Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Title: Decontamination of surgical face masks and N95 respirators by dry heat pasteurization for one hour at 70°C

Authors: Yi Xiang MB, Qiwa Song MSc, Wenzhen Gu MSc

Affiliations:
- Disinfection Supply Centre, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang Province, China
- Central Laboratory, Ningbo First Hospital, Ningbo, Zhejiang Province, China
- Department of Viral Research, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, China

Abstract:

Background: The need for protective masks greatly exceeds their global supply during the current COVID-19 pandemic. Physical decontamination of personal protective equipment (PPE) could be an important and effective strategy to resolve the current shortage of masks. The objective of this study was to evaluate the disinfection efficiency of dry heat pasteurization on surgical face masks and N95 respirators.

Methods: A total of 50 surgical face masks and 50 N95 respirators were subjected to dry heat pasteurization at 60°C and 70°C for 1 hour. The disinfection efficiency was determined by the ratio of the filtering capacity after treatment to that before treatment. The filtering efficiency of the surgical face masks and N95 respirators was measured using a bacterial aerosol and a H1N1 indicator virus, respectively.

Results: The disinfection efficiency of both surgical face masks and N95 respirators was over 95% after being heated for 1 hour at both temperatures. These findings indicated that dry heat pasteurization could be a safe and effective method for the decontamination of surgical face masks and N95 respirators.

Conclusions: This method can be used at home and can significantly resolve the current shortage of masks.

Key Words: N95 face mask, Personal protective equipment, COVID-19, Pandemic.
the use of ultraviolet light and heat. Heat treatment is more suitable for the decontamination of masks at home. Herein, we aimed to optimize the temperature of dry heat pasteurization to achieve efficient decontamination of masks by killing the pathogens, while retaining the filtering capacity of the masks.

METHODS

Experiment design

We applied dry heat at 60°C and 70°C for 1 hour to used masks. Then, we assessed the extent of decontamination via the sterility test for 7 pathogenic bacteria and the inactivation test of H1N1 indicator virus with hemagglutination (HA) assay. We also conducted fit test and filtering efficiency test using bacteria in aerosols for the heat pasteurized N95 respirators and surgical face masks.

Bacterial strains and sterility test

To assess the decontamination effect, we used 7 bacterial/fungal strains: *Escherichia coli* (ATCC25922), *Staphylococcus aureus* (ATCC25923), *Pseudomonas aeruginosa* (ATCC27853), *Klebsiella pneumonia* (ATCC70063), *Acinetobacter baumannii* (ATCC17978), *Corynebacterium pseudodiphtheriticum* (ATCC10701), and *Candida albicans* (ATCC10231). These strains were cultivated according to ATCC protocols and were prepared in a saline suspension of 10^5 cells/mL. We used TK-3 microbial aerosol generator (Pusen, Changzhou, China) in a Class 1000 clean booth. The microbial aerosol generator was adjusted to have a flow rate of 28 L/min to inoculate the masks. Two types for medical use) respirators by the airborne microbe sampler (Medicom Co., Ltd, Shanghai, China) and N95 respirators (3M 1860 type for medical use) respirators by the airborne microbe sampler (Anderson cascade impactor, Copley Scientific Ltd, Nottingham, UK) for 5 minutes at a flow speed of 28 L/min to inoculate the masks. Two of the inoculated masks for each bacteria strain were placed in a steel box and heated at 60°C and 70°C for 1 hour in an electric oven, respectively. The third mask was used as the control without decontamination to count the inoculated bacteria by the plate count method. From the heated masks, 25 cm² of inoculated areas were cut into pieces and placed in brain heart infusion broth to cultivate overnight for sterility tests.

Inactivation of the indicator virus (H1N1)

We used the H1N1 strain (A/Zhejiang/1/2009[H1N1]) as the indicator virus. The H1N1 viruses were propagated in Madin-Darby Canine Kidney (MDCK) cells cultured in OptiPRO serum-free medium (Gibco, Carlsbad, CA) containing 4 mM/L Glutamine (Gibco, Carlsbad, CA) and 0.5% penicillin/streptomycin solution (Sigma), as previously described.7 All MDCK cells were cultured in a 5% CO₂ humidified incubator. Virus titers were determined by the 50% tissue culture infective dose (TCID₅₀) assay. The infected MDCK cell density was adjusted to 10^6 cells/mL. Three pieces of a mask were taken and inoculated with the cell suspension infected by H1N1. Two 25 cm² piece was heated at 60°C or 70°C for 1 hour respectively. An unheated piece was used as the control. Then, the MDCK cell suspension (10^5 cells/mL) was seeded with each of these pieces. The MDCK cell culture supernatants were collected for the HA assay,8 and the HA titer was determined as the highest dilution of the supernatants showing complete agglutination on the bottom of the well.

Fit testing of N95 respirators after being heated

Every 2 N95 respirators that were not inoculated were heated at 70°C for 1, 2, and 3 hours in an electric oven, respectively. The N95 respirators were first assessed for the efficiency of heat on their physical features, such as shape and components of the mask, and were evaluated by the fit test. We used the 3M Qualitative Fit Test Apparatus FT-30 to assess the fit of N95 respirators after being heated. This test meets the performance criteria for fit testing respirators under the current OSHA Standard for Respiratory Protection: 29 CFR 1910.134.9 The test was performed to assure that the person undergoing the fit test can detect the bitter taste of the test solution, even at very low levels.

Measurement of filtering efficiency of pathogens in aerosols

The study assessed the filtration efficiency through measuring the filtration rate of live bacteria in aerosols, which is different from the standard method that measures particles. We designed a test to assess the efficiency of the heat pasteurized masks to filter bacteria in aerosol. Briefly, a saline suspension of E. coli cells (10^6 cells/mL) used to generate aerosols, as explained already. The aerosols were pumped through the masks for 5 min and were simultaneously sampled by the Anderson 6-stage sieve airborne microbe sampler that contained six petri dishes, as mentioned above. The air that did not pass through the masks was used as the control. Bacterial colonies on the petri dish were counted after 48 hour cultivation. The ratios of filtering efficiency were calculated by comparing the numbers of bacterial colonies in the air passing through the masks with that in the air that did not pass through.

RESULTS

This study showed that dry heat at both 60°C and 70°C for 1 hour could successfully kill 7 types of bacteria as well as inactivate the H1N1 virus (Table 1).

Strain	Controls for bacteria and H1N1 inoculated on 25 cm² of masks	Disinfection at 60°C	Disinfection at 70°C
Escherichia coli	3500 Sterile	Sterile	Sterile
Staphylococcus aureus	4500 Sterile	Sterile	Sterile
Pseudomonas aeruginosa	4100 Sterile	Sterile	Sterile
Klebsiella pneumonia	6200 Sterile	Sterile	Sterile
Acinetobacter baumannii	3600 Sterile	Sterile	Sterile
Corynebacterium pseudodiphtheriticum	3200 Sterile	Sterile	Sterile
Candida albicans	3400 Sterile	Sterile	Sterile
H1N1 virus (Titration)	1:320 <1:20	<1:20	

Note: The bacterial numbers of control are colonies/25 cm² of mask surface. The virus amount is titration.
being heated (99%). The filtering efficacies of the surgical face masks were 97%, 97%, and 96% after being heated for 1, 2, and 3 hours, respectively, and were similar to their corresponding efficacies before being heated (97%).

DISCUSSION

During a pandemic like COVID-19, the urgent shortage of masks puts billions of people at risk. A safe and convenient decontamination method to decontaminate N95 respirators and surgical face masks that are generally disposable faces many challenges, such as maximally retaining the filtration efficiency of masks and effectively decontaminate various types of pathogens with distinct resistance to decontamination method. This study applied 8 bacterial and viral strains that cover a wide range of common respiratory pathogens to evaluate the decontamination effect of dry heat at 70°C for 1 hour. We proved the dry heat method could achieve a decontamination effect while retain the filtration efficiency of surgical face masks and N95 respirators.

Chemicals are not suitable for mask disinfection because of residual chemicals that may be toxic and carcinogenic. To tackle the current shortage of protective masks, the Dutch National Institute for Public Health and the Environment conducted a pilot study and developed a method to obtain reprocessed face masks with acceptable quality.\(^5\) This study showed that FFP2 face masks retained their shape and ability to filter particles after sterilization by a short hydrogen peroxide process once or twice. However, this procedure is not suitable for home applications because of the need for special devices and chemicals. Among the various physical methods, heat can be used for mask disinfection.

Despite wet heat is often used to sterilize hospital materials because of its excellent penetration,\(^1\) the higher temperature and steam may affect the filtering efficiency of masks more than dry heat. The comparison between 2 methods for decontamination of various types of masks is necessary in future studies. In addition, UV light is generally used to disinfect material surfaces and water. Therefore, dry heat may be more appropriate for mask decontamination. Moreover, the popular use of oven at home makes dry heat convenient and economic. The major concern over the effectiveness of dry heat compared to wet heat is lower penetration of dry heat. This concern can be overcome because the masks are thin (usually 3 mm) and porous, which ensures high penetration, as demonstrated by our study; we placed 5 masks in a steel box and achieved sterility. Another crucial advantage of dry heat is the temperature used is high enough to inactivate pathogens but at the same time, retains the filtering capacity of the masks. Generally, 60°C-70°C for over 30 minutes is an optimal temperature for pasteurization of pathogens in food and vaccines.\(^6\) We used 60°C and 70°C to assess the decontamination effect and evaluate the reduction of the mask function. Seven types of common respiratory pathogens, including Gram-positive bacteria (ie, Staphylococcus aureus and Corynebacterium pseudodiphtheriae), Gram-negative bacteria (ie, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Acinetobacter baumannii), and the fungus Candida albicans, were killed both at 60°C or 70°C for 1 hour, indicating the dry heat can kill a wide range of pathogenic bacteria.

In practice, 70°C is selected for higher reliability. We also used the H1N1 strain as the indicator virus to assess decontamination. The H1N1 virus is an RNA-enveloped virus similar to SARS-CoV-2 that spreads among humans via the respiratory tract. Therefore, it is theoretically feasible to use H1N1 as the indicator virus for assessment of the decontamination effects on respiratory viruses. Previous studies proved that incubation at 50°C-60°C for 30 minutes can inactivate common human viruses.\(^14\) For SARS-CoV-2, heating at 56°C for 45 minutes was recommended by the National Health and Health Commission of the People’s Republic of China as a standard procedure to inactivate SARS-CoV-2 in clinical samples.\(^15\) A higher temperature is a safer choice for the inactivation of SARS-CoV-2.

We placed the masks inside a steel box to ensure even heating. In some ovens, limited space may require the masks to be placed closely to the heating appliances and cause poor air convection, leading to a higher temperature than intended. A steel box can overcome such obstacles. Notably, this study was aimed to provide recommendations for home use, although medical workers may benefit from the information with caution. The following details should be noted: (1) when masks are overused or used in heavily polluted air, their reuse should be managed with more caution; (2) the oven must be a water-proof incubator or without an exposed heating tube, and (3) a steel box can ensure both uniform heating and safety.

To summarize, dry heat at 60°C and 70°C for 1 hour can ensure the decontamination of surgical face masks and N95 respirator while maintaining their filtering efficiency and shape for up to at least three rounds of dry heat. This practice is suitable for use at home and will dramatically reduce the rapidly increasing need for protective masks globally during a pandemic like COVID-19.

References

1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report –68. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200328-strep-68-covid-19.pdf?sfvrsn= Accessed March 28, 2020.
2. Rio Carlos del, Malani Preeti N. COVID-19—New insights on a rapidly changing epidemic. JAMA Network. 2020. JAMA Published online February 28, 2020 (Updated).
3. Nicol N, Nazaroff WW, Hubbard A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. 2005;2:143–154.
4. Loeb M, Dafne N, Mahony J, et al. Surgical mask vs N95 respirator for preventing influenza among health care workers: a randomized trial. JAMA. 2000;302:1865–1871.
5. Centres for Disease Control and Prevention. Use of cloth face coverings to help slow the spread of COVID-19. Available at: https://www.cdc.gov/coronavirus/2019-ncov/downloads/protective-face-coverings-instructions.pdf. Accessed June 15, 2020.
6. World Health Organization. Coronavirus disease (COVID-19) advice for the public: when and how to use masks. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks. Accessed June 15, 2020.
7. Roth B, Mohr H, Enders M, Garten W, Gregersen JP. Isolation of influenza viruses in MDCK 3301PFP cells and clearance of contaminating respiratory viruses. Vaccine. 2012;30:517–522.
8. Hamamoto I, Takahashi, Tashiro M, Yamamoto N. High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. PLoS One. 2013;8:e59892.
9. OSHA Standard for Respiratory Protection, 29CFR 1910.134. Available at: http://www.cdc.gov/niosh/docs/2003-109/te04.html. Accessed June 15, 2020.
10. Dutch National Institute for Public Health and the Environment. Reuse of FFP2 masks. Available at: https://www.rivm.nl/en/documenten/reuse-of-ffp2-masks. Accessed June 15, 2020.
11. Li DF, Cadnum JL, Redmond SN, et al. Steam treatment for rapid decontamination of N95 respirators and surgical face masks. Am J Infect Control. 2020;48:855–857.
12. Heinisch BK, Wallace VH, Kinney K, et al. A pandemic influenza preparedness study: use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets. Am J Infect Control. 2011;39:e1–e9.
13. Viera FR, Pecchia JA. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (Composting–Phase II) for Agaricus bisporus cultivation. Microb Ecol. 2018;75:318–330.
14. Bertrand I, Schijven JF, Sanchez G, et al. The impact of temperature on the inactivation of enteric viruses in food and water: a review. J Appl Microbiol. 2012;112:1095–1074.
15. National Health and Health Commission of the People’s Republic of China. Diagnosis and treatment guidelines for 2019 novel coronavirus pneumonia (Draft version 7) [EB/OL]. [March 3, 2020]. Available at: http://www.nhc.gov.cn/yzygj/s7653p/202003/46c92994a7d4e64ef8b0dc7f55912e1b1989.shtml. Accessed June 15, 2020.