Protective effects of cyclosporine A on T-cell dependent ConA-induced liver injury in Kunming mice

Xiu-Li Zhang, Qi-Zhen Quan, Zi-Qin Sun, Yao-Jun Wang, Xue-Liang Jiang, Dong-Wang and Wen-Bo Li

Department of Gastroenterology, General Hospital of Jinan Military Command, Jinan 250031, Shandong Province, China

Correspondence to Xiu-Li Zhang, Department of Gastroenterology, Chinese PLA General Hospital of Jinan Command Area, Jinan 250031, Shandong Province, China. xiuliz@jn-public.sd.cninfo.net

Received 2001-02-06 Accepted 2001-02-12

INTRODUCTION

The T-cell dependent specific liver injury in mice induced by concanavalin A (ConA) is a newly established experimental liver injury model, which is considered more eligible for the study of pathophysiology of several human liver diseases, such as viral hepatitis and autoimmune hepatitis[1-9]. T cell activation and several cytokines release had been proven to play a critical role in ConA-induced liver injury[10-19]. Agglutination of erythrocytes in the sinusoids of the liver were also observed. Lots of infiltrated lymphocytes in the portal area were the characteristic of this new liver injury model (Figure 1), indicating that lymphocyte may play an important role in the pathogenesis of ConA-induced liver injury, whereas no obvious tissue damage was found in the lung or kidney.

MATERIALS AND METHODS

Materials

Male Kunming mice were purchased from the animal experimental center of the Second Military Medical University, weight range 17g-21g, free access to water and food prior to the experiment. ConA and CsA were purchased from Dongfeng Ltd Shanghai and Sandoz Ltd respectively.

Methods

All the fifteen Kunming mice were divided into three groups randomly. ConA at a dose of 40mg·kg⁻¹ was administered through the tail vein as a solution in pyrogen-free PBS at a volume of 300µL, which was the ConA group. CsA was injected subcutaneously twice at a dose of 130mg·kg⁻¹ 15 and 1h before ConA challenge, which was used as the CsA group. PBS only in the corresponding volume served as controls.

Eight hours after ConA administration, the Kunming mice were sacrificed by cervical dislocation. Blood samples were obtained by puncture of heart with 25g·L⁻¹ heparin. Liver specimen was fixed immediately in 100 mL·L⁻¹ formalin/PBS for histological examination with HE stain. The degree of liver injury was assessed by determination of serum alanine aminotransferase (ALT) activity, serum TNF-α was determined by radioimmunoassay.

RESULTS

ConA-induced liver injury in Kunming mice

Eight hours after ConA administration, two out of the five experimental mice were found dead in ConA only group, with elevated serum ALT 22 261 ± 2 523 nkat·L⁻¹. The concentration of serum TNF-α also increased significantly in ConA only group, increased more significantly than that of PBS only group 647±183ng·L⁻¹ (Table 1).

Histological examination of liver specimen from ConA-treated mice showed diffuse cloudy swelling of the cytoplasm, spotty and necrotic foci were frequently present, severe agglutination of erythrocytes in the sinusoids of the liver were also observed. Lots of infiltrated lymphocytes in the portal area were the characteristic of this new liver injury model (Figure 1), indicating that lymphocyte may play an important role in the pathogenesis of ConA-induced liver injury, whereas no obvious tissue damage was found in the lung or kidney.

CsA protection

When pretreated with CsA (CsA group), serum ALT activity declined significantly (730 ± 266) nkat·L⁻¹, and the serum TNF-α was below the detective level (Table 1). No obvious hepatic necrosis or lymphocytes infiltration in the portal area was observed under light microscopy in the CsA group (Figure 2).

Table 1 ConA-induced liver injury in Kunming mice

Group	ALT nkat·L⁻¹	TNF-α ng·L⁻¹	Dead
Con A only	22 261±2 523³	1230±240³	2
PBS only	647±183	0	
Cs A	730±266	0	

³P<0.05, vs PBS only or CsA.
when pretreated with CsA before ConA administration, serum TNF-α became undetectable, hence the reduction of TNF-α might be due to the partial protective effects of CsA. Besides destruction of hepatocytes seen in the liver specimen of ConA group, lots of infiltrating lymphocytes in the portal area were also observed (Figure 1). When pretreated with CsA (CsA group), there was absence of lymphocytes infiltration in the portal area (Figure 2). The histological results gave a direct evidence that the protective effect of CsA in ConA-induced Kunming mice liver injury is through abrogating the activation of the T lymphocytes. The decline of serum TNF-α in CsA group may be a subsequent to T lymphocyte inactivation. CD4+ lymphocyte was identified as the effector cells in the ConA-induced liver injury[31], however, in view of the fact that TNF-α synthesis is substantially higher in macrophages than in T lymphocytes, it seems likely that activated T lymphocytes might stimulate the macrophages to release TNF-α[32], but details of the concrete process worth further studies.

REFERENCES
1. Kimura K, Ando K, Ohnishi H, Ishikawa T, Kakumoto T, Takemura M, Muto Y, Moriwaki H. Immunopathogenesis of hepatic fibrosis in chronic liver injury induced by repeatedly administered concanavalin A. Int Immunol, 1999;11:1491-1500
2. Sakamoto T, Ezure T, Luzn J, Murase N, Tsuji H, Fung JJ, Demetris AJ. Concanavalin A simultaneously primes liver hematopoietic and epithelial progenitor cells for parallel expansion during liver regeneration after partial hepatectomy in mice. Hepatology, 2000;32:256-267
3. Shirin H, Dotan I, Papa M, Maaravi Y, Aeed H, Zaied L, Matas Z, Bruck R, Moss SF, Halpern Z, Oren R. Inhibition of concanavalin A-induced acute T cell-dependent hepatic damage in mice by hypothyroidism. Liver, 1999;19:206-211
4. Cao Q, Baty R, Pang G, Clancy R. Ethanol-altered liver-associated T cells mediate liver injury in rats administered Concanavalin A (Con A) or lipopolysaccharide (LPS). Alcohol Clin Exp Res, 1999;23:1660-1667
5. Fiorucci S, Santucci L, Antonelli E, Distrittei E, Del Sero G, Morelli O, Romani L, Federici B, Del Soldato P, Morelli A. NO-aspirin protects from T cell-mediated liver injury by inhibiting caspase-dependent processing of Th1-like cytokines. Gastroenterology, 2000;118:404-421
6. Tegls G, Kusters S, Kunstle G, Hentze H, Kiemer AK, Wendel A. Baelebn protects mice against T cell-dependent, TNF-mediated apoptotic liver injury. J Pharmacol Exp Ther, 1998;287:1071-1080
7. Ishiwata Y, Yokochi S, Hashimoto H, Ninomiya F, Suzuki T. Protection against concanavalin A-induced murine liver injury by the organic germanium compound, propagermanium. Scand J Immunol, 1998;48:605-614
8. Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA, 2000;97:5498-5503
9. Miyazawa Y, Tsutsui H, Mizuhara H, Fujihara W, Kaneda K. Involvement of intrasinusoidal hemostasis in the development of concanavalin A-induced hepatic injury in mice. Hepatology, 1998;27:497-506
10. Okamoto T, Nakano Y, Asakura W, Kobayashi T, Tsuzuki N, Hara K. Expression of cytokine mRNA in extrahepatic organs in mice subsequent to hepatic injury. J Pharmacol Exp Ther, 1998;277:219-225
11. Pozza M, Bliss JL, Maylor R, Erickson J, Donnelly L, Bouchard P, Dornor AJ, Tre匹chino W, Interleukin-11 reduces T-cell-dependent experimental liver injury in mice. Hepatology, 1999;30:1441-1447
12. Gabriele S, Kerstin K, Renate B, Hans G, Gisa T. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest, 2001;107:439-447
13. Kunstle G, Hentze H, Germagen G, Tegls G, Meersangs G, Wendel A. Concanavalin A hepatotoxicity in mice: tumor necrosis factor-α-induced organ failure independent of caspase-3-like protease activation. Hepatology, 1999;30:1241-1251
14. Stefano F, Andrea M, Barbara P, Piero DS, Antonio M, Ignarro LJ. An NO derivative of ursodeoxycholic acid protects against
Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci USA, 2001;98:2652-2657

15 Wolf D, Hallmann R, Sass G, Sixt M, Kusters S, Fregien B, Trautwein C, Tiegs G. TNF-alpha-induced expression of adhesion molecules in the liver is under the control of TNFR1-relevance for concanavalin A-induced hepatitis. J Immunol, 2001;166:1300-1307

16 Okamoto T, Kobayashi T, Tsuzuiki N, Hara K. Induction of CFP32-like activity and inhibition of interleukin Ibeta converting enzyme activity in the liver of a mouse concanavalin A-induced hepatitis model. J Pharmacol, 1998;77:257-259

17 Doolin EJ, Strande LF, Chen MK, Kain MS, Hewitt CW. The effect of leukocyte infiltration on apoptosis in an in vitro thermal injury bioartificial living skin equivalent model. J Burn Care Rehab, 2000;21:374-376

18 Ksontini R, Colagiovanni DB, Josephs MD, Edwards CK 3rd, Wolf D, Hallmann R, Sass G, Sixt M, Kusters S, Fregien B, Das KM, Farag SA. Current medical therapy of inflammatory bowel disease. J Immunol, 1998;160:4082-4089

19 Li N, Li JS, Liao CX, Li YS. Antirejection therapy with cyclosporin A protects Balb/c mice from liver damage induced by superantigen SEB and D-galN. Hepatogastroenterology, 2000;47:1675-1679

20 Locatelli F, Bruno B, Zecca M, Van-Lint MT, McCann S, Arcese W, Hsieh HH, Chien YS, Hsu KT, Chung HM, Huang HF. Risk factors for renal allograft survival in patients receiving cyclosporin A to tacrolimus in pediatric liver transplantation. Pediatr Transplant, 2000;4:207-210

21 Yin T, Tong SQ, Xie YC, Lu DY. Cyclosporin A protects Balb/c mice from liver damage induced by superantigen SEB and D-galN. World J Gastroenterol, 1999;5:209-212

22 Furlan V, Debray D, Fourre C, Taburet AM. Conversion from cyclosporin A to tacrolimus in pediatric liver transplantation. Pediatr Transplant, 2000;4:207-210

23 Nelson DR, Bhardwaj B, Lau YJ. Interleukin-12 production in chronic hepatitis C infection. J Immunol, 2000;164:1300

24 Tulek N, Saglam SK, Saglam M, Turkylmaz R, Yildiz M. Soluble interleukin-2 receptor and interleukin-10 levels in patients with chronic hepatitis B infection. Hepatogastroenterology, 2000;47:828-831

25 Krampera M, Fattovich G, Scupoli MT, Pizzolo G. Early decrease of interferon-gamma+ and interleukin-2+ T cells during combination treatment with interferon-alpha and ribavirin in patients with chronic hepatitis C. Am J Gastroenterol, 2000;95:3670-3673

26 Zhang XL, Wang JY, Wang XL, Liu P. Detection of serum TNF-α on acute severe hepatitis in mouse models. World J Gastroenterol, 2000;6:933-941

27 Dharancy S, Canva V, Gambiez L, Paris JC, Desreumaux P. Hepatic deficiency of interleukin 10 in chronic hepatitis C. Gastroenterology, 2000;119:1411-1412

28 Tannahill CL, Solorzano CC, Norman J, Denham W, Claremont J, Dennin RH. A high frequency of GBV-C/HGV infection in hepatitis C patients in Germany. World J Gastroenterol, 2000;6:833-841

29 Zhang GQ, Yu H, Zhou XQ, Liao D, Xie Q, Wang B. TNF-α induced apoptosis and necrosis of mouse hepatocytes. Shijie Huaren Xiaohua Zazhi, 2000;8:303-306

30 Krampf M, Fattovich G, Scupoli MT, Pizzolo G. Early decrease of interferon-gamma+ and interleukin-2+ T cells during combination treatment with interferon-alpha and ribavirin in patients with chronic hepatitis C. Am J Gastroenterol, 2000;95:3670-3673

31 Dharancy S, Canva V, Gambiez L, Paris JC, Desreumaux P. Hepatic deficiency of interleukin 10 in chronic hepatitis C. Gastroenterology, 2000;119:1411-1412

32 Saiki M, Bouchrit N, Benslimane A. Different cytokine profiles of peripheral blood mononuclear cells from patients with persistent and self-limited hepatitis C virus infection. Immunol Lett, 2000;74:117-120

33 Li X, Lin JS, Liao CX, Li YS. Antirejection therapy with cyclosporin A protects Balb/c mice from liver damage induced by superantigen SEB and D-galN. Hepatogastroenterology, 2000;47:1675-1679

34 Lee JH, Teuber G, von Wagner M, Roth WK, Zeuzem S. Antiviral effect of human recombinant interleukin-12 in patients infected with hepatitis C virus. J Med Virol, 2000;60:264-268

35 Nakamura I, Nuppu JT, Cowlen M, Hall WC, Tennial BC, Casey JL, Gerin JL, Cote Pj. Pathogenesis of experimental neonatal woodchuck hepatitis virus infection: chronicity as an outcome of infection is associated with a diminished acute hepatitis that is temporally deficient for the expression of interferon gamma and tumor necrosis factor-alpha messenger RNAs. Hepatology, 2001;33:439-447

36 Yee IJ, Tang J, Herrera J, Kaslow RA, van Leeuwen DJ. Tumor necrosis factor gene polymorphisms in patients with cirrhosis from chronic hepatitis C virus infection. Genes Immun, 2000;1:386-390

37 Toyoda M, Kakizaki S, Horiguchi N, Sato K, Takayama H, Takagi H, Nagamine T, Mori M. Role of tumor necrosis factor-alpha therapy in chronic hepatitis C. J Hepatol, 2000;33:169-175

38 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

39 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

40 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

41 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

42 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

43 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

44 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

45 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436

46 Bozkaya H, Bozdayi M, Turkyilmaz R, Sarioglu M, Cetinkaya A, Tokushige K, Yamaguchi N, Ikeda I, Hashimoto E, Yamauchi H. Role of soluble TNF receptor-I in acute severe hepatitis in mouse models. J Gastroenterol Hepatol, 2000;15:431-436