Fibroblast growth factor 21 (FGF21) modulates glucose and lipid metabolism during fasting. In addition, previous evidence indicates that increased expression of FGF21 during chronic food restriction is associated with reduced bone growth and growth hormone (GH) insensitivity. In light of the inhibitory effects on growth plate chondrogenesis mediated by other FGFs, we hypothesized that FGF21 causes growth inhibition by acting directly at the long bones’ growth plate. We first demonstrated the expression of FGF21, FGFR1 and FGFR3 (two receptors known to be activated by FGF21) and β-klotho (a co-receptor required for the FGF21-mediated receptor binding and activation) in fetal and 3-week-old mouse growth plate chondrocytes. We then cultured mouse growth plate chondrocytes in the presence of graded concentrations of rhFGF21 (0.01–10 μg/ml). Higher concentrations of FGF21 (5 and 10 μg/ml) inhibited chondrocyte thymidine incorporation and collagen X mRNA expression. 10 ng/ml GH stimulated chondrocyte thymidine incorporation and collagen X mRNA expression, with both effects prevented by the addition in the culture medium of FGF21 in a concentration-dependent manner. In addition, FGF21 reduced GH binding in cultured chondrocytes. In cells transfected with FGFR1 siRNA or ERK 1 siRNA, the antagonistic effects of FGF21 on GH action were all prevented, supporting a specific effect of this growth factor in chondrocytes. Our findings suggest that increased expression of FGF21 during food restriction causes growth attenuation by antagonizing the GH stimulatory effects on chondrogenesis directly at the growth plate. In addition, high concentrations of FGF21 may directly suppress growth plate chondrocyte proliferation and differentiation.

Fibroblast growth factor 21 (FGF21) is a member of a subfamily of fibroblasts growth factors (FGFs) (with includes FGF15/19 and FGF23) that lacks the FGF heparin binding domain (1, 2). Thus, these FGFs can diffuse away from their tissue of synthesis and function as endocrine factors.

Previous evidence indicates that, in mammals, fasting induces the expression of FGF21 in the liver and raises its circulating levels; increased FGF21 expression and activity modulates metabolic adaptation to fasting by inducing increased gluconeogenesis, fatty acid oxidation, and ketogenesis (3–5). In addition, we have recently demonstrated (6) in mice that the increased expression of FGF21 during prolonged food restriction, both in the liver and in the long bones’ growth plate, contributes to the attenuation of skeletal growth and growth plate chondrogenesis; one of the underlying mechanisms of growth attenuation is the FGF21-dependent systemic GH insensitivity. Additional evidence also indicates that transgenic mice overexpressing FGF21 are significantly smaller, have reduced tibial length, and display reduced hepatic GH insensitivity when compared with wild-type mice (7).

FGF21 has a specific affinity for FGFR13 but can also signal through all fibroblast growth factor receptors (FGFRs) (2, 8). FGF21-mediated signal transduction requires this growth factor to bind a FGFR complexed with β-klotho, a membrane-spanning protein (9–11). Although FGFRs are expressed in a variety of tissues, expression of FGF21 and β-klotho has been detected mostly in the liver, pancreas, and white adipose tissue (12, 13). The aim of our study was to determine whether during prolonged undernutrition FGF21 may also inhibit bone growth by directly suppressing chondrogenesis and GH action at the growth plate.

MATERIALS AND METHODS

Chondrocyte Culture—The cartilaginous portions of metatarsal bones isolated from C57BL/6N mouse embryos (19 days post-coitus) were dissected, rinsed in PBS, then incubated in 0.2% trypsin for 1 h and 0.2% collagenase for 3 h. Cell suspen-
Effects of FGF21 on Growth Plate Chondrocytes

JOURNAL OF BIOLOGICAL CHEMISTRY

Effects of FGF21 on Growth Plate Chondrocytes

Effects of FGF21 on Growth Plate Chondrocytes
rhFGF21 (0.01, 0.1, 1, 5, and 10 μg/ml). After 24 h, culture medium containing FGF21 was removed and replaced with serum-free DMEM. Monolayer cultures set up in 100-mm culture (15, 16) dishes were then detached by scraping in 4 ml of PBS containing a mixture of protease inhibitors (10 mg/ml aprotinin, 10 mM benzamidine, and 0.2 mM phenylmethylsulfonyl fluoride). After centrifugation, the packed cells were resuspended in 2.5 ml of ice-cold inhibitor mixture and disrupted by sonication. Total cellular membranes were obtained by centrifugation of the cell sonicates at 150,000 × g for 15 min at 4 °C. To measure GH binding, the membrane pellets were resuspended at protein concentrations of 1 mg/ml in 300 μl of binding assay buffer (25 mM Tris-Cl (pH 7.4), 0.1% BSA, and 10 mM MgCl₂) and incubated at 4 °C in triplicate with 10⁵ cpm human [¹²⁵I]labeled GH in the presence or absence of 10 μg of unlabeled GH. At the indicated time points (1, 6, and 24 h), the membrane suspensions were centrifuged and washed twice with 1 ml of ice-cold PBS/BSA, and radioactivity was counted using a scintillation counter.

To determine the soluble GH binding activity, conditioned media were collected, centrifuged for 5 min at 1500 × g to remove cell debris, and concentrated approximated 15-fold by ultracentrifugation using a Centricon (Millipore). Identical volumes of each supernatant were incubated for 8 h at 4 °C with 2 × 10⁵ cpm of [¹²⁵I]GH, and radioactivity was counted using a scintillation counter.

RESULTS

Expression of FGF21, FGFR1, FGFR3, and β-Klotho in Mouse Growth Plate Chondrocytes—To determine whether components of the FGF21 signaling pathway are expressed in growth plate chondrocytes, we used real-time PCR and Western blot. In cultured chondrocytes isolated from 3-week-old mouse tibial growth plates and from fetal (20 days post-coitus) mouse metatarsal growth plates, we demonstrated mRNA (FGF21, FGFR1, FGFR3, and β-klotho) and protein (FGFR1, FGFR3, and β-klotho) expression (Figs. 1 and 2).

Effects of FGF21 on Chondrocyte Proliferation and Differentiation—To evaluate the direct effects of FGF21 on chondrocyte proliferation and differentiation, we added graded concentrations of rhFGF21 (0.01, 0.1, 1, 5, and 10 μg/ml) to the culture medium. After 24 h, higher concentrations of rhFGF21 (5–10 μg/ml) significantly reduced total thymidine incorporation (Fig. 3A, p < 0.01 versus control) and decreased the mRNA expression of collagen X (assessed by real-time PCR, Fig. 3B, p < 0.01 versus control), a marker of chondrocyte differentiation. The inhibitory effects of the higher concentrations of FGF21 on both total thymidine incorporation (supplemental Fig. 1A) and collagen X mRNA expression (supplemental Fig. 1B) persisted at subsequent time points (days 3, 7, and 14). These findings suggest that the FGF21-dependent decreased chondrocyte differentiation is, at least in part, independent from the inhibitory effects of FGF21 on chondrocyte proliferation.

Effects of FGF21 on the FGF Signaling Pathway—To determine whether FGF21 directly modulates the expression and activation of the FGF-dependent signaling pathway in chondrocytes, we first studied the effects of graded concentrations of FGF21 mRNA expression in the mouse liver and growth plate chondrocytes. Liver, tibial, and metatarsal chondrocytes were isolated, and total RNA was extracted and processed as described under “Materials and Methods.” FGF21 mRNA expression was determined by real-time PCR.

FIGURE 1. FGF21 mRNA expression in the mouse liver and growth plate chondrocytes. Liver, tibial, and metatarsal chondrocytes were isolated, and total RNA was extracted and processed as described under “Materials and Methods.” FGF21 mRNA expression was determined by real-time PCR.

FIGURE 2. mRNA and protein expression of FGFR1, FGFR3, and β-klotho in the mouse liver and fetal metatarsal chondrocytes. A, FGFR1, FGFR3, and β-klotho mRNA expression in chondrocytes and liver was assessed by real-time PCR. Total RNA was extracted from chondrocytes isolated from fetal (20 days post-coitus) mouse metatarsal growth plates and from the liver of 3-week-old mice. It was then processed as described under “Materials and Methods.” The mRNA expression of FGFR1, FGFR3, and β-klotho mRNA was normalized by β-actin in the same samples. β-Actin protein extracted from liver and chondrocytes was immunoblotted for FGFR1, FGFR3, and β-klotho. β-Actin was used as a loading control. A representative blot from three independent experiments is presented.
FGF21 on the expression of FGFR1, FGFR3, and β-klotho. None of the concentrations of rhFGF21 used induced the expression of FGFR3, whereas the highest concentration (10 μg/ml) significantly increased the mRNA expression of FGFR1 and β-klotho (Fig. 4A, p < 0.05 versus control). We then evaluated the effects of rhFGF21 on the phosphorylation of ERK 1/2, members of the FGFR-dependent intracellular signaling cascade. After 24 h, rhFGF21 (0.1, 1, 5, and 10 μg/ml) increased ERK 1/2 phosphorylation (Fig. 4B, C, p < 0.01 or p < 0.05 versus control).

Functional Interaction between FGF21 and GH in Chondrocytes—To determine whether FGF21 antagonizes the effects of GH on chondrocyte function, we cultured mouse growth plate chondrocytes without or with graded concentrations of rhFGF21 (0.01, 0.1, 1, 5, and 10 μg/ml) for 24 h. After removal of FGF21 from the culture medium, chondrocytes were incubated with 10 ng/ml rmGH. In chondrocytes previously cultured without rhFGF21, rmGH significantly induced total thymidine incorporation (Fig. 5A) and collagen X mRNA expression (Fig. 5B). Both effects were prevented in chondrocytes previously treated with rhFGF21, with the lowest effective concentration being 0.1 μg/ml. We then evaluated the effects of rhFGF21 on GH binding; in chondrocytes previously cultured in the presence of rhFGF21, 125I-labeled GH binding (Fig. 6) was significantly decreased when compared with that in chondrocytes not previously cultured in the presence of FGF21. Such effect was detected as early as 1 h after 125I-labeled GH incubation. To determine whether the FGF21-dependent decreased GH binding was due to increased proteolysis at the cell surface, we measured soluble growth hormone binding protein by analyzing 125I-labeled GH binding in transfected cell culture medium. The GH binding in the medium of FGF21-treated cells was not significantly different from that in the medium of untreated cells (supplemental Fig. 2). We then evaluated the GH expression in mouse growth plate chondrocytes cultured in the presence of graded concentrations of FGF21. None of the FGF21 concentrations significantly modified GHR mRNA expression (assessed by real-time PCR, Fig. 7A) or GHR protein expression (assessed by Western, Fig. 7, B and C) when compared with untreated chondrocytes. These findings indicate that FGF21 specifically prevents the GH stimulatory effects on chondrocyte function by reducing GH binding. Such reduced binding is not due to either changes in GHR expression or increased proteolysis of the cell surface-bound GHR.

To determine whether the effects of GH and/or FGF21 depend on the intracellular activity of IGF-1 in chondrocytes, we transfected cells with both IGF-1 siRNAs and IGF-1R siRNAs. Total thymidine incorporation and collagen X mRNA expression in GH-treated, siRNA-transfected chondrocytes remained significantly greater than in untreated transfected chondrocytes (supplemental Figs. 3 and 4, respectively). In addition, the antagonistic effects of rhFGF21 on GH activity were confirmed in IGF-1 siRNA + IGF-1R siRNA-transfected cells.

Last, we evaluated the effects of FGF21 and GH in chondrocytes transfected with FGFR1 siRNA or ERK 1 siRNA. As previously shown, FGF21 dose-dependently (0.1, 1, 5, and 10 μg/ml) prevented the GH stimulatory effects on total thymidine incorporation (Fig. 8, panel A) and collagen X expression (Fig. 8, panel B) in control siRNA-transfected chondrocytes. In contrast, in FGFR1 siRNA-transfected or ERK 1 siRNA-transfected cells only the highest concentration of FGF21 (10 μg/ml) prevented the GH effects in chondrocytes. These findings suggest that the FGF21 effects on chondrocyte function are specific and depend on the normal activity of the FGFR1 and ERK 1.

DISCUSSION

Longitudinal bone growth occurs at the growth plate by a process called endochondral ossification (17) in which cartilage is first formed and then remodeled into bone tissue. Cartilage formation primarily results from growth plate chondrocyte proliferation and hypertrophy (18) and extracellular matrix secretion. The newly formed cartilage is invaded by blood vessels and bone cell precursors from the metaphysis, which remodel the cartilaginous hypertrophic zone into bone (19). The net effect of these events is that new bone tissue is progressively laid down at the bottom of the growth plate, resulting in bone elongation. Longitudinal
bone growth is tightly governed by a complex network of endocrine and paracrine growth factors, the latter of which includes the FGFs.

The FGFs is a family of proteins known to be implicated in the regulation of growth plate chondrogenesis (20, 21). The murine growth plate expresses several members of this family,
including FGF21; it has been shown to be expressed in the perichondrium surrounding the rat postnatal growth plate (22). In addition, all four FGFRs are also expressed in the growth plate (22); evidence in humans and in experimental animals indicates that FGFR1 and FGFR3 act as negative regulators of growth plate chondrogenesis (23, 24) and share a remarkably similar downstream signaling pathway (25). In contrast, the activation of FGFR2 and FGFR4 appear to facilitate growth plate chondrogenesis (26, 27). With respect to the functional role of the FGFs expressed in the growth plate, mice overexpressing FGF2 or FGF9 exhibit suppressed growth plate chondrocyte hypertrophy, shortened long bones, and dwarfism (28, 29). Mice with a targeted disruption of FGF18 display expanded growth plate proliferative and hypertrophic zones, thus suggesting that FGF18 (similarly to FGF2 and FGF9) inhibits growth plate chondrogenesis, likely by binding and activating FGFR3 (30, 31).

FGF21 is a member of a subfamily of atypical FGFs that includes FGF15/19 (FGF15 and FGF19 are mouse and human orthologs, respectively) and FGF23 (1, 2). Because these FGFs lack the typical FGF heparin binding domain, they can be released from the tissue of synthesis and act on distant sites as systemic or endocrine factors. On the other hand, recent evidence suggests that FGF21 may also function in a paracrine/autocrine manner (32, 33). To activate its intracellular signaling pathway, FGF21 binds one of the classic, cell-bound, FGF receptors complexed to β-klotho (9–11), a recently identified membrane-spanning protein. Although some studies indicate that FGF21 may preferentially activate the FGFR1/β-klotho complex, other evidence indicates that it can bind all the four FGFRs (2, 8). FGF21 is predominantly expressed in the exocrine and endocrine pancreas, liver, muscle, and white adipose tissue. The co-localization of the FGFRs and β-klotho in these tissues suggest that FGF21 may exert its function in the same sites (12, 13).

Although FGF21 is most known as an important metabolic regulator during fasting, recent evidence suggests that it may be implicated in the regulation of skeletal growth. In 2008, Inagaki et al. (7) showed that transgenic mice overexpressing FGF21 are smaller and exhibit shorter tibiae when compared with WT mice. In addition, the decreased expression of phosphorylated Stat5 and IGF-1 in the liver of FGF21 transgenic mice suggests that overexpression of FGF21 may cause GH insensitivity. These findings and the fact that FGF21 expression is increased during fasting, led us to hypothesize that increased expression of FGF21 during chronic undernutrition may cause undernutrition-associated growth failure in mammals.

Indeed, we have recently demonstrated that mice undergoing food restriction experience reduced body and tibial growth along with increased FGF21 expression in the liver and in the tibial growth plate (6). Food-restricted Fg21 knock-out mice exhibit greater body and tibial growth and spared growth plate chondrogenesis compared with food-restricted wild-type littermates. In addition, food-restricted Fg21 knock-out mice are more GH-sensitive than the wild-type mice, with such differences resulting from greater GH receptor abundance in hepatocytes. These findings suggest that increased expression of FGF21 during prolonged food restriction causes growth attenuation by inducing systemic GH insensitivity. Interestingly, food-restricted Fg21 knock-out mice also show greater GH receptor abundance and reduced Stat5 phosphorylation and IGF-1 expression in the tibial growth plate chondrocytes. Although it is plausible to hypothesize that FGF21 may also cause GH insensitivity directly at the growth plate, these previous findings do not confirm a direct effect of FGF21 on growth plate chondrocytes.

In this study, we have demonstrated that FGF21 directly antagonizes GH stimulatory effects on proliferation and differentiation of growth plate chondrocytes. Of note, the GH effects on chondrocyte function (as well as the antagonistic effects of FGF21) persist in IGF-1 siRNA-transfected chondrocytes. Thus, it is plausible to speculate that these effects are, at least in part, non-IGF-1-dependent. The direct effects of FGF21 on the growth plate are supported by the expression of FGF1R, FGF3R, and β-klotho in growth plate chondrocytes as well as by the FGF21-mediated induction of ERK 1/2 phosphorylation (ERK 1/2 are members of the FGF-R-dependent intracellular signaling cascade). The fact that the antagonistic properties of FGF21 on GH binding and GH-stimulated chondrocyte proliferation and differentiation are prevented in FGF1R siRNA- or ERK 1 siRNA-transfected chondrocytes further support the conclusion that the effects of FGF21 are specific. In our study high concentrations of rhFGF21 have been found to directly inhibit chondrocyte proliferation and differentiation; such effects may be explained by the increased expression of FGF1R and β-klotho induced by the highest concentration of FGF21, which could potentiate the intracellular transcriptional changes elicited by FGF21. However, we do not know whether these high concentrations used in vitro reflect the levels of expression in tissues or the serum levels of FGF21 during prolonged food restriction.

In our study the lack of any direct effect of FGF21 on GHR expression or on the proteolysis of the cell membrane-bound
GHR suggests that the FGF21-dependent decreased GH binding likely results from a reduced GHR intracellular recycling. Interestingly, a recent study has demonstrated the increased hepatic expression of LEPROT and LEPROTL1 (two small proteins known to regulate intracellular protein trafficking) during fasting in rodents. The increased activity of LEPROT and LEPROTL1 causes GH insensitivity by inhibiting GHR intracellular trafficking and, in turn, GHR cell-surface abundance without affecting GHR expression (16). Ongoing studies in our laboratory are evaluating the functional interaction between FGF21 and LEPROT/LEPROTL1 in the liver and in chondrocytes.

Although our study demonstrates its direct effects on chondrocytes, it is still unclear whether FGF21 antagonizes GH effects on growth plate chondrogenesis as a systemic (endocrine) and/or as a paracrine growth factor. Indeed, its food restriction-related increased expression in the liver (and plausibly in other tissues) as well as in the mouse tibial growth plate would suggest both (or either) modalities of action.
In conclusion, our study provides evidence for a specific, direct effect of FGF21 on growth plate chondrocytes; by binding FGFR1 and/or FGFR3 (negative regulators of growth plate chondrogenesis), FGF21 prevents GH-mediated stimulation of chondrocyte proliferation and differentiation. In addition, high concentrations of FGF21 directly inhibit cell proliferation and differentiation. Thus, our findings contribute to elucidate the cellular and molecular mechanisms underlying the growth attenuation associated with the increased expression of FGF21 during food restriction in rodents.

REFERENCES
1. Nishimura, T., Nakatake, Y., Konishi, M., and Itoh, N. (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. *Biochim. Biophys. Acta* **1492**, 203–206
2. Kharitonkenov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaksunov, S. R., and Shafanet, A. B. (2005) FGF-21 as a novel metabolic regulator. *J. Clin. Invest.* **115**, 1627–1635
3. Inagaki, T., Dutched, P., Zhao, G., Ding, X., Gautron, L., Parasewara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., Elmgquist, J. K., Gerard, R. D., Burgess, S. C., Hammer, R. E., Mangelsdorf, D. J., and Kliwer, S. A. (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. *Cell Metab.* **5**, 415–425
4. Galman, C., Lundøen, T., Kharitonkenov, A., Bina, H. A., Eriksen, M., Hafstrøm, I., Dahlin, M., Amark, P., Angelin, B., and Rudling, M. (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. *Cell Metab.* **8**, 169–174
5. Reitman, M. L. (2007) FGF21. A missing link in the biology of fasting. *Cell Metab.* **5**, 405–407
6. Kubick, R. A., Wu, S., Kharitonkenov, A., De Luca, F. (2012) Role of fibroblast growth factor 21 (FGF21) in underrunners-related attenuation of growth in mice. *Endocrinology* **153**, 2287–2295
7. Inagaki, T., Lin, V. Y., Goetz, R., Mohammadi, M., Mangelsdorf, D. J., and Kliwer, S. A. (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. *Cell Metab.* **8**, 77–83
8. Kliwer, S. A., and Mangelsdorf, D. J. (2010) Fibroblast growth factor 21. From pharmacology to physiology. *Am. J. Clin. Nutr.* **91**, 2545–2575
9. Kharitonkenov, A., Dunbar, J. D., Bina, H. A., Bright, S., Moyers, J. S., Zhang, C., Ding, L., Micanovic, R., Mehrbod, S. F., Kniernan, M. D., Hale, J. E., Coskin, T., and Shafanet, A. B. (2008) FGF21/FGF21 receptor interaction and activation is determined by β-klotho. *J. Cell Physiol.* **215**, 1–7
10. Ogawa, Y., Kuros, H., Yamamoto, M., Nandi, A., Rosenblatt, K. P., Goetz, R., Eliseenkov, A. V., Mohammadi, M., and Kuro-o, M. (2007) β-Klotho is required for metabolic activity of fibroblast growth factor 21. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 7432–7437
11. Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K., Oki, J., Koyama, Y., S., Baüeg, E., Rouillé, Y., Saës, J. P., Staels, B., and Baillé, B. (2009) LEPROT and LEPROT1 cooperatively decrease hepatic growth hormone action in mice. *J. Clin. Invest.* **119**, 3830–3838
12. Hunziker, E. B. (1994) Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. *Microsc. Res. Tech.* **28**, 505–519
13. Farnum, C. E., and Wilshan, N. I. (1987) Morphologic stages of terminal hypertrophic chondrocyte of growth plate cartilage. *Anat. Rec.* **219**, 221–232
14. Aharinejad, S., Marks, S. C., Jr., Böck, P., MacKay, C. A., Larson E. K., Tahamani A., Mason-Savas A and Firas, W. (1995) Microvascular pattern in the metaphysis during bone growth. *Anat. Rec.* **242**, 111–122
15. De Luca, F., and Baron, J. (1999) Control of bone growth by fibroblast growth factors. *Trends. Endocrinol. Metab.* **10**, 61–65
16. Horton, W. A., and Degen, C. R. (2009) FGFs in endochondral skeletal development. *Trends. Endocrinol. Metab.* **20**, 341–348
17. Lazarus, J. E., Hegde, A., Andrade, A. C., Nilsson, O., and Baron, J. (2007) Fibroblast growth factor expression in the postnatal growth plate. *Bone* **40**, 577–586
18. Deng, C., Wynsh-Boris, A., Zhou, F., Kuo, A., and Leder, P. (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. *Cell* **84**, 911–921
19. White, K. E., Cabral, M. J., Davis, S. I., Fishburn, T., Evans, W. E., Ichikawa, S., Fields, J., Xu, Y., Shaw, N. J., McIlwan, N. J., McKeown, C. F., Fitzpatrick, D., K., Ornitz, D. M., and Econs, M. J. (2005) Mutations that cause osteoglophonic dysplasia define novel roles for FGF19 in bone elongation. *Am. J. Hum. Genet.* **76**, 361–367
20. Wang, Q., Green, R. P., Zhao, G., and Ornitz, D. M. (2001) Differential regulation of endochondral bone growth and joint development by FGF19 and FGF3-tyrosine kinase domains. *Development* **128**, 3876–3877
21. Yu, K., Xu, J., Liu, Z., Z., Sosic, D., Shao, J., Olson, E. N., Towler, D. A., and Ornitz, D. M. (2003) Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. *Development* **130**, 3063–3074
22. Weinstein, M., Xu, O., Ohya, K., and Deng, C. X. (1998) FGF3- and FGF4-function cooperate to directly alveogenesis in the murine lung. *Development* **125**, 3615–3623
23. Coffin, J. D., Florkiewicz, R. Z., Neumann, J., Mort-Hopkins, T., Dorn, G. W., 2nd, Lightfoot, P., German, R., Howes, P. N., Kier, A., and O'Toole, B. A. (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. *Mol. Biol. Cell* **6**, 1861–1873
24. Garofalo, S., Kligger-Spatz, M., Cooke, J. L., Wolstoi, L., Lunstrum, G. P., Moshkovitz, S. M., Horton, W. A., andayan, A. (1999) Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. *J. Bone Miner. Res.* **14**, 1909–1915
25. Liu, Z., Xu, J., Colvin, J. S., and Ornitz, D. M. (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. *Genes Dev.* **16**, 859–869
26. Ohbayashi, N., Shibayama, M., Kurotaki, Y., Imanishi, M., Fujimori, T., Toho, N., Takada, S. (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. *Genes Dev.* **16**, 870–879
27. Johnson, C. L., Weston, J. Y., Chadi, S. A., Fazio, E. N., Huff, M. W., Kharitonkenov, A., Köester, A., and Pin, C. L. (2009) Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. *Gastroenterology* **137**, 1795–1804
28. Fisher, M. F., Chui, P. C., Antonellis, P. J., Bina, H. A., Kharitonkenov, A., Fler, J. S., and Maratos-Flier, E. (2010) Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. *Diabetes* **59**, 2781–2789