectively. A \(k \)- or \(k^- \)-neighbor of \(x \) is a \(k \) (or \(k^- \))-vertex which is adjacent to a vertex \(x \). A \(k \)-cycle is a cycle of length \(k \). Two cycles are adjacent, that is, the two cycles share at least a common edge. A 2-alternating cycle is an even cycle in which the 2-vertices appear alternately. For \(f \in F(G) \), we use \(d_G(f) \) to indicate the degree of a face, which is the number of edges incident with \(f \) where each cut edge is counted twice. Denote \(k^- \), \(k^+ \)-face as a face of degree \(k \), at least \(k \). For a \(k \)-face of \(G \), we called it \((i_1, i_2, \ldots, i_k) \)-face if the vertices incident with it are of degrees \(i_1, i_2, \ldots, i_k \), respectively. We use \(f_k(v) \) to indicate the number of \(k \)-faces which are incident with \(v \), \(d_k(f) \) the number of \(k \)-vertices which are incident with \(f \), and \(d_k(v) \) the number of \(k \)-vertices which are incident with \(v \).

List edge coloring was firstly put forward by Vizing [1] and later by Bollobas and Harris [2]. They posed Conjecture 1 which is later called the List Coloring Conjecture.

Conjecture 1. For every multigraph \(G \), \(\chi'_k(G) = \chi'(G) \).

So far, Conjecture 1 has only been proved to be true for a few graphs, including bipartite multigraphs [3], complete graphs of odd order [4], multicircuits [5], graphs embedded in a surface of nonnegative characteristic and \(\Delta(G) \geq 12 \) [6], and outer planar graphs [7]. For planar graphs, the readers can see [8–12].
Theorem 1. Suppose that G is a planar graph which contains no adjacent 7-cycles. Then, G is edge-k-choosable, where $k = \max\{10, \Delta(G)\}$.

From Theorem 1, we can obtain the following corollary.

Corollary 1. Suppose that G is a planar graph which contains no adjacent 7-cycles, and $\chi_1'(G) = \Delta(G)$ for $\Delta(G) \geq 10$.

2. The Proofs of Theorem

Proof. Let $G = (V(G), E(G), F(G))$ be a minimal graph satisfying the number of $|E(G)|$ as little as possible; then, the graph G has the following properties.

Lemma 1 (see [14]). Let G be a planar graph, by the minimality hypothesis of graph G, and we have

1. $\delta(G) \geq 2$ and G is a connected graph
2. G does not contain edge v_1v_2 satisfying $\min\{d(v_1), d(v_2)\} \leq (k/2)$ and $d(v_1) + d(v_2) \leq k + 1$
3. G does not contain 2-alternating cycle

Denote G_2 as the induced subgraph of G by all 2-vertices of G, where $E(G_2) = \{v_1v_2 | d(v_1) = 2\}$. By Lemma 1(2) and (3), G_2 contains no odd cycle and even cycle. Therefore, G_2 must be a forest. Thereby, there must be a matching M in G_2 and all 2-vertices in M are saturated. If $v_1v_2 \in M$ and $d_{G_2}(v_1) = 2$, then v_2 is named the 2-master of v_1 and v_1 is the dependent of v_2. Obviously, each 2-vertex has a 2-master and each k-vertex may be the 2-master of no more than one 2-vertex.

Lemma 2 (see [15]). Given $X = \{x \in V(G) | d_{G_2}(x) \leq 3\}$ and $Y = \cup_x N(x)$. Then, there is a bipartite subgraph M' of G with partite sets X and Y satisfying $d_{M'}(x) = 1$, for any $x \in X$, and $d_{M'}(y) \leq 2$, for any $y \in Y$.

Note that, in Lemma 2, we mark y as the 3-master of x if $xy \in M'$ and $x \in X$.

Lemma 3 Suppose that G is a planar graph which contains no adjacent 7-cycles and $d(v) = 9$, then

1. If $f_3(v) = 6$ and one of its edges is not incident with any 3-face (as in Figure 1, (1–10), (1–11), (1–13)), then $f_{7^*}(v) \geq 1$
2. If $f_3(v) = 7$, then $f_{7^*}(v) = 2$

Proof. Let $N_G(v) = \{v_1, v_2, \ldots, v_9\}$, where all the neighbors $v_i (1 \leq i \leq 9)$ of v are in an anticlockwise order. We use f_i to indicate the face which is incident with v, v_i, and v_{i+1} ($1 \leq i \leq 9$).

(1) Now, we prove (1–10) in Figure 1. Suppose that f_1, f_2, \ldots, f_5 and f_6 are 3-faces. If f_6 is a 4-face or 5-face, then there will be adjacent 7-cycles in G. It must be $d(f_6) \geq 7$ and $f_{7^*}(v) \geq 1$. The proof process of (1–11) and (1–13) is similar, so we will not repeat it.

(2) Its proof process is similar to (1), so we will not repeat it.

Similarly, we can get the following two lemmas.

Lemma 4. Suppose that G is a planar graph which contains no adjacent 7-cycles and $d(v) = 10$. Then

1. If $f_3(v) = 5$ and four of its edges are not on any 3-face (as shown in Figure 2 (1–2)), then $f_{7^*}(v) \geq 1$
2. If $f_3(v) = 6$ (as shown in figure (2–16) $(2–27)$), then $f_{7^*}(v) \geq 1$
3. If $f_3(v) = 7$ (as shown in figure (2–28) $(2–33)$), then $f_{7^*}(v) \geq 2$
4. If $f_3(v) = 8$ (as shown in figure (2–34), $(2–35)$), then $f_{7^*}(v) = 2$

Lemma 5. Suppose that G is a planar graph which contains no adjacent 7-cycles and $d(v) = 11$. Then

1. If $f_3(v) = 8$ and one of its edges is not on any 3-face (as shown in Figure 3 (3–41), $(3–43)$), then $f_{7^*}(v) \geq 1$
2. If $f_3(v) = 9$ (as in figure (3–47)), then $f_{7^*}(v) = 2$

Now, we complete the proof by Euler's formula. In [6], the authors proved $\chi_1'(G) = \Delta(G)$ for every planar graph with $\Delta(G) \geq 12$, so we only assume that $\Delta(G) \leq 11$ in our proof. Suppose that G is already embedded in the plane. We can obtain

\[\sum_{x \in V(G)} (d(x) - 4) + \sum_{x \in F(G)} (d(x) - 4) = -8 < 0, \]

by practical Euler's formula $|V(G)| - |E(G)| + |F(G)| = 2$.

Firstly, denote ch as the original charge. For each $x \in V \cup F$, let $ch(x) = d(x) - 4$. Therefore, $\sum_{x \in V \cup F} ch(x) < 0$. Secondly, we formulate some rules to redistribute the original charge and each $x \in V \cup F$ will get a new charge $ch'(x)$. Note that the rules we formulated only move between the vertices and edges of the plane and have no effect on the total charge. Thirdly, we will show that $ch'(x) \geq 0$ $(x \in V \cup F)$. If we can do, then we will obtain an apparent contradiction $0 \leq \sum ch'(x) = \sum ch(x) < 0$ $(x \in V \cup F)$. The proof of Theorem 1 is completed.

The discharging rules are formulated as in R1–R5. We use $c(x \rightarrow y)$ to indicate the charge from x to y.

R1. Let $d(v) = 2$, v_1 be a 3-master vertex and v_2 be a 2-master vertex of v. Firstly, $c(v_1 \rightarrow v) = 1$. Secondly, if v is on a face f with $d(f) \geq 5$, then $c(f \rightarrow v) = (1/2)$ and $c(v_2 \rightarrow v) = (1/2)$, otherwise $c(v_1 \rightarrow v) = 1$.

R2. Let $d(v) = 3$ and v_1 and v_2 be two 3-masters of v, then $c(v_1 \rightarrow v) = 1$ and $c(v_2 \rightarrow v) = 1$.
R3. Every 5-vertex receives $\left(\frac{2}{15}\right)$ from each of its 7*-neighbors.

R4. Let f be a 3-face $(v_1v_2v_3)$ with $d(v_1) \leq d(v_2) \leq d(v_3)$.

R4.1 If $d(v_3) = 3$ or 4, then $c(v_2 \to f) = \left(\frac{1}{2}\right)$ and $c(v_3 \to f) = \left(\frac{1}{2}\right)$.

R4.2 If $d(v_i) \geq 5$, then $c(v_i \to f) = \left(\frac{1}{3}\right)$ for $(i = 1, 2, 3)$.

Figure 1: Vertex v is a 9-vertex, the various cases of $f_3(v) \geq 5$.

Figure 2: Vertex v is a 10-vertex, the various cases of $f_3(v) \geq 5$.
R5. Let \(d(f) \geq 5 \) and \(t = d_5(f) \). Each of 2-vertices on \(f \) receives \((1/2) \) from \(f \) and other vertices remaining on \(f \) receives \((d(f) - 4 - t \cdot (1/2)) / (d(f) - t) \) from \(f \).

Now, let us start to test and verify \(ch' \) is greater than or equal to \(0 \) for all vertices and faces. It is easy to verify faces, so let us verify the new charge of every face firstly. Obviously, \(d(f) \geq 3 \). If \(d(f) = 3 \), then \(ch'(f) = -1 + \min(2 \times (1/2)), 3 \times (1/3) \) = 0 by R4; if \(d(f) = 4 \), then \(ch'(f) = ch(f) = 0 \); otherwise \(d(f) \geq 5 \), by R5 \(ch'(f) \geq 1 - t \times (1/2) - ((d(f) - 4 - t \times (1/2)) / (d(f) - t)) \times (d(f) - t) = 0 \).

Let us verify the new charge for every vertex. If \(d(v) = i \) for \(2 \leq i \leq 4 \), then \(ch'(v) = -2 + 1 + \min(2 \times (1/2), 1) \) = 0 by R1, \(ch'(v) = -1 + 1 = 0 \) by R2, and \(ch'(v) = 0 \), respectively. If \(d(v) = 5 \), then \(v \) must be adjacent to \(7' \)-vertices by Lemma 1(2). So, by R3 and R4, \(ch'(v) \geq 1 + 5 \times (2/15) - 5 \times (1/3) = 0 \). If \(d(v) = 6 \), then \(v \) must be adjacent to \(6' \)-vertices by Lemma 1(2). So, by R4 \(ch'(v) \geq 2 - 6 \times (1/3) = 0 \). If \(d(v) = 7 \), then \(f_3(v) \leq 5 \), and by Lemma 1(2), \(v \) must be adjacent to \(5' \)-vertices. So, by R3 and R4, \(ch'(v) \geq 7 - 4 - 5 \times (1/3) - 7 \times (2/15) = (8/15) > 0 \).

Suppose that \(v \) be a 8-vertex. Then, \(f_3(v) \leq 6 \) and \(v \) must be adjacent to \(4' \)-vertices by Lemma 1(2). If \(f_3(v) \leq 5 \), then by R3-

R4 \(ch'(v) \geq 8 - 4 - 5 \times (1/2) - 8 \times (2/15) = (13/30) > 0 \). Otherwise, \(f_3(v) = 6 \). Since all the neighbors of 5-vertex must be \(6' \)-vertices by Lemma 1(2), so every 3-face which is incident with 8-vertex has no more than a 5-vertex, that is, \(d_5(v) \leq 6 \). So, by R3-R4, \(ch'(v) \geq 8 - 4 - 6 \times (1/2) - 6 \times (2/15) = (1/5) > 0 \).

Suppose that \(v \) be a 9-vertex. Then, \(f_3(v) \leq 7 \) and \(v \) must be adjacent to \(3' \)-vertices by Lemma 1(2), and it may be the 3-master of no more than two 3-vertices. In the following, we will test it from three cases. Firstly, it is not the 3-master of any 3-vertex, and then, \(ch'(v) \geq 9 - 4 - 7 \times (1/2) - 9 \times (2/15) = (3/10) > 0 \) by R3 and R4.

Secondly, \(v \) is the 3-master of only one 3-vertex. If \(f_3(v) \leq 5 \), then \(ch'(v) \geq 9 - 4 - 1 - 5 \times (1/2) - 8 \times (2/15) = (13/30) > 0 \) by R3, R4, and R5. Suppose \(f_3(v) = 6 \) (as shown in Figure 1, (1–10)–(1–13)). Since all the neighbors of 5-vertex should be \(6' \)-vertices by Lemma 1(2), so every 3-face incident with 9-vertex has no more than one 5-vertex, that is, \(d_5(v) \leq 6 \). So, \(ch'(v) \geq 9 - 4 - 1 - 6 \times (1/2) - 6 \times (2/15) = (1/5) > 0 \) by R3–R5. Suppose \(f_3(v) = 7 \) (as shown in figure, (1–16)–(1–17)). If \(v \) has a 5-neighbor \(u \), then the 3-face which is incident with \(u \) and \(v \) must be a \((5, 6', 9) \)-face and by R4 this 3-face receives \((1/3) \) from \(v \).
So, \(ch'(v) \geq 9 - 4 - 1 - \max(7 \times (1/2), 6 \times (1/2)+ (1/3)+ (2/15), 5 \times (1/2) + 2 \times (1/3) + 2 \times (2/15), 4 \times (1/2)+ 3 \times (1/3) + 3 \times (2/15), 3 \times (1/2)+ 4 \times (1/3) + 4 \times (2/15), 2 \times (1/2)+ 2 \times (1/3) + 4 \times (2/15) + 6 \times (2/15), 1/3) + 4 \times (1/3) + 6 \times (2/15)) = (1/2) > 0 \) by R3, R4, and R5.

Thirdly, \(v \) is the 3-master of two 3-vertices. If \(f_3(v) \leq 4 \), then \(ch'(v) \geq 9 - 4 - 2 \times (1/2) - 7 \times (2/15) = (1/15) > 0 \) by R3, R4, and R5. Suppose \(f_3(v) = 5 \) (as shown in Figure 1, (1–10)–(1–9)). Then, \(ch'(v) \geq 9 - 4 - 2 \times (5/15) + 3 \times (2/15), 4 \times (1/2) + (1/3) + 4 \times (2/15), 3 \times (1/2) + 2 \times (1/3) + 5 \times (1/3) + 3 \times (2/15), 2 \times (1/2) + 4 \times (1/3) + 4 \times (2/15)) = (1/10) > 0 \) by R3, R4, and R5. Suppose \(f_3(v) = 6 \) (as shown in Figure 1: (1–10)–(1–15)). In Figure 1, (1–12), (1–14), (1–15), \(ch'(v) \geq 9 - 4 - 2 \times (6/15), 5 \times (1/2) + (1/3) + (2/15), 4 \times (1/2) + 2 \times (1/3) + 2 \times (2/15), 3 \times (1/2) + 3 \times (1/3) + 6 \times (2/15), (1/2) + 4 \times (1/3) + 7 \times (2/15), 5 \times (1/3) + 7 \times (2/15)) = (1/10) > 0 \) by R3, R4, and R5. Now, we consider Figure 1: (1–10), (1–11), and (1–13). By Lemma 3, \(f_{2,7}(v) \geq 1 \). By R5, the 7°-face gives no less than \((3/8) \) to \(v \). So, \(ch'(v) \geq 9 - 4 - 3 \times (3/8) - 2 - (2/15) - \max(6 \times (1/2), 5 \times (1/2)+ (1/3) + (2/15), 4 \times (1/2) + (1/3) + 2 \times (2/15), 3 \times (1/2)+ 2 \times (1/3) + 3 \times (1/3) + 3 \times (2/15), (2 \times (1/2) + 4 \times (1/3) + 4 \times (2/15)) = (29/120) > 0 \) by R3, R4, and R5. Suppose \(f_3(v) = 7 \) (as shown in Figure 1, (1–16), (1–17)), then, by Lemma 3, \(f_{2,7}(v) = 2 \). By R5, each 7°-face gives no less than \((3/8) \) to \(v \). So, \(ch'(v) \geq 9 - 4 + 2 \times (3/8) - 2 - \max(7 \times (1/2), 6 \times (1/2)+ (1/3) + (2/15), 5 \times (1/2) + 2 \times (1/3) + 2 \times (2/15), 4 \times (1/2)+ 3 \times (1/3) + 3 \times (2/15), 3 \times (1/2) + 4 \times (1/3) + 4 \times (2/15), 2 \times (1/2)+ 5 \times (1/3) + 5 \times (2/15)) = (1/4) > 0 \) by R3, R4, and R5.

Suppose that \(v \) be a 10-vertex. Obviously, \(f_3(v) \geq 8 \) and it could be the 3-master of no more than two 3-vertices and the 2-master of no more than one 2-vertex. If \(f_3(v) \leq 4 \), then by R3–R5, \(ch'(v) \geq 10 - 4 - 1 - 2 - 4 \times (1/2) - 7 \times (2/15) = (1/15) > 0 \). Let us discuss it in four ways.

Firstly, \(f_3(v) = 6 \) (as shown in Figure 3, (3–1)–(3–25)). Obviously, by R3–R5, \(ch'(v) \geq 11 - 4 - 1 - 2 \times (2/15) - 3 \times (2/15) = (3/5) > 0 \).

Secondly, \(f_3(v) = 7 \) (as shown in Figure 3, (3–26)–(3–40)). From Figure 3, (3–26)–(3–40), by R3–R5, \(ch'(v) \geq 11 - 4 - 1 - 2 - 7 \times (1/2) - 2 \times (2/15) = (7/30) > 0 \).

Thirdly, \(f_3(v) = 8 \) (as shown in Figure 3, (3–41)–(3–46)). By Lemma 5, \(f_{2,7}(v) \geq 1 \) in Figure 3: (3–41) and (3–43). So, \(ch'(v) \geq 11 - 4 + (3/8) - 1 - 2 - 8 \times (1/12) - (2/15) = (129/120) > 0 \) by R3, R4, and R5. In Figure 3, (3–42) and (3–44)–(3–46), \(ch'(v) \geq 11 - 4 - 1 - 2 - 8 \times (1/2) = 0 \) by R3–R5.

Fourthly, \(f_3(v) = 9 \) (as shown in the figure, (3–47)), then, by Lemma 5, \(f_{2,7}(v) = 2 \). Hence, \(ch'(v) \geq 11 - 4 - 2 \times (3/8) - 1 - 2 - 9 \times (1/12) = (1/4) > 0 \) by R3–R5.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 12001332.

References

[1] R. Häggkvist and A. Chetwynd, “Some upper bounds on the total and list chromatic numbers of multigraphs,” *Journal of Graph Theory*, vol. 16, pp. 503–516, 1992.

[2] B. Bollobás and A. J. Harris, “List-colourings of graphs,” *Graphs and Combinatorics*, vol. 1, no. 1, pp. 115–127, 1985.

[3] F. Galvin, “The list chromatic index of a bipartite multigraph,” *Journal of Combinatorial Theory, Series B*, vol. 63, no. 1, pp. 153–158, 1995.

[4] R. Häggkvist and J. Janssen, “New bounds on the list-chromatic index of the complete graph and other simple graphs,” *Combinatorics, Probability and Computing*, vol. 6, pp. 295–313, 1997.

[5] D. R. Woodall, “Edge-choosability of multigraphs,” *Discrete Mathematics*, vol. 202, no. 1–3, pp. 271–277, 1999.

[6] O. V. Borodin, A. V. Kostochka, and D. R. Woodall, “List edge and list total colourings of multigraphs,” *Journal of Combinatorial Theory, Series B*, vol. 71, no. 2, pp. 184–204, 1997.

[7] W. F. Wang and K. W. Lih, “Choosability, edge choosability and total choosability of outerplanar graphs,” *European Journal of Combinatorics*, vol. 22, pp. 71–78, 2001.

[8] B. Liu, J. Hou, J. Wu, and G. Liu, “Total colorings and list total colorings of planar graphs without intersecting 4-cycles,” *Discrete Mathematics*, vol. 309, no. 20, pp. 6035–6043, 2009.

[9] H. Wang, B. Liu, Z. Zhang, L. Wu, W. Wu, and H. Gao, “List edge and list total coloring of planar graphs with maximum degree 8,” *Journal of Combinatorial Optimization*, vol. 32, no. 1, pp. 188–197, 2016.
[10] H. Wang, L. Wu, X. Zhang, W. Wu, and B. Liu, “A note on the minimum number of choosability of planar graphs,” Journal of Combinatorial Optimization, vol. 31, no. 3, p. 1013, 2014.

[11] J. Hou, G. Liu, and J. Cai, “List edge and list total colorings of planar graphs without 4-cycles,” Theoretical Computer Science, vol. 369, no. 1–3, pp. 250–255, 2006.

[12] R. Li and B. Xu, “Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles,” Discrete Mathematics, vol. 311, no. 20, pp. 2158–2163, 2011.

[13] H. Wang and J. Wu, “List-edge-coloring of planar graphs without 6-cycles with three chords,” Journal of Combinatorial Optimization, vol. 35, no. 2, pp. 555–562, 2018.

[14] G. J. Chang, J. Hou, and N. Roussel, “On the total choosability of planar graphs and of sparse graphs,” Information Processing Letters, vol. 110, no. 20, pp. 849–853, 2010.

[15] J. Wu and P. Wang, “List-edge and list-total colorings of graphs embedded on hyperbolic surfaces,” Discrete Mathematics, vol. 308, no. 24, pp. 6210–6215, 2008.