Avaliação do sistema de abastecimento de água de Pombal – PB

Evaluation of the water supply system of Pombal – PB

Zacarias Caetano Vieira¹ & Silvana Nóbrega de Andrade²

Resumo: Considerando a importância da água no funcionamento da vida na terra, e como recurso limitado, vê-se com preocupação os desperdícios e perdas ocorridas nos sistemas públicos de abastecimento de água. Neste sentido, esse trabalho busca avaliar as condições dos sistemas de abastecimento no município de Pombal no Estado da Paraíba. Para tanto, pautou-se na análise de dados secundários coletados junto ao Sistema Nacional de Informações sobre Saneamento (SNIS), considerou-se informações e índices de perdas na distribuição, perdas no faturamento, população atendida, consumo per capita, e volumes de água produzido, consumido e faturado no período de 2010 a 2019. Os resultados mostram que a cidade apresenta uma lenta tendência de redução das perdas reais e aparentes, um consumo per capita adequado; tendência de aumento da demanda decorrente do crescimento populacional, redução do volume de água produzido e aumento dos volumes consumido e faturado. Com base nos resultados conclui-se que: deve ocorrer um maior investimento para acelerar a redução de perdas; são indispensáveis esforços no sentido de reduzir as perdas para não precisar aumentar na mesma proporção a produção de água; não recomenda-se a continuidade da redução do consumo per capita para não comprometer as condições mínimas de higiene e manutenção da saúde; e por fim, a tendência apresentada pelos volumes produzido, consumido e faturado precisam ser mantida para que os indicadores da cidade, continuem melhorando e fiquem entre os melhores da região ou do país.

Palavras-chave: Saneamento; Índices de perdas; Produção; Consumo; Distribuição.

Abstract: Considering the importance of water in the functioning of life on earth, and as a limited resource, we see with concern the waste and losses that occurred in public water supply systems. In this sense, this work seeks to evaluate the conditions of supply systems in the municipality of Pombal in the State of Paraíba. Therefore, the analysis of secondary data collected from the National Sanitation Information System (SNIS) was considered, we considered information and rates of losses in distribution, losses in revenue, population served, per capita consumption, and volumes of water produced, consumed and billed in the period 2010 to 2019. The results show that the city has a slow tendency to reduce real and apparent losses, an adequate per capita consumption; trend of increased demand due to population growth, reduction of the volume of water produced and increase in volumes consumed and billed. Based on the results, it is concluded that: there should be greater investment to accelerate the reduction of losses; efforts to reduce losses are indispensable so as not to have to increase water production in the same proportion; it is not recommended to continue the reduction of per capita consumption so as not to compromise the minimum conditions of hygiene and maintenance of health; and finally, the trend presented by the volumes produced, consumed and billed need to be maintained so that the city's indicators continue to improve and are among the best in the region or country.

Keywords: Sanitation; Loss indices; Production; Consumption; Distribution.
INTRODUÇÃO

A água é um recurso natural imprescindível à vida no planeta, exerce papel fundamental nos aspectos ambientais e socioeconômicos, visto que é base para o desenvolvimento de quase todas as atividades humanas.

Apesar do planeta ser predominantemente composto por água, o pequeno percentual de água doce aproveitável para o consumo, nos revela um quadro de escassez deste recurso no mundo, motivada pela distribuição irregular, estresse hídrico, especialmente em regiões situadas em zonas áridas, somando-se a isso a poluição.

Tendo em vista a importância deste recurso, é necessário que os gestores públicos e privados avaliem a eficiência e eficácia dos seus sistemas de abastecimento, antes de adotarem soluções que abordem exclusivamente a ampliação da infraestrutura de transporte e tratamento de água (BEZERRA; PERTEL; MACÊDO, 2019). Essa afirmação é corroborada por Barroso (2019) que aponta que o aumento de obras no saneamento básico nos municípios brasileiros, dependerá de melhorias na gestão, em especial da situação considerada dramática das perdas de água nos sistemas públicos de abastecimento dos municípios.

O sistema de abastecimento público de água é destinado a produção e distribuição de água potável, em quantidade e qualidade compatíveis com as necessidades da população, para fins de consumo. Neste sentido, a redução de desperdícios e perdas, emerge como peça fundamental para o gerenciamento dos recursos hídricos, especialmente em regiões onde a água é um fator limitante, em que a demanda é superior à oferta.

De acordo com Bezerra, Pertel e Macêdo (2019) no Brasil, do total da água produzida pelas companhias de saneamento em 2016, cerca de 38% foram perdidos na distribuição, entre perdas reais e aparentes. As perdas reais são devido a diversos tipos de vazamentos nos sistemas de abastecimento de água (SAA), enquanto as aparentes originam-se de ligações clandestinas e hidrômetros defeituosos ou fraudados (ALEGRE et al., 2005).

MIRANDA (2002), aponta em seu estudo que o crescimento descontrolado das perdas de água nos sistemas de abastecimento deve-se a soma dos seguintes fatores, poucos investimentos, menor desenvolvimento tecnológico; cultura do aumento da oferta e do consumo individual; decisões pragmáticas, de ampliação da carga e extensão das redes até áreas mais periféricas dos sistemas, para atendimento aos novos consumidores. Ressalta ainda, que a redução das perdas possibilita o melhor aproveitamento da infraestrutura existente e a postergação da aplicação de recursos para ampliação dos sistemas.

Diante a importância da temática, este trabalho tem como objetivo retratar as condições do gerenciamento de perdas de água nos sistemas de abastecimento no município de Pombal no Estado da Paraíba.
METODOLOGIA

Caracterização da área de estudo

A figura 1 apresenta a área de estudo que compreende o município de Pombal no estado da Paraíba, situado mais precisamente na Região Geográfica Intermediária de Patos e na Imediata de Pombal, de acordo a regionalização proposta pelo IBGE (2017).

FIGURA 1: Mapa de localização da área de estudo.

FONTE: Autores (2021).

A população do município em questão era cerca de 32.801 habitantes em 2019 de acordo com Sistema Nacional de Informações sobre Saneamento - SNIS (2020), 0,29% (94 habitantes) da população total não tem acesso aos serviços de abastecimento de água contra 99,71% que tem acesso, ficando acima da média regional e nacional, que apresentam os percentuais 75,04% e 83,71%, respectivamente.

Análise e Coleta de dados

Os procedimentos metodológicos foram construídos a partir da concretização de algumas etapas necessárias a realização da pesquisa que teve como método de análise descritiva e uma interpretação crítica baseada nas informações colhidas para melhor compreensão da temática.
A priori realizou-se o levantamento dos dados secundários do SNIS que trata do diagnóstico anual de água e esgoto do período de 2010 a 2019, em que se analisou alguns indicadores e, posteriormente, utilizou-se o Excel para tratamentos dos dados e elaboração dos gráficos. Os indicadores utilizados nesse trabalho são descritos a seguir, conforme descrito em SNIS (2020):

Índice de Perdas na distribuição ou perdas reais (IN049)

Refere-se a toda água disponibilizada para distribuição que não chega aos consumidores, sendo calculado pela equação 1:

\[
IN049 = \frac{(AG006+AG018-AG024)}{(AG006+AG108-AG024)} \times 100
\]

[1]

Onde: AG006 - Volume de água produzido; AG010 - Volume de água consumido; AG018- Volume de água tratada importado; AG024 - Volume de serviço.

Índice de Perdas no faturamento ou perdas aparentes (IN013)

Refere-se estão relacionadas ao volume de água que foi efetivamente consumido pelo usuário, mas que, por algum motivo, não foi medido ou contabilizado, gerando perda de faturamento ao prestador de serviços, sendo calculado pela equação 2:

\[
IN013 = \frac{(AG006+AG018-AG011-AG024)}{(AG006+AG018-AG024)} \times 100
\]

[2]

Onde: AG006 - Volume de água produzido; AG011 - Volume de água faturado; AG018 - Volume de água tratada importado; AG024 -Volume de serviço

População total atendida com abastecimento de água (AG001)

Refere-se ao total da população que utiliza água oriunda do sistema público de abastecimento. Essa informação é repassada por cada companhia de abastecimento.

Consumo per capita (IN022)

Esse consumo per capita é a média diária, por indivíduo, dos volumes utilizados para satisfazer os consumos domésticos, comercial, público e industrial, sendo calculado pela equação 3:

\[
IN022 = \frac{(AG010-AG019)}{AG001} \times \frac{1.000.000}{365}
\]

[3]

Onde: AG001 - População total atendida com abastecimento de água; AG010 - Volume de água consumido; AG019 - Volume de água tratada exportado.
Volume de água produzido (AG006)

Define-se como o volume médio de água disponível para consumo, produzido exclusivamente pelo operador, medido diretamente na saída da ETA. Ou seja, é uma informação repassada pela companhia de abastecimento que opera o sistema.

Volume de água consumido (AG010)

Toda a água consumida pelos usuários, compreendendo os volumes micromedidos, estimados (sem hidrômetro ou com hidrômetro quebrado) e o volume de água tratada exportado para outro prestador de serviços. Essa informação é disponibilizada pela companhia de abastecimento.

Volume de água faturado (AG011)

Define-se como o volume médio de água, debitado ao total das economias medidas e não medidas, para fins de faturamento, sendo seu valor divulgado pela companhia de abastecimento.

RESULTADOS E DISCUSSÕES

Perdas na Distribuição (Perdas Reais)

O índice de perda na distribuição, sofreu algumas oscilações no período, mas caiu de 58,79% (2010) para 48,04% (2019), ficando ainda acima da média nacional (39,24%), e da média estadual (38,78%) em 2019, de acordo com SNIS (2020), conforme apresentado na Figura 2.

FIGURA 2: Índice de perda na distribuição (2010 a 2019) na cidade de Pombal – PB.

![Índice de perda na distribuição (2010 a 2019) na cidade de Pombal – PB.](image-url)
Destaca-se que no período analisado, os dados indicam uma tendência de redução dessa perda, na ordem de 1,07 p.p por ano. Essa lenta redução das perdas, sugere uma necessidade de maiores investimentos no combate às perdas através do monitoramento das redes de abastecimento.

Conforme relata Silva e Conejo (2003) essas perdas tem origem em vazamentos no sistema, envolvendo a captação, a adução de água bruta, o tratamento, a reservação, a adução de água tratada e a distribuição, além de procedimentos operacionais como lavagem de filtros e descargas na rede, quando estes provocam consumos superiores ao estritamente necessário para operação.

Esses mesmos autores relatam que a redução dessas perdas permite diminuir os custos da produção – mediante redução do consumo de energia, de produtos químicos e outros - e utilizar as instalações existentes para aumentar a oferta, sem precisar expandir o sistema produtor. Essas perdas precisam ser combatidas, pois se nada for feito, os volumes de água perdidos crescem naturalmente, tendo em vista que as tubulações se deterioram, e o número de vazamentos nas redes e nos ramais gradativamente vai aumentando (ABES, 2015).

A preocupação com as perdas de água deve se iniciar nas fases de "projeto" e "construção" dos sistemas de distribuição de água, com ações tais como: concepção da setorização x planos piezométricos, o posicionamento dos registros e válvulas, as especificações dos materiais e equipamentos e a qualidade da execução dos serviços e obras (ABES, 2015). A redução desse tipo de perda traz como principal consequência, a produção de uma quantidade menor de água para abastecer a mesma quantidade de pessoas, tendo a operadora uma redução de custos diversos, tais como: produtos químicos, energia elétrica, mão-de-obra, etc. (ABES, 2013).

Dentre as ações para redução desse tipo de perda podemos citar: a redução de pressão, qualidade dos materiais dos materiais e execução da obra, pesquisa de vazamentos não visíveis e redução do tempo de reparo (FUNASA, 2014).

Perdas no faturamento (perdas aparentes)

O índice de perda no faturamento, apresentado na Figura 3, sofreu oscilações no período, mas reduziu de 41,22% (2010) para 33,03% (2019) ficando um pouco abaixo da média nacional (37,39%), e acima da média estadual (25,37%) em 2019, conforme SNIS (2020).
Destaca-se que no período, os dados indicam uma tendência de redução dessas perdas, de aproximadamente 0,8 p.p por ano. Conforme relata ABES (2013) cidades da Alemanha e do Japão possuem índices de perdas na ordem de 11%, e na Austrália possui 16%; ou seja, ainda estamos longe de atingir índices registrados em países desenvolvidos.

Essas perdas no faturamento, também chamadas de perdas não físicas, originam-se de ligações clandestinas ou não cadastradas, hidrômetros parados ou fraudados, entre outras (SILVA; CONEJO, 2003). Esses mesmos autores relatam que a diminuição dessas perdas implica em uma redução do volume de água não contabilizada, exigindo a adoção de medidas que permitam reduzir as perdas físicas e não físicas, e sua manutenção em um em nível adequado, levando em consideração a viabilidade técnico-econômica em relação ao processo operacional de todo o sistema. Assim como as perdas na distribuição, essas perdas também precisam ser combatidas, pois os hidrômetros se desgastam com o tempo e o funcionamento dos mecanismos internos do medidor é prejudicado, aumentando a submedição; e ao fraudar uma ligação, e não sofrer nenhuma reação da operadora, o cliente incentiva outros clientes ao mesmo procedimento, aumentado as perdas por fraudes (ABES, 2015). A redução desse tipo de perda tem como principal consequência o aumento do volume faturado, e consequentemente, da receita (ABES, 2013). Dentre as ações para redução desse tipo de perda podemos citar: instalação adequada de macro medidores, calibração de medidores de vazão, sistema de gestão comercial adequado, combate às fraudes, controle de ligações inativas e clandestinas, qualidade de mão de obra, instalação de hidrômetros adequados à faixa de consumo, troca periódica de hidrômetros, e desinclinação de hidrômetros (FUNASA, 2014).
População atendida com abastecimento

A população atendida com abastecimento, apresentou oscilações no período, mas aumentou de 26512 habitantes (2010) para 32707 habitantes (2019), ou seja, um aumento de 23,37%, de conforme apresentado na Figura 4, indicando uma tendência de crescimento ao longo do tempo.

FIGURA 4: População atendida com abastecimento (2010 a 2019) na cidade de Pombal – PB.

Esse aumento populacional, tende a aumentar a demanda por água; ocorrendo duas ações possíveis nesse caso: aumentar a capacidade de produção ou diminuir as perdas. Conforme relata a ABES (2013) entre aumentar a capacidade de produção de água e diminuir as perdas, a segunda alternativa será em muitos casos, a mais adequada do ponto de vista econômico-financeiro e também ambiental.

Consumo per capita

O consumo médio per capita de água é a média diária, por indivíduo, dos volumes utilizados para satisfazer os consumos domésticos, comercial, público e industrial; configurando-se com uma importante informação para as projeções de demanda, para o dimensionamento de sistemas de água e de esgotos e para o controle operacional (SNIS, 2020). O consumo per capita conforme a Figura 5, variou de 91,9 até 148,4 l/hab.dia chegando em 2019 a um valor de 105,6 l/hab.dia, inferior à média nacional (153,87 l/hab.dia) e a média estadual (113,44 l/hab.dia).
Dentro da década analisada, a tendência é de redução do consumo per capita, fato explicado pelos altos valores apresentados entre 2012 e 2015. No período de 2012 até 2019 houve uma redução total de 42,8 l/hab.dia, resultando em uma redução média anual, nesse período, de 6,11 l/hab.dia.

O consumo per capita da cidade de Pombal-PB em 2019 foi de 105,6 l/hab.dia, ou seja, um pouco acima do valor mínimo recomendado pela Organização Mundial da Saúde que é de 100 l/hab.dia (OMS, apud DANTAS et al., 2012), não sendo indicado que o município mantenha essa redução, para não ficar abaixo do valor recomendado, para ser possível ter as condições mínimas de higiene e manutenção da saúde. De acordo com Heller e Pádua (2010) fatores como o clima, a temperatura e a renda familiar também contribuem para aumentar o consumo per capita de água em um município.

Dentre as vantagens da redução do consumo *per capita*, além da sustentabilidade hídrica e energética com impactos ambientais benéficos, destaca-se a maior durabilidade das infraestruturas físicas, em especial das tubulações (SINS, 2020).

Volume de água produzido

Volume de água produzido é definido como o volume médio de água disponível para consumo, produzido exclusivamente pelo operador, medido diretamente na saída da ETA, estimada mediante pitometria ou registradores temporários de vazão (SNIS, 2000 apud CARVALHO et al., 2004). Como
apresentado na Figura 6, o volume produzido variou de 2062200 m³/ano até 3320270 m³/ano chegando em 2019 ao valor de 2555610 m³/ano, apresentando uma leve tendência de redução.

FIGURA 6: Volume de água produzido entre 2010 e 2019 na cidade de Pombal /PB.

![Gráfico do volume de água produzido](image)

FONTE: Adaptado do SNIS (2020)

Neste caso, pode-se atribuir essa redução na produção, mesmo ocorrendo um aumento do consumo, ao aumento no volume faturado (Figura 8) e redução das perdas reais e aparentes (Figura 3); sendo esse um resultado positivo; que a companhia deve trabalhar para manter ao longo do tempo.

Volume de água consumido

Volume anual de água consumido por todos os usuários, compreendendo o volume micromedido, o volume de consumo estimado para as ligações desprovidas de hidrômetro ou com hidrômetro parado, acrescido do volume de água tratada exportado para outro prestador de serviços (ABES, 2015). Conforme apresentado pelo Figura 7, o volume consumido variou de 887890 m³/ano até 1529470 m³/ano chegando em 2019 a 1261520 m³/ano, apresentando uma tendência de crescimento.
FIGURA 7: Volume de água consumido entre 2010 e 2019 na cidade de Pombal /PB.

FONTE: Adaptado do SNIS (2020).

No período analisado houve um crescimento do volume consumido na ordem de 42,08%. Vale salientar que nesse percentual estão incluídos os consumos autorizados não faturados medidos (usos operacionais e emergenciais) e não faturados e não medidos (usos sociais).

Volume de água faturado

Volume de água faturado pode ser definido como o volume médio de água, debitado ao total das economias medidas e não medidas, para fins de faturamento (SNIS, 2000 apud CARVALHO et al., 2004). Os volumes anuais faturados no período de 2010 a 2019, na cidade de Pombal – PB, são apresentados na Figura 8.
O volume faturado variou de 1266590 m³/ano até 1625800 m³/ano sendo esse o valor de 2019, ou seja, um aumento de 28,36%, apresentando uma tendência de crescimento ao longo do tempo. Essa é uma situação positiva para a companhia, pois implica em aumento de receita.

CONCLUSÕES

No período (2010 a 2019) a cidade apresentou um resultado positivo, de tendência de queda, nas perdas reais e aparentes, devendo investir para que essa tendência seja mantida e acelerada, para se chegue a resultados melhores mais rapidamente.

A cidade tem apresentado um elevado crescimento populacional, gerando um aumento da demanda, e tornando indispensável esforços no sentido de reduzir as perdas, para não precisar aumentar na mesma proporção a produção de água.

O consumo per capita, encontra-se em um valor adequado, não sendo indicado que continue sua redução no tempo, para que não se chegue a valores que possam comprometer as condições mínimas de higiene e manutenção da saúde.

A redução do volume produzido, e o aumento no mesmo período, do volume consumido e faturado, são resultados positivos apresentados pela companhia, que precisam ser mantidos no tempo, para que os indicadores da cidade, fiquem entre os melhores da região ou do país.

REFERÊNCIAS
[1] ALEGRE, H. et al. Controlo de Perdas de Água em Sistemas Públicos de Adução e Distribuição. Lisboa: Ed. IRAR, 2005. Série Guias Técnicos 3.

[2] ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA SANITÁRIA E AMBIENTAL - ABES (Brasil). Perdas de água em sistemas de abastecimento: índices e nova tecnologia. 2020. Disponível em: https://abes-es.org.br/perdas-de-agua-em-sistemas-de-abastecimento-indices-e-nova-tecnologia/. Acesso em: 09 out. 2021.

[31] ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA SANITÁRIA E AMBIENTAL - ABES (Brasil). Controle e redução de perdas nos sistemas públicos de abastecimento de água: posicionamento e contribuições técnicas da abes. Rio de Janeiro, 2015. 99 p.

[4] ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA SANITÁRIA E AMBIENTAL - ABES (Brasil). Perdas em sistemas de abastecimento de água: diagnóstico, potencial de ganhos com sua redução e propostas de medidas para o efetivo combate. Rio de Janeiro, 2013. 45p.

[5] BARROSO, M. L. A. Avaliação de perdas nos sistemas públicos de abastecimento de água no Estado de Sergipe. Pesquisa e Ensino em Ciências Exatas e da Natureza, 3(1): 76–87. 2019. http://dx.doi.org/10.29215/pecen.v3i1.1150.

[6] BEZERRA, S. T. M.; PERTEL, M.; MACÊDO, J. E. S. de. Avaliação de desempenho dos sistemas de abastecimento de água do Agreste brasileiro. Ambiente Construído, Porto Alegre, v. 19, n. 3, p. 249-258, jul./set. 2019. ISSN 1678-8621 Associação Nacional de Tecnologia do Ambiente Construído. http://dx.doi.org/10.1590/s1678-86212019000300336.

[7] CARVALHO, F. S. de; PEPLAU, G. R.; CARVALHO, G. S. de; PEDROSA, V. de A. Estudos sobre perdas no sistema de abastecimento de água da cidade de Maceió. In: VII SIMPÓSIO DE RECURSOS HÍDRICOS DO NORDESTE, 1., 2004, São Luís. Anais do VII SRHN. ABRH, 2004.

[8] COMPANHIA DE SANEAMENTO BÁSICO DO ESTADO DE SÃO PAULO – SABESP - (São Paulo). Controle de perdas. 2021. Disponível em: http://site.sabesp.com.br/. Acesso em: 09 out. 2021.
[9] DANTAS, F. V. et al. Uma análise da situação do saneamento no Brasil. FACEF Pesquisa-Desenvolvimento e Gestão, v. 15, n. 3, 2013.

[10] FUNDAÇÃO NACIONAL DE SAÚDE – FUNASA (Brasil). Redução de perdas em sistemas de abastecimento de água. 2. ed. Brasília: Funasa, 2014.

[11] HELLER, L.; PÁDUA, V. L. Abastecimento de água para consumo humano. 1. ed. Belo Horizonte - MG: Editora da UFMG, 2010. 860p

[12] MIRANDA, E. C. (2002). Avaliação de Perdas em Sistemas de Abastecimento de Água – Indicadores de Perdas e Metodologias para Análise de Confiabilidade. 2002. Dissertação de Mestrado, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 200p.

[13] RODRIGUES, A. A. Avaliação do sistema de abastecimento de água de Monte Carmelo/MG, a partir do Plano Municipal de Saneamento Básico. 2018. 38f. TCC (Graduação) - Curso de Engenharia Civil, Faculdade de Ciências Humanas e Sociais, Monte Carmelo, 2018.

[14] SILVA, R. T., CONEJO, J. G. L. Indicadores de perdas nos sistemas de abastecimento de água. Brasília: Ministério das Cidades. Secretaria Nacional de Saneamento Ambiental. Programa Nacional de Combate ao Desperdício de Água, 2003. (Documento técnico de apoio, A2).

[15] SISTEMA NACIONAL DE INFORMAÇÃO SOBRE SANEAMENTO - SNIS. Diagnóstico dos serviços de Água e Esgoto - 2019. Brasília, 2020.