Eigenvalues of the hermitian Wilson-Dirac operator and chiral properties of the domain-wall fermion

CP-PACS Collaboration: A. Ali Khan, S. Aoki, Y. Aoki, R. Burkhalter, S. Ejiri, M. Fukugita, N. Ishizuka, Y. Iwasaki, T. Izubuchi, K. Kanaya, T. Kaneko, Y. Kuramashi, T. Manke, K.-I. Nagai, J. Noaki, M. Okawa, H.P. Shanahan, Y. Taniguchi, A. Ukawa, and T. Yoshié

aCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
bInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
cInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
dHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
eInstitute of Theoretical Physics, Kanazawa University, Ishikawa 920-1192, Japan

Chiral properties of QCD formulated with the domain-wall fermion (DWQCD) are studied using the anomalous quark mass \(m_{5q} \) and the spectrum of the 4-dimensional Wilson-Dirac operator. Numerical simulations are made with the standard plaquette gauge action and a renormalization-group improved gauge action. Results are reported on the density of zero eigenvalue obtained with the accumulation method, and a comparison is made with the results for \(m_{5q} \).

1. Introduction

Formulation of chiral fermions on the lattice has been one of long-standing problems in lattice field theories. Several years ago, the domain-wall fermion (DWF) formalism \[\mathbb{D} \], which is a Wilson fermion in \(D + 1 \) dimensions with Dirichlet boundary condition in the extra dimension, has been proposed as a new formulation of lattice chiral fermion. In the limit of large extra dimension size, \(N_s \to \infty \), the spectrum of free domain-wall fermion contains massless modes at the edges in the extra dimension.

While the massless modes are shown to be stable in perturbation theory \[\mathbb{P} \], their existence may be spoiled non-perturbatively in the presence of dynamical gauge fields. We studied this issue through an anomalous quark mass \(m_{5q} \) in Ref. \[\mathbb{R} \]. This quantity measures the magnitude of chiral symmetry breaking with the domain-wall QCD (DWQCD).

In this article we make a status report of our attempt to understand the results on the \(N_s \)-dependence of \(m_{5q} \) obtained in Ref. \[\mathbb{R} \] through measurements of the eigenvalue distribution of the 4-dimensional Wilson-Dirac operator.

2. Chiral Properties of DWQCD

We define the anomalous quark mass by \[\mathbb{K} \]

\[m_{5q} = \lim_{t \to \infty} \frac{\sum_x \langle J_{5q}^a(t,x)P^b(0,0) \rangle}{\sum_x \langle P^a(t,x)P^b(0,0) \rangle}. \quad (1) \]

This quantity measures the chiral symmetry breaking effect in the axial Ward-Takahashi identity:

\[\sum_{\mu} \langle \nabla_{\mu} A^a_{\mu}(x)P^b(0) \rangle = 2m_f \langle P^a(x)P^b(0) \rangle \]
the plaquette action, and (iv) from data in the range of \(N_s \) we explore, \(m_{5q} \) seems to remain non-zero in the limit \(N_s \to \infty \), in all cases except at \(\beta = 2.6 \) for the RG-improved action. If confirmed with studies at larger values of \(N_s \), the last point means that DWQCD realizes chiral symmetry at \(a^{-1} \approx 2 \text{ GeV} \) only for the case of the RG-improved action.

3. Eigenvalues of the hermitian Wilson-Dirac operator and chiral property

Chiral symmetry of DWQCD can be studied also through the transfer matrix in the direction of the extra dimension\([7,8]\). When the transfer matrix has a unit eigenvalue, chiral symmetry is not realized in DWQCD because the left and right chiral modes on the two edges in the extra dimension couple with each other.

A unit eigenvalue of the transfer matrix is in one-to-one correspondence with a zero eigenvalue of the hermitian Wilson-Dirac operator defined by

\[
H_W(m_0) = \gamma_5 D_W(-m_0) ,
\]

which is much easier to calculate. Here, \(D_W(-m_0) \) is the four dimensional Wilson-Dirac kernel with a bare mass \(-m_0\). Therefore, a failure of exponential decay of \(m_{5q} \) would result if \(H_W \) develops a zero eigenvalue.

We calculate eigenvalues of \(H_W^2 \) by the Lanczos method using 50–100 configurations at several values of coupling in the range \(a^{-1} \approx 1–2 \text{ GeV} \) using both plaquette and RG-improved actions. The results from the Lanczos method are checked by the Ritz functional method for \(H_W \). We also study the dependence on the lattice size. The maximum lattice at \(a^{-1} \approx 1 \text{ GeV} \) is \(12^4 \) for both actions, while the one at \(a^{-1} \approx 2 \text{ GeV} \) is \(24^4 \) for the RG-improved action and \(16^3 \times 32 \) for the plaquette action.

3.1. Eigenvalue distributions

In Figs. 2 and 3 we plot Monte Carlo time histories for the six lowest eigenvalues of \(H_W^2 \) for the plaquette and RG-improved actions. In each figure the left panel shows results for \(a^{-1} \approx 1 \text{ GeV} \) and the right panel for \(a^{-1} \approx 2 \text{ GeV} \). The lattice size at \(a^{-1} \approx 2 \text{ GeV} \) is the same as in the previous
work of m_{5q} shown in Fig. 1. Open squares plot the minimum eigenvalue λ_{min}^2 and filled diamonds are the five higher eigenvalues.

There is a clear trend that the minimum eigenvalues become larger for smaller lattice spacings. Another interesting point is that the RG-improved action gives larger values of λ_{min}^2 than the plaquette action, which indicates that the RG-improved action has a better chiral behavior. These trends are parallel to the features we noted for m_{5q} in Sec. 2.

3.2. Spectral density

The spectral density of H_W is defined by

$$\rho(\lambda) = \lim_{V \to \infty} \frac{1}{3 \cdot 4 \cdot V} \sum_{\lambda'} \delta(\lambda' - \lambda),$$

where the summation is over the eigenvalues of H_W. We are interested in the density of zero eigenvalues, $\rho(0)$, since we expect this quantity to be related to the existence of unit eigenvalue of the transfer matrix. To calculate this quantity, we adopt the accumulation method proposed in [9], which is based on the relation

$$A(\lambda) \equiv \int_{-\lambda}^{\lambda} d\lambda' \rho(\lambda') = \frac{1}{3 \cdot 4 \cdot V} \sum_{|\lambda'| \leq \lambda} 1$$

where $\tilde{\rho}(\lambda^2)$ is the spectral density function for H_W^2. We note that, for the small-λ expansion of $A(\lambda)$ in (5), analyticity of $\rho(\lambda)$ at the origin is assumed.

In Fig. 4, we show typical examples of the accumulation $A(\lambda)$ from the eigenvalue distribution of H_W^2 for the case of the RG-improved action. Results for $\rho(0)$ obtained by a linear fitting following (5), normalized by the string tension, are summarized in Fig. 5.

Our results for $\rho(0)$ for the plaquette action are consistent with the previous data by Edwards et al. [9]. Results for the RG-improved action show a similar β dependence. A significant difference is that the RG-improved action leads to much smaller values of $\rho(0)$ than the plaquette action, roughly by an order of magnitude.

4. Discussions

We have applied the accumulation method to estimate the spectral density at zero eigenvalue of the hermitian Wilson-Dirac operator, $\rho(0)$. We found that this method leads to non-zero values of $\rho(0)$ at $a^{-1} \simeq 1$–2 GeV for both the plaquette and RG-improved actions.

At $a^{-1} \simeq 1$ GeV, the non-zero result for $\rho(0)$

$$\rho(0) \simeq 2\rho(0) + O(\lambda^2),$$

where $\tilde{\rho}(\lambda^2)$ is the spectral density function for H_W^2. We note that, for the small-λ expansion of $A(\lambda)$ in (5), analyticity of $\rho(\lambda)$ at the origin is assumed.

In Fig. 4, we show typical examples of the accumulation $A(\lambda)$ from the eigenvalue distribution of H_W^2 for the case of the RG-improved action. Results for $\rho(0)$ obtained by a linear fitting following (5), normalized by the string tension, are summarized in Fig. 5.

Our results for $\rho(0)$ for the plaquette action are consistent with the previous data by Edwards et al. [9]. Results for the RG-improved action show a similar β dependence. A significant difference is that the RG-improved action leads to much smaller values of $\rho(0)$ than the plaquette action, roughly by an order of magnitude.

4. Discussions

We have applied the accumulation method to estimate the spectral density at zero eigenvalue of the hermitian Wilson-Dirac operator, $\rho(0)$. We found that this method leads to non-zero values of $\rho(0)$ at $a^{-1} \simeq 1$–2 GeV for both the plaquette and RG-improved actions.

At $a^{-1} \simeq 1$ GeV, the non-zero result for $\rho(0)$

$$\rho(0) \simeq 2\rho(0) + O(\lambda^2),$$

where $\tilde{\rho}(\lambda^2)$ is the spectral density function for H_W^2. We note that, for the small-λ expansion of $A(\lambda)$ in (5), analyticity of $\rho(\lambda)$ at the origin is assumed.
is consistent with the finite m_{5q} in the large N_s limit observed in with both the plaquette and RG-improved actions. At $a^{-1} \simeq 2$ GeV, while a consistency also holds with the plaquette action, there is an apparent contradiction for the case of the RG-improved action since m_{5q} seems to decay exponentially with N_s for this case.

In the accumulation data shown in Fig. 4 we observe that results are very noisy at $\beta = 2.6$ (2 GeV). Since the fit results for $\rho(0)$ fluctuates with volume, it is difficult to determine the size dependence. Therefore simulations with larger lattices are needed to check if the slope remains non-vanishing toward infinite volume. Another point to examine is if the analyticity assumption for $\rho(\lambda)$ at the origin is justified if there is a spectral gap. Further studies are required to clarify these points.

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos. 10640246, 10640248, 10740107, 11640250, 11640294, 11740162, 12014202, 12304011, 12640253, 12740133). AAK and TM are supported by JSPS Research for the Future Program (No. JSPS-RFFT 97P01102). SE, TK, KN, JN and HPS are JSPS Research Fellows.

REFERENCES

1. D. Kaplan, Phys. Lett. B288 (1992) 342.
2. Y. Shamir, Nucl. Phys. B406 (1993) 90.
3. S. Aoki and Y. Taniguchi, Phys. Rev. D59 (1999) 054510.
4. Y. Kikukawa, H. Neuberger and A. Yamada, Nucl. Phys. B526 (1998) 572.
5. CP-PACS collaboration: A. Ali Khan et al., [ep-lat/0007014].
6. V. Furman and Y. Shamir, Nucl. Phys. B439 (1995) 54.
7. H. Neuberger, Phys. Rev. D57 (1998) 5417.
8. Y. Kikukawa and T. Noguchi, [ep-lat/9902022].
9. R. Edwards, U. Heller and R. Narayanan, Phys. Rev. D60 (1999) 034502.