Equivalent Linear Two-Body Equations for Many-Body Systems
Alexander L. Zubarev and Yeong E. Kim
Department of Physics, Purdue University
West Lafayette, Indiana 47907

Abstract

A method has been developed for obtaining equivalent linear two-body equations (ELTBE) for the system of many \(N \) bosons using the variational principle. The method has been applied to the one-dimensional \(N \)-body problem with pair-wise contact interactions (McGurie-Yang \(N \)-body problem) and to the dilute Bose-Einstein condensation (BEC) of atoms in anisotropic harmonic traps at zero temperature. For both cases, it is shown that the method gives excellent results for large \(N \).

PACS numbers: 03.75.Fi, 03.65.Db, 05.30.Jp, 67.90.+z
In this paper we present an approximate method of obtaining the eigenvalue solutions of the system of interacting N bosons using an equivalent two-body method similar to that used by Feshbach and Rubinov [1] for the triton (3H) three-body ($N=3$) bound state. They [1] used both (i) the variational principle and (ii) a reduced coordinate variable (not the hyperradius) to obtain an equivalent two-body equation for the three-body bound state (3H). For many-body problems, use of one reduced coordinate variable (the hyperradius [2]) was made to obtain equivalent two-body equations by keeping only a finite sum of terms of the hyperspherical expansion with $K = K_{\text{min}}$ (K is the global angular momentum). This method has been applied to the ground state of the N-body system composed of distinguishable particles or of bosons and also to nuclear bound states [3,4]. It was shown that the method leads to the correctly behaved nuclear bound states in the limit of large A (A is the nucleon number) [4]. Recently, it has been used to describe the Bose-Einstein condensation (BEC) of atoms in isotropic harmonic traps [5].

In this paper we apply our method to the one-dimensional N-body problem with pairwise contact interactions (the McGuire-Yang N-body problem [6, 7]) and to the dilute BEC of atoms in anisotropic harmonic traps at zero temperature. We show that the method gives excellent results for large N for both cases.

For the N-body system, our method for obtaining the equivalent linear two-body equation (ELTBE) consists of two steps. The first step is to give the N-body wave function $\Psi(r_1, r_2, \ldots)$ a particular functional form

$$\Psi(r_1, r_2, \ldots) \approx \tilde{\Psi}(\zeta_1, \zeta_2, \zeta_3),$$

where $\zeta_1, \zeta_2,$ and ζ_3 are known functions. We limit ζ’s to three variables in order to obtain the ELTBE. The second step is to derive an equation for $\tilde{\Psi}(\zeta_1, \zeta_2, \zeta_3)$ by requiring that $\tilde{\Psi}$ must satisfy a variational principle

$$\delta \int \tilde{\Psi}^* \tilde{\Psi} d\tau = 0$$

(2)

with a subsidiary condition $\int \tilde{\Psi}^* \tilde{\Psi} d\tau = 1$. This leads to a linear two-body equation, from which both eigenvalues and eigenfunctions can be obtained. The lowest eigenvalue is an upper bound of the lowest eigenvalue of the original N-body problem. To test our ELTBE method, we apply the method to the one-dimensional N-body problem and to the BEC of atoms in anisotropic traps at zero temperature in the following.
There are only several known cases of exactly solvable three-body and four-body problems. For $N = 3$ case it was shown [8] that the Faddeev equations [9] for one-dimensional three-body problem with pair-wise contact interactions are exactly solvable. For the one-dimensional $N = 4$ case, analytical solutions of the four-body Faddeev-Yakubovsky were obtained in [10]. We note that for nuclear three body systems with short-range interactions, the Schrödinger equation in three-dimension is reformulated into the Faddeev equations [9] which can be solved numerically after making partial wave expansion [11] or without partial wave expansion [12]. In the following, we consider an exactly solvable one-dimensional N-body system as a test case for our method.

For the one-dimensional N-body problem with the Hamiltonian

$$H = -\sum_{i=1}^{N} \frac{d^2}{dx_i^2} + 2c \sum_{i<j} \delta(x_i - x_j) \quad (\text{with } \hbar = m = 1),$$

the Schrödinger equation is exactly solvable. The bound and scattering states for this system have been found by McGuire [6] and by Yang [7]. For the case $c < 0$, there are bound states [6] for the system of N bosons with the wave function $\Psi = \exp[(c/2) \sum_{i<j} |x_i - x_j|]$. The energy of this bound state is

$$E_{\text{exact}} = -\frac{c^2 N(N^2 - 1)}{12}. \quad (3)$$

The McGuire-Yang N-body problem gives a unique possibility to check the validity of various approximations made for the Schrödinger equation describing N particles interacting via short range potential.

For this case, we seek for eigenfunction Ψ of H in the form of

$$\Psi \approx \tilde{\Psi}(\rho) = \frac{F(\rho)}{\rho^{(N-2)/2}},$$

where $\rho = \frac{1}{N} \sum_{i<j} (x_i - x_j)^2$. We shall derive an equation for $F(\rho)$ by requiring that $\tilde{\Psi}$ must satisfy a variational principle (2). This requirement leads to the equation

$$[-\frac{d^2}{d\rho^2} + \frac{(N - 2)(N - 4)}{4\rho^2} + V(\rho)]F(\rho) = EF(\rho), \quad (4)$$

where

$$V(\rho) = cN(N - 1) \frac{\Gamma(N/2 - 1/2)}{\sqrt{2\pi} \Gamma(N/2 - 1)} \frac{1}{\rho}. \quad (5)$$

We note that Eq. (4) is exactly the form of the Schrödinger two-body equation in which $\Psi = (F(\rho)/\rho)Y_{lm}$, and a centrifugal potential energy is given by $(N - 2)(N - 4)/(4\rho^2r)$ with identification of angular momentum quantum number $l = N/2 - 1$. Eq. (4) with the
Coulomb like potential $V(\rho)$, Eq. (5), can be solved analytically, and we obtain for E the following expression [13]

$$E = -\frac{c^2}{2\pi^2} \left[\frac{N(N - 1)\Gamma(N/2 - 1/2)}{(N - 2)\Gamma(N/2 - 1)} \right]^2.$$ \hspace{1cm} (6)

In the case of large N, using the asymptotic formulas for Γ function, $\lim_{|z| \to \infty} \frac{\Gamma(z + \alpha)}{\Gamma(z + \beta)} = z^{\alpha - \beta}(1 + O(\frac{1}{z}))$, we obtain $E = -\frac{c^2}{12}N^3$ for the leading term of Eq. (6). On the other hand we have for large N case from Eq. (1), $E_{\text{exact}} = -\frac{c^2}{12}N^3(1 + O(\frac{1}{N^2}))$. Therefore, for the McGuire-Yang N-body problem we have demonstrated that the ELT BE method, Eqs. (4) and (5), is a very good approximation for the case of large N (the relative error for binding energy is about 4.5%). Furthermore, our approximation, Eq. (6), agrees remarkably well with exact value, Eq. (3), for any N (the maximum value of binding energy relative error occurs for $N = 3$ and is about 10%).

Now, let us consider N identical bosonic atoms confined in a harmonic anisotropic trap with the following Hamiltonian

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \Delta_i + \frac{1}{2} \sum_{i=1}^{N} m(\omega_x^2 x_i^2 + \omega_y^2 y_i^2 + \omega_z^2 z_i^2) + \sum_{i<j} V_{\text{int}}(\mathbf{r}_i - \mathbf{r}_j),$$ \hspace{1cm} (7)

where we assume V_{int} in the dilute condensate case to be the following form [14]

$$V_{\text{int}}(\mathbf{r}_i - \mathbf{r}_j) = \frac{4\pi\hbar^2a}{m} \delta(\mathbf{r}_i - \mathbf{r}_j),$$

with s-wave scattering length, a.

For eigenfunction Ψ of H, we assume the solution for Ψ has the following form

$$\Psi(\mathbf{r}_1, ... \mathbf{r}_N) \approx \frac{\tilde{\Psi}(x, y, z)}{(xyz)^{(N-1)/2}}$$ \hspace{1cm} (8)

where $x^2 = \sum_{i=1}^{N} x_i^2$, $y^2 = \sum_{i=1}^{N} y_i^2$, $z^2 = \sum_{i=1}^{N} z_i^2$.

We now derive an equation for $\tilde{\Psi}(x, y, z)$ by requiring that $\tilde{\Psi}(x, y, z)$ must satisfy the variational principle (2). This requirement leads to the equation

$$H \tilde{\Psi} = E \tilde{\Psi},$$ \hspace{1cm} (9)

where

$$H = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{m}{2}(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) + \frac{\hbar^2}{2m} \left(\frac{(N - 1)(N - 3)}{4} \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right) + \frac{g}{xyz} \right).$$ \hspace{1cm} (10)
with \(g = g_0(2\pi)^{-3/2}(\Gamma(N/2)/\Gamma(N/2 - 1/2))^3 N(N - 1)/2 \) and \(g_0 = 4\pi \hbar^2 a/m \). To the best of our knowledge, Eqs. (9) and (10) have not been discussed in the literature.

For the positive scattering length case, \(a > 0 \), we look for the solution of Eq. (9) of the form

\[
\tilde{\Psi}(x, y, z) = \sum_{i,j,k} c_{ijk} \Phi^{(1)}_i(x) \Phi^{(2)}_j(y) \Phi^{(3)}_k(z),
\]

where \(\Phi^{(1)}_i(x) = x^{N-1/2} \exp[-(x/\alpha_i)^2/2] \), \(\Phi^{(2)}_j(y) = y^{(N-1)/2} \exp[-(y/\beta_j)^2/2] \), \(\Phi^{(3)}_k(z) = z^{(N-1)/2} \exp[-(z/\gamma_k)^2/2] \), and \(c_{ijk} \) are solutions of the following equations

\[
\sum_{l,m,n} H_{ijk,lmn} c_{lmn} = E \sum_{l,m,n} \lambda_{ijk,lmn} c_{lmn}
\]

where

\[
H_{ijk,lmn} = \frac{\hbar \bar{\omega} N \lambda_{ijk,lmn}}{2} [1 + \alpha_i^2 \alpha_j \alpha_k^2 + 1 + \beta_j^2 \beta_m \alpha_k^2 + 1 + \gamma_k^2 \gamma_m \alpha_l^2 + \gamma_n^2 \gamma_k \alpha_l^2] + \bar{g},
\]

with \(\bar{g} = \frac{(N-1)}{2\sqrt{2N}} \tilde{n}, \tilde{n} = 2\sqrt{\bar{\omega}m/(2\pi \hbar)} N, \tilde{\omega} = (\omega_x \omega_y \omega_z)^{1/3}, \alpha_x = \omega_x/\tilde{\omega}, \alpha_y = \omega_y/\tilde{\omega}, \) and \(\alpha_z = \omega_z/\tilde{\omega} \).

For the case of large \(N \), we have \(\lambda_{ijk,lmn} \approx \delta_{il}\delta_{jm}\delta_{kn}, \ H_{ijk,lmn} \approx E \delta_{il}\delta_{jm}\delta_{kn} \). For the ground state energy, using \(\frac{\partial E}{\partial \alpha_i} = \frac{\partial E}{\partial \alpha_j} = \frac{\partial E}{\partial \alpha_k} = 0 \), we obtain

\[
\frac{E}{N\hbar \bar{\omega}} = \frac{5}{4} \tilde{n}^{5/2}
\]

We note that Eq. (13) is the exact ground state solution of Eq. (9) for large \(N \). For the case of large \(N \) we can obtain an essentially exact expression for the ground state energy by neglecting the kinetic energy term in the Ginzburg-Pitaevskii-Gross (GPG) equation [16] (the Thomas-Fermi approximation [15]) as

\[
\frac{E_{TF}}{N\hbar \bar{\omega}} = \frac{5}{7} \left(\frac{15}{8} \sqrt{\pi} \right)^2 \tilde{n}^{5/2}
\]

Comparing Eq. (13) with Eq. (14), we can see that for the case of large \(N \) the ELTBE method (Eqs. (9) and Eq. (10)) is a very good approximation, with a relative error of about 8% for the binding energy.

When the scattering length is negative, the effective interaction between atoms is attractive. It has been claimed that the BEC in free space is impossible [17] because the
attraction makes the system tend to an ever dense phase. For ^7Li, the s-wave scattering length is $a = (-14.5 \pm 0.4)\text{Å}$ [18]. For bosons trapped in an external potential there may exist a metastable BEC state with a number of atoms below the critical value N_{cr} [19-27].

For the $a < 0$ case, we can see that potential energy in Eq. (10),

$$V(x, y, z) = \frac{m}{2}(\omega_x^2x^2 + \omega_y^2y^2 + \omega_z^2z^2) + \frac{\hbar^2}{2m} \frac{(N - 1)(N - 3)}{4} \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right) - \left| \frac{g}{xyz} \right|,$$

for $N < N_{cr}$ has a single metastable minimum which leads to the metastable BEC state. We note that for the case of large N_{cr}, the ELTBE method leads to the same N_{cr} as the variational GPG stationary theory [26]. To show this, let us consider an anisotropic trap, $\omega_x = \omega_y = \omega_\perp$, $\omega_z = \lambda\omega_\perp$. Local minimum conditions $\hat{\lambda} > 0$, where $\hat{\lambda}$ is a matrix with matrix elements $A_{ij} = \partial^2 V/\partial x_i \partial x_j$, can be written for this case as

$$n^2/2\delta_\perp^2 \delta_z^4 - n - \lambda^2 \delta_\perp \delta_z^2/32 + O(1/N) < 0,$$

where $\delta_z = (2m\omega_\perp/\hbar N_{cr})^2$, $\delta_\perp = (2m\omega_\perp/\hbar N_{cr})^2 x^2$, and $n = 2(\omega_\perp / 2\pi \hbar)^1/2 N_{cr} \ | \ a \ |$. Setting the left-hand side of Eq. (16) to zero and neglecting $O(1/N)$ terms, we obtain the following equations for N_{cr}

$$1 - 2\delta_\perp^2 = \delta_\perp^2(1 + 8\lambda^2)^{1/2},\ 1 - \lambda^2 \delta_z^2 = \delta_z \delta_\perp [1 + (1 + 8\lambda^2)^{1/2}],\ n = \delta_\perp \delta_z^2 [1 + (1 + 8\lambda^2)^{1/2}]$$

Eqs. (17) are exactly the same as equations for determining N_{cr} obtained from the variational GPG approach [26]. Taking the experimental values of ^7Li trap parameters [28], $\omega_\perp / 2\pi = 152$ Hz, and $\omega_z / 2\pi = 132$ Hz, we obtain $N_{cr} = 1456$. This value of N_{cr} is consistent with theoretical predictions [23-27] and is in agreement with those observed in a recent experiment [28].

We note that the ELTBE method for a general anisotropic trap can be improved using a generalization of hyperspherical expansion

$$\Psi(r_1, ... r_N) = \sum_{K_x, K_y, K_z} \sum_{\nu_x, \nu_y, \nu_z} \Psi_{K_x, K_y, K_z}(x, y, z) Y_{K_x}^{\nu_x}(\Omega_x) Y_{K_y}^{\nu_y}(\Omega_y) Y_{K_z}^{\nu_z}(\Omega_z),$$

where the hyperspherical harmonics $Y_{K_x}^{\nu_x}(\Omega_x)$, $Y_{K_y}^{\nu_y}(\Omega_y)$, and $Y_{K_z}^{\nu_z}(\Omega_z)$ are eigenfunctions of the angular parts of the Laplace operators $\sum_{i=1}^N \frac{\partial^2}{\partial x_i^2}$, $\sum_{i=1}^N \frac{\partial^2}{\partial y_i^2}$, and $\sum_{i=1}^N \frac{\partial^2}{\partial z_i^2}$, respectively. However, we do not expect a fast convergence of the expansion, Eq. (18), because of nonuniformity of the convergence of the expansion of $\sum_{i<j} V_{int}(r_i - r_j)$ in x, y, and z.
In summary, we have presented a method for obtaining an equivalent linear two-body equation for the system of N bosons. We have applied the method to the McGuire-Yang N-body problem and also to the dilute Bose-Einstein condensation in anisotropic harmonic traps at zero temperature. For both cases we have shown that the method gives excellent results for large N.
References

[1] H. Feshbach and S. I. Rubinov, Phys. Rev. 98, 188 (1955).
[2] V. A. Fock, Izv. Akad. Nauk SSSR, ser. Fiz. 18, 161 (1954).
[3] A. M. Badalyan, F. Calogero, Yu. A. Simonov, Nuovo Cimento 68A, 572 (1970); F. Calogero, Yu. A. Simonov, Nuovo Cimento 67A, 641 (1970); F. Calogero et al, Nuovo Cimento 14A, 445 (1973); F. Calogero, Yu. A. Simonov, Phys. Rev. 169, 789 (1967); A. I. Baz’ et al., Fiz. Elem. Chastits At. Yadra 3, 275 (1972) [Sov. J. Part. Nucl. 3, 137 (1972)].
[4] F. Calogero, Yu. A. Simonov, and E. L. Surkov, Nuovo Cimento 1A, 739 (1971).
[5] J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev. A58, 584 (1998).
[6] J. B. McGuire, J. Math. Phys. 5, 622 (1964); J. Math. Phys. 7, 123 (1966).
[7] C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967); Phys. Rev. 168, 1920 (1967).
[8] L. R. Dodd, J. Math. Phys. 11, 207 (1970); Phys. Rev. D3, 2536 (1971); Aust. J. Phys. 25, 507 (1972).
[9] L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory (Daniel Davey and Company, Inc., New York, 1965).
[10] A. L. Zubarev and V. B. Mandelzweig, Phys. Rev. C52, 509 (1995).
[11] E. P. Harper, Y. E. Kim, and A. Tubis, Phys. Rev. Lett. 23, 1533 (1972); Phys. Rev. C2, 877 (1970); Phys. Rev. C2, 2455(E) (1970); Phys. Rev. C6, 126 (1972).
[12] R. A. Rice and Y. E. Kim, Few Body Systems 14, 127 (1993).
[13] Y. E. Kim and A. L. Zubarev “Effective Linear Two-Body Method for Many-Body Problem”, Purdue Nuclear and Many-Body Theory Group (PNMBTG) preprint, PNMBTG-99-2, to be submitted to Annals of Physics (N.Y.). This reference contains detailed derivations of all formulae given without derivations in this paper.
[14] E. Fermi, Riv. Sc. 7, 13 (1936).
[15] G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).
[16] L. Ginzburg, and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958) [Sov. Phys. JETP 7, 858 (1958)]; E. P. Gross, J. Math. Phys. 4, 195 (1963).
[17] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 (1957).
[18] E. R. I. Abraham, W. I. McAlexander, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 74, 1315 (1995).
[19] Y. Kagan, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 76, 2670 (1996).
[20] Alexander L. Fetter, cond-mat/9510037.
[21] M. Houbiers and H. T. C. Stoof, Phys. Rev. A 54, 5055 (1996).
[22] E. V. Shuryak, Phys. Rev. A 54, 3151 (1996).
[23] M. Ueda, and A. J. Leggett, Phys. Rev. Lett. 80, 1576 (1998).
[24] F. Dalfovo and S. Stringari, Phys. Rev. A 53, 2477 (1996).
[25] R. J. Dodd, M. Edwards, C. J. Williams, C. W. Clark, M. J. Holland, P. A. Ruprecht, and K. Burnett, Phys. Rev. A 54, 661 (1996).
[26] Y. E. Kim and A. L. Zubarev, Phys. Lett. A 246, 389 (1998).
[27] M. Wadati and T. Tsurumi, Phys. Lett. A 247, 287 (1998).
[28] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett. 78, 985 (1997).