Pre-sowing Seed Treatments of Botanicals and Chemicals on Growth, Yield and Yield Attributing Traits of Mustard (*Brassica juncea* L.)

Kadurla Srikanth1, Prashant Kumar Rai1, Prashant Ankur Jain2 and A. Saipriya1

1Department of Genetics and Plant Breeding, Sam Higginbottam University of Agriculture Technology and Sciences, Naini Agricultural Institute, SHUATS, Prayagraj-211007, Uttarpradesh, India.
2Department of Computational Biology and Bioinformatics, Sam Higginbottam University of Agriculture Technology and Sciences, Naini Agricultural Institute, SHUATS, Prayagraj-211007, Uttarpradesh, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

The experiment was conducted in the field of Seed Science and Technology at the department of Genetics and Plant Breeding, SHUATS, Prayagraj (U.P) during Rabi season 2020-2021, in order to standardize the suitable pre-sowing seed treatment of Mustard (Variety-Kranti). Different pre-sowing seed treatments include Thirteen treatments with T0 - control, T1-KCL @ 0.3%, T2-KNO3 @ 0.5%, T3-PEG6000 @ 25ppm, T4-PEG6000 @ 50ppm, T5-Panchagavya @ 2%, T6-Panchagavya @ 4%, T7-Panchagavya @ 6%, T8-Panchagavya @ 8%, T9-MNSO4 @ 0.1%, T10-MNSO4 @ 0.3%, T11-MNSO4 @ 0.5%, T12-Tulasi leaf extract @ 2% Soaking for 6 hrs. Pre-sowing seed treatment with PEG6000 @ 50ppm shows increased germination percentage, growth, yield and yielding attributes followed by Panchagavya @ 6% The Experiment and study indicated interesting and different outcomes for each treatment performed. All various priming treatments used was better than control, but overall the best performance was recorded in T4-PEG6000 @ 50ppm, gave the best result to enhanced germinability, seed vigour, seed yield and yielding attributes of mustard.

Corresponding author: E-mail: srikanthkadurla@gmail.com;
Keywords: PEG_{6000}; mustard; growth and Yield.

1. INTRODUCTION

Mustard (Brassica juncea L.), it belongs to the family Brassicaceae with chromosome no 2n=36, is the crop consisted several multipurpose species which yield edible leaves, roots, stems and seeds. Brassica are also extensively cultivated as crop, vegetables and fodder. Rape seed or rich in oils and proteins [1]. Brassica juncea (brown mustard, 2n=4x=36; genome AABB) is an allopolyploid species derived from a spontaneous hybridization of turnip and black mustard it’s well adapted to cultivation in dryland areas and can grow as a major oilseed crop in the Indian subcontinent during winter [2]. Mustard seed is the world’s second leading source of vegetable oil, after soybean. It is also the second most leading source of protein meal within the world after soybean. It is mainly grown in northern a part of India, Rajasthan is that the largest producing state followed by uttarpradesh and Gujarat account for about 80% of the area and production in India [4]. Mustard is an economically important plant that has been documented in India for hundreds of years for its medicinal and nutritive values [5]. Food preparation of Indian mustard leaves is helpful in lowering the cost for diabetic patients suffering with comorbid anxiety due to their non-toxic effects and pharmaceutical preparations like capsules, creams, emulsions, fragrances, flavours, intramuscular injections, nasal sprays (Hassan et al., 2014). Mustard meal comprises about 40 to 50 percent protein, with a well-balanced aminoacid composition and protein efficiency ratio (PER) higher than that of soybean (Rodrigues et al., 2012). The seeds treated with PEG_{6000} is known as Osmopriming. After preparation of solution of PEG_{6000} 50ppm, panchagavya @ 6%, KNO_{3} @ 0.5%, KCL @ 0.3% and MNSO_{4} @ 0.1%, Tulasi leaf extract, mustard seeds was soaked in required solution for 6h at 25°C temperature. Untreated seed is called control. After 6hour of soaking the solution was drained out from the beaker and presoaked was air dried to original weight and then placed for germination in laboratory under controlled condition. After seed treatments seed was sown in field for occurring field observation.

2. MATERIALS AND METHODS

The investigation was conducted during Rabi season 2020-2021 within the Field trial Centre and Seed Test Laboratory of the Department of Genetics and plant Breeding, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj. Located at latitude25.35°N and longitude 82.35°E at an altitude of 78 m above mean sea level, the soil is sandy loam in texture with moderate water holding capacity having pH of 7.0 to 8.0. Field experiment was laid down using randomized block design in three replications by using of mustard variety Kranti sown at 45*10cm row-to-row and plant-to-plant distance. Treatments used in different concentrations for priming.T_{0}, Control, T_{1}-KCL(0.3% for 6hrs), T_{2}-KNO_{3}(0.5% for 6hrs), T_{3}-PEG_{6000}(25ppm for 6hrs), T_{4}-PEG_{6000}(50ppm for 6hrs), T_{5}-Panchagavya (2% for 6hrs), T_{6}-Panchagavya (4% for 6hrs), T_{7}- Panchagavya (6% for 6hrs), T_{8}-Panchagavya (8% for 6hrs), T_{9}-MNSO_{4}(0.1% for 6hrs), T_{10}-MNSO_{4}(0.3% for 6hrs), T_{11}-MNSO_{4}(0.5% for 6hrs), T_{12}-Tulasi leaf extract (2% for 6hrs). Observations were recorded for every treatment on five randomly selected plants in each replication on characters viz., Growth parameters Field emergency, Number of branches per plant, plant height. Yield parameters are Number of siliquae per plant, Number of seeds per siliquae, Seed yield per plant(g), Seed yield per plot(g), Biological yield(g) and Harvest index. Field experiment mean data analysis of variance was been carried out according to the procedure of Randomized Block Design (RBD).

3. RESULTS AND DISCUSSIONS

According to the findings, the treatments had an effect on all of the morphological traits studied, and there was a statistically significant difference between primed and non-primed seeds for all the parameters in Table-1. The data presented in the Table-1 shows the mean performance of 13 treatments for 10 growths, yield and yielding attributes.

3.1 Growth Attributes

Pre-sowing seed treatment with PEG_{6000} @ 50ppm was recorded maximum field emergence percent (95.83%) followed by Panchagavya @ 6% (93.75%) and MNSO_{4} @ 0.1% (92.03%)
Table 1. Mean performance of mustard for Growth, yield and Yield attri

S. No	Treatments	Field Emergence %	Plant Height (cm)	Number Of branches Per plant	Number of Siliquae Per plant	Number of seeds per Siliquae	Seed yield per plant (gm)	Seed Yield per plot (gm)	Oil yield (q/ha)	Biological Yield (gm)	Harvest Index (%)
1	T₀	76.17	102.29	3.53	25.53	9.20	0.74	26.97	1.11	162.62	16.16
2	T₁	85.42	108.40	3.80	33.40	10.47	1.01	32.87	1.28	158.35	20.90
3	T₂	91.67	143.75	5.40	48.47	12.33	2.02	54.60	2.11	202.09	26.76
4	T₃	89.58	135.6	5.33	45.00	12.53	1.94	47.00	1.77	201.11	23.28
5	T₄	95.83	148.69	5.80	60.07	12.93	2.93	56.03	2.38	203.47	27.66
6	T₅	90.25	129.37	4.73	42.60	9.93	1.53	46.60	1.39	190.46	24.53
7	T₆	87.77	122.71	4.20	40.00	9.60	1.28	41.73	1.42	186.75	22.52
8	T₇	93.75	145.63	5.60	52.13	12.60	2.35	51.37	1.85	201.44	25.01
9	T₈	91.22	139.43	5.13	44.27	12.20	1.67	45.83	1.70	198.44	23.06
10	T₉	92.03	141.34	4.80	43.40	12.33	1.91	46.40	1.72	194.94	23.44
11	T₁₀	88.10	132.60	4.33	40.87	12.00	1.26	41.37	1.61	190.48	21.74
12	T₁₁	83.33	124.46	4.07	37.13	11.47	1.20	36.50	1.58	158.74	23.19
13	T₁₂	86.80	128.69	4.27	41.87	11.13	1.40	37.53	1.38	164.47	21.85
	Grand Mean	88.61	130.99	4.69	42.67	11.44	1.63	43.55	1.64	185.64	23.08
	C.D. (5%)	6.15	5.78	0.37	3.94	0.44	0.43	4.26	0.22	3.61	1.84
	SE(m)	2.11	1.98	0.13	1.35	0.15	0.15	1.46	0.08	1.24	0.63
	SE(d)	2.98	2.80	0.18	1.91	0.21	0.21	2.06	0.11	1.75	0.89
	C.V.	4.12	2.62	4.71	5.47	2.28	15.70	5.82	8.08	1.16	4.72
were found to be lowest in control (76.17%). The effect of pre-sowing seed priming on field emergence percentage was found to be significant and similar results of field emergence percentage was observed by Ghassemi-Golezani et al. [6] and Demir and Oztokar et al., [7].

Maximum plant height (148.69cm) was observed in pre-sowing seed treatment with PEG_{6000} @ 50ppm it was followed by Panchagavya @ 6% (145.63cm) and KNO_3 @ 0.5% (143.75cm) were found to be lowest in control (102.29cm). The above similar finding was observed by Kaur et al., [8].

Number of branches per plant (5.80) was recorded highest in pre-sowing seed treatment with PEG_{6000} @ 50ppm and it was followed by Panchagavya @ 6% (5.60) and KNO_3 @ 0.5% (5.40) was found to be lowest in unprimed seeds (control) (3.53). On the above basis study concluded that the Number of branches per plant was found to be significant and similar results observed by Padmavathi et al., [9].

3.2 Yield Attributes

The number of siliquae per plant found to be highest in PEG_{6000} @ 50ppm (60.07) and it was followed by Panchagavya @ 6% (52.13), KNO_3 @ 0.5% (48.47) and minimum was recorded by the treatment Control (25.53). The effect of pre-sowing seed priming on number of siliquae per plant was found to be significant and similar results of Number of siliquae per plant was observed by Kaur et al., [10].

Number of seeds per siliquae was notified highest in PEG_{6000} @ 50ppm (12.93), it was followed by Panchagavya @ 6% (12.60), PEG_{6000} @ 25ppm (12.53) and minimum was recorded in the Control (9.20). The above similar results was observed by Ali et al., [11].

Seed yield per plant maximum was recorded in the PEG_{6000} @ 50 ppm (2.93gm), it was followed by Panchagavya @ 6% (2.35gm), KNO_3 @ 0.5% (2.02gm) and minimum was recorded in the Control (0.74gm). The effect of pre-sowing seed priming on seed yield per plant was found to be significant and similar results of seed yield per plant was observed by Somasundaran et al., [12].

Seed yield per plot found to be highest in PEG_{6000} @ 50ppm (56.03gm), it was followed by KNO_3 @ 0.5% (54.60gm), Panchagavya @ 6% (51.37gm) and lowest was recorded in the Control (26.97gm). It is concluded that seed yield
ACKNOWLEDGEMENT

I express gratitude to my Advisor Dr. Prashant Kumar Rai and all faculty members of Department of Genetics and Plant Breeding for constant support and guidance to carry out the whole experimental research study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Yadav SK, Yadava DK, Vasudev S, Yadav S, Kumar PR, Nigam R. Assessment of seed quality and oil content in several branches of Indian Mustard (Brassica juncea) cultivars at different storage intervals, Indian Journal of Agriculture Sciences. 2013; 83:227-233.

2. Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. RNA-seq based SNPS for mapping in chinese mustard (AABB): synteny analysis between the 2 constituent genomes A (from B. Rapa) and B (from B. Nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns, BMC Genomics. 2014;15:396-410.

3. Sodani R, Seema RK, Singhal S, Gupta N, Gupta K, Singh J. Chauhan. Performance of yield and yield attributes of ten Indian Mustard (Brassica juncea L.) Genotypes under Drought stress. International Journal of pure & Applied Bioscience. 2017;5(3):467-476.

4. CCS HAU, Hisar. Rapessed-Mustard Research at Glance, Oil seeds Section, Deparment of Plant Breeding, CCS HAU, Hisar; 2006.

5. Parikh H, Khanna A. Pharmacognosy and Phytochemical Analysis of juncea Seeds.” Pharmacognosy Journal. 2014;6(5):47-54.

6. Ghassemi-Golezani K, Bakhshy J, Raey R, Hossainzadeh-Mahootchy A. Seed vigour and field performance of winter oilseed rape (Brassica napus L.) cultivars. Not. Bot. Hort. Agrobot. Cluj. 2008;38(3):146-1500.

7. Demir I, Oztokar C. Effect of salt priming on germination and seedling growth at coldness in watermelon seed during development. Seed Science and Technology. 2003;31:765-770.

8. Kaewduangta W, P Khaengkhan, P Utabor. Improved germination and vigour of sweet Pepper (Capsicum annum L.) seeds by hydro and osmopriming. Azarian Journal of Agriculture. 2016;(3)(4):70-75.

9. Padmavathi S, Gunasekar J, Kamaraj A, (2017). Effect of pre-sowing seed treatment using botanical extract on growth and yield characters in Black gram (Vigna mungo L.). Plant Archieves. 2017;17(2):1013/1016.

10. Kaur H, Chawla N, Pathak M. Effect of various seed priming treatments and priming duration on biochemical parameters and Agronomic characters of cowpea. 2015;7:01-11.

11. Ali MN. Sustainable Agriculture with low-cost Technologies (SALOCT). School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda University, Belur Math, West Bengal. 2011;47.

12. Somasundaram E. Evolution of organic source of nutrient and panchagvaya spray on the expansion and sustainable productivity of maize-sunflower-green gram system. Ph.D Thesis submitted to Tamil Nadu Agriculture University, Coimbatore, India; 2003.

13. Devakumar N, Shubha S, Rao GGE. Imrankhan. Studies on soil fertility, cow urine and Panchagvaya levels on Growth and Yield of Maize. Building Organic Bridges, at the Organic World Congress, Istanbul, Turkey; 2014.

14. Farooq M, Basra SMA, Hafeez K. Seed invigoration by osmo hardening in gram. Seed Science and Technology. 2006;34:181-187.

15. Vazirimehr MR, Ganjali HR, Rigi K and Keshtehgar A. Effect of seed priming on quantitative traits on. International Journal of Plant Sciences. 2014;4:134-140.

16. Vijay Dugesar AK, Chaurasia Bineeta M, Bara, Kamal Kant. Effect of various Priming Methods on Nodulation in Black gram (Vigna mungo L.) Seeds. Int. J. Curr. Microbiol. APP. Sci. 2016;6(7):1137-1143.

17. Gong Ping Gul. Seed invigoration treatments for improved storability, field emergence and productivity of soybean. Crop Physiology Abst. 2001;27(2):1030.

18. Faruk Toklu, Turk. J. Shehzad F, Baloch KT, Ozkan H. Effects of varied priming applications on seed germination and a
couple of agro-morphological characteristics of Breed Wheat (*Triticum aestivum* L.). Turk. J. Agric. 2015;39:1005-1013.

19. Yari L, Aghaalikani M, Khazaei F. Effect of seed priming duration and temperature on seed germination behaviour of bread wheat (*Triticum aestivum* L.). ARPN J Agric Biol Sci; 2010.

20. Bijanzadeh E, Nosrati K and Egan T. Influence of priming techniques on germination and emergence on mustard (*Brassica napus* L.). Seed Science Technology. 2010;38:242-247.

21. Swaminathan C, Swaminathan V, Vijayalakshmi K. Panchagvaya-Boon to organic farming, international Book, Distributing Co., Lucknow; 2007.