Equidistribution of periodic points for modular correspondences

Tien-Cuong Dinh

November 3, 2010

Abstract

Let \(T \) be an exterior modular correspondence on an irreducible locally symmetric space \(X \). In this note, we show that the isolated fixed points of the power \(T^n \) are equidistributed with respect to the invariant measure on \(X \) as \(n \) tends to infinity. A similar statement is given for general sequences of modular correspondences.

Classification AMS 2010: 37A45, 37A05, 11F32

Keywords: modular correspondence, equidistribution, periodic point.

1 Introduction

Let \(G \) be a connected Lie group and \(\Gamma \subset G \) be a torsion-free lattice. Let \(\hat{\lambda} \) denote the probability measure on \(\hat{X} := \Gamma \backslash G \) induced by the invariant measure on \(G \). Consider also an element \(g \in G \) such that \(g^{-1}\Gamma g \) is commensurable with \(\Gamma \), that is, \(\Gamma_g := g^{-1}\Gamma g \cap \Gamma \) has finite index in \(\Gamma \). Denote by \(d_g \) this index.

The map \(x \mapsto (x, gx) \) induces a map from \(\Gamma \backslash G \) to \(\hat{X} \times \hat{X} \). Let \(\hat{Y}_g \) be its image. The natural projections \(\hat{\pi}_1, \hat{\pi}_2 \) from \(\hat{Y}_g \) onto the factors of \(\hat{X} \times \hat{X} \) define two coverings of degree \(d_g \). Both of them are Riemannian with respect to every left-invariant Riemannian metric on \(G \). The correspondence \(\hat{T}_g \) on \(\hat{X} \) associated with \(\hat{Y}_g \) is called irreducible modular.

A general modular correspondence \(\hat{T} \) on \(\hat{X} \) is a finite sum of irreducible ones, i.e. \(\hat{T} \) is associated with a sum \(\hat{Y} = \hat{Y}_{g_1} + \cdots + \hat{Y}_{g_m} \) that we call the graph of \(\hat{T} \). The degree \(d \) of \(\hat{T} \) is the sum of the degrees of \(\hat{T}_g \). We refer the reader to ClozelOtal, ClozelUllmo, Margulis [4, 5, 10] for more details.

If \(a \) is a point in \(\hat{X} \), define \(\hat{T}(a) := \hat{\pi}_2(\hat{\pi}_1^{-1}(a)) \) and \(\hat{T}^{-1}(a) := \hat{\pi}_1(\hat{\pi}_2^{-1}(a)) \). They are sums of \(d \) points which are not necessarily distinct. If \(\hat{U} \) is a small neighbourhood of \(a \), the restriction of \(\hat{T} \) to \(\hat{U} \) can be identified to \(d \) local isometries \(\hat{\tau}_i : \hat{U} \rightarrow \hat{U}_i \) from \(\hat{U} \) to neighbourhoods \(\hat{U}_i \) of points \(a_i \) in \(\hat{T}(a) \). All these isometries
are induced by left-multiplication by elements of G. If a is a fixed point of $\hat{\tau}$, i.e. $a = a_i$, we say that a is a fixed point of \hat{T}. When a is an isolated fixed point of τ, we also say a is an isolated fixed point of T. These points are repeated according to their multiplicities.

The composition $\hat{T} \circ \hat{S}$ of two modular correspondences \hat{T} and \hat{S} can be obtained by composing the above local isometries. This is also a modular correspondence. Its degree is equal to $\deg(\hat{T}) \deg(\hat{S})$. Even when \hat{T} and \hat{S} are irreducible, their composition is not always irreducible. Denote by $\hat{T}_n := \hat{T} \circ \cdots \circ \hat{T}$, n times, the iterate of order n of \hat{T}. Periodic points of order n of \hat{T} are fixed points of \hat{T}_n.

Let μ be a probability measure on \hat{X}. Define a positive measure $\hat{T}_*(\mu)$ of mass d on \hat{X} by

$$\hat{T}_*(\mu) := (\hat{\pi}_2)_*(\hat{\pi}_1)^*(\mu).$$

A sequence of correspondences \hat{T}_n of degree d_n is said to be equidistributed if for any $a \in \hat{X}$ the sequence of probability measures $d_n^{-1}(\hat{T}_n)_*(\delta_a)$ converges weakly to $\hat{\lambda}$ as n tends to infinity. Here, δ_a denotes the Dirac mass at a.

Let K be a compact Lie subgroup of G. Since the left-multiplication on G commutes with the right-multiplication, a modular correspondence \hat{T} as above, induces a modular correspondence T on $X := \hat{X}/K$ with the same degree. Its graph is the projection Y of \hat{Y} on $X \times X$. The above notion and description of \hat{T} can be extended to T without difficulty. We call T the lift of T to \hat{X}. Consider on X the probability measure λ induced by the invariant measure on G, i.e. the direct image of $\hat{\lambda}$ in X. Here is our main result.

Theorem 1.1. Let T_n be a sequence of modular correspondences on X and let \hat{T}_n be the lifts of T_n to \hat{X}. Assume that the sequence \hat{T}_n is equidistributed. Then the isolated fixed points of T_n are equidistributed. More precisely, there is a constant $s \geq 0$, depending only on G and K, such that if d_n is the degree of T_n and P_n is the set of isolated fixed points of T_n counted with multiplicity, we have

$$\lim_{n \to \infty} \frac{1}{d_n} \sum_{a \in P_n} \delta_a = s\lambda.$$

The last convergence is equivalent to the following property. If W is an open subset of X such that its boundary has zero λ measure, then

$$\lim_{n \to \infty} \frac{|P_n \cap W|}{d_n} = s\lambda(W).$$

We can of course replace W with \overline{W}.

Now, assume moreover that G is semi-simple, K is a maximal compact Lie subgroup of G and Γ is an irreducible lattice. An irreducible correspondence T associated with an element $g \in G$ as above is exterior if the group generated by g and Γ is dense in G. For such a correspondence, Clozel-Otal proved in [4] that the iterate sequence \hat{T}_n is equidistributed (their proof given for T is also valid for \hat{T}), see also Clozel-Ullmo [5]. We deduce from Theorem 1.1 the following result.
Corollary 1.2. Let T be an exterior correspondence on an irreducible locally symmetric space X as above. Then the isolated periodic points of order n of T are equidistributed with respect to λ as n tends to infinity.

The proof of our main result will be given in Section 2. In Section 3, we will give similar results related to the Arnold-Krylov-Guivarch theorem [1, 8]. We refer to Benoist-Oh [2] and Clozel-Oh-Ullmo [3] for other sequences of modular correspondences for which our main result can be applied. The reader will also find in Clozel-Ullmo [5], Dinh-Sibony [6, 7] and Mok-Ng [11, 12] some related topics.

Acknowledgment. The author would like to thank Professor Nessim Sibony for help during the preparation of this paper.

2 Proof of the main result

Fix a Riemannian metric on G which is invariant under the left-action of G and the right-action of K. It induces Riemannian metrics on \hat{X} and X. We normalize the metric so that the associated volume form on X is a probability measure. So, it is equal to λ. If $\Pi : \hat{X} \to X$ is the canonical projection, we have $\Pi_*(\lambda) = \lambda$.

Let l and m denote the dimension of G and X respectively.

Fix a point $c \in X$. Denote by $B(c, r)$ the ball of center c and of radius r in X. In order to prove the main result, we will consider the following quantity

$$\frac{|P_n \cap B(c, r)|}{d_n}$$

Let Φ denote the natural projection from G to $\hat{X} := G/K$. The image of K by Φ is a point that we denote by 0. Denote by $B(0, r)$ the ball of center 0 and of radius r in \hat{X}. Define $K_r := \Phi^{-1}(B(0, r))$. So, K_r is a union of classes xK with $x \in G$. Fix also a constant $r_0 > 0$ small enough so that $B(0, r')$ is convex for every $r' \leq 3r_0$. Here, the convexity is with respect to the Riemannian metric induced by the one on G. From now on, assume that $r < r_0$.

Lemma 2.1. Let g be an element of G. If g admits a fixed point in $B(0, r)$ then g belongs to K_{2r}. The set of fixed points of g in $B(0, r_0)$ is a convex submanifold of $B(0, r_0)$. Moreover, a fixed point $e \in B(0, r_0)$ of g is isolated if and only if 1 is not an eigenvalue of the differential of g at e.

Proof. Assume that g admits a fixed point e in $B(0, r)$. Since g is locally isometric, $g(0)$ belongs to $B(0, 2r)$. It follows that g belongs to K_{2r}. If e, e' are two different fixed points in $B(0, r_0)$ then every point of the geodesic in $B(0, r_0)$ containing e, e' is fixed. We deduce that the set of fixed points in $B(0, r_0)$ is a
convex submanifold. If 1 is an eigenvalue of the differential of \(g \) at \(e \), the associated tangent vector at \(e \) defines a geodesic of fixed points. This implies the last assertion in the lemma.

Recall that a semi-analytic set in a real analytic manifold \(W \) is locally defined by a finite family of inequalities \(f > 0 \) or \(f \geq 0 \) with \(f \) real analytic. A set in \(W \) is subanalytic if locally it is the projection on \(W \) of a bounded semi-analytic set in \(W \times \mathbb{R}^n \). The boundary of a subanalytic open set is also subanalytic with smaller dimension. We refer the reader to [9] for further details. We will need the following lemma.

Lemma 2.2. Let \(M_r \) denote the set of all \(g \in G \) which admit exactly one fixed point in \(B(0, r) \). Then \(M_r \) is a subanalytic open set contained in \(K_{2r} \).

Proof. The last assertion in Lemma 2.1 implies that \(M_r \) is open. The first assertion of this lemma implies that \(M_r \) is contained in \(K_{2r} \).

Denote by \(M' \) the set of points \((g, x)\) in \(K_{2r_0} \times B(0, r_0) \) such that \(g(x) = x \). This is an analytic subset of \(K_{2r_0} \times B(0, r_0) \). So, it is a semi-analytic set in \(G \times \tilde{X} \). Let \(M \) be the set of points \((g, x)\) in \(M' \) such that the differential of \(g \) at \(x \) does not have 1 as eigenvalue. So, \(M \) is also a semi-analytic set.

If \(\sigma_1, \sigma_2 \) are the natural projections from \(M' \) to \(G \) and to \(\tilde{X} \) respectively, we deduce from Lemma 2.1 that \(M_r \) is equal to \(\sigma_1(M \cap \sigma_2^{-1}(B(0, r))) \). Moreover, \(\sigma_1 \) defines a bijection from \(M \cap \sigma_2^{-1}(B(0, r)) \) to \(M_r \). It is now clear that \(M_r \) is a subanalytic set.

Consider a general modular correspondence \(T \) as above. Let \(\pi_1, \pi_2 \) denote the natural projections from \(Y \) to \(X \). If \(r \) is small enough, the ball \(B(c, r) \) is simply connected and \(\pi_1^{-1}(B(c, r)) \) is the union of \(d \) balls \(B(c_i', r) \) of center \(c_i' \) in \(Y \). The restriction of \(\pi_1 \) to \(B(c_i', r) \) is injective. The projection \(\pi_2 \) sends \(B(c_i', r) \) to the ball \(B(c_i, r) \) of center \(c_i := \pi_2(c_i') \) in \(X \). So, the restriction of \(T \) to \(B(c, r) \) is identified with the family of \(d \) maps \(\tau_i : B(c, r) \to B(c_i, r) \).

Fix a point \(b \in \tilde{X} \) such that \(\Pi(b) = c \). Let \(\tilde{T} \) denote the lift of \(T \) to \(\tilde{X} \) as above. The restriction of \(\tilde{T} \) to \(B(b, r) \) can be identified with a family of \(d \) maps \(\tilde{\tau}_i : B(b, r) \to B(b_i, r) \) which are the lifts of \(\tau_i \) to \(\tilde{X} \), i.e. we have \(\Pi \circ \tilde{\tau}_i = \tau_i \circ \Pi \).

Fix also a point \(a \in G \) such that \(\Psi(a) = b \) where \(\Psi : G \to \tilde{X} \) is the natural projection. The left-multiplication by \(a \) induces the map \(x \mapsto \Psi(ax) \) from \(M_r \) to \(\tilde{X} \). Its image is independent of the choice of \(a \) and is denoted by \(M_{b,r} \). Since \(\Gamma \) is torsion-free, its intersection with \(K \) is trivial. Therefore, when \(r \) is small enough, the above map is injective on \(K_{2r} \). So, it defines a bijection from \(M_r \) to \(M_{b,r} \). This is an isometry since the metric on \(G \) is invariant.

Lemma 2.3. The map \(\tau_i \) admits exactly one fixed point in \(B(c, r) \) if and only if \(b_i \) belongs to \(M_{b,r} \).
Proof. Without loss of generality, we can assume that T and \hat{T} are irreducible and given by an element $g \in G$ such that $g^{-1}\Gamma g$ is commensurable with Γ. Choose d elements $\delta_1, \ldots, \delta_d$ of Γ which represent the classes of $\Gamma g \backslash \Gamma$. Then, up to a permutation, $\hat{\tau}_i$ and τ_i are induced by the maps $x \mapsto g_i x$ where $g_i := g \delta_i$.

Assume that τ_i has a unique fixed point in $B(c, r)$. This point can be written as $\Theta(ae)$ for some point $e \in B(0, r)$, where Θ is the canonical projection from \tilde{X} to X. So, we have $g_i ae = \gamma ae$ for some $\gamma \in \Gamma$. The maps $\hat{\tau}_i$ and $\hat{\tau}$ are also induced by $x \mapsto g'_i x$ where $g'_i := \gamma^{-1} g \gamma$ since $\gamma^{-1} \in \Gamma$. We have $g'_i ae = ae$ and $(a^{-1} g'_i a) e = e$. By Lemma 2.1, $a^{-1} g'_i a$ belongs to M_r. Since $b_i = \Psi(g'_i a)$, we deduce that $b_i \in \Psi(aM_r) = M_{br}$. We see in the above arguments that the converse is also true.

End of the proof of Theorem 1.1. Denote by λ' the volume form on G which induces on \hat{X} the form $\hat{\lambda}$. By Lemma 2.2, M_r and M_{br} are subanalytic sets. So, their boundaries are of dimension $\leq l - 1$. Since the sequence \hat{T}_n is equidistributed, using Lemma 2.3, we obtain

$$\lim_{n \to \infty} \frac{|P_n \cap B(c, r)|}{d_n} = \lim_{n \to \infty} \frac{\hat{T}_n(b) \cap M_{br}}{d_n} = \hat{\lambda}(M_{br}) = \lambda'(M_r).$$

It follows that the sequence of positive measures

$$\frac{1}{d_n} \sum_{x \in P_n} \delta_x$$

converges to a measure μ which satisfies $\mu(B(c, r)) = \lambda'(M_r)$ for r small enough. Since M_r is contained in K_{2r}, the last quantity is of order $O(r^m)$. Hence, $\mu = s \lambda$ where $s \geq 0$ is a function. Finally, the fact that $\lambda'(M_r)$ is independent of c implies that s is constant. It depends only on G and K.

Remark 2.4. The constant s is an invariant depending only on G and K. So, it can be computed using a particular case, e.g. when Γ is co-compact and T_n have only isolated fixed points. So, Lefschetz’s fixed points formula may be used here. We have for example $s = 2$ when $G = \text{PSL}(2, \mathbb{R})$ and $K = \text{SO}(2)$. We can also obtain a speed of convergence in our main theorem in term of the speed of convergence in the equidistribution property of \hat{T}_n.

3 On the Arnold-Krylov-Guivarc’h theorem

Consider now the case where G is a compact connected semi-simple Lie group, Γ is trivial and K a connected compact subgroup of G. Define $X := G/K$. Let $\hat{\lambda}$ be the invariant probability measure of G and λ its direct image in X.

Let $H \subset G$ be a semi-group generated by a finite family of elements g_1, \ldots, g_d of G. Denote by H_n the set of words of length n in H. We say that H is equidistributed on G if for every point $a \in G$, the sequence of probability measures

$$d^{-n} \sum_{g \in H_n} \delta_{ga}$$

converges to $\hat{\lambda}$ as n tends to infinity.

The left-multiplication by g_i defines a self-map \hat{T}_{g_i} on G. Their sum \hat{T} can be seen as a correspondence of degree d on G. It induces a correspondence T on X of the same degree. So, H is equidistributed if and only if the sequence \hat{T}^n is equidistributed. We deduce from our main result the following theorem.

Theorem 3.1. Let G, K, X, λ, H and H_n be as above. Assume that H is equidistributed on G. Then the isolated fixed points in X of the elements of H_n are equidistributed with respect to λ when n tends to infinity.

Assume that $d = 2$ and that the first Betti number of X vanishes. A result by Guivarc’h [8] says that if the group generated by H is dense in G then H is equidistributed, see also Arnold-Krylov [1]. So, Theorem 3.1 can be applied in this case.

A similar result holds for groups. Let $H \subset G$ be a group generated by a finite family $\{g_1, \ldots, g_{2d}\}$ where $g_i = g_{2d-i}^{-1}$. Let H_n denote the family of reduced words of length n in H. We say that H is equidistributed if the sequence of probability measures

$$\mu_n := \frac{1}{|H_n|} \sum_{g \in H_n} \delta_{ga}$$

converges to $\hat{\lambda}$ for every $a \in G$. There are also correspondences \hat{T}_n and T_n of degree $|H_n|$ such that $(\hat{T}_n)_* (\delta_a) = |H_n| \mu_n$. So, Theorem 3.1 holds for equidistributed groups H.

Another result by Guivarc’h [8] says that if $d = 2$ and if H is dense in G then it is equidistributed. Therefore, our result can be applied under these conditions.

References

[1] Arnold, V. I.; Krylov, A. L. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain. (Russian) *Dokl. Akad. Nauk SSSR* 148 (1963), 9-12.

[2] Benoist, Y.; Oh, H. Equidistribution of rational matrices in their conjugacy classes. *Geom. Funct. Anal.* 17 (2007), no. 1, 1-32.

[3] Clozel, L.; Oh, H.; Ullmo, E. Hecke operators and equidistribution of Hecke points. *Invent. Math.* 144 (2001), no. 2, 327-351.
[4] Clozel, L.; Otal, J.-P. Unique ergodicité des correspondances modulaires. *Essays on geometry and related topics*, Vol. 1, 2, 205-216, Monogr. Enseign. Math., 38, *Enseignement Math.*, Geneva, 2001.

[5] Clozel, L.; Ullmo, E. Correspondances modulaires et mesures invariantes. *J. Reine Angew. Math.* 558 (2003), 47-83.

[6] Dinh, T.-C. Distribution des préimages et des points périodiques d’une correspondance polynomiale. *Bull. Soc. Math. France* 133 (2005), no. 3, 363-394.

[7] Dinh, T.-C.; Sibony, N. Distribution des valeurs de transformations méromorphes et applications. *Comment. Math. Helv.* 81 (2006), no. 1, 221-258.

[8] Guivarc’h, Y. Généralisation d’un théorème de von Neumann. *C. R. Acad. Sci. Paris Sér. A-B* 268 (1969), A1020-A1023.

[9] Lojasiewicz, S. Sur la géométrie semi- et sous-analytique. *Ann. Inst. Fourier (Grenoble)* 43 (1993), no. 5, 1575-1595.

[10] Margulis, G. A. Discrete subgroups of semisimple Lie groups. *Ergebnisse der Mathematik und ihrer Grenzgebiete (3)*, 17. Springer-Verlag, Berlin, 1991.

[11] Mok, N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case. *Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000)*, 155-165, Nankai Tracts Math., 5, *World Sci. Publ., River Edge, NJ*, 2002.

[12] Mok N.; Ng S.-C. Germs of measure-preserving holomorphic maps from bounded symmetric domains to their Cartesian products. *Preprint* (2010).

T.-C. Dinh, UPMC Univ Paris 06, UMR 7586, Institut de Mathématiques de Jussieu, 4 place Jussieu, F-75005 Paris, France.
dinh@math.jussieu.fr http://www.math.jussieu.fr/~dinh