Runtime Analysis for the NSGA-II: Proving, Quantifying, and Explaining the Inefficiency For Three or More Objectives

Weijie Zheng
School of Computer Science and Technology
International Research Institute for Artificial Intelligence
Harbin Institute of Technology
Shenzhen, China

Benjamin Doerr*
Laboratoire d’Informatique (LIX)
École Polytechnique, CNRS
Institute Polytechnique de Paris
Palaiseau, France

Abstract

The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems. Despite numerous successful applications and, very recently, also competitive mathematical performance guarantees, several studies have shown that the NSGA-II is less effective for larger numbers of objectives. In this work, we use mathematical runtime analyses to rigorously prove and quantify this phenomenon. We show that even on the simple OneMinMax benchmark, where every solution is Pareto optimal, the NSGA-II also with large population sizes cannot compute the full Pareto front (objective vectors of all Pareto optima) in sub-exponential time. Our proofs suggest that the reason for this unexpected behavior lies in the fact that in the computation of the crowding distance, the different objectives are regarded independently. This is not a problem for two objectives, where any sorting of a pair-wise incomparable set of solutions according to one objective is also such a sorting according to the other objective (in the inverse order).

*Corresponding author.
1 Introduction

Many real-world optimization problems have several, usually conflicting objectives. In this situation, it is not possible to simply compute one good solution. Instead, a common solution concept for such multi-objective problems is to compute a representative set of Pareto solutions (solutions which are not strictly dominated by others) and let a human decision maker choose one of these. The two dominant approaches to such problems are mathematical programming and evolutionary algorithms (EAs). The latter profits from the fact that evolutionary algorithms naturally work with sets of solutions (“populations”).

The most prominent multi-objective evolutionary algorithm (MOEA) with many successful applications in various domains is the non-dominated sorting genetic algorithm II (NSGA-II) [DPAM02], see [ZQL+11] or the more than 47,000 citations on Google scholar. Despite numerous positive results on the NSGA-II, several studies have observed that the NSGA-II is less effective when the number of objectives grows. From their experimental comparison of three MOEAs, Khare, Yao, and Deb [KYD03] reported that the NSGA-II increasingly suffers in converging to the global Pareto front when the number of objectives increases from 2 to 8. This early study is a pure performance comparison, so no explanations for the different behaviors were sought. Also, it should be noted that the other algorithms regarded also suffered in different ways from growing numbers of objectives. Purshouse and Fleming [PF07] attempted for further empirical observations. They studied the range of suitable configurations of the NSGA-II that can result in good solutions. That the suitable ranges shrink along with the increasing number of objectives, indicates the increasing difficulty for the NSGA-II for more objectives. They also observed some factors that are relevant to the reason for the poor performance of the NSGA-II, like that when the population evolves, the proportion of non-dominated solutions in the population rapidly increases to 100%, and that in each iteration, only a low proportion of generated new solutions can dominate the current solutions. These observations are regarded as one of the key challenges for many-objective optimizations, see the surveys [ITN08, LLTY15].

Since apparently there is a lack of understanding of the performance of the NSGA-II for many-objective problems, we try to approach this research question via a mathematical runtime analysis. Such analyses are an integral part of the theory of heuristic search. While often restricted to simple algorithmic settings, this alternative approach has led to several deep and very reliable (namely mathematically proven) results in the past [DEL21, LOW19, NW22, Cra19]. Also, often the proofs also reveal the reason why a certain phenomenon can be observed.

To this aim, we conduct a mathematical runtime analysis of the NSGA-II on the m-objective version of the classic bi-objective ONEMINMAX benchmark. This pseudo-Boolean (that is, defined on bit-strings of length n) benchmark is
very simple in several respects, for example, any solution is Pareto optimal and the objectives are all equivalent to the OneMax benchmark, which is generally considered as the easiest single-objective Pseudo-boolean benchmark. For the bi-objective OneMinMax problem, a good performance of the NSGA-II has been proven recently [ZLD22].

Our main (proven) result is that – despite the simplicity of the problem and in drastic contrast to the bi-objective setting – for all numbers $m \geq 3$ of objectives the NSGA-II also with large population sizes cannot find the full Pareto front faster than in exponential time. Even worse, we prove that for an exponential time, the population of the NSGA-II will miss a constant fraction of the Pareto front. Our experiments confirm this finding in a very clear manner.

Our mathematical runtime analysis also gives an explanation for the drastic change of behavior between two and three objectives, namely that in the definition of the crowding distance the different objectives are regarded independently (we make this point much more precise in the body of this paper when all necessary notation is introduced). This is not a problem for two objectives, because for a set of pair-wise non-dominated solutions a sorting with respect to one objective automatically is a sorting with respect to the other objective (in the opposite order). Hence here in fact the two objectives cannot be treated independently. From three objectives on, such an automatic correlation between the objectives does not exist, and this can lead to the problems made precise in this work.

This understanding has two implications. On the negative side, it appears very likely that the difficulties observed for the OneMinMax benchmark will also occur for many other optimization problems. On the positive side, this understanding suggests to search for an alternative crowding distance measure that does not treat the objectives independently.

2 Previous Work

For reasons of brevity, we will not discuss the practical and empirical works on the NSGA-II beyond what we did in the introduction. For the theoretical side, we note that mathematical analyses have always accompanied the design and analysis of randomized search heuristics [AD11]. The first (mathematical) runtime analyses have appeared in the early 2000s [LTZ+02, Gie03, Thi03]. They and many of the subsequent works regarded synthetic algorithms like the SEMO or global SEMO (GSEMO). While these are much simpler than the algorithms used in practice, they are still close enough to these to admit useful conclusions. It took some time until more realistic MOEAs were regarded under the runtime analysis paradigm [BEN08, LZZ+16], and only at last AAAI the first runtime analysis of the NSGA-II was presented [ZLD22].
Besides demonstrating that runtime analysis are feasible for this kind of complex algorithms, this work proved that the NSGA-II with population size N computes the full Pareto front of the OneMinMax benchmark defined on bit strings of length n in expected time $O(N n \log n)$ if $N \geq 4(n+1)$. For the LeadingOnes-TrailingZeroes benchmark, a bound of $O(N n^2)$ was shown. For reasonable choice $N = \Theta(n)$ of the population size, these runtimes agree with previous results for the SEMO and GSEMO algorithms. Using a population size strictly larger than the size $n+1$ of the Pareto front is necessary: For $N = n+1$, the NSGA-II will not find the Pareto front for an exponential time, and moreover, miss a constant fraction of it. For smaller population sizes, however, the NSGA-II can still compute good approximations of the Pareto front as shown in [ZD22]. These two works regard a simplified version of the NSGA-II that does not employ crossover. In [BQ22], for the first time a runtime analysis for the NSGA-II with crossover is conducted, however, the runtime bounds proven are not lower than those in [ZLD22]. Also, this work lowers the required population size to $2(n+1)$ by assuming that two objectives are sorted identically. Further, improvements are obtained from a novel selection mechanism. [DQ22] is the first work to conduct a runtime analysis on a multimodal benchmark. We note that all these works regard problems consisting of two objectives only.

There are some runtime analyses for many-objective problems, however mostly for the very simplistic SEMO algorithm. Already the journal version [LTZ04, Section V] of the first MOEA runtime analysis [LTZ02] conducted a many-objective runtime analysis, namely a proof that SEMO covers the Pareto front of mCOCZ and mLOTZ (which are the many-objective analogues of the classic CountingOnesCountingZeroes and LeadingOnesTrailingZeroes benchmarks) with problem size n and objective number $m \geq 4$ in an expected number of $O(n^{m+1})$ function evaluations. Some of these bounds were improved in [BQT18], namely to $O(n^m)$ for the SEMO on mCOCZ with $m > 4$ and to $O(n^3 \log n)$ for the special case $m = 4$. As often in the runtime analysis of MOEAs, the complicated population dynamic prevented the proofs of any interesting lower bounds. Huang, Zhou, Luo, and Lin [HZLL21] analyzed the runtime of the MOEA/D on mCOCZ and mLOTZ. As the MOEA/D decomposes the multi-objective problem into several single-objective subproblems and solves these in a co-evolutionary way, this framework is fundamentally different from most MOEAs and in particular the NSGA-II, so we do not discuss these results in more detail.
3 Preliminaries

In this section, we give brief introductions to many-objective optimization and to two kinds of MOEAs (NSGA-II series and SEMO series).

3.1 Many-Objective Optimization

We call the optimization problems with more than two objectives many-objective optimization problems. In this paper, we consider the maximization of each objective and only consider pseudo-Boolean problems. That is, we consider the maximization of a pseudo-Boolean many-objective optimization problem with \(m \geq 3 \) objectives and problem size of \(n \), \(f = (f_1, \ldots, f_m) : \{0,1\}^n \rightarrow \mathbb{R}^m \). Dominance is used to compare the quality of solutions. We say that \(x \) weakly dominates \(y \), denoted as \(x \preceq y \), if and only if \(f_i(x) \geq f_i(y) \) for all \(i = 1, \ldots, m \), and we say that \(x \) (strictly) dominates \(y \), denoted as \(x \succ y \), if and only if \(x \preceq y \) and there exists \(i \in \{1, \ldots, m\} \) such that \(f_i(x) > f_i(y) \). We call a solution \(x \) Pareto optimum if there is no solution that strictly dominates it. The function value of the Pareto optimum \(x \) is called a Pareto front point. All Pareto front points form the Pareto front, denoted by \(F^* \) in this paper. We call a Pareto front point \(v \in F^* \) covered by a (multi-)set of solutions \(P \) if there exists \(x \in P \) such that \(v = f(x) \).

In this paper, the aim is to compute a set of solutions \(P \) such that covers the Pareto front, that is, such that for any Pareto front point \(v \in F^* \) there exists \(x \in P \) such that \(v = f(x) \). This aim is widely used in runtime analysis works \([LTZ04, BQT18]\). Obviously, this aim is different from obtaining all Pareto optima since one Pareto front point can have more than one corresponding Pareto optimal solutions.

3.2 Algorithms

For the MOEAs, an individual is a solution, that is, a bit-string \(x \in \{0,1\}^n \), and a population is a multi-set of individuals. The NSGA-II algorithm \([DPAM02]\) has a fixed population size \(N \). After the random initialization, in each iteration (also called “generation”), the offspring population \(Q_t \) with size \(N \) is generated from the current population (parent population) \(P_t \). We call the parent selection strategy fair selection if each individual in the parent population is selected once as a parent to generate an offspring individual. Other parent selection strategies include binary tournament selection, stochastic tournament selection \([BQ22]\), etc.

The one-bit mutation operator generates an offspring by flipping one (uniformly at random picked) bit of its parent, and the standard bit-wise mutation operator generates an offspring by flipping each bit independently with probability \(1/n \).

To keep the fixed size, \(N \) individuals are removed from the combined parent and offspring population \(R_t = P_t \cup Q_t \) with size \(2N \). The NSGA-II first uses the pro-
Algorithm 1 Computation of the crowding distance $c_{\text{Dis}}(S)$

Input: $S = \{S_1, \ldots, S_{|S|}\}$, a set of individuals
Output: $c_{\text{Dis}}(S) = (c_{\text{Dis}}(S_1), \ldots, c_{\text{Dis}}(S_{|S|}))$, where $c_{\text{Dis}}(S_i)$ is the crowding distance for S_i

1. $c_{\text{Dis}}(S) = (0, \ldots, 0)$
2. for each objective f_i do
3. Sort S in order of descending f_i value: $S_{i,1}, \ldots, S_{i,|S|}$
4. $c_{\text{Dis}}(S_{i,1}) = +\infty, c_{\text{Dis}}(S_{i,|S|}) = +\infty$
5. for $j = 2, \ldots, |S| - 1$ do
6. $c_{\text{Dis}}(S_{i,j}) = c_{\text{Dis}}(S_{i,j}) + \frac{f_i(S_{i,j-1}) - f_i(S_{i,j+1})}{f_i(S_{i,1}) - f_i(S_{i,|S|})}$
7. end for
8. end for

Procedure fast-non-dominated-sort() from [DPAM02] to partition the population into fronts F_1, \ldots, where F_i consists of the non-dominated individuals in $R_i \setminus \bigcup_{j<i} F_j$. For the individuals in F_i^* with $i^* = \min\{i \geq 1 \mid |\bigcup_{j<i} F_j| \geq N\}$, it computes their crowding distance (see Algorithm 1) and keeps $N - |\bigcup_{j<i^*} F_j|$ individuals with largest crowding distance. This original survival selection has some drawbacks and a modified (sequential) one is proposed [KD06] and proven to be more efficient for the approximation for the bi-objective ONEMINMAX [ZD22]. Here, Algorithm 2 describes the procedure of the NSGA-II with the original survival selection and also with the sequential survival selection.

The SEMO and GSEMO (see Algorithm 3) are MOEAs predominantly analyzed in evolutionary theory community. Different from the NSGA-II, they do not work with a fixed population size, but keep any solution until a better one (in the domination sense) is found. They start with a single random solution. Each iteration, one offspring is generated from mutating a random member of the population. It is added into the population if it is not strictly dominated by a member of the population, and once it is added, the individuals that are weakly dominated by it will be removed. The only difference between SEMO and GSEMO is that SEMO uses the one-bit mutation and GSEMO uses the standard bit-wise mutation.

4 Ineffectiveness for Four and More Objectives

In this section, we prove our main result that the NSGA-II cannot effectively compute the Pareto front of the mONEMINMAX benchmark (except for the case $m = 2$). Since m is necessarily even in the definition of mONEMINMAX below, we
Algorithm 2 NSGA-II

1: Uniformly at random generate the initial population $P_0 = \{x_1, x_2, \ldots, x_N\}$ with $x_i \in \{0, 1\}^n$, $i = 1, 2, \ldots, N$.
2: for $t = 0, 1, 2, \ldots$ do
3: Generate the offspring population Q_t with size N
4: Use fast-non-dominated-sort() in [DP AM02] to divide R_t into fronts F_1, F_2, \ldots
5: Find $i^* \geq 1$ such that $|\bigcup_{i = 1}^{i^* - 1} F_i| < N$ and $|\bigcup_{i = 1}^{i^*} F_i| \geq N$
6: Use Algorithm 1 to separately calculate the crowding distance of each individual in F_1, \ldots, F_i.
7: if Original Survival Selection [DP AM02] then
8: Let \tilde{F}_{i^*} be the $N - |\bigcup_{i = 1}^{i^* - 1} F_i|$ individuals in F_{i^*} with largest crowding distance, chosen at random in case of a tie
9: $P_{t+1} = (\bigcup_{i = 1}^{i^* - 1} F_i) \cup \tilde{F}_{i^*}$
10: else if Sequential Survival Selection [KD06, ZD22] then
11: while $|\bigcup_{i = 1}^{i^*} F_i| \neq N$ do
12: Let x be the individual with the smallest crowding distance in F_{i^*}, chosen at random in case of a tie
13: $F_{i^*} = F_{i^*} \setminus \{x\}$
14: Update the crowding distance of all neighbors of x
15: end while
16: end if
17: end for

Algorithm 3 SEMO/GSEMO

1: Uniformly at random generate an individual (solution) $x \in \{0, 1\}^n$, and the initial population $P_0 = \{x\}$
2: for $t = 0, 1, 2, \ldots$ do
3: Uniformly at random select an individual x from P_t
4: Generate the offspring x' by one-bit mutation for the SEMO, or by standard bit-wise mutation for the GSEMO
5: if there is $y \in P_t$ such that $x' \succeq y$ then
6: $P_{t+1} = \{y \in P_t \mid x' \not\succeq y\} \cup \{x'\}$
7: end if
8: end for

discuss separately in the subsequent section an example of a 3-objective problem that also cannot be solved effectively by the NSGA-II. This shows that the bi-objective setting is structurally different and, in a sense, an exceptional case.
We start by giving the formal definition of the m-objective version of the ONE MinMax problem and then prove our main result that the NSGA-II selection with very high probability loses a constant fraction of the Pareto front (when the population size is larger than the Pareto front size by a constant factor, which can be arbitrarily large). This result immediately implies that the NSGA-II takes at least a time exponential in the Pareto front size to compute the full Pareto front.

4.1 The mOneMinMax Benchmark

We now define an m-objective version of the bi-objective ONE MinMax benchmark in the same fashion that the many-objective versions of the COUNTINGONES-COUNTINGZEREOES and LEADINGONESTRAILINGZEREOES benchmarks were derived in [LTZ04]. The ONE MinMax benchmark is arguably the easiest multi-objective benchmark. Different from the still simple COUNTINGONES-COUNTINGZEREOES and LEADINGONESTRAILINGZEREOES benchmarks, it has the property that any solution is Pareto optimal. Given this simplicity, it is particularly surprising that the NSGA-II cannot efficiently optimize it for more than two objectives.

Definition 1 (mONE MinMax). Let the number $m \in \mathbb{N}$ of objectives be even and let the problem size n be a multiple of $m/2$. Let $n' = 2n/m \in \mathbb{N}$. The m-objective function mONE MinMax = $(f_1, \ldots, f_m) : \{0, 1\}^n \rightarrow \mathbb{R}^m$ is defined by

$$f_i = \begin{cases} \sum_{j=1}^{n'} (1 - x_j + (i-1)n'/2), & \text{if } i \text{ is odd;} \\ \sum_{j=1}^{n'} x_j + (i-2)n'/2, & \text{else} \end{cases}$$

for all $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$.

We note that any $x \in \{0, 1\}^n$ is a Pareto optimum of mONE MinMax. The Pareto front thus is $F^* = \{(i_1, n' - i_1, \ldots, i_{m/2}, n' - i_{m/2}) \mid i_1, \ldots, i_{m/2} \in [0..n']\}$. Its size is $M := |F^*| = (n' + 1)^{m/2} = (2n/m + 1)^{m/2}$.

4.2 Deficiencies of the Multi-Objective Crowding Distance Lead to Exponential Runtimes

By definition, the crowding distance of an individual x in a set of pair-wise non-dominated individuals S is computed as the sum of the crowding distances which x has in each objective. This is convenient as it allows to compute the crowding distance by solving m elementary problems. Also, this appears intuitively a good measure of the importance of a solution, at least when regarding bi-objective illustrations such as Figure 1 in [DPAM02]. Unfortunately, and this is a main insight
from this work, this intuition is correct only for two objectives, and for larger numbers the independent treatment of the objectives allows for very undesirable results.

Let us give a simple example. Let \(f : [0..200]^4 \rightarrow \mathbb{R} \) be the 4-objective \textsc{OneMinMax} problem with problem size \(n = 200 \). Let \(S \) be a set of 5 individuals such that

\[
f(S) = \{(99, 101, 0, 200), (101, 99, 0, 200), (0, 200, 99, 101), (0, 200, 101, 99), f(x)\},
\]

where \(x \) is an individual with \(f(x) = (100, 100, 100, 100) \). One would think that \(x \) has a large crowding distance since \(f(x) \) is the only point in the half-plane \(\{(a, b, c, d) \in \mathbb{R}^4 \mid a + c > 101\} \), which contains roughly \(\frac{7}{8} \) of the domain \([0..200]^4\) of \(f \). Unfortunately, this hope does not come true. The crowding distance of \(x \) is \(4 \cdot \frac{2}{101} = \frac{8}{101} \leq 0.08 \). In contrast, for all other points already the crowding distance contribution of the first objective is at least \(\frac{99}{100} \geq 0.98 \). Hence from the crowding distance perspective, \(x \) appears as the by far least important point, where in contrast it is obvious that one could easily omit one of \((99, 101, 0, 200)\) and \((101, 99, 0, 200)\) from \(S \) without noticeably reducing the diversity of \(S \).

The reason for this undesired result is that the computation of the crowding distance is based on an independent consideration of the objectives. This allows that, as in the example above, points far away from a solution \(x \) have a huge influence on its crowding distance.

We note that this problem does not occur for two objectives. The reason is that here a sorting of a domination-free set with respect to one objective automatically is a sorting with respect to the other objective (in inverse order). Consequently (when assuming distinct objective values), the crowding distance of an individual \(x \) is determined only by its two unique neighbors, which are the same for both objectives. Hence it cannot happen here that “points far away” have an influence on the crowding distance of \(x \).

We described above in some detail what is the true reason for the difficulties we observe in this section, and we did so because we feel that it aids the reader’s understanding and might ease finding a remedy to this problem.

Fortunately, for our mathematical proofs, we can resort to a simpler, elementary algebra argument, which will imply that there is only a very limited number of individuals with positive crowding distance. We note that a similar argument was used in \[ZLD22\] in a positive manner. There, the existence of a sufficient number of individuals with crowding distance zero was exploited to argue that these individuals will be removed first, and consequently, the (at least one) individual with positive crowding distance per Pareto front point will survive the selection process.
Lemma 2. Let $m \in \mathbb{N}$ with $m \geq 4$. Let S be a population of individuals in $\{0, 1\}^n$. Assume that we compute the crowding distance $cDis(S)$ with respect to the objective function $m\textit{OneMinMax}$ via Algorithm [1]. Then at most $4n + 2m$ individuals in S have a positive crowding distance.

Proof. Consider the sorted list $S_{i,1}, \ldots, S_{i,|S|}$ (Step 8 in Algorithm [1]) for calculating the component of the crowding distance w.r.t. a certain objective f_i. Let $V = f_i(S)$ and $V = \{v_1, \ldots, v_{|V|}\}$ such that $v_1 > v_2 > \cdots > v_{|S|}$. For $j \in [1..|V|]$, let $H_j = \{s \in S \mid f_i(s) = v_j\}$. Since S is sorted according to increasing f_i value, there are $a, b \in [1..|S|]$ with $a \leq b$ such that $H_j = \{S_{i,a}, \ldots, S_{i,b}\}$. By definition of the crowding distance, the at most 2 individuals $S_{i,a}$ and $S_{i,b}$ are the only ones in H_j to have a positive crowding distance contribution from the i-th objective. Since $|V| \leq n' + 1$ and there are m objectives, we know that there are at most $2m(n' + 1) = 2m(2n/m + 1) = 4n + 2m$ individuals with positive crowding distance.

We note that the result above only refers to the computation of the crowding distance. It is thus independent of other components of the NSGA-II like the mutation operator, the possible use of crossover, and the selection rules. Also, due to its simplicity, it could easily be transformed to apply to other objective functions. In its most general form, it would state that if f is an m-objective problem and ν_i is the number of objective values of the i-th objective, then at most $2 \sum_{i=1}^m \nu_i$ individuals can have a positive crowding distance. We omit the details and continue with the heart of this paper, an exponential lower bound of the NSGA-II on $m\textit{OneMinMax}$ for $m \geq 4$.

Theorem 3. Let $m \in \mathbb{Z}_{\geq 4}$ and $a > 1$ be constants. Consider the NSGA-II with an arbitrary way to generate the offspring population and with either the original survival selection or the sequential survival selection proposed in [KD06, ZD22]. Assume that this algorithm optimizes $m\textit{OneMinMax}$ benchmark with problem size n, using a population size of at most $N \leq aM$, where $M = (2n/m + 1)^{m/2}$ is the size of the Pareto front of $m\textit{OneMinMax}$. Then with probability $1 - T \exp(-\Omega(M))$, for the first T iterations at least a constant fraction of Pareto front is not covered by P_t. In particular, the time to compute the full Pareto front is exponential in $n^{m/2}$ both in expectation and with high probability.

Proof. Since we aim at an asymptotic results, we can assume that n is at least $10m$ and large enough to ensure that $a \leq M/8$. Let R_t be the combined parent and offspring population in iteration t. Let M' denote the size of the part of the Pareto that is front covered by R_t. Let γ be a constant in $[4/5, 1)$. If $M' < \gamma M$, then with probability one, the next generation will cover at most $M' < \gamma M$ Pareto front points as the survival selection cannot increase the coverage of the Pareto front.
Now we consider the case $M' \geq \gamma M$. We argue that there are at most $|R_t|/(4a\gamma)$ Pareto front points with more than $4a\gamma$ corresponding individuals in R_t. If not, then R_t will have more than $(|R_t|/(4a\gamma))(4a\gamma) = |R_t|$ individuals in R_t, which cannot happen. Let U' denote the set of the Pareto front points that have at most $4a\gamma$ corresponding individuals in R_t. Then

$$|U'| \geq M' - \frac{|R_t|}{4a\gamma} \geq \gamma M - \frac{2aM}{4a\gamma} = \frac{\gamma}{2} M.$$

Let A denote the number of individuals with positive crowding distance. From Lemma 2 we know that $A \leq 4n + 2m$. Our assumptions, most notably $n \geq 10m$, imply that $N \geq A$. More detailedly, we compute

$$N = \frac{1}{2}|R_t| \geq \frac{1}{2} M' \geq \frac{\gamma}{2} M = \frac{\gamma}{2} (2n/m + 1)^{m/2} \geq \frac{\gamma}{5} \left(1 + \frac{2n}{m} \left(\frac{m}{2} - 1\right)\right) \left(\frac{2n}{m} + 1\right) \geq \frac{\gamma}{5} n \left(\frac{2n}{m} + 1\right) \geq 2m \left(\frac{2n}{m} + 1\right) \geq A,$$

(1)

where the third inequality uses $\gamma \geq 4/5$ and $(1 + x)^y \geq 1 + xy$ for any $x \geq -1$ and $y \geq 1$, the fourth inequality uses $m \geq 4$, and the last inequality uses $n \geq 10m$. Thus the number of the individuals with zero crowding distance $2N - A$ is greater than or equal to N, the number of individuals to be removed in the survival selection. Since all individuals in R_t are Pareto optima and thus $F_{i^*} = F_1$, the original survival selection will remove N individuals out of these $2N - A$ individuals uniformly at random. For the sequential survival selection, it is not difficult to see that removing an individual with zero crowding distance does not change the crowding distances of all other individuals. Consequently, the selection process is identical to the original survival selection.

We thus analyze the effect of randomly removing N individuals with zero crowding distance. To ease the argument, we instead consider the process where we N times independently and uniformly at random pick an individual from the $2N - A$ individuals with replacement and then remove these individuals. Obviously, the number of uncovered values in U' after this process, denoted by Y, is stochastically dominated by that number, denoted by X, after the original process. For a certain value in U' with b corresponding individuals in R_t, we know that its probability to be uncovered is at least

$$\left(\frac{N}{b}\right)!b! \left(\frac{1}{2N - A}\right)^b \left(1 - \frac{b}{2N - A}\right)^{N-b}$$

$$= \left(\frac{N}{b}\right)!b! \left(\frac{1}{2N - A}\right)^b \left(1 - \frac{b}{2N - A}\right)^{(\frac{2N - A - 1}{b})(N-b)(2N-A-1)}$$

$$\geq \left(\frac{N}{b}\right)!b! \left(\frac{1}{2N - A}\right)^b \exp \left(\frac{(N-b)b}{2N - A - b}\right) \geq \left(\frac{N}{b}\right)!b! \left(\frac{1}{2N - A}\right)^b \frac{1}{e^b}.$$
\[
\begin{align*}
&= \frac{1}{e^b} \frac{N!}{(N-b)!} \frac{1}{(2N-A)^b} = \frac{N \ldots (N-b+1)}{e^b(2N-A)^b} \geq \left(\frac{N-b+1}{e(2N-A)} \right)^b \\
&\geq \left(\frac{N - 4a\gamma + 1}{e(2N-A)} \right)^{4a\gamma} \geq \left(\frac{1}{e} + \frac{1 - 4a\gamma}{eN} \right)^{4a\gamma} := p,
\end{align*}
\]

where the second and the last inequality use \(2N - A \geq N\), and the last inequality also uses \(N - 4a\gamma + 1 > 0\) since \(N \geq M'/2 \geq \gamma M/2 \geq 4a\gamma\) from \(a \leq M/8\). Obviously, \(p = \Theta(1)\).

We have just seen that \(E[Y] \geq p|U'| \geq \frac{1}{4} p\gamma M\). We note that \(Y\) is functionally dependent on the independent \(N\) picks, and that each pick will influence \(Y\) by at most 1. Hence, we apply the method of bounded differences \([\text{McD}89]\) and obtain that

\[
\Pr[Y \leq \frac{1}{4} p\gamma M] \leq \Pr[Y \leq \frac{1}{2} E[Y]] \leq \exp(-\Omega(E[Y])) = \exp(-\Omega(M)).
\]

Therefore, with probability at least \(1 - \exp(-\Omega(M))\), at least \(\frac{1}{4} p\gamma M\) objective values of the Pareto front are not covered after the survival selection. \(\square\)

We note that unlike for Lemma 2, the proof of the result above does not immediately extend to the mCOCZ and mLOTZ benchmarks. The reason is that for these benchmarks, not all individuals are Pareto optimal. Consequently, the non-dominated sorting of \(R_t\) may contain several fronts, and thus the lower-priority fronts could prevent Pareto optimal individuals from entering into the selection competition. While the proof does not immediately extend, we do believe that the intrinsic problems of the crowding distance for more than two objectives persist on these benchmarks and forbid an effective optimization. Our informal arguments are two-fold. On the one hand, the problem that there is only a small number of individuals with positive crowding distance applies to all fronts of the non-dominated sorting. So very likely, there is a front in which the survival decisions are taken mostly at random, and this should lead to problems, possibly even to the population not approaching the Pareto front at all. On the other hand, if the population comes close to covering the Pareto front, then the combined parent and offspring population is likely to have more than \(N\) Pareto optimal individuals. In this case, the same difficulties as exploited in the proof above arise. As said, we speculate that the NSGA-II has difficulties to optimize mCOCZ and mLOTZ, but we leave the formal proof of such a statement as future work.

4.3 Also the Combined Parent and Offspring Population Does Not Cover the Pareto Front

Our main result in the previous subsection was that the population \(P_t\) of the NSGA-II for an at least exponential time does not cover the full Pareto front.
One could be optimistic that this is better for the combined parent and offspring population R_t, which, with size only by a factor two larger, then would be an interesting output of the algorithm. We now show that this is not true and that also R_t misses a constant fraction of the Pareto front for a long time.

Since this result naturally depends on how precisely the offspring are generated, we regard in the following one particular setting, namely that each parent creates exactly one offspring via one-bit mutation. We are very optimistic that all other mutation-based variants of the NSGA-II regarded in previous runtime analyses works would admit the same result. For reasons of brevity, we do not go into details. We are also optimistic that the following result would remain true for crossover-based variants of the NSGA-II, but with the little understanding we currently have on how crossover works in the NSGA-II, this is clearly only a speculation. The main argument of our rigorous proof below, and the reason for our optimism that similar results hold for other variants of the NSGA-II, is that a fair proportion of the Pareto front points not covered by P_t only have a constant probability of being generated in Q_t. Hence in expectation, Q_t will miss a constant fraction of these, and with the large amount of independent randomness, this expectation can be turned into a statement true with probability $1 - \exp(-M)$. This argument is similar to the proof of Lemma 10 of the extended version of [ZLD22] on the arxiv preprint server, however, some adaptations were necessary to cope with the larger population size, the larger number of objectives, and the different structure of the Pareto front.

Theorem 4. Let $m \in \mathbb{Z}_{\geq 4}$ and $a > 1$ be constants. Consider using the NSGA-II with population size $N \leq aM = a(2n/m + 1)^{n/2}$, fair selection (every parent creates one offspring), and one-bit mutation to optimize $m\text{OneMinMax}$ with problem size n. Let $\varepsilon \in (0, 1)$ be a sufficiently small constant. Assume that in some iteration t the population P_t covers at most a $(1 - \varepsilon)$ fraction of the Pareto front. Then the combined parent and offspring population R_t will cover at most a fraction of $1 - \frac{1}{5\varepsilon}\exp\left(-\frac{20am^2(5m-\varepsilon)}{\varepsilon(5m^2-4(5m-\varepsilon))}\right)$ of the Pareto front with $1 - \exp(-\Omega(M))$ probability.

To ease the presentation, we use the following natural definition of a neighbor.

Definition 5 (Neighbors). Let $F^* \subset [0..n']^m$ be the Pareto front for $m\text{OneMinMax}$. For any two Pareto front points $v = (v_1, n' - v_1, \ldots, v_{m/2}, n' - v_{m/2})$ and $v' = (v'_1, n' - v'_1, \ldots, v'_{m/2}, n' - v'_{m/2})$ in F, we call v and v' neighbors, denoted by $v \sim v'$, if there exists an $i \in \lfloor m/2 \rfloor$ such that $|v_i - v'_i| = 1$ and $v_j = v'_j$ for all $j \neq i$.

We now prove Theorem 4.

Proof. We first show that there are less than $\varepsilon/5$ fraction of the Pareto front points whose neighbors in total have at least $\lceil 5am/\varepsilon \rceil$ corresponding individuals in P_t. 13
Formally, for any Pareto front point \(v \in F \), let \(P_v = \{ x \in P_t \mid f(x) \sim v \} \) be the individuals whose function values are the neighbors of \(v \). Let \(\Delta = \lceil 5am/\varepsilon \rceil - 1 \) and let \(F' = \{ v \in F \mid |P_v| \geq \Delta + 1 \} \). Then we show \(|F'| \leq \frac{am}{\Delta + 1}M \) (and thus \(|F'| \leq \frac{5}{\varepsilon}M \) by the definition of \(\Delta \)). If not, since each individual can be counted in \(P_v \) for at most \(m \) different \(v \) points, we have the number of individuals in \(P_t \) is at least

\[
\frac{1}{m} (\Delta + 1) |F'| > \frac{1}{m} (\Delta + 1) \frac{am}{\Delta + 1} M = aM,
\]

which contradicts \(N \leq aM \).

Let \(U \) be the set of uncovered Pareto fronts for \(P_t \), then \(|U| \geq \varepsilon M \) from our assumption. Let \(U_1 \), the subset of \(U \), be defined as

\[
U_1 = \{ v = (v_1, n' - v_1, \ldots, v_{m/2}, n' - v_{m/2}) \in F \setminus F' \mid v_i \in \left[\left\lfloor \frac{2m}{5} \varepsilon(n' + 1) \right\rfloor, \ldots, \left\lfloor \frac{2m}{5} \varepsilon(n' + 1) \right\rfloor \right] \}, i = 1, \ldots, m/2 \}.
\]

Then \(|U_1| \geq |U| - 2\frac{2m}{5} \varepsilon(n' + 1) \frac{M}{(n + 1) m} = \frac{1}{2} \varepsilon M \geq \frac{2}{5} \varepsilon M \). In the following, we will show that at most a constant fraction of \(U_1 \) can be generated in the offspring population (thus in \(R_t \)) both with high probability and in expectation.

For any \(v = (v_1, n' - v_1, \ldots, v_{m/2}, n' - v_{m/2}) \in U_1 \), the probability that an individual from \(P_v \) generates \(v \) is at most

\[
\max_{1 \leq i \leq m/2} \left\{ \frac{v_i + 1}{n}, \frac{n' - v_i + 1}{n} \right\} \leq \frac{n' - \left\lfloor \frac{2m}{5} \varepsilon(n' + 1) \right\rfloor + 1}{n} \leq \frac{n' - \left(\frac{2m}{5} \varepsilon n' - 1 \right) + 1}{n}
\]

\[
\leq \left(1 - \frac{2 \varepsilon}{5m} \right) \frac{n'}{n} + \frac{2}{n} = \left(1 - \frac{2 \varepsilon}{5m} \right) \frac{2}{m} + \frac{2}{n} \leq \left(2 - \frac{2 \varepsilon}{5m} \right) \frac{2}{m} = \frac{4(5m - \varepsilon)}{5m^2},
\]

where the last inequality uses \(n \geq m \). From the definition of \(U_1 \), we know that there are at most \(m \Delta \) individuals in \(P_t \) that can generate \(v \). Then the probability that \(v \) is not generated from \(P_t \), that is, uncovered by \(R_t \), is at least

\[
\left(1 - \frac{4(5m - \varepsilon)}{5m^2} \right)^{m \Delta} \geq \left(1 - \frac{4(5m - \varepsilon)}{5m^2} \right)^{5am^2/\varepsilon}
\]

\[
= \left(1 - \frac{4(5m - \varepsilon)}{5m^2} \right) \left(\frac{\frac{5m^2}{5m - \varepsilon} - 1}{\frac{5m^2}{5m - \varepsilon} - \frac{4(5m - \varepsilon)}{5m^2}} \right)
\]

\[
\geq \exp \left(-\frac{20am^2(5m - \varepsilon)}{\varepsilon(5m^2 - 4(5m - \varepsilon))} \right) := p,
\]

where the first inequality uses \(\Delta \leq 5am/\varepsilon \). We note that \(p = \Theta(1) \) for \(m = \Theta(1) \).
Let Y denote the number of uncovered points for R_t. Then $E[Y] \geq p|U_1| \geq \frac{2}{5} \varepsilon p M$. Note that Y is determined by N independent random choices in the mutation for each parent, and each choice of the mutation can reduce Y by at most 1 and will not increase Y. Hence, from the bounded difference method [Doe20, Theorem 1.10.27], we have $\Pr[Y \leq \frac{2}{5} \varepsilon p M] \leq \exp(-\Omega(M))$. □

4.4 Synthetic MOEAs

For reasons of completeness, we now briefly analyze the performance of the SEMO and GSEMO on the mOneMinMax benchmark. Not surprisingly, the fact that they keep a solution for every non-dominated objective value in the population avoids the problems seen for the NSGA-II above. Since there is little evidence that these two algorithms perform well in practice, this observation is more of an academic interest, though.

For any point $u \in F^*$ with some neighbor covered by the population P, the probability to generate such point in one generation is at least $\frac{1}{n|P|}$ for the SEMO and at least $\frac{1}{n|P|} \left(1 - \frac{1}{n} \right)^{n-1} \geq \frac{1}{n|P|}$ for the GSEMO. Since all covered Pareto front points will stay covered, we know that the expected number of iterations to cover u is $O(n|P|)$. Since there are M Pareto front points, we know that $|P| \leq M$ during the process. With M Pareto front points to cover, the expected number of iterations to cover the whole Pareto front is at most $O(nM^2) = O(n(2n/m + 1)^m)$. For a clear comparison, we put this simple result into the following theorem. We do not believe this result to be tight, but it suffices to show that the SEMO/GSEMO does not suffer critically from the larger number of objectives, different from the NSGA-II.

Theorem 6. Consider using the SEMO/GSEMO to optimize the mOneMinMax benchmark with problem size n. Then the Pareto front is covered in an expected number of $O(n(2n/m + 1)^m)$ function evaluations.

5 Ineffectiveness for Three Objectives

Since the classic way of obtaining many-objective versions of bi-objective benchmarks only gives benchmarks for even numbers of objective, we could in Section 4 only proves that the NSGA-II is ineffective from four objectives on. Since small numbers of objectives are common, it is an interesting question at what point precisely the ineffectiveness starts. For this reason, we now define a 3-objective version of mOneMinMax and prove that the NSGA-II cannot optimize this efficiently as well. Here the lower degree of symmetry of the 3-OneMinMax problem
will need some adjustment compared to the previous section, but the broad line of argument will be the same.

5.1 3-OneMinMax

We define a 3-objective ONEMinMax benchmark as follows.

Definition 7. Let \(n \in \mathbb{N} \) be even. The three-objective function \(3\text{-ONEMinMax} = (f_1, f_2, f_3) : \{0, 1\}^n \to \mathbb{R}^3 \) is defined by

\[
\begin{align*}
 f_1(x) &= \sum_{i=1}^{n} (1 - x_i), \\
 f_2(x) &= \sum_{i=1}^{n/2} x_i, \\
 f_3(x) &= \sum_{i=n/2+1}^{n} x_i,
\end{align*}
\]

for all \(x = (x_1, \ldots, x_n) \in \{0, 1\}^n \).

We immediately see that the first objective counts the number of zeros in the whole bit string, whereas the second and third objectives count the numbers of ones in the first and second half of it. As for the \(m\text{-ONEMinMax} \) function defined for even \(m \) in Section 4 any \(x \in \{0, 1\}^n \) is a Pareto optimum of the 3-OneMinMax. The Pareto front thus is \(F^* = \{(n - v_2 - v_3, v_2, v_3) \mid v_2, v_3 \in [0..n]\}' \), where we write \(n' := n/2 \). Its size is \(M := |F^*| = (n/2 + 1)^2 \). We note that it would be easy to extend this definition to any odd number \(m \) of objectives, but we do not see a huge interest in this.

5.2 Deficiencies of the Multi-Objective Crowding Distance Lead to Exponential Runtimes

We now follow similar arguments in Section 4.2. As in the discussion after Lemma 2, a general bound of \(2\sum_{i=1}^{m} v_i \) (\(v_i \) is the number of objective values of the \(i \)-th objective) is given for an \(m \)-objective problem. This value is \(2(n + 1 + n/2 + 1 + n/2 + 1) = 4n + 6 \) for the 3-OneMinMax benchmark.

Lemma 8. Consider a set of individuals \(S \) for \(\text{NSGA-II} \) solving 3-OneMinMax with problem size \(n \). Then the calculated crowding distance \(c\text{Dis}(S) \) via Algorithm 1 will have at most \(4n + 6 \) positive values.
Now we establish a similar result to Theorem 3. Let \(A \leq 4n + 6 \). For a constant \(\gamma \in [4/5, 1) \), let \(N \geq \gamma^2 (n/2 + 1)^2 \). Since
\[
\frac{7}{8} (n/2 + 1)^2 \geq \frac{3}{5} (n/2 + 1)^2 \geq \frac{1}{10} n^2 + \frac{2}{5} n + \frac{2}{5} \geq 4n + 16 + \frac{2}{5} \geq 4n + 6
\]
for \(n \geq 40 \), we have \(N \geq A \). Then from Lemma 8 and replacing (1) in the proof of Theorem 3, we obtain the following theorem.

Theorem 9. Let \(a > 1 \) be a constant. Consider the NSGA-II with an arbitrary way to generate the offspring population and with either the original survival selection or the sequential survival selection proposed in [KD06, ZD22]. Assume that this algorithm optimizes the 3-ONEMINMAX benchmark with problem size \(n \), using a population size of at most \(N \leq aM \), where \(M = (n/2 + 1)^2 \) is the size of the Pareto front of 3-ONEMINMAX. Then with at least probability \(1 - T \exp(-\Omega(M)) \), for the first \(T \) iterations at least a constant fraction of Pareto front is not covered by \(P_t \). In particular, the time to compute the full Pareto front is exponential in \(n^2 \) both in expectation and with high probability.

5.3 Also the Combined Parent and Offspring Population Does Not Cover the Pareto Front

In a similar manner as in Theorem 4, we observe also for 3-ONEMINMAX that also the combined parent and offspring population does not cover the full Pareto front. While similar, Theorem 10 cannot simply be obtained from changing \(m \) in Theorem 10 to 3. Some adjustments are needed due to the different structure of the Pareto front.

Theorem 10. Let \(a \geq 1 \) be any constant. Consider using the NSGA-II with population size \(N \leq aM \), fair selection, and one-bit mutation to optimize 3-ONEMINMAX with problem size \(n \). Let \(\varepsilon \in (0, 1) \) be a sufficiently small constant. Assume that in some iteration \(t \) the population \(P_t \) covers at most a \((1 - \varepsilon)\) fraction of the Pareto front. Then with probability \(1 - \exp(-\Omega(M)) \), the combined parent and offspring population \(R_t \) covers at most a fraction of \(1 - \frac{1}{5} \varepsilon \exp\left(-\frac{4a}{20 - \varepsilon}\right) \) of the Pareto front.

Proof. For any Pareto front point \(v \in F \), let \(P_v = \{ x \in P_t \mid f(x) \sim v \} \) be the individuals whose function values are neighbors of \(v \). Let \(\Delta = \lfloor 20a/\varepsilon \rfloor - 1 \) and let \(F' = \{ v \in F \mid |P_v| \geq \Delta + 1 \} \). Then we show \(|F'| \leq \frac{4a}{\Delta + 1} M \) (and thus \(|F'| \leq \frac{\varepsilon}{5} M \) by the definition of \(\Delta \)). If not, since each individual can be counted in \(P_v \) for at most 4 different \(v \) points, we have the number of individuals in \(P_t \) is at least
\[
\frac{1}{4} (\Delta + 1) |F'| > \frac{1}{4} (\Delta + 1) \frac{4a}{\Delta + 1} M = aM,
\]
which contradicts $N \leq aM$.

Let U be the set of uncovered Pareto fronts for P_t, then $|U| \geq \varepsilon M$ from our assumption. Let U_1 be defined as

$$U_1 = \left\{(n - v_1 - v_2, v_1, v_2) \in U \setminus F' \mid v_1, v_2 \in \left[\left\lfloor \frac{n'}{10}(n' + 1) \right\rfloor .. n' - \left\lfloor \frac{n'}{10}(n' + 1) \right\rfloor\right] \right\}.$$

Then $|U_1| \geq |U| - 2\frac{\varepsilon}{10}(n' + 1)\frac{M}{(n'+1)^2} - \frac{1}{5}\varepsilon M \geq \frac{2}{5}\varepsilon M$.

For any $v = (n - v_1 - v_2, v_1, v_2) \in U_1$, the probability that an individual from P_v generates v is at most

$$\max_{i \in \{1, 2\}} \left\{ \frac{v_i + 1}{n}, \frac{n' - v_i + 1}{n} \right\} \leq \frac{n' - \left\lfloor \frac{n'}{10}(n' + 1) \right\rfloor + 1}{n} \leq \frac{n' - \left(\frac{\varepsilon}{10}n' - 1\right) + 1}{n}$$

where the last inequality uses $n \geq 4$. From the definition of U_1, we know that there are at most 4Δ individuals in P_t that can generate v. Then the probability that v is not generated from P_t, that is, uncovered by R_t, is at least

$$\left(1 - \frac{\varepsilon}{20}\right)^{4\Delta} \geq \left(1 - \frac{\varepsilon}{20}\right)^{40a/\varepsilon} = \left(1 - \frac{\varepsilon}{20}\right)^{\frac{20 - 1}{20 - \varepsilon}} \geq \exp\left(-\frac{40a}{20 - \varepsilon}\right) := p.$$

Let Y denote the number of uncovered points for R_t. Then $E[Y] \geq p|U_1| \geq \frac{2}{5}\varepsilon pM$. Note that Y is determined by N independent random choices in the mutation for each parent, and each choice of the mutation can reduce Y by at most 1 and will not increase Y. Hence, from the bounded difference method [Doe20, Theorem 1.10.27], we have $\Pr[Y \leq \frac{2}{5}\varepsilon pM] \leq \exp(-\Omega(M))$.

5.4 Synthetic MOEAs

With the same arguments as for Theorem 6, we easily obtain the following result that the SEMO/GSEMO easily optimizes also 3-ONEMINMAX.

Theorem 11. Consider using the SEMO/GSEMO to optimize the 3-ONEMINMAX with problem size n. Then the Pareto front is covered in expected number of $O(n^5)$ function evaluations.

6 Experiments

In this section, we present a few experimental results illustrating and complementing our theoretical results.
We concentrate on the 4-\textsc{OneMinMax} problem since it is more symmetric than the 3-\textsc{OneMinMax} problem, but still allows good visualizations. We note that two objectives counting zeroes are fully determined by the two corresponding objectives that count ones. Consequently, displaying only the two \textsc{OneMax} objectives allows us to present the full information in a two-dimensional graph. We use the problem size \(n = 40 \), which gives a Pareto front of reasonable size \(M = 441 \), but is small enough to keep the plots readable.

Since we understand much better the NSGA-II without crossover, we use the NSGA-II with mutation as the only variation operator. We use fair selection reproduction (each parent creates one offspring), standard bit-wise mutation with mutation rate \(\frac{1}{n} \) as mutation operator, and we select the next parent population as in the original NSGA-II paper [DPAM02]. Since any solution of the \textsc{OneMinMax} problem is Pareto optimal, all solutions of the combined parent and offspring population lie on the first front and thus the selection is solely based on the crowding distance, breaking ties randomly. We note that the original definition of the NSGA-II also used the crowding distance together with tournament selection for the selection for reproduction. Since our theoretical results showed that almost all individuals have the same crowding distance (of zero), we did not see much advantage for this approach here and preferred fair selection as a mean to reduce the variance. Since Theorem 3 showed difficulties for the NSGA-II for any population size that is a constant factor larger than the Pareto front size \(M \), we used the population sizes \(4M, 16M, 64M, \) and \(256M \). Noting that the largest of these population sizes, \(256M = 112,896 \) is quite large and we conduct runs with 1000 iterations, we only conducted 10 independent repetitions of all NSGA-II runs. Since the variances observed were always relatively small, this appeared sufficient.

For a first impression of the optimization behavior of the NSGA-II, we display in Figure 1 the coverage of the Pareto front in the first 1,000 iterations of exemplary runs. As can be seen in all four plots, the coverage of the Pareto front after some initial gains quickly reaches a stagnation point and then oscillates around this point. This fits well to our theoretical results. We see that the coverage of the Pareto front slightly improves with growing population size. We determined the average coverage after 1000 iterations in 10 runs (Figure 2). The slow increase of the coverage shows clearly that increasing the population size gives only very small improvements. From the roughly linear increase (w.r.t. to the log-scale population size) one could speculate that a population size exponential in the Pareto front size is necessary to cover the whole Pareto front in 1000 iterations. While this is speculative, nevertheless this figure indicates that the NSGA-II will not only for linear population sizes fail to find the full Pareto front in a reasonable time.
In contrast, as predicted by Theorem 6, the GSEMO algorithm computes the Pareto front very efficiently. In 30 independent runs, the GSEMO found the full Pareto front on average in 8.84×10^4 iterations (standard deviation 2.97×10^4).

![Figure 1: Size of the part of the Pareto front covered by the parent population P_t and the combined parent and offspring population R_t in the first 1000 iterations of exemplary runs of the NSGA-II on the 4-ONEMinMax problem with problem size $n = 40$.](image)

To gain some insight into what happens in a single iteration, in Figure 3 we display (in the objective space, only regarding the second and fourth objective as discussed earlier) the combined parent and offspring population after 1000 iterations, the individuals with positive crowding distance, and the selected next parent population. The sizes of these populations naturally fit to the previous experiments, but what is new is the shape of the populations, which covers a relatively compact region around the center of the Pareto front. This is an insight that was not detected in our mathematical analysis. We believe that this fact strongly relies on the particular objective functions, in contrast to the key argument in the proof of Theorem 3, the negative effect of the random selection of the individuals with crowding distance zero, which depended very little on the particular objective function. For these reasons, we did not try to capture this observation via mathematical means. We suspect that with some effort this would be possible, and it might be a way to prove that even much larger population sizes are not sufficient to find the Pareto front of the mONEMinMax problem. We also see that the individuals with positive crowding distance appear randomly distributed, which fits again to our mathematical intuition. When, say, a particular objective value of the second objective appears a large number of times in the population, here for example the value 10, then a random choice of two of these individuals
will have a positive crowding distance with respect to the second objective and all others will have the contribution zero.

For the 3-\textsc{OneMinMax}, we just conduct one setting of problem size \(n = 40 \), population size \(N = 16M \) in 10 runs. For the covered Pareto front size by the combined parent and offspring population \(R \) in the 1,000-th iteration, we obtain its mean value of 291 and standard deviation of 7.36, which is smaller than the Pareto front size of 441.

Overall, these experimental results fit well to our mathematical results and exhibit a few interesting details which our proof could not detect.

![Figure 2: The covered Pareto front size (the mean value ± standard deviation) by \(P_t \) and \(R_t \) in the 1,000-th iteration for NSGA-II (fair selection, standard bit-wise mutation) with population size \(N = 4M, 16M, 64M, 256M \) on \textsc{mOneMinMax} with problem size \(n = 40 \) and 4 objectives where \(M = 441 \) is the Pareto front size (10 independent runs).](image)

7 Conclusion

In this work, we conducted the first mathematical runtime analysis of the NSGA-II on many-objective problems. It confirms in a very strong manner the empirical knowledge that the NSGA-II is less effective for larger numbers of objectives: Already for the very simple \textsc{mOneMinMax} benchmark, for which any solution is Pareto optimal, the population of the NSGA-II will miss a constant fraction of the Pareto front for at least exponential time. In this result, the population size can be any constant multiple of the Pareto front size.

Besides this quantification of the ineffectiveness, our proofs also exhibit the reason for these difficulties: Since the crowding distance is computed by regarding the different objectives independently, solutions that are far away may still cause a solution to have a very low crowding distance, disfavoring it in the selection stage.
Figure 3: Covered \((f_2, f_4)\) objective values before (the combined parent population \(R_t\) as well as the individuals in \(R_t\) with positive crowding distance) and after (the next population \(P_{t+1}\)) the original survival selection of the NSGA-II (fair selection, standard bit-wise mutation) with population size \(N = 4M, 16M, 64M, 256M\) on mONEMinMax with problem size \(n = 40\) and 4 objectives where \(M = 441\) is the Pareto front size. Displayed is one typical run.

This effect can be so strong that almost all solutions have a crowding distance of zero. In this case, essentially a random set of \(N\) individuals will be removed in the selection stage, which makes it very probable that desired solutions are lost.

The obvious question arising from this work is whether there is a definition for the crowding distance which theoretically avoids this shortcoming, but which can still be computed efficiently. A second interesting task for future research would be...
to conduct similar mathematical runtime analyses for other common MOEAs. This work has shown that the NSGA-II suffers drastically from three objectives on, but the synthetic GSEMO algorithm does not (ignoring a polynomial increase of the runtime, which cannot be avoided simply because also the Pareto front increases in size). This raises the question to what extent other MOEAs provably suffer from larger numbers of objectives. Empirical work like [KYD03] has shown that larger numbers of objectives are a challenge for many MOEAs, but that they suffer from these in a different manner. Hence a mathematical analysis and asymptotic quantification of these observations would be very interesting.

Acknowledgments

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, by Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. GXWD20220818191018001), and by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110177).

References

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics. World Scientific Publishing, 2011.

[BFN08] Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing hypervolume indicator based algorithms. In Parallel Problem Solving from Nature, PPSN 2008, pages 651–660. Springer, 2008.

[BQ22] Chao Bian and Chao Qian. Better running time of the non-dominated sorting genetic algorithm II (NSGA-II) by using stochastic tournament selection. In Parallel Problem Solving from Nature, PPSN 2022. Springer, 2022. Also available at https://arxiv.org/abs/2203.11550.

[BQT18] Chao Bian, Chao Qian, and Ke Tang. A general approach to running time analysis of multi-objective evolutionary algorithms. In International Joint Conference on Artificial Intelligence, IJCAI 2018, pages 1405–1411, 2018.

[Cra19] Victoria G. Crawford. An efficient evolutionary algorithm for minimum cost submodular cover. In International Joint Conference on Artificial Intelligence, IJCAI 2019, pages 1227–1233, 2019.
[DEL21] Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Escaping local optima with non-elitist evolutionary algorithms. In AAAI Conference on Artificial Intelligence, AAAI 2021, pages 12275–12283. AAAI Press, 2021.

[Doe20] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization heuristics. In Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pages 1–87. Springer, 2020. Also available at https://arxiv.org/abs/1801.06733.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6:182–197, 2002.

[DQ22] Benjamin Doerr and Zhongdi Qu. A first runtime analysis of the NSGA-II on a multimodal problem. In Parallel Problem Solving From Nature, PPSN 2022. Springer, 2022. Also available at https://arxiv.org/abs/2204.13750.

[Gie03] Oliver Giel. Expected runtimes of a simple multi-objective evolutionary algorithm. In Congress on Evolutionary Computation, CEC 2003, pages 1918–1925. IEEE, 2003.

[HZLL21] Zhengxin Huang, Yuren Zhou, Chuan Luo, and Qingwei Lin. A runtime analysis of typical decomposition approaches in MOEA/D framework for many-objective optimization problems. In International Joint Conference on Artificial Intelligence, IJCAI 2021, pages 1682–1688, 2021.

[ITN08] Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-objective optimization: A short review. In IEEE Congress on Evolutionary Computation, CEC 2008, pages 2419–2426. IEEE, 2008.

[KD06] Saku Kukkonen and Kalyanmoy Deb. Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In International Conference on Evolutionary Computation, CEC 2006, pages 1179–1186. IEEE, 2006.

[KYD03] Vineet Khare, Xin Yao, and Kalyanmoy Deb. Performance scaling of multi-objective evolutionary algorithms. In International Conference on Evolutionary Multi-criterion Optimization, EMO 2003, pages 376–390. Springer, 2003.
Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-objective evolutionary algorithms: A survey. *ACM Computing Surveys (CSUR)*, 48:1–35, 2015.

Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation. In *Conference on Artificial Intelligence, AAAI 2019*, pages 2322–2329. AAAI Press, 2019.

Marco Laumanns, Lothar Thiele, Eckart Zitzler, Emo Welzl, and Kalyanmoy Deb. Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem. In *Parallel Problem Solving from Nature, PPSN 2002*, pages 44–53. Springer, 2002.

Marco Laumanns, Lothar Thiele, and Eckart Zitzler. Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. *IEEE Transactions on Evolutionary Computation*, 8:170–182, 2004.

Yuan-Long Li, Yu-Ren Zhou, Zhi-Hui Zhan, and Jun Zhang. A primary theoretical study on decomposition-based multiobjective evolutionary algorithms. *IEEE Transactions on Evolutionary Computation*, 20:563–576, 2016.

Colin McDiarmid. On the method of bounded differences. In *Surveys in Combinatorics*, pages 48–118. Cambridge Univ. Press, 1989.

Frank Neumann and Carsten Witt. Runtime analysis of single- and multi-objective evolutionary algorithms for chance constrained optimization problems with normally distributed random variables. In *International Joint Conference on Artificial Intelligence, IJCAI 2022*, pages 4800–4806, 2022.

Robin C. Purshouse and Peter J. Fleming. On the evolutionary optimization of many conflicting objectives. *IEEE Transactions on Evolutionary Computation*, 11:770–784, 2007.

Dirk Thierens. Convergence time analysis for the multi-objective counting ones problem. In *International Conference on Evolutionary Multi-Criterion Optimization, EMO 2003*, pages 355–364. Springer, 2003.
[ZD22] Weijie Zheng and Benjamin Doerr. Better approximation guarantees for the NSGA-II by using the current crowding distance. In Genetic and Evolutionary Computation Conference, GECCO 2022, pages 611–619. ACM, 2022.

[ZLD22] Weijie Zheng, Yufei Liu, and Benjamin Doerr. A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In Conference on Artificial Intelligence, AAAI 2022, pages 10408–10416. AAAI Press, 2022.

[ZQL+11] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, and Qingfu Zhang. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1:32–49, 2011.