On strictly 2-maximal subgroups of finite groups

Monakhov V. S., Sokhor I. L.

1 Introduction

All groups in this paper are finite. We write $H \leq G$ ($H < G$) if H is a (proper) subgroup of a group G. A subgroup M of a group G is called a maximal subgroup if $M < G$ and $M \leq H \leq G$ implies that either $M = H$ or $H = G$. If M is a maximal subgroup of a group G, then we write $M \lhd G$.

Let G be a group and let H be a subgroup of G. We use the following notation

$$\text{Max}(G, H) = \{ M \lhd G \mid H \leq M \}.$$

If $H = 1$ is the unit subgroup of G, then we write $\text{Max}(G)$ instead of $\text{Max}(G, 1)$. It is clear that $\text{Max}(G)$ is the set of all maximal subgroups of G. It should be noted that $\text{Max}(G) = \emptyset$ exactly when $G = 1$.

Definition 1. A subgroup H of a group G is called

- a 2-maximal subgroup of G if there is $M \in \text{Max}(G, H)$ such that $H \lhd M$;
- an n-maximal subgroup of G for $n \geq 3$ if there is $M \in \text{Max}(G, H)$ such that H is an $(n - 1)$-maximal subgroup in M.

Example 1. In $L_2(8)$ $[1, \text{IdGroup}(504,156)]$, a subgroup C_2 is a 2-, 3- and 4-maximal subgroup:

- $C_2 \lhd D_{14} \lhd L_2(8)$,
- $C_2 \lhd S_3 \lhd D_{18} \lhd L_2(8)$,
- $C_2 \lhd C_2^2 \lhd C_2^3 \lhd C_2^3 : C_7 \lhd L_2(8)$.

In view of [2, example 3], for any $n > 2$ there is a group in which a 2-maximal subgroup is n-maximal.

Definition 2. A subgroup H of a group G is called a strictly 2-maximal subgroup of G if $H \lhd M$ for all $M \in \text{Max}(G, H)$. Clearly, a strictly 2-maximal subgroup of a group G is 2-maximal in G and is not n-maximal in G for any $n > 2$.

By $\text{Max}_2(G)$ we denote the set of all 2-maximal subgroups of a group G, $\text{Max}_2^\star(G)$ denotes the set of all strictly 2-maximal subgroups of G. It is clear that $\text{Max}_2(G) = \emptyset$ exactly when $G = 1$ or $|G|$ is a prime. From the indices lemma, it follows that a 2-maximal subgroup of least index is strictly 2-maximal, see Lemma $[1]$. Therefore $\text{Max}_2^\star(G) \neq \emptyset$ for any $G \neq 1$ of nonprime order.

The first author of this paper proper the following problem $[3, 19.54]$

What are the chief factors of a finite group in which every 2-maximal subgroup is not n-maximal for any $n \geq 3$?
This problem is researched in \[3\].

If every 2-maximal subgroup of a group G is not n-maximal for all $n \geq 3$, then $\text{Max}_2(G) = \text{Max}_2^*(G)$, i.e. every 2-maximal subgroup of G is strictly 2-maximal. Hence the noted problem could be formulated as follows.

What are the chief factors of a finite group in which $\text{Max}_2(G) = \text{Max}_2^*(G)$?

The examples of groups with $\text{Max}_2(G) = \text{Max}_2^*(G)$ are supersoluble groups, the nonsupersoluble group $C_3^2 : C_8$ [4, remark 4], the group $U_3(2)$, the simple groups $U_3(3)$ and $L_2(17)$, see examples [4, 5].

In this paper, we conclude from the results of Hanguang Meng and Xiuyun Guo [4] some corollaries about the existence of strictly 2-maximal subgroups in groups. We give examples of groups that illustrate properties of strictly 2-maximal subgroups.

2 On groups with $\text{Max}_2(G) = \text{Max}_2^*(G)$

Lemma 1. If $G \neq 1$ is a group of nonprime order, then $\text{Max}_2^*(G) \neq \emptyset$.

Proof. Let H be a 2-maximal subgroup in G of least index. Suppose that H is not a strictly 2-maximal subgroup. Then there is $M \in \text{Max}(G, H)$ such that H is not a maximal subgroup in M. So, in M there is a subgroup K such that $H < K < M$. By the indices lemma,

$$|G : H| = |G : K||K : H|, \quad |K : H| \neq 1, \quad |G : K| < |G : H|.$$

Thus, K is 2-maximal in G and $|G : K| < |G : H|$, this contradicts the choice of H. Hence we conclude that H is a strictly 2-maximal subgroup of G. \hfill \Box

Lemma 2. Let H be a 2-maximal subgroup of a group G, $H \triangleleft M \triangleleft G$. If the indices $|G : M|$ and $|M : H|$ are primes, then H is a strictly 2-maximal subgroup of G. In particular, if G is a supersoluble group, then $\text{Max}_2(G) = \text{Max}_2^*(G)$.

Proof. Assume that H is a 2-maximal subgroup of G, $H \triangleleft M \triangleleft G$, and the indices $|G : M|$ and $|M : H|$ are primes. Suppose that H is not a strictly 2-maximal subgroup of G. Hence there is a subgroup K of G such that $H < K < G$ and H is 2-maximal in K. Therefore there is a subgroup L such that $H \triangleleft L \triangleleft K < G$. By the indices lemma,

$$|G : H| = |G : K||K : L||L : H|, \quad |G : K| \neq 1, \quad |K : L| \neq 1, \quad |L : H| \neq 1,$$

so $|G : H|$ is divided by three primes, a contradiction. Consequently, H is a strictly 2-maximal subgroup of G.

Let $H \triangleleft M \triangleleft G$ and let G be a supersoluble group. By the Huppert Theorem [5, VI.9.5], $|G : H|$ is divided by exactly two not necessarily different primes. If $H \triangleleft X \triangleleft G$, then $|X : H|$ is a prime and H is a maximal subgroup in X. Since X is an arbitrary maximal subgroup of G containing H, we obtain that H is a strictly 2-maximal subgroup of G. \hfill \Box

We give examples nonsupersoluble groups with $\text{Max}_2(G) = \text{Max}_2^*(G)$. In examples, we based on [1, 6, 8] and build a graph for each group, whose vertices are representatives of the classes of conjugate subgroups and two vertices A and B are joined by an edge whenever $B \triangleleft A$, at that B is located below A. We follow the notation of [6]. Besides, C_q denotes a cyclic group of order q, G_q^n denotes a direct product of n copies of C_q.
Example 2 (remak 4]). $C_2^3 : C_8$ (IdGroup(72,39)], [S]

\[\text{Max}(C_2^3 : C_8) = \{C_8, C_2^3 : C_4\}, \]
\[\text{Max}_2(C_2^3 : C_8) = \{C_4, C_3 : S_3\}, \]
\[\text{Max}^*_2(C_2^3 : C_8) = \text{Max}_2(C_2^3 : C_8). \]

Example 3. $U_3(2)$ (IdGroup(72,41)], [S]

\[\text{Max}(U_3(2)) = \{Q_8, C_3^2 : C_4\}, \]
\[\text{Max}_2(U_3(2)) = \{C_4, C_3 : S_3\}, \]
\[\text{Max}^*_2(U_3(2)) = \text{Max}_2(U_3(2)). \]

Example 4. $L_2(17)$ ([1], [6] p. 9], [7]}

\[\text{Max}(L_2(17)) = \{Q_8, C_3^2 : C_4\}, \]
\[\text{Max}_2(L_2(17)) = \{C_4, C_3 : S_3\}, \]
\[\text{Max}^*_2(L_2(17)) = \text{Max}_2(L_2(17)). \]
Example 5. For $U_3(3)$ [6, p. 9] it follows from [1, 7] that

$$\text{Max}(L_2(17)) = \{C_{17} : C_8, S_4, D_{18}, D_{16}\},$$

$$\text{Max}_2(L_2(17)) = \{C_{17} : C_4, C_8, A_4, D_8, S_3, C_9\} = \text{Max}_2^*(L_2(17)).$$

Maximality of subgroups and normal subgroups of G is a maximal subgroup of N. Hence N is a maximal subgroup of G. Maximal subgroup H is the normal subgroup of G/N, K is a minimal subgroup of G. Suppose that $K < H$ is a maximal subgroup of G such that $K ≤ M ≤ H$, K is maximal in M and K is not maximal in H. The following statements hold:

1. $K = M \cap H$;
2. $K_G = M_G < M$;
3. either $K_G = H_G$ or $KH_G = H$;
4. if G is soluble, $K ≤ X < G$ and K is not maximal in X, then $X = H$, $K_G = M_G < H_G$ and $KH_G = H$.

Proof. (1) Since $K ≤ (H \cap M) < M$ and K is maximal in M, then $K = H \cap M$.

(2) This statement is Lemma 1 [4]. We can assume that $K_G = 1$ and $M_G \neq 1$. Choose a minimal normal subgroup N of G such that $N ≤ M_G$. Since $K_G = 1$, we get $N \nleq K$ and $KN = M$. In view of (1), $K = (H \cap M)$, therefore $H \cap N ≤ K$ and $H \cap N = K \cap N$. From $K < H \neq M$ and $KN = M$, we conclude that $N \nleq H$ and $G = HN$. The maximal normal subgroup $KN/N = M/N$ is maximal in $G/N = HN/N$, consequently,

$$K/(H \cap N) = K/(K \cap N) \cong KN/N < G/N = HN/N \cong H/(H \cap N).$$

Hence K is maximal in H, a contradiction, and $M_G = 1 = K_G$. Since $K < M$, it follows from $M_G = K_G$ that $M_G \neq M$.

(3) Since $K < H$, we get $K_G ≤ H_G$. Suppose that $K_G < H_G$ and N/K_G is a minimal normal subgroup of G/K_G, $N/K_G ≤ H_G/K_G$. In view of (2), $M_G = K_G$, therefore $N \nleq M$ and $G = NM$. Since $NK \nleq H$ and K is maximal in M, we conclude that NK is a maximal subgroup of G and $H = NK = H_GK$.

(4) This statement is Theorem B [4]. We can assume that $K_G = 1$. By the hypothesis $K < M < G$. Suppose that there are two subgroups $H \in \text{Max}(G, K)$ and $X \in \text{Max}(G, K)$ such that $K \leq H \cap X$, $H \neq X$, K is not maximal in H and K is not maximal in X. In view of (2), $M_G = 1$, $K = M \cap H = M \cap X$. Since G is a soluble primitive group, we obtain

$$G = N : M, \ N = F(G), \ \Phi(G) = 1,$$

N is the unique minimal normal subgroup of G. If $N \leq H \cap X$, then

$$H = H \cap (NM) = N(H \cap M) = N(X \cap M) = X \cap (NM) = X,$$
So $G = N : H$. From $K < M < G$, it follows that $NK < G$. By the hypothesis, K is not maximal in H, therefore there is a subgroup T such that $K < T < H$. Now $NK < NT < G$, a contradiction. Hence we conclude that $H = X$.

If $K_G = H_G$, then K and H are conjugate. Since $K_G = M_G$ and $K/M_G < M/M_G$, we get $K/H_G < H/H_G$, and K is maximal in H, a contradiction. Therefore $K_G \neq H_G$, and it follows from (3) that $K_H = G$.

Corollary 1.1. Let G be a group, $K < M < G$. If $K_G \neq M_G$, then K is a strictly 2-maximal subgroup of G. In particular, if a maximal subgroup M of G is normal in G, then every maximal subgroup of M is a strictly 2-maximal subgroup of G.

Note 1. Let G be a soluble group and let M be a maximal subgroup in G of least index. According to [9, Lemma 1], M is normal in G, and in view of Corollary 1.1 all maximal subgroups of M are strictly 2-maximal subgroups of G. In insoluble groups, it is not true.

Example 6. In A_6 ([1] IdGroup(360,118)], [8]), a maximal subgroup A_5 has the least index and S_3 is a maximal subgroup of A_5. Since

$$S_3 < C_3 : S_3 < C_3^2 : C_4 < G,$$

S_3 is a 3-maximal subgroup of A_6. Hence S_3 is not a strictly 2-maximal subgroup of A_6.

Corollary 1.2. Let G be a soluble group and let K be a 2-maximal subgroup of G. If K is not a strictly 2-maximal subgroup of G, then there is a unique maximal subgroup V of G such that $K < V$ and K is not maximal in V.

Example 7. In $L_2(3^3)$ ([6] p. 18], [7]), there is a maximal subgroup $M \cong D_{26}$. A subgroup K of order 2 from M is a 2-maximal subgroup of $L_2(3^3)$. In $L_2(3^3)$, there are maximal subgroups $H \cong D_{28}$ and $U \cong A_4$. Since Sylow 2-subgroups of $L_2(3^3)$ are of order 4 and conjugate, we can assume that $K \leq H \cap U$. As K is 2-maximal in H and in U, we have K is a 3-maximal subgroup of $L_2(3^3)$. Consequently, the condition of group solubility could not be removed in Corollary 1.2.

Lemma 3. Let H be a subgroup of a p-soluble group G and $|G : H| = p$. Then G/H_G is supersoluble.

Proof. We can assume $H_G = 1$. Since $O_p'(G) \leq H_G = 1$, we obtain that $O_p(G) \neq 1$ and $C_G(O_p(G)) \leq O_p(G)$. Since $H \cap O_p(G) \leq H_G = 1$, we have $G = O_p(G) : H$, $|O_p(G)| = p$ and H is isomorphic to a subgroup of a cyclic group of order $p - 1$. Therefore G is supersoluble.

Corollary 1.3. Let G be a p-soluble group, $M < G$. If $|G : M| = p$, then every maximal subgroup in M is a strictly 2-maximal subgroup of G. In particular, in a soluble group, all maximal subgroups of a subgroup of prime index are strictly 2-maximal subgroups of a group.

Proof. Assume that the assertion is false. Then there are a maximal subgroup K in M and a maximal subgroup H in G such that $K < H$ and K is not maximal in H. According to Theorem 1, M is not normal in G and $K_G = M_G \leq H_G$. The quotient group G/K_G is supersoluble by Lemma 3, therefore K is a strictly 2-maximal subgroup of G, a contradiction.
Note 2. We do not know whether the requirement of group \(p \)-solubility could be removed in Corollary 1.3.

Corollary 1.4. Let \(G \) be a group and \(K \leq G \). Suppose that there are two maximal subgroups \(M \) and \(H \) in \(G \) such that \(K \) is maximal in \(M \) and \(K \) is not maximal in \(H \). If \(K \) is subnormal in \(G \), then \(K = M_G \) and \(G/K = H/K : M/K \) is a nonprimary nonsupersoluble group in which all proper subgroups are primary.

Proof. According to Theorem 1, \(M \) is not normal in \(G \) and \(K_G = M_G \leq H_G \). By the hypothesis, \(K \) is subnormal in \(G \), therefore \(K \) is normal in \(G \) and \(K = M_G \). Since \(K \) is maximal in \(M \), we get \(|M/K| = p \) for a prime \(p \). As \(N_{G/K}(M/K) = M/K \) we deduce \(G/K \) is soluble \[5\], \[IV.7.4\], \(H/K \) is normal in \(G/K \) \[5\], \[II.3.2\] and \(H/K \) is a minimal normal subgroup. Hence \(H/K \) is a \(q \)-group for a prime \(q \neq p \). Since \(K \) is not maximal in \(H \), we have \(|H/K| > q \), and \(G/K = H/K : M/K \) is a nonprimary nonsupersoluble group. It is clear that all proper subgroups in \(G/K \) are primary.

References

[1] The GAP Group: GAP — Groups, Algorithms, and Programming. Ver. 4.11.0 released on 29 February 2020. [http://www.gap-system.org].

[2] V. S. Monakhov, V. N. Kniahina. Finite group with \(P \)-subnormal subgroups. Ricerche Mat., 62 (2013), 307–323.

[3] Unsolved Problems in Group Theory. The Kourovka Notebook. Institute of Mathematics SO RAN, Novosibirsk 19 (2018), [https://arxiv.org/pdf/1401.0300.pdf].

[4] H. Meng, X. Guo. Weak second Maximal subgroups in solvable groups. J. Algebra, 517 (2019), 112–118.

[5] B. Huppert. Endliche Gruppen I. Berlin, Springer (1967).

[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, Clarendon Press (1985).

[7] T. Connor, D. Leemans. An atlas of subgroup lattices of finite almost simple groups. Ars Math. Contemp., 8 (2015), 259–266.

[8] T. Dokchitser. GroupNames, [http://groupnames.org/].

[9] V. S. Monakhov, V. N. Tyutyayev. Finite groups with supersoluble subgroups of given orders. Trudy Inst. Mat. i Mekh. UrO RAN, 25(4) (2019), 155–163 (In Russian).