Tumor Necrosis Factor (TNF) Receptor 1 Signaling Downstream of TNF Receptor-associated Factor 2

NUCLEAR FACTOR κB (NFκB)-INDUCING KINASE REQUIREMENT FOR ACTIVATION OF ACTIVATING PROTEIN 1 AND NFκB BUT NOT OF c-Jun N-TERMINAL KINASE/STRESS-ACTIVATED PROTEIN KINASE "

(Received for publication, July 14, 1997, and in revised form, August 22, 1997)

Gioacchino Natoli§§, Antonio Costanzo§, Francesca Moretti, Marcella Pulcro, Clara Balsamo, and Massimo Levrero‡

From the *Fondazione Andrea Cesalpino and Istituto I Clinica Medica, Policlinico Umberto I, Università degli Studi di Roma La Sapienza, Viale del Policlinico 155, 00161 Rome, the ‡Istituto di Medicina Interna, Università degli Studi di Palermo 90100, Palermo, and the §Dipartimento di Medicina Interna, Università degli Studi di L’Aquila, 86100 Italy

Like other members of the tumor necrosis factor (TNF) receptor family, p55 TNF receptor 1 (TNF-R1) lacks intrinsic signaling capacity and transduces signals by recruiting associating molecules. The TNF-R1 associated death domain protein interacts with the p55 TNF-R1 cytoplasmic domain and recruits the Fas-associated death domain protein (which directly activates the apoptotic proteases), the protein kinase receptor interacting protein, and TNF receptor-associated factor 2 (TRA2F). TRAF2 has previously been demonstrated to activate both transcription factor nuclear factor κB (NFκB) and the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway, which in turn stimulates transcription factor activating protein 1 (AP1) mainly via phosphorylation of the c-Jun component. We have investigated the signaling properties of NFκB-inducing kinase (NIK), a TRAF2-associated protein kinase that mediates NFκB induction. NIK was found to be unable to activate JNK/SAPK, mitogen-activated protein kinase, or p38 kinase. Moreover, NIK was not required for JNK/SAPK activation by TNF-R1, thus representing the first TNF-R1 complex component to disent NFκB and the JNK/SAPK pathways. Despite being unable to activate JNK/SAPK and mitogen-activated protein kinase, NIK strongly activated AP1 and was required for TNF-R1-induced AP1 activation. Therefore, NIK links TNF-R1 to a novel, JNK/SAPK-independent, AP1 activation pathway.

* This work was supported by the Applicazioni Cliniche Ricerca Oncologica Project of the Associazione Italiana Ricerca sul Cancro, the II Research Project on Multiple Sclerosis of the Istituto Superiore di Sanità, and the Fondazione Andrea Cesalpino. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ To whom correspondence should be addressed: Istituto I Clinica Medica, Policlinico Umberto I, Viale del Policlinico 155, 00161 Roma, Italy. Tel.: 39-6-4486529; Fax: 39-6-4940594.

1 The abbreviations used are: TNF, tumor necrosis factor; TNF-R, TNF receptor; TRADD, TNF receptor-associated death domain protein; FADD, Fas-associated death domain protein; TRAF2, TNF receptor-associated factor 2; JNK, c-Jun N-terminal kinase; SAPK, stress-activated protein kinase; NFκB, nuclear factor κB; IKK, NFκB-inducing kinase; MAPK, mitogen-activated protein kinase; AP1, activating protein 1; PCR, polymerase chain reaction; aa, amino acid(s); DTT, dithiothreitol; HR, human recombinant; CAT, chloramphenicol acetyltransferase; MEKK, mitogen-activated/extracellular response kinase kinase kinase; SEK, stress-activated protein kinase kinase; JNKK, JNK kinase.

EXPERIMENTAL PROCEDURES

Expression Vectors—Full-length human NIK cDNA was PCR amplified from a human placental cDNA library using a mixture of Tag and two polymerases (Boehringer). The primers used were NIK1 (5’-TCGGTACCATGGGCTGTTCTC-3’) and NIK2 (5’-TCTCTCTGGGCTGTTCTC-3’); the PCR fragment was digested with NheI and XhoI and cloned in pcDNA3-HA. pcDNA3-HA was constructed by insertion of a BagI/BamHI fragment from pActII (CLONTECH) into the BamHI site of pcDNA3 (Invitrogen, Inc). NIK1234 (deletion of aa 1–334) was constructed by PCR amplification of full-length NIK using the primers 1234 (5’- TTGGTACCATGGGCTGTTCTC-3’) and NIK2. NIKΔ101 (deletion of aa 1–623) was amplified using the primers 2101 (5’- TTGGTACCATGGGCTGTTCTC-3’) and NIK2. Both PCR fragments were cloned in pcDNA3-HA as above. NIKKR was obtained by two-step PCR using the mutagenic primers KR5 (5’-CAGTGGCGCTCGTCAAGGAGTCCGGCTGTTCTC-3’) and KRA5 (5’-CAGCAGCAGGCTCGTCAAGGAGTCCGGCTGTTCTC-3’). HA-p65SAKpCDNA3 and HA-SEKALpMT2 (gifts of J. R. Comment
Similarly to JNK/SAPK, p38 activation by TNF depends on NIK, and consistent with a requirement for NIK in TNF-induced NF-κB activation, mutation at aa 429) abolish NF-κB activation, whereas the deletion of the catalytic domain (NIKΔ2101) or its inactivation (Lys → Arg mutation at aa 429) abolish NF-κB activation (Fig. 1, A and B). Deletion of the N-terminal (putatively regulatory) domain of NIK (NIKΔ1234) does not apparently affect NF-κB activation, whereas the deletion of the catalytic domain (NIKΔ2101) or its inactivation (Lys → Arg mutation at aa 429) abolish NF-κB activation (Fig. 1, B). Consistent with a requirement for NIK in TNF-induced NF-κB activation, overexpression of a C-terminal NIK fragment (NIKΔ2101), which binds TRAF2 and presumably blocks the recruitment of endogenous NIK and/or titrates downstream effectors (23), significantly impairs the induction of NF-κB by either TNF treatment or overexpression of TNF-R1 complex components (Fig. 1C). These data indicate that NIK is required for the activation of NF-κB by TNF-R1/TRAP2 in different cell types.

Because TRAF2 overexpression is sufficient to activate both NF-κB and JNK/SAPK (13–16), we examined whether NIK is able to activate JNK/SAPK as well. NIK was cotransfected in HeLa and 293 cells together with a hemagglutinin (HA)-tagged SAPKα expression vector, and the activity of exogenous transfected SAPKα was assayed 36–48 h after transfection. In 293 cells, wherein TRAF2 usually gives the highest activation of SAPKα/JNK, neither NIK nor NIKΔ1234 (which are both efficient NF-κB activators) were able to elevate JNK/SAPK activity over the baseline. In a similar manner, we were unable to detect any JNK/SAPK activation by NIK in HeLa cells (Fig. 2, A and B). Similarly to NIK/SAPK, p38 activation by TNF depends on TRAF2 (14, 21) but is not dependent on NIK (Fig. 2C).

Apart from inducing a prolonged activation of JNK/SAPK and p38, TNF-R1 engagement provokes a mild and transient activation of the mitogen-activated protein kinase (MAPK), whose biological role has not been defined (26, 27). MAPK activation by TNF may depend on a TNF-R1 domain that is distinct from the TRADD interaction domain and that interacts with a recently identified protein known as FAN (28). Consistent with MAPK activation being a TRADD-independent function, neither TRAF2 or NIK were able to activate MAPK in the cells tested (Fig. 2D).

The effects of the dominant negative NIK mutant (NIKΔ2101) on JNK/SAPK activation by TNF-R1 were next evaluated. The expression of Δ2101 at levels that gave maximal inhibition of NF-κB induction (Fig. 1C) did not impair the ability

RESULTS AND DISCUSSION

In both 293 and HeLa cells, TRADD, TRAF2, and NIK are able to induce a strong NF-κB activation (NIK being the strongest activator) (Fig. 1, A and B). Deletion of the N-terminal (putatively regulatory) domain of NIK (NIKΔ1234) does not apparently affect NF-κB activation, whereas the deletion of the catalytic domain (NIKΔ2101) or its inactivation (Lys → Arg mutation at aa 429) abolish NF-κB activation (Fig. 1, B). Consistent with a requirement for NIK in TNF-induced NF-κB activation, overexpression of a C-terminal NIK fragment (NIKΔ2101), which binds TRAF2 and presumably blocks the recruitment of endogenous NIK and/or titrates downstream effectors (23), significantly impairs the induction of NF-κB by either TNF treatment or overexpression of TNF-R1 complex components (Fig. 1C). These data indicate that NIK is required for the activation of NF-κB by TNF-R1/TRAP2 in different cell types.

Because TRAF2 overexpression is sufficient to activate both NF-κB and JNK/SAPK (13–16), we examined whether NIK is able to activate JNK/SAPK as well. NIK was cotransfected in HeLa and 293 cells together with a hemagglutinin (HA)-tagged SAPKα expression vector, and the activity of exogenous transfected SAPKα was assayed 36–48 h after transfection. In 293 cells, wherein TRAF2 usually gives the highest activation of SAPKα/JNK, neither NIK nor NIKΔ1234 (which are both efficient NF-κB activators) were able to elevate JNK/SAPK activity over the baseline. In a similar manner, we were unable to detect any JNK/SAPK activation by NIK in HeLa cells (Fig. 2, A and B). Similarly to NIK/SAPK, p38 activation by TNF depends on TRAF2 (14, 21) but is not dependent on NIK (Fig. 2C).

Apart from inducing a prolonged activation of JNK/SAPK and p38, TNF-R1 engagement provokes a mild and transient activation of the mitogen-activated protein kinase (MAPK), whose biological role has not been defined (26, 27). MAPK activation by TNF may depend on a TNF-R1 domain that is distinct from the TRADD interaction domain and that interacts with a recently identified protein known as FAN (28). Consistent with MAPK activation being a TRADD-independent function, neither TRAF2 or NIK were able to activate MAPK in the cells tested (Fig. 2D).

The effects of the dominant negative NIK mutant (NIKΔ2101) on JNK/SAPK activation by TNF-R1 were next evaluated. The expression of Δ2101 at levels that gave maximal inhibition of NF-κB induction (Fig. 1C) did not impair the ability
of either TNF or TRAF2 to activate JNK/SAPK (Fig. 2E). Therefore, when the NIK pathway is blocked by expression of dominant negative NIK, both receptor cross-linking and overexpressed TRAF2 still activate JNK/SAPK. Taken together our results suggest that: (i) NIK is neither sufficient nor required for JNK/SAPK activation by TNF-R1/TRAF2; (ii) the bifurcation between the NFkB pathway and the JNK/SAPK pathway occurs immediately downstream of TRAF2; and (iii) dominant negative NIK does not disrupt the TNF-R1 complex nonspecifically. Therefore, NIK disrupts the TRAF2 pathway leading to NFkB activation from the pathway leading to JNK/SAPK activation; this suggests that the
ability of TNF-R1/TRAF2 to activate JNK/SAPK must depend on a different TRAF2-interacting protein. One possible candidate is represented by MEKK1, a kinase that phosphorylates and activates SEK/JNKK, which in turn phosphorylates JNK/SAPK (29–32). However, we have been unable to detect a physical interaction between TRAF2 and MEKK1. Therefore, the evidence for a role of MEKK1 in TNF-R1 signaling is indirect and arises from the ability of catalytically inactive MEKK1 (MEKK1-KM) to block TNF-R1/TRAF2-induced activation of SAPK/JNK (14); at this point we cannot exclude the possibility that SAPK/JNK activation by TNF-R1/TRAF2 depends on a putative MEKK1-related protein whose activity is inhibited by MEKK1-KM overexpression.

The prolonged activation of JNK/SAPK by TNF and the consequent phosphorylation and activation of the c-Jun transcriptional activation domain correlate with the sustained induction of AP1-dependent genes (33, 34). AP1 is composed of proteins of the Jun and Fos families that associate to form a variety of homo- and heterodimers that bind to a common recognition element known as either the tetradecanoic parabol acetate-response element or the AP1 binding site (35); the variety of homo- and heterodimers that bind to a common recognition element known as either the tetradecanoic parabol acetate-response element or the AP1 binding site (35); the

REFERENCES

1. Fiers, W. (1991) FEBS Lett. 285, 199–212
2. Vassalli, P. (1992) Annu. Rev. Immunol. 10, 411–452
3. Vandenabeele, P., Declercq, W., Beyaert, R., and Fiers, W. (1995) Trends Cell Biol. 5, 392–399
4. Baker, S. J., and Reddy, E. P. (1996) Oncogene 12, 1–9
5. Tewary, M., and Dixit, V. M. (1996) Curr. Opin. Genet. Dev. 6, 39–44
6. Hsu, H., Xiong, J., and Goeddel, D. V. (1995) Cell 81, 493–504
7. Hsu, H., Shu, H. B., Pan, M. G., and Goeddel, D. V. (1996) Cell 84, 299–308
8. Boldin, M. P., Varfolomeev, E. E., Fanez, P., Milti, I. L., Camonis, J. H., and Wallach, D. (1995) J. Biol. Chem. 270, 7795–7798
9. Chinnaiyan, A. M., O’Rourke, K., Tewari, M., and Dixit, V. M. (1995) Cell 81, 505–512
10. Rothe, M., Wong, S. C., Henzel, W. J., and Goeddel, D. V. (1994) Cell 78, 681–692
11. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K., Shevchenko, A., Ni, J., Seffad, B., Cretz, J. D., Zhang, M., Gentry, R. M., Mann, K., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) Cell 85, 817–827
12. Boldin, M. P., Guncharov, T. M., Goltsvev, Y. V., and Wallach, D. (1996) Cell 85, 803–815
13. Rothe, M., Sarma, V., Dixit, V. M., and Goeddel, D. V. (1995) Science 269, 1424–1427
14. Liu, Z.-G., Hsu, H., Goeddel, D. V., and Karin, M. (1996) Cell 87, 567–576
15. Natoli, G., Costanzo, A., Ianni, A., Templeton, D. J., Wodgett, J. R., Balsamo, C., and Leverro, M. (1997) Science 275, 290–293
16. Reinhard, C., Shamoan, B., Shyamala, V., and Williams, I. T. (1997) EMBO J. 16, 1080–1089
17. Hibi, M., Lin, A., Smeal, T., Minden, A., and Karin, M. (1993) Genes Dev. 7, 2135–2148
18. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J., and Woodgett, J. R. (1994) Nature 369, 156–160
19. Derijard, B., Hibi, M., Wu, J.-H., Barrett, T., Sibb, D., Teng, L., Karin, M., and Davis, R. J. (1994) Cell 76, 1025–1037
20. Whitmarsh, A. J., Shore, P., Sharrocks, A. D., and Davis, R. J. (1995) Science 269, 403–407
21. Cavigelli, M., Dolfi, F., Clare, F. X., and Karin, M. (1995) EMBO J. 14, 3597–3604
22. Gupta, S., Campbell, D., Derijard, B., and Davis, R. J. (1995) Science 267, 389–393
23. Malinin, N. L., Boldin, M. P., Kovalenko, A. V., and Wallach, D. (1997) Nature 385, 540–544
24. Chirillo, P., Falco, M., Puri, P. L., Artini, M., Balsamo, C., Leverro, M., and Natoli, G. (1996) J. Biol. Chem. 271, 641–646
25. Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R., and Karin, M. (1993) Science 259, 25916–25921
26. Van Lint, J., Agostinis, P., Vandevoorde, V., Haegeman, G., Fiers, W., and Merlevede, W., and Van den heede, J. R. (1992) J. Biol. Chem. 267, 35194–35201
27. Vitor, I., Schwenger, P., Li, W., Schlessinger, J., and Vlcek, J. (1993) J. Biol. Chem. 268, 18994–18999
28. Adam-Klaes, S., Adam, D., Wiegmann, K., Struve, S., Kolanus, W., Schneider-Mergener, J., and Kronke, M. (1996) Cell 86, 957–947
29. Lange-Carter, C., Pleiman, C. M., Gardner, A. M., Blumer, K. J., and Johnson, G. L. (1993) Science 260, 315–319
30. Lin, A., Minden, A., Martinato, H., Clare, F. X., Lange-Carter, C., Mercuro, F., Johnson, G. L., and Karin, M. (1993) Science 260, 286–290
31. Sanchez, I., Hughes, R. T., Mayer, B. J., Yee, K., Woodgett, J. D., Avruch, J., Kyriakis, J. M., and Zon, L. I. (1994) Nature 372, 794–798
32. Yam, M., Dai, T., Deak, A., Kyriakis, J. M., Zon, L. I., Woodgett, J. D., and Templeton, D. J. (1994) Nature 372, 798–800
33. Brenner, D. A., O’Hara, M., Angel, P., Chojkier, M., and Karin, M. (1989) Nature 337, 661–663
34. Westwick, J. K., O’Hara, M., Angel, P., Chojkier, M., and Karin, M. (1995) J. Biol. Chem. 268, 548–554
35. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., and Verma, I. M. (1994) Science 268, 782–784
36. Bec, L., and Kalk, G. (1996) Cell 84, 299–308
37. Wang, C.-Y., Mayo, M. W., and Baldwin, A. S. (1996) Science 274, 784–787
38. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R., and Verma, I. M. (1996) Science 274, 787–789
39. Read, M. A., Whiteley, M. Z., Gupta, S., Pierce, J. W., Best, J., Davis, R. J., and Collino, T. (1997) J. Biol. Chem. 272, 4753–4761
40. Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., and Rothe, M. (1997) Cell 90, 373–383
41. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., and Karin, M. (1997) Nature 388, 548–554