Automated Probabilistic Classification of Transients and Variables

Ashish Mahabal1,2*, S.G. Djorgovski1, M. Turmon2, J. Jewell2, R.R. Williams1, A.J. Drake1, M.G. Graham1, C. Donalek1, E. Glikman1, and the Palomar-QUEST Team

1 California Institute of Technology, Pasadena, CA 91125, USA
2 Jet Propulsion Laboratory, Pasadena, CA, USA

Received 2007 Sep 1, accepted 2007 Nov 27
Published online 2008 Feb 25

Key words Classification, Bayesian networks, Transients, Variables

There is an increasing number of large, digital, synoptic sky surveys, in which repeated observations are obtained over large areas of the sky in multiple epochs. Likewise, there is a growth in the number of (often automated or robotic) follow-up facilities with varied capabilities in terms of instruments, depth, cadence, wavelengths, etc., most of which are geared toward some specific astrophysical phenomenon. As the number of detected transient events grows, an automated, probabilistic classification of the detected variables and transients becomes increasingly important, so that an optimal use can be made of follow-up facilities, without unnecessary duplication of effort. We describe a methodology now under development for a prototype event classification system; it involves Bayesian and Machine Learning classifiers, automated incorporation of feedback from follow-up observations, and discriminated or directed follow-up requests. This type of methodology may be essential for the massive synoptic sky surveys in the future.

1 Introduction

Traditional practice of time-domain astronomy generally involves targeted observing of small samples or even individual instances of a particular type of variable objects or phenomena. The recent advent of large, digital synoptic sky surveys is now revolutionizing the field, thanks to the advancement of computing power and detectors (CCDs). The field has been moving towards a systematic exploration of larger areas with a better time sampling and understanding of finer details of many phenomena (e.g., GRBs, supernovae, variable AGN, etc.). Many of the events, especially those that vary on short time scales, need rapid follow-up for proper understanding and scientific exploitation. This has resulted in a number of robotic telescopes which can turn to a target very quickly for such follow-ups.

A key link is between event producers (e.g., synoptic surveys, GRB satellites, etc.) and consumers or follow-up facilities. The last few years have seen the emergence of computer networks and protocols which can collect streams from large surveys and distribute those to facilities that can go after interesting events. The synergy between Palomar-Quest survey (http://palquest.org) and the VOEventNet system (http://voeventnet.caltech.edu) for the distribution, classification, and follow-up of events is such an example (Djorgovski et al. 2006, 2007).

In this paper, we describe in more detail the ongoing development of the automated event classification and follow-up engine for this system. This experience and methodology should be useful more broadly, for other synoptic sky surveys, both existing and planned.

As more synoptic sky surveys come online, the problem is going to be one of plenty. On the one hand there will be too many events to follow-up individually, and on the other hand not all follow-up facilities would be willing or capable of tracking all types of events due to constraints on brightness, wavelength, sky visibility, etc. More importantly, most follow-up facilities are generally interested in only specific types of objects or phenomena (owing to research interests, policy, funding, etc.). The most critical issue then is of classifying events so that they can be matched up with facilities ready for them and without unnecessary duplication of effort. We note that an automated event classification of any kind in time-domain astronomy has never been done; and it may well turn out to be the key enabling technology for the massive synoptic sky surveys of the future.

Transient event classification is a very challenging problem. A key difficulty is the sparsity of information initially available, e.g., position on the sky and magnitude in one or two bands at a couple of epochs. Incorporation of archival data and follow-up observations is essential. As the available information increases, iterative classification is needed. One class of existing methodologies is Machine Learning (ML) based. It includes Support Vector Machines (SVMs), Artificial Neural Networks (ANNs) etc. On the other hand, Bayesian classifiers may be more powerful for these applications, owing to the variable and incomplete nature of the data. Priors for distributions of observable event parameters can be formed for different types of objects and probabilities evaluated for each class.

* Corresponding author: A. Mahabal, e-mail: aam@astro.caltech.edu
An important post-classification step is that of feedback based on actual follow-up, as it will help improve the priors and the resulting classifications. When classification probabilities are inconclusive, an intelligent follow-up request engine can suggest the best follow-up facility to serve as a tie-breaker between two or more competing classes.

In the next sections we describe the Bayesian classification scheme, associated supervised learning schemes that can exploit known parameter dependencies better, revision of priors based on feedback, and the follow-up request engine. Throughout the discussion here, transients are treated as a special class of variables that are typically seen only once in a given survey (an operational definition), although they may have counterparts previously seen in other data.

2 Methodology

2.1 Bayesian Event Classification

Consumers of transient events are usually interested only in particular kinds of sources, e.g., supernovae of a given type to be used either as cosmological standard candles, or as the probes of the endpoints of stellar evolution; GRB afterglows; gravitational microlensing events, especially with the possible planetary signatures; flaring AGN, etc. Thus the desired output of a classification system is to evaluate a probability of any given event as belonging to each of the possible known classes. Self-imposed probability acceptance cut-off can then allow individual consumers to decide if a particular event is worth following. The most interesting outcome may be the events which do not fit any of the known patterns and thus are possibly examples of new types of astronomical objects or phenomena.

Prior distributions need to be estimated for each type of variable astrophysical phenomena that we want to classify, even though a particular event classification is inevitably based on incomplete data. Then an estimated probability of a new event belonging to any given class can be evaluated from all pieces of information available. Such information in some format has already been collected by various groups for particular types of objects, e.g., the Supernova Typing Machine (http://wise-obs.tau.ac.il/dovip/typing/) uses magnitudes in different filters at different epochs to try and determine the type of SN a particular event is. Another example is the search for quasars in a particular redshift bin based on certain broadband colors.

A schematic of the Bayesian Event Classification (BEC) engine is shown in Fig. 1. To take an example, denote the feature vector of event parameters as \(x \), and the object class that gave rise to this vector as \(y \), \(1 < y < K \). Many potential entries within \(x \) will be unknown as the information may be incomplete. In practice, certain fields within \(x \) will almost certainly be known, e.g. sky position, brightness in selected filters etc. However, other parameters will be known only selectively: brightness change over various time baselines, and object shape. It is because of the dominance of missing values, as well as the abundance of prior information that a Bayesian classification methodology is likely to work best as has been demonstrated by its effectiveness in such applications as document classification and patient diagnosis, where there are many sparsely known attributes. In this view, \(x \) and \(y \) are related via

\[
P(y = k|x) = P(x|y = k)P(k)/P(x)
\]

\[
\alpha P(k)P(x|y = k)
\]

\[
\approx P(k)\prod_{k=1}^{K} P(x_k|y = k)
\]

Because we are only interested in the above quantity as a function of \(k \), we can drop factors that only depend on \(x \). Furthermore, we have assumed that, conditional on the class \(y \), the feature vector decomposes into \(B \) roughly independent blocks, generically labeled \(x_k \). These blocks may be singleton variables, or contain multiple variables - for example, sets of highly correlated filters. The decoupling allows us to (1) circumvent the curse of dimensionality as the decomposition keeps the dimensionality of each block manageable (we will eventually have to learn the conditional distributions \(P(x_k|y = k) \) for each \(k \). As more components are added to \(x_k \), more examples will be needed to learn the corresponding distribution), and (2) cope easily with ignorance of missing variables by dropping the corresponding factors from the product above. The methodology makes a seemingly strong independence assumption, but in practice, because we are after a classification and not an exact membership probability, classification results can be excellent even when the assumption is violated (Hand & Yu, 2001; Domingos & Pazzani 1997).

2.2 Machine Learning Event Classifier

Besides the BEC, traditional supervised classification methods such as the ANNs and/or SVMs (Vapnik 1995; Cris-
tianini & Shawe-Taylor 2000; Fan, Chen & Lin 2005; Ripley 1996; Scholkopf & Smola 2001) can be used for confirmed event databases with large, nonsparse training and validation data sets where the use of supervised networks is already well established. Such a Machine Learning Event Classifier (MLEC) can represent events as vectors of observable parameters \(X = x_1, \ldots, x_i, \ldots, x_n \), where \(x_i \) are various observed quantities for the large majority of events, e.g., flux amplitudes in various filters, coordinates, flux ratios, etc.

Two types of problems can be expected: (1) not all parameters would be measured for all events. For example, some may be missing a measurement in a particular filter, due to a detector problem; some may be in the area on the sky where there are no useful radio observations; etc. A partial solution is to train a set of quasi-independent classifiers and invoke the one most suited based on observations available. (2) many observables would be given as upper or lower limits, rather than as well defined measurements. This can be partly solved by treating them as actual measurements or missing values leading to inaccurate or lossy data. Thus, this approach may be more useful for a classification of variable (always present, but changing) sources, rather than transients (detected only once). However, the performance of MLEC would be constantly improving as more follow-ups happen. A schematic combining the BEC, MLEC and the feedback stages is shown in Fig. 2.

2.3 Feedback Incorporation

A crucial feature of the system should be the ability to update and revise the prior distributions on the basis of the actual performance, as we accumulate the true physical classifications of events, e.g., on the basis of follow-up spectroscopy. Learning, in the Bayesian view, is precisely the action of determining the probability models above - once determined, the overall model (1) can be used to answer many relevant questions about the events. Analytically, we formulate this as determining unknown distributional parameters \(\theta \) in parameterized versions of the conditional distributions above, \(P(x|y = k; \theta) \). (Of course, the parameters depend on the object class \(k \), but we suppress this below.) In a histogram representation, \(\theta \) is just the probabilities associated with each bin, which may be determined by computing the histogram itself. In a Gaussian representation, \(\theta \) would be the mean vector \(\mu \) and covariance matrix \(\Sigma \) of a multivariate Gaussian distribution, and the parameter estimates are just the corresponding mean and covariance of the object-\(k \) data. When enough data is available we can adopt a semiparametric representation in which the distribution is a linear superposition of such Gaussian distributions:

\[
P(x_d|y = k; \theta) = \sum_{m=1}^{M} \lambda_m N(x_d; \mu_m; \Sigma_m)
\]

This generalizes the Gaussian representation, since by increasing \(M \), more distributional characteristics may be accounted for. The corresponding parameters may be chosen by the Expectation-Maximization algorithm (Turmon, Pap & Mukhtar 2002) or kernel density estimation (Silverman 1986; John & Langley 1995). Three possible sources of information can be used to find the unknown parameters: (1) background physical knowledge, e.g. from considerations of monotonicity, (2) examples labeled by experts, (3) feedback from the downstream observatories once labels are determined. The first case gives an analytical form for the distribution, but the last two provide labeled examples, \((x, y) \), which can be used to select a set of \(k \) probability distributions as described above. The parallel performance of the Bayesian and Machine Learning event classification engines can be evaluated and compared, and the output of both used - unless one turns out to be clearly superior to the other.

2.4 Follow-up Prioritization Engine

The sparse data can often lead to cases of ambiguous classification or perhaps it may not lead to meaningful classifications at all. On such occasions a follow-up prioritization engine can suggest the best follow-up strategy to reduce confusion between competing classes. For example, the system may decide that obtaining optical light curve with a particular time cadence would discriminate between a Supernova and a quasar, or that a particular color measurement would discriminate between a cataclysmic variable eruption and a gravitational microlensing event, etc. Suitable prioritized requests for the needed follow-up observations would be generated and sent to the appropriate telescopes. Since observational resources are scarce it is important to rank order the possible follow-up observations according to which ones result in the most reduction in classification uncertainty. This can be done using an information-theoretic approach (Loredo & Chernoff 2003) by quantifying the classification uncertainty using the conditional entropy of the posterior for \(y \), given all the available data. When an additional observation, \(x_+ \), is taken, the entropy decreases from \(H(y|x_0) \) to \(H(y|x_0, x_+) \). This is illustrated in Fig. 3, where the original classification \(p(y|x_0) \) is ambiguous and may be
Refined in one of two ways. The refinement for particular observations x_A versus x_B is shown. The correct choice is the one that will reduce the final entropy most. In our notation, the best follow-up observation is the one which results in the minimal final entropy, given by

$$X_+ = \min_{x_0} H(y|x_+, x_0)$$

$$= - \sum_{y|x_+} p(y, x_+|x_0) \log p(y|x_+, x_0)$$

In computing this, we average over all possible values of the new measurement x_+ and class y. Note, this is equivalent to maximizing the conditional mutual information of x_+ about y, given x_0; that is, $I(y; x_+|x_0)$ (Cover & Thomas 1991). The joint density above is known within the context of our assumed statistical model. Specifically, we have a joint probability of the form:

$$p(y, x_+|x_0) = \frac{p(x_+, x_0|y)p(y)}{\sum_{y|x_+} p(x_+, x_0|y)p(y)}$$

where the right hand side is given by factors as in (1). The conditional probability,

$$p(y|x_+, x_0) = \frac{p(x_+, x_0|y)p(y)}{\sum_y p(x_+, x_0|y)p(y)}$$

is the Bayes posterior given the new and previous measurements. Therefore, we can compute, within the context of the previously learned statistical model used to define the posterior in (1), the follow-up measurement resulting in the greatest entropy reduction given the previous measurements. We can thus provide a rank-ordered list of potential follow-up observations according to the information-theoretic ranking, leading to the most efficient use of the resources.

3 Summary

We have presented a software methodology, now under development, for an automated, iterative probabilistic classification of variables and transients found in large digital synoptic sky surveys. Our primary approach is using Bayesian networks, with a parallel development of classifiers based on Machine Learning techniques. Incorporation of feedback from follow-up observations is essential, both to update the Bayesian priors, and to improve the training data sets for the ML algorithms. Another innovation is an engine to discriminate between possible follow-up facilities for optimal results as well as faster rate of learning. Experimental implementations of this methodology with existing surveys such as PQ should both enhance their scientific returns, and help lay the groundwork for the more ambitious projects in the future, such as PanSTARRS and LSST.

Acknowledgements. We are grateful to the members of the PQ survey team, and to the staff of Palomar Observatory. This work was supported in part by the NSF grants AST-0407448, AST-0326524, and CNS-0540369, and by the Ajax Foundation. SGD acknowledges a stimulating atmosphere of the Aspen Center for Physics. Finally, we thank the workshop organizers for an excellent and productive meeting.

References

Cover, T. & Thomas, J.: 1991, Elements of Information Theory, Wiley

Cristianini, N. & Shawe-Taylor, J.: 2000, CUP, Cambridge

Djorgovski, S.G., et al.: 2006, Proc. 18th ICPR, (eds. Y.Y. Tang et al., IEEE Press), 856

Djorgovski, S.G., et al. (the Palomar-Quest Team): 2007, this vol.

Domíngos, P., & Pazzani, M.: 1997, Machine Learning, 29, 103

Fan, R. E., Chen, P. H., & Lin, C. J.: 2005, J. Machine Learning Research, 6, 1889

Hand, D. J., & Yu, K.: 2001, International Statistical Review, 69, 385

John, G. & Langley, P.: 1995, Proc. Eleventh Conf. on Uncertainty in AI (Morgan-Kaufman Publ.), 338

Loredo, T. J. & Chernoff, D. F.: 2003, Statistical Challenges in Modern Astronomy III (eds. E. D. Feigelson and G. J. Babu, Berlin: Springer Verlag), 57

Ripley, B. D.: 1996, Pattern Recognition and Neural Networks, Cambridge Univ. Press

Scholkopf, B., & Smola, A. J.: 2001, Learning with Kernels: SVMs, Regularization, Optimization, and Beyond. MIT Press

Silverman, B. W.: 1986, Density Estimation for Statistics and Data Analysis, Chapman and Hall publ.

Turmon, M., Pap, J. M, & Mukhtar, S.: 2002, ApJ, 568, 396

Vapnik, V.: 1995, The Nature of Statistical Learning Theory, Springer-Verlag, New York