Real Time Video based Heart and Respiration Rate Monitoring

Jafar Pourbemany*, Almabrok Essa, and Ye Zhu
Department of Electrical Engineering and Computer Science
Cleveland State University, Cleveland, OH, USA
*pourbemany@ieee.org; a.essa@csuohio.edu; y.zhu61@csuohio.edu

Abstract—In recent years, research about monitoring vital signs by smartphones grows significantly. There are some special sensors like Electrocardiogram (ECG) and Photoplethysmographic (PPG) to detect heart rate (HR) and respiration rate (RR). Smartphone cameras also can measure HR by detecting and processing imaging Photoplethysmographic (iPPG) signals from the video of a user’s face. Indeed, the variation in the intensity of the green channel can be measured by the iPPG signals of the video. This study aimed to provide a method to extract heart rate and respiration rate using the video of individuals’ faces. The proposed method is based on measuring fluctuations in the Hue, and can therefore extract both HR and RR from the video of a user’s face. The proposed method is evaluated by performing on 25 healthy individuals. For each subject, 20 seconds video of his/her face is recorded. Results show that the proposed approach of measuring iPPG using Hue gives more accurate rates than the Green channel.

Index Terms—iPPG, vital signs monitoring, heart rate, respiration rate, machine learning, image processing.

I. INTRODUCTION

Health tracking is one of the hot topics in the research areas. Today, there are many devices to detect biosignals. Thermometers, pulse monitors, pedometers, sleep trackers, calorie trackers, vein detectors, and blood sugar monitors among many other devices can be used to detect and monitor biosignals. Contact-based optical sensors are typically used to measure heart rate (HR). These sensors detect Photoplethysmographic (PPG) signal which is the variation of light reflectivity of different parts of the body (e.g., fingertip, wrist, ear, forehead) as a function of arterial pulsation. Different signal post-processing approaches [1]–[5] can extract HR and respiration rate (RR) from PPG signal. Indeed, the basis of these approaches is the fact that hemoglobin in the blood absorbs certain frequencies of light that can not be absorbed by surrounding tissues such as flesh and bone. As Fig. 1 shows, the desired wavelength varies from near-infrared (NIR) [5], to red [4]. Due to the color variation in the skin, it is possible to extract physiological parameters like HR and RR using non-contact-based approaches.

For the first time, Takano et al. showed that HR and RR can be extracted using a camera [6]. They calculated the average image brightness of the region of interest (ROI) in the images of the subject’s skin. Applying some filters and performing spectral analysis, they extracted the HR, RR, and HRV (Heart Rate Variability). Kenneth et al. [7], later improved the camera-based non-contact methods by capturing two iPPG signals simultaneously at two different wavelengths. In the same year, several authors used smartphone camera to extract non-contact physiological parameters like HR, HRV, and RR from facial video recorded in ambient light using three RGB channels [8]–[17]. Another non-contact-based physiological parameter extraction system has been proposed by Rahman et al. [18]. They used a simple laptop web camera to detect HR, RR, and IBI (inter-bit interval) with about 90% accuracy. From most of the related literature, most of the non-contact systems to monitor physiological parameters are done offline, and most of them are good for a certain amount of time in the lab environment. However, in [19], authors presented a non-contact HR monitoring system in real-time for an unlimited amount of time using a web camera. To overcome the effect of ambient noise in the green channel, Sanyal et al. [20] proposed a novel Hue (HSV color space) based observable for reflection-based iPPG.

This paper presents a non-contact method to extract HR and RR in real-time based on video HSV analysis. By measuring the variations of the average Hue, arterial pulsations can be extracted from the user’s forehead. To this end, we first detect the user’s face and eyes, then detect his/her forehead based on the face and eyes location. Then we find the variation in the Hue of the same areas in different frames and convert the data to the frequency domain. Since the frequency of HR and RR are in a specific range, we can calculate the HR and RR.

The rest of this paper is organized as follows. In Section II, a detailed description of the steps that are needed to extract the HR and RR from a real-time video. We then show the result of our experiment and demonstrate the accuracy of our method by comparing the results with actual HR and RR rates in Section III. Finally, the conclusions and future work are drawn in Section IV.

II. SYSTEM DESIGN

In a contract-based approach, the PPG sensor illuminates the subject’s skin with a LED (usually green color). It detects the absorption of light due to the arterial pulsation by a photodiode [15]. However, in non-contact-based methods, a camera is used to track a specific RGB channel (e.g., the Green channel), at which oxygenated hemoglobin absorbs some particular frequencies of the light that can not be absorbed by the surrounding tissue. These methods measure the iPPG signal, which is usually the average fluctuation of the green channel
of all the frames in the video. Since noise can affect the fluctuation of the green channel, we replaced the RGB channel with the HSV color space convert and considered the Hue of all the pixels in all video frames. Our method’s phases are as follows.

A. Forehead Detection

Color variation due to the arterial pulsation can be detected from the forehead area. Hence, the first task is to detect the forehead in the video frame. To this end, we can detect the face and eye/eyebrow, then calculate the position of the forehead based on them. We use Dlib library to detect face and facial landmarks. Dlib exploits a face detection model based on Histogram of Oriented Gradients (HoG) features and Support Vector Machine (SVM) [21]. This method extracts features (HoG) into a vector and feeds them into an SVM classification algorithm to detect faces (or other trained objects) in an image. After detecting the face, we used Dlib to detect facial landmarks that estimate the location of 68 coordinates \((x, y)\) that map the facial points on a person’s face (Fig. 2). We then considered the area between face’s rectangular and points \((21, 24)\) of the facial landmarks as forehead.

B. Average Hue Calculation

In this phase, we need to calculate the average Hue of pixels in each frame. In our experiments, we use a laptop webcam that can capture 30 RGB frames per second. Since our purpose is to calculate HR and RR in real-time, we have to pay its cost, losing some frames due to the processing time. Using Dlib library and a common laptop CPU, finally, we have around nine frames per second. Hence, we need to convert the RGB frame to the HSV frame and calculate the average Hue for each frame. Sanyal et al. in [20] demonstrated that considering Hue within the range of \((0, 0.1)\), it is possible to measure the variations corresponding to the skin color. Therefore, to consider only pixels with Hue in \((0, 0.1)\), we ignored other pixels. There are nine average values per second from all the frames, which demonstrate the change in the Hue of the forehead’s pixels that have Hue from 0 to 0.1 corresponding to the color variation due to the arterial pulsation. Indeed, these average values construct the iPPG signal.

C. Spectrum analysis

To detect the HR and RR from iPPG signal, we need to convert this signal from the time domain to the frequency domain and extract the frequencies corresponding to HR, and RR. Fig. 5 shows both the time and frequency domain of a raw iPPG signal obtained from an 11-second recording of a user’s face by a regular laptop webcam which has resolution 640*480 pixels and captures 30 frames per second. Although we have 30 frames per second, 21 frames will be drop due to the real-time processing because each frame will be processed in real-time. Therefore, 99 frames will be processed in 11 seconds.
The frequency of HR and RR typically are in the range of (0.8, 2.2) and (0.18, 0.5), respectively [20]. Therefore, it is possible to separate these signals from the time domain iPPG signal using band-pass filters with cutoff frequency in the range of HR and RR frequencies. Fig. 6 shows the iPPG signal in both frequency and time domain after passing throughout band-pass filters with cutoff frequencies (0.8, 2.2) and (0.18, 0.5). Finally, the peak of filtered frequency Spectra in the mentioned ranges represents HR and RR. As Fig. 6c shows, the maximum peak in the range of (0.8, 2.2) is 1.1 Hz, so the HR is 66. The corresponding heartbeat signal is shown in Fig. 6a. Also, we can infer that RR is 18 because the maximum peak in the range of (0.18, 0.5) is 3.3 Hz, as shown in Fig. 6d. Fig. 6b shows the corresponding breathing signal. A flowchart of our algorithm is provided in Fig. 7.
Fig. 8: Real time iPPG-based detected HR is 88 while Apple watch 6 Heart Rate app shows 92 as HR value.

TABLE I: Detected HR and RR from non-contact-based and contact-based methods.

Time (sec.)	Hexoskin	Apple watch	Samsung watch	Hue	Green	Hexoskin	Hue	Green
10	72	74	72	66	70	19	17	16
15	70	73	71	68	72	19	17	16
20	71	75	73	69	72	19	17	16
25	70	75	72	71	65	18	15	15
30	69	74	71	71	69	18	15	15
35	69	73	71	70	72	18	15	15
40	70	73	71	69	75	18	15	15
45	70	74	72	66	74	18	15	15
50	69	74	73	68	70	18	15	15
55	71	73	71	72	68	18	15	15
60	70	73	70	73	73	18	15	15
65	72	75	71	76	69	18	15	15
70	73	74	71	75	68	18	15	15
75	73	72	70	70	72	18	15	15
80	75	72	74	69	70	18	15	15
85	74	76	73	71	75	18	15	15
90	74	75	71	72	74	18	15	15
95	75	75	73	72	76	18	15	15
100	76	75	72	73	75	18	15	15

and an Apple watch 6 are used for HR monitoring (Fig. 8). We also used a Hexoskin smart shirt to track the actual RR and use its ECG signal to have accurate HR as the primary reference. Hexoskin uses the respiratory inductance plethysmography (RIP) method to evaluate pulmonary ventilation by measuring the chest and abdominal wall movement. Hence, it can provide an accurate RR as a reference signal. On the other hand, to compare the performance of our methods with previous iPPG methods, we also calculate the HR and RR based on the average of the green channel from each frame. We collected data of all devices for 100 seconds and compared HR and RR every 5 seconds which can be seen in Table I.

Fig. 7: flowchart of the algorithm for extracting HR and RR from facial video.
Considering the root mean square error (RMSE) as a performance metric, Table II provides a quantitative comparison of different HR detection methods. From the results, it can be seen that the detected HR by average Hue approach has 2.95 RMSE average, which is less than 5, the standard RMSE for HR monitors as set by Advancement of Medical Instrumentation EC-13. Also, comparing the results of the Hue and green channel reveals that the proposed method has provide promising accuracy among the other competitors.

TABLE II: Average RMES of different devices in comparison with reference value of Hexoskin.

	Apple watch	Samsung watch	Hue	Green
HR RMSE	3.1119	2.0901	2.9558	3.0262
RR RMSE	1.7014	2.5026		

IV. CONCLUSION

Monitoring the heart rate and respiration rate by non-contact methods usually rely on the fluctuation of a particular RGB color space, like the green channel. While this paper has provided a real-time HR and RR monitoring method based on the change in the Hue channel in the HSV color space. The experiments were performed on the user’s facial video in real-time to extract the HR and RR. The evaluation results as well as comparison with other HR detection algorithms have shown that our approach has a lower RMSE (2.95 for HR and 1.70 for RR), and have proven that the effectiveness of our method for real-time HR and RR monitoring. In addition, the computational efficiency indicating the potential of the proposed method for the real-time applications. The research work is progressing to investigate the impact of different colors of the skin on the ability of the proposed technique.

REFERENCES

[1] WG Zijlstra, A Buursma, and WP Meeuwen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” *Clinical chemistry*, vol. 37, no. 9, pp. 1633–1638, 1991.

[2] Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” *Circulation*, vol. 93, no. 5, pp. 1043–1065, 1996.

[3] Toshiyo Tamura, Yuka Maeda, Masaki Sekine, and Masaki Yoshida, “Wearable photoplethysmographic sensors—past and present,” *Electronics*, vol. 3, no. 2, pp. 282–302, 2014.

[4] Nikolai Grov Roald, “Estimation of vital signs from ambient-light non-contact photoplethysmography,” M.S. thesis, Institutt for elektronikk og telekommunikasjon, 2013.

[5] Peter Rolfe, “In vivo near-infrared spectroscopy,” *Annual review of biomedical engineering*, vol. 2, no. 1, pp. 715–754, 2000.

[6] Chihiro Takano and Yuji Ohta, “Heart rate measurement based on a time-lapse image,” *Medical engineering & physics*, vol. 29, no. 8, pp. 853–857, 2007.

[7] Kenneth Humphreys, Tomas Ward, and Charles Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” *Review of scientific instruments*, vol. 78, no. 4, pp. 044304, 2007.

[8] Anas M Mzahn, Mohd Sharifuddin Ahmad, and Alicia YC Tang, “Agents of things (IoT): An intelligent operational concept of the internet of things (IoT),” in *2013 13th International Conference on Intelligent Systems Design and Applications*. IEEE, 2013, pp. 159–164.

[9] Fang Zhao, Meng Li, Yi Qian, and Joe Z Tsien, “Remote measurements of heart and respiration rates for telemedicine,” *PloS one*, vol. 8, no. 10, pp. e71384, 2013.

[10] Luis Felipe Jimenez, Avinash Parnandi, and Ricardo Gutierrez-Osuna, “Extracting heart rate and respiration rate using cell phone camera,” 2013.

[11] Jayavardhana Gubbgi, Rajkumar Buyya, Slaven Marusic, and Marinimuthu Palaniswami, “Internet of things (IoT): A vision, architectural elements, and future directions,” *Future generation computer systems*, vol. 29, no. 7, pp. 1645–1660, 2013.

[12] Vassilis Foteinos, Dimitris Kelaiondis, George Poulilos, Panagiotis Vlachreas, Vera Stavroulaki, and Panagiotis Demestichas, “Cognitive management for the internet of things: A framework for enabling autonomous applications,” *IEEE vehicular technology magazine*, vol. 8, no. 4, pp. 90–99, 2013.

[13] Dragos Dutea, Marina Cidota, Stephan Lukosch, and Leon Rothkrantz, “Noncontact automatic heart rate analysis in visible spectrum by specific face regions,” in *Proceedings of the 14th International Conference on Computer Systems and Technologies*, 2013, pp. 120–127.

[14] Avinash Parnandi and Ricardo Gutierrez-Osuna, “Contactless measurement of heart rate variability from pupillary fluctuations,” in *2013 Humaine Association Conference on Affective Computing and Intelligent Interaction*. IEEE, 2013, pp. 191–196.

[15] Dangdang Shao, Chenbin Liu, Francis Tsow, Yuting Yang, Zijian Du, Rafael Iriya, Hui Yu, and Nongjiang Tao, “Noncontact monitoring of blood oxygen saturation using camera and dual-wavelength imaging system,” *IEEE Transactions on Biomedical Engineering*, vol. 63, no. 6, pp. 1091–1098, 2015.

[16] Magdalena Lewandowska, Jacek Runinski, Tomasz Kocejko, and Jędrzej Nowak, “Measuring pulse rate with a webcam—a non-contact method for evaluating cardiac activity,” in *2011 federated conference on computer science and information systems (FedCSIS)*. IEEE, 2011, pp. 405–410.

[17] Xiaobai Li, Jie Chen, Guoying Zhao, and Matti Pietikainen, “Remote heart rate measurement from face videos under realistic situations,” in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2014, pp. 4264–4271.

[18] Hamidur Rahman, Mobyn Uddin Ahmed, and Shahina Begum, “Non-contact physiological parameters extraction using camera,” in *International Internet of Things Summit*. Springer, 2015, pp. 448–453.

[19] Hamidur Rahman, Mobyn Uddin Ahmed, Shahina Begum, and Peter Funk, “Real time heart rate monitoring from facial rgb color video using webcam,” in *The 29th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS)*, 2–3 June 2016, Malmö, Sweden. Linköping University Electronic Press, 2016, number 129.

[20] Shoouriya Sanyal and Koushik Kumar Nundy, “Algorithms for monitoring heart rate and respiratory rate from the video of a user’s face,” *IEEE Journal of translational engineering in health and medicine*, vol. 4, pp. 1–11, 2018.

[21] Navneet Dalal and Bill Triggs, “Histograms of oriented gradients for human detection,” in *2005 IEEE computer society conference on computer vision and pattern recognition (CVPR*’05)*. Ieee, 2005, vol. 1, pp. 886–893.