The prevalence, risk factors analysis and evaluation of two diagnostic techniques for the detection of Cryptosporidium infection in diarrheic sheep from Pakistan

Naimat Ullah Khan¹,², Tahir Usman², Mian Saeed Sarwar², Hazrat Ali², Ali Gohar², Muhammad Asif³, Fazli Rabbani², Rifat Ullah Khan⁴, Nighat Sultana⁵, Nazir Ahmad Khan⁶, Muhammad Mobashar⁶, Assar Ali Shah⁷*, Metha Wanapat*²

¹Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan, ²College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan, ³Institute of Continuing Education and Extension, University of Veterinary and Animal Sciences, Lahore, Pakistan, ⁴College of Veterinary Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan, ⁵Department of Biochemistry, Hazara University Manshehra, Manshehra, Khyber Pakhtunkhwa, Pakistan, ⁶Department of Animal Nutrition, The University of Agriculture, Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan, ⁷Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center (TROFREC), Khon Kaen University, Khon Kaen, Thailand

*assaralishah@yahoo.com (AAS); metha@kku.ac.th (MW)

Abstract

Background

Cryptosporidium spp. is recognized as an opportunistic zoonotic parasite that infects humans as well as wild and domestic animals. This enteric protozoan is a major cause of diarrhea in humans and animals and often result in death due to severe dehydration. The present study was designed to investigate the prevalence, identification of various risk factors and evaluation of sensitivity of the two diagnostic techniques for rapid and correct detection of Cryptosporidium infection in diarrheic sheep in Pakistan.

Methods

A total of 360 fecal samples were collected and processed for detection of Cryptosporidium infection after proper preservation. These samples were properly stained with modified Ziehl-Neelsen acid staining and then examined under simple microscope at 100x magnification for confirmation of Cryptosporidium oocysts. The same samples were again processed through simple PCR for confirmation of the Cryptosporidium spp.

Results

The age wise prevalence was detected through simple microscopy and PCR. We found highest prevalence at the age of ≤1 year followed by 1–2 years of age while the lowest prevalence was recorded at the age of ≥2–3 years of sheep and found significant difference between different ages (P<0.05). The sex wise prevalence showed the highest prevalence
in male (♂) animals detected compared to female (♀). The overall prevalence was detected 27.08% and 18.80% through PCR and simple microscopy, respectively, and significant difference between two diagnostic techniques were observed (P<0.05). Considering the seasonality, the highest prevalence was recorded through simple microscopy in autumn, summer, and spring, while the lowest in winter. These results were confirmed through PCR.

Conclusion

It was concluded that molecular detection is the most efficient, specific and sensitive technique for detection of *Cryptosporidium* infection than simple microscopy. Moreover sheep is the major potential source of infection to other wild and domestic animals including humans.

1. Introduction

Cryptosporidium infection is an enteric protozoan parasitic disease caused by *Cryptosporidium* species belonging to Phylum Apicomplexa. *Cryptosporidium* infection is caused by an obligate and intracellular protozoan causing intestinal infection in wild and domestic animals. The cases of *Cryptosporidium* infection has been reported in more than twenty two domestic animals, as well as wild species such as mammals, fish, birds and reptiles [1, 2]. *Cryptosporidium* infection carries public health significance because it has been reported in humans and large number of vertebrates such as sheep, goats, cows, dogs, cats, reptiles, fish and poultry. Moreover, this protozoan has public health significance because zoonotic transmission can occur when come in contact with any infected animals [3, 4]. *Cryptosporidium* infection (cryptosporidiosis) has been mainly recorded in wet, humid and hot weather of the year [5, 6]. *Cryptosporidium* infection is a serious threat to the immune compromised individuals and sometimes it can become chronic and even fatal infection [1, 7].

Cryptosporidium infection has been reported in various agro-ecological areas where it is the serious health threat to small and large ruminants. *Cryptosporidium* infection has been recorded as a stern threat to the economy world widely [8–10]. The presences of *Cryptosporidium* species (C. hominis and C. parvum) in small ruminants raise the significant of sheep in the transmission of the infection [11]. However, there is further need of epidemiological studies at molecular level to find out zoonotic species in small ruminants and their attendant for the betterment of public health significance. Generally, diagnosis is based on simple microscopic identification of oocysts; that is a big challenge because some acid fast bacteria such as *Mycobacterium* species also stain at the same time. Therefore only trained laboratory technician can only differentiate between *Cryptosporidium* and *Mycobacterium* species [12, 13].

Many researchers have also used simple technique where samples of fecal substance (1–20 gram) were mixed with concentrated solution of Sodium Chloride and then applied centrifugation. This technique is the best approach as indicated by the researchers to identify positive specimens after performing microscopy [1, 11, 13].

Therefore, it is suggested that molecular diagnostic techniques (PCR, RT-PCR) are the most fast, specific, and sensitive techniques for the detection of protozoan’s infection in various domestic and wild animals. Moreover diagnostic techniques have more advantages over simple microscopy. The molecular techniques are more sensitive and reliable for correct detection of protozoan infection [11, 14]. Therefore, the present study was designed to investigate the prevalence, risk factors analysis and to compare the sensitivity of the two diagnostic
techniques (PCR vs Microscopy) for rapid and correct diagnosis of Cryptosporidium infection in sheep.

2. Materials and methods

2.1 Ethics statement

The study was approved by the ethics committees (No. 14101/2017) of the clinical medicine & surgery (CMS) department, and parasitology department, the University of Veterinary and Animal Sciences Lahore, Pakistan.

2.2 Collection and preparation of fecal samples

Three districts were selected for collection of fecal samples (Bannu, Lakki Marwat and Kohat) of southern Khyber Pakhtunkhwa, Pakistan. A total of 360 fecal samples were collected from diarrheic sheep using a convenient sampling technique. While approaching to animals, various risk factors such as ages, area, sex and season were considered and the basic information’s were entered on already designed questionnaire. The samples were collected from different age groups of sheep. Group 1 sheep were less than one year, group 2 sheep were of 1–2 years whereas, group 3 sheep were more than 2–3 years of age.

This study was continued for a period of one year. All the samples were collected from local breed of sheep in two manners, (1) freshly passed feces and (2) secondly from rectum. During direct collection, all the ethical parameters were followed and advance ethical permission was taken from university ethical committee. Secondly, prior permission was also taken from the owners of the sheep and free necessary treatment was provided to the sheep flock at the time of fecal collection. All the samples were collected from the sheep having private owners and no one was purchased. In the study area each owner has a flock of more than 300 sheep. The fecal samples of about 10 gm were collected from the rectum of the sheep or either freshly passed feces wearing gloves and then before processing the samples, all the samples were divided in two parts. One part was processed and examined through simple microscopic examination while other parts of the same samples were processed through PCR. Before the laboratory examination, all the samples were processed through flotation technique for maximum concentration of oocysts and then applied both laboratory techniques (microscopy or PCR). The flotation technique was applied to concentrate the oocysts. Formalin was added to only those samples that have to process only through conventional microscopy at the at ratio of 1:3 and stored at 4°C for 1–2 weeks till analysis while for PCR all the samples were kept without formalin. Samples were stored at -60°C for the following molecular examination [15].

2.3 Microscopic identification

Each fecal sample of 5gm was weighed by electric balance and then dissolved in water to form a homogenized solution. Then the solution was centrifuged at the rate of 1500 rpm for 1–2 minutes. Each slide was stained with modified Ziehl-Neelsen acid staining and confirmed the presence of Cryptosporidium oocysts through simple microscope at magnification of 100X [16].

2.4 Staining procedure (modified Ziehl-Neelsen acid fast staining)

First prepared a thin fecal smear and the slide were allowed to dry in air. After drying it was fixed in methanol for 2–3 minutes. After fixing, the smear was stained with Carbol fuchsin (15–20 minutes) and washed with the help of tape water. The acid alcohol (1%) was applied as a decolorizing agent for 2 minutes. After staining, all the slides were washed with tap water
and then applied methylene blue (counter stain) for a period of 1 minute. Finally slides were rinsed with tap water and left to air dry. Each slide was examined (using oil immersion) under 100x magnification using a calibrated light microscope, as reported by Bakiret et al. [17]. All those slides where only one oocyst identified, was declared a positive case.

2.5 Identification and confirmation of oocysts (*Cryptosporidium*)

All the oocysts of *Cryptosporidium* were identified and diagnosed on the basis of size, shape and the keys as described by Watanabe et al. [18].

2.6 DNA extraction

DNA was extracted from oocysts using a method as described by Da Silva et al. [19] with minimum variations. The DNA extraction kit (GFC vivantis, USA) was utilized for disruption of the tissue of the crypto oocysts and the DNA was extracted. The quality and quantity of the extracted DNA was assessed on 2% agarose gel electrophoresis and photograph was taken by gel documentation system.

2.7 Amplification of DNA

The 18s rRNA was the targeted gene for the detection of *Cryptosporidium* spp. The procedure used for the amplification of a gene was according to the technique as mentioned by the Da Silva et al. [19] and Johnson et al. [20] who recognized the basic coverage sequence and primers that were used for polymerase chain reaction (PCR). The following sequence of primers was used as a Forward primers sequence: (5'-AAGCTCGTAGTTGGATTTCTG- and for Reverse primer sequence (5'-TAAGGTGCTGAAGGAGTAAGG-3'). The reaction mixture was mixed with ice tar and the mixture was arranged for five reactive processes. The first step of PCR was denatureation at temperature of 94°C for 5 min followed by 35 cycles of denatureation at 94°C for 30 sec, and then annealing was processed at 65°C (15–60 sec) and finally extension was performed at 72°C for 1 min. Each amplified DNA sample was properly labeled and stored at -20°C for further use. After that, the 2% gel electrophoresis was processed that was stained with ethidium bromide and was used for visualization of the samples. Finally photograph was taken in gel documentation system.

2.8 Statistical analysis

The collected data was subjected to the statistical analysis using the version 20 Statistical package for Social Sciences (SPSS). Prevalence rates were calculated and presented in the form of percentages (%). Data regarding with comparison of differences in prevalence for different variables and associated risk factors were analyzed using chi-square test (X^2).

3. Results

The season wise, age wise, month wise and sex wise prevalence of *Cryptosporidium* infection was investigated in diarrheic sheep using simple microscopy and PCR as illustrated in various tables. The season wise data was collected and evaluated through simple microscopy and PCR which showed the highest prevalence in summer season (27.50%) followed by autumn (20.00%) and spring (18.33%), while the lowest in winter (8.33%) and similarly through PCR, the maximum prevalence was in summer (33.33%), autumn (30.00%), spring (26.66%), and winter (13.33%). We found a non-significant difference (P<0.27) (Table 1) between two diagnostic procedures.
The age wise prevalence of Cryptosporidium infection was also determined through simple microscopy (Table 2) and PCR then both results were compared with each other (Table 5). As a result of simple microscopy, the highest prevalence was observed at the age of \(\leq 1 \) year (23.13%) followed by 1–2 years (18.85%) whereas the lowest prevalence was detected at the age of \(\geq 2–3 \) years (11.53%) as shown in Table 2. The comparative results of two diagnostic techniques (simple microscopic and molecular detection) used for detection of Cryptosporidium infection was 29.85%, 23.13% (at age of \(\leq 1 \) year), 26.22%, 18.85% (1–2 years of age) followed by 17.30% and 11.53% (at age of \(\geq 2–3 \) years), respectively and statistically found non-significant difference (\(P < 0.264 \)) as shown in Table 5.

The month wise prevalence was also detected where, the highest prevalence was found in the month of August (36.66%) followed by July (26.66%) while the lower most prevalence was observed in the month of December and January (6.66%) (Table 3). It was concluded that maximum prevalence occurs in hot months of the year than cool months. The sex wise prevalence was also determined through simple microscopy and PCR. The microscopic results showed the highest prevalence in female sheep (18.80%) than male sheep (17.02) (Table 4). The sex wise prevalence was also determined through microscopic examination and PCR where maximum prevalence was observed in female (18.80%: 27.08%) than male (17.02%: 25.53%) (Table 5) and statistically found significant difference between two diagnostic techniques (\(P < 0.02 \)).

4. Discussion

The current study showed that there is high incidence of Cryptosporidium infection in diarrheic sheep that were clinically characterized by shooting diarrhea and dehydration resulting

Table 1. Season wise prevalence of Cryptosporidium infection in sheep detected by simple microscopy.

Factors	District Bannu	District Lakki Marwat	District Kohat	Overall Prevalence					
	Infected / Total Examined	Prevalence (%)	Prevalence (%)	P-value					
Winter	4/40	10.00	2/40	5.00	4/40	10.00	10/120	8.33 a	0.004
Spring	3/20	15.00	4/20	20.00	4/20	20.00	11/60	18.33 b	
Summer	11/40	27.50	8/40	20.00	14/40	35.00	33/120	27.5a	
Autumn	4/20	20.00	4/20	20.00	4/20	20.00	12/60	20ab	
Total	22/120	72.00	18/120	65.00	26/120	85.00	66/360	18.33%	

* Mean values with different superscripts differ significantly at (\(P < 0.05 \)).

https://doi.org/10.1371/journal.pone.0269859.t001

Table 2. Age wise prevalence of Cryptosporidium infection in sheep detected by simple microscopy.

Age wise animals	District Bannu	District Lakki Marwat	District Kohat	Overall				
	Infected / Total Examined	Prevalence (%)	Prevalence (%)	P-value				
\(\leq 1 \) year age	11/44	25.05 a	8/38	21.05 b	12/52	23.07 ab	31/134	23.13 a
1–2 years age	9/44	20.45 ab	6/42	14.28 b	8/36	22.22 a	23/122	18.85 ab
\(\geq 2–3 \) years age	2/32	6.25 a	4/20	10.23 b	6/32	18.75 a	12/104	11.53 b

* a, b, c * Mean values with different superscripts differ significantly at (\(P < 0.05 \)).

https://doi.org/10.1371/journal.pone.0269859.t002
in high mortality in Pakistan. Similarly other countries in Southern Asia are also at risk for the Cryptosporidium infection in small ruminants. The advance diagnostic technique was applied for detection of Cryptosporidium infection such a polymerase chain reaction (PCR). The PCR based finding of the Cryptosporidium infection was more sensitive method than other conventional microscopy [21].

The highest prevalence of Cryptosporidium infection was recorded in the summer season while the lowest prevalence was recorded in the winter season. Our results are consistent and agree with the results of other researchers and investigators who reported a strong correlation between the warm and wet seasons with the infection rate. A study [22] documented (17.3%) the highest percent prevalence in the summer season in Mazandaran province of Iran where rainfall was maximum [23]. Some other researchers also reported similar results who also reported maximum prevalence of Cryptosporidium infection in rainy and warm season of the year [24] that reach to the highest point in spring and summer season [25]. The highest percent prevalence was recorded in the summer season due to the reason of high intake of water and increased outdoor activities such as swimming (summer activities) during the summer season in recreational water in the form of community swimming and enhancing the chances for fecal-oral transmission [26]. Similarly adult animals produce a large volume of faeces and thus may be responsible for environmental contamination with Cryptosporidium, spp. as reported by Dessi et al. [27].

Table 3. Month wise prevalence of Cryptosporidium infection in sheep detected by simple microscopy.

Factors	District Bannu	District Lakki Marwat	District Kohat	Overall percent prevalence	
	Infected/ Total Examined	Prevalence (%)			
January	0/10 00.00	1/10 10.00	1/10 10.00	2/30	6.66d
February	2/10 20.00	0/10 00.00	1/10 10.00	3/30	10.66c
March	1/10 10.00	1/10 10.00	1/10 10.00	3/30	10.00c
April	2/10 20.00	3/10 30.00	3/10 30.00	8/30	26.66b
May	2/10 20.00	3/10 30.00	2/10 20.00	7/30	23.33d
June	3/10 30.00	1/10 10.00	4/10 40.00	8/30	20.00f
July	2/10 20.00	2/20 20.00	3/10 30.00	7/30	26.66d
August	4/10 40.00	2/10 20.00	5/10 50.00	11/30	36.66a
September	1/10 10.00	3/10 30.00	3/10 30.00	7/30	23.33d
October	3/10 30.00	1/10 10.00	1/10 10.00	5/30	16.66e
November	1/10 10.00	1/10 10.00	1/10 10.00	3/30	10.00c
December	1/10 10.00	0/10 00.00	1/10 10.00	2/30	6.66d
Total	22/120 18.33%	18/120 15.00%	26/120 21.66%	66/360 18.33%	

a, b, c Mean values with different superscripts differ significantly at (P<0.05).

https://doi.org/10.1371/journal.pone.0269859.t003

Table 4. Sex wise prevalence of Cryptosporidium infection in sheep by simple microscopy.

Factors	District Bannu	District Lakki Marwat	District Kohat	Overall		
	Infected / Total Examined	Prevalence (%)				
Male	6/36 18.75	4/28 14.28	6/30 20.00	16/94	17.02*	0.69
Female	16/84 19.04	14/92 15.21	20/90 22.22	50/266	18.80*	

a, b, c Mean values with different superscripts differ significantly at (P<0.05).

https://doi.org/10.1371/journal.pone.0269859.t004
The previous reports of the spread of Cryptosporidium infection in adults’ animal have shown difference ratios ranging from 0 to 71%. Although the majority outbreak of less than 7% has been reported and this is the conclusion those adult animals make no significant contribution to the spread of Cryptosporidium infection [11]. In the present investigation, the simple approach of PCR was applied to determine the percentage of Cryptosporidium infection and found this method was more reliable and sensitive than the conventional approach. The DNA band was discovered from 435 base pairs (BP) that confirmed the accurate amplification of the primers for the Cryptosporidium spp. The polymerase chain reaction (PCR) was first used in 1991 as a rapid sensitive diagnostic tool to detect Cryptosporidium oocysts in manure and water samples. The Cryptosporidium species were identified using various molecular diagnostic techniques such as plain PCR, PCR-RFLP, RT-PCR and nasal PCR methods [28]. According to the Kabayiza et al. [29], who conducted study on 112 animals having different ages 0–2.5 years and were without diarrhea. As a result only 10 animals were positive for Cryptosporidium infection (8.93%). This result is lower than the results obtained in Tanzania (10.4%) and Ethiopia (9.4%), respectively. The highest prevalence was also found in those countries where average rainfall was recorded like Nigeria, 38.3% [30]. It is almost low due to the fact of drinking of clear water, toilet use, less flood and better city drainage system. Also, this low prevalence may be due to use of simple microscopy as diagnostic technique than PCR [31].

The maximum molecular ratio was recorded at the age of 1 year, followed by 1–2 years of age, while the minimum ratio was recorded at the age of 3 years or above. A total of 915 fecal samples were collected from sheep farm in Italy and examined under simple microscopic examination after proper staining. As a result, maximum prevalence was found in diarrheic samples than paste or normal feces. While the genotype analysis revealed the presence of two Cryptosporidium species such as C. parvum and C. ubiquitum. These both consequences have health-related implications because both are Cryptosporidium identified species are considered to be zoonotic, and C. parvum is the 2nd most wide spread cause of human diarrhea [27].

The PCR specialization provides an option to traditional analytical methods for the finding of Cryptosporidium oocysts in clinical and ecological models. We measure up to a simple microscopic test using a Ziehl Neelson modified acid stain washing method with a common

Factors	No. of positive samples/total No. of samples examined by	Molecular (%) prevalence	Microscopic (%) prevalence	value
Area wise prevalence				
Banni	30/120	25.00	18.33	0.19
Lakki Marwat	22/120	18.33	15.00	
Kohat	38/120	31.66	21.66	
Season wise prevalence				
Winter	16/120	13.33	8.33	0.27
Spring	16/60	26.66	18.33	
Summer	40/120	33.33	27.50	
Autumn	18/60	30.00	20.00	
Sex wise prevalence				
Male	24/94	25.53	17.02	0.02
Female	58/266	27.08	18.80	
Age wise prevalence				
≤ 1 year of age	40/134	29.85	23.13	0.26
1–2 years of age	32/122	26.22	18.85	
≥ 2–3 years of age	18/104	17.30	11.53	

a, b, c Mean values with different superscripts differ significantly at (P < 0.05).

https://doi.org/10.1371/journal.pone.0269859.t005
PCR system that could even detect a single oocysts of Cryptosporidium and different species of protozoa based on DNA presence [6]. The molecular technique was used for detection of Cryptosporidium infection that showed more rapid and sensitive results than simple microscopy in diarrheic lambs, and revealed that PCR is more sensitive method for diagnosis of Cryptosporidium infection [32]. While using a PCR, one can easily detect Cryptosporidium infection even having single oocysts in a fecal sample. It’s in line with our research where diarrheal samples were obtained and found a high number of oocysts using PCR technique [33].

5. Conclusion

The study infers that PCR is more reliable, sensitive and can be used as a rapid diagnosis technique for detection of Cryptosporidium infection than conventional microscopy. Furthermore, PCR can distinguish between different types of Cryptosporidium species after proper Sequencing whereas simple microscopy cannot differentiate between different species. The results conclude that PCR has many advantages over simple microscopy and is a more sensitive, authentic, rapid and the most reliable technique for the detection of Cryptosporidium infection in sheep.

Supporting information

S1 Fig. Agarose gel electrophoresis pattern of PCR amplicons of Cryptosporidium Oocysts in (A) autumn; (B) spring; (C) summer; (D) winter.

(DOC)

Acknowledgments

Special thanks for the department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan and Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand to support the study.

Author Contributions

Data curation: Naimat Ullah Khan, Mian Saeed Sarwar, Muhammad Asif, Fazli Rabbani, Rifat Ullah Khan, Nighat Sultana.

Formal analysis: Naimat Ullah Khan, Hazrat Ali, Ali Gohar.

Funding acquisition: Metha Wanapat.

Investigation: Tahir Usman, Hazrat Ali.

Methodology: Naimat Ullah Khan, Tahir Usman, Muhammad Asif, Fazli Rabbani, Muhammad Mobashar.

Software: Tahir Usman, Ali Gohar.

Supervision: Assar Ali Shah, Metha Wanapat.

Validation: Muhammad Mobashar.

Visualization: Mian Saeed Sarwar.

Writing – original draft: Tahir Usman, Nighat Sultana, Nazir Ahmad Khan, Assar Ali Shah, Metha Wanapat.
Writing – review & editing: Tahir Usman, Rifat Ullah Khan, Nazir Ahmad Khan, Assar Ali Shah.

References

1. Thomson S, Hamilton CA, Hope JC, Katzer F, Mabbot NA, Morrison LJ, et al. Bovine cryptosporidiosis: impact, host-parasite interaction and control strategies. Veterinary Research 2017; 48: 1–16. https://doi.org/10.1186/s13567-017-0447-0 PMID: 28800747

2. Santin M. Cryptosporidium and Giardia in ruminants. Veterinary Clinic Food Animal Practice 2020; 36: 223–238. https://doi.org/10.1016/j.cvfa.2019.11.005 PMID: 32029186

3. Khan NU, Saleem MH, Durrani AZ, Ahmad N, Hassan A, Ayaz S, et al. Cryptosporidium: An Emerging Zoonosis in Southern Khyber Pakhtunkhwa (KPK), Pakistan. Pakistan Journal Zoology 2017; 49: 1455–1461. https://doi.org/10.17582/journal.pjz/2017.49.4.1455.1461

4. Mobashar M, Aqeel Q, Khan MT, Shah AA, Abdel-Wareth AA, Khan S, et al. Dietary supplementation effect of alfalfa and Prangos pabularia hay on feed intake, growth, and nutrient degradability in Kari Sheep. Pakistan Journal Zoology 2020. 52: 1–6.

5. Jafari R, Maghsoud AH, Fallah M. Prevalence of Cryptosporidium infection among Livestock and Humans in contact with Livestock in Hamadan District, Journal of Research in Health Sciences 2012; 13: 88–89. https://www.researchgate.net/publication/239077299 PMID: 32029186

6. Kabir MHB, Ceylan O, Ceylan C, Shehata AA, Bando H, Essa MI, et al. Molecular detection of genotypes and subtypes of Cryptosporidium infection in diarrheic calves, lambs, and goat kids from Turkey. Parasitology International 2020; 79: 102163. https://doi.org/10.1016/j.parint.2020.102163 PMID: 32589940

7. Paul S, Sharma DK, Boral R, Mishra KA, Shivsharanappa N, Banerjee PS, et al. Cryptosporidium infection in goats; a review. Advances Animal Veterinary Sciences 2014; 2: 49–54.

8. Tzipori S, Ward H. Cryptosporidiosis: biology, pathogenesis and disease. Microbes Infection 2002; 4: 1047–1058. https://doi.org/10.1016/s1286-4579(02)01629-5 PMID: 12191655

9. Mugabe W, Mpapho GS, Kamau J, Mahabile W, Nsoso SJ, Dipheko K, et al. Occurrences of goat mastitis and milking management in the Oodi agricultural region, Botswana. Pakistan Journal Zoology 2018; 50: 809–812. https://www.researchgate.net/publication/32589940

10. Rabec AH, Merza AD, Al-Hasnawy MH Detection of parasites causing diarrhea in lambs of Babylon governorate. Iraq Plant Archive 2020; 20: 1528–1532. http://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/1528-1532.pdf

11. Wells B, Thomson S, Ensor H, Innes EA, Katzer F. Development of a sensitive method to extract and detect low numbers of Cryptosporidium oocysts from adult cattle faecal samples. Veterinary Parasitology 2016; 227; 26–29. https://doi.org/10.1016/j.vetpar.2016.07.018 PMID: 27523933

12. Coupe S, Sarfati C, Hamane S, Derouin F. Detection of Cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. Journal of Clinical Microbiology 2005; 43(3):1017–23. https://doi.org/10.1128/JCM.43.3.1017-1023.2005 PMID: 15759054

13. Smith RP, Clifton-Hadley FA, Cheney T, Giles M. Prevalence and molecular typing of: Cryptosporidium in dairy cattle in England and Wales and examination of potential on-farm transmission routes. Veterinary Parasitology 2014; 204: 111–119. https://doi.org/10.1016/j.vetpar.2014.05.022 PMID: 24909077

14. Wu Z, Nagano I, Matsuo A, Uga S, Kimata I, Iseeki M, et al. Specific PCR primers for Cryptosporidium parvum with extra high sensitivity. Molecular Cell Probes 2000; 14: 33–39. https://doi.org/10.1006/mcpr.1999.0280 PMID: 10722790

15. PLoS ONE | https://doi.org/10.1371/journal.pone.0269859 July 8, 2022 9 / 10

16. Paraud C, Chartier C. Cryptosporidiosis in small ruminants. Small Ruminant Research. 2012; 1; 103 (1):93–7. https://doi.org/10.1016/j.smallrumres.2011.10.023 PMID: 32288206

17. Casemore DP, Armstrong SRL. Laboratory diagnosis of Cryptosporidiosis. Journal Clinical. Pathology 1985; 38:1337–1341. https://doi.org/10.1136/jcp.38.12.1337 PMID: 2415782

18. Bakiret B. Investigation of waterborne parasites in drinking water source of Ankara Turkish Journal Microbiology 2003; 41:148–151. file:///C:/Users/ASSARA~1/AppData/Local/Temp/412-05.pdf

19. Da Silva Bornay-Linares AJ, Moura IN, Siermaida SB, Tuttle JL, Pieniazek TJ. Fast and reliable extraction of protozoan parasite DNA from fecal specimens. Molecular Diagnosis 1999; 4: 57–64. https://doi.org/10.1016/s1084-8592(99)80050-2 PMID: 10229775
20. Johnson DW, Pieniazek NJ, Griffin DW, Misener L, Rose JB. Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. *Applied Environmental Microbiology* 1995; 61: 3849–3855. https://doi.org/10.1128/aem.61.11.3849-3855.1995 PMID: 8526496

21. Autier B, Belaz S, Razakandrainibe R, Gangneux JP, Robert-Gangneux F. Comparison of three commercial multiplex PCR assays for the diagnosis of intestinal protozoa. *Parasite*. 2018; 25:48 https://doi.org/10.1051/parasite/2018049 PMID: 30230444

22. Gharekhani J, Heidari H, Youssefi M. Prevalence of Cryptosporidium infection in sheep in Iran. *Turkiye Parazitol Derg.* 2014; 38:22–5. https://doi.org/10.5152/tpd.2014.3224 PMID: 24659697

23. Ortega-Mora LM, Requejo-Fernández JA, Pilar-Izquierdo M, Pereira-Bueno J. Role of adult sheep in transmission of infection by Cryptosporidium parvum to lambs: confirmation of periparturient rise. *International Journal for Parasitology*. 1999 Aug 1; 29(8):1261–8. https://doi.org/10.1016/s0020-7519(99)00077-6 PMID: 10576577

24. Perch M, Sodemann M, Jakobsen MS, Valentiner-Branth P, Steinsland H, Fischer TK, et al. Seven years’ experience with Cryptosporidium parvum in Guinea-Bissau, West Africa. *Ann Trop Paediatr.* 2001; 21:313–8. https://doi.org/10.1080/07430170120093490 PMID: 11732149

25. Lake IR, Pearce J, Savill M. The seasonality of human cryptosporidiosis in New Zealand. *Epidemiol Infect.* 136:1383–7. https://doi.org/10.1017/S0950268807009922 PMID: 18053274

26. Sunderland D, Graczyk T K, Tamang L, Breyssse PN. Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. *Water Res* 2007; 41:3483–3489 https://doi.org/10.1016/j.watres.2007.05.009 PMID: 17583766

27. Dessi G, Tamponi C, Varvasia A, Sanna G, Pipia PA, Carta S, et al. Cryptosporidium infections in sheep farms from Italy. *Parasitological Research* 2020; 119: 4211–4218. https://doi.org/10.1007/s00436-020-06947-2 PMID: 33140165

28. Dreelin EA, Ives RL, Molloy S, Rosej B. Cryptosporidium and Giardia in surface water: A case study from Michigan, USA to in-form management of rural water systems. *International Journal of Environmental Research and Public Health* 2014; 11: 10480–503. https://doi.org/10.3390/ijerph111010480 PMID: 25317981

29. Kabayiza JC, Andersson ME, Nilsson S, Bergström T, Muhiwa G, Lindh M. Real-time PCR identification of agents causing diarrhea in Rwandan children less than 5 years of age. *Pediatric Infectious Disease Journal* 2014; 33: 1037–42. https://doi.org/10.1097/INF.0000000000000448 PMID: 25037040

30. Nasser AM. Removal of *Cryptosporidium* by wastewater treatment processes: a review. *Journal Water Health* 2016. 14: 1–3. https://doi.org/10.2166/wh.2015.131 PMID: 26837825

31. Tombang AN, Ambe NF, Bobga TP, Nk fusai CN, Collins NM, Ngwa SB, et al. Prevalence and risk factors associated with *Cryptosporidium* infection among children within the ages 0–5 years attending the Limbe regional hospital, southwest region, Cameroon. *BMC Public Health* 2019; 19: 1144. https://doi.org/10.1186/s12889-019-7484-8 PMID: 31429732

32. Santin M, Trout JM, Fayer R. Prevalence and molecular characterization of *Cryptosporidium* and *Giardia* species and genotypes in sheep in Maryland. *Veterinary Parasitology* 2007; 146: 17–24. https://doi.org/10.1016/j.vetpar.2007.01.010 PMID: 17335979

33. Mi R, Wang X, Huang Y, Mu G, Zhang Y, Jia H, et al. Sheep as a potential source of zoonotic *Cryptosporidium* in fecction in China. *Applied Environmental Microbiology* 2018; 84: e00868–e00818. https://doi.org/10.1128/AEM.00868-18 PMID: 30006394