Recent trends in extraction, purification, and antioxidant activity evaluation of plant leaf-extract polysaccharides

Muhammad Muneeb Ahmad, Shahzad Ali Shahid Chatha, Yasir Iqbal, Abdullah Ijaz Hussain, Natural Products and Synthetic Chemistry Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
Ikramullah Khan, Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
Fengwei Xie, School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Received April 30 2022; Revised June 08 2022; Accepted June 27 2022;
View online July 29, 2022 at Wiley Online Library (wileyonlinelibrary.com);
DOI: 10.1002/bbb.2405; Biofuels, Bioprod. Bioref. 16:1820–1848 (2022)

Abstract: This review elaborates on current advances in the extraction, purification, and antioxidant activity of plant leaf-extract polysaccharides. Polysaccharides are widely used as important ingredients in the food, pharmaceutical, and cosmetic industries. Researchers have been investigating useful sources of natural polysaccharides and developing green and feasible extraction procedures for polysaccharides. This review examines different methods for extracting polysaccharides from leaves, and discusses their advantages and limitations. Purification techniques for plant leaf-based polysaccharides were also highlighted, together with their antioxidant effects. Among different extraction methods, pressurized-liquid extraction and enzyme-assisted extraction are considered to be better for large-scale extraction of polysaccharides from plant leaves. This review could contribute to the design of leaf waste processes at a commercial level for the sustainable recovery of polysaccharides. © 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

Key words: polysaccharides; plant leaves; extraction; purification; antioxidant activities

Introduction

Polysaccharides have many biological functions and many applications. Natural polysaccharides originate from plants, animals, and microorganisms. Polysaccharides extracted from plant leaves exhibit significant differences in structure and processibility. Generally, in polysaccharides, monomers (usually >10) are covalently linked either in the form of linear or branched glucosidic linkage. The extraction of polysaccharides from plant leaves with a high yield is important for their economic application. Several extraction techniques have been established for the
preparation of polysaccharides but the selection of the one with best commercial feasibility is important to manage leaf waste. The chemical composition and structure of polysaccharides act as key aspects to characterize, and the understanding of these is important for tailor-made applications. Analytical techniques and chemical methods have been developed for the extraction and purification of polysaccharides, and an understanding of their advantages and limitations supports their use for commercial purposes.

The polysaccharides have now been broadly exploited in the medicinal, food, textile, cosmetics, leather-tanning, electronics, and mechanical industries due to their wide availability, low cost, biodegradability, non-toxic nature, renewability, environment-friendly behavior, and multiple biological functions with negligible side effects. Previous studies have demonstrated that polysaccharides can be used as active agents in medicines due to their biological activity – for example their antioxidant, anti-tumor, anticoagulant, anti-virus, anti-radiation, anti-cancer, and immunoregulatory activity. The broad range of medicinal functions of polysaccharides and their antioxidant activity have attracted wide attention due to their feasible transfer of value-added properties to the entire system with negligible disturbance.

In other words, the vigorous role of polysaccharides as modifiers of biological systems and to inhibit the potential of oxidative stress by scavenging the free radicals cannot be ignored. The potential application and antioxidant activity of polysaccharides also depend on the structure of the molecules and functional groups.

Plant biomass is loaded with useful phytochemicals and biomolecules. Plant biomass commonly consists of plant leaves, branches, bark, grass, flowers, fruits, and other woody materials. The leaves of plants account for the largest portion of plant biomass. In autumn, a large amount of plant leaves drop onto the ground surface, which increases the volume of plant biomass. Plant biomass has been widely used for the removal of heavy metals, phenols, dyes, and other organic pollutants from wastewater through adsorption processes for water purification.

Consumption of plant biomass for adsorption purposes is not a sustainable solution for biomass management because the adsorption process generates pollutant-loaded biomass, which is more difficult to manage than the initial one. Previous studies suggest that the waste generated by plants can be managed by utilizing aerobic and anaerobic digestion techniques, but these technologies require significant investment for equipment, create several environmental issues, and might not be economically feasible on a large scale. The production of biofuel, bioenergy, bioplastic, and biogas can be other possible routes for the conversion of plant biomass into value-added products but a large financial investment is required to commercialize these possibilities. There is thus a need to provide alternative cost-effective, easy, and feasible solutions to manage plant biomass on a commercial scale. Given these challenges, this review was compiled to discuss common methods for the extraction and purification of polysaccharides and resultant antioxidant activity, to manage plant leaves on an industrial scale.

Several reviews have been published on the extraction of polysaccharides from plants, seaweeds, microbes, and other natural sources, with the biological potential for polysaccharides highlighted. However, these reviews did not discuss the processing of polysaccharides on a large scale. The present review is therefore designed to compare different extraction methods for polysaccharides with large-scale schematic layouts and to suggest the most promising ones. The methods of purifying these polysaccharides, their antioxidant activity, and their large-scale applications are also highlighted in this review.

Extraction methods for polysaccharides

Researchers are focusing on developing a bundle of extraction procedures to prepare polysaccharides without disturbing their structural composition. Polysaccharides from natural sources (e.g. plants, animals, and microbes) have been extracted successfully using several extraction techniques. Although all these extraction techniques, which are described below, can be used for the extraction of polysaccharides from different sources, the data presented in this review are to provide insights into the utilization of leaf-extract polysaccharides. In this section, different methods of polysaccharide extraction are discussed based on mechanisms and operating conditions. These methods of extracting polysaccharides are depicted in Figure 1.

Commonly used methods

Extraction methods commonly used for polysaccharides include hot-water extraction (HWE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized-liquid extraction (PLE), supercritical-fluid extraction (SFE), and enzyme-assisted extraction (EAE).

Hot-water extraction

Hot-water extraction (HWE) is an easy traditional method for the extraction of polysaccharides. In this method, water is heated up to 100 °C, and the extraction tank is loaded with plant material at a certain material-to-water ratio; then, the extraction is carried out under a controlled temperature for...
a specified duration and polysaccharide-containing extracts are obtained by a jacketed vessel where the extract is cooled and separated from plant material (Figure 2). Extraction time, temperature, and material-to-water ratio are key factors that affect the extraction efficiency of polysaccharides.26 For the optimization of these factors, mathematical designs such as continuous single-factor and orthogonal designs and statistical designs like response surface with Box–Behnken designs (BBD) or central composite designs (CCD) can be used.

In HWE, a high temperature is required to extract plant polysaccharides. Generally, at high temperature, Maillard reaction and caramelization may occur, which degrades polysaccharides and leads to poor extraction efficiency.6 At high temperatures, some of the reducing sugars may react with amino acids present in plant materials to produce complex compounds, which may interact with polysaccharides and cause them to degrade and thus reduce the extraction yield. Generally, in HWE, a material-to-liquid ratio of about 1:20 is used to concentrate the extract, and
thermal degradation of polysaccharides can occur. Other disadvantages of this method are a long extraction time and a large volume of ethanol (4–10 times) required to precipitate crude polysaccharides. Previous studies suggested that HWE can only extract extracellular polysaccharides and cannot destroy the cell wall and plasma membrane of plant materials. Polysaccharides from *Hizophora mucronate* leaves showed a 7.67% extraction yield when being processed using an HWE system at a solid-to-liquid ratio of 1/50 (w/v) and a temperature of 90 °C for 3 h. Hot-water extraction was applied to extract polysaccharides from *Aconitum carmichaelii* leaves, which showed a 4.2% extraction yield when the extraction was carried out at a solid-to-liquid ratio of 1:20 (w/v) and a temperature of above 90 °C (under reflux) with a 1 h extraction time twice. Polysaccharides extracted from *Tymus quinquecostatus* leaves showed an 86% extraction yield when being processed at a solid-to-liquid ratio of 1:20 (w/v) and a temperature of 100 °C for 3 h using HWE. Many other studies have involved polysaccharide extraction using HWE from plant leaves as listed in Table 1.

Microwave-assisted extraction

The microwave-assisted extraction (MAE) method can be used for polysaccharide extraction due to its strong penetration, high selectivity, and high efficiency. In an electromagnetic field, microwaves with non-ionizing radiation within the energy range 300 MHz to 300 GHz penetrate plant material and generate volumetrically distributed heat through molecular friction. Microwaves break the cell wall and inactivate enzymes in the cell membrane to extract polysaccharides. In MAE, microwave and electromagnetic radiation passed through the extraction chamber, which contains water and plant material, leading to an increased temperature, the destruction of the cell wall and cell membrane, and the increased polarization of polysaccharide molecules (Fig. 3). After extraction, the resultant slurry passed through a jacketed vessel where the extract was separated from plant material and cooled to room temperature. Remarkably, MAE possesses some advantages over other conventional methods, such as being financially feasible, time saving, and eco-friendly, and possessing high extraction efficiency with the minimal use of solvents, and low energy consumption. The glycosidic linkages in polysaccharides can be disturbed by intense microwave treatment for a long time. High microwave power and intense electromagnetic radiation also depolymerize polysaccharides chains. Hence, the microwave power and extraction time should be controlled stringently to prevent polysaccharide degradation. A high temperature in MAE also reduces the extraction yield because, at a high temperature, a browning reaction (caramelization) takes place. Polysaccharides from *Eucommia ulmoides* leaves were extracted using MAE and showed a 12.31% extraction yield when being processed at a solid-to-liquid ratio of 1:29 (w/v) and a temperature of 74 °C with a reaction time of 15 min. Pectin from *Premna microphylla* leaves extracted using MAE showed an 18.25% extraction yield when the extraction was carried out at a solid-to-liquid ratio of 1:50 (w/v), a temperature of 90 °C, and a pH of 2 for 2 h. Different polysaccharides extracted from leaves using MAE are listed in Table 1.

Ultrasound-assisted extraction

In UAE, ultrasonic waves rupture plant cells, thus leading to polysaccharide extraction. Ultrasound waves generated from the probe travel to the medium (water) and produce cavitation bubbles, which strike plant cells in the extraction chamber and destroy plant cells at a certain temperature, leading to polysaccharide extraction (Fig. 4). After extraction, the whole extract, including plant material, pass through a jacketed vessel where the extract is separated from plant material and cool to room temperature. Ultrasound waves with a power level of 10–100 kHz are normally used to generate cavitation bubbles, and the cavitation process makes polysaccharides diffuse from the cell wall, which can increase extraction efficiency significantly.

In UAE, a higher temperature increases the kinetic energy of gas-phase cavitation bubbles, which weakens the cell-wall polysaccharides, thus leading to high extraction efficiency. A great advantage of ultrasonic extraction is that it is fast. The extraction efficiency of polysaccharides by using ultrasonic extraction is affected by extraction time, ultrasonic power, and temperature. When high ultrasound power is applied for long periods, a decrease in extraction efficiency was observed due to the destruction of glycosidic linkages and depolymerization. To overcome these drawbacks, it is necessary to optimize parameters such as extraction time, ultrasound power, and temperature. Ultrasound-assisted extraction was applied to polysaccharides from *Sorghum bicolor* leaves and showed a 9.23% extraction yield at a solid-to-liquid ratio of 1:20 (w/v), an ultrasound frequency of 60 kHz, an ultrasound power of 240 W, and a temperature of 70 °C, with an extraction time of 70 min. Some other leaf-extract polysaccharides using UAE are listed in Table 1.

Pressurized-liquid extraction

In pressurized-liquid extraction (PLE), elevated temperature and high pressure are employed in automated extraction media to keep the solvent in the liquid phase, and these conditions play a meaningful role in increasing...
Table 1. Extraction and purification of plant leaf-extract polysaccharides

Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference
Tonna sinensis	HWE	Solid-to-liquid ratio, 1:30 w/v, temp. 80°C, time, 2 h	DEAE cellulose anion exchange, chromatography, Sephacryl S-400-GPC	TSP-1	33.4	833.6	31
				TSP-2	26.6	81.6	
Eriobotrya japonica	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 95°C, time, 2 h	HPSEC with MALLS-RID	LLP-B	3.62	5101	32
				LLP-C	3.95	4786	
				LLP-D	5.29	4307	
				LLP-Y	3.94	4605	
Nelumbo nucifera	HWE	Solid-to-liquid ratio, 1:20 w/v, time, 2 h under reflux	Sephacryl G-100 GPC	LLWP-1	19.9	85.1	33
				LLWP-3	21.3	12.5	
Ginkgo biloba	HWE	Solid-to-liquid ratio, 1:10 w/v, temp. 70°C, time, 3 h	DEAE Sepharose column chromatography	GBPS-2	9.45	672	34
				GBPS-3	32.87	723	
Moringa oleifera	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time, 4 h	DEAE Sepharose ion exchange chromatography	MOP-2	6.84	155.35	35
Olive	HWE	Solid-to-liquid ratio, 1:30 w/v, temp. 90°C, time, 4 h	ND	OLP	7.2	ND	36
Plantago ovata	HWE	Solid-to-liquid ratio, 1:50 w/v, temp. 90°C, time, 4 h	DEAE cellulose column chromatography	W	ND	10.7	37
				W2	13	18.2	
				W3	1	60.6	
Lepidium meyenii	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time, 3 h	DEAE-52 cellulose column chromatography, Sephadex G-200 column chromatography	MLP-1	35.7	42.756, 93.541	38
				MLP-2	25.3		
Acanthopanax	HWE	Solid-to-liquid ratio, 3:5 w/v, temp. 90°C, time, 3 h	Sephacryl S-100 column chromatography	ASP-B2	ND	5.32	39
				ASP-B3	ND	30.51	
Lipidium meyenii	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time, 2 h	DEAE-52 cellulose and Sephadex-100 column chromatography	LMLP	ND	58.43	40
Lilium lancifolium	HWE	Solid-to-liquid ratio, ND, temp. 70°C, time 1 h	DEAE-52 cellulose column chromatography	LLP-1	20.13	2250	41
				LLP-2	13.07	2020	
				LLP-3	9.85	2080	
Arctium lappa	HWE	Solid-to-liquid ratio, 1:20 w/v, under reflux, time 2 h	Ultrafiltration using cellulose Easter membrane	SAA	13.19	ND	42
				RF50	24.7	ND	
				RF30	16.01	ND	
				EF30	59.3	ND	
Morus alba L.	HWE	Solid-to-liquid ratio, 1:34 w/v, temp. 92°C, time 3.5 h	DEAE-52 cellulose and Sephadex G-100 column chromatography	MLP	10.00	ND	43
				MLP-3a	ND	80.99	
				MLP-3b	ND	3.64	
Paris polyphylla	HWE	Solid-to-liquid ratio, 1:21.3 w/v, temp. 90.8°C, time 4 h	DEAE cellulose column chromatography	PPLPs	54.18	ND	44

(Continued)
Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference	
Cyclocarya paliurus	HWE	Solid-to-liquid ratio, ND, temp. 80°C, time 3 h	ND	CP	ND	ND	1050-1090	45
				Ac-CP1	68.78			
				Ac-CP2	73.12			
				Ac-CP3	86.75			
Leonurus cardiaca	HWE	Solid-to-liquid ratio, 1:45.2 w/v, temp. 81.4°C, time 1.7 h	ND	LCLP	9.17	ND		
							70-110	46
Cyclocarya paliurus	HWE	Solid-to-liquid ratio, 1:40 w/v, temp. 80°C, time 3 h	Anion exchange chromatography	CPP	2.16	900	16	
Morus alba	HWE	Solid-to-liquid ratio, 1:40 w/v, temp. 85°C, time 5 h	ND	MLCP	12.01	ND		
Sambucus adanata	HWE	Solid-to-liquid ratio, 1:26 w/v, temp. 89°C, time 14 min	DEAE-Sepharose fast flow column chromatography	SPW-2	ND	7.04		
Mulberry	HWE	Solid-to-liquid ratio, 1:28.91 w/v, temp. 86.32°C, time 1 h	Dynamic adsorption using activated carbon microporous resins	MLP-80	18.64	ND		
Camellia sinensis	HWE; EAE	Solid-to-liquid ratio, 1:40 w/v, temp. 90°C, time 2 h; Solid-to-liquid ratio, 1:40 w/v, temp. 45°C, pH 5.5, time 2 h	ND;	HWE-TLPs	1.28	1.165-412		
				EAE-TLPs	4.08	75.9-487		
							110-150	50
Cyclocarya paliurus	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 80°C, time 2 h	ND	CP	ND	ND		
				CM-CP1	58.78	1030		
				CM-CP2	36.88	1050		
				CM-CP3	78.42	1080		
Handroanthus heptaphyllus	HWE	Solid-to-liquid ratio, 2:5 w/v, time 2 h, under reflux	ND	HHSF	3.7	9.4		
Lycium barbarum	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time 1 h	DEAE-Sephadex A25 column chromatography	CBP	16.21	ND		
				CBP-II	ND	93.9		
				CBP-IV	ND	418		
Catharanthus roseus	HWE	Solid-to-liquid ratio, ND, temp. 100°C, time 6 h	Ultradifiltration; using cellulose membrane	PS-1	32	7.4		
					200			
Ilex latifolia	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time 2 h	DEAE-52 cellulose column chromatography	ILPS	6.3	ND		
				ILPS-1	32.3			
				ILPS-2	20.6			
				ILPS-3	18.4			
				ILPS-4	10.8			
Clinacanthus nutans	HWE	Solid-to-liquid ratio, 1:6 w/v, temp. 90°C, time 4 h	Superdex 200 and DEAE Sepharose fast flow column chromatography	CNP1-2	ND	91.7		
							110-150	56
Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference	
------------------------------	-------------------	---	--	---------------	-----------	------------------------	-----------	
Alchornea cordifolia	HWE	Solid-to-liquid ratio, 1:60 w/v, temp. 100°C, time 1 h	DEAE cellulose, Dianion HP-20 and Sepharose 6B column chromatography	AP-AB	ND	8.9	62	
				AP-AU	6.6			
				AP-AU1	39.5			
				AP-NU	4.9			
Gynura procumbens	HWE	Solid-to-liquid ratio, 1:50 w/v, temp. 100°C, time 3 h	Fractional precipitation using different concentrations of ethanol	GPP-20	14.00	ND	58	
				GPP-40	32.80			
				GPP-60	26.43			
				GPP-80	7.96			
Aralia elate	HWE	Solid-to-liquid ratio, ND, temp. 90°C, time 3 h	DEAE-52 cellulose and Sephadex G-100 column chromatography	AEC-1	2.27	ND	59	
Moso bamboo	HWE	Solid-to-liquid ratio, ND, temp. 100°C, time 2 h	DEAE Sepharose fast flow column chromatography	WB1	ND	134	60	
Arthocnemum indicum	HWE	Solid-to-liquid ratio, 1:40 w/v, temp. 80°C, time 4 h	ND	PAI	19.7	ND	61	
Bruguiera gymnorrhiza	HWE	Solid-to-liquid ratio, 1:42 w/v, temp. 71°C, time 0.5 h	ND	BGP	16.43	ND	57	
Malva sylvestris	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 90°C, time 1 h	ND	MSLP	8.37	ND	63	
Cyclocarya paliurus	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 80°C, time 2 h	Dialysis method	CP	ND	ND	1	
				S-CP1-1	118.85	ND		
Paris polyphylla	HWE	Solid-to-liquid ratio, 1:21.3 w/v, temp. 90.8°C, 4.8 h	DEAE-52 cellulose column chromatography	PPLPC	ND	29.5	64	
Hoheria populnea	HWE	Solid-to-liquid ratio, ND, temp. 65°C, time 2 h	Ultrifiltration	ND	1.7	2310	65	
Tiliacora triandra	HWE	Solid-to-liquid ratio, 1:6.6 w/v, temp. 85°C, time 1.67 h	ND	Yanang gum	0.8	ND	66	
Althaea officinalis	HWE	Solid-to-liquid ratio, 1:39.1, temp. 83.1°C, time 1.16 h	DEAE-52 cellulose column chromatography	AOL-1	14.47	ND	67	
				AOL-2	1.220			
Taxus yunnanensis	HWE	Solid-to-liquid ratio, 3:40 w/v, temp. 85-90°C, time 8 h	DEAE-52 cellulose column chromatography	TMP70W	1.9	36.94	68	
Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference	
-----------------------	-------------------	--	--	---------------	-----------	------------------------	-----------	
Premna microphylla	HWE	Solid-to-liquid ratio, 1:50 w/v, temp 90°C, time 2 h, pH 2.0	ND	PML	18.25	2.65, 18.35	69	
Azadirachta indica	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 20-30°C, time 6 h	Dialysis method	PI	0.85	80	70	
Ginkgo biloba	HWE	Solid-to-liquid ratio, 1:30 w/v, temp. 80°C, time 6 h	Sephadex G-75 column chromatography	GBLP	4.28	12	71	
Cyclocarya paliurus	HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 80°C, time 2 h	DEAE Sephadex A25 and Sephacryl S400 column chromatography	CPP, CPP-1, CPP2	4.56, 76.6	ND, 1167	72	
Moringa oleifera	MAE	Solid-to-liquid ratio, 1:35 w/v, temp. 70°C, time 1.17 h, microwave power 700 W	Sequential precipitation using different concentrations of ethanol	MLP, MLP-1, MLP-2, MLP-3	2.96, ND	ND, 6290, 4860	73	
Mulberry	MAE	Solid-to-liquid ratio, 1:5 w/v, time 0.167 h, microwave power 170 W,	ND	MLP	9.41	ND	74	
Phyllostachys pubescens	UAE	Solid-to-liquid ratio, 1:20 w/v, time 1.5h, ultrasound power 50 W	DEAE Sepharose fast flow column chromatography	NPs, NPs-A, NPs-B	10.2, 9.2	5.77, 4.30	75	
Guava	UAE	Solid-to-liquid ratio, 1:10 w/v, temp. 62°C, time 0.33 h, ultrasound power 404 W	ND	GLP	1	ND	76	
Suaeda fruticosa	UAE	Solid-to-liquid ratio, ND, temp. 90°C, time 0.58 h, pH 2.9, ultrasound frequency 50kHz	Dialysis method	SFP	34	240	77	
Cyclocarya paliurus	UAE	Solid-to-liquid ratio, 1:10 w/v, temp.80°C	DEAE cellulose column chromatography	CPP, CPP-D	ND	1150, 9.1	78	
Isodon Lophantheoides	UAE	Solid-to-liquid ratio, 1:17.5 w/v, temp. ND, time 74.74 min, ultrasound power 450 W, pH 8.5	Sequential precipitation using different concentrations of ethanol	ILHP, ILHP-3	77.50, ND	ND, 247	79	
Hibiscus	UAE	Solid-to-liquid ratio, 1:24.31 w/v, temp. 83.18°C, time 0.42 h, ultrasound power; 93.59 W	ND	HRLP	9.66	ND	80	
Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference	
---------------------------	-------------------	--	---	---------------	-----------	------------------------	-----------	
Epimedium	UAE	Solid-to-liquid ratio, ND, temp. 46.8°C; time 0.71 h, pH 4.28, ultrasound power 311 W	DEAE Sepharose and Sephadex G-100 column chromatography	CEP	5.98	ND	81	
				EP-1	20.86	81.64		
				EP-2	26.02	60.53		
				EP-3	14.52	21.85		
Mentha haplocalyx	UAE	Solid-to-liquid ratio, 1:29 w/v, temp. 70°C, time 0.47 h, ultrasound power 300 W	Dialysis method	MHP	9.41	59.58	82	
Camellia oleifera	UAE	Solid-to-liquid ratio, 1:20 w/v, temp. 88°C, time 1.6 h, ultrasound frequency 45kHz	DEAE cellulose column chromatography	CLP	3.77	ND	83	
				CLP-1	ND	78.954		
				CLP-2	ND	51.257		
				CLP-3	ND	60.143		
Rhododendron aganniphum	UAE	Solid-to-liquid ratio, 1:25 w/v, temp. 55°C, time 2.2 h, ultrasound power 200 W	ND	ND	9.428	ND	84	
Dodonaea viscosa	UAE	Solid-to-liquid ratio, ND, temp. 85°C, time 0.84 h, ultrasound power 400 W	ND	ND	6.455	ND	85	
Quercus brantii	UAE	Solid-to-liquid ratio, 1:23.4 w/v, temp. 81.9°C, time 0.93 h, ultrasound power 205.87 W	ND	QBLP	19.42	ND	86	
Phyllostachys Heterocycle	SFE	Extraction time 2 h, temp. 50°C, pressure of CO₂ 40 MPa, modifier dosage 30 mL	DEAE cellulose column chromatography	BLPs	2.47	50.5	87	
Ginkgo biloba	UAE	Solid-to-liquid ratio, ND, temp. 51.88°C, time 0.62 h, pH 4.34	ND	GBLP	7.29	ND	88	
Lotus	EAE; HWE	Solid-to-liquid ratio, 1:20 w/v, temp. 50°C, time 48 h, pH 4.5–5.0, enzymes (protease, amylase, pectinase, cellulase); Solid-to-liquid ratio, 1:20 w/v, temp. 100°C, time 4 h	Ultrafiltration and Sephadex G-100 column chromatography	LLEP-P-1	ND	14.63	89	
				LLWP	1.18	ND		
				LLEP-A	0.97	ND		
				LLEP-C	1.17	ND		
				LLEP-P	1.11	ND		
				LLEP-PR	1.93	ND		
Silphium Perfoliatum	EAE	Solid-to-liquid ratio, 1:22 w/v, enzyme complex having concentration 1.59%	DEAE-52 cellulose and Sepharose CL-6B column chromatography	CPP	13.69	ND	90	
				CPP1-2	ND	11.733		

(Continued)
Leaves	Extraction method	Extraction conditions	Purification	Compound name	Yield (%)	Molecular weight (kDa)	Reference
Viscum Coloratum	EAE	Solid-to-liquid ratio, 1:40 w/v, temp. 50°C, time 0.67, pH 5, enzyme concentration 2.5%	ND	VCP	21.83	ND	91
Malva sylvestris	EAE	Solid-to-liquid ratio, ND, temp. 55.65°C, time 3.4h, pH 5.22, cellulase concentration 5.64%	DEAE cellulose and Sephadex G-100 column chromatography	MSPs	10.4	2600-8800	92
axus cuspidate	EAE	Solid-to-liquid ratio, 1:19 w/v, temp. 51°C, time 33 min, enzyme dosage 0.10mg/mL	DEAE cellulose column chromatography	MSP-1	ND	ND	93
Sagittaria Sagittifolia	SWE	Solid-to-liquid ratio, 1:30 w/v, temp 170°C, time 16 min, pH 7, Pressure 1 MPa	Dialysis method	SSP	24.57	ND	94
Eriobotrya Japonica	HWE; MAE; PLE; U-EAE; U-MAE	Solid-to-liquid ratio, 1:30 w/v, temp. 95°C, time 2 h; Solid-to-liquid ratio, 1:30 w/v, temp. 80°C, time 6.5 min, microwave power 500 W; Solid-to-liquid ratio, 1:10 w/v, temp. 55°C, time 40 min, pressure 1.8 MPa; Solid-to-liquid ratio, 1:40 w/v, time 20 min, ultrasound power 450 W; Cellulase dosage 50mg, time 20 min, ultrasound power 450 W; Time 6.5 min, ultrasound power 450 W, microwave power 500 W	ND; ND; ND; ND; ND; ND	LLP-W	2.95	190-9971	95
				LLP-M	3.11	106-9799	
				LLP-P	5.05	153-9178	
				LLP-U	4.53	531.99	
				LLP-UE	4.73	1689,1366	
				LLP-UM	4.93	3373,826	
For polysaccharide extraction, water is applied to the extraction chamber with nitrogen purged by a purge valve, and the extraction is carried out at high pressure and high temperature (Fig. 5). After extraction, the extract was separated and cooled with a jacketed vessel attached to the extraction unit. High pressure and increased critical temperature improve the solubility and mass transfer rate, which results in a high extraction yield. Extraction time and solvent volume can be reduced with the help of PLE. Polysaccharides from Sagittaria sagittifolia L. leaves were extracted using PLE and showed a significant yield (Table 1) in the optimal conditions (a pH of 7, a temperature of 170 °C, a duration of 45 min, and a material-to-liquid ratio of 1:30). Pressurized-liquid extraction was applied to extract β-glucans from barley bran and showed a 16.39% extraction yield in the optimal conditions (pressure of 10 MPa, a temperature of 70 °C, and an extraction time of 9 min).
Supercritical-fluid extraction

Supercritical-fluid extraction (SFE) is an efficient extraction technique that gives an extraordinary yield and high purity and is commonly employed for the fractionation of low-molecular-weight polysaccharides. In SFE, gas-phase extraction, solvent (argon or carbon dioxide) is used, which is first cooled and then heated in a preheated column to maintain its high pressure and temperature, and then allowed to pass from the extraction chamber to extract polysaccharides from plant material (Fig. 6). Then, the extract is passed through the jacketed vessel where the extract is separated from plant material and cooled to room temperature. Supercritical fluid (SCF) is more applicable when carbon dioxide is used instead of argon, and polysaccharides are fractionated based on their solubility in carbon dioxide, and sometimes the solubility, and thus the yield, can be enhanced by introducing some organic solvents combined with water as a modifier. On a commercial scale, SFE is widely used for the selective fractionation of lactulose from different aldoses. Polysaccharides from Phyllostachys heterocycle leaves were extracted using SCF (supercritical CO₂) with ethanol as a modifier and there was a yield of 2.47% when the extraction was operated at a temperature of 50 °C and a pressure of 40 MPa for 2 h with 20 mL of ethanol. Supercritical-fluid extraction was applied for polysaccharide extraction from Artemisia sphaerocephala Krasch seeds and there was an 18.59% extraction yield when the extraction was performed under selected conditions such as a temperature of 45 °C, a pressure of 10 MPa, a CO₂ flow rate of 20 L/h, and an extraction time of 2 h. Polysaccharides from Ginkgo leaves were extracted using SFE-CO₂ and showed a 10.13% extraction yield when being processed with the optimized conditions including a duration of 99 min, a temperature of 63 °C, and a pressure of 42 MPa. For polysaccharide extraction, SFE is more advantageous than other extraction methods because it can provide maximum extraction efficiency with negligible degradation. Nonetheless, this extraction method is not very selective and the capital investment is high.

Enzyme-assisted extraction

Enzyme-assisted extraction (EAE) is another extraction method that is conventional, selective, specific, and efficient. Enzymes such as cellulase, amylase, hemicellulose, pectinase, and papain have the potential to break down the cell wall of plant material and release polysaccharides without affecting its structure by hydrolysis. In EAE, selected enzymes are applied to the extraction chamber under a controlled temperature to destroy the cell wall of plant material and hydrolyze the polysaccharides, which further passed through the centrifugation and filtration process in a jacketed vessel to make crude polysaccharides (Fig. 7). Enzyme-assisted extraction has several advantages over other traditional methods, such as high extraction yield, high reaction compatibility, short extraction time, low cost, greenness, and mild operation conditions. This extraction method has also attracted the attention of researchers because it is time and energy efficient and can be operated with a lower volume of extraction solvent. Sometimes, other constituents of plants, like proteins, lipids, phenolics, flavonoids, pigments, nucleic acids, and other small organic and inorganic compounds can interact with enzymes, which reduces the extraction
efficiency of polysaccharides. Moreover, temperature control is a critical parameter for achieving a high extraction yield, as treating polysaccharides at a high temperature can cause thermal degradation. Further studies are needed to overcome this problem. Lotus leaf-extract polysaccharides were extracted using EAE with three enzymes including amylase, cellulase, and pectinase, each 1% volume by weight of the leave powder, and showed extraction yields of 0.97, 1.17, and 1.11%, respectively, when the extraction was performed at a pH of 7 and a temperature of 50 °C for a duration of 48 h. Some other leaf-extracted polysaccharides using EAE are given in Table 1.

Other methods

Combined extraction methods

Combined extraction techniques can also be used for the extraction of polysaccharides to overcome the limitations...
of individual techniques. It is common to combine HWE with UAE, MAE, or EAE for polysaccharide extraction. Polysaccharides from *Eriobotrya japonica* leaves were extracted using ultrasound combined with enzyme-assisted or microwave-assisted extraction techniques (U-EAE and U-MAE). Using U-EAE with a cellulase enzyme dosage of 50 mg, an extraction time of 20 min, and an ultrasound power of 450 W, a yield of 4.73% was achieved, while U-MAE with an extraction time of 6.5 min, an ultrasound power of 450 W, and a microwave power of 500 W showed a 4.93% extraction yield.\(^9\) Polysaccharides from *Ginkgo biloba* leaves were extracted using ultrasound combined with enzyme-assisted (U-EAE) and showed a 12.85% extraction yield when being processed at a solid-to-liquid ratio of 1/50 (w/v), a temperature of 55 °C, an ultrasonic treatment time 30 min and a cellulase (0.8%) hydrolysis time of 40 min.\(^113\)

Subcritical-water extraction

Subcritical-water extraction (SWE) is an extraction technique that is becoming popular due to its green nature. Another name for SWE is superheated-water extraction. Briefly, in SWE, polysaccharides can be extracted using a small quantity of solvent, especially water, under a high pressure ranging from 0.35 to 2.1 MPa and a high temperature ranging from 100 to 374 °C for a short time.\(^114\) Temperature, pressure, solid-to-liquid ratio, solvent flow rate, pH, and extraction time are important parameters that affect the extraction yield using SWE.\(^115\) Using SWE, polysaccharides from *Sagittaria sagittifolia* leaves were extracted, leading to a high yield of 24.57% at a solid-to-liquid ratio of 1:30 (w/v), a temperature of 170 °C, a pH of 7, and a pressure of 1 MPa, with an extraction time of 16 min.\(^9\) Subcritical-water extraction was successfully utilized for polysaccharide extraction from the stems of *Dendrobium* Lindl and showed a maximum extraction yield of 21.88% at a temperature of 129.83 °C, a pressure of 1.12 MPa, and a solid-to-liquid ratio of 1:25 (w/v), with an extraction time of 16.71 min.\(^116\) *Thlaspi arvense* leaves showed a 6.26% yield of selenium-containing polysaccharides when SWE was used at a temperature of 140 °C and a pressure of 8 MPa for 15 min.\(^117\)

Ultra-high-pressure extraction

Ultra-high-pressure extraction (UPE) under high pressure at a low temperature can be used for the extraction of polysaccharides as a novel and green technique. It is one of the eco-friendly extraction methods approved by the US Food and Drug Administration (FDA) and has been widely adopted in the food industry.\(^118\) The UPE process can be operated at high pressure ranging from 100 to 1000 MPa with a low temperature of around 50 °C.\(^115\) This technique requires less time and solvent volume since high pressure enhances the mass transfer by disrupting the cell wall, and thus the polysaccharide extraction yield is increased. Ultra-high-pressure extraction showed a 3.07% polysaccharide yield from the root of *Morinda officinalis* at a pressure of 420 MPa and a solid-to-liquid ratio of 1:12 (w/v) for 6.5 min.\(^119\) In the optimal conditions using a UPE system, polysaccharides from *Litidis chinesis* Sonn. showed a 12.01% extraction yield when being processed at a solid-to-liquid ratio of 1:15 (w/v) and a pressure of 460 MPa for 17 min.\(^120\) The polysaccharide content in yellow tea leaf extracts increased by 1.31, 128.28, and 19.86% when UPE was operated at 200, 400, and 600 MPa respectively at 25 °C for 5 min.\(^121\)

Ionic-liquid extraction

Paul Walden reported ionic liquids for the first time in 1914, and he is known as the father of ionic liquids (ILs).\(^122,123\) It was a time when scientists were not very familiar with the importance of ILs, but over time, the worth of these liquids expanded exponentially.\(^124\) In the present century, ILs are well known due to their versatile properties and wide range of applications in the field of chemical sciences.\(^122\) Ionic liquids are liquids formed by cations and anions linked with different types of chemical bonds and possesses a bundle of chemical and physical properties including low vapor pressure, good thermal stability, and high tunability, and can be used as solvents, catalysts, extraction liquids, etc., in various fields.\(^125\) They are composed of large organic cations and small organic or inorganic anions and have a melting temperature below 100 °C. The low melting temperature of ILs is suggested by their low ion symmetry composition and low charge density.\(^126\) Singh and Savoy\(^127\) classified ILs into several categories including task-specific ILs, chiral ILs, switchable polarity solvent ILs, bio-ILs, poly-ILs, energetic ILs, neutral ILs, protic ILs, metallic ILs, basic ILs, and supported ILs. Among other ILs, task-specific ILs including alkyl phosphate-type ILs and imidazolium-based hydrophilic ILs have been most used in the IL extraction (ILE) of polysaccharides.\(^127\) Ionic-liquid extraction has been used frequently for cellulose extraction from biomass using those hydrophilic ILs that have good hydrogen-bond-acceptor capability and moderate hydrogen-bond-donor behavior because the solubility of cellulose is increased in those ILs at room temperature.\(^128\) The extraction yields of cellulose from corn stover using three ILs, tetra-butylphosphonium 2-ethylhexanoate ([P\(_{1444}^+\)]{[EH]}), dodecyl-3-methylimidazolium bis(2,4,4-tri-methyl-pentyl)phosphinate ([C\(_4\)mim][P2,3(PO3)]), and 1-decyl-3-methylimidazolium bis(2,4,4-tri-methyl-pentyl)phosphinate ([C\(_{10}\)mim][P2,3(PO3)]) were 84, 61.1, and 44%, respectively when the extraction was...
Carried out at a temperature of 80 °C for a duration of 2 h.129 Cellulose was extracted from Zoysia japonica using allyl-3-methylimidazolium chloride and showed a 71% extraction yield when being immersed at a temperature of 80 °C for 2 h.130 Polysaccharides from Japanese cedar extracted using ILE with 1-(3-methoxypropyl)-3 methylimidazolium ethyl ethylphosphonate showed a 15% extraction yield when being processed at a temperature of 100 °C and an IL dosage of 2 g under a nitrogen environment for 24 h.131 Wheat bran polysaccharides were extracted using ILE and showed a 16.1% extraction yield when being immersed in 1,3-dimethylimidazolium methyl methylphosphonate ([Cimim][(MeO)(Me)PO\textsubscript{3}]) at a temperature of 80 °C for 2 h.132 Polysaccharides from Mentha haplocalyx were extracted using three different solutions such as citric acid (pH 3) at 95 °C for 3 h, 5% NaOH/0.05% NaBH\textsubscript{4} at 25 °C for 3 h, and 0.9% NaCl at 95 °C for 3 h, and the yields were 7.28, 9.37, and 7.78% respectively.133 Plotka-Wasylka et al.133 reported that some of the ILs were considered to be green, non-flammable, non-volatile, and stable in air and water, but recently, many of them have been found to be flammable, volatile, unstable, and even toxic. On a large scale, ILE cannot be used because some ILs are hazardous and non-biodegradable, and the large-scale synthesis of ILs is expensive and difficult.123

Deep eutectic solvents

Deep eutectic solvents (DESs) are alternatives to ILs and are known to be less hazardous, less expensive, more stable, and biodegradable in comparison with ILs.134 Deep eutectic solvents possess some advantages like the ease of synthesis, non-flammability, non-volatility, low cost for large-scale production, high biocompatibility, and the wide availability of their primary ingredients.135 They represent a new class of IL formed from a eutectic mixture of Lewis or Bronsted acids and bases, with several anionic and/or cationic species, and they differ from ILs, which are composed of one type of discrete anion and cation.136 According to the first described concept, DESs are liquids formed by mixing a variety of quaternary ammonium salts and carboxylic acid.137 They are synthesized by combining hydrogen-bond donors (HBDs) and hydrogen-bond acceptors (HBAs) to form eutectic mixtures.138 Based on the complexing agent, DESs are classified into four categories including Type I (composed of a quaternary ammonium salt (QAS) and a metal chloride), Type II (composed of a QAS and a metal chloride hydrate), Type III (composed of QAS and a hydrogen bond donor), and Type IV (composed of a metal chloride and a hydrogen bond donor).138 The most widely used hydrogen-bond acceptor in DESs is choline chloride (ChCl), and choline-derived DESs have been reported extensively for the dissolution of cellulose.139 Hemicellulose and amorphous cellulose were extracted from rice straw and showed 16.71 and 9.60% extraction yields when being treated with ChCl/urea at a temperature of 130 °C for 4 h.140 Polysaccharides from Fucus vesiculosus were extracted with a DES of ChCl and 1,4-butanediol at a molar ratio of 1:5, and showed an 11.63% extraction yield when being processed at a temperature of 168 °C for 35 min.141 Lotus leaf polysaccharides showed a 5.38% extraction yield when being extracted with a DES of ChCl and ethylene glycol at a molar ratio of 1:3, a solid-to-liquid ratio of 1:31 (w/v), and a temperature of 92 °C for 126 min.142 In DES extraction, two or more organic or inorganic liquids or combinations of both types of liquid can also be used to obtain specific properties for polysaccharide extraction.143

Pulsed electric field-assisted extraction

In pulsed electric field-assisted extraction (PEF), an electric field ranging from 0.1 to 80 kV is applied to plant cells. This permeabilizes the cell membrane to release constituent compounds such as carbohydrates, polyphenolic compounds, and flavonoids in the solvent system at ambient temperature.115 Pulsed electric field-assisted extraction is a novel, nonthermal and efficient extraction method that is capable to extract high-purity polysaccharides within seconds with less energy.144 Corn bran polysaccharides were extracted using water-assisted and enzyme-assisted PEF, which showed 6.4 and 15.36% extraction rates in the optimal conditions (a solid-to-liquid ratio of 1:42 (w/v), an electric field intensity of 25 kV/cm, and an electric field frequency of 1080 Hz).145 Corn silk polysaccharides were extracted using PEF and a 7.31% extraction yield was achieved when the extraction was carried out at an electric intensity of 30 kV/cm and a solid-to-liquid ratio of 1:50 (w/v) for 6 μs.146

Negative pressure cavitation

In this extraction method, cavitation is performed by applying negative pressure as a part of hydrodynamic cavitation. Negative pressure cavitation (NPC) involves the developed cavitation to increase the mass transfer of bioactive compounds including polysaccharides from plant material to the extraction solvent by colliding the surface of plant material.147 Temperature, pressure, time, solvent concentration, and solid-to-liquid ratio are parameters that affect the extraction yield of polysaccharides. Polysaccharides from Astragalus membranaceus roots were extracted using NPC and showed a 16.74% extraction yield when the extraction was performed under parameters such as a pressure of −0.068 MPa, a temperature of 64.8 °C, a solid-to-liquid
ratio of 1:13.4 (w/v), a homogenization time of 70 s, and an extraction time of 53 min.148

Comparison of different extraction methods

Carbohydrates are produced in plants by photosynthetic CO\textsubscript{2} fixation and are a central source of energy in the global bioeconomy. There are three reasons for the importance of investigating polysaccharides. First, the emergence of the bioeconomy highlights the contribution of natural products, especially biobased products. Second, while polysaccharides have been utilized widely in material science, health care, food, and nutrition, it is important to evaluate the exceptional properties of polysaccharides to open possible routes to novel applications. One more reason is associated with environmental concerns, and regarding this, the adoption of polysaccharides can contribute to sustainability because of their ubiquitous presence and renewability.149 The several potential benefits include an increase in biodiversity, food safety, sustainability, and fuel production, and a decrease in CO\textsubscript{2} emission and pollution, which could be achieved by proper utilization of polysaccharides. Polysaccharides are widely distributed due to their different structures and are classified based on origin, shape, structure, charge, monosaccharide unit, and chemical and functional properties.5 Generally, polysaccharides obtained from plant leaves with long chains and complex structures with branches have attracted much attention because they have the potential to regulate a variety of biochemical functions like cell proliferation, immune response, and cell differentiation, inflammation, and adhesion.150 Biochemical functions including cell proliferation, immune response, cell differentiation, inflammation, and adhesion are related to the biological activities of polysaccharides. Polysaccharides with long chains, complex structures, and clusters of branches have been reported to perform excellent biological activities in comparison with short-chain, linear, and simple structured polysaccharides.18,151 The recovery of such polysaccharides without disturbing their composition and structure is much more important. In this sense, a bundle of extraction methods discussed above can be used for polysaccharide extraction from plant leaves, but this section differentiates the extraction methods according to their performance. Hot-water extraction is an easy and commonly used extraction method but it requires a high temperature and time, whereas these issues were not seen with UAE and MAE. Mulberry leaf polysaccharides were extracted using HWE and MAE, and HWE has an 18.64% extraction yield, whereas MAE provides a yield of 9.41% under the optimal conditions (Table 1).

Table 1. Comparison of different extraction methods for polysaccharides. (continued)

Hot-water extraction is superior to MAE considering extraction yield. High-molecular-weight polysaccharides could be extracted using HWE and EAE, whereas UAE and MAE mostly tend to extract low-molecular-weight polysaccharides (Table 1). Hot-water extraction and EAE were utilized respectively to extract polysaccharides from Camellia sinensis. A 1.28% extraction yield was obtained using HWE while an extraction yield of 4.08% using EAE under the optimal conditions. Enzyme-assisted extraction performed better over HWE regarding extraction yield and molecular weight distribution (Table 1). Corn silk polysaccharides were extracted using HWE and PEF respectively and showed a 5.46% yield at 100 °C temperature with an extraction duration of 60 min using HWE, while a 7.31% yield was obtained using PEF under the optimal conditions such as an electric field intensity of 30 kV/cm and a reaction time of 6 μs.146 Pulsed electric field-assisted extraction is a fast, nonthermal and efficient extraction technique but it has not been widely utilized for polysaccharide extraction. It is currently not feasible on a large scale due to the complexity of setting it up.

Polysaccharides from Eriobotrya japonica leaves have been extracted using HWE, MAE, PLE, UAE, U-EAE, and U-MAE, respectively (Table 1). Extraction yields of 2.95, 3.11, 5.05, 4.53, 4.73, and 4.93% were obtained using HWE, MAE, PLE, UAE, U-EAE, and U-MAE, under the following operating conditions: solid-to-liquid ratio 1:20 (w/v), temperature 95 °C, and extraction time 2 h for HWE; solid-to-liquid ratio 1:30, temperature 80 °C, time 6.5 min, and microwave power 500 W for MAE; solid-to-liquid ratio 1:10, temperature 55 °C, time 40 min, and pressure 1.8 MPa for PLE; solid-to-liquid ratio 1:40, time 20 min, and ultrasound power 450 W for UAE; cellulase dosage 50 mg, time 20, and ultrasound power 450 W for U-EAE; and time 6.5 min, ultrasound power 450 W, and microwave power 500 W for U-MAE. The results showed that PLE provided the highest extraction yield in the optimal conditions. Ginkgo biloba leaf polysaccharides were extracted using three extraction methods including UAE, EAE, and U-EAE and showed different yields of 8.36, 7.92, and 12.85% respectively at the optimal conditions of a solid-to-liquid ratio of 1/50 (w/v), a temperature of 50 °C, ultrasound treatment for 30 min, and enzyme hydrolysis with 0.8% cellulase for 40 min.113 The extraction yield of polysaccharides has increased significantly with the combination of two methods, which suggests that combining extraction methods provides other possible options for the extraction of polysaccharides on a large scale. In comparison, HWE, MAE, and PLE extracted high-molecular-weight polysaccharides while UAE, U-EAE, and U-MAE extracted low-molecular-weight polysaccharides.
Pressurized-liquid extraction and EAE might therefore be the most acceptable extraction techniques for the extraction of polysaccharides from plant leaves on a commercial scale.

Purification of polysaccharides

After extraction followed by the ethanol precipitation process, purification and fractionation are important procedures to remove residues of other constituents such as proteins, lipids, phenolics, flavonoids, pigments, nucleic acids, and other small organic and inorganic compounds conjugated with plant polysaccharides. Conventional methods used for the purification of crude polysaccharides include ethanol treatment, hydrogen peroxide treatment, activated carbon treatment, amylase hydrolysis, ultrafiltration through a membrane, dialysis against water (ultrapure, distilled), and Sevag reagent treatment ((n-butanol and chloroform, 1:5). Polysaccharides can be fractionated based on their size, charge, and chemical interaction, with the help of column chromatography, gel permeation chromatography, ion-exchange chromatography, and affinity chromatography.

Column chromatography

Column chromatography is one of the simplest, conventional methods used for the fractionation of polysaccharides, and nowadays it has attracted wide attention due to its excellent performance in the fractionation of plant polysaccharides. Cellulose is a commonly used stationary phase in column chromatography. It is equilibrated with ethanol to avoid the nonspecific adsorptive forces of cellulose molecules to polysaccharides. Fractions of polysaccharides can be eluted by using state-of-the-art eluents such as water, buffers, and some organic solvents. Polysaccharides, with short chains and low molecular weight, have weak interactions with ethanol-equilibrated cellulose and are eluted first. Polysaccharides have moderate branches and possess medium molecular weight. They interact moderately with ethanol-equilibrated cellulose and are eluted in the second place. Polysaccharides have long branches and possess high molecular weight. They have strong interactions with ethanol-equilibrated cellulose and are eluted last. However, the lower the cellulose particle size, the greater is the surface area, and the higher is the number of theoretical plates. Hence there is higher fractionation efficiency for polysaccharides. The low flow rate and time-consuming behavior of column chromatography make it less usable.

Gel permeation chromatography

Polysaccharides can be fractionated based on their size and shape by using gel permeation chromatography (GPC). In GPC, gels with pores of different sizes are used to separate polysaccharide molecules. Polysaccharides with large molecules and high molecular weight do not enter the pores of gel and are eluted first. Polysaccharides with small molecules and low molecular weight obstruct the pores of the gel and are eluted last. Some commonly used gel-packing materials include Sepharose, Sephacyr, Superdex, Bio Gel, and Sephadex. The selection of gel is strongly dependent on the nature and source of polysaccharides that are to be fractionated. For polysaccharide fractionation, GPC with a refractive index detector (RID) is most widely used. The peaks of different polysaccharide fractions are generated based on RID elution by using deionized/distilled water and sodium chloride solution with different concentrations along with buffer solutions. In GPC-RID, some ionic solvents can be run before the introduction of samples to reduce the nonspecific adsorptive forces of the gel to polysaccharides, and hence increase the purity. There is no doubt that GPC is a powerful analytical technique for polysaccharide fractionation but it possesses some limitations such as expensive instrumentation, low efficiency, a lack of automation, and difficulty in scaling up.

Ion-exchange chromatography

Polysaccharides can be fractionated with the help of ion-exchange chromatography (IEC). In IEC, polysaccharides are separated based on charge and polarity index. Ion-exchange chromatography is operated with either cation exchange resins or anion exchange resins but anion exchange resins are commonly preferred for polysaccharides fractionation. Anion resins separate neutral and acidic fractions of polysaccharides. Acidic polysaccharides having a high uronic acid content can bind strongly to anion resin, and neutral polysaccharides do not have interaction with anion resin and hence are eluted first. Furthermore, neutral and acidic polysaccharides are fractionated by using gradient elution practices with a combination of different ionic eluents. Diethylaminoethyl (DEAE) containing anion exchange resins such as DEAE-cellulose, DEAE-Sepharose, DEAE-Sepharose fast flow, DEAE-Sephadex, DEAE-Sephadex fast flow, and Q-Sepharose are most widely used for polysaccharide fractionation. The selection of an anion exchanger depends on small-scale experimental trials and the concentration of uronic acid in polysaccharides.

Affinity chromatography

Selective liquid adsorption chromatography, commonly known as affinity chromatography (AC) is another analytical tool for polysaccharide fractionation. In AC, the
polysaccharides are separated based on adsorptive forces to the stationary phase.165 Immobilized ligands act as stationary phases in affinity chromatography. Many commercially available immobilized lectins can be used as ligands in AC. Practically, Concanavalin A, wheat germ agglutinin, and Sepharose have been used for glycoprotein fractionation.164 Many standard polysaccharides such as mannan, chitin, alginate, and other polysaccharides from \textit{Azospirillum brasilense} and \textit{P. aeruginosa} interact well with these ligands for fractionation.165,166 Affinity chromatography can be used as a potential separating tool on small and large scales but the selection of ligands for typical polysaccharides might be time-consuming. This fractionation tool demands more research work in the future to explore further fundamental trends of polysaccharides fractionation.

Antioxidant values of polysaccharides

A large number of free radicals produced in different products during chemical degradation, which occurs under different conditions, are detrimental to the entire product and the human body.166 These free radicals are harmful to the entire body and generate oxidative stress in biological systems.166,167 Free radicals can oxidize biological macromolecules like lipids, proteins, and carbohydrates, causing serious biological disorders such as inflammation, aging, cancer, hepatotoxicity, and diabetes.168 Polysaccharides play a meaningful role as modifiers towards biological response and reduce or inhibit oxidative stress by scavenging free radicals.18 Polysaccharide antioxidants can be used to prevent a wide range of oxidative disorders as well as preservatives in cosmetic and food products.169 Previous studies indicate that polysaccharides extracted from plant leaves have good antioxidant activities by scavenging free radicals like 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, 2,2-azino-\textit{bis}(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and superoxide, and have also shown excellent reducing power (Table 2).

1,1-Diphenyl-2-picrylhydrazyl radical antioxidant activity

The antioxidant assay based on DPPH is a direct, simple, and reliable method. DPPH is a very stable free radical because free electrons are delocalized over the whole molecule without dimerizing, and in the presence of hydrogen species, the DPPH radical is reduced into 1,1-diphenyl-2-picrylhydrazine by changing the color from violet to yellow.170,171

Plant leaf-extract polysaccharides have good DPPH antioxidant activity at the optimal dose (see Table 2). At a 2.8 mg/mL concentration, the maximum DPPH antioxidant activity of 94% was obtained for Zagros oak leaf-extracted polysaccharides.86 Besides, polysaccharides extracted from leaves of \textit{Leonurus cardiaca} showed 92.8% DPPH antioxidant activity when it was applied with a concentration of 12.14 mg/mL.46 In the same way, polysaccharides separated from leaves of \textit{Mentha haplocalyx}, \textit{Acanthopanax senticosus}, and mulberry showed DPPH antioxidant activities of 91.88, 91.75, and 91% when they were used at concentrations of 2, 2, and 0.24 mg/mL, respectively.39,47,82

Hydroxyl radical antioxidant activity

The hydroxyl radical (OH•) is one of the most reactive radicals that can attack the biological system.172 Hydroxyl radical scavenging assay is based on the inhibition of OH• radicals that can be produced during the Fenton reaction. In this reaction, hydrogen peroxide is introduced to ferrous ions, which results in ferric ions through the oxidation process. This oxidation is based on the availability of hydroxyl radicals to oxidize Fe2+ to Fe3+. In other words, the production of Fe3+ ions increased by increasing the number of hydroxyl radicals.173 Hydroxyl radicals can be captured with the help of antioxidant species that donate hydrogen atoms and this capturing can be determined by the salicylic acid method, which forms a purple-color complex (absorb at 510 nm) with Fe3+ ions. If OH• radicals are scavenged by species under study, the absorbance at 510 nm is reduced compared to the control solution.

The hydroxyl radical antioxidant activity of \textit{Lilium lancifolium} leaf-extract polysaccharides was found to be about 96.16% when it was loaded with a concentration of 3 mg/mL.41 Leaf-extract polysaccharides of \textit{Leonurus cardiaca} at a 13.5 mg/mL concentration showed the best OH• scavenging activity (about 94.8%), and \textit{Althaea officinalis} leaf-extract polysaccharides at a concentration of 20 mg/mL showed 94.8% OH• scavenging activity.46,67 Polysaccharides isolated from epimedium leaves with different fractions were found to show the maximum OH• radical antioxidant activity (94.60%) at a concentration of 8 mg/mL.81 Furthermore, leaf-extract polysaccharides of \textit{Ilex latifolia}, \textit{Plantago ovata}, and \textit{Cyclocarya paliurus} had 92.13, 91.7, and 90.16% hydroxyl radical antioxidant activities with their concentrations being 4, 0.1, and 0.24 mg/mL, respectively.137,55

2,2-Azino-\textit{bis}(3-ethylbenzothiazoline-6-sulfonic acid) radical antioxidant activity

By oxidizing ABTS with potassium persulfate, a nitrogen-centered radical cation of ABTS is produced. When the electron-donating species like polysaccharides come...
Table 2. Antioxidant activity of plant leaf-extract polysaccharides.

Leaves	Compound name	DPPH* (%) at the optimal dose	OH* (%) at the optimal dose	ABTS* (%) at the optimal dose	O−2• (%) at the optimal dose	FRAP (absorbance at 700 nm)	Reference
Ginkgo biloba	GBPS-2	38.35	34.43	74.34	60.12	ND	34
	GBPS-3	44.59	36.62	82.01	64.34	ND	
Olive	OLP	80	ND	ND	ND	3.00	36
Plantago ovata	W	22.7	41.3	47.2	ND	ND	37
	A	ND	38.2	55.5	ND	ND	
	W1	ND	80.9	51.8	ND	ND	
	A1	15.2	76.5	54.6	ND	ND	
	W2	38.2	91.7	58.3	ND	ND	
	A2	25.7	86.4	51.7	ND	ND	
Maca	MPL-1	62.1	82.71	ND	76.67	ND	38
	MPL-2	59.67	79.07	ND	52.62	ND	
Lilium lancifolium	LLP-1	55.71	86.46	ND	93.26	ND	41
	LLP-2	70.13	95.85	ND	91.49	ND	
	LLP-3	78.15	96.16	ND	96.83	ND	
Lepidium meyenii	LMLP	68.42	ND	ND	ND	0.079	40
Morus alba	MLP	68.21	88.85	99.33	84.47	ND	43
	MLP-3a	44.96	57.89	79.81	71.91	ND	
	MLP-3b	60.17	68.12	90.47	75.25	ND	
Paris polyphylla	PPLP	84.73	79.04	ND	76.09	ND	44
Cyclocarya paliurus	CP	87.21	ND	ND	ND	ND	45
	AC-Cp-1	93.55	ND	ND	ND	ND	
	AC-Cp-2	89.69	ND	ND	ND	ND	
	AC-Cp-3	90.27	ND	ND	ND	ND	
Leonurus cardiaca	LCLP	92.8	94.8	ND	ND	ND	46
Mulberry	MLCP	91	86	ND	ND	ND	47
Cyclocarya paliurus	CP	ND	70.13	ND	51.21	ND	51
	CM-Cp-1	ND	73.23	ND	47.26	ND	
	CM-Cp-2	ND	61.97	ND	42.51	ND	
	CM-Cp-3	ND	60.92	ND	40.73	ND	
Ilex latifolia	ILPs-1	75.14	92.13	ND	78.92	ND	55
	ILPs-2	24.70	57.15	ND	35.9	ND	
	ILPs-3	41.30	57.95	ND	57.13	ND	
	ILPs-4	52.15	70.32	ND	65.17	ND	
	ILPs-5	63.72	82.19	ND	70.47	ND	
Bruguiera gymnorrhiza	BGP	ND	63.3	62.2	62.4	ND	57
Phyllostachys pubescens	NPs	85.90	ND	99.98	ND	0.550	75
	Aps	69.38	ND	35.73	ND	0.047	
	MPs	64.53	ND	99.99	ND	0.251	
Guava	GLP	56.38	ND	51.73	ND	ND	76
Suaeda fruticosa	SFP	69.5	ND	69	ND	ND	77
Hibiscus	HRLP	64.73	65.32	ND	ND	ND	80
Epimedium	EP1	63.95	82.71	ND	31.52	ND	81
	EP2	79.94	94.60	ND	49.50	ND	
	EP3	83.16	88.14	ND	68.48	ND	

(Continued)
close to this radical, this radical accepts an electron from polysaccharides and transforms into a non-radical form. The extent of ABTS radical scavenging is assayed by the reduction of the blue-green solution of ABTS at 734 nm using a spectrophotometer.173

The ABTS radical antioxidant activity of *Phyllostachys pubescens* leaf-extract polysaccharides at a concentration of 3 mg/mL was found to be 99.98%.75 *Morus alba* leaf-extract polysaccharide showed high ABTS-radical-scavenging activity of 99.33% when being applied at a concentration of 4 mg/mL.43 Polysaccharides separated from leaves of *Silphium perfoliatum* displayed 93.69% ABTS radical antioxidant activity at a low concentration of 1.2 mg/mL.80 Likewise, polysaccharides extracted from leaves of *Ginkgo biloba, Bruguiera gymnorrhiza,* and guava exhibited ABTS radical antioxidant activities of 82.01, 62.2, and 51.73% when they were applied at concentrations of 4, 5, and 0.1 mg/mL, respectively.34,57,76

Superoxide radical antioxidant activity

Superoxide radicals (O$_2^-$) belong to one of the most toxic radicals commonly generated during biological and photochemical reactions.84 The superoxide radical scavenging potential of polysaccharides is commonly assayed by the NADH–NBT–PMS system. In this system, the superoxide radical is generated by the reaction of β-nicotinamide adenine dinucleotide (NADH) and phenazine methosulfate (PMS). The PMS is reduced by NADH and generates O$_2^-$, which is further reduced by nitroblue tetrazolium (NBT).174,175 This radical is scavenged by antioxidant species like polysaccharides and decreases the reducing extent of NBT, which is monitored at 569 nm using a spectrophotometer.82

The superoxide radical antioxidant activity of *Lilium lancifolium* leaf-extract polysaccharides was found to be 96.83% when it was applied at a concentration of 1 mg/
ions are reduced into

In the same way, the

With the presence

−

187

181

176.

ions, which can be monitored by the ferric-ferrocyanide

179

180

185

Fe

2+

Pectin is extensively used in child food items like
to Fe

3+. At low concentrations, pectin binds water to

186

43

182, 183

It

Moso bamboo leaf-extract polysaccharides showed superoxide radical antioxidant activity of 86.13% at a concentration of 1 mg/mL.60 Leaf-extract polysaccharides of Ilex lattifolia, Bruguiera gymnorrhiza, epimedium, and Rhododendron aganniphum showed 78.92, 62.4, 68.48, and 84.87% superoxide radical antioxidant activity when they are utilized at concentrations of 4, 5, 6.5, and 0.2 mg/mL, respectively.55,57,81,84

Ferric reducing antioxidant power

Ferric reducing antioxidant power (FRAP) is an inexpensive, simple, and sensitive single electron transfer-based assay.176 It is based on the reduction of Fe

3+ to Fe

2+. With the presence of species like polysaccharides, Fe

3+ ions are reduced into Fe

2+ ions, which can be monitored by the ferric-ferrocyanide (KFe[Fe(CN)]

6) spectrophotometric method at 700 nm. The greater the reducing potential of polysaccharides, the greater is the absorbance of the ferric-ferrocyanide complex at 700 nm.

Ferric reducing antioxidant power of plant leaf-extract polysaccharides can be described in terms of absorbance at 700 nm. The greater the absorbance, the greater is the reducing power of plant leaf-extract polysaccharides (Table 2). Polysaccharides obtained from olive leaves showed a high reducing potential (3 absorbances at 700 nm) at a low concentration of 0.7 mg/mL.36 In the same way, the reducing potential of plant leaf-extract polysaccharides extracted from different sources follows the order of Gynura procumbens > Silphium perfoliatum > Mentha haplocalyx > Malva sylvestris > Acanthopanax senticosus > Phyllostachys pubescens at the optimal concentration.

Large-scale applications of plant polysaccharides

Starch, hemicellulose, cellulose, pectin, and gums are the most important plant polysaccharides for industrial applications. Starch is a fundamental polysaccharide for human life and is found in leaves, root tubers, fruits, and seeds of plants as a storage polysaccharide. Starch is composed of amylose and amylopectin, which are glucose chains with different lengths and degrees of branching depending on origin.178 In the food industry, starch is widely used as an additive to improve the thickening and adhesion of liquid and paste products. Cationic starches as wet-end additives are used extensively in the paper industry. In the textile industry, starch is used for wrap sizing and fabric printing. Starches are used widely as excipients, diluents, disintegrants, binders, lubricants, glidants, and drug deliverers in pharmaceutical products.179

Hemicellulose polysaccharides (xylglucans) have a linear structure and are present in the cell walls of higher plants.180 Tamarind seed xylglucan is one of the most studied hemicellulose polysaccharides regarding rheological behavior and different applications.181 Xylglucans are widely used in the food industry (as, e.g., stabilizers, thickeners, gelling agents, and modifiers), the pharmaceutical industry (for drug delivery systems due to hydrophilic and mucoadhesive properties), and the cosmetic industry (as ultraviolet protective agents).181

One of the richest polysaccharides in nature is cellulose, which is typically found in plant and fungi cell walls and is also synthesized by some bacteria.182,183 In cellulose, glucose molecules are joined together by β(1→4) linkage. It is hydrophilic, biodegradable, and insoluble in water and most organic solvents.184 Cellulose acetates, cellulose nitrates, cellulose propionates, cellulose sulfates, and cellulose ethers are the most commonly used derivatives of cellulose.185

The most significant types of cellulose that are widely used for commercial purposes are cellulose esters and cellulose ethers.185 Cellulose is used on a large scale in the paper industry (to make paper), the textile industry (e.g. for making fabric), the pharmaceutical industry (e.g. as an additive, thickening agent, and drug delivery and gelling agent), and the food industry (e.g. as an additive, thickening agent, and viscosifier). The potential application of pectins – structural acidic heteropolysaccharides contained in the primary and middle lamella and cell walls of terrestrial plants – are being recognized increasingly and have been widely studied due to their complex structures.185 Commercially, pectin can be extracted from citrus peels and some fruits, like apple under acidic conditions.100 Pectin is widely used in the food industry as a gelling agent, stabilizer, thickening agent, and viscosifier.186 At low concentrations, pectin binds water to form gel.187 Pectin is extensively used in child food items like toffees, jellies, and jams.

Gums are high-molecular-weight macromolecules obtained from plant exudates, which are soluble in water and have stabilizing and thickening effects.188 In gums, monomers like glucose, mannose, galactose, xylose, amylose, and arabinose are joined together by glycosidic linkage with a perspective anomeric conformation. Gums differ in their properties (e.g. pH, solubility, gelling power, and viscosity) and source. Some gums are found in associated forms with terpenoids or proteins.189 Gum Arabic, gum tragacanth, gum karaya, and
gum ghatti are obtained from plant exudates whereas locust bean gum, guar gum, and tamarind are obtained from the seeds of plants. Gums are widely used in the food industry, pharmaceutical industry, cosmetic industry, and the chemical industry.\cite{190}

Conclusions and future projections

This review highlighted the importance of plant leaf-extract polysaccharides and explored major aspects of the utilization of polysaccharides, including extraction, purification, and their antioxidant potential. Several commonly used extraction methods such as HWE, MAE, UAE, PLE, SFE, and EAE provide meaningful extraction efficiency for plant leaf-extract polysaccharides. All these extraction techniques have appropriate uses but consideration of several factors differentiates them. Hot-water extraction is time-consuming and requires high temperatures to obtain the best polysaccharide extraction efficiency, whereas UAE and MAE are time-saving. Normally, UAE and MAE favor extracting low-molecular-weight polysaccharides, while HWE is better at extracting high-molecular-weight polysaccharides. In our opinion, EAE and PLE are the only extraction methods that can be used for polysaccharide extraction on a large scale. Pressurized-liquid extraction and SWE are very similar to each other in terms of basic principles. Subcritical-water extraction is operated at high temperature and so it is also called superheated extraction. At high temperatures, extraction efficiency is reduced due to the degradation of polysaccharides. Although ILE provides good extraction efficiency for selective polysaccharides like cellulose, chitin, and pectin, technical development is still needed to make it fully cost effective. Supercritical-fluid extraction, UAE, and NPC are complicated processes and are not being widely applied to extract plant leaf polysaccharides due to high costs and some operational limitations. Pulsed electric field-assisted extraction is a novel, nonthermal, efficient and fast extraction method that is capable of extracting high-purity polysaccharides within seconds by consuming less energy, but further research is needed to use it on a commercial scale. Numerous conventional techniques can be used to remove residues of other constituents like proteins, lipids, phenolics, flavonoids, pigments, nucleic acids, and other small organic and inorganic compounds that are conjugated with leaf polysaccharides, but there are still some gaps in these methods related to their optimization. The major impurities in leaf polysaccharides are proteins. Hence, several quick, feasible, and novel protein-removal protocols should be established. The high antioxidant activity of plant leaf-extract polysaccharides suggests that garden waste can be regarded as a healthy source of antioxidant polysaccharides. Finally, this review advises developing a commercial-scale setup to convert garden waste into polysaccharides that can play a vital role in functional applications as value-added products and stabilizing agents.

Acknowledgement

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) (grant number EP/V002236/2).

References

1. Xie J-H, Wang ZJ, Shen MY, Nie SP, Gong B, Li HS et al., Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocoll 53:7–15 (2016).
2. Ahmad MM, Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: a review. Carbohydr Polym Technol Appl 2:100045 (2021).
3. Ridley BL, O’Neill MA and Mohsen D, Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57(6):929–967 (2001).
4. Liu Y, Sun Y and Huang G, Preparation and antioxidant activities of important traditional plant polysaccharides. Int J Biol Macromol 111:780–786 (2018).
5. Thetsrimuang C, Khammuang S, Chiablaem K, Srisomsap C and Sarinthima R, Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lév. Food Chem 123(3):634–639 (2011).
6. Yi Y, Xu W, Wang HX, Huang F and Wang LM, Natural polysaccharides experience physiochemical and functional changes during preparation: a review. Carbohydr Polym 234:115896 (2020).
7. Shang H, Wu H, Dong X, Shi X, Wang X and Tian Y, Effects of different extraction methods on the properties and activities of polysaccharides from Medicago sativa L. and extraction condition optimization using response surface methodology. Process Biochem 82:179–188 (2019).
8. Yang L and Zhang L-M, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr Polym 76(3):349–361 (2009).
9. Huang G, Mei X, Xiao F, Chen X, Tang Q and Peng D, Applications of important polysaccharides in drug delivery. Curr Pharm Des 21(25):3692–3696 (2015).
10. Ahmad MM, Characterization and antioxidant activities of polysaccharides extracted from flageollet bean pods waste. Curr Res Green Sustain Chem 4:100154 (2021).
11. Tang Q and Huang G, Preparation and antioxidant activities of cuaurbit polysaccharide. Int J Biol Macromol 117:362–365 (2018).
12. Wang J, Bao A, Meng X, Guo H, Zhang Y, Zhao Y et al., An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohydr Polym 184:366–375 (2018).
13. Wang X, Zhang Z, Yao Z, Zhao M and Qi H, Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int J Biol Macromol 58:225–230 (2013).
14. Yang T, Jia M, Zhou S, Pan F and Mei Q, Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis. Int J Biol Macromol 50(3):678–772 (2012).
15. Zhao L-M, Jia YL, Ma M, Duan YQ and Liu LH, Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction. Int J Biol Macromol 76:63–69 (2015).
16. Xie J-H, Liu X, Shen MY, Nie SP, Zhang H, Li C et al., Purification, physicochemical characterization and anticancer activity of a polysaccharide from Cyclocarya paliurus palaurus. Food Chem 136(3–4):1453–1460 (2013).
17. Jiang J, Meng FY, He Z, Ning YL, Li XH, Song H et al., Sulfated modification of longan polysaccharide and its immunomodulatory and antitumor activity in vitro. Int J Biol Macromol 67:323–329 (2014).
18. Yu Y, Shen M, Song Q and Xie J, Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183:91–101 (2018).
19. Tang Y, Chen J, Li F, Yang Y, Wu S and Ming J, Antioxidant and antiproliferative activities of modified polysaccharides originally isolated from Morchella Angusticeps peck. J Food Sci 84(3):448–456 (2019).
20. Abbas N, Butt MT, Ahmed MM, Deeba F, and Hussain N, Phytoremediation potential of Typha latifolia and water hyacinth for removal of heavy metals from industrial wastewater. Chem Int 7:103–111 (2021).
21. Ahmad M, Equilibrium and kinetics study for adsorption of 2,4-Dinitrophenol from aqueous solutions by using Cucumis Sativus peels and kidney bean shells as new low-cost adsorbents. App Ecol Environ Sci 6(3):70–78 (2018).
22. Ahmad MM et al., Application of treated and untreated Cucumis Sativus peels for elimination of Congo red dye from aqueous solutions: an adsorption study. Int J Sci Bas Appl Res 42:137–149 (2018).
23. Viretto A, Gontard N and Angellier-Coussy H, Urban parks and gardens green waste: a valuable resource for the production of fillers for biocomposites applications. Waste Manag 120:538–548 (2021).
24. Zhang Z, Lv G, He W, Shi L, Pan H and Fan L, Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes. Carbohydr Polym 98(2):1524–1531 (2013).
25. Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L et al., Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 60(1):48–63 (2020).
26. Zhou P, Eid M, Xiong W, Ren C, Ai T, Deng Z et al., Comparative study between cold and hot water extracted polysaccharides from Plantago ovata seed husk by using rheological methods. Food Hydrocoll 101:105465 (2020).
27. Li F, Chen L and Yu X, Compared extraction methods on the physicochemical properties, antioxidant activity, and optimization of enzyme-assisted extraction of polysaccharides from Gynura medica. J Food Process Preserv 43:e14064 (2019).
28. Jha N, Madasamy S, Prasad P, Lakra AK, Tilwani YM and Arul V, Physico-chemical and functional characterization of polysaccharide purified from mangrove Rhizophora mucronata leaves having potent biological activity. S Afr J Bot 147:659–669 (2022).
29. Fu Y-P, Li CY, Peng X, Zou YF, Rise F, Paulsen BS et al., Polysaccharides from Aconitum carmichaelii leaves: structure, immunomodulatory and anti-inflammatory activities. Carbohydr Polym 291:119655 (2022).
30. Li X, Wang X, Dong Y, Song R, Wei J, Yu A et al., Preparation, structural analysis, antioxidant and digestive enzymes inhibitory activities of polysaccharides from Thymus quinquecostatus Celak. Leaves. Int Crop Prod 175:114288 (2022).
31. Cao J-J, Lv QQ, Zhang B and Chen HQ, Structural characterization and hepatoprotective activities of polysaccharides from the leaves of ToonaHQ Roem. Carbohydr Polym 212:89–101 (2019).
32. Fu Y, Yuan Q, Lin S, Liu W, du G, Zhao L et al., Physicochemical characteristics and biological activities of polysaccharides from the leaves of different loquat (Eriobotrya japonica) cultivars. Int J Biol Macromol 135:274–281 (2019).
33. Song Y-R, Han AR, Lim TG, Lee EJ and Hong HD, Isolation, purification, and characterization of novel polysaccharides from lotus (Nelumbo nucifera) leaves and their immunostimulatory effects. Int J Biol Macromol 128:546–555 (2019).
34. Ren Q, Chen J, Ding Y, Cheng J, Yang S, Ding Z et al., In vitro antioxidant and immunostimulating activities of polysaccharides from Ginkgo biloba leaves. Int J Biol Macromol 124:972–980 (2019).
35. Dong Z, Li C, Huang Q, Zhang B, Fu X and Liu RH, Characterization of a novel polysaccharide from the leaves of Moringa oleifera and its immunostimulatory activity. J Funct Foods 49:391–400 (2018).
36. Khemakhem I, Abdelhedi O, Trigui I, Ayadi MA and Bouaziz M, Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int J Biol Macromol 106:425–432 (2018).
37. Patel MK, Tanna B, Mishra A and Jha B, Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psllyum (P. ovata) leaves. Int J Biol Macromol 118:976–987 (2018).
38. Caicai K, Limin H, Liming Z, Zhiqiang Z and Yongwu Y, Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium Meyenii). Int J Biol Macromol 107:2611–2619 (2018).
39. Xia Y-G et al., Comparable studies of two polysaccharides from leaves of Acanthopanax senticosus: structure and antioxidant. Int J Biol Macromol 147:350–362 (2020).
40. Li S, Hao L, Kang Q, Cui Y, Jiang H, Liu X et al., Purification, characterization and biological activities of a polysaccharide from Lepidium meyenii leaves. Int J Biol Macromol 103:1302–1310 (2017).
41. Xu Z, Wang H, Wang B, Fu L, Yuan M, Liu J et al., Characterization and antioxidant activities of polysaccharides from the leaves of Lilium lancifolium Thunb. Int J Biol Macromol 92:148–155 (2016).
42. Carlotta J, de Souza LM, Baggio CH, Werner MFP, Maria-Ferreira D, Sassaki GL et al., Polysaccharides from Arctium lappa L.: chemical structure and biological activity. Int J Biol Macromol 91:954–960 (2016).
43. Yuan Q, Xie Y, Wang W, Yan Y, Ye H, Jabbar S et al., Extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from mulberry (Morus alba L.) leaves. Carbohydr Polym 128:52–62 (2015).
44. Shen S, Chen D, Li X, Li T, Yuan M, Zhou Y et al., Optimization of extraction process and antioxidant activity of polysaccharides from leaves of Paris polyphylla. Carbohydr Polym 104:80–86 (2014).
45. Xie J-H, Zhang F, Wang ZJ, Shen MY, Nie SP and Xie MY, Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydr Polym 133:596–604 (2016).
Review: Plant leaf-extract polysaccharides
MM Ahmad et al.

46. Tahmouzi S and Ghodsi M, Optimum extraction of polysaccharides from motherwort leaf and its antioxidant and antimicrobial activities. Carbohydr Polym 112:396–403 (2014).

47. Samavati V and Yarmard MS, Statistical modeling of process parameters for the recovery of polysaccharide from Morus alba leaf. Carbohydr Polym 98(1):793–806 (2013).

48. Yuan L, Zhong Z-C and Liu Y, Structural characterisation and immunomodulatory activity of a neutral polysaccharide from Sambucus adnata wall. Int J Biol Macromol 154:1400–1407 (2019).

49. Yang S, Li Y, Jia D, Yao K and Liu W, The synergy of box-Beckmen designs on the optimization of polysaccharide extraction from mulberry leaves. Ind Crop Prod 99:70–78 (2017).

50. Wang Y, Yang Z and Wei X, Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int J Biol Macromol 47(4):534–539 (2010).

51. Wang Z-J, Xie JH, Shen MY, Tang W, Wang H, Nie SP et al., Carboxymethylation of polysaccharides from Cyclocarya paliurus and their characterization and antioxidant property evaluation. Carbohydr Polym 136:988–994 (2016).

52. Carlotto J, Maria-Ferreira D, de Souza LM, da Luz BB, Dallalzen JL, de Paula Werner MF et al., A polysaccharide fraction from “ipê-roxo” (Handroanthus heptaphyllus) leaves with gastroprotective activity. Carbohydr Polym 226:115239 (2019).

53. Liu H, Fan Y, Wang W, Liu N, Zhang H, Zhu Z et al., Polysaccharides from Lycium barbarum leaves: isolation, characterization and spinoceyte proliferation activity. Int J Biol Macromol 51(4):417–422 (2012).

54. Patra S, Maity KK, Bhunia SK, Dey B, Das D, Mondal S et al., Structural characterization of an immunoenhancing heteropolysaccharide isolated from hot water extract of the fresh leaves of Catharanthus rosea. Carbohydr Polym 81(3):584–591 (2010).

55. Fan J, Wu Z, Zhao T, Sun Y, Ye H, Xu R et al., Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifiola Thunb. Carbohydr Polym 101:990–997 (2014).

56. Huang D, Li Y, Cui F, Chen J and Sun J, Purification and characterization of a novel polysaccharide–peptide complex from Clinacanthus nutans Lindau leaves. Carbohydr Polym 137:701–708 (2016).

57. Li Q, Yu N, Wang Y, Sun Y, Lu K and Guan W, Extraction optimization of Bruguiera gymnorrhiza polysaccharides with radical scavenging activities. Carbohydr Polym 96(1):148–155 (2013).

58. Li J-E, Wang WJ, Zheng GD and Li LY, Physicochemical properties and antioxidant activities of polysaccharides from Gynura procumbens leaves by fractional precipitation. Int J Biol Macromol 95:719–724 (2017).

59. Liu G, Sheng Y, Zhang M and Sun D, A polysaccharide from the leaves of Aralia elata induces apoptosis in U-2 OS cells via mitochondrial-dependent pathway. Int J Biol Macromol 93:418–425 (2016).

60. Mao J-W et al., In vitro antioxidant activities of polysaccharides extracted from Moso bamboo-leaf. Int J Biol Macromol 55:1–5 (2013).

61. Mzoughi Z, Chaouch MA, Hammi KM, Hafsa J, le Cerf D, Ksouri R et al., Optimization of antioxidant and antilglycated activities of polysaccharides from Arthrocneum indicum leaves. Int J Biol Macromol 113:774–782 (2018).

62. Kouakou K, Schepetkin IA, Yapi A, Kirpota LN, Jutila MA and Quinn MT, Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol 146(1):232–242 (2013).

63. Samavati V and Manoochehrizade A, Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. Int J Biol Macromol 60:427–436 (2013).

64. Shen S, Xu Z, Feng S, Wang H, Liu J, Zhou L et al., Structural elucidation and antiaging activity of polysaccharide from Paris polyphylla leaves. Int J Biol Macromol 107:1613–1619 (2018).

65. Sims IM, Smith AM, Morris GA, Ghorui MU and Carnachan SM, Structural and rheological studies of a polysaccharide mucilage from lacebark leaves (Hoheria populnea a. Cunn.). Int J Biol Macromol 111:839–847 (2018).

66. Singthong J, Ningsanond S and Cui SW, Extraction and physicochemical characterisation of polysaccharide gum from Yangang (Tiliacora triandra) leaves. Food Chem 114(4):1301–1307 (2009).

67. Tahmouzi S and Nejat MRS, New infertility therapy effects of polysaccharides from Althaea officinalis leaf with emphasis on characterization, antioxidant and anti-pathogenic activity. Int J Biol Macromol 145:777–787 (2020).

68. Yan C, Yin Y, Zhang D, Yang W and Yu R, Structural characterization and in vitro antitumor activity of a novel polysaccharide from Taxus yunnanensis. Carbohydr Polym 96(2):389–395 (2013).

69. Lu J, Li J, Jin R, Li S, Yi J and Huang J, Extraction and characterization of pectin from Premna microphylla Turcz leaves. Int J Biol Macromol 131:323–328 (2019).

70. Saha S, Galhardi LCF, Yamamoto KA, Linhares REC, Bandyopadhyay SS, Sinha S et al., Water-extracted polysaccharides from Azadirachta indica leaves: structural features, chemical modification and anti-bovine herpesvirus type 1 (BoHV-1) activity. Int J Biol Macromol 47(5):640–645 (2010).

71. Yan Z, Fan R, Yin S, Zhao X, Liu J, Li L et al., Protective effects of Ginkgo biloba leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms. Int J Biol Macromol 80:573–580 (2015).

72. Xie J-H, Xie M-Y, Nie SP, Shen MY, Wang YX and Li C, Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Bata1) illinskaja. Food Chem 119(4):1626–1632 (2010).

73. Chen C, Zhang B, Huang Q, Fu X and Liu RH, Microwave-assisted extraction of polysaccharides from Moringa oleifera lam. Leaves: characterization and hypoglycemic activity. Ind Crop Prod 100:1–11 (2017).

74. Thirugnanasambandham K, Sivakumar V and Maran JP, Microwave-assisted extraction of polysaccharides from mulberry leaves. Int J Biol Macromol 72:1–5 (2015).

75. Xiao Z, Zhang Q, Dai J, Wang X, Yang Q, Cai C et al., Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens maize1) leaves. Int J Biol Macromol 142:432–442 (2020).

76. Luo Y, Peng B, Liu Y, Wu Y and Wu Z, Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem 73:228–234 (2018).

77. Mzoughi Z, Abdallaham A, Rihouey C, le Cerf D, Bourouai A and Majdoub H, Optimized extraction of pectin-like polysaccharide from Suada fruticosa leaves: characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr Polym 185:127–137 (2018).

78. An Q et al., Structure analysis of polysaccharides purified from Cyclocarya paliurus with DEAE-cellulose and its antioxidant activity in RAW264. 7 cells. Int J Biol Macromol 157:604–615 (2020).
Review: Plant leaf-extract polysaccharides

79. Wen L, Lin L, You L, Yang B, Jiang G and Zhao M, Ultrasound-assisted extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardinianus (Bentham) H. Harra. Carbohydr Polym 85(3):541–547 (2011).

80. Afshari K, Samavati V and Shahidi S-A, Ultrasound-assisted extraction and in-vitro antioxidant activity of polysaccharide from hibiscus leaf. Int J Biol Macromol 74:558–567 (2015).

81. Chen R, Li S, Liu G, Yang S and Li X, Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochem 47(12):2040–2050 (2012).

82. Chen G, Fang C, Chen X, Wang Z, Liu M and Kan J, High-pressure ultrasonic-assisted extraction of polysaccharides from Mentha haplocalyx: structure, functional and biological activities. Ind Crop Prod 130:273–284 (2019).

83. Feng S, Cheng H, Fu L, Ding C, Zhang L, Yang R et al., Ultrasound-assisted extraction and antioxidant activities of polysaccharides from Camellia oleifera leaves. Int J Biol Macromol 68:7–12 (2014).

84. Guo X, Xiang S, Zhou X, Zhao B and Zang J, Ultrasound-assisted extraction of polysaccharides from rhododendron aganniphum: antioxidant activity and rheological properties. Ultrason Sonochem 38:246–255 (2017).

85. Samavati V and Manoochehrizade A, Dodonaea viscosa var. angustifolia leaf: new source of polysaccharide and its anti-oxidant activity. Carbohydr Polym 98(1):199–207 (2013).

86. Tahmouzi S, Optimization of polysaccharides from Zagros oak leaf using RSM: antioxidant and antimicrobial activities. Carbohydr Polym 106:238–246 (2014).

87. Zou X, Liu Y, Tao C, Liu Y, Liu M, Wu J et al., CO2 supercritical fluid extraction and characterization of polysaccharide from bamboo (Phyllostachys heterocycla) leaves. J Food Measure Charac 12(1):35–44 (2018).

88. Zhang L, Guo S, Wang M and He L, PEG-based ultrasound-assisted enzymatic extract of polysaccharides from Ginkgo biloba leaves. Int J Biol Macromol 80:644–650 (2015).

89. Song Y-R, Han AR, Park SG, Cho CW, Rhee YK and Hong HD, Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int J Biol Macromol 153:169–179 (2020).

90. Guo Y, Zhang H, Zhao J, Zhang H and Chen S, Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) polysaccharide and its antioxidant and hypoglycemic activities. Process Biochem 92:17–28 (2020).

91. Chai Y, Kan L and Zhao M, Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int J Biol Macromol 134:588–594 (2019).

92. Rostami H and Gharibzahedi SMT, Cellulase-assisted extraction of polysaccharides from Malva sylvestris; process optimization and potential functionalities. Int J Biol Macromol 101:196–206 (2017).

93. Jiang P, Zhang Q, Zhao Y, Xiong J, Wang F, Zhang T et al., Extraction, purification, and biological activities of polysaccharides from branches and leaves of Taxus cuspidata S. et Z. Molecules 24(16):2926 (2019).

94. Zhang J, Wen C, Chen M, Gu J, Zhou J, Duan Y et al., Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int J Biol Macromol 134:172–179 (2019).

95. Fu Y, Li F, Ding Y, Li HY, Xiang XR, Ye Q et al., Polysaccharides from loquat (Eriobotrya japonica) leaves: impacts of extraction methods on their physicochemical characteristics and biological activities. Int J Biol Macromol 146:506–517 (2020).

96. Gharibzahedi SMT, Marti-Quijal FJ, Barba FJ and Altintas Z, Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 202:494–507 (2022).

97. Hahn T, Lang S, Ulber R and Muffer K, Novel procedures for the extraction of fucoidan from brown algae. Process Biochem 47(12):1691–1698 (2012).

98. Chen Y, Gu X, Huang SQ, Li J, Wang X and Tang J, Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. Int J Biol Macromol 46(4):429–435 (2010).

99. Xu J et al., Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf. Sci Rep 8(1):1–10 (2018).

100. Sabater C, Sabater V, Olano A, Montilla A and Corozo N, Ultrasound-assisted extraction of pectin from artichoke by-products. An artificial neural network approach to pectin characterisation. Food Hydrocoll 98:105238 (2020).

101. Azimir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F et al., Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436 (2013).

102. Maran JP, Meekal V and Manikandan S, Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Curcubitula moschata. Carbohydr Polym 92(2):2018–2026 (2013).

103. Yearley OPN, Kojo AB, Jessica OM, Zhou C, Yu X, Joseph A et al., Structural and bioactive characterization of purified polysaccharide from deep-freeze pretreated Sorghum bicolor L. leaf sheath. Ind Crop Prod 185:115097 (2022).

104. Ameer K, Shahbaz HM and Kwon JH, Green extraction methods for polyphenols from plant matrices and their byproducts: a review. Compr Rev Food Sci Food Saf 16(2):295–315 (2017).

105. Du B, Zhu F and Xu B, β-glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology. J Cereal Sci 59(1):95–100 (2014).

106. Montañés F, Fornari T, Martín-Álvarez PJ, Montilla A, Corozo N, Olano A et al., Selective fractionation of disaccharide mixtures by supercritical CO2 with ethanol as CO-solvent. J Supercrit Fluids 41(1):61–67 (2007).

107. Montañés F, Corozo N, Olano A, Reglero G, Ibáñez E and Fornari T, Selective fractionation of carbohydrate complex mixtures by supercritical extraction with CO2 and different CO-solvents. J Supercrit Fluids 45(2):189–194 (2008).

108. Chen J, Li J, Sun AD, Zhang BL, Qin SG and Zhang YQ, Supercritical CO2 extraction and pre-column derivatization of polysaccharides from Artemisia sphaerocephala Krasch. Seeds via gas chromatography. Ind Crop Prod 60:138–143 (2014).

109. Gong T, Liu S, Wang H and Zhang M, Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen ginkgo leaves. Food Biosci 42:101153 (2021).

110. Nadar SS, Rao P and Rathod VK, Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review. Food Res Int 108:309–330 (2018).

111. Yin X, You Q and Jiang Z, Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr Polym 86(3):1358–1364 (2011).

112. Wang S, Dong X and Tong J, Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int J Biol Macromol 62:387–396 (2013).
113. Wang F, Ye S, Ding Y, Ma Z, Zhao Q, Zang M et al., Research on structure and antioxidant activity of polysaccharides from Ginkgo biloba leaves. *J Mol Struct* **1252**:132185 (2022).

114. Mohan K, Muralsisanker T, Uthayakumar V, Chandrasekar R, Revathi N, Ramu Ganesan A et al., Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits—a comprehensive review. *Carbohydr Polym* **238**:116185 (2020).

115. Muthusamy S, Udayakumar GP and Narala VR, Recent advances in the extraction and characterisation of seed polysaccharides, and their bioactivities: a review. *Bioact Carbohydr Diet Fibre* **26**:100276 (2021).

116. Liu J, Li Y, Liu W, Qi Q, Hu X, Li S et al., Extraction of polysaccharide from Dendrobiuim nobile Lindl. By subcritical water extraction. *ACS Omega* **4**(24):20586–20594 (2019).

117. Xiang A, Li W, Zhao Y, Ju H, Xu S, Zhao S et al., Purification, characterization and antioxidant activity of selenium-containing polysaccharides from pennycress (Thlaspi arvense L.). *Carbohydr Res* **512**:108498 (2022).

118. XI J and Wang B, Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. *Food Bioprocess Technol* **6**(9):2538–2546 (2013).

119. Zhang S, Yi W, Wang Z, Fu C, Fan X, du B et al., Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure. *Sep Sci Technol* **56**(10):1741–1751 (2021).

120. Gao W, Lin P, Zeng XA and Brennan MA, Preparation, characterisation and antioxidant activity of litchi (Litchi chinensis Sonn.) polysaccharides extracted by ultra-high pressure. *Int J Food Sci Technol* **52**(8):1739–1750 (2017).

121. Chen H, Huang Y, Zhou C, Xu T, Chen X, Wu Q et al., Effects of ultra-high pressure treatment on structure and activity of polysaccharides from large leaf yellow tea. *Food Chem* **387**:132862 (2022).

122. Bajpai P, Comparison of deep eutectic solvents and ionic liquids, in Pratima Bajpai (Ed.), *Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass*. Springer, Singapore, pp. 81–87 (2021).

123. Piotka-Wasylka J, de la Guardia M, Andruch V and Vilková Z, Pretreatment using deep eutectic solvents from lignin derived phenols. *Green Chem* **20**(4):809–815 (2018).

124. Smith EL, Abbott AP and Ryder KS, Deep eutectic solvents (DESs) and their applications. *Chem Rev* **114**(21):11060–11082 (2014).

125. Abbott AP, Capper G, Davies DL, Rasheed RK and Tambyrajah V, Novel solvent properties of choline chloride/urea mixtures. *Chem Commun* 1:70–71 (2003).

126. Bajpai P, Deep eutectic solvents and their physicochemical properties, in Pratima Bajpai (Ed.), *Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass*. Springer, Singapore, pp. 9–19 (2021).

127. Bajpai P, Cellulose, hemicelluloses and lignin solubilization in DESs, in Pratima Bajpai (Ed.), *Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass*. Springer, Singapore, pp. 21–27 (2021).

128. Pan M, Zhao G, Ding C, Wu B, Lian Z and Lian H, Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea. *Carbohydr Polym* **176**:307–314 (2017).

129. Shang X-C et al., Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. *Sep Purif Technol* **259**:118169 (2021).

130. Wu D-T, Feng KL, Huang L, Gan RY, Hu YC and Zou L, Deep eutectic solvent-assisted extraction, partially structural characterization, and bioactivities of acidic polysaccharides from lotus leaves. *Foods* **10**(10):2330 (2021).

131. Zdanowicz M, Spychaj T and Mała H, Imidazole-based deep eutectic solvents for starch dissolution and plasticization. *Carbohydr Polym* **140**:416–423 (2016).

132. Zhu Z, He J, Liu G, Barba FJ, Koubaa M, Ding L et al., Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: a review. *Innovative Food Sci Emerg Technol* **33**:1–9 (2016).

133. Liu X, Guo X and Lin S, Improvement of extraction rate of corn bran polysaccharide by high-voltage pulsed electric field. *J Food Saf Qual* **7**(6):2419–2425 (2016).

134. Zhao W, Yu Z, Liu J, Yu Y, Yin Y, Lin S et al., Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. *J Sci Food Agric* **91**(12):2201–2209 (2011).

135. Panda D and Manickam S, Cavitation technology—the future of greener extraction method: a review on the extraction of natural products and process intensification mechanism and perspectives. *Appl Sci* **9**(4):766 (2019).

136. Zhao J, Wei FY, Gai QY, Wang W, Luo M, Fu YJ et al., A pilot-scale homogenization-assisted negative pressure...
cavitation extraction of Astragalus polysaccharides. Int J Biol Macromol 67:189–194 (2014).

149. Persin Z, Stana-Kleinschek K, Foster TJ, van Dam JEG, Boeriu CG and Navard P, Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84(1):22–32 (2011).

150. Shi L, Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int J Biol Macromol 92:37–48 (2016).

151. Kalita P, Ahmed AB, Sen S and Chakraborty R, A comprehensive review on polysaccharides with hypolipidemic activity: occurrence, chemistry and molecular mechanism. Int J Biol Macromol 206:681–698 (2022).

152. Tang W, Liu D, Yin JY and Nie SP, Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide. Trends Food Sci Technol 99:76–87 (2020).

153. Ji X, Shen Y and Guo X, Isolation, structures, and bioactivities of the polysaccharides from Gynostemma pentaphyllum (Thumb.) Makino: a review. Biomed Res Int 2018:1–14 (2018).

154. Chen Y, Xie MY, Nie SP, Li C and Wang YX, Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107(1):231–241 (2008).

155. Zhao C, Liao Z, Wu X, Liu Y, Liu X, Lin Z et al., Isolation, purification, and structural features of a polysaccharide from Phellinus linteus and its hypoglycemic effect in alloxan-induced diabetic mice. J Food Sci 79(5):H1002–H1010 (2014).

156. Quan H, Qiong-Yao Y, Jiang S, Chang-Yun X, Ze-Jie L and Pu-Ming H, Structural characterization and antioxidant activities of 2 water-soluble polysaccharide fractions purified from tea (Camellia sinensis) flower. J Food Sci 76(3):C462–C471 (2011).

157. Zhou S, Liu Y, Yang Y, Jia W, Tang Q, Tang C et al., Separation and structural elucidation of a polysaccharide CC30w-1 from the fruiting body of Coprinus comatus. Bioact Carbohydr Diet Fibre 12(2):99–104 (2013).

158. Jin M, Zhao K, Huang Q, Xu C and Shang P, Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydr Polym 89(3):713–722 (2012).

159. Ji X, Peng Q, Yuan Y, Shen J, Xie X and Wang M, Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba mill.): a review. Food Chem 227:349–357 (2017).

160. Ren Y, Bai Y, Zhang Z, Cai W and del Rio Flores A, The preparation and structure analysis methods of natural polysaccharides of plants and fungi: a review of recent development. Molecules 24(17):3122 (2019).

161. Miao J, Regenstein JM, Qiu J, Zhang J, Zhang X, Li H et al., Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia – a review. Int J Biol Macromol 150:102–113 (2020).

162. Zhang M, Cui SW, Cheung PCK and Wang Q, Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18(1):4–19 (2007).

163. Hendrickson O and Zherdev A, Analytical application of lectins. Crit Rev Anal Chem 48(4):279–292 (2018).

164. da Silva DP et al., The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide PsI and stabilizes the biofilm matrix. Nat Commun 10(1):1–11 (2019).

165. Argayosa AM, Bernal RAD, Luczon AU and Arboleda JS, Characterization of mannose-binding protein isolated from the African catfish (Clarias gariepinus B.) serum. Aquaculture 310(3–4):274–280 (2011).

166. Sethi A and Sharma R, Antioxidant activity with total phenolic constituents from Aerva tomentosa forsk. Int J Pharm Bio Sci 2(2):596–603 (2011).

167. Ahmad MM, Isodon rugosus as potential source of phytopharmacological agents: a review. Int J Phytomed 12(4):79–85 (2021).

168. Rakesh SU, Patil PR and Mane SR, Use of natural antioxidants to scavenge free radicals: a major cause of diseases. Int J PharmTech Res 2(2):1074–1081 (2010).

169. Chen X, Tang R, Liu T, Dai W, Liu Q, Gong G et al., Physicochemical properties, antioxidant activity and immunological effects in vitro of polysaccharides from Schisandra sphenanthera and Schisandra chinensis. Int J Biol Macromol 131:744–751 (2019).

170. Daud JM et al., Phytochemicals screening and antioxidant activities of Malaysian Donax granis extracts. Eur J Sci Res 61(4):572–577 (2011).

171. Li X, Wang X, Chen D and Chen S, Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct Food Health Dis 1(7):232–244 (2011).

172. Patel Rajesh M and Patel Natvar J, In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68 (2011).

173. Mirzadeh M, Arianejad MR and Khedmat L, Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: a review. Carbohydr Polym 228:115–121 (2020).

174. Picker SD and Fridovich I, On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium. Arch Biochem Biophys 228(1):155–158 (1984).

175. Griffin SP and Bhagoori R, Measuring antioxidant potential in corals using the FRAP assay. J Exp Mar Biol Ecol 302(2):201–211 (2004).

176. Sethi S et al., Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur Food Res Technol 246:591–598 (2020).

177. Cummings S, Zhang Y, Smeets N, Cunningham M and Dubé M, On the use of starch in emulsion polymerizations. Processes 7(3):140 (2019).

178. Builders PF and Arhewoh MI, Pharmaceutical applications of native starch in conventional drug delivery. Starch-Stärke 68(9–10):864–873 (2016).

179. Houfani AA, Anders N, Spiess AC, Baldrian P and Benallaoua S, Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a review. Biomass Bioenergy 134:105481 (2020).

180. Freitas R et al., Physico-chemical properties of seed xyloglucans from different sources. Carbohydr Polym 60(4):507–514 (2005).

181. Heinze T, Cellulose: Structure and Properties. In Orlando J. Rogas (Ed.), Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. pp. 1–52 (2015).

182. Zhong C, Industrial-scale production and applications of bacterial cellulose. Front Bioeng Biotechnol 22:605374 (2020).

183. Heinze T and Koschella A, Solvents applied in the field of bacterial cellulose. Front Bioeng Biotechnol 6:349–357 (2017).

184. Heinze T and Koschella A, Solvents applied in the field of bacterial cellulose. Front Bioeng Biotechnol 6:349–357 (2017).

185. Heinze T and Koschella A, Solvents applied in the field of bacterial cellulose. Front Bioeng Biotechnol 6:349–357 (2017).
185. Pant S, Malviya R and Sharma PK, Commercialization and biomedical applications of pectin and its formulation in pharmaceutical drug delivery system. Drug Deliv Lett 5(1):9–18 (2015).
186. Sengar AS, Rawson A, Muthiah M and Kalakandan SK, Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason Sonochem 61:104812 (2020).
187. Ciriminna R et al., Pectin production and global market. Agro Food Ind Hi-Tech 27(5):17–20 (2016).
188. Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafiyadeh M, Han SS, Khang G et al., Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: a review. Polymers 12(1):176 (2020).
189. Hassan S, Positive aspects of weeds as herbal remedies and medicinal plants. J Res Weed Sci 3:57–70 (2020).
190. Avachat AM, Dash RR and Shrotriya SN, Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Ind J Pharm Edu Res 45(1):86–99 (2011).

Muhammad Muneeb Ahmad

Muhammad Muneeb Ahmad received his MPhil degree in analytical chemistry from Government College University Faisalabad, Pakistan, in 2020. He conducted research in green chemistry, carbohydrate chemistry, and medicinal chemistry, and published more than five articles. He completed his internship at CEPS, Pakistan Council of Scientific and Industrial Research (CEPS), Pakistan Council of Scientific and Industrial Research, Laboratories Complex Lahore, Pakistan, during his undergraduate study. His research interests are the structural and functional characterization of biopolymers and their composite materials for value-added applications. He has collaborated with the Engineering and Physical Sciences Research Council (EPSRC) for mutual research interests.

Shahzad Ali Shahid Chatha

Shahzad Ali Shahid Chatha received his MSc, MPhil, and PhD degrees in analytical chemistry from the University of Agriculture Faisalabad, Pakistan, in 2004, 2006, and 2011, respectively. In 2006, he joined Government College University Faisalabad, Pakistan, as a lecturer in chemistry and he was promoted to assistant professor of chemistry in 2011. He joined the University of Western Ontario Canada as a postdoc researcher in 2015, and after successful completion of his postdoctoral study he was promoted to associate professor of chemistry at Government College University Faisalabad, Pakistan, in 2017. He has about 90 national and international research publications to his credit. He has supervised more than 90 research students. His research interests are food/pharmaceutical chemistry and textile/environmental chemistry. He is currently working on ‘Synthesis and characterization of fly ash-based zeolites and zeolites synergized photocatalysts for wastewater treatment.’

Yasir Iqbal

Yasir Iqbal obtained his MPhil in analytical chemistry from Government College University Faisalabad, Pakistan, in 2017. He is currently a PhD scholar at Government College University Faisalabad. In 2021 he started working with the University of Sialkot as lecturer in research chemistry. He was awarded the International Research Support Initiative Program (IRSIP), a fellowship Program by the Higher Education Commission of Pakistan at the University of Alberta, Canada in 2022. He has three published scientific articles. His research interests are natural polymers, polymer composites, and their pharmaceutical applications.
Abdullah Ijaz Hussain
Abdullah Ijaz Hussain received his doctoral degree in analytical chemistry from the University of Agriculture Faisalabad, Pakistan, and the University of Ulster Coleraine, UK (split program) in 2009. He completed his 1 year post-doctorate research at the School of Pharmaceutical Sciences, the University of Sains Malaysia in 2012 under The World Academy of Sciences (TWAS) postdoc fellowship. He is currently working as a professor of analytical chemistry at the Department of Chemistry, Government College University Faisalabad. He is also working as director of Central Hi-Tech Lab. He has published more than 100 articles in journals of international repute. He has supervised seven PhD, 41 MPhil, and 21 MSc students so far. He is an active member of professional bodies including a life member of Chartered Society of Physiotherapy (CSP), an affiliated member of International Union of Pure and Applied Chemistry (IUPAC) and a member of American Oil Chemist’s Society (AOCS). His research interests lie in the analytical characterization of natural products, medicinal chemistry, and polymer chemistry.

Ikramullah Khan
Ikramullah Khan is an assistant professor of pharmaceutics at the Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan. He obtained his PhD from the Faculty of Pharmacy, University of Strasbourg, France, focusing on microfluidic techniques to obtain multiple morphologies like microbeads, Janus, core-shell, Trojan etc., for pharmaceutical applications. Fourteen master degree and three PhD students have completed their degrees under his supervision. He has published more than 100 papers in journals with a cumulative impact factor above 300. He is interested in the formulation and development of macro, micro, and nanocarriers based on various natural and synthetic polymers for various drug delivery applications such as controlled release, targeted delivery, and wound healing.

Fengwei Xie
Dr Fengwei Xie is currently an EPSRC Fellow at Newcastle University, UK. He was a Marie Curie Fellow at the University of Warwick. Before moving to the UK, he worked as a postdoctoral research fellow/research fellow at the University of Guelph (Canada) and the University of Queensland (Australia). Dr Xie specializes in polymer engineering and science. His research particularly focuses on biopolymers (polysaccharides and proteins) for both materials and food applications. He has a particular research focus on biopolymers (polysaccharides and proteins), which can be sourced readily from renewable biomass, to develop biodegradable and biocompatible ‘green’ materials. His research also largely involves understanding the functionality of polysaccharides for food applications. He is interested in unique structures (macro-, nano- and molecular scales) to deliver polymeric materials and composites with high performance and functionality and suitable end-of-life consideration for specific applications. He has led and has been involved in multiple research projects supported by different sources. His research has led to over 100 refereed journal publications with over 8000 citations (Google Scholar). He is an editorial board member for several journals such as Carbohydrate Polymers, Coatings, and PLOS ONE.