THE SEMI-INFINITE INTERSECTION COHOMOLOGY SHEAF-II:
THE RAN SPACE VERSION

DENNIS GAITSGORY

To Sasha Beilinson and Vitya Ginzburg

Abstract. This paper is a sequel to [Ga1]. We define the semi-infinite category on the Ran version
of the affine Grassmannian, and study a particular object in it, denoted IC_{Ran}^{\infty}, which we call the
semi-infinite intersection cohomology sheaf.

Unlike the situation of [Ga1], this IC_{Ran}^{\infty} is defined as the middle of extension of the constant
(more precisely, dualizing) sheaf on the basic stratum, in a certain t-structure. We give several
explicit descriptions and characterizations of IC_{Ran}^{\infty}: we describe its ! and * stalks; we present it
explicitly as a colimit; we relate it to the IC sheaf of Drinfeld’s relative compactification \overline{Bun}_N;
we describe IC_{Ran} via the Drinfeld-Plucker formalism.

Contents

Introduction
0.1. What are trying to do?
0.2. What is done in this paper?
0.3. Organization
0.4. Background, conventions and notation
0.5. Acknowledgements
1. The Ran version of the semi-infinite category
1.1. The Ran Grassmannian
1.2. The semi-infinite category
1.3. Stratification
1.4. The category on a single stratum
1.5. Interaction between the strata
1.6. An aside: the ULA property
1.7. An application of Braden’s theorem
2. The t-structure and the semi-infinite IC sheaf
2.1. The t-structure on the semi-infinite category
2.2. Definition of the semi-infinite IC sheaf
2.3. Digression: from commutative algebras to factorization algebras
2.4. Restriction of IC_{Ran}^{\infty} to strata
2.5. Digression: categories over the Ran space
2.6. Presentation of IC_{Ran}^{\infty} as a colimit
2.7. Presentation of IC_{Ran}^{\infty} as a colimit
2.8. Description of the *-restriction to strata
2.9. Proof of coconnectivity
3. The semi-infinite IC sheaf and Drinfeld’s compactification
3.1. Drinfeld’s compactification
3.2. The global semi-infinite category

Date: November 4, 2021.
3.3. Local vs global compatibility for the semi-infinite IC sheaf
3.4. The local vs global compatibility for the semi-infinite category
3.5. Proof of Proposition 3.4.5
3.6. The key isomorphism
3.7. Proof of Proposition 3.6.3
3.8. Relation to the IC sheaf on Zastava spaces
3.9. Computation of fibers
4. Unital structure and factorization
4.1. Unital structure on the affine Grassmannian
4.2. Unital structure on the strata
4.3. Local-to-global comparison, revisited
4.4. The t-structure on the unital category
4.5. Comparison with IC on Zastava spaces, continued
4.6. Factorization structure on IC∞
4.7. Factorization and Zastava spaces
5. The Hecke property of the semi-infinite IC sheaf
5.1. Pointwise Hecke property
5.2. Categories over the Ran space, continued
5.3. Digression: right-lax central structures
5.4. Hecke and Drinfeld-Plücker structures
5.5. The Hecke property–enhanced statement
5.6. Recovering the pointwise Hecke structure
6. Local vs global compatibility of the Hecke structure
6.1. The relative version of the Ran Grassmannian
6.2. Hecke property in the global setting
6.3. Local vs global compatibility
6.4. Proof of Theorem 6.3.5
Appendix A. Proof of Theorem 3.4.4
A.1. The space of G-bundles with a generic reduction
A.2. Towards the proof of Theorem A.1.10
A.3. Proof of Theorem A.2.3
A.4. Proof of Theorem A.3.3 for H reductive
References

INTRODUCTION

0.1. What are trying to do?

0.1.1. This paper is a sequel of [Ga1]. In loc. cit. an attempt was made to construct a certain object, denoted IC∞, in the (derived) category Shv(GrG) of sheaves on the affine Grassmannian, whose existence had been predicted by G. Lusztig.

Notionally, IC∞ is supposed to be the intersection cohomology complex on the closure S^0 of the unit $N((t))$-orbit $S^0 \subset Gr_G$. Its stalks are supposed to be given by periodic Kazhdan-Lusztig polynomials. Ideally, one would want the construction of IC∞ to have the following properties:

- It should be local, i.e., only depend on the formal disc, where we are thinking of Gr_G as $G((t))/G[[t]]$;
- When our formal disc is the formal neighborhood of a point x in a global curve X, then $IC\hat{\bigodot}$ should be the pullback along the map $\overline{S^0} \to \overline{\text{Bun}_N}$ of the intersection cohomology sheaf of $\overline{\text{Bun}_N}$, where the latter is Drinfeld’s relative compactification of the stack of G-bundles equipped with a reduction to N (which is an algebraic stack locally of finite type, so $\text{IC}_{\overline{\text{Bun}_N}}$ is well defined).
The construction in \cite{Ga1} indeed produced such an object, but with the following substantial drawback: in loc. cit., IC\(\mathcal{P}\) was given by an ad hoc procedure; namely, it was written as a certain explicit direct limit. In particular, IC\(\mathcal{P}\) was not the middle extension of the constant sheaf on \(S^0\) with respect to the natural t-structure on Shv(Gr\(G\)) (however, IC\(\mathcal{P}\) does belong to the heart of this t-structure).

0.1.2. In the present paper we will construct a variant of IC\(\mathcal{P}\), denoted IC\(\mathcal{P}_{Ran}\), closely related to IC\(\mathcal{P}\), that is actually given by the procedure of middle extension in a certain t-structure.

Namely, instead of the single copy of the affine Grassmannian Gr\(G\), we will consider its Ran space version, denoted Gr\(G,\text{Ran}\). We will equip the corresponding category Shv(Gr\(G,\text{Ran}\)) with a t-structure, and we will define IC\(\mathcal{P}_{Ran}\) as the middle extension of the dualizing sheaf on \(S^0_{\text{Ran}} \subset \text{Gr}_{G,\text{Ran}}\).

Remark 0.1.3. Technically, the Ran space is attached to a smooth (but not necessarily complete) curve \(X\), and one may think that this somewhat compromises the locality property of the construction of IC\(\mathcal{P}_{Ran}\). However, if one day a formalism becomes available for working with the Ran space of a formal disc, the construction of IC\(\mathcal{P}_{Ran}\) will become purely local.

0.1.4. For a fixed point \(x \in X\), we have the embedding
\[
\text{Gr}_G \simeq \{x\} \times_{\text{Gr}_{G,\text{Ran}}} \text{Gr}_{G,\text{Ran}},
\]
and we will show that the restriction of IC\(\mathcal{P}_{Ran}\) along this map recovers IC\(\mathcal{P}\) from \cite{Ga1}.

0.1.5. Our IC\(\mathcal{P}_{Ran}\) retains the relation to IC\(\text{Bun}_N\). Namely, we have a natural map
\[
S^0_{\text{Ran}} \to \text{Bun}_N
\]
and we will prove that IC\(\mathcal{P}_{Ran}\) identifies with the pullback of IC\(\text{Bun}_N\) along this map.

In particular, this implies the isomorphism
\[
\text{IC}\mathcal{P} \simeq \text{IC}_{\text{Bun}_N} \mid_{S^0},
\]
which had been established in \cite{Ga1} by a different method.

0.1.6. To summarize, we can say that we still do not know how to intrinsically characterize IC\(\mathcal{P}\) on an individual Gr\(G\) as an intersection cohomology sheaf, but we can do it, once we allow the point of the curve to move along the Ran space.

But ce n’est pas grave: as was argued in \cite{Ga1} Sect. 0.4, our IC\(\mathcal{P}_{Ran}\), equipped with its factorization structure, is perhaps a more fundamental object than the original IC\(\mathcal{P}\).

0.2. What is done in this paper? The main constructions and results of this paper can be summarized as follows:

0.2.1. We define the semi-infinite category on the Ran version of the affine Grassmannian, denoted SIR\(\text{Ran}\), and equip it with a t-structure. This is largely parallel to \cite{Ga1}.

We define IC\(\mathcal{P}_{Ran}\) as the middle extension of the dualizing sheaf on the stratum \(S^\lambda_{\text{Ran}} \subset \text{Gr}_{G,\text{Ran}}\). (We will also show that the corresponding !- and *- extensions both belong to the heart of the t-structure, see Proposition 2.2.2; this contrasts with the situation for IC\(\mathcal{P}\), see \cite{Ga1} Theorem 1.5.5). We describe explicitly the !- and *-restrictions of IC\(\mathcal{P}_{Ran}\) to the strata \(S^\lambda_{\text{Ran}} \subset S^0_{\text{Ran}} \subset \text{Gr}_{G,\text{Ran}}\) (here \(\lambda\) is an element of \(\Lambda^{\text{neg}}\), the negative span of positive simple coroots), see Theorem 2.4.3. These descriptions are given in terms of the combinatorics of the Langlands dual Lie algebra; more precisely, in terms, of the factorization algebras attached to \(O(\tilde{N})\) and \(U(\tilde{\mathfrak{n}}^-)\).
We give an explicit presentation of IC_{Ran}^∞ as a colimit (parallel to the definition of IC^∞ in [Ga1]), see Theorem 2.7.2. This implies the identification $IC_{\text{Ran}}^\infty|_{Gr_G} \simeq IC^\infty$, where $IC^\infty \in \text{Shv}(Gr_G)$ is the object constructed in [Ga1].

0.2.2. We show that IC_{Ran}^∞ identifies canonically (up to a cohomological shift by $[d]$, $d = \text{dim}(\text{Bun}_N)$) with the pullback of IC_{Bun_N} along the map

$$S^0 \to \text{Bun}_N,$$

see Theorem 3.3.3.

In fact, we show that the above pullback functor is t-exact (up to the shift by $[d]$), when restricted to the subcategory $S_{\text{glob}}^\infty \subset \text{Shv}(\text{Bun}_N)$ that consists of objects equivariant with respect to the action of the adelic N, see Corollary 3.6.7.

The proof of this t-exactness property is based on applying Braden’s theorem to Gr_G, Ran and the Zastava space.

We note that, unlike [Ga1], the resulting proof of the isomorphism

$$IC_{\text{Bun}_N}|_{S^0}\big[b\big] \simeq IC_{\text{Ran}}^\infty$$

does not use the computation of IC_{Bun_N} from [BFGM], but rather reproves it.

As an aside we prove an important geometric fact that the map (0.1) is universally homologically contractible (=the pullback functor along any base change of this map is fully faithful), see Theorem 3.4.4.

0.2.3. We show that IC^∞ has a unitality property: it stays invariant under the operation of “throwing in” more points in Ran without altering the G-bundle.

We use the unitality property of IC^∞ to equip it with a factorization structure.

0.2.4. We show that IC_{Ran}^∞ has an eigen-property with respect to the action of the Hecke functors for G and T, see Theorem 5.5.7.

In the course of the proof of this theorem, we give yet another characterization of IC_{Ran}^∞ (which works for IC^∞ as well):

We show that the δ-function $\delta_{1_{\text{Gr},\text{Ran}}} \in \text{Shv}(Gr_G, \text{Ran})$ on the unit section $\text{Ran} \to Gr_G, \text{Ran}$ possesses a natural Drinfeld-Plücker structure with respect to the Hecke actions of G and T (see Sect. 5.4 for what this means), and that IC_{Ran}^∞ can be obtained from $\delta_{1_{\text{Gr},\text{Ran}}}$ by applying the functor from the Drinfeld-Plücker category to the graded Hecke category, left adjoint to the tautological forgetful functor (see Sect. 5.5).

Finally, we establish the compatibility of the isomorphism (0.2) with the Hecke eigen-structures on IC_{Ran}^∞ and $IC_{\text{Bun}_N}^\infty$, respectively (see Theorem 6.3.5).

0.3. Organization.

0.3.1. In Sect. 4 we recall the definition of the Ran space Ran, the Ran version of the affine Grassmannian Gr_G, Ran, and the stratification of the closure S^0_{Ran} of the adelic N-orbit S^0_{Ran} by locally closed substacks S^λ_{Ran}.

We define the semi-infinite category SI_{Ran} and study the standard functors that link it to the corresponding categories on the strata.
0.3.2. In Sect. 2 we define the t-structure on $SI_{\text{Ran}}^{\leq 0}$ and our main object of study, IC^{∞}_{Ran}. We state Theorem 2.4.5 that describes the *- and !- restrictions of IC^{∞}_{Ran} to the strata S_{λ}^{Ran}. The proof of the statement concerning *-restrictions will be given in this same section (it will result from Theorem 2.7.2 mentioned below). The proof of the statement concerning !-restrictions will be given in Sect. 3.

We state and prove Theorem 2.7.2 that gives a presentation of IC^{∞}_{Ran} as a colimit.

0.3.3. In Sect. 3, we recall the definition of Drinfeld’s relative compactification Bun_N. We define the global semi-infinite category $SI_{\text{glob}}^{\leq 0} \subset Shv(Bun_N)$. We prove that the pullback functor

\[SI_{\text{glob}}^{\leq 0} \rightarrow SI_{\text{Ran}}^{\leq 0}, \]

is t-exact (up to the shift by $[d]$). From here we deduce the identification (0.2), which is Theorem 3.3.3. We also state Theorem 3.4.4, whose proof is given in Sect. A.

0.3.4. In Sect. 4 we introduce the notion of unital subcategory inside $Shv(Gr_{G,\text{Ran}})$, $Shv(S_{\text{Ran}}^{\leq 0})$ and $SI_{\text{Ran}}^{\leq 0}$, and we show that IC^{∞}_{Ran} belongs to $SI_{\text{Ran}}^{\leq 0}$. We use this property of IC^{∞}_{Ran} to equip it with a factorization structure.

0.3.5. In Sect. 5 we establish the Hecke eigen-property of IC^{∞}_{Ran}. In the process of doing so we discuss the formalism of lax central objects and Drinfeld-Plücker structures, and their relation to the Hecke eigen-structures.

In Sect. 6 we prove the compatibility between the eigen-property of IC^{∞}_{Ran} and that of IC_{Bun_N}.

0.4. Background, conventions and notation. The notations and conventions in this follow closely those of [Ga1]. Here is a summary:

0.4.1. This paper uses higher category theory. It appears already in the definition of our basic object of study, the category of sheaves on the Ran Grassmannian, $Gr_{G,\text{Ran}}$.

Thus, we will assume that the reader is familiar with the basics of higher categories and higher algebra. The fundamental reference is [Lu1, Lu2], but shorter expositions (or user guides) exist as well, for example, the first chapter of [GR].

0.4.2. Our algebraic geometry happens over an arbitrary algebraically closed ground field k. Our geometric objects are classical (i.e., this paper does not need derived algebraic geometry).

We let $\text{Sch}_k^{\text{aff}}$ denote the category of (classical) affine schemes of finite type over k.

By a prestack (locally of finite type) we mean an arbitrary functor

\[(\text{Sch}_k^{\text{aff}})^{\text{op}} \rightarrow \text{Groupoids} \]

(we do not need to consider higher groupoids).

We let $\text{PreSk}_k^{\text{aff}}$ denote the category of such prestacks. It contains $\text{Sch}_k^{\text{aff}}$ via the Yoneda embedding. All other types of geometric objects (schemes, algebraic stacks, ind-schemes) are prestacks with some specific properties (but not additional pieces of structure).

0.4.3. We let G be a connected reductive group over k. We fix a Borel subgroup $B \subset G$ and the opposite Borel $B^\circ \subset G$. Let $N \subset B$ and $N^- \subset B^-$ denote their respective unipotent radicals.

Set $T = B \cap B^\circ$; this is a Cartan subgroup of G. We use it to identify the quotients $B/N \simeq T \simeq B^-/N^-$. We let Λ denote the coweight lattice of G, i.e., the lattice of cocharacters of T. We let $\Lambda^{\text{pos}} \subset \Lambda$ denote the sub-monoid consisting of linear combinations of positive simple roots with non-negative integral coefficients. We let $\Lambda^+ \subset \Lambda$ denote the sub-monoid of dominant coweights.
While our geometry happens over a field \(k \), the representation-theoretic categories that we study are DG categories over another field, denoted \(e \) (assumed algebraically closed and of characteristic 0). For a crash course on DG categories, the reader is referred to [GR, Chapter 1, Sect. 10].

All our DG categories are assumed presentable. When considering functors, we will only consider functors that preserve colimits. We denote the \(\infty \)-category of DG categories by \(\text{DGCat} \). It carries a symmetric monoidal structure (i.e., one can consider tensor products of DG categories). The unit object is the DG category of complexes of \(e \)-vector spaces, denoted \(\text{Vect} \).

We will use the notion of t-structure on a DG category. Given a t-structure on \(C \), we will denote by \(\mathcal{C}^{\leq 0} \) the corresponding subcategory of cohomologically connective objects, and by \(\mathcal{C}^{>0} \) its right orthogonal. We let \(\mathcal{C}^{\geq 0} \) denote the heart \(\mathcal{C}^{\leq 0} \cap \mathcal{C}^{\geq 0} \).

The source of DG categories will be a sheaf theory, which is a functor

\[
\text{Shv} : (\text{Sch}_{\text{aff}})^{\text{op}} \to \text{DGCat}, \quad Y \mapsto \text{Shv}(Y).
\]

For a morphism of affine schemes \(f : Y_0 \to Y_1 \), the corresponding functor

\[
\text{Shv}(Y_1) \to \text{Shv}(Y_0)
\]

is the !-pullback \(f^! \).

We will work with the following particular examples sheaf theories are:

(i) We take \(e = \mathbb{Q}_\ell \) and we take \(\text{Shv}(Y) \) to be the ind-completion of the (small) DG category of constructible \(\mathbb{Q}_\ell \)-sheaves.

(ii) When \(k = \mathbb{C} \) and \(e \) arbitrary, we take \(\text{Shv}(Y) \) to be the ind-completion of the (small) DG category of constructible \(e \)-sheaves on \(Y(\mathbb{C}) \) in the analytic topology.

(iii) If \(k \) has characteristic 0, we take \(e = k \) and we take \(\text{Shv}(Y) \) to be the DG category of holonomic D-modules on \(S \);

(iv) If \(k \) has characteristic 0, we take \(e = k \) and we take \(\text{Shv}(Y) \) to be the DG category of D-modules on \(Y \).

We will refer to examples (i), (ii) and (iii) as a constructible sheaf theories.

In the constructible case, the functor \(f^! \) always has a left adjoint, denoted \(f_* \). In example (iv) this is not the case. However, the partially defined left adjoint \(f^! \) is defined on holonomic objects. It is defined on the entire category if \(f \) is proper.

Sheaves on prestacks. We apply the procedure of right Kan extension along the embedding

\[
(\text{Sch}_{\text{aff}})^{\text{op}} \hookrightarrow (\text{PreStk}_{\text{in}})^{\text{op}}
\]

to the functor \(\text{Shv} \), and thus obtain a functor (denoted by the same symbol)

\[
\text{Shv} : (\text{PreStk}_{\text{in}})^{\text{op}} \to \text{DGCat}.
\]

By definition, for \(\mathcal{Y} \in \text{PreStk}_{\text{in}} \) we have

\[
\text{Shv}(\mathcal{Y}) = \lim_{S \in \text{Sch}_{\text{aff}}^{\text{op}}, S \to \mathcal{Y}} \text{Shv}(S),
\]

where the transition functors in the formation of the limit are the !-pullbacks 2.

For a map of prestacks \(f : \mathcal{Y}_0 \to \mathcal{Y}_1 \) we thus have a well-defined pullback functor

\[
\mathcal{Y}_1^! : \text{Shv}(\mathcal{Y}_1) \to \text{Shv}(\mathcal{Y}_0).
\]

We denote by \(\omega_{\mathcal{Y}} \) the dualizing sheaf on \(\mathcal{Y} \), i.e., the pullback of

\[
e \in \text{Vect} \simeq \text{Shv}(\text{pt})
\]

along the tautological map \(\mathcal{Y} \to \text{pt} \).

2Note that even though the index category (i.e., \((\text{Sch}_{\text{aff}})^{\text{op}}/\mathcal{Y} \)) is ordinary, the above limit is formed in the \(\infty \)-category \(\text{DGCat} \). This is how \(\infty \)-categories appear in this paper.
0.4.7. We let X be a smooth, connected (but not necessarily proper) curve over k. Whenever we need X to be proper, we will explicitly say so.

0.4.8. This paper is closely related to the geometric Langlands theory, and the geometry of the Langlands dual group \hat{G} makes it appearance.

By definition, \hat{G} is a reductive group over \mathbb{e} and geometric objects constructed out of \hat{G} give rise to \mathbb{e}-linear DG categories by considering quasi-coherent (resp., ind-coherent) sheaves on them.

The most basic example of such a category is

$$\text{QCoh}(\text{pt} / \hat{G}) =: \text{Rep}(\hat{G}).$$

0.5. Acknowledgements. The author would like to thank S. Raskin for his suggestion to consider the formalism of Drinfeld-Plücker structures, as well as numerous stimulating discussions.

The author is grateful to M. Finkelberg for igniting his interest in the semi-infinite IC sheaf, which has been on author’s mind for some 20 years now.

The author is grateful to J. Campbell and L. Chen for pointing out important mistakes in an earlier version of the paper.

The author is supported by NSF grant DMS-1063470. He has also received support from ERC grant 669655.

1. The Ran version of the semi-infinite category

In this section we extend the definition of the semi-infinite category given in [Ga1] from the affine Grassmannian $\text{Gr}_{G,x}$ corresponding to a fixed point $x \in X$ to the Ran version, denoted $\text{Gr}_{G,\text{Ran}}$.

1.1. The Ran Grassmannian.

1.1.1. We recall that the Ran space of X, denoted Ran, is the prestack that assigns to an affine test-scheme Y the set of finite non-empty subsets

$$I \subset \text{Hom}(Y, X).$$

One can explicitly exhibit Ran as a colimit (in PreStk) of schemes:

$$\text{Ran} \simeq \text{colim}_I X^I,$$

where the colimit is taken over the category opposite to the category Fin^{surj} of finite non-empty sets and surjective maps, where to a map $\phi : I \rightarrow J$ we assign the corresponding diagonal embedding

$$X^J \xrightarrow{\Delta_{\phi}} X^I.$$

This description implies, in particular, that if X is proper, then Ran is pseudo-proper as a prestack (see Sect. [A.2.4] for what it means).

Another key feature of Ran is that it is homologically contractible (see Sect. [A.1.8] for what this means).
1.1.2. We will consider the Ran version of the affine Grassmannian, denoted Gr_G,Ran, defined as follows.

It assigns to an affine test-scheme Y, the set of triples (J, P_G, α), where J is a Y-point of Ran, P_G is a G-bundle on $Y \times X$, and α is a trivialization of P_G on the open subset of $Y \times X$ equal to the complement of the union Γ_J of the graphs of the maps $Y \to X$ that comprise J.

The projection $\text{Gr}_G,\text{Ran} \to \text{Ran}$ is pseudo-proper.

We will also consider the Ran versions of the loop and arc groups (ind)-schemes, denoted $L^+(G)_{\text{Ran}} \subset L(G)_{\text{Ran}}$.

The Ran Grassmannian Gr_G,Ran identifies with the étale (equivalently, fppf) sheafification of the prestack quotient $L(G)_{\text{Ran}}/L^+(G)_{\text{Ran}}$.

1.1.3. For a fixed finite non-empty set I, we denote

$$\text{Gr}_{G,I} := X_I \times_{\text{Ran}} \text{Gr}_{G,\text{Ran}}, \quad \mathcal{L}(G)_I := X_I \times_{\text{Ran}} \mathcal{L}(G)_{\text{Ran}}, \quad \mathcal{L}^+(G)_I := X_I \times_{\text{Ran}} \mathcal{L}^+(G)_{\text{Ran}}.$$

For a map of finite sets $\phi : I \to J$, we will denote by Δ_ϕ the corresponding map $\text{Gr}_{G,J} \to \text{Gr}_{G,I}$, so that we have the Cartesian square:

$$\begin{array}{ccc}
\text{Gr}_{G,J} & \xrightarrow{\Delta_\phi} & \text{Gr}_{G,I} \\
\downarrow & & \downarrow \\
X^J & \xrightarrow{\Delta_\phi} & X^I.
\end{array}$$

1.1.4. We introduce also the following closed (resp., locally closed) subfunctors $S^0_{\text{Ran}} \subset \overline{S^0_{\text{Ran}}} \subset \text{Gr}_{G,\text{Ran}}$.

Namely, for an affine test-scheme Y, a Y-point (J, P_G, α) belongs to S^0_{Ran} if for every dominant weight λ, the composite meromorphic map of vector bundles on $Y \times X$

$$\mathcal{O} \to \mathcal{V}_{p_G}^{\lambda} \xrightarrow{\alpha} \mathcal{V}^{\lambda}_{p_G}$$

is regular. In the above formula the notations are as follows:

- \mathcal{V}^{λ} denotes the Weyl module over G with highest weight λ;
- $\mathcal{V}_{p_G}^{\lambda}$ (resp., $\mathcal{V}_{p_G}^{\lambda}$) denotes the vector bundles associated with \mathcal{V}^{λ} and the G-bundle p_G (resp., the trivial G-bundle p_G);
- $\mathcal{O} \to \mathcal{V}_{p_G}^{\lambda}$ is the map coming from the highest weight vector in \mathcal{V}^{λ}.

A point as above belongs to S^0_{Ran} if the above composite map is an injective bundle map (i.e., the cokernel is flat over $Y \times X$).

1.2. The semi-infinite category.

1.2.1. Since $\text{Gr}_{G,\text{Ran}}$ a prestack locally of finite type, we have a well-defined category

$$\text{Shv}(\text{Gr}_{G,\text{Ran}}).$$

We have

$$\text{Shv}(\text{Gr}_{G,\text{Ran}}) := \lim_{\longleftarrow I} \text{Shv}(\text{Gr}_{G,I}),$$

where the limit is formed using the $!_\text{-pullback functors.
1.2.2. Although the group ind-scheme $\mathcal{G}(N)_{\text{Ran}}$ is not locally of finite type, we have a well-defined full subcategory

$$SI_{\text{Ran}} := \text{Shv}(\text{Gr}_G, N)_{\text{Ran}} \subset \text{Shv}(\text{Gr}_G, N).$$

Namely, for every fixed finite non-empty set I, we consider the full subcategory

$$SI_I := \text{Shv}(\text{Gr}_G, N)_I \subset \text{Shv}(\text{Gr}_G, N).$$

defined as in [Ga1, Sect. 1.2].

We say that the object of $\text{Shv}(\text{Gr}_G, N)_{\text{Ran}}$ belongs to $\text{Shv}(\text{Gr}_G, N)_{\text{Ran}}$ if its restriction to any Gr_G,I yields an object of $\text{Shv}(\text{Gr}_G, N)_I$. By construction, we have an equivalence

$$SI_{\text{Ran}} := \lim_I SI_I.$$

1.2.3. Let $SI^0_{\text{Ran}} \subset SI_{\text{Ran}}$ be the full subcategory consisting of objects supported on $\mathfrak{S}^0_{\text{Ran}}$. I.e.,

$$SI^0_{\text{Ran}} = SI_{\text{Ran}} \cap \text{Shv}(\mathfrak{S}^0_{\text{Ran}}),$$

while

$$\text{Shv}(\mathfrak{S}^0_{\text{Ran}}) \approx \lim_I \text{Shv}(\mathfrak{S}^0_I).$$

1.3. Stratification. In order to study the structure of SI^0_{Ran}, we will now describe a certain natural stratification of $\mathfrak{S}^0_{\text{Ran}}$, whose open stratum will be $\mathfrak{S}^0_{\text{Ran}}$.

1.3.1. For $\lambda \in \Lambda_{\text{reg}}$, let X^λ denote the corresponding partially symmetrized power of X. I.e., if

$$\lambda = \sum_i (-n_i) \cdot \alpha_i, \quad n_i \geq 0$$

where α_i are simple positive coroots, then

$$X^\lambda = \prod_i X^{(n_i)}.$$

In other words, Y-points of X^λ are effective Λ_{reg}-valued divisors on X.

For $\lambda = 0$ we by definition have $X^0 = \text{pt}$.

1.3.2. Let

$$(X^\lambda \times \text{Ran})^\subset \subset \text{Ran} \times X^\lambda$$

be the ind-closed subfunctor, whose S-points are pairs (I, D) for which the support of the divisor D is set-theoretically supported on the union of the graphs of the maps $S \to X$ that comprise I.

In other words,

$$(X^\lambda \times \text{Ran})^\subset = \colim_I (X^\lambda \times X^I)^\subset,$$

where

$$(X^\lambda \times X^I)^\subset \subset X^I \times X^\lambda$$

is the formal completion of the corresponding incidence subvariety.

For future use we note:

Lemma 1.3.3. The map

$$\text{pr}_{\text{Ran}}^\lambda : (X^\lambda \times \text{Ran})^\subset \to X^\lambda$$

is universally homologically contractible.

The proof in the case when X is proper will be given in Sect. A.2.8. For the proof in the general case see Remark 4.1.3.

Corollary 1.3.4. The pullback functor

$$(\text{pr}_{\text{Ran}}^\lambda)^! : \text{Shv}(X^\lambda) \to \text{Shv}((X^\lambda \times \text{Ran})^\subset)$$

is fully faithful.
1.3.5. We let
\[\mathcal{F}^\lambda_{\text{Ran}} \subset (X^\lambda \times \text{Ran})^\mathbb{C} \times \text{Gr}_G,_{\text{Ran}} \]
be the closed subfunctor defined by the following condition:

An \(S \)-point \((I, D, \mathcal{P}_G, \alpha) \) of the fiber product \((X^\lambda \times \text{Ran})^\mathbb{C} \times \text{Gr}_G,_{\text{Ran}} \) belongs to \(\mathcal{F}^\lambda_{\text{Ran}} \) if for every dominant weight \(\lambda \) the map (1.1) extends to a regular map
\[(1.2) \quad \mathcal{O}(-\lambda(D)) \rightarrow V^\lambda_{\mathcal{P}_G}. \]

We denote by \(i^\lambda \) the composite map
\[S^\lambda_{\text{Ran}} \rightarrow (X^\lambda \times \text{Ran})^\mathbb{C} \times \text{Gr}_G,_{\text{Ran}} \rightarrow \text{Gr}_G,_{\text{Ran}}. \]

This map is proper, and its image is contained in \(S^0_{\text{Ran}} \).

Note that for \(\lambda = 0 \), the map \(i^0 \) is the identity map on \(S^0_{\text{Ran}} \).

Let \(p^\lambda_{\text{Ran}} \) denote the projection
\[S^\lambda_{\text{Ran}} \rightarrow (X^\lambda \times \text{Ran})^\mathbb{C}. \]

1.3.6. We define the open subfunctor
\[S^\lambda_{\text{Ran}} \subset S^\lambda_{\text{Ran}} \]
to correspond to those quadruples \((I, D, \mathcal{P}_G, \alpha) \) for which the map (1.2) is an injective bundle map (i.e., the cokernel is flat over \(Y \times X \)),

The projection
\[(1.3) \quad p^\lambda_{\text{Ran}} := p^\lambda_{\text{Ran}}|_{S^\lambda_{\text{Ran}}} : S^\lambda_{\text{Ran}} \rightarrow (X^\lambda \times \text{Ran})^\mathbb{C} \]
admits a canonically defined section
\[(1.4) \quad s^\lambda_{\text{Ran}} : (X^\lambda \times \text{Ran})^\mathbb{C} \rightarrow S^\lambda_{\text{Ran}}. \]

Namely, it sends \((I, D) \) to the quadruple \((I, D, \mathcal{P}_G, \alpha) \), where \(\mathcal{P}_G \) is the \(G \)-bundle induced from the \(T \)-bundle \(\mathcal{P}_T := \mathcal{P}_T^0(D) \), and \(\alpha \) is the trivialization of \(\mathcal{P}_G \) induced by the tautological trivialization of \(\mathcal{P}_T \) away from the support of \(D \).

1.3.7. We let
\[j^\lambda : S^\lambda_{I \text{Ran}} \hookrightarrow \mathcal{F}^\lambda_{\text{Ran}}, \quad i^\lambda = \mathcal{T} \circ j^\lambda : S^\lambda_{\text{Ran}} \rightarrow \text{Gr}_G,_{\text{Ran}} \]
denote the resulting maps.

For a fixed finite non-empty set \(I \), we obtain the corresponding subfunctors
\[S^\lambda_I \subset (X^\lambda \times X^I)^\mathbb{C} \times \text{Gr}_G, I \]
and
\[S^\lambda_I \subset S^\lambda_I, \]
and maps, denoted by the same symbols \(j^\lambda, \mathcal{T}, i^\lambda \). Let \(p^\lambda_I \) (resp., \(\mathcal{T}_I \)) denote the resulting map from \(S^\lambda_I \) (resp., \(S^\lambda_I \)) to \((X^\lambda \times X^I)^\mathbb{C} \).

Let \(s^\lambda_I \) denote the resulting section
\[s^\lambda_I : (X^\lambda \times X^I)^\mathbb{C} \rightarrow S^\lambda_I. \]

1.3.8. The following results easily from the definitions:

Lemma 1.3.9. The maps
\[i^\lambda : S^\lambda_{\text{Ran}} \rightarrow \mathcal{F}^0_{\text{Ran}} \text{ and } S^\lambda_I \rightarrow S^\lambda_I \]
are locally closed embeddings. Every field-valued point of \(\mathcal{F}^0_{\text{Ran}} \) (resp., \(S^\lambda_I \)) belongs to the image of exactly one such map.
1.3.10. In what follows we will denote by

\[(1.5) \quad \text{SI}^≤_\text{Ran} \subset \text{Shv}(\overline{\text{S}_\text{Ran}}) \quad \text{and} \quad \text{SI}^=_{\text{Ran}} \subset \text{Shv}(\text{S}^\text{λ}_{\text{Ran}}),\]

and also

\[\text{SI}^≤_I \subset \text{Shv}(\overline{\text{S}^\text{λ}_I}) \quad \text{and} \quad \text{SI}^=_{I} \subset \text{Shv}(\text{S}^\text{λ}_I),\]

the corresponding full subcategories.

1.4. The category on a single stratum.

1.4.1. We have the following explicit description of the category on each stratum separately:

Proposition 1.4.2. Pullback along the map \(p^\lambda_{\text{Ran}}\) of \((1.3)\) defines an equivalence

\[\text{Shv}((X^λ \times \text{Ran})^C) \rightarrow \text{SI}^=_{\text{Ran}}.\]

The inverse equivalence is given by restriction to the section \(s^\lambda_{\text{Ran}}\) of \((1.4)\), and similarly for \(\text{Ran}\) replaced by \(X^I\) for an individual \(I\).

1.4.2. **Proof of Proposition 1.4.2.** Follows from the fact that the action of the group ind-scheme \((X^λ \times \text{Ran}) \subset \text{N}_{\text{Ran}}\) on \(S^\lambda_{\text{Ran}}\) is transitive along the fibers of the map \((1.3)\), with the stabilizer of the section \(s^\lambda_{\text{Ran}}\) being a pro-unipotent group-scheme over \((X^λ \times \text{Ran})\).

1.5. Interaction between the strata.

1.5.1. Consider the subcategories \((1.5)\). The maps \(j^λ\), \(i^λ\) and \(i^λ\) induce functors

\[\begin{align*}
(\overline{\text{T}}^λ) \colon &\colon \text{SI}^≤_{\text{Ran}} \rightarrow \text{SI}^≤_{\text{ran}}; \\
(\overline{\text{T}}^λ)^! \colon &\colon \text{SI}^=_{\text{Ran}} \rightarrow \text{SI}^=_{\text{Ran}}; \\
(\overline{i}^λ)^! \colon &\colon \text{SI}^≤_{\text{ran}} \rightarrow \text{SI}^≤_{\text{Ran}}; \\
(\overline{i}^λ)^* \colon &\colon \text{SI}^=_{\text{Ran}} \rightarrow \text{SI}^=_{\text{Ran}}; \\
(\overline{i}^λ)^! \circ (\overline{i}^λ)^* \colon &\colon \text{SI}^≤_{\text{Ran}} \rightarrow \text{SI}^≤_{\text{Ran}}. \\
\end{align*}\]

The same applies to Ran replaced by \(X^I\) for a fixed finite non-empty set \(I\).

1.5.2. In Sect. 1.7 we will prove:

Proposition 1.5.3.

(a) For a fixed finite set \(I\), the left adjoint of

\[\overline{(\overline{i}^λ)^*} : \text{SI}^≤_{\text{Ran}} \rightarrow \text{SI}^≤_{\text{ran}}\]

is defined as a functor

\[\text{SI}^≤_{\text{Ran}} \rightarrow \text{SI}^≤_{\text{Ran}},\]

to be denoted by \((\overline{i}^λ)^*\).

(b) For \(F \in \text{SI}^≤_{\text{ran}}\) and \(F' \in \text{Shv}(X^I)\), the map

\[\overline{(\overline{i}^λ)^*}((\overline{i}^λ)^! (3') \otimes (F')) \rightarrow (\overline{i}^λ)^! (3' (\text{Shv}(X^λ \times X^I)^C) \otimes (\overline{(\overline{i}^λ)^*} (3)))\]

is an isomorphism.

(c) For a map of finite sets \(\phi : I \rightarrow J\), the natural transformation

\[(\overline{i}^λ)^* \circ (\overline{(\overline{i}^λ)^*}) = (\overline{(\overline{i}^λ)^*}) \circ (\overline{i}^λ)^* \colon \text{SI}^≤_{\text{ran}} \rightarrow \text{SI}^≤_{\text{Ran}}\]

is an isomorphism.

4In the formula below \(-_{(X^λ \times X^I)^C}\) denotes the fiber pullback along the projection \((X^λ \times X^I)^C \rightarrow X^I\).
Remark 1.5.4. Let $\mathcal{F} \in SI_I^{\leq 0}$, be such that the partially defined left adjoint $(i^\lambda)^*$ of
\[(i^\lambda)_*: Shv(S_I^\lambda) \to Shv(S_{I'}^\lambda)\]
is defined on \mathcal{F}, viewed as an object of $Shv(S_I^\lambda)$.

(Note that the condition of point (a') of Proposition 1.5.3 is always satisfied in the context of constructible sheaves. In the context of D-modules, it is satisfied if, for example, \mathcal{F} is ind-holonomic.)

Then it follows formally that the resulting object of $Shv(S_{I'}^\lambda)$ equals
\[(i^\lambda)^*(\mathcal{F}) \in SI_{I'}^{\leq \lambda} \subset Shv(S_{I'}^\lambda),\]
where $(i^\lambda)^*$ is understood in the sense of point (a) of Proposition 1.5.3.

In other words, for such \mathcal{F}, the notation $(i^\lambda)^*(\mathcal{F})$ is unambiguous.

A similar remark applies to the functor $(i^\lambda)^!$ studied in Corollary 1.5.6 below.

1.5.5. From Proposition 1.5.3, by a formal Cousin argument, we obtain:

Corollary 1.5.6.

(a) For a fixed finite set I, the left adjoint of
\[(i^\lambda)!: SI_I^{\leq 0} \to SI_I^{\leq \lambda}\]
is defined as a functor
\[SI_I^{\leq \lambda} \to SI_I^{\leq 0},\]
to be denoted $(i^\lambda)!$.

(b) For $\mathcal{F} \in SI_I^{\leq \lambda}$ and $\mathcal{F}' \in Shv(X^I)$, the map
\[(i^\lambda)! ((p^0_{\lambda})! (\mathcal{F}'|_{(X^{\lambda} \times X^I)}) \otimes \mathcal{F}) \to ((p^\lambda_{\lambda})! (\mathcal{F}') \otimes (i^\lambda)_!(\mathcal{F}))\]
is an isomorphism.

(c) For a map of finite sets $\phi : I \to J$, the natural transformation
\[(i^\lambda)! \circ (\Delta_{\phi})^! \to (\Delta_{\phi})^! \circ (i^\lambda)_!, \quad SI_I^{\leq \lambda} \to SI_J^{\leq 0}.

1.5.7. Passing to the limit over $I \in Fin^{surj}$, we obtain:

Corollary 1.5.8.

(a) The left adjoint of
\[(i^\lambda)^*: SI_Ran^{\leq 0} \to SI_Ran^{\leq \lambda}\]
is defined as a functor
\[SI_Ran^{\leq \lambda} \to SI_Ran^{\leq 0},\]
to be denoted by $(i^\lambda)^*$.

(b) The left adjoint of
\[(i^\lambda)^! : SI_Ran^{\leq 0} \to SI_Ran^{\leq \lambda}\]
is defined as a functor
\[SI_Ran^{\leq \lambda} \to SI_Ran^{\leq 0},\]
to be denoted $(i^\lambda)^!$.

(c) For $\mathcal{F} \in SI_Ran^{\leq 0}$ and $\mathcal{F}' \in Shv(Ran)$, the map
\[(i^\lambda)^* ((p^0_{\lambda,Ran})! (\mathcal{F}') \otimes \mathcal{F}) \to ((p^\lambda_{\lambda,Ran})! (\mathcal{F}'|_{(X^{\lambda} \times Ran)}) \otimes (i^\lambda)_!(\mathcal{F}))\]
is an isomorphism.

(d) For $\mathcal{F} \in SI_Ran^{\leq \lambda}$ and $\mathcal{F}' \in Shv(Ran)$, the map
\[(i^\lambda)! ((p^\lambda_{\lambda,Ran})! (\mathcal{F}'|_{(X^{\lambda} \times Ran)}) \otimes \mathcal{F}) \to ((p^0_{\lambda,Ran})! (\mathcal{F}') \otimes (i^\lambda)_!(\mathcal{F}))\]
is an isomorphism.
Remark 1.5.9. A slight variation of the proof of Proposition [1.5.3] shows that the assertions of Corollary [1.5.8] remain valid for \(i^\lambda \) replaced by \(\overline{i}^\lambda \). Similarly, the assertion of Corollary [1.5.6] remains valid for \(i^\lambda \) replaced by \(\overline{j}^\lambda \), and the same is true for their Ran variants.

1.6. An aside: the ULA property. Consider the object
\[
(j^0)^!\omega_{\mathcal{S}} \in \text{Shv}(\mathcal{S})_i.
\]

Here \((j^0)^!\) is understood as the (partially defined) left adjoint of
\[
(j^0)^!: \text{Shv}(\mathcal{S})_i \to (j_0^0)!\omega_{\mathcal{S}};
\]
it is always defined in constructible contexts; in the context of D-modules, it is defined since \(\omega_{\mathcal{S}_i} \) is ind-holonomic.

We will now formulate a certain strong acyclicity property of the above object that it enjoys with respect to the projection
\[
\overline{p}_i^! : \mathcal{S}_i \to X^!.
\]

1.6.1. Let \(Y \) be a scheme, and let \(\mathcal{C} \) be a DG category equipped with an action of the \(\text{Shv}(Y) \), viewed as a monoidal category with respect to \(\otimes \).

We shall say that an object \(c \in \mathcal{C} \) is ULA with respect to \(Y \) if for any compact \(\mathcal{F} \in \text{Shv}(Y)^c \), and any \(c' \in \mathcal{C} \), the map
\[
\text{Hom}(\mathcal{F} \otimes c, c') \to \text{Hom}(\mathbb{D}(\mathcal{F}) \otimes c, \mathbb{D}(\mathcal{F}) \otimes c') \to \text{Hom}(e_Y \otimes c, \mathbb{D}(\mathcal{F}) \otimes c')
\]
is an isomorphism.

In the above formula, \(\mathbb{D}(\cdot) \) denotes the Verdier duality anti-equivalence of \(\text{Shv}(Y)^c \),
\[
(\text{Shv}(Y)^c)^{op} \to \text{Shv}(Y)^c,
\]
and \(e_Y \) is the “constant sheaf” on \(Y \), i.e., \(e_Y := \mathbb{D}(\omega_Y) \). Note that when \(Y \) is smooth of dimension \(d \), we have \(e_Y \simeq \omega_Y[-2d] \).

1.6.2. We regard \(\text{Shv}(\mathcal{S})_i \) as tensored over \(\text{Shv}(X^!) \) via
\[
\mathcal{F} \in \text{Shv}(X^!), \quad \mathcal{F}' \in \text{Shv}(\mathcal{S})_i \mapsto (\overline{p}_i^!)(\mathcal{F}) \otimes \mathcal{F}'.
\]

We claim:

Proposition 1.6.3. The object \((j^0)^!\omega_{\mathcal{S}} \in \text{Shv}(\mathcal{S})_i\) is ULA with respect to \(X^! \).

Proof. For \(\mathcal{F} \in \text{Shv}(X^!) \) and \(\mathcal{F}' \in \text{Shv}(\mathcal{S})_i \), we have a commutative square
\[
\begin{array}{c}
\text{Hom}((p_i^0)^!(\mathcal{F}), (j_0^0)^!(\mathcal{F}')) \\ \downarrow \\
\text{Hom}((j_0^0)^! \circ (p_i^0)^!(\mathcal{F}), (\mathcal{F}'))
\end{array}
\]
\[
\begin{array}{c}
\text{Hom}((p_i^0)^!=(e_X^! \otimes (\mathcal{F})), (p_i^0)^!(\mathbb{D}(\mathcal{F})) \otimes (j_0^0)^!(\mathcal{F}')) \\ \downarrow \\
\text{Hom}((j_0^0)^! \circ (p_i^0)^!(e_X^! \otimes (\mathcal{F})), (\mathbb{D}(\mathcal{F})) \otimes (\mathcal{F}'))
\end{array}
\]
\[
\begin{array}{c}
\text{Hom}((\overline{p}_i^)! \circ (j_0^0)^!(\mathcal{F}) \otimes \omega_{\mathcal{S}}^!), (\mathcal{F}') \\ \downarrow \\
\text{Hom}((\overline{p}_i^)! \circ (j_0^0)^!(e_X^!) \otimes (\mathcal{F}) \otimes \omega_{\mathcal{S}}^!), (\mathbb{D}(\mathcal{F})) \otimes (\mathcal{F}').
\end{array}
\]

In this diagram the lower vertical arrows are isomorphisms by Corollary [1.5.6 b]. The top horizontal arrow is an isomorphism because \(S_i^0 \) can be exhibited as a union of closed subschemes, each being smooth over \(X^! \). (Indeed, write \(\mathcal{L}(N)_I \) as a union of group sub-schemes \(N_i^0 \) pro-smooth over \(X^! \); then \(S_i^0 \) is a union of the quotients \(N_i^0 / \mathcal{L}(N)_I \).

Hence, the bottom horizontal arrow is an isomorphism, as required.

\(\square \)
1.7. An application of Braden’s theorem. In this subsection we will prove Proposition 1.5.3.

1.7.1. Let

\[S^\lambda_1 \to S^\lambda_1 \to \text{Gr}_{G,1} \]

be the objects defined in the same way as their counterparts

\[S^\lambda_1 \to S^\lambda_1 \to \text{Gr}_{G,1} \]

but where we replace \(N \) by \(N^\circ \).

Choose a regular dominant coweight \(G \to \mathbb{T} \). It gives rise to an action of \(G \) on \(S^{(X^\lambda \times X^{i})} \) along the fibers of the projection \(p^{0} \).

Lemma 1.7.2. The attracting (resp., repelling) locus of the above \(G \) action identifies with

\[\bigsqcup_{\lambda \in \Lambda^\text{neg}} S^\lambda \]

and \(\bigsqcup_{\lambda \in \Lambda^\text{neg}} S^{i} \), respectively. The fixed point locus identifies with

\[\bigsqcup_{\lambda \in \Lambda^\text{neg}} s_{X}((X^\lambda \times X^{i})^\circ). \]

1.7.3. Let us now prove point (a) of Proposition 1.5.3.

By Proposition 1.4.2, it suffices to show that the functor

\[\text{Shv}((X^\lambda \times X^{i})^\circ) \to \text{SI}^{\leq 0} \]

admits a left adjoint.

For this, it suffices to show that the partially defined left adjoint to

\[\text{Shv}((X^\lambda \times X^{i})^\circ) \to \text{Shv}(S^\lambda_1) \]

is defined on objects that belong to \(\text{SI}^{(0)} \).

It is easy to see that every object in \(\text{Shv}(S^\lambda_1) \) is \(G \)-monodromic. Now, the result follows from Braden’s theorem\(^6\) (see [DrGa, Theorem 3.3.4]), combined with Lemma 1.7.2.

1.7.4. Note that Braden’s theorem also implies the existence of a canonical isomorphism

\[(s_{X})^\circ \circ (i^{\lambda})^\circ \simeq (p^{0})^\circ \circ (i^{\lambda})^\circ. \]

This implies point (b) of Proposition 1.5.3 by base change.

Point (c) is a formal corollary of point (b).

\(\square \)

Remark 1.7.5. For future use, we note that 1.7 and Proposition 1.5.3(c) imply that an analogous formula holds over the Ran space:

\[(s_{\text{Ran}}^\lambda)^\circ \circ (i^{\lambda})^\circ (F) \simeq (p_{\text{Ran}}^\circ \circ (i^{\lambda})^\circ (F), \quad F \in \text{SI}^{\leq 0} \text{Ran}. \]

2. The t-structure and the semi-infinite IC sheaf

In this section we define a t-structure on \(\text{SI}^{\leq 0} \text{Ran} \) and define the main object of study in this paper—the Ran version of the semi-infinite intersection cohomology sheaf, denoted \(\text{IC}^{\infty} \text{Ran} \).

We will also give a presentation of \(\text{IC}^{\infty} \text{Ran} \) as a colimit, and describe explicitly its *- and !-restrictions to the strata \(S^\lambda_\text{Ran} \).

2.1. The t-structure on the semi-infinite category.

\(^5\)We are grateful to Lin Chen for pointing out a mistake in the statement of Proposition 1.5.3 in the previous version of the paper. The corrected argument is due to him.

\(^6\)Braden’s theorem extends from schemes to ind-schemes by an easy colimit argument.
2.1.1. We introduce a t-structure on the category Shv\((X^\lambda \times \text{Ran})^C\) as follows.

We declare an object \(\mathcal{F} \in \text{Shv}((X^\lambda \times \text{Ran})^C)\) to be **connective** if

\[\text{Hom}(\mathcal{F}, (pr^\lambda_{\text{Ran}})^! (\mathcal{F}')) = 0 \]

for all \(\mathcal{F}' \in \text{Shv}(X^\lambda)\) that are **strictly coconnective** (in the perverse t-structure).

Remark 2.1.2. The above t-structure on \(\text{Shv}((X^\lambda \times \text{Ran})^C)\) is quite pathological in that it is **non-local**, see also **Remark 2.1.7**.

2.1.3. By construction, the functor \((pr^\lambda_{\text{Ran}})^! : \text{Shv}(X^\lambda) \to \text{Shv}((X^\lambda \times \text{Ran})^C)\) is left t-exact.

However, we claim:

Proposition 2.1.4. The functor \((pr^\lambda_{\text{Ran}})^! : \text{Shv}(X^\lambda) \to \text{Shv}((X^\lambda \times \text{Ran})^C)\) is t-exact.

Proof. Follows from Corollary 1.3.4. □

2.1.5. We define a t-structure on \(\text{SI}^\lambda_{\text{Ran}}\) as follows. We declare an object \(F \in \text{SI}^\lambda_{\text{Ran}}\) to be connective/coconnective if

\[(s^\lambda_{\text{Ran}})^! (\mathcal{F})[\langle \lambda, 2\rho \rangle] \in \text{Shv}((X^\lambda \times \text{Ran})^C) \]

is connective/coconnective.

In other words, this t-structure is transferred from \(\text{Shv}((X^\lambda \times \text{Ran})^C)\) via the equivalences

\[(s^\lambda_{\text{Ran}})^! : \text{SI}^\lambda_{\text{Ran}} \to \text{Shv}((X^\lambda \times \text{Ran})^C) : (p^\lambda_{\text{Ran}})^! \]

of Proposition 1.4.2 up to the cohomological shift \([\langle \lambda, 2\rho \rangle]\).

2.1.6. We define a t-structure on \(\text{SI}^{\leq 0}_{\text{Ran}}\) by declaring that an object \(\mathcal{F}\) is coconnective if

\[(i^\lambda)^! (\mathcal{F}) \in \text{SI}^\lambda_{\text{Ran}} \]

is coconnective in the above t-structure.

Remark 2.1.7. The above t-structure on \(\text{SI}^{\leq 0}_{\text{Ran}}\) is a somewhat artificial construct, since the t-structure on the individual strata

\[\text{SI}^\lambda_{\text{Ran}} \simeq \text{Shv}((X^\lambda \times \text{Ran})^C) \]

was transferred from a pathological t-structure on \(\text{Shv}(X^\lambda \times \text{Ran})^C\), see **Remark 2.1.2**.

This drawback will be cured in Sect. 4.4: we will single out a (naturally defined) full subcategory

\[\text{SI}^{\leq 0}_{\text{Ran}, \text{unital}} \subset \text{SI}^{\leq 0}_{\text{Ran}} \]

such that for each stratum \(S^\lambda_{\text{Ran}}\), the functor \((pr^\lambda_{\text{Ran}} \circ p^\lambda_{\text{Ran}})^!\) defines an *equivalence*

\[\text{Shv}(X^\lambda) \to \text{SI}^\lambda_{\text{Ran}, \text{unital}}. \]

2.1.8. By construction, the subcategory of connective objects in \(\text{SI}^{\leq 0}_{\text{Ran}}\) is generated under colimits by objects of the form

\[(i^\lambda)^! \circ (p^\lambda_{\text{Ran}})^! (\mathcal{F})[\langle \lambda, 2\rho \rangle], \quad \lambda \in \Lambda^{\text{neg}} \]

where \(\mathcal{F}\) is a connective object of \(\text{Shv}((X^\lambda \times \text{Ran})^C)\).

We claim:

Lemma 2.1.9. An object \(\mathcal{F} \in \text{SI}^{\leq 0}_{\text{Ran}}\) is connective if and only if \((i^\lambda)^! (\mathcal{F}) \in \text{SI}^{\leq \lambda}_{\text{Ran}}\) is connective for every \(\lambda \in \Lambda^{\text{neg}}\).
Proof. It is clear that for objects of the form (2.1), their \(\ast \)-pullback to any \(S^\lambda_{\text{Ran}} \) is connective. Hence, the same is true for any connective object of \(SI_{\text{Ran}} \leq 0 \).

Vice versa, let \(0 \neq F \) be a strictly coconnective object of \(SI_{\text{Ran}} \leq 0 \). We need to show that if all \((i^\lambda)^\ast(F)\) are connective, then \(F = 0 \). Let \(\lambda \) be the largest element such that \((i^\lambda)^\ast(F) \neq 0\). On the one hand, since \(F \) is strictly coconnective, \((i^\lambda)^\ast(F)\) is strictly coconnective. On the other hand, by the maximality of \(\lambda \), we have

\[
(i^\lambda)^\ast(F) \simeq (i^\lambda)^\ast(F),
\]

and the assertion follows. \(\square \)

2.2. Definition of the semi-infinite IC sheaf. When considering the semi-infinite IC sheaf, we will assume that \(G \) is semi-simple and simply connected.

2.2.1. By construction, the object \((i^\lambda)^\ast(\omega_{S^\lambda_{\text{Ran}}})[-\langle \lambda, 2\mathfrak{p} \rangle] \) (resp., \((i^\lambda)^*\big(\omega_{S^\lambda_{\text{Ran}}}[-\langle \lambda, 2\mathfrak{p} \rangle]\big)\)) of \(SI_{\text{Ran}} \leq 0 \) is connective (resp., coconnective).

However, in Sect. 3.6.10 we will prove:

Proposition 2.2.2. The objects

\[
(i^\lambda)^\ast(\omega_{S^\lambda_{\text{Ran}}})[-\langle \lambda, 2\mathfrak{p} \rangle] \text{ and } (i^\lambda)^\ast(\omega_{S^\lambda_{\text{Ran}}})[-\langle \lambda, 2\mathfrak{p} \rangle]
\]

both belong to \(\left(SI_{\text{Ran}} \leq 0 \right)^\diamond \).

2.2.2. Consider the canonical map

\[
(i^0)^\ast(\omega_{S^0_{\text{Ran}}} \to (i^0)^*\big(\omega_{S^0_{\text{Ran}}}\big).
\]

According to Proposition 2.2.2 both sides belong to \(\left(SI_{\text{Ran}} \leq 0 \right)^\diamond \). We let

\[
\text{IC}_{\text{Ran}} \in \left(SI_{\text{Ran}} \leq 0 \right)^\diamond
\]

denote the image of this map.

The above object is the main object of study of this paper.

2.2.4. Our goal in this section and the next is to describe \(\text{IC}_{\text{Ran}} \) as explicitly as possible. Specifically, we will do the following:

- We will describe the \(!\) and \(\ast\) restrictions of \(\text{IC}_{\text{Ran}}^\ast \) to the strata \(S^\lambda_{\text{Ran}} \) (see Theorem 2.4.5);
- We will exhibit the values of \(\text{IC}_{\text{Ran}}^\ast \) in \(\text{Shv}(\text{Gr}_G, I) \) explicitly as colimits (see Theorem 2.7.2);
- We will relate \(\text{IC}_{\text{Ran}}^\ast \) to the intersection cohomology sheaf of Drinfeld’s compactification \(\text{Bun}_N \) (see Theorem 3.3.3).

2.3. Digression: from commutative algebras to factorization algebras. Let \(A \) be a commutative algebra, graded by \(\Lambda^{\text{neg}} \) with \(A(0) \cong e \). To \(A \) we can attach an object

\[
\text{Fact}_{\text{alg}}(A)_{X^\lambda} \in \text{Shv}(X^\lambda),
\]

characterized by the property that its \(!\)-fiber at a divisor

\[
\sum_k \lambda_k \cdot x_k \in X^\lambda, \quad 0 \neq \lambda_k \in \Lambda^{\text{neg}}, \quad \sum_k \lambda_k = \lambda, \quad k' \neq k'' \Rightarrow x_{k'} \neq x_{k''}
\]
equals \(\bigotimes_k A(\lambda_k) \).

In the present subsection we recall this construction.
2.3.1. Consider the category TwArr_λ whose objects are diagrams
\[(2.2) \quad \begin{array}{c}
\Lambda^{\text{neg}} - 0 \leftarrow \Lambda J \rightarrow K, \\
\sum_{j \in J} \Delta(j) = \lambda,
\end{array}
\]
where I and J are finite non-empty sets. A morphism between two such objects is a diagram
\[
\begin{array}{ccc}
\Lambda^{\text{neg}} - 0 & \leftarrow & J_1 \\
\id & \downarrow \psi_J & \downarrow \psi_K \\
\Lambda^{\text{neg}} - 0 & \leftarrow & J_2 \\
\end{array}
\]
where:
- The right square commutes;
- The maps ψ_J and ψ_K are surjective;
- $\tilde{\Lambda}_j(j_2) = \sum_{j_1 \in \psi^{-1}_J(j_2)} \tilde{\Delta}_1(j_1)$.

2.3.2. The algebra A defines a functor $\text{TwArr}(A) : \text{TwArr}_\lambda \rightarrow \text{Shv}(X^\lambda)$, constructed as follows.

For an object (2.2), let $\Delta_{K,\lambda}$ denote the map $X^K \rightarrow X^\lambda$ that sends a point $(x_k, k \in K) \in X^K$ to the divisor
\[
\sum_{k \in K} \left(\sum_{j \in \phi^{-1}(k)} \Lambda(j) \right) \cdot x_k \in X^\lambda.
\]

Then the value of $\text{TwArr}(A)$ on (2.2) is
\[
(\Delta_{K,\lambda})_* (\omega_{X^K}) \bigotimes_{j \in J} A(\lambda_j),
\]
where $\lambda_j = \Delta(j)$.

The structure of functor on $\text{TwArr}(A)$ is provided by the commutative algebra structure on A.

2.3.3. We set
\[
\text{Fact}^{\text{alg}}(A)_{X^\lambda} := \text{colim}_{\text{TwArr}_\lambda} \text{TwArr}(A) \in \text{Shv}(X^\lambda).
\]

2.3.4. An example. Let V be a Λ^{neg}-graded vector space with $V(0) = 0$. Let us take $A = \text{Sym}(V)$. In this case $\text{Fact}^{\text{alg}}(A)_{X^\lambda}$ can be explicitly described as follows:

It is the direct sum over all ways to write λ as a sum
\[
\lambda = \sum_k n_k \cdot \lambda_k, \quad n_k > 0, \quad \lambda_k \in \Lambda^{\text{neg}} - 0
\]
of the direct images of
\[
\bigotimes_k (\omega_X \otimes V(\lambda_k))^{(n_k)}
\]
along the maps
\[
\Pi_k X^{(n_k)} \rightarrow X^\lambda,
\]
where $(-)^{(n)}$ denotes the n-th symmetric power of a given local system.
2.3.5. Dually, if A is a co-commutative co-algebra, graded by $\Lambda_{\neg\neg}$ with $A(0) \simeq e$, then to A we attach an object $\text{Fact}^{\text{coalg}}(A)_{X^\lambda}$ in $\text{Shv}(X^\lambda)$ characterized by the property that its $*$-fiber at a divisor
\[\sum_k \lambda_k \cdot x_k \in X^\lambda, \quad 0 \neq \lambda_k \in \Lambda_{\neg\neg}, \quad \sum_k \lambda_k = \lambda, \quad k' \neq k'' \Rightarrow x_{k'} \neq x_{k''} \]
eq \sum_k \lambda_k \cdot x_k \in X^\lambda, \quad 0 \neq \lambda_k \in \Lambda_{\neg\neg}, \quad \sum_k \lambda_k = \lambda, \quad k' \neq k'' \Rightarrow x_{k'} \neq x_{k''}

equals $\otimes_k A(\lambda_k)$.

If all the graded components of A are finite-dimensional, we can view the dual A^\vee of A as a $\Lambda_{\neg\neg}$-graded algebra, and we have
\[(2.3) \quad \mathbb{D}(\text{Fact}^{\text{coalg}}(A)_{X^\lambda}) \simeq \text{Fact}^{\text{alg}}(A^\vee)_{X^\lambda}, \]
where we remind that \mathbb{D} stands for the Verdier duality functor.

2.4. Restriction of $\text{IC}^\infty_{\text{Ran}}$ to strata.

2.4.1. We apply the construction of Sect. 2.3 to A being the (classical) algebra $\mathcal{O}(\check{N})$ (resp., co-algebra $U(\check{\mathfrak{n}}^-)$).

Thus, we obtain the objects
\[\text{Fact}^{\text{alg}}(\mathcal{O}(\check{N}))_{X^\lambda} \text{ and Fact}^{\text{coalg}}(U(\check{\mathfrak{n}}^-))_{X^\lambda} \]
in $\text{Shv}(X^\lambda)$.

Note also that $U(\check{\mathfrak{n}}^-)$ is the graded dual of $\mathcal{O}(\check{N})$, and so the objects $\text{Fact}^{\text{alg}}(\mathcal{O}(\check{N}))_{X^\lambda}$ and $\text{Fact}^{\text{coalg}}(U(\check{\mathfrak{n}}^-))_{X^\lambda}$ are Verdier dual to each other, see (2.3).

2.4.2. From the construction it follows that for $\lambda \neq 0$,
\[\text{Fact}^{\text{alg}}(\mathcal{O}(\check{N}))_{X^\lambda} \in \text{Shv}(X^\lambda)^{<0}, \]
and hence
\[\text{Fact}^{\text{coalg}}(U(\check{\mathfrak{n}}^-))_{X^\lambda} \in \text{Shv}(X^\lambda)^{>0}. \]

Remark 2.4.3. Note that by the PBW theorem, when viewed as a co-commutatative co-algebra, $U(\check{\mathfrak{n}}^-)$ is canonically identified with $\text{Sym}(\check{\mathfrak{n}}^-)$; in this paper we will not use the algebra structure on $U(\check{\mathfrak{n}}^-)$, which allows to distinguish it from $\text{Sym}(\check{\mathfrak{n}}^-)$.

Dually, when viewed just as a commutative algebra (i.e., ignoring the Hopf algebra structure), $\mathcal{O}(\check{N})$ is canonically identified with $\text{Sym}(\check{\mathfrak{n}}^*)$. So $\text{Fact}^{\text{alg}}(\mathcal{O}(\check{N}))_{X^\lambda}$ falls into the paradigm of Example 2.3.4.

2.4.4. In Sect. 3.9 we will prove:

Theorem 2.4.5. The objects
\[(i^\lambda)^!(\text{IC}^\infty_{\text{Ran}}) \text{ and } (i^\lambda)^*(\text{IC}^\infty_{\text{Ran}}) \]
of $\text{Shv}(S^\lambda_{\text{Ran}})$ identify with the $!$-pullback along
\[S^\lambda_{\text{Ran}} \xrightarrow{p^\lambda_{\text{Ran}}} (X^\lambda \times \text{Ran}) \xrightarrow{pr^\lambda_{\text{Ran}}} X^\lambda \]
of $\text{Fact}^{\text{coalg}}(U(\check{\mathfrak{n}}^-))_{X^\lambda}[-\langle \lambda, 2\mathfrak{p} \rangle]$ and $\text{Fact}^{\text{alg}}(\mathcal{O}(\check{N}))_{X^\lambda}[-\langle \lambda, 2\mathfrak{p} \rangle]$, respectively.

2.5. Digression: categories over the Ran space. We will now discuss a variant of the construction in Sect. 2.3 that attaches to a symmetric monoidal category A a category spread over the Ran space, denoted $\text{Fact}^{\text{alg}}(A)_{\text{Ran}}$.
2.5.1. Consider the category TwArr whose objects are

\[(I, \phi : I \to J), \]

where I and J are finite non-empty sets. A morphism between two such objects is a commutative diagram

\[\begin{array}{ccc}
J_1 & \xrightarrow{\phi_1} & K_1 \\
| & \downarrow{} & | \\
J_2 & \xrightarrow{\phi_2} & K_2,
\end{array} \]

where the maps ψ_J and ψ_K are surjective.

2.5.2. To A we attach a functor $\text{TwArr}(A) : \text{TwArr} \to \text{DGCat}$ by sending an object (2.4) to $\text{Shv}(X^K_1) \otimes A^{\otimes J}$, and a morphism (2.5) to a functor comprised of $\text{Shv}(X^K_1) \xrightarrow{(\Delta \psi_J)^*} \text{Shv}(X^K_2)$ and the functor $A^{\otimes J_1} \to A^{\otimes J_2}$, given by the symmetric monoidal structure on A.

2.5.3. We set

\[\text{Fact}^\text{alg}(A)_\text{Ran} := \colim_{\text{TwArr}} \text{TwArr}(A) \in \text{DGCat}. \]

2.5.4. Let us consider some examples.

(i) Let $A = \text{Vect}$. Then $\text{Fact}^\text{alg}(A)_\text{Ran} \simeq \text{Shv}(\text{Ran})$.

(ii) Let A be the (non-unital) symmetric monoidal category consisting of vector spaces graded by the semi-group $\Lambda_{\text{neg}} - 0$. We have a canonical functor

\[\text{Fact}^\text{alg}(A)_\text{Ran} \to \text{Shv}(\bigcup_{\lambda \in \Lambda_{\text{neg}} - 0} X^\lambda), \]

and it follows from [Ga2, Lemma 7.4.11(d)] that this functor is an equivalence.

2.5.5. Similarly, if A is a symmetric co-monoidal category, we can form the limit of the corresponding functor

$\text{TwArr}(A) : \text{TwArr}^{\text{op}} \to \text{DGCat}$,

and obtain a category that we denote by $\text{Fact}^\text{coalg}(A)_\text{Ran}$.

2.5.6. Recall that whenever we have a diagram of categories

\[t \mapsto \mathcal{C}_t \]

indexed by some category T, then

\[\colim_{t \in T} \mathcal{C}_t \]

is canonically equivalent to

\[\lim_{t \in T^{\text{op}}} \mathcal{C}_t, \]

where the transition functors are given by the right adjoints of those in the original family.
2.5.7. Let \(A \) be again a symmetric monoidal category. Applying the observation of Sect. 2.5.6 to the colimit (2.6), we obtain that \(\text{Fact}_{\text{alg}}(A)_{\text{Ran}} \) can also be written as a limit.

Assume now that \(A \) is such that the functor
\[
A \to A \otimes A,
\]
right adjoint to the tensor product operation, is continuous. In this case, the above tensor co-product operation makes \(A \) into a symmetric co-monoidal category, and we can form \(\text{Fact}_{\text{coalg}}(A)_{\text{Ran}} \).

We note however, that the limit presentation of \(\text{Fact}_{\text{alg}}(A)_{\text{Ran}} \) tautologically coincides with the limit defining \(\text{Fact}_{\text{coalg}}(A)_{\text{Ran}} \). I.e., we have a canonical equivalence:
\[
\text{Fact}_{\text{alg}}(A)_{\text{Ran}} \cong \text{Fact}_{\text{coalg}}(A)_{\text{Ran}}.
\]

Hence, in what follows we will sometimes write simply \(\text{Fact}(A)_{\text{Ran}} \), having both of the above realizations in mind.

2.5.8. Let \(I \) be a fixed finite non-empty set. The above constructions have a variant, where instead of \(\text{TwArr} \) we use its variant, denoted \(\text{TwArr}_{I/} \), whose objects are commutative diagrams
\[
I \rightarrow J \rightarrow K,
\]
and whose morphisms are commutative diagrams
\[
\begin{array}{ccc}
I & \longrightarrow & J_1 \\
\downarrow \text{id} & & \downarrow \psi_J \\
I & \longrightarrow & J_2
\end{array}
\]
\[
\begin{array}{ccc}
& & K_1 \\
\psi_K & & \\
& & K_2
\end{array}
\]

We denote the resulting category by \(\text{Fact}_{\text{alg}}(A)_I \), i.e.,
\[
\text{Fact}_{\text{alg}}(A)_I := \text{colim} \text{TwArr}(A)_{I/\text{TwArr}_{I/}}.
\]

2.5.9. For a surjective morphism \(\phi : I_1 \to I_2 \), we have the corresponding functor
\[
\text{TwArr}_{I_2/} \to \text{TwArr}_{I_1/},
\]
which induces a functor
\[
(\Delta_\phi)_* : \text{Fact}_{\text{alg}}(A)_{I_2} \to \text{Fact}_{\text{alg}}(A)_{I_1}.
\]

An easy cofinality argument shows that the resulting functor
\[
\text{colim}_I \text{Fact}_{\text{alg}}(A)_I \to \text{Fact}_{\text{alg}}(A)_{\text{Ran}}
\]
is an equivalence.

2.5.10. Note also that push-out defines a functor
\[
\text{TwArr}_{I_1/} \to \text{TwArr}_{I_2/},
\]
and we have a natural transformation from the composite
\[
\text{TwArr}_{I_1/} \to \text{TwArr} \to \text{DGCat}
\]
to the composite
\[
\text{TwArr}_{I_1/} \to \text{TwArr}_{I_2/} \to \text{TwArr} \to \text{DGCat},
\]
inducing a functor
\[
\text{Fact}_{\text{alg}}(A)_{I_1} := \text{Fact}_{\text{alg}}(A)_{I_1} \to \text{Fact}_{\text{alg}}(A)_{I_2} := \text{Fact}_{\text{alg}}(A)_{I_2},
\]
to be denoted \((\Delta_\phi)^! \).

By unwinding the constructions, it follows that the above functor \((\Delta_\phi)^! \) is the right adjoint of the functor \((\Delta_\phi)_* \) of (2.8).
In particular, by Sect. 2.5.6, we can also write
\begin{equation}
\text{Fact}^{alg}_I(A)_{\text{Ran}} \simeq \lim_I \text{Fact}^{alg}_I(A)_I,
\end{equation}
where the limit is taken with respect to the functors $(\Delta_\phi)^I$.

2.6. **Presentation of $IC_{\infty}^{\mathbf{\Delta}}$ as a colimit.** Consider the symmetric monoidal category $\text{Rep}(\mathbf{\hat{G}})$.

2.6.1. For a fixed finite non-empty set I and a map $\lambda : I \to \Lambda^+$, we consider the following object of $\text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I$, denoted V_λ^I.

Informally, V_λ^I is designed so its $!$-fiber at a point $I \to X$, $I \equiv \bigsqcup_k I_k$, $I_k \mapsto x_k$, $x_k \neq x_{k'}$ is
\begin{equation}
\bigotimes_k \lambda^k \in \text{Rep}(\mathbf{\hat{G}})^{\otimes k}, \quad \lambda_k = \sum_{i \in I_k} \lambda(i),
\end{equation}
where for $\lambda \in \Lambda^+$, we denote by V_λ^I the corresponding irreducible highest weight representation of $\mathbf{\hat{G}}$, normalized so that its highest weight line is identified with e.

2.6.2. In terms of the presentation of $\text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I$ as a colimit
\begin{equation}
\text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I = \colim_{\text{TwArr}_{I/}} \text{TwArr}(\text{Rep}(\mathbf{\hat{G}})),
\end{equation}
the object V_λ^I corresponds to the colimit over $\text{TwArr}_{I/}$ of the functor $\text{TwArr}_{I/} \to \text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I$
that sends
\begin{equation}
(I \to J \to K) \in \text{TwArr}_{I/} \to V_{I \to J \to K} \in \text{Shv}(X^K) \otimes \text{Rep}(\mathbf{\hat{G}})^{\otimes J} \to \text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I,
\end{equation}
where
\begin{equation}
V_{I \to J \to K} = \omega_{X^K} \bigotimes_{j \in J} V_{I \to j}^{\lambda_j}, \quad \lambda_j = \sum_{i \in I, i \mapsto j} \lambda(i).
\end{equation}
The structure of a functor $\text{TwArr}_{I/} \to \text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I$ on (2.11) is given by the Plücker maps
\begin{equation}
\otimes_i V^{\lambda_i} \to V^\lambda, \quad \lambda = \sum_i \lambda_i.
\end{equation}

2.6.3. Denote
\begin{equation}
\text{Sph}_{G,I} := \text{Shv}(\mathcal{L}^+(G)_I \setminus \text{Gr}_{G,I}) \quad \text{and} \quad \text{Sph}_{G,\text{Ran}} := \text{Shv}(\mathcal{L}^+(G)_{\text{Ran}} \setminus \text{Gr}_{G,\text{Ran}}).
\end{equation}
Consider the symmetric monoidal category $\text{Rep}(\mathbf{\hat{G}})$. Geometric Satake defines functors
\begin{equation}
\text{Sat}_{G,I} : \text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_I \to \text{Sph}_{G,I}
\end{equation}
that glue to a functor
\begin{equation}
\text{Sat}_{G,\text{Ran}} : \text{Fact}(\text{Rep}(\mathbf{\hat{G}}))_{\text{Ran}} \to \text{Sph}_{G,\text{Ran}}.
\end{equation}

2.6.4. Consider the object
\begin{equation}
\text{Sat}_{G,I}(V_\lambda^I) \in \text{Sph}_{G,I}.
\end{equation}
The element λ gives rise to a section
\begin{equation}
s_I^\lambda : X^I \to \text{Gr}_{G,I} \subset \text{Gr}_{G,I}.
\end{equation}
Denote
\begin{equation}
\delta_\lambda := (s_I^\lambda)^*(\omega_{X^I}) \in \text{Shv}(\text{Gr}_{G,I}).
\end{equation}
Consider the object
\begin{equation}
\delta_\lambda \ast \text{Sat}_{G,I}(V_\lambda^I) \in \text{Shv}(\text{Gr}_{G,I}).
\end{equation}
In the above formula, $\lambda = \sum_{i \in I} \lambda(i)$, and \ast denotes the (right) convolution action of $\text{Sph}_{G,I}$ on $\text{Shv}(\text{Gr}_{G,I})$.
2.6.5. Consider now the set Maps(I, Λ^+) of maps
\[\Delta : I \to \Lambda^+. \]
We equip it with a partial order by declaring
\[\Delta_1 \leq \Delta_2 \iff \Delta_2(i) - \Delta_1(i) \in \Lambda^+, \forall i \in I. \]

The assignment
\[\Delta \mapsto \delta_\Delta \ast \text{Sat}_{G,I}(V_{\lambda})|_{\langle \lambda, 2\rho \rangle} \in \text{Shv}(\text{Gr}_G,I) \]
has a structure of a functor
\[\text{Maps}(I, \Lambda^+) \to \text{Shv}(\text{Gr}_G,I), \]
see Sects. 5.4.6 and 5.5.2.

Set
\[IC_I^\infty := \text{colim}_{\Delta \in \text{Maps}(I, \Lambda^+)} \delta_\Delta \ast \text{Sat}_{G,I}(V_{\lambda})|_{\langle \lambda, 2\rho \rangle} \in \text{Shv}(\text{Gr}_G,I). \]

As in [Ga1, Proposition 2.3.7(a,b,c)] one shows:

Lemma 2.6.6. The object IC_I^∞ has the following properties:
(a) It is supported on S^0_I;
(b) It belongs to $SI_{\leq 0} = \text{Shv}(S_I^0)^{L(N)_I} \subset \text{Shv}(S_I^0)$;
(c) Its restriction to S^0_I is identified with $\omega_{S^0_I}$.

2.6.7. For a surjective map
\[\phi : I_2 \twoheadrightarrow I_1 \]
and the corresponding map
\[\Delta \phi : \text{Gr}_G,I_1 \to \text{Gr}_G,I_2, \]
we have a canonical identification
\[(\Delta \phi)^! (IC_{I_2}^\infty) \simeq IC_{I_1}^\infty. \]

One endows this system of isomorphisms with a homotopy-coherent system of compatibilities, thus making the assignment
\[I \mapsto IC_I^\infty \]
into an object of $SI_{\text{Ran}}^{\leq 0}$, see Sect. 5.4.8.

We denote this object by $'IC_{\text{Ran}}^\infty$. By Lemma 2.6.6(c), we have a canonical identification
\[(2.12) \]
\['IC_{\text{Ran}}^\infty |_{\text{eq}_{\text{Ran}}} \simeq \omega_{S^0_{\text{Ran}}}. \]

2.6.8. Fix a point $x \in X$, and consider the restriction of $'IC_{\text{Ran}}^\infty$ along the map
\[\text{Gr}_{G,x} \simeq \{x\} \times_{\text{Ran}} \text{Gr}_{G,\text{Ran}} \to \text{Gr}_{G,\text{Ran}}. \]

It follows from the construction, that this restriction identifies canonically with the object
\[IC_x^\infty \in \text{Shv}(\text{Gr}_{G,x}), \]
constructed in [Ga1, Sect. 2.3].

2.7. **Presentation of IC_{Ran}^∞ as a colimit.**
2.7.1. The rest of this section will be devoted to the proof of the following result:

Theorem 2.7.2. There exists a unique isomorphism \('IC_{\mathcal{Ran}}^\infty \simeq IC_{\mathcal{Ran}}^\infty \), extending the identification \('IC_{\mathcal{Ran}}|_{S_0^{\mathcal{Ran}}} \simeq IC_{\mathcal{Ran}}|_{S_0^{\mathcal{Ran}}} \).

The proof of Theorem 2.7.2 will amount to the combination of the following two assertions:

Proposition 2.7.3. For \(\mu \in \Lambda^{\text{neg}} \), the object \((i^\mu)^*(IC_{\mathcal{Ran}}^\infty) \in SI_{\mathcal{Ran}}^{\leq 0} \) identifies canonically with the \(!\)-pullback along \(\text{pr}_{\mathcal{Ran}}^{\mu} \circ \text{pr}_{\mathcal{Ran}}^{\mu} : (X^\mu \times \mathcal{Ran}) \subset \text{pr}_{\mathcal{Ran}}^{\mu} X^\mu \) of \(\text{Fact}_{\text{alg}}(\mathcal{O}(\mathcal{N}))_{X^\mu}[-\langle \mu, 2\rho \rangle] \).

Proposition 2.7.4. For \(0 \neq \mu \in \Lambda^{\text{neg}} \), the object \((i^\mu)! (IC_{\mathcal{Ran}}^\infty)[\langle \mu, 2\rho \rangle] \in SI_{\mathcal{Ran}}^{> 0} \) is a pullback along \(\text{pr}_{\mathcal{Ran}}^{\mu} \circ \text{pr}_{\mathcal{Ran}}^{\mu} \) of an object of \(\text{Shv}(X^\mu) \) that is strictly coconnective.

Proof of Theorem 2.7.2 modulo the propositions. By the definition of the t-structure on \(SI_{\mathcal{Ran}}^{\leq 0} \) and Lemma 2.1.9, it suffices to show that for \(\mu \in \Lambda^{\text{neg}} - 0 \), the \(!\)-restriction (resp., \(*\)-restriction) of \('IC_{\mathcal{Ran}}^\infty \) to \(S_0^{\mathcal{Ran}} \) is cohomologically \(> 0 \) (resp., \(< 0 \)).

Now, Proposition 2.7.4 (resp., Proposition 2.7.3) implies the required cohomological estimate by Proposition 2.1.4.

\[\square \]

Remark 2.7.5. Note that Theorem 2.7.2 and Proposition 2.7.3 imply the assertion of Theorem 2.4.5 about the \(*\)-fibers.

We will use this observation in the sequel, for the proof of the assertion of Theorem 2.4.5 about the \(!\)-fibers.

2.7.6. Let us assume Theorem 2.7.2 for a moment. As a corollary, and taking into account Sect. 2.6.8, we obtain:

Corollary 2.7.7. The restriction of \(IC_{\mathcal{Ran}}^\infty \) along the map \(\text{Gr}_{G,x} \simeq \{x\} \times_{\mathcal{Ran}} \text{Gr}_{G,\mathcal{Ran}} \to \text{Gr}_{G,\mathcal{Ran}} \) identifies canonically with the object \(IC_{\mathcal{Ran}}^\infty \in \text{Shv}(\text{Gr}_{G,x}) \) of [11 Sect. 2.3].

2.7.8. Before we proceed with the proof of Propositions 2.7.3 and 2.7.4, let us make the following observation concerning the object \('IC_{\mathcal{Ran}}^\infty \) (it will be used in the proof of 2.7.4):

By construction, \('IC_{\mathcal{Ran}}^\infty \in \text{Shv}(\mathcal{S}_{\mathcal{Ran}}) \) has the following factorization property with respect to \(\mathcal{Ran} \):

Let \((\mathcal{Ran} \times \mathcal{Ran})_{\text{disj}} \) denote the disjoint locus. I.e., for an affine test-scheme \(Y \),

\[\text{Hom}(Y, (\mathcal{Ran} \times \mathcal{Ran})_{\text{disj}}) \subset \text{Hom}(Y, \mathcal{Ran}) \times \text{Hom}(Y, \mathcal{Ran}) \]

consists of those pairs \(\mathcal{I}_1, \mathcal{I}_2 \in \text{Hom}(Y, X) \), for which for every \(i_1 \in I_1 \) and \(i_2 \in I_2 \), the corresponding two maps \(Y \rightrightarrows X \) have non-intersecting images.

It is well-known that we have a canonical isomorphism

\[(\text{Gr}_{G,\mathcal{Ran}} \times \text{Gr}_{G,\mathcal{Ran}}) \times_{\mathcal{Ran} \times \mathcal{Ran}} (\mathcal{Ran} \times \mathcal{Ran})_{\text{disj}} \cong \text{Gr}_{G,\mathcal{Ran}} \times (\mathcal{Ran} \times \mathcal{Ran})_{\text{disj}}, \]
24 DENNIS GAITSGORY

where

\[(\text{Ran} \times \text{Ran})_{\text{disj}} \to \text{Ran} \times \text{Ran} \to \text{Ran}\]

is the map

\[J_1, J_2 \mapsto J_1 \cup J_2.\]

Then, in terms of the identification (2.13), we have a canonical isomorphism

\[(2.14) (\mathcal{IC}_\text{Ran}^\infty \boxtimes \mathcal{IC}_\text{Ran}^\infty)_{(\text{Gr}_G, \text{Ran} \times \text{Gr}_G, \text{Ran})} \times (\text{Ran} \times \text{Ran})_{\text{disj}} \cong \mathcal{IC}_\text{Ran}^\infty |_{\text{Gr}_G} \times (\text{Ran} \times \text{Ran})_{\text{disj}}.\]

2.8. Description of the $*$-restriction to strata. The goal of this subsection is to prove Proposition 2.7.3.

2.8.1. We will compute

\[(\mathcal{IC}_\text{Ran}^\infty)^* (\mathcal{IC}_\text{Ran}^\infty) \in \text{SI}_{\text{I}}^{0}\]

for each individual finite non-empty set I, and obtain the $!$-pullback of

\[(\text{pr}_\text{Ran}^\mu \circ \text{pr}_\text{Ran}^\mu)!(\text{Fact}_{\text{alg}}(\mathcal{O}(\check{N}))(\Sigma \langle \mu, 2\bar{\rho} \rangle))]\]

along $S_{\text{I}}^\mu \to S_{\text{Ran}}^\mu$.

Thus, by Proposition 1.4.2, we need to construct an identification

\[(2.15) (p_\text{Ran}^\mu) ! (\mathcal{IC}_\text{Ran}^\infty) \cong (\text{pr}_\text{Ran}^\mu)!(\text{Fact}_{\text{alg}}(\mathcal{O}(\check{N}))_{X^I}(\Sigma \langle \mu, 2\bar{\rho} \rangle)),\]

where pr_I^μ denotes the map

\[(X^\mu \times X^I)^\subset \to X^\mu.\]

2.8.2. We will compute

\[(2.16) (p_\text{I}^\mu) ! (\mathcal{IC}_\text{I}^\infty) \cong \text{Shv}_{(X^\mu \times X^I)^\subset}(\Sigma \langle \lambda + \mu, 2\bar{\rho} \rangle) \in \text{Shv}((X^\mu \times X^I)^\subset)\]

for each individual $\lambda : I \to \Lambda^+$ with $\lambda = \sum_{i \in I} \check{\lambda}(i)$.

Namely, we will show that (2.16) identifies with the following object, denoted

\[V_{\check{\lambda}}(\lambda + \mu) \in \text{Shv}((X^\mu \times X^I)^\subset),\]

described below.

2.8.3. Before we give the definition of $V_{\check{\lambda}}(\lambda + \mu)$, let us describe what its $!$-fibers are. Fix a point of $(X^\mu \times X^I)^\subset$. By definition, a datum of such a point consists of:

- A partition $I = \bigsqcup_{k} I_k$;
- A collection of distinct points x_k of x;
- An assignment $x_k \mapsto \mu_k \in \Lambda^\text{neg} - 0$, so that $\sum_{k} \mu_k = \mu$.

Then the $!$-fiber of $V_{\check{\lambda}}(\lambda + \mu)$ at a such a point is

\[\otimes_{k} V^{\lambda_k}(\lambda_k + \mu_k),\]

where $\lambda_k = \sum_{i \in I_k} \check{\lambda}(i)$, and where $V(\nu)$ denotes the ν-weight space in a \check{G}-representation V.

2.8.4. Consider the category, denoted $\text{TwArr}_{\mu,I}$, whose objects are commutative diagrams

$$
\begin{align*}
I & \overset{v}{\longrightarrow} J \overset{\psi}{\longrightarrow} K \\
\phi_J & \downarrow \quad \phi_K \\
\tilde{J} & \overset{\tilde{\psi}}{\longrightarrow} \tilde{K}
\end{align*}
$$

where the maps $v, \psi, \tilde{\psi}, \phi_J, \phi_K$ are surjective (but ϕ_J' and ϕ_K' are not necessarily so), and

$$
\sum_{j' \in \tilde{J}} \mu(j') = \mu.
$$

Morphisms in this category are defined by the same principle as in TwArr_μ and TwArr_{I} introduced earlier, i.e., the sets J, \tilde{J}, \tilde{J}' map forward and the sets K, \tilde{K}, \tilde{K}' map backwards.

Let $\Delta_{K,I,\lambda}$ denote the map

$$
X^{\tilde{K}} \rightarrow X^\mu \times X^I,
$$

comprised of

$$
\Delta_{\phi_K \circ \psi \circ v}: X^{\tilde{K}} \rightarrow X^I
$$

and

$$
X^{\tilde{K}} \xrightarrow{\Delta_{K,I,\lambda}} X^{\tilde{K'}} \xrightarrow{\Delta_{\phi_K} \circ \psi \circ v} X^\mu.
$$

We let $V^\Delta(\Delta + \mu)$ be the colimit over $\text{TwArr}_{\mu,I}$ of the objects

$$
(\Delta_{K,I,\lambda})^* (\omega_{X^{\tilde{K}}}) \bigotimes (\otimes_{j \in J} V^{\lambda_j}(\lambda_j + \mu_j)),
$$

where

$$
\lambda_j = \sum_{i \in I, i \rightarrow j} \lambda(i) \text{ and } \mu_j = \sum_{j' \in \tilde{J}, j' \rightarrow j} \mu(j').
$$

2.8.5. Applying Braden’s theorem (see Sect. 1.7.1), we obtain a canonical isomorphism

$$
(p^\mu_j) \circ (i^\mu)^*(\delta_{\Delta} * \text{Sat}_{G,I}(V^\Delta)) \simeq (p^\mu_j) \circ (i^\mu)^* \big(\delta_{\Delta} * \text{Sat}_{G,I}(V^\Delta)\big).
$$

The key property of the geometric Satake functor $\text{Sat}_{G,I}$ for $I = \{1\}$ is that for $V' \in \text{Rep}(\tilde{G})$ and $\mu' \in \Lambda$

$$
(p^\mu_j) \circ (i^\mu)^* \big(\text{Sat}_{G,\{1\}}(V')\big)[\langle \mu, 2\rho \rangle] \simeq \omega_X \otimes V'(\mu').
$$

Unwinding the construction of its multi-point version $\text{Sat}_{G,I}$, we obtain a canonical isomorphism

$$
(p^\mu_j) \circ (i^\mu)^* \big(\text{Sat}_{G,I}(V^\Delta)\big)[\langle \lambda + \mu, 2\rho \rangle] \simeq V^\Delta(\Delta + \mu),
$$

giving rise to the desired expression for 2.4.10.

2.8.6. To finish the proof of Proposition 2.7.3 we have to show that

$$
\colim_{\Delta \in \text{Maps}(I, \Lambda^+)} V^\Delta(\Delta + \mu)
$$

identifies canonically with $(\text{pr}^\mu_j)^* (\text{Fact}_{\text{alg}}(O(\tilde{N}))_{\chi \lambda})$.

Indeed, this follows from the fact that we have a canonical identification

$$
\colim_{\lambda \in \Lambda^+} V^\lambda(\lambda + \mu) \simeq O(\tilde{N})(\mu),
$$

where Λ^+ is endowed with the order relation

$$
\lambda_1 \leq \lambda_2 \Leftrightarrow \lambda_2 - \lambda_1 \in \Lambda^+.$$
2.9. **Proof of coconnectivity.** In this subsection we will prove Proposition 2.7.4 thereby completing the proof of Theorem 2.7.2.

2.9.1. Consider the diagonal stratification of X^μ. For each parameter β of the stratification, let X^μ_β denote the corresponding stratum, and denote by

$$(X^\mu_\beta \times \text{Ran})^\subset := X^\mu_\beta \times (X^\mu \times \text{Ran})^\subset \xrightarrow{i^{\beta}_\mu} (X^\mu \times \text{Ran})^\subset$$

and

$$(X^\mu_\beta \times \text{Ran})^\subset \xrightarrow{\text{pr}^\mu_{\text{Ran},\beta}} X^\mu_\beta$$

the resulting maps.

Let $\mathcal{F}^\mu \in \text{Shv}((X^\mu \times \text{Ran})^\subset)$ be such that

$$(i^{\mu})^!(\mathcal{IC}^\infty \rightarrow_\text{Ran}^\mu) \simeq (p^{\mu}_{\text{Ran}})^!(\mathcal{F}^\mu).$$

Since the functor $(\text{pr}^\mu_{\text{Ran},\beta})^!$ is left t-exact and fully faithful (the latter by Corollary 1.3.4), in order to prove Proposition 2.7.4, it suffices to show that each

$$(i_{\beta})^! \circ \mathcal{F}^\mu \in \text{Shv}((X^\mu_\beta \times \text{Ran})^\subset)$$

is of the form

$$(\text{pr}^\mu_{\text{Ran},\beta})^!(\mathcal{F}^\mu_\beta),$$

where $\mathcal{F}^\mu_\beta \in \text{Shv}(X^\mu_\beta)$ is such that $\mathcal{F}^\mu_\beta[\langle \mu, 2\rho \rangle]$ is strictly coconnective.

2.9.2. By the factorization property of $\mathcal{IC}^\infty_\text{Ran}$ (see (2.14)), it suffices to prove the above assertion for β corresponding to the main diagonal $X \rightarrow X^\mu$. Denote the corresponding stratum in $(X^\mu \times \text{Ran})^\subset$ by

$$(X \times \text{Ran})^\subset.$$

Denote the corresponding map $\text{pr}^\mu_{\text{Ran},\beta}$ by

$$\text{pr}^\mu_{(X \times \text{Ran})^\subset} : (X \times \text{Ran})^\subset \rightarrow X.$$

Denote the restriction of the section

$$s^\mu_{\text{Ran}} : (X^\mu \times \text{Ran})^\subset \rightarrow S^\mu_{\text{Ran}}$$

to this stratum by $s^\mu_{(X \times \text{Ran})^\subset}.$

We claim that

$$(s^\mu_{(X \times \text{Ran})^\subset})^!(\mathcal{IC}^\infty_{\text{Ran}}) \simeq (\text{pr}^\mu_{(X \times \text{Ran})^\subset})^!(\mathcal{IC}^\infty) \otimes W_\mu[\langle \mu, 2\rho \rangle],$$

where $W_\mu \in \text{Vect}$ lives in cohomological degrees ≥ 2.

Remark 2.9.3. One can show that there is a canonical identification

$$W_\mu \simeq \text{Sym}(\tilde{n}[-2])(\mu),$$

where \tilde{n} is the unipotent radical of the Langlands dual Lie algebra. In fact, such an identification would follow once we prove Theorem 2.4.5 for the $!$-restrictions.

2.9.4. In fact, we claim that for every I, we have:

$$(s^\mu_{(X \times X^I)^\subset})^!(\mathcal{IC}^\infty_{\text{Ran}}) \simeq (\text{pr}^\mu_{(X \times X^I)^\subset})^!(\mathcal{IC}^\infty) \otimes W_\mu[\langle \mu, 2\rho \rangle],$$

where

$$\text{pr}^\mu_{(X \times X^I)^\subset} := \text{pr}^\mu_{(X \times \text{Ran})^\subset} \mid (X \times X^I)^\subset.$$
2.9.5. Indeed, it follows from the definitions that for any \(\lambda : I \to \Lambda^+ \),
\[
(s''(\times X \times X))^! \delta (s(\times X \times X)) \simeq (pr''(\times X \times X))^! \omega \otimes W_{\lambda,\mu} \in \Lambda^+ + \mu
\]
where \(W_{\lambda,\mu} \) is the cohomologically graded vector space such that
\[
\text{Sat}(V^\lambda)_{G, \lambda^+ + \mu} \simeq \text{IC}_{G, \lambda^+ + \mu} \otimes W_{\lambda,\mu}, \quad W_{\lambda,\mu} \in \text{Vect},
\]
where \(-|\) means \(!\)-restriction. By parity vanishing, \(W_{\lambda,\mu} \) lives in cohomological degrees \(\geq 2 \).

Finally,
\[
W_\mu = \text{colim}_{\lambda \in \Lambda^+} W_{\lambda,\mu},
\]
and the cohomological estimate holds for \(W_\mu \) because the poset \(\Lambda^+ \) is filtered (here we use the assumption that \(G \) is semi-simple and simply connected).

3. The semi-infinite IC sheaf and Drinfeld’s compactification

In this section we will express \(\text{IC}_{\text{semi}} \) in terms of an actual intersection cohomology sheaf, i.e., one arising in finite-dimensional algebraic geometry (technically, on an algebraic stack locally of finite type).

Throughout this section, the curve \(X \) is assumed to be proper.

3.1. Drinfeld’s compactification.

3.1.1. Let \(\overline{\text{Bun}}_B \) Drinfeld’s relative compactification of the stack \(\text{Bun}_B \) along the fibers of the map \(\text{Bun}_B \to \text{Bun}_G \).

I.e., \(\overline{\text{Bun}}_B \) is the algebraic stack that classifies triples \((\mathcal{P}_G, \mathcal{P}_T, \kappa)\), where:

(i) \(\mathcal{P}_G \) is a \(G \)-bundle on \(X \);

(ii) \(\mathcal{P}_T \) is a \(T \)-bundle on \(X \);

(iii) \(\kappa \) is a Plücker data, i.e., a system of non-zero maps
\[
\kappa^\lambda : \lambda(\mathcal{P}_T) \to V^\lambda_{\mathcal{P}_G},
\]
(here \(V^\lambda \) denotes the Weyl module with highest weight \(\lambda \in \Lambda^+ \) that satisfy Plücker relations, i.e., for \(\lambda_1, \lambda_2 \) the diagram
\[
\begin{array}{ccc}
\lambda_1(\mathcal{P}_T) \otimes \lambda_2(\mathcal{P}_T) & \xrightarrow{\kappa_{\lambda_1} \otimes \kappa_{\lambda_2}} & V_{\mathcal{P}_G}^\lambda_1 \otimes V_{\mathcal{P}_G}^\lambda_2 \\
\uparrow & & \uparrow \\
(\lambda_1 + \lambda_2)(\mathcal{P}_T) & \xrightarrow{\kappa_{\lambda_1 + \lambda_2}} & V_{\mathcal{P}_G}^{\lambda_1 + \lambda_2}
\end{array}
\]
must commute.

The open substack
\[
\text{Bun}_B^j \hookrightarrow \overline{\text{Bun}}_B
\]
corresponds to the condition that the maps \(\kappa^\lambda \) be injective bundle maps.

We denote by \(\overline{\mathcal{P}}_G \) resulting map from \(\overline{\text{Bun}}_B \) to \(\text{Bun}_G \) (resp., \(\text{Bun}_T \)), which sends \((\mathcal{P}_G, \mathcal{P}_T, \kappa)\) to \(\mathcal{P}_G \) (resp., \(\mathcal{P}_T \)).

Its restriction to \(\text{Bun}_B \subset \overline{\text{Bun}}_B \) is the usual map \(q : \text{Bun}_B \to \text{Bun}_G \) (resp., \(q : \text{Bun}_B \to \text{Bun}_T \)) induced by the map of groups \(B \to G \) (resp., \(B \to T \)).
3.1.2. For $\lambda \in \Lambda^{\text{neg}}$ we let $i_{\lambda}^{\text{glob}}$ denote the map
\[
\overline{\text{Bun}}^\lambda_B := \overline{\text{Bun}}_B \times X^{\lambda} \to \overline{\text{Bun}}_B,
\]
given by
\[
(\mathcal{P}_G, \mathcal{P}_T, \kappa, D) \mapsto (\mathcal{P}_G', \mathcal{P}_T', \kappa')
\]
with $\mathcal{P}_G = \mathcal{P}_G, \mathcal{P}_T = \mathcal{P}_T(D)$ and κ' given by precomposing κ with the natural maps
\[
\hat{\lambda}(\mathcal{P}_T') = \hat{\lambda}(\mathcal{P}_T) (\hat{\lambda}(D)) \hookrightarrow \hat{\lambda}(\mathcal{P}_T).
\]
It is known that $i_{\lambda}^{\text{glob}}$ is a finite morphism.

3.1.3. Let $j_{\lambda}^{\text{glob}}$ denote the open embedding
\[
\overline{\text{Bun}}^\lambda_B := \overline{\text{Bun}}_B \times \overline{\text{Bun}}_B =: \overline{\text{Bun}}^\lambda_B.
\]
Denote
\[
i_{\lambda}^{\text{glob}} = i_{\lambda}^{\text{glob}} \circ j_{\lambda}^{\text{glob}}.
\]
Note that by definition $i_{0}^{\text{glob}} = j_{0}^{\text{glob}} = j_{\text{glob}}$ is the embedding (3.1).

The following is known:

Lemma 3.1.4. The maps $i_{\lambda}^{\text{glob}}$ are locally closed embeddings. Every field-valued point of $\overline{\text{Bun}}_B$ belongs to the image of exactly one such map.

3.2. The global semi-infinite category.

3.2.1. Denote
\[
\overline{\text{Bun}}_N := \overline{\text{Bun}}_B \times \text{pt}, \quad \overline{\text{Bun}}^\lambda_N := \overline{\text{Bun}}^\lambda_B \times \text{pt}, \quad \overline{\text{Bun}}_N := \overline{\text{Bun}}_B \times \text{pt},
\]
where $\text{pt} \to \text{Bun}_T$ corresponds to the trivial bundle and the map $\overline{\text{Bun}}^\lambda_B \to \text{Bun}_T$ is
\[
\overline{\text{Bun}}^\lambda_B = \overline{\text{Bun}}_B \times X^\lambda \xrightarrow{\text{id}} \overline{\text{Bun}}_T \times X^\lambda \xrightarrow{\text{id} \times \text{AJ}} \overline{\text{Bun}}_T \times \overline{\text{Bun}}_T \xrightarrow{\text{mult}} \overline{\text{Bun}}_T,
\]
where AJ is the Abel-Jacobi map,
\[
D \mapsto \mathcal{O}(D).
\]
In particular,
\[
\overline{\text{Bun}}_N := \overline{\text{Bun}}_B \times X^\lambda,
\]
where $X^\lambda \to \text{Bun}_T$ is the composition of the map AJ and inversion on Bun_T.

We will denote by the same symbols the corresponding maps
\[
i_{\lambda}^N : \overline{\text{Bun}}_N^\lambda \to \overline{\text{Bun}}_N, \quad j_{\lambda}^N : \overline{\text{Bun}}_N^\lambda \to \overline{\text{Bun}}_N, \quad i_{\lambda}^N : \overline{\text{Bun}}_N^\lambda \to \overline{\text{Bun}}_N.
\]

Denote by p_{glob}^λ (resp., p_{glob}) the projection from $\overline{\text{Bun}}_N^\lambda$ (resp., $\overline{\text{Bun}}_N$) to X^λ.
3.2.2. We define
\[(3.2) \quad SI_{\text{glob}}^{\leq 0} \subset \text{Shv}(\overline{\text{Bun}_N})\]
to be the full subcategory defined by the following condition:

An object \(\mathcal{F} \in \text{Shv}(\overline{\text{Bun}_N}) \) belongs to \(SI_{\text{glob}}^{\leq 0} \) if and only if for every \(\lambda \in \Lambda^{\text{nes}} \), the object
\[(i^\lambda_{\text{glob}}){}^!(\mathcal{F}) \in \text{Shv}(\overline{\text{Bun}_N}^{\lambda}) \]
begins to the full subcategory
\[(3.3) \quad SI_{\text{glob}}^{\lambda} \subset \text{Shv}(\overline{\text{Bun}_N}^{\lambda}), \]
equal by definition to the essential image of the pullback functor
\[(p_{\text{glob}}^\lambda){}^! : \text{Shv}(X^{\lambda}) \to \text{Shv}(\overline{\text{Bun}_N}^{\lambda}). \]

We note that the above pullback functor is fully faithful, since the map \(p_{\text{glob}}^\lambda \), being a base change of \(\text{Bun}_B \to \text{Bun}_T \), is smooth with homologically contractible fibers.

3.2.3. Proceeding as in \[Ga5\] Sects. 4.5-4.7, one shows that the full subcategory \((3.2) \) (resp., \((3.3) \)) can also be defined by an equivariance condition with respect to a certain pro-unipotent groupoid.

In particular, the embedding \((3.2) \) (resp., \((3.3) \)) admits a \textit{right} adjoint\(\footnote{The corresponding assertion would be \textit{false} for the corresponding embedding \(SI_{\text{Ran}}^{\leq 0} \subset \text{Shv}(\overline{S}_\text{Ran}) \); this is a geometric counterpart of the fact that the local field is not compact, while the quotient of adeles by principal adeles is compact.} \), to be denoted \(\text{Av}^{SI}_{\text{glob}} \).

3.2.4. The functors
\[(3.4) \quad (i^\lambda_{\text{glob}}){}^! : \text{Shv}(\overline{\text{Bun}_N}) \to \text{Shv}(\overline{\text{Bun}_N}^{\lambda}) \]
and
\[(3.5) \quad (i^\lambda_{\text{glob}}){}^* : \text{Shv}(\overline{\text{Bun}_N}^{\lambda}) \to \text{Shv}(\overline{\text{Bun}_N}) \]
induce (same-named) functors
\[(3.6) \quad (i^\lambda_{\text{glob}}){}^! : SI_{\text{glob}}^{\leq 0} \to SI_{\text{glob}}^{\lambda} \]
and
\[(3.7) \quad (i^\lambda_{\text{glob}}){}^* : SI_{\text{glob}}^{\lambda} \to SI_{\text{glob}}^{\leq 0} \]

Moreover, the diagram
\[SI_{\text{glob}}^{\leq 0} \quad \text{Av}^{SI}_{\text{glob}} \quad SI_{\text{glob}}^{\lambda} \]
\[\xymatrix{ SI_{\text{glob}}^{\leq 0} \ar[r]^{\text{Av}^{SI}_{\text{glob}}} \ar[d]_{(i^\lambda_{\text{glob}}){}^!} & \text{Shv}(\overline{\text{Bun}_N}) \ar[d]^{(i^\lambda_{\text{glob}}){}^*} \\ SI_{\text{glob}}^{\lambda} & \text{Shv}(\overline{\text{Bun}_N}^{\lambda}) } \]
and similarly for \((i^\lambda_{\text{glob}}){}^* \).

\textbf{Proposition 3.2.5.}

\begin{itemize}
\item[(a)] The partially defined left adjoint \((i^\lambda_{\text{glob}}){}^! \) of \((3.4) \)
\end{itemize}

\[(i^\lambda_{\text{glob}}){}^! : \text{Shv}(\overline{\text{Bun}_N}) \to \text{Shv}(\overline{\text{Bun}_N}^{\lambda}) \]
is defined on
\[SI_{\text{glob}}^{\lambda} \subset \text{Shv}(\overline{\text{Bun}_N}^{\lambda}). \]

\begin{itemize}
\item[(b)] The resulting functor
\end{itemize}

\[SI_{\text{glob}}^{\lambda} \to \text{Shv}(\overline{\text{Bun}_N}) \]
takes values in
\[SI_{\text{glob}}^{\leq 0} \subset \text{Shv}(\overline{\text{Bun}_N}), \]
and thus provides a left adjoint to (3.5).

Proof. To prove point (a), it suffices to do so for the map \(j_\lambda \)). We claim that the objects
\[
(j_\lambda): (\omega_{Bun N}^\lambda) \in Shv(Bun N^\lambda)
\]
and
\[
\omega_{Bun N}^\lambda \in Shv(Bun N^\lambda)
\]
are ULA with respect to the maps \(p_\lambda^{glob} \) and \(p_\lambda^{glob} \), respectively. This would imply that for \(F \in Shv(X^\lambda) \), we have
\[
(j_\lambda)^! \circ (p_\lambda^{glob})^! (F) \simeq (p_\lambda^{glob})^! (F),
\]
in particular, giving a formula for the left-hand side as an object of \(Shv(Bun N^\lambda) \).

To prove the required ULA property, it suffices to do so for the embedding
\[
\overline{j}_\lambda : Bun_B \hookrightarrow Bun_N,
\]
in which case, this is the assertion of [BG1, Theorem 5.1.5].

Point (b) follows from the commutativity of the diagram (3.8) by passing to left adjoints. □

By a Cousin argument, it follows formally from Proposition 3.2.5 that the partially defined functor
\((i_\lambda^{glob})^* \), left adjoint to (3.5), is defined on \(SI_{glob}^{\leq 0} \subset Shv(Bun_B^\lambda) \) and takes values in \(SI_{glob}^\lambda \subset Shv(Bun_N^\lambda) \), thus providing a left adjoint to (3.7).

3.2.6. The embeddings
\[
SI_{glob}^\lambda \hookrightarrow Shv(Bun_N^\lambda) \quad \text{and} \quad SI_{glob}^{\leq 0} \hookrightarrow Shv(Bun_N)
\]
are compatible with the t-structure on the target categories. This follows from the fact that the right adjoints \(Av_{2g}^\lambda \) (see Sect. 3.2.3) are right t-exact.

Hence, the categories \(SI_{glob}^\lambda \) and \(SI_{glob}^{\leq 0} \) acquire t-structures. By construction, an object \(F \in SI_{glob}^{\leq 0} \) is connective (resp., coconnective) if and only if \((i_\lambda^{glob})^*(F)\) (resp., \((i_\lambda^{glob})^!(F)\) is connective (resp., coconnective) for every \(\lambda \in \Lambda^{neg} \).

3.2.7. We will denote by
\[
\overline{IC}_{glob} \in (SI_{glob}^{\leq 0})^\wedge
\]
the minimal extension of \(IC_{Bun_B^\lambda} \in (SI_{glob}^\lambda)^\wedge \) along \(p_\lambda^{glob} \).

3.3. Local vs global compatibility for the semi-infinite IC sheaf.

3.3.1. For every finite set \(I \) we have a canonically defined map
\[
\pi_I : S_I^0 \rightarrow Bun_N.
\]
Together these maps combine to a map
\[
\pi_{Ran} : S_{Ran}^0 \rightarrow Bun_N.
\]

3.3.2. Let \(d = \dim(Bun_N) = (g - 1) \cdot \dim(N) \). The main result of this section is:

Theorem 3.3.3. There exists a (unique) isomorphism
\[
(\pi_{Ran})^! (\overline{IC}_{glob}) | d = \overline{IC}_{Ran},
\]
extending the tautological identification over \(Bun_N \).

3.3.4. The next few subsections are devoted to the proof of this theorem. Modulo auxiliary assertions, the proof will be given in Sect. 3.6.8.

3.4. The local vs global compatibility for the semi-infinite category. This subsection contains some preparatory material for the proof of Theorem 3.3.3.
3.4.1. First, we observe:

Lemma 3.4.2. For every λ, we have a commutative diagram

$$
\begin{array}{c}
S^\leq_{\text{Ran}} \xrightarrow{\pi^\lambda} S^\geq_{\text{Ran}} \\
\downarrow \quad \downarrow \\
\text{Bun}^\leq_N \xrightarrow{\iota^\lambda_{\text{glob}}} \text{Bun}_N.
\end{array}
$$

The corresponding diagram

$$
(3.9)
\begin{array}{c}
S^{=\lambda}_{\text{Ran}} \xrightarrow{\pi^\lambda_{\text{Ran}}} S^\geq_{\text{Ran}} \\
\downarrow \quad \downarrow \\
\text{Bun}^\leq_N \xrightarrow{\iota^\lambda_{\text{glob}}} \text{Bun}_N.
\end{array}
$$

is Cartesian, and we have a commutative diagram

$$
\begin{array}{c}
S^{=\lambda}_{\text{Ran}} \xrightarrow{p^\lambda_{\text{Ran}}} (X^\lambda \times \text{Ran})^C \\
\downarrow \quad \downarrow \\
\text{Bun}^\leq_N \xrightarrow{\iota^\lambda_{\text{glob}}} X^\lambda.
\end{array}
$$

The assertions parallel to those in the above lemma hold for Ran replaced by X^I for an individual finite set I.

3.4.3. The following assertion is not necessary for the needs of this paper, but we will prove it for the sake of completeness (see Sect. A.1.11):

Theorem 3.4.4. The functor

$$(\pi^\lambda_{\text{Ran}})^! : \text{Shv}(\text{Bun}_N) \to \text{Shv}(S^\lambda_{\text{Ran}})$$

is fully faithful.

When working with an individual stratum, a stronger assertion is true (to be proved in Sect. 3.5):

Consider the map

$$(p^\lambda_{\text{Ran}} \times \pi^\lambda_{\text{Ran}}) : S^\lambda_{\text{Ran}} \to (X^\lambda \times \text{Ran})^C \times_{X^\lambda} \text{Bun}^\leq_N.$$

Proposition 3.4.5. The functor

$$(p^\lambda_{\text{Ran}} \times \pi^\lambda_{\text{Ran}})^! : \text{Shv}((X^\lambda \times \text{Ran})^C \times_{X^\lambda} \text{Bun}^\leq_N) \to \text{Shv}(S^\lambda_{\text{Ran}})$$

is fully faithful.

Combining with Lemma [13.3] we obtain:

Corollary 3.4.6. The functor

$$(\pi^\lambda_{\text{Ran}})^! : \text{Shv}(\text{Bun}^\leq_N) \to \text{Shv}(S^\lambda_{\text{Ran}})$$

is fully faithful.
3.4.7. Next we claim:

Proposition 3.4.8. For every finite set I, the functor

$$(\pi_I)^! : \text{Shv}(\text{Bun}_N) \to \text{Shv}(\overline{S}_I)$$

sends $\text{SI}_{\text{glob}}^{\leq 0}$ to $\text{SI}_I^{\leq 0}$.

Proof. Note that an object $\mathcal{F} \in \text{Shv}(\overline{S}_I)$ belongs to $\text{SI}_I^{\leq 0}$ if and only if $(\pi^I)^!(\mathcal{F})$ belongs to SI_I^λ for every λ. Now the result follows from the identification

$$\text{pr}^\lambda_! \circ \pi^I = \text{glob} \circ \pi^\lambda_!.$$

We will now deduce:

Corollary 3.4.9. An object of $\text{Shv}(\text{Bun}_N)$ belongs to $\text{SI}_{\text{glob}}^{\leq 0}$ if and only if its pullback under $(\pi_{\text{Ran}})^!$ belongs to $\text{SI}_{\text{Ran}}^{\leq 0} \subset \text{Shv}(\overline{S}_{\text{Ran}})$.

Proof. The “only if” direction is the content of Proposition 3.4.8.

For the “if” direction, we need to show that if an object $\mathcal{F} \in \text{Shv}(\text{Bun}_N)$ is such that

$$(\pi^\lambda_{\text{Ran}})^!(\mathcal{F}) \simeq (\pi^\lambda_{\text{Ran}})^!(\mathcal{F}')$$

for some $\mathcal{F}' \in \text{Shv}((X^{\lambda} \times \text{Ran})^{\subset C})$, then \mathcal{F} is the pullback of an object in $\text{Shv}(X^\lambda)$ along glob^λ.

By Proposition 3.4.5 in the diagram

$$
\begin{array}{ccc}
S^\lambda_{\text{Ran}} & \xrightarrow{\text{pr}_{\text{Ran}}^\lambda \times \text{id}_{\text{Bun}_N}} & (X^\lambda \times \text{Ran})^{\subset C} \\
\downarrow \text{id} & & \downarrow \text{pr}_{\text{Ran}}^\lambda \\
\text{Bun}_N^\lambda & \xrightarrow{\text{pr}_{\text{Ran}}^\lambda \times \text{id}_{\text{Bun}_N}} & X^\lambda
\end{array}
$$

we have

$$\mathcal{F} \xrightarrow{\text{Lemma 3.4.8}} (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N})^\lambda
\simeq (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N})^\lambda \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N})^\lambda \circ (\pi^\lambda_{\text{Ran}})^! \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N})^\lambda \circ (\pi^\lambda_{\text{Ran}})^!(\mathcal{F}) \simeq
$$

$$\simeq (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}})^!(\mathcal{F}) \simeq
$$

$$\simeq (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}} \times \text{id}_{\text{Bun}_N}) \circ (\pi^\lambda_{\text{Ran}})^!(\mathcal{F}') \simeq
$$

as required (the last isomorphism is base change, which holds due to the fact that the map $\text{pr}_{\text{Ran}}^\lambda$ is pseudo-proper).

\[\square\]

3.5. **Proof of Proposition 3.4.5**

8See Sect. 2.4.4 where this notion is recalled.
3.5.1. Consider the morphism

\[(p_{\text{Ran}}^\lambda \times \pi_{\text{Ran}}^\lambda) : S_{\text{Ran}}^\lambda \to (X^\lambda \times \text{Ran})^\subset \times \overline{\text{Bun}}_N^\lambda.\]

A point of \(S_{\text{Ran}}^\lambda\) is the following data:

(i) A \(B\)-bundle \(\mathcal{P}_B\) on \(X\) (denote by \(\mathcal{P}_T\) the induced \(T\)-bundle);

(ii) A \(\Lambda^{\text{neg}}\)-valued divisor \(D\) on \(X\) (we denote by \(\mathcal{O}(D)\) the corresponding \(T\)-bundle);

(iii) An identification \(\mathcal{P}_T \cong \mathcal{O}(D)\);

(iv) A finite non-empty set \(I\) of points of \(X\) that contains the support of \(D\);

(v) A trivialization \(\alpha\) of \(\mathcal{P}_B\) away from \(I\), such that the induced trivialization of \(\mathcal{P}_T|_{X - I}\) agrees with the tautological trivialization of \(\mathcal{O}(D)|_{X - I}\).

3.5.2. The map \((p_{\text{Ran}}^\lambda \times \pi_{\text{Ran}}^\lambda)\) amounts to forgetting the data of (v) above. It is clear that for an affine test-scheme \(Y\) and a \(Y\)-point of \((X^\lambda \times \text{Ran})^\subset \times \overline{\text{X}}_\lambda \times \text{Bun}^\lambda\),

the set of its lifts to a \(Y\)-point of \(S_{\text{Ran}}^\lambda\) is non-empty and is a torsor for the group \(\text{Maps}(Y \times X - \varGamma_3, N)\).

For a given \(Y\) and \(I \subset \text{Maps}(Y, X)\), let \(\text{Maps}_Y(X - I, N)\) be the prestack over \(Y\) that assigns to \(Y' \to Y\) the set of maps \(\text{Maps}(Y' \times X - (Y' \times \varGamma_3), N)\).

Thus, it suffices to show that the projection \(\text{Maps}_Y(X - I, N) \to Y\) is universally homologically contractible, see Sect. [A.1.8] for what this means.

3.5.3. Since \(N\) is unipotent, it is isomorphic to \(A^m\), where \(m = \dim(N)\). Hence, it suffices to show that the map

\[\text{Maps}_Y(X - I, A^1) \to Y\]

is universally homologically contractible.

However, the latter is clear: the prestack \(\text{Maps}_Y(X - I, A^1)\) is isomorphic to the ind-scheme \(A^\infty \times Y\), where

\[A^\infty \simeq \colim_n A^n.\]

\[\Box\]

3.6. The key isomorphism.

3.6.1. The base change isomorphism

\[(\pi_I)^! \circ (i_{\text{glob}}^\lambda)^* \simeq (i^\lambda)^* \circ (\pi_I)^!\]

in the diagram [33] gives rise to a natural transformation

\[(i^\lambda)^* \circ (\pi_I)^! \to (\pi_I)^! \circ (i_{\text{glob}}^\lambda)^*\]

as functors

\[\text{SI}^{\leq 0}_{\text{glob}} \cong \text{SI}^{\leq 0}_I,\]

see Proposition [3.4.3a) for the notation \((i^\lambda)^*\).
3.6.2. In Sect. 3.7 we will prove:

Proposition 3.6.3. The natural transformation $\begin{equation} (3.10) \end{equation}$ is an isomorphism.

We will now deduce some corollaries of Proposition 3.6.3; these will easily imply Theorem 3.3.3 see Sect. 3.6.8.

First, combining Proposition 3.6.3 with Proposition 1.5.3 (c), we obtain:

Corollary 3.6.4. The natural transformation $\begin{equation} (i^λ)^* \circ (π_Ran)^! \rightarrow (π_Ran)^! \circ (i^λ_{glob})^* \end{equation}$ as functors $SI_{glob}^{≤0} \rightarrow SI_{Ran}^{-λ}$ is an isomorphism.

Next, by a Cousin argument, from Proposition 3.6.3 we formally obtain:

Corollary 3.6.5. The natural transformation $\begin{equation} (i^λ)^! \circ (π^λ_{I})! \rightarrow (π^λ_{I})! \circ (i^λ_{glob})! \end{equation}$ arising by adjunction from $\begin{equation} (π^λ_I)^! \circ (i^λ_{glob})! \simeq (i^λ)^! \circ (π^λ_I)^! \end{equation}$ is an isomorphism of functors $SI_{glob}^{=λ} \rightarrow SI_I^{≤0}$.

Combining Corollary 3.6.5 with Corollary 1.5.6(c), we obtain:

Corollary 3.6.6. The natural transformation $\begin{equation} (i^λ)^! \circ (π^λ_Ran)^! \rightarrow (π^λ_Ran)^! \circ (i^λ_{glob})! \end{equation}$ is an isomorphism of functors $SI_{glob}^{=λ} \rightarrow SI_{Ran}^{≤0}$.

Finally, we claim:

Corollary 3.6.7. The functor $\begin{equation} π[d] : SI^{≤0}_{glob} \rightarrow SI^{≤0}_{Ran} \end{equation}$ is t-exact.

Proof. This follows from Corollary 3.6.4 combined with the (tautological) isomorphism $\begin{equation} (i^λ)^! \circ (π^λ_Ran)^! \simeq (π^λ_Ran)^! \circ (i^λ_{glob})^! \end{equation}$. \qed

3.6.8. Note that Corollary 3.6.7 immediately implies Theorem 3.3.3

Remark 3.6.9. In Sect. 6.4 we will present another construction of the map in one direction $\begin{equation} IC^+_{Ran} \rightarrow π^!(IC^+_{glob})[d] \end{equation}$ where we will realize IC^+_{Ran} as IC^+_{Ran}.
3.6.10. Let us now prove Proposition 3.2.2.

Proof. By Corollary 3.6.7, it suffices to show that the objects
\[(\iota_{\lambda}^{\text{glob}})^!(\text{IC}_{\text{Bun}}=\lambda)\] and \[(\iota_{\lambda}^{\text{glob}})^*(\text{IC}_{\text{Bun}}=\lambda)\]
belong to the heart of the t-structure (i.e., are perverse sheaves on \(\text{Bun}_N\)).

We claim that the morphism \(\iota_{\lambda}^{\text{glob}}\) is affine, which would imply that the functors \((\iota_{\lambda}^{\text{glob}})^!\) and \((\iota_{\lambda}^{\text{glob}})^*\) are t-exact.

Indeed, \(\iota_{\lambda}^{\text{glob}}\) is affine, which implies that the functors \((\iota_{\lambda}^{\text{glob}})^!\) and \((\iota_{\lambda}^{\text{glob}})^*\) are t-exact.

\[\square\]

3.7. Proof of Proposition 3.6.3

3.7.1. Let \(F\) be an object of \(\text{SI}_{\leq 0}^{\text{glob}}\). We need to show that the map
\[
(s_{\lambda}^I)^!(\pi_{\lambda}^I)^!(F) \simeq (s_{\lambda}^I)^!(\pi_{\lambda}^I)^!(F)
\]
is an isomorphism.

3.7.2. We first rewrite the left-hand side in (3.11).

As a first step, we note that by (1.7), we have
\[
(s_{\lambda}^I)^!(\pi_{\lambda}^I)^!(F) \simeq (p_{\lambda}^{-\lambda},\lambda)^!(F).
\]

3.7.3. For \(\lambda \in \Lambda_{\text{reg}}\), let \(Z_{\lambda}^\lambda\) be the Zastava space, i.e., this is the open substack of
\[
\overline{\text{Bun}_N \times_{\text{Bun}_G} \text{Bun}_{B^{-\lambda}}},
\]
corresponding to the condition that the \(B^{-}\)-reduction and the generalized \(N\)-reduction of a given \(G\)-bundle are generically transversal.

Let \(q\) denote the forgetful map \(Z_{\lambda}^\lambda \to \overline{\text{Bun}_N}\). Let \(p\) denote the projection
\[
Z_{\lambda}^\lambda \to X_{\lambda},
\]
and let \(s\) denote its section
\[
X_{\lambda} \to Z_{\lambda}^\lambda.
\]

3.7.4. Note that we have a canonical identification
\[
(X_{\lambda} \times X^I)^\mathbb{C}_{X_{\lambda}} \times Z_{\lambda}^\lambda \simeq S_I^\mathbb{C} \cap S_I^{-\lambda},
\]
so that the projection
\[
(id_{(X_{\lambda} \times X^I)^\mathbb{C}_{X_{\lambda}} \times Z_{\lambda}^\lambda} : (X_{\lambda} \times X^I)^\mathbb{C}_{X_{\lambda}} \times Z_{\lambda}^\lambda \to (X_{\lambda} \times X^I)^\mathbb{C}_{X_{\lambda}}}
\]
identifies with
\[
S_I^\mathbb{C} \cap S_I^{-\lambda} \to S_I^{-\lambda} \xrightarrow{p_I^{-\lambda}} (X_{\lambda} \times X^I)^\mathbb{C},
\]
3.7.5. Hence, the right-hand side in (3.12) can be rewritten as

\[(3.14) \quad (\text{id}_{(X^\lambda \times X^I)} \times \text{pr}_\lambda) \circ \text{id}_{Z^\lambda} \circ q^!(\mathcal{F}). \]

where the maps are as shown in the diagram

\[
\begin{array}{ccc}
(X^\lambda \times X^I) & \subset & X^\lambda \\
\downarrow \text{id}_{(X^\lambda \times X^I)} \times \text{pr}_\lambda & & \downarrow \text{p} \\
(Z^\lambda \times \text{pr}_\lambda) \circ \text{id}_{Z^\lambda} & \rightarrow & X^\lambda.
\end{array}
\]

By base change, we rewrite (3.14) as

\[(3.15) \quad \text{pr}_\lambda^! \circ p_* \circ q^!(\mathcal{F}). \]

3.7.6. The adjoint action of T on N defines an action of T on Bun_N. It is easy to see that every object of $\text{SI}^{\leq 0}$ is monodromic for this action. Hence, the same is true for its pullback to Z^λ.

Choose a dominant coweight as in Sect. 1.7.1. Applying the contraction principle for the action of \mathbb{G}_m along the fibers of p (see [DrGa, Proposition 3.2.2]), we rewrite (3.15) as

\[(3.16) \quad \text{pr}_\lambda^! \circ s^* \circ q^!(\mathcal{F}). \]

To summarize, we have rewritten the left-hand side in (3.11) as (3.16).

3.7.7. We now rewrite the right-hand side in (3.11).

Note that we have a Cartesian diagram

\[
\begin{array}{ccc}
X^\lambda & \xrightarrow{s} & Z^\lambda \\
\downarrow q^\lambda & & \downarrow q \\
\text{Bun}_N & \xrightarrow{1_{\text{glob}}} & \text{Bun}_N,
\end{array}
\]

where the map q^λ is given by

\[
X^\lambda \simeq X^\lambda \times \text{Bun}_T \rightarrow X^\lambda \times \text{Bun}_B \simeq \text{Bun}_N^\lambda.
\]

Note also that the map

\[
(X^\lambda \times X^I) \subset S^\lambda \xrightarrow{s^\lambda} \text{Bun}_N^\lambda
\]

identifies with

\[
(X^\lambda \times X^I) \subset \text{Bun}_N^\lambda
\]

Hence, the right-hand side in (3.11) identifies with

\[(3.18) \quad \text{pr}_T^! \circ (q^\lambda)^! \circ (1_{\text{glob}}^\lambda)^*(\mathcal{F}). \]

3.7.8. Unwinding the identifications, we obtain that the map in (3.11) is induced by the natural transformation

\[(3.19) \quad s^* \circ q^! \rightarrow (q^\lambda)^! \circ (1_{\text{glob}}^\lambda)^*, \]

coming from the Cartesian square (3.17).

Thus, it suffices to show that the natural transformation (3.19) is an isomorphism, when evaluated on objects from $\text{SI}^{<0}_{\text{glob}}$.

However, the latter is done by repeating the argument of [Ca1, Sect. 3.9]:

We first consider the case when $-\lambda$ is sufficiently dominant, in which case the morphism q is smooth, being the base change of $\text{Bun}_B^{-\lambda} \rightarrow \text{Bun}_C$. In this case, the fact that (3.19) is an isomorphism follows by smoothness.
Then we reduce the case of a general λ to one above using the factorization property of Z^λ.

3.7.9. Thus, we have completed the proof of Proposition 3.6.9 and hence also of Theorem 3.3.3.

3.8. Relation to the IC sheaf on Zastava spaces.

3.8.1. Recall the Zastava spaces

$$Z^\lambda \subset \overline{\text{Bun}_N} \times \text{Bun}_G^{-\lambda},$$

introduced in Sect. 3.7.3.

Let $\mathring{Z}^\lambda \subset Z^\lambda$ denote the open subscheme equal to $\text{Bun}_N \times \mathring{Z}^\lambda$.

3.8.2. Note now that the identification (3.13) gives rise to a map

$$q': (X^\lambda \times \text{Ran})^C \times Z^\lambda \to \mathcal{S}_\text{Ran}.$$

Let $\text{pr}_\text{Ran}^\lambda \times \text{id}_{Z^\lambda}$ denote the projection

$$(X^\lambda \times \text{Ran})^C \times Z^\lambda \to Z^\lambda.$$

We claim:

Proposition 3.8.3. There exists a canonical isomorphism

$$(\text{pr}_\text{Ran}^\lambda \times \text{id}_{Z^\lambda})^!(\text{IC}_{Z^\lambda}) \simeq (q')^!(\text{IC}_{\mathcal{S}^0})|[(\lambda, 2\check{\rho})],$$

extending the tautological identification of the restriction of either side to

$$(X^\lambda \times \text{Ran})^C \times Z^\lambda \mathring{Z}^\lambda [(\lambda, 2\check{\rho})].$$

3.8.4. **Proof of Proposition 3.8.3.** We have a commutative diagram

$$
\begin{array}{ccc}
(X^\lambda \times \text{Ran})^C \times Z^\lambda & \xrightarrow{q'} & \mathcal{S}_\text{Ran} \\
\downarrow_{\text{pr}_\text{Ran}^\lambda \times \text{id}_{Z^\lambda}} & & \downarrow_{\pi_{\text{Ran}}} \\
Z^\lambda & \xrightarrow{q} & \text{Bun}_G.
\end{array}
$$

According to [Ga1, Prop. 3.6.5(a)], we have a canonical isomorphism

$$q'(\text{IC}_{\mathcal{S}^0})|[(g-1) \cdot \dim(N) + (\lambda, 2\check{\rho})] \simeq \text{IC}_{Z^\lambda}.$$

Now the assertion follows from Theorem 3.3.3.

□
3.9. Computation of fibers. In this subsection we will prove Theorem 3.9.3. One possible proof follows from the description of the objects

\[(\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \text{ and } (\mathfrak{t}_{\text{glob}}^\lambda)^*(\text{IC}_{\text{glob}}^\varphi)\]

in [BG2 Proposition 4.4], combined with Theorem 3.3.3.

Instead, we will actually reprove [BG2 Proposition 4.4], see Theorem 3.9.3 below, using our Theorem 3.3.3.

Remark 3.9.1. Let us add a clarification on the order of the argument proving Theorems 2.4.5 and 3.9.3.

(1) In Sect. 2.6 we defined the object \(\text{IC}_{\text{Ran}}^\varphi\).
(2) In Proposition 2.7.4 we showed that the \!-restrictions of \(\text{IC}_{\text{Ran}}^\varphi\) to the stas \(S^\lambda_{\text{Ran}}\) are strictly coconnective;
(3) In Proposition 2.7.3 we calculated the \(\ast\)-restrictions of \(\text{IC}_{\text{Ran}}^\varphi\) to the stas \(S^\lambda_{\text{Ran}}\) and showed that they are isomorphic to (the pullbacks) of Fact\(\lambda_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle\); in particular, they are strictly connective;
(4) Points (2) and (3) imply that \(\text{IC}_{\text{Ran}}^\varphi\) is isomorphic to \(\text{IC}_{\text{Ran}}^\varphi\);
(5) Points (3) and (4) imply that the \(\ast\)-restrictions of \(\text{IC}_{\text{Ran}}^\varphi\) to the stas \(S^\lambda_{\text{Ran}}\) are isomorphic to (the pullbacks) of Fact\(\lambda_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle\), thus proving the part of Theorem 2.4.5 about \(\ast\)-restrictions;
(6) Point (5) above, combined with Theorem 3.3.3 and Corollary 3.6.3 will imply Theorem 3.9.3 a) (see below);
(7) Point (a) of Theorem 3.9.3 will imply point (b) by a duality argument (see below);
(8) Point (b) of Theorem 3.9.3 will imply the assertion of Theorem 2.4.5 about \!-restrictions (see below).

3.9.2. We first prove:

Theorem 3.9.3.
(a) \((\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{glob}}^\lambda)^!(\text{Fact}_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle)[d - \langle \lambda, 2\hat{\rho} \rangle].\)
(b) \((\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{glob}}^\lambda)^!(\text{Fact}_{\text{coalg}}(U(\mathfrak{a}^\lambda))(\mathcal{T})_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle)[d - \langle \lambda, 2\hat{\rho} \rangle].\)

Proof. We first prove point (a). Let \(\mathcal{X} \in \text{Sh}(X^\lambda)\) be such that

\[(\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{glob}}^\lambda)^!(\mathcal{X})[-d - \langle \lambda, 2\hat{\rho} \rangle].\]

We will show that

\[\mathcal{X} \simeq \text{Fact}_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle \lambda, 2\hat{\rho} \rangle.\]

Applying \((\pi_{\text{Ran}}^\lambda)^!\) to both sides in (3.21), we obtain:

\[(\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{glob}}^\lambda)^!(\mathcal{X})[-d - \langle \lambda, 2\hat{\rho} \rangle].\]

By Corollary 3.6.4 and Theorem 3.3.3 we have:

\[(\pi_{\text{Ran}}^\lambda)^! \circ (\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (\mathfrak{t}_{\text{glob}}^\lambda)^*(\text{IC}_{\text{glob}}^\varphi)[-d].\]

Further, by Remark 2.7.5 we have:

\[(\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{Ran}}^\lambda)^!(\text{Fact}_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle).\]

Combining with (3.22), we obtain

\[(p_{\text{Ran}}^\lambda)^! \circ (\pi_{\text{Ran}}^\lambda)! \circ (\mathfrak{t}_{\text{glob}}^\lambda)^!(\text{IC}_{\text{glob}}^\varphi) \simeq (p_{\text{Ran}}^\lambda)^!(\text{Fact}_{\text{alg}}(\mathcal{O}(\mathcal{N}))_X \langle -\langle \lambda, 2\hat{\rho} \rangle \rangle)[-d].\]
4.1. Unital structure on the affine Grassmannian.

Since the functor $(p^\lambda_{\text{Ran}})^! \circ (pr^\lambda_{\text{Ran}})^!$ is fully faithful, we obtain the desired

$$\mathcal{F}^\lambda \simeq \text{Fact}_{\text{alg}}^\lambda(\mathcal{O}(\tilde{N}))_{X^\lambda},$$

proving point (a).

Since $\text{IC}_{\text{glob}}^\lambda$ is Verdier self-dual, and using the fact that

$$\text{D}(\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda}) \simeq \text{Fact}_{\text{alg}}^\lambda(\mathcal{O}(\tilde{N}))_{X^\lambda},$$

from the isomorphism of point (a), we obtain

$$(i^\lambda_{\text{glob}})^! (\text{IC}_{\text{glob}}^\lambda) \simeq (p^\lambda_{\text{Ran}})^! (\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda}) \simeq (p^\lambda_{\text{glob}})^! (\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda})[-d - \langle \lambda, 2\check{\rho} \rangle],$$

the latter isomorphism because p^λ_{glob} is smooth of relative dimension $d + \langle \lambda, 2\check{\rho} \rangle$. This proves point (b). □

3.9.4. Let us now prove Theorem 2.4.5.

Proof. By Remark 27.35 it remains to prove the assertion regarding $(i^\lambda)^!(\text{IC}_{\text{Ran}}^\lambda)$.

Let $\mathcal{G}^\lambda \in \text{Shv}(\mathcal{X} \times \text{Ran})^{\subset}$ be such that

$$(i^\lambda)^!(\text{IC}_{\text{Ran}}^\lambda) \simeq (p^\lambda_{\text{Ran}})^! (\mathcal{G}^\lambda)[-\langle \lambda, 2\check{\rho} \rangle].$$

Let us show that

$$\mathcal{G}^\lambda \simeq (p^\lambda_{\text{Ran}})^! (\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda}).$$

Indeed, by Theorem 3.3.3 and Theorem 3.9.3(b), we have:

$$(p^\lambda_{\text{Ran}})^! (\mathcal{G}^\lambda)[-\langle \lambda, 2\check{\rho} \rangle] \simeq (i^\lambda)^! (\text{IC}_{\text{Ran}}^\lambda) \simeq (i^\lambda)^! (\pi_{\text{Ran}})^!(\text{IC}_{\text{glob}}^\lambda)[d] \simeq (\pi_{\text{Ran}})^! (i^\lambda_{\text{glob}})^!(\text{IC}_{\text{glob}}^\lambda)[d] \simeq (\pi_{\text{Ran}})^! (p^\lambda_{\text{glob}})^! (\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda})[-\langle \lambda, 2\check{\rho} \rangle] \simeq (p^\lambda_{\text{Ran}})^! (\text{Fact}_{\text{alg}}^\lambda(U(\tilde{n}^-))_{X^\lambda})[-\langle \lambda, 2\check{\rho} \rangle].$$

Since $(p^\lambda_{\text{Ran}})^!$ is fully faithful, this gives the desired isomorphism. □

4. Unital structure and factorization

The goal of this section is to explore an additional property of $\text{IC}_{\text{Ran}}^\lambda$, which we will refer to as unitality. It has to do with the following additional structure on $\text{Gr}_{G, \text{Ran}}$: one can “throw in” more points in Ran without altering the G-bundle.

The unital property of $\text{IC}_{\text{Ran}}^\lambda$ will allow us to construct on it a factorization structure.

4.1. Unital structure on the affine Grassmannian. In this subsection we introduce the geometric structure on $\text{Gr}_{G, \text{Ran}}$ that would allow us to talk about unitality.

4.1.1. Let $(\text{Ran} \times \text{Ran})^{\subset}$ be the following subfunctor of $\text{Ran} \times \text{Ran}$: for an affine test-scheme Y, the set $\text{Hom}(Y, (\text{Ran} \times \text{Ran})^{\subset})$ consists of those

$$J, J' \subset \text{Hom}(Y, X)$$

for which

$$J \subset J' \subset \text{Hom}(Y, X).$$

The diagonal map

$$\Delta_{\text{Ran}} : \text{Ran} \to \text{Ran} \times \text{Ran}$$

factors through a map $\text{Ran} \to (\text{Ran} \times \text{Ran})^{\subset}$, which, by a slight abuse of notation, we denote by the same symbol Δ_{Ran}.
There are two obvious projections
\[\text{ob}_{\text{small}}, \text{ob}_{\text{big}} : (\text{Ran} \times \text{Ran})^\subseteq \rightarrow \text{Ran} \]
that send a point \([4.1]\) to
\[J \subset \text{Hom}(Y, X) \text{ and } J' \subset \text{Hom}(Y, X), \]
respectively.

We have
\[\text{ob}_{\text{small}} \circ \Delta_{\text{Ran}} = \text{id} \text{ and } \text{ob}_{\text{big}} \circ \Delta_{\text{Ran}} = \text{id}. \]

For future use we note:

Lemma 4.1.2. The map \(\text{ob}_{\text{small}} \) is universally homologically contractible.

Remark 4.1.3. One proof of Lemma 4.1.2 can be obtained by mimicking the argument in Sect. A.2.8.

We will now give a different argument, which does not use the properness of \(X \) (we note that the argument below can also be used to give an alternative proof of Lemma 1.3.3, see Proposition 4.2.7 below).

Proof. Let \(Y \) be an affine scheme and let is be given a \(Y \)-point \(J \subset \text{Hom}(Y, X) \) of \(\text{Ran} \). We need to show that the pullback functor
\[\text{Shv}(Y) \rightarrow \text{Shv}(Y \times \text{Ran}^\subseteq) \]
is fully faithful, where the map \((\text{Ran} \times \text{Ran})^\subseteq \rightarrow \text{Ran} \) is \(\text{ob}_{\text{small}} \).

To show this, it suffices to show that the map \(\text{ob}_{\text{small}} \) can be obtained as a retract of a map which is universally homologically contractible. We let this other map be the projection
\[\text{Ran} \times \text{Ran} \rightarrow \text{Ran}, \quad (J_1, J_2) \mapsto J_1. \]
It is universally homologically contractible because the Ran space is homologically contractible (i.e., universally homologically contractible over pt).

We realize \((\text{Ran} \times \text{Ran})^\subseteq \rightarrow \text{Ran} \) as a retract of \(\text{Ran} \times \text{Ran} \rightarrow \text{Ran} \) as follows. The map
\[(\text{Ran} \times \text{Ran})^\subseteq \rightarrow \text{Ran} \times \text{Ran} \]
sends
\[(J \subset J') \mapsto (J, J'). \]
The retraction \(\text{Ran} \times \text{Ran} \rightarrow (\text{Ran} \times \text{Ran})^\subseteq \) sends
\[(J_1, J_2) \mapsto (J_1 \subseteq J_1 \cup J_2). \]
\[\square \]

4.1.4. Consider the fiber product
\[\text{Gr}_{G, (\text{Ran} \times \text{Ran})^\subseteq} := \text{Gr}_{G, \text{Ran}} \times_{\text{Ran}} (\text{Ran} \times \text{Ran})^\subseteq, \]
where the map \((\text{Ran} \times \text{Ran})^\subseteq \rightarrow \text{Ran} \) is \(\text{ob}_{\text{small}} \). By a slight abuse of notation, we will denote by the same symbol \(\text{ob}_{\text{small}} \) the projection
\[\text{Gr}_{G, (\text{Ran} \times \text{Ran})^\subseteq} \rightarrow \text{Gr}_{G, \text{Ran}}. \]

Note, however, that we have another map, denoted
\[\text{ob}_{\text{big}} : \text{Gr}_{G, (\text{Ran} \times \text{Ran})^\subseteq} \rightarrow \text{Gr}_{G, \text{Ran}} \]
that makes the following diagram commute:
\[\begin{cd}
\text{Gr}_{G, (\text{Ran} \times \text{Ran})^\subseteq} & \xrightarrow{\text{ob}_{\text{big}}} & \text{Gr}_{G, \text{Ran}} \\
(Ran \times Ran)^\subseteq & \xrightarrow{\text{ob}_{\text{big}}} & Ran.
\end{cd} \]
Namely, it sends a quadruple \((I \subseteq I', \mathcal{P}_G, \alpha)\) to \((I', \mathcal{P}_G, \alpha')\), where \(\alpha\) is a trivialization of \(\mathcal{P}_G\) on the complement of \(\Gamma \) and \(\alpha'\) is the restriction of \(\alpha\) to the complement of \(\Gamma'\).

Warning: Note, however, that the diagram (4.2) is not Cartesian.

Denote by \(\Delta_{\text{Ran}}\) the natural map

\[
\text{Gr}_{G, \text{Ran}} \to \text{Gr}_{G,(\text{Ran} \times \text{Ran})^C}
\]

We have

\[
\text{ob}_{\text{small}} \circ \Delta_{\text{Ran}} \simeq \text{id} \quad \text{and} \quad \text{ob}_{\text{big}} \circ \Delta_{\text{Ran}} \simeq \text{id}.
\]

4.1.5. We shall say that an object \(F \in \text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\)) is **unital** if there exists an isomorphism

\[
\text{ob}_{\text{small}}(F) \simeq \text{ob}_{\text{big}}(F)
\]

for which the composition

\[
F \simeq \Delta_{\text{Ran}}^! \circ \text{ob}_{\text{small}}(F) \simeq \Delta_{\text{Ran}}^! \circ \text{ob}_{\text{big}}(F) \simeq F
\]

is the identity map.

Note that it follows from Lemma 4.1.2 that if such an isomorphism exists, then it is unique.

4.1.6. Let \(\text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\)) be the full subcategory formed by unital objects.

From Lemma 4.1.2 we obtain:

Corollary 4.1.7. The subcategory \(\text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\)) is closed under colimits.

In particular, we obtain that \(\text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\)) is a (cocomplete) DG subcategory of \(\text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\))

4.1.8. Set:

\[
\text{SI}_Ran^{\text{unital}} := \text{SI}_Ran \cap \text{Shv}((\text{Gr}_{G, \text{Ran}})^{\text{unital}}\)).
\]

Our next goal is to characterize \(\text{SI}_Ran^{\text{unital}}\) more explicitly as a full subcategory of \(\text{SI}_Ran\).

4.2. **Unital structure on the strata.** In this subsection we will extend the discussion of Sect. 4.1 from \(\text{Gr}_{Ran}\) to the prestacks \(S^\lambda_{Ran}\) and \((X^\lambda \times \text{Ran})^C\).

We will see that the unital subcategory of \(\text{Shv}((X^\lambda \times \text{Ran})^C)\) is actually equivalent to \(\text{Shv}(X^\lambda)\).

4.2.1. For a fixed \(\lambda\), consider the functors

\[
S^\lambda_{Ran} \hookrightarrow S^\lambda_{Ran} \to \text{Gr}_{G,Ran},
\]

and consider the corresponding diagram of prestacks

\[
\begin{array}{ccc}
S^\lambda_{(\text{Ran} \times \text{Ran})^C} & \xrightarrow{\lambda^!} & S^\lambda_{(\text{Ran} \times \text{Ran})^C} \\
\downarrow \text{ob}_{\text{big}} & & \downarrow \text{ob}_{\text{big}} \\
S^\lambda_{\text{Ran}} & \xrightarrow{\lambda^!} & S^\lambda_{\text{Ran}}
\end{array}
\]

\[
\begin{array}{ccc}
& \xrightarrow{\text{ob}_{\text{big}}} & \\
Gr_{G,(\text{Ran} \times \text{Ran})^C} & \xrightarrow{\lambda^*} & \text{Gr}_{G,Ran}
\end{array}
\]

The discussion in Sect. 4.1 applies to the present situation as well. In particular, we obtain the full subcategories

\[
\text{Shv}(S^\lambda_{\text{Ran}})^{\text{unital}} \subset \text{Shv}(S^\lambda_{\text{Ran}}) \quad \text{and} \quad \text{Shv}(S^\lambda_{\text{Ran}})^{\text{unital}} \subset \text{Shv}(S^\lambda_{\text{Ran}})
\]

as well as

\[
\text{SI}_{\text{Ran}}^{\leq \lambda, \text{unital}} \subset \text{SI}_{\text{Ran}}^{\leq \lambda} \quad \text{and} \quad \text{SI}_{\text{Ran}}^{\lambda, \text{unital}} \subset \text{SI}_{\text{Ran}}^{\lambda}.
\]

It is clear that the functors \((\lambda^!)^!, (\lambda^*!)\) and \((\lambda^!)^!, (\lambda^*)\) send the corresponding unital subcategories to one another. In particular, from Lemma 4.1.2 we obtain:
Corollary 4.2.2. An object $F \in \text{SI}_{\text{Ran}}^{\leq 0}$ belongs to $\text{SI}_{\text{Ran,unital}}^{\leq 0}$ if and only if $(i^\lambda)^!(F)$ belongs to $\text{SI}_{\text{Ran,unital}}^{=\lambda}$ for all λ.

Finally, from [1.3] one obtains:

Corollary 4.2.3. (a) The functor $(i^\lambda)^* : \text{SI}_{\text{Ran}}^{\leq 0} \to \text{SI}_{\text{Ran,unital}}^{\leq 0}$ sends $\text{SI}_{\text{Ran,unital}}^{\leq 0}$ to $\text{SI}_{\text{Ran,unital}}^{=\lambda}$.
(b) The functor $(i^\lambda)_! : \text{SI}_{\text{Ran}}^{=\lambda} \to \text{SI}_{\text{Ran,unital}}^{\leq 0}$ sends $\text{SI}_{\text{Ran,unital}}^{=\lambda}$ to $\text{SI}_{\text{Ran,unital}}^{\leq 0}$.

4.2.4. For a fixed λ consider the prestack

\[(X^\lambda \times \text{Ran} \times \text{Ran})^C := (X^\lambda \times \text{Ran})^C \times \text{Ran} (\text{Ran} \times \text{Ran})^C,
\]

where the map $(\text{Ran} \times \text{Ran})^C \to \text{Ran}$ is ob_{small}. By a slight abuse of notation, we will denote by the same symbol ob_{small} the projection

\[(X^\lambda \times \text{Ran} \times \text{Ran})^C \to (X^\lambda \times \text{Ran})^C, \quad (D, \beta, \beta') \mapsto (D, \beta).
\]

Let us denote by ob_{big} the map

\[(X^\lambda \times \text{Ran} \times \text{Ran})^C \to (X^\lambda \times \text{Ran})^C, \quad (D, \beta, \beta') \mapsto (D, \beta').
\]

Using this map, we define a full subcategory

\[\text{Shv}((X^\lambda \times \text{Ran})^C)_{\text{unital}} \subset \text{Shv}((X^\lambda \times \text{Ran})^C).
\]

From Proposition 1.4.2, we obtain:

Corollary 4.2.5. The equivalence

\[(p^\lambda_{\text{Ran}})^! : \text{Shv}((X^\lambda \times \text{Ran})^C) \to \text{SI}_{\text{Ran,unital}}^{=\lambda}
\]

restricts to an equivalence

\[\text{Shv}((X^\lambda \times \text{Ran})^C)_{\text{unital}} \to \text{SI}_{\text{Ran,unital}}^{=\lambda}.
\]

4.2.6. We now claim:

Proposition 4.2.7. The pullback functor

\[(p^\lambda_{\text{Ran}})^! : \text{Shv}(X^\lambda) \to \text{Shv}((X^\lambda \times \text{Ran})^C)
\]

defines an equivalence

\[\text{Shv}(X^\lambda) \xrightarrow{\sim} \text{Shv}((X^\lambda \times \text{Ran})^C)_{\text{unital}}.
\]

Proof. The fact that the functor $(p^\lambda_{\text{Ran}})^!$ sends $\text{Shv}(X^\lambda)$ to $\text{Shv}((X^\lambda \times \text{Ran})^C)_{\text{unital}}$ is immediate from the definition.

Choose a finite set I so that we have a surjective symmetrization map $\text{sym}^I \to \lambda : X^I \to X^\lambda$. Since the map $\text{sym}^I \to \lambda$ is finite and surjective, it satisfies descent for $\text{Shv}(\text{--})$. So it is sufficient to prove the assertion of the proposition when the original map

\[p^\lambda_{\text{Ran}} : (X^\lambda \times \text{Ran})^C \to X^\lambda
\]

is base-changed by the Čech nerve of the map $X^I \to X^\lambda$.

We will prove that the pullback functor

\[(p^I_{\text{Ran}})^! : \text{Shv}(X^I) \to \text{Shv}((X^I \times \text{Ran})^C)
\]

defines an equivalence onto $\text{Shv}((X^I \times \text{Ran})^C)_{\text{unital}}$. I.e., we will prove the assertion for the 0-simplices of the Čech nerve; for higher simplices the proof is the same.

Note that the map

\[p^I_{\text{Ran}} : (X^I \times \text{Ran})^C \to X^I
\]

\[9\text{Note also that the fully faithfulness of } (p^\lambda_{\text{Ran}})^! \text{ has been already stated in Lemma 1.3.3; however, the argument given below will give an alternative proof of this fact.}\]
admits a section, denoted r_I. Namely, for an affine test-scheme Y and a Y-point of X^I, which is a map $I \to \text{Hom}(Y, X)$, we assign its image, denoted I in $\text{Hom}(Y, X)$.

Pullback with respect to r_I defines a functor $\text{Shv}((X^I \times \text{Ran})^C) \to \text{Shv}(X^I)$. We claim that the restriction of $(r_I)^!$ to $\text{Shv}((X^I \times \text{Ran})^C)_{\text{unital}}$ is a functor inverse to $(\text{pr}_I^I)^!$.

Indeed, the fact that $(r_I)^! \circ (\text{pr}_I^I)^! \simeq \text{Id}$ is obvious. To construct an isomorphism $(\text{pr}_I^I)^! \circ (r_I)^! |_{\text{Shv}((X^I \times \text{Ran})^C)_{\text{unital}}} \simeq \text{Id}$, we note that there exist canonically defined maps $\prime r_I, \prime' r_I : (X^I \times \text{Ran})^C \to (X^I \times \text{Ran} \times \text{Ran})^C$ such that

$$\text{ob}_{\text{big}} \circ \prime r_I = \text{ob}_{\text{big}} \circ \prime' r_I,$$

while

$$\text{ob}_{\text{small}} \circ \prime r_I = \text{id} \quad \text{and} \quad \text{ob}_{\text{small}} \circ \prime' r_I = r_I \circ \text{pr}_I^I.$$

The maps $\prime r_I, \prime' r_I$ are given by sending a pair (x, J) to $(x, J, J \cup J')$ and $(x, J, J \cup J')$, respectively, where $x \in \text{Hom}(Y, X^I)$, and I denotes the image of the resulting map $I \to \text{Hom}(Y, X)$.

\[\square\]

4.3. Local-to-global comparison, revisited. Once we have defined the category $\text{SI}_{\text{Ran,unital}}^{\leq 0}$, we can sharpen the assertion of Theorem 3.4.4 by directly comparing the global semi-infinite category and the unital Ran version of the local one.

4.3.1. We claim:

Theorem 4.3.2. The pullback functor $(\pi_I^I)^! : \text{SI}_{\text{KOb}}^{\leq 0} \to \text{SI}_{\text{Ran}}^{\leq 0}$ defines an equivalence onto $\text{SI}_{\text{Ran,unital}}^{\leq 0}$.

The rest of this subsection is devote to the proof of this theorem.

4.3.3. First off, it is clear that the essential image of the functor $(\pi_I^I)^! : \text{Shv}(\text{Bun}_N) \to \text{Shv}(\text{SI}_{\text{Ran}}^{\leq 0})$ belongs to the full subcategory

$$\text{Shv}(\text{SI}_{\text{Ran}}^{\leq 0})_{\text{unital}} \subset \text{Shv}(\text{SI}_{\text{Ran}}^{\leq 0}).$$

Indeed, this follows from the fact that the following diagram commutes:

$$\begin{array}{ccc}
\text{Gr}_G(\text{Ran} \times \text{Ran})^C & \xrightarrow{\text{ob}_{\text{small}}} & \text{Gr}_G \text{Ran} \\
\text{Gr}_G \text{Ran} & \xrightarrow{\pi_I^I} & \text{Bun}_N.
\end{array}$$
4.3.4. Second, the fact that the functor in question is fully faithful follows from Theorem 3.4.4.

Thus, it remains to show that the functor

$$(\pi\text{Ran})^! : \text{SI}^{\leq 0}_{\text{glob}} \to \text{SI}^{\leq 0}_{\text{Ran, unital}}$$

is essentially surjective.

Taking into account Corollary 3.6.6 it suffices to show that the functor

$$(\pi\text{Ran})^! : \text{SI}^{\leq 0}_{\text{glob}} \to \text{SI}^{\leq 0}_{\text{Ran}}$$

defines an equivalence onto $\text{SI}^{\leq 0}_{\text{Ran, unital}} \subset \text{SI}^{\leq 0}_{\text{Ran}}$.

However, this follows from Corollary 4.2.5 and Proposition 4.2.7 using the commutative diagram

4.4. The t-structure on the unital category. In this subsection we will show that the t-structure on $\text{SI}^{\leq 0}_{\text{Ran, unital}}$ restricts to a t-structure on $\text{SI}^{\leq 0}_{\text{Ran, unital}}$.

4.4.1. We define a t-structure on $\text{SI}^{\leq 0}_{\text{Ran, unital}}$ by transferring the (perverse) t-structure on $\text{Shv}(X^{\lambda})$ via the equivalences

$$\text{Shv}(X^{\lambda}) \xrightarrow{(pr^{\lambda}_{\text{Ran}})^!} \text{Shv}((X^{\lambda} \times \text{Ran})^{\text{unital}}) \xrightarrow{(pr^{\lambda}_{\text{Ran}})^!} \text{SI}^{\leq 0}_{\text{Ran, unital}},$$

and applying the shift $[(\lambda, 2\hat{\rho})]$.

4.4.2. We define a t-structure on $\text{SI}^{\leq 0}_{\text{Ran, unital}}$ by declaring that an object F is cocomplete if

$$(i^{\lambda})^!(F) \in \text{SI}^{\leq 0}_{\text{Ran, unital}}$$

is cocomplete for each λ.

As in Lemma 2.1.9 one show that an object $F \in \text{SI}^{\leq 0}_{\text{Ran, unital}}$ is connective if and only if

$$(i^{\lambda})^*(F) \in \text{SI}^{\leq 0}_{\text{Ran, unital}}$$

is connective for each λ.

From here, we obtain:

Corollary 4.4.3. The inclusion $\text{SI}^{\leq 0}_{\text{Ran, unital}} \hookrightarrow \text{SI}^{\leq 0}_{\text{Ran}}$ is compatible with t-structures (i.e., is t-exact).

4.4.4. We now claim:

Proposition 4.4.5. The object $\text{IC}^{\mathbb{P}^{\infty}} \in (\text{SI}^{\leq 0}_{\text{Ran}})^{\vee}$ belongs to $(\text{SI}^{\leq 0}_{\text{Ran, unital}})^{\vee}$.

Proof. The assertion follows from Corollary 3.8.3 and the fact that both

$$(i^0)^!(\omega_{\text{Ran}}^{\leq 0}) \text{ and } (i^0)^*(\omega_{\text{Ran}}^{\leq 0})$$

belong to $\text{SI}^{\leq 0}_{\text{Ran, unital}}$. \hfill \Box

4.5. Comparison with IC on Zastava spaces, continued. Recall the isomorphism

$$(pr_{\text{Ran}}^{\lambda} \times \text{id}_{\mathbb{A}^{\lambda}})^!(\text{IC}_{\mathbb{A}^{\lambda}}) \simeq (q^!)(\text{IC}^{\mathbb{P}^{\infty}})((\lambda, 2\hat{\rho}))$$

established in Proposition 3.8.3.

In this subsection we will sharpen this assertion by showing that it is uniquely characterized by the property that its restriction to the open substack

$$(X^{\lambda} \times \text{Ran})^{\mathbb{C}} \times \mathbb{Z}^{\lambda} \subset (X^{\lambda} \times \text{Ran})^{\mathbb{C}} \times \mathbb{Z}^{\lambda}$$

is the tautological identification of both sides with the dualizing sheaf.
4.5.1. First off, we note that the recipe in Sect. 4.2 allows to introduce a full subcategory
\[\text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}} \subset \text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda), \]
and the functor \((q')^!\) (see (3.20)) sends
\[\text{SI}^{\leq 0}_{\text{unital}} \rightarrow \text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}. \]

Moreover, an analog of Proposition 4.2.7 applies, and the functor \((\text{pr}_\text{Ran}^\lambda \times \text{id}_{\mathcal{Z}^\lambda})^!\) defines an equivalence
\[\text{Shv}(\mathcal{Z}^\lambda) \xrightarrow{\sim} \text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}. \]

4.5.2. We define a t-structure on \(\text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}\) by transferring the t-structure on \(\text{Shv}(\mathcal{Z}^\lambda)\) via the equivalence of (4.3).

In particular, we obtain that the object \((\text{pr}_\text{Ran}^\lambda \times \text{id}_{\mathcal{Z}^\lambda})^!(IC_{\mathcal{Z}^\lambda})\in \text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}\) lies in the heart of the t-structure, and is the minimal extension of
\[(\text{pr}_\text{Ran}^\lambda \times \text{id}_{\mathcal{Z}^\lambda})^!(IC_{\mathcal{Z}^\lambda})_{(X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda} \in \text{Shv}((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}. \]

4.5.3. Hence, we obtain:

Corollary 4.5.4. The isomorphism
\[(\text{pr}_\text{Ran}^\lambda \times \text{id}_{\mathcal{Z}^\lambda})^!(IC_{\mathcal{Z}^\lambda}) \simeq (q')^!(IC^\oplus_{G})[(\lambda, 2\tilde{\rho})] \]
of Proposition 3.8.3 is uniquely characterized by the property that it extends the tautological isomorphism over \((X^\lambda \times \text{Ran})^C \times \mathcal{Z}^\lambda)_{\text{unital}}.

4.6. **Factorization structure on** \(\text{IC}^\oplus_G\). We now arrive to the key point of this section. We will show that unitality allows one to construct the factorization structure on the semi-infinite cohomology sheaf \(\text{IC}^\oplus_G\).

4.6.1. Recall that identification
\[(\text{Gr}_G, \text{Ran} \times \text{Gr}_G, \text{Ran})_{\text{Ran} \times \text{Ran}} \times (\text{Ran} \times \text{Ran})_{\text{disj}} \simeq \text{Gr}_G, \text{Ran} \times (\text{Ran} \times \text{Ran})_{\text{disj}} \]
of (2.13).

Our current goal is to show that, with respect to this identification, we have a canonical isomorphism
\[(\text{IC}_G^\oplus \boxtimes \text{IC}_G^\oplus)_{(\text{Gr}_G, \text{Ran} \times \text{Gr}_G, \text{Ran})_{\text{Ran} \times \text{Ran}}} \times (\text{Ran} \times \text{Ran})_{\text{disj}} \simeq \text{IC}_G^\oplus_{\text{Gr}_G, \text{Ran} \times (\text{Ran} \times \text{Ran})_{\text{disj}}}. \]

Note that we already know that such an isomorphism takes place, due to the identification
\[(\text{IC}_G^\oplus \boxtimes \text{IC}_G^\oplus)_{(\text{Gr}_G, \text{Ran} \times \text{Gr}_G, \text{Ran})_{\text{Ran} \times \text{Ran}}} \times (\text{Ran} \times \text{Ran})_{\text{disj}} \simeq \text{IC}_G^\oplus_{\text{Gr}_G, \text{Ran} \times (\text{Ran} \times \text{Ran})_{\text{disj}}} \]
of (2.14) and the isomorphism
\[\text{IC}_G^\oplus \simeq \text{IC}_G^\oplus, \]

However, we would like to present a different construction of the isomorphism (4.5). It will be based on “abstract” t-structure considerations rather the identification of \(\text{IC}_G^\oplus\) with the (explicitly constructed) object \(\text{IC}^\oplus_{G}\).
4.6.2. Let $\text{Ran}^{\cdot} \subset \text{Shv(Gr}_{\text{ran}}$ be the simplicial prestack whose prestack of n-simplices $\text{Ran}^{\cdot,n}$ attaches to an affine test-scheme Y the set of

$$J_0 \subseteq \ldots \subseteq J_n \subset \text{Hom}(Y,X).$$

Let

$$(\text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \subset \text{Ran}^{\cdot} \times \text{Ran}^{\cdot}$$

be an open simplicial sub-prestack equal to

$$(\text{Ran}^{\cdot} \times \text{Ran}^{\cdot}) \times \text{Ran} \times \text{Ran}_{\text{disj}},$$

where the map

$$\text{Ran}^{\cdot} \times \text{Ran}^{\cdot} \to \text{Ran} \times \text{Ran}$$

sends

$$(j'_0 \subseteq \ldots \subseteq J'_n, j''_0 \subseteq \ldots \subseteq J''_n) \mapsto (J'_0, J''_0).$$

Consider the simplicial prestack

$$(\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}},$$

where the map

$$(\text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \to (\text{Ran} \times \text{Ran})$$

sends

$$(j'_0 \subseteq \ldots \subseteq J'_n, j''_0 \subseteq \ldots \subseteq J''_n) \mapsto (J'_0, J''_0).$$

Note also that the identification (4.3) extends to an identification of simplicial prestacks

$$(\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \cong \text{Gr}_{\text{G},\text{ran}} \times \text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}},$$

where the map

$$(\text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \to (\text{Ran} \times \text{Ran})$$

is again (4.3), and the map

$$(\text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \to \text{Ran}$$

is

$$(j'_0 \subseteq \ldots \subseteq J'_n, j''_0 \subseteq \ldots \subseteq J''_n) \mapsto (j'_0 \cup j''_0).$$

We define

$$\text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran} \times \text{Ran})_{\text{disj}} \text{unital} :=$$

$$= \text{Tot} \left(\text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran}^{\cdot} \times \text{Ran}^{\cdot})_{\text{disj}} \right).$$

Warning. Unlike the case of the functor $\text{Shv(Gr}_{\text{G},\text{ran}})_{\text{unital}} \to \text{Shv(Gr}_{\text{G},\text{ran}}$, it is no longer true that the functor of restriction to 0-simplices

$$\text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran} \times \text{Ran})_{\text{disj}} \text{unital} \to$$

$$\to \text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran} \times \text{Ran})_{\text{disj}}$$

is fully faithful.

4.6.3. Proceeding as in Sect. 1.2 we define a full subcategory

$$\text{SI}_{\text{disj}} \subset \text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran} \times \text{Ran})_{\text{disj}}$$

and a full subcategory

$$\text{SI}_{\text{disj},\text{unital}} \subset \text{Shv}((\text{Gr}_{\text{G},\text{ran}} \times \text{Gr}_{\text{G},\text{ran}}) \times \text{Ran} \times \text{Ran})_{\text{disj}} \text{unital}.$$
4.6.4. It is clear that if $\mathcal{F}_1, \mathcal{F}_2$ are objects in $\SI_{\Ran, \unital}$, then
\[(\mathcal{F}_1 \boxtimes \mathcal{F}_2) |_{(\Gr_G, \Ran) \times (\Gr_G, \Ran)} \subseteq \SI_{(\Ran \times \Ran)_{\disj}}\]
naturally upgrades to an object of $\SI_{(\Ran \times \Ran)_{\disj}, \unital}$.

Similarly, it is clear that if \mathcal{F} is an object of $\SI_{\Ran, \unital}$, then
\[\mathcal{F} |_{(\Gr_G, \Ran) \times (\Ran \cap \Ran_{\cap})_{\disj}} \subseteq \SI_{(\Ran \times \Ran)_{\disj}}\]
naturally upgrades to an object of $\SI_{(\Ran \times \Ran)_{\disj}, \unital}$.

In particular, we obtain that both sides in (4.5) are naturally objects of $\SI_{(\Ran \times \Ran)_{\disj}, \unital}$.

4.6.5. Similar definitions apply to $\Gr_G, \Ran \times \Gr_G, \Ran$ replaced by $\Ran, \Ran \times \Ran$ and also by
\[S^\lambda \Ran \times S^\mu \Ran\]
for a pair of elements $\lambda, \mu \in \Lambda$. Denote the resulting categories by
\[\SI_{(\Ran \times \Ran)_{\disj}, \unital}^{\leq 0} \quad \text{and} \quad \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{=\lambda, \mu}\]
respectively.

As in Corollary 4.6.6. we have:

Corollary 4.6.6. The pullback functor along the map $\rho_{(\Ran \times \Ran)_{\disj}}^{\lambda, \mu}$
\[(S^\lambda \Ran \times S^\mu \Ran) \times (\Ran \times \Ran)_{\disj} \rightarrow ((X^\lambda \times \Ran)^C \times (X^\mu \times \Ran)^C) \times (\Ran \times \Ran)_{\disj}\]
defines equivalences
\[\operatorname{Shv}((X^\lambda \times \Ran)^C \times (X^\mu \times \Ran)^C) \times (\Ran \times \Ran)_{\disj} \rightarrow \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{=\lambda, \mu}\]
and
\[\operatorname{Shv}((X^\lambda \times \Ran)^C \times (X^\mu \times \Ran)^C) \times (\Ran \times \Ran)_{\disj} \text{unital} \rightarrow \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{=\lambda, \mu}.\]

In addition, by repeating the argument of Proposition 4.6.7 one shows:

Proposition 4.6.7. The pullback functor along the map $\rho_{(\Ran \times \Ran)_{\disj}}^{\lambda, \mu}$
\[(X^\lambda \times \Ran)^C \times (X^\mu \times \Ran)^C) \times (\Ran \times \Ran)_{\disj} \rightarrow (X^\lambda \times X^\mu)_{\disj}\]
defines an equivalence
\[\operatorname{Shv}((X^\lambda \times X^\mu)^{\disj}) \rightarrow \operatorname{Shv}((X^\lambda \times \Ran)^C \times (X^\mu \times \Ran)^C) \times (\Ran \times \Ran)_{\disj} \text{unital}.\]

4.6.8. Using Corollary 4.6.6 and Proposition 4.6.7 proceeding as in Sect. 4.4 we define a t-structure on the categories $\SI_{(\Ran \times \Ran)_{\disj}, \unital}$ and $\SI_{(\Ran \times \Ran)_{\disj}, \unital}^{\leq 0}$.

It is clear that in the situation of Sect. 4.6.3 if $\mathcal{F}_1, \mathcal{F}_2 \in \SI_{\Ran, \unital}$ (resp., $\mathcal{F} \in \SI_{\Ran, \unital}^{\leq 0}$) are connective/coconnective, then so are the corresponding objects
\[(\mathcal{F}_1 \boxtimes \mathcal{F}_2) |_{(\Gr_G, \Ran) \times (\Gr_G, \Ran)} \subseteq \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{\leq 0}\]
and
\[\mathcal{F} |_{(\Gr_G, \Ran) \times (\Ran \cap \Ran_{\cap})_{\disj}} \subseteq \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{=0, \mu}.\]

This implies that both sides in (4.5) are minimal extensions of the object
\[\omega_{(S^0 \Ran \times S^0 \Ran)} \times (\Ran \times \Ran)_{\disj} \subseteq \SI_{(\Ran \times \Ran)_{\disj}, \unital}^{=0, \mu}.\]
This implies the sought-for canonical isomorphism (4.5).
4.7. **Factorization and Zastava spaces.** In this subsection we will establish the compatibility of the factorization structure on \(\text{IC} \mathcal{Z} \mathbb{F}\) given by \(15\) and the factorization property of the IC sheaf on Zastava spaces.

4.7.1. Recall again the Zastava spaces \(\mathcal{Z}\).

According to [BFGM, Prop. 2.4], we have canonical isomorphisms

\[
(\mathcal{Z} \times \mathcal{Z}) \times X^\lambda \times X^\mu / (X^\lambda \times X^\mu) \cong X^{\lambda + \mu}.
\]

Since the composite map

\[
(X^\lambda \times X^\mu) / (X^\lambda \times X^\mu) \rightarrow X^\lambda \times X^\mu \rightarrow X^{\lambda + \mu}
\]
is étale, we have a canonical isomorphism

\[
(\text{IC} \mathcal{Z} \times \text{IC} \mathcal{Z}) \times (X^\lambda \times X^\mu) / (X^\lambda \times X^\mu) \cong \text{IC} X^{\lambda + \mu} / (X^\lambda \times X^\mu).
\]

4.7.2. Note that we have an identification

\[
\left(\left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) \times \left(\left(X^\mu \times \text{Ran}\right)^* \times X^\mu\right)\right) \times \left(\text{Ran} \times \text{Ran}\right) \cong \left(\left(X^{\lambda + \mu} \times \text{Ran}\right)^* \times X^{\lambda + \mu}\right) \times \left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) / (X^{\lambda + \mu}, X^\lambda) / \text{Ran} \times \text{Ran} ,
\]

where

\[
\left(\left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) \times \left(\left(X^\mu \times \text{Ran}\right)^* \times X^\mu\right)\right) / (X^{\lambda + \mu}, X^\lambda) / \text{Ran} \times \text{Ran} := \left(\left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) \times \left(\left(X^\mu \times \text{Ran}\right)^* \times X^\mu\right)\right) / (X^{\lambda + \mu}, X^\lambda) / \text{Ran} \times \text{Ran}.
\]

Consider the maps

\[
\left(\left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) \times \left(\left(X^\mu \times \text{Ran}\right)^* \times X^\mu\right)\right) \times \left(\text{Ran} \times \text{Ran}\right) \rightarrow \left(S_\text{Ran} \times S_\text{Ran}\right) \times \left(\text{Ran} \times \text{Ran}\right),
\]

and

\[
\left(\left(X^{\lambda + \mu} \times \text{Ran}\right)^* \times X^{\lambda + \mu}\right) \times \left(\left(X^\lambda \times \text{Ran}\right)^* \times X^\lambda\right) / (X^{\lambda + \mu}, X^\lambda) / \text{Ran} \times \text{Ran} \rightarrow \left(S_\text{Ran} \times S_\text{Ran}\right) \times \left(\text{Ran} \times \text{Ran}\right).
\]

They are compatible with respect to the identifications \(4.11\) and

\[
\left(S_\text{Ran} \times S_\text{Ran}\right) \times \left(\text{Ran} \times \text{Ran}\right) / (X^\lambda \times X^\mu) \cong \left(S_\text{Ran} \times S_\text{Ran}\right) / (X^\lambda \times X^\mu) / \text{Ran} \times \text{Ran}.
\]

Hence, from \(4.10\) we obtain an isomorphism:

\[
\text{IC} \mathcal{Z} \times \text{IC} \mathcal{Z} / (X^\lambda \times X^\mu) / \text{Ran} \times \text{Ran} \cong \text{IC} X^{\lambda + \mu} / (X^\lambda \times X^\mu) / \text{Ran} \times \text{Ran}.
\]
4.7.3. Consider now the maps

\[
\left((X^\lambda \times \text{Ran})^C \times Z^\lambda \right) \times \left((X^\mu \times \text{Ran})^C \times Z^\mu \right)_{\text{disj}} \to (Z^\lambda \times Z^\mu)_{\text{disj}}
\]

and

\[
\left((X^\lambda + \mu \times \text{Ran})^C \times Z^{\lambda + \mu} \right)_{\text{disj}} \to (Z^\lambda \times Z^\mu)_{\text{disj}}.
\]

They are compatible with respect to the identifications (4.11) and (4.9). Hence, from (4.10) we obtain the isomorphism

\[
\text{IC}_{Z^\lambda} \boxtimes \text{IC}_{Z^\mu} \left((X^\lambda \times \text{Ran})^C \times Z^\lambda \right) \times \left((X^\mu \times \text{Ran})^C \times Z^\mu \right)_{\text{disj}} \cong \text{IC}_{Z^{\lambda + \mu}} \left((X^\lambda + \mu \times \text{Ran})^C \times Z^{\lambda + \mu} \right)_{\text{disj}}.
\]

4.7.4. We claim:

Proposition 4.7.5. The isomorphisms (4.14) and (4.11) are compatible with respect to the isomorphisms

\[
(\text{pr}_{\text{Ran}}^\lambda \times \text{id}_{Z^\lambda})^!(\text{IC}_{Z^\lambda}) \cong (\lambda, 2\delta), \quad (\text{pr}_{\text{Ran}}^\mu \times \text{id}_{Z^\mu})^!(\text{IC}_{Z^\mu}) \cong (\mu, 2\delta)
\]

and

\[
(\text{pr}_{\text{Ran}}^{\lambda + \mu} \times \text{id}_{Z^{\lambda + \mu}})^!(\text{IC}_{Z^{\lambda + \mu}}) \cong (\lambda + \mu, 2\delta)
\]

of Proposition 4.8.3.

Proof. By mimicking the procedure in Sect. 4.6.3 we introduce the category

\[
\text{Shv} \left(((X^\lambda \times \text{Ran})^C \times Z^\lambda) \times ((X^\mu \times \text{Ran})^C \times Z^\mu) \right)_{\text{disj}} \text{unital},
\]

and we show that the object

\[
\text{IC}_{Z^\lambda} \boxtimes \text{IC}_{Z^\mu} \left((X^\lambda \times \text{Ran})^C \times Z^\lambda \right) \times \left((X^\mu \times \text{Ran})^C \times Z^\mu \right)_{\text{disj}} \text{unital}
\]

naturally upgrades to an object of (4.15).

Furthermore, by mimicking the procedure in Sect. 4.6.8 we introduce a t-structure on (4.15) and we show that the above object

\[
\text{IC}_{Z^\lambda} \boxtimes \text{IC}_{Z^\mu} \left((X^\lambda \times \text{Ran})^C \times Z^\lambda \right) \times \left((X^\mu \times \text{Ran})^C \times Z^\mu \right)_{\text{disj}} \text{unital}
\]

is the minimal extension of its restriction to

\[
\left((X^\lambda \times \text{Ran})^C \times Z^\lambda \right) \times \left((X^\mu \times \text{Ran})^C \times Z^\mu \right)_{\text{disj}}.
\]

Now the compatibility stated in Sect. 4.7.3 follows from the fact that it does so after restriction to (4.16).
5. The Hecke property of the semi-infinite IC sheaf

The goal of this section is to show that the object $\text{IC}^{\infty}_{\text{Ran}}$ that we have constructed satisfies the (appropriately formulated) Hecke eigen-property.

5.1. Pointwise Hecke property.

5.1.1. Consider the category $\text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}} \backslash \mathcal{G}_{\text{Ran}})$, i.e., we impose the structure of equivariance with respect to group-scheme of arcs into \mathcal{T} over the base prestack Ran.

The action of $\mathcal{L}(\mathcal{T})_{\text{Ran}}$ on \mathcal{G}_{Ran} by left multiplication defines an action of $\text{Sph}_{\mathcal{T},\text{Ran}}$ on $\text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}} \backslash \mathcal{G}_{\text{Ran}})$. We consider $\text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}} \backslash \mathcal{G}_{\text{Ran}})$ as acted on by the monoidal category $\text{Sph}_{\mathcal{G},\text{Ran}}$ on the right by convolutions.

This action commutes with the left action of $\text{Sph}_{\mathcal{T},\text{Ran}}$.

5.1.2. Since $\mathcal{L}(\mathcal{T})_{\text{Ran}}$ normalizes $\mathcal{L}(\mathcal{N})_{\text{Ran}}$, the category $(\text{SI}^{\infty}_{\text{Ran}})_{\mathcal{L}^+(\mathcal{T})_{\text{Ran}}}$ inherits an action of $\text{Sph}_{\mathcal{T},\text{Ran}}$ and a commuting $\text{Sph}_{\mathcal{G},\text{Ran}}$-action.

Working with this version of the semi-infinite category, we can define a t-structure on it in the same way as for $\text{SI}^{\infty}_{\text{Ran}}$, so that the forgetful functor

\[
(\text{SI}^{\infty}_{\text{Ran}})_{\mathcal{L}^+(\mathcal{T})_{\text{Ran}}} \to \text{SI}^{\infty}_{\text{Ran}}
\]

is t-exact.

Thus, we obtain that the object $\text{IC}^{\infty}_{\text{Ran}} \in \text{SI}^{\infty}_{\text{Ran}} \subset \text{Shv}(\mathcal{G}_{\text{Ran}})$ naturally lifts to an object of $(\text{SI}^{\infty}_{\text{Ran}})_{\mathcal{L}^+(\mathcal{T})_{\text{Ran}}} \subset \text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}} \backslash \mathcal{G}_{\text{Ran}})$;

by a slight abuse of notation we denote it by the symbol $\text{IC}^{\infty}_{\text{Ran}}$.

5.1.3. Fix a point x. Let Ran_x be the version of the Ran space with x as a marked point. By definition, for an affine test-scheme Y, the set $\text{Hom}(Y, \text{Ran}_x)$ consists of finite subsets

$J \subset \text{Hom}(Y, X)$

equipped with distinguished element $* \in J$ such that the corresponding map $Y \to X$ is

$X \to \text{pt} \xrightarrow{*} X$.

5.1.4. We have the natural forgetful map $\text{Ran}_x \to \text{Ran}$, and we can use it to base change all the objects considered above.

In particular, we consider the prestack

$\text{Gr}_{\mathcal{G},\text{Ran}_x} := \text{Gr}_{\mathcal{G},\text{Ran}} \times_{\text{Ran}} \text{Ran}_x,$

the category

$\text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}_x} \backslash \mathcal{G}_{\mathcal{G},\text{Ran}_x})$,

acted on by

$\text{Sph}_{\mathcal{G},\text{Ran}_x} := \text{Shv}(\mathcal{L}^+(\mathcal{G})_{\text{Ran}_x} \backslash \mathcal{G}_{\mathcal{G},\text{Ran}_x})$ and $\text{Sph}_{\mathcal{T},\text{Ran}_x} := \text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}_x} \backslash \mathcal{G}_{\mathcal{T},\text{Ran}_x})$,

etc.

We can consider the corresponding object

$\text{IC}^{\infty}_{\text{Ran}_x} \in \text{Shv}(\mathcal{G}_{\mathcal{G},\text{Ran}_x})_{\mathcal{L}^+(\mathcal{N})_{\text{Ran}_x}} \subset \text{Shv}(\mathcal{L}^+(\mathcal{T})_{\text{Ran}_x} \backslash \mathcal{G}_{\mathcal{G},\text{Ran}_x})$,}
equal to the $!$-pullback of IC^∞_{Ran} along the projection $Gr_{G,\text{Ran}} \to Gr_{G,\text{Ran}}$.

5.1.5. Note that we have a tautologically defined map

\begin{equation}
(5.1) \quad \text{Ran}_x \times Gr_{G,x} \to Gr_{G,\text{Ran}_x}.
\end{equation}

From (5.1) we obtain a canonically defined monoidal functor

$$\text{Sph}_{G,x} \to \text{Sph}_{G,\text{Ran}_x}.$$

Composing with the geometric Satake functor

$$\text{Sat}_{G,x} : \text{Rep}(\hat{G}) \to \text{Sph}_{G,x},$$

we obtain a monoidal functor

$$\text{Sph}_{G,x} \to \text{Sph}_{G,\text{Ran}_x}.$$

We modify the geometric Satake functor for T by applying the cohomological shift by $[-\langle \lambda, 2\rho \rangle]$ on $e^\lambda \in \text{Rep}(T)$. Denote the resulting functor by

$$\text{Sat}_{T,x}' : \text{Rep}(\hat{T}) \to \text{Sph}_{T,x}.$$

Pre-composing with

$$\text{Sph}_{T,x} \to \text{Sph}_{T,\text{Ran}_x},$$

we obtain a monoidal functor

$$\text{Rep}(\hat{T}) \to \text{Sph}_{T,\text{Ran}_x}.$$

5.1.6. Thus, we obtain that $\text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x})$ is a bimodule category for $(\text{Rep}(\hat{T}), \text{Rep}(\hat{G}))$. In this case, we can talk about the category of graded Hecke objects in $\text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x})$, denoted

$$\text{Hecke}_{G,T}(\text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x})),$$

see [Ga1, Sect. 4.3.5], and also Sect. 5.4.1 below.

These are objects $\mathcal{F} \in \text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x})$, equipped with a system of isomorphisms

$$\mathcal{F} \star \text{Sat}_{G,x}(V) \xrightarrow{\phi(V,T)} \text{Sat}_{T,x}(\text{Res}_{\hat{T}}^G(V)) \star \mathcal{F}, \quad V \in \text{Rep}(\hat{G})$$

that are compatible with the monoidal structure on $\text{Rep}(\hat{G})$ in the sense that the diagrams

$$\begin{array}{ccc}
\mathcal{F} \star \text{Sat}_{G,x}(V_1) \star \text{Sat}_{G,x}(V_2) & \xrightarrow{\phi(V_1,T)} & \text{Sat}_{T,x}(\text{Res}_{\hat{T}}^G(V_1)) \star \mathcal{F} \star \text{Sat}_{G,x}(V_2) \\
\downarrow & & \downarrow \phi(V_2,T) \\
\mathcal{F} \star \text{Sat}_{G,x}(V_1 \otimes V_2) & \xrightarrow{\phi(V_1 \otimes V_2,T)} & \text{Sat}_{T,x}(\text{Res}_{\hat{T}}^G(V_1) \otimes \text{Res}_{\hat{T}}^G(V_2)) \star \mathcal{F}
\end{array}$$

along with a coherent system of higher compatibilities.

5.1.7. We will prove:

Theorem-Construction 5.1.8. The object $IC^\infty_{\text{Ran}_x} \in \text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x})$ naturally lifts to an object of $\text{Hecke}_{G,T}(\text{Shv}(\mathcal{L}^+(T)_{\text{Ran}_x} \backslash Gr_{G,\text{Ran}_x}))$.

Several remarks are in order.

Remark 5.1.9. In the proof of Theorem 5.1.8, the object IC^∞_{Ran} will come in its incarnation as $‘IC^\infty_{\text{Ran}}$, constructed in Sect. 2.7.
Remark 5.1.10. Consider the restriction
\[\text{IC}_x^\infty \simeq \text{IC}_{x,G,x}^\infty. \]

The Hecke structure on \(\text{IC}_{x,G,x}^\infty \) induces one on \(\text{IC}_x^\infty \). It will follow from the construction and [Ga1, Sect. 6.2.5] that the resulting Hecke structure on \(\text{IC}_x^\infty \) coincides with one constructed in [Ga1, Sect. 5.1].

Remark 5.1.11. In order to prove Theorem 5.1.8 we will need to consider the Hecke action of \(\text{Rep}(\hat{G}) \) on \(\text{Shv}(\mathcal{E}^+(T)_{\text{Ran}}/\text{Gr}_{G,\text{Ran}}) \) over the entire Ran space. The next few subsections are devoted to setting up the corresponding formalism.

5.2. Categories over the Ran space, continued.

5.2.1. Recall the construction (5.2)
\[\mathcal{A} \to \text{Fact}_{\text{alg}}(\mathcal{A})_I \]
of Sect. 2.5 viewed as a functor \(\text{DGCat}^{\text{SymMon}} \to \text{Shv}(X^I)-\text{mod} \).

Note that the functor (5.2) has a natural right-lax symmetric monoidal structure, i.e., we have the natural transformation
\[\text{Fact}_{\text{alg}}(\mathcal{A}')_I \otimes_{\text{Shv}(X^I)} \text{Fact}_{\text{alg}}(\mathcal{A}'')_I \to \text{Fact}_{\text{alg}}(\mathcal{A}' \otimes \mathcal{A}'')_I. \]

In particular, since any \(\mathcal{A} \in \text{DGCat}^{\text{SymMon}} \) can be viewed as an object in \(\text{ComAlg}(\text{DGCat}^{\text{SymMon}}) \), we obtain that \(\text{Fact}_{\text{alg}}(\mathcal{A})_I \) itself acquires a structure of symmetric monoidal category.

5.2.2. For a surjection of finite sets \(\phi : I_1 \to I_2 \), the corresponding functor (5.3)
\[(\Delta_\phi)^! : \text{Fact}_{\text{alg}}(\mathcal{A})_{I_1} \to \text{Fact}_{\text{alg}}(\mathcal{A})_{I_2} \]
(see Sect. 2.5.10) is naturally symmetric monoidal. In particular, we obtain that
\[\text{Fact}_{\text{alg}}(\mathcal{A})_{\text{Ran}} \simeq \lim_I \text{Fact}(\mathcal{A})_I \]
(see (2.10)) acquires a natural symmetric monoidal structure.

5.2.3. Let \(\mathcal{A}' \to \mathcal{A}'' \) be a right-lax symmetric monoidal functor. The functor (5.2) gives rise to a right-lax symmetric monoidal functor
\[\text{Fact}_{\text{alg}}(\mathcal{A}')_I \to \text{Fact}_{\text{alg}}(\mathcal{A}'')_I, \]
compatible with the restriction functors (5.3). Varying \(I \), we obtain a right-lax symmetric monoidal functor
\[\text{Fact}_{\text{alg}}(\mathcal{A}')_{\text{Ran}} \to \text{Fact}_{\text{alg}}(\mathcal{A}'')_{\text{Ran}}. \]

In particular, a commutative algebra object \(\mathcal{A} \) in \(\mathcal{A} \), viewed as a right-lax symmetric monoidal functor \(\text{Vect} \to \mathcal{A} \), gives rise to a commutative algebra
\[\text{Fact}_{\text{alg}}(\mathcal{A})_I \in \text{Fact}_{\text{alg}}(\mathcal{A})_I. \]

These algebra objects are compatible under the restriction functors (5.3). Varying \(I \), we obtain a commutative algebra object
\[\text{Fact}_{\text{alg}}(\mathcal{A})_{\text{Ran}} \in \text{Fact}(\mathcal{A})_{\text{Ran}}. \]
5.2.4. Examples. Let us consider the two examples of A from Sect. 2.5.4.

(i) Let $A = \text{Vect}$. We obtain that to $A \in \text{ComAlg} (\text{Vect})$ we can canonically assign an object $\text{Fact}^{\text{alg}} (A)_{\text{Ran}} \in \text{Shv} (\text{Ran})$.

(ii) Let A be the category of $\Lambda^{\text{neg} - 0}$ graded vector spaces. Note that a commutative algebra A in A is the same as a commutative Λ^{neg}-algebra with $A(0) = k$. On the one hand, the construction of Sect. 2.3 assigns to such an A a collection of objects $\text{Fact}^{\text{alg}} (A)_{\lambda, \lambda} \in \text{Shv} (X_{\lambda})$, $\lambda \in \Lambda^{\text{neg} - 0}$.

On the other hand, we have the above object $\text{Fact}^{\text{alg}} (A)_{\text{Ran}} \in \text{Fact}^{\text{alg}} (A)_{\text{Ran}}$.

By unwinding the constructions we obtain that these two objects match up under the equivalence (2.7).

5.3. Digression: right-lax central structures.

5.3.1. Let A and A' be symmetric monoidal categories, and let C be a (A', A)-bimodule category. Let $F : A \to A'$ be a right-lax symmetric monoidal functor.

A right-lax central structure on an object $c \in C$ with respect to F is a system of maps $F(a) \otimes c \xrightarrow{\phi(a, c)} c \otimes a$, $a \in A$

that make the diagrams

$$
\begin{array}{ccc}
F(a_1) \otimes (F(a_2) \otimes c) & \xrightarrow{\phi(a_1, c)} & F(a_1) \otimes (c \otimes a_2) \\
\sim & & \sim \\
(F(a_1) \otimes F(a_2)) \otimes c & \xrightarrow{\phi(a_1, a_2, c)} & (F(a_1) \otimes c) \otimes a_2 \\
\downarrow & & \downarrow \phi(a_1, c) \\
F(a_1 \otimes a_2) \otimes c & \xrightarrow{\phi(a_1 \otimes a_2, c)} & (c \otimes a_1) \otimes a_2 \\
\downarrow \phi(a_1 \otimes a_2, c) & & \downarrow \sim \\
c \otimes (a_1 \otimes a_2) & \xrightarrow{id} & c \otimes (a_1 \otimes a_2),
\end{array}
$$

commute, along with a coherent system of higher compatibilities.

Denote the category of objects of C equipped with a right-lax central structure on an object with respect to F by $Z_F (C)$.

5.3.2. From now on we will assume that A is rigid (see [GR, Chapter 1, Sect. 9.1] for what this means).

If A is compactly generated, this condition is equivalent to requiring that the class of compact objects in A coincides with the class of objects that are dualizable with respect to the symmetric monoidal structure on A.

5.3.3. Assume for a moment that F is strict (i.e., is a genuine symmetric monoidal functor). We have:

Lemma 5.3.4. If $c \in Z_F (C)$, then the morphisms $\phi(a, c)$ are isomorphisms.

In other words, this lemma says that if F is genuine, then any right-lax central structure is a genuine central structure (under the assumption that A is rigid).
5.3.5. Let $R_A \in \mathcal{A} \otimes \mathcal{A}$ be the (commutative) algebra object, obtained by applying the right adjoint

$$\mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$$

of the monoidal operation $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A}$, to the unit object $1_A \in \mathcal{A}$.

Consider the (commutative) algebra object

$$R'_A := (F \otimes \text{id})(R_A) \in \mathcal{A}' \otimes \mathcal{A}.$$

We have:

Lemma 5.3.6. A datum of right-lax central structure on an object $c \in \mathcal{C}$ is equivalent to upgrading c to an object of $R'_A \text{-mod}(\mathcal{C})$.

5.3.7. Let F' be another right-lax symmetric monoidal functor, and let $F \rightarrow F'$ be a right-lax symmetric monoidal natural transformation. Restriction defines a functor

$$Z_{F'}(\mathcal{C}) \rightarrow Z_F(\mathcal{C}).$$

In addition, we have a homomorphism of commutative algebra objects in $\mathcal{A}' \otimes \mathcal{A}$

$$R'_A \rightarrow R''_A.$$

It easy to see that with respect to the equivalence of Lemma 5.3.6, the diagram

$$\begin{array}{ccc}
Z_{F'}(\mathcal{C}) & \longrightarrow & Z_F(\mathcal{C}) \\
\sim & & \sim \\
R'_{\mathcal{A}} \text{-mod}(\mathcal{C}) & \longrightarrow & R''_{\mathcal{A}} \text{-mod}(\mathcal{C}),
\end{array}$$

commutes, where the bottom arrow is given by restriction.

In particular, we obtain that the functor (5.4) admits a left adjoint, given by

$$R''_A \otimes_{R'_A} -.$$

5.3.8. We now modify our context, and we let \mathcal{C} be a module category for

$$\text{Fact}_{\operatorname{alg}}(\mathcal{A}' \otimes \mathcal{A})_I.$$

We have the corresponding category of right-lax central objects, denoted by the same symbol $Z_F(\mathcal{C})$, which can be identified with

$$\text{Fact}_{\operatorname{alg}}(R'_A)_I \text{-mod}(\mathcal{C}).$$

For a right-lax symmetric monoidal natural transformation $F \rightarrow F'$, the left adjoint to the restriction functor $Z_{F'}(\mathcal{C}) \rightarrow Z_F(\mathcal{C})$ is given by

$$\text{Fact}_{\operatorname{alg}}(R''_A)_I \otimes_{\text{Fact}_{\operatorname{alg}}(R'_A)_I} -.$$

5.3.9. Let

$$I \mapsto \mathcal{C}_I, \quad I \in \text{Fin}^{\text{surj}}$$

be a compatible family of module categories over $\text{Fact}(\mathcal{A}' \otimes \mathcal{A})_I$.

Set

$$\mathcal{C}_{\text{Ran}} := \lim_{\underset{\longrightarrow}{I \in \text{Fin}^{\text{surj}}}} \mathcal{C}_I.$$

We can thus talk about an object $c \in \mathcal{C}_{\text{Ran}}$ being equipped with a right-lax central structure with respect to F. Denote the corresponding category of right-lax central objects by $Z_F(\mathcal{C}_{\text{Ran}})$.

The functors (5.5) provide a left adjoint to the forgetful functor

$$Z_{F'}(\mathcal{C}_{\text{Ran}}) \rightarrow Z_F(\mathcal{C}_{\text{Ran}}).$$
This follows from the fact that for a surjective map of finite sets $\phi : I_1 \twoheadrightarrow I_2$, the natural transformation in the diagram

$$
\begin{align*}
\Delta^\phi \colon Z_F(C_{I_1}) & \longrightarrow Z_F(C_{I_2}) \\
\Delta^\phi \colon Z_F(C_{I_1}) & \longrightarrow Z_F(C_{I_2})
\end{align*}
$$

is an isomorphism.

5.4. **Hecke and Drinfeld-Plücker structures.** We will be interested in the following particular cases of the above situation.\(^{10}\)

5.4.1. Take $A = \text{Rep}(\mathcal{G})$ and $A' = \text{Rep}(\mathcal{T})$ with F' being given by restriction along $\mathcal{T} \to \mathcal{G}$. We denote the corresponding category $Z_{F'}(\mathcal{C})$ by

$$\text{Hecke}_{\mathcal{G}, \mathcal{T}}(\mathcal{C}).$$

By Lemma 5.3.4 its objects are $c \in \mathcal{C}$, equipped with a system of isomorphisms

$$\text{Res}_{\mathcal{G}}(V) \otimes c \simeq c \otimes V, \quad V \in \text{Rep}(\mathcal{G}),$$

compatible with tensor products of the V’s.

For this reason, we call a (right-lax) central structure on an object of \mathcal{C} in this case a **graded Hecke structure**.

Equivalently, these are objects of \mathcal{C} equipped with an action of the algebra

$$R^\mathcal{F}_A := (\text{Res}(\mathcal{G}) \otimes \text{id})(R_{\mathcal{G}}),$$

where $R_{\mathcal{G}} \in \text{Rep}(\mathcal{G}) \otimes \text{Rep}(\mathcal{G})$ is the regular representation.

5.4.2. Let us now take $A = \text{Rep}(\tilde{\mathcal{G}})$ and $A' = \text{Rep}(\mathcal{T})$, but the functor F is given by the non-derived functor of \mathcal{N}-invariants

$$V^\lambda \mapsto V^\lambda(\lambda) = e^\lambda.$$

The corresponding algebra object

$$R^\mathcal{F}_A \in \text{Rep}(\mathcal{T}) \otimes \text{Rep}(\tilde{\mathcal{G}})$$

is $\mathcal{O}(\mathcal{N}\backslash \mathcal{G})$, where $\mathcal{N}\backslash \mathcal{G}$ is the base affine space of \mathcal{G}, viewed as acted on on the left by \mathcal{T} and on the right by $\tilde{\mathcal{G}}$.

We denote the corresponding category $Z_F(\mathcal{C})$ by

$$\text{DrPl}(\mathcal{C}).$$

By definition, its objects are $c \in \mathcal{C}$, equipped with a collection of maps

$$e^\lambda \otimes c \xrightarrow{\phi(\lambda, c)} c \otimes V^\lambda$$

\(^{10}\) The formalism described in this subsection (as well as the term) was suggested by S. Raskin.
that make the diagrams

\[
\begin{array}{ccc}
\lambda \otimes (\mu \otimes c) & \xrightarrow{\phi(\mu, c)} & \lambda \otimes (c \otimes \mu) \\
\downarrow & & \downarrow \\
\lambda \otimes \mu & & \lambda \otimes \mu \\
\downarrow & & \downarrow \\
\phi(\lambda, \mu) & & \phi(\lambda, \mu) \\
\end{array}
\]

commute, along with a coherent system of higher compatibilities.

We will call a right-lax central structure on an object of \(C \) in this case a \textit{Drinfeld-Plücker} structure.

5.4.3. We have a right-lax symmetric monoidal natural transformation \(F \to F' \),

\[
e^\lambda \to \text{Res}_{\tilde{\mathcal{G}}}^G(V^\lambda).
\]

The corresponding morphism of commutative algebra objects in \(\text{Rep}(\tilde{T}) \otimes \text{Rep}(\tilde{G}) \) is given by pull-back along the projection map \(\tilde{G} \to \tilde{\mathcal{N}} \setminus \tilde{G} \).

Consider the forgetful functor

\[
\text{Res}_{\text{DrPl}}^\text{Hecke} : \text{Hecke}_{\tilde{G}, \tilde{T}}(C) \to \text{DrPl}(C),
\]

and its left adjoint

\[
\text{Ind}_{\text{DrPl}}^\text{Hecke} : \text{DrPl}(C) \to \text{Hecke}_{\tilde{G}, \tilde{T}}(C).
\]

5.4.4. Let us now recall the statement of \cite[Proposition 6.2.4]{Ga1} that describes the composition

\[
(5.6) \quad \text{DrPl}(C) \xrightarrow{\text{Ind}_{\text{DrPl}}^\text{Hecke}_{\tilde{G}, \tilde{T}}} \text{Hecke}_{\tilde{G}, \tilde{T}}(C) \to C,
\]

where the second arrow is the forgetful functor.

Given an object \(c \in \text{DrPl}(C) \), the construction of \cite[Sect. 2.7]{Ga1} defines a functor \(\Lambda^+ \to C \), which at the level of objects sends \(\lambda \in \Lambda^+ \) to

\[
e^{-\lambda} \otimes c \otimes V^\lambda.
\]

The assertion \cite[Proposition 6.2.4]{Ga1} says that the value of (5.6) on the above \(c \) is canonically identified with

\[
colim_{\lambda \in \Lambda^+} e^{-\lambda} \otimes c \otimes V^\lambda.
\]

5.4.5. We now place ourselves in the context of Sect. 5.3.8. Let \(C \) be a module category for

\[
\text{Fact}_{\text{Rep}(\tilde{T}) \otimes \text{Rep}(\tilde{G})}.
\]

We denote corresponding categories \(Z_F(C) \) and \(Z_F(C) \) by \(\text{Hecke}_{\tilde{G}, \tilde{T}}(C) \) and \(\text{DrPl}(C) \), respectively.

Let \(c \in C \) be an object of \(Z_F(C) \). We wish to describe the value on \(c \) of the composite functor

\[
(5.7) \quad \text{DrPl}(C) \xrightarrow{\text{Ind}_{\text{DrPl}}^\text{Hecke}_{\tilde{G}, \tilde{T}}} \text{Hecke}_{\tilde{G}, \tilde{T}}(C) \to C
\]
5.4.6. For $\lambda \in \text{Maps}(I, \Lambda^+)$, recall the object $V^\lambda \in \text{Fact}(\text{Rep}(\tilde{G}))_I$, see Sect. 2.6.1. Similarly, we have the object

$$\omega \in \text{Fact}(\text{Rep}(\tilde{T}))_I.$$

The construction of \textcite{Ga1} Sect.2.7 defines on the assignment $\lambda \mapsto e^{-\lambda} \otimes c \otimes V^\lambda$

a structure of a functor

$$\text{Maps}(I, \Lambda^+) \to \mathcal{C}.$$

5.4.8. Let $I \xrightarrow{c} \mathcal{C}_I$ be as in Sect. 5.3.9. Consider the corresponding categories $\text{DrPl}(\mathcal{C}_{\text{Ran}})$ and $\text{Hecke}_{\tilde{G}, \tilde{T}}(\mathcal{C}_{\text{Ran}})$.

The compatibility of the functors $\text{Ind}_{\text{DrPl}}^{\text{Hecke}_{\tilde{G}, \tilde{T}}}$ for surjections of finite sets gives rise to a well-defined functor

$$\text{Ind}_{\text{DrPl}}^{\text{Hecke}_{\tilde{G}, \tilde{T}}} : \text{DrPl}(\mathcal{C}_{\text{Ran}}) \to \text{Hecke}_{\tilde{G}, \tilde{T}}(\mathcal{C}_{\text{Ran}}),$$

left adjoint to the restriction functor.

For $c \in \text{DrPl}(\mathcal{C}_{\text{Ran}})$, the value of the composite functor

$$\text{DrPl}(\mathcal{C}) \xrightarrow{\text{Ind}_{\text{DrPl}}^{\text{Hecke}_{\tilde{G}, \tilde{T}}}} \text{Hecke}_{\tilde{G}, \tilde{T}}(\mathcal{C}) \to \mathcal{C} \to \mathcal{C}_I$$

is given by

$$\text{colim}_{\lambda \in \text{Maps}(I, \Lambda^+)} e^{-\lambda} \otimes c_I \otimes V^\lambda,$$

where c_I is the value of c in \mathcal{C}_I.

5.5. **The Hecke property–enhanced statement.**

5.5.1. The key property of the geometric Satake functor

$$\text{Sat}_{G, I} : \text{Fact}^{\text{alg}}(\text{Rep}(\tilde{G}))_I \to \text{Sph}_{G, I}$$

is that it is has a natural monoidal structure.

The same applies to the modified geometric Satake functor $\text{Sat}_{T, I}'$ for T.

Thus, we obtain that the category $\text{Shv}(\mathcal{L}^+(T)_I \backslash \text{Gr}_{G, I})$ is as acted on by the monoidal category $\text{Fact}^{\text{alg}}(\text{Rep}(\tilde{T}) \otimes \text{Rep}(\tilde{G}))_I$.

These actions are compatible under surjective maps of finite sets $I_1 \to I_2$.

5.5.2. Consider the object

$$\delta_{1G, I} := (s_I) \circ (\omega_{X^I}) \in \text{Shv}(\mathcal{L}^+(T)_I \backslash \text{Gr}_{G, I}),$$

where $s_I : X^I \to \text{Gr}_{G, I}$ is the unit section.

It follows from the construction of the functor $\text{Sat}_{G, I}$ that $\delta_{1G, I}$ lifts canonically to an object of

$$\text{DrPl}(\text{Shv}(\mathcal{L}^+(T)_I \backslash \text{Gr}_{G, I})).$$
5.5.3. Consider the corresponding object
\[\text{Ind}_{\text{DrPl}}^{\text{Hecke}_G,T}(\delta_{\text{Gr},T}) \in \text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Gr}_G,I})) \]

It follows from Proposition 5.4.7 that its image under the forgetful functor
\[\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Gr}_G,I})) \rightarrow \text{Shv}(\Sigma^+(T)_{\text{Gr}_G,I}) \rightarrow \text{Shv}(\text{Gr}_G,I) \]
identifies canonically with the object \(\text{IC}_T \), constructed in Sect. 2.6.7.

5.5.4. Consider now the object
\[\delta_{\text{Gr},\text{Ran}} := (s_{\text{Ran}})(\omega_{\text{Ran}}) \in \text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}}), \]
where \(s_{\text{Ran}} : \text{Ran} \rightarrow \text{Gr}_{G,\text{Ran}} \) is the unit section.
It naturally lifts to an object of
\[\text{DrPl}(\text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}})). \]
Consider the corresponding object
\[\text{Ind}_{\text{DrPl}}^{\text{Hecke}_G,T}(\delta_{\text{Gr},\text{Ran}}) \in \text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}})). \]
By Sect. 5.4.8 the image of \(\text{Ind}_{\text{DrPl}}^{\text{Hecke}_G,T}(\delta_{\text{Gr},\text{Ran}}) \) under the forgetful functor
\[\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}})) \rightarrow \text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}}) \rightarrow \text{Shv}(\text{Gr}_{G,\text{Ran}}) \]
identifies canonically with the object \(\text{IC}_\text{Ran} \), constructed in Sect. 2.6.7.

Remark 5.5.5. The latter could be used to define on the assignment
\[I \mapsto \text{IC}_\text{Ran}^I \]
a homotopy-coherent system of compatibilities as \(I \) varies over \(\text{Fin}^{\text{arr}} \).

5.5.6. Using the isomorphism
\[\text{IC}_\text{Ran} \simeq \text{IC}_\text{Ran} \]
of Theorem 2.7.2 we thus obtain a lift of \(\text{IC}_\text{Ran} \) to an object of \(\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}})) \).

Summarizing, we obtain:

Theorem 5.5.7. The object \(\text{IC}_\text{Ran} \in \text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}}) \) naturally lifts to an object of \(\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}} \backslash \text{Gr}_{G,\text{Ran}})) \).

5.6. Recovering the pointwise Hecke structure. In this subsection we will finally complete the proof of Theorem 5.5.7.

5.6.1. The constructions in Sects. 5.5.2-5.5.4 carry over to the situation when \(\text{Ran} \) is replaced by \(\text{Ran}_x \).

From Theorem 5.5.7 we obtain that the object
\[\text{IC}_\text{Ran}_x \in \text{Shv}(\Sigma^+(T)_{\text{Ran}_x} \backslash \text{Gr}_{G,\text{Ran}_x}) \]
naturally lifts to an object of \(\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}_x} \backslash \text{Gr}_{G,\text{Ran}_x})) \).

5.6.2. Now, we have a symmetric monoidal functor
\[\text{Rep}(\tilde{T}) \otimes \text{Rep}(\tilde{G}) \rightarrow \text{Fact}(\text{Rep}(\tilde{T}) \otimes \text{Rep}(\tilde{G}))_{\text{Ran}_x}. \]
Restricting, we obtain that \(\text{IC}_\text{Ran}_x \) lifts to an object of \(\text{Hecke}_G,T(\text{Shv}(\Sigma^+(T)_{\text{Ran}_x} \backslash \text{Gr}_{G,\text{Ran}_x})) \), as stated in Theorem 5.1.8.

6. Local vs global compatibility of the Hecke structure.

In this section we will establish a compatibility between the Hecke structure on \(\text{IC}_\text{Ran}^\text{glob} \) constructed in the previous section and the corresponding structure on \(\text{IC}_\text{glob} \), established in [BC1].
6.1. The relative version of the Ran Grassmannian.

6.1.1. We introduce a relative version of the prestack $\text{Gr}_{G, \text{Ran}}$ over Bun_T, denoted $\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T$, as follows.

Let $(\text{Ran} \times \text{Bun}_T)^{\text{level}}$ be the prestack that classifies the data of (P_T, I, β), where:

(i) I is a finite non-empty collection of points on X;

(ii) P_T is a T-bundle on X;

(iii) β is a trivialization of P_T on the formal neighborhood of Γ_I.

The prestack $(\text{Ran} \times \text{Bun}_T)^{\text{level}}$ is acted on by $L^+(G)_{\text{Ran}}$, and the map $(\text{Ran} \times \text{Bun}_T)^{\text{level}} \to \text{Bun}_T \times \text{Ran}$ is a $L^+(G)_{\text{Ran}}$-torsor, locally trivial in the étale (in fact, even Zariski, since T is a torus) topology.

We set $\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T := L^+(G)_{\text{Ran}} \backslash (\text{Gr}_{G, \text{Ran}} \times (\text{Ran} \times \text{Bun}_T)^{\text{level}})$.

We have a tautological projection $r : \text{Gr}_{G, \text{Ran}} \times \text{Bun}_T \to L^+(G)_{\text{Ran}} \backslash \text{Gr}_{G, \text{Ran}}$.

6.1.2. The right action of the groupoid (6.1) $L^+(G)_{\text{Ran}} \backslash \mathcal{L}(G)_{\text{Ran}} / L^+(G)_{\text{Ran}}$ on $\text{Gr}_{G, \text{Ran}}$ naturally lifts to an action on $\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T$, in a way compatible with the projection r.

In addition, by construction, we have an action of the groupoid (6.2) $L^+(T)_{\text{Ran}} \backslash \mathcal{L}(T)_{\text{Ran}} / L^+(T)_{\text{Ran}}$ on $\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T$, also compatible with the projection r.

In particular, we obtain that $\text{Shv}(\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T)$ is a bimodule category for $(\text{Sph}_{T, \text{Ran}}, \text{Sph}_{G, \text{Ran}})$, and hence for $(\text{Fact}(\text{Rep}(\tilde{T})_{\text{Ran}}), \text{Fact}(\text{Rep}(\tilde{G}))_{\text{Ran}})$, via the Geometric Satake functor, where we use the functor $\text{Sat}_{\tilde{T}, \text{Ran}}$ to map $\text{Fact}_{\text{alg}}(\text{Rep}(\tilde{T}))(\text{Ran}) \to \text{Sph}_{T, \text{Ran}}$.

Base-changing along $X^I \to \text{Ran}$ we obtain a compatible family of module categories for $(\text{Fact}_{\text{alg}}(\text{Rep}(\tilde{T}))_I, \text{Fact}_{\text{alg}}(\text{Rep}(\tilde{G}))_I)$, for $I \in \text{Fin}^\text{surj}$.

6.1.3. Denote:

$$\text{IC}^\infty_{\text{Ran}, \text{Bun}_T} := r^!(\text{IC}^\infty_{\text{Ran}}).$$

From Theorem 5.5.7 we obtain that $\text{IC}^\infty_{\text{Ran}, \text{Bun}_T}$ naturally lifts to an object of $\text{Hecke}_{\tilde{G}, \tilde{T}}(\text{Shv}(\text{Gr}_{G, \text{Ran}} \times \text{Bun}_T))$;

moreover we have:

$$\text{IC}^\infty_{\text{Ran}, \text{Bun}_T} \simeq \text{Ind}_{\text{D}_T}^{\text{Hecke}_{\tilde{G}, \tilde{T}}}(\delta_{1_{\text{Gr}, \text{Ran}}}) \text{Ran}_{\text{Bun}_T}),$$

where $\delta_{1_{\text{Gr}, \text{Ran}}}(\text{Ran}_{\text{Bun}_T}) = (s_{\text{Ran}, \text{Bun}_T})(\omega_{\text{Ran} \times \text{Bun}_T})$, and where $s_{\text{Ran}, \text{Bun}_T}$ is the unit section $\text{Ran} \times \text{Bun}_T \to \text{Gr}_{G, \text{Ran}} \times \text{Bun}_T$.

6.2. Hecke property in the global setting.
6.2.1. Consider the stack $\overline{\text{Bun}}_B$, and consider its version
\[(\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}\]
defined as follows:

A point of \((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}\) is a quadruple \((\mathcal{P}_G, \mathcal{P}_T, \kappa, J)\), where

1. \(\mathcal{P}_G\) is a \(G\)-bundle on \(X\);
2. \(\mathcal{P}_T\) is a \(T\)-bundle on \(X\);
3. \(J\) is a finite non-empty collection of points on \(X\);
4. \(\kappa\) is a datum of maps
 \[\kappa^\lambda : \lambda(\mathcal{P}_T) \to \mathcal{V}^\lambda_{\mathcal{P}_G}\]
that are allowed to have poles on \(\Gamma_J\), and that satisfy the Plücker relations.

Note that we have a closed embedding
\[\overline{\text{Bun}}_B \times \text{Ran} \hookrightarrow (\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}},\]
corresponding to the condition that the maps \(\kappa^\lambda\) have no poles.

6.2.2. Hecke modifications of the \(G\)-bundle (resp., \(T\)-bundle) define a right (resp., left) action of the groupoid \((6.1)\) (resp., \((6.2)\)) on \((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}\).

In particular, the category \(\text{Shv}((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}})\) acquires a natural structure of bimodule category for \((\text{Sph}^\text{alg}(\text{Rep}(\mathcal{V}_{\mathcal{P}_G})))_{\text{Ran}}, \text{Fact}^\text{alg}(\text{Rep}(\mathcal{V}_{\mathcal{P}_T})))_{\text{Ran}}\).

Base-changing along \(X^I \to \text{Ran}\) we obtain a compatible family of module categories for \((\text{Fact}^\text{alg}(\text{Rep}(\mathcal{V}_{\mathcal{P}_G})))_I, \text{Fact}^\text{alg}(\text{Rep}(\mathcal{V}_{\mathcal{P}_T})))_I\), for \(I \in \text{Fin}_{\text{surj}}\).

6.2.3. Denote
\[\text{IC}_{\text{glob}, \text{Bun}_T} : = \text{IC}_{\overline{\text{Bun}}_B} \boxtimes \omega_{\text{Ran}} \subset \text{Shv}((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}})\]

The following assertion is (essentially) established in [BG1, Theorem 3.1.4]:

Theorem 6.2.4. The object \(\text{IC}_{\text{glob}, \text{Bun}_T}\) naturally lifts to an object of the category
\[\text{Hecke}_{\Delta, \mathcal{T}}(\text{Shv}((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}))\].

6.3. **Local vs global compatibility.**

6.3.1. Note now that the map
\[\pi_{\text{Ran}} : \overline{\text{S}}_{\text{Ran}} \to \overline{\text{Bun}}_N\]
naturally extends to a map
\[\pi_{\text{Ran}, \text{Bun}_T} : \text{Gr}_{G, \text{Ran}} \times \overline{\text{Bun}}_T \to (\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}\].

We consider the functor
\[(\pi_{\text{Ran}, \text{Bun}_T})' : \text{Shv}((\overline{\text{Bun}}_B \times \text{Ran})_{\text{poles}}) \to \text{Shv}(\text{Gr}_{G, \text{Ran}} \times \overline{\text{Bun}}_T)\]
obtained from \((\pi_{\text{Ran}, \text{Bun}_T})'\) by applying the shift by \([d - \langle \lambda, 2\delta \rangle]\) over the connected component \(\text{Bun}_T^\lambda\) of \(\overline{\text{Bun}}_T\).

A relative version of the calculation performed in the proof of Theorem 6.3.3 shows:

Theorem 6.3.2. There exists a canonical isomorphism in \(\text{Shv}(\text{Gr}_{G, \text{Ran}} \times \overline{\text{Bun}}_T)\)
\[(\pi_{\text{Ran}, \text{Bun}_T})'(\text{IC}_{\text{glob}, \text{Bun}_T}) \simeq \text{IC}_{\text{Ran}, \text{Bun}_T}^{\mathcal{T}}\).\]
6.3.3. The map \(r \) is compatible with the actions of the groupoids \([6.1]\) and \([6.2]\). In particular, the pullback functor

\[
(\pi_{\text{Ran}, \text{Bun}_T})^{-1} : \text{Shv}((\text{Bun}_B \times \text{Ran}_{\text{poles}})) \to \text{Shv}(\text{Gr}_G, \text{Ran}_{\text{poles}})
\]

is a map of bimodule categories for \((\text{Sph}_{G, \text{Ran}}, \text{Shv}(\text{Gr}_G))\).

Hence, we obtain that the map \((\pi_{\text{Ran}, \text{Bun}_T})^{-1} \) can be thought of as a map of bimodule categories for \((\text{Fact}_{\text{Bun}}(\text{Rep}(T))_{\text{Ran}}, \text{Fact}_{\text{Bun}}(\text{Rep}(G))_{\text{Ran}})\).

6.4.2. Consider the composite \((6.3) \), this map corresponds to the map \([3.1.4]\], one shows that the map \((6.6) \) indeed canonically lifts to a map in \(\text{DrPl}(\text{Shv}(\text{Gr}_G))\).

6.3.4. We are now ready to state the main result of this section:

Theorem 6.3.5. The isomorphism \((\pi_{\text{Ran}, \text{Bun}_T})^{-1}((\text{IC}_{\text{glob}, \text{Bun}_T}) \simeq \text{IC}_{\text{Ran}, \text{Bun}_T}^\infty \) of Theorem \(6.3.2\) canonically lifts to an isomorphism of objects of \(\text{Hecke}_{G, T}(\text{Shv}(\text{Gr}_G, \text{Ran} \times \text{Bun}_T))\).

Proof of Theorem 6.3.5.

6.4.1. Consider the tautological map

\[
(6.4) \quad \delta_{\text{Gr}, \text{Ran}, \text{Bun}_T} \to \text{Ind}_{\text{DrPl}}^{\text{Hecke}_{G, T}}(\delta_{\text{Gr}, \text{Ran}, \text{Bun}_T}).
\]

Under the isomorphism

\[
\text{Ind}_{\text{DrPl}}^{\text{Hecke}_{G, T}}(\delta_{\text{Gr}, \text{Ran}, \text{Bun}_T}) \simeq \text{IC}_{\text{Ran}, \text{Bun}_T}^\infty
\]

of \([6.3]\), this map corresponds to the map

\[
(6.5) \quad \delta_{\text{Gr}, \text{Ran}, \text{Bun}_T} \to \text{IC}_{\text{Ran}, \text{Bun}_T}^\infty,
\]

arising, by the \(((s_{\text{Ran}, \text{Bun}_T}), (s_{\text{Ran}, \text{Bun}_T})^t) \) adjunction, from the isomorphism

\[
\omega_{\text{Ran} \times \text{Bun}_T} \to (s_{\text{Ran}, \text{Bun}_T})^t((\text{IC}_{\text{Ran}, \text{Bun}_T}^\infty)).
\]

6.4.2. Consider the composite

\[
(6.6) \quad \delta_{\text{Gr}, \text{Ran}, \text{Bun}_T} \to \text{Ind}_{\text{DrPl}}^{\text{Hecke}_{G, T}}(\delta_{\text{Gr}, \text{Ran}, \text{Bun}_T}) \simeq \text{IC}_{\text{Ran}, \text{Bun}_T}^\infty \to (\pi_{\text{Ran}, \text{Bun}_T})^{-1}(\text{IC}_{\text{glob}, \text{Bun}_T}).
\]

We obtain that the data on the morphism

\[
\text{IC}_{\text{Ran}, \text{Bun}_T}^\infty \to (\pi_{\text{Ran}, \text{Bun}_T})^{-1}(\text{IC}_{\text{glob}, \text{Bun}_T})
\]

of a map of objects of \(\text{Hecke}_{G, T}(\text{Shv}(\text{Gr}_G, \text{Ran} \times \text{Bun}_T))\) is equivalent to the data on \([6.6]\) of a map of objects of \(\text{DrPl}(\text{Shv}(\text{Gr}_G, \text{Ran} \times \text{Bun}_T))\).

6.4.3. The map \((6.6)\) can be explicitly described as follows. By the \(((s_{\text{Ran}, \text{Bun}_T}), (s_{\text{Ran}, \text{Bun}_T})^t) \) adjunction, it corresponds to the (iso)morphism

\[
(6.7) \quad \omega_{\text{Ran} \times \text{Bun}_T} \to (s_{\text{Ran}, \text{Bun}_T})^t(\pi_{\text{Ran}, \text{Bun}_T})^{-1}(\text{IC}_{\text{glob}, \text{Bun}_T}).
\]

constructed as follows:

We note that the map

\[
\pi_{\text{Ran}, \text{Bun}_T} \circ s_{\text{Ran}, \text{Bun}_T} : \text{Ran} \times \text{Bun}_T \to (\text{Bun}_B \times \text{Ran}_{\text{poles}})
\]

factors as

\[
\text{Ran} \times \text{Bun}_T \to \text{Ran} \times \text{Bun}_B \to \text{Ran} \times \text{Bun}_B \to (\text{Bun}_B \times \text{Ran}_{\text{poles}}).
\]

Now, the map \((6.7)\) is the natural isomorphism coming from the identification

\[
\text{IC}_{\text{glob}, \text{Bun}_T} \mid_{\text{Ran} \times \text{Bun}_B} [d - \langle \lambda, 2\rho \rangle] \simeq \omega_{\text{Ran} \times \text{Bun}_B}.
\]

6.4.4. Now, by unwinding the construction of the Hecke structure on \(\text{IC}_{\text{glob}, \text{Bun}_T}^\infty\) in \([BG1]\) Theorem 3.1.4, one shows that the map \((6.6)\) indeed canonically lifts to a map in \(\text{DrPl}(\text{Shv}(\text{Gr}_G, \text{Ran} \times \text{Bun}_T))\). \(\square\)
Appendix A. Proof of Theorem 3.4.4

With future applications in mind, we will prove a generalization of Theorem 3.4.4. The proof is a paraphrase of the theory developed in [Bar].

Throughout this appendix, the curve X will be assumed proper.

A.1. The space of G-bundles with a generic reduction.

A.1.1. Let Y be a test affine scheme. We shall say that an open subset of $Y \times X$ is a domain if it is dense in every fiber of the projection $Y \times X \to X$. Note that the intersection of two domains is again a domain.

Observe that for $\beta \in \text{Maps}(Y, \text{Ran})$, the subscheme $Y \times X - \Gamma_\beta$ is a domain.

A.1.2. Let $\text{Bun}_{G, \text{gen}}$ be the prestack that assigns to an affine test-scheme Y the groupoid, whose objects are pairs:

(i) A domain $U \subset Y \times X$;

(ii) A G-bundle \mathcal{P}_G defined on U.

An (iso)morphism between two such points is by definition an isomorphism of G-bundles defined over a subdomain of the intersection of their respective domains of definition.

Remark A.1.3. In particular, given (\mathcal{P}_G, U), if $U' \subset U$ is a sub-domain, then the points (\mathcal{P}_G, U) and $(\mathcal{P}_G|_{U'}, U')$ are canonically isomorphic. Hence, in the definition of $\text{Bun}_{G, \text{gen}}$ we can combine points (i) and (ii) into:

(i') A G-bundle \mathcal{P}_G defined over some domain in $Y \times X$.

A.1.4. Let $H \to G$ be a homomorphism of algebraic groups. Consider the prestack

$$\text{Bun}_{H, \text{gen}} \times_{\text{Bun}_{G, \text{gen}}} \text{Bun}_G.$$

By definition, for a test affine scheme Y, its groupoid of Y-points has as objects triples:

(i) A G-bundle \mathcal{P}_G on $Y \times X$;

(ii) A domain $U \subset Y \times X$;

(iii) A reduction β of \mathcal{P}_G to H defined over $U \subset Y \times X$;

An (iso)morphism between two such points is by definition an isomorphism of G-bundles, compatible with the reductions over the intersection of the corresponding domains.

Remark A.1.5. As in Remark A.1.3 above, we can combine (ii) and (iii) into:

(ii') A reduction β of \mathcal{P}_G to H defined over some domain in $Y \times X$.

A.1.6. For $H = \{1\}$, we will use the notation

$$\text{Gr}_{G, \text{gen}} := \text{pt} \times_{\text{Bun}_{G, \text{gen}}} \text{Bun}_G.$$

By definition, for an affine test-scheme Y, the set $\text{Maps}(Y, \text{Gr}_{G, \text{gen}})$ consists of pairs (\mathcal{P}_G, α), where \mathcal{P}_G is a G-bundle on $Y \times X$, and α is a trivialization of \mathcal{P}_G defined on some domain in $Y \times X$.
A.1.7. We have a canonically defined map
\[\text{Gr}_{G, \text{gen}} \to \text{Bun}_{H, -\text{gen}} \times \text{Bun}_G, \]
obtained by base change along \(\text{Bun}_G \to \text{Bun}_{G, \text{gen}} \) from the map
\[\text{pt} \to \text{Bun}_{H, -\text{gen}}. \]
In addition, we have a canonical map
\[\text{Gr}_{G, \text{Ran}} \to \text{Gr}_{G, \text{gen}}. \]
Composing, we obtain a map
(A.1) \(\text{Gr}_{G, \text{Ran}} \to \text{Bun}_{H, -\text{gen}} \times \text{Bun}_G \).

A.1.8. We recall the following definition from [Ga2, Sect. 2.5.1]:
A map between prestacks \(X_1 \to X_2 \) is said to be universally homologically contractible if for any affine test-scheme \(Y \) and a map \(Y \to X_2 \), the \(!\)-pullback functor
\[\text{Shv}(Y) \to \text{Shv}(Y \times_{X_2} X_1) \]
is fully faithful.
If this happens, a formal argument shows that for any prestack \(Y \) and a map \(Y \to X_2 \), the \(!\)-pullback functor
\[\text{Shv}(Y) \to \text{Shv}(Y \times_{X_2} X_1) \]
is fully faithful. In particular, the pullback functor
\[f^! : \text{Shv}(X_2) \to \text{Shv}(X_1) \]
is fully faithful.
We shall call a prestack \(X \) homologically contractible if the map \(X \to \text{pt} \) induces a fully faithful embedding
\[\text{Vect} \to \text{Shv}(Y); \]
this is equivalent to the trace map
\[C^*_{\bullet}(Y) := C^*_{\bullet}(Y, \omega_Y) \to e \]
being an isomorphism. It is not difficult to see that this condition implies a stronger one, namely, that \(X \to \text{pt} \) is universally homologically contractible.

A.1.9. The goal of this section is to prove:

Theorem A.1.10. Assume that \(H \) is connected. Then the map (A.1) is universally homologically contractible.

A.1.11. Let us show how Theorem [A.1.10] implies Theorem [3.4.4]. We take \(H = N \). Note that there is a canonically defined map (in fact, a closed embedding)
\[\text{Bun}_N \to \text{Bun}_{N, \text{gen}} \times \text{Bun}_G. \]
Indeed, a \(Y \)-point of \(\text{Bun}_{N, \text{gen}} \times \text{Bun}_G \) can be thought of as a data of \((\mathcal{P}_G, \kappa) \), where \(\mathcal{P}_G \) is a \(G \)-bundle on \(Y \times X \), and \(\kappa \) is a system of bundle maps
\[\kappa^\lambda : \mathcal{O}_X \to \mathcal{V}_{\mathcal{P}_G}, \quad \lambda \in \Lambda^+ \]
defined over some domain \(U \subset T \times X \), and satisfying the Plücker relations.
Such a point belongs to \(\text{Bun}_N \) if and only if the maps \(\kappa^\lambda \) extend to regular maps on all of \(Y \times X \).
Finally, we note that we have a Cartesian square:

\[
\begin{array}{c}
\mathcal{N}_\text{Ran} \\
\downarrow \\
\text{Bun}_N
\end{array}
\begin{array}{c}
\rightarrow \\
\downarrow \\
\rightarrow
\end{array}
\begin{array}{c}
\text{Gr}_{G,\text{Ran}} \\
\downarrow \\
\text{Bun}_{N,\text{gen}} \times \text{Bun}_G.
\end{array}
\]

\[\square\]

A.2. Towards the proof of Theorem \[A.1.10\].

A.2.1. The assertion of Theorem \[A.1.10\] is obtained as a combination of the following two statements:

Proposition A.2.2. The map \(\text{Gr}_{G,\text{Ran}} \to \text{Gr}_{G,\text{gen}}\) is universally homologically contractible.

Theorem A.2.3. Let \(H\) be connected. Then the map \(\text{pt} \to \text{Bun}_{H,\text{gen}}\) is universally homologically contractible.

A.2.4. Let us recall the notion of what it means for a map of prestacks \(X_1 \to X_2\) to be pseudo-proper (cf. [Ga2, Sect. 1.5]):

We shall say that a prestack \(X\) over an affine scheme \(Y\) is pseudo-proper if it can be represented as a colimit of schemes proper over \(Y\).

We shall say that a map of prestacks \(f : Y_1 \to Y_2\) is pseudo-proper if for any affine test-scheme \(Y\) and a map \(Y \to X_2\), the map

\[Y \times X_1 \to Y\]

is pseudo-proper.

In loc. cit. it is shown that if \(f\) is pseudo-proper, the functor \(f_!\), left adjoint to \(f^!\), is defined, and satisfies base change against !-pullbacks and the projection formula with the \(!\otimes\) tensor product.

From here we obtain:

Lemma A.2.5. Let \(X_1 \to X_2\) be pseudo-proper. Then it is universally homologically contractible if and only if its fibers over field-valued points (potentially, after extending the ground field) are homologically contractible.

A.2.6. Interlude: the relative Ran space. Let \(\mathcal{I}_0\) be a finite subset of \(k\)-points of \(X\). We define the relative Ran space \(\text{Ran}^{\mathcal{I}_0}\) as follows:

For an affine test-scheme \(Y\), the set of \(Y\)-points of \(\text{Ran}^{\mathcal{I}_0}\) consists of finite non-empty subsets

\[\mathcal{I} \subset \text{Hom}(Y, X),\]

such that \(Y \times \mathcal{I}_0\) is set-theoretically contained in \(\Gamma_\mathcal{I}\).

We claim:

Proposition A.2.7. The prestack \(\text{Ran}^{\mathcal{I}_0}\) is homologically contractible.

The proof repeats the proof of the homological contractibility of \(\text{Ran}\), see [Ga4, Appendix].

A.2.8. Proof of Lemma \[A.2.5\] for \(X\) proper. If \(X\) is proper, Ran is is pseudo-proper. Hence, in this case, the map \(p^\lambda_{\text{Ran}}\) is pseudo-proper. Therefore, by Lemma \[A.2.5\] it suffices to show that the fibers of \(p^\lambda_{\text{Ran}}\) (over field-valued points) are homologically contractible.

For a given field-valued point \(D \in X^\lambda\), let \(\mathcal{I}_0 \subset X\) be its support. The fiber of \(p^\lambda_{\text{Ran}}\) identifies with \(\text{Ran}^{\mathcal{I}_0}\).

Now the assertion follows from Proposition \[A.2.7\].

\[\square\]
A.2.9. Proof of Proposition A.2.2. It is easy to see that the map $\text{Gr}_{G,\text{Ran}} \to \text{Gr}_{G,\text{gen}}$ is pseudo-proper. Hence, by Lemma A.2.5 it suffices to see that its fibers over field-valued points are homologically contractible.

For a given (field-valued) point of $\text{Gr}_{G,\text{gen}}$, let $U \subset X$ be the maximal open subset over which α is defined. Let \mathcal{J}_0 be its set-theoretic complement. Then

$$\text{pt} \times \text{Gr}_{G,\text{Ran}}$$

identifies with $\text{Ran}^{\supset \mathcal{J}_0}$.

Now the required assertion follows from Proposition A.2.7. □

A.3. Proof of Theorem A.2.3

A.3.1. Let $\text{Bun}_{H,\text{-gen, triv}}$ be the prestack, whose value on an affine test-scheme Y is the full subgroupoid of $\text{Maps}(Y, \text{Bun}_{H,\text{-gen}})$ consisting of objects isomorphic to the trivial one. In other words, this is the essential image of the functor

$$\ast = \text{Maps}(Y, \text{pt}) \to \text{Maps}(Y, \text{Bun}_{H,\text{-gen}}).$$

The assertion of Theorem A.2.3 is obtained as a combination of the following two statements:

Theorem A.3.2. For H connected, the map $\text{pt} \to \text{Bun}_{H,\text{-gen, triv}}$ is universally homologically contractible.

Theorem A.3.3. The map $\text{Bun}_{H,\text{-gen, triv}} \to \text{Bun}_{H,\text{-gen}}$ is universally homologically contractible.

A.3.4. Proof of Theorem A.3.2 Let $\text{Maps}(X,H)_{\text{gen}}$ be the group prestack that attaches to an affine test-scheme Y the group of maps from a domain in $Y \times X$ to H. By definition $\text{Bun}_{H,\text{-gen, triv}} \simeq B(\text{Maps}(X,H)_{\text{gen}})$.

Hence, in order to prove Theorem A.3.2 it suffices to show that the prestack $\text{Maps}(X,H)_{\text{gen}}$ is homologically contractible. However, this is essentially what is proved in \cite[Theorem 1.8.2]{Ga4}:

In order to formally deduce the homological contractibility of $\text{Maps}(X,H)_{\text{gen}}$ from loc. cit., we argue as follows:

Let $\text{Maps}(X,H)_{\text{Ran}}$ be the prestack that assigns to an affine test-scheme Y the set of pairs (\mathcal{J}, h), where \mathcal{J} is a finite non-empty subset in $\text{Hom}(Y, X)$ and h is a map

$$(Y \times X - \Gamma J) \to H.$$

We have a tautologically defined map

$$\text{Maps}(X,H)_{\text{Ran}} \to \text{Maps}(X,H)_{\text{gen}},$$

and as in Proposition A.2.2 we show that this map is universally homologically contractible.

Now, the assertion of \cite[Theorem 1.8.2]{Ga2} is precisely that for H connected, the prestack $\text{Maps}(X,H)_{\text{Ran}}$ is homologically contractible. □
A.3.5. The remainder of this section is devoted to the proof of Theorem A.3.3. Write
\[1 \to H_u \to H \to H_r \to 1, \]
where \(H_u \) is the unipotent radical of \(H \) and \(H_r \) is the reductive quotient.

We factor the map \(\text{Bun}_{H_{\text{gen, triv}}} \to \text{Bun}_H \) as
\[\text{Bun}_{H_{\text{gen, triv}}} \to \text{Bun}_{H_r^{\text{gen, triv}}} \times \text{Bun}_{H_r^{\text{gen}}} \to \text{Bun}_H. \]

We will prove that the maps
(A.2) \[\text{Bun}_{H_{\text{gen, triv}}} \to \text{Bun}_{H_r^{\text{gen, triv}}} \times \text{Bun}_{H_r^{\text{gen}}} \]
and
(A.3) \[\text{Bun}_{H_r^{\text{gen, triv}}} \to \text{Bun}_{H_r^{\text{gen}}} \]
are universally homologically contractible, which would imply the assertion of Theorem A.3.3.

Remark A.3.6. Note that in the applications for the present paper, we have \(H = N \), so we do not actually need to consider (A.3).

A.3.7. In order to prove the universal homological contractibility property of (A.2), we can base change with respect to the (value-wise surjective) map \(\text{pt} \to \text{Bun}_{H_r^{\text{gen, triv}}} \). We obtain a map
\[\text{Bun}_{H_u^{\text{gen, triv}}} \to \text{Bun}_{H_u^{\text{gen}}}, \]
and the statement that (A.2) is universally homologically contractible amounts to the statement of Theorem A.3.3 for \(H \) unipotent.

However, we claim that for \(H \) unipotent, the map \(\text{Bun}_{H_{\text{gen, triv}}} \to \text{Bun}_{H_r^{\text{gen}}} \) is actually an isomorphism. Indeed, every \(H \)-bundle is (non-canonically) trivial over a domain that is affine.

A.3.8. Let us observe that the statement that (A.3) is universally homologically contractible is equivalent to the statement of Theorem A.3.3 for \(H \) reductive. Hence, for the rest of the argument \(H \) will be assumed reductive.

A.4. Proof of Theorem A.3.3 for \(H \) reductive.

A.4.1. In order to prove that
\[\text{Bun}_{H_{\text{gen, triv}}} \to \text{Bun}_{H_{\text{gen}}} \]
is universally homologically contractible, it suffices to show that it becomes an isomorphism after localization in the h-topology. (We recall that h-covers include fpf covers as well as maps that are proper and surjective at the level of \(k \)-points.)

Since (A.3) is a value-wise monomorphism, it suffices to show that it is a surjection in the h-topology.

A.4.2. Consider the Cartesian square
\[
\begin{array}{ccc}
\text{Bun}_{H_{\text{gen, triv}}} \times \text{Bun}_H & \to & \text{Bun}_H \\
\downarrow & & \downarrow \\
\text{Bun}_{H_{\text{gen, triv}}} & \mapsto & \text{Bun}_{H_{\text{gen}}}
\end{array}
\]

It suffices to show that both maps
(A.4) \[\text{Bun}_{H_{\text{gen, triv}}} \times \text{Bun}_H \to \text{Bun}_H \]
and
(A.5) \[\text{Bun}_H \to \text{Bun}_{H_{\text{gen}}} \]
are h-surjections.
A.4.3. The fact that map (A.4) is an h-surjection follows from [DS]; in fact the main theorem of loc.cit. asserts that this map is an fppf surjection.

A.4.4. Let us show that (A.5) is an h-surjection.

Fix a Y-point (P_G, U) of $\text{Bun}_{H\text{-gen}}$ for an affine test-scheme Y. The fiber product

$$Y \times_{\text{Bun}_{H\text{-gen}}} \text{Bun}_H$$

is a prestack that assigns to $Y' \to Y$ the set of extensions of the G-bundle $P_G|_{Y' \times U}$ to all of $Y' \times X$.

It is easy to see that this prestack is (ind)representable by an ind-scheme, ind-proper over Y. Hence, it is enough to show that the map

$$Y' \times_{\text{Bun}_{H\text{-gen}}} \text{Bun}_H \to Y$$

is surjective at the level of k-points.

However, the latter means that any H-bundle on open subset of X can be extended to all of X, which is well-known.

References

[Bar] J. Barlev, Moduli spaces of generic data, arXiv:1204.3469.
[BFGM] A. Braverman, M. Finkelberg, D. Gaitsgory and I. Mirkovic, Intersection cohomology of Drinfeld compactifications, Selecta Math. (N.S.) 8 (2002), 381–418.
[BG1] A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), 287–84.
[BG2] A. Braverman and D. Gaitsgory, Deformations of local systems and Eisenstein series, GAFA 17 (2008), 1788–1850.
[DrGa] V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transformation groups 19 no. 2 (2014), 313–358.
[DS] V. Drinfeld and C. Simpson, B-Structures on G-bundles and Local Triviality, Mathematical Research Letters 2 (1995), 823–829.
[FGV] E. Frenkel, D. Gaitsgory and K. Vilonen, Whittaker patterns in the geometry of moduli space of bundles on curves, Annals of Math. 153 (2001), no. 3, 699–748.
[Ga1] D. Gaitsgory, The semi-infinite intersection cohomology sheaf, arXiv:1703.04199 to appear in AIM.
[Ga2] D. Gaitsgory, The Atiyah-Bott formula for the cohomology of the moduli space of bundles on a curve, arXiv:1505.02331.
[Ga3] D. Gaitsgory, Outline of the proof of the geometric Langlands conjecture for GL_2, Astérisque 370 (2015), 1–112.
[Ga4] D. Gaitsgory, Contractibility of the space of rational maps, Invent. Math. 191 (2013), 91–196.
[Ga5] D. Gaitsgory, The local and global versions of the Whittaker category, arXiv: 1811.02468.
[GR] D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry, volume I, AMS (2017).
[Lu1] J. Lurie Higher Topos Theory, Princeton University Press (2009).
[Lu2] J. Lurie Higher Algebra, available at http://math.harvard.edu/~lurie