setting and prioritization of at-risk populations within the oncology setting would further prevention efforts. Surveillance should be expanded to determine disease-specific incidence at a population level. Certain highly immunocompromised patients ultimately rely on population herd immunity as the only defense mechanism against pertussis. Improvement in the current vaccination coverage is imperative.

Notes

Financial support. This work was supported by the Memorial Sloan Kettering Cancer Center (support grant/core grant P30 CA008748).

Potential conflicts of interest. All authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Elizabeth Robilotti, Margaret Palazzolo, and Mini Kamboj

Infection Control and Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York

References

1. Skooff TH, Hadler S, Hariri S. The epidemiology of nationally reported pertussis in the United States, 2000–2016. Clinical Infectious Diseases 2018; 68:1634–40.
2. Skooff TH, Martin SW. Impact of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccinations on reported pertussis cases among those 11 to 18 years of age in an era of waning pertussis immunity: a follow-up analysis. JAMA Pediatr 2016; 170:453–8.
3. Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014; 58:e44–100.
4. Brodman DH, Rosenthal DW, Redner A, Lanzkowsky P, Bonagura VR. Immunodeficiency in children with acute lymphoblastic leukemia after completion of modern aggressive chemotherapeutic regimens. J Pediatr 2005; 146:654–61.
5. Ljungman P, Engelhard D, de la Cámara R, et al. Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Vaccination of stem cell transplant recipients: recommendations of the Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant 2005; 35:737–46.

Correspondence: E. Robilotti, Infection Control and Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (robiote@mskcc.org).

Clinical Infectious Diseases® 2020;70(10):2237–9
© The Author(s) 2019. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. DOI: 10.1093/cid/ciz815

Respiratory Syncytial Virus Infection Morbidity in the Elderly: Time for Repurposing of Ribavirin?

To the Editor—We have read with great interest the report by Ackerson et al [1] on the morbidity and mortality rates associated with respiratory syncytial virus (RSV) compared with influenza virus infections in older adults. They conclude that RSV may result in higher morbidity and mortality rates among older hospitalized adults than influenza virus.

These results are an important step in recognizing the impact of RSV across the whole patient population. Historically, the most attention has been paid to RSV infections in infants and in the moderately to severely immunocompromised and less to infection in the population described by Ackerson et al [1], namely, adults >60 years old. Unlike previous reports comparing hospitalization in RSV and influenza virus infections, the authors found a higher incidence of hospitalizations lasting ≥7 days in the RSV cohort than in the influenza virus cohort, which they suggest may reflect the increased use in recent years of antivirals directed at influenza virus, but not RSV. They reported that 47.1% of RSV-infected and 78.6% of influenza virus–infected individuals received antiviral therapy during the hospitalization period; 99% received oseltamivir, even though oseltamivir has no activity against RSV [2].

Inhaled ribavirin and palivizumab are currently the only registered treatment options for RSV in addition to supportive care; however, inhaled ribavirin is rarely used in nonimmunocompromised adults because of the limited evidence for its efficacy, its price, and the occupational risk to healthcare workers exposed to ribavirin aerosols [2, 3]. Vaccines and new antivirals are being tested, but they are not yet available for daily practice. The aging population, however, may benefit from using oral ribavirin, which has been described in the setting of hematopoietic stem cell and lung transplantation [4]. Although evidence from randomized controlled trials is lacking, ribavirin treatment may have a beneficial effect in reducing morbidity and mortality rates or improving recovery of pulmonary function after RSV infection in transplant recipients [5–7]. As shown elsewhere, oral ribavirin may not be inferior to inhaled therapy in this population and may provide a good and affordable treatment option [8, 9]. Whether these data can also be applied to the population of older adults remains to be confirmed.

The absence of evidence for the efficacy of oral ribavirin in elderly persons, combined with the widespread incidence and detrimental effects of RSV infection in this population, shown by Ackerson et al and others [1, 10], underlines the need for a well-designed randomized controlled trial to determine the benefit of a short course of oral ribavirin for RSV in elderly patients, analogous to the current use of oseltamivir for influenza virus. This is especially important in the light of upcoming (and probably expensive) new antivirals, for which ribavirin could be considered as an active comparator. Furthermore, considering the high incidence and availability of quick diagnostic methods for RSV, we deem such a study not only needed but also certainly feasible.

Note

Potential conflicts of interest. All authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Auke E. S. de Zwart,1 Annelies Riezebos-Briman,2 Huib A. M. Kerstjens,1 Erik A. M. Verschuuren,1 and Jan-Willem C. Alffenaar3

1University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, University of Groningen, and 2University Medical Centre Utrecht, Department of Medical Microbiology, University of Utrecht, the Netherlands; and 3Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Australia

References

1. Ackerson B, Tseng HF, Sy LS, et al. Severe morbidity and mortality associated with respiratory syncytial virus versus influenza infection in hospitalized older adults. Clin Infect Dis 2018; 61(1):197–203.
2. Behzadi MA, Levy-Grado VH. Overview of current therapeutics and novel candidates against...
influenza, respiratory syncytial virus, and middle east respiratory syndrome coronavirus infections.

3. Chemaly RF, Aiitek SL, Wolfe CR, Jain R, Boeckh MJ. Aerosolized ribavirin: the most expen-
sive drug for pneumonia. Transpl Infect Dis 2016; 18:634–6.

4. Gross AE, Broyn ML. Oral ribavirin for the treatment of noninfluenza respiratory viral infections: a system-
atic review. Ann Pharmacother 2015; 49:1125–35.

5. Fuehner T, Dierich M, Duesberg C, et al. Single-
centre experience with oral ribavirin in lung trans-
plant recipients with paramyxovirus infections.
Antivir Ther 2011; 16:733–40.

6. Waghmare A, Campbell AF, Xie H, et al. Respiratory
cytotopic virus lower respiratory disease in hem-
ato poetic cell transplant recipients: viral RNA de-
tection in blood, antiviral treatment, and clinical
outcomes. Clin Infect Dis 2013; 57:1731–41.

7. Shah DP, Ghanotii SS, Shah JN, et al. Impact of
aerosolized ribavirin on mortality in 280 allogeneic
haematopoietic stem cell transplant recipients with
respiratory syncytial virus infections. J Antimicrob
Chemother 2013; 68:1872–80.

8. Foolad F, Aiitek SL, Shigle TL, et al. Oral versus
aerosolized ribavirin for the treatment of respira-
tory syncytial virus infections in hematopoietic
cell transplant recipients. Clin Infect Dis 2019;
68:1641–9.

9. Li L, Avery R, Budev M, Mossad S, Danziger-
Isakov L. Oral versus inhaled ribavirin therapy
for respiratory syncytial virus infection after lung
transplantation. J Heart Lung Transplant 2012;
31:639–44.

10. Falsey AR, McElhaney JE, Beas J, et al. Respiratory
cytotopic virus and other respiratory viral infections
in older adults with moderate to severe influenza-
like illness. J Infect Dis 2014; 209:1873–81.

Correspondence: A. E. S. de Zwart, University Medical
Centre Groningen, Department of Pulmonary Diseases
and Tuberculosis, Secretariaat Longtransplantatie AA33
Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, The
Netherlands (a.e.s.de.zwart@umcg.nl).

Clinical Infectious Diseases® 2020;70(10):2239–40
© The Author(s) 2019. Published by Oxford University
Press for the Infectious Diseases Society of America. All rights reserved.
For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/cid/cid358

Reply to De Zwart et al

To the Editor—We thank de Zwart and colleagues for commenting on our
recently published paper and for pro-
viding additional insights [1]. As they
note, we found that respiratory syncy-
tial virus (RSV) infection was associated
with serious illness among hospitalized
older adults that resulted in morbidity
and long-term mortality that appeared
to be even greater than that associated
with influenza infection [2]. We agree
that this report adds to a growing body
of evidence that RSV infection is associ-
ated with severe disease in the expanding
population of older adults in whom RSV
vaccines and therapeutic agents with
activity against RSV are needed.

Despite a paucity of clinical trial data,
there is evidence from several retrospec-
tive studies that ribavirin (RBV), some-
times given with immunomodulating
agents, appears to reduce the risk of pro-
gression of RSV disease and RBV-
associated morbidity and mortality in
immunocompromised patients, partic-
ularly in lung and hematopoietic cell
transplant (HCT) recipients [3]. As de
Zwart et al note, determining whether
similar benefits of RBV extend to older
adults infected with RSV can best be an-
swered by well-controlled clinical trials.
As they also observe, oral RBV is an at-
tractive option given its ease of admin-
istration, greater safety for patients
and healthcare personnel, and reduced cost
yet similar efficacy compared to aerosol-
ized RBV in HCT recipients with RSV
infection [4]. However, antiviral agents
given after progression of RSV from
upper to lower respiratory infection and
suppression of viral replication alone
may not always prevent progressive pul-
monary dysfunction associated with RSV
disease that likely contributes to the se-
vere morbidity and mortality observed
[5, 6]. Hence, early identification of RSV
and prompt initiation of anti-
viral therapy, possibly combined with
immunomodulating agents, chest phys-
iotherapy, and other interventions may
be important to improving outcomes fol-
lowing RSV infection, particularly in pa-
ients at risk of severe disease [3, 7]. Given
the limited benefit of RBV in the treat-
mant of RSV disease in some high-risk
populations [8], we are hopeful that RSV
vaccines and therapeutic agents with effi-
cacy against RSV disease in a broad range
of populations become available soon.

Note
Potential conflicts of interest. B. A. reports
grants from Novavax during the conduct of
the study. He also reports grants from Novartis,
GlaxoSmithKline, Dynavax, and Seqirus, outside
the submitted work. The author has submitted the
ICMJE Form for Disclosure of Potential Conflicts
of Interest. Conflicts that the editors consider rel-
levant to the content of the manuscript have been
disclosed.

Bradley Ackerson
Department of Research and Evaluation, Kaiser Permanente
Southern California, Pasadena

References
1. De Zwart AES, Riezebos-Brulman A, Verschuuren EAM, et al. Respiratory syncytial
virus infection morbidity in the elderly: time for re-
purposing ribavirin? Clin Infect Dis 2019;
68:1641–9.

2. Ackerson B, Tseng HF, Sy LS, et al. Severe morbidity
and mortality associated with respiratory syncytial
virus versus influenza infection in hospitalized
older adults. Clin Infect Dis 2019; 69:197–203.

3. Shah JN, Chemaly RF. Management of RSV infec-
tions in adult recipients of hematopoietic stem cell
transplantation. Blood 2011; 117:2755–63.

4. Foolad F, Aiitek SL, Shigle TL, et al. Oral versus
aerosolized ribavirin for the treatment of respira-
tory syncytial virus infections in hematopoietic
cell transplant recipients. Clin Infect Dis 2019;
68:1641–9.

5. Openshaw PJ. Antiviral immune responses and
lung inflammation after respiratory syncytial virus
infection. Proc Am Thorac Soc 2005; 2:121–5.

6. Wilkinson TM, Donaldson GC, Johnston SL,
Openshaw PJ, Wedzicha JA. Respiratory syn-
cytial virus, airway inflammation, and PEV1
decline in patients with chronic obstructive pul-
monary disease. Am J Respir Crit Care Med 2006;
173:871–6.

7. Branche AR. Why making a diagnosis of respira-
tory syncytial virus should matter to clinicians.
Clin Infect Dis 2019; 69:204–6.

8. American Academy of Pediatrics Subcommittee
on Diagnosis and Management of Bronchiolitis.
Diagnosis and management of bronchiolitis.
Pediatrics 2006; 118:774–93.

Correspondence: B. Ackerson, Department of Research
and Evaluation, Kaiser Permanente Southern California.
100 S. Los Robles Ave, 2nd Floor. Pasadena, CA 91101
(Bradley.K.Ackerson@kp.org).

Clinical Infectious Diseases® 2020;70(10):2240
© The Author(s) 2019. Published by Oxford University Press for
the Infectious Diseases Society of America. All rights reserved.
For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/cid/cid358