Kinetics of phytohemagglutinin-induced IFN-γ and TNF-α expression in peripheral blood mononuclear cells from patients with chronic hepatitis B after liver transplantation

Ying-Mei Tang, Min-Hu Chen, Gui-Hua Chen, Chang-Jie Cai, Xiao-Shun He, Min-Giang Lu, Wei-Min Bao

AIM: To study the association between host immunity and hepatitis B virus (HBV) recurrence after liver transplantation.

METHODS: Peripheral blood mononuclear cells (PBMC) were isolated from 40 patients with hepatitis B and underwent orthotopic liver transplantation (OLT) before and 2, 4, 8 wk after surgery. After being cultured in vitro for 72 h, the levels of INF-γ and TNF-α in culture supernatants were detected with ELISA. At the same time, the quantities of HBV DNA in serum and PBMCs were measured by real time PCR.

RESULTS: The levels of INF-γ and TNF-α in PBMC culture supernatants decreased before and 2, 4 wk after surgery in turn: INF-γ 155.52±72.32 ng/L vs 14.76±9.88 ng/L vs 13.22±10.35 ng/L, F = 6.946, P = 0.027<0.05; TNF-α 80.839±46.75 ng/L vs 18.59±17.29 ng/L vs 9.758±7.96 ng/L, F = 22.61, P = 0.0001<0.05). The levels of INF-γ and TNF-α were higher in groups with phytohemagglutinin (PHA) than in those without PHA before surgery. However, the difference disappeared following OLT. Furthermore, INF-γ and TNF-α could not be detected in most patients at wk 4 and none at wk 8 after OLT. The HBV detection rate and virus load in PBMC before and 2, 4 wk after surgery were fluctuated (HBV detected rate: 51.4%, 13.3%, 50% respectively; HBV DNA: 3.55±0.674 log(10) copies/mL vs 3.00±0.329 log(10) copies/mL vs 4.608±1.344 log(10) copies/mL, F = 7.582, P = 0.002<0.05). HBV DNA in serum was 4.48±1.463 log(10) copies/mL before surgery and <10^3 copies/mL after OLT except for one with 5.72×10^6 copies/mL 4 wk after OLT who was diagnosed as HBV recurrence. The levels of INF-γ and TNF-α were lower in patients with a high HBV load than in those with a low HBV load (HBV DNA detected/undetected in PBMCs: INF-γ 138.08±72.44 ng/L vs 164.24±72.07 ng/L, t = 1.065, P = 0.297>0.05, TNF-α 80.75±47.30 ng/L vs 74.10±49.70 ng/L, t = 0.407, P = 0.686>0.05; HBV DNA positive/negative: INF-γ 136.77±70.04 ng/L vs 175.27±71.50 ng/L, t = 1.702, P = 0.097>0.05; TNF-α 75.37±43.02 ng/L vs 81.53±52.46 ng/L, t = 0.402, P = 0.690>0.05).

CONCLUSION: The yielding of INF-γ and TNF-α from PBMCs is inhibited significantly by immunosuppressive agents following OLT with HBV load increased, indicating that the impaired immunity of host is associated with HBV recurrence after OLT.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Liver transplantation; HBV; Recurrence; PBMC

INTRODUCTION

Liver transplantation is the most effective therapy for end-stage liver diseases. The recurrence of primary diseases becomes the main problem, which impedes the long-term survival rate of patients undergoing liver transplantation despite the improvements of surgery and the perioperative management. Chronic hepatitis B virus (HBV) infection is one of the most common diseases leading to a high morbidity and mortality in Asians. In China, there are more than 30 million people suffering from HBV infection. Despite anti-HBs immunoglobulin therapy, HBV infection recurs in a high proportion of patients with HBsAg positive and serum HBV DNA-negative, chronic liver disease after liver transplantation. Therefore, the recurrence of hepatitis B is the critical issue of liver transplantation in China[1]. It was reported that host immunity is closely related with the prognosis of chronic and acute hepatitis B. Few HBV-specific T cells have been found in peripheral blood mononuclear...
cells (PBMCs) of patients with chronic hepatitis B. Lymphocytes are infected with HBV\(^{[3]}\). However, little is known about the immune condition of HBV-infected patients after orthotopic liver transplantation (OLT). After OLT, the HBV load decreases immediately and dramatically, but HBV hiding in extrahepatic tissues especially in PBMCs can infect the graft again\(^{[3,4]}\). Since the function of PBMCs is an important indication of the host immunity status\(^{[5]}\), we investigated the function of PBMCs in producing INF-\(\gamma\) and TNF-\(\alpha\), and the association between host immunity and HBV recurrence after liver transplantation.

MATERIALS AND METHODS

Patients

A total of 40 patients with hepatic cirrhosis and hepatocellular carcinoma (HCC) who underwent liver transplantation at Sun-Yat Sen University, Guangzhou, from November 2003 to April 2004 were enrolled. Blood samples were obtained one day before and 2, 4 and 8 wk after surgery.

Immunosuppression consisted of tacrolimus-based/cyclosporin-based dual therapy with prednisolone. The doses were adjusted to maintain desired blood levels (5-15 \(\mu\)g/L tacrolimus, 100-250 \(\mu\)g/L cyclosporin) for the 1st year. Prednisolone was commenced at a daily dose of 60 mg, reduced by 8 mg every 4 d after the 2nd wk, and withdrawn completely at a median of 3 mo. mAbs were used for patients whose ascites >3 000 mL or serum Cr >132.6 \(\mu\)mol/L or were used for those infected with bacteria within 2 wk before surgery. The protocol for prevention of HBV recurrence after liver transplantation was as follows: intra-operative administration of 400 IU hepatitis B immunoglobulin intramuscular injection during the an-hepatic phase, followed by 400 IU intramuscular injection for the first 14 postoperative days, then 400 IU every other day for 2 wk, followed by 400 IU once a week. Immunoprophylaxis was continued indefinitely with monthly administration of 400 IU of HBIG by intramuscular injection. All patients received HBIG and lamivudine (100 mg/d) immunoprophylaxis. HBV recurrence following liver transplantation was defined as the reappearance of HBsAg-HBV DNA in serum and/or positive staining for HBsAg on liver biopsy.

Isolation and culture of PBMCs

PBMCs isolated from heparinized venous blood by gradient centrifugation using Ficoll-Hypaque (Shenggong, Ltd, Shanghai, China) were suspended in RPMI-1640 supplemented with 10\% heat-inactivated fetal calf serum (RPMI-1640/10\% FCS) and penicillin-streptomycin (Sigma). A total of 2×10\(^6\) PBMC were added to each well (48-well plates, Invitrogen, Carlsbad, CA, USA) for stimulation with or without 2 pg/L of phytohemagglutinin (PHA-P, Atlanta, GA, USA) at 37 \(^\circ\)C for 72 h. All supernatants were collected and stored at -20 \(^\circ\)C until use.

Measurement of cytokine concentration by ELISA

Immunoreactive IFN-\(\gamma\) and TNF-\(\alpha\) levels in PBMCs before and after surgery fluctuated (HBV detectable rate: 52.5\% (21/40) of patients before surgery. Almost all patients had an undetectable HBV DNA level (<10\(^6\) copies/mL), except for one patient who had a detectable HBV DNA level at wk 4 after surgery (5.72×10\(^6\) copies/mL). Recurrence of hepatitis B was confirmed by an immunohistochemistry of liver biopsy in this patient.

HBV DNA in PBMCs

The HBV detectable rate and HBV DNA load in PBMCs before and after surgery varied. The HBV detectable rate before and after surgery was 51.4\%, 13.3\%, 50\% respectively; HBV DNA: 3.55±0.674 vs 3.00±0.329 vs 4.608±1.344, \(F=7.582, P=0.002\).
Table 1 IFN-γ levels in PBMC culture supernatants at different time points

Source	DF	SS	MS	F	P
Factor (pre−2 wk/4 wk)	2	28 770.02	14 385.01	6.946	0.027
Factor treat	2	27 072.82	13 536.409	6.536	0.031
Error	6	12 425.41	2 070.902		
Treat(PHA+/−)	1	26 999.63	26 999.63	10.269	0.049
Partly factor	1	13 665.74	13 665.74	5.169	0.107

Table 2 TNF-α levels in PBMC culture supernatants at different time points

Source	DF	SS	MS	F	P
Factor (pre−2 wk/4 wk)	1.233	32 186.69	26 113.60	22.612	0.0001
Factor treat	1.233	3 330.98	2 702.48	2.340	0.1350
Error	38	27 045.63	1 154.87		
Treat(PHA+/−)	1	2 363.21	2 363.206	3.192	0.0900
Partly factor	1	12 425.41	2 070.902		

Table 3 HBV DNA in serum and PBMCs (mean±SD)

HBV DNA in serum (copies/mL)	IFN-γ (ng/L)	t	P	TNF-α (ng/L)	t	P
Detected	138.08±72.44	1.065	0.297	80.75±47.30	0.407	0.686
Undetected	164.24±72.07			74.10±49.70		
>1 000	136.77±70.04	1.702	0.097	75.37±43.02	0.402	0.690
<1 000	175.27±71.50			81.53±52.46		

Effect of HBV DNA on IFN-γ and TNF-α level and PBMC culture supernatants

According to the HBV DNA level in serum and PBMCs before surgery, patients were divided into four groups. HBV DNA was >1 000 and <1 000 copies/mL in two groups respectively. HBV DNA was detected and undetected in the other two groups. Comparing the IFN-γ and TNF-α levels in various groups, we found that the HBV DNA level was higher, the cytokine level was lower (Table 3).

DISCUSSION

Several studies showed that the following factors influence the HBV recurrence after OLT[6-11]; the HBV infection before surgery, the administration of immunosuppressive agents, the HBV level in extrahepatic tissues and the genotype of HBV. It is generally accepted that patients with active replication of HBV before the surgery and on high dose immunosuppressive agents are easier to be reinfected. In addition, the infection of PBMC might lead to the selection of HBV variants which contribute to immunologic escaping[46]. Previous studies showed that the pattern of cytokines produced by circulating PBMCs from patients underwent OLT would determine the immunologic state of transplanted allograft[12]. However, the function of PBMCs of HBV-infected patients who underwent OLT is still unclear.

Cytokines play an important role in antiviral immunity. After infecting the host cells, HBV is eliminated by the host immune system through two pathways[13,14]. One is the cytolytic pathway characterized by activated HBV-specific T cells, mediating the effect of cellular cytotoxicity and lysis of HBV-infected cells. The other is mediated by cytokines, especially by IFN-γ and TNF-α, which depress the replication and expression of HBV, degrade HBV[15-17]. Recently, evidence supports that the non-cytolytic immune-mediated pathway is the principal way to eliminate viruses. Since the function of PBMCs reflects the host immunity to HBV[18], it is useful to evaluate the graft immunity state and the change of host anti-viral immunity through monitoring the function of PBMCs in producing IFN-γ and TNF-α post OLT.

In our study, the levels of IFN-γ and TNF-α in PBMCs culture supernatants decreased dramatically post operation, consistent with literature reports, 50% cytokine reduction under clinical dose of CsA and FK506[19]. Other reports showed that the TNF-α plasma level increased in the 1st wk post OLT[20]. However, we did not detect the cytokine plasma concentrations. Since liver transplantation may lead to changes in the metabolic activity of neutrophils, it is necessary to perform further detailed study about IFN-γ and TNF-α plasma levels.

We also found that there were no differences between the groups with and without PHA, suggesting that PBMCs do not respond to the stimulation of PHA. On the contrary, in Chen’s study[18], the increased IFN-α mRNA expression after stimulated by PHA was reported. TNF-α expression induced by PHA in PBMC was higher in patients with an acute rejection episode. There are several underlined reasons that contributed to the difference between the two studies: first, the patients enrolled in Chen’s study had previous rejection episodes, while in our study none had rejection. Second, in China, most patients who underwent OLT had serious complications and the human mAb of Tac was given to inhibit and then impair the function of T cells completely. Third, FK506 is preferred in our immunosuppressive...
protocol. Sakuma et al., found that compared with CsA and DEX, FK506 may be most effective in specifically preventing T cell activation mediated inflammatory cytokine production in a clinic setting. We are not clear which immunosuppressive agents were favored in Chen’s study.

The present study showed no differences between the groups with and without PHA. It may be because the multi-immunosuppressive agents downregulated the receptors on T cells and fewer signals were transmitted into the cells. However, the function of T cells was partially suppressed in this period and produced cytokines. In clinic, acute rejection occurs within 1 mo and more frequently within 2 wk after surgery, indicating that the cell-mediated immunity is partially depressed during this period. At the same time, HBV DNA in PBMCs decreases, suggesting that it was a relatively safe period to avoid HBV reinflection. Four weeks following surgery, cytokines in culture supernatants cannot be detected in most patients. This may be explained by the following reasons. Firstly, immunosuppressive agents block the activation and proliferation of T cell and the production of cytokines are suppressed. Secondly, these cannot be detected in most patients. This may be explained by the following reasons. Firstly, immunosuppressive agents block the activation and proliferation of T cell and the production of cytokines are suppressed. Secondly, these cannot be detected in most patients.

Four weeks following surgery, cytokines in culture supernatants cannot be detected in most patients. This may be explained by the following reasons. Firstly, immunosuppressive agents block the activation and proliferation of T cell and the production of cytokines are suppressed. Secondly, these cannot be detected in most patients.

At the same time, the detectable rate of HBV DNA in PBMCs increased, and the virus load in PBMCs was near to that before surgery. The HBV DNA level in serum affects the cytokine level in PBMCs. Higher HBV DNA would inhibit the production of IFN-γ induced by IL-12 in chronic hepatitis B patients. The reduction of virus load and antigen would repair the anti-virus capability was the lowest at this time, the HBV DNA level increased, and the virus load in PBMCs was near to that before surgery. The HBV DNA level in serum affects the cytokine level in PBMCs. Higher HBV DNA would inhibit the production of IFN-γ induced by IL-12 in chronic hepatitis B patients. The reduction of virus load and antigen would repair the anti-virus capability was the lowest at this time, the HBV DNA level increased, and the virus load in PBMCs was near to that before surgery. The HBV DNA level in serum affects the cytokine level in PBMCs. Higher HBV DNA would inhibit the production of IFN-γ induced by IL-12 in chronic hepatitis B patients. The reduction of virus load and antigen would repair the anti-virus capability was the lowest at this time, the HBV DNA level increased, and the virus load in PBMCs was near to that before surgery.

In conclusion, the yielding of INF-γ from PBMCs is inhibited significantly by immunosuppressive agents following OLT with HBV load increased, indicating that the impaired immunity of host is associated with HBV recurrence after OLT. The HBV DNA level in serum affects the cytokine level in PBMCs. Higher HBV DNA would inhibit the production of IFN-γ induced by IL-12 in chronic hepatitis B patients. The reduction of virus load and antigen would repair the anti-virus capability was the lowest at this time, the HBV DNA level increased, and the virus load in PBMCs was near to that before surgery.

ACKNOWLEDGMENTS
The authors thank Chang-You Wu for valuable advice and Nian-Qiang Feng for assistance with the experiment.

REFERENCES
1. Wu J, Zheng SS. Liver transplantation in China: problems and their solutions. Hepatobilary Pancreat Dis Int 2004; 3: 170-174
2. Tripper M, Meyer zum Buschenfelde KH, Gerken G. HBV viral load within subpopulations of peripheral blood mononuclear cells in HBV infection using limiting dilution PCR. J Virol Methods 1999; 78: 129-147
3. Brind A, Jiang J, Samuel D, Gigou M, Feray C, Beechot C, Kremsdorf D. Evidence for selection of hepatitis B mutants after liver transplantation through peripheral blood mononuclear cell infection. J Hepatol 1997; 26: 228-235
4. Troutwein C, Schrem H, Tillmann HL, Kubicka S, Walker D, Boker KH, Maschek HJ, Pichlmayr R, Manns MP. Hepatitis B virus mutations in the pre-S genome before and after liver transplantation. Hepatology 1996; 24: 482-488
5. Webster GJ, Reinigats S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 2000; 32: 1117-1124
6. Samuel D, Muller R, Alexander G, Fassati L, Ducot B, Benhamou JP, Bismuth H. Liver transplantation in European patients with the hepatitis B surface antigen. N Engl J Med 1993; 329: 1842-1847
7. Gonzalez RA, de la Mata M, de la Torre J, Mino G, Pera C, Pena J, Munoz E. Levels of HBV-DNA and HBsAg after acute liver allograft rejection treatment by corticoids and OKT3. Clin Transplant 2000; 14: 208-211
8. Ho BM, So SK, Esquível CO, Keeffe EB. Liver transplantation in Asian patients with chronic hepatitis B. Hepatology 1997; 25: 223-225
9. Teixeira R, Pastacaldi S, Papatheodoridis GV, Burroughs AK. Recurrent hepatitis C after liver transplantation. J Med Virol 2000; 61: 443-454
10. Mazzaferrro V, Brunetto MR, Pasquali M, Regalia E, Pulvirenti A, Baratti D, Makoweeksa L, Van Thiel D, Bonino F. Preoperative serum levels of wild-type and hepatitis B e antigen-negative hepatitis B virus (HBV) and graft infection after liver transplantation for HBV-related hepatocellular carcinoma. J Viral Hepat 1997; 4: 235-242
11. Douglas DD, Rakela J, Wright TL, Krom RA, Wiesner RH. The clinical course of transplantation- associated de novo hepatitis B infection in the liver transplant recipient. Liver Transpl Surg 1997; 3: 105-111
12. Chen Y, McKenna GJ, Yoshida EM, Buczowski AK, Scudamore CH, Erb SR, Steinbrecher UP, Chung SW. Assessment of immunologic status of liver transplant recipients by peripheral blood mononuclear cells in response to stimulation by donor alloantigen. Ann Surg 1999; 230: 242-250
13. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829
14. Suri D, Shilling R, Lopes AR, Mullerova I, Colucci G, Williams R, Naoumov NV. Non-cytolytic inhibition of hepatitis B virus replication in human hepatocytes. J Viral Hepat 1997; 4: 235-242
15. Guidotti LG, McClary H, Loudis JM, Chisari FV. Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice. J Exp Med 2000; 191: 1247-1252
16. Webster GJ, Reinigats S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, Dusheiko GM, Bertoletti A. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 2000; 32: 1117-1124
17. Flores MG, Zhang S, Ha A. In vitro evaluation of the effects of candidate immunosuppressive drugs: flow cytometry and quantitative real-time PCR as two independent and correlated read-outs. J Immunol Methods 2004; 289: 123-135
18. Kubala L, Ciz M, Voracek J, Cizova H, Cerny J, Nemec P, Studenik P, Duskova M, Lojek A. Peri- and post-oper-
tive course of cytokines and the metabolic activity of neutrophils in human liver transplantation. Cytokine 2001; 16: 97-101

21 Sakuma S, Kato Y, Nishigaki F, Sasakawa T, Magari K, Miyata S, Ohkubo Y, Goto T. FK506 potently inhibits T cell activation induced TNF-alpha and IL-1beta production in vitro by human peripheral blood mononuclear cells. Br J Pharmacol 2000; 130: 1655-1663

22 Neuberger J. Incidence, timing, and risk factors for acute and chronic rejection. Liver Transpl Surg 1999; 5 (4 Suppl 1): S30-36

23 Lok AS, Chung HT, Liu VW, Ma OC. Long-term follow-up of chronic hepatitis B patients treated with interferon alfa. Gastroenterology 1993; 105: 1833-1838

24 Boni C, Penna A, Ogg GS, Bertolletti A, Pilli M, Cavallo C, Cavalli A, Urbani S, Boehme R, Panebianco R, Fiaccadori F, Ferrari C. Lamivudine treatment can overcome cytotoxic T-cell hyporesponsiveness in chronic hepatitis B: new perspectives for immune therapy. Hepatology 2001; 33: 963-971

25 Kondo Y, Asabe S, Kobayashi K, Shiina M, Niitsuma H, Ueno Y, Kobayashi T, Shimosegawa T. Recovery of functional cytotoxic T lymphocytes during lamivudine therapy by acquiring multi-specificity. J Med Virol 2004; 74: 425-433