LOCAL-GLOBAL PRINCIPLE FOR NORM ONE TORI

SUMIT CHANDRA MISHRA

Abstract. Let \(K \) be a complete discretely valued field with residue field \(\kappa \). Let \(F \) be a function field in one variable over \(K \) and \(\mathcal{X} \) a regular proper model of \(F \) with reduced special fibre \(X \) a union of regular curves with normal crossings. Suppose that the graph associated to \(\mathcal{X} \) is a tree (e.g. \(F = K(t) \)). Let \(L/F \) be a Galois extension of degree \(n \) with Galois group \(G \) and \(n \) coprime to \(\text{char}(\kappa) \). Suppose that \(\kappa \) is algebraically closed or a finite field containing a primitive \(n \)-th root of unity. Then we show that an element in \(F^* \) is a norm for the extension \(L/F \) if it is a norm from the extensions \(L \otimes_F F_\nu/F_\nu \) for all discrete valuations \(\nu \) of \(F \).

1. Introduction

Let \(F \) be a field and \(\Omega_F \) be the set of all discrete valuations on \(F \). For \(\nu \in \Omega_F \), let \(F_\nu \) denote the completion of \(F \) at \(\nu \). Let \(G \) be a linear algebraic group over \(F \). One says that the local-global principle holds for \(G \)-torsors if for any \(G \)-torsor \(X \), \(X \) has a rational point over \(F \) if and only if it has a rational point over \(F_\nu \) for all \(\nu \in \Omega_F \). If \(F \) is a number field, then it is known that the local-global principle holds for torsors of various classes of linear algebraic groups ([18, Chapter 6]), including semisimple simply connected groups. In particular, it is well-known that if \(T_{L/F} \) is the norm one torus defined by a cyclic extension \(L/F \), then the local-global principle holds for \(T_{L/F}-\)torsors i.e. an element \(\lambda \in F \) is a norm from the extension \(L/F \) if and only if \(\lambda \) is a norm from \(F \otimes_F F_\nu/F_\nu \) for all \(\nu \in \Omega_F \) ([2, Chapter 11]). However, very little is known for general fields.

Let \(K \) be a complete discretely valued field with residue field \(\kappa \). Let \(F \) be a function field of a smooth, projective, geometrically integral curve over \(K \). Harbater, Hartman and Krashen ([12]) developed patching techniques to study \(G \)-torsors over \(F \) and proved that if \(G \) is connected and \(F \)-rational, then a \(G \)-torsor over \(F \) has a rational point over \(F \) if and only if it has a rational point over certain overfields of \(F \) which are defined using patching. As a consequence of this result, Colliot-Thélène, Parimala and Suresh ([4, Theorem 4.3.]) showed that if \(G \) is reductive, \(F \)-rational and defined over the ring of integers of \(K \), then the local-global principle holds for \(G \)-torsors. Similar local-global principles are proved for \(G \)-torsors for various linear algebraic groups \(G \) over \(F \) if the residue field of \(K \) is either finite or algebraically closed field ([4], [5], [10], [15], [17]).

The first example of a linear algebraic group \(G \) over \(F \) where such a local-global principle fails was given by Colliot-Thélène, Parimala and Suresh ([5, Section 3.1. & Proposition 5.9.]). In their example, the residue field of \(K \) is the field of complex numbers, \(G \) is the norm one torus of a Galois extension \(L/F \) with Galois group \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) and the field \(F \) has a regular proper model with the associated graph not a tree. Suppose that \(F \) has a regular proper model with the associated graph a tree. If \(L/F \) is a Galois extension with Galois group \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) and \(\kappa \) is algebraically closed, then they also proved that the local-global principle holds for torsors of the norm one torus of \(L/F \) ([5, Section 3.1. & Corollary 6.2.]).
The main aim of this paper is to prove the following theorem (6.4, 6.5):

Theorem 1.1. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n with Galois group G. Suppose that κ is either a finite field or an algebraically closed field, n is coprime to $\text{char}(\kappa)$ and K contains a primitive n^{th} root of unity. If the graph associated to X is a tree, then an element $\lambda \in F$ is a norm from the extension L/F if and only if λ is a norm from the extensions $L \otimes_F F_\nu/F_\nu$ for all $\nu \in \Omega_F$.

In fact one can restrict to divisorial discrete valuations in the above theorem.

For a finite extension L/F, let $T_{L/F}$ denote the norm one torus associated to L/F. For any extension N/F, let $RT_{L/F}(N)$ be subgroup of $T_{L/F}(N)$ consisting of R-trivial elements (c.f. section 2). The above theorem follows from the following more general theorem (6.3):

Theorem 1.2. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X}_0 be a regular proper model of F with reduced special fibre X_0 a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n. Suppose

- n is coprime to $\text{char}(\kappa)$,
- K contains a primitive n^{th} root of unity ρ,
- for all finite extensions κ'/κ and for all finite Galois extensions l/κ' of degree d dividing n, $T_{l/\kappa'}(\kappa') = RT_{l/\kappa'}(\kappa') < \rho^\frac{n}{d}$,
- the graph associated to \mathcal{X}_0 is a tree.

Then the local-global principle holds for $T_{L/F}$-torsors.

In the last section of the paper, we also give counterexamples to the local-global principle for torsors of certain norm one tori and multi-norm tori over a semiglobal field.

We now briefly describe the structure of the paper. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. For any point $P \in X$, let F_P be the fraction field of the completion of the local ring at P on \mathcal{X}. Let G be a linear algebraic group over F and Let $\Xi_X(F,G)$ be the kernel of the natural map $H^1(F,G) \to \prod_{P \in X} H^1(F_P,G)$ and $\Xi(F,G)$ be the kernel of the natural map $H^1(F,G) \to \prod_{\nu \in \Omega_F} H^1(F_\nu,G)$. It is known that $\Xi_X(F,G) \subseteq \Xi(F,G)$ ([12, Proposition 8.2.]).

First we prove the following (6.2):

Theorem 1.3. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n. Suppose

- n is coprime to $\text{char}(\kappa)$,
• K contains a primitive n^{th} root of unity ρ,
• for all finite extensions κ'/κ and for all finite Galois extensions l/κ' of degree d dividing n,

$$T_{l/\kappa'}(\kappa') = RT_{l/\kappa'}(\kappa') < \rho^d >,$$

• the graph associated to \mathcal{X} is a tree.

Then $\mathfrak{X}_X(F,T_{L/F}) = 0$.

We conclude our main theorem, by proving that for K, F and L as in (1.3), $\mathfrak{X}(F,T_{L/F}) = \bigcup_{X} \mathfrak{X}_X(F,G)$ (5.4), where X is running over the reduced special fibre of regular proper models of \mathcal{X} of F which are obtained as a sequence of blow-ups of \mathcal{X}_0 centered at closed points of \mathcal{X}_0.

2. Preliminaries

In this section we recall a few basic definitions and facts about patching and R-equivalence on algebraic groups ([3], [8], [11], [12]) which will be used in this paper.

2.1. Patching and various Shas.

Let F be a field and Ω_F the set of all equivalence classes of discrete valuations ν on F. For $\nu \in \Omega_F$, let F_ν denote the completion of F at ν and $\kappa(\nu)$ the residue field at ν. For an algebraic group G over F, let

$$\mathfrak{X}(F,G) = \ker(H^1(F,G)) \to \prod_{\nu \in \Omega_F} H^1(F_\nu,G)).$$

Let T be a complete discrete valued ring with fraction field K, residue field κ and $t \in T$ a parameter. Let F be a function field in one variable over K. Then there exists a regular 2-dimensional integral scheme \mathcal{X} which is proper over T with the function field F. We call such a scheme \mathcal{X} a regular proper model of F. Further there exists a regular proper model of F with the reduced special fibre a union of regular curves with only normal crossings. Let \mathcal{Y} be a regular proper model of F with the reduced special fibre X a union of regular curves with only normal crossings.

For any point x of \mathcal{Y}, let R_x be the local ring at x on \mathcal{Y}, \hat{R}_x the completion of the local ring R_x, F_x the fraction field of \hat{R}_x and $\kappa(x)$ the residue field at x.

For any subset U of X that is contained in an irreducible component of X, let R_U be the subring of F consisting of the rational functions which are regular at every point of U. Let \hat{R}_U be the t-adic completion of R_U and F_U the fraction field of \hat{R}_U.

Let $\eta \in X$ be a codimension zero point and $P \in X$ a closed point such that P is in the closure X_η of η. Such a pair (P, η) is called a branch. For a branch (P, η), we define $F_{P,\eta}$ to be the completion of F_P at the discrete valuation of F_P associated to η. If η is a codimension zero point of X, $U \subset X_\eta$ an open subset and $P \in X_\eta$ a closed point, then we will use (P,U) to denote the branch (P, η) and $F_{P,U}$ to denote the field $F_{P,\eta}$. With P, U, η as above, there are natural inclusions of F_P, F_U and F_η into $F_{P,\eta} = F_{P,U}$. Also, there is a natural inclusion of F_U into F_η. Let \mathcal{P} be a non-empty finite set of closed points of X that contains all the closed points of X where distinct irreducible components of X meet. Let \mathcal{U} be the set of connected components of the complement of \mathcal{P} in X and let \mathcal{B} be the set of branches (P,U) with $P \in \mathcal{P}$ and $U \in \mathcal{U}$ with P in the closure of U.
Let G be a linear algebraic group over F. Let
\[
\bigoplus_{\mathcal{P}} H^1(F, G) = \ker(H^1(F, G) \rightarrow \prod_{\xi \in \mathcal{P} \cup \mathcal{U}} H^1(F_{\xi}, G)).
\]
If \mathcal{X} is understood, we will just use the notation $\bigoplus_{\mathcal{P}} H^1(F, G)$. Let
\[
\bigoplus_{\mathcal{P}} H^1(F_{\mathcal{P}}, G) = \ker(H^1(F, G) \rightarrow \prod_{P \in \mathcal{P}} H^1(F_{P}, G)).
\]
Again, if \mathcal{X} is understood, we will just use the notation $\bigoplus_{\mathcal{P}} H^1(F, G)$.

We have a bijection([12, Corollary 3.6.]):
\[
\prod_{U \in \mathcal{U}} G(F_U) \setminus \prod_{(P, U) \in \mathcal{B}} G(F_{P, U})/ \prod_{P \in \mathcal{P}} G(F_P) \rightarrow \bigoplus_{\mathcal{P}} H^1(F, G)
\]

By ([12, Corollary 5.9.]), we have $\bigoplus_{\mathcal{P}} H^1(F, G) = \bigcup \bigoplus_{\mathcal{P}} H^1(F, G)$ where union ranges over all finite subsets \mathcal{P} of closed points of \mathcal{X} which contain all the singular points of X. We also have $\bigoplus_{\mathcal{P}} H^1(F, G) \subseteq \bigoplus_{\mathcal{F}, \mathcal{G}} H^1(F, G)$ ([12, Proposition 8.2.]).

2.2. The associated graph.

Lemma 2.1. Let Γ be a bipartite graph and G be an abstract group. Let V be the set of vertices with parts V_1 and V_2. For each edge θ of Γ, let $g_\theta \in G$. If Γ is a tree, then for every vertex $v \in V$, there exists $g_v \in G$ such that if e is an edge joining two vertices $v_1 \in V_1$, then $g_{v_1} g_{v_2} = g_e = g_{v_1} g_{v_2}$.

Proof. Suppose Γ is a tree. Without loss of generality, we may assume that Γ is a connected graph. We prove the lemma by the induction on number of vertices. Suppose Γ has one one vertex. Then there is nothing to prove.

Suppose that Γ has more than one vertex. Since Γ is a connected tree, there exists a vertex $v_0 \in V$ with exactly one edge θ at v_0. Without loss of generality, we may assume $v_0 \in V_1$. Let Γ' be the graph obtained from Γ by removing the vertex v_0 and the edge θ. Then Γ' is again a bipartite graph which is a tree. Then, by induction hypothesis, for every vertex v of Γ', there exists $g_v \in G$ such that if e is an edge in Γ' joining $v_1 \in V_1 \setminus \{v_0\}$ and $v_2 \in V_2$, then $g_{v_1} g_{v_2} = g_e = g_{v_1} g_{v_2}$. Let $v'_1 \in V_1 \setminus \{v_0\}$ and $v'_2 \in V_2$. Then it follows that $g_{v_0} = g_{v'_1} g_{v'_2}^{-1}$.

Let T be a complete discrete valued ring with fraction field K, residue field κ and $t \in T$ a parameter. Let F be a function field in one variable over K and \mathcal{X} a regular proper model of F with the reduced special fibre X a union of regular curves with only normal crossings. Let \mathcal{P} be a non-empty finite set of closed points of X that contains all the closed points of X where distinct irreducible components of X meet. Let \mathcal{U} be the set of connected components of the complement of \mathcal{P} in X and let \mathcal{B} be the set of branches (P, U) with $P \in \mathcal{P}$ and $U \in \mathcal{U}$ with P in the closure of U.

We have a graph $\Gamma(\mathcal{X}, \mathcal{P})$ associated to \mathcal{X} and \mathcal{P} whose vertices are elements of $\mathcal{P} \cup \mathcal{U}$ and edges are elements of \mathcal{B}. Since there are no edges between any vertices which are in \mathcal{P} (resp. \mathcal{U}), $\Gamma(\mathcal{X}, \mathcal{P})$ is a bipartite graph with parts \mathcal{P} and \mathcal{U}. If \mathcal{P}' is another finite set of closed points of X containing all the closed points of X where distinct irreducible components of X meet, then $\Gamma(\mathcal{X}, \mathcal{P})$ is a tree is and only if $\Gamma(\mathcal{X}, \mathcal{P}')$ is a tree ([12, Remark 6.1(b)]). Hence if $\Gamma(\mathcal{X}, \mathcal{P})$ is a tree for some \mathcal{P} as above, then we say that the graph $\Gamma(\mathcal{X})$ associated to \mathcal{X} is a tree.
Corollary 2.2. Let F, \mathcal{X}, X, \mathcal{P}, \mathcal{U} and \mathcal{B} be as above. Let G be an abstract group and for each branch $b \in \mathcal{B}$, let $g_b \in G$. Suppose that the graph $\Gamma(\mathcal{X})$ associated to \mathcal{X} is a tree. Then for every $\zeta \in \mathcal{U} \cup \mathcal{P}$, there exists $g \in G$ such that if $b = (P, U) \in \mathcal{B}$, then $g_b = g_{\zeta} g_U$.

2.3. R-equivalence and R-trivial elements.

Notation 2.3. Let F be a field and L be an étale algebra over F. Throughout this paper, we will denote the norm 1 torus $R^1_{L/F} \mathbb{G}_m$ by $T_{L/F}$.

Let X be a variety over a field F. For a field extension L of F, let $X(L)$ be the set of L-points of X. We say that two points $x_0, x_1 \in X(L)$ are elementary R-equivalent, denoted by $x_0 \sim x_1$, if there is a rational map $f : \mathbb{P}^1 \cdots \to X_L$ such that $f(0) = x_0$ and $f(1) = 1$. The equivalence relation generated by \sim is called R-equivalence. When $X = G$ an algebraic group defined over F with the identity element e, we define $RG(L) = \{ x \in G : x$ is R-equivalent to $e \}$. The elements of $RG(L)$ are called R-trivial elements. Let L/F be a Galois extension with the Galois group G, and $T_{L/F}$ the norm 1 torus associated to the extension L/F. Then for any extension N/F, $RT_{L/F}(N)$ is the subgroup generated by the set $\{ a^{-1} \sigma(a) : a \in (L \otimes_F N)^*, \sigma \in G \}$ ([3, Proposition 15]).

The following statements will be used in the later sections:

Proposition 2.4. Let F be a field and L_0/F a finite extension. Let L be the product of r copies of L_0. Then the homomorphism $T_{L/F} \to T_{L_0/F}$ given by $(a_1, \cdots, a_r) \mapsto a_1 \cdots a_r$ induces an isomorphism $T_{L/F}(F)/RT_{L/F}(F) \to T_{L_0/F}(F)/RT_{L_0/F}(F)$.

Proof. In fact the isomorphism $(R_{L_0/F}(\mathbb{G}_m))^r \to (R_{L_0/F}(\mathbb{G}_m))^r$ given by sending (b_1, \cdots, b_r) to $(b_1, \cdots, b_{r-1}, b_1b_2 \cdots b_r)$ induces an isomorphism of algebraic groups $T_{L/F} \to (R_{L_0/F}(\mathbb{G}_m))^{-1} \times T_{L_0/F}$ ([7, Lemma 1.1]). Since $R_{L_0/F}(\mathbb{G}_m)$ is rational, it is R-trivial by ([8, Corollary 1.6]). Hence the homomorphism $T_{L/F} \to T_{L_0/F}$ given by $(a_1, \cdots, a_r) \mapsto a_1 \cdots a_r$ induces an isomorphism $T_{L/F}(F)/RT_{L/F}(F) \to T_{L_0/F}(F)/RT_{L_0/F}(F)$. □

Corollary 2.5. Let F be a field and L_0/F a finite extension of degree d and L the product of r copies of L_0. Suppose that F contains ρ, a primitive $(dr)^{th}$ root of unity. If $T_{L_0/F}(F) = RT_{L_0/F}(F) < \rho^r$, then $T_{L/F}(F) = RT_{L/F}(F) < \rho^r$.

Proof. Since $(\rho, \rho, \cdots, \rho)$ maps to ρ^r under the isomorphism given in (2.4), the corollary follows from (2.4). □

Lemma 2.6. Let L/F be a finite Galois extension of degree m and N/F any field extension. If $\alpha \in (L \otimes_F N)^*$, then $N_{L \otimes_F N/N}(\alpha)^{-1} \alpha^m \in RT_{L/F}(N)$.

Proof. Let G be the Galois group of L/F. Since $N_{L \otimes_F N/N}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$, we have

$$N_{L \otimes_F N/N}(\alpha)^{-1} \alpha^m = \prod_{\sigma \in G} \sigma(\alpha)^{-1} \alpha^m = \prod_{\sigma \in G} \frac{\alpha^m}{\sigma(\alpha)} = \prod_{\sigma \in G} \frac{\alpha}{\sigma(\alpha)}.$$

Hence $N_{L \otimes_F N/N}(\alpha)^{-1} \alpha^m \in RT_{L/F}(N)$. □

3. Norm one elements - complete discretely valued fields

Lemma 3.1. Let F be a complete discretely valued field with residue field κ and L/F a finite Galois extension of degree n with residue field l. Suppose that n is coprime to $\text{char}(\kappa)$. Let $z \in T_{L/F}(F)$. If the image of z in \mathfrak{l} is 1, then $z \in RT_{L/F}(F)$.?
Proof. Let S be the integral closure of R in L. Then S is a complete discrete valuation ring with residue field l. Let $z \in T_{L/F}(F)$ with the image of z in l is 1. Since n is coprime to char(κ), by Hensel’s lemma, there is a $w \in S$ with $\overline{w} = 1$ and $z = w^n$. Since $N_{L/F}(z) = 1$, $N_{L/F}(w)^n = 1$ and hence $\rho = N_{L/F}(w)$ is an n^{th} root of unity. Since $\overline{w} = 1$, $N_{L/F}(w) = N_{\sigma}(\overline{w})^e = 1$, where e is the ramification index of the extension L/F. Hence $\overline{\rho} = 1$. Since n is coprime to char(κ), by Hensel’s lemma, the quotient map $S \rightarrow l$ induces a bijection from the set of n^{th} roots of unity in S to the set of n^{th} roots of unity in l. Hence $\rho = 1$ and $w \in T_{L/F}(F)$. Since $z = w^n$, $z \in RT_{L/F}(F)$ by (2.6).

\section*{Lemma 3.2.} Let F be a complete discretely valued field with residue field κ. Let L/F be a Galois extension of degree n. Suppose that $(n,\text{char}(\kappa)) = 1$. Suppose that F contains a primitive n^{th} root of unity ρ_n. Let l be the residue field of L and $f = [l : \kappa]$. If $T_{l/\kappa}(\kappa) = RT_{l/\kappa}(\kappa) < \rho_n^{\rho_l/f}$, then $T_{L/F}(F) = RT_{L/F}(F) < \rho_n$.

Proof. Let R be the discrete valuation ring of F and S be the integral closure of R in L. Let e be the ramification index of the extension L/F. Then $n = ef$. For any element $y \in S$ (resp. R), we will use \overline{y} to denote its image in the residue field l (resp. κ).

Let $x \in L$ with $N_{L/F}(x) = 1$. Then, $N_{l/\kappa}(\overline{x})^e = N_{L/F}(x) = 1$. Hence $N_{l/\kappa}(\overline{x}) = \rho_n^{f_i}$ for some i with $0 \leq i < e$. Let $y = \rho_n^{-i}x$. Then $N_{L/F}(y) = 1$ and $N_{l/\kappa}(\overline{y}) = N_{l/\kappa}(\rho_n^{-i})N_{l/\kappa}(\overline{x}) = \rho_n^{-i}\rho_n^{f_i} = 1$. Thus $\overline{y} \in T_{l/\kappa}(\kappa)$ and hence, by the assumption, $\overline{y} = \theta \rho_n^{j}$ for some $\theta \in RT_{l/\kappa}(\kappa)$ and j an integer. Write

$$\theta = \prod_{\sigma \in \text{Gal}(l/\kappa)} (a_\sigma)^{-1}\sigma(a_\sigma)$$

for some $a_\sigma \in l^*$. Since $\text{Gal}(l/\kappa)$ is a quotient of $\text{Gal}(L/F)$, for every $\sigma \in \text{Gal}(l/\kappa)$ we choose a lift $\tilde{\sigma} \in \text{Gal}(L/F)$ of σ. Let $b_\sigma \in S$ with $\overline{b_\sigma} = a_\sigma$ and

$$z = y^{-1}\rho_n^{-ej} \prod_{\sigma \in \text{Gal}(l/\kappa)} (b_\sigma)^{-1}\tilde{\sigma}(b_\sigma).$$

Then $z \in T_{L/F}(F)$ and $\overline{z} = 1$. Thus, by (3.1), $z \in RT_{L/F}(F)$. Therefore $y \in RT_{L/F}(F) < \rho_n$ and hence $x \in RT_{L/F}(F) < \rho_n$.

\section*{Definition 3.3.} A local field K is called a 1-local field. For $m \geq 1$, a complete discretely valued field K with m-local residue field k is called a $m + 1$-local field. If K is a 1-local field, the residue field of K is called the first residue field of K. If K is a $m + 1$-local field with residue field k, then the first residue field of k is called the first residue field of K.

\section*{Corollary 3.4.} Let K be a m-local field with first residue field κ and L/K a finite Galois extension of degree n. If n is coprime to char(κ) and K contains a primitive n^{th} root of unity ρ_n. Then $T_{l/K}(K) = RT_{l/K}(K) < \rho_n$.

Proof. Suppose K is 1-local. Then κ is a finite field. Hence every finite extension l/κ is cyclic and by Hilbert 90, $T_{l/\kappa}(\kappa) = RT_{l/\kappa}(\kappa)$. Thus, by (3.2), $T_{L/K}(F) = RT_{L/K}(K) < \rho_n$. The corollary follows by induction on m and by (3.2).

4. Extensions of two dimensional complete fields

Let K be a field with a discrete valuation v. Let $\kappa(v)$ be the residue field of v. Let L/K be a finite extension and w a discrete valuation on L extending v. Let $e(w/v)$
be the ramification index of w over v. For any field E, $a \in E^*$ and $n \geq 1$, let $E(\sqrt[n]{a})$ denote the field generated by E and $\sqrt[n]{a}$ in a fixed algebraic closure of E.

We begin with the following well-known fact:

Lemma 4.1. Let F be a with a discrete valuation v, $\pi \in F^*$ with $v(\pi) = 1$. Let L/F be a finite extension of degree coprime to $\text{char}(\kappa(v))$ and w be a discrete valuation of L extending v. Let ℓ be a prime not equal to the characteristic $\kappa(v)$. Then there is a unique discrete valuation \tilde{v} on $F(\sqrt{\pi})$ extending v. Let \tilde{w} on $L(\sqrt{\pi})$ be a discrete valuation extending w. Then the following holds:

- if ℓ does not divide $e(w/v)$, $e(\tilde{w}/\tilde{v}) = e(w/v)$.
- if ℓ divides $e(w/v)$, then $e(\tilde{w}/\tilde{v}) = e(w/v)/\ell$.

Proof. Since $v(\pi) = 1$, v is totally ramified in $F(\sqrt{\pi})$ and hence there is a unique extension \tilde{v} of v to $F(\sqrt{\pi})$.

For the ramification index calculations, we can replace F by F_v, the completion of F with respect to the valuation v and assume that F is complete. Let L^{nr} be the maximal unramified subextension of L/F. Since the ramification index of L/L^{nr} is same as the ramification index of L/F, replacing F by L^{nr}, we assume that L/F is totally ramified. Since $n = e = [L:F]$ is coprime to $\text{char}(\kappa(v))$, we have $L = F(\sqrt{u\pi})$ for some $u \in F$ with $v(u) = 0$ ([2, Proposition 1, p-32]).

Suppose ℓ does not divide n. Then $L(\sqrt{\pi})/F$ is totally ramified extension of degree $n\ell$ and hence $L(\sqrt{\pi})/F(\sqrt{\pi})$ is a totally ramified extension of degree n.

Suppose ℓ divides n. Suppose $u \in F^{*\ell}$. Then $F(\sqrt{\pi}) \subseteq L$ and hence $L/F(\sqrt{\pi})$ is a totally ramified extension of degree n/ℓ. Suppose $u \notin F^{*\ell}$. Then $L(\sqrt{\pi}) = F(\sqrt{\pi})(\sqrt{u})^i$. Hence the ramification index of the extension $L(\sqrt{\pi})/F(\sqrt{\pi})$ is n/ℓ.

Notation 4.2. Let A be a complete regular local ring of dimension 2 with residue field κ and field of fractions F. Let $\mathfrak{m} = (\pi_1, \pi_2) \subset A$ be the maximal ideal of A. Then we denote by $\hat{A}_{(\pi_i)}$ the completion of the local ring $A_{(\pi_i)}$ with respect to the ideal (π_i) and by F_{π_i} the fraction field of $\hat{A}_{(\pi_i)}$.

Lemma 4.3. Let A be a complete regular local ring of dimension 2 with residue field κ and field of fractions F. Let L/F be a field extension of degree n where n is coprime to the $\text{char}(\kappa)$. Let $\mathfrak{m} = (\pi_1, \pi_2) \subset A$ be the maximal ideal of A. Suppose that L/F unramified on A except possibly at π_1 and $\pi_2 \in A$. Then $L \otimes_F F_{\pi_i}$ is a field.

Proof. Let v_i be the discrete valuations of F given by π_i. To show that $L \otimes_F F_{\pi_i}$ is a field, it is enough to show that there is a unique extension of v_i to a discrete valuation on L.

Let w_i be the extensions of the valuations v_i to L. Let m be the maximum of $e(w_i^j/v_i)$. Since each $e(w_i^j/v_i) \geq 1$, $m \geq 1$. We prove the result by induction on m.

Suppose $m = 1$. Then $e(w_i^j/v_i) = 1$ for all i and j and hence L/F is unramified at π_i for $i = 1, 2$. Since L/F is unramified on A except possibly at π_1, π_2, L/F is unramified on A. Let \hat{A} be the integral closure of A in L. Then \hat{A} is again a complete regular local ring of dimension 2 with (π_1, π_2) as maximal ideal and fraction field L.
Thus π_i remains a prime over \tilde{A}. Hence there is a unique extension of v_i to a discrete valuation of L. Hence $L \otimes_F F_{\pi_i} \cong L_{\pi_i}$ is a field.

Suppose $m > 1$. Let ℓ be a prime which divides m. Let $E = F(\sqrt[p]{\pi_1})$ and $M = L(\sqrt[p]{\pi})$. Let B be the integral closure of A in E. Then B is a regular local ring with maximal ideal $(\sqrt[p]{\pi_1}, \pi_2)$ by ([16, Lemma 3.2.]). Let $\pi'_1 = \sqrt[p]{\pi_1}$ and $\pi'_2 = \pi_2$. Then M/E is unramified on B except possibly at π'_1 and π'_2.

Let \tilde{v}_i be the unique extension of v_i to E (c.f. 4.1). Let ω be a discrete valuation of M extending \tilde{v}_i for some i. Then the restriction of ω to L is equal to w_i^j for some j. Then $e(\omega/\tilde{v}_i) \leq e(w_i^j/v_i)$ (c.f. 4.1). Suppose $e(w_i^j/v_i) = m$. Since ℓ divides $e(w_i^j/v_i)$, by (4.1), $e(\omega/\tilde{v}_i) = e(w_i^j/v_i)/\ell = m/\ell < m$. Hence, by induction hypothesis, for each $i = 1, 2$, there is a unique extension of \tilde{v}_i to M. Since L is a subfield of M, there is a unique extension of v_i to L. Hence $L \otimes_F F_{\pi_i}$ is a field. □

Lemma 4.4. Let A be a complete regular local ring of dimension 2 with residue field κ and field of fractions F. Let L/F be a Galois extension of degree n where n is coprime to the $\text{char}(\kappa)$. Let $m = (\pi_1, \pi_2) \subset A$ be the maximal ideal of A. Suppose that L/F is unramified on A except possibly at π_1 and $\pi_2 \in A$ and totally ramified at π_2. Then $L = F(\sqrt[p]{\nu\pi_1^m\pi_2})$ for some $u \in A$ a unit.

Proof. Let G be the Galois group of L/F. Since the degree of L/F is coprime to $\text{char}(\kappa)$ and L/F is unramified on A except possibly at π_1 and π_2, by (4.3), $L \otimes_F F_{\pi_2}$ is a field. Since $L \otimes_F F_{\pi_2}$ is a totally tamely ramified extension, F_{π_2} contains a primitive n^{th} root of unity and we have $L \otimes_F F_{\pi_2} = F_{\pi_2}(\sqrt[p]{\theta \pi_2})$ for some $\theta \in F_{\pi_2}$ which is a unit in the discrete valuation ring of F_{π_2} by ([2, Proposition 1, p-32]). In particular G is a cyclic group. Since F_{π_2} contains a primitive n^{th} root of unity, the residue field $\kappa(\pi_2)$ of F_{π_2} contains a primitive n^{th} root of unity. Since κ is the residue field of $\kappa(\pi_2)$, κ also contains a primitive n^{th} root of unity. Since A is complete, by Hensel’s lemma, F contains a primitive n^{th} root of unity.

Hence $L = F(\sqrt[p]{a})$ for some $a \in F$. Since L/F is unramified on A except possibly at π_1, π_2, we can choose $a = u\pi_1^m\pi_2^d$ for some $u \in A$ a unit and integers m, d. Since L/F is totally ramified at π_2, d is coprime to n and hence we can assume that $d = 1$. □

Lemma 4.5. Let A be a complete regular local ring of dimension 2 with residue field κ and field of fractions F. Let L/F be a Galois extension of degree coprime to the $\text{char}(\kappa)$. Let $m = (\pi_1, \pi_2) \subset A$ be the maximal ideal of A. Suppose that L/F is unramified on A except possibly at π_1. Then there exists a subextension L_1/F of L/F such that

- L_1/F is unramified on A
- $L = L_1(\sqrt[p]{u\pi_1})$ for some unit u in the integral closure of A in L_1.

Proof. Let G be the Galois group of L/F. Since $L \otimes_F F_{\pi_1}/F_{\pi_1}$ is a field extension (4.3), the Galois group $\text{Gal}(L \otimes_F F_{\pi_1}/F_{\pi_1}) \cong G$. We will identify these two groups. We consider the inertia group H of the extension $L \otimes_F F_{\pi_1}/F_{\pi_1}$ which is a subgroup of G. Let $L_1 = L^H$. Then $(L \otimes_F F_{\pi_1})^H = L_1 \otimes_F F_{\pi_1}$ is unramified over F_{π_1} by ([2, Theorem 2, p-27]). Hence $L_{1,\pi_1} \cong L_1 \otimes_F F_{\pi_1}$ is unramified over F_{π_1} and L_1/F is unramified at π_1. Since L/F is unramified on A except possibly at π_1, L_1/F is
unramified on \(A \). Then the integral closure \(B \) of \(A \) in \(L_1 \) is a regular local ring with maximal ideal \((\pi_1, \pi_2)\). Let \(e = [L:L_1] \). Since \(L/F \) is unramified on \(A \) except possibly at \(\pi_1 \), \(L/L_1 \) is unramified on \(B \) except possibly at \(\pi_1 \). Hence by (4.4), we have \(L = L_1(\sqrt[2]{u_1} \pi_1) \) for some \(u \in B \) a unit. Since \(L/L_1 \) is unramified on \(B \) except possibly at \(\pi_1, m \) is divisibly by \(f \) and hence \(L = L_1(\sqrt[2]{u_1}) \).

Theorem 4.6. Let \(A \) be a complete regular local ring of dimension 2 with residue field \(\kappa \) and field of fractions \(F \). Let \(L/F \) be a Galois extension of degree coprime to the \(\text{char}(\kappa) \). Let \(\mathfrak{m} = (\pi_1, \pi_2) \subset A \) be the maximal ideal of \(A \). Suppose that \(L/F \) unramified on \(A \) except possibly at \(\pi_1, \pi_2 \in A \). Then there exists subfields \(L_1 \) and \(L_2 \) of \(L \) such that

- \(F \subseteq L_1 \subseteq L_2 \subseteq L \)
- \(L_1/F \) is unramified on \(A \)
- \(L_2 = L_1(\sqrt[2]{u_1}) \) for some unit \(u \) in the integral closure of \(A \) in \(L_1 \)
- \(L = L_2(\sqrt[2]{v(\sqrt[2]{u_1})^s \pi_2}) \) for some unit \(v \) in the integral closure of \(A \) in \(L_2 \).

Proof. Let \(G \) be the Galois group of \(L/F \). Since \(L \otimes F \pi_2/F \pi_2 \) is a field extension (4.3), the Galois group \(\text{Gal}(L \otimes F \pi_2/F \pi_2) \cong G \). We identify these two groups. We consider the inertia group \(H \) of the extension \(L \otimes F \pi_2/F \pi_2 \) which is a subgroup of \(G \). Let \(L_2 = L^H \). Then, as in (4.5), \(L_2/F \) is unramified on \(A \) except possibly at \(\pi_1 \). Hence, by (4.5), there exists a sub extension \(L_1/F \) of \(L_2/F \) such that \(L_1/F \) is unramified on \(A \) and \(L_2 = L_1(\sqrt[2]{u_1}) \) for some unit \(u \) in the integral closure of \(A \) in \(L_1 \). Let \(B \) be the integral closure of \(A \) in \(L_2 \). Then \(B \) is a regular local ring with maximal ideal \((\sqrt[2]{u_1}, \pi_2)\) by ([16, Lemma 3.2.]). Since \(L_1/L_2 \) is unramified on \(B \) except possibly at \(\sqrt[2]{u_1}, \pi_2 \) and totally ramified at \(\pi_2 \), by (4.4), \(L = L_2(\sqrt[2]{v(\sqrt[2]{u_1})^s \pi_2}) \) for some unit \(v \in B \). \(\boxdot \)

5. III vs \(\text{III}_X \)

Lemma 5.1. Let \(A \) be a complete regular local ring of dimension 2 with residue field \(\kappa \) and fraction field \(F \). Let \(\mathfrak{m} = (\pi_1, \pi_2) \) be the maximal ideal of \(A \). Let \(m \geq 1 \) be an integer coprime to \(\text{char}(\kappa) \). Let \(F_{\pi_1} \) be the completion of \(F \) at the discrete valuation of \(F \) given by \(\pi_1 \). Then every element in \(F_{\pi_1} \) can be written as \(u_1^s \pi_2^m b^m \) for some \(u \in A \) unit, \(b \in F_{\pi_1} \) and integers \(s, t \).

Proof. Let \(\widehat{A}_{(\pi_1)} \) be the completion of the local ring \(A_{(\pi_1)} \). Then \(F_{\pi_1} \) is the fraction field of \(\widehat{A}_{(\pi_1)} \). Let \(x \in F_{\pi_1} \). Then \(x = v_1^s \) for some unit \(v \in \widehat{A}_{(\pi_1)} \) and integer \(s \). Let \(\pi \) be the image of \(v \) in the residue field \(\kappa(\pi_1) \) of \(F_{\pi_1} \). Since \(\kappa(\pi_1) \) is the fraction field of \(A/(\pi_1) \) and \(A/(\pi_1) \) is a discrete valuation ring with the image \(\pi_2 \) as a parameter, we can write \(\pi = z_1^t \) for some unit \(z \in A/(\pi_1) \) and integer \(t \). Let \(\omega \) be the image of \(z \) in \(\kappa(\pi_1) \). Since \(z \) is a unit in \(A/(\pi_1) \), \(\omega \) is a unit in \(A \). Hence \(x^{-1} \omega_1^{s_1} \pi_2^m \) maps to 1 in \(\kappa(\pi_1) \). Since \(m \) is coprime to \(\text{char}(\kappa) \), by Hensel’s lemma, \(x = \omega_1^{s_1} \pi_2^m \) maps to 1 in \(\kappa(\pi_1) \). \(\boxdot \)

Lemma 5.2. Let \(A \) be a complete regular local ring of dimension 2 with residue field \(\kappa \) and fraction field \(F \). Let \(L/F \) be a Galois field extension of degree \(n \) where \(n \) is coprime to \(\text{char}(\kappa) \). Let \(\mathfrak{m} = (\pi_1, \pi_2) \) be the maximal ideal of \(A \). Suppose that \(L/F \)
is unramified on A except possibly at π_1. Let $\lambda = u\pi_1^r\pi_2^s$ for some unit $u \in A$ and integers r, s. If λ is a norm from the extension $L \otimes_F F_{\pi_1}/F_{\pi_1}$, then λ is a norm from the extension L/F.

Proof. Let $\lambda = u\pi_1^r\pi_2^s$ for some unit $u \in A$ and integers r, s. Suppose that λ is a norm from $L \otimes_F F_{\pi_1}/F_{\pi_1}$. Let $\mu \in L \otimes_F F_{\pi_1}$ be such that $N_{L \otimes_F F_{\pi_1}/F_{\pi_1}}(\mu) = \lambda$.

Since L/F is a Galois extension which is unramified on A except possibly at π_1, by (4.5), we have a subfield $F \subseteq L_1 \subseteq L$ such that L_1/F is unramified on A and $L = L_1(\sqrt[\nu]{\Delta})$ where $\nu = [L : L_1]$ and ν is a unit in the integral closure of A in L_1. Let B be the integral closure of A in L. Then B is a regular local ring with maximal ideal $(\sqrt[\nu]{\Delta}, \pi_1, \pi_2)$ by ([16, Lemma 3.2.]). Hence, by (5.1), $\mu = w\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j}$ for some integers $i, j, b \in L \otimes F F_{\pi_1}$ and w a unit in B. Let $\theta = w\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j} \in L$. Since $N_{L \otimes F F_{\pi_1}/F_{\pi_1}}(\mu) = \lambda$, we have $N_{L/F}(\theta^{-1})\lambda = N_{L \otimes F F_{\pi_1}/F_{\pi_1}}(b^{n}) \in F_{\pi_1}^{n}$. Since $N_{L/F}(\theta^{-1})\lambda = [N_{L/F}(w)\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j}]^{-1}u\pi_1^r\pi_2^s = [u(N_{L/F}(w))^{-1}]\pi_1^{-r}\pi_2^{-s-nj}$ and $u(N_{L/F}(w))^{-1}$ is a unit in A, by ([17, Corollary 5.5.]), $N_{L/F}(\theta^{-1})\lambda \in F_{\pi_1}^{n}$. In particular $N_{L/F}(\theta^{-1})\lambda$ is a norm from the extension L/F and hence λ is a norm from L/F. □

Theorem 5.3. Let A be a complete regular local ring of dimension 2 with residue field κ and fraction field F. Let L/F be a Galois field extension of degree n where n is coprime to $\text{char}(\kappa)$. Let $m = (\pi_1, \pi_2)$ be the maximal ideal of A. Suppose that L/F is unramified on A except possibly at π_1, π_2. Let $\lambda = u\pi_1^r\pi_2^s$ for some unit $u \in A$ and integers r, s. If λ is a norm from the extension $L \otimes_F F_{\pi_1}/F_{\pi_1}$ then λ is a norm from the extension L/F.

Proof. Let $\lambda = u\pi_1^r\pi_2^s$ for some unit $u \in A$ and integers r, s. Suppose that λ is a norm from $L \otimes_F F_{\pi_1}/F_{\pi_1}$. Let $\mu \in L \otimes_F F_{\pi_1}$ be such that $N_{L \otimes_F F_{\pi_1}/F_{\pi_1}}(\mu) = \lambda$. We show by induction on the degree of the field extension L/F that λ is a norm from the extension L/F.

Since L/F is a Galois extension which is unramified on A except possibly at π_1 and π_2, we have subfields L_1 and L_2 as in (4.6).

Let B be the integral closure of A in L_2. Then B is a complete regular local ring with maximal ideal $(\sqrt[\nu]{\Delta}, \pi_1, \pi_2)$ by ([16, Lemma 3.2.]). By (5.1), we have $N_{L \otimes_F F_{\pi_1}/L_2 \otimes F F_{\pi_1}}(\mu) = w\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j}b^{n}$ for some integers $i, j, b \in L_2 \otimes F F_{\pi_1}$ and w a unit in B. Then $\theta = w\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j}$ is a norm from $L \otimes_F F_{\pi_1}/L_2 \otimes F F_{\pi_1}$.

Suppose $F \neq L_2$. Then $[L : L_2] < [L : F]$ and by induction, θ is a norm from L/L_2. Write $\theta = N_{L/L_2}(\theta')$. Then

$$
\lambda = N_{L \otimes_F F_{\pi_1}/F_{\pi_1}}(\mu) = N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(N_{L \otimes_F F_{\pi_1}/L_2 \otimes F F_{\pi_1}}(\mu)) = N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(\theta'^{n}) = N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(\theta)N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(b^{n}) = N_{L_2/F}(N_{L/L_2}(\theta')N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(b^{n}) = N_{L/F}(\theta')N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(b^{n})
$$

Since $N_{L/F}(\theta') = N_{L_2/F}(\theta) = N_{L_2/F}(w\sqrt[\nu]{\Delta}\pi_1^{i}\pi_2^{j})$, $N_{L/F}(\theta')^{-1}\lambda$ is a product of a unit in A with a power of π_1 and a power of π_2. Since $N_{L/F}(\theta')^{-1}\lambda = N_{L_2 \otimes F F_{\pi_1}/F_{\pi_1}}(b^{n}) \in F_{\pi_1}^{n}$ by ([17, Corollary 5.5.]), we conclude that $N_{L/F}(\theta')^{-1}\lambda$ is a n^{th} power in F and hence a norm from L to F. Hence λ is also a norm from L to F.

10 LOCAL-GLOBAL PRINCIPLE
Now suppose $F = L_2$. Then $L = F(\sqrt[n]{\pi/2})$ where ν is a unit in A and hence L/F is a cyclic extension of degree n. Let σ be a generator of the Galois group of L/F and C be the cyclic algebra (L, σ, λ). Since L/F is unramified on A except at π_2, C is a unramified on A except possibly at π_1 and π_2. Since λ is a norm from $L \otimes_F F_{\pi_1}$, $C \otimes_F F_{\pi_1}$ is a split algebra. Thus, by ([17, Corollary 5.5.]), C is a split algebra and hence λ is a norm from the extension L/F by ([1, Theorem 6, p-95]).

\begin{proof}
Let K be a complete discretely valued field with residue field κ. Let F/K be the function field of a curve and \mathcal{X}_0 a regular proper model of F with reduced special fibre X_0. Let L/F be a Galois field extension of degree coprime to $\text{char}(\kappa)$. Then $\bigcup_X \mathfrak{X}(F, T_{L/F}) = \mathfrak{X}(F, T_{L/F})$, where X is running over the reduced special fibres of regular proper models of \mathcal{X} of F which are obtained as a sequence of blow-ups of \mathcal{X}_0 centered at closed points of \mathcal{X}_0.

Let $x \in \mathfrak{X}(F, T_{L/F}) \subseteq H^1(F, T_{L/F})$. Since $H^1(F, T_{L/F}) \simeq F^*/N_{L/F}(L^*)$, let $\lambda \in F^*$ be a lift of x. By ([13, p-193]), there exists a sequence of blow-ups $\mathcal{X} \to \mathcal{X}_0$ centered at closed points of \mathcal{X}_0 such that the union of $\text{supp}_x(\lambda)$, $\text{ram}_x(L/F)$ and the reduced special fibre X of \mathcal{X} is a union of regular curves with normal crossings. We show that $x \in \mathfrak{X}(F, T_{L/F})$.

Let $P \in X$. Suppose P is a generic point of X. Then P gives a discrete valuation ν of F with $F_{\nu} = F_P$. Since $x \in \mathfrak{X}(F, T_{L/F})$, x maps to 0 in $H^1(F_P, T_{L/F})$. Suppose that P is a closed point. Let η_1 be the generic point of an irreducible component of X containing P. Let $\mathcal{O}_{\mathcal{X}, P}$ be the local ring at P and $m_{\mathcal{X}, P}$ be its maximal ideal. Then, by our choice of \mathcal{X}, $m_{\mathcal{X}, P} = (\pi_1, \pi_2)$ where π_1 is a prime defining η_1 at P, $\lambda = u\pi_1^r \pi_2^s$ for some unit $u \in A$ and integers r, s, and $L \otimes_F F_P/F_P$ is unramified on $\mathcal{O}_{\mathcal{X}, P}$ except possibly at π_1, π_2. Since L/F is a Galois extension, $L \otimes_F F_P = \prod L_P$ for some Galois extension L_P/F_P. Since $L \otimes_F F_P/F_P$ is unramified on $\mathcal{O}_{\mathcal{X}, P}$ except possibly at π_1, π_2, L_P/F_P is unramified on $\mathcal{O}_{\mathcal{X}, P}$ except possibly at π_1, π_2. Since λ is a lift of $x \in \mathfrak{X}(F, T_{L/F})$, λ is a norm from $L \otimes_F F_{\eta_1}/F_{\eta_1}$. Since $F_{\eta_1} \subseteq F_{P_{\eta_1}}$, λ is a norm from $L \otimes_F F_{P_{\eta_1}}/F_{P_{\eta_1}}$. Hence λ is a norm from $L \otimes_F F_{P_{\eta_1}}/F_{P_{\eta_1}}$. Thus, by (5.3), λ is a norm from L_P/F_P and x maps to 0 in $H^1(F_P, T_{L/F})$. Therefore $x \in \mathfrak{X}(F, T_{L/F})$.

By ([12, Proposition 8.2.]), we have $\bigcup_X \mathfrak{X}(F, T_{L/F}) = \mathfrak{X}(F, T_{L/F})$, where X is running over the reduced special fibres of regular proper models of \mathcal{X} of F which are obtained as a sequence of blow-ups of \mathcal{X}_0 centered at closed points of \mathcal{X}_0.

\end{proof}

\begin{remark}
The proof of (5.4) also works if we just consider divisorial discrete valuations instead of considering all discrete valuations on F.
\end{remark}

6. Local Global Principle

\begin{lemma}
Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F with the reduced special fibre X a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n. Let $P \in X$ be a closed point and U an irreducible open subset of X with P in the closure of U. Suppose

- n is coprime to $\text{char}(\kappa)$,
- K contains a primitive n^{th} root of unity ρ,
- for all finite Galois extensions $l/\kappa(P)$ of degree d dividing n,

\[T_{l/\kappa(P)}(\kappa(P)) = RT_{l/\kappa(P)}(\kappa(P)) < \rho^d >. \]

Then $T_{L \otimes_F F_{P,U}/F_{P,U}}(F_{P,U}) = RT_{L \otimes_F F_{P,U}/F_{P,U}}(F_{P,U}) < \rho >$.

\end{lemma}
Proof. Let $\kappa(U)$ be the function field of U. Since X is a union of regular curves, P gives a discrete valuation on $\kappa(U)$. Let $\kappa(U)_P$ be the completion of $\kappa(U)$ at P. Then, by definition, $F_{P,U}$ is a complete discretely valued field with residue field $\kappa(U)_P$. Since L/F is Galois extension of degree n, $L \otimes_F F_{P,U} \simeq \prod L_0$ for some finite Galois extension $L_0/F_{P,U}$ of degree d dividing n. Since $F_{P,U}$ is a complete discretely valued field with residue field $\kappa(U)_P$, L_0 is a complete discretely valued field with residue field M_0 a finite extension of $\kappa(U)_P$ of degree d_1 dividing d. Since $\kappa(U)_P$ is a complete discretely valued field with residue field $\kappa(P)$, M_0 is a complete discretely valued field with residue field l_0 a finite Galois extension of $\kappa(P)$ of degree d_2 dividing d_1. Hence, by the assumption on $\kappa(P)$ and (3.2), we have

$$T_{M_0/\kappa(U)_P}(\kappa(U)_P) = RT_{M_0/\kappa(U)_P}(\kappa(U)_P) < \rho^{\frac{d_2}{d_1}}.$$

Hence, once again by (3.2), we have

$$T_{L_0/F_{P,U}}(F_{P,U}) = RT_{L_0/F_{P,U}}(F_{P,U}) < \rho^{n/d}.$$

Since $L \otimes_F F_{P,U}$ is the product of $\frac{n}{d}$ copies of L_0, by (2.5), we have

$$T_{L \otimes_F F_{P,U}/F_{P,U}}(F_{P,U}) = RT_{L \otimes_F F_{P,U}/F_{P,U}}(F_{P,U}) < \rho^d.$$

\[\square\]

Theorem 6.2. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n. Suppose

- n is coprime to $\text{char}(\kappa)$,
- K contains a primitive n^{th} root of unity ρ,
- for all finite extensions κ'/κ and for all finite Galois extensions l/κ' of degree d dividing n,

$$T_{l/\kappa'}(\kappa') = RT_{l/\kappa'}(\kappa') < \rho^{\frac{d}{n}},$$

- the graph associated to \mathcal{X} is a tree.

Then $\mathbb{III}_X(F, T_{L/F}) = 0$.

Proof. Let P be a finite set of closed points of X containing all the nodal points of X. By ([12, Corollary 5.9.]), it is enough to show that $\mathbb{III}_P(F, T_{L/F}) = 0$. Let $X \setminus P = \bigcup U_i$. Then each U_i is an irreducible open subset of X. By ([12, Corollary 3.6.1]), it is enough to show that the product map

$$\psi : \prod_i T_{L/F}(F_{U_i}) \times \prod_{P \in P} T_{L/F}(F_P) \to \prod_{(P,U_i)} T_{L/F}(F_{P,U_i})$$

is onto, where the product on the right hand side is taken over all pairs (P,U_i) with $P \in P$ and U_i such that P is the closure of U_i.

Let $(\lambda_{P,U_i}) \in \prod_{(P,U_i)} T_{L/F}(F_{P,U_i})$. We show that (λ_{P,U_i}) is in the image of ψ. By (6.1), for each pair (P,U_i) with P in the closure of U_i, we have $\lambda_{P,U_i} = \rho^{j_{P,U_i}} \mu_{P,U_i}$ for some integer j_{P,U_i} and $\mu_{P,U_i} \in RT_{L/F}(F_{P,U_i})$. Let G be the Galois group of L/F. For each $\sigma \in G$, there exists $a_{\sigma,P,U_i} \in (L \otimes_F F_{P,U_i})^*$ such that

$$\mu_{P,U_i} = \prod_{\sigma \in G(L/F)} \sigma(a_{\sigma,P,U_i})(a_{\sigma,P,U_i})^{-1}.$$
Since the group $R_{L/F}(\mathbb{G}_m)$ is F-rational, by ([11, Theorem 3.6]),

$$\prod_i (L \otimes_F F_{U_i})^* \times \prod_{P \in \mathcal{P}} (L \otimes_F F_P)^* \rightarrow \prod_{(P,U_i)} (L \otimes_F F_{P,U_i})^*$$

is onto. Hence for each $\sigma \in G$, there exist $b_{\sigma,U_i} \in (L \otimes_F F_{U_i})^*$ and $b_{\sigma,P} \in (L \otimes_F F_P)^*$ such that $a_{\sigma,P,U_i} = b_{\sigma,U_i}b_{\sigma,P}$. We have

$$\mu_{P,U_i} = \prod_{\sigma \in G(L/F)} \sigma(a_{\sigma,P,U_i})(a_{\sigma,P,U_i})^{-1}$$

$$= \prod_{\sigma \in G(L/F)} \sigma(b_{\sigma,U_i}b_{\sigma,P})(b_{\sigma,U_i}b_{\sigma,P})^{-1}$$

$$= \prod_{\sigma \in G(L/F)} \sigma(b_{\sigma,U_i})(b_{\sigma,U_i})^{-1}\sigma(b_{\sigma,P})(b_{\sigma,P})^{-1}.$$

Since $\sigma(b_{\sigma,U_i})(b_{\sigma,U_i})^{-1} \in T_{L/F}(F_{U_i})$ and $\sigma(b_{\sigma,P})(b_{\sigma,P})^{-1} \in T_{L/F}(F_P)$, (μ_{P,U_i}) is in the image of ψ.

Since $T_{L/F}(F)$ is a group and $\rho \in T_{L/F}(F)$, by (2.2), $(\rho^{\mu_{P,U_i}})$ is in the image of ψ. Since ψ is a homomorphism, (λ_{P,U_i}) is in the image of ψ, hence proving that ψ is onto.

We have the following:

Theorem 6.3. Let K be a complete discretely valued field with residue field κ and F be the function field of a curve over K. Let \mathcal{X}_0 be a regular proper model of F with reduced special fibre X_0 a union of regular curves with normal crossings. Let L/F be a Galois extension over F of degree n. Suppose

- n is coprime to $\text{char}(\kappa)$,
- K contains a primitive n^{th} root of unity ρ,
- for all finite extensions κ'/κ and for all finite Galois extensions l/κ' of degree d dividing n,

$$T_{l/\kappa'}(\kappa') = RT_{l/\kappa'}(\kappa') < \rho^{\frac{n}{d}} >,$$

- the graph associated to \mathcal{X}_0 is a tree.

Then $\mathbb{III}(F,T_{L/F}) = 0$.

Proof. Let \mathcal{X} be a regular proper model of F which is obtained as a sequence of blow-ups of \mathcal{X}_0 at closed points. Since the graph $\Gamma(\mathcal{X}_0)$ is a tree, $\Gamma(\mathcal{X})$ is also a tree ([12, Remark 6.1(b)]). Let X be the reduced special fibre of \mathcal{X}. Then $\mathbb{III}_X(F,T_{L/F}) = 0$ (6.2). Thus, by (5.4), we have $\mathbb{III}(F,T_{L/F}) = 0$. \qed

Corollary 6.4. Let K be a complete discretely valued field with residue field κ algebraically closed. Let F be the function field of a curve over K and L/F be finite Galois extension of degree n with $(n,\text{char}(\kappa)) = 1$. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. Suppose that the graph associated to \mathcal{X} is a tree. Then $\mathbb{III}(F,T_{L/F}) = 0$.

Corollary 6.5. Let K be a m-local field with residue field κ. Let F be the function field of a curve over K and L/F be finite Galois extension of degree n with $(n,\text{char}(\kappa)) = 1$. Let \mathcal{X} be a regular proper model of F with reduced special fibre X a union of regular curves with normal crossings. Suppose that the graph associated to \mathcal{X} is a tree. If K contains a primitive n^{th} root of unity, then $\mathbb{III}(F,T_{L/F}) = 0$.
Proof. Follows from (3.4) and (6.3).

Remark 6.6. By (5.5), the result also holds true if we just consider divisorial discrete valuations instead of all discrete valuations on \(F \) in (6.3), (6.4) and (6.5).

7. Counterexamples

Let \(K \) be a complete discretely valued field with residue field algebraically closed. Colliot-Thélène, Parimala and Suresh ([5, Section 3.1. & Proposition 5.9.]) constructed a function field of a curve \(F \) over \(K \) and Galois extension \(L/F \) with Galois group \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) such that the local-global principle fails for the norm one torus \(T_{L/F} \) associated to \(L/F \). They use higher reciprocity laws to detect non-trivial elements in \(\mathbb{III}(F,T_{L/F}) \). In this section, we produce examples of Galois extensions \(L/F \) with Galois group \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \) and using patching techniques, we show that \(\mathbb{III}(F,T_{L/F}) \) is non-trivial.

Let \(k \) be a number field and \(L_1, L_2 \) be two Galois extension of \(k \). Let \(T \) be the \(k \)-torus given by \(N_{L_1/k}(z_1)N_{L_2/k}(z_2) = 1 \). If \(L_1 \) and \(L_2 \) are linearly disjoint, then Demarche and Wei ([6, Theorem 1]) proved that the local-global principle holds for \(T \). In this section, we also give an example to show that a similar result does not hold in general for function fields of curves over a complete discretely valued field.

Proposition 7.1. Let \(A \) be a unique factorization domain and \(F \) the fraction field of \(A \). Let \(L/F \) be a finite Galois extension and \(B \) the integral closure of \(A \) in \(L \). Suppose that \(B \) is a unique factorization domain. Then every element in \(T_{L/F}(F) \) can be written as \(\alpha s \theta \) for some \(s \in RT_{L/F}(L) \) and \(\theta \in B \) a unit.

Proof. Let \(\lambda \in T_{L/F}(F) \). Then \(\lambda \in L^* \) and \(N_{L/F}(\lambda) = 1 \). Since \(L \) is the fraction field of \(B \), \(\lambda = \frac{\alpha}{\beta} \) for some \(\alpha, \beta \in B \). Since \(N_{L/F}(\lambda) = 1 \), \(N_{L/F}(\alpha) = N_{L/F}(\beta) \). Let \(p \in B \) be a prime. Since \(A \) is a unique factorization domain, \(pB \cap A = qA \) for some prime \(q \in A \) and \(N_{L/F}(p) = vq^r \) for some unit \(v \in A \). Suppose that \(p \) divides \(\alpha \) in \(B \). Then \(N_{L/F}(p) \) divides \(N_{L/F}(\alpha) \) in \(A \) and hence \(q \) divides \(N_{L/F}(\alpha) \). Since \(N_{L/F}(\alpha) = N_{L/F}(\beta) \), there exists a prime \(p' \in B \) such that \(p' \) divides \(\beta \) and \(p'B \cap A = pA \). Since \(L/F \) is a Galois extension, there exists \(\sigma \in Gal(L/F) \) such that \(p = w \sigma(p') \) for some unit \(w \in B \).

Write \(\alpha = po' \) and \(\beta = p'o' \). Then \(\lambda = \frac{\alpha}{\beta} = \frac{p}{p'} \frac{\alpha'}{\beta'} = \frac{\sigma p' w o'}{p' \beta'} \). Since \(B \) is a unique factorization domain, the proposition follows by induction on the number of prime factors of \(\alpha \) in \(B \).

Proposition 7.2. Let \(A \) be a complete regular local ring of dimension 2 with the maximal ideal \((\pi,\delta)\), fraction field \(F \) and residue field \(\kappa \). Let \(n \) be a positive integer which is coprime to \(\text{char}(\kappa) \). Let \(L = F(\sqrt[3]{\pi}, \sqrt[3]{\delta}) \). Suppose that \(F \) contains a primitive \(n^2 \)-th root of unity \(\rho \). Then \(T_{L/F}(F) = RT_{L/F}(F) < \rho > \).

Proof. Let \(B \) be the integral closure of \(A \) in \(L \). Then \(B \) is a regular local ring of dimension 2 with the fraction field \(L \) and the residue field \(\kappa \) ([16, Corollary 3.3.]). Let \(\lambda \in T_{L/F}(F) \). Then \(\lambda \in L^* \) with \(N_{L/F}(\lambda) = 1 \). Then, by (7.1), there exists \(s \in RT_{L/F}(F) \) and a unit \(\theta \in B \) such that \(\lambda = s \theta \). Since the residue field of \(A \) and \(B \) are equal, there exists \(\theta_1 \in A \) such that \(\theta = \theta_1 \) modulo the maximal ideal of \(B \). Since \(n \) is coprime to \(\text{char}(\kappa) \), by Hensel’s lemma, we have \(\theta = \theta_1 \alpha^n \) for some unit \(\alpha \in B \). Let \(s_1 = N_{L/F}(\alpha)^{-1} \alpha^n \in L \). Then, by (2.6), \(s_1 \in RT_{L/F}(F) \). Let \(a = \theta_1 N_{L/F}(\alpha) \in F \). Then \(\theta = as_1 \). Thus \(\lambda = s \theta = sas_1 = ss_1 a \). Since \(N_{L/F}(\lambda) = \)
Let F be a complete discretely valued field with residue field κ and ring of integers R. Let n be a positive integer coprime to $\text{char}(\kappa)$. Let $\pi \in R$ be a parameter and $u \in R$ a unit with $[F(\sqrt[n]{u}) : F] = n$. Let $L = F(\sqrt[n]{u}, \sqrt[n]{\pi})$. Suppose that F contains a primitive n^2-th root of unity ρ. Then $\rho^t \in RT_{L/F}(F)$ if and only if n divides t.

Proof. Let σ be the automorphism of L/F given by $\sigma(\sqrt[n]{\pi}) = \rho^n \sqrt[n]{\pi}$ and $\sigma(\sqrt[n]{u}) = \sqrt[n]{u}$ and τ be the automorphism L/F given by $\tau(\sqrt[n]{u}) = \rho^n \sqrt[n]{u}$ and $\tau(\sqrt[n]{\pi}) = \sqrt[n]{\pi}$. Then the Galois group of L/F is an abelian group of order n^2 generated by σ and τ and hence $\text{RT}_{L/F}(F) = \{\frac{\sigma(a)\tau(b)}{a} \in L^* / a, b \in L^*\}$. Since $\rho^n = \tau(\sqrt[n]{u})/\sqrt[n]{u} \in \text{RT}_{L/F}(F)$, $\rho^n \in \text{RT}_{L/F}(F)$ for any integer j.

Conversely, suppose $\rho^t \in \text{RT}_{L/F}(F)$ for some integer t. Without loss of generality, we may assume that $1 \leq t \leq n^2$. Then $\rho^t = a^{-1}\sigma(a)b^{-1}\tau(b)$ for some $a, b \in L$. Let $L' = F(\sqrt[n]{\pi})$. Since $\rho \in F$ and $N_{L/L'}(b^{-1}\tau(b)) = 1$, we have $\rho^nt = N_{L/L'}(a^{-1}N_{L/L'}(\sigma(a)))$. Let $c = N_{L/L'}(a) \in L'$. Since $\sigma(c) = \sigma(N_{L/L'}(a)) = N_{L/L'}(\sigma(a))$, we have $\sigma(c) = \rho^n c$. Hence $\sigma(c)^n = (\sigma(c))^n = (\rho^nt)^n c^n = c^n$. Since L'/F is Galois with Galois group generated by $\sigma, c^n \in F$. Thus $c = \sqrt[n]{\pi}^{m}$ for some integer m and $\theta \in F$. Since L'/L' is an unramified extension of degree n and c is a norm from L'/L', the valuation of c is divisible by n. Since $\theta \in F$ and $\sqrt[n]{\pi}$ is a parameter in L', $m = nr$ for some r. Hence $c \in F$ and $\rho^nt = c^{-n}\sigma(c) = 1$. Since ρ is a primitive n^2-th root of unity, n divides t.

Notation 7.4. Let A be a semi-local regular ring of dimension 2 with three maximal ideals m_1, m_2, m_3. Suppose that there exist three prime elements $\pi_1, \pi_2, \pi_3 \in A$ such that $m_1 = (\pi_1, \pi_2, \pi_3), m_2 = (\pi_1, \pi_3) \text{ and } m_3 = (\pi_1, \pi_2)$. Suppose that $\pi_i \notin m_i$ for all i. Let $n \geq 2$ be an integer coprime to $\text{char}(A/m_i)$ for all i. Let F be the fraction field of A. For $1 \leq i \leq 3$, let \widehat{A}_{m_i} be the completion of A at m_i, F_{m_i} be the fraction field \widehat{A}_{m_i} and F_{π_i} be the completion of F at the discrete valuation given by π_i. Let $1 \leq i \neq j, k \leq 3$. Since $m_i = (\pi_j, \pi_k), \widehat{A}_{m_i}$ is a regular local ring with maximal ideal (π_j, π_k). In particular, π_j gives a discrete valuation on F_{m_i} which extends the discrete valuation on F given by π_j. Let F_{m_i, π_j} be the completion of F_{m_i} at the discrete valuation given by π_j. Then $F_{\pi_j} \subset F_{m_i, \pi_j}$. Let $L = F(\sqrt[n]{\pi_1\pi_2}, \sqrt[n]{\pi_2\pi_3})$. Suppose that F contains ρ, a primitive n^2-th root of unity.

Corollary 7.5. With notation as in (7.4), we have $T_{L/F}(F_{m_i}) = \text{RT}_{L/F}(F_{m_i}) < \rho$.

Proof. Since π_2 is a unit at m_2, we have $m_2A_{m_2} = (\pi_1, \pi_2, \pi_3)$. Hence, by (7.2), we have $T_{L/F}(F_{m_2}) = \text{RT}_{L/F}(F_{m_2}) < \rho$. Since π_1 is a unit at $m_1, m_1A_{m_1} = (\pi_1, \pi_2, \pi_1^{-1}\pi_3)$. Since $L = F(\sqrt[n]{\pi_1\pi_2}, \sqrt[n]{\pi_1\pi_3}) = F(\sqrt[n]{\pi_1\pi_2}, \sqrt[n]{\pi_1^{-1}\pi_3})$, by (7.2), we have $T_{L/F}(F_{m_1}) = \text{RT}_{L/F}(F_{m_1}) < \rho$. Similarly, $T_{L/F}(F_{m_3}) = \text{RT}_{L/F}(F_{m_3}) < \rho$.

Corollary 7.6. With notation as in (7.4), we have $T_{L/F}(F_{\pi_i}) = \text{RT}_{L/F}(F_{\pi_i}) < \rho$.

Proof. Let $\kappa(\pi)$ be the residue field of F_{π_i}. The discrete valuation ν_{π_i} of F given by π_i has unique extension ν_{π_i}. Since F contains a primitive n^2-th root of unity, the residue field $\kappa(\tilde{\nu}_{m_i})$ of L at $\tilde{\nu}_{m_i}$ is a cyclic extension of $\kappa(\pi)$ of degree n. In particular,
$T_{\kappa(\nu_{\sigma_i})/\kappa(\nu_{\pi_i})}(\kappa(\nu_{\pi_i})) = RT_{\kappa(\nu_{\sigma_i})/\kappa(\nu_{\pi_i})}(\kappa(\nu_{\pi_i})).$ Hence, by (3.2),

$$T_{L/F}(F_{\pi_i}) = RT_{L/F}(F_{\pi_i}) < \rho > .$$

\[\square \]

Corollary 7.7. Let F_{m_i, π_j} be as in (7.4). Then $\rho^i \in RT_{L/F}(F_{m_i, \pi_j})$ if and only if n divides t.

Proof. Since the residue field of F_{m_i, π_j} is a complete discretely valued field with the image of π_k ($k \neq i, j$) as a parameter and the image of π_i as a unit, it is easy to see that $L \otimes_F F_{m_i, \pi_j} \simeq F_{m_i, \pi_j}(\sqrt[\nu]{\pi_j}, \sqrt[\nu]{u})$ for some units u and v such that $[F_{m_i, \pi_j}(\sqrt[\nu]{u}) : F_{m_i, \pi_j}] = n$. Thus, the corollary follows from (7.3).

For each $1 \leq i \neq j \leq 3$, we have inclusions fields $F_{m_i} \supseteq F_{m_i, \pi_j}$ and $F_{\pi_j} \supseteq F_{m_i, \pi_j}$. Thus we have the induced homomorphisms $\alpha_{ij} : T_{L/F}(F_{m_i})/R \rightarrow T_{L/F}(F_{m_i, \pi_j})/R$ and $\beta_{ij} : T_{L/F}(F_{\pi_j})/R \rightarrow T_{L/F}(F_{m_i, \pi_j})/R$.

Lemma 7.8. The product map

$$\phi : \left(\prod_{i=1}^{3} T_{L/F}(F_{m_i})/R \times \prod_{j=1}^{3} T_{L/F}(F_{\pi_j})/R \right) \rightarrow \prod_{1 \leq i \neq j \leq 3} (T_{L/F}(F_{m_i, \pi_j})/R)$$

is not onto.

Proof. Let $y_{12} = \rho \in T_{L/F}(F_{m_i, \pi_j})$ and $y_{ij} = 1 \in T_{L/F}(F_{m_i, \pi_j})$ for all $i \neq j$ and $(i, j) \neq (1, 2)$. Then we show that $y = (y_{ij}) \in \prod_{1 \leq i \neq j \leq 3} (T_{L/F}(F_{m_i, \pi_j})/R)$ is not in the image of ϕ.

Suppose y is in the image of ϕ. Then there exist $a_i \in T_{L/F}(F_{m_i})$ and $b_j \in T_{L/F}(F_{\pi_j})$ such that $\phi(a_1, a_2, a_3, b_1, b_2, b_3) = y$ modulo R-trivial elements. Then we have $\alpha_{12}(a_1)\beta_{21}(b_2) = x_{12} = \rho$ modulo R-trivial elements and $\alpha_{ij}(a_i)\beta_{ji}(b_j) \in RT_{L/F}(F_{m_i, \pi_j})$ for all $i \neq j$ and $(i, j) \neq (1, 2)$. By (7.5) and (7.6), we have $a_i = c_i\rho^{s_i}$ for some $c_i \in RT_{L/F}(F_{m_i})$ and $b_j = d_j\rho^{t_j}$ for some $d_j \in RT_{L/F}(F_{\pi_j})$. Hence $a_i = \rho^{s_i}$ and $b_j = \rho^{t_j}$ modulo R-trivial elements. Since $\rho \in F$, $\alpha_{ij}(\rho) = \rho$ and $\beta_{ji}(\rho) = \rho$ for all $i \neq j$. We have $\rho = y_{12} = \alpha_{12}(a_1)\beta_{21}(b_2) = \rho^{s_1+t_2}$ modulo R-trivial elements. Hence, by (7.7), n divides $1 - s_1 - t_2$.

Let $1 \leq i \neq j \leq 3$ with $(i, j) \neq (1, 2)$. Then $1 = \alpha_{ij}(a_i)\beta_{ji}(b_j) = \rho^{s_i+t_j}$ modulo R-trivial elements. Hence $\rho^{s_i+t_j} \in RT_{L/F}(F_{m_i, \pi_j})$ and by (7.7), n divides $s_i + t_j$. Since n divides $s_2 + t_1$ and $s_3 + t_1$, n divides $s_3 - s_2$. Since n divides $s_1 + t_3$ and $s_2 + t_3$, n divides $s_1 - s_2$. Hence n divides $s_1 - s_3$. Since n divides $s_3 + t_2$, n divides $s_1 + t_2$, which contradicts the fact that n divides $1 - s_1 - t_2$.

\[\square \]

Theorem 7.9. Let K be a complete discretely valued field with residue field κ and ring of integers R. Let \mathcal{X} be a regular integral surface proper over R and F the fraction field and X its reduced special fibre. Suppose X is a union of regular curves with normal crossings and there exist three three irreducible curves X_1, X_2 and X_3 regular on \mathcal{X} such that $X_i \cap X_j$, $i \neq j$ has exactly one closed point. Let $n \geq 2$ be an integer coprime to char(κ). Suppose that K has a primitive n^2-th root of unity. Then there exists a Galois extension L/F of degree n^2 with the Galois group isomorphic to $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ such that the local-global principle for $T_{L/F}$-torsors fails.

Proof. Let P_1, P_2 and P_3 be the points of $X_i \cap X_j$, $i \neq j$. Let A be the semi local ring at P_1, P_2 and P_3 on \mathcal{X}. Then A has three maximal ideals m_1, m_2 and m_3.
Since \(X \) is regular and each \(X_i \) is regular on \(\mathcal{X} \), there exist primes \(\pi_1, \pi_2, \pi_3 \in A \) such that \(m_i = (\pi_j, \pi_k) \) for all distinct \(i, j, k \). Let \(L = F(\sqrt[n]{\pi_1}, \sqrt[n]{\pi_2}, \sqrt[n]{\pi_3}) \). Since \(K \) contains primitive \(n \)th root of unity, \(L/F \) is Galois with Galois group isomorphic to \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \). We claim that the local-global principle for \(T_{L/F} \)-torsors fails.

Let \(\mathcal{P} \) be finite set of closed points of \(X \) containing all the singular points of \(X \). Let \(X \setminus \mathcal{P} = \bigcup U_i \), with \(U_i \subset X_i \) for \(i = 1, 2, 3 \). By ([12, Corollary 3.6.1]), it is enough to show that the product map

\[
\prod_{P \in \mathcal{P}} T_{L/F}(F_P) \times \prod_i T_{L/F}(F_{U_i}) \rightarrow \prod_{P, U_i} T_{L/F}(F_{P, U_i})
\]

is not onto. Since \(X_1, X_2, X_3 \) are the only curves in \(X \) passing through \(P_1, P_2 \) or \(P_3 \), it is enough to show that

\[
\phi : \prod_{i=1}^3 T_{L/F}(F_{P_i}) \times \prod_{j=1}^3 T_{L/F}(F_{U_j}) \rightarrow \prod_{P_i, U_j} T_{L/F}(F_{P_i, U_j})
\]

is not onto. Since \(F_{U_j} \subset F_{\pi_j} \) and \(F_{P_i, U_j} = F_{P_i, \pi_j} \), \(\phi \) factors as

\[
\prod_{i=1}^3 T_{L/F}(F_{P_i}) \times \prod_{j=1}^3 T_{L/F}(F_{U_j}) \rightarrow \prod_{i=1}^3 T_{L/F}(F_{P_i}) \times \prod_{j=1}^3 T_{L/F}(F_{\pi_j}) \rightarrow \prod_{P_i, \pi_j} T_{L/F}(F_{P_i, \pi_j}).
\]

Since, by (7.8),

\[
\prod_{i=1}^3 (T_{L/F}(F_{\pi_i})/R) \times \prod_{j=1}^3 (T_{L/F}(F_{P_j})/R) \rightarrow \prod_{U_i, P_j} (T_{L/F}(F_{P_i, U_j})/R)
\]

is not onto, \(\phi \) is not onto.

\[\square\]

Remark 7.10. The above theorem for \(\kappa \) algebraically closed and \(n = 2 \) is proved by Colliot-Thélène, Parimala and Suresh ([5, Section 3.1. & Corollary 6.2.]).

Corollary 7.11. Let \(K \) be a complete discretely valued field with residue field \(\kappa \) and ring of integers \(R \). Let \(t \in R \) a parameter. Let \(\mathcal{X} = \text{Proj} R[x, y, z]/(xy(x + y - z) - tz^3) \). Let \(X \) be the special fibre of \(\mathcal{X} \). Then \(X = \text{Proj}(\kappa[x, y, z]/(xy(x + y - z))) \) which is reduced. Then \(X \) has three irreducible components \(X_1, X_2, X_3 \) and \(X_i \) intersects \(X_j, i \neq j \) at exactly one point. Let \(F \) be the function field of \(\mathcal{X} \). Then \(F \cong K(x)[y]/(xy(x + y - 1)) \). Let \(n \geq 2 \) be coprime to \(\text{char}(\kappa) \). Suppose that \(K \) contains a primitive \(n^2 \)-th root of unity. Let \(L = F(\sqrt[2n]{xy}, \sqrt[2n]{y(x-1)}) \). Then \(L/F \) is a Galois extension with Galois group isomorphic to \(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \). By (7.9), the local-global principle for \(T_{L/F} \)-torsors fails.

Proof. Let \(U = \text{Spec} R[x, y]/(xy(x + y - 1) - t) \). Then \(U \) is an affine open subset of \(\mathcal{X} \). Let \(P_1 = (1, 0), P_2 = (0, 1) \) and \(P_3 = (0, 0) \) be the three closed points of \(U \). Let \(A \) be the semi local ring at \(P_1, P_2 \) and \(P_3 \) and let \(m_i \) be the maximal ideal of \(A \) corresponding to \(P_i \). Then \(m_1 = (x + y - 1, y), m_2 = (x, x + y - 1) \) and \(m_3 = (x, y) \). Hence, by (7.9), the local-global principle fails for \(T_{L/F} \)-torsors.

\[\square\]

Corollary 7.12. Let \(K \) be a complete discretely valued field with residue field \(\kappa \) and ring of integers \(R \). Let \(t \in R \) a parameter. Let \(\mathcal{X} = \text{Proj} R[x, y, z]/(xy(x + y - z)(x - 2z) - tz^4) \) and \(F \) be the function field of \(\mathcal{X} \). Then \(F = K(x)[y]/(xy(x + y - 1)(x - 2)) \). Let \(\theta_1 = (x - 2)/((x - 2 + xy(x + y - 1)) \) and \(\theta_2 = (y - 2)/(y - 2 + xy(x + y - 1)) \). Let \(n \geq 2 \) with \(6n \) coprime to \(\text{char}(\kappa) \). Let \(L_1 = F(\sqrt[6n]{xy}, \sqrt[6n]{y(x + y - 1)}) \) and \(L_2 = \)
Then L_1 and L_2 are Galois extensions of F that are linearly independent and the local-global principle fails for $T_{L_1 \times L_2}/F$.

Proof. To show that the local-global principle fails for $T_{L_1 \times L_2/f}$-torsors, by ([11, Theorem 3.6.]) and as in the proof of (7.9), it is enough to show that
\[
\phi : \prod_{i=1}^{3}(T_{L_1 \times L_2/F}(F_{\pi_i})/R) \times \prod_{j=1}^{3}(T_{L_1 \times L_2/F}(F_{P_j})/R) \to \prod_{U_i, P_j}(T_{L_1 \times L_2/F}(F_{P_i, U_j})/R)
\]
is not onto.

Let $U = \text{Spec}R[x, y]/(xy(x + y - 1)(x - 2) - t)$. Then U is an affine open subset of \mathcal{X}. Let $P_1 = (1, 0)$, $P_2 = (0, 1)$, $P_3 = (0, 0)$ and $Q = (2, 2)$. Let A be the semi local ring at P_1, P_2, P_3 and Q. Let m_i the maximal ideals of A corresponding to P_i and m the maximal ideal corresponding to Q. Let $\pi_1 = x$, $\pi_2 = y$ and $\pi_3 = x + y - 1$. Then $m_i = (\pi_2, \pi_3)$, $m_2 = (\pi_1, \pi_3)$, $m_3 = (\pi_1, \pi_2)$. We also have $m = (x - 2, y - 2)$. Since $2 \neq \text{char}(\kappa)$, $x - 2$ and $y - 2$ are units at m_i and $\theta_i = 1$ modulo m_i and π_j. Since n is coprime to $\text{char}(\kappa)$, $\theta_i \in F_{\pi_i}^n$ and $\pi_i \in F_{\pi_i}^n$ for all i and j. Hence $L_1 \otimes_F F_{\pi_i} \simeq L_2 \otimes_F F_{\pi_i}$ and $L_1 \otimes_F F_{P_j} \simeq L_2 \otimes_F F_{P_j}$. By (2.4), we have $T_{L_1 \times L_2/F}(F_{\pi_i})/R \simeq T_{L_1/F}(F_{P_j})/R$ and $T_{L_1 \times L_2/F}(F_{P_j})/R \simeq T_{L_1/F}(F_{U_i, P_j})/R$. Since, by (7.8),
\[
\prod_{i=1}^{3}(T_{L/F}(F_{\pi_i})/R) \times \prod_{j=1}^{3}(T_{L/F}(F_{P_j})/R) \to \prod_{U_i, P_j}(T_{L/F}(F_{P_i, U_j})/R)
\]
is not onto, ϕ is not onto. Hence the local-global principle fails for $T_{L/F}$-torsors.

Since $\pi_1 \pi_2 = xy = 4$ modulo m and $\pi_2 \pi_3 = 6$ modulo m, we have $L_1 \otimes_F F_Q = F_Q(\sqrt[3]{4}, \sqrt[6]{6})$. Since $6n$ is coprime to $\text{char}(\kappa)$, $L_1 \otimes_F F_Q/F_Q$ is unramified. Since $xy(x + y - 1) = 12$ modulo m, $x - 2 + xy(x + y - 1) = 12a^n$ for some $a \in F_Q$. Similarly, $y - 2 + xy(x + y + 1) = 12b^n$ for some $b \in F_Q$. Hence $L_2 \otimes_F F_Q = F_Q(\sqrt[3]{x - 2}/3, \sqrt[6]{y - 2}/2)$. Since the maximal ideal $m = (x - 2, y - 2)$ and 3, 2 are units at m, $L_1 \otimes_F F_Q$ and $L_2 \otimes_F F_Q$ are linearly independent over F_Q. In particular, L_1 and L_2 are linearly independent over F. \[\]

Acknowledgements: The author thanks his advisor Prof. V. Suresh for all his help and guidance during this work. The author is also very thankful to Prof. R. Parimala for several helpful discussions. The author thanks Professors J.-L. Colliot-Thélène and R. Parimala for going through an earlier version of manuscript and providing their helpful feedbacks. The author is partially supported by National Science Foundation grants DMS-1463882 and DMS-1801951. The author thanks Emory University where he is a graduate student.

References

[1] A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ. Vol. 24, Amer. Math. Soc., Providence, RI, 1961, revised printing.
[2] J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, Thomson Book Company Inc, Washington, D.C, 1967.
[3] J.-L. Colliot-Thélène, J-J Sansuc, La R-équivalence sur les tores, Annales scientifiques de l’É.N.S. 4e série, tome 10, n°2(1977), 175–229.
[4] J.-L. Colliot-Thélène, R. Parimala and V. Suresh, Patching and local-global principles for homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv. 87 (2012), 1011–1033.
[5] J.-L. Colliot-Thélène, R. Parimala and V. Suresh, Lois de réciprocité supérieures et points rationnels, Trans. Amer. Math. Soc. 368 (2016), 4219–4255.

[6] Cyril Demarche and Dasheng Wei, Hasse principle and weak approximation for multinorm equations, Israel J. Math. 202 (2014), 275–293.

[7] E. Bayer-Fluckiger, T.-Y. Lee and R. Parimala, Hasse principles for multi-norm equations, (2018).

[8] P. Gille, Lectures on R-equivalence on linear algebraic groups, online lecture notes(2010).

[9] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics v.73, Springer, 2003.

[10] Y. Hu, Hasse Principle for Simply Connected Groups over Function Fields of Surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155–199.

[11] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231–263.

[12] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for torsors over arithmetic curves, American Journal of Mathematics, 137 (2015), 1559–1612.

[13] J. Lipman, Introduction to resolution of singularities, Proceedings in Pure Mathematics, vol. 29, American Mathematical Society, Providence, RI (1975), pp. 187–230.

[14] S. Lang, Algebra, 3rd edition, Springer(2002).

[15] R. Preeti, Classification theorems for hermitian forms, the Rost kernel and Hasse principle over fields with $cd(2)(k) \leq 3$, Journal of Algebra 385(2013):294–313.

[16] R. Parimala and V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Invent. math. 197 (2014), 215–235.

[17] R. Parimala, R. Preeti and V. Suresh, Local-global principle for reduced norms over function fields of p-adic curves, preprint 2016.

[18] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1st edition (1993), v.139.

[19] R. Sharifi, Algebraic Number Theory, online lecture notes.

Department of Mathematics, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA
E-mail address: sumit.chandra.mishra@emory.edu