Rice paddy soils are a quantitatively important carbon store according to a global synthesis

Yalong Liu1,2,3, Tida Ge2,4✉, Kees Jan van Groenigen5✉, Yuanhe Yang6, Ping Wang1, Kun Cheng7, Zhenke Zhu2, Jingkuan Wang1, Yong Li2, Georg Guggenberger2,3, Jordi Sardans8,9, Josep Penuelas8,9, Jinshui Wu2 & Yakov Kuzyakov10,11

Rice paddies account for ~9% or the world’s cropland area and are characterized by environmental conditions promoting soil organic carbon storage, methane emissions and to a lesser extent nitrous oxide emissions. Here, we synthesize data from 612 sites across 51 countries to estimate global carbon stocks in paddy soils and determine the main factors affecting paddy soil carbon storage. Paddy soils (0–100 cm) contain 18 Pg carbon worldwide. Paddy soil carbon stocks decrease with increasing mean annual temperature and soil pH, whereas mean annual precipitation and clay content had minor impacts. Meta-analysis shows that paddy soil carbon stocks can be increased through several management practices. However, greenhouse gas mitigation through paddy soil carbon storage is generally outweighed by increases in methane and nitrous oxide emissions. Our results emphasize the key role of paddies in the global carbon cycle, and the importance of paddy management in minimizing anthropogenic greenhouse gas emissions.
Soils contain the largest reservoir of terrestrial organic carbon (C) and they are a main natural source of atmospheric carbon dioxide (CO₂). Soil organic carbon (SOC) is widely recognized as a key element of soil fertility, and croplands with high SOC contents have better structure and lower risks of erosion. Insights into the global distribution of SOC stocks and the effects of environmental variables will thus improve estimates of C-climate feedbacks, and may contribute to agricultural policies designed to improve soil quality. Over the last decade, SOC stocks have been increasingly estimated at global and regional scales for numerous ecosystems, including croplands, grasslands, wetlands, and forests. However, even though rice paddies cover ~9% of the global cropland area and provide staple food for roughly half the world’s population, a global assessment of SOC stocks in rice paddies is still lacking.

Paddy soils are anthropogenic soils (Anthrosols) for cultivation of rice, which are intentionally flooded and puddled, i.e., filled under saturated conditions. Paddy soils are widely distributed from temperate to tropical climates on all continents, but mainly in Asia. Rice paddies can be established on various natural and previously agriculturally used soil types, and on various parent materials, but are highly modified by management practices during rice-paddy cultivation. Because rice paddies are frequently flooded and puddled, their properties differ substantially from those of all other arable upland soil. Anaerobic conditions induced by flooding slow down organic matter decomposition, and thus beneficial to SOC accumulation. At the same time, these anaerobic conditions promote CH₄ production by methanogens, making rice paddies a main source of anthropogenic CH₄ emissions.

The development of efficient irrigation techniques led to expansion of the global paddy area by >30% since the 1960s. During this period, rising levels of mineral fertilizer application and subsequent increased straw return to soil stimulated SOC storage in paddy soils around the world. For example, the topsoil layer (0–30 cm) of rice paddies in China store ~30% more SOC (45 Mg ha⁻¹) than corresponding upland soils (35 Mg ha⁻¹). Therefore, changes in the C pool size of paddies could strongly affect atmospheric CO₂ concentrations. However, the size of global rice-paddy SOC pool is still unclear. On a global scale, SOC stocks in upland soils increase with precipitation and clay content and decrease with temperature, but the main environmental and management factors affecting paddy SOC stocks at different climates have not yet been determined. This information could help to optimize agronomical management designed to enhance SOC sequestration, inform agricultural policy measures designed to improve soil quality, and predict the potential impacts of climate changes on SOC stocks.

Several recent studies have reported paddy SOC stocks in regions that were previously underrepresented in rice-paddy research, such as South America and Africa (e.g., ref. 21). With SOC inventories now being available for most of the world’s rice-growing areas, a data synthesis may reduce the uncertainty regarding paddy soil C stocks and identify practices and areas with high potential for soil C storage. We thus conducted a global synthesis of SOC stocks in the topsoil (0–30 cm) and subsoil (30–100 cm) of rice paddies, including data from 612 sites around the world (Fig. 1a; see Methods and Supplementary Data 1). Our objectives were (1) to determine climatic factors, soil properties, and management practices that affect SOC stocks of paddy topsoils on a global scale; (2) to compare paddy SOC storage between the main rice-producing countries and their contribution to the global paddy SOC pool; and (3) to determine the contribution of SOC storage in paddy soils to the global terrestrial and agricultural SOC pool.

We found that paddy soils (0–100 cm) contain 18 Pg SOC worldwide, ~1.2% of the global SOC pool, corresponding to 14% of the total SOC pool in croplands. Paddy SOC stocks decrease with increasing mean annual temperature and soil pH, but mean annual precipitation and clay content had minor impacts. Meta-analysis further indicates that paddy SOC stocks (0–30 cm) increase with fertilization (9–32%), straw return (13%), and conservation tillage (8–10%). However, climate benefits of SOC storage in paddies are generally negated by increases in CH₄ and N₂O emissions.

Results

Our database included information about rice paddies between 48°N and 38°S and between 147°E and 90°W. The distribution of sites was skewed towards low elevations, with most sites located below 200 m a.s.l. (Fig. 1b). The SOC content in the topsoil (most sites (>70%) ranged from 7 to 16 g kg⁻¹, with a mean of 13.8 g kg⁻¹. The bulk density (BD) of the topsoil at most sites (>70%) ranged between 1.2 and 1.6 g cm⁻³, with a mean of 1.3 g cm⁻³ (Supplementary Fig. 1).

The estimated global average SOC stock of rice paddies is 108 Mg ha⁻¹ for the 0–100 cm layer, ~10% higher than the global average for all soils (Table 1). Average SOC stocks in rice paddies are lower than for mangroves, forests, and wetlands, but substantially higher than for grasslands and croplands (Table 1). Totalled across the globe, the upper 1 m of paddy soils contains 18 Pg (95% CI: 17.2–18.9) organic C. This amounts to ~1.2% of the global SOC pool, or ~14.2% of the total SOC pool in croplands worldwide (Table 2).

Topsoil paddy SOC stocks ranged between 7 and 330 Mg ha⁻¹ (Fig. 2a). Mean SOC stocks increased with latitude (p < 0.01), from 50 Mg ha⁻¹ in the tropics to 62 Mg ha⁻¹ in temperate regions (Supplementary Fig. 2). Topsoil SOC stocks in rice paddies differed more than three fold between main rice-producing countries (Fig. 2b): paddies in Indonesia and Vietnam had the highest SOC stocks (~78 Mg ha⁻¹), whereas paddies in Pakistan, Cambodia, Africa, and Central and South America contained less than 30 Mg ha⁻¹. Paddies in China, India, and Indonesia together accounted for ~56% of the global paddy SOC pool (Fig. 2c).

Correlation analyses indicated that paddy SOC stocks are mainly determined by soil pH and mean annual temperature (MAT), and to a much smaller extent by mean annual precipitation (MAP) and clay content (Table 3). SOC stocks decreased with increases in pH and MAT, and slightly increased with increasing MAP and clay content.

Our meta-analysis indicates that N fertilization increased SOC stocks by 9% on average, whereas combined NPK application doubled the increase in SOC stocks compared to sole N fertilization application (Fig. 3). Organic fertilizer application alone and combined with NPK increased SOC stocks by 19% and 32%, respectively. Returning straw to the soil increased C stocks by 13%. Compared to conventional tillage practices, no-till and reduced tillage increased SOC stocks by 10% and 8%, respectively.

Discussion

Our data synthesis and meta-analysis reveal the importance of rice paddies for the global C cycle. Per unit area, paddy soils contain more SOC than upland agricultural soils. Whereas rice paddies occupy less than 9% of the global cropland area, they harbor more than 14% of its SOC stocks (Table 2). These large SOC stores can be explained by anaerobic conditions of rice paddies after flooding, slowing down decomposition rates and thus, increasing soil C accumulation compared to other cropland types.
SOC stocks were best predicted by soil pH (Table 3). This supports previous reports that soil acidity strongly affects ecosystem C balances (e.g., ref. 26). pH regulates several soil properties and processes that play key roles in determining C stocks. For example, the solubility of organic matter decreases under low pH by formation of organic matter complex with polyvalent metal ions such as iron and aluminum26,27. Consequently, leaching of dissolved organic matter will be reduced. Furthermore, low soil pH values slow down litter decomposition by reducing enzyme activity28,29 and by changing the composition of microbial communities30,31.

The MAP was less important than MAT in determining C stocks because of the regular flooding of paddy fields. High temperatures and rainfall in the tropics typically stimulate plant productivity32, but accelerated SOM decomposition negate or even override the effects of increased C inputs from plant production on C stocks33. Similarly, the slowing down of SOC decomposition rates with decreasing temperature34 explains the increase in C stocks with latitude.

Since paddy soils can develop from different parent materials, their initial mineralogy, texture, and fertility can vary considerably13. However, prolonged rice cultivation masks initial soil characteristics and minimizes the influence of parent material on pedogenic features (e.g., ref. 35). This likely explains why clay content explained less of the variation in SOC stock than did other environmental factors (e.g., pH and MAT, Table 3). Upland soils with high clay contents generally store more C than sandy soils36, because clay minerals provide binding surfaces for organic matter and creates anoxic microsites within aggregates. Soil aggregation has minor impact on C dynamics by regular puddling35, and strongly variable redox conditions may reduce the formation and stability of organic matter-clay complexes37.

Other recent SOC inventories also suggested that clay contents accounted for a small amount of variation in SOC stocks in rice paddies38. Rather, SOC stabilization in paddies is largely regulated by thermodynamic constraints of organic matter decomposition under anaerobic conditions39.

The impact of environmental factors on paddy soil C stocks can explain some of the main differences between countries. For instance, average paddy SOC stocks were 1.8-fold larger for China (65 Mg ha⁻¹) than India (36 Mg ha⁻¹). The difference between

Table 1 Recent estimates of SOC stocks for the world’s main terrestrial ecosystems.

Ecosystem	Global mean SOC stock (Mg ha⁻¹) 0-30 cm	Global mean SOC stock (Mg ha⁻¹) 0-100 cm	References
All soils	45	98	4
Cropland	41a	89	3,6
Mangrove	130a	283	11
Forest	87a	189	10
Grassland	38a	82	7
Wetland	107a	233	8
Rice paddy	51 (49-53)	108 (103-113)	This study

Numbers in parentheses indicate 95% confidence intervals.

*SOC stocks in the 0-30 cm layer are estimated by assuming that this layer contains 46% of the SOC stock in the 0-100 cm layer1.

Fig. 1 Overview of spatial ranges of the study. a Distribution of the sites from the peer-reviewed literature reporting paddy SOC stocks (612 sites). Areas with rice paddies are colored green. b Frequencies in absolute cases of the global distribution of elevation, latitude, and longitude for paddies.
countries partly reflects the specifics of climate; Chinese rice-growing regions predominantly have subtropical climates, whereas Indian rice-growing regions have predominantly hot tropical climates. Compared to other climate zones, the rate of paddy SOC decomposition in tropical climates is fast. Management practices also strongly affect paddy SOC stocks, which probably explains the relatively low amount of variation explained by environmental factors (Table 3) compared to non-agricultural upland soils (e.g., ref. 19). Our global meta-analysis corroborates previous national syntheses of paddy SOC dynamics.
under various management practices. C gains in fertilized soils are explained by N and other nutrients stimulating plant growth and rhizodeposition, thereby increasing soil C input rates. Fertilizer N addition can also stimulate soil C storage by slowing down the decomposition of plant litter and SOM (e.g., microbes). Microbial attacks through organo-mineral associations contribute to high soil C stocks in Chinese rice paddies.

Another factor that might explain low soil C stocks in Africa is the age of rice paddies. To feed a growing world population and to accommodate changing diets, global croplands have expanded by an average of 4 million hectares per year in recent decades. Paddy expansion rates during this time differed strongly between continents, with half of the new global paddy area being located in Africa. African rice paddies contain relatively low amounts of initial SOC compared to other continents, suggesting a high potential of C sequestration. Our results also indicate considerable potential for paddy soil C sequestration in southern Asia, the central Indochina Peninsula and eastern South America (Fig. 2a). Realizing this potential requires adoption of recommended management practices such as crop residue incorporation, conservation tillage associated with land management and economic policies. For instance, aggregating small cropland patches can facilitate efficient fertilizer application, whereas farmer subsidies could provide an incentive for straw incorporation and rotations with deep rooting crops.

Even though rice paddies store more SOC than the global average, this does not necessarily mean that the recent expansion in paddy area equates to a net climate benefit. First, new rice paddies are often established in ecosystems with relatively high soil C stocks, such as wetlands. Second, rice paddies require a considerable amount of global irrigation water, accounting for 20% of total freshwater withdrawals by crops. Pumping this water requires energy, which in turn causes ancillary CO2 emissions. In gravity-fed irrigation systems or when pumping water from shallow aquifers this energy requirement can be minimal, but it can be high with diesel-based groundwater extraction systems. Finally, and most importantly, CH4 emissions from rice paddies are substantially higher than for other staple crops, and rice paddies also produce considerable amounts of N2O emissions. Thus, any benefits in terms of soil C sequestration with rice-paddy establishment need to be considered against a backdrop of increased greenhouse gas (GHG) emissions.

Soil C storage and GHG emissions can be compared directly by expressing them in CO2 equivalents, using the global warming potential (GWP) values over a 100 year time horizon relative to CO2, i.e., 34 for CH4 and 298 for N2O. Global average GHG emissions from rice paddies have previously been estimated as 6300 kg CO2-eq ha−1 yr−1 for CH4 and 280 kg CO2-eq ha−1 yr−1 for N2O. Our meta-analysis only considered C stocks in the top 30 cm. SOC gains in upper soil layers under no-till can be partly offset by losses at lower depths, thereby reducing the SOC storage potential. Thus, to improve estimates of paddy SOC storage potential under no-till, whole profile analyses are still needed.

Our meta-analysis also explains some of the differences in SOC stocks between countries. For instance, rice paddies in eastern Asia (China, South Korea, and Japan), western Indonesian islands and Madagascar contained more SOC per area unit than paddies in western Africa, southern Asia, and South and Central America (Fig. 2a). These differences can be partly explained by management practices: farmers in southern/southeastern Asia and Africa often cannot afford sufficient mineral fertilizers to improve crop yield and support soil C storage. Rice straw is also often removed for fodder and other uses in these regions, hereby reducing soil C input rates and C stocks even further (Fig. 3). In contrast, high fertilizer application rates and high levels of crop residue return in China contribute to high soil C stocks in Chinese rice paddies.

The change in SOC stocks (%) under various management practices is shown next to the corresponding data point. OF is organic fertilizer. Dashed vertical line shows the average of all agronomical practices on the SOC increase. The effects of all presented management practices are significant (p < 0.05).
for N\textsubscript{2}O15 (Supplementary Table 1). Average annual soil C storage in rice paddies can be estimated from average rice yields16 and previously reported conversion factors66,67, and amounts to roughly 314 kg CO\textsubscript{2}-eq ha-1 yr-1, i.e., an order of magnitude less than the combined emissions of CH\textsubscript{4} and N\textsubscript{2}O (Supplementary Table 1). Our estimates are corroborated by field studies showing that even after accounting for soil C storage, rice paddies remain a large net source of GHGs (e.g., refs. 68–70, Supplementary Table 2).

Management practices that increase SOC sequestration in rice paddies need to account for increased CH\textsubscript{4} emissions as well. Even though rice straw incorporation stimulates soil C storage, it more than doubles CH\textsubscript{4} emissions from rice paddies on average11. Previous syntheses suggest that the net effect of these two responses is negative, i.e., straw incorporation constitutes a net source of GHG emissions22. Whereas reduced till and no-till practices generally increase paddy soil C stocks, their effect on CH\textsubscript{4} emissions remains uncertain, with recent syntheses suggesting either increases72,73 or decreases74 in CH\textsubscript{4} emissions with no-till. Higher surface SOC with no-till may stimulate CH\textsubscript{4} production by increasing the availability of organic substrates75. On the other hand, increased soil macroporosity and soil pore continuity with no-till may accelerate gas diffusion and increase CH\textsubscript{4} oxidation76. The net effect of these opposing mechanisms is still unclear, and further research is needed to determine which of these mechanisms dominates under which conditions. Fertilizer N addition not only stimulates paddy SOC storage; it also stimulates N\textsubscript{2}O emissions from rice paddies77. The effect of fertilizer N on CH\textsubscript{4} emissions depends on application rates, with positive effects at low and medium rates, but negative effects at very high rates77. The increase in GHG emissions with fertilizer addition generally outweighs the climate benefit of soil C storage68,69. Moreover, the manufacturing and distribution of fertilizer requires energy and thus produces ancillary CO\textsubscript{2} emissions, possibly negating climate benefits78. In addition, excessive fertilizer N application in rice paddies causes a range of other environmental problems79.

Although rice agriculture represents a large net source of GHGs compared to other staple crops, it also shows large potential for GHG mitigation through management84. For instance, mid-season drainage and intermittent irrigation can prevent the development of strong anaerobic conditions, thereby reducing CH\textsubscript{4} emissions by 53\%80. While these practices stimulate N\textsubscript{2}O emissions, their net effect on GHG emissions is still negative80. Combining intermittent irrigation with several other management practices, the System of Rice Intensification may reduce both GHG emissions and the use of irrigation water (e.g., refs. 53,81). Applying rice straw off season rather than in season82 could be extrapolated to other SOC data in the deep soil. The relative ratio of SOC content (RR\textsubscript{SOC}, see ref. 89) was first calculated as:

\[RR_{SOC} = \frac{SOC_{bottom}}{SOC_{surface}} \tag{1} \]

where SOC\textsubscript{surface} is the SOC content (kg ha-1) of surface soil and SOC\textsubscript{bottom} is the SOC content below the surface soil for various depths in the profile. Combining the data for all studies in the subset, the relationship between RR\textsubscript{SOC} and soil depth could be described by a logarithmic curve (Supplementary Fig. 4a, R2 = 0.63, n = 1227, see ref. 89). SOC content at depth i (cm) was then estimated as:

\[SOC_i = SOC_{surface} \times (0.32\ln(depth) + 1.7) \tag{2} \]

where the depth gradient for BD was less pronounced than for SOC content (Supplementary Fig. 4a). The relationship between BD and SOC content of the topsoil in our dataset could be described by a negative power function (Fig. SS; R2 = 0.49, n = 1370):

\[BD = 1.46^{-0.01SOC} \tag{3} \]

The availability of subsoil BD data was insufficient to perform a regression analysis with SOC content. Because the ratio of subsoil over topsoil bulk density averaged 1.18 across our dataset (Supplementary Fig. 4b; standard error = 0.01, n = 376), we estimated missing subsoil BDs by multiplying the topsoil BDs by 1.18.

Estimating paddy SOC stocks in the topsoil and subsoil. For each soil layer at each sampling location in our dataset, total SOC stock (SOC\textsubscript{T}, Mg ha-1) was calculated according to ref. 21:

\[\text{SOC}_T = SOC \times BD \times (1 - (\delta_{30} / 100)) \times 10^{-1} \]

where SOC and BD are SOC content (g kg-1) and bulk density (g cm-3), respectively, H is soil thickness (cm) and \delta_{30} is the fraction (%) of fragments >2 mm in the soil. Since the paddy soils were mostly derived from deposits in flat areas, the >2 mm fraction of the total mass is usually negligible31. When SOC content and BD data were available for the entire 0–30 cm profile, we calculated SOC\textsubscript{T} (Mg ha-1) for the 0–30 cm topsoil layer (SOC\textsubscript{T30}) and the entire 0–100 cm profile (SOC\textsubscript{T100}) by adding SOC\textsubscript{T} of all soil layers within the 0–30 cm and 0–100 cm range, respectively.

When SOC content or BD were not available for some of the 0–30 cm or 0–100 cm profile, we used the following formulas instead:

\[\text{SOC}_{T30} = \text{SOC}_{T} + SOC_{30} \times BD_{30} \times 10^{-1} \times \sum_{i=30}^{100} \left(0.32\ln(depth) + 1.7\right) \tag{5} \]

where SOC\textsubscript{T} (Mg ha-1) is the SOC content between 0 and 30 cm, SOC\textsubscript{30} is the SOC content between 30 and 100 cm, and SOC\textsubscript{T100} (Mg ha-1) is the SOC content between 0 and 100 cm; and SOC\textsubscript{30} and SOC\textsubscript{T100} are the SOC content (g kg-1) and SOC stock in the...
topsoil, respectively, BD is bulk density (g cm\(^{-2}\)) in the topsoil. Missing BDs were estimated using the formula in Supplementary Fig. 5.

Estimating national and global paddy SOC stocks. National paddy SOC stocks (SOC\(_{Na}\), Pg) for any country in our dataset were estimated as:

\[
\text{SOC}_{Na} = \text{SOC}_{\text{mean}} \times \text{HA} \times 10^{-9}
\]

where SOC\(_{\text{mean}}\) (Mg ha\(^{-1}\)) is the mean SOC stock across all sampling locations in that country and HA is the rice harvest area (ha) in that country. HA data for all countries in our analysis were derived from FAO\(^{15}\).

The global SOC stock (SOC\(_{G}\), Pg) was estimated as:

\[
\text{SOC}_{G} = \text{SOC}_{Na} + \text{SOC}_{T}\n
\]

where SOC\(_{T}\) is paddy SOC stock (Pg) in country a, and SOC\(_{Na}\) is paddy SOC stock (Pg) in country n. No SOC data were available for some countries where HA was small (e.g., Congo, Mali, and Peru). For these countries, we estimated SOC\(_{Na}\) using the SOC\(_{T}\) data from neighboring countries with the closest climate based on Köppen-Geiger climate classification. These estimates did not substantially affect the estimates of the global SOC stocks because of the small areas of these countries (~5% of total HA). Global mean SOC stocks per unit area was calculated based on global SOC stocks (SOC\(_{G}\)) divided by global rice-paddy area.

Data analysis. The importance of the environmental variables was estimated using Pearson’s and partial correlation coefficients, which are commonly used to measure the association between variables, implemented in SPSS 20.0 (SPSS, Chicago, USA). In these correlations, the \(p\) value defines whether two variables are statistically correlated. \(p\) values below 0.05 were accepted as significant correlations. Optimized model for SOC with environmental variables was determined by stepwise regression using forward selection criteria (\(p\) of 0.05 for entering and 0.1 for removal). ArcGIS 10.3 (Esri, Redlands, USA) was used to analyze and visualize the spatial distribution of SOC stocks.

The 95% confidence interval (CI) of SOC stocks (SOC\(_{G}\)) in each country was calculated by bootstrapping, using 4999 iterations.\(^9\) The uncertainty (U) of the total SOC stock in each country was then calculated as:

\[
U = \frac{\text{CI} \times 100}{x}
\]

where \(x\) is the SOC stock in a country, and CI is the 95% confidence interval of \(x\). The total uncertainty (U\(_{\text{total}}\)) at the global scale was calculated as:

\[
U_{\text{total}} = \sqrt{\left(\frac{U_a \times x_a}{x_a} + \ldots + \frac{U_n \times x_n}{x_n}\right)^2}
\]

where \(U_a\) and \(U_n\) are the uncertainties associated with \(x_a\) and \(x_n\) in country a and country n. Because some countries were represented by only one site, the CI of that country could not be calculated. In these cases, the coefficient of variation was conservatively set to 50\%.\(^91\) Global SOC stocks were then estimated as described by Eq. 8, and the 95% confidence CI of this estimate was calculated using Eq. 9.

Meta-analysis. We assessed the effects of management practices (fertilization, return of straw, and tillage) on paddy SOC stocks by creating subsets of experiments that included side-by-side comparisons between management practices. Studies had to meet specific criteria to be included in the dataset. First, growing conditions in the control and treatment plots had to be identical (except for the management practice being studied). Second, mean SOC stock and the number of treatments that included side-by-side comparisons between management practices.

Mean effect sizes and 95% confidence intervals (CIs) were generated by bootstrapping with 4999 iterations using MetaWin 2.1.\(^{10}\) Effects of paddy management were considered significant if the 95% CIs did not overlap with zero. To ease interpretation, results were back-transformed to percent change (\(\text{RR} = (1 - x) \times 100\)) in SOC stocks. Positive and negative changes indicate increases and decreases due to the management practices, respectively.

Data availability

The datasets generated during the current study are available at https://doi.org/10.5281/zenodo.5102775.

References

1. Batjes, N. H. Total carbon and nitrogen in the soils of the world. *Eur. J. Soil Sci.* 65, 10–21 (1996).
2. Lal, R. Soil carbon sequestration impacts on global climate change and food security. *Science* 304, 1623–1627 (2004).
3. Buringh, P. In *The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing*, 91–109 (Wiley, 1984).
4. Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. *EUR 79*, 23225 (2011).
5. Smith, P. et al. Global change pressures on soils from land use and management. *Glob. Chang. Biol.* 22, 1008–1018 (2016).
6. Schlesinger, W. H. *The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing* (Wiley, 1984).
7. Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. *Ecol. Appl. 27*, 662–668 (2017).
8. Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part I: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, and the world. *Soil I*, 351–365 (2015).
9. Nahlík, A. M. & Fennnessy, M. S. Carbon storage in US wetlands. *Nat. Commun.* 7, 1–9 (2016).
10. Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. *Science 303*, 185–190 (1994).
11. Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. *Nat. Clim. Chang.* 7, 523–528 (2017).
12. Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).
13. Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. *Geoderma* 157, 1–14 (2010).
14. Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. *Eur. J. Soil Sci.* 62, 29–34 (2011).
15. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. *Nat. Clim. Chang.* 7, 63–68 (2017).
16. FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).
17. Gättinger, A. et al. Enhanced top soil carbon stocks under organic farming. *Proc. Natl Acad. Sci. USA* 109, 18226–18231 (2012).
18. Xie, Z. et al. Soil carbon stocks in China and changes from 1980s to 2000s. *Glob. Chang. Biol.* 13, 1989–2007 (2007).
19. Qin, Z., Huang, Y. & Zhang, X. Soil organic carbon sequestration potential of cropland in China. *Glob. Biogeochem. Cycles* 27, 711–722 (2013).
20. Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. *Ecol. Appl.* 10, 423–436 (2000).
21. Haeufe, S. M., Nelson, A. & Hjimans, R. J. Soil quality and constraints in global rice production. *Geoderma* 235, 250–259 (2014).
22. Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. *Glob. Chang. Biol.* 10, 79–92 (2004).
23. Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. *Geoderma* 398, 115121 (2021).
24. Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. *Sci. Rep.* 5, 15704 (2015).
25. Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. *Soil Biol. Biochem.* 153, 108106 (2020).
26. Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. *Glob. Chang. Biol.* 18, 3317–3331 (2012).
27. Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. *Biol. Fertil. Soils* 55, 589–602 (2019).
28. Simsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. *Ecol. Lett.* 11, 1252–1264 (2008).
29. Lal, R. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. *Bioresearch* 13, 657–686 (2016).

30. Lal, R. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. *Eur. J. Soil Sci.* 67, 443–455 (2016).

31. Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cyclerockiness. *Nat. Commun.* 9, 1–10 (2018).

32. Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis. *Glob. Chang. Biol.* 17, 1658–1670 (2011).

33. Piao, S. et al. The carbon balance of terrestrial ecosystems in China. *Nature* 458, 1009–1013 (2009).

34. Davidson, E. A. & vesselinov, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature* 440, 165–173 (2006).

35. Kirk, G. *The Biogeochemistry of Submerged Soils* (Wiley, 2004).

36. Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. The biogeochemistry of submerged soils. *Agric. Ecosyst. Environ.* 135, 4045–4047 (2010).

37. Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in *Glob. Chang. Biol.* 18, 194–209 (2012).

38. IPCC. in *Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change* (eds. Field, C. B. et al) (Cambridge University Press, 2014).

39. Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. *Sci. China Earth Sci.* 53, 1351–1357 (2010).

40. Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. *Agric. Syst.* 164, 209–219 (2013).

41. Xiao, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. *Sci. Rep.* 5, 1–9 (2015).

42. Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. *Sci. Adv.* 5, eaau9338 (2019).

43. Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. *Glob. Chang. Biol.* 20, 1366–1368 (2014).

44. Shaker, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. *Sci. Total Environ.* 570, 142299 (2021).

45. Zhao, X. et al. Methane and nitrous oxide emissions under no-till farming in China: a meta-analysis. *Glob. Chang. Biol.* 22, 1372–1384 (2016).

46. Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. *Geoderma* 267, 34–40 (2016).

47. Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. *Soil Tillage Res.* 53, 29–39 (2000).

48. Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. *Soil Biol. Biochem.* 142, 107720 (2020).

49. Liu, Q. et al. Initial utilization of rhizodeposits with rice growth in planted soils. *Rhizosphere* 1, 100145 (2019).

50. Shaker, A. et al. A global meta-analysis of methane emissions and soil methane oxidation in rice: rice–soil interactions. *Agric. Ecosyst. Environ.* 53, 1357–1364 (2012).

51. Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice systems: sensitivity and upscaling. *Agric. Ecosyst. Environ.* 54, 207–219 (2014).

52. Jiang, Y. et al. Higher yields and lower methane emissions with new rice crop establishment. *Agric. Ecosyst. Environ.* 234, 47–54 (2019).

53. Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. *Paddy Water Environ.* 11, 321–329 (2013).

54. Yan, J. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. *Field Crop. Res.* 234, 47–54 (2019).

55. Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. *Glob. Biogeochem. Cycles* https://doi.org/10.1029/2003GB002045 (2004).

56. Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. *Artif. Intell. Agric.* 4, 140–149 (2020).

57. FAO, IASAS, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IASAS, Luxemburg, Austria (2012).
Acknowledgements
This study was supported by the National Key Research and Development program (2017YFD0800104), the National Natural Science Foundation of China (41977088, 41807089; 4176134095; 41761134095), the Natural Science Foundation of Hunan Province (2019JJ10003; 2019JJ30028), the Youth Innovation Team Project of Institute of Subtropical Agriculture, Chinese Academy of Sciences (2017QNCXTD_GTG), and the International Postdoctoral Exchange Fellowship Program 2018 (20180017). The research of J.P. and J.S. was funded by the European Research Council Synergy grant ERC-2013-5SxG-610028 IMBALANCE-P. The grants or other support to Ge T. from the Alexander von Humboldt Foundation of Germany and K. C. Wong Magna Fund in Ningbo University are also acknowledged with gratitude.

Author contributions
Y.L.L., T.G., K.J.v.G., G.G., and Y.K. conceived and designed this work; Y.L.L. and P.W. collected and organized data; Y.L.L., T.G., K.J.v.G., Y.Y., K.C., Z.Z., J.K.W., Y.L., G.G., J.S., J.P., J.S.W., and Y.K. took part in data discussion; Y.L.L. analyzed data and wrote the manuscript with contributions from all authors; Y.L.L. and K.J.v.G. revised the manuscript with contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43247-021-00229-0.

Correspondence and requests for materials should be addressed to T.G. or K.J.v.G.

Peer review information Communications Earth & Environment thanks Andreas Gattinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Joshua Dean, Joe Aslin and Clare Davis.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021