Update of the Hagedorn mass spectrum

Wojciech Broniowski,1† Wojciech Florkowski,1,2‡ and Leonid Ya. Glozman3∗

1The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
2Institute of Physics, Świętokrzyska Academy, ul. Świętokrzyska 15, PL–25-06 Kielce, Poland
3Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A–8010 Graz, Austria

(Dated: June 21, 2004)

We present an update of the Hagedorn hypothesis of the exponential growth of the number of hadronic resonances with mass. We use the newest available experimental data for the non-strange mesons and baryons, as well as fill in some missing states according to the observation that the high-lying states form chiral multiplets. The results show, especially for the case of the mesons, that the Hagedorn growth continues with the increasing mass, with the new states lining up along the exponential growth.

PACS numbers: 25.14.20.-c, 14.40.-n, 12.40Yx, 12.40Nn
Keywords: particle spectra, Hagedorn hypothesis, chiral symmetry

The Hagedorn hypothesis \[ \rho(m) = f(m) \exp(m/T_H), \] of the exponential growth of the number of hadronic resonances with mass is one of the most fundamental issues in particle physics. The formula for the asymptotic dependence of the density of hadronic states on mass, namely

\[ \rho(m) = f(m) \exp(m/T_H), \]

where \( f(m) \) denotes a slowly varying function and \( T_H \) is the Hagedorn temperature, has gained a lot of attention due to its appealing simplicity, fundamental character, support from the experimental data and theoretical approaches, as well as because of its relevance to the phenomenology of particle production, in particular concerning the possible phase transition from the hadron gas to the quark-gluon plasma \([1,2,7]\).

The purpose of this note is to present an update of the experimental verification of Eq. (1). We supplement the data published in the Particle Data Tables \([7]\) with the new experimental information \([8,9]\), as well as add theoretically predicted new states belonging to chiral multiplets \([10,11,12,13,14]\). Although the appearance of some of these states has not been verified experimentally yet, their existence follows from the recent theoretical findings that the high-lying particle spectrum essentially has the features of restored chiral symmetry \([10]\). The results are shown for the non-strange mesons and baryons, where the new data is available. The paper has no pretense of presenting new models or ideas; nevertheless, due to the fundamental nature of the problem related to basic ideas behind the formation of bound states and resonances in particle physics, the results of our simple compilation should be of interest for the community. We include the new experimental results and show that the new data are important in the verification of the

Eq. (1). The new results extend significantly, at least for the mesons, the range of fiducial range of the Hagedorn hypothesis. While with the data listed in the 1998 edition of the Particle Data Tables \([7]\) used in \([15,16,17]\) the exponential growth for non-strange mesons could be observed up to the masses of about 1.8 GeV, now it continues higher up, till about 2.3 GeV.

We start with a very brief reminder of the history of the Hagedorn hypothesis (for much more complete historical presentations we refer the reader to Hagedorn’s original lecture \([2]\) and to a tribute article by Ericson and Rafelski \([18]\)). Equation (1) was originally proposed to explain the spectra in the \( p-p \) and \( \pi-\pi \) scattering \([1,19]\). Later, it was obtained from the statistical bootstrap models \([2,20,21,22]\). Subsequently, it gained a convincing support from the dual string models \([23,24,25,26]\). It is worthwhile to recall that in the 1960s, when the original Hagedorn idea was formed, very few hadronic states were known, up to the mass of the \( \Delta \) isobar. More and more states have been accumulated over the years, thus much more systematic studies were possible, such as for instance the analysis of Ref. \([27]\) and of Ref. \([17]\), where two of us (WB,WF) pointed out the different growth rate of mesons and baryons, as well as demonstrated the universality of the Hagedorn temperatures with strangeness.

The faster growth of the baryon spectrum was also noted in Ref. \([28]\).

The Hagedorn concept of the limiting temperature appears in many different contexts, e.g., in the studies of non-linear Regge trajectories \([29,30,31]\), strings \([32,33,34]\), d-branes \([35]\), and cosmology \([36]\). Moreover, a complete treatment of hadronic resonances, as suggested by Hagedorn already in the 1960s, is the basic ingredient of the successful models of hadron production in heavy-ion collisions at the RHIC energies \([37,38]\).

After many dormant years with essentially no incoming new data, a recent systematic partial wave analysis of the \( pp \) annihilation at LEAR has revealed a lot of new meson states in the mass range 1.8 - 2.4 GeV \([3,5]\). These new experimental results turned out to be in line with

† Electronic address: Wojciech.Broniowski@iiij.edu.pl
‡ Electronic address: florkows@amuw.ifj.edu.pl
∗ Electronic address: Wojciech.Broniowski@iiij.edu.pl
FIG. 1: Accumulated spectrum of non-strange mesons plotted as a function of mass (step-like lines). The lower curve at high m corresponds to particles listed in the Particle Data Tables of Ref. [7], while the higher two curves include the new experimental and theoretical states as described in the text. The middle curve includes the states listed in Refs. [13, 14], while the top curve adds the states with hidden strangeness. The thin dashed (solid) line corresponds to the exponential fit to the spectra of the old (new) data. The arrows indicate the approximate upper values in m of the validity of the Hagedorn hypothesis for the old and new data, respectively.

the proposed idea that the spontaneously broken chiral symmetry of QCD should be effectively restored in the highly excited hadrons (one terms this phenomenon as the chiral symmetry restoration of the second kind) [10, 11, 12]. This kind of chiral symmetry restoration implies that the excited hadron states fall out multiplets of the chiral \( U(2)_L \times U(2)_R \) group. Indeed, the newly discovered meson states [3, 4] turned out to systematically fall into almost degenerate chiral multiplets with a few missing states yet to be discovered [13, 14].

In this note we extend the analysis of Refs. [15, 16] and include all mesons listed in Refs. [13, 14]. We stress that in addition to the experimental states which have been reported in Refs. [3, 4] we add a few still missing states (marked with the question signs in Refs. [13, 14]) and reconstruct their energies according to the known energies of their chiral partners. We consider only the \( J = 0, 1, 2, \) and 3 states, where the experimental information is rather complete.

In addition to these states we also consider the states with hidden strangeness, i.e., composed of the \( s\bar{s} \) pairs. These states could not be seen in \( pp \). Hence here our procedure is somewhat more speculative. We assume that any isosinglet \( \bar{n}n = \frac{u\bar{u}+d\bar{d}}{\sqrt{2}} \), which is experimentally seen in \( pp \), should be accompanied by an \( s\bar{s} \) state with the mass approximately 200 MeV higher. Hence, given the complete amount of the \( \bar{n}n \) states listed in Refs. [13, 14] we add the corresponding \( s\bar{s} \) states.

Rather than comparing the density of states \( \rho(m) \) itself to the data, it is customary to form the accumulated number of states of mass lower than \( m \),

\[
N_{\text{exp}}(m) = \sum g_i \Theta(m - m_i),
\]

where \( g_i = (2J_i+1)/(2I_i+1) \) is the spin-isospin degeneracy of the \( i \)th state, and \( m_i \) is its mass. The theoretical counterpart of Eq. (2) is

\[
N_{\text{theor}}(m) = \int_0^m \rho(m')dm'.
\]

Working with \( N(m) \) rather than \( \rho(m) \) conveniently avoids the need of building histograms, but clearly it is a purely technical issue and the conclusions drawn below remain unchanged if one decides to work with \( \rho(m) \) itself.

The results of our compilation for non-strange mesons are shown in Fig. 1. The lines with steps correspond to Eq. (2). Above \( m = 1.8 \) GeV the curves split into three, with the lower one representing the compilation of Ref. [17] based on the 1998 review of PDG [7]. The middle curve contains in addition the states listed in Refs. [13, 14], while the top curve includes also the hidden-strangeness states, as described above. It is clear from Fig. 1 that the included new states nicely line up along the exponential growth, thus extending the range of the Hagedorn hypothesis seen in the data. We also note that adding up the hidden-strangeness states has a much smaller effect than adding the states of Refs. [13, 14], which is simply due to a lower isospin degeneracy factor.

The thin solid lines in Fig. 1 show the results of the exponential fits with \( f(m) = 1 \) in Eq. (3), which is the simplest choice. While for the old data the least-squares method yields \( \rho(m) = 2.84/\text{GeV exp}[m/314 \text{ MeV}] \), with the states of Ref. [13, 14] included we obtain \( \rho(m) = 4.73/\text{GeV exp}[m/367 \text{ MeV}] \), and with the additional \( s\bar{s} \) states we get \( \rho(m) = 4.52/\text{GeV exp}[m/362 \text{ MeV}] \). The fit was made up to \( m = 1.8 \) GeV with the old data and up to \( m = 2.3 \) GeV with the new data. The higher value for \( T_H \) obtained with the new data corresponds to the lower slope in Fig. 1. Certainly, the values of the fitted parameters should be taken with care, since they also reflect the assumed fitting range in \( m \). It should also be noted that adding more states in the range around 2 GeV, when experimentally found, would increase the slope, thus decreasing \( T_H \).

In this place the reader may be a bit surprised with the quoted high values of \( T_H \), much higher than the typically cited values in the range of 200 MeV. The issue, as discussed in detail in Ref. [17], has to do with the choice of the “slowly-varying” function \( f(m) \). The point is that typical model predictions for this function are not so slowly varying in the range of data. For instance, with the original Hagedorn choice \( f(m) = \text{const}/(m^2 + 500 \text{ MeV}^2)^{3/4} \) we get much lower values for \( T_H \). With this form we obtain for the bottom to top curves of Fig. 1 the following values: \( T_H = 196, 230, \) and 228 MeV, respectively. The choice of the fitting range in \( m \) is as stated above.
Now we pass to the case of the non-strange baryons. With the help of identification of states in chiral multiplets \[11\], we add the missing states (marked with the question signs in \[11\]) on top of the states from PDG \[7\] used in Ref. \[15\]. In this way we fill the chiral multiplets. The results of this procedure are shown in Fig. 2. We note that the effect of including these baryon states is less important than in the analogous procedure for the mesons. In the present case we do not show the fit to the exponential formula, since it is difficult to line-up the results along one straight line in a sufficiently broad range of \(m\). Actually, with the present data one may see a straight line up to about \(m = 2\) GeV, and possibly another straight line, with a lower slope, above. However, this may be an artifact of missing data in the high-mass range.

Indeed, the parity doublets in \(N\) and \(\Delta\) can be associated with the \((0,1/2) \oplus (1/2,0)\) representations for the nucleon spectrum, the \((0,3/2) \oplus (3/2,0)\) multiplets in the \(\Delta\) spectrum, and with the \((1,1/2) \oplus (1/2,1)\) representations which combine the doublets in the nucleon and delta spectra. If all these multiplets are realized in nature, then the number of the states in the region above 2 GeV should be much larger than given in PDG. Unfortunately, this region has never been systematically explored in experiments.

We now come back to the meson case of Fig. 1 and wish to present the data in a somewhat different manner. The problem of the presentation in the log scale, as in Fig. 1, is that the low-mass states are sparse, while the high-mass states are jammed up. For that reason we now look at the ratio of the experimental function \[2\] to the model function \[4\], with the choice \(f(m) = 1\) and the parameters at the fitted values quoted in the text. The ratio is plotted as a function of the accumulated number of model states, \(N_{\text{model}}\). If the Hagedorn hypothesis complies to the data, this ratio should be equal to unity.

Indeed, this is so with the new data up to about 900 states, while with the old data it was true only up to about 250 states. Again, we see vividly that the inclusion of the new states significantly increases the range of validity, or verification, of Eq. \[1\].

Finally, for the reader’s convenience we overlay our results for the mesons and baryons in one plot of Fig. 4. As pointed out in Ref. \[15\], up to \(m = 2\) GeV we note a faster growth rate for baryons than for mesons, which means two distinct Hagedorn temperatures for mesons and baryons. This is a prediction of dual string models, see Ref. \[17\] for a discussion. For higher masses this feature is no longer obvious, with more experimental information needed to clarify the issue.

In conclusion, we list our main observations:
The newly-observed meson states lead to a continued exponential growth on the number of states with mass, in accordance to the Hagedorn hypothesis, which now reaches up to masses of about 2.3 GeV.

For the baryons the situation is less clear, with the exponential growth seen up to about 2 GeV.

The inclusion of the missing states based on the identification of chiral multiplets helps to comply to the Hagedorn hypothesis at high masses.

Certainly, more experimental data in the high-mass range are highly desired to investigate further and with greater detail the hadron spectroscopy.

Acknowledgments

The authors wish to thank the organizers of the XLIV Cracow School of Theoretical Physics in Zakopane and the Mini-Workshop Bled 2004: Quark Dynamics, where this research was completed. WB and WF acknowledge the support of the Polish State Committee of Scientific Research, grant 2 P03B 05925. LG acknowledges the support of the FWF project P16823-N08 of the Austrian Science Fund.

[1] R. Hagedorn, Suppl. Nuovo Cim. 3, 147 (1965).
[2] R. Hagedorn, CERN preprint No. CERN 71-12 (1971), and references therein.
[3] R. Hagedorn, CERN preprint No. CERN-TH.7190/94 (1994), and references therein.
[4] N. Cabibbo and G. Parisi, Phys. Lett. B 59, 67 (1975).
[5] O. D. Chernavskaya and E. L. Feinberg, arXiv:hep-ph/9412328.
[6] P. Blanchard, S. Fortunato and H. Satz, Eur. Phys. J. C 34, 361 (2004).
[7] Particle Data Group, Eur. Phys. J. C 3, 1 (1998).
[8] A. V. Anisovich et al, Phys. Lett. B 491, 47 (2000); B 517, 261 (2001); B 542, 8 (2002); B 542, 19 (2002).
[9] D. V. Bugg, Phys. Rep., 397, 257 (2004).
[10] L. Ya. Glozman, Phys. Lett. B 475, 329 (2000).
[11] T. D. Cohen and L. Ya. Glozman, Phys. Rev. D 65, 016006 (2002); Int. J. Mod. Phys. A 17, 1327 (2002).
[12] L. Ya. Glozman, Phys. Lett. B 541, 115 (2002).
[13] L. Ya. Glozman, Phys. Lett. B 539, 257 (2002).
[14] L. Ya. Glozman, Phys. Lett. B 587, 69 (2004).
[15] W. Broniowski and W. Florkowski, Phys. Lett. B 490, 223 (2000).
[16] W. Broniowski, Acta Phys. Pol. B 31, 2155 (2000).
[17] W. Broniowski, contribution to the Proceedings of the Mini-Workshop, Bled 2000, Few-Quark Problems, Bled, Slovenia, July 8-15, 2000, arXiv:hep-ph/0008112.
[18] T. E. O. Ericson and J. Rafelski, CERN/Cour. 43N7, 30 (2003).
[19] R. Hagedorn and J. Ranft, Suppl. Nuovo Cim. 6, 169 (1968).
[20] S. Frautschi, Phys. Rev. D 3, 2821 (1971).
[21] W. Nahm, Nucl. Phys. B 45, 525 (1972).
[22] J. Yellin, Nucl. Phys. B 52, 583 (1973).
[23] K. Huang, S. Weinberg, Phys. Rev. Lett. 25, 895 (1970).
[24] J.-R. Cudell and K. R. Dienes, Phys. Rev. Lett. 69, 1324 (1992).
[25] K. R. Dienes and J.-R. Cudell, Phys. Rev. Lett. 72, 187 (1994).
[26] in Dual Theory, Vol. 1 of Physics Reports reprint book series, edited by M. Jacob (North Holland, Amsterdam, 1974).
[27] A. Tounsi, J. Letessier, J. Rafelski, contribution to the NATO Advanced Study Workshop on Hot Hadronic Matter: Theory and Experiment, Divonne-les-Bains, France, 27 June - 1 July 1994, p. 105.
[28] G. O. Freund and J. L. Rosner, Phys. Rev. Lett. 68, 765 (1992).
[29] M. M. Brisudova, L. Buravovsky and T. Goldman, Phys. Rev. D 61, 054013 (2000).
[30] M. M. Brisudova, L. Buravovsky and T. Goldman, Phys. Lett. B 460, 1 (1999).
[31] L. Buravovsky and T. Goldman, Phys. Rev. Lett. 82, 457 (1999).
[32] J. J. Atick and E. Witten, Nucl. Phys. B 310, 291 (1988).
[33] B. Sundborg, Nucl. Phys. B 573, 349 (2000).
[34] S. S. Gubser, S. Guvov, I. R. Klebanov, M. Rangamani and E. Witten, J. Math. Phys. 42, 2749 (2001).
[35] S. A. Abel, K. Freese and I. I. Kogan, JHEP 0101, 039 (2001).
[36] Y. Leblanc, Phys. Rev. D 38, 3087 (1988).
[37] G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier and J. Rafelski, arXiv:nucl-th/0404083.
[38] S. Wheaton and J. Cleymans, arXiv:hep-ph/0407174.