MDM2 SNP309 polymorphism is associated with colorectal cancer risk

Weizhi Wang1,2*, Mulong Du2,3*, Dongying Gu4*, Lingjun Zhu5, Haiyan Chu2, Na Tong2, Zhengdong Zhang2,3, Zekuan Xu1 & Meilin Wang2,3

1Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China, 3Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China, 4Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, 5Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

The human murine double minute 2 (MDM2) is known as an oncoprotein through inhibiting P53 transcriptional activity and mediating P53 ubiquitination. Therefore, the amplification of MDM2 may attenuate the P53 pathway and promote tumorigenesis. The SNP309 T>G polymorphism (rs2279744), which is located in the intronic promoter of MDM2 gene, was reported to contribute to the increased level of MDM2 protein. In this hospital-based case-control study, which consisted of 573 cases and 588 controls, we evaluated the association between MDM2 SNP309 and the risk of colorectal cancer (CRC) in a Chinese population by using the TaqMan method to genotype the polymorphism. We found that the MDM2 SNP309 polymorphism was significantly associated with CRC risk. In addition, in our meta-analysis, we found a significant association between MDM2 SNP309 and CRC risk among Asians, which was consistent with our results. In conclusion, we demonstrated that the MDM2 SNP309 polymorphism increased the susceptibility of CRC in Asian populations.

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of death from cancer worldwide, which accounts for an estimated 1,330,000 new cases and 608,000 cancer deaths in 20081. The incidence rates are high in Australia/New Zealand and Western Europe, low in Africa and South-Central Asia, and intermediate in Latin America1. In the USA, CRC was the third leading cancer type for estimated new cancer cases and deaths in 20132. In China, epidemiological data showed that there was an annual increase of 3.33% in CRC incidence and 3.05% in CRC mortality during 2003~20073. The mechanisms underlying the development of CRC are complex. Both environmental and genetic factors play an important role in the occurrence and progression of CRC4. Genetic epidemiology and twin studies demonstrate that upwards of 35% of the CRC cases may be due to inherited factors, which indicates the importance of inherited genetic susceptibility in carcinogenesis5.

P53, the tumor suppressor protein, plays a crucial role in multi-cellular functions, including gene transcription, DNA synthesis and repair, growth arrest, cell senescence, and apoptosis6. p53 mutations that disrupt the balance between cell apoptosis and repair are found in at least half of all human cancers, which highlight a critical role of P53 in tumor suppression7. The human homolog of the mouse double minute 2 (MDM2) functions as an important negative regulator of P53 through an autoregulatory feedback loop. The elevated nuclear P53 level will activate MDM2 gene transcription and increase the protein expression of MDM2. MDM2 will inhibit the transcriptional activity of P53 through its direct binding to P53 and also serve as an E3 ubiquitin ligase, promoting the degradation of P538–11. Thus, MDM2 overexpression may disturb this feedback loop and cause the deficiency of P53, which will result in inefficient growth arrest and/or apoptosis. Amplification of MDM2 is observed in many human tumor tissues, including CRC12–14. Consequently, up-regulated expression of MDM2 and attenuation of P53 pathway has been observed15.

MDM2 SNP309 (rs2279744), which is located in the promoter of MDM2 gene, was identified as a functional single nucleotide polymorphism (SNP). This SNP is a novel T to G substitution located at the 309th nucleotide in the first intron, showing a greater binding affinity for the transcription factor Sp115. Therefore, it was hypothesized that the genetic variant might have an impact on the expression of MDM2 and affect the individual’s susceptibility to developing tumors. Many studies have evaluated this association in different tumors, but their
regression analysis revealed that the individuals carrying the TG or GG genotype had an increased CRC risk (OR = 1.36, 95% CI = 1.01–1.82 for TG vs. TT; OR = 1.53, 95% CI = 1.10–2.13 for GG vs. TT), compared with the TT genotype. We also found that the MDM2 SNP309 TG/GG genotypes were associated with higher CRC susceptibility (OR = 1.41, 95% CI = 1.07–1.87) (Table 2). In the stratified analyses based on the dominant model, we found individuals carrying MDM2 SNP309 (TG/GG) were associated with increased risk among older subjects (OR = 1.76, 95% CI = 1.17–2.64), males (OR = 1.52, 95% CI = 1.06–2.19), smokers (OR = 1.90, 95% CI = 1.11–3.27), and non-drinkers (OR = 1.42, 95% CI = 1.03–1.96) (Table 3). Furthermore, we also assessed the association between the MDM2 SNP309 polymorphism and clinicopathological characteristics of CRC. As shown in Table 4, the individuals carrying the TG/GG genotypes were found to have an increased risk in rectal cancer (OR = 1.50, 95% CI = 1.06–2.14), well-differentiated CRC (OR = 2.07, 95% CI = 1.16–3.69), and early stage cancer (Dukes A and B) (OR = 1.55, 95% CI = 1.08–2.21). In addition, the median age of tumor onset according to the genotype of MDM2 SNP309 was evaluated. No significant differences were found in the median ages among men [62.0 for TT, 63.0 for TG and 62.0 for GG (P = 0.895)]. Moreover, neither younger women (>57 years) [46.0 for TT, 47.0 for TG, and 48.0 for GG (P = 0.246)], nor older women (>57 years) [66.5 for TT, 68.0 for TG, and 68.5 for GG (P = 0.371)] showed statistical differences in the median ages of tumor onset.

Results

Study characteristics.

The characteristics of our study are shown in Table 1. No significant differences were found between cases and controls for age [cases vs. controls (mean ± SD), 60.3 ± 12.5 vs. 59.3 ± 9.8 years; P = 0.136], sex (P = 0.824), smoking status (P = 0.191), and alcohol use (P = 0.082). These variables were adjusted for in the multivariate logistic regression analysis. As expected, however, CRC patients had a higher rate of family history of cancer than that of the controls (P < 0.001). Of the 573 CRC cases, the frequencies of the Dukes A, B, C and D stage were 9.1%, 40.6%, 35.1%, and 15.2%, respectively. For tumor grade, 6.5% of patients were with poorly differentiated tumors; 74.9% and 18.6% were found in moderate and well-differentiated tumors, respectively.

Association between MDM2 SNP309 and CRC risk.

The genotype distributions of MDM2 SNP309 in the control group were in accordance with the HWE (P = 0.805). The genotype frequencies of MDM2 SNP309 were 19.4% (TT), 51.5% (TG), and 29.1% (GG) in cases, which were statistically different from that in the control group (25.5% TT, 49.5% TG, and 29.1% GG) (P = 0.031). After adjusting for age, sex, smoking status, and drinking status, multivariate logistic regression analysis revealed that the individuals carrying the TG or GG genotype had an increased CRC risk (OR = 1.36, 95% CI = 1.01–1.82 for TG vs. TT; OR = 1.53, 95% CI = 1.10–2.13 for GG vs. TT), compared with the TT genotype. We also found that the MDM2 SNP309 TG/GG genotypes were associated with higher CRC susceptibility (OR = 1.41, 95% CI = 1.07–1.87) (Table 2). In the stratified analyses based on the dominant model, we found individuals carrying MDM2 SNP309 (TG/GG) were associated with increased risk among older subjects (OR = 1.76, 95% CI = 1.17–2.64), males (OR = 1.52, 95% CI = 1.06–2.19), smokers (OR = 1.90, 95% CI = 1.11–3.27), and non-drinkers (OR = 1.42, 95% CI = 1.03–1.96) (Table 3). Furthermore, we also assessed the association between the MDM2 SNP309 polymorphism and clinicopathological characteristics of CRC. As shown in Table 4, the individuals carrying the TG/GG genotypes were found to have an increased risk in rectal cancer (OR = 1.50, 95% CI = 1.06–2.14), well-differentiated CRC (OR = 2.07, 95% CI = 1.16–3.69), and early stage cancer (Dukes A and B) (OR = 1.55, 95% CI = 1.08–2.21). In addition, the median age of tumor onset according to the genotype of MDM2 SNP309 was evaluated. No significant differences were found in the median ages among men [62.0 for TT, 63.0 for TG and 62.0 for GG (P = 0.895)]. Moreover, neither younger women (>57 years) [46.0 for TT, 47.0 for TG, and 48.0 for GG (P = 0.246)], nor older women (>57 years) [66.5 for TT, 68.0 for TG, and 68.5 for GG (P = 0.371)] showed statistical differences in the median ages of tumor onset.

Table 1 | Distribution of selected variables in colorectal cancer cases and cancer-free controls

Variables	Cases (n = 573)	Controls (n = 588)	P
Age (years) mean ± SD	60.3 ± 12.5	59.3 ± 9.8	0.136
Sex			
Male	354 (61.8%)	367 (62.4%)	0.824
Female	219 (38.2%)	221 (37.6%)	
Smoking status			
No	377 (65.8%)	408 (69.4%)	0.191
Yes	196 (34.2%)	180 (30.6%)	
Drinking status			
No	414 (72.3%)	451 (76.7%)	0.082
Yes	159 (27.7%)	137 (23.3%)	
Family history of cancer			
No	443 (77.3%)	546 (92.9%)	<0.001
Yes	130 (22.7%)	42 (7.1%)	
Tumor site			
Colon	279 (48.7%)		
Rectum	294 (51.3%)		
Duke’s stage			
A	52 (9.1%)		
B	233 (40.6%)		
C	201 (35.1%)		
D	87 (15.2%)		
Tumor grade			
Low	37 (6.5%)		
Intermediate	429 (74.9%)		
High	107 (18.6%)		

Two-sided Student’s t test or χ² test

Meta-analysis of MDM2 SNP309 and CRC risk.

We performed a meta-analysis to evaluate the association between MDM2 SNP309 and CRC risk. A total of 11 studies were selected, which included 4 studies of Asian population and 7 studies in Europeans (Table 5). Then we pooled the previous published studies and our present study together, and this meta-analysis consisted of 3744 cases and 3185 controls.

The MDM2 SNP309 (TG/GG) carriers among Asians were associated with higher CRC risks (OR = 1.20, 95% CI = 1.03–1.38) (Fig. 1C). And significantly increased risks of CRC were also observed in Asians with TG (OR = 1.20, 95% CI = 1.03–1.40) (Fig. 1A) or GG (OR = 1.21, 95% CI = 1.01–1.45) (Fig. 1B), when compared with SNP309 TT. However, these results were not found in Europeans (Table 6). In the total population, no statistical association between the MDM2 SNP309 polymorphism and CRC risk were found in all genetic models under random-effects model (P value for heterogeneity < 0.1). Thus we used a Galbraith plot to investigate the source of heterogeneity and found one article with an European population, which could potentially be the cause of high heterogeneity (Fig. 2). After excluding that specific study, we analyzed the data again. With low heterogeneity, statistical associations with risk of CRC were found in the dominant model (Fig. 1), but the associations were still not observed in Europeans. In addition, publication bias was assessed by the Begg’s and Egger’s tests, and no evidence of publication bias in all genetic models was found (t = 0.15, P = 0.880 for TG vs. TT; t = -0.19, P = 0.851 for GG vs. TT; t = 0.08, P = 0.937 for dominant model; t = -0.44, P = 0.672 for recessive model).

Discussion

As reported, MDM2 can directly bind to P53 and down-regulate its function as a tumor suppressor. The oncogenic properties of MDM2 are thought to be P53-dependent. However, some studies have shown that MDM2 may form complexes with other tumor suppressor proteins independent of P53 in vitro and in P53-deficient cells. These findings demonstrate the oncogenic potential of MDM2 in P53-independent pathways. In addition, although MDM2 SNP309 is located on a P53-response intronic promoter, the P53-independent overexpression of MDM2 was still observed. Moreover, MDM2 amplification might also be regulated in post-transcriptional ways. All aforementioned findings indicate that
Table 2 | Distribution of genotypes of MDM2 SNP 309 among colorectal cancer cases and cancer-free controls

Genotypes	Cases (n=573)	Controls (n=588)	P^a	Crude OR (95%CI)	Adjusted OR (95%CI)^b
Co-dominant model					
TT	111/150	19.4/25.5	1.00 (reference)	1.00 (reference)	
TG	295/291	51.5/49.5	0.036	1.37 (1.02–1.84)	1.36 (1.01–1.82)
GG	167/147	29.1/25.0	0.011	1.54 (1.10–2.14)	1.53 (1.10–2.13)
G allele	0.549	0.497	0.013		

Additive model					
TT	111/150	19.4/25.5	1.00 (reference)	1.00 (reference)	
TG/GG	462/438	80.6/74.5	0.012	1.43 (1.08–1.88)	1.41 (1.07–1.87)

Dominant model					
TT	111/150	19.4/25.5	1.00 (reference)	1.00 (reference)	
TG/GG	462/438	80.6/74.5	0.012	1.43 (1.08–1.88)	1.41 (1.07–1.87)

^aFor y² test
^bAdjusted for age, sex, smoking status, and alcohol use in logistic regression models.

Table 3 | Stratification analyses between MDM2 SNP309 genotypes and CRC risk

Variables	Cases/controls	TT	TG/GG	TG/GG vs. TT	
Age (years)					
≤60	277/348	57/82	20.6/23.6	1.15 (0.78–1.70)	0.468
>60	296/240	54/68	18.2/28.3	1.76 (1.17–2.64)	0.007
Sex					
Male	354/367	64/93	18.1/25.3	1.52 (1.06–2.19)	0.023
Female	219/221	47/57	21.5/25.8	1.28 (0.82–2.01)	0.274
Smoking status					
No	377/408	85/109	22.6/26.7	1.28 (0.92–1.79)	0.141
Yes	196/180	26/41	13.3/22.8	1.90 (1.11–2.37)	0.020
Drinking status					
No	414/451	82/118	19.8/26.2	1.42 (1.03–1.96)	0.035
Yes	159/137	29/32	18.2/23.4	1.44 (0.81–2.55)	0.218
Family history of cancer					
No	443/546	93/141	21.0/25.8	1.33 (0.98–1.80)	0.063
Yes	130/42	18/9	13.9/21.4	1.31 (0.51–3.37)	0.578

[*]OR (odds ratio), CI (confidence interval), and P values were calculated in dominant model with adjustment for age, sex, smoking status, and alcohol use.
but not in non-smokers24. In the stratified analysis, we found MDM2 SNP309 had a direct connection with CRC risk in smokers and also not in non-smokers. Long-term smoking has been reported as a risk factor for CRC25. MDM2 SNP309 might influence the activity of P53, and then increase the possibility that some colon cells damaged by tobacco carcinogens might escape the apoptosis triggered by P53. Therefore, smokers carrying MDM2 SNP309 are expected to have a higher risk of CRC but further validation is still needed. Alcohol consumption is also associated with CRC risk26, and has already been reported to be related with p53 mutations in breast cancer27. Therefore, drinkers with MDM2 SNP309 should be associated with higher CRC risk. However, in our study, this association was not found. The relative small sample size after stratifying for drinking status may be the reason. After stratifying the tumor stage and grade, we observed that the MDM2 SNP309 was associated with an increased risk in CRC patients with Duke’s A/B stage or well-differentiated tumor grade, which indicated the involvement of SNP309 in the early stages of CRC. The family history of cancer in our study is not matched, and it might be important for the better understanding of the genetic variants. However, in our analysis, the effect of family history on the association between MDM2 SNP309 and CRC risk was not observed.

A significant earlier age of onset was observed to be associated with MDM2 SNP309 in several tumors15. In CRC, several studies showed this association especially in women, but not in men24,25. The MDM2 promoter, where SNP309 is located, is regulated by hormonal signalings pathways. Therefore, it is hypothesized that the increased affinity of female-specific hormones such as estrogen, caused by the gene variant, might accelerate tumor formation28. And higher frequencies of the SNP309 G allele in CRC were found in women at a younger or premenopausal age than in women at a older or menopausal age, and in men29, which supported the hypothesis in some extent. Because we did not have the data of menopausal age, we only compared the onset age of CRC in younger and older women based on the median age (60 years) separately. However, no statistical difference was observed between CRC onset age of the SNP309 carriers and individuals with TT genotypes in younger or older women. Several studies have shown conclusions consistent with ours29. But there is still one more thing we should consider. Menin et al. reported that MDM2 SNP309 may affect the age of cancer onset only in the tumors with wild-type P5332. The lack of the information of the p53 mutation status in the tumors might influence our results. Thus, further studies about p53 mutations are required to resolve this conflict.

In conclusion, we demonstrated that MDM2 SNP309 was associated with increased CRC risk in a Chinese population, which was concordant with our meta-analysis. Additionally, in the stratified analyses, we found that increased risk was more pronounced in males, older people, smokers, non-drinkers, people diagnosed with rectal cancer, and patients with Duke’s A/B stage or well-differentiated tumor grade. Moreover, the earlier age of cancer onset in patients carrying MDM2 SNP309 was not found in our study. Considering the correlation between MDM2 and P53, the status of P53 is necessary for further studies. Further validation of large population-based studies in different ethnicities is still needed.

Methods

Ethics statement. The study was approved by the institutional review board of Nanjing Medical University. Informed written consent was obtained from all subjects. The experimental protocol was carried out in accordance with the approved guidelines.

Study subjects. The characteristics of the CRC patients and cancer-free controls in this study have been previously described in detail25. Briefly, this study consisted of 573 patients with CRC and 588 cancer-free controls. All the patients with histologically-confirmed CRC were consecutively recruited from September 2010 at the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, without age or sex restrictions. The cancer-free control patients, who were genetically unrelated to the CRC patients, were matched by age (±5 years) and sex to the CRC patients. A trained personnel interviewed each participant after obtaining the signed informed consent and a structured questionnaire on demographic information and environmental exposures. Individuals who smoked daily for at least one year were defined as smokers. People who consumed one or more alcoholic drinks per week for more than one year were defined as drinkers. After the interview, a 5 ml venous blood sample was obtained from each patient for genomic DNA extraction.

Table 4 | Associations between the MDM2 SNP309 polymorphism and clinicopathologic parameters of CRC

Variables	TT	TG/GG	TG/GG vs. TT			
Controls (n=588)	150	25.5	438	74.5	1.00 (reference)	1.00
Cases (n=573)	52	18.3	233	81.7	1.00 (reference)	1.00
Duke’s stage						
A/B	59	20.5	229	79.5	1.55 (1.08-2.21)	0.016
C/D	69	24.1	270	75.9	1.61 (1.13-2.29)	0.007

Table 5 | Characteristics of the studies selected in the meta-analysis

Author	Years	Country	Ethnicity	Genotyping methods	Source of controls	Sample size (cases/controls)	Cases (TT/TG/GG)	Controls (TT/TG/GG)
Alhopuro	2005	Finland	European	PCR-RFLP	Population	969/185	334/465/170	56/98/31
Sotamaa	2006	Finland	European	PCR-RFLP	Population	123/138	27/66/30	78/94/26
Alazouzzi	2007	Spain	European	PCR-SSCP	Population	153/92	69/70/14	40/40/12
Chen	2009	China	Asian	PCR-CE	Population	157/138	27/66/30	29/83/26
Sugano	2010	Japan	Asian	LH-MSAs	Population	211/59	61/95/55	12/27/20
Joshi	2011	Japan	Asian	PCR-RFLP	Population	655/778	129/373/183	177/384/217
Chaar	2012	Tunisia	European	PCR-CE	Population	167/147	11/86/70	64/55/47
Zhang	2012	China	Asian	MALDI-TOF MS	Population	444/569	131/223/90	180/281/108

PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; SSCP, single-stranded conformation polymorphism; CE, capillary electrophoresis; LH-MSAs, Loop-hybrid mobility shift assay; MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry.
DNA extraction and genotyping. Genomic DNA was obtained from white-blood-cell fractions by using the Qiagen Blood Kit (Qiagen) following the manufacturer’s protocol. We used the 384-well ABI 7900HT Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) for the TaqMan SNP Genotyping assay. Two people achieved this genotype analysis independently in a blind fashion. We also randomly selected 10% of our samples for repeated genotyping to assess the reproducibility, and the concordant rate was 100%.

Statistical analysis. Hardy-Weinberg equilibrium (HWE) of alleles was evaluated by using a goodness-of-fit chi-square test. The differences in demographic

Table 6 | Meta-analysis of MDM2 SNP309 on colorectal cancer risk

Variables	GG vs. TT	TG vs. TT	GG/TG vs. TT	GG vs. TT/TG					
	n	OR (95%CI)	p	OR (95%CI)	p	OR (95%CI)	p		
Total	12	1.21 (0.89–1.66)	<0.001	1.23 (0.94–1.60)	<0.001	1.21 (0.94–1.56)	<0.001	1.07 (0.92–1.25)	0.183
Total***	11	1.13 (0.97–1.32)	0.358	1.14 (1.01–1.29)	0.154	1.13 (1.01–1.27)	0.166	1.03 (0.91–1.17)	0.515
Ethnicity									
Asian	5	1.21 (1.01–1.45)	0.197	1.20 (1.03–1.38)	0.284	1.20 (1.03–1.38)	0.205	1.06 (0.92–1.22)	0.286
European	7	1.30 (0.66–2.54)	<0.001	1.38 (0.82–2.33)	<0.001	1.34 (0.81–2.33)	<0.001	1.11 (0.88–1.39)	0.130
European*	6	0.94 (0.70–1.28)	0.724	1.05 (0.88–1.29)	0.133	1.03 (0.85–1.25)	0.243	0.93 (0.72–1.22)	0.627
Source of controls									
Population-based	8	1.14 (0.68–1.91)	<0.001	1.22 (0.79–1.90)	<0.001	1.19 (0.83–1.70)	<0.001	1.02 (0.87–1.19)	0.109
Population-based***	7	0.98 (0.80–1.21)	0.518	1.06 (0.90–1.25)	0.134	1.03 (0.88–1.20)	0.184	0.93 (0.79–1.11)	0.641
Hospital-based	4	1.33 (1.06–1.66)	0.534	1.24 (1.04–1.49)	0.389	1.26 (1.07–1.49)	0.503	1.16 (0.96–1.40)	0.552

*Number of comparisons.
**P-value of Q-test for heterogeneity test.
***When P-value for heterogeneity test < 0.10, random-effects model was used; otherwise, fix-effects model was used.
****Analysis without the study contributing to the high heterogeneity.
OR, odds ratio; CI, confidence interval.

Figure 1 | Forest plot on the association between MDM2 SNP309 and the risk of colorectal cancer. (A) TG versus TT, (B) GG versus TT, (C) TG/GG versus TT, (D) GG versus TT/TG.
characteristics, selected variables and frequencies of the genotypes were tested using a Student’s t-test (for continuous variables) or Pearson’s chi-square test (for categorical variables). The Kruskal-Wallis Test was used to compare the age of tumor onset according to the genotype of MDM2 SNP309. The association between MDM2 SNP309 and CRC risk was assessed by odds ratios (ORs) and 95% confidence intervals (CI) using unconditional logistic regression analysis with the adjustment for possible confounders. All data analyses were two-sided and performed with Statistical Analysis System software (version 9.1.3; SAS Institute Inc, Cary, NC, USA).

Meta-analysis. To further evaluate the association between the MDM2 SNP309 and CRC risk, we performed a meta-analysis based on the previous published studies and our current study. The databases of PubMed, Embase and Web of Science updated on April 1, 2013, were searched for articles based on the human associated case-control studies in English, using the terms: “MDM2”, “polymorphism(s) or genetic variation(s)”, “colorectal” and “cancer or carcinoma or tumor” as well as their combinations. Finally, we collected 11 studies consisting of a total of 3171 cases and 2597 controls. Because the study published by Chaar21 was found to be the outliers, we excluded it. The studies outside the parallel lines were considered contributing to the heterogeneity. (A) TG versus TT, (B) GG versus TT, (C) TG/GG versus TT, (D) GG versus TT/TG.

1. Jemal, A. et al. Global cancer statistics. *CA Cancer J Clin* **61**, 69–90 (2011).
2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. *CA Cancer J Clin* **63**, 11–30 (2013).
3. Qiong, C., Zhicai, L. & Lanping, C. An Analysis of Incidence and Mortality of Colorectal Cancer in China, 2003–2007. *China Cancer* **21**, 179–182 (2012).
4. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. *N Engl J Med* **343**, 78–85 (2000).
5. Markowitz, S. D. & Bertagnolli, M. M. Molecular origins of cancer: Molecular basis of colorectal cancer. *N Engl J Med* **361**, 2449–2460 (2009).
6. Bargnotti, J. & Manfredi, J. J. Multiple roles of the tumor suppressor p53. *Curr Opin Oncol* **14**, 86–91 (2002).
7. Olivier, M., Hussain, S. P., Caron de Fromentel, C., Hainaut, P. & Harris, C. C. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. *IARC Sci Publ* **247–270 (2004).”
8. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p33-mediated transactivation. *Cell* **69**, 1237–1245 (1992).
9. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. *Science* **280**, 857–860 (1993).
10. Haupt, Y., Maya, R., Karaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p33. *Nature* **387**, 296–299 (1997).
11. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. *Nature* **387**, 299–303 (1997).
12. Oliner, J. D., Künzler, K. W., Meltzer, P. S., George, D. L. & Vogelstein, B. Amplification of a gene encoding a p53-associated protein in human sarcomas. *Nature* **358**, 80–83 (1992).
13. Onel, K. & Gordon-Cardo, C. MDM2 and prognosis. *Mol Cancer Res* **2**, 1–8 (2004).
14. Tachibana, M. et al. Dysfunction of p53 pathway in human colorectal cancer: analysis of p53 gene mutation and the expression of the p53-associated factors p14 ARF, p33ING1, p21WAF1 and MDM2. *Int J Oncol* **25**, 913–920 (2004).
15. Bond, G. L. et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. *Cell* **119**, 591–602 (2004).
16. Lind, H., Zienolddiny, S., Ekstrom, P. O., Skau, Y. & Haugen, A. Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. *Int J Cancer* **119**, 718–721 (2006).
17. Hong, Y. et al. The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. *Cancer Res* **65**, 9582–9587 (2005).
18. Ma, H. et al. Polymorphisms in the MDM2 promoter and risk of breast cancer: a case-control analysis in a Chinese population. *Cancer Lett* 240, 261–267 (2006).

19. Alazouzzi, H. et al. Tumour selection advantage of non-dominant negative P53 mutations in homozygotic MDM2-SNP309 colorectal cancer cells. *J Med Genet* 44, 75–80 (2007).

20. Joshi, A. M. et al. TP53 R72P and MDM2 SNP309 polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. *Ipn J Clin Oncol* 41, 232–238 (2011).

21. Chaar, I. et al. Impact of MDM2 polymorphism: increased risk of developing colorectal cancer and a poor prognosis in the Tunisian population. *Eur J Gastroenterol Hepatol* 24, 320–327 (2012).

22. Alhopuro, P. et al. The MDM2 promoter polymorphism SNP309T→G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. *J Med Genet* 42, 694–698 (2005).

23. Talseth, B. A. et al. MDM2 SNP309 T→G alone or in combination with the TP53 R72P polymorphism does not appear to influence disease expression and age of diagnosis of colorectal cancer in HNPCC patients. *Int J Cancer* 120, 563–566 (2007).

24. Zhang, Y. et al. Polymorphisms in TP53 and MDM2 contribute to higher risk of colorectal cancer in Chinese population: a hospital-based, case-control study. *Mol Biol Rep* 39, 9661–9668 (2012).

25. Zhu, L. et al. A Functional Polymorphism in miRNA-196a2 Is Associated with Colorectal Cancer Risk in a Chinese Population. *DNA Cell Biol* 31, 350–4 (2012).

26. Sotamaa, K. et al. MDM2 Polymorphisms in Breast Tumors. *Clin Cancer Res* 17, 770–777 (2011).

27. Menin, C. et al. Association between MDM2-SNP309 and age at colorectal cancer diagnosis according to p53 mutation status. *J Natl Cancer Inst* 98, 285–288 (2006).

28. Ghosh, K. et al. TP53 SNP72 and MDM2 SNP309 accelerates colorectal tumour formation in women. *J Med Genet* 43, 950–952 (2006).

29. Sugano, N. and Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test. *Stat Med* 19, 75–80 (2000).

30. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. *Control Clin Trials* 7, 177–188 (1986).

31. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. *J Natl Cancer Inst* 52, 719–748 (1974).

32. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 315, 629–634 (1997).

33. Begg, C. B. & Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50, 1088–1101 (1994).

34. Martin, K. et al. Stimulation of ER2F1/D1P2 transcriptional activity by MDM2 oncoprotein. *Nature* 375, 691–694 (1995).

35. Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. *Nature* 375, 694–698 (1995).

36. Wang, W.Z. et al. MDM2 SNP309 polymorphism is associated with colorectal cancer risk. *Sci. Rep.* 4, 4851; DOI:10.1038/srep04851 (2014).