Sharp and Simple Bounds for the Raw Moments of the Binomial and Poisson Distributions

Thomas D. Ahle thomas@ahle.dk
University of Copenhagen, BARC, Facebook
16th November 2021

Abstract

We prove the inequality $E\left[\left(\frac{X}{\mu}\right)^k\right] \leq \left(\frac{k}{\mu} \log(1+\frac{k}{\mu})\right)^k \leq \exp\left(\frac{k^2}{2\mu}\right)$ for sub-Poissonian random variables X, such as Binomially or Poisson distributed variables, with mean μ. The asymptotic behaviour $E[\left(\frac{X}{\mu}\right)^k] = 1 + O(k^2/\mu)$ matches a lower bound of $1 + \Omega(k^2/\mu)$ for small k^2/μ. This improves over previous uniform raw moment bounds by a factor exponential in k.

1 Introduction

Suppose we sample an urn of n balls, each coloured red with probability p and otherwise blue. What is the probability that a sample of k balls, with replacement, from this urn consists of only red balls? Such questions are of interest to sample-efficient statistics and the derandomisation of algorithms.

If $R \sim \text{Binomial}(n, p)$ denotes the number of red balls in the urn, the probability of drawing a single red ball from the urn is R/n. Thus, the probability that a sample of k balls from the urn is all red is given by $(R/n)^k$, or $P = E[\left(\frac{R}{n}\right)^k]$ when the probability is taken over both sample phases. Whenever the urn is large (n is large), R/n concentrates around p, so sampling from the urn is equivalent to sampling from the original distribution and $P \approx p^k$. Indeed, from Jensen’s inequality, we can see that p^k is always a lower bound: $P = E[\left(R/n\right)^k] \geq E[(R/n)^k] = p^k$. Previous authors have shown a nearly matching upper bound of C^kp^k in the range $k/(np) = O(1)$ for some constant $C > 1$. (See eq. (1) below for details.) In this note, we improve the upper bound to $P \leq p^k(1 + k/(2np))^k$, which shows that when $k = o(\sqrt{np})$, the factor C^k can be replaced by just $1 + o(1)$.

1.1 Related work

One direct approach to computing the Binomial moments expands them using the Stirling numbers of the second kind: $E[X^k] = \sum_{i=0}^{k} \binom{k}{i} n^i p^i$, where $n^i = n(n-1)\cdots(n-i+1)$. This equality can be derived as a sum of the much easier to compute “factorial moments”, $E[X^k] = n^k p^k$. See Knoblauch (2008) for details. Taking the leading two terms of the sum, one finds that $E[X^k] = (np)^k \left(1 + \binom{k}{2} \frac{1-p}{np} + O(1/n^2)\right)$ as $n \to \infty$. However, this
approach does not work when \(k \) is not constant with respect to \(n \). Similarly, for the Poisson distribution, the moments can be expressed as the so-called Bell (or Touchard) polynomials in \(\mu \):

\[
E[X^k] = \sum_{i=0}^{k} \{k\}_i \mu^i.
\]

This sum gives a simple lower bound

\[
E[X^k] \geq \{k\}_k \mu^k + \{k\}_{k-1} \mu^{k-1} = \mu^k \left(1 + \frac{k(k-1)}{2\mu^2}\right),
\]

matching our upper bound asymptotically when \(k = O(\sqrt{\mu}) \). However, as in the Binomial case, the sum does not easily yield a uniform bound. We give the details of both lower bounds in Section 2.2.

A different approach uses the powerful results on moments of independent random variables by Latała (1997) and Pinelis (1995). In the case of Binomial and Poisson random variables, they yield:

\[
\left(c \frac{k/\mu}{\log(1 + k/\mu)} \right)^k \leq E[(X/\mu)^k] \leq \left(C \frac{k/\mu}{\log(1 + k/\mu)} \right)^k
\]

for some universal constants \(c < 1 < C \). The bound is tight up to the factor \((C/c)^k \), which is negligible when the overall growth is \(O(k^k) \). However, when \(k/\mu \to 0 \), we expect the upper bound to be 1, and so the factor \(C^k \) in the upper bound can be overwhelmingly large.

A third option is to use a Rosenthal bound, such as the following by Berend and Tassa (2010), (see also Johnson et al., 1985):

\[
E[X^k] \leq B_k \max\{\mu, \mu^k\}.
\]

Here, \(B_k \) is the \(k \)th Bell number, which Berend and Tassa show satisfies the uniform bound \(B_k < \left(\frac{0.792k}{\log(k+1)} \right)^k \). For large \(k \), a precise asymptotic bound, \(B_k^{1/k} = \frac{k}{e \log k} (1 + o(1)) \), is given by (e.g. de Bruijn, 1981; Ibragimov and Sharakhmetov, 1998). Unfortunately, the Rosenthal bound is incomparable to the other bounds in this paper when \(\mu < 1 \), as it grows with \(\mu \) rather than \(\mu^k \). However, for \(\mu \geq 1 \) and integral, we show a matching asymptotic lower bound in the second half of Section 2.2. That indicates that the upper bound of this paper could be improved by a factor \(e^{-k} \) for large \(k \).

Finally, Ostrovsky and Sirota (2017) give another asymptotically sharp bound in a recent preprint. Using a technique based on moment generating functions, similar to this paper, they bound the Bell polynomial, which as discussed above, is equivalent to bounding the moments of a Poisson random variable. The bound holds when \(k \geq 2\mu \):

\[
E[(X/\mu)^k]^{1/k} \leq \frac{k/\mu}{e \log(k/\mu)} \left(1 + C(\mu)^{\log\log(k/\mu)} \right) \frac{\log\log(k/\mu)}{\log(\mu)}
\]

if \(k \geq 2\mu \),

where \(C(\mu) > 0 \) is some “constant” depending only on \(\mu \). In the range \(k < 2\mu \), Ostrovsky and Sirota only gives the bound \(E[(X/\mu)^k] \leq 8.9758^k \), so similarly to the other bounds presented, it loses an exponential factor in \(k \) compared to Theorem 1 below, for smaller \(k \).

2 Bounds

The theorem considers “sub-Poissonian” random variables, which are variables \(X \), satisfying the requirement

\[
E[\exp(tX)] \leq \exp(\mu(e^t - 1)).
\]

Such sub-Poissonian include many simple distributions, such as the Poisson or Binomial distribution. We give more examples in Section 3.
Theorem 1. Let X be a non-negative random variable with mean $\mu > 0$ and moment-generating function $E[\exp(tX)]$ bounded by $\exp(\mu(e^t - 1))$ for all $t > 0$. Then for all $k > 0$ and any $\alpha > 0$:

$$E[(X/\mu)^k] \leq \left(\frac{k/\mu}{e^{1-\alpha \log(1+\alpha k/\mu)}}\right)^k.$$

The theorem has a free parameter, α, which is optimally set such that $1 + \alpha k/\mu = e^{W(k/\mu)}$, where W is the Lambert-W function, which is defined by $W(x)e^{W(x)} = x$.\footnote{The Lambert-W function has multiple branches. We always refer to the main one (sometimes called the 0th), in which $W(x)$ and x are both positive.}

In practice the following two corollaries may be easier to work with.

Corollary 1.

$$E[(X/\mu)^k] \leq \left(\frac{k/\mu}{\log(1+k/\mu)}\right)^k \leq \left(1 + \frac{k}{2\mu}\right)^k \leq \exp\left(\frac{k^2}{2\mu}\right).$$

Proof. For the first inequality, set $\alpha = 1$ in Theorem 1. The second bound, we use a standard logarithmic inequality, $\log(1+x) \leq 1 + x/2$ (see e.g. Topsøe, 2007, eq. 6). The last bound is the standard $1 + x \leq \exp(x)$.

In the range $k = O(\sqrt{\mu})$ we show a matching lower bound of $1+\Omega(k^2/\mu)$ in Section 2.2, eq. (9).

Corollary 2. Let $x = k/\mu$, then

$$E[(X/\mu)^k]^{1/k} \leq \frac{x e^{1/\log(e+x)}}{e \log(1 + x/\log(e + x))} = \frac{x}{e \log x} \left(1 + O\left(\frac{\log \log x}{\log x}\right)\right) \quad \text{as } x \to \infty.$$ \hspace{1cm} (4)

Proof. Take $\alpha = 1/\log(e+x)$. For $x > 0$ we have $\log(e+x) > 0$ and so $\alpha > 0$ as required by Theorem 1.

Corollary 2 matches our lower bound in eq. (10), as well as Ostrovsky and Sirota in eq. (3), but without the restriction on the range of k/μ.

2.1 The proof

Technically our bound is shown using the moment-generating function and some new sharp inequalities involving the Lambert-W function. We will use the following lemma:

Lemma 1 (Hoorfar and Hassani, 2008). For all $y > 1/e$ and $x > -1/e$,

$$e^{W(x)} \leq \frac{x + y}{1 + \log y}. \hspace{1cm} (5)$$

We present an elementary proof of this fact for completeness:
Proof. Starting from \(1 + t \leq e^t\), substitute \(\log(y) - t\) for \(t\) to get \(1 + \log y - t \leq ye^{-t}\). Multiplying by \(e^t\) we get \(e^t(1 + \log y) \leq te^t + y\). Let \(t = W(x)\) s.t. \(te^t = x\). Rearranging, we get eq. (5). □

Taking \(y = e^{W(x)}\) in eq. (5) makes the two sides equal, so we can think of Lemma 1 as a way to turn a rough estimate into an upper bound.

We apply Lemma 1 to show a new bound on \(W(x)\) in a similar style. This lemma will be the main ingredient in proving Theorem 1.

Lemma 2. For all \(y > 1\) and \(x > 0\),

\[
\frac{1}{W(x)} + W(x) \leq \frac{y}{x} + \log \left(\frac{x}{\log y} \right),
\]

with equality if \(y = e^{W(x)}\).

Proof. The proof uses the identities \(W(x) = \log \left(\frac{x}{W(x)} \right)\) and \(\frac{1}{W(x)} = \frac{1}{x} \exp(W(x))\) which are simple rewritings of the definition \(W(x)e^{W(x)} = x\). The main idea is to introduce a new variable \(z > 0\), to be determined later, which allows us to control the effect of applying the logarithmic inequality \(\log x \geq 1 - 1/x\). We also use Lemma 1 which introduces another new variable \(y > 1\) to be determined.

We bound:

\[
\frac{1}{W(x)} + W(x) = \frac{1}{W(x)} + \log \left(\frac{x}{W(x)} \right)
\]

\[
= \frac{1}{W(x)} + \log \left(\frac{x}{W(x)} \right) - \log \left(\frac{x}{z} \right)
\]

\[
\leq \frac{1}{W(x)} + \log \left(\frac{x}{z} \right) - \left(1 - \frac{z}{W(x)} \right)
\]

\[
= \frac{1 + z}{W(x)} - 1 + \log \left(\frac{x}{z} \right)
\]

\[
= e^{W(x)} \frac{1 + z}{x} - 1 + \log \left(\frac{x}{z} \right)
\]

\[
\leq \frac{x + y}{1 + \log(y)} \frac{1 + z}{x} - 1 + \log \left(\frac{x}{z} \right).
\]

\[
= \frac{y}{x} + \log \left(\frac{x}{\log y} \right).
\]

Here the last two steps come from the inequality eq. (5) in its general form, and the substitution \(z = \log y\). We can check that equality follows all the way through if we let \(y = e^{W(x)}\). □

We are now ready to prove the main theorem of the paper:

Proof of Theorem 4. Let \(m(t) = \text{E}[\exp(tX)]\) be the moment-generating function. We will bound the moments of \(X\) by

\[
\text{E}[X^k] \leq m(t) \left(\frac{k}{et} \right)^k,
\] \hspace{1cm} (6)

4
which holds for all \(k \geq 0 \) and \(t > 0 \). This follows from the basic inequality \(1 + z \leq e^z \), where we substitute \(tz/k - 1 \) for \(z \) to get \(tz/k \leq e^{tz/(k\mu)} \). Letting \(z = X \) and taking expectations, we get eq. (6).

We now define \(x = k/\mu \) and take \(t \) such that \(te^t = x \). In the notation of the Lambert-W function, this means \(t = W(x) \). We note that \(t > 0 \) whenever \(x > 0 \). We proceed to bound the moments of \(X/\mu \) using eq. (6):

\[
E[(X/\mu)^k] \leq m(t) \left(\frac{k}{e^t} \right)^k \mu^{-k}
\]

\[
\leq \exp(\mu(e^t - 1)) \left(\frac{k}{e^t \mu} \right)^k
\]

\[
= \exp(\mu(x/t - 1)) \left(\frac{e^t}{e} \right)^k
\]

\[
= \exp((k/x)(x/t - 1) + k(t - 1))
\]

\[
= \exp(kf(x))
\]

where we define \(f(x) := 1/t - 1/x + t - 1 \). Here eq. (7) came from the simple rewriting of the definition of \(t \), \(1/t = e^t/x \)

We continue to bound \(f(x) \) using Lemma 2

\[
f(x) = \frac{1}{W(x)} + W(x) - 1 - \frac{1}{x}
\]

\[
\leq \frac{y}{x} + \log \left(\frac{x}{\log y} \right) - 1 - \frac{1}{x}
\]

\[
= \alpha - 1 + \log \left(\frac{x}{\log(1 + \alpha x)} \right),
\]

taking \(y = 1 + \alpha x \), which is greater than 1 when \(\alpha \) and \(x \) are both greater than 0.

Backing up, we have shown

\[
E[(X/\mu)^k] \leq \exp(kf(x)) \leq \left(\frac{x}{e^{1-\alpha \log(1 + \alpha x)}} \right)^k,
\]

which finishes the proof.

\[\square\]

2.2 Lower bound

As mentioned in the introduction, the expansion for the Poisson moments \(E[X^k] = \sum_{i=0}^{k} \binom{k}{i} \mu^i \) gives a simple lower bound by taking the two highest terms. We note that \(\binom{k}{k} = 1 \) and \(\binom{k}{k-1} = \binom{k}{2} \) to get

\[
E[X^k] \geq \mu^k \left(1 + \frac{k(k-1)}{2\mu} \right),
\]

matching Theorem 1 asymptotically for \(k = O(\sqrt{\mu}) \).
The expansion for Binomial moments \(E[X^k] = \sum_{i=0}^{k} \binom{k}{i} n^i p^i \) yields a similar lower bound

\[
E[X^k] \geq np^k + \binom{k}{2} n^{k-1} p^{k-1} \\
= (np)^k \left(\frac{n^k}{n^k} \right) \left(1 + \binom{k}{2} \frac{1}{(n-k+1)p} \right) \\
= (np)^k \left(\prod_{i=0}^{k-1} \frac{1}{n} \right) \left(1 + \binom{k}{2} \frac{1}{(n-k+1)p} \right) \\
\geq (np)^k \left(1 - \binom{k}{2} \frac{1}{n} \right) \left(1 + \binom{k}{2} \frac{1}{np} \right) \\
= (np)^k \left(1 + \binom{k}{2} \frac{1-p}{np} \left(1 - \binom{k}{2} \frac{1}{n} \right) \right),
\]

which matches Theorem 1 for \(k = O(\sqrt{n}) \) and \(p \) not too close to 1.

We will investigate some more precise lower bounds as \(k/\mu \) gets large. As mentioned briefly in the introduction, there is a correspondence between the moments of a Poisson random variable and the Bell polynomials defined by \(B(k, \mu) = \sum_i \{i\}_k \mu^i \). In particular, \(E[X^k] = B(k, \mu) \), if \(\mu \) is the mean of the Poissonian random variable. The Bell polynomials are so named because \(B(k, 1) \) is the \(k \)th Bell number. By Dobinski’s formula \(B(k, 1) = \frac{1}{e} \sum_{i=0}^{\infty} \frac{i^k}{i!} \), the Bell numbers are generalised for real \(k \). We write these as \(B_x = B(x, 1) \).

We give a lower bound for \(E[(X/\mu)^k] \) by showing the following simple connection between the Bell polynomials and Bell numbers:

Theorem 2. Let \(k \) be a positive real number and \(\mu \geq 1 \) be an integer. Then

\[
B(k, \mu)/\mu^k \geq B_{k/\mu}^\mu.
\]

While the proof below assumes \(\mu \) is an integer, we will conjecture Theorem 2 to be true for any \(\mu \geq 1 \). Now by de Bruijn’s (1981) asymptotic expression for the Bell numbers:

\[
E[(X/\mu)^k]^{1/k} \geq B_{k/\mu}^{\mu/k} = \frac{k/\mu}{e \log(k/\mu)} \left(1 + \Theta \left(\frac{\log \log(k/\mu)}{\log(k/\mu)} \right) \right)
\]

as \(k/\mu \to \infty \). (10)

matching our upper bound, eq. (4), the upper bound of Ostrovsky and Sirota, eq. (3), for large \(k \), as well as Latała’s uniform lower bound with a different constant.

Proof of Theorem 2. Let \(X, X_1, \ldots, X_\mu \) be i.i.d. Poisson variables with mean 1, then \(S = \sum_{i=1}^{\mu} X_i \) is Poisson with mean \(\mu \). We write \(||X||_k = E[X^k]^{1/k} \). Then by the AG inequality:

\[
||S/\mu||_k = \left\| \frac{1}{\mu} \sum_{i=1}^{\mu} X_i \right\|_k \geq \left\| \left(\prod_{i=1}^{\mu} X_i \right)^{1/\mu} \right\|_k = \left\| \prod_{i=1}^{\mu} X_i \right\|_{k/\mu}^{1/\mu} = \left(\prod_{i=1}^{\mu} ||X_i||_{k/\mu} \right)^{1/\mu} = ||X||_{k/\mu}.
\]

(11)

Since \(X \) has mean 1 we have \(||X||_{k/\mu} = B_{k/\mu}^{\mu/k} \), and as \(S \) has mean \(\mu \) we have \(||S/\mu||_k = B(k, \mu)^{1/k}/\mu \). Thus, taking \(k \)th powers, eq. (11) is what we wanted to show. \(\square \)
For small k/μ this bound is less interesting since $B_x \to 0$ as $x \to 0$, rather than 1 as our upper bound. However, it is pretty tight, as we conjecture by the following matching upper bound in terms of the Bell numbers:

Conjecture 1. For all $k > 0$ and $\mu \geq 1$,

$$B_{k/\mu}^{1/(k/\mu)} \leq \frac{B(k, \mu)^{1/k}}{\mu} \leq B_{k/\mu+1}^{1/(k/\mu+1)}.$$

Furthermore, for $0 < \mu \leq 1$, $\frac{B(k, \mu)^{1/k}}{\mu} \leq B_{k/\mu}^{1/(k/\mu)}$.

While the upper bound appears true numerically, it can’t follow from our moment-generating function bound eq. (8), since it drops below that for k/μ bigger than 40. The conjectured upper bound is even incomparable with our Theorem 1, since it is slightly above $\frac{k/\mu}{\log(1+k/\mu)}$ for very small k/μ. The conjectured bound is weaker than eq. (2) by Berend and Tassa (2010) in the region $k < 2$ and $\mu < 1$, but for all other parameters, it is substantially tighter.

3 Sub-Poissonian Random Variables

We call a non-negative random variable X sub-Poissonian if $E[X] = \mu$ and the moment-generating function, mgf., $E[\exp(tX)] \leq \exp(\mu(e^t - 1))$ for all $t > 0$. We will briefly show that this notion includes all sums of bounded random variables, such as the Binomial distribution.

If X_1, \ldots, X_n are sub-Poissonian with mgf. $m_1(t), \ldots, m_n(t)$ and mean μ_1, \ldots, μ_n respectively, then $\sum_i X_i$ is sub-Poissonian as well, since

$$E[\exp(t \sum_i X_i)] = \prod_i m_i(t) \leq \prod_i \exp(\mu_i(e^t - 1)) = \exp\left(\left(\sum_i \mu_i\right)(e^t - 1)\right).$$

Next, a random variable bounded in $[0, 1]$ with mean μ has mgf.

$$E[\exp(tX)] = 1 + \sum_{k=1}^{\infty} t^k \frac{E[X^k]}{k!} \leq 1 + \mu \sum_{k=1}^{\infty} t^k \frac{E[1^{k-1}]}{k!} = 1 + \mu(e^t - 1) \leq \exp(\mu(e^t - 1)).$$

Hence if $X = X_1 + \cdots + X_n$ where each $X_i \in [0, 1]$ we have $\mu = E[X] = \sum_i E[X_i]$ and by Theorem 1 that $E[(X/\mu)^k] \leq \frac{k/\mu}{\log(k/\mu+1)}$. In particular this captures sum of Bernoulli variables with distinct probabilities.

An example of a non-sub-Poissonian distribution is the geometric distribution with mean μ. This has moment generating function $m(t) = \frac{1}{1-\mu(e^t - 1)}$, which is larger than $\exp(\mu(e^t - 1))$ for all $t > 0$. However, likely, similar methods to those in the proof of Theorem 1 will still apply to bound its moments.

4 Acknowledgements

The author would like to thank Robert E. Gaunt for his encouragement and helpful suggestions.
References

Daniel Berend and Tamir Tassa. Improved bounds on Bell numbers and on moments of sums of random variables. *Probability and Mathematical Statistics*, 30(2):185–205, 2010.

Nicolaas Govert de Bruijn. *Asymptotic methods in analysis*, volume 4. Courier Corporation, 1981.

Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the Lambert W function and hyperpower function. *J. Inequal. Pure and Appl. Math*, 9(2):5–9, 2008.

Rustam Ibragimov and Sh Sharakhmetov. On an Exact Constant for the Rosenthal Inequality. *Theory of Probability & Its Applications*, 42(2):294–302, 1998.

William B Johnson, Gideon Schechtman, and Joel Zinn. Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables. *The Annals of Probability*, 13(1):234 – 253, 1985.

Andreas Knoblauch. Closed-Form Expressions for the Moments of the Binomial Probability Distribution. *SIAM Journal on Applied Mathematics*, 69(1):197–204, 2008.

Rafał Latała. Estimation of moments of sums of independent real random variables. *The Annals of Probability*, 25(3):1502–1513, 1997.

Eugene Ostrovsky and Leonid Sirota. Non-asymptotic estimation for Bell function, with probabilistic applications. *arXiv preprint arXiv:1712.08804*, 2017.

Iosif Pinelis. Optimum bounds on moments of sums of independent random vectors. *Siberian Adv. Math*, 5(3):141–150, 1995.

Flemming Topsøe. Some bounds for the logarithmic function. *Inequality theory and applications*, 4(01), 2007.

Jacques Touchard. Sur les cycles des substitutions. *Acta Mathematica*, 70(1):243–297, 1939.