New insights into the diagnosis of nodular goiter

Anhelli Syrenicz1*, Monika Koziółek1, Andrzej Ciechanowicz2, Anna Sieradzka1, Agnieszka Bińczak-Kuleta2 and Miłosz Parczewski3

Abstract
Preoperative diagnostic investigations of nodular goiter are based on two main examinations: ultrasonography of the thyroid gland and ultrasound-guided fine-needle aspiration biopsy. So far, FNAB has been the best method for the differentiation of nodules, but in some cases it fails to produce a conclusive diagnosis. Some of the biopsies do not provide enough material to establish the diagnosis, in some other biopsies cytological picture is inconclusive. Determining the eligibility of thyroid focal lesions for surgery has been more and more often done with molecular methods. The most common genetic changes leading to the development of thyroid cancer include mutations, translocations and amplifications of genes, disturbances in gene methylation and dysregulation of microRNA. The mutations of Ras proto-oncogenes and BRAF gene as well as disturbances of DNA methylation in promoter regions of genes regulating cell cycle (e.g. hypermethylation of RASSF1A gene and TIMP-3 gene) play an important role in the process of neoplastic transformation of thyreocyte. The advances in molecular biology made it possible to investigate these genetic disturbances in DNA and/or RNA from peripheral blood, postoperative thyroid tissue material and cytology specimens obtained through fine-needle aspiration biopsy of focal lesions in the thyroid gland. As it became possible to analyze the mutations and methylation of genes from cell material obtained through fine-needle aspiration biopsy, it would be beneficial to introduce the techniques of molecular biology in the pre-operative diagnosis of nodular goiter as a valuable method, complementary to ultrasonography and FNAB. The knowledge obtained from molecular studies might help to determine the frequency of follow-up investigations in patients with nodular goiter and to select patients potentially at risk of developing thyroid cancer, which would facilitate their qualification for earlier strumectomy.

Keywords: Nodular goiter, Thyroid cancer, Genetic testing

Introduction
Nodular goiter is the most common pathology of the thyroid gland. Palpable thyroid nodules are found in 3-7% of adult population and are more frequent in women. Ultrasonography which has been introduced in the diagnosis of thyroid gland has confirmed earlier autopsy reports indicating that focal lesions are found in as many as 50% of clinically normal thyroid glands [1,2]. Preoperative diagnostic investigations of nodular goiter are currently based on two main examinations: ultrasonography of the thyroid gland and ultrasound-guided fine-needle aspiration biopsy. Determining the eligibility of thyroid focal lesions for surgery has been more and more often done with molecular methods providing the information on possible presence of mutations and epigenetic changes which play an important role in malignant transformation [3-12]. Most focal lesions in the thyroid gland are of benign nature. The incidence of thyroid cancer in multinodular goiter is estimated at approx. 5-10%. Thyroid cancer is more common in solitary thyroid nodules (approx. 10-20%) than in multinodular goiter [1,13]. Clinical examination of patients with thyroid nodules remains important component of cancer risk assessment. The risk factors include positive family history (this is especially true for medullary carcinoma and some papillary carcinomas), age (under 20 years and over 60 years), sex (males are at greater risk) and history of head and neck irradiation, particularly in the childhood. Other very important symptoms include dysphonia, raucity and neck pain in patients with hard, not easily movable lump [14,15].
Ultrasonographic examination of focal thyroid lesions, particularly those in multinodular goiter is helpful in selecting one or more foci for fine-needle aspiration biopsy. It is currently believed that the most important criteria for the evaluation of malignant potential of a thyroid nodule is not its size but rather its vascularization, the presence of microcalcifications, height/width ratio, structure (solid or solid-fluid), echogenicity and border margins as well as the presence of so called halo. Hence, thyroid nodules most suspected of malignancy are those with the following ultrasonographic features; enhanced central vascularization or no flow in power doppler; microcalcifications; nodule height exceeding its width; solid lesions are more suspicious than solid-fluid ones; hypoechochogenic lesions raise more concerns than isoechogenic ones; lesions with rough margins and those without a halo or lesions with irregular, thick halo are more suspicious [16]. Nowadays, ultrasound-guided fine-needle aspiration biopsy is a gold standard in the diagnosis of nodular goiter. It is technically simple, safe and inexpensive. Cytology assessment of the specimens obtained through fine-needle aspiration biopsy is based on international classification known as the Bethesda System of Reporting Thyroid Cytopathology [17]. According to this classification, the findings of fine-needle aspiration biopsy of thyroid nodule can be divided into 6 groups of diagnostic cytopathology categories: I- non-diagnostic or unsatisfactory, II- benign, III- atypia of undetermined significance or follicular lesion of undetermined significance, IV- follicular neoplasm or suspicious for a follicular neoplasm, V- suspicious for malignancy and VI- malignant. Cytopathology diagnoses falling within groups IV, V and VI are indications for surgery. Diagnoses classified as group III and those classified as group I mean that fine-needle aspiration biopsy should be repeated. It is also worth emphasis that even the diagnosis of a benign lesion (group II) in fine-needle aspiration biopsy carries 3% risk of false negative result [17]. Irrespective of the chosen classification of cytopathology findings, one should assume that approx. 20% of thyroid nodule biopsies produce results that require final diagnosis based on postoperative histopathology report [13].

The scintigraphy of the thyroid gland is currently confirmed by techniques for detecting somatic mutations of TSH receptor gene and G protein alpha chain [27,28]. New molecular diagnostic tools applied to fine-needle aspiration biopsy allowed for more precise qualification of patients for total or partial strumectomy. The key role in the neoplastic transformation of thyroid follicular cell is played by the inactivation of suppression genes and activation of oncogenes [3,4,24,25,29]. Mutations observed in thyroid cancers usually affect RAS, BRAF, PTEN, CTNNB1, TP53, IDH1, ALK and EGFR genes [9,12,25,30].

BRAF gene plays a very important role in the etiopathogenesis of papillary thyroid carcinoma [7,8,31-33]. The predominant BRAF gene mutation reported in PTC, observed in 36-80% of PTC cases is the thymine-to-adenine transversion at position 1799 (T1799A) in exon 15, resulting in the substitution of valine (V) by glutamic acid (E) at codon 600 (V600E) [22,33-40]. This specific V600E BRAF mutation represents 99% of all BRAF mutations found in thyroid cancer [6]. Many studies prove that this mutation is found only in papillary thyroid carcinoma.

Review

The most common genetic changes resulting in the development of thyroid cancer are mutations, translocations and amplifications of genes, disturbances in gene methylation and dysregulation of microRNA [3,4,6,26]. The advances in molecular biology made it possible to investigate these genetic disturbances in DNA and/or RNA from peripheral blood, postoperative thyroid tissue material and cytology specimens obtained through fine-needle aspiration biopsy of focal lesions of the thyroid gland. They cast new light on the genesis of benign and malignant lesions in the thyroid gland and also opened new perspectives for preoperative diagnosis of focal thyroid lesions. The first Polish center to conduct molecular tests of cytology material obtained from fine-needle aspiration biopsy of the thyroid gland was in Szczecin and these tests were aimed at the detection of somatic mutations of TSH receptor gene and G protein alpha chain [27,28]. New molecular diagnostic tools applied to fine-needle aspiration biopsy allowed for more precise qualification of patients for total or partial strumectomy. The key role in the neoplastic transformation of thyroid follicular cell is played by the inactivation of suppression genes and activation of oncogenes [3,4,24,25,29]. Mutations observed in thyroid cancers usually affect RAS, BRAF, PTEN, CTNNB1, TP53, IDH1, ALK and EGFR genes [9,12,25,30].
and in few cases of anaplastic cancer [34,36,41]. The presence of BRAF T1799A oncogene is an unfavorable prognostic factor in PTC as it increases the aggressive nature of cancer through raising its invasiveness, accelerating relapses and the occurrence of metastases [23,33,34,36,37,42-44] BRAF gene encodes BRAF protein. BRAF protein belongs to a class of serine/threonine kinases and subfamily of RAF proteins [8,45,46]. Cytoplasmic RAF proteins make up RAS-RAF-MEK-ERK pathway which is involved in the transduction of mitogenic signal from the cell surface to cell nucleus [47-49]. This pathway using tyrosine kinase receptor is a mitogen-activated kinase cascade called MAPK (Mitogen-Activated Protein Kinase) [32,47-49]. BRAF gene mutation activating MAPK pathway is most likely the main contributor to the development and progression of PTC. T1799A BRAF oncogene is present at all stages of PTC progression, it may even be there at early stages of the development of micropapillary cancer [6,31,34,50]. The presence of BRAF mutation in cytology material obtained from FNAB of thyroid nodule indicates the necessity of surgical treatment. It should be remembered, however, that false positive results indicating the presence of BRAF in the nodule are reported in 0.2-5.7% of cases, while false negative results are found in 1.9-5.8% of cases [51-54]. Since in some cases of thyroid nodule biopsy, the specimens for cytology assessment do not contain enough cells with mutated BRAF and the result obtained is negative despite the mutation in thyroid nodule, currently there are indications to re-evaluate BRAF mutation in follow-up biopsy performed a few months later, especially when the nodule presents ultrasonography features of malignancy and cytology assessment of focal thyroid lesion gives non-diagnostic results, there are signs of atypia or the nodule is of benign nature [11].

Following BRAF mutation, the second most common mutation observed in thyroid cancer are the mutations of RAS proto-oncogenes, which play an important role in the initiation of thyrocyte neoplastic transformation [12,55,56]. Proto-oncogenes of RAS family (N-RAS, H-RAS, K-RAS) are located on 1, 11 and 12 chromosome, respectively. They are involved in the control of growth and differentiation of cells. They encode G membrane proteins showing intrinsic GTP-ase activity and participate in signal transmission from membrane tyrosine kinase receptor to cell nucleus using both MAPK and PI3K-AKT pathways. Mutations at codons 12, 13 and 61 transform these proto-oncogenes into active oncogenes [6,57]. Mutations of RAS proto-oncogene make the protein encoded by this proto-oncogene lose its intrinsic GTP-ase activity and there is a constitutive activation of signal transduction pathway. In thyroid tumorigenesis, PI3K-AKT is a preferable pathway [55]. RAS gene mutations are observed both in benign and malignant thyroid neoplasms. These mutations can be found in 40-50% of PTC cases, in 5-20% of PTC cases, in 20-40% of poorly differentiated and anaplastic cases as well as in approx. 30% of follicular adenomas [9,32,35,56,58,59]. RAS-positive follicular adenoma may be a precursor of both follicular cancer and follicular variant of papillary carcinoma [6]. Recent studies have emphasized an important role of RAS mutation as a valuable diagnostic marker in tumors with very difficult or impossible diagnosis based on cytology assessment of fine-needle aspiration biopsy material, which is true for follicular variant of papillary cancer and follicular adenoma [60,61]. Diagnostic difficulties with follicular variant of papillary cancer result from the absence of papillary proliferation and limited nuclear features typical for papillary cancer. To differentiate between adenoma and follicular cancer, the assessment of vascular invasion and capsule infiltration is necessary, which cannot be based on cytology material obtained from fine-needle aspiration biopsy [39,56]. Most RAS-positive thyroid nodules with indeterminate cytology and without suspicious ultrasonography features turn out to be a follicular form of papillary cancer with low level of malignancy in post-operative histopathology examination [12]. RAS mutations are found in a large percentage of poorly differentiated and anapathology examination, therefore, it seems advisable to consider surgical treatment of all RAS-positive thyroid nodules to prevent cancer progression [12].

Yet another kind of genetic changes found in thyroid cancer are oncogenic rearrangements resulting from gene translocations, with RET/PTC and PAX8/PPARγ being the most common [62-64]. More than 10 types of RET/PTC translocation have been described but the two most frequently occurring are RET/PTC1 and RET/PTC3 [62,65]. RET is a proto-oncogene encoding RTK. RET/PTC is formed as a consequence of genetic recombination between the 3’ portion of RET tyrosine kinase and the 5’ portion of a partner gene. In the case of RET/PTC1 re-arrangement, the partner gene is CCDC6 known as H4 (coiled-coil domain-containing gene 6), while in RET/PTC3 rearrangement, the partner gene is NCOA4 known as ELE1 (nuclear receptor co-activator 4). The structural basis for RET/PTC transformation is close vicinity of RET and the partner gene in cell nucleus [66,67]. The consequence of this rearrangement is ligand-independent dimerization and constitutive activation of RET tyrosine kinase [25]. RET/PTC1 is the most frequent type accounting for 60-70% of re-arrangements and RET/PTC3 is observed in 20-30% of PTC cases [68]. RET/PTC1 re-arrangements are more common in classic forms of papillary cancer and in papillary microcarcinoma [3,69]. On the other hand, RET/PTC3 re-arrangements are more common in solid papillary cancers, which was observed especially in the Ukraine and Belarus after Chernobyl disaster [70].
Another important re-arrangement observed in thyroid cancer is PAX8/PPARY as a consequence of the translocation of genetic material between chromosomes 2 and 3. Then, PAX8 gene which encodes thyroid-specific transcription factor domain is combined with PPARY (peroxisome proliferator-activated receptor-γ). PAX8/PPARY rearrangement is observed mainly in follicular cancers, but also in the follicular form of papillary cancer and follicular adenomas [64,71].

It is not only the translocation of genetic material but also the amplification of oncogenes that may play a very important role in the thyroid tumorigenesis. This is especially the case in the genes encoding MAPK pathway kinases using tyrosine kinase receptor but also in the genes encoding PI3K-AKT pathway. Elevated number of oncogene copies are more common in anaplastic than in differentiated cancers of the thyroid gland, which suggests that it may be of considerable relevance for cancer aggressiveness and the rate of its progression [72].

It has been demonstrated that neoplastic transformation of the thyroid gland is also affected by epigenetic mechanisms, i.e. the mechanisms influencing the regulation and modification of genetic material, not affecting the nucleotide sequence [4,5,25,29,73-75]. These mechanisms include DNA methylation and histone modification. DNA methylation takes place through covalent modification of cytosines and it is catalyzed by DNA methyltransferases, which attach methyl group at the carbon 5' position of cytosine ring. This modification applies only to cytosines (C) which are followed by guanine (G) in the sequence. CG sequences are grouped in the genome sites known as CpG islands, where CG dinucleotide repetitions extend over 1,000 - 2,000 base pairs [76]. In the case of genes with vital significance for fundamental cellular processes, with widespread expression in the tissues, CpG islands associated with them are almost always found on 5' side of encoding sequences, typically in the promoters of these genes. The general mechanism of silencing expression of hypermethylation-dependent DNA genes has several aspects. The most important of them is to prevent the binding of transcription factors to promoters and sequences regulating transcription, on the basis of spatial conflict. These data are consistent with observations which imply that CpG islands of suppressor genes in healthy somatic cells are usually characterized by low levels of methylation or no methylation at all. During oncogenesis, hypermethylation of these sites often occurs, which causes silencing of their expression. Thus, in the selective strategy of a neoplasm, hypermethylation of genes is aimed at marking those genome areas which are to undergo deletion processes, leading to irreversible loss of growth control. The result of this situation is not only accelerated growth of cells but also the beginning of particularly dangerous genetic instability [77,78]. The genes controlling the proliferation of cells, which undergo hypermethylation in the papillary carcinoma include TIMP-3 (tissue inhibitor of metalloproteinase-3, inhibitor of extracellular metalloproteinases), DAPK (calcium-dependent protein kinase), taking part in programmed cell death, SLC5A8 (sodium symporter), DNA repair genes (hMLH1, PCNA) and thyroid-specific genes (NIS-sodium-iodine symporter, TSHR-thyroid stimulating hormone receptor). The genes encoding the suppressors of neoplasia undergoing hypermethylation in follicular cancer include PTEN (phosphatase inhibiting one of mitogen signal transduction pathway), RASSF1A (signal protein of mitogen RAS pathway), thyroid-specific genes (NIS, TSHR) and TRbeta (receptor beta for thyroid hormones) [1,4,5,75,79,80]. Special attention should be paid to TIMP-3 and RASSF1A genes taking part in the tumorigenesis of the thyroid gland [4,5,29]. TIMP-3 inhibits the growth, angiogenesis and invasion of many cancers. Hypermethylation of this gene is particularly important in the onset of papillary thyroid cancer. It has been demonstrated that there is a correlation between loss of TIMP-3 gene function as metalloproteinase inhibitor associated with hypermethylation and extrathyroid invasion of papillary carcinoma, lymph node metastases and multifocal nature of this cancer [4,7,5,81,82]. Protein products of RASSF1A suppressor gene participate in controlling cell cycle, controlling the differentiation and proliferation of cells through direct regulation of transcription and regulation of prosapoptic signal pathways. Epigenetic silencing of this gene expression through promoter hypermethylation may lead to unauthorized divisions of mutated cells. Decreased expression of RASSF1A gene and/or reduced activity of its protein products are also affected by changes in DNA sequence related to the acquisition of genome instability by neoplastic cells, resulting from loss of heterozygosity as well as from the instability of microsatellite sequences [1,4,5,29]. Hypermethylation of RASSF1A gene is observed both in benign thyroid neoplasms and in thyroid cancers, particularly in FTC. Methylation levels above 50% of alleles was only observed in follicular thyroid cancer, while it was not observed in benign neoplasms of the thyroid gland, suggesting that methylation through silencing both RASSF1A gene alleles may play an important role in the pathogenesis and development of follicular thyroid cancer [1,4,5,29].

Conclusion
New opportunities for the analysis of mutation and methylation of genes obtained from fine-needle aspiration biopsy presented in this article confirm clinical benefits from introducing molecular studies into pre-operative...
diagnostic investigations of the thyroid gland as a valuable method complementary to ultrasonography and cytology evaluation of thyroid biopsies, particularly when qualifying patients with follicular adenomas and follicular lesions with undetermined significance for surgical treatment.

Abbreviations
FNAB: Fine-needle aspiration biopsy; PTC: Papillary thyroid carcinoma; FTC: Follicular thyroid carcinoma; NIS: Sodium-iodine symporter; TRβ: Receptor β for thyroid hormones; RASS1A: Signal protein of mitogen RAS pathway; PPARY: Peroxisome proliferator-activated receptor-γ.

Competing interests
The authors have non-financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial or any other) to declare in relation to this manuscript.

Authors’ contributions
Prof AS have made substantial contributions to conception and design, acquisition of data and analysis and interpretation of data; have been also involved in drafting the manuscript, have given final approval of the version; MK involved in drafting the manuscript, have made substantial contributions to conception and design, acquisition of data and analysis and interpretation of data; have been also involved in drafting the manuscript, AC - have been also involved in drafting the manuscript, AS - participated in the sequence alignment and acquisition of data and analysis and interpretation of data; have been also involved in drafting the manuscript, ABK - carried out the molecular genetic studies, MP - carried out the molecular genetic studies. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by a grant from the Polish Ministry of Science and Higher Education (no. N N402 466739).

Author details
1Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University in Szczecin, Szczecin, Poland. 2Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland. 3Department of Infectious Diseases and Hepatology, Pomeranian Medical University, Szczecin, Poland.

Received: 11 April 2014 Accepted: 21 May 2014
Published: 17 June 2014

References
1. Lesnik DJ, O’Leary MA, Noordzij JP, Randolph GW: Surgical management of benign diseases of the thyroid gland. In Diseases of the thyroid and parathyroid glands. Practical Guide. Edited by Arora A, Talley NS, Tuttle RM, Lewiński A. red. polskiego wydania. Warszawa: MedPage; 2013:83. in Polish.
2. Mazzafferi EL: Management of a solitary thyroid nodule. N Engl J Med 1993, 328(8):553–559.
3. Nikiforov YE: Molecular analysis of thyroid tumors. Mod Pathol 2011, 24(Suppl 2):S34–43.
4. Xing Min: Minireview: Gene methylation in thyroid tumorigenesis. Endocrinology 2007, 148(7):3784–3785.
5. Hoque MO, Rosenbaum E, Westra WH, Xing M, Ladenson P, Zeiger MA, Sidransky D, Umbrecht CB: Quantitative assessment of promoter methylation profiles in thyroid neoplasms. J Clin Endocrinol Metab 2005, 90(7):4011–4018.
6. Wilt RL, Ferris RL, Pribitkin EA, Sherman SI, Steward DL, Nikiforov YE: Diagnosis and management of differentiated thyroid cancer using molecular biology. Laryngoscope 2013, 123(4):1059–1064.
7. Cappola AR, Mandel SJ: Molecular testing in thyroid cancer; BRAF mutation status and mortality. JAMA 2013, 309(14):1529–1530.
8. Derdas SP, Soulitzis N, Balis V, Sakorafas GH, Spandidos DA: Expression analysis of B-Raf oncogene in V600E-negative benign and malignant tumors of the thyroid gland: correlation with late disease onset. Endocr Oncol 2013, 30(1):356.
9. Puexeddu E, Moretti S, Elisei R, Romel C, Pascucci R, Martinelli M, Marino C, Avenia N, Rossi ED, Fadda G, Cavaliere A, Ribacchi R, Faloni A, Pontecorvi A, Pacini F, Pinchera A, Santusansano F: BRAF(V600E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 2004, 89(5):2144–2420.
10. Khan MS, Pandith AA, Ul Hussain M, Isbail M, Khan NP, Wani KA, Masoodi SR, Mudassar S: Lack of mutational events of RAS genes in sporadic thyroid cancer but high risk associated with HRAS T81C single nucleotide polymorphism (case–control study). Tumour Biol 2013, 34(1):521–529.
11. Yoon JH, Kim EK, Moon HJ, Kwak YH: Is follow-up BRAF(V600E) mutation analysis helpful in the differential diagnosis of thyroid nodules with negative results on initial analysis? PLoS One 2013, 8(3):e59592.
12. Gupta N, Diasam AK, Carty HE, Nikiforova MN, Ghori NP, Armstrong M, Yip L, LeBeau MM, McCoy KL, Coyne C, Stang MT, Johnson J, Ferris RL, Seethala RR, Nikiforov YE, Hodak SP: RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab 2013, 98(5):1974–2212.
13. Fadda G, Basolo F, Bondi A, Bussolati G, Crescenzi A, Nappi O, Nardi F, Papotti M, Taddei G, Palombini L: SIAPSC-IAP Italian Consensus Working Group. Cytological classification of thyroid nodules. Proposal of the SIAPSC-IAP Italian Consensus Working Group. Pathologica. 2010, 102(S):405–408.
14. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM, American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19(11):1167–1214.
15. Bahn RS, Castro MR: Approach to the patient with nontoxic multinodular goiter. J Clin Endocrinol Metab 2011, 96(5):1202–1212.
16. Adamczewski Z, Lewiński A: Proposed algorithm for management of patients with thyroid nodules/focal lesions, based on ultrasound (US) and fine-needle aspiration biopsy (FNAB); our own experience. Thyroid 2013 Apr 20, 6(1).
17. Cibas ES, Ali SZ: The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009, 19(11):1159–1165.
18. Mirfakhraee S, Mathews D, Peng L, Woodruff S, Zigmam JT: A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature. Thyroid Res 2013, 6(1:2).
19. Jermal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics. CA Cancer J Clin 2010, 59:225–249.
20. Holt EH: Care of the pregnant thyroid cancer patient. Curr Opin Oncol 2010, 22(1):1–5.
21. Jarzbi B, Szpak-Utczok S: Thyroid cancer. Epidemiology, risk factors and prognosis. In Clinical Endocrinology. Edited by Milewicz A. Wrocław: Polish Society of Endocrinology; 2012:307.
22. Xing M, Vasko V, Tallini G, Larin A, Wu G, Udelman S, Ringel MD, Ladenson PW, Sidransky D: BRAF(V600E) transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab 2004, 89:1365–1368.
23. Kopczyńska E, Junik R, Tynkowski T: Mutacja genu BRAF w raku tarczycy. Pol Merk Lek 2006, 116:210–213. XX.
24. Kuźniak-Puzianowska M, Pietrzak M: Genetic factors predisposing to the formation of papillary thyroid cancer. Endokr Pol 2005, 55(6):339–345.
25. Xing M: Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013, 13(3):184–199.
26. Bhaaje F, Nikiforov YE: Molecular analysis of thyroid nodules. Endocr Pathol 2011, 22(3):126–133.
27. Syrecz A: A search for somatic mutations in the thyrotropin receptor gene and G protein alpha-subunits 201 and 227 codons using cytological material from thyroid nodules an attempt to link the mutation with clinical results of conservative treatment of nodular goiter with thyroid or thyroxine and iodine. Habilitation thesis. Pomorska Akad Med 2000, 57:94.
28. Syrecz A, Kurzawski G, Ciechanowicz A: The deduction of somatic mutations of thyrotropin receptor gene in fine needle biopsy samples from thyroid nodules. Endocr Regul 1999, 33(3):110–110.
29. Pfeifer GP, Dammann R: Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry (Mosc) 2005, 70(5):576–583.
30. Gustafson S, Zbud KM, Scacheri C, Eng C: Cowden disease. Semin Oncol 2007, 34(4):382–395.
31. Xing M: BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005, 12(2):245–260.
32. Cohen Y, Xing M, Mambo E, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003, 95(6):625–627.
33. Xing M, Alzahani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vanello F, Tuttle RM, Robenhok E, Fagin JA, Puxeddu E, Fugazzola L, Czarnecka A, Jarzab B, O'Neill CJ, Sywak MS, Lam AK, Rieso-Ezaguerr E, Santisteban P, Nakayama H, Tufano RP, Pai S, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sywokova L: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013, 309(14):1493–1501.
34. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Farkas T, Basolo F, Nikiforov YE: BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003, 88(11):5399–5404.
35. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA: High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003, 63:1454–1457.
36. Nambu H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogouiovich TJ, Ohtsuurui, A, Saeo Ken V, Kanimatous, T, Yamashita S: Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003, 88(9):4393–4397.
37. Xing M, Tufano RP, Tafaro AF, Basaria S, Ewertz M, Rosenbaum E, Byrne PJ, Xing M, Tufano RP, Tafaro AF, Basaria S, Ewertz M, Rosenbaum E, Byrne PJ.
38. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kiosmidou V, Menzies A, Mould C, Parker S, Steer C, Warrington J, Young LS, Zhokhova E, Clinton J, Böttcher I, Beller U, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sywokova L: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013, 309(14):1493–1501.
39. Nikiforova MN, Burford GA, Farkas T, Basolo F, Nikiforov YE: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003, 88(11):5399–5404.
40. Santoro A, Pannone G, Carosi MA, Francesconi A, Pescarmona E, Russo GM, Bufo P, Pignata S, Aquino G, De Rosa G, Di Domenico M, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Nikiforov YE:
41. Lee JI, Kang H, Kim SW, Kim JW, Oh YL, Chung JH: BRAF V600E mutation in fine-needle aspiration biopsy specimens: a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 2004, 89:2867–2872.
42. Ezzat S, Zheng L, Kaihara J, Saifian A, Freeman JL, Asa SL: Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 1996, 6:409–416.
43. Garcia-Roman G, Zhao H, Camp RP, Pollan M, Herrero A, Paro J, Wu R, Carcagni ML, Costa J, Tallinn G: ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003, 21(7):3236–3239.
44. Puxeddu E, Moretti S, Elisei R, Romeli C, Pascucci R, Martinelli M, Marino C, Avenia N, Rossi ED, Fadda G, Cavaleri A, Ribacchi R, Falomo A, Pontecorvi A, Pacini F, Pinchera A, Santusiano E, Santusiano E: BRAF(V600E) mutation in the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 2004, 89:2414–2420.
45. Baro R, Cassol AS, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE:
46. Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA, Wenig BM: Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 2008, 130(5):736–744.
47. Floyd Y, Erickson LA, Casey MB, Larn KY, Loehse CM, Asa SL, Chan JK, DeLellis RA, Hanach HK, Kukudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM: Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 2004, 28(10):1336–1340.
48. Rabes HM, Demidchik EP, Sidorov JD, Lengfelder E, Beimfohr C, Hoezel D, Klugbauer S: Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chemoBryal papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 2003, 9(8):2939–2948.
49. Santoro M, Thomas GA, Vecchio G, Williams GH, Fusco A, Chiappetta G, Pozza R, Bogdanova TI, Demidchik EP, Chen et al. Comparison of BRAF mutations in thyroid tumors occurring in different genetic settings. J Natl Cancer Inst 2005, 97(7):529–538.
50. Santoro M, Ezzat S, Bhalla U, Ladenson PW, Sykorova V, Santisteban P, Nakayama H, Tufano RP, Pai S, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sywokova L: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013, 309(14):1493–1501.
51. Santoro M, Thomas GA, Vecchio G, Williams GH, Fusco A, Chiappetta G, Pozza R, Bogdanova TI, Demidchik EP, Chen et al. Comparison of BRAF mutations in thyroid tumors occurring in different genetic settings. J Natl Cancer Inst 2005, 97(7):529–538.
69. Tallini G, Santoro M, Helie M, Carlon Magno F, Salvatore G, Chiappetta G, Carcangi ML, Fusco A: RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. *Clin Cancer Res* 1998, 4(2):287–294.

70. Thomas GA, Bunnell H, Cook HA, Williams ED, Nerovnya A, Cherstvoy ED, Tronko ND, Bogdanova TI, Chiappetta G, Viglietto G, Pentimalli F, Salvatore G, Fusco A, Santoro M, Vecchio G: High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. *J Clin Endocrinol Metab* 1999, 84(11):4232–4238.

71. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE: RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. *J Clin Endocrinol Metab* 2003, 88(5):2318–2326.

72. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, Vasko V, El-Naggar AK, Xing M: Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. *J Clin Endocrinol Metab* 2008, 93(8):3106–3116.

73. Lee JJ, Gel J, Larsson C, Wallin G, Karimi M, Zedenius J, Höög A, Foukakis T: Gene-specific promoter hypermethylation without global hypomethylation in follicular thyroid cancer. *Int J Oncol* 2008, 33(4):861–869.

74. Yoshikawa H: DNA methylation and cancer. *Gan To Kagaku Ryoho* 2007, 34(2):145–149.

75. Hu S, Liu D, Tufano RP, Carson KA, Rosenbaum E, Cohen Y, Holt EH, Kisieljak-Vassilades K, Rhoden KU, Tolaney S, Condouris S, Tallini G, Westra WH, Umbricht CB, Zeiger MA, Califano JA, Vasko V, Xing M: Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. *Int J Cancer* 2006, 119(10):2322–2329.

76. Russo VE, Martienssen RA, Riggs AD: Epigenetic mechanisms of gene regulation. New York: Cold Spring Harbor Laboratory Press; 1996.

77. Meehan RR, Lewis JD, Bird AP: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. *Nucleic Acids Res* 1992, 20:5085–5092.

78. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A: Purification, sequence and cellular localization of a novel chromosomal protein that binds to methylated DNA. *Cell* 1992, 69:905–914.

79. Smith JA, Fan CY, Zou C, Bodenner D, Kokoska MS: Methylation Status of Genes in Papillary Thyroid Carcinoma. *Arch Otolaryngol Head Neck Surg* 2007, 133(10):1006–1011.

80. Schagdarsurengin U, Gimm O, Hoang-Vu C, Drahle H, Pfifer GP, Dammann R: Frequent Epigenetic Silencing of the CpG Island Promoter of RASSF1A in Thyroid Carcinoma. *Cancer Res* 2002, 62:3698–3701.

81. Qi JH, Ehreman Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B: A novel function for tissue inhibitor of metalloproteinases-3 (TIMP-3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. *Nat Med*. 2003, 9:410–415.

82. Baylin SB, Ohm JE: Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? *Nat Rev Cancer* 2006, 6(2):107–116.

doi:10.1186/1756-6614-7-6
Cite this article as: Syrenicz et al.: New insights into the diagnosis of nodular goiter. *Thyroid Research* 2014 7(6).