THE TORIC IDEAL OF A GRAPHIC MATROID
IS GENERATED BY QUADRICS

JONAH BLASIAK

ABSTRACT. Describing minimal generating sets of toric ideals is a well-studied and difficult problem. Neil White conjectured in 1980 that the toric ideal associated to a matroid is generated by quadrics corresponding to single element symmetric exchanges. We give a combinatorial proof of White’s conjecture for graphic matroids.

1. INTRODUCTION

Let M be a matroid on the ground set $\{1, 2, \ldots, n\}$. Fix a field k and define the polynomial ring S_M to be $k[y_B : B$ a base of $M]$. Let I_M be the kernel of the k-algebra homomorphism $\theta_M : S_M \to k[x_1, \ldots, x_n]$ that takes y_B to $\prod_{i \in B} x_i$. This is a toric ideal as defined in [5].

Given bases B and D of M, the well-known symmetric exchange property states that for every $b \in B$ there exists a $d \in D$ such that $B \cup d - b$ and $D \cup b - d$ are bases. We say that $b \in B$ double swaps into D; if $B \cup d - b$ and $D \cup b - d$ are bases, we say that $b \in B$ and $d \in D$ double swap. Neil White made a conjecture in [7] about an equivalence relation defined by certain symmetric exchange properties and we state an algebraic reformulation.

Conjecture 1.1. For any matroid M, the toric ideal I_M is generated by the quadratic binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1, D_2 can be obtained from the pair B_1, B_2 by a double swap.

The cycle matroid of a graph G, which we denote by $M(G)$, is the matroid on the ground set $E(G)$ with a base for each spanning forest.
of G. A matroid is said to be \textit{graphic} if it is the cycle matroid of some graph. We prove White’s conjecture for graphic matroids.

\textbf{Theorem 1.2.} If M is a graphic matroid, then the toric ideal I_M is generated by the quadratic binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1, D_2 can be obtained from the pair B_1, B_2 by a double swap.

To study I_M in the context of toric ideals we need some notation. Let b be the number of bases of M and let A be the $n \times b$ matrix whose columns are the zero-one incidence vectors of the bases of M. The difference of two monomials is a \textit{binomial}. Given $u \in \mathbb{Z}^b$ define u_+ (resp.) to be u (resp.) with negative coordinates replaced by zeros; we then have $u = u_+ - u_-$. The ideal I_M is spanned as a k-vector space by the binomials $y^{u_+} - y^{u_-}$, where u runs over all integer vectors in the kernel of A [5]. Ideals of this type, that is, ideals generated by binomials $y^{u_+} - y^{u_-}$, where u runs over integer vectors in the kernel of an integer matrix, are toric ideals. The set of vectors in k^b that vanish on all polynomials in a toric ideal is an affine toric variety. For each matroid M, the toric ideal I_M is homogeneous because every base has the same number of elements. Therefore I_M (or any homogeneous toric ideal) defines a projective toric variety Y_M in $k\mathbb{P}^{b-1}$ [5].

White proves in [6] that

\textbf{Theorem 1.3.} For any matroid M, the toric variety Y_M is projectively normal.

The following is a general conjecture about projectively normal toric varieties [5].

\textbf{Conjecture 1.4.} If the toric ideal I defines a projectively normal r-dimensional toric variety, then I has a Gröbner basis consisting of binomials of degree at most r.
This conjecture restricted to toric varieties coming from matroids neither implies nor is implied by White’s conjecture. However it is natural to ask whether the following variant of White’s conjecture holds (see, for instance, chapter 14 of [4] and [3]) and this does imply Conjecture 1.4 for toric varieties Y_M coming from a matroid M.

Conjecture 1.5. For any matroid M, the toric ideal I_M has a Gröbner basis consisting of quadratic binomials.

White’s conjecture can be posed as two separate conjectures. The following are both still open and together imply White’s conjecture.

Conjecture 1.6. For any matroid M, the toric ideal I_M is generated by quadratic binomials.

Conjecture 1.7. For any matroid M, the quadratic binomials of I_M are in the ideal generated by the binomials $y_{B_1}y_{B_2} - y_{D_1}y_{D_2}$ such that the pair of bases D_1, D_2 can be obtained from the pair B_1, B_2 by a double swap.

Sturmfels shows in chapter 14 of [4] that Conjecture 1.5 holds for uniform matroids. One may also ask the same questions about toric ideals coming from polymatroids. Conca proves Conjecture 1.6 for transversal polymatroids [2]. Caviglia, Elizalde, and García prove that both White’s conjecture and Conjecture 1.5 hold for a certain class of polymatroids they call staircase polymatroids [1].

In Section 2 we show that Conjecture 1.6 holds for graphic matroids if certain graphs $\mathcal{G}_k(M)$, defined for $k \geq 3$, are connected for all graphic matroids M. Similarly, Conjecture 1.7 holds for graphic matroids if the graphs $\mathcal{G}(M)$ are connected for all graphic matroids M. In Section 3 we prove that the graphs $\mathcal{G}_k(M)$ are connected for any graphic matroid M. In Section 4 we prove that the graph $\mathcal{G}(M)$ is connected for any
graphic matroid M. In section 5 we discuss the difficulties of extending our results to general matroids and pose some questions along these lines.

2. Reduction

We show that the algebraic formulation of White’s conjecture is implied by a combinatorial condition similar to White’s original formulation.

Let M be a matroid on a ground set of size $r(M)k$, where $r(M)$ denotes the rank of M. The k-base graph of M, which we denote by $\mathcal{G}_k(M)$, has as its vertex set the set of all sets of k disjoint bases (this is equivalent to the condition that the union of the k bases is the entire ground set). There is an edge between $\{B_1, \ldots, B_k\}$ and $\{D_1, \ldots, D_k\}$ if and only if $B_i = D_j$ for some i, j. We prove that Conjecture 1.6 is implied by the connectivity of the k-base graphs. We prove the following proposition for a general class of matroids \mathcal{C} that is closed under deletions and adding parallel elements, but we will only apply this to the case where \mathcal{C} is the set of graphic matroids.

Proposition 2.1. Let \mathcal{C} be a collection of matroids that is closed under deletions and adding parallel elements. Suppose that for each $k \geq 3$ and for every matroid M in \mathcal{C} on a ground set of size $r(M)k$ the k-base graph of M is connected. Then for every matroid M in \mathcal{C}, I_M is generated by quadratic binomials.

Proof. We will prove by induction on k the statement that for every $M \in \mathcal{C}$ and every binomial $b \in I_M$ of degree k, b is in the ideal generated by the quadrics of I_M. This will prove the proposition because, as mentioned in the introduction, I_M is spanned as a k-vector space by binomials. For the base case $k = 2$ there is nothing to prove. Suppose
THE TORIC IDEAL OF A GRAPHIC MATROID IS GENERATED BY QUADRICS

$k \geq 3$, M is a matroid in \mathcal{C} on the ground set $\{1, 2, \ldots, n\}$, and b is a binomial in I_M. The binomial b is necessarily of the form $b = \prod_{i=1}^{k} y_{B_i} - \prod_{i=1}^{k} y_{D_i}$ for some bases $B_1, \ldots, B_k, D_1, \ldots, D_k$ of M such that the B_i and D_i have the same multiset union. We will show that b is in the ideal generated by the degree $k - 1$ binomials of I_M. By induction, the degree $k - 1$ binomials are in the ideal generated by the quadrics of I_M so this will complete the proof.

Put $x^S = \theta_M(\prod_{i=1}^{k} y_{B_i})$ and let S_i denote the i^{th} component of S. Define M' to be the matroid obtained from M by replacing i with S_i parallel copies of i for each i in $\{1, \ldots, n\}$; interpret “replacing by zero parallel copies” to mean deleting, that is, delete those i for which $S_i = 0$. There is a natural map α from the ground set of M' to the ground set of M that takes each of the parallel copies of i to i. A subset X of the ground set of M' is independent in M' if and only if $\alpha(X)$ is independent in M. This induces a k-algebra homomorphism $\alpha_* : S_{M'} \rightarrow S_M$ defined by $\alpha_*(y_B) = y_{\alpha(B)}$ for every base B of M'.

Because the collection \mathcal{C} is closed under deletions and adding parallel elements, $M \in \mathcal{C}$ implies $M' \in \mathcal{C}$. M' has a ground set of size $r(M')k$, and by assumption, the k-base graph of M' is connected. Let u_B be a vertex of $\mathfrak{G}_k(M')$ such that $\alpha(u_B) = \{B_1, \ldots, B_k\}$ (here α is the natural extension of α to sets of subsets of the ground of M': $\alpha(u_B) = \{\alpha(X) | X \in u_B\}$). Such a u_B exists by construction of M': simply split up the parallel copies of i, giving one to each base in $\{B_1, \ldots, B_k\}$ containing i. Let u_D be a vertex of $\mathfrak{G}_k(M)$ such that $\alpha(u_D) = \{D_1, \ldots, D_k\}$. Let $y^u = \prod_{X \subseteq u} y_X$, as is customary when u is identified with its zero-one incidence vector. Let u_0, u_1, \ldots, u_t be the vertices of a path between $u_B = u_0$ and $u_D = u_t$ in $\mathfrak{G}_k(M')$. Then we
have
\[\sum_{i=1}^{t} y^{u_{i-1}} = y^{u_0} - y^{u_t} \]
and applying the map \(\alpha \) we obtain
\[(1) \quad \sum_{i=1}^{t} y^{\alpha(u_{i-1})} - y^{\alpha(u_i)} = \prod_{i=1}^{k} y_{B_i} - \prod_{i=1}^{k} y_{D_i} = b. \]

For \(i = 1, \ldots, t \) there is a base \(X \in u_{i-1} \cap u_i \) which implies \(\alpha(X) \in \alpha(u_{i-1}) \cap \alpha(u_i) \). This shows that \(y_{\alpha(X)} \) may be factored out of the binomial \(y^{\alpha(u_{i-1})} - y^{\alpha(u_i)} \), and therefore (1) shows that \(b \) is in the ideal generated by the degree \(k-1 \) binomials of \(I_M \). \(\square \)

The reduction for Conjecture 1.7 is similar. Suppose \(M \) is a rank \(r \) matroid on a ground set of size \(2r \). The single exchange graph of \(M \), which we denote by \(\mathcal{G}(M) \), is the graph with vertex set the set of ordered \(2 \)-tuples of bases of \(M \), \((B_1, B_2)\), such that \(B_1 \) and \(B_2 \) are disjoint. There is an edge between \((B_1, B_2)\) and \((D_1, D_2)\) if and only if \(|B_1 \cap D_1| = r - 1 \), or equivalently, \((D_1, D_2)\) can be obtained from \((B_1, B_2)\) by a double swap. The above proposition can be easily modified to show that: if for every \(M \) in \(\mathcal{C} \) with a ground set of size \(2r(M) \) the single exchange graph of \(M \) is connected, then Conjecture 1.7 holds for all matroids in \(\mathcal{C} \).

Remark 2.2. Showing that \(\mathcal{G} \) is connected actually shows slightly more than Conjecture 1.7. In \(\mathcal{G} \), \((B_1, B_2)\) is not adjacent to \((B_2, B_1)\) for ranks larger than 1, however \(y_{B_1}y_{B_2} - y_{B_2}y_{B_1} = 0 \) is (trivially) in the ideal generated by quadrics corresponding to single double swaps. The stronger statement we prove here was also conjectured by White in [7].
3. Proof of the graphic case

We introduce some notation that is used in the main proof. Let G be a graph. $V(G)$ and $E(G)$ denote the vertex and edge sets of G. If $v, v' \in G$, we abuse notation slightly and say that v is connected to v' or v and v' are connected to mean that v and v' are in the same component. $d(v)$ denotes the degree of v. We use $-$ to denote set minus and sometimes write a one element set as the element itself rather than the element with braces around it.

The following theorem together with Proposition 2.1 implies that Conjecture 1.6 holds for graphic matroids.

Theorem 3.1. Let G be a graph with kr edges, where r is the rank of $M(G)$. If $k \geq 3$, then the k-base graph $\mathfrak{B}_k(M(G))$ is connected.

Proof. We prove the theorem by induction on r. If $r = 1$, $\mathfrak{B}_k(M(G))$ is nonempty only if G has no loops. If G has no loops, $\mathfrak{B}_k(M(G))$ is a single vertex, which of course is connected. Now suppose $r > 1$. First observe that we can assume G is connected. If not, we may write $M(G)$ as the direct sum of $M(G_1)$ and $M(G_2)$, where G_1 and G_2 are unions of connected components of G. By the inductive hypothesis, the k-base graphs of $M(G_1)$ and $M(G_2)$ are connected. The result follows for $M(G)$ by Proposition 5 of [7].

A key observation is that $M(G)$ has a cocircuit of size $\leq 2k - 1$. This is not true in general matroids and this is the most essential way the graphic hypothesis is used. The graph G has a vertex v of degree $\leq 2k - 1$ because G has $r + 1$ vertices and kr edges, making the average vertex degree $2k \frac{r}{r+1}$. The vertex v is fixed throughout the proof. Let C be the set of edges leaving v and let $N(v)$ be the neighbors of v.
We say a vertex \(\{B_1, \ldots, B_k\} \) of \(\mathcal{G}_k(M(G)) \) is balanced if \(|B_i \cap C| \leq 2 \) for each \(i \). We first show that each vertex of \(\mathcal{G}_k(M(G)) \) is connected to a balanced vertex. We then show that any two balanced vertices that have the same intersections with \(C \) are connected. This is the heart of the proof and where the inductive step is used. Finally, we show that any two balanced vertices are connected. These facts are proved in this order as statements (1), (2), and (3), and these are enough to show that \(\mathcal{G}_k(M(G)) \) is connected.

(1) Any vertex \(\{B_1, \ldots, B_k\} \) of \(\mathcal{G}_k(M(G)) \) is connected to a balanced vertex.

Let \(\{B_1, \ldots, B_k\} \) be a vertex of \(\mathcal{G}_k(M(G)) \). Let \(S_i = B_i \cap C \). Suppose that \(\{B_1, \ldots, B_k\} \) is not balanced and (without loss of generality) \(|S_1| > 2 \). Consider the subgraph \(H \) of \(G \) with edge set \(B_1 - C \) and vertex set \(V(G) - v \). It has \(|S_1| \) components; the intersection of these components with \(N(v) \) partitions \(N(v) \), and therefore \(C \), into \(|S_1| \) parts. We denote this partition by \(X_1 \cup \ldots \cup X_{|S_1|} = C \). See Figure 1. Note that \(S_1 \) intersects each of the \(X_i \) in size 1. As \(d(v) \leq 2k - 1 \), without loss of generality \(|S_2| = 1 \). Say \(S_2 = \{f\} \) and \(e \in S_1 \) is an edge not in the \(X_i \) containing \(f \) (This is \(X_3 \) in the figure, and \(e \in X_1 \); all we need is that \(e \notin X_3 \)). Now double swap \(e \) out of \(B_1 \) and into \(B_2 \). That is, there exists a \(g \in B_2 \) such that \(B_1 \cup g - e \) and \(B_2 \cup e - g \) are bases. The edge \(g \) is not in \(C \) because \(g \in B_2 \), \(B_2 \cap C = \{f\} \), and \(f \) and \(g \) are distinct; if \(f = g \), then \(B_1 \cup g - e \) intersects \(X_3 \) in size 2 contradicting that it’s a base. Therefore \(|(B_1 \cup g - e) \cap C| = |S_1| - 1 \) and \(|(B_2 \cup e - g) \cap C| = 2 \). By repeating such swaps we eventually obtain a balanced vertex. This proves (1).

Given a balanced vertex \(\{B_1, \ldots, B_k\} \), its matching graph is the graph with vertex set \(C \) and an edge with ends \(B_i \cap C \) for each \(i \).
THE TORIC IDEAL OF A GRAPHIC MATROID IS GENERATED BY QUADRICS

Figure 1. Each edge type corresponds to one of the bases B_i. The normal edges correspond to B_1 and the dotted edges correspond to B_2. The blobs represent the components of H.

such that $|B_i \cap C| = 2$. Note that the matching graph has vertices of degree at most one and at least one isolated vertex.

(2) If two balanced vertices $\{B_1, \ldots, B_k\}, \{D_1, \ldots, D_k\}$ of $\mathcal{G}_k(M(G))$ have identical matching graphs, then they are connected.

We obtain a new graph G' from G as follows (see Figure 2): delete v and for each B_i with $|B_i \cap C| = 2$ add an edge between the vertices of $N(v)$ that are ends of the two edges in $B_i \cap C$ (the subgraph of G' induced by $N(v)$ is the matching graph of $\{B_1, \ldots, B_k\}$; call this new edge e_i' and call $B_i \cap C$ the pre-edges of e_i'). Let Z denote the set of these special edges e_i'. Note that $|Z| \leq k - 1$. For i such that $|B_i \cap C| = 2$, let $B_i' = B_i \cup e_i' - C$ and $D_i' = D_i \cup e_i' - C$. Note that if we look at the subgraph of G with edge set B_i, then B_i' is obtained by unsubdividing v. For i such that $|B_i \cap C| = 1$, put $B_i' = B_i - C$ and $D_i' = D_i - C$. By induction on r, there is a path from $\{B_1', \ldots, B_k'\}$ to $\{D_1', \ldots, D_k'\}$ in $\mathcal{G}_k(M(G'))$. We will convert this to a path in $\mathcal{G}_k(M(G))$.
Given any set of k disjoint bases of $\mathcal{M}(G')$, we can reverse the above process to produce k disjoint bases of $\mathcal{M}(G)$: if some base B of $\mathcal{M}(G')$ intersects Z in size $t > 0$, choose $t + 1$ of the pre-edges of $B \cap Z$ so that the resulting union with $B - Z$ is a base of $\mathcal{M}(G)$ (not all choices of $t + 1$ edges will work, but at least one will since $B - Z$ is a forest and $(B - Z) \cup \text{pre-edges}(B \cap Z)$ spans $V(G)$). The $t - 1$ pre-edges not used will be added to bases not intersecting Z. Also, there exists $e^* \in C$ that is not the pre-edge of any e'_i. This will always be added to some base not intersecting Z. We call this process of taking a base of $\mathcal{M}(G')$ and producing a base of $\mathcal{M}(G)$ pulling back, and we call the base of $\mathcal{M}(G)$ the pull back of the base of $\mathcal{M}(G')$; we also use this terminology for sets of bases as follows. To pull back a vertex $\{M'_1, \ldots, M'_k\}$ of $\mathcal{G}_k(\mathcal{M}(G'))$, pull back the bases intersecting Z first. There are typically many choices for each of these pull backs, and these choices can be made independently since the sets pre-edges($M'_i \cap Z$) are disjoint. Next, pull back the bases not intersecting Z by adding to each a single edge of C not yet used by the other pull backs.

Pull each vertex in the path from $\{B'_1, \ldots, B'_k\}$ to $\{D'_1, \ldots, D'_k\}$ back to a vertex of $\mathcal{G}_k(\mathcal{M}(G))$. Now suppose that $\{M'_1, \ldots, M'_k\}$ and $\{N'_1, \ldots, N'_k\}$ are consecutive vertices in the path in $\mathcal{G}_k(\mathcal{M}(G'))$. Without loss of generality, $M'_1 = N'_1$. Let M_1 and N_1 be the corresponding pulled back bases of $\mathcal{M}(G)$. We want $M_1 = N_1$. If M'_1 intersects Z, we can force $M_1 = N_1$ since the pull backs of M'_1 and N'_1 do not depend on the pull backs of M'_i, N'_i for $i > 1$.

If M'_1 does not intersect Z, M_1 may differ from N_1 by one element. Suppose $e^* \in M_j$. If $j \neq 1$, double swap e^* of M_j with $M_1 \cap C$ of M_1 (this is possible because $|M_j \cap C| = |M_1 \cap C| = 1$). Denote the resulting set of bases by $\{P_1, \ldots, P_k\}$, and put $\{P_1, \ldots, P_k\} = \{M_1, \ldots, M_k\}$ in the case $j = 1$. Do the same thing with $\{N_1, \ldots, N_k\}$ and N_1 to obtain
Each edge type corresponds to a base of G and G'. The vertices $\{P_1, \ldots, P_k\}$ and $\{Q_1, \ldots, Q_k\}$ are adjacent in $G_k(M(G))$ because $P_1 = M'_1 \cup e^* = N'_1 \cup e^* = Q_1$. Therefore there is a path between $\{M_1, \ldots, M_k\}$ and $\{N_1, \ldots, N_k\}$ in $G_k(M(G))$. This proves that the pulled back path can be patched up to make a path from $\{B_1, \ldots, B_k\}$ to $\{D_1, \ldots, D_k\}$ in $G_k(M(G))$. This proves (2).

(3) If $\{B_1, \ldots, B_k\}$ and $\{D_1, \ldots, D_k\}$ are balanced vertices of $G_k(M(G))$, then there is a balanced vertex $\{M_1, \ldots, M_k\}$ connected to $\{B_1, \ldots, B_k\}$ and a balanced vertex $\{N_1, \ldots, N_k\}$ connected to $\{D_1, \ldots, D_k\}$ such that $\{M_1, \ldots, M_k\}$ and $\{N_1, \ldots, N_k\}$ have the same matching graph.

First note that (2) and (3) together show that any two balanced vertices are connected, and therefore proving (3) will complete the proof of Theorem 3.1. We prove (3) by rearranging the parts of the bases that intersect C without changing the other parts. Although the proof is rather involved, it is not hard to convince oneself that the result is
true by trying small values of k. Proving the result for $k = 3$ and $d(v) = 4$ only requires checking a few cases.

A valid move on a matching graph H of a vertex $\{B_1, \ldots, B_k\}$ is a change in the matching graph from H to H' such that there is a vertex connected to $\{B_1, \ldots, B_k\}$ with matching graph H'. First we show the existence of certain valid moves and then we show that these are enough to prove (3).

(A) Suppose $\{B_1, \ldots, B_k\}$ is a balanced vertex with matching graph H, (e_1, e_2) and (e_3, e_4) are edges of H, and e_5 is an isolated vertex. Then at least one of (i) and (ii) and (isomorphically) at least one of (iii) and (iv) are valid moves on H. Furthermore, if (v) and (vi) are not valid moves, then either (i) and (ii) are both valid or (iii) and (iv) are both valid.

(i) Deleting (e_1, e_2) and adding (e_1, e_5).

(ii) Deleting (e_1, e_2) and adding (e_2, e_5).

(iii) Deleting (e_3, e_4) and adding (e_3, e_5).

(iv) Deleting (e_3, e_4) and adding (e_4, e_5).

(v) Deleting $\{(e_1, e_2), (e_3, e_4)\}$ and adding $\{(e_1, e_3), (e_2, e_4)\}$.

(vi) Deleting $\{(e_1, e_2), (e_3, e_4)\}$ and adding $\{(e_1, e_4), (e_2, e_3)\}$.

We work again with double swaps. Suppose $B_1 \cap C = e_1 \cup e_2$, $B_2 \cap C = e_3 \cup e_4$, and $B_3 \cap C = e_5$. Recall from the proof of (1) that B_1 and B_2 determine partitions of C into two parts. Suppose that B_1 determines the partition $L \cup R = C = V(H)$ and B_2 determines $T \cup B = C = V(H)$. For $X \subset C$, $X \cup (B_1 - C)$ is a base if and only if X intersects L and R in size 1 (a similar statement holds for B_2). Now to show the first part of (A), double swap $e_5 \in B_3$ into B_1. The edge e_5 must be swapped with something in C, so either (i) or (ii) holds. The same argument shows (iii) or (iv) holds.
Consider the representation of the partitions $L \cup R = T \cup B = V(H)$ as shown in Figure 3. The four regions correspond to the sets $L \cap T, L \cap B, R \cap T,$ and $R \cap B$. If one of the regions contains two of e_1, e_2, e_3, e_4 (as in the left example), then these elements can be double swapped. This means we can replace $(e_1, e_2), (e_3, e_4)$ by either $(e_1, e_3), (e_2, e_4)$ or $(e_1, e_4), (e_2, e_3)$ in the matching graph and the resulting matching graph is realized by some vertex connected to $\{B_1, \ldots, B_k\}$; either (v) or (vi) is a valid move. If none of the regions contains two of e_1, \ldots, e_4, then we are in a situation isomorphic to the right example of Figure 3. In this case (i) holds because $B_1 \cup e_5 - e_2$ and $B_3 \cup e_2 - e_5$ are bases, but in addition (ii) holds. This is because $B_1 \cup \{e_3, e_4\} - \{e_1, e_2\}, B_2 \cup \{e_2, e_5\} - \{e_3, e_4\},$ and $B_3 \cup e_1 - e_5$ are bases (if e_5 is in another region, (iii) and (iv) may hold instead of (i) and (ii)). This proves (A).

(B) Let H and H' be graphs on the same vertex set both with maximum vertex degree 1 and the same number, t, of isolated vertices, where $t > 0$. It is possible to get from H to H' by a sequence of valid moves of the kind described in (A).
We prove this by induction on $|V(H)|$. The base case is when H and H' are both a single vertex. Let I_H be the set of vertices that can be made isolated in H after at most one valid move (two vertices in this set don’t have to be able to be isolated at the same time). Define $I_{H'}$ similarly. Using the moves (i) and (ii), we see that $|I_H|, |I_{H'}| \geq t + |E(H)|$. Since $t + |E(H)| > |V(H)|/2$, there is a vertex x in $I_H \cap I_{H'}$. By possibly redefining H (or H') to be a graph one move away from it, we may assume that x is isolated in H and H'. If $t > 1$, delete x from H and H', and the result follows by induction.

The case $t = 1$ remains. Consider the valid moves that make x the end of an edge: let N_H be the set of vertices that can pair up with x after one move on H, and define $N_{H'}$ similarly. We have $|N_H|, |N_{H'}| \geq |E(H)|$. If a move of type (i) and of type (ii) are valid on H then $|N_H| > |E(H)|$, and therefore there exists $y \in (N_H \cap N_{H'})$. Next, make the moves so that both graphs have the common edge (x, y). Delete this edge from both graphs and the result follows by induction. For the rest of the proof we may assume x stays isolated and that for each edge in H and each edge in H' the moves (i) and (ii) are not both valid (we may also assume this for any graph we reach from H or H' by a sequence of valid moves that keeps x isolated). This implies that for every pair of edges in H and H', either (v) or (vi) is a valid move.

For the rest of proof, we modify the statement we are proving by induction: we no longer require the graphs to have an isolated vertex, but for each pair of edges either (v) or (vi) is valid. We will prove this statement for the graphs $H - x$ and $H' - x$. Consider the graph J with vertex set $V(H) - x$ and edge set $E(H) \cup E(H')$. It is 2-regular, and therefore a disjoint union of cycles. If there is more than one component, split up $V(H) - x$ according to the components and win by induction. The remaining case is if J is a cycle. If J is a 2-cycle,
Figure 4. On the left is J, where dashed edges are edges of H' and normal edges are edges of H. The other graphs show J after possible moves on H and H' as described in the proof of (B).

$H = H'$. If $|V(J)| \geq 4$, it suffices to consider 5 consecutive vertices e_1, e_2, e_3, e_4, e_5 as in Figure 4 (if J is a 4-cycle, but the proof still works). If replacing (e_1, e_2) and (e_3, e_4) by (e_1, e_4) and (e_2, e_3) is a valid move on H', we get a 2-cycle and win by induction (as in the top graph of Figure 4). The same thing happens if replacing (e_2, e_3) and (e_4, e_5) by (e_2, e_5) and (e_3, e_4) is a valid move on H (as in the bottom graph). If neither of these is a valid move, then (replacing (e_1, e_2) and (e_3, e_4) by (e_1, e_3) and (e_2, e_4)) and (replacing (e_2, e_3) and (e_4, e_5) by
(e_2, e_4) and (e_3, e_5)) are valid moves (as in the right graph). Delete the ends of the common edge (e_2, e_4) and win by induction.

(B) implies (3) by letting H be the matching graph of \{B_1, \ldots, B_k\} and H' be the matching graph of \{D_1, \ldots, D_k\}. A sequence of valid moves beginning with H yields a path from \{B_1, \ldots, B_k\} to \{M_1, \ldots, M_k\} and a sequence of valid moves beginning with H' yields a path from \{D_1, \ldots, D_k\} to \{N_1, \ldots, N_k\}. (B) says that we can find moves so that \{M_1, \ldots, M_k\} and \{N_1, \ldots, N_k\} have the same matching graph.

\[\blacksquare\]

4. QUADRICS ARE GENERATED BY ONE ELEMENT EXCHANGES

The following theorem together with the modified version of Proposition 2.1 shows that Conjecture 1.7 holds for graphic matroids. This will complete the proof of Theorem 1.2.

Theorem 4.1. Let G be a graph with 2r edges, where r is the rank of M(G). Then the single exchange graph \(\mathcal{G}(M(G))\) is connected.

Proof. The proof is very similar to the proof of Theorem 3.1. We do induction on r. We can assume G is connected for the same reason as before. And again, we have that there is a vertex v of degree at most 3, which we fix throughout the proof. Let C be the set of edges leaving v. There is no need to balance the vertices because there is only one possibility for the sizes of the intersections of two bases with C (if \(d(v) = 3\), one base intersects C in size 2 and the other in size 1; if \(d(v) = 2\) both bases intersect C in size 1). As before, define the matching graph of a vertex \((B_1, B_2)\) to be the graph with vertex set C and an edge with ends \(B_i \cap C\) for i such that \(|B_i \cap C| = 2\). Note that the matching graph ignores the order of \(B_1\) and \(B_2\); we are careful to remember this when proving (1) below.
We need to show that any two vertices of \mathfrak{G} that have the same matching graph are connected. This is enough to prove the theorem since statement (3) of the proof of Theorem 3.1 holds for $k = 2$ with the same proof (although a much simpler argument would do in this case).

1. If two vertices $(B_1, B_2), (D_1, D_2)$ of $\mathfrak{G}(M(G))$ have the same matching graph, then they are connected.

We obtain a new graph G' from G using the same construction as in the proof of Theorem 3.1. Let B_1', B_2', D_1', D_2' be the bases of $M(G')$ defined in the proof of Theorem 3.1. By induction on r, there is a path from (B_1', B_2') to (D_1', D_2') in $\mathfrak{G}(M(G'))$. We will convert this to a path in $\mathfrak{G}(M(G))$. Note that in this case the pull backs are unique.

Pull each vertex in the path from (B_1', B_2') to (D_1', D_2') back to a vertex of $\mathfrak{G}(M(G))$. Now suppose that (M_1', M_2') and (N_1', N_2') are consecutive vertices in the path in $\mathfrak{G}(M(G))$. Let M_1, M_2, N_1, N_2 be the corresponding pulled back bases of $M(G)$. If $d(v) = 2$, (M_1, M_2) is adjacent to (N_1, N_2) and we are done. If $d(v) = 3$, observe that Z consists of a single edge e'_1 and $C = \text{pre-edges}(e'_1) \cup e^*$. Without loss of generality, $e'_1 \in M_1'$. If $e'_1 \in N_1'$, then M_1 and N_1 differ by only one element and are therefore adjacent in $\mathfrak{G}(M(G))$.

If $e'_1 \in N_2'$, then let $\{a, b\} = \text{pre-edges}(e'_1)$. Double swap $e^* \in M_2$ with M_1 to obtain a vertex (P_1, P_2) adjacent to (M_1, M_2). The edge e^* must double swap with something in C (say, a), because otherwise P_2 would not intersect C contradicting that it’s a base. We know that $(N_2' - e'_1) \subset M_2'$ and we can rewrite this as $(N_2 - \{a, b\}) \subset (M_2 - e^*)$. Add $\{a, b\}$ to both these sets to obtain $N_2 \subset (P_2 \cup b)$ and therefore $|P_2 \cap N_2| = r - 1$. This shows that (P_1, P_2) and (N_1, N_2) are adjacent.
and thus the pulled back path can be patched up to make a path from (B_1, B_2) to (D_1, D_2) in $\mathcal{G}(M(G))$. □

5. Future Work

The proofs of Theorems 3.1 and 4.1 depend heavily on the graphic assumption. However, it seems possible to convert many of the techniques to the general case. For instance, instead of choosing C to be the edges leaving a vertex, we could take C to be a cocircuit. There is an analog of the construction of G' for any cocircuit of a matroid. One thing that can definitely not be generalized is the existence of a small cocircuit and this is crucial to the proofs. For instance, there are uniform matroids with arbitrarily large minimum cocircuit size for fixed k.

Part (3) of Theorem 3.1 at first seemed like a digression from the main content of the proof and theorem, and a fun, but not very significant, result on its own. However, the analogous statement of (3) for general cocircuits may actually be rather deep. We will not state the exact generalization of (3), but it suggests the following question. Given matroids M and N on the ground set E and $X \subset E$, define $r_{M \cap N}(X)$ to be the maximum size of an independent set in X common to M and N. Given matroids M_1, \ldots, M_k and N_1, \ldots, N_k all on the ground set E, we define their matching intersection rank to be

$$\max_{\pi \in S_k} \left(\max_{X_1 \cup \ldots \cup X_k = E} \sum_{i=1}^{k} r_{M_i \cap N_{\pi(i)}}(X_i) \right).$$

Problem. Suppose $\{B_1, \ldots, B_k\}$ and $\{D_1, \ldots, D_k\}$ are balanced vertices of $\mathcal{G}_k(M)$ with respect to some cocircuit C. Here we take balanced to mean that the intersection sizes of the bases with C are less than one away from average intersection size. Let $M_i = M.(B_i - C)|C$ and
THE TORIC IDEAL OF A GRAPHIC MATROID IS GENERATED BY QUADRICS

\[N_i = M_i(D_i - C)|C, \] where . denotes contraction and |C means deleting everything not in C. Determine conditions on C under which the matching intersection rank of \(M_1, \ldots, M_k \) and \(N_1, \ldots, N_k \) is |C|.

This problem and the notion of matching intersection rank lead to two general questions, but we have not been able to formulate specific conjectures along these lines. Is there a generalization of the matroid union and intersection theorems that says something about matching intersection rank? Does White’s conjecture generalize to a statement that involves bases of more than one matroid?

6. ACKNOWLEDGMENTS

The author thanks Bernd Sturmfels for many helpful conversations.

REFERENCES

[1] G. Caviglia and L. García, private communication, October 2005.
[2] A. Conca, Linear spaces, transversal polymatroids and ASL domains, preprint 2005.
[3] J. Herzog and T. Hibi, Discrete polymatroids, J. Algebraic Combin. 16 (2002), 239-268.
[4] B. Sturmfels, Gröbner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, Vol. 8, Providence, RI, 1995.
[5] B. Sturmfels, Equations defining toric varieties, Proc. Sympos. Pure Math. 62 (1997), 437-449.
[6] N. White, The basis monomial ring of a matroid, Advances in Math. 24 (1977), 292-297.
[7] N. White, A unique exchange property for bases, Linear Algebra and its Applications 31 (1980), 81-91.