Cheng Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Osseointegration is the backbone of successful implant stability. Biological ageing of titanium implants decreases its bioactivity leading to less bone to implant contact. Ultraviolet photofunctionalization reverses the ageing process, increases the bone-implant contact to almost 100% in what is known as "Superosseointegration", and therefore increasing the strength and the primary stability of implants while decreasing the healing time. Photofunctionalization was shown to improve the prognosis, decreased morbidity and to have a significant impact on clinical practice. The aim of this review is to explain the events on the molecular level, the clinical implications of photofunctionalization and to highlight some of the other applications associated with this new technology.

Keywords: Osseointegration; Photofunctionalization; Biological ageing

Osseointegration

OI is the "direct structural and functional connection between ordered living bone and the surface of the load - covering implant at the histological level [1-3]. When this bone opposition occurs, without any soft tissue intervention between the bone and the implant surface, it translates clinically into a long-term rigid, stable fixation of implants into the surrounding bone [2]. Osseointegration is a prerequisite for primary implant stability and is by far the most important factor to consider before establishing any further treatment [3]. Knowing the biological events and the healing process occurring after placing an implant is therefore significant for further understanding of the different factors acting on this bone-implant interface.

Mechanism of Osseointegration

The process of bone formation involves attachment, settlement, proliferation, and maturation of osteoblasts followed by mineralisation around the secreted proteins [4]. Similar to primary bone healing, there is a cascade of biological events occurring around the implant fixture. The wound healing process starts within a few seconds of blood contact on the implant surface. Thrombocytes initiate the coagulation cascade, and then inflammatory cytokines along with other growth factors and vasoactive amines are released leading to the migration and proliferation of phagocytic cells. Neutrophils peak at the first three days following surgery to remove the dead cells and residues of bacterial extracellular matrix. Macrophages follow to help in the degradation process and express more cytokines, inducing further recruitment of osteogenic and endothelial progenitors [5]. Angiogenesis within the fibrin matrix occurs simultaneously with removal of coagulum. The formed fibrin matrix acts as a scaffold for colonisation of the migrating and differentiation of osteogenic cells such as osteoblasts and the recruited mesenchymal stem cells (MSCs) arriving as early as the first day. Upon arrival of these osteoprogenitor cells, matrix formation and mineralisation initiates by contact osteogenesis [2,3]. Following osteoid deposition on the implant surface, immature woven bone starts remodelling at the second week and becomes replaced by mature lamellar bone within three months [5] as shown in Figure 1.

Titanium

In the recent decades, Implant biomaterials have been widely investigated, aiming at finding and developing the most biocompatible implants biomaterials which can achieve high levels of OI and implant stability. Despite exhibiting better biocompatible nature and less foreign body reaction compared to other conventional materials [3,6] pure titanium and titanium alloys were found to also have good mechanical reliability, high corrosion resistance, as well as exhibiting low modulus of elasticity and considerable fatigue strength [7,8]. These excellent mechanical and superior physiochemical properties makes titanium much more favourable than other alloys like stainless steel or chrome-cobalt in regards to biocompatibility and clinical choice.

Tissue response is largely dependent on the nature of the implant surface. Unlike bioactive surfaces which participates actively in OI, bioinert surfaces does not play a role in this process [9]. Titanium and titanium alloys are considered bioinert according to their surface oxides, so the OI on their surfaces occur due to a lack of negative tissue response rather than occurring due to a positive one [3]. Titanium implant surfaces are osteoconductive and allows bone growth on its surface by distant osteogenesis [3]. Surface modification approaches have been focused on making it more osteoinductive in order to stimulate and recruit osteogenic cells and to exhibit contact osteogenesis [10].

Biological Aging of Titanium

The term biological ageing refers to the time-related degradation of the physiochemical properties of the implant surface [11-16]. It is well documented that following a sufficient healing period after placing titanium implants, the osseointegration level is usually less than ideal and the BIC does not reach 100% [12,13].

Keywords: Osseointegration; Photofunctionalization; Biological ageing
Photofunctionalization

Light wavelengths visible to the human eyes ranges from 400 to 700 nm. Ultraviolet (UV) light on the other hand can be either UVA (320-400 nm), UVB (290-320 nm) or UVC (10-290 nm). The range used in biological investigations is 200-400 nm [27]. UVA light can remove hydrocarbons through inducing TiO2 photocatalysis [28]. UVC irradiation is considered superior in reducing the surface carbon levels, improving the hydrophilicity and enhancing the protein adsorption and cell function [29,30].

Ultraviolet (UV) PhF is the surface modification changes on titanium surfaces following UV treatment, including the alteration of physicochemical properties and the enhancement in biologic capability. It is a unique and simple mechanism which remarkably increases the biologic capacity of titanium implants and enhances osseointegration to nearly 100% BIC (Superosseointegration) compared to less than 55% for untreated implants [11,12,31,32].

PhF improves protein affinity to the implant surface, and drastically enhances physiological function as well as the expression of osteogenic cells phenotypes [11,18,19,32,33]. This "upgrade" in the OI capacity at the implant surfaces is caused fundamentally by inducing three property changes on the titanium implant surface:

• PhF regenerates the lost hydrophilicity caused by biological aging of titanium, it converts titanium surfaces from hydrophobic to "Superhydrophilic." [12-15].
• It optimises the electrostatic status of the surface, reverting it from electronegative back to original electropositive status found on fresh titanium surfaces [18,19].
• It removes the significant amount of hydrocarbon that unavoidably accumulates on the surface by time (Figure 2) [31-33].

Hydrophilicity

Although the wettability of titanium surface is not an indicator of it's bioactivity, recent studies demonstrated that hydrophilicity and electric charge play key roles in the initial attachment of cells to UV-functionalized titanium [29,34]. A newly processed titanium surface is "superhydrophilic". This term is used when the contact angle of water to the surface is less than 5 degrees. Due to ageing of titanium, the implant surface gradually becomes hydrophobic with a contact angle more than 60 degrees after 4 weeks of processing [29]. UV treatment converts the aged surface from hydrophobic to superhydrophilic in conjunction with the removal of hydrocarbon contamination from the titanium's surface. The bioactivity of a UV-treated of 4 week old titanium surfaces becomes even higher than that of a newly processed surfaces [16,34].

Electrostatic status

UV-treated titanium surfaces are electropositive, whereas aged titanium surfaces are electronegative [18]. PhF of titanium oxide (TiO2) causes excitement of an electron from valence band to conduction band and creates a positive hole on the superficial layer [19]. This results in the conversion of relevant Ti4+ sites to Ti3+ sites which are favourable for dissociative water adsorption to form basic Ti-OH groups [28,31]. The surface oxygen vacancies eliminate the need for inorganic bridges for cell attachment and adhesion and hence, enabling direct protein-titanium interaction or even a direct cell-titanium interaction. UV treatment, therefore results in more cells...
attraction and stronger cell adhesion by converting the titanium surface from bioinert to bioactive [19]. Hydrocarbon removal

In contrast to other techniques aimed at modifying the surface topography of implants, such as oxidising, sandblasting, acid etching [35,36], UV treatment does not alter the topography, but it rather removes the surface hydrocarbons which are responsible for biological ageing. The surface of bulk titanium is made of a semiconductor TiO$_2$. Therefore, UV treatment removes hydrocarbons by induced photocatalytic activity of TiO$_2$ and a direct decomposition by UV. The removal of hydrocarbon results in the exposure of Ti$^{4+}$ and may facilitate its interaction with biological cells that are electronegatively charged [28,31]. The level of hydrocarbons on the TiO$_2$ surface is inversely related to the level of protein absorption and osteoblast attachment [18,33].

Figure 2: Schematic comparison between the physiochemical properties of the titanium's surface as received “aged” and the titanium's surface following PhF. A) Photofunctionalized surface shows much higher wettability across the implant surface than the non-treated surface. B) The surface charge on the UV treated surface becomes positive, allowing the negatively charged osteoblasts and stem cells to attach alone or through serum proteins. The non-treated surface is negatively charged and the only method of cells to attach is via bridging divalent cations (Mg++, Ca ++). Monovalent cations (Na+ and K+) competitively inhibit cell attachment. C) Photofunctionalization removes the hydrocarbon layer from the surface allowing for more protein absorption, and better attachment and spread of osteoblasts.

UV Effect at the Molecular Level

Studies have shown that PhF of titanium surfaces increases protein absorption, enhances osteogenic migration and attachment, as well as osteoblastic proliferation and differentiation [12,19,34-41].

Protein absorption

Biocompatibility of any material is highly dependent on the capacity of protein adsorption on its surface [18]. Adhesive ECM proteins and transmembrane cellular receptors mediate cell attachment to titanium surfaces [29]. ECM fibronectin interacts with cell membrane integrins to facilitate osteoblastic adhesion and proliferation on the implant surface [12,19]. Vinculin is a cell-binding membrane cytoskeletal protein that binds (via other adhesion complex proteins) to integrins and actin filaments [37], which are cell adhesion membrane filaments that are highly essential in the establishment of cell adhesion and in cytoskeletal development [38,39]. Integrins are transmembranous “bridging” receptors. They bind to ECM proteins such as fibronectin and collagen and initiate cell attachment by ligand-specific RGD peptide interactions [40,41]. Actin is a major constituents of stress fibres which largely forms lamellipodia and filopodia extensions. Actin filaments also maintains cellular shape and are responsible for tension resistance [34,39]. The loss of vinculin prevents cell adhesion and spreading, stress fiber formation, and cellular extensions (Figure 3) [42,43].

Albinon on the other hand serves a carrier for molecules and plays a role in the metabolism of vitamin D in osteoblasts [44]. Albumin also regulates cytoplasmic calcium and stimulates osteoblast proliferation [19,40,45]. Calcium regulation is important for attraction of anionic proteins because titanium surfaces have a net negative charge and must therefore be bridged by divalent cations to compete with monovalent cations, such as Na+ and K+ which might block the anion sites, making a large part of the titanium surface bioinert for proteins and cells. However, although albumin enhances the fibronectin-integrin interactions [46]. Albumin itself is a competitive inhibitor to cell attachment [47-49], and it gets gradually replaced by fibronectin in reaction to the increased hyrophilicity following UV treatment (Figure 2) [50].

The amount of protein adsorption is inversely correlated with the amount of hydrocarbon on titanium surfaces [33]. Protein absorption drops to less than 50% in aged titanium surfaces. PhF of titanium surfaces causes a substantial increase in protein expression not only compared to aged implant surfaces but to new surfaces as well [12,19,34].

Osteoblast Attachment and Spreading

The initial attachment and spreading of osteoblasts is affected by the surface properties of different implant biomaterials [51,52] and it plays a critical role in Os [29]. Failure of cell attachment and spread on titanium surfaces leaves the cells undifferentiated and suspended in a circular form [53-56]. Adhesion of osteoblasts is regulated by the Rho family GTPases. These are signaling G proteins which play an important role in the dynamics of intracellular actin leading to assembly of stress fibres and in turn, contributes to the osteoblastic mobility and adhesive affinity to the titanium surface [34].

Biological ageing causes the number of attached osteoblasts to be reduced by about 50% and the spread of osteoblasts becomes noticeably delayed [12-15]. UV treatment restores the hyrophility and the electrostatic status of the surfaces leading to enhanced formation of focal adhesion complexes and the subsequent GTPase protein gene expression, causing a subsequent increase in the quality and quantity of osteoblastic adhesion and spreading.

Osteoblast Differentiation and Mineralization

Proper OI requires a well-mineralized matrix around the implant surfaces. The recruited osteogenic cells should be completely matured and differentiated in order to produce bone matrix and then mineralize. Alkaline phosphatase (ALP) is a byproduct and an indicator of maturing osteoblastic activity. Elevated levels of this enzyme are suggestive of enhanced osteogenic activity and active bone deposition [13,29].
Despite the drastic reduction of the total ALP activity on aged titanium surfaces by more than 50% [13,57] the cell-based ALP activity and osteoblastic gene expressions are not affected significantly. This indicates that the decreased levels of ALP activity and cell differentiation is actually due to the overall inhibition of osteoblastic attachment and proliferation [34] rather than biological ageing process itself. The increased rates of protein absorption and osteoblastic adhesion and proliferation on photofunctionalized titanium surfaces are therefore the reason behind the increased number of differentiated cells on the implant surface, as well as the increased matrix deposition and mineralisation.

**Antibacterial effect of PhF**

Preventing colonisation of bacteria on the implant surface is critical. However, bacterial contamination of implant surfaces during surgery is unavoidable. There are billions of bacteria in the oral cavity and over 600 different species [58,59]. Furthermore, a portion of the implant is positioned transmucosally during the healing period and is exposed to bacteria which is very similar to those found in periodontal disease [60,61]. These bacteria can utilise salivary and blood proteins to enhance their attachment on the implant surface [62-64]. Elimination of pathogenic microorganisms from implant surfaces is essential to avoid implant failure. Ultraviolet disinfection has been proven to effectively eradicate numerous bacterial species [65-70].

The bacterial charged cell surface interacts with the charged molecules or ions on the surface of implants. UV treatment of TiO₂ reduces the population of oral bacteria attached to the surface by roughly more than 3 folds during the first 6 hours following implant placement. This is the critical period prior to the formation of the blood clot which acts as a barrier to bacterial access, and also when the freshly implanted fixture is still highly susceptible to bacterial colonisation. Enhanced UV-mediated osteogenic adhesion to the implant surface causes osteoblasts to compete with microorganisms for space and competitively inhibit the bacterial capacity to proliferate and attach to the implant surface [69]. UV treatment reduces the biomass and decreases the area covered by the bacterial biofilm and hence, reduces the risk of implant infection and failure [71].

**Clinical significance of PhF**

Time-related biological degradation of titanium surfaces has an adverse effect on the osseointegration capacity and subsequently on the whole healing process. The amount of BIC gets reduced significantly due to biological ageing of titanium. PhF of dental implants prior to their placement reverses the ageing process and results in direct bone formation on the implant surface "Contact Osteogenesis" [72]. UV treatment of titanium surfaces increases the BIC from 55% to a near maximum level of 98.2% [11,12,31,73-75] and also leads to a 3-fold increase in the strength of bone-implant integration. This highly enhances the primary stability, even in implants placed without cortical bone support. The initial stability is crucial in avoiding micromovements which may adversely affect the osseointegration process [72].

Implant stability quotient (ISQ) is a reliable and a valid method for measuring the primary stability [75-78]. The Push-in value is the breakage strength of osseointegration while the implant is being pushed. Both ISQ and Push-in values were higher in UV treated surfaces than not only aged titanium, but to new "as-received" titanium surfaces [73]. Implants show better load distribution and the mechanical stress in the peri-implant marginal bone is reduced [11,12,22,31,29]. Furthermore, the osseointegration process occurs 4 times faster and the average healing time required before functional loading reduces by one half compared to the non-photofunctionalized implants [11,31,74].

PhF allows for a quicker loading protocol and a decreased overall treatment time. It also permits the use of shorter and small-diameter implants without compromising the success rate [74]. This opens new treatment possibilities for the use of these smaller implants in more complex cases with higher load or space requirements.

Implant's "Stability dip" is a term used for the weakest stability point throughout the healing period which occurs typically 3 weeks following implant placement due to the osteoblast and osteoclast turnover and bone remodelling. Due to the significant improvement in the OI process, UV treatment of Titanium surfaces eliminates the stability dip, leading to a better and more predictable treatment outcome [79].

**Other applications**

Other technologies can be incorporated successfully with UV PhF. Nanotechnology is an attractive science with promising applications in the dental field [80]. There is an increasing trend to develop implant surface topographies on a nanoscale level in order to increase it's osteoconductivity [81,82] and enhance the osseointegration process [83-86]. Nanomodification can be done via various approaches such as ion beam deposition, nanoparticle compaction, acid etching, anodising, peroxidation, or chemical conjugation of biomolecules [81,87,88]. Most approaches aim to mimic tissue components by applying nanotopographies such as nanonodules (Figure 4) and nanotubes to the implant surface. Similar to PhF, these "biomimetic" surface features alter the surface interactions with biomolecules and improve the cell adhesion properties [81,89-91]. Hence, it remarkably enhances osteoblastic behaviour and responses, cell attachment, proliferation, alkaline phosphatase activity, and improves protein absorption [67,83,92-95]. Leading to rapid bone healing. Clinically, biomimetic surfaces significantly increases the BIC, strengthens implant fixation up to a 70%, and reduces soft tissue intervention [91]. Combining UV photofunctionalization to these nanoscale...
The effects of Photofunctionalization

**Physio-Chemical**
- Increases the hydrophilicity of titanium \(\rightarrow\) Better cell attachment
- Positive electrostatic increases bioactivity and allows for direct protein/cell adhesion without the need for bridging molecules
- Removal of hydrocarbons reverses biological aging and allows for more cell attachment

**Biological**
- Increases efficiency and capacity of protein absorption
- Enhances osteoclast attachment and spreading
- Increases differentiation and mineralization as well
- Competitively reduces bacterial biomass

**Clinical**
- Direct bone formation on the implant surface
  - "Contact Osteogenesis"
- Increases the BC from 55% to near more than 98.2%
  - "Superosseointegration"
- Stronger bone-implant integration \(\rightarrow\) Better primary stability
- Faster osseointegration \(\rightarrow\) Reduced healing time
- More treatment options \(\rightarrow\) Shorter implants, complex cases
- Elimination of the "Stability dip"
- Less risk of bacterial infection

**Figure 4:** PhF effect on titanium and tissue, and clinical significance.

UV PhF can be utilized in various dental fields. Similarly to the dental implant fixtures, orthodontic miniscrews can also benefit from PhF. The overall success rate of orthodontic miniscrews is around 72% for 6-mm and 8-mm long miniscrews 90% [101,102]. Wider and longer screws provide better anchorage but usually the space for their placement is usually limited, and larger screws are more difficult to remove. Photofunctionalized mini screws were found to provide better anchorage and they displace much less under lateral tipping forces [101]. Photofunctionalization was also found to be effective in increasing the osteoconductivity of titanium mesh and enhancing bone regeneration around it in augmentation procedures [103]. Moreover, UV treatment can also be used to increase the cellular activity and protein adhesion in more advanced tissue engineering techniques such as cell sheet technology [104], which is used to deliver cells in single-sheet form reinforced by a micro-thick titanium framework [105].

Some non-titanium materials were found to be similarly affected by the UV-mediated reversal of biological ageing. UV treatment was associated with a decreased amount of surface carbon in aged chromium–cobalt alloy [29] as well as in zirconium [12], which is a promising alternative material for dental implants because of their mechanical stability, biocompatibility, low plaque attachment, good esthetics and soft tissue compatibility [106-108]. However, low temperature degradation (LTD) is considered a major limitation of this material [109,110], and the oxide layer found on native zirconia makes it bioinert. UV treatment reduces amount of surface carbon, converts zirconium from hydrophobic to hydrophilic and significantly improves the bioactivity of zirconia [111,112].
Figure 5: Adding nanoparticles increases the surface area for cellular attachment and enhances cellular bioactivity.

Conclusions
The concept of Superosseointegration is a major breakthrough towards achieving better implant stability and better implant treatment outcomes. PhF increases the implant's primary stability significantly leading to a higher implant success rate and a decreased average healing time. It also allows for more treatment options as shorter and thinner implants can be utilized more frequently without any compromise to the treatment outcome. Further research should be applied for incorporating ultraviolet surface treatment to other dental materials. The clinical ease, low cost of application and significant impact on treatment should also encourage the manufacturers to develop PhF devices affordable for most clinicians.

References
1. Jayesh RS, Dhinakarsamy V (2015) Osteointegration. J Pharm Bioallied Sci 7: 226-229.
2. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration 9: 61-72.
3. Ramazanoglu M, Oshida Y (2011) Osseointegration and Bioscience of Implant Surfaces - Current Concepts at Bone-Implant Interface; Implant Dentistry - A Rapidly Evolving Practice, InTech.
4. Ogawa T (2010) Photofunctionalization of TiO2 for optimal bone-titanium integration: A novel Phenomenon of Superosseointegration; Environmentally Benign Photocatalysts. New York: Springer 699-713.
5. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11: 391-401.
6. Gao Y, Liu Y, Zhou L, Guo Z, Rong M, et al. (2013) The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium. PLoSOne8.
7. Niinomi M, Liu Y, Nasaki M, Liu H, Li H (2016) Biomedical titanium alloys with Young's moduli close to that of cortical bone. Regen Biomater 3: 173-185.
8. Lee JH, Ogawa T (2012) The Biological Aging of Titanium Implants. Implant Dent 21: 415-421.
9. Parkash RB, Shetty O, Tabassum R (2012) Surface modifications of Endosseous dental implants. Int J Oral implantol Clin Res 3: 116-121.
10. Albretsson T, Johansson C (2001) Osteoinduction, osteocondensation and osteopine. Eur Spine J 2: 96-101.
11. Ogawa T (2012) UV photofunctionalization of titanium implants. J Craniofac Tissue Eng 2: 151-158.
12. Att W, Ogawa T (2012) Biological aging of implant surfaces and their restoration with ultraviolet light treatment: A novel understanding of osseointegration. Int J Oral Maxillofac Implants 27: 753-761.
13. Lee JH, Ogawa T (2012) The biological aging of titanium implants. Implant Dent 21:415-421.
14. Suzuki T, Hori N, Att W, Kubo k, Iwasaet F, et al. (2009) Ultraviolet treatment overcomes time-related degrading bioactivity of titanium. Tissue Eng A 15: 3679-3688.
15. Iwasa F, Tsukimura N, Sugita Y, Att W, Kodali-Kanuru R, et al. (2011) TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium. Int J Nanomedicine 6: 1327-1341.
16. Hori N, Ueno T, Suzuki T, Yamada M, Att W, Okada S, et al. (2010) Ultraviolet light-treatment for the restoration of age-related degradation of titanium bioactivity. Int J Oral Maxillofac Implants 25: 49-62.
17. Hori N, Ueno T, Minamikawa H (2010) Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater 6: 4175-4180.
18. Iwasa F, Hori N, Ueno T (2010) Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials 31: 2717-2727.
19. Rapuano BE, Lee JJ, MacDonald DE (2012) Titanium alloy surface oxide modulates the conformation of adsorbed fibronectin to enhance its binding to integrins in osteoblasts. Eur J Oral Sci 120: 185-194.
20. Rapuano BE, Hackshaw KM, Schniess HC, MacDonald DE (2012) Effects of Coating a Titanium Alloy with Fibronectin on the Expression of Osteoblast Gene Markers in the MC3T3 Osteoprogenitor Cell Line. Int J Oral Maxillofac Implants 27: 1081-1090.
21. Tsai JA, Lagumdzija A, Stark A (2007) Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem Funct 25: 245-249.
22. Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36: 387-392.
23. Bagambisa FB, Kappert HF, Schilli W (1994) Cellular and molecular biological events at the implant interface. J Craniomaxillofac Surg 22: 12-17.
24. Flanagan D (2016) Photofunctionalization of Dental Implants, J Oral Implantol 42: 445-450.
25. Att W, Hori N, Iwasa F, Yamada M, Ueno T, et al. (2009) The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys. Biomaterials 30: 4268-4276.
26. Shie JL, Lee CH, Chiuw CS, Chang CT, Chang CC, et al. (2008) Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J Hazard Mater 155: 164-172.
27. Aita H, Hori N, Takeuchi M (2009) The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 30: 1015-1110.
28. Suzuki S, Kobayashi H, Ogawa T (2013) Implant Stability Change of Immediately Loaded Photofunctionalized Implants. Implant Dent 22: 481-490.
29. Att W, Hori N, Takeuchi M (2009) Time-dependent degradation of titanium osteoconductivity: An implication of biological aging of implant materials. Biomaterials 30: 5352-5363.
30. Iwasa F, Baba K, Ogawa T (2016) Enhanced intracellular signaling pathway in osteoblasts on ultraviolet lighttreated hydrophilic titanium. Biomed Res 37: 1-11.
31. Le Guennenc L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23: 844-854.
32. Sykaras N, Iacopino AM, Marker VA, Tripplett RG, Woody RD (2000) Implant materials, designs, and surface topographies: Their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15: 675-690.
33. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal, dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633-643.
35. Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179: 1043-1057.

36. Wen KK, Rubenstein PA, Demali KA (2009) Vinculin nucleates actin polymerization and modifies actin filament structure. J Biol Chem 284: 30463-30473.

37. Klinger A, Steinberg D, Kohavi D, Sela MN (1997) Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res 36: 387-392.

38. Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12: 593-596.

39. Goldmann WH, Ingber DE (2002) Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochem Biophys Res Commun 290: 749-755.

40. Ezzell RM, Goldmann WH, Wang N, Parasharuna N, Ingber DE (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231: 14-26.

41. Siau JA, Lagunadzja A, Stark A, Kindmark H (2007) Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem Funct 25: 245-249.

42. Mata A, Su X, Fleischman AJ, Roy S, Banks BA, et al. (2003) Osteoblast attachment to a textured surface in the absence of exogenous adhesion proteins. IEEE Trans Nanobioscience 2: 287-294.

43. Pals HA, Schilte HP, Nijweide PJ, Visser TJ, Birkenhager JC (1984) Tsai JA, Lagumdzija A, Stark A, Kindmark H (2007) Albumin-bound lipids induce free cytoplasmic calcium oscillations in human osteoblast-like cells. Cell Biochem Funct 25: 245-249.

44. Dewez JL, Doren A, Schneider YJ, Rouxhet PG (1999) Competitive adsorption of proteins: key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials 20: 547-559.

45. Pendegrass CJ, El-Husseiny M, Blunn GW (2012) The development of fibronectin-functionalised hydroxyapatite coatings to improve dental fibroblast attachment in vitro. J Bone Joint Surg Br 94: 564-569.

46. Mischa Z, Darren A, Morgan RA, Noah AR (2007) The role of albumin and fibronectin in the adhesion of fibroblasts to plasma polymer surfaces. Plasma Process Polym 9: 149-156.

47. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28: 3074-3082.

48. Miyata K, Takebe J (2013) Anodized-hydrothermally treated titanium with a nanotopographic surface structure regulates integrin-α6β4 and laminin-5 gene expression in adherent murine gingival epithelial cells. J Prosthodont Res 57: 99-108.

49. Iwasa F, Hori N, Ueno T, Minamikawa H, Yamada Y, et al. (2010) Enhancement of osteoblast adhesion to UV photofunctionalized titanium via electrostatic mechanism. Biomaterials 31: 2717-2727.

50. Bk EM, Long CD, Azeitou GC, Loomer P, Emerson J, et al. (2010) Enhancement of osteoblast adhesion to UV photofunctionalized titanium via electrostatic mechanism. Biomaterials 31: 2717-2727.

51. Jin L, Guo W, Xue P, Gao H, Zhao M, et al. (2015) Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures. Nanotechnology 26: 055702.

52. Cavalcanti IM, Ricomini FAP, Lucena-Ferreira SC, Da Silva WJ, Paes Leme AF, et al. (2014) Salivary pellicle composition and multispecies biofilm developed on titania nitried by cold plasma. Arch Oral Biol 59: 695-703.

53. Badahi Hauslich L, Sela MN, Steinberg D, Rosen G, Kohavi D (2013) The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res 24: 49-56.

54. Rileya DJ, Bavastrello V, Covani U, Barone A, Nicolini N (2005) An in-vitro study of the sterilization of titanium dental implants using low intensity. Dental Materials 21: 756-760.

55. Einarsso E, Staffan, Svard SG, Karin Treool K (2015) UV irradiation responses in Giardia intestinalis. Exp Parasitol 154: 25-32.

56. Barbé F (2015) How to eradicate Clostridium difficile from the Environment. J Hosp Infect 89: 287-295.

57. Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm Light Kills Methicillin-Resistant Staphylococcus aureus (MRSA) in vitro. Promoted Laser Surg 27: 221-226.

58. Gallardo-Moreno AM, Pachá-Obilienza MA, Saldana L, Perez-Giraldo C, Brugué JM, et al. (2009) In vitro biocompatibility and bacterial adhesion of physically and chemically modified Ti6Al7V surface by means of UV irradiation. Acta Biomater 5: 181-192.

59. Yamada Y, Yamada M, Ueda T, Sakurai K (2014) Reduction of biofilm formation on titanium surface with ultraviolet-C pre-irradiation. Biomater Appl 29: 161-171.

60. De Avila ED, Lima BF, Sekiya T, Toril Y, Ogawa T Shi W, et al. (2015) Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials 67: 84-92.

61. Hirota M, Ozawa T, Iwai T, Ogawa T, Tohnaí I (2016) Implant Stability Development of Photofunctionalized Implants Placed in Regular and Complex Cases: A Case Control Study. Int J Oral Maxillofac implants 31: 676-86.

62. Suzuki S, Kobayashi H, Ogawa T (2013) Implant Stability Change and Osseointegration Speed of Immediately Loaded Photofunctionalized Implants. Implant Dent 22: 481-490.

63. Funato A, Yamada M, Ogawa T (2013) Success Rate, Healing Time, and Implant Stability of Photofunctionalized Dental Implants. Int J Oral Maxillofac implants 28: 1261-1271.

64. Ogawa T (2010) Photofunctionalization of TiO2 for optimal integration of titanium with bone. In: Kamat P, Anpo M, eds. Benign Photocatalysts. Applications of Titanium Oxide-based Materials. New York: Springer 699-713.

65. Meredith N, Alleyne D, Cawley P (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 7: 261-267.

66. Huang HL, Tsai MT, Su KC (2013) Relation between initial implant stability quotient and bone-implant contact percentage: An in vitro model study. Oral Surg Oral Med Oral Pathol Oral Radiol 116: 356-361.

67. Park KJ, Kwon JY, Kim SK (2012) The relationship between implant stability quotient values and implant insertion variables: A clinical study. J Oral Rehabil 39: 151-159.

68. Ueno T, Yamada M, Suzuki T (2010) Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials 31: 1546-1557.

69. Nishimura I, Huang Y, BUTZ F, Ogawa T, LIN A, et al. (2007) Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration. Nanotechnology 18: 1-9.

70. Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing dental implant surface technology—from micro- to nanogroography. Biomaterials 29: 3822-3835.

71. Ikeda T, Hagiwara Y, Hirota M, Tabuchi M, Yamada M, et al. (2014) Effect of photofunctionalization on fluoride-treated nanofeatured titanium. J Biomater Appl 28: 1200-1212.

72. Tsukimura N, Ueno T, Iwasa F (2011) Bone integration capability of alkaline and heat-treated nanobiospheric Ti-15Mo-5Zr-3Al. Acta Biomater 7: 4267-4277.
82. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface
89. Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, et al. (2016) Titanium dental
81. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, et al. (2004) Improved
Sanchez C, Arribart H, Guille MM (2005) Biomimetism and
83. Citation: Elkhidir YAH, Cheng Y (2017) Achieving Superosseointegration: The Photofunctionalization Effect. Dentistry 7: 435.
87. Aita H, Att W, Ueno T, Yamada M, Hori N, et al. (2009) Ultraviolet light-
84. ISSN:2161-1122
78. Svanborg LM, Andersson M, Wennerberg A (2010) Surface
79. Mendonca G, Mendonca DB, Aragao FJ, Cooper LF (2008) Advancing
dental implant surface technology - from micron- to nanotopography.
80. Kuno K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, et al. (2009)
Cellular behavior on TiO2 nanonodular structures in a micro-to-
nanoscale hierarchy model. Biomaterials 30: 5319-5329.
81. Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, et al. (2016) Titanium dental
implants surface-immobilized with gold nanoparticles as osteoinductive
agents for rapid osseointegration. J Colloid Interface Sci 469: 129-137.
82. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface
83. Sanchez C, Arribart H, Guille MM (2005) Biomimetism and
84. photofunctionalization on the surface characteristics of zirconia-based
dental implant materials. Dent Mater 31: 14-24.
85. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials
27: 535-543.
86. Chevalier J, Loh J, Gremillard L, Meille S, Adolffson E (2011) Low-
temperature degradation in zirconia with a poroussurface. Acta Biomater
7: 2986-2993.
87. Att W, Takeuchi M, Suzuki T, Kuno K, Anpo M, Ogawa T (2009)
Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials 30: 1273-1280.
88. Han Y, Yan Y, Lu C (2009) Ultraviolet-enhanced bioactivity of ZrO2 films
prepared by micro-arc oxidation. Thin Solid Films 517: 1577-1581.
89. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, et al. (2010)
Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49: 3280-3294.
90. Dykman L, Khlentsov N (2012) Gold nanoparticles in biomedical
applications: recent advances and perspectives. Chem Soc Rev 41:
91. 2256-2282.
92. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine:
preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38: 1759-1782.
93. Ghosh P, Han G, De M, Kim CK, Rotello (2008) Gold nanoparticles in
delivery applications. AdvDrug Deliv Rev 1307-1315.
94. L Dykman, N Khlentsov (2012) Gold nanoparticles in biomedical
applications: recent advances and perspectives. Chem Soc Rev 41:
95. Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ (2010)
Miniscrews in orthodontic treatment: review and analysis of published
clinical trials. Am J Orthod Dentofacial Orthop 137: 108-113.
96. Hirota M, Ikeda T, Tabuchi M, Iwai T, Tohnai I, et al. (2014) Effect of
ultraviolet-mediated photofunctionalization for bone formation around
medical titanium mesh. J Oral Maxillofac Surg. 72: 1691-1702.
97. Matsuurka U, Utoh R, Nagase K (2014) Cell sheet formation for tissue
engineering and regenerative medicine. J Control Release 19: 228-239.
98. Ishijima M, Hirota M, Park W, Honda MJ, Tsukimura N, et al. (2015)
Osteogenic cell sheets reinforced with photofunctionalized micro-thin
titanium. J Biomat Appl 29: 1372-1384.
99. Zhang Z, Wang K, Bai C, Li X, Dang X, et al. (2012) The influence of UV
irradiation on the biological properties of MAO-formed ZrO2. Colloids Surf B Biointerfaces 89: 40-47.
100. Sollazzo V, Pezzetti F, Scarnano A, Piattelli A, Bignozzi CA, et al. (2008)
Zirconium oxide coating improves implant osseointegration in vivo.
Dental Materials 24: 357-361.
101. Tuna T, Wein M, Swain M, Fischer J, Att W (2015) Influence of ultraviolet
photofunctionalization on the surface characteristics of zirconia-based
dental implant materials. Nat Mater 23: 844-854.
102. Spatz JP (2002) Nano- and micropatternning by organic-inorganic
templating of hierarchical self-assembled structures. Angew Chem Int Ed Engl 41:3359-62.
103. Kubo K, Tsukimura N, Iwasa F (2009) Cellular behavior on TiO2
nanonodular structures in a micro-to-nanoscale hierarchy model.
Biomaterials 30: 5319-5329.
104. Dalby MJ, Gadegaard N, Curtis AS, Oreffo RO (2007) Nanotopographical
control of human osteoprogenitor differentiation. Curr Stem Cell Res Ther 2: 129-138.
105. Jager M, Zilkens C, Zanger K, Krauspe R (2007) Significance of nano-
and micropatterning for cell-surface interactions in orthopaedic
implants. J Biomed Biotechnol 2: 129-138.
106. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, et al. (2004) Improved
biological performance of Ti implants due to surface modification by
micro-arc oxidation. Biomaterials 25: 2867-2875.
107. Lim YW, Kwon SY, Sun DH, Kim HE, Kim YS (2009) Enhanced cell
integration to titanium alloy by surface treatment with microarc
oxidation: a pilot study. Clin Orthop Relat Res 467: 2251-2258.
108. Jeon O, Alsberg E (2013) Photofunctionalization of Alginate Hydrogels
to Promote Adhesion and Proliferation of Human Mesenchymal Stem Cells.
Tissue Engineering 19: 11-12.
109. Aita H, Att W, Ueno T, Yamada M, Hori N, et al. (2009) Ultraviolet light-
mediated photofunctionalization of titanium to promote human
mesenchymal stem cell migration, attachment, proliferation and
differentiation. Acta Biomater 5: 3247-3257.
110. Tabuchi M, Ikeda T, Hirota M, Nakagawa K, Park W, et al. (2015) Effect of
UV Photofunctionalization on Biologic and Anchoring Capability of
Orthodontic Miniscrews. Int J Oral Maxillofac Implants 30: 868-879.
111. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine:
preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38: 1759-1782.
112. Ghosh P, Han G, De M, Kim CK, Rotello (2008) Gold nanoparticles in
delivery applications. AdvDrug Deliv Rev 1307-1315.
113. L Dykman, N Khlentsov (2012) Gold nanoparticles in biomedical
applications: recent advances and perspectives. Chem Soc Rev 41:
2256-2282.
114. Liang J (2013) Gold nanoparticles: emerging paradigm for targeted drug
delivery system. Biotechnol Adv 31: 593-606.
115. K Niikura, T Matsunaga, T Suzuki, S Kobayashi, H Yamaguchi, et al.
(2008) Zirconium oxide coating improves implant osseointegration in vivo.
Dental Materials 24: 357-361.
116. Matsuura K, Utoh R, Nagase K (2014) Cell sheet formation for tissue
engineering and regenerative medicine. J Control Release 19: 228-239.
117. Ishijima M, Hirota M, Park W, Honda MJ, Tsukimura N, et al. (2015)
Osteogenic cell sheets reinforced with photofunctionalized micro-thin
titanium. J Biomat Appl 29: 1372-1384.
118. Zhang Z, Wang K, Bai C, Li X, Dang X, et al. (2012) The influence of UV
irradiation on the biological properties of MAO-formed ZrO2. Colloids Surf B Biointerfaces 89: 40-47.
119. Sollazzo V, Pezzetti F, Scarnano A, Piattelli A, Bignozzi CA, et al. (2008)
Zirconium oxide coating improves implant osseointegration in vivo.
Dental Materials 24: 357-361.
120. Tuna T, Wein M, Swain M, Fischer J, Att W (2015) Influence of ultraviolet
photofunctionalization on the surface characteristics of zirconia-based
dental implant materials. Nat Mater 31: 14-24.
121. Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials
27: 535-543.
122. Chevalier J, Loh J, Gremillard L, Meille S, Adolffson E (2011) Low-
temperature degradation in zirconia with a poroussurface. Acta Biomater
7: 2986-2993.