Supporting information for “Compilation and evaluation of gas phase diffusion coefficients of halogenated organic compounds”

Instruction:

1. Units used in this work is K for temperature \(T \) and Torr for pressure \(P \).

2. Experimentally measured diffusion coefficients reported in literature have been converted to measured diffusivities \(D_m \) in the unit of Torr \(\text{cm}^2 \text{s}^{-1} \), and Fuller’s semi-empirical method is used in this work to estimate diffusivities \(D_e \) in the unit of Torr \(\text{cm}^2 \text{s}^{-1} \).
Table of Contents

1 Compounds with one carbon atom ... 1
 1.1 CH₃Cl ... 1
 1.2 CH₃I ... 3
 1.3 CH₂F₂ .. 4
 1.4 CH₂Cl₂ .. 5
 1.5 CH₂ClBr .. 7
 1.6 CH₂Br₂ ... 8
 1.7 CHCl₃ .. 9
 1.8 CHBr₃ .. 11
 1.9 CF₂Cl₂ ... 12
 1.10 CF₄ ... 13
 1.11 CCl₄ ... 16
 1.12 CCl₂O, CCl₃NO₂, and CNCl ... 19

2 Compounds with two carbon atoms .. 20
 2.1 CH₃CH₂Cl ... 20
 2.2 CH₃CH₂Br ... 21
 2.3 CH₃CH₂I ... 22
 2.4 CH₃CHF₂ .. 23
 2.5 CH₂ClCH₂Cl .. 24
 2.6 CH₂BrCH₂Br ... 25
 2.7 CCl₁CH₃ and CHCl₂CH₂Cl ... 26
 2.8 CHCl₂CHCl₂, CCl₃CHCl₂, and CH₃CICH₂OH 27
 2.9 CH₂=CHCl, CHCl=CHCl, CHCl=CCl₂, and CCl₂=CCl₂ 28

3 Compounds with three or more carbon atoms .. 29
 3.1 CH₃CH₂CH₂Cl, CH₃CH₂CH₂Br, and CH₃CHBrCH₃ 29
 3.2 CH₃CH₂CH₂I and CH₃CHICH₃ ... 30
 3.3 CH₃CHCICH₂Cl, CH₃CHBrCH₂Cl, CH₃BrCHBrCH₂Cl, and CH₂=CHCH₂Cl 31
 3.4 1-chlorobutane and 2-chlorobutane ... 32
 3.5 1-bromobutane and 2-bromobutane .. 33
 3.6 1-iodobutane, 2-iodobutane, and dichloroethyl ether 34
 3.7 1-chloropentane and 1-bromo-3-methyl-butane 35
 3.8 1-fluorohexane, 1-bromohexane, 2-bromohexane, and 3-bromohexane 36
3.9 C_7F_{18} ... 37

4 Aromatic compounds ... 38
 4.1 fluorobenzene, chlorobenzene, and bromobenzene ... 38
 4.2 hexafluorobenzene .. 40
 4.3 4-fluorotoluene, 2-chlorotoluene, 3-chlorotoluene, 4-chlorotoluene, and benzyl chloride ... 41
1 Compounds with one carbon atom

1.1 CH₃Cl

bath gas	reference.	T	P	Dm	De	(Dm-De)/De (%)
air	[1]	298	760	109±2	99	10
CH₄	[2]	298	740	108	113	-4
		358	739	154	156	-1
		418	745	208	205	2
		478	735	267	258	3
		298	739	107	113	-5
		378	743	171	172	-1
		438	733	228	222	3
SO₂	[3]	303	760	53	65	-19
		313	760	56	69	-19
		323	760	58	73	-20
		333	760	63	77	-18
CH₃OCH₃	[3]	303	760	51	66	-21
		313	760	55	69	-21
		323	760	57	73	-22
		333	760	62	77	-20

The diffusivity of CH₃Cl in air at 298 K was measured by Cowie and Watts,[1] and the measured diffusivity is 10% larger than the estimated value.

Gotoh et al. measured the diffusivities of CH₃Cl in CH₄ from 298 to 438 K,[2] and the differences between the measured and estimated diffusivities are <5% across the entire temperature range.

The diffusivities of CH₃Cl in SO₂ and CH₃OCH₃, measured by Chakraborti and Gray,[3] are around 20% smaller than estimated values for temperatures in the range of 303 to 333 K.

References:
[1] Cowie, M., and Watts, H.: Diffusion of methane and chloromethanes in air, Canadian Journal of Chemistry, 49, 74-77, 1971.
[2] Gotoh, S., Manner, M., Sorensen, J. P., and Stewart, W. E.: Binary diffusion-coefficients of low-density gases .1. Measurements by modified loschmidt method. *J. Chem. Eng. Data*, 19, 169-171, 1974.

[3] Chakraborti, P. K., and Gray, P.: Diffusion coefficients in binary mixtures of polar gas-sulphur dioxide, dimethyl ether and methyl chlorine, *Transactions of the Faraday Society*, 62, 3331-3337, 1966.
1.2 CH$_3$I

bath gas	reference	T	P	D_m	D_e	$(D_m - D_e)/D_e$ (%)
He	[1]	431	760	595±12	602	-1

The diffusivity of CH$_3$I in He, measured at 431 K by Fuller et al.,[1] is only 1% smaller than the estimated value.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
1.3 CH$_2$F$_2$

bath gas	reference	T	P	D_{m}	D_{e}	$(D_{m}-D_{e})/D_{e}$ (%)
He	[1]	431	760	664±23	633	5

The diffusivity of CH$_2$F$_2$ in He, measured at 431 K by Fuller et al.,$^{[1]}$ is 5% larger than the estimated value.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
1.4 CH$_2$Cl$_2$

bath gas	reference	T	P	D_m	D_e	($D_m-D_e)/D_e$ (%)
He	[1]	428	760	570±7	552	3
air	[2]	298	760	79±4	79	0
	[3]	298	760	79±4	79	-1
	[4]	288	760	76	75	1
		298	760	79	80	0
		308	760	83	84	-1
Kr	[5]	278	16	39	48	-17
		288	18	42	50	-17
		303	21	47	55	-15
		318	24	51	60	-15

The diffusivity of CH$_2$Cl$_2$ in He at 428 K, measured Fuller et al.,$^{[1]}$ is 3% larger than the estimated value.

The diffusivities of CH$_2$Cl$_2$ in air, measured at 298 K by Cowie and Watts$^{[2]}$ and by Lugg$^{[3]}$ and from 288 to 308 K by Watts,$^{[4]}$ show excellent agreement with estimated values, with difference being 1% or smaller.

The diffusivities of CH$_2$Cl$_2$ in Kr, measured by Singh and Srivastava from 278 to 318 K,$^{[5]}$ are 15% to 17% smaller than the estimated values.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Cowie, M., and Watts, H.: Diffusion of methane and chloromethanes in air, *Canadian Journal of Chemistry*, 49, 74-77, 1971.

[3] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.

[4] Watts, H.: Temperature dependence of diffusion of carbon tetrachloride, chloroform and methylene chloride vapors in air by a rate of evaporation method, *Canadian Journal of Chemistry*, 49, 67-73, 1971.
[5], B. N.: Unlike interactions and binary diffusion in polar-nonpolar mixtures-krypton-methylene chloride and krypton-ethylchloride, *International Journal of Heat and Mass Transfer*, 11, 1771-1778, 1968.
1.5 CH₂ClBr

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
air	[1]	298	760	72±1	81	-10

The measured diffusivity of CH₂ClBr in air at 298 K [1] is 10% smaller than the estimated value.

References:
[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
1.6 CH$_2$Br$_2$

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
He	[1]	428	760	505±5	550	-8

The measured diffusivity of CH$_2$Br$_2$ in He at 428 K$^{[1]}$ is 8% smaller than the estimated value.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
1.7 CHCl₃

bath gas	reference	T	P	Dₘ	Dₑ	(Dₘ-Dₑ)/Dₑ (%)
He	[1]	429	760	474±9	483	-2
N₂	[2]	361	760	103	99	3
		383	760	109	110	-1
		403	760	122	120	2
		418	760	131	128	3
air	[3]	308	760	77	73	5
		298	760	67±1	69	-2
		323	760	83±2	79	5
		298	760	66±1	69	-5
	[4]	298	760	69	69	0
		308	760	73	73	0
		318	760	77	77	0
		328	760	81	81	0
CO₂	[2]	363	760	84	76	10
		383	760	91	84	9
		404	760	98	92	7
Kr	[8]	284	11	36	41	-12
		293	11	38	43	-13
		303	13	41	46	-12
		313	13	43	49	-12
C₂H₅OC₂H₅	[9]	293	760	22	30	-25

The diffusivity of CHCl₃ in He at 429 K, measured by Fuller et al.,[1] is 2% smaller than the estimated value.

Nagata and Hasegawa investigated the temperature dependence of diffusivities of CHCl₃ in N₂ from 361 to 418 K,[2] and differences between the measured and estimated values are not larger than 3%.

Five studies measured the diffusivities of CHCl₃ in air at different temperatures from 298 to 328 K.[3-7] Differences between the measured and estimated diffusivities are around 5% or smaller.

Nagata and Hasegawa measured the diffusivities of CHCl₃ in CO₂ at 363, 383, and 404 K.[2] The differences between the measured and estimated diffusivities are around 10% or smaller.
Srivastava and Saran measured the diffusivities of CHCl$_3$ in Kr at 284, 293, 303, and 313 K, and the measured diffusivities are around 13% smaller than the estimated values.

The diffusivity of CHCl$_3$ in C$_2$H$_5$OC$_2$H$_5$ at 293 K, measured by Weissman, is 25% smaller than the estimated value.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
[2] Nagata, I., and Hasegawa, T.: Gaseous interdiffusion coefficients, *J. Chem. Engng. Japan*, 3, 143-145, 1970.
[3] Getzinger, R. W., and Wilke, C. R.: An experimental study of nonequimolal diffusion in ternary gas mixtures, *Aiche J.*, 13, 577-580, 1967.
[4] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
[5] Mrazek, R. V., Wicks, C. E., and Prabhu, K. N. S.: Dependence of diffusion coefficient on composition in binary gaseous systems, *J. Chem. Eng. Data*, 13, 508-510, 1968.
[6] Cowie, M., and Watts, H.: Diffusion of methane and chloromethanes in air, *Canadian Journal of Chemistry*, 49, 74-77, 1971.
[7] Watts, H.: Temperature dependence of diffusion of carbon tetrachloride, chloroform and methylene chloride vapors in air by a rate of evaporation method, *Canadian Journal of Chemistry*, 49, 67-73, 1971.
[8] Srivastava, B. N., and Saran, A.: Mutual diffusion studies in krypton-acetone and krypton-chloroform systems, *Physica*, 32, 110-118, 1966.
[9] Weissman, S.: Estimation of diffusion coefficients from viscosity measurements-polar + polyatomic gases, *J. Chem. Phys.*, 40, 3397-3406, 1964.
1.8 CHBr₃

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
air	[1]	298	760	58±1	71	-18

The measured diffusivity of CHBr₃ in air at 298 K [1] is 18% smaller than the estimated value.

References:
[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
1.9 CF₂Cl₂

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
air	[1]	298	760	72±3	67	7
H₂O	[2]	298	760	80	90	-11
ethanol	[2]	298	760	36	43	-15
benzene	[2]	298	760	29	28	4
di-n-butyl phthalate	[3]	293	760	9.6	13.5	-29
		303	760	10.6	14.3	-26

The differences between the measured diffusivity of CF₂Cl₂ in air,[1] H₂O,[2] ethanol,[2] and benzene [2] at 295 K and estimated values are 7%, 11%, 14%, and 4%, respectively.

Briks et al.[3] measured the diffusivities of CF₂Cl₂ in di-n-butyl phthalate at 293 and 303 K, and the measured diffusivities are 29% and 26% smaller than the measured values.

References:
[1] Barr, R. F., and Watts, H.: Diffusion of some organic and inorganic compounds in air. J. Chem. Eng. Data, 17, 45-46, 1972.
[2] Lee, C. Y., and Wilke, C. R.: Measurements of vapor diffusion coefficient, Industrial and Engineering Chemistry, 46, 2381-2387, 1954.
[3] Birks, J., and Bradley, R. S.: The rate of evaporation of droplets. 2. the influence of changes of temperature and of the surrounding gas on the rate of evaporation of drops of di-normal-butyl phthalate, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 198, 226-239, 1949.
1.10 CF₄

bath gas	reference	T	P	D_m	D_e	(D_m-D_e)/D_e (%)
CH₄	[1]	298	760	92.7	87.6	6
		353	760	126.9	117.5	8
		383	760	145.9	135.5	8
SF₆	[2]	303	760	36.3	32.7	11
		313	760	38.5	34.6	11
		329	760	42.1	37.8	12
		342	760	45.2	40.4	12
n-hexane	[3]	283	760	29.6	26.6	11
		298	760	33.1	29.1	13
		313	760	36.6	31.8	15
		328	760	39.7	34.5	15
cyclohexane	[4]	283	760	30.9	27.1	14
		298	760	33.7	29.7	14
		313	760	37.3	32.4	15
		328	760	40.2	35.1	14
		343	760	43.6	38.0	15
benzene	[4]	283	760	34.7	30.8	13
		298	760	37.5	33.7	11
		313	760	42.1	36.7	15
		328	760	45.4	39.9	14
		343	760	49.2	43.1	14
n-heptane	[3]	283	760	28.5	24.3	17
		298	760	29.4	26.6	11
		313	760	32.3	29.0	11
		328	760	35.7	31.5	14
		343	760	38.3	34.0	13
methylcyclohexane	[4]	283	760	25.9	24.7	5
		298	760	29.2	27.0	8
		313	760	33.7	29.5	14
		328	760	36.1	32.0	13
		343	760	39.2	34.6	13
Mueller and Cahill [1] measured the diffusivities of CF$_4$ in CH$_4$ from 298-383 K, and the differences between the measured and estimated diffusivities are around 8% or smaller.

Raw and Tang [2] measured the diffusivities of CF$_4$ in SF$_6$ from 303 to 342 K, and the differences between the measured and estimated diffusivities are around 12%.

Wilhelm and Battino [3] measured the diffusivities of CF$_4$ in n-hexane from 283 to 328 K, and the measured diffusivities are 11% to 15% larger than the estimated values.

Wilhelm et al. [4] measured the diffusivities of CF$_4$ in cyclohexane from 283 to 343 K, and the measured diffusivities are ~15% larger than the estimated values.

The diffusivities of CF$_4$ in benzene are measured by Wilhelm from 283 to 343 K,[4] and the differences between the measured and estimated diffusivities are around 15% or smaller.

Wilhelm and Battino [3] measured the diffusivities of CF$_4$ in n-heptane from 283 to 343 K, and the differences between the measured and estimated diffusivities are 17% or smaller.

Wilhelm et al. [4] measured the diffusivities of CF$_4$ in methylcyclohexane from 283 to 343 K, and the measured diffusivities are 5% to 14% larger than the estimated values.

Wilhelm et al. [4] measured the diffusivities of CF$_4$ in toluene from 283 to 343 K, and the differences between the measured and estimated values are 14% or smaller.
Wilhelm and Battino \cite{3} measured the diffusivities of CF\(_4\) in octane from 283 to 343 K, and the difference between the measured and estimated diffusivities are 19\% or smaller.

References:

\cite{1} Mueller, C. R., and Cahill, R. W.: Mass spectrometric measurement of diffusion coefficients, \textit{J. Chem. Phys.}, 40, 651-654, 1964.

\cite{2} Raw, C. J. G., and Tang, H.: Viscosity and diffusion coefficients of gaseous sulfur hexafluoride-carbon tetrafluoride mixtures, \textit{J. Chem. Phys.}, 39, 2616-2618, 1963.

\cite{3} Wilhelm, E., and Battino, R.: Binary gaseous diffusion-coefficients .1. methane and carbon tetrafluoride with hexane, heptane, octane, and 2,2,4-trimethylpentane at one-atmosphere pressure at 10-70 degrees c, \textit{J. Chem. Eng. Data}, 17, 187-189, 1972.

\cite{4} Wilhelm, E., Battino, R., and Carpente.RI: Binary gaseous diffusion-coefficients .2. methane and carbon tetrafluoride with cyclohexane, methylcyclohexane, benzene, and toluene at 1atm at 10-70 degrees c, \textit{J. Chem. Eng. Data}, 19, 245-246, 1974.
1.11 CCl₄

bath gas	reference	T (K)	P (kPa)	D_m	D_e	$(D_m-D_e)/D_e$ (%)
N₂	[1]	364	760	86	90	-5
		383	760	94	99	-5
		403	760	102	108	-6
		423	760	112	117	-5
	[2]	353	760	84	86	-2
air	[3]	298	760	63±1	62	2
	[4]	298	760	58±1	62	-7
	[5]	308	760	68	65	4
	[6]	295	740	58	61	-5
		296	743	57	61	-6
	[7]	298	760	59	62	-5
		308	760	63	65	-4
		318	760	66	69	-4
		328	760	70	73	-4
		338	760	74	77	-4
		348	760	78	81	-4
	[8]	295	762	61	61	1
	[9]	313	762	67	67	1
CO₂	[1]	363	760	65	68	-5
		384	760	71	75	-6
		403	760	76	82	-7
		423	760	84	89	-5
benzene	[10]	293	760	19±1	17	12
CH₂Cl₂	[10]	293	760	22±1	29	-26
		353	760	32±1	40	-21
		413	760	42±4	53	-22
CHCl₃	[10]	293	760	20±1	24	-17

The diffusivities of CCl₄ in N₂ were measured by Nagata and Hasegawa [1] from 364 to 423 K and by Arinikar [2] at 353 K. The measured diffusivities are 2% to 6% smaller than the estimated values.
Five studies measured the diffusivities of CCl$_4$ in air at 295-298 K,\[3,4,6-8\] and the differences between the measured and estimated diffusivities are 7% or smaller. Getzinger and Wilke \[5\] and Richardson \[9\] measured the diffusivities of CCl$_4$ in air at 308 and 313 K, and the differences between the measured and estimated values are 4% or smaller. The temperature dependence of diffusivities of CCl$_4$ in air was investigated from 298 to 348 K by Watts.\[7\] The differences between the measured and estimated diffusivities are 5% or smaller across the entire temperature range investigated.

Nagata and Hasegawa \[1\] measured the diffusivities of CCl$_4$ in CO$_2$ from 363 to 423 K, and the measured diffusivities are around 6% smaller than the estimated values.

Weissman \[10\] measured the diffusivity of CCl$_4$ in benzene at 293 K, and the measured diffusivity is 12% larger than the estimated value.

Weissman \[10\] measured the diffusivities of CCl$_4$ in CH$_2$Cl$_2$ at 293, 353, and 413 K, and the measured diffusivities are all around 25% smaller than estimated values.

The diffusivity of CCl$_4$ in CHCl$_3$ was measured by Weissman at 293 K,\[10\] and the measured diffusivity is 17% smaller than the estimated value.

References:
[1] Nagata, I., and Hasegawa, T.: Gaseous interdiffusion coefficients, \textit{J. Chem. Engng. Japan}, 3, 143-145, 1970.
[2] Arnikar, H. J., Rao, T. S., and Karmarkar, K. H.: Eletrodeless discharge as detector in gas chromatography. 3. study of inter-diffusion of gases, \textit{International Journal of Electronics}, 22, 381-385, 1967.
[3] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, \textit{Analytical Chemistry}, 40, 1072-1077, 1968.
[4] Cowie, M., and Watts, H.: Diffusion of methane and chloromethanes in air, \textit{Canadian Journal of Chemistry}, 49, 74-77, 1971.
[5] Getzinger, R. W., and Wilke, C. R.: An experimental study of nonequimolal diffusion in ternary gas mixtures, \textit{Aiche J.}, 13, 577-580, 1967.
[6] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients, \textit{Journal of Heat Transfer}, 91, 259-265, 1969.
[7] Watts, H.: Temperature dependence of diffusion of carbon tetrachloride, chloroform and methylene chloride vapors in air by a rate of evaporation method, *Canadian Journal of Chemistry*, 49, 67-73, 1971.

[8] Pryde, J. A., and Pryde, E. A.: A simple quantitative diffusion experiment, *Physics Education*, 2, 311-314, 1967.

[9] Richardson, J. F.: The evaporation of two-component liquid mixtures, *Chem. Eng. Sci.*, 10, 234-242, 1959.

[10] Weissman, S.: Estimation of diffusion coefficients from viscosity measurements-polar + polyatomic gases, *J. Chem. Phys.*, 40, 3397-3406, 1964.
1.12 CCl$_2$O, CCl$_3$NO$_2$, and CNCl

species	bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
CCl$_2$O	air	[1]	273	760	72	66	9
CCl$_3$NO$_2$	air	[1]	298	760	67	63	7
		[2]	298	760	62±1	63	-2
CNCl	air	[1]	273	760	84	84	1

The measured diffusivities in air are 9% larger than the estimated value for CCl$_2$O and 1% larger for CNCl.$^{[1]}$

Two studies measured the diffusivities of CCl$_3$NO$_2$ in air at 298 K, and the measured values are 7% larger $^{[1]}$ and 2% smaller $^{[2]}$ than the estimated ones.

References:

[1] Klotz, I. M., and Miller, D. K.: Diffusion coefficients and molecular radii of hydrogen cyanide, cyanogen chloride, phosgene and chloropicrin, J. Am. Chem. Soc., 69, 2557-2558, 1947.
[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, Analytical Chemistry, 40, 1072-1077, 1968.
2 Compounds with two carbon atoms

2.1 CH₃CH₂Cl

bath gas	reference	T	P	\(D_m\)	\(D_e\)	\((D_m-D_e)/D_e\) (%)
CH₃Cl	[1]	298	731	43	54	-22
		298	736	42	55	-22
		358	742	64	75	-14
		378	741	74	83	-10
		419	741	90	99	-9
		438	731	98	107	-9
Kr	[2]	275	21	45	50	-9
		288	28	55	54	2
		303	21	54	59	-7
		318	24	60	64	-6

Gotoh et al.[1] measured the diffusivities in CH₃Cl from 298 to 438 K, and the differences between the measured and estimated diffusivities are around 22% or less.

The diffusivities of CH₃CH₂Cl in Kr were measured from 275 to 318 K by Singh and Srivastava,[2] and the differences between the measured and estimated diffusivities are smaller than 10%.

References:

[1] Gotoh, S., Manner, M., Sorensen, J. P., and Stewart, W. E.: Binary diffusion-coefficients of low-density gases I. Measurements by modified loschmidt method, *J. Chem. Eng. Data*, 19, 169-171, 1974.

[2] Singh, Y., and Srivastava, B. N.: Unlike interactions and binary diffusion in polar-nonpolar mixtures-krypton-methylene chloride and krypton-ethylchloride, *International Journal of Heat and Mass Transfer*, 11, 1771-1778, 1968.
2.2 CH₃CH₂Br

bath gas	reference	T	P	Dₘ	Dₑ	(Dₘ-Dₑ)/Dₑ (%)
He	[1]	428	760	562±8	548	3
Air	[2]	298	760	75±1	84	-11
	[3]	295	745	80	83	-4
		295	729	79	83	-5
		296	736	78	83	-6

The diffusivity of CH₃CH₂Br in He at 428 K, measured by Fuller et al.,[1] is 3% larger than the estimated value.

Lugg [2] and Grob and Elwakil [3] measure the diffusivities of CH₃CH₂Br in air at around room temperature, and the differences between measured and estimated diffusivities are 4% to 6%.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
[3] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients, *Journal of Heat Transfer*, 91, 259-265, 1969.
2.3 CH₃CH₂I

bath gas	reference	T	P	Dm	De	(Dm-De)/De
air	[1]	295	736	72	69	4
		295	730	72	69	4
		295	737	71	69	3
He	[2]	428	760	492±10	506	-3

The average diffusivity of CH₃CH₂I in air at 295 K, measured by Grob and Elwakil,[1] is ~3% larger than the estimated value.

The diffusivity of CH₃CH₂I in He at 428 K, measured by Fuller et al.,[2] is 3% smaller than the estimated value.

References:
[1] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients. *Journal of Heat Transfer*, 91, 259-265, 1969.
[2] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
2.4 \text{CH}_3\text{CHF}_2

bath gas	reference	\(T\)	\(P\)	\(D_m\)	\(D_e\)	\((D_m-D_e)/D_e\) (%)
He	[1]	430	760	573±11	527	9

The diffusivity in He at 430 K, measured by Fuller et al.,[1] is 9% larger than the estimated value.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, \textit{J. Phys. Chem.}, 73, 3679-3685, 1969.
2.5 CH₂ClCH₂Cl

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
He	[1]	427	760	519±5	476	9
air	[2]	295	745	67	68	-2
		295	738	67	68	-1
		295	742	66	68	-4
[3]		298	760	70±1	70	0
		298	760	69±1	70	-1

The diffusivity of CH₂ClCH₂Cl in He at 427 K, measured by Fuller et al.,[1] is 9% larger than the estimated value.

The diffusivities of CH₂ClCH₂Cl in air were measured by two studies at around room temperature,[2,3] and the differences between the measured and estimated values are 4% or less.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients, *Journal of Heat Transfer*, 91, 259-265, 1969.

[3] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
2.6 CH₂BrCH₂Br

bath gas	reference	T	P	D_m	D_e	$(D_m-De)/D_e$ (%)
air	[1]	298	760	63±1	72	-13

The diffusivity of CH₂BrCH₂Br in air at 298 K, measured by Lugg,[1] is 13% smaller than the estimated value.

References:

[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
2.7 CCl₃CH₃ and CHCl₂CH₂Cl

species	reference	bath gas	T	P	Dₘ	Dₑ	(Dₘ-Dₑ)/Dₑ (%)
CCl₃CH₃	[1]	air	298	760	60±1	62	-2
CHCl₂CH₂Cl	[1]	air	298	760	60±1	62	-2

Lugg [1] measured the diffusivities of CCl₃CH₃ and CHCl₂CH₂Cl in air at 298 K, and the measured diffusivities are both 2% smaller than the estimated values.

References:
[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
2.8 CHCl₂CHCl₂, CCl₃CHCl₂, and CH₂ClCH₂OH

species	bath gas	reference	T	P	\(D_m\)	\(D_e\)	\((D_m-D_e)/D_e\) (%)
CHCl₂CHCl₂	air	[1]	298	760	55±1	57	-2
CCl₃CHCl₂	air	[1]	298	760	51±1	53	-2
CH₂ClCH₂OH	air	[1]	298	760	73±1	76	-2

Lugg\(^{[1]}\) measured the diffusivities of CHCl₂CHCl₂, CCl₃CHCl₂, and CH₂ClCH₂OH in air at 298 K, and the measured diffusivities are all 2% smaller than the estimated values.

References:

[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
Barr and Watts [1] measured the diffusivities of CH$_2$=CHCl and CHCl=CHCl in air at 298 K, and Lugg [2] measured the diffusivities of CHCl=CCl$_2$ and CCl$_2$=CCl$_2$ in air at 298 K. The measured diffusivities are all 2% smaller than the estimated values.

References:

[1] Barr, R. F., and Watts, H.: Diffusion of some organic and inorganic compounds in air, *J. Chem. Eng. Data*, 17, 45-46, 1972.

[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
3 Compounds with three or more carbon atoms

3.1 CH₃CH₂CH₂Cl, CH₃CH₂CH₂Br, and CH₃CHBrCH₃

species	bath gas	reference	T	P	D_m	D_e	($D_m - D_e$)/D_e (%)
CH₃CH₂CH₂Cl	He	[1]	428	760	480±7	474	1
CH₃CH₂CH₂Br	He	[1]	428	760	450±7	475	-5
	air	[2]	298	760	67±1	73	-8
CH₃CHBrCH₃	He	[1]	428	760	461±9	474	-3
	air	[2]	298	760	69±1	73	-4

The measured diffusivity of CH₃CH₂CH₂Cl in He at 428 K [1] is only 1% larger than the estimated value.

The measured diffusivities of CH₃CH₂CH₂Br in He at 428 K [1] and in air at 298 K [2] are 5% and 8% smaller than the estimated values, respectively.

The measured diffusivities of CH₃CHBrCH₃ in He at 428 K [1] and in air at 298 K [2] are 3% and 4% smaller than the estimated values, respectively.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
3.2 CH₃CH₂CH₂I and CH₃CHICH₃

species	bath gas	reference	T	P	Dₘ	Dₑ	(Dₘ-Dₑ)/Dₑ (%)
CH₃CH₂CH₂I	He	[1]	430	760	440±5	449	-2
	H₂	[2]	303	760	258	297	-13
	N₂	[2]	303	760	60	67	-11
	air	[3]	298	760	66±1	63	5
CH₃CHICH₃	He	[1]	430	760	440±9	449	-2
	air	[3]	298	760	67±1	63	6

The measured diffusivities of CH₃CH₂CH₂I in He at 430 K,[1] in H₂ at 303 K,[2] in N₂ at 303 K,[2] and in air at 298 K [3] are 2% smaller, 13% smaller, 11% smaller, and 5% larger than the estimated values.

The measured diffusivities of CH₃CHICH₃ in He at 430 K [1] and in air at 298 K [3] are 2% smaller and 6% larger than the estimated values.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
[2] Byrne, J. J., Maguire, D., and Clarke, J. K. A.: Gas-phase interdiffusion coefficients for some polar organic compounds, *J. Phys. Chem.*, 71, 3051-3052, 1967.
[3] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
3.3 CH₃CHClCH₂Cl, CH₃CHBrCH₂Cl, CH₃BrCHBrCH₂Cl, and CH₂=CHCH₂Cl

species	bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
CH₃CHClCH₂Cl	air	[1]	298	760	60±1	63	-3
CH₃CHBrCH₂Cl	He	[2]	427	760	433±12	423	2
CH₂BrCHBrCH₂Cl	air	[1]	298	760	52±1	58	-9
CH₂=CHCH₂Cl	air	[1]	298	760	74±1	73	2

The measured diffusivities in air at 298 K [1] are 3% smaller than the estimated value for CH₃CHCH₂Cl, 9% smaller for CH₃CHBrCH₂Cl, and 2% larger for CH₂=CHCH₂Cl, respectively.

The measured diffusivity of CH₃CHBrCH₂Cl in He at 427 K [2] is 2% larger than the estimated value.

References:

[1] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.

[2] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
3.4 1-chlorobutane and 2-chlorobutane

species	bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
1-chlorobutane	He	[1]	429	760	422±8	425	-1
air			296	744	67±1	63	8
			296	743	68	63	8
			295	748	67	62	7
2-chlorobutane	He	[1]	429	760	426±6	425	0

The differences between the measured and estimated diffusivities in He at 429 K are around 1% for both 1-chlorobutane and 2-chlorobutane.[1]

The average measured diffusivity of 1-chlorobutane in air at 296 K [2] is 8% larger than the estimated value.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, J. Phys. Chem., 73, 3679-3685, 1969.
[2] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients, Journal of Heat Transfer, 91, 259-265, 1969.
3.5 1–bromobutane and 2–bromobutane

species	bath gas	reference	T	P	D_m	D_e	$(D_m - D_e)/D_e$ (%)
1–bromobutane	He	[1]	427	760	414±5	421	-2
	H$_2$	[2]	303	760	253	281	-10
	N$_2$	[2]	303	760	61	68	-10
2–bromobutane	He	[1]	427	760	420±10	422	-1

The measured diffusivities of 1–bromobutane in He at 427 K,[1] in H$_2$ at 303 K,[2] and in N$_2$ at 303 K[2] are 2%, 10%, and 10% smaller than the estimated values.

The difference between the measured[1] and estimated diffusivities of 2–bromobutane in He at 427 K is less than 1%.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Byrne, J. J., Maguire, D., and Clarke, J. K. A.: Gas-phase interdiffusion coefficients for some polar organic compounds, *J. Phys. Chem.*, 71, 3051-3052, 1967.
3.6 1-iodobutane, 2-iodobutane, and dichloroethyl ether

Species	bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
1-iodobutane	He	[1]	428	760	398±5	402	-1
2-iodobutane	He	[1]	427	760	414±10	400	3
dichloroethyl ether	air	[2]	298	760	53	55	-5

The differences between the measured and estimated diffusivities are 1% for 1-iodobutane in He at 428 K,[1] 3% for 2-iodobutane in He at 427 K,[1] and 5% for dichloroethyl ether in air at 298 K,[2] respectively.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
3.7 1-chloropentane and 1-bromo-3-methyl-butane

species	bath gas	reference	T	P	D_m	D_e	(D_m-D_e)/D_e (%)
1-chloropentane	He	[1]	428	760	394±3	385	2
1-bromo-3-methyl-butane	H_2	[2]	303	760	235	258	-9
	N_2	[2]	303	760	61	62	-2
	Ar	[2]	303	760	50	56	-11

The measured diffusivity of 1-chloropentane in He at 428 K [1] is 2% larger than the estimated value.

Byrne et al. [2] measured the diffusivities of 1-bromo-3-methyl-butane at 303 K. The differences between measurements and estimations are 9%, 2%, and 11% for diffusivities in H_2, N_2, and Ar, respectively.

References:
[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
[2] Byrne, J. J., Maguire, D., and Clarke, J. K. A.: Gas-phase interdiffusion coefficients for some polar organic compounds, *J. Phys. Chem.*, 71, 3051-3052, 1967.
3.8 1-fluorohexane, 1-bromohexane, 2-bromohexane, and 3-bromohexane

species	bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
1-fluorohexane	He	[1]	432	760	374±5	369	1
1-bromohexane	He	[1]	428	760	350±6	354	-1
2-bromohexane	He	[1]	428	760	357±9	354	1
3-bromohexane	He	[1]	429	760	356±33	355	1

Fuller et al.[1] measured the diffusivities of 1-fluorohexane, 1-bromohexane, 2-bromohexane, and 3-bromohexane in He at ~430 K. The differences between the measured and estimated diffusivities are around 1% for all the four compounds.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.
The measured diffusivities of C_7F_{18} in C_8H_{18}[1] are 18% smaller than the estimated value at 303 K and 17% smaller at 323 K.

References:

[1] Weissman, S.: Estimation of diffusion coefficients from viscosity measurements-polar + polyatomic gases, *J. Chem. Phys.*, 40, 3397-3406, 1964.
4 Aromatic compounds

4.1 fluorobenzene, chlorobenzene, and bromobenzene

species	bath gas	reference	T	P	D_m	D_c	$(D_m-D_c)/D_c$ (%)
fluorobenzene	He	[1]	430	760	430±6	395	9
	H$_2$	[2]	303	760	287	263	9
	N$_2$	[2]	303	760	70	63	11
air	[3]	295	734	61	58	4	
	[3]	295	729	61	58	5	
	[3]	295	735	61	58	4	
Ar	[2]	303	760	63	57	10	
chlorobenzene	He	[1]	431	760	412±5	386	7
air	[4]	299	760	56	57	-2	
	[4]	313	760	60	62	-3	
	[4]	332	760	68	69	-1	
	[5]	298	760	57	57	-1	
bromobenzene	He	[1]	427	760	413±8	379	9

The diffusivity of fluorobenzene in He at 430 K was measured by Fuller et al.,[1] and the measured diffusivity is 9% larger than the estimated value.

The diffusivity of fluorobenzene in H$_2$ at 303 K was measured by Byrne et al.,[2] and the measured diffusivity is 9% larger than the estimated value.

The diffusivity of fluorobenzene in Ar at 303 K was measured by Byrne et al.,[2] and the measured diffusivity is 10% larger than the estimated value.

The diffusivity of fluorobenzene in N$_2$ at 303 K, measured by Byrne et al.,[2] is 11% larger than the estimated value.

The average diffusivity of fluorobenzene in N$_2$ at 295 K, measured by Grob and Elwakil,[3] is ~5% larger than the estimated value.

Fuller et al.[1] measured the diffusivity of chlorobenzene in He, and the measured diffusivity is 7% larger than the estimated value.

The diffusivities of chlorobenzene in air were measured by two studies.[4, 5] The diffusivities from 299 to 332 K, measured by Gilliland,[4] are around 3% (or less) smaller than the estimated values, and the diffusivity at 298 K, measured by Lugg,[5] is only 1% smaller than the estimated value.
The diffusivity of bromobenzene in He, measured by Fuller et al.,\(^{[1]}\) is 9% larger than the estimated value.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Byrne, J. J., Maguire, D., and Clarke, J. K. A.: Gas-phase interdiffusion coefficients for some polar organic compounds, *J. Phys. Chem.*, 71, 3051-3052, 1967.

[3] Grob, A. K., and Elwakil, M. M.: An interferometric technique for measuring binary diffusion coefficients, Journal of Heat Transfer, 91, 259-265, 1969.

[4] Gilliland, E. R.: Diffusion coefficients in gaseous systems, *Industrial and Engineering Chemistry*, 26, 681-685, 1934.

[5] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.
4.2 hexafluorobenzene

bath gas	reference	T	P	D_m	D_e	$(D_m-D_e)/D_e$ (%)
He	[1]	429	760	344±6	314	10

The diffusivity of hexafluorobenzene in He at 429 K, measured by Fuller et al.,[1] is 10% larger than the estimated value.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, \textit{J. Phys. Chem.}, 73, 3679-3685, 1969.
4.3 4-fluorotoluene, 2-chlorotoluene, 3-chlorotoluene, 4-chlorotoluene, and benzyl chloride

species	bath gas	reference	T	P	D_m	D_c	$(D_m-D_c)/D_c$ (%)
4-fluorotoluene	He	[1]	432	760	386±5	366	5
2-chlorotoluene	air	[2]	298	760	52	53	-1
3-chlorotoluene	air	[2]	298	760	49	53	-7
4-chlorotoluene	air	[2]	298	760	47	53	-11
benzyl chloride	air	[2]	298	760	54	53	2

The diffusivity of 4-fluorotoluene in He at 432 K, measured by Fuller et al.,[1] is 5% larger than the estimated value.

Lugg[2] measured the diffusivities of 2-chlorotoluene, 3-chlorotoluene, 4-chlorotoluene, and benzyl chloride in air at 298 K. The differences between the measured and estimated diffusivities are 1%, 7%, 11%, and 2% for 2-chlorotoluene, 3-chlorotoluene, 4-chlorotoluene, and benzyl chloride, respectively.

References:

[1] Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. Effect of structure on collision cross sections, *J. Phys. Chem.*, 73, 3679-3685, 1969.

[2] Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, *Analytical Chemistry*, 40, 1072-1077, 1968.