Utility of erector spinae plane block in a complex scapular resection

Sir,

Recent literature highlights the growing role of ultrasound-guided erector spinae plane (ESP) block in the peri-operative period in the paediatric age group.\(^1\) We hereby, describe its utility for providing excellent perioperative analgesia in a child posted for scapular surgery.

A 10-year-old female child, weighted 29 kg was scheduled for wide resection of the right scapula due to Ewing’s sarcoma. In the operative room, general anaesthesia was given as per the institutional protocol. The patient was then turned in the prone position which was appropriate for both surgery as well as for placement of ESP block. A right-sided ultrasound-guided ESP block was given at the T2 level with a high frequency (8-15 MHz) linear probe. A 50mm long block needle was inserted in-plane until the tip of the needle hit the transverse process of the vertebra [Figure 1]. A total of 8 ml of 0.25% ropivacaine was injected. Spread of local anaesthetic (LA) from C4 to T4 transverse process was seen on ultrasonography followed by the insertion of the catheter through the needle. Continuous infusion of 0.2% ropivacaine at the rate of 2.5ml/hr through the catheter was started for analgesia. Approximately 7–8 cm of the wedge of bone was dissected from the superior-medial aspect of the scapula [Figure 2] and total surgical duration was 240 min. The intraoperative haemodynamics remained stable without any additional opioid requirement and recovery from anaesthesia was smooth. Approximately one hour after extubation, when the patient regained full consciousness, sensory blockade assessment was done with the pinprick, which revealed reduced sensation from C4-C5 to T4 dermatomes on the side of the block. LA infusion was continued for 72 h along with injection acetaminophen 400 gm IV 8 h as a part of multimodal analgesia. The catheter was removed uneventfully on the third postoperative day and the next day, the patient was discharged home pain-free.

ESP block is a simple and safe block as the target musculofascial plane is superficial to the transverse process, and the structures such as pleura, major vessels, and nerves are far from the needle tip. LA injected in this plane diffuses anteriorly to ventral and dorsal rami of spinal nerves, as well as to the paravertebral and epidural space. Continuous infusion through the catheter ensures adequate analgesia for prolonged periods.\(^2\) In our patient, drug spread was appreciable on the ultrasound up to C4,5 level due to which suprascapular nerve might...
have been blocked resulting in good perioperative analgesia. Forero et al. also chose a similar level for patients with chronic shoulder pain and demonstrated through CT images the diffusion of drug through the plane, reaching up to their insertion on the transverse processes of C2-C6 vertebrae and acting on the exiting nerve roots.\(^3\) Kilicaslan A et al. have reported successful perioperative anaesthesia by supporting the interscalene and ESP blocks with sedation in a trauma patient who developed a glenoid fracture in the scapula.\(^4\) Elsharkawy et al. supplemented interscalene block with another interfascial plane block—rhomboid intercostal (RI) block, which blocks T2-T6 intercostal nerves in the scapula fracture.\(^5\) Most of the case reports published have combined interfascial block with interscalene block for scapula surgeries. As the drug spread seen through ultrasonography was satisfactory, we decided not to add another block and if needed would supplement with intravenous analgesia. Uneventful intraoperative, as well as the postoperative course with a satisfied patient, speaks for the versatility of this block.

To conclude, ESP block performed at the T2 level is effective in managing moderate to severe pain associated with scapular surgery in the perioperative period. While early results are promising, more work is needed to identify anatomical dispersion, appropriate dosing, and precise indications.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Rashmi Syal, Vaishnavi BD, Rakesh Kumar, Manoj Kamal
Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

Address for correspondence:
Dr. Rashmi Syal,
Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Jodhpur - 342 005, Rajasthan, India.
E-mail: rashmisyal2006@gmail.com

Submitted: 08-Apr-2020
Revised: 26-Apr-2020
Accepted: 27-May-2020
Published: 31-Jul-2020

REFERENCES

1. Wellbeloved MA, Kemp E. Bilateral erector spinae catheter placement for bilateral nephrectomy in a paediatric patient. Indian J Anaesth 2020;64:81-2.
2. Diwan S, Nair A. Unilateral erector spinae plane block for managing acute pain arising from multiple unilateral injuries: A case report. Indian J Anaesth 2020;64:79-80.
3. Forero M, Rajarathinam M, Adhikary SD, Chin KJ. Erector spinae plane block for the management of chronic shoulder pain: A case report. Can J Anaesth 2018;65:288-93.
4. Kilicaslan A, Hacibeyoglu G, Goger E, Uzun ST, Ozer M.
Combined erector spinae plane and interscalene brachial plexus block for surgical anaesthesia of scapula fracture. J Clin Anesth 2019;54:166-7.

5. Elsharkawy H, Ince I, Malik MF, Roques V. Rhomboid intercostal catheters for postoperative pain after scapular fracture surgery. Pain Med 2020;pnz334. doi: 10.1093/pm/pnz334. Online ahead of print.

Sir,

BRILMA (Blocking the branches of intercostal nerves in the middle axillary line) was first described in 2013 as serratus intercostal fascial plane block at fourth rib level to provide analgesia for non-reconstructive breast surgeries. [1] Later it was modified and performed at 8th rib level for open gastrectomy and at 9th rib level to provide peri-operative analgesia (as an alternative to epidural) in open cholecystectomy patients. [2,3]

We share our experience of using modified BRILMA block for surgical anaesthesia in a high-risk patient for incision and drainage of truncal abscess. A 58-year-old male was admitted with a history of painful inflamed swelling over left lower anterior chest wall for eight days [Figure 1a]. The patient was a heavy smoker and had controlled hypertension and type II diabetes mellitus. Local examination and radiological findings were suggestive of abscess of 9.0 cm × 7.7 cm, which was medial to anterior axillary line. It had internal septations involving left hypochondriac region without any involvement of ribs, costochondral junction, peritoneum or other organs. Contrast enhanced computed tomography of thorax also revealed focal pleural thickening, emphysematous changes and enlarged mediastinal and paratracheal lymph nodes. Clinically, he had tachycardia, hypotension, tachypnoea and fever at the time of presentation. His laboratory investigations showed Hb 9 g/dL, total leucocyte count 20,260/cu mm, platelets 5.05 lakh/cu mm, random blood sugar 250 mg/dL, sodium 126 mmol/L, albumin 3.1 g/dl and direct bilirubin 1.03 mg/dl. His American Society of Anaesthesiologists physical status was graded as IIIE and we decided to perform an ultrasound-guided BRILMA block as the sole anaesthetic technique with mild sedation for emergency incision and drainage of the abscess. Peri-operative management plan was discussed and informed high-risk consent was obtained from patient and relatives.

After attaching the standard monitors, 0.9% saline was started through a large bore intravenous peripheral cannula. The patient was placed in right lateral position and inj. midazolam 1 mg and fentanyl 50 mcg were administered intravenously for anxiolysis and oxygen inhalation was started with Hudson’s mask. Ultrasound (GE, LOGIQ C5, USA)-guided modified BRILMA block was performed with a high-frequency linear probe (8L-RS) at left 8th rib in the mid-axillary line with a 22 G, 5 cm echogenic needle directed cephalad via in-plane technique [Figure 1b and c]. A volume of 15 mL of 0.5% levobupivacaine was injected between serratus anterior and external intercostal muscles. The extent of block was checked after 10 min using spirit-soaked cotton and a blunt needle. The distribution of anaesthesia was confirmed from T5 to T9 dermatomes. Intravenous paracetamol 1 gm and diclofenac 75 mg were given as a part of multimodal pain management.