Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders

Muriel de La Dure-Molla1,2,3 | Benjamin Philippe Fournier1,3,4 | Maria Cristina Manzanares5 | Ana Carolina Acevedo6,7 | Raoul C. Hennekam8 | Lisa Friedlander3,9 | Marie-Laure Boy-Lefèvre1,3 | Stephane Kerner1,3 | Steve Toupenay1,3 | Pascal Garrec1,3 | Brigitte Vi-Fane1,3 | Rufino Felizardo1,3 | Marie-Violaine Berteretche1,3 | Laurence Jordan1,3 | François Ferré4 | François Clauss3,10,11 | Sophie Jung3,10,11 | Myriam de Chalendar3 | Sebastien Troester3,10,11 | Marzena Kawczynski3,10,11 | Jessica Chaloyard3 | International Group of Dental Nomenclature | Marie Cécile Manière3,10,11 | Ariane Berdal1,3,4 | Agnès Bloch-Zupan3,10,11,12,13

1Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France
2INSERM UMR S1163 Bases moléculaires et physiopathologiques des ostéochondrodysplasies, Institut Imagine, Necker, Paris, France
3Filière de santé Maladies Rares TÊTECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
4Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
5Unitat d’Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
6Cranio Care Center for Inherited Diseases, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil
7Department of Dentistry, Health Sciences School, University of Brasilia, Brasilia, Brazil
8Department of Pediatrics, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
9INSERM UMR S1123, ECEVE, Épidémiologie clinique, évaluation économique des populations vulnérables, Paris, France
10Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRM R O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
11Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch, France
12Institut d’Etudes Avancées, Université de Strasbourg, USIAS, Strasbourg, France

Correspondence
Muriel de La Dure-Molla, Centre de Référence des Maladies Rares Orales et Dentaires, Service Odontologie Hôpital Rothschild, AP-HP, 5 rue Santerre, 75012, Paris, France
Email: muriel.deladure-molla@aphp.fr

Funding Information
European Regional Development Fund (ERDF) of the European Union; Contrat Interface INSERM/AP-HP, Grant/Award Number: ANR-10-LABX-0030-INRT

Abstract
Dental anomalies occur frequently in a number of genetic disorders and act as major signs in diagnosing these disorders. We present definitions of the most common dental signs and propose a classification usable as a diagnostic tool by dentists, clinical geneticists, and other health care providers. The definitions are part of the series Elements of Morphology and have been established after careful discussions within an international group of experienced dentists and geneticists. The classification system was elaborated in the French collaborative network "TÊTECOU" and the affiliated
O-Rares reference/competence centers. The classification includes isolated and syndromic disorders with oral and dental anomalies, to which causative genes and main extroral signs and symptoms are added. A systematic literature analysis yielded 408 entities of which a causal gene has been identified in 79%. We classified dental disorders in eight groups: dental agenesis, supernumerary teeth, dental size and/or shape, enamel, dentin, dental eruption, periodontal and gingival, and tumor-like anomalies. We aim the classification to act as a shared reference for clinical and epidemiological studies. We welcome critical evaluations of the definitions and classification and will regularly update the classification for newly recognized conditions.

KEYWORDS
Anatomy and Histology, Classification, Craniofacial abnormalities, Rare diseases, Terminology, Tooth abnormalities

1 | **INTRODUCTION**

Tooth number, shape, size, structure, and/or position can be abnormal or altered. There may be delayed or absent tooth eruption. Alterations in periodontal, gingival tissue formation, and odontogenic tumors are also recorded. Teeth anomalies can occur isolated or form an integral part of syndromes. Incomplete penetrance and variability in expression may result in difficulties in diagnosing syndromes. The progress in our knowledge of causative genes and sequencing techniques has enabled diagnostic procedures using panels of genes all known to cause dental anomalies and recognize syndromic entities, which were initially identified as isolated (Prasad et al., 2016). Tooth development anomalies can be part of a large number of disorders, with variable genetic causes, in a variety of ways (Bloch-Zupan, Sedano, & Scully, 2012; Hall, 1994). Dental development is driven by a cascade of epithelial–mesenchymal interactions between oral ectoderm and cranial neural crest derived ectomesenchyme (Tucker & Sharpe, 2004). This process takes place from embryonic and fetal prenatal stages until adulthood, ending with the eruption and the completion of root development of the last third molar. Dental anomalies are morphologically diverse and appear at any time during dental development (Thesleff, 2014). Dental anomalies reflect specific disturbances of one or more stages of odontogenesis, roughly classified as tooth initiation, morphogenesis, cytodifferentiation, mineralization, and bone modeling occurring with eruption (Hennekam, Allanson, & Krantz, 2010).

No complete nosology of dental disorders is available, and only partial nosologies have been published describing specific pathologies such as amelogenesis imperfecta (Witkop Jr., 1988) or dentinogenesis imperfecta (de La Dure-Molla, Fournier, & Berdal, 2015). Here, we present our experience in the management of several thousand patients with dental manifestations as part of their rare disorders and offer an overview of established entities and their classification into isolated and syndromic dental disorders. The classification is only possible if defined terms are available to describe oral and dental findings. A standard terminology for lips, mouth, and oral region is available (Carey et al., 2009). Here, we provide a definition for each dental sign using the strategy of the Elements of Morphology series (Allanson, Biesecker, Carey, & Hennekam, 2009). In the classification, the primary diagnostic entry is the dental sign(s), followed by the main other medical manifestations. We added the causative gene(s) and protein and cross-reference with the international nomenclatures OMIM and Orphanet (Rath et al., 2012). We aim to facilitate offering a globally usable nomenclature of dental signs and symptoms and facilitate interactions between oral health specialists and other health care providers.

2 | **MATERIALS AND METHODS**

Rare Disease Reference Centers and affiliated Competence Centers of the French Rare Disorders Healthcare Network named “TÊTECOU” constitutes a multidisciplinary group of experts, working on diagnosis and management of individuals with rare disorders of the head and neck, including dental defects. The group of experts constituted a working group to defining dental anomalies and proposed a nosology of genetic dental disorders. The results have been endorsed by an international panel of experts taking into account all observations.

2.1 | **Defining dental anomalies**

Existing terminology of dental anomalies was analyzed by obtaining data from several databases, nomenclatures, and ontologies (Supplementary Data Table S1): HPO (Human Phenotype Ontology (Groza et al., 2015), Orphanet (Rath et al., 2012), NEN9313:2015, D[4]phenodent (Bloch-Zupan, 2004), ICD10-ICD11, and the standard terminology of Elements of Morphology for the lips, mouth, and oral region (Carey et al., 2009). When worded differently, the present definitions supersede the ones from Carey et al., 2009. Data collected were formatted according to Elements of Morphology series (Allanson et al., 2009).
Group of dental anomaly/ name of disease	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Dental agenesis (hypodontia/oligodontia/anodontia)						
(1) Isolated						
1 Incisors, lower central, absence of	147330	/	/	/		Three old report, underdiagnosis case
2 Teeth, congenital absence of with taurodontia ans sparse hair	272980	2731	/	/		
3 Tooth agenesis, selective, X-linked 1; STHAGX1	313500	XLD	EDA			Ectodysplasin A
4 Tooth agenesis, selective, 1, with or without orofacial cleft; STHAG1	106600	AD	MSX1			Homebox protein MSX-1
5 Tooth agenesis, selective, 2; STHAG2	602639	/	AR	16q12.1		
6 Tooth agenesis, selective, 3; STHAG3	604625	99798	AD	PAX9		Paired box protein Pax-9
7 Tooth agenesis, selective, 4; STHAG4	150400	AD	WNT10A			Protein WNT-10A
8 Tooth agenesis, selective, 5; STHAG5	610926	99798	/	10q11.2-q21		
9 Tooth agenesis, selective, 7; STHAG7	616724	99798	AD	LRP6	Low-density lipoprotein receptor-related protein 6	
10 Oligodontia-colorectal cancer syndrome	608615	300576	AD	AXIN2		Axin-2
11 Ectodermal dysplasia 10A, hypohidrotic/hair/nail type, autosomal dominant	129490	238468181	AD	EDAR		Ectodysplasin A receptor
12 Ectodermal dysplasia 11A, hypohidrotic/hair/tooth type, autosomal dominant	614940	AD/AR	EDARADD	EDAR-associated death domain		
13 Ectodermal dysplasia 11B, hypohidrotic/hair/tooth type, autosomal recessive	614941	238468, 248	AD/AR	EDARADD	EDAR-associated death domain	
14 Ectodermal dysplasia with natal teeth, Turnpenny type	601345	69083	/	/		One family

(Continues)
TABLE 1 (Continued)

Group of dental anomaly/ name of disease	Phenotype	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
(2) Skin disorders							
(2.1) Ectodermal dysplasia “classical”							
15 Böök syndrome	112300	1262	/	/	/		Severe hyperhidrosis of the hands and feet, small hands, small nails
16 Dermoodontodyplasia	125640	1660	/	/	/		Two families, probable underdiagnosis
17 Ectodermal dysplasia 1, hypohidrotic, X-linked	305100	238468, 181	XLR	EDA			Abnormal development in two or more ectodermal structures (hair, nails, teeth, and sweat glands) without other systemic findings
18 Ectodermal dysplasia 2, Clouston type	129500	189	AD	GJB6	Gap junction protein beta 6		
19 Ectodermal dysplasia 3, Witkop type	189500	2228	AD	MSX1	Homeobox protein MSX-1		
20 Ectodermal dysplasia 8, hair/tooth/nail type	602401	99672	AR	18q22.1-q22.3			
21 Ectodermal dysplasia 10B, hypohidrotic/hair/tooth type, autosomal recessive	224900	238468, 248	AR	EDAR	Ectodysplasin A receptor		
22 Ectodermal dysplasia 11A, hypohidrotic/hair/tooth type, autosomal dominant	614941	238468, 1810	AR/AR	EDARADD	EDAR-associated death domain		
23 Ectodermal dysplasia 11B, hypohidrotic/hair/tooth type, autosomal recessive	614941	238468, 248	AR/AR	EDARADD	EDAR-associated death domain		
24 Ectodermal dysplasia/short stature syndrome	616029	423454	AR	GRHL2	Grainyhead-like protein 2 homolog		
25 Ectodermal dysplasia	/	/	AR	KREMEN1	KREMEN1	Issa et al., 2016	
26 Ectodermal dysplasia	/	/	/	GREM2	GREMLIN-2	Kantaputra et al., 2015	
27 Ectodermal dysplasia	/	/	/	TSPPEAR	TSPPEAR	Peled et al., 2016	
28 Odontoonychodermal dysplasia	257980	2721	AD	WNT10A	Protein WNT-10A		
29 Schöpf-Schulz-Passarge syndrome	224750	90944	AR	WNT10A	Protein WNT-10A		
30 Trichodontal dysplasia	601453	3351	AD	/	/	Four families, probable underdiagnosis	
							Space scalp and slow growing hair

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Wolf-Hirschhorn syndrome	194190	280	AD	MSX1, del4p15.1-15.2	Hox protein MSX-1	Growth and developmental delay, facial dysmorphology (Greek warrior helmet profile), intellectual disability	
Cleft lip/palate-ectodermal dysplasia syndrome, CLPED1	225060	1991, 3253	AR	NECTIN1(PVRL1)	Nectin cell adhesion molecule 1	Cleft lip and palate, sparse scalp hair, malformed protruding ears, partial syndactyly of the fingers and toes, hypohidrotic ectodermal dysplasia	
Cranioectodermal dysplasia 1	218330	1515	AR	IFT122	Intraflagellar transport protein 122 homolog	Other name: Sensenbrenner syndrome	
Sagittal craniosynostosis, short stature, sparse scalp hair, small nails, short hand, short limbs, small anus, narrow thorax, joint laxity, chronic renal, and liver disease							
Cranioectodermal dysplasia 2	613610	1515	AR	WDR35	WD repeat-containing protein 35		
Cranioectodermal dysplasia 3	614099	1515	AR	IFT43	Intraflagellar transport protein 43		
Cranioectodermal dysplasia 4	614378	1515	AR	WDR19	WD repeat-containing protein 19		
EEC syndrome-1	129900	1896	AD	7q11.2-q21.3	/	Anhidrotic ectodermal dysplasia, cleft lip, and palate	
Orofacial cleft 8	129400	1991	AD	TP63	Tumor protein 63	Anhidrotic ectodermal dysplasia, cleft lip, and palate	
Rapp-Hodgkin syndrome	129400	3022	AD	TP63	Tumor protein 63	Anhidrotic ectodermal dysplasia, cleft lip, and palate	
Ectodermal dysplasia, ectrodactyly, and macular dystrophy	225280	1897	AR	CDH3	Cadherin 3	Ectodermal dysplasia, split of hand and foot, syndactyly, macular dystrophy	
Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome 3	604292	1896	AD	TP63	Tumor protein 63	Split of hands and feet, ectodermal dysplasia, deft lip/palate	

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Ectodermal dysplasia-syndactyly syndrome 1	613573	247820	AR	NECTIN4(PVRL4)	Nectin cell adhesion molecule 4	Ectodermal dysplasia, syndactyly	
Hay-Wells syndrome	106260	1071	AD	TP63	Tumor protein 63	Syndactyly, scalp infections, ankyloblepharon, cleft lip/palate	
Limb-mammary syndrome	603543	69085	AD	TP63	Tumor protein 63	Severe hand/foot anomalies and hypoplasia/aplasia of the mammary gland and nipple	
Odontotrichoungual-digital-palmar syndrome	601957	69082	AD	/	/	One family	Space scalp hair, syndactyly, deep transverse palmar creases, small nails
Uncombable hair, retinal pigmentary dystrophy, dental anomalies, and brachydactyly	191482	1264	AD	/	/	One family	Space scalp hair, juvenile cataracts, retinal pigmentary dystrophy, short metacarpal

(2.4) Skin disorders with neurologic disorder

| Incontinentia pigmenti | 308300 | 464 | XLD | IKBKG/NEMO | NF-kappa-B essential modulator | Abnormalities of the skin along Blaschko's lines, space scalp hair, small nails, central nervous system anomalies |
| Ectodermal dysplasia, hypohidrotic, with immune deficiency | 300291 | 98813 | XLD, AD | IKBKG/NEMO, NFKBIA | NF-kappa-B essential modulator | Hypohidrotic ectodermal dysplasia, immunodeficiency |

(2.5) Skin disorders with cardiopathy

| Cardiomyopathy, dilated, with woolly hair and keratoderma | 605676 | 65282 | AR | DSP | Desmoplakin | Cardiomyopathy with woolly hair, keratoderma |
| Dilated cardiomyopathy with woolly hair, keratoderma, and tooth agenesis | 615821 | | AD | DSP | Desmoplakin |

(2.6) Skin disorders with skin blistering

| Ectodermal dysplasia/skin fragility syndrome | 604536 | 158668 | AR | PKP1 | Plakophilin 1 | Skin fragility as blistering, ectodermal dysplasia, dystrophis nails, space scalp hair, palmoplantar keratoderma |

(2.7) Others skin disorders syndrome

| Acral-renal-ectodermal-dysplasia lipodystrophic-diabetes (AREDYLD) | 207780 | 1133 | AR | / | / | Two families | Lipoatrophy, diabetes mellitus, facial dysmorphology, space scalp hair, renal disorder |
| Cerebellar ataxia and ectodermal dysplasia | 212835 | 1174 | / | / | / | Cerebellar ataxia and hypohidrotic ectodermal dysplasia |

(Continues)
Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
55 Deafness, congenital, and onychodystrophy, autosomal dominant, DDOD	124480	79499, 3231	AD	ATP6V1B2	Vacuolar V-ATPase protein	Congenital deafness, small nails, small terminal phalanges	
56 Ectodermal dysplasia, trichoedontoonychial type	129510	1818	/	/	/	Ectodermal dysplasia, focal linear dermal hypoplasia of the tip of the nose, bilateral amastia and athelia, mild nerve hearing loss	
57 Dermatoosteolysis, Kirghizian type	221810	1657	AR	/	/	One family	Recurrent skin ulceration, arthralgia, fever, fistulous osteolysis around joints, nail dystrophy, and keratitis with visual impairment or blindness
58 Pilodental dysplasia with refractive errors	262020	2892	/	/	/	One family	Ectodermal dysplasia with normal sweating and fingernails, scalp hypotrichosis, pili annulati, follicular hyperkeratosis of trunk and limbs, marked hyperopia
59 Progeroid short stature with pigmented nevi	176690	2959	AR	/	/	Premature aging, multiple pigmented nevi, lack of facial subcutaneous fat, microcephaly, short stature, sensorineural hearing loss, and intellectual disability	
60 Scalp-ear-nipple syndrome	181270	2036	AD	KCTD1	BTB/POZ domain-containing protein KCTD1	Aplasia cutis congenita of the scalp, breast, and ears anomalies (absent pinnae, bilateral amastia), cataract	
61 Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis	614813	314394	AR	POC1A	POC1 centriolar protein homolog A	Short stature, small nails, facial dysmorphology, space scalp hair, short hands, and feet	
62 Waardenburg syndrome, type 1	193500	894, 3440	AD	PAX3	Paired-box protein Pax-3	Pigmentary abnormalities of the hair, skin, and eyes, congenital sensorineural hearing loss, wide nasal ridge	
(3) Eye diseases							
63 Axenfeld-Rieger syndrome, type 1	180500	782	AD	PITX2	Pituitary homeobox 2	Abnormal development of the anterior segment of the eye, failure of involution of periumbilical skin	
Group of dental anomaly/names of disease	Phenotype	MIM number	Inheritance	Gene/locus	Protein	Notes	
---	-----------	------------	-------------	------------	---------	-------	
Axenfeld-Rieger syndrome, type 2	601499	AD	13q14	FOXC1	Forkhead box protein CI		
Axenfeld-Rieger syndrome, type 3, Rieger or Axenfeld anomalies	602482, 98978, 91483, 7922	AD	FOXC1	Forkhead box protein CI			
Blepharocheilodontic syndrome, BCDS	119580	AD	1997	FOXC1	Forkhead box protein CI		
Congenital myopathy with excess of muscle spindles (Costello syndrome)	218040	AD	FOXC1	Forkhead box protein CI			
Dental anomalies and short stature	601216	AR	LTBP3	Latent transforming growth factor beta binding protein 3			
Dental anomalies and short stature	222500	AR	SLCE2A42	Solute transporter			
Group of dental anomaly / name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	----------------------	-------------------------	-------------	------------	---------	-------	---------------------
Dysostosclerosis	224300	1782	AR	SLC29A3	Equilibrative nucleoside transporter 3	Osteopetrosis, red-violet macular atrophy of skin, platyspondyly	
Ellis-van Creveld syndrome	225500	289	AR	EVC1, EVC2	EvC ciliary complex subunit 1	Chondrodysplasia (short limbs, short ribs, postaxial polydactyly), ectodermal dysplasia	
Johanson-Blizzard syndrome	243800	2315	AR	UBR1	E3 ubiquitin-protein ligase UBR1	Growth deficiency, intellectual disability, facial dysmorphology, pancreatic insufficiency	
Kabuki syndrome	147920	2322	AD	KMT2D	Histone-lysine N-methyltransferase 2D	Intellectual disability, postnatal dwarfism, facial dysmorphology, short fifth fingers, radiographic abnormalities of the vertebrae, hip joints, recurrent otitis	
Kabuki syndrome 2	300867	/	XLD	KDM6A	Lysine-specific methyltransferase 6A		
Rothmund-Thomson syndrome	268400	2909	AR	RECQL4	ATP-dependent DNA helicase Q4	Skin atrophy, telangiectasia, hyper-and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, increased risk of malignant disease, space scalp hair, juvenile cataract	
Sotos syndrome 1, SOTOS1	117550	821	AD	NSD1, del19p13.2	Histone-lysine N-methyltransferase H3 lysine-36 and H4 lysine-20 specific	Excessively rapid growth, acromegalic features, nonprogressive cerebral disorder with intellectual disability, facial dysmorphology	
Weyers acrodental dysostosis	193330	952	AD	EVC1, EVC2	EvC ciliary complex subunit 1	Enamel anomaly, Nail dystrophy, postaxial polydactyly, mild short stature	
(5) Endocrine and gynecological diseases							
Brachymetapody, anodontia, hypotrichosis, albinoidism	211370	2713	/	/	/	Short stature with particular shortening of the metacarpals and metatarsals, space scalp hair, albinoidism, multiple ocular abnormalities	
Hypogonadotropic hypogonadism 1 with or without anosmia (Kallmann syndrome 1)	308700	432, 478	XL	ANOS1 (KAL1)	Anosmin 1	Absent or incomplete sexual maturation, low levels of circulating gonadotropins and testosterone, abnormalities of the hypothalamic–pituitary axis	

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations	
85 Hypogonadotropic hypogonadism 2 with or without anosmia	147950	AD	FGFR1	Fibroblast growth factor receptor 1			
86 Hypogonadotropic hypogonadism 3 with or without anosmia	244200	AD	PROKR2	Prokineticin receptor 2			
87 Hypogonadotropic hypogonadism 4 with or without anosmia	610628	AD	PROK2	Prokineticin 2			
88 Opitz GBBB syndrome, type II	145410	AD	SPECC1L	Cytoispin-A	Laryngotraheoesophageal cleft, cleft of lip and palate, genitourinary defects, intellectual disability, developmental delay		
89 Ulnar-mammary syndrome	181450	AD	TBX3	T-box transcription factor TBX3	Posterior limb deficiencies or duplications, apocrine/mammary gland hypoplasia and/or dysfunction, delayed puberty in males, genital anomalies		
90 Acrofacial dysostosis, Palaugia type	601829	XL	/	/	One family	Acrofacial dysostosis, short stature, facial dysmorphism	
91 Alagille syndrome	118450	AD	JAG1	JAGGED-1	Paucity of intrahepatic bile ducts, cholestasis, cardiac disease, skeletal abnormalities, ocular anomalies, facial dysmorphism		
92 Apert syndrome	101200	AD	FGFR2	Fibroblast growth factor receptor 2	Craniosynostosis, midface hypoplasia, syndactyly of the hands and feet with a tendency to fusion of bony structures		
93 Branchiooculofacial syndrome	113620	AD	TFFAP2A	Transcription factor AP-2-alpha	Branchial cleft sinus defects, ocular anomalies (microphthalmia, lacrimal duct obstruction), facial dysmorphism, conductive hearing loss		
94 Carpenter syndrome	201000	AR	RAB23	Ras-related protein Rab-23	Acrocephaly, variable synostosis, short fingers, syndactyly, congenital heart defects, growth retardation, intellectual disability, hypogenitalism, obesity		
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	----------------------	-------------------------	-------------	------------	---------	-------	---------------------
95 Carpenter syndrome 2	614976		AR	MEGF8	Multiple epidermal growth factor-like domains protein 8	Multisuture craniosynostosis, polysyndactyly of the hands and feet, abnormal left-right patterning, obesity, umbilical hernia, cryptorchidism, congenital heart disease	
96 Char syndrome	169100	46627	AD	TFAP2B	Transcription factor AP2 beta	Patent ductus arteriosus with facial dysmorphology, short fifth fingers	
97 Cleft palate with ankyloglossia	303400	324601	XL	TBX22	T-box transcription factor TBX22	Cleft palate with or without ankyloglossia	
98 Cleft palate deafness and oligodontia	216300	2010	/	/	/	One family Cleft soft palate, bilateral conductive deafness, short halluces	
99 Holoprosencephaly 1	236100	2162	IC, AD	21q22.3	/	Malformation of the human forebrain	
100 Holoprosencephaly 2	157170		IC, AD	SIX3	Homeobox protein 5X3	Lip and anterior cleft palate, hypotelorism, microcephaly, intellectual disability, scoliosis, chronic constipation	
101 Holoprosencephaly 3	142945		AD	SHH	Sonic hedgehog protein		
102 Holoprosencephaly 4	142946		AD	TGIF1	Transforming growth factor beta induced factor 1		
103 Holoprosencephaly 5	609637		AD	ZIC2	Zinc finger protein ZIC 2	Alobar and semi-lobar holoprosencephaly	
104 Holoprosencephaly 7	610828		AD	PTCH1	Protein patched homolog 1	Semi-lobar holoprosencephaly	
105 Holoprosencephaly 9	610829		AD	GLI2	Zinc finger protein GLI2	Brain developmental defects, with or without overt forebrain cleavage abnormalities	
106 Orofaciodigital syndrome 1	311200	2750	XLD	OFD1	Oral-facial-digital syndrome 1 protein	Facial dysmorphology, fingers anomalies, alopecia	

(Continues)
Group of dental anomaly/ name of disease	Phenylotype number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
107 Sener syndrome	606156	/	/	/	/		Facial dysmorphism, thin hair, and dystrophic nails, mild developmental delay
108 Single median maxillary central incisor	147250	2162, 280200, 2286	AD	SHH	Sonic Hedgehog protein	Severe to mild intellectual disability, congenital heart disease, cleft lip, and/or palate, facial dysmorphism, and less frequently hypopituitarism, hypotelorism, convergent strabismus, esophageal and duodenal atresia, cervical hemivertebrae, cervical dermoid, hypothyroidism, scoliosis, absent kidney, micropenis, and ambiguous genitalia	
109 Teebi-Shaltout syndrome	272950	3291	/	/	/		Slow hair growth, scaphocephaly with prominent forehead, bitemporal depression, camptodactyly, caudal appendage with sacral dimple
110 Treacher Collins syndrome 1	154500	861	AD, AR	TCOF1, POLR1D, POLR1C	Treacle protein, RNA polymerase I subunit C, subunit D	Antimonogolid eyes, coloboma of the lid, micrognathia, microtia, cleft palate, hypoplastic zygomatic arches, macrostomia, ears anomaly/conductive hearing loss	
111 Van der Woude syndrome	119300	888	AD	IRF6	Interferon regulatory factor 6	Pits and/or sinuses of the lower lip, and cleft lip and/or cleft palate	
112 Van der Woude syndrome 2	606713	/	AD	GRHL3	Grainyhead-like protein 3 homolog		
113 Williams-Beuren syndrome	194050	904	AD	7α11.23	/		Supravalvular aortic stenosis (SVAS), intellectual disability, pulmonary artery stenosis, distinctive facial features
(7) Cancers and tumors							
114 Oligodontia-colorectal cancer syndrome	114500	300576	AD	AXIN2	Axin-2		Colorectal neoplasia
(8) Intellectual disabilities							
115 Down syndrome	190685	870	Isolated cases	/			Intellectual disability and facial dysmorphism, Risk of periodontal attachment loss
Group of dental anomaly/name of disease	Phenotype/MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	----------------------	-------------------------	-------------	------------	---------	-------	-------------------
116 Glass syndrome	612313	251019	AD	SATB2	DNA-binding protein SATB2	Intellectual disability, facial dysmorphology, joint laxity, arachnodactyly	
117 Hypoparathyroidism-retardation-dysmorphism syndrome	241410	2323	AR	TBCE	Tubulin specific chaperone E	Other name: Sanjad-Sakati syndrome	
118 Larger deletion of several genes on chromosome 17q21.31	/	/	/	/	/	Tan et al., 2009, see also Koolen-De Vries syndrome (MIM 610443)	
119 Leukodystrophy, hypomyelinating, 7, with or without oligodontia and/or hypogonadotropic hypogonadism	607694	77295, 447893, 137639, 447896	AR	POLR3A	DNA-directed RNA polymerase III subunit RPC1	Neurodegenerative disorder, progressive motor decline, (spasticity, ataxia, tremor), cerebellar signs, mild cognitive regression	
120 Leukodystrophy, hypomyelinating, 8, with or without oligodontia and/or hypogonadotropic hypogonadism	614381	88637	AR	POLR3B	DNA-directed RNA polymerase III subunit RPC2	Cerebellar ataxia and mild intellectual disabilities associated with diffuse hypomyelination apparent on brain MRI	
121 Tetramalic deficiencies, ectodermal dysplasia, deformed ears, and others anomalies	273400	2723	/	/	/	Malformations of all four extremities, small nails, ear anomalies, space scalp hair, hyperhidrosis, nasolacymal duct obstruction	

Supernumerary teeth

(1) Isolated
122 Teeth, supernumerary

(2) Eye diseases
124 Nance-Horan syndrome

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
125 Opitz GBBB syndrome, type I	300000	2745, 306597	WLR	MID1	E3 ubiquitin-protein ligase Midline-1	Hypertelorism, hypoplasia, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay, cardiac defects	
(3) Bone diseases							
126 Brachydactyly, type B1	113000	93383	AD	ROR2	Tyrosine-protein kinase transmembrane receptor ROR2	Severe malformations of the hands and feet (short fingers, absence of nails)	
127 Cleidocranial dysplasia	119600	1452	AD	RUNX2	RUNT-related transcription factor 2	Open skull sutures with bulging calvaria, hypoplasia or aplasia of the clavicles, wide pubic symphysis, short middle phalanx of the fifth fingers, vertebral malformation	
Cleidocranial dysplasia, forme fruste, dental anomalies only	119600	AD	RUNX2	RUNT-related transcription factor 2			
Cleidocranial dysplasia, forme fruste, with brachydactyly	119600	AD	RUNX2	RUNT-related transcription factor 2			
128 Craniosynostosis and dental anomalies	614188	284149	AR	IL11RA	Interleukine 11 receptor antagonist	Craniosynostosis, maxillary hypoplasia, syndactyly, clinodactyly	
129 Odontomas dysphagia syndrome	164330	2724	/	/	One family	Hypertrophy of the smooth muscles of the esophagus, severe dysphagia	
130 Robinow syndrome, autosomal recessive	268310	97360, 1507	AR	ROR2	Tyrosine-protein kinase transmembrane receptor ROR2	Facial dysmorphology (frontal bossing, hypertelorism, and broad nose), short-limbed dwarfism, vertebral segmentation, short stature, clinodactyly, short hand, genital hypoplasia	
131 Robinow syndrome, autosomal dominant 1	180700	97360, 3107	AD	WNT5A	Protein Wnt-5a		
132 Robinow syndrome, autosomal dominant 3	616894	97360, 3107	AD	DVL3	Segment polarity protein disheveled homolog		
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	----------------------	--------------------------	-------------	------------	---------	-------	---------------------
133 Trichorhinophalangeal syndrome, type I	190350	77258	AD	TRPS1	Zing finger transcription factor TRPS1	Sparse scalp hair, broad nasal tip, long flat philtrum, thin upper vermilion border, protruding ears, skeletal abnormalities (cone-shaped epiphyses at the phalanges, hip malformations), short stature	
134 Trichorhinophalangeal syndrome, type III	190351	AD	TRPS1	Zing finger transcription factor TRPS1	Space scalp hair, convex nasal ridge, long upper lip, short metacarpal phalanges		
135 Gardner syndrome	175100	733, 220460, 247806, 79665, 99818	AD	APC	Adenomatous polyposis coli protein	Adenomatous polyps of the colon and rectum, predisposition to cancer	
136 Natal teeth-intestinal pseudointestinum-patent ductus syndrome	243185	1654	/	/	/	One family	Patent ductus arteriosus, intestinal pseudoobstruction evident from birth
137 Steatocystoma multiplex-natal teeth syndrome	184510	3184	/	/	/	One family	Multiple steatocystomas
138 Beare-Stevenson cutis gyrata syndrome	123790	1555	AD	FGFR2	Fibroblast growth factor receptor 2	Craniosynostosis, ear defects, cutis gyrata, acanthosis nigricans, anogenital anomalies, skin tags, prominent umbilical stump	
139 Mohr syndrome	252100	2751	/	/	/	Poly-, syn-, and brachydactyly, lobate tongue with papilliform protuberances, angular form of the alveolar process of the mandible, supernumerary sutures in the skull, an episodic neuromuscular disturbance	

Dental morphology anomalies (size and shape)

(1) **Microdontia**

(1.1) **Isolated**

Dental anomaly	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
140 Dentin dysplasia, type I, with microdontia and misshapen teeth	125400	314721, 1653	AR	SMOC2	Secreted modular calcium binding protein 2	One family	
141 Taurodontism, microdontia, and dens invaginatus	313490	/	/	/	One family		

(1.2) **Syndromic**

(Continues)
Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Cartilage-hair hypoplasia	250250	175	AR	RMRP	Mitochondrial RNA-processing endoribonuclease	Short-limbed dwarfism, slow growing hair, short stature, short hand, metaphyseal lesions	
Craniofacial dysmorphism, skeletal anomalies, and intellectual disability syndrome	213980	1394	AR	TMCO1	Calcium load-activated calcium channel	Facial dysmorphology, multiple malformations of the vertebrae and ribs, and intellectual disability	
Deafness, congenital with inner ear agenesis, microtia, and microdactyly	610706	90024	AR	FGF3	Fibroblast growth factor 3	Congenital deafness with inner ear agenesis, microtia	
Filippi syndrome	272440	3255	AR	CKAP2L	Cytoskeleton associated protein 2 like	Short stature, microcephaly, syndactyly, intellectual disability, and facial dysmorphology	
Genitopatellar syndrome	606170	85201	AD	KAT6B	Histone acetyltransferase KAT6B	Fusion of the proximal or distal interphalangeal joints (arthrogryposis of hips and knees), patellar aplasia	
Gorlin-Chaudhry-Moos syndrome, GCMS	233500	2095	/	/	/	Stocky body build, hypertrichosis, craniosynostosis, conductive hearing loss, normal intelligence, hyperopia, facial dysmorphology, hypoplastic distal phalanges, umbilical hernia, and genital hypoplasia	
Lenz-Majewski hyperostotic dwarfism	151050	2658	AD	PTDS5I	Phosphatidylserine synthase 1	Intellectual disability, facial dysmorphology, loose/atrophic skin, distal limb anomalies, short hand, hyperostotic dwarfism	
Ohdo syndrome	249620	2728	/	/	/	Intellectual disability, congenital heart disease, blepharophimosis, blepharoptosis, hearing impairment	
Microcephalic osteodysplastic primordial dwarfism, type II (MOPD II)	210720	2637	AR	PCNT	Pericentrin	Intrauterine growth retardation, severe proportionate short stature, and microcephalic dwarfism	
Microcephaly, macrotia, and intellectual disability	602555	/	/	/	One family	Microcephaly, intellectual disability, huge ears with very large lobules, median frenulum of the upper lip, ptosis, bilateral ureterohydronephrosis secondary to vesicoureteral reflux	
Table 1 (Continued)							

Group of dental anomaly/ name of disease	**Orphanet number (ORPHA)**	**MIM number**	**Inheritance**	**Gene/locus**	**Protein**	**Notes**	**Main manifestations**
152 Multiple congenital anomalies-hypotonia-seizures syndrome 2	300496	300868	XLR	PIGA	Phosphatidylinositol N-acetylglucosaminyl transferase subunit A	Facial dysmorphology, neonatal hypotonia, myoclonic seizures, and variable congenital anomalies involving the central nervous, cardiac, urinary systems	
153 Rosselli-Gulienetti syndrome	/	225000	/	/	/	One family	Anhidrosis, hypotrichosis, small nails, cleft lip and palate, deformity of the fingers and toes, malformation in the genitourinary system
154 Seckel syndrome 1	808	210600	AR	ATR	Serine/threonine-protein kinase ATR	Intrauterine growth retardation, dwarfism, microcephaly with intellectual disability, facial dysmorphism	
155 Smith-Lemli-Opitz syndrome	818	270400	AR	DHCR7	7-dehydrocholesterol reductase	Multiple congenital malformation (cardiovascular, genitointestinal), intellectual disability, autistic traits, growth retardation	
156 Symphalangism, distal, with microdontia, dental pulp stones, and narrowed zygomatic arch	/	606895	/	/	/	One family	Fusion of the proximal or distal interphalangeal joints
157 Turner syndrome (2) Macrodontia	/	/	/	/	/	Short stature, ovarian failure	
158 KBG syndrome	2332	148050	AD	ANKRD11	Ankyrin repeat domain containing protein 11	Macrodontia of the upper central incisors, facial dysmorphism, short stature, skeletal anomalies, and neurologic involvement that includes global developmental delay, seizures, and intellectual disability	
159 Microphthalmia, syndromic 2	568, 2712	300166	XLD	BCOR	BCL6 corepressor	Congenital cataract, microphthalmia, atrial septal defect	
160 Otodental dysplasia chromosome deletion syndrome	166750	99806, 2791	AD	FGF3, FADD	Fibroblast growth factor 3, FAS-associated death domain protein	Sensorineural hearing loss, ocular coloboma, facial dysmorphology	
161 Surnumerary X Klinefelter syndrome	484	/	/	/	/	With taurodontism	Hypogonadism, intellectual disability, genital anomalies
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	---------------------	-------------------------	-------------	------------	---------	-------	---------------------
(3) Talon cusp							
Talon cusp	162	180849	AD	CREBBP, EP300	CREB binding protein; P300	Intellectual disability, postnatal growth deficiency, microcephaly, short and broad thumbs and halluces, facial dysmorphism	
Talon cusp		783, 353277					
Talon cusp							
Talon cusp	163	605282	AR	CHSY1	Chondroitin sulfate synthase 1	One patient with hypodontia	
Talon cusp	363417						Intellectual disability, sensorineural deafness, growth retardation, broad fingers
Talon cusp	363417						
Talon cusp							
Talon cusp	164	200970	/	/	/	One family	Juvenile glaucoma
Talon cusp	2561						
Talon cusp							
Talon cusp	165	206900	AD	SOX2	Transcription factor SOX-2	Microphthalmia (with or without defects of the optic nerve, optic chiasm, and optic tract), brain anomalies, seizures, motor disability, neurocognitive delays, sensorineural hearing loss, esophageal atresia	
Talon cusp	77298						
Talon cusp							
Talon cusp	166	200110	AD	TWIST2	Twist-related protein 2	Ectodermal dysplasia, ablepharon, macrostomia, microtia, redundant skin, sparse scalp hair, variable abnormalities of the nipples, genitalia, syndactyly of hands and feet, normal intellectual and motor development, growth retardation	
Talon cusp	920						
Talon cusp							
Talon cusp	167	242900	AR	SMARCAL1	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1	Bulbous dental crown, thin and short root	
Talon cusp	1830						Combined immunodeficiency with associated or syndromic features: Spondyloepiphyseal dysplasia with a peculiar clinical phenotype, short stature, facial dysmorphism, numerous lentigines, a slowly progressive immune defect, and an immune-complex nephritis which leads to death at about age 8 years
Talon cusp							
Talon cusp	168	/	AR	TCTEX1D2	TCTEX1D2 protein	Congenital heart defects, laterality defects	
Talon cusp	/						
Talon cusp							

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Enamel anomalies (affecting temporary and permanent teeth)							
(1) Isolated							
169 Amelogenesis imperfecta, type IA	104530	88661, 100031	AD	LAMB3	Laminin beta 3		
170 Amelogenesis imperfecta, type IB	104500		AD	ENAM	Enamelin		
171 Amelogenesis imperfecta, type IC	204650		AR	ENAM	Enamelin		
172 Amelogenesis imperfecta, type IF	616270		AR	AMBN	Ameloblastin		
173 Amelogenesis imperfecta, type IH	616221	88661, 100031, 100032	AR	ITGB6	Integrin beta 6		
174 Amelogenesis imperfecta, hypoplastic/hypomaturation type 1E	301200	88661, 100033	XLD	AMELX	Amelogenin		
175 Amelogenesis imperfecta, hypoplastic/hypomaturation, X-linked 2	301201	88661, 100031	XL	/	/		
176 Amelogenesis imperfecta, type IIA1	204700	88661, 100033	AR	KLK4	Kallikrein-related peptidase 4		
177 Amelogenesis imperfecta, type IIA2	615259		AR	MMP20	Matrix metalloproteinase 20		
178 Amelogenesis imperfecta, hypomaturation type, IIA3	613211		AR	WDR72	WD repeat-containing protein 72		
179 AIH, hypomature type, IIA4	614832		AR	C4orf26	Uncharacterized protein C4orf26		
180 Amelogenesis imperfecta, type IIA5	615587		AR	SLC24A4	Sodium/potassium/calcium exchanger 4		
181 Amelogenesis imperfecta, type III	130900	88661, 100032	AD	FAM83H	Protein FAM83H		
182 Amelogenesis imperfecta, type IV	104510	88661, 100034	AD	DLX3	Homeobox protein DLX-3	With taurodontism	
183 Amelogenesis imperfecta	/	/	/	ARHGAP6	Rho GTPase-activating protein 6		
184 Amelogenesis imperfecta	/	/	AD	LAMA3	Laminin alpha 3	Kim et al., 2013	
185 Amelogenesis imperfecta	/	/	AD	AMTN	Amelotin	Smith et al., 2016	
186 Amelogenesis imperfecta	/	/	AR	ACPT	Acid phosphatase testicular	Seymen et al., 2016	

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number (ORPHA)	Orphanet number	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Amelogenesis imperfecta	187	/	AR	GPR68	Proton sequencing G protein-coupled receptor	Parry et al., 2016	
Epithelial recurrent erosion dystrophy	188	122400	AD	COL17A1	Collagen 17 alpha 1		
Amelogenesis imperfecta	189	/	AR	RELT	Tumor necrosis factor receptor superfamily	Kim et al., 2018	

(2) Skin disorders

Amelogenesis imperfecta	190	104570	/	/	/	/	Onycholyis with subungual hyperkeratosis, hypohidrosis
Arthrogryposis and ectodermal dysplasia	191	601701	/	/	/	/	Trichodyplasia, dry skin with scaling, hyperchromic spots on the limbs, hyperkeratosis, small nails, short of stature, kyphoscoliosis, facial dysmorphism, ocular anomalies
Cutaneous telangiectasia and cancer syndrome, familial	192	614564	AD	ATR	Serine/threonine-protein kinase ATR	Cutaneous telangiectasia, mild developmental anomalies of hair and nails, predisposition to cancer (predominantly oropharyngeal)	
Ectodermal dysplasia-syndactyly syndrome 2	193	613576	AR	7p21.2-p14.3	/	/	One family, probable undiagnosis
Ectodermal dysplasia, hypohidrotic, with hypothyroidism and agenesis of the corpus callosum	194	225040	/	/	/	/	Probable contiguous to MIM 225050, Severe intellectual disability, hypohidrotic ectodermal dysplasia, primary hypothyroidism, agenesis of the corpus callosum
Epidermolysis bullosa, generalized atrophic benign	195	226650	AR	LAMA3	Laminin alpha 3	Blistering of the skin	
Epidermolysis bullosa, junctional, Herlitz type	196	226700	AR	LAMA3	Laminin alpha 3		
Epidermolysis bullosa, junctional, Herlitz type	197	226700	AR	LAMB3	Laminin beta 3		
Epidermolysis bullosa, junctional, non-Herlitz type	198	226650	AR	LAMB3	Laminin beta 3		
Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
199 Epidermolysis bullosa, junctional, Herlitz type	226700	79404	AR	LAMC2	Laminin gamma 2		
200 Epidermolysis bullosa, junctional, non-Herlitz type	226650	79402, 79405, 251393, 89840	AR	LAMC2	Laminin gamma 2		
201 Epidermolysis bullosa, junctional, non-Herlitz type	226650	AR	ITGB4	Integrin beta 4			
202 Epidermolysis bullosa of hands and feet	131800	79400	AD	ITGB4	Integrin beta 4		
203 Epidermolysis bullosa, junctional with pyloric atresia	226730	79403	AR	ITGB4	Integrin beta 4		
204 Epidermolysis bullosa, junctional with pyloric atresia	226730	AR	ITGA6	Integrin alpha 6			
205 Epidermolysis bullosa, junctional, localisata variant Epidermolysis bullosa, junctional, non-Herlitz type	226650	79402, 79405, 251393, 89840	AR	COL17A1	Collagen 17 alpha 1		
206 Epidermolysis bullosa, late-onset localized junctional with intellectual disability	226440	231556	/	/	/	Late-onset epidermolysis bullosa localized to the anterior aspect of the legs, small nails, intellectual disability	
207 Ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis	607626	59303	AR	CLDN1	Claudin 1	Space scalp hair, scarring alopecia, sclerosing cholangitis, leukocyte vacuolization, hepatic disease	
208 IFAP syndrome with or without BRESHECK syndrome	308205	85284, 2273	XLR	MBTPS2	Membrane-bound transcription factor site-2 protease	Ichthyosis follicularis, alepecia, photophobia	
209 Immunodeficiency 9	612782	169090, 317428	AR	ORAI1	Calcium release-activated calcium channel protein 1	Combined Immunodeficiency with associated or syndromic features: recurrent infections, myopathy, autoimmunity, ectodermal dysplasia	
210 Keratosis follicularis spinulosa decalvans, autosomal dominant; KFSD	612843	2340	/	/	/	Follicular hyperkeratosis, progressive cicatricial alopecia, photophobia, corneal dystrophy, facial erythema	
Group of dental anomaly/name of disease	Phenotype/MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	---------------------	-------------------------	-------------	------------	---------	-------	---------------------
211 Laryngoonychocutaneous syndrome	245660	2607	AR	LAMA3	Laminin alpha 3	Hoarseness, dystrophic changes in the nails, and chronic bleeding, crusted lesions of the skin of the face, respiratory obstruction	
212 LADD syndrome	149730	2363	AD	FGFR3	Fibroblast growth factor receptor 3	Anomalies of lacrimal glands and ducts, salivary glands and ducts, ears, distal limb segments, hearing loss, fingers malformation	
213 LADD syndrome	149730	AD	FGFR10				
214 LADD syndrome	149730	AD	FGFR2				
215 Naegeli-Franceschetti-Jadassohn syndrome	161000	69087	AD	KRT14	Keratin 14	Reticular cutaneous pigmentation, hypohidrosis, moderate hyperkeratosis of the palms and soles, absence of fingerprints	
216 Schimmelpenning-Feuerstein-Mims syndrome, somatic mosaic	163200	2612	/	NRAS	GTPase NRas	Sebaceous nodule (often on the face), variable ipsilateral abnormalities of the central nervous system, ocular anomalies, skeletal defects	
217 Schimmelpenning-Feuerstein-Mims syndrome, somatic mosaic	163200	Isolated cases	HRAS	GTPase HRas			
218 Schimmelpenning-Feuerstein-Mims syndrome, somatic mosaic	163200	Isolated cases	KRAS	GTPase KRas			
219 Shaheen syndrome	615328	363523	AR	COG6	Conserved oligomeric Golgi complex subunit 6	Severe intellectual disability, hypohidrosis, hyperkeratosis of the palms and soles, mild microcephaly	
220 Trichoedontoonychial dysplasia with bone deficiency	275450	3355	/	/	/	One family	Ectodermal dysplasia, supernumerary nipples, nevus pigmentosus, bone deficiency in the frontoparietal region
221 Tuberous sclerosis-1	191100	805	AD	TSC1	Hamartin	Hamartomas in multiple organ systems (brain, skin, heart, kidneys, lung)	
222 Tuberous sclerosis-2	613254	AD	TSC2	Tuberin			

(Continues)
Group of dental anomaly/ name of disease	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations	
(3) Eye diseases							
223 Jalili syndrome	217080	1873	AR	CNNM4	Metal transporter CNNM4	Cone-rod dystrophy of the retina	
224 Microphthalmia with linear skin defects	309801	2556	XLD	Xp.22	Microphthalmia and linear skin defects		
225 Microphthalmia, dermal aplasia, and sclerocornea	309801	2556	XLD	Xp.22	Microphthalmia and linear skin defects		
226 Microphthalmia, syndromic 1, MCOPS1	309800	568	XL	NAA10	N-Alpha-acetyltransferase 10	Microphthalmia or anophthalmia, defects in the skeletal and genitourinary systems, ear, digits anomalies	
(4) Bone diseases							
227 Alopecie-contracturs dwarfis intellectual disability syndroms	203550	1005	/	/	/	Short stature, kyphoscoliosis, bilateral dislocation of the hips, contracture of multiple joints present from birth, facial dysmorphology, ichthyosis, ectrodactyly, intellectual disability, photosphobia	
228 Cockayne syndrome, type A	216400	191, 90321, 90322, 90324	AR	ERCC8	DNA excision repair protein ERCC-8	Slow growth and development, cachectic dwarfism, cutaneous photosensitivity, thin, dry hair, a progeroid appearance, progressive pigmenatary retinopathy, sensorineural hearing loss	
229 Focal dermal hypoplasia	305600	2092	XLD	PORCN	Porcupine	Atrophy and linear pigmentation of the skin, hemiation of fat through the dermal defects, multiple papillomas of the mucous membranes or skin, digits anomaly, ocular anomaly, intellectual disability	
230 Hallermann-Streiff syndrome, HSS	234100	2108	/	/	/	Natal teeth	
231 Hamamy syndrome	611174	314555	AR	IRX5	Iroquois homebox 5	Hypertelorism with midface prominence, myopia, intellectual disability, bone fragility	
232 Kenny-Caffey syndrome, type 1	244460	93324, 2333	AR	TBCE	Tubulin specific chaperone E	See also Sanjad Sakati syndrome	Seizure anomaly, cortical thickening, medullary stenosis
Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	----------------------	-------------------------	-------------	------------	---------	-------	---------------------
233 McCune-Albright syndrome	174800	562	/	GNAS1	Protein ALEX		Bone skeleton, skin, and endocrine system anomalies
234 Mesomelia synostosis syndrome	600383	2496	Isolated cases	8q13 del	/		Acral synostoses combined with ptosis, hypertelorism, palatal abnormality, congenital heart disease, and ureteral anomalies
235 Metaphyseal dysplasia with maxillary hypoplasia with or without brachydactyly	156510	2504	AD	RUNX2	Runt-related transcription factor 2		Bone anomalies (metaphyseal flaring of long bones), enlargement of the medial halves of the clavicles, maxillary hypoplasia, short hand, short stature, facial dysmorphology
236 Mucopolysaccharidosis Ih	607014	579	AR	IDUA	Alpha-L-iduronidase		Coarse facies, corneal clouding, intellectual disability, hemias, dysostosis multiplex, hepatosplenomegaly, axial hypotonia
237 Mucopolysaccharidosis IVA (Morquio A)	253000	582, 309297	AR	GALNS	N-Acetylgalactosamine-6-sulfatase		Short stature, skeletal dysplasia, dental anomalies, corneal clouding
238 Multiple joint dislocations, short stature, craniofacial dysmorphism, with or without congenital heart defects	245600	284139	AR	B3GAT3	Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3		Multiple joint dislocations, short stature, craniofacial dysmorphism with or without congenital heart defects
239 Oculodentodigital dysplasia, ODDDD	164200	2710	AD	GJA1	Connexin 43		Wide nasal bridge with underdeveloped ala nasi, broad columella, prominent epicanthus, microphalonia, microcornea, syndactyly, clinodactyly
240 Oculodentodigital dysplasia, autosomal recessive	257850	2710	AR	GJA1	Connexin 43		Diminished fetal activity, obesity, muscular hypotonia, intellectual disability, short stature, hypogonadotropic hypogonadism, small hands and feet
241 Prader-Willi syndrome	178270	739	Isolated cases	SNRPN	Small nuclear ribonucleoprotein-associated protein N		(Continues)
Group of dental anomaly/ name of disease	Orphanet number (ORPHA)	Phenotype MIM number	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	-------------------------	---------------------	-------------	------------	---------	-------	---------------------
Prader-Willi syndrome	176270	Isolated cases	NDN	Necdin	RAC-alpha serine/threonine-protein kinase	With gingival overgrowth	Asymmetric and disproportionate overgrowth of body parts, connective tissue nevi, epidermal nevi, dysregulated adipose tissue, vascular malformations
Proteus syndrome, somatic	176920	Sporadic mosaic	AKTI	RAC-alpha serine/threonine-protein kinase			
Pseudohypoparathyroidism Ia	103580	AD	GNAS	Protein ALEX			Short stature, obesity, ocular disorder, osteoporosis, hypercalcemia, hyperphosphatemia, elevated PTH, short fingers, intellectual disability
Pycnodysostosis	265800	AR	CTSK	Cathepsine K			Deformity of the skull, acroosteolysis, osteosclerosis, fragility of bone
Raine syndrome	259775	AR	FAM20C	Cathepsine K			Neonatal osteosclerotic bone dysplasia, usually death within the first few weeks of life
Rickets, vitamin D-resistant, type RA	277440	AR	VDR	Vitamin D receptor			Hypocalcemia, secondary hyperparathyroidism, osteomalacia, and osteitis fibrosa cystica, normal serum 25-hydroxyvitamin D, markedly increased serum 1,25-dihydroxyvitamin D
Trichodontoosseous syndrome	190320	AD	DLX3	Distal less homeobox 3	With taurodontism	Strikingly curly hair, mild increase in bone density	
Skeletal dysplasia with multiple dislocations	/	AD	SLC10A7	SLC10A7			Short stature, joints dislocations, craniofacial dysmorphism
XFE progeroid syndrome, XFEPS	610965	AR	ERCC4	DNA repair endonuclease XPF			Dwarfism, cachexia, and microcephaly
Autoimmune polyendocrinopathy syndrome, type I (APECED)	240300	AR, AD	AIRE	Autoimmune regulator			The presence of two of three major clinical symptoms: Addison disease and/or hypoparathyroidism and/or chronic mucocutaneous candidiasis-disease of immune dysregulation: chronic mucocutaneous candidiasis, polyendocrinopathy
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	----------------------	-------------------------	-------------	------------	---------	-------	---------------------
(6) Renal diseases							
252 Arthrogryposis, renal dysfunction, and cholestasis 1	208085	2697	AR	VPS33B, VIPAR	Vacular protein sorting-associated protein 33B, VPS33B interacting protein	Multiplex congenita with jaundice and renal dysfunction	
253 Enamel renal syndrome, amelogenesis imperfecta, type IG	204690	1031, 171836	AR	FAM20A	Pseudokinase FAM20A	Nephrocalcinosis	
254 Hypomagnesemia 5, renal, with ocular involvement	248190	2196	AR	CLDN19	Claudin-19	Renal magnesium wasting with hypercalcinosis, progressive renal failure, ocular anomaly	
255 Hypomagnesemia 3, renal	248250	31043	AR	CLDN16	Claudin-16	Hypomagnesemia with hypercalciuria and nephrocalcinosis, progressive renal disorder characterized by excessive urinary Ca(2+) and Mg (2+) excretion	
256 Pseudohypoaldosteronism, type RA	145260	757, 88938	AD	1q31-q42	/	Hyperkalemia despite normal renal glomerular filtration, hypertension	
257 Renal cysts and diabetes syndrome	137920	93111	AD	HNF1B	Hepatocyte nuclear factor 1-beta	Renal cysts and diabetes	
(7) Intellectual disabilities							
258 Chromosome 17q11.2 deletion syndrome, 1.4 Mb	613675	97685, 139474, 636	AD	17q11.2 deletion	/	Deletion includes the NFI gene	Neurofibromas, mild facial dysmorphism, intellectual disability, and/or learning disabilities
259 Epileptic encephalopathy, early infantile, 25	615905	442835	AR	SLC13A5	Solute carrier family 13 member 5	Spasticity, ataxia, choreoathetosis	
260 Krabbe disease	245200	487	AR	GALC	Galactocerebrosidase	Extreme irritability, spasticity, and developmental delay (severe motor and mental deterioration)	
Table 1 (Continued)

Group of dental anomaly/name of disease	MIM number	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Krabbe disease, atypical	611722	AR	PSAP			
Smith-Magenis syndrome	182290	IC, AD	RAI1	Retinoic acid-induced protein 1	Intellectual disability, hypotonia, speech delay, small ears, conductive hearing loss, esotropia	
Syndrome de Kohlscütt-Tönz	226750	AR	ROGDI	Protein rogdi homolog	Severe global developmental delay, early-onset intractable seizures, spasticity, intellectual disability	
External auditory canal, bilateral atresia of, with congenital vertical talus	133705	/	/	/	Bilateral symmetric subtotal atresia of the external auditory canal	
Heimler syndrome 1	234580	AR	PEX1	Peroxisome biogenesis factor 1	Sensorineural hearing loss, nails anomalies	
Heimler syndrome 2	616617	AR	PEX6	Peroxisome biogenesis factor 6	Sensorineural hearing deficiencies at birth and later development of progressive retinitis pigmentosa (blindness in adult)	
Usher syndrome, type 1B	276900	AR	MYO7A	Unconventional myosin-VIa	Sensorineural hearing deficiencies at birth and later development of progressive retinitis pigmentosa (blindness in adult)	
Usher syndrome, type 2A	276901	AR	USH2A, PDZD7	Usherin, PDZ domain containing 7		
Usher syndrome, type 2C, GPR98/PDZD7 digenic	605472	AR, DD	ADGRV1	G protein-coupled receptor 98		
Usher syndrome, type 3C, GPR98/PDZD7 digenic	605472	AR, DD	PDZD7	PDZ domain containing 7		
Usher syndrome, type 3A	276902	AR	CLRN1	Clarin 1	Combined immunodeficiency with associated or syndromic features: recurrent infections, myopathy, partial iris hypoplasia, autoimmunity, ectodermal dysplasia	
Immunodeficiency 10	612783	AR	STIM1	Stramal interaction molecule 1	(Continues)	

(Continues)
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes
(1) Heart defects						
273 Heart defects	188400, 192430	567	AD			
274 Deletion, autosomal dominant 36, with dentinogenesis	605594	166260	AD	DSPP	Dentin sialophosphoprotein	
275 Dentin dysplasia type I	1653, 99789	AD	DSPP	VPS4B, SSUH2	Vacular protein sorting 4 homolog B, SSUH2	Yang et al., 2016; Xiong et al., 2017
276 Dentin dysplasia, type II	125420	1653	AD	DSPP	Dentin sialophosphoprotein	
277 Dentinogenesis imperfecta, shields type II	125490	166260	AD	DSPP	Dentin sialophosphoprotein	
278 Dentinogenesis imperfecta, shields type III	125500	166265	AD	DSPP	Dentin sialophosphoprotein	
(2) Eye diseases						
279 Brittle cornea syndrome 1	229200	90354	AR	ZNF469	Zing finger protein 469	
(3) Bone diseases						
280 Bruck syndrome 1	259450	2771	AR	FKBPI0	Peptidyl-prolyl cis-trans isomerase FKBPI0	

Dentin anomalies (affecting temporary and permanent teeth)

(1) Isolated

| Deafness, autosomal dominant 36, with dentinogenesis | 605594 | 166260 | AD | DSPP | Dentin sialophosphoprotein |
|---|----------------------|-------------------------|-------------|------------|---------|-------|
| Dentin dysplasia type I | 1653, 99789 | AD | VPS4B, SSUH2 | Vacular protein sorting 4 homolog B, SSUH2 | Yang et al., 2016; Xiong et al., 2017 |
| Dentin dysplasia, type II | 125420 | 1653 | AD | DSPP | Dentin sialophosphoprotein |
| Dentinogenesis imperfecta, shields type II | 125490 | 166260 | AD | DSPP | Dentin sialophosphoprotein |
| Dentinogenesis imperfecta, shields type III | 125500 | 166265 | AD | DSPP | Dentin sialophosphoprotein |

(2) Eye diseases

| Brittle cornea syndrome 1 | 229200 | 90354 | AR | ZNF469 | Zing finger protein 469 |

(3) Bone diseases

| Bruck syndrome 1 | 259450 | 2771 | AR | FKBPI0 | Peptidyl-prolyl cis-trans isomerase FKBPI0 |

Combined immuno deficiency with associated or syndromic features: immune deficiency due to thymic aplasia/hypoplasia, conotruncal cardiac malformation, velopalatal insufficiency, facial dysmorphism, intellectual disability, enamel hypoplasia
281	Caffey disease	114000	1310	AD	COL1A1	Collagen type 1 alpha 1	Inflammatory in nature, with fever and hot, tender swelling of involved bones (mandible, ribs)	
282	Cortical defects, wormian bones, and dentinogenesis imperfecta	604922	166277	/	/	/	Short, thick arms and fingers, a broad and convex nasal bridge, multiple fractures	
283	Dentin dysplasia with sclerotic bones	125440	99792	/	/	/		
284	Ehlers-Danlos syndrome, classic	130000	287	AD	COL1A1	Collagen type 1 alpha 1	Early loss of tooth	Skin hyperextensibility, articular hypermobility, tissue fragility
285	Ehlers-Danlos syndrome, Arthrochalasia	130060	99875, 99876, 1899	AD	COL1A1	Collagen type 1 alpha 1		Hip dislocation and extreme joint laxity with recurrent joint subluxations and minimal skin involvement
286	Ehlers-Danlos syndrome, cardiac-valvular	225320	230851	AR	COL1A2	Collagen type 1 alpha 2		Bone fragility with normal sclera
287	Ehlers-Danlos syndrome, Arthrochalasia	130060	99875, 99876, 1899	AD	COL1A2	Collagen type 1 alpha 2		Hip dislocation and extreme joint laxity with recurrent joint subluxations and minimal skin involvement
288	Fanconi-renal tubular syndrome 2	613388	3337	AD	SLC34A1	Sodium-dependent phosphate transport protein 2A	Severe rickets and osteopenia, marked hypercalciiuria without renal tubular acidosis	
289	Hypophosphatemic rickets with hypercalciiuria	241530	157215	AR	SLC34A3	Sodium-dependent phosphate transport protein 2C	Hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histologic evidence of rickets, limb deformities, muscle weakness, bone pain	
290	Hypophosphatemic rickets, X-linked dominant	307800	89936	XLD	PHEX	Phosphate-regulating neutral endopeptidase	Rickets with bone deformities, short stature, hypophosphatemia, low renal phosphate reabsorption, normal serum calcium level with hypocalciuria, normal or low serum level of vitamin D [OH]25 (OH)[23, or calcitriol], normal serum level of PTH, and increased activity of serum alkaline phosphatases	
Group of dental anomaly/ name of disease	Phenotype MIM number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Hypophosphatemic rickets, autosomal dominant	193100	AD	FGF23	Fibroblast growth factor 23	Rickets with isolated renal phosphate wasting, hypophosphatemia, inappropriately normal 1,25-dihydroxyvitamin D3 (calcitriol) levels	
Hypophosphatemic rickets, AR	241520	AR	DMP1	Dentin matrix acidic phosphoprotein 1	Rickets hypophosphatemia with elevated FGF23	
Hypophosphatemic rickets, autosomal recessive, 2	613312	/	ENNRPI	Ectonucleotide pyrophosphatase/phosphodiesterase family member 1	Rickets hypophosphatemia	
Hypophosphatemic rickets and hyperparathyroidism	612089	AD	/	/	/	Hypophosphatemic rickets and hyperparathyroidism
McCune-Albright syndrome, somatic, mosaic	174800	562	GNAS1	Protein ALEX	Bone skeleton, skin, and endocrine system anomalies	
Nephrolithiasis/osteoporosis, hypophosphatemic, 2	612287	AD	SLC9A3R1	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	Hypophosphatemia and decreased renal phosphate resorption	
Osteogenesis imperfecta, type I	166200	AD	COL1A1	Collagen type 1 alpha 1	Bone fragility and blue sclerae	
Osteogenesis imperfecta, type II	166210	AD	COL1A1	Collagen type 1 alpha 1	Perinatal fractures, severe bowing of long bones, undermineralization, and death in the perinatal period due to respiratory insufficiency	
Osteogenesis imperfecta, type III	259420	AD	COL1A1	Collagen type 1 alpha 1	Bone fragility with progressive deformity, with normal sclera	
Osteogenesis imperfecta, type IV	259420	AD	COL1A1	Collagen type 1 alpha 1	Bone fragility with progressive deformity, with normal sclera	
Osteogenesis imperfecta, type II	166210	AD	COL1A2	Collagen type 1 alpha 2	Perinatal fractures, severe bowing of long bones, undermineralization, and death in the perinatal period due to respiratory insufficiency	
Osteogenesis imperfecta, type III	259420	AD	COL1A2	Collagen type 1 alpha 2	Bone fragility with progressive deformity, with normal sclera	
Osteogenesis imperfecta, type IV	166220	AD	COL1A2	Collagen type 1 alpha 2	Bone fragility with progressive deformity, with normal sclera	

Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Odontochondrodysplasia (Goldblatt syndrome)	304 184260	166272	AR	TRIP11	Thyroid hormone receptor interactor 11	Natal teeth	Spondylometaphyseal dysplasia associated with joint laxity
Tumoral calcinosis, hyperphosphatemic familial	305 211900	306661, 53715	AR	GALNT3	Polypeptide N-acetylgalactosaminyltransferase 3	Progressive deposition of basic calcium phosphate crystals in periarticular spaces, soft tissues, and sometimes bone	
Tumoral calcinosis, hyperphosphatemic familial	306 211900		AR	FGF23	Fibroblast growth factor 23		
Tumoral calcinosis, hyperphosphatemic familial	307 211900		AR	KL	Klotho		
Vitamin D-dependent rickets, type I	308 264700	289157	AR	CYP27B1	25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial	Enamel anomaly	Intestinal malabsorption of calcium, hypocalcemia, secondary hyperparathyroidism, increased renal clearance of phosphorus, and hypophosphatemia

Dental eruption/position anomalies

(1) Delayed eruption

(1.1) Isolated

| Failure of tooth eruption, primary | 309 125350 | 412206 | AD | PTHRI | Parathyroid hormone receptor 1 | Severe hypertrichosis, skin abnormalities (hyperlaxity and redundancy), facial dysmorphism, including macrostomia, eyelid deformities, ocular telecanthus, abnormal and low-set ears, bulbous nasal tip with hypoplastic alae nasi, low frontal hairline |

(1.2) Syndromic

| Barber-Say syndrome | 310 209885 | 1231 | AD | TWIST2 | Twist-related protein 2 | Severe hypertrichosis, skin abnormalities (hyperlaxity and redundancy), facial dysmorphism, including macrostomia, eyelid deformities, ocular telecanthus, abnormal and low-set ears, bulbous nasal tip with hypoplastic alae nasi, low frontal hairline |

| Chondrodysplasia, Blomstrand type | 311 215045 | 50945 | AR | PTHRI | Parathyroid hormone receptor 1 | Short limbs, polyhydramnios, hydrops fetalis, facial anomalies, increased bone density, advanced skeletal maturation |

| CODAS syndrome | 312 600373 | 1458 | AR | LONPI | Ion protease homolog, mitochondrial | Developmental delay, craniofacial anomalies, cataracts, ptosis, median nasal groove, hearing loss, short stature, delayed epiphyseal ossification, metaphyseal hip dysplasia, vertebral coronal clefts |
Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Eiken syndrome	600002	79106	AR	PTH1	Parathyroid hormone receptor 1	Retarded ossification	
Metaphyseal chondrodysplasia, Mark Jansen type	156400	33067	AD	PTH1	Parathyroid hormone receptor 1	Short stature, short bowed limbs, clinodactyly, prominent upper face, small mandible, hypercalcemia and hypophosphatemia	
Premature aging syndrome, Penttinen type	601812	363665	AD	PDGFRB	Platelet-derived growth factor receptor beta	Lipoatrophy, epidermal and dermal atrophy, hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, marked acroosteolysis	
Sclerosteosis 1	269500	3152	AR	SOST	Sclerostin	Progressive skeletal overgrowth, syndactyly	
SHORT syndrome	269880	3163	AD	PIK3R1, IGF1R	Phosphatidylinositol 3-kinase regulatory subunit alpha, insulin growth factor 1 receptor	S = stature; H = hyperextensibility of joints or hernia (inguinal) or both; O = ocular depression; R = Rieger anomaly; T = teething delay	
Singleton-Merten syndrome 1	182250	85191	AD	IFIH1	Interferon-induced helicase C domain-containing protein 1	Calcifications of the aorta and aortic and mitral valves, osteoporosis	
Waardenburg syndrome, type 2E, with or without neurologic involvement	611584	3440, 895	AD	SOX10	Transcription factor SOX10	Pigmentary abnormalities of the hair, skin, and eyes, congenital sensorineural hearing loss	
Wrinkly skin syndrome	278250	35708, 2834	AR	ATP6V0A2	V-type proton ATPase 116 kDa subunit a isoform 2	Wrinkled skin of the hands, hypotony	

(2) Ectopic eruption
(2.1) Isolated
| Malposition of teeth with or without hypodontia/oligodontia | 189490 | / | / | / | / |

(3) Failure of eruption
(3.1) Isolated
| Impacted teeth, multiple | 308280 | / | / | / | / | Probable underdiagnosed syndrome |
Group of dental anomaly/name of disease	Phenotype MIM number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Permanent molars, secondary retention of	157950	/	/	/	/	/

(2.2) Syndromic

Group of dental anomaly/name of disease	Phenotype MIM number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations	
GAPO syndrome	230740	2067 AR	ANTXR1	Anthrax toxin receptor 1	Growth retardation, alopecia, progressive optic atrophy, facial dysmorphology		
Osteopetrosis, autosomal dominant 1	607634	2783 AD	LRPS	Low-density lipoprotein receptor-related protein 5	Increased bone density due to impaired bone resorption by osteoclasts		
Osteopetrosis, autosomal dominant 2	166600	53 AD, AR	CLCN7	H(+)/Cl(−) exchange transporter 7	Sclerosis, predominantly involving the spine, pelvis, and skull base. Frailty of bones		
Osteopetrosis, autosomal recessive 1	259700	667 AR	TIRG1	V-type proton ATPase 116 kDa subunit a isoform 3	Macrocephaly and frontal bossing, respiratory problems, increase bone density		
Osteopetrosis, autosomal recessive 2	259710	667 AR	TNFSF11	Tumor necrosis factor ligand superfamily member 11	Genu valgum, anemia, hepatoplenomegaly, and tendency to fracture and mandibular osteomyelitis		
Osteopetrosis, autosomal recessive 3	611490	667 AR	CLCN7	H(+)/Cl(−) exchange transporter 7	Increase bone density		
Osteopetrosis, autosomal recessive 5	259720	85179 AR	OSTM1	Osteopetrosis associated transmembrane protein 1	Increase bone density,		
Osteopetrosis, autosomal recessive 6	611497	210210 AR	PLEKH1M1	Pleckstrin homology domain-containing family M	Increase bone density,		
Osteopetrosis, autosomal recessive 7	612301	178389 AR	TNFRSF11A	Tumor necrosis factor receptor superfamily member 11A	One family Severe genu valgum		
Glycogen storage disease Ia (von Gierke disease)	232200	AR	G6PC	Glucose-6-phosphatase	Growth retardation, delayed puberty, lactic acidemia, hyperlipidemia, hyperuricemia, hepatic adenomas		
Glycogen storage disease III	232400	AR	AGL	Glycogen debrancher enzyme	Hepatomegaly, hypoglycemia and growth retardation, muscle weakness		
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	----------------------	-------------------------	-------------	------------	---------	-------	-------------------
336 Glycogen storage disease Ixa	306000		XLR	PHKA2	Alpha-2 subunit of hepatic phosphorylase kinase	Hepatomegaly, hypoglycemia and growth retardation, muscle weakness in infancy. Adults are asymptomatic	
(4) Premature loss of teeth							
337 Hajdu-Cheney syndrome	102500		AD	NOTCH2	Neurogenic locus notch homolog protein 2	Facial dysmorphology, bowing of the long bones, vertebral anomalies, acro-osteolysis of phalanges of hand and feet, short stature	
338 Hypophosphatasia, adult	146300	247676, 436, 247685	AR, AD	ALPL	Alkaline phosphatase, tissue-nonspecific isozyme	Mild bone fragility, osteomalacia, pseudo-fracture, history of rickets	
339 Hypophosphatasia, childhood	241510	247667, 436	AR	ALPL	Alkaline phosphatase, tissue-nonspecific isozyme	Defective bone mineralization and biochemically, short stature, skeletal deformities, motor impairment, fatigue easily	
340 Hypophosphatasia, infantile	241500	436, 247651, 247623	AR	ALPL	Alkaline phosphatase, tissue-nonspecific isozyme	Defective bone mineralization and biochemically before 6 month, rickets, failure to thrive, hypotonia	
341 Mandibuloacral dysplasia	248370	2457, 90153	AR	LMNA	Lamin	Growth retardation, facial dysmorphism, skeletal abnormalities (progressive osteolysis of the distal phalanges and clavicles), pigmented skin changes	
342 Mandibuloacral dysplasia with type B lipodystrophy	608612	2457, 90154	AR	ZMPSTE24	CAAX prenyl protease 1 homolog	Growth retardation, facial dysmorphism, progressive acral osteolysis, mottled or patchy pigmentation, skin atrophy, and partial or generalized lipodystrophy	
343 Odontohypophosphatasia	146300	247676, 436, 247685	AR, AD	ALPL	Alkaline phosphatase, tissue-nonspecific isozyme	Mild bone fragility	
344 Osteolysis, familial expansile	174810	85195	AD	TNFRSF11A	Tumor necrosis factor receptor superfamily member 11A (RANK)	Bone remodeling with osteolytic lesions, early hearing loss, osteopenia	

(Continues)
Table 1 (Continued)

Group of dental anomaly/name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Singleton-Merten dysplasia/syndrome	182250	85191	AD	IFIH1 (MDA5)	Interferon-induced helicase C domain containing protein 1	Auto-inflammatory disorder: progressive calcification of the thoracic aorta with stenosis, osteoporosis and expansion of the marrow cavities in hand bones, generalized muscle weakness and atrophy, chronic psoriasiform skin eruptions, delayed primary tooth exfoliation and permanent tooth eruption, truncated tooth root formation, early-onset periodontal disease, severe root and alveolar bone resorption, abnormal mineralization	
Odontomicrochial dysplasia	601319	1811	AR	/	/	One family	Short stature, slow growing, nail alteration
Hyper-IGE syndrome (HIES) (Job syndrome)	147060	2314	AD	STAT3	Signal transducer and activator of transcription 3	Combined immunodeficiency with associated or syndromic features: chronic eczema, recurrent staphylococcal infections, pulmonary aspergillus, mucocutaneous candidiasis, hyperextensible joints, increased serum IgE, hyperesinophilia, bone fracture, scoliosis, facial dysmorphology (facial asymmetry, prominent forehead, deep-set eyes, broad nasal bridge, fleshy nasal tip, prognathism), reduced resorption of primary tooth roots leading to prolonged retention of primary teeth and delayed eruption of permanent teeth	
Hyper-IGE recurrent infection syndrome, autosomal recessive	243700	217390	AR	DOCK8	Dedicator of cytokinesis protein 8	Chronic eczema, recurrent staphylococcal infections, increased serum IgE, eosinophilia, facial dysmorphology	
Group of dental anomaly/ name of disease	Phenotype	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	-----------	--------------------------	-------------	------------	---------	-------	---------------------
Periodontal and gingival anomalies							
(1) Gingival overgrowth/enlargement							
(1.1) Isolated							
349 Fibromatosis, gingival, 1	135300	2024	AD	SOS1	Son of sevenless homolog 1		
350 Fibromatosis, gingival, 2	605544	/	/	/	/	/	
351 Fibromatosis, gingival, 3	609955	/	/	/	/	/	
352 Fibromatosis, gingival, 4	611010	/	/	/	/	/	
(1.2) Syndromic							
353 Ehlers-Danlos syndrome, Dermatosparaxis	225410	1901	AR	ADAMTS2	A disintegrin and metalloproteinase with thrombospondin motifs 2	Oligodontia, dentin defect	Severe joint hyperr extensibility and mild stretchability and bru isability of the skin
354 Ehlers-Danlos syndrome, vascular	130050	286	AD	COL3A1	Collagen 3	Papyraceous aspect of the gingiva (Ferre et al., 2012)	Joint and skin laxity, proneness to spontaneous rupture of bowel and large arteries
355 Epileptic encephalopathy, early infantile, 31	616346	2382,442835	AD	DNMI	Dynamin 1	Three patients	Epileptic encephalopathy
356 Hyaline fibromatosis syndrome	228600	2028	AR	ANTXR2	Anthrax toxin receptor 2	Abnormal growth of hyalized fibrous tissue usually affecting subcutaneous regions on the scalp, ears, neck, face, hands, and feet	
357 Histiocytosis-lymphadenopathy plus syndrome	602782	168569, 158014	AR	SLC29A3	Equilibrative nucleoside transporter 3	Histiocytosis and lymphadenopathy with or without cutaneous, cardiac, and/or endocrine features, joint contractures, and/or deafness	
358 Frank-ter Haar syndrome	249420	1266	AR	SH3PD2B	SH3 and PX domain-containing protein 2B	Brachycephaly, wide fontanels, prominent forehead, hypertelorism, prominent eyes, macrocornea with or without glaucoma, full cheeks, small chin, bowing of the long bones, flexion deformity of the fingers	
359 Hypertrichosis terminalis, generalized, with or without gingival hyperplasia	135400	2026	AR	17q24.2-q24.3 microdeletion or microduplication /	ABCAS5 gene concerned	Hypertrichosis, hirsutism	(Continues)
Group of dental anomaly/ name of disease	Orphanet number (ORPHA)	MIM number	Inheritance	Gene/locus	Protein	Notes	Main manifestations
---	-------------------------	------------	-------------	------------	---------	-------	-------------------
Hypertrichosis universalis congenita, Ambras type	185701	1023, 2222	AD	8q22	/	/	Hypertrichosis
Hypertrichosis, congenital generalized	307150	2222, 79495	XLD	/	/	/	Hypertrichosis
Macrocephaly, alopecia, cutis laxa, and scoliosis	613075	217335	AR	RIN2	Ras and Rab interactor 2	Macrocephaly, alopecia, cutis laxa, scoliosis, sagging skin	
Macrocephaly, alopecia, cutis laxa, and scoliosis	613075	217335	AR	RIN2	Ras and Rab interactor 2	Macrocephaly, alopecia, cutis laxa, scoliosis, sagging skin	
Main manifestations							
Subcutaneous or soft tissue nodules of the skin of the head, neck, and trunk, skeletal and muscular lesions							
Robinow syndrome, autosomal dominant 1	180700	3019	/	/	/	/	Cherubism, epilepsy, intellectual disability, hypertrichosis, stunted growth
Robinow syndrome, autosomal dominant 2	616331	3107, 97360	AD	WNT5A	Protein Wnt-5a	Fetal face, mesomelic limb shortening, hypoplastic external genitalia in males, renal and vertebral anomalies	
Robinow syndrome, autosomal dominant 2	616331	3107, 97360	AD	WNT5A	Protein Wnt-5a	Fetal face, mesomelic limb shortening, hypoplastic external genitalia in males, renal and vertebral anomalies	
Rutherfurd syndrome	180900	2709	/	/	/	/	Corneal dystrophy, inconstat intellectual disability
Fibromatosis, gingival, with hypertrichosis and intellectual disability	605400	/	/	/	/	/	Intellectual disability, epilepsy, short fingers, hirsutism, bulbous short nose
Fibromatosis, gingival with distinctive facies	228560	2025	/	/	/	One family	Macrocephaly, bushy eyebrows with synophrys, hypertelorism, flattened nasal bridge and hypoplastic nares, cupid-bow mouth
Fibromatosis gingival with progressive deafness syndrome	135550	2027	/	/	/	/	Progressive sensorineural hearing loss
Acroosteolysis dominant type (Hadju-Cheney syndrome)	102400, 102500	955	AD	NOTCH2	Neurogenic locus notch homolog protein 2	Acroosteolysis of distal phalanges, craniofacial dysmorphism, hypertelorism, telanchnus, micrognathia, bone anomalies, early loss of teeth	

(Continues)
TABLE 1 (Continued)

Group of dental anomaly/ name of disease	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
Phenotype number	MIM number					
372 Zimmermann-Laband syndrome 1	135500	3473	AD	KCNH1	Potassium voltage-gated channel subfamily H member 1	Dysplastic or absent nails, the absence of the distal phalanges, scoliosis, hepatosplenomegaly, hirsutism, abnormalities of the cartilage of the nose and/or ears

(2) Periodontal disease

(2.1) Isolated

| Periodontitis, chronic | 260950 | / | / | / | / | The terms chronic, juvenile and aggressive are no more used in the new classification of periodontal disease. They are included in only one term which is periodontitis. Papapanou et al., 2018 |

| Periodontitis 1, juvenile | 170650 | / | AR | CTSC | Cathepsin C |

| Periodontitis, aggressive 2 | 608526 | / | / | / | / |

(2.2) Syndromic

| Dyskeratosis congenita, X-linked | 305000 | 1775, 3322 | XLR | DKCI | H/ACA ribonucleoprotein complex subunit 4 | Combined immunodeficiency with associated or syndromic features: triad of dysplastic nails, lacy reticular pigmentation and skin atrophy (neck and upper chest) + oral leukoplakia/ increased risk for progressive bone marrow failure and risk to develop myelodysplastic syndrome or acute myelogenous leukemia / increased risk for solid tumors (squamous cell carcinoma of head and neck, anogenital cancer) / developmental delay, short stature, microcephaly, blepharitis, periodontal disease, taurodontism, decreased teeth/ root ratio, esophageal stenosis, liver disease, urethral stenosis, osteoporosis, avascular necrosis of femur and/or humerus, premature hair graying/alopecia, or abnormal eyelashes |

(Continues)
Group of dental anomaly/ name of disease	Phenotype number (MIM)	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
377 Dyskeratosis congenita, autosomal recessive 1	224230	1775	AR	NOP10	H/ACA ribonucleoprotein complex subunit 3		
378 Dyskeratosis congenita, autosomal dominant 1	127550	1775	AD	TERC	Non coding RNA		
379 Dyskeratosis congenita, autosomal dominant 2, autosomal recessive 4	613989	1775	AD, AR	TERT	Telomerase reverse transcriptase		
380 Ehlers-Danlos syndrome, periodontal	130080	75392	AD	C1R	Complement C1r subcomponent isoform 2	Joint hypermobility and skin abnormalities	
381 Ehlers-Danlos syndrome, periodontal	617174	75392	AD	C1S	Complement C1s subcomponent isoform 2	Joint hypermobility and skin abnormalities	
382 Haim-Munk syndrome	245010	2342	AR	CTSC	Cathepsin C	Palmoplantar keratoderma, severe early-onset periodontitis with early tooth loss, arachnodactyly, acroosteolysis, atrophic changes of the nails, radiographic deformity of the fingers, onychogryphosis, pes planus, increased susceptibility to infections. Mutations in the same gene cause the clinically related disorder Papillon-Lefèvre syndrome.	
383 Hermansky-Pudlak syndrome 2	608233	183678	AR	AP3B1	AP-3 complex subunit beta-1	Platelet defects and oculocutaneous albinism	
384 Hypotrichosis, osteolysis, periodontitis-palmoplantar keratoderma syndrome	607658	307936	/	/	/	Hypotrichosis, striate palmoplantar keratoderma, onychogryphosis, acroosteolysis, psoriasis-like skin lesions	
385 Kindler syndrome	173650	306539	AR	FERM1	Fermitin family homolog 1 (kindlin1 gene)	Epidermolysis bullosa: congenital blistering, skin atrophy, photosensitivity, skin fragility, and scaling	
386 Leukocyte adhesion deficiency type 1 (LAD1)	116920	99842	AR	ITGB2	Integrin beta 2 (CD18)	Congenital defect of phagocyte function: recurrent, life-threatening bacterial infections (skin, mouth, respiratory tract), delayed umbilical cord separation, severe periodontitis with early tooth loss, lack of pus formation and wound healing	

(Continues)
Group of dental anomaly/name of disease	**Phenotype number (MIM)**	**Orphanet number (ORPHA)**	**Inheritance**	**Gene/locus**	**Protein**	**Notes**	
Leukocyte adhesion deficiency type 2 (congenital disorder of glycosylation type Ib, LAD2)	266265	99843	AR	SLC35C1	Solute carrier family 35, member C1 (GDP-fucose transporter 1)	Congenital defect of phagocyte function; mild LAD type 1 features with severe growth retardation, severe intellectual deficit, Bombay (hh) blood group, facial dysmorphism (depressed nasal bridge)	
Leukocyte adhesion deficiency type 3 (LAD3)	612840	99844	AR	FERM3	Fermitin family member 3	Congenital defect of phagocyte function; LAD type 1 phenotype with severe bleeding disorder	
Severe congenital neutropenia type 1, autosomal dominant (SCN1)	202700	486	AD	ELANE	Neutrophil elastase	Congenital defects of phagocyte number; Severe congenital neutropenia, severe recurrent bacterial infections, increased risk of myelodysplastic syndrome and leukemia, severe periodontitis with early tooth loss, oral ulcers	
Severe congenital neutropenia type 3, autosomal recessive (Kostmann syndrome, SCN3)	610738	99749	AR	HAX1	HCLS1-associated protein X1	Congenital defects of phagocyte number; Severe congenital neutropenia, severe recurrent bacterial infections, increased risk of myelodysplastic syndrome and leukemia, severe periodontitis with early tooth loss, oral ulcers, cognitive and neurological defects	
Glycogen storage disease due to glucose-6-phosphatase deficiency type Ib	232220	79259	AR	SLC37A4	Glucose 6-phosphate translocase	Recurrent infections and neutropenia, higher prevalence of severe periodontitis	
Neutropenia, chronic familial	162700	/	/	/	/	Severe congenital neutropenia	
Chronic granulomatous disease	306400, 233700, 233690, 233710, 613960	379	AR, XL	CYBA, CYBB, NCF1, NCF2, NCF4	Primary immunodeficiency, recurrent bacterial and fungal infections, development of granulomas		
Plasminogen deficiency	217090	722	AR	PLG	Plasminogen	Impaired extracellular fibrinolysis, pseudomembranes on mucosa during wound healing	
Cohen syndrome	216550	193	AR	VPS13B	Vacuolar protein sorting 13B	Microcephaly, characteristic facial features, hypotonia, non-progressive intellectual deficit, myopia and retinal dystrophy, neutropenia and truncal obesity	
Group of dental anomaly/ name of disease	Phenotype MIM number	Orphanet number (ORPHA)	Inheritance	Gene/locus	Protein	Notes	Main manifestations
--	----------------------	--------------------------	-------------	------------	---------	-------	---------------------
Chediak-Higashi syndrome	214500	167	AR	LYST			Disease of immune dysregulation: partial oculocutaneous albinism, severe immunodeficiency (recurrent bacterial infections), hemophagocytic lymphohistiocytosis, increased bleeding tendency, neurological dysfunction, lymphoproliferative disorder, severe periodontal disease
Hereditary angioedema	106100, 610618	91378		SERPING1	C1 inhibitor		Subcutaneous or submucosal edemas
Pachyonychia congenita 1	167200	2309	AD	KRT16, KRT6A, KRT6B, KRT6C	Keratin 16 et 6		Hypertrophic nail dystrophy, painful and highly debilitating plantar keratoderma, oral leukokeratosis, epidermal cysts
Pachyonychia congenita 2	167210	AD	KRT17	Keratin 17			Congenital defect of phagocyte function: ectodermal dysplasia with palmoplantar keratoderma, severe early-onset periodontitis with early tooth loss, increased susceptibility to cutaneous and systemic infections
Papillon-Lefevre syndrome	245000	678	AR	CTSC	Cathepsin C		Multiple nevoid basal-cell epitheliomas, jaw cysts, and bifid rib
Basal cell nevus syndrome	109400	377	AD	PTCH2	Protein patched homolog 2		Multilocular cystic changes in the mandible and maxilla
Basal cell nevus syndrome	109400	AD	PTCH1	Protein patched homolog 1			Nevus psiloliparus, a well-demarcated, alopecic fatty tissue nevus on the scalp
Cherubism	118400	184	AD	SH3BP2	SH3 domain-binding protein 2		
Encephalocraniocutaneous lipomatosis	613001	2396	IC	FGFR1, KRA5	Fibroblast growth factor receptor 1, GTPase Kras		
Nosology of genetic dental disorders

The oral rare disease expert group established a classification of dental disorders based on personal clinical observations collected across the national network and literature data. OMIM, Orphanet, and PubMed (Canese & Weis, 2002) were searched up to December 2018. The PubMed search was performed using as search terms: “dental agenesis,” “supernumerary tooth,” “microdontia,” “macrodontia,” “enamel dysplasia,” “dentin dysplasia,” “dental eruption anomaly,” “gingival overgrowth,” “periodontal disease,” and “dental disorder.” Only English-language publications were accepted. Developmental defects were recorded and grouped in eight clusters of dental disorders (dental agenesis, supernumerary teeth, morphology dental anomaly [size and shape], enamel anomaly, dentin anomaly, anomaly of dental eruption, periodontal and gingival anomalies, and tumor-like disorders). In each group, pathologies were subdivided into “isolated” or “syndromic.” Syndromes were classified by their main clinical medical features (skin, eye, bone, endocrine organs, kidneys, cranio-facial, cancer, and intellectual disability). If dental anomalies were insufficiently described in OMIM, original articles were analyzed. The classification includes the name of the pathology, OMIM codes, Orpha numbers, gene(s) involved, protein(s), and the other main medical manifestations (Table 1). Notes were added if complementary information was needed. If OMIM and/or Orphanet number was not available, essential references were added.

The criteria for including a disorder were:

1. The presence of dental anomalies (Supplementary Data Table S1)
2. Published in a peer-reviewed journal, in one or more of three dedicated textbooks (Bloch-Zupan et al., 2012; Hall, 1994; Hennekam et al., 2010) and/or listed in OMIM and/or Orphanet database; unpublished observations were not included.
3. Either a proven molecular genetic basis (variants; linkage analyses) or internationally accepted clinical entities due to distinctive clinical manifestations observed in multiple individuals.

3 | RESULTS

3.1 | Defining dental anomalies

3.1.1 | Anatomy of teeth and oral mucosa

General

The oral region includes the maxillae, the mandible, muscles, glands, and other structures related to the oral functions. The oral cavity belongs to the oral region and is the space bounded superiorly by the palate, laterally by the cheeks, anteriorly by the lips, inferiorly by the floor of the mouth, and posteriorly limited by the uvula and the palato-glossal arches and communicates with the oropharynx. The oral cavity contains oral mucosa, tongue, teeth, periodontium, and alveolar processes surrounding dental roots (Figure 1).
Anatomy

Oral Mucosa. The oral mucosa has been defined before as epithelium covering the inner aspect of the oral cavity (Carey et al., 2009). This refers only to the lining epithelium. The oral mucosa is composed of two layers: the epithelium and associated connective tissue, separated by a basal membrane. There are three types of oral mucosa: lining, masticatory, and specialized. Lining mucosa covers the oral cavity except for the dorsal surface of the tongue, hard palate, and teeth bearing area (namely gingiva). The epithelium is non-keratinized, and its connective tissue is not tightly bound but quite mobile. Lining mucosa is separated from gingiva by the mucogingival junction (Figure 2). Masticatory mucosa comprises gingiva and covers hard palate, its epithelium is keratinized, and the connective tissue is strongly linked to underlying structures, mainly bone. The dorsal surface of the tongue is covered by a specialized mucosa, which contains papillae (filiform, fungiform, and circumvallate) and taste buds.

Tooth. Teeth are organs usually attached in a row to each jaw and include various hard and soft tissues (enamel, dentin, pulp, and cementum) (Figure 3) (Nanci, 2012). Their anatomical overall shape is adapted to their functions. Anatomically, teeth can be divided into the crown and the root by the cervical margin. The crown is the part of the tooth that is visible in the oral cavity. The root is surrounded by the periodontium. The dentin pulp complex constitutes the main structure of the tooth, covered by enamel in the crown and cementum in the root.

Dentition. Humans have two dentitions: a deciduous (primary) dentition and a permanent (secondary) dentition, which replaces the former one. The shape and position of teeth follow a specific pattern. Deciduous dentition accounts for 20 teeth (two incisors, one canine, and two molars per quadrant), whereas permanent dentition accounts for 32 teeth (two incisors, one canine, two premolars, three molars per quadrant). The first teeth erupt at around 6 months of age and the last one at around 18 years old. Dental development, patterning, and eruption timing and sequence have been described in detail elsewhere (Lunt & Law, 1974; McDonald, Avery, & Dean, 2004).

A numeration system designs human deciduous and permanent teeth according to their type and location following the FDI two digits (“FDI Director calls on more countries to adopt the FDI two-digit tooth-numbering system,” 1988) and ISO 3950:2016 (Dentistry – Designation system for teeth and areas of the oral cavity) recommendations (Figure 4).

Incisor. Teeth located in the anterior part of the arches of maxilla and mandible. The typical crown shape is approximately rectangular. They have a single root. Two incisors (one central and one lateral from the midline) exist per quadrant (Figure 4).

Canine. Teeth located between the incisors and the molars in deciduous teeth and between the incisors and the premolars in permanent teeth. The typical crown shape is pointed. They have a single root. One canine exists per quadrant (Figure 4).

Premolar. Teeth located between the canines and the molars in the permanent dentition. Two premolars exist per quadrant. The occlusal surface of the crown is composed of two cusps (one labial and one lingual). They have one or two roots (Figure 4).

Molar. Teeth located in the posterior part of the dental arches of maxilla and mandible. In the deciduous dentition, two molars exist which will be replaced by premolars. In the permanent dentition, three molars exist appearing at around 6 years of age for the first permanent molars, 12 years of age for the second permanent molars and at adulthood for the third permanent molars (or wisdom teeth). The typical shape is with multiple cusps and multiple roots. Maxillary molars have two vestibular cusps and one lingual cusp. Mandibular molars have three vestibular cusps and two lingual cusps (Figure 4). Maxillary molars have three roots, two vestibular, and one palatal. Mandibular molars have two roots, one mesial, and one distal. Their shape and size may vary according to sex, ethnicity, and geography.
FIGURE 3 Major anatomical landmarks of the teeth (see text) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 (a) Teeth in the dental arches, the odontogram is from D(4)/phenodent database. (b) This table represents the normal mesiodistal and standard deviation (M=Male; F=Female) [Color figure can be viewed at wileyonlinelibrary.com]
Enamel. Hard acellular structure covering tooth crown. Enamel is the most mineralized material (98%) in the human body, secreted by ameloblasts. Ameloblasts disappear as the tooth erupts within the oral cavity. Enamel is able to neither regenerate nor repair. Enamel is translucent and appears to have a color that varies from white to light yellow depending of the color of the dentin. The surface is smooth and glossy (Figure 3).

Dentin. Dentin is a mineralized connective tissue forming the dental crown and root. Dentin is a vital tissue, less mineralized than enamel, and has the capacity to repair. Odontoblasts are the dentin forming cells and are located in the dental pulp periphery just below dentin. Odontoblasts extend a long cytoplasmic process radially from the pulp to the dentino-enamel and dentino-cemental junctions inside canaliculi; these are called dentin tubuli (Figure 3).

Dental pulp. Soft connective tissue occupying the inner portion of the tooth, both in the crown (pulp chambers) and the root canals covered by dentin. The dental pulp consists of fibroblasts, odontoblasts, undifferentiated ectomesenchymal cells, macrophages and other immunocompetent cells, blood vessels, and nervous fibers (Figure 3).

Cementum. Mineralized connective tissue covering the dental root. The cementum allows anchoring of the fibers of the periodontal ligament. Cementum is secreted by cementoblasts, which may be, later on, embedded in the cementum. Cementum can be acellular (along the two third coronal portion of the root) and cellular (in the apical and interradicular part of the root) (Figure 3).

Cusp. Eminence of the occlusal surface of a tooth. Canines possess a single cusp, premolars two (bicuspids), and molars three to five cusps (Figures 3 and 4).

Mamelons. Small tubercules on the incisal edge when the incisors erupt. Mamelons typically disappear or decrease in size as they get worn away by mastication (Figure 5).

Periodontium. The periodontium encompasses the cementum, periodontal ligament, alveolar bone, and gingiva (Figure 3).

Periodontal ligament. Connective tissue attaching the tooth root to the alveolar bone of the maxillae or mandible (Figure 3).

Gingiva. Gingiva or gum is the part of the oral mucosa covering the teeth bearing area of the jaw (alveolar processes). Attached gingiva, free gingiva, and marginal gingiva (Figure 1).

Measurements of the teeth
Measure of teeth was reported giving mean value for mesiodistal diameters, labio- or bucco-lingual diameter, length of root, and length of crown. The size of tooth varies across ethnic groups (Black, 1890; Lavelle, 1972) (Figure 4).

4 | DEFINITIONS

4.1 | Tooth, anomaly

4.1.1 | Definition
Alteration in the number, shape, size, or structure, in the chronology of eruption or the alignment in the dental arch, of a single tooth or multiple teeth. **Objective** or **subjective**.

4.1.2 | Comments
An anomaly can be explained as a malformation, a dysplasia, a deformation or disruption, and classifying a dental anomaly as such helps in understanding etiology and pathogenesis (Hennekam et al., 2013). Teeth anomalies can affect the tooth crown, tooth root, or both. For root anomalies, diagnosis requires typically radiographic examinations as well.

Replaces: Dental defect
Synonym: Dental anomaly
Dental anomaly: see **Tooth, anomaly**.

4.2 | Tooth, missing

4.2.1 | Definition
Apparent absence of one or more teeth during the visual inspection of the oral cavity. **Objective**.

4.2.2 | Comment
The tooth may appear to be absent due to a disturbed eruption, failure to develop, or loss of teeth. Age-related physiological sequential eruption should be taken into account during evaluations.
Synonym: Tooth, reduced number
Tooth, reduced number: see Tooth, missing.

4.3 | Teeth, agenesis

4.3.1 | Definition

The absence of one or more teeth from the normal series by a failure to develop (Figures 6–8). Objective.

4.3.2 | Comments

Teeth agenesis needs to be confirmed by X-rays. Teeth agenesis encompasses hypodontia, oligodontia, and anodontia. The total number and the type of teeth missing should be added to the description, using the FDI nomenclature. The clinical absence of a tooth due to a disturbed eruption should not be termed teeth agenesis but a missing tooth.

Synonym: Dental agenesis
Dental agenesis: see Teeth, agenesis.

4.4 | Hypodontia

4.4.1 | Definition

The absence of five or less teeth from the normal series by a failure to develop (Figure 6). Objective.

4.4.2 | Comments

Hypodontia needs to be confirmed by X-rays. The total number and the type of missing teeth should be added to the description, using the FDI nomenclature (“FDI Director calls on more countries to adopt the FDI two-digit tooth-numbering system,” 1988; Peck & Peck, 1993). The terms hypodontia and oligodontia have been used interchangeably in literature but these define two different clinical entities. Hypodontia has been used to define exclusively the absence of permanent teeth and excluding third molars, but the absence of any deciduous and permanent teeth, including third molars, should be called hypodontia as well. Hypodontia in the permanent dentition (other than third molars) affects 2–8% of the general population (Polder, Van’t Hof, Van der Linden, & Kuijpers-Jagtman, 2004). The permanent dentition is more often concerned but when it affects the deciduous dentition, the permanent dentition is usually also affected (Polder et al., 2004). Third molars agenesis occurs in up to 10–30% within the general population. Hypodontia of a permanent tooth is often associated with persistence of the deciduous predecessor and may be associated with other dental anomalies such as delayed eruption, infraocclusion of deciduous molars (if premolars are involved), microdontia, ectopic tooth eruption, short roots, taurodontism, tooth

FIGURE 6 Hypodontia—panoramic radiography of a 7 years old child showing four dental agenesis (see the stars second left maxillary premolar, mandibular central incisors, mandibular second left premolar). Deciduous and permanent molars are taurodont. Maxillary central incisor presents a screwdriver shape anomaly

FIGURE 7 Oligodontia—patient with oligodontia (missing 12 permanent teeth see the stars: maxillary first and second premolars, mandibular second premolars, second molars, and four wisdom teeth). Abnormalities of tooth shape and tooth structure (enamel hypoplasia) are also seen on upper permanent central incisors [Color figure can be viewed at wileyonlinelibrary.com]
rotation, or *enamel hypocalcification*. These signs should be assessed and coded separately. The clinical absence of a tooth due to a disturbed eruption should not be termed teeth agenesis but a *missing tooth*.

4.5 Oligodontia

4.5.1 Definition

The absence of six or more teeth from the normal series by a failure to develop. (Figure 7). Objective.

4.5.2 Comments

Oligodontia needs to be confirmed by X-rays. The number and the type of teeth missing should be added to the description using the FDI nomenclature (Peck & Peck, 1993) (“FDI Director calls on more countries to adopt the FDI two-digit tooth-numbering system,” 1988). The terms *oligodontia* and *hypodontia* have been used interchangeably in literature, but these define two different clinical entities if considering the number of missing teeth. Maxillary lateral incisor and second premolar are more commonly part of oligodontia (Fournier et al., 2018), maxillary second premolars, mandibular incisor, and maxillary and mandibular first premolars, and second molars are less frequently absent. Canines, maxillary central incisor, and first molars are the more conserved teeth. Agenesis of a permanent tooth is often associated with persistence of the deciduous predecessor and may be associated with other dental anomalies such as delayed eruption, infraocclusion of deciduous molars (if premolars are involved), microdontia, ectopic teeth, short roots, taurodontism, tooth rotation, or *enamel hypocalcification*. These signs should be assessed and coded separately. Isolated oligodontia affects 0.1% of the population (Polder et al., 2004). The clinical absence of a tooth due to a disturbed eruption should not be termed teeth agenesis but a *missing tooth*.

4.6 Anodontia

4.6.1 Definition

The absence of all teeth from the normal series by a failure to develop. (Figure 8). Objective.

4.6.2 Comments

Anodontia needs to be confirmed by X-rays. True anodontia is an extremely rare condition.

4.7 Solitary median maxillary central incisor

4.7.1 Definition

A single maxillary central incisor positioned in the midline with morphological symmetry of the crown and bordered by lateral incisors (Figure 9). Objective.

4.7.2 Comments

The tooth differs from a normal central incisor in the symmetric formation of the crown. The tooth is present in both deciduous and permanent dentition. Solitary/single median maxillary central incisor syndrome (SMMC) indicates the presence of a single median maxillary central incisor together with other midline defects of development (Hall, 2006). A single maxillary central incisor not positioned in the midline indicates agenesis of the contralateral central incisor and can be differentiated furthermore by the morphology of the crown. A diagnosis of a solitary median maxillary central incisor typically requires X-rays examinations.
4.8 | Mesiodens

4.8.1 | Definition
A supernumerary tooth between the maxillary central incisors (Figure 10). Objective.

4.8.2 | Comments
Mesiodens is the most common supernumerary tooth. Typically, they are small. They are usually conical in shape but may have heterogeneous forms. Mesiodens may remain unerupted and cause failure of a permanent incisor to erupt. Mesiodens may develop in an inverted position (flipped 180°).

Tooth, extra: see Tooth, supernumerary.

Tooth, increased number: see Tooth, supernumerary.

4.9 | Tooth, supernumerary

4.9.1 | Definition
The presence of one or more teeth additional to the normal number (Figure 11). Objective.

4.9.2 | Comments
Age-related physiological sequential eruption should be taken into account during evaluation. The type and the location of the additional tooth/teeth should be added to the description. Supernumerary teeth are uncommon (in 0.21% of deciduous dentitions and in 0.9% of permanent dentitions) (Lagana et al., 2017), and often abnormal positioning of a normal number of teeth is wrongly classified as supernumerary teeth. Supernumerary teeth are most frequent in the upper maxilla, and typically, a single additional tooth is present. We discourage the use of distodens, distomolars (an extra fourth molar posterior to the third molar), paramolars (supernumerary tooth in the molar region) but rather to mention the presence of the supernumerary tooth mesial to or distal to a tooth from the normal series. Diagnosing a supernumerary tooth may require radiographic examination. A supernumerary tooth present between the maxillary central incisors is called mesiodens.

Synonym: Tooth, extra teeth; Hyperdontia; Tooth, increased number.

4.10 | Enamel, pearls

4.10.1 | Definition
Small nodules of enamel on the root of a tooth (Figure 12). Subjective.

4.10.2 | Comments
Enamel pearls can typically not be seen on X-rays but need direct visualization. The pearls can be present on the surface of the dentine or cement of deciduous teeth, with a frequency of 33% (Arys & Dourov, 1987) or on the roots of maxillary molars, with a frequency of 1.2% (Chrcanovic, Abreu, & Custodio, 2010).
4.11 | Cusps, supernumerary

4.11.1 | Definition

Additional cusps of a dental crown. (Figure 13). Objective.

4.11.2 | Comments

Supernumerary cusps can occur on any tooth with cusps. They are frequently seen in patients with other dental anomalies (Herrera-Atoche et al., 2017). Prevalence varies by geographical region (Yamunadevi et al., 2015). A tubercle on the lingual surface of the maxillary first permanent molar is sometimes referred to as a Carabelli cusp (Carabelli, 1844) (Poornima, Kirthiga, Sasalwad, & Nagaveni, 2016; Tinoco, Lima, Delving, Francesquini Jr., & Daruge Jr., 2016). A supernumerary cusp on the lingual or palatal side of anterior teeth is called Talon cusp, and an additional cusp on the occlusal surface of a premolar is called Leung cusp.

Replaces term: Tuberculum paramolare
Synonym: Cusp, extra; Cusp, additional cusp; Mulberry molar
Cingulum, prominent: see Talon cusp.
Cusp, additional: see Cusp, supernumerary.
Cusp, extra: see Cusp, supernumerary.
Dens evaginatus: see Leung cusp.
Dens evaginatus: see Talon cusp.
Eagle talon: see Talon cusp.

4.12 | Leung cusp

4.12.1 | Definition

An additional cusp located in the middle of the occlusal surface. Objective.

4.12.2 | Comments

A Leung cusp is present on premolars only. In X-rays examination, a pulp extension may be seen inside the cusp.

Synonym: Dens evaginatus
Mulberry molar: see Cusps, supernumerary.

4.13 | Tooth, natal

4.13.1 | Definition

A tooth present at birth or erupting within the first month of life (Figure 14). Objective.

4.13.2 | Comments

A tooth erupting between the second and fourth month is called a neonatal tooth. A natal tooth is uncommon, the prevalence at birth is 1/2000 to 1/3500 birth. In 85%, the erupted tooth is the deciduous lower incisors, and in 5%, it concerns upper incisors or molars, and in 10%, it involves supernumerary teeth (Mhaske et al., 2013). Natal teeth are particularly common among some native (First Nation) groups of North America (Carey et al., 2009). Natal teeth are usually mobile and lack root formation.

4.14 | Microdontia

4.14.1 | Definition

Mesiodistal tooth diameter (width) more than 2 SD below mean. Objective.

OR apparently decreased maximum width of tooth (Figure 15). Subjective.
4.14.2 | Comments

Standard references for means and standard deviations by gender are available (Figure 4) (Black, 1890; Lavelle, 1972). Microdontia may affect a single tooth or the entire dentition, which is indicated as localized or generalized microdontia. The most common tooth involved is the lateral incisor. Microdontia goes often along with hypodontia and oligodontia, which should then be assessed and scored separately. Microdontia is typically genetically determined but environmental factors may be also implicated (Jeong, Kim, Song, Sung, & Kim, 2015).

Replaces term: Microdont; Tooth hypoplasia; Tooth hypotrophy

Synonym: Tooth, small; Tooth, underdeveloped

4.15 | Macrodontia

4.15.1 | Definition

Mesiodistal tooth diameter (width) more than 2 SD above mean. Objective.

4.15.2 | Comments

The standard reference for means and standard deviations by gender is available (Figure 4) (Black, 1890; Lavelle, 1972). Macrodontia is uncommon, may affect a single or multiple teeth, and is rarely present in all teeth. A large tooth may also result from fusion of two teeth (Double teeth).

Replaces term: Megadont; Macrodont; Tooth hyperplasia; Tooth hypertrophy

Synonym: Tooth, large; Megalodontia; Globodontia

Tooth, large: see Macrodontia.

Megalodontia: see Macrodontia.

4.16 | Tooth, conical

4.16.1 | Definition

A tooth with a sharply pointed crown or incisal edge (Figure 17). Subjective.
4.16.2 | Comments

A conical shape of a tooth occurs in incisors and canines only. Conical teeth may occur isolated or associated with other dental anomalies, such as hypodontia and oligodontia (Tallon-Walton et al., 2010); this should be assessed and coded separately.

Replaces term: Pointed teeth
Synonym: Conoid teeth
Tooth, conoid: see Tooth, conical.

4.17 | Tooth, barrel-shaped

4.17.1 | Definition

A tooth crown with convex mesial and distal surfaces (Figure 18). Subjective.

4.17.2 | Comments

A barrel shape of a tooth occurs in incisors and canines only. The incisal edge is not pointed. Barrel-shaped teeth are frequently observed in association with hypodontia and oligodontia (Kantaputra, Kaewgahya, Jotikasthira, & Kantaputra, 2014); this should be assessed and coded separately.

4.18 | Tooth, bulbous

4.18.1 | Definition

A tooth crown with a marked cervical area constriction. Subjective.

4.18.2 | Comments

It is mostly seen in molars (Figure 19). The diagnosis bulbous crown needs to be confirmed by X-rays.

4.19 | Tooth, peg-shaped

4.19.1 | Definition

A tooth crown with its mesial and distal sides converging or tapering toward the incisal edge causing severe reduction of mesiodistal diameter (Figure 20). Subjective.
4.19.2 | Comments

A peg shape appearance of a tooth occurs in lateral incisors only (Bot & Salmon, 1977). A peg-shaped tooth is a **microdont** tooth and may occur isolated or associated with other dental anomalies, such as **hypodontia** and **oligodontia** (Reston et al., 2014; Tallon-Walton et al., 2014); this should be assessed and coded separately.

4.20 | Tooth, shovel

4.20.1 | Definition

A tooth with a crown with marked lingual or palatal marginal ridges causing scooped lingual or palatal surfaces (Figure 21). **Subjective**.

4.20.2 | Comments

A shovel shape typically occurs in central upper incisors. Shovel-shaped teeth may occur isolated or associated with other dental anomalies.

4.21 | Tooth, tapered

4.21.1 | Definition

A tooth with a crown that narrows from proximal toward the incisal edge (Figure 22). **Subjective**.

4.21.2 | Comments

Tapering of teeth typically involves incisors (Axelsson, 2005).

Synonym: Tooth, screwdriver-shaped

4.22 | Talon cusp

4.22.1 | Definition

A supernumerary cusp on the palatal or lingual side of the maxillary and mandibular anterior teeth (Figure 23). **Subjective**.

4.22.2 | Comments

A talon cusp is found in 1% to 6% of the general population with a large difference in incidence depending on ethnicity. It is uncertain whether it arises as an extra cusp or also as an overdevelopment of an existing cusp. It is rare in the deciduous dentition. A talon cusp extends at least half the distance from the cement–enamel junction to the incisal edge in the palatal or labial surface. It contains enamel, dentin and/or pulp (Kasat, Singh, Saluja, & Ladda, 2014; Mal-lineni, Panampally, Chen, & Tian, 2014).

Replaces term: Eagle talon; Dens evaginatus; Cingulum, prominent

Figure 23 Talon cusps on both central incisor and invagination at the cingulum site on lateral incisors [Color figure can be viewed at wileyonlinelibrary.com]

Figure 24 Double teeth in the deciduous dentition. Teeth fused: Fusion of the central incisor with the lateral incisor. Radiograph exhibit the absence of the lateral incisor. Teeth gemination: Tooth germination of right maxillary incisor—clinical aspect and radiograph. Gemination concerned the crown and the beginning of the root. The lateral incisor is present, so the patient has a normal number of teeth [Color figure can be viewed at wileyonlinelibrary.com]
4.23 | Teeth, double

4.23.1 | Definition

Fusion of two adjacent teeth (Figure 24). Objective.

4.23.2 | Comments

The fusion can be complete or be limited to the crown or the root. Typically, incisors and canines form double teeth. Double teeth are more common in the deciduous dentition (0.14–3%) and rare in the permanent dentition (0.2%). Double teeth encompasses fusion, concrescence, and gemination of teeth, which some authors describe with the "twinning" (Hunasgi, Koneru, Manvikar, Vanishree, & Amrutha, 2017). The fusion involves two adjacent, normal teeth. Seemingly, the patient misses a tooth. Concrescence is a condition where the roots are joined only by cementum. The gemination appears when two teeth are developing from one tooth bud leading to a supernumerary tooth formation fused with the normal tooth germ. The patient has a normal number of teeth.

Replaces term: Twinning tooth

Synonym: Teeth gemination; Teeth fused

Teeth, fused: see Teeth, double.

Teeth, gemination: see Teeth, double.

4.24 | Dens in dente

4.24.1 | Definition

Invagination of part of the crown of a tooth inside the crown (Figure 25). Subjective.

4.24.2 | Comments

Dens in dente results from an invagination of the enamel organ into the dental papilla, extending into the root before initiation of mineralization. The incidence varies from 0.25 to 10% (Hulsmann, 1997). The permanent maxillary lateral incisors are the most frequently involved teeth (6–10% of affected teeth), but it can occur in any tooth type. It occurs more frequently in the permanent dentition and in maxillary teeth. The diagnosis dens in dente needs to be confirmed by X-rays.

Synonym: Dens invaginatus

4.25 | Tooth, notched

4.25.1 | Definition

A tooth with a notch of the incisal edge (Figure 26). Subjective.
4.25.2 | Comments
This notch may indicate a *double tooth* formation. A notched tooth should not be confused with *mamelons*.

4.26 | Tooth, semi-lunar
4.26.1 | Definition
An incisor with a half-moon shape incisal edge (Figure 27). *Subjective.*

4.26.2 | Comments
If a notch occupies most of incisal edge, it has been indicated as semi-lunar teeth or crescent-shaped.

Synonym: Tooth, crescent-shape; Tooth, semi-circular; Hutchinson incisor

4.27 | Root, anomaly
4.27.1 | Definition
Alteration of the number, shape or the size of roots. *Objective.*

4.27.2 | Comments
Size of roots encompasses their thickness and length. A root may be abnormally short or long.

Replaces term: Root dystrophy; Root dysplasia

4.28 | Radiculomegaly
4.28.1 | Definition
Tooth root length more than 2 SD above mean. *Objective.*

OR apparently increased tooth root length 5 (Figure 28). *Subjective.*

4.28.2 | Comments
Standard references for means and standard deviations by gender are available (Black, 1890; Lavelle, 1972). It may concern one or multiple teeth. The diagnosis of short roots needs to be confirmed by X-rays.

Replaces term: Root dwarfism; root hypoplasia; root hypotrophy

Synonym: Rhizomicry; Root, underdeveloped

Root, underdeveloped: see *Root, short.*

4.29 | Root, short
4.29.1 | Definition
Tooth root length more than 2 SD below mean. *Objective.*

OR apparently decreased tooth root length (Figure 29). *Subjective.*

4.30 | Molar incisor malformation
4.30.1 | Definition
This is a bundled term as molar incisor malfomation (MIM) and is composed of normal crown with marked cervical constriction, thin, narrow short roots which is a combination of signs that occurs in deciduous and permanent molars. Each of these signs should be assessed and scored separately. *Subjective.*

4.30.2 | Comments
MIM affects one or more roots of deciduous second molars and permanent first molars (Figure 30) (Brusevold, Bie, Baumgartner, Das, &
Espelid, 2017; McCreedy, Robbins, Newell, & Mallya, 2016). Permanent maxillary central incisors may also be affected. The diagnosis requires clinical and radiographic examinations.

4.31 | Taurodontia

4.31.1 | Definition

A crown body–root ratio equal or larger than 1:1. Objective.

Or elongated pulp chambers and apical displacement of the bifurcation or trifurcation of the roots (Figure 31). Subjective.

4.31.2 | Comments

Taurodontia causes a molar shape that is visible on radiographs. Taurodontic teeth display proportionately short roots and enlarged pulp chambers. Normal values for crown body–root ratio are available (Seow & Lai, 1989).

4.32 | Odontodysplasia

4.32.1 | Definition

A tooth with enamel and dentin hypomineralization anomalies causing marked reduction in radio-opacity (Figure 32). Subjective.

4.32.2 | Comments

The diagnosis odontodysplasia requires clinical and radiological exams, in which unusually large pulp chambers and large pulp room chambers with thin enamel and dentin are visible. It may affect either a single tooth or several teeth. The term regional odontodysplasia is used if several teeth are affected. It affects the deciduous and permanent dentitions in the maxilla, the mandible or both, although the maxilla is more frequently involved.

Espelid, 2017; McCreedy, Robbins, Newell, & Mallya, 2016). Permanent maxillary central incisors may also be affected. The diagnosis requires clinical and radiographic examinations.

DE LA DURE-MOLLA ET AL. 1967

FIGURE 30 Molar-incisor-malformation: first permanent molar with short, thin root or rootless teeth [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 31 Taurodontic molars

FIGURE 32 Regional odontodysplasia in the upper right quadrant

FIGURE 33 Extrinsic coloration on the surface of permanent incisors [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 34 Dentin dysplasia [Color figure can be viewed at wileyonlinelibrary.com]
4.33 | Anomaly, dental structure

4.33.1 | Definition

Anomaly in the structure of mineralized tissues of a tooth (Figures 34–39). Subjective.

4.33.2 | Comments

This is a bundled term with which anomalies of enamel and/or dentin and/or cement are indicated. The affected dental structure should be assessed and coded separately.

4.34 | Anomaly, dental color

4.34.1 | Definition

Discoloration of teeth (Figure 33). Subjective.

4.34.2 | Comments

The application of color science within dentistry has permitted the measurement of tooth color in an objective way (Joiner & Luo, 2017). A tooth may show a variety of abnormal colors such as yellow, brown, gray, green color, and red. This should be assessed and added to the
description of a discolored tooth. Discoloration of teeth may be due to extrinsic discoloration (stains that develop on the outer surface of a tooth, Figure 33) or intrinsic discoloration (stains that arise from an endogenous material incorporated into the enamel or dentin and cannot be removed by prophylaxis). It may be also a consequence of dental structure anomaly.

4.35 | Dentin anomaly

4.35.1 | Definition

Structural anomaly of dentin at macroscopic or microscopic level (Figures 34 and 35). Subjective.

4.35.2 | Comments

Dentin anomalies are known only to occur in genetically determined disorders. The structure of dentin is very similar to that of bone, and skeletal dysplasia frequently shows dentin anomalies as well.

Replaces term: Dentin dysplasia; Dentin dystrophy; Dentinogenesis imperfecta

Synonym: Dentin defect

Dentin defect: see Dentin anomaly.

4.36 | Dentin dysplasia

4.36.1 | Definition

This is a bundled term as dentin dysplasia is composed of short roots with pointed ends and taurodontism and intrapulpal calcifications (Figure 34). Subjective.

4.36.2 | Comments

This term designates a genetic condition, and an Element of Morphology rendering its utilization sometimes confusing. The condition is characterized by multiple dental anomalies that affect both deciduous and permanent dentitions. It can exist in isolation or be associated with other signs and symptoms of various syndromes.

4.37 | Dentinogenesis imperfecta

4.37.1 | Definition

This is a bundled term as dentinogenesis imperfecta and is composed of crown discoloration, bulbous crown, short roots, intra-pulpal calcification, which is a combination of signs that occurs in several disorders in deciduous and permanent teeth. Each of these signs should be assessed and scored separately (Figure 35).

4.37.2 | Comments

This term designates a genetic condition, and an Element of Morphology rendering its utilization sometimes confusing. The condition is characterized by multiple dental anomalies that affect both deciduous and permanent dentitions. It can exist in isolation or be associated with other signs and symptoms of various syndromes. Dentinogenesis imperfecta shows variable expression with mild, moderate, and severe forms that correspond respectively to earlier dentin dysplasia type II, dentinogenesis imperfecta type II, and dentinogenesis imperfecta type III of the Shield classification, allelic to dentine sialophosphoprotein defects (de La Dure-Molla et al., 2015).

4.38 | Enamel dysplasia

4.38.1 | Definition

Alteration of color, shape, surface, and/or structure of enamel (Figures 36–40). Subjective.

4.38.2 | Comments

Enamel dysplasia may reflect qualitative or quantitative alteration of enamel structure. Enamel dysplasia encompasses enamel hypoplasia, enamel agenesis, enamel hypomineralization, enamel hypomaturation, and amelogenesis imperfecta.

Synonym: Enamel anomaly; Enamel defect
4.39 | Enamel, hypoplasia

4.39.1 | Definition

A quantitative defect in enamel formation (Figure 36). Subjective.

4.39.2 | Comments

Enamel hypoplasia can be caused by genetic or environmental factors. It may occur in both deciduous and permanent dentitions, although more often in the permanent dentition. Enamel hypoplasia may concern a single tooth, several teeth, or the complete dentition and may affect part or the complete surface of the tooth. Enamel hypoplasia regroups different clinical aspects: localized hypoplasia, generalized hypoplasia, enamel pits, enamel striae, and grooves defects. The term should be used to describe a quantitative defect of enamel. Enamel hypotrophy cannot be used as hypotrophy indicates loss of cells, whereas enamel is an acellular structure and thus not a tissue.

Replaces term: enamel hypotrophy

Synonym: Enamel, thin; Enamel, pitted; Enamel, underdeveloped

4.40 | Enamel, agenesis

4.40.1 | Definition

Complete or almost complete absence of enamel (Figure 37). Subjective.

4.40.2 | Comments

Enamel agenesis can indicate a total absence of enamel or the presence of a very thin enamel layer that is difficult to visualize during clinical examination. It may need microscopic studies to determine whether any enamel is still present. It can be present isolated and as part of rare syndromic entities (de La Dure-Molla et al., 2015; Huckert et al., 2015).

Enamel hypoplasia: see Enamel, hypomineralization.

4.41 | Enamel, hypomineralization

4.41.1 | Definition

Enamel with a brown discoloration and brittle aspect. (Figure 38). Subjective.

4.41.2 | Comments

Enamel hypomineralization can be caused by genetic or environmental factors. It may occur in both deciduous and permanent dentitions, although more often in the permanent dentition. It may concern a single tooth, several teeth, or the complete dentition and may affect part or the complete surface of the tooth. Enamel hypomineralization is a qualitative defect of enamel, in which the enamel can be rough and softer. Affected teeth may be sensitive. Enamel hypomineralization can be part of molar incisor hypomineralization (hypomineralisation of systemic origin of one to four permanent first molars, frequently associated with affected incisors) (Weerheijm, 2003) and of hypomineralized second primary molars (or deciduous molar hypomineralisation, which indicates idiopathic hypomineralization of one to four second deciduous molars) (Negre-Barber, Montiel-Company, Boronat-Catala, Catala-Pizarro, & Almerich-Silla, 2016).

Synonym: Enamel, hypocalcification

4.42 | Enamel, hypomature

4.42.1 | Definition

Enamel with a white or brown discoloration without hypoplasia (Figure 39). Subjective.

4.42.2 | Comments

Enamel maturation is a process through which enamel matrix proteins are removed to allow full growth of the enamel hydroxyapatite crystals. Hypomature enamel can be caused by genetic or environmental factors. It may occur in both deciduous and permanent dentitions, although more often in the permanent dentition. Hypomature enamel may concern a single tooth, several teeth, or the complete dentition and may affect part or the complete surface of the tooth. The enamel is usually hard, colored but not translucid. It is a qualitative defect of enamel.

Synonym: Enamel opacity

Enamel opacity: see Enamel, hypomature.

Enamel, pitted: see Enamel hypoplasia.

Enamel, thin: see Enamel hypoplasia.

Enamel underdevelopment: see Enamel hypoplasia.

4.43 | Amelogenesis imperfecta

4.43.1 | Definition

This is a bundled term as amelogenesis imperfecta and is composed of crown discoloration and/or enamel dysplasia (Figure 40). Subjective.

FIGURE 41 Cementum hyperplasia at the root of the mandibular left second premolar
Amelogenesis imperfecta generally affects all elements and both deciduous and permanent teeth. The term designates both a genetic condition, and an Element of Morphology rending its utilization sometimes confusing. It describes enamel defects (hypoplasia, hypomineralization, hypomaturation) that usually affect (but not always) both deciduous and permanent dentitions.

4.44 | Cementum, hypoplasia

4.44.1 | Definition

The decrease or absence of cementum. Subjective.

4.44.2 | Comments

The cementum anchors the periodontal ligament attachment fiber between the tooth root and the alveolar bone. Its absence leads to early loss of teeth.

Replaces term: Cementum aplasia

FIGURE 42 | Pulp calcification within the pulp chamber of the molar and the second premolar

FIGURE 43 | Pulp obliteration in dentinogenesis imperfecta

Cementum, overdeveloped: see Cementum, overgrowth.

4.45 | Cementum, overgrowth

4.45.1 | Definition

Excess of cementum on the tooth root surface (Figure 41). Subjective.

4.45.2 | Comments

The excessive buildup of normal cementum (calcified tissue) on the roots of one or more teeth is an idiopathic, non-neoplastic condition. Cementum overgrowth may be either hyperplasia or hypertrophy of the cement; these terms can only be used if histological evidence of hypertrophy or hyperplasia have been established.

Replaces term: Cementation hyperplasia; Cementum hypertrophy; Drumstick-shaped root

Synonym: Hypercementosis; Cementum, overdeveloped

Hypercementosis: see Cementum, overgrowth.

4.46 | Pulp, calcification

4.46.1 | Definition

Calcifications of dental pulp (Figure 42). Subjective.
4.46.2 | Comments

Calcifications may appear as punctate calcifications, irregular, roughly spherical mineralized masses in any part of the pulp. It may occur isolated or associated to calcifications elsewhere such as the carotid arteries and kidneys (Yeluri, Kumar, & Raghav, 2015). The diagnosis pulp calcifications can be established using radiological studies.

Replaces term: Pulpoliths

Synonym: Pulp stones; Pulp denticles
Pulp denticles: see Pulp, calcification.
Pulp, flame-shaped: see Pulp, Thistle tube shaped.

4.47 | Pulp, obliteration

4.47.1 | Definition

Mineralized substance filling the entire dental pulp space (Figure 43). Subjective.

4.47.2 | Comments

The diagnosis pulp obliteration can be established using radiological studies. Gradual obliteration of the pulp is a physiologic process that occurs with aging. On radiographs the contours of the pulp disappear in part or totally, but histologically pulpal tissue remains present.

Pulp stones: see Pulp, calcification.

4.48 | Pulp, thistle tube shaped

4.48.1 | Definition

A thistle tube shape of the pulp chamber (Figure 44). Subjective.

4.48.2 | Comments

Enlarged coronal pulp chamber with narrow pulp canals giving a radiographic appearance of the shape of a thistle tube or a flame. It may occur isolated or associated to other dental anomalies rare diseases such as dentinogenesis imperfecta, which should be assessed and coded separately. The diagnosis thistle tube shape pulp requires clinical and radiographic examinations.

Synonym: Pulp, flame-shaped
Eruption, advanced: see Tooth, premature eruption.

4.49 | Eruption, delayed

4.49.1 | Definition

Eruption of a tooth more than 2 SD beyond the mean eruption age (Figure 45). Objective.

4.49.2 | Comments

Eruption is defined by the appearance of a tooth that has pierced the oral mucosa. There are established norms for the timing of eruption in both deciduous and permanent teeth (Lunt & Law, 1974; McDonald et al., 2004). Eruption delay may affect either the deciduous teeth, permanent teeth, or both. The absence of shedding of deciduous teeth may be seen in association with delayed permanent tooth eruption or agenesis of successional permanent teeth. The diagnosis eruption delayed requires clinical and radiographic examinations.

4.50 | Eruption, failure

4.50.1 | Definition

A tooth which does not erupt within the teeth eruption timeline and after the loss of eruption potential (Figure 46). Objective.

4.50.2 | Comments

Usually a tooth erupts at a stage of half or two/third root formation. There are established norms for the timing of eruption and tooth stages in both deciduous and permanent teeth (Lunt & Law, 1974; McDonald et al., 2004) It may be difficult to discern Delayed eruption from failure of eruption: failure indicates it will never erupt, delayed indicates it may still erupt. Eruption failure may be caused by an isolated obstacle (supernumerary teeth), ankylosis of impacted teeth, or disturbances of biological eruption pathway. Partial or complete non-eruption of not initially ankylosed teeth due to a disturbed eruption mechanism result in a severe form of posterior open bite that usually worsens from anterior to posterior. Eruption failure is usually asymmetrical, affects more posterior teeth and both dentition may be involved (Pilz et al., 2014). The diagnosis eruption failure requires clinical and radiographic examinations.

Synonym: Tooth, impacted; Tooth, retained

4.51 | Primary failure of eruption

4.51.1 | Definition

Eruption failure of permanent teeth in the absence of an obstacle hindering tooth progression toward the oral cavity. Objective.

FIGURE 46 Eruption, failure of all permanent molars
4.51.2 | Comments

This is a bundled term as Primary failure of eruption (PFE) and is composed of eruption failure, tooth ankylosis, tooth infraoccluded, posterior lateral open bite. Each of these signs should be assessed and scored separately. The term designates both a genetic condition, and an Element of Morphology rending its utilization sometimes confusing.

The non-eruption mechanism defect is due to an abnormal dental follicle, partially or totally blocking tooth progression. It usually involves one or multiple molar sectors. Incisors, canines, and premolars may also be involved but with a reduced individual frequency. The diagnosis Primary failure of eruption failure requires clinical and radiographic examinations.

Tooth, impacted: see Eruption, failure.

4.52 | Tooth, premature loss

4.52.1 | Definition

Exfoliation of a tooth more than 2 SD earlier than the normal age for the deciduous teeth. Exfoliation of a permanent tooth is per se abnormal. (Figure 47). Objective.

4.52.2 | Comments

Premature loss of a tooth may concern deciduous and permanent teeth. The range of ages in years for normal exfoliation of deciduous teeth usually precedes the mean age of eruption of each tooth by a year or less (Hennekam et al., 2010; Kleigman, Behrman, Jenson, & Stanton, 2007).

Replaces term: Exfoliation, early

4.53 | Tooth, premature eruption

4.53.1 | Definition

A tooth which erupts more than 2 SD earlier than the mean eruption age (Figure 48). Objective.

4.53.2 | Comments

Eruption is defined by the appearance of a tooth that has pierced the oral mucosa. There are established norms for the timing of eruption of both deciduous and permanent teeth (Lunt & Law, 1974; McDonald et al., 2004) Tooth eruption sequences follow broadly similar and symmetrical patterns during establishment of the deciduous and permanent dentitions, although wide individual variation in timing is common. Eruption timing depends on the population studied. Norms are typically specific for populations (Baylis & B. R., 2017; Verma et al., 2017).

Synonym: Eruption advanced; Tooth, advanced development

4.54 | Tooth, infraoccluded

4.54.1 | Definition

A tooth with its occlusal surface at a lower level than the adjacent teeth (Figure 49). Subjective.

4.54.2 | Comments

Infraocclusion of a tooth typically concerns deciduous molars. Two anomalies may be described: (1) a halt of the eruption of a tooth shortly after emergence in the oral cavity, despite the lack of a physical obstacle in the eruption pathway (Nielsen, Becktor, & Kjaer, 2006);
4.55 | Tooth, ankylosis

4.55.1 | Definition

Fusion of a tooth with alveolar bone (Figure 50). Subjective.

4.55.2 | Comments

Ankylosis is uncommon in the deciduous dentition and very rare in the permanent dentition. It may be observed after trauma. Ankylosis may occur at the crown or root level.

4.56 | Teeth, malposition

4.56.1 | Definition

Location of a tooth out of its normal position or orientation (Figure 51). Subjective.

4.56.2 | Comments

Anomalies of tooth position can be classified into ectopic (in an abnormal location), transmigration (pre-eruptive migration to a location some distance away), transposition (positional interchange of two adjacent teeth), rotation (tooth turning along its long axis), crowding (malalignment of tooth row). This should be added in describing a malpositioned tooth.

Replaces term: Irregular dentition

4.57 | Dental crowding

4.57.1 | Definition

Changes in alignment of teeth in the dental arch (Figure 54). Subjective.
4.57.2 | Comments

There is a discrepancy in the space needed to align the teeth and the size of the alveolar ridge.

- Replaces term: Irregular teeth, Irregular dentition
- Synonym: Teeth, malalignment; Teeth, misalignment

Teeth, malalignment: see Dental crowding.
Teeth, misalignment: see Dental crowding.

4.58 | Teeth, spaced

4.58.1 | Definition

Separation of teeth of the same dental arch by wider spaces than normal (Figure 52). Subjective.

4.58.2 | Comments

Wide spacing can be secondary to increased room by an unusually large dental arch or smaller teeth (microdontia) or if mixed deciduous and secondary dentition are present. Slight spacing between the deciduous teeth is physiological, and experience in evaluation is important in determining this feature. This descriptor must be distinguished from a diastema. The difference between diastema and widely spaced teeth is that diastema is between two teeth and widely spaced teeth between more than two teeth. Normal values of dental spacing are not available.

- Replaces term: Diastemata
- Dental malocclusion: see Occlusion, anomaly.

4.59 | Diastema

4.59.1 | Definition

Increased space between two adjacent teeth (Figure 53). Subjective.

4.59.2 | Comments

Usually, there is a contact surface between the lateral sides of two adjacent teeth, at their broadest contour area. A diastema can apply to any pair of teeth. The term should be modified by a descriptor of the involved teeth. This descriptor must be distinguished from widely spaced teeth. Midline diastema refers to the diastema between the upper central incisors.

4.60 | Occlusion anomaly

4.60.1 | Definition

Alteration of the dental arch relationships in form or position (Figure 55). Objective.

4.60.2 | Comments

Occlusion anomalies include a large variety of disturbed occlusion such as disto-occlusion, mesio-occlusion, midline deviation of dental arch, overjet, and posterior lingual occlusion of mandibular teeth. The Angle classification is used to define dental relationship using the first permanent maxillary molar position as a reference: Class I: normocclusion, Class II (distooclusion) retrognathism; Class III mesiocclusion (prognathism) (Angle, 1899).

- Synonym: Dental malocclusion

4.61 | Open bite

4.61.1 | Definition

Visible anterior space between the dental arches in occlusion (Figure 56). Subjective.
4.61.2 | Comments

Open bite produces an absence of vertical overlap of the two dental arches. It may be associated with malocclusion, but this should be assessed and coded separately. Open bite may occur in the anterior or posterior part of the arches which are called anterior open bite, frontal open bite and lateral open bite, respectively. This should be added in describing an open bite.

4.62 | Cross bite

4.62.1 | Definition

Lingual occlusion of buccal cusps and/or incisal edge of maxillary teeth to the buccal cusps and/or incisal edge of mandibular teeth (Figure 57). Subjective.

4.62.2 | Comments

Cross bite may occur unilaterally, bilaterally, or frontally. A total cross bite with buccal displacement of the maxillary posterior teeth, with or without contact between the lingual surface of the maxillary lingual cusp and the buccal surface of the buccal cusp of its mandibular antagonist, has been called scissors bite. If only a single tooth is affected, the term single cross bite can be used.

4.63 | Overbite, increased

4.63.1 | Definition

Vertical overlap (frontal plane) of maxillary incisors over mandibular incisors exceeding 2 mm (Figure 58). Objective.

4.63.2 | Comments

An overjet concerns only anterior teeth. Supraocclusion: see Overbite, increased. An overbite concerns only anterior teeth. Synonym: Supraocclusion; Deep bite

4.64 | Overjet, increased

4.64.1 | Definition

Horizontal overlap (sagittal plane) of upper frontal teeth over the lower frontal teeth exceeding 3.5 mm (Figure 59). Objective.

FIGURE 56 Open bite evident in the absence of contact between dental arches [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 57 Cross bite (anterior and lateral) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 58 Overbite, increased evident in overlap of maxillary incisors over the mandibular ones [Color figure can be viewed at wileyonlinelibrary.com]
4.65 | Gingival, overgrowth

4.65.1 | Definition

Thickening of the gingiva (Figure 60). Subjective.

4.65.2 | Comments

The degree of thickening ranges from involvement of only the interdental papillae to gingival overgrowth covering the entire tooth crown. The gingival soft tissue overlying the alveolar ridge thickens. It may occur isolated, associated to orthodontic treatment (Zanatta, Ardenghi, Antoniazzi, Pinto, & Rosing, 2014), systemic treatment (Miranda et al., 2001), and generalized (Jaureguiberry et al., 2012). Gingival overgrowth can also be seen subsequently to external factors (phenytoin; cyclosporin A; nifediprin) or can be genetically determined. Gingival overgrowth can be caused by gingival hypertrophy and gingival hyperplasia, which can only be diagnosed using histological studies.

Replaces term: Gingival hyperplasia; Gingival hypertrophy
Synonym: Gingival overdevelopment; Gingiva, enlarged

FIGURE 59 Overjet increased evident in the increase of horizontal distance between maxillary and mandibular teeth [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 60 Gingival overgrowth [Color figure can be viewed at wileyonlinelibrary.com]

5 | NOSOLOGY OF GENETICALLY DETERMINED DENTAL DISORDERS

The presently proposed nosology of genetically determined dental disorders consists of 408 entities (Table 1). Dental non-developmental anomalies registered in OMIM, which are at least in part acquired, such as dental caries, are not included. Disorders going along with malocclusion of which the origin can be completely acquired to completely genetically determined, and which can be dental but also non-dental, are also excluded. Some disorders pertaining to a group are included, whereas other are not. For example, within the group of epidermolysis bullosa disorders, the dystrophica type is not included as its only associated dental sign is caries, but the junctional type is included as it goes along with enamel anomalies.

Each of the eight dental anomaly groups is subdivided into isolated and syndromic forms. Syndromes are grouped according to the recommendations for the grouping of rare disorders established by the European Reference Networks (Evangelista et al., 2016). Some syndromes go along with several different dental anomalies, such as Johanson-Blizzard syndrome with dental agenesis and severe microdontia. These disorders are classified in only one group, and other main dental phenotypes are added in the “notes” column. In 322 of the 408 disorders (79%), a gene is identified. In an additional 17 (4%), a candidate locus is known. The efforts made in establishing a common characterization of dental and craniofacial disorders, both isolated and syndromic, as well as in ascertaining their developmental and genetic common traits (for review: Bloch-Zupan et al., 2012; Klein et al., 2013; Mitsiadis & Luder, 2011; Thesleff, 2014) are contributing to these high percentages. However, this percentage could not be linked to the genetic diagnostic rates in practice. Isolated oro-dental disorders account for 53 of the 408 entities (13%), the remaining 87% are syndromes. In comparing the various dental anomalies, we find that dental agenesis is present in 121 disorders, supernumerary teeth in 18 disorders, dental size and/or shape disorders in 29 disorders, enamel anomalies in 105 disorders, dentin anomalies in 35 disorders, anomalies in dental eruption in 40 disorders, periodontal and gingival anomalies in 52 disorders, and tumor-like anomalies in eight disorders.

The development in sequencing techniques allowing to evaluate for variants in groups of genes causing specific signs or symptoms (NGS panel sequencing) has demonstrated that disorders initially described as occurring isolated could be allelic to syndromes, and vice versa. This is occurring in dental disorders as well. For example, variants in EDA were first described causing ectodermal dysplasia but were subsequently detected in individuals with dental agenesis without other signs of ectodermal dysplasia, and similar widening of phenotypes being caused by variants in single genes have been reported in several other genes such as COL17A1, DLX3, and LAMA3 (Poulter et al., 2014; Prasad et al., 2016; Yang et al., 2013).

We hope that these clinical descriptions are useful in patient’s care, especially in case of multi-disciplinary discussions. Dental anomalies are relevant clinical signs and may provide key clues for
differential diagnosis of rare disorders, and the present nosology may be helpful in this respect as well. The present nosology is the first comprehensive nosology in Dentistry. Undoubtedly, it will need regularly updating. Furthermore, we welcome remarks and criticisms by colleagues around the world to ameliorate both the definitions and the nosology.

D[4]/phenodont: www.phenodont.org

Human Phenotype Ontology: www.human-phenotype-ontology.org

ICD10-ICD11 MMS: Revised International Classification of Disorders for Mortality and https://icd.who.int/dev11/l-m/en

OMIM (Online Mendelian Inheritance in Man): http://www.ncbi.nlm.nih.gov/omim/

Orphanet: www.orpha.net (Rath et al., 2012).

COLLABORATORS, INTERNATIONAL GROUP OF DENTAL NOMENCLATURE

Consortium from collaborative national “TETECOU” and O-Rares oral and dental rare disease network - French rare disorders Healthcare Network for rare disorders of the head, neck and teeth: Jean-Louis Sixou (Service d’Odontologie et de chirurgie buccale, CHU de Rennes), Hervé Foray (Service d’Odontologie et de chirurgie buccale, CHU de Brest), Béatrice Bonin-Goga (Service de Chirurgie maxillo-faciale, plastique de la face et stomatologie, CHRU Hôpitaux de TOURS, Hôpital Clocheville), Florent Sury, CHU Tours, Frédéric Vaysse (Service d’odontologie, CHU Toulouse, Hôpital Rangueil-Maréchaux), Joël Ferri (Service d’odontologie et chirurgie maxillo-faciale, CHRU de Lille, Hôpital Roger Salengro), Corinne Tardieu (Pôle odontologie - Centre dentaire, Assistance Publique des Hôpitaux de Marseille, Hôpital de La Timone), Brigitte Alliot-Licht (Odontologie Conservatrice et Pédia-trique, CHU de Nantes, Site de l’Hôtel-Dieu, Jean-Jacques Morrier (Service de Consultations et Traitements Dentaires, Hospices Civils de Lyon, Hôpitaux Nord), Dominique Droz (CHU de Nancy, Service d’Odontologie, Nancy, France), Michèle Muller-Bolla (Département d’Odontologie Pédiatrique, UFR d’Odontologie, Université de Nice Sophia-Antipolis, CHU de Nice, Nice, France, 10URB2i - EA 4462, Paris Descartes, Paris, France), Séréné Lopez-Cazaux (Faculté de Chirurgie Dentaire, Département d’Odontologie Pédiatrique, CHU Hôpital Dieu, Service d’odontologie conservatrice et pédiatrique, Nantes, France), Isabelle Baillé Forestier (CHU de Toulouse, Odontologie Pédiatrique, Faculté de Chirurgie Dentaire, Université Paul Sabatier, Toulouse, France), Tiphaine Davit-Beal (Département d’Odontologie Pédiatrique, Faculté de Chirurgie Dentaire, Université Paris Descartes, Montrouge, France, Évolution et Développement du Squelette-EDS, UMR7138-SAE, Université Pierre et Marie Curie, Paris, France), Marie Paule Gelle (Faculté d’Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France, Laboratoire EA 4691 “BIOS,” 1, rue du Maréchal Juin, Reims 51100, France), Louis Frédéric Jacquelin, (Faculté d’Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France), Laboratoire EA 4691 “BIOS,” 1, rue du Maréchal Juin, Reims 51100, France, Edouard Euvrard, (Centre hospitalier régional universitaire de Besançon—Site de Jean Minjoz, CICIT unité INSERM 1431), Victorin Ahossi, (CHU Dijon-Bourgogne Dijon, France).

Endorsing International Consortium (expert reviewing panel):
Roger Hall (Australia), Richard Widmer (Australia), Anna Schossig (Austria), Ines Kapferer-Seebacher (Austria), Charles Pilipli (Belgium), Rose Mbede (Cameroun), Petra Hlinakova (Czech Republic), Maria-Angelica Quintana Torres (Chili), Jung Wook Kim (Corea), Hans Gjørup (Denmark), Dorte Haubek (Denmark), Satu Alaluusua (Finland), Priska Fischer (Germany), Anna Wolff (Germany), Marcel Hanisch (Germany), Nick A Lygidakis (Greece), Elia Steir, (Lebanon), Mustafa El Alloussi (Morocco), Ahmed Bilal (Pakistan), Carlalberta Verna (Switzerland), Eirini Stratigaki (Switzerland), Patimaporn Pungchanthaikul (Thailand), Supawich Morkmued (Thailand), Alan Mighell (UK), Susan Parek (UK), James K. Hartsfield (USA), Ophir Klein (USA); European Reference Network ERN CRANIO: Tatjana Dostalova (Czeck Republic), Marjin Creton (The Netherlands), Edwin Ongkosuwito (The Netherlands), Jamila Ross (The Netherlands), Marie-José van den Boogaard (The Netherlands), and Peter Moosey (UK).

CONTRIBUTORS

MDLD: Conception and design of the research, database analysis, draft and revision of the manuscript; BF: database analysis, draft and revision of the manuscript; MCM, ACA: draft and revision of the manuscript; LF: draft and revision of the manuscript; MLBL, ST, SK, PG, BVF, RF, MVB, LJ, FC: revision of the manuscript; MDC database analysis, draft and revision of the manuscript; ST: database analysis; MK database analysis; JC database analysis; AB draft and revision of the manuscript; ABZ: database analysis, draft and revision of the manuscript.

ACKNOWLEDGMENTS

This initiative participates to the actions of the project No. 1.7 “RARENET: a trinational network for education, research and management of complex and rare disorders in the Upper Rhine” co-financed by the European Regional Development Fund (ERDF) of the European Union in the framework of the INTERREG V Upper Rhine program as well as to the ERN (European reference network) CRANIO initiative. BF is the holder of an INTERFACE contract, INSERM/APH, which supported this study. We are grateful to la Fondation des “Gueules Cassées” who supported this research field and several authors research. ABZ is a USIAS 2015 Fellow of the Institute of Advanced Studies (Institut d’Etudes Avancées) de l’Université de Strasbourg, France. International Collaboration Capes-Cofecub Grant, Brazil and France (MDLD, ACA, AB). We thank Karen Niederreiter for careful and critical reading of the manuscript. We are grateful to patients and their families for continuous support. We would like to acknowledge and pay tribute to Robert James Gorlin, Crispian Scully, Heddie Sedano, and Robin Winter for their invaluable contributions to the field. We assure no conflict of interest. The grant ANR-10-LABX-0030-INRT, a French State fund managed by the Agence Nationale de
REFERENCES

Allanson, J. E., Biesecker, L. G., Carey, J. C., & Hennekam, R. C. (2009). Elements of morphology: Introduction. American Journal of Medical Genetics. Part A, 149A(1), 2–5. https://doi.org/10.1002/ajmg.a.32601

Angle, E. H. (1899). Classification of malocclusion. The Dental Cosmos, 41(3), 246–264.

Arys, A., & Dourov, N. (1987). Enamel pearls in the deciduous teeth. Journal of Biologie Buccale, 15(4), 249–255.

Axelsson, S. (2005). Variability of the cranial and dental phenotype in Williams syndrome. Swedish Dental Journal. Supplement, (170), 3–67.

Baylis, S., & Bassed, R. (2017). Precision and accuracy of commonly used dental age estimation charts for the New Zealand population. Forensic Science International, 277, 223–228.

Black, G. V. (1890). Descriptive anatomy of the human teeth. Philadelphia: Wilmington Dental manufacturing Company.

Bloch-Zupan, A. (2004). Génétique: la contribution de l’odontologie. Le chirurgien dentiste de France, 1184, 30–35.

Bloch-Zupan, A., Sedano, H., & Scully, C. (2012). Dento/oro/craniofacial anomalies and genetics (1st ed.). Boston, MA: Elsevier.

Bot, P. L., & Salmon, D. (1977). Congenital defects of the upper lateral incisors (ULI): Condition and measurements of the other teeth, measurements of the superior arch, head and face. American Journal of Physical Anthropology, 46(2), 231–243. https://doi.org/10.1002/ajpa.1330460204

Brusevold, I. J., Bie, T. M. G., Baumgartner, C. S., Das, R., & Espelid, I. (2017). Molar incisor malformation in six cases: Description and diagnostic protocol. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 124(1), 52–61. https://doi.org/10.1016/j.ooo.2017.03.050

Canese, K., & Weis, S. (2002). PubMed: The Bibliographic Database (Vol. http://www.ncbi.nlm.nih.gov/pubmed/).

Carabelli, G. (1844). Systemisches Handbuch der Zahnheilkunde. Wien: Bei Braumuller und Seidel.

Carey, J. C., Cohen, M. M., Jr., Curry, C. J., Devriendt, K., Holmes, L. B., & Verloes, A. (2009). Elements of morphology: Standard terminology for the lips, mouth, and oral region. American Journal of Medical Genetics. Part A, 149A(1), 77–92. https://doi.org/10.1002/ajmg.a.32602

Chrcanovic, B. R., Abreu, M. H., & Custodio, A. L. (2010). Prevalence of enamel pearls in teeth from a human teeth bank. Journal of Oral Science, 52(2), 257–260.

Evangelista, T., Hedley, V., Atalaia, A., Johnson, M., Lynn, S., Le Cam, Y., & Bushby, K. (2016). The context for the thematic grouping of rare diseases to facilitate the establishment of European reference networks. Orphanet Journal of Rare Diseases, 11, 17. https://doi.org/10.1186/s13023-016-0398-y

FDI Director calls on more countries to adopt the FDI two-digit tooth-numbering system. (1988). Journal of the Irish Dental Association, 34(2), 49.

Ferre, F. C., Frank, M., Gogly, B., Golmard, L., Naveau, A., Cherifi, H., ... Fournier, B. P. (2012). Oral phenotype and scoring of vascular Ehlers-Danlos syndrome: A case-control study. BMJ Open, 2(2), e000705. https://doi.org/10.1136/bmjopen-2011-000705

Fournier, B. P., Bruneau, M. H., Toupenay, S., Kerner, S., Berdal, A., Cormier-Daire, V., ... de La Dure-Molla, M. (2018). Patterns of dental agenesis highlight the nature of the causative mutated genes. Journal of Dental Research, 97, 1316. https://doi.org/10.1177/0022034518777460

Groza, T., Kohler, S., Molodenhauer, D., Vasilevsky, N., Baynam, G., Zemojtel, T., ... Robinson, P. N. (2015). The human phenotype ontology: Semantic unification of common and rare disease. American Journal of Human Genetics, 97(1), 111–124. https://doi.org/10.1016/j.ajhg.2015.05.020

Hall, R. K. (1994). Pediatric orofacial medicine and patholology (C. a. H. M. s. edition). Great Britain: Chapman & Hall.

Hall, R. K. (2006). Solitary median maxillary incisor (SMMCI) syndrome. Orphanet Journal of Rare Diseases, 1, 12. https://doi.org/10.1186/1750-1172-1-12

Hennekam, R., Allanson, J., & Krantz, I. (2010). Gorlin’s syndromes of the head and neck 5th edition (5th ed.). USA: Oxford University Press.

Hennekam, R. C., Biesecker, L. G., Allanson, J. E., Hall, J. G., Opitz, J. M., Temple, I. K., ... Elements of Morphology, C. (2013). Elements of morphology: General terms for congenital anomalies. American Journal of Medical Genetics. Part A, 161A(11), 2726–2733. https://doi.org/10.1002/ajmg.a.36249

Herrera-Atcho, J. R., Aguayo-de-Pau, M. D., Escoffie-Ramirez, M., Aguilar-Ayala, F. J., Carrillo-Avila, B. A., & Rejon-Peraza, M. E. (2017). Impacted maxillary canine prevalence and its association with other dental anomalies in a Mexican population. International Journal of Dentistry, 2017, 7326061–7326064. https://doi.org/10.1155/2017/7326061

Huckett, M., Stoetzel, C., Morkmued, S., Lauel-Haushalter, V., Geoffroy, V., Muller, J., ... Bloch-Zupan, A. (2015). Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyomyelia with amelogenesis imperfecta. Human Molecular Genetics, 24(11), 3038–3049. https://doi.org/10.1093/hmg/ddv053

Hulsman, M. (1997). Dens invaginatus: Aetiology, classification, prevalence, diagnosis, and treatment considerations. International Endodontic Journal, 30(2), 79–90.

Hunagsi, S., Koneru, A., Manvickar, V., Vanishree, M., & Amrutha, R. (2017). A rare case of twinning involving primary maxillary incisor with review of literature. Journal of Clinical and Diagnostic Research, 11(2), ZD09–ZD11. https://doi.org/10.7860/JCDR/2017/23510.9212

Issa, Y. A., Kamal, L., Rayyan, A. A., Dweik, D., Pierce, S., Lee, M. K., ... Kanaan, M. (2016). Mutation of KREMEN1, a modulator of Wnt signaling, is responsible for ectodermal dysplasia including oligodontia in Palestinian families. European Journal of Human Genetics, 24(10), 1430–1435. https://doi.org/10.1038/ejhg.2016.29

Jaureguiberry, G., De la Dure-Molla, M., Parry, D., Quentric, M., Himmerkus, N., Koike, T., ... Kleta, R. (2012). Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron. Physiology, 122(1–2), 1–6. https://doi.org/10.1159/000349989

Jeong, K. H., Kim, D., Song, Y. M., Sung, J., & Kim, Y. H. (2015). Epidemiology and genetics of hypodontia and microdontia: A study of twin families. The Angle Orthodontist, 85(6), 980–985. https://doi.org/10.2319/052814-376.1

Joiner, A., & Luo, W. (2017). Tooth colour and whiteness: A review. Journal of Dentistry, 67S, 53–510. https://doi.org/10.1016/j.jdent.2017.09.006

Kantaputra, P., Kaewgahya, M., Jotikasthira, D., & Kantaputra, W. (2014). Tricho-ondonto-onycho-dermal dysplasia and WNT10A mutations. American Journal of Medical Genetics. Part A, 164A(4), 1041–1048. https://doi.org/10.1002/ajmg.a.36388
phosphatase, cause hypoplastic amelogenesis imperfecta. American Journal of Human Genetics, 99(5), 1199–1205. https://doi.org/10.1016/j.ajhg.2016.09.018

Smith, C. E., Murillo, G., Brookes, S. J., Poulter, J. A., Silva, S., Kirkham, J., ... Mighell, A. J. (2016). Deletion of amelotin exons 3–6 is associated with amelogenesis imperfecta. Human Molecular Genetics, 25(16), 3578–3587. https://doi.org/10.1093/hmg/ddw203

Tallon-Walton, V., Nieminen, P., Arte, S., Carvalho-Lobato, P., Ustrell-López, J. M., & Manzanares-Cespedes, M. C. (2010). An epidemiological study of dental agenesis in a primary health area in Spain: Estimated prevalence and associated factors. Medicina Oral, Patología Oral y Cirugía Bucal, 15(4), e569–e574.

Tallon-Walton, V., Manzanares-Cespedes, M. C., Carvalho-Lobato, P., Valdivia-Gandur, I., Arte, S., & Nieminen, P. (2014). Exclusion of PAX9 and MSX1 mutation in six families affected by tooth agenesis. A genetic study and literature review. Medicina Oral, Patología Oral y Cirugía Bucal, 19(3), e248–e254.

Tan, T. Y., Aftimos, S., Worgan, L., Susman, R., Wilson, M., Ghedia, S., ... Peters, G. (2009). Phenotypic expansion and further characterisation of the 17q21.31 microdeletion syndrome. Journal of Medical Genetics, 46(7), 480–489. https://doi.org/10.1136/jmg.2008.065391

Thesleff, I. (2014). Current understanding of the process of tooth formation: Transfer from the laboratory to the clinic. Australian Dental Journal, 59(Suppl 1), 48–54. https://doi.org/10.1111/adj.12102

Tinoco, R. L., Lima, L. N., Delwing, F., Francesquini, L. J., & Daruge, E., Jr. (2016). Dental anthropology of a Brazilian sample: Frequency of non-metric traits. Forensic Science International, 258(102), e101–e105. https://doi.org/10.1016/j.forsciint.2015.10.019

Tucker, A., & Sharpe, P. (2004). The cutting-edge of mammalian development: How the embryo makes teeth. Nature Reviews. Genetics, 5(7), 499–508. https://doi.org/10.1038/nrg1380

Verma, N., Bansal, A., Tyagi, P., Jain, A., Tiwari, U., & Gupta, R. (2017). Eruption chronology in children: A cross-sectional study. International Journal of Clinical Pediatric Dentistry, 10(3), 278–282. https://doi.org/10.5005/jp-journals-10005-1450

Weerheijm, K. L. (2003). Molar incisor hypomineralisation (MIH). European Journal of Paediatric Dentistry, 4(3), 114–120.

Witkop, C. J., Jr. (1988). Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: Problems in classification. Journal of Oral Pathology, 17(9–10), 547–553.

Xiong, F., Ji, Z., Liu, Y., Zhang, Y., Hu, L., Yang, Q., ... Xu, X. (2017). Mutation in SSUH2 causes autosomal-dominant dentin dysplasia type I. Human Mutation, 38(1), 95–104. https://doi.org/10.1002/humu.23130

Yamunadevi, A., Selvamani, M., Vinitha, V., Srivandhana, R., Balakrishiga, M., Prabhu, S., & Ganapathy, N. (2015). Clinical evaluation of nonsyndromic dental anomalies in Dravidian population: A cluster sample analysis. Journal of Pharmacy and Bioallied Sciences, 7(Suppl 2), S499–S503. https://doi.org/10.4103/0975-7406.163517

Yang, Y., Luo, L., Xu, J., Zhu, P., Xue, W., Wang, J., ... Su, L. (2013). Novel EDA p.Ile260Ser mutation linked to non-syndromic hypodontia. Journal of Dental Research, 92(6), 500–506. https://doi.org/10.1177/0022034513487557

Yang, Q., Chen, D., Xiong, F., Chen, D., Liu, C., Liu, Y., ... Xu, X. (2016). A splicing mutation in VPS4B causes dentin dysplasia I. Journal of Medical Genetics, 53(9), 624–633. https://doi.org/10.1136/jmedgenet-2015-103619

Yeluri, G., Kumar, C. A., & Raghav, N. (2015). Correlation of dental pulp stones, carotid artery and renal calcifications using digital panoramic radiography and ultrasonography. Contemporary Clinical Dentistry, 6(Suppl 1), S147–S151. https://doi.org/10.4103/0976-237X.166837

Zanatta, F. B., Ardenghi, T. M., Antoniazzi, R. P., Pinto, T. M., & Rosing, C. K. (2014). Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment. Dental Press Journal of Orthodontics, 19(3), 59–66.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: de La Dure-Molla M, Fournier BP, Manzanares MC, et al. Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders. Am J Med Genet Part A. 2019;179A:1913–1981. https://doi.org/10.1002/ajmg.a.61316