Thermal Fluctuations of the Optical Properties of Nanomechanical Photonic Metamaterials

Jinxiang Li, Dimitrios Papas, Tongjun Liu, Jun-Yu Ou,* Kevin F. MacDonald,* Eric Plum,* and Nikolay I. Zheludev

The combination of optical and mechanical resonances offers strong hybrid nonlinearities, bistability, and the ability to efficiently control the optical response of nanomechanical photonic metamaterials with electric and magnetic field. While optical resonances can be characterized in routine transmission and reflection experiments, mapping the high-frequency mechanical resonances of complex metamaterial structures is challenging. Here, it is reported that high-frequency time-domain fluctuations in the optical transmission and reflection spectra of nanomechanical photonic metamaterials are directly linked to thermal motion of their components and can give information on the fundamental frequencies and damping of the mechanical modes. This is demonstrated by analyzing time-resolved fluctuations in the transmission and reflection of dielectric and plasmonic nanomembrane metamaterials at room temperature and low ambient gas pressure. These measurements reveal complex mechanical responses, understanding of which is essential for optimization of such functional photonic materials. At room temperature the magnitude of the observed metamaterial transmission and reflection fluctuations is of order 0.1% but may exceed 1% at optical resonances.

1. Introduction

The thermal vibration frequencies of components of nanomechanical devices increase as objects decrease in size and the amplitude of such oscillations becomes increasingly important. In nanomechanical devices, they are of picometric scale in the mega- to gigahertz range and add noise to induced controlled movements that underpin the functionality. For example, thermal vibrations in nanomechanical photonic metamaterials result in small fluctuations of their optical properties and may perturb their switching characteristics. These fluctuations provide an opportunity for the characterization of mechanical properties. In particular, this applies to highly sensitive photonic metamaterials formed as periodic arrays of optical resonators supported by flexible nanomembrane structures, which show giant electro-optical, magneto-electro-optical, acousto-optical, phase change, and nonlinear optical responses. In this paper, we experimentally investigate thermal fluctuations in dielectric and plasmonic nanomechanical photonic metamaterials in the megahertz frequency range. We demonstrate how measuring the spectra of such fluctuations in transmittance and reflectance can be used to determine the main frequencies of the nanostructures' natural oscillations, at which they can be efficiently driven by external stimuli, and their damping characteristics. We study these fluctuations in photonic metamaterials comprising arrays of metamolecules supported on beams (strings) cut from membranes of nanoscale thickness, as illustrated by Figure 1.

2. Brownian Motion and Optical Properties of Nanostructured Materials: Theoretical Background

Classical Brownian motion experiments reveal how a microscopic particle is driven in chaotic motion externally by collisions with molecules of ambient gas or liquid. The majority of nanomechanical photonic metamaterials are constructed from cantilevers or doubly clamped beam-like components of microscopic length and nanoscopic cross section. The thermal motion of such structures under vacuum is driven internally by momentum transfer resulting from the interference, annihilation and creation of incoherent flexural phonons in the main mechanical modes. (The emission and absorption of thermal photons are not important due to the low momentum of such photons.)
Nano-components such as beams and cantilevers can be modeled as damped mechanical oscillators.\(^{[9]}\) Considering structures located in the \(xy\)-plane, engaged in thermal motion in the \(z\)-direction, the Langevin equation for such motion can be written as\(^{[10]}\)

\[
\ddot{z} + 2\eta \dot{z} + \omega_0^2 z = F_{th}(t) / m_{eff} = \sqrt{4\pi k_{B}T_f / m_{eff}} \eta(t)
\]

where \(F_{th}(t)\) is the time-dependent thermal force experienced by the oscillator related to the dissipation factor \(\gamma\) through the fluctuation-dissipation theorem, \(\eta(t)\) is a normalized white noise term, \(m_{eff}\) is the effective mass of the object, \(k_B\) is the Boltzmann constant, \(T\) is the temperature, \(\omega_0 = 2\pi f_0 = \sqrt{k / m_{eff}}\) is the natural angular frequency of oscillation, \(f_0\) is the natural frequency, and \(k\) is the spring constant. The resonance quality factor \(Q = \omega_0 / \gamma\) in the limit of small damping, \(\gamma \ll f_0\), as we assume here.

The origins of mechanical dissipation have been intensively studied over the past decades.\(^{[10,11]}\) The most relevant loss mechanisms include damping losses due to propagation of elastic waves into the substrate through the supports of the oscillator, fundamental anharmonic effects such as thermoelastic damping and phonon–phonon interactions, material-induced losses caused by the relaxation of intrinsic or extrinsic defect states in the bulk or surface of the resonator, and, where applicable, viscous damping caused by interactions with surrounding gas atoms or by compression of thin fluidic layers.

Thermomechanical fluctuations of a component's position \(z(t)\) are transduced to fluctuations in the intensity of light scattered on the component, \(S(f) = \frac{\partial^2 \mu(z,F)}{\partial z^2} I_0 \delta z(t)\), where \(I_0\) and \(l = \mu(z,F) I_0\) are the intensities of the incident and scattered light respectively, and \(\mu(z,F)\) is, generally, a nonlinear function of the component's displacement \(z\) and optical frequency \(F\). As, in a stochastic process, the power spectral density is equal to the Fourier transform of its autocorrelation function,\(^{[12]}\) the scattered light amplitude spectral density \(S(f)\) resulting from small thermomechanical fluctuations in position \(\delta z(t)\) is

\[
S(f) = \frac{\partial^2 \mu(z,F)}{\partial z^2} I_0 \delta z(t) = \frac{k_B T_f}{2 \pi m_{eff}} \left[(f_z^2 - f^2)^2 + (f f_z / Q)^2 \right]
\]

In a nanomechanical photonic metamaterial, a non-diffracting array of identical oscillating components, the same formula will describe the spectra of fluctuations of the intensity of light reflected \(R\) by and transmitted \(T\) through the metamaterial (Figure 1). Fluctuations \(S^{\pm T}\) of the metamaterial's specular reflectance/transmittance correspond to the ratio between the amplitudes of fluctuating and non-fluctuating components of the reflected/transmitted light, that is, Equation (2) divided by the incident intensity \(I_0\) and optical reflectance/transmittance of the metamaterial without displacement, \(\mu_0^{\pm T}(F) = \mu^{\pm T}(0,0)\)

\[
S^{\pm T}(f) = \frac{\delta I^{\pm T}}{I^{\pm T}} = \frac{1}{\mu_0^{\pm T}(F)} \frac{\partial \mu^{\pm T}(z,F)}{\partial z} \bigg|_{z=0} \left[k_B T_f \right] \sqrt{2 \pi m_{eff} Q [(f_z^2 - f^2)^2 + (f f_z / Q)^2]}
\]

At the mechanical resonance, \(f = f_0\), this modulation depth spectral density reaches a peak value of

\[
S^{\pm T}(f_0) = \frac{1}{\mu_0^{\pm T}(F)} \frac{\partial \mu^{\pm T}(z,F)}{\partial z} \bigg|_{z=0} \left[k_B T_f \right] \sqrt{2 \pi m_{eff} f_0^2}
\]

Reflectance/transmittance fluctuations over a range of mechanical frequencies can be calculated by integration over the power spectral density of the fluctuations

\[
\delta I^{\pm T} / I^{\pm T} = \frac{1}{\mu_0^{\pm T}(F)} \frac{\partial \mu^{\pm T}(z,F)}{\partial z} \bigg|_{z=0} \left[k_B T_f \right] \sqrt{2 \pi m_{eff} \int f f_z / Q df}
\]

Integration from 0 to \(\infty\), or at least over the whole resonance, gives the root-mean-square (RMS) fluctuations

\[
\delta I^{\pm T}_{RMS} / I^{\pm T} = \frac{1}{\mu_0^{\pm T}(F)} \frac{\partial \mu^{\pm T}(z,F)}{\partial z} \bigg|_{z=0} \left[k_B T_f \right] \sqrt{4 \pi m_{eff} f_0^2}
\]

where the final term corresponds to the RMS beam displacement

\[
\delta z_{RMS} = \left[k_B T_f \right] \sqrt{4 \pi m_{eff} f_0^2}
\]

From here it is apparent that fluctuations of transmission and reflection will be largest at high temperatures, in metamaterials constructed from very light (low \(m_{eff}\)) building blocks, and at optical frequencies where transmission and reflection depend strongly on displacements of said building blocks. The largest fluctuations over a narrow spectral range \(\delta f\) will be seen at high quality mechanical resonances \[Equation (4]\]. As such, we should expect thermal fluctuations of optical properties to be strongest in highly optically dispersive nanomechanical metamaterials.

Assuming metamaterial beams, such as those shown in Figure 1, with an effective mass \(m_{eff} = 1\) pg and mechanical quality factor of \(Q = 1000\) moving at a damped frequency

\[

Figure 1. Thermal fluctuation of nanomechanical metamaterial optical properties. The photonic metamaterial is an array of beams of nanoscale width and thickness in the \(xy\) plane. The beams, typically a few tens of microns long, support a periodic array of optical resonators of nanoscale (subwavelength) dimensions. The optical properties of such arrays can be controlled via nanostructural reconfiguration driven by external stimuli such as electromagnetic forces, optical and acoustic waves.\(^{[2–4,7,8]}\) Pico- and optical and acoustic waves.\(^{[2–4,7,8]}\) Pico-
f_0 = 2 MHz, and a typical change in optical properties (i.e., specular reflectance and transmittance) with beam displacement of
\[\frac{\partial \mu}{\mu_0 \partial z} \approx 1\% \text{ nm}^{-1}, \]
onel once may expect to observe an RMS thermomechanical displacement amplitude of \(\delta \text{RMS} = 160 \text{ pm} \) at the center of the beams at room temperature, resulting in a 0.16% RMS fluctuation of optical properties. At the mechanical resonance, the corresponding spectral densities of displacement and optical property modulation reach peak values of 3 pm Hz^{-1/2} and \(3 \times 10^{-5} \text{ Hz}^{-1/2} \), respectively.

Thus, in nanomechanical photonic metamaterials, thermal fluctuations are transduced to fluctuations of optical properties that determine their functional noise floor and dynamic range. At the same time, observation of the spectra of thermal oscillations gives direct access to the resonant frequencies of natural mechanical modes at which the photonic metamaterial will be most responsive to external stimuli. This information on fluctuation and responsivity of the mechanical sub-system can help in the design of more efficient metadevices.\footnote{13} Moreover, nanomechanical photonic metamaterials typically comprise large arrays of nominally identical elements (e.g., metamolecules, beams, etc.), but in practice, with physical characteristics affected by fabrication tolerances, individual nanomechanical oscillators are endowed with slightly different natural frequencies. This results in the degradation of optical functionality. In the case where the natural frequencies of individual oscillators are closely spaced compared to the widths of their characteristically Lorentzian lines, the result will be an inhomogeneously broadened metamaterial mechanical resonance. Where the spacing is larger, the resonances of individual oscillators may be resolved. Measurements of the spectra of thermal oscillations can provide insight into the nature of such metamaterial resonance broadening and splitting.

Previously, transduction of natural oscillations to modulation of light has been observed in cantilevers,\footnote{14} antennas,\footnote{15} microresonators,\footnote{16} and optomechanical systems,\footnote{17} and exploited in atomic force microscopy.\footnote{18} Here, we focus on the role of thermal oscillation in forming the optical properties of nanomechanical photonic metamaterials.

3. Brownian Motion and the Optical Properties of Metamaterials: Experimental Observation

Below we examine thermal fluctuations in the optical properties of two common types of photonic metamaterial: plasmonic and all-dielectric nanomechanical metamaterials fabricated on membranes of nanoscale thickness.\footnote{2,3,5–8,19–21} Both the plasmonic and dielectric metamaterials consist of 2D arrays of nanoscale optical resonators supported by 1D arrays of mechanical resonators, which are flexible beams of microscale length cut from a silicon nitride membrane by focused ion beam (FIB) milling. (Due to their planar, monolayer geometry, such metamaterial structures are also sometimes known as metasurfaces.)

The all-dielectric metamaterial shown in Figure 2a,c was fabricated on a 200 nm thick silicon nitride membrane coated...
with a 115 nm layer of amorphous silicon by plasma-enhanced chemical vapor deposition. This bilayer was then structured by FIB milling to define an array of asymmetric nanorod pairs in the amorphous silicon layer, on 20.3 μm long silicon nitride beams. The structure supports a closed mode optical resonance[22] at a wavelength of 1530 nm, underpinned by the excitation of antiparallel displacement currents in the pair of amorphous silicon nanorods[23] (Figure 2a and Figure 3).

The plasmonic metamaterial shown in Figure 2b,d was manufactured on a 50 nm thick silicon nitride membrane coated with a 50 nm layer of gold by thermal evaporation. This bilayer was then structured by FIB milling to define gold nanorods, in groups of three per unit cell in a Π-shaped arrangement split across two adjacent 14.4 μm long silicon nitride beams. The Π-shaped nanorod arrangement supports a Fano-type optical resonance[7,24] at a wavelength of 1350 nm, resulting from the

![Graphs showing optical properties](image)

Figure 3. Optical properties of the dielectric and plasmonic nanomechanical metamaterials. a,b) Experimentally measured and c,d) computed optical reflection (μ_r^0), transmission (μ_t^0) and absorption (μ_a^0) spectra of the dielectric and plasmonic metamaterials. e,f) Computed values of (Δμ_r^0/μ_r^0), a figure of merit of responsivity of the metamaterial’s optical properties to the relative displacement of neighboring beams along z at different levels of displacement. The insets show the dependence of (Δμ_r^0/μ_r^0) on displacement at wavelengths of 1550 and 1310 nm, respectively. Positive displacement corresponds to the movement of narrower beams along +z relative to wider beams; all results are for x-polarized light.
interference between a “bright” dipole mode excited in the larger gold nanorod and an antisymmetric and “dark” magnetic dipole mode induced in the pair of smaller nanorods (Figures 2b and 3).

The dielectric and plasmonic metamaterial structures presented in Figure 2 and studied in this work are types that can be reconfigured: a) thermally, by changing the external temperature due to differential thermal expansion of neighboring beams;[21] b) optically, whereby the displacement of neighboring beams is driven by optical heating and the interaction between oscillating electric dipoles induced by the incident light;[7,8] c) acoustically, by ultrasonic vibrations;[4] d) electrostatically, by the Coulomb force between charged neighboring beams[2] or selected beams and another electrode;[20] and e) magnetically, by the Lorentz force acting in a static magnetic field on a current passing through the beams.[3] (In the latter two cases an electrically conductive layer must be added to the structure.)

In both types of metamaterial, whatever the actuation mechanism, differential movements between neighboring beams change the unit cell geometry and thereby the optical properties of the array. In such structures, the frequencies of the fundamental mechanical oscillatory modes f_0 of the beams lie in the megahertz range. At the same time, the optical properties of the metamaterials are most sensitive to the beam movements when the optical frequency F is near either a plasmonic or dielectric resonance, where the value of $\left.\frac{\partial S}{\partial z}\right|_{z=0}$ [see Equations (3)–(6)] can be much higher than it is off-resonance. Here, the variation of optical properties is generally a nonlinear function of beam displacement, but may be approximately linear for sufficiently small displacements. This is illustrated by 3D finite element Maxwell solver simulations of the resonant optical properties of the arrays for different levels of mutual displacement between neighboring beams (Figure 3e,f). For instance, for displacements of up to 40 nm, the reflectivity of the plasmonic metamaterial at a wavelength of 1310 nm changes linearly with displacement (Figure 3f), while transmission of the dielectric metamaterial at 1550 nm changes approximately parabolically with displacement (Figure 3e).

Thermal fluctuations in the optical properties of the dielectric and plasmonic nanomechanical metamaterials were studied at wavelengths of 1550 nm (transmission mode, 19.6 µW incident power) and 1310 nm (reflection mode, 48.2 µW power) respectively with x-polarized CW laser light and ≈ 5 µm spot sizes. The metamaterial samples were mounted in a vacuum chamber at a pressure of 4–5 µbar to reduce air damping of the mechanical modes. The intensity of light transmitted and

Figure 4. Thermal fluctuation of nanomechanical metamaterial optical properties. Measured spectral density of a) transmittance modulation S' and b) reflectance modulation S' by dielectric and plasmonic metamaterials, respectively. Resonant peak widths Δf are labeled in kHz and insets show enlarged examples of single (double) resonant peaks with single (double) Lorentzian fits. Frequencies of the fundamental out-of-plane resonances (insets) of the c) dielectric and d) plasmonic metamaterial beams for different levels of tensile stress σ. Simulated resonance frequencies of the nanostructured beams (data points) are shown with a fit according to Equation (8) (lines).
reflected from the samples was monitored with a photodetector and a radio frequency spectrum analyzer.

As expected from Equation (3), in the spectra of transmitted and reflected light we observe a range of sharp peaks linked to the thermal movements of the silicon nitride beams at their natural frequencies in the megahertz range (Figure 4a,b). Here, the peaks are observed against a flat background of the photodetector noise floor. The magnitude of the underlying thermal RMS beam displacements is \(\approx 50 \text{ pm} \approx 160 \text{ pm} \) for the dielectric (plasmonic) metamaterial beams at room temperature, according to Equation (7). The average quality factor of the observed mechanical resonances for the dielectric metamaterial is \(1.6 \times 10^3 \), slightly higher than the quality factor of \(1.0 \times 10^3 \) for the plasmonic metamaterial.

In both cases, we see an isolated group of several peaks with Lorentzian profiles, which overlap in the case of closely spaced resonances (insets of Figure 4b). The collective mechanical response of the metamaterial is the sum of the individual responses of its mechanical elements. Due to a wide distribution of resonance frequencies over a small number of mechanical resonators, we resolve the individual resonances as a group of Lorentzian lines (i.e. each associated with a different beam within the structure), rather than spectral broadening of a single peak. (The beams are necessarily coupled through the supporting membrane, but we do not observe any evidence of coupling effects such as synchronization.) Here, the main cause of variations in the resonance frequencies of individual, nominally identical beams is most likely disparities in beam tension across the sample resulting from the non-uniformity of intrinsic stress in the membrane, rather than variations of their physical dimensions. These variations in tensile stress across the metamaterials, leading to the spread of individual peak frequencies, can be evaluated via Euler–Bernoulli beam theory,\(^{[12,25]}\) which gives the stress-dependent fundamental frequency of a doubly clamped beam of rectangular cross section as

\[
f_0 = 1.03 \frac{L}{E} \sqrt{\frac{E}{\rho} \left(1 + \frac{\sigma L}{3.4 E B^2} \right)}
\]

where \(t \) is the beam thickness, \(E \) the Young’s modulus, \(\rho \) the density of the material, and \(\sigma \) the tensile stress along the beam length.

Figure 4c,d, illustrating the relationship between stress and fundamental frequency, shows that for both the plasmonic and dielectric metamaterials, the observed variations in fundamental mechanical resonance frequencies of beams are explainable by tensile stress variations from beam to beam of \(\approx 30 \text{ MPa} \). This is not a surprising number as stresses of between several hundred megapascals and a gigapascal are common in unstructured silicon nitride membranes,\(^{[26]}\) which can result in post FIB-fabrication stress variations across metamaterial arrays.

Inhomogeneous illumination of several beams within the optical spot profile can also contribute to inhomogeneous shifts of beam frequencies through thermal expansion of the beam length, which reduces stress: \(\sigma = \sigma_0 - \alpha E \Delta T \), where \(\sigma_0 \) is the initial tensile stress, \(\alpha \) the thermal expansion coefficient of the material, and \(\Delta T \) the temperature change. Considering conductive cooling, in our experiments, the laser-induced temperature increases reach \(\approx 10 \text{ K} \) in the plasmonic metamaterial and \(\approx 1 \text{ K} \) in the dielectric metamaterial. For a silicon nitride beam with an initial stress of 30 MPa, such a temperature increase translates to around 20% stress reduction in the plasmonic metamaterial (2% for the dielectric metamaterial). In the present cases, this translates to a 6% (2%) decrease in resonance frequency (Figure 3c,d). We observe a significantly larger spread of resonance frequencies, with the lowest resonance frequency being 24% (7%) smaller than the largest, suggesting that the observed spread of resonance frequencies is mainly due to intrinsic stress variations of the beams.

Fluctuations in the optical properties of the metamaterials are presented in terms of \(S^\text{r.t} \), the relative spectral density of reflectance/transmittance modulation (Figure 4a,b). To evaluate the root-mean-square of relative fluctuation of optical properties \(\delta R_{\text{RMS}} / R^{\text{r.t}} \) resulting from thermomechanical fluctuations we need to integrate, as shown by Equation (5), over the entire frequency range. If only fundamental mechanical modes of the metamaterial beams are taken into account, this integral can be approximated as \(S_0 \sqrt{N A f} \), where \(N \) is the number of peaks/modes and \(S_0 \) and \(\Delta f \) are the average amplitude and width of the peaks, respectively.

From the data presented in Figure 4a,b, we can evaluate the level of transmission fluctuation as \(\delta R_{\text{RMS}} / R^{\text{r.t}} = 0.05\% \) for the dielectric metamaterial at 1550 nm, and the level of reflection fluctuation as \(\delta R_{\text{RMS}} / R^{\text{r.t}} = 0.1\% \) for the plasmonic metamaterial at 1310 nm. These values can increase to about \(\delta R_{\text{RMS}} / R^{\text{r.t}} = 0.25\% \) and \(\delta R_{\text{RMS}} / R^{\text{r.t}} = 1.5\% \) at the dielectric and plasmonic resonances (Figure 3e,f).

Finally, we shall note that thermal fluctuations can give rise to nonlinear effects. The nonlinearity of coupling between metamaterial optical properties \(\mu(z, F) \) and beam displacements \(z \) will result in fluctuations of the optical properties at harmonics of the fundamental mechanical oscillation frequency \(f_0 \). Moreover, the mechanical motion itself may be thermally excited into the nonlinear regime. In the case of beams anchored at both ends, the oscillation becomes nonlinear when its amplitude becomes comparable to the beam thickness \(t \) divided by the square root of the mechanical quality factor \(Q^{[27]} \) a beam with length \(L \), width \(w \), and thickness \(t \) enters the nonlinear regime of thermal motion when

\[
L > 2.6 \left(\frac{E w t^3}{Q_0 k T} \right)^{1/3}
\]

As an example, at room temperature, a silicon nitride beam of rectangular 100 nm \(\times \) 100 nm cross section and quality factor \(Q = 1000 \) will enter the nonlinear regime of Brownian motion when \(L > 100 \text{ nm} \). Such effects though lie beyond the scope of the present study, as the sub-200-pm RMS displacements of our metamaterial beams are too small. The emergence of nonlinearity in our structures would require displacements of several nanometers.

4. Conclusion

In conclusion, we have observed that the optical properties of dielectric and plasmonic nanomechanical photonic metamaterials at near-infrared (telecoms) wavelengths exhibit thermal fluctuations of order 0.1%., rising potentially to >1% at optical resonances. The spectra of fluctuations enable metamaterial characterization...
at the level of individual mechanical elements. They provide exact information on the frequencies at which a nanomechanical photonic metamaterial can be efficiently actuated by external stimuli, providing insight to mechanisms of broadening and splitting of mechanical resonances in metamaterials, and aiding in the optimization of their performance. Beyond metamaterials, our approach may be applied to the characterization of mechanical resonances of similar micro-/nanostructures, e.g., in nanoelectromechanical and biological systems.

Acknowledgements

J.L. and D.P. contributed equally to this work. This work was supported by the UK Engineering and Physical Sciences Research Council (Grant Nos. EP/M009122/1 and EP/T02643X/1), Singapore Ministry of Education (Grant No. MOE2016-T3-1-006 (S)), and China Scholarship Council (201708440254, 201806160012).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are openly available from the University of Southampton ePrints research repository at https://doi.org/10.5258/SOTON/D1887.

Keywords

Brownian motion, metamaterials, metasurfaces, nanomechanics, photonics

Received: August 2, 2021
Revised: November 9, 2021
Published online.

[1] N. I. Zheludev, E. Plum, Nat. Nanotechnol. 2016, 11, 16.
[2] J. Y. Ou, E. Plum, J. Zhang, N. I. Zheludev, Nat. Nanotechnol. 2013, 8, 252.
[3] J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, N. I. Zheludev, Nat. Commun. 2015, 6, 7021.
[4] D. Papas, J. Y. Ou, E. Plum, N. I. Zheludev, presented at Nanometa, Seefeld, Austria, January 2019.
[5] Y. Nagasaki, B. Gholipour, J. Y. Ou, M. Tsuruta, E. Plum, K. F. MacDonald, J. Takahara, N. I. Zheludev, Appl. Phys. Lett. 2018, 113, 021105.
[6] A. Karvounis, J. Y. Ou, W. Wu, K. F. MacDonald, N. I. Zheludev, Appl. Phys. Lett. 2015, 107, 191110.
[7] J. Y. Ou, E. Plum, J. Zhang, N. I. Zheludev, Adv. Mater. 2016, 28, 729.
[8] J. Zhang, K. F. MacDonald, N. I. Zheludev, Light Sci. Appl. 2013, 2, e96.
[9] a) G. E. Uhlenbeck, L. S. Ornstein, Phys. Rev. 1930, 36, 823; b) G. S. Agarwal, Phys. Rev. A 1971, 4, 739; c) S. Chandrasekhar, Rev. Mod. Phys. 1943, 15; d) G. I. González, P. R. Saulson, J. Acoust. Soc. Am. 1994, 96, 207.
[10] A. N. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications, Springer Science & Business Media, Berlin 2013.
[11] M. Bückle, Y. S. Klaß, F. B. Nägeler, R. Braive, E. M. Weig, Phys. Rev. Appl. 2021, 15, 034063.
[12] B. D. Hauer, C. Doolin, K. S. D. Beach, J. P. Davis, Ann. Phys. 2013, 339, 181.
[13] N. I. Zheludev, Y. S. Kivshar, Nat. Mater. 2012, 11, 917.
[14] K. B. Gavan, Ph.D. Thesis, 2009.
[15] R. Thijsen, T. J. Kippenberg, A. Polman, E. Verhagen, Nano Lett. 2015, 15, 3971.
[16] R. Thijsen, T. J. Kippenberg, A. Polman, E. Verhagen, ACS Photonics 2014, 1, 1181.
[17] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light, Springer Berlin 2014.
[18] G. Meyer, N. M. Amer, Appl. Phys. Lett. 1988, 53, 1045.
[19] J. Y. Ou, E. Plum, N. I. Zheludev, Appl. Phys. Lett. 2018, 113, 081104.
[20] Q. Zhang, E. Plum, J. Y. Ou, H. Pi, J. Li, K. F. MacDonald, N. I. Zheludev, Adv. Opt. Mater. 2021, 9, 2001826.
[21] E. P. J. Y. Ou, L. Jiang, N. I. Zheludev, Nano Lett. 2011, 11, 2142.
[22] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, Phys. Rev. Lett. 2007, 99, 147401.
[23] a) V. V. Khardikov, E. O. Iarko, S. L. Prosvirnin, N. I. Zheludev, Phys. Rev. Lett. 2012, 108, 035103; b) J. Zhang, K. F. MacDonald, N. I. Zheludev, Opt. Express 2013, 21, 26721.
[24] a) S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 2008, 101, 047401; b) B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nat. Mater. 2010, 9, 707.
[25] A. Bokaiaia, J. Sound Vib. 1990, 142, 481.
[26] S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, J. Electron. Mater. 1990, 19, 903.
[27] S. Schmid, L. G. Villanueva, M. L. Roukes, Fundamentals of Nanomechanical Resonators, Springer Berlin 2016.
[28] J. Li, D. Papas, T. Liu, J. Y. Ou, K. F. MacDonald, E. Plum, N. I. Zheludev, Dataset for Thermal Fluctuations of the Optical Properties of Nanomechanical Photonic Metamaterials, University of Southampton ePrints research repository 2021, https://doi.org/10.5258/SOTON/D1887.