Effects of SiO_2 and Al_2O_3 on the Lattice Parameter and CO Gas Reduction of CaO-containing Dense Wustite

Takashi INAMI and Kanae SUZUKI

Faculty of Engineering, Ibaraki University, Nakanarusawacho, Hitachi 316-8511 Japan.

(Received on August 23, 2002; accepted in final form on October 28, 2002)

The effects of SiO_2 and Al_2O_3 on the lattice parameter and the initial reduction rate of CaO-containing wustite were studied at 1 273 K. Wustite plates containing 0.5–2 mass% CaO, 0.2–2 mass% SiO_2 and 1 mass% Al_2O_3 were prepared at the mass fractions of CaO/SiO_2=0.5–5. The lattice parameter of CaO–SiO_2–Al_2O_3-containing wustite decreased with decreasing CaO/SiO_2 ratio at a constant CaO content. This corresponded to a decrease of the dissolved content of CaO in the wustite due to a formation of CaO–FeO–SiO_2 compounds. Similarly, the dissolved content of CaO decreased in CaO–SiO_2–Al_2O_3-containing wustite. The process of CO gas reduction within the wustite phase field was traced with the lattice parameter measurement of the partially reduced samples and was analyzed with a mixed-control model of chemical reaction at the surface and the solid state diffusion in the wustite. The chemical reaction rate constant, k', decreased with increasing the amount of SiO_2 addition at a constant CaO content. The dependence of k' on SiO_2 (and Al_2O_3) addition was in good accordance with the change in the dissolved content of CaO in the wustite owing to the formation of the compounds containing CaO. The inter-diffusion coefficient, D, tended to decrease slightly with increasing the amount of compound.

KEY WORDS: wustite; CO gas reduction; chemical reaction rate constant; inter-diffusion constant; mixed-control model; lattice parameter; iron making.

1. Introduction

As iron ores charged into blast furnace contain many gangue elements, it is practically important to clarify the effects of the elements on the reduction process of iron oxides. In the previous work, it was clarified that the rate of CO reduction within the wustite phase field was remarkably increased by adding CaO and the metallic iron was formed on the surface of wustite plate after the rapid attainment of iron-saturated composition at the surface. In addition, it was shown that the chemical reaction rate constant of 0.5 mass% CaO-containing wustite increased by ten times or more than that of pure wustite. In practical reduction process of iron oxide, this remarkable increase of the reduction rate in CaO-containing wustite may be associated with other coexisting gangue elements. The effects of the coexisting oxides on H_2 reduction of CaO-containing wustite have been reported by Shigematsu and Iwai. However, little study of these effects on CO reduction has been performed.

In this work, the effect of SiO_2, known as the most general gangue element in iron ores, on CO reduction of CaO-containing wustite was examined. It has been shown that the composition change of the wustite partially reduced was traced by using the lattice parameter of the wustite. Then, the reduction process within the wustite phase field was evaluated from the concentration profile of the iron ion in the partially reduced wustite estimated by measuring the lattice parameter of the wustite and analyzed with a mixed-control model of chemical reaction at the surface and mass transport in the solid. In addition, several examinations were performed on CaO–SiO_2–Al_2O_3-containing wustite as well.

2. Experimental method

The wustite samples employed in this work were prepared by the same method as that described in the previous paper. Electrolytic iron-, reagent grade hematite-, CaO-, SiO_2- and Al_2O_3-powder, whose purities were 99.9 mass% or more, were used as starting materials. Mixed powders of hematite and electrolytic iron added 0.2–2 mass% CaO and 0.5–2 mass% SiO_2 were melted in Ar atmosphere at 1 670 K and then cast into the flat-bottomed pure iron mold. The mass ratio of CaO/SiO_2 in the samples denoted by C/S ranged from 0.5 to 5. The sample of 2mass%CaO–2mass%SiO_2–1mass%Al_2O_3-containing wustite was also prepared. The wustite ingot was cut into small plates, 10×10×1.2 mm, so that the broad-side surface of the plate might become parallel to the bottom surface of the ingot. The wustite plates were equilibrated at 1 273 K with CO–CO_2 gas mixture (P_{CO}/P_{CO_2}=50/50, hereafter Ks) for 90 ks after pre-annealing at 1 370 K for 14 ks. The oxygen activity in the wustite is defined as a_{O_{2}=1}=P_{CO}/P_{CO_2} where P_{CO_2} and P_{CO} are the partial pressure of CO_2 and CO in the gas mixture, respectively. The apparent density of the equili-
brated wustite samples was about 5.4×10^3 kg/m3 and slightly less than that of pure wustite summarized by Onoda and Sasaki 41.

The reduction experiments were conducted at 1273 K by using a thermo-balance. CO–CO$_2$–Ar gas mixtures (P_{CO}/P_{CO_2} = 0.04 and 0.16, hereafter α), flowing at a rate of 2.5×10^{-3} m3/s, were used as reducing gas in order to avoid carbon-deposition from the gas mixtures. Under these conditions, the effect of gas-side resistance on the over all rate of reduction is negligibly small as demonstrated previously. 11 X-ray diffraction analysis was performed for the partially reduced sample and the change in lattice parameter in the depth direction of the samples was measured by stepwise polishing of the samples. As the lattice parameter has been reported to be a parameter corresponding to wustite composition, 5 the concentration profile of iron ion in the samples partially reduced was estimated from the lattice parameter profile measured. Moreover, morphological observation and analysis of elements on the section of samples were carried out with EPMA. Thereafter, prepared wustite samples were distinguished as follows: The SiO$_2$– and CaO–SiO$_2$–wustite denoted the wustite containing only SiO$_2$ and both CaO and SiO$_2$, respectively.

3. Experimental Results

3.1. Lattice Parameter and Morphology of CaO–SiO$_2$–Wustite before Reduction

The dependences of lattice parameter on oxide content in CaO–, 5 SiO$_2$–, and Al$_2$O$_3$–wustite equilibrated with the CO–CO$_2$ gas mixture ($K_s = 50/50$) at 1273 K are shown in Fig. 1(a). The lattice parameter α increased linearly with an increase of CaO content in CaO–wustite. The solubility limit of CaO was about 6 mass% as represented in previous work. 35 On the other hand, the α of SiO$_2$– and Al$_2$O$_3$–wustite decreased with increases of SiO$_2$ and Al$_2$O$_3$ contents and became constant above 0.3 mass% SiO$_2$ and 0.6 mass% Al$_2$O$_3$, respectively. Therefore, these values correspond to the solubility limit of each oxide on the analogy of CaO–wustite previously reported. 35 As shown in Fig. 1(b), the α of CaO–SiO$_2$–wustite decreased drastically with an increase of SiO$_2$ content. When 2 mass% SiO$_2$ was added to the 1 mass%CaO–wustite (C/S = 0.5), the α decreased to the value at the solubility limit in SiO$_2$–wustite. Such dependence of α on SiO$_2$ content was also found in 2 mass%CaO–SiO$_2$–wustite. In the 2 mass%CaO–2 mass%SiO$_2$–wustite (C/S = 1), the α was slightly larger than that of pure wustite. By the addition of 1 mass% Al$_2$O$_3$ to the CaO–SiO$_2$–wustite, the α decreased to the value at the solubility limit in Al$_2$O$_3$–wustite.

The composition images in the vertical section of 2 mass%CaO–SiO$_2$–wustite were observed by EPMA and shown in Fig. 2. In both samples of C/S = 1 and 2, the stripe- or point-like compounds were observed. The amount of the compound in the sample of C/S = 1 was more than that in the sample of C/S = 2. Large stripe-like compounds seemed to be deposited during solidification and exist vertically, that is, along the depth direction of the sample. Wustite phase was a continuous phase without being divided into dispersed phase. The results of quantitative analysis

![Fig. 1](image1.png)
Relation between lattice parameter α and additive oxide content in the wustite equilibrated with CO–CO$_2$ gas mixture ($K_s = 50/50$) at 1273 K. (a) CaO–, SiO$_2$– and Al$_2$O$_3$–wustite, (b) CaO–SiO$_2$– and CaO–SiO$_2$–Al$_2$O$_3$–wustite.

![Fig. 2](image2.png)
Cross section of the wustite samples before reduction; (a) 2 mass%CaO–SiO$_2$–wustite (C/S = 2) and (b) 2 mass%CaO–SiO$_2$–wustite (C/S = 1). Grey matrix: wustite, stripe- and point-like black portions : compound.
of the compounds by EPMA are shown in Table 1. The mean concentration of each element was obtained from ten times measurements. The compound in the sample of C/S = 1 appears to be CaO·FeO·SiO$_2$ from a result of the atomic ratio being near Fe : Ca : Si = 1 : 1 : 1. In the sample of C/S = 2, 2CaO·SiO$_2$ is most likely deposited besides CaO·FeO·SiO$_2$ from a result of the ratio being Fe : Ca : Si 2 : 4 : 3. These results were almost in accordance with those predicted from FeO–CaO–SiO$_2$ phase diagram.6) These results were almost in accordance with those of C/S = 1 and SiO$_2$–wustite. The compound in the sample of C/S = 1 was also reported to be CaO·FeO·SiO$_2$ from a result of the ratio being Fe : Ca : Si = 1 : 1 : 1. In the sample of C/S = 2, 2CaO·SiO$_2$ is most likely deposited besides CaO·FeO·SiO$_2$ from a result of the ratio being Fe : Ca : Si 2 : 4 : 3. These results were also in accordance with those predicted from FeO–CaO–SiO$_2$ phase diagram.6) Considering the change in a with SiO$_2$ content in CaO–SiO$_2$–wustite, one predicts that the amount of dissolved CaO in the wustite decreased with the decrease of C/S due to the deposition of CaO·FeO·SiO$_2$ compounds. As shown in Fig. 1(b), the a of 1mass%CaO–2mass%SiO$_2$–wustite (C/S = 0.5) decreased to the value at the solubility limit in SiO$_2$–wustite. It is thought that the amount of dissolved CaO is virtually 0 and only SiO$_2$ is dissolved in the wustite. Similarly, only Al$_2$O$_3$ is dissolved in 2mass%CaO–2mass%SiO$_2$–1mass%Al$_2$O$_3$–wustite because of the deposition of the dissolved CaO as compounds due to Al$_2$O$_3$ addition.

Table 1. Results of EPMA analysis of the compounds existed in 2mass%CaO–SiO$_2$–wustite before reduction

Mass ratio	Concentration (at%)			
CaO/FeO	Fe	Ca	Si	C/S
CaO/FeO				
1	15.8	14.5	14.4	55.3
2	10.2	19.5	14.4	55.9

Fig. 3. Reduction curves of 1mass%CaO–SiO$_2$–, 1mass%CaO– and pure-wustite. The samples were reduced with CO–CO$_2$–Ar gas mixtures having the following P_{CO} and α at 1273 K. Pure wustite: P_{CO} = 0.075 MPa and α = 0.04, SiO$_2$ free: P_{CO} = 0.046 MPa and α = 0.16, C/S = 1 and 2: P_{CO} = 0.055 MPa and α = 0.04.

3.3. Depth Profile of Lattice Parameter in Partially Reduced Wustite

In progress of the reduction within the wustite phase field, oxygen is removed from the sample and the iron ion concentration at the sample surface increases. Then the diffusion of the iron ion into the sample takes place and results in its concentration profile. In the previous work,1) the reaction rate constant in the reduction of CaO–wustite was estimated from the iron ion concentration profiles with a mixed-control model of the surface reaction and the solid state diffusion in the wustite. In this work, the a of CaO–SiO$_2$–wustite before and after partial reduction in the depth direction was measured to determine the iron ion concentration profile. The lattice parameter profiles in the depth direction of 1mass%CaO–SiO$_2$–wustite reduced for 100 and 200 s are shown in Fig. 4 together with the results of CaO–SiO$_2$–wustite. In this figure, the mean value and the error of five measurements of a before and after reduction were shown as a function of the distance, x, from sample surface. Taking account of different reduction potentials in the reducing gases used, we noticed that the lattice parameter change in 1mass%CaO–SiO$_2$–wustite (C/S = 1, 2, and 5) was considerably smaller than that in 1mass%CaO–wustite as shown in Fig. 4(a). Moreover, the increase of the a at the surface became small with the decrease of C/S. In 1mass%CaO–SiO$_2$–wustite of C/S = 0.5, the lattice parameter profile was almost similar to that in 0.5mass%SiO$_2$–wustite reduced under the same condition as shown in Figs. 4(b) and 4(c). The changes in the a of 2mass%CaO–SiO$_2$–
wustite reduced for 100 s are shown in Fig. 5. Comparing Fig. 5 with Fig. 4(a), one notices the larger lattice parameter change in the sample with 2mass%CaO content under the same C/S. Nevertheless, the decreasing tendency of \(a \) with the decrease of C/S was similar in both cases. The solid lines shown in Figs. 4 and 5 are described later.

4. Discussion

4.1. Analysis with Mixed-control Model

The mixed-control model previously reported\(^1\) was used for the kinetic analysis. The amount of the compounds shown in Fig. 2 was too small to detect in a usual X-ray diffraction measurement. These compounds did not form a so-called cell structure and the wustite phase existed as a continuous phase in the depth direction from the sample surface. Therefore, the effects of the compounds on the surface reaction and the solid state diffusion seem to be insignificant. In the reduction reaction (1) within the wustite phase field for such CaO–SiO\(_2\)–wustite, the rate-determining step may be the elementary reaction (2)\(^8\) and the removal rate of oxygen from the surface is given by Eq. (3).\(^9,10\)

\[
\text{FeO} + [\text{Fe}^{2+}] + [\text{O}] \cdot + \text{CO} \rightarrow [\text{Fe}^{2+}] + [\text{Fe}^{2+}] + \text{CO}_2 \quad \cdots \cdots (1)
\]

Subject to Eq. (2),

\[
dW_O/dt = k' \cdot (1 - \alpha/K_s) \cdot P_{CO}(\text{kg-oxygen/m}^2 \cdot \text{s}) \quad \cdots \cdots (3)
\]

In Eq. (3), \(k' \) and \(K_s \) seem to depend on the composition of the surface wustite.

The oxygen removal from the wustite surface results in an excess of iron ion. The iron ion diffuses into the wustite and forms a concentration profile in the depth direction. This concentration profile can be obtained by solving the diffusion Eq. (4) under the initial and the boundary conditions (Eq. (5)).

\[
\partial C/\partial t = D \cdot \partial^2 C/\partial x^2 \quad \cdots (4)
\]

\(t = 0 \), \(0 \leq x \leq 2L : C = C_0 \)

\(t > 0 \), \(x = 0 \), \(x = 2L : - D \cdot (\partial C/\partial x) = (M_{Fe}/M_C) \cdot (dW_O/dt) \)

\(C : \) iron concentration in wustite (kg/m\(^3\))

\(C_0 : \) initial concentration of iron in wustite (kg/m\(^3\))

\(x : \) distance from sample surface (m)

\(2L : \) thickness of sample (m)

\(D : \) inter-diffusion coefficient in wustite (m\(^2\)/s)

\(M_{Fe} : \) molar mass of iron (kg/mol)

\(M_O : \) molar mass of oxygen (kg/mol)

Comparing the obtained concentration profile with that estimated from the lattice parameter measurement, we can determine \(k' \) and inter-diffusion coefficient, \(D \). The boundary condition expressed by Eq. (5) shows the material balance between the oxygen ion removed from the surface and the iron ion diffusing into the wustite. The Crank–Nicolson method\(^11\) was used for solving the diffusion equation.

The relation among the composition, \(a \) and \(a_{(O,w)} \) was examined on CaO–SiO\(_2\)–wustite. Figure 6 shows the relation between \(a \) and \(a_{(O,w)} \). The relations in pure- and CaO–wustite, expressed by using Eq. (6) in the previous work,\(^5\) were shown by the solid line and the dashed line, respectively.

\[
a = (4.2975 + 0.560 \cdot M_{(Ca-Fe)}) - 1.470 \times 10^{-2} \cdot \ln(a_{(O,w)}) \quad \cdots (6)
\]

Here, \(M_{(Ca-Fe)} \) is a molar fraction of Ca ion to (Ca+Fe) ions. As shown with marks in the figure, the dependence of \(a \) on \(a_{(O,w)} \) in CaO–SiO\(_2\)–wustite is almost the same as that in pure- and CaO–wustite. The relative difference of \(a \) in CaO–SiO\(_2\)–wustite is thought to correspond to the difference of \(M_{(Ca-Fe)} \) in the wustite. Substituting \(a \) of CaO–SiO\(_2\)–wustite at \(a_{(O,w)} = 1 \) in Eq. (6) gives the apparent value of \(M_{(Ca-Fe)} \) in each sample. Then, the relations between \(a \) and \(a_{(O,w)} \) in each sample were estimated by using Eq. (6) and the apparent value of \(M_{(Ca-Fe)} \) and these results were shown as the single dotted and dashed line in Fig. 6. As the calculated \(a \) of each sample at \(a_{(O,w)} = 0.67 \) was in good accordance with the measured one, it is clear that the relation between \(a \) and \(a_{(O,w)} \) in CaO–SiO\(_2\)–wustite is also represented by Eq. (6). In Fig. 6, \(a \) of 1mass%CaO–2mass%SiO\(_2\)–wustite (C/S=0.5) is smaller than that of pure wustite. Therefore, an apparent negative value of \(M_{(Ca-Fe)} \) was used in the application of Eq. (6).

The relation between the composition and \(a \) of CaO–SiO\(_2\)–wustite was examined. In the present analysis, it is required to know not the wustite composition itself but a relative change in the iron ion concentration due to the oxygen removal. Hence, the relation between the change in the iron
ion concentration and \(a \) of CaO–SiO\(_2\)–wustite was clarified. Here, it is assumed that the evaporation of each element from the wustite sample during equilibration in various CO–CO\(_2\) gas mixtures is negligibly small and the mass change in the sample corresponds to the change in the oxygen content of the wustite. Figure 7 shows the relation between \(\Delta C/C_0 \) and \(a \) of the wustite, where \(C_0 \) is the iron ion concentration at \(a(\text{O,w}) = 1 \) and \(C \) is the iron ion concentration difference between \(a(\text{O,w}) = 1 \) and other activities. The relations between \(\Delta C/C_0 \) and \(a \) in the pure- and 1mass%CaO–wustite are also shown in the figure. The iron ion concentrations of pure- and 1mass%CaO–wustite at each \(a(\text{O,w}) \) were estimated from the chemical analysis and by using Eq. (7) in consideration of the lattice parameter, respectively. This equation was derived experimentally in previous work.\(^5\)

\[
a = 1.916 + 0.565 \cdot (M_{\text{Fe}}/M_{\text{O}}) + 4.719 \cdot (M_{\text{Fe}}/M_{\text{O}})^2 \cdot (\text{Å})\]

(7)

Here, \(M_{\text{Fe}}/M_{\text{O}} \) represents the molar ratio of iron to oxygen ion. It can be seen from Fig. 7 that the dependences of \(\Delta C/C_0 \) on \(a \) in pure-, 1mass%CaO– and CaO–SiO\(_2\)–wustite coincide with one another. Then, the dependences of \(\Delta C/C_0 \) on \(a \) in the three systems may be expressed by a simple equation. Using the least squares method, we obtained Eq. (8).

\[
\Delta C/C_0 = 1.149418 \times 10^2 + 5.39665 \times 10^1 \cdot a + 6.3338 \cdot a^2
\]

(8)

The calculated results by using Eq. (8) were in good accordance with those measured as shown by the lines in Fig. 7. The change in the iron ion concentration was estimated from \(a \) by using this equation. However, the applicability of Eq. (8) may be restricted within the range of \(a(\text{O,w}) \) shown in Fig. 7.

4.2. Evaluation of \(k' \) and \(\tilde{D} \)

As seen from Figs. 4 and 5, the changes in wustite composition were so small that the kinetic analysis was performed by assuming \(k' \) and \(\tilde{D} \) to be constant in CaO–SiO\(_2\)–wustite reduced for 100 and 200 s. The \(k' \) and \(\tilde{D} \) were estimated as a mean value between the compositions of surface wustite before and after reduction.

The concentration profiles obtained from a mixed-control model are converted to the lattice parameter profiles and shown by the solid lines in Figs. 4 and 5. The observed and calculated results are in good agreement with each other. The relation between \(k' \) thus obtained and the amount of SiO\(_2\) addition is shown in Fig. 8(a) together with \(k' \) in pure\(^7\) and CaO–wustite.\(^1\) The \(k' \) in SiO\(_2\)–wustite was almost the same as that in pure wustite up to 1mass% SiO\(_2\). In 1mass%CaO–SiO\(_2\)–wustite, \(k' \) decreased markedly with increasing the amount of SiO\(_2\) addition and became almost the same value as pure wustite at 2mass% SiO\(_2\) addition.
Although k' in 2mass%CaO–SiO$_2$–wustite decreased with increasing the amount of the SiO$_2$ addition similarly, the extent of the decrease at the same amount of SiO$_2$ addition was smaller than that in 1mass%CaO–SiO$_2$–wustite. The logarithm of k' decreases linearly with SiO$_2$ addition at a constant CaO content as shown in Fig. 8(b). From this figure, the SiO$_2$ content at which the k' of 1mass%CaO–SiO$_2$–wustite decreases to the value of pure wustite is estimated to be 1.1 mass% SiO$_2$, which corresponds to C/S $= 0.9$. Conversion of the mass ratio C/S $= 0.9$ into the molar ratio gives unity. This molar ratio was in good agreement with that in the mainly deposited compound CaO·FeO·SiO$_2$ revealed from the elemental analysis by EPMA. Therefore, dissolved CaO in wustite are consumed completely as a result of the compound formation at C/S = 0.9 and the k' decreases to the value of pure wustite. This situation is in good agreement with the change in the a according to SiO$_2$ addition shown in Fig. 1(b). Since the dissolved amount of CaO in wustite corresponds directly to its a as shown in Fig. 1(a), estimated k' are shown as a function of a in Fig. 9. The results in 0.5, 1, and 2mass%CaO–wustite were also shown in the figure. It is clear that k' increases with the increase of the a, that is, the increase of dissolved CaO content in both CaO– and CaO–SiO$_2$–wustite. Thus, it can be concluded that k' increases with the increase of the dissolved CaO content, not of the added content in the wustite.

The relation between estimated inter-diffusion coefficient \tilde{D} and the amount of SiO$_2$ addition is shown in Fig. 10 together with \tilde{D} in pure wustite. Though there was no obvious difference of \tilde{D} among these samples, the \tilde{D} tended to decrease slightly with increasing the amount of CaO and SiO$_2$ addition which implies the amount of deposited compounds.

4.3. Effect of Al$_2$O$_3$ in CaO–SiO$_2$–Wustite on k'

In general, calcium ferrites are the main mineral constituent in self-fluxing sinters, main charge for blast furnace. Many works have been done on the reduction and the expansion during reduction of these calcium ferrites. It has been reported that quaternary and part of ternary calcium ferrite decomposed into the wustite, which contains CaO, SiO$_2$ and Al$_2$O$_3$, and that they were reduced to metallic iron at the final reduction stage. In this study, the relation between the reduction rate and the dissolved content of CaO in CaO-SiO$_2$-Al$_2$O$_3$-wustite was examined. The 2mass%CaO–2mass%SiO$_2$–1mass%Al$_2$O$_3$–wustite sample was prepared and the a of the sample was measured. As the obtained a was almost the same as that at solubility limit of Al$_2$O$_3$–wustite as shown with a double rhombic mark in Fig. 1(b), the dissolved content of CaO was virtually 0 and only Al$_2$O$_3$ seemed to be dissolved in the wustite. The depth profile of the a in 2mass%CaO–2mass%SiO$_2$–1mass%Al$_2$O$_3$–wustite reduced for 300 s is represented in Fig. 11. The change in a was extremely small even at the surface. From the analysis of this profile with the mixed-control model mentioned above, the k' and the \tilde{D} were estimated to be 6×10^{-11} kg-oxygen/m2·s·Pa and 5.8×10^{-10} m2/s, respectively. The obtained k' is smaller than that of the pure wustite as shown in Fig. 9. The decreasing tendency of k' in Al$_2$O$_3$-containing wustite was in accordance with the result by Piepenbrock et al. Therefore, coexisting Al$_2$O$_3$ in CaO–SiO$_2$–wustite leads to a decrease in the dissolved content of CaO and in the reduction rate. The obtained \tilde{D} is almost the same as that of CaO–SiO$_2$–wustite as shown in Fig. 10. To maintain the enhanced reduction rate of CaO-containing wustite, it may be necessary to decrease the amount of coexisting oxides such as SiO$_2$ and Al$_2$O$_3$ to secure the dissolved content of CaO in the wustite.
5. Conclusions

The CaO–SiO₂–wustite was reduced with CO–CO₂–Ar gas mixtures at 1273 K. In the reduction within the wustite phase field, the concentration profile of iron ion was formed in the wustite. These profiles were estimated from the lattice parameter measurements. The reduction process was examined by using a mixed-control model of chemical reaction at the wustite surface and solid state diffusion in the wustite. Some examinations were also performed on CaO–SiO₂–Al₂O₃–wustite. The results obtained are summarized as follows.

1. The lattice parameter of CaO–SiO₂–wustite decreases with the decrease of mass ratio CaO/SiO₂. The amount of dissolved CaO content seems to decrease due to the compound formations such as CaO·FeO·SiO₂ and 2CaO·SiO₂. This amount decreases further with coexisting Al₂O₃. In 1mass%CaO–2mass%SiO₂–wustite and 2mass%CaO–2mass%SiO₂–1mass%Al₂O₃–wustite, dissolved CaO content is virtually 0 and only SiO₂ and Al₂O₃ are dissolved in the wustite, respectively.

2. The apparent chemical reaction rate constant in the reduction of CaO–SiO₂–wustite decreases with decreasing the amount of dissolved CaO. The rate constant which increases remarkably in 1mass%CaO–wustite decreases to almost the same value as pure wustite in 1mass%CaO–SiO₂–wustite with CaO/SiO₂≤0.9. The rate constant of 2mass%CaO–2mass%SiO₂–wustite with coexisting 1mass%Al₂O₃ becomes smaller than that of pure wustite.

3. The inter-diffusion coefficients in CaO–SiO₂–wustites tend to decrease slightly with increasing the amount of deposited compounds.

Acknowledgments

The authors wish to thank Dr. S. Ban-ya (present situation: professor emeritus of Tohoku University) , Dr. M. Hino and Dr. T. Nagasaka in Tohoku University for their valuable discussion. They also wish to thank Dr. N. Ishikawa in National Institute for Materials Science for EPMA observation.

REFERENCES

1) T. Inami and K. Suzuki: Tetsu-to-Hagané, 84 (1998), 327.
2) N. Shigematsu and H. Iwai: Tetsu-to-Hagané, 73 (1987), 1329.
3) N. Shigematsu and H. Iwai: Tetsu-to-Hagané, 79 (1993), 920.
4) M. Onoda and A. Sasaki: Bull. Res. Inst. Miner. Dressing Metall. Tohoku Univ., 24 (1966), 104.
5) T. Inami and K. Suzuki: ISIJ Int., 42 (2002), 150.
6) E. M. Levin, C. R. Robbins and H. F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, (1964), 204.
7) T. Inami and K. Suzuki: Tetsu-to-Hagané, 81 (1995), 1037.
8) H.-J. Grabke: Ber. Bunsenges. Phys. Chem., 69 (1965), 48.
9) E. T. Turkdogan and J. V. Vinters: Metall. Trans., 3 (1972), 1561.
10) A. M. Watts, D. H. St. John and P. C. Hayes: Metall. Trans. B, 14B (1983), 753.
11) M. Sakano: Introduction to Numerical Analysis, Ohm-sha, Tokyo, (1982), 197.
12) K. Sato, S. Suzuki, Y. Sawamura and K. Ono: Tetsu-to-Hagané, 68 (1982), 2215.
13) T. Maeda and Y. Ono: Tetsu-to-Hagané, 75 (1989), 416.
14) T. Maeda and Y. Ono: Tetsu-to-Hagané, 80 (1994), 451.
15) R. Piepenbrock, K. Koch, G. Tromel and W. Fix: Arch. Eisenhüttenwes., 47 (1976), 141.